
Complexity

Theoretical and Applied
Contributions to Robust Stability
Analysis of Complex Systems

Lead Guest Editor: Baltazar Aguirre-Hernandez
Guest Editors: Raúl Villafuerte-Segura, Alberto Luviano Juárez, and John
Cortés-Romero

 



Theoretical and Applied Contributions to
Robust Stability Analysis of Complex Systems



Complexity

Theoretical and Applied Contributions
to Robust Stability Analysis of Complex
Systems

Lead Guest Editor: Baltazar Aguirre-Hernandez
Guest Editors: Raúl Villafuerte-Segura, Alberto
Luviano Juárez, and John Cortés-Romero



Copyright © 2020 Hindawi Limited. All rights reserved.

is is a special issue published in “Complexity.” All articles are open access articles distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Chief Editor
Hiroki Sayama, USA

Editorial Board

Oveis Abedinia, Kazakhstan
José Ángel Acosta, Spain
Carlos Aguilar-Ibanez, Mexico
Mojtaba Ahmadieh Khanesar, United
Kingdom
Tarek Ahmed-Ali, France
Alex Alexandridis, Greece
Basil M. Al-Hadithi, Spain
Juan A. Almendral, Spain
Diego R. Amancio, Brazil
David Arroyo, Spain
Mohamed Boutayeb, France
Átila Bueno, Brazil
Arturo Buscarino, Italy
Ning Cai, China
Eric Campos, Mexico
Émile J. L. Chappin, e Netherlands
Yu-Wang Chen, United Kingdom
Diyi Chen, China
Giulio Cimini, Italy
Danilo Comminiello, Italy
Sergey Dashkovskiy, Germany
Manlio De Domenico, Italy
Pietro De Lellis, Italy
Albert Diaz-Guilera, Spain
ach Ngoc Dinh, France
Jordi Duch, Spain
Marcio Eisencra, Brazil
Joshua Epstein, USA
Mondher Farza, France
ierry Floquet, France
José Manuel Galán, Spain
Lucia Valentina Gambuzza, Italy
Harish Garg, India
Bernhard C. Geiger, Austria
Carlos Gershenson, Mexico
Peter Giesl, United Kingdom
Sergio Gómez, Spain
Lingzhong Guo, United Kingdom
Xianggui Guo, China
Sigurdur F. Hafstein, Iceland
Chittaranjan Hens, India
Giacomo Innocenti, Italy
Sarangapani Jagannathan, USA

Mahdi Jalili, Australia
Peng Ji, China
Jeffrey H. Johnson, United Kingdom
Mohammad Hassan Khooban, Denmark
Abbas Khosravi, Australia
Toshikazu Kuniya, Japan
Vincent Labatut, France
Lucas Lacasa, United Kingdom
Guang Li, United Kingdom
Qingdu Li, China
Chongyang Liu, China
Xinzhi Liu, Canada
Xiaoping Liu, Canada
Rosa M. Lopez Gutierrez, Mexico
Vittorio Loreto, Italy
Noureddine Manamanni, France
Didier Maquin, France
Eulalia Martínez, Spain
Marcelo Messias, Brazil
Ana Meštrović, Croatia
Ludovico Minati, Japan
Saleh Mobayen, Iran
Christopher P. Monterola, Philippines
Marcin Mrugalski, Poland
Roberto Natella, Italy
Sing Kiong Nguang, New Zealand
Nam-Phong Nguyen, USA
Irene Otero-Muras, Spain
Yongping Pan, Singapore
Daniela Paolotti, Italy
Cornelio Posadas-Castillo, Mexico
Mahardhika Pratama, Singapore
Luis M. Rocha, USA
Miguel Romance, Spain
Avimanyu Sahoo, USA
Matilde Santos, Spain
Ramaswamy Savitha, Singapore
Michele Scarpiniti, Italy
Enzo Pasquale Scilingo, Italy
Dan Selişteanu, Romania
Dehua Shen, China
Dimitrios Stamovlasis, Greece
Samuel Stanton, USA
Roberto Tonelli, Italy



Shahadat Uddin, Australia
Gaetano Valenza, Italy
Jose C. Valverde, Spain
Alejandro F. Villaverde, Spain
Dimitri Volchenkov, USA
Christos Volos, Greece
Zidong Wang, United Kingdom
Qingling Wang, China
Wenqin Wang, China
Yan-Ling Wei, Singapore
Honglei Xu, Australia
Yong Xu, China
Xinggang Yan, United Kingdom
Zhile Yang, China
Baris Yuce, United Kingdom
Massimiliano Zanin, Spain
Hassan Zargarzadeh, USA
Rongqing Zhang, China
Xianming Zhang, Australia
Xiaopeng Zhao, USA
Quanmin Zhu, United Kingdom



Contents

�eoretical and Applied Contributions to Robust Stability Analysis of Complex Systems
Baltazar Aguirre-Hernández  , Raúl Villafuerte-Segura  , Alberto Luviano-Juárez, and John Cortés-
Romero 

Editorial (2 pages), Article ID 7083781, Volume 2020 (2020)

Nested Saturation Function Control of a Magnetic Levitation System
Octavio Gutiérrez-Frías  , Norma Lozada-Castillo  , J. Alejandro Aguirre-Anaya  , and Diego A.
Flores-Hernández 

Research Article (9 pages), Article ID 3545374, Volume 2020 (2020)

Design, Implementation, and Validation of Robust Fractional-Order PD Controller for Wheeled
Mobile Robot Trajectory Tracking
Lichuan Zhang  , Lu Liu  , and Shuo Zhang 

Research Article (12 pages), Article ID 9523549, Volume 2020 (2020)

LMI-Based Robust Stabilization of a Class of Input-Constrained Uncertain Nonlinear Systems with
Application to a Helicopter Model
Hassène Gritli 

Research Article (22 pages), Article ID 7025761, Volume 2020 (2020)

Mitigation of Bullwhip Effect in Closed-Loop Supply Chain Based on Fuzzy Robust Control Approach
Songtao Zhang   and Min Zhang 

Research Article (17 pages), Article ID 1085870, Volume 2020 (2020)

Robust Finite-Time Tracking for Uncertain Linear Systems with Actuator Faults
Xinpeng Fang  , Huijin Fan  , and Lei Liu 

Research Article (13 pages), Article ID 2463790, Volume 2020 (2020)

Research on Optimization of Production Decision Based on Payment Time and Price Coordination
Yanyang Yan, Liang Yuan  , and Yemei Li
Research Article (9 pages), Article ID 2107582, Volume 2020 (2020)

σ-Stabilization of a Flexible Joint Robotic Arm via Delayed Controllers
G. Ochoa-Ortega  , R. Villafuerte-Segura  , M. Ramírez-Neria, and L. Vite-Hernández
Research Article (12 pages), Article ID 7289689, Volume 2019 (2019)

Robust Position Control of a Two-Sided 1-DoF Impacting Mechanical Oscillator Subject to an
External Persistent Disturbance by Means of a State-Feedback Controller
Firas Turki, Hassène Gritli  , and Safya Belghith
Research Article (14 pages), Article ID 9174284, Volume 2019 (2019)

Adaptive Neural Network Control of a Class of Fractional Order Uncertain Nonlinear MIMO Systems
with Input Constraints
Changhui Wang  , Mei Liang  , and Yongsheng Chai 

Research Article (15 pages), Article ID 1410278, Volume 2019 (2019)

https://orcid.org/0000-0002-6227-5232
https://orcid.org/0000-0003-3904-5401
https://orcid.org/0000-0001-6991-4116
https://orcid.org/0000-0002-2855-3243
https://orcid.org/0000-0002-6553-1924
https://orcid.org/0000-0003-3572-8643
https://orcid.org/0000-0003-3894-7454
https://orcid.org/0000-0001-8818-5721
https://orcid.org/0000-0003-3179-1004
https://orcid.org/0000-0002-2824-618X
https://orcid.org/0000-0002-5643-134X
https://orcid.org/0000-0001-8040-2023
https://orcid.org/0000-0002-2406-5007
https://orcid.org/0000-0003-1390-1927
https://orcid.org/0000-0002-0370-173X
https://orcid.org/0000-0003-3606-122X
https://orcid.org/0000-0003-1045-8982
https://orcid.org/0000-0002-6572-6238
https://orcid.org/0000-0003-3904-5401
https://orcid.org/0000-0002-5643-134X
https://orcid.org/0000-0001-5505-7846
https://orcid.org/0000-0002-9397-5215
https://orcid.org/0000-0002-2047-9077


Risk Analysis of Emergency Based on Fuzzy Evidential Reasoning
Xiaojiao Qiao   and Dan Shi 

Research Article (10 pages), Article ID 5453184, Volume 2019 (2019)

Ground Attack Strategy of Cooperative UAVs for Multitargets
Qirui Zhang   and Ruixuan Wei
Research Article (13 pages), Article ID 9428087, Volume 2019 (2019)

Global Robust Exponential Synchronization of Multiple Uncertain Neural Networks Subject to Event-
Triggered Strategy
Jin-E Zhang   and Huan Liu
Research Article (16 pages), Article ID 7672068, Volume 2019 (2019)

Reachable Set Bounding for Homogeneous Nonlinear Systems with Delay and Disturbance
Xingao Zhu and Yuangong Sun 

Research Article (6 pages), Article ID 8698294, Volume 2019 (2019)

A PI-Type Sliding Mode Controller Design for PMSG-Based Wind Turbine
Jun Liu, Feihang Zhou  , Chencong Zhao  , and Zhuoran Wang
Research Article (12 pages), Article ID 2538206, Volume 2019 (2019)

https://orcid.org/0000-0003-1753-7763
https://orcid.org/0000-0001-8359-8308
https://orcid.org/0000-0003-1680-5877
https://orcid.org/0000-0001-9289-1848
https://orcid.org/0000-0003-0616-1932
https://orcid.org/0000-0003-0202-9723
https://orcid.org/0000-0001-5796-8811


Editorial
Theoretical and Applied Contributions to Robust Stability
Analysis of Complex Systems
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2Centro de Investigación en Tecnoloǵıas de Información y Sistemas, Universidad Autónoma Del Estado de Hidalgo, Pachuca,
Hidalgo, Mexico
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In the study of the dynamics of a complex system, stability is one
of the more interesting aspects since a stability analysis provides
the principles and methods useful for engineers, mathemati-
cians, and others to obtain a better understanding of the system.
%is allows us to understand the nature of the dynamics of the
system andpropose a new controller or improve control designs,
optimizing or increasing performance.

On the other hand, it is common that the mathematical
models of dynamic complex systems are, in practice, im-
precise due to uncertainties, parametric variations, non-
modeled dynamics, neglected terms in simplifications, etc.,
among others. Hence, a robust stability analysis for complex
systems is essential to achieve results that more closely
resemble real-world platforms.

Without a doubt, the robustness of stability is one of the
most active research areas in the framework of the analysis
and control of dynamic systems.

In the paper “A PI-Type Sliding Mode Controller Design
for PMSG-Based Wind Turbine,” J. Liu et al. improve the
stabilization of a permanent magnet synchronous generator-
(PMSG-) based wind energy conversion systems (WECS) by
means of a PI-Type sliding mode controller. %e results are
supported by the application of the Lyapunov stability
theory and numerical simulations.

%e paper “Robust Finite-Time Tracking for Uncertain
Linear Systems with Actuator Faults” by X. Peng et al.

presents a robust finite-time fault-tolerant control (FTC)
scheme for a class of uncertain linear systems in the presence
of multiple actuator faults. %e adaptive laws were used to
compensate the effects of faults and uncertainties. It is shown
that the proposed state-feedback model reference adaptive
finite-time FTC scheme can guarantee that the tracking error
converges to a small neighborhood of the origin in finite
time. Simulations are presented for illustrating the proposed
design.

In the paper “Research on Optimization of Production
Decision Based on Payment Time and Price Coordination,”
Y. Yan et al. construct a mathematical model of the optimal
quote and delivery time of orders between a manufacturer
and several retailers, which also includes penalties for late
delivery to the manufacturer, in a supply chain. %e authors
apply the shorter processing time rule (SPT) to solve the
problem of production scheduling and use the fact that the
gain function (objective function) is a convex function to
find the delivery time and the optimal price.

%e paper “Ground Attack Strategy of Cooperative
UAVs for Multitargets” by Q. Zhang and R. Wei proposes a
strategy of a parallel multiview splicing on clouds (PMVSC)
unmanned aerial vehicles using precise target recognition
and attack and task assignment. Simulations and experi-
ments are performed on an experimental cooperative UAVs
platform in order to implement the proposed algorithm.
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In the paper “Risk Analysis of Emergency Based on
Fuzzy Evidential Reasoning” by X. Qiao and D. Shi, the
proposed analytical reference framework allows the authors
to provide an approach based on fuzzy evidential reasoning
to analyze, model, and process emergency risks.

%e paper “LMI-Based Robust Stabilization of a Class of
Input-Constrained Uncertain Nonlinear Systems with Ap-
plication to a Helicopter Model” by H. Gritli considers the
robust stabilization of the pitch dynamics of a helicopter
model with uncertainties and disturbances via a theoretical
framework based on a LMI approach in order to design a
state-feedback control law.

%e reachable set bounding for homogeneous nonlinear
time-delay systems with bounded disturbance is studied in
the paper “Reachable Set Bounding for Homogeneous
Nonlinear Systems with Delay and Disturbance” by X. Zhu
and Y. Sun. Here, the authors establish a necessary and
sufficient condition such that all the system solutions
converge asymptotically within a specific ball. Finally, a
numerical example is presented to illustrate the proposed
theoretical results.

A saturation control with a feedforward term to the
trajectory tracking task of a magnetic levitation system
connected to a beam mechanism is proposed in the paper
“Nested Saturation Function Control of a Magnetic Levi-
tation System” by O. Gut́ıerrez-Fŕıas et al. %e proposal
consists in using the flatness of the system to transform the
system in an integrator chain, while a controller based on a
nested saturated function and a feedforward term are used to
force the output trajectories to converge towards the ref-
erence trajectory. %e closed-loop solution is proven to be
locally exponentially stable by means of the second method
of Lyapunov. Lastly, numerical simulations prove the ef-
fectiveness of the proposal.

%e event-triggered strategy for multiple neural net-
works with parameter uncertainty and time delay is pre-
sented in the paper “Global Robust Exponential
Synchronization of Multiple Uncertain Neural Networks
Subject to Event-Triggered Strategy” by J.-E. Zhang and H.
Liu. Here, several sufficient criteria to ensure global robust
exponential synchronization of coupling neural networks
using matrix inequality techniques are given. Eventually,
three numerical examples are offered to illustrate the ob-
tained results.

A fuzzy robust control to mitigate the bullwhip effect in
the uncertain closed-loop supply chain with lead times is
proposed in the paper “Mitigation of Bullwhip Effect in
Closed-Loop Supply Chain Based on Fuzzy Robust Control
Approach” by S. Zhang and M. Zhang. For this, the lead
times are included in the closed-loop supply chain models,
an additional Takagi-Sugeno fuzzy controller for lead times
is designed, and a new fuzzy robust control approach is put
forward to effectively mitigate the bullwhip effect caused by
uncertainties and lead times, and the stability of the closed-
loop supply chain system using LMIs is ensured.

A trajectory tracking control algorithm based on a
fractional-order PD controller for a wheeled mobile robot is
presented in the paper “Design, Implementation, and Val-
idation of Robust Fractional-Order PD Controller for

Wheeled Mobile Robot Trajectory Tracking” by L. Zhang
et al. For robust fractional-order controller regulation, an
improved flat phase property as a robust controller tuning
specification is put forward to guarantee the robust flat phase
frequency interval width instead of only one flat phase
frequency.

%e problem of establishing tuning rules to a propor-
tional retarded controller for LTI systems is addressed in the
paper “σ-Stabilization of a Flexible Joint Robotic Arm via
Delayed Controllers” by G. Ochoa-Ortega et al.%e proposal
consists in giving analytic conditions to σ-stabilize this
system class and guarantee a maximal decay rate in the
system response. %e conditions presented in this paper are
tested experimentally in tracking tasks on a underactuated
mechanical nonlinear system known as flexible joint robotic
arm using a feedback linearization approach.

Concerning the robust stabilization of systems subject to
oscillations and possible impacts, a robust LMI-based control
approach is proposed in the paper “Robust Position Control
of a Two-Sided 1-DoF Impacting Mechanical Oscillator
Subject to an External Persistent Disturbance by Means of a
State-Feedback Controller,” by F. Turkia et al. %e authors
provide the stabilization conditions of the controlled hybrid
dynamics by means of the S-procedure in terms of bilinear
matrix inequalities, which are converted into linear matrix
inequalities. Numerical simulations for different conditions
are provided to show the effectiveness of the proposal.

Considering again fractional-order systems but with an
adaptive backstepping control scheme, the paper “Adaptive
Neural Network Control of a Class of Fractional Order
Uncertain Nonlinear MIMO Systems with Input Con-
straints” by C. Wang et al. ensures the convergence of
tracking errors even with dead-zone and saturation non-
linearities in the controller input. In this work, unknown
nonlinear uncertainties are approximated by a radial basis
function neural network and the parameters update laws
with incommensurate fractional order are used in the
controller to compensate those unknown nonlinearities.
Two simulation results are presented to validate the efficacy
of the proposed scheme.
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/e trajectory tracking task of a magnetic levitation system connected to a beam mechanism is solved by means of a nested
saturation control with a feedforward term. /e flatness property of the system allows to use the nested saturation control
technique and the feedforward control to stabilize the output tracking error around the equilibrium. /e closed-loop error
dynamics is proven to be locally exponentially stable. Numerical simulations prove the effectiveness of the proposal.

1. Introduction

Underactuated systems are currently an active research area
in automatic control design. On the one hand, their amount
of advantages such as lighter structures, economic designs,
the possibility of compensating a failure on a fully actuated
system, among others, has allowed their use in many ap-
plications such as mobile robotics, marine systems, aero-
space robotic systems, cranes, flexible robots, and fault
compensation systems [1–4]. On the other hand, the control
problems of regulation and trajectory tracking of under-
actuated systems lead to complex solutions which cannot be
solved by classical schemes [5]; some of the complexities are
due to the difficulties to find general properties concerning
their capacity of being linearizable, relations between de-
grees of freedom and independent control actuators [6],
passivity [7, 8], ill-defined relative degrees [9], and so on.
Most of the solutions for this class of systems deal with the
regulation problem, where energy-based schemes are the
most popular. /e trajectory planning tasks and their
tracking demand more complex strategies. /is is due to the
fact that not all joint trajectories are attainable for this class
of systems [10]. To overcome this problem, the capacity of
finding a set of variables that can parameterize the system

trajectories (differentially flatness [11–13]) allows to estab-
lish a trajectory planning and a subsequent controller
synthesis.

In particular, magnetic levitation systems have been
extensively analysed and used in the design of frictionless
bearings [14], vibration isolation [15], manipulation and
micromanipulation systems [16, 17], drug and people
transporting [18, 19], energy harvesting [20–22], etc., where
noncontact motion control or avoiding the use of lubrication
systems is desirable [23–25]. /e control of this class of
systems has been tackled from a wide variety of nonlinear
approaches [26, 27]. /e magnetic levitation in a beam
balance configuration has been approached by feedback
linearization [28]. In [29], the regulation problem of a beam
balance system is solved though a Lyapunov-based control
considering restrictions in states and input. Hu et al. [30]
developed a saturated linear feedback to solve the same
problem achieving a larger attraction region with respect to
linear techniques. Passivity-based control is also imple-
mented though the interconnection and damping assign-
ment [31]. In [32], a sliding mode controller is used for the
regulation problem using two magnetic actuators in an
agonist-antagonist configuration. /e problem of trajectory
tracking for a ball levitation system controlled by magnetic
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bearings has been solved by a flatness-based control [33–35],
where path planning is used to avoid the input constraints in
the control design although the natural saturations are not
part of the control design in contrast with other schemes.
/e idea of using the saturations as a part of the control
design in combination with the advantages of a flatness-
based control seems to be a good alternative to solve the
problem of trajectory tracking enhancing the control re-
sponse in case the control saturation may arise. /e nested
saturation function approach was introduced by A. Teel in
[36] to solve the stabilization of a chain of integrator of
arbitrary order, and it can also be used for trajectory tracking
for a class of trajectories restricted. Other works that solve
this problem are presented in [37–39]. Besides, this tech-
nique has been used for stabilization of a class of under-
actuated systems [40–43].

In this sense, this article deals with the problem of
trajectory tracking of a beam balance levitation system by
means of a nested saturation function approach in combi-
nation with the flatness property of the system./e proposal
consists in using the flatness of the system to transform the
system in an integrator chain, and then, a controller based
on a nested saturated function and a feedforward term is
used to force the output trajectories to converge towards the
reference trajectory./e closed-loop solution is proven to be
locally exponentially stable by means of the second method
of Lyapunov.

/e remainder of the article is given as follows: the
dynamical model of the magnetic levitation system, the
flatness property, and the problem formulation are given in
Section 2. /e control proposal and its stability proof are
provided in Section 3. Some numerical simulations which
show the behaviour of the proposal are presented in Section
4, and finally, some concluding remarks are stated.

2. System Model

Consider the magnetic levitation system, shown in Figure 1,
where a beam can rotate freely, and its movement is affected
by the gravity effects and the control input derived from a
magnetic force generated on a controlled electromagnet coil.
/e dynamical model is given as follows:

_x1(t) � x2(t),

_x2(t) �
Ce

J

x3(t)

l sin x1(t)( 􏼁
􏼢 􏼣

2

−
mgr cos x1(t)( 􏼁

J
,

_x3(t) �
u(t)

L
−

Rx3(t)

L
,

(1)

where x1(t) is the angular position of the pendulum, x2(t) is
its corresponding angular velocity, and x3(t) is the current
of the inductor. Ce represents the electromagnetic force
proportionality constant. J is the inertia moment of the
beam, l is the distance between the pivot and the center of the
permanent magnet, m denotes the mass of the beam, g is the
gravity constant, and r is the radial distance of the center of
mass of the beam to the rotational center. L and R are the

inductance and resistance parameters of the electromagnetic
subsystem. Finally, u(t) is the control input, applied on the
electromagnetic system. It is assumed that the output var-
iable is the position of the beam x1(t).

Last system admits a canonical controllable form by
means of the following change of coordinates [44]:

F1(t) � x1(t),

F2(t) � x2(t),

F3(t) � α1
x3(t)

sin x1(t)( 􏼁
􏼠 􏼡

2

− α2 cos x1(t)( 􏼁,

(2)

where α1 � (Ce/Jl2) and α2 � (mgr/J).
We have the following inverse transform:

x1(t) � F1(t)

x2(t) � F2(t)

x3(t) �

�������������������������������
1
α1

F3(t) + α2 cos F1(t)( 􏼁( 􏼁sin2 F1(t)( 􏼁

􏽳

.

(3)

/e dynamics of (1) in terms of coordinate transfor-
mation (2) is given as follows:

_F1(t) � F2(t),

_F2(t) � F3(t),

_F3(t) � −2 F3(t) + α2 cos F1(t)( 􏼁( 􏼁r F1(t), F2(t)( 􏼁

+ α2 sin F1(t)( 􏼁F2(t)

+
2 ��α1
√

L

������������������
F3(t) + α1 cos F1(t)( 􏼁

sin2 F1(t)( 􏼁

􏽳

u(t),

(4)

where

r F1(t), F2(t)( 􏼁 �
R

L
+ F2(t)cot F1(t)( 􏼁􏼒 􏼓. (5)

Jm

+

u

–

Fmag

Electromagnet
coil

L

R

Magnet

Center
of mass

Beam

l

r

x1

Figure 1: Magnetic levitation system.
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/is system can be controllable except when F1(t) � 0 or
in the set F3(t) + α1 cos(F1(t)) � 0.

2.1. Problem Formulation. /e following problem formu-
lation is established: given a smooth admissible reference
trajectory of the beam angle, denoted as x∗1(t), devise an
output feedback control law u(t) such that the trajectory
tracking error remains after a settling time on a vicinity of
the origin of the phase variable plane, as small as allowed by
the system nonlinearities and the control gains to be
designed.

3. Nested Function Control Design

From (4), it can be shown that the system is differentially flat
[11, 12] with flat output F1(t) � x1(t). /at is, system (4) has
the form

F
(3)
(1)(t) � h F1(t), _F1(t), €F1(t)􏼐 􏼑 + p F1(t), €F1(t)􏼐 􏼑u(t),

(6)

with

h F1(t), _F1(t), €F1(t)􏼐 􏼑 � −2 €F1(t) + α2 cos F1(t)( 􏼁􏼐 􏼑 ×

R

L
+ _F1(t)cot F1(t)( 􏼁􏼒 􏼓 + α2 sin F1(t)( 􏼁 _F1(t)

p F1(t), €F1(t)􏼐 􏼑 �
2 ��α1
√

L

������������������
€F1(t) + α1 cos F1(t)( 􏼁

sin2 F1(t)( 􏼁

􏽳

.

(7)

/e following linearizing control input

u(t) �
1

p F1(t), €F1(t)􏼐 􏼑
−h F1(t), _F1(t), €F1(t)􏼐 􏼑 + v(t)􏼐 􏼑,

(8)

yields the following linear controllable in the Brunovsky
canonical form

F
(3)
(1)(t) � v(t). (9)

Let us define the flat output error as
eF1(t) :� F1(t) − F∗1(t), where F∗1(t) � x∗1(t). In order to
express the dynamics in terms of the tracking error coor-
dinates, the following feedforward input term is introduced
in the last expression:

v(t) � F
∗(3)
1 (t) + v(t). (10)

/us, using (8) and (10) in (4), the following expression
is obtained:

e
(3)
F1 (t) � v(t). (11)

Last system admits the following canonical
representation:

_eF1(t) � eF2(t),

_eF2(t) � eF3(t),

_eF3(t) � v(t).

(12)

Let us introduce the following linear transformation
[36, 45]:

q1(t)

q2(t)

q3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 2 1

0 1 1

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eF1(t)

eF2(t)

eF3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

Last transformation leads system (12) to
_q1(t) � q2(t) + q3(t) + v(t),

_q2(t) � q3(t) + v(t),

_q3(t) � v(t).

(14)

/erefore, as system (12) is expressed with a chain of
integrator, we suggested a controller based on nested sat-
uration function. /is technique, proposed in [36], has been
used for controlling a wide class of the underactuated system
[40–42, 46]. /us, our stability problem will be solved as
follows. First, a linear transformation is used to directly
propose a trajectory tracking controller; then, it is shown
that the proposed controller guarantees the boundedness of
all states, and after a finite time, it is possible to ensure that
all states converge to zero [43].

Let us define the following saturation function:

Definition 1. /e linear saturation function σm(s): R⟶ R

is defined as

σm(s) �
s, if |s|≤m,

m · sign(s), if |s|>m.
􏼨 (15)

Finally, the trajectory tracking controller can be pro-
posed as

v(t) � −q3(t) − Kσα
q2(t) + σβ q1(t)( 􏼁

K
􏼠 􏼡, (16)

where K is a positive constant, α> 0 and β> 0 are fixed
parameters, and σm is a linear saturation function.

3.1. Boundedness ofAll States. We show in three simple steps
that the closed-loop solution of the proposed closed-loop
systems (14) and (16) ensures that all the states are bounded.
Moreover, the bound of each state directly depends on the
designed parameters of the controller.

Step 1. We define a positive definite function

V3 q3, t( 􏼁 �
q23(t)

2
. (17)

/en, differentiating (17) and using the third differential
equation of (14), we have the time derivative of V3(q3, t)

given by
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_V3 q3, t( 􏼁 � −q
2
3(t) − q3(t)Kσα

q2(t) + σβ q1(t)( 􏼁

K
􏼠 􏼡.

(18)

It is clear that _V3(q3, t)< 0 when |q3(t)|≥ αK; therefore,
there is a finite time T1 > 0 such that

q3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< αK, ∀t>T1, (19)

where K> 0.

Step 2. Now, we proceed to analyze the behaviour of the
state q2(t). Hence, we introduce a positive definite function
V2(q2, t) � q22(t)/2. Differentiating V2(q2, t), we obtain after
substituting (16) into second differential equation of (14)

_V2 q2, t( 􏼁 � −q2(t)Kσα
q2(t) + σβ q1(t)( 􏼁

K
􏼠 􏼡, (20)

where α and β are selected such that α> 2β. Evidently, if
|q2(t)|> β, then _V2(q2, t)< 0, and there is finite T2 >T1 after
which

q2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< β, ∀t>T2, (21)

when this condition is satisfied, and the control v(t) turns
out to be

v(t) � −q3(t) − q2(t) − σβ q1(t)( 􏼁. (22)

Step 3. Substituting (22) into first differential equation of
(14), we obtain

_q1(t) � −σβ q1(t)( 􏼁. (23)

Now, we define an auxiliary positive definite function
V1(q1, t) � q21(t)/2. By differentiating V1(q1, t) along the
trajectories of (23), we obtain

_V1 q1, t( 􏼁 � −q1(t)σβ q1(t)( 􏼁, (24)

where β must be chosen such that β> 0. If |q1(t)|> 0, then
_V1(q1, t)< 0, and hence, there is finite T3 >T2 after which

q1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 0, ∀t>T3. (25)

Consequently, q1 is also bounded. So, all previous
constraints on parameters α and β can be summarized as

α> 2β,

β> 0.
(26)

Manipulating the last inequalities, we can select the
control parameters as follows:

α � 2λ,

β � λ,
(27)

where λ> 0.

3.2. Convergence ofAll States to Zero. We shall prove that the
closed-loop system given by (14) and (16) is asymptotically

stable and locally exponentially stable, provided that the
controller parameters satisfy (26).

We must note that, after t>T3, the control law is no
longer saturated, that is,

v(t) � −q3(t) − q2(t) − q1(t), (28)

and the closed-loop system can be expressed as
_q1(t) � −q1(t),

_q2(t) � −q2(t) − q3(t),

_q3(t) � −q3(t) − q2(t) − q1(t).

(29)

Let us define the following Lyapunov function:

V(q, t) �
1
2

q(t)
⊺
q(t), (30)

with q(t): � q1(t) q2(t) q3(t)􏼂 􏼃
⊺. Now, differentiating

V(q, t) along the trajectories of (29), we obtain
_V(q, t) � −q(t)

⊺
Mq(t), (31)

where

M �

1 1/2 1/2

1/2 1 1/2

1/2 1/2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (32)

Note that λmin M{ } � 1/2, and therefore, M is positive
definite/erefore, _V(q, t) is negative definite, and the vector
state q locally exponentially converges to zero after t>T3.

From the above discussion, we have the following.

Proposition 1. Consider the magnetic levitation system as
described (1) in a closed loop with controller (8). 8en, the
closed-loop system is asymptotically stable and locally ex-
ponentially stable provided that the control parameters α and
β satisfy the inequalities.

4. Numerical Simulations

To test the performance of the controller, we carried out
some numerical simulations using MATLAB program, and
the results were obtained based on the numerical method of
Runge–Kutta of fourth order with the fixed step of 0.001 s.
/e physical parameters of the system are
Ce � 9.9081×−6(Nm2/A2), J � 0.01 (kgm2), l � 0.2 (m),m �

0.6 (kg), g � 9.81 (m/s2), r � 0.009 (m), L � 0.2703 (H), and
R � 4.5 (Ω), and the controller parameter values were set as
α � 3, β � 1.5, and K � 1.

/e first experiment shows the behaviour of the system,
for a rest-to-rest trajectory, and in this case, we use a ref-
erence trajectory-type Bezier polynomial (x∗1(t)). /e initial
conditions were set as x1(0) � −0.1(rad), x2(0) � 0(rad/s),
and x3(0) � 0.5(A). In Figure 2, the output tracking re-
sponse is shown, and we can see that the controller effec-
tively brings the system from initial position
(x1(0) � −0.1(rad)) to the final rest position (x∗1(tf) � 0.4)

after 7 seconds. /e behaviour for the states x2(t) and x3(t)

is shown in Figure 3. Finally, Figure 4 depicts the control
input.
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/e second experiment was designed under the same
setup, but in this case, we use a reference sinusoidal tra-
jectory (x∗1(t) � 0.4 + 0.1 sin(πt/4)). /e result of the

experiment is presented in Figure 5. From this figure, we can
see that the controller was capable of performing the task of
tracking a sinusoidal trajectory. In Figure 6, the behaviour
for the states x2(t) and x3(t) is shown. Finally, Figure 7
presents the control input.

In Figure 8, the output tracking response for a sinu-
soidal trajectory with different initial conditions is shown.
In this case, x1(0) � [−0.5, 0.5](rad), and we can see that
the controller was capable of performing the task of
tracking a sinusoidal trajectory adequately. Some tests
were carried out in order to verify the sensitivity of the
control scheme with respect to the initial conditions, in
which a set of different initial conditions in an admissible
operation range was used. /e results indicate that the
response is not affected by the initial conditions, and there
is a lack of overshooting effects which are typical in high-
gain schemes.

4.1. A Comparison Test. In order to assess the behaviour of
the control proposal, a comparison test was made against a
robust control strategy, consisting in a sliding mode con-
troller (see [47]). /e sliding mode controller was set to be
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Figure 6: State behaviour in a sinusoidal trajectory.
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u(t) �
1

p F1(t), €F1(t)􏼐 􏼑
−h F1(t), _F1(t), €F1(t)􏼐 􏼑 + vsm(t)􏼐 􏼑,

vsm(t) � F
∗(3)
1 − λ2eF3 − λ1eF2 − Wsign(σ),

σ � eF3 + λ2eF2 + λ1eF1,

with : λ2, λ1 ∈ R
+
.

(33)

/e control parameters used in the test were W � 20,
λ2 � 24, and λ1 � 36. Figure 9 shows the tracking results,
where the sliding mode results (denoted by the subindex
sm) converged faster without any overshooting effects.
Figure 10 depicts the states x2 and x3, in which both
schemes had similar values (reachable for experimental
implementations). Figure 11 shows the advantages of the
proposal since the voltage input of the sliding mode showed
the high-frequency behaviour, which is a classic problem in
sliding mode control implementations which may demand
high control efforts. Notice that the proposal has a better
energy management, leading to similar results with a
smoother control input. /is can be noticed with the
obtained performance index 􏽒 u2 which is shown in
Figure 12.

5. Conclusion

A nested saturation-based controller for the trajectory
tracking task on a beam levitation system was introduced
and proven to be effective. /e flatness property of the
magnetic levitation system permits to express the system as a
third-order integrator chain, allowing the use of nested
saturation functions to design a trajectory tracking
controller.

/e proposed scheme forces the system output to track
the reference trajectory even in the presence of the input
constraints and ensures that all states converge exponentially
to the desired trajectory./e stability analysis is based on the
second method of Lyapunov using a simple candidate
function. Some computer simulations showed the effec-
tiveness of the proposal in the tracking of a rest-to-rest and
sinusoidal trajectories.

x 2
 (r

ad
/s

)

5 15 20 3025100
Time (s)

–0.2
0

0.2
0.4

x2sm

x2(t)

(a)

x3sm

x3(t)

x 3
 (A

)

5 10 25 300 15 20
Time (s)

0

1

2

3

(b)

Figure 10: State behaviour (comparison test).

usm(t)
u(t)

3010 15 20 2550
Time (s)

–50

0

50

u 
(V

)

Figure 11: Control input (comparison test).

usm(t)
u(t)

Pe
rfo

rm
an

ce
 in

de
x 

(V
2 )

×104

5 10 15 20 25 300
Time (s)

0

0.5

1

1.5

2

2.5

Figure 12: Performance index of the input control.

Complexity 7



On the contrary, as a future research, some other
nonlinearities such as hysteresis in the magnetic actuator
[48] can be addressed. /is effect is important for the design
of maglev systems in superconductor-based transportation
system applications.
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In this paper, a trajectory tracking control algorithm is proposed based on the fractional-order PD (FOPD) controller for a
Wheeled Mobile Robot (WMR). Firstly, an improved flat phase property is put forward as a robust controller tuning specification.
-is specification is capable of guaranteeing the flatness of the phase curve in a frequency interval, so the controlled system
robustness can be improved. -en, the stabilization process is discussed with respect to the parameters of the FOPD controller
through a visualized 3-dimensional surface, so both the stability and robustness of the controlled system can be guaranteed under
the proposed controller. Furthermore, the implementation of the proposed robust FOPD controller is presented, which makes the
control algorithm easy to be realized. At last, the effectiveness of the proposed trajectory tracking control algorithm is verified by
the simulation and experiment results.

1. Introduction

Wheeled Mobile Robots (WMRs) are capable of working in
different situations, including the inclement, dangerous, or
even harmful ones. In the past few decades, WMRs have
been widely applied in a great variety of civilian and military
tasks, for example, space exploration, materials trans-
portation, supplies delivery, mine clearance, and search and
rescue [1–6]. Currently, trajectory tracking and regulation is
one of the most concerned problems in WMRs related
studies [7]. Without an effective control strategy, a pre-
defined tracking strategy is hard to follow, especially in long
distance or complicated environment tasks.-e nonholomic
properties, internal dynamics, feedback sensors of WMRs,
and external load disturbance may bring in different kinds of
immeasurable uncertainties [8]. -erefore, more precise and
robust trajectory tracking strategy will certainly help in
improving the operation efficiency of WMRs.

Typically, Proportional-Integral-Derivative (PID) con-
troller is always used in the control process of industrial

robotics including WMRs. But its control effect has been
suspicious at times when better robustness and transient
performance are required. However, the combination of
fractional calculus and traditional PID controller, namely,
fractional-order PID (FOPID) controller, provides novel
potential and opportunity of solving this kind of problem.
Many studies have investigated the design and application of
FOPID type controllers [9–11]. One of the most represen-
tative works is the PIλDμ controller proposed by Podlubny,
which is an extension of the traditional PID controller with
two extra order parameters [10]. Another kind of FOPID
controller designed based on phase and magnitude margin
frequency specifications is presented by Vinagre et al. [12].
Except for phase and magnitude margin specifications,
Monje et.al. added the extrasensitivity and complementary
sensitivity functions in the design specifications of the
FOPID controller [13]. A similar FOPI controller whose
parameters were tuned by symmetrical optimization func-
tion was studied by Maione and Lino [14]. In [15, 16], the
original andmodified Ziegler–Nichols methods were used in
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the design process of FOPID controllers. -e Newton–
Raphson recursive algorithm was applied by Feliu et al. in
the parameter optimization process of an FOPI controller
[17]. Moreover, some intelligent control algorithm-based
FOPID tuning methods have also been studied [18–22]. An
autotuning variable-order fuzzy FOPID controller is in-
vestigated in [18] by Liu et al. in which all the parameters can
be tuned online to deal with random time delay or system
parameter uncertainties. -e detailed advantages of the
FOPID type controller can be concluded as following.
Firstly, the FOPID type controller inherits the characteristics
of the traditional PID controller, such as simple structure,
clear physical, and meaning. Secondly, through the extra-
differential and integral order parameters, the design flex-
ibility of the controller is increased so better dynamic
performance and robustness may be achieved with this type
of controller. Subsequently, the FOPID type controller has
the memory property and can adjust the output of the
controller properly following the error history information
in order to obtain better performance. At last, the added
fractional-order terms can help adjust the high-frequency
and low-frequency characteristics of the closed-loop easily
[23].

In addition, the practical applicability of the FO con-
troller has been verified in some practical applications.
Several FO control examples, including industrial plants
and electromechanic actuator, are presented in [24]. A brief
summary and introduction of FOPID controllers applied in
various kinds of industrial situations is given in [25]. -e
CRONE controller which can compensate the disturbance
caused by parameter uncertainties and load changes has
been successfully used in vehicle suspension [26] and path
tracking [27]. A series of robust FOPID controllers tuned
based on the flat phase property have been used in motion
control [28, 29]. Moreover, in [30], an FO controller is used
in the trajectory tracking task of a differential drive WMR.
-e experimental results show that the control perfor-
mance of the FO controller is more satisfactory compared
with the traditional PD controller. Another speed and
direction control task accomplished by the FOPI controller
for skid-steered WMR is presented in [31], which also
achieves superior control performance. Nevertheless, the
related studies are still quite limited at present. -e stability
of the controlled systems and the advantages of FO con-
trollers applied in speed regulation, trajectory tracking, and
other practical applications of WMRs need more
exploration.

-e main contribution of this paper includes the design,
implementation, and validation of an FOPD controller for
precise trajectory tracking of WMRs. For robust FO con-
troller regulation, the flat phase property has been widely
used as a design specification [29, 32]. -is is because it can
guarantee the flatness of the phase curve around the in-
terested crossover frequency ωc, so the system phase margin
can remain constant and the system is robust to load var-
iations. However, there are mainly two drawbacks of the
original flat phase property. -e first one is that it can only
guarantee the flatness of the phase curve at one frequency,
namely, ωc. -e other one is there are several nonlinear

equations to be solved in the controller design process, so it
is hard to find a solution. -e improved flat phase property
proposed in this paper can guarantee the robust flat phase
frequency interval width instead of only one flat phase
frequency and at least one parameter set which satisfies all
the specifications can be found. In addition, the system
stabilization and implementation problems are also dis-
cussed.-e simulation and experiments results are shown to
verify the effectiveness of the proposed trajectory tracking
control algorithm.

-e rest of this paper is organized as follows: In Section
2, the modelling of XQ WMR is given; then, the fractional
calculus and FOPD controller are presented in Section 3;
Section 4 shows the proposed controller design specifica-
tions; Section 5 discusses the stabilizing process for FO delay
systems with the FOPD controller; furthermore, the ex-
periment results and discussion are illustrated in Section 6 to
verify the effectiveness and flexibility of the proposed
controller; finally, the conclusion is drawn in Section 7.

2. Modelling of WMR

-e XQ WMR studied in this paper is a three-wheeled
differential drive robot, as shown in Figure 1.

2.1. KinematicModel of XQWMR. -ere are two front drive
wheels and a universal follower wheel on the chassis of XQ
WMR. -e two front wheels driven by DC motors provide
the forward power, so the movement and orientation of XQ
WMR can be accomplished by the velocity difference be-
tween the two drive wheels; the universal follower wheel is
mounted on the rear of the chassis. -e kinematic model of
XQWMR is illustrated in Figure 2. As it is shown in Figure 2,
denote vc, vr, and vl as the chassis linear, right wheel, and left
wheel velocities, respectively, θ as the angular displacement
and ω as the angular velocity, where _θ � ω, and 2R as the
distance between the two drive wheels. Denote the state
vector S of XQ WMR as follows:

S �

x

y

θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where x andy are coordinates of the center mass of XQ
WMR.-erefore, the forward kinematic model of XQWMR
can be obtained as follows:

_S �

_x

_y

_θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

vccos(θ)

vcsin(θ)

ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
2

vr + vl( 􏼁cos(θ)

1
2

vr + vl( 􏼁sin(θ)

ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

-en, in order to achieve the input desirable right and
left wheel velocities, the inverse kinematic model of XQ
WMR is achieved as
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vr

vl
􏼢 􏼣 �

1 R

1 − R
􏼢 􏼣

vc

ω
􏼢 􏼣. (3)

-e control scheme proposed in this paper is shown in
Figure 3. Note that the centre of the two drive wheels O is
assumed to be the mass centre of XQ WMR.

2.2. Motor Dynamic Model of XQ WMR. Before controller
design procedure, the motor dynamic model should be
achieved first. Figure 4 is the schematic diagram of the DC
motor, where Rm and Lm are the total resistance and total
inductance of the armature winding; Vm is the armature
voltage; T(s) is the electromagnetic torque; ωm is the ro-
tational angular velocity of the motor; and Jm is the rota-
tional inertia on the deceleration shaft.

-e transfer function of XQ WMR DC motor can be
achieved as follows:

G(s) �
θ(s)

Vm(s)
�

km

s Lms + Rm( 􏼁 Jms + kf􏼐 􏼑 + kbkm􏽨 􏽩
, (4)

where kf and km are constants related to the magnetic flux.
Ignoring some of the negligible values and the parameters
which have less impact on the overall mathematical model, a
simplified DC mathematical model can be obtained as a
second-order transfer function as follows:

G(s) �
θ(s)

Vm(s)
�

km

s Lms + Rm( 􏼁 Jms + kf􏼐 􏼑 + kbkm􏽨 􏽩
�

K

s(τs + 1)
,

(5)

where the time constant is τ � RmJm/(Rmkf + kbkm) and
K � km/(Rmkf + kbkm).

From the experimental identification, the parameters of
the DC motor are achieved as τ � 0.325 andK � 7.74/20.

3. Fractional Calculus and FOPD Controller

3.1. Fractional-Order Derivative. Fractional calculus, which
is an extension of traditional calculus, has not got a unified
definition so far. -ere are three definitions which have been
extensively used [10, 33], namely, Grunwald–Letnikov
definition, Riemann–Liouville definition, and Caputo defi-
nition. Each of the definitions has its own properties. -e
definitions should be applied appropriately in different re-
search fields, such as engineering, applied mathematics, and
computer science. -e initial values of Caputo definition are
the same with that of the integer-order system and own
practical physical meaning [34, 35]. -erefore, the Caputo
definition is used in this paper.

An FO integral-differential operator t0
Dδ

t
can be depicted

as follows:

t0
D

δ
t

�

􏽚
t

t0

f(τ)dτ− δ
, δ < 0,

f(t), δ � 0,

dδ

dtδ
f(t), δ > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where δ ∈ R is the integral or differential order and t0 and t

are lower and upper limits of the FO operator, respectively.
-e Caputo derivative of order δ for a function

f(t) ∈ Cm+1([t0, +∞], R) is defined as follows[33]:

t0
D

δ
t
f(t) �

1
Γ(m − δ)

􏽚
t

t0

f(m)(τ)

(t − τ)δ+1− m
dτ, (7)

where m − 1< δ ≤m, and m is a positive integer.
-e Laplace transformation corresponding to Caputo

definition can be obtained as follows:

L{t0
D

δ
t
f(t)} � s

δ
F(s) − 􏽘

m− 1

k�0
s
δ− k− 1

f
(k)

t0( 􏼁, (8)

Figure 1: XQ WMR.
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Figure 2: XQ WMR kinematic model.
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where s is the Laplace transformation operator and L ·{ }

represents the transformation.

3.2. 3e Considered Fractional-Order PD Controller.
Different from the traditional PD controller, there are three
parameters in the proposed FOPD controller which are
formulated as follows:

C(s) � Kp + Kds
c
, (9)

where 0< c< 2. -is is a specific form of the FOPID con-
troller which involves an integrator order λ (λ � 0 in this
paper) and a differentiator order c [36, 37].

4. FOPD Controller Design Specifications with
Guaranteed Flat Phase Interval

-e open-loop transfer function of WMR can be achieved
from the above sections as follows:

G(s) � P(s)C(s) �
kp + kdsc

s(Ts + 1)
. (10)

Based on the definitions of gain and phase margins, the
following design specifications are introduced:

4.1. Gain Crossover Frequency Specification. -e amplitude
of the open-loop system should be zero at its gain crossover
frequency in logarithmic frequency domain. In other words,
the amplitude should equal to 1 at its gain crossover fre-
quency, which can be expressed as follows:

|G(jω)||ω�ωc
� |P(jω)C(jω) ||ω�ωc

� 1, (11)

where ωc is the interested crossover frequency.

4.2. Phase Margin Specification. Denote φm as the required
phase margin, and this specification can be depicted as
follows:
Arg[G(jω)]|ω�ωc

�Arg[P(jω)C(jω)]|ω�ωc
� − π + φm. (12)

4.3. Flat Phase Interval Guaranteed Robustness Specification.
To realize the robustness for the controlled system, the flat
phase robust tuning specification can be described by the
following condition at crossover frequency ωc:

d(Arg[G(jω)])

dω

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ω�ωc

� 0. (13)

However, there are a few drawbacks of the flat phase
specification in equation (13), which have already been
discussed in Section 1. Here, we give the following condition
to improve the existing flat phase specification:

d(Arg[G(jω)])

dω

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 ω∈ ωmin ,ωmax[ ]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε, (14)

where 0< ε≪ 1 is a small enough scalar and smaller εmeans
better flatness of the phase curve; given ε, ωmin, and ωmax are
the minimum and maximum frequency near ωc

(ωc ∈ [ωmin,ωmax]) between which the flat phase interval can
be guaranteed. Define l � ωmax − ωmin as the width of the flat
phase with regards to ε. Longer l means better robust
performance under the same ε. Next, we present the steps to
obtain l.

Step 1: given ε, compute whether the following in-
equality holds or not:

d(Arg[G(jω)])

dω

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 ω�ωc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ε. (15)

If yes, go to Step 2. If not, it obtains l � 0.

1/s
θ(s)ω(s)

km/Lms + Rm 1/Jms + kf

kb

T(s)

Vm(s)

–

Figure 4: XQ WMR DC motor control structure diagram.
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Figure 3: XQ WMR control strategy.
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Step 2: if inequality (3) holds, solve the next equation
and gain its solutions:

|d(Arg[G(jω)])

dω | � ε. (16)

Letωmin andωmax be the solutions which are the nearest
to ωc in negative and positive directions, respectively.
Step 3: give the width l � ωmax − ωmin.

Remark 1. All the above steps need to be processed under a
given ε> 0. When ε> 0 is fixed, longer l could offer better
robustness for the controlled system. However, an exces-
sively small ε> 0 may lead to l � 0. -us, ε should be well
chosen according to the practical requirements.

5. Design Procedure

Stability is the primary concern in control systems. So, the
proposed controller design procedure is finding out the
complete parameter sets which can stabilize the controlled
system first, and then pick up the parameters which satisfy
the proposed design specifications from the complete sets.

5.1. Control Process Stabilizing. -e stabilizing process is
investigated with respect to parameters of the proposed
FOPD controller, namely, kp, kd, and c.

One single closed-loop transfer function depicted in
Figure 3 can be yielded according to equation (10) as follows:

F(s) �
G(s)

1 + G(s)
�

K kp + kdsc􏼐 􏼑

s(Ts + 1) + K kp + kdsc􏼐 􏼑
. (17)

So, the characteristic equation of the XQ WMR motor
system is

D kp, kd, c; s􏼐 􏼑 � s(Ts + 1) + K kp + kds
c

􏼐 􏼑. (18)

-e controlled system stability is determined by the
root locations of its characteristic equation in (11). If all
the roots locate in the left half of s-domain, the system is
supposed to be bounded-input bounded-output stable.
-erefore, the stability region of the XQ WMR motor
system can be obtained by seeking for the parameter sets
which can ensure the roots of equation (11) lie in the left
half of s-domain in D(kp, kd, c; s). -e boundaries of the
stability region derived from D(kp, kd, c; s) can be
achieved by finding the corresponding IRB (infinite root
boundary), CRB (complex root boundary), and RRB (real
root boundary) [38]. Note that if a system is strictly
proper, it will not have IRB [39]. So, only RRB and CRB
are taken into consideration in this paper.

(i) RRB is defined by

D kp, kd, c; s � 0􏼐 􏼑 � Kkp � 0. (19)

So that kp � 0.

(ii) CRB can be expressed as follows:

D kp, kd, c; s � jω􏼐 􏼑

� Tω cos
π
2

􏼒 􏼓 + jTω sin
π
2

􏼒 􏼓 + jω + Kkp cos(ωL)

− Kkpj sin(ωL) + Kkpω
c cos

πc

2
􏼒 􏼓 + j sin

πc

2
􏼒 􏼓􏼔 􏼕 � 0,

(20)

where jc � ecπj/2 � cos(cπ/2) + j sin(cπ/2).

Here, both the real part and imaginary part of equation
(20) should be equal to 0:

A1 + kpK + kdKωμB1 � 0,

A2 − kpK + kdKωμC1 � 0,
(21)

where

A1 � Tω cos
π
2

􏼒 􏼓,

A2 � Tω sin
π
2

􏼒 􏼓 + ω,

B1 � cos
cπ
2

􏼒 􏼓,

C1 � sin
cπ
2

􏼒 􏼓.

(22)

-en, one can get from equation (21) that

kp �
A1 − A2

K B1 + C1( 􏼁
,

kd � −
A1C1 + A2B1

Kωc C1 + B1( 􏼁
.

(23)

-erefore, with ω⟶ +∞ from 0, the stability region
of a fixed fractional order c composed by the corresponding
RRB and CRB can be achieved. All parameter sets (kp, kd) in
the region can guarantee the stability of the controlled XQ
WMR motor system. -en, a three-dimensional surface of
(kp, kd, c) can be determined by sweeping the differential
order c ∈ (0, cmax). cmax is the biggest c which can ensure
that the control system is strictly proper. -e achieved
surface is the maximum stability surface of the XQ WMR
system under the FOPD controller because the phase margin
φm is assumed to be 0 at this moment. Parameter sets
(kp, kd, c) on this surface can ensure the stability of the
controlled system; however, no design specification is sat-
isfied at this stage.

Substitute s in equations (10) and (11) by jω as follows:

G(jω) �
K kp + kdωcjc􏼐 􏼑

jω(Tωj + 1)
,

|G(jω)| �
K D2 + E2􏼂 􏼃

1/2

B2
2 + C2

2􏼂 􏼃
1/2 � 1,

(24)

where
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D � kp + kdω
ccos

cπ
2

􏼒 􏼓,

E � kdω
csin

cπ
2

􏼒 􏼓,

B2 � Tω cos
π
2

􏼒 􏼓 + ω,

C2 � Tω sin
π
2

􏼒 􏼓.

(25)

-en, one can get

D
2

+ E
2

�
B2
2 + C2

2( 􏼁

K2 . (26)

Multiply both sides of equation (16) with eπj/2 and yields,

e
j(π/2)

G(jω) �
K kp + kdωcjc􏼐 􏼑

Tωj + ω

� K
DB2 + EC2 + j EB2 − DC2( 􏼁

B2
2 + C2

2
.

(27)

Hence, equation (13) is obtained as follows:

Arg[G(jω)] � arctan
EB2 − DC2

DB2 + EC2
􏼠 􏼡 −

π
2

+ nπ � − π + φm.

(28)

Denote

N �
EB2 − DC2

DB2 + EC2
� tan − π + φm +

π
2

− nπ􏼒 􏼓. (29)

From equation (28), one can obtain

D �
B2 − NC2

NB2 − C2
E. (30)

From equations (26) and (30), E can be obtained as
follows:

E �
B2
2 + C2

2/K2

1 + B2 − NC2/NB2 − C2( 􏼁
2

􏽨 􏽩

⎧⎨

⎩

⎫⎬

⎭

1/2

. (31)

Substituting E in equation (26) by equation (30),
kp and ki are achieved as follows:

kd �
E

ωcsin(πc/2)
,

kp �
B2 − NC2

NB2 − C2
E − kdω

ccos
πc

2
􏼒 􏼓.

(32)

When φm is predefined, with ω⟶ +∞ from 0 and
c⟶ cmax from 0, an available stability surface can be
obtained from equation (32). -en, if an interested ωc is
chosen, an available stability curve can be achieved. At this
stage, the design specifications in equations (11) and (12) are
fulfilled by parameters (kp, kd, c) on the available stability
curve. Remark that ωc cannot be bigger than ωm, where ωm is
determined by the intersection points of RRB and CRB. It is
the maximum ω value which can ensure the stability of the
control system.

From equations (14) and (28), one can obtain

dArg[G(jω)]

dω
,

�
(DdE/dω − EdD/dω) C2

2 + B2
2( 􏼁 + C2dB2/dω − B2dC2/dω( 􏼁 D2 + E2( 􏼁􏼂 􏼃

DB2 + EC2( 􏼁
2

+ EB2 − DC2( 􏼁
2

􏽨 􏽩
,

(33)

where

dD/dω � cωc− 1
kdcos

πc

2
􏼒 􏼓,

dE/dω � cωc− 1
kdsin

πc

2
􏼒 􏼓,

dB2/dω � ωT cos
π
2

􏼒 􏼓 + 1,

dC2/dω � ωT sin
π
2

􏼒 􏼓.

(34)

At last, the proposed FOPD parameters (kp, kd, c) are
determined by checking all the parameter sets on the ob-
tained available stability curve and finding out the one which
satisfy the robust design specification in equation (14). So,
the obtained FOPD controller satisfies all the three design

specifications in Section 3 and can also ensure the stability of
the closed-loop system.

On a whole, the design procedure can be summarized as
follows:

Step 1: find the maximum stability surface of XQ WMR
under the FOPD controller with ω⟶ +∞ from 0 by
sweeping c ∈ (0, cmax). -e parameter sets on maximum
stability surface can only guarantee the stability of the
controlled system.

Step 2: define phase margin φm and find the available
stability surface. -en, choose the interested crossover fre-
quency ωc, so the available stability curve can be obtained on
the available stability surface. -e parameter sets on avail-
able stability curve satisfy both the gain crossover frequency
and phase margin specifications.
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Step 3: check all the parameter sets on the achieved available
stability curve and find the one fulfill the robust design
specification mostly.

6. Experiment and Discussion

6.1. Implementation of FOPD Controller. -e implementa-
tion of the FOPD controller is one of the critical problems to
achieve desirable trajectory tracking performance. -e key
point of the FOPD controller implementation concentrates
on the approximation of the fractional operator in equation
(9). In this section, the widely used Oustaloup et al. ap-
proximation method is applied without loss of generality
[40].

A fractional operator can be expressed as follows:

Fo(s) �
s

wj

􏼠 􏼡

β

, β ∈ R
+
. (35)

Consider the interested approximation frequency in-
terval as (w1, w2), so the operator s/wj can be substituted by

k0
1 + s/ws

1 + s/wb

, (36)

where k0 � ws/wj � wj/wb, ws <w1, wb >w2.
-en, equation (35) can be updated as follows:

Fo(s) � k
1 + s/ws

1 + s/wb

􏼠 􏼡

β

, (37)

where k � k
β
0.

-e transfer function above can be transformed into a
zero-pole form as follows:

Fo(s) � lim
m⟶∞

􏽢Fo(s), (38)

where

􏽢Fo(s) �
wj

wl
􏼒 􏼓

β
􏽑
m

n�− m

1 + s/wn

1 + s/wn
′
,

wn � ws

wb

ws

􏼠 􏼡

((1− β)+n+m)/(2m+1)

,

wn
′ � ws

wb

ws

􏼠 􏼡

(1/2(1+β)+n+m)/(2m+1)

. (39)

-e 7th Oustaloup approximation with expected fre-
quency range (10− 3, 103) is used in this section.

6.2. Controller Parameters Regulation. According to the
controller design procedures in Section 4, the maximum
stability surface is obtained for XQWMR in Figure 5. So, all
the parameter sets on the surface can guarantee the stability
of the control system.

Set the phase margin as φ � 45∘, the available stability
surface can be obtained, as shown in Figure 6. It can be seen
that the area of the available stability surface is inversely
proportional to the chosen phase margin. -en, ωc � 1 is set
as the interested crossover frequency, so the available sta-
bility curve can be obtained on the available stability surface.

-e parameters on the achieved curve satisfy the gain
crossover frequency and phase margin specifications.

Finally, the parameter sets on the available stability curve
are checked according to the robustness specification and
the proposed FOPD controller parameters are obtained
as kp � 19.5332, kd � 6.4041, and c � 0.9581. Correspond-
ingly, for fair comparison, a PID controller which is tuned by
the optimal tuningmethod in [41] with similar specifications
is also designed here.

Figure 7 illustrates the speed regulation comparison
under the FOPD controller and PID controller with step
input. It is shown that the speed regulation process under the
FOPD controller has smaller rising time, accommodation
time, steady state error, and almost no overshoot, which
outperforms the control performance under the PID
controller.

-e robustness and precision comparisons are demon-
strated in Figure 8 with different gain variations and external
disturbance at t � 5 s. Note that the gain variations here can
be regarded as load disturbance of XQ WMR. It is shown
that the speed regulation process under the FOPD controller
changes little with respect to different kinds of disturbance.
However, there are obvious changes in the overshoot and
accommodation time of the speed regulation process under
the PID controller, which means the XQ WMR system
controlled by the PID controller may not achieve precise and
robust control performance in practice.

6.3. Experiment. In this section, the trajectory tracking
experiment results of XQ WMR are shown to verify the
effectiveness of the proposed FOPD controller. For fair
comparison, a traditional PD controller, whose proportional
and derivative parameters are the same with that of the
proposed FOPD controller, is also implemented. -e ref-
erence signal is depicted as follows:

xr(t) � 3 sin
π
45t

􏼒 􏼓,

yr(t) � 2 sin
2π
45t

􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

where xr(t) andyr(t) are the x-axis and y-axis reference
trajectories. -e sampling time is T � 1ms.

-e comparison of XQ WMR trajectory tracking per-
formance is shown in Figure 9. It can be seen that the
tracking performances under both controllers are accept-
able. However, from the zoomed in areas of Figure 9, it is
observed that the tracking performance under the proposed
FOPD controller is more precise and the settling time is
much shorter, which is also verified by the absolute error and
x-axis error shown in Figures 10 and 11 illustrates the left
and right speed comparisons of XQ WMR, and the control
signal comparisons are demonstrated in Figure 12. -ese
comparisons show that there is smaller oscillation in the
speed control process of the proposed controller compared
with the traditional PD controller, though the two con-
trollers have the same proportional and derivative
parameters.
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7. Conclusion

In this paper, a synthesis of the FOPD controller for XQ
WMR trajectory tracking control is proposed. Different
from other robust FO controller tuning methods, the flat
phase property can be guaranteed in a frequency interval
instead of one frequency point, so the robustness of the
control system is enhanced. -e stabilizing process is also
studied, so that the proposed FOPD controller can guarantee
both the robustness and stability of the controlled system In
addition, there is no complicated nonlinear equations which
should be solved in this paper, so at least one parameter set
which satisfies all the specifications can be found. -e
implementation and experiment results are presented to
show the advantages of the proposed trajectory tracking
algorithm.-e proposed control algorithm is also capable of
fulfilling different control requirements.
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*is paper is concerned with the robust stabilization of a class of continuous-time nonlinear systems, with an application to the
pitch dynamics of a simple helicopter model, via an affine state-feedback control law using the linear matrix inequality (LMI)
approach. *e nonlinear dynamics is subject to norm-bounded parametric uncertainties and disturbances. In addition, the
problem of actuator nonlinearity is addressed by considering the saturation effect of the control law. We demonstrate first that the
synthesis problem of the saturated controller is expressed in terms of bilinear matrix inequalities (BMIs). *anks to the Schur
complement lemma and the matrix inversion lemma, we convert these BMIs into LMIs allowing the simultaneous computation of
the two gains of the affine controller. Furthermore, we address in this work the estimation problem of the domain of attraction
using the invariant set concept. *is is solved by computing the largest attractive invariant ellipsoid. Compared with previous
works, the research procedure of such ellipsoidal set is achieved in a single step with a reduced number of LMI constraints and
then with less conservative conditions. A portfolio of numerical results is presented. *e effectiveness and robustness of the
proposed saturated controller in the stabilization of the adopted helicopter pitch model toward parametric uncertainties and
disturbances are illustrated through simulation results.

1. Introduction

1.1. Background and Literature Review. Mechatronics, such
as aircraft, spacecrafts, launch vehicles, unmanned auton-
omous vehicles, missiles, walking robots, robot manipula-
tors, electronic vehicles, and unmanned aerial vehicles, has
played a very important role in modern industry-related
applications. Nowadays, there is an ever-increasing demand
of advanced control strategies for mechatronic systems with
enhanced performances.

It is known, on the one hand, that almost all existing
physical and mechatronic systems unavoidably include
uncertainties and disturbances due to inaccurate modeling,
measurement errors, exterior conditions, or parameter
variations. *e presence of uncertainties may cause

instability and bad performances on a controlled system.
*us, considerable efforts have been assigned to the robust
stability and stabilization of linear and nonlinear systems
with parametric uncertainties. For a recent literature, we
refer the readers to [1–8]. Two types of parametric uncer-
tainties are very often considered in systems: norm-bounded
uncertainty and polytopic uncertainty. In recent years, the
linear matrix inequality (LMI) technique [9] has been widely
used to solve the robust control for uncertain linear and
nonlinear systems with polytopic uncertain parameters and
norm-bounded uncertain parameters. However, most
control synthesis problems cannot be written in a LMI form.
However, they are written in terms of a more general form
known as a bilinearmatrix inequality (BMI), which is usually
not exploitable numerically to solve. For some BMI
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problems with simple bilinearities, the YALMIP toolbox [10]
was used to solve such problems. *ere are several ap-
proaches and different relaxed synthesis conditions pro-
posed for conducting the BMIs into LMIs, such as in
[5–7, 9, 11–16], just to mention a few.

On the other hand, the actuator saturation nonlinearity
exists commonly in practical control systems. Indeed, the
signal amplitude that an actuator can deliver is usually
limited by physical or safety constraints. *us, the neglect of
the actuator constraints in the controller design may cause
instability of the closed-loop system [17–19]. *e design of
controllers for continuous-time and discrete-time systems
by taking into consideration the actuator saturation has been
extensively studied in the past few decades [17–36]. Some
works have investigated the problem of uncertainties and
actuator saturation in mechatronic systems such as the
vehicle lateral dynamics [37], the vehicle active suspension
systems [38–41], the rigid spacecraft [42, 43], the inertia
wheel inverted pendulum [12], the supercavitating vehicle
[44], the flexible robotic manipulator [45], and the marine
surface vessel [46], among others.

*e concept of attractive invariant sets has been gen-
erally proposed for linear systems involving actuator satu-
ration [5, 20, 28, 29, 36, 44, 47–51]. Moreover, through such
concept, numerous studies have focused on the character-
ization of the maximum attraction set for linear systems
subject to saturated linear feedback. *us, some research
works focused on writing the saturation function of the
control input as a linear convex combination of some
constrained variables [18, 20, 27, 36, 47, 48, 50–53]. *is
approach leads to sufficient conditions in terms of a very
large number of LMIs that are difficult to solve numerically
[27–29]. *e common goal of almost all of these previous
research works is to find the largest attractive invariant
ellipsoidal set in order to provide an estimation of the
domain of attraction for initial conditions.

In addition, it is well recognized that most practical
control systems are inherently nonlinear. *e number of
available results by taking the actuator saturation nonline-
arity into account in the design and analysis of nonlinear
control systems is still limited. Because of the difficulty of the
problem itself, most research works have been focused on
particular classes of nonlinear systems to design saturated
controllers [5, 25, 26]. Furthermore, the simultaneous
presence of parametric uncertainties and actuator saturation
nonlinearity in physical systems has led many authors to
combine the techniques of the robust control theory and
those of constrained control [5, 54].

1.2. Objective of the Paper. In this paper, we are interested in
the design of a robust controller to stabilize a class of
nonlinear systems, for which the zero state is not the
equilibrium point. As a motivation application, we consider
the pitch dynamics of a simple helicopter model [55–57]. In
fact, such helicopter pitch model has been considered as a
testbed used in order to develop new advanced control
strategies. Authors in [56] approximated the pitch dynamics
of the helicopter with a set of piecewise affine stochastic

systems. *e proposed stochastic affine feedback controller
is designed for the approximated model and implemented
on the main nonlinear system. Authors in [57] designed an
observer-based minimum variance control for the same
objective by taking into consideration norm-bounded un-
certainties. Such uncertainties arise in the form of the dif-
ference between the actual nonlinear dynamics and its
piecewise-affine approximation. Furthermore, authors in
[55] approximated also the simplified pitch model of the
helicopter via a piecewise affine system. In these works
[55–57], the saturation effect in the actuators was not taken
into consideration in the control design.

In the present work, we propose an affine state-feedback
control law for the adopted class of nonlinear systems, with a
particular interest to the pitch dynamics of the helicopter
model, where all the states are assumed to be available for
direct measurement. Our main objective is to control, via
such affine feedback control law, the adopted nonlinear
systems to the zero state. Moreover, we consider the problem
of norm-bounded parametric uncertainties and also the
problem of external disturbances. Furthermore, we take into
consideration the problem of actuator saturation in the
design of the robust affine state-feedback control law. *us,
the main role of such control law is to asymptotically bring
the trajectory of the nonlinear system to the zero state even if
it is subject to the parametric uncertainties, the disturbances,
and the actuator saturation. In addition, in this work, the
problem of searching for appropriate feedback gain matrices
of the affine state-feedback control law is realized also by
solving the problem of estimating the largest attractive in-
variant set. Our design methodology of the saturated sta-
bilizing affine state-feedback control law is based on the
framework of LMIs. We show at first that the affine state-
feedback controller is designed by solving an optimization
problem subject to three BMI constraints. *en, by using
some judicious congruence transformations and some
technical lemmas, we convert these BMIs into three LMI
constraints. In the end of this work, we demonstrate through
simulations the effectiveness of the proposed affine state-
feedback control law in the robust stabilization of the pitch
dynamics of the helicopter model while the largest attractive
invariant set is guaranteed.

1.3. Contributions and Innovations. *e main contributions
and innovations of the work in this paper can be summa-
rized as follows:

(1) *e problem of robust stabilization of a class of
nonlinear systems, with an application to the pitch
dynamics of a simple helicopter model, under norm-
bounded parametric uncertainties, external distur-
bance, and input saturation nonlinearity, is con-
sidered using the concept of the invariant set. *e
main objective is to control the disturbed uncertain
nonlinear system to the zero state, which is not the
equilibrium point in the open loop.

(2) A saturated affine state-feedback controller is
designed based on the LMI approach. To the best of
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the authors’ knowledge, such problem was not de-
veloped in the literature. Only the linear state/output
feedback controllers have been considered.

(3) A transformation of the BMI stability condition,
related to the input saturation problem, into an LMI
condition is achieved using the matrix inversion
lemma and the Schur complement lemma.

(4) An estimation of the ellipsoidal region of attraction
for the nonlinear system under study is also realized.
Compared with previous works [20, 47–50, 52, 58],
our research procedure of the largest invariant at-
tractive ellipsoid is achieved in only one step with a
reduced number of LMI constraints.

1.4. Structure of the Paper. *e rest of this paper is organized
as follows. In Section 2, we present first some technical
lemmas that will be used in this work, the adopted class of
the nonlinear systems, and the problem formulation. *e
simple helicopter model, as a motivation application, and its
pitch dynamics are also described in this section. *e design
of the robust affine state-feedback controller under satu-
ration, based on the LMI approach, is discussed in Section 3.
Transformation of the BMIs into LMIs is also realized in this
section. *e problem of computation/estimation of the
domain of attraction (the largest attractive ellipsoid) is
addressed in Section 4. Simulation results and some com-
parisons are presented in Section 5. Finally, concluding
remarks and future works are drawn in Section 6.

1.5. Notations. *roughout this paper, AT represents the
transpose of A, the symbol (⋆) in matrix inequality denotes

the symmetric term of the matrix, for example, X Y
(⋆) Z􏼢 􏼣 �

X Y
YT Z􏼢 􏼣 and X + (⋆) � X + XT, X> 0 (< 0) means X is a

symmetric positive (negative) definite matrix, and
diag(A, B, . . . , Z) represents a diagonal matrix. Moreover,O
and I denote the zero matrix and the identity matrix, re-
spectively, with appropriate dimensions.

2. Preliminaries and Problem Statement

In this section, we define the class of continuous-time
nonlinear systems that will be investigated in this paper. *e
pitch dynamics of a simple helicopter model is given as an
illustrative example. First of all, we present some technical
lemmas that will be used subsequently.

2.1. Some Technical Lemmas

Lemma 1 (see [41]). 8e Lyapunov candidate function V(t)

is bounded given that the initial condition V(0) is bounded,
V(t)≥ 0 is continuous, and if the following equation is true:

_V(t)≤ − μV(t) + η, (1)

where μ> 0 and η> 0.

Lemma 2 (the Young relation [12]). Given constant matrices
X and Y with appropriate dimensions, the following in-
equality holds:

XTY + YTX≤ εXTX + ε− 1YTY, (2)

for all positive scalar ε.

Lemma 3 (the matrix inversion lemma [9, 12]). Given in-
vertible matrices A and B such that A ∈ Rn×n and B ∈ Rm×m.
Moreover, given matrices C and D with appropriate di-
mensions: C ∈ Rn×m and D ∈ Rm×n. 8en,

(A + CBD)
− 1

� A− 1
− A− 1C B− 1

+ DA− 1C􏼐 􏼑
− 1
DA− 1

.

(3)

Lemma 4 (the Schur complement lemma [9, 12]). Given
matrices Q � QT, R � RT, and S with appropriate di-
mensions, the following propositions are equivalent:

Q S

(⋆) R
􏼢 􏼣> 0,

R> 0,

Q − SR− 1ST > 0.
􏼨

(4)

Lemma 5 (the S-procedure lemma [9, 12]). LetF0, . . . ,Fp

∈ Rn×n be symmetric matrices. We consider the following
conditions on F0, . . ., Fp:

ζTF0ζ > 0, ∀ζ≠ 0,

s.t. ζTFiζ≥ 0, ∀i � 1, . . . , p.
(5)

If there exist scalar variables τ1 ≥ 0, . . . , τp ≥ 0, such that

F0 − 􏽘

p

i�1
τiFi > 0, (6)

then (5) holds.

2.2. Class of Nonlinear Systems. A general class of contin-
uous-time nonlinear systems with a control input u and
under disturbance signal w is defined by the following form:

_x � F(x, u,w), (7)

where x ∈ Rna, u ∈ Rnu, and w ∈ Rnw.
In this work, we will consider a particular class of these

nonlinear systems, for which the mathematical model is
given by the following differential equation:

_x � Ax + Bu + 􏽘

nf

i�1
Cifi(x) + Ew, (8)

where A ∈ Rnx×nx, B ∈ Rnx×nu, Ci ∈ Rnx×1, E ∈ Rnx×nw , and
the nonlinear functions fi(x) are scalars, i.e., fi(x) ∈ R for
all i � 1, . . . , nf. Moreover, we will consider that, in the
nonlinear system (7), we have F(0, 0, 0)≠ 0. *is means that
the state x � 0 is not the equilibrium point. Hence, in the
dynamics (8), we have
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􏽘

nf

i�1
Cifi(0)≠ 0. (9)

In addition, we will consider, without loss of generality,
that

fi(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 1, ∀i � 1, . . . , nf. (10)

Remark 1. In this work, we consider a class of nonlinear
systems (8), in which the nonlinear terms f i(x), for all
i � 1, . . . , nf, satisfy the constraints in (10). Our LMI-based
approach for the design of a stabilizing control law u, which
will be designed in the sequel, can be applied for a general
class of fully nonlinear systems such as (hyper) chaotic
systems as in [59, 60], robotic/mechatronic systems as in
[43, 46], and underactuated mechanical systems [61, 62], just
to mention a few. *us, the nonlinearity term, saying
h(x) � 􏽐

nf

i�1Cifi(x), can be assumed to satisfy the following
quadratic inequality [12]:

hT(x)h(x) ≤ λ2xTHTHx, (11)

where λ is a positive scalar andH is a constant matrix having
appropriate dimension.

Some other research papers have considered ellipsoidal
condition or one-sided Lipschitz condition on the nonlin-
earity h(x). For this subject, we refer the readers to, for
example, [3, 8, 60, 63–65] and references therein.

2.3. Motivation Application:8e Simplified Pitch Dynamics of
the Helicopter Model. As an illustrative motivation appli-
cation, we will consider in this work a simplified helicopter
pitch dynamics model. *e schematic model of the heli-
copter is shown in Figure 1. We refer our readers to [55–57]
for further details on this simplified model. *e pitch dy-
namics of the simplified helicopter model has two degrees of
freedom with only one actuator. Such model was employed
to develop new control strategies for mechatronic systems
[55–57].

*e nonlinear model of the pitch dynamics of the
simplified helicopter is described by the following differ-
ential equations [55–57]:

_x1 � x2,

_x2 �
1

Iyy

− mhelilcgx cos x1( 􏼁 − mhelilcgzg sin x1( 􏼁 − FvMx2 + u􏼐 􏼑

+
s

Iyy

w,

(12)

where x1 and x2 represent the pitch angle (θ in Figure 1) and
pitch rate, respectively; Iyy is the secondmoment around the
y-axis; mheli is the mass of the helicopter; lcgx and lcgz are
displacements from the center of mass (GC in Figure 1)
relative to the rotation joint B shown in Figure 1; FvM is the
pitch damping; s is the variance of the moment disturbance;
u is the control torque exerted by the main blade of the

helicopter around the y-axis; and w is the external distur-
bance, which is modeled as an additive white noise repre-
senting the turbulent moments on the helicopter [55–57].

For simplicity, let us introduce the following change of
variables: a � − (FvM/Iyy), b � 1/Iyy, c � − (mhelilcgx/Iyy),
d � − (mhelilcgzg/Iyy), and e � s/Iyy. *en, the nonlinear
differential equations in (12) can be rewritten under the

particular class (8), where x �
x1
x2

􏼢 􏼣,A �
0 1
0 a

􏼢 􏼣,B �
0
b

􏼢 􏼣,

C1 �
0
c

􏼢 􏼣, C2 �
0
d

􏼢 􏼣, E �
0
e

􏼢 􏼣, f1(x) � f1(x1) � cos(x1),

and f2(x) � f2(x1) � sin(x1).
Notice that the two nonlinear terms f1(x) and f2(x)

satisfy condition (10) and also constraint (9). Hence, the zero
state, x � 0, is not the equilibrium (singular) point of the
pitch dynamics of the helicopter model and then of the
undisturbed uncontrolled nonlinear system (8), i.e., for w �

0 and u � 0.

Remark 2. It is worth to note that the model of the simple
pitch dynamics (8) of the helicopter in Figure 1 was adopted
from [55–57]. It is a simple model where the propeller
dynamics (including motor, propeller interaction, air stream
interaction, gyroscopic moments, and propeller flexing), the
perturbation modelling (including wind gust modelling and
payload modelling), and the cyclic/collective mechanism
modelling are not considered in this study. Only the tur-
bulent moments are taken into account as an external
disturbance input, w. We emphasize that all these previous
unmodelled dynamics can be lumped into a single term,
saying that δ(x) can be majored according to condition (11).

For more general and basic pitch models for helicopters
that reproduce basic dynamic properties of these vehicles, we
can refer to [66] for typical helicopter models or [67] for
more modern applications.

2.4. Problem Statement. In the sequel, and for simplicity in
developing and designing LMI stability conditions, we will
consider that, in (8), nf � 2, and then the class of nonlinear
systems to consider is as follows:

_x � Ax + Bu + Cf(x) + Dg(x) + Ew, (13)

where f(x) � f1(x) and g(x) � f2(x) are the two scalar
nonlinearities satisfying conditions (9) and (10).

As noted before, the zero state x � 0 is not the equi-
librium point of the undisturbed uncontrolled nonlinear
system (8) and then the simplified nonlinear system (13).
*us, we obtain Cf(0) + Dg(0)≠ 0.

Our objective in this work is to control dynamics (13) to
the zero state by designing a feedback controller, even if the
dynamics is under parametric uncertainties or subject to the
disturbance vector w. *us, we assume that the disturbance
signal w is bounded such that

wTw ≤ ρ, (14)

for some positive scalar ρ.
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Furthermore, we assume that all parameters in the
nonlinear system (13) are uncertain and are with a bounded
norm. *e values of these parameters presented in the
nonlinear dynamics (13) are considered to be the nominal
ones. *us, the nonlinear system (13) will be considered as
the nominal system, for which (A,B) is controllable.

Hence, under parametric uncertainties, the nominal
system (13) will be rewritten as follows:

_x � (A + ΔA)x +(B + ΔB)u +(C + ΔC)f(x)

+(D + ΔD)g(x) +(E + ΔE)w,
(15)

where ΔA, ΔB, ΔC, ΔD, and ΔE are matrices containing
parametric uncertainties and satisfying the following
expressions:

ΔA � 􏽘

q1

i1�1
δi1

a A
i1
1A

i1
2 , (16a)

ΔB � 􏽘

q2

i2�1
δi2

b B
i2
1 B

i2
2 , (16b)

ΔC � 􏽘

q3

i3�1
δi3

c C
i3
1C

i3
2 , (16c)

ΔD � 􏽘

q4

i4�1
δi4

dD
i4
1D

i4
2 , (16d)

ΔE � 􏽘

q5

i5�1
δi5

e E
i5
1 E

i5
2 , (16e)

where the matrices Ai1
1 ,A

i1
2 , B

i2
1 , B

i2
2 , C

i3
1 , C

i3
2 ,D

i4
1 ,D

i4
2 , E

i5
1 , and

Ei5
2 are with appropriate dimensions. Moreover, all the

uncertainties δi1
a , δ

i2
b , δ

i3
c , δ

i4
d , and δi5

e , for all i1 � 1, . . . , q1,
i2 � 1, . . . , q2, i3 � 1, . . . , q3, i4 � 1, . . . , q4, and
i5 � 1, . . . , q5, are with a bounded norm, i.e.,

δj
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δ
j

i , (17)

for all i ∈ a, b, c, d, e{ } and for all j ∈ i1, i2, i3, i4, i5􏼈 􏼉.
In addition, we will consider that the uncertain nonlinear

dynamics (15) is subject to an input saturation of the
controller u:

− u
i
max ≤ u

i ≤ u
i
max, ∀i � 1, . . . , nu, (18)

where ui
max, for all i � 1, . . . , nu, are prescribed positive

scalars and ui is the ith element of the control vector u.
*e problem we are addressing in this work is to find, for

the uncertain disturbed nonlinear system (15), an affine
state-feedback control law

u � Kx + m, (19)

where K ∈ Rnu×nx and m ∈ Rnu are the feedback gains to
design, for which the control law u is constrained according
to condition (18). *e proposed control law (19) is actually a
linear state-feedback law augmented with the constant term,
m, to keep the system state around an operating point, that
is, the zero-equilibrium point x � 0.

Let us define the following set:

L K,m, umax( 􏼁 � x ∈ Rnx : |Kx + m|≤umax􏼈 􏼉, (20)

as the region in the state space where the feedback control
law m in (19) is linear (affine) in terms of the state vector x.

GC

θ

B

lcgx

lcgz

Figure 1: Simplified pitch model of the helicopter, from [55–57].
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In addition, let P ∈ Rnx×nx be a positive-definite sym-
metric matrix and denote the Lyapunov level set as

ε(P, c) � x ∈ Rnx : x
TPx ≤ c􏽮 􏽯, (21)

where c is a prescribed positive scalar.
*e level set ε(P, c) defined by (21) is an invariant set

[5, 52]. Moreover, it is associated with the Lyapunov
function V(x) � xTPx for the closed-loop system. Conse-
quently, ε(P, c) is an invariant set of the nonlinear system
(15) with the control law (19) in the sense of the following
definition.

Definition 1. A setS ⊂ Rnx is said to be invariant with respect
to motion of system (14), if for all initial conditions x(0) ∈ S,
the motion of the system x(t) remains in S for all t> 0.

Accordingly, the ellipsoid ε(P, c) is said to be con-
tractively invariant if _V(x)< 0 for all x ∈ ε(P, c)╲ 0{ }.
Clearly, if ε(P, c) is contractively invariant, then it is inside
the domain of attraction [5, 52].

According to Lemma 1 and by posing η � μc, we will
have

_V(x)≤ − μ(V(x) − c). (22)

*us, on the boundary of the set ε(P, c), we have
xTPx � c. Hence, _V(x) < 0. It follows that ε(P, c) is a strictly
ellipsoidal invariant set [5, 47].

Condition (22) will be used in the sequel in order to
design the robust stabilization conditions of the closed-loop
nonlinear system (15) with the norm-bounded parametric
uncertainties (17) under the bounded external disturbance
(14) and subject to the saturation (18) of the affine state-
feedback control law (19) under condition (35).

As we look for stability conditions for the uncertain
disturbed nonlinear system (15) under the saturated feed-
back control law u inside the invariant ellipsoid (21), we
should have the following constraint:

ε(P, c) ⊂L K,m,umax( 􏼁. (23)

*erefore, if for a certain Lyapunov matrix P � PT > 0
satisfying conditions (22) and (23), then taking any initial
condition in the invariant ellipsoid ε(P, c), we will have u �

Kx + m belongs to the set L(K,m, umax).
In the sequel, we will develop conditions under which

the ellipsoid ε(P, c) is contractively invariant and the dis-
turbed uncertain nonlinear system (15) is robustly stable by
means of the saturated affine state-feedback control law (19).
Moreover, we will show how to compute the gains K andm
and the Lyapunov matrix P, which determine the largest
ellipsoid ε(P, c) and hence obtain an estimate of the domain
of attraction.

It is worth noting that, for the case of the pitch dynamics
of the helicopter model, the uncertainty matrices are

ΔA �
0 0
0 δa

􏼢 􏼣, ΔB �
0
δb

􏼢 􏼣, ΔC �
0
δc

􏼢 􏼣, ΔD �
0
δd

􏼢 􏼣, and

ΔE �
0
δe

􏼢 􏼣.

Moreover, it is easy to show that these uncertainty
matrices ΔA, ΔB, ΔC, ΔD, and ΔE can be rewritten like so:

ΔA � δaFF
T
,

ΔB � δbF,

ΔC � δcF,

ΔD � δdF,

ΔE � δeF,

(24)

where F � 0 1􏼂 􏼃
T.

*us, in (16a)–(16e), we have q1 � 1, q2 � 1, q3 � 1,
q4 � 1, and q5 � 1 and then A1

1 � F, A1
2 � FT, B1

1 � F, B1
2 � 1,

C1
1 � F, C1

2 � 1, D1
1 � F, D1

2 � 1, E1
1 � F, and E1

2 � 1.
Furthermore, the uncertainties δa, δb, δc, δd, and δe

should satisfy condition (17) and then |δi|≤ δi, for all
i ∈ a, b, c, d, e{ }.

In the sequel of this work, without loss of generality, we
will take in (16a)–(16e), q1 � 1, q2 � 1, q3 � 1, q4 � 1, and
q5 � 1. Moreover, we will consider a single control input u
and also a single disturbance signalw, i.e., nu � 1 and nw � 1.
We will also consider the expression of the uncertainty
matrices in (24).

3. Design of the Robust Saturated Affine State-
Feedback Controller

In this section, we develop conditions satisfying robust
stabilization of the uncertain disturbed nonlinear dynamics
(15) under the affine state-feedback control law (19) subject
to the saturation constraint (18). *us, these stability
conditions must verify constraints (22) and (23). We show
first that the stability conditions are expressed in terms of
BMIs. Next, by means of previously provided technical
lemmas, we transform these BMIs into LMIs. Finally, we
present an optimization problem providing the allowable
maximum values of the parametric uncertainties δa, δb, δc,
δd, and δe.

3.1. BMI-Based Stability Conditions. *ese stability condi-
tions of the disturbed uncertain nonlinear system (15) under
the saturated affine state-feedback control law defined by
expression (19), constraint (18), and condition (35) are
presented in the following theorem.

Theorem 1. 8e nonlinear system (15) with norm-
bounded parametric uncertainties (17), under the bounded
external disturbance (14), is robustly stabilizable by
implementing the affine state-feedback control law (19)
subject to the saturation constraint (18), if for some fixed
positive parameters c, εm, δa, δb, δc, δd, and δe, there exist a
symmetric matrix P> 0, a feedback matrix K, a feedback
constant m, and some positive scalars ε1, ε2, ε3, ε4, ε5, ε6, ε7,
ε8, ε9, μ, and η such that the following set of matrix in-
equalities is feasible:
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(PA + PBK) +(⋆) + μP + A1 PBm

(⋆) − μc + ξ
􏼢 􏼣< 0, (25)

KTK − ηP KTm

(⋆) ηc + mTm − u2
max

􏼢 􏼣< 0, (26)

(Bm + 􏽢C)
T
(Bm + 􏽢C)< εm, (27)

where

A1 � ε1PCC
TP + ε2PDDTP + ε3PEE

TP

+ ε4 + ε5 + ε6 + ε7 + ε8 + ε9( 􏼁PFFTP + ε− 1
4 δ2aFF

T

+ ε− 1
5 δ2bK

TK,

ξ � ε− 1
1 + ε− 1

2 + ε− 1
3 + ε− 1

6 δ2bm
T
m + ε− 1

7 δ2c + ε− 1
8 δ2d + ε− 1

9 δ2eρ
2
.

(28)

Proof. By using system (15) and control law (19), the de-
rivative of the Lyapunov function, V(x) � xTPx, is given by

_V(x) � 2xTPAx + 2xTPBm + 2xTPCf(x) + 2xTPDg(x)

+ 2xTPEw + 2xTPΔAx + 2xTPΔBKx + 2xTPΔBm

+ 2xTPΔCf(x) + 2xTPΔDg(x) + 2xTPΔEw,

(29)

with A � A + BK.
We now consider condition (22) on the Lyapunov

function V(x) and also conditions (10), (14), and (17). *en,
using expressions of the uncertainties matrices in (24) and
relying on the Young relation (Lemma 2), we obtain the
following condition:

_V(x) + μ(V(x) − c)≤ μxTPx − μc + 2xTPAx + 2xTPBm

+ ε1x
TPCCTPx + ε− 1

1 + ε− 1
2 + ε− 1

3

+ ε2x
TPDDTPx

+ ε3x
TPEETPx + ε4 + ε5 + ε6 + ε7(

+ ε8 + ε9􏼁x
TPFFTPx

+ ε− 1
4 δ

2
ax

TFFTx + ε− 1
5 δ

2
bx

TKTKx

+ ε− 1
6 δ

2
bm

T
m + ε− 1

7 δ
2
c

+ ε− 1
8 δ2d + ε− 1

9 δ2eρ
2 < 0.

(30)

*is last inequality constraint can be rewritten as follows:

x

1
􏼢 􏼣

T
A2 + μP PBm

(⋆) − μc + ξ
􏼢 􏼣

x

1
􏼢 􏼣< 0, (31)

where A2 � PA + (⋆) + ε1PCCTP + ε2PDDTP + ε3PEETP
+(ε4 + ε5 + ε6 + ε7 + ε8 + ε9)PFFTP + ε− 1

4 δ
2
aFF

T + ε− 1
5 δ

2
bK

TK
and ξ � ε− 1

1 + ε− 1
2 + ε− 1

3 + ε− 1
6 δ

2
bmTm + ε− 1

7 δ
2
c + ε− 1

8 δ
2
d +

ε− 1
9 δ

2
eρ

2.
Hence, we obtain the matrix inequality (25).

Furthermore, from expressions (20) and (21), rewrite
x ∈ ε(P, c) as

x
1

􏼢 􏼣

T P O

(⋆) − c
􏼢 􏼣

x
1

􏼢 􏼣≤ 0, (32)

and x ∈L(K,m, umax) as

x
1

􏼢 􏼣

T KTK KTm

(⋆) mTm − u2
max

􏼢 􏼣
x
1

􏼢 􏼣≤ 0. (33)

It is worth to note that the condition ε(P, c) ⊂L(K,m,

umax) (constraint (23)) is nothing than the implication (32)
⟹ (33). *erefore, by using the S-procedure lemma, this
implication condition is equivalent to the existence of a
positive scalar η such that the matrix inequality (26) holds.

As noted in the beginning of the previous section, the zero
state x � 0 is not the equilibrium point. *en, under the affine
state-feedback control law (19) and for a certain and undis-
turbed dynamics (that is, for the nominal dynamics (13)), the
zero-equilibrium point should verify the following condition:

Bm + Cf(0) + Dg(0) � 0. (34)

Posing 􏽢C � Cf(0) + Dg(0), then relation (34) is recast
as follows:

Bm + 􏽢C � 0. (35)

It is worth to note that, in condition (35), the term Bm +
􏽢C is a column vector. *en, such relation in (35) can be
written in a (scalar) matrix form like so:

(Bm + 􏽢C)
T
(Bm + 􏽢C) � 0. (36)

For a small enough positive scalar εm, equality (36) can
be transformed into condition (27).*is completes the proof
of *eorem 1.

It is worth mentioning that the three matrix inequalities
(25)–(27) in*eorem 1 are BMIs, which are hardly tractable
numerically. *us, our objective is to convert these BMIs
(25)–(27) into LMIs, which is the objective of the next
section. □

Remark 3. Recall that, in the previous development of the BMI
stability conditions, we have considered a single control input u
and then nu � 1.Hence, we used one rowmatrix gainK and one
scalar gain m. *is choice has led to the design of only one
condition (26) satisfying the saturation condition of the con-
troller u. For a general case and then for nu > 1, K ∈ Rnu×nx ,
m ∈ Rnu , and umax ∈ Rnu , the stability condition (26) becomes

KTeTi eiK − ηiP KTeTi eim

(⋆) ηic + mTeTi eim − uTmaxeTi eiumax

⎡⎣ ⎤⎦< 0,

∀i � 1, . . . , nu,

(37)

where ei � (0, . . . , 0, 1
􏽺􏽽􏽼􏽻ith

, 0, . . . , 0)􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
nu components

∈ R1×nu and ηi > 0 for all

i � 1, . . . , nu.
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3.2. LMI-Based Stability Conditions. In this part, we aim at
linearizing the three BMIs (25)–(27) in*eorem 1. *us, we
first linearize the BMI (25). After that, we linearize the BMI
(26) and the BMI (27).

3.2.1. Linearization of the BMI (25). Let us put first S � P− 1.
We premultiply and postmultiply the BMI (25) by thematrix
diag(S, 1). *en, we obtain

(AS + BR) +(⋆) + μS + A3 Bm

(⋆) − μc + ξ
􏼢 􏼣< 0, (38)

where R � KS and A3 � ε1CCT + ε2DDT + ε3 EET + (ε4 +

ε5 + ε6+ ε7 + ε8 + ε9)FFT + ε− 1
4 δ2aSFF

TS + ε− 1
5 δ2bR

TR.
Based on the Schur complement lemma, matrix in-

equality (38) is equivalent to

A4 + μS Bm A5 O

(⋆) − μc O A7

(⋆) (⋆) − A6 O

(⋆) (⋆) (⋆) − A8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (39)

where A4 � (AS + BR) + (⋆) + ε1CCT+ ε2DDT + ε3EET +

(ε4 + ε5 + ε6 + ε7 + ε8 + ε9)FFT, A5 � δaSF δbRT􏽨 􏽩, A6 �

diag(ε4, ε5), A7 � 1 1 1 δbmT δc δd δeρ􏽨 􏽩, and A8 �

diag(ε1, ε2, ε3, ε6, ε7, ε8, ε9).

3.2.2. Linearization of the BMI (26). We premultiply and
postmultiply the BMI (26) by the matrix diag(S, 1). As a
result, we obtain

RTR − ηS RTm

(⋆) − u2
max + mTm + ηc

⎡⎣ ⎤⎦< 0. (40)

Let us introduce a new change of variables by posing

G � RT O􏼂 􏼃, L �
m

1􏼢 􏼣, M �
1 0
0 1/ηc

􏼢 􏼣, and α � − u2
max.

*en, we have RTR � GGT � GMGT, RTm � GL, and
− u2

max + mTm + ηc � α + LTM− 1L.
*en, by applying the Schur lemma to inequality (40), we

obtain

− ηS + GMGT
− GLψ− 1LTGT < 0, (41)

ψ � α + LTM− 1L< 0. (42)

Relying on the matrix inversion lemma (see Lemma 3),
its follows that

ψ− 1
� α− 1

− α− 2LTH− 1L, (43)

with

H � M + α− 1LLT. (44)

*en, by substituting expression (43) in inequality (41),
this last inequality (41) can be rewritten like so:

− ηS + GMGT
− α− 1GLLTGT

+ α− 2GLLTH− 1LLTGT < 0.

(45)

*rough expression (44), it is straightforward to show
that

α− 1GLLT � GH − GM. (46)

*erefore, based on this relation, we can note the
following:

α− 1GLLTGT
� GHGT

− GMGT
, (47)

α− 2GLLTH− 1LLTGT
� GHGT

− 2GMGT
+ GMH− 1MGT

.

(48)

*us, as GM � G, substituting relations (47) and (48) in
inequality (45) yields

ηS − GH− 1GT > 0. (49)

Accordingly, inequality (41) is transformed into in-
equality (49).

Our concern now is the auxiliary condition (42). As
M> 0, then through the Schur lemma, inequality (42) is
equivalent to

α LT

(⋆) − M
⎡⎣ ⎤⎦< 0. (50)

By applying again the Schur lemma on inequality (50),
we obtain

− M − α− 1LLT < 0. (51)

Hence, it follows that H> 0. *us, by multiplying in-
equality (49) by (η− 1) and relying on the Schur lemma, we
obtain the following matrix inequality:

S G

(⋆) ηH
􏼢 􏼣> 0. (52)

Since α � − u2
max, then we can write the following:

ηH � ηM −
η

u2
max

LLT, (53)

with ηM �
η 0
0 1/c􏼢 􏼣.

*erefore, by taking into account relation (53), the Schur
complement lemma states that inequality (52) is equivalent
to

S G O

(⋆) ηM L

(⋆) (⋆)
u2
max
η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (54)

Hence, the BMI (26) is converted into the LMI
(54), where the two parameters c and η should be fixed a
priori.
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3.2.3. Linearization of the BMI (27). We now consider the
BMI (27). It can be rewritten like so:

m
TBTBm + 2CTBm + 􏽢CT 􏽢C< εm. (55)

By applying the Schur lemma, this matrix inequality (55)
is equivalent to the following LMI:

􏽢CT 􏽢C + 2􏽢CTBm − εm mTBT

(⋆) − I

⎡⎢⎣ ⎤⎥⎦< 0. (56)

3.2.4. LMI Conditions. According to the previous lineari-
zation results, we state the following new theorem.

Theorem 2. Assume that, for some positive parameters c, μ,
η, εm, ρ, δa, δb, δc, δd, and δe fixed a priori, there exist a
symmetric matrix S, a matrix R, a scalar m, and some scalars
ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, and ε9 so that the following set of
LMIs is feasible:

A4 + μS Bm A5 O

(⋆) − μc O A7

(⋆) (⋆) − A6 O

(⋆) (⋆) (⋆) − A8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (57)

S RT O O

(⋆) η O m

(⋆) (⋆)
1
c

1

(⋆) (⋆) (⋆)
u2
max
η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (58)

􏽢CT 􏽢C + 2􏽢CTBm − εm mTBT

(⋆) − I
⎡⎣ ⎤⎦< 0, (59)

where

A4 � (AS + BR) +(⋆) + ε1CC
T

+ ε2DDT
+ ε3EE

T

+ ε4 + ε5 + ε6 + ε7 + ε8 + ε9( 􏼁FFT,

A5 � δaSF δbRT􏽨 􏽩,

A6 � diag ε4, ε5( 􏼁,

A7 � 1 1 1 δbmT δc δd δeρ􏽨 􏽩,

A8 � diag ε1, ε2, ε3, ε6, ε7, ε8, ε9( 􏼁.

(60)

*en, the nonlinear system (15) with norm-bounded
parametric uncertainties (17) and bounded disturbance (14)
is robustly stabilizable by means of the saturated affine state-
feedback control law (19) subject to constraint (18).
Moreover, the matrix gain K of the control law (19) is

K � RS− 1
. (61)

Proof. *eproof of this theoremwas already achieved in the
previous sections.

As noted in *eorem 2, the parameters c, μ, η, εm, ρ, δa,
δb, δc, δd, and δe should be fixed a priori to obtain a solution
of LMIs (57)–(59). *us, the computation complexity for
solving these three LMIs is reduced. However, in this way,
the design conservatism will increase and obtaining a so-
lution becomes more difficult. Indeed, we should test several
times the feasibility of these LMIs (57)–(59) with different
values of all these fixed parameters. *erefore, in order to
reduce the conservatism of the designed LMIs, we should
consider these parameters as decision variables, which
should be optimized numerically. To this end, we next
present improved LMI conditions. We note that the pa-
rameter εm can be selected as a decision variable to be
minimized. Nevertheless, we will consider it as a predefined
constant scalar, which will be fixed to be very small. □

Remark 4. As noted in Remark 3, for a general case where
nu > 1, we obtain the BMI (37) instead of the BMI (26). *e
linearization of the BMI stability condition (37) leads to the
following LMI:

S (⋆) O O

eiR ηi O eim

(⋆) (⋆)
1
c

1

(⋆) (⋆) (⋆)
1
ηi

uTmaxe
T
i eiumax

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, ∀i � 1, 2, . . . , nu.

(62)

3.3. Enhanced LMI Stability Conditions. Our immediate
concern is to convert the constant parameters c, μ, η, ρ, δa,
δb, δc, δd, and δe into decision variables. First of all, it is
evident that the two parameters δc and δd presented in the
LMI (57) are independent of other unknown variables.*en,
they can be considered as decision variables. However, the
two main difficulties lie on the one hand in the parameters c,
μ, and η and on the other hand in the three parameters δa, δb,
δe, and ρ. Transformation of δa, δe, and ρ is simple [12].
Furthermore, transformation of the parameters c and δb

requires a certain judicious mathematical manipulation.
Note that the parameter c appears in both LMI (57) and LMI
(58). However, transformation of the two remaining pa-
rameters μ and η is quite difficult and perhaps impossible. To
simplify computation, we can pose μ � η. Hence, we state the
following enhanced version of *eorem 2.

Theorem 3. Assume that, for some positive parameters λ
and ϵm fixed a priori such that ϵm≪ 1, there exist a symmetric
matrix S, a matrix R, a gain m, and some scalars c, α> 0,
β> 0, φ> 0, ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8, ϵ9, δc, and δd so that the
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following optimization problem with LMI constraints is
feasible:

minimize ε4 + ε5 + ε6 + ε9( 􏼁 − α + β + φ + δc + δd + ρ􏼐 􏼑

subject to

􏽢A4 + λS Bm 􏽢A5 O

(⋆) − λc O 􏽢A7

(⋆) (⋆) − A6 O

(⋆) (⋆) (⋆) − A8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(63)

S RT O

(⋆) λ m

(⋆) (⋆)
u2
max
λ

− c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (64)

􏽢CT 􏽢C + 2􏽢CTBm − εm mTBT

(⋆) − I
⎡⎣ ⎤⎦< 0, (65)

where
􏽢A4 � (AS + BR) +(⋆) + ε1CC

T
+ ε2DDT

+ ε3EE
T

+ α + β + φ + ε7 + ε8( 􏼁FFT,

􏽢A5 � SF RT􏽨 􏽩,

A6 � diag ε4, ε5( 􏼁,

􏽢A7 � 1 1 1 mT δc δd ρ􏽨 􏽩,

A8 � diag ε1, ε2, ε3, ε6, ε7, ε8, ε9( 􏼁.

(66)

*en, the uncertain disturbed nonlinear system (14) is
robustly stabilizable via the saturated affine state-feedback
control law (18), with K � RS− 1, and

δa �

��α
ε4

􏽲

,

δb �

������
β

ε5 + ε6

􏽳

,

δe �

��φ
ε9

􏽲

.

(67)

Proof. We first consider expression (29). *us, by applying
the Young relation, we can obtain another related condition
instead of inequality (30):

_V(x) + μ(V(x) − c)≤ μxTPx − μc + 2xTPAx + 2xTPBm

+ ε1x
TPCCTPx + ε− 1

1 + ε− 1
2 + ε− 1

3 + ε2x
TPDDTPx

+ ε3x
TPEETPx + ε4δ

2
a + ε5 + ε6( 􏼁δ

2
b + ε7 + ε8 + ε9δ

2
e􏼒 􏼓

· xTPFFTPx + ε− 1
4 xTFFTx + ε− 1

5 xTKTKx + ε− 1
6 m

T
m

+ ε− 1
7 δ

2
c + ε− 1

8 δ
2
d + ε− 1

9 ρ2 < 0.

(68)

Let us introduce a new change of variables by posing
α � ε4δ

2
a, β � (ε5 + ε6)δ

2
b, and φ � ε9δ

2
e . *en, according to

the previous section, we obtain the LMI (64), in which α, β,
and φ are three decision variables. Hence, once the values of
α, β, φ, ε4, ε5, ε6, and ε9 are obtained, we calculate δa, δb, and
δe according to the following relations: δa �

����
α/ε4

􏽰
,

δb �
���������
β/(ε5 + ε6)

􏽰
, and δe �

����
φ/ε9

􏽰
.

*e remaining problem is the parameter c, which ap-
pears in both LMI (57) and LMI (58). We premultiply and

postmultiply LMI (58) by the matrix

I O O O

(⋆) I O O

(⋆) (⋆) O I

(⋆) (⋆) (⋆) O

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and then we obtain
S RT O O

(⋆) η m O

(⋆) (⋆)
u2
max
η

1

(⋆) (⋆) (⋆)
1
c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (69)

By applying the Schur lemma, inequality (69) is
equivalent to the LMI (64). Now, the parameter c is linear in
the two LMIs (63) and (64).

In addition, the parameter μ appears in the LMI (57),
whereas the parameter η appears in the LMI (58). As noted
before, it is difficult to transform μ and η into two decision
variables. *en, to simplify the computation procedure, we
can pose μ � η � λ.

*e objective is to look for maximum values of the un-
certainty bounds δa, δb, δc, δd, and δe and the disturbance
bound ρ. *e three parameters δc, δd, and ρ appear directly in
the LMI (63) (matrix 􏽢A7). *en, these parameters should be
maximized. However, the variables δa, δb, and δe are incor-
porated, respectively, in the parameters α, β, and φ: α � ε4δ

2
a,

β � (ε5 + ε6)δ
2
b, andφ � ε9δ

2
e .*en, tomaximize δa, δb, and δe,

we should maximize α, β, and φ. Moreover, as α (resp. β, φ)
depends on ε4 (resp. ε5 and ε6, ε9), we shouldminimize ε4, ε5, ε6,
and ε9 in order to ensuremaximized values of δa, δb, and δe.We
emphasize that, in order to obtain a minimization objective
function that can be handled with the LMI toolbox, we should
transform the maximization problem of the variables α, β, φ, δc,
δd, and ρ into a minimization problem of the quantity − (α +

β + φ+ δc + δd + ρ). *is completes the proof of *eorem 3.
It is worth to mention that *eorem 3 offers a wider

choice of invariant ellipsoids ε(P, c) (as c varies) for opti-
mization and will lead to less conservative estimation of the
domain of attraction.

In addition, we stress that, in *eorem 3, we imposed the
two free parameters μ and η in *eorem 2 to be equal, i.e.,
μ � η � λ, in order to obtain an LMI with a single parameter
λ. Nevertheless, this choice, which is the only solution to
simplify computation, injects some degree of conservatism in
the LMI conditions (63)–(65). Furthermore, the parameter λ
is the only one that should be fixed a priori to obtain a solution
of the optimization problem in *eorem 3. □
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4. Estimation of the Domain of Attraction

With all the ellipsoids satisfying the set invariance condition
(21), we would like to choose from among them the largest
one to get at least an estimation of the domain of attraction.
Certain criteria are used in the literature tomaximize the size
of the attractive invariant ellipsoid ε(P, c), such as maxi-
mization of its volume and maximization of the sum of its
semiaxis [5, 9, 18, 21, 27, 47, 48, 52]. Actually, maximization
of the volume of an ellipsoid is equivalent to minimization of
the determinant of the Lyapunov matrix P, and maximi-
zation of the sum of its semiaxis is equivalent to minimi-
zation of the trace of the matrix P [9].

In this part, our main goal is to find a robust saturated
affine state-feedback control law (18) associated to the largest
invariant ellipsoid ε⋆(P⋆, c⋆). Such largest invariant ellip-
soid will be found for desired values of the maximum
bounds of the parametric uncertainties δa, δb, δc, δd, and δe

and also the maximum bound of the disturbance ρ. *us, we
will use LMI (63) (or systematically LMI (57)) for predefined
values of these maximum bounds. However, we should also
use the two LMIs (64) and (65) to look for a maximum value
of the parameter c and hence the associated gains K and m.

Next, the size of the attractive invariant ellipsoid ε(P, c)

is measured through the sum of its semiaxis. For this subject,
we introduce the following theorem.

Theorem 4. 8e largest attractive invariant ellipsoid of the
nonlinear system (15) with bounded disturbance (14) and
norm-bounded parametric uncertainties (17), subject to the
saturated affine state-feedback control law defined by ex-
pression (19) and constraint (18), is the ellipsoid ε(P, c), for a
fixed positive scalar εm≪ 1 and some positive parameter λ
known a priori, where P � S− 1 and c, together with ε1, ε2, ε3,
ε4, ε5, ε6, ε7, ε8, and ε9, are a solution of the following LMI-
based optimization problem:

minimize(− trace(S) − c),

A4 + λS Bm A5 O

(⋆) − λc O A7

(⋆) (⋆) − A6 O

(⋆) (⋆) (⋆) − A8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

S RT O

(⋆) λ m

(⋆) (⋆)
u2
max
λ

− c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

􏽢CT 􏽢C + 2􏽢CTBm − εm mTBT

(⋆) − I

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦< 0.

(70)

Proof. In expression (21), the attractive invariant ellipsoid
E(P, c) can be recast as

ε
P
c

, 1􏼠 􏼡 � x ∈ R2
: xT

P
c
x ≤ 1􏼨 􏼩. (71)

We emphasize that the trace of the matrix P/c is equal to
the sum of the semiaxis of the invariant ellipsoid ε(P/c, 1)

for some fixed c. Hence, the size (the length of the semiaxis)
of ε(P/c, 1) increases as the trace of the matrix P/c
decreases. As P � S− 1, P/c � (cS)− 1. *erefore, maximiza-
tion of the size of ε((cS)− 1, 1) is equivalent to the maxi-
mization of the trace of the matrix cS. As a result, to
guarantee the largest attractive invariant ellipsoid
ε((cS)− 1, 1), we should maximize the parameter c and also
the trace of the matrix S. Notice that maximizing c and
trace(S) is equivalent to minimizing (− trace(S) − c). *is
completes the proof of *eorem 4.

It is worth to note that, for each fixed value of the pa-
rameter λ, the optimization problem in *eorem 4 provides
a solution associated to an attractive invariant ellipsoid
ε(P, c) with a (local) largest size, which is obtained for such
λ. *erefore, in order to obtain the global maximum, we
should vary the parameter λ, 0< λ<∞. To this end, the best
manner is the use of the gridding method [68]. *is method
consists in making a new change of variable by defining κ �

λ/(1 + λ) and then λ � κ/(1 − κ). We know that λ> 0 if and
only if κ ∈ ]0, 1[. *en, we assign a uniform subdivision of
the interval ]0, 1[ and we solve the optimization problem in
*eorem 4 for each value of this subdivision. Once this
interval is covered, we look for the maximum value between
all the obtained results. *is maximum value corresponds to
the largest invariant ellipsoid, which was obtained for some
κ⋆ and then for some optimal values of the parameter λ,
saying λ⋆.

In fact, finding the optimal value λ⋆ and then the largest
invariant attractive ellipsoid ε⋆ takes a lot of time. Indeed,
suppose that we uniformly subdivide the interval ]0, 1[, in
which the parameter κ varies, and then we take Nκ values.
*us, for each value of κ, we run the optimization algorithm
in*eorem 4. Let us assume that a single run takes tκ. Hence,
the total simulation time in order to obtain the largest el-
lipsoid ε⋆ is about tc ≈ Nκ × tκ. □

Remark 5. In several research works presented in the lit-
erature, the computation of the largest attractive invariant
ellipsoid ε⋆(P⋆, c⋆) is achieved mainly in two steps:

(1) Hunt for an invariant ellipsoid ε(P, 1) by obtaining
the matrix P

(2) With such P, maximize the value of the parameter c

Actually, these two steps are realized via two optimi-
zation algorithms. Compared with this hunting procedure,
our proposed design of the saturated feedback control law
guarantees the determination of the largest invariant ellip-
soid ε⋆(P⋆, c⋆) in only one step and then with only one
optimization algorithm.
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5. Simulation Results

In this section, we provide some simulation results to
demonstrate the effectiveness of our developed method for
the synthesis of the saturated affine state-feedback control
law (19) for the robust stabilization of the disturbed un-
certain nonlinear dynamics (15) of the pitch model of the
helicopter. Moreover, we aim at identifying and analyzing
the largest attractive invariant ellipsoid ε⋆(P⋆, c⋆) in order to
obtain an estimation of the domain of attraction.*us, in the
sequel, we take two values of the saturation level in (18) of
the control law u: umax � 1 and umax � 10. Moreover, we fix
the parameter εm � 10− 5.

*e values of the parameters figured in the nonlinear
dynamics (12) or of the pitch model of the helicopter are as
follows [55–57]: Iyy � 0.0283(kg/m2), mheli � 0.9941(Kg),
lcgx � 0.0134(m), lcgz � 0.0289(m), FvM � 0.0041
(Nm/rad/s), g � 9.81(m/s2), and s � 0.0057(m/s2).

Remark 6. *e choice of the parameters of the maximum
value of the control input u, umax, is based on two facts: (1) in
the literature, the common choice of the saturation limit is
umax � 1 according to the invariance sets’ concept and (2) in
the present work, we have considered a general case of the
actuator saturation limit in the development of LMI con-
straints and hence in the design of the state-feedback
controller in order to show the effect of the saturation limit
umax on the largeness of the invariant attractive ellipsoid.

*us, in our investigation, we selected two values of the
saturation limit: umax � 1 (which is the classical choice) and
umax � 10. We can also choose another value of such sat-
uration limit such as umax � 24, and we will obtain similar
results.

Actually, the saturation limits are the intrinsic re-
quirement of the physical actuators. *us, the adopted
different values of the umax will be used in the sequel just to
show the feasibility and the conservativeness of the proposed
design method of the two gains of the affine state-feedback
controller and also for the computation of the largest do-
main of attraction in different situations.

Remark 7. It is worth to mention that for the computation
of the solutions of the LMIs in*eorem 2 and the LMI-based
optimization problem in *eorems 3 and 4, we use the LMI
toolbox of MATLAB. We can also use the toolbox YALMIP
[10] in order to solve these LMI problems. Moreover, we can
use it to (locally) solve some BMI problems using the bi-
section method.

5.1. Numerical Results. *e optimization problem subject to
LMI constraints in *eorem 3 provides numerical results
illustrated in Table 1 for the saturation level umax � 1 and for
different values of the fixed parameter λ. In this table, we
provide the two gains, K andm, of the saturated affine state-
feedback control law u, the maximum bounds of the
parametric uncertainties, i.e., δa, δb, δc, δd, and δe, the
maximum bound of the disturbance w, i.e., ρ, and the

parameter c. It is obvious that the three uncertainty bounds,
δa, δb, and δe, are very small, around 10− 4. *e two pa-
rameters, δc and δd, are found to be equal and decrease
slightly as λ increases. However, the value of the allowable
disturbance bound ρ is found to be very high, about 6 × 103.

We emphasize that the obtained results for the allowable
maximum bounds of the parametric uncertainties, δa, δb,
and δe, are dissatisfying (they are found to be very small).
Moreover, the maximum disturbance bound is found to be
very high. It is worth noting that the optimization algorithm
in *eorem 3 is characterized by an objective function that
depends on 10 parameters ε4, ε5, ε6, ε9, α, β, φ, δc, δd, and ρ,
which are optimized together. *en, in order to improve the
obtained results, we will fix in the next the parameter ρ and
the remaining ones will be optimized. As discussed in the
beginning of this paper, in the second section, the external
disturbance w can represent the turbulent moments on the
helicopter. Without loss of generality, we will fix ρ � 10.

*us, for ρ � 10, the optimization algorithm subject to
LMI constraints in *eorem 3 gives numerical results il-
lustrated in Table 2 for the case umax � 1 and in Table 3 for
umax � 10. As in Table 1, we provide, for different values of
the parameter λ, the gain matrix K, the gain constant m, the
maximum bounds of the parametric uncertainties δa, δb, δc,
δd, and δe, and the parameter c.

We note from Tables 2 and 3 that the optimization
problem provides identical values for the two uncertainty
bounds δc and δd. Moreover, for all values of λ, the value of
the gain m is about 0.0133 as in Table 1. In addition, it is
evident that, for the same value of parameter λ, we have
almost the same gain matrixK. Furthermore, as λ increases,
the size of the gain matrix K and the uncertainty bounds,
δa, δb, and δe, increase. For umax � 1, δc is found to be
around 10− 3, whereas for umax � 10, δc is about 14. In
addition, it is evident that the values of the maximum
bounds of the parametric uncertainties δa, δb, and δe are
bigger than those obtained in Table 1 since the parameter ρ
is fixed here.

We can also observe from Tables 2 and 3 that, as the
parameter λ increases, the value of the parameter c de-
creases. Actually, we can note that c ≈ u2

max/λ. *is shows
that the size of the attractive invariant ellipsoid, which
depends on c, varies with respect to the value of the satu-
ration level umax.

5.2. Computation of the Largest Attractive Invariant Ellipsoid.
To obtain the largest attractive invariant ellipsoid ε⋆(P⋆, c⋆),
we solve the optimization problem in *eorem 4. *us, in
order to obtain the global largest ellipsoid ε⋆(P⋆, c⋆), we
should vary the free parameter λ according to the gridding
method as noted before. Moreover, in this optimization
problem, we fix the bounds of the parametric uncertainties
and we take a common value, δ, for all these bounds like so:
for umax � 1, we take δa � · · · � δe � δ � 1, whereas for
umax � 10, we fix δa � · · · � δe � δ � 10. Actually, with δ �

10 and umax � 1, the optimization problem in *eorem 4 is
unfeasible. It was found unfeasible also for all δ ≥ 2 and
umax � 1. *en, we minimized the uncertainty bound to
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obtain a feasible solution. *is will be demonstrated and
discussed next.

Figure 2 reveals evolution of the trace of thematrix cS, or
systematically the sum of the semiaxis of the invariant el-
lipsoid ε(S− 1, c), as the parameter λ varies. It is obvious from
Figure 2 that, by sweeping through λ, we obtain the max-
imum trace of the matrix cS for the two cases umax � 1 and
umax � 10. Such maximum trace corresponds to the largest
invariant ellipsoid ε⋆(P⋆, c⋆). Obtained results are sum-
marized in Table 4. In this table, we provide the parameters,
P⋆ and c⋆, of the largest attractive invariant ellipsoid
ε⋆(P⋆, c⋆), the associated feedback gains, K⋆ and m⋆, of the
saturated affine state-feedback control law u, the nominal
value, λ⋆, of the free parameter λ, and the size of the at-
tractive invariant ellipsoid ε⋆(P⋆, c⋆). According to Figure 2
and Table 4, in the first case umax � 1, the size of the largest
invariant ellipsoid is about 1.7906. However, in the second
case umax � 10, such ellipsoid has a size about 46.5870. We

recall that, for umax � 1, we have chosen δ � 1 and for
umax � 10, we have adopted δ � 10.

Our objective now is to see the effect of the maximum
bound of the different parametric uncertainties δa, δb, δc, δd,
and δe and also the saturation limit umax on the size of the
attractive invariant ellipsoid ε(P, c). To do this, we used the
optimization algorithm in *eorem 4 and we varied the
parameter λ as mentioned previously.*is task was achieved
for a single value of the maximum uncertainty bound, saying
δmax � δa � · · · � δe. *us, we obtained the largest ellipsoid
ε⋆(P⋆, c⋆). Now, we will repeat the same procedure by also
varying the parameter δmax and fixing the saturation level
umax. Figure 3 reveals obtained results for umax � 1 and
umax � 10. We stress first that, for umax � 1, the allowable
maximum bound of the parametric uncertainty allowing to
obtain an invariant ellipsoid ε⋆(P⋆, c⋆) is δmax � 1.06.
However, for umax � 10, this value of δmax increases con-
siderably and reaches the limit 12.05.

Table 1: Numerical simulation results obtained using the optimization algorithm in *eorem 3 for different values of the parameter λ and
for umax � 1.

λ � 0.01 λ � 0.1 λ � 1 λ � 10 λ � 100

KT 10− 3 ×
− 0.0372
− 0.2566􏼢 􏼣 10− 3 ×

− 0.3786
− 2.6152􏼢 􏼣

− 0.0204
− 0.0437􏼢 􏼣

− 2.3360
− 0.5053􏼢 􏼣

− 236.7854
− 5.1249􏼢 􏼣

m 0.013321 0.013321 0.013321 0.013321 0.013321
δa 10− 4 × 4.5975 10− 4 × 4.6197 10− 4 × 3.0634 10− 4 × 2.7950 10− 4 × 2.7613
δb 10− 4 × 3.2525 10− 4 × 3.2666 10− 4 × 2.1641 10− 4 × 1.9764 10− 4 × 1.9526
δc � δd 3.6314 3.6515 2.2531 1.9868 1.9407
δe 10− 4 × 4.5944 10− 4 × 4.6215 10− 4 × 3.0796 10− 4 × 2.7990 10− 4 × 2.7613
ρ 103 × 6.4069 103 × 6.4673 103 × 6.0719 103 × 5.4419 103 × 5.7484
c 81.4039 8.1419 0.8527 0.0863 0.0087

Table 2: Numerical simulation results using *eorem 3 for different values of the parameter λ and for ρ � 10 and umax � 1.

λ � 0.01 λ � 0.1 λ � 1 λ � 10 λ � 100 λ � 200

KT − 0.00089
− 0.00503􏼢 􏼣

− 0.00298
− 0.02858􏼢 􏼣

− 0.09235
− 0.11705􏼢 􏼣

− 3.6488
− 0.6523􏼢 􏼣

− 298.7673
− 5.8965􏼢 􏼣 103 ×

− 1.1796
− 0.0117􏼢 􏼣

m 0.013275 0.013283 0.013268 0.013243 0.013251 0.013262
δa 0.0067 0.0181 0.7729 1.9138 5.4867 7.7133
δb 0.0800 0.1020 2.2687 2.6586 2.6496 2.6447
δc � δd 0.0048 0.0029 0.0043 0.0011 0.0022 0.0038
δe 0.0112 0.0155 0.4577 0.7132 0.7459 0.7475
c 99.1571 9.9099 0.9893 0.0986 0.0099 0.0049

Table 3: Numerical simulation results using *eorem 3 for different values of the parameter λ and for ρ � 10 and umax � 10.

λ � 0.01 λ � 0.1 λ � 1 λ � 10 λ � 100 λ � 200

KT − 0.00048
− 0.04438􏼢 􏼣

− 0.00581
− 0.05694􏼢 􏼣

− 0.0917
− 0.1166􏼢 􏼣

− 3.6420
− 0.6515􏼢 􏼣

− 297.9499
− 5.8866􏼢 􏼣 103 ×

− 1.1761
− 0.0117􏼢 􏼣

m 0.01327 0.013319 0.013316 0.013320 0.013321 0.013321
δa 0.0321 0.8835 1.2411 2.4613 6.8305 9.3191
δb 0.1500 3.6262 3.6585 3.4313 3.3309 3.3217
δc � δd 9.9995 14.5636 14.3332 14.3665 14.4657 14.7111
δe 0.0360 2.1881 4.8950 6.0531 6.2291 6.1668
c 9990.7 997.292 99.0173 9.8937 0.9851 0.4922
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Moreover, it is obvious that, for each value of umax, the
size of the largest ellipsoid increases rapidly as δmax de-
creases. A tiny decrease of the uncertainty bound δmax leads
to a very important increase in the size of the ellipsoid
ε⋆(P⋆, c⋆). For example, for umax � 1 and for δmax � 0.5, the
size is about 103 and for δmax � 0.1, the size is around 109.
Similarly, for the saturation limit umax � 10 and for
δmax � 0.5, the size is around 108 and for δmax � 1.5, the size
is around 105.

Furthermore, it is clear that the size of the largest in-
variant ellipsoid decreases as δmax increases. *e ellipsoid
becomes smaller as the uncertainty bound δmax approaches
its feasible limit (i.e., the value 1.06 for umax � 1 and 12.05 for
umax � 10).

In addition, we remark that, for the same value of un-
certainty bound δmax, the size of the largest ellipsoid
ε⋆(P⋆, c⋆) increases as the saturation limit umax increases (as
noted previously for δmax � 0.5).

Using numerical results illustrated in Table 4, we plotted
in Figure 4 the corresponding largest attractive invariant
ellipsoids ε⋆(P⋆, c⋆) for the two cases umax � 1 and
umax � 10. In Figure 4, the two inclined lines (colored in pink
and green) correspond to the bounds of the actuator sat-
uration (20), which are defined as Kx + m � ±umax. *e
lower line (colored in pink) is depicted for Kx + m � umax.

It is obvious from Figure 4 that, in the two cases, the
largest invariant ellipsoid ε⋆(P⋆, c⋆) is contained in the
regionL(K,m, umax), where |Kx + m|≤ umax.*erefore, the
constraints on the affine state-feedback control law given in
(18) are well respected.

In the end of this part, we can note the two following
statements:

(1) For a constant saturation limit umax, an increase of
the maximum bound of the parametric uncertainties
leads to the decrease of the largeness of the attractive
invariant ellipsoid.

(2) For a constant maximum bound of the uncertainty,
an increase of the saturation limit umax causes the
attractive invariant ellipsoid to become larger.

Remark 8. In some research papers, the definition of the
attractive invariant ellipsoid was chosen to be as follows:

�ε(P) � x ∈ Rnx : xTPx ≤ 1􏽮 􏽯. (72)

*is set �ε(P) is equivalent to that adopted in the present
work in (21), that is, ε(P, 1). Hence, we have c � 1. Our
immediate concern is to show that the adopted ellipsoid (21)
with a free parameter c gives less conservative results
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Figure 2: Variation of the trace of the matrix cS with respect to the
parameter λ and for two different values of the saturation level:
umax � 1 and umax � 10. Here, for umax � 1 (resp. umax � 10), we
have adopted δ � 1 (resp. δ � 10). Moreover, in the two cases, we
have fixed ρ � 10.

Table 4: Numerical results using *eorem 4 corresponding to the
largest attractive invariant ellipsoid ε⋆(P⋆, c⋆) for umax � 1 and
umax � 10.

umax � 1 and δ � 1 umax � 10 and δ � 10

P⋆
10.1505 0.5523
0.5523 0.0628􏼢 􏼣

64.4531 2.1626
2.1626 0.1963􏼢 􏼣

K⋆
− 9.0604
− 1.0242􏼢 􏼣

− 20.3362
− 1.8458􏼢 􏼣

m⋆ 0.013235 0.013303
λ⋆ 16.9211 17.3824
c⋆ 0.0583 5.7446
trace(c⋆S⋆) 1.7906 46.5870
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Figure 3: Variation of the size of the largest attractive invariant
ellipsoid ε⋆(P⋆, c⋆) with respect to the variation of the allowable
maximum bound of the parametric uncertainties for the two cases:
umax � 1 and umax � 10. Here, we have fixed δa � · · · � δe � δmax,
with always ρ � 10.
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compared with the ellipsoid (72). We use the same opti-
mization algorithm in *eorem 4 where in the present
case, we fix the parameter c as a constant one and then we
take c � 1. Table 5 shows the numerical results obtained for
a fixed parameter c � 1. Notice that the symbol (!) in
Table 5 means that the LMI-based optimization problem in
*eorem 4 is unfeasible. To realize a comparison from
conservatism point of view, we adopt the same parameters
in Table 4. As noted previously, the maximum bound of the
disturbance is fixed to ρ � 10. It is clear from Table 5 that,
for the first case umax � 1 and δ � 1, the optimization
problem in *eorem 4 was found to be unfeasible, with
c � 1. It was found to be feasible for all δ ≤ 0.648. Recall
that, for a free parameter c, the optimization problem was
found to be feasible for all δ < 2. *is fact shows that, using
a free parameter c in the definition of the attractive in-
variant ellipsoid ε(P, c), that is, the set (21), instead of
fixing c � 1, gives less conservative stability conditions.
Moreover, from Table 5 and for the case umax � 10 and
δ � 10, the optimization problem with c � 1 is found to be
feasible, as in Table 4. Nevertheless, the largest ellipsoid
ε⋆′ (P⋆) obtained for c � 1, is too small compared with that
obtained using a free parameter c, that is, the ellipsoid
ε⋆(P⋆, c⋆). Recall that the largeness of the attractive in-
variant ellipsoid is measured by the “trace” function as
noted in Tables 4 and 5. As noted in Table 4, for a free
parameter c, the volume of the largest ellipsoid was found
to be about 46.5870. However, for a fixed parameter c � 1,
the volume of the largest ellipsoid ε⋆′ (P⋆) is about 7.3840.
*e difference between the two sizes of the ellipsoid is
evident. Another attractive result that can be observed from
Table 5 is that the obtained matrix gain K⋆ is too large
compared with that obtained in Table 4.

Accordingly, we emphasize that the parameter c in the
definition of the attractive ellipsoid (21) leads to less con-
servative results and then less restrictive LMI stability
conditions. In addition, it contributes in obtaining a largest
ellipsoid with a controller gain having a small size. Hence,

the choice of c≠ 0 reduces the conservatism of the LMI-
based optimization problem in *eorem 4.

Remark 9. We noted in the end of Section 4, just before
Remark 5, that the computation time for solving the LMI-
based optimization problem in *eorem 4 and then for the
identification of the largest invariant attractive ellipsoid
ε⋆(P⋆, c⋆) depends on the number Nκ of uniformly dis-
tributed points κ in the interval ]0, 1[ and the simulation
time tκ for each value of the parameter κ. *e total simu-
lation time tc can be computed to be about tc ≈ Nκ × tκ.
Tables 6 and 7 present the simulation results for different
values of the parameters Nκ for umax � 1 (Table 6) and for
umax � 10 (Table 7). Recall that, for umax � 1, we have δ � 1,
whereas for umax � 10, we fixed δ � 10. Moreover, the
maximum bound ρ of the disturbance is fixed to be ρ � 10 in
the two cases. Actually, in order to obtain these results in
Tables 6 and 7, we have fixed the interval in which the
parameter κ varies as follows: [0.01: δκ: 0.99], where we
have selected four cases: δκ � 0.01, δκ � 0.001, δκ � 0.0005,
and δκ � 0.0002. For these values of δκ, it corresponds,
respectively, the number Nκ � 99, Nκ � 981, Nκ � 1961,
and Nκ � 4901. *us, using these intervals and these values
of the parameters Nκ, we simulated the optimization
problem under LMI constraints in *eorem 4 and then we
obtained the results in Tables 6 and 7. In these Tables, we give
the two optimal gains, K⋆ and m⋆, of the controller, λ⋆
(notice that λ � κ/(1 − κ)), c⋆, the size of the ellipsoid
(trace(c⋆S⋆)), the simulation/computation time tc, and the
number of feasible solutions Nfs. It is important to note that
not all the Nκ-cases are feasible. From the results in Tables 6
and 7, it reveals that the number of feasible solutions is only
about 4.8% for umax � 1 and about 6% for umax � 10. *e
computation time tc for finding the largest ellipsoid in-
creases significantly as Nκ increases too. We also stress that
as Nκ increases, the optimal solution converges to that al-
ready obtained in Table 4. We found the same values for
Nκ � 4901. Nevertheless, in this case, the computation time
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Figure 4: Largest attractive invariant ellipsoids ε⋆(P⋆, c⋆) computed for two different values of umax.
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is very high, it is computed to be about 4.5 minutes for
umax � 1 and it is about 2.2 minutes for the second case
umax � 10.

5.3. Simulations for the Robust Stabilization of the Pitch
Dynamics. In this part, we would show the robustness and
effectiveness of the designed saturated affine state-feedback
control law (19) in the robust stabilization of the uncertain
disturbed nonlinear dynamics (15) of the pitch model of the
helicopter. *e control gains K and m are provided in Ta-
ble 4. We recall that, for umax � 1, we have
δa � δb � δc � δd � δe � 1, whereas for umax � 10, we take
δa � δb � δc � δd � δe � 10. Moreover, we recall that the
external disturbance w in the nonlinear dynamics (15) is
bounded according to condition (14) with ρ � 10. In ad-
dition, the uncertain parameters δa, δb, δc, δd, and δe in (15)
vary randomly over time so that the boundedness condition
(17) is satisfied. Furthermore, for the simulation of the
controlled nonlinear system (15), we will take first an initial
condition, x0, located outside the largest attractive ellipsoid
ε⋆(P⋆, c⋆): for the case umax � 1, we take x0 � 0.1 − 1􏼂 􏼃

T,
whereas for the case umax � 10, we take x0 � 0.3 − 6􏼂 􏼃

T.

Each initial condition is located near the boundary of the
corresponding ellipsoid (see Figure 4). Furthermore, we will
take an initial condition located outside the invariant at-
tractive ellipsoid: x0 � 5 − 10􏼂 􏼃

T, for the two saturation
limits.

First of all, we will study the dynamics of the helicopter
model under the saturated control law u in the nominal case,
that is, without parametric uncertainties and disturbance.
Figure 5(a) shows temporal evolution of the states x1 and x2
of the certain undisturbed controlled nonlinear system (15),
and Figure 5(b) reveals the saturated affine state-feedback
control law u for the saturation limit umax � 1. It is obvious
that the state of the pitch dynamics converges to zero, which
is ourmain objective in this paper.Moreover, the control law
u converges to a constant value, which is found to be equal to
the gainm. Actually, such constant value of the control input
will ensure that the pitch dynamics of the helicopter stays at
the zero state. In addition, we note that the reached max-
imum value of the control law u is about 0.23, which is less
than the desired saturation limit umax � 1.

We have also analyzed the nominal pitch dynamics of
the helicopter model for the case umax � 10. We have ob-
served almost the same behavior in Figure 5. *e reached

Table 5: Numerical results using *eorem 4 with a fixed parameter c � 1 and for umax � 1 and umax � 10.

umax � 1 and δ � 1 umax � 10 and δ � 10

P⋆ (!) 103 ×
2.1069 0.0255
0.0255 0.0004􏼢 􏼣

K⋆ (!) 102 ×
− 2.8612
− 0.0633􏼢 􏼣

m⋆ (!) 0.013317
λ⋆ (!) 99.6036
trace(S⋆) (!) 7.3840

Table 6: Computation time for solving the LMI-based optimization algorithm in *eorem 4 for the case umax � 1.

Nκ 99 981 1961 4901

KT
⋆

− 10.5679
− 1.1050􏼢 􏼣

− 9.2061
− 1.0321􏼢 􏼣

− 9.1147
− 1.0271􏼢 􏼣

− 9.0604
− 1.0242􏼢 􏼣

m⋆ 0.013238 0.013237 0.013239 0.013235
λ⋆ 19.0000 17.1818 17.0180 16.9211
c⋆ 0.0519 0.0574 0.0580 0.0583
trace(c⋆S⋆) 1.6557 1.7874 1.7894 1.7906
tc[s] 6.1988 54.9516 106.1182 264.1296
Nfs 5 48 95 238

Table 7: Computation time for solving the LMI-based optimization algorithm in *eorem 4 for the case umax � 10.

Nκ 99 981 1961 4901

KT
⋆

− 18.6484
− 1.8069􏼢 􏼣

− 19.7871
− 1.8309􏼢 􏼣

− 20.3059
− 1.8453􏼢 􏼣

− 20.3362
− 1.8458􏼢 􏼣

m⋆ 0.013306 0.013311 0.013306 0.013303
λ⋆ 15.6667 16.8571 17.3486 17.3824
c⋆ 6.3740 5.9236 5.7557 5.7446
trace(c⋆S⋆) 45.7911 46.5153 46.5625 46.5870
tc[s] 3.1946 27.3301 53.4916 132.4823
Nfs 6 59 117 293
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maximum value of the controller u is around 5. *e con-
troller converges to the constant value m ≈ 0.01336.

Now, we will show simulation results for the controlled
nonlinear system subject to both parametric uncertainties
and external disturbance. Simulation results are shown in
Figure 6 for umax � 1 and Figure 7 for umax � 10. Figure 6(a)
(resp. Figure 7(a)) presents temporal evolution of the two
states, x1 and x2, of the nonlinear system (15) under un-
certainties and disturbance. Figure 6(b) (resp. Figure 7(b))
reveals evolution of the saturated control law u for umax � 1
(resp. umax � 10). As noted previously, the initial condition
is located inside the largest attractive invariant ellipsoid.
Moreover, the disturbance w is injected into the system at
t � 2[s] and during 3[s]. We recall that the external dis-
turbance w satisfies condition (14) with ρ � 10.

It is obvious from Figure 6(a) that themotion of the pitch
dynamics of the helicopter model experiences some fluc-
tuations around the desired zero state when the disturbance
is applied. Once the effect of the external disturbing torquew

vanishes, the controlled system stabilizes again around its
desired position with some very weak perturbations pro-
voked by the injected parametric uncertainties. Moreover, in
Figure 6(b), the control signal u varies around the value
m � 0.0133.*e control signal varies between two very small
values: ±0.1. We stress that the effects of the parametric
uncertainties and the external disturbance are compensated.
*is shows the robustness of the control law u towards the
parametric uncertainties and the external disturbance with
high amplitude.

However, for umax � 10, the effect of the parametric
uncertainties and the external disturbance w is clear in
Figure 7. Figure 7(a) is almost identical to Figure 6(a).
Moreover, when the disturbance is injected, the control
signal u undergoes some fluctuations, which vary between
±1.5. *is happens because the maximum bound of the

uncertainties is very large (δa,...,e � 10) in this case compared
with the first case, i.e., for umax � 1.

It is worth to note that, in the previous three cases, the
saturation level ±umax of the controller was well respected.

We have tested another case by taking an initial con-
dition located outside the largest attractive invariant ellip-
soid ε⋆(P⋆, c⋆). We take here only the case umax � 1, and
then the corresponding largest ellipsoid is given by
Figure 4(a). As noted previously, the initial condition is
chosen to be x0 � 5 − 10􏼂 􏼃

T. Obtained results are illustrated
in Figure 8. We observe first from Figure 8(a) that the state
x1 of the helicopter model experiences some smooth os-
cillations before its convergence and stabilization at the zero
position despite the presence of the external disturbance and
the parametric uncertainties. In fact, only weak fluctuations
are observed as in Figure 7(a). However, the interesting
phenomenon observed here is the saturation of the control
law u depicted in Figure 8(b).

Remark 10. It is worth to note that, for a predefined set of
the system parameters, the previous established optimi-
zation problems under LMI constraints are (should be)
simulated offline in order to compute the largest attractive
ellipsoid and then the associated feedback gains K andm of
the input-saturated affine state-feedback controller u be-
fore its application into a real helicopter system in practice.
*us, for a prescribed saturation level umax, the possible
maximum allowable bounds of the parametric uncer-
tainties δa, δb, δc, δd, and δe and the possible maximum
bound of the external disturbance signal w, i.e., ρ, we look,
as described previously, for the largest attractive invariant
ellipsoid ε⋆(P⋆, c⋆). *us, once this set is found, the cor-
responding feedback gains K andm will be used in order to
stabilize the pitch dynamics of the simple helicopter model
in a real-world application.
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Figure 5: Evolution of the two states, x1 and x2, of the nonlinear system (15) and the saturated affine state-feedback control law u for
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6. Conclusion and Future Works

In this paper, an LMI-based approach for designing a robust
affine state-feedback control law to stabilize the pitch dy-
namics of a helicopter model was proposed. *e nonlinear
dynamics of the helicopter was subject to an external dis-
turbance and norm-bounded parametric uncertainties.
Moreover, the problem of the actuator saturation in the
design of the control law was as well addressed. We showed
that the stabilization problem is represented as a solving

problem of BMI constraints. Furthermore, with a judicious
utilization of the Schur lemma and the matrix inversion
lemma, these BMIs were transformed into LMIs. We have
also developed an optimization problem with enhanced LMI
constraints permitting to compute the maximum bounds of
the parametric uncertainties.

In addition, we have proposed an LMI-based approach
for the maximization of the attractive invariant ellipsoid for
the uncertain disturbed nonlinear dynamics of the helicopter
model under the saturated affine state-feedback control law.
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Figure 6: Temporal evolution of the states x1 and x2 of the nonlinear system (15) and the saturated affine state-feedback control law u for the
saturation level umax � 1. Here, the system is subject to randomly time-varying uncertainties and also a randomly time-varying external
disturbing torque w. Moreover, δa,b,c,d,e � 1.
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*e largeness of the ellipsoid was measured by means of the
length of its semiaxis. We have showed that the optimization
problem computes efficiently the largest ellipsoid in only one
step.

Finally, we have showed through numerical simulations
the performance of the synthesized saturated controller in
the robust stabilization of the nonlinear dynamics under the
norm-bounded parametric uncertainties and the external
disturbing torque.

In the literature, the estimation of the domain of at-
traction of the closed-loop system subject to actuation
saturations is one of important issues and several methods
have been achieved for both linear and nonlinear systems.
*e difference between these methods lies in the approach
by which the saturation nonlinearity was handled [51]. Its
treatment can be classified into three main approaches: (1)
the first one is to treat the actuator saturation problem as
achieved in the present work, (2) the second approach is to
treat it as a locally/generalized sector bounded nonlinearity
[17, 69, 70], (3) while the third method is to represent the
saturation nonlinearity as a (polytopic or linear) differential
inclusion (see [36, 51] and references insides). As noted in
Remark 5, the solution presented in this work leads to the
computation of the largest attractive invariant ellipsoid in
only one step, compared to some related approaches that
used a two-step method. *us, the approach presented in
this paper is more simpler and is less restrictive.

In addition, it worth to note that, in this paper, a sat-
urated affine state-feedback controller was designed. To the
best of our knowledge, such problem has not been con-
sidered in the literature. Generally, a saturated linear
feedback controller has been considered to stabilize linear
and nonlinear systems. *en, in order to realize a com-
parison and hence to show the possible efficiency of our
design approach, a future work of this paper is the design of a

saturated affine feedback controller using the sector-boun-
ded nonlinearity method and the differential inclusion
approach.

Furthermore, we aim at extending the present meth-
odology of the saturation affine feedback controller for more
complex nonlinear systems with different Lipschitzian
conditions [65], and with measurement delays [71, 72] and
also for the design of observer-based feedback controllers for
Lipschitz nonlinear systems [3, 8, 64]. Moreover, we hope to
extend this work for impulsive hybrid nonlinear systems,
such as the biped robots [73] and the impact mechanical
oscillators subject to multiple rigid constraints [74–76].

In the present work, we considered the simple pitch
dynamics of a helicopter model as an application. Moreover,
the zero state is not the equilibrium point of such model.
*us, we have designed an affine feedback controller under
saturation to achieve the robust stabilization at the zero state.
Another important application that has such feature is the
robot manipulators [77]. Indeed, because of the gravitational
matrix, the dynamics of robot manipulators has an equi-
librium point different to the zero state.*us, several control
approaches have been adopted for this subject [77]. Our
objective is then to extend the design method of the satu-
rated affine state-feedback controller for the case of ma-
nipulator robots.
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Uncertainties and lead times make the closed-loop supply chain (CLSC) more complex, less stable, and then the bullwhip e�ect
(BE) will become more intense. �is paper will address a fuzzy robust control (FRC) approach to mitigate the BE in the uncertain
CLSC with lead times. For the reverse channels for products in the CLSC, the customers’ used products are recycled by both the
manufacturer and the third party recovery provider, and new products bought by customers within a certain period of time can be
returned to the retailer. In the CLSC system, the state transformation equations of the inventories and the total operation cost are
set up. A new FRC approach is proposed to mitigate the BE and realize the robust stability of the uncertain CLSC with lead times.
A simulation example veri�es the mitigation e�ect of the BE under the proposed FRC approach.

1. Introduction

Whether governments construct green supply chains
through governmental interventions [1] or enterprises un-
dertake social responsibility through social work donation
[2], the environment can be more friendly. �erefore, both
governments and enterprises have been paying more and
more attention to the closed-loop supply chain (CLSC)
which can achieve sustainable development [3].

�e complexity of the business environment results inmany
uncertainties in the CLSC. Especially in the reverse supply
chain, there are uncertainties in quality, quantity, and time of
the recycled products, which lead to the uncertainty of rema-
nufacturing pro�t. For example, ReCellular, one of the largest
phone remanufacturers in the United States, divides used
phones into six quality levels for remanufacturing. Uncertainty
is one of the main reasons for the existence of bullwhip e�ect
(BE), and the other reason is lead time. If BE cannot be ef-
fectively mitigated, the operating e�ciency of the CLSC will be
reduced, and then the operating cost will be increased. In se-
rious cases, the CLSCwill collapse.�erefore, for the mitigation
issue of the BE in the CLSC with uncertainties and lead times,

we will propose a fuzzy robust control (FRC) approach to
reduce the BE and realize the robust stability of the CLSC.

�e remainder of this paper is formulated as follows:
Section 2 o�ers a review of the related literature. Section 3
puts forward a kind of Takagi–Sugeno fuzzy model for the
CLSC with uncertainties and lead times. Section 4 addresses
a FRC approach to mitigate the BE in the CLSC system. �e
simulation studies are carried out in Section 5. �e conclu-
sions and future research directions are given in Section 6.

2. Literature Review

In the CLSC, used products can be recycled by various
subjects. For example, the used products can be recycled by
the manufacturer [4] or by the retailer [5]. Wei and Zhao
[6] studied the decision-making issue of the used products
recycled by the manufacturer, the retailer, or the third
party recovery provider (3PRP). Furthermore, recycling
used products can be performed by multiple subjects at the
same time to realize more convenient for customers and
more e�cient for enterprises. �is recycling pattern is
called hybrid recycling. �erefore, some scholars have
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been devoting themselves to the study of the CLSC with
hybrid recycling channels; for example, based on hybrid
recycling channels, Allah et al. [7] investigated the pricing
strategies of the CLSCs with the single-channel forward
supply chain and with the dual-channel forward supply
chain; Shi andMa [8] recycled the used medical equipment
through hybrid recycling models; under hybrid recycling
channels, Ma and Liu [9] analyzed the optimal profit of the
CLSC.

For the studies mentioned above, [7–9] did not consider
the impacts of uncertainties and lead times on the CLSC
system with hybrid recycling channels. However, un-
certainties and lead times are two important factors leading
to BE. 0erefore, many scholars studied the BE caused by
uncertainties or lead times; for example, by simulation-
based approach, Do et al. [10] quantified the BE with dif-
ferent demands and stochastic lead times; for a two-echelon
serial supply chain, Agrawal et al. [11] compared the effects
of lead time reduction and information sharing on the
mitigation of the BE; using the statistical method, Kim et al.
[12] considered the stochastic lead time and provided ex-
pressions for quantifying the BE both with information
sharing and without information sharing; Modak and Kelle
[13] used a hybrid all-unit quantity discount along a fran-
chise fee contract to mitigate the BE in the dual-channel
supply chain with the delivery time and stochastic demand;
Li and Liu [14] explored the mitigation of the BE in the
supply chain with uncertainties and the vendor order
placement lead time.

In recent years, approaches based on control theory have
been widely applied to mitigate the BE, such as Model
Predictive Control (MPC) approach [15], Internal Model
Control (IMC) approach [16], Proportional plus Integral
Control (PIC) approach [17], and Common Robust Control
(CRC) approach [18]. Among these mitigation approaches,
the MPC approach, the IMC approach, and the PIC ap-
proach cannot implement the switching control, and the
CRC approach can only perform the conventional switching
control but cannot achieve the flexible switching control of
the FRC approach.

Up to now, research on the mitigation of the BE in the
CLSC with uncertainties and lead times has not yet been
found. But, a fuzzy control approach has been applied to
mitigate the BE in uncertain CLSC with hybrid recycling

channels by Zhang et al. [19]. 0erefore, we will follow the
research ideas in [19] to address a control approach for
mitigating the BE of the CLSC with uncertainties and lead
times. 0e critical contributions of this paper comparing to
[19] are listed as follows.

2.1. Lead Times Are Included in the CLSC Models. 0ere are
the manufacturer’s production lead time and recycling lead
time in the manufacturer’ inventory model; the retailer’s
ordering lead time and the 3PRP’s recycling lead time are,
respectively, considered in the retailer’s inventorymodel and
in the 3PRP’s inventory model; all lead times are included in
the total operation cost model of the CLSC.

2.2. An Additional Takagi–Sugeno Fuzzy Controller for Lead
Times Is Designed. We will design an additional Takagi–
Sugeno fuzzy negative feedback controller, which is the
product of the inventory feedback gains with lead times and
the inventory variables with lead times.

2.3. A New Fuzzy Control Approach Is Put Forward. We will
put forward a new FRC approach which can effectively
mitigate the BE caused by uncertainties and lead times and
ensure the stability of the CLSC system. LMIs (linear matrix
inequalities) to be solved in this paper are more complex
than those in [19].

3. CLSC Model

3.1. CLSC Model with Uncertainties and Lead Times. As
shown in Figure 1, this paper constructs a CLSC model that
includes a manufacturer, a retailer, a 3PRP, and customers.
Because products recycled by both the manufacturer and the
3PRP are the most effective pattern among hybrid recycling
channels [20], for reverse supply chain in our model, the
manufacturer and the 3PRP simultaneously recycle cus-
tomers’ used products, and the retailer allows customers to
return new products within a certain period of time.

Based on Figure 1, considering the uncertain system
parameters and lead times, we set up the inventory equations
of the CLSC as follows:

x1(k + 1) � x1(k) + u1(k) + u1 k − τ1( 􏼁 + u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k) − u2(k),

x2(k + 1) � x2(k) + u2(k) + u2 k − τ2( 􏼁 +(μ + Δμ)x3(k) − w1(k),

x3(k + 1) � x3(k) + w1(k) − u3(k) − u4(k) − (μ + Δμ)x3(k),

x4(k + 1) � x4(k) + u4(k) + u4 k − τ4( 􏼁 − (η + Δη)x4(k) − (λ + Δλ)x4(k).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)
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Accordingly, we set up the total cost equation of the
CLSC as follows:

z(k) � ch1 + Δch1( 􏼁x1(k) + ch2 + Δch2( 􏼁x2(k) + ch3 + Δch3( 􏼁x4(k)

+ cn + Δcn( 􏼁 u1(k) + u1 k − τ1( 􏼁􏼂 􏼃

+ cr + Δcr( 􏼁 u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k)􏼂 􏼃

+ cm + Δcm( 􏼁 u3(k) + u3 k − τ3( 􏼁􏼂 􏼃

+ ct + Δct( 􏼁 u4(k) + u4 k − τ4( 􏼁􏼂 􏼃

+ cmt + Δcmt( 􏼁(η + Δη)x4(k)

+ cq + Δcq􏼐 􏼑(μ + Δμ)x3(k)

+ cd + Δcd( 􏼁(λ + Δλ)x4(k)

+ cs + Δcs( 􏼁 u2(k) + u2 k − τ2( 􏼁􏼂 􏼃.

(2)

Equations (1) and (2) are described by the deviation
values (deviation value� actual value − nominal value).

In addition, based on different inventory statuses, each
node enterprise will design corresponding production

patterns or ordering patterns, which leads to some different
models in different periods. 0en, the ith model of the CLSC
can be shown as follows:

x(k + 1) � Ai + ΔAi( 􏼁x(k) + Bi + ΔBi( 􏼁u(k) + 􏽘
4

e�1
Bie + ΔBie( 􏼁u k − τe( 􏼁 + Bwi + ΔBwi( 􏼁w(k),

z(k) � Ci + ΔCi( 􏼁x(k) + Di + ΔDi( 􏼁u(k) + 􏽘
4

e�1
Die + ΔDie( 􏼁u k − τe( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where xT(k) � [x1(k), x2(k), x3(k), x4(k)], uT(k) � [u1(k),

u2(k), u3(k), u4(k)], uT(k − τe) � [u1(k − τ1), u2(k − τ2),
u3(k − τ3), u4(k − τ4)], and wT(k) � w1(k), 0, 0, 0􏼂 􏼃; Ai

denotes the inventory status coefficient matrix; Bi denotes
the production, ordering, and recycling coefficient matrix;
Bie denotes the production, ordering, and recycling co-
efficient matrix with lead times; Bwi denotes the coefficient
matrix of the customers’ demand; Ci denotes the co-
efficient matrix of the inventory cost, the cost of the new

products returned, the disposal cost, part of remanu-
facturing cost, and part of recycling cost; Di denotes the
coefficient matrix of production cost, ordering cost, part of
remanufacturing cost, and part of recycling cost; Die de-
notes the coefficient matrix of production cost, ordering
cost, part of remanufacturing cost, and part of recycling
cost with lead times; and ΔAi, ΔBi, ΔBie, ΔBwi, ΔCi, ΔDi,
and ΔDie, respectively, denote the corresponding un-
certain matrices.

Inventory: x1(k)

Inventory: x2(k)

Inventory: x3(k)

Manufacturer

Retailer

Customers

Production:
u1(k) + u1(k – τ1)

Remanufacturing:
u3(k) + u3(k – τ3) + ηx4(k)

3PRP
Inventory: x4(k)

The returned
new products

Disposal
λx4(k)

w1(k)

u3(k)

u3(k – τ3)
Recycling

ηx4(k)

u4(k)

u4(k – τ4)

u2(k) u2(k – τ2)

μx3(k)

Figure 1: CLSC model.
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3.2. Takagi–Sugeno Fuzzy Model of CLSC. In the process of
wide variation of the inventory level, switching activities
will take place among models to maintain a reasonable
inventory level in each node enterprise. In order to ef-
fectively mitigate the BE of the CLSC, we will utilize
Takagi–Sugeno fuzzy systems [21] to implement the

flexible switching in the CLSC. 0en, Model (3) is
transformed into the following discrete Takagi–Sugeno
fuzzy model:

Ri: If x1(k) is Mi
1, . . ., xj(k) is Mi

j, . . ., and xn(k) is Mi
n,

then

x(k + 1) � Ai + ΔAi( 􏼁x(k) + Bi + ΔBi( 􏼁u(k) + 􏽘

g

e�1
Bie + ΔBie( 􏼁u k − τe( 􏼁 + Bwi + ΔBwi( 􏼁w(k),

z(k) � Ci + ΔCi( 􏼁x(k) + Di + ΔDi( 􏼁u(k) + 􏽘

g

e�1
Die + ΔDie( 􏼁u k − τe( 􏼁,

x(k) � φ(k), k ∈ 0, 1, . . . , N{ },

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where w(k) ∈ l2[0,∞); φ(k) denotes the initial condition of
the CLSC; xT(k) � [x1(k), x2(k), . . . , xn(k)]; uT(k) �

[u1(k), u2(k), . . . , un(k)]; uT(k − τe) � [u1(k − τ1), u2(k −

τ2), . . . , un(k − τg)]; and wT(k) � [w1(k), w2(k), . . . ,

wn(k)].
By singleton fuzzifier, product inference, and centre-

average defuzzifer, Model (4) can be expressed as follows:

x(k + 1) � 􏽘
r

i�1
hi(x(k)) · ⎡⎣ Ai + ΔAi( 􏼁x(k) + Bi + ΔBi( 􏼁u(k) +􏽘

g

e�1
Bie + ΔBie( 􏼁u k − τe( 􏼁 + Bwi + ΔBwi( 􏼁w(k)⎤⎦,

z(k) � 􏽘
r

i�1
hi(x(k)) · ⎡⎣ Ci + ΔCi( 􏼁x(k) + Di + ΔDi( 􏼁u(k) +􏽘

g

e�1
Die + ΔDie( 􏼁u k − τe( 􏼁⎤⎦,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where hi(x(k)) � μi(x(k))/􏽐r
i�1μi(x(k)) and μi(x(k)) �

􏽑
n
j�1M

i
j(xj(k)); since μi(x(k))≥ 0 , we have hi(x(k))≥ 0

and 􏽐
r
i�1hi(x(k)) � 1. In the following expressions, x(k) will

be elided from hi(x(k)) for simplicity.
Because of the existence of the membership degree

function in Model (5), the flexible switching can be realized
among the models of the CLSC.

4. Mitigation of BE

4.1.MeasurementofBE. We use the following parameter c to
represent the mitigation degree of BE:

‖total cost of CLSC‖2

customers’ demand
����

����2
≤ c. (6)

From the inequality above, we know that the mitigation
degree of BE depends on the size of the total cost of the CLSC
and the size of the customers’ demand. 0e lower c is, the
smaller BE is.

4.2. FRC Approach. We introduce known constant matrices
H1i, H2i, E11i, E12i, E13i, E21i, E22i, Lei, and Oei and time-
varying uncertain matrices F1i(k) and F2i(k) to describe the
uncertain parameters in the CLSC; F1i(k), and F2i(k) are
Lebesgue-measurable and satisfy FT1i(k)F1i(k)≤ I and

FT2i(k)F2i(k)≤ I. 0en, we represent the uncertain parameter
matrices in Model (5) as follows:

ΔAi,ΔBi,ΔBwi,ΔBi1, . . . ,ΔBie, . . . ,ΔBig􏽨 􏽩

� H1iF1i(k) E11i,E12i,E13i,L1i, . . . , Lei, . . . , Lgi􏽨 􏽩;

ΔCi,ΔDi,ΔDi1, . . . ,ΔDie, . . . ,ΔDig􏽨 􏽩

� H2iF2i(k) E21i,E22i,O1i, . . . ,Oei, . . . ,Ogi􏽨 􏽩.

(7)

For the fuzzy CLSC system in Model (5), we design the
Takagi–Sugeno fuzzy controller as follows.

Controller rule Ki:
If x1(k) is Mi

1, . . ., xj(k) is Mi
j, . . ., and xn(k) is Mi

n,
then

u(k) � − Kix(k), i � 1, 2, . . . , r,

u k − τe( 􏼁 � − Kiex k − τe( 􏼁, e � 1, 2, . . . , g,
􏼨 (8)

where Ki is the inventory feedback gain matrix and Kie is the
inventory feedback gain matrix with lead times. Furthermore,
we can obtain the following overall model of Model (8):

u(k) � − 􏽘
r

i�1
hiKix(k),

u k − τe( 􏼁 � − 􏽘
r

i�1
hiKiex k − τe( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)
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0erefore, introducing Controller (9) into Model (5), we
have

x(k + 1) � 􏽘
r

i�1
􏽘

r

j�1
hihj Ai − BiKj􏼐 􏼑x(k) − 􏽘

g

e�1
BieKjex k − τe( 􏼁 + Bwiw(k)⎡⎣ ⎤⎦,

z(k) � 􏽘
r

i�1
􏽘

r

j�1
hihj Ci − DiKj􏼐 􏼑x(k) − 􏽘

g

e�1
DieKjex k − τe( 􏼁⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

where Ai � Ai + ΔAi, Bi � Bi + ΔBi, Bie � Bie + ΔBie,
Bwi � Bwi + ΔBwi, Ci � Ci + ΔCi, Di � Di + ΔDi, and
Die � Die + ΔDie.

For the further analysis, we introduce the following
Definitions, Property, and Lemma.

Definition 1 (see [22]). A cluster of fuzzy sets 􏼈Fm
j , m

� 1, 2, . . . , qj􏼉 are said to be a standard fuzzy partition in the
universe X if each Fm

j is a normal fuzzy set and Fm
j (m �

1, 2, . . . , qj) are full-overlapped in the universe X. qj is said to
be the number of fuzzy partitions of the jth input variable on X.

Definition 2 (see [22]). For a given fuzzy system, an over-
lapped-rule group (ORG) with the largest amount of rules is
said to be a maximal overlapped-rule group (MORG).

Definition 3 (see [23]). Given a scalar c> 0, discrete
switched system (10) is said to be robustly stable with the
disturbance attenuation level c constraint under the H∞
norm if the following conditions are satisfied:

(1) When w(k) ≡ 0, System (10) is asymptotically stable
(2) When w(k)≠ 0, under the condition of the initial

value of zero, any uncertain customers’ demand
meets ‖z(k)‖22 ≤ c‖w(k)‖22

Property 1 (see [22]). If the input variables of a fuzzy system
adopt standard fuzzy partitions, then all the rules in an ORG
must be included in a MORG.

Lemma 1 (see [24]). For any real matrices Xij (1≤ i, j≤ r)

and P> 0 with appropriate dimensions, the following in-
equality holds:

􏽘

r

i�1
􏽘

r

j�1
􏽘

r

p�1
􏽘

r

q�1
hihjhphqX

T
ijPXpq ≤ 􏽘

r

i�1
􏽘

r

j�1
hihjX

T
ijPXij. (11)

;e FRC approach for the CLSC system will be presented
in the following ;eorem 1.

Theorem 1. System (10) with a certain c and fuzzy sets of
inventories satisfying standard fuzzy partitions is robustly
asymptotically stable if local common positive definite ma-
trices Pc and Qec can be found in the following inequalities:

− P ∗ ∗

Mii − P− 1
c ∗

Nii 0 − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, i ∈ Ic, (12)

− 4P
�
∗ ∗

2M
�

ij − P− 1
c ∗

2N
�

ij 0 − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, i< j, i, j ∈ Ic, (13)

where

P
�

�

Pc − 􏽘

g

e�1
Qec ∗ ∗

0 Q􏽢 ∗

0 0 c2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
�

ij �
Mij + Mji

2
,

Q􏽢 � diag Q1c · · · Qec · · · Qgc􏽮 􏽯,

Nij �
Nij + Nji

2
.

(14)

Proof. Suppose there are f ORGs in System (10), vd(d �

1, 2, . . . , f) denotes the operating region of the dth ORG and
Ld � the rule numbers involved in thedthORG{ }.

(1) 0e first part of the proof:
For x(k) and x(k + 1) in the same ORG, we express
the local model of the dth ORG as follows:

x(k + 1) � 􏽘
i∈Ld

􏽘
j∈Ld

hihj Mijx(k) − 􏽘

g

e�1
BieKjecx k − τe( 􏼁 + Bwiw(k)⎡⎣ ⎤⎦,

z(k) � 􏽘
i∈Ld

􏽘
j∈Ld

hihj Nijx(k) − 􏽘

g

e�1
DieKjecx k − τe( 􏼁⎡⎣ ⎤⎦,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)
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where Mij � Ai − BiKjc, Nij � Ci − DiKjc, and Kjec

denotes the state feedback gain matrix with lead
times in the cth MORG.
Furthermore, Model (15) is described further as
follows:

x(k + 1) � 􏽘
i∈Ld

􏽘
j∈Ld

hihjMijx(k),

z(k) � 􏽘
i∈Ld

􏽘
j∈Ld

hihjNijx(k),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where

Mij � Mij, − Bi1Kj1c, . . . , − BieKjec, . . . , − BigKjgc,Bwi􏽨 􏽩,

Nij � Nij, − Di1Kj1c, . . . , − DieKjec, . . . , − DigKjgc, 0􏽨 􏽩,

x(k) � x(k), x k − τ1( 􏼁, . . . , x k − τe( 􏼁, . . . , x k − τg􏼐 􏼑,w(k)􏽨 􏽩
T
.

(17)

For System (16), a Lyapunov function is defined as
follows:

Vd(x(k)) � xT(k)Pcx(k) + 􏽘

g

e�1
􏽘

k− 1

ξ�k− τe

xT(ξ)Qecx(ξ). (18)

0en, based on Lemma 1, we obtain the following
ΔVd(x(k)):

ΔVd(x(k)) � Vd(x(k + 1)) − Vd(x(k))

� xT(k + 1)Pcx(k + 1) − xT(k)Pcx(k) + 􏽘

g

e�1
xT(k)Qecx(k) − xT k − τe( 􏼁Qecx k − τe( 􏼁􏽨 􏽩

� 􏽘
i∈Ld

􏽘
j∈Ld

hihj 􏽘
p∈Ld

􏽘
q∈Ld

hphq xT(k)MT
ijPcMpqx(k) − xT(k)Pcx(k)􏼔 􏼕

+ 􏽘

g

e�1
xT(k)Qecx(k) − xT k − τe( 􏼁Qecx k − τe( 􏼁􏽨 􏽩

� 􏽘
i∈Ld

􏽘
j∈Ld

hihj 􏽘
p∈Ld

􏽘
q∈Ld

hphqx
T
(k) MT

ijPcMpq − P􏼒 􏼓x(k)

� 􏽘
i∈Ld

􏽘
j∈Ld

hihj 􏽘
p∈Ld

􏽘
q∈Ld

hphqx
T
(k)

Mij + Mji

2
􏼠 􏼡

T

Pc

Mpq + Mqp

2
􏼠 􏼡 − P⎡⎢⎢⎣ ⎤⎥⎥⎦x(k)

� 􏽘
i∈Ld

􏽘
j∈Ld

hihj 􏽘
p∈Ld

􏽘
q∈Ld

hphqx
T
(k) M

T
ijPcMpq − P􏼒 􏼓x(k)

≤ 􏽘
i∈Ld

􏽘
j∈Ld

hihjx
T
(k) M

T
ijPcMij − P􏼒 􏼓x(k),

(19)
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where

P �

Pc − 􏽘

g

e�1
Qec ∗ ∗

0 􏽢Q ∗
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M
�

pq �
Mpq + Mqp

2
,

􏽢Q � diag Q1c,Q2c, . . . ,Qec, . . . ,Qgc􏽮 􏽯,

M
�

ij �
Mij + Mji

2
.

(20)

0en, ΔVd(x(k)) is described further as

ΔVd(x(k))≤ 􏽘
i�j,i∈Ld

h
2
i x

T
(k) MT

iiPcMii − P􏼔 􏼕x(k)

+ 2 􏽘
i< j

i∈Ld,j ∈ Ld

hihjx
T
(k) M

T
ijPcMij − P􏼔 􏼕x(k).

(21)

For w(k)≠ 0, the H∞ performance index function is
expressed as follows:

J1 � 􏽘
N− 1

k�0
z
T
(k)z(k) − c

2wT
(k)w(k)􏽨 􏽩. (22)

J1 can be expressed further as

J1 � 􏽘
N− 1

k�0
z
T
(k)z(k) − c

2wT
(k)w(k) + ΔVd(x(k))􏽨 􏽩 − Vd(x(N))

≤ 􏽘
N− 1

k�0
z
T
(k)z(k) − c

2wT
(k)w(k) + ΔVd(x(k))􏽨 􏽩.

(23)

After Inequality (21) is introduced into (23), we have

J1 ≤ 􏽘
N− 1

k�0
􏽘

i�j,i∈Ld

h
2
i x

T
(k) MT

iiPcMii − P + NT
iiNii􏼔 􏼕x(k)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ 2 􏽘
N− 1

k�0
􏽘

i<j,i∈Ld
j∈Ld

hihjx
T
(k) M

T
ijPcMij − P + N

T
ijNij􏼔 􏼕x(k)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(24)

where

P �

Pc − 􏽘

g

e�1
Qec ∗ ∗

0 􏽢Q ∗
0 0 c2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

N
�

ij �
Nij + Nji

2
.

(25)

By the Schur complement, we have MT
iiPcMii − P +

NT
iiNii < 0 and M

�T
ijPcM

�

ij − P + N
�T
ijN
�

ij < 0 which are
equivalent to Inequalities (12) and (13), then J1 < 0
holds, i.e., zT(k)z(k) < c2wT(k)w(k); furthermore, if
let N⟶ +∞, ‖z(k)‖22 < c2‖w(k)‖22 holds. 0ere-
fore, CLSC system (16) is asymptotically stable under
w(k)≠ 0.
If w(k) ≡ 0, Inequality (21) can be expressed as

ΔVd(x(k))≤ 􏽘
i�j,i∈Ld

h
2
i x

T
(k) MT

iiPcMii − P􏼔 􏼕x(k)

+ 2 􏽘
i<j

i∈Ld,j∈Ld

hihjx
T
(k) M

T
ijPcMij − P􏼔 􏼕x(k).

(26)

Based on Inequalities (12) and (13), we have

MT
iiPcMii − P< 0 and M

T
ijPcMij − P< 0, and then

ΔVd(x(k))< 0 can be obtained. 0erefore, CLSC
system (16) is robustly asymptotically stable under
w(k) ≡ 0.

(2) 0e second part of the proof:
For x(k) and x(k + 1) in the different ORGs, we first
construct the following characteristic function in any
ORG:

λd �
1, x(k) ∈ vd,

0, x(k) ∉ vd,
􏼨

􏽘

f

d�1
λd � 1.

(27)

0en, the overall system of local system (16) can be
expressed as

x(k + 1) � 􏽘

f

d�1
λd 􏽘

i∈Ld

􏽘
j∈Ld

hihjMijx(k)⎡⎢⎢⎣ ⎤⎥⎥⎦,

z(k) � 􏽘

f

d�1
λd 􏽘

i∈Ld

􏽘
j∈Ld

hihjNijx(k)⎡⎢⎢⎣ ⎤⎥⎥⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

After Pm � 􏽐
f

d�1λdPc and Qem � 􏽐
f

d�1λdQec are de-
fined, we present the following Lyapunov function:

V(x(k)) � xT(k)Pmx(k) + 􏽘

g

e�1
􏽘
k− 1

ξ�k− τe

xT(ξ)Qemx(ξ)

� xT(k) 􏽘

f

d�1
λdPc

⎛⎝ ⎞⎠x(k) + 􏽘

g

e�1
􏽘
k− 1

ξ�k− τe

xT(ξ) 􏽘

f

d�1
λdQec

⎛⎝ ⎞⎠x(ξ)

� 􏽘

f

d�1
λd xT(k)Pcx(k) + 􏽘

g

e�1
􏽘

k− 1

ξ�k− τe

xT(ξ)Qecx(ξ)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 􏽘

f

d�1
λdVd(x(k)).

(29)

For w(k)≠ 0 in System (28), considering J1 � 􏽐
N− 1
k�0

[zT(k)z(k) − c2wT(k)w(k)], we know J2 � 􏽐
N− 1
k�0

􏽐
f

d�1λd[zT(k)z(k) − c2wT(k)w(k)]. In the same
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way, we have J2 < 0, i.e., zT(k)z(k)< c2wT(k)w(k); if
let N⟶ +∞, ‖z(k)‖22 < c2‖w(k)‖22 can be ob-
tained. 0erefore, System (28) is asymptotically
stable under w(k)≠ 0.
For w(k) ≡ 0 in System (28), we have

ΔV(x(k)) � V(x(k + 1)) − V(x(k))

� 􏽘

f

d�1
λdVd(x(k + 1)) − 􏽘

f

d�1
λdVd(x(k))

� 􏽘

f

d�1
λd Vd(x(k + 1)) − Vd(x(k))􏼂 􏼃

� 􏽘

f

d�1
λdΔVd(x(k))< 0.

(30)

0erefore, System (28) under w(k) ≡ 0 is asymp-
totically stable in any ORG.
From Proposition 1, CLSC system (10) is robustly
asymptotically stable if Pc and Qac can be solved in
Inequalities (12) and (13) Q.E.D.
In order for Inequalities (12) and (13) to be easily
solvable LMIs, we transform 0eorem 1 into the
following 0eorem 2. □

Theorem 2. System (10) with a certain c and fuzzy sets of
inventories satisfying standard fuzzy partitions is robustly
asymptotically stable if local common positive definite ma-
trices Pc and Qec, matrices Kic, Kjc, Kiec, and Kjec, and
constants εijc > 0 and εjic > 0 can be found in the following
Inequalities (31) and (32):

− Pc + 􏽘

g

e�1
Qec ∗ ∗ ∗ ∗ ∗ ∗

0 − 􏽢Q ∗ ∗ ∗ ∗ ∗

0 0 − c2I ∗ ∗ ∗ ∗

Ω1 − Ω3 Bwi − I + εiicH1iHT
1i ∗ ∗ ∗

Ω2 − Ω4 0 0 − I + εiicH2iHT
2i ∗ ∗

Δ1 − Δ3 E13i 0 0 − εiicI ∗

Δ2 − Δ4 0 0 0 0 − εiicI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, i ∈ Ic, (31)

− 4Pc + 4􏽘

g

e�1
Qec ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 − 4􏽢Q ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 − 4c2I ∗ ∗ ∗ ∗ ∗ ∗

Ω5 − Ω7 Bwi + Bwj Δ11 ∗ ∗ ∗ ∗ ∗

Ω6 − Ω8 0 0 Δ12 ∗ ∗ ∗ ∗

Δ5 − Δ3 E13i 0 0 − εijcI ∗ ∗ ∗

Δ6 − Δ4 0 0 0 0 − εijcI ∗ ∗

Δ7 − Δ9 E13j 0 0 0 0 − εjicI ∗

Δ8 − Δ10 0 0 0 0 0 0 − εjicI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, i< j, i, j ∈ Ic, (32)
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where
􏽢Q � diag Q1c, . . . ,Qec, . . . ,Qgc􏽮 􏽯,

Ω1 � Ai − BiKic,

Ω2 � Ci − DiKic,

Ω3 � Bi1Ki1c, . . . ,BieKiec, . . . ,BigKigc,

Ω4 � Di1Ki1c, . . . ,DieKiec, . . . ,DigKigc􏽨 􏽩,

Ω5 � Ai − BiKjc + Aj − BjKic,

Ω6 � Ci − DiKjc + Cj − DjKic,

Ω7 � Bi1Kj1c + Bj1Ki1c, . . . ,BieKjec + BjeKiec, . . . ,BigKjgc + BjgKigc􏽨 􏽩,

Ω8 � Di1Kj1c + Dj1Ki1c, . . . ,DieKjec + DjeKiec, . . . ,DigKjgc + DjgKigc􏽨 􏽩,

Δ1 � E11i − E12iKic,

Δ2 � E21i − E22iKic,

Δ3 � L1iKi1c, . . . ,LeiKiec, . . . , LgiKigc􏽨 􏽩,

Δ4 � O1iKi1c, . . . ,OeiKiec, . . . ,OgiKigc􏽨 􏽩,

Δ5 � E11i − E12iKjc,

Δ6 � E21i − E22iKjc,

Δ7 � E11j − E12jKic,

Δ8 � E21j − E22jKic,

Δ9 � L1jKjic, . . . , LejKjec, . . . ,LgjKjgc􏽨 􏽩,

Δ10 � O1jKj1c, . . . ,OejKjec, . . . ,OgjKjgc􏽨 􏽩,

Δ11 � − Ic + εijcH1iH
T
1i + εjicH1jH

T
1j,

Δ12 � − I + εijcH2iH
T
2i + εjicH2jH

T
2j.

(33)

Proof. 0eorem 2 can be proved in the same idea as 0e-
orem 1. 0erefore, the proof process of 0eorem 2 is not
shown. Q.E.D. □

5. Simulation Analysis

We choose a type of television CLSC composed of a tele-
vision manufacturer, a television retailer, and a 3PRP as the
simulation object to evaluate the mitigation effect of the BE
under the FRC approach proposed in Section 4.

0e television manufacturer’s fuzzy membership func-
tions and the television retailer’s fuzzy membership func-
tions are shown in Figure 2. In Figure 2, both Ft

1(x1(k)) and
Fs
2(x2(k)) satisfy the conditions of standard fuzzy partition.

We set M1
1 � M2

1 � F1
1, M3

1 � M4
1 � F2

1, M1
2 � M4

2 � F1
2, and

M2
2 � M3

2 � F2
2.

From Figure 2, we know there are 4 fuzzy rules included
in one MORG called S. Referring to the product-design
strategies in [25], we apply 4 fuzzy rules to describe the
manufacturer’s production patterns and the retailer’s or-
dering patterns for the different inventory levels as follows:

R1: the television manufacturer produces new tele-
visions and remanufactures recycled televisions si-
multaneously. 0e television retailer allows return of
new televisions and orders new televisions
simultaneously.

R2: the television manufacturer produces new televi-
sions and remanufactures recycled televisions simul-
taneously. 0e television retailer only allows return of
new televisions.

R3: the television manufacturer only remanufactures
recycled televisions. 0e television retailer only allows
return of new televisions.

R4: the television manufacturer only remanufactures
recycled televisions. 0e television retailer allows
return of new televisions and orders new televisions
simultaneously.

0erefore, under the different rules, the uncertain CLSC
model with hybrid recycling channels and lead times can be
expressed as follows:

Complexity 9



R1:

x1(k + 1) � x1(k) + u1(k) + u1 k − τ1( 􏼁 + u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k) − u2(k),

x2(k + 1) � x2(k) + u2(k) + u2 k − τ2( 􏼁 +(μ + Δμ)x3(k) − w1(k),

x3(k + 1) � x3(k) + w1(k) − u3(k) − u4(k) − (μ + Δμ)x3(k),

x4(k + 1) � x4(k) + u4(k) + u4 k − τ4( 􏼁 − (η + Δη)x4(k) − (λ + Δλ)x4(k),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z(k) � ch1 + Δch1( 􏼁x1(k) + ch2 + Δch2( 􏼁x2(k)

+ ch3 + Δch3( 􏼁x4(k) + cn + Δcn( 􏼁 u1(k) + u1 k − τ1( 􏼁􏼂 􏼃

+ cr + Δcr( 􏼁 u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k)􏼂 􏼃

+ cm + Δcm( 􏼁 u3(k) + u3 k − τ3( 􏼁􏼂 􏼃 + ct + Δct( 􏼁 u4(k) + u4 k − τ4( 􏼁􏼂 􏼃

+ cmt + Δcmt( 􏼁(η + Δη)x4(k) + cq + Δcq􏼐 􏼑(μ + Δμ)x3(k)

+ cd + Δcd( 􏼁(λ + Δλ)x4(k) + cs + Δcs( 􏼁 u2(k) + u2 k − τ2( 􏼁􏼂 􏼃,

R2:

x1(k + 1) � x1(k) + u1(k) + u1 k − τ1( 􏼁 + u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k),

x2(k + 1) � x2(k) +(μ + Δμ)x3(k) − w1(k),

x3(k + 1) � x3(k) + w1(k) − u3(k) − u4(k) − (μ + Δμ)x3(k),

x4(k + 1) � x4(k) + u4(k) + u4 k − τ4( 􏼁 − (η + Δη)x4(k) − (λ + Δλ)x4(k),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z(k) � ch1 + Δch1( 􏼁x1(k) + ch2 + Δch2( 􏼁x2(k) + ch3 + Δch3( 􏼁x4(k)

+ cn + Δcn( 􏼁 u1(k) + u1 k − τ1( 􏼁􏼂 􏼃 + cr + Δcr( 􏼁 u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k)􏼂 􏼃

+ cm + Δcm( 􏼁 u3(k) + u3 k − τ3( 􏼁􏼂 􏼃 + ct + Δct( 􏼁 u4(k) + u4 k − τ4( 􏼁􏼂 􏼃 + cmt + Δcmt( 􏼁(η + Δη)x4(k)

+ cq + Δcq􏼐 􏼑(μ + Δμ)x3(k) + cd + Δcd( 􏼁(λ + Δλ)x4(k),

R3:

x1(k + 1) � x1(k) + u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k),

x2(k + 1) � x2(k) +(μ + Δμ)x3(k) − w1(k),

x3(k + 1) � x3(k) + w1(k) − u3(k) − u4(k) − (μ + Δμ)x3(k),

x4(k + 1) � x4(k) + u4(k) + u4 k − τ4( 􏼁 − (η + Δη)x4(k) − (λ + Δλ)x4(k),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z(k) � ch1 + Δch1( 􏼁x1(k) + ch2 + Δch2( 􏼁x2(k) + ch3 + Δch3( 􏼁x4(k)

+ cr + Δcr( 􏼁 u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k)􏼂 􏼃

+ cm + Δcm( 􏼁 u3(k) + u3 k − τ3( 􏼁􏼂 􏼃 + ct + Δct( 􏼁 u4(k) + u4 k − τ4( 􏼁􏼂 􏼃

+ cmt + Δcmt( 􏼁(η + Δη)x4(k) + cq + Δcq􏼐 􏼑(μ + Δμ)x3(k)

+ cd + Δcd( 􏼁(λ + Δλ)x4(k),

R4:

x1(k + 1) � x1(k) + u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k) − u2(k),

x2(k + 1) � x2(k) + u2(k) + u2 k − τ2( 􏼁 +(μ + Δμ)x3(k) − w1(k),

x3(k + 1) � x3(k) + w1(k) − u3(k) − u4(k) − (μ + Δμ)x3(k),

x4(k + 1) � x4(k) + u4(k) + u4 k − τ4( 􏼁 − (η + Δη)x4(k) − (λ + Δλ)x4(k).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x2(k)

0

F1
t(x1(k))

F2
s(x2(k))

F2
1

F2
2

F1
2F1

1

S

R1

R1

R2

R2 R2

R2

R1

R1

R3R3

R3 R3

R4

R4 R4

R4

Dr max

D1r

D0r

D0m D1m Dm max x1(k)

Figure 2: Fuzzy membership functions.
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z(k) � ch1 + Δch1( 􏼁x1(k) + ch2 + Δch2( 􏼁x2(k) + ch3 + Δch3( 􏼁x4(k)

+ cr + Δcr( 􏼁 u3(k) + u3 k − τ3( 􏼁 +(η + Δη)x4(k)􏼂 􏼃

+ cm + Δcm( 􏼁 u3(k) + u3 k − τ3( 􏼁􏼂 􏼃 + ct + Δct( 􏼁 u4(k) + u4 k − τ4( 􏼁􏼂 􏼃

+ cmt + Δcmt( 􏼁(η + Δη)x4(k)

+ cq + Δcq􏼐 􏼑(μ + Δμ)x3(k) + cd + Δcd( 􏼁(λ + Δλ)x4(k)

+ cs + Δcs( 􏼁 u2(k) + u2 k − τ2( 􏼁􏼂 􏼃 (34)

Furthermore, the fuzzy CLSC model can be obtained as
follows:

R1: If x1 is M1
1 and x2 is M1

2, then

x(k + 1) � h1 A1 + ΔA1( 􏼁x(k) + B1 + ΔB1( 􏼁u(k) + 􏽘
4

e�1
B1e + ΔB1e( 􏼁u k − τe( 􏼁 + Bw1 + ΔBw1( 􏼁w(k)⎡⎣ ⎤⎦,

z(k) � h1 C1 + ΔC1( 􏼁x(k) + D1 + ΔD1( 􏼁u(k) + 􏽘
4

e�1
D1e + ΔD1e( 􏼁u k − τe( 􏼁⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

R2: If x1 is M2
1 and x2 is M2

2, then

x(k + 1) � h2 A2 + ΔA2( 􏼁x(k) + B2 + ΔB2( 􏼁u(k) + 􏽘

4

e�1
B2e + ΔB2e( 􏼁u k − τe( 􏼁 + Bw2 + ΔBw2( 􏼁w(k)⎡⎣ ⎤⎦,

z(k) � h2 C2 + ΔC2( 􏼁x(k) + D2 + ΔD2( 􏼁u(k) + 􏽘

4

e�1
D2e + ΔD2e( 􏼁u k − τe( 􏼁⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

R3: If x1 is M3
1 and x2 is M3

2, then

x(k + 1) � h3 A3 + ΔA3( 􏼁x(k) + B3 + ΔB3( 􏼁u(k) + 􏽘

4

e�1
B3e + ΔB3e( 􏼁u k − τe( 􏼁 + Bw3 + ΔBw3( 􏼁w(k)⎡⎣ ⎤⎦,

z(k) � h3 C3 + ΔC3( 􏼁x(k) + D3 + ΔD3( 􏼁u(k) + 􏽘

4

e�1
D3e + ΔD3e( 􏼁u k − τe( 􏼁⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(37)

R4: If x1 is M4
1 and x2 is M4

2, then

x(k + 1) � h4 A4 + ΔA4( 􏼁x(k) + B4 + ΔB4( 􏼁u(k) + 􏽘

4

e�1
B4e + ΔB4e( 􏼁u k − τe( 􏼁 + Bw4 + ΔBw4( 􏼁w(k)⎡⎣ ⎤⎦,

z(k) � h4 C4 + ΔC4( 􏼁x(k) + D4 + ΔD4( 􏼁u(k) + 􏽘
4

e�1
D4e + ΔD4e( 􏼁u k − τe( 􏼁⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(38)

According to the Takagi–Sugeno fuzzy models mentioned
above, we design the following fuzzy feedback controller.

Ki: If x1(k) is Mi
1 and x2(k) is Mi

2, then

u(k) � − 􏽘
4

i�1
hiKi1x(k),

u k − τ1( 􏼁 � − 􏽘
4

i�1
hiKi11x k − τ1( 􏼁,

u k − τ2( 􏼁 � − 􏽘
4

i�1
hiKi21x k − τ2( 􏼁,

u k − τ3( 􏼁 � − 􏽘
4

i�1
hiKi31x k − τ3( 􏼁,

u k − τ4( 􏼁 � − 􏽘
4

i�1
hiKi41x k − τ4( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)
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Considering the actual operation situation of the tele-
vision CLSC, we set D0m � 120, D1m � 160, D0r � 110, and
D1r � 155 (×103 sets); ch1 � 0.015, ch2 � 0.020, ch3 � 0.015,
cn � 0.150, cr � 0.005, cm � 0.100, cmt � 0.100, ct � 0.095,
cq � 0.020, cd � 0.007, cs � 0.180 (×103 Yuan); η � 0.98,
μ � 0.01, and λ � 0.02.

A1 � A2 � A3 � A4 �

1 0 0 0.98
0 1 0.01 0
0 0 0.99 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 �

1 − 1 1 0
0 1 0 0
0 0 − 1 − 1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 �

1 0 1 0
0 0 0 0
0 0 − 1 − 1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B3 �

0 0 1 0
0 0 0 0
0 0 − 1 − 1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B4 �

0 − 1 1 0
0 1 0 0
0 0 − 1 − 1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B11 � B21 �

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B31 � B41 �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B12 � B42 �

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B22 � B32 �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B13 � B23 � B33 � B43 �

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B14 � B24 � B34 � B44 �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bw1 � Bw2 � Bw3 � Bw4 �

0 0 0 0
− 1 0 0 0
1 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(40)

C1 � C2 � C3 � C4 � ch1 ch2 μcq ch3 + ηcr + ηcmt + λcd􏽨 􏽩,

D1 � cn cs cr + cm ct􏼂 􏼃,

D2 � cn 0 cr + cm ct􏼂 􏼃,

D3 � 0 0 cr + cm ct􏼂 􏼃,

D4 � 0 cs cr + cm ct􏼂 􏼃,

D11 � D21 � cn 0 0 0􏼂 􏼃,

D31 � D41 � 0 0 0 0􏼂 􏼃,

D12 � D42 � 0 cs 0 0􏼂 􏼃,

D22 � D32 � 0 0 0 0􏼂 􏼃,

D13 � D23 � D33 � D43 � 0 0 cr + cm 0􏼂 􏼃,

D14 � D24 � D34 � D44 � 0 0 0 ct􏼂 􏼃,

E11i �

0 0 0 0.02
0 0 0.02 0
0 0 − 0.02 0
0 0 0 − 0.03

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E12i � E13i � 0,

L1i � L2i � L3i � L4i � 0,

E21i � 0.004 0.004 0.002 0.007􏼂 􏼃,

E221 � 0.003 0.002 0.015 0.015􏼂 􏼃,

E222 � 0.003 0 0.015 0.015􏼂 􏼃,

E223 � 0 0 0.015 0.015􏼂 􏼃,

E224 � 0 0.002 0.015 0.015􏼂 􏼃,

O11 � O21 � 0.001 0 0 0􏼂 􏼃,

O31 � O41 � 0 0 0 0􏼂 􏼃,

O12 � O42 � 0 0.002 0 0􏼂 􏼃,

O22 � O32 � 0 0 0 0􏼂 􏼃,

O13 � O23 � O33 � O43 � 0 0 0.002 0􏼂 􏼃,

O14 � O24 � O34 � O44 � 0 0 0 0.001􏼂 􏼃,

H1i � 0.1,

H2i � 0.2,

F1i � F2i � sin(k),

(i � 1, 2, 3, 4),

c � 0.5.

(41)
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0e FRC approach proposed in Section 4 can guarantee
the television CLSC system to be robustly stable after the

following results, which meet Conditions (31) and (32) in
0eorem 2, are obtained.

P1 �

121.8898 0.0028 0.1511 0.1485

0.0028 122.7989 0.0013 − 0.0113

0.1511 0.0013 121.8829 0.1509

0.1485 − 0.0113 0.1509 121.8811

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q11 � Q21 � Q31 � Q41 �

24.3455 − 0.0000 − 0.0006 − 0.0006

− 0.0000 24.3419 − 0.0000 0.0000

− 0.0006 − 0.0000 24.3455 − 0.0006

− 0.0006 0.0000 − 0.0006 24.3455

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(42)
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Figure 3: Simulation diagram of the inventories under CRC (unit: ×103 sets).
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Figure 4: Simulation diagram of the control variables under CRC (unit: ×103 sets).
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Figure 5: Simulation diagram of the total cost under CRC (unit: ×105 Yuan).
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Figure 6: Simulation diagram of the inventories under FRC (unit: ×103 sets).
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Figure 7: Simulation diagram of the control variables under FRC (unit: ×103 sets).
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0en, we will perform the simulation tests to compare
the mitigation effect of the BE between the proposed FRC
approach and the CRC approach. Set the initial values as
follows: x1(0) � 14, x2(0) � 12, x3(0) � 8, and x4(0) � 6
(unit: ×103 sets). Set the nominal values as follows:
x
→

1 � 155, x
→

2 � 140, x
→

3 � 120, and x
→

4 � 80 (unit: ×103
sets); u

→
1 � 130, u

→
2 � 120, u

→
3 � 50, and u

→
4 � 70 (unit:

×103 sets); we let τ1 � τ2 � τ3 � τ4 � 4 (unit: day), and the
customers’ demand meets the normal distribution
N(6, 0.32). 0en, the simulation results are shown in
Figures 3–8, in which Figures 3–5 are the simulation dia-
grams under CRC, and Figures 6–8 are the simulation di-
agrams under FRC.

As shown in Figures 3–5, by utilizing the CRC approach
to mitigate the BE of the uncertain CLSC with hybrid
recycling channels and lead times, there are larger fluctu-
ations for the variables of the CLSC system, which result in
the worse mitigation level of the BE and the higher total cost
of the CLSC. On the contrary, it can be seen from Figures
6–8 that the FRC approach proposed in this paper can
mitigate the BE more effectively and make the CLSC system
to be robustly stable. Also, the fluctuation ranges of all
variables under the FRC approach are less that those under
the CRC approach. Especially, compared with the CRC
approach, the FRC approach realizes the total cost of the
CLSC system in the stable and lower levels.0erefore, for the
mitigation of the BE caused by uncertainties and lead times,
the FRC approach proposed in this paper can more effec-
tively guarantee the interests of enterprises in the supply
chain and ensure the long-term and stable development of
the CLSC.

6. Conclusions

BE is a universal phenomenon in the operation process of
the supply chain system. 0erefore, the mitigation of the BE
has become one of the most focused and urgent issues for
enterprises in the supply chain. In this paper, we have set up
an uncertain model of the CLSC with hybrid recycling

channels and lead times. To implement the flexible switching
in the CLSC system, the aforementioned model is trans-
formed into a CLSC fuzzy model. 0en, the manufacturer’s
production patterns and the retailer’s ordering patterns are
put forward according to their respective inventory levels. A
new FRC approach is proposed to mitigate the BE of the
uncertain CLSC with lead times. Simulation results show
that this approach can effectively mitigate the impacts of
uncertainties and lead times on the BE of the CLSC and
guarantee the CLSC system in a robust stable state, which
will reduce the loss of the CLSC caused by the BE. It is
known from this paper and [19] that the FRC approach is an
effective approach to mitigate the BE and can improve the
mitigation effect of the CRC approach. For the future re-
search directions, one is how to coordinate the cost sharing
among the manufacturer, the retailer, and the 3PRP; another
is that the FRC approach is combined with other approaches
to more effectively mitigate the BE.

Abbreviations

x1(k): Manufacturer’s inventory at period k
x2(k): Retailer’s inventory at period k
x3(k): Customers’ inventory at period k
x4(k): 3PRP’s inventory at period k
u1(k): Manufacturer’s production variable at period k
u2(k): Retailer’s ordering variable at period k
u3(k): Manufacturer’s used products recycling

variable at period k
u4(k): 3PRP’s used products recycling variable at

period k
w1(k): Customers’ demand at period k
τ1: Manufacturer’s production lead time
τ2: Retailer’s ordering lead time
τ3: Lead time of the used products recycled by the

manufacturer
τ4: Lead time of the used products recycled by

3PRP
η: Remanufacturing rate
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Figure 8: Simulation diagram of the total cost under FRC (unit: ×105 Yuan).
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Δη: Uncertainty of η
μ: Return rate of the new products
Δμ: Uncertainty of μ
λ: Disposal rate
Δλ: Uncertainty of λ 0≤ η, μ, λ≤ 1, η + λ � 1
z(k): Total cost of the CLSC at period k
ch1: Manufacturer’s unit inventory cost
Δch1: Uncertainty of ch1
ch2: Retailer’s unit inventory cost
Δch2: Uncertainty of ch2
ch3: 3PRP’s unit inventory cost
Δch3: Uncertainty of ch3
cn: Unit production cost of the new product
Δcn: Uncertainty of cn

cr: Unit remanufacturing cost
Δcr: Uncertainty of cr

cm: Unit recycling cost from customers to the
manufacturer

Δcm: Uncertainty of cm

ct: Unit recycling cost from customers to 3PRP
Δct: Uncertainty of ct

cmt: Unit recycling cost from 3PRP to the
manufacturer

Δcmt: Uncertainty of cmt

cq: Unit return cost
Δcq: Uncertainty of cq

cd: Unit disposal cost
Δcd: Uncertainty of cd

cs: Retailer’s unit ordering cost
Δcs: Uncertainty of cs

Ri: 0e ith fuzzy rule, i � 1, 2, . . . , r

r: 0e number of fuzzy rules
Mi

j: 0e fuzzy set, j � 1, 2, . . . , n

τe: 0e eth lead time, e � 1, 2, . . . , g

g: 0e number of lead times
n: 0e number of node enterprises
Mi

j(xj(k)): 0e grade of membership of xj(k) in the fuzzy
set Mi

j

μi(x(k)): 0e membership degree of the ith rule
‖·‖2: ℓ2[0,∞) norm
Gc: 0e cth MORG, c � 1, 2, . . . , 􏽑

n
j�1(mj − 1)

Ic: 0e set of the rule numbers in Gc

mj: 0e number of the fuzzy partitions of the jth
input variable

Ft
1(x1(k)): 0e fuzzy partitions of x1(k), t � 1, 2

Fs
2(x2(k)): 0e fuzzy partitions of x2(k), s � 1, 2

D0m: Television manufacturer’s safe inventory
D1m: Television manufacturer’s expected inventory
Dmmax: Television manufacturer’s maximum inventory
D0r: Television retailer’s safe inventory
D1r: Television retailer’s expected inventory
Drmax: Television retailer’s maximum inventory.
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In this paper, a robust �nite-time fault-tolerant control (FTC) scheme is developed for uncertain linear systems in the presence of
actuator faults. Since the system uncertainties and actuator faults are unknown, the controller parameters are updated online by
the adaptive laws without the need for fault detection and isolation. It is proved that the proposed state-feedback model reference
adaptive �nite-time FTC scheme can guarantee that the tracking error converges to a small neighborhood of the origin in �nite
time. An application example for an aircraft lateral-directional dynamic system is presented to show the e�ectiveness of the
proposed control scheme.

1. Introduction

In a practical system, e.g., networked control system and
�ight control system, the actuator component usually su�ers
from a partial loss of e�ectiveness (LOE) or even a total loss
of control (LOC) due to the increasing complexity of system
itself and operating environment [1–5]. See for example, the
rudder of an aircraft may experience a loss of gain in the
control channel or be stuck in a �xed position. Such actuator
faults may degrade the system performance, cause system
instability, and even lead to catastrophic accidents. In order
to improve system reliability and security, it is signi�cantly
important to consider the fault-tolerant control (FTC)
problem. Numerous FTC strategies have been proposed
which can be classi�ed into two main types: (1) passive
method and (2) active one. Passive FTC is actually a robust
scheme by designing a �xed controller which ensures the
closed-loop system be insensitive to speci�c preconsidered
faults, see for example [6–9]. Unlike the passive control
method, the active FTC method can guarantee the stability
of the entire closed-loop system by adjusting the parameters
or structure of the controller corresponding to the occurred
fault. �erefore, compared with the passive control method,
the active method is more �exible and practical. Fault

detection and diagnosis (FDD) can provide fault in-
formation, for example, a sliding mode observer was de-
veloped in [10] for detecting and reconstructing actuator and
sensor faults. Several active FTC methods based on FDD
have been proposed in literatures, such as switching-based
design [11], sliding mode control-based design [12, 13],
pseudo-inverse approach [14], and model predictive con-
trol-based design [15]. It is noted that the performance of
these active methods depends heavily on the accuracy of
FDD.

On the contrary, adaptive FTC which is a kind of robust
technique and a main class of active FTC has been widely
used due to its �exibility and diversity in design and its
ability to handle unknown actuator faults without the need
for FDD modules [16–28]. By considering that the stuck
fault is bounded, a robust adaptive FTC scheme was pro-
posed for uncertain linear systems in [16]. In [17], a direct
adaptive control scheme was designed to compensate for
spacecraft systems with multiple actuator faults and inertia
matrix uncertainties. A robust adaptive control strategy
based on the generalized restricted potential function was
proposed for linear systems in [18] to achieve the desired
tracking error norm bound. By employing the adaptive
backstepping technique, an adaptive control strategy was
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presented to deal with stochastic LOE faults for half-car
active suspension systems in [19]. In [20, 21], two adaptive
fault-tolerant controllers were developed with LOC faults
only. By designing the auxiliary systems, the fault-tolerant
constrained controllers were designed to achieve FTC in the
presence of input amplitude saturation in [22, 23]. More-
over, as a promising adaptive control method, model ref-
erence adaptive control (MRAC) has been widely applied to
guarantee the desired tracking performance and handle
unknown actuator faults and system uncertainties. In
[29, 30], state-feedback FTC schemes were presented to
ensure the plant state asymptotically tracks the reference
model state, and in [31, 32], output tracking property was
guaranteed by designing state-feedback MRAC schemes.

It is noted that the aforementioned control laws only
guarantee the asymptotic stability of the system, that is,
they only promise the stability of infinite time. However, in
practice, we expect the desired system performance to be
achieved in a finite time. For example, the actual attitude of
the aircraft must recover the desired attitude within a finite
time once fault occurring. Since finite-time control has a
faster convergence rate, better robustness against un-
certainties and disturbances, it has drawn a lot of attention.
.erefore, designing a finite-time FTC scheme is of great
significance. In [33–38], the issues of finite-time stability
were investigated for fault-free cases. Two finite-time
command filtered backstepping-based controllers were
proposed in [33, 34], which guarantee the finite-time
tracking property. In order to solve the problem of finite-
time FTC, a number of control schemes have been de-
veloped in [39–41] and applied to spacecraft attitude
control. In [39], a finite-time attitude controller was
designed based on sliding mode control technology. A
finite-time terminal sliding mode controller was proposed
in [40] by using the reconstruction information of the
adaptive terminal sliding mode observer. It is worth
mentioning that the designed controllers in [36, 39, 40]
contain the sign functions, which may cause the undesired
controller chattering problem. .erefore, it is more valu-
able to design the chattering-free finite-time FTC scheme.
In addition, due to the inevitable existence of uncertainties,
it is necessary and a key challenge to develop control
strategies for uncertain systems. In [42], a robust adaptive
hierarchical insensitive tracking controller was designed
for linear systems with uncertainties in the system and
input matrices.

Motivated by the above discussion, this paper will study
the finite-time tracking control of uncertain linear systems
with unknown actuator faults. .e main contributions are
given as follows:

(1) A robust model reference adaptive fault-tolerant
tracking control scheme with finite-time conver-
gence property for linear systems is developed to
compensate for time-varying system matrix un-
certainty and unknown actuator faults without re-
quiring fault detection and isolation

(2) .e unknown parameters caused by system un-
certainty and actuator faults can be estimated by the

designed tracking error-driven adaptive laws, which
promises the adaptivity of the proposed controller

(3) .e proposed control law is chattering-free, which is
more practical for engineering applications

.e rest of this paper is organized as follows. In Section 2,
the problem to be addressed is formulated and some pre-
liminaries are introduced. A robust adaptive finite-time FTC
scheme is developed in Section 3. In Section 4, an application
to an aircraft lateral-directional dynamic system is presented
to illustrate the effectiveness of the proposed scheme. Finally,
the conclusion is given in Section 5.

Notations. Rn represents the n-dimensional Euclidean
space, while Rn×m refers to the set of all n × m real matrices.
x ∈ Rn denotes that x is an n-dimensional vector, and
x ∈ Rn×m means that x is an n × m matrix. ‖ · ‖ denotes the
Euclidean norm of a vector or matrix. .e superscript “T”
stands for matrix transposition. diag . . .{ } represents a block-
diagonal matrix. λmin(·) and λmax(·) denote the minimum
and maximum eigenvalues of a matrix, respectively. Im

stands for the m-dimensional identity matrix.

2. Preliminaries and Problem Statement

2.1. Preliminaries.

Definition 1 (see [43]). Consider an autonomous dynamic
system:

_x � f(x),

f(0) � 0,
(1)

where f : U0⟼Rn is continuous on an open neighborhood
U0 of the origin. .e equilibrium x � 0 of the system is
uniformly finite-time stable if it is uniformly Lyapunov
stable and for any initial condition x0 ∈ U where U ⊂ U0, if
there is a settling time function T : U⟼(0,∞), such that
every solution x(t, x0) of system (1) satisfies x(t, x0) ∈ U\ 0{ }

for t ∈ [0, T(x0)) with the properties: limt⟶T(x0)x(t, x0) �

0 and x(t, x0) � 0, ∀t≥T(x0).
If U � U0 � Rn, then the origin is a uniformly globally

finite-time stable equilibrium.

Lemma 1 (see [44]). For xj ∈ R, j � 1, 2, . . . , n, and
0< q< 1, the following relation holds:

􏽘

n

j�1
xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

q

≤ 􏽘
n

j�1
xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
. (2)

Lemma 2 (see [45]). For a positive definite matrix A ∈ Rn×n

and any x ∈ Rn, the following inequality holds:

λmin(A)‖x‖
2 ≤ x

T
Ax≤ λmax(A)‖x‖

2
. (3)

Lemma 3 (see [36]). For any scalar δ0 > (1/2), matrices K,
􏽢K, 􏽥K ∈ Rn, and 􏽥K � 􏽢K − K, the inequality in (4) holds:
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− 􏽥K
T 􏽢K≤ −

2δ0 − 1
2δ0

􏽥K
T 􏽥K +

δ0
2

K
T
K. (4)

Lemma 4 (see [46]). For some constants a> 0, b> 0, and
μ> 0, the following relation holds:

|y|
a
|z|

b ≤
a

a + b
μ|y|

a+b
+

b

a + b
μ− a/b

|z|
a+b

, (5)

where y and z are real variables.

Lemma 5 (see [36]). Consider the system _x � f(x, u). If
there exists a continuous positive definite function V(x), real
numbers η> 0, 0< α< 1, and 0<ψ <∞, such that

_V(x)≤ − ηV
α
(x) + ψ, (6)

then the system _x � f(x, u) is practical finite-time stable. =e
trajectories of the system can reach the set
x | Vα(x)≤ (ψ/(1 − ι)η)􏼈 􏼉 in a finite time Tr, which is defined
as

Tr ≤
V1− α(0)

ηι(1 − α)
, (7)

where 0< ι< 1 and V(0) is the initial value of V(x).

2.2. System Model. Consider the linear systems with time-
varying system matrix uncertainty described by

_x(t) � (A + ΔA(t))x(t) + Bu(t), (8)

where x(t) ∈ Rn is the state vector which can be available at
every instant and u(t) � [u1(t), u2(t), . . . , um(t)]T ∈ Rm is
the control input vector, which means that there are m
actuators in the system. A ∈ Rn×n and B ∈ Rn×m represent
the nominal system and input matrices, respectively, where
B is full-row rank. ΔA(t) represents the time-varying system
matrix uncertainty which satisfies the following condition:

ΔA(t) � BH(t), (9)

where H(t) is an unknown continuous matrix function with
‖H(t)‖≤ h and h is an unknown positive constant.

Remark 1. For a practical system, e.g., aircraft system [47]
and industrial system [48], it can always be linearized and
decoupled into the form of system (8). .e full-row rank
condition of B is a general requirement for the system, see
for example [18, 49], whichmeans that there must be enough
control channels in the system, especially for actuator re-
dundancy purpose. .en, the establishment of condition (9)
is obvious, since any n-dimensional square matrix can be
expressed in the form of (9) by a full-row rank matrix B.

2.3. Actuator Fault Model. .e actuator fault model con-
sidered in this article is described as

ui(t) � σivi(t) + ρiui(t),

σiρi � 0 , i � 1, 2, . . . , m ,
(10)

where vi(t) denotes the designed control input for the ith
actuator, ui(t) represents the ith actuator’s uncontrollable
time-varying fault, σi ∈ [0, 1] and ρi ∈ 0, 1{ } are unknown
fault indicators for the ith actuator, and σi and ui(t) are
piecewise constant functions of time. More specifically

(1) .e ith actuator is fault-free when σi � 1 and ρi � 0
(2) .e ith actuator is partial LOE when 0< σi < 1 and

ρi � 0
(3) .e ith actuator corresponds to outage when σi � 0

and ρi � 0
(4) .e ith actuator is stuck at ui(t) when σi � 0 and

ρi � 1

For convenience, the actual input vector u(t) of system
(8) can be formulated as

u(t) � σv(t) + ρu(t), (11)

where

σ � diag σ1, σ2, . . . , σm􏼈 􏼉,

ρ � diag ρ1, ρ2, . . . , ρm􏼈 􏼉,

v(t) � v1(t), v2(t), . . . , vm(t)􏼂 􏼃
T
,

u(t) � u1(t), u2(t), . . . , um(t)􏼂 􏼃
T

.

(12)

Remark 2. .e compact fault model (11) includes normal
(case 1), partial LOE faults (case 2) and total LOC faults
(cases 3 and 4), which can represent most of the possible
occurrences of an actuator in a practical system.

2.4. Control Objective. .e reference model is given as
_xm(t) � Amxm(t) + Bmrm(t), (13)

where xm(t) ∈ Rn is the reference state vector which can be
available at every instant, rm(t) ∈ Rm is the bounded ref-
erence input, and Am ∈ Rn×n is a Hurwitz matrix, that is,
there exist positive definite matrices P, Q ∈ Rn×n such that

A
T
mP + PAm � − Q. (14)

Some assumptions are to be introduced.

Assumption 1. rank(Bσ) � rank(B).

Assumption 2. .ere exist Kx ∈ Rm×n and Kr ∈ Rm×m such
that

A + BKx � Am,

BKr � Bm.
(15)

Remark 3. As discussed in [21], Assumption 1 is an actuator
redundancy condition which ensures that the system
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remains capable to be stabilized even with actuator faults. In
other words, the actuator faults satisfying Assumption 1 can
be completely compensated by the proposed algorithm.
Assumption 2 is a standard state-feedback state tracking
matching condition, i.e., [29, 50]. In our scheme, As-
sumption 2 ensures that system (8) can match reference
model (13) through state-feedback, so as to ensure the
performance of state tracking. More specifically, according
to Assumptions 1 and 2, it can be concluded that there exist
Kx ∈ Rm×n and Kr ∈ Rm×m such that

A + BσKx � Am,

BσKr � Bm.
(16)

Lemma 6 (see [51]). =e rank relation in Assumption 1 is a
necessary and sufficient condition for the existence of a matrix
k1 ∈ Rm such that

Bσk1 � − Bρu. (17)

Our control objective is to design a robust adaptive finite-
time FTC scheme for system (8) in the presence of unknown
actuator faults and system matrix uncertainty, such that the
finite-time tracking is ensured for the given reference model
(13).

3. Robust Adaptive Finite-Time Fault-Tolerant
Control Scheme

In this section, a robust adaptive finite-time FTC scheme is
developed to achieve the desired state tracking property in
the presence of unknown actuator faults and system matrix
uncertainty.

3.1. Controller Structure. Denote the tracking error
e � [e1, e2, . . . , en]T as

e � x − xm. (18)

Let 􏽢Kx � [ 􏽢Kx1,
􏽢Kx2, . . . , 􏽢Kxm]T ∈ Rm×n, 􏽢Kr � [ 􏽢Kr1,

􏽢Kr2,

. . . , 􏽢Krm]T ∈ Rm×m, and 􏽢k1 � [􏽢k11,
􏽢k12, . . . , 􏽢k1m]T ∈ Rm be

the estimates of Kx, Kr, and k1, respectively..en, the finite-
time FTC scheme in this article is constructed as

v � 􏽢Kxx + 􏽢Krrm + 􏽢k1 + k2 + k3 + k4, (19)

where

k2 �
BTPeeTQe

2 eTPB
���

���2 + 1
, (20)

and k3 and k4 ∈ Rm will be designed later.
By considering actuator faults (11), substituting (11) and

(19) into (8), the closed-loop system can be formulated as

_x � (A + ΔA)x + Bρu + Bσ 􏽢Kxx + 􏽢Krrm + 􏽢k1 + k2 + k3 + k4􏼐 􏼑.

(21)

Together with (13), (16), (18), and (21) and using Lemma
6, the tracking error system can be derived as

_e � Ame + BHx + Bσ 􏽢Kx − Kx􏼐 􏼑x + Bσ 􏽢Kr − Kr􏼐 􏼑rm

+ Bσ 􏽢k1 − k1􏼐 􏼑 + Bσ k2 + k3 + k4( 􏼁.

(22)

Lemma 7 (see [16]). For the diagonal matrix σ in (11), there
exists a constant 0< χ ≤ 1, such that

χ e
T
PB

����
����
2
≤ e

T
PBσB

T
Pe≤ e

T
PB

����
����
2
. (23)

Now, introducing two unknown positive scalars ξ1 and
ξ2 as

ξ1 �
1 − l1χ

χ
,

ξ2 �
h

χ
,

(24)

where 0< l1 < 1 is a chosen constant and h is the upper
bound of H(t).

Then, term k3 in (19) can be designed as

k3 �

−
l2B

TPe l1 + 􏽢ξ1􏼐 􏼑 eTPe( 􏼁
α

2 eTPB
���

���2
, if eTPB

����
����> 0,

0m×1, if eTPB
����

���� � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

where 􏽢ξ1 is the estimate of unknown constant ξ1 and l2 > 0
and 0< α< 1 are chosen constants.

Term k4 in (19) is thus designed as

k4 � −
􏽢ξ
2
2‖x‖2BTPe

􏽢ξ2‖x‖ BTPe
���

��� + l3
, (26)

where 􏽢ξ2 is the estimate of ξ2 and l3 is a chosen positive
constant.

Remark 4. .edesigned controller (19) consists of six items:
􏽢Kxx, 􏽢Krrm, 􏽢k1, k2, k3, and k4. 􏽢Kxx + 􏽢Krrm is inherited from
the typical state-feedback model reference controller
structure. 􏽢k1 is the estimate of k1 given in (17), which is to
eliminate the effects of the stuck fault u. k2 is designed
especially for stability analysis purpose. k3 is actually an
exponential term which is related to a finite-time control. k4
is designed to eliminate the effects of uncertainty.

3.2. Adaptive Laws. To construct v, for i � 1, 2, . . . , m, the
adaptive laws to update 􏽢Kxi, 􏽢Kri, 􏽢k1i, 􏽢ξ1, and 􏽢ξ2 are chosen as

_􏽢Kxi � − Γi 2xe
T
Pbi + Λi

􏽢Kxi􏼐 􏼑, (27)

_􏽢Kri � − Υi 2rme
T
Pbi +Θi

􏽢Kri􏼐 􏼑, (28)

_􏽢k1i � − μi 2e
T
Pbi + τi

􏽢k1i􏼐 􏼑, (29)
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_􏽢ξ1 � c1 l2 e
T
Pe􏼐 􏼑

α
− ς1􏽢ξ1􏼐 􏼑, (30)

_􏽢ξ2 � c2 2 e
T
PB

����
����‖x‖ − ς2􏽢ξ2􏼐 􏼑, (31)

where bi represents the ith column of B, Γi,Λi ∈ Rn×n, and
Υi,Θi ∈ Rm×m are chosen constant diagonal positive definite
matrices, and μi, τi > 0 and c1, c2, ς1, ς2 > 0 are chosen con-
stants. .e initial values of 􏽢ξ1 and 􏽢ξ2 are positive, that is,
􏽢ξ1(0)> 0 and 􏽢ξ2(0)> 0.

So far we have obtained the state-feedback model ref-
erence adaptive finite-time FTC scheme. For clarity, it is
summarized in Appendix A.

3.3. Stability Analysis

Theorem 1. Consider the linear systems described by (8)
with unknown actuator faults (11) and system matrix un-
certainty, if Assumptions 1 and 2 are satisfied, the control
signal in (19) updated by the adaptive laws (27)–(31) can
guarantee that the tracking errors converge to a small
neighborhood of the origin in finite time.

Proof. See Appendix B. □

4. Application: Aircraft Attitude Control

In this section, simulation studies on a lateral-directional dy-
namic model of the F-18 high-angle-of-attack research vehicle
(HARV) system [47] are given to illustrate the effectiveness of
the proposed robust adaptive finite-time FTC scheme. To
present the superiority of the proposed control scheme, the
developed controller (19) is comparedwith the one given in [28].

4.1. F-18 HARV Model. .e state variables for the linear
lateral-directional dynamic model of the F-18 HARV system
are side-slip angle β (deg), roll rate p (deg/s), and yaw rate r
(deg/s), that is, x � [β, p, r]T. .e control input vector
u � [δDT, δAI, δRU, δRTV, δYTV]T, where δDT, δAI, δRU, δRTV,
and δYTV represent the differential tail deflection (deg),
aileron deflection (deg), rudder deflection (deg), roll thrust
vector deflection (deg), and yaw thrust vector deflection
(deg), respectively.

As in [47], the linear plant is described by (8) with

A �

− 0.059 0.496 − 0.868

− 5.513 − 0.939 0.665

0.068 0.026 − 0.104

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

0.006 0.006 0.004 0.000 0.090

1.879 1.328 0.029 0.675 0.217

− 0.109 − 0.096 − 0.084 0.007 − 2.974

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(32)

.e time-varying matrix H(t) is given as

H(t) �

0.1sin(0.1t) 0 0

0 0.5 0

0 0 1.6

0 0 0.8

e− 2t − 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

4.2. Simulation Scenarios. .e reference model is chosen as
(13) with

Am �

− 0.153 0.486 − 0.778

− 6.310 − 2.971 0.331

3.139 0.199 − 3.065

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Bm � B.

(34)

To demonstrate the effectiveness of the proposed
adaptive finite-time FTC scheme, the following actuator
faults are simulated:

u1(t) � 0.5v1(t), for t≥ 10 s,

u2(t) � 0, for 30 s≤ t< 50 s,

u4(t) � − 5, for 70 s≤ t< 90 s,

ui(t) � vi(t), i � 1, 2, 3, 4, 5, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

In (35), u1(t) � 0.5v1(t) denotes the differential tail
deflection δDT loses its 50% effectiveness; u2(t) � 0 denotes
that the second actuator corresponds to outage, that is, the
aileron deflection δAI stuck at the fixed value 0 deg; and
u4(t) � − 5 denotes the roll thrust vector deflection δRTV

cannot be influenced by control action v4(t) and stuck at the
fixed value − 5 deg. Table 1 shows the fault indication ma-
trices σ and ρ in different time intervals.

.e initial conditions of the proposed controller (19) are
given as follows:

x(0) � [0.1, 0.2, 1.1]
T
,

xm(0) � [− 0.1, 0.1, 1]
T
,

􏽢Kx1(0) � [− 1, 0, − 1]
T
,

􏽢Kx2(0) � [1, − 1, 1]
T

,

􏽢Kx3(0) � [− 1, − 1, 0]
T
,

􏽢Kx4(0) � [0, − 1, 0]
T

,

􏽢Kx5(0) � [− 1, 0, 1]
T

,

􏽢ξ1(0) � 0.5,

􏽢ξ2(0) � 1.8,

􏽢Kr(0) � I5,

􏽢k1i(0) � 0, i � 1, 2, 3, 4, 5.

(36)

.e reference input signal rm � [0, 0, 0, 0, 2]T. In order to
obtain a good FTC effect of the designed controller (19), after
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Figure 1: Trajectories of plant state x(t) and reference model state xm(t).

Table 1: Fault indication matrices σ and ρ.

Time interval σ ρ
0≤ t< 10 s diag 1, 1, 1, 1, 1{ } diag 0, 0, 0, 0, 0{ }

10 s ≤ t< 30 s
50 s ≤ t< 70 s diag 0.5, 1, 1, 1, 1{ } diag 0, 0, 0, 0, 0{ }

and t≥ 90 s
30 s ≤ t< 50 s diag 0.5, 0, 1, 1, 1{ } diag 0, 0, 0, 0, 0{ }

70 s ≤ t< 90 s diag 0.5, 1, 1, 0, 1{ } diag 0, 0, 0, 1, 0{ }
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repeatedly debugging, the controller parameters are chosen
as

Γi � I3,

Λi � 0.1I3,

Υi � I5,

Θi � 0.1I5,

μi � 1,

τi � 0.1, i � 1, 2, 3, 4, 5,

c1 � c2 � 1,

ς1 � 0.1,

ς2 � 0.5,

l1 � 0.1,

l2 � 0.5,

l3 � 1,

α � 0.8.

(37)

Although the parameters are chosen by trial and error,
there are still some rules to be referred to. .e larger the
adaptive gains Γi and Λi in (27) are, the more drastic the
change of Kxi is, which leads to stronger control effect.

Similar phenomenon lies in (28)–(31). However, too-large
adaptive gains will affect the smoothness of the controller. l1
and l2 have direct impacts on k3, which means that they will
affect the strength of the controller directly. l3 is a constant
relating to the smoothness of the controller, while a large l3
will lead to a large ψ and thus reduce the finite-time con-
vergence accuracy. If α chosen by the designer is too small,
then k3 will exhibit a fast rate of change when the tracking
error turns small, which is not expected in a practical system.
In sum, to obtain a more practical FTC performance, the
designers should choose the parameters with a compromise
among the convergence rate, convergence accuracy, and the
amplitude and smoothness of the control signals.

.rough trial and error, the initial conditions and pa-
rameters of the controller given in [28] are chosen as follows
to obtain a good FTC effect:
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Figure 2: Trajectories of state tracking error e(t).
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Figure 3: Actual control signal u(t) and designed control signal
v(t) of controller (19).
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􏽢H11(0) � [− 1, 0, − 1]
T
,

􏽢H12(0) � [1, − 1, 1]
T
,

􏽢H13(0) � [− 1, − 1, 0]
T
,

􏽢H14(0) � [0, − 1, 0]
T
,

􏽢H15(0) � [− 1, 0, 1]
T
,

􏽢k1(0) � 􏽢k2(0) � 􏽢k3(0) � 0,

􏽢M1(0) � I5,

η � 1,

c1 � c2 � c3 � 0.6,

L � 0,

Γi � 0.6,

Λi � 0.6, i � 1, 2, 3, 4, 5.

(38)

4.3. Simulation Results. Figure 1 shows the plant state x(t)

and reference model state xm(t) by using the proposed
controller (19) and the one given in [28]; Figure 2 shows the
state tracking error e(t) by using controller (19) and the one
given in [28]; Figure 3 shows the actual control signal u(t)

and designed control signal v(t) of controller (19); and
Figure 4 shows the actual control signal u(t) and designed
control signal v(t) of the controller given in [28].

By using the proposed controller (19), it can be seen that
(1) during 0≤ t< 10 s, there is only system matrix un-
certainty and no fault, and the tracking performance can be
guaranteed in finite time; (2) whenever a new fault occurs at
10, 30, and 70 s and the fault recovers at 50 and 90 s, after the
transient response, the tracking performance recovers.
Similar conclusions can be obtained when using the con-
troller given in [28], while it only guarantees the asymptotic
tracking property, that is, it only promises the stability of
infinite time. It is obvious that the proposed robust finite-
time FTC scheme possesses a better transient response and
faster convergence rate.

Summarizing all the above results, it is clear that the
proposed robust adaptive finite-time FTC scheme can ef-
fectively ensure the state practical tracking property in finite
time in the presence of unknown actuator faults and system
matrix uncertainty.

5. Conclusions

In this article, a state-feedback model reference adaptive
finite-time FTC scheme has been developed for linear sys-
tems in the presence of unknown actuator faults and system
matrix uncertainty. .e designed robust controller updated
by the adaptive laws ensures that the tracking errors con-
verge to a small neighborhood of the origin in finite time.
Finally, the performance of the proposed control scheme is
illustrated by simulation results for a lateral-directional
dynamic model of the F-18 HARV system.

Our future work will focus on the control problem for
the system under practical constrains, such as actuator
amplitude saturation, rate limitation, and input matrix
uncertainty.

Appendix

A. The Control Algorithm

.e proposed control algorithm is summarized as follows:

Step 1. Give the initial state x(0), xm(0), the reference
model input rm(t), and initial values of parameter
estimates 􏽢Kx(0), 􏽢Kr(0), 􏽢k1(0), 􏽢ξ1(0), and 􏽢ξ2(0).
Step 2. For i � 1, 2, . . . , m, choose the following
adaptive gains:

Γi, Λi, Υi, Θi, μi,

τi, c1, c2, ς1, ς2,
(A.1)
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Figure 4: Actual control signal u(t) and designed control signal
v(t) of the controller given in [28].
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and constants

l1, l2, l3, α. (A.2)

Step 3. Estimate the unknown parameters by adaptive
laws:

_􏽢Kxi � − Γi 2xe
T

Pbi + Λi
􏽢Kxi􏼐 􏼑,

_􏽢Kri � − Υi 2rme
T
Pbi + Θi

􏽢Kri􏼐 􏼑,

_􏽢k1i � − μi 2e
T
Pbi + τi

􏽢k1i􏼐 􏼑,

_􏽢ξ1 � c1 l2 e
T
Pe􏼐 􏼑

α
− ς1􏽢ξ1􏼐 􏼑,

_􏽢ξ2 � c2 2 e
T
PB

����
����‖x‖ − ς2􏽢ξ2􏼐 􏼑.

(A.3)

Step 4. Obtain the controller:

v � 􏽢Kxx + 􏽢Krrm + 􏽢k1 + k2 + k3 + k4, (A.4)

where

k2 �
BTPeeTQe

2 eTPB
���

���2 + 1
,

k3 �

−
l2B

TPe l1 + 􏽢ξ1􏼐 􏼑 eTPe( 􏼁
α

2 eTPB
���

���2
, if eTPB

����
����> 0,

0m×1, if eTPB
����

���� � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k4 � −
􏽢ξ
2
2‖x‖2BTPe

􏽢ξ2‖x‖ BTPe
���

��� + l3
.

(A.5)

B. Proof of Theorem 1

Proof. Construct the Lyapunov function as

V � e
T
Pe +

1
2

􏽘
i�1

m

σi
􏽥K

T

xiΓ
− 1
i

􏽥Kxi +
1
2

􏽘
i�1

m

σi
􏽥K

T

riΥ
− 1
i

􏽥Kri

+
1
2

􏽘
i�1

m

σiμ
− 1
i

􏽥k
2
1i +

1
2
c

− 1
1 χ􏽥ξ

2
1 +

1
2
c

− 1
2 χ􏽥ξ

2
2,

(B.1)

where 􏽥Kxi � 􏽢Kxi − Kxi, 􏽥Kri � 􏽢Kri − Kri, 􏽥k1i � 􏽢k1i − k1i,
􏽥ξ1 � 􏽢ξ1 − ξ1, and 􏽥ξ2 � 􏽢ξ2 − ξ2.

.e time derivative of V can be derived as follows:

_V � 2e
T
P􏼔Ame + BHx + Bσ 􏽥Kxx + Bσ 􏽥Krrm + Bσ􏽥k1

+ Bσ k2 + k3 + k4( 􏼁􏼕 + 􏽘
i�1

m

σi
􏽥K

T

xiΓ
− 1
i

_􏽢Kxi + 􏽘
i�1

m

σi
􏽥K

T

riΥ
− 1
i

_􏽢Kri

+ 􏽘
i�1

m

σiμ
− 1
i

􏽥k1i
_􏽢k1i + c

− 1
1 χ􏽥ξ1

_􏽢ξ1 + c
− 1
2 χ􏽥ξ2

_􏽢ξ2.

(B.2)

Now, discuss the term 2eTPBσk3 in two cases.

Case 1. If ‖eTPB‖> 0, by using Lemma 7, it has

2e
T
PBσk3 � −

2l2e
TPBσBTPe l1 + 􏽢ξ1􏼐 􏼑 eTPe( 􏼁

α

2 eTPB
���

���2

≤ − χl2 l1 + 􏽢ξ1􏼐 􏼑 e
T
Pe􏼐 􏼑

α
.

(B.3)

Case 2. If ‖eTPB‖ � 0, due to the fact of B being full-row
rank, for positive definite matrix P, it follows that PB is full-
row rank, that is, in this case e � 0n×1, hence,

2e
T
PBσk3 � − χl2 l1 + 􏽢ξ1􏼐 􏼑 e

T
Pe􏼐 􏼑

α
� 0. (B.4)

Combining the above discussions, we get

2e
T
PBσk3 ≤ − χl2 l1 + 􏽢ξ1􏼐 􏼑 e

T
Pe􏼐 􏼑

α

� − l2 e
T

Pe􏼐 􏼑
α

+ l2 1 − l1χ( 􏼁 e
T
Pe􏼐 􏼑

α

− l2χ􏽢ξ1 e
T
Pe􏼐 􏼑

α
.

(B.5)

Substituting (20), (26), and (B.5) into (B.2), we obtain

_V≤ − l2 e
T
Pe􏼐 􏼑

α
+ 2e

T
PAme + 2 e

T
PB

����
����‖H‖‖x‖

+ 2e
T
PBσ 􏽥Kxx + 2e

T
PBσ 􏽥Krrm + 2e

T
PBσ􏽥k1

+ l2 1 − l1χ( 􏼁 e
T
Pe􏼐 􏼑

α
− l2χ􏽢ξ1 e

T
Pe􏼐 􏼑

α

−
2􏽢ξ

2
2‖x‖2eTPBσBTPe

􏽢ξ2‖x‖ BTPe
���

��� + l3
+
2eTPBσBTPeeTQe

2 eTPB
���

���2 + 1

+ 􏽘
i�1

m

σi
􏽥K

T

xiΓ
− 1
i

_􏽢Kxi + 􏽘
i�1

m

σi
􏽥K

T

riΥ
− 1
i

_􏽢Kri

+ 􏽘
i�1

m

σiμ
− 1
i

􏽥k1i
_􏽢k1i + c

− 1
1 χ􏽥ξ1

_􏽢ξ1 + c
− 1
2 χ􏽥ξ2

_􏽢ξ2.

(B.6)
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According to the definition of ξ1 and ξ2 in (24), it has

l2 1 − l1χ( 􏼁 e
T
Pe􏼐 􏼑

α
� l2χξ1 e

T
Pe􏼐 􏼑

α
, (B.7)

2 e
T

PB
����

����‖H‖‖x‖≤ 2h e
T
PB

����
����‖x‖

� 2χξ2 e
T
PB

����
����‖x‖.

(B.8)

.en, using Lemma 7 and substituting (B.7) and (B.8)
into (B.6) yields that

_V≤ − l2 e
T
Pe􏼐 􏼑

α
+ e

T
A

T
mP + PAm􏼐 􏼑e + 2χξ2 e

T
PB

����
����‖x‖

+ 2e
T

PBσ 􏽥Kxx + 2e
T
PBσ 􏽥Krrm + 2e

T
PBσ􏽥k1

− l2χ􏽥ξ1 e
T
Pe􏼐 􏼑

α
−
2χ􏽢ξ

2
2‖x‖2 eTPB

����
����
2

􏽢ξ2‖x‖ BTPe
���

��� + l3

+
2 eTPB
����

����
2
eTQe

2 eTPB
���

���2 + 1
+ 􏽘

i�1

m

σi
􏽥K

T

xiΓ
− 1
i

_􏽢Kxi

+ 􏽘
i�1

m

σi
􏽥K

T

riΥ
− 1
i

_􏽢Kri + 􏽘
i�1

m

σiμ
− 1
i

􏽥k1i
_􏽢k1i

+ c
− 1
1 χ􏽥ξ1

_􏽢ξ1 + c
− 1
2 χ􏽥ξ2

_􏽢ξ2.
(B.9)

Substituting (14) and adaptive laws in (27)–(31) into
(B.9) yields

_V≤ − l2 e
T
Pe􏼐 􏼑

α
− e

T
Qe + 2χξ2 e

T
PB

����
����‖x‖

+ 2e
T
PBσ 􏽥Kxx + 2e

T
PBσ 􏽥Krrm + 2e

T
PBσ􏽥k1

− l2χ􏽥ξ1 e
T

Pe􏼐 􏼑
α

−
2χ􏽢ξ

2
2‖x‖2 eTPB

����
����
2

􏽢ξ2‖x‖ BTPe
���

��� + l3

+
2 eTPB
����

����
2
eTQe

2 eTPB
���

���2 + 1
− 2􏽘

m

i�1
σi

􏽥K
T

xixe
T
Pbi

− 􏽘

m

i�1
σi

􏽥K
T

xiΛi
􏽢Kxi − 2􏽘

m

i�1
σi

􏽥K
T

rirme
T
Pbi

− 􏽘
m

i�1
σi

􏽥K
T

riΘi
􏽢Kri − 2􏽘

m

i�1
σi

􏽥k1ie
T

Pbi

− 􏽘
m

i�1
σi

􏽥k1iτi
􏽢k1i + l2χ􏽥ξ1 e

T
Pe􏼐 􏼑

α
− ς1χ􏽥ξ1􏽢ξ1

+ 2χ􏽥ξ2 e
T
PB

����
����‖x‖ − ς2χ􏽥ξ2􏽢ξ2

� − l2 e
T

Pe􏼐 􏼑
α

− e
T
Qe − 􏽘

m

i�1
σi

􏽥K
T

xiΛi
􏽢Kxi − ς1χ􏽥ξ1􏽢ξ1

− 􏽘
m

i�1
σi

􏽥K
T

riΘi
􏽢Kri − 􏽘

m

i�1
σi

􏽥k1iτi
􏽢k1i − ς2χ􏽥ξ2􏽢ξ2

+
2χl3

􏽢ξ2‖x‖ eTPB
����

����

􏽢ξ2‖x‖ BTPe
���

��� + l3
+
2 eTPB
����

����
2
eTQe

2 eTPB
���

���2 + 1
.

(B.10)

.en, according to the inequality

0≤
c d

c + d
≤ c, ∀c, d≥ 0, c + d≠ 0, (B.11)

it has

2χl3
􏽢ξ2‖x‖ eTPB

����
����

􏽢ξ2‖x‖ BTPe
���

��� + l3
≤ 2χl3, (B.12)

2 eTPB
����

����
2
eTQe

2 eTPB
���

���2 + 1
≤ e

T
Qe. (B.13)

.en, substituting (B.12) and (B.13) into (B.10), we
obtain

_V≤ − l2 e
T

Pe􏼐 􏼑
α

− 􏽘
i�1

m

σi
􏽥K

T

xiΛi
􏽢Kxi − 􏽘

i�1

m

σi
􏽥K

T

riΘi
􏽢Kri

− 􏽘
i�1

m

σi
􏽥k1iτi

􏽢k1i − ς1χ􏽥ξ1􏽢ξ1 − ς2χ􏽥ξ2􏽢ξ2 + 2χl3.

(B.14)

From Lemma 3, for any ϑi, ci,ωi > (1/2), i � 1, 2, . . . , m,

and 91, 92 > (1/2), one has

− 􏽥K
T

xi
􏽢Kxi ≤ −

2ϑi − 1
2ϑi

􏽥K
T

xi
􏽥Kxi +

ϑi

2
K

T
xiKxi, (B.15)

− 􏽥K
T

ri
􏽢Kri ≤ −

2ci − 1
2ci

􏽥K
T

ri
􏽥Kri +

ci

2
K

T
riKri, (B.16)

− 􏽥k1i
􏽢k1i ≤ −

2ωi − 1
2ωi

􏽥k
2
1i +

ωi

2
k
2
1i, (B.17)

− 􏽥ξ1􏽢ξ1 ≤ −
291 − 1
291

􏽥ξ
2
1 +

91

2
ξ21, (B.18)

− 􏽥ξ2􏽢ξ2 ≤ −
292 − 1
292

􏽥ξ
2
2 +

92
2
ξ22. (B.19)

Now, substituting (B.15)–(B.19) into (B.14), we have
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_V≤ − l2 e
T
Pe􏼐 􏼑

α
− 􏽘

m

i�1

2ϑi − 1
2ϑi

σi
􏽥K

T

xiΛi
􏽥Kxi􏼠 􏼡

α

− 􏽘
m

i�1

2ci − 1
2ci

σi
􏽥K

T

riΘi
􏽥Kri􏼠 􏼡

α

− 􏽘
m

i�1

2ωi − 1
2ωi

σiτi
􏽥k
2
1i􏼠 􏼡

α

−
291 − 1
291

ς1χ􏽥ξ
2
1􏼠 􏼡

α

−
292 − 1
292

ς2χ􏽥ξ
2
2􏼠 􏼡

α

+ 􏽘
m

i�1

2ϑi − 1
2ϑi

σi
􏽥K

T

xiΛi
􏽥Kxi􏼠 􏼡

α

− 􏽘
m

i�1

2ϑi − 1
2ϑi

σi
􏽥K

T

xiΛi
􏽥Kxi

+ 􏽘

m

i�1

2ci − 1
2ci

σi
􏽥KriΘi

􏽥Kri􏼠 􏼡

α

− 􏽘

m

i�1

2ci − 1
2ci

σi
􏽥K

T

riΘi
􏽥Kri

+ 􏽘
m

i�1

2ωi − 1
2ωi

σiτi
􏽥k
2
1i􏼠 􏼡

α

− 􏽘
m

i�1

2ωi − 1
2ωi

σiτi
􏽥k
2
1i

+
291 − 1
291

ς1χ􏽥ξ
2
1􏼠 􏼡

α

−
291 − 1
291

ς1χ􏽥ξ
2
1

+
292 − 1
292

ς2χ􏽥ξ
2
2􏼠 􏼡

α

−
292 − 1
292

ς2χ􏽥ξ
2
2

+ 􏽘
m

i�1

ϑi

2
K

T
xiσiΛiKxi + 􏽘

m

i�1

ci

2
K

T
riσiΘiKri

+ 􏽘
m

i�1

ωi

2
σiτik

2
1i +

91

2
ς1χξ

2
1 +

92

2
ς2χξ

2
2 + 2χl3.

(B.20)

By applying Lemma 4, let

y �
2ϑi − 1
2ϑi

σi
􏽥K

T

xiΛi
􏽥Kxi,

z � 1,

a � α,

b � 1 − α,

μ �
1
α

,

(B.21)

it has

2ϑi − 1
2ϑi

σi
􏽥K

T

xiΛi
􏽥Kxi􏼠 􏼡

α

≤
2ϑi − 1
2ϑi

σi
􏽥K

T

xiΛi
􏽥Kxi + α, (B.22)

where α � (1 − α)αα/1− α.
Similarly, we can conclude that

2ci − 1
2ci

σi
􏽥K

T

riΘi
􏽥Kri􏼠 􏼡

α

≤
2ci − 1
2ci

σi
􏽥K

T

riΘi
􏽥Kri + α, (B.23)

2ωi − 1
2ωi

σiτi
􏽥k
2
1i􏼠 􏼡

α

≤
2ωi − 1
2ωi

σiτi
􏽥k
2
1i + α, (B.24)

291 − 1
291

ς1χ􏽥ξ
2
1􏼠 􏼡

α

≤
291 − 1
291

ς1χ􏽥ξ
2
1 + α, (B.25)

292 − 1
292

ς2χ􏽥ξ
2
2􏼠 􏼡

α

≤
292 − 1
292

ς2χ􏽥ξ
2
2 + α. (B.26)

Substituting (B.22)–(B.26) into (B.20) and applying
Lemma 2, we have

_V≤ − 􏽘
m

i�1

2ϑi − 1( 􏼁λmin Λi( 􏼁

ϑiλmax Γ− 1i( 􏼁
􏼠 􏼡

α 1
2
σi

􏽥K
T

xiΓ
− 1
i

􏽥Kxi􏼒 􏼓
α

− 􏽘
m

i�1

2ci − 1( 􏼁λmin Θi( 􏼁

ciλmax Υ− 1
i( 􏼁

􏼠 􏼡

α 1
2
σ i

􏽥K
T

riΥ
− 1
i

􏽥Kri􏼒 􏼓
α

− 􏽘
m

i�1

2ωi − 1( 􏼁μiτi

ωi

􏼠 􏼡

α 1
2
σiμ

− 1
i

􏽥k
2
1i􏼒 􏼓

α

−
291 − 1( 􏼁c1ς1

91
􏼠 􏼡

α 1
2
c

− 1
1 χ􏽥ξ

2
1􏼒 􏼓

α

−
292 − 1( 􏼁c2ς2

92
􏼠 􏼡

α 1
2
c

− 1
2 χ􏽥ξ

2
2􏼒 􏼓

α

− l2 e
T
Pe􏼐 􏼑

α
+ 􏽘

m

i�1

ϑi

2
K

T
xiσiΛiKxi

+ 􏽘
m

i�1

ci

2
K

T
riσiΘiKri + 􏽘

m

i�1

ωi

2
σiτik

2
1i +

91

2
ς1χξ

2
1

+
92

2
ς2χξ

2
2 + 2χl3 +(3m + 2)α

≤ − η e
T
Pe􏼐 􏼑

α
+ 􏽘

m

i�1

1
2
σi

􏽥K
T

xiΓ
− 1
i

􏽥Kxi􏼒 􏼓
α

+ 􏽘
m

i�1

1
2
σi

􏽥K
T

riΥ
− 1
i

􏽥Kri􏼒 􏼓
α

⎡⎣

+ 􏽘
m

i�1

1
2
σiμ

− 1
i

􏽥k
2
1i􏼒 􏼓

α
+

1
2
c

− 1
1 χ􏽥ξ

2
1􏼒 􏼓

α
+

1
2
c

− 1
2 χ􏽥ξ

2
2􏼒 􏼓

α
⎤⎦ + ψ,

(B.27)

where
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η � min􏼨l2,
2ϑi − 1( 􏼁λmin Λi( 􏼁

ϑiλmax Γ− 1i( 􏼁
􏼠 􏼡

α

,
2ci − 1( 􏼁λmin Θi( 􏼁

ciλmax Υ− 1
i( 􏼁

􏼠 􏼡

α

,

2ωi − 1( 􏼁μiτi

ωi

􏼠 􏼡

α

,
291 − 1( 􏼁c1ς1

91
􏼠 􏼡

α

,
292 − 1( 􏼁c2ς2

92
􏼠 􏼡

α

􏼩,

ψ � 􏽘
i�1

m ϑi

2
K

T
xiσiΛiKxi + 􏽘

i�1

m ci

2
K

T
riσiΘiKri

+ 􏽘
i�1

m ωi

2
σiτik

2
1i +

91

2
ς1χξ

2
1 +

92

2
ς2χξ

2
2 + 2χl3 +(3m + 2)α.

(B.28)

Furthermore, according to Lemma 1, one has
_V≤ − ηV

α
+ ψ. (B.29)

.erefore, according to Lemma 5, the decrease of V can
drive the trajectories of the closed-loop system into
Vα ≤ (ψ/(1 − ι)η) in a finite time Tr with

Tr ≤
V1− α(0)

ηι(1 − α)
, (B.30)

where 0< ι< 1.
.is completes the proof.
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�is paper focuses on the coordination and optimization between a manufacturer and multiple retailers in a supply chain. �e 
manufacturer makes product quotes and delivery deadlines for all retailers, and each retailer selects product o�ers and delivery 
deadlines based on their own needs. Manufacturers maximize their own total pro�ts by setting optimal quotes and delivery 
deadlines. �is paper constructs the mathematical model of the optimal quotation and delivery deadline and proposes a scheduling 
algorithm that is di�erent from the general M/M/1 and then studies the production scheduling problem and explores the e�ective 
implementation of quotation policy in management practice.

1. Introduction

For the order-based production model, delivery time (or 
order-to-delivery time) guarantees have been applied as an 
advanced strategic weapon to compete with other companies. 
In the market, some customers are willing to pay more for faster 
delivery. In addition, customers have di�erent time sensitivity 
and price sensitivity in the market. A new strategy is to divide 
customers into di�erent groups based on their sensitivity to price 
and time. In a group, customers have the same combination of 
delivery time guarantees and price quotes. Di�erent quotations 
and delivery times for di�erent customer groups are evident in 
the printing and packaging industry. In the literature, this issue 
is called customer segmentation and aggregation issues [1–3]. 
In the following example, Printing.com uses this split and merge 
strategy. Printing.com is a printing service provider. It o�ers 
customers a choice of menus with di�erent delivery times and 
di�erent prices. For short lead times, prices are naturally higher.

With regard to the ability to set up this strategy, there are 
two situations: the ability of all customers to share and the 
speci�c capabilities of each target customer. �ere are two rea-
sons why dedicated capabilities are supported. First, the use of 
dedicated capabilities to provide di�erent delivery time guar-
antees for each customer group is compatible [4]. Second, there 
is less interference from customers in di�erent �elds [1, 5].

In a dedicated capability setting, performing a split and 
merge strategy can be thought of as multiple single customer 
group issues, where the only di�erence is the ability of each 
group and the sensitivity range of each group customer to price 
and time. �erefore, the initial work of this strategy is to quote 
a common optimal price and a common delivery time for each 
customer group. For this reason, we consider the pricing and 
production issues of a single customer group in the context of 
small batch production. In a single group, customers’ payment 
preferences and delay tolerance are di�erent within a known 
range of price and time sensitivity.

One of our technical contributions is to propose a solution 
to the problem of joint pricing scheduling faced by manufac-
turers. We show the property quotes for the best delivery times 
and have developed an advanced scheduling algorithm to solve 
the problem optimally. �is paper expands Chen and Hall’s 
research on time and scheduling coordination issues by com-
prehensively considering time and price quotes [6].

2. Literature Review

�is article mainly considers the issue of product pricing and 
production. �e relevant literature is mainly elaborated in the 
following two aspects. On the one hand, the issue of pricing 
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and production of the delivery deadline is not considered. On 
the other hand, the issue of price delivery time quotation is 
considered, which is more relevant to the content of this 
article.

Regarding pricing and production issues without consid-
ering delivery dates, in order to explore this issue, various 
models are mentioned in related articles [7–9]. �ese models 
assume that demand is independent of delivery time and sen-
sitive to time quotes or other factors. In particular, Ata and 
Olsen reviewed the relevant due date quotes literature in detail 
and studied dynamic time quotes under di�erent delay costs 
[10].

Since delivery time and price have a great in¥uence on 
order acceptance, it is very important to integrate price quo-
tations into delivery deadlines [11, 12]. Several papers con-
sider di�erent delivery times and prices for di�erent customer 
groups [1, 5, 13–15], and some other literature that considers 
di�erent customers groups has common price and delivery 
time quotes [2, 16, 17].

�ere is a large amount of literature to formulate relevant 
production policies with a stable queuing model. In these doc-
uments, a �xed scheduling rule such as First Come First 
Service (FCFS) is used. �e customer’s demand is a determin-
istic function of price, delivery time, and other attribute var-
iables [17–20]. All these documents regard the production 
stage as an M/M/1 queue, and therefore, the FCFS rules are 
used therein. Our model is fundamentally di�erent from those 
approaches by considering optimal production sequencing.

�ere are very few literatures that consider the price of 
production scheduling and the decision-making on the deliv-
ery date. Elhafsi studied how to determine the delivery time 
and price for an order in an order-type manufacturer [21]. 
Under the premise that the delivery time does not a�ect the 
demand, the main purpose is to quote an order of arrival based 
on FCFS rules for delivery time. Charnsirisakskul et al. also 
propose a decision model for comprehensive pricing and pro-
duction decision-making using a single price model or mul-
tiple price models [22]. �eir decision model is based on the 
inventory-based production scenario, and our research is 
based on order-based production. �e research provided by 
Chen and Hall to solve this problem is the closest to our direc-
tion. In the context of detailed scheduling, Chen and Hall 
studied the quoting problem [6]. �is article studied joint 
delivery times and quotations, rather than just studying 
quotations.

Chen and Hall analyzed the importance of adding detailed 
scheduling to the study. Compared with uncoordinated pric-
ing decisions, the value of coordinated pricing and production 
decisions is more accurate. In our study, late �nes were also 
included in the objective function of this article. 
Charnsirisakskul et al. have previously judged the importance 
of their participation in the study [22].

Based on the above discussion, what we have studied is 
the coordination pricing and delivery time quotation taking 
into account the detailed production scheduling decision 
mechanism under the order-based production environment. 
Speci�cally, the purpose of this study is to formulate a sched-
uling mechanism that handles delivery quotes, including 
prices. In the past, the scheduling study mainly solved the 

problem of the deadline of the quotation that did not take into 
account the price, so almost no researcher considered both 
the price and the delivery date quotation. Another major con-
tribution of our research is that we consider the customer’s 
heterogeneity of time and price requirements. In our study, 
the customer determines the order quantity. Charnsirisakskul 
et al. and Chen and Hall also made similar assumptions.

3. Model Construction

Assuming that there are � retailers, denoted as � = 1, 2, 3, . . . , �, 
the manufacturer introduces a price and delivery time for all 
retailers. When a retailer’s order is completed, the manufacturer 
will deliver the order to the retailer. We assume that the sched-
uling time is not taken into account, and assuming that the 
production process time of each product is �xed and known, 
the capacity cost is also �xed and known. �e model symbols 
are summarized in Table 1.

In order to re¥ect consumer sensitivity to price and deliv-
ery time, we assume the following demand function that 
re¥ects the number of consumer orders:

(1)��(�, �) = �� − �� ⋅ � − �� ⋅ �,

Table 1: Variable symbol table.

Variables De�nition
� Total net pro�t
�, � Order

� Quoting constant for general price and delivery 
time

� �e number of orders completed on time at a given 
time �

� Total order quantity

� Quotation of all orders in quotation questions at 
regular prices and delivery times

[��, ��+1] �e boundary of a particular price zone �

���
�e process time of order � in the quotation ques-

tion of normal price and delivery time
�� �e quotation of order �

�
�e amount of a special price-time zone boundary 

in the quotation question for normal prices and 
delivery times

� All orders in the quotation question of regular price 
and delivery time report delivery time

[��, ��+1] A speci�c time zone �
�� Delivery time for order �
� General delay weight
�� Order � completion time
�� Order quantity of order �
� Total sales revenue
�� Initial process time of order �
� Total delay penalty
�� Delay penalty for order �
�� Process time for order �
�� Potential market size of order �
�� Price sensitivity of order �
�� Time sensitivity of order �
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where ��, ��, �� is the normal number, �� indicates the potential 
market size of order �, �� indicates the price sensitivity of order 
�, �� indicates the time sensitivity of order �.

We combine (��, ��) to describe consumer sensitivity to 
price and delivery time. For the possible zero demand or 
negative demand quantity, we assume that consumers will 
not place orders. We assume that a valid order placed by the 
consumer must be produced and not delivered separately. 
Assume that the manufacturer is a pure production machine 
and � denotes the priority given per unit product process 
time, so the production process time of the order is described 
as:

At the beginning of each planned production cycle, the 
manufacturer will set product price and delivery time quota-
tion, so the process time of all orders has been determined at 
the initial moment, so the initial release time standard for all 
orders is 0.

If the order is completed beyond the delivery time, the 
manufacturer will bear the delay penalty. Since the consumers 
we consider come from a consumer group, we have already 
discussed in the introduction section that it is reasonable to 
determine a weight penalty for delay for all consumers, that 
is to say:

where �� is the completion time of order � and w is the general 
delay weight for all consumers.

Our goal is to maximize the manufacturer’s net pro�t. 
Since �xed facility costs do not a�ect the optimization decision 
on product prices and delivery time quotes, our pro�t function 
will not include �xed facility costs. �e speci�c pro�t function 
is expressed as follows:

Let �∗ and �∗ denote the optimal solutions for � and �, 
respectively.

According to the objective function (4), the manufacturer’s 
production plan is introduced into the model, and we will 
study the optimal production sequence problem for this 
scheduling problem. �e following model will be divided into 
two types of general models to study. One is �xed quotes, and 
the other is �xed delivery time.

3.1. Optimal Production Sequence. According to the objective 
function (4), the optimal net pro�t is not only related to delivery 
time and price, but also related to the production sequence of 
the order. Xia et al. demonstrated that the shortest processing 
time (SPT) has a gradual optimality [23], and because of the 
existence of delayed punishment, we have Lemma 1.

Lemma 1. Shortest processing time (SPT) is the optimal 
sequence rule for maximizing pro�t in product production.

(2)��� = � ⋅ ��.

(3)��(�, �) = � ⋅max(0, �� − �),

(4)

Maximize�(�, �) = �
�
∑
�=1

max(��(�, �), 0) −
�
∑
�=1
(g ⋅ ��(�, �)),

Subject to g = { 0, ��(�, �) ≤ 01, ��(�, �) < 0
, �, � ≥ 0.

�is article will apply SPT rules in production scheduling 
problems. First, we will explain how to combine sequence 
constraints in the problem of pro�t maximization.

When the price is assumed to be �xed, the order process-
ing time is a linear function of the delivery time:

Figure 1 shows the processing time of three consumer 
orders. �ree lines represent three consumers 1, 2, 3, respec-
tively. �e three lines intersect at the intersections of �12,  
�13, and �23. Each intersection indicates that the processing 
time of the two orders is equal. As can be seen in Figure 1, the 
intersection point between the three straight lines and the 
intersection point of each straight line with the �-axis divide 
the �-axis into six segments from �1 to �6, that is, the SPT 
sequence of the three orders is uniquely determined in the 
interval [0, �1], [�1, �2], . . . , [�5, �6]. Table 2 shows all SPT pro-
duction sequences for each time interval or region three 
orders.

If ��� is the point of intersection of two lines � �, � �, then 
there is an equation ��� = ���. Bring Equation (1) into this 
equation to get the � coordinate of ��� as:

According to ��� = 0, the intercept point �� on the �-axis can 
be expressed as:

With the above formulae (6) and (7), all the time zone bound-
aries can be calculated and then they are sorted in ascending 
order. When the price is �xed, the delivery time is variable, 
and we constrain the time. Use �� ≤ � < ��+1 to represent the 
general time zone, where �� and ��+1 represent any two adjacent 

(5)��� = (�� − �� ⋅ �) − �� ⋅ �.

(6)��� =
�� − �� + �(�� − ��)
�� − ��

.

(7)�� =
�� − ���
��
.

pti

3

2

1

t1 t2 t4t30 t5 t6 t

C12

C23
C13

I1 I2 I3

Figure 1:  Order processing times with respect to one decision 
variable.

Table 2: SPT sequences in di�erent time zones.

Time 
zones 0 − �1 �1 − �2 �2 − �3 �3 − �4 �4 − �5  �5 − �6    

SPT 
sequences 3−2−1 3−1−2 1−3−2 3−2 2−3 3
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�e intercept point �� on the �-axis is expressed as:

�e boundary values of the price region can be obtained 
by the above formulas (8) and (9). In this one of the price 
regions, the unique production sequence can be uniquely 
determined.

In the general case, the quotation and delivery deadline 
are two decision variables. For example, the price and time 
sensitivity of three orders are di�erent. �e order processing 
time is a linear function of � and �; that is:

Figure 3(a) illustrates the processing time for three orders in 
a three-dimensional Cartesian coordinate system, in which 
three orders are divided into three planes, (��, �), (��, �) and 
(�, �) plane. Each plane has three orders intersecting at four 
intersection points �1, �2, �3, and �4. Each projection point 
(��� , ���) corresponding to �� can be obtained by solving the 
following two equations in the (�, �) plane:

      

According to Figure 3(a), it can be seen that the points �, 
�, and � are projections of the points �1, �2, and �3 on the 
plane (�, �), respectively. Line C1C2  consists of points on 
pt2 = pt3. Since EF is a projection of C1C2 on the plane (�, �), 
then a point (�, �) on EF also satis�es pt2 = pt3.

Figure 3(b) depicts the linear projection in Figure 3(a) 
projected onto the (�, �) plane, showing its two-dimensional 
planar graphic region. In Figure 3(b), the straight line is the 
intersection of the plane � and the plane (�, �) and represents 
the set of points at the time ��� = 0; that is, the points (�, �)
and the straight line satisfy the following equation:

From the above analysis, we can see that the methods for 
exploring �xed order price and delivery time are similar. 
Under normal circumstances, there are only two cases of opti-
mal production sequence change. One is that the two orders’ 
processing time is equal; the other is that it is an order pro-
cessing time equal to 0. �is means that the order of the opti-
mal production of the order is transformed into straight line 
PiTi and lines EF, GC4 in Figure 3(b).

�erefore, in the �rst quadrant of Figure 3(b), the optimal 
production sequence is uniquely determined by the concave 
regions segmented by the straight lines PiTi, EF, GC4, and t/p 
axes, and we de�ne these concave regions as price-time 
regions. In Figure 3(b), each concave area is represented by ① 
to ⑦. �e decision variable is a price-time zone with a unique 
optimal production order, and each optimal production order 
zone is shown in Table 3.

In order to obtain the SPT sequences for all price-time 
regions, all regions in the �rst quadrant of Figure 3(b) need to 
be obtained, so we have designed an algorithm to create a 
detailed price-time region, recorded as a sequence listing algo-
rithm (SLA); the main idea of this algorithm is as follows:

(9)�� =
�� − ���
��
.

(10)��� = �� − �� ⋅ � − �� ⋅ �.

(11)�� − �� ⋅ � − �� ⋅ � = �� − �� ⋅ � − �� ⋅ �.

(12)� = 0, � = 0 or �� = 0.

(13)�� − �� ⋅ � − �� ⋅ � = 0.

boundaries of a time zone. Under this time limit, the optimal 
sequence of orders is uniquely determined.

When the delivery time quotation is �xed, similar to the 
previous analysis, the price range constraint is �� ≤ � < ��+1, 
where �� and ��+1 represent any two adjacent boundaries of 
the price region. As shown in Figure 2, the � coordinate of ���
is expressed as:

(8)��� =
�� − �� + �(�� − ��)
�� − ��

.
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Figure 2: Order price with respect to one decision variable.
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�∗, it can be seen that each small segment linear function is 
declining; that is, the derivative of each small segment linear 
function is negative and can be seen from the �gure. It can 
be seen that when � = �∗, the pro�t function takes the maxi-
mum value.

Corollary 1. Assume that given a time zone, you can �nd 
two possible conditions for obtaining the optimal delivery 
time:

(i)  �e optimal delivery time is the same as the completion 
time of an order.

(ii)  �e optimal delivery time is any boundary of the time 
zone.

According to �eorem 1 and Figure 4, it can be concluded 
that the number of small segments represents the number of 
orders completed on time in that situation. As time � increases, 
� is also an intermittent increase. �e convergence time � of 
two segments on the �-axis is equal to the completion time of 
an order. �e point of maximum pro�t is the point of conver-
gence of two small segments. �e value of the derivative of the 
small linear function on the le¸ side of this point with respect 
to t is positive when � = �∗. �e derivative of the small linear 
function on the right side of this point with respect to � is 
negative when � = �∗ + 1; that is, it satis�es the following 
inequality:

Based on the above two inequalities, we bring the values of 
� = �∗ and � = �∗ + 1 into (16), which yields:

�e value of �∗ can be obtained by (19) and (20).

(17)
��
��
����(� = �

∗) > 0,

(18)
��
��
����(� = �

∗ + 1) ≤ 0.

(19)�(� − �∗) + �
�
∑
�=�+1
�� ≤ �

�
∑
�=1
��,

(20)�(� − �∗ + 1) + �
�
∑
�=�+1
�� < �

�
∑
�=1
��.

Step 1. �ink of the �rst quadrant as the entire price-time 
region, dividing the �rst quadrant into a series of price-time 
regions by a single PiTi.

Step 2. Check each price-time area to ensure that it is a 
projection of the intersection of each two order surfaces on 
the (�, �) plane.

Step 3.   Get all price-time zones.

3.2. Optimal Delivery Deadline. In Section 3.1, we studied 
the optimal SPT sequence for �xing each time zone. �is 
subsection will discuss the change of delivery time when �xing 
the price of a product. If the special time zone is discussed 
in Section 3.1, the resulting sequence decision will not be 
important. �erefore, according to the number of time zones, 
the problem is decomposed into several simple subproblems. 
We divide the objective function (4) into two parts. one part 
is sales revenue; that is:

�e other part is the delay penalty:

where � is the number of orders completed on time in a given 
time t.

If � is independent of time �, then the gradient of pro�t 
return with respect to time � is:

Theorem 1. Assume that the pro�t function (4) is a concave 
function, then:

 (i)   Small segments between two time nodes are linear 
functions.

 (ii)  �e derivative of each subparagraph with respect to 
time is decremental.

(iii)  �e �rst part of the derivative of time is positive, and 
the latter part of the derivative of time is negative.

(iv)  �e point of maximum return can be obtained between 
two small segments.

�e conclusion for �eorem 1 can be explained from 
Figure 4. For a concave pro�t function with respect to time, 
a small piecewise linear function is formed between every 
two time points. Each small fragment is slowly increased 
before �∗. Its derivative is positive, but the growth rate of its 
derivative is monotonically decreasing with respect to �. A¸er 

(14)�(�) = �
�
∑
�=1
(�� − � ⋅ �� − � ⋅ ��).

(15)�(�) = �
�
∑
�=�+1
(�� − � ⋅ �� − � ⋅ ��) − �(� − �)�,

(16)
��
�� =
��
�� −
��
�� = −�

�
∑
�=1
�� − �

�
∑
�=�+1
(−��) + �(� − �).

Table 3: All price-time zone SPT ordering for three orders.

Zone index 1 2 3 4 5 6 7
Sequence 2-3-1 3-2-1 2-1 1 1-2 2 None

f

tt∗

m∗

. . .

m∗–1 m∗+1

0

1

Figure 4: �e pro�t function with respect to delivery time 
quotation.
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When the assumption of m does not depend on the price �, 
the derivative of the price delay penalty function is:

Theorem 2. Negative delay penalty (−�) is a piecewise linear 
function of price �. �e function has the following properties:

(i)    It is a nondecreasing continuous function of the price �.
(ii)    �e absolute gradient of each segment is decreasing 

relative to the price �.
(iii)    When the price � is large enough to reach a certain 

value, the function gradient is 0.

Corollary 2. Obtain the optimal price through 3 possible 
conditions.

(i)    In the case of optimal prices, the completion time of 
an order is the same as the delivery time.

(ii)    �e best price is located on the border of the price 
area.

(iii)    �e optimal price is located in the derivative of the 
income function and is equal to the gradient of the 
penalty function.

In Figure 5, the penalty function (−�) is located below the 
�-axis, and each small segment on −� indicates that the order 
was completed on time in the price state at this time. Assuming 
that when � = 0, the number of orders completed in time at a 
given time � is ��0, and then, the connection point between 
each two-stage function on −� represents the time of comple-
tion of an order at a given time �. When the � orders are 
completed, the time of completion is satis�ed:

�en,

As shown in Figure 5, as the � increases, the order pro-
cessing time decreases gradually until the delay penalty is 
reduced to 0 when � increases to ���, i.e., when � ≥ ���, � = 0.

From (24), we can know that the income function is rep-
resented by a concave quadratic function. In the function 
image of the upper half of the �-axis in Figure 5, the maximum 
point of the pro�t function is obtained when ��/�� = 0. We 
can get the maximum point of the income function, which is 
the highest point in Figure 6:

Now, we discuss the interval. If ��� ≤ ��0, when� ≥ ��� , since 
the delay penalty is 0, the maximum pro�t price is �∗ = ��0. 

(25)
��
�� =
{{
{{
{

−�
�
∑
�=�+1
� � = [��0, � − 1],

0, � = �.

(26)� =
�
∑
�=1
(�� − � ⋅ �� − � ⋅ ��).

(27)� = ��� − (1 +∑
�
�=1��)�

∑��=1��
.

(28)��0 =
∑��=1�� − �∑

�
�=1��

2∑��=1��
.

From Figure 4, we can see that when � = �∗, the pro�t reaches 
the maximum value. �∗ is the completion time of the order in 
the (�∗)th sequence, so the optimal delivery time satis�es:

�en, �∗ is calculated as:

Since the obtaining of the optimal production sequence is 
based on the special time zone (�� ≤ � ≤ ��+1), we should verify 
that �∗ is located in each speci�c time zone. As a result, we need 
to compare the values of �∗ at the boundary of the time zone. 
If �∗ is in the time zone, the optimal delivery time equals �∗. If 
�∗ is outside the time zone (�∗ < ��), the optimal delivery time 
is �� or ��+1; that is:

�e interpretation of Equation (23) is the same as Corollary 1.

3.3. Fixed-Quote Pricing Decision. �is section will examine 
the e�ect of adjusting the price on optimal pro�t when the 
delivery deadline is given. By a method similar to �eorem 1, 
we can �nd the corresponding price region �� ≤ � < ��+1, so 
that we can get the optimal ordering for each order price area.

Similar to the previous section, we decompose the prob-
lem into several subproblems based on the number of price 
regions, dividing the objective function into two parts: the 
income function and the delay penalty function. �e derivative 
of the income function is:

(21)�∗ =
�∗

∑
�=1
(�� − � ⋅ �� − �∗ ⋅ ��).

(22)�∗ = ∑
�∗
�=1�� − �∑

�∗
�=1��

1 + ∑�
∗

�=1��
.

(23)

� =

{{{{{{{{{{
{{{{{{{{{{
{

��+1, ��+1 <
∑�
∗

�=1�� − �∑�
∗

�=1��
1 + ∑�

∗

�=1��
,

∑�
∗

�=1�� − �∑�
∗

�=1��
1 + ∑�

∗

�=1��
, �� ≤
∑�
∗

�=1�� − �∑�
∗

�=1��
1 + ∑�

∗

�=1��
≤ ��+1,

��, �� <
∑�
∗

�=1�� − �∑�
∗

�=1��
1 + ∑�

∗

�=1��
.

(24)
��
�� = −2�

�
∑
�=1
�� +

�
∑
�=1
(�� − ���).

p
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Figure 5: �e revenue function and the tardiness function.
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region can be �xed by the SPT production order, and all price-
time regions of the corresponding production order can be 
obtained by the SLA. �e solution to the general problem can 
be solved in each price-time zone, and time series decision-
making is not important. �erefore, the entire problem is 
divided into two simple questions based on the number of 
price-time regions.

According to the SLA, the price-time region is a concave 
region consisting of two straight-line boundaries, such as the 
EF and P1T1 lines in Figure 3(b). �e mathematical plan for 
the price-time region has been given in Equation (13). When 
we study the general time-price region problem, the constraint 
(13) must be satis�ed.

Theorem 3.  �e obtaining of the optimal solution requires 
that any one of the following two conditions be satis�ed:

(i)   �e delivery time is consistent with the order com-
pletion time.

(ii)   (�∗, �∗) is the sequence change point, which means 
that (�∗, �∗) allows both the processing time of two 
orders to equal zero and the processing time of one 
order equal to zero.

Next, we will discuss how the two forms in �eorem 3 can 
get the optimal solution. First, suppose the pro�t is maximized 
when the delivery time of one order is the same as the com-
pletion time, and the decision variable (�, �) satis�es (27), 
where � is an integer in [1, �], each possible � value in (27) 
is computable and replaceable, and a straight line 
��(� = (∑

�
�=1�� − (1 +∑

�
�=1��)�)/∑

�
�=1��) is formed in the � − �

Cartesian coordinate system. If there are two intersections 
between the straight line �� and the price-time zone bound-
ary, then the value of � is valid and stored in an � concen-
tration, � = �,� + 1, . . . , � + �, where � is an integer. �en, 
in order to �nd the optimal pro�t, every element in � is 
computable.

Bringing formula (27) into formula (13), all price-time 
zone constraints can be reduced to only constraints on time �; 
that is, all the inequalities in (13) will become the form of 
��1 ≤ � ≤ ��1, where ��1 and ��1 are integrated by the cluster of 
inequalities.

Bringing (27) into the objective function (4), the objective 
function will become a quadratic function only with respect 
to time �; that is:

By comparing the sizes of �(��1), �(��1), and �(�����(��/��) = 0), 
the maximum pro�t is �ltered out and the problem is directly 
solved. We �nd a solution to each of �’s candidates and get 
the maximum pro�t at the same time.

Next, we discuss the second condition of �eorem 3 and 
�nd the optimal solution for (�∗, �∗) at the point of sequence 
change. As discussed in Section 3.1, the sequence change point 
for a time-price region is the boundary point of the � − �
Cartesian coordinate system. Each boundary value can be 

(32)

�(�) = ∑
�
�=1�� − (1 + ∑

�
�=1��)�

∑��=1��

�
∑
�=1
��(�) − �

�
∑
�=�+1
(��(�) − �).

When ��� > ��0, the situation is more complicated, as discussed 
in detail below.

In Figure 5, when � = ��0, the derivative of the income 
function is 0, while the derivative of −� is positive. When 
� > ��0, the derivative of � decreases continuously from 0 to 
−∞ as � increases. At the same time, −� decreases from a 
positive value to zero. �erefore, when the derivative of −� is 
added to the derivative of �, the optimal solution of the objec-
tive function is obtained, while ��/�� reaches the minimum 
nonnegative value.

If ��/�� = 0, the best quote is:

If ��/�� ̸= 0, (29) does not apply to calculate the optimal 
solution. Based on Figure 5, we have developed a search algo-
rithm to �nd the best price (optimal price searching algorithm, 
OPS algorithm). �e main idea of this algorithm is to �nd the 
value of p when (��/�� − ��/��) reaches the minimum non-
negative value.

According to the OPS algorithm, since the iteration num-
ber of the algorithm only depends on the size range of �, we 
�nd that the computational complexity of this algorithm is 
�(�), so the solution of this problem is established on the 
entire price axis. However, the entire price axis is divided into 
price ranges. We assume that the price range is �� ≤ �∗ ≤ ��+1. 
�en, we need to compare the size of the boundary between 
�∗ and the price region. �e speci�c section is as follows:

where

3.4. Simultaneous Decision of Quotation and Delivery 
Time. From Section 3.1, we know that the (�, �) price-time 

(29)� = ∑
�
�=1(�� − ���) + �∑

�
�=�+1��

2∑��=1��
.

(30)� =
{{
{{
{

��+1, ��+1 < �∗;
�∗, �� ≤ �∗ ≤ ��+1;
��, �� < �∗,

(31)�∗ =
{{{
{{{
{

∑��=1�� − �∑��=1��
2∑��=1��

, ��
�� ̸=
��
�� ;

∑��=1�� − � + �∑��=1��
∑��=1��

, ���� =
��
�� .

p

f

p∗

Figure 6: �e net pro�t function.
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tolerance are di�erent within a known range of price and time 
sensitivity. Based on the optimization of production sequenc-
ing, we mainly study the coordination and optimization 
between a manufacturer and multiple retailers in a supply 
chain.

Under the scenario of order-based production, we studied 
the issue of coordination pricing and delivery time quotation 
taking into account the detailed production scheduling deci-
sion mechanism and then formulated a scheduling mechanism 
that deals with delivery dates, including a price. �e mecha-
nism takes into account the customer’s heterogeneity of time 
and price requirements and also includes penalties for late 
delivery to the manufacturer. In order to maximize the man-
ufacturer’s own pro�t, we constructed a mathematical model 
of the best quotation and delivery deadline and created a price-
time problem algorithm (PTA ) to obtain the optimal solution 
of the model. We proposed a solution to the problem of joint 
pricing scheduling faced by manufacturers.
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In the present contribution, the problem of establishing tuning rules to proportional retarded controller for LTI systems is
addressed. Based on the D-decomposition methodology and σ-stability analysis, analytic conditions are determined on the
parameters of a delayed controller that guarantee us that the system response reaches the maximal decay rate. �e conditions
presented in this paper are tested experimentally in tracking tasks of a �exible joint robotic arm.

1. Introduction

Time delays naturally arise in many mathematical models
from engineering, biology, and physics, among other science
areas. A common belief is that the appearance of these
phenomena can lead to detrimental e�ects, bad performance
of the system, instability, or even damage to the system [1].
Nevertheless, many contributions have shown that the de-
liberate introduction of a time delay in a feedback control
law can provide a stabilizing e�ect [2–7] and in some cases
give or improve the robustness property of the system [8].
�e stability analysis of linear time delay systems is studied
in the framework of two main approaches: time domain and
frequency domain. �e former is based on the well-known
Lyapunov’s criteria and its extensions (Razumikhin and
Krasovskii) or by using linear matrix inequalities (LMIs) via
convex optimization [9, 10]. However, only su�cient sta-
bility conditions are provided, which are generally very
conservative or, in some cases, nonexistent, mainly because
the feasibility of LMIs (whose parameters are adjusted by a
frequency method) is usually nonexistent. �e second

approach is based on the analysis of the characteristic
function of the system, where, unlike the temporal approach,
it is possible to provide necessary and su�cient conditions
that do not have a conservative nature.

Even when in the recent decades there is a great de-
velopment in the control theory, where many sophisticated
control schemes have been developed, PID controllers re-
main as one of the most used control strategies in the in-
dustrial environment. According to [11, 12], approximately
90–95% of the industrial control loops still use PID-type
controllers, many of which do not include the derivative
term, mainly because this term induces a noise amplifying
e�ect that can a�ect the system performance [12–14] or
because the derivative of the state is not available for
measurement. Some common strategies to avoid the use of
the derivative term and, consequently, the noise ampli¥-
cation problem, are the use of ¥lters, and observers or the
implementation of estimation schemes.

On the other hand, a common approach consists in
replacing the derivative term in PID-type controllers by an
approximation of the form
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dx(t)

dt
≈

x(t) − x(t − τ)

τ
, (1)

and for an appropriate selection of the delay τ, the closed-
loop stability is guaranteed [3, 14–16]. In this framework, in
[17], a method for the migration of a double imaginary
characteristic root to the left half-plane or the right half-
plane under the variation of two parameters of a quasi-
polynomial is presented.(e idea of deliberately introducing
time delays in closed-loop systems and considering it as a
control parameter is not a novel approach, but it has been
intensively studied in recent years, see [18–20] and the
references therein. (e analysis of such class of controllers
focuses mainly on the following topics: characterization of
the stability crossing curves [21], tuning of delayed con-
trollers to stabilize second-order systems [18, 20, 22] (and its
noise attenuation analysis [23]), the design of proportional
integral controllers for second-order linear systems [19, 24],
and design of maximum decay rate using elimination theory
[25]. Particularly in [26], a Proportional Integral Retarded
(PIR) controller to solve the regulation problem of a general
class of stable second-order LTI systems is presented. (is
result ultimately guarantees a desired exponential decay rate
σ. On the other hand, design of nonfragile controllers with a
desired exponential decay rate is proposed in [20]. Here, the
authors present conditions on the parameters (kp, kδ) such
that the p − δ controller of the form kp + kδe

− τs ensure the
stability of the closed-loop system.

Inspired by the previous contributions, in the present
manuscript, following the D-decomposition methodology
(see [27–30]), it allows us to delimit and decompose the space
of control parameters, determining the stability boundaries by
means of a set of parametric equations that depends explicitly
on the control parameters, which play a key step to allow us to
determine simple analytical expressions for tuning the control
parameters of a Proportional Retarded (PR) control law to
σ-stabilize a general class of SISO LTI systems. Under these
conditions, three dominant real roots are placed in − σ, which
guarantees to reach the maximal exponential decay rate in the
system response.

(e σ-stabilization of a system can be described as the
design and tuning of a controller such that the corre-
sponding characteristic equation of the closed-loop system
has dominant roots with real part less than or equal to − σ,
σ ∈ R+. (e σ-stabilization approach can be considered a
robust scheme, since when taking parameters within a
σ-stable region and by presenting variations on the pa-
rameters (that do not leave the σ-stable zone) the system
stability is assured.

Delay-based controllers have as their main advantages
the simplicity with which control laws are designed and, as
a consequence, their practical implementation facility.
Common applications of such controllers focus mainly on
second-order systems, e.g., regulation problems of DC
servomotors [18, 31], haptic virtual systems [20], under-
actuated mechanical system [32], and numerous academic
examples. In the present proposal, a more challenging
implementation is addressed: a flexible joint robotic arm
(fourth order system), where trajectory tracking tasks are

addressed. (e main challenges for the design of PR
control law are the complexity of its dynamic equations
(mainly by the presence of highly nonlinear elements) and
the appearance of oscillations at the tip of the link [33, 34].
(us, a first step in the design of the Proportional Retarded
control law is to linearize via an exact linearization ap-
proach the dynamic equations of the flexible joint robotic
arm [35, 36].

(e remainder of this manuscript is organized as follows.
In Section 2, the analyzed closed-loop system and the
problem formulation are presented and the σ-stability
boundaries are determined. In Section 3, analytic conditions
to determine the maximal decay rate σ∗ are provided. Section
4 is devoted to both the dynamic model of the flexible joint
robotic arm under the study and the design of the pro-
portional plus delay controller. Also, a complementary tuning
approach is presented. In Section 5, the experimental plat-
form is described and the experimental results are presented.
For comparison purposes, a classical feedback state controller
law is also designed and implemented. (e contributions end
with some concluding remarks.

Nomenclature. In the present contribution, R denotes
the real numbers, while C the complex numbers, and Z+

stands for the positive integers. Given a vector x(t) ∈ Rn,
then x(t)⊤ denotes its transpose. Let s ∈ C ∣ s � a + ib, then
Re(s) � a and Im(s) � b denote its real and imaginary parts
of s, respectively, and i is the imaginary unit. For a function
x(t), _x(t) denotes its time derivative and dkx(t)/dtj �

x(j)(t) and j ∈ Z+ defines the jth time derivative.

2. Problem Formulation

Let us consider a LTI-SISO system of the form
_x(t) � Ax(t) + Bu(t), (2)

where A∈Rn×n, B∈Rn, x(t) � [x1(t),x2(t), . . . ,xn(t)]⊤ ∈Rn,
and u(t)∈R is the control input. Let us propose a state
feedback a control law of the form

u(t) � 􏽥k1x1(t) + 􏽥k2x2(t) + · · · + 􏽥knxn(t), (3)

where 􏽥kj ∈ R, j � 1, 2, . . . , n, denote the controller gains.
(is approach demands the knowledge of the complete state
vector. Now, let us suppose that at least one of the velocity
measurements is not available, and then the implementation
of a state observer to estimate the unavailable states would be
considered. Instead of this alternative, let us propose a
delayed controller as follows:

u(t) � kpx1(t) − krx1(t − τ) + α1x3(t) + · · · + αn− 2xn(t),

(4)

where kp, kr, α1 . . . , αn− 2 ∈ R are the controller gains, and
τ > 0 is the delay. Here, we assume that the state variable
x2(t) is unable to measure. (en, the closed-loop system is
now of form

_x(t) � A0x(t) + A1x(t − τ), (5)
where A0, A1 ∈ Rn×n. (en, the characteristic function of
system (5) is
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Q s, kp, kr, α1, . . . , αn− 2􏼐 􏼑 � p s, kp, α1, . . . , αn− 2􏼐 􏼑 + krq(s)e
− sτ

,

(6)

where p(·) and q(·) are polynomials and s ∈ C.
In the subsequent sections, analytic conditions will be

developed on the control parameters kr and τ that guarantee
a maximal exponential decay rate (denoted by σ∗) on the
system response.

3. Decomposition of the Gain Controller
Parametric Space

As discussed in the introductory section, a key step to de-
termine the analytic conditions on the parameters to achieve
the maximal decay rate is the decomposition of the space of
parameters by means of theD-decomposition methodology.
To this end, we first study the σ-stability or stability degree
σ > 0 of (6). (en, let us consider σ > 0 and by proposing the
change of variable, s⟶ (s − σ), quasi-polynomial (6) takes
the form

Qσ s, kp, kr, α1, . . . , αn− 2􏼐 􏼑 ≔ Q s − σ, kp, kr, α1, . . . , αn− 2􏼐 􏼑

� p s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

+ kre
στ

q(s, σ)e
− sτ

.

(7)

Following the D-decomposition methodology, we first
compute Qσ(·)|s�0 � 0:

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑 + kre
στ

q(0, σ) � 0, (8)

since p(0, kp, α1, . . . , αn− 2, σ)≠ 0 and q(0, σ)≠ 0, then

kr � −
p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

eστq(0, σ)
. (9)

Now, evaluating Qσ(·) for s � iω, ω> 0, results

p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑 + kre
στ

q(iω, σ)e
− iωτ

� 0, (10)

or in an equivalent form:

−
1

kre
στ

p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(iω, σ)
⎛⎝ ⎞⎠ � e

− iωτ
. (11)

(en, from Euler’s identity, it follows that

cos(ωτ) � −
1

kre
στ Re

p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(iω, σ)

⎧⎨

⎩

⎫⎬

⎭,

sin(ωτ) �
1

kre
στ Im

p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(iω, σ)

⎧⎨

⎩

⎫⎬

⎭,

(12)

and from the former equations, an explicit expression for τ
can be written as follows:

τ �
1
ω
cot− 1

−
Re p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑􏼐 􏼑/(q(iω, σ))􏽮 􏽯

Im p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑􏼐 􏼑/q(iω, σ)􏽮 􏽯
⎛⎝ ⎞⎠ +

jπ
ω

,

(13)

for j � 0, ±1, ±2, . . .. Finally from equation (12) yields

kr �
1

eστ sin(ωτ)
Im

p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(iω, σ)

⎧⎨

⎩

⎫⎬

⎭. (14)

(e above analysis is summarized in the following result.

Proposition 1. Consider a quasi-polynomial of form (6), and
then the σ-stability regions are bounded by the following
equations.

When s � 0,

kr � −
p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

eστq(0, σ)
, τ ∈ R+

, (15)

and for s � iω

τ �
1
ω
cot− 1

−
Re p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑􏼐 􏼑/(q(iω, σ))􏽮 􏽯

Im p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑􏼐 􏼑/(q(iω, σ))􏽮 􏽯
⎛⎝ ⎞⎠ +

jπ
ω

,

(16)

kr �
1

eστ sin(ωτ)
Im

p iω, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(iω, σ)

⎧⎨

⎩

⎫⎬

⎭, (17)

where, j � 0, ±1, ±2, . . .. Expressions (15)–(17) of Prop-
osition 1 define the σ-stability boundaries in the para-
metric space (τ, kr). To exemplify these stability
boundaries, in Figure 1, a generic parametric map is
presented.(e outer region denotes the stability boundary
of the system, that is, it corresponds to the pair (τ, kr) for
which the eigenvalues of the system lies on the imaginary
axis, while each one of the inner contour curves define a
region where the system is exponentially stable with a
specific decay rate σ > 0. (e red point corresponds to the
maximal reachable stability degree, denoted by σ∗, and it
occurs when all the σ-stable regions collapse in a single
point (τ∗, k∗r ) of the parametric space and it is charac-
terized because the characteristic function present a root
of multiplicity at least three at s � σ∗ (see [22, 26]).

In the next section, analytic expressions to determine the
maximal decay rate σ∗ and the associated parameters
(τ∗, k∗r ) are presented.

4. Tuning of the PR Control Law

In this section, analytic expressions for determining the
controller parameters τ∗, k∗r , and σ∗ to reach the maximal
decay rate are provided.

Proposition 2. Let us consider a quasi-polynomial of form
(6), then it has a dominant root of multiplicity at least three at
the point s � − σ∗, if σ∗ is the smallest positive real root of the
polynomial:

Complexity 3



f(σ) �
1

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
−

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
⎡⎣ ⎤⎦

2􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

+
2

q(0, σ)

zq(s, σ)

zs

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
−

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

+
p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

z2q(s, σ)

zs2
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

−
z2p s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs2
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

� 0,

(18)

and the delay τ � τ(σ∗) and the controller gain kr � kr(σ∗, τ)

satisfy the following relations:

τ � −
1

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
−

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

,

kr � −
zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑􏼐 􏼑/(zs)

􏼌􏼌􏼌􏼌􏼌s�0
eστ (zq(s, σ))/(zs) | s�0 − τq(0, σ)􏼂 􏼃

.

(19)

Proof 1. If quasi-polynomial (7) has three dominant roots in
s � 0, it implies that quasi-polynomial (6) has three

dominant roots at s � − σ. (us, conditions Qσ(·)|s�0 � 0,
(z/zs)Qσ(·)|s�0 � 0, and(z2/zs2)Qσ(·)|s�0 � 0 must hold, i.e.,

0 � Qσ(·)|s�0 � p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑 + kre
στ

q(0, σ), (20)

0 �
z

zs
Qσ(·)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
�

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
+ kre

στ zq(s, σ)

zs
− τq(s, σ)􏼢 􏼣e

− sτ⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

, (21)

0 �
z2

zs2
Qσ(·)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
�

z2p s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs2
+ kre

στ z2q(s, σ)

zs2
− 2τ

zq(s, σ)

zs
+ τ2q(s, σ)􏼢 􏼣e

− sτ⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

. (22)

τ

σ∗

kr

Figure 1: (τ, kr) parametric space.
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Condition (19) follows directly from (21). Now, through
direct computations, it can be verified that equations (20)
and (21) lead us to

τ � −
1

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
−

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

. (23)

On the other hand, equations (20) and (22), imply that

0 � τ2p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑 − 2τ
p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
−

z2p s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs2
+

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

z2q(s, σ)

zs2
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

,

(24)

and finally, by substituting (23) in (24), yields

f(σ) �
1

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
−

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
⎡⎣ ⎤⎦

2􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

+
2

q(0, σ)

zq(s, σ)

zs

zp s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs
−

p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

zq(s, σ)

zs
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

+
p 0, kp, α1, . . . , αn− 2, σ􏼐 􏼑

q(0, σ)

z2q(s, σ)

zs2
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

−
z2p s, kp, α1, . . . , αn− 2, σ􏼐 􏼑

zs2
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

� 0,

(25)

that completes the proof. □

5. PRController Design for a Flexible Joint Arm

In this section, the conditions proposed to achieve the
maximum decay rate σ∗ are considered for the design of a
Proportional Retarded control law implemented on a flex-
ible joint robotic arm experimental platform.

5.1. Robot Dynamic Model. (e schematic representation of
the flexible joint robotic arm is given in Figure 2.

(e notation used is as follows (for the sake of simplicity
of notation, in the following, we will omit the time de-
pendence of the functions). θ1 and θ2 are the angular po-
sitions of the rotating base and of the arm, respectively. J1 is
the moment of inertia of the rotating base and J2 is the
moment of inertia of the rotating arm.m denotes the mass of
the arm, while l represents the arm length. g is the gravity
constant, ks is the spring stiffness, and M is the torque
applied to the system. (e motor torque Mm and the torque
applied to the system M satisfy the relation M � NMm,
where N denotes the mechanical advantage of the pulley
system.

Following the Euler–Lagrange formulation, the equa-
tions of motion of the flexible joint robotic arm can be
derived as

M � J1
€θ1 + J2

€θ1 + €θ2􏼐 􏼑 +
mgl

2
sin θ1 + θ2( 􏼁, (26)

0 � J2
€θ1 + €θ2􏼐 􏼑 + ksθ2 +

mgl

2
sin θ1 + θ2( 􏼁. (27)

Besides, the control input voltage applied to the motor V
and the torque Mm are related as follows:

Mm �
km

Rm

V −
k2

mN

Rm

_θ1, (28)

where Rm symbolizes the armature resistance and km the
torque constant of the motor. Based on the above relations,
(26) and (27) are now of the form

Nkm

Rm

V � J1 + J2( 􏼁€θ1 + J2
€θ2 +

k2
mN2

Rm

_θ1 +
mgl

2
sin θ1 + θ2( 􏼁,

0 � J2
€θ1 + €θ2􏼐 􏼑 + ksθ2 +

mgl

2
sin θ1 + θ2( 􏼁,

(29)

Complexity 5



or equivalently
€θ1 � κ2θ2 − κ1 _θ1 + δV, (30)

€θ2 � − κ3θ2 − κ4 sin θ1 + θ2( 􏼁 + κ1 _θ1 − δV, (31)

where

κ1 �
k2

mN2

J1Rm

,

κ2 �
ks

J1
,

κ3 �
ks J1 + J2( 􏼁

J1J2
,

κ4 �
mgl

2J2
,

δ �
kmN

J1Rm

.

(32)

5.2. PR Controller Design. By performing the change of
variables x ≔ [x1x2x3x4]

⊤ � [θ1 _θ1θ2 _θ2]
⊤, systems (30) and

(31) can be rewritten as
_x � f(x) + g(x)V, (33)

where

f(x) �

x2
− κ1x2 + κ2x3

x4
κ1x2 − κ3x3 − κ4 sin x1 + x3( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

g(x) �

0
δ
0

− δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

(e first stage in the design of the delayed controller is to
transform nonlinear system (33) into a linear system via
feedback linearization approach. Let us define

h(x) � x1 + x3, (35)

as the output function. Denoting Lfh(x) and Lgh(x) as the
Lie derivatives of function h(x) with respect of the vector
fields f and g, respectively (see [35]).(us, differentiating the
output function h(x),

_h(x) �
zh(x)

zx
_x � Lfh(x) + Lgh(x) � x2 + x4, (36)

and computing the higher order derivative of h(x),
€h(x) � L

2
fh(x),

h
(3)

(x) � L
3
fh(x),

h
(4)

(x) � L
4
fh(x) + VLgL

3
fh(x),

(37)

where

L
2
fh(x) � κ2 − κ3( 􏼁x3 − κ4 sin x1 + x3( 􏼁,

L
3
fh(x) � − κ4 x2 + x4( 􏼁cos x1 + x3( 􏼁 + κ2 − κ3( 􏼁x4,

L
4
fh(x) � κ2 − κ3( 􏼁 κ1x2 − κ3x3( 􏼁 + κ4 sin x1 + x3( 􏼁

· x2 + x4( 􏼁
2

− κ2 − κ3( 􏼁 + κ4 cos x1 + x3( 􏼁􏽨 􏽩

+ κ4 κ3 − κ2( 􏼁x3 cos x1 + x3( 􏼁,

LgL
3
fh(x) � − κ2 − κ3( 􏼁δ.

(38)

Hence, the system has relative degree four. Now, let us
define the state transformation z1 � h(x), z2 � _h(x),
z3 � h(2)(x), and z4 � h(3)(x), then it follows that

_z1 � Lfh(x),

_z2 � L
2
fh(x),

_z3 � L
3
fh(x),

_z4 � L
4
fh(x) + VLgL

3
fh(x).

(39)

(us, the linearizing control function is of the form

V �
1

LgL3
fh(x)

u − L
4
fh(x)􏽨 􏽩. (40)

By denoting h∗(x) � z∗1 as the desired trajectory and
h(j)∗(x) � z∗(j+1), j � 1, 2, 3, 4, as its time derivatives, the
errors functions are defined as ezj

� zj − z∗j , then it follows

_ez1
� ez2

,

_ez2
� ez3

,

_ez3
� ez4

,

_ez4
� u.

(41)

Now, by proposing the delayed controller,

uPR � − kpez1
+ krez1,τ

− α1ez3
− α2ez4

, (42)

where the error ez1,τ
is defined as

M

N

l

Mm

ks

J1

J2

θ1 θ2

m

g

Figure 2: Schematic of a flexible joint robot arm.
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ez1 ,τ � h xτ( 􏼁 − h
∗

xτ( 􏼁

� x1(t − τ) + x3(t − τ)􏼂 􏼃 − x
∗
1(t − τ) + x

∗
3(t − τ)􏼂 􏼃.

(43)

(us, system (41) in closed-loop, with control law (42),
can be expressed as

_ez � A0ez + A1ez,τ , (44)

where ez � [ez1
ez2

ez3
ez4

]⊤ and

A0 �

0 1 0 0

0 0 1 0

0 0 0 1

− kp 0 − α1 − α2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 �

0 0 0 0

0 0 0 0

0 0 0 0

kr 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(45)

(e characteristic quasi-polynomial of system (44) is

Q s, kp, kr, α1, α2􏼐 􏼑 � p s, kp, α1, α2􏼐 􏼑 + krq(s)e
− sτ

, (46)

where p(s, kp, α1, α2) � s4 + α2s3 + α1s2 + kp and q(s) � − 1.
Now, using the change of variable s � s − σ, (46) takes the
form

Qσ s, kp, kr, α1, α2􏼐 􏼑 � p s, kp, α1, α2, σ􏼐 􏼑 + kre
στ

q(s, σ)e
− sτ

,

(47)

where

p s, kp, α1, α2, σ􏼐 􏼑 � s
4

+ − 4σ + α2( 􏼁s
3

+ 6σ2 − 3α2σ + α1􏼐 􏼑s
2

+ − 4σ3 + 3α2σ
2

− 2α1σ􏼐 􏼑s

+ σ4 − α2σ
3

+ α1σ
2

+ kp􏼐 􏼑,

q(s, σ) � − 1.

(48)

By Proposition 1, we have that when s � 0,

kr �
σ4 − α2σ3 + α1σ2 + kp

eστ
, (49)

while for s � iω

τ �
1
ω
cot− 1

−
Re p iω, kp, α1, α2, σ􏼐 􏼑􏼐 􏼑/(q(iω, σ))􏽮 􏽯

Im p iω, kp, α1, α2, σ􏼐 􏼑􏼐 􏼑/(q(iω, σ))􏽮 􏽯
⎛⎝ ⎞⎠ +

jπ
ω

,

kr �
1

eστ sin(ωτ)
Im

p iω, kp, α1, α2, σ􏼐 􏼑

q(iω, σ)

⎧⎨

⎩

⎫⎬

⎭,

(50)

where j � 0, ±1, ±2, . . . and

Re
p iω,kp,α1,α2,σ􏼐 􏼑

q(iω,σ)

⎧⎨

⎩

⎫⎬

⎭ � − σ4 +α2σ
3

− α1 − 6ω2
􏼐 􏼑σ2

− 3α2ω
2σ − ω4

+α1ω
2

− kp,

Im
p iω,kp,α1,α2,σ􏼐 􏼑

q(iω,σ)

⎧⎨

⎩

⎫⎬

⎭ �ω 4σ3 − 3α2σ
2

+ − 4ω2
+2α1􏼐 􏼑σ􏽨

+α2ω
2
􏽩.

(51)

According to Proposition 2 we first compute Qσ(s, kp,

kr, α1, α2)|s�0, as well as its first and second partial de-
rivatives, that is,

Qσ(·)
􏼌􏼌􏼌􏼌s�0 � e

στ
kr � σ4 − α2σ

3
+ α1σ

2
+ kp, (52)

z

zs
Qσ(·)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
� τe

στ
kr � 4σ3 − 3α2σ

2
+ 2α1σ, (53)

z2

zs2
Qσ(·)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
� τ2eστkr � 12σ2 − 6α2σ + 2α1. (54)

From (52) and (53), we get

τ �
4 σ3 − 3 σ2α2 + 2 σ α1
σ4 − σ3α2 + σ2α1 + kp

, (55)

and from (52) and (54), it follows that

τ2 �
12σ2 − 6σα2 + 2α1

σ4 − σ3α2 + σ2α1 + kp

. (56)

Substituting (55) into (56), we have

f(σ) � 4σ6 − 6σ5α2 + 2α1 + 3α22􏼐 􏼑σ4

− 4α2α1σ
3

+ 2α21 − 12kp􏼐 􏼑σ2 + 6α2kpσ − 2α1kp.

(57)

Summarizing, for given kp, α1, and α2, then if σ∗ is the
minimum real solution of polynomial (57), then the gains of
the controller that determine the σ∗ stability of the system
with a root of multiplicity at least three are established as

τ∗ �
4 σ∗( )3 − 3 σ∗( )2α2 + 2σ∗α1
σ∗( )4 − σ∗( )3α2 + σ∗( )2α1 + kp

, (58)

k
∗
r �

σ∗ 4 σ∗( )2 − 3σ∗α2 + 2α1( 􏼁

τ∗eσ∗τ∗
. (59)

In the previous procedure, analytic expressions to de-
termine the optimal values of parameters k∗r , τ∗, and σ∗ were
determined, but there are no words about parameters α1, α2,
and kp; thus, in the subsequent paragraphs, a simple
methodology for preselection or approximation of these
parameters is presented.

First, by computing the Maclaurin series e− sτ � 1 − sτ +

((τ2s2)/2) − ((τ3s3)/6) and substituting it in (47), we obtain
the expression
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Qσ(s) � s
4

+ α2 +
τ3kr

6
􏼠 􏼡s

3
+ α1 −

τ2kr

2
􏼠 􏼡s

2
+ τkr( 􏼁s

+ kp − kr􏼐 􏼑.

(60)

Now, it is desirable to select the controller gains
kp, α1, and α2 in such a way that the dynamics of the close-
loop system follow those of a proposed Hurwitz polynomial
of the form

pa(s) � s
2

+ 2ξωns + ω2
n􏼐 􏼑

2

� s
4

+ 4ξωns
3

+ 2ω2
n + 4ξ2ω2

n􏼐 􏼑s
2

+ 4ξω3
ns + ω4

n,

(61)

where ξ,ωn > 0. In order to match the dynamics of poly-
nomials (60) and (61), the following parametrized condi-
tions must be fulfilled:

kp >

�������

4ξω3
n( 􏼁

3

24ξωn

􏽳

+ ω4
n, (62)

α1 � 2ω2
n + 4ξ2ω2

n +
4ξω3

n( 􏼁
2

2 kp − ω4
n􏼐 􏼑

, (63)

α2 � 4ξωn −
4ξω3

n( 􏼁
3

6 kp − ωn􏼐 􏼑
2. (64)

Remark 1. It is worth mentioning, that expressions (62)–
(64) can be considered only as a starting point to set the
controller gains kp, α1, and α2 and must be adapted
according to the control designer expertise. On the other
hand, expressions (57)–(59) guarantee to reach the maximal
decay rate for given parameters kp, α1, and α2.

6. Practical Implementation

In this section, the designed PR control law (40) is imple-
mented in a flexible joint arm experimental platform using
Matlab-Simulink, through a data acquisition device. (e
effectiveness of the proposed control law is assessed by
means of tracking a rest-to-rest angular position reference
trajectory. For comparative purposes, a feedback state
control is designed and implemented in the experimental
platform.

6.1. Experimental Setup. A block diagram of the experi-
mental prototype is presented in Figure 3. (e experimental
platform incorporate a DC motor NISCA model NC5475,
attached to a rotating base trough a belt pulley system with a
16 :1 ratio. (e flexible joint consists of a main arm attached
to the rotating base by springs. (e angular positions, of the
rotating base and the arm, are measured by incremental
encoders. (e data acquisition task was performed by a

Sensoray 626 card. (e control law was implemented in a
Matlab-Simulink real time model, where the sampling pe-
riod was fixed to be 0.001 s. (e values of the flexible joint
robotic arm parameters are l � 0.5m, m � 0.1633 kg,
J1 � 0.0136 kg·m2, J2 � 0.002405 kg·m2, ks � 4N·m/rad,
and N � 16, while the motor parameters are km � 0.0724N ·

m/A and Rm � 2.983Ω.

6.2. Feedback State Control. In order to compare PR control
law (42) with a classical controller, we propose a feedback
state control (FS):

uFS � − β1ez1
− β2ez2

− β3ez3
− β4ez4

, (65)

where the set of gains [β1, β2, β3, β4] are positive constants.
Using (40) and (41), we obtain the close-loop dynamic error:

e
(4)
z1

+ β4e
(3)
z1

+ β3€ez1
+ β2 _ez1

+ β1ez1
� 0. (66)

(e characteristic polynomial is matched with a Hurwitz
polynomial of the form

pFL(s) � s
4

+ β4s
3

+ β3s
2

+ β2s + β1 � s
2

+ 2ζϖs + ϖ2􏼐 􏼑
2
.

(67)

(e set of controller gains is chosen as follows:

β1 � ϖ4,

β2 � 4ζϖ3,

β3 � 4ζ2ϖ2 + 2ϖ2,

β4 � 4ζϖ.

(68)

6.3. Experimental Results. (e PR controller gains were
selected as follows. We first proposed ξ � 1.8 and ωn � 49,
and the gains kp, α1, and α2 were selected from equations
(62)–(64); after a slight adjustment, the gains were setted as
kp � 4.5 × 107, α1 � 5.7 × 104, and α2 � 80. On the other
hand, the minimum real solution of (57) was σ∗ � 28.5495,
then using equations (58) and (59) we obtained the values
τ∗ � 0.0349 and k∗r � 3.3 × 107.

In Figure 4, the σ-stability boundaries are depicted. (e
red mark represents the maximal achievable decay rate and
corresponds to the place where all the σ-stable regions
collapsed in a single point. According to (68), the FS con-
troller gains were selected as follows ζ � 1.8 and ϖ � 52.

Computer

Data acquisition card

Encoders

Power amplifier

Flexible joint arm system

Figure 3: Diagram of the experimental platform architecture.
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(e initial conditions for both experiment PR and FL
controllers are setting θ1 � x1(0) � 0 and θ2 � x3(0) � 0;
this implies that output function (35) is h(x) � 0. (e de-
sired trajectory h∗(x) starts at time t � 0 in the position
h∗(x) � 0, when the time is t � 1, and it moves in 0.6
seconds. So, when t � 1.6 and h∗(x) � π/2, it remains in this
position for 8 seconds and after this time the reference is
moved to the initial location in 0.6 seconds, that is, h∗(x) �

0 when t � 10.6, and it remains in this position until the test
is finished.

Vibrations are a common phenomenon in this class of
systems, mainly when rest-to-rest point task is required.
Figure 5(a) shows the PR controller performance, the
output trajectory tracking hPR(x) depicted in red, and the
desired trajectory h∗(x) in black. In the same way, in
Figure 5(b), the FL controller output hFS(x) is depicted in
blue. We can notice that both outputs hPR(x) and hFS(x)

smoothly follows the desired trajectory avoiding overshoot,
as well as undesirable oscillations. (e tracking trajectory
errors ePR (up) and eFS (bottom) are shown in Figure 6. PR
error, denoted by ePR, is bounded in a neighborhood of
[− 0.02, 0.02] rad, while FL error (eFS) is bounded in a
neighborhood of [− 0.02, 0.03] rad, and it shows some

oscillations and a mayor amplitude in comparison with the
PR controller.

PR voltage input (VPR) is depicted in Figure 7(a) and the
maximum amplitude of the signal is approximately
[− 15, 15]Volts, and it does not present noise when the
system is in the steady state, and FS voltage VFS is shown in
Figure 7(b). Here, we can notice similar performance of both
VPR and VFS in amplitude and form, but VFS shows a clear
increase in noise and frequency: In order to clarify this
statement, a Power Density Spectrum (PSD) of each voltage
control is depicted in Figure 8. As we can observe, PRPSD
exhibits low-frequency components with a small peak at
7.7Hz. On the other hand, FSPSD shows more high-fre-
quency components. Low-frequency components on the PR
controller give us some advantages such as less wear on the
actuators, less power consumption, and vibrations, among
others. (e above can be verified by observing Figures 9 and
10, where the performance of the system is evaluated by
means of a quadratic index for both the error and the applied
voltage.

Now, it is desirable to evaluate the performance of the
flexible joint robotic platform in other points of the para-
metric space (τ, kr). Here, we consider points with similar

×107

kr

4

3

2

1

0

τ
0 0.02 0.04 0.06 0.08 0.1 0.12

σ ∈ (0, 2)
σ ∈ (2, 6)
σ ∈ (6, 12)

σ ∈ (12, σ∗)
σ∗ = 28.5495

Figure 4: σ∗-stability region.

0 3 6 9 12 15
Time (s)

0

0.5

1

1.5

2

(r
ad

)

h∗(x)
hPR(x)

(a)

0

0.5

1

1.5

2

(r
ad

)

0 3 6 9 12 15
Time (s)

h∗(x)
hFS(x)

(b)

Figure 5: Trajectory tracking performance.
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control parameters but with different exponential decay rate
σ and consequently a different delay τ. (ese points are
depicted in Figure 4 and its control parameters are given in
Table 1.

(e system responses, at the selected points, are
depicted in Figure 11, where it can be seen that the control
tasks were carried out satisfactorily. Since each of the points
corresponds to different σ-stable regions with a specific
decay rate, the zoom at the bottom of Figure 11 allows us to
note that the transient response of the system vanishes

according to Table 1, and as expected, the system achieves
the maximal decay rate at the point σ∗ � 28.5495. A similar
statement can be made, when the error signals are analyzed
(see Figure 12).

Remark 2. (e σ-stability approach provides us some
benefits from the robustness perspective. Since the pa-
rameters τ∗ and k∗r are selected deep inside the stability
region, the effect of parameter variations only affect the
decay rate but not the stability property. (is statement can
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Figure 6: Tracking error.
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Figure 7: Control input voltage.
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Figure 8: Power spectrum density.
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be veri¥ed in Figures 11 and 12, where the performance of
the system is evaluated for parameters (τ, kr) taken far from
the point (τ∗, k∗r ). It can be appreciated that the further the
control parameters are selected from the point (τ∗, k∗r ), the

greater the decay rate will be, but the stability of the system
remains.

7. Conclusions

Analytic conditions for the design of proportional retarded
controllers that guarantee reaching the optimal decay rate
for a general class of LTI systems are presented. A detailed
design of a proportional retarded controller, which shows
the ease with which the proposed conditions can be com-
puted and implemented, is developed for the control of an
experimental platform that consists of a �exible joint robotic
arm. �e experimental results illustrate the e�ectiveness of
the conditions and show remarkable tracking of rest-to-rest
trajectories avoiding oscillations, noise, and overshoot.
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Table 1: Parameters (kr, τ) and settling time.

Parameters Settling time
Color σ kr τ (s) Time (s)

Cyan 2 3.5e7 0.006767 1.128
Blue 6 3.5e7 0.01775 0.947
Magenta 12 3.5e7 0.02784 0.655
Red 28.5495 3.3e7 0.0349 0.321
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­is paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control
of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. ­e periodic
forcing input is considered as a persistent external disturbance.­emotion of the impacting oscillator is modeled by an impulsive
hybrid dynamics. ­us, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed
impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only
considering the region within which the state evolves. We show that the stability conditions are �rst expressed in terms of bilinear
matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and
simulations are given. We show the e�ectiveness of the designed state-feedback controller in the robust stabilization of the
position of the impact mechanical oscillator under the disturbance.

1. Introduction

In diverse mechanical systems, there are some working
conditions and parameters leading to the exhibition of
impacts between the oscillatory elements of certain me-
chanical systems due to the presence of gaps. Some
impacting mechanical systems are the impact dampers, the
inertial shakers, the impact print hammers, the pile drivers,
the shock absorbers, the forming machines, and much more
[1–3]. In one-degree-of-freedom (1-DoF) mechanical os-
cillators, impacts can occur with rigid/soft end-stops,
whereas in multi-DoF oscillators, collisions can also occur
amongst moving elements. ­e wide interest in these
impacting systems has spurred researchers and engineers to
analyze their motions and hence the implications of impacts,
as, for example, in [3–17].

In some working cases, impacts between interacting
bodies are considered intrinsic for the operations of many

engineering devices. Nevertheless, impacts may provoke
some dangerous e�ects such as impulsive severe forces, rapid
transfer of energy, and stresses and provokes a degradation
of the performance of the mechanical systems, where we
expect to observe a smooth behavior [2, 3, 7, 8, 12, 14].­ese
e�ects can lead then to the exhibition of chaotic responses.
­us, the objective is to improve the response and the
performances of these impacting mechanical systems
through control. ­e motion of these impacting systems is
governed by an impulsive hybrid dynamics, which is
composed by a di�erential equation and an algebraic one
associated with its impact conditions. ­us, due to this
impulsive hybrid dynamics, which is considered complex
enough for analysis and control, the synthesis of controllers
for these impacting systems is di¢cult to realize.

Some control techniques can be found in the literature.
­e OGY method has been widely adopted and applied to
control chaos in vibroimpact systems [13, 18–22]. Some
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other authors, e.g., [23–27], used other control techniques
such as an external driving force, a delay feedback, a dis-
placement feedback, a discrete-in-time feedback control,
and a damping control law, among others. Authors in [28]
used a feedback control input to control the position of a 1-
DoF impact mechanical oscillator with two asymmetric end-
stops. Authors in [29] controlled chaos in a 1-DoF impact
oscillator with only one rigid constraint.

In this paper, we consider the control problem of the
position of a 1-DoF impact mechanical oscillator with two-
sided rigid end-stops [28, 30–32]. Such an impacting os-
cillator is periodically forced via an external sinusoidal input,
which will be considered as a persistent disturbance to
compensate its effect via a robust control law. Our main idea
lies first in adding a control input to the impact oscillator.
,e synthesis of the control law will be realized using the
LMI approach. In this paper, we will consider the whole
impulsive hybrid dynamics of the two-sided 1-DoF
impacting oscillator. Both the differential equation and the
algebraic equations are considered in the design of the
stability condition. In our previous works [30–32], the
impact dynamics was not taken into account in the design.
Only the differential equation was considered. Moreover, we
adopted a state-feedback control law to stabilize the
impacting motion around the zero-equilibrium point. As in
[28], the forcing input, as a known signal, was canceled via
the controller [30]. However, in [31, 32], the forcing input
was considered as a disturbance. In this work, we will adopt a
state-feedback controller to robustly stabilize the impulsive
hybrid dynamics of the two-sided 1-DoF impact oscillator.

In order to synthesize the stability conditions, we use
first the S-procedure lemma in order to only take into
consideration the working region of the two-sided impacting
oscillator, that is, the region between the two end-stops. In
addition, we use the Finsler lemma in order to develop
stability conditions for the algebraic equation and using the
impact conditions. We show then that these stability con-
ditions are expressed in terms of bilinear matrix inequalities
(BMIs). In order to obtain numerically traceable LMI
conditions, we use mainly the Schur complement and the
matrix inversion lemma. Authors in [33, 34] used the LMI
approach and these previous lemmas, except the Finsler
Lemma, in order to design stabilizing controllers for an
underactuated mechanical system, namely, the inertia wheel
inverted pendulum, for which its motion is constrained by
two symmetric end-stops. Its dynamics is nonlinear and
does not present impacts. Our objective in this paper is to
extend the design methodology adopted in [33, 34] for the
two-sided 1-DoF impact mechanical oscillator, which is
characterized by an impulsive hybrid dynamics.

,e main contributions of this paper are summarized as
follows:

(i) A robust state-feedback control law is designed to
stabilize the 1-DoF double-sided mechanical os-
cillator subject to two asymmetric rigid constraints
and an external persistent disturbance.

(ii) Stabilization of the impulsive hybrid dynamics of
the impacting oscillator, where the continuous

dynamics and the impact dynamics are both con-
sidered in the synthesis of the stability conditions.

(iii) Via the S-procedure and Finsler lemmas, the sta-
bilization conditions of the closed-loop impulsive
hybrid system are first obtained and expressed in
terms of BMIs. ,e stability conditions are con-
sidered to be only satisfied inside the working
region.

(iv) By means of the Schur complement lemma and the
matrix inversion lemma, the previous BMIs are
converted into LMIs.

(v) Several simulations are presented to show that the
designed robust control law is able to compensate
the effect of the external persistent disturbance and
hence stabilize the impact mechanical oscillator at
the zero-equilibrium point.

,e structure of this paper is as follow. In Section 2, the
two-sided 1-DoF impact mechanical oscillator is presented.
Its impulsive hybrid dynamics is also presented in this
section. ,e problem formulation and the technical lemmas
used through this paper are given in Section 3. Section 4 and
Section 5 are devoted to the synthesis of the BMI and the
LMI stability conditions, respectively. In Section 6, the
numerical results and simulations are demonstrated. Finally,
the conclusion is addressed in Section 7.

2. The Double-Sided 1-DoF Impact
Mechanical Oscillator

2.1. System Description. Figure 1 shows a 1-DoF impact
mechanical oscillator with asymmetric double-sided rigid
end-stops. ,e impacting system is composed of a mass m
interconnected to the right end-stop by both a spring of
stiffness k and a dashpot of damping coefficient ζ. ,e gap
between the mass m and the rigid stop is d. A second rigid
end-step is localized at the left away from the mass of a
distance l. ,e motion impact oscillator is excited via a
sinusoidal force input v � p cos(wt), where the parameters
w and p are the excitation frequency and the excitation
amplitude, respectively. In Figure 1, u is an additional input,
the controller, which will be designed next to control the
position of the impact oscillator to the zero-equilibrium
point.

From an initial condition, the mechanical oscillator will
oscillate horizontally along the axis x and will produce
impacts with the two asymmetric rigid constraints with the
same coefficient r of restitution inducing hence an in-
stantaneous transition of the velocity.

2.2. Impulsive Hybrid Dynamics of the Impact Oscillator.
,e dynamics of the two-sided 1-DoF impact mechanical
oscillator is governed by the following system:

m€x + 2ζ _x + kx � p cos(wt), for l< x < d, (1a)

x+
� x− and _x+

� − r _x−
, for x � d or x � l, (1b)
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where €x, _x, and x are the acceleration, velocity, and dis-
placement of the mass of the impacting oscillator, d and l are
the right bound and the left bound, respectively, and sub-
scribes + and − in (1b) denote, respectively, just after and just
before the impact.

2.3. A Brief Look on the Impacting Behavior. It is well known
that the double-sided 1-DoF impact mechanical oscillator
generates periodic and chaotic behaviors with respect to the
parameters p, w, ζ, d, l, and r. We refer our reader to [28] for
further details and some bifurcation diagrams. As in [28],
the adopted values of different parameters in dynamics (1a)
and (1b) are m � 1 kg, k � 1N/m, ζ � 0.05N/(m/s),
d � 0.3m, l � − 0.1m, p � 0.5N, and r � 0.8. Figure 2 shows
the behavior of the impact oscillator for w � 0.8. In Figure 2,
we plotted the temporal evolution of the position and the
velocity of the impactingmechanical system. Figure 3 reveals
the corresponding phase portrait simulated for such value of
the parameter w. In Figure 4, we presented three Poincaré
maps. Figure 4(a) shows the stroboscopic Poincaré map,
which reveals the state of the impact oscillator at the period
T. Figures 4(b) and 4(c) reveal the impact Poincaré maps.
,e first one in Figure 4(b) shows the impact time of the
oscillator with the right bound with respect to its impact
velocity. However, the second impact Poincaré map in
Figure 4(c) shows the impact time with the left rigid con-
straint with respect to the impact velocity. ,ese previous
portraits in Figures 2, 3, and 4 demonstrate that the 1-DoF
impact mechanical oscillator displays a chaotic behavior.

It is worth to note that it is possible to characterize chaos
exhibited in the motion of the 1-DoF impact mechanical
oscillator presented in Figure 2 and then in Figures 3 and 4
by means of the spectrum of Lyapunov exponents. Authors
in [35] computed numerically the Lyapunov exponents in
mechanical systems with impacts using a transcendental
map.,ey applied their computation procedure for the one-
sided 1-DoF impact oscillator and also for the impact-pair
system. Moreover, authors in [36] computed the Lyapunov
exponents of a cantilever beam impacting on a moving base
using a discrete modeling. Some other works have also been
developed for this subject, as, e.g., in [37, 38]. Author in [39]
presented a general method for the calculation of Lyapunov
exponents for dynamic systems with discontinuities and
then with impacts. ,us, a forced impact oscillator with dry

friction was presented as an illustrative example. In [40, 41],
authors computed the spectrum of Lyapunov exponents for
more complicated impulsive hybrid systems, namely, the
biped robots, using an explicit analytical expression of the
(hybrid) Poincaré map.

3. Problem Formulation and Preliminaries

3.1. Problem Statement. Let z � x _x􏼂 􏼃
T be the state vector.

,en, relying on the equations in (1a) and (1b), the impulsive
hybrid dynamics of the 1-DoF impact mechanical oscillator
under the double-sided rigid constraints is given as follows:

_z � Az + Bv, as long as l<CTz<d, (2a)

z+
� Rz−

, wheneverCTz � d orCTz � l, (2b)
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Figure 2: Temporal evolution of the mass position of the double-
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where A �
0 1

− (k/m) − (2ζ/m)
􏼢 􏼣, B �

0
1/m􏼢 􏼣,

R �
1 0
0 − r

􏼢 􏼣, C �
1
0􏼢 􏼣, and v � p cos(wt). Moreover, we

note that d> 0 and l< 0.
Our main objective in this work is to control the position

of the impacting oscillator to the zero-equilibrium point.
,en, we need an additional external input, saying u, as the
controller, which will be designed next. Moreover, the signal
v will be considered next as an external disturbance input
applied to the oscillator. Actually, we will consider a general
form of the disturbance torque v that can take any expression
such that |v|≤p. Accordingly, in (2a), we will have (u + v)

instead of v. ,us, the impulsive hybrid dynamics (1a) and
(1b) becomes

_z � Az + Bu + Bv, as long as z ∈ Ω, (3a)

z+
� Rz−

, whenever z ∈ Γ. (3b)

In (3a) and (3b), Γ represents the impact surface and Ω
reveals the oscillation space. ,ey are defined as follows:

Ω � z ∈ R2×1
, l<CTz<d􏽮 􏽯,

Γ � z ∈ R2×1
,C

Tz � d orCTz � l􏽮 􏽯.
(4)

Our objective in this work is then to design the controller
u for the disturbed impulsive hybrid systems (3a) and
(3b)–(4) of the 1-DoF impacting mechanical oscillator to
robustly stabilize it at (around) the zero-equilibrium point
even in the presence of the external disturbance input v. For
this subject we assume that all the states, i.e., the position x
and the velocity _x of the mechanical system are available for
measurement. ,en, under this assumption, we will adopt
the following state-feedback controller:

u �
Kz, whenever z ∈ Δ,

0, elsewhere,
􏼨 (5)
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Δ � x ∈ R, x
2 > ε􏽮 􏽯, (6)

where K ∈ R1×2 is a constant gain matrix to design next
using the LMI approach and ε is a small enough positive
constant.,e set Δ in (6) defines the region within which the
state-feedback control law is activated. ,is set Δ can be
recast as follows:

Δ � z ∈ R2×1
, zT

CC
Tz> ε􏽮 􏽯. (7)

Remark 1. It is worth to note that the condition zTCCTz> ε
defining the set Δ in expression of the state-feedback control
law (5) was added in order to overcome a certain solving
problem of the LMI-based stability conditions of the closed-
loop impulsive hybrid systems (3a) and (3b) under the state
constraints in (4) using the Lyapunov approach [33]. Such a
problem will be discussed later (see Remark 4). In [33],
authors used the constraint ‖z‖2 > ε on the state-feedback
control law in (5). ,is last condition is identical to the
constraint zTCCTz> ε if C � I2. We emphasize that the
new condition zTCCTz> ε in (7) will provide less restrictive
LMI conditions compared with that obtained via the con-
dition zTz> ε.

By substituting expression of control law (5) in dynamic
model (3a), we obtain then the following closed-loop im-
pulsive hybrid dynamics:

_z � (A + BK)z + Bv, as long as z ∈ Ω, z ∈ Δ, (8a)

z+
� Rz−

, whenever z ∈ Γ, z ∈ Δ. (8b)

Remark 2. It is worth to note that in [28], the position
control of the double-sided 1-DoF impacting mechanical
oscillator was achieved using the following control law:

u � 2ζ _x + kx − v(t) − m(ax + b _x), (9)

where the two design parameters a and b are determined

such that the eigenvalues of the matrix 0 1
− a − b

􏼢 􏼣 are with

negative real parts.
In the next part of this work, we will focus on synthe-

sizing stability conditions for the closed-loop impulsive
hybrid systems (8a) and (8b).

3.2. Preliminary Lemmas. Before synthesizing the stability
conditions for the impulsive hybrid system (8a) and (8b), we
need the following technical lemmas. In the sequel, and in
large matrix expressions, the symbol (⋆) replaces terms that
are induced by symmetry. Moreover, Ω + X + (⋆) �

Ω + X + XT. In addition, I and O stand, respectively, for
the identity matrix and the null matrix with appropriate
dimensions.

Lemma 1 (the Young inequality [42]). For given constant
matrices X and Y with appropriate dimensions and any
positive scalar λ, the following inequality holds:

XTY + YTX≤ λXTX + λ− 1YTY. (10)

Lemma 2 (the matrix inversion lemma [33, 34]). For given
invertible matrices X and Y such that X ∈ Rn×n and
Y ∈ Rm×m. Moreover, given matrices U and V are of ap-
propriate dimensions U ∈ Rn×m and V ∈ Rm×n. Then, the
matrix inversion lemma is

(X + UYV)
− 1

� X− 1
− X− 1U Y− 1

+ UX− 1U􏼐 􏼑
− 1
VX− 1

.

(11)

Lemma 3 (the Schur complement lemma [42]). For given
matrices Q � QT, R � RT, and S with appropriate di-
mensions, the following propositions are equivalent:

Q S

ST R
􏼢 􏼣> 0, (12a)

R> 0,

Q − SR− 1ST > 0.
􏼨 (12b)

Lemma 4 (the S-procedure lemma [33, 34, 42]). Let
F0, . . . ,Fp ∈ Rn×n be symmetric matrices. We consider the
following condition on F0, . . . ,Fp:

ζT
F0ζ> 0for all ζ ≠ 0, such that ζT

Fiζ≥ 0, i � 1, . . . , p.

(13)

If there exist scalar variables τ1 ≥ 0, . . . , τp ≥ 0, such that

F0 − 􏽘

p

i�1
τiFi > 0, (14)

then (13) holds.

Lemma 5 (Finsler’s lemma [43]). Let,
x ∈ Rn,Q � QT ∈ Rn×n, and B ∈ Rn×n such that
rank(B)< n. ?e following statements are equivalent:

(i) xTQx< 0, for allBx � 0, x≠ 0
(ii) ∃μ ∈ R: Q − μBTB< 0

Remark 3. In this paper, we will use the LMI approach to
cope with the control problem of the 1-DoF impact me-
chanical oscillator, which is described by a second-order
dynamics. We will design a robust control law in order to
stabilize the position of such mechanical systems with im-
pulse effects. Actually, the presence of an impulsive effect can
influence the behavior of the solutions and cause dangerous
effects in some applications. More than that, the presence of
impulsive effects can cause instability of the whole behavior
of the impacting mechanical system. ,ese systems are
defined by an impulsive hybrid dynamics for which the
system undergoes a very instantaneous transition when
reaching some state-dependent conditions, as in our case for
the two-sided impact mechanical oscillator. ,en, in this
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paper, we deal with an impulsive hybrid system, which is
more complicated than a simple nonlinear system.

In addition, we stress that we deal with homogeneous
models (3a) and (3b) allowing the interaction between
discrete and continuous parts and the stabilization process
was realized for whole models (8a) and (8b). Only the
continuous part/model (3a) was found to be under control,
whereas the discrete model (3b) or (8b) is without control
and also is unstable (the two eigenvalues of the matrixR are
1 and − r). Hence, the main challenge of the present work is
to stabilize robustly the whole impulsive hybrid dynamics
using a single controller for the continuous part.

Furthermore, to design the stability conditions of the
closed-loop systems (8a) and (8b), we will only consider the
working region, inside which the state vector is defined and
then the impact mechanical oscillator evolved. Actually, we
have two working regions: one for the continuous part and
another for the discrete part. For the continuous model, the
working region is that between the two asymmetric rigid
end-stops, that is, the setΩ defined by (4a). However, for the
discrete model (8b), the working region is the two end-stops,
which are defined by the impact condition and then set Γ
defined by (4b). We will use the S-procedure lemma to deal
with the working region Ω and the Finsler Lemma to
consider the working region Γ for the design of the stability
conditions.

4. Synthesis of the Robust State-Feedback
Control Law: BMI Conditions

In order to synthesize stability conditions of the disturbed
impulsive hybrid systems (8a) and (8b), we adopt the fol-
lowing Lyapunov function:

V(z) � zT
Pz, (15)

where P � PT.
,us, the asymptotic stability conditions of systems (8a)

and (8b) are given by

V(z)> 0 s.t. z ∈ Ω, z ∈ Δ, (16a)

_V(z)< 0, s.t. z ∈ Ω, z ∈ Δ, (16b)

V z+
( 􏼁 − V z−

( )< 0, s.t. z ∈ Γ, z ∈ Δ. (16c)

Theorem 1. ?e closed-loop impulsive hybrid systems (8a)
and (8b) subject to the external disturbance v, with ‖v‖≤p, is
asymptotically and robustly stable if for some fixed parameter
0< ε≪ 1, there exist a symmetric matrix P, a matrix K,
positive scalars α1, α2, α3, α4, β1, β2, β3, β4, and λ, and free two
scalars ξ1 and ξ2 such that the following matrix inequalities
are feasible:

P − β3CCT β1 − β2( 􏼁C

(⋆) ϵβ3 − 2β1d + 2β2l

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦> 0, (17a)

P(A + BK) +(⋆) + λPBBTP + α3CCT − α1 − α2( 􏼁C

(⋆)
p2

λ
− εα3 + 2α1d − 2α2l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (17b)

RPR − P − ξ1CCT + α4CCT ξ1dC
(⋆) − α4ε − ξ1d2􏼢 􏼣< 0, (17c)

RPR − P − ξ2CCT + β4CCT ξ2lC
(⋆) − β4ε − ξ2l2

􏼢 􏼣< 0. (17d)

Proof. ,e constraints z ∈ Ω, z ∈ Δ, and z ∈ Γ can be re-
written as follows:

W1(z) �
z

1
􏼢 􏼣

T
O C

(⋆) − 2d
􏼢 􏼣

z

1
􏼢 􏼣< 0, (18a)

W2(z) �
z
1

􏼢 􏼣

T
O − C

(⋆) 2l
􏼢 􏼣

z
1

􏼢 􏼣< 0, (18b)

W3(z) �
z
1

􏼢 􏼣

T
− CCT O

(⋆) ε
􏼢 􏼣

z
1

􏼢 􏼣< 0, (18c)

W4(z) � CT − d􏽨 􏽩
z
1

􏼢 􏼣 � 0, (18d)

W5(z) � CT − l􏽨 􏽩
z
1

􏼢 􏼣 � 0. (18e)

,e derivative of the Lyapunov function (15) is given as
follows:

_V(z) � 2zT
P(A + BK)z + 2zT

PBv. (19)

Relying on the Young relation (Lemma 1) and as |v|≤p,
we obtain the following condition:
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2zT
PBv≤ λzT

PBB
T
Pz +

p2

λ
, (20)

with λ> 0.
By substituting expression (20) in relation (19), then the

stability condition becomes

U(z) �
z

1
􏼢 􏼣

T P(A + BK) +(⋆) + λPBBTP O

(⋆)
p2

λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z

1
􏼢 􏼣< 0.

(21)

In addition, using the algebraic equation in (8b), then the
stability condition in (16c) becomes

W(z) � zT
(RPR − P)z< 0. (22)

Accordingly, based on the previous expressions, the
stability conditions in (16a)–(16c) are reformulated as
follows:

V(z)> 0, s.t.W1(z)< 0, W2(z)< 0, W3(z)< 0,

(23a)

U(z)< 0, s.t.W1(z)< 0, W2(z)< 0, W3(z)< 0,

(23b)

W(z)< 0, s.t.W4(z) � 0 orW5(z) � 0, W3(z)< 0.

(23c)

Relying on the S-procedure lemma (see Lemma 4) and based
on the Finsler lemma (see Lemma 5), the conditions in (23a)–
(23c) are equivalent, respectively, to the matrix inequalities in
(17a)–(17d), for some positive scalars αi and βi, i � 1, 2, 3, 4, and
ξ1, ξ2 ∈ R. ,is completes the proof of ,eorem 1. □

Remark 4. It is worth to note that if we choose ε � 0 in ex-
pression of controller (5), then we will have z ∈ Rn. As a result,
the (2,2) element in BMI (17a) (resp. BMI (17b)) becomes
− 2β1d + 2β2l (resp. (p2/λ) + 2α1d − 2α2l). As d> 0 and l< 0,
then it follows that − 2β1d + 2β2l< 0 and
(p2/λ) + 2α1d − 2α2l> 0. Hence, the two BMIs (17a) and (17b)
are unfeasible.,erefore, to solve such a feasibility problem, we
add the constraint zTCCTz> ε on the state-feedback con-
troller and with ε as a small enough positive parameter.

5. Synthesis of the Robust State-Feedback
Control Law: LMI Conditions

It is worth mentioning that the four inequality conditions in
(17a)–(17d) in ,eorem 1 are BMIs. ,us, to solve the
stability problem of the closed-loop impulsive system by
finding the feedback matrix gain K of the state-feedback
control law (5) and the corresponding Lyapunov matrix P,
we should transform these BMIs into LMIs.

Theorem 2. ?e impulsive hybrid systems (3a) and (3b)
subject to the external disturbance v(t), with ‖v(t)‖ ≤p, is
robustly and asymptotically stabilizable by the state-

feedback control law (5) if, for a scalar 0< ε≪ 1 fixed a
priori, there exist a symmetric matrix S, a matrix 􏽣K, and
positive scalars μ1, μ2, μ3, μ4, η1, η2, η3, η4, 􏽢ξ1, 􏽢ξ2, λ, and 􏽢p

such that the following LMI-based optimization problem is
feasible:

maximize 􏽢p

minimize μ3

s.t.

S SC
1
2d

C −
1
2l
SC O

(⋆) ϵη3 O O O

(⋆) (⋆)
1
2d

η1 O η3

(⋆) (⋆) (⋆) −
1
2l
η2 η3

(⋆) (⋆) (⋆) (⋆) η3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

(24a)

− (AS + B􏽣K) +(⋆) − λBBT SC
1
2d

SC −
1
2l
SC O O

(⋆) εμ3 O O O O

(⋆) (⋆)
1
2d

μ1 O O μ3

(⋆) (⋆) (⋆) −
1
2l
μ2 O μ3

(⋆) (⋆) (⋆) (⋆) λ 􏽢p

(⋆) (⋆) (⋆) (⋆) (⋆) μ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

(24b)

S + SCCT +(⋆) − 􏽢ξ1 +
d2

ϵ
μ4􏼠 􏼡CCT SC SR

(⋆) μ4 O

(⋆) (⋆) S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

(24c)

S + SCCT +(⋆) − 􏽢ξ2 +
l2

ε
η4􏼠 􏼡CCT SC SR

(⋆) η4 O

(⋆) (⋆) S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0.

(24d)

Hence, the state-feedback gain is given by

K � 􏽣KS
− 1

, (25)
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and the maximum bound of the disturbance is defined as
follows:

p �
􏽢p

μ3
. (26)

Proof. We begin first by linearizing BMI (17a). Let us pose
S � P− 1. We pre- and postmultiplying (17a) by the matrix
diag(S, 1). ,us, we obtain the following condition:

S − β3SCCTS β1 − β2( 􏼁SC

(⋆) εβ3 − 2β1d + 2β2l
⎡⎣ ⎤⎦> 0. (27)

For simplicity, posing N1 �
η1 0

(⋆) η2
􏼢 􏼣 with η1 � β− 1

1 ,

η2 � β− 1
2 , Q− 1 �

2d 0
0 − 2l

􏼢 􏼣, G � SC − SC􏼂 􏼃, L �
1
1􏼢 􏼣,

and η− 1
3 � εβ3. ,en, it is easy to show that εβ3 − 2β1d +

2β2l � η− 1
3 − LT(QN1)

− 1L and (β1 − β2)SC � GN− 1
1 L.

Hence, the matrix inequality (27) becomes

S − εη3( 􏼁
− 1
SCCTS GN− 1

1 L

(⋆) η− 1
3 − LT QN1( 􏼁

− 1
L

⎡⎢⎢⎣ ⎤⎥⎥⎦> 0.

(28)

Based on the Schur complement lemma (see Lemma 3),
matrix (28) is equivalent to

S − εη3( 􏼁
− 1
SCC

T
S − GN

− 1
1 L η− 1

3 − L
T
QN1( 􏼁

− 1
L􏼐 􏼑

− 1

· L
T
N

− 1
1 G

T > 0,

(29a)

η− 1
3 − L

T
QN1( 􏼁

− 1
L> 0. (29b)

,e matrix inversion lemma (see Lemma 2) states that

η− 1
3 − L

T
QN1( 􏼁

− 1
L􏼐 􏼑

− 1
� η3 − η23L

T
H

− 1
L, (30)

with H � η3LLT − QN1. If we consider in the next that
H< 0, then since η3 > 0, we obtain η3 − η23L

TH− 1L> 0.
,erefore, condition (29b) is always satisfied. We will only
consider in the sequel condition (29a).

Substituting expression (30) in (29a) yields

S − εη3( 􏼁
− 1
SCC

T
S − η3GN

− 1
1 LL

T
N

− 1
1 G

T

+ η23GN
− 1
1 LL

T
H

− 1
LL

T
N

− 1
1 G

T > 0.
(31)

Relying on expression of the matrix H, it is straight-
forward to demonstrate that

η3GN
− 1
1 LL

T
� GN

− 1
1 H + QN1( 􏼁. (32)

,us, based on this relation (32) and as the matrices Q
and N1 are diagonal and H is symmetric, we obtain the
following expressions:

η3GN
− 1
1 LL

T
N

− 1
1 G

T
� GN

− 1
1 HN

− 1
1 G

T
+ GQN

− 1
1 G

T
,

(33a)

η23GN
− 1
1 LL

T
H

− 1
LL

T
N

− 1
1 G

T
� GN

− 1
1 HN

− 1
1 G

T

+ 2GN
− 1
1 QG

T
+ GQH

− 1
QG

T
.

(33b)

By substituting the two expressions (33a) and (33b) in
inequality (31), we obtain

S − εη3( 􏼁
− 1
SCC

T
S + GN

− 1
1 QG

T
+ GQH

− 1
QG

T > 0.

(34)

Moreover, asN− 1
1 Q> 0, then condition (34) is satisfied if

S − εη3( 􏼁
− 1
SCC

T
S + GQH

− 1
QG

T > 0. (35)

As εη3 > 0 and H< 0, then the Schur complement
lemma states that the matrix inequality (35) is equivalent
to

S SC GQ

(⋆) εη3 O

(⋆) (⋆) N1Q − η3LLT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦> 0. (36)

By applying the Schur complement on elements (33a)
and (33b) in (36), we obtain the following matrix
inequality:

S SC GQ O

(⋆) εη3 O O

(⋆) (⋆) N1Q η3L

(⋆) (⋆) (⋆) η3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (37)

Accordingly, by replacing the different matrices in (37)
by their expression, we found the first LMI (24a).

We focus now on BMI (17b). Pre- and postmultiplying
thematrix inequality (17b) by thematrix diag(S, 1) gives the
following condition:

(AS + B􏽣K) +(⋆) + λBBT + α3SCCTS − α1 − α2( 􏼁SC

(⋆) − εα3 +
p2

λ
+ 2α1d − 2α2l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (38)
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where 􏽣K � KS.
For simplicity, posingG � SC − SC O􏼂 􏼃,L �

1
1
1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

Q− 1 �

2d 0 0
0 − 2l 0
0 0 p2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, and N2 �

μ1 0 0
0 μ2
0 0 λ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ with μ1 � α− 1

1 ,

μ2 � α− 1
2 , and μ− 1

3 � εα3, it is easy to show that

− εα3 + (p2/λ) + 2α1d − 2α2l � − (μ− 1
3 − LT(QN2)

− 1L)

and (α1 − α2)SC � GN− 1
2 L. It is worth to note that Q> 0

and N2 > 0.
,en, by multiplying the matrix inequality (37) by (− 1),

we obtain the following result:

− (AS + B􏽣K) +(⋆) + λBBT􏼐 􏼑 − εμ3( 􏼁
− 1
SCCTS GN− 1

2 L

(⋆) μ− 1
3 − LT QN2( 􏼁

− 1
L

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦> 0. (39)

By following the same linearization methodology
adopted previously, we obtain the following simplified
equivalent conditions:

− (AS + B􏽣K) +(⋆) − λBB
T

− εμ3( 􏼁
− 1
SCC

T
S

+ GQH
− 1
QG

T > 0,

(40a)

H � μ3LL
T

− QN2 < 0. (40b)

Since H< 0 and (εμ3)> 0, the Schur complement states
that the matrix inequality (40a) is equivalent to

− (AS + B􏽣K) +(⋆) − λBBT SC GQ O

(⋆) εμ3 O O

(⋆) (⋆) N2Q μ3L

(⋆) (⋆) (⋆) μ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0.

(41)

By multiplying the matrix inequality (41) from left and
right by thematrix diag(I, 1, 1, 1, p, 1) and bymaking a new
variable change 􏽢p � μ3p, we obtain then LMI (24b).

We focus now in the linearization of BMIs (17c) and
(17d). It is clear that these two BMIs are similar. ,us, the
linearization of BMI (17d) will be identical to that for BMI
(17c). ,en, we will only linearize the first BMI (17c).

,e Schur complement states that the matrix inequality
(17c) is equivalent to

RPR − P − ξ1CC
T

+ α4CC
T

+ ξ21d
2 α4ε + ξ1d

2
􏼐 􏼑

− 1
CC

T < 0,
(42a)

α4ε + ξ1d
2 > 0. (42b)

,e matrix inversion lemma states that

α4ε + ξ1d
2

􏼐 􏼑
− 1

� ξ1d
2

􏼐 􏼑
− 1

− ξ1d
2

􏼐 􏼑
− 2

ξ1d
2

􏼐 􏼑
− 1

+ α4ε( 􏼁
− 1

􏼒 􏼓
− 1

.

(43)

By considering this relation (43) in (42a), this inequality
(42a) is simplified as follows:

RPR − P + α4CC
T

− ξ− 1
1 +

d2

α4ε
􏼠 􏼡

− 1

CC
T < 0. (44)

We pre- and postmultiply inequality (44) from left and
right by S, we obtain

SRS
− 1
RS − S + α4SCC

T
S − ξ− 1

1 +
d2

α4ε
􏼠 􏼡

− 1

SCC
T
S< 0.

(45)

Let ξ1 > 0, α4 > 0, and ε> 0, then condition (42b) is al-
ways satisfied, and hence we have ξ− 1

1 + (d2/α4ε)> 0. ,en, it
is straightforward to demonstrate by means of the Young
relation that

− ξ− 1
1 +

d2

α4ε
􏼠 􏼡

− 1

SCC
T
S≤ − SCC

T
+(⋆)

+ ξ− 1
1 +

d2

α4ε
􏼠 􏼡CC

T
.

(46)

,erefore, condition (45) becomes

SRS
− 1
RS − S + α4SCC

T
S − SCC

T
+(⋆)

+ ξ− 1
1 +

d2

α4ε
􏼠 􏼡CC

T < 0.

(47)

,e Schur complement lemma states inequality (47) is
equivalent to

− S − SCCT +(⋆) + ξ− 1
1 +

d2

α4ε
􏼠 􏼡CCT SC SR

(⋆) −
1
α4

O

(⋆) (⋆) − S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(48)

Posing μ4 � α− 1
4 and 􏽢ξ1 � ξ− 1

1 , then the matrix inequality
(48) is converted into LMI (24c). Similarly, we will obtain
LMI (24d) from BMI (17d). ,is ends the proof of
,eorem 2. □

Complexity 9



6. Simulation Results

In the following simulation section, the parameters of the
double-sided 1-DoF impact mechanical oscillator are fixed
as follows: m � 1 kg, k � 1N/m, c � 0N/(m/s), d � 0.3m,
l � − 0.1m, r � 0.8, and w � 0.8 rad·s− 1. ,e numerical re-
sults of the optimization problem in ,eorem 2 are given in
Table 1 for different values of the parameter ε. In this table

we provide the maximum bound p of the disturbance v and
the corresponding controller gainK. Notice that the symbol
(!) in Table 1means that optimization problem in,eorem 2
under LMIs (24a)–(24c) is unfeasible. Actually, it was found
to be unfeasible for all ε≤ 0.09.

,e first interesting and attractive observation that can
be explored from Table 1 is that the size of thematrix gainK
is very small. In addition, the second attractive result is that

Table 1: Numerical results for different values of ε.

ε p K

10 2.7829 − 43.2211 − 13.4620􏼂 􏼃

5 2.7826 − 41.6121 − 12.5971􏼂 􏼃

1 2.7834 − 43.4863 − 13.6926􏼂 􏼃

0.5 2.7828 − 41.5044 − 12.5713􏼂 􏼃

0.1 2.7832 − 66.3664 − 12.3858􏼂 􏼃

0.091 2.7826 − 112.0141 − 10.5564􏼂 􏼃
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Figure 5: Simulation results of the two-sided asymmetric 1-DoF impact mechanical oscillator. Here, we fixed d � 0.3.
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for all fixed values of the parameter ε we obtained almost the
same maximum bound p of the disturbance signal v(t), say
about 2.78.

Figure 5 show the simulation results for the impact
oscillator using the values of p andK obtained in Table 1 for
ε � 0.091. ,e initial condition adopted for the simulation is
0.2 1􏼂 􏼃

T. Figure 5(a) reveals the temporal evolution of the
position of the oscillator. Figure 5(b) shows it velocity.
Figure 5(c) illustrates the applied controller u. In Figure 5(d),
we transposed the control signal u and the disturbance v. It is
obvious that the mass’s position of the impact oscillator will
converge progressively in time to the zero-equilibrium
point, around which the oscillator oscillates with a sinu-
soidal signal of a small amplitude 0.0247. In addition, the
velocity oscillates around the zero state between ±0.0198.
According to this behavior, the controller will oscillate with a
sinusoidal form of amplitude 2.774. Following this result and
from Figure 5(d), we stress that the controller u becomes
opposite to the disturbance signal. Hence, this demonstrates
that the controller u has rejected approximately the per-
sistent disturbance v.

Notice that for the adopted initial condition, the oscil-
lator does not experience impacts with the left and the right
end-stops. In order to observe the impacts with the two end-
stops, we modified the value of d to be d � 0.1 and we
adopted another initial condition − 0.05 − 20􏼂 􏼃

T. For this new
value of the parameter d and for ε � 0.091, we obtained p �

2.58 and K � − 57.9597 − 12.9790􏼂 􏼃. ,e simulation results
are given in Figures 6 and 7. In Figure 6(a), we plot the
temporal evolution of the mass position of the impact os-
cillator. Figure 6(b) is an enlargement of Figure 6(a) for a
simulation time between 0 and 0.15 s. Figures 6(c) and 6(d)
show the variation of the velocity of the oscillator.
Figure 7(a) reveals the temporal variation of the controller u.
Figure 7(b) is a blow-up view of Figure 7(a). Figures 7(c) and
7(d) demonstrate the temporal evolution of the Lyapunov
function V(z) defined by expression (15).

It is obvious from these simulation results that the mass
of the oscillator experiences in the present case impacts with
the two end-stops before its stabilization around the zero-
equilibrium point. ,e amplitude of the position oscillation
is almost 0.043, whereas that of the velocity is about 0.035. As
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Figure 6: Simulation results of the two-sided asymmetric 1-DoF impact mechanical oscillator with d � 0.1.
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seen in Figure 6(d), at the impact with an end-stop, the
velocity of the impact mechanical oscillator undergoes an
instantaneous transition according to the restitution rule
_x+ � − r _x− . When an impact occurs, the Lyapunov function
decreases instantaneously, as shown in Figure 7(c). ,is
behavior reveals that the energy of the mechanical oscillator
decreases at the impact events.

Remark 5. In the previous simulations, we considered a
chaotic motion of the 1-DoF impact mechanical oscillator
to be controlled. We can choose a regular motion of the
uncontrolled mechanical system, and we will obtain the
same results, that is, the robust control of the impact os-
cillator to the zero-equilibrium point despite the presence
of the impacts with the two end-stops and also despite the
presence of the external persistent disturbing torque. ,e
choice of a chaotic behavior to be controlled can be
explained by the fact that a chaotic motion is very sensitive
to initial conditions and then its control is more “difficult”
than a regular motion.

7. Conclusion and Future Works

In this paper, a robust control of the position of a two-sided
1-DoF impact mechanical oscillator under an unknown
external disturbing torque by means of a state-feedback
controller is proposed. ,us, the control problem of such an
impact oscillator was formulated as a stabilization problem
of an impulsive hybrid dynamics subject to state constraints.
Our approach for the design of the stability conditions was
based mainly on the use of the S-procedure lemma and also
the Finsler lemma to transform the stability conditions
under constraints into BMI conditions. We used the Schur
complement lemma and the matrix inversion lemma to
convert these BMIs into LMIs allowing the computation of
the feedback gain and also the maximum bound of the
disturbance. ,e simulation results show that the impact
mechanical oscillator is robustly stabilized around the zero-
equilibrium point.

Our future direction is to consider uncertainties in all the
parameters of the impact oscillator. ,us, our objective is to
design a robust controller for the impulsive hybrid dynamics
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Figure 7: Simulation results for the case d � 0.1 showing the temporal variation of the controller u and the Lyapunov function V(z).
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under parametric uncertainties and disturbances. In addi-
tion, in this paper, we assumed that the position and the
velocity of the oscillator are available for measurement.
When this is not the case, we will consider the design of a
static output feedback controller or an observer-based
feedback controller to solve this problem. Another future
work is to consider the problem of the impacting trajectory
tracking, which is more difficult than that solved in the
present paper.
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An adaptive backstepping control scheme for a class of incommensurate fractional order uncertain nonlinear multiple-input
multiple-output (MIMO) systems subjected to constraints is discussed in this paper, which ensures the convergence of tracking
errors even with dead-zone and saturation nonlinearities in the controller input. Combined with backstepping and adaptive
technique, the unknown nonlinear uncertainties are approximated by the radial basis function neural network (RBF NN) in each
step of the backstepping procedure. Frequency distributed model of a fractional integrator and Lyapunov stability theory are used
for ensuring asymptotic stability of the overall closed-loop system under input dead-zone and saturation. Moreover, the pa-
rameter update laws with incommensurate fractional order are used in the controller to compensate unknown nonlinearities. Two
simulation results are presented at the end to ensure the e�cacy of the proposed scheme.

1. Introduction

Due to the unique advantages in describing the hereditary
and memory properties of multifarious materials and pro-
cesses, fractional calculus as a research hotspot has recently
attracted more and more attentions and interests in visco-
elastic systems, control theory, engineering, and some in-
terdisciplinary �elds although it is considered as a branch of
mathematics that has few applications for a long time [1–4].
As a powerful tool used tomodel many real-world behaviors,
fractional order systems can provide more practical value
and accurate results in many practical system applications
[5–18], such as fractional oscillators, fractional damping,
quenching phenomenon, and some biological systems. Se-
quentially, many researchers have paid close attention to the
applications of fractional order di¤erential equations in both
engineering and theory and have drawn some wonderful and
meaningful results in the literatures [19–24].

It is known that a precise physical model of the engi-
neering plant is di�cult to build because of the uncertainties
and noises. �us, most studies have concentrated on the
controller design of the fractional order nonlinear system

with uncertainties [25–28]. Due to the inherent approxi-
mation capability, neural networks (NNs) or fuzzy logic
systems are usually used to approximate the system un-
certainties in the integer order system. �e scholars in [24]
have designed an adaptive fuzzy control scheme for a class of
fractional order systems with parametric uncertainty and
input constraint. In [29], an adaptive backstepping con-
troller is designed for a class of fractional order systems with
unknown parameters based on the indirect Lyapunov
method, in which the control problem of fractional order is
converted to the integer order one. Using the fractional
order extension of the Lyapunov direct method, an adaptive
backstepping control method for a class of fractional order
nonlinear systems with unknown nonlinearity is developed
in [30]. In [31, 32], an output feedback control scheme for a
class of triangular fractional order nonlinear systems is
given. For a class of a fractional order rotational mechanical
system with disturbances and uncertainties, a robust
adaptive NN control is presented in [33]. Based on dual
radial basis function (RBF) NNs, an adaptive fractional
sliding mode controller is proposed to enhance the per-
formance of the system in [34]. In [35], an adaptive NN
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control scheme is given for a class of fractional order systems
with nonlinearities and backlash-like hysteresis. For a class
of uncertain fractional order nonlinear systems with external
disturbance and input saturation, an adaptive NN back-
stepping control method based on the indirect Lyapunov
method is designed in [36]. In [37], an adaptive fuzzy control
scheme for a category of uncertain nonstrict-feedback sys-
tems with constraints is designed. .e authors of [38] design
an observer-based adaptive fuzzy controller for a class of
single-input single-output nonlinear systems with unknown
dynamics.

.ere are many fractional order nonlinear multiple-
input multiple-output (MIMO) systems in practice, and it is
important to develop control approaches for fractional order
nonlinear MIMO systems. In comparison with plenty of
research studies on fractional order SISO nonlinear systems,
there are few research studies on the fractional order
nonlinearMIMO systems due to existing uncertainties in the
coupling matrices and unknown nonlinear functions in the
nonlinear MIMO, where they are very challenging issues.
For a class of incommensurate fractional order nonlinear
MIMO systems with external disturbance, a fractional
adaptive RBF NN backstepping control scheme is designed
in [39], which is constructed using the backstepping tech-
nology. In [40], the consensus problem of fractional order
MIMO systems with linear models is researched via the
observer-based protocols. In [41], a discontinuous distrib-
uted controller is proposed for a class of fractional order
MIMO systems. In [42], an adaptive output feedback con-
troller is designed for a class of nonlinear fractional order
MIMO systems with input nonlinearities. For a class of
fractional order uncertain nonlinear MIMO dynamic sys-
tems with dead-zone input and external disturbances, a
fractional adaptive type-2 fuzzy backstepping control
scheme is presented in [43], which is constructed using the
backstepping dynamic surface control and fractional
adaptive type-2 fuzzy technique.

In many industrial processes, actuators usually possess
the input saturation and dead-zone which are the most
important nonsmooth nonlinearities and severely limit the
system performance. However, as far as we know, although
many previous works have been proposed to control frac-
tional order nonlinear MIMO systems, no works have
studied the tracking problem of incommensurate fractional
order nonlinear MIMO systems with unknown non-
linearities, input dead-zone, and saturation.

Motivated by the above observations, a new adaptive NN
backstepping control method is proposed for a class of
incommensurate fractional order nonlinear MIMO systems
with unknown nonlinearities, input dead-zone, and satu-
ration. In summary, our contributions mainly include the
following three aspects. Firstly, our proposed adaptive in-
commensurate fractional order NN controller can apply to
both commensurate and incommensurate fractional order
nonlinear MIMO systems with unknown nonlinearities,
input dead-zone, and saturation, which is more broadly
applicable. Secondly, the structure of adaptation laws with
incommensurate fractional order closer to the characteris-
tics of the system itself and the orders of the parameters

adaptation laws cannot be consistent with the fractional
order system binging more degree of freedom.

.e paper is organized as follows. Section 2 gives the
basic preliminary results on fractional order systems, and
RBF NN are presented. Section 3 presents the adaptive
fractional order controller design. Section 4 gives the sim-
ulation results to verify the proposed controller. Section 5
draws the conclusions.

2. Preliminary

.e αth Caputo fractional derivative is defined as follows
[44]:

t0D
α
t f(t) �

1
Γ(n − α)

􏽚
t

t0

f(n)(t)

(t − τ)α+1− n
dτ, (1)

where Γ(α) � 􏽒
∞
0 e− ttα− 1dt, n − 1< α< n, n ∈ Z+, and t0D

α
t is

the classical αth order derivative operator. When t0 � 0,
t0D

α
t can be abbreviated as Dα.

Remark 1. .e fractional order derivative is an extension of
the conventional integer order derivative, and the main
difference is that the fractional order derivative has in-
teresting properties and potential applications. However,
under the Caputo fractional derivative, the fractional order
derivative of constant is 0, which is the same as the integer
one.

Lemma 1 (see [45]). Consider a nonlinear fractional-order
system:

D
α
x(t) � f(x(t)), α ∈ (0, 1), x(t) ∈ Rn

. (2)

The system is exactly equivalent to the continuous
frequency distributed model described by

zz(ω, t)

zt
� − ωz(ω, t) + f(x(t)),

x(t) � 􏽚
∞

0
μα(ω)z(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where μα(ω) � sin(απ)/ωαπ. z(ω, t) is the infinite di-
mension distributed state variable.

In the developed control design procedure, the RBF NN
will be used to approximate any continuous function f(X)

on a compact set Ω.

Lemma 2 (see [46]). For a given desired level of accuracy
ε> 0, any smooth function f(X) can be approximated by the
RBF NN θ∗Tϑ(X) as

f(x) � θ∗Tϑ(x) + ς(x), |ς(x)|≤ ε, (4)

where

θ∗ � argmin
θ

sup
X

f(X) − θTϑ(X)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼢 􏼣, (5)

l> 1 is the neural network node number, X ∈ Ω is the input
vector, and θ � θ1 θ2 · · · θl􏼂 􏼃

T ∈ Rl is the weight vector;
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ϑ(X) � [ϑ1(X), ϑ2(X), . . . , ϑl(X)]T, and ϑi(X) can be se-
lected as

ϑi(X) � exp
− X − μi( 􏼁

T
X − μi( 􏼁

δ2
􏼠 􏼡, i � 1, 2, . . . , l, (6)

where δ is the width of the Gaussian function and
μi � (μi1, μi2, . . . , μin)T is the center of the respective field.

3. Adaptive Neural Network
Backstepping Controller

In this paper, we consider a class of incommensurate
fractional order nonlinear MIMO systems with unknown
nonlinearities presented as follows:

Dαi,1xi,1 � di,1xi,2 + fi,1 xi,1􏼐 􏼑 + gi,1 xi,1􏼐 􏼑,

Dαi,2xi,2 � di,2xi,3 + fi,2 xi,2􏼐 􏼑 + gi,2 xi,2􏼐 􏼑,

⋮

Dαi,ni − 1xi,ni − 1 � di,ni− 1xi,ni
+ fi,ni − 1 xi,ni− 1􏼐 􏼑 + gi,ni − 1 xi,ni− 1􏼐 􏼑,

Dαi,ni xi,ni
� di,ni

ui + fi,ni
(x) + gi,ni

(x),

yi � xi,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where αi,ji
∈ (0, 1) is the system incommensurate fractional

order, xi,ji
� x1,ji

x2,ji
. . . xi,ji

􏼐 􏼑
T
∈ Rji and x �

xT
1,ni

xT
2,ni

. . . xT
n,ni

􏼐 􏼑
T
are the state vectors, yi ∈ R is the

system output, di,ji
∈ R is the known constant, fi,ji

(·) ∈ R is
an unknown continuous nonlinear function, gi,ji

(·) ∈ R is
an known continuous nonlinear function, ji � 1, 2, . . . , ni,
and i � 1, 2, . . . , n.

ui(t) ∈ R is the control input suffering from saturation
and dead-zone. .e dead-zone is in the following form:

ui � D λi( 􏼁 �

ai,r λi − bi,r􏼐 􏼑, λi ≥ bi,r,

0, λi ∈ − bi,l, bi,r􏼐 􏼑,

ai,l λi + bi,l􏼐 􏼑, λi ≤ − bi,l,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where bi,r > 0 and bi,l > 0 are unknown parameters of the
dead-zone and ai,r and ai,l are slope of the dead-zone, and
they are positive constants; the saturation nonlinearity is
defined as follows:

λi � sat ξi( 􏼁 �

ξi,max, ξi ≥ ξi,max,

ξi, ξi ∈ ξi,min, ξi,max􏼐 􏼑,

ξi,min, ξi ≤ ξi,min,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where ξi,max > 0 and ξi,min < 0 are the saturation limits.

Define the right inverse D+ of D as

ξi � D
+ ]i( 􏼁 �

]i

ai,r + bi,r

, ]i > 0,

0, ]i � 0,

]i

ai,l − bi,l

, ]i < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

According to [16], the nonsymmetric saturation and
dead-zone control input can be rewritten as follows:

ui � D sat D
+ ]i( 􏼁( 􏼁( 􏼁

�

ai,r ξi,max − bi,r􏼐 􏼑, ]i ≥ ai,r ξi,max − bi,r􏼐 􏼑,

]i, λi ∈ 􏼒 − ai,l ξi,min − bi,l􏼐 􏼑,

ai,r ξi,max − bi,r􏼐 􏼑􏼓,

− ai,l ξi,min − bi,l􏼐 􏼑, λi ≤ − ai,l ξi,min − bi,l􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

It is clear that the input saturation and dead-zone
problem can be transformed by an input saturation (11), in
which ]i is the control law to be designed.

Our target is to design the input ]i such that the system
output yi can follow the desired signal yi,d. Some following
assumptions for the controller design are given.

Assumption 1. It is supposed that the reference signals yi,d

and the nith order derivatives Dni yi,d are continuous and
bounded.

Assumption 2. For input constraints (11), there exist ζ∗i > 0
such that |Δi|≤ ζ

∗
i , where Δi � ui(]i) − ]i, i � 1, 2, . . . , n.

In the following parts, the output feedback neural net-
work fractional adaptive control based on backstepping and
stability procedure will be developed. .e recursive design
algorithm has (i, ni) steps according to the backstepping
designmethod. In step (i, ji), a virtual control function υi,ji

is
developed, and the true control law ]i is designed at the final
step. .e virtual controllers and the real control functions
will be developed according to the following steps.

.e recursive backstepping algorithm can be presented
as the follows.

Step (i, 1): based on Lemma 1, a RBF NN can be used to
approximate the unknown function fi,1(xi,1) from (7)
by a RBF NN as follows:

􏽢fi,1 xi,1, θi,1􏼐 􏼑 � θTi,1ϑi,1 xi,1􏼐 􏼑, (12)
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where θi,1 ∈ Rmi,1 is parameter estimation. .e ideal
parameter θ∗i,1 is described by

θ∗i,1 � argmin
θi,1

sup
xi,1

fi,1 xi,1􏼐 􏼑 − 􏽢fi,1 xi,1, θi,1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦. (13)

Let

􏽥θi,1 � θ∗i,1 − θi,1,

εi,1 xi,1􏼐 􏼑 � 􏽢fi,1 xi,1, θ
∗
i,1􏼐 􏼑 − 􏽢fi,1 xi,1􏼐 􏼑.

(14)

According to [47], the optimal approximation error
εi,1(xi,1) is bounded, i.e., |εi,1(xi,1)|≤ εi,1, and εi,1 > 0 is
unknown.
.erefore, one can obtain

fi,1 xi,1, θi,1􏼐 􏼑 − 􏽢fi,1 xi,1􏼐 􏼑

� 􏽢fi,1 xi,1, θi,1􏼐 􏼑 − 􏽢fi,1 xi,1, θ
∗
i,1􏼐 􏼑 + 􏽢fi,1 xi,1, θ

∗
i,1􏼐 􏼑

− fi,1 xi,1􏼐 􏼑

� θTi,1ϑi,1 xi,1􏼐 􏼑 − θ∗Ti,1 ϑi,1 xi,1􏼐 􏼑 + εi,1 xi,1􏼐 􏼑

� − 􏽥θ
T
i,1ϑi,1 xi,1􏼐 􏼑 + εi,1 xi,1􏼐 􏼑.

(15)

Due to (1) and the estimated error 􏽥θi,1 � θ∗i,1 − θi,1 from
(14), the following equation can be given:

D
βi,1􏽥θi,1 � D

βi,1θ∗i,1 − D
βi,1θi,1 � − D

βi,1θi,1, (16)

where βi,1 ∈ (0, 1). According to Lemma 1 and (16),
the following frequency distributed model can be
obtained:

zzθi,1
(ω, t)

zt
� − ωzθi,1

(ω, t) − D
βi,1θi,1,

􏽥θi,1 � 􏽚
∞

0
μβi,1

(ω)zθi,1
(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where zθi,1
(ω, t) ∈ Rmi,1 and μβi,1

(ω) � sin(βi,1π)/ωβi,1π.
Denoting ei,1 � yi − yi,d, it follows from (7) and (15)
that

Dαi,1ei,1 � Dαi,1yi − Dαi,1yi,d

� di,2xi,2 + fi,1 xi,1􏼐 􏼑 + gi,1 xi,1􏼐 􏼑 − Dαi,1yi,d

� di,2xi,2 + 􏽥θ
T
i,1ϑi,1 xi,1􏼐 􏼑 − εi,1 xi,1􏼐 􏼑

+θTi,1ϑi,1 xi,1􏼐 􏼑 + gi,1 xi,1􏼐 􏼑 − Dαi,1yi,d.

(18)

Let a virtual control input υi,1(ei,1, xi,1, yi,d) � υi,1 be

υi,1 � − θTi,1ϑi,1 xi,1􏼐 􏼑 − ki,1ei,1 − li,1sign ei,1􏼐 􏼑 − gi,1 xi,1􏼐 􏼑

+ D
αi,1yi,d,

(19)

where ki,1 and li,1 are the design parameters. Let

ei,2 � di,2xi,2 − υi,1. (20)

Substituting (19) and (20) into (18) gives

D
αi,1ei,1 � ei,2 − ki,1ei,1 − li,1sign ei,1􏼐 􏼑

+ 􏽥θ
T
i,1ϑi,1 xi,1􏼐 􏼑 − εi,1 xi,1􏼐 􏼑.

(21)

According to Lemma 1, equation (21) will be
zzi,1(ω, t)

zt
� − ωzi,1(ω, t) + ei,2 − ki,1ei,1 − li,1sign ei,1􏼐 􏼑

+ 􏽥θ
T
i,1ϑi,1 xi,1􏼐 􏼑 − εi,1 xi,1􏼐 􏼑,

ei,1 � 􏽚
∞

0
μαi,1

(ω)zi,1(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where μαi,1
(ω) � sin(αi,1π)/ωαi,1π.

Selecting the Lyapunov function Vi,1 as

Vi,1 �
1

2σi,1
􏽚
∞

0
μβi,1

(ω)z
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω

+
1
2

􏽚
∞

0
μαi,1

(ω)z
2
i,1(ω, t)dω,

(23)

where σi,1 > 0. Based on frequency distributed model
(17) and (22), the derivative of Vi,1 is expressed as
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_Vi,1(t) �
1
σi,1

􏽚
∞

0
μβi,1

(ω)z
T
θi,1

(ω, t)Λ− 1
i,1 _zθi,1

(ω, t)dω + 􏽚
∞

0
μαi,1

(ω)zi,1(ω, t) _zi,1(ω, t)dω

≤ −
1
σi,1

􏽚
∞

0
μβi,1

(ω)ωz
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω −
1
σi,1

􏽚
∞

0
μβi,1

(ω)z
T
θi,1

(ω, t)dωΛ− 1
i,1D

βi,1θi,1

− 􏽚
∞

0
ωμαi,1

(ω)zi,1(ω, t)zi,1(ω, t)dω + ei,1 ei,2 − ki,1ei,1 − li,1sign ei,1􏼐 􏼑 − εi,1 xi,1􏼐 􏼑􏼐 􏼑

� −
1
σi,1

􏽚
∞

0
μβi,1

(ω)ωz
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω − 􏽚
∞

0
ωμαi,1

(ω)z
2
i,1(ω, t)dω − 􏽥θ

T
i,1

1
σi,1
Λ− 1

i,1D
βi,1θi,1 + ei,1ϑi,1 xi,1􏼐 􏼑􏼠 􏼡

+ ei,1 ei,2 − ki,1ei,1 − li,1sign ei,1􏼐 􏼑 − εi,1 xi,1􏼐 􏼑􏼐 􏼑

≤ −
1
σi,1

􏽚
∞

0
μβi,1

(ω)ωz
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω − 􏽚
∞

0
ωμαi,1

(ω)z
2
i,1(ω, t)dω − 􏽥θ

T
i,1

1
σi,1
Λ− 1

i,1D
βi,1θi,1 + ei,1ϑi,1 xi,1􏼐 􏼑􏼠 􏼡

+ ei,1ei,2 − ki,1e
2
i,1 − li,1 ei,1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ei,1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 εi,1 xi,1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ −
1
σi,1

􏽚
∞

0
μβi,1

(ω)ωz
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω − 􏽚
∞

0
ωμαi,1

(ω)z
2
i,1(ω, t)dω − 􏽥θ

T
i,1

1
σi,1
Λ− 1

i,1D
βi,1θi,1 + ei,1ϑi,1 xi,1􏼐 􏼑􏼠 􏼡

+ ei,1ei,2 − ki,1e
2
i,1 − li,1 − εi,1􏼐 􏼑 ei,1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(24)

Based on LaSalle invariance principle [48] and equation
(24), if ei,2 � 0, ki,1 > 0, li,1 > εi,1, and the fractional order
adaptation laws are designed as

D
βi,1θi,1 � σi,1Λi,1ϑi,1 xi,1􏼐 􏼑ei,1, (25)

one can obtain _Vi,1 < 0.
Step (i, 2): it follows from (7) and (20) that

D
αi,2ei,2 � D

αi,2xi,2 − D
αi,2υi,1

� di,3xi,3 + fi,2 xi,2􏼐 􏼑 + gi,2 xi,2􏼐 􏼑 − D
αi,2υi,1

� di,3xi,3 + gi,2 xi,2􏼐 􏼑 + fi,2 xi,2􏼐 􏼑 − D
αi,2υi,1

� di,3xi,3 + gi,2 xi,2􏼐 􏼑 + Fi,2 xi,2􏼐 􏼑,

(26)

where Fi,2(xi,2) � fi,2(xi,2) − Dαi,2υi,1 is the unknown
function. According to the procedures in step (i, 1), a
RBF NN is used to approximate Fi,2(xi,2) as follows:

􏽢Fi,2 xi,2, θ2􏼐 􏼑 � θTi,2ϑi,2 xi,2􏼐 􏼑, (27)

where θi,2 ∈ Rmi,2 is the parameter estimation.
With the estimated error 􏽥θi,2 � θ∗i,2 − θi,2 and (1), the
following equation can be obtained:

D
βi,2􏽥θi,2 � D

βi,2θ∗i,2 − D
βi,2θi,2 � − D

βi,2θi,2, (28)

where 0< βi,2 < 1.
According to Lemma 1 and (28), the following fre-
quency distributed model can be obtained:

zzθi,2
(ω, t)

zt
� − ωzθi,2

(ω, t) − D
βi,2θi,2,

􏽥θi,2 � 􏽚
∞

0
μβi,2

(ω)zθi,2
(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

where zθi,2
(ω, t) ∈ Rmi,2 and μβi,2

(ω) � sin(βi,2π)/ωβi,2π.
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Rewrite (26) as

D
αi,2ei,2 � di,3xi,3 + gi,2 xi,2􏼐 􏼑 + 􏽥θ

T
i,2ϑi,2 xi,2􏼐 􏼑 − εi,2 xi,2􏼐 􏼑

+ θTi,2ϑi,2 xi,2􏼐 􏼑,

(30)

where εi,2(xi,2) � 􏽢Fi,2(xi,2, θ
∗
i,2) − Fi,2(xi,2), satisfying

|εi,2(xi,2)|≤ εi,2, and ε2 > 0 is the unknown positive
constant.

A virtual control input is designed as

υi,2 � − θTi,2ϑi,2 xi,2􏼐 􏼑 − ki,2ei,2 − li,2sign ei,2􏼐 􏼑

− gi,2 xi,2􏼐 􏼑 − ei,1,
(31)

where ki,2 and li,2 are the design parameters.

Let

ei,3 � di,3xi,3 − υi,2. (32)

Substituting (31) and (32) into (30) gives

D
αi,2ei,2 � ei,3 − ki,2ei,2 − li,2sign ei,2􏼐 􏼑

− ei,1 + 􏽥θ
T
i,2ϑi,2 xi,2􏼐 􏼑 − εi,2 xi,2􏼐 􏼑.

(33)

Its frequency distributed model corresponds to

zzi,2(ω, t)

zt
� − ωzi,2(ω, t) + ei,3 − ki,2ei,2 − li,2sign ei,2􏼐 􏼑

− ei,1 + 􏽥θ
T
i,2ϑi,2 xi,2􏼐 􏼑,

ei,2 � 􏽚
∞

0
μαi,2

(ω)zi,2(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

where μαi,2
(ω) � sin(αi,2π)/ωαi,2π.

Selecting the Lyapunov function Vi,2 as

Vi,2 � Vi,1 +
1

2σi,2
􏽚
∞

0
μβi,2

(ω)z
T
θi,2

(ω, t)Λ− 1
i,2zθi,2

(ω, t)dω

+
1
2

􏽚
∞

0
μαi,2

(ω)z
2
i,2(ω, t)dω,

(35)

where σi,2 > 0. According to frequency distributed
model (30) and (34), the derivative of (35) is

_Vi,2(t) � _Vi,1(t) +
1
σi,2

􏽚
∞

0
μβi,2

(ω)z
T
θi,2

(ω, t)Λ− 1
i,2 _zθ2(ω, t)dω

+ 􏽚
∞

0
μαi,2

(ω)zi,2(ω, t) _zi,2(ω, t)dω

� _Vi,1(t) −
1
σi,2

􏽚
∞

0
ωμβi,2

(ω)z
T
θi,2

(ω, t)Λ− 1
i,2zθi,2

(ω, t)dω

−
1
σi,2

􏽥θ
T
i,2Λ

− 1
i,2D

βi,2θi,2 − 􏽚
∞

0
ωμαi,2

(ω)z
2
i,2(ω, t)dω

+ ei,2ei,3 − ki,2e
2
i,2 − li,2ei,2sign ei,2􏼐 􏼑 − ei,1ei,2 + 􏽥θ

T
i,2ϑi,2

· xi,2􏼐 􏼑ei,2 − εi,2 xi,2􏼐 􏼑ei,2

≤ _Vi,1(t) −
1
σi,2

􏽚
∞

0
ωμβi,2

(ω)z
T
θi,2

(ω, t)Λ− 1
i,2zθi,2

(ω, t)dω

− 􏽚
∞

0
ωμαi,2

(ω)z
2
i,2(ω, t)dω − 􏽥θ

T
i,2

·
1
σi,2
Λ− 1

i,2D
βi,2θi,2 − ϑi,2 xi,2􏼐 􏼑ei,2􏼠 􏼡 + ei,2ei,3 − ei,1ei,2

− ki,2e
2
i,2 − li,2 − εi,2􏼐 􏼑 ei,2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ −
1
σi,1

􏽚
∞

0
μβi,1

(ω)ωz
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω

− 􏽚
∞

0
ωμαi,1

(ω)z
2
i,1(ω, t)dω −

1
σi,2

􏽚
∞

0
ωμβi,2

(ω)z
T
θi,2

· (ω, t)Λ− 1
i,2zθi,2

(ω, t)dω − 􏽚
∞

0
ωμαi,2

(ω)z
2
i,2(ω, t)dω

− 􏽥θ
T
i,1

1
σi,1
Λ− 1

i,1D
βi,1θi,1 + ei,1ϑi,1 xi,1􏼐 􏼑􏼠 􏼡

− 􏽥θ
T
i,2

1
σi,2
Λ− 1

i,2D
βi,2θi,2 − ϑi,2 xi,2􏼐 􏼑ei,2􏼠 􏼡 + ei,1ei,2

− ki,1e
2
i,1 − li,1 − εi,1􏼐 􏼑 ei,1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ei,2ei,3 − ei,1ei,2 − ki,2e

2
i,2

− li,2 − εi,2􏼐 􏼑 ei,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ −
1
σi,1

􏽚
∞

0
μβi,1

(ω)ωz
T
θi,1

(ω, t)Λ− 1
i,1zθi,1

(ω, t)dω

− 􏽚
∞

0
ωμαi,1

(ω)z
2
i,1(ω, t)dω −

1
σi,2

􏽚
∞

0
ωμβi,2

(ω)z
T
θi,2

· (ω, t)Λ− 1
i,2zθi,2

(ω, t)dω

− 􏽚
∞

0
ωμαi,2

(ω)z
2
i,2(ω, t)dω − 􏽥θ

T
i,1

·
1
σi,1
Λ− 1

i,1D
βi,1θi,1 + ei,1ϑi,1 xi,1􏼐 􏼑􏼠 􏼡

− 􏽥θ
T
i,2

1
σi,2
Λ− 1

i,2D
βi,2θi,2 − ϑi,2 xi,2􏼐 􏼑ei,2􏼠 􏼡 + ei,2ei,3

− ki,1e
2
i,1 − li,1 − εi,1􏼐 􏼑 ei,1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ki,2e

2
i,2 − li,2 − εi,2􏼐 􏼑 ei,2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(36)
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Based on LaSalle invariance principle and equation
(36), if ei,3 � 0, ki,2 > 0, li,2 > εi,2, and the fractional order
adaptation laws are designed as

D
βi,2θi,2 � − σi,2Λi,2ϑi,2 xi,2􏼐 􏼑ei,2, (37)

one can get _Vi,2 < 0.
Step (i, ji), 3≤ ji ≤ ni − 1: define

ei,ji
� di,ji

xi,ji
− υi− 1,ji

, (38)

where υi− 1,ji
is the virtual control input. Just like the

procedures in step (i, 1) and (i, 2), one has

Dαi,ji ei,ji
� Dαi,ji xi,ji

− Dαi,jiυi− 1,ji

� di,ji+1xi,ji+1 + fi,ji
xi,ji

􏼐 􏼑 + gi,ji
xi,ji

􏼐 􏼑 − Dαi,jiυi− 1,ji

� di,ji+1xi,ji+1 + gi,ji
xi,ji

􏼐 􏼑 + Fi,ji
xi,ji

􏼐 􏼑,

(39)

where Fi,ji
(xi,ji

) � fi,ji
(xi,ji

) − Dαi,jiυi− 1,ji
is the un-

known function. According to Lemma 2, let
􏽢Fi,ji

xi,ji
, θi,ji

􏼐 􏼑 � θTi,ji
(t)ϑi,ji

xi,ji
􏼐 􏼑, (40)

where θi ∈ Rmi is the parameter estimation.
With the estimated error defined as 􏽥θi,ji

� θ∗i,ji
− θi,ji

and
(1), the following equation can be obtained:

D
βi,ji 􏽥θi,ji

� D
βi,jiθ∗i,ji

− D
βi,jiθi,ji

� − D
βi,jiθi,ji

, (41)

where βi,ji
∈ (0, 1).

According to Lemma 1, (41) can be written described as

zzθi,ji
(ω, t)

zt
� − ωzθi,ji

(ω, t) − D
βi,jiθi,ji

,

􏽥θi,ji
� 􏽚
∞

0
μβi,ji

(ω)zθi,ji
(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where zθi,ji
(ω, t) ∈ Rmi,ji and μβi,ji

(ω) � sin(βi,ji
π)/

ωβi,jiπ.

From (40), (39) can be rewritten as follows:

D
αi,ji ei,ji

� di,ji+1xi,ji+1 + 􏽥θ
T
i,ji
ϑi,ji

xi,ji
􏼐 􏼑 + gi,ji

xi,ji
􏼐 􏼑

− εi,ji
xi,ji

􏼐 􏼑 + θTi,ji
ϑi,ji

xi,ji
􏼐 􏼑,

(43)

where εi,ji
(xi,ji

) � 􏽢Fi,ji
(xi,ji

, θ∗i,ji
) − Fi,ji

(xi,ji
), satisfying

|εi,ji
(xi,ji

)|≤ εi,ji
, εi,ji
> 0.

Design a virtual control input as

υi,ji
� − θTi,ji

ϑi,ji
xi,ji

􏼐 􏼑 − ki,ji
ei,ji

− li,ji
sign ei,ji

􏼐 􏼑 − ei,ji − 1,

(44)

where ki,ji
> 0 and li,ji

> 0 are the design parameters.
Substituting (38) and (44) into (43) gives

D
αi,ji ei,ji

� ei,ji+1 − ki,ji
ei,ji

− li,ji
sign ei,ji

􏼐 􏼑 − ei,ji− 1

+ 􏽥θ
T
i,ji
ϑi,ji

xi,ji
􏼐 􏼑 − εi,ji

xi,ji
􏼐 􏼑.

(45)

Its frequency distributed model corresponds to

zzi,ji
(ω, t)

zt
� − ωzi,ji

(ω, t) + ei,ji+1 − ki,ji
ei,ji

− li,ji
sign ei,ji

􏼐 􏼑

− ei,ji+1 + 􏽥θ
T
i,ji
ϑi,ji

xi,ji
􏼐 􏼑 − εi,ji

xi,ji
􏼐 􏼑,

ei,ji
� 􏽚
∞

0
μαi,ji

(ω)zi,ji
(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where μαi,ji

(ω) � sin(αi,ji
π)/ωαi,jiπ. Selecting the Lyapunov function Vi,ji

as

Vi,ji
� Vi,ji − 1 +

1
2σi,ji

􏽚
∞

0
μβi,ji

(ω)z
T
θi,ji

(ω, t)Λ− 1
i,ji

zθi,ji
(ω, t)dω +

1
2

􏽚
∞

0
μαi,ji

(ω)z
2
i,ji

(ω, t)dω, (47)

where σi,ji
> 0. .en, its derivative on the basis of fre-

quency distributed model (42) and (46) is expressed as
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_Vi,ji
� _Vi,ji − 1 +

1
σi,ji

􏽚
∞

0
μβi,ji

(ω)z
T
θi,ji

(ω, t)Λ− 1
i,ji

_zθi
(ω, t)dω + 􏽚

∞

0
μαi,ji

(ω)zi,ji
(ω, t) _zi,ji

(ω, t)dω

� _Vi,ji − 1 −
1
σi,ji

􏽚
∞

0
ωμβi,ji

(ω)z
T
θi,ji

(ω, t)Λ− 1
i,ji

zθi,ji

(ω, t)dω − 􏽚
∞

0
ωμαi,ji

(ω)zi,ji
(ω, t)zi,ji

(ω, t)dω −
1
σi,ji

􏽥θ
T
i,ji
Λ− 1

i,ji
D

βi,jiθi,ji
+ ei,ji

· ei,ji+1 − ki,ji
ei,ji

􏼐 􏼑 + ei,ji
− li,ji

sign ei,ji
􏼐 􏼑 − ei,ji − 1 + 􏽥θ

T
i,ji
ϑi,ji

xi,ji
􏼐 􏼑 − εi,ji

xi,ji
􏼐 􏼑􏼒 􏼓

� _Vi,ji − 1 −
1
σi,ji

􏽚
∞

0
ωμβi,ji

(ω)z
T
θi,ji

(ω, t)Λ− 1
i,ji

zθi,ji
(ω, t)dω − 􏽚

∞

0
ωμαi,ji

(ω)zi,ji
(ω, t)zi,ji

(ω, t)dω

− 􏽥θ
T
i,ji

1
σi,ji

Λ− 1
i,ji

D
βi,jiθi,ji

− ϑi,ji
xi,ji

􏼐 􏼑ei,ji
􏼠 􏼡 + ei,ji

ei,ji+1 − ki,ji
e
2
i,ji

− li,ji
ei,ji

sign ei,ji
􏼐 􏼑 − ei,ji− 1ei,ji

− εi,ji
xi,ji

􏼐 􏼑ei,ji

≤ _Vi,ji − 1 −
1
σi,ji

􏽚
∞

0
ωμβi,ji

(ω)z
T
θi,ji

(ω, t)Λ− 1
i,ji

zθi,ji
(ω, t)dω − 􏽚

∞

0
ωμαi,ji

(ω)zi,ji
(ω, t)zi,ji

(ω, t)dω

− 􏽥θ
T
i,ji

1
σi,ji

Λ− 1
i,ji

D
βi,jiθi,ji

− ϑi,ji
xi,ji

􏼐 􏼑ei,ji
􏼠 􏼡 + ei,ji

ei,ji+1 − ki,ji
e
2
i,ji

− ei,ji − 1ei,ji
− li,ji

− εi,ji
􏼐 􏼑 ei,ji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ − 􏽘

ji − 1

m�1

1
σi,m

􏽚
∞

0
ωμβi,m

(ω)z
T
θi,m

(ω, t)Λ− 1
i,mzθi,m

(ω, t)dω􏼠 􏼡 − 􏽘

ji− 1

m�1
􏽚
∞

0
ωμαi,m

(ω)z
2
i,m(ω, t)dω􏼒 􏼓

− 􏽘

ji − 1

m�1

􏽥θ
T
i,m

1
σi,m

Λ− 1
i,mD

βi,mθi,m + ϑi,m xi,m􏼐 􏼑ei,m􏼠 􏼡􏼠 􏼡

− 􏽘

ji − 1

m�1
ki,me

2
i,m + li,m − εi,m􏼐 􏼑 ei,m

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + ei,ji − 1ei,ji

−
1
σi,ji

􏽚
∞

0
ωμβi,ji

(ω)z
T
θi,ji

(ω, t)Λ− 1
i,ji

zθi,ji
(ω, t)dω

− 􏽚
∞

0
ωμαi,ji

(ω)zi,ji
(ω, t)zi,ji

(ω, t)dω − 􏽥θ
T
i,ji

1
σi,ji

T

i,ji

Λ− 1
i,ji

D
βi,jiθi,ji

− ϑi,ji
xi,ji

􏼐 􏼑ei,ji

⎛⎝ ⎞⎠ + ei,ji
ei,ji+1 − ki,ji

e
2
i,ji

− ei,ji − 1ei,ji

− li,ji
− εi,ji

􏼐 􏼑 ei,ji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ − 􏽘

ji

m�1

1
σi,m

􏽚
∞

0
ωμβi,m

(ω)z
T
θi,m

(ω, t)Λ− 1
i,mzθi,m

(ω, t)dω􏼠 􏼡 − 􏽘

ji

m�1
􏽚
∞

0
ωμαi,m

(ω)z
2
i,m(ω, t)dω􏼒 􏼓

− 􏽘

ji

m�1

􏽥θ
T
i,m

1
σi,m

Λ− 1
i,mD

βi,mθi,m + ϑi,m xi,m􏼐 􏼑ei,m􏼠 􏼡􏼠 􏼡 − 􏽘

ji

m�1
ki,me

2
i,m + li,m − εi,m􏼐 􏼑 ei,m

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + ei,ji

ei,ji+1.

(48)

According to LaSalle invariance principle and equation
(48), if ei,ji+1 � 0, ki,ji

> 0, li,ji
> εi,ji

, and the fractional
order adaptation laws are designed as

D
βi,jiθi,ji

� − σi,ji
Λi,ji

ϑi,ji
xi,ji

􏼐 􏼑ei,ji
, (49)

one can get _Vi,ji
< 0.

Step (i, ni): define

ei,ni
� xi,ni

− υi,ni − 1, (50)

where υi,ni − 1 is a virtual control input.
From Assumption 2 and (50), one has

8 Complexity



D
αi,ni ei,ni

� D
αi,ni xi,ni

− D
αi,niυi,ni− 1

� di,ni
ui ]i( 􏼁 + fi,ni

(x) + gi,ni
(x) − D

αi,niυi,ni − 1

� di,ni
]i + di,ni
Δi + fi,ni

(x) + gi,ni
(x) − D

αi,niυi,ni − 1

� di,ni
]i + di,ni
Δi + gi,ni

(x) + Fi,ni
(x),

(51)

where Fi,ni
(x) � fi,ni

(x) − Dαi,niυi,ni − 1 is an unknown
function.
Let

􏽢Fi,ni
x, θi,ni

􏼐 􏼑 � θTi,ni
ϑi,ni

(x), (52)

where θi,ni
∈ Rmi,ni is parameter estimation.

Define the estimated error 􏽥θi,ni
� θ∗i,ni

− θi,ni
, and then

the following equation can be obtained:

D
βi,ni 􏽥θi,ni

� D
βi,niθ∗i,ni

− D
βi,niθi,ni

� − D
βnθi,ni

, (53)

where βi,ni
∈ (0, 1). Due to Lemma 1, (53) will be

zzθi,ni
(ω, t)

zt
� − ωzθi,ni

(ω, t) − D
βi,niθi,ni

,

􏽥θi,ni
� 􏽚
∞

0
μβi,ni

(ω)zθi,ni
(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

where zθi,ni
(ω, t) ∈ Rmi,ni and μβi,ni

(ω) � sin(βi,ni
π)/

ωβi,niπ.
From (52), (51) can be rewritten as

D
αi,ni ei,ni

� di,ni
]i + di,ni
Δi + 􏽥θ

T
i,ni
ϑi,ni

(x) − εi,ni
(x)

+ θTi,ni
ϑi,ni

(x),
(55)

where εi,ni
(x) � 􏽢Fi,ni

(x, θ∗i,ni
) − Fi,ni

(x), |εi,ni
(xi,ni

)|≤ εi,ni
,

and εi,ni
> 0.

Design the controller ]i as

]i �
1

di,ni

− θTi,ni
ϑi,ni

(x) − ki,ni
ei,ni

− ei,ni− 1􏼒

− li,ni
+ di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ζ i􏼒 􏼓sign ei,ni
􏼐 􏼑􏼓,

(56)

where ki,ni
and li,ni

are design parameters and ζ i is the
estimation of the unknown constant ζ∗i .
Define 􏽥ζ i � ζ∗i − ζ i, and then the following equation is
obtained:

D
χi􏽥ζ i � D

χiζ∗i − D
χiζ i � − D

χiζ i, (57)

where 0< χi < 1.
Due to Lemma 1, (57) will be

zzζ i
(ω, t)

zt
� − ωz

di
(ω, t) − D

χiζ i,

􏽥ζ i � 􏽚
∞

0
μχi

(ω)zζ i
(ω, t)dω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(58)

where μχi
(ω) � sin(χiπ)/ωχiπ.

Substituting (50) and (56) into (55) gives

D
αi,ni ei,ni

� − ki,ni
ei,ni

− li,ni
+ di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ζ i􏼒 􏼓sign en( 􏼁 − ei,ni− 1

− 􏽥θ
T
i,ni
ϑi,ni

(x) − εi,ni
(x) + di,ni

Δi,

(59)

then the following frequency distributed model is
obtained:

zzi,ni
(ω, t)

zt
� − ωzi,ni

(ω, t) − ki,ni
ei,ni

− li,ni
+ di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ζ i􏼒 􏼓sign

ei,ni
􏼐 􏼑 − ei,ni − 1 − θTi,ni

ϑi,ni
(x) − εi,ni

(x) + di,ni
Δi,

ei,ni
� 􏽚
∞

0
μαi,ni

(ω)zi,ni
(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

where μαi,ni

(ω) � sin(αi,ni
π)/ωαi,niπ.

Selecting the Lyapunov function Vi,ni
as

Vi,ni
� Vi,ni− 1 +

1
2σi,ni

􏽚
∞

0
μβi,ni

(ω)z
T
θi,ni

(ω, t)Λ− 1
i,ni

zθi,ni
(ω, t)dω

+
1
2

􏽚
∞

0
μαi,ni

(ω)z
2
i,ni

(ω, t)dω

+
1
2ρi

􏽚
∞

0
μχi

(ω)z
2
ζ i

(ω, t)dω,

(61)

where σi,ni
, ρi > 0.

Based on the procedures in step (i, ji), 3≤ ji ≤ ni − 1,
the derivative of Vi,ni

on the basis of frequency dis-
tributed model (54), (58), and (60) is
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_Vi,ni
� _Vi,ni − 1 −

1
σi,ni

􏽚
∞

0
ωμβi,ni

(ω)z
T
θi,ni

(ω, t)Λ− 1
i,ni

zθi,ni

(ω, t)dω − 􏽚
∞

0
ωμαi,ni

(ω)z
2
i,ni

(ω, t)dω −
1
ρi

􏽚
∞

0
ωμχi

(ω)z
2
ζ i

(ω, t)dω

− 􏽥θ
T
i,ni

1
σi,ni

Λ− 1
i,ni

D
βi,niθi,ni

− ϑi,ni
(x)ei,ni

􏼠 􏼡 − ki,ni
e
2
i,ni

− li,ni
+ di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ζ i􏼒 􏼓 ei,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − ei,ni− 1ei,ni
− ei,ni

εi,ni
(x) + di,ni

ei,ni
Δi −

1
ρi

􏽥ζ iD
χiζ i

≤ − 􏽘

ni − 1

m�1

1
σi,m

􏽚
∞

0
ωμβi,m

(ω)z
T
θi,m

(ω, t)Λ− 1
i,mzθi,m

(ω, t)dω􏼠 􏼡 − 􏽘

ni − 1

m�1
􏽚
∞

0
ωμαi,m

(ω)z
2
i,m(ω, t)dω􏼒 􏼓

− 􏽘

ni− 1

m�1

􏽥θ
T
i,m

1
σi,m

Λ− 1
i,mD

βi,mθi,m + ϑi,m xi,m􏼐 􏼑ei,m􏼠 􏼡􏼠 􏼡

− 􏽘

ni− 1

m�1
ki,me

2
i,m + li,m − εi,m􏼐 􏼑 ei,m

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + ei,ji

ei,ji+1 −
1
σi,ni

􏽚
∞

0
ωμβi,ni

(ω)z
T
θi,ni

(ω, t)Λ− 1
i,ni

zθi,ni
(ω, t)dω − 􏽚

∞

0
ωμαi,ni

(ω)z
2
i,ni

(ω, t)dω

−
1
ρi

􏽚
∞

0
ωμχi

(ω)z
2
ζ i

(ω, t)dω − 􏽥θ
T
i,ni

1
σi,ni

Λ− 1
i,ni

D
βi,niθi,ni

− ϑi,ni
(x)ei,ni

􏼠 􏼡 − ki,ni
e
2
i,ni

− li,ni
+ di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ζ i􏼒 􏼓 ei,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − ei,ni− 1ei,ni
+ ei,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌εi,ni

+ di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ei,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ζ
∗
i −

1
ρi

􏽥ζ iD
χiζ i

≤ − 􏽘

ni

m�1

1
σi,m

􏽚
∞

0
ωμβi,m

(ω)z
T
θi,m

(ω, t)Λ− 1
i,mzθi,m

(ω, t)dω􏼠 􏼡 − 􏽘

ni

m�1
􏽚
∞

0
ωμαi,m

(ω)z
2
i,m(ω, t)dω􏼒 􏼓

− 􏽘

ni

m�1

􏽥θ
T
i,m

1
σi,m

Λ− 1
i,mD

βi,mθi,m + ϑi,m xi,m􏼐 􏼑ei,m􏼠 􏼡􏼠 􏼡 − 􏽘

ni

m�1
ki,me

2
i,m + li,m − εi,m􏼐 􏼑 ei,m

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 − 􏽥ζ i

1
ρi

D
χiζ i − di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ei,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡.

(62)

To update θi,ni
and ζ i, design the fractional order ad-

aptation laws as follows:

D
βi,niθi,ni

� − σi,ni
Λi,ni

ϑi,ni
(x)ei,ni

, (63)

D
χiζ i � ρi di,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ei,ni

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (64)

According to (62)–(64), and LaSalle invariance principle,
if ki,ni
> 0 and li,ni

> εi,ni
, one can get _Vi,ni

< 0.
.e following .eorem 1 gives the stability result of the

closed-loop system.

Theorem 1. Consider the incommensurate fractional order
nonlinear MIMO system (7) with unknown nonlinearities
and external disturbance; if the control input is chosen as
(56) with (19), (31), and (44) and the adaptation laws are
designed as (25), (37), (49), (63), and (64), then all the
signals in the closed-loop system are globally uniformly
bounded with the proper design parameters ki,ji

, li,ji
,

Λi,ji
, σi,ji

, βi,ji
, ρi, and χi, ji � 1, 2, . . . , ni, i � 1, 2, . . . , n, and

the tracking error ei,1 � yi − yi,d tends to zero asymptoti-
cally when t⟶∞.

Proof. According to step (i, 1), (i, 2), (i, ji), (i, ni), 3≤ ji

≤ ni − 1, if the control input is chosen as (56) with (19), (31),
and (44), and the adaptation laws are designed as (25), (37),
(49), (63), and (64), then with a proper choice of the design
parameters ki,ji

, li,ji
,Λi,ji

, σi,ji
, βi,ji

, ρi, and χi, one can get
_Vi,ji
< 0, ji � 1, 2, . . . , ni, i � 1, 2, . . . , n. Due to the LaSalle

invariant principle, zi,ji
(ω, t), zθi,ji

(ω, t), and zζ i
(ω, t) can

be close to the set of all points. When _Vi,ji
� 0, zi,ji

(ω, t) � 0,
zθi,ji

(ω, t) � 0, and zζ i
(ω, t) � 0 can be obtained, which is

the only equilibrium point. .at is the error variables ei,1,
􏽥θi,ji

, and 􏽥ζ i convergent to zero asymptotically. .erefore, the
tracking error ei,1 tends to zero asymptotically and all the
signals are uniformly bounded. □

Remark 2. .e orders of the parameter estimation laws βi,ji

and χi are not fixed to the system order αi,ji
. .is brings more

degree of freedom in our design and we can achieve better
control performance by adjusting βi,ji

and χi. In addition, if
αi,ji

� α, the result will be commensurate fractional order
system with input constraints. Our design scheme is still
applicable.

Remark 3. It can be found that the tracking errors can be
made smaller by increasing the parameters ki,ji

, when the
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parameters li,ji
,Λi,ji

, σi,ji
, βi,ji

, ρi, and χi are fixed. Meanwhile,
when the control gain ki,ji

is too big, the parameters may be
drifting. In order to balance the system performance and
control action in applications, the design parameters must be
carefully chosen.

Remark 4. In fact, the tracking error may get into a smaller
range of zero due to the sign function used in controller (56)
with (19), (31), and (44), which may result the chattering
phenomenon. Meanwhile, the sign function can be replaced
by the continuous function arctan(10·) to alleviate the
chattering phenomenon.

4. Simulation

Two examples are presented in this simulation section to
show the effectiveness of the proposed method.

4.1. Example 1. .e following incommensurate fractional
order nonlinear MIMO system is considered

D0.5x1,1 � 0.8x1,2 − 0.095x2
1,1 + 0.25x3

1,1,

D0.6x1,2 � 0.95u1 +
x1,2 − 0.5x2

1,1

1 + 0.8x3
1,1

− 0.15 sin x
2
1,1x1,2􏼐 􏼑,

y1 � x1,1,

D0.65x2,1 � 0.45x2,2 − 0.1x3
2,1 + 0.5 sin x2,1􏼐 􏼑,

D0.8x2,2 � 0.6u2 + 0.3x1,2x2,2 − 0.6x2
2,1 + 0.1 cos x1,2x2,1􏼐 􏼑,

y2 � x2,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

where f1,1(x1,1) � − 0.06x2
1,1, f1,2(x) � x1,2 − 0.5x2

1,1/1+

0.8x3
1,1, f2,1(x2,1) � − 0.1x3

2,1, and f2,2(x) � 0.3x1,2x2,2−

0.6x2
2,1 are the unknown functions. g1,1(x1,1) � 0.25x3

1,1,
g1,2(x) � − 0.15 sin(x2

1,1x1,2), g2,1(x2,1) � 0.5 sin(x2,1), and
g2,2(x) � 0.1 cos(x1,2x2,1) are the known continuous non-
linear functions.

.e slop parameters of dead-zone are a1,r � a1,l � a2,r �

a2,l � 1. .e dead-zone ranges are considered as b1,r � b1,l �

11 and b2,r � b2,l � 5. .e saturation levels are ξ1,max � 16,
ξ1,min � 15, ξ2,max � 13, and ξ2,min � 8.

.e reference signal for the system output are chosen as
y1,d � 0.8 sin(t + 0.5) and y2,d � 0.6 cos(t + 0.15).

.e following membership functions to deal with the
unknown nonlinear terms are designed as

ϑ1,1 x1,1􏼐 􏼑 � exp −
x1,1 − xs1

􏼐 􏼑
2

δ21
⎛⎝ ⎞⎠,

ϑ1,2 x1,2􏼐 􏼑 � exp −
x1,1 − xs1

􏼐 􏼑
2

δ21
−

x1,2 − xs2
􏼐 􏼑

2

δ22
⎛⎝ ⎞⎠,

ϑ2,1 x2,1􏼐 􏼑 � exp −
x1,1 − xs1

􏼐 􏼑
2

δ21
⎛⎝ ⎞⎠,

ϑ2,2 x2,2􏼐 􏼑 � exp −
x1,2 − xs1

􏼐 􏼑
2

δ21
−

x2,1 − xs2
􏼐 􏼑

2

δ22
−

x2,2 − xs3
􏼐 􏼑

2

δ23
⎛⎝ ⎞⎠,

δ1 � δ2 � δ3 � 0.5,

xs1
∈ 0.5s1 − 2 s1

􏼌􏼌􏼌􏼌 � 1, 2, . . . , 6􏽮 􏽯,

xs2
∈ s2 − 2 s2

􏼌􏼌􏼌􏼌 � 1, 2, 3􏽮 􏽯,

xs3
∈ 0.5s3 − 1.5 s3

􏼌􏼌􏼌􏼌 � 1, 2, . . . , 5􏽮 􏽯.

(66)

.e design parameters are chosen as k1,1 � 45, k1,2 �

35, k2,1 � 115, k2,2 � 29, l1,1 � l1,2 � l2,1 � l2,2 � 0.01, σ1,1 �

σ1,2 � σ2,1 � σ2,2 � 0.01, Λ1,1 � I6,Λ1,2 � I18,Λ2,1 � I6,Λ2,2
� I90, ρ1 � ρ2 � 0.01, β1,1 � β1,2 � β2,1 � β2,2 � 0.6, and χ1 �

χ2 � 0.6. .e initial condition are x1,1(0) � x1,2(0) �

x2,1(0) � x2,2(0) � 0, θ1,1(0) � 06×1, θ1,2(0) � 018×1, θ2,1(0)

� 06×1, θ2,2(0) � 090×1, and ζ1(0) � ζ2(0) � 0.
.e trajectories of system output, reference signal, and

tracking error are presented in Figure 1 to show the tracking
performance of the control system. It demonstrates that the
reference signals could be tracked well by the output signals
subject to the unknown nonlinear terms and uncertain
disturbances. Figure 2 displays the trajectories of the system
states x1,2 and x2,2. .e estimation of ζ1 and ζ2 are displayed
in Figure 3, and system control input u1 and u2 are presented
in Figure 4. It is clear that all the signals in the closed loop
adaptive control system are bounded.

4.2. Example 2. To show more results of the proposed
method, the following incommensurate fractional order
nonlinear MIMO system is considered:

D0.9x1,1 � 0.3x1,2 − 0.8 sin x1,1􏼐 􏼑 + 0.6x3
1,1 cos x1,1􏼐 􏼑,

D0.8x1,2 � 0.8u1 + 0.13 cos x3
1,1x

2
1,2􏼐 􏼑 − 0.5 cos x2

1,1x
3
1,2􏼐 􏼑,

y1 � x1,1,

D0.85x2,1 � 0.5x2,2 − 0.8 sin x2,1􏼐 􏼑 + 0.5x2,1 sin x2,1􏼐 􏼑,

D0.6x2,2 � 0.6u2 + sin x1,1x
2
1,2x2,1􏼐 􏼑 + 0.3 cos x1,1x1,2x2,1􏼐 􏼑,

y2 � x2,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)
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where f1,1(x1,1) � − 0.8 sin(x1,1), f1,2(x) � 0.13 cos(x3
1,1

x2
1,2), f2,1(x2,1) � − 0.8 sin(x2,1), and f2,2(x) � sin(x1,1x

2
1,2

x2,1) are the unknown functions. g1,1(x1,1) � 0.6x3
1,1

cos(x1,1), g1,2(x) � − 0.5 cos(x2
1,1x

3
1,2), g2,1(x2,1) � 0.5x2,1

sin(x2,1), and g2,2(x) � 0.3 cos(x1,1x1,2x2,1) are the known
continuous nonlinear functions.

.e slop parameters of dead-zone are a1,r �

a1,l � a2,r � a2,l � 1. .e dead-zone ranges are considered as
b1,r � b1,l � 8 and b2,r � b2,l � 6. .e saturation levels are
ξ1,max � 18, ξ1,min � 16, ξ2,max � 25, and ξ2,min � 23.

.e reference signal for the system output are chosen as
y1,d � 0.95 sin(0.8t + 0.1) and y2,d � 0.8 sin(t + 3).

.e following membership functions to deal with the
unknown nonlinear terms are designed as
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Figure 1: Evolution ofy1.y2, y1,d, y2,d and tracking errors e1,1 and e2,1.
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ϑ1,1 x1,1􏼐 􏼑 � exp −
x1,1 − xs1

􏼐 􏼑
2

δ21
⎛⎝ ⎞⎠,

ϑ1,2 x1,2􏼐 􏼑 � exp −
x1,1 − xs1

􏼐 􏼑
2

δ21
−

x1,2 − xs2
􏼐 􏼑

2

δ22
⎛⎝ ⎞⎠,

ϑ2,1 x2,1􏼐 􏼑 � exp −
x1,1 − xs1

􏼐 􏼑
2

δ21
⎛⎝ ⎞⎠,

ϑ2,2 x2,2􏼐 􏼑 � exp −
x1,2 − xs1

􏼐 􏼑
2

δ21
−

x2,1 − xs2
􏼐 􏼑

2

δ22
−

x2,2 − xs3
􏼐 􏼑

2

δ23
⎛⎝ ⎞⎠,

δ1 � δ2 � δ3 � 0.5,

xs1
∈ 0.5s1 − 2 s1

􏼌􏼌􏼌􏼌 � 1, 2, . . . , 6􏽮 􏽯,

xs2
∈ s2 − 2 s2

􏼌􏼌􏼌􏼌 � 1, 2, 3􏽮 􏽯,

xs3
∈ 0.5s3 − 1.5 s3

􏼌􏼌􏼌􏼌 � 1, 2, . . . , 5􏽮 􏽯.

(68)

.e design parameters are chosen as k1,1 � 125, k1,2
� 45, k2,1 � 115, and k2,2 � 25, l1,1 � l1,2 � l2,1 � l2,2 � 0.01,
σ1,1 � σ1,2 � σ2,1 � σ2,2 � 0.03, Λ1,1 � I6,Λ1,2 � I18,Λ2,1 �
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Figure 5: Evolution of y1.y2, y1,d, y2,d, and tracking errors e1,1 and
e2,1.
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I6, andΛ2,2 � I90, ρ1 � ρ2 � 0.01, β1,1 � β1,2 � β2,1 � β2,2 �

0.7, and χ1 � χ2 � 0.6. .e initial conditions are
x1,1(0) � x1,2(0) � x2,1(0) � x2,2(0) � 0, θ1,1(0) � 06×1, θ1,2
(0) � 018×1, θ2,1(0) � 06×1, θ2,2(0) � 090×1, and ζ1(0) � ζ2(0)

� 0.
Figure 5 represents the tracking performance, and the

tracking errors e1,1 and e2,1 converge to a smaller range of
zero. Figure 6 shows the trajectories of the system states x1,2
and x2,2. Figure 7 depicts the estimation of the ζ1 and ζ2. .e
control inputs u1 and u2 are depicted in Figure 8. It is clear
that the signals in the closed loop system are bounded.

.e abovementioned simulation results demonstrate
that although there are unknown nonlinearities and input
constraints, the proposed adaptive NN controller can
guarantee the good tracking performance, and all the closed-
loop signals are bounded.

5. Conclusion

An adaptive NN backstepping control scheme for a class of
incommensurate uncertain fractional order nonlinear
MIMO systems subjected to with dead-zone and saturation
is proposed in this paper. .e RBF NN is used to approx-
imate an unknown nonlinear terms in each step of the
backstepping procedure. .e adaptive NN controller is
constructed by the backstepping and adaptive technique.
.e adaptation laws with incommensurate fractional order
for parameters estimation are designed to compensate un-
known nonlinearities in the controller. .rough the simu-
lation results, it is verified that the tracking errors of the
closed-loop system can reach a small neighborhood of zero
even in the presence of dead-zone and saturation simulta-
neously. .is ensures the efficacy of the proposed approach.
In the future, the selection of the orders of the parameter
estimation laws will be considered for the control
adjustment.
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Risk analysis of emergency is vital to e�ective emergency management. However, conventional analysis is challenged by the
emerging problems as risk of emergency appearing increasingly complicated. �e risk attributes of emergency originate in
complicated sources, and their information is always incomplete. To ensure the e�ciency and stability of emergency risk analysis,
we proposed an elaborative approach composed of structural description framework and fuzzy evidential reasoning. Firstly, the
risk attributes are identi�ed by structural description framework. �e information as evidence is obtained and normalized for
further analysis. Secondly, risk analysis model with fuzzy evidential reasoning is constructed, and risk grade is evaluated. Finally, a
certain railway project accident is taken as an example to test the model and some managerial insights are demonstrated. An
approach combining structural description framework and fuzzy evidential reasoning model is feasible and e�ective; furthermore,
it provides stable support for emergency risk analysis.

1. Introduction

Over the past decades, research on emergency management
has gained enormous attention in both academia and
practice [1–4]. Due to the complexity of emergency and its
severity consequence, it is vital to investigate deeply on the
emergency management involving risk analysis, develop-
ment control, and evolution management [5]. �ere are
various types of emergency, and they make emergency
management evenmore complicated. In China, according to
the overall state emergency plan, emergency mainly contains
four categories: natural disasters, social security, public
health, and technical accidents. Taking earthquakes, a typical
natural disaster, as an example, it performs complex on its
consequence [6]. �e consequence usually appears as a
complex disaster chain including casualties, economic loss,
�res, landslides, �oods, plague, and social panic. Another
example is railway project accident [7], which is even harder
to cope with for the reason that such accident combines
industrial technology and natural situation with social en-
vironment factors together. So, many works are carried on
by the lens of complexity science [8–10], and a series of

positive progress is made [11–13]. Considering the com-
plexity of the emergency and its consequence, it will bene�t
to emergency management if the decision maker could react
as early as possible [14]. �erefore, the risk analysis of
emergency is of great signi�cance.

As a critical part of emergency management, risk
analysis of emergency is actually a complicated work [15].
Accurate and stable analysis of emergency risk means great
on many aspects [16], such as to reduce frequency of oc-
currence [17], lower the initial loss [18], and control the
evolution process e�ectively [19].�erefore, it is necessary to
propose advanced approach to better solve problems of risk
analysis. Taking China emergency management as an ex-
ample, risk management with characteristics of all-phase,
all-stakeholder, and all-type was not informed until 2003.
�erefore, tomake further progress on risk analysis research,
especially on coping with the increasingly complicated risk
circumstance, it is suggested to develop more �exible and
adaptable analysis approach.

Some researchers notice that emergency risk usually
performs poor due to the imperfect information either in-
adequate or loss [20, 21]. To deal with such decision
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scenarios, evidential theory and evidential reasoningmethod
are introduced [22]. In a basic evidential model, it focuses on
solving problem with the characteristic of proposition un-
certainty to set uncertainty [23]. 0is could be realized by
contrasting the propositions and sets one by one. Take Θ �

G1, G2, . . . , Gn􏼈 􏼉 as a set, in which the elements are mutually
exclusive and exhaustive. 0e set is so called identification
framework. Besides, the mass (m) describes the belief of the
framework, which satisfies m(∅) � 0, and 􏽐A⊆Θm(A) � 1,
wherein∅ signifies empty set and A stands for any subset of
Θ. As it develops to evidential reasoning, its advantage of
dealing with decision scenarios without complete in-
formation is increasingly obvious [24–29]. 0erefore, a
common knowledge for decision makers as well as re-
searchers is formed that evidential reasoning could solve
problems with characteristics of multiattributes.

Recent relevant works on evidential reasoning approach
concentrate on the update of evidential reason rule, the
implementation of this method in practice, and the in-
tegration with other methods. Among the extensive research
dedicated to the evidential reasoning, the following works
are very representative. Wang and Elhag [30] model the
bridge risk by artificial neural network, evidential reasoning,
and multiple regression analysis. After a comparison of their
modelling mechanisms, they argue the remarkable advan-
tage of evidential reasoning is its ability of modelling
quantitative and qualitative data using the distributed
modelling framework. Some works focus on updating the
evidential rule. Yang and Xu [31] improve the evidential
reasoning approach by a new rule considering evidence
weights and reliabilities. Liu et al. [32] concern the hesitant
fuzzy information and highlight the importance of in-
formation processing in emergency management. Some
works focus on how to use evidential reasoning to solve the
problems. Kong et al. [33] develop the belief rule-based
inference methodology using the evidential reasoning ap-
proach and help the decision maker to predict trauma
outcome. Xu et al. [34] investigate a purely data-driven work
and propose a classification method using evidential rea-
soning. Zhang et al. [35] consider a fuzzy rule and conduct a
navigational risk assessment. Some works establish novel
analysis framework by integrating evidential reasoning with
other approaches. Wang et al. [36] incorporate the analytic
hierarchy process with evidential reasoning, by which they
help contractors to select appropriate subcontractor. Evi-
dential reasoning in this work contributes to rank the al-
ternative subcontractors. Ng [37] takes evidential reasoning-
based approach as a fast-track and objective tool and uses it
to rank the available design alternatives. Working with the
combination of multiattribute decision and non-life cycle
assessment, it is proved that evidential reasoning benefits the
evaluation of design alternatives’ environmental perfor-
mances. Kong et al. [38] make a combination of the principal
component analysis and the evidential reasoning approach
and provide a new framework to assess patient satisfaction.

To sum up, two streams of research are closely related to
our work: emergency management, especially risk analysis,
and approach that may contribute to risk analysis, especially
evidential reasoning. 0e existing studies have made

significant contributions to risk analysis and evidential
reasoning. However, it is worth mentioning that little at-
tention was paid to risk analysis of technical accident such as
railway project accident. It may be induced by the lack of
understanding for the risk analysis of such emergency.
Considering the information in emergency is always un-
certain and incomplete, we adopt the fuzzy evidential rea-
soning. Further, to better understand risk attributes, we
introduce structural description framework to the fuzzy
evidential reasoning. 0erefore, we propose an analysis
approach by incorporating the structural description
framework in fuzzy evidential reasoning. To prove the
validity of the model we proposed, we run a case study on
railway project accident. Railway project accident is a
complex system which may contain transportation acci-
dents, public facility accidents, equipment destruction, en-
vironmental pollution, industrial hazard, and economic loss
[39]. Furthermore, it is a typical technical accident and is
seldom analyzed in emergency research.0erefore, our work
is different from previous studies. We propose a novel
approach for risk analysis by combining structural de-
scription framework with fuzzy evidential reasoning, es-
pecially when the information is imperfect either uncertain
or incomplete. We firstly establish accident structural de-
scription framework, identification framework, and it helps
to identify risk attributes rapidly and accurately. Secondly,
we construct fuzzy belief structural model and normalize all
the information we collected as evidence. 0irdly, the fuzzy
evidential reasoning model is used to further processing of
risk attributes. Finally, we obtain the risk analysis results, so
as to provide solution for risk analysis of emergency.

0e remainder of this paper is organized as follows.
Section 2 establishes structural description framework for
identification of risk attributes. Section 3 illustrates the
model, and Section 4 takes certain railway project accident as
an example to test the validity of our work. Finally, Section 5
concludes our work and offers directions for the future
research.

2. Analysis of Risk Attributes

0e accurate identification of emergency risk attributes is the
premise of risk analysis. 0e core object is to identify the
general attribute and basic attribute [40]. As there is no
universal or uniform model for different emergencies [41],
we propose a reasonable analysis framework. We determine
the basic risk sources followed by their possible outcome and
set them as the evidence. After that, we assign the reasoning
rules and transform all the evidence to the general attribute.
Till then, we accomplish emergency risk attributes analysis
and lay foundation for the construction of fuzzy evidential
reasoning model.

2.1. Identification of Emergency Risk Attributes. With re-
garding to the complicated characteristics of emergency,
may be high uncertainty and severity consequence, we
ought to consider both internal and external risk attributes
of such complex system. To systematically illustrate
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emergency, it adopts a set form to establish structural
description framework as Emergency � {{Emergency
Type}, {Key Attribute}, {Secondary Attribute}, {Environ-
mental Attribute}, {Hazard Attribute}} [40]. 0is frame-
work significantly helps to understand the emergency and
its severity as well. Looking back to the framework, it
provides a simple way to identify risk attributes, covering
the risk source, pattern, trend, and consequence. 0erefore,
this framework could also be applied to emergency risk
attribute identification and correspondingly simplified as
Emergency � {{Key Attribute}, {Secondary Attribute},
{Environmental Attribute}}. Among which, key attribute is
the risk factor inside the emergency. To some extent, the
risk grade (risk value) directly determines the severity of
the initial consequences once the event occurs. 0e sec-
ondary attribute also stems from the inside of emergency
and usually affects emergency indirectly. 0e environ-
mental attribute exists outside of emergency, affects the
emergency observably and measurably, but not necessarily
controllably. For the convenience of further analysis, these
three attributes are collectively referred as general attri-
butes. Besides, to illustrate specific emergency risk, each
general attribute could be subdivided to basic attribute.
0at is, the general attributes are extracted to describe the
common characters, while the basic attributes are used to
highlight the specific status. 0en, the identification
framework for emergency risk attribute is established as
shown in Figure 1.

Considering the relationship among general attributes,
basic attributes, and emergency risk grade, we obtain the
reasoning rules as follows. If no basic attribute of certain
general attribute belongs to certain risk grade, then the
general attribute does not belong to this risk grade either. If
all the basic attributes of certain general attribute belong to a
certain risk grade, then the general attribute also belongs to
this risk grade. If the basic attribute of the general attribute
belongs to multiple grades, then the general attribute should
be allocated to different grades under specific rules. Using
the framework shown in Figure 1, we can identify the risk
attributes, find the sources for risk, evaluate the occurrence
probability, and predict the possible consequences. Once the
risk attribute analysis framework is set up, it would support
the subsequent modelling research on risk analysis of
emergency.

2.2. Fuzzy Belief Model of Emergency. Considering the
complicated characteristics of risk attribute, it is necessary
to normalize all the risk attributes for further analysis.
Usually, it takes grade to describe emergency risk. 0e
grade should contain several standards to assess risk. 0e
standards may cover severity of the emergency, frequency
of emergency occurrence, and emergency consequence.
Taking CRH brake system failure risk as an example, the
risk grade is defined by grade I to grade IV. As to natural
disaster risk, it is subdivided to five grades. 0ere are also
some emergency risk grades described by the qualitative
method. For example, fault mode severity can be classified
to insignificant, marginal, critical, and catastrophic;

incident frequency can be described as seldom, little, av-
erage, usually, and always. Additionally, there are also some
quantitative description methods, such as the risk value.
0e evidence for risk attribute is so diverse that the evi-
dence ought to be normalized before further analysis.
Combining the fuzzy set theory and the belief structure
model, we establish fuzzy belief structure.

Assume emergency has N fuzzy risk grades and the
adjacent two grades may intersect. Given membership
functions, we symbol fuzzy numbers for each grade as FGn
and further describe them with triangular fuzzy number or
trapezoidal fuzzy number.0e intersection between FGn and
FGn+1 is denoted as FGn, n+1, as is shown in Figure 2. 0en,
the emergency fuzzy risk can be illustrated by FG� {FG1,
FG2, . . ., FGn, . . ., FGN}. Together with the belief model, we
obtain the fuzzy belief model as follows:

FBS(E) � FGn, βn( 􏼁, n � 1, 2, . . . , N􏼈 􏼉, (1)

wherein FGn represents fuzzy risk grade, N depicts the total
number of grades, and βn denotes the belief of emergency
risk grade falling on grade FGn. Moreover, we have
βn ≥ 0, 0≤􏽐

N
n�1βn ≤ 1. Specifically, 􏽐

N
n�1βn � 1 indicates that

the risk attribute information is completely known,
while􏽐

N
n�1βn � 0 indicates that people know nothing about

risk attribute at all.

3. Model

Based on the aforementioned analysis, the evidential rea-
soning model would be proposed. 0e model would be
ultimately established through the following four steps.
Firstly, risk attributes are identified. By the structural de-
scription framework for emergency, we could obtain the
general attribute and further get the basic attribute through
experience on emergency management. Secondly, in-
formation of risk attributes is normalized. We collect the
information of all the risk attributes and take them as ev-
idence for further reasoning. 0en, we set the normalization
rules for evidence both qualitative and quantitative. 0irdly,
the general attributes contributing to risk are calculated. 0e
major work in this step is mainly composed of calculation on
mass value and correspondingly belief for all the general
attributes, as well as allocation of the intersection reliability.
Finally, the emergency risk analysis results are obtained.
0e framework of evidential reasoning model is shown in
Figure 3. As the first step has been prepared by risk attribute
analysis, we would pursue the model construction from the
second step.

3.1. Conversion of Fuzzy Belief Structure. Evidence of risk
attribute has the characteristics of multifeature, multi-
standard, andmultilength, which increases the complexity of
risk analysis. 0erefore, it is necessary to normalize the
evidence of risk attributes before subsequent analysis. To
solve this problem, we adopt fuzzy belief structure model.
Given fuzzy risk grades FG � FGn, n � 1, 2, . . . , N􏼈 􏼉, fuzzy
belief structure is FBS(E) � (FGn, βn), n � 1, 2, . . . , N􏼈 􏼉.
Assuming that risk attribute R has evidence with length l, its
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risk grade is FGRl � FGnl, n � 1, 2, . . . , N􏼈 􏼉 and its fuzzy
belief structure could be labeled as FBS(Rl) � (FGnl,􏼈

αn), n � 1, 2, . . . , N}. Regarding that evidence could be il-
lustrated either qualitatively or quantitatively (even with
different lengths), we set the processing rules as follows.

If the risk attribute has qualitative evidence with the
same length comparing to emergency fuzzy risk grade,
i.e., Nl �N, then the evidence could be converted directly
by

FGRl
n2, αn2􏼐 􏼑⟺ FGn1, βn1( 􏼁, n1 � n2, n1 ∈ N, n2 ∈ Nl.

(2)

If the evidence is qualitative with different lengths
comparing to fuzzy risk grade, i.e., N ≠ Nl, then we could

convert it to FGn1 by belief cn1,n2(n1 ∈ N, n2 ∈ Nl).
0erefore,

FGRl
n2, αn2􏼐 􏼑⟺ FGn1, cn1,n2􏼐 􏼑, n1 ∈ N, n2 ∈ Nl, (3)

wherein 0≤ cn1,n2 ≤ 1 and􏽐
N
n1�1cn1,n2 � 1.

If the risk attribute has quantitative evidence and its risk
value belongs to fuzzy risk grade FGn and FGn+1 with
membership μFGn and μFGn+1 separately, then it converts as

FGRl
n2, αn2􏼐 􏼑⟺ FGn1,

μFGn

μFGn + μFGn+1
􏼠 􏼡, FGn+1,

μFGn+1

μFGn + μFGn+1
􏼠 􏼡,

n1 ∈ N, n2 ∈ Nl.

(4)

By (2)–(4), the basic risk attribute evidence is normalized.

General
attribute

Emergency risk
attribute (R)

Key attribute
(KR)

Secondary
attribute (SR)

Environmental
attribute (ER)

KR1 KRx…KR2 ER1 ERz…ER2SR1 SRy…SR2
Basic

attribute

Figure 1: Emergency risk attribute identification framework.

rn+1 rn+2 rn+mr4r3r2
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rn r

Figure 2: Fuzzy risk grade.

Step 1 Identify risk attributes by structural
description framework

Collect the information, take them as
evidence for risk analysis, and

normalize them
Step 2

Step 3

Step 4 Obtain the risk analysis result

Risk analysis

Basic key attribute
Basic secondary attribute
Basic environmental attribute

(i)
(ii)

(iii)

Mass value and correspondingly
belief for all the general attributes
Intersection reliability allocation

(i)

(ii)

Qualitative evidence with same
length of emergency grade
Qualitative evidence with different
lengths of emergency grade
Quantitative evidence

(i)

(ii)

(iii)

Figure 3: Framework of fuzzy evidential reasoning model.
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3.2. Fuzzy Evidential Reasoning Model. As aforementioned,
we establish a structural description framework consisting of
key attributes, secondary attributes, and environmental at-
tributes; we could use this framework, i.e., R� {{KR}, {SR},
{ER}} to describe emergency risk attributes. Each general
attribute could be subdivided into some certain basic at-
tributes. From then on, we take KR as an example to
construct model. Assume the number of KR’s basic attri-
butes is X and get FBSKRx � (FGn, βx

n)􏼈 􏼉, n � 1, 2, . . . , N, x �

1, 2, . . . , X after fuzzy belief structure converting. Setting
the corresponding weight of KRxas ωx, and 􏽐

X
x�1ωx � 1,

the mass value of each basic risk attributes could be obtained
by

m
x
n � ωxβ

x
n , n � 1, 2, . . . , N, x � 1, 2, . . . , X. (5)

Additionally, there also exists some risk which could not
be ascertained due to incomplete or even totally unknown
information in practice, which is measured by

m
x
G � 1 − 􏽘

N

n�1
m

x
n � 1 − 􏽘

N

n�1
ωxβ

x
n , n � 1, 2, . . . , N, x � 1, 2, . . . , X.

(6)

By normalization weights ωx to ω′, we can further
process the evidence of KR. 0e risk evaluation result of KR
is FBS(KR) � (FGn, βKRn )􏽮 􏽯, n � 1, 2, . . . , N, x � 1, 2, . . . , X.
0erefore, we obtain the mass value of KR by using the
following equation:

m
KR
n � ω′ 􏽙

X

x�1
m

x
n + m

x
G􏼂 􏼃 − 􏽙

X

x�1
m

x
G

⎫⎬

⎭, n � 1, 2, . . . , N.
⎧⎨

⎩

(7)

0e mass value of the intersection between two adjacent
risk grades is

m
KR
n,n+1 � ω′μmax

FGn,n+1 􏽙

X

x�1
m

x
n + m

x
n+1 + m

x
G( 􏼁 − 􏽙

X

x�1
m

x
n + m

x
G( 􏼁

⎧⎨

⎩

− 􏽙
X

x�1
m

x
n+1 + m

x
G( 􏼁 + 􏽙

X

x�1
m

x
G

⎫⎬

⎭ , n � 1, 2, . . . , N − 1.

(8)

0emass value of uncertain risk grades due to imperfect
information is

m
KR
G � ω′ 􏽙

X

x�1
m

x
G

⎫⎬

⎭.
⎧⎨

⎩ (9)

Specially, ω′ is determined by 􏽐
N
n�1m(Gn) + 􏽐

N− 1
n�1

Gn,n+1 � 1.
Belief for each mass value is

βKRn �
mKR

n

1 − mKR
G

, n � 1, 2, . . . , N, (10)

βKRn,n+1 �
mKR

n,n+1

1 − mKR
G

, n � 1, 2, . . . , N − 1. (11)

We obtain the primary analysis result by (FGKR
n ,􏼈

βKRn ), (FGKR
n,n+1, β

KR
n,n+1), (FGKR

G , βKRG )}. However, the in-
tersection between two grades does not exist in reality.
0erefore, it still needs further analysis on (FGKR

n,n+1, β
KR
n,n+1).

3.3. Allocation of Fuzzy Intersection Belief. Considering the
risk grade is regulated clear in reality, it is necessary to
process the intersection between adjacent risk grades. To
insure the analysis is reasonable, we set the reasoning rules
as follows. If the intersection FGn,n+1 totally belongs to FGn

or FGn+1, then its belief also belongs to FGn or FGn+1. If
the intersection FGn,n+1 varies from FGn to FGn+1, as shown
in Figure 4, and the endpoints are set by FGn and FGn+1,
then we allocate (mKA

n,n+1, β
KA
n,n+1) within this interval.

As it is shown in Figure 4, the proportion of grade FGn

in Sn,n+1 is δ
KR′
n , while the proportion of grade FGn+1 is δ

KR′
n+1 .

δKR′n + δKR′n+1 � 1, and they are determined by (12) and (13)
separately:

δKR′n �
1
2

1 −
dn

dn + dn+1
􏼠 􏼡 +

Sn

Sn + Sn+1
􏼢 􏼣, (12)

δKR′n+1 �
1
2

1 −
dn+1

dn + dn+1
􏼠 􏼡 +

Sn+1

Sn + Sn+1
􏼢 􏼣. (13)

0erefore, the belief allocated to grade FGn is

βKR′n �
Sn + δKR′n Sn,n+1

Sn + Sn,n+1 + Sn+1
. (14)

However, the belief allocated to grade FGn+1 is

βKR′n+1 �
Sn+1 + δKR′n+1Sn,n+1

Sn + Sn,n+1 + Sn+1
. (15)

0en, combining with (mKR
n , βKRn ), (mKR

n,n+1, β
KR
n,n+1),􏽮

(mKR
G , βKRG )}, we get the initial risk analysis result of ac-

cident as

m
KA
n , βKAn + βKA′n􏼒 􏼓, m

KA
G , βKAG􏼐 􏼑􏼚 􏼛. (16)

Since the key attribute, secondary attribute, and envi-
ronmental attribute have been differentiated when we
identify general risk attribute, it is not necessary to rank the
risk attributes like risk analysis paradigm in general.

3.4. Analysis of Fuzzy Evidential Reasoning Results. To un-
derstand the risk grade more intuitively, we take a further
analysis. It also benefits emergency management, such as
release warning signals and formulate emergency response
in different stages of the emergency. To solve this problem,
we use the expected risk value. As the risk grade and its
belief could be obtained by (16), we determine the grade
risk values as follows. Assuming the risk value of the
highest grade to 1 and the lowest grade to 0, the n − 2 grades
among them could be determined by specific accident. 0e
analysis result would be finally obtained by the summation
of all the risk values:
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U
KA

� 􏽘
N

n�1
βnrn. (17)

Based on the analysis of the key attribute, we can analyze
the risk of the secondary attribute and environmental at-
tribute as the same way proposed by (1)–(17). With re-
garding to the expected risk value of KR, SR, and ER, it
would exactly help to analyze accident risk. 0at is, given the
information of risk attributes, the fuzzy evidential reasoning
model would make sense on estimating to what extent the
accident would happen. Besides, this approach also helps to
evaluate the severity of the accident consequence.

4. Model Analysis on Case Study

Here, we take railway project accident as an example.
Railway project accident is a typical technical accident and
seldom researched in previous works. We determine the
information and evidence of risk attribute mainly from the
following two documents: Technical Code for Risk Man-
agement of Railway Construction Engineering (issued by
China Railway in 2014), Statistics of Construction Risk (a
series of documents declared by certain railway project in
2018).

4.1. Model Solution

4.1.1. Step 1. Using the emergency risk attribute identifi-
cation framework, we determine the general attributes and
their basic attributes. 0en, calculate the risk grade, weight,
and value of all attributes. Finally, we obtain 21 basic at-
tributes, and their information is summarized as shown in
Table 1.

4.1.2. Step 2. Considering the specific condition of railway
project in China, we measure the risk grade of railway
project accident by {Catastrophic, critical, general, Mar-
ginal, insignificant}, which simplifies as FG� {FG1, FG2,
FG3, FG4, FG5}. With regard to Figure 2, finally, we de-
termine the fuzzy risk grade for railway project accident as
in Figure 5.

4.1.3. Step 3. We take further process of basic risk attributes.
To simplify but without loss of generality, we omit the
process of getting the ultimate evidence from multi-in-
formation. Calculation starts from cut slope height, whose

risk value is 2; triangular fuzzy number for FG1 is (0, 0, 4)
and for FG2 is (0, 4, 8). 0en, we obtain fuzzy belief of cut
slope height as (FG1, 0.5), (FG2, 0.5), (FG3, 0), (FG4, 0),􏼈

(FG5, 0)}, take (0.5, 0.5, 0, 0, 0) for short. All the basic at-
tribute analysis results are demonstrated in the third column
in Table 2. 0en, we get the mass value by (5)–(7), and the
result is shown in the fourth column in Table 2. Based on
equations (8)–(11), we get the primary result on railway
project accident risk analysis and it is shown in the fifth
column in Table 2. Note that there is still an intersection
between the adjacent grades; therefore, we pursue to allocate
the intersection by the following steps.

4.1.4. Step 4. By equation (12)–(16), we allocate the in-
tersection belief to the two adjacent grades and get the result
on risk evaluation considering risk grade and its belief. As
mentioned before, we further calculate the expected risk
value for each basic attribute by using equation (17). Finally,
we conclude the results of this step and list them in Table 3.

4.2. Results Analysis. We could draw some managerial in-
sight out of the above results. One interesting point is that
the risk value of the key attribute is not significantly high
comparing with the traditional recognition. We explain this
counterintuitive result from the perspective of practice. In
reality, people tend to spend enormous money and high
effort on this aspect, and it leads to technology progress and
effective regulation. 0erefore, although the key attribute is
vital to railway project accident, the failure rate and risk
value is low. It is in line with the development status of China
railway project.

Secondary attribute performs relatively average in risk
grade and belief, which is basically consistent with the
actual situation. Unexpectedly, the belief allocated for the
environmental attribute is relatively high. It may be due to
the geological condition which is important to railway
project and its operation. As it is shown in the statistics
data of railway project accident, major economic losses
and casualties are usually caused by environmental
attribute.

To some extent, these findings will push managers to
rethink the role of traditional experience recognition and
related training. Moreover, we also provide reference for risk
prevention, early warning, and response of railway project
accident. Especially, it would obviously benefit to the railway
company with capital constraints.

Sn+1Sn

FGn+1FGn FGn,n+1

Sn,n+1

dn dn+1

Figure 4: Fuzzy intersection reliability allocation.
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Table 1: Railway project accident risk analysis and evident definition.

General attribute Basic attribute Risk consequence Risk
grade

Risk
weight

Risk
value

Key attribute

Cut slope height Slide slump, blocks peeling off, roadbed deformation FG1 0.2 2
Bank slope height Embankment settlement, slope collapse FG3 0.1 9

Special construction conditions Casualty, economic loss, postproject risks FG2 0.2 6

Special construction technologies Project failure, economic loss, derivative project
failure, postproject risks FG1 0.2 1

Deep foundation pit Structural design failure, settlement deformation,
unexpected accidents FG2 0.2 7

Existing railway effects Technological bottleneck, roadbed deterioration,
schedule delay FG4 0.1 16

Secondary attribute

Project schedule Go over budget, alleviate function, interface project
delay FG4 0.1 15

Function loss Below the market demand FG3 0.05 9
Project investment Project abandon, poor quality, social conflicts FG4 0.1 11

Environment protect Destroy environment like cultural relics and natural
habitats. Social conflict and welfare FG1 0.15 1

Social status along the project Social conflict, go over budget, schedule delay FG5 0.05 17
Locomotive depot configuration Operational risk, social investigation FG4 0.05 14

Vehicle configuration Operational risk FG5 0.05 18
Terminal location Project abandon, infrastructure settlement FG3 0.05 14
Project interface Project isolation, project failure FG3 0.2 9

Infrastructure relocation Go over budget, schedule delay, group conflict FG2 0.15 6
Residual risk Unexpected loss FG3 0.05 —

Environmental
attribute

Weather condition Project duration, operational risk FG3 0.15 9
Underground water Settlement, roadbed deformation, water pollution FG5 0.25 18

Geological condition Roadbed risk, social conflict, project abandon, karst
water and mud inrush disaster, bombing FG3 0.25 7

Stuff quality Casualty, operational risk, project failure FG2 0.35 3

μ (r)

10 16

1

FG4.5FG23 FG3,4

FG4FG3

FG1,2
r

FG1

20840

FG2 FG5

Figure 5: Fuzzy risk grade of railway project accident.

Table 2: Analysis results of risk attributes (I).

General
attribute Basic attribute Belief Mass Primary result

Key attribute

Cut slope height (0.5, 0.5, 0, 0, 0) (0.1, 0.1, 0, 0, 0)

{(FG1, 0.0241), (FG1,2, 0.0136), (FG2, 0.1906),
(FG2,3, 0.1742), (FG3, 0.1814), (FG3,4, 0.0258),

(FG4, 0.048), (FG4,5, 0.0127), (FG5, 0)}

Bank slope height (0, 0, 1, 0, 0) (0, 0, 0.1, 0, 0)
Special construction

conditions (0, 0.5, 0.5, 0, 0) (0, 0.1, 0.1, 0, 0)

Special construction
technologies

(0.3333, 0.6667, 0, 0,
0)

(0.0666, 0.1333, 0,
0, 0)

Deep foundation pit (0.875, 0.125, 0, 0, 0) (0.1750, 0.025, 0, 0,
0)

Existing railway effects (0.0, 0, 1, 0) (0.0, 0, 0.1, 0)
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5. Conclusions

Emergency risk analysis is vital to emergency management;
especially, it plays an important role on learning emergency
operational mechanism. Aiming at providing a stable approach
to analyze emergency risk, this paper proposes an analytical
approach incorporating structural description framework and
fuzzy evidential reasoning. It starts from the establishment of
risk attribute identification, which is taking emergency
structural description framework as the foundation. 0en, we
assess the risk grade of risk attributes by evidential reasoning.
By a case study on railway project accident, it is proved that the
approach outperforms comparing to current riskmanagement.
It could provide theoretical support for the risk prevention and
decision-making involving in each stage.

To conclude, our study proposes a novel approach for
accident risk analysis by combining structural description
framework and fuzzy evidential reasoning, especially when
the information is imperfect either uncertain or incomplete.
We firstly establish accident structural description frame-
work, identification framework; it helps to recognize risk
attributes rapidly and accurately. Secondly, we construct
fuzzy belief structural model and normalize all the

information.0irdly, the fuzzy evidential reasoning model is
used to combine basic attributes. Finally, we obtain the
analysis results, so as to assist the decision-making of
emergency risk prevention or response.

0e limitations of our work are also obvious due to the
model construction. Firstly, the evidential reasoning rule we
used here is very basic. It is in premise of the implicit as-
sumption that the fuzzy risk grade is defined clearly.
However, the grade may be obscure in reality, and it may
induce the fact that the evidence belongs to three or more
different grades. Secondly, the basic attributes of our case
study are relatively small. We obtain such attributes from
deep analysis of daily records of specific railway project and
statistics of construction risk, and they are undoubtedly
helpful to make risk analysis. Considering the analysis result,
especially the analysis of key attribute, it still needs more
detailed works on the basic attributes to highlight the critical
of the key attribute. Finally, our work merely focuses on the
occurrence risk of emergency, indeed risk is always de-
veloping. So, we have to further alleviate the difficulty of
evidential reasoning application or do the risk analysis
taking emergency development or evolution under
consideration.

Table 2: Continued.

General
attribute Basic attribute Belief Mass Primary result

Secondary
attribute

Project schedule (0, 0, 0, 0.625, 0.375) (0, 0, 0, 0.0625,
0.0375)

{(FG1, 0.1002), (FG1,2, 0.0106), (FG2, 0.1057),
(FG2,3, 0.059), (FG3, 0.1067), (FG3,4, 0.0871),
(FG4, 0.1323), (FG4,5, 0.0144), (FG5, 0.1632)}

Function loss (0, 0, 1, 0, 0) (0, 0, 0.05, 0, 0)

Project investment (0, 0, 0.1667, 0.8333,
0)

(0, 0, 0.0167,
0.0833, 0)

Environment protect (0.5, 0.5, 0, 0, 0) (0.075, 0.075, 0, 0,
0)

Social status along the
project (0, 0, 0, 0.875, 0.125) (0, 0, 0, 0.0438,

0.0625)
Locomotive depot
configuration

(0.0, 0, 0.6667,
0.3333)

(0, 0, 0, 0.0333,
0.0167)

Vehicle configuration (0.0, 0, 0.8889,
0.1111)

(0, 0, 0, 0.0444,
0.0056)

Terminal location (0, 0, 0.4286, 0.5714,
0)

(0, 0, 0, 0.0214,
0.0286)

Project interface (0, 0, 1, 0, 0) (0, 0, 0.2, 0, 0)

Infrastructure relocation (0, 0.8571, 0.1429, 0,
0, 0)

(0, 0.1286, 0.0214,
0, 0)

Residual risk (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

Environmental
attribute

Weather condition (0, 0, 1, 0, 0) (0, 0, 0.15, 0, 0)

{(FG1, 0.1123), (FG1,2, 0.0344), (FG2, 0.1031),
(FG2,3, 0.0357), (FG3, 0.1708), (FG3,4, 0.0258),
(FG4, 0.0746), (FG4,5, 0.0322), (FG5, 0.0096)}

Underground water (0, 0, 0, 0.3333,
0.6667)

(0, 0, 0, 0.0833,
0.1667)

Geological condition (0, 0.25, 0.75, 0, 0) (0, 0.0625, 0.1875,
0, 0)

Staff quality (0.8571, 0.1429, 0, 0,
0) (0.3, 0.05, 0, 0, 0)

Table 3: Analysis results of risk attributes (II).

FG1 FG2 FG3 FG4 FG5 Expected risk value
Key attribute 0.0319 0.2805 0.2764 0.0672 0.0064 0.5742
Secondary attribute 0.1057 0.1395 0.1787 0.1831 0.1704 0.5649
Environmental attribute 0.1295 0.1392 0.2015 0.1036 0.0257 0.4151
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Regarding above limitations and the fact that risk
management is the basic of emergency development man-
agement and evolution research, it needs further study. As to
future work, the research could enrich the evidential rea-
soning rule by new tools of data mining and expand the
attributes’ scope from occurrence risk to development risk
and evolution risk. Further, the research could enrich the
works on risk prevention and early warning. In addition,
future work may introduce various constraints to close the
reality, especially the resource constraints. After that, it
could finally provide great references for relevant managers
and help to make scientific and efficient decisions.
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Humans have a fundamental ability, that is, to share vision among each other to ful�ll common goals, which cooperative UAVs do
not have. �e di�culties mainly lie in the homologous mathematical description of humans and elusive experimental practice.
�is paper proposed a parallel multiview splicing on clouds, which �rst review both theory and practice studies in UAVs. �ese
terms are then reconsidered from humans’ vision sharing. Next, a conceptual model of parallel multiview splicing on clouds is
proposed and the mathematical deduction if ful�lled. Furthermore, an experimental cooperative UAVs platform is built to
practically implement the algorithms. Both the simulated and practiced results have validated the feasibility of our method.
Finally, a general discussion and proposals for addressing future issues are given.

1. Introduction

�e unmanned aerial vehicle (UAV) combat system plays an
important role in acquiring information superiority, imple-
menting precise strike, and completing fast combat tasks in
current rapid combat and information war [1]. Especially the
intelligent UAV, which integrates arti�cial intelligence to
perceiving environment, making attack strategy and assessing
task, etc., can lead to the initiative and victory in the war [2].

However, the task accomplishment of single UAV is
often unsatisfactory. When a single UAV invades an enemy-
occupied area, it often fails to complete e�ective attack due
to its own load limitation, enemy interference, and in-
terception attack. �erefore, it needs cooperation among
multiple UAVs to guarantee the task completion [3, 4].

With the development of technology and equipment, the
air confrontation between big powers will be in a state of
high intensity. �e traditional methods consider manned
vehicles as the main body of future aerial combat, until the
signi�cance of cooperative UAVs (Co-UAVs) is discovered.
�e cooperative UAVs show a new type of combat e�ec-
tiveness [5], which has the following advantages.

(a) Intelligence advantage: Co-UAVs have distributed
sensors, which can cooperate with each other to
achieve precise targets positioning. �e networked
operations can share information among UAVs,

achieving “Any one knows, everyone knows” in the
swarm. �e intelligence sharing lays foundation for
the realization of cooperative attack.

(b) Speed advantage: Co-UAVs can automatically de-
compose tasks online according to battle�eld situ-
ation and give the subtasks to corresponding
vehicles. �e assigned UAVs can react quickly and
coordinate with other operations such as in-
terference suppression, �re strike, and damage as-
sessment, which shortens the “perception-decision-
action” cycle and speeds up the combat process.

(c) Cooperation advantage: the cooperation between
UAVs can cooperate autonomously and adaptively,
which makes the swarm act as single one. As a result,
the uniform intensive attack and dense defense can
be achieved.

(d) Quantity advantage: Co-UAVs usually use low-cost
unmanned platform, which is small in size and large in
quantity. It can maintain the high-pressure situation
and continuous attack towards the enemy, paralyzing
the defense system of opposition rapidly and achieving
the operational purpose in the shortest time.

As a subversive modern attack strategy against the en-
emy, cooperative UAVs have been regarded as the core to
triumph. Especially, the swarm intelligence (SI) of Co-UAVs
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is widely applied as the key technology to win the future
combat [6].

In theory, Suresh and Ghose [7] proposed a self-adapting
ground attack strategy for UAVs by establishing a path
function within the detection range. 0ey combine re-
connaissance, interference, and autonomous attack to build
an adaptive ground attack strategy for Co-UAVs. Luo et al. [8]
propose an online-offline integrated cooperation strategy of
UAVs, which uses offline expert decision-making to analyze
battlefield environment so as to establish the environmental
impact map; it uses online robust decision-making model to
evaluate the scenarios faced by each UAV so as to adopt the
best robust attack action. Wang et al. [9] tries to find the best
strategy of Co-UAVs by using the Radial Basis Function
Neural Network (RBF-NN) and to evaluate the performance
of cooperation. Also, an alterable neural network is in-
troduced to search the precise candidate feasible solution set,
which improves the efficiency of the RBF-NN. In [10], an
interval consistency model based on an auction algorithm is
proposed, purposing on solving the consistency problem of
Co-UAVs, making UAVs reach the target at the same time.

In practice, as the Research Laboratory of the United
States Air Force (USAF) showed in 2002, the key to success
in future complex battlefield is to use multi-UAVs, which
includes searching and attacking, investigation and sup-
pression, psychological warfare, and tactical restraint [11].
Co-UAVs are the breakthrough point of future unmanned
warfare. In the subsequent research of USAF, hundreds of
simulation experiments were conducted to simulate the
interception of Co-UAVs’ attacks to Aegis air defense system
[12]. 0e results show that the defense system is difficult to
intercept all UAVs and the defense system has been re-
peatedly broken through, which indicates the superior attack
performance of Co-UAVs. In 2015, the Defense Advanced
Research Projects Agency (DARPA) published the “Gre-
milins” project, which plans to develop partially recoverable
Co-UAVs for reconnaissance and electronic warfare [13].
0e Gremilins can defeat the enemy by suppressing missile
defense system, cutting off communication, and attacking
the enemy’s data network based on a large amount of UAVs.
In 2016, China Electronics Technology Corporation (CETC)
firstly established Co-UAVs test prototype in China and
verified the cooperative principle of 67 UAVs. In 2017, 119
fixed-wing UAVs’ flight test was completed by CETC [14].

Both the theoretical and practical research studies in-
dicate that the Co-UAVs have become the winning force of
battlefield, which has the ability to change the game rules in
the future [15]. However, the former research mainly focuses
on the preplanned strategies, whichmeans the ground attack
strategy is preestablished before the UAVs arrive in the
battlefield. It is very hard to preplan all the scenarios ex-
haustively, for the battlefield is unknown (or partially un-
known) in advance.

Here, a human cooperation inspired approach of Co-
UAVs is presented. We first take an explanation to goal-ori-
ented cooperation of humans, especially the strategy making
based on vision sharing. 0en, a human-like model called
parallel multiview splicing on clouds (PMVSC) which in-
corporates these biobehavioral-science insights in a structured

cooperative system of UAVs. In addition to the development of
PMVSC, we applied the model to a variety of ground attack
tasks for multitargets that required mutual cooperation of
UAVs. Finally, PMVSC is experimented in a real scenario (in
which there are two distinct kinds objects to test the precise
processing performance of Co-UAVs for multitargets) based
on the experimental multi-UAVs platform.

2. Goal-Oriented Cooperation of Humans
Based on Vision Sharing

0e cooperation of humans (CoH) has been illustrated by social
psychologist Lewin et al. [16, 17]. He pointed out that humans’
cooperation is a complex group behavior (B) which is affected
by internal individuals (I) and external environment (E):

B � f(I,E), (1)

where B � [B1, B2, . . . , Bn]Τ represents the behavior set of
individuals and n is the total amount of individuals in group.
I � [I1, I2, . . . , In]T is the internal conditions and charac-
teristics of individuals, which consists of various physio-
logical and psychological factors, such as physiological
needs, physiological characteristics, ability, and personality.
E � [E1, E2, . . . , En]T is the external environment around
every individual.

0e Lewin CoH model reveals the general principles of
human behavior to some extent. However, it is a passive
cooperation model with no clear goals. Goal-oriented be-
havior is the process of seeking to achieve general goals of
group. In a cooperative mission, every individual has his
own task; they work independently as well as parallel to fulfill
the general goal. So, equation (1) can be revised as follows:

B � f(I,E,G), (2)

where G � [G1, G2, . . . , Gn]T represents the group goals,
which is composed with each individual goal.

Take a typical scenario, as shown in Figure 1, for ex-
ample. 0e general goal is to find all the objects (the red
circle in Figure 1) in the environment, but there are obstacles
blocking the sight. Each individual can only see local objects
and environment (the translucent vision). 0ey share their
visions to get the overall environment so as to consult to-
gether to get a proper objects assignment.

3. Goal-Oriented Cooperation Mechanism
Based on Vision Sharing

3.1. Outline of Parallel Multiview Splicing on Clouds. A
graphical representation of our proposed architecture is
given in Figure 2, which proposes that perceiving, cognizing,
and assigning targets upon UAVs’ cooperation system in
environment is like in the case of goal-oriented cooperation
of humans based on vision sharing, and each individual is
responsible for specific target, together to fulfill the overall
goal.

In PMVSC, the targets (including the true and the false)
are firstly perceived by UAVs and each UAV can only know
the targets in its own field of vision (FoV). 0ere are several
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UAVs over the target environment, detecting the targets by
onboard cameras.0ough an UAV can get local information
through the perceive module, it cannot remove repeated
targets in group. Each UAV uploads its perceived in-
formation in FoV to clouds through the vision sharing
module. 0e vision sharing module preprocesses the de-
tected environment information of respective UAVs, and
then the separated FoV are combined to make a full and
detailed environment in a single map. Next, the entire map is
transferred to the cognize module to distinguish whether the
targets are true or false. 0e valuable and true targets are
necessary to be attacked, while disguised and false targets
not. Finally, the information of true targets is delivered to the
next module, which is responsible for task assignment and
path planning.

For the PMVSC architecture, to achieve such complicate
processes, a number of components are required to expli-
cate, which are described in the following sections together
with mathematical algorithms derivation.

3.2. )e Components and Algorithms of PMVSC.
Supposing there are N UAVs to perform the attack task. For
the kth UAV in group, the image perceived by the camera is
Ik(x, y), where (x, y) is the position in direction of x- and y-
axis in the perceived image. In the perceived module, the
colorful image should be preprocessed to make it more
convenient for subsequent processing.

0e original image Ik from camera is in the red, green, and
blue model (RGB-model); each color appears in the primary
spectral components of red, green, and blue color. 0e model
is based on the Cartesian coordinate system. 0e RGB-model
has advantages in observation and application. However, as
pointed out by Ali et al. [18], the RGB-model has two inferiors
compared to the hue, saturation, and illumination model
(HSI-model): (a) the three components are used to describe
the image together, resulting in a lot of unnecessary in-
formation among the components which will increase the
calculation. (b) 0e change of Euclidean distance between
point and point in RGB space is not proportionate to the
change of actual color. When color separation is carried out, it
is easy to make false separation, omit useful information, or
mix useless information with useful information.

Figure 3 shows the HSI cylindrical color space model,
where fh, fs, and fi represent the value of hue, saturation,
and illumination, respectively:

fh � arccos
1/2 fr − fg􏼐 􏼑 + fr − fb( 􏼁􏽨 􏽩

fr − fg􏼐 􏼑
2

+ fr − fg􏼐 􏼑 fg − fb􏼐 􏼑􏼔 􏼕
1/2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

fs � 1 −
3

fr + fg + fb
min fr, fg, fb􏼐 􏼑􏽨 􏽩,

fi �
1
3

fr + fg + fb􏼐 􏼑,

(3)

where fr, fg, and fb represent the normalized value of red,
green, and blue color in the image.

0e perceive module functions on converting RGB to
HSI. In HSI-model, the image features are obvious in its
space. After converting RGB space to HSI space, the con-
nection of each information structure is more compact, each
component is more independent of each other, and the loss
of color information is less, which lays a good foundation for
segmentation and target recognition.

After transfer RGB to HSI, the information of Ik should
be uploaded to the vision sharing module, which purposes
on information normalization and image invariance, which
is shown in Figure 4.

In image processing, the moment invariant feature can
reflect shape information of the image, and it has the ability
of translation invariance and scalability invariance [19]. For
an obtained image Ik(x, y), define its (p + q)-order origin
moment as follows:
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Figure 2: Outline of parallel multiview splicing on clouds.

Figure 1: A typical scenario of humans’ cooperation.

Complexity 3



m
k
pq � 􏽘
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y�1
􏽘

Nk

x�1
x

p
y

q
Ik(x, y), (4)

where Mk and Nk represents the maximum row and column
scale of image Ik(x, y) and (x, y) is the position in direction
of x- and y-axis in Ik(x, y), p, q ∈ 0, 1, 2, . . .{ }.

However, the origin moment mk
pq responds to changes in

Ik(x, y). To achieve the invariance of translation and scal-
ability, the mk

pq is improved to (p + q)-order central
moment:

μk
pq � 􏽘

Mk

row�1
􏽘

Nk

col�1
(x − x)

p
(y − y)

q
Ik(x, y), (5)

where x and y represent the centroid position of the image,
and they can be calculated by the following equation:

x �
􏽐x􏽐yxIk(x, y)

􏽐x􏽐yIk(x, y)
,

y �
􏽐x􏽐yyIk(x, y)

􏽐x􏽐yIk(x, y)
.

(6)

Because the μk
pq can only keep the translation invariance,

so normalized central moment ηk
pq is defined to obtain the

ability of scalability invariance:

ηk
pq �

μpq

μ(p+q)/2
00

�
􏽐

Mk

row�1􏽐
Nk

col�1(x − x)p(y − y)qIk(x, y)

􏽐
Mk

row�1􏽐
Nk

col�1Ik(x, y)􏽨 􏽩
(p+q)/2 .

(7)

In a cognize module, as shown in Figure 5 , the main
functions are rotation invariance, image mosaic, and targets
classification.

From [20], we can infer that the rotation invariance can
be obtained by the set of equations (8) based on normalized
central distance:
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(8)

To the images Ik(x, y) and Il(x, y), as shown in Figure 6,
the crucial procedure of image mosaic is to find the most
similar region in both and to montage the two images based
on the common region. Supposing the test region is a square
with length Ltr, the similarity between two images is defined
as sim[(IkIl), Ltr]. 0en, the image mosaic can be fulfilled by
calculating the minimum value:

Sim Ik, Il( 􏼁, Ltr􏼂 􏼃 � 􏽘

Ltr

i�1
􏽘

Ltr

j�1
f Ik xa+i, yb+j􏼐 􏼑, Ltr􏼐 􏼑􏽨

�����

− f Ik xc+i, yd+j􏼐 􏼑, Ltr􏼐 􏼑􏽩
�����

� 􏽘

Ltr

i�1
􏽘

Ltr

j�1
Ik xa+i, yb+j􏼐 􏼑􏼐 􏼑 − Ik xc+i, yd+j􏼐 􏼑􏽨 􏽩

����������

− 􏽘

Ltr

i�1
􏽘

Ltr

j�1

Ik xa+i, yb+j􏼐 􏼑􏼐 􏼑 − Ik xc+i, yd+j􏼐 􏼑􏽨 􏽩
2

Ltr

����������
.

(9)
Once the image ismosaicked ready, all the detected targets

are combined in a whole image WI(x, y). 0en, the targets
should be classified to find out the true targets to attack. For
the accurate recognition of multitargets, feature extraction
and feature classification are the key issues. True and false
targets are very similar, and even the distortion of real targets
in the process of recognition will lead to recognition errors. A
cognitive-based intelligent recognition method is used in this
paper to classify target features with similarity constraints to
achieve high accuracy of recognition.

Assume there are N targets in WI(x, y). For the ith and
jth targets TGi(xi, yi) and TGj(xj, yj), a matrix feature
space SV ∈ RN×N can be introduced to express the similarity
between TGi and TGj:

S
ij
v �

TGT
i TGj

TGi

����
���� TGja
�����

�����
, if TGi is similar to TGj,

0, else.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

0en, the problem of feature classification and recog-
nition for true and false targets can be transformed into the
problem of similarity constraints on feature vector
TG � TG1,TG2, . . . ,TGN􏼈 􏼉 ⊂WI. To classify the targets
with similar features, that is to minimize the similarity of the
same kind of targets equation (11) shows

min
TG

SV − TGTTG
����

����F
. (11)

Since equation (11) is an optimization problem of ma-
trices, it is necessary to transform it into a singular value
matrix in order to obtain the optimal solution. Let the
singular values of matrix SV be

SV � P 􏽘 P
T
, (12)

where P is the transformation matrix and 􏽐 is the singular
value matrix of N × N.

Assuming that 􏽐k is a diagonal matrix composed of the
first 􏽐k singular values of matrix K and SV is a left singular
value vector corresponding to P•k, there is a definite solution
of min

TG
‖SV − TGTTG‖F:

Uk � 􏽘
1/2

k

P
T
•k. (13)

For any orthogonal matrix T, to verify that Ik � Uk · T is
still the solution of min

TG
‖SV − TGTTG‖F problem.0erefore,

the problem of the original objective function can be re-
written as follows:

min
TG,T

UkT
T − TG

����
����F

,

s.t. TTT � I.

⎧⎪⎨

⎪⎩
(14)

IfUk is used as the input layer and TG as the output layer
of the network, the problem can be used as the deep confidence
network model to solve, which is similar to the energy function
of deep confidence networks [21]. Take the ui ∈ Uk of each
network input layer as a visible variable and TGI ∈ TG as a
hidden variable, and the energy function can be defined by
using the Gauss-constrained Boltzmann machine model as
equation (15) in order to classify the feature data reasonably:

E(u, TG; θ) � 􏽘
D

i�1

ui − di( 􏼁

2σ2i
− 􏽘

D

i�1
􏽘

M

j�1
TijTGj

ui

σi

− 􏽘
M

j�1
cjTGj,

(15)

where θ � T, d, c, σ{ } are themodel parameters and D and M

represent the number of visible and hidden units in the
network, respectively.

By defining the range of value for model similarity
constraint parameter σ, the similarity of data eigenvalue
classification can be changed. 0at is to say, it achieves the
cognitive recognition characteristics of similar targets, and
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finally it can distinguish true targets TGF and false targets
TGF fromWI(x, y), which is shown in Figure 7. For a target
TGj, the feature point is Sj

v. Supposing the feature points of
samples are SF and ST. From equation (12), if
QSj

vQ
T � PSFPT, TGj belongs to the false target, or it is true

target.
In the last process, the true target assignment of Co-

UAVs is studied. Although many intelligent methods have
been used to study multiagent cooperative problems [22–
26], especially for the unpredictable results of each UAV’s
behavior in target assignment, it will affect the imple-
mentation of all strategies of subsequent UAVs. However,
these methods are too subjective, and they are highly
coupled with real-time tasks allocation process. It is nec-
essary to introduce some more objective and dynamic
methods for targets assignment. In this paper, the Bayesian
network is introduced into UAV target assignment task
modeling to solve the dynamic adjustment and real-time
strategy in target assignment.

0e Bayesian network is a directed acyclic graph with
probability annotations, which can be used to reveal learning
and statistical inference functions for prediction, causal
analysis, etc. For multiple UAVs’ target assignment task in
this paper, its Bayesian network can be expressed as follows:

B � 〈G, P〉, (16)

where G � 〈U, S, A〉 is a directed acyclic graph,
U � u1, u2, u3, . . . , uN􏼈 􏼉 is a member of Co-UAVs partici-
pating in the mission, S is a set of arcs of graph G, and P is a
probability annotation of graph G, which is shown in
Figure 8.

For any UAV member uk, each element in P represents
the conditional probability density of the target node. 0e
rule of probability density is as follows:

P(S) � P ST1, ST2, ST3, . . . , STm( 􏼁

� 􏽙
m

i�1
P STm

􏼌􏼌􏼌􏼌 ST1, ST2, . . . , STm− 1􏼐 􏼑,
(17)

where the calculation of probabilistic P(s) needs 2m− 1

probabilistic values, and the amount of calculation is very
huge.

0erefore, the introduction of variable independence
hypothesis in Bayesian networks can greatly reduce the prior
probability of the definition of Bayesian networks. For the
probability density rule constructed in this paper, we can
find a minimum subset Su ⊆ ST1, ST2, ST3, . . . , STm− 1􏼈 􏼉, for

any target task node STm in the network structure, which is
not independent of STm condition:

P STm

􏼌􏼌􏼌􏼌 ST1, ST2, . . . , STm− 1􏼐 􏼑 � P STm

􏼌􏼌􏼌􏼌 Su􏼐 􏼑, (18)

where Su is the parent node set of STm in graph G � 〈U, S, A〉.
In this way, the probability distribution of mission node STm

allocated to UAV uk can be determined uniquely:

Puk
STm( 􏼁 � 􏽙

m

i�1
p STm

􏼌􏼌􏼌􏼌 Su􏼐 􏼑. (19)

Finally, the else true targets can be assigned by the other
Co-UAVs, such as UAV member ul:

Pul
STn( 􏼁 � 􏽙

m

i�1
p STn

􏼌􏼌􏼌􏼌 Su􏼐 􏼑, STn ≠ STm. (20)

4. Experiments

4.1. )e Experimental Platform of UAVs. 0e experiments
have been conducted on the Co-UAVs with adaptive
camera, flight controller, algorithmic solver, and data
transmitter. Figure 9 shows a single UAV platform, which
perceives outside environment from its onboard adaptive
resolution camera embedded on the 3-DOF pan-tilt
platform, inside real-time flight status from inner sensors
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T

T

T

T

T

T

u3

u2

u1
ST1

ST3

ST2 ST5 ST7

ST4 ST6

ST8

ST9

Figure 8: Schematic of targets assignment based on the Bayesian
network.
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Figure 6: Schematic of optimal image mosaic.
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Figure 7: Schematic of targets classification.
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integrated in the PIX-4 flight controller. 0en, the in-
formation of outside environment and inside status are
transmitted to airborne Intel computer stick, which
functions on algorithm computing, target recognizing,
and instruction generating. Finally, the generated in-
structions are converted to motor commands via the PIX-
4 controller.

0e Co-UAVs’ experimental platform is shown in
Figure 10. 0e mobile screen can read all data from
onboard Intel computer stick and change the algorithm
parameters. 0e ground station functions on obtaining
real-time information from flying UAVs, including image
features, flight status, and cooperative information. After
calculation, the ground station sends control commands to
each UAV.

4.2. Image Mosaic. Figures 11(a)–11(d) show 4 images
captured by cameras onboard by Co-UAVs, which are
transferred to clouds (ground station).

0e combined image of the whole environment can be
obtained by applying the image mosaic algorithm proposed
in this paper. Define the test region is a square with length
Ltr � 80 pixels and the threshold value of image mosaic
sim[(Ik, Ii), Ltr] is 0.85. 0e result of WI is shown in
Figure 12.

In Figure 12, the four images are montaged together.
Also, the information of the whole environment can be
obtained through the image mosaic. Result shows the
proposed method can find similar region between images,
and montage the four images based on the common region,
indicating the superiority and feasibility of PMVSC.

Adaptive
resolution

camera

Intel
computer stick

PIX-4 flight
controllerSE-100 GPS

3-DOF
pan-tilt

platform

2.4GHz data
transmission link

Figure 9: A single UAV experimental platform.

Mobile screen

(a)

Ground station

(b)

Figure 10: Co-UAVs’ experimental platform.
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4.3. Targets’ Recognition. Setting S � Sr ∪ SF � ST1, ST2, ST3,􏼈

SF1, SF2, SF3} and U � u1, u2, u3{ }, that is, there are three true
targets and three false targets in the targets’ area and three
UAVs are involved in the search and attack mission. Set model
parameters T � IN×N as unit matrix and d � 0.2, c � 0.4, and
σ � 0.15 as related constraints for feature constraints of targets.

0e standard true and false targets used for training are
shown in Figure 13, and the test results of each UAV in actual
flight are shown in Figure 14. Even if the target has a large
distortion (such as dust cover, edge deformation, and random
influence of the direction of true or false identification), the
proposed method can extract feature points to calculate sim-
ilarity and classify them and recognize them accurately.

(a) (b)

(c) (d)

Figure 11: 0e 4 images captured by cameras onboard by Co-UAVs. (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4.

Figure 12: Image mosaic of four images from Co-UAVs.
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Figure 13: Standard true and false targets for training (unit: mm).
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In order to describe the target recognition process of this
algorithm, a real target (Figure 14(a)) and a false target
(Figure 14(f )) are selected to elaborate, and the pictures in
the process of processing are presented as shown in Fig-
ures 15 and 16, respectively.

0e airborne computer first transforms the acquired
image into HSI color space, which can be recognized by
the machine. After eliminating the useless information, it
extracts the eigenvalues of the transformed image.

However, in the original eigenvalue space, the eigenvalues
are almost full of the whole eigenvalue space, so it is
impossible to classify the features to distinguish the target
type. 0erefore, according to the algorithm constructed in
this paper, the feature space is transformed. In the
transformed feature space, the eigenvalues have obvious
distribution characteristics and can be directly classified.
Figures 15(d) and 16(d) are identified as different types of
target categories, where Figure 15(d) belongs to T target

T similarity: 0.91 
F similarity: 0.14

(a)

T similarity: 0.24
F similarity: 0.82

(b)

T similarity: 0.71
F similarity: 0.30

(c)

T similarity: 0.32
F similarity: 0.64

(d)

T similarity: 0.81
F similarity: 0.21

(e)

T similarity: 0.17
F similarity: 0.86

(f )

Figure 14: Accurate recognition of multiple targets.
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(d) (c)

(b)(a)

Figure 15: 0e true target process.

(a) (b)

(d) (c)

Figure 16: 0e false target process.
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and Figure 15(d) belongs to F target. Finally, the true and
false targets are identified in the new feature space and the
task of accurate multitarget group recognition is
completed.

4.4.Targets’Assignment. Assuming the UAV has detected all
the true targets, it is necessary to assign the task of each UAV
so that the Co-UAVs can cooperate to fulfill the task with the
minimum cost. For the lth member of Co-UAVs u1, the
probability of attacking the true target STi is

P STi( 􏼁 � 􏽙
3

i�1
p STi

􏼌􏼌􏼌􏼌 ST − STi􏼈 􏼉􏼐 􏼑. (21)

Figure 17 is a picture of cooperative attack of multiple
UAVs over the targets. 0ree UAVs will attack its corre-
sponding targets, and their attack probability to respective
targets is 0.83, 0.82, and 0.86. All P(STi) are labelled in
Figure 11, and the optimal task allocation decision among all
UAVs can be obtained by choosing the maximal probability
value. Based on the UAV experimental platform, the rele-
vant target assignment algorithms in this paper are tested.
Not limited to the derivation of theoretical simulation, this
paper applies the algorithm to practice and completely re-
produces the feasibility of the algorithm from the actual Co-
UAVs’ platform.

4.5.ExperimentalResults onCo-UAVs. In order to verify the
effectiveness and feasibility of the proposed mechanism,
PMVSC is tested in a real environment. In the experiment,
3 Co-UAVs were used to cluster, search, identify, and
locate the true and false targets (circular target, diameter
7m, and target recognition area 2m) in the target area and
then attack the target. 0e area is about 1000m× 250 m, and
the flight area includes the take-off and landing area (the
rectangular area of the take-off and landing area is
100m× 50 m) and the target area (the rectangular area of
200m× 300 m). Six targets were set in the target area. During
each attach task, three targets are randomly selected and placed
a white sign “T” in the target center to represent the true target.
Similarly, the other three targets use “F” sign to represent the
false target.

0e schematic illustration of the actual experimental
environment is shown in Figure 18 (the experimental area is
the irregular area shown in the figure due to the limitation of
the actual environment), which contains hidden targets
(grey), real targets, and false targets (red).

Figure 19 shows a practical area of three Co-UAVs in the
aerial above targets’ environment. 0ere are multiple targets
needing recognition. Each UAV can perceive outside world
from onboard camera, and the perceived information is
transferred to clouds (which is shown in Figure 18, the green
area) to merge independent and partial images to a whole
image and to distinguish the true targets. Finally, the true

targets are assigned to respective UAVs to attack, which is
shown in Figures 20(a) and 20(b). In Figure 20(a), the
armed UAV (which carries a white sandbag as ammuni-
tion) gets attack command, and then flies to the assigned
target. Also, Figure 20(b) is the result after attack, from
which we can see the target is attacked precisely, indicating
the feasibility and validity of the proposed method based on
Co-UAVs.

0.83 0.53
0.64

0.67
0.67

0.82
0.86

0.41

0.56

Figure 17: Cooperative attack of multiple UAVs over the targets.

37
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20
0m

300m

1500m

F

F

F
T

T T

Target zone Take-off and 
landing zone

Ground station

Figure 18: Schematic illustration of the actual experimental
environment.

Figure 19: 0ree Co-UAVs’ flight experiment.
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5. Conclusions

Aiming at the problem of attacking multitargets, this paper
proposes a strategy of multi-UAVs’ precise target recogni-
tion, attack, and task assignment based on PMVSC. Fol-
lowing are some concluding remarks.

(a) A humanoid mechanism and algorithm is built re-
ferring to humans’ vision sharing model. 0e pro-
posed PMVSC not only performs well in simulations
but also in experimental practices.

(b) A UAV platform is built, which consists of onboard
camera, 3-DOF pan-tilt, PIX flight controller, and
computer stick. 0e Co-UAVs are based on mul-
tiple UAVs and ground station. All the proposed
algorithms (including vision sharing, target rec-
ognition, and target assignment) are tested on Co-
UAVs to confirm the proposed method is practi-
cally feasible.

(c) 0e proposed constructive mechanism is expected to
shed new insight on our understanding of human
vision sharing, which can directly reflect in the
design of human-like algorithms.

Still, there are several issues in need of further study.

(a) 0e cooperation among dozens of UAVs: though the
cooperation and formation of UAVs have been
studied, the proposedmethod is applied in only three
UAVs; thus, how to make it general and be possible
implemented in more UAVs is an important work.

(b) Moving targets attack: in this paper, the targets are
placed on ground, which means they are static.

Compared with moving targets, static targets are
much harder to attack. Research on dynamic targets
needs further study.
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�is paper proposes the event-triggered strategy (ETS) for multiple neural networks (NNs) with parameter uncertainty and time
delay. By establishing event-triggeredmechanism and usingmatrix inequality techniques, several su�cient criteria are obtained to
ensure global robust exponential synchronization of coupling NNs. In particular, the coupling matrix need not be the Laplace
matrix in this paper. In addition, the lower bounds of sampling time intervals are also found by the established event-triggered
mechanism. Eventually, three numerical examples are o�ered to illustrate the obtained results.

1. Introduction

Multisystem network is a complex dynamical network,
which has received great attraction due to its many appli-
cations in various �elds, such as secure communications and
biological systems. �e dynamical characteristics of multi-
system networks have been paid more and more attention in
the �elds of science and engineering (see [1–4]). As we know,
synchronization of a coupling system means that its all
subsystems produce common behavior under di�erent
initial values. �e coupling scheme describing the in-
teraction rules between subsystems plays an important role
in ensuring the synchronization. In particular, the syn-
chronization of multisystem networks has become a hotpot
of nonlinear scienti�c research because the synchronization
of multisystem networks can better describe many observed
natural phenomena and can create ordered multisystem
networks. As a kind of control, coupling is the key to ensure
the synchronization of complex dynamical networks; hence,
several coupling schemes are proposed to realize the syn-
chronization. However, most of the existing works require
that the coupling matrix is always the Laplace matrix; that is,
the row sums of the coupling matrix all are zero and the
nondiagonal elements are nonnegative, which greatly re-
strict us to design a good performance coupling controller.

In fact, we notice that there are some non-Laplacian cou-
pling in complex dynamical networks, so we can try to
achieve the synchronization of multisystem networks by
constructing non-Laplacian coupling matrix. In addition, in
recent decades, NNs have become a hot research topic
because of its rich content and wide application; therefore,
there are many results in the research of NNs, such as in
[1, 5–12]. �e authors in [1] proposed a new ETS to achieve
the synchronization of multiple NNs (MNNs). �e dy-
namical characteristics of nonautonomous fractional-order
delay NNs were studied in [5]. Wu and Zeng [9] derived two
anti-synchronization algorithms to realize exponential anti-
synchronization of memristive recurrent NNs. In [10], some
results were established to ensure the Lagrange stability of
NNs with memristive synapses. Wu and Zeng [11] discussed
a class of memristive NNs, and several su�cient criteria were
established for exponential stabilization by using matrix
inequality techniques. Wu et al. [12] proposed a novel and
e�cacious method to study the periodic NNs, and some new
results for the periodic NNs were obtained.�erefore, it is an
interesting and far-reaching research topic to study the
synchronization of MNNs by constructing a proper non-
Laplacian coupling matrix.

Parametric uncertainty arises from a partial un-
derstanding of mathematical models, for instance, empirical
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quantities and constitutive laws (see [13–22]). 0e un-
certainty of parameters must be considered in actual system
because the parameters of the model in the process of in-
dustrial control are often uncertain. It is fortunate that
uncertain parameters have been considered in many models
in order to describe practical problems more accurately. In
[13], the dynamical characteristics of stochastic nonlinear
systems with parametric uncertainty were concerned.
Maharajan et al. [14] investigated the problem of enhanced
results on robust finite-time passivity for uncertain discrete-
time Markovian jumping BAM delayed NNs. 0e authors in
[17] provided several novel delay-dependent stability criteria
to ensure robust stability of uncertain stochastic systems.
Huang et al. [20] investigated robust state estimation of
uncertain neural networks by designing robust state estimator
and using new bounding technique. Zhu et al. [22] discussed
the stability of uncertain neutral systems, and some new
criteria were provided to guarantee the stability of the model.
Moreover, fractional-order system is a charming research
field, which describes the real world more accurately than
integer-order system. Recently, Zhang [21] studied uncertain
fractional-order system and its application. 0e uncertain
parameters of the above models are required to be norm-
bounded; it is a common way to deal with these uncertain
parameters by using inequality techniques. With the mature
of the technology, some problems in MNNs have been well
solved; however, it is still a great challenge to design a
feedback controller with good performance when we analyze
multisystem networks.0ere are many papers about the topic
of parametric uncertainty, but the issue about trusted control
in theMNNs with uncertain parameters still has a long way to
go andmuch further work is worth studying. In addition, time
delay is often inevitable in practical systems, which may lead
to instability of the system; in other words, time delay is the
important reason for instability of the model. Although pa-
rameter uncertainty and time delay bring difficulties to the
theoretical analysis of dynamical characteristics of system, in
practical application, the analysis of model is often un-
reasonable without considering uncertain parameter and time
delay. Hence, theoretical knowledge and practical experience
urge us to study the dynamics problems of MNNs with
parameter uncertainty and time delay.

Event-triggeredmechanism is a very important sampling
mechanism, that is, the emergence of certain events rely on
the state of the system and this is also the difference between
event-triggered feedback control and the traditional sam-
pling mechanism. Because continuous-time control requires
the continuous information, it is expensive and unrealistic in
the real world. Unlike continuous-time control, event-trig-
gered mechanism is a discontinuous-time control, which only
requires the local communication data. Considering the
sampling period, the sampling data control scheme usually
adopts zero-order hold to keep the last sampling system state
and control signal which is sent to the next event. In event-
triggered mechanism, the sampling will not start and the
controller will not be updated, unless its size reaches the
specified threshold; therefore, the greatest advantage of event-
triggered mechanism is to reduce communication data.
Furthermore, event-triggered mechanism has been widely

studied due to its effectiveness in practical systems, for ex-
ample, [23–26] and references therein. Dolk and Heemels
[23] investigated a networked control system subject to event-
triggered control and its application to packet losses. In [24], a
new decentralized event-triggered item for distributed net-
worked systems was proposed to reduce the waste of network
resources. 0e event-triggered rule was proposed to solve the
problem of excessive use of communication resources in [25].
0e authors in [26] studied neural networks by the proposed
event-triggered rule, and the rule effectively solved a large
number of computational problems. It is not difficult to find
that event-triggeredmechanism is very useful andmeaningful
samplingmechanism becausemany practical problems can be
solved via ETS, but there are few research results on the
combination of event-triggered mechanism and MNNs.

Based on the above discussion, the synchronization of
MNNs with parameter uncertainty and time delay is studied
and emphasized. By establishing the event-triggered
mechanism, this paper derives several sufficient criteria to
guarantee the synchronization of the systems; it shows that
these results are different from the previous ones. Fur-
thermore, the lower bounds of sampling time intervals are
also obtained; that is, if the triggering time tk is known, we
can predict the next triggering time tk+1. Roughly speaking,
this paper has three highlights: (1) Most existing works on
multisystem networks require that the coupling matrix is
always the Laplace matrix, in which row sums of coupling
matrix all are zero and nondiagonal elements are non-
negative. Because of the particularity of Laplacian matrix,
the design of coupling controller is greatly limited. In fact,
we have found some non-Laplacian coupling in coupled
dynamic networks. In this paper, the coupling matrix need
not be the Laplace matrix; that is to say, row sums of
coupling matrix can be nonzero constant and nondiagonal
elements are arbitrary. (2) Some criteria are proposed to
ensure the synchronization of MNNs with parameter un-
certainty and time delay by establishing event-triggered
mechanism and using matrix inequality techniques. Com-
pared with the most of the existing papers, the results ob-
tained are more simple and convenient in this paper. (3) We
can find the lower bounds of the sampling time intervals by
the established event-triggeredmechanism, and then, we can
know that the Zeno behavior will not happen.

0e remaining part of this paper is designed as follows.
Section 2 introduces the model of MNNs with parameter
uncertainty and time delay and some preliminary knowl-
edge. Section 3 gives several sufficient criteria to achieve the
global robust exponential synchronization, and the lower
bounds of the sampling time intervals are also found. Section
4 provides three numerical examples to demonstrate the
obtained results. In the end, Section 5 summarizes the pa-
per’s relevant conclusion.

2. Preliminaries and Problem Formulation

0roughout the paper, Rn represents the n-dimensional
Euclidean space. I stands for an identity matrix with proper
dimensionality. Let Cτ ≔ C([− τ, 0], Rn) be a Banach space
that composed of all the continuous functions φ : [− τ, 0] to
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Rn. ‖·‖2 and ‖·‖inf stand for 2-norm and inf-norm, re-
spectively, and let us write ‖·‖2 in terms of ‖·‖ for the sake of
simplicity. For a matrix A � (aij)n×n, amax � max |aij|􏽮 􏽯, and
amin � min |aij|􏽮 􏽯; furthermore,AT stands for its transpositive,
and A> 0, A< 0, A≥ 0, and A≤ 0 mean that A are positive
definite, negative definite, positive semidefinite, and negative
semidefinite, respectively. diag ·{ } is representative of diagonal
matrix. ϕ refers to empty set. If no otherwise specified, ma-
trices are supposed to have compatible dimensions.

Consider a group of r NNs with parameter uncertainty
and time delay, and the model of kth NNs with parameter
uncertainty and time delay is given as follows:

dzk(t)

dt
� − (D + ΔD)zk(t) +(B + ΔB)f zk(t)( 􏼁

+(C + ΔC)g zk(t − τ)( 􏼁 + J(t) + uk(t),

(1)

where k ∈I � 1, 2, . . . , r{ }; t≥ 0; zk(t) �(zk1(t), zk2(t), . . . ,

zkn(t))T ∈ Rn refers to the state vector; D � diag
d1, d2, . . . , dn􏼈 􏼉 is the real diagonal positive-definite matrix
standing for the neuron self-inhibitions; J(t) ∈ Rn is the
input or bias; τ > 0 represents the transmission delay;
f(zk(t)) � (f1(zk1(t)), f2(zk2(t)), . . . , fn(zkn(t)))T and
g(zk(t − τ)) � (g1(zk1(t − τ)), g2 (zk2(t − τ)), . . . , gn(zkn

(t − τ)))T are the neuron activation functions; B � (bkm)n×n

is the weight matrix and C � (ckm)n×n is the delay weight
matrix; ΔB, ΔC, and ΔD are the norm-bounded uncertainty
terms; and uk(t) ∈ Rn denotes the control input.

0e distributed event-triggered controller is given below:

uk(t) � λ 􏽘
r

m�1
ykmzm tms( 􏼁, t ∈ tks, tk(s+1)􏽨 􏼑, (2)

for k ∈ I and s≥ 1, where tks􏼈 􏼉 refers to the sampling time
sequence, λ> 0 represents coupling gain, and K � (ykm)r×r

stands for the coupling matrix such that

􏽘

r

m�1
ykm � 9 ∈ R. (3)

Next, we define the following distributed event-triggered
function:

Hks(t) � zk(t) − zk tks( 􏼁
����

���� − αk 􏽘
m∈Ik

zk tms( 􏼁 − zk tks( 􏼁
����

����,

(4)

and the sampling time sequence tks􏼈 􏼉 satisfies ETS:

tk(s+1) � inf t> tks, Hks > 0􏼈 􏼉, (5)

for k ∈ I and s≥ 1, where αk > 0 refers to the control pa-
rameter and Ik ⊆I with Ik � m, m≠ k, ykm ≠ 0􏼈 􏼉.

Remark 1. Let Φkm � αk􏽐m∈Ik
‖zk(tms) − zk(tks)‖ be the sth

threshold on the kth neuron. It is not difficult to find that
Φkm determines sampling time of the kth neuron, andΦkm is
closely related to the control parameter αk and subsetIk. In
particular, if αk � 0 or Ik � ϕ, the kth neuron will have
sampling time at any t≥ t0; that is to say, the Zeno behavior
does happen when αk � 0 orIk � ϕ. It should be noted that

the transmission event is triggered and the controller is
updated when the measurement error ‖zk(t) − zk(tks)‖

exceeds the threshold Φkm in the event-triggered controller;
unlike the event-triggered controller, the impulse controller
samples on the determined impulse time sequence tks􏼈 􏼉.
0us, we can know that the sampling time sequence tks􏼈 􏼉

satisfies tk(s+1) � inf t> tks, Hks > 0􏼈 􏼉 in the event-triggered
controller, and the sampling time sequence tks􏼈 􏼉 is known in
the impulse controller.

0en, we can rewritte model (1) as follows:
dzk(t)

dt
� − (D + ΔD)zk(t) +(B + ΔB)f zk(t)( 􏼁

+(C + ΔC)g zk(t − τ)( 􏼁 + J(t)

+ λ 􏽘
r

m�1
ykmzm tms( 􏼁, t ∈ tks, tk(s+1)􏽨 􏼑.

(6)

0e initial conditions of model (6) are assumed to be

zk t0 + ϑ( 􏼁 � φk(ϑ), (7)

where φk ∈ Cτ , ϑ ∈ [− τ, 0], and k � 1, 2, . . . , n.
Let z(t, t0,φ) stands for the solution of model (6); in

order to avoid this paper being too long, we assume that
there exists a unique solution of system (6).

System (6) is called to be globally robustly exponentially
synchronized, namely, each subsystem in (6) can achieve
global robust exponential synchronization if there are
constants M≥ 1 and h> 0 satisfying

zk(t) − zm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Mmax
i,j∈I

φi − φj

�����

�����e
− h t− t0( ), (8)

for any t≥ 0 and k, m ∈ I, where h stands for convergence
rate.

For the sake of discussion, we give two basic
assumptions.

Assumption 1

ΔD � M1R1(t)N1,

ΔB � M2R2(t)N2,

ΔC � M3R3(t)N3,

(9)

where Mi and Ni (i � 1, 2, 3) are constant matrices with
proper dimensionality and Ri(t) are the unknown matrix
with RT

i (t)Ri(t)≤ I (i � 1, 2, 3).

Assumption 2. For any u, v ∈ R and k ∈ I, the activation
functionsfk(u) and gk(u) are all continuous in R and satisfy

0<
fk(u) − fk(v)

u − v
≤pk,

0<
gk(u) − gk(v)

u − v
≤ qk,

(10)

where pk > 0 and qk > 0 represent Lipschitz constants. Let
P � diag p2

1, p2
2, . . . , p2

n􏼈 􏼉 and Q � diag q21, q22, . . . , q2n􏼈 􏼉.
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Remark 2. Assumption 1 guarantees the boundedness of ΔB,
ΔC, and ΔD. Assumption 2 ensures the speciality of the
activation functions fk(u) and gk(u). 0e Lipschitz constants
pk > 0 and qk > 0 are dependent on the activation functions
fk(u) and gk(u) rather than fixed. Lipschitz continuity is a
smoother condition than uniform continuity; intuitively,
Lipschitz continuity restricts the speed of function change.
Furthermore, the slope of the function satisfying Lipschitz
condition must be less than a real number called Lipschitz
constant. In differential equation theory, Lipschitz condition is
a core condition in the existence and uniqueness theorem of
solutions under initial conditions.

Next, two important lemmas are introduced as follows.

Lemma 1 (see [19]). Let F, G, and S(t) be real matrices and
η> 0 is a constant; if ST(t)S(t)≤ I, then

F
T
S

T
(t)G

T
+ GS(t)F≤

1
η

F
T
F + ηGG

T
. (11)

Lemma 2 (see [18]). Let F, G, P, and Q(t) be real matrices; if
P> 0 and QT(t)Q(t)≤ I, then

(1) For scalar ξ > 0 and vectors z1 and z2 of proper
dimensionality

2z
T
1 F

T
Q(t)Gz2 ≤

1
ξ
z

T
1 F

T
Fz1 + ξz

T
2 G

T
Gz2. (12)

(2) For matrix P> 0 of suitable dimensions:

2z
T
1 z2 ≤ z

T
1 P

− 1
z1 + z

T
2 Pz2. (13)

3. Main Results

Let εkm(t) � zk(t) − zm(t) be the synchronization error and
μk(t) � zk(t) − zk(tks) be the measurement error for
t ∈ [tks, tk(s+1)). 0en, by establishing event-triggered
mechanism and using matrix inequality techniques, we
obtain several novel conditions to achieve global robust
exponential synchronization of system (6), and the lower
bounds of sampling time interval are also found.

Theorem 1. Under ETS (5), for model (6), if Assumptions 1
and 2 hold, η> 0 and ξi > 0 (i � 1, 2, . . . , 5) are constants,
αk > 0, andIk ≠ ϕ for k ∈ I, then inf s≥1 tk(s+1) − tks􏽮 􏽯> 0 for
any s≥ 1.

Proof. From μk(t) � zk(t) − zk(tks), we have
dμk(t)

dt
� − (D + ΔD)zk(t) +(B + ΔB)f zk(t)( 􏼁

+(C + ΔC)g zk(t − τ)( 􏼁 + uk(t), t ∈ tks, tk(s+1)􏽨 􏼑,

(14)

then

d μk(t)
����

����
2

dt
� 2μT

k (t)􏼂 − (D + ΔD)zk(t) +(B + ΔB)f zk(t)( 􏼁

+(C + ΔC)g zk(t − τ)( 􏼁 + uk(t)􏼃

� 2μT
k (t)(D + ΔD)zk tks( 􏼁 − 2μT

k (t)(D + ΔD)μk(t)

+ 2μT
k (t)(B + ΔB) f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃

+ 2μT
k (t)(C + ΔC) g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃

+ 2μT
k (t)uk(t) + 2μT

k (t)(B + ΔB)f zk tks( 􏼁( 􏼁

+ 2μT
k (t)(C + ΔC)g zk tks( 􏼁( 􏼁.

(15)

For each t ∈ [tks, tk(s+1)), there exists a 􏽥s ∈ [0, s] satis-
fying t − τ ∈ [tk􏽥s, tk(􏽥s+1)]; according to the event-triggered
function, for any t ∈ [tks, tk(s+1)), there exists a s ∈ [0, s]

satisfying

μk(t − τ)
����

����≤ αk 􏽘
m∈Ik

zm tms( 􏼁 − zk tks( 􏼁
����

����.
(16)

According to Lemmas 1 and 2, we get

2μT
k (t)ΔDzk tks( 􏼁 � 2μT

k (t)M1R1(t)N1zk tks( 􏼁

≤
1
ξ1
μT

k (t)M1M
T
1 μk(t)

+ ξ1z
T
k tks( 􏼁N

T
1 N1zk tks( 􏼁,

(17)

− 2μT
k (t)ΔDμk(t)≤ μT

k (t) ηM1M
T
1 +

1
η

N
T
1 N1􏼠 􏼡

· μk(t),

(18)

2μT
k (t)ΔB f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃

� 2μT
k (t)M2R2(t)N2 f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃

≤
1
ξ2
μT

k (t)M2M
T
2 μk(t) + ξ2 f zk(t)( 􏼁􏼂

− f zk tks( 􏼁( 􏼁􏼃
T
N

T
2 N2 f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃,

(19)

2μT
k (t)ΔC g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃

� 2μT
k (t)M3R3(t)N3 g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃

≤
1
ξ3
μT

k (t)M3M
T
3 μk(t) + ξ3􏼂g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼃

T

· N
T
3 N3 g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃,

(20)

2μT
k (t)ΔBf zk tks( 􏼁( 􏼁 � 2μT

k (t)M2R2(t)N2f zk tks( 􏼁( 􏼁

≤
1
ξ4
μT

k (t)M2M
T
2 μk(t) + ξ4f

T
zk tks( 􏼁( 􏼁

· N
T
2 N2f zk tks( 􏼁( 􏼁,

(21)
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2μT
k (t)ΔCg zk tks( 􏼁( 􏼁 � 2μT

k (t)M3R3(t)N3g zk tks( 􏼁( 􏼁

≤
1
ξ5
μT

k (t)M3M
T
3 μk(t) + ξ5g

T
zk tks( 􏼁( 􏼁

· N
T
3 N3g zk tks( 􏼁( 􏼁.

(22)

Combining (15)–(22), we obtain

dμk(t)
����

����
2

dt
≤ 2μT

k (t)Dzk tks( 􏼁 +
1
ξ1
μT

k (t)M1M
T
1 μk(t) + ξ1z

T
k tks( 􏼁N

T
1 N1zk tks( 􏼁 − 2μT

k (t)Dμk(t) + μT
k (t) ηM1M

T
1 +

1
η

N
T
1 N1􏼢 􏼣μT

k (t)

+ 2μT
k (t)B f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃 +

1
ξ2
μT

k (t)M2M
T
2 μk(t) + ξ2 f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃

T
N

T
2 N2 f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁􏼂 􏼃

+ 2μT
k (t)C g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃 +

1
ξ3
μT

k (t)M3M
T
3 μk(t) + ξ3 g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃

T
N

T
3 N3

· g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁􏼂 􏼃 + 2μT
k (t)uk(t) + 2μT

k (t)Bf zk tks( 􏼁( 􏼁 + 2μT
k (t)Cg zk tks( 􏼁( 􏼁 +

1
ξ4
μT

k (t)M2M
T
2 μk(t)

+ ξ4f
T

zk tks( 􏼁( 􏼁N
T
2 N2f zk tks( 􏼁( 􏼁 +

1
ξ5
μT

k (t)M3 · M
T
3 μk(t) + ξ5g

T
zk tks( 􏼁( 􏼁N

T
3 N3g zk tks( 􏼁( 􏼁

≤ 􏼢‖D‖ +
1
ξ1

M1M
T
1

����
���� − 2‖D‖ + η M1M

T
1

����
���� +

1
η

N
T
1 N1

����
���� + ‖B‖ +

1
ξ2

M2M
T
2

����
���� + ‖C‖ +

1
ξ3

M3M
T
3

����
���� + ‖B‖ +

1
ξ4

M2M
T
2

����
����

+ ‖C‖ +
1
ξ5

M3M
T
3

����
���� + 1􏼣 μk(t)

����
����
2

+ ‖D‖ + ξ1 N
T
1 N1

����
����􏽨 􏽩 zk tks( 􏼁

����
����
2

+ ‖B‖ + ξ2 N
T
2 N2

����
����􏽨 􏽩 f zk(t)( 􏼁 − f zk tks( 􏼁( 􏼁

����
����
2

+ ‖C‖ + ξ3 N
T
3 N3

����
����􏽨 􏽩 g zk(t − τ)( 􏼁 − g zk tks( 􏼁( 􏼁

����
����
2

+ ‖B‖ + ξ4 N
T
2 N2

����
����􏽨 􏽩 f zk tks( 􏼁( 􏼁

����
����
2

+ ‖C‖ + ξ5 N
T
3 N3

����
����􏽨 􏽩 g zk tks( 􏼁( 􏼁

����
����
2

+ μk(t)
����

����
2

≤ 􏼂− ‖D‖ + 2‖B‖ + 2‖C‖ +
1
ξ1

+ η􏼠 􏼡 M1M
T
1

����
���� +

1
η

N
T
1 N1

����
���� +

1
ξ2

+
1
ξ4

􏼠 􏼡 M2M
T
2

����
���� +

1
ξ3

+
1
ξ5

􏼠 􏼡 M3M
T
3

����
����

+ ‖B‖‖P‖ + ξ2 N
T
2 N2

����
����‖P‖ + 1􏼃 μk(t)

����
����
2

+ ‖C‖‖Q‖ + ξ3 N
T
3 N3

����
����‖Q‖􏽨 􏽩 · μk(t − τ)

����
����
2

+ ‖D‖ + ξ1 N
T
1 N1

����
����􏽨 􏽩 zk tks( 􏼁

����
����
2

+ ‖B‖ + ξ4 N
T
2 N2

����
����􏽨 􏽩 f zk tks( 􏼁( 􏼁

����
����
2

+ ‖C‖ + ξ5 N
T
3 N3

����
����􏽨 􏽩 g zk tks( 􏼁( 􏼁

����
����
2

+ uk(t)
����

����
2
.

(23)

0us,

d μk(t)
����

����
2

dt
≤Λ μk(t)

����
����
2

+Ωks,
(24)

where

Ωks � ‖C‖‖Q‖ + ξ3 N
T
3 N3

����
����‖Q‖􏽨 􏽩 αk 􏽘

m∈Ik

zm tms( 􏼁 − zk tks( 􏼁
����

����⎛⎝ ⎞⎠

2

+ ‖D‖ + ξ1 N
T
1 N1

����
����􏽨 􏽩 zk tks( 􏼁

����
����
2

M2M
T
2

����
���� + ‖B‖ + ξ4 N

T
2 N2

����
����􏽨 􏽩

· f zk tks( 􏼁( 􏼁
����

����
2

+ ‖C‖ + ξ5 N
T
3 N3

����
����􏽨 􏽩 g zk tks( 􏼁( 􏼁

����
����
2

+ λ 􏽘
r

m�1
ykmzm tms( 􏼁

���������

���������

2

,

(25)

and Λ> 0 such that

Λ ≥ − ‖D‖ + 2‖B‖ + 2‖C‖ +
1
ξ1

+ η􏼠 􏼡 M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ2

+
1
ξ4

􏼠 􏼡 M2M
T
2

����
���� +

1
ξ3

+
1
ξ5

􏼠 􏼡 M3M
T
3

����
����

+‖B‖‖P‖ + ξ2 N
T
2 N2

����
����‖P‖ + 1.

(26)

Since μk(tks) � 0, according to (24), we have

μk tk(s+1)􏼐 􏼑
�����

�����
2

+
Ωks

Λ
≤
Ωks

Λ
e
Λ tk(s+1)− tks( ). (27)

From ETS (5), we get

e
Λ tk(s+1) − tks( ) ≥ 1 +

Λ αk􏽐m∈Ik
zm tms( 􏼁 − zk tks( 􏼁

����
����􏼐 􏼑

2

Ωks

, (28)
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then

tk(s+1) − tks ≥
1
Λ
ln 1 +
Λ αk􏽐m∈Ik

zm tms( 􏼁 − zk tks( 􏼁
����

����􏼐 􏼑
2

Ωks

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦; (29)

hence, we can know inf s≥1 tk(s+1) − tks􏽮 􏽯> 0 when Ik ≠ ϕ.
0e proof is finished. □

Remark 3. By 0eorem 1, we can know αk > 0 and Ik ≠ ϕ
implying that the Zeno behavior does not happen for sam-
pling time sequence tks􏼈 􏼉. In addition, if αk > 0 and Ik ≠ ϕ,
there is no Zeno behavior for model (6) under ETS (5).

Theorem 2. Let condition (5), Assumption 1, and As-
sumption 2 hold; there is l ∈ I satisfying αk > 0 and Ik ≠ ϕ
(k ∈ I\ l{ }). ;en, model (6) is globally robustly exponen-
tially synchronized under ETS (5) if there exist r − 1 constants
ζk > 0 (k ∈ I\ l{ }) and a constant ]> 0 satisfying

ΨKl + KT
l Ψ

2
+ ]I≤ 0, (30)

and there is 0< αmax < 1/(r + rmax − 1) and three constants
η> 0, ξ6 > 0, and ξ7 > 0 satisfying

− 2dmin − 2λ
]

ζmax
−
αmax(r − 1) r + rmax − 1( 􏼁ζmaxylmax

1 − αmax r + rmax − 1( 􏼁( 􏼁ζmin
􏼠 􏼡

+‖B‖ +‖C‖ +‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����

+‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖< 0,

(31)

where dmin � min1≤k≤n dk􏼈 􏼉, Kl � (ykm − ylm)k,m∈I\ l{ },
Ψ � diag ζ l1

, ζ l2
, . . . , ζ lr− 1

􏽮 􏽯, l1, l2, . . . , lr− 1􏼈 􏼉 denotes for rear-
rangement of I\ l{ } with l1 < l2 < · · · < lr− 1,
ylmax � maxk,m∈I\ l{ } |ykm − ylm|􏼈 􏼉, rk stands for the number
of elements in Ik, and rmax � max1≤k≤r rk􏼈 􏼉.

Proof. By 0eorem 1, for any k ∈ I\ l{ }, tks⟶∞ as
s⟶∞, then, there exists a s≥ 1 satisfying t ∈ [tks, tk(s+1)):

dεkl(t)

dt
�
dzk(t)

dt
−
dzl(t)

dt

� − (D + ΔD) zk(t) − zl(t)( 􏼁 +(B + ΔB)􏼂f zk(t)( 􏼁

− f zl(t)( 􏼁􏼃 +(C + ΔC)􏼂g zk(t − τ)( 􏼁

− g zl(t − τ)( 􏼁􏼃 + uk(t) − ul(t),

(32)

where

uk(t) − ul(t) � λ 􏽘
r

m�1,m≠l
ykm − ylm( 􏼁 zm tms( 􏼁 − zl(t)( 􏼁,

(33)

since

uk(t) � λ9zl(t) + λ 􏽘

r

m�1,m≠l
ykm zm tms( 􏼁 − zl(t)( 􏼁,

ul(t) � λ9zl(t) + λ 􏽘
r

m�1,m≠l
ylm zm tms( 􏼁 − zl(t)( 􏼁.

(34)

Let Wk(t) � εT
kl(t)εkl(t) andW(t) � 􏽐

k∈I\ l{ }

ζkWk(t),
then

dWk(t)

dt
� 2εT

kl(t)
dεkl(t)

dt

≤ − 2εT
kl(t)(D + ΔD)εT

kl(t) + 2εT
kl(t)(B + ΔB)

· f zk(t)( 􏼁 − f zl(t)( 􏼁􏼂 􏼃 + 2εT
kl(t)(C + ΔC)

· g zk(t − τ)( 􏼁 − g zl(t − τ)( 􏼁􏼂 􏼃

+ 2εT
kl(t) uk(t) − ul(t)( 􏼁.

(35)

By Lemma 2, we have

2εT
kl(t)ΔB f zk(t)( 􏼁 − f zl(t)( 􏼁􏼂 􏼃

≤
1
ξ6
εT

kl(t)M2M
T
2 εkl(t) + ξ6 f zk(t)( 􏼁 − f zl(t)( 􏼁􏼂 􏼃

T
N

T
2 N2

· f zk(t)( 􏼁 − f zl(t)( 􏼁􏼂 􏼃,

(36)

2εT
kl(t)ΔC g zk(t − τ)( 􏼁 − g zl(t − τ)( 􏼁􏼂 􏼃

≤
1
ξ7
εT

kl(t)M3M
T
3 εkl(t) + ξ7 g zk(t − τ)( 􏼁 − g zl(t − τ)( 􏼁􏼂 􏼃

T

· N
T
3 N3 g zk(t − τ)( 􏼁 − g zl(t − τ)( 􏼁􏼂 􏼃.

(37)

Substituting (36) and (37) into (35), we get

dW(t)

dt
≤􏼢 − 2dmin + η M1M

T
1

����
���� +

1
η

N
T
1 N1

����
���� + ‖B‖

+ ‖B‖‖P‖ +
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ + ‖C‖

+
1
ξ7

M3M
T
3

����
����􏼣W(t) + ‖C‖‖Q‖ + ξ7 N

T
3 N3

����
����‖Q‖􏽨 􏽩W(t − τ)

+ 2ζkε
T
kl(t) uk(t) − ul(t)( 􏼁.

(38)

According to (2) and (5), we obtain
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εT
kl(t) uk(t) − ul(t)( 􏼁 � εT

kl(t)λ 􏽘
r

m�1,m≠l
ykm − ylm( 􏼁

· zm tms( 􏼁 − zl(t)( 􏼁

� εT
kl(t)λ 􏽘

r

m�1,m≠l
ykm − ylm( 􏼁

· εml(t) − μm(t)( 􏼁

� λ 􏽘
r

m�1,m≠l
ykm − ylm( 􏼁εT

kl(t)εml(t)

− λεT
kl(t) 􏽘

r

m�1,m≠l
ykm − ylm( 􏼁μm(t).

(39)

From ETS (5), one has

μk(t)
����

����≤ αk 􏽘
m∈Ik

zm tms( 􏼁 − zk tks( 􏼁
����

����

≤ αk 􏽘
m∈Ik

μk(t) − μm(t) + εml(t) − εkl(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ αmax􏼢rk μk(t)
����

���� + 􏽘
m∈Ik

μm(t)
����

���� + 􏽘
m∈Ik

εml(t)
����

����

+ rk εkl(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼣

≤ αmax􏼂rmax μk(t)
����

���� +(r − 1) μm(t)
����

����

+(r − 1) εml(t)
����

���� + rmax εkl(t)
����

����􏼃,

(40)

then

􏽘

r

m∈Ik

μm(t)
����

����≤Gl 􏽘

r

m∈Ik

εml(t)
����

����, k ∈ I, (41)

where

Gl �
αmax r + rmax − 1( 􏼁

1 − αmax r + rmax − 1( 􏼁
. (42)

By (41), we have

􏽘
k,m∈I\ l{ }

ζk ykm − ylm( 􏼁εkl(t)μm(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ζmaxylmax 􏽘
k,m∈I\ l{ }

εkl(t)
����

���� μm(t)
����

����

≤Glζmaxylmax 􏽘
k,m∈I\ l{ }

εkl(t)
����

���� εml(t)
����

����

≤Glζmaxylmax(r − 1) 􏽘
k,m∈I\ l{ }

εkl(t)
����

����
2

≤
Gl(r − 1)ζmaxylmax

ζmin
W(t).

(43)

According to (18), one gets

􏽘
k,m∈I\ l{ }

ζk ykm − ylm( 􏼁εT
kl(t)εml(t) � 􏽘

k,m∈I\ l{ }

1
2

􏼂ykmζk + ymkζm

− ylmζk − ylkζm􏼃εT
kl(t)εml(t)

≤ − ] 􏽘
k∈I\ l{ }

εT
kl(t)εkl(t)

≤ −
]

ζmax
W(t).

(44)

Combining (39), (43), and (44), we obtain

􏽘
k,m∈I\ l{ }

ζkε
T
kl(t) uk(t) − ul(t)( 􏼁

≤ λ −
]

ζmax
+

Gl(r − 1)ζmaxylmax

ζmin
􏼢 􏼣W(t).

(45)

From the definition of W(t), one has

dW(t)

dt
≤ − 2dmin − 2λ

]
ζmax

−
Gl(r − 1)ζmaxylmax

ζmin
􏼠 􏼡

+‖B‖ +‖C‖ +‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����W(t)

+ ‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏽨 􏽩W(t − τ).

(46)

By (31), there is a constant h> 0 such that

2h − 2dmin − 2λ
]

ζmax
−

Gl(r − 1)ζmaxylmax

ζmin
􏼠 􏼡

+‖B‖ +‖C‖ +‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����

+ 1 + e
2hτ

􏼐 􏼑 ‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏼐 􏼑≤ 0.

(47)

Let V(t) � e2h(t− t0)W(t), then

Complexity 7



dV(t)

dt
≤ ⎡⎣2h − 2dmin − 2λ

]
ζmax

−
Gl(r − 1)ζmaxylmax

ζmin
􏼠 􏼡

+ ‖B‖ + ‖C‖ + ‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����⎤⎦V(t)

+ e
2hτ

‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏽨 􏽩V(t − τ)

≤[2h − 2dmin − 2λ
]

ζmax
−

Gl(r − 1)ζmaxylmax

ζmin
􏼠 􏼡

+ ‖B‖ + ‖C‖ + ‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����

+ 1 + e
2hτ

􏼐 􏼑 ‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏼐 􏼑⎤⎦V(t)≤ 0,

(48)

when V(t + ϑ)≤V(t) for any ϑ ∈ [− τ, 0].
Let

􏽥V(t) � sup
ϑ∈[− τ,0]

V(t + ϑ),

􏽥W(t) � sup
ϑ∈[− τ,0]

W(t + ϑ),
(49)

then, we have

d􏽥V(t)

dt
≤ 0, ∀t≥ t0; (50)

hence,

W(t) ≤ 􏽘
m∈I\ l{ }

ζm 􏽥εlm t0( 􏼁
����

����
2
e

− 2h t− t0( ), (51)

which implies

εkl(t)
����

����≤

����
ζmax

ζmin

􏽳

􏽥εl t0( 􏼁
����

����e
− h t− t0( ), (52)

for all k ∈ I\ l{ }, where εl(t) � (εT
l1l(t), εT

l2l(t), . . . , εT
lr− 1l(t))

and
􏽥εkl(t)

����
���� � sup

ϑ∈[− τ,0]

εkl(t + ϑ)
����

����,

􏽥εl(t)
����

���� � sup
ϑ∈[− τ,0]

εl(t + ϑ)
����

����.
(53)

0en, for any k, m ∈ I and t≥ t0, we obtain

εkm(t)
����

����≤ εkl(t)
����

���� + εml(t)
����

����≤ 2

����
ζmax

ζmin

􏽳

􏽥εl t0( 􏼁
����

����e
− h t− t0( ).

(54)

0us, model (6) is globally robustly exponentially syn-
chronized with convergence rate h. 0e proof is finished. □

Theorem 3. Let condition (5), Assumption 1, and As-
sumption 2 hold; there is l ∈ I satisfying αk > 0 and Ik ≠ϕ
(k ∈ I\ l{ }). Moreover, if there exist r − 1 constants ζk > 0
satisfying

βk � − ykk − ylk􏼂 􏼃 −
1
ζk

􏽘

r

m�1,m≠k,l

ζm ykm − ylm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0, (55)

and there is 0< αmax < 1/(2rmax) and three constants η> 0,
ξ6 > 0, and ξ7 > 0 satisfying

− 2dmin − 2λ βmin −
2αmaxrmaxζmax Kl

����
����inf

1 − 2αmaxrmax( 􏼁ζmin
􏼠 􏼡 + ‖B‖ + ‖C‖

+ ‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
���� +

1
ξ6

M2M
T
2

����
����

+ ξ6 N
T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
���� + ‖C‖‖Q‖

+ ξ7 N
T
3 N3

����
����‖Q‖< 0,

(56)

then model (6) is globally robustly exponentially synchronized
under ETS (5).

Proof. Let W(t) � maxk∈I\ l{ } (1/ζk)‖εkl(t)‖2􏽮 􏽯, and fixing
k ∈ I\ l{ } satisfying

W(t) �
1
ζk

εkl(t)
����

����
2
, (57)

then

dW(t)

dt
�

2
ζk

εkl(t)
����

����
d εkl(t)

����
����

dt

�
2
ζk

εkl(t)
����

����sign εkl(t)( 􏼁
Tdεkl(t)

dt

≤ ⎡⎣ − 2dmin + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+ ‖B‖ + ‖B‖‖P‖ +
1
ξ6

M2M
T
2

����
����

+ ξ6 N
T
2 N2

����
����‖P‖ + ‖C‖ +

1
ξ7

M3M
T
3

����
����⎤⎦W(t)

+ ‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏽨 􏽩W(t − τ)

+
2
ζk

εkl(t)
����

����sign εkl(t)( 􏼁
T

uk(t) − ul(t)( 􏼁,

(58)

where
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uk(t) − ul(t) � λ 􏽘
m∈I\ l{ }

ykm − ylm( 􏼁 zm tms( 􏼁 − zl(t)( 􏼁.

(59)

0en, one gets

sign εkl(t)( 􏼁
T

uk(t) − ul(t)( 􏼁 � λsign εkl(t)( 􏼁
T

· 􏽘
m∈I\ l{ }

ykm − ylm( 􏼁 εml(t) − μm(t)( 􏼁

≤ λ ykk − ylk( 􏼁 εkl(t)
����

����

+ λ 􏽘
m∈I\ l,k{ }

ykm − ylm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 εml(t)
����

����

+ λ 􏽘
m∈I\ l{ }

ykm − ylm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 μm(t)
����

����.

(60)

By 0eorem 1, we obtain

||μ(t)||max ≤ 􏽥Gl εl(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌max, (61)

where 􏽥Gl � (2αmaxrmax)/(1 − 2αmaxrmax), ‖μ(t)‖max �

maxk∈I\ l{ } ‖μk(t)‖􏼈 􏼉, and ‖εl(t)‖max � maxm∈I\ l{ } ‖εkl(t)‖􏼈 􏼉.
By (60) and (61), we have

1
ζk

εkl(t)
����

����sign εkl(t)( 􏼁
T

uk(t) − ul(t)( 􏼁

≤ λ⎡⎣ykk − ylk +
1
ζk

􏽘

r

m∈I\ l,k{ }

ζm ykm − ylm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎤⎦W(t)

+
1
ζk

εkl(t)
����

����λ 􏽘
r

m∈I\ l{ }

ykm − ylm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌‖μ(t)‖max

≤ − λβkW(t) + λ 􏽥Gl

ζmax Kl

����
����inf

ζmin
W(t);

(62)

thus, one has

dW(t)

dt
≤ − 2dmin − 2λ βmin − 􏽥Gl

ζmax Kl

����
����inf

ζmin
􏼠 􏼡􏼢

+ η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
���� +‖B‖ +‖B‖‖P‖

+
1
ξ6

M2M
T
1

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +‖C‖

+
1
ξ7

M3M
T
3

����
����􏼣W(t)

+ ‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏽨 􏽩W(t − τ).

(63)

From (56), we can know that there is a h> 0 such that

2h − 2dmin − 2λ βmin −
2αmaxrmaxζmax‖K‖inf
1 − 2αmaxrmax( 􏼁ζmin

􏼠 􏼡

+ ‖B‖ + ‖C‖ + ‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����

+ 1 + e
2hτ

􏼐 􏼑 ‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖􏼐 􏼑≤ 0.

(64)

Similar to 0eorem 2, by (63), we get

W(t)≤
1

ζmin
􏽥εl t0( 􏼁

����
����
2
e

− 2h t− t0( ), (65)

then

εkl(t)
����

����≤

����
ζmax

ζmin

􏽳

􏽥εl t0( 􏼁
����

����e
− h t− t0( ), k ∈ I\ l{ }. (66)

0us, model (6) is globally robustly exponentially syn-
chronized with convergence rate h under ETS (5). 0e proof
is finished. □

Remark 4. Comparing 0eorem 2 to 0eorem 3, it is not
hard to see that when r is large enough and rmax is relatively
small, condition (30) is better than condition (55), but
condition (31) is not as good as condition (56).

Theorem 4. Let condition (4), Assumption 1, and As-
sumption 2 hold; αk > 0 andIk ≠ ϕ.;enmodel (6) is globally
robustly exponentially synchronized under ETS (5) if there
exist r constants ζk > 0 (k ∈ I) and a constant ]> 0 satisfying

ΨK + KTΨ
2

+ ]I≤ 0, (67)

and there is 0< αmax < 1/(r + rmax) and three constants η> 0,
ξ8 > 0, and ξ9 > 0 satisfying

− 2dmin − 2λ
]

ζmax
−
αmax r + rmax( 􏼁rζmaxymax

1 − αmax r + rmax( 􏼁( 􏼁ζmin
􏼠 􏼡 + ‖B‖ +‖C‖

+ ‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
���� +

1
ξ8

M2M
T
2

����
����

+ ξ8 N
T
2 N2

����
����‖P‖ +

1
ξ9

M3M
T
3

����
���� + ‖C‖‖Q‖

+ ξ9 N
T
3 N3

����
����‖Q‖< 0,

(68)

where dmin � min1≤k≤n dk􏼈 􏼉, K � (ykm)k,m∈I,
Ψ � diag ζ1, ζ2, . . . , ζr􏼈 􏼉, and ymax � maxk,m∈I |ykm|􏼈 􏼉.

Proof. A reference system is given by
dz0(t)

dt
� − (D + ΔD)z0(t) +(B + ΔB)f z0(t)( 􏼁 +(C + ΔC)

· g z0(t − τ)( 􏼁 + J(t) + cρz0(t), t≥ t0,

(69)
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where u0 � λ9z0(t), and there exists a s≥ 1 satisfying
t ∈ [tks, tk(s+1)).

According to (6) and (69), we have
dεk0(t)

dt
�
dzk(t)

dt
−
dz0(t)

dt

� − (D + ΔD) zk(t) − z0(t)( 􏼁 +(B + ΔB)

f zk(t)( 􏼁 − f z0(t)( 􏼁􏼂 􏼃 +(C + ΔC)

g zk(t − τ)( 􏼁 − g z0(t − τ)( 􏼁􏼂 􏼃 + uk(t) − u0(t),

(70)

where

uk(t) − u0(t) � λ 􏽘
r

m�1,m≠l
ykm zm tms( 􏼁 − z0(t)( 􏼁. (71)

Let Ŵk(t) � εT
k0(t)εk0(t) and Ŵ(t) � 􏽐k∈I ζkŴk(t), then

dŴk(t)

dt
� 2εT

k0(t)
dεk0(t)

dt

≤ − 2εT
k0(t)(D + ΔD)εT

k0(t) + 2εT
k0(t)(B + ΔB)

· f zk(t)( 􏼁 − f z0(t)( 􏼁􏼂 􏼃 + 2εT
k0(t)(C + ΔC)

· g zk(t − τ)( 􏼁 − g z0(t − τ)( 􏼁􏼂 􏼃

+ 2εT
k0(t) uk(t) − u0(t)( 􏼁.

(72)

By Lemma 2, we have

2εT
k0(t)ΔB f zk(t)( 􏼁 − f z0(t)( 􏼁􏼂 􏼃

≤
1
ξ8
εT

k0(t)M2M
T
2 εk0(t)

+ ξ8 f zk(t)( 􏼁 − f z0(t)( 􏼁􏼂 􏼃
T
N

T
2 N2

· f zk(t)( 􏼁 − f z0(t)( 􏼁􏼂 􏼃,

(73)

2εT
k0(t)ΔC g zk(t − τ)( 􏼁 − g z0(t − τ)( 􏼁􏼂 􏼃

≤
1
ξ9
εT

k0(t)M3M
T
3 εk0(t)

+ ξ9 g zk(t − τ)( 􏼁 − g z0(t − τ)( 􏼁􏼂 􏼃
T

· N
T
3 N3 g zk(t − τ)( 􏼁 − g z0(t − τ)( 􏼁􏼂 􏼃.

(74)

Substituting (73) and (74) into (72), we get

dŴ(t)

dt
≤ ⎡⎣ − 2dmin + η M1M

T
1

����
���� +

1
η

N
T
1 N1

����
����

+‖B‖ + ‖B‖‖P‖ +
1
ξ8

M2M
T
2

����
����

+ ξ8 N
T
2 N2

����
����‖P‖ +‖C‖ +

1
ξ9

M3M
T
3

����
����⎤⎦Ŵ(t)

+ ‖C‖‖Q‖ +
1
ξ9

N
T
3 N3

����
����‖Q‖􏼢 􏼣

· Ŵ(t − τ) + 2ζkε
T
k0(t) uk(t) − u0(t)( 􏼁.

(75)

Similar to 0eorem 2, we obtain

εk0(t)
����

����≤

����
ζmax

ζmin

􏽳

􏽥ε0 t0( 􏼁
����

����e
− h t− t0( ), (76)

for all k ∈ I, where ε0(t) � (εT
10, . . . , εT

r0)
T, ‖􏽥ε0(t0)‖ �

supϑ∈[− τ,0]‖ε0(t + ϑ)‖, and h is a position constant such that

2h − 2dmin − 2λ
]

ζmax
−
αmax r + rmax( 􏼁rζmaxymax

1 − αmax r + rmax( 􏼁( 􏼁ζmin
􏼠 􏼡

+ ‖B‖ +‖C‖ + ‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ8

M2M
T
2

����
���� + ξ8 N

T
2 N2

����
����‖P‖ +

1
ξ9

M3M
T
3

����
����

+ 1 + e
2hτ

􏼐 􏼑 ‖C‖‖Q‖ + ξ9 N
T
3 N3

����
����‖Q‖􏼐 􏼑≤ 0.

(77)

0en, for any k, m ∈ I and t≥ t0, we get

εkm(t)
����

����≤ εk0(t)
����

���� + εm0(t)
����

����≤ 2

����
ζmax

ζmin

􏽳

􏽥ε0 t0( 􏼁
����

����e
− h t− t0( ).

(78)

0us, the proof is finished. □

Theorem 5. Let condition (4), Assumption 1, and As-
sumption 2 hold; αk > 0 andIk ≠ϕ (k ∈ I), and if there exist
r constants ζk > 0 (k ∈ I) satisfying

βk � − ykk −
1
ζk

􏽘

r

m�1
ζm ykm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0, (79)

and there is 0< αmax < 1/(2rmax) and three constants η> 0,
ξ8 > 0, and ξ9 > 0 satisfying

− 2dmin − 2λ βmin −
2αmaxrmaxζmax‖K‖inf

1 − 2αmaxrmax( 􏼁ζmin
􏼠 􏼡

+ ‖B‖ + ‖C‖ + ‖B‖‖P‖ + η M1M
T
1

����
����

+
1
η

N
T
1 N1

����
���� +

1
ξ8

M2M
T
2

����
���� + ξ8 N

T
2 N2

����
����‖P‖

+
1
ξ9

M3M
T
3

����
���� + ‖C‖‖Q‖ + ξ9 N

T
3 N3

����
����‖Q‖< 0,

(80)

then model (6) is globally robustly exponentially synchronized
under ETS (5).

Remark 5. From 0eorems 2–5, it is easy to find that they
are closely related. In0eorems 2 and 3, the coupling matrix
can be unstable. However, in0eorems 4 and 5, the coupling
matrix must be stable.0eorems 4 and 5 can be derived from
0eorems 2 and 3, respectively, when the coupling matrix is
stable, but 0eorems 3 and 4 are more simpler and con-
venient than 0eorems 2 and 3.
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Remark 6. Most existing works on multisystem networks
(see [2–4]) require that the coupling matrix is always the
Laplace matrix, in which row sums of coupling matrix all are
zero and nondiagonal elements are nonnegative. In this
paper, the coupling matrix need not be the Laplace matrix;
that is to say, row sums of coupling matrix can be nonzero
constant and nondiagonal elements are arbitrary. Compared
with the previous works, the advantage of this paper is that
the coupling matrix need not be the Laplace matrix, and the
criteria obtained are more simple and convenient.

Remark 7. Actually, if we consider MNNs with non-Laplace
coupling matrix and norm-unbounded uncertainty terms in
this paper, we can get 0eorem 1 by changing (17)–(22) and
get0eorems 2 and 3 by changing (36) and (37). Similarly, we
also get 0eorems 4 and 5 by changing (72) and (74). In
addition, if we consider time-varying delay instead of constant
delay into system (6), when the time-varying delay τks(t) is
bounded, namely, there exists a constant σ satisfying
0< τks(t)< σ, and several similar conclusions can be obtained.

4. Three Numerical Examples

We consider model (1) with n � 2, where activation function
f(z) � g(z) and f(z) � (f1(z1), f2(z2))

T such that

fm zm( 􏼁 �
zm + 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − zm − 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2
, m � 1, 2, (81)

the weight matrices

D �
4 0
0 4

􏼢 􏼣,

B �
0.2 0.1
0.1 0.2

􏼢 􏼣,

C �
− 0.2 0.1
0.1 − 0.2

􏼢 􏼣,

ΔD � sin
1 0
0 1

􏼢 􏼣,

ΔB � cos
1 1
1 1

􏼢 􏼣,

ΔC � sin
1 1
1 1

􏼢 􏼣.

(82)

Example 1. Consider system (6) with r� 4. Let τ � 0.001,
η � 0.5, ξ6 � 0.5, ξ7 � 0.5, and coupling matrix

K �

− 1.19 0 0.4 0.8

0 − 1.19 0.2 1

0 0.2 − 1.19 1

1 0.2 0 − 1.19

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (83)

we know that 9 � 0.01 and K has a positive eigenvalue 0.01.
Choosing l � 1, then

K1 �

− 1.19 − 0.2 0.2

0.2 − 1.59 0.2

0.2 − 0.4 − 1.99

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (84)

Let ] � 1.0546, then
K1 + KT

1
2

+ ]I≤ 0, (85)

which implies that condition (30) holds, where
ζ i � 1(2≤ i≤ 4); let λ � 10 and αk � 0.012, then

− 2dmin − 2λ ] −
αmax(r − 1) r + rmax − 1( 􏼁glmax

1 − αmax r + rmax − 1( 􏼁
􏼠 􏼡

+‖B‖ +‖C‖ +‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ6

M2M
T
2

����
���� + ξ6 N

T
2 N2

����
����‖P‖ +

1
ξ7

M3M
T
3

����
����

+‖C‖‖Q‖ + ξ7 N
T
3 N3

����
����‖Q‖ � − 0.8420< 0;

(86)

hence, condition (31) holds; furthermore, we choose the
initial states z1(ϑ) � (0.6, 0.5)T, z2(ϑ) � (− 1, 0.8)T, z3(ϑ) �

(0.7, − 1)T, and z4(ϑ) � (− 1.2, 0.2)T for ϑ ∈ [− 0.001, 0].
Figure 1 describes the evolutions of the event-triggered
controller and synchronization errors. Figure 2 depicts the
threshold and the evolutions of measurement errors. By
0eorem 2, we can know that system (6) is globally robustly
exponentially synchronized under ETS (5).

Example 2. Let τ � 0.001, η � 0.5, ξ8 � 0.5, ξ9 � 0.5, and
coupling matrix

K �

− 1.06 0 0.02 0.04

0 − 1.03 − 0.02 0.06

− 0.02 0 − 1.08 0.01

0.02 0 0.04 − 1.06

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (87)

we know that 9 � − 1 and K is a stable matrix. Let ] � 1.25,
then

K + KT

2
+ ]I≤ 0; (88)

hence, condition (67) holds, where ζ i � 1(1≤ i≤ 4);
choosing λ � 10 and αk � 0.021, then

− 2dmin − 2λ ] −
αmax r + rmax( 􏼁rymax

1 − αmax r + rmax( 􏼁
􏼠 􏼡

+ ‖B‖ +‖C‖ +‖B‖‖P‖ + η M1M
T
1

����
���� +

1
η

N
T
1 N1

����
����

+
1
ξ8

M2M
T
2

����
���� + ξ8 N

T
2 N2

����
����‖P‖ +

1
ξ9

M3M
T
3

����
����

+ ‖C‖‖Q‖ + ξ9 N
T
3 N3

����
����‖Q‖

� − 0.64< 0,

(89)
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Figure 1: Time evolutions of the event-triggered controller and the synchronization errors in Example 1.
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Figure 2: Time evolutions of measurement errors μk(t) and the thresholds Φks (k � 1, 2, 3, 4) in Example 1.
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Figure 3: Time evolutions of the event-triggered controller and the synchronization errors in Example 2.
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Figure 4: Time evolutions of measurement errors μk(t) and the thresholds Φks (k � 1, 2, 3, 4) in Example 2.
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thus, condition (68) holds; furthermore, we choose the initial
states z1(ϑ) � (0.6, 0.5)

T, z2(ϑ) � (− 1, 0.8)
T, z3(ϑ) �

(0.7, − 1)T, and z4(ϑ) � (− 1.2, 0.2)
T for ϑ ∈ [− 0.001, 0].

Figure 3 describes the evolutions of the event-triggered
controller and synchronization errors. Figure 4 depicts the
threshold and the evolutions of measurement errors. By
�eorem 4, we can know that system (6) is globally robustly
exponentially synchronized under ETS (5).

Example 3. Let τ � 0.001, η � 0.5, ξ8 � 0.5, ξ9 � 0.5, and
coupling matrix

K �

− 2.6 0 0.2 0 0 0.4
0 − 2.3 − 0.3 0 0 0.6
0 − 0.2 − 2.3 0 0 0.5
0 − 0.3 0 − 2.7 0 1
0 0 0.1 0 − 2.6 0.5
0.4 0 0 0 0.2 − 2.6





, (90)

we know that 9 � − 2 and K is a stable matrix. Let ] � 0.99,
then

βk � − ykk −
1
ζk
∑
6

m�1
ζm ykm
∣∣∣∣

∣∣∣∣≥ 0.4; (91)

hence, condition (79) holds, where ζ i � 1(1≤ i≤ 6),
choosing λ � 18 and αk � 0.015, then

− 2dmin − 2λ βmin −
2αmaxrmax ‖K‖inf
1 − 2αmaxrmax

( )

+‖B‖ +‖C‖ +‖B‖‖P‖ + η M1M
T
1

����
����

+
1
η
NT

1N1
����

���� +
1
ξ8

M2M
T
2

����
����

+ ξ8 N
T
2N2

����
����‖P‖ +

1
ξ9

M3M
T
3

����
���� + ‖C‖‖Q‖

+ ξ9 N
T
3N3

����
����‖Q‖ � − 0.2636< 0,

(92)

thus, condition (80) holds; in addition, we choose the initial
states z1(ϑ) � (0.6, 0.5)

T, z2(ϑ) � (− 1, 0.8)
T, z3(ϑ) �

(0.7, − 1)T, z4(ϑ) � (− 1.2, 0.2)
T, z5(ϑ) � (− 1.5, − 0.8)

T, and
z6(θ) � (− 0.1, 0.6)

T for ϑ ∈ [− 0.01, 0]. Figure 5 describes the
evolutions of the event-triggered controller and synchro-
nization errors. Figure 6 depicts the threshold and the
evolutions of measurement errors. By �eorem 5, we can
know that system (6) is globally robustly exponentially
synchronized under ETS (5).

Remark 8. It can be seen that the row sums of coupling
matrices in Examples 1, 2, and 3 all are 0.01, − 1, and − 2,
respectively, and there are nondiagonal elements in Examples
2 and 3. �us, our coupling matrices all are non-Laplacian.

5. Concluding Remarks

�is paper has introduced a novel ETS for MNNs with pa-
rameter uncertainty and time delay. By using matrix in-
equality techniques and establishing the event-triggered
mechanism, some su�cient criteria are derived for judging
global robust exponential synchronization of the system; in
addition, the lower bounds of the sampling time intervals are
also obtained. In particular, the most existing papers on
multisystem networks require that the coupling matrix is
Laplace matrix, in which row sums of coupling matrix all are
zero and nondiagonal elements are nonnegative. However,
the coupling matrix need not be the Laplace matrix in this
paper; that is to say, row sums of coupling matrix can be
nonzero constant and nondiagonal elements are arbitrary. In
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Figure 5: Time evolutions of the event-triggered controller and the
synchronization errors in Example 3.
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the future, we can do the following works: (1) MNNs will be
extended to fractional-order MNNs. (2) It is meaningful to
study MNNs with parameter uncertainty and time delay via
centralized and decentralized data-sampling approaches. (3)

MNNs with parameter uncertainty and time-varying delay
may be valuable research topic. (4) It is a challenge to study
MNNs with non-Laplace coupling matrix and norm-un-
bounded uncertainty terms.
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Figure 6: Time evolutions of measurement errors μk(t) and the thresholds Φks (k � 1, 2, 3, 4, 5, 6) in Example 3.
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Reachable set bounding for homogeneous nonlinear systems with delay and disturbance is studied. By the usage of a new method
for stability analysis of positive systems, an explicit necessary and sufficient condition is first derived to guarantee that all the states
of positive homogeneous time-delay systems with degree 𝑝 > 1 converge asymptotically within a specific ball. Furthermore, the
main result is extended to a class of nonlinear time variant systems. A numerical example is given to demonstrate the effectiveness
of the obtained results.

1. Introduction

Recent years havewitnessed a rapid development of reachable
set bounding for linear systems in [1–11], to name a few.
In most of existing references, the traditional Lyapunov-
Krasovskii function method is most commonly used. How-
ever, such a method is usually difficult to derive explicit
conditions for reachable set estimation of nonlinear systems
with delay and disturbance.

Due to the ubiquitous existence of time delay in practical
engineering and its adverse effect on stability [12–15] and
oscillation [16–19], it has attracted wide attention in recent
years. So far, less attention has been paid to reachable set
bounding for nonlinear time-delay systems. Such a problem
was discussed in [20, 21] for certain nonlinear perturbed
systems with delay, where the involved nonlinear terms
satisfy a linear growth condition. Reachable set bounding for
continuous-time and discrete-time homogeneous time-delay
positive systems of degree one was studied in [22]. The decay
rates of homogeneous positive systems of any degree with
time-varying delays were given in [23]. Recently, the same
problem was considered in [24] for homogeneous positive
systems of degree 𝑝 > 1, while time delay was not taken
into consideration.Theproblemof reachable set estimation of

switched positive systemswith discrete and distributed delays
subject to bounded disturbances was investigated in [25].

Positive systems are dynamical systems whose states
remain nonnegative whenever the initial states are nonneg-
ative ([26, 27]). In view of the special structure of positive
systems, a special method was commonly used for stability
analysis of positive systems in [28–33], which is different from
the traditional Lyapunov-Krasovskii function method.

Motivated by the work in [23, 24], we study in this paper
reachable set bounding for homogeneous nonlinear time-
delay systems with bounded disturbance. By developing the
methods used in [23, 24], we first establish a necessary and
sufficient condition such that all the solutions of positive
homogeneous time-delay systemswith degree𝑝 > 1 converge
asymptotically within a specific ball, which contains those
results in [23, 24] in special cases. The main result is also
applied to certain nonlinear time variant systems with delay
and disturbance.

Throughout this paper, R𝑛 is the set of 𝑛-dimensional
real vectors. Denote by 𝑥𝑖 the 𝑖th coordinate of 𝑥 ∈ R𝑛 for𝑖 ∈ ⟨𝑛⟩ = {1, 2, . . . , 𝑛}. Given 𝑥, 𝑦 ∈ R𝑛, say 𝑥 ≻ 𝑦 (or𝑦 ≺ 𝑥) if 𝑥𝑖 > 𝑦𝑖, 𝑥 ⪰ 𝑦 (or 𝑦 ⪯ 𝑥) if 𝑥𝑖 ≥ 𝑦𝑖, 𝑖 ∈ ⟨𝑛⟩.
Denote R𝑛+ = {𝑥 ∈ R𝑛 : 𝑥 ⪰ 0}. For 𝑥 = (𝑥𝑖) ∈ R𝑛,
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denote |𝑥| = (|𝑥𝑖|) ∈ R𝑛+ and ‖𝑥‖∞ = max𝑖∈⟨𝑛⟩|𝑥𝑖|. Let
B(𝜀)={𝑥 ∈ R𝑛| ‖𝑥‖∞ ≤ 𝜀}, where 𝜀 > 0 is a constant. For
given 𝑟 > 0, denote BF𝑟([0,∞],R𝑛) = {𝜔 : [0,∞] 󳨀→
R𝑛|‖𝜔(𝑡)‖∞ ≤ 𝑟, ∀𝑡 ≥ 0}. An 𝑛 × 𝑛-dimensional matrix 𝐴
is calledMetzler if all its off-diagonal entries are nonnegative.

2. Preliminaries

In this paper, nonlinear time-delay systems of the form

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 ((𝑥 (𝑡 − 𝜏 (𝑡)) ) + 𝜔 (𝑡) , 𝑡 ≥ 0
𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ, 0] , (1)

are investigated, where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑓, 𝑔 :
R𝑛 󳨀→ R𝑛 are continuous vector functions satisfying 𝑓(0) =𝑔(0) = 0, 𝜏(𝑡) is a time delay satisfying 0 ≤ 𝜏(𝑡) ≤ ℎ, ℎ > 0
is a constant, 𝜔(𝑡) ∈ BF𝑟([0,∞],R𝑛) is the disturbance, and
the initial state 𝜑(𝑡) : [−ℎ, 0] 󳨀→ R𝑛 is continuous. Note
that when 𝜏(𝑡) ≡ 0, system (1) takes the form of the system
considered in [24].

The following definitions and lemma in [34] will be
required.

Definition 1. Assume that 𝑓 : R𝑛 󳨀→ R𝑛 is continuous
on R𝑛 and continuously differentiable on R𝑛 \ {0}. The
vector function 𝑓 is called cooperative if the Jacobian matrix(𝜕𝑓/𝜕𝑥)(𝑥), 𝑥 ∈ R𝑛 \ {0}, is Metzler.

Definition 2. A vector function 𝑓 : R𝑛 󳨀→ R𝑛 is called
homogeneous of degree 𝑝 > 0 if 𝑓(𝜆𝑥) = 𝜆𝑝𝑓(𝑥), 𝑥 ∈ R𝑛,𝜆 > 0.
Definition 3. A vector function 𝑔 : R𝑛 󳨀→ R𝑛 is called order-
preserving on R𝑛+ provided that 𝑔(𝑥) ⪰ 𝑔(𝑦), where 𝑥, 𝑦 ∈
R𝑛+, 𝑥 ⪰ 𝑦.
Lemma 4. A cooperative vector function 𝑓 satisfies 𝑓𝑖(𝑢) ≥𝑓𝑖(V), where 𝑢, V ∈ R𝑛 \ {0}, 𝑢 ⪰ V, 𝑢𝑖 = V𝑖, 𝑖 ∈ ⟨𝑛⟩.

In this paper, we need the following assumptions:

(H1) 𝑓 and𝑔 are continuously differentiable onR𝑛\{0} and
homogeneous of degree 𝑝 > 1;

(H2) 𝑓 is cooperative and 𝑔 is order-preserving on R𝑛+;

(H3) 𝜔(𝑡) ⪰ 0 for 𝑡 ≥ 0.
Following the proof given in [22], we can easily obtain the

following lemma.

Lemma 5. System (1) is positive under assumptions (H2) and
(H3).

3. Main Results

Theorem 6. Suppose that (H1)-(H3) are valid. �en, we have
the following equivalent statements:

(i) �ere is an 𝑛-dimensional vector V ≻ 0 satisfying𝑓(V)+𝑔(V) ≺ 0.
(ii) �e solution 𝑥(𝑡) of system (1) satisfies

‖𝑥 (𝑡)‖∞ ≤ 𝛼 + (𝛽 + 𝛾𝑡)−1/(𝑝−1) (2)

for any 𝑡 ≥ 0, any initial state 𝜑(𝑡) ∈ C([−ℎ, 0],R𝑛+), any
disturbance 𝜔(𝑡) ∈ BF𝑟([0,∞],R𝑛+), and any bounded delay𝜏(𝑡), where 𝛼, 𝛽, and 𝛾 are appropriate nonnegative constants
dependent on 𝑟, ℎ, and the initial state 𝜑, and 𝛼 = 0 if 𝑟 = 0.

In addition, if condition (i) holds, 𝛼, 𝛽, and 𝛾 can be chosen
as follows:

𝛼 = 𝜃𝜌,
𝛽 = (𝐾𝜌)1−𝑝 ,
𝛾 = (𝑝 − 1) 𝜂𝜌1−𝑝,

(3)

where 𝜌 = max𝑖∈⟨𝑛⟩V𝑖,

𝜃 = ( 𝑟
−max𝑖∈⟨𝑛⟩ [𝑓𝑖 (V) + 𝑔𝑖 (V)])

1/𝑝

,

𝐾 = {{{
0, 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩V ≤ 𝜃,
[(󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩V)𝑝 − 𝜃𝑝]1/𝑝 , 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩V > 𝜃,

(4)

‖𝜑‖V = max𝑖∈⟨𝑛⟩,𝑡∈[−ℎ,0](|𝜑𝑖(𝑡)|/V𝑖), 𝜂 satisfies 0 < 𝜂 <
min𝑖∈⟨𝑛⟩𝜂𝑖, and 𝜂𝑖 satisfies the following equation:
𝑓𝑖 (V)
V𝑖

+ 𝑔𝑖 (V)
V𝑖

[1 + (𝑝 − 1)𝐾𝑝−1𝜂𝑖ℎ]𝑝/(𝑝−1) + 𝜂𝑖 = 0,
𝑖 ∈ ⟨𝑛⟩ .

(5)

Proof. (i)󳨐⇒(ii) Given the initial state 𝜑 ∈ C([−ℎ, 0],R𝑛+),
from Lemma 5 we have 𝑥(𝑡) ⪰ 0, 𝑡 ≥ 0. Based on definitions
of 𝐾 and ‖𝜑‖V, we have

𝑥𝑖 (𝑡)
V𝑖

≤ (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑡 ∈ [−ℎ, 0] , 𝑖 ∈ ⟨𝑛⟩ . (6)

Set

𝑧𝑖 (𝑡) =
{{{{{{{{{

𝑥𝑖 (𝑡)
V𝑖

− {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 , 𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ ,
𝑥𝑖 (𝑡)
V𝑖

− (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑡 ∈ [−ℎ, 0] , 𝑖 ∈ ⟨𝑛⟩ .
(7)
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Then (6) and (7) yield 𝑧𝑖(𝑡) ≤ 0, 𝑡 ∈ [−ℎ, 0], 𝑖 ∈ ⟨𝑛⟩. Next,
we show that 𝑧𝑖(𝑡) ≤ 0 for 𝑖 ∈ ⟨𝑛⟩ and 𝑡 ≥ 0. If it is not true,
there is a constant 𝑡∗ ≥ 0 and an index 𝑘 ∈ ⟨𝑛⟩ guaranteeing𝑧𝑖(𝑡) ≤ 0 for 𝑖 ∈ ⟨𝑛⟩, 𝑡 ∈ [0, 𝑡∗], and 𝑧𝑘(𝑡∗) = 0. Therefore,

𝑧̇𝑘 (𝑡∗) ≥ 0, (8)

𝑥𝑖 (𝑡)
V𝑖

≤ {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 ,
𝑡 ∈ [0, 𝑡∗] , 𝑖 ∈ ⟨𝑛⟩ .

(9)

𝑥𝑘 (𝑡∗)
V𝑘

= {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}1/𝑝 . (10)

Using Lemma 4 and the homogeneity of 𝑓, we get from (9)
and (10) that

𝑓𝑘 (𝑥 (𝑡∗))
≤ 𝑓𝑘 ({𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}1/𝑝 V)

= {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}𝑓𝑘 (V)

= 𝜃𝑝𝑓𝑘 (V) + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1) 𝑓𝑘 (V) .

(11)

For the case when 𝜏(𝑡∗) ≤ 𝑡∗, it holds that
𝑥𝑖 (𝑡∗ − 𝜏 (𝑡∗))

V𝑖

≤ {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)}1/𝑝 ,
𝑖 ∈ ⟨𝑛⟩ .

(12)

Considering 𝑔 is homogeneous and order-preserving, we
conclude

𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) ≤ 𝑔𝑘 ({𝜃𝑝

+ [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)}1/𝑝 V)

= {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)}
⋅ 𝑔𝑘 (V) = 𝜃𝑝𝑔𝑘 (V) + [𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗
− 𝜏 (𝑡∗))]−𝑝/(𝑝−1) 𝑔𝑘 (V) .

(13)

Note that

[𝐾1−𝑝 + (𝑝 − 1) 𝜂 (𝑡∗ − 𝜏 (𝑡∗))]−𝑝/(𝑝−1)

= [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

× [ 𝜂 (𝑝 − 1) 𝜏 (𝑡∗)𝐾1−𝑝 + 𝜂 (𝑝 − 1) (𝑡∗ − 𝜏 (𝑡∗)) + 1]
𝑝/(𝑝−1)

≤ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

× [1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) .

(14)

We further get from (13) and (14) that

𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) ≤ 𝜃𝑝𝑔𝑘 (V)
+ [𝐾1−𝑝 + 𝜂 (𝑝 − 1) 𝑡∗]−𝑝/(𝑝−1)

⋅ [1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) 𝑔𝑘 (V) .
(15)

For the case when 𝜏(𝑡∗) > 𝑡∗, it holds that 𝑧𝑖(𝑡∗ − 𝜏(𝑡∗)) ≤ 0;
i.e.,

𝑥𝑖 (𝑡∗ − 𝜏 (𝑡∗))
V𝑖

≤ (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑖 ∈ ⟨𝑛⟩ . (16)

It thus follows that

𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) ≤ (𝜃𝑝 + 𝐾𝑝) 𝑔𝑘 (V) = 𝜃𝑝𝑔𝑘 (V)
+ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

⋅ 𝐾𝑝 [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]𝑝/(𝑝−1) 𝑔𝑘 (V) ≤ 𝜃𝑝𝑔𝑘 (V)
+ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)

⋅ [1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) 𝑔𝑘 (V) .

(17)

Next, we can conclude from (1) and (7) that

𝑧̇𝑘 (𝑡∗) = 𝑓𝑘 (𝑥 (𝑡∗)) + 𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) + 𝑤𝑘 (𝑡∗)
V𝑘

+ 𝜂 {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1)}(1−𝑝)/𝑝

⋅ [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗](1−2𝑝)/(𝑝−1)

≤ 𝑓𝑘 (𝑥 (𝑡∗)) + 𝑔𝑘 (𝑥 (𝑡∗ − 𝜏 (𝑡∗))) + 𝑤𝑘 (𝑡∗)
V𝑘

+ 𝜂 [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1) .

(18)
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Consequently, (11), (15), (17), and (18) imply that

𝑧̇𝑘 (𝑡∗) ≤ 𝜃𝑝 [𝑓𝑘 (V) + 𝑔𝑘 (V)] + 𝑟
V𝑘

+ [𝐾1−𝑝

+ (𝑝 − 1) 𝜂𝑡∗]−𝑝/(𝑝−1) × {𝑓𝑘 (V)V𝑘

+ 𝑔𝑘 (V)
V𝑘

[1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) + 𝜂} .

(19)

On the other hand, the definitions of 𝜃 and 𝜂 yield that

𝜃𝑝 [𝑓𝑘 (V) + 𝑔𝑘 (V)] + 𝑟 ≤ 𝜃𝑝max
𝑖∈⟨𝑛⟩

[𝑓𝑖 (V) + 𝑔𝑖 (V)] + 𝑟
= 0,

(20)

and

𝑓𝑘 (V)
V𝑘

+ 𝑔𝑘 (V)
V𝑘

[1 + (𝑝 − 1)𝐾𝑝−1𝜂ℎ]𝑝/(𝑝−1) + 𝜂 < 0. (21)

Combining this with (19), we have 𝑧̇𝑘(𝑡∗) < 0, which
contradicts (8). Therefore, 𝑧𝑖(𝑡) ≤ 0, 𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩; i.e.,
𝑥𝑖 (𝑡)
V𝑖

≤ {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 ,
𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ .

(22)

From the well-known inequality (𝑎+𝑏)𝑞 ≤ 𝑎𝑞+𝑏𝑞 for 𝑎, 𝑏 ≥ 0
and 0 < 𝑞 < 1, we further get
𝑥𝑖 (𝑡)
V𝑖

≤ 𝜃 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−1/(𝑝−1) ,
𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ .

(23)

It implies (2).
(ii)󳨐⇒(i) For the particular case when 𝑟 = 0 and ℎ = 0,

system (1) reduces to

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) , 𝑡 ≥ 0. (24)

Given the initial condition 𝑥(0) ⪰ 0, each solution of system
(24) satisfies

‖𝑥 (𝑡)‖∞ ≤ (𝛽 + 𝛾𝑡)−1/(𝑝−1) . (25)

That is, system (24) is asymptotically stable. Based on Propo-
sition 4.1 in [35], there is a vector V ≻ 0 such that𝑓(V)+𝑔(V) ≺0. The proof is complete.

Remark 7. It can be seen from Theorem 6 that the bound of
the reachable set is determined by the bound of disturbances,
the choice of V, and the value of 𝑝. When the bound of
disturbances and the value of 𝑝 are given, an appropriate
vector V can be chosen to guarantee a minimal bound of the
reachable set by solving the following nonlinear optimization
problem: minV≻0𝜃 subject to 𝑓(V) + 𝑔(V) ≺ 0, where 𝜃 is
defined as inTheorem 6.

Remark 8. If 𝜔(𝑡) = 0 for 𝑡 ≥ 0, then Theorem 6 reduces to
the main result given in [23]. If 𝑔(𝑥) = 0 for 𝑥 ∈ R𝑛, then
Theorem 6 reduces to the main result given in [24].

Finally, consider the following nonlinear time-varying
system

𝑥̇ (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, (𝑥 (𝑡 − 𝜏 (𝑡)) ) + 𝜔 (𝑡) ,
𝑡 ≥ 0

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,
(26)

where𝑥(𝑡), 𝜏(𝑡),𝜔(𝑡), and𝜑(𝑡) are the same as in (1), and𝑓, 𝑔 :
[0,∞) × R𝑛 󳨀→ R𝑛 are vector functions satisfying 𝑓(𝑡, 0) =𝑔(𝑡, 0) = 0.

Suppose that 𝑓 and 𝑔 satisfy the following assumption:

(H4)𝑓 and𝑔 are continuous on [0,∞)×R𝑛, continuously
differentiablewith respect to𝑥 onR𝑛\{0}, and there are vector
functions 𝑓 and 𝑔 satisfying (H1) and (H2), and for 𝑥𝑖 ̸= 0,

𝑓𝑖 (𝑡, 𝑥) sign𝑥𝑖 ≤ 𝑓𝑖 (|𝑥|) ,
󵄨󵄨󵄨󵄨𝑔𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑔𝑖 (|𝑥|) ,

𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ .
(27)

Without the restriction on the disturbance that 𝜔(𝑡) ⪰ 0
for 𝑡 ≥ 0, we can get the following reachable set bounding
criterion for system (26).

Theorem 9. Suppose that (H4) is valid. If there is an 𝑛-
dimensional vector V ≻ 0 such that 𝑓(V) + 𝑔(V) ≺ 0, the
solution of system (26) satisfies (2), where constants 𝛼, 𝛽, and𝛾 are defined by (3).
Proof. Set

𝑦𝑖 (𝑡) =
{{{{{{{{{

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨
V𝑖

− {𝜃𝑝 + [𝐾1−𝑝 + (𝑝 − 1) 𝜂𝑡]−𝑝/(𝑝−1)}1/𝑝 , 𝑡 ≥ 0, 𝑖 ∈ ⟨𝑛⟩ ,
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨
V𝑖

− (𝜃𝑝 + 𝐾𝑝)1/𝑝 , 𝑡 ∈ [−ℎ, 0] , 𝑖 ∈ ⟨𝑛⟩ .
(28)
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Figure 1: The states of system (1).

Based on definitions of 𝐾 and ‖𝜑‖V, it holds that 𝑦𝑖(𝑡) ≤ 0,𝑡 ∈ [−ℎ, 0], 𝑖 ∈ ⟨𝑛⟩. For the case when 𝑥𝑖(𝑡) ̸= 0, 𝑡 ≥ 0, notice
that

̇𝑦𝑖 (𝑡) = 𝐷− 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 = 𝑥̇𝑖 (𝑡) sign𝑥𝑖 (𝑡)≤ 𝑓𝑖 (|𝑥 (𝑡)|) + 𝑔𝑖 (|𝑥 (𝑡 − 𝜏 (𝑡))|) + 󵄨󵄨󵄨󵄨𝑤𝑖 (𝑡)󵄨󵄨󵄨󵄨 ,
𝑖 ∈ ⟨𝑛⟩ .

(29)

Here𝐷− denotes the left derivative. Similar to the analysis in
Theorem 6, it is not difficult to conclude that 𝑦𝑖(𝑡) ≤ 0, 𝑡 ≥ 0,𝑖 ∈ ⟨𝑛⟩. Consequently, (2) holds. The proof is complete.

4. Numerical Example

Consider system (1) with

𝑓 (𝑥1, 𝑥2) = (−3 62 −2)(𝑥
3/2
1𝑥3/22 ) − √𝑥31 + 𝑥32 (31) ,

𝑔 (𝑥1, 𝑥2) = (0.2𝑥
3/2
20.4𝑥3/21 ) ,

𝜔 (𝑡) = (0.05 |sin 𝑡|0.04 |cos 𝑡|) ,
𝜏 (𝑡) = 5 + sin 𝑡, 𝑡 ≥ 0.

(30)

It is easy to verify that assumptions (H1)-(H2) hold. Let V =
(1, 1)𝑇. Then 𝑓(V) + 𝑔(V) ≺ 0. By a direct calculation, it yieldsℎ = 6, 𝑟 = 0.05, 𝛼 ≈ 0.1345, and 𝛾 ≈ 0.11.

We conclude from Theorem 6 that there is a ball
B(0.1345) such that all the states of system (1) converge
asymptotically within it. Given the initial state 𝜑(𝑡) = (1, 1)𝑇,𝑡 ∈ [−6, 0], noting that ‖𝜑‖V = 1 and 𝛽 ≈ 1.0749, solution (1)
satisfies

‖𝑥 (𝑡)‖∞ ≤ 0.1345 + (1.0749 + 0.11𝑡)−2 , 𝑡 ≥ 0. (31)

Figure 1 presents the simulation.

5. Conclusion

This paper has been concerned with reachable set bounding
for homogeneous nonlinear time-delay systems with distur-
bance. We not only derive explicit reachable set bounding
criterion independent of delay, but also estimate the decay
rate. It will be interesting to extend our work to the case of
unbounded delays and discrete-time systems.
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Because the PMSG (permanent magnet synchronous generator)-based WECS (wind energy conversion system) has some
uncertainties, the conventional control strategy with poor robustness is sometimes difficult to meet the performance requirements
of control. In order to ensure efficient and stability of the system, this paper proposed a novel PI (proportional-integral)-type
SMC (sliding mode control) strategy for PMSG-basedWECS uncertainties and presented the detailed analysis and design process.
Compared with the conventional control method, the PI-type SMC proposed in this paper not only can make the closed-loop
system globally stable, but also has a better robustness and slightly reduced the current ripple and distortion. Finally, the simulation
results verify the correctness and effectiveness of this algorithm.

1. Introduction

Environment problems such air pollution and global warm-
ing caused by fossil fuels have drawn the world’s attention to
exploration and utilization of renewable energy sources, in
recent years [1–5]. At present, wind energy is the fastest grow-
ing renewable energy source and is most prevalent in coastal
regions spanning temperate and boreal climates [6–8].There
is great potential forwind power development inChina, USA,
Denmark, and other countries, due to their high averagewind
velocities [9].Therefore, the research on wind power genera-
tion technology has a significant value nowadays. Compared
with the constant-speed constant-frequency wind turbine,
the variable-speed constant-frequency wind turbines can
obtain the maximum energy conversion due to its rotational
speed could vary with wind speed to ensure that the system
has the OTSR (optimal tip speed ratio) and maximum wind
energy utilization coefficient. The variable-speed constant-
frequency wind energy conversion system (WECS) consists
of DFIG (doubly fed induction generator)-based WECS and
PMSG (permanent magnet synchronous generator)-based
WECS. The PMSG-based WECS was selected to study in
this paper, due to the fact that PMSG has many superior
characteristics such as wider speed control range, higher

reliability, and more efficient performance compared with
DIFG [10].

In fact, the practical systems have many uncertainties.
The uncertainties of PMSG or PMSM (permanent magnet
synchronous motor) consist of the unmodeled converter
dynamics and the parameters perturbations [11–14]. A robust
control scheme for PMSMuncertainties based on an adaptive
DOB (disturbance observer) was introduced in [11]. The
results indicated that the controller obtained a good control
performance. Reference [12] proposed a robust nonlinear
predictive control strategy for PMSM uncertainties. The con-
trol system obtained a high speed tracking precision. In [13],
a PFC (predictive functional control) + ESO (extended state
observer) method was studied. After that, the effectiveness
of this new method was verified. Reference [14] proposed a
novel decoupled PI current control method for the PMSG-
basedWECS.Thismethod can successfully achieve improved
the transient performances and the nominal performance
recovery under the model uncertainty.

SMC (sliding mode control) first proposed in the early
1950s has a good robustness and powerful ability to reject the
plant uncertainties and disturbances [15, 16]. References [15,
16] summarized the development of SMC and examined key
technical research issues and future perspectives. Although
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the SMC has been widely and extensively employed in
some industrial applications for a long term, it is still the
researching focus for scholars and worth studying in depth.
A DPC (direct power control) based on SMC for the grid-
connected WECS was presented in [17]. When the grid
voltage is unbalanced, the controller also can regulate the
instantaneous active and reactive powers directly in stator
stationary reference frame. Reference [18] enhanced the
exponential reaching law to improve the control efficiency
and performance of SMC used in PMSG-based WECS.

An adaptive second-order SMC strategy was explored
in [19]. This method can effectively deals with the pres-
ence of model uncertainties, intrinsic nonlinear behavior of
WECS, and random wind. A SMC method for mismatched
uncertainties via a nonlinear DOB was developed in [20].
Meanwhile, the I-SMC (integral sliding-model control) with
a good steady-state precision was mentioned in [20, 21].
The PI-type SMC is derived by the I-SMC and FBL (feed-
back linearization) approach and has been widely used in
renewable energy conversion systems and the electric motor
drives [21–23]. Furthermore, compared with the I-SMC, the
proportional and integral parameters of the PI-type SMC are
able to be adjusted to better meet the control performance
indexes such as the celerity and accuracy.

Based on the above background, this paper presents a
novel PI-type SMC for the PMSG-based WECS. Although
the inspiration for this paper comes from literature [20–
23], the whole designing thought and procedure of the
proposed controller are completely different from the meth-
ods in [20–23]. Furthermore, [20, 23] just only referred to
the control of PMSG without the consideration of grid-
connected control. And the study subjects in [22, 23] and
this paper are different. At the same time, the suppression
of flexible drive-train torsional vibration also has been

regarded as a control target in this paper. Then, we set
up a detailed 2 MW WECS simulation test platform based
on MATLAB/SIMULINK/SimPowerSysterms to verify the
effectiveness and correctness of the proposedmethod. A large
number of existing packaging modules in SimPowerSysterms
are used in the simulation test platform that is relatively close
to the real physical system. Finally, the simulation results
indicate the proposed strategy has good control performance.

2. PMSG-Based WECS Model

The simplified PMSG-basedWECSmainly consists of a wind
turbine, a flexible drive-train, a PMSG, fully rated converters,
and its control level shown in Figure 1. In order to capture the
maximum wind energy, the maximum power point tracking
(MPPT) strategy is adopted to control the machine-side
converter (MSC). In the loop control level, the grid-side
converter (GSC) control is to regulate the reactive power and
keepDC-link voltageUdc stable at 1800V.Meanwhile, in order
to suppress the torsional vibration of flexible drive-train, the
damping compensation torque TDamp was introduced.

2.1. PMSG and MSC Dynamic Model. The PMSG and MSC
mathematical model is [5, 20–27]

d𝑖𝑠𝑑
d𝑡 = − 𝑅𝑠𝐿 𝑠𝑑 𝑖𝑠𝑑 + 𝐿 𝑠𝑞𝐿 𝑠𝑑 𝑛𝑝𝜔𝑖𝑠𝑞 + 1𝐿 𝑠𝑑𝑈𝑠𝑑 − 1𝐿 𝑠𝑑 𝜀𝑠𝑑
d𝑖𝑠𝑞
d𝑡 = − 𝑅𝑠𝐿 𝑠𝑞 𝑖𝑠𝑞 − 𝐿 𝑠𝑑𝐿 𝑠𝑞 𝑛𝑝𝜔𝑖𝑠𝑑 − 𝑛𝑝𝜔𝜓𝐿 𝑠𝑞 + 1𝐿 𝑠𝑞𝑈𝑠𝑞− 1𝐿 𝑠𝑞 𝜀𝑠𝑞

(1)
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where Usd and Usq are the d-axis and q-axis stator armature
voltages. isd and isq are the d-axis and q-axis components of
stator currents. Lsd and Lsq are the d-axis and q-axis stator
inductances. 𝜔 is the rotor speed. 𝑛p represents magnetic
pole logarithms. 𝑅s is the stator resistance. 𝜓 represents the
permanent magnet chain. And the disturbance vector 𝜀𝑠𝑑
and 𝜀𝑠𝑞 represent model uncertainties including the external
disturbances and the PWM offset. 𝜀𝑠𝑑 and 𝜀𝑠𝑞 were generally
assumed to be bounded by Dsd and Dsd.󵄨󵄨󵄨󵄨𝜀𝑠𝑑󵄨󵄨󵄨󵄨 ≤ 𝐷𝑠𝑑;󵄨󵄨󵄨󵄨𝜀𝑠𝑑󵄨󵄨󵄨󵄨 ≤ 𝐷𝑠𝑞 (2)

where Dsd and Dsq are the boundaries of 𝜀𝑠𝑑 and 𝜀𝑠𝑞.
The PMSG torque is given by

𝑇𝑔 = 1.5𝑛𝑝 [(𝐿 𝑠𝑑 − 𝐿 𝑠𝑞) 𝑖𝑠𝑑𝑖𝑠𝑞 + 𝜓𝑖𝑠𝑞] (3)

2.2. GSC Dynamic Model. The GSC dynamic model is given
by

d𝑖𝑔𝑑
d𝑡 = −𝑅𝑐𝐿𝑐 𝑖𝑔𝑑 + 𝜔𝑔𝑖𝑔𝑞 + 1𝐿𝑐𝐸𝑔𝑑 − 1𝐿𝑐𝑈𝑔𝑑 − 1𝐿𝑐 𝜀𝑔𝑑
d𝑖𝑔𝑞
d𝑡 = −𝑅𝑐𝐿𝑐 𝑖𝑔𝑞 − 𝜔𝑔𝑖𝑔𝑑 + 1𝐿𝑐𝐸𝑔𝑞 − 1𝐿𝑐𝑈𝑔𝑞 − 1𝐿𝑐 𝜀𝑔𝑞

(4)

where 𝑈𝑔𝑑 and 𝑈𝑔𝑞 are the control voltages. 𝑖𝑔𝑑 and 𝑖𝑔𝑞
are the components of grid-side currents. 𝜔𝑔 is the power
grid frequency. Lc and Rc are the filter inductance and
resistance. 𝐸𝑔𝑑 and 𝐸𝑔𝑞 express the d-axis and q-axis power
grid potential components (usually, 𝐸𝑔𝑞 = 0).The 𝜔𝑔 and 𝐸𝑔𝑑
can be gotten by the voltage phase-locked loop. 𝜀𝑔𝑑 and 𝜀𝑔𝑞
are also the uncertainties and meet󵄨󵄨󵄨󵄨󵄨𝜀𝑔𝑑󵄨󵄨󵄨󵄨󵄨 ≤ 𝐷𝑔𝑑;󵄨󵄨󵄨󵄨󵄨𝜀𝑔𝑑󵄨󵄨󵄨󵄨󵄨 ≤ 𝐷𝑔𝑞 (5)

𝐷𝑔𝑑 and 𝐷𝑔𝑞 are the boundaries of 𝜀𝑔𝑑 and 𝜀𝑔𝑞.
3. PI-Type Sliding Mode Controller Design

3.1. Control Objectives. If the state vector x and the reference
state vector x ref are

𝑥 = [𝑖𝑠𝑑 𝑖𝑠𝑞 𝑖𝑔𝑑 𝑖𝑔𝑞]T (6)

𝑥𝑟𝑒𝑓 = [𝑖𝑠𝑑 𝑟𝑒𝑓 𝑖𝑠𝑞 𝑟𝑒𝑓 𝑖𝑔𝑑 𝑟𝑒𝑓 𝑖𝑔𝑞 𝑟𝑒𝑓]T (7)

the control objectives of WECS can be expressed as

lim
𝑡󳨀→+∞
𝑒 = lim
𝑡󳨀→+∞
𝑥𝑟𝑒𝑓 − 𝑥 = 0 (8)

where 𝑒 is the error vector. In the above formula, usually we
have 𝑖𝑠𝑑 𝑟𝑒𝑓 = 0

𝑖𝑠𝑞 𝑟𝑒𝑓 = 2𝑇𝑔 𝑟𝑒𝑓3𝑛𝑝𝜓 = 2 (𝑇𝑜𝑝𝑡 + 𝑇𝐷𝑎𝑚𝑝)3𝑛𝑝𝜓𝑖𝑔𝑑 𝑟𝑒𝑓 = (𝐾𝑃 + 𝐾𝐼𝑠 ) (𝑈𝑑𝑐 𝑟𝑒𝑓 − 𝑈𝑑𝑐)
𝑖𝑔𝑞 𝑟𝑒𝑓 = 𝑄𝑔 𝑟𝑒𝑓𝐸𝑔𝑑

(9)

where KP and KI are the PI (proportional-integral) parame-
ters. The optimal torque Topt in (9) meets [1, 26–29]

𝑇𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡𝜔2 with 𝐾𝑜𝑝𝑡 = 𝜋𝜌𝑅5𝐶𝑃 max2𝜆3𝑜𝑝𝑡 (10)

whereR is the wind wheel radius, 𝜌 is the air density, 𝐶𝑃 max is
defined as the maximum wind energy conversion coefficient,𝜆opt is the OTSR (optimal tip speed ratio), and the damping
compensation torque TDamp is given by [29–38]𝑇𝐷𝑎𝑚𝑝 = 𝐾𝐷𝐻(𝑠) 𝜔 (11)

where𝐾𝐷 ∈ 𝑅+ and H(s) is the transfer function of bandpass
filter shown in [29–38].

3.2. Design of Proportional-Integral (PI)-Type Sliding Mode
Controller. The PI-type sliding surface 𝑆 can be defined as

𝑆 = (𝐾 + 1𝑠 𝐼) 𝑒 (12)

where

𝑆 = [𝑆1 𝑆2 𝑆3 𝑆4]T (13)

𝐾 = diag ⟨𝐾1, 𝐾2, 𝐾3, 𝐾4⟩ (14)

𝐼 = diag ⟨𝐼1, 𝐼2, 𝐼3, 𝐼4⟩ (15)

s is Laplace variable. 𝐾𝑖 ∈ 𝑅+ and 𝐼𝑖 ∈ 𝑅+ (i=1,2,3,4).
Obviously, we also can get𝑆1𝜀𝑠𝑑 ≤ 󵄨󵄨󵄨󵄨𝑆1𝜀𝑠𝑑󵄨󵄨󵄨󵄨 = 𝐷𝑠𝑑𝑆1 sgn (𝑆1)𝑆2𝜀𝑠𝑞 ≤ 󵄨󵄨󵄨󵄨󵄨𝑆2𝜀𝑠𝑞󵄨󵄨󵄨󵄨󵄨 = 𝐷𝑠𝑞𝑆2 sgn (𝑆2)𝑆4𝜀𝑔𝑑 ≤ 󵄨󵄨󵄨󵄨󵄨𝑆4𝜀𝑔𝑑󵄨󵄨󵄨󵄨󵄨 = 𝐷𝑔𝑑𝑆4 sgn (𝑆4)𝑆5𝜀𝑔𝑞 ≤ 󵄨󵄨󵄨󵄨󵄨𝑆5𝜀𝑔𝑞󵄨󵄨󵄨󵄨󵄨 = 𝐷𝑔𝑞𝑆5 sgn (𝑆5)

(16)

if the Lyapunov function is defined as

𝑉 = 12𝑆T𝑆 = 4∑𝑖=1𝑉𝑖 (17)
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where

𝑉𝑖 = 12𝑆2𝑖 (18)

Equations (19)-(22) can be gotten by taking the derivative of
(17).

𝑉̇1 = 𝑆1 ̇𝑆1 = 𝑆1 (𝐾1 ̇𝑒𝑠𝑑 + 𝐼1𝑒𝑠𝑑)
= 𝑆1{{{{{{{𝐾1( ̇𝑖𝑠𝑑 𝑟𝑒𝑓 + 𝑅𝑠𝐿 𝑠𝑑 𝑖𝑠𝑑 − 𝐿 𝑠𝑞𝐿 𝑠𝑑 𝑛𝑝𝜔𝑖𝑠𝑞− 1𝐿 𝑠𝑑𝑈𝑠𝑑 + 1𝐿 𝑠𝑑 𝜀𝑠𝑑 )
+ 𝐼1𝑒𝑠𝑑}}}}}}}
≤ 𝑆1{{{{{{{𝐾1( ̇𝑖𝑠𝑑 𝑟𝑒𝑓 + 𝑅𝑠𝐿 𝑠𝑑 𝑖𝑠𝑑 − 𝐿 𝑠𝑞𝐿 𝑠𝑑 𝑛𝑝𝜔𝑖𝑠𝑞− 1𝐿 𝑠𝑑𝑈𝑠𝑑 + 1𝐿 𝑠𝑑𝐷𝑠𝑑 sgn (𝑆1))
+ 𝐼1𝑒𝑠𝑑}}}}}}}

(19)

𝑉̇2 = 𝑆2 ̇𝑆2 = 𝑆2 (𝐾2 ̇𝑒𝑠𝑞 + 𝐼2𝑒𝑠𝑞)

= 𝑆2{{{{{{{𝐾2( ̇𝑖𝑠𝑞 𝑟𝑒𝑓 + 𝑅𝑠𝐿 𝑠𝑞 𝑖𝑠𝑞 + 𝐿 𝑠𝑑𝐿 𝑠𝑞 𝑛𝑝𝜔𝑖𝑠𝑞+𝑛𝑝𝜔𝜓𝐿 𝑠𝑞 − 1𝐿 𝑠𝑞𝑈𝑠𝑞 + 1𝐿 𝑠𝑞 𝜀𝑠𝑞)
+ 𝐼2𝑒𝑠𝑞}}}}}}}
≤ 𝑆2{{{{{{{𝐾2( ̇𝑖𝑠𝑞 𝑟𝑒𝑓 + 𝑅𝑠𝐿 𝑠𝑞 𝑖𝑠𝑞 + 𝐿 𝑠𝑑𝐿 𝑠𝑞 𝑛𝑝𝜔𝑖𝑠𝑞 + 𝑛𝑝𝜔𝜓𝐿 𝑠𝑞− 1𝐿 𝑠𝑞𝑈𝑠𝑞 + 1𝐿 𝑠𝑞𝐷𝑠𝑞 sgn (𝑆2) )
+ 𝐼2𝑒𝑠𝑞}}}}}}}

(20)

𝑉̇3 = 𝑆3 ̇𝑆3 = 𝑆3 (𝐾3 ̇𝑒𝑔𝑑 + 𝐼3𝑒𝑔𝑑)
= 𝑆3{{{{{{{{{𝐾3( ̇𝑖𝑔𝑑 𝑟𝑒𝑓 + 𝑅𝑐𝐿𝑐 𝑖𝑔𝑑 − 𝜔𝑔𝑖𝑔𝑞−1𝐿𝑐𝐸𝑔𝑑 + 1𝐿𝑐𝑈𝑔𝑑 + 1𝐿𝑐 𝜀𝑔𝑑)
+ 𝐼3𝑒𝑔𝑑}}}}}}}}}
≤ 𝑆3{{{{{{{𝐾3( ̇𝑖𝑔𝑑 𝑟𝑒𝑓 + 𝑅𝑐𝐿𝑐 𝑖𝑔𝑑 − 𝜔𝑔𝑖𝑔𝑞−1𝐿𝑐𝐸𝑔𝑑 + 1𝐿𝑐𝑈𝑔𝑑 + 1𝐿𝑐𝐷𝑔𝑑 sgn (𝑆4))
+ 𝐼3𝑒𝑔𝑑}}}}}}}

(21)

𝑉̇4 = 𝑆4 ̇𝑆4 = 𝑆4 (𝐾4 ̇𝑒𝑔𝑞 + 𝐼4𝑒𝑔𝑞)

= 𝑆4{{{{{{{{{𝐾4( ̇𝑖𝑔𝑞 𝑟𝑒𝑓 + 𝑅𝑐𝐿𝑐 𝑖𝑔𝑞 + 𝜔𝑔𝑖𝑔𝑑−1𝐿𝑐𝐸𝑔𝑞 + 1𝐿𝑐𝑈𝑔𝑞 + 1𝐿𝑐 𝜀𝑔𝑞)

+ 𝐼4𝑒𝑔𝑞}}}}}}}}}
≤ 𝑆4{{{{{{{𝐾4( ̇𝑖𝑔𝑞 𝑟𝑒𝑓 + 𝑅𝑐𝐿𝑐 𝑖𝑔𝑞 + 𝜔𝑔𝑖𝑔𝑑 − 1𝐿𝑐𝐸𝑔𝑞+ 1𝐿𝑐𝑈𝑔𝑞 + 1𝐿𝑐𝐷𝑔𝑞 sgn (𝑆3) )
+ 𝐼4𝑒𝑔𝑞}}}}}}}

(22)

Let

𝐾1 ( ̇𝑖𝑠𝑑 𝑟𝑒𝑓 + 𝑅𝑠𝐿 𝑠𝑑 𝑖𝑠𝑑 − 𝐿 𝑠𝑞𝐿 𝑠𝑑 𝑛𝑝𝜔𝑖𝑠𝑞 − 1𝐿 𝑠𝑑𝑈𝑠𝑑
+ 1𝐿 𝑠𝑑𝐷𝑠𝑑 sgn (𝑆1)) + 𝐼1𝑒𝑠𝑑 = −𝛾1𝑆1 (23)
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𝐾2 ( ̇𝑖𝑠𝑞 𝑟𝑒𝑓 + 𝑅𝑠𝐿 𝑠𝑞 𝑖𝑠𝑞 + 𝐿 𝑠𝑑𝐿 𝑠𝑞 𝑛𝑝𝜔𝑖𝑠𝑞 + 𝑛𝑝𝜔𝜓𝐿 𝑠𝑞 − 1𝐿 𝑠𝑞𝑈𝑠𝑞
+ 1𝐿 𝑠𝑞𝐷𝑠𝑞 sgn (𝑆2)) + 𝐼2𝑒𝑠𝑞 = −𝛾2𝑆2 (24)

𝐾3 ( ̇𝑖𝑔𝑑 𝑟𝑒𝑓 + 𝑅𝑐𝐿𝑐 𝑖𝑔𝑑 − 𝜔𝑔𝑖𝑔𝑞 − 1𝐿𝑐𝐸𝑔𝑑 + 1𝐿𝑐𝑈𝑔𝑑+ 1𝐿𝑐𝐷𝑔𝑑 sgn (𝑆4)) + 𝐼3𝑒𝑔𝑑 = −𝛾3𝑆3 (25)

𝐾4 ( ̇𝑖𝑔𝑞 𝑟𝑒𝑓 + 𝑅𝑐𝐿𝑐 𝑖𝑔𝑞 + 𝜔𝑔𝑖𝑔𝑑 − 1𝐿𝑐𝐸𝑔𝑞 + 1𝐿𝑐𝑈𝑔𝑞+ 1𝐿𝑐𝐷𝑔𝑞 sgn (𝑆4)) + 𝐼4𝑒𝑔𝑞 = −𝛾4𝑆4 (26)

Equation (27) can be gotten.

𝑉̇ ≤ − 4∑
𝑖=1

𝛾𝑖𝑆2𝑖 ≤ 0 (27)

where 𝛾𝑖 > 0. Therefore, the control laws are given by (28)
-(31) and the control structure diagram is shown in Figure 2.

𝑈𝑠𝑑 = 𝐿 𝑠𝑑𝐾1 (𝛾1𝑆1 + 𝐼1𝑒𝑠𝑑) + 𝐿 𝑠𝑑 ̇𝑖𝑠𝑑 𝑟𝑒𝑓 + 𝑅𝑠𝑖𝑠𝑑− 𝐿 𝑠𝑞𝑛𝑝𝜔𝑖𝑠𝑞 + 𝐷𝑠𝑑 sgn (𝑆1) (28)

𝑈𝑠𝑞 = 𝐿 𝑠𝑞𝐾2 (𝛾2𝑆2 + 𝐼2𝑒𝑠𝑞) + 𝐿 𝑠𝑞 ̇𝑖𝑠𝑞 𝑟𝑒𝑓 + 𝑅𝑠𝑖𝑠𝑑+ 𝐿 𝑠𝑑𝑛𝑝𝜔𝑖𝑠𝑑 + 𝑛𝑝𝜔𝜓 + 𝐷𝑠𝑞 sgn (𝑆2) (29)

𝑈𝑔𝑑 = − 𝐿𝑐𝐾3 (𝛾3𝑆3 + 𝐼3𝑒𝑔𝑑) − 𝐿𝑐 ̇𝑖𝑔𝑑 𝑟𝑒𝑓 − 𝑅𝑐𝑖𝑔𝑑+ 𝐿𝑐𝜔𝑔𝑖𝑔𝑞 + 𝐸𝑔𝑑 − 𝐷𝑔𝑑 sgn (𝑆3) (30)

𝑈𝑔𝑞 = − 𝐿𝑐𝐾4 (𝛾4𝑆4 + 𝐼4𝑒𝑔𝑞) − 𝐿𝑐 ̇𝑖𝑔𝑞 𝑟𝑒𝑓 − 𝑅𝑐𝑖𝑔𝑞− 𝐿𝑐𝜔𝑔𝑖𝑔𝑑 + 𝐸𝑔𝑞 − 𝐷𝑔𝑞 sgn (𝑆4) (31)

From (17) and (27), it is clear that the Lyapunov energy
function V is greater than or equal to 0 and the derivative
of V is less than or equal to 0. Hence, the whole system is
asymptotically stable based on Lyapunov stability theorem.

3.3. Tracking Accuracy Analysis. In order to analyze the
tracking accuracy, we need to introduce Theorem 1 here.

Theorem 1. For any dynamic system with state vector 𝑋 =[𝑥1 𝑥2 . . . 𝑥𝑛]𝑇 and assuming 𝐿 = 𝑓(𝑋) ≥ 0 is a Lyapunov
function of system, if 𝐿̇ ≤ −∑𝑛𝑖=1 𝑘𝑖𝑥2𝑖 or 𝐿̇ ≤ −∑𝑛𝑖=1 𝑘𝑖|𝑥𝑖|where𝑘𝑖 ∈ 𝑅+, then lim𝑡󳨀→∞𝑥𝑖 = 0.

Table 1: WECS parameters.

Parameters Value
Wind turbine inertia moment Jtur [kg⋅m2] 2×104
Air density 𝜌 [kg/m3] 1.225
Blade length R [m] 31
Maximum utilization coefficient of wind energy 𝐶P max 0.476
Rated wind speed Vrate [m/s] 14
Rated power 𝑃rate [MW] 2
Rated torque 𝑇rate [kN⋅m] 4×102
Rate rotor speed 𝜔rate [rad/s] 5
Generator pole logarithm 𝑛p 102
Permanent flux 𝜑 [Wb] 1.25
Stator-resistance 𝑅S [Ω] 0.001
stator-reluctance L [mH] 8.35
DC-Link voltage [V] 1800
DC-Link capacitor C [F] 0.22
System resistance 𝑅𝑐 [Ω] 0.001
System inductor Lc [mH] 6
Power grid potential Egd [V] 380
Generator inertia moment Jgen [kg⋅m2] 700

Proof. There are three cases.
A If 𝐿 ≡ constant ≥ 0, then 0 ≡ 𝐿̇ ≤ −∑𝑛𝑖=1 𝑘𝑖𝑥2𝑖 ≤ 0,

and further 𝑘𝑖𝑥2𝑖 = 0. Due to 𝑘𝑖 ̸= 0, thus 𝑥𝑖 = 0. This means
that there are not continuous and stable equilibrium points𝑓(𝑋) ≡ constant > 0 such as stable limit cycle in this system.

B Assuming 𝐿(0) = constant, due to 𝐿̇ ≤ −∑𝑛𝑖=1 𝑘𝑖𝑥2𝑖 ,
then

𝐿 (0) − 𝐿 (+∞) ≥ ∫+∞
0

𝑘𝑖𝑥2𝑖 d𝑡 ≥ 0. (32)

∀𝑥𝑖, if lim𝑡󳨀→∞𝑥𝑖 ̸= 0, then ∫+∞
0

𝑘𝑖𝑥2𝑖 d𝑡 󳨀→ +∞,
and furthermore 𝐿(+∞) 󳨀→ −∞. Obviously, this is in
contradiction with 𝐿 ≥ 0. Thus lim𝑡󳨀→∞𝑥𝑖 = 0.

C Given 𝐿(0) 󳨀→ +∞, according to Lyapunov stability
criterion, the system is stable. So, there must be t1 meeting𝐿(𝑡1) = constant. Otherwise 𝐿(+∞) 󳨀→ +∞. This is clearly
in contradiction with system stability. If we redefined t1 as 0,
we can get lim𝑡󳨀→∞𝑥𝑖 = 0 byB.

When 𝐿̇ ≤ −∑𝑛𝑖=1 𝑘𝑖|𝑥𝑖|, we have the same conclusion in
the same way.

Based onTheorem 1, we have

lim
𝑡󳨀→+∞
𝑆 = [0 0 0 0]T (33)

From (12) and (33), we can get

lim
𝑡󳨀→+∞
𝑒 = lim
𝑠󳨀→0

𝑠2 (𝐾𝑠 + 𝐼)−1 𝑆 = [0 0 0 0]T (34)

The above formula shows that the steady-state error of the
system is always 0 regardless of the input. Therefore, the
proposed strategy can obtain a good tracking accuracy.
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Figure 2: Control structure diagram of WECS.

4. Algorithm Analysis and Verification

In this section, a detailed simulation test platform is con-
structed to verify the correctness and effectiveness of the new
algorithm, shown in Figure 3. The simulation test platform
is based on the MATLAB/Simulink environment and the
packagedmodules in SimPowerSysterms are used in this sim-
ulation test platform, including the wind turbine, PMSG, and
VSCs. Meanwhile, the two mass block spring damping model

mentioned in [21–31] is adopted to describe the dynamics of
flexible drive chain. Therefore, the simulation test platform
is relatively close to the actual physical system, due to
the adoption of many packaged modules. The controller of
WECS consists of MSC controller and GSC controller which
are mentioned in Figure 3. The system parameters are shown
in Table 1. In general, the actual wind speed is time-varying
and random; however we also believe the wind speed is
constant for a short period of time. Hence, we assume that the
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Figure 4: DC-link currents.

wind speedmeets v= 12 + 0.4× rand(t).TheDC-link currents
i1 and i2 are shown in Figure 4 and the other response curves
of WECS are shown in Figure 5.

From Figure 4, we know that the DC-link currents i1 and
i2 are bidirectional.Thismeans that theMSCorGSC is able to
switch between rectifier and inverter state. However, because
of the mean values of i1 and i2 are positive, therefore the MSC
is basically working as a rectifier and the GSC is mostly in the

state of inverter.This is in accordance with the actual accident
situation and can verify the accuracy of the model in a sense.

Figure 5 shows the response curves of wind energy
utilization coefficient CP, DC-link voltage Udc, d-axis, and
q-axis components of stator current and grid current. The
disturbance component of the wind speed is the main causes
of CP, Udc, current, and power fluctuations. Figure 5(a)
depicts the wind energy utilization coefficient CP is always
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Figure 5: Response curves of WECS.

in the vicinity of the maximum value 𝐶𝑃 𝑚𝑎𝑥 (or 0.4763)
under the proposed control strategy. This implies the WECS
is operating in MPPT mode to capture the maximum wind
energy under the ratedwind speed. It is clear that theDC-link
voltageUdc is very close to its reference𝑈𝑑𝑐 𝑟𝑒𝑓 (or 1800V) and
the deviation does not exceed 0.8V by Figure 5(b). Figures
5(b)–5(f) show that the proposed control can reduce the
current ripple of stator currents and grid currents compared
with the conventional control, because the uncertainty of the
unmodeled dynamics is taken into account in the design of
the proposed controller. In one word, the proposed control
strategy has a better robustness than the conventional control
strategy.

The electromagnetic torque and sliding mode surfaces
curves are shown in Figures 6 and 7. It is clear that
the electromagnetic torque fluctuation under the proposed
control method is smaller, compared with the conventional
control method. Meanwhile, Figure 7 shows all steady-state
values of sliding mode surfaces are tend to zero. Thus,
the correctness of the analysis in Section 3.3 is verified by
Figure 7. Furthermore, the proposed scheme was further
verified for the suppression of current harmonics. Here, we
take the A-phase stator current of generator as an example.
The A-phase stator current waveform is shown in Figure 8.
Obviously, the proposed method also can reduce the current
distortion.
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Figure 6: Electromagnetic torque curve.
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Figure 7: Sliding mode surface curve.
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Figure 9: Variable wind speed and system responses.
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To further verify the effectiveness of the proposed
method, the system responses under variable wind speed
must be observed and analyzed. As Figure 9(a) shows,
the wind speed varied from 10 m/s to 12.5m/s. At this
time, the system response curves under the variable wind
speed are shown in Figures 9(b)–9(h). It is clear that the
results demonstrated the correctness and effectiveness of the
proposed approach again. Figures 9(c) and 9(f) show that the
wind energy utilization coefficient CP is always maintained at
its maximum value 𝐶𝑃 𝑚𝑎𝑥 (0.476) and the DC-link voltage
Udc always fluctuates around Udc ref (1800V), whether the
wind speed changes. From Figure 9(d), the grid-connected
active power is always less than the electromagnetic power
due to the copper loss.

5. Conclusion

A novel PI-type SMC was proposed to ensure efficient
and stability of PMSG-based WECS, in this paper. The
presented strategy with a strong robustness for the uncer-
tainties and disturbances of the system can make the
closed-loop system globally stable and more performant,
compared with the conventional control method. Finally,
a 2MW WECS simulation test platform which is based
on the MATLAB/MATLAB/SIMULINK/SimPowerSysterms
environmentwas built to verify thematurity and effectiveness
of this presented control algorithm. The simulation results
indicated that the new method is able to reduce the current
distortion and torque fluctuation, which has important actual
significance for the control of practical wind turbine.
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