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+is study aimed to reveal the potential relationship between personal characteristics of e-bike riders and illegal occupation of
motor vehicle lane. To this end, a questionnaire survey was conducted and 350 valid copies of responses were retrieved from the
e-bike riders. Depending on the number of motor vehicle lanes occupied, the risky behavior of illegal occupation was divided into
four intervals: intervals A, B, C, and D. +e disaggregate theory has high adaptability to the analysis of individual traffic behavior.
In this study, the multinomial logit model was used, and eight personal characteristics of e-bike riders were selected. +e
aforementioned four intervals were the four selection limbs, and a measurement model calculating the influence of personal
characteristics on the behavior of illegal occupation was built. +e theory of elasticity was employed to analyze the sensitivity
degree of each influence factor.+e results showed that the absolute values of elasticity of all tested influence factors, including age,
educational level, and eye vision, were less than 1.000. However, on the four intervals, the elasticity of riders’ temperament was
1.203, 1.656, 1.554, and 1.355, respectively, and elasticity of riding proficiency was 2.782, 3.883, 3.453, and 2.932, respectively.

1. Introduction

e-bike is defined as the mass of the whole vehicle shall not
exceed 55 kg, the speed shall not exceed 25 km/h, and the
motor power shall be 400W. It strengthens the requirements
of riding ability and must have foot riding device, tamper
proof, fire-retardant device, waterproof ability, charging
protection device, etc. [1].

In recent years, many large- and medium-sized cities of
China have witnessed the growing prevalence of e-bikes for
daily transport due to their low cost, convenience, and
flexibility of riding [1–4]. Unlike North America and
Europe, the e-bike has already become one of the most
popular modes of transportation, for example, for daily
commuting, and not for leisure only. +e China Bicycle

Association [5], in 2017, reported that e-bike ownership in
China amounted to 250 million. +e annual production of
e-bikes was 30.97 million, and the export volume was 7.301
million with an export value of US $1.44 billion. In some
cities, such as Nanning, Haikou, Kunming, and Guilin, the
number of e-bikes has far exceeded that of conventional
bikes [1, 3–5]. For example, e-bikes in the urban area of
Nanning amounted to more than 1.8 million [6]. Nanning is
the Chinese city with the greatest number of e-bikes and
hence known as the city on an e-bike. Apparently, the e-bike
has already become an important commuting tool [7, 8].

In spite of this, the rapid increase in the number of
e-bikes has given rise to a series of safety problems. Besides
conventional bike riders and pedestrians, e-bike riders are
also a disadvantaged group. Because of their fast traveling
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speed, e-bikes also have a high risk of serious accidents.
According to the 2015 China Statistical Yearbook on Road
Traffic Accidents, the number of e-bike accidents was 8.2-
fold that of bike accidents and 5.4-fold that of pedestrian
accidents [9, 10]. From January to June 2016, the number of
e-bike accidents in Jiangsu accounted for 70% of the national
total [11]. Further, data on hospital admissions related to
e-bike accidents are also bleak. As indicated by hospitali-
zation records of e-bike riders in Hefei from 2009 to 2011,
one-third of the e-bike riders were seriously wounded
[1, 2, 12]. According to the hospitalization records of Suzhou
from October 2010 to April 2011, the number of people
injured during e-bike accidents accounted for 57.2% of all
hospital admissions due to road traffic accidents [12]. Both
the seriousness and the number of e-bike accidents have
increased. According to statistics [13, 14], the number of
deaths due to e-bikes nationwide was 73 and 1305 in 2011
and 2016, respectively, indicating an increase by 78.02% in 5
years. +e number of people injured during e-bike accidents
was 8532 and 16,944, respectively, which was an increase by
14.71%. Given such frequency and seriousness, Guangzhou,
Shenzhen, Wenzhou, and Fuzhou have banned or restricted
the use of e-bikes [3, 4, 8, 10, 14–18]. Based on the statistical
analysis of accident data and causes, Ren et al. [17] proposed
a classification into 12 risky behaviors of riding: illegal
occupation of lanes, riding in the opposite direction, riding
through a red light, riding overspeed, riding while drunk,
turning around the corner at a fast speed, crossing the road
abruptly, riding in parallel, riding while making telephone
calls, riding with music on, riding while chatting, and riding
with someone else on the bike.+e results showed that illegal
occupation of lanes and riding with someone else on the bike
were associated with the highest probability of traffic
accident.

+e safety problem of e-bike riding has drawn in-
creasing attention, necessitating the need to understand
the relationship between personal characteristics of e-bike
riders and risky behaviors of riding, especially the rela-
tionship between personal characteristics and illegal oc-
cupation of lanes. +e present study attempted to reduce
the occurrence probability of e-bike accidents and raise
the safety awareness of e-bike riders. +e results shed
some light on improving road traffic safety and reducing
road traffic accidents.

2. Literature Review

Questionnaire survey [1–3, 18–28] and video capture
[16, 29–32] were the two most commonly used methods in
this study to collect data on risky behaviors of e-bike riding.
+e questionnaires were usually designed based on the
previous behavioral studies of light motorcycle and mo-
torcycle riders and car drivers. Most of the research pro-
grams use light motorcycle rider behavior questionnaire
designed by Yao and Wu [18], motorcycle rider behavior
questionnaire designed by Steg and Brussel [22], and Chi-
nese riding behavior questionnaire designed by Elliott et al.
[23]:

(1) +e questionnaire survey approach has been widely
used in traffic safety studies for collecting infor-
mation about the riding behavior, safety attitude, and
risk perception [18, 21–28]. For example, Ma et al.
[21] examined the relationship between electric bike
riders’ individual characteristics and their riding
speed using a questionnaire-based method. Yao and
Wu [18] studied the risk factors involved in e-bike
accidents based on the questionnaire survey and
determined the relationship between safety attitude,
risk perception, and aberrant riding behavior. Steg
and Brussel [22] developed a light motorcycle rider
behavior questionnaire and confirmed the distinc-
tions between wrong, faulty, and illegal behaviors of
light motorcycle riders in Holland. Elliott et al. [23]
developed motorcycle driver behavior questionnaire
(DBQ) and identified the differences between Brit-
ain’s traffic errors, control errors, speed violation,
and stunt and safe use of motorcycle. Similar studies
have also been found in [24–27]. Reason et al. [28]
proposed the logical framework for assessing aber-
rant riding behaviors and designed the DBQ, which
differentiated between three types of behaviors:
wrong behavior (failure of planned action to achieve
the desired effect), mistaken behavior (deviation of
behavioral intention from intention), and illegal
behavior (intentional deviation from normal safe
behavior or socially recognized code of conduct).
+e revised versions of DBQ have also been used to
study aberrant behaviors of two-wheeled vehicle
riders, for example, motorcycle riders and light
motorcycle riders.

(2) +e video capture approach uses the electronic
monitoring devices on road and observes the riding
behaviors and features of e-bike riders. +is method
was featured by the massiveness of data. Zhou et al.
[16] employed Global Eyes Network video moni-
toring technology of China Telecom to acquire real-
time video data of e-bikes in Ningbo. +e major
factors influencing the waiting endurance time of
e-bike riders were observed. It was found that
weather, with or without a pedestrian crosswalk, and
law enforcement by traffic police had the largest
influence. Konstantina [29] observed 90,000 e-bike
riders at 6 monitoring sites in Iowa and studied the
influence of road conditions, geographical position,
and weather on the use of helmet among riders.
Truong et al. [30] observed 26,000 motorcycle and
e-bike users and concluded that the use of cell phone
while riding correlated to motorcycle type and age.
Huan et al. [31] used video monitoring data at road
intersections to establish a model that analyzed the
factors influencing the waiting endurance time and
red-light running behavior of e-bike riders at the
intersections. +ey found that the smaller the
number of e-bike riders or the larger the number of
motor vehicles at the intersection, the lower the
frequency of red-light running behavior among the
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riders. Du et al. [32] performed an observation of
18,000 e-bike riders at intersections in Suzhou and
summarized the risky riding behavior.

Many risky riding behaviors are seen among e-bike
riders. Traffic violation behaviors are prevalent among e-bike
riders. Aberrant riding behaviors usually include the illegal
occupation of lanes (Figure 1), overspeeding, red-light
running, riding in an opposite direction, and riding with
someone else on the e-bike. For example, Du et al. [12]
focused on the riding behavior of e-bike riders and reported
that riding with someone else on the e-bike, illegal occu-
pation of lanes, red-light running, riding in an opposite
direction, and making phone calls while riding were risky
riding behaviors. Zhao et al. [33] investigated the risky riding
behaviors of e-bike riders and conducted a 4-day survey in
Jinhua, China. +e results showed that overspeeding, riding
with someone else on the e-bike, red-light running, and
riding in the opposite direction were among the major risky
riding behaviors. Wu et al. [34] investigated the relationship
between riding behavior, age, and gender based on the
survey data. It was found that young and middle-aged adults
were more prone to red-light running compared with elderly
people and that male had a higher probability of red-light
running compared with female. +is was especially true
among male riders of battery vehicles with higher dynamic
performance. Schepers et al. [35] showed that the serious-
ness of e-bike accidents far exceeded that of ordinary bike
accidents.

Moreover, after correction for riders’ age, gender, and
bike use frequency, e-bike riders were more likely to be
involved in a serious traffic accident. Petzoldt et al. [36]
studied the differences between ordinary bikes and e-bikes in
traffic conflicts through 80 volunteers. Insignificant differ-
ences were reported between the two, but at the intersec-
tions, the number of traffic conflicts involving e-bikes was
twice that of ordinary bikes. Moreover, the traveling speed
was higher for e-bikes upon traffic conflict, and the prob-
ability of traffic accidents was also higher. e-Bike riders are
an emerging traffic population, and it takes more time for
other road users to get used to it. Johnson and Rose [37]
performed an online survey on e-bike use among elderly
people aged more than 65 years in Australia. It was found
that elderly people were more familiar with the safety
knowledge of e-bike use and riding and that 84.1% of elderly
riders did not get involved in any e-bike accidents. Hu et al.
[15] discussed the factors influencing e-bike traffic accidents
in Hefei. +e results showed that riders’ age, gender, and
type of e-bike had a significant impact on traffic accidents.
Cherry et al. [38] analyzed the illegal behaviors of e-bike
riders and found that overspeeding, red-light running, and
overloading were also the major causes of traffic accidents.
Moreover, the high frequency of e-bike traffic accidents was
closely related to losing control on e-bikes while getting onto
the road. For example, Xing et al. [39] performed a roadside
observation of risky behaviors of e-bike riders in a city in
Anhui province. +ey found that riders had an average
traveling speed of 24 km/h at different time intervals within a

day and that 74.60% of riders had a traveling speed of more
than 20 km/h. Zhou et al. [16] studied e-bikes crossing the
intersections illegally at a red light. +e influence was an-
alyzed. +e results showed that three factors, namely,
weather, length of a pedestrian crosswalk, and no law en-
forcement by traffic police, had the greatest influence on the
waiting endurance time.

Taken together, extensive studies [1–3, 18, 21, 40–43]
have been conducted on riding behaviors of e-bike riders,
which contribute to the riding safety of e-bikes. However,
fewer studies have been carried out concerning the rela-
tionship between personal characteristics of e-bike riders
and risky riding behaviors, especially illegal occupation of
lanes. However, many traffic accidents are caused by the
illegal occupation of lanes by e-bike riders, and such be-
havior poses a great threat to life and property safety of the
riders [12, 18, 21, 31, 33, 44]. +is study analyzed whether
personal characteristics of riders were directly related to
illegal occupation of lanes.+e disaggregate theory was used,
and ameasurement model for assessing the influence of each
personal characteristic of riders on illegal occupation of
lanes was established. +e relationship between each
influencing factor and illegal occupation of lanes was
quantified, and sensitivity analysis was performed. By
conducting a systematic study on the influence degree and
mechanism, the influence of personal psychology and
psychological properties of riders on the riding behaviors
was analyzed from the perspective of traffic psychology. +is
study can enrich the systematic theory on e-bike riders and
lay a theoretical basis for curbing the behavior of illegal
occupation of lanes. +is will further promote the riding
safety and efficiency of e-bike riders.

3. Data Collection and Processing

3.1. Data Collection

3.1.1. Survey Design. A questionnaire on personal charac-
teristics of e-bike riders was designed. +en, with the help
from traffic police, data were collected by field sampling.+e
specific process was as follows: the traveling speed of the
samples (i.e., e-bike riders) was acquired with a radar speed
detector. +en, in the downstream road section 200m away,
the e-bike rider was stopped with the help of traffic police.
+is rider was then informed of the purpose of the ques-
tionnaire survey and received the questionnaire. If the rider
was not cooperative, the sample was dropped. +e road
sections surveyed were two-way six-lane roads; bus stops
and intersections were avoided to reduce the influence of
other traffic-related factors on e-bike riders. +e actual road
conditions and the length of road section chosen from the
survey are shown in Figure 2.

Demographic information included sex, age, driving age,
and educational level. Participants were also asked to report
their character, occupation, riding proficiency, and eye
vision.

3.1.2. Speed Selection Behavior. According to the require-
ments in the safety technical specification for electric bicycle
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[45], the traveling speed of e-bikes of more than 25 km/h on
an urban road was considered as overspeed. +us, the speed
limit for choosing the overspeeding of samples was set as
25 km/h. To more reasonably study the influence of personal
characteristics of riders on their behavior of illegal occu-
pation of lanes based on survey data, the lanes occupied were
divided into four categories: nonmotor vehicle lane, first
motor vehicle lane, second motor vehicle lane, and third and
higher motor vehicle lane, each one represented by intervals
A, B, C, and D, respectively. +us, the numbers of riders
occupying different lanes were calculated. +e specific in-
terval division diagram is shown in Table 1. +e relationship
between riders’ personal characteristics, traveling speed, and
occupation of motor vehicle lane was discussed using survey
data. To do this, the average traveling speed of e-bike riders
was acquired for the road section concerned. According to
the limit on the traveling speed of e-bike riders and actual
distribution of speed data for the road section, the traveling
speed of the riders was divided into four intervals, namely,

0–15, 15–25, 25–35, and 35 km/h and above, which were
represented by A, B, C, and D, respectively. Using the survey
data, the number of riders within each speed interval and
average traveling speed were calculated.

Four intervals, A, B, C, and D, corresponding to different
lane occupation behaviors, were the four selection limbs of
the mode, the values of which were 0, 1, 2, and 3, respec-
tively. +e personal characteristics as influencing factors for
the selection of lane occupation behavior were assessed and
identified, as shown in Table 2.

3.2. Data Processing. +e subjects surveyed were e-bike
riders, and a total of 352 copies of responses were retrieved.
Among these, 350 copies were found to be valid after
screening. According to the statistics, 311 were male riders
(88%) and 41 were female riders (12%). +ey were 18–61
years old, and they all had more than 1 year of driving age.
Statistics of the personal characteristics of e-bike riders are
shown in Table 3.

(a) (b)

Figure 1: Riding behavior of illegal occupation (IO). (a) One e-bike involves IO. (b) Multiple e-bikes involve IO.
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Figure 2: Actual road conditions and the length of road section chosen for the survey. (a) Actual road conditions. (b) Length of road section.
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Data on average traveling speed and specific lanes oc-
cupied by the e-bike riders are shown in Tables 4 and 5,
respectively.

3.3. Reliability and Validity Tests

3.3.1. Reliability Test. Reliability test can well reflect the
reliability of data sources of the questionnaire survey and is
considered an indispensable step before formal data analysis.
+e higher the reliability of the survey data, the more reliable
the conclusions drawn from data analysis. +e results of
reliability test are usually represented by three indicators,
namely, Cronbach’s alpha, Guttman’s coefficient, and split-
half coefficient. In the questionnaire used in this study, some
items were scored in multiple ways, and so internal con-
sistency of the questionnaire was assessed by Cronbach’s α:

α �
k

1 − k
􏼠 􏼡 1 −

􏽐
k
i�1 S2i
S2x

􏼠 􏼡, (1)

where k is the number of items contained in the ques-
tionnaire; S2i is the variance of score of the ith item (mea-
sured value); and S2x is the variance of the total questionnaire

score. +e increased content of reliability test is as follows:
note that the reliability coefficient is closely related to the
number of items (k) of the scale; the more the number of
items, the greater the acceptable reliability. For a scale with
about 10 questions, if the coefficient of α reaches 0.7, the
reliability is good [46].

+e SPSS 19.0 software was used to verify the reliability of
data from the questionnaire survey. It was found that Cron-
bach’s alpha was more than 0.807 for three potential variables,
namely, riding proficiency, occupation, and temperament. +e
overall reliability of eight variables was 0.722 indicating that the
reliability of the questionnaire was good; that is, the ques-
tionnaire was acceptable in the overall design.

3.3.2. Validity Test. Validity consists of content validity,
criterion validity, and construct validity, and construct

Table 1: Interval division diagram of road lanes occupied by e-bike riders.

Middle isolation zone +ird motor vehicle lane Second motor vehicle lane First motor vehicle lane Nonmotor vehicle lane
Middle isolation zone Interval D Interval C Interval B Interval A
Middle isolation zone 35 km/h and above 25–35 km/h 15–25 km/h 0–15 km/h

Table 2: Influencing factors.

Influencing factor Variable Explanation
Gender X1 1 for male and 0 for female

Age X2
Classified into four age groups: 18–30 years, 30–45 years, 45–60 years, and older than 60 years, assigned

with values 0, 1, 2, and 3, respectively

Educational level X3
Classified into four levels: primary school and lower, junior high school, senior high school, and

university and higher, assigned with values 0, 1, 2, and 3, respectively

Driving age X4
Classified into four levels: 1 year or less, 1–3 years, 3–5 years, andmore than 5 years; the values are 0, 1, 2,

and 3, respectively
Character
(temperament) X5

Classified into four types: melancholic, phlegmatic, sanguineous, and choleric, assigned with values 0, 1,
2, and 3, respectively

Occupation X6
Classified into four groups: students, in-service staff, self-employed, and retirees (other), assigned with

values 0, 1, 2, and 3, respectively
Vision correction X7 Dummy variable: 1 for yes, 0 for no

Cycling proficiency X8
Classified into four levels: novice, moderately skilled, skilled, and highly skilled, assigned with values 0,

1, 2, and 3, respectively

Table 3: Statistics of personal characteristics of e-bike riders.

Personal characteristic Number of e-bike riders
Gender Male 310 Female 40
Age 18–30 years 108 30–45 years 142 45–60 years 81 60 years and more 19
Educational level Primary school and lower 27 Junior high school 121 Senior high school 157 University and higher 45
Driving age Below 1 year 21 1–3 years 180 3–5 years 122 5 years and more 27
Character
(temperament) Melancholic 1 Lymphatic 129 Sanguine 149 Bilious 71

Occupation Student 11 Employee 179 Freelancer 141 Retiree 19
Vision correction Corrected 284 Not corrected 66
Riding proficiency Very skillful 130 Skillful 189 Moderately skillful 25 Novice 6

Table 4: Traveling speed of e-bike riders.

Interval of speed selection A B C D
Number of riders 10 133 147 60
Average riding speed 13.3037 20.7137 28.8339 40.7376
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validity is a measure of the degree of agreement between
practice and theory. Factor analysis is the most commonly
used method for demonstrating construct validity. However,
many problems in reality not only involve multiple variables
but also intricate connections between the variables.+e best
way is to extract a few synthetic variables that contain the
majority of information in the original variables. Moreover,
these synthetic variables should be mutually independent.
Factor analysis is an ideal method to derive synthetic var-
iables so that the relationship between multiple variables can
be depicted using a few factors. Variables described are
usually actually observed random variables, while the syn-
thetic variables are unobservable ones. In actual application,
these factors are known as common factors. +e personal
characteristics of riders identified by the questionnaire
survey as related to illegal occupation of lanes were con-
sistent with the common factors found by factor analysis.

+e starting point of factor analysis is to represent the
majority of the information contained in the original var-
iables by mutually independent variables, which can be
expressed by the following mathematical model [46]:

x1 � a11F1 + a12F2 + · · · + a1mFm,

x2 � a21F1 + a22F2 + · · · + a2mFm,

. . .

xp � ap1F1 + ap2F2 + · · · + apmFm,

(2)

where x1, x2, . . . , xp are p original variables, which are
standardized variables with a mean of 0 and standard de-
viation of 1; F1, F2, . . . , Fm are m factor variables; and m is
smaller than p. It can be represented in the following matrix
form:

X � AF + aε, (3)

where F is a common factor, representing m mutually
perpendicular coordinate axes in the high-dimensional
space, and A is the factor load matrix, the load of the ith
original variable on the jth factor variable.

+e content of the validity test is as follows: the steps of
factor analysis are to (1) determine whether the original
variables to be analyzed are suitable for factor analysis; (2)
construct factor analysis; (3) use rotation method to make
factor variables more interpretable; and (4) calculate factor
scores.

In the validity test of the questionnaire, the Kai-
ser–Meyer–Olkin (KMO) measure of sampling adequacy
and the Bartlett test for sphericity were performed to de-
termine whether the questionnaire data were fit for factor
analysis. +e value of KMO measure was 0.689, which was
greater than 0.50, and that of Sig was 0.00, which was less
than 0.05, indicating that the questionnaire was suitable for

factor analysis. Principal component analysis is commonly
used for factor analysis to test the construct validity of the
questionnaire. Principal common factors were extracted
from the questionnaire. +ree principal components existed
with a characteristic root of greater than 1, and the per-
centage contribution of these three principal components
was 29.194%, 20.376%, and 12.423%, respectively. +e cu-
mulative contribution rate was 61.994%, indicating that the
potential variables screened through the test had high
construct validity.

4. Constructionof theBehavior SelectionModel
and Riding Behavior Selection

4.1. Disaggregate Model. Logit model is a special form of
generalized linear regression model. +emodel itself has few
restrictions on data conditions. +e independent variable
can be continuous variable or unnecessary or orderly
classified variable, and the variable is not required to meet
the normal distribution. At present, the commonly used
logit models are binomial logit regression model, condi-
tional logit regression model, ordered logit regression
model, and multiple classified ordered logit regression
model. Among them, the ordinal logit model is an extension
of binomial logit model, which was proposed by McCullagh
in 1980 to analyze the data whose dependent variable is
ordinal classified variable. Many studies have found that for
classified ordered data, binomial logit model instead of
ordered logit model can only achieve 50%–70% of the test
efficiency, which shows that multiple classified ordered logit
model has a good effect in dealing with classified variable
data [23–27].

Individual data were used for model construction and
calibration when applying disaggregate theory to analyze
individual traffic behaviors. From the 1970s to the present
day, a disaggregate model has been widely used in the
transportation field and abundant achievements have been
made [22–26, 47–51]. It is assumed with the disaggregate
model that the travelers may choose the transportation
scheme with the maximum utility. +e utility function,
divided into fixed and random parts, was expressed as
follows:

Uin � Vin + εin, (4)

where

Vin � 􏽘
k

k�1
θkXink, (5)

Uin is the utility function of the ith scheme chosen by the nth
traveler; Vin is the fixed term of Uin; εin is the random term of
Uin; k is the specific number of attribute variables; θk is the

Table 5: Lanes illegally occupied by e-bike riders.

Interval for different lanes
occupied

A B C D
Nonmotor vehicle

lane
First motor vehicle

lane
Second motor vehicle

lane
+ird and higher motor vehicle

lane
Number of riders 91 177 49 33
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parameter value of the kth variable; and Xink is the value of
the kth attribute variable of the ith scheme chosen by the nth
traveler.

In the aforementioned disaggregate model, when εin

obeyed the double exponential distribution and multivariate
normal distribution, the logit and probit models could be built,
respectively. e-bike riders as the principal participants in the
transportation system usually show traffic selection behaviors
that are hard to capture accurately, thus leading to randomness
in the changes of the transportation system. When the e-bike
riders choose to occupy the motor vehicle lanes, both personal
and environmental factors are responsible for shaping such a
choice. However, environmental factors exert a similar influ-
ence on all riders, while the selection of behavior of illegal lane
occupation displays discreteness. +is is mainly due to the
varying perception about the environmental factors on the part
of riders. +at is, the riders develop different perception and
occupy different lanes even in the same environment. +us,
personal characteristics have the most decisive impact on the
behavior of illegal occupation of motor vehicle lanes. Con-
ventional models cannot reflect the double features of dis-
creteness and nonlinearity of riding behaviors stemming from
the personal characteristics of the riders. In contrast, the
disaggregate model especially targets these features and is
highly adaptive in this field. Furthermore, the behavior of
occupying motor vehicle lanes is chosen by the riders after
comprehensive consideration of multiple factors in an attempt
to achieve maximum expected utility. +is conforms to the
initial assumption of the disaggregate theory. +erefore, a
disaggregate model was applied to analyze the riding behavior
selection of e-bike riders.

4.2. Construction of Riders’ Behavior Selection Model. A
riders’ illegal lane occupation behavior selection model was
constructed based on the multinomial logit (MNL) theory
and valid data of personal characteristics of e-bike riders.
Based on the basic form of an MNL model, εin obeyed dual
exponential distribution and εin was Vin mutually depen-
dent. +en, the probability of the nth rider choosing the ith
behavior of illegal lane occupation was expressed as follows:

Pin �
eVin

􏽐
In

i�1 eVin

, (6)

where In is the total number of currently optional behaviors;
Pin is the probability that the nth rider chooses the ith
behavior; εin is the random term of utility function for the
nth rider choosing the nth scheme; and Vin is the fixed term
of utility function Uin for the nth rider choosing the ith
scheme.

+e model construction and calculation workflow based
on the basic features of riding behavior selection are shown
in Figure 3. In the figure, t is the t-statistic for each influence
factor and R2 is the correlation coefficient.

4.3. Model Solution

4.3.1. Calibration of Influencing Factors of the Model.
+e SPSS software was used to calibrate the influencing
factors of the model. Table 6 shows that the minimum t-
statistic (absolute value) was 4.975, which was higher than
1.960, indicating that the influencing factors were
significant.

In the statistical analysis using SPSS, R2 was used to
measure the degree of fitness of the model and was called
correlation coefficient, where R2 ∈ (0, 1). +e closer the
value of R2to 1.000, the higher the degree of linear regression
predictions fitting the data, and the higher the agreement
between the built model and actual situation. In this study,
the correlation coefficient R2 was 0.594, and the adjusted
value of R2 was 0.563, as shown in Table 7, indicating good
fitness of the model.

4.3.2. Utility Function. Parameter values of each influencing
factor on the four intervals are shown in Table 8. According
to Table 8, the utility functions V0, V1, V2, and V3 corre-
sponding to intervals A, B, C, and D were, respectively, as
follows:

V0 � 0.491X1 − 0.059X3 + 1.030X5 + 0.417X6 + 1.919X8,

V1 � 0.730X2 − 0.059X3 + 0.334X4 + 1.030X5 + 0.430X7,

V2 � −0.059X3 + 0.334X4 + 1.030X5 + 0.417X6 + 1.919X8,

V3 � 0.491X1 + 0.730X2 + 1.030X5 + 0.430X7 + 1.919X8.

(7)

To determine the relationship between each influencing
factor and behavior of illegal lane occupation among e-bike
riders, a sensitivity analysis was performed for each influ-
encing factor. +e degree of sensitivity is usually represented
by elasticity. In the disaggregate theory, when an influencing
factor changes, the elasticity E for variation in the probability
of riding scheme selection is given by

E � θkXink 1 − Pin( 􏼁. (8)

Elasticity can be positive or negative. When the two
variables correlate positively, the elasticity value is positive;
otherwise, it is negative. +e absolute values of all elasticities
of more than 1.000 on the four intervals indicate that the
influence factor has elasticity on the selection of illegal lane
occupation behavior; otherwise, elasticity is lacking. First of
all, the means of personal characteristics of riders on each
interval were calculated based on the survey data of personal
characteristics and illegal lane occupation behavior of the
riders. Next, the parameter values obtained in Table 4 were
introduced into (5) and (6), and the probability of selecting
illegal lane occupation behavior was calculated. +en, using
the calculation (8), the elasticity of each influencing factor
for the probability of selecting illegal lane occupation be-
havior was derived.
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Figure 3: Model calculation workflow.

Table 6: Calibration of influencing factors of the model.

Influencing factor Variable Parameter value Standard deviation t-Statistic
Gender X1 0.491 0.122 16.364
Age X2 0.730 0.056 6.946
Educational level X3 −0.059 0.060 11.318
Driving age X4 0.334 0.066 12.581
Temperament X5 1.030 0.056 13.101
Occupation X6 0.417 0.062 18.977
Vision correction X7 0.430 0.103 4.905
Cycling proficiency X8 1.919 0.061 15.619

Table 7: Degree of fitness of the calibrated model.

Model R R2 Adjusted R2 Standard error of estimate
1 0.771 0.594 0.563 1.769

Table 8: Influencing factors and parameter values.

Influencing factor Variable
Interval

A B C D
Gender X1 0.491 0.491
Age X2 0.730 0.730
Educational level X3 −0.059 −0.059 −0.059
Driving age X4 0.334 0.334
Character X5 1.030 1.030 1.030 1.030
Occupation X6 0.417 0.417
Vision correction X7 0.430 0.430
Cycling proficiency X8 1.919 1.919 1.919
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5. Results Analysis

5.1. Relationship between Personal Characteristics and Illegal
LaneOccupationof e-BikeRiders. Different riding habits and
behaviors were derived from riders with different personal
characteristics. Given limited traffic resources (some non-
motor vehicle lanes occupied by motor vehicle lanes), riders
are faced with a shortage of nonmotor vehicle lanes. As a
result, many nonmotor vehicle riders tend to occupy motor
vehicle lanes, and e-bike riders account for a greater pro-
portion. +e personal characteristics identified to influence
illegal lane occupation by e-bike riders were gender, age,
educational level, driving age, temperament, occupation,
and road infrastructure of motor vehicle lanes. +erefore,
the personal characteristics of e-bike riders were discussed in
this study to shed light on the influence of personal char-
acteristics of riders on their behavior of illegal lane
occupation.

5.1.1. Gender and Age. Using the method described in
Section 4, the selection probability and parameter value of
gender and age on different intervals and the means and
elasticity of each influencing factor on each interval were
evaluated, as shown in Table 9. Similarly, the values cor-
responding to each influencing factor were also evaluated
using this method. In field sampling, 88% of the e-bike riders
were male, while the female riders took up a small pro-
portion of the surveyed area. +e probability of illegal lane
occupation was more than 0.713, which was higher than
0.500. Apparently, more than one-half of the e-bike riders
would choose to occupy the motor vehicle lanes when
traveling. As shown in Table 9, the means for gender on the
four intervals increased steadily, and all of them were more
than 0.921 and 0.500 for male and female, respectively. +at
is, male riders outnumbered the female riders. In other
words, male riders were more likely to occupy motor vehicle
lanes compared with female riders. +e values of elasticity
for gender on the four intervals were all less than 1.000,
indicating the lack of elasticity of gender for the choice of
illegal lane occupation behavior. However, the elasticity was
0.391 on interval B, which was higher than that on the other
three intervals. +is indicated that gender had the greatest
impact on the behavior of occupying the first motor vehicle
lane.

+e means for age on the B interval is the highest. +is
meant people aged between 30 and 45 have the highest
probability of choosing the illegal lane occupation behavior.
+is correlated with the personality traits of young people,
such as impulsiveness and lack of safety awareness. Elasticity
for age was smaller than 1.000 on the four intervals, indi-
cating that age had a low elasticity on the choice of illegal
lane occupation behavior. However, elasticity was the
highest on interval B (occupying the first motor vehicle
lane), the value being 0.693. +is indicated that compared
with the other three intervals, age had the most significant
impact on the choice of the behavior of occupying the first
motor vehicle lane. +at is, the younger the age of e-bike
riders, the more likely that the riders occupied the motor
vehicle lane closer to the middle isolation zone.

5.1.2. Educational Level and Driving Age. Table 10 shows the
results on the educational level and driving age. According
to the table, the means for the educational level were similar
on all the four intervals and changed steadily. +e mean was
the highest on interval A, the value being 1.681, which
suggested that the educational level was the highest among
riders occupying the nonmotor vehicle lane. Values of
elasticity for educational level were all negative on the four
intervals, the absolute value being about 0.070. On the one
hand, this indicated that the educational level had low
elasticity for the choice of illegal lane occupation behavior.
+at is, the educational level did not have a decisive role in
the choice of illegal lane occupation behavior. On the other
hand, it indicated that fewer riders chose to occupy motor
vehicle lanes. +is is because a rise in the riders’ knowledge
level boosted their safety awareness and traffic knowledge.
More riders with a high educational level would voluntarily
comply with traffic rules, and their behavior of illegal lane
occupation decreased.

As shown in Table 10, themean for driving age was 1.451,
and no significant change in the mean was found on the four
intervals. However, the mean on interval D was 1.515, which
was slightly higher than that on the other three intervals.
+is indicated that the longer the driving age, the more likely
the riders would occupy the motor lanes close to the middle
isolation zone. +is was because riders with a longer driving
age were more proficient and skillful and more confident
with riding. +erefore, these riders were more likely to
occupy motor vehicle lanes closer to the middle isolation
zone. +e mean of elasticity for driving age on the four
intervals was 0.364, which was smaller than 1.000. +is
indicated the lack of elasticity of driving age for the choice of
illegal lane occupation behavior. +us, driving age had little
impact on the behavior of occupying motor vehicle lanes.

5.1.3. Temperament and Eye Vision. Table 11 shows the
results on temperament and eye vision. According to the
table, the mean for temperament increased steadily on the
four intervals, the mean value being around 1.800. +is
indicated that the choice of illegal lane occupation behavior
varied rather steadily with temperament. As indicated by the
means, many of them were of a sanguine temperament.
Values of elasticity for temperament on the four intervals
were all more than 1.000, indicating high elasticity of
temperament for the choice of illegal lane occupation be-
havior. +e elasticity was the highest on interval B, the value
being 1.656. +is indicated that temperament had the
greatest impact on the behavior of occupying the first motor
vehicle lane. +e specific relationship between temperament
and behavior of illegal lane occupation is illustrated in
Figure 4.

Figure 4 shows that among riders occupying motor
vehicle lanes, those with sanguineous temperament
accounted for the highest proportion. Moreover, the largest
number of riders with such temperament occupied the
nonmotor vehicle lane of all temperaments, followed by
phlegmatic temperament. Similarly, as shown in Figure 4,
the smallest number of riders with melancholic
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temperament chose such illegal behavior. Apparently, the
number of riders with phlegmatic and sanguineous tem-
peraments was the highest among all temperaments.
Moreover, riders with sanguineous temperament were more
likely to choose the behavior of illegal lane occupation. +is
indicated that riders with active, irritable, and extrovert
personality were more likely to illegally occupy motor ve-
hicle lanes.

During the process of e-bike riding, more than 80% of
the information was collected by vision, and more than 90%

of the information was dynamic. +is relied heavily on the
dynamic vision of the riders. +e basis of dynamic vision is
static vision, which lies at the root of cognition and judgment
of the traffic environment. Corrected vision can meet the
need for general information, but riders with corrected
vision can still hardly have completely normal visual acuity.
Moreover, the lens has a certain curvature, which causes
mild deformation of the surrounding environment. +is has
a less significant impact on information acquisition when
riding at a low speed in the motor vehicle lanes, but the
impact can be considerable when riding at a high speed. As
shown in Table 11, no significant difference in the mean for
eye vision was observed on the four intervals, the value being
about 0.183. +is indicated that the riders’ vision had no
significant impact on the choice of illegal lane occupation
behavior. Furthermore, riders with corrected vision
accounted only for a small proportion of all e-bike riders.
+is further indicated that riders wearing eyeglasses still
could not have completely normal eye vision for recognizing
the surrounding environment.+e values of elasticity for eye
vision on the four intervals were 0.046–0.070, which were all
smaller than 1.000. +is indicated the lack of elasticity of eye
vision for the choice of illegal lane occupation behavior.
+us, whether riders had corrected vision had little impact
on the behavior of occupying motor vehicle lanes.

5.1.4. Occupation and Cycling Proficiency. Table 12 presents
the results for occupation and cycling proficiency.
According to the table, the mean for occupation was 1.482,
and no significant difference in the mean was found on

Table 10: Calculation results on the educational level and driving age.

Interval for different lanes occupied Selection probability
Educational level Driving age

Parameter value Mean Elasticity Parameter value Mean Elasticity
A 0.287 −0.059 1.681 −0.071 0.334 1.341 0.319
B 0.124 −0.059 1.616 −0.083 0.334 1.480 0.433
C 0.289 −0.059 1.633 −0.068 0.334 1.469 0.349
D 0.300 −0.059 1.545 −0.064 0.334 1.515 0.354
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Figure 4: Relationship between temperament and illegal lane
occupation behavior.

Table 9: Calculation results for age and gender.

Interval for different lanes occupied Selection probability
Gender Age

Parameter value Mean Elasticity Parameter value Mean Elasticity
A 0.287 0.491 0.835 0.292 0.730 1.022 0.532
B 0.124 0.491 0.910 0.391 0.730 1.085 0.693
C 0.289 0.491 0.878 0.306 0.730 0.878 0.456
D 0.300 0.491 0.879 0.302 0.730 1.061 0.542

Table 11: Calculation results on temperament and eye vision.

Interval for different lanes occupied Selection probability
Temperament (character) Vision correction

Parameter value Mean Elasticity Parameter value Mean Elasticity
A 0.287 1.030 1.637 1.203 0.430 0.209 0.064
B 0.124 1.030 1.836 1.656 0.430 0.186 0.070
C 0.289 1.030 2.122 1.554 0.430 0.184 0.056
D 0.300 1.030 1.879 1.355 0.430 0.152 0.046
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intervals B, C, and D. +e mean on interval A was 1.253,
which was the smallest of all four intervals. +is indicated
that the number of students and employees was the highest
of all riders illegally occupying motor vehicle lanes. In ad-
dition, they weremore likely to occupy the nonmotor vehicle
lane. Mean elasticity for occupation on the four intervals was
0.465, with all values of elasticity less than 1.000. +is in-
dicated that occupation had low elasticity on the choice of
illegal lane occupation behavior. +erefore, the occupation
had an insignificant impact on the choice of illegal lane
occupation behavior.

Table 12 also shows that the mean for cycling proficiency
increased steadily, the value being 2.264. +is indicated that
riders more skillful with riding were more likely to occupy
the motor vehicle lanes. +e reason is that as the driving age
accumulates, the riders become more familiar with the road
environment and infrastructure. +erefore, they are better
prepared physiologically and physically when choosing to
occupy the motor vehicle lanes. Values of elasticity for
cycling proficiency on the four intervals were all more than
1.000, the value being 3.263. +is indicated that cycling
proficiency had high elasticity for the choice of illegal lane
occupation behavior. +is indicated that the higher the
cycling proficiency, the higher the probability that the riders
occupied the motor vehicle lanes. Moreover, values of
elasticity were higher in intervals B and C, indicating that the
cycling proficiency had the greatest impact on the choice of
occupying the first (closer to the nonmotor vehicle lane) and
second motor vehicle lanes. Relatively speaking, the prob-
ability that the riders occupied the third motor vehicle lane
(closest to the middle isolation zone) was the smallest. +e
specific relationship between riding proficiency and be-
havior of illegal lane occupation is illustrated in Figure 5.

Figure 5 shows that the e-bike riders were more skillful
with riding, and as the riding proficiency increased, an
increasing number of riders occupied the motor vehicle lanes.
+is is because high riding proficiency is usually accompa-
nied by richer driving age, better psychological quality, and
higher demand for riding speed. For this reason, most of the
e-bike riders would choose to occupy motor vehicle lanes
with better road conditions. But when the riding proficiency
reaches the highest, the number of violations decreases. +is
means experienced riders pay more attention to safety. In
addition, the largest number of riders chose to occupy the
nonmotor vehicle lane, to boost the traveling speed.

5.2. Correlation between Personal Characteristics, Traveling
Speed, and Illegal Lane Occupation. Several different traffic
groups use nonmotor vehicle lanes simultaneously, while the

road infrastructure remains less developed compared with
the motor vehicle lanes.+erefore, many e-bike riders prefer
nonvehicle lanes for faster traveling or even overspeeding.
Moreover, riders with different riding demand and riding
habits occupy different positions of the motor vehicle lanes.
In the present study, not only the influence of different
personal characteristics of riders on the choice of traveling
speed and illegal lane occupation behavior was analyzed but
also the internal connections between the traveling speed of
e-bike riders and the specific motor vehicle lane occupied
were investigated.

e-bike riders prefer nonmotor vehicle lanes for the
following reasons: the speed of the motor vehicle lane is
much higher than the e-bike speed.+ere is a common sense
that a slower one is easy to be hit by a faster one behind. So,
the e-bike riders would not choose the motor vehicle lane to
speed up, as that is obviously too dangerous. Although the
nonmotor vehicle is narrow, pedestrians, bicycle, motor-
cycle, e-bike, and three-wheeler riders use the nonmotor
vehicle lane simultaneously. It is safe than the motor vehicle
lane. +is directly results in lower traveling speed compared
with the expectation on the part of e-bike riders. e-bikes
need less space, which can basically meet the demand for
traveling speed on the part of e-bike riders. +erefore, e-bike
riders mostly prefer to occupy nonmotor vehicle lanes for
faster movement. It can be inferred that illegal lane occu-
pation correlates with overspeeding among e-bike riders,
and such correlation is closely related to the personal
characteristics of the riders. +e specific relationship is
shown in Figure 6.

Table 12: Calculation results on occupation and cycling proficiency.

Interval for different lanes occupied Selection probability
Occupation Cycling proficiency

Parameter Mean Elasticity Parameter Mean Elasticity
A 0.287 0.417 1.253 0.372 1.919 2.033 2.782
B 0.124 0.417 1.559 0.569 1.919 2.311 3.883
C 0.289 0.417 1.510 0.448 1.919 2.531 3.453
D 0.300 0.417 1.606 0.469 1.919 2.182 2.932
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Figure 5: Relationship between riding proficiency and behavior of
illegal lane occupation.
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Figure 6 shows that the majority of riders occupying the
nonmotor vehicle lane were male, who traveled at the
highest speed, which means overspeeding. It is easy to see
that the largest number of male e-bike riders occupied the
nonmotor vehicle lane for overspeeding.

Figure 7 shows that the age of riders occupying the
nonmotor vehicle lane was about 30–45 years, and this age
group also had the highest traveling speed. Riders aged
between 30 and 45 years more frequently chose the behavior
of illegal lane occupation, and the number of riders occu-
pying the first motor vehicle lane was the highest.

Figure 8 shows that riders with junior and senior high
school educational levels were more likely to occupy the
nonmotor vehicle lanes and to overspeed. Riders with

university and higher educational level were less likely to
occupy the motor vehicle lanes.+is indicated that the safety
awareness and traffic knowledge level of riders with high
educational level were higher compared with those with
lower educational level.

Figure 9 shows that riders with a driving age of 1–3
below a year were more likely to occupy the motor vehicle
lanes, and the traveling speed was the highest in riders
occupying the nonmotor vehicle lane. +is indicated that
e-bike riders with fewer riding years were most likely to
overspeed in the nonmotor vehicle lane.

Figure 10 shows that of the four types of temperament
examined, those with sanguine and lymphatic temperaments
were more likely to occupy the nonmotor vehicle lanes and
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Figure 6: Relationship between traveling speed and illegal lane occupation behavior.
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Figure 7: Relationship between age, traveling speed, and illegal lane occupation behavior.
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to overspeed. +e traveling speed of riders with lymphatic
temperament occupying the nonmotor vehicle lane was the
highest, exceeding 25 km/h, and the overspeeding behavior
was most likely.

Figure 11 shows that it was most prevalent for employees
to occupy motor vehicle lanes, and the employees occupying
the nonmotor vehicle lane had the highest traveling speed.
Relatively speaking, the traveling speed of retiree and stu-
dents was lower. Very few students preferred traveling in the
motor vehicle lanes, and their traveling speed was low. +is
was closely related to traffic safety awareness education and
training at schools.

Figure 12 shows that the number of riders without
corrected vision was the highest among all riders illegally
occupying the motor vehicle lanes. Such riders were more
likely to occupy the first motor vehicle lane and nonmotor
vehicle lane and travel at the highest speed. As a result, illegal
riding behaviors, such as overspeeding, were frequent.

Figure 13 shows that as the riding age increased and
driving age became more abundant, e-bike riders were more
likely to occupy the non- and first motor vehicle lanes.
Moreover, the traveling speed of riders occupying the
nonmotor vehicle lane was the highest, leading to the highest
risk of illegal riding behaviors, such as overspeeding.
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Figure 9: Relationship between driving age, traveling speed, and
illegal lane occupation behavior.

3 2 1 0

0

20

40

60

80

Sp
ee

d 
(k

m
/h

)

1
2

3

Occupied

lanes

Temperament

Figure 10: Relationship between temperament, traveling speed,
and illegal lane occupation behavior.

3210

0

20

40

60

80

Sp
ee

d 
(k

m
/h

)

2
1

0

Occupied

lanes

Education level

(a)

3 2 1 0

20

40

60

80

Sp
ee

d 
(k

m
/h

)

Education

level

3
2

1
0

Occupied lanes

(b)

Figure 8: Relationship between the educational level, traveling speed, and illegal lane occupation behavior.
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6. Conclusions and Future Study

6.1. Conclusions. Based on previous studies on traffic be-
haviors of e-bike riders, the influence of personal char-
acteristics of e-bike riders and illegal lane occupation was
further discussed. +e specific personal characteristics
influencing the choice of such illegal behavior were
identified after measuring the correlation degrees.
Moreover, concrete management strategies and schemes
for safety education and skill training were proposed for
e-bike riders with different personal characteristics. +e
ultimate purpose was to boost the traffic safety awareness
of the riders and reduce risky riding behaviors and
probability of traffic accidents. In this study, the tem-
perament and cycling proficiency of riders significantly

correlated with illegal riding behaviors.+erefore, effective
regulatory measures should be formulated targeting these
two aspects:

(1) +e higher the riding proficiency of the e-bike riders,
the higher the probability that the riders occupy the
nonmotor vehicle lane, which poses a great threat to
the riding safety. From another perspective, this
highlights the importance of riding skills for en-
suring safety. +erefore, traffic authorities should
improve safety awareness and ethics for e-bike riders
to ensure that every rider has enough skills and
reduce inconvenience to pedestrians. Moreover,
e-bike riders should wear protective equipment to
minimize potential injury during riding.
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1
0

0

20

40

60

80

Sp
ee

d 
(k

m
/h

)

0
1

2
3

Occupied
lanes

Corrected vision or not

Figure 12: Relationship between eye vision, traveling speed, and illegal lane occupation behavior.

14 Journal of Advanced Transportation



(2) Traffic authorities should stop e-bike riders oc-
cupying nonmotor vehicle lanes on the road on a
regular basis. +ese riders should be fined, and
uniform safety education should be provided. In
addition to safety precautions, these riders should
be made to watch videos on traffic accidents of
motor vehicles and those caused by illegal lane
occupation to make them fully aware of the dis-
advantages of illegal lane occupation. Along with
the safety education, webcast or road display
should be used for notification on safety precau-
tions for e-bike riders. While tightening law en-
forcement, all riders should be educated on the
dangers of illegal lane occupation to boost safety
awareness and safety riding behaviors.

(3) +e root cause for illegal lane occupation is to
achieve a faster speed. As indicated by the sta-
tistical analysis of sample data, it was found that
the average traveling speed for riders occupying
the second and third motor vehicle lanes was
25.1 km/h, which generally corresponded to
overspeeding. +erefore, an illegal behavior
warning device and a memory device should be
installed on the e-bikes. +ese devices would
transmit the riding data to traffic authorities in real
time via the Internet. When e-bike riders over-
speed in the nonmotor vehicle lane, voice prompts
would remind the riders to travel at a safe speed.
When e-bike riders overspeed in the nonmotor
vehicle lane, not only voice prompts but also the
rider information would be transmitted to the
traffic authorities through the memory device.
+ese riders would be singled out for safety edu-
cation and penalty, so as to reduce the behaviors of
illegal lane occupation and create a safe traffic
environment.

In this study, first, the measurement model for assessing
the influence of personal characteristics of electric vehicle
riders on illegal lane behavior was built. +e t-test was
conducted indicating that the built model agreed well with
the actual situation and had strong adaptability and prac-
ticability. Moreover, the model could quantify the degree of
correlation between personal characteristics and illegal lane
occupation. Second, elasticity theory was used to analyze the
sensitivity of each influence factor to the choice of illegal lane
occupation behavior. Finally, the influence of different
personal characteristics of e-bike riders on risky riding
behaviors was analyzed and the conclusions were drawn.+e
results showed that two personal characteristics, tempera-
ment and riding proficiency, had values of elasticity more
than 1.000 for the choice of illegal lane occupation. In other
words, these two influence factors were sensitive to the
choice of illegal lane occupation behavior. Based on the
riding speed obtained from the survey, the relationship
between personal characteristics, traveling speed, and illegal
lane occupation of e-bike riders was analyzed. As shown by
analysis, riders with different personal characteristics trav-
eled at different speeds on different lanes. +e largest
number of riders chose to travel in the first motor vehicle
lane. +e number of riders without corrected vision was also
the highest among all riders occupying motor vehicle lanes.
Riders with these characteristics were more likely to occupy
the nonmotor vehicle lane and to overspeed.

6.2. Future Study. +e sample values of this model had
certain limitations, and the value range needs to be further
expanded in future studies [48–51]. Moreover, other per-
sonal characteristics, such as marital status and body height,
should also be included in the investigation. In addition,
parameter values of each influence factor in the model need
to be constantly modified so that the results of sensitivity
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analysis are more accurate and better agree with the actual
traveling situation.

+e disaggregate model used in the present study had
strong adaptability to individuals’ traffic behaviors and the
results obtained were reliable. In future studies, structural
equation modeling should be used for stratification of the
influencing factors. Observable variables described in this
study need to be considered to study the relationship be-
tween potential variables and illegal lane occupation by
e-bike riders.
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�is paper addresses the need for sizing of rotors for multirotor vehicle applications such as personal air transport, delivery, surveillance, 
and photography. A methodology for the propeller and motor selection is developed and augmented with �ight time estimation 
capabilities. Being multirotor-speci�c it makes use of the platform’s simplicity to rapidly provide a set of o�-the-shelf components ready 
to be used in the vehicle. Use of operating points makes the comparison process fast, precise, and tailored to speci�c application. �e 
method is easily implemented in so�ware to provide an automated tool. Furthermore, clearly de�ned input and output parameters make 
it also usable as a module in other multicriteria optimisation algorithms. �e new methodology is validated through comparison with 
a consumer-grade drone and the calculated results are compliant with manufacturer’s speci�cation in terms of maximum hover time.

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have 
become a popular solution for a variety of civil and military 
applications including surveillance, photo- and videography, 
and land surveying. �e versatility of these systems has even 
found them in many nonstandard purposes such as automated 
package delivery or Personal Air Vehicles (PAVs). Multirotor 
UAV platforms have gained particular attention due to their 
Vertical Take O� and Landing (VTOL) capabilities as well as 
their simple construction and control. Of paramount impor-
tance is safety and reliability, especially when it comes to 
autonomous solutions, and so the enterprise market o�ers 
complete, closed drone solutions at di�erent size/weight 
points. �ese are simple-to-use systems with a high degree of 
user support and good performance for most applications. 
However, the mechanical simplicity of the platform means 
that customized and open solutions should be available for 
specialized applications. Furthermore, the main limitation of 
multirotor systems is their �ight time, mostly due to battery 
weight and energy storage constraints. �erefore, a set of tools 
needs to be created that can aid the design of customized solu-
tions that can be speci�cally tailored for a particular applica-
tion. �us there is a need for a methodology to automatically 

select the best consumer-grade components to build a custom 
solution at a given weight and performance level.

�ere are some methodologies in the open literature for 
this purpose, but few lead directly to a “bill-of-materials” level 
solution. �e most popular approach to obtaining a “�yable” 
con�guration seems to be to test various motor + propeller
combinations and choose one that suits the application [1]. 
Although popular with hobbyists, the method has little value 
in the commercial or research environment due to high cost 
(purchase of components), time requirement, and the need 
for specialized equipment (thrust stand, dynamometer). �is 
method provides the most accurate results, but the number of 
combinations needed to be tested increases geometrically with 
each added component. �is process can be signi�cantly sped 
up using calculators such as Drive Calculator [2] and eCalc 
[3], which incorporate some of the data in their databases, but 
still the selection needs to be performed manually. �is lack 
of search automatization capability and weak interfacing with 
other so�ware (e.g., MATLAB) renders it di¡cult when ana-
lysing more than one case. In addition, eCalc does not pay that 
much attention to the main li�ing body – the propeller, and 
uses a mathematical model (diameter and pitch can be input 
manually) for the performance calculation, as opposed to a 
more accurate database of measured/simulated data. �erefore, 
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alternative methods can still be proposed that improve accu-
racy, versatility or usability of database-driven approach.

Multirotor-speci�c methodologies have been developed 
by Gatti and Giulietti [4], Gatti [5] and Kim et al. [6]. �ey all 
used statistical methods to estimate relations between di�erent 
components of the propulsion chain. �e �rst two use analyt-
ical methods from the area of aerospace to calculate take-o� 
weight based on mission requirements, and the last manages 
to simplify the drone propulsion model to a single equation 
to obtain generated power or thrust. Unfortunately, these 
approaches provide too little data to properly size the compo-
nents, and in some cases even require the data of a selected 
component to work. �erefore, while useful for calculating 
the target multirotor weight for the application, they cannot 
be used for the component selection process.

Although not solving the problem completely, there are 
several methods that help with the preliminary multirotor 
design. Basset et al. [7] present past and current e�orts to 
develop UAV presizing methodologies. �ey focus on concep-
tual, as well as numerical aspects of the vehicle. Due to the 
con�dential nature of the projects, the paper does not go into 
much detail of the inner workings of the methodologies. 
However, most of them share a trait of being as general as 
possible in order to make them applicable to every con�gura-
tion, which is not desired when dealing with an already chosen 
topology, such as multirotor, due to possible oversimpli�cation 
and loss of optimisation opportunities.

A detailed database-free multirotor sizing methodology 
has been presented by Bershadsky et al. [8], that has been 
implemented in a tool called Electric Multirotor Sizing Tool 
(EMST). �e authors have shown its versatility and accuracy 
with several examples. Unfortunately, their parametric 
approach requires heavy generalisation of component models, 
that keeps the mean error low, but may lead to signi�cant errors 
for more unusual con�gurations. Yet, the authors have demon-
strated award-winning results even for very tight constraints. 
However, it should still be possible to achieve a similar level of 
accuracy with alternative methods, with the added bene�ts of 
reduced computational cost and increased �exibility through 
decreased number of dependencies in the system.

Dai et al. [9] have addressed a very important issue, that is 
o�en neglected in other texts – the selection of components 
that best match calculated parameters. �e proposed method-
ology divides the sizing problem into twelve sub-problems: 
eight of them optimise weight and e¡ciency of the components 
and the remainder four try to best match a real component to 
the calculated optimised parameters. Unfortunately, this degree 
of compartmentalization has the disadvantage that the real 
product parameters do not a�ect the optimisation process and 
this restricts the opportunity for further improvement of the 
design. It is especially important, as in a more recent paper [10] 
the authors focus on the role of propeller optimisation and the 
importance of propeller and motor coupling.

A di�erent approach was taken by Magnussen et al. [11] 
who treated the propulsion system sizing problem as a 
mixed-integer programming problem. �e strengths of this 
method are a solid de�nition of the base problem and the ability 
to use external solvers. However, the user still needs to provide 
the data of considered components. �e added value of this 

methodology is the ability to model the dynamic motor thrust 
response, which is a useful tool for dynamic performance anal-
ysis. However, for basic sizing applications the complexity (up 
to 3091 variables in the example problem) may be too over-
whelming and a simpler solution may be preferred.

�is paper presents a method for sizing of the multirotor 
propulsion system through the selection of propeller and 
motor. Furthermore, the method provides the necessary data 
for the selection of the Electronic Speed Controller (ESC) and 
battery. Additionally, it gives a way of comparing di�erent 
con�gurations through estimation of �ight time by modelling 
battery discharge at constant power requirement. �e key 
point of the methodology is the fact that it works on real com-
ponents (propellers and motors) increasing the precision of 
the estimation. Another feature is the ability for the selection 
process to be automated making it an useful module for use 
in novel optimisation algorithms. Elements of optimisation 
are included in order to provide e¡cient and feasible solution. 
However, it should be noted that the resultant con�guration 
is based on estimations, assumptions and inaccurate data, and 
therefore not optimal, so the methodology results should be 
treated only as a good �rst guess.

�e paper is structured as follows; Section 2 details all the 
elements of the multirotor propulsion chain and their inter-
action; Section 3 describes the methodology based on the 
inverted model from the previous section; Section 4 presents 
example results for a small drone such as DJI Phantom 4 V2.0 
and extends the �ndings onto Personal Air Vehicles; �nally, 
Section 5 concludes the paper and highlights the most impor-
tant outcomes.

2. Multirotor Propulsion Chain

Multirotors as a category of �ying vehicles cover a lot of 
variants di�ering not only in the number of rotors, but also 
their placement. Currently, the most popular con�guration 

Figure 1: Multirotor in quad � con�guration with visible components 
of the propulsion chain. (i) Flight Controller, (ii) ESC (under arm), 
(iii) BLDC Motor, (iv) propeller, and (v) battery connector.



3Journal of Advanced Transportation

seems to be quad � with four parallel rotors placed diagonally 
from the center, as shown in Figure 1. One of the characteristic 
properties of most multirotors is their symmetry and the fact 
that every arm is the same, except for the rotor spinning direc-
tion. �is makes it easy to analyse the propulsion system for 
the general case by analysing only one arm (one propulsion 
chain). �e Flight Controller (FC) is responsible for control 
strategy for the whole platform and preparing a set point for 
each arm, but it does not participate in the propulsion chain 
as such.

In most cases, Brushless DC (BLDC) motors are used for 
multirotor propulsion, but sometimes, usually for toys under 
100 g, DC motors are also used. �is paper focuses only on 
BLDC; however, most concepts shown apply to both types. 
Brushless motors do not have physical brushes, so they require 
Electronic Speed Controllers (ESC) to achieve electronic com-
mutation. �erefore, the main components of the propulsion 
chain are identi�ed to be: propeller, motor, ESC, and battery. 
A schematic of the propulsion model of a multirotor is shown 
in Figure 2. It can be seen that there is one input of a set point 
(given by FC) and one output, namely the thrust generated by 
the propeller. �erefore, the propulsion chain can be identi�ed 
as a open-loop Single Input Single Output (SISO) system, 
which makes it relatively easy to size components one at a time. 
In the next part of this section, each component will be 
described in detail.

2.1. Propeller. Aircra� propellers are characterized by 3 
main parameters: diameter, pitch, and the number of blades. 
Generally, the higher these are, the higher the thrust generated, 
but also higher torque is exerted on the motor. However, 
long, slowly spinning, 2-bladed propellers are known to be 
more aerodynamically e¡cient than small, fast-spinning, 
multibladed ones. Propeller characteristics are mainly a 
function of its rotational speed and the speed of incoming 
air. However, if we consider air density to be constant and the 
air to be static (at hover in still air), the thrust, torque, and 
power depend only on propeller speed. Additionally, there are 
secondary parameters such as mass and geometry template 
expressed as manufacturing series (e.g., Multirotor, Slow Flyer, 
Carbon, etc.).

2.2. Motor. In a multirotor, the motor’s main objective is to 
drive the propeller reliably and with high acceleration, so 
the speed can be changed quickly. �e main limitations of a 
BLDC motor are in terms of speed and current. Maximum 

current is o�en stated by the manufacturer and maximum 
speed in no-load conditions �0 can be calculated from the KV 
parameter multiplied by the applied voltage �:

With a constant voltage, when current is applied, the 
motor starts exerting torque on the sha� accelerating it until 
its torque equals the load torque, assuming the mechanical 
losses are neglected. At low speed, far from the motor con-
straints, it is assumed that the relation between motor torque 
and current is constant and expressed with motor torque con-
stant (��). �erefore, the applied current is transformed into 
the torque based on the motor characteristic, then the torque 
is transformed into speed based on the propeller torque–speed 
characteristic, and �nally the speed is transformed into thrust 
using the propeller thrust–speed characteristic. �is sequence 
makes the propulsion chain easy to calculate analytically as a 
SISO system.

2.3. Electronic Speed Controller. Although Electronic Speed 
Controllers (ESCs) serve a very important purpose in the 
real-life multirotor, in the propulsion chain model it has 
very little importance. In the model, its function is reduced 
to transferring current from the battery to the motor under 
constant voltage. However, when designing a multirotor, ESC 
still needs to be sized according to the maximum current 
�owing to the motor.

2.4. Battery. When it comes to lightweight aerial vehicles, 
Lithium Polymer (LiPo) batteries currently dominate the 
market due to their high energy density and high current 
discharge capabilities [5, 12]. �ese batteries are composed of 
several cells connected in series (rarely in parallel). Cell voltage 
changes according to the state of charge with 4.2 V being at 
100%, 3.85 V at 50% and 3.7 V (nominal) at 20%. However, 
discharging a LiPo cell under 3 V leads to permanent damage 
to the battery. �erefore, it is recommended to only discharge 
the batteries to about 20%, which grants a Depth of Discharge 
(DoD) of 80%. �e cells can be connected in series or in 
parallel, denoted by � or �, respectively, so for example, 4�1�
is a 4 cell battery with 14.8 V nominal voltage. Additionally, 
the batteries are characterized by their capacity in mAh and a 
C-rating (��), which speci�es the maximum current that can be 
drawn continuously, for example 35C × 5.2Ah = 182A  (the 
unit being C and not Coulomb). It is evident that maximum 
discharge current is not dependent on battery capacity.

(1)�0 = KV × �.

ESC

Battery

Motor Propeller
Set point

Current

Current Torque

Speed

rust

Figure 2: Multirotor propulsion chain diagram.
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�e propulsion system model used here is only applicable 
in static conditions and at constant speed. Modelling a mul-
tirotor in �ight is much more complicated due to the presence 
of aerodynamic e�ects such as variable angle of attack, reduc-
tion of thrust coe¡cient with advance ratio, and additional 
frame drag. However, an approximation of the required per-
formance for full controllability in �ight is made using the 
model only in static conditions of operation. It uses a state 
of equilibrium achieved at hover (in no-wind conditions), 
where thrust generated by the propellers is equal to the mul-
tirotor’s weight. �is thrust can be multiplied by a constant 
thrust-to-weight ratio to achieve a value of static thrust that 
guarantees speci�c performance in the air depending on the 
application. �is approach appears imprecise; however, dur-
ing the years of use of similar methods in the community of 
radio controlled aircra� modellers, the values of thrust-to-
weight ratio required for di�erent applications have been 
validated with many test �ights. A quick summary of typical 
values can be found in Table 1, which is based on [13, 14]. 
Additionally, in static conditions there is no in�uence of rotor 
inertia on motor performance, so the propeller and motor 
selection can be decoupled, further simplifying the 
process.

3. Sizing Methodology

By inverting the propulsion system model developed in the 
previous section, a new model can be obtained allowing to 
estimate battery voltage based on thrust generated, as shown 
in Figure 3. �is allows for an iterative approach in order to 
determine the time required to deplete the battery at constant 
power draw, which e�ectively serves as a �ight time estimate. 
�us, two distinct subsystems can be distinguished in the sys-
tem model: the actuating system and the power system. �is 
manifests itself in the sizing methodology, which is also divided 
into two parts. Figure 4 shows a simpli�ed view of the meth-
odology. Although it is based on the diagram in Figure 3, it 
also shows the separation between battery sizing and battery 
simulation (�ight time simulation).

3.1. Actuating System. �e actuating system provides the 
thrust propulsion to the vehicle and consists of the propeller, 
the motor, an ESC to control the motor and a battery to power 
the motor. �e propeller sizing and selection is performed 
�rst, the motor sizing being dependent on the propeller 
properties. Finally, speci�cations for the ESC and the battery 
are produced.

ESC

Battery

Motor Propeller

Current

Current Torque

Speed

rust

Figure 3: Inverted multirotor propulsion chain diagram.
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Figure 4: Simpli�ed sizing methodology �owchart with division into two sub-systems.
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and where

An example of the mapping triplets for two propellers is shown 
in Figure 5 along with an illustration of obtaining ��� from ��.

Usually �� = 2 operating points are calculated: the oper-
ating point at hover �(1)�� , and the Wide Open �rottle (WOT) 
operating point �(2)�� . �ese signify the lower and upper bound-
aries of the �ight performance, respectively. A third operating 
point (� = 3) can also be de�ned that corresponds to the pro-
peller limit speed designated by the manufacturer; this can be 
used for checking the feasibility of the other operating points. 
�e thrust requirements, �(1)�  for the hover condition and �(2)�
for the WOT condition, can be calculated from

where �total is the estimated total weight of the multirotor, �rot
is the number of rotors and �� is the thrust-to-weight ratio. 
Except for the propeller (and motor) set �ltering purposes, 
the methodology uses only the total estimated weight of the 
multirotor, as it is presumed that the frame, battery size, pay-
load and control modules are preselected from the ones avail-
able to the user and suited for the application. As only static 
conditions are considered (multirotor inertia not considered), 
the weights of those components are of lower importance as 
opposed to the estimated weights of propellers, motors and 
ESCs, which are multiplied by the number of rotors

In practice, due to the fact that the propeller characteristics 
mappings de�ned by (8) are o�en given in the form of sample 
points, interpolation must be used for the calculations. �is 
introduces errors. �erefore, although in theory �� = ��, o�en 
in practice (dependence on � removed for notational 
simplicity)

hence an average of those two values is taken

To choose the propeller, various selection criteria are available. 
If �� > 1, then determining the minimum power solution is a 

(10)�(�)� = �(�)� ,

(11)�(�)� = �−1(�(�)� ),

(12)�(�)� = �(�(�)� ),

(13)�(�)�� = ��(�(�)� ).

(14)�(1)� =
�total

�rot
,

(15)�(2)� = �� × �(1)� ,

(16)
�total = �rot(�prop +�motor +�ESC)
+�frame +�battery +�payload +�FC +�other.

(17)��� ̸= ����,

(18)���avg =
1
2(��� + ����).

3.1.1. Propeller Sizing and Selection. �e propeller sizing 
and selection process starts by de�ning a propeller database 
represented as a set of available propellers

where the ith propeller p� is de�ned by the pair

where f�� denotes the ith propeller performance, which will be 
de�ned later, and ��� denotes its physical properties expressed 
as a 4-tuple

where �� is the ith propeller diameter, ��� is its pitch angle, ���
is its mass, and ��� is a discrete parameter representing the 
propeller series name. �e propeller set P is then �ltered to 
obtain a set of propellers P� ⊆P that satisfy a requirement 
4-tuple

where �min is the minimum diameter, �max is the maximum 
diameter, ��max

 is the maximum mass, and S�� is a set of pre-
ferred series names

�us

�is helps save time when evaluating the performance data 
and calculating operating points that is done next.

�e performance of the ith propeller f�� is denoted as a 
triplet of bijective mappings

where � is the rotor speed, � is the thrust, � is the torque, and 
�� is the propeller power. Let �(�)�  denote a required thrust. For 
each p� ∈P�, we determine a set of �� operating points 
��� = {�(�)�� : � = 1, . . . , ��} where

(2)P := {p� : � = 1, . . . , ��},

(3)p� := (f��, ���),

(4)��� := (��, ���, ���, ���),

(5)��� = (�min
, �

max
, ��

max

,S��),

(6)S�� := {��� : � = 1, . . . , ��}.

(7)P� = {p� : �� ∈ [�min
, �

max
], ��� ∈ (0,��

max

], ��� ∈ S��}.

(8)f�� := (� �→ �(�), � �→ �(�), � �→ ��(�)),

(9)�(�)�� := (�(�)� , �(�)� , �(�)� , �(�)�� )

Table 1: Typical applications for multirotors of di�erent thrust-to-
weight ratios.

�rust-to-weight ratio Application
2 Slow �ight (minimum)
3 Payload transport; photography
4 Surveillance
5+ Aerobatics; high-speed video
7+ Racing
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where � is the current, �� is the mechanical power, �� is the 
electrical power, � is the e¡ciency and where ��� denotes the 
motor properties expressed as a triplet

where �max�
 is the maximum allowable ith motor current, �0�

is its maximum no-load speed and �� is its mass.
Unlike the process for the propeller selection, the perfor-

mances of the motors must be evaluated �rst. �e required 
motor power is set to be �� = �(�)�selected. �en for each m� ∈M , 
we determine �� motor operating point triplets

where (dependence on � removed for simplicity)

(22)��� := (�max�
, �0�, ���),

(23)�(�)�� := (�(�)� , �(�)�� , �(�)� ),

(24)�� = �−1� (��),

(25)��� = ��(��),

multiobjective problem, and some user interaction is then 
helpful in making the selection. However, it is o�en possible 
to reduce the problem to the simplest case for �� = 1, where 
the lowest power at hover operating point can be computed 
as follows

In this case, the minimization can be quickly carried out 
through exhaustive search, thanks to the small set size due to 
the �ltering in previous steps.

3.1.2. Motor Sizing and Selection. In a similar manner as for 
the propeller, let M  be the set of available motors

where f�� is the motor model described by the triplet of 
mappings

(19)pselected := arg min
p�∈P�
�(1)��avg .

(20)M := {m� = (f��, ���) : � = 1, . . . , ��},

(21)f�� := (� �→ ��(�), � �→ ��(�), (��, ��) �→ �(��, ��)),
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Figure 5: Example of obtaining a propeller operating point based on required thrust. (a) Obtaining speed from required thrust. (b) Obtaining 
torque from speed calculated in (a). (c) Obtaining power from speed calculated in (a).
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Again the �ltering operation in (28) makes it possible to use 
exhaustive search for the minimization purpose.

3.1.3. ESC and Battery Sizing. �e Electronic Speed Controller 
is sized mainly in regards to the maximum current it can 
handle. As it is assumed that the multirotor will never need 
more thrust than achieved at WOT operating point, the 
current should also not go over the calculated value. �erefore, 
it can be said that

It should be noted that the mapping � �→ ��(�) is not bijec-
tive in terms of motor characteristics, because at high current 
values most of the energy is dissipated as heat. However, con-
sidering the domain only up to the maximum current speci�ed 
by manufacturer, the function is almost always monotonic. 
�erefore, in practice, over the domain [0; �max�

] the inverse 
of power function �−1�  can almost always be evaluated.

Knowledge of ��� for all m� ∈M  allows for �ltering of the 
motor set in regards to maximum current, speed and mass, 
thus obtaining M� ⊆M  that satis�es maximum current 
requirement on each motor �� ≤ �max�

 and a requirement pair

where �max = �(2)selected is the propeller speed at WOT and ��max

is the maximum motor mass. �us

Like in the propeller’s case, various selection criteria could 
be used to choose the motor. In the simple example for �� = 1
it could be the lowest electrical power

(26)�� = �(��, ���).

(27)��� = (�max
, ��

max

),

(28)M� = {m� : �� ≤ �max�
, �0� ≥ �max

, ��� ≤ ��
max

}.

(29)�selected := arg min
m�∈M�
�(1)�� .
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Figure 6: Actuating system sizing methodology information �ow diagram.

Table 2: Data contained in sizing methodology outputs.

Output name Data contained
Propeller speci�cation Name; diameter �; pitch ��; series ��

Motor speci�cation

Name; KV rating; rated speed �(2)
selected

;

rated torque �(2)
selected

;  
rated mech. power �(2)�

selected

;

rated el. power �(2)�
selected

;  
rated e¡ciency �(2)

selected
;

nominal voltage �
ESC speci�cation Maximum current �

ESC

Battery speci�cation Cell number ��; minimum C-rating ��; 
capacity �
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by Traub [15]. It features two important phenomena—decrease 
of capacity with the increase of current and drop in voltage due 
to discharge. Additionally, the power demand can be varied 
throughout the simulation; however, in the base version of 
the methodology this is not used, as the operating points are 
constant. A block diagram of the calculations for one operating 
point can be seen in Figure 7.

Modelling of the battery capacity varying with drawn cur-
rent is done through modi�ed Peukert’s equation in the form 
of:

where �� is battery hour rating (1 hour in case of small packs) 
and � is Peukert’s constant (1.3 for LiPo) dependent on battery 
type and temperature.

Measuring battery voltage is one of the main ways of meas-
uring remaining charge in-�ight. Typically, Lithium Polymer 
(LiPo) cells used in drones have 4.2 V when at full charge and 
drop to 3.7 V when at 20% charge. �e voltage drop curve is 
nonlinear, but for the model it has been linearized and is 
expressed through

(32)� = ���� (
�
��)
�
,

(33)�(�) = �0 − �1[�0 − �(�)],

where �ESC is the rated (maximal) ESC current and �(2)selected is 
the motor current at WOT operating point.

A substantial part of battery speci�cation needs to be 
provided by the user to realise �ight time estimation as 
described in Section 3.2. However, the methodology allows 
to complete the battery speci�cation by sizing the C-rating 
parameter

where �� is the minimal required battery C-rating and � is the 
battery capacity.

�e whole actuating system sizing methodology is 
depicted by the data �ow chart shown in Figure 6. It shows 
the dependence of motor sizing on propeller speci�cation and 
ESC and battery sizing on motor speci�cation. �e light cyan 
blocks correspond to the methodology stages, the dark blue 
blocks show requirements and constraints and the orange 
ellipses signify points of database access. �e output data in 
green ellipses include speci�cation parameters for sizing all of 
the major components of the propulsion system (namely pro-
peller, motor, ESC, and battery) and the calculated propeller 
and motor operating points that can be used for calculating 
additional data, such as estimated �ight time. �e data corre-
sponding to each of the outputs can be found in Table 2.

In Figure 6, a substantial impact of estimated total drone 
weight can be also seen—it is used to calculate required thrust 
�� that plays a key role in selecting the propeller, and conse-
quently the motor. Due to the discrete nature of propeller and 
motor parameters, the relationship is highly nonlinear, so it 
needs to be analysed numerically. However, it is easy to imple-
ment the methodology in a loop to plot the characteristics of 
�ight time versus weight, which may be used in a payload 
sizing application.

3.2. Power System. �e power system section of the 
methodology focuses on �ight time estimation by modelling the 
battery. �e model is based on the iterative approach presented 

(30)�ESC = �(2)selected,

(31)�� =
�ESC × �rot
� ,

Calculate initial state
using (38)–(40)

Calculate next iteration
using (35)–(37)

Vl+1 > Ve

V0, i0, C0

Vl+1, il+1, Cl+1

l = l + 1tflight = l × ∆t
NOYES

nC, nrot, o(k)mselected

Figure 7: Power system calculation �owchart for �th operating point.
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decreasing available battery capacity due to Peukert’s e�ect, as 
can be seen in Figure 8. �e simulation is stopped when volt-
age reaches

or when capacity reaches 20% of initial capacity (only works 
when power drawn is constant). �e output is simply the sim-
ulation time, calculated as the product of the time step value 
and the number of iterations.

4. Example Results

�e methodology presented has been implemented as a 
MATLAB script. �is allows to easily process large quantities 
of data from propeller and motor databases and to plot com-
ponent characteristics on every stage of the selection 
process.

In this example, performance data published by APC 
Propellers [16] will be used for the propeller database. It con-
tains static and dynamic performance obtained through ana-
lytical methods of all products currently manufactured by the 
company. Due to the reliance on external computer so�ware, 
airfoil drag (and consequently, torque) may be under-pre-
dicted at low speeds. Additionally, wind tunnel measurements 
of selected propellers [17] show overprediction of thrust coef-
�cient (and consequently, thrust) of around 12% on average 
across all tested propellers. Detailed results are shown in Table 
3 and in Figure  9. �erefore, an easily adjustable parameter 
called Safety Factor (��) was introduced that increases required 
power at the WOT operating point to reduce the impact of 
mentioned inaccuracies and guarantee that the chosen motor 
will be able to reach the expected speed

�ere is no need to include Safety Factor in the ESC sizing, as 
the WOT operating point at which it is sized, in typical oper-
ating conditions, is achieved only for a few seconds at a time, 
not enough to damage the unit. �e inclusion of the Safety 
Factor parameter in the battery sizing is recommended, as 
LiPo batteries are prone to ageing, which increases their inter-
nal resistance. Hence, with time at high currents more and 
more heat is generated, eventually leading to battery damage. 
What is more, cheap batteries are known for parameters var-
ying between each unit, further justifying the need for an 
additional safety measure. �erefore, Equation (31) becomes

For the motor database, a database bundled with Drive 
Calculator [2] so�ware was used. It is based on measurements 
done and uploaded by its users, so it is impossible to accurately 
measure the discrepancies with real products, but they are 
estimated to be around 5–10% overall. However, a signi�cant 
inaccuracy is introduced with the simpli�ed motor model used 

(41)�� = 3.7V × ��

(42)�(2)� = �−1� (�� × ��),

(43)�(2)� = �(�� × ��, ���).

(44)�� =
�ESC × �rot × ��
� .

where �0 is the initial voltage, �1 is the voltage drop coe¡cient, 
�0 is the initial battery capacity, ��� is the maximal Depth of 
Discharge, and �� is the number of battery cells. Based on 
Traub [15] the battery model can be de�ned with a set of iter-
ative equations

with the initial state de�ned as

�e information �ow in the model is visualized in Figure 7.
As time passes, the voltage decreases, therefore increasing 

current draw to achieve the same power, and consecutively 

(34)�1 =
4.2V − 3.7V
��� × �0 × ��

,

(35)��+1 = �0 − �1[�0 − ��],

(36)��+1 =
��
��+1
,

(37)��+1 = �1−��+1 ��1−��� −
�+1
∑
�=1
��Δ�

(38)�0 = 4.2V × ��,

(39)�0 =
��
�0
,

(40)�0 = �1−�0 ��1−���.

Table 3: Errors between measured and simulated propeller charac-
teristics—thrust coe¡cient (��) and power coe¡cient (��).

Mean �� error −0.0121
Mean relative �� error −12.6%
Mean std. deviation of �� 0.0051
Mean �� error 0.0059
Mean relative �� error 2.48%
Mean std. deviation of �� 0.0022
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Figure 9: Relative errors between measured and simulated propeller 
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rated at 3.7 V per cell, are used. Additionally, V2.0 uses FOC-
enabled drivers, which generate sinusoidal signals instead of 
the usual trapezoidal. However, the manufacturer advertises it 
as a means to reduce noise instead of improving performance, 
so it can be assumed that in this case the di�erence can be 
neglected.

�e MATLAB script has been run considering two oper-
ating points: hover and WOT. �e goal was to reduce energy 
usage at hover, as the platform’s main purpose is photography. 
For the thrust the unit of gram-force (gf), which corresponds 
to the force acting on 1 gram of mass in a standard gravita-
tional �eld, is used due to intuitiveness in this application. 
Additional sizing parameters are listed in Table 5. �e results 
are below:  

Results. For a 4-rotor drone with estimated AUM of 1375 g:

(i) APC 9 × 4.5E propeller should be chosen for the 
highest speci�c thrust of 9.69 gf/W per motor at 
hover.

(ii) Hacker B20 26L (2080 KV) motor should be 
selected with 0.15 Nm torque at maximum speed of 
9600 RPM.

(iii) One motor uses 35 W of electrical power at hover 
and 237 W of electrical power at WOT.

(iv) �e drive should be controlled by a 16 A ESC per 
motor.

(v) �e whole system should be powered by a 4S 12C 
LiPo battery of 5870 mAh.

(vi)  Hovering �ight requires 124 W of mechanical power 
(0.05 Nm at 5600 RPM) to achieve 1375 gf of total 
thrust.

(vii) WOT �ight requires 590 W of mechanical power 
(0.14 Nm at 9600 RPM) to achieve 4125 gf of total 
thrust.

(viii) �is con�guration should achieve around 26.9 min 
of hover and around 2.3 min of �ight at WOT.

As can be seen, both the propeller and the motor were 
successfully selected and the estimated �ight time has been 
calculated. �e propeller is of lower pitch than in the reference 
drone, which might be explained by the unavailability of 
9 × 5.5 propellers in APC’s range, and 9 × 6 being too pow-
er-consuming. Especially interesting is the choice of E-series 
(electric airplanes) propeller over MR-series (multirotors), 

to calculate characteristics based on scarce data. �e model, 
applicable both to BLDC and DC motors, considers only two 
sources of losses: copper losses, calculated using winding 
resistance

and iron losses, calculated using no-load current

where �Cu are copper losses, �� is the windings resistance (of 
all simultaneously working phases), �motor is the current deliv-
ered to motor windings, �iron are iron losses, � is the nominal 
voltage and �0 is the no-load current. As the no-load measure-
ment is usually done through an ESC, the iron losses also 
incorporate losses from the controller. �e model, based on 
[18], is calculated as follows:

where �prop—is the power delivered to the propeller, �prop is the 
propeller torque, �prop is the propeller speed, �motor is the motor 
electrical power, and �motor is the motor e¡ciency.

To demonstrate the capabilities of the methodology a set 
of example results is presented for a low-weight drone. �e 
results are validated against a similar commercial product. 
Based on the �ndings, a hypothetical usage of the methodol-
ogy for sizing of Personal Air Vehicles is demonstrated.

4.1. Small Drone. For the ease of validation, the input 
parameters of the methodology were set to match those of the 
DJI Phantom 4 Pro V2.0, as indicated in Table 4. �is enables 
easy comparison of the vehicle’s published speci�cation [19] 
with the sizing method’s results in terms of �ight time and 
propeller dimensions, as the manufacturer does not provide 
motor data. It should be noted here that the Phantom 4 uses 
LiHV (High Voltage LiPo) batteries rated at 3.8 V per cell, 
however in the calculations the more popular LiPo batteries, 

(45)�Cu = ���2motor

(46)�iron = � × �0,

(47)�prop = �prop × �prop × ��,

(48)�motor =
� − √�2 − 4��(�iron + �prop)

2��
,

(49)�motor = � × �motor,

(50)�motor =
�prop
�motor

× 100%,

Table 4: Basic DJI Phantom 4 V2.0 parameters.

Number of rotors 4
Diagonal size 350 mm
Total weight 1375 g
Battery weight 468 g
Battery capacity 5870 mAh
Battery nominal voltage 15.2 V
Battery type LiHV 4S
Propeller diameter 9 inch
Propeller pitch 5.5 inch

Table 5: Additional methodology parameters used in small drone 
sizing.

�rust-to-weight ratio �� 3
Min. propeller diameter �

min
8 inch

Max. propeller diameter �
max

9 inch
Safety Factor �� 1.05
Preferred propeller series S�� MR, E, E-3, E-4
Max. propeller mass ��� 24 g
Max. motor mass ��� 100 g
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stated by the manufacturer is 30 min [19], but it was probably 
measured in �ight at best endurance speed, which uses slightly 
less power than in hover ([21]) due to the reduction of the 

which can be in�uenced by numerical errors due to interpo-
lation, speci�cally at low speeds required for hovering. 
Comparison of power characteristics of propellers considered 
in this example can be seen in Figure 10.

Hacker B20 26L is a surprising choice for the application, 
as it is an inrunner motor that usually comes with gearing to 
increase its torque for traction applications. However, in this 
case it is used in direct drive con�guration, which is possible 
due to the low speed of a large propeller. Its measured KV is 
2080 (as opposed to 2020 stated by the manufacturer [20]), 
which puts the hover operating point almost at the maximum 
of the e¡ciency curve, therefore increasing the �ight time, as 
can be seen in Figure 11.

�e calculated �ight time seems to be in line with the 
achievements of the reference drone. Maximum �ight time 
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Table 6: Drone parameters used in further testing.

Name GTQ Mini 
[8]

IRIS+ [21, 
24]

PD6-AW2 
BASIC [25] Fox 4 [26]

Take-o� mass 
[kg] 0.5 1.3 10 4

�rust-to-
weight ratio 2 2.6 3.5 2.5

Rotor count 4 4 6 4
Min. propeller 
diameter [inch] 3 8 18 10

Max. propeller 
diameter [inch] 5 10 21 15

Battery cell 
count 4 3 6 6

Battery 
capacity [mAh] 850 5100 2 × 16000 2 × 5000
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4.3. Personal Air Vehicle.  �e current implementation of the 
methodology as a MATLAB script does not allow the sizing of 
heavy platforms, such as PAV, due to the lack of a sufficiently 
large propeller in database. However, the methodology can be 
implemented with different databases and even modified to help 
with the design of components: propeller specification provides 
enough data for presizing of an electric motor, and thrust 
requirements along with size and weight constraints can be used 
as input in propeller design. Additionally, using only scarce data, 
a flight time estimation can be performed to validate the design 
of components. �is is an especially important feature, as the 
methodology has been designed with the ability to be used inside 
another algorithm to further enhance the optimisation process. 
�at way questions, such as rotor number, propeller, size or 
maximum payload, can be answered. �is is especially important 
for PAV, where the mass constraint is very tight because of the 
payload in the form of a passenger. Table 7 outlines example uses 
of the methodology in scenarios with different data available.

Some of the problems of Personal Air Vehicles, such as 
high weight of the platform, can be addressed by alternative 
multirotor designs. Papa [27] discusses a multirotor in which 
a part of the li�ing is done by a balloon. Our methodology is 
simple and flexible enough to complement the approach in 
[27]. Papa’s method can be used for sizing the balloon while 
our methodology sizes the multirotor part by subtracting the 
calculated balloon’s li� from the estimated platform’s weight 
and using it as an input. Validation of this approach, however, 
needs to be performed.

5. Conclusion

�e methodology presented in this paper answers the need to 
have an automated process of selecting multirotor components 
using a simple input of estimated drone weight. Validation was 
performed using data from four commercially available mul-
tirotors (including DJI Phantom 4 V2.0) and one specialised 
platform, which shows that the obtained results are in accord-
ance with manufacturer data and independent tests.

�e simplicity and open-loop approach are also the limi-
tations of this methodology. �e use of static model does not 
provide enough information to estimate the acceleration, turn 
speed or performance in wind conditions. However, the inclu-
sion of a dynamic model would require the bandwidth limi-
tations of the actuators to be considered. �is would overly 
increase the complexity of the methodology and would 
demand much more input data, thus limiting the usability.

Although there are no conceptual constraints preventing 
the use of the methodology for sizing large passenger multi-
rotors, considerable limitations are introduced by the 

induced drag. �erefore, it can be assumed that the maximum 
hover time will be close to the 27 min calculated, which seems 
to be confirmed by independent tests achieving 23–26 min of 
hover [22, 23]. However, as the calculations do not include 
dynamic effects of flight, the prediction accuracy for the WOT 
operating point is considerably lower. Furthermore, that point 
is set arbitrarily based on thrust-to-weight ratio, and is rarely 
measured in real operation, so no validation could be 
performed.  

�e reference drone is a commercially popular product, 
therefore it can be assumed that its performance is close to 
optimal for its given weight and application (aerial photo
graphy). �erefore, achieving results of similar value to the 
reference may indicate that the chosen configuration has per-
formance close to optimal. Considering the accuracy of results, 
the assumptions and estimations used and the low computa-
tional cost, methodology performance can be considered sat-
isfactory for applications in other research projects and on its 
own.

4.2. Further Validation.  In similar manner to validation 
through comparison with DJI Phantom 4 v2.0, more tests of 
different configurations were conducted. �e input parameters 
are summarised in Table 6. 6S batteries were assumed for  
Fox 4 and PD6-AW2 BASIC platforms, as those are more 
suited for the heavy li�ing application. �e weight of IRIS+ 
is taken with a sample payload. �rust-to-weight ratio was 
adjusted so if more payload was added up to maximum 
allowable mass, the drone would still maintain controllability 
with thrust-to-weight ratio of 2. In 3 of the test cases, results 
shown in Figure 12 seem to be in satisfactory agreement 
with the manufacturer’s specification considering that the 
methodology does not include the power usage by the flight 
controller, sensors, RC communication or payload.

�e significant difference in the case of GTQ Mini needs 
to be addressed separately. �e methodology has returned 
similar results to those of the methodology presented by 
Bershadsky et al. [8]. Our methodology has chosen 5 × 4.3 
propellers as compared to 5 × 3, 1378 KV motor as compared 
to 1383 KV and uses 4.54 A in hover (at full battery) as com-
pared to 4.49 A. However, there is a 1.9 min difference in 
calculated hover times. With the same battery capacity and 
similar current drawn, the discrepancy might be that in [8] 
the simulation is stopped when battery reaches 3.6 V, while 
our implementation is set up to stop earlier at 3.7 V. Another 
difference is probably in the battery model used, as our 
methodology simulates the decrease of voltage with dis-
charge, leading to the increase in current drawn from 4.54 A 
to 5.15 A throughout battery operation, as can be seen in 
Figure 13.

Table 7: Uses of sizing methodology based on data available.

Propeller data Motor data Example uses
Available Available Complete sizing of multirotor propulsion system; flight time estimation; optimisation of flight time
Available Not available Propeller sizing; preliminary motor design
Not available Available Battery and ESC sizing; flight time estimation
Not available Not available —
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(ICUFN), vol. 7, pp. 105–109, IEEE, Milan, Italy, 2017.
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pre-sizing : past and present methodological approaches at 
Onera,” Aerospace Lab, vol. 8, pp. 1–12, 2014.

  [8] � D. Bershadsky, S. Haviland, and E. N. Johnson, “Electric 
multirotor UAV propulsion system sizing for performance 
prediction and design optimization,” in 57th AIAA/ASCE/
AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, vol. 1, pp. 1–22, American Institute of Aeronautics 
and Astronautics, Reston, Virginia, 2016.

  [9] � X. Dai, Q. Quan, J. Ren, and K.-Y. Cai, “An analytical design-
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Transactions on Mechatronics, vol. 24, no. 1, pp. 228–239, 2019.

[10] � X. Dai, Q. Quan, J. Ren, and K.-Y. Cai, “Efficiency optimization 
and component selection for propulsion systems of electric 
multicopters,” IEEE Transactions on Industrial Electronics,  
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and Control, vol. 36, no. 2, pp. 67–79, 2015.

[12] � J. M. Miller, “Energy storage technologies,” Propulsion Systems 
for Hybrid Vehicles, pp. 439–522,  Institution of Engineering and 
Technology, 2010, chapter 10.

[13] � Half Chrome Drones, “Drone thrust testing,” 2019, https://www 
.halfchrome.com/drone-thrust-testing/.

[14] � O. Liang, “How to choose motor for racing drone & quadcopter,” 
2019, https://oscarliang.com/quadcopter-motor-propeller/.

[15] � L. W. Traub, “Range and endurance estimates for battery-
powered aircra�,” Journal of Aircra�, vol. 48, no. 2, pp. 703–707, 
2011.

[16] � APC Propellers, “Performance data,” 2019, https://www 
.apcprop.com/technical-information/performance-data/.

[17] � J. B. Brandt, R. W. Deters, G. K. Ananda, and M. S. Selig, “UIUC 
propeller database,” 2019, http://m-selig.ae.illinois.edu/props/
propDB.html.

[18] � Radio Control Info, “Brushless motor efficiency and constants,” 
http://www.radiocontrolinfo.com/brushless-motor-efficiency/

[19] � DJI, “DJI Phantom 4 Pro V2.0.,” 2019, https://www.dji.com/
phantom-4-pro-v2.

[20] � Hacker, “B20 26 L kv2020 + 4:1,” https://www.hacker-motor-
shop.com/Brushless-Motors/Hacker-Inrunner/Hacker-B20/ 
B20-L-with-Gears/B20-26-L-kv2020-4-1.htm?shop=hacker_ 
e&SessionId=&a=article&ProdNr=10017700&p=2072& 
rdeocl=1&rdetpl=categorypage&rdebox=box4/.

[21] � C. Di Franco and G. Buttazzo, “Energy-aware coverage path 
planning of UAVs,” in 2015 IEEE International Conference on 
Autonomous Robot Systems and Competitions, pp. 111–117, 
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[22] � T. Luna, “DJI Mavic 2 Pro vs. Phantom 4Pro v2.0!,” 2018, May 2019,  
https://www.wetalkuav.com/dji-mavic-2-pro-vs-phantom-4- 
pro-v2-0/.

databases used, which rarely provide data on large propellers 
in the 50–60 inch range and motors able to support them. 
However, it is assumed, that certain elements of the method-
ology, such as flight time estimation based on limited data, 
can be useful in the process of PAV design. Finally, the pro-
posed methodology is also flexible enough to accept data of 
custom designed components or to be used for sizing of cer-
tain alternative multirotor topologies.

Unfortunately, one of the most important disadvantages 
of this methodology is its low, hard to estimate, accuracy. Great 
care was taken to make the results as close to reality as possible, 
but due to assumptions made for the sake of simplicity and 
speed, such as the use of thrust-to-weight ratio instead of cal-
culation of maximum required thrust, the accuracy of calcu-
lations is impossible to measure. If needed, it can be enhanced, 
for example by improving motor model or using databases 
with only measured data, but it is advised against relying on 
the results in safety-critical applications.

Data Availability

�e MATLAB code used to support the findings of this study have 
been deposited in the GitHub repository (https://github.com/ 
mbiczyski/Multirotor-Sizing-Methodology). APC propeller per-
formance data used to support this study is available at https://
www.apcprop.com/technical-information/performance-data/. 
�ese datasets are cited at relevant places within the text as ref-
erence [12]. Previously reported propeller experimental perfor-
mance data were used to support this study and are available at 
http://m-selig.ae.illinois.edu/props/propDB.html. �ese prior 
studies (and datasets) are cited at relevant places within the text 
as reference [14]. Motor performance data used to support this 
study is available at http://www.drivecalc.de/. �ese datasets are 
cited at relevant places within the text as reference [3].
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Tra�c lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, 
and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized 
intersections. First, we use the intelligent driver car-following model to analyze the string stability of tra�c �ow upstream of the 
intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers 
pre�xed tra�c signals. �e proposed method employs the proportional-integral-derivative (PID) model controller to simulate the 
trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected 
vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent 
Driver Model (IDM). �e IDM model aims to minimize tra�c oscillation and ensure that all vehicles pass the signalized intersection 
without stopping. �e results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, 
HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration 
is 50 percent.

1. Introduction

Urban tra�c �ow is frequently interrupted by sharp acceler-
ation and deceleration of vehicles at signalized intersections. 
Such stop-and-go tra�c caused by unsafe driving behaviours 
not only in�uences the stability of the tra�c �ow but also leads 
to high crash risks. Furthermore, vehicle fuel consumption 
and emissions are dramatically increased when vehicles slow 
down or idle, and excessive travel delays become more likely.

With increasing technological developments, a vast array 
of intelligent transportation methods has been proposed to solve 
this problem. For example, Rakha & Kamalanathsharma [1] 
used such methods to improve fuel consumption e�ciency 
when vehicles approach a signalized intersection. Liu et al. [2] 
proposed a method enabling autonomous vehicles to pass 
through an intersection without idling; this method was imple-
mented by establishing an intersection management system that 
assigns reasonable priorities for all present vehicles. Yang et al. 
[3] proposed an eco-driving algorithm that instructs a driver 
how to pass through an intersection smoothly without 

stop-and-go behavior. Yao et al. [4] designed a trajectory 
smoothing method based on individual variable speed limits 
with location optimization in coordination with pre�xed sig-
nals. Qu et al. [5] proposed a new method based on the weighted 
least square that can describe the speed-density or �ow-density 
relationship of the empirical data precisely. Furthermore, he 
applies a new calibration approach to produce the random traf-
�c �ow fundamental diagrams [6], the ensuing experiment 
indicated that the proposed approach could �t the real 
speed-density data and derive the speed distributions according 
to the di¬erent given densities. Zhou et al. [7] investigated the 
characteristic of the oscillation at the signalized intersection, 
proposed a data driven car following model; this model had a 
high accuracy under oscillation and could distinguish the attri-
bution of the drivers. Ding et al. [8] designed a method to pre-
dict the potential for yellow-light or red-light-running and 
determine a balance between algorithm e�ciency and compu-
tational time. Levin and Rey [9] developed a reservation-based 
intersection control protocol and improved its applicability to 
situations with a large number of vehicles. Li et al. [10] proposed 
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a trajectory planning method based on shooting heuristic  
[11, 12] with a piecewise function; the simulation revealed that 
the model could decrease the stop-and-go movements. In order 
to solve the connected infrastructure design problem, 2 linear 
models were proposed by Li et al. [13]. �e set of tests showed 
that the presented model had a better performance. Xu et al. 
[14] presented a new energy consumption index and general-
ized regression neural network respectively to describe the rela-
tionship between the truck fuel consumption and drivers’ 
driving behavior. �e experiment indicated that the two models 
could predict the fuel consumption accurately. Amir el al. [15] 
developed a mixed tra�c speed harmonization model with 
connected autonomous vehicles and conducted sensitivity anal-
ysis and multi-lance scenario test. Bichiou and Rakha [16] trans-
ferred the best vehicle speed problem at an intersection into a 
constrained optimal problem. Lee and Park [17] proposed a 
connected-vehicle sensing algorithm for an intersection based 
on vehicle-to-infrastructure (V2I) technology. Jiang et al. [18] 
built an optimal control method for a signalized intersection, 
which obtains optimal speed through the minimum principle. 
Jing et al. [19] proposes a new approach to reduce oscillation 
and fuel consumption. Ma et al. [20] reviewed a number of 
speed harmonization methods and investigated performance 
of the methods in real tra�c. Stacy el al. [21] proposed new 
method of the freeway speed harmonization experiment based 
on the Internet of Vehicle; the real experiment of the I-66 free-
way indicated it can reduce the tra�c oscillation. Guo et al. [22] 
proposed a joint optimization of vehicle trajectories and inter-
section controllers, two di¬erent strategies were investigated to 
control trajectory and control intersection, respectively. Hale et 
al. [23] compared di¬erent signal timing optimization methods 
and observed the best performance in the heuristic algorithm 
based on V2I technology. Zhao et al. [24] proposed a connect-
ed-vehicle control strategy for a signalized intersection that 
employs model prediction control to guide connected vehicles. 
Finally, Feng et al. [25] proposed a joint control method of vehi-
cle trajectories and tra�c signals for connected and automated 
vehicles at a signalized intersection.

However, none of these studies acknowledge the very 
likely scenario that a driver may not follow the recommended 
speed strategy because of a complex real-life environment. 

�erefore, this study attempts to solve previous problems 
related to trajectory planning at signalized intersections. First, 
we utilize the Intelligent Driver Model (IDM), a type of car-fol-
lowing model [26], to theoretically evaluate tra�c oscillations 
at signalized intersections. Second, we propose a mixed-vehi-
cle trajectory planning method (MVTPM). �is method pro-
vides an optimal advisory speed strategy based on current 
vehicle status and signal phase and timing information (SPaT), 
then uses a proportional-integral-derivative (PID) controller 
to simulate trajectories when drivers follow the speed strategy. 
�is study has the following four objectives: (1) to analyze 
tra�c oscillation at signalized intersections; (2) to simplify the 
vehicle speed control strategy to only consider a few key var-
iables; (3) to use the PID controller to simulate trajectories; 
and (4) to perform numerical experiments to verify the e�-
ciency of the proposed MVTPM.

�is study assumes that there is no delay in data transmis-
sion loss between communication in the control area, over-
taking, and lane changing behavior is also not considered. 
Although these assumptions are too ideal to replicate trans-
portation environments, the results from this ideal scenario 
can reveal potential connected and automated vehicle (CAV) 
technologies for improving existing problems in tra�c 
systems.

�is paper is organized as follows. Section 2 describes the 
key problems in the research �eld. Section 3 introduces the 
proposed mixed-vehicle trajectory planning method. Section 4 
evaluates the passing e�ciency and fuel consumption of the 
method using numerical experiments and Section 5 concludes 
this paper.

2. Problem Descriptions

2.1. Congested Signalized Intersection Problem. �e tra�c 
environment of a signalized intersection is very complex and 
characterized by vehicles idling while they wait to pass through 
the intersection, as shown in Figure 1(a). Many drivers do not 
know whether they can pass through the intersection before 
the tra�c light turns red, so they perform unsafe driving 
behaviors, which leads to increased fuel consumption of 
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Figure 1: Illustration of (a) a congested signalized intersection and (b) di¬erent unsafe driving behaviours.
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vehicles at the intersection. �ese unsafe driving behaviors 
can be divided into four types: “Acceleration,” “Cruise,” 
“Deceleration,” and “Idle” (Figure 1(b)). In addition, when 
the vehicle is running in idle, the engine speed is very low, so 
the fuel cannot be fully burned, discharging a large amount of 
carbon dioxide (CO2), hydrocarbons (HC), carbon monoxide 
(CO), nitrogen oxide (NOx), and other harmful and toxic 
gases, which can seriously a¬ect the ecological environment.

In this study, the VT-Micro [27] fuel consumption model 
is employed to calculate the indexes of vehicle fuel consump-
tion and emissions, such NOx, HC, CO2, and CO. To the best 
of our knowledge, there are some fuel consumption models, 
they are VT-Micro, Motor Vehicle Emission Simulator 
(MOVES), vehicle speci�c power (VSP) respectively. �e 
MOVES model utilizes the concept of the VSP distributions 
to calculate fuel consumption and pollution. However, if we 
use default VSP distributions of the MOVES, it may lead to 
many mistakes. Besides, we just care about the performance 
of the proposed system and do not consider other nonrelevant 
factors, such as weather-related, vehicle-related, road-related 
etc. �e VT-Micro use the vehicle’s instantaneous speed and 
acceleration levels to estimate vehicle emissions, and our sys-
tem’s target is trajectory planning of the connected vehicle 
based on the acceleration and velocity, so it �ts our require-
ment of the fuel consumption model. VT-Micro is a polyno-
mial regression model, which is a function of acceleration and 
speed, and expressed as follows:

where ��,� is the correlation coe�cient, v is the velocity, and �
is the acceleration. However, this fuel consumption model 
cannot calculate CO2, which is a key emission. Nevertheless, 
fuel consumption and CO2 emissions are related [28] by the 
following function:

where �1 and �2 are coe�cients and MOE is the fuel 
consumption.

�e Xiaozhai intersection (Xi’an, China) is used as an 
example to illustrate the fuel consumption problem at a sig-
nalized intersection (Figure 2). �e red-light time of the inter-
section is 100 s and the green-light time of the intersection is 
40 s. First, we use a digital video camera on top of a bridge to 
count the number of idling cars (only considering straight-
through vehicles) and calculate the fuel consumption. Second, 
we compare it with the fuel consumption of nonidling cars.

In the paper, we de�ne the congested period is 08:00–
09:00, one hour. During this time, the number of the passed 
vehicles is 1425. �e tra�c volume of the congested period is 
1425/1 = 1425 pcu/h. We also de�ne the uncongested period 
is 09:00–11:00, two hours. During this time, the number of 
the passed vehicles is 1478. �e tra�c volume of the uncon-
gested is 1478/2 = 739 pcu/h. And we calculate the fuel con-
sumption and pollution of the di¬erent period. According to 
Table 1, the fuel consumption and emissions were higher for 
the congested period, thus, this study aims to optimize vehicle 
speed and fuel consumption at a signalized intersection.

(1)MOE = exp(
3
∑
�

3
∑
�
��,� × v × �),

(2)CO2 = �1v + �2MOE,

2.2. �e Stability Analysis Problem of the Car-Following 
Model. In general, the mathematical expression for the 
traditional car-following model is de�ned as

where ��, v�, Δv�, and Δ�� represent the �th vehicle’s accelera-
tion, speed, relative speed, and headway respectively. From 
Equation (3), we can �rst obtain the vehicle’s acceleration then 
obtain the speed and distance using the integral to simulate 
the nth vehicle’s trajectory.

�ere are two stability analyses in the car-following model: 
local stability and string stability. Local stability analysis 
mainly investigates the reaction of the vehicle to the �uctua-
tion of the preceding vehicle’s speed, focusing on local behav-
iour between the two vehicles. String stability analysis mainly 
investigates the in�uence of speed �uctuations of the head 
vehicle on the overall dynamic characteristics of the vehicle 
�eet. For example, the IDM car-following model is expressed 
as follows:

where the �th vehicle’s acceleration, max acceleration, instant 
speed at time t, desired speed, gap, and desired gap at time �
is denoted as ��, � ,v�(�), v0, ��(�), and �∗� (�), respectively. �e 
expression for the desired gap �∗� (�) is:

where �0, �, Δv�(�), and � are the safe gap, reaction time, rela-
tive speed at time �, and comfort deceleration, respectively.

�e local stability of the IDM car-following model is eter-
nally stable [29]; thus, only the string stability of the IDM 
car-following model needs to be analysed. To linearize the 
nonlinear system with small perturbations at equilibrium time 
point ℎ, we use a multivariate function �rst order Taylor 

(3)�� = �(v�, Δv�, Δ��),

(4)�� = �[1 − (
v�(�)
v0
)
4
− ( �
∗
� (�)
��(�)
)
2

],

(5)�∗� (�) = �0 +max(0, �v� + v�(�)Δv�(�)2√�� ),

Figure 2: XiaoZhai Intersection in Xi’an, China.
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�us, the following inequation must be satis�ed:

Because of the lower frequency, � → 0, which is the 
stronger constraint on stability.

�us, the main reason for tra�c �ow instability is that the 
string stability is not satis�ed. It is assumed that the vehicle 
speed �uctuates within a range of 8–12 m/s, and the gap �uctu-
ates within a range of 20–30 m when the vehicle approaches the 
intersection. �e instant velocity and gap of the vehicle are then 
substituted into Equation (19). �e judgment expression is pre-
dominantly greater than zero, indicating that the tra�c �ow is 
in a stable state. However, as shown in Figure 3, the tra�c �ow 
is predominantly unstable for travel times of less than 20 s.

3. Mixed-Vehicle Trajectory Planning Method 
(MVTPM)

As shown in Figure 4, there are three units in the MVTPM: the 
input unit, control unit, and output unit. �e input unit includes 
SPaT Information and vehicle status. SPaT information, 
obtained from DSRC Roadside, includes the signal phase and 
time. When a connected vehicle (i.e., a vehicle equipped with 

(17)|�(��)| =
√�2(Δv�ℎ)

2

√(��ℎ − �2)
2 + �2(v�ℎ − Δv�ℎ)

2
< 1.

(18)�2(Δv�ℎ)
2 + (��ℎ)

2 < (��ℎ − �2)
2 + �2(v�ℎ − Δv�ℎ)

2.

(19)� = 12 −
Δv�ℎ
v
�
ℎ
− �
�
ℎ

(v�ℎ)
2 < 0.

expansion to expand the acceleration function around the 
equilibrium point, as follows:

where �ℎ,vℎ, and Δvℎ denote the gap, speed, and relative speed 
at equilibrium point h; i.e.:, v�ℎ = (��/�v)|ℎ, ��ℎ = (��/��)|ℎ, 
Δv�ℎ = (��/�Δv)|ℎ. Furthermore, v�ℎ, ��ℎ, Δv�ℎ are de�ned as 
below:

�e gap variation and speed variation are denoted as:

�us, Equation (6) can be transformed into:

�en, we take the derivative with respect to �� and ��:

We consider the area upstream of the intersection as a 
linear system, where the transfer function is �(��), the speed 
disturbance of the �rst vehicle is �0 = ����, and the speed dis-
turbance of the nth vehicle is �� = ��(��)����. �ese terms are 
substituted into Equations (13) and (14):

If the perturbation in a vehicle platoon is reduced rather 
than ampli�ed, we have:

(6)
�(�, v, Δv) = �(�ℎ, vℎ, Δvℎ) + v�ℎ(v − vℎ) + ��ℎ(� − �ℎ)

+ Δv�ℎ(Δv − Δvℎ),

(7)v
�
ℎ = ���v
��������ℎ = −�[

4v3ℎ
v
4
0
+ 2�(�0 + �vℎ)�2ℎ

],

(8)��ℎ =
��
��
��������ℎ
= 2�(�0 + �vℎ)

2

�3ℎ
,

(9)Δv�ℎ =
��
�Δv
��������ℎ
= √��
(�0 + �vℎ)vℎ
�2ℎ
.

(10)�� = �� − �ℎ,

(11)�� = v� − vℎ.

(12)
�(�, v, Δv) = �(�ℎ, vℎ, Δvℎ) + v�ℎ�� + ��ℎ�� + Δv�ℎ(��−1 − ��).

(13)�̇� = ̇v�−1 − ̇v� = �̇�−1 − �̇�,

(14)�̇� = ��ℎ�� + (v�ℎ − Δv�ℎ)�� + Δv�ℎ��−1.

(15)

−�2��(��)���� =��ℎ(��−1(��)���� − ��(��)����)
+ (v�ℎ − Δv�ℎ)����(��)����= + Δv�ℎ����−1(��)����,

(16)�(��) = ��� + Δv�ℎ��
−�2 + ��� − ��(v�ℎ − Δv�ℎ)

.

Table 1: Fuel consumption and emissions at XiaoZhai Intersection.

Intersection Fuel (L) CO2 (kg) CO (kg) NO (kg) HC (kg)
Congested 85.567 204.5861 1.0780 0.1396 0.0768
Uncongested 58.485 139.8460 0.7395 0.0785 0.0518
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Figure 3: Tra�c stability index for travel times of less than 20 s.
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In Equation (21), � and � are the only unknown parameters 
so must be determined. �e optimal solution of � and � is 
obtained by the following four limited conditions:

(21)

∫
�/2�

0
(vℎ − v�cos(��))�� − ∫

�/2�

0
vℎ��

= ∫
�/2�+�/2�

�/2�
(v�
�
�cos(�(� −

�
2� +
��
2�)) − v�)��

+ ∫
�/v�

�/2�+�/2�
(vℎ + v�

�
�)�� − ∫

�/v�

�/2�+�/2�
vℎ��.

(22)

∫�/2�0 (vℎ − v�cos(��))�� − ∫
�/2�
0 vℎ��

= ∫�/2�+�/2��/2� (vℎ − v�
�
�cos(�(� −

�
2� +
��
2�)))��

+∫�/v��/2�+�/2�(vℎ + v�
�
�)�� − ∫

�/v�
�/2�vℎ������vℎ��

���� ≤ 10
v�� ≤ 2
� = max{�}� = [0, 1].

internet access) enters the control area upstream of the signal-
ized intersection, the DSRC sends SPaT information to the 
connected vehicle. �e vehicle status, which comes from OBD 
(on board diagnostics), includes vehicle current speed and 
acceleration and fuel consumption. �e control unit includes 
three processes: the optimal advisory speed model is respon-
sible for generating the optimal speed of connected vehicles 
based on the trigonometric function method; the PID control-
ler simulates the trajectory when the driver follows the optimal 
speed advice; and the IDM car-following model simulates the 
trajectory followed by normal (nonconnected) vehicles. �e 
output unit simulates the trajectory of mixed vehicles passing 
the signalized intersection from upstream to downstream.

3.1. Trigonometric Function Method. In this study, we employ 
the trigonometric function method to control the velocity of 
connected vehicles [30], which has many advantages such as 
smooth control and easy implementation. �e trigonometric 
model is as follows:

where v� denotes the speed di¬erence, v� =
����vℎ − v�
����, v� repre-

sents the instantaneous speed of the connected vehicle enter-
ing the control area; vℎ denotes the target maximum speed, 
the rate of change of acceleration in a di¬erent region is 
denoted as �, and � is the speed below the change in the decel-
eration rate of the target average speed.

�e key to speed control is the velocity compensation mech-
anism, which states that the distance and time required for the 
connected vehicle to reach the intersection aÀer entering the 
upstream control area is �xed. �us, when the connected vehicle 
enters the control area slowly, the mechanism increases the dis-
tance by acceleration control. Similarly, when the connected 
vehicle enters the intersection rapidly, it decreases the distance 
by deceleration control. As shown in Figure 5, the enclosed area 
A should be equal to the sum of the enclosed area B1+B2.

(20)

v =
{{{
{{{
{

v1 = vℎ − v�cos(��) � = 0 to �2�
v2 = vℎ − v� ��cos(�(� −

�
2� +
�
2�)) � =

�
2� to (

�
2� +
�
2�)

v3 = vℎ + v� �� � = ( �2� +
�
2�) to

�
v�
,
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Figure 4: Mixed-vehicle trajectory planning method.
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the accumulation of past errors, and parameter D represents 
the prediction of future errors. When the advisory speed is 
given, the driver pays more attention to the current di¬erence; 
thus, we consider it a closed-loop model. Moreover, in order to 
simply the problem, we exclude the impact of the prediction of 
future errors and only consider the time delay and past errors. 
�e diagram of the Simulink program in MATLAB is shown 
in Figure 6. Figure 7(a) shows the acceleration driver response, 
where the remaining green time is 20 s and the current velocity 
is 10 m/s. Figure 7(b) shows the deceleration driver response, 
where the remaining red light is 20 s and the current velocity 
is 15 m/s.

3.3. Trajectory Planning of the Normal Vehicle. �e special 
conditions described by the co-existence of connected and 
normal vehicles in the tra�c �ow will continue for a long time 
in the foreseeable future. �erefore, it is necessary to improve 
the speed control algorithm to ensure that connected vehicles 
pass through the intersection without idling and normal 
vehicles follow connected vehicles through the intersection 
as much as possible. It is assumed here that the front vehicle of 
two vehicles in tra�c �ow is a connected vehicle and the rear 
vehicle is a normal vehicle. A mathematical model is established 
to describe their trajectory. Due to the trigonometric guidance 
method applied to the front vehicle, the driving trajectory 
model of the connected vehicle is obtained by the inde�nite 
integral of the expression of the speed control function, as 
follows:

�e �rst condition is the distance compensation constraint 
mentioned above. �e second and third conditions restrain 
the rate of change of acceleration and deceleration. According 
to economical connected-vehicle fuel consumption, in the 
fourth condition, fuel consumption is proportional to the 
speed control time; thus, the shorter the speed control time, 
the lower the fuel consumption. In trigonometric speed-
guided expressions, variable s controls the speed-controlled 
completion; therefore, it must be quali�ed to the maximum 
value possible. In four constraints, there is only � and � 
unknown. To set s an initial value, use conditional one to 
obtain �, and then use the following three conditions to obtain 
the best solution.

3.2. Trajectory Planning of the Connected Vehicle. Many 
previous studies have focused on optimal speed control at 
a signalized intersection; however, few have considered the 
problem where a driver of a connected vehicle does not 
precisely follow the optimal advisory speed. �e trajectory of a 
vehicle can vary enormously from the ideal trajectory because 
the speed control method is too complicated or impractical; 
therefore, it is necessary to determine the driver response 
to the optimal advisory speed. In this study, we use the PID 
model to simulate the driver’s response when following the 
speed control method. �e PID model is practical and simple, 
but its most important advantage is the clear physical meaning 
of the model parameters. �at is, parameter P represents the 
time delay of the driver’s behaviour, parameter I represents 
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Figure 6: Diagram of the MATLAB Simulink program.
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4. Simulation Evaluation

In this section, we conduct numerical experiments to illustrate 
the e�cacy of the proposed MVTPM at a hypothetical inter-
section. �e MVTPM was evaluated with a one factor sensi-
tivity analysis using connected vehicle market penetration 
rates (MPRs). We assume that approximately 48 vehicles pass 
through the intersection and calculate the fuel consumption 
and emission of these vehicles using VT-Micro. �e simulation 
parameters as shown in Table 2.

4.1. Trajectory Simulation. Figures 8–12 show the spatial-
temporal trajectories for normal (black) and connected (red) 
vehicles with di¬erent connected vehicle market penetration 
rates and the stability index of the mixed-vehicle queue. Note 
that, at a lower penetration rate, many normal vehicles need to 
stop at the signalized intersection when the tra�c light is red 
because there are not enough connected vehicles to guide them, 
leading to long waiting times and instability of the mixed-
vehicle queue. However, with increasing market penetration 
of connected vehicles, the length of the queue is progressively 
shortened and the stability index increases to above zero.     

4.2. Fuel Calculation. �e proposed method is evaluated 
using the di¬erent MPRs, using the fuel consumption and 
concentrations of NOx, HC, CO2, and CO as measures of 
e¬ectiveness. Table 3 con�rms that the proposed MVTPM 
can optimize both objectives; i.e., reduce fuel consumption 
and vehicle emissions. Moreover, an increasing number 
of connected vehicles leads to further decreases in fuel 
consumption and emissions.

(25)v�+1(� + Δ�) = v�(�) +
1
2(��+1(�) + ��+1(� + Δ�))Δ� ,

(26)��+1(� + Δ�) = ��+1(�) + v�+1(�)Δ� +
��+1(�)(Δ�)2

2 .

When the normal vehicle enters the control area, the instan-
taneous speed of the normal vehicle is v, the distance is zero, 
and the entering time is �. At the same time, the instantaneous 
velocity of the connected vehicle is vℎ − v�cos(��) and the dis-
tance is vℎ� − (v�/�)sin(��). �e following form is established 
in the IDM expression:

�e velocity and position of the rear car is as follows [31]:

(23)

� =

{{{{{{{
{{{{{{{
{

�1 = vℎ� − v�
� sin(��) � = 0 to �2�

�2 = vℎ� − �v��2 sin�(� −
�
2� +
�
2�)

+v�( ��2 +
1
� )� � = �2� to (

�
2� +
�
2�)

�3 = vℎ� + v� �� �
+v�( ��2 −

1
� −
��
2�2 −

�
2�) � = ( �2� +

�
2�) to

�
v�
.

(24)

a = �max[1 − ( v�
vmax

)
4

− (�0 +max v�� + v�(vℎ − v�cos(��))/2√�max
���
vℎ� − (v�/�) sin(��) )

2

.

Table 2: Parameters used in simulation of the MVTPM.

Basic parameters Value
Speed control area length 400 m
Maximum speed limit of the section 72 km/h
Minimum speed limit of the section 36 km/h
Vehicle initial speed 54.0–64.8 km/h
Green light time 35 s
Red light time 25 s
Connected vehicle market penetration rate 0–100%
Maximum acceleration of connected vehicle 2 m/s2

Maximum deceleration of connected vehicle −2 m/s2

Maximum acceleration of normal vehicle 4 m/s2

Maximum deceleration of normal vehicle −4 m/s2

Following car response time 2.5 s
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Figure 8: E¬ect of a connected vehicle penetration rate of 0% on (a) the spatial-temporal trajectories for normal (black) and connected (red) 
vehicles and the stability index of the mixed-vehicle queue.
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Figure 10: E¬ect of a connected vehicle penetration rate of 50% on (a) the spatial-temporal trajectories for normal (black) and connected 
(red) vehicles and the stability index of the mixed-vehicle queue.
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Figure 11: E¬ect of a connected vehicle penetration rate of 75% on (a) the spatial-temporal trajectories for normal (black) and connected 
(red) vehicles and the stability index of the mixed-vehicle queue.
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Figure 9: E¬ect of a connected vehicle penetration rate of 25% on (a) the spatial-temporal trajectories for normal (black) and connected (red) 
vehicles and the stability index of the mixed-vehicle queue.
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