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Decision-making is a complex issue due to the vague, imprecise, and indeterminate environment especially when attributes are
more than one and further bifurcated. To solve such types of problems, the concept of neutrosophic hypersoft set is proposed by
Smaranndache. In this paper, the primary focus is to extend the concept of neutrosophic hypersoft sets (NHSs) to the neu-
trosophic hypersoft matrices (NHSMs) with the essential study of matrices with suitable examples. �en, the analytical study of
some common operations for NHSM has been created. Lastly, decision-making issues have been presented by establishing a new
algorithm based on a score function, and it has been interpreted with the help of numerical example for the selection of teachers at
the college level. In this study, NHSM algorithm is elaborated e�ciently and conveniently for optimal choice selection to solve
decision-making problems.

1. Introduction

In decision-making, among the multiattributive and mul-
tiobjective problems, in uncertain and vague environments,
it is di�cult to di�erentiate valid from invalid and logical
from illogical. In these cases, decision makers get more
confused and uncertain. Zadeh developed fuzzy sets [1] to
deal with such type of information. Another issue in in-
formation is vagueness. Likewise, it is the type of uncertainty
where the investigators cannot’ separate between two unique
things, and to deal with vagueness, intuitionistic fuzzy sets
[2] are used. Later, Molodtsov [3] presents soft sets to
manage uncertainties and vagueness, and this research was
e�ectively applied in numerous applications such as game
theory, activity research, and probability [4]. Maji et al. [5, 6]
exhibited a logical study of the soft sets, which incorporates
every essential operators and property. �e study was ex-
tended to fuzzy soft set [7] and intuitionistic softsets [8] to
deal uncertainity and vagueness. As a result, Smarandache

[9, 10] has presented the idea of neutrosophic sets, which is a
generalization of the crisp set, fuzzy set, and intuitionistic
fuzzy set.

In any case, from the philosophical perspective, truth-
ness, indeterminacy, and falsity of neutrosophic set always
lies in [0,1]. Maji [11] has extended the concept of a soft set
to neutrosophic soft set. �e matrix representation and
aggregate operators of this idea were presented by Deli and
Broumi in [12]. Multicriteria decision-making MCDM
problems were solved by utilizing a neutrosophic soft set,
and many mathematicians have proposed their examination
work in various scienti¡c ¡elds by proposing TOPSIS,
VIKOR, etc. techniques, and this idea is likewise utilized in
advancing decision-making theories along with application
in the neutrosophic environment [13–17]. Akram et al.
[18–20] established group decision-making methods based
on hesitant N-soft sets, Pythagorean fuzzy TOPSIS, and
ELECTRIC I method in Pythagorean fuzzy information.
Garg [21, 22] had carried out lot of work related to decision-
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making problems using different tools relating to fuzzy,
intuitionistic, and neutrosophic theories. Mehmood et al.
[23, 24] used bipolar soft sets and spherical fuzzy sets for
decision-making problems. Sabbir and Naz [25] also worked
on bipolar soft sets.

Smarandache [26] displayed another strategy to manage
uncertainty by providing the extension of the soft set to the
hypersoft set and its hybrids, such as a fuzzy hypersoft set,
intuitionistic hypersoft set, and neutrosophic hypersoft set,
by changing the function into a multiargument function.

1.1. Motivation

(1) Multicriteria decision problems (MCDM) consist of
several attributes and indeterminacy. To deal with
such types, neutrosophic sets (NSs) are used because
(NSs) fully deal with indeterminacy, whereas to deal
with vagueness and uncertainty, neutrosophic soft
sets (NS’s) are used. However, when attributes are
more than one and further bifurcated, the concept of
neutrosophic soft set (NSs) cannot be used to tackle
such issues. +ere was a dire need to define the new
environment. For this purpose, the concept of
neutrosophic hypersoft set (NHSS) was proposed by
[27]. Matrices are more reliable, logical, and practical
for the decision makers and play an important role in
understanding, modeling, and solving the MCDM
problems.

(2) how MCDM problems can be represented in the
matrices’ form consisting of more than one attribute,
which is further bifurcated? +e answer to this
question leads us to develop the matrix theory by
combining the concept of NHSS and soft matrix
theory and, hence, the motivation of the present
study.

(3) In this exploration, the primary focus is to extend the
neutrosophic hypersoft set (NHSS) concept to the
neutrosophic hypersoft matrices (NHSM) by the
essential study of matrices. +is study helps us apply
all the definitions, operators, and properties of
matrices to NHSS and decision-making problems,
especially when attributes are more than one and
further subdivided.

Section 1 contains an introduction about soft set, neu-
trosophic soft set, hypersoft set, and neutrosophic hypersoft
sets. Section 2 deals with mathematical preliminaries, which
will be used in the rest of the paper. In Section 3 the concept
of NHSM has been discussed broadly with definitions and
suitable examples. In Section 4 basic operators of NHSM are
proposed along with their properties. In Section 5, a deci-
sion-making algorithm has been developed with the help of
score function and it is applied in the selection for the hiring
of teachers. +is algorithm is briefer and more accurate
rather than others, and Section 6 contains some comparison
in Table 7 with the existing techniques of Hashmi et al. [28],
and finally, we will discuss the conclusion of the research
paper.

2. Preliminaries

In this section, we present some definitions which will help
understand the rest of the article.

2.1. Soft Set [6]. LetU be the universal set andE be the set of
attributes with respect toU. LetP(U) be the power set ofU
and A⊆E. A pair (F,A) is called a soft set over U, and its
mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) �
F(e) ∈ P(U)

e ∈ E,F(e) � ∅ if e≠A
􏼨 􏼩. (2)

2.2.Neutrosophic Soft Set [11]. LetU be the universal set and
E be the set of attributes with respect toU. LetP(U) be the
set of neutrosophic values ofU andA⊆E. A pair (F,A) is
called a neutrosophic soft set over U, and its mapping is
given as

F: A⟶ P(U). (3)

2.3. Hypersoft Set [21]. Let U be the universal set and
P(U)be the power set of U. Consider ℓ1, ℓ2, ℓ3, . . . , ℓn, for
n≥ 1, and let n be well-defined attributes, whose corre-
sponding attributive values are, respectively, the set
L1,L2,L3, . . . ,Ln with Li ∩Lj � ∅, for i≠ j and
i, j ε 1, 2, 3, . . . , n{ }; then, the pair (F,L1 × L2×

L3, . . . ,Ln) is said to be hypersoft set over U, where

F: L
1

× L
2

× L
3
, . . . ,L

n⟶ P(U). (4)

2.4. Neutrosophic Hypersoft Set [23]. Let U be the universal
set and P(U) be the power set of U. Consider
ℓ1, ℓ2, ℓ3, . . . , ℓn, for n≥ 1; let n be well-defined attributes,
whose corresponding attributive values are, respectively, the
set L1,L2,L3, . . . ,Ln with Li ∩Lj � ∅, for i≠ j and
i, j ε 1, 2, 3, . . . , n{ }, and their relation
L1 × L2 × L3, . . . ,Ln � S; then, the pair (F,S) is said to
be neutrosophic hypersoft set (NHSS) over U, where

F: L
1

× L
2

× L
3

. . . ,L
n⟶ P(U),

F L
1

× L
2

× L
3
, . . . ,L

n
􏼐 􏼑

� 〈x,T(F(S)),I(F(S)),F(F(S))〉, x ∈ U{ },

(5)

where T is the membership value of truthiness, J is the
membership value of indeterminacy, and F is the mem-
bership value of falsity such thatT,J,F: U⟶ [0, 1] also
0≤T(F(S)) + J(F(S)) + F(F(S))≤ 3.
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3. Neutrosophic Hypersoft Matrix (NHSM)

In this section, we have introduced some definition with
suitable examples.

3.1. NHSM. Let U � u1, u2, . . . , uα􏼈 􏼉 and P(U) be the
universal set and power set of universal set, respectively; also,
consider L1,L2, . . . ,Lβ, for β≥ 1, where β is well-defined
attributes, whose corresponding attributive values are, re-
spectively, the set La

1 ,Lb
2, . . . ,Lz

β and their relation
La

1 × Lb
2 × · · · × Lz

β, where a, b, c, . . . , z � 1, 2, . . . , n; then,
the pair (F,La

1 × Lb
2 × · · · × Lz

β) is said to be neutrosophic
hypersoft set over U, where F: (La

1 × Lb
2 × · · · × Lz

β)

⟶ P(U) and it is defined as F(La
1 × Lb

2 × · · · × Lz
β) �

〈u, TL(u), IL(u), FL(u)〉u ∈ U,L ∈ (La
1 × Lb

2 × · · · ×􏽮

Lz
β)}. Table 1 represents the tabular form of NHSS RL.
If Oij � XRL

(ui,Lk
j ), where i � 1, 2, 3, . . . ,

α, j � 1, 2, 3, . . . , β, and k � a, b, c, . . . , z, then a matrix is
defined as

Oij􏽨 􏽩α×β �

O11 O12 . . . O1β

O21 O22 . . . O2β

⋮ ⋮ ⋱ ⋮

Oα1 Oα2 . . . Oαβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where Oij � (TLk
j
(ui), ILk

j
(ui), FLk

j
(ui), ui ∈ U, ,Lk

j

∈ (La
1 × Lb

2 × · · · × Lz
β)) � (To

ijk,Jo
ijk,Fo

ijk).
+us, we can represent any neutrosophic hypersoft set in

terms of a neutrosophic hypersoft matrix (NHSM), and it
means that they are interchangeable.

Example 1. Teachers’ recruitment problem (TRP) is the
most complex and absurd task. +ere is no fixed and fab-
ricated design to know their subject knowledge or peda-
gogical skills. +erefore, decision makers find themselves in
a blind alley. Consequently, based on their own knowledge
and experience, they select a person who does not meet the
institutional requirement. +us, TRP is typically a multi-
criteria decision-making MCDM problem.

Assumptions:

(i) Independent attributes are considered
(ii) Everyone attends the interview
(iii) Hesitant environment is not yet considered

Formulation of the Problem. Let us consider an institute that
wants to hire a teacher appropriate to its requirements, and
they received the following statistics-based CVs. LetU be the
set of candidates for the teaching at the college level:

U � T
1
,T

2
,T

3
,T

4
,T

5
􏽮 􏽯. (7)

Also, consider the set of attributes as

A1 � Qualification,

A2 � Experience,

A3 � Gender,

A4 � Publications.

(8)

Parameters:

(i) Ti � universal set of teachers, where i � 1, 2, 3, 4, 5
(ii) Ai � attributes, where i � 1, 2, 3, 4 that are further

categorized into the following:
(iii) Aa

1 � qualification
(iv) Aa

1 � BSHons.,MS/Mphill,Phd,PostDoctorate􏼈 􏼉

(v) Ab
2 � experience � 5yr, 8yr, 10yr, 15yr􏼈 􏼉

(vi) Ac
3 � gender � Male, Female{ }

(vii) Ad
4 � publications � 3, 5, 8, 10+{ }

Let the function be F: Aa
1 × Ab

2 × Ac
3 × Ad

4⟶ P(U)

Below are Tables 2–5 of their neutrosophic values
assigned by different decision makers.

+e neutrosophic hypersoft set is defined as

F: A
a
1 × A

b
2 × A

c
3 × A

d
4􏼐 􏼑⟶ P(U). (9)

Let us assume

F A
a
1 × A

b
2 × A

c
3 × A

d
4􏼐􏼐 􏼑 � F(Mphill, 5yr,male, 3) � T

1
,T

2
,T

4
,T

5
􏽮 􏽯,

F A
a
1 × A

b
2 × A

c
3 × A

d
4􏼐􏼐 􏼑 � F(Mphill, 5yr,male, 3)

� ≪T1
, (Mphill 0.5, 0.3, 0.6{ }, 5yr 0.3, 0.4, 0.7{ },male 0.5, 0.6, 0.9{ }, 3 0.6, 0.4, 0.5{ })≫ ,􏽮

≪T2
, (Mphill 0.3, 0.2, 0.1{ }, 5yr 0.6, 0.5, 0.3{ },male 0.7, 0.8, 0.3{ }, 3 0.7, 0.5, 0.3{ })≫ ,

≪T4
(Mphill 0.7, 0.3, 0.6{ }, 5yr 0.6, 0.4, 0.8{ },male 0.8, 0.5, 0.4{ }, 3 0.6, 0.2, 0.1{ })≫ ,

≪T5
(Mphill 0.5, 0.4, 0.5{ }, 5yr 0.3, 0.6, 0.7{ },male 0.9, 0.2, 0.1{ }, 3 0.4, 0.5, 0.3{ })≫ ,􏽯.

(10)

+en, a neutrosophic hypersoft set of above-assumed
relation in the tabular form is represented in Table 6.

And, its matrix is defined as
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[O]4×4 �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Table 1: Matrix representation of NHSS.

La
1 Lb

2 . . . Lz
β

u1 XRL
(u1,La

1) XRL
(u1,Lb

2) . . . XRL
(u1,Lz

β)

u2 XRL
(u2,La

1) XRL
(u2,Lb

2) . . . XRL
(u2,Lz

β)

⋮ ⋮ ⋮ ⋱ ⋮
uα XRL

(uα,La
1) XRL

(uα,Lb
2) . . . XRL

(uα,Lz
β)

Table 2: Decision makers will assign neutrosophic numbers to each candidate Ti against qualification.

Aa
1(qualification) T1 T2 T3 T4 T5

BS Hons. (0.4,0.5,0.8) (0.7,0.6,0.4) (0.4,0.5,0.7) (0.5,0.3,0.7) (0.5,0.3,0.8)
MS/MPhil. (0.5,0.3,0.6) (0.3,0.2,0.1) (0.3,0.6,0.2) (0.7,0.3,0.6) (0.5,0.4,0.5)
Ph.D. (0.8,0.2,0.4) (0.9,0.5,0.3) (0.9,0.4,0.1) (0.6,0.3,0.2) (0.6,0.1,0.2)
Post doctorate (0.9,0.3,0.1) (0.5,0.2,0.1) (0.8,0.5,0.2) (0.8,0.2,0.1) (0.7,0.4,0.2)

Table 3: Decision makers will assign neutrosophic numbers to each candidate Ti against experience.

Ab
2(experience) T1 T2 T3 T4 T5

5 yr. (0.3,0.4,0.7) (0.6,0.5,0.3) (0.5,0.6,0.8) (0.6,0.4,0.8) (0.3,0.6,0.7)
8 yr. (0.4,0.2,0.5) (0.8,0.1,0.2) (0.4,0.7,0.3) (0.4,0.8,0.7) (0.7,0.5,0.6)
10 yr. (0.7,0.2,0.3) (0.9,0.3,0.1) (0.8,0.3,0.2) (0.5,0.4,0.3) (0.5,0.2,0.1)
15 yr. (0.8,0.2,0.1) (0.6,0.4,0.3) (0.9,0.4,0.1) (0.6,0.2,0.3) (0.5,0.3,0.2)

Table 4: Decision makers will assign neutrosophic numbers to each candidate Ti against gender.

Ac
3(Gen de r) T1 T2 T3 T4 T5

Male (0.5, 0.6, 0.9) (0.7, 0.8, 0.3) (0.6, 0.4, 0.3) (0.8, 0.5, 0.4) (0.9, 0.2, 0.1)
Female (0.6, 0.4, 0.7) (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) (0.4, 0.5, 0.6) (0.8, 0.4, 0.2)

Table 5: Decision makers will assign neutrosophic numbers to each candidate Ti against publication.

Ad
4(publication) z T1 T2 T3 T4 T5

3 — (0.6, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.6, 0.2, 0.1) (0.4, 0.5, 0.3)
5 — (0.8, 0.2, 0.4) (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.3, 0.4, 0.5) (0.3, 0.5, 0.8)
8 — (0.5, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.8, 0.4, 0.1) (0.7, 0.4, 0.3)
10+ — (0.4, 0.9, 0.6) (0.8, 0.4, 0.2) (0.2, 0.6, 0.5) (0.7, 0.5, 0.2) (0.6, 0.4, 0.7)

Table 6: +e tabular form of the above relation.

Aa
1 Ab

2 Ac
3 Ad

4

T1 (Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

T2 (Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

T4 (Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

T5 (Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))
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3.2. Square NHSM. Let O � [Oij] be the NHSM of order
α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk). +en, O is said to be
square NHSM if α � β. It means that if an NHSM has the
same number of rows (attributes) and columns (alterna-
tives), it is a square NHSM.

Example 2. Above defined Example 1 is also the example of
square NHSM.

3.3. Transpose of Square NHSM. Let O � [Oij] be the square
NHSM of order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk); then,

Ot is said to be transpose of square NHSM if rows and
columns of O are interchanged. It is denoted as

O
t

� Oij􏽨 􏽩
t

� T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑

t
� T

o
jki,J

o
jki,F

o
jki􏼐 􏼑 � Oji􏽨 􏽩.

(12)

Example 3. Transpose of the matrix define in Example 1 is
given as

[O]
t
4×4 �

(Mphill, (0.5, 0.3, 0.6)) (Mphill, (0.3, 0.2, 0.1)) (Mphill, (0.7, 0.3, 0.6)) (Mphill, (0.5, 0.4, 0.5))

(5yr, (0.3, 0.4, 0.7)) (5yr, (0.6, 0.5, 0.3)) (5yr, (0.6, 0.4, 0.8)) (5yr, (0.3, 0.6, 0.7))

(male, (0.5, 0.6, 0.9)) (male, (0.7, 0.8, 0.3)) (male, (0.8, 0.5, 0.4)) (male, (0.9, 0.2, 0.1))

(3, (0.6, 0.4, 0.5)) (3, (0.7, 0.5, 0.3)) (3, (0.6, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

3.4. Symmetric NHSM. Let O � [Oij] be the square NHSM
of order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk); then, O is said
to be symmetric NHSM if Ot � O, i.e., (To

ijk,Jo
ijk,

Fo
ijk) � (To

jki,J
o
jki,F

o
jki).

3.5. Scalar Multiplication of NHSM. Let O � [Oij] be the
NHSM of order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and s

be any scalar then the product of matrix O and a scalar s is a
matrix formed by multiplying each element of matrix O by s.
It is denoted as sO � [sOij], where 0≤ s≤ 1.

Example 4. Let us consider a NHSM [O]4×4:

[O]4×4 �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

And, 0.1 is the scalar; then, scalar multiplication of
NHSM [O]4×4 is given as

[(0.1)O]4×4 �

(Mphill, (0.05, 0.03, 0.06)) (5yr, (0.03, 0.04, 0.07)) (male, (0.05, 0.06, 0.09)) (3, (0.06, 0.04, 0.05))

(Mphill, (0.03, 0.02, 0.01)) (5yr, (0.06, 0.05, 0.03)) (male, (0.07, 0.08, 0.03)) (3, (0.07, 0.05, 0.03))

(Mphill, (0.07, 0.03, 0.06)) (5yr, (0.06, 0.04, 0.08)) (male, (0.08, 0.05, 0.04)) (3, (0.06, 0.02, 0.01))

(Mphill, (0.05, 0.04, 0.05)) (5yr, (0.03, 0.06, 0.07)) (male, (0.09, 0.02, 0.01)) (3, (0.04, 0.05, 0.03))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

Proposition 1. Let O � [Oij] and M � [Mij] be two
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,

JM
ijk,FM

ijk).

For two scalars s, t ∈ [0, 1], then

(i) s(tO) � (st)O

(ii) If s< t, then sO< tO

(iii) If O⊆M, then sO⊆sM

Proof

(i) s(tO) � s[tOij] � s[(tTo
ijk, tJo

ijk, tFo
ijk)] �

[(stTo
ijk, stJo

ijk, stFo
ijk)] � st[(To

ijk,Jo
ijk,Fo

ijk)] �

st[Oij] � (st)O

(ii) Since To
ijk,Jo

ijk,Fo
ijk ∈ [0, 1], so sTo

ijk ≤ tTo
ijk,

sJo
ijk ≤ tJo

ijk, sFo
ijk ≤ tFo

ijk

(iii) Now, sO � [sOij] � [(sTo
ijk, sJo

ijk, sFo
ijk)]≤

[(tTo
ijk, tJo

ijk, tFo
ijk)] � [tOij] � tO
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(iv) O⊆M⇒ [Oij]⊆ [Mij]

⇒To
ijk ≤T

M
ijk,J

o
ijk ≤J

M
ijk,F

o
ijk ≥F

M
ijk

⇒sT
o
ijk ≤ sT

M
ijk, sJ

o
ijk ≤ sJ

M
ijk, sF

o
ijk ≥ sF

M
ijk

⇒s Oij􏽨 􏽩⊆ s Mij􏽨 􏽩

⇒sO⊆ sM.

(16)

□

Theorem 1. Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Jo
ijk,Fo

ijk). 8en,

(i) (sO)t � sOt, where s ∈ [0, 1]

(ii) (Ot)t � O

(iii) If O � [Oij] is the upper triangular NHSM, then Ot is
lower triangular NHSM and vice versa

Proof

(i) Here, (sO)t, sOt ∈ NHSMα×β, so

(sO)
t

� sT
o
ijk, sJ

o
ijk, sF

o
ijk􏼐 􏼑􏽨 􏽩

t

� sT
o
jki, sJ

o
jki, sF

o
jki􏼐 􏼑􏽨 􏽩

� s T
o
jki,J

o
jki,F

o
jki􏼐 􏼑􏽨 􏽩

� s T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩

t
� sO

t
.

(17)

(ii) Since Ot ∈ NHSMα×β, so (Ot)t ∈ NHSMα×β. Now,

O
t

􏼐 􏼑
t

� T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩

t
􏼒 􏼓

t

� T
o
jki,J

o
jki,F

o
jki􏼐 􏼑􏽨 􏽩􏼐 􏼑

t

� T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩 � O.

(18)

(iii) proved with the help of example. □

3.6. Trace of NHSM. Let O � [Oij] be the square NHSM of
order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and α � β. +en,
trace of NHSM is denoted as tr(O) and is defined as
tr(O) � 􏽐

α,z
i�1,k�a[To

iik − (Jo
iik + Fo

iik)].

Example 5. Let us consider a NHSM [O]4×4:

[O]4×4 �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

+en, tr(O) � (0.5 − 0.3 − 0.6) + (0.6 − 0.5 − 0.3)

+(0.8 − 0.5 − 0.4) + (0.4 − 0.5 − 0.3) � − 1.1.
Proposition 2. Let O � [Oij] be the square NHSM of order
α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk) andα � β. s be any
scalar then tr(sO) � str(O).

Proof.

tr(sO) � 􏽘
α,z

i�1,k�a

sT
o
iik − sJ

o
iik + sF

o
iik( 􏼁􏼂 􏼃 � s 􏽘

α,z

i�1,k�a

T
o
iik − J

o
iik + F

o
iik( 􏼁􏼂 􏼃 � str(O). (20)

□
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3.7. Max-Min Product of NHSM. Let O � [Oij] and M �

[Mjm] be two NHSM, where Oij � (To
ijk,Jo

ijk,Fo
ijk) and

Mjm � (TM
jkm,JM

jkm,FM
jkm). +en, O and M are said to be

conformable if their dimensions are equal to each other
(number of columns of O is equal to number of rows ofM ).
If O � [Oij]α×β and M � [Mjm]β×c, then O⊗M � [Sim]α×c,
where

Sim􏼂 􏼃 �
maxjk min T

o
ijk, J

M
jkm􏼐 􏼑,minjk max I

o
ijk, J

M
jkm􏼐 􏼑,

minjk max F
o
ijk,F

M
jkm􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠.

(21)

Theorem 2. Let O � [Oij]α×βand M � [Mjm]β×c be two
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mjm � (TM
jkm,

JM
jkm,FM

jkm). 8en,

(O⊗M)
t

� M
t ⊗O

t
. (22)

Proof. Let O⊗M � [Sim]α×c; then, (O⊗M)t �

[Smi]c×α, Ot � [Oji]β×α, andM
t � [Mmj]c×β.

Now,

(O⊗M)
t

� T
S
kmi,J

S
kmi,F

S
kmi􏼐 􏼑

c×α

�
maxjk min TM

mjk,To
jki􏼐 􏼑,minjk max JM

mjk,Jo
jki􏼐 􏼑,

minjk max FM
mjk,F0

jki􏼐 􏼑

⎛⎝ ⎞⎠

c×α

� T
M
mjk,J

M
mjk,F

M
mjk􏼐 􏼑

c×β ⊗ T
o
jki,J

o
jki,F

0
jki􏼐 􏼑β×α � M

t ⊗O
t
.

(23)

□
3.8. Operators of NHSMs. Let O � [Oij] and M � [Mij] be
two NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and
Mij � (TM

ijk,JM
ijk,FM

ijk). +en,

(i) Union:

O∪M � S, (24)

where Ts
ijk � max(To

ijk,TM
ijk), Js

ijk � ((Jo
ijk +

JM
ijk)/2), and Fs

ijk � min(Fo
ijk,FM

ijk).
(ii) Intersection:

O∩M � S, (25)

where

T
s
ijk � min T

o
ijk,T

M
ijk􏼐 􏼑,

J
s
ijk �

J
o
ijk + J

M
ijk􏼐 􏼑

2
,

F
s
ijk � max F

o
ijk,F

M
ijk􏼐 􏼑.

(26)

(iii) Arithmetic mean:

O⊕M � S, (27)

where

T
s
ijk �

T
o
ijk + T

M
ijk􏼐 􏼑

2
,

J
s
ijk �

J
o
ijk + J

M
ijk􏼐 􏼑

2
,

F
s
ijk �

F
o
ijk + F

M
ijk􏼐 􏼑

2
.

(28)

(iv) Weighted arithmetic mean:

O⊙ w
M � S, (29)

where

T
s
ijk �

w
1
T

o
ijk + w

2
T

M
ijk􏼐 􏼑

w
1

+ w
2 ,

J
s
ijk �

w
1
J

o
ijk + w

2
J

M
ijk􏼐 􏼑

w
1

+ w
2 ,

F
s
ijk �

w
1
F

o
ijk + w

2
F

M
ijk􏼐 􏼑

w
1

+ w
2 · w

1
, w

2 > 0.

(30)

(v) Geometric mean:

O⊙M � S, (31)

where
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T
s
ijk �

���������

T
o
ijk · T

M
ijk

􏽱

,

J
s
ijk �

���������

J
o
ijk · J

M
ijk

􏽱

,

F
s
ijk �

���������

F
o
ijk · F

M
ijk

􏽱

.

(32)

(vi) Weighted geometric mean:

O⊙ w
M � S, (33)

where

T
s
ijk �

����������������

T
o
ijk􏼐 􏼑

w1

· T
M
ijk􏼐 􏼑

w2
w1+w2

􏽲

,

J
s
ijk �

���������������

J
o
ijk􏼐 􏼑

w1

· J
M
ijk􏼐 􏼑

w2
w1+w2

􏽲

,

F
s
ijk �

����������������

F
o
ijk􏼐 􏼑

w1

· F
M
ijk􏼐 􏼑

w2
w1+w2

􏽲

,

w
1
, w

2 > 0.

(34)

(vii) Harmonic mean:

O⊘M � S, (35)

where

T
s
ijk �

2To
ijkT

M
ijk

T
o
ijk + T

M
ijk

,

J
s
ijk �

2Jo
ijkJ

M
ijk

J
o
ijk + J

M
ijk

,

F
s
ijk �

2Fo
ijkF

M
ijk

F
o
ijk + F

M
ijk

.

(36)

(viii) Weighted harmonic mean:

O⊘wM � S, (37)

where

T
s
ijk �

w
1

+ w
2

w
1/To

ijk􏼐 􏼑 + w
2/TM

ijk􏼐 􏼑
,

J
s
ijk �

w
1

+ w
2

w
1/Jo

ijk􏼐 􏼑 + w
2/JM

ijk􏼐 􏼑
,

F
s
ijk �

w
1

+ w
2

w
1/Fo

ijk􏼐 􏼑 + w
2/FM

ijk􏼐 􏼑
,

(38)

Proposition 3. Let O � [Oij] and M � [Mij] be two
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,

JM
ijk,FM

ijk).
8en,

(i) (O∪M)t � Ot ∪Mt

(ii) (O∩M)t � Ot ∩Mt

(iii) (O⊕M)t � Ot⊕Mt

(iv) (O⊕wM)t � Ot⊕Mt

(v) (O⊙M)t � Ot ⊙Mt

(vi) (O⊙ wM)t � Ot ⊙ wMt

(vii) (O⊘M)t � Ot⊘Mt

(viii) (O⊘wM)t � Ot⊘wMt

Proof. (i)

(O∪M)
t

� max T
o
ijk,T

M
ijk􏼐 􏼑,

Jo
ijk + JM

ijk􏼐 􏼑

2
, min F

o
ijkF

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

t

� max T
o
jki,T

M
jki􏼐 􏼑,

J
o
jki + J

M
jki􏼐 􏼑

2
, min F

o
jki,F

M
jki􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
o
jki,J

o
jki,F

o
jki􏼐 􏼑􏽨 􏽩∪ T

M
jki,J

M
jki,F

M
jki􏼐 􏼑􏽨 􏽩

� T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩

t
∪ T

M
ijk,J

M
ijk,F

M
ijk􏼐 􏼑􏽨 􏽩

t

� O
t ∪Mt

.

(39)

Remaining parts are proved in a similar way. □
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Proposition 4. Let O � [Oij] and M � [Mij] be two upper
triangular NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and
Mij � (TM

ijk,JM
ijk,FM

ijk). 8en, (O∪M), (O∩M), (O⊕M),
(O⊕wM), (O⊙M), and (O⊙ wM) are all upper triangular
NHSM and vice versa.

Theorem 3. Let O � [Oij] and M � [Mij] be two NHSM,
where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,JM

ijk,FM
ijk).

8en,

(i) (O∪M)◇ � O◇ ∩M◇

(ii) (O∩M)◇ � O◇ ∪M◇

(iii) (O⊕M)◇ � O◇⊕M◇

(iv) (O⊕wM)◇ � O◇⊕M◇

(v) (O⊙M)◇ � O◇ ⊙M◇

(vi) (O⊙ wM)◇ � O◇ ⊙ wM◇

(vii) (O⊘M)◇ � O◇⊘M◇

(viii) (O⊘wM)◇ � O◇⊘wM◇

Proof. (i)

(O∪M)
◇

� max T
o
ijk,T

M
ijk􏼐 􏼑,

Jo
ijk + JM

ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

◇

� min F
o
ijk,F

M
ijk􏼐 􏼑,

J
o
ijk + J

M
ijk􏼐 􏼑

2
, max T

o
ijk,T

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� F
o
ijk,J

o
ijk,T

o
ijk􏼐 􏼑∩ F

M
ijk,J

M
ijk,T

M
ijk􏼐 􏼑

� T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑
◇
∩ T

M
ijk,J

M
ijk,F

M
ijk􏼐 􏼑
◇

� O
◇ ∩M◇.

(40)

Remaining parts are proved in a similar way. □

Theorem 4. Let O � [Oij] and M � [Mij] be two NHSM,
where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,JM

ijk,FM
ijk).

8en,

(i) (O∪M) � (M∪O)

(ii) (O∩M) � (M∩O)

(iii) (O⊕M) � (M⊕O)

(iv) (O⊕wM) � (M⊕wO)

(v) (O⊙M) � (M⊙O)

(vi) (O⊙ wM) � (M⊙ wO)

(vii) (O⊘M) � (M⊘O)

(viii) (O⊘wM) � (M⊘wO)

Proof. (i)

(O∪M) � max T
o
ijk,T

M
ijk􏼐 􏼑,

J
o
ijk + J

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

max T
M
ijk,T

o
ijk􏼐 􏼑,

J
M
ijk + J

o
ijk􏼐 􏼑

2
, min F

M
ijk,F

o
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
M
ijk,J

M
ijk,F

M
ijk􏼐 􏼑∪ T

o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑

� (M∪O).

(41)

Remaining parts are proved in a similar way. □
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Theorem 5. Let � [Oij], M � [Mij], and N � [Mij]be
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk), Mij � (TM
ijk,JM

ijk,

FM
ijk), and Nij � (TN

ijk,JN
ijk,FN

ijk). 8en,

(i) (O∪M)∪N � O∪ (M∪N)

(ii) (O∩M)∩N � O∩ (M∩N)

(iii) ((O⊕M)⊕N≠O⊕ (M⊕N)

(iv) (O⊙M)⊙N≠O⊙ (M⊙N)

(v) (O⊘M)⊘N≠O⊘ (M⊘N)

Proof. (i)

(O∪M)∪N � max T
o
ijk,T

M
ijk􏼐 􏼑,

J
o
ijk + J

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦∪ T

N
ijk,J

N
ijk,F

N
ijk􏼐 􏼑􏽨 􏽩

� max T
o
ijk,J

M
ijk,T

N
ijk􏼐 􏼑,

J
o
ijk + J

M
ijk + J

N
ijk􏼐 􏼑

3
, min F

o
ijk,F

M
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� max T
O
ijk,T

M
ijk,T

N
ijk􏼐 􏼑,

J
O
ijk + J

M
ijk + J

N
ijk􏼐 􏼑

3
, min F

O
ijk,F

M
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
O
ijk,J

O
ijk,F

O
ijk􏼐 􏼑∪ max T

M
ijk,T

N
ijk􏼐 􏼑,

J
M
ijk + J

N
ijk􏼐 􏼑

2
, min F

M
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
O
ijk,J

O
ijk,F

O
ijk􏼐 􏼑∪ T

M
ijk,J

M
ijk,F

M
ijk􏼐 􏼑∪ T

N
ijk,J

N
ijk,F

N
ijk􏼐 􏼑􏼐 􏼑

� O∪ (M∪N).

(42)

Remaining parts are proved in a similar way. □

Theorem 6. Let � [Oij], M � [Mij], and N � [Mij]be
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk), Mij � (TM
ijk,JM

ijk,

FM
ijk), and Nij � (TN

ijk,JN
ijk,FN

ijk). 8en,

(i) O∩ (M⊕N) � (O∩M)⊕ (O∩N)

(ii) (O⊕M)∩N � (O∩N)⊕ (M∩N)

(iii) O∪ (M⊕N) � (O∪M)⊕ (O∪N)

(iv) (O⊕M)∪N � (O∪N)⊕ (M∪N)

Proof. (i)

O∩ (M⊕N) � T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑∩

T
M
ijk + T

N
ijk􏼐 􏼑

2
,
J

M
ijk + J

N
ijk􏼐 􏼑

2
,
F

M
ijk + F

N
ijk􏼐 􏼑

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� min T
o
ijk,

T
M
ijk + T

N
ijk􏼐 􏼑

2
⎛⎝ ⎞⎠,

J
o
ijk + J

M
ijk + J

N
ijk􏼐 􏼑/2􏼐 􏼑􏼐 􏼑􏼐 􏼑

2
, max F

o
ijk,

F
M
ijk + F

N
ijk􏼐 􏼑

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� min
T

O
ijk + T

M
ijk􏼐 􏼑

2
,
T

O
ijk + T

N
ijk􏼐 􏼑

2
⎛⎝ ⎞⎠,

J
O
ijk + J

M
ijk􏼐 􏼑/2􏼐 􏼑 + J

O
ijk + J

N
ijk􏼐 􏼑/2􏼐 􏼑􏼐 􏼑

2
,⎛⎝⎡⎢⎢⎣

max
F

O
ijk + F

M
ijk􏼐 􏼑

2
,
F

O
ijk + F

N
ijk􏼐 􏼑

2
⎛⎝ ⎞⎠⎞⎠⎤⎥⎥⎦

� min T
o
ijk,T

M
ijk􏼐 􏼑,

J
o
ijk + J

M
ijk􏼐 􏼑

2
, max F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⊕ min T
o
ijk,T

N
ijk􏼐 􏼑,

J
o
ijk + J

N
ijk􏼐 􏼑

2
, max F

o
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑∩ T

M
ijk,J

M
ijk,F

M
ijk􏼐 􏼑􏽨 􏽩⊕ T

o
ijk,J

o
ijk,F

o
ijk􏼐 􏼑∩ T

N
ijk,J

N
ijk,F

N
ijk􏼐 􏼑􏽨 􏽩

� (O∩M)⊕ (O∩N).

(43)
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+e remaining parts are proved in a similar way. □

4. Neutrosophic Hypersoft Matrix (NHSM) in
Decision-Making Using Score Function

Suppose that some decision makers wish to select from α
number of objects. Each object is further characterized by β
number of attributes, whose respective attributes form a
relation just like NHSM. Each decision makes different
neutrosophic values to these respective attributes. Corre-
sponding to these neutrosophic values for the required
relation, we get a NHSM of order α × β. From this NHSM,
we calculate values’ matrices, which help to obtain a score
matrix. And, finally, we calculate the total score of each
object from the score matrix.

Value matrices are the real matrices that obey all the
properties of real matrices. Score function is also a real
matrix which is obtained from two or more value matrices.

Definition 1. Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Jo
ijk,Fo

ijk); then, the value of matrix O is
denoted asV(O), and it is defined asV(O) � [VO

ij] of order
α × β, whereVO

ij � To
ijk − Jo

ijk, − Fo
ijk. +e score of two

NHSM O � [Oij] and M � [Mij] of order α × β is given as
S(O,M) � V(O) + V(M) and S(O,M) � [Sij], where
Sij � VO

ij + VM
ij . +e total score of each object in universal

set is | 􏽐
n
j�1 Sij|.

Algorithm is graphically represented with Figure 1.

Step 1: construct a NHSM as defined in Section 3.1.
Step 2: calculate the value matrix from NHSM. Let O �

[Oij] be the NHSM of order α × β, where
Oij � (To

ijk,Jo
ijk,Fo

ijk); then, the value of matrix O is
denoted asV(O), and it is defined asV(O) � [VO

ij] of
order α × β, whereVO

ij � To
ijk − Jo

ijk, − Fo
ijk.

Step 3: compute the score matrix with the help of value
matrices. +e score of two NHSM O � [Oij] and M �

[Mij] of order and α × β is given as S(O,M)

� V(O) + V(M) and S(O,M) � [Sij], where
Sij � VO

ij + VM
ij .

Step 4: compute the total score from the score matrix.
+e total score of each object in the universal set is
|􏽐

j�1
j�1Sij|.

Step 5: find the optimal solution by selecting an object
of maximum score from the total score matrix.

4.1. Numerical Example. Teachers’ recruitment problem
(TRP) is the most complex and absurd task.+ere is no fixed
and fabricated design to know their subject knowledge or
pedagogical skills. +erefore, decision makers find them-
selves in a blind alley. Consequently, based on their own
knowledge and experience, they select a person who does not
meet the institutional requirement; thus, TRP is typically a
multicriteria decision-making MCDM problem.

Assumptions:

(i) Independent attributes are considered
(ii) Everyone attends the interview
(iii) Hesitant environment is not yet considered

Formulation of the Problem. Let us consider an institute that
wants to hire a teacher appropriate to its requirements, and
he received the following statistics-based CVs. Let U be the
set of candidates for the teaching at the college level:

U � T
1
,T

2
,T

3
,T

4
,T

5
,T

6
,T

7
,T

8
,T

9
,T

10
,T

11
,T

12
,T

13
,T

14
,T

15
􏽮 􏽯. (44)

Also, consider the set of attributes as

A1 � Qualification,

A2 � Experience,

A3 � Gender,

A4 � Publications.

(45)

Parameters:

Ti � universal set of teachers, where i � 1, 2, 3, 4, 5
Ai � attributes, where i � 1, 2, 3, 4 that are further cat-
egorized into the following:

(i) Aa
1 � Qualification

(ii) Aa
1 � BSHons.,MS/Mphill,Phd,PostDoctorate􏼈 􏼉

(iii) Ab
2 � Experience � 5yr, 8yr, 10yr, 15yr􏼈 􏼉

(iv) Ac
3 � Gender � Male, Female{ }

(v) Ad
4 � Publications � 3, 5, 8, 10+{ }

+e function F: Aa
1 × Ab

2 × Ac
3 × Ad

4⟶ P(U).
Let us assume the relation F((Aa

1 × Ab
2 × Ac

3 × Ad
4) �

F(Mphill, 5yr,male, 3) which is the actual requirement of
college for the selection of candidates.

Four candidates T2,T6,T8,T14􏼈 􏼉 are shortlisted on the
basis of assumed relation, i.e., (Mphill, 5yr,male, 3).

A jury of two members A,B{ } is set for the selection of
shortlisted candidates. +ese jury members give their
valuable opinion in the form of NHSSs separately as
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A � F(Mphill, 5yr,male, 3)

� ≪T2
, (Mphill 0.5, 0.3, 0.6{ }, 5yr 0.3, 0.4, 0.7{ },male 0.5, 0.6, 0.9{ }, 3 0.6, 0.4, 0.5{ })≫ ,􏽮

≪T6
, (Mphill 0.3, 0.2, 0.1{ }, 5yr 0.6, 0.5, 0.3{ },male 0.7, 0.8, 0.3{ }, 3 0.7, 0.5, 0.3{ })≫ ,

≪T8
(Mphill 0.7, 0.3, 0.6{ }, 5yr 0.6, 0.4, 0.8{ },male 0.8, 0.5, 0.4{ }, 3 0.6, 0.2, 0.1{ })≫ ,

≪T14
, (Mphill 0.5, 0.4, 0.5{ }, 5yr 0.3, 0.6, 0.7{ },male 0.9, 0.2, 0.1{ }, 3 0.4, 0.5, 0.3{ })≫ ,􏽯,

B � F(Mphill, 5yr,male, 3)

� ≪T2
, (Mphill 0.8, 0.1, 0.2{ }, 5yr 0.7, 0.4, 0.3{ },male 0.4, 0.6, 0.3{ }, 3 0.5, 0.3, 0.5{ })≫ ,􏽮

≪T6
, (Mphill 0.8, 0.2, 0.1{ }, 5yr 0.7, 0.4, 0.3{ },male 0.8, 0.2, 0.1{ }, 3 0.9, 0.3, 0.2{ })≫ ,

≪T8
(Mphill 0.5, 0.3, 0.4{ }, 5yr 0.7, 0.3, 0.2{ },male 0.9, 0.2, 0.1{ }, 3 0.4, 0.2, 0.7{ })≫ ,

≪T14
, (Mphill 0.7, 0.4, 0.2{ }, 5yr 0.2, 0.4, 0.7{ },male 0.7, 0.2, 0.1{ }, 3 0.6, 0.3, 0.4{ })≫ ,􏽯.

(46)

Let us apply the above define algorithm for the calcu-
lation of total score.

Step I (construction of NHSM):the above two NHSSs
are given in the form of NHSMs as

[A] �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[B] �

(Mphill, (0.8, 0.1, 0.2)) (5yr, (0.7, 0.4, 0.3)) (male, (0.4, 0.6, 0.3)) (3, (0.5, 0.3, 0.5))

(Mphill, (0.8, 0.2, 0.1)) (5yr, (0.7, 0.4, 0.3)) (male, (0.8, 0.2, 0.1)) (3, (0.9, 0.3, 0.2))

(Mphill, (0.5, 0.3, 0.4)) (5yr, (0.7, 0.3, 0.2)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.2, 0.7))

(Mphill, (0.7, 0.4, 0.2)) (5yr, (0.2, 0.4, 0.7)) (male, (0.7, 0.2, 0.1)) (3, (0.6, 0.3, 0.4))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

Step II: calculation of the value matrices of NHSMs
defined in Step I:

Find optimal
solution by
selecting an
object of
maximum

score

Compute
total score

Compute
score
matrix

Calculate
value

Construct
NHSM 

Figure 1: Flowchart of the proposed algorithm.
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[V(A)] �

(Mphill, (− 0.4)) (5yr, (− 0.8)) (male, (− 1)) (3, (− 0.3))

(Mphill, (0)) (5yr, (− 0.2)) (male, (− 0.4)) (3, (− 0.1))

(Mphill, (− 0.2)) (5yr, (− 0.6)) (male, (− 0.1)) (3, (0.3))

(Mphill, (− 0.4)) (5yr, (− 1)) (male, (0.6)) (3, (− 0.4))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[V(B)] �

(Mphill, (0.5)) (5yr, (0)) (male, (− 0.5)) (3, (− 0.3))

(Mphill, (0.5)) (5yr, (0)) (male, (0.5)) (3, (0.4))

(Mphill, (− 0.2)) (5yr, (0.2)) (male, (0.6)) (3, (− 0.5))

(Mphill, (0.1)) (5yr, (− 0.9)) (male, (0.4)) (3, (− 0.1))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(48)

Step III: computation of the score matrix by adding
value matrices obtained in Step II:

[S(A,B)] �

(Mphill, (0.1)) (5yr, (− 0.8)) (male, (− 1.5)) (3, (− 0.6))

(Mphill, (0.5)) (5yr, (− 0.2)) (male, (0.1)) (3, (0.3))

(Mphill, (− 0.4)) (5yr, (− 0.4)) (male, (0.5)) (3, (− 0.2))

(Mphill, (− 0.3)) (5yr, (− 1.9)) (male, (1)) (3, (− 0.5))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

Step IV: calculation of the score matrix:

Total score �

2.8

0.1

0.5

1.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

Step V: the candidateT2 will be selected for teaching at
the college level as the total score of T2 is highest
among the rest of the total score of candidates.

5. Result and Comparison Analysis

We propose an algorithm for NHSM of the real-world
problems, and results are compared with the algorithms on
NSM already established. Graphical representations of the
ranking of the proposed algorithm are given in Figure 1. +e
proposed algorithm is valid and practical. As it could be
observed in the comparison Table 7, the proposed method’s
best selection is comparable with the already established
method, which is expressive in itself and approve the reli-
ability and validity of the proposed method. According to
the refinement of the philosophy of neutrosophy, it could be
a more efficient technique.

5.1. Limitations and Advantages of Proposed Matrix 8eory.
+e neutrosophic soft set theory is not very efficient in
selecting the optimal object of a decision-making problem
that possesses some attributes which are further divided,
whereas neutrosophic hypersoft matrix theory can be
applied.

+e advantages of the proposed theory are

(1) Firstly, this new method’s specialty is that it may
solve any MCDM problem involving a huge number
of decision makers very easily along with a simple
computational procedure

(2) Secondly, when compared with existing methods for
MCDM problems under a neutrosophic environ-
ment, the proposed operators are consistent and
accurate, which illustrate their application’s
practicability

(3) +irdly, the proposed method considers the inter-
relationships of attributes in practical application,
while existing approaches cannot

(4) Lastly, the proposed algorithm for MCDM problems
in this paper can further consider more correlations
between attributes, which means that they have
higher accuracy and greater reference value

Table 7: Alternative rank comparison using NHSM and NSM techniques.

Method Alternative final ranking Optimal choice
Proposed in this paper T2 >T6 >T8 >T14 T2

Hashmi et al. [28] T2 >T8 >T14 >T6 T2

Journal of Mathematics 13



(5) +e matrix is useful for storing (neutrosophic
hypersoft set) in the computer memory, which is
very useful and applicable

6. Conclusion

+is paper has first defined NHSM theory and then intro-
duced some aggregate operators that are more functional to
make theoretical studies in the neutrosophic soft set arena.
Moreover, we have proposed the concept of the score
function. Additionally, the utilization of NHSM in the de-
cision-making problem (teacher recruitment problem
(TRP)) has been made with the score matrix’s assistance. At
the end, we compared the result with existing techniques and
showed that the purposed technique is more efficient and
refined. We expect, this paper will advance the future in-
vestigation on various calculations such as TOPSIS, VIKOR,
and AHP in other decision-making problems. Also, in fu-
ture, it can be linked with Pythagorean fuzzy interactive
Hamacher power aggression operators, interval-valued
q-rung orthopair fuzzy sets in decision-making, CN-q-
ROFS, connection number-based q-rung orthopair fuzzy set
and their application to the decision-making process, and
average operators based on the spherical cubic fuzzy
number.

Data Availability

+e data used to support the findings of this study are
available from the author upon request.
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In this paper, the neutrosophic trimmed average, neutrosophic trimmed standard deviation, and neutrosophic trimmed co-
efficient of variation (NTCV) are introduced.(e application of the proposed neutrosophic trimmed descriptive statistics is given
with the help of measurement data. (e comparisons of the proposed NTCV are compared with the existing neutrosophic
coefficient of variation (NCV). From the comparisons, it is concluded that the proposed NTCV is more efficient than NCV in
terms of consistency and measures of indeterminacy. Based on the study, it is recommended to apply the proposed NTCV in the
industry when there is a need to make decisions on the basis of measurement data.

1. Introduction

(e statistical methods and techniques are playing an im-
portant role in decision-making in all fields of social sciences,
medical sciences, and industries. Among them, the average
and coefficient of variation (CV) have been widely used in
decision-making in the presence of more than one charac-
teristic. (e average is used to select the variable of interest
which is better on average, and CV is applied to check the
consistency of that characteristic. For example, industrials are
interested to make the decision about the product on the basis
of measurements recorded by different operators. To make
the decision, a more consistent operator is selected using the
CV. It is important to note that better on the average does not
meanmore consistent than the others. In other words, the CV
tells about the variation in the data. Less the variation means
better the data for the decision-making. A CV of less than 10%
is considered very good and larger than 30% is not acceptable.
(e variation in the data can be reduced by omitting the
outliers from the data. (e outlier of the data can be removed
from the data using the idea of the trimmed mean. In this
method, a preselected percentage of the values are removed
from the starting and ending of the ordered data. (e use of
the trimmed average is helpful to reduce the variation by

removing extreme observations from the data. Wu and Zuo
[1] proposed trimmed measures using the scale deviation
method. Alkhazaleh and Razali [2] worked on estimation
using the trimmed average. Yusof et al. [3] discussed various
trimmed methods. Wang et al. [4] introduced the mean
approach in medical science. Lugosi and Mendelson [5] in-
troduced heavy-tailed distribution. More information about
the application of trimmed measures can be seen in [6–10].

Uncertainty is defined as the lack of sureness about
measurement, parameters, and observations. For example,
measuring the water level, measuring rock joint roughness,
andmeasuring the lifetime of a virus is done under uncertain
environment. According to [11], “different sources of un-
certainty may affect the quality of measurement results:
environment, measurement setup, measuring instrument,
appraiser, measuring object, measuring procedure, physical
constants, the definition of the characteristic, software, and
calculations.” In case, when uncertainty is presented in the
data, the fuzzy logic can be applied for the analysis of the
data. (e trimmed average under fuzzy logic can be applied
to remove the extreme observations from the fuzzy data.(e
authors of [12–15] discussed the applications of trimmed
average using fuzzy logic. More applications can be seen in
[16, 17].
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Fuzzy logic is based on membership and nonmember-
ship values. Neutrosophic logic is a general form of logic that
deals with three measures, namely, the measure of truth
(membership), the measure of falsehood (nonmembership),
and the measure of indeterminacy. (e fuzzy logic is a
special case of neutrosophic logic, see [18]. (e information
about the measure of indeterminacy can be obtained from
the neutrosophic logic. (e neutrosophic logic has been
applied in a variety of fields, see [19–21]. Using the idea of
neutrosophic logic, neutrosophic statistics which is the
extension of classical statistics was introduced by [22]. (e
methods to analyze the neutrosophic data were discussed in
[23, 24]. Aslam [25] introduced the neutrosophic coefficient
of variation. Aslam and Bantan [26] introduced a mea-
surement system using neutrosophic statistics. More in-
formation on dealing neutrosophic numbers can be seen in
[27–29].

As mentioned earlier, the trimmed average is a useful
technique to reduce the variation by removing the extreme
observations from the data. In this method, a small per-
centage of values are removed to minimize the variation in
the data. (e trimmed average helps to remove the outliers
from the data before calculating the traditional average. (e
coefficient of variation under neutrosophic statistics is
known as the neutrosophic coefficient of variation (NCV)
and the coefficient of variation using the trimmed average
under neutrosophic statistics is known as the neutrosophic
trimmed standard deviation (NTSD). (e coefficient of
variation using trimmed average under classical is called the
trimmed coefficient of variation. Aslam [25] introduced
NCV. By exploring the literature and best of our knowledge,
there is no work on neutrosophic trimmed average, neu-
trosophic trimmed standard deviation (NTSD), and NTCV.
In this paper, the introduction of average, standard devia-
tion, and coefficient of variation using the neutrosophic
statistics will be given. In addition, we will give the appli-
cation of the proposed NTCV using the measurement data
from the industry. It is expected that the proposed NTCV
will be helpful to increase the consistency as compared to
NCV. Furthermore, the proposed NTCV will be helpful to
minimize the measure of indeterminacy.

2. Methodology

Let INϵ[IL, IU] be an indeterminacy interval associated with
neutrosophic random
numberXNi � XLi + XUiIN(i � 1, 2, 3, . . . , nN) of size
nNϵ[nL, nU], where XL, nL and XU, nU are the lower and

upper values, respectively. (e basic operations such as
multiplication, division, and inverse of these neutrosophic
numbers can be seen in [23, 24]. Suppose a data analyst has a
neutrosophic sample nNϵ[nL, nU] and he is interested to find
α% neutrosophic trimmed average (NTA). Suppose that XL

and XU denote the lower and upper values of an indeter-
minate interval of measurement parts. (e trimmed ob-
servation is denoted bykN � nNα, where α is the percentage
of values trimmed from the data. Suppose that RN � nN −

nNα shows the difference between the total observation and
trimmed observations.(e following process can be adopted
to calculate α% neutrosophic trimmed average.

Step 1: arrange XL and XU observations in the as-
cending order
Step 2: trim kNϵ[kL, kU] observations at both ends of
arranged data, where kN � nNα
Step 3: compute NTA of remaining observations,
RN � nN − nNα, RNϵ[RL, RU]

(e neutrosophic trimmed average, say TL of values
XL, is calculated as

TL �
1

RL

􏽘

nL−kL

i�kL+1
XLi, (1)

where index of summation runs from the lower value of kN

to the lower value of RN.
(e neutrosophic trimmed average, say TU of values XU,

is calculated as

TU �
1

RU

􏽘

nU−kU

i�kU+1
XUi, (2)

where index of summation runs from the upper value of kN

to the upper value of RN.
(e neutrosophic trimmed average, say XNi, using

equations (1) and (2), is calculated by

XNi �
1

RL

􏽘

nL−kL

i�kL+1
XLi +

1
RU

􏽘

nU−kU

i�kU+1
XUiIXN; IXNϵ IXL, IXU􏽨 􏽩.

(3)

(e neutrosophic trimmed sum of the square of ob-
servations from XNi is calculated by

􏽘

nU−kU

i�kU+1
XNi − XNi( 􏼁

2
� 􏽘

nU−kU

i�kU+1

min
XLi + XUiIL( 􏼁 XL + XUIL( 􏼁, XLi + XUiIL( 􏼁 XL + XUIU( 􏼁,

XLi + XUiIU( 􏼁 XL + XUIL( 􏼁, XLi + XUiIU( 􏼁 XL + XUIU( 􏼁
⎛⎝ ⎞⎠

max
XLi + XUiIL( 􏼁 XL + XUIL( 􏼁, XLi + XUiIL( 􏼁 XL + XUIU( 􏼁,

XLi + XUiIU( 􏼁 XL + XUIL( 􏼁, XLi + XUiIU( 􏼁 XL + XUIU( 􏼁
⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, INϵ IL, IU􏼂 􏼃, (4)
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where XL � 1/nL 􏽐
nL

i�1 XLi and XU � 1/nU 􏽐
nU

i�1 XUi

(e neutrosophic trimmed standard deviation (NTSD),
say sNT, is given by

sNT �

�������������������

1
RN

􏽘

nN−kN

i�kN+1
XNi − XNi( 􏼁

2

􏽶
􏽴

. (5)

(e neutrosophic trimmed coefficient of variation
(NTCV) tells about the consistency and is computed by

CVNT �
sNT

XNi

× 100. (6)

3. Application Using Measurement Data

Now, we present the case study from the automotive in-
dustry in Kachiran Company in Asia, see [30], for more
details.(e company is a manufacturing housing clutch used
as automobile parts. To make a better decision about the
performance of these parts, the company needs the mea-
surements of these parts. (e decision about the perfor-
mance depends on the consistency of the operators. (e
operators working in the company have the instruction to
measure the length of the parts. (e measurements of these
parts cannot be recorded completely; therefore, the mea-
surement observations are neutrosophic. (e measurements
in mm by three operators are shown in Table 1.

From Table 1, it can be seen that the use of classical
statistics may mislead the managers in decision-making.
(erefore, the consistency of the operators in measuring will
be discussed with the help of the proposed methods. Let α �

1% and nNϵ[10, 10].(e application of the proposed method
to findNTCV for operator 1 is stated as follows (Tables 2 and
3).

Step 1: arrange XL and XU observations of operator 1 in
the ascending order as shown in Table 2.

Step 2: trim kN � 1 observations at both ends of
arranged data, where kN � 10 × 0.1. (e
remaining data are given in Table 3.

Step 3: compute NTA of remaining observations,
RN � 10 − 2 � 8.

(e neutrosophic trimmed average of values XL is
calculated as

TL �
1
8

􏽘

8

i�2
XLi � 62.12. (7)

(e neutrosophic trimmed average of values XU is
calculated as

TU �
1
8

􏽘

8

i�2
XUi � 62.24. (8)

(e neutrosophic trimmed average is defined by

XNi � 62.12 + 62.24IN; INϵ[0, 0.0019]. (9)

(e neutrosophic trimmed sum of the square is calcu-
lated by

􏽘

8

i�2
XNi − XNi( 􏼁

2
� [0.0264, 0.1059]. (10)

(e neutrosophic trimmed standard deviation (NTSD),
say sNT, is given by

sNT �

���������������

1
8

􏽘

8

i�2
XNi − XNi( 􏼁

2

􏽶
􏽴

� [0.0575, 0.1150]. (11)

(e neutrosophic trimmed coefficient of variation
(NTCV) tells about the consistency and computed by

CVNT �
[0.0575, 0.1150]

[62.12, 62.24]
× 100 � [0.0924, 0.1851]. (12)

(e values of NTCV for other operators can be calcu-
lated in the same way as for operator 1. (e neutrosophic
descriptive statistics for three operators are shown in Table 4.
From the first column of Table 4, it can be seen that, on
average in measurement, operator 2 is better than other
operators. We also note that the indeterminacy interval of
operator 3 is smaller than other operators. (erefore, op-
erator 3 is more consistent in measuring the length of
housing clutch parts. Based on this study, it is concluded that
the management can make the decision about the product
on the basis of measurement recorded by operator 3.

4. Comparative Study

Aslam [25] introduced the neutrosophic coefficient of
variation (NCV) under the neutrosophic statistics. In this
section, we will discuss the advantages of the proposed
NTCV with NCV. Note here that the proposed NTCV re-
duces to the existing NCV when no observation is trimmed
from the data (α � 0%). To show the efficiency of the
proposed NTCV over NCV, we will consider the same
descriptive neutrosophic statistics of measurement data are
presented in the last section. (e NCV and NTCV for three
operators are shown in Table 5. From column four of Table 5,
it can be noted that the values of NTCV from the proposed
method are smaller than the existing NCV which indicates
that the proposed NTCV is more consistent in measurement
as compared to NCV. For example, for the measurement
data given by operator 3, the indeterminate interval is from
0.0826 to 0.1695. On the contrary, this interval from the
existing NCV is from 0.1029 to 0.2045. From Table 5, it can
also be noted that the use of the proposed method increases
the efficiency of the values of the coefficient of variation.
From this study, it is concluded that the proposed NTCV is
smaller than the existing NCV. We conclude that the
proposed method is helpful to increase the consistency of
measurement. (e neutrosophic forms of NCV and NTCV
along with the measures of indeterminacy are placed in
Table 6. (e first values in neutrosophic form denote the
determined values under classical statistics and the second
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part is indeterminate parts. For example, in neutrosophic
form 0.0826 + 0.1731 IN, INϵ[0, 0.5228], the value 0.0826
presents the value of the coefficient of variation (CV) for
classical statistics. (e value 0.1731 IN, INϵ[0, 0.5228], is the
indeterminate part with the measure of
indeterminacy(0.1731 − 0.0826)/0.1731 � 0.5228. We note
that the measure of indeterminacy from the existing method
is given by [25] is 0.82. From this study, it is concluded that
the proposed method is helpful to minimize the measure of

indeterminacy. We also compared the results of the pro-
posed study with interval statistics. (e interval statistics
used intervals in order to capture the data inside the in-
tervals. (erefore, the interval statistics tells the values of
NTCV from 0.0826 to 0.173 without giving any information
about the measure of indeterminacy. (erefore, it is con-
cluded that the proposed NTCV is more efficient in measure
of indeterminacy than the existing CV proposed by [25] and
interval statistics.

Table 5: (e comparison in NCV and NTCV.

Operators NCV Status NTCV Status
1 [0.1003, 0.2011] Good [0.0924, 0.1851] Very good
2 [0.1013, 0.5628] Not acceptable [0.0826, 0.1731] Very good
3 [0.1020, 0.2045] Good [0.0845, 0.1695] Very good

Table 6: (e comparison in NCV and NTCV.

Operators Neutrosophic form of NCV Neutrosophic form of NTCV
1 0.1003 + 0.2011 IN, INϵ[0, 0.5012] 0.0924 + 0.1851IN, INϵ[0, 0.5]

2 0.1013 + 0.5628 IN, INϵ[0, 0.82] 0.0826 + 0.1731 IN, INϵ[0, 0.5228]

3 0.1020 + 0.2045 IN, INϵ[0, 0.5012] 0.0845 + 0.1695IN, INϵ[0, 0.5]

Table 1: (e real example data.

Part no.
Operators

1 2 3
1 [62.14, 62.26] [62.09, 62.21] [62.09, 62.21]
2 [62.13, 62.25] [62.13, 62.25] [62.13, 62.25]
3 [62.05, 62.17] [62.05, 62.17] [62.04, 62.16]
4 [62.11, 62.23] [62.11, 62.23] [62.11, 62.23]
5 [62.19, 62.31] [62.19, 62.31] [62.19, 62.31]
6 [62.06, 62.18] [62.06, 62.18] [62.06, 62.18]
7 [62.07, 62.19] [62.08, 62.20] [62.07, 62.19]
8 [62.14, 62.26] [62.14, 62.26] [62.14, 62.26]
9 [62.24, 62.36] [62.24, 62.36] [62.23, 62.35]
10 [62.22, 62.34] [62.22, 62.34] [62.22, 62.34]

Table 2: Observations of operator 1.

XL 62.05 62.06 62.07 62.11 62.13 62.14 62.14 62.19 62.22 62.24
XU 62.17 62.18 62.19 62.23 62.25 62.26 62.26 62.31 62.34 62.36

Table 3: Trimmed observations of operator 1.

XL 62.06 62.07 62.11 62.13 62.14 62.14 62.19 62.22
XU 62.18 62.19 62.23 62.25 62.26 62.26 62.31 62.34

Table 4: Neutrosophic descriptive statistics.

Operators XNi sNT CVNT Range

1 [62.12, 62.24] [0.0575, 0.1150] [0.0924, 0.1851] 0.0927
2 [62.12, 62.26] [0.0514, 0.1078] [0.0826, 0.1731] 0.0905
3 [62.12, 62.24] [0.0526, 0.1053] [0.0845, 0.1695] 0.085
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5. Concluding Remarks

In this paper, the neutrosophic trimmed average, neu-
trosophic trimmed standard deviation, and neutrosophic
trimmed coefficient of variation (NTCV) were introduced.
(e application of the proposed neutrosophic trimmed
descriptive statistics was given with the help of measurement
data. (e comparisons of the proposed NTCV are compared
with the existing neutrosophic coefficient of variation
(NCV). From this study, it is can be seen that the proposed
NTCV is more efficient than NCV in terms of measures of
indeterminacy. In addition, it can be seen that the proposed
NTCV reduces the variation in the measurement data. (e
proposed NTCV can be applied for the decision-making in
the industry when the data are obtained from the mea-
surement having the neutrosophy. (e other trimmed sta-
tistical methods under neutrosophic statistics can be
considered as future research.
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In the field of operation research, linear programming (LP) is the most utilized apparatus for genuine application in various scales.
In our genuine circumstances, the manager/decision-makers (DM) face problems to get the optimal solutions and it even
sometimes becomes impossible. To overcome these limitations, neutrosophic set theory is presented, which can handle all types of
decision, that is, concur, not certain, and differ, which is common in real-world situations. By thinking about these conditions, in
this work, we introduced a method for solving neutrosophic multiobjective LP (NMOLP) problems having triangular neu-
trosophic numbers. In the literature study, there is no method for solving NMOLP problem. -erefore, here we consider a
NMOLP problem with mixed constraints, where the parameters are assumed to be triangular neutrosophic numbers (TNNs). So,
we propose a method for solving NMOLP problem with the help of linear membership function. After utilizing membership
function, the problem is converted into equivalent crisp LP (CrLP) problem and solved by any suitable method which is readily
available. To demonstrate the efficiency and accuracy of the proposed method, we consider one classical MOLP problem and solve
it. Finally, we conclude that the proposed approach also helps decision-makers to not only know and optimize the most likely
situation but also realize the outcomes in the optimistic and pessimistic business situations, so that decision-makers can prepare
and take necessary actions for future uncertainty.

1. Introduction

Linear programming (LP) problem has an important ap-
plication in various sectors of our daily life. -e major
drawback faced by manager or decision-makers (DM) in
daily-life application is to determine the parameters. Because
of several factors in real-life problems, the real-life problems
are very complex. Due to uncertainty, the decision-makers
cannot always formulate the problem in a well-defined and
exact manner, nor can they always precisely predict the
outcome of viable decisions. To overcome these uncertainty
complex problems, we take more realistic descriptive
knowledge of experts, which can be represented as fuzzy

data. Firstly, the basic concept of fuzzy set theory was
proposed by Zadeh [1]. Further, the basic concept of fuzzy
decision-making was proposed by Bellman and Zadeh [2].
-us, linear programming (LP) problem with fuzzy envi-
ronment would be very effective in solving real-life prob-
lems. If the parameters of LP problem are considered as
fuzzy, then it is called fuzzy linear programming (FLP)
problem. -e concepts of the feasible solution and αefficient
solutions of the FLP problem were proposed by Ramik [3].
Maleki et al. introduced the idea of using the ranking
function for solving the FLP problem [4]. -e concept of
sensitivity analysis for solving the FLP problem was pro-
posed by Ebrahimnejad [5]. A trapezoidal fuzzy number was
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considered by Wan and Dong [6] for solving LP problems
using multiobjective programming and membership func-
tion. Ganesan and Veeramani [7] also considered a new
fuzzy symmetric trapezoidal fuzzy number and solved it.
Another type of problem was considered by Lotfi et al. [8],
where all the parameters, variables, and constraints are
chosen as fully fuzzy LP (FFLP) problem and solved by
lexicographic method. Kumar et al. [9] also proposed a
method for solving FFLP problem with equality constraints
by using ranking function. Najafi and Edalatpanah [10] have
suggested some modifications of paper [9]. Many re-
searchers [11–13] considered the lexicographic technique to
apply in various problems like FFLP problemwith triangular
numbers and FFLP problem with trapezoidal fuzzy
numbers.

After successful application of fuzzy sets in real-life
application, decision-makers (DM) want a more realistic
approach to handle the uncertainty in real-world prob-
lems. -us, Atanassov [14] proposed the concept of a new
set which is combined with both membership functions
and nonmembership functions and the set was called
intuitionistic fuzzy set (IFS). IFS is an extension version of
fuzzy set. Singh and Yadav [15] proposed intuitionistic
fuzzy multiobjective linear programming problem with
various membership functions. Singh and Yadav [16]
proposed transportation problem with intuitionistic fuzzy
type-2 problem. Some of researchers [17–22] focused on
solving multiobjective LP (MOLP) problem and LP
problems with intuitionistic fuzzy numbers. Till now,
several works have been pioneered in both FS and IFS.
Afterwards, Smarandache [23] introduced the structure of
neutrosophic set (NS) for developing the solution of any
kind of real-world problem in a reasonable way. After
Smarandache, Wang et al. [24] disclosed the establish-
ment of single-typed neutrosophic set, which demands a
crucial position in NS theory. -e notion of single-valued
neutrosophic set was more suitable for solving many real-
life problems like image processing, medical diagnosis,
decision-making, water resource management, and sup-
ply chain management. To reflect the decision-making
information in an objective way, the triangular neu-
trosophic numbers (TNN) can be used in real-life
problems to express the attribute value. -is can not only
maintain the variables but also highlight the possibility of
various values within this interval. Of late, Abdel-Basset
et al. [25] solved LP problems under neutrosophic tri-
angular numbers by using ranking functions. An integer
programming problem with triangular neutrosophic
numbers was developed by Das and Edalatpanah [26]. For
the first time in neutrosophic sets, Das and Chakraborty
[27] proposed a model for solving LP problem in pen-
tagonal numbers. Ye et al. [28] introduced the idea of
finding the optimal solution of the LP problem in NNs
environment. Das [29] also used pentagonal neutrosophic
numbers in transportation problem. Pythagorean fuzzy
numbers also can handle the uncertainly problem. Wang
and Li [30] proposed a Pythagorean fuzzy number in
decision-making problem; for more details about the
applications of fuzzy extension sets, see [31–34].

Our contribution, motivation, and novelties are as
follows.

1.1. Contribution. In this article, we mainly focused on
neutrosophic multiobjective linear programming (NMOLP)
problem with mixed constraints under triangular neu-
trosophic numbers. Several factors are also involved in our
day-to-day life; therefore, DM choose the neutrosophic
numbers for better results. In neutrosophic numbers, DM
always choose any membership function as per the problem.
Some basic operational laws of triangular neutrosophic
numbers are demonstrated to enhance the pertinence of our
proposed theory. With the progression of the study, a newly
conceptualized ranking function is established under tri-
angular neutrosophic number background. Utilizing this
constructive tool, the NMOLP problem is transformed into
crisp MOLP problem. Notably, the well-known various
membership functions are used for conversion into an
equivalent crisp convex programming problem.

1.2.Motivation. Neutrosophic sets play an important role in
uncertainty modelling. -e development of uncertainty
theory plays a fundamental role in formulation of real-life
scientific mathematical model, structural modelling in en-
gineering field, medical diagnosis problem, and so forth.
How can we solve multiobjective linear programming based
triangular neutrosophic numbers? Is it possible to apply in
real-life problem? Still there is no method for application in
multiobjective linear programming problem having trian-
gular neutrosophic numbers. From this aspect, we try to
extend this research paper.

1.3. Novelties. A linear membership function is usually very
comfortable in real-life situations. It is defined by two points,
that is, the upper levels and lower levels of acceptability. A
numerical problem related real mathematical problem is set
forth to validate our anticipated hypothesis. Lastly, the
comparison work involving the ranking system of the al-
ternatives uplifted the superiority of our proposed suppo-
sition. To the best of our knowledge, no method is available
for solving NMOLP problem. -erefore, we attempt to
establish a new strategy to solve this problem.

-e rest of the paper is organized as follows: Some basic
definitions and preliminaries are presented in Section 2. In
Section 3, the classical MOLP problem and membership
functions are presented. -e proposed method is discussed
in Section 4. In Section 5, we present a numerical example,
and a real-life problem is discussed.-e analysis of the result
is also discussed is Section 6. Finally, the conclusion is
discussed in Section 7.

2. Preliminaries

In this segment, we establish some fundamental mathe-
matical operations and definition which is required
throughout the paper.
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Definition 1 (see [31]). Consider that 􏽥V in all-inclusive
discourse X, which is meant conventionally by x, is supposed
to be a single-valued neutrosophic (SVN) set if
􏽥V � 〈x: [αp(x), αq(x), αr(x)]〉: x ∈ X{ }. -e set is de-
scribed by a reality enrollment work, level of certainty:
αp(x): X⟶ [0, 1]; an indeterminacy enrollment work,
level of vulnerability: αq(x): X⟶ [0, 1]; and a false en-
rollment work, level of falsity: αr(x): X⟶ [0, 1]. Also, a
SVN set satisfies the condition 0≤ αp(x) + αq(x) +αr(x)≤ 3.

Definition 2 (see [30]). A triangular neutrosophic number
(TNN) is denoted by 􏽥V � 〈(pl, pmpn), (αp, αq, αr)〉 whose
three membership functions for the truth, indeterminacy,
and falsity of x can be defined as follows:
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where 0≤ αp(x) + αq(x) + αr(x)≤ 3, x ∈ R. Additionally,
when pl ≥ 0, Ris called a nonnegative TNN. Similarly, when
pl < 0,R becomes a negative TNN.

Definition 3 (see[30]). LetA1 � 〈(pl, pm, pn), (αp, αq, αr)〉

and A2 � 〈(ql, qm, qn), (βp, βq, βr)〉be two TNNs. -en the
arithmetic relations are defined as follows:

(i) A1 ⊕A2 � 〈(pl + ql, pm+ qm, pn + pn), (αp ∧ βp,

αq ∧ βq, αr ∧ βr)〉.

(ii) A1 − A2 � 〈(pl − qn, pm − qm, pn − ql), (αp ∧ βp, αq

∧ βq, αr ∧ βr)〉.
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q
l < 0.

(iv) λA1 � 〈(λp
l
, λp

m
, λp

n
),􏽮 (αp

, αq
, αr

)〉, if λ>
0, 〈(λp

n
, λp

m
, λ p

l
), (αp

, αq
, αr

)〉, if λ< 0.

(v) A1/A2 � 〈(p
l/qn

, p
m/qm

,􏽮 p
n/ql

); αp ∧ βp
, αq ∧ βq

,

αr ∧ βr
〉(p

n > 0, q
n > 0), 〈(p

n/ q
n
, p

m/qm
, p

l/ql
);

αp ∧ βp
, αq ∧ βq

, αr ∧ βr
〉(p

n < 0, q
n > 0), 〈(p

n/ql
,

p
m/qm

, p
l/qn

);

αp ∧ βp
, αq ∧ βq

, αr ∧ βr
〉(p

n < 0, q
n < 0).

Definition 4 (see [30]). Ranking neutrosophic numbers is
consistently assumed as a fundamental function in phonetic
dynamic and some other neutrosophic application frame-
works, which has been concentrated by numerous mathe-
maticians. Separation measure between two neutrosophic
numbers is firmly identified with the idea of neutrosophic
numbers which is closely related to the concept of ranking
neutrosophic numbers. Let A1 � (pl, pm, pn); (αp, αq, αr) be
a TNN. -e ranking function for triangular neutrosophic
number A1 is denoted by R(A1) and defined by
R(A1) � (pl + pm + pn/9)(αp + (1 − αq) + (1 − αr)).

Definition 5 (see [29]). Let A1 and A2 be two TNNs. Let
A1 � 〈(pl, pm, pn), (αp, αq, αr)〉

andA2 � 〈(ql, qm, qn), (βp, βq, βr)〉 be two TNNs. -en, we
have the following:

(i) R(A1)≤R(A2)⟺A1 ≤A2

(ii) R(A1)≥R(A2)⟺A1 ≥A2

(iii) R(A1) � R(A2)⟺A1 � A2

(iv) min(A1, A2) � A1, if A1 ≤A2 orA2 ≥A1

Definition 6. Let A1 � 〈(pl, pm, pn), (αp, αq, αr)〉 and
A2 � 〈(ql, qm, qn), (βp, βq, βr)〉be two TNNs; then A 1 � A 2
if and only if pl � ql, pm � qm, pr � qr, αp � βp, αq � βq,
and αr � βr.

3. Classical Problem of MOLP

-e popular multiobjective linear programming (MOLP)
issue with blended requirements is portrayed by
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MinZ � Z
1
, Z

2
, . . . , Z

L
􏽨 􏽩

s.t.

􏽘

o

h�1
bghyh ≥ dg, g � 1, 2, . . . , n1,

􏽘

o

h�1
bghyh ≤ dg, g � 1, 2, . . . , n2,

􏽘

o

h�1
bghyh � dg, g � 1, 2, . . . , n3

yh ≥ 0, h � 1, 2, . . . . . . , o.

(2)

Definition 7. Let Tq be the doable district for (2). A point y

is supposed to be productive or pareto ideal arrangement
solution of (2) if there does not survive any y ∈ Tq with
end goal thatZw(y)≥Zw(y)∀w and Zw(y)≥Zw(y) for
any w.

Definition 8. A point 􏽥y ∈ Tq is supposed to be feeble pareto
ideal arrangement of (2) if there does not survive any y ∈ Tq

with end goal Zw(􏽥y)≥Zw(y)∀w, where w � 1, 2, . . . . . . , L.

3.1.MembershipFunctions. -ere are different techniques to
take care of a MOLP issue.-ese strategies are arranged into
two general classes: scalarization techniques and non-
scalarization techniques. -ese methodologies convert the
MOLP issue into a solitary target programming problem. In
the above literature study, we found that two types of
membership functions are used for solving MOLP problem.
Linear membership function is an emerging technique to
solve fuzzy linear programming problem. Linear function is
based on two points only, that is, upper level and lower level
of acceptability of the decision variable. In uncertainty
circumstances, this type of function is not fixed for all
conditions. -erefore, here we considered both linear and
nonlinear membership functions.

3.1.1. Linear Membership Functions. A linear membership
function μLM can be defined as follows:

μLM ZD(x)( 􏼁 �

1, if ZD ≤LD,

UD − ZD

UD − LD

, if LD ≤ZD <UD,

0, if ZD ≥UD.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

3.1.2. Parabolic Membership Function. -e parabolic
membership function μPM can be defined as follows:

μPM ZD(x)( 􏼁 �

1, if ZD ≤ LD,

1 −
ZD − LD( 􏼁

2

UD − LD( 􏼁
2, if LD ≤ZD <UD,

0, if ZD ≥UD.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Corollary 1 (see [17]). =e following sets where λ≥ 0 are
convex sets:

X: μL Zp
′(X)􏼐 􏼑≥ λ􏽮 􏽯,

X: μH Zp
′(X)􏼐 􏼑≥ λ, Zp

′(X)≤
1
2

Up + Lp􏼐 􏼑􏼚 􏼛,

X: μp Zp
′(X)􏼐 􏼑≥ λ􏽮 􏽯.

(5)

Proof. -e proof is straightforward. □

4. Proposed Method

In this section, by using a new ranking function, we suggest a
new method for solving NMOLP problems. -e main work
will be presented as follows:

Step 1: consider problem (2) of classical MOLP
problem.
Step 2: on the off chance that the coefficients of the goal
capacities, choice factors, and right-hand sides of re-
quirements are dubious, which are spoken with by
three-sided neutrosophic numbers, at that point
problem (2) becomes NMOLP problem and the
problem might be composed as

Min 􏽥ZN � 􏽥Z
1
N, 􏽥Z

2
N, . . . , 􏽥Z

L

N􏼔 􏼕

s.t.

􏽘

o

h�1

􏽥b
N

ghyj ≥ 􏽥d
N

g , g � 1, 2, . . . . . . , n1,

􏽘

o

h�1

􏽥b
N

ghyh ≤ 􏽥d
N

g , g � 1, 2, . . . . . . , n2,

􏽘

o

h�1

􏽥b
N

ghyh � 􏽥d
N

g , g � 1, 2, . . . . . . , n3,

yh ≥ 0, h � 1, 2, ......, o.

(6)

Step 3: utilizing the ranking function which is linear,
problem (7) is changed to the accompanying crisp
MOLP problem.
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Min 􏽥Z � 􏽥Z
1
, 􏽥Z

2
, . . . , 􏽥Z

L
􏼔 􏼕

s.t.

􏽘

o

h�1

􏽥bghyh ≥ 􏽥dg, g � 1, 2, . . . . . . , n1,

􏽘

o

h�1

􏽥bghyh ≤ 􏽥dg, g � 1, 2, . . . . . . , n2,

􏽘

o

h�1

􏽥bghyh � 􏽥dg, g � 1, 2, . . . . . . , n3,

yh ≥ 0, h � 1, 2, . . . . . . , o.

(7)

Step 4: determine the goal programming as follows:

Find yh, h � 1, 2, . . . , o􏼈 􏼉

s.t.

􏽥ZD ≈ LD, D � 1, 2, . . . , L,

􏽘

o

h�1

􏽥bghyh ≥ 􏽥dg, g � 1, 2, . . . , n1,

􏽘

o

h�1

􏽥bghyh ≤ 􏽥dg, g � 1, 2, . . . , n2,

􏽘

o

h�1

􏽥bghyh � 􏽥dg, g � 1, 2, . . . , n3,

yh ≥ 0, h � 1, 2, . . . . . . , o.

(8)

In problem (8), the symbol “ ≈ ” is used to denote that
some deviation ought to be permitted while exacting
objective. To change the model in (8) into a crisp
programming model, we already discussed the above
linear and nonlinear membership functions.
Step 5: use appropriate enrollment works and change
the GP model into crisp programming model.
Step 6: solve the crisp programming problem using any
suitable technique or LINGO or MATLAB.

Theorem 1. An effective solution for (7) is a proficient so-
lution for (6).

Proof. -e proof is straightforward.
So, from the above theorem, NMOLP problem (6) is

equal to settling crisp model (7). □

5. Numerical Experiments

In this section, some numerical examples are given below to
illustrate the new model.

Example 1. Let us consider the following NMOLP problem:

Min 􏽥Z
1
N � 􏽥5Ny1 + 􏽥3Ny2

Min 􏽥Z
2
N � 􏽥2Ny1 + 􏽥7Ny2

s.t. 􏽥2N
y1 + 􏽥4N

y2 ≥ 2􏽥5N
, 􏽥4N

y1 + 􏽥5N
y2 ≤ 􏽥50N

, 􏽥1N
y1

+ 􏽥1N
y2 ≥ 1􏽥0N

, y1, y2 ≥ 0,

(9)

where the parameters are as follows:
􏽥5 � (4, 5, 6; 0.8, 0.6, 0.4),

􏽥3 � (2.5, 3, 4; 0.75, 0.5, 0.3),

􏽥2 � (2, 2, 3; 1, 0.5, 0),

􏽥7 � (7, 7, 7.5; 0.8, 0.6, 0.4),

􏽥2 � (1.5, 2, 2; 0.9, 0.6, 0.2),

􏽥4 � (3, 4, 4; 1, 0.5, 0),

􏽥1 � (0.5, 1, 1; 1, 0.2, 0.2),

􏽥1 � (1, 1, 1; 1, 0, 0.5),

2􏽥5 � (22, 25, 25; 0.8, 0.6, 0.4),

1􏽥0 � (9, 10, 10; 1, 0.5, 0),

5􏽥0 � (50, 50, 55; 0.75, 0.5, 0.3).

(10)

As Step 3, we use ranking function of Definition 5; the
above problem is equivalent to the following crisp MOLP
problem:

Min 􏽥Z
1

� 3.001y1 + 2.058y2

Min 􏽥Z
2

� 1.94y1 + 4.3y2

s.t.

1.283y1 + 3.05y2 ≥ 14.4,

3.05y1 + 3.001y2 ≤ 30.14,

0.723y1 + 0.86y2 ≥ 8.05,

y1, y2 ≥ 0.

(11)

Solving problem (11) as per Step 4, we have the following
solutions:

y1 � (0, 8.721),

y2 � (11.53, 0.08),

L1 � 30.06,

U1 � 63.29,

L2 � 31.26,

U2 � 51.14,

(12)

where Li, Ui are deviation points of membership functions.
Now, applying Step 5, problem (11) is equal to the ac-
companying GP model as follows:

Find yh: h � 1, 2􏼈 􏼉

s.t.

3.001y1 + 2.058y2 ≈ 30.06,

1.94y1 + 4.3y2 ≈ 31.26,

1.283y1 + 3.05y2 ≥ 14.4,

3.05y1 + 3.001y2 ≤ 30.14,

0.723y1 + 0.86y2 ≥ 8.05,

y1, y2 ≥ 0.

(13)

Applying the membership functions and solving by
LINGO 18.0, the solution of (13) is reported in Table 1.
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Example 2. Let us consider the following NMOLP problem:

Max 􏽥Z
1
N � 􏽥4Ny1 + 1􏽥0Ny2

Max 􏽥Z
2
N � 􏽥2Ny1 + 􏽥5Ny2

s.t.

􏽥2N
y1 + y2 ≤ 􏽥5N

,

􏽥2N
y1 + 􏽥5N

y2 ≤ 􏽥10N
,

y1, y2 ≥ 0.

(14)

Problem (14) can be modelled as a multiobjective
neutrosophic linear programming problem with single-
valued triangular neutrosophic numbers.

Max 􏽥Z
1
N � (3, 4, 5; 0.5, 0.5, 0.6)y1 +(9, 10, 11; 0.5, 0.7, 0.4)y2

Max 􏽥Z
2
N � (1, 2, 3; 0.5, 0.5, 0.5)y1 +(4, 5, 6; 0.5, 0.7, 0.4)y2

s.t.

(1, 2, 3; 0.5, 0.4, 0.8)y1 +(1, 1, 1; 0.5, 0.3, 0.5)y2 ≤ (4, 5, 6; 0.5, 0.6, 0.5)
N

,

(1, 2, 3; 0.5, 0.4, 0.8)y1 +(4, 5, 6; 0.5, 0.7, 0.4)y2 ≤ (9, 10, 11; 0.5, 0.7, 0.4)
N

,

y1, y2 ≥ 0.

(15)

By utilizing our Step 3 to Step 6, the optimal solution of
the above problem is reported in Table 2.

5.1. Real-Life Application: Diet Problem. In this section, to
show the application of the proposed method, the real-life
problem is solved by the proposed method, and it is con-
cluded that the proposed method can be applied in any real-
life problem. For a very simple diet problem in which the
nutrients are starch and protein as a group, the two types of
foods with data are given in Table 3.

-e activities and their levels in the model are given as
follows: activity j: to include 1 kg of food type j in the diet,
associated level yj, for j� 1, 2. -e various nutrients in the
model lead to different constraints. For example, the amount
of starch contained in the diet is 5y1 + 2y2, which must
be≥ 5 for feasibility. Similarly, y1 + 2y2 ≥ 6. In this diet
problem, the total cost of food and the procurement cost of
food should be minimized. Since the cost coefficients and all
other coefficients are indecisive and also contain the inde-
terminacy part, the problem is modelled as a bilevel mul-
tiobjective linear programming problem.

-e formulation of the above problem is given as follows:

Min 􏽥Z
1
N � (2, 3, 4, ; 0.6, 0.5, 0.5)y1 +(1, 1, 1; 0.5, 0.7, 0.5)y2

Min 􏽥Z
2
N � (1, 2, 3; 0.6, 0.5, 0.5)y1 +(2, 3, 4; 0.6, 0.5, 0.5)y2

s.t.

(4, 5, 6; 0.6, 0.5, 0.5)y1 +(1, 2, 3; 0.5, 0.7, 0.5)y2 ≥ (4, 5, 6; 0.6, 0.5, 0.5)
N

,

(1, 1, 1; 0.5, 0.7, 0.5)y1 +(1, 2, 3; 0.5, 0.7, 0.5)y2 ≥ (5, 6, 7; 0.5, 0.6, 0.5)
N

,

y1, y2 ≥ 0.

(16)

Table 1: Result discussion of Example 2.

Membership functions Solutions Objective values
Linear y1 � 4.24, y2 � 3.97 (20.89, 25.29; 0.8, 0.6, 0.4)
Parabolic y1 � 5.32, y2 � 4.07 (24.14, 27.82; 0.8, 0.4, 0.2)
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Using ourmethod, the above problem is solved using our
Step 3 to Step 5, and the above optimal solution is obtained
in Table 4.

6. Result Analysis

In the above literature study, we found that there is no
method for solving multiobjective linear programming
problem in neutrosophic environment. -erefore, for ra-
tionality and effectiveness of the proposed method, we
consider another uncertainty problem, that is, intuitionistic
fuzzy numbers. Singh and Yadav [17] considered the same
problem and solved it with various membership functions.
Here, we consider the diet problem for comparison of our
proposed method with the existing method.

From Table 5, we get that our result is better than the
existing results. Since the object of the problem is mini-
mization, so based on this point of view, our results are
better than the existing approach under both linear and
parabolic membership functions. -erefore, we can con-
clude that our proposed algorithm is a new way to handle the
uncertainty in real-life problems.

7. Conclusions

In this paper, we develop a new method for solving neu-
trosophic multiobjective LP (NMOLP) problems, and the
model is transformed into a MOLP problem by using

ranking function. After successful application in ranking
function, we use scalarization technique to convert the goal
programming (GP) problem. We also investigated various
membership functions to solve the GP model. As per our
discussion, the DM choose the membership functions in-
dependently which fit the model. From the obtained results,
we conclude that the nonlinear membership functions, that
is, parabolic functions, are always better than linear mem-
bership functions (parabolic> linear). To the best of our
knowledge, there is no method in literature for solving
NMOLP problem by using membership functions. We also
used our proposed method to demonstrate a numerical
example. Our proposed method is a new way in neu-
trosophic environment to handle multiobjective program-
ming problem. -ere are various scopes in the future to
develop our algorithm, like application in real-life problem
from industrial sector, transportation problem, and as-
signment problem.
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)e purpose of this paper is to introduce the notation of single-valued neutrosophic hyper BCK-subalgebras and a novel concept
of neutro hyper BCK-algebras as a generalization and alternative of hyper BCK-algebras, that have a larger applicable field. In
order to realize the article’s goals, we construct single-valued neutrosophic hyper BCK-subalgebras and neutro hyper BCK-
algebras on a given nonempty set. )e result of the research is the generalization of single-valued neutrosophic BCK-subalgebras
and neutro BCK-algebras to single-valued neutrosophic hyper BCK-subalgebras and neutro hyper BCK-algebras, respectively.
Also, some results are obtained between extended (extendable) single-valued neutrosophic BCK-subalgebras and single-valued
neutrosophic hyper BCK-subalgebras via fundamental relation. )e paper includes implications for the development of single-
valued neutrosophic BCK-subalgebras and neutro BCK-algebras and for modelling the uncertainty problems by single-valued
neutrosophic hyper BCK-subalgebras and neutro hyper BCK-algebras. )e new conception of single-valued neutrosophic hyper
BCK-subalgebras and neutro hyper BCK-algebras was given for the first time in this paper. We find a method that can apply these
concepts in some complex networks.

1. Introduction

)e theory of logical (hyper) algebra is related to the study of
certain propositional calculi and tries to solve logical prob-
lems using (hyper) algebraic methods. Jun et al. [1] has in-
troduced a logical (hyper) algebra named hyper BCK-algebras
as development of BCK-algebras, which were initiated by
Imai and Iseki [2] in 1966 as a generalization of the concept of
set-theoretic difference and propositional calculus.)e theory
of neutrosophic set as an extension of classical set and
(intuitionistic) fuzzy set [3], and interval-valued (intuition-
istic) fuzzy set, is introduced by Smarandache for the first time
in 1998 [4] and mentioned second time in 2005 [5]. )is
concept handles problems involving imprecise, indetermi-
nacy, and inconsistent data and describes an important role in
the modelling of unsure hypernetworks in all sciences. Re-
cently, due to the importance of these subjects, by combining
the neutrosophic sets and (hyper) BCK-algebras, some re-
searchers worked in more branches of neutrosophic (hyper)
BCK-algebras such asMBJ-neutrosophic hyper BCK-ideals in

hyper BCK-algebras, an approach to BMBJ-neutrosophic
hyper BCK-ideals of hyper BCK-algebras, structures on doubt
neutrosophic ideals of (BCK/BCI)-algebras under
(S, T)-norms, BMBJ-neutrosophic subalgebras in
(BCI/BCK)-algebras, MBJ-neutrosophic ideals of
(BCK/BCI)-algebras, implicative neutrosophic quadruple
BCK-algebras and ideals, neutrosophic hyper BCK-ideals,
implicative neutrosophic quadruple BCK-algebras and ideals,
bipolar-valued fuzzy soft hyper BCK ideals in hyper BCK-
algebras, single-valued neutrosophic ideals in Sostak’s sense,
and multipolar intuitionistic fuzzy hyper BCK-ideals in hyper
BCK-algebras [6–16]. Recently, a novel concept of neu-
trosophy theory titled neutro (hyper) algebra as development
of classical (hyper) algebra and partial (hyper) algebra is
introduced by Smarandache [17].

A neutro (hyper) algebra is a system that has at least one
neutro (hyper) operation or one neutro axiom (axiom that is
true for some elements, indeterminate for other elements,
and false for the other elements), while a partial (hyper)
algebra is a (hyper) algebra that has at least one partial
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(hyper) operation, and all its axioms are classical (i.e., ax-
ioms true for all elements). Smarandache proved that a
neutron (hyper) algebra is a generalization of a partial
(hyper) algebra and showed that neutro (hyper) algebras are
not partial (hyper) algebras, necessarily. Hamidi and
Smarandache [18] introduced the concept of neutro BCK-
subalgebras as a generalization of BCK-algebras and pre-
sented main results in neutro BCK-subalgebras as an ex-
tension of BCK-algebras structures and their applications. In
addition, the concept of neutro (hyper) algebra is studied in
different branches such as neutro algebra structures and
neutro (hyper) graph [19, 20].

Regarding these points, one of the aims of this paper is to
introduce the concept of single-valued neutrosophic hyper
BCK-subalgebras and extendable single-valued neu-
trosophic BCK-subalgebras and generalize the notion of
single-valued neutrosophic hyper BCK-subalgebras by
considering the notion of single-valued neutrosophic BCK-
subalgebras. Also, we want to establish the relationship
between single-valued neutrosophic BCK-algebras and
single-valued neutrosophic hyper BCK − algebras. So a
strongly regular relation is applied on any hyper BCK-al-
gebras using the concept of single-valued neutrosophic
hyper BCK-subalgebras, and a quotient hyper BCK-algebras
(BCK − algebras) can be obtained. )e main aim of this
study is to introduce the notation of neutro hyper BCK-
algebras as a generalization of neutro BCK-algebras in
regard to single-valued neutrosophic hyper BCK-sub-
algebras. In the study of neutro hyper BCK-algebra, despite
having key mathematical tools, there are some limitations.
)e union of two neutro hyper BCK-algebra is not neces-
sarily a neutro hyper BCK-algebra so the class of neutro
hyper BCK-algebra is not closed under any given algebraic
operation. In addition, neutro hyper BCK-algebras are
different with (intuitionistic fuzzy) hyper BCK-algebras and
single-valued neutrosophic hyper BCK-algebras so could not
generalize the capabilities of (intuitionistic fuzzy) single-
valued neutrosophic hyper BCK-algebras to neutro hyper
BCK-algebras.

2. Preliminaries

Definition 1 (see [2]) Let X≠∅. )en a universal algebra
(X, ϑ , 0) of type (2, 0) is called a BCK-algebra if, for all,
x, y, z ∈ X:

(BCI − 1)((xϱy)ϱ(xϱz))ϱ(zϱy) � 0,
(BCI − 2)(xϱ(xϱy))ϱy � 0,
(BCI − 3) xϱx � 0,
(BCI − 4) xϱy � 0 and yϱx � 0 imply x � y,
(BCK − 5) 0ϱx � 0, where ϱ(x, y) is denoted by xϱy.

Definition 2 (see [1]). Let X≠∅ and
P∗(X) � Y |∅≠Y⊆X{ }.)en for a map ϑ : X2⟶ P∗(X),
a hyperalgebraic system (X, ϑ , 0) is called a hyper BCK-
algebra if, for all, x, y, z ∈ X:

(H1)(x ϑ z) ϑ (y ϑ z)≪x ϑy,
(H2)(x ϑy) ϑ z � (x ϑ z) ϑy,

(H3)x ϑX≪ x,
(H4)x≪y and y≪x imply x � y,
where x≪y is defined by 0 ∈ x ϑy, ∀A, B⊆H,
A≪B⟺∀a ∈ A ∃b ∈ B s.t a≪ b,
(A ϑB) � ∪ a∈A,b∈B(a ϑ b), and ϑ (x, y) is denoted by
x ϑy.

We will callX is a weak commutative hyper BCK-algebra
if ∀x, y ∈ X, (x ϑ (x ϑy))∩ (y ϑ (y ϑx))≠∅ [21].

Theorem 1 (see [1]). Let (X, ϑ , 0) be a hyper BCK-algebra.
-en ∀x, y, z ∈ X and A, B⊆X:

(i) (0 ϑ 0) � 0, 0≪x, (0 ϑx) � 0, x ∈ (x ϑ 0) and
A≪ 0⇒A � 0

(ii) x≪ x, x ϑy≪ x and y≪ z implies that x ϑ z≪x ϑy

(iii) A ϑB≪A, A≪A and A⊆B implies A≪B

Definition 3 (see [22]). Let (X, ϑ , 0) be a hyper BCK-al-
gebra. A fuzzy set μ: X⟶ [0, 1] is called a fuzzy hyper
BCK-subalgebra if ∀x, y ∈ X, ∧ (μ(x ϑy))≥Tmin(μ(x),

μ(y)).

Definition 4 (see [5]). Let V be a universal set. A neu-
trosophic subset (NS) X in V is an object having the fol-
lowing form: X � (x, TX(x), IX(x), FX(x)) | x ∈ V􏼈 􏼉, or
X: V⟶ [0, 1] × [0, 1] × [0, 1], which is characterized by a
truth-membership function TX, an indeterminacy-mem-
bership function IX, and a falsity-membership function FX.
)ere is no restriction on the sum of TX(x), IX(x), and
FX(x).

3. Single-Valued Neutrosophic Hyper
BCK-Subalgebras

In this section, the concept of single-valued neutrosophic
hyper BCK-subalgebras will be considered as a general-
ization of single-valued neutrosophic BCK-subalgebras,
and some of its properties will be investigated. We will
also prove that single-valued neutrosophic hyper BCK-
subalgebras and single-valued neutrosophic BCK-sub-
algebras are related, and single-valued neutrosophic hyper
BCK-subalgebras and single-valued neutrosophic BCK-
subalgebras can be constructed from single-valued neu-
trosophic hyper BCK-subalgebras via a fundamental re-
lation. We will define the concept of extendable single-
valued neutrosophic BCK-subalgebras and will show that
any infinite set is an extended single-valued neutrosophic
BCK-subalgebra.

)roughout this section, we denote hyper BCK-algebra
(X, ϑ , 0) by X. From now on, for all, x, y ∈ [0, 1],
Tmin(x, y) � min x, y􏼈 􏼉 and Smax(x, y) � max x, y􏼈 􏼉 are
considered as triangular norm and triangular conorm, re-
spectively. In the following definition, the notation of single-
valued neutrosophic hyper BCK-subalgebra of any given
nonempty is defined.
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Definition 5. A single-valued neutrosophic set
A � (TA, IA, FA) in an X is called a single-valued neu-
trosophic hyper BCK-subalgebra of X, if

(i) ∧ (TA(x ϑy))≥Tmin(TA(x), TA(y))

(ii) ∨(IA(x ϑy))≤ Smax(IA(x), IA(y))

(iii) ∨(FA(x ϑy))≤ Smax(FA(x), FA(y))

)e importance of the following theorems is to deter-
mine the role and the effect of truth-membership function
TA, indeterminacy-membership function IA, and falsity-
membership function FA on the element 0 ∈ A.

Theorem 2. Let A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en

(i) TA(0)≥TA(x)

(ii) ∧ (TA(x ϑ 0)) � TA(x)

(iii) ∧ (TA(0 ϑx)) � TA(0)

Proof

(i) Let x ∈ X. Since 0 ∈ x ϑx, we get that
TA(0)≥ ∧ (TA(x ϑx))≥Tmin(TA(x), TA(x)) � TA(x).

(ii) Let x ∈ X. Since x ∈ x ϑ 0, we get that
TA(x)≥ ∧ (TA(x ϑ 0))≥Tmin(TA(x), TA(0)) � TA(x). So
∧ (TA(x ϑ 0)) � TA(x).

(iii) Immediate by )eorem 1. □

Theorem 3. Let A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en

(i) IA(0)≤ IA(x)

(ii) ∨(IA(x ϑ 0)) � IA(x)

(iii) ∨(IA(0 ϑx)) � IA(0)

Proof

(i) Let x ∈ X. Since 0 ∈ x ϑx, we get that IA(0)≤
∨(IA(x ϑx))≤ Smax(IA(x), IA(x)) � IA(x).

(ii) Let x ∈ X. Since x ∈ x ϑ 0, we get that
IA(x)≤∨(IA(x ϑ 0))≤ Smax(IA(x), IA(0)) � IA(x).
So ∨(IA(x ϑ 0)) � IA(x).

(iii) Immediate by )eorem 1. □

Corollary 1. Let A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en

(i) FA(0)≤FA(x)

(ii) ∨(FA(x ϑ 0)) � FA(x)

(iii) ∨(FA(0 ϑx)) � FA(0)

(iv) Tmin(TA(x), IA

(0), FA(0))≤Tmin(TA(0), IA(x), FA(x))

In the following theorem, we construct single-valued
neutrosophic subset on any nonempty set.

Theorem 4. Let 0 ∉ X≠∅. -en there exist a hyper-
operation “ ϑ ,” a single-valued neutrosophic subset

A � (TA, IA, FA) of X′ � X∪ 0{ } such that (X′, ϑ , 0) is a
hyper BCK-algebra and A is a single-valued neutrosophic
hyper BCK-subalgebra of X′.

Proof. Let x, y ∈ X′. Define “ ϑ ” on X′ by

x ϑy �

0, if x � 0,

0, x{ }, if x � y, x≠ 0,

x, otherwise

⎧⎪⎨

⎪⎩
. Clearly, (X′, ϑ , 0) is a

hyper BCK-algebra. Now, it is easy to see that every single-
valued neutrosophic set A � (TA, IA, FA) that
TA(0) � 1, IA(0) � FA(0) � 0 is a single-valued neu-
trosophic hyper BCK-subalgebra of X′.

Let SVNh � {A � (TA, IA, FA) | A is a single−
valued neutrosophic hyper BCK − subalgebra of X}, whence
X is a hyper BCK-algebra and |X|≥ 1. □

Corollary 2. Let X≠∅. -en X can be extended to a hyper
BCK-algebra that |SVNh| � |R|.

Proof. Let X � x{ }. )en (X, ϑ , x) is a hyper BCK-algebra
such that x ϑx � x{ }. )en for a single-valued neutrosophic
set, A � (TA, IA, FA) by TA(x) � IA(x) � FA(x) � α is a
single-valued neutrosophic hyper BCK-subalgebra of X,
where α ∈ [0, 1]. If |X|≥ 2; then by )eorem 4, we can
construct at least a hyper BCK-subalgebra on X. Now,
∀α ∈ [0, 1] define A � (TAα

, IAα
, FAα

) by

TAα
(x) �

1, if x � 0,

α, if x≠ 0,
􏼨

IAα
(x) �

0, if x � 0,

α, if x≠ 0,
􏼨

FAα
(x) �

0, if x � 0,

α, if x≠ 0.
􏼨

(1)

Obviously, A � (TAα
, IAα

, FAα
) a single-valued neu-

trosophic hyper BCK-subalgebra of X and so
|SVNh| � |[0, 1]|.

Let X be a hyper BCK-algebra, A � (TA, IA, FA) a single-
valued neutrosophic hyper BCK-subalgebra of X and
α, β, c ∈ [0, 1]. Define Tα

A � x ∈ X | TA(x)􏼈 ≥ α}, I
β
A �

x ∈ X | IA(x)≤ β􏼈 􏼉, F
c

A � x ∈ X | FA(x)≤ c􏼈 􏼉, and A(α,β,c)

� x ∈ X | TA(x)≥ α, IA(x)≤ β, FA(x)≤ c􏼈 􏼉.
Considering the relation between single-valued neu-

trosophic hyper BCK-subalgebras and (fuzzy) hyper BCK-
subalgebra is the main aim of the following results via the
level subsets. □

Theorem 5. Let A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en

(i) 0 ∈ A(α,β,c) � Tα
A ∩ I

β
A ∩F

c

A

(ii) A(α,β,c) is a hyper BCK-subalgebra of X

(iii) If 0≤ α≤ α′ ≤ 1, then Tα′
A ⊆Tα

A, Iα′A ⊇IαA and Fα′
A ⊇Fα

A

Proof

(i) Clearly, A(α,β,c) � Aα ∩Aβ ∩Ac and by )eorems 2 and
3, and Corollary 1, we get that 0 ∈ A(α,β,c).
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(ii) Let x, y ∈ Tα
A. )en Tmin(TA(x), TA(y))≥ α. Now,

for any, z ∈ x ϑy, TA(z) ≥ inf(TA(x ϑy)) ≥Tmin(TA

(x), TA(y))≥ α. Hence, z ∈ Tα
A, and so x ϑy⊆Tα

A. In similar
a way, x, y ∈ I

β
A ∩F

c

A implies that x ϑy⊆ (I
β
A ∩F

c

A). )en
A(α,β,c) is a hyper BCK-subalgebra of X.

(iii) Immediate. □

Corollary 3. Let A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. If 0≤ α≤ α′ ≤ 1, then
A(α′ ,α,α) is a hyper BCK-subalgebra of A(α,α′ ,α′).

Let X be a hyper BCK-algebra, S be a hyper BCK-
subalgebra of X and α, α′, β, β′, c, c′ ∈ [0, 1]. Define

T
α,α′[ ]

A (x) �
α′, if x ∈ S,

α, if x ∉ S,

⎧⎨

⎩

I
[β,β′]
A (x) �

β′, if x ∈ S,

β, if x ∉ S,

⎧⎨

⎩

F
[c,c′]
A (x) �

c′, if x ∈ S,

c, if x ∉ S.

⎧⎨

⎩

(2)

)us, we have the following theorem.

Theorem 6. Let X be a hyper BCK-algebra and S be a hyper
BCK-subalgebra of X. -en

(i) T[α,α′]
A is a fuzzy hyper BCK-subalgebra of X

(ii) I
[β,β′]
A is a fuzzy hyper BCK-subalgebra of X

(iii) F
[c,c′]
A is a fuzzy hyper BCK-subalgebra of X

(iv) A � (T
[α,α′]
A , I

[β,β′]
A , F

[c,c′]
A ) is a single-valued neu-

trosophic hyper BCK-subalgebra of X

Proof

(i) Let x, y ∈ X. If x, y ∈ S, since S is a hyper subalgebra of
X, we get that x ϑy⊆ S and so

∧T
α,α′[ ]

A (x ϑy)≥ ∧T
α,α′[ ]

A (S) � α′ ≥Tmin T
α,α′[ ]

A (x), T
α,α′[ ]

A (y)􏼒 􏼓.

(3)

If (x ∈ S andy ∉ S) or (x /∈ S andy ∈ S) or (x /∈ S andy /

∈S), then ∧T
[α,α′]
A (x ϑy) ∈ α, α′􏼈 􏼉. )us, ∧T

[α,α′]
A (x ϑy)

≥Tmin(T
[α,α′]
A (x), T

[α,α′]
A (y)), and so T

[α,α′]
A is a fuzzy hyper

BCK-subalgebra of X.
(ii) and (iii) )ey are similar to (i).
(iv) Let x, y ∈ X. If x, y ∈ S, since S is a hyper BCK-

subalgebra of X, we get that x ϑy⊆ S, and so
∨I[β,β′]

A (x ϑy)≤∨I[β,β′]
A (S) � α′ ≤ Smax(I

[β,β′]
A (x), I

[β,β′]
A (y)).

If (x ∈ S andy ∉ S) or (x /∈S andy ∈ S) or (x /∈S andy /∈S),
then ∨I[β,β′]

A (x ϑy) ∈ β, β′􏼈 􏼉. )us, ∨T[β,β′]
A (x ϑy)≤

Smax(I
[β,β′]
A (x), I

[β,β′]
A (y)). In a similar way, we can see that

∨F[c,c′]
A (x ϑy)≤ Smax(F

[c,c′]
A (x), F

[c,c′]
A (y)) an by item (i),

A � (T
[α,α′]
A , I

[β,β′]
A , FA [c, c′]) is a single-valued neu-

trosophic hyper BCK-subalgebra of X.

Let X be a hyper BCK-algebra and x, y ∈ X. )en
xβy⟺∃n ∈ N, (a1,

. . . , an) ∈ Xn and∃u ∈ ϑ (a1, . . . , an)such that x, y􏼈 􏼉⊆ u.
)e relation β is a reflexive and symmetric relation but not
transitive relation. Let C(β) be the transitive closure of β (the
smallest transitive relation such that contains β). Borzooei
et al. in [21], proved that for any given weak commutative
hyper BCK-algebra X, C(β) is a strongly regular relation on
X, and ((X/C(β)), ϱ, 0) is a BCK-algebra, where
C(β)(x)ϱC(β)(y) � C(β)(x ϑy) and 0 � C(β)(0).

Considering the relation between single-valued neu-
trosophic hyper BCK-subalgebras and single-valued neu-
trosophic BCK-subalgebras has very important, especially in
extension of single-valued neutrosophic BCK-subalgebras.
So we prove the following theorems and corollaries. □

Theorem 7. Let X be a weak commutative hyper BCK-
subalgebra and A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en there exists a
single-valued neutrosophic set A � (TA, IA, FA) of BCK-al-
gebra ((X/C(β)), ϑ , 0) that ∀x, y ∈ X,

(i) TA(C(β)(0))≥TA(C(β)(x))

(ii) if yC(β)x, then TA(C(β)(x)) � TA(C(β)(y))

(iii) IA(C(β)(0))≤ IA(C(β)(x))

(iv) if yC(β)x, then IA(C(β)(x)) � IA(C(β)(y))

(v) FA(C(β)(0)) ≤FA(C(β)(x))

(vi) if yC(β)x, then FA(C(β)(x)) � FA(C(β)(y))

Proof. Let x, y, t ∈ X. )en on (X/C(β)), define

TA(C(β)(t)) �
TA(0), if 0 ∈ C(β)(x),

∧ tC(β)xTA(x), otherwise,􏼨 ,

IA(C(β)(t)) �
IA(0), if 0 ∈ C(β)(x),

∨tC(β)xIA(x), otherwise,􏼨 , and

FA(C(β)(t)) �
FA(0), if 0 ∈ C(β)(x),

∨tC(β)xFA(x), otherwise,􏼨 . Using

)eorems 2 and 3, we get that:
(i) TA(C(β)(0)) � TA(0) ≥ ∧ t′C(β)xTA(t′) � TA(C(β)

(x))

(ii) Since xC(β)y and C(β) is transitive, we get that
TA(C(β)(x)) � ∧ tC(β)xTA(t)≥ ∧ tC(β)yTA(t) � TA(C(β)

(y))

(iii) IA(C(β)(0)) � IA(0)≤∨t′C(β)xIA(t′) � IA(C(β)

(x))

(iv) Since xC(β)y and C(β) is transitive, we get that
IA(C(β)(x)) � ∨tC(β)xIA(t) � ∨tC(β)yIA(t) � IA(C(β)(y))

(v) and (vi) )ey are similar to (iii) and (iv),
respectively. □

Theorem 8. Let X be a weak commutative hyper BCK-
subalgebra and A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en there exists a
single-valued neutrosophic subset A � (TA, IA, FA) of BCK-
algebra ((X/C(β)), ϑ , 0) that ∀x, y ∈ X:

(i) -ere exists t ∈ x ϑy such that TA(C(β) (x ϑy))

� TA(t)
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(ii) -ere exists t′∈ x ϑy such that IA(C(β)(x ϑy)) �

IA (t)

(iii) -ere exists t″∈ x ϑy such that FA(C(β)(x ϑy)) �

FA (t)

Proof

(i) Let x, y ∈ X. Applying )eorem 7,

TA(C(β)(x)ϱC(β)(y)) � TA(C(β)(x ϑy))

� TA C(β)(m) | m ∈ x ϑy􏼈 􏼉 � ∧
sC(β)m

m∈x ϑy

TA(s). (4)

Now, since sC(β)m and m ∈ x ϑy, then s ∈ x ϑy, and so
there exists t ∈ x ϑy such that TA(t) � ∧ sC(β)m

m∈x ϑy

TA(s).
(ii) Let x, y ∈ X. )en

IA(C(β)(x)ϱC(β)(y)) � IA(C(β)(x ϑy))

� IA C(β)(n) | n ∈ x ϑy􏼈 􏼉 � ∨
tC(β)n

n∈x ϑy

IA(t). (5)

Now, since tC(β)n and n ∈ x ϑy, then t ∈ x ϑy, and so
there exists t′ ∈ x ϑy such that IA(t′) � ∧ tC(β)n

n ∈ x ϑy

IA(t).

(iii) It is similar to item (ii).
Some categorical properties of single-valued neu-

trosophic BCK-subalgebras is investigated in the following
theorem based on the categorical properties of single-valued
neutrosophic hyper BCK-subalgebras. □

Theorem 9. Let X be a weak commutative hyper BCK-al-
gebra and A � (TA, IA, FA) be a single-valued neutrosophic
hyper BCK-subalgebra of X. -en there exists a single-valued
neutrosophic BCK-subalgebra B � (TB, IB, FB) of
((X/C(β)), FB, C(β)(0)) that ((TB ϑ π)≤TA, (IB ϑ π)

≥ IA and(IB ϑFB)≥FA) or the following diagrams are quasi
commutative:

X ⟶TA 0 1􏼂 􏼃π↓↗ TB

X

C(β)
, X ⟶IA 0 1􏼂 􏼃π↓↗ IB

X

C(β)
, X ⟶FA 0 1􏼂 􏼃π↓↗ FB

X

C(β)
. (6)

Proof. Choice TB � TA, IB � IA and FB � FA. )en by
)eorem 7, (i) ∀x ∈ X,

TB(C(β)(0))≥TB(C(β)(x)),

IB(C(β)(0))≤ IB(C(β)(x)),

FB(C(β)(0))≤FB(C(β)(x)).

(7)

(ii) By )eorem 8, ∀x, y ∈ X; there exists
t, t′, t″􏼈 􏼉⊆x ϑy that

TB(C(β)(x ϑy)) � TA(t),

IB(C(β)(x ϑy)) � IA(t′),
FB(C(β)(x ϑy)) � FA(t″).

(8)

So

TB(C(β)(x)ϱC(β)(y)) � TB(C(β)(x ϑy)) � TA(t)≥ ∧ TA(x ϑy)( 􏼁

≥Tmin TA(x), TA(y)( 􏼁≥Tmin TB(C(β)(x)), TB(C(β)(y))( 􏼁,

IB(C(β)(x)ϱC(β)(y)) � IB(C(β)(x ϑy)) � IA(t′)≤∨ IA(x ϑy)( 􏼁

≤ Smax IA(x), IA(y)( 􏼁≤ Smax IB(C(β)(x)), IB(C(β)(y))( 􏼁,

FB(C(β)(x)ϱC(β)(y)) � FB(C(β)(x ϑy)) � FA(t″)≤∨ FA(x ϑy)( 􏼁

≤ Smax FA(x), FA(y)( 􏼁≤ Smax FB(C(β)(x)), FB(C(β)(y))( 􏼁.

(9)

)erefore, B � (TB, IB, FB) is a single-valued neu-
trosophic BCK-subalgebra of (X/C(β)), (TB ϑ π)≤TA,

(IB ϑ π)≥ IA, and (IB ϑ π)≥FA.
Based on the fundamental relation, we can obtain the

single-valued neutrosophic BCK-subalgebras, and single-
valued neutrosophic BCK-subalgebras are derived from

some single-valued neutrosophic hyper BCK-subalgebras. In
this regard, it is important that single-valued neutrosophic
BCK-subalgebras are derived from single-valued neu-
trosophic hyper BCK-subalgebra with minimal order. So the
concepts of (extended) extendable single-valued neu-
trosophic BCK-subalgebra are introduced as follows. □
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Definition 6

(i) Let (X, ϱ, 0) be a BCK-algebra and (Y, ϑ , 0) be a hyper
BCK-algebra. We say that the BCK-algebra X is derived
from the hyper BCK-algebra Y if X is isomorphic to a
nontrivial quotient of Y (X � (Y/C(β))).

(ii) A single-valued neutrosophic BCK-subalgebra A �

(TA, IA, FA) of X is called an extendable single-valued
neutrosophic BCK-subalgebra, if there exist a hyper BCK-
algebra (Y, ϑ , 0), a single-valued neutrosophic hyper BCK-
subalgebra B � (TB, IB, FB) of Y, and n ∈ N such that
|(X, ϑ , A)| � |(Y, ϑ , B)| − n, and BCK-algebra X is derived
of hyper BCK-algebra Y. If X � Y and almost everywhere
(TA, IA, FA) � (TB, IB, FB) ((TA, IA, FA) � (TB, IB, FB)a.e
that means | x; TA(x)≠TB(x), IA􏼈 (x)≠ IB (x), FA (x)≠FB

(x)}| � 1), we will say that it is an extended single-valued
neutrosophic BCK-subalgebra.

)e following example introduces an extendable single-
valued neutrosophic BCK-subalgebra.

Example 1. Let X � −1, −2, −3, −4{ }. )en A � (TA, IA, FA)

is a single-valued neutrosophic BCK-subalgebra of BCK-
algebra (X, ϑ , −1) (see Table 1).

Now, set Y � 0, −1, −2, −3, −4{ } � X∪ 0{ }. )en
B � (TB, IB, FB) is a single-valued neutrosophic hyper BCK-
subalgebra of (Y, ϑ , 0) (see Table 2).

Clearly, (Y/C(β)) � X, |Y| � |X| + 1, and so
A � (TA, IA, FA) is an extendable single-valued neu-
trosophic BCK-subalgebra of (X, ϑ , −1).

In the following theorem, we try to generate BCK-al-
gebras based on single-valued neutrosophic hyper BCK-
subalgebras.

Theorem 10. Let (X, ϑ , 0) be a hyper BCK-algebra, A �

(TA, IA, FA) be a single-valued neutrosophic hyper BCK-
subalgebra of X, and X � (TA(x), IA(x), FA(x))􏼈 | x ∈ X}.
If A is one to one map, then:

(i) -ere exists a hyperoperation “ ϑ′ ” on X such that
(X, ϑ′ , (TA(0), IA(0), FA(0))) is a hyper BCK-
algebra

(ii) -ere exists a single-valued neutrosophic hyper BCK-
subalgebra A � (TA, IA, FA) of X related to
A � (TA, IA, FA)

(iii) -ere exists an operation “ϱ” (related to ϑ ) on X

that (X, ϱ, (TA(0), IA(0), FA(0))) is a BCK-algebra

Proof
(i) Let x, y ∈ X. Define a hyperoperation ϑ′ on X, by

TA(x), IA(x), FA(x)( 􏼁 ϑ′ TA(y), IA(y), FA(y)( 􏼁 � TA(x ϑy), IA(x ϑy), FA(x ϑy)( 􏼁. (10)

It can be easily seen that (TA(x), IA(x), FA(x))

≪′(TA(y), IA(y), FA(y))⟺x≪y. It is easy to see that
(X, ϑ′ , (TA(0), IA(0), FA(0))) is a hyper BCK-algebra.

(ii) Let x ∈ X. Define A(A(x)) � A(x). Clearly,
A � (TA, IA, FA) is a single-valued neutrosophic hyper
BCK-subalgebra of (X, ϑ′ ).

(iii) Assume x, y ∈ X. Define an operation ϱ on X by

TA(x), IA(x), FA(x)( 􏼁ϱ TA(y), IA(y), FA(y)( 􏼁 �
TA(x), IA(x), FA(x)( 􏼁, if y � 0,

∨TA(x ϑy), ∧ IA(x ϑy), ∧FA(x ϑy)( 􏼁 otherwise.
􏼨 (11)

We just prove BCI-4. Let x, y ∈ X and

TA(x), IA(x), FA(x)( 􏼁ϱ TA(y), IA(y), FA(y)( 􏼁

� TA(x), IA(x), FA(x)( 􏼁ϱ TA(y), IA(y), FA(y)( 􏼁

� TA(0), IA(0), FA(0)( 􏼁.

(12)

Since A is a one to one map, 0 ∈ x ϑy and 0 ∈ y ϑx. It
follows that (TA(x), IA(x), FA(x)) � (TA(y), IA(y), FA

(y)). It is easy to see that BCI-1, BCI-2, BCI-3, and BCK-5
are valid, and so (X, ϱ, (TA(0), IA(0), FA(0))) is a BCK-
algebra. □

Corollary 4. Let (X, ϑ , (TA(0), IA(0), FA(0))) be a hyper
BCK-algebra and A � (TA, IA, FA) be a single-valued neu-
trosophic hyper BCK-subalgebra of X. -en there exists a

binary operation “ϱ” on X, such that (X, ϱ, (TA(0), IA

(0), FA(0))) is a BCK-algebra.
In the following theorem, we try to generate hyper BCK-

algebras based on single-valued neutrosophic hyper BCK-
subalgebras.

Theorem 11. Let X be a nonempty set, 0 ∉ X and
X′ � X∪ 0{ }. -en there exist a hyperoperation “ ϑ ” on X′, a
hyperoperation “ ϑ′ ” on X′, a binary operation “ϱ” on X′, a
single-valued neutrosophic subset A � (TA, IA, FA) ofX′, and
a single-valued neutrosophic subset B � (TB, IB, FB) of X′
that:

(i) (X′, ϑ , 0) is a hyper BCK-algebra, and
A � (TA, IA, FA) is a single-valued neutrosophic
hyper BCK-subalgebra of X′
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(ii) (X′, ϑ′ , (TA(0), IA(0), FA(0))) is a hyper BCK-al-
gebra, and A � (TA, IA, FA) is a single-valued
neutrosophic hyper BCK-subalgebra of X′

(iii) (X′, ϱ, (TA(0), IA(0), FA(0))) is a BCK-algebra,
and B � (TB, IB, FB) is a single-valued neutrosophic
BCK-subalgebra of X′

(iv) |X′| � |X′| + 1

Proof. Let |X|≥ 2 and b ∈ X be fixed. For any x, y ∈ X′,
define a binary hyperoperation ϑ on X′ as follows:

x ϑy �

0, if x � 0,

0, b{ }, if x � y andx≠ 0,

b{ }, if x � b andy � 0,

0, b{ }, if x � b andy≠ 0,

x, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Now, we show that (X′, ϑ , 0) is a hyper BCK-algebra.
We just check that conditions (H1) and (H2) are valid.

(H1): Let x, y, z ∈ X′. If x � 0, then (x ϑ z) ϑ (y ϑ z) �

0{ } ϑ (y ϑ z) � 0{ }≪ x ϑy. If x � b, then (x ϑ z) ϑ (y ϑ z)

⊆ 0, b{ } ϑ (y ϑ z)⊆ 0, b{ }≪x ϑy. If x ∉ 0, b{ }, we consider
the following cases:

Case 1: x � y≠ z. )en (x ϑ z) ϑ (y ϑ z) � x ϑy

� x ϑx � 0, b{ } ≪ 0, b{ } � x ϑy.
Case 2: x � z≠y. )en (x ϑ z) ϑ (y ϑ z) � 0, b{ } ϑ
(y ϑ z) � 0, b{ } ≪ x � x ϑy.
Case 3: y � z≠ x. )en (x ϑ z) ϑ (y ϑ z)⊆x ϑ 0, b{ } �

0, b{ }≪x � x ϑy.
Case 4: x≠y≠ z. )en (x ϑ z) ϑ (y ϑ z) � x ϑy � x≪ x

� x ϑy.

Case 5: x � y � z. )en (x ϑ z) ϑ (y ϑ z) � 0, b{ }≪
0, b{ } � x ϑy.

(H2): Let x, y, z ∈ X. )e proof of (x ϑy) ϑ z �

(x ϑ z) ϑy is similar to that of (H1), and then it is easy to see
that (X′, ϑ , 0) is a hyper BCK-algebra. Consider a single-
valued neutrosophic subset A � (TA, IA, FA) of X′ such that
TA(0) � TA(b) � 1, IA(0) � IA(b) � FA(0) � FA(b) � 0;
by equation (2) and some modifications, we get that

∧ TA(x ϑy)( 􏼁≥Tmin TA(x), TA(y)( 􏼁,

∨ IA(x ϑy)( 􏼁≤ Smax IA(x), IA(y)( 􏼁,

∨ FA(x ϑy)( 􏼁≤ Smax FA(x), FA(y)( 􏼁.

(14)

Hence, A � (TA, IA, FA) is a single-valued neutrosophic
hyper BCK-subalgebra of (X′, ϑ , 0). Now, ∀x, y ∈ X; define
a hyperoperation ϑ′ on X′ by

A(x) ϑ ′A(y) � TA(x), IA(x), FA(x)( 􏼁 ϑ ′ TA(y), IA(y), FA(y)( 􏼁

� TA(x ϑy), IA(x ϑy), FA(x ϑy)( 􏼁.

(15)
Define a single-valued neutrosophic subset B � (TB, IB,

FB) of X′ by

B(A(x)) � A(x),

or TB TA(x)( 􏼁, IB IA(x)( 􏼁, FB FA(x)( 􏼁( 􏼁 � TA(x), IA(x), FA(x)( 􏼁,

(16)

and an operation ϱ on X′ by

TA(x), IA(x), FA(x)( 􏼁ϱ TA(y), IA(y), FA(y)( 􏼁

� ∨ TA(x) ϑ ′TA(y)( 􏼁, ∧ IA(x) ϑ′ IA(y)( 􏼁, ∧ FA(x) ϑ′ FA(y)( 􏼁( 􏼁.

(17)

It can be easily seen that (TA(x), IA (x), FA (x))

≪′(TA(y), IA(y), FA(y))⟺x≪y, (X′, ϑ′ , (TA (0), IA

(0), FA(0))) is a hyper BCK-algebra, A � (TA(x), IA (x),

FA(x)) is a single-valued neutrosophic hyper BCK-sub-
algebra of X′, (X′, ϑ , (TA(0), IA(0), FA(0))) is a BCK-al-
gebra, and B � (TB(x), IB(x), FB(x)) is a single-valued
neutrosophic BCK-subalgebra of X′, and since
TA(0) � TA(b) � 1, IA(0) � IA(b) � FA(0) � FA(b) � 0,
we get that |X′| � |X′| + 1. □

Corollary 5. Each nonempty set can be constructed to an
extendable single-valued neutrosophic BCK-subalgebra.

4. Neutro Hyper BCK-Algebras

Smarandache in [17] introduced the concept of neutro hyper
operation. An n-ary (for integer n≥ 1) hyperoperation
ϑ : Xn⟶ P(Y) is called a neutro hyper operation if it has
n-plets in Xn for which the hyperoperation is well-defined
ϑ (a1, a2, . . . , an) ∈ P(Y) (degree of truth (T)), n-plets in Xn

for which the hyperoperation is indeterminate (degree of
indeterminacy (I)), and n-plets in Xn for which the
hyperoperation is outer-defined ϑ (a1, a2, . . . , an) ∉ P(Y)

(degree of falsehood (F)), where T, I, F ∈ [0, 1], with

Table 1

ϱ −1 −2 −3 −4
−1 −1 −1 −1 −1
−2 −2 −1 −2 −2
−3 −3 −3 −1 −3
−4 −4 −4 −4 −1

−1 −2 −3 −4
TA 1 0.2 0.4 0.6
IA 0.1 0.3 0.7 0.9
FA 0.05 0.25 0.45 0.65

Table 2

ϑ 0 −1 −2 −3 −4
e 0{ } 0{ } 0{ } 0{ } 0{ }

−1 −1{ } 0, −1{ } 0, −1{ } e, −1{ } 0, −1{ }

−2 −2{ } −2{ } 0, −1{ } −2{ } −2{ }

−3 −3{ } −3{ } −3{ } 0, −1{ } −3{ }

−4 −4{ } −4{ } −4{ } −4{ } 0, −1{ }

0 −1 −2 −3 −4
TB 1 1 0.2 0.4 0.6
IB 0.1 0.1 0.3 0.7 0.9
FB 0.05 0.05 0.25 0.45 0.65
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(T, I, F)≠ (1, 0, 0) that represents the n-ary (total) hyper
operation and (T, I, F)≠ (0, 0, 1) that represents the n-ary
anti hyper operation.

In this section, we introduce a novel concept of neutro
hyper BCK-algebras as a generalization of neutro BCK-al-
gebras and analyze their properties. )e main motivation of
the concept of neutro hyper BCK-algebra is a generalization
of neutro BCK-algebra, which is defined as follows.

Definition 7. Let X≠∅ and P∗(X) � Y |∅≠Y⊆X{ }. )en
for a map ϑ : X2⟶ P∗(X), a hyperalgebraic system
(X, ϑ , 0) is called a neutro hyper BCK-algebra if it satisfies
in the following neutro axioms:

(H1) (∃x, y, z ∈ X that (x ϑ z) ϑ (y ϑ z)≪x ϑy) and
(∃x′, y′, z′ ∈ X that (x′ ϑ z′) ϑ (y′ ϑ z′) /≪ x′ ϑy′ or
indeterminate)
(H2) (∃x, y, z ∈ X that (x ϑy) ϑ z � (x ϑ z) ϑy) and
(∃x′, y′, z′ ∈ X that (x′ ϑy′) ϑ z′ ≠ (x′ ϑ z′) ϑy′ or
indeterminate)
(H3) (∃x ∈ X that x ϑX≪ x) and (∃x′ ∈ X that
x′ ϑX /≪x′ or indeterminate)
(H4) (∃x, y ∈ X that if x≪y and y≪x imply x � y)
and (∃x′, y′ ∈ X that if x′ ≪y′ and y′ ≪x′ imply
x′ ≠y′ or indeterminate),
where a≪ b is defined by 0 ∈ a ϑ b, and ∀A, B⊆H,
A≪B⟺∀a ∈ A∃b ∈ B s.t a≪ b

If (X, ϑ , 0) is a neutro hyperalgebra and satisfies in
condition (H1) to (H4), then we will call it is a neutro hyper
BCK-algebra of type 4 (i.e., it satisfies 4 neutro axioms).

Investigation of partial order relation on neutro hyper
BCK-algebra plays a main role in Hass diagram, so we have
the following results.

Theorem 12. Let (X, ϑ , 0) be a neutro hyper BCK-algebra,
x, y, z ∈ X and A, B, C⊆X. -en

(i) ∃x, y ∈ X such that (x ϑy)≪ x

(ii) ∃x, y ∈ X such that (x ϑy) /≪ x

(iii) ∃x ∈ X such that x≪ x

(iv) ∃x ∈ X such that x /≪ x

(v) ∃A, B⊆X such that A≪A

(vi) ∃A, B⊆X such that A /≪A

Proof. We prove only the item (ii), and other items are similar
to it. Since (X, ϑ , 0) is a neutro hyper BCK-algebra, there exists
x ∈ Xsuch that (x ϑX) /≪X. It follows that there exist a, y ∈ X

such that a ∈ x ϑy and a /≪x. Hence, (x ϑy) /≪ x. □

Theorem 13. Let (X, ϑ , 0) be a neutro hyper BCK-algebra,
x, y, z ∈ X and A, B, C⊆X. -en

(i) if A≪B, then (A∪C)≪ (B∪C)

(ii) if A /≪B, then (A∪C) /≪ (B∪C)

Proof

(i) Let a ∈ A be arbitrary. Since A≪B, there exists b ∈ B

such that a≪ b. Hence, for a ∈ (A∪C), there exists
b ∈ (B∪C) such that a≪ b and so (A∪C)≪ (B∪C).

(ii) Since A /≪B, there exists a ∈ A such that for all,
b ∈ B, we have a /≪ b. Hence, there exists a ∈ (A∪C) such
that for all, b ∈ (B∪C), we get that a /≪ b and so
(A∪C) /≪ (B∪C). □

Example 2. (i) Every neutro BCK-algebra (X, ϑ , 0) is a
neutro hyper BCK-algebra. Since, for all, x, y ∈ X, can define
a hyperoperation ϑ on X by x ϑy � xϱy􏼈 􏼉.

(ii) Consider N∗ � 0, 1, 2, 3, . . .{ }. Define

x ϑy �

0, x{ } if x≤y

0 (x, y) � (2, 3) or (x, y) � (3, 2)

2 x � y � 1 or (x, y) � (0, 1)

x otherwise

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

. Clearly,

(N∗, ϑ , 0) is a neutro hyper BCK-algebra.
)e following theorem shows that neutro hyper BCK-

algebras are the generalization of hyper BCK-algebras.

Theorem 14. Every hyper BCK-algebra can be extended to a
neutro hyper BCK-algebra.

Proof. Let (X, ϑ , 0) be a hyper BCK-algebra and α ∉ X. For
all, x, y ∈ X∪ α{ }, define ϑ α on X∪ α{ } by x ϑ αy � x ϑy,
where, x, y ∈ X and whence α ∈ x, y􏼈 􏼉, define x ϑ αy is
indeterminate or x ϑ αy ∈ X∪ α{ }.

We show that how to construct neutro hyper BCK-al-
gebras from BCK-algebras. □

Example 3. Let X � 0, 1, 2, 3, 4{ } and consider Table 3.
)en

(i) If a � 0, then (X, ϑ 1, 0) is a neutro hyper BCK-
algebra and if a � 1, then (X\ 3, 4, 5{ }, ϑ 1, 0) is a
hyper BCK-algebra

(ii) (X, ϑ 2, 0) is a neutro hyper BCK-algebra and
(X\ 4, 5{ }, ϑ 2, 0) is a hyper BCK-algebra

(iii) If s � z � 0, w � 3, then (X, ϑ 3, 0) is a neutro hyper
BCK-algebra, and for s � 1, z � 3, (X\ 5{ }, ϑ 3, 0) is
a hyper BCK-algebra. If s � z � 0, w �

�
2

√
, then

(X, ϑ 3, 0) is a neutro hyper BCK-algebra of type 4

)e importance of the following theorem is to construct
of neutro hyper BCK-algebra from any given nonempty set.

Theorem 15. Let 0 ∉ X≠∅. -en there exists a hyper-
operation “ ϑ ” on X′ � X∪ 0{ } such that (X′, ϑ , 0) is a
neutro hyper BCK-algebra.

Proof. Let 0 ∉ X≠∅. Using )eorem 4, there exist a
hyperoperation “ ϑ ” on X′ � X∪ 0{ } such that (X′, ϑ , 0) is a
hyper BCK-algebra. Now, apply )eorem 14; there exist a
hyperoperation “ ϑ′ ” on X′ � X∪ 0{ } such that (X′, ϑ′ , 0) is
a neutro hyper BCK-algebra.
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Let (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be two neutro hyper
BCK-algebras. Define ϑ on X1 × X2 by (x, y) ϑ (x′, y′) �

(x ϑ 1x′, y ϑ 2y′), where (x, y), (x′, y′) ∈ X1 × X2 and say
that (x, y)≪ (x′, y′) ⟺ (01, 02) ∈ (x, y) ϑ (x′, y′). )e
following theorem investigates the properties of partial order
relation on product of Neutro hyper BCK algebras. □

Theorem 16. Let (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be two
neutro hyper BCK-algebras. -en

(i) ∀(x, y), (x′, y′) ∈ X1 × X2, (x, y)≪ (x′, y′)⟺
(x /≪ 1x′) and (y /≪ 2y′)

(ii) ∀(x, y), (x′, y′) ∈ X1 × X2, (x, y) /≪ (x′, y′)⟺
(x≪ 1x′) or (y≪ 2y′)

(iii) ∃(x, y), (x′, y′) ∈ X1 × X2, (01, 02) ∈ ((x, y) ϑ
(x′, y′)) ϑ (x, y)

(iv) ∃(x, y), (x′, y′) ∈ X1 × X2, (01, 02) ∉ ((x, y) ϑ
(x′, y′)) ϑ (x, y)

Proof

(i) Immediate
(ii) Let (x, y), (x′, y′) ∈ X1 × X2. )en (01, 02) ∈

(x, y) ϑ (x′, y′), if and only if (01, 02) ∈
(x ϑ 1x′, y ϑ 2y′), if and if only 01 ∉ x ϑx′ or
02 ∉ y ϑy′, and if and only if (x≪ 1x′) or (y≪ 2y′)

(iii) Since (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be two neutro
hyper BCK-algebras, there exist x, y ∈ X1, x′, y′
∈ X2 such that 01 ∈ (x ϑy) ϑx and
02 ∈ (x′ ϑy′) ϑx′. It follows that ∃(x, y), (x′, y′)
∈ X1 × X2, (01, 02) ∈ ((x, y) ϑ (x′, y′)) ϑ (x, y)

(iv) Since (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be two neutro
hyper BCK-algebras, there exist x, y ∈ X1, x

′, y′ ∈ X2 such that 01 ∉ (x ϑy) ϑx and

02 ∉ (x′ ϑy′) ϑx′. It follows that ∃(x, y), (x′, y′)
∈ X1 × X2, (01, 02) /∈((x, y) ϑ (x′, y′)) ϑ (x, y)

We need to extend neutro hyper BCK-algebras to a
larger class of neutro hyper BCK-algebras, so we apply the
notation of product on neutro hyper BCK-algebras as
follows. □

Theorem 17. Let (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be two
neutro hyper BCK-algebras. -en (X1 × X2, ϑ , (01, 02)) is a
neutro hyper BCK-algebra.

Proof. We prove only the item (H4), and other items by
)eorem 16 are valid. Since (X1, ϑ 1, 01) and (X2, ϑ 2, 02) are
neutro hyper BCK-algebras, there exist (x1, x2), (y1, y2),

(x1′, x2′), (y1′, y2′) ∈ X1 × X2 that if (x1≪ 1 y1, y1≪ 1x1),
then x1 � y1, and if (x2≪ 2y2, y2≪ 2x2), then x2 � y2. Also,
if (x1′≪ 1y1′, y1′≪ 1x1′), then x1 ≠y1, and if (x2
′≪ 2y2′, y2′ ≪ 2x2′), then x2 ≠y2. By (i), it follows that there
exist (x1, x2), (y1, y2), (x1′, x2′), (y1′, y2′) ∈ X1 × X2 that if
(x1, x2)≪ (y1, y2), (y1, y2)≪ (x1, x2), we have (x1, x2) �

(y1, y2), and if (x1′, x2′)≪ (y1′, y2′), (y1′, y2′)≪ (x1′, x2′), we
have (x1′, x2′)≠ (y1′, y2′).

Let (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be hyper BCK-alge-
bras, where X1 ∩X2 � ∅. For some x, y ∈ X, define a
hyperoperations ϑ t, ϑ s as follows:

x ϑ ty �

x ϑ 1y( 􏼁\ 01􏼈 􏼉, if x, y ∈ X1\X2,

x ϑ 2y, if x, y ∈ X2\X1,

t, if x ∈ X1, y ∈ X2,

02, if x ∈ X2, y ∈ X1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ϑ sy �

x ϑ 1y, if x, y ∈ X1\X2,

x ϑ 2y( 􏼁\ 02􏼈 􏼉, if x, y ∈ X2\X1,

s, if x ∈ X1, y ∈ X2,

01, if x ∈ X2, y ∈ X1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

and 01 ϑ t01 � 01 ϑ t02 � 02 ϑ t01 � 01, 01 ϑ s02
� 02 ϑ s01 � 02 ϑ s02 � 02, where 02 ≠ t ∈ X2, 01 ≠ s ∈ X1.
)us, we have the following theorem.

We want to extend neutro hyper BCK-algebras to a
larger class of neutro hyper BCK-algebras, so we apply the
notation of union on neutro hyper BCK-algebras as
follows. □

Theorem 18. Let (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be hyper
BCK-algebras, where X1 ∩X2 � ∅ and X � X1 ∪X2. -en

(i) For all, A⊆X1, A /≪ 01, t􏼈 􏼉

(ii) For all, A⊆X1, A /≪ 02
(iii) For all, A⊆X1, A /≪A, and for all, B⊆X2, B /≪B

(iv) For all, A⊆X2, A /≪ 02, s􏼈 􏼉

(v) For all, A⊆X2, A /≪ 01

Proof
(i) Let A⊆X1. )en A ϑ t01 � ∪ a∈A(a ϑ t01) � ∪ a∈A

((a ϑ 01)\ 01􏼈 􏼉). It follows that 01 ∉ A ϑ t01, so A /≪ 01􏼈 􏼉. In

Table 3: Neutro hyper BCK-algebras.

ϑ1 0 1 2 3 4 5
0 0 0 0 0 2 0
1 1 0 a 2 4 3
2 2 2 0, 2 0 2 0
3 3 0 1 2 4 5
4 1 4 2 1 4 3
5 0 4 0 1 4 0
ϑ2 0 1 2 3 4 5
0 0 0 0 0 2 0
1 1 0, 1 0 0, 1 4 5
2 2 2 0 2 5 0
3 3 3 3 0 0 0
4 2 1 2 4 1 2
5 5 0 4 0 0 x

ϑ3 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 0, 2 1 1 s 0
2 2 0, 2 0, 2 0, 2 0, 2 3
3 3 3 3 0, 2 z 0
4 4 4 4 4 0, 2 1
5 2 0 2 2 2 w
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addition, A ϑ tt � ∪ a∈A(a ϑ tt) � t{ } and 01 ∉ t ϑ t01. It fol-
lows that 01 ∉ A ϑ t01, so A /≪ t{ }.

(ii) Let A⊆X1. )en A ϑ t02 � ∪ a∈A(a ϑ t0t) � t{ } and
01 ∉ t ϑ t02. It follows that 01 ∉ A ϑ t01, so A /≪ 02􏼈 􏼉. In ad-
dition, A ϑ tt � ∪ a∈A(a ϑ tt) � t{ } and 01 ∉ t ϑ t01. It follows
that 01 ∉ A ϑ t01, so A /≪ t{ }.

(iii) Let A⊆X1 and B⊆X2. Since A ϑ tA � ∪ a,a′∈A
(a ϑ ta′) � ∪ a,a′∈A

((a ϑ ta′)\ 01􏼈 􏼉) and B ϑ sS � ∪ b,b′∈B
(b ϑ tb′) � ∪ b,b′∈B((b ϑ sb′)\ 02􏼈 􏼉), we get that 01 /∈A ϑ tA and
02 /∈B ϑ sB. )us A /≪A and B /≪B.

(iv) and (v) are similar to (i) and (ii), respectively. □

Theorem 19. Let (X1, ϑ 1, 01) and (X2, ϑ 2, 02) be hyper
BCK-algebras, where X1 ∩X2 � ∅ and X � X1 ∪X2. -en

(i) (X, ϑ t, 01) is a neutro hyper BCK-algebra
(ii) (X, ϑ s, 02) is a neutro hyper BCK-algebra

Proof
(i) (H1: ) For some, x, y, z ∈ X2\X1, (x ϑ tz) ϑ t

(y ϑ tz)≪ (x ϑ ty). Since, for x ∈ X1, (((x ϑ 01)\ 01􏼈 􏼉)\

01􏼈 􏼉) ϑ t02 � t≠ 02, we get that

x ϑ t01( 􏼁 ϑ t 02 ϑ t01( 􏼁 � x ϑ 01( 􏼁\ 01􏼈 􏼉( 􏼁 ϑ t01
� x ϑ 01( 􏼁\ 01􏼈 􏼉( 􏼁\ 01􏼈 􏼉≪ 02 � 01 ϑ t02.

(19)

(H2: ) For some, x, y, z ∈ X2\X1, (x ϑ ty) ϑ tz �

(x ϑ tz) ϑ ty. In addition, for x ∈ X1,

x ϑ t02( 􏼁 ϑ t01 � t ϑ t01 � 02 ≠ t � x ϑ 01( 􏼁\ 01􏼈 􏼉( 􏼁 ϑ t02
� x ϑ t01( 􏼁 ϑ t02.

(20)

(H3: ) For some, x ∈ X2X1, x ϑ tX � x ϑX2≪X2 � X.
Since t ϑ t01 � 02 and (∪ x∈X1

((01 ϑx) 01􏼈 􏼉)) ϑ t01 � (∪ x∈X1

((01 ϑx)\ 01􏼈 􏼉))\ 01􏼈 􏼉, we get that

01 ϑ tX � 01 ϑ tX1( 􏼁∪ 01 ϑ tX2( 􏼁 � ∪
x∈X1

01 ϑ tx( 􏼁􏼠 􏼡∪ ∪
y∈X2

01 ϑ ty( 􏼁􏼠 􏼡

� ∪
x∈X1

01 ϑx( 􏼁\ 01􏼈 􏼉􏼠 􏼡∪ t{ }≪ 01.

(21)

(H3: ) Because 01≪ 01 and 01 ∈ 01 ϑ t02 and
01 ∈ 02 ϑ t01, while 01 ≠ 02, we get the item (H3: ) is valid.
)erefore, (X, ϑ t, 01) is a neutro hyper BCK-algebra.

(ii) It is similar to item (i). □

4.1. Application of Neutro Hyper BCK-Algebras and Single-
Valued Neutrosophic Hyper BCK-Subalgebras. In this sub-
section, we describe some applications of neutro hyper BCK-
algebra and single-valued neutrosophic hyper BCK-sub-
algebra in some complex (hyper) networks.

Example 4 (economic network). Let X � a � China, b{

� Italy, c � Iran, d � Spain, e � Germany, f � USA} be a set
of top countries, which are in an economic network. Suppose
ϑ is the relations on X, which is described in Table 4, and for
x≠y, x∗y � D means that D is the set of countries that
benefit from this economic partnership, whence the country
x starts to country y, and for x � y, it means that the country
x maintains its capital.

Clearly, (X, ∗,China) is a neutro hyper BCK-algebra
in this model. We obtain that the USA is main source of
this network; since if the USA starts to any other country,
it does not benefit. In addition, if the USA starts to itself,
this participation becomes indeterminate. Also, if any
country starts to China, we conclude that China loss, else
with USA, and if China starts to any other country, then
China benefit else USA.

Example 5 (data network). Let Y � a, b, c, d, e{ } be a set of
mobile sets, which are in a data network. Suppose ϑ is the
relations on Y, which is described in Table 3, and for all,
x≠ , x∗y � D means that D is a set of mobile sets that
receive contents of messages that mobile set x starts to
mobile set y, and for x � y, it means that the mobile set x

retains its information. In addition, for any
y ∈ Y, TB(y), IB(y), FB(y) are the cryptographic power,
battery life, and RAM of mobile set y, respectively. )en
B � (TB, IB, FB) is a single-valued neutrosophic hyper
BCK-subalgebra of (Y, ϑ , a) in Table 5.

It is clear that if mobile set named “a” starts, then none of
the devices receive the message, and if other devices start to
name a mobile set “a”, then this device (mobile set a) cannot
receive their messages; hence, it is not suitable node in this
network, since furthermore to its complex cryptography, its

Table 4: Neutro hyper BCK-algebra of an economic network.

ϑ a b c d e f

a a a a a a f

b b a, c b b a a

c c a, c a, c a, c a, c d

d d d d a, c a a

e e e e e a, c b

f c a c c c ???

Table 5: Single-valued neutrosophic hyper BCK-subalgebra of a
data network.

ϑ a b c d e

a a{ } a{ } a{ } a{ } a{ }

b b{ } a, b{ } a, b{ } e, b{ } a, b{ }

c c{ } c{ } a, b{ } c{ } c{ }

d d{ } d{ } d{ } a, b{ } d{ }

e e{ } e{ } e{ } e{ } a, b{ }

a b c d e

TB 1 1 0.2 0.4 0.6
IB 0.1 0.1 0.3 0.7 0.9
FB 0.05 0.05 0.25 0.45 0.65
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battery life, and RAM is weak. Also, one can see that the
mobile set b is the best in this regard.

5. Conclusion

To conclude, the current paper has presented and analyzed
the notion of single-valued neutrosophic hyper BCK-
subalgebras and neutro hyper BCK-algebras and investi-
gated some of their new useful properties. We defined the
concept of the extended single-valued neutrosophic BCK-
subalgebras and showed that for any α ∈ [0, 1] and a single-
valued neutrosophic subset hyper BCK-subalgebra,
A � (TA, IA, FA), A � (TAα, IAα, FAα) is a hyper BCK-
subalgebra. )rough the concept of fundamental relation
C(β), we have generated the single-valued neutrosophic
BCK-subalgebras from single-valued neutrosophic hyper
BCK-subalgebras, so some categorical properties of single-
valued neutrosophic BCK-subalgebras are investigated
based on the categorical properties of single-valued neu-
trosophic hyper BCK-subalgebras. In addition, on any
nonempty set, we have constructed at least one single-
valued neutrosophic BCK-subalgebra and one extendable
single-valued neutrosophic BCK-subalgebra. )e concept
of neutro hyper BCK-algebra as a generalization of neutro
BCK-algebra is introduced in this study, and it is con-
structed the class of product of neutro hyper BCK-algebras
and union of neutro hyper BCK-algebras via hyper BCK-
algebras. In study of neutro hyper BCK-algebras, despite
having key mathematical tools, there are some limitations.
)e union of two neutro hyper BCK-algebras is not nec-
essarily; a neutro hyper BCK-algebras so the class of neutro
hyper BCK-algebras is not closed under any given algebraic
operation. In addition, neutro hyper BCK-algebras are
different from single-valued neutrosophic hyper BCK-
subalgebras so could not generalize the capabilities of
single-valued neutrosophic hyper BCK-subalgebras to
neutro hyper BCK-algebras and conversely. In final, we can
apply these concepts in real world, especially in some
complex (hyper) networks.

We hope that these results are helpful for further studies
in single-valued neutrosophic logical algebras. In our future
studies, we hope to obtain more results regarding single-
valued neutrosophic (hyper) logical-subalgebras, neutro
(hyper) logical-subalgebras, and their applications.
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Nowadays, rich quantity of information is offered on the Net which makes it hard for the clients to detect necessary information.
Programmed techniques are desirable to effectively filter and search useful data from the Net. )e purpose of purported text
summarization is to get satisfied content handling with information variety. )e main factor of document summarization is to
extract benefit feature. In this paper, we extract word feature in three group called important words. Also, we extract sentence
feature depending on the extracted words. With increasing knowledge on the Internet, it turns out to be an extremely time-
consuming, exhausting, and boring mission to read the whole content and papers and get the relevant information on
precise topics

1. Introduction

By increasing the knowledge on the Internet, it turns out to
be an extremely time-consuming and boring mission to read
whole content and papers and get the relevant information
on precise topics. Content summarization is recognized as a
key for this matter as it generates programmed briefing of
the data. Summarization of text can be defined as an ab-
breviated version of generated text from several documents
without down core contents or impression of the original
documents and expressive summary of a certain manuscript
by covering greatest imperative part of the contents and with
smallest redundancy from different contribution resources.
)ere are various types of content summarization depending
on rate of recurrence of input sources, the technique of
generated summary, the goal of summary, and the input and
output language of summarization process.

Recently, the theory of neutrosophic logic and sets has
been introduced. Florentin [1, 2] presented the neutrosophic
logic. It is a decision in which each proposition is valued to
have three grades such as a grade of truth (T), a grade of
indeterminacy (I), and a grade of falsity (F). A neutrosophic
set is defined as a set where every component of the universe
has a grade of truth, indeterminacy, and falsity, respectively,

and lies between [0, 1]∗, which is the nonstandard unit
interval [3–5]. )ere are various applications using neu-
trosophic logic as in [6, 7].

In this paper, we propose neutrosophic logic centered
multidocument summarization procedure to debrief vital
sentences to create nonredundant summary. )e projected
approach is associate degree extractive primarily built ge-
neric report system, and outline within the context of this
projected work is matter outline created from one or many
news connected documents.

)e paper is well-structured as follows. In Section 2, we
give some basic concepts on the text summarization system.
Section 3 introduces the proposed summarization tech-
nique.)e fundamentals of neutrosophic sets are introduced
in Section 4. )e basics of using neutrosophic sets based on
information retrieval are introduced in Section 5. Section 6 is
devoted to present our approach to document summari-
zation using distance between neutrosophic sets. )e con-
clusion of paper is given in Section 7.

2. Text Summarization

As previously said, text summary is a condensed version
of a document that retains the major points and ideas of

Hindawi
Journal of Mathematics
Volume 2021, Article ID 9938693, 7 pages
https://doi.org/10.1155/2021/9938693

mailto:omniaelbarbary@yahoo.com
https://orcid.org/0000-0003-4419-1606
https://orcid.org/0000-0003-1962-1280
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9938693


the original material(s). )e goal of a summarizing
system is to offer a concise and fluid overview of a given
text by addressing the most important parts of the ma-
terial while minimizing redundancy from various in-
place sources.

)ere exists a range of taxonomies for text summari-
zation [8–12] supported frequency of input sources, the
means of outline generated, purpose of outline, and language
of input sources.

)ere are 2 varieties of algorithms regarding which
varied works are printed around text summarization. )ey
are extraction-based summarization and abstraction-based
summarization.

)e extraction-based technique works by extracting
sentences from a document. )ere is no compression in any
format during this technique. It is just a matter of memo-
rizing sentences in order to create a more compact outline.

Abstraction-based reports, on the other hand, are ef-
fective. Apart from memorizing the most important sen-
tences, it alters the way a text is organized. )e retrieved text
is regenerated. It is categorized as a single document or
multidocument report depending on the number of input
sources considered for generating the outline. Once a
document has been provided as an input for a text report, it
is known as a single document report, whereas a multi-
document report uses a collection of papers as input to
create the outline.

)e outline of a domain-specific report is generated
using domain-specific data, whereas the outline of a domain
freelance report (generic) is generated using generic alter-
natives. Domain-specific report approaches have become
popular among academics.

In this research, we offer a document summarization
system based on neutrosophic logic for extracting relevant
sentences and generating a summary.)e planned approach
is an extraction-based generic report system, and the outline
in this planned work is a matter outline created from one or
more news-related papers.

3. The Proposed Document
Summarization Technique

Summary is not sufficient to just generate words and phrases
that apprehend the source document. Summary also must be
accurate and read fluently as a new separate document.
Summarization of text [3, 13–15] is the duty of creating a
brief and fluent summary while retaining the overall
meaning and information content. )e process of sum-
marization takes some steps: first is the preprocessing of
data; second is the feature word extraction; third is the
feature sentence extraction; and the last step is the orga-
nization of the set of documents to produce the summary. In
the last step, we use the neutrosophic logic, and we illustrate
it later.

3.1. Input Preprocessing. Some preprocessing activities are
required for the set of raw documents before they can be
entered into the planned technique.

(i) Words that should be avoided or removed: )e
most commonly used terms, such as “a,” “an,” and
“the,” do not have any linguistics data related to the
text area unit. All of the stop words have been
preprogrammed and saved in a separate file.

(ii) Stemming. )is is the process of converting all
words to their root type by eliminating their prefix
and suffix. For the stemming procedure, we
employed a porter stemmer.

(iii) Removal of Special Characters. House character
removes all special characters from a collection of
input documents, including punctuation, interro-
gation, and exclamation.

(iv) Segmentation Process. )is is a method of extracting
each sentence from a document independently. All
sentences from documents are retrieved and saved
in this manner.

(v) When a sentence is segmented, the tokenization
process is applied to all of the sentences. It is a
technique for isolating words from sentences. It is
used to define the character structure, such as the
date, time, punctuation, and number.

3.2. Feature Extraction. To perform an efficient document
summarization, we consider the feature extraction. Feature
extraction is not only limited on words but also on sentence.
In the following subsections, we illustrate our method to
extract words with different levels of strength. Also, the
sentence extraction depends on words feature.

)e preprocessed knowledge in word is used to see
sentence score in the feature extraction phase. )e effec-
tiveness of different sentence evaluation methods is deter-
mined by the type of text, genre of text, language, and
structure of contribution text. )e main belief is that
completely distinct themes will enjoy different characteris-
tics, which can be differentiated by a variety of possibilities.

All the text selections are divided into two categories:
word level and sentence level alternatives. We have run tests
on various combinations of shallow text options on various
datasets to find the optimum mix of options that will deliver
the greatest results in terms of coverage and relevancy for the
news domain. )e options that were used in the planned
strategy are listed below.

3.2.1. Word Features. )e previous methods of text sum-
marization depend on word information in the whole
documents. Another way, we can extract feature that rec-
ognizes topics by using words without reading the whole
document. For example, word “algorithm” can indicate the
document field “computer science”; the appearance of this
word in any sentence means that this sentence is also
important.

)e term “document field” refers to basic and mutual
information that is useful in human communication.

A field tree is a visual representation of document field
relationships. )e field tree’s leaf nodes are parallel to ter-
minal fields, super-fields are nodes connected to the root,
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and other nodes are middle fields. Text field can be cleared
efficiently if there are many important words and if the
frequency rate is high. )erefore, we can define three levels
of important words (IM-W) which will be more effective
than using full documents as traditional methods. )e three
levels of IM-W are defined as follows:

(IM-W) 1. )is appears with title of document and in
one terminal field, and we can calculate it as follows: for
the root of supper field F, the child field is F/c; the
following formula is used to justify whether or not the
word w is (IM-W) 1.

concentration(w, c) �
appearance(w,< c>)
appearance(w,<F>)

􏼢 􏼣≥ z, z≤ 0.5,

appearance(w,<F>) �
the frequency number for appear thewordw in the fieldF

total number of words in fieldF
.

(1)

(IM-W) 2. )is appears with more than one terminal
field in one medium field.
(IM-W) 3. )is appears only with one medium field.

3.2.2. Sentence Features. Sentence features are the most
important to construct the summary. Two features of

sentences are identified: the first is the sentence that contains
IM-W and the second is sentence length, and the short
sentences do not give any vital information, so short sen-
tences are not recommended. Sentence length score is
computed as follows:

length of sentence Si( 􏼁 �
number of of word occuring in sentence S

number of words occuring in a long sentence
. (2)

3.3. Summarization Process. )e summarization process
[16–18] is done with three steps. First, all the sentences are
arranged from the highest to lowest score achieved using the
neutrosophic approach. Sentences are chosen based on their
degree of resemblance to other sentences in the summary.
We used the following formula to determine sentence
similarity: Euclidian distance between two neutrosophic sets
which is explained in Section 6. )e second step is the
optimization process; in this step, we delete the repeated
sentence and delete the similar sentence which contains the
largest number of similar words. )e third step is sentences
arrangement. Sentences are organized in the final summary
in the order in which they appeared in the foundation
documents. We have laid up certain guidelines for you,
which are as follows:

(1) Sentences are arranged in declining order of their
importance

(2) If two sentences in the same document have the same
score and are at the same location, the sentence in the
earlier document is given priority over the other
sentence

4. Neutrosophic Sets

)e neutrosophic set is an influential general frame that has
been recently proposed by F. Smarandache in [1, 2]. He
presented the grade of indeterminacy (I) as an independent
component. At this point, the scale of truth, indeterminacy,

and falsity corresponds to any element of a neutrosophic set
in an ordinary unit interval [0, 1].

Neutrosophic set definition: Let D be a general set,
and a single-valued neutrosophic set is an item
W � 〈d, Tw(d), Iw(d), Fw(d)〉: d ∈ D􏼈 that is categorized
by three membership functions. Tw(d): D⟶ [0, 1] is a
truth-membership function, Iw(d): D⟶ [0, 1] is an in-
determinacy-membership function, and
Fw(d): D⟶ [0, 1] is a falsity-membership function. )e
total sum Tw(d) + Iw(d) + Fw(d) of any element d ∈ D

deceptions in the closed interval [0, 3].

5. Information Retrieval Based on
Neutrosophic Sets Ñ

El in [19] discusses the fundamentals of information re-
trieval using neutrosophic sets as follows.

Let D be a limited set of documents, D � d1, d2,􏼈

. . . , dn}.W is a set of words, W � w1, w1, . . . , wj􏽮 􏽯, wj ∈ di;
the neutrosophic set Ñ in D is considered by a truth-mem-
bership function t~N, an indeterminacy-membership function
i~N, and a falsity-membership function f~N, wherever
t~N, i~N, f~N: D⟶ [0, 1] are functions and ∀d ∈
D, d ≡ d(t~Nd(w), i~Nd(w), f~Nd(w)) ∈ N. Consider a neu-
trosophic single-valued element of Ñ.

A neutrosophic single-valued [8–12, 20] set Ñ over a
limited universe D � d1, d2, . . . , dn􏼈 􏼉 is characterized as
follows:
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N � d1, < t~Nd1 wi( 􏼁, i~Nd1 wi( 􏼁, f~Nd1 wi( 􏼁>( 􏼁

+ d2, < t~Nd2 wi( 􏼁, i~Nd2 wi( 􏼁, f~Nd2 wi( 􏼁>( 􏼁

+ · · · + dn, < t~Ndn wi( 􏼁, i~Ndn wi( 􏼁, f~Ndn wi( 􏼁>( 􏼁,

(3)

where t~Ndi(wj) � S − rdi
(wj)/S,

i~Ndi wj􏼐 􏼑 �
rdi

wj􏼐 􏼑

M
,

f~Ndi wj􏼐 􏼑 �
rdi

wj􏼐 􏼑

S
,

S � 􏽘

n

j�1
rdi wj􏼐 􏼑,

M � 􏽘

m

k�1
rdk wj􏼐 􏼑,

(4)

where r is the number of appearance of the word wj in the
document di, S is the number of appearance of the word wj

in the set D, and M is the number of appearance of the word
wj in the subset ~N.

6. Document Summarization Based on
Neutrosophic Sets

We use the distance between two Neutrosophic sets [21, 22]
to create a summary with related and closely-related sen-
tences. Single-valued neutrosophic sets [18, 23] are a type of
neutrosophic set that were motivated by a practical argu-
ment and can be employed in real-world applications like
science and engineering. Distance and similarity are im-
portant concepts in a variety of fields, including psychology,
linguistics, and computer intelligence.

6.1. Neutrosophic Summarization Technique Using Euclidian
Distance between Two Neutrosophic Sets. We introduce the
distance between two sentences as a single-valued
neutrosophic.

Let the sets S1 and S2 be defined over the finite universe
D � S1, S2, . . . , Sn􏼈 􏼉, and let S1 and S2 be two single-valued
neutrosophic sets in D � S1, S2, . . . , Sn􏼈 􏼉. )en, the distance
between S1 and S2 is as follows:

Sn Si, Sj􏼐 􏼑 � 􏽘
m

k�1
􏽘

n

i,j�1

i≠j

tSi
wk( 􏼁 − tSj

wk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + iSi
wk( 􏼁 − iSj

wk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + fSi
wk( 􏼁 − fSj

wk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

)e Euclidian distance between Si and Sj is defined as
follows:

e Si, Sj􏼐 􏼑 �

����������������������������������������������������������������

􏽘

m

k�1
􏽘

n

i,j�1

i≠j

tSi
wk( 􏼁 − tSj

wk( 􏼁􏼒 􏼓
2

+ ISi
wk( 􏼁 − ISj

wk( 􏼁􏼒 􏼓
2

+ fSi
wk( 􏼁 − fSj

wk( 􏼁􏼒 􏼓
2

􏼨 􏼩

􏽶
􏽵
􏽴

.
(6)

)e normalized Euclidian distance between S1 and S2 is
defined as follows:

qN Si, Sj􏼐 􏼑 �

�������������������������������������������������������������������
1
3n

􏽘

m

k�1
􏽘

n

i,j�1
i≠j

tSi
wk( 􏼁 − tSj

wk( 􏼁􏼒 􏼓
2

+ ISi
wk( 􏼁 − ISj

wk( 􏼁􏼒 􏼓
2

+ fSi
wk( 􏼁 − fSj

wk( 􏼁􏼒 􏼓
2

􏼨 􏼩.

􏽶
􏽴

(7)

Example 1. In this example, we explain the whole method in
one document, let us have a topic called “computer and
math,” and this topic considers a field and a part from the
field tree as shown in Figure 1.

We take an article from the subfield “computer science,”
an article under title “Environmental impact of computation

and the future of green computing.” Assume that
S � S1, S2, S3, S4, S5, S6􏼈 􏼉 is a set of extracted sentence from
the document, the set of important words are W �{ Envi-
ronmental, impact, computation, future, green, computing },
and Ñ is a subset of sentence from ~N � S1, S3, S5􏼈 􏼉. )ey
were selected according to the occurrence of the set of
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keywords W where t~N Si(wj), i~N Si(wj), and f ~N Si(wj) are a
degree of ‘strong occurrence of important words,’ a degree of
‘indeterminacy of important words,’ and a degree of ‘poor

occurrence of important words,’ respectively. )e following
step is to determine the Euclidean distance between two
sentences like S1 and S2:

qN S1, S3( 􏼁 �

�������������������������������������������������������������������
1
3n

􏽘

m

k�1
􏽘

n

i,j�1
i≠j

tSi
wk( 􏼁 − tSj

wk( 􏼁􏼒 􏼓
2

+ ISi
wk( 􏼁 − ISj

wk( 􏼁􏼒 􏼓
2

+ fSi
wk( 􏼁 − fSj

wk( 􏼁􏼒 􏼓
2

􏼨 􏼩

􏽶
􏽴

�

��������������������������������������������������������������

1
3n

􏽘

m

k�1
tS1

wk( 􏼁 − tS3
wk( 􏼁􏼐 􏼑

2
+ IS1

wk( 􏼁 − IS3
wk( 􏼁􏼐 􏼑

2
+ fS1

wk( 􏼁 − fS3
wk( 􏼁􏼐 􏼑

2
􏼚 􏼛

􏽶
􏽴

.

(8)

Number of occurrence of keywords in the documents is
as follows: Environmental “7,” impact “6,” computation “6,”

future “3,” green “4,” and computing “13.” A single value for
neutrosophic set N is given in Table 1.

Figure 1: Part from field tree.
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Example 2. From the data of Example 1 and Table 1, the
normalized Euclidian distance between S1 and S3 is given
as follows:

qN d1, d3( 􏼁 �

������������������������������������������������������������������
1
3n

􏽘

m

k�1
􏽘

n

i,j�1
i≠j

tsi
wk( 􏼁 − tsj

wk( 􏼁􏼒 􏼓
2

+ Isi
wk( 􏼁 − Isj

wk( 􏼁􏼒 􏼓
2

+ fsi
wk( 􏼁 − fsj

wk( 􏼁􏼒 􏼓
2

􏼨 􏼩,

􏽶
􏽴

�

�������������������������������������������������������������

1
3n

􏽘

m

k�1
ts1

wk( 􏼁 − ts3
wk( 􏼁􏼐 􏼑

2
+ Is1

wk( 􏼁 − Is3
wk( 􏼁􏼐 􏼑

2
+ fs1

wk( 􏼁 − fs3
wk( 􏼁􏼐 􏼑

2
􏼚 􏼛

􏽶
􏽴

�

�������������������������������������������������������������

1
3n

􏽘

m

k�1
ts1

w1( 􏼁 − ts3
wk( 􏼁􏼐 􏼑

2
+ Is1

wk( 􏼁 − Is3
wk( 􏼁􏼐 􏼑

2
+ fs1

wk( 􏼁 − fs3
wk( 􏼁􏼐 􏼑

2
􏼚 􏼛

􏽶
􏽴

�

������������������������������������������������

1
3n

(0.67 − 0.87)
2

+(0.18 − 0.22)
2

+(0.023 − 0.13)
2

􏽨 􏽩+

(0.66 − 0.84)
2

+(0.21 − 0.12)
2

+(0.13 − 0.16)
2

􏽨 􏽩+

(0.56 − 0.61)
2

+(0.12 − 0.11)
2

+(0.19 − 0.13)
2

􏽨 􏽩+

(0.78 − 0.52)
2

+(0.34 − 0.41)
2

+(0.18 − 0.13)
2

􏽨 􏽩+

(0.49 − 0.84)
2

+(0.32 − 0.15)
2

+(0.21 − 0.09)
2

􏽨 􏽩 +

(0.71 − 0.69)
2

+(0.12 − 0.21)
2

+(0.16 − 0.19)
2

􏽨 􏽩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

􏽶
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽴

�

�����������������������������������������������
1
6

(0.05304 + 0.0414 + 0.0062 + 0.075 + 0.1658 + 0.0094 )

􏽲

� 0.2418.

(9)

7. Conclusions and Future Works

)e aim of our work is to study another method of text
summarization based on neutrosophic sets. )e benefit of
using neutrosophic sets is that they are used as a good
mathematical tool for document summarization via distance
between two neutrosophic sets.

)e expected future work for our paper is to compare
this method of document summarization with other
methods like fuzzy logic and fuzzy ontology.

Data Availability

No data were used to support this study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] F. Smarandache, “(t, i, f)-Neutrosophic Structures &
I-Neutrosophic Structures,” Neutrosophic Sets and Systems,
vol. 8, pp. 3–9, 2015.

[2] F. Smarandache, A Unifying Field in Logics, Neutrosophy:
NeutrosophicProbability, Set and Logic, American Research
Press, Champaign, IL, USA, 1999.

[3] M. E. Abd El-Monsef, A. El-Sayed, and O. G. El-Barbary,
“Combining FA words with vector space models for
Arabic text categorization,” International Information

Table 1: A single value for neutrosophic set N.

D Environmental Impact Computation Future Green Computing
S1 0.67, 0.18, 0.023{ } 0.66, 0.21, 0.13{ } 0.56, 0.12, 0.19{ } 0.78, 0.34, 0.18{ } 0.49, 0.32, 0.21{ } 0.71, 0.12, 0.16{ }

S3 0.87, 0.22, 0.13{ } 0.84, 0.12, 0.16{ } 0.61, 0.11, 0.13{ } 0.52, 0.41, 0.13{ } 0.84, 0.15, 0.09{ } 0.69, 0.21, 0.19{ }

S5 0.75, 0.18, 0.25{ } 0.73, 0.16, 0.14{ } 0.67, 0.32, 0.04{ } 0.71, 0.23, 0.14{ } 0.71, 0.13, 0.16{ } 0.74, 0.19, 0.21{ }

6 Journal of Mathematics



Institute (Tokyo) Information, vol. 16, no. 6, pp. 3517–
3528, 2013.

[4] C. Antony Crispin Sweety and I. Arockiarani, “Topological
structures of fuzzy neutrosophic rough sets,” Neutrosophic
Sets and Systems, vol. 9, pp. 50–57, 2015.

[5] A. Q. Ansari, R. Biswas, and S. Aggarwal, “Neutrosophic
classifier: an extension of fuzzy classifier,” Applied Soft
Computing, vol. 13, no. 1, pp. 563–573, 2013.

[6] S. Broumi, K. Ullah, A. Bakali et al., “Novel system and
method for telephone network planning based on neu-
trosophic graph,” Global Journal of Computer Science and
Technology, vol. 18, no. 2, pp. 1–10, 2018.

[7] S. Broumi, P. Kumar Singh, P. K. Singh et al., “Single-valued
neutrosophic techniques for analysis of WIFI connection,”
Advances in Intelligent Systems and Computing in Proceedings
of the International Conference on Advanced Intelligent Sys-
tems for Sustainable Development AI2SD’2019, vol. 915,
pp. 405–412, Tangier, Morocco, March 2019.

[8] M. Moradi and N. Ghadiri, “Different approaches for iden-
tifying important concepts in probabilistic biomedical text
summarization,” Artificial Intelligence in Medicine, vol. 84,
pp. 101–116, 2017.

[9] K. Nandhini and S. R. Balasundaram, “Improving readability
through extractive summarization for learners with reading
difficulties,” Egyptian Informatics Journal, vol. 14, no. 3,
pp. 195–204, 2013, http://texlexan.sourceforge.net/.

[10] H. Oufaida, O. Nouali, and P. Blache, “Minimum redundancy
and maximum relevance for single and multi-document
Arabic text summarization,” Journal of King Saud University-
Computer and Information Sciences, vol. 26, no. 4, pp. 450–
461, 2014.

[11] J.-P. Qiang, P. Chen, W. Ding et al., “Multi-document
summarization using closed patterns,” Knowledge-Based
Systems, vol. 99, pp. 28–38, 2016.

[12] U. Rivieccio, “Neutrosophic logics: prospects and problems,”
Fuzzy Sets and Systems, vol. 159, no. 14, pp. 1860–1868, 2008.

[13] R. Z. Al-Abdallah and A. T. Al-Taani, “Arabic single-docu-
ment text summarization using particle swarm optimization
algorithm,” Procedia Computer Science, vol. 117, pp. 30–37,
2017.

[14] R. M. Alguliev, R. M. Aliguliyev, and C. A. Mehdiyev,
“Sentence selection for generic document summarization
using an adaptive differential evolution algorithm,” Swarm
and Evolutionary Computation, vol. 1, no. 4, pp. 213–222,
2011.

[15] R. M. Aliguliyev, “A new sentence similarity measure and
sentence based extractive technique for automatic text
summarization,” Expert Systems with Applications, vol. 36,
no. 4, pp. 7764–7772, 2009.

[16] Z.-P. Tian, H.-Y. Zhang, J. Wang, J.-Q. Wang, and
X.-H. Chen, “Multi-criteria decision-making method based
on a cross-entropy with interval neutrosophic sets,” Inter-
national Journal of Systems Science, vol. 47, no. 15,
pp. 3598–3608, 2015.

[17] A. R. Pal and D. Saha, “An approach to automatic text
summarization using WordNet,” in Proceedings of the Ad-
vance Computing Conference (IACC), 2014 IEEE Interna-
tional, pp. 1169–1173, Gurgaon, India, February 2014.

[18] D. Patel and H. Chhinkaniwala, “Fuzzy logic-based single
document summarisation with improved sentence scoring
technique,” International Journal of Knowledge Engineering
and Data Mining, vol. 5, no. 1/2, pp. 125–138, 2018.

[19] B. El, “Document classification in information retrieval sys-
tem based on neutrosophic sets,” Filomat, vol. 34, no. 1,
pp. 89–97, 2020.

[20] J. M. Sanchez-Gomez, M. A. Vega-Rodŕıguez, and C. J. Pérez,
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Single-valued neutrosophic set (SVNS) is considered as generalization and extension of fuzzy set, intuitionistic fuzzy set (IFS), and
crisp set for expressing the imprecise, incomplete, and indeterminate information about real-life decision-oriented models. %e
theme of this research is to develop a solution approach to solve constrained bimatrix games with payoffs of single-valued
trapezoidal neutrosophic numbers (SVTNNs). In this approach, the concepts and suitable ranking function of SVTNNs are
defined. Hereby, the equilibrium optimal strategies and equilibrium values for both players can be determined by solving the
parameterized mathematical programming problems, which are obtained from two novel auxiliary SVTNNs programming
problems based on the proposed ranking approach of SVTNNs. Moreover, an application example is examined to verify the
effectiveness and superiority of the developed algorithm. Finally, a comparison analysis between the proposed and the existing
approaches is conducted to expose the advantages of our work.

1. Introduction

Constrained bimatrix games are nonzero-sum two-player
noncooperative games which play a dominant role in many
real-life applications such as in military, finance, economy,
strategic welfares, cartel behaviour, management models,
social problems or auctions, political voting systems, races,
and development research [1, 2]. Usually, the constrained
bimatrix game makes the assumption that the payoff values
are described with crisp elements and exactly known by each
player. However, players are not able to evaluate the games
outcomes exactly due to the unavailability and ambiguity of
information. To handle that, Zadeh [3] introduced the fuzzy
set concept and since then various researchers have extended
it to the different sets such as interval intuitionistic fuzzy set,

IFS, linguistic interval IFS, and cubic IFS. Many scholars
have studied various kinds of noncooperative games under
uncertainty. For instance, Li et al. [4] proposed a bilinear
programming algorithm for solving bimatrix games with
intuitionistic fuzzy (IF) payoffs. Figueroa et al. [5] studied
group matrix games with interval-valued fuzzy numbers
payoffs. Jana et al. [6] introduced novel similarity measure to
solve matrix games with dual hesitant fuzzy payoffs. Singh
et al. [7] established 2-tuple linguistic matrix games. Zhou
et al. [8] constructed novel matrix game with generalized
Dempster-Shafer payoffs. Seikh et al. [9] solved matrix
games with payoffs of hesitant fuzzy numbers. Han et al. [10]
described new matrix game with Maxitive Belief informa-
tion. Roy et al. [11] discussed Stackelberg game with payoffs
of type-2 fuzzy numbers. Bhaumik et al. [12] solved

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5594623, 13 pages
https://doi.org/10.1155/2021/5594623

mailto:mohamedgaber@csu.edu.cn
https://orcid.org/0000-0002-3144-2384
https://orcid.org/0000-0003-0623-6420
https://orcid.org/0000-0002-9642-8532
https://orcid.org/0000-0001-6966-345X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5594623


Prisoners’ dilemma matrix game with hesitant interval-
valued intuitionistic fuzzy-linguistic payoffs elements.
Ammar et al. [13] studied bimatrix games with rough in-
terval payoffs. Brikaa et al. [14] developed fuzzy multi-
objective programming technique to solve fuzzy rough
constrained matrix games. Bhaumik et al. [15] introduced
multiobjective linguistic-neutrosophic matrix game with
applications to tourism management. Brikaa et al. [16]
applied resolving indeterminacy technique to find optimal
solutions of multicriteria matrix games with IF goals. So far,
as the authors are aware, there are only four articles that
studied constraint bimatrix games. Jing-Jing et al. [17]
proposed linear programming method for solving con-
strained bimatrix games with IF payoffs. Koorosh et al. [18]
presented constrained bimatrix games and their application
in wireless communications. Fanyong et al. [19] applied two
approaches to solve the classical constrained bimatrix games.
Bigdeli et al. [20] discussed constrained bimatrix games with
fuzzy goals.

However, the IFS and fuzzy set theories are unable to
deal with inconsistent and indeterminate data correctly. To
consider that, Smarandache [21] introduced the theory of
neutrosophic set (NS), defining the three components of
indeterminacy, falsity, and truth; all lie in ]0− , 1+[ and are
independent. As NS is difficult to implement on realistic
applications, Wang et al. [22] developed the single-valued
neutrosophic set (SVNS) concept, which is an extension of
the NS. Due to its importance, many scholars have applied
the SVNS theory in various disciplines. For example, Garg
[23] studied the analysis of decision-making based on sine
trigonometric operational laws for SVNSs. Murugappan
[24] presented neutrosophic inventory problem with im-
mediate return for deficient items. Garg [25] proposed new
neutrality aggregation operators with multiattribute deci-
sion-making (MADM) approach for single-valued neu-
trosophic numbers (SVNNs). Abdel-Basset et al. [26]
investigated resource levelling model in construction proj-
ects with neutrosophic information. Garai et al. [27] dis-
cussed variance, standard deviation, and possibility mean of
SVNNs with applications to MADM models. Broumi et al.
[28] solved neutrosophic shortest path model by applying
Bellman technique. Garg [29] proposed TOPSIS and clus-
tering approaches to solve SVNNs decision-making model.
Mullai et al. [30] presented inventory backorder model with
neutrosophic environment. Garg et al. [31] studied MADM
based on Frank Choquet Heronian mean operator for
SVNSs. Leyva et al. [32] introduced a new problem of in-
formation technology project with neutrosophic informa-
tion. Garg [33] presented nonlinear programming approach
for solving MADM model with interval neutrosophic pa-
rameters. Sun et al. [34] developed new SVNN decision-
making algorithms based on the theory of prospect. Garg
[35] introduced biparametric distance measures on SVNSs
and their applications in medical diagnosis and pattern
recognition.

In the imprecise data game, players may encounter some
assessment data that cannot be represented as real numbers
when estimating the utility functions or uncertain subjects.
Since SVNS has great superiority and flexibility in describing

many uncertainties with complex environments, it is ef-
fective and convenient to represent the constrained bimatrix
games with neutrosophic data. Due to decision-making
growing requirements of expressing their judgments in a
human friendly and neatly manner, it is important to extend
the IF or fuzzy constrained bimatrix games into neu-
trosophic environment. %e SVNS is an effective tool to
satisfy the increasing requirement of higher uncertain and
complicated constrained bimatrix game models. Probably,
this is the first attempt of solving constrained bimatrix game
with SVTNNs payoffs.%e fundamental targets of this article
are listed as follows:

(1) To propose a novel constrained bimatrix games
model with SVTNNs payoffs

(2) To develop an effective algorithm for SVTNN con-
strained bimatrix games to obtain the optimal
strategies for such games

(3) To formulate crisp linear optimization problems
from the neutrosophic models based on the defined
ambiguity and value indexes of SVTNN

(4) To present an application example to demonstrate
the effectiveness and applicability of the proposed
method

(5) To compare our results with other existing
approaches

%e remainder of the manuscript is summarized as
follows. Section 2 introduces the concept, cut sets, and
arithmetic operations of SVTNNs. Section 3 gives the
concept of ambiguity and value indexes of SVTNNs and the
ranking technique of SVTNNs. Section 4 formulates con-
strained bimatrix games with SVTNNs payoffs and the
solution approach to solve such games. %e illustrative
example with comparative analysis is discussed in Section 5.
Lastly, a short conclusion is given in Section 6.

2. Preliminaries

In the following, we introduce the basic concepts of fuzzy
sets, IFSs, NSs, SVNSs, and SVNNs.

Definition 1 (see [36]). A fuzzy number 􏽥B � (b1, b2, b3, b4) is
said to be a trapezoidal fuzzy number (TFN), if its mem-
bership function δ􏽥B(y) is given by

δ􏽥B(y) �

y − b1

b2 − b1
, if b1 ≤y≤ b2,

1, if b2 ≤y≤ b3,

b4 − y

b4 − b3
, if b3 ≤y≤ b4,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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Definition 2 (see [37]). Suppose that Y is a universal set. An
IFS 􏽥C is defined as follows:

􏽥C � 〈y, δ􏽥C
(y), c􏽥C

(y)〉: y ∈ Y􏽮 􏽯, (2)

where c􏽥C
: Y⟶ [0, 1] and δ􏽥C

: Y⟶ [0, 1] are the non-
membership degree and the membership degree of y ∈ Y to
the set 􏽥C⊆Y, such that 0≤ δ􏽥C

(y) + c􏽥C
(y)≤ 1, ∀y ∈ Y.

Definition 3 (see [22]). An SVNS 􏽥B in a universe Y is defined
by

􏽥B � 〈y, T􏽥B(y), I􏽥B(y), F􏽥B(y)〉: y ∈ Y􏽮 􏽯, (3)

where T􏽥B(y): Y⟶ [0, 1], I􏽥B(y): Y⟶ [0, 1], and
F􏽥B(y): Y⟶ [0, 1] such that 0≤T􏽥B(y)+ I􏽥B(y), +

F􏽥B(y)≤ 3, ∀y ∈ Y. %e valuesF􏽥B(y), I􏽥B(y) andT􏽥B(y), re-
spectively, express the falsity membership, indeterminacy
membership, and truth membership degree of y to 􏽥B.

Definition 4 (see [22]). An (α, β, c)-cut set of SVNS 􏽥B, a
crisp subset of R, is given by

􏽥B(α,β,c) � y: T􏽥B(y)≥ α, I􏽥B(y)≤ β, F􏽥B(y)≤ c􏽮 􏽯, (4)

where 0≤ α≤ 1, 0≤ β≤ 1, 0≤ c≤ 1, and 0≤ α + β + c≤ 3.

Definition 5 (see [22]). An SVNS 􏽥B � 〈y, T􏽥B(y),􏽮

I􏽥B(y), F􏽥B(y)〉: y ∈ Y} is called neutrosophic normal, if
there exist at least three points y1, y2, y3 ∈ Y such that
T􏽥B(y1) � I􏽥B(y2) � F􏽥B(y3) � 1.

Definition 6 (see [22]). An SVNS 􏽥B � 〈y,􏼈 T􏽥B(y),

I􏽥B(y), F􏽥B(y)〉: y ∈ Y} is said to be neutrosophic convex, if,
∀y1, y2 ∈ Y and ξ ∈ [0, 1], the following conditions are
satisfied:

(i) T􏽥B(ξy1 + (1 − ξ)y2)≥min(T􏽥B(y1), T􏽥B(y2))

(ii) I􏽥B(ξy1 + (1 − ξ)y2)≤max(I􏽥B(y1), I􏽥B(y2))

(iii) F􏽥B(ξy1 + (1 − ξ)y2)≤max(F􏽥B(y1), F􏽥B(y2))

Definition 7 (see [22]). An SVNS 􏽥B � 〈y, T􏽥B(y),􏽮

I􏽥B(y), F􏽥B(y)〉: y ∈ Y}, is said to be single-valued neu-
trosophic number when

(1) 􏽥B is neutrosophic normal
(2) 􏽥B is neutrosophic convex
(3) T􏽥B(y) is upper semicontinuous, I􏽥B(y) is lower

semicontinuous, and F􏽥B(y) is lower semicontinuous
(4) %e support of 􏽥B, that is, S(􏽥B) � 〈T􏽥B(y)>􏽮

0, I􏽥B(y)< 1, F􏽥B(y)< 1, ∀y ∈ Y〉}, is bounded

Definition 8 (see [38]). An SVTNN 􏽥b � 〈(k, l, m, n);

u􏽥b
, v􏽥b

, w􏽥b
〉 is a special neutrosophic set on the set of real

numbers R, whose truth membership, indeterminacy
membership, and falsity membership are represented as

μ􏽥b
(y) �

(y − k)u􏽥b
l − k

, if k≤y< l,

u􏽥b
, if l≤y≤m,

(n − y)u􏽥b
n − m

, if m<y≤ n,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ􏽥b(y) �

l − y + (y − k)v􏽥b
􏼒 􏼓

l − k
, if k≤y< l,

v􏽥b
, if l≤y≤m,

y − m + (n − y)v􏽥b
􏼒 􏼓

n − m
, if m<y≤ n,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η􏽥b
(y) �

l − y + (y − k)w􏽥b
􏼒 􏼓

l − k
, if k≤y< l,

w􏽥b
, if l≤y≤m,

y − m + (n − y)w􏽥b
􏼒 􏼓

n − m
, if m<y≤ n,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

respectively.

Definition 9 (see [38]). Let 􏽥c � 〈(k1, l1, m1, n1); u􏽥c, v􏽥c, w􏽥c〉

and 􏽥d � 〈(k2, l2, m2, n2); u􏽥d
, v􏽥d

, w􏽥d
〉 be two SVTNNs and let

λ≠ 0 be any real number. %en,

(1) 􏽥c + 􏽥d � 〈(k1 + k2, l1 + l2, m1 + m2, n1 +

n2); u􏽥c∧u􏽥d
, v􏽥c∨v􏽥d

, w􏽥c∨w􏽥d
〉

(2) 􏽥c􏽥d � 〈(k1k2, l1l2, m1m2, n1n2); u􏽥c∧u􏽥d
, v􏽥c∨v􏽥d

, w􏽥c􏽮

∨w􏽥d
〉(n1 > 0, n2 > 0)〈(k1n2, l1m2, m1l2, n1k2); u􏽥c∧u􏽥d

,

v􏽥c∨v􏽥d
, w􏽥c∨w􏽥d

〉(n1 < 0, n2 > 0)〈(n1n2, m1m2, l1l2,

k1k2); u􏽥c∧u􏽥d
, v􏽥c∨v􏽥d

, w􏽥c∨w􏽥d
〉(n1 < 0, n2 < 0)

(3) λ􏽥c �
〈(λk1, λl1, λm1, λn1); u􏽥c, v􏽥c, w􏽥c〉 (λ> 0)

〈(λn1, λm1, λl1, λk1); u􏽥c, v􏽥c, w􏽥c〉 (λ< 0)
􏼨

Definition 10 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
),

((k2, l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN.
%en, 〈α, β, c〉-cut set of the SVTNN 􏽥b, represented by
􏽥b〈α,β,c〉, is given as

Journal of Mathematics 3



􏽥b〈α,β,c〉 � y: μ􏽥b
(y)≥ α, δ􏽥b(y)≤ β, η􏽥b

(y)≤ c, y ∈ R􏼚 􏼛,

(6)

which satisfies the following conditions:

0≤ α≤ u􏽥b
,

v􏽥b
≤ β≤ 1,

w􏽥b
≤ c≤ 1,

0≤ α + β + c≤ 3.

(7)

Obviously, any 〈α, β, c〉-cut set 􏽥b〈α,β,c〉 of an SVTNN 􏽥b is
a crisp subset over the set of real numbers R.

Definition 11 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
),

((k2, l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN.
%en, α-cut set of the SVTNN 􏽥b, represented by 􏽥bα, is given
as

􏽥bα � y: μ􏽥b
(y)≥ α, y ∈ R􏼚 􏼛, (8)

where α ∈ [0, u􏽥b
].

Obviously, any α-cut set 􏽥bα of an SVTNN 􏽥b is a crisp
subset over the set of real numbers R.

Here, any α-cut set of an SVTNN 􏽥b for the truth
membership function is a closed interval, represented by
􏽥bα � [Lα(􏽥b), Rα(􏽥b)].

Definition 12 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1),

u􏽥b
), ((k2, l2, m2, n2), v􏽥b

), ((k3, l3, m3, n3), w􏽥b
)〉 be an SVTNN.

%en, β-cut set of the SVTNN 􏽥b, represented by 􏽥bβ, is given
as

􏽥bβ � y: δ􏽥b(y)≤ β, y ∈ R􏼚 􏼛, (9)

where β ∈ [v􏽥b
, 1].

Obviously, any β-cut set 􏽥bβ of an SVTNN 􏽥b is a crisp
subset over the set of real numbers R.

Here, any β-cut set of an SVTNN 􏽥b for the indeterminacy
membership function is a closed interval, represented by
􏽥bβ � [Lβ(􏽥b), Rβ(􏽥b)].

Definition 13 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1),

u􏽥b
), ((k2, l2, m2, n2), v􏽥b

), ((k3, l3, m3, n3), w􏽥b
)〉 be an SVTNN.

%en, c-cut set of the SVTNN 􏽥b, represented by 􏽥bc, is given
as

􏽥bc � y: η􏽥b
(y)≤ c, y ∈ R􏼚 􏼛, (10)

where c ∈ [w􏽥b
, 1].

Obviously, any c-cut set 􏽥bc of an SVTNN 􏽥b is a crisp
subset over the set of real numbers R.

Here, any c-cut set of an SVTNN 􏽥b for the falsity
membership function is a closed interval, represented by
􏽥bc � [Lc(􏽥b), Rc(􏽥b)].

3. Characteristics and the Ranking
Approach for SVTNNs

3.1.ValueandAmbiguityof SVTNNs. Here, we introduce the
basic definitions of value and ambiguity indices of SVTNN.

Definition 14 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
),

((k2, l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN and
let 􏽥bα � [Lα(􏽥b), Rα(􏽥b)], 􏽥bβ � [Lβ(􏽥b), Rβ(􏽥b)], and 􏽥bc �

[Lc(􏽥b), Rc(􏽥b)] be any α-cut set, β-cut set, and c-cut set of the
SVTNN 􏽥b, respectively. %en, we have the following.

(1) %e value of the SVTNN 􏽥b for α-cut set, represented
by Vμ(􏽥b), is given as

Vμ(􏽥b) � 􏽚
u􏽥b

0
L
α
(􏽥b) + R

α
(􏽥b)􏼐 􏼑h(α)dα, (11)

where h(α) ∈ [0, 1] (α ∈ [0, u􏽥b
]), h(0) � 0, and

h(α)is nondecreasing and monotonic of α ∈ [0, u􏽥b
].

(2) %e value of the SVTNN 􏽥b for β-cut set, represented
by Vδ(

􏽥b), is given as

Vδ(
􏽥b) � 􏽚

1

v􏽥b

L
β
(􏽥b) + R

β
(􏽥b)􏼐 􏼑f(β)dβ, (12)

where f(β) ∈ [0, 1] (β ∈ [v􏽥b
, 1]), f(1) � 0, andf(β)

is nondecreasing and monotonic of β ∈ [v􏽥b
, 1].

(3) %e value of the SVTNN 􏽥b for c-cut set, represented
by Vη(􏽥b), is given as

Vη(􏽥b) � 􏽚
1

w􏽥b

L
c
(􏽥b) + R

c
(􏽥b)􏼐 􏼑g(c)dc, (13)

where g(c) ∈ [0, 1] (c ∈ [w􏽥b
, 1]), g(1) � 0, and

g(c) is nondecreasing and monotonic of c ∈ [w􏽥b
, 1].

Definition 15 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
), ((k2,

l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN and let
􏽥bα � [Lα(􏽥b), Rα(􏽥b)], 􏽥bβ � [Lβ(􏽥b), Rβ(􏽥b)], and 􏽥bc � [Lc(􏽥b),

Rc(􏽥b)] be any α-cut set, β-cut set, and c-cut set of the SVNN
􏽥b, respectively. %en, we have the following.

(1) %e ambiguities of the SVTNN 􏽥b for α-cut set,
represented by Aμ(􏽥b), are given as

Aμ(􏽥b) � 􏽚
u􏽥b

0
R
α
(􏽥b) − L

α
(􏽥b)􏼐 􏼑h(α)dα, (14)

where h(α) ∈ [0, 1] (α ∈ [0, u􏽥b
]), h(0) � 0, and

h(α)is nondecreasing and monotonic of α ∈ [0, u􏽥b
].

(2) %e ambiguities of the SVTNN 􏽥b for β-cut set,
represented by Aδ(

􏽥b), are given as

Aδ(
􏽥b) � 􏽚

1

v􏽥b

R
β
(􏽥b) − L

β
(􏽥b)􏼐 􏼑f(β)dβ, (15)

where f(β) ∈ [0, 1] (β ∈ [v􏽥b
, 1]), f(1) � 0, andf(β)

is nondecreasing and monotonic of β ∈ [v􏽥b
, 1].
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(3) %e ambiguities of the SVTNN 􏽥b for c-cut set,
represented by Aη(􏽥b), are given as

Aη(􏽥b) � 􏽚
1

w􏽥b

R
c
(􏽥b) − L

c
(􏽥b)􏼐 􏼑h(c)dc, (16)

where g(c) ∈ [0, 1] (c ∈ [w􏽥b
, 1]), g(1) � 0a, and

g(c) is nondecreasing and monotonic of c ∈ [w􏽥b
, 1].

Here, the weighting functions h(α), f(β), and g(c) can
be supposed according to the decision-making model na-
ture. Suppose that h(α) � α, f(β) � 1 − β, and g(c) � 1 − c.

Let 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 be an SVTNN. %en the

value and ambiguity indices, using the above descriptions,
are constructed as

Vμ(􏽥b) �
(k + 2l + 2m + n)u

2
􏽥b

6
, Aμ(􏽥b) �

(n − k + 2m − 2l)u
2
􏽥b

6
,

Vδ(
􏽥b) �

(k + 2l + 2m + n) 1 − v􏽥b
􏼒 􏼓

2

6
, Aδ(

􏽥b) �
(n − k + 2m − 2l) 1 − v􏽥b

􏼒 􏼓
2

6
,

Vη(􏽥b) �
(k + 2l + 2m + n) 1 − w􏽥b

􏼒 􏼓
2

6
, Aη(􏽥b) �

(n − k + 2m − 2l) 1 − w􏽥b
􏼒 􏼓

2

6
.

(17)

3.2. A Ranking Approach of an SVTNN Based on Value and
Ambiguity Indices. %is section provides a ranking approach
of SVTNNs based on the ambiguity and value indices of
SVTNNs in a similar way to those of SVNNs introduced by
A. Bhaumik et al. [39].

Definition 16. Let 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 be an SVTNN.

%e weighted value ambiguity index for an SVTNN 􏽥b is
given as

Rλ1 ,λ2 ,λ3(
􏽥b) � λ1Vμ(􏽥b) + 1 − λ1( 􏼁Aμ(􏽥b)􏽨 􏽩 + λ2Vδ(

􏽥b) + 1 − λ2( 􏼁Aδ(
􏽥b)􏽨 􏽩 + λ3Vη(􏽥b) + 1 − λ3( 􏼁Aη(􏽥b)􏽨 􏽩, (18)

with λ1, λ2, λ3 ∈ [0, 1].

Definition 17. Let 􏽥c and 􏽥d be two SVTNNs and let
λ1, λ2, λ3 ∈ [0, 1]. For the weighted value ambiguity index of
the SVTNNs 􏽥c and 􏽥d, the ranking order of 􏽥c and 􏽥d is given as
follows:

(1) if Rλ1 ,λ2 ,λ3(􏽥c)>NRλ1 ,λ2 ,λ3(
􏽥d), then 􏽥c>N

􏽥d

(2) if Rλ1 ,λ2 ,λ3(􏽥c)<NRλ1 ,λ2 ,λ3(
􏽥d), then 􏽥c<N

􏽥d

(3) if Rλ1 ,λ2 ,λ3(􏽥c)�NRλ1 ,λ2 ,λ3(
􏽥d), then 􏽥c�N

􏽥d

where “>N” and “<N” are neutrosophic versions of the
order relations “> ” and “< ” in the real line, respectively.

4. Constrained Bimatrix Games with SVTNNs
Payoffs and Solution Method

Let us consider the constrained bimatrix game with
SVTNNs payoffs. Suppose that T1 � ξ1, ξ2, . . . , ξκ􏼈 􏼉 and
T2 � η1, η2, . . . , ηℓ􏼈 􏼉 are pure strategies sets for two
players I and II, respectively. When player II selects pure
strategy ηj ∈ T2 and player I selects pure strategy ξi ∈ T1,
at the situation (ξi, ηj), player II gains payoff and player I

gains payoff, which are expressed with SVTNNs as 􏽥C �

(􏽥cij)κ×ℓ and 􏽥D � (􏽥dij)κ×ℓ, where each 􏽥cij � 〈(aij, bij, fij, hij);

u􏽥cij
, v􏽥cij

, w􏽥cij
〉 and 􏽥dij � 〈(kij, lij, mij, nij); u􏽥dij

,

v􏽥dij

, w􏽥dij

〉(i � 1, 2, . . . , κ; j � 1, 2, . . . , ℓ) are SVTNNs de-
fined as above. %e mixed strategies vectors are repre-
sented as r � (r1, r2, . . . , rκ)

T and s � (s1, s2, . . . , sℓ)
T,

where ri (i � 1, 2, . . . , κ) and sj(j � 1, 2, . . . , ℓ) are prob-
abilities for both players selecting their pure strategies
ξi ∈ T1 and ηj ∈ T2, respectively. %e mixed strategies ri

and sj are affiliated with the strategies sets (convex
polyhedron) which are described by some inequalities
and equations. Let R � r: GTr≥ p, r≥ 0􏼈 􏼉 represent the
strategy constraint set of player I, where
p � (p1, p2, . . . , pe)

T, G � (gin)κ×e, and e is a positive in-
teger. Let S � s: Hs≥ q, s≥ 0􏼈 􏼉 express the strategy con-
straint set of player II, where q � (q1, q2, . . . , qb) ,
H � (hmj)b×ℓ, and b is a positive integer. Note that GTr≥p
contains 􏽐

κ
i�1 ri � 1, since 􏽐

κ
i�1 ri � 1 is equivalent to

􏽐
κ
i�1 ri ≥ 1 and − 􏽐

κ
i�1 ri ≥ − 1. Similarly, Hs≥ q contains

􏽐
ℓ
j�1 sj � 1. In the sequel, the above SVTNN constrained

bimatrix game is simply denoted by (􏽥C, 􏽥D) for short.
Without loss of generality, suppose that both players I

and II, respectively, select mixed strategies r ∈ R and s ∈ S in
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order to maximize their own payoffs; then their expected
payoffs can be obtained as follows:

E1(r, s, 􏽥C) � rT 􏽥Cs � 􏽘
κ

i�1
􏽘

ℓ

j�1
ri􏽥cijsj,

E2(r, s, 􏽥D) � rT 􏽥Ds � 􏽘
κ

i�1
􏽘

ℓ

j�1
ri

􏽥dijsj.

(19)

Definition 18 (see [40]). If (r∗, s∗) ∈ R × S satisfies the
following conditions:

r∗T 􏽥Cs∗ � min
s∈S

r∗T 􏽥Cs � max
r∈R

min
s∈S

rT 􏽥Cs,

r∗T 􏽥Ds∗ � min
r∈R

rT 􏽥Ds∗ � max
s∈S

min
r∈R

rT 􏽥Ds,
(20)

for any mixed strategies r ∈ R and s ∈ S, then r∗ and s∗ are
called equilibrium strategies, and U∗ � r∗T 􏽥Cs∗ and W∗ �

r∗T 􏽥Ds∗ are called equilibrium values of players I and II,
respectively.

Theorem 1. If (r∗, y∗) and (s∗, z∗) are the optimal solutions
of the following linear programming problems:

max qTy􏽮 􏽯

s.t.

HTy ≤N
􏽥CTr,

GTr≥p,

r≥ 0,

y ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

max pTz􏽮 􏽯,

s.t.

Gz≤N
􏽥Ds,

Hs≥ q,

s≥ 0,

z≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

respectively, then r∗ and s∗ are equilibrium strategies of the
SVTNN constrained bimatrix game (􏽥C, 􏽥D), and U∗ � qTy∗ �

r∗T 􏽥Cs∗ and W∗ � pTz∗ � r∗T 􏽥Ds∗ are equilibrium values of
players I and II, respectively.

Proof:. %e proof of this theorem is similar to the proof
given by Jing-Jing et al. [17].

It is obvious that the two players often cannot calculate
the payoffs accurately in each situation, and the game values
of the SVTNN constrained bimatrix games are not equal to
qTy in (21) and pTz in (22). %e two players may allow some
violations on the set of constraints HTy ≤N

􏽥CTr and
Gz≤N

􏽥Ds.
%erefore, the equilibrium strategies r∗ and s∗ and

equilibrium values U∗ and W∗ of the SVTNN constrained
bimatrix games are equal to the optimal values and optimal
solutions of (23 and 24) as follows:

max qTy􏽮 􏽯,

s.t.

HTy − 􏽥CTr≤N(1 − ρ) 􏽥m,

GTr≥ p,

r≥ 0,

y ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

max pTz􏽮 􏽯,

s.t.

Gz − 􏽥Ds≤N(1 − ρ)􏽥n,

Hs≥ q,

s≥ 0,

z≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

respectively, where 􏽥m � ( 􏽥m1, 􏽥m2, . . . , 􏽥mℓ)
T, 􏽥n � (􏽥n1, 􏽥n2, . . . ,

􏽥nk)T, and all the vectors elements of 􏽥m and 􏽥n are SVTNNs
that are approximately equal to zero, which represent the
maximum violations that the two players may permit on the
set of constraints. %e parameter ρ (0≤ ρ≤ 1) is a real
number.

Applying the ranking approach of SVTNNs, as proposed
in Subsection 3.2, the SVTNN mathematical programming
problems (equations (23) and (24)) can be transformed into
the following parameterized programming problems:

max qTy􏽮 􏽯,

s.t.

HTy − Rλ1 ,λ2 ,λ3
􏽥CT

􏼒 􏼓r≤N(1 − ρ)Rλ1 ,λ2,λ3( 􏽥m),

GTr≥p,

r≥ 0,

y ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

max pTz􏽮 􏽯,

s.t.

Gz − Rλ1 ,λ2,λ3(
􏽥D)s≤N(1 − ρ)Rλ1 ,λ2 ,λ3(􏽥n),

Hs≥ q,

s≥ 0,

z≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

respectively.
For given λ1, λ2, λ3 ∈ [0, 1], solving equations (25) and

(26), we can obtain the optimal game values qTy∗(ρ) and
pTz∗(ρ) and the optimal solutions (r∗(ρ), y∗(ρ)) and
(s∗(ρ), z∗(ρ)), respectively. □

Theorem 2. If (r∗(ρ), y∗(ρ)) and
(s∗(ρ), z∗(ρ))(λ1, λ2, λ3 ∈ [0, 1]) are optimal solutions of
equations (25) and (26), respectively, then r∗(ρ) and s∗(ρ)

are equilibrium strategies, and U∗ � qTy∗(ρ) and
W∗ � pTz∗(ρ) are equilibrium values of both players for
SVTNN constrained bimatrix games, respectively.

6 Journal of Mathematics



5. Application Example

In this section, an example of the company development
strategy choice model adapted from Jing-Jing et al. [17] is
used to illustrate the solution procedure of a constrained
bimatrix game with payoffs of SVTNNs.

5.1. Ee Company Development Strategy Choice Model.
“We consider two companies E1 and E2 (i.e., players I and
II). In order to improve the two companies competitiveness,
both players have two strategies: introducing the advanced
equipment ξ1 or η1 and introducing the senior talent ξ2 or
η2. When player I chooses pure strategies ξ1 and ξ2, he wants
to invest 7 million and 5 million dollars, respectively. Due to
a lack of fund, player I can invest up to 6.5 million dollars,
which means that player I has a constraint, 7r1 + 5r2 ≤ 6.5,
when selecting strategy. Likewise, player II wants to invest 4
million and 6.5 million dollars when he chooses pure
strategies η1 and η2, respectively. However, due to a lack of
fund, player II can invest up to 5.5 million dollars. Namely,
player II has a constraint, 4s1 + 6.5s2 ≤ 5.5, when choosing
strategies.” %is is a typical SVTN constrained bimatrix
game. According to the previous description of the matrix
game model, the two players’ constrained strategy sets are
given as follows:

R � r|7r1 + 5r2 ≤ 6.5, r1 + r2 � 1, r1 ≥ 0, r2 ≥ 0􏼈 􏼉,

S � s|4s1 + 6.5s2 ≤ 5.5, s1 + s2 � 1, s1 ≥ 0, s2 ≥ 0􏼈 􏼉,
(27)

respectively. %e SVTNNs payoff matrices of the two players
are given by

Table 1: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.2, 0.3, 0.5).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 4.868 (0.4, 0.6) 4.855
0.1 (0.75, 0.25) 4.854 (0.4, 0.6) 4.849
0.2 (0.75, 0.25) 4.839 (0.4, 0.6) 4.844
0.3 (0.75, 0.25) 4.825 (0.4, 0.6) 4.838
0.4 (0.75, 0.25) 4.811 (0.4, 0.6) 4.832
0.5 (0.75, 0.25) 4.797 (0.4, 0.6) 4.827
0.6 (0.75, 0.25) 4.782 (0.4, 0.6) 4.821
0.7 (0.75, 0.25) 4.768 (0.4, 0.6) 4.815
0.8 (0.75, 0.25) 4.754 (0.4, 0.6) 4.809
0.9 (0.75, 0.25) 4.739 (0.4, 0.6) 4.804
1.0 (0.75, 0.25) 4.725 (0.4, 0.6) 4.798

Table 2: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.4, 0.5, 0.6).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.223 (0.4, 0.6) 6.666
0.1 (0.75, 0.25) 6.204 (0.4, 0.6) 6.658
0.2 (0.75, 0.25) 6.186 (0.4, 0.6) 6.649
0.3 (0.75, 0.25) 6.168 (0.4, 0.6) 6.642
0.4 (0.75, 0.25) 6.149 (0.4, 0.6) 6.634
0.5 (0.75, 0.25) 6.132 (0.4, 0.6) 6.626
0.6 (0.75, 0.25) 6.113 (0.4, 0.6) 6.617
0.7 (0.75, 0.25) 6.095 (0.4, 0.6) 6.609
0.8 (0.75, 0.25) 6.076 (0.4, 0.6) 6.601
0.9 (0.75, 0.25) 6.059 (0.4, 0.6) 6.593
1.0 (0.75, 0.25) 6.04 (0.4, 0.6) 6.585

Table 3: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.5, 0.5, 0.5).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.232 (0.4, 0.6) 6.801
0.1 (0.75, 0.25) 6.214 (0.4, 0.6) 6.792
0.2 (0.75, 0.25) 6.196 (0.4, 0.6) 6.784
0.3 (0.75, 0.25) 6.178 (0.4, 0.6) 6.776
0.4 (0.75, 0.25) 6.16 (0.4, 0.6) 6.767
0.5 (0.75, 0.25) 6.143 (0.4, 0.6) 6.759
0.6 (0.75, 0.25) 6.125 (0.4, 0.6) 6.751
0.7 (0.75, 0.25) 6.107 (0.4, 0.6) 6.743
0.8 (0.75, 0.25) 6089 (0.4, 0.6) 6.735
0.9 (0.75, 0.25) 6.071 (0.4, 0.6) 6.726
1.0 (0.75, 0.25) 6.054 (0.4, 0.6) 6.718

Table 4: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.6, 0.4, 0.7).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.785 (0.4, 0.6) 7.309
0.1 (0.75, 0.25) 6.765 (0.4, 0.6) 7.301
0.2 (0.75, 0.25) 6.746 (0.4, 0.6) 7.292
0.3 (0.75, 0.25) 6.726 (0.4, 0.6) 7.283
0.4 (0.75, 0.25) 6.706 (0.4, 0.6) 7.274
0.5 (0.75, 0.25) 6.687 (0.4, 0.6) 7.265
0.6 (0.75, 0.25) 6.667 (0.4, 0.6) 7.256
0.7 (0.75, 0.25) 6.647 (0.4, 0.6) 7.247
0.8 (0.75, 0.25) 6.628 (0.4, 0.6) 7.238
0.9 (0.75, 0.25) 6.608 (0.4, 0.6) 7.229
1.0 (0.75, 0.25) 6.588 (0.4, 0.6) 7.219

Table 5: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.7, 0.6, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 7.861 (0.4, 0.6) 8.732
0.1 (0.75, 0.25) 7.838 (0.4, 0.6) 8.721
0.2 (0.75, 0.25) 7.815 (0.4, 0.6) 8.709
0.3 (0.75, 0.25) 7.792 (0.4, 0.6) 8.699
0.4 (0.75, 0.25) 7.769 (0.4, 0.6) 8.688
0.5 (0.75, 0.25) 7.746 (0.4, 0.6) 8.677
0.6 (0.75, 0.25) 7.723 (0.4, 0.6) 8.666
0.7 (0.75, 0.25) 7.7 (0.4, 0.6) 8.655
0.8 (0.75, 0.25) 7.678 (0.4, 0.6) 8.644
0.9 (0.75, 0.25) 7.655 (0.4, 0.6) 8.633
1.0 (0.75, 0.25) 7.632 (0.4, 0.6) 8.622
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􏽥C �
〈(6, 7, 9, 1); 0.9, 0.2, 0.4〉 〈(3.5, 5, 7, 9); 0.5, 0.4, 0.2〉

〈(3, 5, 6, 8); 0.6, 0.5, 0.1〉 〈(5, 6.5, 8, 10); 0.7, 0.3, 0.5〉
􏼠 􏼡,

􏽥D �
〈(5, 6.5, 8, 9); 0.8, 0.2, 0.3〉 〈(4, 5, 7, 8.5); 0.8, 0.3, 0.1〉

〈(3.5, 4.5, 6, 7.5); 0.6, 0.4, 0.2〉 〈(6, 7, 8, 9); 0.9, 0.1, 0.4〉
􏼠 􏼡.

(28)

%e vectors of the constraints and the coefficient ma-
trices are given by

G �
− 7 1 − 1

− 5 1 − 1
􏼠 􏼡,

HT
�

− 4 1 − 1

− 6.5 1 − 1
􏼠 􏼡,

p � − 6.5 1 − 1( 􏼁
T
,

q � − 5.5 1 − 1( 􏼁
T
.

(29)

Let the two players select 􏽥m1 � 􏽥m2 � 〈(0.18, 0.1, 0.21,

0.13); 0.7, 0.2, 0.1〉 and 􏽥n1 � 􏽥n2 � 〈(0.04, 0.1, 0.13, 0.02);

0.8, 0.2, 0.3〉, respectively.

5.2.Ee Solution Procedure. Applying the ranking approach
presented in Section 3 to the SVTN constrained bimatrix
game, we have

Rλ1 ,λ2 ,λ3(
􏽥C) �

5.4λ1 + 4.267λ2 + 2.4λ3 + 2.715 1.125λ1 + 1.62λ2 + 2.88λ3 + 1.979

1.56λ1 + 1.083λ2 + 3.51λ3 + 1.657 2.94λ1 + 2.94λ2 + 1.5λ3 + 1.64
􏼠 􏼡,

Rλ1 ,λ2 ,λ3(
􏽥D) �

3.84λ1 + 3.84λ2 + 2.94λ3 + 2.065 2.987λ1 + 2.287λ2 + 3.78λ3 + 2.748

1.5λ1 + 1.5λ2 + 2.667λ3 + 1.587 5.4λ1 + 5.4λ2 + 2.4λ3 + 1.65
􏼠 􏼡.

(30)

According to equations (25) and (26), we can formulate
the optimization problems with four parameters
λ1, λ2, λ3 ∈ [0, 1], and ρ ∈ [0, 1] as follows:

maximize − 5.5y1 + y2 − y3􏼈 􏼉,

subject to

− 4y1 + y2 − y3 − 5.4λ1 + 4.267λ2 + 2.4λ3 + 2.715( 􏼁r1 − 1.56λ1 + 1.083λ2 + 3.51λ3 + 1.657( 􏼁r2

≤ 0.062λ1 + 0.081λ2 + 0.103λ3 + 0.055( 􏼁(1 − ρ),

− 6.5y1 + y2 − y3 − 1.125λ1 + 1.62λ2 + 2.88λ3 + 1.979( 􏼁r1 − 2.94λ1 + 2.94λ2 + 1.5λ3 + 1.64( 􏼁r2

≤ 0.062λ1 + 0.081λ2 + 0.103λ3 + 0.055( 􏼁(1 − ρ),

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0,

(31)

maximize − 6.5z1 + z2 − z3􏼈 􏼉,

subject to

− 7z1 + z2 − z3 − 3.84λ1 + 3.84λ2 + 2.94λ3 + 2.065( 􏼁s1 − 2.987λ1 + 2.287λ2 + 3.78λ3 + 2.748( 􏼁s2

≤ 0.051λ1 + 0.051λ2 + 0.039λ3 + 0.012( 􏼁(1 − ρ),

− 5z1 + z2 − z3 − 1.5λ1 + 1.5λ2 + 2.667λ3 + 1.587( 􏼁s1 − 5.4λ1 + 5.4λ2 + 2.4λ3 + 1.65( 􏼁s2

≤ 0.051λ1 + 0.051λ2 + 0.039λ3 + 0.012( 􏼁(1 − ρ),

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

(32)
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For different values λ1, λ2, λ3, and ρ, the equilibrium
strategies and the equilibrium values of both players can be
obtained by solving equations (31) and (32), as depicted in
Tables 1–12.

It can be easily seen from Table 1 that when
λ1 � 0.2, λ2 � 0.3, λ3 � 0.5, and ρ � 0, the equilibrium
value and the equilibrium strategy for player I are U∗ �

qTy∗ � 4.868 and r∗ � (0.75, 0.25)T, respectively; and the
equilibrium value and the equilibrium strategy for player
II are W∗ � pTz∗ � 4.855 and s∗ � (0.4, 0.6)T, respec-
tively. %e results indicate that different optimal solu-
tions can be obtained for different values of λ1, λ2, λ3, and
ρ. %us, it is essential to take all the parameters into
consideration.

Table 6: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.7, 0.7, 0.7).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 7.856 (0.4, 0.6) 8.866
0.1 (0.75, 0.25) 7.833 (0.4, 0.6) 8.855
0.2 (0.75, 0.25) 7.81 (0.4, 0.6) 8.844
0.3 (0.75, 0.25) 7.787 (0.4, 0.6) 8.833
0.4 (0.75, 0.25) 7.765 (0.4, 0.6) 8.822
0.5 (0.75, 0.25) 7.742 (0.4, 0.6) 8.811
0.6 (0.75, 0.25) 7.719 (0.4, 0.6) 8.799
0.7 (0.75, 0.25) 7.696 (0.4, 0.6) 8.789
0.8 (0.75, 0.25) 7.674 (0.4, 0.6) 8.778
0.9 (0.75, 0.25) 7.651 (0.4, 0.6) 8.767
1.0 (0.75, 0.25) 7.628 (0.4, 0.6) 8.756

Table 7: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.8, 0.7, 0.9).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 8.673 (0.4, 0.6) 9.765
0.1 (0.75, 0.25) 8.648 (0.4, 0.6) 9.752
0.2 (0.75, 0.25) 8.622 (0.4, 0.6) 9.739
0.3 (0.75, 0.25) 8.597 (0.4, 0.6) 9.727
0.4 (0.75, 0.25) 8.571 (0.4, 0.6) 9.715
0.5 (0.75, 0.25) 8.546 (0.4, 0.6) 9.703
0.6 (0.75, 0.25) 8.521 (0.4, 0.6) 9.690
0.7 (0.75, 0.25) 8.495 (0.4, 0.6) 9.678
0.8 (0.75, 0.25) 8.469 (0.4, 0.6) 9.665
0.9 (0.75, 0.25) 8.444 (0.4, 0.6) 9.653
1.0 (0.75, 0.25) 8.419 (0.4, 0.6) 9.641

Table 8: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.8, 0.8, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 8.667 (0.4, 0.6) 9.899
0.1 (0.75, 0.25) 8.642 (0.4, 0.6) 9.887
0.2 (0.75, 0.25) 8.617 (0.4, 0.6) 9.874
0.3 (0.75, 0.25) 8.591 (0.4, 0.6) 9.862
0.4 (0.75, 0.25) 8.567 (0.4, 0.6) 9.849
0.5 (0.75, 0.25) 8.542 (0.4, 0.6) 9.837
0.6 (0.75, 0.25) 8.516 (0.4, 0.6) 9.824
0.7 (0.75, 0.25) 8.491 (0.4, 0.6) 9.812
0.8 (0.75, 0.25) 8.466 (0.4, 0.6) 9.799
0.9 (0.75, 0.25) 8.441 (0.4, 0.6) 9.787
1.0 (0.75, 0.25) 8.416 (0.4, 0.6) 9.774

Table 9: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.9, 0.8, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 8.946 (0.4, 0.6) 10.288
0.1 (0.75, 0.25) 8.92 (0.4, 0.6) 10.275
0.2 (0.75, 0.25) 8.894 (0.4, 0.6) 10.262
0.3 (0.75, 0.25) 8.869 (0.4, 0.6) 10.249
0.4 (0.75, 0.25) 8.843 (0.4, 0.6) 10.236
0.5 (0.75, 0.25) 8.817 (0.4, 0.6) 10.223
0.6 (0.75, 0.25) 8.791 (0.4, 0.6) 10.21
0.7 (0.75, 0.25) 8.765 (0.4, 0.6) 10.197
0.8 (0.75, 0.25) 8.739 (0.4, 0.6) 10.184
0.9 (0.75, 0.25) 8.714 (0.4, 0.6) 10.171
1.0 (0.75, 0.25) 8.688 (0.4, 0.6) 10.158

Table 10: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.9, 0.9, 0.9).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 9.479 (0.4, 0.6) 10.932
0.1 (0.75, 0.25) 9.452 (0.4, 0.6) 10.918
0.2 (0.75, 0.25) 9.424 (0.4, 0.6) 10.904
0.3 (0.75, 0.25) 9.397 (0.4, 0.6) 10.89
0.4 (0.75, 0.25) 9.369 (0.4, 0.6) 10.876
0.5 (0.75, 0.25) 9.341 (0.4, 0.6) 10.862
0.6 (0.75, 0.25) 9.314 (0.4, 0.6) 10.848
0.7 (0.75, 0.25) 9.286 (0.4, 0.6) 10.835
0.8 (0.75, 0.25) 9.258 (0.4, 0.6) 10.821
0.9 (0.75, 0.25) 9.231 (0.4, 0.6) 10.807
1.0 (0.75, 0.25) 9.203 (0.4, 0.6) 10.793

Table 11: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (1.0, 0.9, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 9.488 (0.4, 0.6) 11.066
0.1 (0.75, 0.25) 9.461 (0.4, 0.6) 11.052
0.2 (0.75, 0.25) 9.434 (0.4, 0.6) 11.038
0.3 (0.75, 0.25) 9.407 (0.4, 0.6) 11.024
0.4 (0.75, 0.25) 9.379 (0.4, 0.6) 11.01
0.5 (0.75, 0.25) 9.352 (0.4, 0.6) 10.996
0.6 (0.75, 0.25) 9.325 (0.4, 0.6) 10.982
0.7 (0.75, 0.25) 9.298 (0.4, 0.6) 10.968
0.8 (0.75, 0.25) 9.27 (0.4, 0.6) 10.954
0.9 (0.75, 0.25) 9.243 (0.4, 0.6) 10.94
1.0 (0.75, 0.25) 9.216 (0.4, 0.6) 10.926

Journal of Mathematics 9



5.3. Comparison Analysis. In this subsection, the proposed
ranking approach is compared with three other approaches
that were introduced by Khalifa [41], Ye [42], and Garai et al.
[43].

We compare our results with those of Khalifa [41], where
a score function is described by

S(􏽥b) �
1
16

(k + l + m + n) u􏽥b
+ 1 − v􏽥b

􏼒 􏼓 + 1 − w􏽥b
􏼒 􏼓􏼒 􏼓.

(33)

Here, 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 expresses an SVTNN.

Based on this score function, we obtain a set of linear op-
timization models as follows:

max − 5.5y1 + y2 − y3􏼈 􏼉,

s.t.

− 4y1 + y2 − y3 − 4.744r1 − 2.75r2 ≤ 0,

− 6.5y1 + y2 − y3 − 2.909r1 − 3.503r2 ≤ 0,

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max − 6.5z1 + z2 − z3􏼈 􏼉,

s.t.

− 7z1 + z2 − z3 − 4.097s1 − 3.675s2 ≤ 0,

− 5z1 + z2 − z3 − 2.688s1 − 4.5s2 ≤ 0,

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Using the Simplex technique, we can obtain that the
equilibrium value and the equilibrium strategy for player I
are U∗ � qTy∗ � 3.533 and r∗ � (0.75, 0.25)T, respectively;
and the equilibrium value and the equilibrium strategy for
player II are W∗ � pTz∗ � 3.775 and s∗ � (0.4, 0.6), re-
spectively, although this approach provides the same opti-
mal solutions as our results.

We compare our results with those of Jun Ye [42], where
the score function is given by

S(􏽥b) �
1
12

(k + l + m + n) 2 + u􏽥b
− v􏽥b

− w􏽥b
􏼒 􏼓. (35)

Here, 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 expresses an SVTNN.

Based on this score function, we obtain the following
mathematical programming models:

Table 12: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (1.0, 1.0, 1.0).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 10.291 (0.4, 0.6) 11.965
0.1 (0.75, 0.25) 10.261 (0.4, 0.6) 11.949
0.2 (0.75, 0.25) 10.231 (0.4, 0.6) 11.934
0.3 (0.75, 0.25) 10.201 (0.4, 0.6) 11.919
0.4 (0.75, 0.25) 10.171 (0.4, 0.6) 11.903
0.5 (0.75, 0.25) 10.141 (0.4, 0.6) 11.888
0.6 (0.75, 0.25) 10.111 (0.4, 0.6) 11.873
0.7 (0.75, 0.25) 10.081 (0.4, 0.6) 11.858
0.8 (0.75, 0.25) 10.051 (0.4, 0.6) 11.842
0.9 (0.75, 0.25) 10.021 (0.4, 0.6) 11.827
1.0 (0.75, 0.25) 9.99 (0.4, 0.6) 11.812

Table 13: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.809 (0.4, 0.6) 7.496
0.1 (0.75, 0.25) 6.787 (0.4, 0.6) 7.486
0.2 (0.75, 0.25) 6.764 (0.4, 0.6) 7.476
0.3 (0.75, 0.25) 6.742 (0.4, 0.6) 7.467
0.4 (0.75, 0.25) 6.719 (0.4, 0.6) 7.457
0.5 (0.75, 0.25) 6.697 (0.4, 0.6) 7.447
0.6 (0.75, 0.25) 6.674 (0.4, 0.6) 7.438
0.7 (0.75, 0.25) 6.652 (0.4, 0.6) 7.427
0.8 (0.75, 0.25) 6.629 (0.4, 0.6) 7.418
0.9 (0.75, 0.25) 6.607 (0.4, 0.6) 7.408
1.0 (0.75, 0.25) 6.585 (0.4, 0.6) 7.398

Table 15: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.4.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 5.478 (0.4, 0.6) 6.285
0.1 (0.75, 0.25) 5.462 (0.4, 0.6) 6.277
0.2 (0.75, 0.25) 5.445 (0.4, 0.6) 6.269
0.3 (0.75, 0.25) 5.429 (0.4, 0.6) 6.261
0.4 (0.75, 0.25) 5.412 (0.4, 0.6) 6.253
0.5 (0.75, 0.25) 5.396 (0.4, 0.6) 6.245
0.6 (0.75, 0.25) 5.379 (0.4, 0.6) 6.237
0.7 (0.75, 0.25) 5.363 (0.4, 0.6) 6.228
0.8 (0.75, 0.25) 5.346 (0.4, 0.6) 6.220
0.9 (0.75, 0.25) 5.329 (0.4, 0.6) 6.212
1.0 (0.75, 0.25) 5.313 (0.4, 0.6) 6.204

Table 14: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.2.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.144 (0.4, 0.6) 6.891
0.1 (0.75, 0.25) 6.124 (0.4, 0.6) 6.882
0.2 (0.75, 0.25) 6.105 (0.4, 0.6) 6.873
0.3 (0.75, 0.25) 6.085 (0.4, 0.6) 6.864
0.4 (0.75, 0.25) 6.066 (0.4, 0.6) 6.854
0.5 (0.75, 0.25) 6.046 (0.4, 0.6) 6.846
0.6 (0.75, 0.25) 6.027 (0.4, 0.6) 6.837
0.7 (0.75, 0.25) 6.007 (0.4, 0.6) 6.828
0.8 (0.75, 0.25) 5.988 (0.4, 0.6) 6.819
0.9 (0.75, 0.25) 5.968 (0.4, 0.6) 6.810
1.0 (0.75, 0.25) 5.949 (0.4, 0.6) 6.801
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max − 5.5y1 + y2 − y3􏼈 􏼉

s.t.

− 4y1 + y2 − y3 − 6.325r1 − 3.667r2 ≤ 0,

− 6.5y1 + y2 − y3 − 3.879r1 − 4.671r2 ≤ 0,

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max − 6.5z1 + z2 − z3􏼈 􏼉,

s.t.

− 7z1 + z2 − z3 − 5.463s1 − 4.9s2 ≤ 0,

− 5z1 + z2 − z3 − 3.583s1 − 6s2 ≤ 0,

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Using the Simplex technique, we can obtain the equi-
librium value and the equilibrium strategy for player I as
U∗ � qTy∗ � 4.71 and r∗ � (0.75, 0.25)T, respectively; and
the equilibrium value and the equilibrium strategy for player
II are W∗ � pTz∗ � 5.033 and s∗ � (0.4, 0.6), respectively,
although this approach provides the same optimal solutions
as our results.

Finally, we compare our results with those of Garai et al.
[43], where the ranking function is described by

M(􏽥b) �
1
6

(k + 2l + 2m + n) θu
2
􏽥b

+ (1 − θ) 1 − v􏽥b
􏼒 􏼓

2
􏼠

+ (1 − θ) 1 − w􏽥b
􏼒 􏼓

2
).

(37)

Here, 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 represents an SVTNN.

Based on this ranking function, we can get a set of opti-
mization models as follows:

maximize − 5.5y1 + y2 − y3􏼈 􏼉,

subject to

− 4y1 + y2 − y3 − (8.16667 − 1.55167θ)r1 − (5.83 − 3.85θ)r2 ≤ (0.22475 − 0.1488θ)(1 − ρ),

− 6.5y1 + y2 − y3 − (6.08333 − 4.5625θ)r1 − (5.42667 − 1.83333θ)r2 ≤ (0.22475 − 0.1488θ)(1 − ρ),

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0.

maximize − 6.5z1 + z2 − z3􏼈 􏼉,

subject to

− 7z1 + z2 − z3 − (8.09833 − 3.51167θ)s1 − (7.90833 − 4.015θ)s2 ≤ (0.0979333 − 0.0424667θ)(1 − ρ),

− 5z1 + z2 − z3 − (5.33333 − 3.41333θ)s1 − (8.775 − 2.7θ)s2 ≤ (0.0979333 − 0.0424667θ)(1 − ρ),

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

(38)

By solving the above mathematical programming
models, we obtain the following tabulated optimal solutions,

given in Tables 13–18. From the results shown in
Tables 1–18, the optimal strategies obtained by different

Table 16: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.6.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 4.813 (0.4, 0.6) 5.679
0.1 (0.75, 0.25) 4.799 (0.4, 0.6) 5.672
0.2 (0.75, 0.25) 4.786 (0.4, 0.6) 5.665
0.3 (0.75, 0.25) 4.772 (0.4, 0.6) 5.658
0.4 (0.75, 0.25) 4.759 (0.4, 0.6) 5.651
0.5 (0.75, 0.25) 4.745 (0.4, 0.6) 5.643
0.6 (0.75, 0.25) 4.732 (0.4, 0.6) 5.636
0.7 (0.75, 0.25) 4.718 (0.4, 0.6) 5.629
0.8 (0.75, 0.25) 4.704 (0.4, 0.6) 5.622
0.9 (0.75, 0.25) 4.691 (0.4, 0.6) 5.614
1.0 (0.75, 0.25) 4.677 (0.4, 0.6) 5.607
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ranking approaches are the same as those of the proposed
approach. So, the proposed approach is feasible and
effective.

6. Conclusion

%e constrained bimatrix games with payoffs of SVTNNs are
studied and constructed in this article. %e ranking order re-
lation, important theorems, and arithmetic operations of
SVTNNs are outlined. Novel neutrosophic optimization
problems for both players are established from the arithmetic
operations of SVTNNs and solution method for SVTNNs
constrained bimatrix games. Based on the ranking approach of
SVTNNs presented in this article, the neutrosophic optimization
problems for both players are converted into crisp parameterized
problems, which are solved to obtain the equilibrium optimal
strategies and equilibrium values for two players. Moreover, the
ranking approach proposed in this article is demonstratedwith a
numerical simulation. Finally, our article is the first to study the
constrained bimatrix games under neutrosophic environment
and provide algorithm and practicable application for SVTNNs
constrained bimatrix games.

In the future, we will study game theory under other
types of uncertain environment such as linguistic

neutrosophic, interval neutrosophic, linguistic interval
neutrosophic, and linguistic interval intuitionistic neu-
trosophic. Furthermore, we will apply the proposed ranking
approach to other areas such as pattern recognition, supply
chain, risk evaluation, teacher selection, and optimization
models.
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Table 17: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.8.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 4.147 (0.4, 0.6) 5.017
0.1 (0.75, 0.25) 4.137 (0.4, 0.6) 5.010
0.2 (0.75, 0.25) 4.126 (0.4, 0.6) 5.003
0.3 (0.75, 0.25) 4.116 (0.4, 0.6) 4.997
0.4 (0.75, 0.25) 4.105 (0.4, 0.6) 4.991
0.5 (0.75, 0.25) 4.094 (0.4, 0.6) 4.985
0.6 (0.75, 0.25) 4.084 (0.4, 0.6) 4.978
0.7 (0.75, 0.25) 4.073 (0.4, 0.6) 4.972
0.8 (0.75, 0.25) 4.063 (0.4, 0.6) 4.965
0.9 (0.75, 0.25) 4.052 (0.4, 0.6) 4.959
1.0 (0.75, 0.25) 4.042 (0.4, 0.6) 4.953

Table 18: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 1.0.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 3.482 (0.4, 0.6) 4.287
0.1 (0.75, 0.25) 3.474 (0.4, 0.6) 4.281
0.2 (0.75, 0.25) 3.467 (0.4, 0.6) 4.276
0.3 (0.75, 0.25) 3.459 (0.4, 0.6) 4.270
0.4 (0.75, 0.25) 3.451 (0.4, 0.6) 4.265
0.5 (0.75, 0.25) 3.443 (0.4, 0.6) 4.259
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[38] I. Deli and Y. Şubaş, “A ranking method of single valued
neutrosophic numbers and its applications to multi-attribute
decision making problems,” International Journal of Machine
Learning and Cybernetics, vol. 8, no. 4, pp. 1309–1322, 2017.

[39] A. Bhaumik, S. Kumar, and D. Li, “(α, β, c)—cut set based
ranking approach to solving bi-matrix games in neutrosophic
environment,” Soft Computing, vol. 25, no. 8, pp. 1–11, 2020.

[40] W. Fei and D.-F. Li, “Bilinear programming approach to solve
interval bimatrix games in tourism planning management,”
International Journal of Fuzzy Systems, vol. 18, no. 3,
pp. 504–510, 2016.

[41] H. A. Khalifa, “An approach for solving two-person zero-sum
matrix games in neutrosophic environment,” Journal of In-
dustrial and Systems Engineering, vol. 12, no. 2, pp. 186–198,
2019.

[42] J. Ye, “Some weighted aggregation operators of trapezoidal
neutrosophic numbers and their multiple attribute decision
making method,” Informatica, vol. 28, no. 2, pp. 387–402,
2017.

[43] T. Garai, H. Garg, and T. K. Roy, “A ranking method based on
possibility mean for multi-attribute decision making with
single valued neutrosophic numbers,” Journal of Ambient
Intelligence and Humanized Computing, vol. 11, pp. 5245–
5258, 2020.

Journal of Mathematics 13



Research Article
Neutrosophic Semiopen Hypersoft Sets with an Application to
MAGDM under the COVID-19 Scenario

D. Ajay,1 J. Joseline Charisma,1 N. Boonsatit ,2 P. Hammachukiattikul ,3

and G. Rajchakit 4

1Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur, Vellore 635 601, Tamilnadu, India
2Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi,
Nonthaburi 11000, ,ailand
3Department of Mathematics, Faculty of Science and Technology, Phuket Rajabhat University, Phuket 83000, ,ailand
4Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai 50290, ,ailand

Correspondence should be addressed to N. Boonsatit; nattakan.b@rmutsb.ac.th

Received 24 February 2021; Revised 19 March 2021; Accepted 5 April 2021; Published 30 April 2021

Academic Editor: Broumi Said

Copyright © 2021 D. Ajay et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Hypersoft set is a generalization of soft sets, which takes into account a multiargument function. +e main objective of
this work is to introduce fuzzy semiopen and closed hypersoft sets and study some of their characterizations and also to
present neutrosophic semiopen and closed hypersoft sets, an extension of fuzzy hypersoft sets, along with few basic
properties. We propose two algorithms based on neutrosophic hypersoft open sets and topology to obtain optimal
decisions in MAGDM. +e efficiency of the algorithms proposed is demonstrated by applying them to the current
COVID-19 scenario.

1. Introduction

Fuzzy set theory [1] is an important tool for dealing with
vagueness and incomplete data and is much more
evolving and applied in different fields. Fuzzy set, which is
an extension of general sets, has elements with mem-
bership function within the interval [0, 1]. In view of other
options of human thinking, fuzzy set along with some
conditions is extended to the intuitionistic fuzzy set [2].
+e intuitionistic fuzzy set assigns membership and
nonmembership functions to each object which satisfies
the constraint that the sum of both membership functions
is between 0 and 1.

Fuzziness was improved and extended from intui-
tionistic sets to neutrosophic sets. Smarandache [3] pro-
posed neutrosophic sets, an essential mathematical tool
which deals with incomplete, indeterminant, and incon-
sistent information. Neutrosophic set is characterized by
the elements with truth, indeterminacy, and false

membership functions which assume values within the
range of 0 and 1. Wang et al. [4] proposed the concept of
single-valued neutrosophic sets, a generalization of intui-
tionistic sets and a subclass of neutrosophic sets, which
comprise elements with three membership functions which
they belong to interval [0, 1]. Under this neutrosophic
environment, many researchers have worked on their
extensions and developed many applications and results. A
ranking approach based on the outranking relations of
simplified neutrosophic numbers is developed in order to
solve MCDM problems. Practical examples are provided to
illustrate the proposed approach with a comparison
analysis [5]. A comparison analysis is performed for this
method with two examples [6], and the developed single-
valued neutrosophic TOPSIS extension is demonstrated on
a numerical illustration of the evaluation and selection of
e-commerce development strategies [7].

Molodtsov [8] introduced the idea of soft theory as a new
approach to dealing with uncertainty, and now, there is a
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rapid growth of soft theory along with applications in
various fields. Maji et al. [9] defined various basic concepts of
soft theory, and the study of soft semirings by using the soft
set theory has been initiated, and the notions of soft sem-
irings, soft sub-semirings, soft ideals, idealistic soft semir-
ings, and soft semiring homomorphisms with several related
properties are investigated [10, 11]. Maji et al. [12] developed
the fuzzy soft set theory, which is a combination of soft and
fuzzy sets.

+e idea of soft sets was generalized into hypersoft sets
by Smarandache [13] by transforming the argument
function F into a multiargument function. He also intro-
duced many results on hypersoft sets. Saqlain et al. [14]
utilized this notion and proposed a generalized TOPSIS
method for decision-making. Neutrosophic sets [15], from
their very introduction, have seen many such extensions
and have been very successful in applications. A new hybrid
methodology for the selection of offshore wind power
station location combining the Analytical Hierarchy Pro-
cess and Preference Ranking Organization Method for
Enrichment Evaluations methods in the neutrosophic
environment has been proposed [16], a neutrosophic
preference ranking organization method for enrichment
evaluation technique for multicriteria decision-making
problems to describe fuzzy information efficiently was
proposed and applied to a real case study to select proper
security service for FMEC in the presence of fuzzy infor-
mation [17], and a model is proposed based on a plitho-
genic set and is applied to differentiate between COVID-19
and other four viral chest diseases under the uncertainty
environment [18].

In 2019, Rana et al. [19] introduced the plithogenic fuzzy
hypersoft set (PFHS) in the matrix form and defined some
operations on the PFHS. Single- and multivalued neu-
trosophic hypersoft sets were proposed by Saqlain et al. [20],
who also defined tangent similarity measure for single-
valued sets and an application of the same in a decision-
making scenario. In another effort, Saqlain et al. [21] also
introduced aggregation operators for neutrosophic hyper-
soft sets. A recent development in this area of research is the
introduction of basic operations on hypersoft sets in which
hypersoft points in different fuzzy environments are also
introduced [22].

Fuzzy topology, a collection of fuzzy sets fulfilling the
axioms, was defined by Chang [23]. A new definition of
fuzzy space compactness and observed to have
α−compactness along with a Tychonoff theorem for an
arbitrary product of α−compact fuzzy spaces and a 1-point
compactification [24], filters in the lattice IX, where I is the
unit interval and X an arbitrary set, have all been studied
and using this study the convergence is defined in fuzzy
topological space which leads to characterise fuzzy con-
tinuity and compactness [25]. +en, the basic concepts of
intuitionistic fuzzy topological spaces were constructed,
and the definitions of fuzzy continuity, fuzzy compact-
ness, fuzzy connectedness, and fuzzy Hausdorff space and
some characterizations concerning fuzzy compactness
and fuzzy connectedness were defined [26]. Neutrosophic
topological spaces were introduced by Salama and

Alblowi [27], and further concepts such as connectedness,
semiclosed sets, and generalized closed sets [28] were
developed.

+e concept of fuzzy soft topology and some of its
structural properties such as neighborhood of a fuzzy soft
set, interior fuzzy soft set, fuzzy soft basis, and fuzzy soft
subspace topology were studied [29]. +e soft topological
spaces, soft continuity of soft mappings, soft product
topology, and soft compactness, as well as properties of
soft projection mappings, have all been defined [30], and a
relationship between a fuzzy soft set's closure and its fuzzy
soft limit points has been constructed on fuzzy soft to-
pological spaces [31]. Subspace, separation axioms,
compactness, and connectedness on intuitionistic fuzzy
soft topological spaces were defined along with some base
theorems [32], some important properties of intuitionistic
fuzzy soft topological spaces and intuitionistic fuzzy soft
closure and interior of an intuitionistic fuzzy soft set were
introduced, and an intuitionistic fuzzy soft continuous
mapping with structural characteristics was studied [33].
A topology on a neutrosophic soft set was constructed,
neutrosophic soft interior, neutrosophic soft closure,
neutrosophic soft neighbourhood, and neutrosophic soft
boundary were introduced, some of their basic properties
were studied, and the concept of separation axioms on the
neutrosophic soft topological space was introduced [34].
+e concept of fuzzy hypersoft sets was applied to fuzzy
topological spaces, and fuzzy hypersoft topological spaces
were presented by Ajay and Charisma in [35]. In the same
work, fuzzy hypersoft topology has been extended to
intuitionistic and neutrosophic hypersoft topological
spaces along with their properties. In this paper, we define
the idea of semiopen sets in fuzzy hypersoft topological
spaces with their characterization and extend to semiopen
sets in intuitionistic and neutrosophic hypersoft topo-
logical spaces.

+e paper is structured as follows: Section 2 recalls few
basic terminologies and definitions of fuzzy hypersoft
topological spaces. In Section 3, we define semiopen sets
in fuzzy hypersoft topological spaces along with some of
their properties. Sections 4 and 5 elaborate the logical
extension of fuzzy hypersoft semiopen sets to intuition-
istic and neutrosophic hypersoft semiopen sets. In Section
6, we present an application of the neutrosophic hypersoft
open set and topology in an MAGDM and conclude in
Section 7.

2. Preliminaries

Definition 1 (see [35]). Let (ϖ,X) be an element ofP(V,E)

(where X � X1xX2xX3 . . . xXn with each Xi a subset of
Ei(i � 1, 2, . . . , n)), and let the set of all fuzzy hypersoft (FH)
subsets of (ϖ,X) be P(ϖ,X) and τ, a subcollection of
P(ϖ,X).

(i) ∅X, (ϖ,X) ∈ τ

(ii) (Θ,J), (χ,B) ∈ τ⟹(Θ,J)∩ (χ,B) ∈ τ

(iii) (Θ,J)l|l ∈ L􏼈 􏼉 ∈ τ⟹∪ l∈L(Θ,J)l ∈ τ
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If the above axioms are satisfied, then τ is a fuzzy
hypersoft topology (FHT) on (ϖ,X) · (Xϖ, τ) which is called
a fuzzy hypersoft topological space (FHTS). Every member
of τ is called an open fuzzy hypersoft set (OFHS). A fuzzy
hypersoft set is said to be a closed fuzzy hypersoft set (CFHS)
if its complement is OFHS.

Example 1. Let V � x1, x2, x3, x4􏼈 􏼉 and the attributes be
E1 � a1, a2􏼈 􏼉, E2 � a3, a4􏼈 􏼉, and E3 � a5, a6􏼈 􏼉. +en, the
fuzzy hypersoft set is

a1, a3, a5( 􏼁,
x2

0.4
,

x4

0.6
􏼚 􏼛􏼒 􏼓,

a1, a3, a6( 􏼁,
x1

0.7
􏼚 􏼛􏼒 􏼓,

a1, a4, a5( 􏼁,
x1

0.4
,

x2

0.3
􏼚 􏼛􏼒 􏼓,

a1, a4, a6( 􏼁,
x1

0.5
,

x3

0.7
􏼚 􏼛􏼒 􏼓,

a2, a3, a5( 􏼁,
x2

0.3
,

x3

0.5
􏼚 􏼛􏼒 􏼓,

a2, a3, a6( 􏼁,
x3

0.8
􏼚 􏼛􏼒 􏼓,

a2, a4, a5( 􏼁,
x4

0.9
􏼚 􏼛􏼒 􏼓,

a2, a4, a6( 􏼁,
x2

0.6
􏼚 􏼛􏼒 􏼓.

(1)

Let us consider this fuzzy hypersoft as (ϖ,X). +en, the
subfamily

τ � ∅X, (ϖ,X),

·

a1, a3, a5( 􏼁,
x1

0.3
,

x2

0.6
􏼚 􏼛􏼒 􏼓, a2, a3, a5( 􏼁,

x2

0.4
,

x3

0.5
􏼚 􏼛􏼒 􏼓, a1, a3, a5( 􏼁,

x2

0.4
􏼚 􏼛􏼒 􏼓, a2, a3, a5( 􏼁,

x2

0.3
,

x3

0.5
􏼚 􏼛􏼒 􏼓

a1, a3, a5( 􏼁,
x1

0.3
,

x2

0.6
,

x3

0.6
􏼚 􏼛􏼒 􏼓, a1, a4, a6( 􏼁,

x1

0.5
,

x3

0.7
􏼚 􏼛􏼒 􏼓, a1, a3, a6( 􏼁,

x1

0.7
􏼚 􏼛􏼒 􏼓, a1, a4, a5( 􏼁,

x1

0.4
,

x2

0.3
􏼚 􏼛􏼒 􏼓,

a2, a3, a5( 􏼁,
x2

0.4
,

x3

0.5
􏼚 􏼛􏼒 􏼓, a2, a3, a6( 􏼁,

x3

0.8
􏼚 􏼛􏼒 􏼓 a2, a4, a5( 􏼁,

x4

0.9
􏼚 􏼛􏼒 􏼓 a2, a4, a6( 􏼁,

x2

0.6
􏼚 􏼛,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

of P(ϖ,X) is a FHT on (ϖ,X).

Definition 2 (see [35]). Let τ be a FHTon (ϖ,X) ∈ P(V,E)

and (χ,B) be a FH set in P(ϖ,X). A FH set (Θ,J) in
P(ϖ,X) is a neighbourhood of the FH set of (χ,B) if and
only if there exists an OFHS (ξ,C) such that
(χ,B) ⊂ (ξ,C) ⊂ (Θ,J).

Definition 3 (see [35]). Let (Xϖ, τ) be a FHTS and
(Θ,J), (χ,B) be FH sets in P(ϖ,X) such that
(χ,B) ⊂ (Θ,J). +en, (χ,B) is said to be an interior fuzzy
hypersoft set (IFHS) of (Θ,J) if and only if (Θ,J) is a

neighbourhood of (χ,B). +e union of the whole IFHS of
(Θ,J) is named the interior of (Θ,J) and denoted as
(Θ,J)∘ or FHint(Θ,J).

Definition 4 (see [35]). Let (Xϖ, τ) be a FHTS and
(Θ,J) ∈ P(V,E). +e fuzzy hypersoft closure (FHC) of
(Θ,J) is the intersection of all CFH sets that contain (Θ,J)

which is denoted by (Θ,J) or FHcl(Θ,J).

Definition 5 (see [35]). Let (ϖ,X) be an element ofP(V,E)

(where X � X1xX2xX3 . . . xXn with each Xi a subset of
Ei(i � 1, 2, . . . , n). Let the set of all neutrosophic hypersoft
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(NH) subsets of (ϖ,X) be P(ϖ,X) and τ, a subcollection of
P(ϖ,X).

(i) ∅X, (ϖ,X) ∈ τ
(ii) (Θ,J), (χ,B) ∈ τ⟹(Θ,J)∩ (χ,B) ∈ τ
(iii) (Θ,J)l|l ∈ L􏼈 􏼉 ∈ τ⟹∪ l∈L(Θ,J)l ∈ τ

If the above axioms are satisfied, then τ is a neutrosophic
hypersoft topology (NHT) on (ϖ,X) · (Xϖ, τ) which is
called a neutrosophic hypersoft topological space (NHTS).
Every member of τ is called an open neutrosophic hypersoft
set (ONHS). A neutrosophic hypersoft set is called a closed
neutrosophic hypersoft set (CNHS) if its complement is an
ONHS.

For example, ∅X, (ϖ,X)􏼈 􏼉 and P(ϖ,X) are neu-
trosophic hypersoft topologies on (ϖ,X) and are called
indiscrete NHT and discrete NHT, respectively.

Definition 6 (see [35]). Let τ be a NHTon (ϖ,X) ∈ P(V,E)

and (χ,B) be a NH set in P(ϖ,X). A NH set (Θ,J) in
P(ϖ,X) is a neighbourhood of the NH set of (χ,B) iff there
exists an ONHS (ξ,C) such that (χ,B) ⊂ (ξ,C) ⊂ (Θ,J).

Definition 7 (see [35]). Let (Xϖ, τ) be a NHTS and
(Θ,J), (χ,B) be NH sets in P(ϖ,X) such that
(χ,B) ⊂ (Θ,J). +en, (χ,B) is said to be an interior
neutrosophic hypersoft set (INHS) of (Θ,J) if and only if

(Θ,J) is a neighbourhood of (χ,B). +e union of the whole
INHS of (Θ,J) is named the interior of (Θ,J) and denoted
as (Θ,J)∘or FHint(Θ,J).

Definition 8 (see [35]). Let (Xϖ, τ) be a NHTS and
(Θ,J) ∈ P(V,E). +e neutrosophic hypersoft closure
(NHC) of (Θ,J) is the intersection of all CNH sets that
contain (Θ,J) which is denoted by (Θ,J) or FHcl(Θ,J).
+us, (Θ,J) is the smallest CNHS which has (Θ,J), and
(Θ,J) is the CNHS.

3. Fuzzy Semiopen and Closed Hypersoft Sets

Definition 9. Let (Xϖ, τ) be a FHTS and (Θ,J) ∈ P(ϖ,X).
If (Θ,J)⊆FHcl(FHint(Θ,J)), then (Θ,J) is called the
fuzzy semiopen hypersoft set (FSOHS). We denote the set of
all fuzzy semiopen hypersoft sets by FSOHS(X).

Definition 10. A fuzzy hypersoft set (Θ,J) in the FHST
space is a fuzzy semiclosed hypersoft set (FSCHS) if and only
if its complement (Θ,J)C is FSOHS. +e class of FSCHS is
denoted by FSCHS (X).

Example 2. Let X � y1, y2, y3􏼈 􏼉 and the attributes be
E1 � a1, a2, a3􏼈 􏼉, E2 � b1, b2􏼈 􏼉, and E3 � c1, c2􏼈 􏼉.

+e fuzzy hypersoft topological space is τ:

τ � 〈 a1, b1, c2( 􏼁,
y1

0.9
,

y2

0.2
,

y3

0.2
􏼚 􏼛〉, 〈 a1, b2, c2( 􏼁

y1

0.8
,

y2

0.7
,

y3

0.4
􏼚 􏼛〉􏼚 􏼛􏼚 􏼛,

〈 a1, b1, c1( 􏼁,
y1

0.8
,

y2

0.6
,

y3

0.3
􏼚 􏼛〉〈 a3, b1, c1( 􏼁,

y1

0.6
,

y2

0.5
,

y3

0.7
􏼚 􏼛〉􏼚 􏼛,

〈 a1, b1, c2( 􏼁
y1

0.9
,

y2

0.2
,

y3

0.2
􏼚 􏼛〉, 〈 a1, b2, c2( 􏼁,

y1

0.8
,

y2

0.7
,

y3

0.4
􏼚 􏼛〉〈 a1, b1, c1( 􏼁,

y1

0.8
,

y2

0.6
,

y3

0.3
􏼚 􏼛〉, 〈 a3, b1, c1( 􏼁

y1

0.6
,

y2

0.5
,

y3

0.7
􏼚 􏼛〉􏼚 􏼛.

(3)

+e fuzzy hypersoft set

〈 a1, b1, c2( 􏼁,
y1

0.9
,

y2

0.3
,

y3

0.5
􏼚 􏼛〉, 〈 a1, b2, c2( 􏼁,

y1

0.9
,

y2

0.8
,

y3

0.5
􏼚 􏼛〉,

〈 a1, b1, c1( 􏼁,
y1

0.9
y2

0.7
,

y3

0.5
􏼚 􏼛〉, 〈 a3, b1, c1( 􏼁,

y1

0.7
,

y2

0.6
,

y3

0.8
􏼚 􏼛〉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4)

is a FSOHS.

Theorem 1. Let (Xϖ, τ) be a FHTS and
(Θ,J) ∈ FSOHS(X); then,

(i) Arbitrary fuzzy hypersoft union of FSOHS is FSOHS
(ii) Arbitrary fuzzy hypersoft intersection of FSCHS is

FSCHS

Proof

(i) Let (Θ,J)j: j ∈ J􏽮 􏽯⊆FSOHS(X).

+en, ∀j ∈ J, (Θ,J)j⊆FHcl(Θ,J)j.
Hence, ∪ j(Θ,J)j ⊆ ⋃ FHclFHint{ }(Θ,J)j⊆FHcl

(FHint(∪ j(Θ,J)j)).

+erefore, ∪ j(Θ,J)j ∈ FSOHS(X).
Similarly, (ii) is proved. □

Theorem 2. Let (Xϖ, τ) be a FHTS and (Θ,J) ∈ P(ϖ,X).
,en,

(i) (Θ,J) ∈ FSOHS(X) if and only if there exists
(χ,B) ∈ τ such that (χ,B)⊆(Θ,J)⊆FHcl(χ,B)

(ii) If (Θ,J) ∈ FSOHS(X) and (Θ,J)⊆(ξ,C)⊆
FHcl(Θ,J), then (ξ,C) ∈ FSOHS(X)

Proof

(i) Let (Θ,J) ∈ FSOHS(X).
+en, (Θ,J)⊆FHcl(FHint(Θ,J)).
We know that FHint(Θ,J)⊆(Θ,J); thus,
FHint(Θ,J)⊆(Θ,J)⊆FHcl(FHint(Θ,J)).
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Let(χ,B) � FHint(Θ,J); thus, we get (χ,B)⊆
(Θ,J)⊆FHcl(χ,B).
Conversely, let (χ,B)⊆(Θ,J)⊆FHcl(χ,B) for some
(χ,B) ∈ τ. +en, (χ,B)⊆FHint(Θ,J)⊆(Θ,J).
⟹FHcl(χ,B)⊆FHcl(FHint(Θ,J)).
+us, (Θ,J)⊆FHcl(FHint(Θ,J)).
+erefore, (Θ,J) ∈ FSOHS(X).

(ii) Let (Θ,J) ∈ FSOHS(X). +en, for some (χ,B) ∈
τ, (χ,B)⊆(Θ,J)⊆FHcl(χ,B). If (χ,B)⊆(Θ,J)⊆
(ξ,C), then (χ,B)⊆(ξ,C)⊆FHcl(Θ,J)⊆FHcl(χ,B).

Hence, (χ,B)⊆(ξ,C)⊆FHcl(χ,B). +us, by (i),
(ξ,C) ∈ FSOHS(X). □

Definition 11. Let (Xϖ, τ) be a FHTS and (Θ,J) ∈ P(ϖ,X).
+en, the largest fuzzy semiopen hypersoft set con-

tained in (Θ,J) is called the fuzzy semi-hypersoft inte-
rior of (Θ,J) and denoted by FSHSint(Θ,J), i.e.,
FSHSint(Θ,

J) � ∪ (χ,B): (χ,B)⊆(Θ,J)(χ,B) ∈ FSOHS(X)􏼈 􏼉.
And the smallest fuzzy semiclosed hypersoft set con-

taining (Θ,J) is called the fuzzy semi-hypersoft closure of
(Θ,J) and denoted by FSHScl (Θ,J).

FSHScl(Θ,J) � ∩ (ξ,C): (ξ,C)⊇(Θ,J){ , and (ξ,C) ∈
FSCHS(X).

Theorem 3. Let (Xϖ, τ) be a FHTS and (Θ,J), (χ,

B) ∈ P(ϖ,X). ,en, the following properties hold:

(i) FSHSint(∅X) � ∅X and FSHSint(ϖ,X) � (ϖ,X)

(ii) FSHSint(Θ,J)⊆(Θ,J)

(iii) FSHS int (Θ,J) is the largest fuzzy semiopen
hypersoft set contained in (Θ,J)

(iv) If (Θ,J)⊆(χ,B), then FSHSint(Θ,J)⊆
FSHSint(χ,B)

(v) FHSHint(FHSHint(Θ,J)) � FHSHint(Θ,J)

(vi) FHSHint(Θ,J)∪ FHSHint(χ, B)⊆FHSHint
[(Θ,J)∪ (χ, B)]

(vii) FHSHint[(Θ,J)∩ (χ, B)]⊆FHSHint(Θ,J)∩
FHSHint(χ,B)

Theorem 4. Let (Xϖ, τ) be a FHTS and
(Θ,J), (χ,B) ∈ P(ϖ,X).,en, the following properties hold:

(i) FSHScl(∅X) � ∅X, and FSHScl(ϖ,X) � (ϖ,X)

(ii) FSHScl(Θ,J)⊆(Θ,J)

(iii) FSHScl(Θ,J) is the smallest fuzzy semiclosed
hypersoft set that contains (Θ,J)

(iv) If (Θ,J)⊆(g, B), then FSHScl(Θ,J)⊆FSHScl(χ,B)

(v) FHSHcl(FHSHcl(Θ,J)) � FHSHcl(Θ,J)

(vi) FHSHcl(Θ,J)∪ FHSHcl (χ,B)⊆FHSHcl (Θ,J)∪
[(χ, B)]

(vii) FHSHcl[(Θ,J)∩ (χ,B)]⊆FHSHcl(Θ, J)∩
FHSHcl(χ,B)

Theorem 5. Every fuzzy open (closed) hypersoft set in a
FHTS (Xϖ, τ) is a fuzzy semiopen (closed) hypersoft set.

Proof. Let (Θ,J) be a fuzzy open hypersoft set. +en,
FHint(Θ,J) � (Θ,J). Since (Θ,J)⊆FHcl(Θ,J),
(Θ,J)⊆FHcl(FHint(Θ,J)). +us,
(Θ,J) ∈ FSOHS(X). □

Theorem 6. Let (Xϖ, τ) be a FHTS and (Θ,J), (χ,

B) ∈ P(ϖ,X). If either (Θ,J) ∈ FSOHS(X) or
(χ,B) ∈ FSOHS(X), then FHcl(FHint(Θ,J)∩ (χ,B)) �

FHcl(FHint(Θ,J)∩ FHclFHint(χ,B)).

Proof. Let (Θ,J), (χ,B) ∈ P(ϖ,X).
+en, we have

FHcl(FHint(Θ,J)∩ (χ,B))⊆

FHcl(FHint(Θ,J)∩ FHclFHint(χ,B))

FHcl(FHint(Θ,J)∩ FHclFHint(χ,B))⊆

FHcl[FHcl(FHint(Θ,J))∩ FHcl(FHint(χ,B))]

� FHcl[FHcl[FHint(Θ,J)∩ FHint(χ,B)]]

� FHcl[FHcl[FHint[(Θ,J)∩ (χ,B)]]]

⊆FHcl[FHint(Θ,J)∩ (χ,B)]

⟹FHcl(FHint(Θ,J))∩ FHcl(FHint(χ,B))

⊆FHcl(FHint(Θ,J)∩ (χ,B)).

(5)

+us, FHcl(FHint(Θ,J)∩ (χ,B)) � FHclFHint
(Θ,J)∩ FHcl(FHint(χ,B)). □

Theorem 7. Let (Xϖ, τ) be a FHTS, (Θ,J) be a fuzzy
hypersoft open set, and (χ,B) ∈ FSOHS(X). ,en,
(Θ,J)∩ (χ,B) ∈ FSOHS(X).

Proof. Let (Θ,J) be a FOHS and (χ,B) be a FSOHS.
+en, (Θ,J)∩ (χ,B)⊇FHint((Θ,J)∩ (χ,B))⟹

FHint((Θ,J)∩ (χ,B))⊆(Θ,J)∩ (χ,B).
+en, FHint((Θ,J)∩ (χ,B))⊆(Θ,J)∩ (χ,B)\⊆

FHclFHint((Θ,J)∩ (χ,B)) FHint((Θ,J)∩ (χ,B))⊆
(Θ,J)∩ (χ,B)\⊆FHclFHint((Θ,J)∩ (χ,B))(Θ,J)∩ (χ,

B)⊆FHclFHint((Θ,J)∩ (χ,B)).
+erefore, (Θ,J)∩ (χ,B) is a FSOHS. □

Proposition 1. Let (Θ,J) be a fuzzy hypersoft set in the
FHTS (Xϖ, τ). ,en, (Θ,J) is the FSCHS if and only if there
exists an FCHS set (ξ,J) such that
FHint(ξ,J)⊆(Θ,J)⊆(ξ,J).

Proposition 2. Every fuzzy hypersoft closed set is a FSCHS in
a FHTS (Xϖ, τ), but the converse need not be true.

Theorem 8. Let (Θ,J) be a FHS in a FHTS (Xϖ, τ). ,en,
(Θ,J) is a FSCHS if and only if FHint(FHcl(Θ,J))⊆(Θ,J).

Proof. Suppose (Θ,J) is a FSCHS. +en, there exists a
FHCS (Θ,J) such that FHint(ξ,J)⊆(Θ,J)⊆(ξ,J).
FHcl(Θ,J)⊆FHcl(ξ,J) � (ξ,J).
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+us, FHint(FHcl(Θ,J))⊆FHint(ξ,J)⊆(Θ,J)⟹
FHint(FHcl(ξ,J))⊆(Θ,J).

Conversely, let (Θ,J) be a fuzzy hypersoft set in (Xϖ, τ)

such that FHint(FHcl(Θ,J))⊆(Θ,J). Let
FHcl(Θ,J) � (ξ,J). +en, FHint(Θ,J)⊆(Θ,J)⊆(ξ,J).
+us, (Θ,J) is a FSCHS. □

Theorem 9. Let (Θ,J)β: β ∈ I􏽮 􏽯 be a family of FSCHS in a
FHTS (Xϖ, τ). ,en, the intersection ∩ β∈I(Θ,J)β is a
FSCHS in (Xϖ, τ).

Proof. Since each β ∈ I, (Θ,J)β is a FSCHS. +en, there
exists a FCHS (ξ,J)β such that FHint((h, A)β)⊆
(Θ,J)β⊆(ξ,J)β. +us, ∩ β∈I(FHint((ξ,J)β))⊆∩ β∈I
(Θ,J)β⊆∩ β∈I(ξ,J)β. Consider ∩ β∈I(ξ,J)β � (ξ,J). +en,
(ξ,J) is a FCHS, and hence, ∩ β∈I(Θ,J)β is a FSCHS. □

Theorem 10. Let (Θ,J) be a FSCHS and (ϑ,J) be a FCHS
in (Xϖ, τ). If FHint(Θ,J)⊆(ϑ,J)⊆(Θ,J), then (Θ,J) is a
FSCHS.

Proof. Since (Θ,J) is a FSCHS, there exists a FCHS (ξ,J)

such that FHint(ξ,J)⊆(Θ,J)⊆(ξ,J). +en, (ϑ,J)⊆(ξ,J).
Also, FHintFHint(ξ,J)⊆FHint(ξ,J)⊆FHint(Θ,J)⟹
FHint(ξ,J)⊆(ϑ,J). +erefore, FHint(ξ,J)⊆(ϑ,J)⊆(ξ,J).
Hence, (Θ,J) is a FSCHS. □

Remark 1. For any FCHS (Θ,J), FSHScl(Θ,J) � (Θ,J).
And for any FOHS (ζ,J), FSHSint(ζ,J) � (ζ,J).

Remark 2. If (Θ,J) is a fuzzy hypersoft set in (Xϖ, τ), then
FHint(Θ,J)⊆FSHSint (Θ,J)⊆(Θ,J)⊆FSHScl(Θ,J)⊆
FHcl(Θ,J).

Theorem 11. Let (Θ,J) be a FHS in (Xϖ, τ). ,en,

(i) (FSHSint(Θ,J))C � FSHScl((Θ,J)C)

(ii) (FSHScl(Θ,J))C � FSHSint((Θ,J)C)

(iii) FSHSint(FHint(Θ,J)) � FHint(FSHSint(Θ,J)) �

FHint(Θ,J)

(iv) FSHScl(FHcl(Θ,J)) � FHcl(FSHScl(Θ,J))\\ �

FHcl(Θ,J)

Proof

(i) FSHSint(Θ,J)⊆(Θ,J)⟹(Θ,J)C⊆(FSHSint(Θ,

J))C.
Since (FSHSint(Θ,J))C is a FSCHS,FSHScl(Θ,

J)C⊆FSHScl((FSHSint(Θ,J))C) � (FSHSint(Θ,

J))C.
Conversely, (Θ,J)C⊆FSHScl((Θ,J)C)⟹
FSHScl((Θ,J)C)C⊆((Θ,J)C)C � (Θ,J).
FSHScl((Θ,J)C) being FSCHS implies that
FSHScl((Θ,J)C)C is a FSOHS set.
+us, FSHScl((Θ,J)C)C⊆FSHSint(Θ,J).
And hence, (FSHSint(Θ,J))C⊆
(FSHScl((Θ,J)C)C)C � (FSHScl((Θ,J)C)).

(ii) +e proof is the same as that of (i).
(iii) FHint(Θ,J) is FOHS implying that it is FSOHS.

+erefore, FSHSint(FHint(Θ,J)) � FHint(Θ,J).
Now, FHint(Θ,J)⊆FSHSint(Θ,J) � (Θ,J).
+us, FSHSint(FHint(Θ,J)) � FHint(Θ,J).

(iv) FHcl(Θ,J) is fuzzy closed hypersoft implying that
is FSCHS. +erefore, FSHScl(FHcl(Θ,J)) �

FHcl(Θ,J). Now, (Θ,J)⊆FSHScl(Θ,J)⊆
FHcl(Θ,J).

Hence, FSHScl(Θ,J)⊆FHclFSHScl((Θ,J))⊆
FSHScl(Θ,J).

+is implies IHcl(ISHScl(Θ,J))⊆IHcl(Θ,J). □

4. Intuitionistic Semiopen and Closed
Hypersoft Sets

Definition 12. Let (Xϖ, τ) be an IHTS and
(Θ,J) ∈ P(ϖ,X). If (Θ,J)⊆IHcl(IHint(Θ,J)), then
(Θ,J) is called an intuitionistic semiopen hypersoft set
(ISOHS). We denote the set of all intuitionistic semiopen
hypersoft sets by ISOHS(X).

Definition. 13An intuitionistic hypersoft set (Θ,J) in the
IHST space is an intuitionistic semiclosed hypersoft set
(ISCHS) if and only if its complement (Θ,J)C is ISOHS.+e
class of ISCHS is denoted by ISCHS(X).

Example 3. Let X � y1, y2, y3􏼈 􏼉 and the attributes be
E1 � a1, a2, a3􏼈 􏼉, E2 � b1, b2􏼈 􏼉, and E3 � c1, c2􏼈 􏼉.

+e intuitionistic hypersoft topological space is τ:

τ � 〈 a1, b1, c2( 􏼁,
y1

0.9, 0.1
,

y2

0.2, 0.4
,

y3

0.2, 0.7
􏼨 􏼩〉,〈 a1, b2, c2( 􏼁,

y1

0.8, 0.3
,

y2

0.7, 0.2
,

y3

0.4, 0.8
􏼨 􏼩〉⎧⎨

⎩

⎫⎬

⎭,

· 〈 a1, b1, c1( 􏼁
y1

0.8, 0.2
,

y2

0.6, 0.4
,

y3

0.3, 0.2
􏼨 􏼩〉,〈 a3, b1, c1( 􏼁,

y1

0.6, 0.5
,

y2

0.5, 0.4
y3

0.7, 0.2
􏼨 􏼩〉⎧⎨

⎩

⎫⎬

⎭,
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·

〈 a1, b1, c2( 􏼁,
y1

0.9, 0.1
,

y2

0.2, 0.4
,

y3

0.2, 0.7
􏼨 􏼩〉,

〈 a1, b2, c2( 􏼁,
y1

0.8, 0.3
,

y2

0.7, 0.2
,

y3

0.4, 0.8
􏼨 􏼩〉, 〈 a1, b1, c1( 􏼁

y1

0.8, 0.2
,

y2

0.6, 0.4
,

y3

0.3, 0.2
􏼨 􏼩〉,

〈 a3, b1, c1( 􏼁,
y1

0.6, 0.5
y2

0.5, 0.4
,

y3

0.7, 0.2
􏼨 􏼩〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

+e intuitionistic hypersoft set

〈 a1, b1, c2( 􏼁
y1

0.9, 0.1
,

y2

0.3, 0.3
,

y3

0.5, 0.5
􏼨 􏼩〉, 〈 a1, b2, c2( 􏼁

y1

0.9, 0.2
,

y2

0.8, 0.1
,

y3

0.5, 0.7, 0.5
􏼨 􏼩〉,

〈 a1, b1, c1( 􏼁,
y1

0.9, 0.1
,

y2

0.7, 0.3
,

y3

0.5, 0.1
􏼨 􏼩〉, 〈 a3, b1, c1( 􏼁,

y1

0.7, 0.3
,

y2

0.6, 0.3
,

y3

0.8, 0.1
􏼨 􏼩〉

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(7)

is ISOHS.

Theorem 12. Let (Xϖ, τ) be an IHTS and
(Θ,J) ∈ ISOHS(X); then,

(i) Arbitrary intuitionistic hypersoft union of ISOHS is
an ISOHS

(ii) Arbitrary intuitionistic hypersoft intersection of
ISCHS is an ISCHS

Proof

(i) Let (Θ,J)j: j ∈ J􏽮 􏽯⊆ISOHS(X).
+en, ∀ j ∈ J, (Θ,J)j⊆FHcl(Θ,J)j.
Hence, ∪ j(Θ,J)j⊆∪ IHc(IHint(Θ,J)j)⊆ IHcl

(IHint(∪ j(Θ,J)j)).

+erefore, ∪ j(Θ,J)j ∈ ISOHS(X).
Similarly, (ii) is proved. □

Theorem 13. Let (Xϖ, τ) be an IHTS and (Θ,J) ∈ P(ϖ,X).
,en,

(i) (Θ,J) ∈ ISOHS(X) if and only if there exists
(χ,B) ∈ τ such that (χ,B)⊆(Θ,J)⊆IHcl(χ,B)

(ii) If (Θ,J) ∈ ISOHS(X) and (Θ,J)⊆(ξ,

C)⊆Icl(Θ,J), then (ξ,C) ∈ ISOHS(X)

Proof

(i) Let (Θ,J) ∈ ISOHS(X). +en, (Θ,J) ⊆
IHcl(IHint(Θ,J)). We know that
IHint(Θ,J)⊆(Θ,J); thus,
IHint(Θ,J)⊆(Θ,J)⊆IHcl(IHint(Θ,J)).
Let(χ,B) � IHint(Θ,J); thus, we get (χ,B)⊆
(Θ,J)⊆IHcl(χ,B).

Conversely, let (χ,B)⊆(Θ,J)⊆IHcl(χ,B) for some
(χ,B) ∈ τ. +en, (χ,B)⊆IHint(Θ,J)⊆(Θ,J).
⟹IHcl(χ,B)⊆IHcl(IHint(Θ,J)).
+us, (Θ,J)⊆IHcl(IHint(Θ,J)).
+erefore, (Θ,J) ∈ ISOHS(X).

(ii) Let (Θ,J) ∈ ISOHS(X). +en, for some (χ,B) ∈
τ, (χ,B)⊆(Θ,J)⊆IHcl(χ,B). If (χ,B)⊆(Θ,J)⊆
(ξ,C), then (χ,B)⊆(ξ,C)⊆IHcl(Θ,J)⊆IHcl(χ,B).
Hence, (χ,B)⊆(ξ,C)⊆IHcl(χ,B). +us, by (i),
(ξ,C) ∈ ISOHS(X). □

Definition 14. Let (Xϖ, τ) be an IHTS and (Θ,J) ∈
P(ϖ,X).

+en, the largest intuitionistic semiopen hypersoft set
contained in (Θ,J) is called the intuitionistic semi-
hypersoft interior of (Θ,J) and denoted by ISHSint(Θ,J),
i.e., ISHSint(Θ,J) � ∪ (χ,B): (χ,B)⊆(Θ,J), (χ,B) ∈􏼈

ISOHS(X)}.
And the smallest intuitionistic semiclosed hypersoft set

containing (Θ,J) is called the intuitionistic semi-hypersoft
closure of (Θ,J) and denoted by ISHScl(Θ,J).
ISHScl(Θ,J) � ∩ (ξ,C): (ξ,C)⊇(Θ,J){ and
(ξ,C) ∈ ISCHS(X).

Theorem 14. Let (Xϖ, τ) be an IHTS and
(Θ,J), (χ,B) ∈ P(ϖ,X).,en, the following properties hold:

(i) ISHSint(∅X) � ∅X and ISHSint(ϖ,X) � (ϖ,X)

(ii) ISHSint(Θ,J)⊆(Θ,J)

(iii) ISHSint(Θ,J) is the largest intuitionistic semiopen
hypersoft set contained in (Θ,J)

(iv) If (Θ,J)⊆(χ,B), then ISHSint(Θ,

J)⊆ISHSint(χ,B)

(v) IHSHint(IHSHint(Θ,J)) � IHSHint(Θ,J)
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(vi) IHSHint(Θ,J)∪ IHSHint(χ,B)⊆IHSHint
[(Θ,J)∪ (χ,B)]

(vii) IHSHint[(Θ,J)∩ (χ,B)]⊆IHSHint(Θ,J)∩
IHSHint(χ,B)

Theorem 15. Let (Xϖ, τ) be an IHTS and
(Θ,J), (χ,B) ∈ P(ϖ,X).,en, the following properties hold:

(i) ISHScl(∅X) � ∅X and ISHScl(ϖ,X) � (ϖ,X)

(ii) ISHScl(Θ,J)⊆(Θ,J)

(iii) ISHScl(Θ,J) is the smallest intuitionistic semiclosed
hypersoft set that contains (Θ,J)

(iv) If (Θ,J)⊆(g, B), then ISHScl(Θ,J)⊆ISHScl(χ,B)

(v) IHSHcl(IHSHcl(Θ,J)) � IHSHcl(Θ,J)

(vi) IHSHcl(Θ,J)∪ IHSHcl(χ,B)⊆IHSHcl[(Θ,J)∪ (

χ,B)]

(vii) IHSHcl[(Θ,J)∩ (χ,B)]⊆IHSHcl(Θ,J)∩ IHSHcl
(χ,B)

Theorem 16. Every intuitionistic open (closed) hypersoft set
in an IHTS (Xϖ, τ) is an intuitionistic semiopen (closed)
hypersoft set.

Proof. Let (Θ,J) be an intuitionistic open hypersoft set.
+en, IHint(Θ,J) � (Θ,J). Since (Θ,J)⊆IHcl(Θ,J),
(Θ,J)⊆IHcl(IHint(Θ, J)). +us, (Θ,J) ∈ ISOHS(X). □

Theorem 17. Let (Xϖ, τ) be an IHTS and
(Θ,J), (χ,B) ∈ P(ϖ,X). If either (Θ,J) ∈ ISOHS(X) or
(χ,B) ∈ ISOHS(X), then IHcl(IHint(Θ,J)∩ (χ,B)) �

IHcl(IHint(Θ,J)∩ FHclIHint(χ,B)).

Proof. Let then, we have

IHcl(IHint(Θ,J)∩ (χ,B))⊆

IHcl(IHint(Θ,J)∩ IclIHint(χ,B))

FHcl(IHint(Θ,J)∩ IHclIHint(χ,B))⊆

IHcl[IHcl(IHint(Θ,J))∩ IHcl(IHint(χ,B))]

� IHcl[IHcl[IHint(Θ,J)∩ IHint(χ,B)]]

� IHcl[IHcl[IHint[(Θ,J)∩ (χ,B)]]]

⊆IHcl[IHint(Θ,J)∩ (χ,B)]

⟹IHcl(IHint(Θ,J))∩ IHcl(IHint(χ,B))

⊆IHcl(IHint(Θ,J)∩ (χ,B)).

· (Θ,J), (χ,B) ∈ P(ϖ,X)

(8)

+us, IHcl(IHint(Θ,J)∩ (χ, B)) � IHclIHint(Θ,J)∩
IHcl(IHint(χ,B)). □

Theorem 18. Let (Xϖ, τ) be an IHTS, (Θ,J) be an intui-
tionistic hypersoft open set, and (χ,B) ∈ ISOHS(X). ,en,
(Θ,J)∩ (χ,B) ∈ ISOHS(X).

Proof. Let (Θ,J) be an IOHS and (χ,B) be an ISOHS.

+en, (Θ,J)∩ (χ,B)⊇IHint((Θ,J)∩ (?,B))⟹IHint
((Θ,J)∩ (χ,B))⊆(Θ,J)∩ (χ,B).

+en, IHint((Θ,J)∩ (χ,B))⊆(Θ,J)∩ (χ,B)⊆
IHclIHint((Θ,J)∩ (χ,B)). ⟹(Θ,J)∩ (χ,B)⊆IHclIHint
((Θ,J)∩ (χ,B)).

+erefore, (Θ,J)∩ (χ,B) is an ISOHS. □

Proposition 3. Let (Θ,J) be an intuitionistic hypersoft set
in the IHTS (Xϖ, τ).,en, (Θ,J) is ISCHS if and only if there
exists an ICHS set (ξ,J) such that
IHint(ξ,J)⊆(Θ,J)⊆(ξ,J).

Proposition 4. Every intuitionistic hypersoft closed set is an
ISCHS in an IHTS (Xϖ, τ), but the converse need not be true.

Theorem 19. Let (Θ,J) be an IHS in an IHTS (Xϖ, τ).
,en, (Θ,J) is an ISCHS if and only if
IHint(IHcl(Θ,J))⊆(Θ,J).

Proof. Suppose (Θ,J) is an ISCHS; then, there exists an
IHCS(Θ,J) such that IHint(ξ,J)⊆(Θ,J)⊆(ξ,J).
IHcl(Θ,J)⊆IHcl(ξ,J) � (ξ,J).

+us, IHint(IHcl(Θ,J))⊆IHint(ξ,J)⊆
(Θ,J)⟹IHint(IHcl(ξ,J))⊆(Θ,J).

Conversely, let (Θ,J) be an intuitionistic hypersoft set
in (X?, τ) such that IHint(IHcl(Θ,J))⊆(Θ,J). Let
IHcl(Θ,J) � (ξ,J). +en, IHint(Θ,J)⊆(Θ,J)⊆(ξ,J).
+us, (Θ,J) is an ISCHS. □

Theorem 20. Let (Θ,J)β: β ∈ I􏽮 􏽯 be a family of ISCHSs in
an IHTS (Xϖ, τ). ,en, the intersection ∪ β∈I(Θ,J)β is an
ISCHS in (Xϖ, τ).

Proof. Since each β ∈ I, (Θ,J)β is an ISCHS. +en, there
exists an ICHS (ξ,J)β such that IHint((h,

A)β)⊆(Θ,J)β⊆(ξ,J)β.
+us, ∩ β∈I(IHint((ξ,J)β))⊆∩ β∈I(Θ,J)β⊆∩ β∈I(ξ,J)β.

Consider ∩ β∈I(ξ,J)β � (ξ,J). +en, (ξ,J) is an ICHS, and
hence, ∩ β∈I(Θ,J)β is an ISCHS. □

Theorem 21. Let (Θ,J) be an ISCHS and (ϑ,J) be an ICHS
in (Xϖ, τ). If IHint(Θ,J)⊆(ϑ,J)⊆(Θ,J), then (Θ,J) is an
ISCHS.

Proof. Since (Θ,J) is an ISCHS, there exists an ICHS (ξ,J)

such that IHint(ξ,J)⊆(Θ,J)⊆(ξ,J). +en, (ϑ,J)⊆(ξ,J).
Also, IHintIHint(ξ,J)⊆IHint(ξ,J)⊆IHint(Θ,J)⟹IHint
(ξ,J)⊆(ϑ,J). +erefore, IHint(ξ,J)⊆(ϑ,J)⊆(ξ,J).
Hence, (Θ,J) is an ISCHS. □

Remark 3. For any ICHS (Θ,J), ISHScl(Θ,J) � (Θ,J).
And for any IOHS (ζ,J), ISHSint(ζ,J) � (ζ,J).

Remark 4. If (Θ,J) is an intuitionistic hypersoft set in
(Xϖ, τ), then IHint(Θ,J)⊆ISHSint(Θ,J)⊆
(Θ,J)⊆ISHScl(Θ, J)⊆IHcl(Θ,J).

Theorem 22. Let (Θ,J) be an IHS in (Xϖ, τ). ,en,
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(i) (ISHSint(Θ,J))C � ISHScl((Θ,J)C)

(ii) (ISHScl(Θ,J))C � ISHSint((Θ,J)C)

(iii) ISHSint(IHint(Θ,J)) �

IHint(ISHSint(Θ,J))\\ � IHint(Θ,J)

(iv) ISHScl(IHcl(Θ,J)) � IHcl(ISHScl(Θ,J))\\ �

IHcl(Θ,J)

Proof

(i) ISHSint(Θ,J)⊆(Θ,J)⟹(Θ,J)C⊆(ISHSint(Θ,

J))C.
Since (ISHSint(Θ,J))C is an ISCHS, ISHScl(Θ,

J)C⊆ISHScl((FSHSint(Θ,J))C) � (ISHSint(Θ,

J))C.
Conversely, (Θ,J)C⊆ISHScl((Θ,J)C)⟹
(ISHScl(Θ,J)C)C⊆((Θ,J)C)C � (Θ,J).
ISHScl((Θ,J)C) being ISCHS implies that
ISHScl((Θ,J)C)C is an ISOHS set. +us,
ISHScl((Θ,J)C)C⊆ISHSint(Θ,J). And hence,
(ISHSint(Θ,J))C⊆(ISHScl((Θ,

J)C)C)C � (ISHScl((Θ,J)C)).
(ii) +e proof is the same as that of (i).
(iii) IHint(Θ,J) is IOHS which implies that it is ISOHS.

+erefore, ISHSint(IHint(Θ,J)) � IHint(Θ,J).
Now, IHint(Θ,J)⊆ISHSint(Θ,J) � (Θ,J).

+us, ISHSint(IHint(Θ,J)) � IHint(Θ,J).
(iv) IHcl(Θ,J) is an intuitionistic closed hypersoft set,

and this implies that it is an ISCHS. +erefore,
ISHScl(IHcl(Θ,J)) � IHcl(Θ,J). Now,
(Θ,J)⊆ISHScl(Θ,J)⊆IHcl(Θ,J).

Hence, ISHScl(Θ,J)⊆IHclISHScl((Θ,J))⊆ISHScl
(Θ,J).

+is implies IHcl(ISHScl(Θ,J))⊆IHcl(Θ,J). □

5. Neutrosophic Semiopen and Closed
Hypersoft Sets

Definition 15. Let (Xϖ, τ) be a NHTS and (Θ,J) ∈ P(ϖ,X).
If (Θ,J)⊆NHcl(NHint(Θ,J)), then (Θ,J) is called a
neutrosophic semiopen hypersoft set (NSOHS). We repre-
sent the collection of all neutrosophic semiopen hypersoft
sets by NSOHS(X).

Definition 16. A neutrosophic hypersoft set (Θ,J) in the
NHST space is a neutrosophic semiclosed hypersoft set
(NFSCHS) iff its complement (Θ,J)C is NSOHS. +e class
of NSCHS is denoted by NSCHS(X).

Example 4. Let X � y1, y2, y3􏼈 􏼉 and the attributes be
E1 � a1, a2, a3􏼈 􏼉, E2 � b1, b2􏼈 􏼉, and E3 � c1, c2􏼈 􏼉.

+e neutrosophic hypersoft topological space is

τ � 〈 a1, b1, c2( 􏼁,
y1

0.9, 0.2, 0.1
,

y2

0.2, 0.2, 0.4
,

y3

0.2, 0.1, 0.7
􏼨 􏼩〉, 〈 a1, b2, c2( 􏼁,

y1

0.8, 0.4, 0.3
,

y2

0.7, 0.4, 0.2
,

y3

0.4, 0.6, 0.8
􏼨 􏼩〉􏼨 􏼩􏼨 􏼩

· 〈 a1, b1, c1( 􏼁,
y1

0.8, 0.5, 0.2
,

y2

0.6, 0.5, 0.4
,

y3

0.3, 0.6, 0.2
􏼨 􏼩〉, 〈 a3, b1, c1( 􏼁,

y1

0.6, 0.4, 0.5
,

y2

0.5, 0.7, 0.4
,

y3

0.7, 0.3, 0.2
􏼨 􏼩〉􏼨 􏼩

·

〈 a1, b1, c2( 􏼁,
y1

0.9, 0.2, 0.1
,

y2

0.2, 0.2, 0.4
,

y3

0.2, 0.1, 0.7
􏼨 􏼩〉, 〈 a1, b2, c2( 􏼁,

y1

0.8, 0.4, 0.3
,

y2

0.7, 0.4, 0.2
,

y3

0.4, 0.6, 0.8
􏼨 􏼩〉,

〈 a1, b1, c1( 􏼁,
y1

0.8, 0.5, 0.2
,

y2

0.6, 0.5, 0.4
,

y3

0.3, 0.6, 0.2
􏼨 􏼩〉, 〈 a3, b1, c1( 􏼁,

y1

0.6, 0.4, 0.5
,

y2

0.5, 0.7, 0.4
,

y3

0.7, 0.3, 0.2
􏼨 􏼩〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(9)

+e neutrosophic hypersoft set

〈 a1, b1, c2( 􏼁
y1

0.9, 0.3, 0.1
,

y2

0.3, 0.4, 0.3
,

y3

0.5, 0.2, 0.5
􏼨 􏼩〉, 〈 a1, b2, c2( 􏼁

y1

0.9, 0.5, 0.2
,

y2

0.8, 0.5, 0.1
,

y3

0.5, 0.7, 0.5
􏼨 􏼩〉,

〈 a1, b1, c1( 􏼁
y1

0.9, 0.6, 0.1
,

y2

0.7, 0.7, 0.3
,

y3

0.5, 0.7, 0.1
􏼨 􏼩〉, 〈 a3, b1, c1( 􏼁

y1

0.7, 0.5, 0.3
,

y2

0.6, 0.8, 0.3
,

y3

0.8, 0.4, 0.1
􏼨 􏼩〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)
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is NSOHS.

Theorem 23. Let (Xϖ, τ) be a NHTS and
(Θ,J) ∈ NSOHS(X); then,

(i) Arbitrary neutrosophic hypersoft union of NSOHS is a
NSOHS

(ii) Arbitrary neutrosophic hypersoft intersection of
NSCHS is a NFSCHS

Proof

(i) Let (Θ,J)j: j ∈ J􏽮 􏽯⊆NSOHS(X).
+en, ∀j ∈ J, (Θ,J)j⊆NHcl(Θ,J)j.
Hence, ∪ j(Θ,J)j⊆∪NHcl(NHint(Θ,J)j)⊆\\NHcl

(NHint(∪ j(Θ,J)j)).

+erefore, ∪ j(Θ,J)j ∈ NSOHS(X).
Similarly, (ii) is proved. □

Theorem 24. Let (Xϖ, τ) be a NHTS and (Θ,J) ∈ P(ϖ,X).
,en,

(i) (Θ,J) ∈ NSOHS(X) if and only if there exists
(χ,B) ∈ τ such that (χ,B)⊆(Θ,J)⊆NHcl(χ,B)

(ii) If (Θ,J) ∈ NSOHS(X) and (Θ,J)⊆(ξ,C)⊆
Ncl(Θ,J), then (ξ,C) ∈ NSOHS(X)

Proof

(i) Let (Θ,J) ∈ NSOHS(X). +en, (Θ,J)⊆
NHcl(NHint(Θ,J)). We know that NHint(Θ,

J)⊆(Θ,J); thus, NHint(Θ,J)⊆(Θ,J)⊆
NHcl(NHint(Θ,J)). Let(χ,B) � NHint(Θ,J);
thus, we get (χ,B)⊆(Θ,J)⊆NHcl(χ,B).
Conversely, let (χ,B)⊆(Θ,J)⊆NHcl(χ,B) for some
(χ,B) ∈ τ. +en, (χ,B)⊆NHint(Θ,J)⊆(Θ,J).
⟹NHcl(χ,B)⊆NHcl(NHint(Θ,J)). +us,
(Θ,J)⊆NHcl(NHint(Θ,J)).
+erefore, (Θ,J) ∈ NSOHS(X).

(ii) Let (Θ,J) ∈ NSOHS(X). +en, for some
(χ,B) ∈ τ, (χ,B)⊆(Θ,J)⊆NHcl(χ,B). If (χ,B)⊆
(Θ,J)⊆(ξ,C), then (χ,B)⊆(ξ,C)⊆NHcl(Θ,

J)⊆NHcl(χ,B). Hence, (χ,B)⊆(ξ,C)⊆NHcl(χ,B).
+us, by (i), (ξ,C) ∈ NSOHS(X). □

Definition 17. Let (Xϖ, τ) be a NHTS and (Θ,J) ∈ P(ϖ,X).
+en, the largest neutrosophic semiopen hypersoft set
contained in (Θ,J) is known as the neutrosophic semi-
hypersoft interior of (Θ,J) and is denoted by
FSHSint (Θ,J), i.e., FSHSint(Θ,J) � ∪ (χ,B):􏼈

(χ,B)⊆(Θ,J), (χ,B) ∈ FSOHS(X)}.
And the smallest neutrosophic semiclosed hypersoft set

containing (Θ,J) is called the neutrosophic semi-hypersoft
closure of (Θ,J) and is denoted by NSHScl (Θ,J).

NSHScl(Θ,J) � ∩ (ξ,C): (ξ,C)⊇(Θ,J) and (ξ,C) ∈ NSCHS(X){ }.

(11)

Theorem 25. Let (Xϖ, τ) be a NHTS and (Θ,J),

(χ,B) ∈ P(ϖ,X). ,en, the following properties hold:

(i) NSHSint(∅X) � ∅X and NSHSint(ϖ,X) � (ϖ,X)

(ii) NSHSint(Θ,J)⊆(Θ,J)

(iii) NSHSint(Θ,J) is the largest neutrosophic semiopen
hypersoft set contained in (Θ,J)

(iv) If (Θ,J)⊆(χ,B), then NSHSint(Θ,J)⊆
NSHSint(χ,B)

(v) NHSHint(NHSHint(Θ,J)) � NHSHint(Θ,J)

(vi) NHSHint (Θ,J)∪NHSHint(χ,B)⊆NHSHint[(Θ,

J)∪ (χ,B)]

(vii) NHSHint[(Θ,J)∩ (χ,B)]⊆NHSHint(Θ,J)∩
NHSHint(χ,B)

Theorem 26. Let (Xϖ, τ) be a NHTS and
(Θ,J), (χ,B) ∈ P(ϖ,X).,en, the following properties hold:

(i) NSHScl(∅X) � ∅X and NSHScl(ϖ,X) � (ϖ,X)

(ii) NSHScl(Θ,J)⊆(Θ,J)

(iii) NSHScl(Θ,J) is the minutest neutrosophic semi-
closed hypersoft set that holds (Θ,J)

(iv) If (Θ,J)⊆(χ, B), then NSHScl(Θ,J)⊆
NSHScl(χ,B)

(v) NHSHcl(NHSHcl(Θ,J)) � NHSHcl(Θ,J)

(vi) NHSHcl(Θ,J)∪NHSHcl(χ,B)⊆NHSHcl
[(Θ,J)∪ (χ,B)]

(vii) NHSHcl[(Θ,J)∩ (χ,B)]⊆
NHSHcl(Θ,J)∩NHSHcl(χ,B)

Theorem 27. Every neutrosophic open (closed) hypersoft set
in a NHTS (Xϖ, τ) is a neutrosophic semiopen (closed)
hypersoft set.

Proof. Let (Θ,J) be a neutrosophic open hypersoft set.
+en, NHint(Θ,J) � (Θ,J). Since (Θ,J)⊆NHcl(Θ,J),
(Θ,J)⊆NHcl(NHint(Θ,J)). +us, (Θ,J) ∈ NSOHS
(X). □

Theorem 28. Let (Xϖ, τ) be a NHTS and
(Θ,J), (χ,B) ∈ P(ϖ,X). If either (Θ,J) ∈ NSOHS(X) or
(χ,B) ∈ NSOHS(X), then NHcl(NHint(Θ,J)∩ (χ,B)) �

NHcl(NHint (Θ,J)∩NHclNHint(χ,B)).

Proof. Let (Θ,J), (χ,B) ∈ P(ϖ,X). +en, we have
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NHcl(NHint(Θ,J)∩ (χ,B))⊆

NHcl(NHint(Θ,J)∩NHclNHint(χ,B))

NHcl(NHint(Θ,J)∩NHclNHint(χ,B))⊆

NHcl[NHcl(NHint(Θ,J))∩NHcl(NHint(χ,B))]

� NHcl[NHcl[NHint(Θ,J)∩NHint(χ,B)]]

� NHcl[NHcl[NHint[(Θ,J)∩ (χ,B)]]]

⊆NHcl[NHint(Θ,J)∩ (χ,B)]

⟹NHcl(NHint(Θ,J))∩NHcl(NHint(χ,B))⊆NHcl(NHint(Θ,J)∩ (χ,B)).

(12)

+us, NHcl(NHint(Θ,J)∩ (χ,B)) � NHclNHint
(Θ,J)∩NHcl(NHint(χ,B)). □

Theorem 29. Let (Xϖ, τ) be a NHTS, (Θ,J) be a neu-
trosophic hypersoft open set, and (χ,B) ∈ NSOHS(X). ,en,
(Θ,J)∩ (χ,B) ∈ NSOHS(X).

Proof. Let (Θ,J) be a NOHS set and (χ,B) be a NSOHS.
+en, (Θ,J)∩ (χ,B)⊇NHint((Θ,J)∩ (χ,B))⟹NHint
((Θ,J)∩ (χ,B))⊆(Θ,J)∩ (χ,B). +en, NHint((Θ,

J)∩ (χ,B))⊆(Θ,J)∩ (χ,B)⊆NHclNHint((Θ, J)∩ (χ,

B)).⟹(Θ,J)∩ (χ,B)⊆NHclNHint((Θ,J)∩ (χ,B)).
+erefore, (Θ,J)∩ (χ,B) is a NSOHS. □

Proposition 5. Let (Θ,J) be a neutrosophic hypersoft set in
the NHTS (Xϖ, τ). ,en, (Θ,J) is NSCHS if and only if there
exists a NCHS set (ξ,J) such that NHint(ξ,

J)⊆(Θ,J)⊆(ξ,J).

Proposition 6. Every neutrosophic hypersoft closed set is a
NSCHS set in a NHTS (Xϖ, τ), but the converse need not be
true.

Theorem 30. Let (Θ,J) be a NHS in a NHTS (Xϖ, τ). ,en,
(Θ,J) is NSCHS if and only if NHint(NHcl(Θ,J))⊆(Θ,J).

Proof. Suppose (Θ,J) is a NSCHS set; then, there exists a
NHCS(Θ,J) such that NHint(ξ,J)⊆(Θ,J)⊆(ξ,J).
NHcl(Θ,J)⊆NHcl(ξ,J) � (ξ,J).

+us, NHint(NHcl(Θ,J))⊆NHint(ξ, J)⊆(Θ,J)⟹
NHint(NHcl(ξ,J))⊆(Θ,J).

Conversely, let (Θ,J) be a neutrosophic hypersoft set in
(Xϖ, τ) such that NHint(NHcl(Θ,J))⊆(Θ,J).

Let NHcl(Θ,J) � (ξ,J).
+en, NHint(Θ,J)⊆(Θ,J)⊆(ξ,J).
+us, (Θ,J) is a NSCHS. □

Theorem 31. Let (Θ,J)β: β ∈ I􏽮 􏽯 be a family of NSCHSs in
a NHTS (Xϖ, τ). ,en, the intersection ∩ β∈I(Θ,J)β is a
NSCHS in (Xϖ, τ).

Proof. Since each β ∈ I, (Θ,J)β is a NSCHS.
+en, there exists a NCHS (ξ,J)β such that

NHint((h, A)β)⊆(Θ,J)β⊆(ξ,J)β.

+us, ∩ β∈I(NHint((ξ,J)β))⊆∩ β∈I(Θ,J)β ∩ β∈I
(NHint((ξ,J)β))⊆∩ β∈I(Θ,J)β⊆∩ β∈I(ξ,J)β. Consider
∩ β∈I(ξ,J)β � (ξ,J).

+en, (ξ,J) is a NCHS, and hence, ∩ β∈I(Θ,J)β is a
NSCHS. □

Theorem 32. Let (Θ,J) be a NSCHS and (ϑ,J) be a NCHS
in (Xϖ, τ). If NHint(Θ,J)⊆(ϑ,J)⊆(Θ,J), then (ϑ,J) is a
NSCHS.

Proof. Since (Θ,J) is a NSCHS, there exists a NCHS (ξ,J)

such that NHint(ξ,J)⊆(Θ,J)⊆(ξ,J). +en, (ϑ,J)⊆(ξ,J).
Also, NHintFHint(ξ,J)⊆NHint(ξ,J)⊆NHint(Θ,J). ⟹
NHint(ξ,J)⊆(ϑ,J). +erefore, NHint(ξ,J)⊆(ϑ,J)⊆
(ξ,J).

Hence, (Θ,J) is a NSCHS. □

Remark 5. For any NCHS (Θ,J), NSHScl(Θ,J) � (Θ,J).
And for any NOHS (ζ,J), NSHSint(ζ,J) � (ζ,J).

Remark 6. If (Θ,J) is a neutrosophic hypersoft set in
(Xϖ, τ), then NHint(Θ,J)⊆NSHSint(Θ,J)⊆(Θ,J)⊆
NSHScl(Θ, J)⊆NHcl(Θ,J).

Theorem 33. Let (Θ,J) be a NHS in (Xϖ, τ). ,en,

(i) (NSHSint(Θ,J))C � NSHScl((Θ,J)C)

(ii) (NSHScl(Θ,J))C � NSHSint((Θ,J)C)

(iii) NSHSint(FHint(Θ,J))\\ � NHint
(FSHSint(Θ,J)) � NHint(Θ,J)

(iv) NSHScl(FHcl(Θ,J)) � NHcl(FSHScl(Θ,J))\\

� NHcl(Θ,J)

Proof

(i) NSHSint(Θ,J)⊆(Θ,J)⟹(Θ,J)C⊆(NSHSint(Θ,

J))C.

Since (NSHSint(Θ,J))C is a NSCHS, NSHScl
(Θ,J)C⊆NSHScl((NSHSint(Θ,J))C) � (NSHS int
(Θ,J))C.
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Conversely, (Θ,J)C⊆NSHScl((Θ,J)C)⟹NSHScl
((Θ,J)C)C⊆((Θ,J)C)C � (Θ,J).
NSHScl((Θ,J)C) being FSCHS implies that
NSHScl((Θ,J)C)C is a FSOHS.
+us, NSHScl((Θ,J)C)C⊆NSHSint(Θ,J).
And hence, (NSHSint(Θ,J))C⊆(NSHScl
((Θ,J)C)C)C � (NSHScl((Θ,J)C)).

(ii) +e proof is the same as that of (i).
(iii) NHint(Θ,J) is FOHS implying that it is FSOHS.

+erefore,
NSHSint(NHint(Θ,J)) � NHint(Θ,J).
Now, NHint(Θ,J)⊆NSHSint(Θ,J) � (Θ,J).
+us, NSHSint(NHint(Θ,J)) � NHint(Θ,J).

(iv) NHcl(Θ,J) is neutrosophic closed hypersoft im-
plying that it is NSCHS.

+erefore, NSHScl(NHcl(Θ,J)) � NHcl(Θ,J).
Now, (Θ,J)⊆NSHScl(Θ,J)⊆NHcl(Θ,J).
Hence, NSHScl(Θ,J)⊆NHclNSHScl((Θ,J))\\⊆

NSHScl(Θ,J).
+is implies NHcl(NSHScl(Θ,J))⊆NHcl(Θ,J). □

6. Application

In this section, we present a multiattribute group decision-
making (MAGDM) application of the NHS and NHS to-
pology using two different algorithms, and the results of
both algorithms are compared at the end. +e algorithms
proposed in [36] are considered, and some of their tech-
niques are followed. Hypersoft sets are more feasible than
soft sets and are more advantageous to use for applications
since they can be dealt with more uncertainties. +ere are
many methods proposed for multiattribute group decision-
making applications, but the proposed method is feasible
than the methods which were proposed beforehand and
done by using the more advanced recent work.

6.1. Numerical Example. We propose to analyse the risk of
COVID-19 by two MAGDM methods described by Algo-
rithms 1 and 2 based on neutrosophic hypersoft sets and
topology. We have all been affected by the current COVID-
19 pandemic. However, the impact and consequences of the
pandemic vary depending on our status as individuals and
members of the society.We all find it difficult to be treated in
hospitals because COVID affects everyone regardless of age.
As a result, determining who should be treated first and
assisting the most affected in becoming cured are difficult.
+e following method proposes methods for reducing the
risk and treating patients based on their high risk of virus
infection. Suppose that a committee of doctors have to give a
report on patients having risk of COVID-19 in a particular
area or hospital.

Let X � p1, p2, p3, p4, p5􏼈 􏼉 be the patients reported to
the hospital. Suppose that the doctors consider the following
set of attributes: E � e1, e2, e3, e4, e5􏼈 􏼉, where the attributes
are e1 � age, e2 � illness, and e3 � symptoms of the patients.

+e attributes are subclassified as E1 � e11, e12, e13,􏼈

e14, e15} � age, where e11 is people of age 0 to 17, e12 is
people of age 18 to 44, e13 is people of age 45 to 64, e14 is
people of age 65 to 74, and e15 is people of age 75+.

E2 � e21, e22, e23, e24􏼈 􏼉 � illness, where e21, e22, e23, and
e24 represent the patients with diabetes and hypertension,
cardiovascular disease, chronic respiratory disease, and
cancer, respectively.

E3 � e31, e32, e33􏼈 􏼉 � immune level, where e31, e32, and
e33 represent people with low, medium, and high level of
immune count.

E4 � e41, e42, e43􏼈 􏼉 � symptoms, where e41 is the person
having most common symptoms (fever, dry cough, and
tiredness), e42 is the person having less common symptoms
(aches and pain, sore throat, diarrhoea, headache, and loss of
taste or smell), and e43 is the person having serious
symptoms (shortness of breath, chest pain, and loss of
speech or movement).

Doctors divide the criteria into two subsets, A (category
1, for higher risk) and B (category 2, for medium risk).

Category 1: A represents attributes e3 and e4
Category 2: B represents attributes e2, e3, and e4

First, we solve the problem by using the NHS-MAGDM
method as described in Algorithm 1.

Step 1: two NHSs, namely, (f,A) and (g,B) over X,
are constructed after receiving all the required data
from the committee.

(f,A) � α1, α2, α3􏼈 􏼉, where α1 � f(e31, e43), α2 �

f(e32, e43), and α3 � f(e31, e42), and (g,B) � β1, β2,􏼈

β3}, where β1 � g(e21, e31, e43), β2 � g(e21, e32, e42),

and β3 � g(e22, e32, e41). +e values for the NHS (f,A)

and (g,B) are given in Tables 1 and 2.

Step 2: we are now constructing the NHS topology
given by τ � ∅, X, (f,A), (g,B)􏼈 􏼉, where ∅, X are
NHS empty and full sets. +e neutrosophic hypersoft
open set (f,A) and (g,B) are formed in Tables 3 and
4, respectively, by taking the average for each element
from Tables 1 and 2.

Step 3: the score matrix of NHS sets (f,A) and (g,B)

is calculated in Tables 5 and 6, respectively.
Step 4: we are now calculating the decision table of
(f,A) and (g,B) by averaging the score values cor-
respondingly. Table 7 gives the decision values of
(f,A) and (g,B).
Step 5: now, by adding the decision values of (f,A) and
(g,B), we find the final decision value. Table 8 is the
required final decision table.
Step 6: using Table 8, the final ranking of the patients is
given by

p2 >p3 >p5 >p1 >p4. (13)

We see that patient 2 has the maximum value. So, patient
2 is selected for the immediate treatment.
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Step 1: input NHS (f,A) and (g,B).
Step 2: construct NHS topology τ such that (f,A) and (g,B) are ONHS in τ. Construct the hypersoft open set (f, A) such that, for
each element, the average is taken to form the table.
Step 3: calculate the score matrix corresponding to each ONHS.(f,A) denotes the neutrosophic hypersoft set; then, the neutrosophic
set (fT,A) in which each entry in the set fT(e) is the score function of the respective entries in the hypersoft set f(e) is called the
score matrix. For each hypersoft element f(x), s(f) � (1/n(f))􏽐φ∈f(x)φ is the score function of f(x), where n(f) is the number of
values in f(x).
Step 4: find the cardinality of all ONHSs by using C(f,A) � Cf(a)/a: a ∈ A􏼈 􏼉, where Cf(a) � 􏽐p∈Xf(p)/〈X〉.
Step 5: find the aggregate fuzzy set of the score matrix by using |E|∗M(f,A)∗ � M(f,A) ∗Mt

C(f,A), where M(f,A)∗ , M(f,A), andMt
C(f,A)

represent the aggregate fuzzy matrix, score matrix, and transpose of the cardinal set, respectively.
Step 6: add (f,A)∗and (g,B)∗ to find decision NHS.
Step 7: determine the optimal choice given by max (f,A)∗ + (g,B)∗(p)􏼈 􏼉.

ALGORITHM 2:

Step 1: input NHS(f,A) and (g,B).
Step 2: construct NHS topology τ such that (f,A) and (g,B) are ONHS in τ. Construct the hypersoft open set (f,A) such that, for
each element, the average is taken to form the table.
Step 3: calculate the score matrix corresponding to each ONHS. (f,A) denotes the neutrosophic hypersoft set; then, the
neutrosophic set (fT,A) in which each entry in the set fT(e) is the score function of the respective entries in the hypersoft
set f(e) is called the score matrix. For each hypersoft element f(x), s(f) � (1/n(f))􏽐φ∈f(x)φ is the score function of f(x), where
n(f) is the number of values in f(x).
Step 4: calculate the average of each ONHS for each pi, and let it be denoted by di and ei. +is is the decision table for each ONHS.
Step 5: add the decision table of ONHS (f,A) and (g,B). +is is the final decision table.
Step 6: select the optimal alternative pi using max di + ei􏼈 􏼉.

ALGORITHM 1:

Table 1: Values for (f,A).

(f, A) α1 α2 α3
X e31 e43 e32 e43 e31 e42
p1 (0.5, 0.4, 0.1) (0.1, 0.1, 0.1) (0.5, 0.3, 0.2) (0.1, 0.1, 0.1) (0.5, 0.4, 0.1) (0.8, 0.2, 0.1)
p2 (0.7, 0.2, 0.2) (0.7, 0.2, 0.1) (0.6, 0.4, 0.2) (0.7, 0.2, 0.1) (0.7, 0.2, 0.2) (0.6, 0.1, 0.2)
p3 (0.1, 0.4, 0.4) (0.8, 0.4, 0.2) (0.8, 0.1, 0.1) (0.8, 0.4, 0.2) (0.1, 0.4, 0.4) (0.5, 0.2, 0.1)
p4 (0.1, 0.4, 0.1) (0.5, 0.2, 0.1) (0.1, 0.2, 0.1) (0.5, 0.2, 0.1) (0.1, 0.4, 0.1) (0.3, 0.2, 0.1)
p5 (0.8, 0.3, 0.1) (0.6, 0.4, 0.2) (0.6, 0.2, 0.1) (0.6, 0.4, 0.2) (0.8, 0.3, 0.1) (0.4, 0.1, 0.1)

Table 2: Values for (g,B).

X
β1 β2 β3

e21 e31 e43 e21 e32 e42 e22 e32 e41
p1 (0.8, 0.2, 0.1) (0.5, 0.4, 0.1) (0.1, 0.1, 0.1) (0.8, 0.2, 0.1) (0.5, 0.3, 0.2) (0.8, 0.2, 0.1) (0.4, 0.2, 0.2) (0.5, 0.3, 0.2) (0.9, 0.1, 0.1)
p2 (0.9, 0.2, 0.1) (0.7, 0.2, 0.2) (0.7, 0.2, 0.1) (0.9, 0.2, 0.1) (0.6, 0.4, 0.2) (0.6, 0.1, 0.2) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.8, 0.2, 0.2)
p3 (0.5, 0.3, 0.4) (0.1, 0.4, 0.4) (0.8, 0.4, 0.2) (0.5, 0.3, 0.4) (0.8, 0.1, 0.1) (0.5, 0.2, 0.1) (0.8, 0.2, 0.2) (0.8, 0.1, 0.1) (0.6, 0.4, 0.2)
p4 (0.6, 0.4, 0.2) (0.1, 0.4, 0.1) (0.5, 0.2, 0.1) (0.6, 0.4, 0.2) (0.1, 0.2, 0.1) (0.3, 0.2, 0.1) (0.7, 0.3, 0.2) (0.1, 0.2, 0.1) (0.5, 0.3, 0.2)
p5 (0.3, 0.2, 0.1) (0.8, 0.3, 0.1) (0.6, 0.4, 0.2) (0.3, 0.2, 0.1) (0.6, 0.2, 0.1) (0.4, 0.1, 0.1) (0.4, 0.2, 0.1) (0.6, 0.2, 0.1) (0.6, 0.3, 0.2)

Table 3: +e tabular representation of (f,A).

X α1 α2 α3
p1 (0.3, 0.25, 0.1) (0.3, 0.2, 0.15) (0.65, 0.30, 0.1)
p2 (0.7, 0.2, 0.15) (0.65, 0.3, 0.15) (0.65, 0.15, 0.2)
p3 (0.45, 0.4, 0.3) (0.8, 0.2, 0,1) (0.3, 0.3, 0.25)
p4 (0.3, 0.3, 0.1) (0.3, 0.2, 0.1) (0.2, 0.3, 0.1)
p5 (0.7, 0.35, 0.15) (0.6, 0.3, 0.15) (0.6, 0.2, 0.1)

Journal of Mathematics 13



Using Algorithm 2, we are now solving the same
problem.

Steps 1, 2, and 3 are identical to those in Algorithm 1.
Step 4: the cardinal is computed by the formula given
above in the algorithm. +e cardinal for (f,A) is

C(f,A) � 0.315, 0.301, 0.292{ }. (14)

Similarly, the cardinal for (g,B) is

C(g,B) � 0.33, 0.304, 0.334{ }, (15)

and the cardinal for empty and full sets is completely 0
and 1, respectively.
Step 5: we are now finding the fuzzy matrix aggregate
M(f,A)∗ :

M(f,A)∗ �
1
4

0.217 0.217 0.35

0.35 0.37 0.33

0.38 0.37 0.28

0.23 0.2 0.2

0.4 0.35 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0.315

0.301

0.292

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1
4

0.236

0.318

0.313

0.191

0.319

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0.059

0.0795

0.07825

0.04775

0.07975

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

+us, we obtain aggregate fuzzy set (f,A)∗ given by
(f,A)∗ � (p1, 0.059), (p2, 0.0795), (p3, 0.07825), (p4,􏼈

0.04775), (p5, 0.07975)}.
We can also find an aggregate fuzzy matrix, M(g,B)∗ :

M(g,B)∗ �
1
4

0.27 0.35 0.32

0.37 0.37 0.39

0.39 0.33 0.38

0.29 0.24 0.29

0.33 0.23 0.29

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0.33

0.304

0.334

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1
4

0.3525

0.3649

0.356

0.2657

0.2758

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0.076

0.091

0.089

0.066

0.0689

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(g,B)
∗

� p1, 0.076( 􏼁, p2, 0.091( 􏼁, p3, 0.089( 􏼁,􏼈

p4, 0.066( 􏼁, p5, 0.0689( 􏼁􏼉.

(17)

Step 6: now, by adding the aggregate fuzzy sets, we find
the final decision set (f,A)∗ and (g,B)∗:

Table 4: +e tabular representation of (g,B).

X β1 β2 β3
p1 (0.47, 0.23, 0.1) (0.7, 0.23, 0.13) (0.6, 0.2, 0.17)
p2 (0.77, 0.2, 0.13) (0.7, 0.23, 0.17) (0.67, 0.3, 0.2)
p3 (0.47, 0.37, 0.33) (0.6, 0.2, 0.2) (0.73, 0.23, 0.17)
p4 (0.4, 0.33, 0.13) (0.33, 0.27, 0.13) (0.43, 0.27, 0.17)
p5 (0.57, 0.3, 0.13) (0.43, 0.17, 0.1) (0.53, 0.23, 0.13)

Table 5: Score matrix of (f,A).

X α1 α2 α3
p1 0.217 0.217 0.35
p2 0.35 0.37 0.33
p3 0.38 0.37 0.28
p4 0.23 0.2 0.2
p5 0.4 0.35 0.3

Table 6: Score matrix of (g,B).

X β1 β2 β3
p1 0.27 0.35 0.32
p2 0.37 0.37 0.39
p3 0.39 0.33 0.38
p4 0.29 0.24 0.29
p5 0.33 0.23 0.29

Table 7: Decision table.

(f,A) (g,B)

di Values ei Values
d1 0.261 e1 0.313
d2 0.35 e2 0.376
d3 0.34 e3 0.367
d4 0.21 e4 0.273
d5 0.35 e5 0.283

Table 8: Final decision table.

di + ei Values

d1 + e1 0.574
d2 + e2 0.726
d3 + e3 0.707
d4 + e4 0.483
d5 + e5 0.633
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(f,A)
∗
(p) � p1, 0.059( 􏼁, p2, 0.0795( 􏼁, p3, 0.07825( 􏼁, p4, 0.04775( 􏼁, p5, 0.07975( 􏼁􏼈 􏼉,

(g,B)
∗
(p) � p1, 0.076( 􏼁, p2, 0.091( 􏼁, p3, 0.089( 􏼁, p4, 0.066( 􏼁, p5, 0.0689( 􏼁􏼈 􏼉.

(18)

+us, (f,A)∗(p) + (g,B)∗(p)􏼈 􏼉 � (p1, 0.135)􏼈

(p2, 0.170), (p3, 0.167), (p4, 0.114), (p5, 0.149)}.
Step 7: by using the optimal decision function
max (f,A)∗ + (g,B)∗(p)􏼈 􏼉, we have the ranking of the
patients who are of high risk of COVID-19. +e final
ranking according to Algorithm 2 is given by

p2 >p3 >p5 >p1 >p4. (19)

6.2. Comparison Analysis. Using NHS, cardinal sets, score
matrices, and aggregate fuzzy sets, we produced two
MAGDM techniques. Table 9 provides a comparison of both
algorithms, showing the optimal alternative and results.
Both algorithms provide the same optimum decision, as can
be seen in the comparison table.

7. Conclusion

+e idea of hypersoft sets is a newly emerging technique in
dealing with problems in the real world. Herein, we have
defined the new concept of semi-hypersoft sets of the fuzzy
hypersoft topological space. +en, it has been extended to
intuitionistic and neutrosophic semisets of intuitionistic and
neutrosophic hypersoft topological spaces along with basic
characterizations. Also, a real-life example in the current
scenario of COVID-19 to make decision on the critical stage
of medical diagnosis has been projected in MAGDM. +is
hypersoft topological space will also be extended to Py-
thagorean hypersoft topological spaces, as well as various
forms of open sets, and more fuzzy topological space
properties will be investigated. +e concept of open sets
introduced in this work may be extended to pre-, alpha-open
neutrosophic hypersoft sets and strong open neutrosophic
hypersoft sets based on which more such applications to
real-world problems can be explored.
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In order to simplify the complex calculation and solve the difficult solution problems of neutrosophic number optimization
models (NNOMs) in the practical production process, this paper presents two methods to solve NNOMs, where Matlab built-in
function “fmincon()” and neutrosophic number operations (NNOs) are used in indeterminate environments. Next, the two
methods are applied to linear and nonlinear programming problems with neutrosophic number information to obtain the optimal
solution of the maximum/minimum objective function under the constrained conditions of practical productions by neu-
trosophic number optimization programming (NNOP) examples. Finally, under indeterminate environments, the fit optimal
solutions of the examples can also be achieved by using some specified indeterminate scales to fulfill some specified actual
requirements. )e NNOP methods can obtain the feasible and flexible optimal solutions and indicate the advantage of simple
calculations in practical applications.

1. Introduction

Traditional inventorymodels [1–4] and production planning
models [5–7] involve deterministic constrained functions
and/or objective functions in deterministic environments.
Nevertheless, uncertainty is nearly universal in real world.
)erefore, many uncertain optimization methods were
proposed for optimization problems with uncertain vari-
ables, interval numbers, stochastic, and fuzzy logics [8–15].
In many applied fields, such as management, engineering,
and design problems, uncertain programming has been
broadly carried out so far. In order to obtain the optimal
crisp values of the objective function and the optimal feasible
crisp solutions of the decision variables, the constrained
functions and/or objective functions are usually changed
into some crisp or deterministic programming problems in
existing uncertain programming approaches. So, the
aforementioned transformed methods are not really
meaningful indeterminate approaches because the real in-
determinate optimization problems can only indicate

indeterminate solutions rather than optimal crisp solutions
in indeterminate environments. Nevertheless, indeterminate
programming problems imply the corresponding indeter-
minate optimal values of the objective function and inde-
terminate optimal solutions for the decision variables under
indeterminate environments. So, it is necessary to find some
fit optimization approaches for dealing with indeterminate
programming problems with indeterminate solutions.

Smarandache [16–18] is a pioneer of indeterminacy
theories which provide the new minds to solve indetermi-
nacy problems. He adopted the imaginary value denoted by I
and then introduced a neutrosophic number (NN) z� x+ yI
for x, y ∈R (R: the set of all real numbers) composed of the
determinate part x and indeterminate part yI. As for de-
scribing indeterminate and incomplete information, obvi-
ously, NNs in the indeterminacy theories are a useful
mathematical tool. With the development of indeterminacy
theories, NNs were also applied to fault diagnosis [19, 20]
and decision making [21, 22] under indeterminate
environments.
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Further, thick function or interval function named
neutrosophic function, neutrosophic precalculus, and neu-
trosophic calculus were provided by Smarandache [23] in
2015, where thick function e: S⟶ E(S) (E(S) is the set of all
interval functions) as the form of an interval function e(x)�

[e1(x), e2(x)]. )e indeterminate function was applied in
engineering problems successfully. For example, Ye et al.
[24, 25] and Chen et al. [26, 27] proposed expressions of
neutrosophic function and applied NNs in analyzing the
joint roughness coefficient. Later, Ye [28] used neutrosophic
linear equations of NNs to solve traffic flow problems.

At present, neutrosophic linguistic numbers, hesitant
neutrosophic linguistic numbers, and their aggregation
operators were applied to multiattribute decision making
[29–31].

But in real situations, affected by each kind subjective
and objective reasons, such as absences of precise infor-
mation judged by decision makers or experts, loss of data,
and measurement errors, there exist some indeterminate
problems. As for the concepts of NNs, NN functions con-
taining indeterminacy I can represent the indeterminate
problems with partial certainty and partial uncertainty
under indeterminate environments. Ye [32] and Jiang and
Ye [33] introduced NN nonlinear and linear programming
models and their preliminary solution methods. However,
existing methods for solving complex NN optimization
problems imply some difficulty and calculational complexity
in their solution process. Inspired by the previous solution
methods, this paper first selects the models of practical
applications in production process, such as inventory
models and production planning models. )en, NN non-
linear and linear mathematical models and their solution
methods (Matlab built-in function “fmincon()” and oper-
ations of NNs) are built with indeterminacy I as our pre-
liminary application study. Finally, real examples of NN
linear programming (NN-LP) and NN nonlinear pro-
gramming (NN-NP) problems illustrate the feasibility of the
proposed methods. )e advantage of the proposed methods
is that the optimization calculations are simple and effective
in practical applications.

)e remainder of this paper is organized as follows.
Section 2 depicts some concepts and their operations of
NNs. Section 3 first introduces NN-NP problems with an
inventory mathematical model and model formation and
then uses two methods (Matlab built-in function “fmin-
con()” and operations of NNs) to solve the NN-NP problems
in indeterminate setting. Section 4 presents NN-LP prob-
lems with the production planning mathematical model and
model formation and then applies two methods regarding
the Matlab built-in function “fmincon()” and operations of
NNs to solve the solutions in the NN-NP problems and to
show the simplicity and effectiveness of the proposed NN-LP
methods. Conclusions and future research are provided in
Section 5.

2. Mathematical Preliminaries

2.1. Some Concepts and -eir Operations of Neutrosophic
Numbers (NNs). )e concept of NN was first proposed by

Smarandache [34, 35], which consists of two parts (a de-
terminate part and an indeterminate part). He defined the
mathematical expression form z� x+ yI for x, y ∈R, where R
represents all real numbers and I is indeterminacy. So, it is
conveniently used in indeterminate environments.

For example, consider that a NN is z� 13 + 5I. )en, its
determinate part value is 13 and its indeterminate part value
is 5I. When I ∈ [0, 0.5], it is equivalent to z ∈ [13, 15.5] for
sure z≥ 13.

Let z1 � x1 + y1I and z2 � x2 + y2I be two NNs. )en,
Smarandache [34, 35] gave their operations of NNs in the
following:

(1) z1 + z2 � x1 + x2 + (y1 + y2)I.
(2) z1– z2 � x1– x2 + (y1– y2)I.
(3) z1 × z2 � x1x2 + (x1y2 + x2y1 + y1y2)I, in particular,

when z1 � 0 and z2 � I, we get the equation with
0× I� 0.

(4) z2
1 � (x1 + y1I)2 � x2

1 + (2x1y1 +y2
1)I, in particular,

when z1 � I, we get the equation with Î2� I.
(5) z1/z2 � x1 + y1I/x2 + y2I � x1/x2 + x2y1 −

x1y2/x2(x2 + y2) I for x2 ≠ 0 and x2 ≠ –y2.

(6) ��
z1

√
�

�������
x1 + y1I

􏽰
�

��
x1

√
− (

��
x1

√
+

������
x1 + y1

√
)I

��
x1

√
− (

��
x1

√
−

������
x1 + y1

√
)I

−
��
x1

√
+ (

��
x1

√
+

������
x1 + y1

√
)I

−
��
x1

√
+ (

��
x1

√
−

������
x1 + y1

√
)I

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

.

2.2. Example

)ere are two NNs z1 � 5 + 3I and z2 � 2 + 5I. )en, we
can obtain the following results according to the above
operations:

(1) z 1 + z2 � x1 + x2 + (y1 + y2)I� 5 + 2 + (3 + 5)I� 7 + 8I.
(2) z 1− z2 � x1− x2 + (y1− y2)I� 5− 2 + (3− 5)I� 3− 2I.
(3) z 1 × z2 � x1x2 + (x1y2 + x2y1 + y1y2)I� 5× 2 + (5× 5

+ 3× 2 + 3× 5)I� 10 + 46I.
(4) z2

1 � (x1 + y1I)2 � x2
1 + (2x1y1 +y2

1)I� 52 + (2× 5× 3
+ 32)I � 25 + 39I, z2

2 � (x2 + y2I)2 � x2
2 + (2x2y2 +y2

2)
I� 22 + (2× 2× 5 + 52)I� 4 + 45I.

(5) z1/z2 � x1 + y1I/x2 + y2I � x1/x2 + x2y1–x1y2/x2
(x2 + y2)I � 5/2 + 2 × 3 − 5 × 5/2(2 + 5)I � 2.5 −

1.3571I.
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3. Neutrosophic Number Nonlinear
Programming (NN-NP)

3.1. NN-NP Mathematical Model. )e usual mathematical
model of NN-NP is represented in the following form
[36, 37]:

MinF(x, I)

s.t.gi(x, I)≤ ci, i � 1, 2, ..., p,

hj(x, I) � 0, j � 1, 2, ..., q,

x ∈ Z
n
,

(1)

where g1(x, I), g2(x, I), ..., gp(x, I), h1(x, I), h2(x, I):
Zn⟶Z(Z is the set of all NNs), and I ∈ [IL, IU](the interval
range of I).

3.2. Inventory Mathematical Model [38]

3.2.1. Notations. )e following notations are used in the
inventory model.

)ree decision variables:

(i) D: demand/unit/time
(ii) Qp: production quantity/batch
(iii) Cs: setup cost/unit/time

Except the above cost variable CS, three other cost
variables are

(i) Cta: total average cost/unit/time
(ii) Ctp: total production cost/cycle
(iii) Ch: time depending on holding cost/unit/item

Other time and space variables:

(i) T: every cycle of length
(ii) Q(t): inventory level at time t (t≥ 0)
(iii) S: total storage space area
(iv) s0: space area/unit/quantity.

3.2.2. Assumptions. )e inventory model is developed by
considering the following assumptions:

(i) Only one item is involved in the inventory system.
(ii) )e replenishment occurs with the near instanta-

neous response.
(iii) )e startup time can be ignored.
(iv) )e demand rate at any time is constant.
(v) )e total production cost Ctp is related to the setup

cost CS and production quantity QP.
(vi) Holding cost is the time depended function.

3.3. Model Formation. As shown in Figure 1, in every time
period T, the value of the production quantity Q(t) decreases
from Qp to zero. )e slope of the line is constant negative D
and denoted by (dQ(t)/dt) � − D(0≤ t≤T).

)e total average cost of the cycle T (denoted by Cta)
consists of three sections: setup cost (denoted by C1),
holding cost (denoted by C2), and production cost (denoted
by C3).

Cta � C1 + C2 + C3. (2)

Because we have the equation Q(t)�Qp− Dt, we obtain
the cycle T, T � (Qp/D).

C1 �
Cs

T
�

CsD

Qp

,

C2 �
􏽒

T

0 ChQ(t)dt

T
�

􏽒
T

0 etQ(t)dt

T
�

eQ
3
p/6D

2
􏼐 􏼑

T

C3 �
Ctp

T
�

fC
− x
s Q

− y
p

T
�

f D

C
x
s Q

1+y
p

eQ
2
p

6D
.

(3)

Based on equations (2) and (3), we obtain the following
equation:

Cta �
CsD

Qp

+
eQ

2
p

6D
+

f D

C
x
s Q

1+y
p

. (4)

So, the inventory model is constructed as follows:

MinCta D, Cs, Qp􏼐 􏼑 �
CsD

Qp

+
eQ

2
p

6D
+

f D

C
x
s Q

1+y
p

,

s.t. s0Qp ≤ S,

D, Cs, Qp > 0.

(5)

3.4. Solution Corresponding to Matlab Built-In Function
“fmincon()”. In order to conveniently calculate the solu-
tions, we simplify some parameters and set some con-
stants with history records, where e � 18, f � 5, x � 1, y � 3,
s0 � 200, and S � 1100. When we assume D � x1, Cs � x2,
and Qp � x3, we can obtain the following mathematical
model:

DDD

3T2TT
t0

Qp

Q(t)

Figure 1: Crisp inventory model.
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MinCta x1, x2, x3( 􏼁 �
x1x2

x3
+
18x

2
3

6x1
+

5x1

x2x
4
3
,

s.t. 200x3 ≤ 1100withmaximumallowable tolerance

400x1, x2, x3 ≥ 0.

(6)

Assume a1 � x1− 40.496I, a2 � x2 + 0.058I, and a3 � x3− 2I;
then, equation (6) can be expressed in the following form:

s.t. 200(x3 − 2I)≥ 1100withmaximum allowable tolerance 400,

x1 − 40.496I> 0,

x2 + 0.058I> 0,

x3 − 2I> 0.

(7)

According to the de-neutrosophication technique pro-
posed by Ye [39] and considering I� 0 or 0.5 or 1 as the
minimum or moderate or maximum indeterminacy, we can
obtain three optimal solutions as follows:

(1) x∗1 � 80.615, x∗2 � 0.097, x∗3 � 7.500, and f(x∗, I)

� 4.187 for I� 0.
(2) x∗1 � 60.367, x∗2 � 0.126, x∗3 � 6.5, and f(x∗, I)

� 4.343 for I� 0.5.
(3) x∗1 � 40.119, x∗2 � 0.155, x∗3 � 5.5, and f(x∗, I)

� 4.525 for I� 1.

Clearly, using the indeterminacy I ∈ [0, 1], different
optimal results are revealed. )e optimal solutions of the
optimization problem are x∗1 � [40.119, 80.615], x∗2 � [0.097,
0.155], and x∗3 � [5.5, 7.5] for f(x∗, I) � [4.187, 4.525],
which show the interval optimal ranges.

3.5. Solution Corresponding to Operations of NNs.
According to the front optimal solutions, we assume
a1 � x1 + y1I� 80.615− 40.496I, a2 � x2 + y2I� 0.097 + 0.058I,
and a3 � x3− y3I� 7.500− 2I, and then we give the results by
equation (9):

MinCta a1, a2, a3( 􏼁 �
a1a2

a3
+
18a

2
3

6a1
+

5a1

a2a
4
3

�
x1 + y1I( 􏼁 x2 + y2I( 􏼁

x3 + y3I
+
18 x3 + y3I( 􏼁

2

6 x1 + y1I( 􏼁
+

5 x1 + y1I( 􏼁

x2 + y2I( 􏼁 x3 + y3I( 􏼁
4

�
x1x2 + x1y2 + x2y1 + y1y2( 􏼁I

x3 + y3I
+
3 x

2
3 + 2x3y3 + y

2
3􏼐 􏼑I􏽨 􏽩

x1 + y1I( 􏼁
+

5 x1 + y1I( 􏼁

x2 + y2I( 􏼁 x
2
3 + 2x3y3 + y

2
3􏼐 􏼑I􏽨 􏽩

2

�
x1x2 + x1y2 + x2y1 + y1y2( 􏼁I

x3 + y3I
+
3 x

2
3 + 2x3y3 + y

2
3􏼐 􏼑I􏽨 􏽩

x1 + y1I( 􏼁

+
5 x1 + y1I( 􏼁

x2 + y2I( 􏼁 x
4
3 + 2 2x3y3 + y

2
3􏼐 􏼑x

2
3 + 2x3y3 + y

2
3􏼐 􏼑

2
􏼔 􏼕I􏼚 􏼛

5x1

x2x
4
3

+ 5

x2x
4
3y1 − x1

x2 2 2x3y3 + y
2
3􏼐 􏼑x

2
3 + 2x3y3 + y

2
3􏼐 􏼑

2
􏼔 􏼕

+y2x
4
3

+y2 2 2x3y3 + y
2
3􏼐 􏼑x

2
3 + 2x3y3 + y

2
3􏼐 􏼑

2
􏼔 􏼕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

x2x
4
3 x2 + y2( 􏼁 x

4
3 + y3 2x3 + y3( 􏼁􏼐 􏼑 2x

2
3 + 2x3y3 + y

2
3􏼐 􏼑􏽨 􏽩

I.

(8)

Because a1 � 80.615− 40.496I, a2 � 0.097 + 0.058 I, and
a3 � 7.500− 2I, we can get x1 � 80.615, y1 � − 40.496,
x2 � 0.097, y2 � 0.058, x3 � 7.5, and y3 � − 2. )en, we cal-
culate the three costs, respectively, as follows:

Setup cost:

C1 �
x1 + y1I( 􏼁 x2 + y2I( 􏼁

x3 + y3I
� 1.407 + 0.087I. (9)

Holding cost:

C2 �
18 x3 + y3I( 􏼁

2

6 x1 + y1I( 􏼁
� 2.093 + 0.169I (10)

Production cost:

C3 �
5 x1 + y1I( 􏼁

x2 + y2I( 􏼁 x3 + y3I( 􏼁
4 � 1.047 + 0.082I (11)

)en, we add the three costs and obtain the total cost Cta
with equation (2) as follows:
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Cta � C1 + C2 + C3 �
x1 + y1I( 􏼁 x2 + y2I( 􏼁

x3 + y3I
+
18 x3 + y3I( 􏼁

2

6 x1 + y1I( 􏼁

+
5 x1 + y1I( 􏼁

x2 + y2I( 􏼁 x3 + y3I( 􏼁
4

� (1.047 + 0.087I) +(2.093 + 0.169I) +(1.047 + 0.082I)

� 4.187 + 0.338I.

(12)

So, the calculational results validate that the same so-
lution is obtained by using the two methods of both the
Matlab built-in function “fmincon” and the operations of
NNs, which are x∗1 � [40.119, 80.615], x∗2 � [0.097, 0.155],
and x∗3 � [5.5, 7.5] for f(x∗, I) � [4.187, 4.525]. We also
obtain every cost C1 � [1.047, 1.134], C2 � [ 2.093, 2.262], and
C3 � [1.047, 1.129], which are the interval optimal ranges.

4. Production Planning Mathematical Model

4.1. NN-LP Mathematical Model. )e usual mathematical
model of NN-LP is similar to mathematical model (1), so we
omit it.

4.2. Production Planning Mathematical Model

4.2.1. Notations. )e following notations are used in the
production planning model.

Nine decision variables:

(i) a1 to a6: product quantities of six plans of type I
(ii) a7 to a8: product quantities of two plans of type II
(iii) a9: product quantities of two plans of type III

Objective function:

(i) b: maximum profit

4.2.2. Assumptions. )e production planning model is de-
veloped by considering the following assumptions:

(i) Every product must pass two working procedures: A
and B.

(ii) )e startup time of two working procedures can be
ignored.

(iii) Product quantities are only affected by validity time
of machines.

(iv) )e demand rate at any time is constant.

4.3. Model Formation. As shown in Table 1, we consider an
application in production planning studied by Hu [40]. A
company manufactures three types of products: Types I, II,
and III. All types must pass two working procedures: A and
B. We consider that procedure A can be operated on ma-
chine A1 or A2 and procedure B can be operated on the
machines B1, B2, and B3. Type I can be operated on all
machines of procedure A and procedure B; Type II can be
operated on all machines of procedure A and only machine
B1 of procedure B; Type III can be operated on only machine
A2 of procedure A and machine B2 of procedure B. Our aim
is to schedule the optimal production planning, which can
pursue for the maximum profits. All used data are listed in
Table 1, including required procedure time of every working
procedure, processing fees, material cost, and selling price
per unit. So, Type I has six plans to produce products, along
with (A1, B1) or (A1, B2) or (A1, B3) or (A2, B1) or (A2, B2) or
(A2, B3), respectively. Similarly, we consider the product
quantities of the six plans a1, a2, a3, a4, a5, and a6, re-
spectively. Type II has two plans to produce products, along
with (A1, B1) or (A2, B1), and Type III has one plan to
produce products, along with (A2, B2). We consider the
product quantities of the remaining three plans a7, a8, and
a9, respectively. So, we can get the following objective
function.

b � [(1.20 + 0.03I) − (0.23 + 0.03I)] × a1 + a2 + a3 + a4 + a5 + a6( 􏼁 +[(1.60 + 0.5I) − (0.30 + 0.07I)]

× a7 + a8( 􏼁 +[(2.30 + 0.3I) − (0.30 + 0.05I)] × a9 − (0.04 + 0.02I) × (4.5 + 1.7I) × a1 + a2 + a3( 􏼁 +(8 + I) × a7􏼂 􏼃

− (0.02 + 0.01I) × (0.67 + 0.8I) × a4 + a5 + a6( 􏼁 +(8.6 + 1.4I) × a8 +(11 − I) × a9􏼂 􏼃 − (0.05 + 0.02I)

× (5.6 − 0.1I) ×(a1 + a4) +(7.8 + 1.2I) × a7 + a8( 􏼁􏼂 􏼃 − (0.10 + 0.02I) × (3.5 + 2.5I) × a2 + a5( 􏼁 +(10 + 2I) × a9􏼂 􏼃

− (0.04 + 0.02I) × (6.7 + 1.3I) × a3 + a6( 􏼁􏼂 􏼃.

(13)

So, we get the followed production planning mathe-
matical model:

Journal of Mathematics 5



max b

s.t. (4.5 + 1.71) × x1 + x2 + x3( 􏼁 +(8 + I) × x7≤ 5600 + 700I,

(6.7 + 1.8I) × x4 + x5 + x6( 􏼁 +(8.6 + 1.4I) × x8 +(11 − I) × x9 ≤ 0.02 + 0.01I,

(5.6 − 0.1I) × x1 + x4( 􏼁 +(7.8 + 1.2I) × x7 + x8( 􏼁≤ 0.05 + 0.02I,

(3.5 + 2.5I) × x2 + x5( 􏼁 +(10 + 2I) × x9 ≤ 0.10 + 0.02I,

(6.7 + 1.3I) × x3 + x6( 􏼁≤ 0.04 + 0.02I.

(14)

4.4. Solution regardingMatlab Built-In Function “fmincon()”.
According to the de-neutrosophication technique proposed
by Ye [37] and considering I� 0 or 0.5 or 1 as the minimum
or moderate or maximum indeterminacy, we can obtain
three optimal solutions as follows:

(1) x∗1 � 0, x∗2 � 778.508, x∗3 � 465.936, x∗4 � 0, x∗5 �

677.953, x∗6 � 56.452, x∗7 � 0, x∗8 � 474.359, x∗9 � 0,
and f(x∗, I) � 1297.389 for I� 0.

(2) x∗1 � 0, x∗2 � 0, x∗3 � 578.231, x∗4 � 0, x∗5 � 0, x∗6 � 0,
x∗7 � 167.732, x∗8 � 338.221, x∗9 � 590.909, and
f(x∗, I) � 940.871 for I� 0.5.

(3) x∗1 � 0, x∗2 � 0, x∗3 � 625, x∗4 � 0, x∗5 � 0, x∗6 � 0, x∗7 �

146.667, x∗8 � 386.667, x∗9 � 583.333, and f(x∗, I)

� 762.717 for I� 1.

Clearly, using the indeterminacy I ∈ [0, 1], different
optimal results are revealed. )e optimal solutions of the
optimization problem are x∗1 � [0, 0], x∗2 � [0, 778.508],
x∗3 � [465.936, 625], x∗4 � [0, 0], x∗5 � [0, 677.953], x∗6 � [0,
56.452], x∗7 � [0, 146.667], x∗8 � [386.667, 474.359], andx∗9 �

[0, 583.333] for f(x∗, I) � [762.717, 1297.389], which shows
the interval optimal ranges.

4.5. Solution regarding Operations of NNs. According the
front optimal solutions, we next calculate the nine relation
formulas of the indeterminacy I and variables a1, a2, a3, a4,
a5, a6 , a7, a8, and a9. For example, let us calculate
a3 � 465.936 + 159.064I. Firstly, according to three points (0,
465.936), (0.5, 578.231), and (1, 625), we obtain the linear
equation (a3 �159.06I+ 476.86). Next we amend the inter-
cept of trend curve on the vertical coordinate. )e other
linear equations are obtained in the same way. So,
a1 � x1 + y1I� 0 + 0I� 0, a2 � x2 + y2I� 778.508− 778.508I,
a3 � x3 + y3I� 465.936 + 159.064I, a4 � x4 + y4I� 0 + 0I� 0,

a5 � x5 + y5I� 677.953− 677.953I, a6 � x6 + y6I� 56.452
− 56.452I, a7 � x7− y7I� 0 + 146.667I, a8 � x8 + y8I� 474.359
− 87.692I, and a9 � x9 + y9I� 0 + 583.333I; then, we calculate
the results of equation (13) as follows:

b � [(1.2 + 0.03I) − (0.23 + 0.03I)]× (a1 + a2 + a3 + a4 + a5
+ a6) + [(1.60 + 0.5I) − (0.30 + 0.07I)] × (a7 + a8) + [(2.30 +
0.3I) − (0.30 + 0.05I)] × a9 − (0.04 + 0.02I) × [(4.5 + 1.7I)×

(a1 + a2 + a3) + (8 + I)× a7] − (0.02 + 0.01I)× [(6.7 + 1.8I)×

(a4 + a5 + a6) + (8.6 + 1.4I) × a8 + (11 − I) × a9] − (0.05 +
0.02I) × [(5.6 – 0.1I)× (a1 + a4) + (7.8 + 1.2I)× (a7 + a8)] −

(0.10 + 0.02I) × [(3.5 + 2.5I)× (a2 + a5) + (10 + 2I)× a9] −

(0.04 + 0.02I) × [(6.7 + 1.3I) × (a3 + a6)] � 0.97× (a1 + a2 +

a3 + a4 + a5 + a6) + (1.30 + 0.43I) × (a7 + a8) + (2.0 + 0.25I)×

a9 − (0.04 + 0.02I)× [(4.5 + 1.7I)× (a1 + a2 + a3) + (8 + I)×

a7] − (0.02 + 0.01I) × [(6.7 + 1.8I) × (a4 + a5 + a6) + (8.6 +
1.4I)× a8 + (11 – I)× a9] − (0.05 + 0.02I)× [(5.6 – 0.1I) × (a1
+ a4) + (7.8 + 1.2I)× (a7 + a8)] − (0.10 + 0.02I) × [(3.5 + 2.5I)
× (a2 + a5)+(10 + 2I)× a9] – (0.04 + 0.02I) × [(6.7 + 1.3I) ×

(a3 + a6)]� 0.97× (a2 + a3 + a5 + a6) + (1.30 + 0.43I) × (a7 +

a8) + (2.0 + 0.25I)× a9 − (0.04 + 0.02I)× [(4.5 + 1.7I)× (a2 +
a3) + (8 + I)× a7] − (0.02 + 0.01I)× [(6.7 + 1.8I)× (a5 + a6) +
(8.6 + 1.4I)× a8 + (11 – I)× a9] − (0.05 + 0.02I)× [(7.8 + 1.2I)
× (a7 + a8)] − (0.10 + 0.02I)× [(3.5 + 2.5I)× (a2 + a5)+ (10 +
2I)× a9] − (0.04 + 0.02I)× [(6.7 + 1.3I) × (a3 + a6)] � 0.97×

(778.508 − 778.508I + 465.936 + 159.064I + 677.953 −

677.953I+ 56.452 – 56.452I) + (1.30 + 0.43I)× (0 + 146.667I
+ 474.359 − 87.692I) + (2.0 + 0.25I)× (0 + 583.333I) − (0.04
+ 0.02I)× [(4.5 + 1.7I)× (778.508 − 778.508I + 465.936 +
159.064I) + (8 + I)× (0 + 146.667I)] − (0.02 + 0.01I)× [(6.7 +
1.8I)× (0 + 677.953 − 677.953I+ 56.452 − 56.452I) + (8.6 +
1.4I) × (474.359 − 87.692I) + (11 − I) × (0 + 583.333I)] −

(0.05 + 0.02I) × [(7.8 + 1.2I) × (0 + 146.667I + 474.359 −

87.692I)] − (0.10 + 0.02I) × [(3.5 + 2.5I) × (778.508 –
778.508I+ 677.953 − 677.953I) + (10 + 2I) × (0 + 583.333I)]
− (0.04 + 0.02I) × [(6.7 + 1.3I) × (465.936 + 159.064I +

Table 1: All data of three types of products.

Machine
Product

Validity time (hours/machine) Processing fees ($/hour/machine)
I II III

A 1 4.5 + 1.7I 8 + I — 5600 + 700I 0.04 + 0.02I
A 2 6.7 + 1.8I 8.6 + 1.4I 11-I 9000 + 700I 0.02 + 0.01I
B 1 5.6–0.1I 7.8 + 1.2I — 3700 + 1100I 0.05 + 0.02I
B 2 3.5 + 2.5I — 10+2I 6000 + 1000I 0.10 + 0.02I
B 3 6.7 + 1.3I — — 3500 + 1500I 0.04 + 0.02I
Material cost ($/piece) 0.23 + 0.03I 0.30 + 0.07I 0.30 + 0.05I — —Selling price ($/piece) 1.20 + 0.03I 1.60 + 0.5I 2.30 + 0.3I
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56.452 − 56.452I)] � 0.97 × (1978.849 − 1353.849I) + (1.3 +
0.43I) × (474.359 + 58.975I) + (2 + 0.25I)× (0 + 583.333I) −

(0.04 + 0.02I) × (5599.998 − 404.995I) − (0.02 + 0.01I)×

(9000.001 + 699.9991I) − (0.05 + 0.02I)× (3700 + 1100.006I)
− (0.10 + 0.02I)× (5097.614 + 1902.383I) − (0.04 + 0.02I)×

(3500 + 1500I)� 1919.484 − 1313.234I+ 616.6667 + 306.001I
+ 1312.499I − 224 − 87.7I − 180 − 111.000I − 185 − 509.761
− 330.238I − 140 − 160.000I� 1297.389 − 534.672I.

So, these calculational results validate that the same
solution is obtained by using the two methods of both the
Matlab built-in function “fmincon()” and the operations of
NNs, which are x∗1 � [0, 0], x ∗2 � [0, 778.508], x∗3 � [465.936,
625], x∗4 � [0, 0], x∗5 � [0, 677.953], x∗6 � [0, 56.452], x∗7 � [0,
146.667], x∗8 � [386.667, 474.359], andx∗9 � [0, 583.333] for
f(x∗, I) � [762.717, 1297.389] and show the interval opti-
mal ranges.

5. Conclusion

)is paper first introduced some concepts and their oper-
ations of NNs with indeterminacy I. Next, we built a
mathematical model with constrained conditions and then
constructed the corresponding inventory model and pro-
duction planning model. Finally, we obtained the optimal
solutions by using the two methods of the Matlab built-in
function “fmincon()” and the operations of NNs to solve the
NN-NP and NN-LP problems with constrained conditions
as preliminary application study in indeterminate setting.
)e final results show that the two methods obtained the
same effective solutions, but the former needs the Matlab
built-in function along with the simple calculational process,
while the latter needs a lot of operations of NNs along with
the complex calculational process. Some contributions in
this study are that (1) different methods can obtain the same
optimal results, (2) the NN-NP and NN-LP methods pro-
vided the new application ways for engineering manage-
ment, (3) the NN-NP and NN-LPmethods are more suitable
than other ones under uncertain environments as the
generalization of traditional programming methods, and (4)
the two approaches can obtain the interval solutions for
avoiding determinate solutions of traditional programming
methods.

Obviously, the proposed NN-LP and NN-NP methods
can handle indeterminate and/or determinate mathematical
programming problems, which are the generalization of
existing uncertain or certain linear and nonlinear pro-
gramming methods. As the preliminary application study in
this paper, however, there exist a lot of mathematical so-
lution methods and proof problems along with some
complexity/difficulty in the nonlinear programming prob-
lems which need to be studied further. Hence, as our future
works, one is to further analyze the two presented methods
of this paper from the mathematical problems, such as the
convexity problem in the nonlinear programming, the
stability and solution range problems regarding the
changeability of NNs, and the sensitivities of NNs on the
solution results, and then NN-LP and NN-NP approaches
will be extended to other fields, such as engineering design
and management science.
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(e decision-making trial and evaluation laboratory (DEMATEL) has been used to solve numerous multicriteria decision-making
(MCDM) problems, where real numbers are utilised in defining linguistic variables. Although the DEMATEL has shown its
success in solving many decision-making problems, researchers have not fully understood how the DEMATEL works on non-
real-number linguistic variables. Recent discovery of single-valued neutrosophic sets (SVNSs) can offer a new method to solve
decision-making problems, where three memberships of SVNSs are used to define experts’ linguistic judgment.(is paper aims to
propose a novel MCDM method, where SVNSs and the DEMATEL are fully utilised. Different from the DEMATEL, which
directly utilises real numbers, this proposed method introduces SVNSs to better deal with truth, indeterminacy, and falsity in
solving MCDM problem. As an application of the proposed method, subcontractors’ selection problem is investigated using the
proposed method, where four types of criteria are developed. A group of experts were invited to provide opinions and linguistic
judgment regarding the degree of influence between criteria of subcontractors’ selection. (e linguistic evaluations defined in
SVNSs were computed using the eight-step procedures of the proposed method. Based on the degree of influence, the com-
putational results successfully segregated all ten criteria into four types, in which two to three criteria are grouped in each type.(e
results also suggest that “Experience” and “Quality” are the most influential criteria in subcontractors’ selection. (e segregation
based on degree of influence would be greatly significant for the practical implementation of the subcontractors’ selection.

1. Introduction

(e decision-making trial and evaluation laboratory
(DEMATEL) method is one of the many multicriteria de-
cision-making (MCDM)methods available in literature.(e
DEMATEL was initially developed by the Science and
HumanAffairs Program of the Battelle Memorial Institute of
Geneva between 1972 and 1976 to resolve the complicated
and intertwined problems. Compared with other MCDM
techniques such as the analytic hierarchy process (AHP),
where evaluation criteria are independent, this method is
one of the structural modelling techniques that can identify
the interdependencies of criteria through causality diagram
and unidirectional analysis. (e causal diagram uses di-
graphs rather than directionless graphs to portray the basic

concept of contextual relationships and the strengths of
influence among the elements or criteria [1]. (is method
has been applied in analysing and developing the cause-and-
effect relationship among evaluation criteria [2]. In other
words, the DEMATEL is used to derive interrelationship
among evaluation criteria or factors [3]. In other words, the
DEMATEL is a comprehensive method for developing a
basic model that contains causal connections between a
number of complex criteria of decision problems. Using the
DEMATEL, all evaluation criteria are partitioned into two
groups, in which the first group is known as cause group and
the second group is called as effect group. Owing to these
positive features, the DEMATEL has been successfully ap-
plied in many recent decision-making problems (see [4–7]).
It is good to note that pairwise comparisons between criteria
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in DEMATEL are measured using a scale of real numbers
accompanied by five linguistic terms.

Despite all these advantages, the linguistic terms used in
DEMATEL suffer from several limitations. (e linguistic
scales based on real numbers are insufficient to provide a
good evaluation or judgment because information is regu-
larly exorbitant and, more importantly, many are vague and
incomplete. In addition, elicitation of decision-makers’
opinions using these linguistic scales could be misconstrued
due to the restricted or incomplete information. In fact, the
fuzziness in decision-makers’ opinions or insufficient
knowledge about an issue could make the decision-making
process complicated [8]. In response to the limitation in
dealing with incomplete information, neutrosophic sets
were introduced [9]. A year later, neutrosophic sets were
extended to single-valued neutrosophic sets (SVNSs) as to
ease their applications to real scientific and engineering areas
[10]. With the simplicity of SVNSs, these sets have been
assimilated with other scientific knowledge such as aggre-
gation operators, correlation studies, score functions, dis-
tance, and similarity measures. Ye [11], for example,
presented the correlation coefficient between SVNSs and
applied the proposed method to an illustrative example.
Peng et al. [12] pointed out that some SVNS operations
defined by Ye [11] may also be invalid and they defined novel
operations and aggregation operators and applied them to
similarity-measures problems. Peng et al. [13] also defined
the multivalued neutrosophic sets and proposed two ag-
gregation operators for the sets. Liu andWang [14] defined a
normalised weighted Bonferroni mean aggregation operator
of SVNS. Şahin and Küçük [15] proposed the concept of
neutrosophic subsethood based on distance measures for
SVNSs. Majumdar and Samanta [16] studied the notions of
distance and several similarity measures between two SVNSs
as well as entropy of a SVNS. A hybrid model of score
accuracy functions and SVNS was developed by Mondal and
Pramanik [17], where this hybrid model was applied in
teacher recruitment. Ye and Fu [18] proposed similarity
measures between SVNSs based on tangent function and
applied them to medical diagnosis problems. Very recently,
Zhao et al. [19] and Tian et al. [20] proposed some new
power Heronian aggregation operators for SVNNs and
introduced a novel decision-making method using the
proposed operators. Garai et al. [21] presented a new ranking
method of SVN numbers based on possibility theory for
solving a decision-making problem. (e concept of possi-
bility mean of SVN numbers was defined and the properties
of single-valued trapezoidal neutrosophic (SVTN) numbers
were studied. Finally, they developed a new ranking ap-
proach using the concept of weighted possibility mean, and
Qin and Wang [22] studied the similarity and entropy
measures of SVNS by proposing the axiomatic definitions of
similarity and entropy for single-valued neutrosophic values
(SVNVs) with respect to a new kind of inclusion relation
between SVNVs. On the basis of Hamming distance, cosine
function, and cotangent function, three similarity measures
and three entropies for SVNVs were constructed. Other

related researches about SVNS and its application in mul-
ticriteria decision-making, matrices operations, and similarity
measures can be retrieved from [23, 24] and [25], respectively.
It can be seen that all these related researches have discussed
the theoretical decision analyses or pattern recognition
methods such as similarity measures, entropy, accuracy
functions, aggregation operators, and distance measures
without really applying to a real case data or experiment.

Turning now to related research of neutrosophic sets
integrated with a specificMCDMmethod, Nabeeh et al. [26],
for example, developed an integration of AHP-triangular
neutrosophic numbers and applied it to estimate influential
factors for a successful IoT enterprise. Abdel-Basset et al.
[27] proposed a novel type-2 neutrosophic number-TOPSIS
strategy by combining type-2 neutrosophic numbers and
TOPSIS for supplier selection. Abdel Basset et al. [28]
proposed an integration of bipolar neutrosophic numbers
with Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) and applied it to medical device selection.
However, the extent of integration between specific type of
neutrosophic sets and DEMATEL is yet to be fully under-
stood. (e following section provides a brief of latest re-
search that elucidates the merging of neutrosophic sets and
DEMATEL.(ese reviews would provide an insight into the
research gap between the recently published works and the
proposed work.

2. Related Research and Identification of
Research Gap

(is section summarises the latest research that elucidates
the integration of neutrosophic sets and DEMATEL. (ese
reviews highlighted the type of neutrosophic numbers used,
the integration of DEMATEL with other methods, and the
fields of applications. Table 1 provides the recent researches
that were carried out as well as research gaps.

It seems that little information is available on direct
integration of SVNS linguistic variables to DEMATEL
method. In addition, there were no researches that applied to
subcontractors’ selection and, more importantly, the ab-
sence of quadrant analysis in the analysis of their respective
applications. To bridge these research gaps, this paper aims
to propose an integration of SVNS and the DEMATEL
(SVN-DEMATEL), where linguistic variables defined in
SVNS are merged into the DEMATEL procedures. (e
integration of DEMATEL and SVNS ensued when linguistic
variables used are now defined in three independent
memberships of SVNS. In the SVN-DEMATEL framework,
the eight-step computational procedures are characterised
by truth-membership function, indeterminacy-membership
function, and falsity-membership function. To illustrate the
proposed method, a case of subcontractors’ selection is
investigated, where a quadrant analysis supplemented the
other typical analysis in DEMATEL. Detailed descriptions of
the subcontractors’ selection problem, related definitions of
SVNS, and the proposed SVN-DEMATEL method are
presented in the subsequent sections.
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3. Preliminaries

In light of the idea of big data as branch of information
theory, it is essential to have a tool that can be used for
managing vulnerability and irregularity of information.
(erefore, Wang et al. [10] coined the concept of SVNS
because SVNS is a subclass of the neutrosophic set and is
very valuable in engineering application models. To ease the
computation of SVNS in real-life applications, theoretical
operations between two SVNSs are defined and some
fundamental properties of these tasks are studied. (is
section provides the related definitions of SVNS and its
operations.

Definition 1 (see [9]). Let X be a space of points (objects)
with generic elements in S denoted by x. A neutrosophic set
S in X is characterised by truth-membership function TS(x),
indeterminacy-membership function IS(x), and falsity-
membership function FS(x). (e functions
TS(x), IS(x) and FS(x) are real standard or nonstandard
subsets of ]0− , 1+[. (at is, TS(x)⟶ ]0− , 1+[,
IS(x)⟶ ]0− , 1+[, and FS(x)⟶ ]0− , 1+[. (us, there is
no restriction on the sum of TS(x), IS(x) andFS(x), so
0− ≤ supTS(x) + supIS(x) + supFS(x)≤ 3+.

Obviously, it is difficult to apply in real scientific and
engineering areas because of the nonstandard subsets of
neutrosophic set. Hence, Wang et al. [10] introduced the
definition of SVNS as follows.

Definition 2 (see [10]). Let X be a space of points (objects)
with generic elements in X denoted by x. An SVNS S in X is
characterised by truth-membership function TS(x), inde-
terminacy-membership function IS(x), and falsity-mem-
bership function FS(x). (en, an SVNS S can be denoted by
S � x, TS(x), IS(x), FS(x)􏼊 􏼋x ∈ X􏼈 􏼉, where TS(x), IS(x),

FS(x) ∈ [0, 1] for each point x in X. (erefore, the sum of
TS(x), IS(x) andFS(x) satisfies the condition 0≤TS(x)+

IS(x) + FS(x)≤ 3.

In decision-making, human language, commonly re-
ferred to as linguistic variables, is normally used. Ratings of
criteria of decision problems can be expressed using lin-
guistic variables that can be transformed into SVNNs. (ese
SVNNs are a subset or a special case of SVNSs and defined as
follows.

Definition 3 (see [10]). If an SVNS S can be denoted by
S � x, TS(x), IS(x), FS(x)􏼊 􏼋x ∈ X􏼈 􏼉, where TS(x), IS(x),

FS(x) ∈ [0, 1] for each point x in X and the sum of
TS(x), IS(x) andFS(x) satisfies the condition 0≤TS(x)+

IS(x) + FS(x)≤ 3, for convenience, α� 〈TS,IS FS〉 to rep-
resent a SVNN.

(ese three membership functions work under specific
arithmetic operations. (e basic arithmetic operations of
SVNNs are defined as follows.

Definition 4 (see [14]). Arithmetic operations between two
SVNNs are defined as follows.

Let x � (T1, I1, F1) and y � (T2, I2, F2) be two SVNNs;
then the arithmetic operations are defined as follows:

(i) x ⊕ y � (T1 + T2 − T1, T2, I1, I2, F1, F2)

(ii) x⊗y � (T1T2, I1 + I2 − I1 I2, F1 + F2 − F1 F2)

(iii) λx � ((1 − (1 − T1)
λ, Iλ1, Fλ

1)

(iv) xλ � (Tλ
1, 1 − (1 − Iλ1), 1 − (1 − Fλ

1))

Definition 5 (see [10]). If x� (T1, I1, F1) and y� (T2, I2, F2)

are two SVNNs, then some properties of set theoretic op-
erators are defined as follows:

(i) Commutative:
x∪ y� (T1, I1, F1)∪ (T2, I2, F2) � (T2, I2, F2)∪
(T1, I1, F1) � y∪ x

(ii) Idempotent:
x∪ x� (T1, I1, F1)∪ (T1, I1, F1) � (T1, I1, F1) � x,
y∩ y� (T1, I1, F1)∩ (T1, I1, F1) � (T1, I1, F1) � y

Table 1: Summary of related researches and research gaps.

Authors Type of NS Method DEMATEL Application Research gap
Nabeeh
[29]

Neutrosophic
sets

DEMATEL method and
data envelopment analysis Technology selection process Did not consider SVNS

-No quadrant analysis
Abdel-
Basset
et al. [30]

Trapezoidal
neutrosophic

number

Integration of DEMATEL
and TOPSIS Project selection

An integration method

No quadrant analysis

Awang
et al. [31]

Left–right
neutrosophic
numbers

Multiplicative inverse of
decision matrix in DEMATEL Coastal erosion

-Focused on improving inverse
matrix

No quadrant analysis

Tan and
Zhang [32]

Trapezoidal
fuzzy

neutrosophic

DEMATEL, fuzzy distance,
and linear assignment method Typhoon disaster evaluation

Many other methods were integrated
to DEMATEL

Did not consider SVNS
No quadrant analysis

Tian
et al [33]

Single-valued
neutrosophic

sets

DEMATEL with quality
function deployment TODIM

Market segment evaluation
and selection

-An integration of DEMATEL with
two other methods
No quadrant analysis

Feng
et al. [34]

Neutrosophic
sets

DEMATEL with VIKOR, TOPSIS,
and ELECTRE III Photovoltaic plan selection

An integration of DEMATEL with
three other methods
No quadrant analysis
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(iii) Absorption: x∪ x∩ y� (T1, I1, F1)∪ (T1, I1, F1)∩
(T2, I2, F2) � (T1, I1, F1) � x

(iv) De Morgan’s laws: k (x∪ y)� k ((T1, I1, F1)∩ k
(T2, I2, F2)); k (x∩ y)� k (T1, I1, F1)∪ k
((T2, I2, F2)), where k is a constant

(v) Involution: k (k (x))� k (k (T1, I1,

F1))� (T1, I1, F1) � x, where k is a constant

(e definitions of complement, union, and intersection
of SVNS satisfy most properties of sets. In this paper, the
SVNS is integrated with the DEMATEL with some of the
above definitions and properties being prevalently used in
the computational procedures. Detailed description of this
integration is presented in the following section.

4. Proposed SVN-DEMATEL

(e algorithm of DEMATEL, proposed by Fontela and
Gabus [35] and Gabus and Fontela [36], is used as a basis in
proposing the SVN-DEMATEL. Different from DEMATEL
where real numbers are used in defining linguistic scales, the
proposed method used SVNSs instead. Several new inno-
vations are made in this proposed method compared to the
DEMATEL and the existing SVN-DEMATEL. Apart from
substitution of real numbers with SVNS, the proposed
method also includes relative importance of decision-
makers’ weight. (e importance of each decision-maker is
measured using the proportion equation proposed by Boran
et al. [37]. Instead of taking equal weights for decision-
makers, this proposed method introduced relative weights,
where each decision-maker has different weight. Another
innovation is the way of transforming SVNN into real
numbers. In this proposed method, the concept of average
using the equation proposed by Radwan and Fouda [38] is
used.(e threememberships of SVNS are averaged to obtain
a real number.(is step would avoid the invalidity of finding
multiplicative inverse of matrix in DEMATEL. Detailed
discussion of validity of multiplicative inverse matrix can be
retrieved from Awang et al. [31]. Different from most of the
DEMATEL-based methods where the last computational
step is drawing a causal-effect diagram, this proposed
method extends with another step to establish four types of
criteria. In summary, the framework of the proposed
method is illustrated in Figure 1.

(is flowchart is translated into stepwise algorithm. Our
proposed algorithm of SVN-DEMATEL is presented as
follows.

Step 1. Construct direct-relation matrix (DRM).
Each DM judgment is collected and pooled into a direct

relation matrix Xn×n (total number of criteria is n) which is
an assessment of interrelationship between elements uti-
lising a 5-linguistic rating scale. (e table indicates the
interrelationship of selection of subcontractors and per-
formances on each other.

Step 2. Find relative weights of decision-makers.
Each decision-maker’s judgment has a particular weight

that must be considered to determine total averaged crisp

matrix. As the work experience and knowledge of decision-
makers’ fluctuate, we assume distinctive overall weights for
decision-makers’ opinions in deciding the total averaged
crisp matrix. Table 2 shows the linguistic variable used for
relative importance weights of decision-makers and its re-
spective SVNN.

Assume that λk � (Tk, Ik, Fk) is the SVNN for relative
importance weights of kth expert.(e value of kth expert can
be obtained using the following equation:

λk �
Tk(x) + Ik(x) Tk(x)/Tk(x) + Fk(x)(( 􏼁􏼁

􏽐
l
k�1 Tk(x) + Ik(x) Tk(x)/Tk(x) + Fk(x)(( 􏼁􏼁

, (1)

where λk ≥ 0, 􏽐
l
k�1 λk � 1.

Step 3. Construct aggregated DRM.
Each decision-maker’s opinions need to be aggregated to

assemble a collective neutrosophic set decision matrix. Let
zk

ij � (Tk
ij, Ik

ij, Fk
ij) be the SVN given by kth expert on the

assessment of criterion i on j. (e single-valued neu-
trosophic set weighted aggregation (SVNSWA) operator is
used to aggregate single-valued neutrosophic number rating,
and xij represents the influence level of criterion i on j.

aij � SVNSWA z
1
ij, z

2
ij, . . . , z

k
ij􏼐 􏼑

� 􏽘
l

k�1
λkz

k
ij � 1 − 􏽙

l

k�1
1 − Tj􏼐 􏼑

wj
, 􏽙

l

k�1
Ij􏼐 􏼑

wj
, 􏽙

l

k�1
Fj􏼐 􏼑

wj
􏼪 􏼫

i � 1, 2, . . . , m; j � 1, 2, . . . , n,

(2)

where λk is the importance weight of k th expert; aijk is
corresponding to SVN of k h expert’s opinion when com-
paring i to j.

Collect the data

Obtain the individual direct relation matrices (DRM) 

Obtain the DRM with real numbers 

Construct the normalized DRM

Construct the total-relation matrix 

Plot the causal diagram

End

Find relative weights of DMs

Start

Acquire an aggregated DRM

Segregate the criteria into four types

Summation of
multiplication of

DRM with relative
weights 

Using the SVNS
linguistic

variable of 
“influence”

Figure 1: Framework of the proposed method.
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Step 4. Construct DRM with real numbers
Transform the aggregated single neutrosophic relation

matrix into real number matrix using the following
equation:

E(z) �
(3 + T − 2I − F)

4
. (3)

Step 5. Construct normalised DRM.
Calculate the normalised DRM (matrix X) using the

following equation:

X � k × A, (4)

where

k �min
1

max􏽐
n
j�1 aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1≤ i≤n

,
1

max􏽐
n
i�1 aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1≤j≤n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
i,j ∈ 1,2,3, . . . ,n{ },

(5)

and A is the normalised DRM.

Step 6. Obtain total-relation matrix (TRM).
(e TRM, T, is then calculated using the following

equation:

T � X(I − X)
− 1

, (6)

where I is an identity matrix.

Step 7. Plot causal diagram.
Compute R and D from TRM, T, using equation (7) and

equation (8).
Given T,

T � ty􏽨 􏽩
n×n

, i, j � 1, 2, . . . , n, (7)

R � 􏽘
n

i�1
ty

⎡⎣ ⎤⎦

1×n

� tj􏽨 􏽩1×n
,

D � 􏽘
n

j�1
ty

⎡⎢⎢⎣ ⎤⎥⎥⎦

n×1

� ti􏼂 􏼃n×1,

(8)

where R denotes the total of rows for the matrix and D
denotes the total of columns for the matrix.A criterion is
considered as a cause-and-effect criterion if (R − D) is
positive and (R − D) is negative, respectively.

Step 8. Identify types of criteria.
Coordinates of (R+D, R − D) in Cartesian plane are used

to segregate criteria into four types.
(e proposed eight-step computational procedures are

used to establish four types of criteria based on the degree of
influence. Detailed implementation of the case of subcon-
tractors’ selection is presented in the following section.

4.1. A Case of Subcontractors’ Selection. Subcontractors’
selection is a critical part of construction or industrial
management, where a major challenge is the existence of
multiple criteria that the project management team needs to
evaluate in the selection process [40, 41]. Subcontractors
usually help main contractor to overcome problems related
to the need for special expertise, limitation in finances, and
shortage in resources. Specialist subcontractor can be uti-
lised, when the main contractor acquires products or ad-
ministrations, which the main contractor does not deliver or
cannot deliver by his own company. (erefore, selecting the
deliverable subcontractors is critical in making sure the
implementation of the project is successful and completed
within the stipulated times.

In solving subcontractors’ selection problem, informa-
tion about criteria, linguistic terms are required other than
the algorithm of SVNS-DEMATEL. It is presented in the
following sections.

4.2. Criteria, Linguistic Scale, and Decision-Makers.
Criteria that influence subcontractors’ selection are retrieved
from literature (see [42–44]). In this experiment, ten criteria
are Price (C1), Completing on Time (C2), Experience (C3),
Financial Stability (C4), Compliance with Regulations (C5),
Quality (C6), Performance History (C7), Safety Manage-
ment (C8), Timely Payment to Labour (C9), and Length of
Time in Industry (C10). (ese evaluation criteria are judged
by a group of decision-makers using a five-point linguistic
scale. (e judgments are made in pairwise comparison
manner, in which one criterion is compared to the other
criteria in terms of degree of influence. Table 3 presents
linguistic variable of “influence,” five linguistic terms and
their respective SVNS.

In this study, five decision-makers denoted as DM1,
DM2, DM3, DM4, and DM5, respectively, are assigned to
provide pairwise comparative linguistic judgments of cri-
teria using the defined linguistic scale. All decision-makers
are experts in selecting subcontractors and currently hold
key positions in a construction company. A formal letter was
sent to the decision-makers and they were requested to rate a
criterion with respect to other criteria in terms of degree of
influence of selecting subcontractors using the linguistic
scale. Linguistic data obtained from decision-makers are
implemented to the proposed SVNS-DEMATEL.

4.3. Implementation. In accordance with the proposed al-
gorithm (see Section 3), the following computations are
implemented.

Table 2: Linguistic variable for relative importance weight of DM
[39].

Linguistic variable SVNN T, I, F〈 〉

Very important 0.90, 0.10, 0.10〈 〉

Important 0.80, 0.20, 0.15〈 〉

Medium 0.50, 0.40, 0.45〈 〉

Unimportant 0.35, 0.60, 0.70〈 〉

Very unimportant 0.10, 0.80, 0.90〈 〉
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Step 1: construct DRM
All individual decision-makers’ DRM are constructed.
Table 4 summarises the judgments of DM1 regarding
the influences of the criteria on subcontractors’
selection.

Similar DRM matrices are constructed for DM2, DM3,
DM4, and DM5. It is good to recall that the linguistic
terms in the matrices indicate the interrelationship
between criteria in subcontractors’ selection.
Step 2: find relative weight of decision-makers
Relative weights of the decisionmakers λk are computed
using equation (1). (ey are presented in Table 5.
Step 3: construct aggregated DRM
(e aggregated DRM is constructed usingequation (2).
For example,

a111 − 􏽙

l

k�1
1 − Tj􏼐 􏼑

λk
� 1 − ((1 − 0.00)∧0.2913∗ (1 − 0.00)∧0.2849∗ (1 − 0.00)∧0.2090∗ (1 − 0.00)∧0.1618∗ (1 − 0.00)∧0.0530)

� 0.000,

􏽙

l

k�1
Ij􏼐 􏼑

λk
� 1∧(0.2913)∗ 1∧(0.2849)∗ 1∧(0.2090)∗ 1∧(0.1618)∗ 1∧(0.0530) � 1.000,

􏽙

l

k�1
Fj􏼐 􏼑

λk
� 1∧(0.2913)∗ 1∧(0.2849)∗ 1∧(0.2090)∗ 1∧(0.1618)∗ 1∧(0.0530) � 1.000,

a211 − 􏽙
l

k�1
1 − Tj􏼐 􏼑

λk
� 1 − ((1 − 0.60)∧0.2913∗ (1 − 0.80)∧0.2849∗ (1 − 0.60)∧0.2090∗ (1 − 0.20)∧0.1618∗ (1 − 0.60)∧0.0530)

� 0.6327,

􏽙

l

k�1
Ij􏼐 􏼑

λk
� 0.35∧(0.2913)∗ 0.15∧(0.2849)∗ 0.35∧(0.2090)∗ 0.85∧(0.1618)∗ 0.35∧(0.0530)

� 0.3174,

􏽙

l

k�1
Fj􏼐 􏼑

λk
� 0.40∧(0.2913)∗ 0.20∧(0.2929)∗ 0.40∧(0.2090)∗ 0.80∧(0.1618)∗ 0.40∧(0.0530)

� 0.3673,

(9)

Part of the aggregated DRM is shown in Table 6.
Step 4: construct DRM with real numbers

Transform the aggregated SVNSmatrix into aggregated
real number DRM using equation (3).

Table 3: Five-point linguistic scale [39].

Linguistic terms SVNS T, I, F〈 〉

No influence (NI) 0.00, 1.00, 1.00〈 〉

Extremely low influence (ELI) 0.20, 0.85, 0.80〈 〉

Low influence (LI) 0.40, 0.65, 0.60〈 〉

High influence (HI) 0.60, 0.35, 0.40〈 〉

Extremely high influence (EHI) 0.80, 0.15, 0.20〈 〉
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For C1, the computations are

a11 �
(3 + 0.0000 − 2∗ 1.0000 − 1.0000)

4
� 0.0000,

a21 �
(3 + 0.6327 − 2∗ 0.3174 − 0.3673)

4
� 0.6577,

a31 �
(3 + 0.7611 − 2∗ 0.1902 − 0.2389)

4
� 0.7855,

a41 �
(3 + 0.4444 − 2∗ 0.5577 − 0.5556)

4
� 0.4433,

a51 �
(3 + 0.4610 − 2∗ 0.5185 − 0.5390)

4
� 0.4713,

a61 �
(3 + 0.7688 − 2∗ 0.1791 − 0.2312)

4
� 0.7949

a71 �
(3 + 0.6731 − 2∗ 0.2735 − 0.3269)

4
� 0.6998,

a81 �
(3 + 0.6150 − 2∗ 0.3455 − 0.3850)

4
� 0.6347,

a91 �
(3 + 0.4405 − 2∗ 0.5406 − 0.5595)

4
� 0.4499,

a101 �
(3 + 0.6424 − 2∗ 0.3184 − 0.3576)

4
� 0.6620,

(10)

(is matrix is presented in Table 7.
Step 5: construct normalised DRM
In order to construct normalised DRM, summation of
rows and summation of columns of DRM are com-
puted first. (e summation of rows and summation of
columns are shown in Table 8.
(e maximum numbers from summation of rows and
summation of columns are identified (bold).With these
maximum numbers, k is calculated using equation (4).

k � 0.1586. (11)

(eDRM in Table 6 is normalised bymultiplying with k.
(e maximum numbers from summation of rows and
summation of columns have been chosen, respectively,
as

k � min
1

5.8834
,

1
6.3056

􏼒 􏼓

� min(0.1700, 0.1586)

� 0.1586.

(12)

Multiply the Direct-Relation Matrix with k to nor-
malise it.

Table 4: Judgments of criteria (DM1).

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 HI NI ELI ELI HI ELI NI NI NI
C2 LI ELI NI NI ELI LI ELI ELI LI
C3 HI HI ELI ELI HI LI NI ELI HI
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C10 ELI LI HI NI NI ELI LI ELI NI LI

Table 5: Relative weights of decision-makers.

Decision-makers DM1 DM2 DM3 DM4 DM5
Lambda, λk 0.2913 0.2849 0.2090 0.1618 0.0530

Table 6: Aggregated DRM.

Criteria C1 C2 C3 . . . C8 C9 C10

C1

0.0000,

1.0000,

1.0000
􏼪 􏼫

0.5742
0.3947
0.4258

􏼪 􏼫
0.2566
0.7754
0.7434

􏼪 􏼫 . . .

0.2630,

0.7875,

0.7370
􏼪 􏼫

0.6289,

0.3296,
0.3711

􏼪 􏼫
0.2566,

0.7754,
0.7434

􏼪 􏼫

C2

0.6327,

0.3174,
0.3673

􏼪 􏼫

0.0000,

1.0000,

1.0000
􏼪 􏼫

0.3475
0.6867
0.6525

􏼪 􏼫 . . .
0.2643,

0.7861,
0.7357

􏼪 􏼫

0.5269,

0.4592,

0.4731
􏼪 􏼫

0.5777,

0.3796,
0.4223

􏼪 􏼫

C3

0.7611,

0.1902,
0.2389

􏼪 􏼫
0.7925,

0.1569,
0.2075

􏼪 􏼫

0.0000,

1.0000,

1.0000
􏼪 􏼫 . . .

0.5759,

0.3861,
0.4241

􏼪 􏼫
0.4444,

0.5577,
0.5556

􏼪 􏼫

0.6622,

0.2870,

0.3378
􏼪 􏼫

. . . . . . . . . . . . . . . . . . . . .

C10

0.6424,

0.3184,
0.3576

􏼪 􏼫
0.6553,

0.2918,
0.3447

􏼪 􏼫

0.7522,

0.1989,

0.2478
􏼪 􏼫 . . .

0.3908,

0.6593,
0.6092

􏼪 􏼫
0.4130,

0.5718,
0.5870

􏼪 􏼫
0.0000,

1.0000,
1.0000

􏼪 􏼫
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C1:

a11 � 0.0000∗ 0.1586 � 0.0000,

a21 � 0.5898∗ 0.1586 � 0.0935,

a31 � 0.2406∗ 0.1586 � 0.0382,

a41 � 0.6508∗ 0.1586 � 0.1032,

a51 � 0.4206∗ 0.1586 � 0.0667,

a61 � 0.7855∗ 0.1586 � 0.1246,

a71 � 0.3682∗ 0.1586 � 0.0584,

a81 � 0.2378∗ 0.1586 � 0.0377,

a91 � 0.6496∗ 0.1586 � 0.1030,

a101 � 0.2406∗ 0.1586 � 0.0382.

(13)

(e normalised DRM is shown in Table 9.
(e ten-by-ten matrix represents the normalised DRM
with real numbers.
Step 6: obtain total-relation matrix (TRM)
(e TRM is obtained using equation (6). (is is the
matrix obtained as a result of multiplicative inverse of
DRM with differences of identity matrix and DRM.

For example, total-relation matrix can be found by
multiplying X with (I − X)− 1.

a11 � 0.0000(1.2174) + 0.0935(0.3262)

+ 0.0382(0.1934) + 0.1032(0.2559)

+ 0.0667(0.2172) + 0.1246(0.2854)

+ 0.0584(0.2620) + 0.0377(0.1899)

+ 0.1030(0.2751) + 0.0382(0.2020)

� 0.2174.

(14)

Table 10 shows the TRM.
Step 7: plot causal diagram
Cause-and-effect diagram is obtained by calculating the
sum of rows, R, and the sum of columns, D. (ese two
sums are used to compute R+D and R − D values.
We have the following example.
Summation of rows:

C1 � 0.2174 + 0.3262 + 0.1934 + 0.2559 + 0.2172

+ 0.2854 + 0.2620 + 0.1899 + 0.2751 + 0.2020

� 2.4247.

(15)

Summation of columns:

C1 � 0.2174 + 0.3147 + 0.4201 + 0.2660 + 0.3248

+ 0.3954 + 0.3646 + 0.3402 + 0.2512 + 0.3548

� 3.2492.

(16)

Table 11 presents these values according to criteria.
(e results can be obtained by mapping the data set of
(R + D, R − D) into Cartesian plane, in which the

Table 7: Aggregated DRM with real numbers.

Criteria C1 C2 C3 . . . C8 C9 C10

C1 0.0000 0.5898 0.2406 . . . 0.2378 0.6496 0.2406
C2 0.6577 0.0000 0.3304 . . . 0.2391 0.5339 0.5991
C3 0.7855 0.8178 0.0000 . . . 0.5949 0.4433 0.6876
C4 0.4433 0.7484 0.1870 . . . 0.5345 0.6818 0.2378
C5 0.4713 0.7333 0.3295 . . . 0.7738 0.6152 0.5373
C6 0.7949 0.7727 0.5391 . . . 0.5019 0.3798 0.4959
C7 0.6998 0.6797 0.7018 . . . 0.4959 0.5165 0.5535
C8 0.6347 0.6922 0.4657 . . . 0.0000 0.2489 0.4250
C9 0.4499 0.5901 0.4235 . . . 0.2300 0.0000 0.3919
C10 0.6620 0.6818 0.7766 . . . 0.3657 0.4206 0.0000

Table 8: Summation of rows and columns.

Criteria Summation of rows Summation of columns
C1 4.1834 5.5991
C2 4.1228 6.3056
C3 5.8834 3.9943
C4 3.8961 4.0049
C5 4.8499 3.9644
C6 5.4122 4.3552
C7 5.0220 5.4200
C8 4.6333 3.9735
C9 3.4352 4.4896
C10 4.8369 4.1686

Table 9: Normalised DRM.

Criteria C1 C2 C3 . . . C8 C9 C10

C1 0.0000 0.0935 0.0382 . . . 0.0377 0.1030 0.0382
C2 0.1043 0.0000 0.0524 . . . 0.0379 0.0847 0.0950
C3 0.1246 0.1297 0.0000 . . . 0.0943 0.0703 0.1090
C4 0.0703 0.1187 0.0297 . . . 0.0848 0.1081 0.0377
C5 0.0747 0.1163 0.0523 . . . 0.1227 0.0976 0.0852
C6 0.1261 0.1225 0.0855 . . . 0.0796 0.0602 0.0786
C7 0.1110 0.1078 0.1113 . . . 0.0786 0.0819 0.0878
C8 0.1007 0.1098 0.0739 . . . 0.0000 0.0395 0.0674
C9 0.0714 0.0936 0.0672 . . . 0.0365 0.0000 0.0621
C10 0.1050 0.1081 0.1232 . . . 0.0580 0.0667 0.0000
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performance of each criterion of the entire subcontrac-
tors’ selection system can be measured or interpreted.

5. Results

(e (R+D) and (R − D) values are translated into a
causal diagram. Figure 2 shows the causal diagram
where cause group and effect group of criteria are
separated by R+D axis.
(e above causal diagram visualises the cause criteria
and the effect criteria.(e cause criteria are Experience,
Quality, Length of Time in Industry, Compliance with
Regulations, and Safety Management as their values of
(R − D) are positives. On the other hand, the effect
criteria are Financial Stability, Performance History,
Timely Payment to Labour, Price, and Completing on
Time as their values of (R − D) are negatives. It is
suggested that the criteria in cause group ought to be
given priority as these criteria influence other criteria in
suggesting the best subcontractors. (is result also
indicates that “Experience” is themost influential factor
in subcontractors’ selection owing to the largest value
of (R − D).
Step 8: identify types of criteria

(e interpretation of this diagram can be further made
based on the coordinates of (R+D, R − D). Tsai et al. [45]
suggest that criteria can be divided into four types. In this
analysis, all criteria are mapped into four quadrants based on
the coordinates of (R+D, R − D). (e first type is ensued
when (R − D) is positive and (R+D) is large. (is indicates
that the criteria are the cause criteria which are also driving

cause for solving problems. (erefore, the criterion “Ex-
perience” is the most important cause in influencing sub-
contractors’ selection. (e second type happens when (R −

D) is positive and (R+D) is small. (is indicates that the
criteria are independent and can influence only a few other
criteria. In this subcontractors’ selection, the criterion
“Safety Management” is an independent criterion and does
not influence other criteria much. (e third type is ensued
when (R − D) is negative and (R+D) is large. (is indicates
that the criteria are effect-type in which can be directly
improved. (e criterion “Completing on Time” is an effect
criterion, where it depends heavily on other criteria. Finally,
the interpretation can be made when (R − D) is negative and
(R+D) is small. (is indicates that the criteria are inde-
pendent and hardly influenced by other criteria. In the case
of subcontractors’ selection, the criterion “Financial Sta-
bility” is seen as an independent criterion. Summarily, these
types of criteria and their respective criteria of subcon-
tractors’ selectors are divided into four quadrants.

Figure 3 depicts the quadrant analysis in which four
types of criteria are identified.

Looking at the results from the two figures, it is shown
that “Experience” and “Quality” are the driving factors of
influencing the selection of subcontractors. (erefore,
subcontractors who had vast experience and produced
quality works would have an advantage to be chosen as
subcontractors. (is result is different from that of [46]
which suggested that “on-time delivery of materials,”

Table 10: TRM.

Criteria C1 C2 C3 . . . C8 C9 C10

C1 0.2174 0.3262 0.1934 . . . 0.1899 0.2751 0.2020
C2 0.3147 0.2411 0.2108 . . . 0.1897 0.2588 0.2531
C3 0.4201 0.4540 0.2236 . . . 0.3014 0.3180 0.3324
C4 0.2660 0.3276 0.1751 . . . 0.2164 0.2645 0.1896
C5 0.3248 0.3843 0.2372 . . . 0.2886 0.2963 0.2733
C6 0.3954 0.4205 0.2819 . . . 0.2712 0.2905 0.2862
C7 0.3646 0.3885 0.2918 . . . 0.2582 0.2934 0.2820
C8 0.3402 0.3718 0.2483 . . . 0.1746 0.2427 0.2522
C9 0.2512 0.2886 0.1964 . . . 0.1646 0.1526 0.1995
C10 0.3548 0.3823 0.2988 . . . 0.2365 0.2751 0.1979

Table 11: R, D, R+D, and R − D for criteria.

Criteria R D R + D R − D

C1 2.4247 3.2492 5.6739 − 0.8245
C2 2.4327 3.5848 6.0176 − 1.1521
C3 3.4056 2.3573 5.7628 1.0483
C4 2.2383 2.3834 4.6218 − 0.1451
C5 2.8249 2.3416 5.1665 0.4833
C6 3.1288 2.5993 5.7281 0.5295
C7 2.9301 3.0943 6.0244 − 0.1642
C8 2.7429 2.2910 5.0339 0.4519
C9 2.0477 2.6672 4.7149 − 0.6195
C10 2.8608 2.4683 5.3291 0.3925

–1.5000

–1.0000

–0.5000

0.0000

0.5000

1.0000

1.5000

4.0000 4.5000 5.0000 5.5000 6.0000 6.5000
R + D

Causal diagram

Price
Experience
Compliance with regulations
Performance history
Timely payment to labour

Completing on time
Financial stability
Quality
Safety management
Length of time in industry

R 
– 

D

Figure 2: Causal diagram of criteria.
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influenced by other criteria

Financial stability
Timely payment to labour

Type II: Scarcely influencing
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Length of time in industry
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Safety management
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(i)
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Type III: Simply influenced
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Figure 3: Quadrant analysis.
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“failure to complete contract,” and “reputation” are the most
influencing criteria. Perhaps the different research frame-
works used in these studies contributed to the different
results.

6. Conclusions

Multicriteria decision-making methods under neutrosophic
environment are an active research area and many relevant
integration methods have been investigated over the years.
However, real applicability of the decision-making methods
can be achieved when the detailed integration of the decision-
making method and neutrosophic sets is well understood. In
this paper, an extended neutrosophic set is integrated with a
decision-making method to gain better understanding about
the use of neutrosophic sets in decision-making. (e SVNS
was proposed to substitute the neutrosophic sets due to its
complexity in computations, particularly in real scientific and
engineering case applications. (e SVNS also has no direct
integration with causal analysis decision-making methods
such as DEMATEL despite the advantages of its three
memberships in dealing with indeterminacy information.
(is paper proposed the SVNS-DEMATEL method, where
the real numbers in DEMATEL are substituted with SVNN.
(is proposed method is applied to subcontractors’ selection,
where ten criteria are evaluated. (e aim of the proposed
method is a plot of causal diagram. In this paper, we identified
the cause criteria and the effect criteria that could be used in
subcontractors’ selection. Truth membership, indeterminacy
membership, and falsity membership of SVNS provide a
comprehensive evaluation of criteria, in which all criteria are
successfully separated into two groups. (e proposed SVN-
DEMATELmethod is a valuable instrument to decide the key
criteria that could become cause criteria and effect criteria.
(e experimental results show that the proposed method can
successfully capture the important result of decision-making,
where the criteria “Experience” and “Quality” are the main
causes that need to be highly considered in subcontractors’
selection, while “Completing on Time” is a criterion that has
no effect in subcontractors’ selection. Differentiating the
important criteria while choosing subcontractors would really
help the main contractor in ensuring the success of con-
struction projects.

(e contributions of this paper are fivefold:

(1) We propose using relative weights of decision-
makers based on three memberships of SVNS in-
stead of considering equal weights among the five
decision-makers. (e proposed method uses a
proportion equation that makes the weights of de-
cision-makers more suitable for real-life application.

(2) We propose using a weighted averaging operator to
find aggregated direct relation matrix, where a series
of multiplications of assessment scales and relative
weights of decision-makers are accounted.

(3) We propose introducing a transformation equation
instead of typical averaged defuzzification method to
transform three memberships of SVNS to single real
numbers.

(4) We propose an extension to the computational
procedures of DEMATEL, where all criteria under
investigation are segregated into four types based on
degree of influence.

(5) We extend the analysis in the application part with
quadrant analysis, where all criteria are mapped onto
one of the four quadrants. (is analysis is in addition
to the causal diagram, which is typically used in the
analysis of DEMATEL. (ese five contributions are
embedded in the proposed SVNS-DEMATEL, in
which ten criteria of subcontractors’ selection are
segregated into four types. In future studies, we
would like to extend the SVN-DEMATEL beyond
the scope of causal diagram. As the SVN-DEMATEL
can effectively identify the criteria, the two obtained
groups of criteria contain useful information about
which criteria specifically influenced other criteria.
(ese unidirectional relationships can be explored as
part of future research direction.
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In this paper, we extend the notion of semi-hypergroups (resp. hypergroups) to neutro-semihypergroups (resp. neutro-
hypergroups). We investigate the property of anti-semihypergroups (resp. anti-hypergroups). We also give a new alternative of
neutro-hyperoperations (resp. anti-hyperoperations), neutro-hyperoperation-sophications (resp. anti-hypersophications).
Moreover, we show that these new concepts are different from classical concepts by several examples.

1. Introduction

A hypergroup, as a generalization of the notion of a group,
was introduced by F. Marty [1] in 1934. (e first book in
hypergroup theory was published by Corsini [2]. Nowadays,
hypergroups have found applications to many subjects of
pure and applied mathematics, for example, in geometry,
topology, cryptography and coding theory, graphs and
hypergraphs, probability theory, binary relations, theory of
fuzzy and rough sets and automata theory, physics, and also
in biological inheritance [3–7]. (e first book in semi-
hypergroup theory was published by Davvaz in 2016 (see
[8]). In recent years, several other valuable books in
hyperstructures have been written by Davvaz et al. [6, 9, 10].

M. Al-Tahan et al. introduced the Corsini hypergroup
and studied its properties as a special hypergroup that was
defined by Corsini. (ey investigated a necessary and suf-
ficient condition for the productional hypergroup to be a
Corsini hypergroup, and they characterized all Corsini
hypergroups of orders 2 and 3 up to isomorphism [3]. Semi-
hypergroup, hypergroup, and fuzzy hypergroup of order 2
are enumerated in [7, 11, 12]. S. Hoskova-Mayerova et al.
used the fuzzy multisets to introduce the concept of fuzzy
multi-hypergroups as a generalization of fuzzy hypergroups,
defined the different operations on fuzzy multi-hypergroups,
and extended the fuzzy hypergroups to fuzzy multi-
hypergroups [13].

In 2019 and 2020, within the field of neutrosophy,
Smarandache [14–16] generalized the classical algebraic
structures to neutroalgebraic structures (or neutroalgebras)
(whose operations and axioms are partially true, partially
indeterminate, and partially false) as extensions of partial
algebra and to antialgebraic structures (or antialgebras)
(whose operations and axioms are totally false). Furthermore,
he extended any classical structure, no matter what field of
knowledge, to a neutrostructure and an antistructure. (ese
are new fields of research within neutrosophy. Smarandache
in [16] revisited the notions of neutroalgebras and anti-
algebras, where he studied partial algebras, universal algebras,
effect algebras, and Boole’s partial algebras and showed that
neutroalgebras are the generalization of partial algebras. Also,
with respect to the classical hypergraph (that contains
hyperedges), Smarandache added the supervertices (a group
of vertices put together to form a supervertex), in order to
form a super-hypergraph. (en, he extended the super-
hypergraph to n-super-hypergraph, by extending the power
set P(V) to Pn(V) that is the n-power set of the set V (the n-
super-hypergraph, through its n -super-hypergraph-vertices
and n -superhypergraph-edges that belong to Pn(V), can be
the best (so far) to model our complex and sophisticated
reality). Furthermore, he extended the classical hyperalgebra
to n-ary hyperalgebra and its alternatives n -ary neutro-
hyperalgebra and n -ary anti-hyperalgebra [17]. (e notion of
neutrogroup was defined and studied by Agboola in [18].
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Recently, M. Al-Tahan et al. studied neutro-ordered algebra
and some related terms such as neutro-ordered subalgebra
and neutro-ordered homomorphism in [19].

In this paper, the concept of neutro-semihypergroup and
anti-semihypergroup is formally presented. And, new al-
ternatives are introduced, such as neutro-hyperoperations
(resp. anti-hyperoperations), neutro-hyperaxioms, and anti-
hyperaxioms. We show that these definitions are different
from classical definitions by presenting several examples.
Also, we enumerate neutro-hypergroup and anti-hyper-
group of order 2 (see Table 1) and obtain some known results
(see Table 2).

2. Preliminaries

In this section, we recall some basic notions and results
regarding hyperstructures.

Definition 1 (see [2, 8]). A hypergroupoid (H, ∘ ) is a
nonempty set H together with a map ∘: H × H⟶ P∗(H)

called (binary) hyperoperation, where P∗(H) denotes the set
of all nonempty subsets of H. (e hyperstructure (H, ∘ ) is
called a hypergroupoid, and the image of the pair (x, y) is
denoted by x ∘y.

If A and B are nonempty subsets of H and x ∈ H, then by
A ∘B, A ∘ x, and x ∘B we mean A ∘B � ∪ a∈A,b∈Ba ∘ b,
A ∘ x � A ∘ x{ }, and x ∘B � x{ } ∘B.

Definition 2 (see [2, 8]). A hypergroupoid (H, ∘ ) is called a
semi-hypergroup if it satisfies the following:

(A) (∀a,b,c ∈H)(a∘(b∘c) � (a∘b)∘c) (associativity).

Definition 3 (see [2, 8]). A hypergroupoid (H, ∘ ) is called a
quasi-hypergroup if reproduction axiom is valid.(is means
that, for all a of H, we have

(R) (∀a ∈ H) (H ∘ a � a ∘H � H) (i.e. (∀a, b ∈ H)

(∃c, d ∈ H) s.t. b ∈ c ∘ a, b ∈ a ∘d).

Definition 4 (see [2, 8]). A hypergroupoid (H, ∘ ) which is
both a semi-hypergroup and a quasi-hypergroup is called a
hypergroup.

Example 1 (see [2, 8])

(i) Let H be a nonempty set, and for all x, y ∈ H, we
define x ∘y � H. (en, (H, ∘ ) is a hypergroup,
called the total hypergroup.

(ii) Let G be a group andH a normal subgroup of G, and
for all x, y ∈ G, we define x ∘y � xyH. (en, (G, ∘ )
is a hypergroup.

Definition 5 (see [2, 12]). Let (H, ∘ ) be a hypergroupoid.
(e commutative law on (H, ∘ ) is defined as follows:

(C) (∀a, b ∈ H) (a ∘ b � b ∘ a).

(H, ∘ ) is called a commutative hypergroupoid.

Example 2 (see [13]). Let Z be the set of integers, and define
°1 on Z as follows. For all x, y ∈ Z,

x ∘ 1y �
2Z, if x, y have same partiy,

2Z + 1, otherwise.
􏼨 􏼩. (1)

(en, (Z, ∘1) is a commutative hypergroup.

3. On Neutro-hypergroups and Anti-
hypergroups

F. Smarandache generalized the classical algebraic structures
to the neutroalgebraic structures and antialgebraic struc-
tures. Neutro-sophication of an item C (that may be a
concept, a space, an idea, a hyperoperation, an axiom, a
theorem, a theory, an algebra, etc.) means to split C into
three parts (two parts opposite to each other, and another
part which is the neutral/indeterminacy between the op-
posites), as pertinent to neutrosophy ((〈A〉, 〈neutA〉,

〈antiA〉), or with other notation (T, I, F)), meaning cases
where C is partially true (T), partially indeterminate (I), and
partially false (F), while antisophication of C means to
totally deny C (meaning that C is made false on its whole
domain) (see [14, 15, 17, 20]).

Neutrosophication of an axiom on a given set X means
to split the set X into three regions such that, on one region,
the axiom is true (we say the degree of truth T of the axiom),
on another region, the axiom is indeterminate (we say the
degree of indeterminacy I of the axiom), and on the third
region, the axiom is false (we say the degree of falsehood F of
the axiom), such that the union of the regions covers the
whole set, while the regions may or may not be disjoint,
where (T, I, F) is different from (1, 0, 0) and from (0, 0, 1).

Antisophication of an axiom on a given set X means to
have the axiom false on the whole set X (we say total degree
of falsehood F of the axiom) or (0, 0, 1).

Table 1: Classification of the hypergroupoids of order 2.

A NA AA

C

R 6 4 —
NR — — —
AR — — —
Etc. 3 2 —

NC

R — — —
NR — — —
AR — — —
Etc. — — —

AC

R 2 8 —
NR — — —
AR — — —
Etc. 6 10 4

Table 2: Classification of the semi-hypergroups of order 2.

Com Noncom N
Semigroup 3 2 5
Group 1 — 1
Semi-hypergroup 9 8 17
Hypergroup 6 2 8
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Neutrosophication of a hyperoperation defined on a
given set X means to split the set X into three regions such
that, on one region, the hyperoperation is well-defined (or
inner-defined) (we say the degree of truth T of the hyper-
operation), on another region, the hyperoperation is inde-
terminate (we say the degree of indeterminacy I of the
hyperoperation), and on the third region, the hyper-
operation is outer-defined (we say the degree of falsehood F

of the hyperoperation), such that the union of the regions
covers the whole set, while the regions may or may not be
disjoint, where (T, I, F) is different from (1, 0, 0) and from
(0, 0, 1).

Antisophication of a hyperoperation on a given set X

means to have the hyperoperation outer-defined on the
whole set X (we say total degree of falsehood F of the axiom)
or (0, 0, 1).

In this section, we will define the neutro-hypergroups
and anti-hypergroups.

Definition 6. A neutro-hyperoperation is a map
∘: H × H⟶ P(U), where U is a universe of discourse that
contains H that satisfies the below neutrosophication
process.

(e neutrosophication (degree of well-defined, degree of
indeterminacy, and degree of outer-defined) of the hyper-
operation is the following neutrohyperoperation (NH):

(NR) (∃x, y ∈ H) (x ∘y ∈ P∗(H)) and (∃x, y ∈
H)(x ∘y is an indeterminate subset, or x ∘y ∉ P∗(H)).
(e neutrosophication (degree of truth, degree of in-
determinacy, and degree of falsehood) of the hyper-
group axiom of associativity is the following
neutroassociativity (NA):
(NA) (∃a, b, c ∈ H) (a ∘ (b ∘ c) � (a ∘ b) ∘ c) and (∃d, e,

f ∈ H)(d ∘ (e ∘f)≠ (d ∘ e) ∘f or d ∘ (e ∘f) � inde-
terminate, or (d ∘ e) ∘f � indeterminate).
Neutroreproduction axiom (NR):
(NR) (∃a ∈ H)(H ∘ a � a ∘H � H) and (∃b ∈ H)

(H ∘ b, b ∘H, and H are not all three equal, or some of
them are indeterminate).
Also, we define the neutrocommutativity (NC) on
(H, ∘ ) as follows:
(NC) (∃a, b ∈ H)(a ∘ b � b ∘ a) and (∃c, d ∈ H)

(c ∘d≠d ∘ c, or c ∘d � indeterminate, or d ∘ c �

indeterminate).

Now, we define a neutro-hyperalgebraic system
S � 〈H, F, A〉, where H is a set or neutrosophic set, F is a set
of the hyperoperations, and A is the set of hyperaxioms, such
that there exists at least one neutro-hyperoperation or at
least one neutro-hyperaxiom and no anti-hyperoperation
and no anti-hyperaxiom.

Definition 7. (e anti-hypersophication (totally outer-
defined) of the hyperoperation defines anti-hyperoperation
(AH): (AH) (∀x, y ∈ H) (x ∘y ∉ P∗(H)).

(e anti-hypersophication (totally false) of the hyper-
group is as follows:

(AA) (∀x, y, z ∈ H) (x ∘ (y ∘ z)≠ (x ∘y) ∘ z)

(antiassociativity)
(AR) (∀a ∈ H)(H ∘ a, a ∘H, and H are not equal)
(antireproduction axiom)
Also, we define the anticommutativity (AC) on (H, ∘ )
as follows:
(AC) (∀a, b ∈ H with a≠ b) (a ∘ b≠ b ∘ a).

Definition 8. A neutro-semihypergroup is an alternative of
semi-hypergroup that has at least (NH) or (NA), which does
not have (AA).

Example 3

(i) Let H � a, b, c{ } and U � a, b, c, d{ } be a universe of
discourse that contains H. Define the neutro-
hyperoperation °2 on H with Cayley’s table.

◦2 a b c

a a a a

b b {a, b} {a, b, d}

c c ? H

(en, (H, ∘2) is a neutro-semihypergroup. Since
a ∘2 b ∈ P∗(H), b ∘2 c � a, b, d{ } ∉ P∗(H), and
c ∘2 b � indeterminate, so (NH) holds.

(ii) Let H � a, b, c{ }. Define the hyperoperation ∘3 on H

with Cayley’s table.

◦3 a b c

a a a a

b b {a, b} {a, b}

c c {b, c} H

(en, (H, ∘3) is a neutro-semihypergroup. (NA) is valid,
since (b ∘3 c) ∘3 a � a, b{ } ∘3 a � (a ∘ 3 a)∪ (b ∘ 3 a) � a{ }∪
b{ } � a, b{ } and b ∘3(c ∘3 a) � b ∘3 c{ } � b ∘3 c � a, b{ }.

Hence, (b ∘3 c) ∘3 a � b ∘3(c ∘3 a). Also, b ∘3 a􏼈 􏼉 ∘3
c � b{ } ∘3 c � b ∘3 c � a, b{ } and b ∘3(a ∘3 c) � b ∘3 a{ } �

b ∘3 a � b{ }, so (b ∘3 a) ∘ 3c≠ b ∘3 (a ∘3 c).

Definition 9. A neutrocommutative semi-hypergroup is a
semi-hypergroup that satisfies (NC).

Example 4. Let H � a, b, c{ }. Define the hyperoperation ∘4
on H with Cayley’s table.

◦4 a b c

a {a, c} a a

b a b c

c a {b, c} {b, c}

(en, (H, °4) is a semi-hypergroup, but not a hyper-
group, since a°4 H � H°4 a � a, c{ }≠H. (NC) is valid, since
a ∘4 b � a{ } � b ∘4 a and c ∘4 b � b, c{ }≠ b ∘4 c � c{ }.
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Definition 10. A neutrocommutative hypergroup is a
hypergroup that satisfies (NC).

Example 5. Let H � a, b, c, d, e, f􏼈 􏼉. Define the operation °5
on H with Cayley’s table.

◦5 a b c d e f

e e a b c d f

a a b e d f c

b b e a f c d

c c f d e b a

d d c f a e b

f f d c b a e

(en, (H, ∘5, e) is a group and so is a natural hyper-
group. Also, it is a neutrocommutative hypergroup, since
a ∘5b � e � b ∘5a and a ∘5c � d≠ c ∘5a � f.

Definition 11. A neutrohypergroup is an alternative of
hypergroup that has at least (NH) or (NA) or (NR), which
does not have (AA) and (AR).

Example 6. Let H � a, b, c{ }. Define the hyperoperation ∘6
on H with Cayley’s table.

◦6 a b c

a a b c

b b b b

c c c a

(en, (H, ∘6) is a neutrohypergroup. (e hyper-
operation ∘6 is associative. (NR) is valid, since
a ∘6H � (a ∘6 a)∪ (a ∘6 b)∪ (a ∘6 c) � H � (a ∘6 a)∪ (b ∘6a)

∪ (c ∘6 a) � H ∘6a, b ∘6 H � (b ∘6 a)∪ (b ∘6 b)∪ (b ∘6 c) �

b{ }≠H≠ c, b{ } � (a ∘6 b)∪ (b ∘6 b)∪ (c ∘6 b) � H ∘6 b, and
c ∘6 H � (c ∘6 a)∪ (c ∘6 b)∪ (c ∘6 c) � a, c{ }≠H, but H ∘6c �

(a ∘6 c)∪ (b ∘6 c)∪ (c ∘6 c) � a, b, c{ } � H.
Note that every neutro-semihypergroup, neutro-

hypergroup, neutrocommutative semi-hypergroup, and
neutrocommutative hypergroup are neutro-hyperalgebraic
systems.

Definition 12. An anti-semihypergroup is an alternative of
semi-hypergroup that has at least (AH) or (AA).

Example 7

(i) Let N be the set of natural numbers except 0. Define
hyperoperation ∘7 on N by x ∘7y � (x2/x2 + 1), y􏼈 􏼉.
(en, (N, ∘7) is an anti-semihypergroup. (AH) is
valid, since, for all x, y ∈ N, x ∘7y ∉ P∗(N). (us,
(AH) holds.

(ii) Let H � a, b{ }. Define the hyperoperation ∘8 on H

with Cayley’s table.

◦8 a b

a b a

b b a

(en, (H, ∘8) is an anti-semihypergroup. (AA) is
valid, since, for all x, y, z ∈ H, x ∘8(y ∘8 z)≠
(x ∘8 y) ∘8 z.

(iii) Let H � a, b{ }. Define the hyperoperation ∘9 on H

with Cayley’s table.

◦9 a b

a b H

b a a

(en, (H, ∘9) is an anticommutative semi-hypergroup.
(AC) is valid, since a ∘9 b � H≠ b ∘9 a � a{ }.

Definition 13. An anti-hypergroup is an anti-
semihypergroup, or it satisfies (AR).

Example 8

(i) Let R be the set of real numbers. Define hyper-
operation ∘10 on R by x ∘10y � x2 + 1, x2 − 1􏼈 􏼉.
(en, (R, ∘10) is an anti-semihypergroup, since, for
all x, y, z ∈ R, x ∘10(y ∘10 z)≠ (x ∘10 y) ∘10 z. Be-
cause x ∘10(y ∘10 z) � x ∘10 y2 + 1, y2 − 1􏼈 􏼉 �

x ∘10(y2+􏼈 1), x ∘10(y2 − 1)} � x2 + 1, x2 − 1􏼈 􏼉, but
(x ∘10 y) ∘10 z � x2 + 1, x2 − 1􏼈 􏼉 ∘10 z � ((x2 + 1)

∘10 z)∪ ((x2 − 1) ∘10 z) � (x2 + 1)2 + 1,􏽮 (x2 − 1)2

+ 1}. Hence, (AA) is valid.
(ii) Let H � a, b, c{ }. Define the hyperoperation ∘11 on

H with Cayley’s table.

◦11 a b c

a a a b

b a a a

c c c c

(en, (H, ∘11) is an anti-semihypergroup. (e
hyperoperation ∘11 is associative. Also, (AR) holds,
since a ∘11H � (a ∘11a)∪ (a ∘11b)∪ (a ∘11c) � c{ }≠
H≠ b, c{ } � (a ∘11a)∪ (b ∘11a)∪ (c ∘11a) � H ∘11a,
b ∘11H � (b ∘11a)∪ (b ∘11b)∪ (b ∘11c) � b{ } ≠ H ≠
b, c{ } � (a ∘11b)∪ (b ∘11b)∪ (c ∘11b) � H ∘11b, and

c ∘11H � (c ∘11a)∪ (c ∘11b)∪ (c ∘11c) � c{ }≠H≠
b, c{ } � (a ∘11c)∪ (b ∘11c)∪ (c ∘11c) � H ∘11c.

(iii) Let R be the set of real numbers. Define hyper-
operation ∘12 on R by x ∘12 y � x, 1{ }. (en,
(R, ∘12) is an anti-semihypergroup. (e hyper-
operation ∘12 is associative, since, for all x, y, z ∈ R,
we have x ∘12(y ∘12 z) � x ∘12 y, 1􏼈 􏼉 � (x ∘12 y)∪
(x ∘12 1) � x, 1{ }∪ x, 1{ } � x, 1{ } and (x ∘12y) ∘ 12z �

x, 1{ } ∘12 z � (x ∘12z)∪ (1 ∘12 z) � x, 1{ }∪ 1, 1{ } �

x, 1{ }, so x ∘12(y ∘12 z) � (x ∘12 y) ∘ 12 z. However,
for a ∈ R, we have a ∘ 12R � ∪ x∈Ra ∘ 12x � ∪ x∈R
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a, 1{ } � a, 1{ }≠R and R ∘ 12a � ∪ x∈Rx ∘ 12a �

∪ x∈R x, 1{ } � R. (us, a ∘ 12R≠R ∘ 12a.

Definition 14. An anticommutative semi-hypergroup is a
semi-hypergroup that satisfies (AC).

Example 9

(i) Let H � a, b{ }. Define the hyperoperation ∘ 13 on H

with Cayley’s table.

◦13 a b

a a a

b H b

(en, (H, ∘ 13) is a semi-hypergroup and (AC) is
valid, since a ∘ 13b � a{ }≠ b ∘ 13a � H. (us, (H, ∘ 13)
is an anticommutative semi-hypergroup.

(ii) Let H � a, b{ }. Define the hyperoperation ∘ 14 on H

with Cayley’s table.

◦14 a b

a b a

b b a

(en, (H, ∘14) is an anticommutative semi-hypergroup,
and the hyperoperation ∘ 14 is not associative, since
(a∘14a)∘ 14a � b{ }∘14a � b{ }≠a∘14 (a∘14a) � a∘ 14 b{ } � a{ }.

(AC) is valid, since a ∘ 14b � a{ }≠ b ∘ 14a � b{ }.

Definition 15. An anticommutative hypergroup is a
hypergroup that satisfies (AR).

Example 10

(i) Let H � a, b{ }. Define the hyperoperation ∘ 15 on H

with Cayley’s table.

◦15 a b

a H a

b H H

(en, (H, ∘15) is an anticommutative hypergroup.
(AC) is valid, since a ∘ 15b � a{ }≠ b ∘ 15a � H.

(ii) Let H � a, b, c{ }. Define the hyperoperation ∘ 16 on
H with Cayley’s table.

◦16 a b c

a a a H

b b b H

c c c H

(en, (H, ∘16) is an anticommutative hypergroup.
(e hyperoperation °16 is associative. Also, (AC)
holds, since a ∘ 16b � a{ }≠ b ∘ 16a � b{ }, a ∘ 16c �

H≠ c ∘ 16a � c{ }, and b ∘ 16c � H≠ c ∘ 16b � c{ }.

(iii) Let H � a, b, c{ }. Define the hyperoperation ∘ 17 on
H with Cayley’s table.

◦17 a b c

a a b c

b a b c

c H H H

(en, (H, ∘ 17) is an anticommutative hypergroup, (AC)
holds, since a ∘ 17b � b{ }≠ b ∘ 17a � a{ }, a ∘ 17c � c{ }≠
c ∘ 17a � H, and b ∘ 17c � c{ }≠ c ∘ 17b � H.

Note that every anti-semihypergroup, antihypergroup,
anticommutative semi-hypergroup, and anticommutative
hypergroup are anti-hyperalgebraic systems.

In the following results, we use hyperoperation instead of
neutro-hyperoperation.

Note that if (H, ∘ ) is a neutro-semihypergroup and
(G, ∘ ) is an anti-semihypergroup, then (H∩G, ∘ ) is not a
neutro-semihypergroup, but it is an anti-semihypergroup.
Also, let (H, ∘H) be a neutro-semihypergroup, (G, ∘ G) be
an anti-semihypergroup, and H∩G � ∅. Define hyper-
operation ∘ on H⊎G by

x ∘y �

x ∘Hy, if x, y ∈ H,

x ∘ Gy, if x, y ∈ G,

x, y􏼈 􏼉, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (2)

(en, (H⊎G, ∘ ) is a neutro-semihypergroup, but it is
not an anti-semihypergroup.

Proposition 1. Let (H, ∘ ) be an antisemihypergroup and
e ∈ H. 6en, (H∪ e{ }, ∗ ) is a neutrosemihypergroup, where
∗ is defined on H∪ e{ } by

x∗y �
x ∘Hy, if x, y ∈ H,

e, x, y􏼈 􏼉, otherwise.
􏼨 􏼩. (3)

Proof. It is straightforward.

Proposition 2. Let (H, ∘ ) be a commutative hypergroupoid.
6en, (H, ∘ ) cannot be an anti-semihypergroup.

Proof. Let a ∈ H. (en, a ∘ (a ∘ a) � (a ∘ a) ∘ a, so (H, ∘ )
cannot be an anti-semihypergroup.

Corollary 1. Let (H, ∘ ) be a hypergroupoid, and there exists
a ∈ H such that a°a commuted with a. 6en, (H, ∘ ) cannot
be an anti-semihypergroup.

Corollary 2. Let (H, ∘ ) be a hypergroupoid with a scalar
idempotent, i.e., there exists a ∈ H such that a°a � a. 6en,
(H, ∘ ) cannot be an anti-semihypergroup.

Proposition 3. Let (H, ∘H) and (G, ∘ G) be two neutro-
semihypergroups (resp. anti-semihypergroups). 6en, (H ×
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G, ∗ ) is a neutro-semihypergroup (resp. anti-semi-
hypergroups), where ∗ is defined on H × G. For any
(x1, y1), (x2, y2) ∈ H × G,

x1, y1( 􏼁∗ x2, y2( 􏼁 � x1 ∘Hx2, y1 ∘ Gy2( 􏼁. (4)

Note that if (H, ∘ ) is a neutro-semihypergroup, then if
there is a nonempty set H1⊆H, such that (H1, ∘ ) is a semi-
hypergroup, we call it Smarandache semi-hypergroup.

Suppose (H, ∘H) and (G, ∘ G) are two hypergroupoids.
A function f: H⟶ G is called a homomorphism if, for all
a, b ∈ H, f(a ∘Hb) � f(a) ∘ Gf(b) (see [21, 22], for details).

Proposition 4. Let (H, ∘H) be a semi-hypergroup, (G, ∘ G)

be a neutro-hypergroup, and f: H⟶ G be a homomor-
phism. 6en, (f(H), ∘ G) is a semi-hypergroup, where
f(H) � f(h): h ∈ H􏼈 􏼉.

Proof. Assume that (H, ∘H) is a semi-hypergroup and
x, y, z ∈ f(H). (en, there exist h1, h2, h3 ∈ f(H) such that
f(h1) � x, f(h2) � y, and f(h3) � z, so we have

x ∘ G y ∘ Gz( 􏼁 � f h1( 􏼁 ∘ G f h2( 􏼁 ∘ G h3( 􏼁( 􏼁

� f h1( 􏼁 ∘ Gf h2 ∘Hh3( 􏼁 � f h1 ∘H h2 ∘Hh3( 􏼁( 􏼁

� f h1 ∘Hh2( 􏼁 ∘Hh3( 􏼁 � f h1 ∘Hh2( 􏼁 ∘ Gf h3( 􏼁

� f h1( 􏼁 ∘ Gf h2( 􏼁( 􏼁 ∘ Gf h3( 􏼁 � x ∘ Gy( 􏼁 ∘ Gz.

(5)

(en, (f(H), ∘ G) is a semi-hypergroup. □

Definition 16. Let (H, ∘H) and (G, ∘ G) be two hyper-
groupoids. A bijection f: H⟶ G is an isomorphism if it
conserves the multiplication (i.e., f(a ∘Hb) � f(a) ∘ Gf(b))
and write H � G. A bijection f: H⟶ G is an antiiso-
morphism if for all a, b ∈ H, f(a ∘Hb)≠f(b) ∘ Gf(a). A
bijection f: H⟶ G is a neutroisomorphism if there exist
a, b ∈ H, f(a ∘Hb) � f(b) ∘ Gf(a), i.e., degree of truth (T),
there exist c, d ∈ H and f(c ∘Hd) or f(c) ∘ Gf(d) are in-
determinate, i.e., degree of indeterminacy (I), and there
exist e, h ∈ H, f(e ∘Hh)≠f(e) ∘ Gf(h), i.e., degree of
falsehood (F), where (T, I, F) are different from (1, 0, 0) and
(0, 0, 1), and T, I, F ∈ [0, 1].

Let ° be a hyperoperation on H � a, b{ } and
(A11, A12, A21, A22) inside of Cayley’s table.

◦ a b

a A11 A12

b A21 A22

Lemma 1 (see [5]). Let (H � a, b{ }, ∘H) and
(G � a′, b′􏼈 􏼉, ∘ G) be hypergroupoids with Cayley’s tables
(A, B, C, D) and (A′, B′, C′, D′), respectively. 6en, H � G if
and only if, for all i, j ∈ 1, 2{ }, Aij � Aij

′ or

Aij
′ �

A
d
ij, if Aij � H,

G∖Aij
′ , if Aij ≠H,

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (6)

where Ad
11 � A22, Ad

12 � A12, Ad
21 � A21, and Ad

22 � A11.

Lemma 2 (see [6]). If (H, ∘ ) is a hypergroupoid, then
(H, ∗ ) is a hypergroupoid when x∗y � y ∘x for all
x, y ∈ H.

(H, ∗ ) in Lemma 2 is called dual hypergroupoid of
(H, ∘ ).

Theorem 1. Let (H � a, b{ }, ∘ ). 6en, (H, ∘ ) � (H, ∗ ) if
and only if (H, ∘ ) is anticommutative.

Lemma 3. 6ere exist 4 anticommutative anti-semi-
hypergroup of order 2 (up to isomorphism).

Proof. Let (H, ∘ ) be an anticommutative anti-
semihypergroup. By Corollary 2, we have a ∘ a≠ a and
b ∘ b≠ b. Also, a ∘ b≠ b ∘ a. Consider the following.

If a ∘ a � H, then a ∘ (a ∘ a) � a ∘H � H � H ∘ a �

(a ∘ a) ∘ a, a contradiction. (en, we get a ∘ a � b and
b ∘ b � a.

Now, we have

Case 1. If a ∘ b � a, then b ∘ a � H or b ∘ a � b, so we get
(b, a, b, a) and (b, a, H, a) are two anti-
semihypergroups
Case 2. If a ∘ b � b, then b ∘ a � H or b ∘ a � a, so we get
(b, b, a, a) and (b, b, H, a) are two anti-
semihypergroups
Case 3. If a ∘ b � H, then b ∘ a � a or b ∘ a � b, so we get
(b, H, a, a) and (b, H, b, a) are two anti-
semihypergroups

It can be see that (b, a, H, a) � (b, H, b, a) and
(b, H, a, a) � (b, b, H, a). (erefore, (b, b, a, a), (b, a, b, a),
(b, a, H, a), and (b, H, a, a) are 4 nonisomorphic anti-
semihypergroups of order 2. □

Corollary 3. 6ere exists two nonisomorphic anti-
semigroups of order 2: (b, b, a, a) and (b, a, b, a). Anti-
semigroup (b, b, a, a) is the dual form of the anti-semigroup
(b, a, b, a).

Corollary 4. 6ere exists two nonisomorphic anti-
semihypergroups of order 2: (b, a, H, a) and (b, H, a, a).
Anti-semihypergroup (b, a, H, a) is the dual form of the anti-
semihypergroup (b, H, a, a).

Theorem 2. Let (H, ∘ ) be a hypergroupoid of order 2. 6en,
(H, ∘ ) does not have (NR) or (AR).

Proof. Let H � a, b{ }. Suppose Ha≠H, aH≠H, and
Ha≠ aH. Hence, Ha � a{ } or Ha � b{ }. First, give Ha � a{ },
then aH≠H and Ha≠ aH implies that aH � b{ }. (en,
a ∘ a⊆Ha � b{ } and a ∘ a⊆Ha � a{ }. (erefore, b{ } � a ∘ a ∘ a
� a{ }, and this is a contradiction. In the similar way, we
obtain Hb≠H, bH≠H, and Hb≠ bH, a contradiction.

Using Lemmas 1 and 2 and (eorem 1, we can find 45
nonisomorphic classes hypergroupoids of the order 2. We
characterize these 45 classes in Table 1.
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Note that semi-hypergroups, hypergroups, and fuzzy
hypergroups of order 2 are enumerated in [7, 11, 12].

We obtain anti-semihypergroups and neutro-
semihypergroups of order 2 and the classification of the
hypergroupoids of order 2 (classes up to isomorphism).

R, NR, AR, A, NA, AA, C, NC, and AC in Table 1 are
denoted in Sections 2 and 3.

A result from Table 1 confirms the enumeration of the
hyperstructure of order 2 [11, 23, 24], which is summarized
as follows. □

4. Conclusion and Future Work

In this paper, we have studied several special types of hyper-
groups, neutro-semihypergroups, anti-semihypergroups, neu-
tro-hypergroups, and anti-hypergroups. New results and
examples on these new algebraic structures have been inves-
tigated. Also, we characterize all neutro-hypergroups and anti-
hypergroups of order two up to isomorphism. (ese concepts
can further be generalized.

Future research to be done related to this topic are

(a) Define neutro-quasihypergroup, anti-quasihy-
pergroup, neutrocommutative quasi-hypergroup,
and anticommutative quasi-hypergroup

(b) Define neutro-hypergroups, anti-hypergroups,
neutrocommutative hypergroups, and anti-
commutative hypergroups

(c) Define and investigate neutroHv-groups, antiHv-
groups, neutroHv-rings, and antiHv-rings

(d) It will be interesting to characterize infinite neutro-
hypergroups and anti-hypergroups up to
isomorphism

(e) (ese results can be applied to other hyper-
algebraic structures, such as hyper-rings, hyper-
spaces, hyper-BCK-algebra, hyper-BE-algebras,
and hyper-K-algebras.
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Abel-Grassmann’s groupoid and neutrosophic extended triplet loop are two important algebraic structures that describe two
kinds of generalized symmetries. In this paper, we investigate quasi AG-neutrosophic extended triplet loop, which is a fusion
structure of the two kinds of algebraic structures mentioned above. We propose new notions of AG-(l,r)-Loop and AG-(r,l)-Loop,
deeply study their basic properties and structural characteristics, and prove strictly the following statements: (1) each strong AG-
(l,r)-Loop can be represented as the union of its disjoint sub-AG-groups, (2) the concepts of strong AG-(l,r)-Loop, strong AG-(l,l)-
Loop, and AG-(l,lr)-Loop are equivalent, and (3) the concepts of strong AG-(r,l)-Loop and strong AG-(r,r)-Loop are equivalent.

1. Introduction

)e so-called left almost semigroup (LA-semigroup) was
actually the concept of an Abel-Grassmann’s groupoid (AG-
groupoid), which was put forward by Kazim and Naseer-
uddin [1] at the first time in 1972. Different classes of AG-
groupoids and their concerned characteristics have been
studied in [2–5].

Neutrosophic set (NS) was first put forward by Smar-
andache in [6]. )en, it has been growing promptly over the
previous 15 years. Nowadays, NS theory is widely used in a
couple of sectors such as professional selection [7], integrated
speech and text sentiment analysis [8], finite automata [9],
clusteringmethods [10], and deep learning [11]. Besides, more
new theoretical studies on NS in [12–17] have been conducted
and a few significant results have been gained.

)e concept of Abel-Grassmann’s neutrosophic ex-
tended triplet loop (AG-NET-Loop), which plays a signif-
icant role in neutrosophic triplet algebraic structures, was
proposed in [18], that is, an AG-NET-Loop is both an AG-
groupoid and a neutrosophic extended triplet loop (NET-
Loop). In [19], the concept of neutrosophic triplet elements
(NT-elements) and quasi neutrosophic triplet loops were

introduced. In [20], two kinds of quasi AG-NET-Loops
(AG-(l,l)-Loop and AG-(r,r)-Loop) were proposed and their
basic properties were investigated. As a continuation of [20],
we propose two other kinds of quasi AG-NET-Loops, which
are the AG-(l,r)-Loop and the AG-(r,l)-Loop. We study their
properties and analyze their relationship.

)e rest of this paper is arranged as follows. In Section 2,
some definitions and properties on quasi AG-NET-Loop are
given. Some properties and structures about the AG-(l,r)-
Loop are discussed in Section 3. )e relations among four
kinds of quasi AG-NET-Loops are analyzed in Section 4.
Some properties about the alternative quasi AG-NET-Loops
are discussed in Section 5. Lastly, Section 6 presents the
summary and the direction of future efforts.

2. Preliminaries

A groupoid (G, ∗ ) is called an AG-groupoid if it holds the
left invertive law, that is, for all x, y, z ∈ G,
(x∗y)∗ z � (z∗y)∗x. In an AG-groupoid (G, ∗ ) the
medial law holds, for all x1, x2, x3, x4 ∈ G,
(x1 ∗ x2)∗ (x3 ∗ x4) � (x1 ∗x3)∗ (x2 ∗ x4). An AG-
groupoid (G, ∗ ) is called locally associative if for all
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x ∈ G, (x∗ x)∗x � x∗ (x∗x). In an AG-groupoid (G, ∗ ),
for all x ∈ G, k ∈ Z+, xk is defined as follows: x1 � x, x2 �

x∗ x, x3 � x2 ∗x, x4 � x3 ∗ x, . . . , xk � xk−1 ∗x.

Definition 1 (see [21]). Let G be a nonempty set together
with a binary operation ∗. )en, G is called a neutrosophic
extended triplet set if, for all x ∈ G, there exist a neutral of
”x” and an opposite of ”x” (denoted by neut(x) and anti(x),
respectively), such that neut(x), anti(x) ∈ G, and
neut(x)∗ x � x∗neut(x) � x, anti (x)∗ x � x∗ anti(x) �

neut(x). )e triplet (x, neut(x), anti(x)) is called a neu-
trosophic extended triplet (NET).

Definition 2 (see [18]). An NETset (G, ∗ ) is called an NET-
Loop, if, for all x, y ∈ G, one has x∗y ∈ G.

Definition 3 (see [18]). An AG-groupoid (G, ∗ ) is called an
AG-NET-Loop if it is an NET-Loop.

An AG-NET-Loop G is called a commutative AG-NET-
Loop if for all x, y ∈ G, x∗y � y∗ x.

Theorem 1 (see [18]). Let (G, ∗ ) be an AG-NET-Loop.
-en,

(1) For all x ∈ G, neut(x) is unique
(2) For all x ∈ G, (neut(x))2 � neut(x)

Definition 4 (see [2]). AG-groupoid (G, ∗ ) is called regular
if, for all a ∈ G, there exists m ∈ G, a � (a∗m)∗ a.

Definition 5 (see [20]). Let (G, ∗) be an AG-groupoid.
)en, G is called an AG-(l,l)-Loop if, for all a ∈ G, there exist
a local (l,l)-neutral element of”a” and a local (l,l)-opposite
element of”a” (denoted by nll(a) and oll(a), respectively),
such that nll(a) ∈ G, oll(a) ∈ G, and nll(a) ∗ a � a and
oll(a)∗ a � nll(a).

Definition 6 (see [20]). Let (G, ∗ ) be an AG-groupoid.
)en, G is called an AG-(r,r)-Loop if, for all a ∈ G, there
exist a local (r,r)-neutral element of “a” and a local (r,r)-
opposite element of “a” (denoted by nrr(a) and orr(a),
respectively), such that nrr(a) ∈ G, orr(a) ∈ G, and
a∗ nrr(a) � a and a∗ orr(a) � nrr(a).

Definition 7. Let (G, ∗ ) be an AG-groupoid. )en, G is
called an AG-(l,r)-Loop if, for all a ∈ G, there exist a local
(l,r)-neutral element of “a” and a local (l,r)-opposite element
of ”a” (denoted by nlr(a) and olr(a), respectively), such that
nlr(a) ∈ G, olr(a) ∈ G, and nlr(a)∗ a � a and
a∗ olr(a) � nlr(a).

Remark 1. For quasi AG-NET-Loop, we will use the no-
tations such as AG-NET-Loop. If nlr(a) and olr(a) are not
unique, then the set of all local (l,r)-neutral elements of”a”
and the set of all local (l,r)-opposite elements of “a” are
denoted by nlr(a){ } and olr(a){ }, respectively.

Definition 8. Let (G, ∗ ) be an AG-groupoid. )en, G is
called an AG-(r,l)-Loop if, for all a ∈ G, there exist a local
(r,l)-neutral element of ”a” and a local (r,l)-opposite element
of”a” (denoted by nrl(a) and orl(a), respectively), such that
nrl(a) ∈ G, orl(a) ∈ G, and a∗ nrl(a) � a and orl(a)∗ a

� nrl(a).

Definition 9. Let (G, ∗ ) be an AG-(l,r)-Loop. )en, G is
called an AG-(l,lr)-Loop if, for all a ∈ G, olr(a)∗ a �

a∗ olr(a) � nlr(a).

Definition 10 (see [22]). An AG-groupoid G with a left
identity is called an AG-group if each a ∈ G has an inverse
element a′.

3. AG-(l,r)-Loop and Strong AG-(l,r)-Loop

Theorem 2. Let (G, ∗ ) be a groupoid. -en, G is an AG-
(l,r)-Loop iff it is a regular AG-groupoid.

Proof. Necessity: if G is an AG-(l,r)-Loop, fromDefinition 7,
for all a ∈ G, there exist nlr(a), olr(a) ∈ G, nlr(a)∗ a � a,
and a∗ olr(a) � nlr(a). We have (a∗ olr(a))∗ a � a. By
Definition 4, G is a regular AG-groupoid.

Sufficiency: if G is a regular AG-groupoid, from Defi-
nition 4, for all a ∈ G, there exists m ∈ G and
a � (a∗m)∗ a. Set nlr(a) � a∗m, by Definition 7, G is an
AG-(l,r)-Loop.

Example 1 illustrates that an AG-groupoid may be
neither an AG-(l,l)-Loop nor an AG-(l,r)-Loop nor an AG-
(r,r)-Loop nor an AG-(r,l)-Loop. □

Example 1. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 1. )ere is no
oll(2), olr(2), orr(2), and orl(2) in G. )at is, the element
“2” in G has no local (l,l)-opposite element, no local (l,r)-
opposite element, no local (r,r)-opposite element, and no
local (r,l)-opposite element. From Definitions 5–8, G is
neither an AG-(l,l)-Loop nor an AG-(l,r)-Loop nor an AG-
(r,r)-Loop nor an AG-(r,l)-Loop.

Example 2 illustrates that an AG-(l,r)-Loop may be
neither an AG-(l,l)-Loop nor an AG-(r,r)-Loop nor an AG-
(r,l)-Loop.

Example 2. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 2. FromDefinition 7, G is
an AG-(l,r)-Loop. However, there is no oll(2), nrr(2), and
nrl(2) in G. FromDefinitions 5, 6, and 8, G is neither an AG-
(l,l)-Loop nor an AG-(r,r)-Loop nor an AG-(r,l)-Loop.

Definition 11. An AG-(l,r)-Loop (G, ∗ ) is called a strong
AG-(l,r)-Loop if, for all a ∈ G, nlr(a)2 � nlr(a).

Example 3 illustrates that an AG-(l,r)-Loop is not always
a strong AG-(l,r)-Loop.

Example 3. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 3. FromDefinition 7, G is
an AG-(l,r)-Loop. However, nlr(2) � 3, 3∗ 3 � 1; thus, G is
not a strong AG-(l,r)-Loop.

2 Journal of Mathematics



Example 4 illustrates that a strong AG-(l,r)-Loop is not
always an AG-NET-Loop.

Example 4. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 4. By Definition 11, G is
a strong AG-(l,r)-Loop. However, since 1∗ 4≠ 4∗ 1, G is not
an AG-NET-Loop.

Theorem 3. Let (G, ∗ ) be a strong AG-(l,r)-Loop. -en,

(1) For all a ∈ G, nlr(a) is unique
(2) For all a ∈ G, nlr(nlr(a)) � nlr(a)

(3) For all a ∈ G and for any
r ∈ olr(a){ }, nlr(a)∗ r ∈ olr(a){ }

(4) For all a, b ∈ G, nlr(a∗ b) � nlr(a)∗ nlr(b)

Proof

(1) If (G, ∗) is a strong AG-(l,r)-Loop, suppose a ∈ G,
there exist nlr1, nlr2 ∈ nlr(a){ }. By Definition 11,
nlr1 ∗ a � a, nlr2 ∗ a � a, nlr1 ∗ nlr1 � nl r1, and

nlr2 ∗ nlr2 � nlr2, and there exist olr1, olr2 ∈ G which
satisfy a∗ olr1 � nlr1 and a∗ olr2 � nlr2. We have

nlr1 ∗ nlr2 � nlr1 ∗ nlr1( 􏼁∗ nlr2

� nlr2 ∗ nlr1( 􏼁∗ nlr1

� nlr2 ∗ nlr1( 􏼁∗ a∗ olr1( 􏼁

� nlr2 ∗ a( 􏼁∗ nlr1 ∗ olr1( 􏼁

(by themedial law)

� nlr1 ∗ a( 􏼁∗ nlr1 ∗ olr1( 􏼁

� nlr1 ∗ nlr1( 􏼁∗ a∗ olr1( 􏼁

(by themedial law)

� nlr1 ∗ nlr1 � nlr1,

nlr2 ∗ nlr1 � nlr2 ∗ nlr2( 􏼁∗ nlr1

� nlr1 ∗ nlr2( 􏼁∗ nlr2

� nlr1 ∗ nlr2( 􏼁∗ a∗ olr2( 􏼁

� nlr1 ∗ a( 􏼁∗ nlr2 ∗ olr2( 􏼁

(by themedial law)

� nlr2 ∗ a( 􏼁∗ nlr2 ∗ olr2( 􏼁

� nlr2 ∗ nlr2( 􏼁∗ a∗ olr2( 􏼁

(by themedial law)

� nlr2 ∗ nlr2 � nlr2,

nlr2 � nlr2 ∗ nlr1

� nlr2 ∗ nlr2( 􏼁∗ nlr1

� nlr1 ∗ nlr2( 􏼁∗ nlr2

� nlr1 ∗ nlr2 � nlr1.

(1)

We know that nlr2 � nlr1, and nlr(a) is unique.

(2) If (G, ∗ ) is a strong AG-(l,r)-Loop, from Definition
11, we have, for all a ∈ G, nlr(a)2 � nlr(a). )us,
nlr(nlr(a)) � nlr(a).

(3) Suppose r ∈ olr(a){ }; then,

a∗ (nlr(a)∗ r) � (nlr(a) ∗ a)∗ (nlr(a) ∗ r)

� (nlr(a) ∗ nlr(a))∗ (a∗ r) (by themedial law)

� nlr(a)∗ nlr(a)

� nlr(a).

(2)

So, we get nlr(a)∗ r ∈ olr(a){ }.

(4) From Definition 11, we have, for all a, b ∈ G,

Table 1: Table of Example 1.
∗ 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 1 1 2 1 1 1 1
3 1 1 3 1 1 1 1 1
4 1 2 1 4 1 1 1 1
5 1 1 1 1 5 1 1 1
6 1 1 1 1 1 6 8 8
7 1 1 1 1 1 8 7 8
8 1 1 1 1 1 8 8 8

Table 2: Table of Example 2.
∗ 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 4 4 1 1
3 1 1 3 1 3 3 7
4 1 2 1 1 2 1 1
5 1 2 3 4 5 3 7
6 1 1 3 1 3 6 7
7 1 1 7 1 7 7 7

Table 3: Table of Example 3.
∗ 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 3 3 1 3 3
3 1 2 1 2 1 2 2
4 1 2 3 4 5 6 7
5 1 1 1 5 5 1 1
6 1 2 3 6 1 6 6
7 1 2 3 7 1 6 7

Table 4: Table of Example 4.
∗ 1 2 3 4 5 6 7
1 1 1 3 4 1 1 1
2 1 2 3 4 1 1 1
3 4 4 1 3 4 4 4
4 3 3 4 1 3 3 3
5 1 1 3 4 5 1 1
6 1 1 3 4 1 6 6
7 1 1 3 4 1 6 7
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a∗ b � (nlr(a)∗ a)∗ (nlr(b)∗ b)

� (nlr(a)∗ nlr(b))∗ (a∗ b),

nlr(a)∗ nlr(b) � (a∗ olr(a)) ∗ (b∗ olr(b))

� (a∗ b)∗ (olr(a)∗ olr(b)).

(3)

)erefore, nlr(a∗ b) � nlr(a)∗ nlr(b). □

Example 5. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 5. It is a strong AG-(l,r)-
Loop. We have (corresponding to the results of )eorem 3)

(1) For all a ∈ G, we can verify that nlr(a) is unique.
(2) Being nlr(nlr(1)) � nlr(1), nlr(nlr(2)) � nlr(2),

nlr(nlr(3)) � nlr(3), nlr(nlr(4)) � nlr(4), nlr(nlr

(5)) � nlr(5), nlr(nlr(6)) � nlr(6), and nlr(nlr(7))

� nlr(7), that is, for all a ∈ G, nlr(nlr(a)) � nlr(a).
(3) For any a ∈ G, let a � 1, and we can get nlr(1) � 1

and olr(1){ } � 1, 2, 5, 6, 7{ }. Being 1∗ 1 � 1∗ 2 �

1∗ 5 � 1∗ 6 � 1∗ 7 � 1 ∈ olr(1){ }, that is, nlr(1)∗ o

lr(1) ∈ olr(1){ }, let a � 3, and we can get nlr(3) � 1,
olr(3) � 3. Being 1∗ 3 � 3 � olr(3), that is,
nlr(3)∗ olr(3) ∈ olr(3){ }, we can verify other cases;
thus, nlr(a)∗ r ∈ olr(a){ }.

(4) For any a, b ∈ G, without loss of generality, let
a � 1 and b � 3; we can get
nlr(1∗ 3) � nlr(1)∗ nlr(3). We can verify other
cases; thus, nlr(a∗ b) � nlr(a)∗ nlr(b).

Theorem 4. Let (G, ∗ ) be a strong AG-(l,r)-Loop. A binary
≈ on G is introduced as follows:

for all a, b ∈ G, a ≈ b⇔nlr(a) � nlr(b). (4)

-en,

(1) -e binary ≈ on G is an equivalence relation, and the
equivalent class contained x is denoted by [x]≈

(2) For all x ∈ G, [x]≈ is a sub-AG-group
(3) G � ∪ x∈G[x]≈, that is, each strong AG-(l,r)-Loop can

be represented as the union of its disjoint sub-AG-
groups

Proof

(1) From the binary ≈ definition, it is easy to verify
that ≈ has the properties of reflexive, symmetric,
and transitive. )us, it is an equivalence relation.

(2) For all a ∈ [x]≈, let nlr(x) � ex, and we have
nlr(a) � nlr(x) � ex. From )eorem 3 (2),
nlr(ex) � ex, and we have ex ∈ [x]≈:

(i) By Definition 11, we have ex ∗ a � nlr(a)∗ a � a;
thus, ex is a left identity of [x]≈.

(ii) For all a, b, c ∈ [x]≈, the left invertive law holds
directly.

(iii) For all a, b ∈ [x]≈, nlr(a) � nlr(b) � ex; from
)eorem 3 (4), nlr(a ∗ b) � nlr(a)∗ nlr(b) � ex;
thus, a∗ b ∈ [x]≈.

(iv) For all a ∈ [x]≈, let nlr(a) � ex, and suppose
p ∈ olr(a){ }, q � nlr(a)∗p; by )eorem 3 (3), we
have q ∈ olr(a){ }, a∗ q � nlr(a) � ex, and

nlr(q) � nlr(nlr(a) ∗p)

� nlr(nlr(a)) ∗ nlr(p) (by Theorem3(4))

� nlr(a)∗ nlr(p) (by Theorem 3(2))

� nlr(a∗p) (by Theorem 3(4))

� nlr(nlr(a))

� nlr(a) (by Theorem3(2))

� ex.

(5)

(v) q∗ a � (nlr(q)∗ q)∗ a � (ex ∗ q)∗ a �

(a∗ q)∗ ex � ex. )us, q ∈ [x]≈ and q is an inverse
element of a. From Definition 10, [x]≈ is a sub-AG-
group of G.

(3) By )eorem 3 (1), for all a ∈ [x]≈, nlr(a) is unique.
)en, G � ∪ x∈G[x]≈. □

Example 6. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 6. [1]≈ � 1, 2, 3, 4{ } and
[5]≈ � 5, 6, 7, 8{ }. G � [1]≈ ∪ [5]≈, and [1]≈ and [5]≈ are sub-
AG-groups of G.

Let G be an AG-groupoid; then, a is an idempotent in G

if a ∈ G, a2 � a. )e set of all idempotents in G is denoted by
E(G). An AG-groupoid G is called an AG-band if G � E(G).

From now on, we assume that G is a strong AG-(l,r)-
Loop, which is the same as)eorem 4. Let Y be an AG-band,
Y ⊂ G, and for any α ∈ Y, the equivalent class [α]≈, which is
defined in )eorem 4, will be denoted by Sα, and the ele-
ments of Sα will be denoted by aα, bα, . . . ,.

Theorem 5. Let (G, ∗) be a groupoid, Y be an AG-band,
Y ⊂ G. G � ∪ α∈YSα, (Sα,∗ ) is a strong AG-(l,r)-Loop with a
left identity eα for each α ∈ Y, and Sα ∩ Sβ � ∅,
α, β ∈ Y and α≠ β. If, for all aα ∈ Sα, for all bβ ∈ Sβ,
aα ∗ bβ � aα ∗ eα, and bβ ∗ aα � aα, then G is a strong AG-
(l,r)-Loop.

Table 5: Table of Example 5.
∗ 1 2 3 4 5 6 7
1 1 1 3 4 1 1 1
2 1 2 3 4 1 1 2
3 4 4 1 3 4 4 4
4 3 3 4 1 3 3 3
5 1 1 3 4 5 1 5
6 1 1 3 4 1 6 1
7 1 2 3 4 5 1 7
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Proof. Suppose G � ∪ α∈YSα is the groupoid, Y is an AG-
band, for each α ∈ Y, and Sα is a strong AG-(l,r)-Loop with a
left identity eα and Sα ∩ Sβ � ∅ if α≠ β in Y.

We first prove that G is an AG-groupoid. Let aα ∈ Sα,
bβ ∈ Sβ, and cc ∈ Sc be arbitrary elements. Since Sα, Sβ, and
Sc are strong AG-(l,r)-Loops, we have

aα ∗ bβ􏼐 􏼑∗ cc � aα ∗ eα( 􏼁∗ cc

� aα ∗ eα( 􏼁∗ eα

� eα ∗ eα( 􏼁∗ aα (by the left invertive law)

� eα ∗ aα � aα,

(6)

where (cc ∗ bβ)∗ aα � bβ ∗ aα � aα � (aα ∗ bβ)∗ cc. Since Sα
is a strong AG-(l,r)-Loop, the left invertive law holds directly
for elements aα, bα, cα ∈ Sα. )us, G is an AG-groupoid.

For any bβ ∈ Sβ, we have nlr(bβ) � eβ and olr(bβ)

∗ bβ � bβ ∗ olr(bβ) � eβ. Let x ∈ G − Sβ, we denote ex is the
left identity in [x]≈, LSβ � x|x∗ bβ � x∗ ex, bβ ∗x � x,􏽮

x ∈ G − Sβ}, and RSβ � x|x∗ bβ � bβ, bβ ∗ x � bβ ∗ eβ, x ∈􏽮

G − Sβ}. Being Sα ∩ Sβ � ∅ if α≠ β in Y, we can get
LSβ ∩ Sβ ∩RSβ � ∅ and LSβ ∪ Sβ ∪RSβ � G.

Depending on Sβ, we have three cases to discuss. □

case 1. LSβ � G − Sβ, RSβ � ∅, x ∈ LSβ, x∗ bβ � x∗ ex, and
bβ ∗ x � x. Being Sα ∩ Sβ � ∅ if α≠ β in Y, we can get
x∗ ex ∈ [x]≈, x∗ bβ ∉ Sβ. )at is, there is no element x ∉ Sβ
such that x∗ bβ � bβ.

case 2. LSβ � ∅, RSβ � G − Sβ, x ∈ RSβ, x∗ bβ � bβ, and bβ
∗ x � bβ ∗ eβ. Being Sα ∩ Sβ � ∅ if α≠ β in Y, we can get
bβ ∗ x � bβ ∗ eβ ∈ Sβ. )at is, there is no element x ∉ Sβ such
that x∗ bβ � bβ and bβ ∗y � x, and there exists y ∈ G − Sβ.

case 3. LSβ ≠∅ andRSβ ≠∅, when x ∈ LSβ, x∗ bβ � x∗
ex ∉ Sβ, and bβ ∗x � x ∉ RSβ; when x ∈ RSβ, x∗ bβ � bβ,

bβ ∗ x � bβ ∗ eβ ∉ RSβ. )at is, there is no element x ∉ Sβ
such that x∗ bβ � bβ and bβ ∗y � x, and there exists
y ∈ G − Sβ.

From all the above cases, bβ has a unique nlr(bβ) � eβ
and olr(bβ)􏽮 􏽯⊆Sβ. Consequently, G is a strong AG-(l,r)-
Loop.

Example 7. Let G � 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13{ }, and
the definition of operation ∗ on G is shown in Table 7. An

AG-band Y � 1, 5, 9{ } and S1 � 1, 2, 3, 4{ }, e1 � 1,
S5 � 5, 6, 7, 8{ }, e5 � 5, and S9 � 9, 10, 11, 12, 13{ }, e9 � 9. For
any a1 ∈ S1, b5 ∈ S5, and c9 ∈ S9, without losing generality,
let a1 � 3, b5 � 7, and c9 � 10, and we have 3∗ 7 �

3∗ 1 and 7∗ 3 � 3, 3∗ 10 � 3∗ 1 and 10∗ 3 � 3, 7∗ 10 �

7∗ 5 and 10∗ 7 � 7, and (3∗ 7)∗ 10 � (10∗ 7)∗ 3. )e
other cases can be verified; thus, G is an AG-groupoid.

Let c9 � 10, LS9 � G − S9 � 1, 2, 3, 4, 5, 6, 7, 8{ } andRS9
� ∅; for all x ∈ LS9, there is no element x such that
x∗ 10 � 10. )at is, the element “10” has a unique nlr(10) �

9 and olr(10){ } � 13{ }⊆S9.
Let a1 �3, LS1�∅,RS1�G−S1� 5,6,7,8,9,10,11,12,13{ };

for all x∈RS1, 3∗x�3∗e1�3∗1� 4∉RS1; thus, there is no
element x such that there exists y∈RS1,x∗3�3,3∗y�x.
)at is, the element “3” has a unique nlr(3)�1 and
olr(3){ }� 4{ }⊆S1.

Let b5 � 7, LS5 � 1, 2, 3, 4{ }, andRS5 � 9, 10, 11, 12, 13{ },

when x ∈ LS5, x∗ 7 � x∗ ex ∉ S5, 7∗ x � x ∉ RS5; when
x ∈ RS5, x∗ 7 � 7, 7∗x � 7∗ e5 � 7∗ 5 � 8 ∉ RS5. )at is,
there is no element x ∉ S5 such that x∗ 7 � 7, 7∗y � x, and
there exists y ∈ G − S5. )e element “7” has a unique
nlr(7) � 5 and olr(7){ } � 7{ }⊆S5.

)e other cases can be verified; thus, G is a strong AG-
(l,r)-Loop.

Theorem 6. Let (G, ∗ ) be a groupoid, Y be an AG-band,
Y ⊂ G. G � ∪ α∈YSα, (Sα, ∗ ) be a strong AG-(l,r)-Loop with a
left identity eα for each α ∈ Y, and Sα ∩ Sβ � ∅,
α, β ∈ Y, α≠ β. If, for all aα ∈ Sα, for all bβ ∈ Sβ,
aα ∗ bβ � bβ, bβ ∗ aα � bβ ∗ eβ, then G is a strong AG-(l,r)-
Loop.

Proof. )eorem 6 is proved similarly to )eorem 5.
)e strong AG-(l,r)-Loop constructed by )eorem 5 is

not isomorphic to the strong AG-(l,r)-Loop constructed by
)eorem 6. □

Definition 12 (see [20]). An AG-(l,l)-Loop (G, ∗ ) is called a
strong AG-(l,l)-Loop if for all a ∈ G, nll(a)2 � nll(a).

Example 8 illustrates that an AG-(l,l)-Loop is not always
a strong AG-(l,l)-Loop.

Table 6: Table of Example 6.
∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 1 1 1 1
2 2 1 4 3 2 2 2 2
3 4 3 2 1 4 4 4 4
4 3 4 1 2 3 3 3 3
5 1 2 3 4 5 6 7 8
6 1 2 3 4 6 5 8 7
7 1 2 3 4 8 7 6 5
8 1 2 3 4 7 8 5 6

Table 7: Table of Example 7.
∗ 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 3 4 1 1 1 1 1 1 1 1 1
2 2 1 4 3 2 2 2 2 2 2 2 2 2
3 4 3 2 1 4 4 4 4 4 4 4 4 4
4 3 4 1 2 3 3 3 3 3 3 3 3 3
5 1 2 3 4 5 6 7 8 5 5 5 5 5
6 1 2 3 4 6 5 8 7 6 6 6 6 6
7 1 2 3 4 8 7 5 6 8 8 8 8 8
8 1 2 3 4 7 8 6 5 7 7 7 7 7
9 1 2 3 4 5 6 7 8 9 10 11 12 13
10 1 2 3 4 5 6 7 8 10 11 12 13 9
11 1 2 3 4 5 6 7 8 11 12 13 9 10
12 1 2 3 4 5 6 7 8 12 13 9 10 11
13 1 2 3 4 5 6 7 8 13 9 10 11 12
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Example 8. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 8. From Definitions 5
and 7, G is both an AG-(l,l)-Loop and an AG-(l,r)-Loop.
However, nll(1) � nlr(1) � 3, 3∗ 3 � 4≠ 3; thus, it is neither
a strong AG-(l,l)-Loop nor a strong AG-(l,r)-Loop.

Theorem 7. Let (G, ∗) be an AG-groupoid. -en, the fol-
lowing three statements are equivalent:

(1) G is a strong AG-(l,r)-Loop
(2) G is a strong AG-(l,l)-Loop
(3) G is an AG-(l,lr)-Loop

Proof

(1)⟹ (2). Suppose G is a strong AG-(l,r)-Loop; from
Definition 11, for all a ∈ G, there exist
nlr(a), olr(a) ∈ G, nlr(a)∗ a � a, a∗ olr(a) � nlr

(a), and nlr(a)2 � nlr(a). Let d � nlr(a)∗ olr(a),
and we have d∗ a � (nlr(a)∗ olr(a))∗ a � (a∗ olr

(a))∗ nlr (a) � nlr(a)2 � nlr(a). From Definition
12, G is a strong AG-(l,l)-Loop.

(2)⟹ (3). Suppose G is a strong AG-(l,l)-Loop; from
Definition 12, for all a ∈ G, there exist
nll(a), oll(a) ∈ G, nll(a)∗ a � a, oll(a)∗ a � nll(a),
and nll(a)2 � nll(a). So, a∗ oll(a) � (nll(a)∗ a)

∗ oll (a) � (oll(a)∗ a)∗ nll(a) � nll(a)2 � nll(a).
By Definition 9, G is an AG-(l,lr)-Loop.

(3)⟹ (1). If G is an AG-(l,lr)-Loop, from Definition 9,
for all a ∈ G, there exist nlr(a), olr(a) ∈ G,
nlr(a)∗ a � a, and olr(a)∗ a � a∗ olr(a) � nlr(a).
So, nlr(a)∗ nlr(a) � (olr(a)∗ a)∗ nlr(a) � (nlr(a)

∗ a)∗ olr(a) � a∗ olr(a) � nlr(a). By Definition
11, G is a strong AG-(l,r)-Loop.

Figure 1 shows the relationships among AG-(l,l)-Loop
and AG-(l,r)-Loop. Here, A stands for AG-NET-Loop, B
stands for strong AG-(l,r)-Loop shown in Example 4 rather
than AG-NET-Loop, C stands for AG-(l,r)-Loop and AG-
(l,l)-Loop shown in Example 8, which is, however, not strong
AG-(l,r)-Loop, D stands for AG-(l,l)-Loop rather than AG-
(l,r)-Loop, E stands for AG-(l,r)-Loop shown in Example 2
rather than AG-(l,l)-Loop, and F stands for AG-groupoid
shown in Example 1, which is, however, not either AG-(l,l)-
Loop or AG-(l,r)-Loop. A +B stands for strong AG-(l,r)-
Loop, A +B+C+D stands for AG-(l,l)-Loop, A +B+C+E
stands for AG-(l,r)-Loop, and A+B+C+D+E+F stands
for AG-groupoid. □

4. AG-(r,r)-Loop and AG-(r,l)-Loop

Theorem 8. Let (G, ∗ ) be an AG-(r,r)-Loop. -en,

(1) G is an AG-(r,l)-Loop
(2) G is an AG-(l,l)-Loop

Proof

(1) Suppose G is an AG-(r,r)-Loop; from Definition 6,
for all a ∈ G, there exist nrr(a), orr(a) ∈ G,
a∗ nrr(a) � a, and a∗ orr(a) � nrr(a). Let
q � orr(a)∗ nrr(a), and we have q∗ a � (orr(a)

∗ nrr(a))∗ a � (a∗ nrr(a)) ∗ orr(a) � a∗ orr(

a) � nrr(a). By Definition 8, G is an AG-(r,l)-Loop.
(2) Suppose G is an AG-(r,r)-Loop; from Definition 6,

for all a ∈ G, there exist nrr(a), orr(a) ∈ G,
a∗ nrr(a) � a, and a∗ orr(a) � nrr(a). Let
d � nrr(a)2 and q � nrr(a) ∗ orr(a), and we have
d∗a � (nrr(a)∗nrr(a))∗a � (a∗nrr(a))∗nrr(a)

� a ∗nrr(a) � aandq∗a � (nrr(a)∗orr(a))∗a �

(a∗orr(a))∗nrr(a) � nrr(a)∗nrr(a) � d.

By Definition 5, G is an AG-(l,l)-Loop. □

Definition 13. An AG-(r,r)-Loop (G, ∗ ) is called a strong
AG-(r,r)-Loop if for all a ∈ G, nrr(a)2 � nrr(a).

Definition 14. An AG-(r,l)-Loop (G, ∗ ) is called a strong
AG-(r,l)-Loop if for all a ∈ G, nrl(a)2 � nrl(a).

Example 9 illustrates that an AG-(r,r)-Loop is not always
a strong AG-(r,r)-Loop and an AG-(r,l)-Loop is not always a
strong AG-(r,l)-Loop.

Example 9. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 9. FromDefinitions 6, 8,
5, and 7, G is both an AG-(r,r)-Loop and an AG-(r,l)-Loop
and an AG-(l,l)-Loop and AG-(l,r)-Loop. However,
nrr(1) � 4, nrl(1) � 4, 4∗ 4 � 3≠ 4; nll(1) � 3, nlr(1) � 3, 3
∗ 3 � 4≠ 3. )us, G is neither a strong AG-(r,r)-Loop nor a

Table 8: Table of Example 8.
∗ 1 2 3 4 5 6 7 8
1 2 4 3 1 7 5 6 8
2 3 1 2 4 6 8 7 5
3 1 3 4 2 8 6 5 7
4 4 2 1 3 5 7 8 6
5 8 6 5 7 6 8 7 5
6 5 7 8 6 7 5 6 8
7 7 5 6 8 5 7 8 6
8 6 8 7 5 8 6 5 7

AB
DCE

F

Figure 1: )e relationships among AG-(l,l)-Loop and AG-(l,r)-
Loop.
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strong AG-(r,l)-Loop nor a strong AG-(l,l)-Loop nor a
strong AG-(l,r)-Loop.

Theorem 9. Let (G, ∗ ) be an AG-groupoid. -en, the fol-
lowing three statements are equivalent:

(1) G is a strong AG-(r,r)-Loop
(2) G is a strong AG-(r,l)-Loop
(3) G is an AG-NET-Loop

Proof

(1)⟹(2). Suppose G is a strong AG-(r,r)-Loop; from
Definition 13, for all a ∈ G, there exist nrr(a),

orr(a) ∈ G, a∗ nrr(a) � a, a∗ orr(a) � nrr(a), and
nrr(a)2 � nrr(a). Let q � orr(a)∗ nrr(a), and we
have q∗ a � (orr(a)∗ nrr(a))∗ a � (a∗ nrr(a))

∗ orr (a) � a∗ orr(a) � nrr(a). By Definition 14, G

is a strong AG-(r,l)-Loop.
(2)⟹(3). Suppose G is a strong AG-(r,l)-Loop; from

Definition 14, for all a ∈ G, there exist
nrl(a), orl(a) ∈ G, a∗ nrl(a) � a,
orl(a)∗ a � nrl(a) , and nrl(a)2 � nrl(a). So,
nrl(a)∗ a � (nrl(a)∗ nrl

(a))∗ a � (a∗ nrl(a))∗ nrl(a) � a∗ nrl(a) � a and
a∗ orl(a) � (nrl(a) ∗ a)∗ orl(a) � (orl(a)∗ a)∗ n

rl(a) � nrl(a)2 � nrl(a). By Definition 3, G is an
AG-NET-Loop.

(3)⟹(1). It is obvious that an AG-NET-Loop is a
strong AG-(r,r)-Loop.

Figure 2 shows the relationships among AG-(r,l)-Loop
and AG-(l,r)-Loop. Here, A stands for AG-NET-Loop, B
stands for AG-(r,l)-Loop and strong AG-(l,r)-Loop shown in
Example 4, which is, however, not AG-NET-Loop, C stands
for AG-(r,l)-Loop and AG-(l,r)-Loop shown in Example 9,
which is, however, not strong AG-(l,r)-Loop, D stands for
AG-(r,l)-Loop rather than AG-(l,r)-Loop, E stands for
strong AG-(l,r)-Loop rather than AG-(r,l)-Loop, F stands for
AG-(l,r)-Loop shown in Example 2, which is, however, not
either AG-(r,l)-Loop or strong AG-(l,r)-Loop, and G stands
for AG-groupoid shown in Example 1, which is, however,
not either AG-(l,r)-Loop or AG-(r,l)-Loop. A +B+E stands
for strong AG-(l,r)-Loop, A+B+C+D stands for AG-(r,l)-
Loop, A +B+C+E+ F stands for AG-(l,r)-Loop, and
A+B+C+D+E+F+G stands for AG-groupoid.

Figure 3 shows the relationships among AG-(r,l)-Loop
and AG-(l,l)-Loop. Here, A stands for AG-NET-Loop, B
stands for AG-(r,r)-Loop and strong AG-(l,l)-Loop shown in
Example 4, which is, however, not AG-NET-Loop, C stands
for AG-(r,r)-Loop shown in Example 9 rather than strong
AG-(l,l)-Loop, D stands for AG-(r,l)-Loop and AG-(l,l)-
Loop rather than AG-(r,r)-Loop, E stands for AG-(r,l)-Loop
rather than AG-(l,l)-Loop, F stands for strong AG-(l,l)-Loop
rather than AG-(r,l)-Loop, and G stands for AG-(l,l)-Loop,
which is, however, not either AG-(r,l)-Loop or a strong AG-
(l,l)-Loop. A +B+C stands for AG-(r,r)-Loop, A+B+F
stands for strong AG-(l,l)-Loop, A +B+C+D+E stands for
AG-(r,l)-Loop, and A+B+C+D+F+G stands for AG-
(l,l)-Loop. □

5. Alternative Quasi AG-NET-Loop

Definition 15. Let (G, ∗ ) be an AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop).
)en, G is called a right alternative AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop) if
b∗ (a∗ a) � (b∗ a)∗ a, for all a, b ∈ G.

Definition 16. Let (G, ∗) be an AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop).
)en, G is called an alternative AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop), if
for all a, b ∈ G, (a∗ a)∗ b � a∗ (a∗ b), a∗ (b∗ b) � (a∗
b)∗ b.

Example 10 illustrates that an AG-NET-Loop is not
always an alternative AG-NET-Loop.

Example 10. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 10. By Definition 3, G is

Table 9: Table of Example 9.

∗ 1 2 3 4 5 6 7 8
1 2 4 3 1 3 1 2 4
2 3 1 2 4 2 4 3 1
3 1 3 4 2 4 2 1 3
4 4 2 1 3 1 3 4 2
5 1 3 4 2 6 8 7 5
6 4 2 1 3 7 5 6 8
7 2 4 3 1 5 7 8 6
8 3 1 2 4 8 6 5 7

AB

D
C

FE

G

Figure 2: )e relationships among AG-(r,l)-Loop and AG-(l,r)-
Loop.

A
B

D
C F

E G

Figure 3: )e relationships among AG-(r,l)-Loop and AG-(l,l)-
Loop.
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an AG-NET-Loop. However, G is not an alternative AG-
NET-Loop because (3∗ 4)∗ 4≠ 3∗ (4∗ 4).

Theorem 10. Let (G, ∗ ) be an AG-NET-Loop. -en, the
following three statements are equivalent:

(1) G is a right alternative AG-NET-Loop
(2) G is a commutative AG-NET-Loop
(3) G is an alternative AG-NET-Loop

Proof

(1) ⇒(2). Suppose G is a right alternative AG-NET-
Loop; from Definition 15, for all a, b ∈ G,

a∗neut(b) � a∗ (neut(b)∗neut(b)) (by Theorem 1 (2))

� (a∗ neut(b))∗ neut(b) (by the right alternative law)

� (neut(b)∗neut(b))∗ a (by the left invertive law)

� neut(b)∗ a,

(7)

so

a∗ b � (neut(a)∗ a)∗ (b∗neut(b))

� (neut(a)∗ b)∗ (a∗neut(b)) (by themedial law)

� (b∗neut(a))∗ (neut(b)∗ a)

� (b∗neut(b))∗ (neut(a)∗ a)

� b∗ a.

(8)

Consequently, G is a commutative AG-NET-Loop.

(2) ⇒(3). If G is a commutative AG-NET-Loop, for all
m, n ∈ G, m∗ (n∗ n) � (n∗ n)∗m � (m∗ n)∗ n

and (m∗m)∗ n �

(n∗m)∗m � m∗ (n∗m) � m∗ (m∗ n). By Defi-
nition 16, G is an alternative AG-NET-Loop.

(3) ⇒(1). It is obvious that an alternative AG-NET-Loop
is a right alternative AG-NET-Loop. □

Theorem 11 (see [23]). Let (G, ∗ ) be a locally associative
AG-groupoid. If G is finite, then there exists a ∈ G, a2 � a.

Theorem 12. Let (G, ∗ ) be a right alternative AG-(r,l)-
Loop. If G is finite, then, for all a ∈ G, there exist
s, p ∈ G, a∗ s � a, p∗ a � s, and s2 � s.

Proof. If G is a finite right alternative AG-(r,l)-Loop. )en,
for all a ∈ G, there exist s, p ∈ G, a∗ s � a, andp∗ a � s,
and we have a∗ s2 � a∗ (s∗ s) � (a∗ s)∗ s � a∗ s � a.

When k ∈ Z+, k> 2,

a∗ s
k

� (a∗ s)∗ s
2 ∗ s

k− 2
􏼐 􏼑

� a∗ s
2

􏼐 􏼑∗ s∗ s
k− 2

􏼐 􏼑 (by themedial law)

� a∗ s
k− 1

� · · · · · ·

� a∗ s
2

� a.

(9)

)us, s, s2, s3, . . . , sk, . . . are all right neutral element.
By )eorem 11, we get that there is an idempotent right

neutral element in G. □

Theorem 13 (see [23]). Let (G, ∗ ) be a finite alternative
AG-(l,l)-Loop. -en, G is a strong AG-(l,l)-Loop.

Theorem 14. Let (G, ∗) be an AG-groupoid. -en, the
following three statements are equivalent:

(1) G is a finite right alternative AG-(r,l)-Loop
(2) G is a finite alternative AG-NET-Loop
(3) G is a finite alternative AG-(l,l)-Loop

Proof

(1) ⇒(2). If G is a finite right alternative AG-(r,l)-Loop,
applying )eorem 12, we get that G is a strong AG-
(r,l)-Loop. From )eorem 9, we get that G is a right
alternative AG-NET-Loop. Applying )eorem 10, G

is a finite alternative AG-NET-Loop.
(2) ⇒(3). It is obvious that a finite alternative AG-NET-

Loop is a finite alternative AG-(l,l)-Loop.
(3) ⇒(1). If G is a finite alternative AG-(l,l)-Loop, ap-

plying)eorem 13, we get that G is a strong AG-(l,l)-
Loop. From Definition 12, for all a ∈ G, there exist
nll(a), oll(a) ∈ G, nll(a)∗ a � a, oll(a) ∗ a � nll(a),
and nll(a)2 � nll(a). We have

Table 10: Table of Example 10.

∗ 1 2 3 4 5 6 7
1 1 4 2 3 3 1 2
2 3 2 4 1 1 3 4
3 4 1 3 2 2 4 3
4 2 3 1 4 4 2 1
5 2 3 1 4 5 2 1
6 1 4 2 3 3 6 2
7 4 1 3 2 2 4 7
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a∗ nll(a) � a∗ (nll(a) ∗ nll(a))

� (a∗ nll(a))∗ nll(a) (by the right alternative law)

� (nll(a)∗ nll(a))∗ a (by the left invertive law)

� nll(a)∗ a � a.

(10)

By Definition 15, G is a finite right alternative AG-(r,l)-
Loop. □

Example 11. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 11. We can easily verify
that G satisfies the alternative law. Being each element in G

has a neutral element and an opposite element; by Definition
16, G is a finite alternative AG-NET-Loop. Obviously, a
finite alternative AG-NET-Loop is both a finite right al-
ternative AG-(r,l)-Loop and a finite alternative AG-(l,l)-
Loop. Since for all a, b ∈ G and a∗ b � b∗ a, we have G as a
commutative AG-NET-Loop.

Figure 4 shows the relationships among alternative AG-
NET-Loop and other alternative quasi AG-NET-Loops. In

Table 11: Table of Example 11.

∗ 1 2 3 4 5 6 7
1 2 5 4 1 3 1 1
2 5 3 1 2 4 2 2
3 4 1 5 3 2 3 3
4 1 2 3 4 5 4 4
5 3 4 2 5 1 5 5
6 1 2 3 4 5 6 4
7 1 2 3 4 5 4 7

Alternative AG – NET – Loop

Finite alternative AG – (l, l) – Loop

Commutative AG – NET – LoopRight alternative AG – NET – Loop

Finite alternative AG – NET – LoopFinite right alternative AG – (r, l) – Loop

Figure 4: )e relationships among alternative AG-NET-Loop and other alternative quasi AG-NET-Loops.

Two different composition methods of 
strong AG−(l, r)−Loop are obtained

Commutative AG–NET–Loop, alternative AG–NET–Loop
and right alternative AG–NET–Loop are equivalent

Strong AG−(r, l)−Loop, strong AG−(r, r)−Loop 
and AG−NET−Loop are equivalent

AG−(l, r)−Loop

Strong AG−(l, r)−Loop

AG−NET−Loop

Commutative AG−NET−Loop

Each strong AG−(l, r)−Loop can be represented 
as the union of its disjoint sub−AG−groups

Strong AG−(l, r)−Loop, strong AG−(l, l)−Loop 
and AG−(l, lr)−Loop are equivalent

Figure 5: )e main results of this paper.
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Figure 4, we prove that the right alternative AG-NET-Loop
is equivalent to the commutative AG-NET-Loop, and the
commutative AG-NET-Loop is equivalent to the alternative
AG-NET-Loop. As the finite right alternative AG-(r,l)-Loop
is equivalent to the finite alternative AG-(l,l)-Loop, the finite
alternative AG-(l,l)-Loop is equivalent to the finite alter-
native AG-NET-Loop; therefore, they are equivalent to each
other.

6. Conclusion

In this paper, the AG-(l,r)-Loop and AG-(r,l)-Loop have
been introduced, the structure of the quasi AG-NET-Loops
have been studied further, and some important results have
been obtained. We prove that the strong AG-(l,r)-Loop, the
strong AG-(l,l)-Loop, and the AG-(l,lr)-Loop are equivalent
(see )eorem 7); the strong AG-(r,l)-Loop, the strong AG-
(r,r)-Loop, and the AG-NET-Loop are equivalent (see
)eorem 9); the commutative AG-NET-Loop, the alterna-
tive AG-NET-Loop, and the right alternative AG-NET-Loop
are equivalent (see )eorem 10). Furthermore, the de-
composition theorem of strong AG-(l,r)-Loop (see )eorem
4) and two different ways how to make a strong AG-(l,r)-
Loop are obtained (see )eorem 5 and )eorem 6), thus
illuminating the structure of strong AG-(l,r)-Loop. Figure 5
shows the main results of this paper. Future efforts will be
directed towards discussing the relationship between strong
AG-(l,r)-Loop and other related AG-groupoid bands, such
as root of band, AG-4-band, and AG-3-band (see [24]).
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)e information expression and modeling of decision-making are critical problems in the fuzzy decision theory and method.
However, existing trapezoidal neutrosophic numbers (TrNNs) and neutrosophic Z-numbers (NZNs) and their multicriteria
decision-making (MDM) methods reveal their insufficiencies, such as without considering the reliability measures in TrNN and
continuous Z-numbers in NZN. To overcome the insufficiencies, it is necessary that one needs to propose trapezoidal neu-
trosophic Z-numbers (TrNZNs), their aggregation operations, and an MDM method for solving MDM problems with TrNZN
information. Hence, this study first proposes a TrNZN set, some basic operations of TrNZNs, and the score and accuracy functions
of TrNZN and their ranking laws. )en, the TrNZN weighted arithmetic averaging (TrNZNWAA) and TrNZN weighted
geometric averaging (TrNZNWGA) operators are presented based on the operations of TrNZNs. Next, an MDM approach using
the proposed aggregation operators and score and accuracy functions is established to carry out MDM problems under the
environment of TrNZNs. In the end, the established MDM approach is applied to an MDM example of software selection for
revealing its rationality and efficiency in the setting of TrNZNs. )e main advantage of this study is that the established approach
not only makes assessment information continuous and reliable but also strengthens the decision rationality and efficiency in the
setting of TrNZNs.

1. Introduction

In fuzzy decision-making problems, various new fuzzy
decision-making methods [1–3] have received many ap-
plications under neutrosophic, simplified neutrosophic
hesitant fuzzy, and bipolar neutrosophic environments.
)en, triangular and trapezoidal fuzzy numbers are usually
used for real decision-making problems because they can be
depicted by the continuous fuzzy numbers of membership
functions rather than exact/discrete fuzzy values. Hence,
some researchers extended triangular fuzzy numbers to
intuitionistic fuzzy sets (IFSs) and presented triangular
intuitionistic fuzzy sets (TIFSs), where the values of the
membership and nonmembership functions are triangular
fuzzy numbers, and some triangular intuitionistic fuzzy
aggregation operators for multicriteria decision-making
(MDM) problems with triangular intuitionistic fuzzy

information [4–7]. As the extension of TIFSs, Ye [8] in-
troduced a trapezoidal intuitionistic fuzzy set (TrIFS), in
which the values of its membership and nonmembership
functions are trapezoidal fuzzy numbers rather than trian-
gular fuzzy numbers, and some prioritized weighted ag-
gregation operators of trapezoidal intuitionistic fuzzy
numbers (TrIFNs) for MDM problems with TrIFNs.
However, TIFSs and TrIFSs cannot depict inconsistence and
indeterminacy information. Hence, Ye [9] generalized TrIFS
and proposed a trapezoidal neutrosophic set (TrNS), in
which the values of its truth, falsity, and indeterminacy
membership functions are trapezoidal fuzzy numbers, to
express incomplete, indeterminate, and inconsistent infor-
mation, and then he presented some basic operations of
trapezoidal neutrosophic numbers (TrNNs), score and ac-
curacy functions of TrNNs, and TrNN weighted arithmetic
averaging (TrNNWAA) and TrNN weighted geometric
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averaging (TrNNWGA) operators for MDM problems in the
setting of TrNNs. )en, some researchers utilized the in-
tegrated approach [10] and defuzzification method [11] for
the evaluation and MDM problems with interval-valued
TrNNs. Further, Giri et al. [12] applied TOPSIS method in
MDMproblems with interval-valued TrNNs. Also, Jana et al.
[13] and Khatter [14] presented some basic operations of
interval-valued TrNNs, score and accuracy functions of an
interval-valued TrNN, and the interval-valued TrNNWAA
and TrNNWGA operators for MDM problems in the setting
of interval-valued TrNNs.

)e notion of a Z-number introduced by Zadeh [15] is
described by a fuzzy number and its reliability measure to
strengthen the reliability of the fuzzy information. After that,
Z-numbers have been used for many areas [16–22]. Based on
the truth, falsity, and indeterminacy Z-numbers, Du et al.
[23] extended the Z-number concept and proposed neu-
trosophic Z-numbers (NZNs) to enhance the reliability of
the neutrosophic information, and then they presented basic
operations of NZNs, score and accuracy functions of NZN,
and the NZN weighted geometric averaging (NZNWGA)
and NZN weighted arithmetic averaging (NZNWAA) op-
erators and further established their MDM method under
the environment of NZNs.

However, TrNN is described only by the trapezoidal fuzzy
numbers of its truth, falsity, and indeterminacy membership
functions without considering their reliability measures, while
NZN is depicted only by exact/discrete truth, falsity, and in-
determinacy Z-numbers rather than continuous Z-numbers.
Hence, TrNN and NZN and their MDM methods reveal their
insufficiencies in their information expressions and applica-
tions. To express both the continuous Z-numbers of truth,
falsity, and indeterminacy membership functions and the re-
liability measures in MDM problems, it is necessary that this
study needs to propose an MDMmethod based on trapezoidal
neutrosophic Z-numbers (TrNZNs) to make up such insuffi-
ciencies of existing information expressions andMDMmethods
in the environments of TrNNs and NZNs. To do so, the main
aims of this article are (1) to propose a TrNZN set and some
basic operations of TrNZNs, (2) to introduce score and accuracy
functions of TrNZN for ranking TrNZNs, (3) to put forward the
TrNZNWAA and TrNZNWGA operators for aggregating
TrNZNs, (4) to develop a MDM approach using the proposed
aggregation operators and score and accuracy functions for
solving MDM problems under the environment of TrNZNs,
and (5) to apply the established MDM approach to an MDM
example of software selection for revealing its efficiency in the
setting of TrNZNs.

)e rest of the article is composed of the following
sections. Section 2 introduces some basic notions of TrNNs
as preliminaries of this study. Section 3 proposes a TrNZN
set, basic operations of TrNZNs, the score and accuracy
functions of TrNZN, and their ranking laws of TrNZNs.
)en, the TrNZNWAA and TrNZNWGA operators and
their relative properties are presented in section 4. Section 5
develops an MDM approach using the TrNZNWAA and
TrNZNWGA operators and score and accuracy functions of
TrNZNs. In Section 6, the developed MDM approach is

applied to anMDM example of software selection to indicate
its efficiency in the setting of TrNZNs. In the end, con-
clusions and further study are contained in Section 7.

2. Preliminaries of TrNSs

In this section, we introduce preliminaries of TrNSs, in-
cluding TrNNs, operations of TrNNs, two TrNN weighted
aggregation operators, and score and accuracy functions of
TrNNs for ranking TrNNs.

Ye [9] first proposed TrNS in a universe set U, which is
denoted as

􏽥Y � u,TN􏽥Y(u), IN􏽥Y(u), FN􏽥Y(u)􏽄 􏽅, u ∈ U􏽮 􏽯, (1)

where TN􏽥Y(u)⊆[0, 1], IN􏽥Y(u)⊆[0, 1], and FN􏽥Y(u)⊆[0, 1] are
the truth, indeterminacy, and falsity membership functions;
then their values are three trapezoidal fuzzy numbers
TN􏽥Y(u) � (TN1(u),TN2(u),TN3(u), TN4(u)): U⟶ [0,
1], IN􏽥Y(u) � (IN1(u), IN2(u), IN3(u), IN4(u)): U⟶ [0,
1], and FN􏽥Y(u) � (FN1(u), FN2(u), FN3(u), FN4(u)): U
⟶ [0, 1] with the condition
0≤TN4(u) + IN4(u) + FN4(u)≤ 3 for u ∈ U. For conve-
nience, a TrNN in 􏽥Y is simply denoted by 􏽥y � <(TN1, TN2,
TN3, TN4), (IN1, IN2, IN3, IN4), (FN1, FN2, FN3, FN4)>.

Regarding two TrNNs 􏽥y1 � <(TN11, TN12, TN13, TN14),
(IN11, IN12, IN13, IN14), (FN11, FN12, FN13, FN14)> and 􏽥y2 �

<(TN21, TN22, TN23, TN24), (IN21, IN22, IN23, IN24), (FN21,
FN22, FN23, FN24)>, Ye [14] defined the following basic
operations:

(1) 􏽥y1⊕􏽥y2 � (TN11 + TN21 − TN11TN21,􏼊 TN12+

TN22 − TN12TN22, TN13 + TN23 − TN13TN23,

TN14 + TN24 − TN14TN24), (IN11IN21, IN12IN22,

IN13IN23, IN14IN24), (FN11FN21, FN12FN22,

FN13FN23, FN14FN24)〉

(2) 􏽥y1 ⊗ 􏽥y2 � (TN11TN21, TN12TN22,􏼊 TN13TN23,

TN14TN24), (IN11 + IN21 − IN11IN21, IN12 +

IN22 − IN12IN22, IN13 + IN23 − IN13IN23, IN14 +

IN24 − IN14 IN24), (FN11 + FN21 − FN11FN21,

FN12 + FN22 − FN12FN22, FN13 + FN23 − FN13
FN23, FN14 + FN24 − FN14FN24)〉

(3) λ􏽥y1 � (1 − (1 − TN11)
λ
, 1 − (1 − TN12)

λ
,􏽄 1 − (1−

TN13)
λ, 1 − (1 − TN14)

λ
), (IN

λ
11, IN

λ
12, IN

λ
13, IN

λ
14),

(FN
λ
11, FN

λ
12, FN

λ
13, FN

λ
14)〉, λ> 0

(4) 􏽥yλ
1 � (TN

λ
11, TN

λ
12, TN

λ
13, TN

λ
14), (1 − (1−􏽄 IN11)

λ,

1 − (1 − IN12)
λ
, 1 − (1 − IN13)

λ
, 1 − (1 − IN14)

λ
),

(1 − (1 − FN11)
λ
, 1 − (1 − FN12)

λ
, 1 − (1 − FN13)

λ
,

1 − (1 − FN14)
λ
)〉, λ≥ 0

Regarding a group of TrNNs 􏽥yj � <(TNj1, TNj2, TNj3,
TNj4), (INj1, INj2, INj3, INj4), (FNj1, FNj2, FNj3, FNj4)> (j� 1,
2,. . .,n) with their weights λj (j� 1, 2,. . .,n) for λj ∈ [0, 1] and
􏽐

n
j�1 λj � 1, Ye [9] proposed the TrNNWAA and

TrNNWGA operators:

2 Journal of Mathematics



TrNNWAA 􏽥y1, 􏽥y2, . . . , 􏽥yn( 􏼁 � ⊕
n

j�1
λj 􏽥yj

� 1 − 􏽙
n

j�1
1 − TNj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TNj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TNj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TNj4􏼐 􏼑

λj⎛⎝􏼪 ⎞⎠,

􏽙

n

j�1
IN

λj

j1, 􏽙

n

j�1
IN

λj

j2, 􏽙

n

j�1
IN

λj

j3, 􏽙

n

j�1
IN

λj

j4
⎞⎠, 􏽙

n

j�1
FN

λj

j1, 􏽙

n

j�1
FN

λj

j2, 􏽙

n

j�1
FN

λj

j3, 􏽙

n

j�1
FN

λj

j4
⎞⎠􏼫,⎛⎝⎛⎝

(2)

TrNNWGA 􏽥y1, 􏽥y2, . . . , 􏽥yn􏼒 􏼓 � ⊕
n

j�1
􏽥y

λj

j

� 􏽙
n

j�1
TN

λj

j1, 􏽙
n

j�1
TN

λj

j2, 􏽙
n

j�1
TN

λj

j3, 􏽙
n

j�1
TN

λj

j4
⎛⎝ ⎞⎠􏼪 ,

1 − 􏽙
n

j�1
1 − INj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − INj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − INj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − INj4􏼐 􏼑

λj⎛⎝ ⎞⎠,

1 − 􏽙
n

j�1
1 − FNj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FNj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FNj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FNj4􏼐 􏼑

λj ⎞⎠􏼫.⎛⎝

(3)

)en, the score and accuracy functions of the TrNN 􏽥y �

<(TN1, TN2, TN3, TN4), (IN1, IN2, IN3, IN4), (FN1, FN2, FN3,
FN4)> were defined as follows [9]:

S (􏽥y) �
1
3

2 +
TN1 + TN2 + TN3 + TN4

4
−

IN1 + IN2 + IN3 + IN4

4
−

FN1 + FN2 + FN3 + FN4

4
􏼒 􏼓, S(􏽥y) ∈ [0, 1], (4)

H(􏽥y) �
TN1 + TN2 + TN3 + TN4

4
−

FN1 + FN2 + FN3 + FN4

4
, H(􏽥y) ∈ [− 1, 1]. (5)

Based on the score and accuracy functions of TrNNs, the
ranking relations between two TrNNs 􏽥y1 � <(TN11, TN12,
TN13, TN14), (IN11, IN12, IN13, IN14), (FN11, FN12, FN13,
FN14)> and 􏽥y2 � <(TN21, TN22, TN23, TN24), (IN21, IN22,
IN23, IN24), (FN21, FN22, FN23, FN24)> were defined as
follows [9]:

(1) 􏽥y1≻􏽥y2 for S(􏽥y1) � S(􏽥y2)

(2) 􏽥y1≻􏽥y2 for S(􏽥y1) � S(􏽥y2) and H(􏽥y1)>H(􏽥y2)

(3) 􏽥y1 � 􏽥y2 for S(􏽥y1) � S(􏽥y2) and H(􏽥y1) � H(􏽥y2)

3. Trapezoidal Neutrosophic Z-Number
(TrNZN) Sets

To make trapezoidal neutrosophic information reliable, this
section gives the following definitions of a TrNZN set,
operations of TrNZNs, score and accuracy functions of
TrNZN, and ranking laws of TrNZNs.

Definition 1. Set U as a universe set; then, a TrNZN set in U
is defined as the following mathematical representation:

􏽥Z � u, TZ􏽥V(u), TZ􏽥R(u)􏼐 􏼑, IZ􏽥V(u), IZ􏽥R(u)􏼐 􏼑, FZ􏽥V(u), FZ􏽥R(u)􏼐 􏼑􏽄 􏽅|u ∈ U􏽮 􏽯, (6)

where (TZ􏽥V(u), TZ􏽥R(u)), (IZ􏽥V(u), IZ􏽥R(u)), and (FZ􏽥V(u),

FZ􏽥R(u)) are the truth, indeterminacy, and falsity trapezoidal
Z-numbers that are composed of the truth, indeterminacy, and
falsity trapezoidal fuzzy numbers and their reliability measures,
denoted as (TZ􏽥V(u), TZ􏽥R(u)) � ((TV1(u), TV2(u), TV3(u),

TV4(u)), (TR1(u), TR2(u), TR3(u), TR4 (u))): U⟶ [0, 1]×

[0, 1], ((IZ􏽥V(u), IZ􏽥R(u) � ((IV1(u), IV2(u), IV3(u), IV4(u)),

(IR1(u), IR2(u), IR3(u), IR4(u))): U⟶ [0, 1]×[0, 1], and
(FZ􏽥V(u),FZ􏽥R(u))�((FV1(u),FV2(u),FV3(u), FV4(u)),(FR1
(u), FR2(u), FR3(u),FR4(u))): U⟶ [0, 1]×[0, 1] with the
conditions 0≤TV4(u)+IV4(u)+FV4(u)≤3 and 0≤TR4(u)+

IR4(u)+FR4(u)≤3 for u∈U.
For convenience, the three trapezoidal Z-numbers in 􏽥Z

are simply denoted as (TZ􏽥V(u), TZ􏽥R(u)) � ((TV1,
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TV2, TV3, TV4), (TR1, TR2, TR3, TR4)), (IZ􏽥V(u), IZ􏽥R(u)) �

((IV1, IV2, IV3, IV4), (IR1, IR2, IR3, IR4)), and (FZ􏽥V(u), FZ􏽥R
(u)) � ((FV1, FV2, FV3, FV4), (FR1, FR2, FR3, FR4)). )us, a
TrNZN in 􏽥Z is simply denoted as 􏽥z � <((TV1, TV2, TV3, TV4),
(TR1, TR2, TR3, TR4)), ((IV1, IV2, IV3, IV4), (IR1, IR2, IR3, TR4)),
((FV1, FV2, FV3, FV4), (FR1, FR2, FR3, FR4))>.

If TV2 �TV3, TR2 �TR3, IV2 � IV3, IR2 � IR3, and FV2 � FV3,
FR2 � FR3 hold in the TrNZN 􏽥z; it is reduced to the triangular
neutrosophic Z-number, which is a special case of TrNZN.

Definition 2. Set 􏽥z1� <((TV11, TV12, TV13, TV14), (TR11, TR12,
TR13, TR14)), ((IV11, IV12, IV13, IV14), (IR11, IR12, IR13, TR14)),
((FV11, FV12, FV13, FV14), (FR11, FR12, FR13, FR14))> and 􏽥z2�

<((TV21, TV22, TV23, TV24), (TR21, TR22, TR23, TR24)), ((IV21,
IV22, IV23, IV24), (IR21, IR22, IR23, TR24)), ((FV21, FV22, FV23,
FV24), (FR21, FR22, FR23, FR24))> as two TrNZNs. )en they
are defined as the following basic operations:

(1) 􏽥z1⊕ 􏽥z2 � ((TV11 + TV21 − TV11TV21,􏼊 TV12 + TV22 −

TV12TV22, TV13 + TV23 − TV13TV23, TV14 + TV24 −

TV14TV24), (TR11 + TR21 − TR11TR21, TR12 + TR22 −

TR12TR22, TR13 + TR23 − TR13TR23, TR14 + TR24−

TR14TR24)), ((IV11IV21, IV12IV22, IV13IV23, IV14IV24),

(IR11IR21, IR12IR22, IR13IR23, IR14IR24)), ((FV11FV21,

FV12FV22, FV13FV23, FV14FV24), (FR11FR21, FR12FR22,

FR13FR23, FR14FR24))〉

(2) 􏽥z1 ⊗ 􏽥z2 � ((TV11TV21,􏼊 TV12TV22, TV13TV23, TV14
TV24)(TR11TR21, TR12TR22, TR13TR23, TR14TR24)),

(IV11 + IV21 − IV11IV21,( IV12 + IV22 − IV12IV22,

IV13+ IV23 − IV13IV23, IV14 + IV24 − IV14IV24), (IR11 +

IR21 − IR11IR21, IR12 + IR22 − IR12IR22, IR13 + IR23 −

IR13IR23, IR14 + IR24 − IR14IR24)), (FV11 + FV21−(

FV11FV21, FV12+ FV22 − FV12FV22, FV13 + FV23 − FV13
FV23, FV14 + FV24 − FV14FV24), (FR11 + FR21 − FR11
FR21, FR12 + FR22 − FR12FR22, FR13 + FR23 − FR13FR23,

FR14 + FR24 − FR14FR24))〉

(3) λ􏽥z1 � ((1 − (1 − TV11)
λ
,􏽄 1 − (1 − TV12)

λ
, 1 − (1−

TV13)
λ, 1 − (1 − TV14)

λ
), (1 − (1 − TR11)

λ
, 1 − (1−

TR12)
λ, 1 − (1 − TR13)

λ
, 1− (1 − TR14)

λ
)), ((I

λ
V11, I

λ
V12,

I
λ
V13, I

λ
V14), (I

λ
R11, I

λ
R12, I

λ
R13, I

λ
R14)), ((F

λ
V11, F

λ
V12,

F
λ
V13, F

λ
V14), (F

λ
R11, F

λ
R12, F

λ
R13, F

λ
R14))〉, λ> 0

(4) 􏽥zλ
1 � ((T

λ
V11, T

λ
V12, T

λ
V13, T

λ
V14),􏽄 (T

λ
R11, T

λ
R12, T

λ
R13,

T
λ
R14)), ((1 − (1 − IV11)

λ
, 1 − (1 − IV12)

λ
, 1 − (1−

IV13)
λ, 1 − (1 − IV14)

λ
), (1 − (1 − IR11)

λ
, 1 − (1−

IR12)
λ, 1 − (1 − IR13)

λ
, 1 − (1 − IR14)

λ
)), ((1 − (1−

FV11)
λ, 1 − (1 − FV12)

λ
, 1 − (1 − FV13)

λ
, 1 − (1−

FV14)
λ), (1 − (1 − FR11)

λ
, 1 − (1 − FR12)

λ
, 1 − (1−

FR13)
λ, 1 − (1 − FR14)

λ
))〉, λ> 0

For ranking TrNZNs, the score and accuracy functions of
TrNZN are defined according to the expected value of a
trapezoidal fuzzy number and score and accuracy functions
of TrNN [9].

Definition 3. Set 􏽥z1� <((TV11, TV12, TV13, TV14), (TR11, TR12,
TR13, TR14)), ((IV11, IV12, IV13, IV14), (IR11, IR12, IR13, TR14)),
((FV11, FV12, FV13, FV14), (FR11, FR12, FR13, FR14))> as TrNZN.
)en the score and accuracy functions of the TrNZN 􏽥z1 can
be defined as follows:

S 􏽥z1( 􏼁 �
1
3

2 +
TV11 + TV12 + TV13 + TV14

4
×

TR11 + TR12 + TR13 + TR14

4

−
IV11 + IV12 + IV13 + IV14

4
×

IR11 + IR12 + IR13 + IR14

4

−
FV11 + FV12 + FV13 + FV14

4
×

FR11 + FR12 + FR13 + FR14

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S 􏽥z1( 􏼁 ∈ [0, 1], (7)

H 􏽥z1( 􏼁 �
TV11 + TV12 + TV13 + TV14

4
×

TR11 + TR12 + TR13 + TR14

4
−

FV11 + FV12 + FV13 + FV14

4

×
FR11 + FR12 + FR13 + FR14

4
, H(􏽥z) ∈ [− 1, 1].

(8)

Based on equations (7) and (8), ranking laws between
two TrNZNs are given by the following definition.

Definition 4. Set 􏽥z1� <((TV11, TV12, TV13, TV14), (TR11, TR12,
TR13, TR14)), ((IV11, IV12, IV13, IV14), (IR11, IR12, IR13, TR14)),
((FV11, FV12, FV13, FV14), (FR11, FR12, FR13, FR14))> and 􏽥z2�

<((TV21, TV22, TV23, TV24), (TR21, TR22, TR23, TR24)), ((IV21,
IV22, IV23, IV24), (IR21, IR22, IR23, TR24)), ((FV21, FV22, FV23,
FV24), (FR21, FR22, FR23, FR24))> as two TrNZNs. )en, the
ranking laws between two TrNZNs are defined as follows:

(1) If S(􏽥z1) > S(􏽥z2), then 􏽥z1≻􏽥z2

(2) If S(􏽥z1)� S(􏽥z2) and H(􏽥z1)>H(􏽥z2), then 􏽥z1≻􏽥z2

(3) If S(􏽥z1)� S(􏽥z2) and H(􏽥z1)�H(􏽥z2), then 􏽥z1 � 􏽥z2

4. Weighted Aggregation Operators of TrNZNs

Regarding information aggregation in MDM problems, one
usually utilizes the weighted arithmetic and geometric av-
eraging operators as the most basic information aggregation
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approaches. To aggregate TrNZNs, therefore, this section
proposes the two following weighted aggregation operators
of TrNZNs based on the basic operations of TrNZNs in
Definition 2.

4.1. Weighted Arithmetic Averaging Operator of TrNZNs

Definition 5. Set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2,. . .,n) as a
series of TrNZNs.)en, the TrNZNWAA operator is defined
as

TrNZNWAA 􏽥z1, 􏽥z2, . . . , 􏽥zn( 􏼁 � ⊕
n

j�1
λj􏽥zj, (9)

where λj (j� 1, 2,. . .,n) is the weight of the jth TrNZN 􏽥zj

(j� 1, 2,. . .,n) for λj ∈ [0, 1] and 􏽐
n
j�1 λj � 1.

Based on the basic operations of TrNZNs in Definition 2
and equation (9), we have the following theorem.

Theorem 1. Set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2,. . .,n) as a
series of TrNZNs.4en, the aggregated value of equation (9) is
also TrNZN, which is yielded by the following equation:

TrNZNWAA 􏽥z1, 􏽥z2, . . . , 􏽥zn( 􏼁

�

1 − 􏽙
n

j�1
1 − TVj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVj4􏼐 􏼑

λj⎛⎝ ⎞⎠, 1 − 􏽙
n

j�1
1 − TRj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

􏽙
n

j�1
I
λj

Vj1, 􏽙
n

j�1
I
λj

Vj2, 􏽙
n

j�1
I
λj

Vj3, 􏽙
n

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

n

j�1
I
λj

Rj1, 􏽙
n

j�1
I
λj

Rj2, 􏽙
n

j�1
I
λj

Rj3, 􏽙
n

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, 􏽙

n

j�1
F
λj

Vj1, 􏽙
n

j�1
F
λj

Vj2, 􏽙
n

j�1
F
λj

Vj3, 􏽙
n

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

n

j�1
F
λj

Rj1, 􏽙
n

j�1
F
λj

Rj2, 􏽙
n

j�1
F
λj

Rj3, 􏽙
n

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏼪 􏼫,

(10)

where λj (j� 1, 2,. . .,n) is the weight of the jth TrNZN 􏽥zj (j� 1,
2, . . ., n) for λj ∈ [0, 1] and 􏽐

n
j�1 λj � 1.

Proof. )e proof of equation (10) can be given by mathe-
matical induction.

(1) Set n� 2. )en there is the following result:

TrNZNWAA 􏽥z1, 􏽥z2( 􏼁 � λ1􏽥z1 ⊕ λ2􏽥z2

� 1 − 1 − TV11( 􏼁
λ1 + 1 − 1 − TV21( 􏼁

λ2 − 1 − 1 − TV11( 􏼁
λ1􏼐 􏼑 1 − 1 − TV21( 􏼁

λ2􏼐 􏼑􏼐􏼐 ,􏽄

1 − 1 − TV12( 􏼁
λ1 + 1 − 1 − TV22( 􏼁

λ2 − 1 − 1 − TV12( 􏼁
λ1􏼐 􏼑 1 − 1 − TV22( 􏼁

λ2􏼐 􏼑,

1 − 1 − TV13( 􏼁
λ1 + 1 − 1 − TV23( 􏼁

λ2 − 1 − 1 − TV13( 􏼁
λ1􏼐 􏼑 1 − 1 − TV23( 􏼁

λ2􏼐 􏼑,

1 − 1 − TV14( 􏼁
λ1 + 1 − 1 − TV24( 􏼁

λ2 − 1 − 1 − TV14( 􏼁
λ1􏼐 􏼑 1 − 1 − TV24( 􏼁

λ2􏼐 􏼑􏼑,

1 − 1 − TR11( 􏼁
λ1 + 1 − 1 − TR21( 􏼁

λ2 − 1 − 1 − TR11( 􏼁
λ1􏼐 􏼑 1 − 1 − TR21( 􏼁

λ2􏼐 􏼑,􏼐

1 − 1 − TR12( 􏼁
λ1 + 1 − 1 − TR22( 􏼁

λ2 − 1 − 1 − TR12( 􏼁
λ1􏼐 􏼑 1 − 1 − TR22( 􏼁

λ2􏼐 􏼑,

1 − 1 − TR13( 􏼁
λ1 + 1 − 1 − TR23( 􏼁

λ2 − 1 − 1 − TR13( 􏼁
λ1􏼐 􏼑 1 − 1 − TR23( 􏼁

λ2􏼐 􏼑,

1 − 1 − TV14( 􏼁
λ1 + 1 − 1 − TR24( 􏼁

λ2 − 1 − 1 − TR14( 􏼁
λ1􏼐 􏼑 1 − 1 − TR24( 􏼁

λ2􏼐 􏼑􏼑􏼑,

I
λ1
V11I

λ2
V21, I

λ1
V12I

λ2
V22, I

λ1
V13I

λ2
V23, I

λ1
V14I

λ2
V24􏼐 􏼑, I

λ1
R11I

λ2
R21, I

λ1
R12I

λ2
R22, I

λ1
R13I

λ2
R23, I

λ1
R14I

λ2
R24􏼐 􏼑􏼐 􏼑,

F
λ1
V11F

λ2
V21, F

λ1
V12F

λ2
V22, F

λ1
V13F

λ2
V23, F

λ1
V14F

λ2
V24􏼐 􏼑, F

λ1
R11F

λ2
R21, F

λ1
R12F

λ2
R22, F

λ1
R13F

λ2
R23, F

λ1
R14F

λ2
R24􏼐 􏼑􏼐 􏼑􏽅

� 1 − 1 − TV11( 􏼁
λ1 1 − TV21( 􏼁

λ2 , 1 − 1 − TV12( 􏼁
λ1 1 − TV22( 􏼁

λ2 ,􏼐􏼐􏽄

1 − 1 − TV13( 􏼁
λ1 1 − TV23( 􏼁

λ2 , 1 − 1 − TV14( 􏼁
λ1 1 − TV24( 􏼁

λ2􏼑

1 − 1 − TR11( 􏼁
λ1 1 − TR21( 􏼁

λ2 , 1 − 1 − TR12( 􏼁
λ1 1 − TR22( 􏼁

λ2 ,􏼐

1 − 1 − TR13( 􏼁
λ1 1 − TR23( 􏼁

λ2 , 1 − 1 − TR14( 􏼁
λ1 1 − TR24( 􏼁

λ2􏼑􏼑,

􏽙

2

j�1
I
λj

Vj1, 􏽙
2

j�1
I
λj

Vj2, 􏽙
2

j�1
I
λj

Vj3, 􏽙
2

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

2

j�1
I
λj

Rj1, 􏽙
2

j�1
I
λj

Rj2, 􏽙
2

j�1
I
λj

Rj3, 􏽙
2

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

􏽙

2

j�1
F
λj

Vj1, 􏽙
2

j�1
F
λj

Vj2, 􏽙
2

j�1
F
λj

Vj3, 􏽙
2

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

2

j�1
F
λj

Rj1, 􏽙
2

j�1
F
λj

Rj2, 􏽙
2

j�1
F
λj

Rj3, 􏽙
2

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫.

(11)
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(2) Set n� k. )en, equation (10) can hold in the fol-
lowing equation:

TrNZNWAA 􏽥z1, 􏽥z2, . . . , 􏽥zk( 􏼁 � ⊕
k

j�1
λj􏽥zj

� 1 − 􏽙
k

j�1
1 − TVj1􏼐 􏼑

λj
, 1 − 􏽙

k

j�1
1 − TVj2􏼐 􏼑

λj
, 1 − 􏽙

k

j�1
1 − TVj3􏼐 􏼑

λj
, 1 − 􏽙

k

j�1
1 − TVj4􏼐 􏼑

λj⎛⎝ ⎞⎠,⎛⎝􏼪

1 − 􏽙
k

j�1
1 − TRj1􏼐 􏼑

λj
, 1 − 􏽙

k

j�1
1 − TRj2􏼐 􏼑

λj
, 1 − 􏽙

k

j�1
1 − TRj3􏼐 􏼑

λj
, 1 − 􏽙

k

j�1
1 − TRj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠,

􏽙

k

j�1
I
λj

Vj1, 􏽙
k

j�1
I
λj

Vj2, 􏽙
k

j�1
I
λj

Vj3, 􏽙
k

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

k

j�1
I
λj

Rj1, 􏽙
k

j�1
I
λj

Rj2, 􏽙
k

j�1
I
λj

Rj3, 􏽙
k

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

􏽙

k

j�1
F
λj

Vj1, 􏽙
k

j�1
F
λj

Vj2, 􏽙
k

j�1
F
λj

Vj3, 􏽙
k

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

k

j�1
F
λj

Rj1, 􏽙
k

j�1
F
λj

Rj2, 􏽙
k

j�1
F
λj

Rj3, 􏽙
k

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫.

(12)

(3) Set n� k+ 1. By equations (11) and (12), we can
obtain

TrNZNWAA 􏽥z1, 􏽥z2, . . . , 􏽥zk, 􏽥zk+1( 􏼁 � ⊕
k

j�1
λj􏽥zj⊕λk+1􏽥zk+1

�

1 − 􏽙
k

j�1
1 − TVj1􏼐 􏼑

λj
+ 1 − 1 − TV(k+1)1􏼐 􏼑􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TVj1􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)1􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠, 1 − 􏽙

k

j�1
1 − TVj2􏼐 􏼑

λj
+ 1 − 1 − TV(k+1)2􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TVj2􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)2􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠,

1 − 􏽙
k

j�1
1 − TVj3􏼐 􏼑

λj
+ 1 − 1 − TV(k+1)3􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TVj3􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)3􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠, 1 − 􏽙

k

j�1
1 − TVj4􏼐 􏼑

λj
+ 1 − 1 − TV(k+1)4􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TVj4􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)4􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 − 􏽙

k

j�1
1 − TRj1􏼐 􏼑

λj
+ 1 − 1 − TR(k+1)1􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TRj1􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)1􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠,⎛⎝ 1 − 􏽙

k

j�1
1 − TRj2􏼐 􏼑

λj
+ 1 − 1 − TR(k+1)2􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TRj2􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)2􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠,

1 − 􏽙

k

j�1
1 − TRj3􏼐 􏼑

λj
+ 1 − 1 − TR(k+1)3􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TRj3􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)3􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠, 1 − 􏽙

k

j�1
1 − TRj4􏼐 􏼑

λj
+ 1 − 1 − TR(k+1)4􏼐 􏼑

λk+1
− 1 − 􏽙

k

j�1
1 − TRj4􏼐 􏼑

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)4􏼐 􏼑􏼐 􏼑
λk+1⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽙

k+1

j�1
I
λj

Vj1, 􏽙
k+1

j�1
I
λj

Vj2, 􏽙
k+1

j�1
I
λj

Vj3, 􏽙
k+1

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

k+1

j�1
I
λj

Rj1, 􏽙
k+1

j�1
I
λj

Rj2, 􏽙
k+1

j�1
I
λj

Rj3, 􏽙
k+1

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, 􏽙

k+1

j�1
F
λj

Vj1, 􏽙
k+1

j�1
F
λj

Vj2, 􏽙
k+1

j�1
F
λj

Vj3, 􏽙
k+1

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

k+1

j�1
F
λj

Rj1, 􏽙
k+1

j�1
F
λj

Rj2, 􏽙
k+1

j�1
F
λj

Rj3, 􏽙
k+1

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏼪 􏼫

�

1 − 􏽙
k+1

j�1
1 − TVj1􏼐 􏼑

λj
, 1 − 􏽙

k+1

j�1
1 − TVj2􏼐 􏼑

λj
, 1 − 􏽙

k+1

j�1
1 − TVj3􏼐 􏼑

λj
, 1 − 􏽙

k+1

j�1
1 − TVj4􏼐 􏼑

λj
,⎛⎝ ⎞⎠ 1 − 􏽙

k+1

j�1
1 − TRj1􏼐 􏼑

λj
, 1 − 􏽙

k+1

j�1
1 − TRj2􏼐 􏼑

λj
, 1 − 􏽙

k+1

j�1
1 − TRj3􏼐 􏼑

λj
, 1 − 􏽙

k+1

j�1
1 − TRj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

􏽙

k+1

j�1
I
λj

Vj1, 􏽙
k+1

j�1
I
λj

Vj2, 􏽙
k+1

j�1
I
λj

Vj3, 􏽙
k+1

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

k+1

j�1
I
λj

Rj1, 􏽙
k+1

j�1
I
λj

Rj2, 􏽙
k+1

j�1
I
λj

Rj3, 􏽙
k+1

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, 􏽙

k+1

j�1
F
λj

Vj1, 􏽙
k+1

j�1
F
λj

Vj2, 􏽙
k+1

j�1
F
λj

Vj3, 􏽙
k+1

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

k+1

j�1
F
λj

Rj1, 􏽙
k+1

j�1
F
λj

Rj2, 􏽙
k+1

j�1
F
λj

Rj3, 􏽙
k+1

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏼪 􏼫.

(13)

Regarding the above results, equation (10) can hold for
any n. )us, the proof is completed.

Especially when λj � 1/n (j� 1, 2, . . ., n), the TrNZNWAA
operator is reduced to the TrNZN arithmetic averaging
operator. □

Theorem 2. 4e TrNZNWAA operator contains the three
following properties:

(P1) Idempotency: set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2,
IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))
> (j� 1, 2, . . ., n) as a series of TrNZNs. If 􏽥zj � 􏽥z for j� 1,
2, . . ., n, then there exists TrNZNWAA(􏽥z1, 􏽥z2, . . . ,
􏽥zn) � 􏽥z.
(P2) Set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2, TRj3,
TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
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FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4)) > (j� 1, 2, . . ., n)
as a series of TrNZNs; then, set the minimum and
maximum TrNZNs as

􏽥z
−

�

min
j

TVj1,min
j

TVj2,min
j

TVj3,min
j

TVj4􏼠 􏼡, min
j

TRj1,min
j

TRj2,min
j

TRj3,min
j

TRj4􏼠 􏼡􏼠 􏼡,

max
j

IVj1,max
j

IVj2,max
j

IVj3,max
j

IVj4􏼠 􏼡, max
j

IRj1,max
j

IRj2,max
j

IRj3,max
j

IRj4􏼠 􏼡􏼠 􏼡,

max
j

FVj1,max
j

FVj2,max
j

FVj3,max
j

FVj4􏼠 􏼡, max
j

FRj1,max
j

FRj2,max
j

FRj3,max
j

FRj4􏼠 􏼡􏼠 􏼡

􏼪 􏼫,

􏽥z
+

�

max
j

TVj1,max
j

TVj2,max
j

TVj3,max
j

TVj4􏼠 􏼡, max
j

TRj1,max
j

TRj2,max
j

TRj3,max
j

TRj4􏼠 􏼡􏼠 􏼡,

min
j

IVj1,min
j

IVj2,min
j

IVj3,min
j

IVj4􏼠 􏼡, min
j

IRj1,min
j

IRj2,min
j

IRj3,min
j

IRj4􏼠 􏼡􏼠 􏼡,

min
j

FVj1,min
j

FVj2,min
j

FVj3,min
j

FVj4􏼠 􏼡, min
j

FRj1,min
j

FRj2,min
j

FRj3,min
j

FRj4􏼠 􏼡􏼠 􏼡

􏼪 􏼫.

(14)

4en, there is 􏽥z− ≤TrNZNWAA(􏽥z1, 􏽥z2, . . . , 􏽥zn)≤ 􏽥z+.
(P3) Monotony: set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4),
(IRj1, IRj2, IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4),
(FRj1, FRj2, FRj3, FRj4))> (j� 1, 2, . . ., n) as a series of
TrNZNs. If 􏽥zj ≤ 􏽥z∗j for j� 1, 2, . . ., n, then there is
TrNZNWAA(􏽥z1, 􏽥z2, . . . , 􏽥zn)≤TrNZNWAA (􏽥z∗1 ,
􏽥z∗2 , . . . , 􏽥z∗n ).

Proof.

(P1) Owing to 􏽥zj � 􏽥z for j� 1, 2, . . ., n, there is the
following result:

TrNZNWAA 􏽥z1, 􏽥z2, ..., 􏽥zn( 􏼁 � ⊕
n

j�1
λj􏽥zj

� 1 − 􏽙
n

j�1
1 − TVj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎛⎝ ,􏼪

1 − 􏽙
n

j�1
1 − TRj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠,

􏽙

n

j�1
I
λj

Vj1, 􏽙
n

j�1
I
λj

Vj2, 􏽙
n

j�1
I
λj

Vj3, 􏽙
n

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

n

j�1
I
λj

Rj1, 􏽙
n

j�1
I
λj

Rj2, 􏽙
n

j�1
I
λj

Rj3, 􏽙
n

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

􏽙

n

j�1
F
λj

Vj1, 􏽙
n

j�1
F
λj

Vj2, 􏽙
n

j�1
F
λj

Vj3, 􏽙
n

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

n

j�1
F
λj

Rj1, 􏽙
n

j�1
F
λj

Rj2, 􏽙
n

j�1
F
λj

Rj3, 􏽙
n

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫

� 1 − 1 − TV1( 􏼁
􏽘
j�1nλj, 1 − 1 − TV2( 􏼁

􏽘
j�1nλj, 1 − 1 − TV3( 􏼁

􏽘
j�1nλj, 1 − 1 − TV4( 􏼁

􏽘
j�1nλj

⎛⎝ ⎞⎠,⎛⎝􏼪

1 − 1 − TR1( 􏼁
􏽘
j�1nλj, 1 − 1 − TR2( 􏼁

􏽘
j�1nλj, 1 − 1 − TR3( 􏼁

􏽘
j�1nλj, 1 − 1 − TR4( 􏼁

􏽘
j�1nλj

⎛⎝ ⎞⎠⎞⎠,
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I
􏽘
V1 j � 1n

wj, I
􏽘
V2 j � 1n

wj, I
􏽘
V3 j � 1n

wj, I
􏽘
V4 j � 1n

wj
⎛⎝ ⎞⎠,⎛⎝

I
􏽘
R1 j � 1n

wj, I
􏽘
R2 j � 1n

wj, I
􏽘
R3 j � 1n

wj, I
􏽘
R4 j � 1n

wj
⎛⎝ ⎞⎠⎞⎠,

F
􏽘
V1 j � 1n

wj, F
􏽘
V2 j � 1n

wj, F
􏽘
V3 j � 1n

wj, F
􏽘
V4 j � 1n

wj
⎛⎝ ⎞⎠,⎛⎝

F
􏽘
R1 j � 1n

wj, F
􏽘
R2 j � 1n

wj, F
􏽘
R3 j � 1n

wj, F
􏽘
R4 j � 1n

wj
⎛⎝ ⎞⎠⎞⎠􏼫

� TV1, TV2, TV3, TV4( 􏼁, TR1, TR2, TR3, TR4( 􏼁( 􏼁, IV1, IV2, IV3, IV4( 􏼁, IR1, IR2, IR3, IR4( 􏼁( 􏼁􏼊 ,

IV1, IV2, IV3, IV4( 􏼁, IR1, IR2, IR3, IR4( 􏼁( 􏼁􏼋 � 􏽥z.
(15)

(P2) Due to 􏽥z− ≤ 􏽥zj ≤ 􏽥z+ for j� 1, 2, . . ., n, there exists
⊕nj�1λj􏽥z− ≤⊕nj�1λj􏽥zj ≤⊕nj�1λj􏽥z+. So, the inequality
􏽥z− ≤⊕nj�1λj􏽥zj ≤ 􏽥z+ can hold according to (P1); that is,
􏽥z− ≤TrNZNWAA(􏽥z1,

􏽥􏽥n2, . . . , 􏽥􏽥nn)≤ 􏽥z+.
(P3) Due to 􏽥zj ≤ 􏽥z∗j for j� 1, 2, . . ., n, there is ⊕nj�1λj􏽥zj

≤⊕nj�1λj􏽥z∗j ; that is, TrNZNWAA(􏽥z1, 􏽥z2, . . . , 􏽥zn)≤
TrNZNWAA(􏽥z∗1 , 􏽥z∗2 , . . . , 􏽥z∗n ).

)us, the proof of these properties is completed. □

4.2. Weighted Geometric Averaging Operator of TrNZNs

Definition 6. Set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2, . . ., n) as a

series of TrNZNs.)en, the TrNZNWGA operator is defined
as

TrNZNWGA 􏽥z1, 􏽥z2, . . . , 􏽥zn( 􏼁 � ⊗
n

j�1
􏽥z
λj

j , (16)

where λj (j� 1, 2,. . .,n) is the weight of the jth TrNZN 􏽥zj for
λj ∈ [0, 1] and 􏽐

n
j�1 λj � 1.

Regarding the basic operations of TrNZNs in Definition
2 and equation (16), we can give the theorem below.

Theorem 3. Set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2, . . ., n) as a
series of TrNZNs. 4en, the aggregated value of the
TrNZNWGA operator is also TrNZN, which is obtained by

TrNZNWGA 􏽥z1, 􏽥z2, . . . , 􏽥zn( 􏼁 � ⊗
n

j�1
􏽥z
λj

j

� 􏽙
n

j�1
T
λj

Vj1, 􏽙
n

j�1
T
λj

Vj2, 􏽙
n

j�1
T
λj

Vj3, 􏽙
n

j�1
T
λj

Vj4
⎛⎝ ⎞⎠, 􏽙

n

j�1
T
λj

Rj1, 􏽙
n

j�1
T
λj

Rj2, 􏽙
n

j�1
T
λj

Rj3, 􏽙
n

j�1
T
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼪 ,

1 − 􏽙

n

j�1
1 − IVj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IVj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IVj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IVj4􏼐 􏼑

λj⎛⎝ ⎞⎠,⎛⎝

1 − 􏽙
n

j�1
1 − IRj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IRj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IRj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IRj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠,

1 − 􏽙
n

j�1
1 − FVj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FVj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FVj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FVj4􏼐 􏼑

λj⎛⎝ ⎞⎠,⎛⎝

1 − 􏽙
n

j�1
1 − FRj1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FRj2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FRj3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FRj4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠􏼫.

(17)
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where λj (j� 1, 2, . . ., n) is the weight of the jth TrNZN 􏽥zj for
λj ∈ [0, 1] and 􏽐

n
j�1 λj � 1.

Based on the similar proof process of 4eorem 1, we can
verify 4eorem 3, which is omitted.

In particular, the TrNZNWGA operator is reduced to the
TrNZN geometric averaging operator when λj � 1/n (j� 1, 2,
. . ., n).

Theorem 4. 4e TrNZNWGA operator also contains the
three following properties:

(P1) Idempotency: set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2,
IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))
> (j� 1, 2,. . .,n) as a series of TrNZNs. If 􏽥zj � 􏽥z for j� 1,
2, . . ., n, then there exists TrNZNWGA(􏽥z1, 􏽥z2, . . . , 􏽥zn) �
􏽥z.
(P2) Boundedness: set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2,
IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))
> (j� 1, 2, . . ., n) as a series of TrNZNs; then set the
minimum and maximum TrNZNs as

􏽥z
−

�

min
j

TVj1,min
j

TVj2,min
j

TVj3,min
j

TVj4􏼠 􏼡, min
j

TRj1,min
j

TRj2,min
j

TRj3,min
j

TRj4􏼠 􏼡􏼠 􏼡,

max
j

IVj1,max
j

IVj2,max
j

IVj3,max
j

IVj4􏼠 􏼡, max
j

IRj1,max
j

IRj2,max
j

IRj3,max
j

IRj4􏼠 􏼡􏼠 􏼡,

max
j

FVj1,max
j

FVj2,max
j

FVj3,max
j

FVj4􏼠 􏼡, max
j

FRj1,max
j

FRj2,max
j

FRj3,max
j

FRj4􏼠 􏼡􏼠 􏼡

􏼪 􏼫,

􏽥z
+

�

max
j

TVj1,max
j

TVj2,max
j

TVj3,max
j

TVj4􏼠 􏼡, max
j

TRj1,max
j

TRj2,max
j

TRj3,max
j

TRj4􏼠 􏼡􏼠 􏼡,

min
j

IVj1,min
j

IVj2,min
j

IVj3,min
j

IVj4􏼠 􏼡, min
j

IRj1,min
j

IRj2,min
j

IRj3,min
j

IRj4􏼠 􏼡􏼠 􏼡,

min
j

FVj1,min
j

FVj2,min
j

FVj3,min
j

FVj4􏼠 􏼡, min
j

FRj1,min
j

FRj2,min
j

FRj3,min
j

FRj4􏼠 􏼡􏼠 􏼡

􏼪 􏼫

(18)

4en, there is 􏽥z− ≤TrNZNWGA(􏽥z1, 􏽥z2, . . . , 􏽥zn)≤ 􏽥z+.
(P3) Monotony: set 􏽥zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1,
TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3,
IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))>
(j� 1, 2, . . ., n) as a series of TrNZNs. If 􏽥zj ≤ 􏽥z∗j for j� 1,
2, . . ., n, then there exists TrNZNWGA(􏽥z1, 􏽥z2, . . . , 􏽥zn)≤
TrNZNWGA(􏽥z∗1 , 􏽥z∗2 , . . . , 􏽥z∗n ).

By the same proof process of 4eorem 2, the properties of
the TrNZNWGA operator can be also verified, which are not
repeated here.

5. MDM Approach Using the TrNZNWAA and
TrNZNWGA Operators and Score and
Accuracy Functions

)is section establishes an MDM approach by using the
TrNZNWAA and TrNZNWGA operators and score and
accuracy functions to handle MDM problems with TrNZN
information.

Regarding an MDM problem with TrNZN information,
a set of alternatives Q� {Q1, Q2, . . ., Qm} are commonly
presented and satisfactorily assessed by a set of criteria S�

{s1, s2, . . ., sn}. Each alternative over criteria is assessed by

decision makers and then their given assessment values are
expressed in the form of TrNZNs 􏽥zij� <((TVij1, TVij2, TVij3,
TVij4), (TRij1, TRij2, TRij3, TRij4)), ((IVij1, IVij2, IVij3, IVij4), (IRij1,
IRij2, IRij3, IRij4)), ((FVij1, FVij2, FVij3, FVij4), (FRij1, FRij2, FRij3,
FRij4))> (j� 1, 2,. . .,n; i� 1, 2,. . .,m), where (TVij1, TVij2, TVij3,
TVij4) ⊆ [0, 1] and (TRij1, TRij2, TRij3, TRij4) ⊆ [0, 1] indicate the
truth degrees and reliability measures of the alternativeQi over
the criteria sj, (IVij1, IVij2, IVij3, IVij4) ⊆ [0, 1] and (IRij1, IRij2, IRij3,
IRij4) ⊆ [0, 1] indicate the indeterminate degrees and reliability
measures of the alternative Qi over the criteria sj, and (FVij1,
FVij2, FVij3, FVij4) ⊆ [0, 1] and (FRij1, FRij2, FRij3, FRij4) ⊆ [0, 1]
indicate the falsity degrees and reliability measures of the al-
ternative Qi over the criteria sj, along with
0≤TVij4 + IVij4 +FVij4≤ 3 and 0≤TRij4 + IRij4 +FRij4≤ 3 for j� 1,
2, . . ., n and i� 1, 2, . . ., m. )en, all the specified TrNZNs are
constructed as their decision matrix 􏽥Z � (􏽥zij)m×n.

)us, the TrNZNWAA and TrNZNWGA operators
and the score and accuracy functions can be applied to
MDM problems with TrNZN information, and then their
MDM approach can be indicated by the following
procedures:

Step 1: the aggregated TrNZN 􏽥zi for Qi (i� 1, 2, . . ., m)
is obtained by applying the TrNZNWAA or
TrNZNWGA operator:
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􏽥zi � TrNZNWAA 􏽥zi1, 􏽥zi2, . . . , 􏽥zin( 􏼁 � ⊕
n

j�1
λj􏽥zij

� 1 − 􏽙
n

j�1
1 − TVij1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVij2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVij3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TVij4􏼐 􏼑

λj⎛⎝ ⎞⎠,⎛⎝􏼪

1 − 􏽙
n

j�1
1 − TRij1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRij2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRij3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − TRij4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠,

􏽙

n

j�1
I
λj

Vij1, 􏽙
n

j�1
I
λj

Vij2, 􏽙
n

j�1
I
λj

Vij3, 􏽙
n

j�1
I
λj

Vij4
⎛⎝ ⎞⎠, 􏽙

n

j�1
I
λj

Rij1, 􏽙
n

j�1
I
λj

Rij2, 􏽙
n

j�1
I
λj

Rij3, 􏽙
n

j�1
I
λj

Rij4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

􏽙

n

j�1
F
λj

Vij1, 􏽙
n

j�1
F
λj

Vij2, 􏽙
n

j�1
F
λj

Vij3, 􏽙
n

j�1
F
λj

Vij4
⎛⎝ ⎞⎠, 􏽙

n

j�1
F
λj

Rij1, 􏽙
n

j�1
F
λj

Rij2, 􏽙
n

j�1
F
λj

Rij3, 􏽙
n

j�1
F
λj

Rij4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫,

(19)

􏽥zi � TrNZNWGA 􏽥zi1, 􏽥zi2, . . . , 􏽥zin( 􏼁 � ⊗
n

j�1
􏽥z
λj

ij

� 􏽙

n

j�1
T
λj

Vij1, 􏽙

n

j�1
T
λj

Vij2, 􏽙

n

j�1
T
λj

Vij3, 􏽙

n

j�1
T
λj

Vij4
⎛⎝ ⎞⎠, 􏽙

n

j�1
T
λj

Rij1, 􏽙

n

j�1
T
λj

Rij2, 􏽙

n

j�1
T
λj

Rij3, 􏽙

n

j�1
T
λj

Rij4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼪 ,

1 − 􏽙
n

j�1
1 − IVij1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IVij2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IVij3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IVij4􏼐 􏼑

λj⎛⎝ ⎞⎠,⎛⎝

1 − 􏽙

n

j�1
1 − IRij1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IRij2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IRij3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − IRij4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠,

1 − 􏽙
n

j�1
1 − FVij1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FVij2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FVij3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FVij4􏼐 􏼑

λj⎛⎝ ⎞⎠,⎛⎝

1 − 􏽙

n

j�1
1 − FRij1􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FRij2􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FRij3􏼐 􏼑

λj
, 1 − 􏽙

n

j�1
1 − FRij4􏼐 􏼑

λj⎛⎝ ⎞⎠⎞⎠􏼫.

(20)

Step 2: by equation (7), we calculate the score values of
S(􏽥zi). If necessary, we calculate the accuracy values of
H(􏽥zi) (i� 1, 2, . . ., m) by equation (8).
Step 3: all the alternatives Qi (i� 1, 2, . . .,m) are ranked
corresponding to the score values (the accuracy values)
and the best one(s) is chosen in the set of alternatives.
Step 4: end.

6. MDMExampleandComparisonwithExisting
MDM Approaches

6.1. MDM Example of Software Selection. )is section in-
dicates anMDM example of software selection adapted from
[9] to reveal the usability and efficiency of the established
MDM approach under the environment of TrNZNs.

In an MDM example, an investment company needs to
select a suitable software system from potential software
systems, where five candidate software systems are provided
preliminarily and denoted as a set of five alternatives Q�

{Q1, Q2, Q3, Q4, Q5}. )en, these alternatives must satisfy the
requirements of the four criteria: s1 (the contribution to

organization performance), s2 (the effort to transform from
current system), s3 (the costs of hardware/software invest-
ment), and s4 (the outsourcing software developer reli-
ability). Regarding the importance of the four criteria, the
weight values of the four criteria are specified as the weight
vector λ� (0.25, 0.25, 0.3, 0.2). )us, decision makers/ex-
perts assess the satisfiability of the five alternatives over the
four criteria by TrNZNs 􏽥zij� <((TVij1, TVij2, TVij3, TVij4),
(TRij1, TRij2, TRij3, TRij4)), ((IVij1, IVij2, IVij3, IVij4), (IRij1, IRij2,
IRij3, IRij4)), ((FVij1, FVij2, FVij3, FVij4), (FRij1, FRij2, FRij3, FRij4))
> (j� 1, 2, 3, 4; i� 1, 2, 3, 4, 5), where (TVij1, TVij2, TVij3, TVij4)
⊆ [0, 1] and (TRij1, TRij2, TRij3, TRij4) ⊆ [0, 1] indicate that the
alternative Qi satisfies the degrees and reliability measures of
the criteria sj, (IVij1, IVij2, IVij3, IVij4) ⊆ [0, 1] and (IRij1, IRij2,
IRij3, IRij4) ⊆ [0, 1] indicate the indeterminate degrees and
reliability measures of the alternative Qi over the criteria sj,
and (FVij1, FVij2, FVij3, FVij4) ⊆ [0, 1] and (FRij1, FRij2, FRij3,
FRij4) ⊆ [0, 1] indicate that the alternative Ai does not satisfy
the degrees and reliability measures of the criteria sj, along
with 0≤TVij4 + IVij4 + FVij4≤ 3 and 0≤TRij4 + IRij4 + FRij4≤ 3.
Hence, all the specified TrNZNs can be constructed as the
following decision matrix 􏽥Z � (􏽥zij)5×4:
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􏽥Z �

((0.4, 0.5, 0.6, 0.7), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.3, 0.4, 0.5, 0.6)), ((0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6)〈 〉

((0.3, 0.4, 0.5, 0.5), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.2, 0.3, 0.4), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.6, 0.7, 0.8, 0.9)), ((0.6, 0.7, 0.8, 0.9), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.7, 0.7, 0.7, 0.7), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.0, 0.1, 0.2, 0.2), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6)), ((0.5, 0.6, 0.7, 0.8), (0.5, 0.6, 0.7, 0.8))〈 〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((0.0, 0.1, 0.2, 0.3), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7)), (0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6)〈 〉

((0.2, 0.3, 0.4, 0.5), (0.6, 0.7, 0.8, 0.9)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.0, 0.1, 0.1, 0.2), (0.5, 0.6, 0.7, 0.8)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.6, 0.7)), ((0.3, 0.4, 0.5, 0.6), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.4, 0.5, 0.6, 0.7), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.6, 0.7, 0.7, 0.8)), ((0.0, 0.1, 0.2, 0.2), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.4, 0.4, 0.4, 0.4), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.5, 0.6)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.5, 0.6))〈 〉

((0.0, 0.1, 0.1, 0.2), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.6, 0.7)), ((0.5, 0.6, 0.7, 0.8), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.2, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.2, 0.3, 0.4, 0.5), (0.5, 0.6, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.2, 0.3, 0.3), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.6, 0.7, 0.7, 0.8), (0.5, 0.5, 0.5, 0.5)), ((0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8)), ((0.0, 0.1, 0.1, 0.2), (0.4, 0.5, 0.5, 0.6))〈 〉

((0.3, 0.4, 0.5, 0.6), (0.3, 0.4, 0.5, 0.6)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.6, 0.7))〈 〉

((0.3, 0.4, 0.5, 0.5), (0.5, 0.6, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.1, 0.2), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.1, 0.2, 0.3, 0.4), (0.6, 0.7, 0.8, 0.9)), ((0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8)), ((0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.5, 0.6)), ((0.4, 0.5, 0.6, 0.6), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.1, 0.2, 0.3, 0.3), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.2, 0.3, 0.4), (0.4, 0.5, 0.5, 0.6)), ((0.2, 0.3, 0.4, 0.5), (0.4, 0.5, 0.6, 0.7))〈 〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

)us, we utilize the establishedMDM approach to obtain
the most suitable software system(s), which can be depicted
by the following decision process.

First, by equation (19) or equation (20), we obtain the
following aggregated TrNZNs 􏽥zi (i� 1, 2, 3, 4, 5):

􏽥z1� <((0.2636, 0.3656, 0.4682, 0.5719), (0.3569, 0.4572,
0.5577, 0.6585)), ((0, 0.1000, 0.1741, 0.2408), (0.3722,
0.4729, 0.5428, 0.6431)), ((0.1189, 0.1512, 0.1762,
0.1973), (0.3622, 0.4638, 0.5186, 0.6188))>
􏽥z2� <((0.1945, 0.2958, 0.3758, 0.4243), (0.5271, 0.6278,
0.7129, 0.8176)), ((0, 0.1189, 0.1798, 0.2319), (0.3993,
0.5005, 0.6012, 0.7018)), ((0, 0.1712, 0.2132, 0.2821),
(0.3880, 0.4894, 0.5904, 0.6911))>
􏽥z3� <((0.1081, 0.1848, 0.2421, 0.3245), (0.4710, 0.5735,
0.6776, 0.7856)), ((0, 0.1000, 0.1464, 0.1830), (0.5233,
0.6236, 0.6964, 0.7969)), ((0.2566, 0.3737, 0.4272,
0.5393), (0.3936, 0.4949, 0.5958, 0.6964))>
􏽥z4� <((0.4035, 0.4652, 0.5298, 0.5983), (0.4767, 0.5771,
0.6486, 0.7500)), ((0, 0.1000, 0.1464, 0.1830), (0.4733,
0.5745, 0.6297, 0.7305)), ((0, 0.1699, 0.2366, 0.2366),
(0.3409, 0.4427, 0.5439, 0.6447))>
􏽥z5� <((0.3454, 0.4287, 0.4599, 0.5218), (0.4096, 0.4767,
0.5478, 0.6242)), ((0, 0.1149, 0.1481, 0.1737), (0.3980,
0.4995, 0.5789, 0.6798)), ((0, 0.1950, 0.2552, 0.3760),
(0.4472, 0.5477, 0.6136, 0.7145))>

Or we obtain the following aggregated TrNZNs 􏽥zi (i� 1,
2, 3, 4, 5):

􏽥z1� <((0, 0.2991, 0.4162, 0.5244), (0.3514, 0.4522,
0.5527, 0.6531)), ((0.0209, 0.1000, 0.1809, 0.2639),
(0.3764, 0.4767, 0.5478, 0.6486)), ((0.1261, 0.1745,
0.2266, 0.2835), (0.3751, 0.4762, 0.5218, 0.6224))>

􏽥z2� <((0, 0.2456, 0.2918, 0.3798), (0.5233, 0.6236,
0.7018, 0.8022)), ((0.0563, 0.1261, 0.1984, 0.2737),
(0.4088, 0.5096, 0.6108, 0.7129)), ((0.1877, 0.2944,
0.3715, 0.4743), (0.3996, 0.5005, 0.6020, 0.7045))>
􏽥z3� <((0, 0.1597, 0.1888, 0.2543), (0.4449, 0.5479,
0.6499, 0.7513)), ((0.0463, 0.1000, 0.1565, 0.2162),
(0.5271, 0.6278, 0.7087, 0.8139)), ((0.3437, 0.4500,
0.5422, 0.6655), (0.4042, 0.5051, 0.6064, 0.7087))>
􏽥z4� <((0.2832, 0.3885, 0.4807, 0.5658), (0.4729, 0.5733,
0.6431, 0.7434)), ((0.0463, 0.1000, 0.1565, 0.2162),
(0.4867, 0.5884, 0.6430, 0.7458)), ((0.1480, 0.2276,
0.3109, 0.3109), (0.3565, 0.4578, 0.5599, 0.6636))>
􏽥z5� <((0, 0.2912, 0.3756, 0.3910), (0.3980, 0.4729,
0.5428, 0.6089)), ((0.0760, 0.1210, 0.1690, 0.2206),
(0.4096, 0.5106, 0.5943, 0.6976)), ((0.1958, 0.3012,
0.3877, 0.5020), (0.4523, 0.5528, 0.6296, 0.7330))>

)en, the results of the MDM approach based on the
TrNZNWAA and TrNNWGA operators and the score
function are shown in Table 1.

From the results of Table 1, the ranking orders based on
the TrNZNWAA and TrNZNWGA operators are identical
and the best one indicates the same selection as the software
system Q4.

6.2. Comparison with Existing MDM Approaches. For con-
venient comparison with existing MDM approach in the
setting of TrNNs [9], we may ignore the reliability measures
in TrNZNs and only contain the decision matrix of TrNNs in
the MDM example as its special case. )us, existing MDM
approach in the setting of TrNNs [9] can be used for the
special case of the MDM example. In this case, the decision
results based on the TrNNWAA and TrNNWGA operators
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(equations (2) and (3)) and the score function of TrNNs
(equation (4)) are introduced from [9], which are shown in
Table 2.

Based on the decision results in Tables 1 and 2, we can see
that the ranking orders based on the established MDM
approach and the existing MDM approach [9] reveal their
difference, but the best alternative Q4 (the best software
system) is identical. )en, the reason for their ranking
difference is that decision information in the existing MDM
approach [9] only contains TrNNs without considering the
reliability measures of TrNNs in this MDM example, while
decision information in the established MDM approach
contains both TrNNs and their reliability measures. Hence,
different decision information can result in different ranking
results. It is obvious that the reliability measures in this
example can affect the ranking order of alternatives, which
shows the efficiency and rationality of the established MDM
approach under the environment of TrNZNs.

However, the different decision information and deci-
sion methods can have an impact on the ranking of alter-
natives in the MDM problem, which reveals their
importance in MDM applications. )us, existing MDM
methods [11–14, 23] only contain the TrNN or NZN in-
formation without considering the reliability measures in
TrNNs or continuous Z-numbers in NZNs; they may lose
some useful decision information so as to result in decision
distortion/unreasonable decision results, which reveal some
insufficiencies, while the new established approach can
contain much more information than existing MDM
methods and overcome the insufficiencies. Furthermore,
existing methods [11–14, 23] also cannot deal with such
MDM problems with TrNZNs.

Based on the above comparative analysis, the new
established approach in setting of TrNZNs not only makes
assessment information of TrNNs more reliable but also
strengthens the effectiveness and continuity of decision
information by comparison with existing MDM methods
with TrNN and NZN information [9, 11–14, 23], which
reveals the highlighting advantages of the new established
approach in the information representation and MDM
applications. )erefore, the new established approach not

only extends existing methods but also demonstrates its
superiority over them.

7. Conclusion

To make TrNN reliable, this paper presented a TrNZN set
based on the truth, falsity, and indeterminacy trapezoidal
Z-numbers as the generalization of the Z-number concept
and then defined basic operations of TrNZNs, score and
accuracy functions of TrNZNs, and ranking laws of TrNZNs.
Next, the TrNZNWAA and TrNZNWGA operators were
proposed to aggregate the TrNZN information. Further-
more, an MDM approach based on the two aggregation
operators and score and accuracy functions was established
in the setting of TrNZNs, in which the assessment values of
alternatives over the criteria take the form of TrNZNs
containing TrNNs and their reliability measures. Finally, an
MDM example of software selection was provided to reveal
the suitability and efficiency of the established MDM ap-
proach in the setting of TrNZNs.

)e main advantage of this study is that the established
method not only makes assessment information of TrNNs
more reliable but also strengthens the decision rationality
and efficiency in solving MDM problems with TrNZN in-
formation. However, the established method only uses the
basic aggregation algorithms of TrNZNWAA and
TrNZNWGA for MDM problems without considering the
interactions of some evaluation criteria with each other,
which implies the limitation of the proposed method in
MDM applications. For capturing these relationships, the
future study is to develop other aggregation algorithms and
to use them for some other MDM problems including slope
design schemes, energy and environmental managements,
and medicine options.
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(e objective of this paper is to study the representation of neutrosophic matrices defined over a neutrosophic field by neu-
trosophic linear transformations between neutrosophic vector spaces, where it proves that every neutrosophic matrix can be
represented uniquely by a neutrosophic linear transformation. Also, this work proves that every neutrosophic linear trans-
formation must be an AH-linear transformation; i.e., it can be represented by classical linear transformations.

1. Introduction

Neutrosophy is a new branch of philosophy founded by
Smarandache [1, 2] to deal with uncertainty in real-life
problems.

Neutrosophic concepts found theirway inmany other fields,
such as classification [3, 4], number theory [5, 6], algebraic
equations [7, 8], Boolean algebra [9] and optimization [10].

Neutrosophic algebra began with Smarandache and
Kandasamy in [11], where they defined neutrosophic rings
and fields for the first time. Lately, neutrosophic fields [12]
were used in the study of neutrosophic vector spaces [13–16].

Neutrosophic matrices were defined to deal with inde-
terminacy problems, and many applications and theorems
can be found in [17–19].

If V is a vector space over the field F, then
V(I) � x + yI; x, y ∈ V􏼈 􏼉 is the corresponding strong
neutrosophic vector space over the neutrosophic field F(I).

In [4, 20–24], Abobala et al. proposed the concept of AH
substructures in groups, rings, spaces, and modules as a
neutrosophic structures with two classical parts; for exam-
ple, in the strong neutrosophic vector space V(I), an AH
subspace is the set W(I) � T + SI, where T and S are two
classical subspaces of V. In a similar way, an AH linear
transformation is a function f between two neutrosophic
vector spaces V(I) andW(I) with two classical parts

f � g + hI, where g and h are classical linear transforma-
tions between V and W.

It is known that classical matrices can be represented by
linear transformations; from this point of view, we will study
this problem in single valued neutrosophic systems.

In this work, we study neutrosophic matrices as linear
neutrosophic functions. In particular, we prove that every
linear transformation between two neutrosophic vector
spaces must have an AH structure.

2. Preliminaries

Definition 1 (see [16]). Let (V, +, .) be a vector space over the
field K, then (V(I), +, .) is called a weak neutrosophic vector
space over the field K, and it is called a strong neutrosophic
vector space if it is a vector space over the neutrosophic field
K(I).

A neutrosophic fieldK(I) is a triple (K(I), +, .), where K is
a classical field. A neutrosophic field is not a field by classical
meaning, but it is a ring.

Elements of V(I) have the following form: x + yI; x ,

y ∈ V; i.e., V(I) can be written as V(I) � V + VI.

Definition 2 (see [16]). Let V(I) be a strong neutrosophic
vector space over the neutrosophic field K(I) and W(I) be a
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nonempty set of V(I), then W(I) is called a strong neu-
trosophic subspace if W(I) itself is a strong neutrosophic
vector space.

Definition 3 (see [16]). Let v1, v2.vs ∈ V(I), and x ∈ V(I) we
say that x is a linear combination of vi; i � 1, .., s􏼈 􏼉 if

x � a1v1 + . . . + asvs such ai ∈ K(I). (1)

(e set vi; i � 1, .., s􏼈 􏼉 is called linearly independent if
a1v1 + · · · + asvs � 0 implies ai � 0 for all i.

Definition 4 (see [18]). Let Mm×n � ( aij): aij ∈ K(I)􏽮 􏽯

where K(I) is a neutrosophic field. We call it the neu-
trosophic matrix.

3. Main Discussion

Theorem 1. Let V, W be two vector spaces over the field F

with dim(V) � n, dim(W) � m and V(I), W(I) be the
corresponding neutrosophic vector spaces over the corre-
sponding neutrosophic field F(I). Let g, h: V⟶W be two
linear transformations, then there exists a neutrosophic linear

transformation f � g + hI: V(I)⟶W(I), where f is de-
fined as follows:

f(x + yI) � g(x) +[(g + h)(x + y) − g(x)]I. (2)

Proof. We define f � g + hI: V(I)⟶W(I), where

f(x + yI) � g(x) +[(g + h)(x + y) − g(x)]I, (3)

in which f is a linear transformation, that is, because for
every m � x + yI, n � z + tI ∈ V(I), we have

f(m + n) � f([x + z] + I[y + t]) � g(x + z)

+ I[(g + h)(x + y + z + t) − g(x + z)]

� (g(x) +[(g + h)(x + y) − g(x)]I)

+(g(z) +[(g + h)(z + t) − g(z)]I)

� f(m) + f(n).

(4)

On the contrary, consider an arbitrary neutrosophic
number a + bI ∈ F(I), then

f([a + bI]m) � f([a + bI][x + yI]) � f(ax + I[ay + bx + by]) � f(ax + I[(a + b)(x + y) − ax])

� g(ax) + I[(g + h)[(a + b)(x + y)] − g(ax)]

� ag(x) + I[(a + b)(g + h)[x + y] − ag(x)]

� (a + bI)(g(x) + I[(g + h)(x + y) − g(x)] � (a + bI)f(m).

(5)

(us, f is a neutrosophic linear transformation. □

Definition 5. (e neutrosophic linear transformation f

defined in (eorem 1 is called a full AH-linear
transformation.

Definition 6. Let f � g + hI: V(I)⟶W(I) be a full AH-
linear transformation and M � A + BI be an n × m neu-
trosophic matrix over F(I), and we call M the neutrosophic
matrix of f if and only if f(x + yI) � M(x + yI) for every
x + yI ∈ V(I).

Theorem 2. Let f � g + hI: V(I)⟶W(I) be any full
AH-linear transformation, then M � A + BI is the corre-
sponding neutrosophic matrix if and only if A is the matrix of
g and B is the matrix of h.

Proof. We assume that A is the matrix of g and B is the
matrix of h; hence, Ax � g(x),By � h(y), (A + B)

(x + y) � (g + h)(x + y). We have

M.(x + yI) � (A + BI)(x + yI) � (Ax + I[Ay + Bx + By]) � (Ax + I[(A + B)(x + y) − Ax])

� g(x) + I[(g + h)(x + y) − g(x)] � f(x + yI).
(6)

(us, M is the neutrosophic matrix of f.
Conversely, suppose that M is the neutrosophic matrix

of f, and we shall prove that A is the matrix of g and B is the
matrix of h.

According to the assumption, we have M(x + yI) �

f(x + yI); hence,

(Ax + I[(A + B)(x + y) − Ax])

� g(x) + I[(g + h)(x + y) − g(x)].
(7)

(is implies that Ax � g(x), (A + B)(x + y) � (g + h)

(x + y) so that B(x + y) � h(x + y). By considering the
arbitrariness of x and y, we get that A is the matrix of g and
B is the matrix of h. □
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Example 1

(a) Let V(I) � R2(I) � (a, b) + (c, d)I � (a + cI, b +{

dI); a, b, c, d ∈ R}, consider the following neu-

trosophic matrix M �
1 + I I

−I 2 − I
􏼠 􏼡. (e

corresponding neutrosophic linear transformation is
defined as follows:

f(x + yI) � M.
a + cI

b + dI
􏼠 􏼡 � (a + I[c + a + c + b + d], −aI − cI + 2b + 2 dI − bI − dI)

� (a + I[a + 2c + b + d], 2b + I[−a − c − b + d]) � (a, 2b) + I(a + 2c + b + d, −a − c − b + d).

(8)

(b) f � g+hI; g(x,y) � (x,2y), h(x,y) � (x +y,−x−y),
where g,h: V⟶V.

Theorem 3. Let V, W be two vector spaces over the field F,
with dim(V) � n, dim(W) � m, and let M � A + BI be any
n × m neutrosophic matrix over F(I). 4en, M can be rep-
resented by a unique full AH-linear transformation
f � g + hI, where A is the matrix of g and B is the matrix of
h.

Proof. According to (eorem 2, the neutrosophic matrix M �

A + BI can be represented by a neutrosophic full AH-linear
transformation f � g + hI, where A is the matrix of g and B is
the matrix of h. For the uniqueness condition, we suppose that
F � G + HI is another linear AH-transformation with the
property.

M(x + yI) � F(x + yI). We have

M.(x + yI) � F(x + yI) � f(x + yI),

for all x + yI ∈ V(I).
(9)

(us, F � f and f is unique.
(e following theorem shows an algorithm to find a basis

for the neutrosophic vector space V(I) from any basis of the
corresponding classical vector space V. □

Theorem 4. Let V(I) be any neutrosophic vector space over
the neutrosophic field F(I) and V be its corresponding classical
vector space over the field F. Let S �{v1, v2, . . . , vn} be a basis
of V over F, then L � lij � vi + (vj − vi)I; 1≤ i, j≤ n􏽮 􏽯 is a
basis of V(I) over F(I).

Proof. First of all, we must prove that L generates V(I) over
F(I). Let x + yI be any element of V (I), where x, y ∈ V, and
we have

x � 􏽘
n

i�1
aivi, x + y � 􏽘

n

j�1
bjvj,Weput rij

� ai + bj − ai􏼐 􏼑I ∈ F(I).

(10)

Now, we compute 􏽐
n
i,j�1 rijlij.

􏽘

n

i,j�1
rijlij � 􏽘

n

i,j�1
ai + bj − ai􏼐 􏼑I􏼐 􏼑 vi + vj − vi􏼐 􏼑I􏼐 􏼑

� 􏽘

n

i,j�1
aivi + I bjvj − aivi􏽨 􏽩

� 􏽘
n

i�1
aivi + I 􏽘

n

j�1
bjvj − 􏽘

n

i�1
aivi

⎡⎢⎢⎣ ⎤⎥⎥⎦

� x + I[(x + y) − x] � x + yI.

(11)

(us, L generates V(I) over F(I).
Now, we prove that L is linearly independent. For this

purpose, we assume that 􏽐
n
i,j�1(ai + bjI)lij � 0; thus, we get

􏽘

n

i,j�1
aivi + I ai + bj􏼐 􏼑vj − aivi􏽨􏼐 􏼑 � 0, hence, 􏽘

n

i�1
aivi

� 􏽘

n

i,j

ai + bj􏼐 􏼑vj � 0, thus, ai � ai + bj � 0, so that, bj � 0.

(12)

(is implies that L is linearly independent, and then it is
a basis. □

Example 2. It is well known that {x� (1, 0), y� (0, 1)} is a
basis of V� R2. (e corresponding basis of V(I)� R2(I) is

x, y, x +(y − x)I, y +(x − y)I􏼈 􏼉

� (1, 0), (0, 1), (1, 0) +(−1, 1)I, (0, 1) +(1, −1)I{ }.

(13)

(e following theorem shows that every linear trans-
formation between V(I) and W(I) must be a full AH-linear
transformation.

Theorem 5. Let V, W be two vector spaces over the field F,
with dim(V) � n, dim(W) � m and let V(I), W(I) be the
corresponding neutrosophic vector spaces over F(I). Let
f: V(I)⟶W(I) be any linear transformation, then f is a
full AH-linear transformation.

Proof. Let f: V(I)⟶W(I) be any linear transformation,
and we must prove that there exists two classical linear
transformations g, q: V⟶W, where f � g + qI.
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Suppose that S �{v1, v2, . . . , vn} is a basis of V, then L �

lij � vi + (vj − vi)I; 1≤ i, j≤ n􏽮 􏽯 is a basis of V (I). It is
known that f(L) � f(vi + (vj − vi)I) � wi + (wj − wi)􏽮

I; wi, wj ∈W} is a basis of W (I) and that is because the
direct image of a basis by any linear transformation is a gain
a basis.

Define g: V⟶W;g(vi) � wi,h: V⟶W;h(vj) � wj. It
is clear that f(vi + (vj − vi)I) � g(vi) + I[h(vj) − g(vi)]. (is
means that f � g + qI � g + (h − g)I. Now, we must prove
that g,q � h − g are classical linear transformations.

Let x, y be any two elements of V, we have
x � x + 0I, y � y + 0I ∈ V(I). We have

f(x + y) � f([x + 0I] +[y + 0I]) � g(x + y) � g(x) + g(y).

(14)

For any m ∈ F, we havem � m + 0I ∈ F(I), andf([m +

0I][x + 0I]) � f(mx + 0I) � g(mx) � mg(x), and thus, g

is a linear transformation.
On the other hand, we have

xI, yI ∈ V(I), andf(xI + yI) � f([x + y]I) � f(0 +[x + y]I) � g(0) + I[(g + q)(x + y) − g(0)] � I[h(x + y)]

� h(x)I + h(y)I, thus h(x + y) � h(x) + h(y),

f[m + 0I][0 + xI] � f(0 + mxI) � g(0) + I[(g + q)(mx) − g(0)] � I[h(mx)]

� mh(x)I, so that h(mx) � mh(x).

(15)

(is implies that g, h are two classical linear transfor-
mations; thus, g, q are linear transformations, which implies
that f � g + qI is a full AH-linear transformation. □

Remark 1. From (eorem 5 and (eorem 3, we get the
following interesting result: every neutrosophic linear
transformation f: V(I)⟶W(I) can be represented by a
unique neutrosophic matrix M � A + BI.

3.1.FurtherApplications. According to this work, we can use
linear functions to study any problem that needs neu-
trosophic matrices. From this point of view, single-valued
neutrosophic matrices used in [19] can be turned into al-
gebraic linear functions.

4. Conclusion

In this paper, we have proved that every neutrosophic matrix
can be represented uniquely by a neutrosophic linear vector
space transformation. Also, we have showed that the linear
property of any neutrosophic vector space function implies
the AH-structure of this function.

(is work opens a wide door to use neutrosophic vector
spaces and matrices in classical representation theory of
groups since it is well known that classical groups are
represented by linear transformations from a vector space to
itself. According to our results, we can find an important
application of neutrosophic algebraic theory in the classical
representation theory of groups. (is application can be
summarized by the following open question.

5. Open Problem

Determine the algebraic structure of all groups which can be
represented by neutrosophic linear transformations from a
neutrosophic vector space V(I) to itself.
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(e D’Agostino test has been widely applied for testing the normality of the data. (e existing D’Agostino test cannot be applied
when the data have some indeterminate observations or observations which are obtained from the complex systems. In this paper,
we present a D’Agostino test under neutrosophic statistics.We propose the D’Agostino test to test the normality of the data having
indeterminate observations. (e design of the proposed test is given and implemented with the help of real data. From the
comparison, it is concluded that the proposed test is effective, adequate, and suitable to be applied in the presence
of indeterminacy.

1. Introduction

(e data obtained from various fields such as medical, phys-
iological, education, and chemical process are assumed to
follow the approximately normal distribution. (erefore, be-
fore some estimation and forecasting, the normality of the data
in hand is checked first. If the data follow the normal distri-
bution, the statistical techniques based on normal distribution
are used; otherwise, the nonparametric methods are applied for
the analysis of the data. Among many statistical tests, the
D’Agostino test has been widely applied for testing the nor-
mality of the data. (is test is used to test the null hypothesis
that the data do not significantly differ from the normal dis-
tribution versus the alternative hypothesis that the data sig-
nificantly differ from the normality. D’Agostino and Stephens
[1] introduced statistical tests when the data follow the normal
distribution. Öztuna et al. [2] studied the power of the test and
type-I error rate for various tests under normality assumptions.
Yap and Sim [3] discussed various statistical tests and showed
that the D’Agostino test has better power. Chen and Xia [4]
presented tests when data are nonnormal. Mishra et al. [5]
presented the descriptive statistic for the test. More details on
the statistical test for normality can be seen in [6–9].

(e traditional statistical tests are applied to test the hy-
pothesis that the data follow approximately normal distribution
with exact mean and variance. In some situations, such as the
measure of the water level, a lifetime of a product and melting
of a material cannot be expressed in the exact form and have
approximatemean and variances. In this case, the statistical test
using the fuzzy logic is preferable to apply for the analysis of the
data [10]. Hesamian and Akbari [11] presented the tests using
fuzzy logic. Chachi and Taheri [12] worked on the optimal test
using the fuzzy approach. Haktanır and Kahraman [13] dis-
cussed the role of tests in decision-making issues. For details,
the reader may refer to [14–24].

(e neutrosophic logic which is more efficient than the
fuzzy logic and interval-based analysis was proposed by
Smarandache [25]. (is logic estimates the measures of truth,
falsehood, and indeterminacy, while the fuzzy logic is unable to
estimate the measure of indeterminacy. More applications of
neutrosophic logic can be read in [26–36]. Based on the idea of
neutrosophic logic, Smarandache [37] introduced the de-
scriptive neutrosophic statistics which are applied for the
analysis of the data having indeterminate observations. Kan-
dasamy and Smarandache [38] introduced the neutrosophic
numbers for the first time. Chen et al. [39] applied the
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neutrosophic numbers in rock measuring. Aslam [40] intro-
duced a new branch of statistical quality control under neu-
trosophic statistics. Kolmogorov–Smirnov tests and Bartlett
and Hartley tests using neutrosophic statistics were developed
by Aslam [41, 42], respectively. More details on the application
of neutrosophic statistics can be seen in [43, 44].

Although the D’Agostino test under classical statistics is
available in the literature, the existing D’Agostino test
cannot be applied if observations are imprecise, vague, and
indeterminate. By exploring the literature and according to
the best of our knowledge, there is work on the D’Agostino
test. In this paper, we will propose and design the D’Ag-
ostino test under indeterminacy. (e operational process of
the proposed test is explained. (e application of the pro-
posed test will be given with the help of water data. We
expect that the proposed test will be informative and

adequate than the existing D’Agostino test under classical
statistics in the indeterminate environment.

2. Preliminary

Suppose that ai and biIN; INε[IL, IU] are determinate and
indeterminate parts of neutrosophic random variable
zN � ai + biIN; INϵ[IL, IU], i � 1, 2, . . . , nN, where nN de-
notes the neutrosophic sample size. (e values of zN reduce
to ai when IN � 0. Based on this information, compute the
neutrosophic average for variable zNϵ[zL, zU] as follows:

zN � a + bIN, INϵ IL, IU􏼂 􏼃, (1)

where a � (1/nN) 􏽐
nN

i�1 ai and b � (1/nN) 􏽐
nN

i�1 bi.
(e neutrosophic sum of squares (NSS) by following

[39] is computed as follows:

􏽘

nN

i�1
zi − ziN( 􏼁

2
� 􏽘

nN

i�1

min
ai + biIL( 􏼁 a + bIL􏼐 􏼑, ai + biIL( 􏼁 a + bIU􏼐 􏼑

ai + biIU( 􏼁 a + bIL􏼐 􏼑, ai + biIU( 􏼁 a + bIU􏼐 􏼑

⎛⎝ ⎞⎠

max
ai + biIL( 􏼁 a + bIL􏼐 􏼑, ai + biIL( 􏼁 a + bIU􏼐 􏼑

ai + biIU( 􏼁 a + bIL􏼐 􏼑, ai + biIU( 􏼁 a + bIU􏼐 􏼑

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, INϵ IL, IU􏼂 􏼃. (2)

3. Designof theProposedD’AgostinoTestunder
Neutrosophic Statistics

(e main objective is to design D’Agostino test under
neutrosophic statistics for testing the null hypothesis H0N

that the neutrosophic data follow the neutrosophic normal
distribution versus the alternative hypothesis H1N that the
data do not belong to the neutrosophic normal distribution.
(e acceptance of the null hypothesis means that the data are
not significantly away from the normal distribution. (e
operational procedure of the proposed test is stated as
follows.

Step 1: Compute the neutrosophic averages of lower
values ai(i � 1, 2, . . . , nL) and upper values
bi(i � 1, 2, . . . , nU) as follows: a � (1/nN) 􏽐

nN

i�1 ai and.
b � (1/nN) 􏽐

nN

i�1 bi.
Step 2: Find neutrosophic average as follows:

zN � a + bIN, INϵ IL, IU􏼂 􏼃. (3)

Step 3: (e neutrosophic sum of squares (NSS) by
following [39] is calculated using the following
expression:

􏽘
nN

i�1 zi − ziN( 􏼁
2

� 􏽘

nN

i�1

min ai − a( 􏼁
2
, ai − a( 􏼁 ai − a( 􏼁( + 1 × bi − b􏼐 􏼑􏼐 􏼑, ai − a( 􏼁 + 1 × bi − b􏼐 􏼑

2
􏼒 􏼓􏼓

max ai − a( 􏼁
2
, ai − a( 􏼁 ai − a( 􏼁( + 1 × bi − b􏼐 􏼑􏼐 􏼑, ai − a( 􏼁 + 1 × bi − b􏼐 􏼑

2
􏼒 􏼓􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Step 4: Compute the neutrosophic numerator
TNϵ[TL, TU] of the proposed test as follows:

TN � 􏽘 iN −
nN + 1

2
􏼒 􏼓􏼒 􏼓XiNTNϵ TL, TU􏼂 􏼃, (5)

where iN denotes the rank of neutrosophic observations
XiN for ai(i � 1, 2, . . . , nL) and bi(i � 1, 2, . . . , nU).
Step 5: Compute the neutrosophic test statistic
DNϵ[DL, DU] of the proposed test as follows:

DN �
TN�����������������

n
3
N 􏽐

nN

i�1 zi − ziN( 􏼁
2

􏼐 􏼑

􏽱 , TNϵ TL, TU􏼂 􏼃, DNϵ DL, DU􏼂 􏼃.

(6)

Step 6: Decide the level of significance α and select the
critical values from the D’Agostino table. (e null
hypothesis will be accepted if DNϵ[DL, DU] lies within
the range of the tabulated values.
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4. Application for Portuguese Mineral Water

In this section, we will give the application of the proposed test
using the Portuguese mineral water (PMW) data. D’Urso and
Giordani [45] used the same data and analyzed them using
classical statistics. D’Urso and Giordani [45] conidered six
mineral concentrations such as six mineral concentrations of
HCO−

3 , CI
− , N+

a , C2+
a , SiO2, and pH. (e PMW data are re-

ported in Table 1. Table 1 clearly indicates that the data are
reported in intervals. Before any prediction or estimation is
given for the data, it is necessary to see that the data do not
significantly differ from the normal distribution. (erefore, we
will apply the proposed test on these data to test whether the six
variables are from the neutrosophic normal distribution or not.

(e necessary computations for PMW data are given in
the following steps.

Step 1:(e neutrosophic averages of lower values ai(i �

1, 2, . . . , nL) and upper values bi(i � 1, 2, . . . , nU) of
PMW data of five different types of water are given in
Table 2.
Step 2: (e neutrosophic averages zN; INϵ[0, 1]for the
water data are also shown in Table 2.
Step 3: (e values of NSS are given in Table 3 by
following [39]:

􏽘

nN

i�1
zi − ziN( 􏼁

2
� 􏽘

nN

i�1

min ai − a( 􏼁
2
, ai − a( 􏼁 ai − a( 􏼁( + 1 × bi − b􏼐 􏼑􏼐 􏼑, ai − a( 􏼁 + 1 × bi − b􏼐 􏼑

2
􏼒 􏼓􏼓

max ai − a( 􏼁
2
, ai − a( 􏼁 ai − a( 􏼁( + 1 × bi − b􏼐 􏼑􏼐 􏼑, ai − a( 􏼁 + 1 × bi − b􏼐 􏼑

2
􏼒 􏼓􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Step 4: (e values TNϵ[TL, TU] and DNϵ[DL, DU] are
also shown in Table 3.
Step 5: Let α � 0.05; the range of the tabulated values is
0.2513, 0.2849. (e null hypothesis that the data follow
the normal distribution is accepted if DNϵ[DL, DU] is
within the range of the tabulated values.(e acceptance
or rejection of H0N is shown in Table 3. From Table 3, it
is clear that the PMW data for all waters do not follow
the neutrosophic normal distribution.

5. Comparative Study and Discussion

(e proposed D’Agostino test under neutrosophic statistics is
the extension of the D’Agostino test under classical statistics.

(e proposed test reduces to D’Agostino test under classical
statistics when DN � DL � 0. We compare the proposed test
with the existing D’Agostino test using the PMW data of five
types of water with the same values of α. (e values of statistic
D for the existing test and the proposed test along with the
measure of indeterminacy are shown in Table 4. From Table 4,
it can be seen that the proposed test statistic DNϵ[DL, DU] has
the results in the neutrosophic form with the probability of the
indeterminacy. On the contrary, the existing test provides only
the determined values of statistic D. For example, when
α� 0.05 and n.1, the null hypothesis H0N will accepted the
probability of 0.95, the chance to do not acceptH0N is 0.05, and
the probability of indeterminacy is 0.0621. From the proposed
test, it can be seen that 0.95+0.05+0.062> 1 which shows the
case of paraconsistent neutrosophic probability, see [37].

Table 1: (e PMW data.

Portuguese mineral
n. 1 n. 2 n. 3 n. 4 n. 5

ai bi ai bi ai bi ai bi ai bi

HCO−
3 21 41 113 119 2.2 4.2 8 11.6 4.6 5

CI− 7 9 16.5 17.5 3.6 4 4.1 4.7 6.6 7.4
N+

a 10 16 10.3 10.7 2.8 3.8 2.8 3.6 5.4 5.6
C2+

a 3 4 15 21 0.01 1.01 1.9 2.9 0.72 0.84
SiO2 23 29 13.7 14.9 1.01 7.8 5.8 6.8 16.7 18.3
pH 6.1 6.5 6.7 7.1 5.71 5.81 5.9 6 5.4 5.8

Table 2: Neutrosophic means of five different types of water.

Water aN bN zN

n. 1 11.68 17.58 [11.68, 29.26]
n. 2 29.2 31.7 [29.2, 60.9]
n. 3 2.55 4.43 [2.55, 6.98]
n. 4 4.75 5.93 [4.75, 10.68]
n. 5 5.57 7.15 [5.57, 12.72]
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On the contrary, the existing test provides only the determined
value which is not adequate when the data have interval,
uncertain, and indeterminate values or the data are obtained
from the complex system. From this comparison, it is con-
cluded that the proposed test provides the values of statistic in
the indeterminate interval, and this theory is the same as in
[39]. (erefore, the use of the proposed test is adequate under
an indeterminate environment.

6. Concluding Remarks

In this paper, we presented a D’Agostino test under neu-
trosophic statistics. We proposed the D’Agostino test to
test the normality of the data having indeterminate ob-
servations. (e design of the proposed test was given and
implemented with the help of real data. (e proposed test
was the extension of an existing D’Agostino test under
classical statistics. From the comparison, it was concluded
that the proposed test is effective, adequate, and suitable to
be applied in the presence of indeterminacy. (e devel-
opment of software for the proposed test will be a fruitful
area of research.(e application of the proposed test for big
datasets such as testing the normality of ocean data,
Facebook user data, and rail data can be considered as
future research.
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%e objective of this paper is to introduce the concept of refined neutrosophic matrices as matrices such as multiplication,
addition, and ring property. Also, it determines the necessary and sufficient condition for the invertibility of these matrices with
respect to multiplication. On the contrary, nilpotency and idempotency properties will be discussed.

1. Introduction

Neutrosophy is a new branch of generalized logic found by
Smarandache to deal with indeterminacy in all fields of
human knowledge. Neutrosophic sets were applicable in
decision-making [1], number theory [2, 3], and space theory
[4, 5].

%e concept of refined neutrosophic structure was
supposed firstly in [6] by splitting indeterminacy I into two
levels of subindeterminacies I1 and I2. %is idea was used in
the study of refined neutrosophic rings [7–9], modules
[10, 11], and groups [6]. Recently, the concept of n-refined
neutrosophic structures was defined and used in [12–14].

Neutrosophic matrices were a useful tool to deal with
indeterminacy in many studies; we find their basic definition
and properties such as ring structure, multiplication, and
other applications in [15, 16].

%rough this work, we define, for the first time, the
concept of refined neutrosophic matrices as a direct ap-
plication of the refined neutrosophic set. Also, we determine
the necessary and sufficient condition for the invertibility of
these matrices with many related examples. On the contrary,
we build an example to show how refined matrices can be
used in refined neutrosophic equations defined in [17].

All refined neutrosophic matrices through this paper are
defined over a neutrosophic field F(I1, I2).

%e structure of refined neutrosophic numbers is taken
as a + bI1 + cI2 instead of (a, bI1, cI2). %is representation is

based on the theory of n-refined neutrosophic rings pro-
posed in [12], where refined neutrosophic numbers can be
represented by this form without any loss of generality or
algebraic properties.

2. Preliminaries

Definition 1 (see [7]). Let K be a field, the neutrosophic field
generated by K∪ I, which is denoted by K(I) � K∪ I.

Definition 2 (see [7]). Classical neutrosophic number has
the form a + bI, where a and b are real or complex numbers
and I is the indeterminacy such that 0 · I � 0 and I2 � I

which results in In � I for all positive integers n.

Definition 3 (neutrosophic matrix; see [15]). Let Mm×n �

( aij): aij ∈ K(I)􏽮 􏽯, where K(I) is a neutrosophic field. We
refer this to be the neutrosophic matrix.

Remark 1 (see [6]). %e element I can be split into two
indeterminacies I1 and I2 with conditions

I
2
1 � I1,

I
2
2 � I2,

I1I2 � I2I1 � I1.

(1)
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Definition 4 (see [1]). If X is a set, then
X(I1, I2) � (a, bI1, cI2): a, b, c ∈ X􏼈 􏼉 is called the refined
neutrosophic set generated by X, I1, and I2.

Definition 5 (see [7]). Let (R, + , ×) be a ring; (R(I1, I2), +, ×)

is called a refined neutrosophic ring generated by R,
I1, and I2.

Theorem 1 (see [7]). Let (R(I1, I2), +, ×) be a refined
neutrosophic ring; then, it is a ring.

It is called a neutrosophic field if R is a classical field.

Theorem 2 (see [17]). Let A1X1 + · · · + AnXn � C,

C � (c0, c1I1, c2I2), Xi � (x
(i)
0 , x

(i)
1 I1, x

(i)
2 I2), andAi � (a

(i)
0 ,

a
(i)
1 I1, a

(i)
2 I2), be a linear equation with n-variables over a

refined neutrosophic field F(I1, I2). ,en, it is equivalent to
the following system of classical linear equations over the
classical field F:

(a) 􏽐
n
i�1 a

(i)
0 x

(i)
0 � c0

(b) 􏽐
n
i�1(a

(i)
0 + a

(i)
2 )(x

(i)
0 + x

(i)
2 ) � c0 + c2

(c) 􏽐
n
i�1(a

(i)
0 + a

(i)
1 + a

(i)
2 )(x

(i)
0 + x

(i)
1 + x

(i)
2 ) � c0 + c1 + c2

3. Main Concepts

Definition 6 (refined neutrosophic matrix)

Let A �

a11 . . . . a1m

⋮ ⋱ ⋮
an1 . . . anm

⎛⎜⎝ ⎞⎟⎠ be an n × m matrix; if

aij � x + yI1 + zI2 ∈ R2(I), then it is called an refined
neutrosophic matrix, where R2(I) is an refined neutrosophic
field.

Example 1. X �
I1 I1 + I2

3 − I1 2I2
􏼠 􏼡 is a 2 × 2 refined neu-

trosophic matrix.

Remark 2 (addition and multiplication, ring structure)

(a) If A is an m × n matrix, then it can be represented as
an element of the refined neutrosophic ring of
matrices such as the following: A � B + CI1 + DI2,
where D, B, andC are classical matrices with ele-
ments from ring R and from size m × n.

For example, A �
2 + I1 + 3I2 1 − I1 − I2
3 + 4I2 1 + I1

􏼠 􏼡 �

2 1
3 1􏼠 􏼡 +

1 − 1
0 1􏼠 􏼡I1 +

3 − 1
4 0􏼠 􏼡I2.

(b) %e addition operation can be defined by using the
representation in Remark 2 as follows:

A + BI1 + CI2( 􏼁 + X + YI1 + ZI2( 􏼁 � (A + X) +(B + Y)I1 +(C + Z)I2. (2)

(c) Multiplication can be defined by using the same
representation as a special case of multiplication on
refined neutrosophic rings as follows:

A + BI1 + CI2( 􏼁 X + YI1 + ZI2( 􏼁 � (AX) +(AY + BX + BY + BZ + CY)I1 +(AZ + CZ + CX)I2. (3)

%ismethod of multiplication is exactly equivalent to the
normal multiplication between matrices, but it is easier to
deal with in this way.

Example 2. Let X �
I1 I1 + I2

3 − I1 2I2
􏼠 􏼡 andY �

− 1 I1
1 + I2 3I1

􏼒 􏼓

be two refined neutrosophic matrices over the refined
neutrosophic field of reals. We have

(a) X � A + BI1 + CI2; A �
0 0
3 0􏼠 􏼡, B �

1 1
− 1 0􏼠 􏼡,

andC �
0 1
0 2􏼠 􏼡.

(b) Y � M + NI1 + SI2; M �
− 1 0
1 0􏼠 􏼡, N �

0 1
0 3􏼠 􏼡,

and S �
0 0
1 0􏼠 􏼡.

(c) X + Y �
− 1 + I1 2I1 + I2

4 − I1 + I2 3I1 + 2I2
􏼠 􏼡.

(d) XY �
− I1 + (I1 + I2)(1+ I2) I1I1 + (I1 + I2)(3I1)

− 3+ I1 + (2I2)(1+ I2) (3 − I1)(I1) + (2I2)(3I1)
􏼒 􏼓 �

I1 +2I2 7I1
− 3+ I1 +4I2 8I1

􏼠 􏼡.

(e) If we compute the multiplication using the repre-
sentation of Remark 2, we get
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AM �

0 0

− 3 0
⎛⎝ ⎞⎠,

AN �

0 0

0 3
⎛⎝ ⎞⎠,

BM �

0 0

1 0
⎛⎝ ⎞⎠,

BN �
0 4

0 − 1
⎛⎝ ⎞⎠,

BS �

1 0

0 0
⎛⎝ ⎞⎠,

CN �

0 3

0 6
⎛⎝ ⎞⎠,

AS �

0 0

0 0
⎛⎝ ⎞⎠,

CS �
1 0

2 0
⎛⎝ ⎞⎠,

CM �

1 0

2 0
⎛⎝ ⎞⎠.

(4)

Hence, XY � AM + I1(AN + BN + BM + BS + CN)

+ I2(AS + CS + CM) �
0 0

− 3 0􏼠 􏼡 + I1
1 7
1 8􏼠 􏼡 + I2

2 0
4 0􏼠 􏼡

�
I1 + 2I2 7I1

− 3 + I1 + 4I2 8I1
􏼠 􏼡.

Theorem 3. ,e set of all square n × n refined neutrosophic
matrices together makes a ring.

Proof. %e proof holds directly from the definition of n-
refined neutrosophic rings by taking n � 2. □

Remark 3. %e identity with respect to multiplication is the
normal unitary matrix.

Definition 7. Let A be a square n × n refined neutrosophic
matrix; then, it is called invertible if there exists a refined
square n × n neutrosophic matrix B such that AB � Un×n,
where Un×n is the unitary classical matrix.

Theorem 5. Let X � A + BI1 + CI2 be a square n × n refined
neutrosophic matrix; then, it is invertible if and only if A, A +

C, andA + B + C are invertible. ,e inverse of X is X− 1 �

A− 1 +((A + B + C)− 1− (A + C))− 1I1 + ((A + C)− 1 − A− 1)I2.

Proof. %e proof holds as a special case of invertible ele-
ments in refined neutrosophic rings [8]. □

Definition 8. We define the determinant of a square n × n

refined neutrosophic matrix as detX � detA + [det(A + B +

C) − det(A + C)]I1+ [det(A + C) − detA]I2.
%is definition is supported by the condition of

invertibility.

Theorem 6. Let X � A + BI1 + CI2 be a square n × n refined
neutrosophic matrix; we have the following:

(a) X is invertible if and only if detX≠ 0
(b) If Y � M + NI1 + SI2 is a square n × n refined neu-

trosophic matrix, then detXY � detXdetY
(c) detX− 1 � (detX)− 1

Proof

(a) If detX≠ 0, this will be equivalent to
detA≠ 0, det(A + C)≠ 0, and det(A + B + C)≠ 0,
i.e., A, A + C, andA + B + C are invertible; thus, X is
invertible according to %eorem 5.

(b) XY � AM + I1[(A + B + C)(M + N + S) − (A + C)

(M + S)] + I 2[(A + C)(M + S) − AM]. Hence,
detXY � det(AM) + I1[det((A + B + C) (M + N+

S))] +I2[det((A + C)(M + S))] � detAdetM + I1
[det(A + B + C)det(M + N + S)] + I 2[det(A + C)

det(M + S)] � (detA + I1[det(A + B + C) − det(A +

C)] + I2[det(A + C) − detA]) (detM + I1[det(M+

N + S) − det(M + S)] + I2[det(M + S) − detM]) �

detXdetY.
(c) It holds directly from (b). □

Theorem 7. Let X � A + BI1 + CI2 be a square n × n refined
neutrosophic matrix; we have the following:

(a) X is nilpotent if and only if A, A + C, andA + B + C

are nilpotent
(b) X is idempotent if and only if A, A + C, andA + B +

C are idempotent

Proof

(a) First of all, we will prove that Xr � Ar + I1[(A + B +

C)r − (A + C)r] +I2[(A + C)r − Ar].
We use the induction, for r � 1, it is clear. Suppose
that it is true for r � k, we prove it for k + 1.
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X
k+1

� X
k
X � A

k
+ I1 (A + B + C)

k
− (A + C)

k
􏽨 􏽩 + I2 (A + C)

k
− A

k
􏽨 􏽩􏼐 􏼑 A + BI1 + CI2( 􏼁

� A
k+1

+ I1 A
k
B +(A + B + C)

k
A +(A + B + C)

k
B +(A + B + C)

k
C − (A + C)

k
A − (A + C)

k
B􏽨

− (A + C)
k
C +(A + C)

k
B − A

k
B􏽩 + I2 A

k
C +(A + C)

k
C − A

k
C +(A + C)

k
A − A

k
A􏽨 􏽩

� A
k+1

+ I1 (A + B + C)
k+1

− (A + C)
k+1

􏽨 􏽩 + I2 (A + C)
k+1

− A
k+1

􏽨 􏽩.

(5)

X is nilpotent if there is a positive integer r such that
Xr � On×n. %is is equivalent to

A
r

� (A + C)
r

� (A + B + C)
r

� On×n,

which implies the proof .
(6)

(b) %e proof is similar to (a). □

Example 4. Consider the following refined neutrosophic

matrix A �
2 + I1 + 3I2 1 − I1 − I2
3 + 4I2 1 + I1

􏼠 􏼡; we have the
following:

(a) A �
2 + I1 + 3I2 1 − I1 − I2
3 + 4I2 1 + I1

􏼒 􏼓 �
2 1
3 1􏼠 􏼡 +

1 − 1
0 1􏼠 􏼡

I1 +
3 − 1
4 0􏼠 􏼡I2.

B �
2 1
3 1􏼠 􏼡, C �

1 − 1
0 1􏼠 􏼡, and D �

3 − 1
4 0􏼠 􏼡.

B + D �
5 0
7 1􏼠 􏼡, andB + C + D �

6 − 1
7 2􏼠 􏼡.

(b) B− 1 �
− 1 1
3 − 2􏼠 􏼡, (B + D)− 1 �

1/5 0
− 7/5 1􏼠 􏼡, and

(B + C + D)− 1 �
2/19 1/19

− 7/19 6/19􏼠 􏼡.

(c) A− 1 � B− 1 + I1[(B + C + D)− 1 − (B + D)− 1] + I2

[(B + D)− 1 − B− 1] �
− 1 1
3 − 2􏼒 􏼓 + I1

− 9/95 1/19
98/95 − 13/19􏼒 􏼓+

I2
6/5 − 1

− 22/5 3􏼒 􏼓 � − 1 − (9/95)I1 + (6/5)I2 1 + (1/19)I1 − I2
3 + (98/95)I1 − (22/5)I2 − 2 − (13/19)I1 + 3I2

􏼒 􏼓.

It is easy to find that A− 1A � AA− 1 �
1 0
0 1􏼠 􏼡.

(d) detB � − 1, det(B + D) � 5, det(B + C + D) � 19,

detA � − 1 + I1[19 − 5] + I2[5 − (− 1)] � − 1 + 14I1
+ 6I2.

If we compute the determinant ofA by using the classical
way, we will get the same result.

Now, we illustrate an example to clarify the application
of refined neutrosophic matrices in solving refined neu-
trosophic algebraic equations defined in [17].

Example 5. Consider the following system of refined neu-
trosophic linear equations:

2 + I1 + 3I2( 􏼁X + 1 − I1 − I2( 􏼁Y � − I1(∗),

3 + 4I2( 􏼁X + 1 + I1( 􏼁Y � I2(∗ ∗).
(7)

%e corresponding refined neutrosophic matrix is

A �
2 + I1 + 3I2 1 − I1 − I2
3 + 4I2 1 + I1

􏼠 􏼡.

Since A is invertible, we get the solution of the previous
system by computing the product:

A
− 1

− I1

I2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ �

− 1 −
9
95

I1 +
6
5
I2 1 +

1
19

I1 − I2

3 +
98
95

I1 −
22
5

I2 − 2 −
13
19

I1 + 3I2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− I1

I2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

�

I1 1 +
9
95

−
6
5

+
1
19

􏼔 􏼕

I1 − 3 −
98
95

+
22
5

−
13
19

􏼔 􏼕 + I2[− 2 + 3]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

− I1(1/19)

− (6/19)I1 + I2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.Thus, X � −
1
19

I1,

Y � −
6
19

I1 + I2.

(8)

4. Conclusion

In this paper, we have used the concept of refined neu-
trosophic set to build the corresponding refined neu-
trosophic matrix. On the contrary, many interesting
properties have been studied and proved such as idempo-
tency, nilpotency, determinants, and invertibility of these
matrices.

Also, a direct application of these matrices was proposed
in solving refined neutrosophic equations.

As a future research direction, we aim to study the di-
agonalization properties with eigenvectors of these matrices.
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