
Cyber Games and
Interactive Entertainment

Guest Editors: Suiping Zhou, Zhongke Wu, and Ming-Quan Zhou

International Journal of Computer Games Technology

Cyber Games and Interactive Entertainment

International Journal of Computer Games Technology

Cyber Games and Interactive Entertainment

Guest Editors: Suiping Zhou, ZhongkeWu,
and Ming-Quan Zhou

Copyright © 2009 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in volume 2009 of “International Journal of Computer Games Technology.” All articles are open access
articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Editor-in-Chief
Edmond Prakash, Manchester Metropolitan University, UK

Associate Editors

Ali Arya, Canada
Lee Belfore, USA
Rafael Bidarra, The Netherlands
Narendra S. Chaudhari, Singapore
Simon Colton, UK
Peter Comninos, UK
Paul Coulton, UK
Andrew Davison, Thailand

Abdennour El Rhalibi, UK
Jihad El-Sana, Israel
Michael J. Katchabaw, Canada
Eric Klopfer, USA
Edmund M.K. Lai, New Zealand
Craig Lindley, Sweden
Graham Morgan, UK
Soraia R. Musse, Brazil

Alexander Pasko, UK
Marc Price, UK
Seah Hock Soon, Singapore
Desney S. Tan, USA
Kok Wai Wong, Australia
Suiping Zhou, Singapore
Mingquan Zhou, China

Contents

Cyber Games and Interactive Entertainment, Suiping Zhou, Zhongke Wu, and Ming-Quan Zhou
Volume 2009, Article ID 713584, 2 page

A New 3D Model Retrieval Method with Building Blocks, Mingquan Zhou, Qingsong Huo, Guohua Geng,
and Xiaojing Liu
Volume 2009, Article ID 572030, 6 pages

Fast and Reliable Mouse Picking Using Graphics Hardware, Hanli Zhao, Xiaogang Jin, Jianbing Shen,
and Shufang Lu
Volume 2009, Article ID 730894, 7 pages

Face to Face: Anthropometry-Based Interactive Face Shape Modeling Using Model Priors, Yu Zhang and
Edmond C. Prakash
Volume 2009, Article ID 573924, 15 pages

Platform for Distributed 3D Gaming, A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä, A. De Gloria, and C. Bouras
Volume 2009, Article ID 231863, 15 pages

A Dense Point-to-Point Alignment Method for Realistic 3D Face Morphing and Animation, Yongli Hu,
Mingquan Zhou, and Zhongke Wu
Volume 2009, Article ID 609350, 9 pages

Real Time Animation of Trees Based on BBSC in Computer Games, Xuefeng Ao, Zhongke Wu,
and Mingquan Zhou
Volume 2009, Article ID 970617, 8 pages

Gamer’s Facial Cloning for Online Interactive Games, Abdul Sattar, Nicolas Stoiber, Renaud Seguier,
and Gaspard Breton
Volume 2009, Article ID 726496, 16 pages

Player Profile Management on NFC Smart Card for Multiplayer Ubiquitous Games, Romain Pellerin,
Chen Yan, Julien Cordry, and Eric Gressier-Soudan
Volume 2009, Article ID 323095, 9 pages

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 713584, 2 pages
doi:10.1155/2009/713584

Editorial

Cyber Games and Interactive Entertainment

Suiping Zhou,1 Zhongke Wu,2 and Ming-Quan Zhou2

1 School of Computer Engineering, Nanyang Technological University, Singapore 639798
2 College of Information Sience and Technology, Beijing Normal University, Beijing 100875, China

Correspondence should be addressed to Suiping Zhou, asspzhou@ntu.edu.sg

Received 19 November 2009; Accepted 19 November 2009

Copyright © 2009 Suiping Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer games and interactive entertainment have become
a part of our life. The past decade has witnessed significant
and fast advances in computer games technology. The
boundary of 3D graphics in games has been pushed further
with new and faster algorithms. Modeling of very large and
complex 3D environments including buildings and terrains
is a challenge. This involves efficient representations and data
structures that help in the navigation and rendering of the
environments in real time. Character behaviour modelling
has recently gained the interest of researchers. Similar
developments have been found in game physics to bring
realistic behaviour to objects in a game environment. A wide
range of character faces including talking heads have been
deployed in games. These demand new methods to represent
deformable faces. Game AI has grown rapidly with several
new techniques in learning that have found applications
in modern day games. Several new algorithms have also
been developed recently for path planning and character
behaviour in navigation. Rapid advances in technology and
production skill are producing game engines that lead to
the development of games content which are increasingly
entertaining and impressive.

This special issue on Cyber Games and Interactive Enter-
tainment focuses on the latest research and development
work in games and interactive entertainment. This special
issue presents some selected papers from the International
Conference on Cyber Games 2008 (CG2008) held on 27–
30 October 2008 at Beijing, China. Authors were invited to
submit revised and extended version of their papers from the
conference.

Jurgelionis et al. in “Platform for distributed 3D gaming,”
present a new cross-platform approach for distributed
3D gaming in wired/wireless local networks. The article
introduces novel system architecture and protocols used

to transfer the game graphics data across the network to
end devices. Simultaneous execution of video games on a
central server and a novel streaming approach of the 3D
graphics output to multiple end devices enable the access of
games on low-cost set-top boxes and handheld devices that
natively lack the power of executing a game with high-quality
graphical output. This is relevant for pervasive gaming in
various environments like at home, hotels, or internet cafes;
it is beneficial to run games also on mobile devices and
modest performance CE devices avoiding the necessity of
placing a noisy workstation in the living room or costly
computers/consoles in each room of a hotel.

Researchers and developers in the field of computer
games usually find that the difficulty to simulate the motion
of actual 3D model trees lies in the fact that the tree model
itself has very complicated structure, and many sophisticated
factors need to be considered during the simulation. Though
there are some works on simulating 3D tree and its motion,
few of them are used in computer games due to the
high demand for real-time in computer games. In the
article on “Real time animation of trees based on BBSC
in computer games,” Ao et al. propose an approach of
animating trees in computer games based on a novel tree
model representation—Ball B-Spline Curves (BBSCs). By
taking advantage of the good features of the BBSC-based
model, physical simulation of the motion of leafless trees
with wind blowing becomes easier and more efficient. The
method can generate realistic 3D tree animation in real-time,
which meets the high requirement for real time in computer
games.

Mouse picking is the most commonly used intuitive
operation to interact with 3D scenes in a variety of games
as well as 3D graphics applications. High performance for
such operation is necessary in order to provide users with

mailto:asspzhou@ntu.edu.sg

2 International Journal of Computer Games Technology

fast responses. The article on “Fast and reliable mouse
picking using graphics hardware” by Zhao et al. proposes
a fast and reliable mouse picking algorithm using graphics
hardware for 3D triangular scenes. Their approach uses
a multilayer rendering algorithm to perform the picking
operation in linear time complexity. The objects-space-based
ray-triangle intersection test is implemented in a highly
parallelized geometry shader. After applying the hardware-
supported occlusion queries, only a small number of objects
(or subobjects) are rendered in subsequent layers, which
accelerate the picking efficiency.

Hu et al. in their work on “A dense point-to-point
alignment method for realistic 3D face morphing and
animation” present a new point matching method to over-
come the dense point-to-point alignment of scanned 3D
faces. Instead of using the rigid spatial transformation in
the traditional iterative closest point (ICP) algorithm, the
authors adopt the thin plate spline (TPS) transformation to
model the deformation of different 3D faces. Because TPS
is a nonrigid transformation with good smooth property,
it is suitable for formulating the complex variety of human
facial morphology. A closest point searching algorithm is
proposed to keep one-to-one mapping, and to get good
efficiency the point matching method is accelerated by a
KD-tree method. Having constructed the dense point-to-
point correspondence of 3D faces, the authors create 3D face
morphing and animation by key-frames interpolation and
obtain realistic results.

In the article “Gamer’s Facial Cloning for Online Inter-
active Games,” Sattar et al. propose a solution to solve
two bottlenecks in facial analysis and synthesis for an
interactive system of human face cloning for nonexpert
users of computer games. The problem arises during tac-
tical maneuvers of the gamer, which makes single camera
acquisition system unsuitable to analyze and track the
face due to its large lateral movements. For an improved
facial analysis system, the authors propose to acquire the
facial images from multiple cameras and analyze them by
multiobjective 2.5D active appearance model (MOAAM). To
successfully clone or retarget the gamer facial expressions
and gestures on to an avatar, the authors introduce a simple
mathematical link between their appearances and present
results to validate the efficiency, accuracy, and robustness of
their approach.

Zhang and Prakash, in the article on “Face to face:
anthropometry-based interactive face shape modeling using
model priors,” present a new anthropometrics-based method
for generating realistic, controllable face models that can
model faces specific to a population group or specific race.
The method establishes an intuitive and efficient interface
to facilitate procedures for interactive 3D face modeling and
editing. It takes 3D face scans as examples in order to exploit
the variations presented in the real faces of individuals.
The system automatically learns a model prior from the
datasets of example meshes of facial features using principal
component analysis (PCA) and uses it to regulate the
naturalness of synthesized faces. Solving the interpolation
problem in a reduced subspace allows them to generate a
natural face shape that satisfies the user-specified constraints.

At runtime, the new face shape can be generated at an
interactive rate.

Zhou et al. in the article “A new 3D model retrieval
method with building blocks” propose a novel method of
interactive 3D model retrieval with building blocks. First, by
using a cube block as the base block in a 3D virtual space, the
authors construct the query model with human-computer
interaction method. Then through retrieving the polygon
model of the database generated by the voxel model, the
authors show how to get retrieval results in real time. As the
numbers of 3D models available grow in many application
fields, there is an increasing need for a search method to help
people find them which are not effective where traditional
search techniques are not always effective for 3D data.

In Multiplayer Ubiquitous Games (MUGs), players have
to interact in the real world at both physical and virtual levels.
Player profiles in MUGs offer an opportunity to provide
personalized services to gamers. To provide an adaptable
and personal content at any moment, anywhere, and in
any context, Pellerin et al. in their article on “Player profile
management on NFC smart card for multiplayer ubiquitous
games,” use player profiles in to provide personalized services
to gamers. A Java API is used to integrate Smart Cards in
the development of MUGs. This user centric approach brings
new forms of gameplay, allowing the player to interact with
the game or with other players anytime and anywhere. Smart
Cards also help improve the security, ubiquity, and the user
mobility in traditional MUGs.

Finally, we would like to thank all authors who have
submitted their manuscripts to this special issue and the
external reviewers for their invaluable contributions to the
reviewing process. We would like to thank the Editor-
in-Chief, Dr. Edmond Prakash, for giving us this great
opportunity of organizing this special issue. We hope all
researchers will enjoy and benefit from reading the articles
in this IJCGT special issue on “Cyber games and interactive
entertainment.”

Suiping Zhou
Zhongke Wu

Ming-Quan Zhou

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 231863, 15 pages
doi:10.1155/2009/231863

Research Article

Platform for Distributed 3D Gaming

A. Jurgelionis,1 P. Fechteler,2 P. Eisert,2 F. Bellotti,1 H. David,3 J. P. Laulajainen,4

R. Carmichael,5 V. Poulopoulos,6, 7 A. Laikari,8 P. Perälä,4 A. De Gloria,1 and C. Bouras6, 7

1 Department of Biophysical and Electronic Engineering, University of Genoa, Via Opera Pia 11a, 16145 Genoa, Italy
2 Computer Vision & Graphics, Image Processing Department, Heinrich-Hertz-Institute Berlin,
Fraunhofer-Institute for Telecommunications, 10587 Berlin, Germany

3 R&D Department, Exent Technologies Ltd., 25 Bazel Street, P.O. Box 2645, Petach Tikva 49125, Israel
4 Converging Networks Laboratory, VTT Technical Research Centre of Finland, 90571 Oulu, Finland
5 Department of Psychology, Goldsmiths, University of London, New Cross, London SE14 6N, UK
6 Research Unit 6, Research Academic Computer Technology Institute, N. Kazantzaki, Panepistimioupoli, 26504 Rion, Greece
7 Computer Engineering and Informatics Department, University of Patras, 26500 Patras, Greece
8 Software Architectures and Platforms Department, VTT Technical Research Centre of Finland, 02044 VTT, Espoo, Finland

Correspondence should be addressed to A. Jurgelionis, jurge@elios.unige.it

Received 1 February 2009; Accepted 18 March 2009

Recommended by Suiping Zhou

Video games are typically executed on Windows platforms with DirectX API and require high performance CPUs and graphics
hardware. For pervasive gaming in various environments like at home, hotels, or internet cafes, it is beneficial to run games also
on mobile devices and modest performance CE devices avoiding the necessity of placing a noisy workstation in the living room or
costly computers/consoles in each room of a hotel. This paper presents a new cross-platform approach for distributed 3D gaming
in wired/wireless local networks. We introduce the novel system architecture and protocols used to transfer the game graphics data
across the network to end devices. Simultaneous execution of video games on a central server and a novel streaming approach of
the 3D graphics output to multiple end devices enable the access of games on low cost set top boxes and handheld devices that
natively lack the power of executing a game with high-quality graphical output.

Copyright © 2009 A. Jurgelionis et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Computer games constitute nowadays one of the most
dynamic and fastest changing technological areas, both in
terms of market evolution and technology development.
Market interest is now revolving around capitalizing on the
rapid increase of always-on broadband connectivity which
is becoming ubiquitous. Broadband connection drives a
new, digital “Future Home” as part of a communications
revolution that will affect every aspect of consumers’ lives,
not least of which is the change it brings in terms of options
for enjoying entertainment. Taking into account that movies
and music provided by outside sources were at home long
before the internet and broadband, the challenge is to invent
new content consumption patterns of existing and new types
of content and services [1].

At the same time, mobility and digital home entertain-
ment appliances have generated the desire to play games not
only in front of a home PC but also everywhere inside the
house and also on the go. As a result of TV digitalization,
set top boxes (STBs) have entered homes and, as a new
trend, mini-laptops are gaining popularity. Several low-cost
consumer electronics end devices (CE) are already available
at home. Although these devices are capable of executing
software, modern 3D computer games are too heavy for
them.

Running an interactive content-rich multimedia applica-
tions (such as video games) requires the high performance
hardware of a PC or a dedicated gaming device. Other devices
such as set top boxes (STBs) or handheld devices lack the
necessary hardware and adding such capabilities to these
devices will cause their prices to become prohibitive [1].

2 International Journal of Computer Games Technology

A system which enables rendering of PC games on
next-generation STB and personal digital assistant (PDA)
devices without causing a significant increase in their price
is a solution for future networked interactive media. This
approach enables a pervasive accessibility of interactive
media from devices that are running on different platforms
(architecture and operating system), thus facilitating users
to enjoy video games in various environments (home, hotel,
internet café, elderly home) without the need to attach to a
single device or operating system, for example, a Windows
PC.

This paper describes the Games@Large (G@L) pervasive
entertainment architecture which is built on the concept of
distributed remote gaming [2] or Virtual Networked Gaming
(VNG). It enables pervasive game access on devices (set top
boxes and handheld devices) that typically do not possess a
full set of technical requirements to run video games [1]. In
general, the system executes games on a server PC, located
at a central site or at home, captures the graphic commands,
streams them to the end device, and renders the commands
on the end device allowing the full game experience. For
end devices that do not offer hardware accelerated graphics
rendering, the game output is locally rendered at the server
and streamed as video to the client. Since computer games
are highly interactive, extremely low delay has to be achieved
for both techniques. This interactivity also requires the
game controllers’ commands to be captured on the end
device, streamed to the server, and injected into the game
process [3]. The described functions are implemented by an
application which is running on the client and a “return
cannel” which is constructed between the clients and the
server. The application on the client is responsible for
recording any input command arriving from every existing
input device while the return channel is utilized in order
to send the commands from the clients to the server for
execution. On the server side the commands are injected into
the proper game window.

In order to ground our research and system develop-
ments, we have performed a thorough analysis of state of
the art in gaming platforms available in today’s market,
presented in Section 2. The rest of the paper is organized
as follows: Section 3 describes the Games@Large frame-
work; Section 4 its components and operation fundamentals;
Section 5 presents some experimental results on tests of the
initial system and its components demonstrating multiple
game execution on a PC and Quality of Service (QoS) opti-
mized transmission of the games’ graphics to the end devices
via a wireless network; Section 6 presents the conclusions.

2. Gaming Platforms Analysis: State of
the Art in Consoles, PC and Set Top Boxes

We have conducted an overview of state of the art in common
gaming platforms such as consoles, PCs and set top boxes.
One recent development in gaming market activities which
has implications for new consumption patterns is technology
based on distributed-cross-platform computing (or cloud
computing); we introduce and overview this relatively new

concept of Virtual Networked Gaming Platforms (VNGP) in
Section 2.4.

2.1. Consoles. The home console system enables cheap
hardware and guarantees product quality. Unlike the past,
console functionality is being continuously upgraded post-
release (e.g., web-browser and Wii channels on the Wii; high-
definition video-on-demand downloading for Xbox 360; and
PlayStation Home for PS3).

Xbox 360 (Microsoft). Microsoft were the first to release their
next generation console, the Xbox 360, followed by the Xbox
360 Elite designed to store and display high definition video
with a 120 GB hard drive. The Xbox 360 has perhaps the
strongest list of titles of the three next gen consoles, including
Halo 3 in 2007, though the style and content of each console’s
titles differ from the others and personal preferences play
a role in which catalogue, and therefore which platform,
appeals most to a certain gamer/user. In online functionality
Microsoft is the most well established with its Xbox Live/Live
Anywhere/Games for Windows-LIVE gaming services, Live
Marketplace (used to distribute television and movies), and
online Xbox Live Pipeline.

PlayStation 3/PS3 (Sony). As the most powerful games
console ever made, it is the most future-proof in terms of
where games development can go and its built-in Blu-Ray
player. Expert reviews on the console have improved since
its initial reception and commentators have remarked that
the first PS3 games only use about 30–40% of the platform’s
capacity, so the gaming experience it offers should improve
as developers use more of its capacity. PS3 functionality
includes streaming movies or PS3 games to PSP over LAN.
In Europe the PS3 is backwards compatible with most of
the massive PS2 games catalogue (with all in US and Japan).
Online Functionality/Support: The PS3 has a web browser
based on NetFront; Home is a free community-based gaming
service.

Wii (Nintendo). Nintendo’s Wii features gesture recognition
controllers allowing intuitive control and more physical
play which must take much credit for the Wii’s successful
appeal to many consumers who had not been gamers before.
The Wii also has a large back-catalogue of GameCube
titles and developing games is cheaper and easier than
for other platforms, suggesting a rapid proliferation of
titles. Online functionality: Opera web browser software;
a growing number of Wii Channels; the Message Board
supports messaging with Wii users around the world via
WiiConnect24, handles the Wii email messaging, and logs all
play history, facilitating parental supervision; some titles now
support multiplayer online play.

2.2. PCs. The PC is an open system which can be exploited
by virtually any game manufacturer. It is also the broad-
est of gaming platforms—catering to casual games and
casual gamers but also through to the top end of digital
gaming in specialised gaming PCs. The PC has by far the

International Journal of Computer Games Technology 3

highest install base of all gaming platforms (discounting
simple mobiles) with rising broadband connections and
very well-developed online games services, such as Games
for Windows-LIVE, PlayLinc, and many casual games sites
(e.g., Verizon, DishGames, RealArcade, Buzztime). Though
relatively expensive, it is bought and used for many things
besides gaming but is often not equally accessible to all
members of the household. This multifunctional nature
of the PC is being eroded by nongaming functionality
being added to consoles. Game Explorer is a new one-stop
application within Vista designed to make game installation
far simpler and also allows parents to enforce parental
controls.

Input Devices. The PC and the games based on it use
keyboard and mouse as the input device, which allows more
complex games to be played but does not travel well into
the living room where the large-screen TV, 10-foot viewing
experience, comfy chairs, and social gaming are enjoyed
by console gamers. There are some existing living room-
friendly PC-game controllers though they have not been
widely taken up. Microsoft’s wireless game-pad is compatible
with both the PC as well as the Xbox 360. A gamepad is,
however, not suited for playing some game genres associated
with the PC (notably MMOGs and real-time strategy/RTS)
but viable alternative control devices do exist which could
allow PC games of all genres to successfully migrate to
the TV (e.g., Microsoft’s qwerty keyboard add-on for the
Xbox 360/PC wireless gamepad, trackball controllers such as
the BodieLobus Paradox gamepad, or the EZ Commander
Trackball PC Remote). They could also help the development
of new games and peripherals and support web features on
TV (such as Intel/Yahoo’s planned Widget Channel).

2.3. Set Top Boxes. The Set Top Box is emerging as a platform
for casual games and some service providers are offering
games-on-demand services (e.g., the long-established Sky
Gamestar). The fast growth of digital terrestrial television
(DTT) in Europe also suggests the STB install base will
rise steadily, potentially greatly increasing its role. With
a potentially large mainstream audience, support from
advertising revenues could be significant for STB gaming.
Wi-Fi-enabled set top boxes (e.g., Archos TV+) are starting
to emerge which combine a Wi-Fi Media Player with a high-
capacity personal video recorder (PVR) for enjoying movies,
music, photos, podcasts, web video, the full internet and
more on widescreen TV.

Several companies are committed to enabling gaming
services for the STB platform, including Zodiac Interactive,
PixelPlay, Buzztime, TV Head, and PlayJam in the US, and
Visiware, G-Cluster, and Visionik (part of NDS) in Europe.
These companies provide their content and technology
solutions to a few TV service providers currently deploying
gaming services, including BSkyB, Orange, EchoStar, and
Cablevision. Several Telco TV and DBS TV service providers
in the US are actively exploring 3D STB gaming and
their demos make many of today’s cable STB games look

antiquated (see Section 2.4 for details of NDS Xtreamplay
technology).

User uptake of gaming platforms and choice of console
depend on games catalogues and online services as well
as hardware specifications and functionality. PC games are
effectively tied to the desktop/laptop and console gaming is
seen by many as expensive or for dedicated gamers only. The
Wii has broadened the console user base but there remains
a massive potential for mainstream gaming on TV given
the right technology solution, content/services offerings and
pricing. The open PC platform is supported by much
programming expertise and is powerful and ubiquitous
but PC games need to make the transition to the more
comfortable and social TV-spaces with a wide range of low-
cost, accessible, digitally distributed games-on-demand.

2.4. State of the Art in Virtual Networked Media Platforms.
Of great relevance to Games@Large are developments in
technology aimed at putting PC gaming onto TV screens.
Service providers and web-based services are moving into
the PC-gaming value chain and several commercial solutions
for streaming games over the network exist already. These
allow game play on smaller end-devices like low-cost PCs
or set top boxes without requiring the games to be installed
locally. Most of these systems are based on video streaming.
A server executes the game, the graphical output is captured,
and then transmitted as video to the client. For an interactive
experience, such a system requires low end-to-end delay, high
compression efficiency, and low encoding complexity. There-
fore, many solutions have adapted standard video streaming
and optimized for the particular graphical content. For
example, t5 labs announced a solution for instant gaming
on set top boxes via centralized PC based servers, which are
hosted by cable TV or IPTV operators. In order to reduce the
encoding complexity at the server which has to execute the
game and the video encoder, particular motion prediction
is conducted exploiting information about the graphical
content. Reductions of 50–80 % in encoding complexity
are reported. In contrast, StreamMyGame from Tenomichi
Limited also offers a server solution which enables the user
to stream his/her own PC games to another PC in the
home, record the game play or broadcast the games for
spectators. The streaming is based on MPEG-4 and typical
bit-rates of 4 Mbit/s at XGA resolution are reported. Besides
PCs, multiple different end devices are supported such as
PlayStation 3, set top boxes and networked media devices.
Similar to the other two approaches, G-Cluster’s server
client system also offers MPEG-based compression of game
content and its streaming to end devices for remote gaming
applications. Currently, this system has been employed by
operators mainly for casual games. A system that offers high-
definition (HD) resolution is the Xtremeplay technology
of NDS. They enable the high resolution streaming of
computer games to set top boxes, but adaptations of the
game code to the Xtreamplay framework are required. High
resolution streaming of game content is also provided by the
Californian company Dyyno. However, their application is
not interactive gaming over networks but the distribution of

4 International Journal of Computer Games Technology

game output to remote displays. Another somewhat different
approach is AWOMO from Virgin Games. In contrast to
the other approaches, they do not stream the game output
but the game code. The game is downloaded and installed
locally on a PC for execution. However, the technology offers
a progressive game download, such that the user can start
playing the game after only a small part of the data has
been received. The remaining data is continuously fetched
during game play. A similar approach is also used by the
InstantAction system from GarageGames. Users can play 3D
games in their web browser. InstantAction uses a small plug-
in and an initial download of the game which are required to
allow play.

Another streaming solution is offered by Orb (http://
www.orbnetworks.com). Downloading Orb’s free remote-
access software, MyCasting 2.0, onto a PC (Windows only)
transforms it into a ‘broadcast device’, the content of which
can now be accessed from any web-enabled device (PC,
mobile phone, etc.) with a streaming media player. MyCast-
ing 2.0 now works with gaming consoles, enabling Xbox
360/Wii/PS3-owners to stream PC content onto the TV.
Orb’s software has enabled 17 million households (according
to ABI Research) to bridge the PC-to-TV divide, at no
cost, using what is essentially existing technology. However,
streaming of video games is not supported.

Advances in wireless home entertainment networks and
connectivity—which stream content between devices within
the home—also present potentially important solutions for
playing PC games on TV screens. For example, Airgo Net-
works’ faster-than-wired True MIMO Media technology will
allow streaming of rich high-definition television (HDTV)
content to SimpleWare Home (STMicroelectronics) enabled
devices within the home (at speeds faster than 10/100
Ethernet). Intel has collaborated with Verizon to launch a
games-on-demand service that allows consumers to play PC
games on their TV sets using Intel Viiv PCs. Also planned is
a version of the online multiplayer service, PlayLinc, which
will tie in with the service.

Although there is very little detailed technical infor-
mation publicly available about the commercial systems,
there have been many publications on streaming graphical
content in the academic field. In [4], for example, a thin
client has been presented, that uses high-performance H.264
video encoding for streaming the graphical content of an
application to a weaker end device. In this work, the buffering
scheme at the client has been optimized in order to achieve
minimal delay necessary for interactive applications, but
encoding is based on standard video encoding. In contrast,
[5] exploits information from the graphics scene in order to
directly compute the motion vectors and thus significantly
reduces the computational complexity of the MPEG-4
encoding process. The work in [6] also uses MPEG-4 as codec
but goes one step further by using more information from
the graphics state. For example, different quantizer settings
are used dependent on the z-buffer content. Thus, objects
that are further away in the scene are encoded with lower
quality than foreground objects closer to the camera. Both
approaches, however, require an application that passes the
necessary graphics information to the codec and does not

Internet

Wireless gamepad

Notebook
WLAN

Other media
server

Internet
access

Ethernet
switch

EHD Wireless
AP

TV + EME

LMS

LSS

LPS

Figure 1: Games@Large framework.

work with existing game programs. If encoding complexity
should be reduced even more, simple encoding techniques
can be used. In [7], a nonstandard compliant codec is
presented that allows the streaming of graphics content with
very little encoding effort. Coding efficiency is, however, also
much lower than when using highly sophisticated codecs like
H.264.

The reviewed systems offer a variety of possibilities
though all of them have limitations for interactive media
such as video games, and especially existing game titles. For
some of these formats games would need to be specially made
or expensive hardware purchased, other formats provide
moderate visual quality, unlike Games@Large’s aim of being
able to run all or most standard PC games including
newly developed ones with high visual quality (in Sections
4 and 5 we will present some criteria for titles to be
supported by Games@Large). Games@Large aims to offer
benefits for wider stakeholders too (service providers, games
developers/publishers, CE manufacturers, and advertisers)
enabling business models which ensure that end users benefit
not only from the technology solution but a wide choice of
products and services at low cost.

3. Games@Large Framework

The Games@Large framework depicted in Figure 1 enables
interactive media streaming from a PC-based machine to
other CE, computer and mobile devices in homes and
enterprise environments such as hotels, internet cafés and
elderly homes.

The framework includes the following main components
that are briefly introduced below and described in detail in
Section 4.

Server Side. The Local Storage Server (LSS) is responsible
for storage of games. The Local Processing Server (LPS) a
Windows PC runs games from LSS and streams to clients. It
is responsible for launching the game process after client-side

International Journal of Computer Games Technology 5

invocation, managing its performance, allocating computing
resources, filing system and I/O activities, and capturing
the game graphic commands or already rendered frame
buffer for video encoding, as well as managing execution
of multiple games. The LPS is further responsible for
receiving the game controller commands from the end
device and injecting them into the game process. The
LPS is also responsible for streaming game audio to the
client.

Graphic Streaming Protocol Stack. The Graphics Streaming
Protocol is intended to become a standard protocol used
for streaming 3D commands to an end device allowing
lower performance devices such as STBs to present high
performance 3D applications such as games without the need
to actually execute the games on this device.

The video streaming scenario is intended for devices
lacking hardware accelerated rendering capabilities. H.264
[8] is exploited for low-delay video encoding. Synchronisa-
tion and transmission is realised via UDP-based RTP/RTCP
in a standard compliant way.

HE-AACv2 [9] is used for audio streaming. Again,
synchronisation and transmission is realised via UDP-based
RTP/RTCP in a standard compliant way.

Client Side devices. Notebook (NB); Enhanced Multimedia
Extender (EME), which is a WinCE or Linux set top
box; Enhanced Handheld Device (EHD)—a Linux-based
handheld. The client module is responsible for receiving the
3D commands and rendering them on the end device using
local rendering capabilities (OpenGL or DirectX). For the
video streaming approach, H.264 decoding must be sup-
ported instead. The client is also responsible for capturing
the controller (e.g., keyboard or gamepad) commands and
transmitting them to the processing server [3].

4. Games@Large Framework Components

4.1. 3D Graphics Streaming. Today, interfaces between oper-
ating system level libraries, such as DirectX and OpenGL,
and the underlying 3D graphics cards, occur in the operating
system driver and kernel level and are transmitted over the
computer bus. Simultaneous rendering of multiple games
and encoding their output can overload a high-performance
server. For that purpose DirectX, and/or OpenGL graphics
commands, has to be captured at the server (LPS/PC) and
streamed to the client (e.g., STB or a laptop) for remote
rendering. This is similar to the 2D streaming of an X
server in UNIX-based systems. Extensions for streaming 3D
graphics also exist, for example, the OpenGL Stream Codec
(GLS) that allows the local rendering of OpenGL com-
mands. These systems usually work in an error-free TCP/IP
scenario, with best effort transmission without any delay
constraints.

The 3D streaming and remote rendering developed
for Games@Large are achieved by multiple encoding and
transmission layers shown in Figure 2. First of which is
the interception and the very last one is the rendering

on the client machine. All layers in between these two
are independent of any specific graphics API. The latter
implies that the postinterception 3D data streamed till the
client rendering process is not specific to either DirectX or
OpenGL, but rather utilises higher-level concepts common
to all 3D graphics.

Since efficient direct translation from DirectX API
commands to OpenGL commands is difficult, due to the
significant differences between these APIs, a set of common
generic concepts may be of assistance. In general, a 3D scene
consists of multiple objects that are rendered separately.
Before rendering an object, several parameters (states) must
be set and these include lighting, textures, materials, the set of
3D vertices that make a scene, and further various standard
3D transforms (e.g., translate, scale, rotate).

Figure 2 depicts the detailed block diagram of the
components involved in the 3D streaming. First, the 3D
commands issued by the game executable to the graphic layer
API used by the selected game (e.g., DirectX v9) need to be
captured. The same technique used for capturing the DirectX
v9 can also be used for capturing other versions of DirectX
(and also the 2D version of DirectX-DirectDraw). This is
implemented by providing to the game running on the LPS
a pseudo-rendering environment that intercepts the DirectX
calls. The proxy Dynamic Link Library (DLL) is loaded by
the game on its start-up and runs in the game context. This
library forms the server part of the pipeline which passes
the 3D commands from the game executable to the client’s
rendering module.

In our implementation, we have implemented delegates
objects for each of the 3D objects created by the game.
Each such delegates object uses the 3D streaming pipeline
for processing the command and its arguments. For many
commands, a delegate’s object can answer the game exe-
cutable immediately without interaction with the client—
this is done in many cases in order to avoid synchronized
commands. For example, when the game needs to change a
texture (or vertex buffer) on the graphic card, it first locks
it, and then it changes the buffer and then unlocks the
texture. Originally, those commands must be synchronized.
But in our implementation, the delegate object for texture
does not interact with the client when the game tries to
lock the texture on the graphic card but postpone the call
for the unlock call. When the game issues an unlock call,
the delegate object checks what parts of the texture were
changed and sends a single command to the client with
the changes. The client implementation, which is aware
of this logic, will first lock the corresponding texture on
the client’s graphic card, change the texture and unlock it.
This is one example of commands virtualization that allows
avoiding synchronous commands, and reducing the number
of commands—typically such a set of commands is called
hundreds of times per frame.

The Serialization Layer serializes various structures
describing the graphics state to a buffer. Serializer’s addi-
tional function is to fill the buffers until certain criteria is
met (theoretically it can pass the buffer to compressor after
each command which, of course, would not be efficient for
networking). The compression layer’s purpose is to use an

6 International Journal of Computer Games Technology

Game executable

Interception layer

Delegates object
Delegates object

Delegates object

Answers
3D commands

3D streaming pipeline-server side

Buffer manager

Logic compressor

Lossless compression

Networking

Serialization commands

3D streaming pipeline-client side

Network listening

Lossless decompression

Logic decompressor

Deserializer

3D Renderer (DirectX/OpenGL)

Graphic layer

Server side Client side

Graphic layer API

Figure 2: 3D Streaming—detailed block diagram.

efficient third-party compression library (e.g., zlib or LZO
compression) to compress the 3D stream before sending it to
the network.

The Network Layer is responsible for maintaining the
connection with the client and for sending the buffers. After
each sent buffer, an ACK (acknowledgement) is sent back by
the client. The purpose of this ACK is to further synchronize
server and client and to try to not overflow network buffers.
The nature of the data requires that no buffer will be lost in
transmission (which, in the current implementation, implies
the use of TCP). A possibility to use or develop a transport
protocol (e.g., UDP based) which could replace TCP is
investigated.

On Microsoft Windows clients the renderer is using
DirectX to render the commands, while in Linux clients
the renderer is using OpenGL commands. There is a
certain overhead in OpenGL rendering because some data
(especially colour and vertex data) must be reorganised or
rearranged in the processing stack before it can be given
to OpenGL for rendering. This may result in increased
demand of Central Processing Unit (CPU) processing and
memory transfer between system memory and the Graphics
Processing Unit (GPU) [3].

Although the graphic streaming approach is the prefer-
able solution since it offers lower latency and enables
execution of multiple games on one server, it cannot be used
for some small handheld devices like PDAs or smart phones.
These end-devices typically lack the hardware capability for
accelerated rendering and cannot create the images locally
for displaying them. Therefore, the alternative solution using
video streaming techniques is described in the next section.

4.2. Video Encoding. The alternative approach to 3D Graph-
ics Streaming in the Games@Large framework is Video

Streaming. It is used mainly for end devices without a
GPU, like handheld devices, typically having screens of
lower resolution. Here the graphical output is rendered
on the game server and the frame-buffer is captured and
transmitted encoded as video stream. For video encoding,
the H.264 video coding standard is used [8], which is the
current state of the art in this field and provides the best
compression efficiency. But in comparison to previous video
coding standards, the computational complexity is signifi-
cantly higher. However, by selecting appropriate encoding
modes, the encoding complexity for the synthetic frames
can be significantly reduced while preserving high image
quality.

In order to keep the effort moderate for integrating
new client end devices into the Games@Large framework,
the video streaming subsystem has been developed in a
fully standard-compliant way. Nevertheless, the server side
encoding and streaming is adapted to the characteristics of
the present end device. This means that end device properties
such as display resolution or supported decoding profiles
are selected appropriately on the server (e.g., optional H.264
encoding with CABAC [10], which typically increases the
compression efficiency at the cost of increased computational
load of decoding at the client). Similarly, the proportion of
IDR frames in the resulting video stream, which are used to
resolve the dependence on previous frames, can be set under
consideration of the network properties.

The delay between image generation on the server side
and presentation on the client side is crucial and has to be
as small as possible in order to achieve interactive gaming.
To reduce this delay a H.264 decoder for end devices has
been developed which is implemented with a minimum of
buffering. As soon as a video frame has been received it
will be decoded and displayed. This is quite different to TV

International Journal of Computer Games Technology 7
E

n
co

di
n

g
ti

m
e

(m
s)

10

15

20

25

30

35

PSNR (dB)

26 28 30 32 34 36 38

Just cause shoot: inter
Just cause shoot: intra

Figure 3: Comparison encoding timings for different quantizer
settings.

streaming where large buffering is used to remove the effects
of network jitters.

H.264 video encoding is computationally quite demand-
ing. In Figure 3 the encoding times for a game scene
are depicted for streams encoded with different quantizer
settings which results in different qualities. It is clearly visible
that for increased image quality the encoding time increases.
Since the video encoding is executed in parallel to the actual
game both are competing for the processor time. Aside
from that, the desire to execute and stream several games
simultaneously from a single game server increases the need
for reduction in computational complexity in the video
streaming system.

One method for reducing the complexity at the server
is the removal of the scaling of the games output to the
required resolution of the client device. For that purpose, the
render commands of the game are intercepted and modified,
so that the rendered images always fit the end device’s
resolution. Besides the reduction in complexity, an advantage
of this technique is that the quality of the images achieved is
much better, because the images are already rendered at the
desired resolution without any scaling artefacts. An example
is depicted in Figure 4.

Current research is focused on reducing the compu-
tational complexity of the H.264 encoder itself by incor-
porating enhancements based on the available rendering
context information. The main idea is adapted from [11].
The motion prediction in video encoding, which is realized
in common encoders as a computationally very demanding
trial and error search, can be calculated directly by using the
current z-buffer as well as projection parameters available
in the games rendering context of OpenGL/DirectX. The
encoding complexity can be reduced further by predicting
the macroblock partitioning on the basis of discontinuities
in the z-buffer. This is also usually realized in common

encoders as a computationally demanding trial and error
search. The key difference to [11] is that in [11] the authors
assume to have full access to the rendering applications
source code. In the Games@Large framework the output
is generated from unmodified commercial games, which
use quite sophisticated rendering techniques. The challenge
here is to capture the appropriate information of the
rendering context in order to correctly perform the motion
prediction.

In order to transmit the encoded video stream in real-
time, the RTP Packetization (Real Time Protocol [12]) is
utilized. The structure of the H.264 payload for RTP is
specified in [13]. Further details about real-time streaming
and synchronization are discussed in Section 4.4.

4.3. Audio Encoding. Besides the visual appearance computer
games also produce sounds. In order to deliver this audio
data to the client in an efficient manner, an audio streaming
sub-system has been developed. Since computer games
typically produce their audio samples in a block-oriented
manner, the current state-of-the-art audio encoder in this
field has been integrated: the High Efficiency Advanced
Audio Coding version 2 (HE AAC-v2) [9]. Our HE AAC-v2
implementation is configurable so that it can encode mono
or stereo, 8 or 16 bits per sample and at several sample
rates, for example, 22.05, 44.1, or 48 kHz. In order to stream
the encoded audio data in real-time the RTP packetization
(Real Time Protocol [12]) is utilized. The structure of HE
AAC-v2 payload for RTP is specified in [14]. Further details
about real-time streaming and synchronization are discussed
in Section 4.4.

4.4. Synchronized Real Time Streaming. Since the perfor-
mance of the system is highly dependent on the delay
between content generation on the server side and its play
back on the client, the video streaming as well as the audio
streaming are based on the UDP-based RTP (Real Time
Protocol [12]). Every RTP network packet contains a time
stamp as well as a well defined structure of payload data.

In order to prevent errors of different timings among the
video and audio channels and to overcome different kinds of
network jitters, the RTP channels are explicitly synchronized.
For this purpose the RTCP (Real Time Control Protocol
[12]) has been integrated. The content-generating server
periodically sends a so-called Sender Report RTCP Packet
(SR) for each RTP channel. This SR contains a mapping
from the timestamps used in the associated RTP channel
to the global NTP (Network Time Protocol [15]). With
this synchronization of each RTP channel to NTP time,
all the RTP channels are synchronized implicitly with each
other.

4.5. Client Feedback to the Game Server. The return channel
on the server side is responsible for receiving the commands
from each connected client and injecting them to the
appropriate game; the one that the user is playing. The return

8 International Journal of Computer Games Technology

/usr/lib/torcs/torcs-bin

(a)

/usr/lib/torcs/torcs-bin

(b)

Figure 4: Rendering in resolution adapted to particular end device.

channel is constructed by two communicating modules; the
server side module and the client side module.

4.5.1. Server Side. The server side module that implements
the return channel is part of the core of the system and more
specifically the Local Processing Server. The return channel
on the server side is responsible for receiving commands
from each connected client and transforming them in such
a form that they will be readable by the OS (Windows
XP/Vista) and more specifically by the running instance of
the game. The method utilizes a proxy of the DirectInput
dynamic library and injects the commands directly to the
DirectInput functions used by each game.

A crucial part of the server and client side return channel
is the socket communication. The HawkNL [16] library is
used for the communication between the server and the
clients. This assures that the implementation of the socket
is based on a system that is tested by a large community
of users and that no major bugs exist on that part of the
code. For faster communication between client and server
we disable the Nagle Algorithm [17] of the TCP/IP commu-
nication protocol. Having done so, the delivery times of the
packets are almost instantaneous as we omit any buffering
delays.

4.5.2. Keyboard. The server side of the return channel
receives the keyboard commands that originate from the
client dedicated socket connection. The communication
between the server and the client follows a specific protocol
in order to (a) be successfully recognized by the server
and (b) preserve the loss of keyboard input commands. An
important aspect of the return channel infrastructure is the
encryption of keyboard commands which is described in the
following section.

For the case of a game that uses a DirectInput keyboard,
we implement a proxy dll method. For this method, we
create a modified dinput8.dll of our own, modifying only
the function that is used for passing data to the virtual

DirectInput keyboard device that is created when the game
launches in order to read data from the original keyboard.

Encryption. The encryption procedure is needed only for the
keyboard commands that the client transmits, since sensitive
user data, such as credit card numbers or passwords, are only
inserted using the keyboard. RSA encryption was selected as
it fulfils the demands of our specific environment.

Start-Up Phase. When both the client and the server start,
some local initializations take place. The client then launches
a connection request to the server which is advertised to
the network neighbourhood through the UPnP module. The
server accepts the new client generating a unique RSA public-
private key combination.

Transfer of Encrypted Keyboard Input. The idea that lies
beneath the communication command channel architecture
is depicted in Figure 5.

Each end device consists of many possible input devices
for interacting with the server. When the client program
starts, it initiates the device discovery procedure, which may
be offered either by a separate architectural module, for
example, the device discovery module which uses UPnP.
The next step of the procedure is to capture the input
coming from the controllers. This is achieved by recording
the key codes coming from the input devices. Mice or
keyboards are interrupt-driven while with joysticks or joy
pads the polling method is used for reading. If the command
that is to be transferred is originating from a keyboard
device, the client uses the server’s public key to encrypt
the data after it has been suitably formatted adhering to a
certain communication protocol. The encrypted message is
transmitted to the server using the already existing socket
connection.

Once the encrypted message has arrived at the server
side, the server decrypts it using its private key, obtaining
the initial keyboard commands that the client has captured.

International Journal of Computer Games Technology 9

Register input
devices

Capture
input

Format
input

Keyboard
input?

Encrypt
input

Send data

Permanent connection with LPS

Receive data

Decrypt data

Extract input
command

Send input to
game

Permanent connection with end device

Yes

No

LP server

Keyboard
input?

Yes

No

Figure 5: Encrypted command channel.

If the received message is not from a keyboard, the server
bypasses the decryption stage, delivering the commands at
the running game instance. The algorithm procedure of this
step is described in the following sections.

4.5.3. Mouse. The server side of the return channel receives
the mouse commands that originate from the client using
the already open socket connection. The communication
between the server and the client follows a specific protocol
in order to be successfully recognized by the server and is
exactly the same as the keyboard apart from the encryption
part and the resolution part that follows.

An issue that arises when using the mouse input device
is how the commands are executed correctly if the client
has a different resolution to the server. This is because what
is sent from the client to the server is the absolute mouse
position. We realized that when a game is running on the
client, the rightmost bottom position of the mouse equals the
resolution of the game when running in 3D streaming, and
it is equal to the screen resolution when running in Video
streaming. On the server side, we observed that the matching
of the resolutions should not be done with the resolution of
the screen but again with the resolution of the game running
on the server because every command is injected into the
game window. The mouse positions have to be normalized
on the client and the server side.

4.5.4. Joypad/Other. The server side of the return channel
receives mouse and keyboard commands that originate from
the client’s Joypad/Other input via the already open socket
connection. This means that any Joypad/Other input is firstly
translated into suitable keyboard and mouse commands on
the client side (using XML mapping files) and it is then
transmitted to the server for execution at the game instance.
The execution of these commands falls to the previously
described cases.

4.6. Quality of Service Optimized Transmission. The Games@
Large gaming architecture is based on streaming a game’s 3D
or video output to the client running on a separate device.
This kind of distributed operation sets high requirements
for the network in terms of bit rate and latency. A game
stream with sufficient quality is targeted to require a bit
rate of several megabits per second and the latencies have
to be minimized to maximize the gaming quality. The same
network which is used for gaming is also assumed to be
available to other applications such as web surfing or file
downloading. If the network did not have any kind of QoS
support, these competing applications would have a negative
effect on the gaming experience. Thus, the network has
to implement QoS to satisfy the requirements of gaming
regardless of other applications using the same network.

As presented in Figure 1, the network connection to the
game client can be wireless. This is a further challenge for

10 International Journal of Computer Games Technology

providing QoS for the gaming application. Our platform is
based on IEEE 802.11 standard family [18] wireless LAN
(WLAN) technologies. Currently, the most used WLAN
technology is IEEE 802.11g which could provide the band-
width needed for four simultaneous game sessions in good
conditions. The near future IEEE 802.11n will enhance the
maximum bit rate, but still shares the same basic medium
access (MAC) method which does not support QoS. Priority-
based QoS can be supported in IEEE WLANs with the Wi-
Fi Multimedia (WMM) extensions [19] specified by Wi-Fi
Alliance. WMM is a subset of IEEE 802.11e standard [20]
and divides the network traffic into four access categories
which receive different priority for the channel access in
competition situations. In this way applications with high
QoS requirements can be supported with better service than
others with less strict requirements. Our platform is based on
IEEE 802.11 (either g or n) and WMM. As presented later in
the results section, WMM can be used to enhance the gaming
experience substantially compared to the case of basic WLAN
MAC.

In addition to MAC layer QoS support, there is a need
for QoS management solutions in a complete QoS solution.
Our platform relies on UPnP QoS specification [21]. The
specification defines services for policy management and
network resource allocation. In practice, it acts as a mid-
dleware between the applications and the network devices
performing the QoS provisioning.

The experimental results presented later in this paper
prove that our standard-based solution enhances the game
experience and gives superior performance compared to
reference system without QoS support.

4.7. UPnP Device Discovery. To ensure easy system setup
and operation as well as flexibility in dynamic home
networks, various system components need to find each
other automatically and be able to exchange information
about their capabilities.

In the Games@Large system, we have selected to use the
UPnP Forum [22] defined technologies for this functionality.

UPnP technology defines architecture for pervasive peer-
to-peer network connectivity of intelligent appliances, wire-
less devices, and PCs of all form factors. The technologies
leveraged in the UPnP architecture include common internet
protocols such as IP, TCP, UDP, HTTP and XML [23].

The required functionality of device discovery is to allow
a Games@Large client to find Games@Large servers in the
network it is connected to. Device discovery is also available
in servers to find other servers in the larger Games@Large
network. For example, in a large system a Local Management
Server (LMS) needs to find all LSSs in the network; in
the home version, the logical servers are usually located
in a single PC, but in an enterprise version, such as a
hotel environment, there might be several physical server
machines.

The device discovery component is also able to find
information about services provided by the found devices. In
the discovery phase the devices are also exchanging capability
information, for example, an end device will inform the

G@L system

G@L HOME version server

UI (server manipulation)

Core system functionality

3D streaming Video streaming

Return channel

UPnP module (daemon)

Quality of service

W
eb

 s
er

ve
r

D
at

ab
as

e
tr

an
sa

ct
io

n
 la

ye
r

Figure 6: General server architecture.

server of its capabilities, like screen resolution, connected
input devices and so on. Servers can also advertise their
capabilities to other servers and end devices.

4.8. System Integration. The local servers of Game@Large
consist of three separate servers: LPS (Local Processing
Server), LMS (Local Management Server), and LSS (Local
Storage Server). In the (intended for the use in home
environment) version, the main server of the system, is the
Local Processing Server and at this stage it has (virtually) the
core functionality which includes LPS, LMS, and LSS.

4.8.1. Local Processing Server. The “virtual” Local Processing
Server is the core of the Games@Large System HOME
version. It handles every communication with the clients
while being responsible for every internal communication in
parallel. The following Figure 6 represents the general server
architecture.

At this stage of the implementation everything is manip-
ulated within the server application. This web server is an
Apache [24] server with support of PHP [25] and sqLITE
[26] (as a PHP module) which is the database used in the
HOME version of the system.

The LPS incorporates the implementations of 3D and
Video Streaming, the Return Channel and the Quality of
Service modules. In parallel it has a Web Server for serving
the Web UI (user interface) to the clients and a Database
Transaction Layer for the communication with the Database
and the File System (game installations).

The basic procedure of the Processing Server is depicted
in Figure 7.

When a client wants to connect to the system, it tries to
locate the LPS that is running the G@L HOME system. The
UPnP daemon that runs on the LPS “helps” each end device
to locate the server’s IP. The application that runs on each
client launches a web browser with the given IP address and
the LPS’s Web Server starts interacting with the clients. The
client is served with the corresponding web UI (different UI
for each end device). The server is informed which UI has to
be sent by a parameter that is passed together with the IP of
the server in the web browser.

International Journal of Computer Games Technology 11

Game selection phase

Trigger game phase

Initialization phase

Launching game

Game experience

Discovery phase

G@L server

UPnP module

Web server/database

Prepare

G@L clients

LPS discovery (UPnP)

Web browser/game selection

Execution

Loading
modules

Launch Game

Streaming

Return channel

Prepare

Play game

Figure 7: General flow of information.

After the log-in procedure of the end user, the game
selection phase is launched. When the user selects a game
to play the main client application is launched and the
main communication procedures between the client and
the server begin. The client is informing the LPS about its
request to play a specific game. The LPS is processing the
client’s command and more specifically it starts the decision
procedure.

During the decision procedure the server, with the
help of the UPnP and QoS modules, observes the current
system status and network utilization. If the game’s Software,
Hardware, and Network demands are met, then the game
initialization procedure begins. The client is also informed
that the launching of the game is imminent and thus it will be
able to begin its initialization procedure. After the successful
finishing of the initialization procedure, the game is launched
with the 3D commands or video of the game streamed to the
client. Additionally, the client is streaming the user’s input
commands to the server. The commands coming from the
client are furthermore processed on the server side and they
are delegated to the window of the game.

5. Experimental Results

In order to demonstrate multiple game execution and system
performance analysis we designed a testbed [27] in which
we could monitor the performance of network, devices and
Games@Large system processes while running simultaneous
game sessions. Figure 8 shows our testbed setup.

We performed our experiments with two client note-
books of which one was running Sprill (Casual game) and
the second one Red Faction Demo (first person shooter
game). The Games@Large server (Intel 2 GHz 2 CPUs,
2048 MB RAM, 256 MB dedicated video memory) running
Windows XP was connected to a 100 Mbps switch which

G@L client NB1
(red faction demo)

G@L client
NB2 (Sprill)

G@L server, PC WinXp

User1

User2

Wireless AP

Monitoring server

100 base T switch

Figure 8: Games@Large testbed.

in turn connected to the WLAN Access Point (AP) via a
wired Ethernet connection. The two client notebooks (NB1:
Intel 2 GHz 2 CPUs, 1024 MB RAM, 384 MB shared video
memory and NB2: AMD Athlon 2.1 GHz CPU, 1024 MB
RAM, 256 MB dedicated video memory) were connected to
the Wireless AP via the IEEE 802.11g wireless connection.
For system performance monitoring we used an external
Monitoring PC. All the PCs and NBs were SNMP/WMI
enabled for performance monitoring purposes.

We used the PRTG Network Monitor [28] on the Mon-
itoring PC to monitor network, device, and Games@Large
processes with minimal influence on system’s performance.
Additionally we used FRAPS [29] to measure the games’
frame rate.

The test scenario included a full system workflow which
consisted of the following steps, shown also in Figure 7: G@L
server discovery from the client device, web user interface
access and game list browsing, selection of the game, and
starting to play, described in detail in Section 4.8.1. Both the
test participants were familiar with the 2 games used for tests.

12 International Journal of Computer Games Technology

Table 1: Frame rate per second for tested games run natively and
on G@L system.

Mode Game Mean FPS Std Dev

Run Natively
(Server PC)

Red Faction 59.23 5.16

Sprill 349.14 87.65

Run on G@L
Red Faction (NB1) 18.26 12.12

Sprill (NB2) 125.27 108.59

We did not perform extensive user studies though we
were recording user observations and perceptions about the
gaming experience. Both participants commented that at
the beginning there were some pauses in the game while it
was loading, but after a while they disappeared. The gaming
experience in the Mean Opinion Score (MOS) scale [30] was
rated between 4 and 5. There were some differences with the
original game play but participants were not frustrated and
could enjoy the game play.

During the test sessions we were logging the frame rate of
the games on the client devices, network, and G@L processes
performance on the client and server. For analysis purposes,
we ran both games natively on the server PC and measured
their performance and frame rate in frames per second
(FPS). Measurement results for native and G@L system game
executions are presented in Tables 1 and 2.

Network usage during tests was measured on the server
and both clients. Figure 9 shows the network usage bitrates
for the G@L server simultaneously serving two clients. The
mean sum bitrate for the clients is 6956.04 kbit/s for Red
Faction game on NB1 and 8627 kbit/s for Sprill game on
NB2, respectively.

The average bandwidth usage on the client (as well as on
the server per single game) devices is correlated with the FPS.
From mean bit rate of NB1 and NB2, and Table 1 we can
see that when the frame rate is high, the network utilization
is higher (Red Faction versus Sprill). The same correlation
can be observed between the frame rate, CPU and memory
utilization on the client and server. According to some proof
of concept tests Windows based clients are running the games
at higher frame rates than the Linux-based ones and those
with the weak hardware capabilities.

The bandwidth that the game running on the LPS
requires is directly proportional to the frame rate of the
game. Clients that are capable of running games at high
frame rates will spend a large portion of their time reading
3D data from the socket. After a frame has been read, an
ACK is sent to the server so it can generate a fresh updated
frame. When the frame-rate is above sufficient (20–25 FPS is
enough for a good gaming experience), it can be artificially
limited by the LPS to save the network resources. In such a
way, it is possible for multiple (four good quality concurrent
sessions per 1 AP/LPS) devices to be connected to the same
LPS without overloading the network.

The server must have enough CPU power and memory
to run the game natively. Additionally, the amount of
video memory that a game requires when running natively,
must be available in the system memory when running

B
it

ra
te

(k
bi

t/
s)

0
2
4
6
8

10
12
14
16
18
20
×103

Time (s)

0 50 100 150 200 250 300 350

Sum (speed), kbit/s
Traffic in (speed), kbit/s
Traffic out (speed), kbit/s

Figure 9: Bitrate versus Time for G@L Server.

in the G@L environment (that is because the graphic
objects are emulated by the streaming module in the system
memory). As for the CPU requirements, most games still
do some graphics processing in software, so decoupling of
the rendering from the game actually leads to a CPU gain
on the server, see Table 2 (in spite the streaming and the
compression). As long as the processing server has sufficient
CPU and memory resources to run multiple games at once
it can run them. Since the games’ graphics are not rendered
on the LPS (when 3D streaming), there is no competition
between games for the GPU and neither for the full-screen
mode.

The most important hardware requirement for the client
device is the video adapter. It should have hardware accel-
eration capabilities to enable fast rendering of 3D scenes. As
on the server, the graphic resources that the game stores in
the video memory should be available in the system memory
to enable manipulation prediction and cashing. So memory
requirements for the client should be 200–300 MB available
to the client application for fairly heavy games.

Besides the frame rate and technical requirements, such
as hardware and network bandwidth, for a game to run
playable on the end device in the Games@Large system it
has to be compatible with the end device screen size and
controller capabilities (e.g., some games cannot be played
on small displays, other games cannot be controlled with the
gamepad).

The above mentioned tests were performed over a Wi-Fi
network without the QoS and with no other traffic (except
the SNMP/WMI packets for system monitoring, but these
crate a very small network load) present on the network than
the one produced by the two game sessions of the client
notebooks. Therefore latencies and other negative traffic
effects did not assert during the tests, for example, measured
mean round trip time (we sent an SNMP Ping of 30 Bytes
from the server, every second 30 times) for both clients was
<2 ms.

The solution for QoS optimized transmission described
in Section 4.6 was evaluated by performing a series of tests in
a laboratory environment. The experimental setup described

International Journal of Computer Games Technology 13

Table 2: G@L Server and Client process performance: Memory and CPU usage.

Mode Game Mean working set (Mbyte)/Std Dev Mean CPU usage (%)/Std Dev

Run Natively (Server PC)
Red Faction 61.03/4.19 49.03%/1.75%

Sprill 103.39/13.14 47.10%/7.68%

Run on G@L

Red Faction (NB1 process) 45.19/7.11 21.58%/7.03%

Red Faction (Server process) 66.46/12.29 22.00%/8.11%

Sprill (NB2 process) 112.15/30.36 67.69%/18.30%

Sprill (Server process) 139.42/41.15 31.65%/10.67%

Laptop A

Laptop C

AP

Laptop B

Laptop D

Figure 10: Test setup.

in Figure 10 includes four laptops and a WMM enabled
WLAN access point (AP). Laptop A was used as a game
client while laptop B was running the game server software.
The game server was connected with a wired Ethernet
connection to the WLAN and the client connection was
wireless. In addition to game-related laptops, there were two
additional laptops, C and D, which were used to generate
background traffic to the network when testing the QoS
capabilities of the solution. Similar to the game laptops,
Laptop C was connected using a wireless connection and
Laptop D with a wired connection. The laptops used were
standard PC laptops equipped with IEEE 802.11g and WMM
enabled wireless interfaces or 100 Mbps Ethernet interfaces.
The AP was a normal WLAN AP with an addition of priority
queuing in the AP kernel buffers in case of WMM queue
overflow.

In each of the test cases, playing the game (Sprill, using
3D streaming) was begun in a wireless network without
any additional traffic. From the middle until the end of the
test, competing traffic stream was introduced from Laptop
D to Laptop C. This stream was generated by an open
source traffic generator iPerf. A single TCP session was used,
thus simulating a file download between D and C using
FTP or HTTP. The tests were performed with two QoS
configurations. In the first one, all the traffic was sent using
best effort priority, and in the second, the game traffic was
using voice priority and the background best effort priority.
Downlink and uplink throughput, delay, jitter, and packet
losses for the gaming traffic were recorded using the QoSMeT
tool [31] and the game client’s realized frame rate was
measured with Fraps [29].

The downlink performance is visualized in Figure 11
in terms of throughput and delay for the case with equal
priority, and in Figure 12 for the case where gaming has

T
h

ro
u

gh
pu

t
(k

B
/s

)

101

102

103

D
el

ay
(m

s)

0

100

200

300

Time (s)

0 50 100 150 200 250 300 350

Downlink throughput
Downlink delay

Figure 11: Downlink throughput and delay when both the game
and the background traffic share the same priority.

T
h

ro
u

gh
pu

t
(k

B
/s

)

102

103

D
el

ay
(m

s)

0

5

10

15

Time (s)

0 50 100 150 200 250 300 350

Downlink throughput
Downlink delay

Figure 12: Downlink throughput and delay when the game has
higher priority than the background traffic.

higher priority. The effect of introducing the background
traffic can be seen very clearly in Figure 11 while it is not
visible in Figure 12.

The complete results are presented in Tables 3 and 4 for
both cases respectively. In the case without prioritization,
the game really suffers from the competing traffic in the
WLAN. The downlink delay increases up to around 20 times
as high as in uncongested conditions. This causes the realized
frame rate at the client to decrease almost 90 percent which,
together with the increased delay, practically destroys the
game experience. When the game traffic is classified with
a priority higher than the background traffic, the effect of
competition is negligible. The downlink delay remains an
acceptable level and the realized frame rate of the game at
the client decreases only less than 10 percent.

14 International Journal of Computer Games Technology

Table 3: Average values when both the game and the background traffic share the same priority.

Downlink
through-
put
(kBps)

Uplink
through-
put
(kBps)

Downlink
delay (ms)

Uplink
delay (ms)

Downlink
jitter (ms)

Uplink
jitter (ms)

Downlink
packet loss
(%)

Uplink
packet loss
(%)

Realized
frame rate
(fps)

Without
competing
traffic

651.3 26.6 3.4 1.7 1.0 0.8 0.020 0.009 82.8

With
competing
traffic

119.3 4.6 66.0 6.4 5.8 2.5 0.630 0.059 9.1

Ratio 0.18 0.17 19.60 3.67 5.73 3.24 31.16 6.65 0.11

Table 4: Average values when the game has higher priority than the background traffic.

Downlink
through-
put
(kBps)

Uplink
through-
put
(kBps)

Downlink
delay (ms)

Uplink
delay (ms)

Downlink
jitter (ms)

Uplink
jitter (ms)

Downlink
packet loss
(%)

Uplink
packet loss
(%)

Realized
frame rate
(fps)

Without
competing
traffic

665.8 28.1 3.5 1.8 1.0 0.7 0 0.002 80.9

With
competing
traffic

624.4 25.7 4.2 2.2 1.2 0.8 0.003 0 73.5

Ratio 0.94 0.91 1.19 1.23 1.13 1.19 — 0 0.91

6. Conclusions

In this paper, we have presented a new distributed gaming
platform for cross-platform video game delivery. An inno-
vative architecture, transparent to legacy game code, allows
distribution of a cross-platform gaming and entertainment
on a variety of low-cost networked devices that are not
able to run such games. This framework enables easy access
to the game catalogue via the web based interface adapted
for different end devices. A generalized protocol supports
end devices with both OpenGL and DirectX API’s. We have
shown that it is feasible to use a single PC for multiple game
executions and stream them with a high visual quality to
concurrently connected clients via a wireless network using
the QoS solution. The developed technology enables putting
PC gaming onto TV screens which is a rapidly emerging
trend in gaming market. Apart from that it also enables a
pervasive video game access on handheld devices.

Future work is to support wider range of titles, we
will need to implement the interception layer for all the
graphic libraries used by the games which can supported by
Game@Large. A possibility is investigated to use or develop
a transport protocol (e.g., RTP), which could replace TCP
for 3D streaming for the improvement of its performance
over a wireless network. For video streaming current research
is focused on reducing the computational complexity of
the H.264 encoder itself by incorporating enhancements
based on the available rendering context information using
the motion prediction and by predicting the macroblock
partitioning. In parallel, we will run extensive laboratory
tests and field trials in the home environment in order to

gather knowledge about users’ perceptions and investigate
the subjective expectations of gamers.

Acknowledgments

The work presented in this paper has been developed
with the support of the European Integrated Project
Games@Large (Contract IST-038453) which is partially
funded by the European Commission.

References

[1] Y. Tzruya, A. Shani, F. Bellotti, and A. Jurgelionis,
“Games@Large—a new platform for ubiquitous gaming
and multimedia,” in Proceedings of the Broadband Europe
Conference (BBEurope ’06), Geneva, Switzerland, December
2006.

[2] S. Cacciaguerra and G. D’Angelo, “The playing session:
enhanced playability for mobile gamers in massive meta-
verses,” International Journal of Computer Games Technology,
vol. 2008, Article ID 642314, 9 pages, 2008.

[3] I. Nave, H. David, A. Shani, A. Laikari, P. Eisert, and P.
Fechteler, “Games@Large graphics streaming architecture,” in
Proceedings of the 12th Annual IEEE International Symposium
on Consumer Electronics (ISCE ’08), pp. 1–4, Algarve, Portugal,
April 2008.

[4] D. De Winter, P. Simoens, L. Deboosere, et al., “A hybrid
thin-client protocol for multimedia streaming and interactive
gaming applications,” in Proceedings of the International
Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV ’06), Newport, RI, USA, May
2006.

International Journal of Computer Games Technology 15

[5] L. Cheng, A. Bhushan, R. Pajarola, and M. El Zarki, “Real-
time 3d graphics streaming using mpeg-4,” in Proceedings of
the IEEE/ACM Workshop on Broadband Wireless Services and
Applications (BroadWise ’04), pp. 1–16, San Jose, Calif, USA,
July 2004.

[6] Y. Noimark and D. Cohen-Or, “Streaming scenes to MPEG-4
video-enabled devices,” IEEE Computer Graphics and Applica-
tions, vol. 23, no. 1, pp. 58–64, 2003.

[7] S. Stegmaier, M. Magallón, and T. Ertl, “A generic solution for
hardware accelerated remote visualization,” in Proceedings of
the Symposium on Data Visualisation (VISSYM ’02), pp. 87–
94, Barcelona, Spain, May 2002.

[8] MPEG-4 AVC, “Advanced video coding for generic audiovi-
sual services,” ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC,
2003.

[9] MPEG-4 HE-AAC, “ISO/IEC 14496-3:2005/Amd.2”.
[10] P. Eisert and P. Fechteler, “Low delay streaming of computer

graphics,” in Proceedings of the International Conference on
Image Processing (ICIP ’08), pp. 2704–2707, San Diego, Calif,
USA, October 2008.

[11] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based
adaptive binary arithmetic coding in the H.264/AVC video
compression standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 620–636, 2003.

[12] RFC 3550, “RTP: A Transport Protocol for Real-Time Appli-
cations”.

[13] RFC 3984, “RTP Payload Format for H.264 Video”.
[14] RFC 3640, “RTP Payload Format for Transport of MPEG-4

Elementary Streams”.
[15] D. L. Mills, “Network time protocol version 4 reference and

implementation guide,” Tech. Rep. 06-6-1, Department of
Electrical and Computer Engineering, University of Delaware,
Newark, Del, USA, June 2006.

[16] Hawk Software, Hawk Network Library, http://www.hawksoft
.com/hawknl.

[17] J. Nagle, “Congestion control in IP/TCP internetworks,” RFC
896, January 1984.

[18] IEEE Standard 802.11-1999, “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifica-
tions,” 1999.

[19] Wi-Fi Alliance Technical Committee, QoS Task Group, WMM
(including WMM power save) specification V1.1, 2004.

[20] IEEE 802.11e-2005, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications,
Amendment 8: Medium Access Control (MAC) Quality of
Service Enhancements,” 2005.

[21] UPnP QoS Architecture V2.0, http://www.upnp.org/specs/
qos/UPnP-qos-Architecture-v2-20061016.pdf.

[22] UPnP Forum, http://www.upnp.org.
[23] UPnP device architecture, http://www.upnp.org/specs/arch/

UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf.
[24] Apache Software Foundation, Apache HTTP Server,

http://httpd.apache.org.
[25] PHP: HyperText Preprocessor, http://www.php.net.
[26] SQLite, http://www.sqlite.org.
[27] A. Jurgelionis, F. Bellotti, A. Possani, and A. De Gloria,

“Designing enjoyable entertainment products,” in Proceedings
of the Conference on Human Factors in Computing Systems
(CHI ’08), pp. 1–5, Florence, Italy, April 2008.

[28] PRTG Network Monitor, http://www.paessler.com.
[29] Fraps, “Real-time video capture benchmarking,” http://www

.fraps.com.
[30] Ch. Schaefer, Th. Enderes, H. Ritter, and M. Zitterbart, “Sub-

jective quality assessment for multiplayer real-time games,” in

Proceedings of the 1st Workshop on Network and System Support
for Games, pp. 74–78, Braunschweig, Germany, April 2002.

[31] J. Prokkola, M. Hanski, M. Jurvansuu, and M. Immonen,
“Measuring WCDMA and HSDPA delay characteristics with
QoSMeT,” in Proceedings of the IEEE International Conference
on Communications (ICC ’07), pp. 492–498, Glasgow, UK,
June 2007.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 970617, 8 pages
doi:10.1155/2009/970617

Research Article

Real Time Animation of Trees Based on BBSC in Computer Games

Xuefeng Ao, Zhongke Wu, and Mingquan Zhou

College of Information Science and Technology, Beijing Normal University, Beijing 10087, China

Correspondence should be addressed to Xuefeng Ao, aoxuefeng@mail.bnu.edu.cn

Received 20 January 2009; Accepted 3 April 2009

Recommended by Suiping Zhou

That researchers in the field of computer games usually find it is difficult to simulate the motion of actual 3D model trees lies in
the fact that the tree model itself has very complicated structure, and many sophisticated factors need to be considered during the
simulation. Though there are some works on simulating 3D tree and its motion, few of them are used in computer games due
to the high demand for real-time in computer games. In this paper, an approach of animating trees in computer games based on
a novel tree model representation—Ball B-Spline Curves (BBSCs) are proposed. By taking advantage of the good features of the
BBSC-based model, physical simulation of the motion of leafless trees with wind blowing becomes easier and more efficient. The
method can generate realistic 3D tree animation in real-time, which meets the high requirement for real time in computer games.

Copyright © 2009 Xuefeng Ao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In current computer games, plants in scenes are usually con-
sisted of simple plane pictures positioned in four orthogonal
directions. 3D models of plants are seldom used in computer
games. Recently, 3D plants come forth in some computer
games which make users feel more realistic. For example,
in [1], a palm tree model with approximately 400 Polys was
created by Amped Labs LLC for the use in the Rise of Power
game. There are also some top-level visualization corpora-
tions like Interactive Data Visualization, Inc. (IDV) provid-
ing functional system like SpeedTree for modeling 3D trees
and simulating simple tree animation in computer games
[2].

However, in the scope of our knowledge, we do not
find any research publications on discussing 3D tree motion
in computer games. In fact, many researchers have made
contributions in tree modeling and its motion, but none is
actually applied in computer games. In tree modeling, the
main methods include the followings: L-system [3], image
based tree modeling [4–6] and space colonization algorithm
[7]. In the aspect of tree motion simulation, there are also
many works. The earliest work can be retrieved was done
by Wejchert and Haumann [8]. They used four simple fluid
flow including uniform, sink, source and vortex to design
and control the movements of the wind. And then the
animation of the leaves going with the wind is simulated

by computing the movement produced by wind force from
normal and tangential direction in accordance with the
traditional Newton theory. Mikio Shinya created a stochastic
wind area and then simulated the tree swaging in the wind
based on a modal analysis method [9]. Hiromi simulated
tree motions like flying and breaking in tornado in the movie
“twister” in which the tornado model was constructed with
the turbulence theory [10]. In Feng’s study [11], a single
branch is divided into several little segments, and each of
these segments can be viewed as a pole which cannot deform
in the axis direction. Then the position of each point on
a little segment after motion can be computed by applying
the deformation equations of pole. In Alkagi’s work [12],
level of detail (LOD) technique was employed to reduce the
computational complexity, and the animation of trees in
real-time was implemented. During the computation of tree
motion, a single branch is divided into seven parts of cone-
shaped “links” that are interconnected by six “joints”. And
the bending of a branch is represented by the rotation of
each of its joints. In [13], William Van Haevre realized tree
motion at each arbitrary moment using a goal-based motion
algorithm. As for recent works, Khalid Saleem animated
tree branch breaking and flying effects in a 3D interactive
visualization system for hurricanes and storm surge flooding
[14]. Yubo Zhang introduced a data-driven approach that
synthesizes tree animations from a set of precomputed
motion data [15].

2 International Journal of Computer Games Technology

However, because of the high demand for real time
in computer games, most of the above work cannot be
applied directly in computer games. Some can be used
to animating trees in computer games like Akagi’s work
as extra speeding technique was employed to reduce the
computational complexity, and thus real-time animation can
be generated [12].

There are two main factors hampering the application
of 3D tree motions in computer games. For one thing,
most of the tree representations are too complicated to
implement real-time animation; for another, the simulation
of tree animation is a sophisticated work because many
physical computations like animation aerodynamics, mate-
rial mechanics, and pole kinematics are involved.

In our paper, a novel tree model based on BBSC is
introduced, and the method of simulating tree motions
based on this model is proposed [16]. This model combined
with this method is efficient for generating real-time tree
motions in computer games. In the following sections, the
paper is organized as follows. In Section 2, a novel tree model
based on BBSC is described in detail; in Section 3, the model
for physical simulation of wind is briefly introduced; in
Section 4, the simulation of the tree animation is illustrated;
in Section 5, the animation effect by our method is demon-
strated, and the conclusion is given.

2. BBSC-Based Tree Modeling

Ball B-Spline Curve (BBSC) is a parametric solid represen-
tation of freeform tubular objects, which are skeleton-based
parametric solid model. BBSC directly defines objects in
B-Spline function form by using control sphere instead of
control point in B-Spline curve. BBSC not only to describe
every point inside 3D solid objects but also provides its center
curve in B-Spline form directly. So the representation is more
flexible for modeling, manipulation, and deformation.

2.1. Ball B-Spline Curve (BBSC). Let Ni,p(t) be the ith B-
Spline basis of degree p with knot vector [u0, . . . ,um] =
{a, . . . , a,up+1, . . . ,um−p−1, b, . . . , b}. 〈Pi; ri〉 is a ball centered
at Pi with radius ri.

The Ball B-Spline Curve (BBSC) is therefore defined as
〈B〉(t) =∑n

i=0Ni,p(t)〈Pi; ri〉, where Pi are control points, and
ri are control radii.

As 〈B〉(t) = ∑n
i=0Ni,p(t)〈Pi; ri〉 = 〈∑n

i=0Ni,p(t)Pi;∑n
i=0Ni,p(t)ri〉, a Ball B-Spline curve can be regard as two

parts: a 3D B-Spline curve, that is, the center curve (or
skeleton): c(t) = ∑n

i=0Ni,p(t)Pi, and a B-Spline scalar
function, that is, the radius function r(t) = ∑n

i=0Ni,p(t)ri.
Therefore most properties and algorithms can be obtained
by applying B-Spline curve and function to the two parts of
BBSC, respectively. Owing to the perfect symmetry property
of balls, the curve c(t) constructed from the centers of balls
is exactly the center curve of the 3D region represented
by the BBSC. Different from BBSC, B-spline curve only
represent a curve in 3D space. But BBSC inherits good
properties from B-Spline curves. Most algorithms in B-
Splines can be extended to BBSC. For example, we also
have interpolation and approximation algorithm generating

(a) The data spheres (red) and the control spheres (green)

(b) The BBSC after transforma-
tion

(c) The rendered BBSC

Figure 1: A BBSC created by interpolation.

a BBSC. These algorithms are implemented by employing
B-Spline curve’s interpolation (approximation) algorithm to
position data to get the center curve part of BBSC and B-
Spline scalar function interpolation to these widths data to
get radius function. Similarly we can modify the 3D shape
by deforming BBSCs through modifying its control points
and radii. Detailed description of the algorithm can be found
in [16]. In Figure 1(a), a BBSC generated by interpolation
is shown, in which the red balls are the data spheres, and
the green spheres are the control spheres. In fact, the two
end spheres are both data spheres and control spheres.
The whole curve is tessellated so that later rendering and
texture mapping processes can be implemented. In this figure
we can easily see that, different from traditional B-Spline
curve with 2D control points, the BBSC has the control
spheres consisted of center points and radii. Figure 1(b)
shows the BBSC in a different viewpoint, and Figure 1(c) is
the rendering result of the transformed BBSC.

The BBSC presented above has many features which
make it very suitable to construct 3D trees in games.

(a) Solid mathematical fundamentals.

(b) Precise evaluation.

(c) Flexibility of manipulations and deformations.

(d) More compact dataset than discrete or linear repre-
sentations when defining a freeform 3D object.

International Journal of Computer Games Technology 3

Figure 2: Geometrical model represented by BBSCs.

(a) Mesh mode (b) Rendering result

Figure 3: Tessellated BBSC-based tree.

Therefore, we can generate real-time animation of the
BBSC-based trees easily.

2.2. Geometric Representation with BBSC. BBSC is a para-
metric representation of 3D freeform solid objects [16]. Its
evaluation is precise and efficient, and it is flexible for manip-
ulations, deformations, and morphing. These properties
provide the potential to build flexible botanical tree model.
Figure 2 shows the geometric relationship between these data
spheres of a BBSC-based tree. The whole tree is consisted of
several BBSCs which are created by interpolation. The red
spheres are the data spheres used to be interpolated. Each
sphere is consisted of its center point and radius. Each sphere
is represented by its center point and radius. Thus a tree
is described by these center points and radii of these data
spheres. And in Figure 3, the resulting tree constructed from
BBSCs is shown. Figure 3(a) is the tessellation result of the
BBSC-based tree model, and Figure 3(b) is the rendering
result. After tessellation, texture mapping technique can be
applied. Therefore, various kinds of trees can be generated
through texture mapping techniques in games.

· · ·

· · ·

· · ·

· · ·

· · ·

··
·

NodeNodeNode

Node Node Node

Root

Leaf Leaf Leaf Leaf Leaf

Level 1

Level n− 1

Level n

Figure 4: Topological structure of representing a tree.

2.3. Topological Representation. A graph-based data structure
(tree data structure) is built to represent the complex hier-
archical structures of trees shown in Figure 4. In each node
of the tree data structure, the topological information of its
parent and children and its geometric representation based
on BBSC are stored. The construction of the topological
model aims to generate real-feeling animation of the whole
tree. The hierarchical structure will be made use of to
compute the movements of the branches from low level to
top level.

3. Model for Physical Simulation of Wind

In the wind model, we adopt Feng Jinhui’s method for
physical simulation of wind [11, 17]. Here, a summary of the
method is given.

3.1. Wind Force Size. In our method, the users are allowed
to choose the wind force model and set the wind direction
according to their requirements. Two kinds of wind force
model are provided, and arbitrary wind direction in x-z
panel can be set.

3.1.1. Gust of Wind. The gust of wind increases gradually
from zero to the highest point and then decreases gradually
to zero again. The model can be represented in the following
equation:

F1 =

⎧
⎪⎪⎨

⎪⎪⎩

at + b, 0 ≤ t ≤ tc,

c − d(tc − t)
tc

, tc ≤ t ≤ max time.
(1)

3.1.2. Stable Wind. The stable wind increases gradually from
zero to certain grade, and for some seconds retains at this
grade, then finally decreases gradually to zero. The model can
be represented in the following equation:

F2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

at + b, 0 ≤ t ≤ tc,

c + d sin(t), tc ≤ t ≤ mid time,

e − f (tc − t)
tc

, mid time ≤ t ≤ max time.

(2)

4 International Journal of Computer Games Technology

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

3

4

5

6

F

(a) The gust of wind model

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

3

4

5

6

7

F

(b) The stable wind model

Figure 5: The relationship between the wind force and the time.

In the above two equations, tc is the time constant, and
different wind models can be easily obtained by modifying
the model parameters.

Figure 5 shows the wind force changes with the time.
Figure 5(a) gives an example of the gust of wind changing
with the time, and Figure 5(b) is the example of the stable
wind changing with the time.

3.2. Wind Force Direction. Users are allowed to set arbitrary
wind direction in x-z panel by inputting the angle between
the wind direction and the x-axis positive direction. 360 wind
directions along with the counter-clockwise can be obtained
by increasing the angle from zero degree to 360 degree.

The later computation of the motion of the branches is
based on the above wind model.

4. Animation of BBSC-Based Trees

In the introduction part, we have noticed that when com-
puting the motion of a certain branch, those researchers
generally segment a certain tree branch into several segments
and then view those little segments as poles. Therefore, the

deformation method of a pole can be applied to the little
segment very easily to generate relatively natural-looking tree
animation.

As described in Section 2, our tree model based on
BBSC is a proper and efficient model in computer games.
In fact, this model shows more value when computing tree
motion. Now that the branches are generated from several
data spheres within, we can just use the position of the data
spheres to segment the current branch. And considering a
branch is an actually BBSC created by interpolating several
data spheres, we need only compute the position of the
data spheres after motion rather than every point within
the segment. The new curve obtained by interpolating the
new data spheres after motion is hence regarded to be the
new representation of the branch after motion. With this
model, the deformation of tree branches can be computed
by defining the relationship between wind forces and data
spheres repositioning. And the new position of the data
spheres can be computed by simulating the bending of a pole.

4.1. Dynamics Model for Branches. As shown in Figure 6(a),
a pole with one end A fixed bends under the distribution
force q. Then the displacement and the rotation angle can be
computed for each position x. According to pole kinematics
theory, the deformation of a pole can be represented by
two parameters: the deflection and the rotation angle.
The deflection can be just viewed as the displacement
of the current position. However, in order to lessen the
computation complexity, we consider only the rotation angle
in our model. Furthermore, rather than each point in the
current segment, we should only consider the rotation angle
of the end B under force q, which can be obtained from the
following equation:

θB = qL3

6EIZ
. (3)

In the above formula, q is the wind force, L is the length
of the pole, and IZ is the Bending Section Modulus. E
is the Young’s Modulus, which is used to measure the
elastic characteristic of certain materials and is decided only
by the physical feature of the material. We indeed have
omitted many complex computation processes which are
indispensable in the field of Mechanics of Materials; however
it is fully accepted in computer games for realistic.

And the BBSC-based tree’s bending by simulating a
pole’s bending is shown in Figure 6(b), in which Pj+1 is the
original coordinates of the current moving point, P

′
j+1 is the

coordinates of the points after moving, Pt
j+1 is the position

of Pj+1 after horizontal translation, and P′j is the coordinates
of the former points after moving within the current branch.
The rotation angle under the wind from x-axis direction is θ.
By applying (3), we get

θ =
FWind · dist

(
P′j ,P

t
j+1

)

6EIZ
. (4)

In the above equation, FWind is the wind force, and
dist(P′j ,P

t
j+1) is the distance between P′j and Pt

j+1 which
represents the length of the current segment.

International Journal of Computer Games Technology 5

Wind force (distribute force)

Rotate angle

B

B

L

x

x

y

A

(a) Pole’s bending

Wind

w

Control
sphere

Pj+1

Pt
j+1

P′j+1

P′j

θ

(b) BBSC model’s bending

Figure 6: BBSC model’s bending by simulating pole’s bending.

4.2. Solution of Motion. In our model, the branches have
been already divided into several segments, and each segment
between two data spheres can be viewed as a pole. Consider-
ing the high request for real-time in computer games, we just
apply simple deformation method of a pole to each segment.
Therefore only bending is taken into account. The rotation
along the cross section and the deformation along the axis
direction are both neglected. The bending of a branch can
then be described as three Eula angles which represent the
rotation angles of the data spheres around the x-axis, y-axis,
and z-axis, respectively.

Suppose the coordinate vectors of the data point before
and after deformation are (x, y, z) and (x′, y′, z′), respec-
tively. Then the two vectors has the relationship as in the
following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′

y′

z′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= [R]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

y

z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (5)

In the above equation, R is the rotation matrix, which can be
described as in (6). The rotation sequence is as follows: firstly,
rotates around z-axis by angle θz; then rotates around the

z

y

x

Wind F

Pole L

Fx

Fz
Lx

Lz

Ly

Figure 7: Wind decomposition and pole decomposition.

Upper level branches

Lower level branch

Data sphere within
more than two

branches

Figure 8: Data spheres contained by more than two branches.

rotated y-axis by angle θy ; finally rotates around the rotated
x-axis by angle θx:

[R] =

⎡

⎢
⎢
⎢
⎣

cθy cθz cθy sθz −sθy
sθx sθy cθz − cθx sθz sθx sθy sθz + cθx cθz cθy sθx

cθx sθy cθz + sθx sθz cθx sθy sθz − sθx cθz cθy cθx

⎤

⎥
⎥
⎥
⎦
. (6)

In the above equation, c and s are the cosine and sine values of
the related angles. And the position of any data points after
deformation can be computed with this rotation matrix as
long as all the angles have been figured out.

The three angles can be obtained by applying the pole
deformation theory under the situation of decomposing the
wind vector and the pole segment vector, respectively. The
wind force vector can be decompounded into two vectors

6 International Journal of Computer Games Technology

0 s

(a)

3 s

(b)

7 s

(c)

10 s

(d)

15 s

(e)

20 s

(f)

Figure 9: Six states extracted from the 20 seconds animation of a tree.

Figure 10: Eight states extracted from the 40 seconds animation of a tree.

International Journal of Computer Games Technology 7

which are along x-axis and z-axis as the wind force always lies
in the x-z panel. And the vector between the start point and
the end point of a segment can be decompounded into three
vectors which are along x-axis, y-axis, and z-axis, respec-
tively. The decomposition process is illustrated as in Figure 7.

Then there are four situations about the wind force acting
on the segment vector.

(a) The wind force along the x-axis acting on the seg-
ment vector along the y-axis leads the segment to
rotate around the z-axis by angle αz.

(b) The wind force along the x-axis acting on the seg-
ment vector along the z-axis leads the segment to
rotate around the y-axis by angle αy1.

(c) The wind force along the z-axis acting on the segment
vector along the x-axis leads the segment to rotate
around the y-axis by angle αy2.

(d) The wind force along the z-axis acting on the segment
vector along the y-axis leads the segment to rotate
around the x-axis by angle αx.

In each above situation, the related angle can be com-
puted through (4).

And finally, the rotation angle of the data points can be
computed as follows:

θx = αx,

θy = αy1 + αy2,

θz = αz.

(7)

The rotation matrtix for the current data sphere can be
obtained through (6). Then, the position of the data sphere
after motion can be figured out by multiplying the rotation
matrix to the original vector of the data sphere as (5).

4.3. Movements of the Whole Branch. In fact, the solution of
motion described as above just aims to the little segment
between two data spheres. And the motion of the whole
branch is obtained by computing the motion of its data
spheres from bottom to top one by one and then interpo-
lating the new data spheres after motion. For a backbone
branch, the initial data sphere is the root; otherwise the
initial data sphere is also within another branch. The root
data sphere is obviously not moving. But the motion of the
data spheres contained by more than two branches should
be computed carefully. If the current branch is an upper
level one, then the position of the initial data sphere could
just employ the position obtained in lower level branch.
For example, in Figure 8, the data sphere bounded by the
rectangle is contained by three branches. Then for the upper
level branches, the motion of the initial data sphere doesn’t
need to be computed anymore as it can be obtained by
employing the motion which has been computed in the lower
level branch directly.

4.4. Animation of the Whole Tree. As the tree has been
constructed in accordance with the hierarchical structure as

in Figure 4, the motion of the whole tree can be obtained
by computing the motion of the branches from root branch
to the leave branch hierarchically. The depth-first traverse
algorithm is employed to solve the computing sequence
problem.

5. Results and Conclusions

5.1. Results. Giving related parameters and certain time t, the
movements of each data sphere, furthermore each branch,
and finally the whole tree under the wind force in the current
moment can be gotten. And by giving a period of time, we
can get the continuous animation of the tree under different
wind model. In Figure 9, the states of one tree in the moment
of 0 seconds, 3 seconds, 7 seconds, 10 seconds, 15 seconds,
and 20 seconds during 20 seconds animation under the gust
of wind from x-axis direction are shown. In Figure 10, eight
states of one tree during the 40 seconds animation under the
gust of wind from x-axis direction are demonstrated.

5.2. Conclusions. In this paper, an approach of generating
real-time animation of trees based on a novel model—
BBSC—is proposed, which can be applied in computer
games. BBSC is a good representation for 3D trees and plants
in particular for computer games as its solid mathematical
representation and more compact dataset. Moreover, anima-
tion of trees can be generated easily as the data spheres have
divided the branches into little segments automatically thus
the motion of the tree can be obtained by computing the
motion of each of these data spheres. By interpolating these
data spheres after moving, the motion of the branch, and
finally the motion of the whole tree can be implemented.
The experimental results show that this method is proper and
efficient for simulating tree animation in computer games.

Acknowledgment

The project is sponsored by the Scientific Research Foun-
dation for the Returned Overseas Chinese Scholars, State
Education Ministry.

References

[1] M. Mitman, “Free Palm Tree,” GarageGames, http://www
.garagegames.com/community.

[2] “SpeedTree,” Wikipedia, the free encyclopedia, http://en
.wikipedia.org/wiki/SpeedTree.

[3] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty
of Plants, Springer, New York, NY, USA, 1990.

[4] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan, “Image-
based tree modeling,” ACM Transactions on Graphics, vol. 26,
no. 3, article 87, pp. 1–7, 2007.

[5] C.-H. Teng, Y.-S. Chen, and W.-H. Hsu, “Constructing a 3D
trunk model from two images,” Graphical Models, vol. 69, no.
1, pp. 33–56, 2007.

[6] B. Neubert, T. Franken, and O. Deussen, “Approximate image-
based tree-modeling using particle flows,” ACM Transactions
on Graphics, vol. 26, no. 3, article 88, 2007.

[7] A. Runions, B. Lane, and P. Prusinkiewicz, “Modeling trees
with a space colonization algorithm,” in Proceedings of the

8 International Journal of Computer Games Technology

Eurographics Workshop on Natural Phenomena (EGWNP ’07),
pp. 63–70, Prague, Czech Republic, September 2007.

[8] J. Wejchert and D. Haumann, “Animation aerodynamics,”
in Proceedings of the 18th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’91), pp. 19–
22, New York, NY, USA, July 1991.

[9] M. Shinya and A. Fournire, “Stochastic motion—motion
under the influence of wind,” in Proceedings of the Computer
Graphics Forum (Eurographics ’92), pp. 119–128, Cambridge,
UK, September 1992.

[10] H. Ono, “Practical experience in the physical animation and
destruction of trees,” in Proceedings of the 8th Eurographics
Workshop on Computer Animation and Simulation, D. Thal-
mann and M. van de Panne, Eds., pp. 149–159, Springer,
Budapest, Hungary, September 1997.

[11] J. H. Feng, Y. Y. Chen, T. Yan, and E. H. Wu, “Going with
wind—physically based animation of trees,” Chinese Journal
of Computers, vol. 21, no. 9, pp. 669–773, 1998.

[12] Y. Akagi and K. Kitajima, “Computer animation of swaying
trees based on physical simulation,” Computers & Graphics,
vol. 30, no. 4, pp. 529–539, 2006.

[13] W. V. Haevre, F. D. Fiore, and F. V. Reeth, “Physically-based
driven tree animations,” in Proceedings of the Eurographics
Workshop on Natural Phenomena (EGWNP ’06), pp. 1–8,
Vienna, Austria, September 2006.

[14] K. Saleem, S.-C. Chen, and K. Zhang, “Animating tree
branch breaking and flying effects for a 3D interactive
visualization system for hurricanes and storm surge flooding,”
in Proceedings of the 9th IEEE International Symposium on
Multimedia Workshops (ISMW ’07), pp. 335–340, Taichung,
Taiwan, December 2007.

[15] L. Zhang, Y. Zhang, Z. Jiang, L. Li, W. Chen, and Q.
Peng, “Precomputing data-driven tree animation,” Computer
Animation and Virtual Worlds, vol. 18, no. 4-5, pp. 371–382,
2007.

[16] H. S. Seah and Z. K. Wu, “Ball B-Spline based geometric mod-
els in distributed virtual environments,” in Proceedings of the
Workshop towards Semantic Virtual Environments (SVE ’05),
pp. 1–8, Villars, Switzerland, March 2005.

[17] J. H. Feng, Going with Wind—Physically-Based Animation,
Institute of Software, Chinese Academy of Science, Beijing,
China, 1999.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 730894, 7 pages
doi:10.1155/2009/730894

Research Article

Fast and Reliable Mouse Picking Using Graphics Hardware

Hanli Zhao,1 Xiaogang Jin,1 Jianbing Shen,2 and Shufang Lu1

1 State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China
2 School of Computer Science & Technology, Beijing Institute of Technology, Beijing 10008, China

Correspondence should be addressed to Xiaogang Jin, jin@cad.zju.edu.cn

Received 15 December 2008; Accepted 4 March 2009

Recommended by Zhongke Wu

Mouse picking is the most commonly used intuitive operation to interact with 3D scenes in a variety of 3D graphics applications.
High performance for such operation is necessary in order to provide users with fast responses. This paper proposes a fast and
reliable mouse picking algorithm using graphics hardware for 3D triangular scenes. Our approach uses a multi-layer rendering
algorithm to perform the picking operation in linear time complexity. The objectspace based ray-triangle intersection test is
implemented in a highly parallelized geometry shader. After applying the hardware-supported occlusion queries, only a small
number of objects (or sub-objects) are rendered in subsequent layers, which accelerates the picking efficiency. Experimental results
demonstrate the high performance of our novel approach. Due to its simplicity, our algorithm can be easily integrated into existing
real-time rendering systems.

Copyright © 2009 Hanli Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Mouse picking, as the most intuitive way to interact with
3D scenes, is ubiquitous in many interactive 3D graphics
applications, such as mesh editing, geometry painting and
3D games. In many Massive Multi-player Role Playing Games
(MMRPGs), for instance, thousands of players compete
against each other, and the picking operation is frequently
applied. Such applications require picking to be performed
as fast as possible in order to respond to players with
a minimum time delay. In recent years, programmable
graphics hardware is getting more and more powerful. How
to make full use of the co-processors in the picking operation
becomes important.

The WYSIWYG method, which takes advantage of
graphics hardware to rerender scene objects into an auxiliary
frame buffer, was first proposed by Robin Forrest in the mid-
1980s and used in 3D painting by Hanrahan and Haeberli
[1]. In their method, each polygon is assigned a unique
color value which is used as an identifier. Given the cursor
position on the screen and the id buffer, the picked position
on the surface can be found by retrieving data from the
frame buffer. However, this approach has weaknesses for
complex scenes in that all objects in the view frustum must
be rerendered. This may take a long time for complex scenes

and therefore lower the picking performance. By integrating
the WYSIWYG method and hardware bilinear interpolation
[2], Lander presented a method to calculate the exact
intersection information, that is, the barycentric coordinate
in the intersected triangle. By setting additional color values
with (1, 0, 0), (0, 1, 0), (0, 0, 1) (normalized with floating-
point precisions) to the three triangle vertices respectively, he
calculated the barycentric coordinate by interpolation after
the rasterization stage. However, the computed barycentric
coordinate is in the projected screen-space but not in the
object-space, which may restrict its application.

In this paper, we propose a simple, fast and reliable
picking algorithm (FRMP) using graphics hardware for
3D triangular scenes. By combining the multi-layer culling
approach of Govindaraju et al. [3] with a GPU-based
implementation of Möller and Trumbore’s ray-intersection
test [4], the picking can be performed in linear time
complexity. Our approach has the following features.

(1) It is fast—our approach is 2 to 14 times as fast as the
traditional GPU-based picking one.

(2) It is reliable—our approach performs the operation
in object-space, and the exact intersection informa-
tion can be computed.

2 International Journal of Computer Games Technology

(3) It is parallel—the ray-triangle intersection detection
is implemented as a geometry shader.

(4) It is simple—our novel approach operates directly on
triangular meshes and can be easily integrated into
existing real-time rendering systems.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 describes our new
algorithm, whereas experimental results and discussions are
presented in Section 4. We conclude the paper and suggest
future work in Section 5.

2. Related Work

Intersection detection is widely used in computer graphics.
The mouse picking operation can be performed by an
ordinary ray-object intersection test and accelerated by lots
of schemes for high efficiency.

The methods for interference detection are typically
based on bounding volume data structures and hierarchical
spatial decomposition techniques. They are K-d trees [5],
sphere trees [6, 7], AABB trees [8, 9], K-DOPs trees [10],
and OBB trees [11]. The objects (triangles) are organized in
clusters promoting faster intersection detection. The spatial
hierarchies are often built in the preprocessing stage and
should be updated from frame-to-frame when the scene
changes, which is not appropriate in most cases for mouse
picking.

Hardware occlusion queries are also used in collision
detection for large environments to efficiently compute all
the contacts at high frame rates by Govindaraju et al. [3,
12, 13]. These GPU-based algorithms use a linear time
multi-pass rendering algorithm to compute the potentially
colliding set. They even achieve interactive frame rates for
deformable models and breaking objects. In their method,
the objects (triangles) list can be traversed from the begin-
ning up to the end and thus no spatial organization (KD
and other trees) are required. The WYSIWYG method for
mouse picking, which was first proposed by Robin Forrest
in the mid-1980s and used in 3D paint by Hanrahan and
Haeberli [1] and further studied by Lander [2], Akenine-
Möller and Haines [14], belongs to this class. Its efficiency
is high in many cases. However, it has limitations as
discussed in the introduction section. CPU methods for
picking objects were introduced by [15] in the Direct3D
platform and by [16] in the OpenGL platform. However,
their efficiency decreases dramatically as the number of input
primitives increases. Motivated by the multi-layer culling
approach of Govindaraju et al., we do not construct a time
consuming hierarchy. Instead, we use a multi-layer rendering
algorithm to perform a linear time picking operation. In this
paper, we perform the exact object-space-based ray-triangle
intersection test [4] in a geometry shader by taking advantage
of its geometric processing capability. The overall approach
makes no assumptions about the object’s motion and can be
directly applied to all triangulated models.

Some acceleration techniques for real-time rendering
need to be applied in our method. Triangle strips and view
frustum culling were introduced by [17, 18], respectively. It

Object level
pruning on

the GPU

Sub-object
level pruning
on the GPU

Exact picking
test on

the GPU

Read back
picking data
to the CPU

Figure 1: Algorithm workflow.

is possible to triangulate the bounding boxes of objects as
strips and to cull away objects that are positioned out of
the view frustum. Hardware occlusion queries for visibility
culling were studied by [19–21]. GPU-based visibility culling
is also important in our algorithm.

3. Hardware Accelerated Picking

Our mouse picking operation takes the screen coordinate of
the cursor and the scene to be rendered as input, and outputs
the intersection information, such as object id, triangle id,
and even the barycentric coordinate of the intersection point.
In this section, we first present an overview of our algorithm
and then we discuss it in detail.

3.1. Algorithm Overview. Our FRMP method exploits the
new features of the 4th generation of PC-class programmable
graphics processing units [22]. Figure 1 illustrates the
algorithm workflow. The overall algorithm is outlined as
follows.

(1) Once the user clicks on the screen, compute the pick-
ing ray origin and direction in the view coordinate
system.

(2) Set the render target with one-pixel size.

(3) Set the render states DepthClipEnable and DepthEn-
able to FALSE.

(4) After the view frustum culling, render the bounding
boxes of the visible objects. We issue a boolean
occlusion query for each object during this rendering
pass.

(5) Render the bounding boxes of all sub-objects whose
corresponding occlusion query returns TRUE. Again
we issue a boolean occlusion query for each sub-
object during this rendering pass.

(6) Reset the states DepthClipEnable and DepthEnable
to TRUE.

(7) Render the actual triangles whose corresponding
occlusion query returns TRUE. Now we only issue
one occlusion query for all triangles.

(8) If the occlusion query returns TRUE, trivially read
back the picking information from the one-pixel-
sized render target data; otherwise, no object is
picked.

The novel multi-layer rendering pass on programmable
graphics shaders is outlined below:

International Journal of Computer Games Technology 3

(1) Transform the per-vertex position to the view coor-
dinate system in the vertex shader.

(2) Perform the object-space-based ray-triangle intersec-
tion test in the geometry shader, output a point with
picking information if the triangle is intersected. The
x- and y-components of the intersection point are set
to 0, and the z-component is assigned as the depth
value of the point. Then the point is passed to the
rasterization stage.

(3) Output the picking information directly in the pixel
shader.

3.2. New Features in the Shader Model 4.0 Pipeline. The
Shader Model 4.0 fully supports 32-bit floating-point data
format, which meets the appropriate precision requirement
for general purpose GPU computing (GPGPU). The occlu-
sion query can return the number of pixels that pass the
z-testing, or just a boolean value indicating whether or not
any pixel passes the z-testing. In our case, we only need the
boolean result that whether some objects are rendered or
none are rendered.

The Geometry Shader, which is first introduced into the
shader model 4.0 pipeline, takes the vertices of a single
primitive (point, line segment, or triangle) as input and
generates the vertices of zero or more primitives. The input
and output primitive types need not match but they are
fixed for the shader program. We use a triangle as the input
primitive, as the ray-triangle intersection detection needs
to be implemented here. We get a point as output. If the
intersection test is passed, a point primitive with intersection
information is returned. If the test is failed, no point is
output.

3.3. Intersection Test in the Geometry Shader. In this section,
we present the ray-intersection test introduced by Möller and
Trumbore [4]. We implement the algorithm in a geometry
shader by taking advantage of its geometric processing
capability.

A ray, r(t), is defined by an origin point, o, and a
normalized direction vector, d. Its mathematical formula is
shown in (1):

r(t) = o + td. (1)

Here the scalar, t, is a variable that is used to generate
different points on the ray, where t-values of greater than zero
are said to lie in front of the ray origin and so are a part of
the ray and negative t-values lie behind it. Also, since the ray
direction is normalized, a t-value generates a point on the ray
that is t distance units away from the ray origin.

When the user clicks the mouse, the screen coordinates
of the cursor are transformed through the projection matrix
into a view-space ray that goes from the eye-point through
the point clicked on the screen and into the screen.A point,
t(u, v), on a triangle is given by the explicit formula (2).

t(u, v) = (1− u− v)v0 + uv1 + vv2, (2)

where (u, v) is the barycentric coordinate, which satisfies
u ≥ 0, v ≥ 0 and u + v ≤ 1. The point of intersection

r(t) = o + td

d
o v0

u
+
v =

0

v2 v = 1

(0, 1)

(0.1, 0.5)

(0.8, 0)

u
= 1

v1

Figure 2: (Left) a simple ray and its parameters. (Right) barycentric
coordinate for a triangle, along with some example point values.

between the picking ray, r(t), and the triangle, t(u, v), satisfies
the equation r(t) = t(u, v), which yields:

o + td = (1− u− v)v0 + uv1 + vv2. (3)

An illustration of a ray and the barycentric coordinate for a
triangle are shown in Figure 2. Denoting e1 = v1 − v0, e2 =
v2 − v0, and s = o − v0, the solution to (3) can be easily
obtained by using Cramer’s rule [23]:

⎛

⎜
⎜
⎝

t

u

v

⎞

⎟
⎟
⎠ =

1
det(−d, e1, e2)

⎛

⎜
⎜
⎝

det(s, e1, e2)

det(−d, s, e2)

det(−d, e1, s)

⎞

⎟
⎟
⎠. (4)

As a result, the intersection information is obtained by
solving (4). As this process is independent of the triangles,
we can parallelize it in graphics hardware. This equation
is adapted with optimizations since the determinant of a
matrix is an intrinsic function in the High Level Shading
Language (HLSL). The intersection test is conducted in the
view space and if it is passed, we output a point primitive.
The x- and y-components of its position coordinate are 0
because the render target used in our algorithm is only one-
pixel in size. The z-component is the depth value which
is obtained by transforming the distance value into the
projection space. The GPU will automatically add a primitive
id as the triangle identifier in the Input Assembler Stage.
In addition, the barycentric coordinate value (u, v) and the
object id are also obtained from the picking information.
The pseudo-code in the geometry shader is presented in
Algorithm 1.

3.4. Multi-Layer Visibility Queries. We use a multi-layer
rendering algorithm to perform linear time intersection tests,
taking advantage of the 4th generation of PC-class pro-
grammable graphics processing units. The overall approach
makes no assumption about the object’s motion and is
directly applicable to all triangulated models.

First of all, we set a 1 × 1 sized texture as a render
target after the view frustum culling. Instead of rendering
the actual triangles, we then render the bounding boxes
of the visible objects. We issue a boolean occlusion query
for each object during this rendering pass. As we know,
the render state DepthClipEnable controls whether to clip
primitives whose depth values are not in the range of [0, 1]
or not; the render state DepthEnable determines whether
to perform the depth testing or not. After the view frustum

4 International Journal of Computer Games Technology

(1) float 3× 3 edge; float4 Picker
(2) edge[0] = input[1]− input[0]
(3) edge[1] = input[2]− input[0]
(4) Picker.w = det(float3× 3(−Ray, edge[0], edge[1]))
(5) if Picker.w == 0 then
(6) return
(7) end if
(8) if Picker.w < 0 then
(9) Picker.w = −Picker.w
(10) edge[2] = input[0]− float3(0, 0, 0)
(11) else
(12) edge[2] = float3(0, 0, 0) − input[0]
(13) Picker.x = det(float3× 3(−Ray, edge[2], edge[1]))
(14) end if
(15) if Picker.x < 0 || Picker.x > Picker.w
(16) return
(17) end if
(18) Picker.y = det(float3× 3(−Ray, edge[0], edge[2]))
(19) if Picker.y < 0 || Picker.x + Picker.y > Picker.w
(20) return
(21) end if
(22) // get the distance in the view-space
(23) Picker.z = det(float3× 3(edge[2], edge[0], edge[1]))
(24) Picker.z = Picker.z / Picker.w ∗ PickingRay.z
(25) PICKING GS OUTPUT output
(26) output.Pos = float4(0, 0, Picker.z, 1)
(27) // transform the distance value into projection space
(28) output.Pos.zw = mul(output.Pos.zw,

float2× 2(mxProj[2].yz, mxProj[3].yz))
(29) output.Info = float4(Picker.xy/Picker.w, FacetID,

ObjectID)
(30) outStream.Append(output)

Algorithm 1: Object-based intersection test.

culling, there are some objects intersected with the near-
plane or the far-plane of view frustum. The depth values
of some vertices may not be in the range of [0, 1]. In order
to collect all the possible intersected objects for the next
layer, we set DepthClipEnable and DepthEnable to FALSE.
If any occlusion query is passed, the corresponding object
may intersected with the picking ray and thus its actual
triangles will be rendered; otherwise, it is pruned. Since a
large number of objects are not intersected during this step,
we can greatly reduce the rendering time compared with
the WYSIWYG method, which requires us to render all the
objects.

Second, we render the bounding boxes of all sub-objects
whose corresponding occlusion query returns TRUE. Again
we issue a boolean occlusion query for each sub-object
during this rendering pass. Since some systems need to
handle large models, which may not fit entirely into the
GPU memory, we group adjacent local triangles to form a
sub-object and prune the potential regions considerably as
suggested in [3].

Next, the actual triangles of the unpruned sub-objects
are rendered. We only issue one occlusion query for all the
triangles during this step. We would like to get the exact

(a) (b)

(c) (d)

Figure 3: The four test scenes: the toy elk (upper left), Venus (upper
right) the teapots (lower left) and the tori (lower right). Note that
the picked objects are shown in wireframe and the picked triangles
are shown in black, whereas other objects are shaded normally.

intersection result after this step. Triangles outside the view
frustum are discarded, and only the closest triangle is needed.
Thus the render states DepthClipEnable and DepthEnable
are reset to TRUE.

Lastly, if the occlusion query passes, the triangle with
the minimal distance from the eye-point is picked and its
intersection information can be retrieved from the 1 × 1
sized render target texture. This causes an additional delay
while reading back data from the graphics memory to the
system memory. In the WYSIWYG method, we need to lock
the window-sized texture to get the picking information but
this is slow when the window size is large. Actually our novel
algorithm only needs to store the information in the smallest
sized texture. If the occlusion query fails, we need not read
the data from the render target because we know that nothing
has been picked. In the WYSIWYG method, however, one
cannot know if anything has been picked until one reads the
corresponding data from the texture.

4. Experimental Results and Discussion

Our algorithm takes the screen coordinates of the cursor
and the scene to be rendered as the input, and outputs
intersection information, such as object id, triangle id, and
even the barycentric coordinate of the intersection point.
Now our algorithm can be used with platforms which
support Direct3D 10 APIs. We have incorporated our FRMP
method into a Direct3D 10-based scene graph library and
tested it on four scenes in order to evaluate its efficiency for
different scene types. All tests were conducted on a PC with
a 1.83 GHz Intel Core 2 Duo 6320 CPU, 2 GB main memory,
an NVIDIA Geforce 8800 GTS GPU, 320 MB graphics
memory, and Windows Vista 64bit Operating System.

International Journal of Computer Games Technology 5

6050403020101

Picking number

0

1

2

3

4

5

6

7

8

P
ro

ce
ss

in
g

ti
m

e
(m

s)

(a)

6050403020101

Picking number

0

5

10

15

20

25

30

35

40

45

P
ro

ce
ss

in
g

ti
m

e
(m

s)

(b)

6050403020101

Picking number

1

10

100

1000

10000

P
ro

ce
ss

in
g

ti
m

e
(m

s)

CPU method
WYSIWYG method
FRMP method

(c)

6050403020101

Picking number

1

10

100

1000

10000
P

ro
ce

ss
in

g
ti

m
e

(m
s)

CPU method
WYSIWYG method
FRMP method

(d)

Figure 4: Processing time comparisons for the toy elk (upper left), the Venus (upper right), the teapots (lower left) and the tori (lower right).
Note that the lower two scenes use a logarithmic scale to capture the high variations in processing times. Note that if no object is picked, the
processing times of our method will even be faster because we picked one object on purpose to perform these tests.

4.1. The Test Scenes. The four test scenes comprise of an
arrangement of a toy elk model (3290 polygons), a Venus
model (43 357 polygons), 2000 randomly rotated teapots
(12.64 M polygons) and 10 000 randomly rotated tori (8 M
polygons), all are in resolution of 1024× 768 pixels. The test
scenes are depicted in Figure 3.

The toy elk scene only has 3290 triangles, while the Venus
scene consists of large number of triangles. Both are simple

cases to handle for the picking operation as only one object
is used and is not occlusion culled. These two scenes were
tested in order to evaluate the efficiencies in simple cases.
Such cases may occur in mesh editing or geometry painting
applications.

The teapots scene with 12.64 M triangles and the tori
scene with 8 M triangles are complex cases and are designed
to rotate randomly from frame-to-frame. They can offer

6 International Journal of Computer Games Technology

Table 1: Statistics for the four test scenes. The processing times are in (miliseconds).

Model name Triangles per
model

Modelnumber Method
Longest

time(miliseconds)
Shortest

time(miliseconds)
Average

time(milisecond)
Speedup

Toy elk 3290 1
CPU 3.064 2.852 2.910 1.000

WYSIWYG 6.993 6.390 6.464 0.450

FRMP 0.891 0.314 0.441 6.599

Venus 43 357 1
CPU 42.497 37.824 38.859 1.000

WYSIWYG 11.974 10.010 10.948 3.549

FRMP 2.249 1.521 1.702 22.831

Teapot 6320 2000
CPU 4500.598 4320.855 4387.013 1.000

WYSIWYG 165.392 160.398 163.254 26.872

FRMP 83.334 78.293 80.959 54.188

Torus 800 10 000
CPU 1720.887 1696.976 1706.358 1.000

WYSIWYG 47.918 38.016 42.411 40.234

FRMP 19.636 14.120 17.651 96.672

good occlusions as most of their objects are occluded in most
instances.

4.2. Comparison of the Results. For each test scene, we report
the processing times of our fast and reliable mouse picking
(FRMP) algorithm in comparison to the CPU implementa-
tion of our algorithm, and to the traditional GPU method
(WYSIWYG) (see Figure 4). Note that in our tests we have
picked an object. Had we not done so, our algorithm would
have performed even better than the competition. This is
because when no bounding box intersects with the picking
ray, our approach will not render the actual triangles and
return FALSE directly.

As we can see from a number of scene statistics shown
in Table 1, our method can produce a speedup of more
than two as compared to the traditional WYSIWYG method.
In the toy elk scene, our method was 2469 miliseconds
faster than the CPU method, while the WYSIWYG method
was 3554 miliseconds slower than the CPU method. That is
because the whole window-sized texture data needs to be
read back to the main memory to check the intersection
even for small models. In the Venus scene, as the triangle
number is increased, our method and the WYSIWYG
method produce a speedup of 22.831 and 3.549, respectively.
Even in the teapot scene and in the torus scene, our method
maintained a good speedup over the WYSIWYG method. If
a very large model cannot be loaded into the video memory
in its entirety, then our GPU-based algorithm seems to
be slower than the CPU-based approach. Fortunately such
occurrences are rare in many real-time applications.

5. Conclusions and Future Work

We have presented a novel algorithm for intersection tests
between a picking ray and multiple objects in an arbitrarily
complex 3D environment using some new features of
graphics hardware. The algorithm in this paper is fast,
more reliable, parallelizable, and simple. Our algorithm is
applicable to all triangulated models, making no assump-
tions about the input primitives and can compute the exact

intersection information in object-space. Furthermore, our
FRMP picking operation can achieve high efficiency as
compared with traditional methods. Due to its simplicity,
our algorithm can be easily integrated into existing real-time
rendering applications. Our FRMP picking approach is of
relevance to interactive graphics applications.The presented
approach still leaves some room for improvement and for
extensions. For instance, alternative acceleration techniques
for real-time rendering may be applied to our FRMP method.
Moreover, additional hardware features will be useful with
the progress of the graphics hardware. In the future, we
would like to extend and to apply our technique to the
generic collision detection field.

Acknowledgments

The authors would like to thank the Cybergames ’08 con-
ference and special issue reviewers for their dedicated help
in improving the paper. Many thanks also to Xiaoyan Luo,
Charlie C. L. Wang, and Feifei Wei for their help and their
valuable advice. The models used for the test in our paper
can be downloaded from http://shapes.aim-at-shape.net/.
This work was supported by the National Natural Sci-
ence Foundation of China (Grant nos. 60533080 and
60833007) and the Key Technology R&D Program (Grant no.
2007BAH11B03).

References

[1] P. Hanrahan and P. Haeberli, “Direct WYSIWYG painting
and texturing on 3D shapes,” ACM SIGGRAPH Computer
Graphics, vol. 24, no. 4, pp. 215–223, 1990.

[2] J. Lander, “Haunted trees for halloween,” Game Developer
Magazine, vol. 7, no. 11, pp. 17–21, 2000.

[3] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha,
“CULLIDE: interactive collision detection between complex
models in large environments using graphics hardware,”
in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (HWWS ’03), pp. 25–32,
Eurographics Association, San Diego, Calif, USA, July 2003.

International Journal of Computer Games Technology 7

[4] T. Möller and B. Trumbore, “Fast, minimum storage ray-
triangle intersection,” in Proceedings of the 32nd Annual
Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’05), Los Angeles, Calif, USA, July-August 2005.

[5] F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, Springer, New York, NY, USA, 1985.

[6] I. J. Palmer and R. L. Grimsdale, “Collision detection for
animation using sphere-trees,” Computer Graphics Forum, vol.
14, no. 2, pp. 105–116, 1995.

[7] P. M. Hubbard, “Approximating polyhedra with spheres
for time-critical collision detection,” ACM Transactions on
Graphics, vol. 15, no. 3, pp. 179–210, 1996.

[8] G. van den Bergen, “Efficient collision detection of complex
deformable models using AABB trees,” Journal of Graphics
Tools, vol. 2, no. 4, pp. 1–13, 1997.

[9] T. Larsson and T. Akenine-Möller, “Collision detection for
continuously deforming bodies,” in Proceedings of the Annual
Conference of the European Association for Computer Graph-
ics (EUROGRAPHICS ’01), pp. 325–333, Manchester, UK,
September 2001.

[10] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K.
Zikan, “Efficient collision detection using bounding volume
hierarchies of k-DOPs,” IEEE Transactions on Visualization
and Computer Graphics, vol. 4, no. 1, pp. 21–36, 1998.

[11] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: a
hierarchical structure for rapid interference detection,” in
Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’96), pp. 171–
180, ACM, New Orleans, La, USA, August 1996.

[12] N. K. Govindaraju, M. C. Lin, and D. Manocha, “Quick-
CULLIDE: fast inter- and intra-object collision culling using
graphics hardware,” in Proceedings of IEEE Virtual Reality
Conference (VR ’05), pp. 59–66, IEEE Computer Society,
Bonn, Germany, March 2005.

[13] N. K. Govindaraju, M. C. Lin, and D. Manocha, “Fast
and reliable collision culling using graphics hardware,” in
Proceedings of the 11th ACM Symposium on Virtual Reality
Software and Technology (VRST ’04), pp. 2–9, ACM, Hong
Kong, November 2004.

[14] T. Akenine-Möller and E. Haines, Real-Time Rendering, AK
Peters, Natick, Mass, USA, 2nd edition, 2002.

[15] Microsoft Corporation, DirectX Software Development Kit,
Microsoft Corporation, Redmond, Wass, USA, 2007.

[16] D. Shreiner, Ed., OpenGL� 1.4 Reference Manual, Addison
Wesley Longman, Redwood City, Calif, USA, 4th edition,
2004.

[17] F. Evans, S. Skiena, and A. Varshney, “Optimizing triangle
strips for fast rendering,” in Proceedings of the 7th IEEE
Visualization Conference, pp. 319–326, IEEE Computer Society
Press, San Francisco, Calif, USA, October-November 1996.

[18] U. Assarsson and T. Möller, “Optimized view frustum culling
algorithms for bounding boxes,” Journal of Graphics Tools, vol.
5, no. 1, pp. 9–22, 2000.

[19] H. Zhao, X. Jin, and J. Shen, “Simple and fast terrain rendering
using graphics hardware,” in Advances in Artificial Reality and
Tele-Existence, vol. 4282 of Lecture Notes in Computer Science,
pp. 715–723, Springer, Berlin, Germany, 2006.

[20] J. Bittner and V. Havran, “Exploiting temporal and spatial
coherence in hierarchical visibility algorithms,” in Proceed-
ings of the 17th Spring Conference on Computer Graphics
(SCCG ’01), p. 156, IEEE Computer Society, Budmerice,
Slovakia, April 2001.

[21] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer,
“Coherent hierarchical culling: hardware occlusion queries
made useful,” Computer Graphics Forum, vol. 23, no. 3, pp.
615–624, 2004.

[22] D. Blythe, “The direct3D 10 system,” ACM Transactions on
Graphics, vol. 25, no. 3, pp. 724–734, 2006.

[23] E. W. Weisstein, “Cramer’s Rule,” http://mathworld.wolfram
.com/CramersRule.html.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 609350, 9 pages
doi:10.1155/2009/609350

Research Article

A Dense Point-to-Point Alignment Method for
Realistic 3D Face Morphing and Animation

Yongli Hu, Mingquan Zhou, and Zhongke Wu

College of Information Science and Technology, Beijing Normal University, Beijing 100875, China

Correspondence should be addressed to Yongli Hu, hu yongli00@sina.com

Received 29 January 2009; Accepted 13 March 2009

Recommended by Suiping Zhou

We present a new point matching method to overcome the dense point-to-point alignment of scanned 3D faces. Instead of using
the rigid spatial transformation in the traditional iterative closest point (ICP) algorithm, we adopt the thin plate spline (TPS)
transformation to model the deformation of different 3D faces. Because TPS is a non-rigid transformation with good smooth
property, it is suitable for formulating the complex variety of human facial morphology. A closest point searching algorithm
is proposed to keep one-to-one mapping, and to get good efficiency the point matching method is accelerated by a KD-tree
method. Having constructed the dense point-to-point correspondence of 3D faces, we create 3D face morphing and animation by
key-frames interpolation and obtain realistic results. Comparing with ICP algorithm and the optical flow method, the presented
point matching method can achieve good matching accuracy and stability. The experiment results have shown that our method is
efficient for dense point objects registration.

Copyright © 2009 Yongli Hu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Constructing alignment of 3D objects is a crucial element
of data representations in computer vision and graphics.
Generally the dense alignment is a point-to-point mapping
from one surface onto another surface, where each point gets
the correspondent point according to its inherent property,
such as the points of nose tip on different 3D faces are
correspondent points according to the feature of human
face. However, the practices and applications of dense point
correspondence have been increasing over the last years.
The straightforward application of the dense alignment is to
compute objects morphing and animation. More important,
if the point correspondence of a class of objects has been
established, it is achievable to construct a representation for
these objects. The most typical and simple model is the
linear combination model described in [1], where a 3D face
morphable model was constructed on the aligned 3D faces,
and given a facial image the 3D face can be reconstructed
by a model matching procedure. The other applications,
involving objects recognition based on 2D/3D images, shape
retrieval, and 3D surface reconstruction in computer vision,
are all relied on dense surface correspondence.

For dense 3D objects, as the complexity of model struc-
ture and the hugeness of data, it is a challenging problem to
get good correspondence result, especially to high-resolution
scanned 3D faces. In fact, the correspondence of different
3D faces is not a well-defined problem. When two faces are
compared, only some distinct feature points, such as the tip
of nose, the corner of mouth, and the center of eyes, have the
clearly correspondent points, while it is difficult to define the
correspondence for the points on the smooth regions, such
as the cheeks and the forehead. However, even matching the
distinct feature points may be a difficult problem because it
involves many of the basic problems of computer vision and
feature detection. To conquer the correspondence problem of
dense 3D faces, we present a closest point matching method
based on the thin plate spline (TPS) transformation. In
this method, the source 3D face is firstly transformed onto
the destination 3D face by TPS transformation, which is
constructed from the interpolation on the feature points
hand-placed on the source and target 3D face. Then using a
revised closest point matching algorithm, the point-to-point
alignment between 3D faces is obtained. We create 3D face
morphing and animation from the interpolation between

2 International Journal of Computer Games Technology

the aligned 3D faces. The realistic deformation results and
the experiments comparing with the related methods show
that our correspondence algorithm may be an appropriate
approach.

The remainder of the paper is structured as follows. In
Section 2 we review some related work. In Section 3 the
TPS transformation of 3D faces is described in detail. Then
the point-to-point alignment is established in Section 4.
In Section 5, 3D face morphing and animation are imple-
mented, and experimental results are given. Finally this work
is concluded.

2. Related Work

In the past decades, there are many methods and algo-
rithms that are presented to solve surface alignment and
dense point correspondence for different applications. All
these researches fasten on two element problems about
the point matching: the spatial transformation and feature
correspondence searching. The former one is to find a
suitable transformation for the aligning objects. These spatial
transformations can be classified into rigid transformation
and nonrigid transformation. The rigid transformation is
generally used in the alignment of an object and itself, such as
the different viewpoint scenes or the overlapped parts of the
object. The nonrigid transformation, including affine trans-
formation, spline function, and radial-based function, now
is the dominant method used in the cases existing nonrigid
deformation. The latter issue of point alignment generally
concerns how to determine the right correspondence by the
inherent features of the objects, which commonly have the
forms in geometry properties, like points, lines, curves, and
surfaces, or the abstract measurements, such as moment,
entropy, and mutual information. There are several surveys
[2–6] that have given comprehensive reviews about this
subject. The following are some typical work related to our
method.

One of the most popular point matching methods is
the iterative closest point (ICP) algorithm proposed by Besl
and McKay [7]. It iteratively searches for closest points in
two surface patches and optimizes the rigid transformation
to minimize the average distance of these closest points.
The original ICP algorithm demands adequate prealignment
and does not usually guarantee the one-to-one correspon-
dence, as a result various improved ICP methods were
proposed. Rusinkiewicz and Levoy provided good surveys
over these ICP variants [8]. Although these improvements
have enhanced the convergence of ICP and achieved high
registration accuracy, the rigid transformation constrains its
application. In many nonrigid deformation cases, ICP is not
suitable, such as 3D faces.

Blanz and Vetter made dense correspondence between
3D facial scans [1, 9], taking advantage of the fact that the
radial coordinate from Cyberware scans can be expressed
as a height map image with the intensity representing the
radius in cylinder coordinate system. They used optical
flow technique to establish correspondence between texture
images and height maps images, and the correspondence

was refined by a bootstrapping method if large amount
of the prototypic scans obtained. A 3D face representation
named morphable model was constructed from the set of
aligned 3D faces. Recently, they proposed a new dense
3D correspondence method [10] based on their 3D faces
database. In this method, a facial feature learning strategy
and automatic properties extraction algorithm were used for
alignment optimization. Although their alignment has con-
vincing results, it demands large quantities of 3D facial scans,
and some 3D information will be lost when the alignment is
perceived from 2D images optical flow computation.

Similarly, the notable TPS-RPM method of Chui and
Rangarajan [11] attempted to incorporate TPS into the
framework of ICP for point matching. A binary corre-
spondence matrix was used in this method to record the
matching relation of all points and eliminate outliers. In
point matching procedure, a soft-assign and deterministic
annealing optimization was implemented to compute point
correspondence iteratively. Although their experiments show
good results on some sparse 2D/3D point sets, the method
can easily get trapped in bad local minima if the objects are
not approximately aligned initially [12]. And this method is
not suitable for the alignment of 3D faces with large quantity
of dense points because of the limitation of the dimension
of the correspondence matrix and the impracticalness of
applying TPS on the whole dense point sets.

The interpolation idea in [13] is very close to our
method. To synthesis facial expression from photographs,
a general 3D facial model was fitted to the individual faces
based on radial basis functions using 13 feature points [13].
But the general 3D facial model created by Alias—Wavefront
tools—is a relative sparse model comparing with the dense
3D faces. In addition, the fitting procedure and its refinement
are different from the closest point matching algorithm here.

There are other researches associated with surface or
dense point correspondence, but the applications are various.
The medical image registration may be the dominant
domain, others applications include 3D objects reconstruc-
tion, representation, and recognition. To get good corre-
spondence results, many approaches require large training
data. But we focus on the dense point correspondence of 3D
faces and its application on 3D face morphing and animation
which require only two objects.

3. 3D Face Deformation Based on
Thin Plate Spline

To get more accurate point matching result, the prototypic
objects are generally transformed into a reference before
alignment. There are rigid transformation, affine trans-
formation, and nonaffine deformation. As the 3D faces
have complex shape feature, it is difficult to find a rigid
or affine transformation with good deformation results.
The nonaffine transformation is considered as the proper
mapping method. For the scanned 3D faces with high
dimensional dense points, the data is too large to do a
global transformation for all points. The alternative solution
is to use subsampling sparse point sets. Here we use an

International Journal of Computer Games Technology 3

Figure 1: The landmarks placed on the 3D faces for TPS
transformation using an interactive tool.

interactive tool to pick out 25 landmarks on the aligning
3D faces. Figure 1 shows the landmarks on the 3D faces.
These landmarks are the main feature points that refer to the
morphological properties of human face, and will be used
as the controlling points to constraint the TPS deformation
between 3D faces in our method.

It is frequent in spline theory to generate a smoothly
interpolated mapping between two sets of landmark points.
We adopt TPS to model the deformation of 3D faces. TPS was
introduced by Harder and Desmarais [14], and Bookstein
[15] firstly used TPS for medical image registration. TPS is
a class of nonrigid spline mapping functions with desirable
properties, such as globally smooth, and easily computable,
and the most important is that TPS transformation can be
separated into affine and nonaffine components. So TPS has
been widely used in 2D image or 3D data registration for
variety applications. The following gives the implementation
of TPS transformation for 3D faces in detail.

The TPS transformation can be regard as a mapping from
space R3 to R3, so we denote TPS as f : R3 �→ R3. For
the convenience of explication, we use F1, F2 that denote
the source 3D face and destination 3D face for aligning. F1,
F2 can be looked as two point sets hat have the following
expression:

F1 =
{
P1iP1i =

(
x1i, y1i, z1i

)
, i = 1, · · · ,N1

}
,

F2 =
{
P2 j | P2 j =

(
x2 j , y2 j , z2 j

)
, j = 1, · · · ,N2

}
,

(1)

where N1 and N2 are the points number of F1 and F2 such
that N1 ≤ N2. The landmark points sets of F1 and F2 are
denoted as

M1 =
{
L1 j | L1 j =

(
x∗1 j , y

∗
1 j , z

∗
1 j

)
, j = 1, · · · ,M

}

M2 =
{
L2 j | L2 j =

(
x∗2 j , y

∗
2 j , z

∗
2 j

)
, j = 1, · · · ,M

}
,

(2)

where M is the count of landmarks (here M = 25). These
landmarks are the controlling points for TPS transformation,
that is, TPS satisfies the following interpolation conditions at
the landmark points:

f
(
L1 j

)
= L2 j , j = 1, . . . ,M. (3)

(a)

(b)

(c)

(d)

Figure 2: The TPS deformation of the source 3D face. The top one
is the source 3D face with a standard partitioned cube. The second is
the source 3D face deformed by TPS, and the distorted cube shows
the spatial deformation of TPS. The third two are the images of the
source 3D face comparing with the deformed source 3D face which
displays as the sparse mesh. The bottom two are the images of the
destination 3D face comparing with the deformed source 3D face.

4 International Journal of Computer Games Technology

At the same time, TPS is restricted by the blend smooth
constraint, formed by the minimization of the following
blending energy function, the sum of squares of all second-
order partial derivatives:

E
(
f
) =

∫∫∫

R3

⎡

⎣

(
∂2 f

∂x2

)2

+

(
∂2 f

∂y2

)2

+

(
∂2 f

∂z2

)2

+2

(
∂2 f

∂xy

)2

+ 2

(
∂2 f

∂xz

)2

+ 2

(
∂2 f

∂yz

)2
⎤

⎦dx dy dz.

(4)

It is proved that TPS can be decomposed by affine compo-
nent and nonaffine component [15]. This fact is generally
represented as the following formula:

f (P) = Pd + Kw, (5)

where P is the point on the source 3D face F1 and has
the homogeneous coordinates (1, x, y, z). d is a 4 × 4 affine
transformation matrix. K named TPS kernel is an 1 × M
vector with the form K = (K1(P), . . . ,KM(P)) such that
Kj(P) = ‖P − L1 j‖, j = 1, . . . ,M. w is an M × 4 warping
coefficient matrix representing the nonaffine deformation.

To get TPS transformation, the matrices d and w must
be determined. There are two solutions to this problem,
the interpolating and noninterpolating methods. If TPS
needs not be interpolated, that is, formula (3) is not strictly
satisfied, the following energy function can be minimized to
find the optimal answer:

E′(λ,w,d) = 1
M

M∑

j=1

∥
∥
∥L2 j − f

(
L1 j

)∥
∥
∥ + λ · E(f), (6)

where λ is the weight to control the smooth component, and
for a fixed λ there will be a unique minimum for the energy
function.

In the interpolating case, formula (3) is satisfied, putting
(5) into (3), and confining w to nonaffine transformation,
that is, M′T

1 w = 0, it leads a direct solution for d and w
formed by the following matrix relation:

⎡

⎣
w

d

⎤

⎦ =
⎡

⎣
K ′ M′

1

M′T
1 0

⎤

⎦

−1⎡

⎣
M′

2

0

⎤

⎦, (7)

where M′
1 and M′

2 are M × 4 matrix whose rows are the
homogeneous coordinates of the landmark points belonging
to M1 and M2, respectively. K ′ is an M×M symmetry matrix
which represents the spatial relation between the landmark
points of the source 3D face and hasthe element ki j with the
following formation:

ki j =
∥
∥
∥Li − Lj

∥
∥
∥, i = 1, . . . ,M, j = 1, . . . ,M. (8)

In our work, the landmarks placed on the source and
target 3D faces are looked as the correspondent points with
the same facial feature, hence the condition in (3) will be
satisfied, and the interpolating method is adopted here to
solve the TPS transformation. From (7) the matrices d and

w will be determined, and the source 3D face F1 will be
deformed by TPS transformation, we denote the deformed
3D face of F1 as F′1. Figure 2 shows the TPS deformation of
the source 3D face and the deformed 3D face is compared
with the source 3D face and the destination 3D face. It is
proved that the deformed source 3D face is closer to the
destination 3D face than the source 3D face, so it leads a more
accurate points alignment. In the next section, the point-to-
point correspondence between F′1 and F2 will be done by a
closest point matching process.

4. Dense Point Alignment by
Closest Point Matching

Although the rigid transformation of ICP algorithm is not
used in our method, we adopt the similar closest point
matching schemes like ICP. That is, for each point on the
deformed source 3D face F′1, the closest point will be found
on the destination 3D face F2. Before the closest point
matching, the closest point criterion must be defined. ICP
algorithm generally uses the distance between points or the
distance between point and point set to define the closest
point, and the distance refers to Euclidean distance. Here we
define the closet point in the sense of the distance from a
point to a point set. To the point P′1i on F′1, the correspondent
point P2 j on F2 is determined by the following minimum
requirement:

P′2 j = min
j=1,...,N2

DIS
(
P′1i,P2 j

)
, (9)

where DIS(,) is a function defined to compute the distance
between two points. As the deformation among 3D faces is
a type of nonrigid transformation, the Euclidean distance
used to determine the closest points in rigid transformation
is not the proper method in nonrigid situation. Considering
the modality of human face, the curvature is an important
property interrelated to the local surface feature. Here the
distance is defined as a weighted combination of Euclidean
distance and the difference of the mean curvature of the
points. The distance DIS(P1,P2) of points P1, P2 has the
following formation:

DIS(P1,P2)=δ · ‖P1−P2‖+(1−δ) · |(MC(P1)−MC(P2))|,
(10)

where δ is the weight to balance the Euclidean distance
and the curvature difference such that 0 ≤ δ ≤ 1. In the
following experiments we set δ = 0.5. MC(·) is the function
to compute the mean curvature of the points on 3D faces.

Having determined the closest point matching criterion,
for each point on F′1, the closest point searching must be
executed on the target 3D face F2. As the huge data of the
source and target 3D faces, the whole closest points searching
is a very time consuming procedure with computation
O(N1 ×N2). To get high point matching efficiency, we adopt
the K dimensional binary search tree (KD-tree) technique
in the point matching method. The KD-tree algorithm was
introduced by Bentley [16] and has been widely utilized in
the nearest neighbor searching [17]. It is a binary search

International Journal of Computer Games Technology 5

Figure 3: The collision points on the destination 3D face.

tree in which each node represents a partition of the k
dimensional space. The root node represents the entire space,
and the leaf nodes represent subspaces containing mutually
exclusive small subsets of the relevant points. The space
partitioning is carried out in a recursive binary fashion.
The average performance of the KD-tree searching has
complexity of O(N1 × logN2).

The other obstacle has to be settled for the closest point
matching is that the current method does not preserve one-
to-one mapping. In fact, some points on the deformed
3D face F′1 may be mapped onto the same point on the
destination 3D face F2. We denote these points on F2 as
collision points which have more than one correspondent
points on F′1. Generally the collision points are produced
by the points of outliers or the points with local complex
geometry feature. Considering the high resolution of 3D
faces and the distribution of these collusion points, the latter
one is concerned with the main problem. The distribution of
these collision points on the destination 3D face F2 is shown
in Figure 3. To eliminate these collision points, a revised
point matching algorithm is proposed. The main idea of the
method is to construct a distance list for every collision point,
and only the point with minimum distance is regarded as the
truly correspondent point. The following is the outline of the
one-to-one point matching algorithm.

(1) Create KD-tree for the destination 3D face F2.

(2) For each point on the deformed source 3D face F′1,
search its closest point on F2.

(3) Detect the collision points on F2, if not exist, go to 6.

(4) For each collision point P2 j , find the correspondent
points on F′1 reversely, denote the point with mini-
mum distance as P′1i, and record the correspondent
pair points (P′1i,P2 j).

(5) Remove the point P′1i from F′1, delete the node P2 j

from the KD-tree, then go to (2)

(6) Record the remained correspondent pairs of points
without collision.

By the revised closest point matching algorithm, the
correspondent point searching procedure maintains one-to-
one mapping, though more computation is required.

(a) (b)

(c) (d)

Figure 4: The texture and height mapping images for optical flow
computation. The top two are the texture and height mapping
images of the source 3D face. The bottom two are the texture and
height mapping images of the destination 3D face.

5. Experimental Results of 3D Face
Morphing and Animation

If the point-to-point correspondence of 3D faces is estab-
lished, the direct application of the alignment is to create 3D
face morphing and animation, which have wide applications
in computer game, virtual reality, and animating actor in
entertainment movies.

The scanned 3D faces we used come from MPI Face
database [18] and BJUT-3D Face Database [19]. As the
3D facial scans have high resolution, which generally have
more than 70 000 vertices and 140 000 triangles with texture
information, the realistic animation results will be achieved
if accurate point correspondence is obtained. Here we use the
simple key-frames interpolation method to produce the face
morphing and animation between the source and destination
faces. The points on the key-frames 3D face are computed
by linear interpolation between the correspondent points.
The texture and the geometry normal of the correspondent
points are interpolated at the same time.

The experiment of face morphing is implemented on two
3D faces selected from MPI face database, one face is female
and the other is male. As the difference of the two faces
is adequate to express variety of the human face modality,
the nonrigid transformation is demanded to do with the
deformation. The face animation is created on the same
person’s 3D faces with different expressions selected from

6 International Journal of Computer Games Technology

0

0.02

0.04

0.06

0.08

0.1

Figure 5: The distances of the correspondent points are visualized
as colors on the source 3D face. The color of each point represents
the distance from the point to its correspondent point with the
color-mapping on the right. The top two are the results of the
optical flow method. The middle two are the results of the ICP
algorithm with rigid transformation. The bottom two are the results
of the TPS method.

BJUT-3D Face Database. The sequence of key-frames of the
face morphing and face animation is shown in Figure 7. On
the whole, the vision reality of the morphing and animation
is satisfied, though the local areas with relative complex shape
feature and the areas with missing points as the scanning
reason are not looking good, such as the areas of mandible
and ears.

To compare our TPS method with the original ICP
algorithm [7] and the optical flow method [9], the MPI
source 3D face is aligned to the target 3D face using
these three methods, respectively. To compute the point
correspondence by the optical flow method, the source
and target 3D faces are spread into texture and height
mapping images (shown in Figure 4) by cylinder coordinate

30252015105

3D faces number

Optical flow
ICP
TPS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
ea

n
av

er
ag

e

(a)

30252015105

3D faces number

Optical flow
ICP
TPS

0

0.02

0.04

0.06

0.08

0.1

0.12

M
ea

n
st

an
da

rd
de

vi
at

io
n

(b)

Figure 6: The trend of the mean average and standard deviation
of the distances between the correspondent points of the 3D faces
in the aligning set with 3D faces number increasing. The top is the
mean average of the distances. The bottom is the mean standard
deviation of the distances.

transformation. Then the facial texture and height mapping
images are aligned by an optical flow algorithm, here we
adopt the optical flow algorithm proposed by Horn and
Schunck [20]. Finally the point correspondence of 3D
faces is obtained from the alignment of 2D images by the
reversed cylinder coordinate transformation. In ICP and
TPS methods, the source 3D face is transformed by rigid
transformation and TPS deformation, respectively. Then
using the proposed closest point searching method, the two
transformed faces are aligned with the destination 3D face.
To evaluate the alignment results of these three methods, the
average and standard deviations of the distances between the
correspondent points on the source and destination 3D face
are computed respectively.

The results of these three methods are shown in Table 1.
It is denoted that all the vertices of the 3D faces are
standardized into [0, 1] interval before the experiment. The
distances of correspondent points of these three methods are
also visualized on the source 3D face (shown in Figure 5).
The average and standard deviations of the distances and

International Journal of Computer Games Technology 7

Figure 7: The sequence of 3D face morphing and animation. The left column and the right column are the source 3D faces and the
destination 3D faces. The top two rows are the middle frames morphing a female 3D face to a male 3D face selected from MPI 3D face
database. The middle two rows are the animation sequence of a person from the neutral state to an aspiratory action state. The bottom two
rows are the animation of a person from the neutral expression to smile expression. The 3D faces in the bottom four rows are selected from
BJUT-3D Face Database.

its visualization in Figure 5 reveal that the TPS method has
the best point matching accuracy, while the optical flow
method performs poorly in dense points alignment, and the
ICP is in-between of the former two methods. The optical

flow is generally used in perception of the movement of
objects in video sequence [21]. When the difference between
the facial images is too large to satisfy the continualness
requirement of adjoining frame images, the optical flow

8 International Journal of Computer Games Technology

Table 1: The average and standard deviation of the distances
between the correspondent points on the source 3D face and
destination 3D face.

Optical flow ICP TPS

Average of the
distances

0.05683 0.01673 0.00804

Standard
deviation of the
distances

0.03840 0.01069 0.00637

computation will fail with obvious error. It is the main reason
for referring to the poor results of the optical flow method.
In fact, the nonrigid transformation is more suitable for 3D
faces deformation than rigid transformation, so that the TPS
method has the better results than ICP algorithm.

To examine the stability of the TPS method, we selected
30 3D faces from BJUT-3D Face Database as an aligning set.
The dense point alignment is implemented on the aligning
set using the above three methods. The experiment is done
with the 3D faces number of the aligning set increasing, that
is, the 3D faces are added into the aligning set gradually.
At first, the aligning set composes of two 3D faces, then
3D faces are added into one by one, until all 30 face are
added. At the same time, the mean average and standard
deviations of the correspondent points distances of the 3D
faces in the aligning set are computed. Figure 6 shows the
change of the mean average and standard deviations with the
increasing of 3D faces number respected to the optical flow
method, ICP algorithm and TPS method. The experimental
results show that the mean average distance and its standard
deviations of these three methods are all converging toward
a stable value, and TPS method has better stability and
correspondence accuracy than the ICP algorithm and the
optical flow method.

6. Conclusion

In this paper, we describe a new dense point-to-point
alignment method and apply it on scanned 3D faces. In
the method, TPS is adopted to model the deformation
of 3D faces, and a closest point matching algorithm is
proposed to search the correspondent points and simul-
taneously guarantees the alignment one-to-one mapping.
To reduce the closest points searching time and get good
point matching accuracy, a KD-tree technique and a user-
defined distance function which considers the points local
curvature are integrated with the point matching algorithm.
The dense point alignment is used in 3D faces morphing
and animation by key-frames interpolation and gets satisfied
realistic visual results. Contrasting with ICP algorithm and
the optical flow method, the error analysis on the selected
pair of MPI 3D faces and the experiment on 30 BJUT 3D
faces prove that our method is efficient for dense point
correspondence. Furthermore, the method does not require
large facial database and can easily extend to other dense
objects.

In our work, the landmarks of 3D faces are picked up by
an interactive tool, though the manual marking procedure
is simple, and taking little time, it limits the method apply
in many areas, such as realtime application and the large
quantity of objects situation. So the future work firstly
focus on the fully automatic point matching algorithm. The
intuitively thought is to find the suitable automatic feature
detection method, but it is another challenging problem in
pattern recognition and computer vision. The additional
points to be improved of this work include refining the
aligning accuracy by exploring proper representation of the
local geometry feature, constructing the whole head model
with hair to get more natural looking, and making practical
applications.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (Grant no. 60736008 and no.
60872127) and the Postdoctoral Science Foundation of
China (Grant no. 20080430316). The 3D facial scans
were provided by the Max-Planck Institute for Biological
Cybernetics in Tuebingen, Germany and the Multimedia
and Intelligent Software Technology Beijing Municipal Key
Laboratory of Beijing University of Technology in Beijing,
China.

References

[1] V. Blanz and T. Vetter, “A morphable model for the synthesis
of 3D faces,” in Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’99), pp. 187–194, Los Angeles, Calif, USA, August
1999.

[2] L. G. Brown, “A survey of image registration techniques,” ACM
Computing Surveys, vol. 24, no. 4, pp. 325–376, 1992.

[3] J. B. A. Maintz and M. A. Viergever, “A survey of medical image
registration,” Medical Image Analysis, vol. 2, no. 1, pp. 1–36,
1998.

[4] M. A. Audette, F. P. Ferrie, and T. M. Peters, “An algorithmic
overview of surface registration techniques for medical imag-
ing,” Medical Image Analysis, vol. 4, no. 3, pp. 201–217, 2000.

[5] B. Zitová and J. Flusser, “Image registration methods: a
survey,” Image and Vision Computing, vol. 21, no. 11, pp. 977–
1000, 2003.

[6] R. Wan and M. Li, “An overview of medical image regis-
tration,” in Proceedings of the 5th International Conference
on Computational Intelligence and Multimedia Applications
(ICCIMA ’03), p. 385, Xi’an, China, September 2003.

[7] P. J. Besl and N. D. McKay, “A method for registration of 3-
D shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[8] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP
algorithm,” in Proceedings of the 3rd International Conference
on 3D Digital Imaging and Modeling, pp. 145–152, Quebec,
Canada, May-June 2001.

[9] T. Vetter and V. Blanz, “Estimating coloured 3D face models
from single images: an example based approach,” in Pro-
ceedings of the 5th European Conference on Computer Vision
(ECCV ’98), vol. 2, pp. 499–513, Freiburg, Germany, June
1998.

International Journal of Computer Games Technology 9

[10] F. Steinke, B. Schölkopf, and V. Blanz, “Learning dense 3D
correspondence,” in Advances in Neural Information Processing
Systems 19, pp. 1313–1320, MIT Press, Cambridge, Mass, USA,
2007.

[11] H. Chui and A. Rangarajan, “A new point matching algorithm
for non-rigid registration,” Computer Vision and Image Under-
standing, vol. 89, no. 2-3, pp. 114–141, 2003.

[12] V. Jain and H. Zhang, “Robust 3D shape correspondence
in the spectral domain,” in Proceedings of IEEE International
Conference on Shape Modeling and Applications (SMI ’06), pp.
118–129, Matsushima, Japan, June 2006.

[13] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H.
Salesin, “Synthesizing realistic facial expressions from pho-
tographs,” in Proceedings of the Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH ’98),
pp. 75–84, Orlando, Fla, USA, July 1998.

[14] R. L. Harder and R. N. Desmarais, “Interpolation using surface
splines,” Journal of Aircraft, vol. 9, no. 2, pp. 189–191, 1972.

[15] F. L. Bookstein, “Principal warps: thin-plate splines and the
decomposition of deformations,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 6, pp. 567–585,
1992.

[16] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18,
no. 9, pp. 509–517, 1975.

[17] M. Greenspan and M. Yurick, “Approximate K-D tree search
for efficient ICP,” in Proceedings of the 4th International
Conference on 3-D Digital Imaging and Modeling (3DIM ’03),
pp. 442–448, Banff, Canada, October 2003.

[18] N. F. Troje and H. H. Bülthoff, “Face recognition under
varying poses: the role of texture and shape,” Vision Research,
vol. 36, no. 12, pp. 1761–1771, 1996.

[19] Y. Hu, B. Yin, Y. Sun, and S. Cheng, “3D face animation
based on morphable model,” Journal of Information and
Computational Science, vol. 2, no. 1, pp. 35–39, 2005.

[20] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1–3, pp. 185–203, 1981.

[21] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance
of optical flow techniques,” International Journal of Computer
Vision, vol. 12, no. 1, pp. 43–77, 1994.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 726496, 16 pages
doi:10.1155/2009/726496

Research Article

Gamer’s Facial Cloning for Online Interactive Games

Abdul Sattar,1 Nicolas Stoiber,2 Renaud Seguier,1 and Gaspard Breton2

1 SUPELEC/IETR, SCEE, Avenue de la Boulaie, 35576 Cesson-Sevigne, France
2 Orange Labs, RD/TECH, 4 rue du Clos Courtel, 35510 Cesson-Sevigne, France

Correspondence should be addressed to Abdul Sattar, abdul.sattar@supelec.fr

Received 30 January 2009; Revised 3 June 2009; Accepted 11 July 2009

Recommended by Zhongke Wu

Virtual illustration of a human face is essential to enhance the mutual interaction in a cyber community. In this paper we propose
a solution to solve two bottlenecks in facial analysis and synthesis for an interactive system of human face cloning for non-expert
users of computer games. Tactical maneuvers of the gamer make single camera acquisition system unsuitable to analyze and
track the face due to its large lateral movements. For an improved facial analysis system, we propose to acquire the facial images
from multiple cameras and analyze them by multiobjective 2.5D Active Appearance Model (MOAAM). Facial morphological
dissimilarities between a human face and an avatar make the facial synthesis quite complex. To successfully clone or retarget the
gamer facial expressions and gestures on to an avatar, we introduce a simple mathematical link between their appearances. Results
obtained validate the efficiency, accuracy and robustness achieved.

Copyright © 2009 Abdul Sattar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Over the last decade computer games have became more and
more an interactive entertainment. Virtual representation
of a character has gained the interest of both gamers
and researchers. Gamers do not want to sit and play the
games, instead they need to get involved in the game to an
extent to visualize opponent’s face and interact with him
virtually. The use of virtual representation of a human face
in game consoles or creating avatars has been tremendously
increasing. In addition, a growing number of websites now
host virtual characters technologies to deliver their contents
in a more natural and friendly manner. Gestures and features
(e.g., eyes, nose, mouth and eyebrows) of a human face are
actually the reflection of a person’s inner emotional state and
personality. They are also believed to play an important role
in social interactions, as they give clues to a gamer’s state of
mind and therefore help the communication partner to sense
the tone of a speech, or the meaning of a particular behavior.
For these reasons, they can be identified as an essential
nonverbal communication channel in game consoles.

To track, analyze and synthesize gamer’s face efficiently
and to ensure the interaction of a gamer, system needs to
overcome two bottlenecks in facial analysis and synthesis.
Facial analysis deals with the face alignment, pose, features,

gestures and emotions extractions. Excitements caused by
the tactical moves of a game, compel the gamer to move
around in various directions. These maneuvers produce
large lateral movements of a face, which makes it difficult
for a facial analysis system to track and analyze the face.
For a facial synthesis system, cloning or retargeting the
features, emotions and orientation of a human face on to
an avatar is again one of the challenging tasks. Cloning
or retargeting is difficult due to the facial morphological
differences between a real face and an avatar. Furthermore,
large and complex face deformations due to the expressions
made by a nonrigid human face makes the online system
computationally complex to clone or replicate it on to an
avatar.

We propose a robust and efficient gamer’s online cloning
interactive system as shown in Figure 1. Our system is
composed of two cameras installed on the extreme edges
of the screen to acquire real-time images of the gamer.
Gamer’s face is analyzed and his pose and expressions
are synthesized by the system to clone or retarget his
features in the form of an avatar so that the gamers
can interact with each other virtually. In the following
paragraphs we briefly explain solutions by the facial analysis
and synthesis systems, embedded in our proposed interactive
system.

2 International Journal of Computer Games Technology

Face
analysis

Face
synthesis

C

C

C1

C2

Figure 1: Global system.

1.1. Face Analysis. Human faces are nonrigid objects. The
flexibility of a face is well tackled with the appearance-based
or deformable model methods [1], which are remarkably
efficient for features extraction and alignment of frontal-view
faces. As we will see in Section 2, researchers worked out the
bottlenecks of face analysis by emphasizing on the model
generation and their search methodologies. However we
emphasize on increasing the amount of data to be processed
with the help of multiple cameras as shown in Figure 1. In
single-view system face alignment cannot be accomplished
when a face occludes itself during its lateral motion, such
as in a profile view only half of the face is visible. To
overcome this dilemma we exploit data from another camera
and associate it with the one unable to analyze at the
first place. In multicamera system, optimization of more
than one error is to be performed between a model and
query images from each camera. Searching for an optimum
solution of a single task employing two or more distinct
errors requires multiobjective optimization (MOO). Many
MOO techniques exist but to analyze the face we propose
optimization of MOAAM by Pareto-based NSGA-II [2] due
to its exploitation and exploration ability, nondominating
strategy and population based approach which provide the
mutual interaction of the results by multiple cameras. In this
paper, we use our previous work of [3] and improved our
system by obtaining new results based on a new synthetic face
database.

1.2. Face Synthesis. In facial synthesis system the purpose is
to retarget or clone gamer’s face orientation and its features
on the synthetic model so that the gamers can interact with
each other virtually. Cloning and retargeting is difficult,
because avatar does not have the same morphology as the
gamer. Our contribution in this system is the introduction
of a simple mathematical relation between their appear-
ances called ATM (Appearance Transformation Matrix). To
calculate it we make use of two databases explained in
Section 5.1. The first database is a large collection of human
facial expressions (H-database) and the second database
is an optimal database of synthetic facial expressions (A-
database) constructed for the avatar based on the analysis
of the H-database. Our second contribution is to provide an
interactive system for the gamer to build his own database
and calculate gamer’s specific ATM. The generation of the
gamer’s database is based on our face analysis system of
MOAAM and is obtained by requesting the gamer to imitate
few specific and relevant facial expressions displayed on the
screen.

Whole system works in two phases. First of all, user’s
oriented face is analysed by MOAAM, which gives its appear-
ance and pose parameters. These appearance parameters
are pose-free and belongs to the frontal face of the user.
Therefore they are transformed by ATM in the synthetic
face’s parameter space and synthetic face is synthesized
accordingly. After that pose parameters obtained previously
by MOAAM analysis are used to adjust the orientation of the
avatar being displayed on the screen.

Remaining of the paper is organized as follow. Section 2
presents the previous and related work in both the domains
of facial analysis and synthesis. Section 3 presents the
preliminary concepts of our system. Section 4 describes the
work done in face analysis. Section 5 explains the system
to synthesize a face. Detailed description of our proposed
interactive system is elaborated in Section 6, while Section 7
concludes the paper.

2. Previous and Related Work

In this section we have divided the previous and related work
for both facial analysis and synthesis into two subsections.
However, our first contribution in the facial analysis domain
is explained in detail in Section 4. And our second contribu-
tion in the facial synthesis domain is explained in Section 5.

2.1. Face Analysis

2.1.1. Multiple 2DAAM. Active Appearance Model (AAM)
is one of the well-known deformable method [1] efficient
in feature extraction and alignment of a face. References
[4, 5] performed pose prediction by using 3 AAM models,
one dedicated to the frontal view and two for the profile
views. References [6, 7] implemented Active Shape Model
(ASM) for the face alignment, by using 5 poses of each face
to create a model. Reference [8] also used 3 DAMs (Direct
Appearance Models) for face alignment. Reference [9] used
another appearance based architecture employing 5 view-
specific template detectors to track large range head yaw by
a monocular camera. The Radial Basis Function Network
interpolates the response vectors obtained from normalized
correlation from the input image and 5 template detectors.

Use of more than one model of AAM has some disad-
vantages: (i) Storage of shapes and textures of the images
of all the models requires an enormous amount of storage
memory. (ii) Extensive processing of computing 3 AAM in
parallel to determine the model required for query images,
eventually makes the system sluggish. Moreover classical
AAM search methodology requires precomputed regression
matrices, which become a burden on time and memory as
the amount of training images increases.

Coupled View AAM is used in [10] to estimate the pose.
In the training phase they include 2D shapes and 2D textures
of both frontal and profile views of each subject. Appearance
parameters of their CV-AAM have the capability to estimate
the pose. Appearance parameters of their model can tune
both the shape and the profile angle of a face. For the
profile angle estimation they have used several appearance

International Journal of Computer Games Technology 3

s = s + ϕs
∗bs—

g = g + ϕg
—

ϕc
∗Cb =

P = [θx θy θz tx ty scale], , , , ,

∗bg

3D shapes
database

Pose
 parameter

P

Deformable
model & C
 parameter

PCAPCA

PCA

Alignment

Alignment

Texture
database

Figure 2: AAM modeling.

parameters which can be replaced by one pose parameter
in a 3D AAM. Thus, increase in the number of parameters
decreases the rapidness of the system.

2.1.2. 3DAAM. Face can also be aligned by 3D deformable
model methods in which a set of images are annotated in
3D to model a face. Reference [11] used 3D face model
Candide along with simple gradient descent method as a
search algorithm for face tracking. References [12] used
2D+3D AAM along with a fitting algorithm, called inverse
compositional image alignment algorithm, which is again
an extension of a gradient descent method. Reference [13]
applied 3D AAM for face tracking in a video sequence
using same IC-LK (Inverse Compositional Lucas-Kanade)
algorithm. The optimization by gradient descent lack the
properties of exploration and diversity, hence cannot be used
in MOO. In our previous work of [14] we have used genetic
algorithm instead of gradient descent for the optimization in
2.5D AAM.

2.1.3. Multiview Fitting by 2D or 3DAAM. Pose angles can
be estimated by fitting the above 2D or 3D deformable
models on multiple images acquired by two, three or multiple
cameras. Reference [15] proposed a robust algorithm of
fitting a 2D+3D AAM to multiple images acquired at
the same instance. Their fitting methodology, instead of
decomposing into three independent optimizations from
three cameras, adds all the errors. Moreover they used gra-
dient descent (ICLK: Inverse Compositional Lukas Kanade)
algorithm as a fitting method, which eventually requires to
precompute Jacobians and Hessian matrix. Reference [16]
proposed another algorithm of face tracking by Stereo Active
Appearance Model (STAAM) fitting, which is an extension
of the above fitting of 2D+3D AAM to multiple images. Lack
of exploration capability of the method makes ICLK very
sensitive to initialization.

In [17] the advantages of adaptive appearance model
based method with a 3D data-based tracker using sparse
stereo data is combined. Reference [18] proposed a model-
based stereo head tracking algorithm and is able to track
six degrees of freedom of head motions. Their face model
contains 300 triangles compare to our 113 triangles usually

used in classical AAM and ICLK based AAM and so
forth. Moreover their initialization process requires user
intervention. Reference [19] performed 2D head tracking
for each subject from multiple cameras and obtained 3D
head coordinates by triangulation. Lack of ground truth
error calculations creates uncertainty in the accuracy of
their system. Furthermore slight calibration error massively
deteriorates the triangulation.

Our proposition of face alignment is based on two
cameras using 2.5D AAM optimized by Pareto-based mul-
tiobjective genetic optimization of NSGA-II. It not only
eliminates the steps of precomputation but also provides
both exploration and exploitation capability in the search by
NSGA-II. Hence it is not sensitive to initialization.

2.2. Face Synthesis. By facial cloning, we refer to the action of
transferring the animation from a source (typically a human
face) to a target (another human face or a synthetic one). The
cloning (or retargeting) can be either direct or indirect. In
direct retargeting, the purpose is to transfer the motion itself
of a few selected interest markers (and optionally a texture)
from one face to another [20]. The marker trajectories
usually undergo a transformation that compensates for the
morphological differences between the source and the target
face [21–24]. This morphological adaptation is not always
satisfactory, especially if the source and the target faces are
very different. An interesting way to get around this difficulty
is to turn to indirect retargeting. In indirect retargeting, the
motion data is not transferred as such, but is first converted
by a specific model to a better representation space, or
parameter space, more suited for the motion transfer [25–
27]. In the next paragraph we will go over some of the most
common representations used for indirect retargeting.

In order for a facial parameterization to be suited
for retargeting applications, it must be adapted to the
extraction of parameters from motion capture data, and
offer an accurate description of facial deformations. Early
parameterization schemes like direct parameterizations [28]
or pseudomuscle systems [29–31] usually have the advan-
tage of being simple to conceptualize and computationally
efficient, but the obtained parameter sets are generally not
optimal. In particular, when not operated carefully, they

4 International Journal of Computer Games Technology

can generate inconsistent facial configurations. Besides, it is
not straightforward to extract the values of the parameters
from raw facial motion data (video or 3D motion capture).
Muscle physics systems attempt to simulate more rigorously
the mechanical behavior of the human face, and thus tend
to improve the degree of realism of facial deformations
[32]. Yet, as for direct parameterization, the manipulation
of the muscle network is not particularly intuitive, and
the extraction of muscular contractions from video or
motion capture data remains an open problem [33]. A
popular facial parameterization which directly originates
from observation is the Facial Action Coding System (FACS)
[34]. This scheme was originally meant to describe facial
expressions in a standardized way in terms of combination
of basic facial Action Units (AU). Its coherence and good
practical performances made it an interesting tool on which
to build performance based animation systems. The MPEG-
4 standard later extended this concept for facial animation
compression purposes, introducing the Facial Animation
Parameters (FAP) [35]. The FACS and MPEG-4 FAP have
been used to capture and retarget static and dynamic facial
expressions between human and synthetic faces [36, 37]. The
disadvantage of methods based on multiple separate action
units, is that the natural correlation between multiple facial
action occurring in each facial expression is ignored. Thus
the animation resulting from these approaches tend to be
somewhat nonhuman or robotic.

More recently studies have aimed at obtaining more
natural parameterization by performing a statistical mod-
eling of the facial motion. This consist in gathering a
collection of relevant examples (database) and to statistically
detect particular variation modes, which encompass the
specificity of the source or the target. The facial parameters
correspond to the contribution of these modes. When two
faces have corresponding models, Animations can be easily
transferred by mapping the model parameters from one
face to the other. Many studies have pointed that motion
data consisting of only the positions of a few markers
cannot efficiently capture the subtleties of human facial
expressions, and have proposed to also capture the textural
information [38]. Active Appearance Models (AAM) are
frequently used for that propose, since they encompass the
motion of well chosen geometric points as well as the pixel
intensity changes occurring on the faces, which account for
finer deformation of the skin [1]. References [39, 40] obtain
impressive results of facial expressions transfer between
multiple human faces based on an AAM parameterization.
For this type of retargeting scheme to be successful however,
the appearance models of the source and the target must
characterize the same scope of expressions. In particular
their databases must correspond. Constructing a database
of expressions for a synthetic face which matches the scope
of the source human database is not trivial. Reference [41]
transfer facial expressions from the AAM parameters of a
human face to an avatar based on a blendshape database.
The database of the avatar consists of key expressions selected
from the human database, however too few expressions are
used for the virtual face to allow for a detailed expression
retargeting. Reference [42] later improved this approach by

preprocessing the human database in order to automatically
isolate individual facial actions. Each of the facial actions can
then be reproduced on the avatar to construct a blendshape
database. For a reasonable number of facial expressions, this
approach ensures the compatibility between the source and
target database, without requiring the construction of many
avatar facial examples. Yet, for a more complete scope of
facial movements, the number of individual facial actions can
become large, and thus the number of facial configurations
for the avatar database as well. Moreover, by decomposing
the expressions into individual units, the correlation between
these units when performing an expression is lost in the
parameterization. Reference [27] performs a linear retarget-
ing of monocular human appearance parameters to muscle-
based animation parameters. The transfer function is based
on the matching of a human database of key expressions with
a database of corresponding animation parameters for the
synthetic face. Yet, the choice of the database key expressions
is subjective in that case. Moreover the synthetic face is
animated with muscle contraction parameters which can
sometimes lead to incoherent interpolation, and prevents
the system from being used with other types of animation
methods.

We propose a new method to efficiently transfer facial
expressions from a human face to a synthetic face, based on
pose-free active appearance model parameters delivered by
our multiple camera system. The method analyzes a human
expression database, and automatically determines which key
expressions have to be constructed in the avatar database for
the expression retargeting to be efficient.

3. Preliminary Concepts

3.1. 2.5D AAM Modeling. 2.5D AAM of [3, 14] is con-
structed by (i) 2D landmarks of the frontal view (width and
height of a face model) and x coordinates of landmarks in
profile view (depth of a face model) combined to make 3D
shape model and (ii) 2D texture of only frontal view mapped
on its 3D shape. In the training phase of 2.5D AAM, 68 points
are marked manually as shown in Figure 2.

All the landmarks obtained previously are resized and
aligned in three dimensions using Procrustes analysis ([43,
44]). The mean of these 3D landmarks is calculated which is
called mean shape. Principal Component Analysis (PCA) is
performed on these shapes to obtain shape parameters with
95% of the variation stored in them:

si = s + φs ∗ bs, (1)

where si is the synthesized shape, s is the mean shape, φs are
the eigenvectors obtained during PCA and bs are the shape
parameters.

The 3D mean shape obtained in the previous step is used
to extract and warp (based on the Delaunay triangulation)
the frontal views of all the face images. Only two dimensions
of the mean shape are used to get 2D frontal view textures.
That is why we call our model as 2.5D AAM, since it is
composed of landmarks represented in 3D domain but only
2D texture is warped on this shape to adapt 2.5D model.

International Journal of Computer Games Technology 5

Figure 3: Snapshots of rotating 2.5D AAM.

Mean of these textures is calculated. Followed by, another
PCA to acquire texture parameters with 95% of the variation
stored in these parameters:

gi = g + φg ∗ bg , (2)

where gi is the synthesized texture, g is the mean texture,
φg are the eigenvectors obtained during PCA and bg are the
texture parameters.

Both of the above parameters are combined by concate-
nation of bs and bg . And a final PCA is performed to obtain
the appearance parameters:

b =
[
bsbg

]T
, b = φC ∗ C, (3)

where φC are the eigenvectors obtained by retaining 95%
of the variation and C is the matrix of the appearance
parameters, which are used to obtain shape and texture of
each face of the database.

2.5D model can be translated as well as rotated with the
help of pose vector P:

P =
[
θx, θy , θz, tx, ty , Scale

]T
, (4)

where θx corresponds to the face rotating around the x axis
(pitch: shaking head up and down), θy to the face rotating
around the y axis (yaw: profile views) and θz to the face
rotating around the z axis (roll). tx, ty are the offset values
from the supposed origin and Scale is a scalar value for the
magnification of the model in all the dimensions. Figure 3
shows the model rotating by changing θy , making left and
right semi profile views.

In segmentation this deformed, rotated and translated
shape model obtained by varying C and P parameters, is
placed on the query image I to warp the face to mean frontal
shape. After this shape normalization we apply photometric
texture normalization to overcome illumination variations.
The objective is to minimize pixel error

e =
√∑

x

[I(C,P)−M(C)]2, (5)

where I(C,P) is the segmented image and M(C) is the model
obtained by C parameters. To choose good parameters we
need an optimization method. In our proposition, both of
these pose P and appearance parameters C are optimized by
genetic optimization of NSGA-II.

e1

e2

e1

e2

e1

e2

R2 R3

R1 R1
70 cm

25°25°

C

C C

Figure 4: MultiView System.

3.2. Multiple Camera System. In single-view system face
alignment cannot be accomplished when a face occludes
itself during its lateral motion. Such as in a profile view
only half of the face is visible. To overcome this dilemma
we exploit data from another camera and associate it
with the one unable to analyze at the first place. This
association helps the search methodology to reduce the
possibility of divergence. Moreover better outcomes of one
camera can escort the other. In multiview systems, higher
the amount of processing data higher is the robustness
ability of a system however efficiency deteriorates due to
high consumption of processing time and memory. In
other words a trade-off is required between robustness and
efficiency.

A database of facial images capable of self assessing is
desired to validate our application. The community lacks
such a database which involves lateral motion of a face
captured by more than one camera. In order to implement
our application we developed a multiview scenario. The
purpose of constructing this multiview system is to emulate
the scenario of integrating two off the shelf webcams placed
on the extreme edges of the display screen facing towards the
user as shown in Figure 4.

AAM rendered on the facial images of both webcams
are blended together to represent a face model seen by a
virtual camera placed in between. The results of this virtual
webcam are compared by a third camera actually placed
at the center. In other words it is a comparison between a
multicamera system by MOAAM with single-camera system
by SOAAM (Single-Objective AAM). These three cameras
are placed 25 degrees apart on a boundary of a circle with
a radius of 70 cm as shown in Figure 4. Center of this circle
serves as a principal point for each camera. Seven individuals
from a research team are invited for screen shots with the
intention of obtaining 1218 images with lateral motion. Each
individual rotates his face gradually from frontal view to
left and right profile views. At each instance three images
from each webcam are acquired simultaneously to obtain
temporally synchronized images.

6 International Journal of Computer Games Technology

Figure 5: Test database images: Same pose from 3 webcams.

3.2.1. Illumination. It remains steady through out the
sequence. It is accomplished by a white ambient light placed
behind the central camera as shown in the Figure 4. The light
we used comes with the stand and a built-in umbrella holder
to give extra flexibility. By adjusting the umbrella’s position
we have rejected the bright spot on the face. It works well for
taking facial images with webcams.

3.2.2. Camera Calibration. It is performed by a publicly
available toolbox [45]. A simple planar checkerboard is
placed in front of the cameras and sequence of images are
taken to calculate calibration parameters. With the help of
the toolbox, four corners of the checker board are extracted
and calibration is performed with respect to the grid of the
checkerboard. The toolbox calculates intrinsic parameters
(focal length, principal point, distortion and skew) and
extrinsic parameters (rotation vector and translation vector)
for each camera. With the help of these parameters, all the
facial images of these cameras are calibrated.

Figure 5 shows some images of test database acquired
from three webcams. A similar scenario is emulated in the
software MAYA for a video of synthetic faces. The synthetic
face database does not contain camera calibration error
hence it is helpful to analyze results free of calibration errors.
Figure 6 show some examples of test database of synthetic
faces (Synthetic face in the first row was obtained from
www.ballistic.com, while remaining face models were made
in a software named as “Facial Studio”. All of them were
imported in MAYA for rendering the synthetic facial images).
Some of the facial images of M2VTS [46] (learning database)
are also shown in Figure 7.

4. Face Analysis

The main objective of our application is to clone a real
human face in the form of an avatar. For such an application
face analysis plays an important role for face synthesis. The
more efficient the analysis is, facial synthesis is likely to be
more accurate. To obtain an efficient and robust face analysis
system we acquire a human face with two cameras and
analyze it by an appearance based morphable model of 2.5D
AAM.

4.1. MOAAM. In single-view system, single error between
model and query image is optimized. However in multiview
system, the optimization of more than one error is to be
performed between a model and query images from each
camera. AAM fitting on multiviews is shown in Figure 8.
In multiview AAM, the model is rendered on both the
images from each camera with the same C parameters.

Figure 6: Test database synthetic images.

Figure 7: Learning database images.

The P parameters also remain the same except a yaw angle
offset (θoffset) is introduced between the models rendering on
two images. After segmentation, pixel errors between both
the images and models are calculated. The objective is to
minimize pixel error of (5) obtained from each of the two
cameras

e1 =
√∑

x

[I1(C,P1)−M(C)]2,

e2 =
√∑

x

[I2(C,P2)−M(C)]2,

(6)

where P1 and P2 are linked by an offset of yaw angle. In order
to optimize both errors we propose Pareto-based NSGA-II
MOO.

4.1.1. NSGA-II. Genetic Algorithm is a well-known search
technique. We have used its multiobjective version of Non-
dominated Sorting Genetic Algorithm (NSGA-II) proposed
by [2] to optimize the appearance C and pose parameters
P. The target is to find out the best possible values of these
parameters giving minimum pixel errors between the model
and the query images of both cameras. In this optimization
technique each parameter is considered as a gene. All the
genes of C and P are concatenated to form a chromosome.
A population of particular number of chromosomes is
randomly created. Pixel errors (fitness) between query
images and the model (represented by each chromosome)
are calculated. Tournament selection is applied to select

International Journal of Computer Games Technology 7

C1

C2

Cn

θx

θy

θz

tx

ty

Scale

…

NSGA II

θy− θoffset θy + θoffset

Figure 8: Fitting of MOAAM.

parents from the population to undergo reproduction. Two
point crossover and Gaussian mutation is implemented to
reproduce the next generation of chromosomes. Selection
and reproduction is based upon nondominating sort. The
objective is to minimize both of these pixel errors, hence
nondominating scenario is to be implemented by Pareto
optimization.

4.1.2. Pareto Fronts. The fitting of AAM to image data is
performed by minimization of the error function. In MOO
several error functions are to be minimized, hence mutual
relation of these errors point towards the appropriate MOO
method. Dominating errors can be dealt with non Pareto-
based MOO, but in this scenario both cameras serves the
same purpose of acquiring images of a face. Hence non-
dominating scenario is to be implemented with the desired
Pareto optimum solution. The basic idea is to find the set
of solutions in the population that are Pareto nondominated
by the rest of the population as shown in Figure 9(a). These
solutions are assigned the highest rank and are removed from
further assignment of the ranks. Similarly, the remaining
population undergoes the same process of ranking until the
population is suitably ranked in the form of Pareto fronts
as shown in the Figure 9(b). In this process some kind of
diversity is required in the solutions to avoid convergence to
a single point on the front. This diversity can be achieved by
the exploration quality of Genetic Algorithm.

4.1.3. Switching of MOO to SOO. Processing data from two
cameras is meaningful as long as they are relevant. With
respect to a camera if a face is oriented such a way that it
occludes itself there is no need of processing data from this
camera. Eventually in order to avoid wastage of processing
we divide field of views of both cameras in three regions R1,

R2 and R3 as shown in Figure 4. To determine the region
of the face orientation Pareto-based NSGA-II is applied to
evolve populations until small number of generations. After
each generation evolution, the histogram of genes of the
entire population representing the yaw of a face is observed.
This histogram follows one of the three curves of Figure 10.
Histogram curve-1 corresponds to region-1, where the
information from both the cameras are meaningful and
data from any one of them cannot be neglected. Whereas
histogram curve-2 and curve-3 corresponds to region-2 and
region-3 respectively, where the information from one of the
camera is sufficient enough to localize the facial features and
other camera can be discarded. After few generations, current
population decides whether to stay in MOO or to switch to
single objective optimization (SOO). Mathematically, let us
suppose Pop is a set of population given as

Pop =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X11 X12 · · · X1k · · · X1M

X21 X22 · · · X2k · · · X2M

...
...

. . .
...

. . .
...

XN1 XN2 · · · XNk · · · XNM

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (7)

where N is the number of chromosomes X and M is the
number of genes of each chromosome. Now we observe
the kth gene of each chromosome which represents yaw
angle of the model. In order to calculate the histogram of
chromosomes, we assign 1 to ζ such as

ζi =
⎧
⎨

⎩

1 −θth ≤ Xik ≤ θth

0 Xik ≤ −θth or Xik ≥ θth

1 ≤ i ≤ N , (8)

where θth is the threshold angle equals to the half of the
angle between two cameras. ε is the ratio of number of
chromosomes representing the face position in region-1 to
the total number of chromosomes:

ε =
∑N

i=1 ζi
N

=
⎧
⎨

⎩

< 0.50, Single camera mode,

≥ 0.50, Multiview mode.
(9)

The value of ε decides whether to stay in MOO and
utilize both cameras or to switch to single camera mode.

4.1.4. MOAAM Fitting. For MOAAM (also called MVAAM:
Multiview AAM) fitting we refer readers to our previous
work of [3], which illustrates stepwise detailed description
of MOAAM fitting on a query image. It includes steps of ini-
tialization, reproduction, segmentation, fitness calculations,
nondominating sort, replacement and switching of MOO to
SOO. In our previous work we have highlighted the effects of
slight errors caused by the camera calibration and the ground
truth points for a real face database.

Camera calibration problem arises when we compare
MOAAM results to SOAAM. As we have already mentioned
in Section 3.2 that models obtained from two cameras placed

8 International Journal of Computer Games Technology

Non-dominating

Dominating

e2

e1

(a)

Rank 1

Rank 2

Rank 3

e2

e1

Non-dominating

Dominating

(b)

Figure 9: Pareto Fronts.

Region-1Region-2

θth−θth 0

Region-3

Figure 10: Histogram of chromosomes versus head orientation.

at the extreme edges of the display are blended together to
compare it with the one obtained from the central camera.
This comparison is highly prone to the calibration error of all
the three cameras. Whereas the results from a single camera
(SOAAM) do not experience any calibration problem. In this
paper we have manage to overcome this dilemma by building
a synthetic face database of several individuals. The scenario
shown in Figure 4 is emulated, in the software named as
MAYA, by placing different synthetic characters in between
two virtual cameras each calibrated and located 50◦ apart.
A third camera is placed in-between these two cameras for
the comparison of results of a single camera and double
camera. These cameras have all the characteristics of an
actual camera along with the capability to fix intrinsic and
extrinsic parameters to obtain 100% calibration.

Ground truth points are the exact localization of the
face orientation and features (nose, eyes and mouth). In

real face database there is a possibility of slight errors in
the ground truth points since they are marked manually
on each facial feature of each image. However in synthetic
facial images this problems is solved by obtaining these
locations automatically through scripts written in MAYA.
With all these modifications we have verified our proposition
of MOAAM and have updated our results.

4.2. Experimental Results. We performed simulations using
64 × 64 pixels AAM by annotating 37 subjects of publicly
available databases of M2VTS [46]. However for testing
database we have used both real face database and synthetic
face database. Both these databases contains 2418 facial
images, of 7 real and 10 synthetic faces, from each camera.
Among 2418, 806 images are considered to be taken from
central camera to validate our results. In testing phase face
alignment is performed on all the views from left profile

International Journal of Computer Games Technology 9

(a) (b) (c) (d)

Figure 11: (a) and (b) Comparison of SOAAM and MOAAM (operating in R2 or R3). (c) and (d) Comparison of SOAAM and MOAAM
(operating in R1).

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.25
0

10

20

30

40

50

60

70

80

90

100

Ground truth error (mean)

Sy
n

th
et

ic
 fa

ci
al

 im
ag

es

MOAAM
SOAAM

(a)

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Ground truth error (mean)

W
eb

-c
am

 im
ag

es

MOAAM

SOAAM

0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 12: (a) Comparison of GTEmean for MOAAM and SOAAM (Synthetic face images). (b) Comparison of GTEmean for MOAAM and
SOAAM (Web-cam images).

10 International Journal of Computer Games Technology

Ground truth error (max)

MOAAM
SOAAM

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.25
0

10

20

30

40

50

60

70

80

90

100
Sy

n
th

et
ic

 fa
ci

al
 im

ag
es

(a)

Ground truth error (max)
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

0

10

20

30

40

50

60

70

80

90

100

MOAAM
SOAAM

W
eb

-c
am

 im
ag

es

(b)

Figure 13: (a) Comparison of GTEmax for MOAAM and SOAAM (Synthetic face images). (b) Comparison of GTEmax for MOAAM and
SOAAM (Web-cam images).

to right profile. Two sets of experiments are performed:
SOAAM and MOAAM.

4.2.1. Single-Objective AAM. In SOAAM, AAM is rendered
on the image sequence from the central camera, which
is placed to highlight the benefit of MOAAM. As far as
optimization is concerned, SOAAM is optimized by classical
GA optimization. Same selection and reproduction criteria
of NSGA-II are implemented in GA, in order to give a good
comparison.

4.2.2. Multiobjective AAM. In MOAAM, same AAM is
rendered on the face image sequence from the other two
cameras, which are actually the part of our multiview system.
Localization of face on these two images from each camera is
performed by Pareto-based MOO of NSGA-II.

Best chromosomes obtained at the end of MOAAM and
SOAAM contain best appearance and pose parameters for
a given face. Features like eyes, nose and mouth can be
extracted from these shapes as shown in Figure 11. First three
rows correspond to synthetic faces while remaining rows
represent real human faces. It can be seen from the images
that as the face moves laterally the feature localization gets
far better in two cameras (MOAAM) than in single central
camera (SOAAM).

Figure 12(a) shows percentage of aligned synthetic
images versus mean ground truth error (GTEmean) of facial
features (eyes, nose and mouth). GTEmean is actually the
mean error obtained by comparing MOAAM analyzed
locations and manually marked locations of all the facial
features of a facial image. The error is normalized by Deye

which corresponds to the distance between eyes, that is, an
error of 1 corresponds to a mean error equal to the distance
between the eyes. To eliminate the vagueness of ground truth

markings we consider results starting from 0.1 of Deye, which
means any two algorithms having a GTEmean less than 0.1 is
considered to be equally accurate. While for the maximum
threshold results less than 0.25 of Deye is considered to be
well converged results. Figure 12(a) depicts that our system
of MOAAM fitting by NSGA-II is a lot better than SOAAM
fitting. In MOAAM 69% of the images are aligned with a
GTEmean less than 0.2 of Deye. Whereas SOAAM aligned 41%
of the total images. Similarly Figure 12(b) shows the results
of experiments on real faces (previous work); MOAAM 68%
and SOAAM 50%.

Figures 13(a) and 13(b) illustrate the comparison of both
algorithms with respect to normalized maximum ground
truth error (GTEmax) for both synthetic and real facial images
databases respectively. GTEmax represents worst localization
of a facial feature (eyes, nose or mouth) normalized by Deye.
Figure 13(a) depicts that MOAAM aligned 50% and SOAAM
aligned 28% of synthetic facial images with GTEmax less than
0.2 of Deye. Whereas Figure 13(b) shows MOAAM aligned
30% and SOAAM aligned 10% of real faces.

As far as time consumption is concerned, it is obvious
that at the worst MOAAM required twice of the processing
time compared to SOAAM but at the same time accuracy,
robustness and increased field of view (FOV) is achieved.
Moreover our technique of finding the region of face and
discarding the data from the camera by NSGA-II reduces
this twice factor. SOAAM required 1600 warps whereas
MOAAM instead of 3200 warps required 2700 warps. Each
warp equals 90% of the time consumed by an iteration, that
is, 0.03 milliseconds in Pentium-IV 3.2 GHz. Therefore each
facial image requires 90 milliseconds for the analysis without
any prior knowledge of the pose, however in tracking mode
we can reduce this time by employing pose parameters of
previous frames, which eventually reduces the number of

International Journal of Computer Games Technology 11

AAM
modeling

AAM
modeling

Appearance
Transformation
Matrix (ATM)

calculation

CA

CH

Figure 14: Overview of the face synthesis system. (Colors represents different types of expressions and are shown for the clarity of the display
only).

warps (iterations). Moreover facial analysis by MOAAM can
be made as a generic or a person specific MOAAM. In generic
MOAAM the query face is totally unknown and to analyze it
we need a vast learning database, whereas in person specific
MOAAM model is generated from facial images of the same
individual who would be analyzed by the system. Eventually
person specific MOAAM is more time efficient and robust
compared to generic MOAAM.

5. Face Synthesis

The goal of our application is to clone the gamer’s facial
expression to an avatar. The cloning consists of transferring
the facial expressions from a source (typically a human
face) to a target (another human face or a synthetic one).
The avatar facial deformations then originates from real
human movements (performance-based facial animation),
which usually look more natural than manually-designed
facial animation. Moreover, since the expressions of the
gamer are captured and transferred in real-time, the facial
animation of the avatar acts as a real gaming experience, and
significantly improves the interactivity of the game compared
to prerecorded animation sequences.

5.1. System Description. In this section, we present a general
description of a system that provides an efficient parameter-
ization of an avatars face for the production of emotional
facial expressions, relying on captured human facial data.
Here we make use of two databases of our previous work
of [47]. An illustration of the system and its applications is
displayed on Figure 14.

5.1.1. H-Database. The entry point of the system is a
database of approximately 4000 facial images of emotional
expressions (H-database). These images have been acquired
on an actor performing facial expressions without rigid
head motion. The database was constructed to contain an
important quantity of dynamic natural expressions, both
extreme and subtle, categorical and mixed. A crucial aspect
of the analysis is that the captured expressions do not carry

any emotional label. The facial images will allow us to model
the deformation of the face according to a scheme used in
Section 3.1. The AAM procedure delivers a reduced set of
parameters which represent the principal variation patterns
detected on the face. Every facial expression can be projected
onto this parameter space referred to as the appearance
space (Figure 14 presents symbolic 3D representations of this
space, although it may contain 15 to 20 dimensions). Note
that this process is invertible: it is always possible to project a
point of the appearance space back to a facial configuration,
and thus synthesize the corresponding facial expression as a
facial image.

5.1.2. A-Database. A reduced parameter space similar to the
one described above can be constructed for the synthetic face,
provided that a database of facial expressions for the virtual
character is available (A-database). In this section we show
how to identify a reduced set of facial configurations from
the human database so that a coherent appearance space is
constructed for the avatar (typically 25 to 30 expressions).
The purpose of this avatar database creation scheme is that
the appearance spaces of the human and the synthetic face
have the same semantical meaning, and model the same
information. It is then easy to construct a mathematical link
between them (the ATM as illustrated on Figure 14).

The appearance space for the synthetic face is built
through statistical modeling, similarly to the human appear-
ance space (Section 5.1.1). For real faces, thousand of
database samples can be produced with a video camera and
a feature-tracking algorithm, whereas the elements of an
equivalent synthetic database are manually-designed facial
configurations, which are not easy to obtain. It is thus
desirable to keep the number of required samples small.

Our idea for building the A-database, is to use the human
database, and extract the expressions that have an important
impact on the formation on the appearance space. Indeed,
a lot of samples from the human database bring redundant
information to the modeling process, and are therefore not
essential in the A-database. Following this logic, we are able
to reduce the set of necessary expression to a reasonable size.

12 International Journal of Computer Games Technology

Figure 15: The first elements of the human expression located on
the convex hull of the point cloud formed by all database elements
(top). Avatar’s expressions corresponding to each human expression
(bottom).

Practically, We select the extreme elements of the database,
meaning the elements presenting the maximal variations
with respect to a neutral facial expression. In terms of
parameter space, these elements are located on the convex
hull of the point cloud formed by all database elements
and are detected using [48]. These samples are responsible
for shaping the meaningful variance of the database and
thus encompass the major part of its richness. By manually
reproducing these selected expressions on the face of the
virtual character, we can build its very own appearance
model according to the method presented in Section 3.1. Our
studies have shown that 25–30 expressions are enough to
train an efficient appearance model.

For the human database, we used more than 4000 ele-
ments. Using the convex hull procedure we have been able to
identify 25–30 representatives for the reduced database (see
Figure 15), with a small reconstruction error. Such a reduced
database can be constructed for any synthetic character,
and any human face based on the same extracted elements
(see construction of the gamer’s database in Section 6.2).
Having to design several facial configurations manually on
a synthetic character is a limitation of the method, yet it
also can be seen as an advantage: our system does not rely
on any particular facial control method (muscle systems,
blendshapes, etc). Any scheme able to provide good facial
configurations can be used. Our system can therefore easily
be integrated in already-established workflows.

The database construction method creates a specific
connection between the two databases, and thus the two
appearance spaces. In the next sections, we will see how we
benefit from it to animate the avatar based on the human
motion data.

5.1.3. Appearance Transformation Matrix (ATM). The ideas
developed in the previous section have lead to the con-
struction of analogous appearance spaces for the human
face and the synthetic face. Both spaces are connected, since
the construction of the avatar appearance space is based on
elements replicated from the human database. It follows that
we have a correspondences between points in the human
appearance space and points in the avatar space. We propose
to use this sparse correspondence to construct an analytical

Figure 16: Examples of cloning of facial expressions. The expres-
sions captured on the human face (left) are successfully transferred
to the faces of avatars (middle and right). First row shows neutral
faces.

link between both spaces. This link will then be used to
transform human appearance parameters CH into avatar
appearance parameters CA, and thus clone a human facial
expression on the synthetic face.

It can be noted that the modeling scheme of AAM we
use is linear equations (1), (2) and (3). Linear variations
and combinations are thus preserved by the modeling steps,
and we wish to maintain this linear chain in the retargeting
process. Therefore, as in other approaches like [27], we
applied a simple linear mapping on the parameters of the
appearance spaces:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

CH(11) CH(12) · · · CH(1k)

CH(21) CH(22) · · · CH(2k)

...
...

. . .
...

CH(m1) CH(m2) · · · CH(mk)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= A0 ∗

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

CA(11) CA(12) · · · CA(1k)

CA(21) CA(22) · · · CA(2k)

...
...

. . .
...

CA(n1) CA(n2) · · · CA(nk)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(10)

where m and n are the number of appearance parameters of
human and synthetic appearance space respectively, while k
is the number of expression stored in the database. Hence if

International Journal of Computer Games Technology 13

Avatar’s face modeling

Gamer’s face modeling
C

C1

C

CA

CG

Generic
MOAAM

Fine
tuning

AAM
modeling

Appearance (C) parameters

Pose (P) parameters

Appearance
Transformation
Matrix (ATM)

calculation

AAM modeling

Online cloning

C

C1

C

C2

Person
specific

MOAAM

Human C
parameters

transformation to
synthetic C
parameters

C2

Figure 17: Block diagram of the interactive system.

Table 1: Experimental details. (Avatar1 and Avatar2 are shown in
the middle and right columns of Figure 16 resp.).

C-Parameters Expression (k)

Human m = 24 28

Avatar1 n = 20 28

Avatar2 n = 18 28

CH is a m × k matrix and CA is a n × k matrix, A0 will be of
m× n.

The matrix A0 is obtained through linear regression
on the set of corresponding points. Depending on the
dimensionality of the appearance spaces (usually 15 to 20), it
can be profitable to turn to Principal Component Regression
[49] to cope with a possible underdetermination of the
regression problem. Retargeting results are illustrated by
a few snapshots on Figure 16. Experimental details used
are given in Table 1. Complete sequences of expression
retargeting can also be found on the accompanying video.

6. Interactive System

Our proposition is a complete human machine interactive
system for a game console. Figure 17 is a detailed description
of our system. This time it is viewed from perspective of
stages of the global system. System is composed of three
stages.

6.1. Avatar’s Face Modeling. In this section, we make use of
procedure of Section 5.1.2 to obtain a database of simple
and realistic facial expressions of an avatar called A-database.
The visual aspect of the synthetic character is chosen by
the user. Different classes of synthetic faces are available
representing different ages, races, gender, physique and
features and so forth. Once the class of the avatar is chosen,
the required facial expressions, already stored in the system,
are generated for this face (from the expressions identified in
Section 5.1.2). Note that the system’s user has the possibility
to edit the suggested facial expression to personalize the look
of its avatar by manually clicking and moving the vertices.
Ultimately the A-database contains the expressions, on the
user-chosen character, which are necessary to form the A-
Database.

We can build the its appearance model according to the
method presented in Section 3.1. This procedure delivers
a reduced set of parameters which represent the principal
variation patterns observed on the synthetic face (CA).
Manual marking of the landmark on the synthetic face is
not needed as the synthetic face is already generated by the
system and it contains the location of each vertex.

6.2. Gamer’s Face Modeling. The procedure of training is very
simple and unproblematic. The essence of this phase is to
make the system learn the facial deformations of the gamer’s
face so it can replicate the localization of features, emotions
and gestures on the synthetic face. The construction of the

14 International Journal of Computer Games Technology

Table 2: Processing time for Gamer’s face modeling. (offline).

Processing block Time

Generic MOAAM 90 milliseconds/frame

Fine tuning 30–40 sec/image

AAM modeling 5.68 sec (28 expressions)

Computation of ATM 24 milliseconds

Gamer’s database is similar to the one of the avatar. The
gamer has to mimic the expressions that have an important
impact on the formation of the appearance space (identified
in Section 5.1.2). In practice, the required facial expressions
are displayed serially for the user to imitate. Facial images
are captured by generic MOAAM, as explained in Section 4
to automatically localize the facial features. Since user is
unknown to the system therefore generic MOAAM contain-
ing an AAM model based on M2VTS facial images database
is used. Feature localized by MOAAM is displayed on the
screen for the user to fine tune the location of each feature.
Finally all the facial images of the gamer are generated,
each corresponding to synthetic facial expression of the A-
Database. By reproducing these selected facial expressions of
the gamer, we can build its very own appearance model along
with its reduced appearance parameters CG according to the
method presented in Section 3.1. With CG and CA (obtained
in previous section) we can calculate ATM mathematically
(see Section 5.1.3). This ATM is gamer dependent and can be
used for cloning only for particular gamer who was involved
in generating it in the first place. Time cost for this phase is
tabulated in Table 2.

CA = A0 ∗ CG. (11)

6.3. Online Cloning. From the previous two sections we
obtained an ATM capable of transforming the appearance
parameters from the gamer’s appearance space to the avatar’s
appearance space. In online cloning, this transformation
involves only a matrix multiplication of real-time gamer’s
appearance parameters CG with A0 to obtain avatar’s appear-
ance parameters CA. This analytically simple framework
enables real-time performances. The virtual illustration of a
gamer is cloned in the form of an avatar synthesized by CA

and ultimately display on the screen as shown on Figure 17.
The appearance parameters of a gamer are acquired in

real-time by our facial analysis system of multiple cameras.
Tactical moves of the game causes the gamer to move a lot in
different direction. Yet the retargeting scheme of Section 5.1
has been designed for stable heads. Employing multiple
cameras resolved this problem. Two cameras placed at the
extreme edges of the screen acquire real-time image of the
gamer and at the same time his facial features and pose
are analyzed by person specific MOAAM. Person specific
MOAAM model is generated from the gamer database of
the previous section and it contain all the pose-free facial
variations of the gamer.

User’s oriented face is analysed by MOAAM, to give
its appearance and pose parameters. These appearance

Table 3: Processing time for online cloning.

Processing block Time (msec/frame)

Person specific MOAAM 34

Transformation by ATM 0.015

Rendering (800× 600) 30

(2740 vertices)

parameters are pose-free and belongs to the frontal face
of the user. These parameters are transformed by ATM in
the synthetic face’s parameter space and synthetic face is
synthesized by them. After that pose parameters obtained
previously by MOAAM analysis are used to adjust the
orientation of the avatar being displayed on the screen. As
shown in the cloning section of the Figure 17, appearance
parameters undergoes transformation while pose parameter
are directly reproduced on the avatar face to clone both the
gamer’s expressions and gestures. Time cost of each block, for
a Pentium-IV 3.2 GHz platform, is tabulated in Table 3. The
linearity of the AAM scheme allows the reproduction of both
extreme and intermediate facial expressions and movements,
with low computing requirements.

7. Conclusions

In this paper we proposed a solution to solve two bottlenecks
of facial analysis and synthesis in an interactive system
of human face cloning for nonexpert users of computer
games. Facial emotions and pose of gamers cloned to bring
their realistic behavior to virtual characters. Bottlenecks of
analyzing the human face and synthesizing it in the form of
an avatar are dealt with.

Large lateral movements of a gamer makes it impossible
to analyze and track his face with single camera. To overcome
this dilemma we exploit data from another camera and
associate it with the one unable to analyze at the first
place. Earlier the cost of a webcam and slow processor
demotivated the possibility of managing excessive amount of
data from multiple cameras. Currently with wide availability
of inexpensive webcams the multiview system is as practical
as single-view. To analyze the acquired multiview facial
images we proposed multiobjective 2.5D AAM (MOAAM)
optimized by Pareto-based NSGA-II. We have presented new
results (Section 4.2) because of the problem of calibration
and ground truth points in our previous work. Our approach
of MOAAM is accurate, robust and capable of extracting the
pose, features and gestures even with large lateral movements
of a face.

As far as facial synthesis is concerned, cloning the
human facial movements onto an avatar is not trivial due
to their facial morphological differences. We proposed a
new technique of calculating the mathematical semantic
correspondence between the appearance parameters of the
human and avatar (ATM matrix). We calculated this ATM
for the gamer to be able to clone his emotions on the avatar
in real-time. The interactive system we have presented is
complete and easy to use. We have shown the results of facial

International Journal of Computer Games Technology 15

features and pose extraction and how we synthesize these
facial details on an avatar by calculating the ATM with the
gamer’s help.

Although gamer’s and avatar’s database construction and
its training is a long and tedious job. But it is supposed to
be done once every time a new gamer is introduced. On
the other hand our system is capable of performing online
cloning of each frame in 64.015 milliseconds (i.e., 15 frames
per second), as being nearly a real-time system. For the
moment, this approach is limited to be used in an interactive
system for the gamers, but it would be interesting to extend
it for larger events, like conferences and meetings, with
multiple cameras installed on different corners of the room
and displayed on video projectors. Moreover it can be used
efficiently in communication where the channel bandwidth
is limited, since only the small amount of appearance and
pose parameters are transmitted from the human face to the
avatar for face synthesis.

Acknowledgments

Part of this work is financially supported by Higher Educa-
tion Commission Pakistan. The authors would also like to
thank the anonymous reviewers.

References

[1] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appear-
ance models,” in Proceedings of the European Conference on
Computer Vision (ECCV ’98), vol. 2, pp. 484–498, Freiburg,
Germany, June 1998.

[2] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: Nsga-II,” in Parallel Problem Solving from Nature
VI Conference, pp. 849–858, 2000.

[3] A. Sattar and R. Seguier, “MVAAM (multi-view active appear-
ance model) optimized by multi-objective genetic algorithm,”
in Proceedings of the 8th IEEE International Conference on
Automatic Face and Gesture Recognition (FG ’08), 2008.

[4] T. F. Cootes and C. J. Taylor, “Statistical models of appear-
ance for computer vision,” Tech. Rep., Imaging Science and
Biomedical Engineering, University of Manchester, 2004.

[5] S. Ting, B. C. Lovell, and C. Shaokang, “Face recognition
robust to head pose from one sample image,” in Proceedings of
the 18th International Conference on Pattern Recognition (ICPR
’06), vol. 1, pp. 515–518, 2006.

[6] X. Shenjun and A. Haizhou, “Face alignment under various
poses and expressions,” in Proceedings of the 1st International
Conference on Affective Computing and Intelligent Interaction
(ACII ’05), vol. 3784, p. 3784, Beijing, China, 2005.

[7] L. Yanghua, L. Yang, T. Linmi, and X. Guangyou, “Multiview
face alignment guided by several facial feature points,” in
Proceedings of the 3rd International Conference on Image and
Graphics (ICIG ’04), pp. 238–241, 2004.

[8] S. Yan and C. QianSheng, “Multi-view face alignment using
direct appearance models,” in Proceedings of the 5th IEEE Inter-
national Conference on Automatic Face and Gesture Recognition
(FGR ’02), pp. 238–241, 2002.

[9] M. Romero and A. F. Bobick, “Tracking head yaw by interpola-
tion of template responses,” in Proceedings of the Conference on

Computer Vision and Pattern Recognition Workshop (CVPRW
’04), vol. 5, p. 83, 2004.

[10] T. F. Cootes, G. V. Wheeler, K. N. Walker, and C. J. Taylors,
“Coupled-view active appearance models,” in Proceedings of
British Machine Vision Conference, vol. 1, pp. 52–61, 2000.

[11] F. Dornaika and J. Ahlberg, “Fast and reliable active appear-
ance model search for 3d face tracking,” in Proceedings of
Mirage INRIA Rocquencourt, Paris, France, 2003.

[12] J. Xiao, S. Baker, I. Matthews, and T. Kanade, “Real-time
combined 2D+3D active appearance models,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’04), vol. 2, pp. 535–542, 2004.

[13] J. Sung and D. Kim, “Extension of AAM with 3D shape model
for facial shape tracking,” in Proceedings of the International
Conference on Image Processing (ICIP ’04), vol. 5, pp. 3363–
3366, 2004.

[14] A. Sattar, Y. Aidarous, and R. Seguier, “GAGM-AAM: a genetic
optimization with gaussian mixtures for active appearance
models,” in Proceedings of the 15th International Conference on
Image Processing (ICIP ’08), pp. 3220–3223, 2008.

[15] C. Hu, J. Xiao, I. Matthews, S. Baker, J. F. Cohn, and T. Kanade,
“Fitting a single active appearance model simultaneously to
multiple images,” in Proceedings of the British Machine Vision
Conference, 2004.

[16] D. Kim and J. Sung, “A real-time face tracking using the stereo
active appearance model,” in Proceedings of the International
Conference on Image Processing (ICIP ’06), pp. 2833–2836,
2006.

[17] F. Dornaika and A. Sappa, “Improving appearance-based
3d face tracking using sparse stereo data,” in Proceedings of
the International Conference on Computer Vision Theory and
Applications (VISAPP ’06), 2006.

[18] R. Yang and Z. Y. Zhang, “Model-based head pose tracking
with stereovision,” in Proceedings of the 5th IEEE International
Conference on Automatic Face and Gesture Recognition (FGR
’02), p. 255, 2002.

[19] J. Tu, T. Huang, Y. Xiong, T. Rose, and F. K. H. Quek,
“Calibrating head pose estimation in videos for meeting room
event analysis,” in Proceedings of the International Conference
on Image Processing (ICIP ’06), vol. 5, pp. 3193–3196, 2006.

[20] J. Chai, J. Xiao, and J. Hodgins, “Vision-based control
of 3d facial animation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
(SCA ’023, pp. 193–206, 2003.

[21] L. Williams, “Performance-driven facial animation,” in Pro-
ceedings of the 17th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’90), pp. 235–242,
Dallas, Tex, USA, September 1990.

[22] F. Pighin, R. Szeliski, and D. H. Salesin, “Resynthesizing facial
animation through 3D model-based tracking,” in Proceedings
of the IEEE International Conference on Computer Vision
(ICCV ’99), vol. 1, pp. 143–150, 1999.

[23] J.-Y Noh and U. Neumann, “Expression cloning,” in Proceed-
ings of the International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’81, pp. 21–28, 2001.

[24] Z. Liu, Y. Shan, and Z. Zhang, “Expressive expression mapping
with ratio images,” in Proceedings of the 19th Annual ACM
Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’01), pp. 271–276, 2001.

[25] C. Kouadio, P. Poulin, and P. Lachapelle, “Real-time facial
animation based upon a bank of 3d facial expressions,” in
Proceedings of the Computer Animation, pp. 128–136, 1998.

16 International Journal of Computer Games Technology

[26] E. S. Chuang and C. Bregler, “Performance driven facial
animation using blendshape interpolation,” Tech. Rep. CS-TR-
2002-02, Stanford University, 2002.

[27] Y. Zhang, M. Luo, and S. Xu, “An efficient markerless method
for resynthesizing facial animation on an anatomy-based
model,” in Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME ’07), pp. 971–974, 2007.

[28] F. I. Parke, “Parameterized models for facial animation,” IEEE
Computer Graphics and Applications, vol. 2, no. 9, pp. 61–68,
1982.

[29] M.-L. Viaud and H. Yahia, “Facial animation with wrinkles,”
in Eurographics Worshop on Animation and Simulation, 1992.

[30] N. Magnenat-Thalmann, E. Primeau, and D. Thalmann,
“Abstract muscle action procedures for human face anima-
tion,” The Visual Computer, vol. 3, no. 5, pp. 290–297, 1988.

[31] P. Kalra, A. Mangili, N. Magnenat-Thalmann, and D. Thal-
mann, “Simulation of facial muscle actions based on rational
free form deformations,” Computer Graphics Forum, vol. 11,
no. 3, pp. 59–69, 1992.

[32] K. Waters, “A muscle model for animation threedimensional
facial expression,” in Proceedings of the 3rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’87), vol. 21, pp. 17–24, 1987.

[33] E. Sifakis, I. Neverov, and R. Fedkiw, “Automatic determina-
tion of facial muscle activations from sparse motion capture
marker data,” ACM Transactions on Graphics, vol. 24, no. 3,
pp. 417–425, 2005.

[34] P. Ekman and W. V. Friesen, Facial Action Coding System: A
Technique for the Measurement of Facial Movement, Consulting
Psychologists Press, 1978.

[35] A. Eleftheriadis, C. Herpel, G. Rajan, and L. Ward, “Mpeg-
4 systems, text for iso/iec fcd 14496-1 systems,” in MPEG-4
SNHC, 1998.

[36] M. Byun and N. I. Badler, “Facemote: qualitative parametric
modifiers for facial animations,” in Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
vol. , pp. 65–71, 2002.

[37] C. Curio, M. Breidt, M. Kleiner, Q. C. Vuong, M. A. Giese,
and H. H. Bülthoff, “Semantic 3D motion retargeting for
facial animation,” in Proceedings of the Symposium on Applied
Perception in Graphics and Visualization (APGV ’06), pp. 77–
84, 2006.

[38] E. S. Chuang and C. Bregler, “Mood swings: expressive speech
animation,” ACM Transactions on Graphics, vol. 24, no. 2, pp.
331–347, 2005.

[39] I. Macedo, E. V. Brazil, and L. Velho, “Expression transfer
between photographs through multilinear AAM’s,” in Pro-
ceedings of the Brazilian Symposium of Computer Graphic and
Image Processing (SIBGRAPI ’06), pp. 239–246, 2006.

[40] B.-J. Theobald, I. A. Matthews, J. F. Cohn, and S. M. Boker,
“Real-time expression cloning using appearance models,” in
Proceedings of the 9th International Conference on Multimodal
Interfaces (ICMI ’07), pp. 134–139, 2007.

[41] L. Zalewski and S. Gong, “2D statistical models of facial
expressions for realistic 3D avatar animation,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’05), vol. 2, pp. 217–222, San
Diego, Calif, USA, 2005.

[42] D. Cosker, S. Roy, P. L. Rosin, and D. Marshall, “Re-mapping
animation parameters between multiple types of facial model,”
Lecture Notes in Computer Science, vol. 4418, pp. 365–376,
2007.

[43] M. B. Stegmann, Active appearance models: theory, extensions
and cases, mastersthesis, Informatics and Mathematical Mod-
elling, Technical University of Denmark, DTU, 2000.

[44] C. Goodall, “Procrustes methods in the statistical analysis of
shape,” Journal Royal Statistical Society, vol. 53, pp. 285–339,
1991.

[45] “Camera calibration toolbox,” http://www.vision.caltech.edu/
bouguetj/calib doc/index.html.

[46] S. Pigeon, “M2VTS: multi modal verification for teleservices
and security applications,” 1996.

[47] N. Stoiber, R. Seguier, and G. Breton, “Automatic design of
a control interface for a synthetic face,” in Proceedings of the
International Conference on Intelligent User Interfaces (IUI ’09),
2009.

[48] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The
quickhull algorithm for convex hulls,” ACM Transactions on
Mathematical Software, vol. 22, no. 4, pp. 469–483, 1996.

[49] J. O. Rawlings, Applied Regression Analysis, Wadsworth and
Brooks Cole, 1988.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 573924, 15 pages
doi:10.1155/2009/573924

Research Article

Face to Face: Anthropometry-Based Interactive Face Shape
Modeling Using Model Priors

Yu Zhang1 and Edmond C. Prakash2

1 Institute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632
2 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, UK

Correspondence should be addressed to Yu Zhang, zhangyu luo@hotmail.com

Received 1 February 2009; Accepted 19 February 2009

Recommended by Suiping Zhou

This paper presents a new anthropometrics-based method for generating realistic, controllable face models. Our method
establishes an intuitive and efficient interface to facilitate procedures for interactive 3D face modeling and editing. It takes 3D
face scans as examples in order to exploit the variations presented in the real faces of individuals. The system automatically
learns a model prior from the data-sets of example meshes of facial features using principal component analysis (PCA) and uses
it to regulate the naturalness of synthesized faces. For each facial feature, we compute a set of anthropometric measurements
to parameterize the example meshes into a measurement space. Using PCA coefficients as a compact shape representation, we
formulate the face modeling problem in a scattered data interpolation framework which takes the user-specified anthropometric
parameters as input. Solving the interpolation problem in a reduced subspace allows us to generate a natural face shape that
satisfies the user-specified constraints. At runtime, the new face shape can be generated at an interactive rate. We demonstrate the
utility of our method by presenting several applications, including analysis of facial features of subjects in different race groups,
facial feature transfer, and adapting face models to a particular population group.

Copyright © 2009 Y. Zhang and E. C. Prakash. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

One of the most challenging tasks in graphics modeling
is to build an interactive system that allows users to
model varied, realistic geometric models of human faces
quickly and easily. Applications of such a system range from
entertainment to communications: virtual human faces need
to be generated for movies, computer games, advertisements,
or other virtual environments, and facial avatars are needed
for video teleconference and other instant communication
programs. Some authoring tools for character modeling and
animation are available (e.g., Maya [1], Poser [2], DazStudio
[3], PeoplePutty [4]). In these systems, deformation settings
are specified manually over the range of possible deformation
for hundreds of vertices in order to achieve desired results.
An infinite number of deformations exist for a given face
mesh that can result in different shapes ranging from
the realistic facial geometries to implausible appearances.
Consequently, interactive modeling is often a tedious and
complex process requiring substantial technical as well as

artistic skill. This problem is compounded by the fact that
the slightest deviation from real facial appearance can be
immediately perceived as wrong by the most casual viewer.
While the exiting systems have exquisite control rigs to
provide detailed control, these controls are based on general
modeling techniques such as point morphing or free-form
deformations, and therefore lack intuition and accessibility
for novices. Users often face a considerable learning curve to
understand and use such control rigs.

To address the lack of intuition in current modeling
systems, we aim to leverage the anthropometrical measure-
ments as control rigs for 3D face modeling. Traditionally,
anthropometry—the study of human body measurement—
characterizes the human face using linear distance mea-
sures between anatomical landmarks or circumferences at
predefined locations [5]. The anthropometrical parameters
provide a familiar interface while still providing a high level
of control to users. While this is a compact description,
they do not uniquely specify the shape of the human
face. Furthermore, particularly for computer face modeling,

2 International Journal of Computer Games Technology

the sparse anthropometric measurements taken at a small
number of landmarks on the face do not capture the detailed
shape variations needed for realism. The desire is to map
such sparse data into a fully reconstructed 3D surface model.
Our goal is a system that uses model priors learned from
prerecorded facial shape data to create natural facial shapes
that match anthropometric constraints specified by the user.
The system can be used to generate a complete surface mesh
given only a succinct specification of the desired shape, and
it can be used by expert and novice alike to create synthetic
3D faces for myriad uses.

1.1. Background and Previous Work. A large body of litera-
ture on modeling and animating faces has been published
in the last three decades. A good overview can be found
in the textbook [6] and in the survey [7]. In this work,
we focus on modeling static face geometry. In this context,
several approaches have been proposed. They can be roughly
classified into the creative approach and the reconstructive
approach.

The creative approach is to facilitate manual specification
of the new face model by a user. Parametric face models [8–
11] and many commercial modelers fall into this approach.
The desire is to create an encapsulated model that can
generate a wide range of faces based on a small set of
input parameters. They provide full control over the result,
including the ability to produce cartoon effects and the
high efficiency of geometric manipulation. However, manual
parameter tuning without geometric constraints from real
human faces for generating realistic faces is difficult and
time-consuming. Moreover, the choice of the parameter set
depends on the face mesh topology and therefore the manual
association of a group of vertices to a specific parameter is
required.

The reconstructive approach is to extract face geometry
from the measurement of a living subject. The recon-
structive approach is to extract face geometry from the
measurement of a living subject. In this category, the image-
based technique [12–18] utilizes an existing 3D face model
and information from few pictures (or video streams) for
the reconstruction of face geometry. Although this kind
of technique can provide reconstructed face models easily,
its drawbacks are the inaccurate geometry reconstruction
and inability to generate new faces that have no image
counterparts. Another limiting factor of this technique lies
in that it gives very little control to the user.

With a significant increase in the quality and availability
of 3D capture methods, a common approach towards
creating face models uses laser range scanners to acquire
both the face geometry and texture simultaneously [19–
22]. Although the acquired face data is highly accurate,
unfortunately, substantial effort is needed to process the
noisy and incomplete data into a model suitable for modeling
or animation. In addition, the result of this effort is a model
corresponding to a single individual; and each new face
must be found on a subject. The desired face may not even
physically exist. Furthermore, the user does not have any
control over the captured model to edit it in a way that
produces a novel face.

Besides these approaches, DeCarlo et al. [23] construct
a range of face models with realistic proportions using a
variationally constrained optimization technique. However,
without the use of the model priors, their method cannot
generate natural models unless the user accurately specifies a
very detailed set of constraints. Also, this approach requires
minutes of computation for the optimization process to
generate a face model. Blanz and Vetter [24] present a process
for estimating the shape of a face from a single photograph.
This is extended by Blanz et al. [25], who present a set of
controls for intuitive manipulation of facial attributes. In
contrast to our work, they manually assign attribute values
to characterize the face shape, and devise attribute controls
using linear regression. Vlasic et al. [26] use multilinear face
models to study and synthesize variations in faces along
several axes, such as identity and expression. An interface
for gradient-based face space navigation has been proposed
in [27]. Principal components that are not intuitive to users
are used as navigation axes in face space, and facial features
cannot be controlled individually. The authors focus on a
comparison of different user interfaces.

Several commercial systems for generating composite
facial images are available [28–30]. Although they are
effective to use, a 2D face composite still lacks some of the
advantages of a 3D model, such as the complete freedom
of viewpoint and the ability to be combined with other 3D
graphics. Additionally, to our knowledge, no commercial 2D
composite system available today supports automatic com-
pletion of unspecified facial regions according to statistical
properties. FaceGen 3 [31] is the only existing system that we
have found to be similar to ours in functionality. However,
there is not much information available about how this
function is achieved. As far as we know, it is built on [24]
and the face mesh is not divided into different independent
regions for localized deformation. In consequence, editing
operations on individual facial features tend to affect the
whole face.

1.2. Our Approach. In this paper, we present a new method
for interactively generating facial models from user-specified
anthropometric parameters while matching the statistical
properties of a database of scanned models. Figure 1 shows
a block diagram of the system architecture. We use a three-
step model fitting approach for the 3D registration problem.
By bringing scanned models into full correspondence with
each other, the shape variation is represented by using
principal component analysis (PCA), which induces a low-
dimensional subspace of facial feature shapes. We explore
the space of probable facial feature shapes using high-
level control parameters. We parameterize the example
models using the face anthropometric measurements, and
predefine the interpolation functions for the parameterized
example models. At runtime, the interpolation functions
are evaluated to efficiently generate the appropriate feature
shapes by taking the anthropometric parameters as input.
Apart from an initial tuning of feature point positions,
our method works fully automatically. We evaluate the
performance of our method with cross-validation tests. We
also compare our method against optimization in the PCA

International Journal of Computer Games Technology 3

subspace for generating facial feature shapes from constraints
of the ground truth data.

In addition, the anthropometric-based face synthesis
method, combined with our database of statistics for a large
number of subjects, opens ground for a variety of appli-
cations. Chief among these is analysis of facial features of
different races. Second, the user can transfer facial feature(s)
from one individual to another. This allows a plausible
new face to be quickly generated by composing different
features from multiple faces in the database. Third, the user
can adapt the face model to a particular population group
by synthesizing characteristic facial features from extracted
statistics. Finally, our method allows for compression of data,
enabling us to share statistics with the research community
for further study of faces.

Unlike a previous approach [23], we utilize the prior
knowledge of the face shape in relation to the given
measurements to regulate the naturalness of modeled faces.
Moreover, our method efficiently generates a new face with
the desired shape within a second. Our method also differs
significantly from the approach presented in [24, 25] in sev-
eral respects. First, they manually assign the attribute values
to the face shape and devise attribute controls for single
control using linear regression. We automatically compute
the anthropometric measurements for face shape and relate
several attribute controls simultaneously by learning a map-
ping between the anthropometric measurement space and
the feature shape space through scattered data interpolation.
Second, they use a 3D variant of a gradient-based optical
flow algorithm to derive the point-to-point correspondence
between scanned models. This approach does not work well
for faces of different races or in different illumination given
the inherent problem of using static textures. We present a
robust method of determining correspondences that does
not depend on the texture information. Third, their method
tends to control the global face and requires additional
constraints to restrict the effect of editing operations to a
local region. In contrast, our method guarantees local control
thanks to its feature-based nature.

The main contributions of our work are as follows.

(i) A general, controllable, and practical system for face
modeling and editing. Our method estimates high-
level control models in order to infer a particular
face from intuitive input controls. As correlations
between control parameters and the face shape are
estimated by exploiting the real faces of individuals,
our method regulates the naturalness of synthesized
faces. Unspecified parts of the synthesized facial
features are automatically completed according to
statistical properties.

(ii) We propose a new algorithm which uses intuitive
attribute parameters of facial features to navigate face
space. Our system provides sets of comprehensive
anthropometric parameters to easily control face
shape characteristics, taking into account the physical
structure of real faces.

(iii) A robust, automatic model fitting approach for estab-
lishing correspondences between scanned models.

(iv) The automatic runtime synthesis is efficient in time
complexity and performs fast.

The remainder of this paper is organized as follows: Section 2
presents the face data we use. Section 3 elaborates on the
model fitting technique. Section 4 describes the construction
of local shape spaces. The face anthropometric parameters
used in our work are illustrated in Section 5. Section 6
and Section 7 describe our techniques of feature-based
shape synthesis and subregion blending, respectively. After
presenting and explaining the results in Section 8, we present
a variety of applications of our approach in Section 9.
Section 10 gives concluding remarks and our future work.

2. Scanned Data and Preprocessing

We use the USF face database [32] that consists of Cyberware
face scans of 186 subjects with a mixture of gender, race,
and age. The age of the subjects ranges from 17 to 68 years,
and there are 126 male and 60 female subjects. Most of
the subjects are Caucasians (129), with African-Americans
making up the second largest group (37), and Asians the
smallest group (20). All faces are without makeup and
accessories. The laser scans provide face structure data which
contains approximately 180 k surface points and a 360× 524
reflectance (RGB) image for texture-mapping (see Figures
2(a) and 2(b)). We also use a generic head model which
consists of 1.092 vertices and 2.274 triangles. Prescribed
colors are added to each triangle to form a smooth-shaded
surface (see Figure 2(c)).

Let each 3D face scan in the database be Si (i = 1, . . . ,M).
Since the number of vertices in Si varies, we resample all
faces in the database so that they have the same number
of vertices all in mutual correspondence. Feature points
are identified semi-automatically to guide the resampling.
Figure 3 depicts the process. As illustrated in Figure 3(a),
a 2D feature mask consisting of polylines groups a set of
86 feature points that correspond to the feature point sets
of MPEG-4 Facial Definition Parameters (FDPs) [33]. The
feature mask is superimposed onto the front-view face image
obtained by orthographic projection of a textured 3D face
scan into an image plane. The facial features in this image
are identified by using the Active Shape Models (ASMs) [34]
and the feature mask is fitted to the features automatically.
The 2D feature mask can be manipulated interactively. A
little user interaction is needed to tune the feature point
positions due to the slight inaccuracy of the automatic facial
feature detection. But this is restricted to slight corrections
of wayward feature points. The 3D positions of the feature
points on the scanned surface are then recovered by back-
projection to the 3D space. In this way, we efficiently define
a set of feature points on a scanned model Si as Ui =
{ui,1, . . . , ui,n}, where n = 86. Our generic model G is already
tagged with the corresponding set of feature points V =
{v1, . . . , vn} by default.

3. Model Fitting

3.1. Global Warping. The problem of deriving full corre-
spondence for all models Si can be stated as: resample the

4 International Journal of Computer Games Technology

Example
scanned models

Model fitting

PCA subspace
projection

PCA shape
parameters

Anthropometrical
parameters

Anthropometrical
measurement

space projection

RBF network
training

Subregion
blending

Synthesized
face shapes

RBF
interpolation

network

Offline processing

Runtime application

Measurement
parameters

Conformed face
meshes with

correspondences

Figure 1: Overview of the interactive face shape synthesis system.

(a) (b) (c)

Figure 2: Face data: (a) scanned face geometry; (b) texture-mapped
face scan; (c) generic model.

surface for all Si using G under the constraint that v j is
mapped to ui, j . The displacement vector di, j = ui, j − v j

is known for each feature point v j on the generic model
and ui, j on the scanned surface. These displacements are
utilized to construct the interpolating function that returns
the displacement for each generic mesh vertex:

f(x) =
n∑

j=1

w jφ j

(∥
∥
∥x − v j

∥
∥
∥
)

+ Mx + t, (1)

where x ∈ R3 is a vertex on the generic model, ‖ · ‖
denotes the Euclidean norm and φ is a radial basis function.
w j , M and t are the unknown parameters. Among them,
w j ∈R3 are the interpolation weights, M ∈R3×3 represents
rotation and scaling transformations, and t ∈ R3 represents
translation transformation.

Different functions for φ(r) are available [35]. We had
better results with the multi-quadric function φ(r) =√
r2 + ρ2, where ρ is the locality parameter used to control

how the basis function is influenced by neighboring feature
points. ρ is determined as the Euclidean distance to the
nearest other feature point. To determine the weights w j and
the affine transformation parameters M and t, we solve the
following equations:

di, j = f
(

v j

)
|nj=1,

n∑

j=1

w j = 0,
n∑

j=1

wT
j v j = 0. (2)

This system of linear equations is solved using the LU
decomposition to obtain the unknown parameters. Using
the predefined interpolation function as given in (1), we
calculate the displacement vectors of all vertices to deform
the generic model.

3.2. Local Deformation. The warping with a small set of
correspondences does not produce a perfect surface match.
We further improve the shape using a local deformation
which fits the globally warped generic mesh G̃ to the scanned
model Si by iteratively minimizing the distance from the
vertices of G̃ to the surface of Si. To optimize the positions
of vertices of G̃, the local deformation process minimizes an
energy function:

E
(
G̃
)
= Eext

(
G̃, Si

)
+ Eint

(
G̃
)

(3)

International Journal of Computer Games Technology 5

(a) (b) (c) (d) (e)

Figure 3: Semi-automatic feature point identification: (a) initial outline of the feature mask; (b) after automatic facial feature detection; (c)
after interactive tuning; (d) and (e) 3D feature points identified on the scanned model and the generic model.

(a) (b) (c)

Figure 4: Model fitting: (a) deformed generic mesh after model
fitting; (b) scanned model; (e) texture mapping of the deformed
generic mesh.

where Eext stands for the external energy and Eint the internal
energy.

The external energy term Eext attracts the vertices of G̃ to
their closest compatible points on Si. It is defined as

Eext

(
G̃, Si

)
=

NG∑

j=1

ζj
∥
∥
∥x j − s j

∥
∥
∥

2
, (4)

where NG is the number of vertices on the generic mesh, x j

is the jth mesh vertex, and s j is the closest compatible point
of x j on Si. The weights ζj measure the compatibility of the

points on G̃ and Si. As G̃ closely approximates Si in the global
warping procedure, we consider a vertex on G̃ and a point
on Si to be highly compatible if the surface normals at each
point have similar directions. Hence, we define ζj as:

ζj =
⎧
⎪⎨

⎪⎩

n
(

x j

)
· n
(

s j
)

if n
(

x j

)
· n
(

s j
)
> 0

0 otherwise,
(5)

where n(x j) and n(s j) are the surface normals at x j and s j ,
respectively. In this way, dissimilar local surface patches are
less likely to be matched, for example, front-facing surfaces
will not be matched to back-facing surfaces. To accelerate the
minimum-distance calculation, we precompute a hierarchi-
cal bounding box structure for Si so that the closest triangles
are checked first.

The transformations applied to the vertices within a
region of the surface may differ from each other considerably,
resulting in a non-smoothly deformed surface. To enforce

local smoothness of the mesh, the internal energy term Eint is
introduced as follows:

Eint

(
G̃
)
=

NG∑

j=1

∑

k∈Ω j

∥
∥
∥
(

x j − xk

)
−
(

x̃ j − x̃k

)∥
∥
∥

2
, (6)

where Ω j is the set grouping all neighboring vertices xk that
are linked by edges to x j , and x̃ j and x̃k are the original
positions of x j and xk before local deformation. Including
this energy term constrains the deformation of the generic
mesh and keeps the optimization from converging to a
solution far from the initial configuration.

Minimizing E(G̃) is a nonlinear least-square problem
and optimization is performed using L-BFGS-B, which
is a quasi-Newtonian solver [36]. The optimization stops
when the difference between E at the previous and current
iterations drops below a user-specified threshold. After the
local deformation, each mesh vertex takes texture coor-
dinates associated with its closest scanned data point for
texture mapping. Finally, we reconstruct surface details in a
hierarchical manner by taking advantage of the quaternary
subdivision scheme and normal mesh representation [37].
Figure 4 shows the results of model fitting. Hence, a spatial
correspondence is established by the generated normal
meshes.

4. Forming Feature Shape Spaces

We perceive the face as a set of features. In this work, the
global face shape is also regarded as a feature. Since all
face scans are in correspondence through mapping onto
the generic model, it is sufficient to define the feature
regions on the generic model. We manually partition the
generic model into four regions: eyes, nose, mouth and chin.
This segmentation is transferred to all normal meshes to
generate individualized feature shapes with correspondences
(see Figure 5). In order to isolate the shape variation from
the position variation, we normalize all scanned models with
respect to the rotation and translation of the face before the
model fitting process.

We form a shape space for each facial feature using PCA.
Given the set Γ = {F} of features, let {Fi}i=1,...,M be a set of
example meshes of a feature F, each mesh being associated
to one of the M scanned models in the database. These
meshes are represented as vectors that contain the x, y, z

6 International Journal of Computer Games Technology

Figure 5: Four facial features decomposed from the level 2 normal
mesh.

coordinates of N vertices Fi = (xi1, yi1, zi1, . . . , xiN , yiN , ziN) ∈
R3N . The average over M example meshes is given by ψ0 =
(1/M)

∑M
i=1Fi. Each example mesh differs from the average by

the vector dFi = Fi − ψ0. We arrange the deviation vectors
into a matrix C = [dF1,dF2, . . . ,dFM] ∈ R3N×M . PCA of
the matrix C yields a set of M non-correlated eigenvectors ψi

and their corresponding eigenvalues λi. The eigenevectors are
sorted according to the decreasing order of their eigenvalues.
Every example model can be regenerated using (7).

Fi(α) = ψ0 +
K∑

j=1

αi jψj , (7)

where 0 < K < M and αi j = (Fi−ψ0) ·ψj are the coordinates
of the example mesh in terms of the reduced eigenvector
basis. We choose the K such that

∑K
i=1λi ≥ τ

∑M
i=1λi, where

τ defines the proportion of the total shape variation (98%
in our experiments). In this model each eigenvector is a
coordinate axis. We call these axes eigenmeshes.

5. Anthropometric Parameters

Face anthropometry provides a set of meaningful measure-
ments or shape parameters that allow the most complete
control over the shape of the face. Farkas [5] describes
a widely used set of measurements to characterize the
human face. The measurements are taken between the
landmark points defined in terms of visually-identifiable or
palpable features on the subject face using carefully specified
procedures and measuring instruments. Such measurements
use a total of 47 landmark points for describing the face.
As described in Section 2, each example in our face scan
database is equipped with 86 landmarks. Following the
conventions laid out in [5], we have chosen a subset of 38
landmarks for anthropometric measurements (see Figure 6).

Farkas [5] describes a total of 132 measurements on the
face and head. Instead of supporting all 132 measurements,
we are only concerned with those related to five facial
features (including global face outline). In this paper, 68
anthropometric measurements are chosen as shape control
parameters. As an example, Table 1 lists the nasal measure-
ments used in our work. The example models are placed in
the standard posture for anthropometric measurements. In
particular, the axial distances correspond to the x, y, and
z axes of the world coordinate system. Such a systematic
collection of anthropometric measurements is taken through
all example models in the database to determine their
locations in a multi-dimensional measurement space.

6. Feature Shape Synthesis

From the previous stage we obtain a set of examples of each
facial feature with measured shape characteristics, each of
them consisting of the same set of dimensions, where every
dimension is an anthropometric measurement. The example
measurements are normalized. Generally, we assume that an
example model Fi of feature F has m dimensions, where each
dimension is represented by a value in the interval (0,1].
A value of 1 corresponds to the maximum measurement
value of the dimension. The measurements of Fi can then be
represented by the vector

qi =
[
qi1, . . . , qim

]
, ∀ j ∈ [1,m] : qi j ∈ (0, 1]. (8)

This is equivalent to projecting each example model Fi into a
measurement space spanned by the m selected anthropomet-
ric measurements. The location of Fi in this space is qi.

With the input shape control thus parameterized, our
goal is to generate a new deformation of the facial feature by
computing the corresponding eigenmesh coordinates with
control through the measurement parameters. Given an
arbitrary input measurement vector q in the measurement
space, such controlled deformation should interpolate the
example models. To do this we interpolate the eigenmesh
coordinates of the example models and obtain smooth range
over the measurement space. Our feature shape synthesis
problem is thus transformed to a scattered data interpolation
problem. Again, the RBFs are employed. Given the input
anthropometric control parameters, a novel output model
with the desired shapes of facial features is obtained in
runtime by blending the example models. Figure 7 illustrates
this process. Our scheme first evaluates the predefined RBFs
at the input measurement vector and then computes the
eigenmesh coordinates by blending those of the example
models with respect to the produced RBF values and pre-
computed weight values. Finally, the output model with the
desired feature shape is generated by evaluating the shape
reconstruction model (7) at those eigenmesh coordinates.
Note that there exist as many RBF-based interpolation
functions as the number of eigenmeshes.

The interpolation is multi-dimensional. Consider a
Rm → R mapping, the interpolated eigenmesh coordinates
aj(·) ∈ R, 1 ≤ j ≤ K at an input measurement vector
q ∈Rm are computed as

aj
(

q
) =

M∑

i=1

γi jRi
(

q
)

for 1 ≤ j ≤ K , (9)

where γi j ∈R are the radial coefficients andM is the number
of example models. Let qi (1 ≤ i ≤ M) be the measurement
vector of an example model. The radial basis function Ri(q) is
a multi-quadric function of the Euclidean distance between
q and qi in the measurement space:

Ri
(

q
) =

√∥
∥q− qi

∥
∥2 + ρ2

i for 1 ≤ i ≤M, (10)

where ρi is the locality parameter used to control the
behavior of the basis function and determined as the

International Journal of Computer Games Technology 7

n
se

mf pi

ps

al
sbal

cph

prn

sn
ls

li

ls’

sl
pg

gn

ch

go
go’

en ex
fz

ftsci

sto

(a)

n
se

mf

prn
sn

ls

sl
li

pg
gn

ch

go go’

al

ex
fz

sto

(b)

Figure 6: Head geometry with anthropometric landmarks (green dots). The landmark names are taken from [5].

Table 1: Anthropometric measurements of the nose.

Landmarks Measurement Name Landmarks Measurement Name

mf-mf Nasal root width n-pm Nasal bridge length

al-al Nose width aI-pm Ala surface length

sbal-sbal Alar base width al-sn Alar point-subnasale length

sbal-sn Nostril floor width n-pm Inclination of the nasal bridge

sn-pm Nasal tip protrusion sn-prn Inclination of the columella

en-se Nasal root depth aI-pm Inclination of the alar-slope line

en-se Nasal root slope n-se-pm Nasofrontal angle

aI-pm Ala length al-pm-al Ala-slope angle

al-mf Nasal bridge angle se-pm-sn Nasal tip angle

n-sn Nose height pm-sn-ls Nasolabial angle

Euclidean distance between q and the closest other example
measurement vector.

The jth eigenmesh coordinate of the ith example model,
ai j , corresponds to the measurement vector of the ith
example model, qi. Equation (9) should be satisfied for qi

and ai j (1 ≤ i ≤M):

ai j =
M∑

i=1

γi jRi
(

qi
)

for 1 ≤ j ≤ K. (11)

The radial coefficients γi j are obtained by solving this linear
system using an LU decomposition. We can then generate
the eigenmesh coordinates, hence the shape, corresponding
to the input measurement vector q according to (9).

7. Subregion Shape Blending

After the shape interpolation procedure, the surrounding
facial areas should be blended with the deformed internal
facial features to generate a seamlessly smooth face mesh.
The position of a vertex xi in the feature region F after
deformation is x′i . Let V denote the set of vertices of the
head mesh. For smooth blending, positions of the subset
VF = V \ VF of vertices of V that are not inside the
feature region should be updated with deformation of the

facial features. For each vertex x j ∈ VF, the vertex in each
feature region that exerts influence on it, xF

ki
, is the one of

minimal distance to it. It is desirable to use geodesic distance
on the surface, rather than Euclidean distance to measure
the relative positions of two mesh vertices. We adopt an
approximation of the geodesic distance based on a cylindrical
projection which is preferable for regions corresponding to a
volumetric surface (e.g., the head). The idea is that distance
between two vertices on the projected mesh in the 2D image
plane is a fair approximation of geodesic distance. Thus, xF

ki
is obtained as:

∥
∥
∥x j − xF

ki

∥
∥
∥
G
≈ min{i|i∈VF}

∥
∥
∥x∗j − x∗i

∥
∥
∥, (12)

where x∗i and x∗j are the positions of vertices on the projected
mesh, and ‖ · ‖G denotes the geodesic distance. Note that
the distance is measured offline in the original undeformed
generic mesh. For each non-feature vertex x j , its position is
updated in shape blending as:

x′j = x j +
∑

F∈Γ
exp

(

− 1
α

∥
∥
∥x j − xF

ki

∥
∥
∥
G

)∥
∥
∥x′Fki − xF

ki

∥
∥
∥, (13)

where Γ is the set of facial features and α controls the size of
the region influenced by the blending. We set α to 1/10 of
the diagonal length of the bounding box of the head model.

8 International Journal of Computer Games Technology

New
feature
shape

Projection

Projection

Projection

RBF-based
interpolation

Φ0

∑

a1Φ1

ajΦ j

aKΦK

...

a1

aj

aK

...

q1

qi

qm

...

...
...

...

Figure 7: Generating a new facial feature shape by blending exam-
ple models through interpolation of their eigenmesh coordinates.

(a) (b)

Figure 8: Synthesis of the nose shape: (a) Without shape blending,
the obvious geometric discontinuities around the boundary of the
nose region impair realism of the synthesis to a large extent. (b)
Using our approach, the geometries of the feature region and
surrounding areas are smoothly blended around their boundary.

Figure 8(b) shows the effect of our shape blending scheme
employed in synthesizing the nose shape.

8. Results

Our method has been implemented in an interactive system
with C++/OpenGL, where the user can select facial features
to work on interactively. A GUI snapshot is shown in
Figure 9. Our system starts with a mean model which is
computed as the average of 186 meshes of the RBF-warped
models and textured with the mean cylindrical full-head
texture image [38]. Our system also allows the user to select
the desired feature(s) from a database of pre-constructed
typical features, which are shown in the small icons on the
upper-left of the GUI. Upon selecting a feature from the
database, the feature will be imported seamlessly into the
displayed head model and can be further edited if needed.
The slider positions for each of the available feature in the
database are stored by the system so that their configuration
can be restored whenever the feature is chosen. Such a
feature importing mode enables coarse-to-fine modification
of features, making the face synthesis process less tedious. We
invited several student users who naturally lack the graphics
professional’s modeling background to create face models
using our system. The laymen appreciated the intuitiveness
and continuous variability of the control sliders. Table 2
shows the details of the datasets.

Figure 9: GUI of our system.

Table 2: Details of the data used in our system. M is the number of
examples, N is the number of mesh vertices (the number of original
dimensions equals 3N), K is the number of reduced dimensions
of the PCA space, and m is the number of anthropometric control
parameters.

Full head Eyes Nose Mouth Chin

M 186 186 186 186 186

N 16192 2914 1782 2105 643

K 34 23 26 20 18

m 16 13 20 12 7

Figure 10 illustrates a number of distinct facial shapes
synthesized to satisfy user-specified local shape constraints.
Clear differences are found in the width of the nose alar
wings, the straightness of the nose bridge, the inclination
of the nose tip, the roundness of eyes, the distance between
eyebrows and eyes, the thickness of mouth lips, the shape
of the lip line, the sharpness of the chin, and so forth. A
morphing can be generated by varying the shape parameters
continuously, as shown in Figures 10(b) and 10(c). In
addition to starting with the mean model, the user may also
select the desired head model of a specific person from the
example database for further editing. Figure 11 illustrates
face editing results on the models of two individuals for
various user-intended characteristics.

In order to quantify the performance, we arbitrarily
selected ten examples in the database for the cross valida-
tion. Each example has been excluded from the example
database in training the face synthesis system and its shape
measurements were used as a test input to the system. The
output model was then compared against the original model.
Figure 12 shows a visual comparison of the result. We assess
the reconstruction by measuring the maximum, mean, and
root mean square (RMS) errors from the feature regions of
the output model to those of the input model. The 3D errors
are computed by the Euclidean distance between each vertex
of the ground truth and synthesized model. Table 3 shows the
average errors measured for the ten reconstructed models.

International Journal of Computer Games Technology 9

(a)

(b) (c)

Figure 10: (a) New faces synthesized from the average model (leftmost) with global and local shape variations. (b) and (c) Face shape
morphing (left to right in each example).

(a) (b)

Figure 11: Feature-based face editing on the models of two individuals. In each example, the original model is shown in the top-left.

(a) (b)

Figure 12: Comparison of an original model (left in each view) and
synthesized model (right in each view) in cross validation.

The errors are given using both absolute measures (/mm)
and as a percentage of the diameter of the output head model
bounding box.

We compare our method against the approach of opti-
mization in the PCA space (Opt-PCA). Opt-PCA performs
optimization to estimate weights of the eigen-model (7). It
starts from the mean model on which the anthropometric
landmarks are in their source positions. The corresponding
target positions of these landmarks are the landmark posi-
tions on the example model. We then optimize the mesh

shape in the subspaces of facial features using the downhill
simplex algorithm such that the sum of distances between
the source and target positions of all landmarks is minimized.
Table 4 shows the comparison between our method and Opt-
PCA. Opt-PCA produces a large error since the number of
landmarks is small and it is not sufficient to fully determine
weights of the eigen-model. Opt-PCA is also slow since there
are many PCA weights to be optimized iteratively.

Our system runs on a 2.8 GHz PC with 1 GB of RAM.
Table 5 shows the time cost of different procedures. At run-
time, our scheme spends less than one second in generating
a new face shape upon receiving the input parameters.
This includes the time for the evaluation of RBF-based
interpolation functions and for shape blending around the
feature region boundaries.

9. Applications

Apart from creating plausible 3D face models from users’
descriptions, our feature-based face reconstruction approach
is useful for a range of other applications. The statistics of
facial features allow analysis of their shapes, for instance,

10 International Journal of Computer Games Technology

Table 3: Cross validation results of our 3D face synthesis system.

Eyes Nose Mouth Chin

Average max. 3.85 (0.91%) 2.55 (0.84%) 2.86 (0.94%) 4.46 (1.06%)

Average mean 2.57 (0.57%) 1.62 (0.38%) 2.04 (0.49%) 2.25 (0.53%)

Average RMS 3.62 (0.86%) 2.23 (0.53%) 2.84 (0.67%) 3.14 (0.74%)

Table 4: Comparison of our method with the optimization approach. Each value is an average of ten trials with different example models.

Opt PCA Our method

Eyes Nose Mouth Chin Eyes Nose Mouth Chin

Mean error (mm) 2.83 3.27 3.84 6.65 2.57 1.62 2.04 2.25

Time (s) 34.8 21.5 23.5 5.3 0.4 0.5 0.4 0.3

Table 5: Time consumed for different processes of system
implementation. For some processes (in italic), the time spent
per example is shown. Notation: time consumed in interactive
operation (TI), time consumed in automatic computation (TA).

Process TI TA

Offline processing

Feature point identification 3–5 minutes 6 seconds

Global warping N/A 2 seconds

Local deformation N/A 4 minutes

Multi-resolution model generation N/A 5 seconds

Computing eigenmeshes by PCA N/A 2 hours

Computing eigenmesh coordinates N/A 0.5 seconds

Computing anthropometric measurements N/A 0.2 seconds

LU decomposition N/A 2 minutes

Runtime

Feature shape synthesis N/A 0.6 seconds

to discern differences between groups of faces. They also
allow synthesis of new faces for applications such as facial
feature transfer between different faces and adaptation of the
model to local populations. Moreover, our approach allows
for compression of 3D face data, facilitating us to share
statistics with other researchers to allow the synthesis and
further study of high-resolution faces.

9.1. Analyzing the Shape of Facial Features. As the first
application, we consider analysis of the shape of facial
features. This is useful for classification of face scans. We wish
to gain insight into how facial features change with personal
characteristics by comparing statistics between groups of
faces. We calculate the mean and standard deviation statistics
of anthropometric measurements for each facial feature of
different groups. The morphometric differences between
groups are visualized by comparing the statistics of each
facial feature in a diagram. We follow this approach to study
the effects of race and gender.

Race. To investigate how the shape of facial features changes
with race, we compare three groups of 18–30 year-old Cau-
casian (72 subjects), Mongolian (18 subjects), and Negroid
(26 subjects) which are divided almost equally between the

genders. The group statistics are shown in Figure 13, colored
with blue, green, and red, respectively. It shows that the
Caucasian nose is narrow, the Mongolian nose is medial, and
the Negroid nose is wide. The statistics indicate a relatively
protruding, narrow nose in Caucasian. The Mongolian nose
is less protruding and wider, and the Negroid nose has the
smallest protrusion. The nasal root depth and nasofrontal
angle are the largest for the Caucasian, exhibiting significant
differences compared with the smaller Negroid and smallest
Mongolian values. This suggests the high nasal root in
Caucasian and relatively flat nasal root in Negroid and
Mongolian. Significant differences among the three races are
also found in inclination of the columella and nasal tip angle,
indicating the hooked nose in Caucasian and the snub nose
in Mongolian and Negroid.

For the eyes, the main characteristics of the Caucasian
group are the largest eye fissure height, the smallest intercan-
thal width and eye fissure inclination angle. These suggest
that the Caucasian eyes typically have larger openings with
horizontally aligned inner and external eye corners. The
Mongolian group has the largest intercanthal width, and
the greatest inclination in the shortest eye fissure and the
smallest eye fissure height, which indicate the relatively small
eye openings separated in a large horizontal distance with
positions of the inner eye corners lower than those of the
external ones. Blacks have the largest eye fissure length and
binocular with, which denote the relatively wide eyes in this
group.

As shown in Figure 13(c), many measurements of the
mouth of Negroid (e.g., mouth width, upper and lower lip
height, upper and lower vermilion height) are the largest
among the three races. They are significantly different from
those in Caucasian or Mongolian group. Mongolian has the
relatively narrow mouth and thin lips. In Caucasian the skin
portion of the upper and lower lips and their vermilion
height are the smallest. However, the proportions of the
upper and lower lip heights in the three races reveal the
similarity.

From statistics illustrated in Figure 13(d), the Negroid
chin has the characteristics of a long vertical profile dimen-
sion and small width. The smallest value of inclination of
the chin from the vertical and the largest mentocervical
angle also indicates a less protruding chin for Negroid. In

International Journal of Computer Games Technology 11

0

10

20

30

40

50

60

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4 5 6 7 8 9 10 11

Distance measurements of the nose

0
20
40
60
80

100
120
140
160

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3 4 5 6 7 8 9

Angular measurements of the nose

(a)

0
10
20
30
40
50
60
70
80
90

100

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4 5 6 7 8 9 10

Distance measurements of the eyes

0
2
4
6
8

10
12
14
16
18
20

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3

Angular measurements of the eyes

(b)

0
10
20
30
40
50
60
70
80
90

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4 5 6 7 8

Distance measurements of the mouth

0
20
40
60
80

100
120
140
160
180

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3 4

Angular measurements of the mouth

Caucasian (mean)

Mongolian (mean)
Negroid (mean)

Caucasian (SD)

Mongolian (SD)
Negroid (SD)

(c)

0

30

60

90

120

150

180
St

at
is

ti
ca

lm
ea

su
re

m
en

t
va

lu
e

(m
m

)

1 2 3 4

Distance measurements of the chin

0

20

40

60

80

100

120

140

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3

Angular measurements of the chin

Caucasian (mean)

Mongolian (mean)
Negroid (mean)

Caucasian (SD)

Mongolian (SD)
Negroid (SD)

(d)

Figure 13: Comparison of statistics of facial feature measurements between races (blue, green and red for groups of Caucasian, Mongolian
and Negroid, resp.). Each facial feature: statistics of the distance measurements (top) and statistics of the angular measurements (bottom).

Mongolian, the chin is the widest among the three races.
The smallest chin height is found in Caucasian. Also, the
chin of Caucasian is slightly wider than that of Negroid, but
markedly narrower than that of Mongolian.

Gender. To study the effect of gender, we compare in
Figure 14 18–30-year-old Caucasian females (35 subjects, in
red) to Caucasian males of the same age group (37 subjects,

in blue). The change of the shape of facial features from
females to males is different in character from that of the
change between varying racial groups. The larger values
of most distance measurements of the nose indicate that
males have wide alar wings and wide, long nose bridge.
The value of the nasal root depth is also indicative of high
upper nose bridge of the male subjects. In females, the nose
bridge and alar are narrower; the nose tip is sharper and

12 International Journal of Computer Games Technology

0

10

20

30

40

50

60

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4 5 6 7 8 9 10 11

Distance measurements of the nose

0

20

40

60

80

100

120

140
160

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3 4 5 6 7 8 9

Angular measurements of the nose

(a)

0
10
20
30
40
50
60
70
80
90

100

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4 5 6 7 8 9 10

Distance measurements of the eyes

0
2
4
6
8

10
12
14
16
18
20

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3

Angular measurements of the eyes

(b)

0
10
20
30
40
50
60
70
80
90

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4 5 6 7 8

Distance measurements of the mouth

0

20

40

60

80

100

120

140

160

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3 4

Angular measurements of the mouth

Male (mean)
Female (mean)

Male (SD)
Female (SD)

(c)

0
20
40
60
80

100
120
140
160
180

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(m

m
)

1 2 3 4

Distance measurements of the chin

0

20

40

60

80

100

120

140

St
at

is
ti

ca
lm

ea
su

re
m

en
t

va
lu

e
(d

eg
re

es
)

1 2 3

Angular measurements of the chin

Male (mean)
Female (mean)

Male (SD)
Female (SD)

(d)

Figure 14: Comparison of statistics of facial feature measurements between genders (females in red and males in blue). Each facial feature:
statistics of the distance measurements (top) and statistics of the angular measurements (bottom).

more protruding. In addition, the vertical profile around the
junction of the nose bridge and the anterior surface of the
forehead in females is flatter, which is suggested by the larger
nasofrontal angle. The inclination of the nose bridge and
columella reveals the similarity in two genders.

Regarding anthropometric measurements of the eyes,
males have the larger intercanthal width and binocular
width, which imply that their eyes are more separated with
regard to the sagittal plane (vertical plane cutting through
the center of the face). The width of the eye fissure of males

International Journal of Computer Games Technology 13

(a) (b) (c) (d) (e) (f)

Figure 15: Transfer of facial features. We start with a source model (a) and synthesize facial features of the eyes (c), nose (d), mouth (e) and
chin (f) on it by coercing the shape parameters to match those of two example faces (b).

is slightly larger than that of females, whereas the heights
of the eye fissure of two genders are similar. Males also
have the large height of the lower eyelid. In females, the
height of the upper eyelid and distance between eyebrows
and eyes are larger. Another characteristic of females is the
large inclination of the eye fissure.

Most distance measurements of the mouth in the male
group are larger in both genders, as shown in Figure 14(c).
This suggests that males have a much wider mouth with the
large skin portion of the upper and lower lips. However,
the vermilion heights of the upper and lower lips in two
groups reveal the similar thickness of the lips in two genders.
The differences exhibited in the angular measurements are
indicative of more protruding lips and convex lip line of the
female subjects.

The diagram in Figure 14(d) shows that the chin of males
is characterized by large size in three dimensions (width,
height and depth) due to the large underlying mandible.
The greater inclination angle of the chin and smaller
mentocervical angle also indicate a relatively protruding chin
in males compared to that of females.

9.2. Facial Feature Transfer. In the applications of creating
virtual characters for entertainment production, sometimes
it is desirable to adjust the face so that it has certain facial
features similar to those of a particular person. Therefore, it is
useful to be able to transfer desired facial feature(s) between
different human subjects. One might wish, given a database
of example faces, to select a face or multiple faces to which to
adjust facial features.

Our high-level facial feature control framework allows
the transfer of desired facial features from example faces to
a source model in a straightforward manner. We can alter the
feature of the source model with a feature-adjustment step
which coerces the anthropometric measurement vector to
match that of the target feature of an example face. The new
shape of the selected feature is reconstructed on the source
model and can be further edited if needed.

Figure 15(a) shows the source model which is the approx-
imation of an example 3D scan using the deformed generic
mesh. Figures 15(c) to 15(f) show the results of matching the
shape measurements of the features of this model to those
of two example faces shown in Figure 15(b). The synthesis
keeps global shape of the source model, while transferring
features of the target subject to the source subject. With
decomposition of the face into local features, typical features
of different target faces can be transferred in conjunction
with each other to the same source model. Figure 16 shows a
composite face built from facial features of four individuals.

9.3. Face Adaptation to Local Populations. Adapting the
model to local populations falls neatly into our framework.
The problem of automatically generating a population is
reduced to the problem of generating the desired number
of plausible sets of control parameters. It is convenient to
generate each parameter value independently as if sampled
from the Gaussian normal distribution with its mean and
variance. The generated control parameter values both
respect a given population distribution, and—thanks to the
use of interpolation in the local feature shape spaces—
produce a believable face. The examples of this process are
shown in Figure 17.

9.4. Face Data Compression and Dissemination. For the face
synthesis based on a large example data set, the ability to
organize examples into database, compress, and efficiently
transmit them is a critical issue. The example face meshes
used for this paper are restricted from being transmitted in
their full resolution because of their dense-data nature. In
our method, we take advantage of the fact that the objects
under our consideration are of the same class and that
they lie in correspondence to compress data very efficiently.
Instead of storing instances of geometry data for every
example, we adopt a compact representation obtained by
extracting the statistics with PCA, which are several orders of
magnitude smaller than the original 3D scans. This accounts

14 International Journal of Computer Games Technology

Eyes Nose

Mouth

(a) (b) (c)

Chin

Figure 16: Facial features of four example faces (b) in our database are transferred to the source model (a) to generate a novel composite
face (c).

(a) (b) (c) (d) (e) (f)

Figure 17: Adapting the face to population groups: (a) average face; (b), (c) and (d) synthesized faces with the ethnicity of Caucasian,
Mongolian and Negroid, respectively; (e) and (f) synthesized male and female faces, respectively.

for the space gain from M times the dimensionality of
high-resolution 3D scans (hundreds of thousands), to K
(K ≤ M) times the dimensionality of an eigenmesh (several
thousands), with M and K being the number of examples
and eigenmeshes respectively. For all faces, we also make
available the statistics of facial feature measurements within
different population groups. These statistics along with the
eigenmeshes should make it possible for other researchers
to investigate new applications beyond the ones described in
this paper.

10. Conclusion and Future Work

We have presented an automatic runtime system for gener-
ating varied, realistic face models. The system automatically
learns a statistical model from example meshes of facial
features and enforces it as a prior to generate/edit the face
model. We parameterize the feature shape examples using
a set of anthropometric measurements, projecting them
into the measurement spaces. Solving the scattered data

interpolation problem in a reduced subspace yields a natural
face shape that achieves the goals specified by the user.
With an intuitive slider interface, our system appeals to both
beginning and professional users, and greatly reduces the
time for creating natural face models compared to existing
3D mesh editing software. With the anthropometrics-based
face synthesis, we explore a variety of applications, including
analysis of facial features in subjects with different races,
transfer of facial features between individuals, and adjusting
the apparent race and gender of faces.

The quality of the generated model depends on the model
priors. Therefore, an appropriate database with large number
and variety of the faces must be available. We would like to
extend our current database to incorporate more 3D face
examples of Mongolian and Negroid races as well as to
increase the diversity of age. We also plan to increase the
number of facial features to choose from. To improve the
system interface, we would like to integrate the “dragging”
interaction mode which allows for directly choosing one or
more feature points of a facial feature and then dragging

International Journal of Computer Games Technology 15

them to the desired positions to generate a new facial shape.
This involves updating multiple anthropometric parameters
in one step and results in large scale changes.

References

[1] “Autodesk Maya,” http://www.autodesk.com/maya.
[2] “Poser 7,” http://graphics.smithmicro.com/go/poser.
[3] “DazStudio,” http://www.daz3d.com.
[4] “PeoplePutty,” http://www.haptek.com.
[5] L. G. Farkas, Anthropometry of the Head and Face, Raven Press,

New York, NY, USA, 1994.
[6] F. I. Parke and K. Waters, Computer Facial Animation, AK

Peters, Wellesley, Mass, USA, 1996.
[7] J. Y. Noh and U. Neumann, “A survey of facial modeling

and animation techniques,” USC Technical Report 99-705,
Univeristy of Southern Californina, Los Angeles, Calif, USA,
1999.

[8] S. DiPaola, “Extending the range of facial types,” Journal of
Visualization and Computer Animation, vol. 2, no. 4, pp. 129–
131, 1991.

[9] N. Magnenat-Thalmann, H. T. Minh, M. de Angelis, and D.
Thalmann, “Design, transformation and animation of human
faces,” The Visual Computer, vol. 5, no. 1-2, pp. 32–39, 1989.

[10] F. I. Parke, “Parameterized models for facial animation,” IEEE
Computer Graphics and Applications, vol. 2, no. 9, pp. 61–68,
1982.

[11] M. Patel and P. Willis, “Faces: the facial animation, con-
struction and editing system,” in Proceedings of the European
Computer Graphics Conference and Exhibition (Eurographics
’91), pp. 33–45, Vienna, Austria, September 1991.

[12] T. Akimoto, Y. Suenaga, and R. S. Wallace, “Automatic creation
of 3D facial models,” IEEE Computer Graphics and Application,
vol. 13, no. 5, pp. 16–22, 1993.

[13] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin,
“Making faces,” in Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’98), pp. 55–65, Orlando, Fla, USA, July 1998.

[14] C. J. Kuo, R.-S. Huang, and T.-G. Lin, “3-D facial model esti-
mation from single front-view facial image,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 3, pp.
183–192, 2002.

[15] W.-S. Lee and N. Magnenat-Thalmann, “Fast head modeling
for animation,” Image and Vision Computing, vol. 18, no. 4, pp.
355–364, 2000.

[16] Z. Liu, Z. Zhang, C. Jacobs, and M. Cohen, “Rapid modeling
of animated faces from video,” Journal of Visualization and
Computer Animation, vol. 12, no. 4, pp. 227–240, 2001.

[17] I. K. Park, H. Zhang, V. Vezhnevets, and H. K. Choh, “Image-
based photorealistic 3d face modeling,” in Proceedings of the
6th IEEE International Conference on Automatic Face and
Gesture Recognition (FGR ’04), pp. 49–54, Seoul, Korea, May
2004.

[18] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H.
Salesin, “Synthesizing realistic facial expressions from pho-
tographs,” in Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH
’98), pp. 75–84, Orlando, Fla, USA, July 1998.

[19] R. Enciso, J. Li, D. Fidaleo, T.-Y. Kim, J.-Y. Noh, and U.
Neumann, “Synthesis of 3d faces,” in Proceedings of the 1st USF
International Workshop on Digital and Computational Video
(DCV ’99), pp. 8–15, Tampa, Fla, USA, December 1999.

[20] K. Kähler, J. Haber, H. Yamauchi, and H.-P. Seidel, “Head
shop: generating animated head models with anatomical

structure,” in Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 55–63, San Antonio,
Tex, USA, July 2002.

[21] K. Kähler, J. Haber, and H.-P. Seidel, “Geometry-based muscle
modeling for facial animation,” in Proceedings of Graphics
Interface, pp. 37–46, Ottawa, Canada, June 2001.

[22] Y. Lee, D. Terzopoulos, and K. Waters, “Realistic modeling for
facial animation,” in Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’95), pp. 55–62, Los Angeles, Calif, USA, August 1995.

[23] D. DeCarlo, D. Metaxas, and M. Stone, “An anthropometric
face model using variational techniques,” in Proceedings of the
25th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’98), pp. 67–74, Orlando, Fla, USA,
July 1998.

[24] V. Blanz and T. Vetter, “A morphable model for the synthesis
of 3d faces,” in Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’99), pp. 187–194, Los Angeles, Calif, USA, August 1999.

[25] V. Blanz, I. Albrecht, J. Haber, and H.-P. Seidel, “Creating
face models from vague mental images,” Computer Graphics
Forum, vol. 25, no. 3, pp. 645–654, 2006.

[26] D. Vlasic, M. Brand, H. Pfister, and J. Popović, “Face
transfer with multilinear models,” in Proceedings of the 32nd
International Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’05), pp. 426–433, Los Angeles, Calif,
USA, July-August 2005.

[27] T.-P. G. Chen and S. Fels, “Exploring gradient-based face
navigation interfaces,” in Proceedings of Graphics Interface, pp.
65–72, London, Canada, May 2004.

[28] “PROfitTM from ABM United Kingdom Ltd.,” http://www
.abm-uk.com.

[29] “E-FITTM from Aspley Ltd.,” http://www.efit.co.uk.
[30] “Identi-Kit.NETTM from Smith & Wesson�,” http://www

.identikit.net.
[31] “FaceGen Modeller 3.0 from Singular Inversions Inc.,”

http://www.FaceGen.com.
[32] “USF DARPA HumanID 3D Face Database,” Courtesy of Prof.

Sudeep Sarkar, University of South Florida, Tampa, Fla, USA.
[33] ISO/IEC, “Overview of the MPEG-4 standard,” http://www

.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm.
[34] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active

shape models-their training and application,” Computer Vision
and Image Understanding, vol. 61, no. 1, pp. 38–59, 1995.

[35] J. C. Carr, R. K. Beatson, J. B. Cherrie, et al., “Reconstruction
and representation of 3D objects with radial basis functions,”
in Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 67–
76, Los Angeles, Calif, USA, August 2001.

[36] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm
778: L-BFGS-B: fortran subroutines for large-scale bound-
constrained optimization,” ACM Transactions on Mathemat-
ical Software, vol. 23, no. 4, pp. 550–560, 1997.

[37] I. Guskov, K. Vidimče, W. Sweldens, and P. Schroöder,
“Normal meshes,” in Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’00), pp. 95–102, New Orleans, La, USA, July 2000.

[38] Y. Zhang, “An efficient texture generation technique for
human head cloning and morphing,” in Proceedings of the
International Conference on Computer Graphics Theory and
Applications (GRAPP ’06), pp. 267–278, Setúbal, Portugal,
February 2006.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 572030, 6 pages
doi:10.1155/2009/572030

Research Article

A New 3D Model Retrieval Method with Building Blocks

Mingquan Zhou,1 Qingsong Huo,2 Guohua Geng,2 and Xiaojing Liu3

1 College of Information Science and Technology, Beijing Normal University, Beijing 100875, China
2 College of Information Science and Technology, Northwest University, Xi’an 710127, China
3 Department of Computer Technology and Application, Qinghai University, Xining 810016, China

Correspondence should be addressed to Qingsong Huo, huoqingsong@126.com

Received 31 January 2009; Accepted 19 February 2009

Recommended by Suiping Zhou

As the numbers of 3D models available grow in many application fields, there is an increasing need for a search method to help
people find them. Unfortunately, traditional search techniques are not always effective for 3D data. In this paper, we describe a
novel method of interactive 3D model retrieval with building blocks. First, by using a cube block as the baseblock in a 3D virtual
space, we may construct the query model with human-computer interaction method. Then through retrieving the polygon model
of the database generated by the voxel model, we may get retrieval results in real time. Experiments are conducted to evaluate the
performance of the proposed method.

Copyright © 2009 Mingquan Zhou et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

With the developments of computer graphics and the
progress in multimedia hardware technologies, 3D models
are emerging in many application fields such as game,
medicine, and molecular biology and are playing more
important role in multimedia data types. 3D model has
gradually become the fourth multimedia data type after
voice, image, and video. Consequently, achieving effective
and efficient content-based 3D model retrieval has now
become a hotspot in the research of multimedia information
retrieval [1]. How to search useful and the same theme of
the models usefully and effectively has become the main
goal of 3D model retrieval. In order to provide users with
a convenient way of search, a mature retrieval system should
have a good interactive performance.

Compared with images and other 2D media, 3D models
contain more rich information. Therefore, 3D model of
content-based retrieval system generally has a variety of
query approaches [2, 3]. Some ways to retrieve of a desired
model from a large selection of 3D shape models have already
been proposed, for example, the text-based search method,
2D hand-drawn draft search method, 3D hand-drawn draft
search method, the example of 3D models search method,
and interactive retrieval of 3D shape models using physical
objects [4–9].

Currently, the text-based search method is popular. It
only needs to enter the keyword, but a text description is
often too limited and incorrect. The most important thing
is that we must artificially mark models firstly, and it is not
realistic to the mass of the models data. 2D hand-drawn draft
search method is to produce an effective 2D visual draft for
retrieval, and Princeton University presents a draft manual
mapping 2D retrieval interface [5]. Pu and Ramani [10]
retrieve by drawing images. Cao et al. [11] and Fonseca et
al. [12] retrieve by drawing 2D sketch according to the query
model provided by the users. Although users can express
their intentions by drawing 2D sketch, it improves the users’
requirements. It is very difficult to transform 3D models
into 2D images especially for the users who are beginners of
studying computer graphics and computer-aided design. In
order to input 3D models, Igarashi et al. [13] design a 3D
sketching tool Teddy. Hou and Ramani [14] draw 3D part
models and retrieve by cluster rules. Compared to the draft
drawn 2D sketch, it has more difficulty and more restrictions
for drawing 3D sketch. Moreover, the 3D sketching tool is,
arguably, hard to use especially for a person who does not
have a talent for painting or drawing. Examples of 3D models
require users to retrieve the first sample to provide a 3D
model. Users can easily operate, but without a suitable 3D
model as the retrieval example, it is very difficult to carry on.

2 International Journal of Computer Games Technology

(a) (b)

Figure 1: Appearance of the ActiveCube system.

Siegl et al. [15] employ an interactive approach to
teaching and retrieving by using mobile AR-kits. Ichida et
al. [16] implement a query interface for retrieval of 3D
shape models with physical objects by using the ActiveCube
system. The appearance of the ActiveCube system is shown
in Figure 1.

The query model of interactive retrieval of 3D shape
models using physical objects is constructed by the users
themselves, without converting into images or 3D drawing
sketch. The retrieval interface is very simple, and users may
participate in the query process. But the retrieval method
must use physical objects as the media; otherwise, it is unable
to carry on. Furthermore, it is restricted by only six surfaces
of the connection and the number of physical objects. The
expression of models is very weak. Is there a better retrieval
way? This paper proposes a new 3D model retrieval method
with building blocks.

The rest of the paper is organized as follows: 3D model
retrieval method with building blocks is introduced in
Section 2. Section 3 gives experimental results to show the
effectiveness with the proposed search method. Section 4
presents the method of retrieval optimization. Finally, con-
clusions are given in Section 5.

2. 3D Model Retrieval Method with
Building Blocks

Building blocks is a common Children’s toy. By a few simple
building blocks, it combines various characters, animals,
bridges, houses, towers, and so on. This paper is inspired
by the building blocks in the game and structures a virtual
environment in the computer. It constructs 3D query models
by building blocks, expresses the users’ expression, and
realizes 3D models retrieval.

2.1. Retrieval Method Introduction. As shown in Figure 2,
the retrieval system sample points to 3D polygon models
and builds voxel model database. Then users construct the
query online model. Finally the system makes similarity
computations and gets the query result by contrasting the
query model with the models of voxel model database.

2.2. Generating Voxel Model. We assume that the entire 3D
model is composed by the triangle meshT = (T1,T2, . . . ,Tn).

A, B, C are the vertices. The vertex density or mesh
density varies greatly. In order to effectively describe the
characteristics of 3D models, this paper samples points by
subdividing triangle mesh.

As shown in Figure 3, the triangle mesh (A,B,C) is to be
subdivided, (B,C) is the longest side, and O3 is the midpoint
of BC. So the triangle mesh may be subdivided into two
triangle meshes, and they are the triangle mesh (A,B,O3)
and the triangle mesh (A,O3,C). If the area of the triangle
meshes (A,B,O3) and (A,O3,C) is more than a threshold, we
will continue subdividing the triangle meshes (A,B,O3) and
(A,O3,C) as that of the triangle mesh (A,B,C). Iteration will
not stop until the area of the subdivided triangle mesh is less
than the threshold T . We call the center of the subdivided
triangle mesh as the sampling points of the 3D model. In
Figure 3, P1, P2, P3, and P4are sampling points. And all the
sampling points of triangle meshes constitute voxel model of
polygon model. Figure 4(a) is a chair model, and Figure 4(b)
is a voxel model of chair model.

2.3. Construction of Query Model. This paper uses a cube as
the baseblock of building blocks. We construct query model
by building blocks with many baseblocks. Construction
interface is shown in Figure 5. In the construction interface,
each baseblock is expressed by a red cube. The red cube has
6 surfaces, 8 angles, 22 sides, and 26 kinds of connections
direction. We may build blocks in each direction, and the
yellow translucent cube represents the next baseblock which
will be built.

The construction process of query model is as follows.

(1) Click on any red block in the interface, then we will
see 26 semitransparent connected yellow baseblocks.

(2) When clicked, the semitransparent baseblock
becomes red baseblock.

(3) According to the need of the constructing model,
repeat (1), (2) and continue building blocks until we
are satisfied.

Through the above process, we can get a satisfactory query
model. Figures 6 and 7 are, respectively, the constructing
process of a plane model and a stool model.

2.4. Similarity Computations. We suppose that the query
model is constructed by n baseblocks according to the prior
process, and we describe the details of this similar calculation
procedure in the following set of steps.

(1) Bound the query model constructed by n cube-blocks
with bounding box, obtain the minimum size of its
bounding box, and denote with M.

(2) Pick one of polyhedral models, sample it with the
method of 2.2, and obtain its voxel model and the
minimum size of its bounding box, denoting with N .

(3) Assume that the smallest box M is segmented into
a × b × c, and the smallest box N is also segmented
into a × b × c. The segmenting progress is shown in
Figure 8.

International Journal of Computer Games Technology 3

Users

3D model database

Sampling
points

Voxel model database Similar
calculation

The order result of similarity Users

Figure 2: System flow chart.

A

B C

P1

P2 P3

P4

O1 O2

O3

Figure 3: Triangle mesh and sampling points.

(a) (b)

Figure 4: Model chair and its voxel model.

(4) Assume the number of points of the voxel model
is, respectively, P1,P2, . . . ,Pn which fall into the
baseblock. We compute the total number of points
which fall into the query model in accordance with
formula (1):

P
′ =

n∑

i=1

Pi, (1)

Sim = P′

P
× 100(%). (2)

(5) Flip the smallest bounding box and repeat (3)–(5)
until the six flip manners are all processed. Receive
maximum P

′
and make similarity computations in

accordance with formula (2).

Figure 5: Query model construction interface.

(6) Repeat (2)–(5) operation until the models of the
database are all processed.

(7) According to high to low arrangement order, we will
be able to get retrieval results.

3. Experimental Results and Performance
Evaluation

In this paper, the experimental data model is the Princeton
University 3D retrieval database PSB, which contains a total
of 1814 models.

3.1. Experimental Results. We construct the plane model and
stool as a query model with the method as described above.
Their experimental results are shown in Figures 9 and 10.

3.2. Performance Evaluation and Analysis. From Figures 9
and 10 of the retrieval results, we can see that the plane model
retrieval result is better than that of the stool model. In order
to further test the accuracy of retrieval results, we use recall

4 International Journal of Computer Games Technology

Figure 6: The constructing process of a plane model.

· · · · · · · · ·

· · · · · ·

Figure 7: The constructing process of a stool model.

(a)

(b)

(c)

Figure 8: Model of the split-sample map.

Figure 9: The plane model experimental result.

Figure 10: The stool model experimental result.

184735933102

Recall (%)

Plane model
Stool model

0

10

20

30

40

50

60

70

80

P
re

ci
si

on
(%

)

Figure 11: Precision recall of the plane and the stool models.

International Journal of Computer Games Technology 5

Figure 12: The new experimental result.

091805522

Recall (%)

No normalization of coordinates
After normalization of coordinates

0

10

20

30

40

50

60

P
re

ci
si

on
(%

)

Figure 13: Precision recall of stool model.

rate (recall) and check rate (precision) to evaluate [17, 18].
The recall rate and the precision rate are as follows:

Recall = relevant correctly retrieved
All relevant

,

Precise = relevant correctly retrieved
All retrieved

.

(3)

According to the retrieval results of plane model and stool
model, we first calculate their recall rate and the precision
rate and then draw precision-recall curve, as shown in
Figure 11.

As can be seen from Figure 11, the plane model precision
rate is far higher than that of the stool model. The precision
rate of the stool is very low. How can we optimize the results?

4. Retrieval Optimization

In order to make retrieval results better, first of all, we use
CPCA method [19, 20] to coordinate normalization of the
pretreatment for the model. Retrieve again and the new result
is shown in Figure 12.

Contrasting Figure 12 to Figure 10, we can see the
retrieval result clearly improved.

To further contrast, we draw the precision-recall curve
of the stool model before and after using the coordinate
normalization, as shown in Figure 13.

As can be seen from Figure 13, the retrieval accuracy has
greatly improved after coordinate normalization.

5. Conclusion

In the analysis and comparison of 3D model retrieval
methods, we propose a new 3D model retrieval method with
building blocks. Without hardware supporting, we construct
query models by building blocks in the virtual environment.

Compared with the previous retrieval methods, it is very
easy to construct query models. Users can easily express their
intentions to query. The retrieval method we provided opens
up a 3D model of the new ideas retrieval method, and it has
a good retrieval performance at the same time.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (no. 60736008). As the authors have
acknowledged throughout the paper, the experiments con-
ducted in their work rely heavily on the Princeton University
3D retrieval database PSB. The authors would also like to
thank the anonymous reviewers.

References

[1] J. Wang, Y. He, H. Tian, and H. Cai, “Retrieving 3D CAD
model by freehand sketches for design reuse,” Advanced
Engineering Informatics, vol. 22, no. 3, pp. 385–392, 2008.

[2] P. Min, J. A. Halderman, M. Kazhdan, and T. Funkhouser,
“Early experiences with a 3D model search engine,” in
Proceedings of the 8th International Conference on 3D Web
Technology, pp. 7–18, Saint Malo, France, March 2003.

[3] Y.-B. Yang, H. Lin, and Q. Zhu, “Content-based 3D model
retrieval: a survey,” Chinese Journal of Computers, vol. 27, no.
10, pp. 1297–1310, 2004.

[4] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape
distributions,” ACM Transactions on Graphics, vol. 21, no. 4,
pp. 807–832, 2002.

[5] T. Funkhouser, P. Min, M. Kazhdan, et al., “A search engine for
3D models,” ACM Transactions on Graphics, vol. 22, no. 1, pp.
83–105, 2003.

[6] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton
based shape matching and retrieval,” in Proceedings of the
Shape Modeling International (SMI ’03), pp. 130–139, Seoul,
Korea, May 2003.

[7] C. Zhang and T. Chen, “Indexing and retrieval of 3D models
aided by active learning,” in Proceedings of the 9th ACM
International Conference on Multimedia, vol. 9, pp. 615–616,
Ottawa, Canada, September 2001.

6 International Journal of Computer Games Technology

[8] W. Liu, Y. Uehara, Y. Liu, et al., “3DMIRACLES: 3D model
retrieval and visualization engine,” in Visualization and Data
Analysis 2005, vol. 5669 of Proceedings of SPIE, pp. 250–261,
San Jose, Calif, USA, January 2005.

[9] M. T. Suzuki, “A web-based retrieval system for 3D polygonal
models,” in Proceedings of the Joint 9th IFSA World Congress
and 20th NAFIPS International Conference (NAFIPS ’01), vol.
4, pp. 2271–2276, Vancouver, Canada, July 2001.

[10] J. Pu and K. Ramani, “On visual similarity based 2D drawing
retrieval,” Computer Aided Design, vol. 38, no. 3, pp. 249–259,
2006.

[11] L. Cao, J. Liu, and X. Tang, “3D object retrieval using
2D line drawing and graph based relevance reedback,” in
Proceedings of the 14th Annual ACM International Conference
on Multimedia (MM ’06), pp. 105–108, Santa Barbara, Calif,
USA, October 2006.

[12] M. J. Fonseca, A. Ferreira, and J. A. Jorge, “Towards 3D
modeling using sketches and retrieval,” in Proceedings of the
EUROGRAPHICS Workshop on Sketch-Based Interfaces and
Modeling, pp. 127–136, Grenoble, France, August 2004.

[13] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching
interface for 3D freeform design,” in Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive
Techniques, pp. 409–416, Los Angeles, Calif, USA, August
1999.

[14] S. Hou and K. Ramani, “Classifier combination for sketch-
based 3D part retrieval,” Computers and Graphics, vol. 31, no.
4, pp. 598–609, 2007.

[15] H. Siegl, M. Hanheide, S. Wrede, and A. Pinz, “An augmented
reality human-computer interface for object localization in a
cognitive vision system,” Image and Vision Computing, vol. 25,
no. 12, pp. 1895–1903, 2007.

[16] H. Ichida, Y. Itoh, Y. Kitamura, and F. Kishino, “Interactive
retrieval of 3D shape models using physical objects,” in
Proceedings of the 12th Annual ACM International Conference
on Multimedia, pp. 692–699, New York, NY, USA, October
2004.

[17] K. Michael, F. Thomas, and R. Szymon, “Rotation invariant
spherical harmonic representation of 3D shape descriptors,” in
Proceedings of the Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing, pp. 156–164, Aachen, Germany, June
2003.

[18] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On
visual similarity based 3D model retrieval,” Computer Graphics
Forum, vol. 22, no. 3, pp. 223–232, 2003.

[19] D. V. Vranić, D. Saupe, and J. Richter, “Tools for 3D-object
retrieval: Karhunen-Loeve transform and spherical harmon-
ics,” in Proceedings of the 4th IEEE Workshop on Multimedia
Signal Processing (MMSP ’01), pp. 293–298, Cannes, France,
October 2001.

[20] D. V. Vranic, 3D model retrieval, Ph.D. dissertation, Depart-
ment of Computer Science, University of Leipzig, Leipzig,
Germany, 2004.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 323095, 9 pages
doi:10.1155/2009/323095

Research Article

Player Profile Management on NFC Smart Card for
Multiplayer Ubiquitous Games

Romain Pellerin,1, 2 Chen Yan,1 Julien Cordry,1 and Eric Gressier-Soudan1

1 CNAM-CEDRIC, 292 rue St Martin, 75141 Paris Cedex 03, France
2 GET-INT, 9 rue Charles Fourier, 91011 Evry Cedex, France

Correspondence should be addressed to Julien Cordry, julien.cordry@cnam.fr

Received 30 January 2009; Accepted 14 July 2009

Recommended by Zhongke Wu

One of the goals of mixed reality and ubiquitous computing technologies is to provide an adaptable and personal content at any
moment, anywhere, and in any context. In Multiplayer Ubiquitous Games (MUGs), players have to interact in the real world at
both physical and virtual levels. Player profiles in MUGs offer an opportunity to provide personalized services to gamers. This
paper presents a way to manage MUG player profiles on an NFC Smart Card, and proposes a Java API to integrate Smart Cards in
the development of MUGs. This user centric approach brings new forms of gameplay, allowing the player to interact with the game
or with other players any time and anywhere. Smart Cards should also help improve the security, ubiquity, and the user mobility
in traditional MUGs.

Copyright © 2009 Romain Pellerin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

We deeply believe that the next step for the gaming industry
will be Multiplayer Ubiquitous Games (MUGs). In this type
of game, users play simultaneously in the real world and
in the virtual world [1]. To manage an MUG system which
supports social interactions among interconnected users in
both worlds, the system has to manage the equipments that
are deployed in the real world, and to compute the state of
the virtual world.

Our purpose here is to enhance the mobility and the
ubiquity in MUGs by using a user-centric approach. This
might give rise to new kinds of user interactions.

Various technologies, such as RFID tags, networked
objects or environmental sensors, can be used to help the
user interact with his/her physical environment. Moreover,
the players can have access to hand-held device, biomedical
sensors, interaction devices, virtual reality glasses, and so
forth. Then, various network connectivities are used to
link all these devices: Wi-Fi, Bluetooth, ZigBee, or cellular
phone networks. Finally, an MUG server could run the
global game logic, centralize the game data, and bring the
players together. A proper way to support this technological

heterogeneity is to use a middleware, like uGASP [2, 3],
which is an OSGi-based [4] open-source middleware dedi-
cated to MUGs.

On the gameplay level, MUG systems introduce the
concept of Real world Gaming system Interaction (RGI). It
is based on the following properties. Firstly, the gameplay
relies on the player’s physical mobility and often requires a
context and a user adaptation. Secondly, the game interacts
with the player in an ubiquitous way (at nondedicated
locations through nondedicated objects), and proactively (at
uncontrolled times, e.g., through email or phone). Finally,
the game leads to social interactions which can be effective in
the real world or in the virtual world.

So, MUG systems have to be flexible and adaptable
enough to be able to respond to these complex and uncertain
relations between the real world and the game world, and
between the player and the real world. Furthermore, the
player should be able to interact with the game despite
a network disconnection, for example, to interact with a
smart toy in a nonnetworked area. On the design level,
like all games, and, more generally, like all entertainment
applications, an MUG system should include a user model.
An MUG system can be seen as an information system

2 International Journal of Computer Games Technology

requiring some user personal data in order to integrate the
user’s real life into the game, for example, his/her phone
number or his/her real life social relations. Natkin and Yan
[5] propose a player profile model to provide a personalized
gaming experience to the player.

One of the ways to store a player profile in an MUG
system is to let the player carry the profile along with
him/her on an embedded computing device, such as NFC
Smart Card. The Near Field Communication (NFC, [6])
Smart Cards are a fast growing member of the large Smart
Card family. Today, Smart Cards are widespread devices
with cryptographic and storage capabilities, and tamper-
resistant properties. This makes those devices ideal for
many application contexts like in identification, transport,
telecommunication, or banking domains. Their non-self-
powered essence implies the use of a reader/Card Acceptance
Device (CAD) that can power up the card and interact with
it. The NFC technology enables them to interact with their
environment in a contactless manner, most primarily with
mobile phones.

No public attempt to manage an MUG player profile on a
Smart Card has been provided so far. Besides, it appears that
many game systems tend to understate the security and con-
fidentiality issues that should be addressed in any networking
environment while some personal data are involved. The
work undertaken here is part of the PLUG research project
[7]. PLUG is led by the CNAM-CEDRIC computer science
research laboratory in collaboration with Musée des Arts et
Métiers, Orange Labs, Institut Sud Telecom, L3i lab from
University La Rochelle, and a game studio: TetraEdge. It aims
at creating an MUG inside the CNAM museum that takes
into account the player characteristics. This MUG is built on
top of the uGASP middleware.

This paper introduces a user centric approach dedicated
to MUG systems. Our approach consists in using an NFC
Smart Card to store the MUG player profile, providing
mobility, and guaranteeing user privacy and confidentiality.
The player holds some game information in order to interact
with the surrounding NFC devices. In addition, the Smart
Card provides the player with a secure way to store confi-
dential data. In this work, we present an open-source service
to manage MUG player profile (MUGPP) for Java-based
devices (card, reader, and server levels): the MUGPPM API
(the API for our MUG Player Profile Management). Section 2
describes the MUGPP. Section 3 presents the technologies
used for user profile management on Smart Cards. Section 4
discusses the benefits of handling the player profile on an
NFC Smart Card for MUGs and the kinds of new interactions
it could bring to the user and the MUG system. In Section 5,
the general architecture of the system is presented and the
security issues related to the protection of the data in the
card are discussed. Section 6 describes the new kinds of
interactions using our API. The last section concludes and
gives our perspectives for future work.

2. Player Profile Definition for MUG (MUGPP)

The essence of gameplay is designing a game with regards
to the user point of view. This point of view is implicitly

or explicitly coded in the game system: all games and all
entertainment applications include a user model. In single
player games, it starts from a rough classification of the target
players and a limited memory of player actions in the game,
but it can also be a complex cognitive model. In multiplayer
games, the model contains social attributes and behaviors. In
multiplayer ubiquitous games, the model has to be cognitive,
social, and related to the history and to the current situation
of the player in both the virtual and the real world.

Considering that the user’s space of activity embeds
computing devices and that information systems become
more and more ubiquitous and pervasive, there is a need
to consider the interaction between the real and the virtual
world in a mixed reality mode, and the possible actions of the
user in both universes. So the user model will not only take
into account the state and behavior of the user as in classical
online gaming situations but also in augmented outdoor or
mobile gaming environments.

Our method is to use an explicit user model, the MUG
Player Profile (MUGPP), to gather and classify distinctive
information about the player. This information will be the
deductive basis for the game decision mechanism.

The MUGPP guides the game decision engine to offer
diverse game experiences to players. The game quests adapt
the game scenario to the personal context of the player, which
leads to an action that is executed both in the game and in the
real world. The main goal in the use of the MUGPP along
with the automatic generation of the narration is to decide
which type of quest can best relate to the player profile and to
the global narration needs, so as to promote social relations
between players. In this way, the playability of the game is
augmented: the game is persistent and adaptable. Each player
can have a unique experience.

The MUGPP depends on a set of parameters that can be
either statically defined by the game designer or dynamically
adjusted according to the real time changes in the user’s
physical states or even in the user’s social features. It implies
a personalized level of parameters in the user model [5].
Since the player is represented in both the real world and
the virtual system, we have to consider his/her knowledge
of the gameplay from several different points of view. It
is very useful to distinguish the user’s general information
from his/her in-game data, as his/her general profile could
be re-exploited by different game mechanisms. The following
three groups describe the kinds of user information that are
collected and identified.

The first group includes some data about the user “by
himself, ” that is, unrelated to his/her game practice: civil
status, preferences, and so forth. Most of this data can only
be provided directly by the player during the creation of the
game account. Since this data changes infrequently, it has
to be accessible by any MUG on the game platform, so the
player does not need to register his/her civil status every time
he/she plans to play a new game.

The second group collects the knowledge about the user
defined “as a player.” It includes some exact information
corresponding to the basic choices of the player: the type of
account, distribution of the duration of play in each location,
and so forth. It includes also statistical data or some real-time

International Journal of Computer Games Technology 3

data gathered during the play: his/her physical location,
his/her interaction with the various interactive devices in the
real environment, and so forth.

The third group defines the status of the player’s avatar in
the game from both a statistical and a real-time point of view,
such as the standard information of his/her avatar, his/her
equipment and inventory, or his/her social relations in the
game. This data could be used by the game server to propose
some special customized game events to the players, such as
a specific common quest requiring a particular object from
two players’ inventories.

This user model has been experimented in the prototype
MugNSRC [8]. The original game, NSRC, is based on car-
toon type wheelchair races in the office of a virtual Japanese
Company. MugNSRC uses this context and integrates a user
model with the player’s motivation profile in the game engine
as a mean to manage and develop a community through
cooperative and competitive goals assigned to the players.

The question of which device hosts the user profile
in the system relies on the global architecture of the
game. Generally, multiplayer games follow a client/server
architecture. The user profile is managed by the server, as in
MugNSRC. Initial values of each class of data in the MUGPP
are computed following the principle of a questionnaire.
The player is invited to fill a form used to set the initial
values of MUGPP parameters before the creation of his/her
game account. These values could be changed according to
a feedback loop related to the player choices and actions in
the game. The user can log in to access his/her account, and
retrieve his/her profile. On the other hand, P2P multiplayer
games manage the player profile on the client side. The
disadvantages of such an architecture are that the user has to
manage himself/herself his/her profile when he/she changes
to a new terminal, and that the players can cheat easily.

3. Smart Cards in the Management of
User Profiles

Our work focuses on finding a way to manage efficiently
player profiles in MUGs in order to provide a more
personalized game to the gamers. Since network coverage
and network connections are potentially unreliable, an
interesting approach to carry out the game in a continuous
manner would be to let the player carry his/her player
profile along with him, so that the user is still able to
play despite disconnection. This assessment leads to build
a distributed and persistent information system for game
data, and especially what we called MUGPP information.
To manage this information, wearable devices are appro-
priate. The list of such devices includes mobile phones,
PDA, Smart Cards, game consoles, memory cards, and
so forth. Among those, Smart Cards are a good compro-
mise in terms of wearability, security mechanisms, and
costs.

Smart Cards are the most secure and widespread portable
computing device today. They have been used successfully
around the world in various applications involving money,
proprietary data, and personal data (such as banking, pay-
TV or GSM subscriber identification, loyalty, health-care,

insurance, etc.). The Java Card [9] and the Microsoft.Net
framework for Smart Cards are platforms that support a
multiapplication environment, and in their modern versions,
tend to go multithread. One of the key elements of Smart
Cards is to improve on basic magnetic stripe cards with
dynamically programmable microcontrollers, cryptographic
Coprocessors, and means to protect the embedded data.
Furthermore, Java Card platforms usually embed some
code verifier, making those devices safer. Aside from their
small size (to fit on a flexible plastic card and to increase
hardware security) and from their low cost (to be sold in
large volumes), this makes them ideal for any ubiquitous
security-sensitive environment. Today Smart Cards are small
computers, providing 8, 16, or 32 bits CPU with clock speeds
ranging from 5 up to 40 MHz, ROM memory between 32 and
128 KB, EEPROM memory (writable, persistent) between
16 and 64 KB and RAM memory (writable, nonpersistent)
between 3 and 5 KB. Smart Cards communicate with the
rest of the world through Application Protocol Data Units
(APDUs, ISO 7816-4 standard). The communication is done
in client-server mode, the Smart Card playing the role of the
server. It is always the terminal application that initiates the
communication by sending a command APDU to the card
and then the card replies by sending back a response APDU
(possibly with an empty content).

Smart Cards can be accessed through a reader. The access
has traditionally meant inserting the Smart Card in the
reader. However, the trend is to interact in a contactless
manner, to improve the Human Computer Interface (HCI)
aspects. The Near Field Communication (NFC) technology
provides devices with the ability to interact within a short
range (less than 10 centimeters) by radio signal. This
technology stems from the recent RFID market development.
It works at a 13.56 MHz frequency, provides a 424 kbit/s
bandwidth, and supports a half-duplex communication
between devices. NFC Smart Cards combine the two previ-
ous technologies, so they are easily accessible in a contactless
manner. Since these cards are non-self-powered, the radio
signal from a reader is used to power the Smart Card-
integrated circuit, in the same manner as RFID tags.

In the context of ubiquitous systems, the user can either
carry an NFC Smart Card, which is readable within a short
range by an NFC reader, or carry a reader, which is able to
interact with the NFC devices disseminated over an area.
As far as we know, there is no MUG that makes use of a
Smart Card. However, there are some similarities between
using a Smart Card for an MUG and using a Smart Card
that is dedicated to commercial applications like public
transportation systems and banking applications. Today,
numerous cities in the world use contactless Smart Card-
based systems to manage their public transportation system.
For instance, the Paris commuters can use their contactless
Smart Card (Navigo) as a mean to access transportation
facilities (trains, buses, etc.) as well as the public bicycles
network (Velib). The later involves a network of bicycle
stations, which are equipped with an NFC readers, and a
central authority, to help regulate the traffic. The Smart Card
is used to store some user-related data, for example, the log
of the stations he/she went through.

4 International Journal of Computer Games Technology

The core of this type of distributed information system
is the management of user data on Smart Cards. There
has been some effort to manage a health profile with
PicoDBMS [10]. PicoDBMS is a Database management
system dedicated to Smart Cards. PicoDBMS has also been
used in some work undertaken by Lahlou and Urien [11]
to filter some Internet data through a Smart Card-based
user profile. They manage the profile dynamically (the user
can specify his/her preferences). The security approach is
that of the P3P (Platform for Privacy Preferences) [12]
normalization group. The framework offers two security
levels, the less secure being the less Smart Card intensive.
The approach leaves out any gaming/ubiquitous aspect, and
there is no mention of any authentication/confidentiality
of the information. Ubiquitous systems should introduce a
middleware to support this distributed information system.
There are three essential components for these systems which
are the users and their Smart Cards, the readers, and a central
authority server.

4. Playing MUGs with NFC Smart Cards

The game system of some existing MUGs, such as [13–15],
relies on the capability to control all the physical objects,
which are integrated in the game, their impacts on the player,
and all the various real-world embedded sensors, which take
part in a hierarchy of networks. The participants of MUGs
often experience the heavy load of physical wearable devices,
or they have to deal with network disconnection problems
[16]. Our proposal consists in using a Smart Card as an
add-on interface for the interactions between the player, the
virtual world, and the real world.

On the player’s side, the MUGPP can be specified on a
Smart Card, which enables the player to have access to some
of his/her game-related information. The player can monitor
his/her game process, manage his/her game objects, and even
visualize or being informed with the game progress by either
using one of the fixed terminals that are spread over the game
area or by using a mobile terminal. In the context of an NFC
Smart Card-based player profile, this would mean that the
player could interact by using a Smart Card with a fixed NFC
reader or with his/her mobile phone integrated reader.

The update of the MUGPP is executed automatically by
the system and manually by the player. Firstly the MUGPP
could be renewed by the player’s physical interaction, that
is to say, the player’s physical movement and behavior in
the real environment (outdoor and indoor). As the real
environment is embedded with tangible objects, the player’s
physical location could be “tracked” as he/she walks through
the game zones. The interaction between a Smart Card and a
smart object using NFC readers can be performed without
any connection to the game server. Every time the player
comes close to a Smart Card reader, some of the MUGPP
information can be updated and used in any way by dealing
with the “as a player” data. Secondly, the MUGPP is updated
following the communication or social interaction among
players in the real world. The players should be able to sell
and buy the game items they own to other players even while
they are offline. The third group of information, that is to say,

the “as his/her avatar” data can be updated dynamically. The
social dimension of the gameplay is extended to the spatial
and temporal dimension of the game. Therefore, the game
system could trigger and control some game events in real
time and real space for a group of players in the same game
zone. Thus, the MUGPP can be updated during the real time
interactions between the players, the game, and the physical
space.

Playing MUGs with a Smart Card is a relatively new
experience for the user, which will bring new forms of
interaction to the players, new contents, and new security
features.

Using a Smart Card gives the players new ways to interact
with the game, potentially without any display device. This
means that an automatic tangible interaction between the
NFC Smart Card and the NFC reader can take place by
bringing them close to one another. For the user, the most
accessible and affordable mobile terminal is the mobile
phone. Also, some are able to integrate the NFC technology,
like the Nokia 6131 NFC and the Sagem My700x. Therefore,
we suggest to use an NFC mobile phone to run a client
application in our MUG system.

An ideal MUG is a digital environment with smart
objects surrounding the user. This would allow him/her to
interact with the game anywhere. Therefore, we can embed
NFC readers in smart objects, such as Nabaztag [17], which
could interact with each user’s Smart Card. To enrich the user
experience, a television decoder may also integrate an NFC
reader so that the player could gain access to the multimedia
content related to the game.

On the Smart Card, we aim at defining and formalizing
an MUGPP which might help maintain decentralized user
data from the game server. This MUGPP allows the user’s
personal information to be reused by several game mech-
anisms and to be completed by several applications. The
interest of having an MUGPP on a Smart Card is not only
that users have a more “wearable” computing device but also
that the game designers can provide each individual with
a personalized gaming experience. In the mechanism of a
MUG, the MUGPP can take a central role rather than being
a peripheral or real context to influence the game server in
making the decision for a customized service to the end user.

Considering security aspects, the specification of player
profiles as separated from the server will guarantee the
confidentiality of each individual’s private information and
the related service. For example, it could be possible to
register the information of the player’s bank account on the
Smart Card which allows the player to have access to a paying
service. In “World of Warcraft” (Blizzard Entertainment,
2004), the user can register his/her bank account on the
game server, which can be unsafe despite the login/password
protection, in order to obtain some special services from
the game editor. From a perspective point of view, this
will enlarge the possibility of license management such as
biological or vocal based identity.

As a consequence, there is a need to support Smart
Card, NFC reader in the MUG system architecture. We will
describe an API which provides this service in more details
in the following sections.

International Journal of Computer Games Technology 5

5. Architecture to Manage MUGPP on
an NFC Smart Card

The NFC interactions in MUGs (see Section 4) and of the
MUG player profile (see Section 2) are key issues of our
proposal. The main component of this architecture is the
service that manages the MUG player profile on the external
NFC Smart Card. We have implemented a library which
enables Java 2 Micro Edition [18] (J2ME) Mobile Information
Device Profile- (MIDP-) based mobile phones to exchange
data with Smart Cards and game server logic. The server is
itself implemented in J2SE and the Smart Card part of the
application is a Java Card cardlet. Finally, we use the security
mechanisms to ensure the privacy of the player profile data.
Figure 1 presents an overview of the MUGPPM architecture.

5.1. Oncard Service. Our card-side implementation aims
the card applications based on Java Card platform which
complies with the ISO 14443 [19] standard part 1, 2, and 3
type A. An oncard Java applet is dedicated to the MUGPPM.
It implements a set of instructions to handle communication
with an NFC reader. These instructions are built using the
Application Protocol Data Unit (APDU) protocol defined in
the ISO/IEC 7816 standard. Besides, it maintains the player
profile data model with some added security features.

5.1.1. APDU Instructions. The APDU instruction set used in
MUGPPM allows the following:

(i) to manage the player profile,

(ii) to manage the default entries, for example, static
entries of our MUG player profile definition, for
example, the username, age, or playtime fields,

(iii) to manage object entries, for example, entries corre-
sponding to game data objects, like inventory items,

(iv) to manage the private and public key entries.

With this set of instructions, the reader can access a
profile stored on the Smart Card, save/load each profile
fields independently, and store/retrieve the game objects.
Objects can be defined as exchangeable between players.
Nevertheless, it is the MUG game designer who has to
decide if a game object is sharable or not. Table 1 shows the
instructions used by the MUGPPM. It details the parameters
of each instruction and the corresponding response of the
Smart Card.

5.1.2. Data Model. The field lengths have been bounded due
to the memory limitation that characterizes the Smart Card
platforms. We tested our implementation on an Oberthur
Cosmo Dual card which offers only 72 KB of memory space
(EEPROM).

Nevertheless the profile itself is not really heavy, since
the CAP file containing our oncard application uses around
6 KB. We also use a 4 KB memory buffer to deal with
large I/Os. The fields of the GameProfile class themselves
include a number of byte arrays (264 bytes), and a couple
of OwnerPIN objects to manage the user password and the

game provider password (the object size depends on the
Java Card Virtual Machine (JCVM) implementation, but the
password itself is limited to 8 bytes). Furthermore, the profile
is associated with three 2048 bits RSA keys (768 bytes). So the
application itself requires 8 KB and each instance of a profile
should require less than 2 KB (depending on the JCVM
implementation). Therefore, we could theoreticly manage
about 30 different game profiles with this Smart Card.

5.2. NFC Reader Side Service. The main functionalities of the
NFC reader API are to access the MUG player profile stored
on the Smart Card and to communicate with the profile-
based services that are hosted on the MUG server.

The APDUDataManager class is used to establish the
NFC communication toward the card and to some send
APDU formatted messages. The GameProfile class is used to
manage the player profile fields during profile manipulation
on the reader. Finally, the NetworkCom class handles object-
oriented HTTP communications with the server based on the
MooDS protocol [20].

We have prototyped a J2ME version of our MUGPPM
service to have a Java mobile phone access to the oncard
MUGPPM service. This choice is obvious considering the
mobile phone is the most widespread mobile terminal for
end-users. Moreover, in 2007, some J2ME mobile phones
embedding NFC readers, such as the Nokia 6131 NFC or
the Sagem my700X, were placed on the market. An API to
help establish a contactless communication between a J2ME
mobile phone and an NFC Smart Card has been released the
same year: the JSR257 [19].

A specific API is traditionally used to handle an APDU-
based communication on J2ME mobile phones: the JSR177
[21]. However, the use of this API is not mandatory in the
case of an external NFC Smart Card. In fact, it offers essential
mechanisms enabling the mobile phone to communicate
with its embedded SIM card. Thus, our prototype uses the
JSR257 functionalities to initiate a communication between
the mobile phone and the Smart Card.

In order to use the MUGPPM functionalities, the first
step for the player is creating his/her MUGPP on the Smart
Card. So, he/she has to enter a login and a password which
will be used to access his/her profile. In this first step, he/she
has to enter his/her personal information, for example, the
user “by himself” is part of the MUGPP. Thus, the API can
load the player profile fields from the card onto the mobile
phone, to store them in the profile object representation.
Afterward, the MUG client game engine can start using the
player profile as it is defined in the MUG game design.
Figure 2 summarizes the architecture used to provide the
MUG client game engine with an access to the oncard MUG
Player Profile Management service.

It is important to notice that the interaction between
the mobile phone and the NFC Smart Card depends on the
player since, he/she has to draw the card near the mobile
phone during all the process, for example, during a game
save. The MUG game designer must take into account this
specific Human Computer Interaction (HCI).

Besides, our prototype can communicate with an MUG
HTTP server. It uses the MooDS protocol to communicate

6 International Journal of Computer Games Technology

ApplicationApplication

HTTP serverNFC reader

Over NFC Network

NFC smart
card

MUGPPM
API

MUGPPM
API

MUGPPM
applet

Figure 1: MUGPPM architecture overview.

Table 1: APDU instructions used in MUGPPM.

Instruction P1 P2 Data Returns

CREATE PROFILE login+pwd status

LOGIN PROFILE login+pwd status

REINIT PROFILE login+pwd status

DELETE PROFILE login+pwd status

LOAD DEFAULT ENTRY key data

UPDATE DEFAULT ENTRY key data status

LOAD OBJECT ENTRIES data

LOAD OBJECT ENTRY key data

ADD OBJECT ENTRY key isSharable data status

DELETE OBJECT ENTRY status

with the MUG server in an object-oriented manner. The
developer can creates objects which represent the messages
used during the client-server communication. Thus, if the
MUG client needs a profile-based service from the server, it
has to instantiate the corresponding message object and send
it through the MooDS encoder. We have created a message to
invoke a server side service, the ProfileBasedServiceRequest
message class. It can also decode the server response using
the MooDS decoder and handle the decoded message objects.
If the service requires data from the Smart Card, the client
receives a CardDataRequest message from the server which
contains a list of required field keys. Then, the MUGPPM
API can retrieve the associated fields data from the Smart
Card and send it within a DataCardResponse object to the
server. Finally, it receives the service response, for example, a
player list from a lobby service.

5.3. Server Side Service. The MUGPPM server API offers a
Java based MUG server the ability to create a profile based
service. It helps create personalized services, for example,
profile based lobby or profile based quest provider. The
server API and the client API have a similar class to handle
MUGPP contents: theGameProfile class. For example, if the
server requires the player nationality, it has to request the
corresponding field key from the Smart Card and to handle
the card response. The communication part of the API is also
based on the MooDS protocol.

To request a service, the client has to send a ProfileBased-
ServiceRequest message with the name of the service needed.
Then, if the service requires personal data stored on the
Smart Card, it sends back a CardDataRequest message to the

client containing a list of required field keys. Afterwards, it
receives from the client a DataCardResponse message which
contains the required data. Finally, the service computes the
response based on the received player personal data and
returns a specific response message to the client.

5.4. MUGPP and Security. Some of the MUGPP data deal
with the user private life. Furthermore, the lack of a
sound and secure authentication procedure typically makes
cheating in MUGs an easy feat [22, 23]. There is a need to use
improved security mechanisms to act against those threats.

The players and the terminal the players use (in our case
a mobile phone) are by definition untrusted, but the oncard
application can be securely and reliably developed using Java
Card.

In order to insure the security of the player’s private data,
the card requires an authentication from the reader. This
authentication process is based on a personal login/password
chosen by the player during his/her account creation. We
use the OwnerPIN class on the card to safely store the
user password. The login procedure needs to be performed
to authorize the access to the smart card cryptographic
functionalities. When the user is not playing any more, the
user is logged out from the Smart Card. The application
provider uses another PIN code to block/unblock the user
from modifying certain fields.

We chose to use a public key infrastructure to help the
MUG system designers ensure the security of the application.
Yet, the management of the keys on a Smart Card is a
non trivial issue. The Smart Card requires a personalization
phase during which a key pair is created and stored on the

International Journal of Computer Games Technology 7

MUGPPM
API

MUGPPM
applet

Game engine

JSR257

J2MENFC

Dual interface
Java Card

Figure 2: MUGPPM architecture for J2ME devices.

card static memory. The server side also requires a key pair,
and an X.509 infrastructure is used to certificate the use of
public keys. This public key infrastructure guarantees the
privacy of communications between the server and the Smart
Card. Thus, when user logs in, he/she does so, not with a
Smart Card, and not with a server. He/she can then have
access to a higher security level than just a password-based
protocol.

When the application needs to interact with the server,
the server sends its public key as well as a certificate. The
Smart Card can then verify the validity of the key. If the
key happens to be valid, the Smart Card can keep the public
key. The Smart Card can send its public key to the server.
All subsequent interactions between the server and the client
can then use an encryption/decryption using one’s private
key and the other’s public key.

The overall mechanism guarantees a stronger identifi-
cation scheme than just a login/password and might help
thwart some common online games cheats. One advantage
here is that no critical data is transmitted in plain text format
over the network.

A common cheat is the replacement of code or data
concerning the game. The simple fact of using a Smart Card
to manage the MUGPP makes it considerably difficult to
tamper with the game profile, the cheater being unable to
directly hack into the profile/oncard game infrastructure.
The game designer might want to check an additional server
signature for any operation that modifies some elements in
the profile.

An other cheat consists in abusing the game procedures.
For instance, a player can log out before he/she loses a game.
Making the signing of some game procedures by the server
necessary can be used as a countermeasure against such
cheats.

The mobile aspect of our framework implies that
some interactions between two players can occur out of a
connection with the game server. For instance, in a role-
playing game, the players might want to exchange an item.
This operation could take place without a server while still
guarantying the nonrepudiation property.

6. MUG PPM Use Cases

Our library can be used for different types of interactions,
connected or disconnected interactions from an MUG server
point of view. For example, the secure architecture of the
MUGPPM can only be used safely with a network connection
in order to validate public keys with a signing authority
through a registered MUG server. So, secure interactions
have to be carried out in a connected way. However,
disconnected interactions are possible without strong secu-
rity mechanisms, particularly for local interactions. Thus,
an MUG can introduce NFC checkpoints or local object
exchange mechanisms between players using this API.

6.1. Connected MUG Interaction Examples. Our framework
can be used to provide various profile-based connected ser-
vices in a secure way, like providing players with personalized
quests or locating players who speak a common language in
a game area.

Via mineralia [24] is a pervasive search and quizz game
in the museum of Terra Mineralia in Freiberg. The goal of
the game is to realize quests in the context of the mineral
exposition. Each point of interest is represented by an RFID
tag on the mineral. The MUGPPM can be used in this
application to check the visitor card at the museum entry
(with an NFC reader) to adapt game content to his/her player
profile. For example, different levels of mineral knowledge
could be set to fit the category of the visitor (novice, expert,
etc.) and to propose personalized quests. Moreover, regular
visitors could resume a quest undertaken previously.

As an another use case, we have implemented a profile-
based lobby service on top of the MUGPPM secure archi-
tecture. This service uses the player’s age and the languages
he/she knows. The server asks for the user’s required personal
data while using the security part of MUGPPM. Finally, the
profile based lobby service computes the list of connected
players matching the required age and spoken languages
and returns it to the client. That type of service could have
been used in games like the item hunt game “Mogi Mogi”
[15]. In this game, some users have been using a lobby-like

8 International Journal of Computer Games Technology

application to spy on other younger players. Bypassing the
game rules this way can be controlled using our API. Indeed,
as the private data is stored on a secure decentralized device
(unlike a game server), fraudulent use of personal data is
rendered more difficult, while statistics can still help detect
that type of behavior.

6.2. Disconnected MUG Interaction Examples. MUG game
designers can integrate disconnected interactions in their
game by using the MUGPPM API.

Paranoia Syndrome [25] is a classic strategic game
that integrates some location based interactions, and RFID
tangible objects. One of the perspectives of the game, is
that multimedia content and basic AI will be added to the
tangible objects to serve different content by regarding the
player type (doctor, scientist, alien, etc.). With MUGPPM,
the interactive objects (with an embedded NFC reader) could
adapt their content and interaction to the player with regard
to the player profile in a disconnected way.

Furthermore, a MUG can integrate difficulty levels
corresponding to the player’s age in order to assign a course
to the player in the game area. This interaction can be made
between the player and a NFC checkpoint and does not
necessarily require a server side resolution.

In addition, MUGs can implement game object exchange
mechanisms between players. Such a service should give two
players in the same real world area, the ability to exchange
some game items from their inventories. This interaction
can be made by peering the mobile phones of the players
over a local communication link. The NFCIPConnection
class from the com.nokia.nfc.p2p package (available in the
Nokia JSR257 implementation) allows to establish a NFC
link between two phones. We have implemented a game
object exchange service, on top of our API, that offers to a
player to send one sharable item from his/her game inventory
to another player. We consider here that each player has
previously loaded his/her player profile from the Smart Card.
This list can be retrieved from the object representation in
the player profile (see Section 5.2 for more details about the
profile loading mechanism). So, a player who wants to send
an object to his/her friend has to select the item from his/her
list and the sender mode, whereas the other player has to
select the receiver mode. The players must approach their
mobile phones in order to set up the P2P link. As soon as the
connection is established, the object is sent as a byte array
onto the network. Then, the receiver handles the binary data
corresponding to the item and can add it to his/her inventory.
Finally, the new inventories of both players will be updated in
the Smart Card during their next game save.

These examples emphasize a major benefit provided
by our API in the MUG domain: it does not require the
players to be connected with the central MUG server in
order to interact in the game. Thus, our library enables new
interactions for MUG in a totally decentralized manner.

To evaluate the performance of our application, we used
the Mesure project [26], which is dedicated to measuring the
performance of smart cards. The Mesure project provides
detailed time performance of individual bytecodes and API
calls. Given the use cases described earlier, we monitored the

use of each bytecode and each API call for a regular use of
our application. We then matched the list of used bytecodes
and API calls with the individual performance of each feature
measured on our smart card. The results show that the time
necessary to perform a RSA encryption with the smart card
is close to half a second, and it is by far the costliest of the
operations described earlier. Login into the smart card, as a
title of comparison lasts less than 20 milliseconds.

7. Conclusions and Perspectives

This paper presents an NFC Smart Card based approach to
handle the player profile in the context of MUGs. This NFC
card centric architecture allows new kinds of interactions in
both centralized and decentralized ways. The main advantage
of our method is to allow the players to play at any time, and
anywhere, hence the ubiquitous aspect of the game. We have
presented the MUGPPM API which is dedicated to the Java
Card/J2ME/J2SE platforms. This enables MUG developers
to implement a Smart Card based architecture to provide
profile-based services. Thus, players can have a personalized
game experience. Besides, this API provides the player with a
secure way to ensure a certain level of data confidentiality. We
will release the MUGPPM server API as an open source OSGi
bundle to be integrated in the uGASP [2, 3] middleware.
Thereafter, game developers could implement MUGs based
on this framework, therefore offering personalized services.

On the basis of our framework, it is possible to specialize
and realize an authoring tool for the development of MUGs.
It would be interesting to consider using the NFC Smart Card
from a more conceptual point of view during the design of
the game. Using Smart Cards in MUGs may also give rise
to the future direction of game design by developing new
forms of interaction and narration based on new technology
of mobility and ubiquity.

The question of “who personalizes the Smart Card”
remains open. In traditional banking, telecom or transport
applications, this is carried out by the card emitting com-
pany. However, the ongrowing multiapplication aspect of
Smart Card makes it more and more questionable. For the
purpose of testing our API, we let the user fill out the form
which might be questionable for a secure application. Still,
the application provider has some control over the fields
through its own PIN code.

Future works include a generalization of the security
architecture in terms of key sizes and algorithms, depending
on the functionalities of a given Smart Card.

In addition, we will generalize the API to facilitate the
description of services and to manipulate the player profile
data structure. On the server side, this should help the
describe connected the player profile-based services. On the
card side, we will investigate PicoDBMS database to handle
the player profile data structure.

We await the results of an other project: T2TIT [27]
(Things to Things in the Internet of things). This project
proposes to interact with contactless object, going as far as
to give them a network identity, while keeping some strong
security properties. The eventual conclusion of T2TIT can
be helpful to us, for instance, we can expect to use some

International Journal of Computer Games Technology 9

encrypted channels. We intend to use the T2TIT security
mechanisms in our work. The newly published Java Card
3.0 specification [9] introduces multithreading mechanisms
in Smart Cards. This suggests other interactions between
different profiles, which were not considered in this paper.

In terms of oncard code verifiers, works like embedded
data flow analysis (see [28]) might also provide us with
some strong on card inter-application protection features.
We could reliably share some data from one profile to an
other, and deny the access to such data from other profiles.

We have not explored here the issues of biometric
identification. It is clearly complementary to the traditional
cryptographic schemes, and as the Smart Card industry is
integrating more and more of those, so should we.

References

[1] S. Björk, M. Börjesson, P. Ljungstrand, et al., “Designing
ubiquitous computing games—a report from a workshop
exploring ubiquitous computing entertainment,” Personal and
Ubiquitous Computing, vol. 6, no. 5-6, pp. 443–458, 2002.

[2] R. Pellerin, E. Gressier-Soudan, and M. Simatic, “uGASP:
an OSGi based middleware enabling multiplayer ubiquitous
gaming,” in Proceedings of the International Conference on
Pervasive Services (ICPS ’08), Sorento, Italy, July 2008, Demon-
stration Workshop.

[3] GASP/uGASP project, http://gasp.ow2.org.
[4] OSGi alliance, http://www.osgi.org/Main/HomePage.
[5] S. Natkin and C. Yan, “User model in multiplayer mixed

reality entertainment applications,” in Proceedings of the ACM
SIGCHI International Conference on Advances in Computer
Entertainment Technology (ACE ’06), Hollywood, Calif, USA,
June 2006.

[6] NFC Forum, http://www.nfc-forum.org/home.
[7] The PLUG project, http://www.capdigital.com/plug/.
[8] C. Yan, Adaptive multiplayer ubiquitous games: design principles

and an implementation framework, Ph.D. thesis, Cotutelle
Research Program with Orange Labs and CNAM, Paris,
France, 2007, Supervisor: Stephane Natkin.

[9] Java Card platform, http://java.sun.com/javacard.
[10] P. Pucheral, L. Bouganim, P. Valduriez, and C. Bobineau,

“PicoDBMS: scaling down database techniques for the smart-
card,” Very Large Data Bases Journal, vol. 10, no. 2-3, pp. 120–
132, 2001.

[11] A. Lahlou and P. Urien, “SIM-Filter: user profile based smart
information filtering and personalization in smartcard,” in
Proceedings of the Ubiquitous Mobile Information and Collabo-
ration Systems (UMICS ’03), Klagenfurt/Velden, Austria, June
2003.

[12] Platform for Privacy Preferences (P3P) Project, http://www
.w3.org/P3P.

[13] S. Jonsson, A. Waern, M. Montola, and J. Stenros, “Game
mastering a pervasive larp. Experiences from momentum,” in
Proceedings of the 4th International Symposium on Pervasive
Gaming Applications (PerGames ’07), Magerkurth, Carsten, et
al., Eds., pp. 31–39, Salzburg, Austria, June 2007.

[14] O. Sotamaa, “All the world’s a botfighter stage: notes on
location-based multi-user gaming,” in Proceedings of the
Computer Games and Digital Cultures Conference (CDGC ’02),
F. Mäyrä, Ed., Tampere, Finland, June 2002.

[15] Mogi Mogi,http://www.mogimogi.com.

[16] D. Cheok, et al., “Human Pacman: a mobile, wide-area enter-
tainment system based on physical, social, and ubiquitous
computing,” Personal and Ubiquitous Computing, vol. 8, no.
2, pp. 71–81, 2004.

[17] Friedrich von Borries, Steffen P. Walz, and Matthias Böttger,
“Mogi: Location-Based Services—A Community Game in
Japan ,” in Space Time Play, vol. 2007, pp. 224–225, Birkhäuser
Basel, Switzerland, 2008, http://www.springerlink.com/
content/j0277056ult42551.

[18] J2ME MIDP, http://java.sun.com/javame/index.jsp.
[19] JSR257, http://jcp.org/en/jsr/detail?id=257.
[20] R. Pellerin, “The MooDS protocol: a J2ME object-oriented

communication protocol,” in Proceedings of the 4th Mobility
Conference, Singapore, September 2007.

[21] JSR177, http://jcp.org/en/jsr/detail?id=177.
[22] J. Yan and B. Randell, “A systematic classification of cheat-

ing in online games,” in Proceedings of 4th ACM SIG-
COMM Workshop on Network and System Support for Games
(NetGames ’05), New York, NY, USA, October 2005.

[23] N. E. Baughman, M. Liberatore, and B. N. Levine, “Cheat-
proof playout for centralized and peer-to-peer gaming,”
IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 1–
13, 2007.

[24] G. Heumer, F. Gommlich, B. Jung, and A. Müller, “Via
Mineralia: a pervasive museum exploration game,” in Proceed-
ings of the 4th International Symposium on Pervasive Gaming
Applications (PerGames ’07), pp. 157–158, June 2007.

[25] G. Heumer, D. Carlson, S. H. Kaligiri, et al., “Paranoia
Syndrome: a pervasive multiplayer game using PDAs, RFID,
and tangible objects,” in Proceedings of the 3rd International
Symposium on Pervasive Gaming Applications (PerGames ’06),
pp. 157–158, June 2007.

[26] The Mesure project, http://mesure.gforge.inria.fr.
[27] P. Urien, et al., “The T2TIT research project. Introducing

HIP RFIDs for the IoT,” in Proceedings of the 1st International
Workshop on System Support for the Internet of Things (WoS-
SIoT ’07), Lisbon, Portugal, March 2007.

[28] D. Ghindici, G. Grimaud, and I. Simplot-Ryl, “An information
flow verifier for small embedded systems,” in Proceedings of
the International Workshop on Information Security Theory and
Practices (WISTP ’07), vol. 4462 of Lecture Notes in Computer
Science, pp. 189–201, May 2007.

