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Upper trunk (UT) kinematics in runners and its relationship with lower limbs has been poorly investigated, although it is
acknowledged that dynamic stability of the upper body is a primary objective of human locomotion. 'is study aimed to explore
UT kinematics according to gender and level of training and in relation to lower limb run patterns described through the presence
of: overstriding, crossover, excessive protonation, and pelvic drop. Lower body variables chosen to describe running pattern were
those that are frequently modified during gait-retraining with the goal of reducing injury risk. Eighty-seven recreational runners
(28 females and 59 males, age 41± 10 years) performed a one minute run test on a treadmill at self-selected speed. UT kinematics
was measured using an inertial measurement unit, while run features were assessed through an optoelectronic system and video
analysis. Accelerations and root-mean-square on mediolateral and anteroposterior axes, normalized using the vertical component
of the acceleration, were estimated to describe UT stability. Results showed no significant differences in the normalized UT
acceleration root-mean-square according to gender and level of training as well as according to the presence of overstriding,
crossover, and excessive protonation. 'e only running strategy studied in this work that showed a significant relationship with
UT stability was the presence of excessive pelvic drop. 'e latter was significantly associated (p � 0.020) to a decrease in the
normalized acceleration root-mean-square along the mediolateral direction. Although the excessive pelvic drop seemed to have a
positive effect in stabilizing the upper body, concerns remain on the effect of a poor control of the pelvis on the biomechanics of
lower limbs. Results obtained confirm the hypothesis that the lower body is able to respond to varying impact load conditions to
maintain UT stability.

1. Introduction

Running is one of the most popular recreational physical
activities in the world, as it provides substantial health
benefits at minimal expense [1]. Inertial measurement unit
(IMU) is a sensor equipped with a triaxial accelerometer
gyroscope and/or magnetometer, leading to a direct de-
tection of the linear acceleration and angular velocity of the
body segment to which they are attached. Accelerometers
have been adopted in human joint kinematics studies since
1990s [2, 3] by attaching the sensors on foot, shank, thigh,
and pelvis. Recent development and refinement in the
technology have made IMUs less cumbersome, more eco-
nomic, and ecological representing an alternative respect to

the traditional 3D motion capture [4]. In recent years, the
use of those sensors has been extended to the analysis of
sport performances [5] and in particular of running gait [6].
Related research studies in the running field, employing an
IMU system, focused mainly on lower limb kinematics [6]
with several different purposes, such as describing the
running pattern [7], investigating the epidemiology and risk
factors for injuries [8], assessing the effect of biomechanical
interventions on kinetic, kinematic, and spatiotemporal
running variables during rehabilitation from running in-
juries [9], just to name a few. On the contrary, upper body
biomechanics in runners has been poorly investigated, and
reported measurements are mostly derived from triaxial
accelerometers placed on the lower trunk, in the attempt to
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describe the center of mass kinematics [1, 10]. However, it
has been recognized that the dynamic stability of the upper
body is a primary objective of human locomotion. Low and
smooth accelerations of the upper body are considered as
characteristics of a stable gait [1] that could be linked to
lower energy consumption and reduced risk of injury [1, 11].
Upper trunk stability during walking and running results
from attenuation mechanisms of the oscillations caused by
the lower limb movements [12] and influences the trans-
mission to the head of the shock provoked by the ground
reaction force (GRF) [13]. During running gait, the collision
of foot with ground generates the resultant GRF necessary
for forward propulsion and support against gravity [1]. GRF
provokes a shock from the lower to the upper body, along
the kinetic chain [1, 13, 14] that is dissipated by the com-
bination of passive (e.g., deformation of ligaments, muscle
oscillation, increase in knee flexion, and limited protonation
of the foot) and active mechanisms (e.g., increased muscle
activation). Acceleration at any anatomical location depends
on the shock level of attenuation at all points distal and from
intensity and direction of GRF [1]. 'e pelvis and the spinal
column play an important role in determining shock ab-
sorption. 'is attenuation manifests itself in the fact that the
resultant acceleration tends to decrease going from tibia, to
the pelvis, to head level. Level and number of repetition of
this shock on musculoskeletal structures contribute to
modify chronic running injury risks [1]. Even if it is rec-
ognized as a role of lower body kinematics in modulated
shock transmission to the upper body [1, 15, 16] a thorough
investigation on this topic have not been undertaken in
running gait yet. Kawabata et al. measured lower and upper
trunk (UT) accelerations in different phases of the running
gait cycle, but they did not take into consideration lower
limb movements [17]. So far, only a few attempts have been
done to describe upper body kinematics and its relationship
with lower limb movements. Mercer et al. assessed the
characteristics of shock attenuation during high-speed
running, concluding that shock attenuation increases line-
arly with running speed, and changes in running kinematics
are characterized primarily by changes in the stride length
[14]. Specific lower limb running pattern has been observed
to alter intensity of the initial shock and intensity and di-
rection of the GRF, having a certain influence on the level of
shock transmitted to the upper body and its stability [18–20].
For example, the initial shock provoked by foot-ground
collision during running can be modified by initial contact
foot-strike pattern (rearfoot or forefoot) [19]. Some authors
observed an influence of crossover gait and level of foot
protonation on the mediolateral component of the GRF
[21–24]. Other factors that are supposed to influence trunk
stability during gait are gender and level of training, but
studies exist only with regard to lower trunk level or walking
gait [11, 24]. However, to the best of the authors knowledge,
no study directly investigated the relationship between ac-
celeration of the UTand gender, level of training, and lower
limb and pelvis run pattern, described through the foot-
strike pattern, presence of overstriding, crossover, excessive
protonation (EPR), and pelvic drop (EPD), which have
already been demonstrated to influence intensities and

direction of the GRF, shock transmission, and running-
related injuries [7, 18–20, 25–28]. 'is study aims to fill this
gap in the literature by characterizing UT kinematics by
exploring differences in the UT kinematics according to
gender and level of training and in relation to lower limb run
pattern.'e proposed analysis will be conducted by using an
IMU placed on the UT.

2. Methods

2.1. Participants and Experimental Procedure. 87 recrea-
tional runners (28 females and 59 males) volunteered to
participate in the study. Participants signed a written in-
formed consent. 'e study was approved by the Don
Gnocchi ethic committee. Inclusion criteria were being
engaged in a running program (at least two sessions a week
with a minimum continuous running time of 20 minutes per
session), being free from injuries in the last two months and
being free from chronic musculoskeletal diseases.

Subjects were requested to run on a treadmill following a
previously developed protocol [28]. Five minutes of warm-
up and familiarization with the treadmill and one minute of
run test (approximately 150 running cycles) were carried out
by each subject. Participants were asked to run at a self-
selected speed [28, 29]. Self-selected speed was chosen to
control for differences in running kinematics that could arise
at a speed different from the habitual training one (either too
low or too high) [17]. All participants wore conventional,
neutral running shoes to avoid potential influence shoes
which may have on gait mechanics [29].

2.2. Instrumentation. Running analysis was carried out by
using a high-resolution IMU (Gyko, Microgate, Bolzano,
Italy) in combination with a marker-less optical system
(Optogait, Microgate, Bolzano, Italy) and video analysis.'e
IMU was equipped with a triaxial accelerometer, a triaxial
gyroscope, and a triaxial magnetometer to measure linear
acceleration, angular velocity, and magnetic field. 'e IMU
was perpendicularly attached to an elastic harness provided
with the system through automatic buttons. By using the
manufacturer-provided harness, the IMU was positioned
with the y-axis parallel to the back midline between the
scapulae and the z-axis parallel to the line drawn between T1
to T5. 'is procedure was followed to approximately align
the IMU to the anatomical axes, identified through ana-
tomical landmarks and guided by the harness provided by
the manufacturer. 'e sensor was oriented with the X-axis
pointing backwards, representing the anterior-posterior
direction (AP), the Y-axis pointing to the left representing
the mediolateral direction (ML) and the Z-axis pointing
downwards representing the vertical direction (V) (Fig-
ure 1). Data were sampled at a frequency of 1000Hz.

'e Optogait system is made up of two couples of
transmitting and receiving bars. Each bar contains 96 LEDs
that transmit on an infrared frequency with the same
number of LEDs on the opposite bar. 'e system detects
interruptions in the transmission between the bars. 'e
first interruption of the LED signal during contact time is
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defined as “Initial Contact” and the portion of contact time
during which the foot interrupts the maximum number of
LEDs is defined as “Midstance phase.” Bars were placed on
the sides of the treadmill tape, at the ground level, and fixed
with adhesive tape to avoid movements caused by treadmill
vibrations. 'e IMU and the Optogait systems were syn-
chronized automatically by software provided by the
manufacturer. In addition, the Optogait system was syn-
chronized with two high-resolution cameras to film the
frontal and sagittal planes of the participants. 'e videos
were used to make frame-by-frame running video analysis
provided by Kinovea software (version 0.8.15). Relevant
landmarks for the videographic reference were marked
using colored tape. Markers were placed on the low back at
the level of the 5th lumbar (L5) vertebra and bilaterally by
the external malleolus, the midline of the distal heel
counter, the head of the fibula, the lateral condyle of the
femur, the great trochanter, and the posterior iliac superior
spine.

2.3. Data Analysis and Measured Parameters. Data pro-
cessing was performed using custom procedures written in
MATLAB R2017a (MATLAB, Mathworks Inc., Natick, MA,
USA). 'e IMU reference frame was first rotated to have the
Z-axis aligned with the gravity vector during the static
postures at the beginning of each trial [30]. 'e acquired
acceleration signal was lowpass-filtered using a 2nd order
zero-lag Butterworth filter. 'e cutoff frequency value was
set to 20Hz, after having checked the frequency content of
signals collected. 'e acceleration root-mean-square
(aRMS) was then calculated along each axis to quantify the
trunk kinematics.

RMS of the acceleration was computed for each sepa-
rated axis using the following equation:

aRMS �

���������������

x2
1 + x2

2 + . . . + x2
N



N
, (1)

where x is the acceleration measured along the AP, V, or ML
axis and N is the number of samples. In this analysis, aRMS
was computed over the entire duration of the signal.

'e RMS calculated along the V-axis was then used to
normalize the RMS contribution along AP and ML axes by
using the following formula:

naRMS i �
aRMSi
RMS V

, (2)

where i is the respective axis: AP or ML. 'is calculation
resulted in a unitless ratio for each axis and was performed to
account for influence of running speed on trunk acceleration
[31].

Lower body variables chosen to describe running pattern
were those that are frequently modified during gait-
retraining with the goal of reducing injury risk [27] and that
can be easily identified through a frame-by-frame video
analysis, namely, the presence of rearfoot strike, overstrid-
ing, crossover, EPR, and EPD. Rearfoot strike, overstriding,
and crossover were assessed to describe the running pattern
at initial contact, EPR, and EPD at midstance. Running gait
phases were identified by the use of the Optogait system, and
the presence or not of the selected running patterns was
detected by video analysis with manual digitation. Criteria
used to assess the presence of rearfoot strike, overstriding,
crossover, EPR, and EPD by 2D video analysis referred to
those used in literature [7, 18, 27, 28]. In particular, rearfoot
refers to initial contact made by the heel in which the heel
lands before the ball of the foot, a midfoot strike refers to an
initial contact in which the heel and the ball of the foot land
quasisimultaneously, while in a forefoot strike the ball of the
foot lands before the heel [7]. Overstriding occurs when, at
initial contact, the knee is completely extended, and the
ipsilateral foot lands anteriorly to the pelvis [27]. Markers
placed on the external malleolus, the head of the fibula, and
the lateral condyle of the femur and the great trochanter
were used to observe the complete extension of the knee and
the foot placement compared with the pelvis (assumed to be
on the same axis of the great trochanter). Crossover occurs
when both feet land on the contralateral side of the body
midline during a gait cycle [18]. 'e body midline was
identified with the vertical line passing through the marker
placed on the L5 vertebra. EPR and EPD describe running
strategy during the midstance phase [27]. EPR is a triplanar
motion of the subtalar joint characterized by a flattening of
the medial arch and a hypermobile midfoot [27]. EPR was
assessed by evaluating, through 2D video analysis, heel
eversion, as reported by Souza et al. [27]. Presence of EPD
was ascertained by evaluating the position of the iliac crest
on the stance limb, which in EPD, is characterized by an
excessive elevation relative to the contralateral iliac crest
during the first half of the stance phase [27].

2.4. Statistical Analysis. Statistical analysis was performed
using the STATA 10.0 Software, from Stata Corporation

X

Y

Z

Figure 1: Placement of the inertial measurement unit at the upper-
trunk level and axis orientation.
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(College Station, Texas, USA). Data were firstly tested for
normality using the Shapiro–Wilk test and then analyzed
accordingly. Since acceleration measured at the lower trunk
level was observed to be influenced by the training status
[11], withmore trained subjects showing lower aRMS values,
differences in normalized aRMS were investigated between
subjects with different training levels. 'e criterion to be
considered more trained runners was running more than 50
kilometers per week [10]. An independent t-test, with a p

value of 0.05 as significance level, was used to compare the
two groups. 'e magnitude of the difference was assessed
through the effect size (d) which was interpreted as low,
if<0.3, medium, if comprised between 0.3 and 0.5, or large,
if>0.5. 'e same analysis was conducted to investigate
differences in normalized aRMS between males and females
and subjects with different running patterns.

'en, normalized aRMS on each axis was entered, as the
dependent variable, into a multiple linear regression model
in which variables previously shown to be associated with
aRMS with a p value<0.05, was considered as independent
variables, while age, sex, weight, and height were assumed as
confounding factors.

3. Results

Participants’ characteristics are given in Table 1. Runners
were aged between 19 and 61 years with a larger number of
males (59/87, 68%). More than half of the participants
exhibited a rearfoot strike pattern (67%), a crossover be-
havior (54%), and an EPR (57%), whereas most of themwere
free from overstriding (94%) and from EPD (64%). Because
of the low number of subjects presenting overstriding, the
parameter was excluded from further analysis. Normalized
aRMS values observed along the AP and ML axes were
comparable.

Table 2 shows normalized aRMS values measured along
each axis in the male and female groups. Mean normalized
aRMS for males was 0.203± 0.051, 0.212± 0.033, respectively,
along the AP andML directions. Similar values were observed
in females (AP: 0.194± 0.048 and ML: 0.207± 0.024, p> 0.05;
detailed p values are reported in Table 2).

More trained runners ran on average 62 km per week.
When normalized aRMS was assessed in this group, values
obtained were 0.196± 0.045 along the AP direction and
0.216± 0.026 along the ML direction. Averaged kilometer
ran per week was 31 for the less-trained participants. Trunk
accelerations measured in this group were not significantly
different (p> 0.05, detailed p values are given in Table 2)
from those measured in the most-trained group, with a
normalized aRMS value of 0.202± 0.053 and 0.208± 0.032
along the AP and ML axes, respectively. Since no significant
differences in the normalized aRMS were observed between
males and females and between more- and less-trained
runners, data were pooled in further analyses. A significant
difference was found in normalized aRMS measured along
the ML direction between runners who exhibited a tendency
towards crossover and those who did not (p � 0.023, d� 0.5,
Table 3), with a higher acceleration value measured in the
second group.

Along the same axis, acceleration of the UT was sig-
nificantly lower in runners who had EPD compared with
those that did not (p � 0.032, d� 0.5). Even when socio-
demographic variables (age, sex, weight, and height) were
included in the analysis as confounding factors, the presence
of EPD remained significantly associated to a decrease in the
aRMS along the ML direction (p � 0.020, Table 4).

4. Discussion

'e aims of this study were to assess whether, in recreational
runners, UT loading response and stance might be affected
by sex, level of training, and lower body running pattern.'e
aim was accomplished by using an IMU, and a quantitative
assessment of UT kinematics was obtained.

In our sample, no differences were found in terms of the
aRMS on the AP and ML planes between men and women.
'e result is in agreement with findings observed for walking
gait in a study of Mazzà et al., aiming to investigate gender
differences in gait patterns [24]. Mazzà et al., by examining
shock attenuation during gait, found similar values for the
UTaRMS in men and women, when the gait was performed
both at comfortable and fast speed.

In our group of runners, the level of training did not
affect the measured aRMS (Table 2). Different from what
observed in this study, Mc Gregor et al. reported significant
differences in lower trunk acceleration when comparing a
group of more-trained runners (semiprofessional athletes)
with a group of recreational runners [11]. Discrepancies
observed in the two studies may in part be the result of the
different locations of the sensor (upper vs. lower trunk) and
the consequent different shock attenuations provided by the
intervertebral disks. However, more likely, the cause of
different results obtained lays in the higher gap in training
present between the two groups studied by Mc Gregor
compared with the groups investigated in this study, with the
latter including only recreational runners [11]. Indeed, more

Table 1: Sample’s characteristics.

Subjects’ characteristics Mean± SD
Sex (%F) 31%
Age (yrs) 41± 10
Height (cm) 174± 8
Mass (kg) 69± 10
Running velocity (m/s) 10.6± 1.5
Initial contact characteristics
Rearfoot (%Y) 67%
Overstriding (%Y) 6%
Crossover (%Y) 54%
Midstance characteristics
Excessive pronation (%Y) 57%
Excessive pelvic drop (%Y) 36%
Upper trunk acceleration patterns
Anteroposterior aRMS (g) 0.278± 0.067
Mediolateral aRMS (g) 0.294± 0.045
Vertical aRMS (g) 1.400± 0.094
Anteroposterior naRMS∗ 0.191± 0.046
Mediolateral naRMS∗ 0.201± 0.027
∗Normalized acceleration root-mean-square.
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trained athletes develop a greater capacity to stabilize the
trunk segments during running; however, this difference
seems to become significant only in presence of an advanced
level of training (professional and semiprofessional athletes).

Runners involved in this study did not show differences
in UT aRMS, neither in the AP nor in the ML plane, in
presence of different lower limb strategies with regard to the
contact phase. 'e only running strategy that showed a
significant relationship with UTstability was the EPD. To the
best of the authors’ knowledge, there are no studies in lit-
erature that have investigated possible correlations between
running patterns and UT accelerations; thus, a direct
comparison of results across studies is not possible.

Concerning different strike patterns, Gruber et al. in-
vestigated a group of habitual rearfoot runners and a group
of habitual forefoot runners with the purpose of determining
differences in the head and tibial acceleration signal power
and shock attenuation [19]. What arose was that rearfoot
strikers had significantly higher peak accelerations at the

tibia level in comparison with forefoot strikers, while ac-
celerations at the head level were not different between the
two groups. Authors concluded that the body has the ca-
pacity to manage a range of impulsive loads derived by the
shock generated from the GRF, in order to protect the head
from excessive acceleration and to guarantee the stability of
the oculovestibular system, which seems to be in accordance
with results obtained in this study [19, 32]. In fact, none of
the lower limb running patterns analyzed in the present
study did not influence UT accelerations, even if literature
shows that they influence direction and/or intensity of the
resultant GRF.

'is principle might apply also to EPR, and this might be
the reason why a relationship between EPR and UT stability
was not detected in our runners. A certain degree of pro-
tonation is physiological, and it contributes to loading ab-
sorption [33]. However, literature is not in agreement on the
effect of physiological and excessive protonation on the ML
component of the GRF.

Table 2: Normalized acceleration root-mean-square (naRMS) values measured along each axis in the male and female group and in the
more trained and less trained ones.

Males Females
p

More trained Less trained
pn� 59 n� 27 n� 30 n� 57

v (m/s) 3.1± 0.4 2.7± 0.3 <0.001 3.1± 0.5 2.9± 0.4 0.004
km/sett 41.1± 19.2 41.9± 15.8 0.856 61.7± 11.4 30.7± 9.6 <0.001

UT acceleration variables
Anteroposterior naRMS∗ 0.203± 0.051 0.194± 0.048 0.420 0.196± 0.045 0.202± 0.053 0.606
Mediolateral naRMS∗ 0.212± 0.033 0.207± 0.024 0.461 0.216± 0.026 0.208± 0.032 0.231
∗Normalized acceleration root-mean-square.

Table 3: Normalized acceleration root-mean-square (naRMS) values of lower limbs parameters measured along each axis.

Rearfoot p Crossover p
Excessive
pronation p

Excessive pelvic
drop p

UT acceleration variables
Yes No Yes No Yes No Yes No

n� 58 n� 29 n� 43 n� 37 n� 45 n� 34 n� 29 n� 52
Anteroposterior naRMS∗ median
(interquartile range)

0.211
(0.07)

0.186
(0.08) 0.115 0.186

(0.08)
0.216
(0.07) 0.053 0.196

(0.07)
0.210
(0.08) 0.759 0.181

(0.09)
0.206
(0.06) 0.344

Mediolateral naRMS∗ median
(interquartile range)

0.214
(0.04)

0.210
(0.02) 0.089 0.202

(0.02)
0.217
(0.04) 0.023 0.213

(0.04)
0.203
(0.05) 0.109 0.202

(0.03)
0.214
(0.04) 0.032

∗Normalized acceleration root-mean-square.

Table 4: Multiple linear regression describing the relationship between excessive pelvic drop and crossover with mediolateral naRMS,
adjusted for age, sex, weight, and height.

Final model: obs� 86; prob> chi2< 0.036; R-square 0.170
Unstandardized coefficients Standard error p

naRMS∗ mediolateral
Constant 0.301 0.114 0.010
Sex − 0.013 0.010 0.217
Age 0.000 0.000 0.517
Height − 0.001 0.001 0.473
Weight 0.000 0.001 0.798
Crossover − 0.011 0.006 0.103
Excessive pelvic drop − 0.016 0.007 0.020
∗Normalized acceleration root-mean-square.
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'e only running strategy studied in this work that
showed a significant relationship with UT stability was the
EPD. Running patterns presenting EPD seemed to be asso-
ciated to lowerML aRMS at the UT level during the entire gait
cycle. Previous investigations confirmed this finding by ob-
serving an association between excessive pelvic drop and the
reduction of shoulder and head displacements during the
weight acceptance phase of running [20, 34, 35]. It is con-
ceivable that pelvis and spinal column play a determinant role
inmanaging and absorbing the shock derived fromGRF, even
if lower limb running pattern influences its direction and
intensity. Our study supports the hypothesis of Lim at al. that
hip can be used by runners to meet upper body stability
demands [13]. Moreover, Mazzà et al., in a study on walking
gait, observed that the spinal column at all levels plays an
important role in attenuating the shock provoked by the GRF,
transmitted from lower limbs to the head, and this attenu-
ation is already effective at the shoulder level (Mazzà). 'e
same mechanism it is probably working for running pattern,
and further studies are needed to corroborate this hypothesis.

Although the EPD seems to have a positive effect in
stabilizing the upper body, concerns remain on the effect of a
poor control of the pelvis on the biomechanics of lower
limbs. As pointed out by Powers et al., in activities char-
acterized by a single foot contact phase, such as running, the
presence of EPD might cause the GRF vector passing lateral
with respect to the knee joint center [34]. 'e valgus mo-
ment that originates in this case places a tensile strain on the
medial soft tissue restraints of the knee, which represents
one of the districts more prone to injuries in recreational
runners [34, 36].

Future studies should investigate whether the possible
protective role of pelvis drop on UT and oculovestibular
system stability, has a negative effect on lower limb kine-
matics andmight, eventually, lead to a higher risk of injuries.

'e authors acknowledge that the use of a treadmill
represents one of the limitations of this study. 'e main
reason for testing athletes on a treadmill was the need to
evaluate the protonation and pelvic drop parameters which
otherwise would have been difficult to detect through a video
analysis performed overground. An additional limitation is
represented by the absence of a functional calibration and
the manual alignment of the IMU with the anatomical axes.
Although having followed the manufacturer’s instructions
and having performed a tilt correction of the acceleration
signal through the gravity vector, a perfect alignment with
the anatomical axes can not be guaranteed.

Moreover, kinematic differences between overground
and treadmill running were deemed as acceptable for the
purposes of this study, according to data reported in liter-
ature [14, 30].

Further investigations conducted in an ecological setting
would surely add an important contribution to the results
obtained in this study.

5. Conclusions

In our sample of recreational runners, UT stability did not
appear to be affected by the gender, the level of training, and

lower limb strategies during contact phase. However, it was
found to be related to the compensation mechanisms of the
pelvis on the ML plane. Results obtained confirm the hy-
pothesis that the lower body is able to respond to varying
impact load conditions to maintain UT stability.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.
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Background. Utilization of the widely used wearable sensor and smartphone technology for remote monitoring represents a
healthcare breakthrough. +is study aims to design a remote real-time monitoring system for multiple physiological pa-
rameters (electrocardiogram, heart rate, respiratory rate, blood oxygen saturation, and temperature) based on smartphones,
considering high performance, autoalarm generation, warning transmission, and security through more than one method.
Methods. Data on monitoring parameters were acquired by the integrated circuits of wearable sensors and collected by an
Arduino Mega 250 R3. +e collected data were transmitted via a Wi-Fi interface to a smartphone. A patient application was
developed to analyze, process, and display the data in numerical and graphical forms. +e abnormality threshold values of
parameters were identified and analyzed to generate an autoalarm in the system and transmitted with data to a doctor
application via a third-generation (3G) mobile network and Wi-Fi. +e performance of the proposed system was verified and
evaluated.+e proposed system was designed to meet main (sensing, processing, displaying, real-time transmission, autoalarm
generation, and threshold value identification) and auxiliary requirements (compatibility, comfort, low power consumption
and cost, small size, and suitability for ambulatory applications). Results. System performance is reliable, with a sufficient
average accuracy measurement (99.26%). +e system demonstrates an average time delay of 14 s in transmitting data to a
doctor application via Wi-Fi compared with an average time of 68 s via a 3G mobile network. +e proposed system achieves
low power consumption against time (4 h 21m 30 s) and the main and auxiliary requirements for remotely monitoring
multiple parameters simultaneously with secure data. Conclusions. +e proposed system can offer economic benefits for
remotely monitoring patients living alone or in rural areas, thereby improving medical services, if manufactured in
large quantities.

1. Introduction

+e practice of remotely monitoring physiological param-
eters has become prevalent. Smartphones and wearable
sensors (WS) are widely available and can provide real-time
monitoring of critical parameters for healthcare providers
and patients. +us, integrating and combining WS and
smartphone technology (WSST) in a system can reduce the
challenges in monitoring life parameters of patients with
complex health conditions regardless of their location (e.g.,
remote or rural areas) [1–3]. +e use of WSST can likewise

improve telemedicine and healthcare services and provide
progressive services to patients with chronic conditions
[1, 4].

Numerous innovations have been developed for real-
time monitoring and/or store-and-forward telemedicine
services using ubiquitous connectivity tools and simple
mobile phone orWS applications. WSST has developed over
time owing to the creation of various built-in applications
and communication tools, such as GPS and third-generation
(3G) and fourth-generation phone network Internet [5, 6].
WSSTdevelopment has been accompanied by the increasing
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number of smartphone users, which was predicted to grow
from 2.1 billion in 2016 to approximately 2.5 billion in 2019,
as well as the growing number of applications being de-
veloped for real-time monitoring and health diagnosis [3, 7].

Remote monitoring systems have improved pro-
gressively to meet the needs of the elderly as well as to
reduce the number of deaths from chronic diseases, such as
cardiac arrhythmia, high blood pressure, and diabetes [8].
+erefore, numerous studies have been conducted to
monitor multiple physiological parameters responsible for
such diseases [1, 9–14]. However, other studies have fo-
cused on developing WSST to monitor a specific disease
[15–18].

Several studies have emphasized the use of developed
WSST in health applications given the positive static data
measurement characteristics ofWSST, such as reliability and
accuracy in continuous or real-time monitoring [19–21].
Other studies have focused on the disadvantages of WSST,
such as high power consumption, the generation of false
alarms, long-term health monitoring efficiency, and large-
scale utilization [1, 3, 20]. A few studies have also discussed a
combination of mobile technologies or monitoring issues
[3, 22, 23].

+e limitations of such designed systems include mea-
surement of a single parameter, analysis, and data trans-
mission and reception method/time [15–18]. Improvements
in this field have mostly tried to overcome these limitations
in ambulatory applications, specifically, the monitoring of
only one vital parameter, battery life, cost-effectiveness,
monitoring functions, a monomethod for warning trans-
mission, and data security.

+e current study integrates the specialized WSST to
design a remote real-time monitoring system for multiple
physiological parameters based on smartphones with
developed health applications that can monitor and dis-
play measured critical parameters, including an electro-
cardiogram (ECG), heart rate (HR), respiratory rate (RR),
blood oxygen saturation (SpO2), and temperature. +e
proposed system should meet main requirements such as
sensing, processing, displaying, and real-time trans-
mission and should have the capability to generate an
autoalarm based on the analysis threshold values of
multiple monitoring parameters. Moreover, it should
ensure the dispatch of warning messages via two trans-
mittal methods, namely, short message service (SMS) and
the Internet, and identify a patient’s location via GPS. +e
system should also meet auxiliary requirements such as
compatibility, comfort, low power consumption and cost,
and small size. Furthermore, the developed application
should enable users to record, save, and transmit real-time
data in video and text forms.

In this study, aWS acquires the body data, which are first
sent to an Arduino Mega 2560 R3 and then to a smartphone
through a Wi-Fi interface. +e data are collected in a
smartphone using a developed patient application that
analyzes, processes, and displays the data before trans-
mitting them to the developed doctor application. +e pa-
tient application consists of two working modes. +e first
mode continuously transmits data, while the second mode

transmits data only when abnormality is detected. +us, the
secondmode saves phone or device power as well as the time
of doctors/operators. +e application prompts an autoalarm
when an abnormal value is detected based on a previously
identified threshold and sends a warning message to the
doctor application (doctors/operators). +e developed ap-
plication is designed with adequate security to protect pa-
tient information. A special power bank is also designed to
ensure the long feeding power of the system and
smartphone.

System performance and reliability are evaluated for
accuracy measurement, power consumption test against
time, and average time delay. +e average accuracy mea-
surement of the collected parameters is 99.26%, and the
system achieves low power consumption against time (4 h
21m 30 s) for feeding measured circuits. Moreover, the
result shows that the average time delay of data transmission
to the doctor application via Wi-Fi is 14 s, whereas that via a
3G mobile network is 68 s.

+e results demonstrate the reliability and acceptability
of the system as well as the achievement of main and
auxiliary requirements. +erefore, the current system is
recommended not only for rural areas, particularly in de-
veloping countries, but also for hospitals and specific health
centers and to provide first aid, primary diagnosis, and
treatment. +e system will also offer economic benefits if
manufactured in a large scale.

2. Materials and Methods

+e proposed design was achieved through a combination of
WS circuits and smartphone technologies via an Arduino
circuit (as shown in Figure 1). +e WS circuits acquired and
computed the body data using an Arduino, which performed
primary data collection. An electronic interface connected
the Arduino circuits to the smartphone application to
monitor, analyze, process, and transmit the data. +e data
were ensured and secured for intended persons only.

Figure 1 shows an overview of the designed system
architecture, in which Figure 1(a) shows a block diagram of
the hardware components and their connectivity sequence
and Figure 1(b) demonstrates the data transmission network
of the monitoring parameters.

2.1. Hardware Components. All hardware components were
carefully selected to meet the requirements of the proposed
design, namely, low power consumption, suitability for
ambulatory applications, accuracy, reliability, affordability,
and availability. Auxiliary requirements such as easy han-
dling, comfort, minimal weigh, and long-term battery power
(power consumption) were also considered, as these features
could solve and overcome the limits and challenges of this
field [3]. +e hardware components are elucidated as
follows.

2.1.1. ECG and HR Circuits. +ese circuits were used to
acquire the first measuring parameter (i.e., an ECG) from
which the second parameter (i.e., HR) was calculated using a

2 Journal of Healthcare Engineering



MAX30003 circuit [24], which reduces movement artifacts
during continuous monitoring and is common in telemetry
monitoring [8].

+e ECG circuit removed motion artifacts using an
instrumentation amplifier that has a two-pole active anti-
aliasing filter with a 600Hz− 3 dB frequency. +e high-pass
filter options included a first-order infinite impulse response
(IR) Butterworth filter with a 0.4Hz corner frequency, which
was selected to correspond to ambulatory applications. +e
low-pass filter options included a 12-tap linear phase
(constant group delay) finite IR filter with a 40Hz corner
frequency.+e amplification process in this study used 20V/
V.

+e raw data of the ECG signals were saved in the
memory of the ECG circuit and then sent as a sequence to
the Arduino (Mega 2560 R3) using a DM74LS125A in-
tegrated circuit (IC) through a high-speed interface to
prevent interference between the data of the ECG signal and
other signals.

(1) HR Extraction. HR was defined by calculating the R-R
duration/interval time among QRS complexes of consecu-
tive ECG waveforms within 1minute intervals, where R was
the first upward deflection wave after the P wave, the QRS
complex was a series of waveforms following the P wave in
the ECG waveforms, and the R-R interval was the elapsed
time between two consecutive R waves [25, 26].

In this work, R waves were extracted by an Android
program from the recorded ECG waveforms as the maxi-
mum. Next, identical maximum points (R − R interval, ms)

were calculated, averaged, and divided into 1 minute in-
tervals (60×1000ms). Hence, HR was calculated in beats per
minute (bpm) as follows:

HR(bpm) �
60∗ 1000

R − R interval(ms)
. (1)

2.1.2. SpO2 Circuit. +e SpO2 signal was acquired by a finger
probe using an AFE 4490 from Texas Instruments [27],
which utilized a pulse oximeter technique (light-emitting
diodes). +e signal presented a voltage to the 22-bit analog-
to-digital converter (ADC), which was fed to a data pro-
cessor to digitize and send the display signal.

2.1.3. Temperature Circuit. +e body temperature signal was
acquired through skin temperature using a MAX30205
temperature sensor, which provided a digital output using
an ADC and operated within the 0°C to +50°C temperature
range. +e completed temperature reading operation was
updated for a new temperature measurement. During this
process, changes in temperature were discounted until the
peer reading was completed. +e updated temperature
register was sent to the Arduino Mega 2560 R3 to process
and display the signal.

2.1.4. RR Circuit. RR was acquired by a circuit that consisted
of a 10K-negative temperature coefficient thermistor fitted
into a nebulizer mask with a voltage divider configuration.

(a)

ECG and HR
circuit

SpO2
circuit

Temp.
circuit

RR circuit

Buffers
IC

SPI

Arduino
Mega 2560

R3

Arduino
Nano V3

Wi-Fi
interface

Patient’s
smartphone

Power supply

Patient’s
smartphone

Cloud database

SMS
mobile network

(b)

3G Internet 3G Internet

Health operators/
relative personals

Doctors

Figure 1: Overview of designed system architecture: (a) circuit diagram connectivity between WS, Arduino board, Wi-Fi module, and
smartphone; (b) overview of data transmission network.

Journal of Healthcare Engineering 3



+ermistor resistance decreased during exhalation owing to
comparatively hot air and increased during inhalation. +e
obtained signal from resistance was converted into a voltage
and fed into a 0.0884–0.8942Hz bandpass filter. +e output
of the filter was amplified 100 times and sent to the Arduino
Mega 2560 R3 through an Arduino Nano, as shown in
Figure 1.

2.1.5. Power Supply Circuit Bank. +e power supply circuit
was designed tomeet the requirements of the power bank for
the proposed system, such as low cost and effective long-
time consumption.

Figure 2 illustrates the components of the designed
circuit bank, which consisted of a charger/discharger IC
(TP4056 chip), an IC converter, an LCD screen, and a
lithium-ion battery. A TP4056 chip was used to control the
charging and discharging of the battery, which was supplied
by a control switch through an “on” and “off” function. A
DC-DC boost IC converter chip was used to cater to a stable
5V DC supply at outlets to ensure a supply of not less than
3.7V DC from the battery. +e LCD screen showed the
percentage of the remaining capacity and the working status.
A USB outlet 2 (OT 2) was used as an option for charging
smartphones (if needed), and an outlet 1 (OT 1) was used to
feed the circuits via constant current and voltage (5V). +e
actual capacity of the battery was 3678mAh, and actual
recharging time was 1 h 50m 15 s. +e designed features/
specifications of the power supply circuit bank are dem-
onstrated in Table 1.

2.1.6. Arduino Mega 2560 R3. An Arduino Mega 2560 R3
was selected owing to its memory capacity, multiple and
various input/output pins, data-processing speed, various
WS connection modes, and simple computer connection via
a USB cable. Moreover, it included an option to send signals
wirelessly or via a USB cable.

2.2. Patient Data Collection and Transmission

2.2.1. Patient Data Collection. +e acquired data from
multiple WS were collected in the Arduino Mega 2560 R3,
which was the primary platform for data collection and
preparation for transmission to Android devices. +e
Arduino was connected to a tablet or a smartphone via a
USB cable and a computer to display the acquired data
during the tests. However, this capability enabled moni-
toring parameters in sideway locations.

2.2.2. Patient Data Transmission. Patient data were trans-
mitted from the Arduino Mega 2560 R3 to an Android
smartphone using a Wi-Fi ESP8266 circuit through serial
communication (RX/TX lines), which was capable of either
hosting an application or offloading all Wi-Fi networking
functions from another application processor. +e Wi-Fi
ESP8266 circuit was used rather than Bluetooth owing to the
former’s standby power consumption of <1.0mW and

waking-up and packet transmission of <2ms and capability
to send a variety of data.

A smartphone’s Wi-Fi was forced to fast switch (833 μs)
between two operations automatically to receive and
transmit data to the doctor application. +e system did not
lose its capability for real-time transmission because of the
delay from switching.

2.3. Android Health Application Design. +e application
design considered features that help increase the probability
of saving patient lives as well as modern attributes, thereby
presenting advantages over other designs in recent studies
[2, 21]. +e current application consisted of patient and
doctor applications.

2.3.1. Patient Application. A health application was created
in the proposed system in the Android studio interface to
simplify the procedures of the intended features. +e An-
droid applications were written using the Java programming
language. +e primary data collected in the patient appli-
cation were converted into integer values (secondary data)
and compared with the threshold values of each parameter.
+e application continuously scanned for updating pa-
rameter values simultaneously and visualized the values in
the adaptation window of the smartphone. +e application
worked in the following modes:

(i) +e first mode monitored and displayed parameter
values simultaneously in real time through a
smartphone, with a possibility of transmitting these
values to intended trends.

(ii) +e second mode transmitted data when abnormal/
threshold values were detected. +at is, the system
monitored and sensed parameter value abnormali-
ties and then transmitted these data to intended
trends.

Selection of the second mode helped arrange/save time
for personnel working with related proposed systems.
Moreover, this mode saved a considerable amount of energy;
thus, it provided more advantages than those in previous
works [1, 2, 8, 10, 14]. +e developed application also in-
cluded the following features:

(i) Provided a platform for monitoring and displaying
measured parameters based on primary analysis and
diagnosis

LCD screen

Charger input
(USB)

Switch
on and off

Charger and
discharger IC

Smartphone

Designed
circuits

OT 1

OT 2
Outlets

Battery

IC converter

Figure 2: Block diagram of the power supply circuit bank.
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(ii) Saved recorded data with respect to time to review
activities during movements and exercises

(iii) Transmitted data in video (graphic and numerical
data) or numerical forms to responsible individuals
(doctor application)

(iv) Offered more than one option for monitoring and
transmitting data

(v) Sent patient locations via GPS using Wi-Fi or 3G as
well as a warning to other personal operators via
mobile or/and Internet networks using SMS or/and
WhatsApp, respectively

2.3.2. Doctor Application. +e second component of the
health application was created in Android and provided a
screen window to show the transmitted data from the patient
application. +is component permitted doctors or re-
sponsible persons from an insurance company or medical
center to monitor a patient’s situation and provide first aid
and diagnosis for critical cases. +e web portal requires a
user name and ID/password to protect privacy. +e web
interface provided data in video form (graphic and nu-
merical data) recorded from the patient application and/or
numerical data for multiple patients to display on smart-
phone/Android devices.

2.3.3. Application User Management. +e application in-
terfaces and icons were designed in a simplified manner to
be managed and used easily by anyone, as shown in Figure 3.
+e menu interface of the patient application is shown in
Figure 4.

2.4. Autoalarm System. +e designed system generated an
autoalarm in the two working modes of the health appli-
cation when it sensed abnormalities in one or more of the
monitored parameters and would transmit data using two
warning methods.

2.4.1. Wi-Fi/3G Warning Method. +is method was used in
both application modes to transmit data to the web in-
terfaces of intended trends. +e 3G network was dominant
in smartphones for transmitting and receiving data via Wi-
Fi from the Arduino owing to the default Wi-Fi system, as
shown in Figure 5.

Wi-Fi was reconnected automatically for 833 µs to re-
ceive data from the Arduino to send to the doctor appli-
cation. In case of available Wi-Fi NAN, such as in rural areas

and locations far from health facilities, the system used 3G
Internet provided by a mobile phone network. +e autoa-
larm generated through the system was received on the web
interface and perceived through sound and vibration to
notify doctors or operators with identified locations via GPS.

2.4.2. Mobile Network Warning Method. +is method was
used to send SMS warning messages to centers such as
RMSPPS servers, families, or doctors. +e message was
shown as “I have detected an abnormality condition; for
more details, visit your account on the doctor applica-
tion.” Phone numbers of the operator’s server/insurance
company and doctors were identified previously in the
system.

Figure 6 shows the sequence of the application working
mechanism, threshold value identification, and data trans-
mission. +e default mode in the application was mode 1,
whereas mode 2 in the dashed line was considered as a user
option.

2.5. Determining:reshold Values. +e autoalarm feature of
the proposed system was based on the threshold value de-
termination of monitored physiological parameters, such as
HR, which reflects certain cases of ECG abnormalities and is
considered as an indicator of a motion function [28]. In this
study, HR was extracted and calculated from ECG wave-
forms on the basis of an algorithm proposed in [25], and the
HR threshold values were determined based on works
[13, 26].

RR threshold values have been defined in different
ranges depending on the acquisition method and age of a
patient [29] and are considered as an indicator of various
symptoms, such as cardiac arrest, coughing, decreased
alertness, poor feeding, grunting, and fever [30–32]. +e
mean observed RR was 14.2 (±4.17 precision (SD))
breaths per minute for adults [29], which was less than
the mean RR 15.1 (±4.05 SD) breaths per minute mea-
sured by respiratory inductive plethysmograph [32]. In
this study, the normal RR for monitoring elderly and
adult subjects (between the ages of 20 and 50 years) at rest
was from 12 breaths per minute to 16 breaths per minute.
+e common RR abnormality limits are shown in Table 2
[30, 33].

Temperature and SpO2 estimation values were de-
termined as ranges that have been defined for pathologies
[1, 13]. Table 2 shows a summary of the threshold values of
intended parameters.

Table 1: Specifications of the designed power supply.

Parameter Specifications
Battery type Lithium ion
Capacity 4000mAh

Connectivity Two output ports (2 A feed system, 1 A USB to feed
phone)

Voltage required input USB 5V, 2A
Time required to recharge 1 hour 50 minutes
Battery life with full charge 4 hour 30 minutes
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2.6. System Test. +e proposed system was subjected to
numerous tests to determine the accuracy and reliability of
remote monitoring and data transmission in real time. +e
system primarily evaluated the achievement of designed and
functional requirements at each implementation step.
Quality performance of the system was measured by cal-
culation accuracy. Accuracy was determined by the

agreement between the measured (experimental) values of
the proposed system and the true value of the qualified
equipment (patient monitor model TR6628-9500, Eastern
Europe Co.) in the biomedical engineering laboratories at
the University of Science and Technology, Yemen. Equation
(2) demonstrates the percent error calculation, and equation
(3) shows the percent accuracy calculation:

(a) (b)

Figure 3: First windows of the patient application: (a) log-in and registration screen option; (b) patient information registration screen (e.g.,
name, age, gender, and the emergency number of the intended person).

(a) (b)

Figure 4: +e menu interface of the patient application: (a) home screen of the patient application; (b) the patient account page.
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percent error �
measured value − true value

true value
∗ 100, (2)

percent accuracy � 100% − percent of error. (3)

+e accuracy measurement of each sensor was calculated
by averaging the obtained accuracy values of five mea-
surement processes. +en, the total accuracy of the entire
WS was calculated as the average of the total WS mea-
surement accuracy, as shown in Tables 3 and 4.

System reliability was tested and held in different time
periods. Power consumption for long-term use was
evaluated through battery life charge time (LCT) for three
cases, namely, supplying only the working circuits,
charging the circuit and smartphone simultaneously
(versatility), and supplying only the smartphone (an
auxiliary), as shown in Table 5. Likewise, reliability of the
system for data transmission delay time was checked with
Wi-Fi and 3G. +e system held seven connection/dis-
connection trials, considering several connection condi-
tions, such as weak Internet, coverage area, and cloud
server type (see Table 6).

3. Results

+e obtained results illustrated the achievement of the
current system in monitoring critical parameters related
to common diseases, such as HR, ECG, SpO2, and
temperature, which were measured using a combined WS
and Arduino circuits and a developed application in
Android devices, such as smartphones. +e patient ap-
plication met the requirements of receiving, processing,
analyzing, and transmitting data to intended trends as
well as displaying them in the doctor application/web
interface. +e results are organized to show the main
achievements.

Figure 7 shows the interface display for monitoring data,
which was represented in graphic and numerical forms.
+ese features promoted readability for healthcare per-
sonnel, such as patients, doctors, nurses, and operators. +e
exterior interface was designed like a patient’s monitor,
reflecting the same functions and information but through a
portable device.

+e results revealed the success of the autoalarm gen-
eration system in case of abnormalities and in sending a
warning SMS via the system to the doctor application
through sound and vibration as well as a written flag to
attract a doctor’s attention.

Figure 8 shows several capabilities of the designed
system, in which Figure 8(a) illustrates an example of an
SMS received via a mobile network. +erefore, the system
was useful for tracking patients, particularly when Internet
connection was unavailable. +e system transmitted data
and/or video recordings of acquired abnormal cases to
doctors/operators and displayed them via the doctor ap-
plication and WhatsApp, as depicted in Figures 8(b) and
8(d). Figure 8(c) demonstrates the system’s capability to
determine locations via GPS.

Tables 3 and 4 show the results of the accuracy
measurement evaluation by comparing the values of our
system with a standard device. +e accuracy measure-
ment was calculated as the average accuracy of each
measured parameter, and all the accuracy measurements
were averaged as the accuracy measurement of the entire
system (99.25%).

+e results of the power consumption test against time
showed sufficient LCT in the case of supplying the circuits
(4 h 21m 30 s). However, in the versatility case, LCTwas low
and approximately 45% of time, as shown in Table 5.

Table 6 demonstrates the results of the time needed to
connect stages and transmit data through the system for
Wi-Fi and 3G. +e average time for data transmission to
the doctor application was 18 s via Wi-Fi and 70 s via 3G.
+e average time delay was less (14 s) with a Wi-Fi
network compared with a 3G network (68 s). +erefore,
the system can serve its purpose, and the alarm response
time depended on the smartphone model and Internet
speed.

+e final specifications and features of our system are
concluded in Table 7, and the final design is shown in
Figure 9.

No

No

Yes

Yes

Yes

No
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End
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Wi-Fi/ to receive data

from WS device
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Is Wi-Fi
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available?

Is 3G/4G
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Start

Receiving data
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Figure 5: Smartphone Wi-Fi connection-reconnection sequence.
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4. Discussion

+e results of the proposed system appear clearly and
correctly without interference in the monitored parameter
data in the patient and doctor applications.

+e provided features in the interface display in graphic
and numerical forms (Figure 7), distinguish the proposed
system, and overcome the challenges in previous works in
this field [1, 2, 8, 10, 21]. Moreover, the system includes other
capabilities that improve primary diagnosis to offer first aid,
particularly for simultaneous critical cases of multiple pa-
tients. +ese capabilities include generating an autoalarm

and transmitting data in multiple forms. +e system also
exhibits general features, such as sending data to social
media (WhatsApp) and determining patient location via
GPS.

+e system demonstrates a satisfactory time delay (14 s)
for data transmission via Wi-Fi compared with the recent
presented system (30 s) [1].+e time needed to transmit data
via 3G is 68 s owing to the low speed used in the tested area,
which can be improved. A 3G mobile network can provide
the proposed system with long real-time monitoring to
achieve an extensive coverage area. +e low and acceptable
power consumption against time (4 h 21m 30 s) is an
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Figure 6: Flowchart of the working mechanism of the designed system.
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important feature that distinguishes our system. +us, the
use of less time for transmitting data, with a potential for
improvement, and the long operation time make our system
superior to other systems in the related work in this field
[1, 10, 14].

+e results of the combined WSST and developed ap-
plication meet the main requirements for remotely

Table 2: +reshold values of monitoring parameters.

Parameter Rhythm/pathology +reshold values

SpO2 (%)
Normal 96 to 99

Pulmonary or cardiovascular chronic diseases Drop rapidly
Acute respiratory failure <90%+ 3 to 4%

RR (breaths per minute (bpm))

Normal 12–16
Cardiac arrest ≥27

Lower respiratory tract infections >24
Tachypnea >12–16
Bradypnea <12–16

Temperature (°C)
Normothermia or euthermia 37.0

Fever ≥37.8
Hypothermia ≤35.0

HR (beats per minute (bpm))
Normal 60 to 100

Bradycardia <60
Tachycardia >100

Table 3: Accuracy measurement of SpO2, HR, and ECG.

Subject
Parameter

SpO2 % Heart rate (bpm) ECG (R-Rms)
MV∗ TV∗ MV TV MV TV

1 96 96 77 76 632 630
2 95 94 100 98 568 563
3 98 96 99 98 581 585
4 96 97 45 45 627 632
5 95 94 89 88 639 635
Average accuracy (%) 98.36 98.89 99.93
∗MV, measured value; TV, true value.

Table 4: Accuracy measurement of RR and temperature.

Subject
Parameter

Respiratory rate (rpm) Temperature (°C)
Measured value True value Measured value True value

1 14 14 32 33
2 16 15 35 34
3 14 15 35 33.5
4 15 16 36 35
5 15 15 34.5 35.5
Average accuracy (%) 100.00 99.11

Table 5: Power consumption test.

Test type Description Time

Battery LCT
Supplies the circuits only 4 h 21m 30 s

Supplies the circuits and smartphone (versatility) 2 h 15m 20 s
Supplies the smartphone only 3 h 50m 05 s

Table 6: Performance test of transmission time.

Performance parameter Wi-Fi 3G
Average connecting time (s) 71 117
Average transmitting time to doctor app (s) 18 70
Average time loss ratio (s) 4 2
Average time delay (s) 14 68
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Figure 7: Interface display of monitoring parameters (application display).

(a) (b)

(c) (d)

Figure 8: Several capabilities of the designed system: (a) example of receiving an SMS; (b) transmitted data in the doctor application; (c)
receiving a video recording and a message in WhatsApp; (d) sending a patient’s location to a doctor/operator.
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monitoring physiological parameters. +ese requirements
include a remarkable achievement in design and efficiency
improvement in terms of accurate real-time sensing,
transmuting, and displaying as well as low power con-
sumption. Moreover, the system achieves auxiliary re-
quirements such as comfort, compatibility, ease of use,
minimal weight, small size, and affordability, which are
considered more than the stated requirements in such
systems [3].

Despite its features and advantages, the system should be
further developed and adapted for iPhone operating systems.
+at is, the application is compatible only with Android
devices, specifically Android operating systems starting from
version 5.1.1. A blood pressure monitoring parameter should

be added to the current five parameters of the system for the
full monitoring of critical cases. In this study, our emphasis on
the use of Wi-Fi rather than Bluetooth for sending data to
smartphones is justified owing to the former’s data trans-
mission speed and minimal power consumption. +us, the
two features distinguish the system and meet the essential
requirements for real-time monitoring.

5. Conclusion

+euse ofWSSTin a remotemonitoring system can advance
healthcare services, particularly for the elderly who live alone
or in rural areas with limited access to medical services or
institutions. In this study, a remote monitoring system is
designed based on smartphones to perform real-time
monitoring and to provide primary analysis, diagnosis, and
treatment (i.e., first aid) simultaneously. +e proposed
system helps reduce the death rate from chronic and
common diseases related to the monitoring of critical pa-
rameters, such as ECG-HR, SpO2, RR, and temperature.

+e system also possesses features that render it superior
to other systems in the field, such as application capabilities,
option modes, autoalarm generation, alarm transmission via
two methods, secured data transmission, and appropriate
forms for displaying such data for multiple patients si-
multaneously. Moreover, the system meets the main and
auxiliary requirements.

Table 7: Final specifications of the designed system.

WS/parameter Specifications

General

(i) Rechargeable battery
(ii) Compatible with most android devices
(iii) Small size, portable, and easy to use

(iv) Comfortable for adult and old patients
(v) Multiple parameters: ECG, HR, SpO2,

temperature, and RR
(vi) +e ability of recording a video and data text of

signals
(vii) Sending autoalarm to the doctor/centers in

different tools

ECG and HR

(i) ECG: single lead without the need for a third right-
leg drive (DRL) electrode

(ii) Heart rate detected by R to R distance
(iii) Frequency range: 15.625mHz up to 256Hz

(iv) ECG calibration: ±0.25mV
(v) Arrhythmia analysis: yes

SpO2

(i) Display: waveforms and digits
(ii) Real-time display of PPG (photoplethysmogram)

(iii) Measurement range: 1–100%
(iv) Resolution: 1%

(v) Accuracy: 2% (80–100%)
(vi) Pulse rate range: 20–300 bpm

RR (respiratory rate)

(i) Method: air flow temperature
(ii) Measurement range: 5∼50 rpm

(iii) Accuracy: ±1 bpm
(iv) Resolution: 2 bpm

Temperature
(i) Measurement range: 0∼50°C
(ii) 0.1°C accuracy (37°C to 39°C)

(iii) Resolution: 0.1°C

SpO2
probe Temperature

sensor

Respiratory
sensorECG

electrodes

USB
cable

Figure 9: Final external view of the designed system.

Journal of Healthcare Engineering 11



Consequently, the designed system presents a solution
not only for rural areas in developing countries but also for
all types of healthcare facilities. Furthermore, the system
would be economically beneficial if manufactured in large
quantities because it would lead to the development of
widespread health service networks in developing countries
as well as rural areas.

In the future, the system can add a blood pressure signal
to the monitoring parameters, as it relates to critical cases.
Moreover, the system will need to overcome its limits, such
as adaptation to iPhone operating system devices, given the
wide range of people using such devices.

Data Availability

+e Arduino code and the Android applications that are
used to support the findings of this study have been de-
posited in the RMSPPS repository on GitHub website
(https://github.com/adelalfusail/RMSPPS).
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Objective. To investigate whether a microelectromechanical system (MEMS) inertial sensor module is as accurate as fiber-optic
gyroscopes when classifying subjects as normal for clinical stance and gait balance tasks. Methods. Data of ten healthy subjects
were recorded simultaneously with a fiber-optic gyroscope (FOG) system of SwayStar™ and a MEMS sensor system incorporated
in the Valedo® system. Data from a sequence of clinical balance tasks with different angle and angular velocity ranges were
assessed. Paired t-tests were performed to determine significant differences between measurement systems. Cohen’s kappa test
was used to determine the classification of normal balance control between the two sensor systems when comparing the results to a
reference database recorded with the FOG system. Potential cross-talk errors in roll and pitch angles when neglecting yaw axis
rotations were evaluated by comparing 2D FOG and 3D MEMS recordings. Results. Statistically significant (α � 0.05) differences
were found in some balance tasks, for example, “walking eight tandem steps” and various angular measures (p< 0.03). However,
these differences were within a few percent (<2.7%) of the reference values. Tasks with high dynamic velocity ranges showed
significant differences (p � 0.002) between 2D FOG and 3DMEMS roll angles but no difference between 2D FOG and 2DMEMS
roll angles. An almost perfect agreement could be obtained for both 2D FOG and 2D MEMS (κ � 0.97) and 2D FOG and 3D
MEMS measures (κ � 0.87) when comparing measurements of all subjects and tasks. Conclusion. MEMS motion sensors can be
used for assessing balance during clinical stance and gait tasks. MEMS provides measurements comparable to values obtained with
a highly accurate FOG. When assessing pitch and roll trunk sway measures without accounting for the effect of yaw, it is
recommended to use angle and angular velocity measures for stance, and only angular velocity measures for gait because roll and
pitch velocity measurements are not influenced by yaw rotations, and angle errors are low for stance.

1. Introduction

Technological advances and clinical research have shown
that body-worn sensors measuring angular velocity (gyro-
scopes) and/or the acceleration of the trunk can accurately
quantify balance during stance and gait tasks [1, 2], enabling
detection of potential fallers [3] and discrimination between
clinically different balance disorders [4].

)e sensors used for these purposes must be accurate
over different ranges of angular velocity, low velocity ranges
(<0.5°/s) for stance tests on a firm surface [4], and high

velocity ranges (>100°/s) for more dynamic tasks such as
rising from a stool. To detect possible deviations of body
sway compared to normal reference ranges when standing
with eyes open or closed on a firm surface, tests typically
used clinically, highly accurate, low-noise, and low-drift
sensors are required [5]. In contrast, when performing a
comparison of body dynamics to those of healthy subjects,
observed when rising from a stool and then walking forward,
a sensor with a large working range and high resolution is
required [6]. Tasks with intermediate ranges of sway am-
plitudes, such as those of normal walking, require a mix of
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these requirements in order to identify elderly “fallers” [7].
)e question is whether technologic improvements in
microelectromechanical system (MEMS) motion sensors
forming the basis of low-cost (approximately 10 times
cheaper) and lightweight inertial measurement units (IMUs)
are able to replace relatively more expensive, heavier, but
more accurate (drift 10 times less) fiber-optic gyroscopes
(FOGs) used for assessing a wide spectrum of balance tasks
[2, 4].

A further method to reduce the costs of balance mea-
suring devices is to use a sensor system measuring only roll
and pitch motion thereby ignoring yawmotion (Figure 1(b))
under the assumption that motion about the yaw axis has a
negligible influence on roll and pitch measures for most
clinical stance and gait tests, except those involving turning.
As this approach is often used with FOG systems, a con-
firmation of the negligible influence of yaw would permit
interchange of reference value databases [5] collected with
both devices.

In this study, we investigated whether a 2D or 3DMEMS
motion sensor could be used as a cheaper lightweight al-
ternative to measuring balance control in the form of an-
gular sway velocity at the lower trunk with accurate FOGs.
As small sensors can be placed easily at other locations on
the body, an affirmative result would pave the way for the use
of such sensors in different body locations and provide the
basis for a comprehensive body-mounted motion analysis
system. Our primary hypothesis was that a MEMS system
would provide a comparable level of accuracy (kappa> 0.8)
in classifying normal balance test results as a FOG system.
We did not compare the MEMS motion to optical motion
capture system because, unlike the 2 systems we compared in
this study, motion capture systems are not portable and not
quick to start, requiring the attachment of several optical
“markers.”

2. Methods

2.1. Measurement Systems. A fiber-optic gyroscope system
SwayStar, manufactured by Balance International In-
novations GmbH (Switzerland), was used as this is supplied
with an extensive healthy control reference database of
several clinical stance and gait balance tasks for subjects in
the age range of 6 to 80 years [5]. )is system measures the
angular velocities of the trunk in sensor coordinates near
the center of mass (around L3–L5) by means of two or-
thogonally placed fiber-optic gyroscopes (FOG). )ese
record trunk sway velocities in sensor coordinates in the
pitch and roll directions (Figure 1(b)). Rotations about the
yaw axis are not measured with this system. Data were
sampled at 100Hz and sent unfiltered via a wireless
Bluetooth connection to the PC, where the data were low-
pass-filtered at 30Hz. Angular deviations in the roll and
pitch direction were calculated using trapezoid integration
of angular velocity recordings from the sensors after any
velocity spikes (due to a communication error) in the data
were removed with a 3-sample filter examining differences
between angular accelerations over the 3 samples and then
low-pass-filtering with a low-pass finite impulse response

filter with a cutoff of 30Hz. Spikes were removed by ex-
amining if the neighboring accelerations were of different
sign and exceeded the mean plus 1.5 standard deviations of
all accelerations in the recording, and then the sample with
a spike was replaced with a linearly extrapolation value
from the neighboring samples. )e sensors have a specified
drift of 6°/hr, a noise level (random walk) of 0.04°/s per
√hr, and a maximum range of ±256°/s sampled with a
resolution of 16 bits at 100Hz. )e dimensions of the
sensor box mounted on a converted motorcycle belt are
15 cm × 11 cm × 9 cm, and the weight with the sensors is
approximately 750 grams.

For the microelectromechanical system (MEMS), one
sensor system from the Valedo® products, developed
and manufactured by Hocoma AG (Switzerland), was
used. )e standard application of these sensors is to
measure pelvic and spinal movements in order to assess
movement parameters and to provide training as part of a
physiotherapy plan [8]. )e dimensions of each sensor are
4.2 cm× 3.2 cm× 1.6 cm, and the weight is 18 grams. )e
sensor module consists of a 3D MEMS gyroscope, 3D ac-
celerometer, and 3D magnetometer, together with an
onboardmicroprocessor, battery, and Bluetooth Low Energy
(BLE) module.)e gyroscope has a typical drift of 30°/hr and
a noise level of 0.02°/s per √Hz, and samples have a reso-
lution of 14 bits at 1000Hz. )e internal microprocessor
runs an extended Kalman filter fusing the data of all three
sensing elements outputting drift-free orientation [9]. )e
data of the magnetometers were not taken into account in
the Kalman filter sensor fusion to eliminate any effect of
magnetic disturbances [10]. Data from the sensor were
transferred to the client (PC) by means of the BLE Notify
operation at a rate of 50Hz. Sampled data consisted of the
orientation of the sensor module in quaternion format with
respect to an earth-fixed reference system.

To obtain 3D angular velocity, the received quaternion
samples were differentiated with respect to time [11]. Dif-
ferentiation of the quaternion reduces the effect of gyroscope
offset fluctuations and drift in comparison with the directly
measured gyroscope signals because the orientation output
is corrected by the sensor fusion scheme.)e disadvantage is
that noise in the orientation samples can cause spikes in the
angular velocity derivatives. )erefore, a Hampel filter was
applied using the MATLAB (MathWorks) application. )is
removed spikes by replacing each sample with the median of
six surrounding samples [12]. Because the implemented
Bluetooth protocol did not ensure that all data packages were
received, occasional missing data were linearly interpolated.
After the interpolation stage, the data were filtered by means
of a second-order low-pass Butterworth filter with a cutoff
frequency at the Nyquist frequency of 25Hz.

)e lower trunk angles measured with theMEMS system
were calculated using two methods. )e first technique
involved applying the 3D Tilt/Twist extraction based on the
orientation of the sensor [13]. )e second was based on the
time integration of the roll and pitch angular velocities,
yielding 2D sensor-based angles, as used by the SwayStar
system. When rotations around the vertical axis (yaw) are
not taken into account, these will result in cross-talk between

2 Journal of Healthcare Engineering



the roll and pitch angles because rotations are not com-
mutative. �e e
ect of this cross-talk was investigated by
analyzing the di
erences between the 2D and 3D angle
calculation methods of the 3D MEMs with the 2D angle
calculation of the FOG sensor system. Cross-talk does not
occur for the angular velocity measures as these are local
derivatives.

From the two sets of sampled sensor data, the fol-
lowing measures were extracted for analysis: peak-to-peak
range (di
erence between maximum and minimum value
during the task) and 90% range (di
erence between 95%
and 5% percentile values when the peak-to-peak range of
sampled values was divided into 40 bins and a histogram
of the task recording samples built after assigning samples
to these bins), for both angular velocities and angles in the
pitch (sagittal plane) and roll (lateral plane) direction.
�erefore, the data extraction yielded the following 8
measures:

(i) Peak-to-peak range, roll, angle
(ii) 90% range, roll, angle
(iii) Peak-to-peak range, pitch, angle
(iv) 90% range, pitch, angle
(v) Peak-to-peak range, roll, angular velocity
(vi) 90% range, roll, angular velocity
(vii) Peak-to-peak range, pitch, angular velocity
(viii) 90% range, pitch, angular velocity

2.2. Experimental Procedures. During the clinical stance and
gait tasks, a Valedo (MEMS) sensor was held on the side of
the SwayStar (FOG) sensor as shown in Figure 1(a) using
double-sided adhesive tape. �e mechanical alignment be-
tween Valedo and SwayStar coordinate systems was de-
termined using an optimization algorithm as described by
Chardonnes et al. [14]. We considered this a better clinical
comparison of the devices than mounting both devices to a
gyro test-table. Time synchronization between the re-
cordings of the two measurement systems was performed by

�nding the delay of maximum cross-correlation between the
two angular velocity signals of both systems for each trial
and correcting sample times for this delay.

Data of 10 young healthy subjects (8 male, 2 female, age:
19–34 years) were recorded with the FOG andMEMS sensor
systems simultaneously. We planned to compare between
Valedo and SwayStar sensor measurements for 10 subjects
and then if several trends for di
erences were observed to
expand the data set to 20 subjects. As described below, the
results showed either statistically signi�cant di
erences or
no di
erences, with a few trends. �erefore, an expansion of
the data set was not considered necessary. �e 9 tasks
evaluated with both sensor systems are listed below in the
order these were performed, that is, in the same order as for
the reference database [5]. �ese tasks are considered to
represent the full dynamic range of clinically relevant bal-
ance assessments [2, 5]. All standing tasks had a prede�ned
duration of 20 seconds. �e recording of the walking tasks
was ended when the subject completed the task, for example,
reached 3meters or walked 8 tandem steps:

(i) Standing on two legs with eyes open, on a normal
(�rm) surface

(ii) Standing on two legs with eyes closed, on a foam
surface

(iii) Standing on one leg with eyes closed, on a normal
surface

(iv) Walking 8 tandem steps with eyes open
(v) Getting up from a stool and walking 3meters
(vi) Walking 3meters while pitching the head up and

down
(vii) Walking 3meters with eyes closed
(viii) Walking up and down a set of stairs (2 steps up and

2 down)
(ix) Walking 8meters with eyes open

If subjects were not able to complete a task (due to loss of
balance which mostly occurred for the “standing on one leg,
eyes closed,” task for which the mean duration for healthy

Valedo MEMS system

SwayStar fibre-optic gyroscope

(a)

Roll
Pitch

Yaw

(b)

Figure 1: (a) SwayStar (FOG) mounted on a converted motorcycle belt with a Valedo (MEMS) sensor attached to its side. (b)�e SwayStar
system mounted on a subject. �e SwayStar motion measurement axes (pitch and roll) are, as shown, sensor-based.
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young subjects is 12 sec [5]), the task was not repeated;
however, the data were removed from the analysis. )e total
time required to record the tasks was approximately
10minutes per subject. )e study was approved by the local
ethical committee responsible for the University of Basel
Hospital (approval EKNZ 2015-071).

3. Analysis

For the data comparison, the differences between the FOG
andMEMSmeasurements were expressed as absolute values
as well as percentage values. )e 8 extracted measures from
both sensor systems were compared with reference data
from 88 age- and gender-matched healthy subjects recorded
by Hegeman et al. [5] (using SwayStar). Pearson’s correla-
tion coefficient r was calculated to evaluate the correlation of
the peak-to-peak measures between the two sensor systems
(task specific as well as for all tasks). Paired t-tests were
performed to determine whether there was a significant
difference between means obtained from the 2 devices for
the same task measure. For this comparison, all eight
measures of all 10 subjects and 9 tasks were normalized
relative to the mean value of the normal reference database
to account for the differences in magnitudes between tasks:
for example, between the differences in the magnitudes of
pitch velocity for the task of standing on 2 legs with eyes
open and the task of getting up off a stool. Quoted p values in
the results are before any Bonferroni correction for multiple
corrections.)e comparisons were made across all tasks and
for each task separately. Data from the FOG andMEMSwere
also compared to the clinically relevant 95% limit of the
reference database, looking for values less or greater than
this limit. Cohen’s kappa test was performed in order to
assess the interrater classification accuracy (the number of
measures classified as within and outside the normal ref-
erence range for the Valedo system compared to the
SwayStar system) between the two sensor systems. As both
sensor systems measure the movements and outcome var-
iables independently, we therefore considered the systems as
independent raters.

4. Results

Results of 3 of the 9 tasks performed are presented here in
detail. )ese 3 tasks cover the range from low body dy-
namics (represented by “standing on two legs with eyes
open”) to high dynamics (“get up and go, and then walk
3meters”). All graphs and tables present both the 2DMEMS
and 3D MEMS data. In the sections “2D data processing”
and “2D vs. 3D data processing,” the comparison between
the 2D and 3D angle calculations is described in further
detail for all tasks.

4.1. Stance Task: Standing on Two Legs with Eyes Open.
Figure 2 shows the angular velocity and angle traces for a
typical recording for the task “standing on two legs with eyes
open on a normal surface.”

In Figure 2, the difference in angles between the two 2D
recordings at the end of the 20 seconds recording is less than

0.1 degree. )e Pearson correlation coefficient r between the
2D MEMS and 2D FOG values of the peak-to-peak values of
all subjects is higher than 0.98 for both the angular velocity
and angle signals in the pitch and roll planes. )e 3DMEMS
roll angle has a correlation coefficient of 0.851 with the roll
angle of the FOG; the corresponding pitch angle correlation
is 0.968. Angular velocity results in both roll and pitch are
highly correlated with r> 0.99.

Table 1 compares the reference values of the matching
age group [5] with the results for FOG andMEMS systems as
well as the mean differences between the systems for re-
cordings of all subjects performing the task “standing on two
legs with eyes open.” )e FOG versus 2D MEMS and FOG
versus 3D MEMS sensor values are listed as absolute and
relative values (the error between both systems as a per-
centage of the mean reference data). )e p value of the
paired t-test is listed in the table. It can be observed that only
roll angle (90% range) and pitch angular velocity (90%
range) data are significantly different between the FOG and
2D MEMS measures, whereas the corresponding peak-to-
peak values do not show any significant differences. Fur-
thermore, with a Bonferroni correction for multiple com-
parisons, only pitch angular velocity (90% range) remains
significant. )ere were no significant differences between
FOG and 3D MEMS angle values (Table 1).

Note that the differences in 3D are only presented in
Table 1 for the angle values; the pitch and roll angular ve-
locities are equal for 2D and 3D. For yaw angles and angular
velocities, no FOG reference values are available.

For the other stance tasks, the following was observed:
“Standing on two legs with eyes closed, on a foam surface”
showed significant differences between FOG and 2D MEMS
for both roll and pitch angular velocities (roll: p � 0.002;
pitch: p< 0.001, MEMS lower values), as well as the angle in
roll plane (p � 0.02). )e task “standing on one leg with
eyes closed, on a normal surface” showed no significant
differences.

4.2. Gait Tasks: Get Up and Go 3Meters. Figure 3 shows a
typical recording of the angular velocity and angle traces for
“get up and go 3meters” task (a dynamic gait task). Similar
to the stance task shown in Figure 2, the biggest deviation
can be observed in the 3D MEMS roll angle. )e subject
rotated axially when getting up and during walking.)is yaw
rotation is not recorded with the 2D FOG and causes a
different projection in the roll plane when compared with
the 3D MEMS angles. Across the test population, this dif-
ference is significant (Table 2). )e MEMS angular velocities
and 2D roll and pitch angles of all subjects have a very high
correlation (>0.97) with the FOG data. )e 3D MEMS roll
angle has a correlation of 0.911 with the FOG data, and for
the 3D pitch angle, the corresponding correlation is 0.999.

Table 2 shows the reference values of the matching age
group in comparison with the FOG and 2D MEMS and 3D
MEMS for recordings of all subjects. )e relative error
between the 2D FOG and the 2D MEMS compared to the
mean reference values is 5.73% for the 90% roll angle range
but this would not be significant after Bonferroni correction.
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Figure 2: Angular velocity data (a) and angles (b) in the lateral/roll plane (upper), sagittal/pitch plane (middle), and the axial/yaw plane
(lower) of the FOG and MEMS sensors for standing on two legs with eyes open on a normal surface task. �e red lines depict the 2D FOG
data, the green lines the 2DMEMS, and the blue lines the 3DMEMS angle calculations. Note that the velocity traces overlay.�e pitch angle
2D traces for FOG and MEMS 2D also overlay. For the yaw angular velocity and yaw angle, only the MEMS data are available.

Table 1: FOG to MEMS comparison results for the task “standing on two legs with eyes open” of all recordings.

Value PtP Ro
A (°)

90 Ro
A (°)

PtP Pi
A (°)

90 Pi
A (°)

PtP Ro
V (°/s)

90 Ro
V (°/s)

PtP Pi
V (°/s)

90 Pi
V (°/s)

Mean normal reference 0.493 0.368 1.250 1.004 1.742 0.604 3.311 1.336
FOG mean 0.450 0.322 1.352 1.108 1.553 0.609 2.884 1.404
FOG SD 0.364 0.258 0.481 0.412 0.759 0.261 0.980 0.544
MEMS 2D mean 0.427 0.298 1.337 1.102 1.525 0.595 2.763 1.368
MEMS 2D SD 0.338 0.261 0.484 0.408 0.783 0.266 0.967 0.536
Error between 2D FOG and 2D MEMS relative to
mean normal reference 4.66% 6.46% 1.20% 0.63% 1.61% 2.34% 3.67% 2.68%

p value (paired t-test) 0.242 0.044∗ 0.528 0.739 0.635 0.073 0.079 <0.001∗
MEMS 3D mean 0.420 0.307 1.299 1.068
MEMS 3D SD 0.229 0.171 0.338 0.325
Error between 2D FOG and 3D MEMS relative to
mean normal reference 6.16% 4.03% 4.26% 3.97%

p value (paired t-test) 0.654 0.769 0.273 0.340
PtP: peak-to-peak range, 90 : 90% range (95%–5% percentiles); Ro: roll; Pi: pitch; A: angle in degrees; V: angular velocity in degrees/seconds. ∗Signi�cant
di
erence between the absolute values of FOG and 2D/3DMEMS before any Bonferroni correction.�emean normal reference values are taken from an age-
matched group [5].
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Figure 3: Angular velocity data (a) and angles (b) in the roll plane (upper) and pitch plane (middle) and yaw plane (lower) of the FOG and
MEMS sensors for the “get up and go 3meters” task. �e red lines illustrate the 2D FOG data, the green lines the 2D MEMS, and the blue
lines the 3DMEMS angle calculations. Note that the velocity traces overlay. �e 2D FOG and 2DMEMS roll traces overlay. �e pitch angle
2D traces for FOG and MEMS also overlay with the 3D MEMS traces. For the yaw angular velocity and yaw angle, only the MEMS data are
available.

Table 2: FOG to MEMS comparison results for the task “get up and go 3meters.”

Value PtP Ro
A (°)

90 Ro
A (°)

PtP Pi
A (°) 90 Pi PtP Ro

V (°/s)
90 Ro
V (°/s)

PtP Pi
V (°/s)

90 Pi
V (°/s)

Mean normal reference 6.451 5.201 45.95 41.90 53.78 29.61 191.7 126.5
FOG mean 5.646 4.347 34.59 31.44 50.61 28.16 139.6 93.18
FOG SD 1.931 1.252 5.858 5.615 23.13 9.960 33.03 27.74
MEMS 2D mean 5.927 4.645 34.57 31.55 48.08 27.78 137.3 92.60
MEMS 2D SD 1.966 1.428 5.876 5.599 21.78 9.768 32.48 26.97
Error between 2D FOG and 2D MEMS relative to
mean normal reference 4.35% 5.73% 0.04% 0.26% 4.69% 1.25% 1.18% 0.46%

p value (paired t-test) 0.077 0.024∗ 0.614 0.167 0.278 0.260 <0.001∗ 0.343
MEMS 3D mean 6.746 5.323 34.54 31.50
MEMS 3D SD 1.962 1.532 5.997 5.722
Error between 2D FOG and 3D MEMS relative to
mean normal reference 17.0% 18.7% 0.12% 0.15%

p value (paired t-test) 0.002∗ 0.002∗ 0.512 0.572
PtP: peak-to-peak range, 90 : 90% range (95%–5% percentiles); Ro: roll; Pi: pitch; A: angle in degrees; V: angular velocity in degrees/seconds. Note that the
di
erences in 3D are only presented for the angle values; the pitch and roll angular velocities are equal for 2D and 3D. ∗Signi�cant di
erence between the
absolute values of FOG and 2D/3D MEMS before any Bonferroni correction.
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)e difference between the 2D FOG and 3D MEMS roll
angle measures is, however, much larger, 18.7%, and more
significant (p � 0.002) (Table 2). )us, the roll angle is
underestimated by the 2D systems. Peak-to-peak pitch ve-
locity was underestimated by the MEMS system.

For the other gait tasks listed below, the differences
between the 2D FOG and 3D MEMS roll angles were not
significant:

(i) Walking 3meters while pitching the head up and
down (not significant (ns) with p � 0.187)

(ii) Walking 3meters with eyes closed (ns, p � 0.945)
(iii) Walking up and down a set of stairs (ns, p � 0.824)
(iv) Walking 8meters with eyes open (ns, p � 0.469)

For the pitch angles, no significant differences were
observed.

4.3. Semi-Gait Task:Walking 8 Tandem Steps with Eyes Open.
Figure 4 shows angular velocity and angle traces of a typical
recording for “walking 8 tandem steps with eyes open.” )is
is a classical clinical task with body motion alternating
between tandem stance and gait. )e FOG and 2D MEMS
data show very high correlations (r> 0.99 for both pitch and
roll angle and angular velocity); FOG and 3DMEMS data all
show r> 0.93.

Table 3 shows the reference values with the comparison
of the FOG andMEMS for the task “Walking 8 tandem steps
with eyes open” for all recordings. It can be seen that there
were no significant differences for pitch and roll angles.
However, the 90% angular velocities in both planes differ
with respect to those of the MEMS system, which under-
estimated these measures.

4.4. Classification Accuracy between the Sensor Systems

4.4.1. 2D Data Processing. For all tasks, except trials were
subjects lost their balance control, the eight extracted
measures for both the 2D FOG and 2DMEMS were checked
for lying within or outside the normal reference range de-
fined by the 95% limits of the reference database. If the data
are within the reference 95% range, clinically, the recording
would be considered normal [5].

Because of the loss of balance, six recordings were not
taken into account in the analyses (6∗ 8 � 48 variables).
Four of these records were due to subjects losing their
balance prior to task completion (20 secs) for the task,
“Standing on one leg with eyes closed.”)e lower 5% limit of
duration for this task is 14.7 secs [5].

Table 4 presents the resulting contingencies. Based on
these values, Cohen’s kappa was calculated and yielded a
result of κ � 0.969. )is is usually interpreted as an almost
perfect agreement [15].

)e single measurement that was inside the range as
measured by the MEMS but outside with the FOG was a
peak-to-peak value of the angular velocity (no differences
were detected for the corresponding 90% range values be-
cause single peaks or outliers are filtered out when

calculating the 90% range value.). Note that as we compared
with 95% reference range values, some values outside the
normal range are to be expected.

4.4.2. 2D vs. 3D Data Processing. )e 3D angles and angular
velocity measures measured with the MEMS and 2D FOG
measures were compared with the reference database and
the FOG similar to the 2D MEMS comparisons presented in
the previous paragraph. For stance tasks that have low
ranges, the differences between the 2D and 3D calculations
were in the same range as the noise level of the MEMS
sensors because the tasks involved limited axial rotation.
)us, divergences in comparison with the reference database
were not expected. In contrast, in some recordings of the
“get up and go 3meters” and walking tasks, axial rotation
caused a significant “cross-talk” between roll and pitch
angles that resulted in a slightly higher number (6) of false-
negatives when comparing the angles with the normal
reference values. Nonetheless, the Kappa value is 0.868,
which is also considered as an almost perfect agreement [15].

In Figure 5(a), the regressions between the 2D FOG and
2D MEMS, and 2D FOG and 3D MEMS peak-to-peak roll
angles are plotted. In Figure 5(b), 2D FOG and MEMS roll
angular velocities (peak-to-peak) are plotted. Data are for all
subjects and recordings. )e correlation coefficient r value
for the 2D MEMS angle is 0.991. )e 3D MEMS angles have
an r value of 0.922. )e angular velocity r value is 0.994. All
results are highly significant (p< 0.001). Similar regression
results could be observed for pitch angle and pitch angular
velocities (r> 0.98). )e classification matrixes described in
Tables 4 and 5, and the regressions of Figure 5 indicate that
the differences between the two measurement systems are
small from a clinical viewpoint across all tasks, including
those not described in detail above. Otherwise, for example,
the regressions of Figure 5 would be less significant.

5. Discussion

In this study, we have tested whether low-cost MEMSmotion
sensors can provide comparable accuracy as highly accurate
fiber-optic gyroscopes to assess balance tasks, which re-
quire low noise, minimum drift, and a high resolution
across the range of angular sway and sway velocity induced
by the balance tasks. We could also assess whether cross-
talk errors on pitch and roll angular measures due to not
recording yaw angular velocity are significant. If compa-
rable in accuracy and with insignificant cross-talk errors,
then MEMS motion sensors can be used to compare
extracted balance measures with reference values obtained
with highly accurate fiber-optic gyroscopes recording pitch
and roll angular velocities. Our main findings were, firstly,
that except for the get up and go test, there were no sig-
nificant differences between 2D FOG and 3D MEMS roll
and pitch angle measures. Secondly, angular velocities were
slightly underestimated with the MEMS system. )us, the
analyses of the 2D MEMS data showed almost perfect
agreement with the FOG data with an interrater classifi-
cation accuracy of κ � 0.969 when comparing the measures
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Figure 4: Angular velocity data (a) and angles (b) in the roll plane (upper) and pitch plane (middle) and yaw plane (lower) of the FOG and
MEMS sensors for walking 8 tandem steps with eyes open task. �e red lines represent the 2D FOG, the green lines the 2D MEMS, and the
blue lines the 3DMEMS angle calculations. Note that roll angle traces overlay as do pitch angle FOG andMEMS 2D traces. All velocity traces
overlay. �e yaw angle is only available for MEMS 3D.

Table 3: FOG to MEMS comparison results for the task “walking 8 tandem steps with eyes open.”

Value PtP Ro
A (°)

90 Ro
A (°)

PtP Pi
A (°)

90 Pi
A (°)

PtP Ro
V (°/s)

90 Ro
V (°/s)

PtP Pi
V (°/s)

90 Pi
V (°/s)

Mean normal reference 6.324 4.714 6.920 5.160 33.86 18.49 37.92 21.03
FOG mean 5.200 3.718 5.706 4.126 35.93 19.21 31.90 17.14
FOG SD 1.904 1.494 1.328 1.181 12.47 5.055 5.813 3.407
MEMS 2D mean 5.134 3.657 5.717 4.127 34.18 18.76 30.66 16.59
MEMS 2D SD 1.919 1.524 1.336 1.189 11.46 4.963 5.076 3.156
Error between 2D FOG and 2D MEMS relative to
mean normal reference 1.04% 1.29% 0.16% 0.01% 5.17% 2.48% 3.28% 2.62%

p value (paired t-test) 0.202 0.155 0.675 0.984 0.051 <0.001∗ 0.216 0.003∗
MEMS 3D mean 5.126 3.641 5.957 4.229
MEMS 3D SD 1.968 1.534 1.132 1.113
Error between 2D FOG and 3D MEMS relative to
mean normal reference 1.17% 1.64% 3.63% 1.98%

p value (paired t-test) 0.496 0.447 0.132 0.412
PtP: peak-to-peak range, 90 : 90% range (95%–5% percentiles); Ro: roll; Pi: pitch; A: angle in degrees; V: angular velocity in degrees/seconds. ∗Signi�cant
di
erence between the absolute values of FOG and 2D/3D MEMS before any Bonferroni correction.
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with those of a normal reference data set [5]. In summary,
although as described above, for some tasks and some
measures statically signi�cant di
erences were found,
further analysis showed that all these di
erences were
within a few percent of the reference values and therefore
assumed not to be clinically relevant. �erefore, with the
proposed MEMS signal processing pipeline, consisting of
outlier rejection, interpolation and �ltering, resulting in an
average correlation of over r � 0.95, the MEMS data can be
compared for classi�cation purposes (as normal values or
not) to reference values collected with a 2D FOG system.

Statistically signi�cant di
erences were found between
the 3D MEMS roll angles in comparison with the 2D FOG
values for the most dynamic gait task “get up and go 3m,”
that is, with the greatest range of pitch angular velocity (over
100 deg/s, Table 2). �e observed di
erences between the
contingency tables based on 3D MEMS and 2D FOG were
due to cross-talk errors of axial rotations and not to noise.
When comparing the two contingencies tables (Tables 4 and
5), this happened in less than 1% of all recordings. Spe-
ci�cally, the errors occurred almost exclusively with the get
up and go task, which had large jaw and pitch axial rotations
(Figure 3). �us, employing balance tasks with little yaw
rotation would avoid this problem. Nonetheless using the
third orthogonal, yaw sensing axis of the MEMS opens the
possibility of measuring trunk sway during many other
clinically relevant balance assessments tasks involving
turning (e.g., those of Dite and Temple [16] and Salarian
et al. [17]).

Angular velocities measured with the MEMS sensors
were obtained by di
erentiating the processed quaternion
output with respect to time. Even if the small di
erences
noted (less than 3% of normal reference values) are not
clinically relevant, angular velocities tended to be under-
estimated by the MEMS. A cause of this di
erence could be
related to mechanical misalignment of the two sensor sys-
tems, which is estimated to be around 1 degree [14]. Another
cause is likely to be noise and spikes in the MEMS angular
velocity data and probably both noise and spikes could be
reduced further by modifying the signal processing used
here. For example, the bias-corrected gyroscope signal could
be sent by the sensor in addition to the quaternion. �is,
however, would require a modi�cation to the currently used
Bluetooth protocol. Additionally, data from multiple MEMS
sensor modules could be fused to reduce noise levels. �is
would require a proper mechanical alignment and time
synchronization between the modules. Another alternative
would be to improve the �ltering of the angular velocity
spikes in comparison with the Hampel �lter used here.

Table 4: Contingency table for agreement on values lying within or
outside the range of 95% limit of the reference data.

MEMS 2D FOG 2D
Inside range Outside range

Inside range 637 1
Outside range 1 33
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Figure 5: (a) Regression of peak-to-peak roll angle FOG vs MEMS
2D (blue circles) andMEMS 3D (red crosses). (b) Peak-to-peak roll
angular velocity FOG vs MEMS.

Table 5: Contingency table for agreement on values lying within or
outside the range of 95% limit of reference data.

MEMS 3D FOG 2D
Inside range Outside range

Inside range 636 6
Outside range 2 28
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One of the drawbacks of our study is the limited range of
subject ages (19–34 years) we considered. We have com-
pared the accuracy of the two systems in relation to the
healthy control reference database of Hegeman et al. [5]. As
Hegeman et al. [5] have shown that there are no differences
in balance control between the 10 young adults of aged
19–34 years we tested and those aged 35–60, we can argue
that our comparison is applicable to patients with the age
range 19–60 years, but possibly not for patients less than 19
and persons older than 60 years. Both of the latter groups
have sway greater than middle-aged persons [5].

)ere are three analytical and clinical areas, which
should be considered for future studies. As indicated above,
theMEMS system tends to underestimate values of pitch and
roll velocities. )us, the cause of this difference should be
examined and established if this underestimate is due to
signal processing or sensor alignment. If these causes are
ruled out, then attention should be placed on examining
patient groups with ataxia that are known to have higher
velocity trunk sway during gait trials with tandem steps or
eyes closed [18]. Underestimates of velocities might prove to
be clinically relevant for these patient groups. A third area
concerns children younger than 6 years for whom there is no
SwayStar reference data [5]. )e lighter weight of the MEMS
system compared to the FOG system is crucial when con-
sidering measurements of this age group.

In this study, the MEMS sensors were attached directly
onto the FOG system, which was mounted on a converted
motorcycle kidney belt. )erefore, both sensor systems
measured the same angular movements of the pelvis and
lower back. )is ensured that movement of the skin during
the tasks had no effect in comparing the measurements in
the pitch and roll planes between the sensors systems.
MEMS sensors can be mounted with double-sided adhesive
tape directly on the skin or with an elasticated belt around
the waist. )ese later methods of mounting can cause dis-
tinctive soft tissue artefacts compared to the relatively rigid
converted motorcycle belt used for the FOG. Additionally,
the significant difference in weight between the two sensor
systems can influence the effect of soft tissue movements on
the outcome measures. For walking tasks, typical roll and
pitch soft tissue errors are of the order of 1–2 degrees [19]
and therefore at least equal to 20% of the roll angle am-
plitudes we measured during gait tasks when the yaw
contribution was ignored (Figures 3 and 4; Tables 2 and 3).
Given the effect of soft tissue artefacts during dynamic gait
balance tasks, and our results indicating that the effect of yaw
angle on roll angle estimates was much greater during
routine clinical gait tasks compared to stance tasks, we
consider it advantageous to concentrate on recording an-
gular velocity measures when using body-mounted sensors
to quantify gait balance control pathologies, as roll and pitch
velocity measures are not influenced by yaw rotations. In this
respect, many current patient classification techniques rely
on angle measures for stance and velocity measures for gait
[2, 4, 7].

In conclusion, except for tests that involve large yaw
movements, there were no significant differences between
2D FOG and 3D MEMS roll and pitch angle measures,

although angular velocities were slightly underestimated
with the MEMS system. )erefore, 2D MEMS data showed
almost perfect agreement with the 2D FOG data. In sum-
mary, although for some tasks and some measures statically
significant differences were found, further analysis showed
that all these differences were within a few percent of the
reference values and therefore these differences were as-
sumed not to be clinically relevant. Future studies could
consider placing two MEMS sensors side-by-side on a belt,
thereby reducing skin artifacts and providing increased
accuracy.
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Monitoring of training performance and physical activity has become indispensable these days for athletes. Wireless technologies
have started to be widely used in the monitoring of muscle activation, in the sport performance of athletes, and in the examination
of training efficiency. ,e monitorability of performance simultaneously in the process of training is especially a necessity for
athletes at the beginner level to carry out healthy training in sports like weightlifting and bodybuilding. For this purpose, a new
system consisting of 4 channel wireless wearable SEMG circuit and analysis software has been proposed to detect dynamic muscle
contractions and to be used in real-time training performance monitoring and analysis. ,e analysis software, the Haar wavelet
filter with threshold cutting, can provide performance analysis by using the methods of moving RMS and %MVC. ,e validity of
the data obtained from the system was investigated and compared with a biomedical system. In this comparison, 90.95%± 3.35 for
left biceps brachii (BB) and 90.75%± 3.75 for right BB were obtained. ,e output of the power and %MVC analysis of the system
was tested during the training of the participants at the gym, and the training efficiency was measured as 96.87%± 2.74.

1. Introduction

In recent years, the monitoring of athlete performance has
become indispensable for the health of athletes. Wireless
technologies have started to be widely used in order to obtain
data for the purpose of examining training efficiency in the
monitoring of muscle activation and sport performance of
athletes [1, 2]. It is possible to collect information about
athlete performance and rehabilitation, about preventing
muscle fatigue or injuries through posttraining analysis of
SEMG signal obtained during the training [3–5]. Recording
of SEMG signals in related muscles during training can be
extremely useful in increasing performance and preventing
disabilities [6].

Traits of SEMG signals obtained during training (fre-
quency, severity, etc.) change depending on the muscle
group measured and the severity of contraction [7–9]. In
these measurements, surface-type electrodes are used to
determine and examine the activity of muscles during

contraction and relaxation of muscles. When academic
studies related to this subject are analysed, there are some
wearable biometric systems developed for the purpose of
the monitoring of performance during training. Some of
these systems are intended for recording parameters like
heart rate, respiration, location, and velocity or for esti-
mating the levels of muscle fatigue [10–13]. Some of them
have been produced for the measurement of the SEMG
signals in laboratorial environment [14]. Another pro-
portion of them has been designed for the purpose of
perceiving dynamic muscle contraction during isolated
training through the SEMG [15]. ,e last proportion has
carried out low-cost experimental SEMG systems and
matched the key features of the system with the existing
systems [16–18].

,e most reliable method used in the adequacy and
examination of muscle activation in physiological studies is
the amplitude analysis carried out on SEMG signals, known
as MVC (maximum voluntary contraction) normalization

Hindawi
Journal of Healthcare Engineering
Volume 2019, Article ID 4580645, 15 pages
https://doi.org/10.1155/2019/4580645

mailto:srknorucu@kmu.edu.tr
https://orcid.org/0000-0001-9905-2908
https://orcid.org/0000-0001-8642-1823
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4580645


[19]. Data with MVC normalization enable understanding
of what capacity the muscle works, how effective level
muscles have reached through training and how much
effort a training requires from an athlete [20].

,e simultaneous monitorability of athlete performance
during the process of training is a must for athletes at the
beginner level to being able to carry out healthy training in
sports like weightlifting and bodybuilding [21, 22]. ,is
feature enables performance evaluation to be carried out
momentarily during the time when there is no trainer or until
the motor skills of the athlete concerning movement develop
enough. A SEMG system, to be used during the training for
this purpose [7, 23–25] has to

(i) Be able to provide the required SEMG data necessary
for monitoring training efficiency in performance
analysis

(ii) Be able to filter the noise of movement during
isotonic exercises and noise and distortions in
SEMG signals appearing as a result of other factors

(iii) Its procedures like calibration, etc., have to continue
for a short time

(iv) ,e data obtained have to be at a close accuracy to
biomedical systems

(v) Has to be simultaneously usable in a training
environment

For use in the industrial field, various systems are
available for SEMG data collection and processing. To
investigate these, WB-EMG [26], BiometricsDatalog [27],
Myo Armband [28], DelsysTrignio [29], BITalino [30],
Mbody3 [31], Mpower [32], MyoTrac [33], MyoWare [34],
Shimmer [35], and hospital [36] are such systems. ,e
systems specified in [26], [27], and [29] and the systems
which we measure in hospital [36] are not wearable during
training. ,e system specified in [44] is wearable and
supports wireless transmission but its production is
stopped. In terms of the electrodes used, and CMRR, there
is no difference in all of these products and they comply
with the SENIAM criteria. ,e systems [26], [27], and [30]
do not have noise and data processing filters, and the
systems in [28] and [29] use a Notch filter and a band-stop
filter with narrow-bandwidth in hardware. ,e system in
[26, 34] is designed for single-channel use but does not
support multichannel monitoring. ,e systems in [31–34]
are wearable and do not include contraction detection and
simultaneous MVC analysis although they can monitor
multiple muscle groups. A summary of these comparisons
is presented in Table 1.

When the table is analysed, it is seen that all of these
systems can simultaneously observe biopotential changes in
muscle ormuscle groupsmonitored during training, but none
of them include real-time MVC normalization and con-
traction detection procedures for performance analysis
during training.

,at these features can be monitored simultaneously
during the training process may be useful especially for
beginner athletes to perform a healthy training in sports

like weightlifting and bodybuilding, for the performance
evaluation of the athlete until the motor skills of the
movement are improved and at necessary moments in
preventing the injury process by intervening in training.

Based on these elements, a new wireless wearable SEMG
data collection system has been introduced which enables
performance monitoring and analysis at training time with
its real-time MVC normalization and contraction detection
processes. ,e SEMG circuit used in our system is designed
by us to be used in future studies and to be developed
according to our needs.

In the presented system, digital filtering is also used in
addition to hardware filtering in SEMG circuit. ,ese nu-
merical filters are Haar wavelet filters with,reshold cutting
based on (TCHW) and linear Kalman [37, 38]. Each nu-
merical filtering method is tested together with hardware
filtering. Results obtained from here will be determinative in
deciding the filtering structure that can be used in future
stages of the system design. Subsequently, filtered data are
processed through moving RMS method containing the
methods of moving average (MA) and root mean square
(RMS), scaled through MVC normalization, and a training
support system that can carry out real-time performance
analysis and monitoring.

2. Materials and Methods

2.1. Isotonic Contraction. Isotonic contraction encompasses
exercises where muscle tendons get shortened to generate
movement. Any kind of movement, ranging from weight-
lifting to rowing and running, is in this category [39]. In
sport, an isotonic exercise is a training where the most
amount of strength is exerted on a particular muscle or
muscle group to increase that muscle mass or performance
in general. Due to the fact that human activity and athletic
performance necessitate these kinds of movement, isotonic
exercises form the basis of a lot of training protocols [40]. It
is possible to observe pathological changes or efficiency
obtained from the training through an examination of
SEMG signals generated in muscles during these exercises
[41].

2.2. SEMG Circuit Design. ,e SEMG circuit design details
are given below. ,e circuit consisting of 4 channels could
monitor the biopotential change of 4 different muscle groups
at the same time. So, it is possible to monitor biopotential
changes occurring in muscles in symmetrical movements
that affect multiple muscle groups (e.g., the Bench Press
movement affects pectoralis major and triceps muscles). ,e
circuit has in each channel, respectively, one in-
strumentation amplifier, a inverting amplifier, a low-pass
filter, a high-pass filter, and a full-wave rectifier. ,e circuit
has a diode for input protection, a pointer indicating that the
circuit is working, and a start-up button. During working,
the LD1117 regulator was used for the Bluetooth feed and
the 7805 regulator for the +5 volt and − 5 volt op-amp feed
(Figure 1(a)). ,e SEMG signals we want to process are
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MUAP signals whose amplitude is between 0 and 1.5 mVolt
(RMS). To process this electrical signal, it must firstly be
amplified. In the system, this amplification is done by in-
creasing the difference between the two electrodes in bipolar
mode.While the obtained common signal is amplified in this
mode, the background noise is also suppressed. Two of the
probes activated from each channel are connected to the
circuit’s soil, like the reference probe [42] which is placed in
a more electrically remote area (preferably a neutral or close
to the bone region) while going to the amplifier and filter
circuits over INA 128P, which operates in a single differ-
ential mode. In the first step, amplification was performed by
using the INA 128P differential amplifier (Figure 1(b)).

As stated in [43], the reason why we use INA 128P is that
the amplitude of the SEMG signal is low and that the
amplifier to be used due to other factors like noise must have
a high input impedance and a high common mode rejection
rate (CMRR> 95 dB). ,is amplifier has the required fea-
tures with CMRR >120 dB and 10GΩ input impedance.
When we set the gain value for the 60Hz input signal to
G� 74.52 using INA 128P in our system, approximately
108 dB CMRR was obtained as stated in the technical
document in [44]. ,e reason for selecting a 60Hz input
signal in the system design is that the SEMG signal is
dominant in the range of 50Hz to 150Hz. To obtain a
processable signal amplitude in the second stage, TL072 was
used as shown in Figure 1(c) as an active inverting amplifier.
At this stage was the amplifier gain approximately G� 59
and the CMRR approximately 100 dB by using the 60Hz
input signal as stated in [45].

In SEMG applications, analogue (hardware) and digital
(software) filters are used to remove unwanted component
noises and process the necessary parts in the SEMG signal
[46]. Analogue filters remove anything above or below a
selected cut frequency, while digital filters make this process
more precise as they can be programmed [47]. ,is certainty
is due to the fact that the features of digital filters can be

changed depending on the input signal parameters [48]. In
these applications, analogue filters are used to eliminate
noise from the signal in signal amplification and processing
circuits, to provide noise immunity, and to obtain the
necessary parts of the frequency band [49]. On the contrary,
digital filters are used to filter signal residues named artifact
after motion and to analyse SEMG signal (feature extraction,
time-frequency analysis, contraction detection, performance
analysis, etc.) [41, 50].

In the circuit, analogue filtering is performed by low- and
high-pass filters. Ideal SEMG signals are observed between
50Hz and 500Hz and should be filtered from frequency
components outside this range [51]. For this, the signal from
the output of the instrumentation amplifier is first filtered so
that the gain is 1 in the high-pass filter (HPF) using TL072
with a cutoff frequency of about 48Hz (Figure 1(d)). ,e
components of the EMG signal above 500Hz are filtered
through a 2nd order Sallen–Key low-pass filter (LPF) using
TL072. ,rough this section, resistance and capacitor values
are designed so that the cutoff frequency is approximately
482Hz, the quality factor is 0.5, and the gain is 1
(Figure 1(e)). ,e reason we prefer the Sallen–Key topology
we use in the circuit is that this filter has the ability to
produce a quadratic low-pass reaction with better selectivity
(higher pole) and various possible approaches (Butterworth,
Chebyshev, ,omson-Bessel, etc.) [43, 47, 49]. ,is will help
us in our future work.

,en, the whole SEMG signal was moved to the positive
level using the full-wave rectifier (Figure 1(f)). With this
process, it is possible to analyse the low-frequency oscilla-
tions by overcoming the high-pass nature of the SEMG
signal [52]. ,us, it is aimed to use the circuit except for the
training efficiency, also in the fields of prosthesis control and
ergonomics.

,e Pic16F1786 microcontroller with connected full-wave
rectifier outputs contains 11 12bit A/D (Analogue/Digital)
converters.,e data obtained from the rectifier of each channel

Table 1: Comparison of the SEMG acquisition systems.

System Signal
type

Number
of

channels
Gain

ADC
resolution
(bits)

Wearable Filter type Contraction
detection

Real-
time
MVC
norm.

CMRR Connection
type

Proposed
system SEMG 4 4400 12 Yes Hardware + software Yes Yes >90 Bluetooth

WB-EMG SEMG 1 100–10000 12 No No No No >90 Bluetooth
Biometrics
datalog SEMG 8 1000 14 No No No No >90 Bluetooth

Myo
armband SEMG 8 ≥1000 8 Yes Notch No No >90 Bluetooth

Delsys
Trignio SEMG 16 909 16 No Notch No No >90 RF

BITalino SEMG Up to 6 1000 6–10 Yes No No No >90 Bluetooth
Mbody3 SEMG Up to 6 ≥1000 24 Yes Hardware + software No No >90 Bluetooth
Mpower SEMG 4 ≥1000 — Yes Hardware + software No No >90 Bluetooth
MyoTrac SEMG 2 ≥1000 14 Yes Butterworth No No >90 Bluetooth
MyoWare SEMG 1 ≥1000 — Yes No No No >90 Bluetooth
Shimmer SEMG Up to 60 ≥1000 16 Yes Hardware + software No No >90 Bluetooth
Hospital SEMG 8 1–10000 24 No Hardware + software Yes No >90 Usb

Journal of Healthcare Engineering 3



in the circuit are connected, respectively, to the RA0-RA3
inputs of this controller. ,is microcontroller performs the
A/D conversion in 20ms time intervals through the pro-
gram we write. ,e converted channel data are turned into
a string, and this sends data from the RC0 output to the
Bluetooth module (Figure 1(g)). ,e transmitted data have
a resolution of 2.4 μV in each step. Data sent at 4800 bps
speed via the HC-06 Bluetooth module (Figure 1(h)) are

received and processed by the data collection program
written in the C# language. ,e digitalized SEMG data in
the data collection program are processed through digital
filters. ,e PCB (printed circuit board) of the circuit is
designed to be 10 cm× 10 cm in size, and as stated in [53], the
PCB tracks are intended to be exposed to as little noise as
possible.,emounted state of the circuit shown in Figure 1(i)
is boxed and placed inside a wearable belt. ,e necessary
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Figure 1: Block diagram and mounted state of the SEMG circuit. (a) Regulator circuit. (b) Instrumentation amplifier. (c) Inverting
amplifier. (d) 1st-order HPF. (e) 2nd-order Sallen–Key LPF. (f ) Full-wave rectifier. (g) PIC 16F1786. (h) Bluetooth module. (i) Mounted state
of the SEMG circuit.
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energy for the operation of the circuit was obtained from
1000mAh lithium batteries. It is intended to minimize power
line interference (PLI) without the need for any insulation, as
stated in [54] using battery in the system.

2.3. Participants and Setup. Five males and two females
voluntarily participated in our study and have at least 2 years
of experience in strength training. ,e information of the
participants is shown in Table 2.

,e participants were informed about the content of
our study, and a signed consent form was obtained from all
of them. All exercises and measurements were made under
the supervision of a specialized trainer. As described in the
recommendations of the European initiative known as
SENIAM (surface electromyography for noninvasive
muscle evaluation of muscles) by selecting 10mm diameter
electrodes shown in Figure 2 for SEMG, the bipolar con-
figuration is located 1–2 cm away from the centre of the
muscle and the reference electrode is placed in a region that
is electrically neutral according to the action [51]. ,e
connection between the electrodes and the circuit channels
is provided by using armoured cables which have 3.5mm
ends, 3 colour code (red, green, and blue) and labelled
contacts (L, F, and R), as shown in Figure 2.

Our experiments consist of 3 parts. In the first part, 8
repetitions and 1 set of alternate dumbbell curl (ADBC)
training was performed using a maximum load of 60–70%.
In this section, firstly, it is investigated whether the ana-
logue filter data obtained from the circuit in the training
reflect the biopotential activity changes that occur during
the training. In the sequel, the analogue filter data obtained
from the circuit are processed by means of Kalman and
threshold cut Haar wavelet filter (TCHW) to eliminate
noise sources and to investigate the perceptibility of the
isotonic contractions.

In the second part, the accuracy of the developed system
was compared with the biomedical system (Viking on
Nicolet EDX) used in Karaman State Hospital (See Table 1).
In this comparison, the RMS values obtained from both
systems were used.

In the third part, the availability of moving RMS and
%MVC values as the screen output of the system was
investigated in terms of performance feedback. For this
purpose, first, the moving RMS values obtained by asking
users to perform a second ADBC (8 repetitions 1 set)
training were recorded. In addition, a %MCV mea-
surement was made by asking all users in the training
environment to lift 5 kg dumbbell and maximum weight
(Men 17.5 kg, 20 kg, and 25 kg dumbbell; women 12.5 kg
and 15 kg dumbbell) they can.

2.4. Kalman and TCHW Filters. Kalman filter is used to
estimate the system status from input and output in-
formation with the previous information of a model in a
dynamic system indicated by the state-space model [55, 56].

When the system is modelled, it was aimed to minimize the
distortions in data by estimating the k parameter specified by
x in SEMG data array at a particular time as Xk:

Xk � Kk · Zk +(1− )Kk · Xk− 1. (1)

Here, Zk expresses the measuring data wanted to be
absolutized, Kk the Kalman gain and Xk− 1 the measuring
data belonging to the previous stage. If the system is
modelled through this information, a model consisting of
calculation (2) and update (3) is obtained.

xk � Axk− 1 + Buk + wk− 1, (2)

zk � Hxk + vk. (3)

In (2), any xk is expressed as a linear combination of the
next control signal k of its previous value and the noise of the
process. In (3), anymeasurement value making certain of the
accuracy of which we are not sure is accepted to be a linear
combination of the signal value and the noise of the
measurement.

In HW, the main wavelet acts as the wavelet transform
but is scaled and shifted during this procedure of wavelet
transform [35]. Scaling corresponds to the widening and
constriction of the signal (f(t)) and the shift to the wave
shift (τ) in the timescale axis (t) in the following equation
[57, 58]:

F(ω, τ) �  f(t)w(t − τ)e
− jωt

dt. (4)

HW is a wavelet-based, scaled, “square-shaped” array of
functions. ψ(t), the main function of HW (5), and also φ(t),

Table 2: Information about age, gender, weight, and height of the
subjects.

Participant no. Age Gender Weight (kg) Height (cm)
1 21 Male 80 163
2 25 Male 82.3 178
3 29 Male 87 180
4 33 Male 85 177
5 37 Male 104.6 193
6 24 Female 70 180
7 27 Female 68 172

Figure 2: Example view of electrodes and shielded cables.
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a scaling function (6), are defined in t time interval given as
follows:

ψ(t) �

1, 0≤ t≤
1
2
,

− 1,
1
2
< t≤ 1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

φ(t) �
1, 0≤ t≤

1
2
,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(6)

,e Haar function ψn,k is defined as shown in

ψn,k(t) � 2n/2ψ 2n
t − k( , t ∈ R. (7)

Since the SEMG signals are user-based, SEMG signals
between isotonic muscle contractions may vary according to
the individual. In the method we use with HW, the indi-
vidual waits for approximately 2–4 seconds with the weight
in his hand before starting training and in the meantime, the
procedure of threshold cutting in the system can be carried
out. ,e threshold cutting is based on the calculation of the
average value (8), the standard deviation (9), and the signal
slope (10):

A �
1
n
∗ 

n

i�1
xi, (8)

σ �

������������

1
N



N

i�1
xi − μ( 

2




, (9)

s �
(x − x)(y − y)

(x − x)2
. (10)

Here, xi is the value added to the average, μ is the average
value and N is the number of the total value. After the values
of the average, standard deviation and slope are calculated
and all SEMG signals complying with this condition are
equalled to zero. ,us, the signals between the voluntary
contractions can be eliminated.

2.5. RMS, MA, and %MVC. After the SEMG signal is cap-
tured, the commonly used RMS or MA values are analysed
by using [59]. In RMS analysis, the SEMG signal is subjected
to a set of mathematical operations designed to measure the
power of change. ,us, the intensity and duration of events
like muscle contractions can be investigated. ,erefore, the
RMS value is a parameter chosen during contraction and
reflects the level of physiological activity in the body.
Mathematically, the RMS value of a continuous-time
waveform is the square root of a function defining the
continuous waveform shown in f (t) in the following, de-
fined in the range T1≤ t≤T2:

frms �

������������������
1

T2 − T1


T2

T1

[f(t)]
2
dt



, (11)

frms � limT⟶∞

������������

1
T


T

0
[f(t)]

2
dt



. (12)

Another method we use as MA is the technique of
analysing changes in a data set to estimate long-term trends.
For a given N time window, if the values s1, s2, s3,. . ., sn
corresponding to this time interval of the S variable shown in
the times t1, t2, t3, . . ., tn are known, the MA window size is
defined as N� 2k+ 1 and processed as specified in

MA �
1
N



+k

j�− k

si− j. (13)

,us, changes in the time window given at the j
moment are obtained by averaging the time series of the k
time in the j moment. Instead of using the above-
mentioned RMS and MA methods separately, the moving
RMS method was used in our system by calculating the
RMS value in a moving window, which is a combination of
these methods. In this method, the operation can be
performed at any t time interval of the moving window;
therefore, it acts as a filter in a certain time interval, as
shown in (14). In this way, the processing of the data
obtained according to the variable speed of the replays in
the training sets gets easier. In this equation, n refers to the
length of the window, while x(k) refers to the data within
the window:

xRMS[i] �
1
n0



i

j�(i− N+1)

x
2
[k]⎛⎝ ⎞⎠

1/2

. (14)

So, it can bemeasured howmuch power is obtained from
the muscle through the moving RMS value.

,e MVC (maximum voluntary contraction-maximum
amplitude of the signal) normalization is widely used in
SEMG signals as an amplitude analysis technique. ,e re-
sults are shown as a percentage (%MVC) of the MVC value
that can be used to create a common background when
comparing data between subjects [60, 61]. SEMG signals
depend on the user and have a structure that can cause
records to change even when measured from the same
position with the same motion. ,erefore, MVC normali-
zation is used to eliminate this difference and to enable data
comparison between subjects [61]. MVC expresses the
highest value obtained in a repeat during this measurement
to normalize SEMG signals obtained for a specific purpose,
while SMVC (submaximal voluntary contraction) refers to
the voluntarily recorded SEMG data. %MVC corresponds to
the multiplication of the normalized value of according to
SMVC’s MVC with 100 [62, 63]:

%MVC �
SMVC
MVC

 ∗ 100. (15)
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,us, it can be scaled how much power is obtained from
the muscle or muscle groups investigated in repetitions in
each set of training.

2.6. Proposed System. Our system has the ability to follow
the biopotential changes of four different superficial muscle
groups at the same time. ,e reason why the system is
designed with 4 channels is that most movements used in
bodybuilding and weight training activate at least 1 or 3
muscle groups at the same time. ,e system takes the
biopotential signals of the muscles that are activated during
training through surface electrodes (Figure 3(a)), and then,
first it amplifies them in the instrumentation and amplifier
parts in the SEMG circuit, after it filters them with the 1st-
degree high pass and 2nd-degree Sallen–Key low-pass fil-
ters. ,ese analogue-filtered signals are sent to the com-
puter via Bluetooth after a 12 bit analogue-to-digital
conversion (Figure 3(b)). By the software we developed in
C# language, all SEMG channel data received by the
computer are digitally filtered and then they calculated the
moving RMS values in time windows that vary according to

the training speed (Figure 3(c)). After this process, the
SMVC value of each repetition in each set of the training is
processed according to the previously saved MVC values.
,en, %MVC values are displayed on the screen in separate
graphs according to the channels from which the data are
taken. Finally, they are saved to the database in “.csv,”
“.dat,” and “.xlsx” formats (Figure 3(d)).

3. Results and Discussion

3.1. Analogue +Digital Filtered Data from the System. ,e
analogue-filtered data of the first 4 repetitions of ADBC
training performed by participant number two is shown in
Figure 4(a), marked as 4(a) and 4(b) for each repetition.

,e left BB (LBB-Left Biceps Brachii) data are obtained
from CH1 (first channel of the SEMG circuit), and the right
BB (RBB-Right Biceps Brachii) data are obtained from CH2
(the second channel of the SEMG circuit). From the data
obtained, some decrease in Rep2b, Rep3a, Rep3b, and Rep4a
(between 100 and 200 μV) and a data change during pushing
the weight down (relaxation period of the muscle) in Rep 4b
were observed. As we consulted with the professor of

(a) (d)

(b) (c)

4x Surface
EMG electrode

EMG inst. amp.
G = 74.5

Amplifier
G = 59 1-order HPF

MVC
analysis

M-RMS
calculation

PC

Haar
wavelet

filter
2-order

Sallen–Key LPF
12 bit A/D
converter

Bluetooth
module

Figure 3: Overview of the system. (a) Connecting electrodes before training (Photoshoot by Orucu). (b) Block diagram of the SEMG circuit.
(c) Block diagram of the analysis software. (d) User interface of the analysis software.
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Physical Education and Sports Teaching (Karamanoğlu
Mehmetbey University), he stated that the fall was caused by
the distortion of movement. According to the consultant
professor, this change appeared to have been caused by the
prolongation of the activation period of the muscle as a
result of pushing the weight down more slowly as specified
in [64, 65].

Other data of training performed by participant
number four are shown in Figure 4(b). In this training, LBB
data were obtained from CH3 (the third channel of the
SEMG circuit) and RBB data were obtained from CH4 (the
fourth channel of the SEMG circuit). When the results
obtained are investigated in accordance with contraction
and relaxation situations as specified in [65, 66] which
consultant professor pointed, it is observed that BBmuscles
contract and relax normally in Rep1, Rep5, Rep7, and Rep9
and BB muscles contract fast and relax normally in Rep2. It
is observed that the left BB contracts more than the right BB
does and both relax normally in Rep3, that the required
support is taken from other regions and movement is
ruined in Rep4 and that the left BB muscle contracts more,
the right BB muscle contracts normally and both relax
normally in Rep6 and Rep8. It is observed that the left BB
contracts normally and the right BB contracts more and

both relax normally in Rep10, in which distortion in
movement appears as a result of fatigue in Rep11 and
Rep12. In addition, the data of other participants obtained
from these trainings are presented in Figure 5.

In Figure 6, the data, processed with TCHW and Kalman
filters, of two repetitions in training, belonging to the right
BB muscle, conducted by the participant numbered 4, are
shown. In this Figure, 6(a) shows the analogue filtered state
of the SEMG signal, and 6(b) shows the preliminary mea-
surement of the threshold cut-out. ,e average and standard
deviation measured here were found as 61.11± 51.61 μV, and
the slope was found as 0.005⁰.,e signal filtered with TCHW
after this procedure is shown in 6(c), and the signal pro-
cessed through Kalman filter is shown in 6(d). Filtering
results indicate that the TCHW method produces better
results in filtering unwanted signals and contraction de-
tection compared to the method of Kalman filter. As a result
of these processes, it was decided to use TCHW filter in our
system.

3.2. Comparison Results with the Existing Biomedical System.
,e accuracy of the data obtained from our system was
compared through the data belonging to two men and two
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Figure 4: Sample analogue filtered data obtained from the SEMG circuit during training: (a) Sample results of participant number two,
(b) sample results of participant number six.
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Figure 5: Continued.
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Figure 5: Data of other participants obtained from these trainings. (a) Results of participant number one. (b) Results of participant number
three. (c) Results of participant number five. (d) Results of participant number six. (e) Results of participant number seven.
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women with the SEMG device in Karaman State Hospital
(Figure 7).

As shown in Table 3, this procedure was carried out
through the data of 108 measurements in total, obtained
through volunteers being unattached, lifting dumbbells of
5 kg and the maximum weight they could lift isometrically
(1 RM) first in the gym, then in the hospital system for three

times with breaks of 90 seconds. In this procedure, first the
data given from the hospital system were recorded and then
the moving RMS was calculated on the analogue and digital
filter data obtained from the system.

In the system designed as a result of this measurement,
accuracies of 90.95%± 3.35 for the left BB and 90.75%± 3.75
for the right BB were obtained.

(a) (b)

Figure 7: (a) Ameasurement taken in the hospital environment and a photograph of the current biomedical system. (b) A photograph taken
at the gym before training.
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Figure 6: Comparison of the filtering results. (a) SEMG data without the filter. (b) Premeasurement for threshold filter. (c) SEMG signal
with threshold +HW filter. (d) SEMG signal with Kalman filter.

Table 3: Moving RMS Results in Gym and Hospital. Note that “M” denotes the measurement number; “BB” denotes biceps brachii; “S”
denotes system; “H” denotes hospital, “MN” denotes muscle name.

Participants/weight (no./kg)
M MN Type 1/idle 2/idle 3/idle 4/idle 1/5 2/5 3/5 4/5 1/25 2/25 3/15 4/12.5

I
Left BB S 70.69 69.72 51.18 43.82 123.69 129.54 97.54 93.64 914.7 935.98 566.98 547.64

H 67.13 72.31 47.24 45.9 137.42 141.94 108.66 101.05 950.94 1112.53 616.53 604.36

Right BB S 71.4 69.75 49.66 42.45 119.11 127.41 96.86 93.95 960.71 937.69 565.69 515.43
H 69.64 70.51 50.22 43.93 135.57 143.13 107.93 97.14 943.82 1117.15 615.15 545.64

II
Left BB S 69.86 68.84 52.03 43.15 121.82 128.9 95.71 93.8 907.35 934.5 563.5 518.06

H 70.39 69.61 51.76 43.75 138.87 139.69 105.78 101.55 942.14 1116.89 614.89 595.59

Right BB S 69.84 71.34 49.01 46.68 122.96 126.95 96.5 93.61 950.6 932.61 562.61 526.48
H 71.82 67.83 50.25 43.27 136.52 142.8 106.73 102.46 1002.4 1110.94 612.94 598.81

III
Left BB S 69.45 70.89 50.96 46.22 124.61 128.91 97.88 89.07 907.15 934.34 564.34 511.19

H 68.57 69.97 50.24 46.71 138.81 139.69 106.74 105.67 1000.8 1115.11 614.11 583.55

Right BB S 71.64 67.65 52.01 43.55 122.97 129.74 95.38 92.52 948.63 930.36 562.36 539.49
H 68.56 69.63 49.72 44.79 135.94 145.8 107.5 104.28 1000.9 1110.61 612.61 543.35
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3.3. Moving RMS and %MVC Values. During the training,
the volunteers were asked to perform a second training in
order to obtain the moving RMS values given back to the
user as feedback. ,e results are presented in Figure 8 and
Table 4 in terms of ease of investigation.

,us, it can be seen that the system can achieve mini-
mum and maximum values of biopotential changes in
muscles during training as in [66, 67].

Finally, the users were asked to lift 5 kg of dumbbell and
the maximum weight they could lift. ,us, the %MVC was
measured to be used in performance feedback through the
obtained moving RMS values. ,e results obtained are
presented in Table 5.

If Table 5 is analysed, it can be seen that the system can
measure efficiency during training with the success rate of
96.87%± 2.74 based on %MVC.

When data obtained from the designed SEMG system
are compared with data obtained from the systems used
in the biomedical field, it is seen that it has 90.85%

accuracy. As digitally filtered data are compared, it is
seen that TCHW method produces better results com-
pared to Kalman filter. TCHW can soften data as pro-
cessable and can also completely filter out unwanted
signals between muscle contractions. It also eliminates
the distortions in data expressed as artifact. Kalman filter
appears to soften the data but not to be able to completely
filter the signal between muscle contractions. Moreover,
it is seen that the system can scale the strength obtained
as moving RMS during the training on the basis of %
MVC with the success rate of 96.87% ± 2.74 in terms of
efficiency. ,is allows the data obtained to be used in the
simultaneous performance monitoring and analysis of
athletes.

4. Conclusion

,anks to this system, it is thought that athletes will be
able to examine their performances instantly for each

Table 4: Moving RMS results in gym as training feedback.

Muscles and participants Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Rep8
LBB 1 862 798 738 683 782 556 715 741
LBB 2 845 779 852 786 590 812 796 766
LBB 3 757 725 721 560 712 699 645 736
LBB 4 810 841 840 804 828 832 791 830
LBB 5 704 802 651 670 604 354 558 701
LBB 6 387 413 395 354 367 403 381 370
LBB 7 316 328 372 346 377 302 328 319
RBB 1 876 833 811 790 815 846 704 653
RBB 2 823 817 847 834 649 747 621 770
RBB 3 821 793 766 696 566 884 685 785
RBB 4 832 853 856 821 819 808 809 815
RBB 5 815 763 750 753 718 707 725 714
RBB 6 389 422 418 350 371 402 361 378
RBB 7 331 380 365 351 372 348 314 341
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training and make their training more efficient. It is
possible to create intelligent training corners by using the
system in gyms. It is thought that the system can easily be
used by athletes, trainers, kinesiologists, and re-
habilitation experts in bodybuilding trainings and re-
habilitation processes. It is possible to improve system
features by increasing the number of channels, further
reducing the PCB size and adding extra sensor. It can be
possible to follow more complicated movements (deadlift,
barbell row, etc.) by increasing the number of channels. By
making the size of system smaller, it can be possible to
place it into textile product. In addition, by adding the
pulse oximetry sensor to the system, oxygen consumption
can be observed during the training. In our future studies, it
is being thought of supporting the system with an image
processing system in order to determine movement dis-
tortions in addition to use it for monitoring training
performance and efficiency.
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and A. J. Murphy, “Kinematics, kinetics, and muscle acti-
vation during explosive upper body movements,” Journal of
Applied Biomechanics, vol. 12, no. 1, pp. 31–43, 1996.

[67] S. Maeo, Y. Yoshitake, Y. Takai, T. Fukunaga, and
H. Kanehisa, “Neuromuscular adaptations following 12-week
maximal voluntary co-contraction training,” European
Journal of Applied Physiology, vol. 114, no. 4, pp. 663–673,
2014.

Journal of Healthcare Engineering 15

http://www.seniam.org/


Research Article
Classification and Assessment of the Patelar Reflex
Response through Biomechanical Measures

Yolocuauhtli Salazar-Muñoz ,1 G. Angelina López-Pérez,1,2 Blanca E. Garcı́a-Caballero,1
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Clinical evaluation of the patellar reflex is one of the most frequent diagnostic methods used by physicians and medical specialists.
However, this test is usually elicited and diagnosed manually. In this work, we develop a device specifically designed to induce the
patellar reflex and measure the angle and angular velocity of the leg during the course of the reflex test. We have recorded the
response of 106 volunteers with the aim of finding a recognizable pattern in the responses that can allow us to classify each reflex
according to the scale of the National Institute of Neurological Disorders and Stroke (NINDS). In order to elicit the patellar reflex,
a hammer is attached to a specially designed pendulum, with a controlled impact force. All volunteer test subjects sit at a specific
height, performing the Jendrassik maneuver during the test, and the medical staff evaluates the response in accordance with the
NINDS scale.,e data acquisition system is integrated by using a tapping sensor, an inertial measurement unit, a control unit, and
a graphical user interface (GUI).,eGUI displays the sensor behavior in real time.,e sample rate is 5 kHz, and the control unit is
configured for a continuous sample mode. ,e measured signals are processed and filtered to reduce high-frequency noise and
digitally stored. After analyzing the signals, several domain-specific features are proposed to allow us to differentiate between
various NINDS groups using machine learning classifiers. ,e results show that it is possible to automatically classify the patellar
reflex into a NINDS scale using the proposed biomechanical measurements and features.

1. Introduction

,e observation of the patellar reflex is one of the clinical
trials performed most frequently for neurological tests,
making it an essential tool for the diagnosis of many neu-
romuscular diseases [1].

,e patellar reflex is a deep tendon reflex, mediated by
the spinal nerves from the levels L2, L3, and L4 in the spinal
cord, predominantly in the root L4. ,e patellar reflex test is
performed to determine the integrity of the neurological
function, which is accomplished by hitting the patellar
tendon below the knee cap with a test hammer [2].

,e patellar reflex occurs when an abrupt change arises
in muscle length; in this case, it is produced by the tendon

stretching, which is caused when the hammer stroke is
applied [3, 4]. ,e normal response must be a sudden leg
extension. A reduction or exaggeration of the response is
indicators of damage or interruption in the innervation of
the quadriceps muscle [5].

,e result of the test is commonly rated using the scales
of the National Institute of Neurological Disorders and
Stroke (NINDS) and the Mayo Clinic [6]; in this work, we
use the former one. ,is scale measures the response
magnitude assigning a different number of “crosses” (+),
whereby zero crosses (0+) indicate an exam with no visible
answer; one cross (1+) corresponds to a slight reflex; two
crosses (2+) indicate a reflex in the lower half of the normal
range; three crosses (3+) are a reflex in the upper half of the
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normal range; and four crosses (4+) mean the reflex is
significantly enhanced [6].

An alteration of the patellar reflex response may be
caused by several different factors, which can range from
tumors in the spinal cord [7] to diseases, such as the
Guillain–Barre syndrome [8] that affects the peripheral
nervous system [9]. Likewise, there are other factors that can
disturb the test result, such as the intensity of the stroke [10],
the nervousness that the patient may experiment during the
test, and the age of the patient [11].

,e development of an objective quantification for the
test is a goal that has arisen in recent years [10, 12–14]. Some
work has attempted to quantify the test by performing
motion analysis [15] in cerebral palsy children [16] and also
proposed a new iPhone application to measure the reflex
response [17]. Other studies have attempted to model the
patellar reflex as a response from a theoretical second-order
system [18].

In a previous work, this research team designed a
device to measure, digitally store, and display the patellar
reflex response [19], capturing the relation between ve-
locity and the magnitude of the response [20]. ,e aim of
this study is to analyze the captured biomechanical var-
iables, including the angle of the knee, the velocity of the
knee movement, the applied force, and the magnitude of
the reflex response, in order to develop an automatic
classification algorithm using digital signal processing and
machine learning algorithms.

2. Materials and Methods

2.1. Setup of the Measurement System. According to the
previous works of Salazar-Muñoz et al. [19, 20] andMoreno-
Estrada et al. [21], the designed device uses an impact sensor
as the start time marker of the test and an inertial mea-
surement unit (IMU) to measure both the angular velocity
and angular position of the leg after it receives the hammer
stroke on the tendon. ,e measurement system consists of
the following two parts.

2.1.1. Mechanical Controlled Force System. ,e mechanical
controlled force system consists of a hammer designed as a
Charpy pendulum. ,e mechanical system consists of an
aluminium pendulum rubber tip attached to a toothed gear
angle with an adjustable height for the hammer initial po-
sition, which allows you to select the impact force on the
patellar tendon as a function of the elevation angle of the
pendulum.,e tip is the same as the clinical hammer used by
a physician. ,e physician shall place the arm in the desired
position and release it manually. ,e force applied will be the
same for all test subjects to generate their own flexion. ,e
prototype was designed such that the elevation angle can
increase from 30° to 165° in steps of 15°. In these experiments,
the hammer arm was elevated to 135° and the hammer mass
was 195 gr, resulting in an impact force of 0.82N, which was
validated by the Charpy pendulum equation at the me-
chanical engineering laboratory [21].

2.1.2. Data Acquisition System (DAS). ,eDAS is composed
of the following elements:

(i) Tapping Sensor. ,e LDT0-028K piezoelectric sen-
sor manufactured by Measurement Specialities was
used, connected to a charge amplifier circuit and an
instrumentation amplifier to obtain a 5V pulse, thus
detecting the instant of impact on the tendon to
synchronize the other measured variables.

(ii) Angular Displacement and Rate Sensor. ,e
Sparkfun IMU number SEN-11072 was used, which
has 5 degrees of freedom. It contains IDG500 2-axis
gyroscope with the sensitivity set to 2mV/°/s and
ADXL335 3-axis accelerometer.

(iii) Control Unit. ,e signals from the sensors are
captured by the NI USB6009 acquisition board,
using two analogue channels and a power source of
5V for the electronic system.

(iv) Graphical User Interface (GUI). ,e GUI was
designed in LabView to display the sensor readings
in real time and save the captured signals of each test
in an lvm file. Each new test generates a new file that
is then imported into Matlab for later analysis. ,e
selected sample rate is 5 kHz, and the board is
configured for a continuous sample mode. ,e GUI
shows the following indicators in real time: the
angular displacement, the angular velocity, and the
moment of impact on the tendon.

2.2. Volunteer Selection. In this work, we use a group of 106
healthy volunteers to evaluate our proposed system. All of
them are students from the Faculty of Medicine at the
“Universidad Juárez del Estado de Durango,” and they in-
clude both men and women.,emean age, height, and body
mass for subjects were 21.5± 1.2 years, 1.73± 0.09m, and
72± 13 kg, respectively. A volunteer is considered to be
healthy for this study if he is not suffering from any di-
agnosed neurological or neuromuscular disease when the
test is realized [22]. ,e clinical trial was carried out under
the direction of the Neurology Department of the “Hospital
General 450” of Durango City, Mexico. ,e study was ap-
proved by the Ethics and Research Committee from the
hospital.

2.3. Measurement Procedure. Experimental tests were per-
formed under the supervision of the physician. Two reflex
tests are applied to every volunteer to develop an automatic
classification algorithm using digital signal processing and
machine learning algorithms. We compare the NINDS scale
with the biomechanical variables registered by the designed
measurement system.,e volunteer must be seated in a high
chair, this way his right foot never touches the floor. In order
to get a high relaxation of the quadriceps muscle, the vol-
unteer is requested to perform the Jendrassik maneuver [23].
All the tests were performed under the same conditions.

(i) Test A. A physician gives a sharp tap on the patellar
tendon with a standard clinical hammer. ,e
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physician evaluates the reflex response using the
NINDS scale. Dafkin et al. [10] established using
stepwise multiple regression analysis that different
groups of subjective raters all relied on the change
of the knee angle to assess the reflex. ,erefore,
the trained physician was asked to focus on this
feature to provide his rating for the analyzed
patients.

(ii) Test B. After Test A, the sensors are placed on the leg
of the volunteer as shown in Figure 1, and the
procedure is as follows: (a) the taping sensor
(impact sensor) is adhered to the patellar tendon
with tape, below the patella to avoid any undesired
movements and (b) the IMU is placed on the ankle
using a belt.,e distance between the knee centre of
rotation and location of the sensor in all subjects
was maintained small following the reference [24].
,e IMU must be positioned parallel to the leg and
perpendicular to the floor. ,e controlled force
system hits the patellar tendon.,e data acquisition
system stores all sensor readings using the GUI that
was designed for this experiment. After this pro-
cedure, the measurement system is withdrawn from
the leg.,is test was performed under the physician
who verifies that the reflex response was equivalent
to Test A. No test was rejected because it ranked
differently from the Test A.

2.4. Data Treatment and Features. ,e data stored by the
system contain three time series. ,e first one is the impact
signal, whichmarks the exactmoment when the pendulumhits
the tendon, denoted by to.,e second time series is the angular
position signal, which measures the angle of the leg during the
reflex response. ,e third time series is the angular velocity of
the legmovement during the test. All the signals are trimmed to
only extract the 4 seconds following the hammer impact, after
to, because the signal power has decreased by 97% and all the
vector lengths were equal. A low pass 3rd degree Chebyshev
filter with a cutoff frequency of 100Hz was used to eliminate
high-frequency noise.

Afterward, the signals of the angular position and an-
gular velocity are characterized by extracting the following
set of descriptive features. ,e extracted features are sum-
marized in Figure 2 for the angular position and in Figure 3
for the angular velocity, each case showing a typical signal
captured by the system for each measurement.

From the angular position signal, the extracted features
are as follows. First, Δa represents the difference between the
maximum andminimum peaks of the signal. Second, Δ1/3 is
the ratio between the first (P1) and third peak (P3) of the
signal. ,ird, Δt1 is the time interval between the maximum
and the minimum peaks. Fourth, Δt2 is the time interval
between the first peak and the third peak of the signal.
Finally, Ts is the settling time, which is the moment when the
signal power has decreased by 97%.

In the case of the angular velocity, a single feature is
extracted called Vmax, which is the maximum value of the
signal, shown in Figure 3 as the highest peak.

2.5. Classification. To achieve the classification of the re-
alized patellar reflex tests based on the number of crossings
in the NINDS scale, basic pattern recognition and machine
learning methods are used [25, 26]. Specifically, the fol-
lowing four classifiers are used:

(i) Naive Bayes
(ii) Tree BAGGER
(iii) k-nearest neighbors (KNN)
(iv) Support vector machine (SVM)

Classifiers are tested with different combinations of the
extracted features. Because the size of the dataset is relatively
small, each classifier is tested using leave-one-out cross
validation. Moreover, the data are preprocessed for feature
reduction using principal component analysis (PCA).

3. Results and Discussion

According to the assessment given by the hospital staff at the
“Hospital General 450,” the collected samples are distributed
in the NINDS scale as follows: 8 samples belong to the 0+
level, 20 samples were from 1+ level, 48 samples from 2+
level, and 30 samples belong to 3+ level. ,e 4+ level is
omitted because none of the volunteers exhibited such a
response.

First, we analyze the recorded signals from each response
level, to determine if there are any general similarities be-
tween them. In Figures 4 and 5, we can see the average
angular position and angular velocity, grouped based on the
corresponding NINDS levels.

Figure 4 shows that the movement of the leg after the
impact has a wavelike behavior, which decreases with time
until it stabilizes to the rest position. ,e maximum am-
plitude reached by the corresponding average signal of the
3+ group is 47 degrees. ,is peak corresponds to the
maximum elevation of the leg. ,e minimum average value
of the same group is −37.85 degrees, corresponding to the
retraction of the leg after the lift. ,is value, which is the Δa
feature, is decreased by 36% in the corresponding average
signal of the 2+ group, by 74% in the corresponding mean
signal of the 1+ group, and by 97% in the corresponding
mean signal of 0+ group, with respect to the mean signal of
the 3+ group.

In Figure 5, the maximum value reached by the average
of the velocity signals of 3+ is 38 degrees per second. ,is
value is the Vmax feature and is attenuated by 31% in the
mean signal of the 2+ group, by 76% for the 1+ group, and by
95% for the 0+ group [20].

In Table 1, we can observe the mean and standard
deviation of the grouped features according to the NINDS
scale.

To make sure the separation between groups is sig-
nificant, the Kruskal–Wallis statistical test is applied to
every feature. ,e test is chosen because the data distri-
bution is not Gaussian. ,e test gives a p value <<0.05 in
every test, allowing us to reject the null hypothesis that all
samples share the same median. Figure 6 shows the box-
plots for each NINDS level for the Δa feature, and Figure 7
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shows the same box plot for Vmax feature.�ese features are
the ones that show the most separation between all the
NINDS groups.

Di�erent combinations of features are selected based on
the statistical results and used as the input data for the
machine learning classi�ers. �e tests are carried out using
leave-one-out cross validation (LOO CV), given the rela-
tively low number of samples in the database. Table 2 shows
all of the tested combinations and the classi�cation accuracy
of each classi�er. In each case, principal component analysis
(PCA) is applied to the input features to perform feature
transformation (but results are only shown for the case in
which PCA improved the performance of at least one
classi�er). Best performance is achieved when using the Δa
and Vmax features with the naive Bayes classi�er without
PCA, with only 11 of 106 misclassi�cations, representing a
classi�cation accuracy of 89.62%.

Graphical
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system

Tapping
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Inertial
measurement

unit

Mechanical
controlled

force system

Figure 1: Schematic representation of the experimental system to obtain the patellar re�ex response, showing the physical setup and sensor
locations.
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Figure 2: Features extracted from the angular position signal.
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Figure 8 shows all of the data samples plotted in the Δa
and Vmax feature space. �e points are labeled to show the
correctly classi�ed sample from each group, using a di�erent
mark for each NINDS level and the misclassi�ed samples as
well. Notice that most of the classi�cation errors can be
found on the boundary between the 2+ and 3+ groups.
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Figure 5: Mean signals of each NINDS group for angular velocity readings.

Table 1: Mean and standard deviation (mean± std) of the features for each NINDS group.

NINDS scale Δa Δ1/3 Δt1 (ms) Δt2 (ms) Ts (sec) Vmax

0+ 3.45± 1.93 0.82± 0.3 108± 71 1.78± 0.244 0.89± 0.318 2.73± 1.96
1+ 24.52± 8.4 0.144± 0.12 354± 68 1.57± 0.164 1.97± 0.766 10.34± 5.06
2+ 59.57± 12.41 0.156± 0.16 414± 64 1.73± 0.173 2.41± 0.785 26.97± 9.66
3+ 93.83± 18.39 0.135± 0.16 440± 52 1.79± 0.222 2.53± 0.773 38.71± 9.53
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Figure 6: Boxplots of the Δa feature for each NINDS group.
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Figure 7: Boxplots of the Vmax feature for each NINDS group.

Table 2: Classi�cation accuracy for di�erent feature combinations,
showing the LOO CV testing performance.

Naive
Bayes
(%)

Tree
BAGGER

(%)

KNN
(%)

SVM
(%)

Δa, Vmax 89.62 82.07 86.79 67.92
Δa, Vmax (with PCA) 88.64 83.96 86.79 66.98
Δa, Vmax, Δ1/3 84.9 86.79 83.96 69.81
Δa, Ts 86.79 84.9 35.84 71.69
Δ1/3, Δt1, Δt2 40.56 53.77 53.77 34.9
Δ1/3, Δt1, Δt2
(with PCA) 57.54 55.66 52.86 40.56
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Figure 8: Δa and Vmax feature space, showing all the samples
collected in the dataset. �e dark round markers shows mis-
classi�ed tests by naive Bayes classi�er, and all other points were
correctly classi�ed into their respective groups.
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4. Conclusion

,e dynamic behavior of the leg during the patellar reflex
createsmovement patterns that can be automatically classified
in the NINDS scale with a useful degree of accuracy. ,is is
shown to be possible using a straightforward feature ex-
traction procedure and pattern recognition techniques. ,e
classification methods used in this study achieved a LOO CV
test accuracy of 89.62% in the best case, using only two feature
dimensions and the naive Bayes classifier. However, despite
the good performance by the proposed system, discordance
between clinical measurements and the current measure-
ments might still be considered high in some scenarios.
Moreover, the proposed approach should be verified using
observations from different neurologists to determine how
well this approach generalized across experts. Nonetheless,
the proposed system might lead to the full automatization of
this test by integrating these future improvements, along with
other promising technical enhancements, such as wireless
sensors to increase a patient’s comfort or edge computing to
simplify the data processing and transmission process.
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(e aim of this paper is to choose the optimal motion sensor for the selected human activity recognition. In the described studies,
different human motion measurement methods are used simultaneously such as optoelectronics, video, electromyographic,
accelerometric, and pressure sensors. Several analyses of activity recognition were performed: recognition correctness for all
activities together, matrices of the recognition errors of the individual activities for all volunteers for the individual sensors, and
recognition correctness of all activities for each volunteer and each sensor. (e experiments enabled to find a range of in-
terchangeability and to choose the most appropriate sensor for recognition of the selected motion.

1. Introduction

Telemetric recording and automatic interpretation of mo-
tion activities play a significant role in home monitoring.
From a variety of applications, we can distinguish a fewmost
common ones: prevention and detection of falls, detection of
abnormal or dangerous situations, rehabilitation monitor-
ing, and activity assessment and quantification. An auto-
matic system usually consists of sensors, specific signal or
image processing methods, and recognition module for the
selected activity. Selection of sensors seems to be the most
important issue and must take into account useable sensor
properties: wearing ability, sensitivity to disturbances, oc-
currence of outsiders, etc. Out of the many propositions of
sensors, it is difficult to choose the best universal one because
each sensor works best in a certain range of recognized
activities. (is fact motivates us to study that topic.

In [1], electromyographic (EMG) analysis of four lower
limb muscles was performed during seven classes of pre-
ventive exercises against loss of balance or falling. Other
researchers integrated EMG and inertial measurement unit
(IMU) to construct a balance evaluation system for re-
cording the body in a dynamic and static posture [2]. In [3],
seven hand movements were classified (by neural networks
with backpropagation and Gustafson–Kessel algorithm) on

the basis of EMG signal of four forearm muscles. An EMG-
and augmented reality- (AR-) based rehabilitation system
for the upper limbs was proposed in [4]. In [5], an EMG
biofeedback device for forearm physiotherapy was con-
structed to discriminate 6 classes of movements.

Novak et al. [6] proposed a system for automatic de-
tection of gait phases using acceleration and pressure sensors
and supervised learning algorithm. For gait abnormalities
detection in [7], the authors built a prototype of pressure
force sensing resistor (FSR), bend sensor, and IMU. Prin-
cipal component analysis (PCA) was used for the features
generation and support vector machine (SVM) for multi-
class classification. Shu et al. [8] presented a time-space
measurement tool in the form of insoles of conductive fabric
sensors placed around the midfoot and the heel.(e wireless
capacitive pressure sensors were introduced in [9]. Other
studies [10] were related to equilibrium measurements with
an instrumented insole with 3 pressure sensors per foot.

An accelerometric (ACC) system for monitoring the
daily motor activity (sitting, standing, lying, and periods of
natural walking) was proposed in [11]. An ACC sensor was
placed on the subject’s sternum. Detection of gait parameters
by means of a detector composed of gyrometric, accel-
erometric, and magnetic sensors was proposed in [12]. Rong
et al. [13] presented the use of 3D accelerometric sensor
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located at the waist to identify people based on their
characteristic gait patterns. Identification was prepared with
discrete wavelet transform (DWT). Jafari et al. [14] proposed
ACC-based detection of accidental fall. (e selected signal
features were used for distinction of four transitions (sitting-
standing, standing-sitting, lying-standing, and standing-ly-
ing) with the use of neural network and k-nearest neighbour
(k-NN) classification. In [15], researchers developed ACC-
based fall detection for smartphones. (e proposed system
enabled fall event detection, location tracking of the person,
and notifications of emergency situations.

Juang et al. [16] introduced a system for detection of four
body postures (standing, bending forward, sitting, or lying)
and sudden falls. For classification purposes, the silhouette
was segmented from each image frame. (e feature vector
was composed of Fourier transform coefficients and a ratio
of body silhouette length and width. Real-time system was
implemented in [17]. It consisted of three main modules:
segmentation of silhouette, recognition, and identification of
posture. (e authors introduced decision rules based on
body parameters. It was possible to detect four postures:
standing, sitting, squatting, and bending. In [18], authors
performed analysis by means of supervised and non-
supervised learning for classification of the body position on
images sequence. Other researchers [19] presented the
posture detection method which took into account in-
formation about the body shape and the skin colour. Song
and Chen [20] proposed vision-based activity recognition on
the basis of information of pose, location, and elapsed time.

In the mentioned papers, the selection of particular
sensors was not so clearly justified. (is raises a natural
question about the optimal choice. (e aim of our research
was based on the use of various sensors applied to simulta-
neously capture the signs in basic activities and study the
correlation of information obtained from them. (is ap-
proach enabled the choice of the proper sensor depending on
the situation and the current need. (e experiments aimed at
determining how well the simple measuring devices can
approximate the information obtained from the specialized
medical equipment. Our measurements were performed by
means of three-dimensional motion capture system, wireless
EMG amplifier and wireless feet pressure system (as reference
equipment), and accelerometer and video camera (as cur-
rently available consumer-grade sensors).

2. Materials and Methods

2.1. Plan of the Experiment. A total number of 20 volunteers
(8 women, 12 men, age—22 to 61, average age—27) were
examined. Each subject was instructed to do about 30 (19 to
46) repetitions of 12 different activities:

(i) Squatting from a stand position (1a) and getting up
from a squat (1b)

(ii) Sitting on a chair from a stand position (2a) and
getting up from a chair (2b)

(iii) Reaching (3a) and returning from reaching the
upper limb forward in the sagittal plane (standing)
(3b)

(iv) Reaching (4a) and returning from reaching the
upper limb upwards in the sagittal plane (standing)
(4b)

(v) Bending from a stand position (5a) and straight-
ening the trunk forward in the sagittal plane (5b)

(vi) Single step for the right (6a) and left lower limb (6b).

(e measurements were performed simultaneously with
the following:

(i) A, a motion capture system: Optotrak Certus (NDI)
with NDI First Principles software

(ii) B, a wireless biopotential amplifier: ME6000 (Mega
Electronics) with MegaWin software

(iii) C, a wireless feet pressure measurement system:
ParoLogg with Parologg software

(iv) D, a digital video camera: Sony HDR-FX7E
(v) E: ACC recorder (Revitus system) with dedicated

software.

2.2. Characteristics of the Examined Signals. (e three-di-
mensional motion trajectories of 30 infrared markers M1 to
M30 located on the body were measured from the left side of
the observed person (Figure 1). (e acquisition was per-
formed with the sampling frequency 100Hz, accuracy
0.1mm, and resolution 0.01mm.

Surface EMG signals were recorded (2 kHz) from 8
muscles of both lower limbs: (1) quadriceps (vastus lateralis),
(2) biceps femoris, (3) tibialis anterior, and (4) gastrocne-
mius (medial head).

Feet pressure signals were captured with 64 piezor-
esistive sensors (32 for each feet) with 100Hz. Triaxial ac-
celeration signal was recorded by sensors integrated in
Revitus device located on the sternum.(e recorder enabled
online measurement via Bluetooth (100Hz).

Video signals (720× 576 pixels, 25 frames per second)
were obtained from silhouette measurement using a digital
camera placed from the volunteer’s left side.

2.3. Processing of theMeasurementData. To calculate feature
vectors for classification, the processing of data recorded
with sensors B to E was performed in MATLAB.

(e three-dimensional motion trajectories were used for
determining the precise time moments of start and end of
activities. (e exception was the gait (6a, 6b), which cannot
be performed in a natural way in the distance as short as 4m
(the maximal width of registration space of the motion
capture system).(erefore, for the gait (6a, 6b), the start and
end points of duration were determined from visual analysis
of video frames.

(e difference of performance time between analyzed
movements and acting volunteers requires normalization of
the data length with a window W. In order to make the
optimal selection of its width, a set of histograms of activities
performance were calculated:

(i) Histograms of minimal, maximal, and average
(MIN, MAX, AVG) performance time for all people
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and all activities together; the ALL histogram—for all
values of duration time together and for all volun-
teers and activities (Figure 2)

(ii) Histograms of all performance time for all volun-
teers, for each activity separately from 1a to 6b
(Figure 3).

Based on the ALL histogram, the length of time window
was set to W � 1.6 s, as the shortest of all window-covering
activities of various types. Above this value, the other his-
tograms (except for MAX) do not show a significant activity.

(e electromyographic signals were processed as follows:

(i) Calculating the absolute value of the signal
(ii) Averaging the signal in a moving time window

(0.1 s)
(iii) Normalizing the amplitude separately for each

volunteer—dividing the signal by the maximal value
from all measurements of all activities for each
volunteer

(iv) Creating the vector data (which are then used as a
component of the input classifier vector) consisting

of the prepared (as above) EMG signal of each
muscle of the left (L) and right (R) lower limb:
EL1 EL2 EL3 EL4 ER1 ER2 ER3 ER4 

(v) Normalizing the amplitude to (0 1] interval
(vi) Resampling the signal to the frequency of 25Hz.

(e feet pressure signals were processed as follows:

(i) Averaging the signal values from the sensors in the
three selected areas—the heel (1), the center (2), and
the front (3) for the left (L) and the right (R) foot:
L1 L2 L3 R1 R2 R3 

(ii) Averaging the signal in a moving time window of
0.3 s

(iii) Normalizing the amplitude for each volunteer
separately

(iv) Creating the vector data: L1 L2 L3 R1 R2 R3 

(v) Normalizing the amplitude to (0 1] interval
(vi) Resampling the signal to the frequency of 25Hz.

(e accelerometric signals were processed as follows
[21]:

(i) Subtracting the offset value from the signal (off-
set—average of the 10 s length signal, when a person
is in a stationary upright position) separately for
each channel (x, y, z) and for each person

(ii) Averaging the signal in a moving time window of
0.2 s

(iii) Normalizing the amplitude for each volunteer
separately

(iv) Creating the vector data consisting of a prepared
acceleration signal in the axes x, y, z: X Y Z 

(v) Normalizing the amplitude to (0 1] interval
(vi) Resampling the signal to the frequency of 25Hz.

(e video signal was prepared as follows [22]:

(i) Converting a colour image to a grayscale.
(ii) Calculating the vector motion field with 2 coor-

dinates—optical flow (OF) using Horn–Schunck
algorithm [23].

(iii) Median filtering of the motion field components
(5× 5 pixels).

(iv) Detecting the moving objects—binarization of the
motion field module with a T threshold constant
for all people and all activities; the threshold has
been chosen experimentally in [24].

(v) Calculating an area of the moving silhouette
Sn−1 on the (n− 1)-th frame (yellow area in
Figure 4(b)) as a joint part from areas OFn−1/n−2
(blue) and OFn/n−1 (turquoise), where OFn−1/n−2
is the motion field calculated on the basis of
(n− 1)-th and (n − 2)-th frame and OFn/n−1is the
motion field calculated on the basis of n-th and
(n− 1)-th frame.

(vi) Filling the holes in the area Sn−1.

M2 
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M3 
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M4 
M7 
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Figure 1: Placement of the markers M1 to M30.
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(vii) �ickening the contour mask of the movable sil-
houette part Sn−1 (inside to approximately four
pixels (Figure 4(c)).

(viii) Determining the histograms of motion �eld
directions—aggregation of motion �eld vectors
from the bold contour to 8 directions; each di-
rection corresponds to the following angle ranges
[−337.50° 22.50°], [22.50° 67.50°], . . ., [292.50°
−337.50°].

(ix) Normalizing the histograms.
(x) Creating the data vector consisting of the histo-

grams with bins B1, B2, B3, B4, B5, B6, B7,
B8—each bar corresponds to one of eight di-
rections: B1 B2 B3 B4 B5 B6 B7 B8[ ].

2.4. Identi�cation of the Activities. To identify the selected
activities, a supervised classi�cation was performed. �e set
of all measurement data from each sensor was divided into
learning and test sets. �e former contained 2400 randomly
selected representatives of all 10 activities, while the latter all
4874 remaining cases.

For classi�cation of the selected activities, k-NN algo-
rithm and Manhattan metrics were used. Before the clas-
si�cation step, the classi�er was tested using the LOO
(Leave-One-Out) method. On the basis of these analyses, k
equal to 1 was the optimal value for all sensors and sets of
sensors.

For each activity a and each sensor s, the correctness of
recognition for all volunteers Rs_a (1) and its calculation
errorUs_a (2) were calculated.Us_a is a measure of the results
dispersion coming from intersubject di�erences. Due to
di�erent numbers of activity repetitions for each volunteer,
we used weighted standard deviation (2):

Rs_a �
Ps_a
Ws_a

, (1)

wherePs_a is the sum of correctly identi�ed repetitions of the
activity a for all volunteers for the sensor s and Ws_a is the

sum of all repetitions of the activity a performed by all
volunteers for the sensor s:

Us_a �

���������������

∑ni�1wi xi −Rs_a( )
2

(n− 1/n)∑ni�1wi

√√

, (2)

where n� 20 is the number of weights, equal to the number
of volunteers; wi is the weight for the i-th volunteer, equal to
the number of the activity a repetitions performed by the i-th
volunteer; and xi is the percentage of correct recognition for
speci�c activity calculated for the i-th volunteer.

In order to represent an additional variable, Rs_a_ALL
(and its calculation errorUs_ALL) was employed. It illustrates
the percentage of correct recognition for all activities and all
volunteers for each sensor:

Rs_a_ALL �
Ps_a_ALL
Ws_a_ALL

, (3)

where Ps_a_ALL is the sum of correctly identi�ed repetitions
of all activities ALL performed by all volunteers for the
sensor s andWs_a_ALL is the sum of all performed repetitions
of all activities ALL for all volunteers.

Us_a_ALL �

������������������

∑ni�1ui yi −Rs_a_ALL( )
2

(n− 1/n)∑ni�1ui

√√

, (4)

where ui is the weight for the i-th volunteer, equal to the total
number of repetitions of all activities performed by the i-th
volunteer, and yi is the percentage of correct recognition for
all activities calculated for volunteer i.

For each volunteer V and sensor s, the percent recog-
nition for all activities Rs_V (5) and its calculation error Us_V
(6) were determined. Us_V is a measure of the results value
dispersion arising from di�erences between di�erent
activities.

Rs_V �
Ps_V
Ws_V

, (5)
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Figure 2: Histograms of performance time for all volunteers and all activities together: (a) minimal MIN, (b) maximal MAX, (c) average
AVG duration, and (d) collective ALL.
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where Ps_V is the sum of correctly identi�ed repetitions of all
activities with the sensor s performed by the volunteer V and
Ws_V is the sum of repetitions of all activities performed by
the volunteer V.

Us_V �

����������������
∑mj�1pj zj −Rs_V( )

2

(m− 1/m)∑mj�1pj

√√

, (6)

where m� 12 is the number of weights, equal to the number
of activity types, pj is the weight for the j-th activity, equal to
the number of its repetitions performed by the volunteer,
and zj is the percentage of correct recognition for the j-th
activity for the speci�c subject.

In addition, the calculation error Us_V_ALL, was de-
termined as an activity-related dispersion:
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Figure 3: Histograms 1a to 6b of all performance time for all volunteers, for each activity separately 1a to 6b.
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Us_V_ALL �

������������������


m
j�1qj rj −Rs_a_ALL 

2

(m− 1/m)
m
j�1qj




, (7)

where qj is the weight for the j-th activity equal to the
number of all the repetitions performed by all volunteers and
rj is the percentage of correct recognition for the j-th activity
calculated for all volunteers.

3. Results

(e correctness of recognition Rs_a (1) of activities 1a to 6b
for all persons for sensors B to E is presented in Table 1.

Matrices of the recognition errors (in %) of the indi-
vidual activities 1a to 6b for all volunteers for the individual
sensors B to E are shown in Tables 2–5. (e percentage of
correct recognition Rs_a for the individual activities is
therefore placed on a diagonal matrix.

(e correctness of recognition Rs_V of all activities for
volunteers V1 to V20 and Rs_a_ALL for ALL volunteers for
sensors B to E is presented in Table 6.

4. Discussion

(e correctness of recognition Rs_a (1) is negatively corre-
lated with the dispersion of the value Us_a (2) (Table 1).
(erefore, less reliable recognition of the activity carried out
by all volunteers does not mean worse recognition of the
activity for each individual volunteer, but rather it is the
implication of the individual way of performing the activity
by the volunteer.

Some types of activities such as free gait or the return
from reaching in the vertical and horizontal plane showed
much less reliable recognition than others, regardless of the
sensor type. Reliability of gait recognition is low probably
due to high diversity in walking rhythm. Reaching is difficult
to recognize, as it is characterized by low degree of dynamics
of the whole body.

It was found that, among the single sensors, the best
classifier for different activities is sensor B, followed suc-
cessively by sensors D, E, and C.

(e correctness of recognition Rs_V (5) is negatively
correlated with the value of dispersion Us_V (7) (Table 6). It
means that less reliable recognition for a single volunteer
(taking into account all activities) does not come from an
inferior recognition reliability of every single activity for that
volunteer, but rather it is a result of the existing in-
consistency of individual activities recognitions.

Our research is focused on the recognition of only 12
types of daily life activities. (e motivation of that choice is
mainly based on the following aspects:

(i) Since the chosen activities are done quite often and
are easy to repeat, we limit as much as possible the
errors coming from different volunteer performance
of the activity and thus the comparison of the sensors
is more reliable

(ii) It can be presumed that any activity (even more
complex) can be presented by means of the simple
(elementary) poses [26].

Although the choice of a proper sensor is a very complex
issue, in our studies, we simplify it only to the comparison of
motion items. Nevertheless, the final choice of the sensors is
precisely related with the application. (e following re-
quirements should then be taken into consideration:

(i) Individual characteristics of the sensor signal
(ii) Size of the registration space
(iii) Sensor accuracy
(iv) Sensor portability and unobtrusiveness
(v) Cost of the sensor device and reliable software
(vi) Privacy of the supervised person.

(e reason for the performance differences for each
activity and for each sensor has the source in differences in:

(i) Speed, range, and way of doing the particular motion

(a) (b) (c) (d) (e)

Figure 4: Optical flow algorithm [25]. (a) (n− 1)-th frame representing the silhouette during free gait. (b) Joint part (yellow) of the areas:
OFn−1/n−2 (blue) and OFn/n−1 (turquoise). (c) (n− 1)-th frame representing the free gait with detected silhouette contour. (d) Optical flow
calculated on bold contour of the moving silhouette and (e) optical flow of the zoomed silhouette part from red frame in (d).
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(ii) Anatomy and biomechanics of the volunteer body
(physical fitness, strength, endurance, flexibility, way
of loading the body weight, etc.).

(e above factors have an impact on all of the sensors (B
to E).

5. Conclusions

(e paper presents results of recognition of 12 motor
activities in human based on individual interpretation of
simultaneous recordings from various sensors. (e main

finding is that some sensors are more appropriate to the
selected activities, while the other sensors show higher
performance compared with the others. Consequently, we
specified both areas where sensors show distinctive
properties and a common range of activities where the
sensors show similar metrological properties and may be
selected based on other criteria (e.g., cost and
commodity).

Additionally, we found that some recognition results
generalized for all volunteers as well as those generalized for
all activities showed surprisingly low values. (is suggests
that the recognition performance is dependent on particular

Table 1: Correctness of recognition Rs_a (in %) of activities 1a to 6b and Rs_a_ALL of ALL activities for all volunteers for sensors B to E.

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b All

B 96.9 100.0 99.5 98.5 99.0 99.3 99.1 98.6 97.9 98.2 96.0 97.6 98.4
3.9 0.0 1.5 3.7 3.4 1.8 3.2 3.1 3.7 3.5 12.7 7.5 1.8

C 90.8 91.8 95.7 96.7 94.9 92.4 95.3 93.6 87.0 88.2 94.9 97.1 93.1
10.0 10.8 12.4 15.5 6.9 6.4 10.2 7.6 15.0 14.6 14.1 8.2 5.7

D 95.2 97.2 95.5 94.2 96.6 95.1 98.4 97.6 97.9 99.3 96.5 96.0 96.7
17.2 11.2 15.8 15.4 6.6 8.8 3.2 4.1 2.8 1.9 12.3 12.1 5.2

E 99.7 99.5 95.5 95.5 99.3 97.6 96.0 79.8 99.3 99.3 91.7 92.3 95.5
1.1 1.6 17.7 18.8 1.8 4.4 7.9 25.0 1.7 1.7 9.1 8.4 4.4

Calculation errors Us_a and Us_a_ALL are in italics.

Table 2: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor B.

B Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 96.9 0.5 0.8
1b 100
2a 2.0 99.5 0.8 0.2
2b 98.5
3a 99.0 0.2
3b 99.3 0.5
4a 0.5 0.2 99.1 0.7 1.1
4b 0.7 0.7 98.6 0.9 1.8
5a 0.5 0.5 0.2 97.9
5b 98.2
6a 96.0 2.4
6b 4.0 97.6

Table 3: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor C.

C Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 90.8 0.3 4.1 0.5 0.5
1b 91.8 3.9 0.9
2a 0.3 0.8 95.7 1.5 0.7 0.2 0.7
2b 1.8 1.3 96.7 0.2 0.9 1.4
3a 3.1 94.9 0.2 0.5
3b 2.0 92.4 0.5
4a 2.8 0.5 0.8 1.0 1.0 0.2 95.3 4.0 4.6 1.6
4b 0.3 3.3 1.5 0.5 1.7 3.8 93.6 1.6 5.5
5a 1.0 0.3 0.5 87.0 2.7 0.3 0.3
5b 1.3 0.5 0.3 1.5 0.5 4.3 88.2
6a 94.9 2.7
6b 4.8 97.1
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volunteer (i.e., subject-specific) and also on particular ac-
tion. Accordingly, the hierarchy of expected recognition
results for particular actions is not universal, and to produce
optimal results, it should be individually adjusted with
regard to particular user behavior.

(e prospective ways of future extension of our studies
are as follows:

(i) Expanding the list of activities with more complex
ones

(ii) Evaluating and adaptating the proposed solutions in
home environment

(iii) Extending video processing algorithm with a de-
tection of individual body parts.

Data Availability

Research data are not openly available because of the vol-
unteers’ privacy.

Table 5: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor E.

E Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 99.7 0.5
1b 99.5 0.7
2a 95.5 0.2 0.2 0.2
2b 95.5 0.2 0.2 0.9
3a 0.5 99.3 3.8 0
3b 0.8 97.6 2.8
4a 3.8 3.8 0.5 0.2 96.0 16.2 0.2
4b 0.3 1.7 79.8
5a 0.3 99.3
5b 0.5 99.3
6a 91.7 7.7
6b 8.3 92.3

Table 4: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor D.

D Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 95.2 1.0 0.3 0.9
1b 2.0 97.2 0.3 0.8 0.7
2a 0.5 0.5 95.5 3.5 0.2 0.2 0.9 0.3
2b 1.0 2.3 94.2 0.2
3a 96.6 0.7
3b 95.1 1.2
4a 0.3 0.3 2.9 0.2 98.4 0.9 0.5 0.5
4b 0.3 0.3 0.3 0.5 4.6 0.7 97.6
5a 1.3 0.3 1.0 1.0 97.9
5b 0.8 0.3 99.3
6a 96.5 3.2
6b 2.9 96.0

Table 6: Correctness of recognition Rs_V (in %) of all activities for volunteers V1 to V20 and Rs_a_ALL for ALL volunteers for sensors B to E.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 All

B 99.1 94.8 98.4 98.3 98.7 99.1 99.6 97.7 98.3 98.0 98.4 99.6 92.6 100.0 99.6 99.1 97.3 99.6 99.6 100.0 98.4
2.0 7.8 2.4 4.6 3.1 1.9 1.5 4.1 3.3 4.5 3.7 1.4 15.8 0.0 1.4 2.9 4.3 1.1 1.1 0.0 1.1

C 98.2 94.8 98.0 97.9 92.3 97.4 97.3 94.9 95.7 91.2 94.4 88.0 85.3 97.1 87.3 88.9 75.2 94.7 93.5 98.4 93.1
2.5 5.6 3.3 2.2 11.6 5.9 5.0 7.8 4.1 12.5 7.2 17.2 15.9 3.3 13.4 13.6 22.7 13.1 11.8 4.4 3.3

D 96.9 93.1 99.2 96.9 98.3 98.7 100.0 76.2 93.1 97.6 99.2 99.2 91.1 98.2 100.0 98.3 94.6 100.0 100.0 100.0 96.7
3.9 11.1 1.9 6.5 2.5 3.2 0.0 33.8 11.3 4.1 2.7 1.9 17.2 2.9 0.0 2.5 9.1 0.0 0.0 0.0 1.5

E 97.4 95.3 95.9 88.8 97.9 99.1 99.6 97.7 94.4 93.6 99.2 81.0 96.5 94.9 99.2 98.3 92.3 97.3 97.7 94.8 95.5
6.4 9.7 7.4 23.4 3.6 1.9 2.0 3.1 10.5 14.7 1.9 31.8 5.3 16.2 1.9 3.9 16.1 4.7 4.5 11.2 5.8

Calculation errors Us_V and Us_V_ALL are in italics.
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Wydawnictwo Politechniki Śląskiej, Gliwice, Poland, 2004.

[23] B. K. P. Horn and B. G. Schunck, ““Determining optical flow”:
a retrospective,” Artificial Intelligence, vol. 59, no. 1-2,
pp. 81–87, 1993.
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Frozen shoulder is a common clinical shoulder condition. Measuring the degree of shoulder joint movement is crucial to the
rehabilitation process. Such measurements can be used to evaluate the severity of patients’ condition, establish rehabilitation goals
and appropriate activity difficulty levels, and understand the effects of rehabilitation. Currently, measurements of the shoulder
joint movement degree are typically conducted by therapists using a protractor. However, along with the growth of tele-
rehabilitation, measuring the shoulder joint mobility on patients’ own at home will be needed. In this study, wireless inertial
sensors were combined with the virtual reality interactive technology to provide an innovative shoulder joint mobility self-
measurement system that can enable patients to measure their performance of four shoulder joint movements on their own at
home. Pilot clinical trials were conducted with 25 patients to confirm the feasibility of the system. In addition, the results of
correlation and differential analyses compared with the results of traditional measurement methods exhibited a high correlation,
verifying the accuracy of the proposed system. Moreover, according to interviews with patients, they are confident in their ability
to measure shoulder joint mobility themselves.

1. Introduction

Frozen shoulder is the common name for impaired shoulder
movement caused by injury to the shoulder capsule and soft
tissues. Clinically, frozen shoulder is a common shoulder
condition.,e symptoms of this condition include restriction
of active or passive joint motion, stiffness, aching, and loss of
muscular strength in the shoulder. Such symptoms typically
manifest for 2 years [1–5], although in severe cases, they can
persist for more than 5 years. Generally, patients cannot move
their shoulder because of injury to the soft tissue surrounding
the shoulder.,e accompanying pain causes them to avoid all
movements, which further exacerbates the condition. ,e
prevalence of frozen shoulder in the general population is
between 2% and 5%. ,is condition is typically experienced
between the ages of 40 and 65 years, with a higher occurrence
rate for women compared with that for men (at a ratio of 58 :
42) [6]. People diagnosed with diseases such as diabetes and

hyperthyroidism also exhibit a higher than average occur-
rence rate [7].

Regarding medication treatments, medicines such as
Panadol and nonsteroid anti-inflammatory drugs can be
considered. In addition, steroid injections into the shoulder
joint can also be administered to ease pain. Medication
treatments are generally provided to alleviate pain and re-
duce inflammation. However, for certain patients with se-
vere symptoms, the effect of such treatments is limited.
,erefore, alternative physical therapies are necessary to
effectively restore shoulder joint function [8]. Measurements
of shoulder joint mobility are crucial to the rehabilitation
process. By measuring shoulder joint mobility before re-
habilitation, the goals and difficulty levels of the re-
habilitation activities can be set according to the severity of
the patient’s condition, which is determined based on the
maximum angle of shoulder joint motion when performing
various rehabilitation movements, to accommodate each
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patient’s rehabilitation needs. ,ese measurements also
allow patients to recognize the effects of rehabilitation,
thereby increasing their motivation and compliance. Cur-
rently, measurements of shoulder joint mobility are con-
ducted by therapists and using protractors. Along with the
growth of telerehabilitation [9–11], there is increasing need
for patients to measure shoulder joint mobility on their own
at home in order to understand the progress of re-
habilitation. However, it is difficult for patients to operate
protractors alone at home.

With recent advancements in microelectromechanical
systems, the size and cost of various types of sensors have
declined considerably, leading to increased applications. In-
ertial measurement units (IMUs) are primarily used to
measure themovement direction and orientation of a physical
object. Incorporating wireless transmission technologies, the
wireless IMU (WIMU) sensor was proposed as a wearable
sensor and its applications in motor rehabilitation have in-
creased [12, 13]. In this research, by integrating wireless IMU
sensors with VR interactive technology, an innovative self-
measurement system combined with a set of shoulder joint
mobility exercises was developed, facilitating home-based
objective assessments of patients’ shoulder mobility. ,e
research objectives of this study were as follows: (1) to
combine wireless IMU sensors with VR interactive tech-
nology to produce an innovative shoulder joint mobility self-
measurement system; (2) to verify the feasibility and accuracy
of the developed system via clinical trials; and (3) to in-
vestigate patients’ usage intentions for this system.

2. Methods

2.1. System Design. ,e two essential elements to define
virtual reality are immersion and interaction. ,e system
architecture comprised two units: a WIMU and a VR-based
interactive self-guided program (VRISG). ,e system ar-
chitecture design is shown in Figure 1. In our design,
projector is used to display the virtual environment in order
to provide the immersion. WIMU is applied that the user is
able to interact with the virtual environment.

,eWIMU is primarily used to detect the shoulder joint
position. Physically, the WIMU is attached to the user’s
affected side at wrist or elbow according to movement types,
as shown in Figure 2. In addition, their performance of
various shoulder joint mobility exercises could be assessed to
determine the joint angle. Data of the shoulder joint angle
and position are then transmitted wirelessly to the VRISG
for processing.,e proposed system comprised two parts: an
IMU and a wireless transmission module (as shown in
Figure 1). ,e IMU used in this study was a 9DOF Razor
IMU. ,is IMU contains three sensor chips: triple-axis
gyroscope, triple-axis accelerometer, and triple-axis mag-
netometer. Using these three sensor chips, the posture value
(pitch, yaw, and row) of an object can be measured. After the
IMU obtains posture data, the wireless transmission module
XBee (manufactured by Digi International) transmits data
signals to the XBee receiver connected to a computer. Fi-
nally, the game engine reads the signals and uses animations
to present users’ movement postures.

,e VRISG uses the received data and animation func-
tions to realistically simulate the human body. A projector is
then used to project the simulated image onto a wall. ,e
system uses a 3D Unity game engine and related software
programs to produce a skeleton animation and user interface
for measuring shoulder joint mobility when performing
various movements. Corresponding activities were designed
for self-guided measurement, with the movements including
abduction, flexion, internal rotation, and external rotation, as
shown in Figure 3. For measuring joint mobility during each
movement, an instructional video is provided to assist users in
understanding the correct way to perform each movement
and the important steps they should be aware of during the
measurement stage. Next, during the measurement process,
the system guides users through skeleton animations based on
shoulder joint angle measurements and presents user posture
immediately as real-time visual feedback.,is enables users to
clearly understand the range and margin of their shoulder
joint movements. Concurrently, an angle bar graph and angle
value column appear on the right side of the computer screen
and display shoulder joint angle measured by the IMU,
informing users of their shoulder joint movement angle. Each
movement should be performed three times, and the outcome
is measured every time. Every movement cycle begins with
users raising their upper limbs and gradually rotating the
shoulder joint until the maximum movement angle is
reached. ,e movement cycle ends when users relax their
upper limbs. ,is movement cycle must be performed three
times. ,e three angle measurements and the average of these
measurements are displayed as a reference for patients and
physical therapists. Furthermore, after each measurement is
complete, the data are stored in a database to provide ther-
apists with an understanding and analysis of each patient’s
rehabilitation status and progress.

2.2. Participants. ,e clinical trials conducted for this re-
search were proactive, intervening, randomly assigned, and
single blind. ,is study obtained consent for participation
from 25 people, specifically, 10 men and 15 women, with an
average age of 56.25 years. ,e average duration of the
condition was 8.2months. ,is study project was approved
by the Institutional Review Board of Taipei Veterans General
Hospital with VGHIRB: 2012-07-004A. ,e participant
inclusion and exclusion criteria were as follows:

2.2.1. Inclusion Criteria

(1) At least 20 years of age
(2) No previous experience of physical therapy
(3) Normal cognition and able to follow the system use

instructions
(4) Clinical diagnosis of frozen shoulder
(5) A signed consent form

2.2.2. Exclusion Criteria

(1) A history of injury, dislocation, or surgery to the
shoulder or humerus
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(2) Prior treatment with hyaluronic acid injections in
the shoulder

(3) A history of cervical spondylotic radiculopathy or
degenerative arthritis of the shoulder

(4) A history of terminal malignant disease
(5) Pregnancy

2.3. Experimental Procedure. Before the experiment, the
participants were required to sign an experiment consent
form and understand the research procedures. ,e experi-
ment primarily measured the patients’ shoulder joint

mobility. ,e movements that were performed in the ex-
periment to measure shoulder joint mobility were divided
into the following four categories: flexion, abduction, in-
ternal rotation, and external rotation. Two types of mea-
surement methods were employed, which are as follows:

(1) To use the innovative shoulder joint mobility self-
measurement system proposed in this study for
conducting measurements. During the experiment,
the participants observed changes in the angle and
mobility of their shoulder joint as well as the mea-
surement results projected on the screen, as shown in
Figure 1.

(2) To use the traditional method, which involved
physical therapists using a protractor for measure-
ment, the patients were not provided any in-
formation regarding the measurements, as shown in
Figure 4.

In this study, every participant was measured using both
methods. During these measurements, they were required to
perform the four shoulder joint mobility movements in
sequence, and each movement was measured three times.
Subsequently, the three measurements of each movement
were averaged and recorded by a physical therapist. ,ese
data acquired from the first measurement method were
classified as the experimental group, while data from the

Computer

Database

Wireless IMU

Wireless transmitter IMU sensor 

Degrees of angle Skeleton animation 

Wireless IMU VR-based interactive self-guided program 

VRISG

Projector 

Figure 1: System architectures.

WIMU

Elastic band

Align with wrist

Align with elbow

Flexion or abduction

Internal or external rotation

Figure 2: Physical setting of IMU.
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second method were classified as the control group. ,e
experimental group and control group were measured
separately by two physical therapists.

,e participants in the experimental group first followed
the sequence of the movements to attach the WIMU to the
specified location and then used the VRISG to conduct
measurements. Please refer to Section 2.2 for more details
regarding the measurement process and content.

For the control group, a different physical therapist than
the one assigned to the experimental group employed the
traditional measurement method, where shoulder joint
mobility was primarily measured by using traditional tools

including a protractor. No software system was used to assist
with the experimental process. ,e mobility measurement
steps andmovement sequence adopted for the control group
were identical to those of the experimental group. ,us, the
participants’ shoulder joint mobility when performing each
movement was measured three times by the physical
therapist using a protractor combined with other traditional
techniques. ,e measurement results were then averaged
and recorded.

2.4.Measurement andAnalysis. To verify the accuracy of the
innovative shoulder joint mobility self-measurement system
proposed in this study for clinical applications, the corre-
lation and difference between the results of the experimental
and control groups were further investigated by evaluating
and comparing the analysis results of the Pearson’s corre-
lation coefficient and Wilcoxon signed-rank tests. ,e pri-
mary functions of a correlation coefficient are to identify the
linear relationship between two random variables and to
calculate the strength of their linear relationship. If the
absolute value of the population correlation coefficient is
near 1, the linear relationship between two variables in-
creases in strength and correlation. ,e reason for con-
ducting a Wilcoxon signed-rank test was because the
experimental and control group samples were from the same
population. ,us, this analysis method was adopted to in-
vestigate whether the difference between the results provided

Protractor

Figure 4: Using a protractor for measurement.

(a)

(c)

(d)

(b)

Figure 3: Movement types. (a) Flexion. (b) Abduction. (c) Internal rotation. (d) External rotation.
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by the two methods was significant. Using the two afore-
mentioned analysis methods to examine the correlation and
difference between the results of the two measurement
methods, the accuracy of the proposed system was verified.

3. Results

,e first analysis method involved using correlation co-
efficients to compare the data provided by the two mea-
surement methods; the analysis results are shown in Table 1.
,e results show that the calculated correlation coefficients
were close to 1, and the P values all reached the level of
significance. ,is indicates that the results of the two
measurement methods possessed a high correlation.

For the second measurement method, a Wilcoxon
signed-rank test was adopted to perform a paired-samples t-
test analyzing the difference between the results provided by
the two measurement methods. ,e analysis results are
shown in Table 2. ,e P values calculated according to the
paired-samples t-test results for the four movement mea-
surements all exceeded 0.05. ,us, the measurement results
obtained for the experimental group and the control group
showed no significant differences.

4. Discussion

For this experiment, clinical trials were conducted on 25
patients. When performing self-measurements using the
system proposed in this paper, the participants were able to
follow the system instructions and measure their joint
mobility themselves, verifying the feasibility of the proposed
system.

According to the findings of the two analyses conducted,
as mentioned previously, the measurements obtained using
the proposed shoulder joint mobility self-measurement
system and those obtained using a traditional protractor
exhibited a high correlation and no significant differences.
,e similarity of the two measurement results verifies the
accuracy of the proposed shoulder joint mobility self-
measurement system.

,e system proposed in this study comprises two aspects,
software and hardware. Because of recent technological
advancements, the size and weight of the wireless IMU
sensor hardware have become substantially more compact
and light. In addition, the precision of such hardware has
increased while the cost decreased. ,erefore, from a user
perspective, acceptance of this system should be high and
distribution should be fairly easy. ,e corresponding soft-
ware program guides patients in completing self-
assessments of shoulder joint mobility. ,is system not
only exhibits technical accuracy and consistency, but also
satisfies demands for user-centered designs. Furthermore,
this system can be used to reduce the clinical burdens of
therapists and extend the treatment into the patients’ home,
facilitating home-based healthcare.

According to the results of interviews conducted with
therapists and patients, the therapists believe that the pro-
posed system can effectively measure patients’ joint mobility
with reliable accuracy. In addition, the system can reduce the

human resources and time required to assess patients’ joint
mobility using traditional methods. According to the ob-
servations of the therapists, patients can easily operate the
system by themselves to measure their shoulder joint mo-
bility. However, they asserted that should this system be used
to replace therapists completely, side effects and issues,
particularly social psychological issues, may result. ,ere-
fore, further investigations are required to find the optimum
use strategy for this system and therapist assistance, for
example, how patients should periodically undergo mea-
surements by therapists at medical therapy centers in ad-
dition to using the system at home for self-measurements.
,e results of the patient interviews showed that the patients
were confident and willing to operate the proposed system to
enhance their understanding of their rehabilitation progress.
However, they also acknowledged that compared with using
the system at home for self-measurements, the psychological
support and encouragement provided by therapists during
traditional measurements and face-to-face assessments was
highly valued.

5. Study Limitations

,e primary limitations of this study resulted from the
wireless IMU sensor hardware, namely, the size, weight, and
“wearability” of the device, which influence people’s will-
ingness to use the system.,e sensors’ precision and wireless
transmission speed can directly influence the sensitivity of
interactions between the user and guidance system, which
indirectly affects the user’s perceptions. ,e guidance
software designed for this system cannot provide patients
with the psychological aspects of support and trust that a real
therapist can.

6. Conclusions

In this study, an IMU sensor was successfully combined with
interactive VR technology to develop an innovative shoulder

Table 1: Comparison of the correlation between the measurement
results for the experimental and control groups.

Flexion Abduction External
rotation

Internal
rotation

0.997 0.978 0.897 0.984
P � ∗∗ P � ∗∗ P � ∗∗ P � ∗∗

Correlation level Significance
level� 0.05

0≦ |r|＜ 0.3: low ∗p< 0.05
0.3≦ |r|＜ 0.7: medium ∗∗p< 0.01
0.7≦ |r|＜ 1: high

Table 2: Results of the Wilcoxon signed-rank test for the exper-
imental and control group measurements.

Flexion Abduction External
rotation

Internal
rotation

P

value 0.556 0.129 1.044 2.547

Significance level� 0.05; ∗p< 0.05; ∗∗p< 0.01.
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joint mobility self-measurement system for patients di-
agnosed with frozen shoulder. Clinical trials were conducted
with 25 patients; the results of which verified the feasibility of
the system. ,e results of an analysis and comparison of the
measurements provided by the proposed system and those
obtained using traditional measurement methods show that
a high correlation and no significant differences are exhibit
between the two.,is confirms that the proposed system can
effectively and reliably measure patients’ shoulder joint
mobility. According to the results of interviews conducted
with therapists and patients, the therapists believe that the
system can effectively reduce the human resources and time
required to assess patients’ shoulder joint mobility while
providing accurate and reliable results. ,e patients in-
dicated that they were confident and willing to operate the
system themselves to understand their rehabilitation
progress.

In the future, additional novel MEMS technologies are
expected to be employed to produce wireless IMU sensors
that are comparatively smaller in size, lighter in weight, and
higher in accuracy, thereby increasing the convenience of
self-operated systems. Furthermore, large-scale clinical trials
are set to be conducted to determine the reliability and
validity of the proposed system. In the future, the application
of advanced Internet technology and cloud technology
combined with the concept of long-distance medical re-
habilitation will popularize the system developed in this
study for use at home.
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.e purpose of the article is to check whether the acceleration signals recorded by a smartphone help identify a user’s physical
activity type. .e experiments were performed using the application installed in a smartphone, which was located on the hip of a
subject. Acceleration signals were recorded for five types of physical activities (running, standing, going up the stairs, going down
the stairs, and walking) for four users. .e statistical parameters of the signal were used to extract features from the acceleration
signal. In order to classify the type of activity, the quadratic discriminant analysis (QDA) was used. .e accuracy of the user-
independent classification for five types of activities was 83%. .e accuracy of the user-dependent classification was in the range
from 90% to 95%. .e presented results indicate that the acceleration signal recorded by the device placed on the hip of a user
allows us to effectively distinguish among several types of physical activity.

1. Introduction

In today’s world, it can be seen that more andmore people are
beginning to pay attention to their physical activity. A sed-
entary lifestyle, whether at home or at work, makes caring for
our physical condition not just another addition to everyday
activities but also a certain duty toward maintaining our
health. Currently, the 10,000 steps per day recommended by
specialists [1] take an average person just over an hour. Since
cardiovascular diseases are now one of the main causes of
death, each of us should sacrifice from 20minutes to 2 hours a
day for physical exercises as they help prevent many of these
diseases. In the United States, diseases caused by the lack of
physical exercises lead to the death of more people than all
forms of cancer combined [2]. In view of the abovementioned
aspects, newer solutions are emerging in the market that can
be used to monitor daily physical activity, and companies
producing devices for athletes are primarily involved in this.
In addition, devices to monitor the type of activity performed
are also available in the market for the average user.

Several researchers have invested a lot of effort to explore
different sensing technologies and have proposed a number

of methods to recognize human physical activities [3–5].
Researchers constructed various activity recognition systems
that utilized accelerometers to infer the body position; ac-
celerometers can provide acceleration and velocity data
largely associated with various human physical activities
[6–8].

However, having a specialized solution to monitor
physical activity is not necessary. A smartphone can be
successfully used for this purpose. Almost every smartphone
has an accelerometer, also known as an acceleration
transducer. As the name suggests, the accelerometer is used
to measure the acceleration affecting a given object. An
acceleration transducer allows the position of a device in
space to be determined and enables the device to be con-
trolled by motion.

.e aim of this article is at analyzing the signal from a
smartphone accelerometer, in order to use it to identify the
user’s physical activity type. To collect data, an Android
application written in Java programming language was used.

Activity recognition typically consists of three stages. In
the first step, the sensor data are divided into segments,
typically using the sliding window technique [6, 9]. .e next
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step is to extract features from the segments. Finally, a
classifier is trained over these extracted features..e last task
is to use the classifier to associate the sensor data with a
predefined activity.

In our research, we used the same approach. We tried to
answer the following questions:

(1) Does the recorded acceleration signal (accelerometer
placed on the user’s hips) allow several typical
physical activities to be distinguished?

(2) Does a set of simple statistical features allow you to
distinguish between activities effectively?

(3) What types of physical activity are the most difficult
to distinguish?

(4) Is it possible to create a system that recognizes ac-
tivities based on data collected only from a specific
user or it is better to use data from all users (user-
dependent vs user-independent classification)?

Answers to these questions will allow you to assess
whether there is a chance to develop an application to rec-
ognize user activity with just a smartphone. .e presented
results should be treated as preliminary. In order to fully
estimate the effectiveness of the presented activity recognition
system, a larger number of users should be tested.

2. Materials

.e Huawei P10 smartphone equipped with an iNEMO
module (LSM6DSM) was used to record the acceleration
signals. .e LSM6DSM module has a three-axis acceler-
ometer and a gyroscope. .e accelerometer can work in
ranges ±2 g, ±4 g, ±8 g, and ±16 g. For each person, the
phone was placed on the hip, with the display facing the
outside (Figure 1). Physical activity was recorded for four
people—two men aged 26 and 56 and two women aged 23
and 46. Each person was asked to perform simple physical
activities:

(i) Running (R)
(ii) Standing (S)
(iii) Going up the stairs (U)
(iv) Going down the stairs (D)
(v) Walking (W)

Each individual user’s data were recorded for each ac-
tivity for several minutes. .e acceleration signals were
recorded in the three axes, with a sampling frequency
fs� 50Hz, and saved in text files. One line of the file cor-
responded to a single acceleration measurement and con-
tained information about acceleration values in the x-, y-,
and z-axes with respect to time. Files containing the
recorded signals were analyzed with use of the PC.

3. Methods

3.1. Signal Processing. At first, the recorded acceleration
signals were visually evaluated and fragments of these, as-
sociated with the physical activities of interest, were selected.

.e fragments in which the person had not yet started to
perform the given physical activity were removed. It is worth
noting that the recorded acceleration signals contain a
gravitational component. During experiments, the smart-
phone can slightly change its position in relation to the
original (in the x-, y-, and z-axis). In this way, the gravity
component would decompose in various degrees into the
acceleration components associated with the x, y, and z
coordinate systems. To eliminate this problem, we decided to
use the absolute value of the acceleration signal for further
analysis. In this way single, independent of the change of the
smartphone position, acceleration signal was obtained. .e
absolute value A of the acceleration signals AX, AY, and AZ
(in the three axes) was calculated..e signalA, calculated for
each activity, was divided into windows of the width N �

200 samples (4 seconds). .e windows overlapped every N/2
samples.

3.2. Feature Extraction. A set of features was calculated from
each signal window. We decided to use simple statistical
features such as energy: VAR, maximum value: MAX, min-
imum value: MIN, skewness: SK, kurtosis: KU, and quantiles
of order 0.025, 0.25, 0.5, 0.75, 0.095: Q025, Q25, Q5, Q75,
Q095, respectively [10]. In this way, a set of 10 features was
obtained for each window (trial)..e number of trials for each
activity type per user was 22. For all types of one-user activity,
the number of trials was 110 (5 activities × 22 windows).

3.3. Classification. In order to assess the possibility of rec-
ognizing user physical activity on the basis of the

Figure 1: .e location of the smartphone with the coordinate axes
(X, Y, and Z).
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acceleration signal, the quadratic discriminant analysis
(QDA) [11] classi�er was implemented. We decided to use
the QDA because we assumed that the features do not have
to be separated in a linear way. Another advantage is the ease
and speed of training such a classi�er in comparison with,
for example, neural networks.

�e 10-CV test was used as a measure of classi�cation
accuracy [12]. In the 10-fold cross-validation test, the
original set is randomly partitioned into 10 equal sized
subsets. Of the 10 subsets, a single subset is retained as the
validation data for testing the model, and the remaining nine
subsets are used as data for training. �e cross-validation
process is then repeated 10 times, with each of the 10 subsets
used exactly once as the validation data. �e 10 results from
the folds are then averaged to produce a single estimation
[12].

4. Results

�e results for the accuracy of classi�cation of the �ve ac-
tivity classes for individual users are presented in Table 1
(user-dependent classi�cation). A confusion matrix for
subject S1 is presented in Table 2.

�e presented results indicate satisfactory recognition
e�ciency. For all subjects (Table 1), the recognition accuracy
was 92%. For a classi�er that acted in a random manner, the
accuracy would be 20%. An example of a confusion matrix
for the subject S1 (Table 2) indicates the existence of
problems in recognition between the activity of going up the
stairs (U) and down the stairs (D).

Next, features from all the subjects were used for training
and testing the QDA classi�er in the user-independent
mode. As in the previous case, the 10 CV test was used.
�e accuracy of classi�cation of the �ve types of activity for
all users together was 82%. �e confusion matrix is pre-
sented in Table 3. Also in this case, it turned out that
problems were encountered in recognition of the activity of
going up the stairs (U) and down the stairs (D). In addition,
for some subjects, walking (W) was recognized as going
down the stairs (D), and going up the stairs (U) was classi�ed
as walking (W).

Tests similar to real conditions were also performed.
Furthermore, all trials were divided into 75% for training
and 25% for testing. In this case, the classi�cation accuracy
was equal to 83%.

5. Discussion

�ree seconds of the absolute value A of acceleration signal
recorded for subject S1 is presented in Figure 2. �e highest
acceleration values, up to 60m/s2, were recorded during
running. �e smallest accelerations were recorded obviously
during the resting status of the user. For walking, we can
observe the increases and decreases in acceleration caused by
taking each step.

�e features for the entire set of acceleration signals
recorded for subject S1 were calculated (Table 4). �e
maximum value of acceleration for going down the stairs (D)
was 26m/s2, for running (R) was 83.9m/s2, for rest (S) was

10.6m/s2, for going up the stairs (U) was 27.4m/s2, and for
walking (W) was 48.4m/s2.

Histograms of samples of the acceleration signals recor-
ded for di�erent types of activities are presented in Figure 3.
Figure 4 presents the distribution of features of the

Table 1: Results of the accuracy of classi�cation of �ve types of
physical activity.

Subject Accuracy
S1 0.95
S3 0.91
S3 0.90
S4 0.92
Mean 0.92

Table 2: Confusion matrix for subject S1.

Predicted class
D R S U W

True class

D 18 0 0 3 0
R 0 21 0 0 0
S 0 0 21 0 0
U 1 0 0 20 0
W 0 0 0 0 21

Table 3: Confusion matrix.

Predicted class
D R S U W

True class

D 48 0 0 30 6
R 0 84 0 0 0
S 0 0 84 0 0
U 13 0 0 69 2
W 19 0 0 1 64
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Figure 2: Acceleration signal obtained for subject S1 for three
seconds for the various physical activities.
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acceleration signal for subject S1. �e presented results in-
dicate that using only energy and the maximum value of the
acceleration signal (calculated for a 4-secondwindow), we can
e�ectively separate activity classes. �e problem may be the
separation of the activity of going up and down the stairs. �e
features for these signals are very similar to each other.

Calculations were also carried out to select the best set of
features. To this end, the Sequential Forward Selection (SFS)
algorithm was used [13]. At this stage, the features collected
for all subjects were used. �e best features, selected in
particular stages of the SFS algorithm, and the accuracy of
recognition (ACC) obtained for these features are presented
in Table 5.�eQ75 feature turned out to be the best.�e best
classi�cation accuracy (0.76) was obtained for three features
(KU, Q25, and Q75).

For comparative purposes, short-time Fourier transform
analysis of the recorded acceleration signals was performed
[14]. Figure 5 presents the spectrogram for the case in which
a user was going down the stairs.

You can observe changes in certain frequencies (5, 12, 21,
28, 34, and 42 seconds) to be dominant. Changes are also
caused by the “short walk” on ¨at places between the
building’s half-¨oors.

Figure 6 presents a spectrogram for the case in which the
subject was running. We can observe a basic frequency and
subsequent harmonics, probably related to the frequency of
foot strikes on the ground.

High accuracy of physical activities classi�cation
(Tables 1–5) prompts consideration of using the described
device in real applications. �e best approach seems to be
training the recognition system for a speci�c subject (Ta-
ble 1). �e obtained accuracy of classi�cation was in the
range of 90–95%. Results for data collected from all subjects
(Table 3) were little less accurate. In this case, the classi�-
cation accuracy for the �ve classes was 83%. Simple statistical
features and the use of one accelerometer allowed satis-
factory results to be obtained.

We performed additional experiments to check whether
the use of another classi�er could improve the accuracy of
movement recognition. For this purpose, commonly known
classi�ers were tested: decision tree, linear discriminant
analysis (LDA), support vector machine (SVM) with linear
and quadratic kernel, and nearest neighbor classi�er 1-NN.
�e classi�cation results are shown in Table 6. It turned out
that the classi�cation accuracy is better by 2% only when
using the SVM classi�er with quadratic kernel. Slightly
worse results were obtained for the LDA classi�er, which
implements a linear separation of data. �us, it seems that
the use of the QDA classi�er was a good solution.

�e accuracy of classi�cation obtained by us is consistent
with the results of other studies. In [6], the authors recognize
di�erent types of activities (2–6 types) using (2–36) sensors.
Most often, these activities include standing, walking, bi-
cycling, running, and going upstairs. �e obtained classi-
�cation results have a very large spread of accuracy, from
42% to 96%. In [15], the dependence of the accuracy of
classi�cation on the location of the accelerometer on the
subject’s body was examined. For most activities, the lo-
cation turned out to be unimportant, and the accuracy of the

Table 4: Features calculated for subject S1.

Feature D R S U W
VAR 13.7 197.1 0.1 11.4 43.8
MAX 26.0 83.9 10.6 27.4 48.4
MIN 2.2 0.8 8.9 0.9 0.7
SK 0.7 1.8 −0.2 0.3 1.1
KU 3.8 7.1 32.4 4.2 5.8
Q025 3.8 3.3 9.5 3.3 2.3
Q25 8.3 8.9 9.8 8.3 7.1
Q50 9.9 14.4 9.8 10.1 11.8
Q75 12.1 23.4 9.9 12.4 15.1
Q095 6.0 5.2 9.8 6.3 4.0
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Figure 3: Histograms of samples of the acceleration signals
recorded for di�erent types of activities.
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classi�cation reached over 90%. In [16], the authors pre-
sented a system that used many types of sensors in a
smartphone (accelerometer, gyroscope, magnetometer, and
barometer) to recognize eight types of activities. For all
classi�ers, using a combination of four sensors performed
better than using only the accelerometer. It improves the

recognition accuracy by about 10%. In other studies, the
possibility of using only one accelerometer to recognize the
type of activity was checked. In [17], six types of activities
were identi�ed and statistical and frequency features of the
signal were used. �e best results (93%) were obtained for
the decision tree classi�er and time-domain and frequency-
domain features (94%).

In summary, it is possible to develop a solution to
recognize the user’s physical activity using only a smart-
phone located on the hip. Smartphones are easily available
and relatively cheap. In connection with the above, the
acceleration classi�cation may be used in �tness applica-
tions, which monitor user activity. �is mechanism can also
be used in the audit of employee activity during the working
day. In regards to this topic, the above applications are
certainly not exhaustive. With the development of tech-
nology, newer sensors are available, but the accelerometer
will surely continue to be used in detecting activity.

6. Conclusion

Acceleration signals were recorded for the �ve basic types of
user’s physical activities. Based on the results of the classi-
�cation obtained, we can answer the questions from the
beginning of the article. (1) �e accelerometer placed on the
user’s hip distinguishes between several types of the user’s
physical activity. (2) Simple statistical features of the accel-
eration signal are enough to recognize basic activities. (3)
From the considered list of �ve types of activities, the most
di�cult to distinguish were going up the stairs (U) and down
the stairs (D). (4) It is possible to create a system that rec-
ognizes activity based on data collected only from a speci�c
subject (user-dependent), and the recognition then is much
more accurate, over 90%. It is also possible to train system
based on features from all subjects (user-independent), but
the accuracy of classi�cation is less, about 83%.

Table 5: �e best features: SFS algorithm.

Number of best features VAR MAX MIN SK KU Q025 Q25 Q5 Q75 Q095 ACC
1 × 0.72
2 × × 0.75
3 × × × 0.76
4 × × × × 0.76
5 × × × × × 0.76
6 × × × × × × 0.76
7 × × × × × × × 0.75
8 × × × × × × × × 0.75
9 × × × × × × × × × 0.74
10 × × × × × × × × × × 0.73
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Figure 5: Spectrogram of the acceleration signal while descending
the stairs.

Time (sec)
5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

Fr
eq

ue
nc

y 
(H

z)

0

–40

–30

–20

–10

10

20

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

Figure 6: Spectrogram of the acceleration signal during running.

Table 6: Comparison of classi�cation results.

Classi�er type Classi�cation accuracy (%)
QDA 82
Decision tree 83
LDA 73
SVM-LINEAR 80
SVM-QUADRATIC 84
1-NN 82
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