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Lung cancer has complex biological characteristics and a high degree of malignancy. It has always been the number one “killer” in
cancer, threatening human life and health. The diagnosis and early treatment of lung cancer still require improvement and further
development. With high morbidity and mortality, there is an urgent need for an accurate diagnosis method. However, the existing
computer-aided detection system has a complicated process and low detection accuracy. To solve this problem, this paper
proposed a two-stage detection method based on the dynamic region-based convolutional neural network (Dynamic R-CNN).
We divide lung cancer into squamous cell carcinoma, adenocarcinoma, and small cell carcinoma. By adding the self-calibrated
convolution module into the feature network, we extracted more abundant lung cancer features and proposed a new regression
loss function to further improve the detection performance of lung cancer. After experimental verification, the mAP (mean
average precision) of the model can reach 88.1% on the lung cancer dataset and it performed particularly well with a high IoU
(intersection over union) threshold. This method has a good performance in the detection of lung cancer and can improve the

efficiency of doctors’ diagnoses. It can avoid false detection and miss detection to a certain extent.

1. Introduction

Cancer is the second leading cause of human death in the
world, and its mortality and morbidity are increasing year
by year. According to the data of the World Health Organi-
zation (WHO), cancer has led to 9.6 million deaths in 2018
and lung cancer ranks first, with 1.76 million deaths [1].
Compared with other cancers, the biological characteristics
of lung cancer are very complex and it has a short onset time
and high malignancy, which makes lung cancer still the
number one “killer” of cancer [2, 3]. The main reason for
the high morbidity and mortality is that the diagnosis and
treatment methods of lung cancer are still at an early stage,
so it is urgent to refine and improve the diagnosis methods
of lung cancer.

At present, histopathological examination is the stan-
dard for pathological diagnosis of tumors, which can only
be performed on tissue specimens such as surgical resection
or needle biopsy. However, the tissue specimens obtained
are invasive and susceptible to specimen sampling. To assist

diagnostic doctors in their work and improve the efficiency of
cancer diagnosis, the computed tomography (CT) [4] has been
widely used in the intelligent diagnosis of medical images,
becoming a powerful tool to comprehensively capture the
characteristics of cancer. Computer-aided detection systems
are mostly machine learning algorithms such as support vec-
tor machines, which are usually used to detect and classify
tumors [5, 6]. However, they are usually limited by the
assumptions made during the definition of elements and still
have drawbacks such as a complex process, parameter setting
based on experience, and strong dependence. For example,
lung cancer detection results depend on the quality of segmen-
tation results and the effectiveness of extracted features.

In recent years, artificial neural networks, especially deep
neural networks, have made remarkable achievements in
many fields of intelligent medicine [7-9]. This learning algo-
rithm is driven by big data, excavates rules from a large
amount of data, and then classifies and judges unknown
phenomena [10-16]. The continuous accumulation of med-
ical data provides powerful materials and tools for intelligent
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screening and diagnosis of cancer. Zhang et al. [17] used a
convolutional neural network to extract deep features and
combine them with shallow features to achieve the classifica-
tion of ovarian cancer. In addition, Wu et al. [18] used the
deep convolutional neural network based on AlexNet to
realize the classification of ovarian cancer pathological
images and the accuracy rate of the model achieved 78.2%.
Tajbakhsh and Suzuki [19] used an artificial neural network
and convolutional neural network to test the benign and
malignant classification of pulmonary nodules in CT images,
and the experiment found that the performance of the con-
volutional neural network was better than the other types of
artificial neural network in the lung lesion and tumor
classification task.

With the development of the field of intelligent medical
treatment, the types of diseases are increasing and the com-
plexity of the pathological relationship between diseases is
also increasing, so the requirements of a deep neural net-
work are more and more strict. At present, mainstream
object detection algorithms in deep learning are mainly
based on two types: the first is a one-stage detection algo-
rithm, which includes Yolo [20] and RetinaNet [21]; the per-
formances of those methods are fast yet not accurate. As a
representative of the one-stage algorithm, the Yolo series
runs fast. It divides an image into multiple cells of the same
size, predicts the category of each cell, and gives the category
confidence of the bounding box. The other is a two-stage
object detection algorithm, such as Fast R-CNN [22], Faster
R-CNN [23], and Mask R-CNN [24]. The first stage of this
algorithm takes the CT image as the input and generates
the region of interest through the algorithm. The second
stage is to use the output of the first stage to further classify
and regress the bounding box. Although the detection accu-
racy of the two-stage object detection algorithm is better
than the one-stage object detection algorithm, high-quality
samples contribute significantly less to the network during
the training process. Zhao et al. [25, 26] proposed a Cascade
R-CNN network based on Faster R-CNN to solve the prob-
lem that high-quality samples contribute less to training in
object detection. Through the Cascaded R-CNN network,
each R-CNN network is set with different IoU thresholds.
In this way, the accuracy of each network output has been
improved to a certain extent and the output of the previous
R-CNN network can be used as the input of the next high-
precision network. Finally, the accuracy of the network will
gradually improve. In addition, in order to solve the imbal-
ance of object detection in the training process, Pang et al.
[27] proposed a Libra R-CNN network, which paid attention
to the problems of the sample layer, feature layer, and target
layer, and balanced the imbalance through the overall bal-
anced design. Zhang et al. [28] drew lessons from the idea
of Cascade R-CNN and proposed Dynamic R-CNN, which
further solved the problem of inconsistencies between train-
ing processes.

In addition to the network’s architecture, the quality of
feature map extraction also greatly affects the accuracy
of object detection. In most computer vision tasks, it is help-
ful to establish a long-distance dependency mechanism for
feature map  extraction. One way to model
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remote dependencies is to use a spatial pool or convolution
operator with a large kernel window. Some typical examples,
such as PSPNet [29], employ multiple spatial pool operators
of different sizes to capture multiscale contexts. There is a lot
of work [30-32] using a large convolution kernel or
extended convolution for long-term context aggregation.
By introducing an adaptive response calibration operation,
SCNet [33] constructs multiscale feature representation in
the building block and greatly improves the prediction
accuracy.

In this study, the histologic types of lung cancers that we
are looking at are adenocarcinoma, squamous cell carci-
noma, and small cell carcinoma. The first two types are the
major types of lung cancer of non-small cell lung cancer
(NSCLC) which takes 85% to 90% of all lung cancer cases.
Small cell carcinoma constitutes 10% to 15% of lung cancers
[34]. The percentage of different lung cancer types objec-
tively causes the imbalance of the image data collected. Some
data preprocessing procedure is conducted to resolve its
impact on our SC-Dynamic R-CNN development. The types
of lung cancers studied in this research bear high-level sig-
nificance and real-life value in medical practices.

To improve the detection accuracy of lung cancer, a new
lung cancer detection algorithm based on Dynamic R-CNN
[28] is proposed in this paper. We divide the collected data-
sets into three categories: adenocarcinoma, squamous cell
carcinoma, and small cell carcinoma, and amplified the data
of squamous cell carcinoma and small cell carcinoma by an
oversampling method. Next, we implement the SCNet [33]
module into the Dynamic R-CNN network, which can fully
extract lesion features. In addition, we propose a new loss
function, DBS L1 loss, which further improves the contribu-
tion of high-quality samples to training. After experimental
verification, we found that our algorithm has a great
improvement in the detection of lung cancer compared with
other advanced algorithms.

2. Materials and Methods

2.1. Materials. This paper’s dataset was taken from the Shan-
dong Provincial Hospital and Shandong Provincial Third
Hospital in Shandong, China. The datasets include 34056
pathological images on 261 patients, and the lesion location
was marked by professional radiologists. According to the
radiologist’s annotation, we selected 3442 images of lung
cancer with lesions.

The data selected are firstly divided into three categories,
namely, adenocarcinoma, squamous cell carcinoma, and
small cell carcinoma. In this paper, we use “Adenocarci-
noma,” “Squamous carcinoma,” and “small cell carcinoma”
to represent these three categories. Among the pathological
types of lung cancer, adenocarcinoma is the most common
and there is little data on other types of cancer, which leads
to the imbalance towards the number of samples of different
types of lung cancer. The dataset of lung cancer is distrib-
uted as follows:

Figure 1 shows that there are 2273 samples of adenocar-
cinoma, 845 samples of squamous carcinoma, and 324 sam-
ples of small cell carcinoma. To more objectively train the
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FiGure 1: The distribution of lung cancer CT image data of
different types.

method, we would like to have the datasets of different can-
cer types in a similar size; hence, for the small size of cancer-
type datasets, we expanded the size of the dataset by over-
sampling methods. It is noticeable that the number of ade-
nocarcinoma data samples is about three times of
squamous carcinoma and eight times of small cell carci-
noma, and therefore, the latter two minority class datasets
were oversampled 3 times and 8 times of their original size
to match the majority class, i.e., adenocarcinoma.

Different from conventional oversampling approaches,
e.g., random oversampling and synthetic minority oversam-
pling technique (SMOT), for image data, we can synthesize
samples using image processing techniques, e.g., spatial
transformation including flipping, shearing, and rotating
[35], gamma transformation, histogram equalization, and
other methods to enhance the dataset [36]. An example of
an image enhancement result is shown in Figure 2.

2.2. Methods. We present the next new method for robust
lung cancer lesion detection in CT studies that uses Dynamic
R-CNN trained on our dataset. To achieve accurate detec-
tion of lung cancer lesions, we use Dynamic R-CNN as the
baseline network and use the self-calibrated convolutions
to replace the traditional convolution. Besides that, we pro-
posed a new regression loss function which is better than
the loss function in Dynamic R-CNN.

We first present an overview of the method and then
describe in detail its components. To make the paper self-
contained, we describe all steps of the extended method.

2.2.1. Model. Figure 3 shows the flow diagram of our
method. The structure of the SC-Dynamic R-CNN network
is similar to Faster R-CNN [23]. It is composed of two mod-
ules. The first module is a deep fully convolutional network
that proposes regions, which is called the region proposal
network (RPN) module. The RPN module is aimed at
detecting multiple objects in a single image. The second
module is the detector that uses the proposed regions,
namely, Box_Head. After the Box_Head, there are two loss

functions: classification loss function and regression loss
function. But unlike Faster R-CNN [23], SC-Dynamic R-
CNN can adjust the label assignment criteria and the shape
of regression loss function automatically during training that
makes better use of the training samples. In order to enhance
the ability of feature representation of lung cancer, SC-
Dynamic R-CNN adds SCNet [33] to the RPN module.
Except that, the loss function of Dynamic R-CNN has been
optimized for getting a better detection result of lung cancer.

As shown in Figure 3, initially, the lung cancer images
are resized to 512 x 512 pixels for the training phase. The
resize images are subsequently fed to the region proposal
network (RPN) to get the proposed region. Next, the pro-
posed regions are classified and regressed by the Box_Head
module. Eventually, the classification and regression results
are fed into the corresponding loss function and as the
parameter update of the network. We use softmax loss as
the classification loss, and regression loss uses our newly
proposed loss function, the details of which will be described
in the next section.

To better exploit the dynamic property in the training
stage, SC-Dynamic R-CNN uses a lower IoU threshold to
better accommodate these imperfect proposals in the
second-stage training (Figure 3(a)). As the training goes,
the quality of proposals is continuously improved. There-
fore, we can increase the threshold to better use them to
train a high-quality detector, so the network can be more
discriminative at higher IoU. Dynamic label assignment
can be formulated as follows:

1)
Label =
Os

where T, stands for the current IoU threshold. In order to
realize the dynamic property that the distribution of pro-
posals changes over time during the training process, the
dynamic label assignment will automatically update based
on the proposal’s statistics. Specifically, SC-Dynamic R-
CNN first calculates the IoUs I between the proposals and
its target ground truth and then selects the maximum value
of K, from I as the threshold T . As the training goes, the
IoUs I between the proposal and its target ground truths will
increase gradually and so does the updated threshold T,
In addition, according to the conclusion of Dynamic R-
CNN [28], with the improvement of IoU threshold, the
quality of positive samples will be further improved. As a
result, the contribution of high-quality samples will be fur-
ther decreased, which will greatly limit the overall perfor-
mance. Based on the method of Dynamic R-CNN, we have
improved its regression loss function and obtained more
accurate results which are described in the next section.

if max IoU(b,G) 2T
if max IoU(b,G) < T

now? (1)

now?

2.2.2. DBS L1 Loss. According to the conclusion of Dynamic
R-CNN [28], with the improvement of the sample quality,
its contribution will gradually decrease. As a result, Dynamic
R-CNN adds a factor « based on the Smooth L1 loss func-
tion. The network adjusts the loss function by adjusting
the value of the factor a. With the increase of factor a, the
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FIGURE 2: The transaxial view of the enhanced lung cancer image data.
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FIGURE 3: The overall structure of the proposed SC-Dynamic R-CNN.

gradient of high-quality sample training will increase gradually,
so the contribution to the network will be increased. The regres-
sion loss function of Dynamic R-CNN is shown as follows:

0.5/x|* fx] <
_— I \x 04
now) = Fnow o (2)

|x] = 0.5«

DSL(x, «

otherwise,

now’

where the «,,, will decrease with the training, as shown in
Figure 2.

But the loss function can be further improved. Taking
Libra R-CNN [27] as a reference, we improve the Dynamic
R-CNN loss function and further improve the contribution
of high-quality samples to training. The improved DBS L1
loss can be formulated as follows:

cxnl;)w (blx| + 1) In (Blx| + 1) = oy, |x|  if [x] < €y

DBSL(x, at;0,,) =
otherwise.

(3)

|x| + C,
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where b and C are constants and their values are constrained
by the factor a.

Similar to the dynamic label assignment process in
Dynamic R-CNN [28], DBS L1 loss first obtains the regres-
sion label E between proposals and their target ground
truths. Then, we select the K, minimum value from E to
update the factor « in the equation.

As shown in Figure 4, with the continuous reduction of
factors in DBS L1 loss, the contribution of high-quality sam-
ples to training increases gradually. Clearly, the DBS L1 loss
is superior to DS L1 loss, which greatly improves the recog-
nition accuracy of lung cancer lesions.

2.2.3. Self-Calibration. Conventional 2D convolution is still
used to calculate the convolution in Dynamic R-CNN [28].
But in conventional 2D convolution, each output feature

map is generated by the same formula, which results in the
convolutional filters learning similar patterns. In addition,
the fields of view for each spatial location in the convolution
feature transformation can only be controlled by the size of
the predefined convolution kernel. As a result, the discrimi-
nation of the lung cancer feature map will be decreased. In
order to enhance the ability of feature representation of lung
cancer lesions and identify lung cancer lesions more accu-
rately, SCNet [33] is used in SC-Dynamic R-CNN instead
of traditional 2D convolution.

As shown in Figure 5, the shape of the given group of the
filter is (C, C, ky, k,,), where C is the number of channels and
k, and k;, are the spatial height and width, respectively.
SCNet first separates it into four portions, each of which is
responsible for different functionality. The separated filter
is expressed by {K;}r, and the size of each filter is



6 Computational and Mathematical Methods in Medicine
TaBLE 1: Comparisons with different models on our lung cancer dataset.
Adenocarcinoma Squamous Small cell
Method Backbone mAP
APy, AP AP, AP AP, AP
RetiNanet [21] ResNet-50 87.7% 67.8% 89.7% 79.9% 88.1% 77.8% 81.8%
SSD [38] ResNet-50 80.7% 61.4% 89.2% 78.4% 86.2% 77.3% 78.9%
Faster R-CNN [23] ResNet-50 81.6% 62.5% 90.5% 80.3% 89.7% 79.4% 80.1%
Libra R-CNN [27] ResNet-50 81.9% 71.4% 89.9% 81.5% 89.3% 83.2% 82.9%
Cascade R-CNN [25] ResNet-50 82.7% 73.5% 90.1% 82.9% 90.1% 84.9% 84.0%
SC-Dynamic R-CNN ResNet-50 91.6% 77.3% 91.5% 88.2% 91.4% 88.6% 88.1%

TaBLE 2: Results of each component in SC-Dynamic R-CNN on val
set.

Backbone FPN DBSLI1loss SCNet AP50 AP75 mAP
ResNet-50 N 90.1% 80.7% 85.4%
ResNet-50 N N 90.6% 83.6% 87.1%
ResNet-50  +/ N v 915% 84.7% 88.1%

(CI2,C/2, ky, k,,). The input X will be divided into two parts
before entering the self-calibrated convolutional network,
which represents by X; and X,, where X, will conduct
self-calibration through {K,, K, K,} to produce Y. At the
same time, X, will be manipulated by K, and produce Y,.
Finally, Y, will be connected to Y, to generate the final out-
put Y.

In order to collect the context information of each spatial
location effectively, SCNet conducts convolution feature
transformation in two different scale spaces. Firstly, input
X, will be performed with average pooling operation:

T, = AvgPool(X,). (4)

Then, the obtained T', maps the intermediate references
from the small-scale space to the original feature space by a
bilinear interpolation operator. The specific formula is as
follows:

X1 =Up(F,(Ty)) = Up(T, * K), (5)
where “+” denotes convolution and Up () is a bilinear inter-

polation operator. The calibration operation can be formu-
lated as follows:

Yi=Fy(X) o (X, + X)), (6)
where F5(X;) = X, = K;, “” denotes element-wise multi-
plication, and o is the sigmoid function. After the calibration

operation, Y'| needs to be operated by the following formula
to get the final output:

Y, =F4<Y{) =Y+ K, (7)

In our model, SCNet is used to replace the convolutional
2D convolution, which considers the context around each

spatial location, avoids the information irrelevant to the
lesion partly, and also improves the recognition accuracy
of lung cancer lesions.

3. Experiments

3.1. Evaluation Metrics. To evaluate the performance of the
proposed SC-Dynamic R-CNN on the image data that we
have, we utilize a set of prevalent performance metrics for
object detection, which are AP,,, AP,., and mAP. AP,
and AP, are average precision with IoU (intersection over
union) thresholds of 50% and 75%. The mAP is mean aver-
age precision. The reason to choose more than one threshold
is to eliminate possible evaluation biases and provide more
objective evaluation results. We have partitioned our data
into three groups, namely, training set, validation set, and
test-dev set. The proposed Dynamic R-CNN variant is
trained and validated with the training set and validation set.

The final results are reported on the test-dev set. It is
worth noting that our mAP averages AP, and AP for each
category as a whole. Generally speaking, the better the detec-
tion effect of the model, the higher the value of mAP.

3.2. Implementation Details. For truthful comparisons, all
experiments are implemented using PyTorch and mmdetec-
tion [37]. And the experiments are carried out in the operat-
ing environment of Ubuntu 16.04 OS with 6 xIntel(R)
Core(TM) i7-7700 CPU, using an NVIDIA GeForce RTX
2080 GPU for training. The test experiments use the same
configuration. The input image size of each network is 512
x 512 pixels unless noted. We train detectors with 12 epochs
with an initial learning rate of 0.01. The SGD momentum is
set to be 0.9, and weight decay is with a value of 0.0001. All
other hyperparameters follow the settings in mmdetection
[37] if not specifically noted.

3.3. Main Results. In the experimental results of this paper,
we used “Adenocarcinoma,” “Squamous,” and “small cell,”
to represent adenocarcinoma, squamous cell carcinoma,
and small cell carcinoma, respectively.

The detection results obtained under different models
are shown in the following table:

There are five contemporary methods used to compare
and benchmark the results of our proposed SC-Dynamic
R-CNN. The five methods are ReinaNet [21], SSD [38], Fas-
ter R-CNN [23], Libra R-CNN [27], and Cascade R-CNN
[25]. These methods are among the most popular object
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cellcarcinomc|

F1GURE 6: SC-Dynamic R-CNN detection effect diagram. Adenocarcinoma test results (left), small cell carcinoma test results (center), and

squamous carcinoma test results (right).

detection neural network algorithms. The same lung cancer
image data, training set, validation set, and test-dev set are
used for a fair comparison. The performance of our pro-
posed methods against the five popular methods is presented
in Table 1.

The result shows that SC-Dynamic R-CNN achieves
88.1% mAP with ResNet-50, which is 8 points higher than
the FPN-based Faster R-CNN baseline. As a one-stage detec-
tion network, RetinaNet and SSD achieved 81.5% and 78.9%
mAP, respectively, whose accuracy is inferior to our method.

Moreover, SC-Dynamic R-CNN is much better than
other networks at AP... This is because SC-Dynamic R-
CNN can train better results by constantly increasing the
IoU threshold. Although Cascade R-CNN also achieves good
results in detection, our network is higher than Cascade R-
CNN no matter being at AP, or AP, and our mAP is 4.1
points higher than that of Cascade R-CNN.

Our proposed method demonstrates a decent level of
effectiveness and robustness. The performance accuracy
of our method is consistent even with different IoU thresh-
olds. The reason why our method surpasses other methods
in term of accuracy is due to the novel enhancement imple-
mented in the previous Dynamic R-CNN algorithm. During
the training phase, the proposed variant is able to automat-
ically adjust the label assignment criteria and the shape of
regression loss function so that the training set is better
utilized. Another distinctive improvement is to integrate
self-calibration mechanism to the RPN of the previous
methods and it helps CNN generate more discriminative
representations and ultimately enhances the overall perfor-
mance of the variant.

3.4. Ablation Experiment. To show the effectiveness of each
proposed component, we report the overall ablation studies
in Table 2.

These results show the effectiveness and robustness of
our method.

(1) DBS L1 loss: compared with Dynamic R-CNN, DBS
L1 loss improves the mAP of lung cancer detection
from 85.4% to 87.1%. This proves that our proposed
module has better performance than the Dynamic R-

CNN loss module. Results in higher IoU metrics like
AP, are hugely improved, which validates the effec-
tiveness of changing the loss function to compensate
for the high-quality samples during training

(2) SCNet: when we replace the traditional convolution
with SCNet, the mAP of lung cancer detection is
improved from 87.1% to 88.1%. Compared with
Dynamic R-CNN with DBL L1 loss, AP, and AP,
increased by 0.9 points and 1.1 points, respectively,
after adding SCNet. This also proves the effective-
ness of SCNet for lung cancer detection

The experimental results of SC-Dynamic R-CNN are
shown in the following figure:

As shown in Figure 6, this paper used the SC-Dynamic
R-CNN model to detect lung cancer lesions and achieved
good results. This fully demonstrates that our proposed
model has greatly improved the recognition effect of lung
cancer lesions.

4. Conclusion

To solve the problem that the biological characteristics of
lung cancer were complex and difficult to detect, we pro-
posed the SC-Dynamic R-CNN network. First, we extended
the lung cancer dataset with the oversampling method and
obtained the balanced dataset. Then, we added the self-
calibrated convolution module to the Dynamic R-CNN net-
work and proposed a new regression loss function, DBS L1
loss. This algorithm solves the problem of false detection
and miss detection to a certain extent and greatly improves
the detection accuracy of lung cancer. After experimental
verification, the new algorithm achieves 88.1% mAP on the
lung cancer dataset and it performed particularly well on
high IoU threshold (such as AP..). In the next work, we will
try to further improve the accuracy of the network and verify
the broad applicability of the model in cancer detection.

In future, it is always worthwhile to solve this issue with
some other intelligence algorithms and the bio-inspired
computational methods, such as monarch butterfly optimi-
zation (MBO) [39], earthworm optimization algorithm



(EWA) [40], elephant herding optimization (EHO) [41],
moth search (MS) algorithm [42], slime mould algorithm
(SMA) [43], hunger games search (HGS) [44], Runge Kutta
optimizer (RUN) [45], colony predation algorithm (CPA)
[46], Harris hawks optimization (HHO) [47], and Spiking
neural P(SN-P) systems with learning [48].
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Breast cancer is a global epidemic, responsible for one of the highest mortality rates among women. Ultrasound imaging is
becoming a popular tool for breast cancer screening, and quantitative ultrasound (QUS) techniques are being increasingly
applied by researchers in an attempt to characterize breast tissue. Several different quantitative descriptors for breast cancer have
been explored by researchers. This study proposes a breast tumor classification system using the three major types of
intratumoral QUS descriptors which can be extracted from ultrasound radiofrequency (RF) data: spectral features, envelope
statistics features, and texture features. A total of 16 features were extracted from ultrasound RF data across two different
datasets, of which one is balanced and the other is severely imbalanced. The balanced dataset contains RF data of 100 patients
with breast tumors, of which 48 are benign and 52 are malignant. The imbalanced dataset contains RF data of 130 patients with
breast tumors, of which 104 are benign and 26 are malignant. Holdout validation was used to split the balanced dataset into
60% training and 40% testing sets. Feature selection was applied on the training set to identify the most relevant subset for the
classification of benign and malignant breast tumors, and the performance of the features was evaluated on the test set. A
maximum classification accuracy of 95% and an area under the receiver operating characteristic curve (AUC) of 0.968 was
obtained on the test set. The performance of the identified relevant features was further validated on the imbalanced dataset,
where a hybrid resampling strategy was firstly utilized to create an optimal balance between benign and malignant samples. A
maximum classification accuracy of 93.01%, sensitivity of 94.62%, specificity of 91.4%, and AUC of 0.966 were obtained. The
results indicate that the identified features are able to distinguish between benign and malignant breast lesions very effectively,
and the combination of the features identified in this research has the potential to be a significant tool in the noninvasive rapid
and accurate diagnosis of breast cancer.

1. Introduction

According to the World Health Organization (WHO) fact-
sheet, breast cancer is the world’s most prevalent form of
cancer, with a staggering 7.8 million patients being diag-
nosed in the 5-year period between 2016 and 2020 [1]. It
was the most commonly diagnosed form of cancer, as well
as the second leading cause of cancer-related deaths for
women in 2020 [2]. Early diagnosis of breast cancer is cru-
cial to the survival of patients due to its role in treatment
selection as well as prediction of response to therapy [3].
Ultrasound imaging has established itself as an impor-
tant noninvasive screening technique for breast cancer [4].
It retains a significant advantage over other modalities such

as mammography due to its nonionizing nature, low costs,
and high portability. Furthermore, ultrasound imaging can
improve tumor detection during breast cancer diagnosis by
as much as 17% [5], as well as reduce the number of nones-
sential biopsies by 40% [6]. However, ultrasound imaging
suffers from system and operator dependency [7, 8] which
negates its reproducibility. Furthermore, conventional ultra-
sound imaging procedures are qualitative in nature, and thus
radiological evaluation of ultrasound B-mode images relies
heavily on the diagnostic experience of the radiologist.
Quantitative ultrasound (QUS) techniques represent a
domain of ultrasound imaging procedures which extract
various quantitative measures of tissue microstructure [9,
10]. Unlike conventional ultrasound imaging techniques,
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QUS procedures are independent of the system and operator
related factors [11, 12] and as a result are highly reproduc-
ible. Furthermore, QUS techniques can provide an indica-
tion of diagnosis without the need for expert evaluation
and thus have the potential for rapid diagnosis of conditions
such as breast cancer. The utility of QUS techniques has
been established over multiple areas, such as differentiation
between benign and malignant thyroid tissues [13], detec-
tion of prostate cancer [14, 15], and characterization of
carotid plaques [16]. Several different quantitative parame-
ters have also been explored by researchers with regard to
characterization of breast tissue.

QUS spectroscopy involves extraction of spectral param-
eters from the attenuation-corrected normalized power
spectrum of raw ultrasonic radiofrequency signals. Lizzi
et al. [17, 18] proposed the linear parameterization of this
normalized power spectrum in order to extract the spectral
slope, spectral intercept, and midband fit of ultrasound ech-
oes. These features provide a measure of shape, size, concen-
tration, and power of acoustic scatterers and have been
applied for both diagnosis of breast lesions [19, 20], as well
as noninvasive evaluation of response to chemotherapy
[21, 22] with notable success.

The statistics of the acquired ultrasound envelope signal
can be modelled as a probability density function (PDF) in
order to analyze the scattering properties of soft tissue. Sev-
eral well-known statistical distributions may be utilized in
this regard to model the statistics of the envelope, and two
popular distributions which are applied to model scattered
signals from the breast are the Nakagami and homodyned
K distribution. The Nakagami distribution was proposed
for the modelling of ultrasonic backscatter by Shankar
[23]. Several approaches have been proposed by researchers
for the classification of breast lesions using the characteris-
tics of the Nakagami distribution. The parameters of the dis-
tribution have been analyzed for their potential as
quantitative descriptors of breast cancer by themselves
[24], through compounding approaches [25], in conjunction
with the parameters of other distributions such as the K dis-
tribution [26], as well as in conjunction with other types of
quantitative descriptors such as entropy and texture [27,
28]. The homodyned K distribution was proposed for the
modelling of ultrasound echoes by Dutt and Greenleaf [29]
and later modified by Hruska [30] and Hruska and Oelze
[31]. The homodyned K distribution parameters have been
applied in conjunction with breast imaging reporting and
data system (BIRADS) descriptors as well as shear wave elas-
ticity (SWE) features for the classification of breast lesions
[32, 33].

Tumors are known to exhibit heterogeneities in physi-
ology, microenvironment, and metabolism, which is signif-
icant for the characterization of cancer [34-37]. These
heterogeneities may be quantified using texture analysis
techniques [38]. In the context of ultrasonic B-mode
images, texture analysis provides an indication of gray-
level transitions by analyzing the spatial relationships
between neighboring pixels in an image, and this is useful
for evaluating the differing textures exhibited by benign
and malignant masses [20]. With this rationale, texture
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analysis techniques applied to ultrasound scans have been
utilized by several studies for the characterization of breast
lesions [39-42].

This study proposes a breast tumor classification system
that utilizes the three major types of QUS features used by
researchers to characterize breast lesions: spectral features,
envelope statistics features, and texture features. To my
knowledge, no other research works have evaluated the fea-
tures analyzed in this study simultaneously for breast cancer
diagnosis. A total of 16 different features were extracted
from ultrasound patient data for evaluation across two dif-
ferent datasets, of which one is balanced, and the other is
severely imbalanced. Holdout validation was used to split
the balanced dataset into 60% training and 40% testing sets,
and feature selection in the form of sequential forward selec-
tion (SFS) was applied to the training set to identify the sub-
set of features most relevant to the classification of benign
and malignant breast tumors. The performance of the iden-
tified features was evaluated on the test set, where a maxi-
mum classification accuracy of 95% and an area under the
receiver operating characteristics curve (AUC) of 0.968 were
obtained. The performance of the identified relevant features
was further validated on the imbalanced dataset, where a
hybrid resampling strategy was firstly utilized to create an
optimal balance between benign and malignant samples. A
maximum classification accuracy of 93.01%, sensitivity of
94.62%, specificity of 91.4%, and AUC of 0.966 were
obtained. The results indicate that the identified features
are able to distinguish between benign and malignant breast
lesions very effectively, and the combination of the features
identified in this research work has the potential to be a sig-
nificant tool in the noninvasive rapid and accurate diagnosis
of breast cancer.

2. Materials and Methods
2.1. Description of Datasets

2.1.1. OASBUD Dataset. The Open Access Series of Breast
Ultrasonic Data (OASBUD) [43] was utilized in this study.
It consists of ultrasound radiofrequency (RF) data of 100
breast lesions of patients at the Oncology Institute in War-
saw. Among these, 52 were malignant lesions, and 48 were
benign. All malignant lesions were histologically assessed
by core needle biopsy. 37 out of the 48 benign lesions were
also histologically assessed; the remaining 13 did not qualify
for a biopsy but were observed by a radiologist over a 2-year
period. The ultrasound data was recorded at the Department
of Ultrasound, Institute of Fundamental Technological
Research Polish Academy of Sciences, and the study was
approved by the Institutional Review Board (IRB). Patients
were examined by a radiologist with 18 years of experience,
following the BI-RADS guidelines as well as the Polish
Ultrasound Society standards. For each lesion, two individ-
ual longitudinal and transverse scans were recorded using
an Ultrasonix SonixTouch Research ultrasound scanner
with an L14-5/38 linear array transducer and a center fre-
quency of 10 MHz. Each scan consisted of 512 RF lines,
and the signals were digitized using a 40 MHz sampling
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frequency. The region of interest (ROI) for each individual
scan was indicated by the radiologist.

2.1.2. ATL Dataset. The ultrasound data from ATL’s pre-
market approval (PMA) IRB-approved study undertaken
in 1994 [19] was also used for this research. It consists of
ultrasound RF data of breast lesions from 130 patients.
Among these, 104 were benign and 26 were malignant, all
histologically assessed by core needle biopsy. The ultrasonic
data was recorded at three clinical sites, Thomas Jefferson
University, University of Cincinnati, and Yale University,
during routine ultrasonic examinations of patients sched-
uled for biopsy. The tumors were examined by an experi-
enced radiologist using a Phillips Ultrasound UM-9 HDI
scanner, with an L10-5 linear array transducer and a center
frequency of 7.5 MHz. The L10-5 transducer was used at a
default power level and a single transmit focal length, as
selected by the operator. All standard ultrasonic breast
examination procedures were maintained during the exami-
nation. Multiple views were selected by the radiologist for
every lesion, which included at least a radial and an antira-
dial view. The signals were digitized by interfacing a Spectra-
sonics Inc. (King of Prussia, PA) acquisition module using a
20 MHz sampling frequency and an effective dynamic range
of 14 bits. Time-gain-control (TGC) data was obtained
before each scan, and the acquired data was corrected for
TGC before processing. As can be observed, the dataset con-
tains quite a high imbalance ratio between benign and
malignant cases (4:1).

2.2. Feature Extraction. Three types of features were
extracted from patient ultrasound scans for use in this study:
spectral features, envelope statistics features, and texture fea-
tures. All processing codes were written in MATLAB™ (The
MathWorks, Inc., Natick, MA).

2.2.1. Spectral Features. Spectral features were obtained from
parametric images formed using spectrum analysis parame-
ters [18, 44, 45]. A Hamming window of length 2.4 mm was
applied to the RF data of each ultrasound patient scan. The
power spectrum of the windowed RF data was then com-
puted using the Fourier transform and expressed in dB. Lin-
ear regression was applied to the power spectrum over the
6 dB bandwidth of the signal. This regression analysis yields
the slope (SL) of the regression line, the value at midpoint
(MBF) of signal bandwidth, and the intercept at zero fre-
quency (INT). Images of these parameters were formed by
progressively sliding the Hamming window over each RF
data with an overlap of 87.5% and repeating the above
sequence.

The linear regression line which approximates the nor-
malized power spectrum can be expressed as

P(f)=1+sf, (1)

where f, s, and I represent frequency, SL, and INT, respec-
tively. Thus, the MBF can be expressed as

M=1+sf,, (2)

with f, representing center frequency of the usable
bandwidth.

The presence of frequency-dependent attenuation affects
the MBF and SL values obtained during analysis [19]. To
compensate for this, the attenuation (in dB) is assumed to
vary linearly with frequency, and this approximation is vali-
dated through the findings of Alam et al. [19] and Bamber
[46] on the invariance of intercept in the presence of atten-
uation. For this study, the MBF and SL were corrected as fol-
lows:

Mlx:Pa(fO):I—(S—Z(Xd)fO, (3)

Sy = (s —2ad), (4)

where a represents the effective attenuation coefficient and d
represents the depth of the intervening tissue. The value of
the attenuation coefficient o was set to 1.0dB/MHz-cm,
based on the attenuation coefficient for muscle reported by
Mast [47].

Figure 1 illustrates the three types of spectral parametric
images (MBF, INT, and SL) that are formed from ultrasound
RF data. The mean and standard deviation of pixel values
from the intratumoral region of these parametric images
were used in this study for the classification of breast cancer.

2.2.2. Envelope Statistics Features. Ultrasonic pulses moving
through tissue are subject to scattering due to artifacts
located within the tissue, which are aptly termed as “scat-
terers.” Consequently, the backscattered ultrasonic echo sig-
nal received at the transducer can be viewed as the
superposition of scattered signals from individual scatterers
within the tissue [48]. Application of a statistical distribution
model to this backscattered ultrasound envelope can provide
information related to tissue microstructure. Two such sta-
tistical distribution models that effectively describe the scat-
tering characterization of ultrasound echo signals from
breast tissue are the Nakagami distribution [23] and the
homodyned K distribution [31].

(1) Homodyned K Distribution. The homodyned K distribu-
tion is an analytically complex model; however, it is more
versatile than models such as the Rayleigh distribution and
the K distribution [49]. The probability density function
(pdf) H(A) of the homodyned K distribution is expressed
in the form of an improper integral [29] as follows

(o]

H(A):AJ x]o(sx)]O(Ax)(l+)izz)_”dx, (5)

0

where ], is a zero-order Bessel function of the first kind, §%is
the coherent signal energy, o” is the diffuse signal energy,
and y is a measure of the effective number of scatterers in
the target cell. The ratio of the coherent to diffuse signal
can be used as a derived parameter k = s/ to define the peri-
odicity in scatterer locations. The parameters k and y are
believed to provide an accurate description of tissue scatter-
ing properties [49].
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(d)

FIGURE 1: (a) Ultrasound B-mode image and corresponding (b) midband fit (MBF) parametric image, (c) spectral intercept (INT)

parametric image, and (d) spectral slope (SL) parametric image.

The homodyned K parameter estimation technique out-
lined by Hruska et al. [31] was utilized for this study. This
technique uses the signal-to-noise ratio (SNR), skewness,
and kurtosis of fractional order moments to estimate the
parameters of the homodyned K distribution.

A third parameter, the diffuse-to-total signal power ratio
[50] h=1/(k + 1), is also defined. The parameters y, k, and h
were estimated by fitting the homodyned K distribution to
all samples within the tumor region of each ultrasound enve-
lope image, and these parameters were then utilized for the
classification of breast lesions.

(2) Nakagami Distribution. The Nakagami distribution [51]
was introduced by Nakagami (1943, 1960) in the context
of wave propagation. It is far less analytically complex than
the homodyned K distribution. The pdf N(A) of the ultra-
sonic backscattered envelope under the Nakagami distribu-
tion model is given by

(4= e TUA), ©

Here, I'(.) and U(.) represent the Euler gamma function
and the unit step function, respectively.

The Nakagami distribution has

expressed as follows:

two parameters,

[E(R)]® )
E[R-E(R)]"

Q=E[RY, (8)

where R represents the ultrasonic backscattered envelope
and m is referred to as the shape parameter, providing infor-
mation about envelope statistics. In the case of the Naka-
gami distribution, it is constrained such that m>0.5 [51],
in which case it is referred to as the Nakagami parameter.
Q is a scaling parameter.

The similarity between the Nakagami distribution and
the K distribution may be used to define a third parameter
of the Nakagami distribution. The K distribution has a
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N-dimensional feature set
Y= 1{Y1 Y2 V3 - Y}

Add to selected feature subset Evaluate performance
X 8 misclassification rate = 1-accuracy

l

Select new feature x;

Has performance increased
compared to previous subset?

Discard feature

[
y

( Add feature to subset
L Xi= Xt x4

F1GURE 2: Flowchart of sequential forward selection (SES) algorithm.

TaBLE 1: Feature values for benign and malignant cases and statistical significance of features in the OASBUD dataset.

Feature Benign values Malignant values p value Statistical significance
Mean of MBF 88.25+6.84 92.06 +9.25 <0.05 *
Standard deviation of MBF 4.61 +0.86 5.08+1.19 <0.05 *
Mean of INT 95.19 +4.25 91.8 £ 6.56 <0.05 *
Standard deviation of INT 14.98 £0.78 15.32+0.76 <0.05 *
Mean of SL —4.54+0.84 —-4.52+1.01 >0.05 ~
Standard deviation of SL 2.09+0.12 2.12+0.08 >0.05 ~
k (homodyned K) 0.73+0.08 0.84+0.23 <0.001 e
¢ (homodyned K) 0.18+0.1 0.28 +£0.26 <0.001 * %
h (homodyned K) 0.58 +0.03 0.55+0.08 <0.001 * %
m (Nakagami) 0.54 +0.06 0.67+0.17 <0.001 * 5
0 (Nakagami) 408736.82 + 134753.77 189811.2 +£ 166031.05 <0.001 * %
o (Nakagami) 219.74 £ 55.23 119.24 + 98.33 <0.001 * %
Contrast 251+1.11 2.01+1.02 <0.05 *
Correlation 0.59 +0.06 0.61 +£0.07 <0.05 *
Energy 0.135+0.09 0.18 £0.10 <0.05 *

Homogeneity 0.67 £0.07 0.7+0.08 <0.05 *
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TaBLE 2: Feature values for benign and malignant cases and statistical significance of features in the ATL dataset.

Feature Benign values Malignant values p value Statistical significance
Mean of MBF 76.44 + 18.55 77.71 +11.84 >0.05 ~

Standard deviation of MBF 6.26 +1.51 6.53+1.52 >0.05 ~

Mean of INT 64.77 £ 14.01 64.11+6.93 >0.05 ~

Standard deviation of INT 13.32 +1.09 12.91 £ 0.54 >0.05 ~

Mean of SL -3.28+1.5 —3.45+0.69 >0.05 ~

Standard deviation of SL 1.73+0.14 1.73 +0.09 >0.05 ~

k (homodyned K) 0.35+0.14 0.5+0.1 <0.001 3k

¢ (homodyned K) 0.16 £0.13 0.26 £0.21 <0.05 *

h (homodyned K) 0.75+0.08 0.67 £0.04 <0.001 * %

m (Nakagami) 0.33+0.09 0.44 +0.09 <0.001 * %

O (Nakagami) 5116.67 + 6622.77 1692.06 + 997.2082 <0.05 *

o (Nakagami) 31.21+16.11 16.46 £ 6.6 <0.001 * 5k

Contrast 3.55+1.64 2.97+0.8 >0.05 ~
Correlation 0.4+0.07 0.38 +0.04 >0.05 ~

Energy 0.17 £0.06 0.17+0.07 >0.05 ~
Homogeneity 0.66 +0.06 0.67 +0.05 >0.05 ~

cumulative distribution expressed as

K(r)=%<%> Ky, (br)r=0 M=0, (9)

where M provides a measure of the effective number of scat-
terers in the target cell and b is a scaling parameter. The
parameters of the K distribution can be expressed in terms
of the Nakagami distribution [24]:

Mo 2 (10)

2m
b=2, /m.

Using this relationship, a parameter & can be defined,

where o= 1/b, or
1 /Q(1-
X = — M’
2 2m

where « is defined as the effective cross-section of scatterers
in the target cell [24].

The parameters m, 2, and a were estimated by fitting the
Nakagami distribution to all samples within the tumor
region of the ultrasound envelope image, and these parame-
ters were then utilized for the classification of breast lesions.

(11)

(12)

2.2.3. Texture Features. The texture of the ultrasound enve-
lope images was quantified using gray-level cooccurrence
matrix (GLCM) techniques. GLCM techniques quantify tex-
ture by evaluating the spatial relationship between neighbor-

ing pixels in an image [41]. A GLCM matrix is created by
calculating how often a pixel with gray-level intensity value
i occurs adjacent to a pixel with the value j. Let P(i, j) denote
the GLCM matrix representing the probability of having
neighboring pixels with gray-level intensities i and j in the
ultrasound image. Let y and ¢ denote the mean and stan-
dard deviation for row i or column j of the GLCM matrix.
The following four parameters may be defined from such a
matrix

Contrast = Z|1 —j|2P(i,j),
ij

(13)

1
Correlation= —— Z(l - u;) (] - //‘j) P(i, j),
9i0; %7

Energy = ZPz(i, i)
i,j

(14)

(15)

P(i, )

Homogeneity = ) ————. 16
IZ]: 1+|i—j| (16)

Contrast represents a measure of gray-level variations in
the parametric image. Correlation provides an indication of
the linear correlation between neighboring pixels. Energy
quantifies textural uniformity between neighboring pixels,
and homogeneity represents a measure of the incidence of
pixel pairs of different intensity within the parametric image.
To extract GLCM features, an ROI composed of the mini-
mum bounding rectangular area around the tumor of each
ultrasound envelope image was formed, similar to the proce-
dure followed by [41]. The full range of gray levels in each
ROI was linearly scaled into 16 discrete gray levels. GLCM
matrices were then formed at five interpixel distances, 1, 2,
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FIGURE 3: Box and scatter plots of (a) k (homodyned K), (b) & (homodyned K), (c) m (Nakagami), and (d) Q (Nakagami) values from the

OASBUD dataset.

TaBLE 3: Classification performance of the four selected features on the testing portion of the OASBUD dataset.

Classifier Classification accuracy Sensitivity Specificity AUC 95% CI

KNN 92.5% 95% 90% 0.963 0.823~0.997
SVM 87.5% 85% 90% 0.968 0.878~0.995
RF 95% 95% 95% 0.959 0.797~0.993

3, 4, and 5 pixels, and at four angular directions, 0°, 45°, 90°,
and 135°, and the four GLCM features were calculated from
each of the GLCM matrices. All four texture features were
averaged over distances and angular directions to obtain
final values for each patient and then used for classification
of breast lesions.

2.3. Resampling of ATL Dataset. As noted before, the ATL
dataset contains a high level of imbalance between benign
and malignant cases (4:1). A hybrid resampling strategy is
applied in order to mitigate the imbalance between the clas-
ses. The number of majority class instances are firstly
reduced using undersampling to decrease the imbalance
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FiGure 4: ROC curves obtained by the three classifiers using the 4 selected features in the testing portion of the OASBUD dataset.

ratio between classes. Oversampling is then performed to
generate new minority class samples in order to balance
the dataset. The hybrid strategy creates an optimal balance
between the classes and ensures the quality of the resampled
data. Synthetic minority oversampling (SMOTE) [52] is
used for oversampling, while Tomek links [53] are used for
undersampling. They are described below.

2.3.1. Smote. SMOTE is an oversampling technique that is
used to synthesize minority class instances based on their
nearest neighbors and is frequently applied to address class
imbalance in the medical domain [54]. Consider an k
-dimensional dataset with samples of x;, where x; = (i=1,2
,3,---.n) and k represents the number of features. Let A
represent the majority class with ¢ samples and B represent
the minority class with d samples, such that c+d=n and ¢
>d. SMOTE processes the dataset as follows: (i) for each
minority class sample b; (i=1,2,--+,d), identify its T near-
est neighbors, (ii) select a sample bj from the T nearest
neighbors of b; and generate a synthetic data sample p; = x;

+(x;—x;) x A, where 1€[0,1] is a random number, (iii)
repeat s; times to obtain s; new synthetic samples of b,. In

this work, a T value of 5 was used.

2.3.2. Tomek Links. Tomek link is an undersampling method
that is used to eliminate majority instances from the dataset
whenever a “Tomek link” is found. Let b; denote a sample
from the minority class and a; denote a sample from the
majority class. Then b; and g; are said to form a Tomek link
pair if there is no sample x; such that d(b;, x;) <d(b;, a;),
where d is used to represent distance between two samples.

In this instance, the majority sample a; is eliminated as a
process of under sampling.

2.4. Sequential Forward Selection. Sequential forward selec-
tion (SFS) is a wrapper method that adds relevant features
to the selected feature subset over multiple iterations on
the basis of an evaluation criterion. The process begins with
an empty subset of selected features. In the first iteration the
model is trained using each feature individually, and the best
performing feature is identified based on the evaluation met-
ric and added to the selected feature subset. In the second
iteration, the model is trained using pairings of the already
selected feature along with each of the remaining features.
The performance of each pair is analyzed using the evalua-
tion metric, and the feature that achieves the best perfor-
mance when paired with the first feature is added to the
selected feature subset, but only if the performance of the
pair is higher than the performance of the best individual
feature in terms of the evaluation criterion. This process is
repeated over multiple iterations until no improvement in
the evaluation criterion is obtained by adding more features.
The misclassification rate was used as the evaluation crite-
rion in this study. Figure 2 illustrates a flowchart of the
SES process.

2.5. Performance Evaluation. A total of 16 features were
extracted from the intratumoral region of ultrasound scans
in both OASBUD and ATL datasets: (i) mean of MBF, (ii)
standard deviation of MBF, (iii) mean of INT, (iv) standard
deviation of INT, (v) mean of SL, (vi) standard deviation of
SL, (vii) k (homodyned K), (viii) ¢ (homodyned K), (ix) h
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FI1GURE 5: Box and scatter plots of (a) k (homodyned K), (b) & (homodyned K), (c) m (Nakagami), and (d) Q (Nakagami) values from the
ATL dataset.

TaBLE 4: Classification performance of the four selected features in the ATL dataset without resampling.

Validation Classifier Classification accuracy Sensitivity Specificity AUC 95% CI
k-NN 79.23% 34.62% 90.38% 0.805 0.705~0.879
10-fold CV SVM 84.62% 42.31% 95.2% 0.895 0.803~0.946
RF 85.38% 65.38% 90.38% 0.849 0.748~0.92
k-NN 78.462% 30.77% 90.38% 0.855 0.753~0.918
LOOCV SVM 84.62% 42.31% 95.2% 0.892 0.811~0.944
RF 87.3% 53.84% 92.3% 0.856 0.758~0.916

(homodyned K), (x) m (Nakagami), (xi) Q2 (Nakagami), (xii) ing complementary data for a given lesion. If a lesion had
o (Nakagami), (xiii) contrast, (xiv) correlation, (xv) energy, multiple scans, each quantitative feature value for multiple
and (xvi) homogeneity. Most lesions in both datasets were  scans of a specific lesion was averaged to arrive at a single
scanned at multiple intersecting scan planes, thereby provid- number. A two-sided Wilcoxon rank sum test (95%
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TaBLE 5: Classification performance of the four selected features in the ATL dataset with SMOTE.
Validation Classifier Classification accuracy Sensitivity Specificity AUC 95% CI
k-NN 87.2% 94.23% 79.81% 0.948 0.895~0.966
10-fold CV SVM 82.21% 82.69% 81.73% 0.909 0.857~0.942
RF 87.98% 92.31% 83.68% 0.956 0.903~0.972
k-NN 88.94% 82.69% 95.2% 0.959 0.921~0.982
LOOCV SVM 82.69% 82.69% 82.69% 0.909 0.859~0.942
RF 89.42% 88.46% 90.38% 0.948 0.903~0.971
TaBLE 6: Classification performance of the four selected features in the ATL dataset with SMOTE-Tomek.
Validation Classifier Classification accuracy Sensitivity Specificity AUC 95% CI
k-NN 88.17% 93.55% 82.8% 0.943 0.90~0.97
10-fold CV SVM 80.65% 80.65% 80.65% 0.909 0.858~0.947
RF 93.01% 94.62% 91.4% 0.966 0.928~0.984
k-NN 86.6% 93.55% 79.57% 0.955 0.917~0.979
LOOCV SVM 84.95% 83.87% 86.02% 0.917 0.856~0.95
RF 91.4% 93.55% 89.25% 0.964 0.93~0.985

confidence) was performed on each of the extracted features
in both datasets to assess statistical significance between
benign and malignant groups. The purpose of the statistical
test was solely to demonstrate discrimination capability of
the extracted features.

The OASBUD dataset was used to determine the rele-
vant features for classification of breast lesions as it contains
a healthy balance between benign and malignant cases.
Holdout validation was utilized to split the OASBUD dataset
into 60% training and 40% testing sets. SFS was applied on
the training set to identify the best performing features,
and the performance of these features was evaluated using
the test set. Three different algorithms were used for classifi-
cation: (i) K-nearest neighbor (KNN) with Mahalanobis dis-
tance and a K value of 5, (ii) support vector machine with
linear kernel (SVM), and (iii) random forest (RF). KNN pre-
dicts the class of an unknown data sample based on the class
of the “K” nearest samples through a majority voting
scheme. SVM identifies a linear hyperplane in the feature
space that maximizes the margin between the classes and
distinctly classifies the data samples. RF is a robust bagging
algorithm that uses an ensemble of decision trees to classify
random subsets of the training samples and makes a final
classification prediction through majority voting.

The ATL dataset was used to validate the performance of
the identified relevant features and ensure transferability.
Due to limited number of samples, the ATL dataset could
not be used as a completely independent test set. However,
both 10-fold stratified cross-validation (SCV) and leave-
one-out cross-validation (LOOCYV) were utilized to evaluate
the performance of the features on the ATL dataset, as both
of these methods are appropriate for performance evaluation
of smaller datasets. Furthermore, the ATL dataset contains a
high imbalance ratio (4:1 between negative and positive
samples). To mitigate this, SMOTE and hybrid SMOTE-

Tomek resampling techniques were applied on the ATL
dataset, and the performance of the features with and with-
out sampling was analyzed. SMOTE by itself increased the
number of positive (malignant) samples from 26 to 104, to
provide a completely balanced scenario. Meanwhile, the
SMOTE-Tomek procedure reduced the number of negative
samples (benign) from 104 to 93 and increased the number
of positive samples from 26 to 93, again providing a
completely balanced scenario.

Classification results are evaluated by analyzing the
receiver operating characteristic (ROC) curve, in particular
the area under the curve (AUC), sensitivity, specificity, and
accuracy. AUC is a single scalar value which ranges between
0 and 1 (1 indicating significant performance) representing
the predictive performance of a classification task. Accuracy
is the ratio of the total number of correct predictions to the
total number of instances in a classification task. Sensitivity
is a measure of correctly classified positive instances (malig-
nant cases), and specificity is a measure of correctly classified
negative instances (benign cases). MATLAB™ (The Math-
Works, Inc., Natick, MA) was used to develop all models
and evaluate all performance metrics.

3. Results

Table 1 denotes the mean and standard deviation of all fea-
tures in the OASBUD dataset for benign and malignant
cases, as well as the p value and level of statistical significance
of the features. Statistical significance is divided into three
levels based on p value: not statistically significant (p > 0.05
) indicated by “~,” statistically significant (p < 0.05) indi-
cated by “*,” and extremely significant (p < 0.001) indicated
by “#x.” Table 2 similarly denotes mean and standard devi-
ation feature values for benign and malignant cases in the

ATL dataset, as well as statistical significance of the features.
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FiGUure 6: ROC curves obtained by the three classifiers using the 4 selected features in (a) unsampled ATL data with 10-fold SCV, (b)
unsampled ATL data with LOOCV, (c¢) ATL data with SMOTE applied and 10-fold SCV, (d) ATL data with SMOTE applied and
LOOCYV, (e) ATL data with hybrid SMOTE-Tomek applied and 10-fold SCV, and (f) ATL data with hybrid SMOTE-Tomek applied and
LOOCV.

TaBLE 7: Comparison of classification performance of existing multiparametric QUS methods for breast lesion characterization and

performance parameters obtained in this study.

Parameters used Classification Sensitivity Specificity AUC
accuracy
Standard deviation of shortest distance (SS), contrast, and
Hsu et al. [55] . 89.4% 92.5% 86.3% 0.96
Nakagami m
{(Zlér]nonda etal Contrast, correlation, energy, and homogeneity 91% 93% 88% 0.94
This study Homodyned k, homodyned h, Nakagami m, and Nakagami Q 93.01% 94.62% 91.4%  0.966

SES applied on the training split of the OASBUD dataset
identified 4 out of the 16 features as the most significant to
breast cancer diagnosis:

(i) k (homodyned K)
(ii) h (homodyned K)
(iii) m (Nakagami)
(iv) Q (Nakagami)

Figure 3 illustrates the representative box and scatter
plots of these four features from the OASBUD dataset.

Table 3 denotes the performance parameters obtained by
the three classifiers on the testing portion of the OASBUD
dataset using the 4 selected features. Figure 4 illustrates the
ROC curves obtained by the three classifiers.

Figure 5 illustrates the representative box and scatter
plots of the four selected features from the ATL dataset.

Table 4 denotes the performance parameters obtained by
the three classifiers on the unsampled ATL data using the 4
selected features with both 10-fold SCV and LOOCV.
Table 5 provides the performance parameters for the ATL
dataset after SMOTE was applied, and Table 6 provides the
performance parameters after hybrid SMOTE-Tomek was
applied.

Figure 6 illustrates the ROC curves obtained by the three
classifiers on the unsampled and resampled instances of the
ATL dataset using both validation schemes.

4. Discussion

This study proposes a breast tumor classification system
using the three major types of intratumoral QUS descriptors.
A total of 16 different QUS parameters are extracted from
the intratumoral region of breast ultrasound RF scans, con-
sisting of spectral features, envelope statistics features, and
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texture features. Sequential forward selection was utilized to
identify the most relevant subset of features for breast cancer
diagnosis.

Analyzing the statistical significance of each of the 16
features extracted from the OASBUD dataset (Table 1), it
can be clearly seen that the envelope statistics features
(homodyned K features: k, y, and h and Nakagami features:
m, , and «) are more statistically significant than spectral
features or texture features for distinguishing between
benign and malignant samples. A similar scenario is
observed in Table 2, where the envelope statistics features
were found to be more statistically significant than the other
types of extracted features for the ATL dataset.

The OASBUD dataset was used to identify the most rel-
evant QUS features for the classification of breast lesions, as
the proportion of positive and negative classes is similar.
Using a balanced dataset enables feature selection techniques
to identify key features that can distinguish between the pos-
itive and negative class effectively without bias towards any
specific class. All four features selected by the SFS algorithm
were related to envelope statistics. Thus, the feature selection
algorithm seems to be selecting the most statistically relevant
features for breast cancer diagnosis. Specifically, two features
were chosen from the homodyned K distribution, and two
features were chosen from the Nakagami distribution. Thus,
a significant finding of this study is that envelope statistics
features are able to segregate between breast lesion types
more effectively than the spectral and texture features ana-
lyzed in this study. A hypothesis for this may be the fact that
envelope statistics are able to describe the subresolutional
properties of tissue better than spectral analysis and provide
more distinguishing capability than features obtained from
analyzing the spatial relationships between pixels in ultra-
sound envelope images.

Analyzing the performance parameters obtained on the
testing portion of the OASBUD dataset using the four
selected features (Table 3), it can be observed that all three
classifiers obtained similar AUC of around 0.96. In terms
of classification accuracy, sensitivity, and specificity, the
SVM classifier obtained slightly lower performance than
the KNN or RF classifiers. The best performance was clearly
obtained using the RF classifier, with a classification accu-
racy of 95%, sensitivity of 95%, and specificity of 95%.

The ATL dataset was used to validate the performance of
the identified relevant features. However, due to the limited
number of samples in this study, the ATL dataset could not
be used as an independent test set to classify models trained
only by the OASBUD dataset. Two validation schemes were
utilized to demonstrate that the performance does not suffer
from any bias. Both 10-fold SCV and LOOCV are estab-
lished validation schemes for validation of smaller datasets.

As mentioned before, the ATL dataset contains a high
imbalance ratio between positive and negative cases. The
impact of this can be observed from the performance param-
eters provided in Table 4. All three classifiers inadvertently
became biased towards the negative class (which represented
the majority), as observable by the very low sensitivity values
and very high specificity values. For both 10-fold SCV and
LOOCYV, the KNN classifier provided the poorest perfor-
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mance. The best performance was obtained by the RF classi-
fier using 10-fold SCV, with a moderate sensitivity of
65.38%, accuracy of 85.38%, and AUC of 0.8711.

Application of SMOTE introduced a large number of
synthesized positive samples (representing the minority
class). This significantly improved performance, particularly
in terms of sensitivity (Table 5). The KNN classifier and the
RF classifier obtained the highest sensitivity using 10-fold
SCV: 94.23% and 92.31%, respectively. However, there was
a disparity between the sensitivity and specificity values in
these two cases, with both classifiers also correspondingly
obtaining lower specificity measures. Thus, applying
SMOTE by itself may introduce bias towards the positive
minority class, particularly for highly imbalanced cases such
as the ATL dataset where a large number of samples need to
be synthesized.

To account for this, a hybrid SMOTE-Tomek procedure
is utilized, which firstly reduces majority class instances to
decrease the imbalance ratio between the classes and then
performs oversampling. This approach ensures quality of
resampled data, as the number of samples needed to be syn-
thesized is lower. Analyzing Table 6, it can be observed that
the disparity between sensitivity and specificity is much
lower than those obtained in Table 5, particularly for the
two cases discussed above. The best performance was
obtained by the RF classifier, with a classification accuracy
of 93.01%, sensitivity of 94.62%, specificity of 91.4%, and
AUC of 0.9660 obtained using 10-fold SCV and classifica-
tion accuracy of 91.4%, sensitivity of 93.55%, specificity of
89.25%, and AUC of 0.9640 obtained using LOOCV. Both
cases represent significant performance for breast tumor
characterization. The results obtained are compared with
two recent multiparametric QUS studies for breast cancer
in Table 7.

It should be noted that the procedure for acquisition of
envelope statistics features differed in this work from other
literature. In general, envelope statistics features are esti-
mated by fitting the statistical distribution (i.e., Nakagami
or homodyned K) at several small windows spanning the
ROI [27, 28, 33]. Following this, the statistical parameters
for each distribution (i.e., Nakagami m, Nakagami «, and
homodyned k) are estimated at each window, and the final
feature value is taken as the average parameter value across
all the windows [27, 28, 33]. This methodology reduces
impact of signal attenuation at different depths. However,
in this study, rather than using windows, the statistical dis-
tribution model (both Nakagami and homodyned K) was
fit on all samples within the tumor region, and the envelope
statistics features were acquired correspondingly from this.
This methodology was chosen at it fits the distribution
model on a larger pool of samples (i.e., all the samples within
the tumor), which ensures a more stable estimation of the
statistical parameter for each distribution. However, it does
not take into account signal attenuation like the methodol-
ogy discussed previously, and future studies may analyze
the impact of this on breast tumor characterization.

This study has a few limitations. Firstly, it utilizes a lim-
ited amount of patient data. Ideally, such a study should uti-
lize a large pool of ultrasound RF data, apply feature
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selection on a large training set, and validate performance on
a significant testing set. Although two datasets were utilized
in this study, they were not mixed. The two datasets were
acquired at a difference of about 20 years, and thus, the qual-
ity of ultrasound signals in the OASBUD dataset should be
far superior to those present in the ATL dataset. This may
be a likely cause for the difference in feature values for the
two datasets (Tables 1 and 2). Furthermore, a concern with
the ATL dataset is the sampling frequency utilized during
data collection. Generally, sampling frequency is chosen to
be about 4 times higher than the transducer central fre-
quency [56]. The 20 MHz sampling frequency used for a
transducer central frequency of 7.5MHz may lead to loss
of information. It should be noted that this condition was
met in case of the OASBUD dataset, which used a 40 MHz
sampling frequency for a transducer central frequency of
10 MHz. Thus, rather than combining the two datasets phys-
ically, the datasets were combined artificially, where the
recently acquired OASBUD dataset was used to identify rel-
evant features, and the ATL dataset was used to validate the
performance of the identified features. Another limitation of
this study is the large imbalance present in the ATL dataset,
which necessitates the application of resampling techniques.
In an ideal scenario, sampling should not be applied to the
test set, as the characteristics of the test set should coincide
with medical data available in the real world where imbal-
ance is very prevalent. However, without sampling, the clas-
sifiers used in this research become very strongly biased
towards the positive majority class and provide poor sensi-
tivity as highlighted in Table 4. This is unacceptable, as cor-
rectly identifying malignant cases is of crucial importance.
The resampling techniques used in this paper were intended
to display that, in a case where the positive and negative clas-
ses are fairly balanced, the identified features will be able to
distinguish between benign and malignant lesions very effec-
tively. This objective is achieved considering the significant
improvement in performance, particularly in terms of sensi-
tivity, after resampling techniques were used to balance the
ATL dataset (Tables 5 and 6). Another issue is the under-
sampling approach that was utilized. The Tomek link tech-
nique removes benign samples in the feature space that are
close to malignant samples, which may inevitably translate
to overly optimistic results. However, in this study, Tomek
links was not applied on the ATL dataset by itself, but rather
as part of the hybrid SMOTE-Tomek strategy. The purpose
of Tomek links in this framework was to act as a data clean-
ing method and remove overlapping samples created after
application of SMOTE, rather than simply removing benign
samples that were originally present in the dataset. Such
techniques are commonly utilized after application of
SMOTE in order to prevent overgeneralization. Next, the
spectrum of ultrasonic signals acquired during evaluation
of spectral features are not only dependent on tissue proper-
ties but also on the two-way transfer function of the trans-
ducer and the ultrasonic module (system effects), the beam
properties corresponding to the two-way range dependent
diffraction function (diffraction effects) and acoustic attenu-
ation [23]. As most lesions analyzed in this study lie at sim-
ilar depths (2-3 cm), system and diffraction effects will not
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significantly affect the acquired spectrum analysis parame-
ters, and hence, these effects were not accounted for in this
study. However, acoustic attenuation was considered, as it
is known to significantly affect SL and MBF values obtained
from ultrasound images [23]. Furthermore, this study opted
sequential forward selection (SFS) to identify the most rele-
vant texture features, as it is a relatively simple wrapper tech-
nique which has been shown to be very effective [57]. Future
studies may analyze more robust selection algorithms such
as fuzzy rough set-based selection procedures [58] or ensem-
ble selection approaches [59].

5. Conclusion

This study proposes a breast lesion classification system
using the three major types of intratumoral QUS descriptors
that can be extracted from ultrasound radiofrequency (RF)
data. A total of 16 QUS features corresponding to spectral
features, envelope statistics features, and textural features
were extracted from ultrasound patient data. Four features
from envelope statistics were identified as the most signifi-
cant by feature selection. These four features were able to
distinguish between tumor types with a high level of accu-
racy across two datasets. This demonstrates the capability
of the identified features in characterization of benign and
malignant breast lesions, and the combination of features
identified in this research work has the potential to aid the
diagnostic procedure associated with noninvasive screening
and diagnosis of breast tumors. The scope of this study can
be further enhanced by incorporating more advanced fea-
ture selection procedures, incorporating more patient data,
and including other types of features in the analysis, for
instance more advanced texture features obtained from
gray-level run length matrix (GLRLM) and gray-level size
zone matrix (GLSZM) techniques, as well as statistical fea-
tures such as information entropy.
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The diagnosis of new diseases is a challenging problem. In the early stage of the emergence of new diseases, there are few case
samples; this may lead to the low accuracy of intelligent diagnosis. Because of the advantages of support vector machine
(SVM) in dealing with small sample problems, it is selected for the intelligent diagnosis method. The standard SVM diagnosis
model updating needs to retrain all samples. It costs huge storage and calculation costs and is difficult to adapt to the changing
reality. In order to solve this problem, this paper proposes a new disease diagnosis method based on Fuzzy SVM incremental
learning. According to SVM theory, the support vector set and boundary sample set related to the SVM diagnosis model are
extracted. Only these sample sets are considered in incremental learning to ensure the accuracy and reduce the cost of
calculation and storage. To reduce the impact of noise points caused by the reduction of training samples, FSVM is used to
update the diagnosis model, and the generalization is improved. The simulation results on the banana dataset show that the
proposed method can improve the classification accuracy from 86.4% to 90.4%. Finally, the method is applied in COVID-19’s
diagnostic. The diagnostic accuracy reaches 98.2% as the traditional SVM only gets 84%. With the increase of the number of
case samples, the model is updated. When the training samples increase to 400, the number of samples participating in

training is only 77; the amount of calculation of the updated model is small.

1. Introduction

The acceleration of the pace of modern life and the aggrava-
tion of the pollution of air, water, and other living resources
cause the increase of incidence disease rate [1]. Although the
construction of medical conditions has made great progress,
it is still stretched in the face of such a large population base.
Medical staff and patients are facing great pressure.

With the development of artificial intelligence technology,
it has been widely used in various fields and achieved very
good results [2-5]. In the medical field, intelligent diagnosis
and treatment have become a powerful tool and a hot spot
[6, 7]. Machine learning, with its powerful data processing
and mining ability, has become the main research direction
of intelligent diagnosis and treatment: neural network, Bayes-
ian network, random forest, support vector machine, and
other methods have been applied to the exploration of this
problem [8-12]. Particularly with the advent of the era of big
data, the deep learning method [13] shows strong advantages.

Although these methods are effective, high-precision, the
treatment often needs a lot of data support. At present, there
are many channels for data acquisition. However, people
often ignore a problem: the diagnosis of new diseases, espe-
cially those with strong infectivity. Coronavirus disease 2019
(COVID-19), which broke out in December 2019, is a very
typical example of virus pneumonia. In the early stage of
new crown, if the disease cases can be diagnosed quickly
and accurately, the difficulty and cost of disease control will
be greatly reduced. Many artificial intelligence methods have
been adopted to help diagnosis [14-19]. Reference [20]
proposed a deep migration learning method based on
DenseNet201 to judge whether the patient is infected with
COVID-19. A convolutional neural network model based
on a multitask learning model was proposed in Reference
[21] to realize COVID-19 detection and refinement of
patient severity. Wang and Wong [22] proposed a CNN
network model based on ResNet (COVID net). The model
predicts normal, bacterial infection, non-COVID-19 viral
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infection, and COVID-19 viral infection, the accuracy is
higher than 80%, and the computational complexity is less
than 250 million times of multiplication and addition. Narin
et al. propose three different deep learning models based on
ResNet50, Inception V3, and Inception-ResNet v2 [23] to
detect COVID-19 from X-ray images. All these studies have
achieved high diagnostic accuracy, but they are based on
large sample conditions. However, the initial case samples
are very few. In this paper, we analyze this problem and
study the intelligent diagnosis in the early stage of new dis-
eases with few case samples.

This problem faces two challenges: (1) there are few
sample data; (2) after the disease develops, the new case
samples are added and the diagnostic model needs to be
updated. In the machine learning method, SVM can deal
with the classification problem well under the condition of
small samples. Therefore, this paper selects the SVM method
to solve this problem and learns the newly collected case
samples through incremental learning, constantly updates
and improves the diagnostic model, and improves the diag-
nostic ability [11, 12]. However, every time the diagnostic
model of standard SVM is updated, all samples need to be
retrained, which costs a lot of storage and calculation. To
solve this problem, many scholars have proposed some
SVM incremental learning methods. These methods mainly
include three ideas: support vector, Karush Kuhn Tucker
(KKT) condition, and the geometric features [24-29]. From
the perspective of support vector idea, only support vectors
have an impact on the solution [25, 26], so we only need
to pay attention to the support vector. From the perspective
of geometric features [28, 29], all the support vectors are at
the boundary of the classification hyperplane. On this basis,
in this paper, we intend to find out the support vector set
and boundary sample set related to the SVM model, aban-
don most samples, ensure the classification accuracy of the
model, and reduce the cost of calculation and storage.

In actual cases, some disease symptoms are similar,
which brings difficulties to diagnosis. These features often
exist as noise points. SVM adopts the same punishment
method for all data points in the training process, which
makes the training model more sensitive to noise and out-
liers. This situation will be more obvious when the number
of samples is relatively small. In the incremental learning
method we intend to adopt, most of the samples will be
omitted in the sample updating process. In this case, if the
traditional SVM training diagnosis model is still used, once
some noise points or outliers with large deviation appear
in the new samples, it may lead to a large deviation of the
classification hyperplane, resulting in the possibility of a sig-
nificant decline in the diagnosis effect. In this case, it is nec-
essary to reduce the sensitivity of noise points and outliers.
Lin and Wang proposed fuzzy support vector machine
(FSVM) by introducing fuzzy membership function into
standard SVM [30]. By giving different penalties to different
samples, the influence of these points is weakened and the
classification accuracy is improved.

To sum up, to solve the limited number of samples in the
initial stage of new diseases, SVM is adopted. As the new sam-
ples are collected, this paper updates the diagnosis model in
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real time through the incremental learning method of SVM.
At the same time, in order to reduce the impact of noise points
on the model, the fuzzy membership function is introduced. It
is hoped that these methods can improve the accurate diagno-
sis of new diseases and improve the diagnostic accuracy.

The rest of this paper is organized as follows: Section 2
introduces the SVM incremental learning method; the sam-
ple updating and the calculation method of fuzzy member-
ship are proposed. In Section 3, the effectiveness of the
proposed algorithm is verified by the banana dataset. In
Section 4, an intelligent diagnostic application analysis was
conducted using COVID-19 data; we discuss and compare
the outcomes by experiment and analysis. Finally, conclusions
are drawn and future directions are discussed in Section 5.

2. SVM Incremental Learning Method

The key of intelligent diagnosis is classification. The SVM
method has the advantages of fast solution speed and strong
generalization ability in solving small sample, nonlinear, and
high-dimensional problems [31]. This is in line with the data
characteristics in the early stage of new diseases. In this
paper, SVM is selected as the diagnosis algorithm to realize
the accurate diagnosis in the early stage of new diseases.

2.1. The Classification Principle of SVM. Assumes that the
sample space of the case is S= {(x, y,)|x; € R",y, =£1,i=1,
.-+, I}, where x; is the feature vector of the disease and y, is
the corresponding state identification value (1 represents
the target disease, and -1 represents the nontarget disease).
SVM classifies disease diagnosis into convex quadratic pro-
gramming shown in

. 1 !
min  _[w|*+CY ¢
i=1

st y(w-x;+b)=1-¢,

£,20, i=1,2,--1, (1)
where w is the normal vector corresponding to the optimal
classification hyperplane and C is the penalty factor. The
greater the C value, the greater the penalty for misclassifica-
tion samples. £ is a relaxation variable, which represents the
distance from the sample points between the classification
boundaries to the respective classification boundaries. The
dual problem of equation (1) is shown in

1 1
max ) o= 5 ) aayyK(x,x)

i=1 ij=1

1
s.t. Z)/I i = 0,
i=1

0<o;<C, i=1,2-)], (2)
where «; is the Lagrange multiplier. When (x;, y;) satisfies the
Karush Kuhn Tucker condition given in equation (3), the cor-
responding optimal solution of equation (2) is
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a;=0=yf(x;)>
0<a;<C=yf(x)=1, 3)
0= C= yf(x) <1

The samples that violate the KKT condition (correspond-
ing «; #0) constitute the SV set, and the diagnostic model
trained by the full sample set is shown in

!
y=sgn [Z)’i“iK(X’ X;) + b] . (4)

i=1

From the discrimination results of equation (4), we can
see that the SVM-based diagnosis model only relates to the
support vector set (SV set). The SV set is equivalent to the
complete set.

2.2. Training Sample Set Update. Through the analysis above,
we can get that for the SVM diagnosis method, the model is
only related to the SV set. This is also applicable in the sample
updating process of incremental learning. In the training pro-
cess, we can simplify the updating process as long as we find
the SV set in advance. For the SVM classification, the intuitive
geometric interpretation is shown in Figure 1.

In Figure 1, solid dots and hollow dots represent two
types of samples, respectively; H is the optimal classification
hyperplane; H, and H, are the classification boundary
hyperplanes parallel to H and passing through the nearest
samples in two classes. Margin is the interval between classi-
fication boundaries. The positions of the SV set are mainly
concentrated on the classification boundary and between
the two classification boundaries, that is, the points identi-
fied by the red “o0” in the figure.

Since only SV sets contribute to the classification hyper-
plane, the non-SV samples should be deleted during model
update, which can reduce the amount of computation. For
the newly added samples, if all samples are outside the classi-
fication boundary, meaning all the new samples are non-SV,
they have no contribution to the diagnostic model. The added
samples between two classification boundaries are usually new
SVs. Due to these new samples, the previous classification
boundary will be deflected, which will make some original
non-SVy transform into SV [28]. According to the geometric
distribution of SV, the samples that may be transformed to SV
are usually distributed near the classification boundary. There-
fore, when updating the model, we need to take these sample
points into account in addition to the original SV set. In this
way, we can divide the updated sample set into three parts:
the new sample set S,, the original SV set, and the sample
set S;, near the classification boundary.

The sample set near the classification boundary:

X, €R", y, =+1,

Sp=19 (Xi¥:)
T < Zylochx +b<ci=1,--1

margin = 2/||w||

FI1GURE 1: SVM classification diagram.

where ¢ is a constant; the number of selected samples of S,
can be adjusted through the setting of ¢. The smaller c¢ is,
the smaller size of the updated S,,. It can obtain faster train-
ing speed and simpler diagnostic model. However, it may
lead to the loss of key information and reduce the diagnostic
accuracy. On the contrary, the larger the size of the updated
Sp,» the higher the accuracy will be obtained. For incremental
learning of model update, the update speed is determined by
the number of training samples involved in the update. The
smaller the number of training samples, the faster the update
speed. Here, we further cut the updated sample set: in
the new sample set, we use equation (5) to find the boundary
samples. When updating the diagnostic model, only three sets
of §,, SV, and S, need to be retrained.

2.3. Fuzzy Support Vector Machine. FSVM first assigns
membership values to the samples in the training set accord-
ing to their importance in classification. The training sample
set after evaluation is S" = {(x;, 7, ;) (Xp» V3 thy)> > (Xps
Vi ty) - p; € 6 1] is the fuzzy membership of (x;, y;); € is a
sufficiently small positive number. Training S’ with SVM,
the optimization problem in equation (1) transforms into
the optimization problem:

1 ’
min ||+ CY
i=1
st y(w-x;+b)>21-¢,
£,>0i=1,2-1 (6)

Compared with the standard SVM, FSVM uses weighted
error measurement y,&; to reduce the &; in classification to a
certain extent. As the outliers and noise in the sample are
often within the classification boundary and have large
relaxation variable values, FSVM weakens the influence of
outliers and noise by assigning them small fuzzy member-
ship, so as to avoid overfitting and improve the generaliza-
tion of the diagnostic model. The core problem of FSVM is
to give different fuzzy membership degrees to different sam-
ple points. In this paper, the fuzzy membership is deter-
mined by the relationship between points, classification
hyperplane, and classification boundary. The samples are
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FIGURE 2: Fuzzy membership function.
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FiGurk 3: Intelligent diagnosis process based on FSVM incremental learning.

divided into inside boundaries and outside boundaries. The
samples outside the boundary can be considered as deter-
mined sample, and the fuzzy membership degree is set 1. If
the sample points are misclassified, we give its fuzzy mem-
bership a very small value ¢ (here ¢ =0.0001). The correctly
classified samples between the boundaries are the samples
that we should focus on. Consider the interval between the
sample points and the optimal classification hyperplane.
The farther the interval, the greater the probability that they
belong to this category. The interval of the optimal classifica-
tion hyperplane of sample points m can be expressed as

!
m= ZyiociK(x, x;)+b|. (7)
i=1

The final fuzzy membership function is

-1

-1 -1].

(8)

(m—1)’

The function diagram of fuzzy membership function is
shown in Figure 2.

The fuzzy membership function is constructed by the
generalized bell membership function model. When m
changes from 0 to 1, the first half u increases rapidly because
it is close to the optimal classification hyperplane and away
from the sample class; the latter half is close to the classifica-
tion boundary, and the increase of value u tends to be gentle.
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2.4. Diagnostic Process. The processing process of the intelli-
gent diagnosis method based on FSVM incremental learning
is shown in Figure 3.

Firstly, the initial model is established by the previously
collected historical case database and is used to judge
whether it is the target disease and give specific diagnosis
and treatment suggestions; according to the recovery of
patients, the misdiagnosed and missed cases in the initial
diagnosis results are analyzed. After being identified by
experts, they are input into the historical sample database
as incremental samples. When the incremental samples
accumulate to a certain number, the model update program
is triggered; in the model updating stage, the SV set and
boundary sample set are extracted from the historical sam-
ple database according to the diagnosis results of historical
samples, and they are added together with the boundary
samples and boundary samples in the new sample set as a
new training sample set, and a new diagnosis model is
obtained by giving different fuzzy membership degrees
to different samples for FSVM training. The intelligent
diagnosis system incorporated into the model update
forms a closed-loop self-learning system, which is condu-
cive to the continuous correction and improvement of the
diagnosis model and enhances the SVM’s ability to diag-
nose new diseases.

3. Algorithm Verification

In order to verify the effectiveness of the proposed method in this
paper, we select the typical two-dimensional nonlinear separable
dataset banana dataset in benchmark dataset [32] and verify the
performance of the algorithm by updating the classification sam-
ples of the dataset and analyzing the classification results. The
experimental environment is Xeon (R) 3.3G CPU, 8G memory,
Windows 7 system, and MATLAB 2018b. RBF kernel function is
selected for SVM training. Its parameters are determined by
cross-validation and grid search method and ¢ set to 1.5.

Firstly, we analyze the sample update results of the algo-
rithm. Figure 4 shows the classification of the banana dataset
(the initial training set includes 150 sample points of positive
and negative classes) under initial training. The purple,
green, and yellow contours in Figure 4 represent the positive
class sample classification boundary, the optimal classifica-
tion hyperplane, and the negative class classification bound-
ary, respectively. “0” represents the set of support vectors,
and “O” represents the set of boundary samples found. From
the figure, we can see that the support vector sets are distrib-
uted within and on the classification boundary, and the
boundary sample sets are near the classification boundary.
This verifies the previous analysis is correct. These samples
contain all the classification boundary information.
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Next, the rationality of the updated fuzzy membership
function is verified. We added 50 positive and negative sam-
ples, respectively. Figure 5 shows the updated dataset and
their fuzzy membership. The red “o” point in the figure is
all the updated sample sets (including the boundary sample
set found earlier, support vector set, and new sample set after
clipping). The size of “0” represents the value of fuzzy mem-
bership. It should be noted that for better display effect, the
minimum size of “0” is set to the size of 8 labels in
MATLAB. It can be clearly seen from the experimental
results that the sample point “0” at the classification bound-
ary is the largest. The closer the point between the two
classification boundaries is to the optimal classification
hyperplane, the smaller its value. In this way, their influence
on the classification model can be reduced during training,
and the misclassified sample points are the smallest, which
means that they can be almost ignored during training. In
this way, FSVM can improve the generalization of the classi-
fication model.

Finally, we analyze the classification performance of the
updated classification model after adding new samples.
Compare the nonupdated classification hyperplane, the
SVM incremental learning updated model, and the classifi-
cation model by adding fuzzy membership. Figure 6 shows
the classification results of the three methods. From the
results, we can see that the classification model has changed
after incremental learning. This is mainly because the addi-
tion of new training samples affects the original classification
hyperplane after incremental learning. The newly obtained

classification hyperplane is more accurate than the original
classification hyperplane. Compared with the classification
hyperplane obtained by the two update methods, FSVM
can effectively reduce the impact of noise points and outliers
by giving different penalty coefficients to different training
samples. For example, as can be seen from the local amplifi-
cation part in Figure 6, the optimal classification hyperplane
is biased to the right due to the influence of two “.”. The
FSVM can effectively modify the classification hyperplane
and improve generalization.

Further, we continuously add the sample set to the training
set, with each increase of 100 samples (positive class 50, nega-
tive class 50). The updated model is tested on banana_test_2.
The specific classification accuracy results are shown in Table 1.

From the experimental results in Table 1, we can see that
if there is no incremental learning, the accuracy of the clas-
sification model is only 86.4%. However, through incremen-
tal SVM learning, the model is continuously optimized with
the update of the sample set, and finally, the classification
accuracy of 89.8% is achieved. Through the introduction of
fuzzy factor, the generalization of the model is further
improved, and the classification accuracy can reach 90.4%.
In the process of model updating, the size of training set will
affect the training time and the timeliness of model updat-
ing. The proposed method in this paper can filter the initial
samples and only select the support vector set and boundary
sample set; the number of samples participating in the
update is very small. So the update speed of the model is also
relatively fast.
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TaBLE 1: Comparison of classification accuracy of the banana dataset.

.. Classification accuracy (%)
Training set Test set SVM FSVM
Initial set Positive 150, negative 150 86.4
Increment 1 Positive 50, negative 50 88.2 88.4
Increment 2 Positive 50, negative 50 Banana_test_2 88.6 89.1
Increment 3 Positive 50, negative 50 89.4 90.2
Increment 4 Positive 50, negative 50 89.8 90.4

4. Application Analysis of Intelligent Diagnosis

In order to verify the effectiveness of the proposed algo-
rithm, an intelligent diagnostic application analysis was
conducted using COVID-19 data provided by our affiliated
hospital. The dataset includes two types of samples:
COVID-19 and non-COVID-19. The total number of
samples was 571, including 357 non-COVID-19 and 212
COVID-19.

The sample includes a total of 37 features. The first two
features are patient ID and category. Excluding these two-
dimensional features, the remaining 35 dimensions are the
features we use for diagnosis. Overall, it includes physiolog-
ical features, biochemical examination results, and CT image
characteristics. The physiological features include ambula-
tory blood pressure, pulmonary hypertension, heart rate,
SpO,, body temperature, and respiratory rate. The biochem-
ical examination mainly includes the following features: the
number of white blood cells, the percentage of lymphocytes,
creatine kinase, alanine aminotransferase, aspartate amino-
transferase, high-sensitivity C-reactive protein, and erythro-
cyte sedimentation rate. The CT image features mainly

include density, shape, lesion distribution, interstitial thick-
ening, thickening of vascular bundle in the lesion, cord
focus, and pleural effusion. From the overall data, the ratio
of non-COVID-19 and COVID-19 is about 6:4. We assume
that 100 groups of cases were collected in the initial stage, of
which 60 groups are non-COVID-19 and 40 groups are
COVID-19. The selection method is random. Incremental
learning is performed every 100 samples. Finally, the
remaining 171 groups were used as the sample set for the
test. The experimental results are shown in Table 2.

From the experimental results, we can see that the diag-
nostic accuracy is gradually improved with the increase and
improvement of the sample set, which is similar to the pre-
vious experiments on the banana dataset. In the initial sam-
ple set, there are only 100 cases; the diagnostic accuracy of
the diagnostic model has reached 84.0%, which reflects the
advantages of the SVM method in dealing with small sam-
ples. The classification accuracy of the same data trained
by the BP neural network is only 74.6%, which is far lower
than that of the SVM method. If incremental learning is
not used to update the sample set and diagnostic model,
the diagnostic accuracy of such model is far from enough,
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TaBLE 2: Diagnosis results.

Diagnostic accuracy(%)

Training set Test set SVM FSVM

Initial set Non 60, COVID-19 40 84.0

Incremental 1 Non 57, COVID-19 43 87.6 88.8
Non 118, COVID-19 53

Incremental 2 Non 64, COVID-19 36 91.1 934

Incremental 3 Non 63, COVID-19 37 95.9 98.2
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FIGURE 7: Size of FSVM incremental training sample.

which means that more than 15% of patients will be mis-
diagnosed. When only the SVM method is used to update
the model, the diagnostic accuracy has been greatly
improved due to the new case samples, and the final diag-
nostic accuracy can reach 95.9%. However, the existence of
wild points and noise points may reduce the generalization
of the model. Through the fuzzy processing of these sample
points, FESVM can effectively reduce their impact on the clas-
sification hyperplane of the model and improve the general-
ization. The experimental results show that the incremental
learning model processed by FSVM can improve the diagno-
sis accuracy to 98.2% and further verify the advantages of
FSVM incremental learning.

Another key problem to be considered in incremental
learning is the update speed. With the increase of samples,
if the update speed is too slow and does not have real-time
performance, the whole incremental learning method will
not be applied to practice. For SVM learning, the speed of
training depends on the number of samples participating
in training. If the updated training samples are not clipping,
the storage and calculation cost of the system will get higher.
The method proposed in this paper discards the useless
sample points on the basis of the previous model. Figure 7
shows the number of training samples trained by SVM
without clipping and the number of training samples
updated by the method in this paper. From the figure, we
can see that without clipping, the number of samples
gradually increases with the change of model update

TaBLE 3: Confusion matrix of diagnosis problem.

predicti Actual

redictive COVID-19 Non-COVID-19
COVID-19 TP EP
Non-COVID-19 FN N

iteration and has reached 400 by the fourth update. The pro-
posed method makes necessary selection every time, and the
number of sample points is relatively stable. Even in the
fourth generation, the number of samples participating in
training is only 77. It can be seen that the method in this
paper can greatly reduce the amount of calculation and
ensure the efficiency of updating.

Next, we analyze the accuracy of the overall diagnosis of
the model. Here, the confusion matrix is chosen to judge the
binary classification problem. The confusion matrix is
shown in Table 3.

According to Table 3, the recall rate and accuracy rate of
the diagnostic model can be calculated as follows:

TP
recall rate = TP LN’
9)
‘ TP
accuracyrate = ———.
Y TP + P
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In the diagnostic problem, the recall rate can represent
the proportion of correctly identified positive cases in all
confirmed cases. This measures the recognition ability of
the diagnostic model for new diseases. The accuracy rate is
oriented to the training model, which represents the propor-
tion of confirmed cases identified by the model. The two
measure the diagnostic performance of the diagnostic model
from different angles. We generally combine the two to draw
precision-recall (PR) curves to investigate the diagnostic

model. The PR curves under different samples and methods
are shown in Figures 8 and 9.

When the PR curve is closer to the upper right, it indi-
cates that the performance of the model is better. When
comparing different models, if the PR curve of one model
is completely covered by the PR curve of another model, it
indicates that the performance of the latter is better than
the former. From the experimental results in Figure 8, we
can see that with the increase of samples and the update of
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the diagnostic model, the PR curve of the new diagnostic
model gradually approaches to the right and up, and the
PR curve updated each time can completely cover the
previous curve, which also shows that the proposed FSVM
incremental learning method can effectively improve the
performance of the diagnostic model. From Figure 9, com-
pared with the SVM without update and the SVM incremen-
tal method, the FSVM incremental learning method can also
cover the other two methods, and the curve obtained is more
upper right than the other two methods, which also shows
that the FSVM incremental learning diagnosis method pro-
posed in this paper can obtain better diagnosis effect.

5. Conclusion

The diagnosis of new diseases is a challenging problem in
intelligent diagnosis and treatment with machine learning. In
order to solve the problem of few sample cases, the SVM
method is selected in this paper. At the same time, incremental
learning is used to update the sample database and diagnostic
model. Incremental learning is an important means to ensure
that the knowledge-based intelligent diagnosis method can
adapt to the increase of samples. According to the basic prin-
ciple of the SVM method, this paper determines the sample set
related to the model, mainly including support vector set,
boundary sample set, and new sample set, in which boundary
sample set solves the problem of support vector transforma-
tion. In order to solve the problem that the influence of noise
points and outliers on the diagnosis results increases after the
number of samples is reduced, the FSVM method is used in
the process of model updating. Experiments show that the
proposed method not only effectively simplifies the incremen-
tal training set but also effectively improves the training effi-
ciency while ensuring the diagnosis accuracy. The addition
of fuzzy membership also effectively improves the generaliza-
tion of the model. The research of this paper can provide a
new idea for the application of machine learning method in
the field of intelligent medical diagnosis, especially in the early
stage of new diseases and the real-time update of the diagnosis
model. Future directions include continuing to improve sensi-
tivity and accuracy for COVID-19 and other new disease
infections as new data is collected, as well as extend the
proposed method to risk stratification for survival analysis,
predicting risk status of patients and so on.
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request.
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This study outlines and developed a multilayer perceptron (MLP) neural network model for adolescent hypertension classification
focusing on the use of simple anthropometric and sociodemographic data collected from a cross-sectional research study in
Sarawak, Malaysia. Among the 2,461 data collected, 741 were hypertensive (30.1%) and 1720 were normal (69.9%). During the
data gathering process, eleven anthropometric measurements and sociodemographic data were collected. The variable selection
procedure in the methodology proposed selected five parameters: weight, weight-to-height ratio (WHIR), age, sex, and ethnicity,
as the input of the network model. The developed MLP model with a single hidden layer of 50 hidden neurons managed to
achieve a sensitivity of 0.41, specificity of 0.91, precision of 0.65, F-score of 0.50, accuracy of 0.76, and Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC) of 0.75 using the imbalanced data set. Analyzing the performance metrics
obtained from the training, validation and testing data sets show that the developed network model is well-generalized. Using
Bayes” Theorem, an adolescent classified as hypertensive using this created model has a 66.2% likelihood of having hypertension
in the Sarawak adolescent population, which has a hypertension prevalence of 30.1%. When the prevalence of hypertension in
the Sarawak population was increased to 50%, the developed model could predict an adolescent having hypertension with an
82.0% chance, whereas when the prevalence of hypertension was reduced to 10%, the developed model could only predict true
positive hypertension with a 33.6% chance. With the sensitivity of the model increasing to 65% and 90% while retaining a
specificity of 91%, the true positivity of an adolescent being hypertension would be 75.7% and 81.2%, respectively, according to
Bayes’ Theorem. The findings show that simple anthropometric measurements paired with sociodemographic data are feasible
to be used to classify hypertension in adolescents using the developed MLP model in Sarawak adolescent population with
modest hypertension prevalence. However, a model with higher sensitivity and specificity is required for better positive
hypertension predictive value when the prevalence is low. We conclude that the developed classification model could serve as a
quick and easy preliminary warning tool for screening high-risk adolescents of developing hypertension.
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1. Introduction

The mortality rate of heart and blood vessel disease is increas-
ing globally. Among the diverse risk factors, hypertension
turns out to be the most contributing element for this specific
noncommunicable disease, particularly for premature cardio-
vascular disease [1]. Coronary heart disease, stroke, heart
failure, dementia, aneurysm, and renal failure are some conse-
quences that are closely linked to hypertension [2, 3]. In addi-
tion, hypertension was found to raise the severity and
mortality rate of COVID-19 by around 2.5 times especially
in elderly patients who are more than 60 years old [4].

Hypertension is characterized as blood pressure > 140
mm Hg systolic and/or >90mm Hg diastolic for adults,
and its prevalence has become a worldwide health burden.
In adolescents, hypertension is interpreted as blood pressure
of 2130 mm Hg systolic and/or >80 mm Hg diastolic [5].
Due to the global widespread of obesity and physical inactiv-
ity in children and adolescents, hypertension in this group
has become an increasing health problem, yet often over-
looked [6]. It was discovered that the risk factor levels of
cardiovascular disease from children and adolescents persist
into adulthood, which in turn increases the probability of
heart and blood vessel disease events later in life [7]. There-
fore, the prediction of adolescents at risk of hypertension
before adulthood is crucial to implement better prevention
and control programs [8]. Furthermore, childhood and ado-
lescence are the crucial stages for hypertension control and
prevention prior to any further clinical symptoms related
to hypertension-associated cardiovascular disease [9]. The
prevalence of hypertension was reported to be 24.5% among
adolescents in Malaysia in a recent study [10].

Anthropometric indices are gradually trusted by scien-
tists to be the mandatory factors in identifying the risk of
heart disease [11]. The use of anthropometric indices prom-
ises a simple, inexpensive, efficient, and reliable initial
screening technique for hypertension [12]. Many anthropo-
metric indices are used to define obesity-associated hyper-
tension. These include the most commonly used body
mass index (BMI), waist circumference (WC), weight-to-
hip ratio (WHR), and weight-to-height ratio (WHtR) [13].
Nonetheless, research shows that the predictive powers of
anthropometric measures for hypertension are countries
and ethnicities dependent [14].

The emergence of machine learning (ML) in the medical
field has revealed the insight of new techniques for hyperten-
sion prediction. ML techniques could be used as an early
prediction for hypertension disease and could serve as a sup-
porting tool or second opinion in assisting medical doctors
in making timely decisions [15]. Artificial neural network
(ANN) models have shown to be a powerful ML technique
and exhibited great success in disease prediction and classi-
fication [16]. Although the ANN has been extensively used
to investigate risk factors for hypertension, the utilization
of anthropometric, demographic, and lifestyle indices as
the estimator for hypertension prediction did not outper-
form prediction models that use biomedical estimators.
Furthermore, current research work using ML did not report
how meaningful or clinically useful a classifier might be

Computational and Mathematical Methods in Medicine

when looking at the prevalence of hypertension for a popu-
lation. Therefore, there is a need to bridge this research gap
by understanding whether the use of simple anthropometric
is feasible for hypertension prediction and how clinically
beneficial the developed model is.

In two earlier works [17, 18], the prevalence of hyperten-
sion in Sarawak adolescents and its relationships with
anthropometric indices were analyzed using multivariate
logistic regression and the stepwise logistic regression statis-
tical approach. This research work is an evolution of the
previous two studies by focusing on the use of an artificial
neural network model. The purpose of this research is four-
fold: (a) investigate which anthropometric indices are
important for adolescents hypertension prediction, (b)
develop an artificial neural network model for hypertension
prediction focusing on the use of anthropometric indices
based on a cross-sectional research work conducted in
Sarawak, Malaysia, (c) analyze whether hypertension in
adolescents could be reliably predicted using anthropometric
indices, and (d) assess how clinically beneficial the devel-
oped model is.

2. Related Work

Many researchers have implemented ANN models for
hypertension prediction, and some of these recent researches
are [19-30]. Among these, Bani-Salameh et al. [26] devel-
oped a multilayer perceptron (MLP) neural network model
with six inputs: age, weight, fat ratio, blood pressure, alcohol,
and smoking; one hidden layer and one output layer of
hypertension and nonhypertension classes were imple-
mented to train and test a sample size of 760 patients. They
managed to achieve a correct classification rate of 68.7%
with a measured Area Under the Receiver Operating Char-
acteristic (ROC) curve (AUC) of 0.618. In addition, the
authors compared the classification results of the MLP
model with the k-nearest neighbour (KNN) and Support
Vector Machine (SVM) and concluded that MLP outper-
formed these two models. The analysis on the independent
variables revealed that blood pressure was the most impor-
tant variable while smoking was the least significant variable.

In another study by Lopez-Martinez et al. [27], a three-
layered ANN model with rectified linear activation function
(ReLU) in the hidden layers to classify hypertension and
nonhypertension patients using sex, race, body mass index
(BMI), kidney disease, and diabetes as the input features
was implemented. A large imbalance sample size of 24,434
with 60.71% nonhypertensive and 30.29% hypertensive
patients was used. The ANN model implemented with seven
inputs, 3 hidden neuron layers with 64, 32, and 16 nodes,
respectively, and 2 outputs managed to produce classifica-
tion results with a sensitivity of 40%, specificity of 87%, pre-
cision of 57.8%, and AUC of 0.77. In their earlier work [28],
a logistic regression model was used on the data set from the
same source but smaller size (19,709), and they achieved
classification results with a sensitivity of 77%, specificity of
68%, precision of 32%, and AUC of 73% (95% CI [0.70-
0.76]). Although the total number of samples used was
slightly smaller in [28] as compared to their work in [27],
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it showed that the use of the ANN model could produce a
better classification result.

A gradient descent backpropagation neural network model
with four hidden units and 0 momentum value produced the
best AUC (0.67), specificity (88%), sensitivity (30.6%), and pre-
cision (57.43%) results in the research work by Sakr et al. [29].
The features used included age, metabolic equivalents (METS),
resting systolic blood pressure, peak diastolic blood pressure,
resting diastolic blood pressure, coronary artery disease, the
reason for the test, history of diabetes, percentage of heart rate
achieved, race, history of hyperlipidemia, aspirin use, and
hypertension response. The total number of patients was
23,095 with ages ranged between 17 and 96.

A study focusing on predicting the systolic and diastolic
blood pressure of archers aged between 13 and 20 was car-
ried out using an ANN model in [30] using a small sample
size of 50 targets. The ANN model used only the calf cir-
cumference as the input variable. They reported the results
for systolic and diastolic blood pressure prediction in terms
of R? (0.95, 0.95), mean absolute percentage error (MAPE)
(0.05, 0.06), means of mean absolute error (MAE) (6.55,
4.44), and root mean square error (RMSE) (78.05, 35.51).

There are other earlier studies [31-35] that utilized the
ANN for hypertension classification, and each of these
research works exhibited their cost and values. From the
most recent and relevant research mentioned above, it could
be concluded that the use of anthropometric indices together
with sociodemographic and lifestyle parameters is beneficial
as an initial screening for hypertension. As self-reported dia-
betes and hypertension are not reliable [36] and the lifestyle
parameters reporting are subjective [37], in our work, only
simple anthropometric measurements together with socio-
demographic data are used as the features to predict cases
of hypertension. We want to look into how basic anthropo-
metric measurements combined with sociodemographic
data may be used to predict hypertension in adolescents
and which variables contribute to predicting hypertension.
The classification results derived from this study would
reveal whether hypertension in adolescents could be pre-
dicted accurately using the anthropometric indices. Several
performance assessment measures, such as ROC, AUC,
sensitivity, specificity, accuracy, RMSE, MAE, and MAPE,
were provided as a way to benchmark the constructed
models in the aforementioned review. However, the question
of whether the developed model is significant, particularly in
terms of clinical utility in a population with a given hyper-
tension prevalence, remains unanswered.

3. Method

3.1. Data Source and Study Population. A cross-sectional
study assessing the blood pressure of secondary school
children aged between 13 and 17 years in Sarawak was car-
ried out for 7 months from 9 March 2016 to 27 September
2016. Ethical approval was obtained from the Medical and
Ethical Committee of Universiti Malaysia Sarawak
(UNIMAS/TNC (AA)-03.02/06-11 J1d.3(1)) and the Minis-
try of Education Malaysia.

Sarawak is the largest state in Malaysia located on the
island of Borneo. According to the Department of Statistics
Malaysia [38], in the year 2019, the population in Sarawak
is estimated to be 2.81 million with more than 40 subethnic
groups. Each of these subethnic groups has its own language,
lifestyle, and culture [17]. Iban, Chinese, Malay, Bidayuh,
Melanau, and Orang Ulu are among the six major subeth-
nics in Sarawak.

A total of 19 schools participated in this study with 14 of
these schools classified as rural while the other 5 schools were
classified as urban. For each school, a class was randomly cho-
sen from each of the schooling levels of secondary one to sec-
ondary six. Only participants without physical and mental
disability, no prediagnosed hypertension, and sickness that
might lead to secondary hypertension were enrolled in the
study. Data collection was carried out by a team of trained
laboratory personnel. According to the Ministry of Education,
the total number of students aged 13 to 17 in Sarawak in
February 2014 was 200,130. Equation (1) is used to compute
the required sample size (s) for a finite group [39]:

_X’NP(1-P)  ,
s_mu( P(1-P), (1)

where X is the z-score for 99% confidence interval (2.58),
N is the population size (200130), P is the population pro-
portion (assume to be 0.5 as this would produce the maxi-
mum sample size), and d is the degree of accuracy or
margin of error (0.028).

According to the calculations, a sample size of 2124
was required.

Sociodemographic information comprising the age, sex,
and ethnicity of each participant was recorded. Next, the
trained personnel would gather the anthropometric data from
the participants. The anthropometric data collection was done
using a SECA body meter and portable weighing scale. During
weighing, the participants were asked to take off their foot-
wear. In addition, it was ensured that the participants only
wore their school uniforms during this process. For height
measurements, the participants were requested to stand
upright with no footwear on a flat surface with their back of
the heels and occiput against the equipment. The weight and
height were recorded to the precision of 0.1kg and 0.1 cm,
respectively. For waist circumference, measurements were
taken using a plastic nonelastic tape placed at the midpoint
of the last rib and the top of the hip bone (iliac crest).

The body mass index (BMI) was computed using the
height and weight data provided by dividing the partici-
pant’s weight (kg) by the squared height (m?). The indices
of waist-to-height ratio (WHtR) were calculated based on
the ratio of the waist circumferences (WC) (cm) to height
(cm). Conicity index (CI), an anthropometric measurement
that is used to assess central adiposity, is calculated using

Conicity index (CI) = waist circumference (m) .
0.109 x \/body weight (kg)/height(m)

(2)




A digital blood pressure monitor was used for blood
pressure measurements. The participants were requested to
rest for 5 minutes to ensure that there was no exercise before
the measurement. In addition, the participants were also
checked to ensure that they did not consume any caffeine
or medication before the measurement. For each participant,
two measurements were taken. There was an interval of one
minute between these two measurements. If the differences
between these two readings were more than 5mm Hg, a
third reading would be taken. A third reading would also
be taken when a participant was found to be prehyperten-
sion or hypertension. The average of these readings would
be calculated as the final blood pressure reading for each of
the participants. The participants were categorized into pre-
hypertension, hypertension, and normal following the 4
report on the diagnosis, evaluation, and treatment of high
blood pressure in children and adolescents [40] where the
cut-off point was based on age, sex, and height.

A total of 2461 sample data with a slightly higher num-
ber of females (n = 1428, 58%) compared to the number of
males (n=1033, 42%) was collected. This sample size is
higher than the needed minimum sample size determined
using Equation (1) and hence represents the Sarawak adoles-
cent population. The mean age of the participants was 14.5
+1.50 years. In terms of ethnicity, the participants were
mostly Iban, followed by Malay, Chinese, Bidayuh, and
other ethnicities. The sociodemographic data included the
age, sex, location, ethnicity, and whether the parent(s) was/
were hypertensive of the participants, which is shown in
Table 1. Most of the participants were from rural areas
(74.2%). Referring to Table 2, the males had higher mean
weight, height, and waist circumferences (WC), whereas
the females showed higher mean body mass index (BMI)
and waist-to-height ratio (WHtR). Both sexes exhibited the
same mean C index. In terms of hypersensitivity (Table 3),
it was found that more males were in the prehypertension
and hypertension categories comparing to the females.

3.2. Methodology Design and Implementation. In this study,
a multilayer perceptron feedforward neural network was
designed and developed in the SAS Visual Data Mining
and Machine Learning (VDMML) environment. The overall
process of this classification procedure is shown in Figure 1.
The detail of each step is presented below.

3.3. Data Partitioning. The statistical properties of the train-
ing, validation, and testing data play a vital role in ANN
prediction and classification. The data set is partitioned into
three subsets: 60% training, 30% validation, and 10% testing.
For the original data set, the prehypertensive and hyperten-
sive categories are grouped as one, resulted in binary output
variables (normal and hypertensive) [32]. With this group-
ing, the total numbers of hypertensive and normal catego-
ries are 741 (30.1%) and 1720 (69.9%), respectively.
Stratified random sampling according to the hypertensive
and normal group ratio was done for the training, valida-
tion, and testing data sets. The distribution of the data
obtained is shown in Table 4.
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TaBLE 1: Sociodemographic data collected.

(a)
n %

Sex
Male (M) 1033 42.0
Female (F) 1428 58.0
Ethnicity
Iban 737 29.9
Malay 681 27.7
Chinese 475 19.3
Bidayuh 256 10.4
Other 312 12.7
Location
Urban 634 25.8
Rural 1827 74.2
Parents hypertension history
One of the parents 448 18.2
Both parents 80 3.3
No 1933 78.5

(b)
Age Min Max Mean Standard deviation
Male (M) 12 17 14.4 1.48
Female (F) 12 17 14.5 1.51

3.4. Variable Selection. In SAS VDDML environment, using
the Fast Supervised Selection method, a set of input variables
that mutually explain the maximum amount of variance
contained in the target variable is chosen. The Fast Super-
vised Selection approach, which utilizes the Bayesian Infor-
mation Criterion, penalises larger models more strongly
and favours smaller models as a way of completing the selec-
tion process. With the cumulative variance cut-oft set to 1.0,
the Fast Supervised Selection process ends when the selected
variables can explain this proportion of the overall variation.
Table 5 shows the proportion of the variance explained by
these five selected parameters. From the total 11 input vari-
ables (sex, ethnicity, location, parents’ hypertension history,
age, weight, height, BMI, WC, WHItR, and C index), 5 param-
eters are selected: age, sex, ethnicity, weight, and WHtR.

3.5. Feature Extraction. In this part of the procedure, new
feature(s) would be produced using the five variables
obtained from the previous variable selection stage. The
newly created features would capture the central characteris-
tics of the selected data set and represent this data set in a
lower-dimensional space. Principal Component Analysis
(PCA) is a simple and most popular nonparametric method
of obtaining the most relevant information from redundant
or noisy data [41], and the new set features are called Princi-
pal Components (PCs). Using the PCA procedure, the
features weight and WHIR variables are combined as a new
variable, named Principal Component 1 (PC1). The use of
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TaBLE 2: Anthropometric data of the participants.
Male (n=1033) Female (n = 1428)

Min Max Mean Std Min Max Mean Std
Weight (kg) 24.4 121.8 55.5 14.78 21.2 109.4 51.0 12.80
Height (m) 1.3 1.8 1.6 0.08 1.24 1.78 1.5 0.06
BMI (kg/mz) 13.3 43.1 21.3 4.72 13.1 43.5 21.6 4.78
WC (cm) 51.5 125.0 71.3 11.56 50.0 655.0 70.2 18.46
WHtR 0.3 0.7 0.4 0.07 0.3 4.1 0.5 0.11
C index 0.8 1.4 1.1 0.07 0.8 11.0 1.1 0.27

TaBLE 3: Blood pressure profile of the participants.
Sex Male (n=1033) Female (n = 1428)
Blood pressure n % n %
Prehypertension 199 19.3 125 8.8
Hypertension 232 22.5 185 13.0
Normal 602 58.3 1118 78.3
Hypertension Data Variable Feature Multi-layered Performance
data set partitioning selection extraction perceptron evaluation
F1GURE 1: Overall classification procedures implemented in this study.
TaBLE 4: Distribution of data using a stratified sampling method according to the ratio of hypertensive and normal groups.

.. Normal Hypertensive Total (N =2461)
Partition " % " % " %
Training 1032 69.9 445 30.1 1477 60.0
Validation 516 69.9 222 30.1 738 30.0
Testing 172 69.9 74 30.1 246 10.0

TaBLE 5: Proportion of variance explained for the five selected
parameters through Fast Supervised Selection method.

Parameter Proportion of variance explained
Weight 0.2314
Sex 0.2540
Ethnic 0.2614
WHtR 0.2657
Age 0.2682

PCA for feature extraction to reduce the feature dimension is
well documented for clinical studies utilizing electronic
healthcare records in [42]. The body weight is significantly
correlated to the waist circumference [43]. The WHtR holds
additional information on the height. Using the PCA process,
a new feature (PC1) that captured the essential features from
these two variables was created. Therefore, the final input
features are reduced from five to four.

3.6. Artificial Neural Network Model. A multilayer percep-
tron neural network model with four input features, a single

hidden layer of 50 hidden neurons, and one output layer is
developed for the classification of hypertension and normal
targets. The trial-and-error approach, which is a commonly
utilized method [44], was applied in this study to determine
the hidden neurons in the neural network model. Single-
layer feedforward neural network possesses the universal
approximation property [45]. Figure 2 shows the network
architecture of the developed model.

The input variables are normalized using the z-score
normalization method. The model properties are summa-
rized in Table 6. Early stopping with five stagnations is car-
ried out to avoid overtraining and to reduce training time.
The model uses the Limited-Memory Broyden Fletcher
Goldfarb Shanno (LBFGS), one of the quasi-Newton
methods, that requires less computer memory.

4. Performance Evaluation

In this study, a few performance evaluation metrics are
calculated to assess the performance of the developed mul-
tilayer perceptron model on hypertensive and normal
patient classification.



Gender Hypertensive
or
normal
Ethnicity
PC1
Input Hidden Output
layer layer layer

FiGURE 2: Multilayer perceptron model developed in this research
study.

TaBLE 6: Multilayer perceptron parameter settings.

Parameter Value
Input dimension 4
Number of output )
classes

Number of hidden ]
layers

Hidden layer

dimension >0
ilt(ii\(fiairilolr"ll};i;ction tanh
Momentum 0
Learning rate 0.0010

LBFGS (Limited-Memory Broyden

Optimization method Fletcher Goldfarb Shanno)

In general, the performance of the binary classifier is
grounded on the calculation of the following four
parameters:

(i) True positive (TP) is defined as the number of
hypertensive adolescents who are classified as
hypertensive

(ii) False negative (FN) is defined as the number of
hypertensive adolescents who are classified as
normal

(iii) False positive (FP) is defined as the number of
normal adolescents who are classified as hypertensive

(iv) True negative (TN) is defined as the number of
normal adolescents who are classified as normal

Using these four parameters, the sensitivity, specificity,
precision, F-score, accuracy, misclassification rate, Receiver
Operating Characteristic (ROC) Curve, and Area Under
the ROC Curve (AUC) are calculated.

4.1. Bayes’ Theorem. The sensitivity and specificity of a classi-
fier can be used to assess its validity. However, these two
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performance indicators do not accurately reflect how well
the model performs for a certain population given the inci-
dence of a specific condition. In order to evaluate how relevant
or therapeutically beneficial a test could be for a population,
we need underlying information about the predicted incidence
or prevalence of a disease. Bayes” Theorem is useful to explain
this [46]. The formula of Bayes’ Theorem is

P(A) x P(B| A)

P(AIB)= =TT, ()

where P(A) is the unconditional probability of the disease in
the population, ie., prevalence; P(B) is the unconditional
probability of the classifier/test returning positive; P(B|A)
denotes the chances of event B given that event A occurring;
and P(A|B) is the posterior probability which denotes the
chance of A happening given B.

5. Results

5.1. Multilayer Perceptron Model Performance. The distribu-
tion of the actual classification results for training, valida-
tion, and testing data sets are presented using the
confusion matrix in Tables 7-9. Using the confusion matrix,
the performance metrics of the developed multilayer percep-
tron model are presented in Table 10. From this table, it can
be seen that the developed model managed to achieve a
classification accuracy of 76% with 65% precision. The sen-
sitivity and the specificity of the model are 0.41 and 0.91,
respectively, while the AUC is 0.75. It should be noted that
the cut-off point used for all these matrices is 0.5. The
ROC for the training, validation, and testing data sets are
shown in Figures 3, 4, and 5. The similar shape of the
ROC in these figures indicates that the multilayer perceptron
model did not overfit the data during training; i.e., the model
demonstrated comparable predictive capability in the train-
ing, validation, and testing data sets. In other words, the
developed model is well-generalized. This aligns with the
similar sensitivity and specificity values achieved for these
three sets of data, as shown in Table 10.

5.2. Variable Importance. A classification tree model is used
to determine the variable importance in predicting the out-
put variable. This is done in two steps. During the first step,
the variable importance of each variable is calculated based
on the change of Residual Sum of Square (RSS) when a split
is found at a node. The maximum variable importance value
is found from these values. In the second step, the relative
variable importance value for each variable is calculated by
dividing the variable importance by the maximum variable
importance value. The detailed calculation of RSS could be
found in [47]. Table 11 shows the variable importance and
relative variable importance values of the four extracted
features in this study. The classification results obtained
without the feature extraction process in the multilayer per-
ceptron neural network model developed in this study are
included in Supplementary 1.
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TaBLE 7: Confusion matrix obtained using training data.

Actual
Hypertensive Normal
Prediction
Hypertensive 204 66
Normal 241 966

TaBLE 8: Confusion matrix obtained using validation data.

Actual
Hypertensive Normal
Prediction
Hypertensive 99 44
Normal 123 472

TaBLE 9: Confusion matrix obtained using testing data.

Actual
Hypertensive Normal
Prediction
Hypertensive 30 16
Normal 44 156

TaBLE 10: Classification results obtained for training, validation,
and testing data sets.

Performance metrics Training Validation Testing
Sensitivity 0.46 0.45 0.41
Specificity 0.94 0.91 0.91
Precision 0.76 0.69 0.65
F-score 0.57 0.54 0.50
Accuracy 0.79 0.77 0.76
Misclassification rate 0.21 0.23 0.24
AUC 0.82 0.79 0.75

5.3. Reliability Test Using Bayes’ Theorem. According to a
study in year 2018, hypertension of secondary students
in Sarawak was 30.1% [18]. The population of adolescents
in Sarawak was 200130. Use Bayes’ Theorem formula in
Equation (3):

Event A denotes the prevalence of adolescent hyperten-
sion in Sarawak: P(A) =0.301.

Use the sensitivity and specificity of the model developed
in this study: sensitivity = 0.41 and specificity = 0.91.

Event B denotes the unconditional probability that our
test coming up positive, which would include both true
positive and false positive using our test. To calculate the
total true positive (TTP) of our test (Np),

Np = hypertension prevalence X total population
x sensitivity = 0.301 x 200130 x 0.41 = 24698.

(4)

In order to calculate the total false positive (TFP) (Ngp),
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FiGUure 5: ROC of the testing data.
TaBLE 11: Variable importance.
Variable  Variable importance  Relative variable importance
PC1 246.67 1.00
Sex 37.88 0.15
Age 33.02 0.13
Ethnicity 32.44 0.13
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Nyp = probability of not having hypertension x total population x (1 — specificity) = (1 — 0.301) x 200130 x (1 - 0.91) = 12590.

Therefore, the total positive (TP) from our test = N.yp + Npp = 24698 + 12590 = 37288.

With this, P(B) = 37288/200130 = 0.1863.
From Equation (3):

P(A)x P(B| A)

P(A|B) = == 5

: (6)

P(A|B) denotes the likelihood that an adolescent will
have hypertension if our model indicates that he or she is
hypertensive. P(B|A) defines the likelihood of receiving a
positive result, regardless of whether it is a true-positive or
false-positive. As a result, P(B| A) represents our sensitivity.

_0.301 % 0.41

P(AlB) 0.1863

=0.662 = 66.2%. (7)

This indicates that an adolescent diagnosed with
hypertension using our method has a 66.2% likelihood of
being hypertensive.

6. Discussion

In this paper, a single hidden layer multilayer perceptron
neural network was developed to model the hypertension
classification problem in adolescents in Sarawak, Malaysia.
The study manages to prove the claim that a multilayer neu-
ral network with one single hidden layer can model a broad
range of challenges in the clinical domain.

A comparison of the performance of the developed
model with the above-mentioned research is presented in
Table 12. From the performance metrics obtained, it could
be seen that the classification capability of the developed
model (AUC=0.75) is compatible with the use of deep
learning for hypertension classification by Lopez-Martinez
et al. [27] (AUC =0.77). Our model performs slightly better
for all the other performance metrics. Besides the model
developed by Bani-Salameh et al. [26] that did not report
on the model’s specificity, the other models, including the
model developed in this research work, are better in terms
of the models’ specificity than the sensitivity. In other words,
all these models are better at classifying normal patients than
correctly classifying hypertensive patients. This could be the
result of the imbalance data set used, which is higher in per-
centage of occurrence of normal than hypertensive patients.

Comparing to the model architecture developed by
Lépez-Martinez et al. [27], our network architecture is
smaller (3 layers of 64 nodes, 32 nodes and 16 nodes, respec-
tively, vs. single layer of 50 nodes). In addition, the percent-
age of normal (69.71%) and hypertensive patients (30.29%)
used in [27] is similar to the ratio used in our study
(30.1% normal and 69.9% hypertensive).

(5)

Another significant contribution of this research work is
that only simple anthropometric measurements and socio-
demographic data were collected during the cross-sectional
study, i.e., age, sex, ethnicity, location, parent(s) hypertension
history, weight, height, waist circumferences, and blood pres-
sure. The variable selection process in the methodology in this
study had selected age, sex, ethnicity, weight, and WHtR
parameters as the input for the multilayer perceptron model.
All the other research works included personal medical history
data and lifestyle parameters. For example, smoking and kid-
ney conditions were required in [27]; family history, history
of hyperlipidemia, and coronary artery bypass graft in [29];
and diabetes data in [26, 27, 29]. Yet, self-reported diabetes
and other medical history conditions are not reliable [36],
and the lifestyle parameters reporting are subjective [37].

The analysis on the variable importance reveals that PC1,
which is a new feature transformed from the weight and
WHIR variable, is the most important feature for the classifi-
cation of hypertensive and normal patients, followed by sex,
age, and ethnicity. The use of ANN with these simple anthro-
pometric measurements and sociodemographic data demon-
strates the potential of the usage of the simple measurements
for hypertension detection. However, as the predictive powers
of anthropometric measures for hypertension are countries
and ethnicities dependent [14], further studies on the use of
these parameters on other geographical locations would better
validate the usefulness of these inputs.

From the performance metrics presented for the train-
ing, validation, and testing data sets in Table 10, it could
be concluded that the developed model is well-generalized.
That is, the model can handle the unseen data. This is
proved by the almost equal values obtained for the perfor-
mance metrics of the training, validation, and testing data
sets. This property is important in ensuring the usefulness
of the model in real-life situation.

In terms of reliability, focusing whether the developed
classifier is sufficiently trustworthy to be used in a clinical
context, the prevalence of hypertension in a particular pop-
ulation should be taken into consideration. While a highly
accurate classifier may be beneficial in populations with a
greater prevalence of hypertension, it would be less instruc-
tive in populations with lower hypertension rates. In our
work, if an adolescent is diagnosed with hypertension using
our model, he or she has a 66.2% likelihood of having hyper-
tension. Using Bayes’ Theorem, we further examine our
model with different adolescent hypertension prevalences
of 10% and 50% in Sarawak. The results are summarized
in Table 13. With a lower prevalence (10%), the model only
managed to conclude a 33.6% chance of an adolescent of
having hypertension. For a higher prevalence of 50%, the
model could better conclude (82.0%) an adolescent of
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TaBLE 12: Performance metrics comparison.
Sensitivity Specificity Precision F-score Accuracy AUC
Our model 0.41 0.91 0.65 0.50 0.76 0.75
Lépez-Martinez et al. [27] 0.40 0.87 0.58 0.47 0.73 0.77
Bani-Salameh et al. [26] 0.69 — 0.68 0.68 0.68 0.62
Sakr et al. [29] 0.31 0.88 0.57 0.39 — 0.67

TaBLE 13: Model reliability testing using Bayes” Theorem for different prevalence and sensitivity levels. The model reliability on current

hypertension prevalence in Sarawak adolescents is highlighted.

Prevalence Sensitivity Specificity TTP TFP TP P(B) P(A|B)
10% 41% 91% 8205 16210 24415 0.1220 33.6%
50% 41% 91% 41026 9005 50031 0.2500 82.0%
30.1% 65% 91% 39155 12590 51745 0.2586 75.7%
30.1% 90% 91% 54215 12590 66805 0.3338 81.2%
30.1% 41% 91% 24698 12590 37288 0.1863 66.2%

having hypertension. When the sensitivity of the model is
improved to 90% and the specificity remains at 91%, at
30.1% of hypertension in the Sarawak adolescents popula-
tion, the model may yield an 81.2% likelihood of an adoles-
cent having hypertension.

7. Conclusions

In this research work, a multilayer perceptron neural network
with one hidden layer of 50 hidden neurons was developed.
The proposed model incorporating the variable selection
and feature extraction procedure managed to improve the
classification accuracy of the hypertension classification prob-
lem focusing on adolescents in Sarawak, Malaysia. The
primary contribution of this study effort is the smaller
designed network architecture, consisting of three layers with
five inputs at the input layer, one hidden layer of fifty hidden
neurons, and one output layer, for improved classification
accuracy utilizing simple anthropometric measures and
sociodemographic data. Furthermore, we demonstrated that
ifan adolescent tests positive for hypertension, the established
model can predict that he or she has a 66.2% likelihood of
developing hypertension. This model, which combines basic
and straightforward anthropometric measures with socio-
demographic data, i.e. age, sex, ethnicity, weight, and WHtR,
is clinically useful for Sarawak adolescents with a hyperten-
sion prevalence of 30.1%.

Although the performance of the developed model is
encouraging, the model could not serve as a clinical
decision-making tool for diagnosing hypertensive patients.
Nevertheless, the classification result could function as an
early warning mechanism to alert patients on the possibility
of being hypertensive.

The process to develop a multilayer perceptron neural
network for adolescent hypertension classification is out-
lined clearly in this work. The knowledge gained in design-
ing, developing, implementing, testing, and analyzing the
network model is valuable in a future work to build an early

warning tool for hypertension prediction. Such an early
warning tool could serve as a cheap, simple, and rapid
screening mechanism in helping the public on identifying
the risk of hypertension, especially in settings when blood
pressure monitoring equipment is not available. The devel-
oped model could only predict a 66.2% likelihood of an ado-
lescent having hypertension, which is insufficient for the
model to be utilized as a clinical decision-making tool. As
a result, further research into the utilization of anthropomet-
ric data for hypertension prediction using machine learning
algorithms is necessary. Furthermore, it would be necessary
to assess whether additional training data will enhance the
accuracy of the constructed model. This might be accom-
plished by data augmentation to generate additional data
or through data collection.
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A more detail description of the data used in this study could
be found in [17, 18]. Supplementary 1: results obtained using
the multilayer perceptron model without feature extraction
process. (Supplementary Materials)
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Traditional approach for predicting coronary artery disease (CAD) is based on demographic data, symptoms such as chest pain
and dyspnea, and comorbidity related to cardiovascular diseases. Usually, these variables are analyzed by logistic regression to
quantifying their relationship with the outcome; nevertheless, their predictive value is limited. In the present study, we aimed
to investigate the value of different machine learning (ML) techniques for the evaluation of suspected CAD; having as gold
standard, the presence of stress-induced ischemia by *’Rb positron emission tomography/computed tomography (PET/CT)
myocardial perfusion imaging (MPI) ML was chosen on their clinical use and on the fact that they are representative of
different classes of algorithms, such as deterministic (Support vector machine and Naive Bayes), adaptive (ADA and
AdaBoost), and decision tree (Random Forest, rpart, and XGBoost). The study population included 2503 consecutive patients,
who underwent MPI for suspected CAD. To testing ML performances, data were split randomly into two parts: training/test
(80%) and validation (20%). For training/test, we applied a 5-fold cross-validation, repeated 2 times. With this subset, we
performed the tuning of free parameters for each algorithm. For all metrics, the best performance in training/test was observed
for AdaBoost. The Naive Bayes ML resulted to be more efficient in validation approach. The logistic and rpart algorithms
showed similar metric values for the training/test and validation approaches. These results are encouraging and indicate that
the ML algorithms can improve the evaluation of pretest probability of stress-induced myocardial ischemia.

[1-4]. Among the recommendations for ML implementa-
tion in clinical research, there is data normalization, feature

Artificial intelligence has assumed a consolidated role in
numerous fields and also in the healthcare and research
and development. Machine learning (ML), an application
of artificial intelligence that refers to computational algo-
rithms designed to learn from experience, has been used suc-
cessfully for diagnosis, prognosis, and drug development

selection, parameter tuning, and independent validation [5,
6].

In the field of cardiology, the search for methods for
obtaining reliable pretests probability of disease has been
underway for some time [7]. These tools should assist the
physician in making decisions about referring patients for
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TaBLe 1: Clinical characteristics of cohort according to MPI
outcome.

Normal Ischemic P
(n=2002) (n=501) value
Age, n (%) <0.001
<55 777 (39) 84 (17)
55-65 603 (30) 146 (29)
>65 622 (31) 271 (54)
Male gender, n (%) 881 (44) 334 (67) <0.001
i/oo;iy mass index 230, 5,4 (51 258 (52)  0.93
Chest pain, n (%) <0.001
Typical 678 (34) 114 (23)
Atypical 256 (13) 87 (17)
Noncardiac* 1068 (53) 300 (60)
Diabetes, n (%) 479 (24) 187 (37) <0.001
Dyspnea, n (%) 446 (22) 139 (28) <0.05
Ea(r(f/:l)ly history of CAD, g5 (47 199 (40)  <0.005
Hypertension, n (%) 1361 (68) 401 (80) <0.005
Hyperlipidemia, #n (%) 1210 (60) 343 (69) <0.005
Smoking, 1 (%) 557 (28) 144 (29) 0.72
](3/12)1§n0st1c question, n <0.001
Diagnostic evaluation 1642 (82) 370 (74)
Presurgery evaluation 360 (18) 131 (26)

*Considering noncardiac patients as the reference. *Considering diagnostic
evaluation patients as the reference.

examination. Usually, for the prediction of coronary artery
disease (CAD), traditional risk factors, such as age, gender,
chest pain, and comorbidity related to cardiovascular dis-
eases, such as hypertension, diabetes, and hyperlipidemia,
are considered. These variables are analyzed by logistic
regression to quantifying their relationship with the out-
come of the exam and obtaining predictions for new patients
[8-11]. However, the models obtained by these studies do
not show a great performance, probably due to the declining
prevalence of CAD and because the evaluation for CAD has
shifted to older patients, more women, and more patients
with atypical symptoms than in previous decades [12].
Including in the model, other clinical, laboratory, and
instrumental characteristics could improve prediction accu-
racy; however, adding variables may be expensive and
time-consuming and also incorrectly reclassify patients with
suspected CAD. Using publicly available dataset, it has been
recently reported that ML algorithms have high accuracy to
detect the presence of CAD [13]. Yet, if the application of
more complex algorithms on traditional risk factor may
optimize the estimation of pretest probability of CAD, it
remains to be defined. In the present study, we aimed to
investigate the potential of different ML techniques for the
evaluation of suspected CAD, having as gold standard the
presence of stress-induced ischemia by ®*Rb positron emis-
sion tomography/computed tomography (PET/CT) myocar-
dial perfusion imaging (MPI).
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In summary, the main contributions of this work include
the following:

(1) A comparison of the value of several ML algorithms
in predicting the presence of stress-induced ischemia
by noninvasive cardiac imaging

(2) We selected ML algorithms based on their use in the
medical field and on the fact that they are represen-
tative of different classes of algorithms, such as
deterministic, adaptive, and decision tree

The rest of this paper is organized as follows. Section 2
describes the method with detailed information of datasets
and ML techniques used. Section 3 describes the results.
The discussion is presented in Section 4 followed by the con-
clusions in Section 5.

2. Materials and Methods

2.1. Study Design and Eligibility. Our cohort included a total
of 2503 consecutive patients, who underwent cardiac **Rb
PET/CT for suspected CAD as part of their diagnostic pro-
gram between June 2010 and October 2019. Patients with
known CAD and patients with acute coronary syndrome
were excluded. A patient was considered to have known
CAD at the time of imaging based on a provided history of
previously diagnosed atherosclerotic coronary disease, his-
tory of myocardial infarction (chest pain or equivalent
symptom complex, positive cardiac biomarkers, or typical
electrocardiographic changes), history of percutaneous coro-
nary intervention, or history of coronary artery bypass graft-
ing. For patients undergoing more than one PET/CT study,
only the earliest procedure was considered. All patients were
part of ongoing prospective dedicated database [14]. This
study complies with the Declaration of Helsinki. The review
committee of our institution approved this study (Ethics
Committee, University Federico II, protocol number 110/
17), and all patients gave informed consent.

2.2. Clinical Definitions. Chest pain was classified according
to the American College of Cardiology/American Heart
Association 2002 guideline update on exercise testing [15].
Patients were considered as having diabetes if they were
receiving treatment with oral hypoglycemic drugs or insulin.
A family history of premature CAD was defined as a diagno-
sis of CAD in a first-degree relative prior to or at 55 years of
age. Hypertension was defined as a blood pressure > 140/90
mm Hg or use of antihypertensive medication. Hyperlipid-
emia was defined as total cholesterollevel > 6.2 mmol/L or
treatment with cholesterol lowering medication. Smoking
history was defined as prior or current tobacco use. Body
mass index (BMI) was dichotomized with cut-off to 30,
according to obesity definition.

2.3. PET/CT Imaging. As a routine preparation for *’Rb car-
diac PET/CT, patients were asked to discontinue taking
methylxanthine containing foods or beverages for 24 hours.
Scans were acquired using a Biograph mCT 64-slice scanner
(Siemens Healthcare). Rest and stress cardiac PET/CT



Computational and Mathematical Methods in Medicine

g
z 8 =
- g £
2z 2 2 -
£ 5 & £ 2 5 £
TP 5 £ 2 &L , & B OE
g A & A £ £ &2 & 8 & 1
Chestpain 001 0.12 0,05 -0.03 -0.06 ~0.03 ~0.09 ~0.03 -0.06 0
0.8
Family history ~ 0.15 0.06 -0.05 -0.01 0.03 -0.13 0 -0.08 0.2
0.6
Diagnostic question 008 ~0.1 -0.14 ~0.04 ~0.09 0.04 ~0.06 ~0.06
L 0.4
Body massindex 011 0.09 0.08 -0.05 0.03 -0.13 -0.05
L 02
Diabetes 0.18 022 0.04 0.03 006 -0.05
Lo
Hypertension 022 019 0.13 0.08 -0.01
L 0.2
Hyperlipidemia 0.15 0.04 0.03 0.03
L 0.4
Age 013 0.02 -0.04
L 0.6
Dyspnea 001 0.07
~08
Gender 0.12
-1

FiGurek 1: Correlation matrix of the features used. The matrix elements are displayed in hierarchical clustering order. The numbers indicate
the Spearman p coefficient between two features.
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F1GURE 2: Importance of the features for each ML algorithm. ADA, AdaBoost, and Naive Bayesian features importance were grouped into a
single bar plot as the values for the two adaptive algorithms turned out to be equals, and Naive Bayesian values differed with them by less

than 5%.

images were acquired as follows: scout CT was performed to
check patient position, and low-dose CT (0.4 mSv; 120 kVp;
effective tube current, 26 mA [11-mAs quality reference]; 3.3
seconds) was performed for attenuation correction, during
normal breathing before and after PET acquisitions. For

both rest and stress images, 1110 MBq of **Rb was injected
intravenously with a 7-minute list-mode PET acquisition.
Dynamic PET acquisition was started at rest followed by
adenosine pharmacologic stress (140 ug x kg™' x min™! for
4.5 minutes, with tracer administration between 2 and 2.5
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TaBLE 2: Values used for tuning of parameters for each ML technique.
Parameter Parameter space Chosen value
Number of trees 10, 25, 50, 100, 200 25
ADA Max tree depth 5, 10, 20, 50 10
Learning rate 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 0.01
Number of trees 10, 25, 50, 100, 200 50
AdaBoost
Method AdaBoost.M1, real AdaBoost AdaBoost.M1
Logistic Family Binomial Binomial
Laplace correction 0, 0.5, 1.0 0
Naive Bayes Distribution type (kernel) True, false False
Bandwidth adjustment 0.01, 0.05, 0.1, 0.5, 1.0 0.1
Random Forest Number of randomly selected predictors 3,5, 10, 20 10
Minimum number of observations in a node 10, 15, 30 15
Roart Minimum number of observations in any leaf node 3,5,10 5
ar
P Max tree depth 3,5, 10, 20 10
Complexity parameter of the tree 0.0001, 0.001, 0.01, 0.1 0.001
Kernel Linear, radial, sigmoid Sigmoid
SVM Parameter needed for sigmoid 0.05, 0.1, 0.25, 0.5 0.1
Cost 0.5,1,2,5 1
Number of trees 25, 50, 100, 200 100
Max tree depth 5, 10, 20 10
XGBoost .
Learning rate 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 0.01
Subsamples 0.5,0.75, 1 1
TABLE 3: Metrics obtained from the ML techniques, evaluated on training/test and validation approaches.
Training/test (n =2003) Validation (1 = 500)
Accuracy Sensitivity Specificity AUROC Accuracy Sensitivity Specificity AUROC
(%) (%) (%) (%) (%) (%) (%) (%)
ADA 88 48 97 90 76 26 89 68
AdaBoost 89 67 95 95 71 23 87 66
Logistic 80 5 98 72 80 7 98 75
Naive Bayes 77 23 91 70 80 27 92 73
Random 89 51 98 93 75 21 89 65
Forest
Rpart 82 27 96 75 76 17 91 70
SVM 72 13 87 61 77 21 91 65
XGBoost 83 27 97 83 77 18 92 69

minutes). Rest and stress dynamic images were recon-
structed into 26-time frames (12 x 5seconds, 6 X 10
seconds, 4 x 20 seconds, and 4 x 40 seconds; total, 6 minutes)
using the vendor standard ordered subsets expectation max-
imization 3D reconstruction (2 iterations, 24 subsets) with
6.5mm Gaussian postprocessing filter. In addition, the
images were corrected for attenuation using the low-dose
CT. The heart rate, systemic blood pressure, and 12-lead
ECG were recorded at baseline and throughout the infusion
of adenosine. An automated software program (e-soft, 2.5,
QGS/QPS, Cedars-Sinai Medical Center, Los Angeles, CA)

was used to calculate the scores (summed stress score,
summed rest score, and summed difference score) incorpo-
rating both the extent and severity of perfusion defects,
using the standardized segmentation of 17 myocardial
regions [16, 17]. A summed difference score > 2 was consid-
ered ischemic.

2.4. Statistical Analysis. Statistical analysis was performed
using the R software, version 3.6.2 (The R Foundation for
Statistical Software, Vienna, Austria). Two-sided P values
<0.05 were considered statistically significant. The dataset
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F1GURE 3: Comparison among the ROC curves of the eight ML techniques considered. The ML performances are reported separately for the
training/test approach (a) and validation approach (b). Parenthesis are reported the AUROC values.

consisted of 11 features, of which 10 demographic or clinical
variables (age, gender, BMI, typical or atypical chest pain,
diabetes mellitus, dyspnea, family history, hypertension,
hyperlipidemia, smoking), and the diagnostic question with
two categories: diagnostic or presurgery evaluation. Age
and BMI continuous variables were categorized (<55, 55-
65, >65 years, and BMI < 30); then, all data were expressed
as percentages. Differences between groups were analyzed
by x* test. The correlation among features was tested by
Spearman p coeflicient, embedded in the corrplot package.
This nonparametric test is appropriate to evaluate the corre-
lation between categorical variables and to find redundant
features. Data in input to ML algorithms were normalized.
Sensitivity, specificity, and accuracy were computed using
the confusionMatrix function embedded in the caret pack-
age. Sensitivity evaluated how good a ML is for detecting
the positive patients (i.e., ischemic according to MPI results),
and its numeric value was obtained by ratio between the
number of patients correctly assessed as positive by ML
and the number of positive patients. Specificity evaluated
the negative patients (i.e., normal according to the MPI
results), and it was calculated by ratio between the number
of patients correctly assessed as negative by ML and the
number of negative patients. Accuracy measured how cor-
rectly a ML identified and excluded a given condition, and
it was obtained from the ratio between the number of

patients correctly assessed by ML and the total number of
patients. Receiver operating characteristic curve is a graphic
presentation of the relationship between sensitivity and
specificity, whereas the area under this curve provides a
measurement of the correct evaluation of ML with respect
a random classifier. The areas under the receiver operating
characteristic (AUROC) curves were computed by the pROC
package.

2.5. ML Techniques. For the comparison presented in this
study, we selected supervised ML algorithms, appropriate
to categorical data for a binary response. We used the algo-
rithms developed in R. ADA is a classification tree based on
adaptive algorithms, used to fit a variety stochastic boosting.
This algorithm can be used in conjunction with other types
of learning procedures to improve performance. The output
of these procedures, called weak learners, is combined into a
weighted sum that represents the final output of the boosted
classifier [18]. AdaBoost is a classifier similar to ADA, differ-
ing from this for the AdaBoost.M1 algorithm implemented
by Freund and Schapire [19]. Logistic algorithm used in this
study is a part of generalized linear models [20]. This classi-
fier was chosen as a reference because adopted in clinical sta-
tistical analysis, with categorical or numerical data and
dichotomous response. The equation assumed a linear rela-
tionship between the predictor variables x; and the log odds
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FIGURE 4: Decision tree obtained by rpart algorithm. Each node or leaf is reported the prevalence concerning MPI outcome (nor: normal;
isch: ischemic), the ratio between the number of prevalent and total patients, and the relative percentage.

(in term of probability p) of the event, as follows:

P

L - 1)

log

Then, the f3 coefficients are determinates, with 3, represent-
ing the particular case with all variables equal to zero. The
Naive Bayes is a probabilistic classifier based on the Bayes’
theorem. This algorithm requires a strong (naive) indepen-
dence assumption between the features [21]. Random Forest
is an algorithm based on an ensemble learning method for
classification and regression that operate by constructing a
multitude of decision trees at training time. The procedure
returns as output the class that is the mode of the classes
(for classification) or average prediction (for regression) of
the individual trees [22]. Rpart is a decision tree algorithm
that works by splitting in two parts the dataset recursively.
For each step, the split is obtained considering the feature
that results in the largest possible reduction in heterogeneity
of the outcome variable [23]. Support vector machine (SVM)
is an algorithm that constructs hyperplanes in a high-
dimensional space, which can be used for classification and
regression [24]. SVM is a robust prediction method that
can efficiently perform nonlinear classifications, by appro-
priate kernels. XGBoost is a scalable end-to-end tree boost-

ing method, based on a sparsity-aware algorithm for sparse
data and weighted quantile sketch for approximate tree
learning [25].

2.6. Approaches Used for the ML Evaluation. To testing the
ML performances, the data were split randomly into two
parts: training/test (80%) and validation (20%). For the
training/test of data, we applied a 5-fold cross-validation
method, repeated 2 times. With this subset, we performed
the tuning of free parameters for each algorithm. For both
training/test and validation, we computed accuracy, sensitiv-
ity, specificity, and AUROC.

2.7. Hardware and Software Characteristics. For this study,
we used a common personal computer equipped with a
2.2 GHz Intel i3-2330 quad-core processor, 8 GB of RAM,
and a 0.5TB SSD. The operating system was a Windows
10, whereas the scripts in R programming code were
obtained developing inhouse software.

3. Results

Demographic and clinical characteristics of study population
according to normal or ischemic MPI response are summa-
rized in Table 1. All features, except BMI and smoking, were
statistically significant to x* test.
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Figure 1 shows the Spearman correlation coefficients
matrix of features. All the found absolute values were
<0.25, highlighting only weak correlations among features.
The cluster with higher correlation among features was
obtained by diabetes, hypertension, and hyperlipidemia
(p=0.22). The very low correlation values demonstrated
the absence of redundant features.

Figure 2 reports the feature importance for each algo-
rithm. We observed the same feature importance values for
ADA and AdaBoost algorithms, whereas small differences
(<5%) were found between these procedures and the Naive
Bayes ML. Therefore, we reported a unique bar plot for these
three algorithms. In general, the most important features
were age and gender, followed from diabetes or chest pain.
We also observed relevant differences among features
importance of most of ML algorithms, except for the two
adaptive and Naive Bayesian algorithms. In fact, for these
three algorithms, the importance values were comprised
between 0.50 and 0.65, whereas for the logistic algorithm,
we obtained larger interval of values from 0.001 to 0.93.

Table 2 summarizes the space parameters and the value
chosen for the tuning of ML. Parameters were tested using
a 5-fold cross-validation, repeated 2 times, targeted to max-
imize the C-index. Among all tested setting for each algo-
rithm, we chose the combination with higher sensitivity to
balance the result performances.

Table 3 shows the C-statistics results of the ML algo-
rithms, for training/test and validation approaches. In gen-
eral, the performances in training/test approach were better
than of the validation approach. Due to unbalanced dataset,
specificity resulted greater than sensitivity. For all metrics,
the best performance in training/test was observed for Ada-
Boost ML. The Naive Bayes ML resulted to be more efficient
in validation approach. ML based on traditional logistic
algorithm showed a low sensitivity and similar performance
for the training/test and validation approaches. Figure 3
shows a graphical comparison among the ROC curves of
the ML algorithms, for both training/test and validation
approaches.

Figure 4 shows the tree generated from the rpart algo-
rithm. To make the decision tree easier to read, the max
depth was fixed to 5. The first spit was on age and for youn-
ger patients (<65 years), without any node until the terminal
leaf, where a prevalence of normal MPI of 86% was
observed. For older patients (>65 years), the algorithm cal-
culated the gender node, with a percentage of normal MPI
of 70%. The split in this node, related to the female gender,
was followed by diabetes, chest pain, and family history of
CAD.

4. Discussion

At best of our knowledge, this is the first study comparing
the value of several ML algorithms in predicting the pres-
ence of stress-induced ischemia by **Rb PET/CT cardiac
imaging. We selected eight ML algorithms based on their
clinical use and on the fact that they are representative of
different classes of algorithms, such as deterministic (e.g.,
SVM), adaptive (e.g., ADA), and decision tree (e.g., rpart).

The results indicate that by adaptive (ADA and AdaBoost)
and Random Forest algorithms, AUROC curve was >90%
in training/test phase.

As input features for the ML algorithms, we considered
demographic data and traditional cardiac risk factors. No
significant correlations were detectable between variables, a
necessary condition for features selection in ML techniques
and for data processing. The feature importance is an impor-
tant step for ML techniques. In our study aside from demo-
graphic characteristics, diabetes and chest pain resulted to be
the most useful features for predicting stress-induced ische-
mia by PET/CT. This result confirms another study based on
SPECT, where the feature importance, obtained by logistic
regression, was the following: gender, age, and chest pain
[26]. Noteworthy, features (BMI and smoking) showing
not significant y? statistic resulted relevant at ML analysis.
Indeed, ML algorithms may capture the subtle value of fea-
tures apparently not significant at conventional analysis.

The ML algorithms showed a variable accuracy (72%-
89%) by training/test phase, with low sensitivity and high
specificity. This latter finding probably reflects the unbal-
anced dataset between normal and abnormal MPI and is in
agreement with the observation that, in the contemporary
pretest probability of CAD, noninvasive imaging tests have
greater ruling out that ruling in capabilities [12]. Also, the
AUROC values were very wide (61%-95%), with better per-
formances for ADA, AdaBoost, and Random Forest. By
these ML algorithms, we obtained the greater values of sen-
sitivity. However, these better performances were lower in
the validation set, probably due to the ensemble of weakly
solutions and a high number of decision trees elaborated
during the training/test phase for each of the three ML algo-
rithms. For XGBoost, we observed a similar performance to
these three algorithms, but a lower sensitivity. The Naive
Bayes and SVM resulted to have more generalized perfor-
mances by the two approaches, with lightly better results
by validation phase. The logistic and rpart algorithms
showed similar metric values for the training/test and valida-
tion approaches.

The logistic technique, taken as a reference, did not
result particularly performant with respect to the other ML
algorithms. In particular, the value of sensitivity was the low-
est, probably explainable with the unbalanced dataset. How-
ever, the AUROC resulted higher with respect to a similar
study (AUROC=64%) based on clinical risk factors,
single-photon emission computed tomography imaging,
and logistic regression [10].

As an example of a tool for decision-making, we
reported the tree obtained by rpart. From a graphic point
of view, it is immediate to verify the effect of age and gender
on the construction of the decision tree. For younger
patients, there is a prevalence of normal MPI, without fur-
ther ramifications. Otherwise, a gender split is observed,
followed in both cases by the split of diabetes and chest pain,
with a larger complexity for the male gender.

Previous studies used ML algorithms in cardiology [27],
but at the best of our knowledge, no study evaluated this
approach to estimate the pretest probability of an ischemic
response to PET/CT. In a study based, an XGBoost ML



was developed in a large series of symptomatic patients to
predict pretest probability of obstructive CAD on coronary
computed tomography angiography. The ML model had
significantly higher discrimination (AUROC=81%), as
compared to traditional models, with a good sensitivity
(91.9%) but a low (38.8%) specificity. This study was used
a 10-fold cross-validation approach but and no indepen-
dent validation dataset [28]. In another study [29], a
SVM algorithm was used to determine the diagnostic
value of joint PET myocardial perfusion and metabolic
imaging for predicting obstructive coronary artery disease
in symptomatic patients with available coronary angiogra-
phy. The study included only 88 patients, most of them
with known CAD. The joint PET evaluation improves
had a good performance (AUROC =86%), and the SVM
algorithm outperformed the other methods evaluated. In
a study [30], including a total of 16,120 patients, ML
improved one-year risk discrimination in predicting dura-
ble left ventricular assist devices as compared to logistic
regression (C-index 71% vs. 69%, P < 0.001); however, cal-
ibration metrics were comparable. Globally, these studies
confirm limited value of current clinical models to accu-
rately predict the presence of myocardial ischemia at stress
MPI [31].

5. Conclusions

The results of this study performed in a large series of
patients with suspected CAD demonstrate that the classifica-
tion based on demographic and cardiovascular risk factors
has a limited value in validation phase for predicting an
ischemic response by ®*Rb PET/CT in patients with sus-
pected CAD. We selected eight ML algorithms that are
implemented by different software packages and can be used
by other researchers on their MPI data. Other ML algo-
rithms, such as monarch butterfly optimization [32], earth-
worm optimization algorithm [33], elephant farming
optimization [34, 35], moth search algorithm [36], slime
mould algorithm [37], and Harris hawks optimization [38],
can also be used to predict stress-induced ischemia by MPI
and should be tested in future studies. In conclusion, the role
of other clinical and instrumental characteristics, as well as
developing and perfecting more complex algorithms to
improve the prediction of stress-induced ischemia by MPI,
remains a work in progress.
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Objective. Several discriminating techniques have been proposed to discriminate between p-thalassemia trait (3TT) and iron
deficiency anemia (IDA). These discrimination techniques are essential clinically, but they are challenging and typically
difficult. This study is the first application of the Bayesian tree-based method for differential diagnosis of STT from IDA.
Method. This cross-sectional study included 907 patients with ages over 18 years old and a mean (+SD) age of 25+ 16.1 with
either BTT or IDA. Hematological parameters were measured using a Sysmex KX-21 automated hematology analyzer. Bayesian
Logit Treed (BLTREED) and Classification and Regression Trees (CART) were implemented to discriminate STT from IDA
based on the hematological parameters. Results. This study proposes an automatic detection model of beta-thalassemia carriers
based on a Bayesian tree-based method. The BLTREED model and CART showed that mean corpuscular volume (MCV) was
the main predictor in diagnostic discrimination. According to the test dataset, CART indicated higher sensitivity and negative
predictive value than BLTREED for differential diagnosis of STT from IDA. However, the CART algorithm had a high false-
positive rate. Overall, the BLTREED model showed better performance concerning the area under the curve (AUC).
Conclusions. The BLTREED model showed excellent diagnostic accuracy for differentiating STT from IDA. In addition,
understanding tree-based methods are easy and do not need statistical experience. Thus, it can help physicians in making the
right clinical decision. So, the proposed model could support medical decisions in the differential diagnosis of STT from IDA
to avoid much more expensive, time-consuming laboratory tests, especially in countries with limited recourses or poor health
services.

overload and related complications caused by misdiagnosis
and inaccurate treatment [2].
Differentiation of S-thalassemia trait from iron defi-

Iron deficiency anemia (IDA) and f3-thalassemia trait (ST'T)
are the two most common hypochromic microcytic anemia.
BTT is more prevalent in the Mediterranean region, in specific
geographical areas, including the Caspian Sea and Persian
Gulf regions; the 10% prevalence was reported [1]. The differ-
ential between BTT from IDA is crucial for preventing iron

ciency anemia is also essential for premarital counseling in
developed countries; for patients with microcytic anemia,
complete blood count (CBC), in conjunction with hemoglo-
bin variant analysis by high-performance liquid chromatog-
raphy (HPLC), is interpreted to differentiate iron deficiency
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from thalassemia traits. Then, iron studies and molecular
testing are also performed. Hemoglobin electrophoresis,
serum iron, and ferritin levels are considered to make a
definitive differential diagnosis between STT and IDA [3-5].

However, in low-resource settings where HPLC and molec-
ular testing are not available, different studies proposed dis-
crimination indices to distinct between STT and IDA. These
indices have been defined to quickly discriminate between
IDA and BTT and avoid more time-consuming and expensive
methods. Mentzer [3], Shine and Lal [4], England and Fraser
[5], RBC [6], Srivastava and Bevington [7], Ricerca et al. [8],
Green and King [9], Bessman and Feinstein (RDW) [10],
Gupta et al. [11], Jayabose et al. (RDWI) [12], Telmissani-
MCHD [13], Telmissani-MDHL [13], Huber-Herklotz [14],
Kerman I [15], Kerman II [15], Sirdah et al. [16], Ehsani et al.
[17], Keikhaei [18], Nishad et al. [19], Wongprachum et al.
[20], Dharmani et al. [21], Pornprasert et al. [22], Sirachainan
et al. [23], Bordbar et al. [24], Matos et al. [25], Janel (11T)
[26], CRUISE Index [27], and Index26 [27] are all hematolog-
ical discrimination indices used for discriminating between the
IDA and the BTT. However, these indices were obtained
empirically and have an inconsistent performance for differen-
tial diagnosis of STT and IDA in the same patient [28]. On the
other hand, sometimes, the same indices showed different dis-
crimination power in varied age groups [29, 30].

Recently, the accessibility of powerful statistical software
has provided data mining techniques for health-related data.
Many studies have proposed advanced statistical methods
and data mining techniques such as decision tree methods
[31] for differential diagnostic between STT and IDA to avoid
much more expensive, time-consuming, and complicated
laboratory procedures and nonsatisfactory hematological indi-
ces in discriminating between BTT and IDA [32-38]. [32,
35-39]. Urrechaga, Aguirre, and Izquierdo [39] used multivar-
iable discriminant analysis for differential diagnosis of micro-
cytic anemia. Wongseree et al. [37] implemented neural
network and genetic programming for thalassemia classifica-
tion. Dogan and Turkoglu [35] proposed a decision tree for
detecting iron deficiency anemia from hematology parameters.

Jahangiri et al. [32] used classic decision-tree-based
methods for constructing a differential diagnosis scheme and
investigating the performance of several tree-based methods
for the differential diagnosis of BTT from IDA. Decision trees
have advantages over traditional statistical methods like dis-
criminant analysis and generalized linear models (GLMs).
The main advantage of tree-based methods is a tree structure
that makes it easy to interpret the clinical data and be accepted
by medical researchers and clinicians. CART is one of the best-
known classic tree algorithms. However, this algorithm suffers
from some problems such as greediness, instability, and bias in
split rule selection. Bayesian tree approaches were proposed to
solve the greediness of the CART algorithm. The greedy search
algorithm has disadvantages such as limit the exploration of
tree space, the dependence of future splits to previous splits,
generate optimistic error rates, and the inability of the search
to find a global optimum [40]. Also, the Bayesian approaches
can quantify uncertainty and explore the tree space more than
classic tree approaches. Bayesian approaches combine prior
information with observations, unlike classic tree methods
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(these methods use only observations for data analysis). The
Bayesian approaches define prior distributions on the compo-
nents of classic tree methods and then use stochastic search
algorithms through Markov Chain Monte Carlo (MCMC)
algorithms for exploring tree space [41-47]. So, in the last
two decades, many studies have developed Bayesian Treed
Generalized Linear Models. These models fit a parametric
model such as GLMs instead of using constant models in each
tree node. So, these treed algorithms create smaller trees than
tree models and improve the tree’s interpretation [43].

This paper aims to compare the Bayesian Treed General-
ized Linear Models and CART for the differential diagnosis
of BTT from IDA based on simple laboratory test results.
The outcome variable of the present study is qualitative, so
we must use the Bayesian Logit Treed (BLTREED) algo-
rithm for discrimination between these two disorders. This
Bayesian treed model fits the logistic regression model in
each tree node for data prediction and uses the Metropolis-
Hastings algorithm for exploring tree space.

2. Material and Methods

2.1. Criteria for Selecting Patient Groups. In this study, a total
of 907 patients aged over 18 years old diagnosed with IDA
(n=370) or STT (n=>537) were selected. The mean (+SD)
age of the patients was 25 + 16.1 years. Most of the patients
(n=592 (65%)) were women, and 315 (35%) were men.
CBC analysis of EDTA-K2 anticoagulated blood samples
was performed using the Sysmex KX-21 automated hema-
tology analyzer (Japan) to measure differential parameters.
Hematological parameters like hemoglobin (Hb), mean cor-
puscular volume (MCV), mean corpuscular hemoglobin
(MCH), Red Blood Cell Distribution Width (RDW), Mean
Corpuscular Hemoglobin Concentration (MCHC), and
Red Blood Cell count (RBC) were measured for all patients.

2.2. Inclusion Criteria. In the IDA group, patients had hemo-
globin (Hb) levels less than 12 and 13 g/dl for women and
men, respectively. Mean corpuscular hemoglobin (MCH)
and mean corpuscular volume (MCV) were below 80fl and
27 pg for both sexes, respectively, and for men, ferritin of
<28ng/ml was considered as IDA. In the STT group,
patients had an MCV value below 80fl. Patients with
HbA2 levels of >3.5% were considered as STT carriers.

2.3. Exclusion Criteria. In the IDA group, the patients who had
mutations associated with «TT (3.7, 4.2, 20.5, MED, SEA,
THAI, FIL, and Hph) were excluded. For the STT group,
patients with «TT confirmed by mutations in the molecular
analysis were excluded. All patients with malignancies or
inflammatory/infectious diseases were also excluded.

2.4. Ethical Consideration. This study was approved and
supported by the Ethical committee affiliated with the Ahvaz
Jundishapur University of Medical Sciences (AJUMS), Ahvaz,
Iran. Written informed consent was filled before the enrollment.

2.5. Machine Learning Analysis. Tree-based machine-learning
methods are valuable tools in data mining techniques. These
methods empower predictive models and could provide a



Computational and Mathematical Methods in Medicine

solution for constructing the diagnostic test with high accu-
racy [48, 49]. Tree-based models do not need any assumptions
about the functional form of the data.

One of the advantages of these methods is the graphical
presentation of results that make them easy to interpret and
no need for statistical experience for the understanding result
of models [50-53]. Tree-based models also were constructed
based on Bayesian algorithms. Chipman et al. proposed the
Bayesian approach of the CART model (BCART) with defin-
ing a prior distribution. Chipman et al. also developed the
Bayesian Logit Treed (BLTREED) model as an extension of
BCART. The BLTREED model fits a logistic regression model
for data prediction in the terminal nodes [43, 54].

2.5.1. Bayesian Logit Treed (BLTREED) Model. The Bayesian
approach (BCART) was implemented by using a prior distri-
bution on the two components (®, T) of the CART model; T
is a binary tree with % terminal nodes or tree with size %,
and ®=(0,,0,,---,04) is the parameter set in the terminal
nodes (0;=p;;, i=1,---,#,j=1,--,N: the number of dis-
tinct classes of the response variable and p;; shows the prob-

ability of the jth class of response variable in ith terminal
node). The joint posterior distribution of parameters and
tree structure was as the following equation:

p(©,T)=p(®[T)p(T), (1)

where p(T) and p(® | T) show the prior distributions for
tree and parameters in terminal nodes, respectively.

Usually, the Bayesian approach defines prior distributions
as unknown; so, tree structure and parameters in terminal
nodes were considered unknown [42]. BCART was extended
by fitting a parametric model such as a logistic regression
model for data prediction and describing the conditional
distribution of Y|Xin each terminal node [43, 54]. In the
BLTREED model, the conditional distribution of Y|X, unlike
the BCART model, depends on X (Y | X ~ f(Y |X,0,)) and
also by fitting sophisticated model at terminal nodes (by fitting
logistic regression model for data prediction in each terminal
node), smaller trees and more interpretable were generated.
In the BLTREED model, one subset of X can be used to
generate the tree and other subsets were used to fit models
in terminal nodes (these subsets can be joint and/or disjoint).
In the Bayesian approach, 6; = B; shows the regression coeffi-
cients for the logistic model fitted in an ith terminal node.

The recursive stochastic process using a tree-generating
stochastic process for tree growing (p(T')) is as follows [42, 43]:

(1) Start from T that has only a root node (terminal
node #)

(2) Calculate the probability for splitting node # as follows:

Po=a(1+d,) ", (2)

where d, is the depth of the node #, « is the base proba-
bility of tree growth of splitting a node, and f is the rate that

TaBLE 1: Comparison between hematological parameters of study
groups using the Mann-Whitney U test (data are presented as
median (IQR)).

BTT IDA »
(n=537) (n=370)
MCV (fl) 62 (5.4) 72.2 (9.7) <0.001
MCH (pg) 19.6 (1.8) 21.9 (4.2) <0.001
Hb (g/dl) 11 (1.6) 10.5 (2.6) <0.001
RDW (%) 15.7 (1.7) 15.7 (3.3) 0.94

determines the propensity to split decreases with increased
tree size.

Actually, aand 3 are parameters that control the shape
and size of trees, and these parameters provide a penalty to
avoid an overfitting model

(3) If the node # splits into left and right nodes accord-
ing to the distribution of ppyr(pl#, T), then let T
as the newly created tree from step 3 and reapply
steps 2 and 3 to the new children nodes

The BLTREED model was fitted based on standardized
data. So, the same prior distribution can be used indepen-
dently for parameters in the terminal nodes, and they were
considered a multivariate normal distribution with zero mean
and variance matrix proportional to the identity for these
parameters [43, 54].

Posterior distribution function p (T|X,y) was com-
puted by combining the marginal likelihood function p (Y
| X, T) and tree prior p (T) as follows:

P(T|X,y) ocp(y 1 X, T)p(T). (3)

In this study, no informative priors were considered. The
priors were uniform on variables at a particular node, and all
possible splits for variables.

Where p (Y | X, T) is as follows:

P(Y|X,T)= Jp(le,@,T)p(@I T)do®
(4)

F

| Lot Bop B a5,
1 h=1

which p(y | X, ©,T), (y;,, x;), and n; show the data like-
lihood function, observed values for hth observation in ith
node, and the number of observations in ith node, respec-
tively. The integral of equation four has no closed form, so
the Laplace approximation was used to solve it [43, 54].

Chipman et al. [42, 43] utilize a Metropolis-Hastings
algorithm to simulate equation (3) for finding trees with
the high posterior distribution. The Metropolis-Hastings
algorithm simulates a Markov chain sequence of trees,
namely, T°, T*, T, ---.

The simulation algorithm was implemented with multi-
ple restarts for reasons mentioned in Chipman et al. [42, 43].
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FIGURE 1: The tree structure of the CART algorithm based on the Gini index (blue terminal node: STT and yellow terminal node: IDA).
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F1GURE 2: The tree structure of the CART algorithm based on the entropy index (blue terminal node: BTT and yellow terminal node: IDA).

2.5.2. Classification and Regression Trees (CART). Breiman
et al. proposed the CART model [55]. The CART algorithm
generates a tree using a binary recursive partitioning, and
the tree-generating process contains four steps: (1) tree
growing: tree growth is based on a greedy search algorithm,
and this algorithm generates a tree by sequentially choosing
splitting rules. The CART algorithm uses traditional split-

ting functions for choosing splitting rules (entropy and Gini
index). (2) Tree-growing process continues until none of the
nodes can split. (3) Tree pruning: this tree algorithm uses the
cost-complexity pruning method for tree pruning to avoid
overfitting. This pruning method generates a sequence of
pruned trees, and each tree in this sequence is an extension
of previous trees. (4) Best tree selection: CART uses an
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independent test dataset or cross-validation to estimate the
prediction error of each tree and then selects the best tree
with the lowest estimated prediction error.

2.6. Data Analysis. The BLTREED model and classic CART
algorithm based on the two splitting functions like entropy
and Gini index (after that, we named the CART method-
based Gini index as CART1 and CART method-based
entropy as CART2) were fitted by using predictor variables
such as hemoglobin (Hb), mean cell volume (MCV), mean
cell hemoglobin (MCH), and red cell distribution width
(RDW) for differential diagnosis of STT from IDA.

The BLTREED model fitted using eight restarts with
6000 iterations per restart and a prior standard deviation
of 20 for the logit coefficients [54]. For determining the pair
of (a, ), the BLTREED model was fitted with two choices,
0.5 and 0.95 for the « parameter, and four choices for f (a
range 0.5-2 by step 0.5), then select the pair of («, ) that
generate the best tree with smallest FNR.

Based on the acceptable method of cross-validation in
machine learning studies, for assessing the performance of
the three models, the dataset was split randomly in the ratio
2:1 into a training and a test dataset, respectively, using a
stratified random sample to ensure equal allocation of pres-
ences and absences (for a classification tree). The model was
then fit to the training dataset, and the set of the best trees
was determined. For each tree, the posterior predictive dis-
tribution was computed for both the training data and the
test dataset; this was implemented for each iteration of the
BLTREED algorithms, thus incorporating the uncertainty
of the model parameters and the data in the evaluation of
models. Finally, the predictive performances were calculated
based on the confusion matrix of the posterior predictive
distribution for both the training and the test dataset [43,
47, 54, 56, 57].

Differential performance of the Bayesian classification tree
and CART was evaluated using criteria such as sensitivity
(TPR), specificity (TNR), false-negative rate (FNR) and false-
positive rate (FPR), positive predictive value (PPV) and nega-
tive predictive value (NPV), positive likelihood ratio (PLR)
and negative likelihood ratio (NLR), accuracy, Youden’s index,
and the area under the curve (AUCROC). AUCROC repre-
sents the degree of separate ability showing how much the
machine learning model can distinguish between the classes
(IDA and BTT); actually, it is a global measure of diagnostic
accuracy. A perfect classification algorithm has an AUCROC
= 1. The interpretation of the AUCROC is described as fol-
lows: AUCROC > 0.9: excellent differentiation, AUCROC >
0.8: very good differentiation, AUCROC > 0.7: good differenti-
ation, AUCROC > 0.6: sufficient differentiation, AUCROC >
0.5: bad differentiation, and AUCROC < 0.5: classification
method is not useful for discriminating between IDA and
TT [58, 59]. Criteria such as Youden’s index, accuracy, PLR,
NLR (an excellent diagnostic test has NLR < 0.1and PLR >
10), and AUC take both sensitivity and specificity into consid-
eration, so that can present the performance of the model more
accurately than other criteria. In addition, AUC values were
compared using DeLong et al. method [60]. A P value < 0.05
was considered a statistically significant difference.

FIGURE 3: Decision tree for the BLTREED model (¢ =0.95, f=1,
Log integrated likelihood = 123.43) (blue terminal node: STT and
yellow terminal node: IDA).

TaBLE 2: Confusion table of the BLTREED model and CART
algorithm for training dataset and test dataset.

Disease

Dataset  Algorithm TP FP FN TN (TP+TN)
status
BIT 363 25 13 234
BLTREED 597
IDA 234 13 25 363
. BIT 366 46 10 213
Training CART1 579
IDA 213 10 46 366
BTIT 358 23 18 236
CART?2 594
IDA 236 18 23 358
BIT 155 8 6 103
BLTREED 258
IDA 103 6 8 155
BTT 160 33 1 78
Test CART1 238
IDA 78 1 33 160
BTT 159 12 2 99
CART2 258

IDA 99 2 12 159

2.7. Software. Data were analyzed by free software (http://
gsbwww.uchicago.edu.fac.robert.mcculloch.research.code
.CART.index.html) based on Chipman et al. (2002) that
was developed for fitting BLTREED model, R 3.0.3 used for fit-
ting CART algorithm (package rpart), computing performance
measures (package ePiR and package pROC), and splitting data
to training dataset and test dataset (package caTools).

3. Results

A total of 537 patients were diagnosed as STT with an aver-
age of age (£SD) 22 + 16.4 including 299 (56%) women and
238 (44%) men, while 370 patients (mean of age (+SD): 29
+ 14.6) were diagnosed as IDA including 293 (79%) women
and 77 (21%) men. Table 1 shows the median and interquar-
tile range (IQR) of laboratory parameters as predictor vari-
ables across the type of hypochromic microcytic anemia
(BTT and IDA).


http://gsbwww.uchicago.edu.fac.robert.mcculloch.research.code.CART.index.html
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TaBLE 3: Sensitivity (TPR), specificity (TNR), false-positive rate (FPR), false-negative rate (FNR), positive predictive value (PPV), negative
predictive value (NPV), accuracy, Youden’s index, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio
(DOR) of the BLTREED model in prediction of IDA and STT groups and their 95% exact confidence interval for training and test dataset.

BLTREED CART1 CART2
Accuracy measure Training dataset Test dataset Training dataset Test dataset Training dataset Test dataset
TPR 97 96 97 99 95 99
(94, 98) (92, 99) (95, 99) (97, 100) (93, 97) (96, 100)
TNR 90 93 82 70 91 89
(86,94) (86, 97) (77, 87) (61, 79) (87, 94) (82, 94)
3 4 3 1 5 1
R 26) (1,8) 1,5) 0,3) (3,7) 0, 4)
EPR 10 7 18 30 9 11
(6,14) (3, 14) (13, 23) (21, 39) (6,13) (6, 18)
PPV 94 95 89 83 94 93
(91, 96) (91, 98) (85, 92) (77, 88) (91, 96) (88, 96)
NPV 95 94 96 99 93 98
(91, 97) (88, 98) (92, 98) (93, 100) (89, 96) (93, 100)
Youden’s index 87 89 80 70 86 88
(80, 92) (78, 95) (72, 85) (57, 79) (80, 91) (77, 94)
Accurac 94 95 91 87 93 95
¥ (92,96) 91, 97) (89, 93) (83,91) (91, 95) (91, 97)
PLR 10 13.36 5.48 3.34 10.72 9.14
(7, 14) (7, 26) (4,7) 2,4 (7, 16) (5, 16)
NLR 0.04 0.04 0.03 0.01 0.05 0.01
(0.02, 0.07) (0.02, 0.09) (0.02, 0.06) (0, 0.06) (0.03, 0.08) (0, 0.06)

TaBLE 4: The area under ROC curve (AUC) of BLTREED and CART algorithms in the prediction of IDA and STT groups for training and

test dataset (SE: standard error of AUC; CI: confidence interval).

BLTREED CART1 CART2
Training dataset Test dataset Training dataset Test dataset Training dataset Test dataset
AUC 0.99 0.98 0.93 0.94 0.97 0.97
SE 0.003 0.009 0.011 0.015 0.006 0.011
95% CI (0.98, 0.99) (0.96, 0.99) (0.90, 0.95) (0.91, 0.97) (0.96, 0.99) (0.95, 1)
P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The tree structure of CART1, CART2, and BLTREED
models is shown in Figures 1-3, respectively. The first split of
the three methods of classification trees was based on MCV,
which showed that MCV has a higher importance value in dif-
ferentiation between the STT and the IDA. Another predictor
that was used as the second splitting variable in tree structure
was HB. According to the presented trees, the BLTREED
model produced a smaller tree size and was more interpretable
than the CART algorithm (Figures 1 and 2). This model
showed values of MCV <72.6 screening the STT patients.
The BLTREED model extracted four homogenous subgroups
for differentiating between the STT and the IDA (Figure 3).

The predictive performance of models in differentiation
between BTT and IDA was calculated based on the confusion
matrix (Table 2). The BLTREED model, CART1, and CART2
trees showed the high TPR, TNR, PPV, NPV, Youden’s Index,
and accuracy in differentiation between BTT and IDA
(Table 3). However, the BLTREED model had a higher accu-
racy and Youden’s index other than CART1 and CART2.

In addition, all the models have NLR < 0.1 that three clas-
sification tree algorithms have good diagnostic accuracy for
discriminating the patients. Table 4 shows the AUCs of the
three tree models from ROC analysis that were statistically
significant (P < 0.001) and revealed that all three classification
methods had an excellent diagnose accuracy (AUC>0.9:
excellent differentiation) in differentiation between the STT
and the IDA. In addition, Figure 4 displays the receiver oper-
ating characteristic curves of the BLTREED model, CART1,
and CART?2 algorithms for the test dataset, and the compari-
sons of AUC values between the models. According to the
exhibited figure, there was no significant difference between
the methods (P > 0.05).

4. Discussion

In this paper, we used the BLTREED model as the differen-
tial diagnostic tool for thalassemia diagnosis. In addition, we
compare the predictive performance of the BLTREED model
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FIGURE 4: Receiver operating characteristic curves of BLTREED
and CART algorithms in the prediction of IDA and STT groups
for test dataset.

as a Bayesian decision tree with the CART algorithm. It is
the first study that uses the BLTREED model in the hemato-
logical data.

The Bayesian decision tree was used to solve uncertain
problems of conventional tree-based methods [43, 54, 61].
This model was implemented by using Hb, MCV, MCH,
and RDW as independent variables.

Our dataset included 537 (59%) patients with STT and
293 (41%) patients with IDA. However, there was not any
degree of relative imbalance between the IDA and BTT clas-
ses. [62, 63].

Based on our result, MCV and Hb were the main predic-
tor parameters in differential diagnostic, and it showed that
the patient with STT has lower values of MCV.

In previous studies that used the different conventional
decision trees for differential diagnosis STT from IDA, the
first split of all algorithms was based on MCV. They also
concluded that MCV was a significant predictor variable in
the discrimination of IDA and STT [32, 36]. The perfor-
mance of the BLTREED model that was evaluated using
sensitivity, specificity, false-negative and positive rate, and
positive and negative predictive value exhibited the high per-
formance of the differential diagnosis of STT from IDA. In
addition, positive likelihood ratio, negative likelihood ratio,
accuracy, and Youden’s index showed that BLTREED has
good diagnostic accuracy for discriminating the patients. It
was indeed classified as 96% of BTT patients. Furthermore,
AUC as an overall performance index showed excellent
and significant accuracy (99, 98) in training and test data,
respectively, in differential diagnostic of BTT and IDA.
BLTREED has also generated a tree with a smaller size,
and it is more interpretable other than the CART algorithms
and indicated better diagnostic performance.

Our study has a limitation, which should be considered.
The investigated patients have included just IDA and STT
cases and excluded concomitant diseases and aTT cases.
Therefore, considering «TT patients in the study would
affect the performance of the presented models and changed
the interpretation of the result. Particularly when only sim-
ple hematologic parameters are used like in the present
study, it may be difficult to distinguish «TT from STT.

Other studies that used different data mining techniques
and decision trees based on the frequentist approach of fit-
ting revealed the high performance and accuracy but lower
than our result [32, 34-36, 38]. In many studies which had
imbalanced datasets, Oversampling Technique (SMOTE)
was applied for handling this problem [34, 64].

The BLTREED model improves the classification per-
formance by solving the uncertainty of previous models
[43, 54]. The diagnostic performance of the BLTREED
was better than other discrimination methods (classification
trees or hematological discrimination indices) in past stud-
ies for differentiating BTT from IDA. These studies are as
follows: Setsirichok et al. used a C4.5 decision tree, naive
Bayes (NB) classifier, and multilayer perceptron (MLP)
for classifying eighteen classes of thalassemia abnormality
[38]. Bellinger et al. used classification algorithms like the
J48 decision tree, support vector machines (SVM), k-near-
est neighbors (k-NN), MLP, and NB for differentiating
between BTT, IDA, and cooccurrence of these disorders.
In this study, the imbalanced dataset was a cause for the
weaker performance [34]. AlAgha et al. compared the diag-
nostic performance of different classification algorithms
such as J48, k-NN, artificial neural networks (ANN), and
NB for classifying [3-thalassemia carriers. They showed that
SMOTE helped decrease the problem of highly imbalanced
class distribution and consequently improved the predictive
performance [64]. Jahangiri et al. utilized classification tree
algorithms such as CHAID, E-CHAID, CART, QUEST,
GUIDE, and CRUISE for differential diagnosis of STT from
IDA. They indicated that the CRUISE algorithm has the
best diagnostic performance similar to the present study,
but this classic algorithm uses the greedy algorithm for tree
generating and cannot explore the tree space more than the
Bayesian tree approaches. Also, many studies compared the
diagnostic performance of hematological discrimination
indices, and BLTREED showed better performance in com-
parison to them [16-19, 23, 25-30, 65-80].

5. Conclusion

In the present study, the BLTREED model showed excellent
diagnostic accuracy for differentiating BTT from IDA.
According to the advantages of Bayesian tree-based methods
like generating a small and more interpretable tree, and lack
of uncertainty of different conventional decision trees, this
method can be helpful along with other laboratory parame-
ters for discriminating between these two anemia disorders.
Also, understanding tree-based methods are easy and do not
need statistical experience. So, it can help physicians in mak-
ing the right clinical decision.
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We compared the prognostic value of myocardial perfusion imaging (MPI) by conventional- (C-) single-photon emission
computed tomography (SPECT) and cadmium-zinc-telluride- (CZT-) SPECT in a cohort of patients with suspected or known
coronary artery disease (CAD) using machine learning (ML) algorithms. A total of 453 consecutive patients underwent stress
MPI by both C-SPECT and CZT-SPECT. The outcome was a composite end point of all-cause death, cardiac death, nonfatal
myocardial infarction, or coronary revascularization procedures whichever occurred first. ML analysis performed through the
implementation of random forest (RF) and k-nearest neighbors (KNN) algorithms proved that CZT-SPECT has greater
accuracy than C-SPECT in detecting CAD. For both algorithms, the sensitivity of CZT-SPECT (96% for RF and 60% for
KNN) was greater than that of C-SPECT (88% for RF and 53% for KNN). A preliminary univariate analysis was performed
through Mann-Whitney tests separately on the features of each camera in order to understand which ones could distinguish
patients who will experience an adverse event from those who will not. Then, a machine learning analysis was performed by
using Matlab (v. 2019b). Tree, KNN, support vector machine (SVM), Naive Bayes, and RF were implemented twice: first, the
analysis was performed on the as-is dataset; then, since the dataset was imbalanced (patients experiencing an adverse event
were lower than the others), the analysis was performed again after balancing the classes through the Synthetic Minority
Oversampling Technique. According to KNN and SVM with and without balancing the classes, the accuracy (p value = 0.02
and p value = 0.01) and recall (p value = 0.001 and p value = 0.03) of the CZT-SPECT were greater than those obtained by
C-SPECT in a statistically significant way. ML approach showed that although the prognostic value of stress MPI by C-SPECT
and CZT-SPECT is comparable, CZT-SPECT seems to have higher accuracy and recall.
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1. Introduction

Risk stratification by noninvasive cardiac imaging has
become increasingly important to optimize management
and outcome in patients with coronary artery disease
(CAD) [1]. Previous research indicated that stress single-
photon emission computed tomography (SPECT) myocar-
dial perfusion imaging (MPI) has been the most widely used
nuclear cardiac imaging technique for the noninvasive
assessment of cardiac disease, including the prognosis and
choice of the most appropriate treatment strategies for
patients with CAD [2]. Conventional- (C-) SPECT systems
utilize sodium iodide crystals and parallel-hole collimators.
This approach presents some technical limits; for instance,
we can mention extended imaging time, low spatial resolu-
tion, and large doses of radiopharmaceuticals [3]. Recently,
these limitations have been overcome with the introduction
of gamma cameras with semiconductor cadmium-zinc-
telluride (CZT) allowed to directly convert radiation into
electric signals, bringing an improvement in image accuracy
and acquisition time [4, 5].

Previous studies showed that CZT-SPECT findings can
be used for risk stratification of patients referred to MPI
for suspected or known CAD. Lima et al. [6] demon-
strated that CZT-SPECT and C-SPECT provide similar
prognostic results, with lower prevalence of hard events
in patients with normal scan [6]. Yokota et al. [7] showed
that the prognostic value of normal stress-only CZT-
SPECT is at least comparable and may be even better than
that of normal C-SPECT [7].

These biomedical technologies can produce big amount
of data and, nowadays, different techniques have been used
to obtain as much information as possible from data and
signals [8-12]. Introducing machine learning (ML) in the
healthcare sector can help clinicians in diagnosis and ther-
apy planning, as well as in management of resources [13,
14]. Several studies have been conducted to test CAD detec-
tion using ML algorithms and to predict patient outcome
[15-18]. An innovative approach is to use ML models to
compare the performance of biomedical technologies, and
an evaluation of the performance in terms of diagnostic
power has already been reported [19, 20], demonstrating
CZT-SPECT has a better ability to detect CAD. To the best
of our knowledge, the prognostic value of CZT-SPECT and
C-SPECT has not been investigated to date by using ML
techniques.

Therefore, the purposes of the present investigation were
as follows:

(1) To evaluate the prognostic value of C-SPECT and
CZT-SPECT using ML-based approaches in patients
with suspected or known CAD

(2) To compare the prognostic performance of these
biomedical instrumentations through ML

This use of ML—in this particular case, aimed at com-
pering two biomedical technologies—represents, to
authors’ best knowledge, one of the first attempts in
literature.
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2. Materials and Methods

2.1. Patients. Between February 2016 and May 2017, a total
of 453 consecutive patients with suspected or known CAD
were submitted by referring physicians to stress MPI for
assessment of myocardial ischemia. For overall population,
clinical history and cardiac risk factors were collected.
Patients with a previous history of myocardial infarction,
revascularization procedures, or a diagnosed atherosclerotic
coronary disease were considered to have known CAD.
The review committee of our institution approved the study
(Protocol Number 110/17), and all patients gave informed
consent.

2.2. Study Protocol. All patients were submitted to stress
technetium-99m sestamibi-gated SPECT MPI by physical
exercise or dipyridamole stress test, according to the recom-
mendations of the European Association of Nuclear Medi-
cine and European Society of Cardiology [21]. The protocol
followed in this paper was the same employed in our previous
research [20]. All patients underwent MPI by both C-SPECT
and CZT-SPECT systems according to a randomized scheme
in 1:1 ratio that determined which camera was used for first
acquisition. For C-SPECT, a dual-head rotating gamma cam-
era (E.CAM, Siemens Medical Systems, Hoffman Estates, IL,
USA) was used. The acquisition time was 20 min for both
stress and rest images. For CZT-SPECT (D-SPECT, Spec-
trum Dynamics, Caesarea, Israel), recordings were obtained
using 9 pixilated CZT crystal detector columns mounted
vertically spanning a 90 geometry. Scan duration was lower
than 10 minutes for stress and lower than 5 minutes for rest
imaging.

An automated software program (e-soft, 2.5, QGS/QPS,
Cedars- Sinai Medical Center, Los Angeles, CA) was utilized
to compute left ventricular (LV) volumes and ejection frac-
tion (EF) and the scores incorporating both the extent and
severity of perfusion defects, employing a standard segmen-
tation of the 17 myocardial regions. The extent and grade of
the quantitative defect were determined based on sex-
specific normal limits while adding the scores of the 17 seg-
ments (from 0 for normal to 4 for absent perfusion) of the
stress images allowed us to compute the summed stress score
(SSS). A poststress LVEF greater than 45% and a SSS lower
than 3 were considered normal.

2.3. Follow-Up Data. A follow-up questionnaire was col-
lected by calling all patients by examinators blinded to
patient’s test results. The outcomes evaluated as endpoints
were all-cause death, cardiac death, nonfatal myocardial
infarction, or coronary revascularization procedures which-
ever occurred first. Cardiac death occurred subsequently to
acute myocardial infarction, congestive heart failure, and
cardiac interventional procedure related. Myocardial infarc-
tion was recorded when chest pain or equivalent symptom
complex, positive cardiac biomarkers, or typical electrocar-
diographic changes were reported [22]. The length of
follow-up was determined according to the date of the last
medical visit.
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2.4. Statistical Analysis. Statistical analyses were performed
by using IBM SPSS statistics software (v. 26), both to test
data distribution and to perform statistical tests. The process
was carried out separately on both the parameters of the C-
SPECT and the CZT-SPECT. First, the Kolmogorov-
Smirnov test was performed to test data normality, in order
to understand the type of test to be used (parametric or
nonparametric): in particular, normality was tested for all
parameters, for both groups, and for both camera types.
Subsequently, a two-tailed ¢-test was performed for parame-
ters with a normal distribution, while Mann-Whitney test
was performed for the remaining parameters, and both tests
were conducted considering a significance level of 0.05. After
the use of ML algorithms, a chi-square test was used in order
to compare the performances of different the models, trained
with C-SPECT and the CZT-SPECT data, and to understand
if there were statistical differences among them. The results
are shown and discussed in the “Results” and “Discussion”
sections, respectively.

2.5. Machine Learning Algorithms. The ML analysis was per-
formed by using the Classification Learning App, provided
by Matlab (v. 2019b), which trains models to classify data
using supervised ML. The 10-fold crossvalidation was used
to train and test the models; the dataset was divided into
10 groups of data, 9 were used for training the model and
one group for testing it; the procedure was repeated 10
times, and the evaluation metrics are computed by averaging
all those obtained [23]. The tree-based approach has shown
in literature great results not only in the cardiologic context
in cases such as diagnosis [24-26], prognosis [27, 28], and
comparison of biomedical technologies [19, 20] but also in
other medical specialties [29-31]. The classification tree is
a simple and effective model consisting of nodes, branches,
and leaves: each node has a rule that the data is routed along
several branches while the leaves represent the output of the
system [32].

Random forests (RF) model is part of the ensemble algo-
rithms and allows to train together a set number of decision
trees using the technique of Bootstrap Aggregation; this
model turns out to have better accuracy than the single weak
learner and reduces the chance of overfitting [33]. K-nearest
neighbor (KNN) algorithm is a distance-based method. In
fact, an example’s membership in a class is determined by
proximity to other known class examples. The critical aspect
is the choice of the value of k that is the number of neighbors
to consider for the decision [34]. Support vector machine
(SVM) is a classification model that is based on finding the
best surface that allows you to separate the two classes. In
particular, the algorithm tries to maximize the margin
between classes, the space that separates them, and in this
way, bases learning on the most difficult examples, decreas-
ing the influence of outliers [35]. Naive Bayes (NB) was also
employed in this study; it is a well-known algorithm based
on the a priori probability theorem [36], thus being a
completely different algorithm compared to the previous
ones. These algorithms were used to predict an adverse event
by using the features of the two cameras, and then, the eval-
uation metrics were compared through a statistical test for

proportions in order to understand which one had the best
capacity to detect the adverse event.

The present dataset is unbalanced; indeed, people with
adverse events turned out to be much less than those with
no events. In the literature, the problems that arise in
training ML models using unbalanced data are well known
[37, 38]. To deal with this problem, the Synthetic Minority
Oversampling Technique (SMOTE) [39] was used; this
oversampling technique generates new artificial data of
the minority class, on the basis of those already present,
allowing to rebalance the dataset. After that, the training
phase of the models was repeated. This can be considered
fair because it will be employed on both cameras allowing
a fair comparison; moreover, the aim of the study is to
compare C-SPECT and the CZT-SPECT rather than build
the best prognostic model.

To evaluate the performance of the models, several met-
rics [40] were used: accuracy, sensitivity or recall, specificity,
and precision. Furthermore, area under the curve (AUC)
receiver-operating characteristic (ROC) was computed
because it is a good method to assess model performance
[41]. In addition, a feature selection process was performed
to understand which parameters resulted more significant
in reference to the target variable. We tested 14 features: per-
fusion parameters as SSS, summed rest score (SRS), summed
difference score (SDS), and total perfusion defect (TPD) and
functional parameters as systolic wall motion (SWM), sys-
tolic wall thickening (SWT), end-diastolic volume (EDV),
end-systolic volume (ESV), and EF. In particular, two algo-
rithms were used: Maximum Relevance-Minimum Redun-
dancy (MRMR) that selects the variables with the most
relevance to the destination one by calculating the mutual
information of the parameters [42] and chi-square indepen-
dence test [43].

3. Results

3.1. Patient Characteristics and Outcome. The clinical charac-
teristics of patient population are shown in Table 1. The
study group comprised 204 (45%) patients with suspected
CAD and 249 (55%) with known CAD. The mean follow-
up was 2.5 + 0.5 years. During follow-up, 41 events occurred.
The events were cardiac death in 1 patient, nonfatal myocar-
dial infarction in 5, coronary revascularization procedures in
20, and 15 all-cause of death.

3.2. Statistical Analysis. The first step was to evaluate the
possible normal distribution of the features between patients
with events and patients with no events evaluated by both
cameras, applying Kolmogorov-Smirnov test. The test
revealed that, among the features of C-SPECT, only stress
and rest EF (p value > 0.05) showed a normal distribution
for both groups; similarly, no features of CZT-SPECT
resulted to have a Gaussian distribution. Therefore, t-test
was used only for stress and rest EF by C-SPECT, while
Mann-Whitney test was performed for all other parameters,
and the results are reported in Table 2.
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TasLE 1: Clinical characteristics of patient population.

Characteristic

Age (years) 64 + 10
Male gender, n (%) 331 (73)
Body mass index > 30 kg/m?, n (%) 110 (24)
Diabetes, 1 (%) 153 (34)
Dyslipidemia, n (%) 333 (74)
Smoking, #n (%) 196 (43)
Hypertension, n (%) 386 (85)
Atypical angina, n (%) 162 (36)
Family history of CAD, n (%) 231 (51)
Previous myocardial infarction, n (%) 148 (33)
Previous revascularization procedures, n (%) 173 (38)

Data are presented as mean + SD or #n (%) of subjects. CAD: coronary artery
disease.

3.3. Machine Learning Analysis. The ML analysis was con-
ducted separately and by using a 10-fold crossvalidation
for C-SPECT and CZT-SPECT, both before and after
SMOTE application in order to compare camera’s perfor-
mance with and without the augmentation of the dataset.
The evaluation metrics regarding the models without
SMOTE are reported in Table 3. Among the ML algorithms
used for the analysis, RF reached the highest value of accu-
racy (90.3% and 90.1%, respectively, for C-SPECT and
CZT-SPECT) and recall (98.5% and 99.0%, respectively, for
C-SPECT and CZT-SPECT), but it presented the lowest
value of specificity (7.3% and 0%, respectively, for C-
SPECT and CZT-SPECT), showing a low capacity to detect
adverse future events. Despite achieving these performances,
statistically significant differences between the two cameras
were not available, and this was also verified for Tree,
SVM, and NB models. KNN model had an accuracy and
recall lower than RF for both cameras (accuracy of 74.4%
and 80.8%, recall of 78.6% and 87.4%, respectively, for
C-SPECT and CZT-SPECT) but higher specificity (ranging
from 14.6%, in CZT-SPECT, to 31.7% in C-SPECT). Nev-
ertheless, the accuracy and the capacity to detect the
absence of adverse event were statistically significant in
favour of the CZT camera (p value = 0.021 for accuracy
and p value = 0.001 for recall). These results were influenced
by the imbalanced nature of the datasets; indeed, although
accuracy and recall were high, they were affected by the bias
introduced by the presence of a majority class for subjects
with a negative prognosis, as also validated by the low
AUCROC values of the models (ranging from 0.53 to 0.60
for C-SPECT and from 0.50 to 0.61 for CZT-SPECT). To
overcome this issue, the dataset was balanced by introducing
artificial samples of the minority class (patients with future
adverse events), generated with SMOTE. The evaluation
metrics values are reported in Table 4. The overall perfor-
mance of classifiers increased significantly with a balanced
dataset, especially in terms of specificity and AUCROC. Con-
sidering the C-SPECT, RF reached the highest values of accu-
racy (93.4%), recall (90.3%), and AUCROC (0.99), while
SVM and KNN reached higher values of specificity (95.0%
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and 99.8%, respectively). Regarding CZT camera models
performances, SVM classifier reached the highest values of
accuracy (94.5%), recall (92.2%), and specificity (96.8%).
Moreover, SVM turned out to have statistically significant
performances: the accuracy and the recall showed a statistical
significance in favor of the CZT-camera (p value = 0.016 for
accuracy and p value = 0.028 for recall), while, despite show-
ing in CZT-SPECT a higher capacity to detect adverse events,
the specificity of SVM was not found to be statistically signif-
icant (p value = 0.279).

4. Discussion

To our knowledge, this is the first study using ML approach
to compare the prognostic value of two technologies used in
clinical routine practice (C-SPECT and CZT-SPECT) in
patients with suspected or known CAD. Indeed, the ML
analysis did not aim to create the best model to predict
adverse events because, probably, it would not have been
possible considering the highly unbalanced nature of the
dataset. The aim was to test the feasibility of the cameras
in predicting adverse future events in order to understand
which could be the one with the better performance.

Although a similar evaluation has already been per-
formed, ML techniques have never been used. Lima et al.
[6] compared the prognostic value of MPI using an ultrafast
protocol with low radiation in CZT-SPECT and a C-SPECT
in different groups of patients. They concluded that the new
protocol of MPI in CZT-SPECT showed similar prognostic
results to those obtained in dedicated cardiac Na-I SPECT
camera, with lower prevalence of hard events in patients
with normal scan. Similarly, Yokota et al. [7] compared the
prognosis of patients with normal stress-only at both CZT-
SPECT and C-SPECT. They showed that the prognostic
value of normal stress-only CZT-SPECT is at least compara-
ble and may be even better than that of normal stress-only
C-SPECT. In a recent study, Liu et al. [44] showed that ultra-
low dose thallium perfusion imaging using CZT-SPECT
provides good prognostic results, with a more severe prog-
nosis in patients with abnormal MPL

However, ML has been recently employed for the com-
parison of biomedical technologies. In previous studies using
ML techniques to compare the diagnostic performance of C-
SPECT and CZT-SPECT, we highlighted how algorithms
trained with CZT-SPECT data achieved better accuracy,
recall, and specificity than C-SPECT [19, 20]. Concerning
the ML models, it has been observed that they generally
present a high accuracy and recall. In particular, accuracy
(p value = 0.021) and recall (p value = 0.001) were statisti-
cally significant for CZT-SPECT through the KNN algo-
rithm. This result would demonstrate that CZT-SPECT has
better performance to detect the absence of adverse event.
To enhance the results obtained on the unbalanced dataset,
a process of rebalancing the dataset was applied using
SMOTE and repeating all the ML analyses. As expected,
the performance of all models improved significantly for
both cameras after rebalancing. However, SVM showed
marked differences in all metrics values: accuracy, recall,
and specificity had higher values in CZT-SPECT than C-
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TaBLE 2: Univariate statistical analysis of all the parameters of C-SPECT and the CZT-SPECT.

Parameters C-SPECT CZT-SPECT

Patients with no event  Patients with event ~ p value  Patients with no event  Patients with event p value
SSS 9.90 £8.10 15.10 £ 11.50 0.053 9.30+7.70 14.30 £11.70 <0.001***
SRS 6.80£7.90 11.40 £ 11.60 0.163 5.10+7.10 9.30+11.10 0.240
SDS 3.10+3.20 3.00 £2.50 0.841 4.10+3.10 4.50 +2.80 0.310
TPD 13.10£11.70 20.40 £16.70 0.043* 13.10 £ 11.80 20.20 £17.30 <0.001***
Stress SWM 14.90 £12.20 18.80 £ 15.00 0.007* 10.70 £ 12.10 14.70 £ 14.10 0.018"
Stress SWT 8.90 £9.20 11.70 £ 10.40 0.002* 6.70 £ 8.50 9.10 £ 9.40 0.020*
Stress EDV 92.90 £ 37.80 105.00 = 51.50 0.031* 106.10 + 42.40 121.10 £ 57.40 0.044"
Stress ESV 48.10 £32.30 60.40 + 44.80 0.006* 54.70 £ 36.50 71.10 £ 51.50 0.008**
Stress EF 52.30 £ 14.20 48.40 = 15.50 <0.001* 51.30 £11.80 46.80 £ 13.10 0.005**
Rest SWM 15.40 £12.70 21.50 +15.00 0.048~ 10.20 £12.20 15.40 £ 13.00 0.070
Rest SWT 9.40 £ 9.40 12.65+£10.30 0.128 6.10 £ 8.30 9.80+13.30 0.110
Rest EDV 91.86 +41.05 99.77 £41.48 0.493 106.30 £+ 45.40 114.10 £ 52.50 0.790
Rest ESV 48.10 £35.70 57.60 £ 37.20 0.283 55.30 + 41.50 65.50 £ 43.90 0.420
Rest EF 51.70 + 13.80 46.60 = 14.90 0.098 50.80 £12.00 46.90 £ 14.10 0.160

Statistically significant at: *0.05, **0.001, ***<0.001. Abbreviations. EDV: end-diastolic volume; EF: ejection fraction; ESV: end-systolic volume; SDS: summed
difference score; SRS: summed rest score; SSS: summed stress score; SWM: wall motion; SWT: wall thickening; TPD: total perfusion defect.

TaBLE 3: Machine learning analysis and statistical comparison through chi square test for proportions on the original dataset.

Accuracy (%)

Error (%) Recall (%) Specificity (%)

C-SPECT 87.4

Tree CZT-SPECT 89.0
p value 0.471

C-SPECT 744

KNN CZT-SPECT 80.8
p value 0.021

C-SPECT 85.9

SVM CZT-SPECT 86.5
p value 0.773

C-SPECT 83.4

NB CZT-SPECT 84.1
p value 0.787

C-SPECT 90.3

RF CZT-SPECT 90.1
p value 0.591

12.6 94.4 17.1
11.0 97.1 7.32
0.057 0.177
25.6 78.6 31.7
19.2 87.4 14.6
0.001 0.067
14.1 922 21.6
13.5 92.6 21.6
0.597 1.000
16.6 89.1 26.8
15.9 90.1 24.4
0.649 0.800
9.7 98.5 7.3
9.9 99.0 0.0
0.525 0.078

Abbreviations: KNN: K nearest neighbor; SVM: support vector machine; NB: Naive Bayes; RF: random forests.

SPECT. In particular, accuracy and recall were statistically
significant in favour of CZT-SPECT (accuracy p value =
0.016, recall p value = 0.028). Therefore, even considering
the balanced data, CZT-SPECT proved to achieve a better
accuracy and ability in predicting the absence of adverse
event. It is likely that patients affected by an adverse event
had a particular pattern of input variables which have
allowed instance-based algorithms (KNN and SVM) to cap-
ture the outcome better than tree-based and probability-
based algorithms. As regards the computational costs and
the runtime of our models, there was no specific problem

because all the models followed a simple workflow without
applying heavy preprocessing algorithms (such as backward
or forward feature selection methods). Indeed, all the models
required less than a minute to be run.

The novel CZT technique provides patients with sev-
eral advantages, as lower radiation dose and imaging time.
Moreover, the higher energy and intrinsic spatial resolu-
tion of CZT detectors lead to lower artifacts and need
for rest imaging, with a consequent reduction in radio-
pharmaceutical dosage which enables nuclear MPI to be
more cost-effective [45].
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TaBLE 4: Machine learning analysis and statistical comparison through chi square test for proportions after SMOTE implementation.

Accuracy (%)

Error (%) Recall (%) Specificity (%)

C-SPECT 88.1

Tree CZT-SPECT 88.1
p value 1.000

C-SPECT 91.9

KNN CZT-SPECT 91.6
p value 0.858

C-SPECT 91,5

SVM CZT-SPECT 94.5
p value 0.016

C-SPECT 59.3

NB CZT-SPECT 59.0
p value 0.880

C-SPECT 93.4

RF CZT-SPECT 93.0
p value 0.637

11.9 86.2 90.1

11.9 86.9 89.3
0.760 0.731

8.1 83.9 99.8

8.4 84.7 98.5
0.774 0.058

8.5 87,6 95.0

55 92.2 96.8
0.028 0.279

40.7 86.7 32.0

41.0 87.6 30.3
0.677 0.599

6.6 90.3 94.4
7.0 91.0 94.9
0.720 0.757

Abbreviations. KNN: K nearest neighbor; SVM: support vector machine; NB: Naive Bayes; RF: random forests.

4.1. Limitations and Future Developments. This study has
some limitations that need to be considered. The dataset
was strongly imbalanced, to the detriment of patients who
present adverse events. It influenced the learning process
of the models, introducing biases into evaluation metrics.
SMOTE technique has been applied to balance the dataset
and overcome these issues. However, the samples introduced
were artificial, which represented another limitation. Never-
theless, the aim of the paper was not to evaluate the perfor-
mance of the models in order to create a tool for clinical
support, but to compare the performance of two technolo-
gies; therefore, the limitation introduced by the oversampling
process is attenuated. Regarding future developments, it
would be necessary to try to balance the dataset with original
data rather than with artificial samples in order to increase
the reliability of the evaluation metrics.

5. Conclusions

The novelty introduced in this study was the use of super-
vised learning techniques to compare the prognostic value
of C-SPECT and CZT-SPECT. The results obtained showed
that although the prognostic value of the two systems is
comparable; CZT-SPECT seems to have higher accuracy
and recall.
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Predicting postoperative survival of lung cancer patients (LCPs) is an important problem of medical decision-making. However,
the imbalanced distribution of patient survival in the dataset increases the difficulty of prediction. Although the synthetic minority
oversampling technique (SMOTE) can be used to deal with imbalanced data, it cannot identify data noise. On the other hand,
many studies use a support vector machine (SVM) combined with resampling technology to deal with imbalanced data.
However, most studies require manual setting of SVM parameters, which makes it difficult to obtain the best performance. In
this paper, a hybrid improved SMOTE and adaptive SVM method is proposed for imbalance data to predict the postoperative
survival of LCPs. The proposed method is divided into two stages: in the first stage, the cross-validated committees filter
(CVCEF) is used to remove noise samples to improve the performance of SMOTE. In the second stage, we propose an adaptive
SVM, which uses fuzzy self-tuning particle swarm optimization (FPSO) to optimize the parameters of SVM. Compared with
other advanced algorithms, our proposed method obtains the best performance with 95.11% accuracy, 95.10% G-mean, 95.02%

F1, and 95.10% area under the curve (AUC) for predicting postoperative survival of LCPs.

1. Introduction

Lung cancer (LC) is the deadliest cancer in the world. More
than 85% of lung cancer patients are diagnosed with non-
small-cell LC [1]. Surgical resection is the standard and most
effective treatment for LC stage I, stage II, and nonsmall cell
stage III A [1]. A major problem of the clinical decision on
LC operation is to select candidates for surgery based on
the patient’s short-term and long-term risks and benefits,
where survival time is one of the most important measures.
Accurately predicting a patient’s survival after surgery can
help doctors make better treatment decisions. At the same
time, it can help patients better understand their condi-
tions to have good psychological expectations and financial
preparation.

In recent years, more and more data-driven methods
have been used to predict the postoperative survival of LCPs.
In terms of statistical methods, Kaplan-Meier curves, multi-

variable logistic regression, and Cox regression are the three
most widely used statistical methods to predict survival or
complications for LCPs [2]. However, taking into account
the shortcomings of traditional statistical methods and the
incompleteness of medical data, data mining and machine
learning techniques are introduced in recent years. Mangat
and Vig [3] proposed an association rule algorithm based
on a dynamic particle swarm optimizer, and the classifica-
tion accuracy is 82.18%. Saber Iraji [4] compared the
accuracy of adaptive fuzzy neural networks, extreme learn-
ing machine, and neural networks for predicting the 1-year
postoperative survival of LCPs. The results show that
sensitivity (90.05%) and specificity (81.57%) of an extreme
learning machine are the highest, respectively. Tomczak
et al. [5] used the boosted support vector machine (SVM)
algorithm to predict the postoperative survival of LCPs.
This algorithm combines the advantages of ensemble learn-
ing and cost-sensitive SVM, and the G-mean can reach
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65.73%. As can be seen from the previous research, most of
them ignore the impact of imbalanced data distribution,
which may reduce the performance of classifiers.

Class imbalance refers to the phenomenon in which one
class of data in a dataset is much larger than the others [6].
Standard machine learning classifiers are effective for
balanced data, but they are not good for imbalanced data.
Specifically, with the progress of medical technology, the
number of long-term survivors after surgery for LCPs is
much larger than that of short-term deaths. This will lead
to higher prediction accuracy for survivors (majority class)
and poorer recognition for deceases (minority class). There-
fore, it is necessary to propose a method that has good
classification performance for both survivors and deceased
ones for predicting postoperative survival of LCPs.

During the past decades, the imbalanced data classifica-
tion problem has widely become a matter of concern and
has been intensively researched. The existing papers on
imbalanced data processing methods have two main
research directions: data level and algorithm level [7]. The
data-level processing methods create a balanced class
distribution by resampling the input data. Algorithm-level
processing methods mainly involve two aspects: ensemble
learning and cost-sensitive learning. Among these imbal-
anced data processing methods, the synthetic minority over-
sampling technique (SMOTE) is one of the most widely used
methods, as it is relatively simple and effective [8]. However,
it is likely to be unsatisfactory or even counterproductive if
SMOTE is used alone, which is because its blind oversam-
pling ignores the distribution of samples, such as the
existence of noise [9, 10]. To solve this problem, many
approaches are proposed to improve SMOTE. Ramentol
et al. [11] combined rough set theory with SMOTE and pro-
posed the SMOTE-RSB algorithm. SMOTE-RSB first uses
SMOTE for oversampling and then removes noise and out-
liers in the dataset based on rough set theory. SSMNFOS
[12] is a hybrid method based on stochastic sensitivity mea-
surement (SSM) noise filtering and oversampling, which can
improve the robustness of the oversampling method with
respect to noise samples. The CURE-SMOTE [13] uses
CURE (clustering using representatives) to cluster minority
samples for removing noise and outliers and then uses
SMOTE to insert artificial synthetic samples between repre-
sentative samples and central samples to balance the dataset.
However, most of these methods need to set the noise
threshold through prior parameters, which increases the risk
of misidentification of noise. In addition, some researchers
consider ensemble filtering methods, which have been
proven to be generally more efficient than single filters
[14]. In this paper, we propose to use the cross-validated
committees filter (CVCF) to detect and remove noise before
applying SMOTE and record this method as CVCF-SMOTE.
CVCEF is an ensemble-based filter, which can reduce the risk
of error in the threshold setting of prior parameters [15].

In addition, SVM as one of the most advanced classifiers
has not been well used to predict postoperative survival of
LC. In the previous research, SVM has been widely used in
statistical classification and regression analysis due to its
excellent performance [16]. Considering the limitations of
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SVM on imbalanced data, some studies combine resam-
pling technology and SVM to deal with imbalanced data.
D’Addabbo and Maglietta [17] proposed a method com-
bining parallel selective sampling and SVM (PSS-SVM)
to process imbalanced big data. Experimental results show
that the performance of PSS-SVM is better than that of
SVM and RUSBoost classifiers. Huang et al. [18] designed
an undersampling technique based on clustering and com-
bined it with optimized SVM to deal with imbalanced
data. The classification performance of SVM is improved
by the linear combination of SVM based on a mixed kernel.
Fan et al. [19] proposed a hybrid technology combining prin-
cipal component analysis (PCA), SMOTE, and SVM to diag-
nose chiller fault. Experimental results prove that this hybrid
technology can improve the overall performance of chiller
fault diagnosis.

However, these studies usually require a manual setting
of SVM parameters, which may lead to failure to obtain
the best experimental results. The standard SVM has a
limitation that its performance depends on the selection of
initial parameters. Some studies optimize the parameters of
SVM through evolutionary calculations which have achieved
good results. In these optimization algorithms, the particle
swarm optimization- (PSO-) optimized SVM has been widely
used with promising results due to its simplicity and fast con-
vergence [20]. With the development of PSO technology,
some improved PSO algorithms are used to optimize SVM.
Wei et al. [21] proposed a binary PSO-optimized SVM
method for feature selection, which overcomes the problem
of premature convergence and obtained high-quality features.
A switching delayed particle swarm optimization- (SDPSO-)
optimized SVM is proposed to diagnose Alzheimer’s disease
[22]. Experimental results show that the proposed method
outperforms several other variants of SVM and has obtained
excellent classification accuracy. However, these methods
often require parameter settings for PSO or improved PSO,
such as particle size and inertial weight. In general, getting
the best settings is complicated and time-consuming. If the
PSO parameters are set improperly, it will even reduce the per-
formance of the SVM.

In recent years, many new metaheuristics techniques
have been proposed, such as Monarch Butterfly Optimiza-
tion (MBO) [23], slime mould algorithm [24], Moth Search
(MS) [25], Hunger Games Search (HGS) [26], and Harris
Hawks Optimizer (HHO) [27]. However, most of these
methods require users to tune parameters to achieve satis-
factory performance. Fuzzy self-tuning PSO (FPSO) is a
kind of setting-free adaptive PSO proposed in recent years
[28]. The advantage of FPSO is that every particle is
adaptively adjusted during the optimization process without
any PSO expertise and parameter settings. Moreover, exper-
imental results show that FPSO is better than several previ-
ous competitors in convergence speed and finding optimal
solution aspects. Based on the above considerations, the
FPSO algorithm is exploited to optimize the parameters of
SVM, which leads to a novel FPSO-SVM classification
algorithm.

Based on the improved SMOTE and FPSO-SVM, we pro-
pose a two-stage hybrid method to improve the performance
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of the postoperative survival prediction of LCPs. In the first
stage, CVCF is used to remove noise samples to improve the
performance of SMOTE. Then, SMOTE is adopted to handle
the imbalanced nature of the dataset. In the second stage, we
apply FPSO-SVM to predict the postoperative survival of
LCPs. The experimental results show that the proposed hybrid
method outperforms other comparative state-of-the-art algo-
rithms. This hybrid method can effectively improve the
accuracy of survival prediction after LC surgery and provide
reliable medical decision-making support for doctors and
patients. Our contributions are summarized as follows:

(i) A novel hybrid method that combines improved
SMOTE with adaptive SVM is proposed for predict-
ing postoperative survival of LCPs

(ii) We apply CVCEF to clean up data noise to improve
the performance of SMOTE

(iii) FPSO is used to optimize the parameters of SVM
and achieve an adaptive SVM

(iv) The proposed hybrid method not only performs
higher predictive accuracy than other compared
algorithms for predicting postoperative survival of
LCPs but also has better G-mean, F1, and area
under the curve (AUC)

The rest of this paper is as follows: Section 2 shows the
materials and methods. The experiment design, perfor-
mance metrics, and experimental results are described in
Section 3. A brief summary is described in Section 4.

2. Materials and Methods

2.1. Data Description. In this paper, the thoracic surgery
dataset in Zieba et al. [5], is selected to predict the postoper-
ative survival of LCPs. Data were collected from the Wroc-
law Thoracic Surgery Center. These patients underwent
lung resection for primary LC from 2007 to 2011. It contains
470 samples with an imbalance rate of 5.71. There are 400
patients who survived more than one year and 70 patients
who survived less than one year in this dataset. Table 1
shows the features of the dataset. These features were
selected from 36 preoperative predictors by the information
gain method and were used to predict the postoperative sur-
vival expectancy. Our task is to predict whether the survival
time in patients after surgery was greater than one year.

2.2. Data Preprocessing

2.2.1. CVCF for Noise Cleaning. Although SMOTE is one of
the most widely used methods for imbalanced data process-
ing, it has some drawbacks in dealing with data noise. A
major concern is that SMOTE may exacerbate the presence
of noise in the data, as shown in Figure 1. Given the good
performance of CVCF, we consider using it to improve
SMOTE.

The CVCF algorithm is a well-known representative of
an ensemble-based noise filter [29]. It induces multiple
single classifiers by means of cross-validation. Afterward,

3
TaBLE 1: Feature details of the thoracic surgery dataset.
o Type of
Feature ID Description attribute
] Size of the original tumor, from OC11 Nominal

(smallest) to OC14 (largest)
Diagnosis (specific combination of
2 ICD-10 codes for primary and secondary Nominal
as well multiple tumors if any)

3 Forced vital capacity Numeric
4 Pain (presurgery) Binary
5 Age at surgery Numeric
6 Performance status Nominal
7 Weakness (presurgery) Binary
8 Dyspnoea (presurgery) Binary
9 Cough (presurgery) Binary
10 Haemoptysis (presurgery) Binary
11 Peripheral arterial diseases Binary
12 MI up to 6 months Binary
13 Asthma Binary
14 Volume that has been exhaled at ‘the. end Numeric
of the first second of forced expiration
15 Smoking Binary
16 Type 2 diabetes mellitus Binary
17 1-year survival period (true value if died)  Binary

X Noise/Outlier
X Syntheticnoise/Outlier

O Majority class

X Minority class

FiGurg 1: Using SMOTE alone may indiscriminately aggravate
the noise.

samples mislabeled by all classifiers (or most classifiers) will
be marked as noise and removed from the dataset. Choosing
an appropriate base classifier is a key operation to ensure the
excellent performance of CVCF. In this paper, we choose the



C4.5 algorithm as the base classifier of CVCF because it has
better robustness to noise data and suitability for ensemble
learning [30, 31].

C4.5 is an improved version of the ID3 algorithm [32].
It improves ID3 by handing numeric attributes and miss-
ing values and by introducing pruning. In addition, essen-
tially different from the ID3, the information gain ratio is
used to select split attributes in C4.5, which can be
denoted by

InfoGain(S, A)
InfoGainRatio(S,A) = —————2, 1

nfoGainRatio($, 4) SpiltInfo(S, A) (1)
where InfoGainRatio(S, A) represents the information gain
ratio of attribute A in dataset S. InfoGain(S,A) is the
information gain of dataset S after splitting through attri-
bute A and can be denoted by

InfoGain(S, A) = Info(S) — Info(S, A), (2)

where Info(S) is the entropy of dataset S. Info(S, A) is the
conditional entropy about attribute A. SpiltInfo(S, A) denotes
the splitting information of attribute A and is expressed by

SpiltInfo(S, A) = Z % 2 —= (3)
-1

where |S| represents the number of samples of dataset S. |S;]
indicates the number of samples of subset i after the original
dataset is divided into m subsets according to the attribute
value of A.

2.2.2. SMOTE to Balance Data. The core idea of SMOTE is
to insert artificial samples of similar values into the minority
class, thereby improving the imbalanced distribution of clas-
ses. More specifically, the sampling ratio is set firstly, and
then, the k nearest neighbors of each minority sample are
found. Finally, according to equation (4), one of the neigh-
bors is randomly selected to generate a synthetic sample that
is put back into the dataset until the sampling number
reaches the set ratio. The synthesized new sample is calcu-
lated as follows:

Xpew =X+ 0(X;-X), 0€(0,1), (4)
where X, ., represents a new synthetic sample, X is the fea-
ture vector for each sample in the minority class, and X; is
the i-th nearest neighbor of sample X. 0 is a random number
between 0 and 1.

2.3. The Proposed FPSO-Optimized SVM (FPSO-SVM)

2.3.1. SVM. SVM is a supervised learning classifier based
on statistical theory and structural risk optimization [33].
SVM is not prone to overfitting and can handle high-
dimensional data well. The principle of SVM is to map
the original data to a high-dimensional space to discover
a hyperplane that maximizes the margin determined by
the support vectors. Suppose there is a dataset D = {(x,,
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TaBLE 2: Confusion matrix.

Actual positive
Predicted positive TP FP
Predicted negative FN N

Actual negative

TasLE 3: Defuzzification of w, ¢y, Ceogr 1> and A.
Level
Output Low Medium High
w 0.3 0.5 1.0
Coor 1.0 2.0 3.0
Ceog 0.1 1.5 3.0
A 0.0 0.001 0.01
" 0.1 0.15 0.2
Y1) (X35 ¥5)5 > (X, ¥,) }. The optimal hyperplane of data-

set D can be expressed as
alx+b=0, (5)

where al is the weight vector and b represents the bias.
For nonlinear problems, the above-mentioned optimal
hyperplane can be transformed into

min
ab
s.t.

where C is the penalty factor and {; is the slack variable. The
above constrained objective function can satisfy the KKT
condition by introducing the Lagrange formulation. The
original objective function is transformed into

Zﬁl’

1 n
Py aTa_C Z Ci>
2 i=1

yi(@' - x+b) 21

i

(20i=1,2,-n,
(6)

ZZW,/S/B (xx;)

11]1

n
st Y Byi=0,0<B,<C i j=1,2,m,
i=1

where f3 is a Lagrangian multiplier. According to the previ-
ous experimental experience, a larger value of C means a
larger separation interval and a greater generalization risk.
Conversely, when the value of C is too small, it is easy to
have an underfitting problem.

Finally, the decision function is shown in

f(x) =sgn (i B y:iK <x; 'Xj>+b*) , (8)

i=1



Computational and Mathematical Methods in Medicine

( Original dataset 0

Set the search range for the penalty

factor C and kernel parameter y of SVM
Partition the dataset l
into n subsets
Initialize particle swarm
Evaluate the fitness of each particle
| n-fold cross-validated | based on Eq.(10)
' !
2 nl 1 ol e 1] 2 Calculate the linguistic values of inertia,
II- Social, Cognitive, 77 and A according to Eq.
(13)-Eq.(22).
C4.5 C45 | e C4.5 l
I ]
v Convert the language values of inertia,
For each sample in the dataset, compare the real Social, Cognitive, 7 and A into numerical
class with the labels of the classifiers. values based on Eq.(23) and table 2
Remove Update the velocity and position of each
All labels # Real class? Y™ e sample particle based on Eq.(11) and Eq.(12)
k=k+1
Retain the sample
If k = maximum N
i ion?

( Testing set O

( Training set 07 I

| SVM with optimized parameters

F1GURE 2: Flowchart of the proposed hybrid method for predicting postoperative survival of LCPs.

where B and b" are the optimal Lagrangian multiplier and
optimal value of b, respectively, and sgn (-) represents a
symbolic function. K <x; - x; > is a kernel function. Usually,
the radial basis function (RBF) kernel function is selected for
SVM, which can be expressed as

©)

K<x; “X; > =exp (—y”xi —Xj||2),

where y is the kernel parameter. The classification perfor-
mance of SVM depends heavily on the setting of penalty
factor C and kernel parameter y. Therefore, parameter set-
ting is a key step in applying SVM.

2.3.2. FPSO-SVM Model. In order to make SVM have better
classification performance, we use FPSO to optimize the
penalty factor C and kernel parameter y of SVM, called
FPSO-SVM. The classification accuracy is taken as the
fitness function of FPSO, which is defined as

TP + TN

Fitness = Accuracy = TPrINTEFP T EN’

(10)

where TP, TN, FP, and FN represent four different classifica-
tion results which are shown in Table 2.

FPSO is a fully adaptive version of PSO, which calculates
the inertia weight, learning factor, and velocity indepen-
dently for each particle based on fuzzy logic. The outstand-
ing advantages of FPSO are that it does not require any
prior knowledge about PSO and its optimization perfor-
mance and convergence speed are better than those of PSO.

In FPSO, first, the number of particle swarms is set to
N =10 + 2/M based on the heuristic [34, 35]. Here, M is
the dimension of the optimization problem. In this paper,
since there are two SVM parameters that need to be opti-
mized, M =2 and N =12 (round down). After initializing
the particles, we need to update them according to the posi-
tion and velocity of the particles. Let x* and v be the veloc-
ity and position of the i-th particle at the k-th iteration,

respectively. At the (k+ 1)-th iteration, the velocity vk*!
k+1

and position x;*" of the i-th particle can be defined as

R (Xf_gk)

TR (xff-bf), i=1,2--,12,

k+1 _ ok Lk k
Vi Fw;pcv;t Csoci

(11)

cog;



where w¥ is the inertia weight of particle i at the k-th itera-

tion and ¢ and

soc, cog, are social and cognitive factors of

particle 7 at the k-th iteration, respectively. In FPSO, unlike

conventional PSO, the values of w¥, ¢& , and c’c‘og_ are not

fixed but are calculated separately for different particles at
each iteration. r; and r, are two random vectors, respec-
tively. b} and g are the position of the i-th particle and
the best global position in the swarm at the k-th iteration.

The maximum velocity (v,,,, ) and minimum velocity

(Vi) of all particles in the m-th dimension are defined as

Vmax, =1 " (bmax - bminm)’ ne (0’ 1] (13)

m m

vminm =A- (bmaxm - hminm)’ Ae (O’ 1]’ (14)
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TABLE 4: Accuracy comparison for different algorithms with different preprocessing methods.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE
FPSO-SVM 0.8440 0.7149 0.6385 0.7378 0.8679 0.9511
PSO-SVM 0.8440 0.6570 0.6217 0.6776 0.7267 0.8643
SVM 0.8440 0.5294 0.5561 0.4781 0.5493 0.5204
RF 0.8369 0.7149 0.6023 0.7388 0.8430 0.8869
GBDT 0.8156 0.7059 0.5864 0.7025 0.8213 0.9276
KNN 0.8227 0.6561 0.5833 0.6910 0.7905 0.9005
AdaBoost 0.7943 0.6652 0.5615 0.6458 0.7674 0.9095
TaBLE 5: G-mean comparison for different algorithms with different preprocessing methods.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE
FPSO-SVM 0 0.6942 0.6148 0.7203 0.8625 0.9510
PSO-SVM 0 0.5832 0.5628 0.6150 0.6567 0.8501
SVM 0 0 0 0.1537 0.1015 0.1659
RF 0 0.7092 0.6017 0.7385 0.8404 0.8868
GBDT 0.2938 0.6901 0.5835 0.7024 0.8154 0.9274
KNN 0 0.6572 0.5819 0.6874 0.7919 0.9000
AdaBoost 0.2059 0.6550 0.5552 0.6464 0.7597 0.9096
TaBLE 6: F1 comparison for different algorithms with different preprocessing methods.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCEF-SMOTE
FPSO-SVM 0 0.6612 0.5549 0.7059 0.8482 0.9502
PSO-SVM 0 0.5089 0.4995 0.5600 0.6022 0.8336
SVM 0 0 0 0.2823 0.0605 0.0536
RF 0 0.6834 0.5713 0.7458 0.8241 0.8889
GBDT 0.1333 0.6524 0.5470 0.7025 0.7950 0.9292
KNN 0 0.6545 0.5473 0.7094 0.7760 0.9035
AdaBoost 0.0645 0.6186 0.5101 0.6425 0.7323 0.9099
X =k gy (12) where b,,,, and b, represent upper and lower bounds of

the m-th dimension for the optimization problem, respec-
tively. # and A (7> A) are two coefficients determined by
linguistic variables, in order to clamp v and v, of

max,,
each particle.

In order to get the w, ¢
particle in each iteration, two concepts are introduced: the
distance between each particle and the global optimal parti-
cle and the fitness increment of each particle relative to the
previous iteration.

The distance between any two particles in the k-th itera-
tion is expressed as

soc> Ccogr 1> and A values of each

2

2 2
= z (xim_x;m> s bLj=1,2,-,12.

m=1

(15)
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TaBLE 7: AUC comparison for different algorithms with different preprocessing methods.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE
FPSO-SVM 0.5000 0.7265 0.6268 0.7400 0.8639 0.9510
PSO-SVM 0.5000 0.6426 0.6069 0.6754 0.7094 0.8631
SVM 0.5000 0.5000 0.5000 0.4993 0.5059 0.5138
RF 0.4958 0.7115 0.6038 0.7397 0.8411 0.8873
GBDT 0.5202 0.6993 0.5857 0.7052 0.8171 0.9281
KNN 0.4874 0.6581 0.5842 0.6919 0.7927 0.9010
AdaBoost 0.4891 0.6603 0.5582 0.6483 0.7621 0.9097
FPSO-SVM
PSO-SVM
SVM
™ RF
g GBDT |
S KNN
€ AdaBoost |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
FPSO-SVM |
PSO-SVM |
— SVM
[‘-E RF I
o GBDT I
S KNN I
2 AdaBoost |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
~ FPSO-SVM |
{'E PSO-SVM ]
o SVM
S RF I
2] GBDT 1
) KNN I
£ AdaBoost ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
= FPSO-SVM I
= PSO-SVM L]
m SVM ]
= RF -
o GBDT -
= KNN I
£ AdaBoost ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
~ FPSO-SVM I
ﬁ PSO-SVM ]
[e) SV&\% 1
I
E GBDT .
o0 KNN .
~  AdaBoost ——
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
E FPSO-SVM - ]
o PSO-SVM |
b SVM ]
%] RF - ]
o, GBDT I
® KNN |
5 AdaBoost |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
M Accuracy F1
G-mean B AUC

FIGURE 3: Stacked histograms of accuracy, G-mean, F1, and AUC for different algorithms under different preprocessing methods.
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TaBLE 8: Paired ¢-test results of CVCF-SMOTE+FPSO-SVM and the best performance under different preprocessing methods in terms of

accuracy, F1, G-mean, and AUC on the thoracic surgery dataset. For CVCF-SMOTE, the p value is the statistic of the best result and the
second best result.

F1

G-mean

AUC

Methods Accuracy

NONE 11.034 (0.000)
SMOTE 14.348 (0.000)
SL-SMOTE 29.947 (0.000)
SMOTE-TL 29.815 (0.000)
B-SMOTE 6.541 (0.000)
CVCF-SMOTE 5.237 (0.001)

25.502 (0.000)
16.01 (0.000)
25.764 (0.000)
30.281 (0.000)
5.176 (0.001)
4.994 (0.001)

21.102 (0.000)
10.261 (0.000)
30.349 (0.000)
22.248 (0.000)
5.297 (0.000)
4.67 (0.001)

27.01 (0.000)
12.469 (0.000)
31.255 (0.000)
26.895 (0.000)
5.997 (0.000)
4.719 (0.001)

The function ¢ represents the normalized fitness incre-
ment of particle i for the previous iteration, which is calcu-
lated as

k+1 k)

Xi

(p(xf”, xf) — 6(327
i (5. ) =i £ (). S}

|fwor|
(16)

where 8, is the diagonal length of the rectangle formed by
the search space. f . is the worst fitness value.

The linguistic variable of function § is defined as Same,
Near, and Far, which is used to measure the distance from
a particle to the global best particle. The trapezoid member-
ship function of Same is defined as

1, if0<8<4,,
-5
5= 8;—61’ if §,<8<9,, (17)
0, if 8, <O <00

The triangle membership function of Near is defined as

0, if0<8<46,
6_51, if8,<8<8,,
6, -9,
8= 5 s (18)
S, if8,<8<d,,
3_62
0, if 03 <8 <00

The trapezoid membership function of Far is defined as

0, if0<8<4,,
6- .

o= ﬁ if,<8<8;, (19)
1, if 85 <0 <00

where §, =0.2-8,,,, 6, =0.4-6,,,, and 8; =0.6- 5, ..
The linguistic variable of function ¢ is defined as Better,
Same, and Worse, which is used to measure the improvement

TaBLE 9: Comparative results with previous studies based on
accuracy.

Authors Methods Accuracy
Mangat and Vig [3] DA-AC 82.18%
Elyan and Gaber [46] RFGA 84.67%
Li et al. [47] STDPNF 85.32%
s
Saber Iraji [4] ELM (wave kernel) 88.79%
Our work CVCF-SMOTE+FPSO-SVM 95.11%

of a particle’s fitness value for the previous iteration. The trap-
ezoid membership function of Better can be obtained by

1, if¢=-1,
=< -¢, if-1<¢<0, (20)
0, ifo<¢g<l.

The triangle membership function of Same is expressed as
follows:

¢=1-1[4|. (21)
The triangle membership function of Worse is as follows:

0, if-1<¢<0,
p={¢, ifo<p<l, (22)
1, if¢=1.

According to the preset fuzzy rules, w, e, Ccop 1> and A
have three levels including Low, Medium, and High [28].
Table 3 shows the defuzzification values of w, ce> Ceogr 1>

and A, which are calculated by the Sugeno inference method
[36]. It is defined as follows:

R
Zr=1przr
output = ———

, r=1,2-R, (23)
ZrZIPr

where R represents the number of rules. p, and z, are the
membership degree of the input variable and output value of
the r-th rule, respectively.
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FIGURE 4: ROC curve comparison of different algorithms under different preprocessing methods.
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FiGure 5: Fitness curves of FPSO-SVM (a) and PSO-SVM (b) with CVCF-SMOTE.

Then, update the position of each particle based on the
obtained values of w, ¢y, Ceo> 11> and A. Finally, recalculate
the fitness of each particle, that is, accuracy of the SVM cor-
responding to each particle. Repeat the above process until
the maximum number of iterations is reached and output
SVM with the optimal parameters.

The time complexity of FPOS-SVM consists of two
parts: FPSO and SVM. In FPSO, the velocity and position
of each particle are calculated in each iteration. Therefore,
the computational complexity of FPSO is determined by
the number of iterations, the particle swarm size, and
the dimensionality of each particle. Thus, FPSO requires
O(TNm) time complexity, where T is the number of iter-
ations of FPSO, N is the particle swarm size of FPSO, and m
is the dimensionality of the optimization problem. For SVM,
the optimal hyperplane is obtained by computing the dis-
tance between the support vector and the decision boundary.
Then, the time complexity required for SVM is O(dng,),
where d is the input vector dimension and n, is the number
of support vectors. In FPSO-SVM, the number of SVM com-
putations depends on the particle swarm size and the number
of iterations of FPSO. Therefore, the time complexity of
FPSO-SVM is O(TNm + TNdn,).

2.4. Specific Steps of the Proposed Hybrid Method for
Predicting Postoperative Survival of LCPs. Based on
improved SMOTE and FPSO-SVM, we propose a two-
stage hybrid method to improve the performance of the
postoperative survival prediction of LCPs. In the first stage,
CVCEF is used to remove noise samples to improve the per-
formance of SMOTE. Then, apply SMOTE to balance data.
In the second stage, FPSO-SVM is adopted to predict post-
operative survival of LCPs. Figure 2 shows the flowchart of
the proposed hybrid method. The specific steps of the hybrid
method are presented as follows:

(1) Set CVCF to n-fold cross-validation. Then, the
original dataset is divided into n subsets

TaBLE 10: Details of Haberman and appendicitis datasets.

Datasets Case Attribute Class
number number distribution

Haberman 306 3 225/81

Appendicitis 106 7 85/21

(2) Take a different subset from the n subsets each time
as the testing set and the remaining n — 1 subsets as
the training set. Therefore, a total of n different
C4.5 classifiers are trained. Then, all the trained
C4.5 classifiers will vote for each sample in the
dataset. In this way, each sample has a real class
label and # labels marked by C4.5

(3) For each sample, determine whether all (or most)
labels marked with C4.5 are different from the real
one. If all (or most) of them are different from the
real class label, the sample will be treated as noise
and removed from the dataset. On the contrary,
the sample is retained. Finally, all the retained sam-

ples make up a cleaned dataset

(4) Oversample from the cleaned dataset with SMOTE
until the class distribution of the dataset is balanced

(5) After data preprocessing with CVCF-SMOTE, the
new dataset is divided into a training set and a test-
ing set

(6) Set the search range for the penalty factor C and
kernel parameter y. Initialize particle swarm

(7) Evaluate the fitness of each particle based on equa-
tion (10). Calculate the linguistic values of Inertia,
Social, Cognitive, #, and A according to equations
(13)-(22)

(8) Convert the language values of Inertia, Social,
Cognitive, #, and A into numerical values based
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TaBLE 11: Accuracy comparison for different algorithms with different preprocessing methods on the Haberman dataset.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCE-SMOTE
FPSO-SVM 0.7402 0.6890 0.6386 0.7396 0.7795 0.8205
PSO-SVM 0.7098 0.6435 0.6504 0.6538 0.6831 0.7205
SVM 0.7196 0.6291 0.6409 0.6423 0.6772 0.7165
RF 0.6989 0.6795 0.6142 0.7315 0.7559 0.7772
GBDT 0.6837 0.6606 0.6299 0.7252 0.7465 0.7764
KNN 0.7174 0.6630 0.6417 0.7000 0.7449 0.7992
AdaBoost 0.7163 0.6402 0.6331 0.6117 0.6819 0.7559

TasLE 12: AUC comparison for different algorithms with different preprocessing methods on the Haberman dataset.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE
FPSO-SVM 0.5274 0.6813 0.6288 0.7310 0.7748 0.8206
PSO-SVM 0.5012 0.6131 0.6325 0.6669 0.6518 0.7121
SVM 0.5077 0.6096 0.6246 0.6598 0.6566 0.7035
RF 0.5731 0.6815 0.6132 0.7283 0.7588 0.7784
GBDT 0.5492 0.6607 0.6274 0.7226 0.7475 0.7765
KNN 0.5737 0.6649 0.6418 0.6997 0.7433 0.8009
AdaBoost 0.5809 0.6359 0.6293 0.6118 0.6779 0.7549

on equation (23) and Table 3. Update the velocity
and position of each particle based on equations
(11) and (12)

(9) Determine whether the maximum number of itera-
tions has been reached. If it is reached, the opti-

mized SVM is output. Otherwise, return to steps
(7) and (8)

(10) Apply the optimized SVM on the testing set

3. Experiments and Results

3.1. Experiment Design. To evaluate our proposed hybrid
method, we compare it with several state-of-the-art algo-
rithms including PSO-optimized SVM (PSO-SVM), SVM,
k-nearest neighbor (KNN) [37], random forest (RF) [38],
gradient boosting decision tree (GBDT) [39], and AdaBoost
[40]. In addition, we consider six preprocessing approaches,
including CVCF-SMOTE, Borderline-SMOTE (B-SMOTE)
[41], Safe-Level-SMOTE (SL-SMOTE) [42], SMOTE-TL
[43], SMOTE, and no preprocessing (marked as NONE),
to explore the performance of our proposed CVCEF-
SMOTE method. B-SMOTE, SL-SMOTE, and SMOTE-TL
are three representative SMOTE extensions, which can han-
dle imbalanced data with noise. In addition, in order to bet-
ter evaluate the effectiveness of the proposed hybrid method,
we tested its performance on two other imbalanced data.
The value range of penalty factor C and kernel parameter
y is set to [0,30], and the maximum number of iterations
is set to 30. All of these algorithms are programmed in the
Python programming language, except for CVCF-SMOTE
which is run in the KEEL software [44]. To eliminate ran-

TaBLE 13: Paired t-test results of CVCF-SMOTE+FPSO-SVM and
the best performance under different preprocessing methods in
terms of accuracy and AUC on the Haberman dataset.

Methods Accuracy AUC
NONE 6.603 (0.000) 18.744 (0.000)
SMOTE 6.555 (0.000) 10.315 (0.000)
SL-SMOTE 15.959 (0.000) 15.806 (0.000)
SMOTE-TL 4.506 (0.001) 3.539 (0.006)
B-SMOTE 2.601 (0.029) 2.83 (0.02)
CVCF-SMOTE 4.669 (0.001) 4.392 (0.002)

domness, experiments are repeated 10 times and the average
performance is shown in this study.

3.2. Performance Metrics. In this section, we introduce the
selected widely used imbalanced data classification perfor-
mance metrics, including accuracy (defined by equation
(10)), G-mean, F1, and AUC. They can be calculated accord-
ing to the confusion matrix in Table 2.

G-mean = \/ P X N , (24)
TP+FN TN +FP

2 * precision * recall

Fl (25)

precision + recall

where precision = TP/(TP + FP) and recall = TP/(TP + FN).
Precision can be regarded as a measure of the exactness of
a classifier, while recall can be regarded as a measure of the
completeness of a classifier.
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TaBLE 14: Accuracy comparison for different algorithms with different preprocessing methods on the appendicitis dataset.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCEF-SMOTE
FPSO-SVM 0.8688 0.8792 0.8208 0.9381 0.9167 0.9511
PSO-SVM 0.8625 0.8713 0.7620 0.8104 0.8714 0.9277
SVM 0.8469 0.7979 0.7854 0.8310 0.8813 0.9021
RF 0.8438 0.8438 0.7271 0.8714 0.9083 0.9106
GBDT 0.8188 0.8479 0.7146 0.8690 0.8917 0.9085
KNN 0.8500 0.7708 0.7354 0.8476 0.8708 0.8957
AdaBoost 0.8031 0.8396 0.7458 0.8690 0.8896 0.9106

TaBLE 15: AUC comparison for different algorithms with different preprocessing methods on the appendicitis dataset.
Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCEF-SMOTE
FPSO-SVM 0.6878 0.8807 0.8167 0.9411 0.9135 0.9512
PSO-SVM 0.5893 0.7602 0.7708 0.9311 0.8917 0.9239
SVM 0.6674 0.7966 0.7832 0.8423 0.8788 0.8982
RF 0.6930 0.8475 0.7324 0.8755 0.9064 0.9070
GBDT 0.6460 0.8539 0.7207 0.8713 0.8909 0.9092
KNN 0.6885 0.7736 0.7374 0.8499 0.8676 0.8954
AdaBoost 0.6352 0.8461 0.7492 0.8685 0.8888 0.9102

AUC is defined as the area under the ROC curve and the
coordinate axis. AUC is very suitable for the evaluation of
imbalanced data classifiers because it is not sensitive to
imbalanced distribution and error classification costs, and
it can achieve the balance between true positive and false
positive [45].

3.3. Result and Discussion. Tables 4-7 demonstrate the accu-
racy, G-mean, F1, and AUC values of different algorithms
under different preprocessing methods for predicting post-
operative survival of LCPs, respectively. The best experimen-
tal results of different preprocessing methods are marked in
bold. We can see from Tables 4-7 that the proposed CVCF-
SMOTE+FPSO-SVM model obtains the best performance
among all methods with 95.11% accuracy, 95.10% G-mean,
95.02% F1, and 95.10% AUC. This shows that our proposed
hybrid method can balance the classification accuracy of the
minority class and the majority class while ensuring overall
accuracy. That is, the proposed CVCF-SMOTE+FPSO-
SVM method has a higher recognition rate for patients
who survived after LC surgery for both longer than 1 year
and less than 1 year.

In addition, it is easy to see from Tables 5-7 that the G
-mean, F1, and AUC performances of different classifiers
for the original dataset without preprocessing are extremely
poor. However, it can be found from Table 4 that the classi-
fication accuracy of all the classifiers for the original dataset
is higher than the accuracy after SMOTE preprocessing. This
indicates susceptibility to imbalanced data; although the
classifiers perform well in the majority class, it performs very
poorly in the minority class. That is to say, these classifiers
fail to balance the classification accuracy of LCPs whose

TaBLE 16: Paired t-test results of CVCF-SMOTE+FPSO-SVM and
the best performance under different preprocessing methods in
terms of accuracy and AUC on the appendicitis dataset.

Methods Accuracy AUC
NONE 6.591 (0.000) 15.628 (0.000)
SMOTE 4.562 (0.001) 5.176 (0.001)
B-SMOTE 3.024 (0.014) 3.373 (0.008)
SL-SMOTE 6.227 (0.000) 7.009 (0.000)
SMOTE-TL 1.089 (0.304) 0.785 (0.453)
CVCF-SMOTE 2.764 (0.022) 2.787 (0.21)

survival time after surgery is longer than 1 year and less than
1 year.

For the performance after preprocessing with SMOTE,
we found that the G-mean, F1, and AUC values of most clas-
sifiers (except SVM) are higher than those of the original
dataset. However, as can be seen from Table 4, the accuracy
of all classifiers with SMOTE is lower than that of the origi-
nal dataset. This shows that although SMOTE can balance
precision and recall, it leads to a decrease in accuracy. For
the three SMOTE extensions SL-SMOTE, SMOTE-TL, and
B-SMOTE, we find that B-SMOTE has the most competitive
performance. B-SMOTE+FPSO-SVM obtained the experi-
mental results second only to CVCF-SMOTE+FPSO-SVM.

Figure 3 shows the stacked histograms of accuracy, G
-mean, F1, and AUC for different algorithms under different
preprocessing methods. It can be seen from Figure 3 that our
proposed CVCF-SMOTE+FPSO-SVM has the best perfor-
mance in predicting postoperative survival of LCPs. The
main reasons behind the experimental results are as follows:
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TaBLE 17: Running time (in second) by CVCF-SMOTE+FPSO-SVM and state-of-the-art algorithms.

Datasets

Algorithms

CVCEF-SMOTE+GBDT

Thoracic surgery 312

CVCF-SMOTE+PSO-SVM

CVCE-SMOTE+FPSO-SVM
53.6 43.5

CVCF-SMOTE+KNN
18.8

Haberman

CVCF-SMOTE+PSO-SVM

CVCE-SMOTE+FPSO-SVM
27.5 24.5

SMOTE-TL+FPSO-SVM

Appendicitis
bp 13.8

CVCF-SMOTE+PSO-SVM

CVCE-SMOTE+FPSO-SVM
222 17.3

first, CVCF identifies and removes noise to improve the data
quality so that blind oversampling can be reduced when
applying SMOTE. Second, FPSO-SVM can search the
optimal parameters of SVM adaptively, which improves
the classification accuracy of SVM.

In order to further test the difference between CVCE-
SMOTE+FPSO-SVM and other combination methods, a
paired t-test was conducted among CVCF-SMOTE+FPSO-
SVM and the best results under different preprocessing
methods. A p value less than 0.05 is considered to be statis-
tically significant in the experiment. From Table 8, it can be
seen that CVCF-SMOTE+FPSO-SVM achieves significantly
better results than the best results under different prepro-
cessing methods in terms of the accuracy, F1, G-mean, and
AUC at the prescribed statistical significance level of 5%.

We also compare the accuracy of our proposed model with
previous studies as shown in Table 9. We can see from Table 9
that the accuracy of the CVCE-SMOTE+FPSO-SVM model is
higher than that of other methods of the previous literature.
Finally, we compare the ROC curves of different algo-
rithms under different preprocessing methods, as shown
in Figure 4. The greater the AUC value, the better the classifier
performance. It can be seen that the AUC of our proposed
CVCE-SMOTE+FPSO-SVM is the largest, which means that
our proposed model is outperforming other comparison
methods for predicting postoperative survival of LCPs.

In order to further prove that the performance of our
proposed FPSO-SVM is superior to that of PSO-SVM, we
draw the fitness curves of these two algorithms.
Figures 5(a) and 5(b) show fitness curves of FPSO-SVM
and PSO-SVM with CVCF-SMOTE preprocessing. As can
be seen from (Figures 5(a) and 5(b)), we can clearly see that
compared with PSO-SVM, FPSO-SVM not only has a higher
fitting degree but also a faster convergence speed. This shows
that our proposed FPSO-SVM algorithm can identify the
optimal solution in the search space faster and more accu-
rately than PSO-SVM.

3.4. Works on Other Datasets. To show the generalization
ability of our proposed method, we apply CVCF-SMOTE
+FPSO-SVM to the other two imbalanced datasets collected
from KEEL (https://sci2s.ugr.es/keel/) [44]. Table 10 shows
the details of the two selected datasets.

Tables 11 and 12 show the accuracy and AUC of differ-
ent algorithms in different preprocessing methods on the
Haberman dataset. It can be seen from Tables 11 and 12 that
under different preprocessing methods, accuracy and AUC

of CVCF-SMOTE+FPSO-SVM are higher than those of the
comparison classifiers. As shown in Table 13, the results of
the paired t-test also show that CVCE-SMOTE+FPSO-
SVM is significantly better than the best experimental results
under different preprocessing methods on the Haberman
dataset. For the appendicitis dataset, it can be seen from
Tables 14 and 15 that CVCE-SMOTE+FPSO-SVM also
obtains the highest accuracy and AUC value compared to
other preprocessing methods and classifier combinations.
As can be seen from Table 16, for the appendicitis dataset,
CVCF-SMOTE+FPSO-SVM achieves significantly better
results than the best performance under NONE, SMOTE,
SL-SMOTE, and B-SMOTE. However, it is not a significant
difference for the best performance under SMOTE-TL.

From the experimental results, we see that CVCEF-
SMOTE+FPSO-SVM outperforms the compared algorithms
for both the thoracic surgery dataset and the other two
imbalanced datasets. On the one hand, it is because CVCF-
improved SMOTE is well adapted to different datasets. On
the other hand, FPSO-SVM automatically adjusts the opti-
mal parameters according to different datasets, thus improv-
ing the generalization ability of the SVM.

3.5. Running Time Analysis. We compared the running time
of CVCF-SMOTE+FPSO-SVM with the algorithms with the
highest accuracy among all the compared methods. For the
three datasets thoracic surgery, Haberman, and appendicitis,
the algorithms with the highest accuracy among the compared
methods are CVCF-SMOTE+GBDT, CVCF-SMOTE+KNN,
and SMOTE-TL+FPSO-SVM, respectively. In addition, in
order to compare the running time of FPSO-SVM with that
of PSO-SVM, CVCF-SMOTE+PSO-SVM is also involved in
the comparison. The comparison results are shown in
Table 17. It can be seen from Table 17 that the running time
for CVCE-SMOTE+FPSO-SVM is less than that of CVCF-
SMOTE+PSO-SVM for the three datasets. However, the
running time of CVCF-SMOTE+FPSO-SVM is slower than
that of CVCF-SMOTE+GBDT, CVCF-SMOTE+KNN, and
SMOTE-TL+FPSO-SVM for the thoracic surgery, Haberman,
and appendicitis datasets, respectively. Considering the higher
classification performance of our proposed method, it can still
be considered superior to other algorithms.

4. Conclusion

In this work, we proposed a hybrid improved SMOTE and
adaptive SVM method to predict the postoperative survival
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of LCPs. In our proposed hybrid model, CVCEF is adopted to
clear the data noise to improve the performance of SMOTE.
Then, we use FPSO-optimized SVM to estimate whether the
postoperative survival of LCPs is greater than one year.
Experimental results show that our proposed CVCE-
SMOTE+FPSO-SVM hybrid method obtains the best accu-
racy, G-mean, F1, and AUC as compared to other compared
algorithms for postoperative survival prediction of LCPs.

Our proposed hybrid method can provide valuable med-
ical decision-making support for LCPs and doctors. Consid-
ering the excellent classification performance for the other
two imbalanced datasets, in the future, we will try to apply
the proposed method to other problems based on imbal-
anced data, such as disease diagnosis and financial fraud
detection. There are two limitations that need to be pointed
out: one is that we only consider the 1-year survival after
lung cancer surgery. In future studies, we will try to predict
survival at other time points, such as survival 3 or 5 years
after lung cancer surgery. The other is that the value range
of the parameters of SVM in FPSO-SVM needs to be set
manually, which may require some experience or experi-
mental attempts. Designing a setting-free SVM is our future
research direction.
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In recent years, with the acceleration of industrialization, urbanization, and aging process, the number of patients with chronic
diseases in the world is increasing year by year. In China, the number of chronic diseases has increased tenfold in 10 years. The
percentage of the disease burden in the whole society accounts for 79.4%. Chronic diseases have become the top killer for
Chinese people’s health. However, for chronic diseases, prevention is more important than treatment. It is the best way to keep
healthy. Therefore, health intervention is the key to prevent chronic diseases. Especially now, with the spread of COVID-19
pandemic, reducing the times of hospital check-ups and treatments for chronic patients is practically significant for releasing the
stress on medical staffs and decreasing the rate of transmission and infection of COVID-19. In this paper, case-based reasoning
(CBR) technology is used to assist personalized intervention for chronic diseases, and the key technologies of personalized
intervention for chronic diseases based on case-based reasoning are proposed. The case organization, case retrieval, and case
retention techniques of CBR technology in chronic disease personalized intervention are designed, and the calculation of
interclass dispersion is added to the distribution of feature words, which is used to describe the distribution of feature attributes
in different categories of cases. It provides an effective method for the establishment of personalized intervention model for

chronic disease.

1. Introduction

In recent years, with the acceleration of industrialization,
urbanization, and aging process, the number of chronic dis-
eases in China has exploded, which has increased tenfold
during the 10 years. There are nearly 300 million people with
chronic diseases, 350 million overweight and obese people,
200 million people with hypertension, 100 million with
hyperlipidemia, and 92.4 million with diabetes. The death
rate of chronic disease has risen to 86.6% of the total death
rate of Chinese residents. The percentage of the disease bur-
den in the whole society accounts for 79.4%. In the next 10
years, 80 million Chinese people will die of chronic diseases.
Chronic disease has become China’s top one killer, and huge
medical expenses will also be the heavy burden for individ-
uals, families, and society.

Common chronic diseases mainly include cardiovascular
and cerebrovascular diseases, metabolic diseases, and pulmo-
nary diseases, such as hypertension, diabetes, and coronary
heart disease. These chronic diseases are characterized by
long course of disease, many complications, and long treat-
ment, which have a serious impact on the health and normal
life of patients [1]. In fact, for chronic diseases, prevention is
better than treatment. Prevention is the best way to keep
healthy. As traditional Chinese medicine says, “three parts
cure, seven parts raise.” People cannot live forever, but people
can gradually enhance the physical fitness and improve the
ability of rehabilitation and antiaging through good living
habits and later recuperation, so as to achieve the purpose
of prolonging life and to improve the quality of life. There-
fore, health intervention is the key to prevent and cure
chronic diseases. However, health intervention has a high
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requirement for specialization, and it is difficult for ordinary
residents to carry out their own health intervention. There-
fore, case-based reasoning technology can be used to assist
the personalized intervention of chronic diseases.

Case-based reasoning (CBR) is written in the book
Dynamic Memory, which is written by Roger Schank from
Yale University in 1982. It is an important knowledge-
based problem solving and learning method emerging in
the field of artificial intelligence. It can be used to solve the
problem that nonprofessionals are difficult to obtain and to
express professional knowledge. CBR solves the existing
problem through the reuse or modification of the solution
of the most similar case by building a rich case base and looks
for the most similar cases in the case base. In the problem to
solve mechanism, CBR uses the case-based reasoning strat-
egy and imitates the cognitive way of analogy in human
decision-making process to solve the unstructured and
knowledge poor domain problems effectively [2-11].

The process of case reasoning usually includes four steps:
case representation, case retrieval, case reuse and modifica-
tion, and case evaluation and learning. Among them, case
retrieval is the key step of case reasoning. Only by finding
similar cases through case retrieval can it be better for case-
based reasoning. At present, case retrieval techniques used
commonly include nearest neighbor retrieval, knowledge-
guided retrieval, inductive reasoning retrieval, neural net-
work retrieval, classification retrieval, rough set retrieval,
and fuzzy retrieval. However, this paper does not use com-
mon case retrieval methods. Instead, it is based on the char-
acteristics of common chronic disease cases, draws on the
concept of TF-IDF (term frequency-inverse document fre-
quency), combines the calculation method of information
entropy, and then determines the weight of the case attri-
butes through the calculation of the interclass dispersion dis-
tribution to solve the problem of different attribute weights.
In addition, the paper finally compares the relative similarity
of cases through the simple theorem of cosines, which greatly
improves the efficiency of case similarity retrieval.

2. Related Research

Through the CBR research for many years, the author has
designed a children’s common diseases diagnosis method
based on case-based reasoning and the elderly health assess-
ment method based on case-based reasoning and has applied
for successfully key project of Anhui province natural science
foundation of the higher institutions, The Children’s Com-
mon Diseases Diagnosis Method Based on Case-based Rea-
soning Research, and the supported project of excellent
young talents in colleges and universities in Education
Department of Anhui province, The Study of the Elderly
Health Assessment Method Based on Case-based Reasoning.
In the process of project research, the author not only puts
the designed algorithm into practice and develop children’s
common diseases diagnosis model software to get access to
the software copyright (see Annex 1 for the copyright certif-
icate) but also standardizes the algorithm to make it be
applied to other fields of case-based reasoning, successfully
applies standardized algorithm to urban traffic guidance,
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and successfully develops the urban road traffic congestion
channel decision support system software to get access to
the software copyright (see Annex 1 for the copyright
certificate) [11].

In the preliminary research results, either the diagnosis of
common diseases in children, or the health assessment of the
elderly, or the decision-making of urban traffic congestion,
the application fields are relatively narrow. Although the
software designed can use the concept of TF-IDF and the
calculation method of information entropy to build a case
model, and determine the similarity of unknown cases, the
descriptions of the distribution of different characteristics
in different cases are not too ideal. The results are usually
based on known case diagnosis or artificial intervention,
directly according to the known diagnostic results of similar
cases, without human intervention. Therefore, the intelligent
ability needs to be improved.

In order to solve the problem of the generality of the case-
based reasoning method and the distribution description of
characteristic attributes to improve the intelligence of the
algorithm application process. The research groups have
established the health big data through the questionnaire sur-
vey of urban residents’ lifestyle and health status and have
proposed the general case-based reasoning method to add
interclass dispersion calculation through the analysis of the
original model and the continuous testing and improvement
of the software. This method is not only applicable to most
fields of case-based reasoning but also describes the distribu-
tion of feature words among different classes, which solves
the problem that IDF overamplifies the function of rare
words. The authors apply this approach to personalize inter-
ventions for chronic diseases. Through the questionnaire
survey of residents’ lifestyle and health status, the case base
of the case-based reasoning model has been established.
Through the search of similar cases, the probability of
chronic diseases caused by residents’ lifestyle is calculated,
and suggestions for reasonable adjustment of residents’ life-
style are given based on the diagnosis and treatment protocol
of known patients.

3. A Framework of Key Technology Models for
Personalized Interventions for Chronic
Diseases Based on Case-Based Reasoning

Through the questionnaire survey of the lifestyle and health
status of patients with chronic diseases, as well as the diagno-
sis and treatment protocol of patients with chronic diseases,
the case database is established. Through the similarity
retrieval of the unknown cases, several cases whose similarity
meets the ranking requirements, or several cases whose sim-
ilarity meets the threshold, are found out. Then, through the
analysis of the chronic disease diagnosis and treatment pro-
tocol of similar cases, the diagnosis and treatment protocol
of new cases can be obtained, so as to provide the diagnosis
and treatment service for the chronic disease patients or to
provide reasonable preventive measures for the potential
chronic disease patients, to reduce the number of chronic
patients hospitalized for examination and treatment. With
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the prevalence of COVID-19, this has practical implications
for reducing the stress on medical staffs at this particular time
and the rate of transmission and infection of COVID-19. The
key technology model framework of personalized interven-
tion for chronic diseases based on case-based reasoning is
shown as follows in Figure 1.

In the key technology model of personalized intervention
for chronic disease based on case-based reasoning, the first
cases collected need to have specific diagnosis and treatment
protocols or preventive measures. Then, they need to have
standardized descriptions. Different eigenvectors are used
to describe the different attributes of the case state and treat-
ment protocol. By retrieving case status one by one, several
matching cases with the highest similarity with the new case
are extracted from the case base. Then, the availability of the
new case is calculated through the utilization rate of a
diagnosis and treatment protocol of the most similar case
to recommend the diagnosis and treatment protocol of the
new case.

4. Case-Based Reasoning for Individualized
Intervention of Chronic Diseases

The method of personalized intervention for chronic diseases
based on case-based reasoning mainly includes four key
technologies: standardized representation of case knowledge,
case similarity retrieval, case reuse, and case personalized
intervention.

4.1. Case Knowledge Standardized Representation. Before
using CBR, the data should be cleaned and collated first.
The data structure should be standardized. Various medical
institutions have a large amount of medical data. However,
due to local and temporal differences, many data are not only
scattered but also have differences in storage structure,
description of illness and diagnosis scheme, and attribute
characteristics, so it is difficult to compare a lot of data on
the same platform.

Here, we use Boolean eigenvectors to represent case
knowledge. Since data is not all structured data, and different
fields have different emphases on data requirements, so we
first set up a Boolean attribute statistical diagram, which
means that all evaluation indicators are structured and all
attributes are broken down into Boolean options.

Take the questionnaire of lifestyle and health status of
urban residents as an example, the sex can be divided into
male and female, so the attribute “sex” can be made. The
attribute option 1 represents male, and the attribute option
0 represents female. Age is continuous numerical data, which
can be divided into several optional Boolean options such as
“Child,” “Teenager,” “Youth,” “Middle age,” and “Old age”
according to age. The daily sleep time has “less than 6 hours,”
“6-7 hours,” “7-8 hours,” and “more than 8 hours” options,
so it is divided into “Daily sleep (less than 6 hours),” “Daily
sleep (6-7 hours),” “Daily sleep (7-8 hours),” and “Daily sleep
(more than 8 hours)” several Boolean options. Then, all the
options are made into Boolean eigenvectors, and the attribute
statistics of the evaluation indicators are obtained based on
this, as shown in the following Diagram 1.

According to the attribute statistics table (Table 1), the
original case library can be converted into a Boolean case
library. Assuming that the original case library is shown in
the following Table 2, the corresponding Boolean case library
is shown in the following Table 3.

Through the transformation of the case base, we found
that the case attributes would increase. Many optional attri-
butes are divided into several normalized Boolean attributes,
which are decomposable from the same attribute. In each
case, only one of the Boolean attributes can be selected. How-
ever, the converted Boolean case base can make the cases into
vectors, which is helpful for the contrast of similar cases.
Realizing the structure of data is more helpful for data pro-
cess. Even if different regions and institutions have different
descriptions of the cases, the standardized conversion of the
cases can become a structured case.

Assuming that the attributes of the original case database
are decomposed into n Boolean attributes in the attribute sta-
tistics table, each Boolean case after transformation can be
represented by an n-dimensional feature vector X, X = (x,,
X, --+,x,). In this vector, if the Boolean attribute does not
appear, x; =0, otherwise, x;=1.

We can easily find that the weight of each Boolean attri-
bute should be different in a case of eigenvector representa-
tion. The fewer times a Boolean attribute has a value of 1 in
all cases, the more typical this attribute is in case evaluation,
so its weight should be greater when carrying out case simi-
larity retrieval. On the contrary, if a Boolean attribute has a
value of 1 in a large number of cases, that is to say, it is diffi-
cult to judge the actual situation of the case through this attri-
bute, and then its weight in the process of case similarity
retrieval should be small. Therefore, it is not reasonable to
set the weight of all the attributes that appear in the case to
1. This is similar to the inverse document frequency (IDF)
of information theory.

IDF, simply to say, is that if a keyword w appears in N
pages, the greater the N is, the smaller the weight of w is, vice
versa [12].

Combining with the calculation method of information
entropy, namely, the calculation method of information
needed to express the uncertainty of information, we can
get the formula for calculating the weight of the attribute of
the case: w; =log,(D/D;), where D is the total number of
cases in the case base, and D; is the number of times that
the value of attribute i is 1 in all cases in the case base.

It is assumed that there are 1000 cases in the case base,
among which 489 cases have a “sex” attribute value of 1.
There are 489 males among 1000 cases, so the weight of
“sex” attribute is log,(1000/489) =~ 1.03. Similarly, if the
number of times that attribute i and attribute j value 1 in
the case are 200 and 50, respectively, that is, D = 1000,
D;=200, and D;=50, then, the weight of attribute I is
log, (D/D;) =log,(1000/200) = 2.32, while the weight of
attribute j is log,(D/D;) =log,(1000/50) ~ 4.32. By parity
of reasoning, we can get the weight of all the evaluation
indicators, so we get the attribute statistics table with
weights which are shown in the following Table 4:
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FIGURE 1: The key technology model framework of personalized intervention for chronic diseases based on case-based reasoning.

TaBLE 1: Attribute statistics.

Attribute ID Attribute content Attribute description
1 Sex Male: 1, female: 0

2 Child Under the age of 12
3 Teenager Age between 12 and 18
i Daily sleep (less than 6 hours) /

j Eat fruit per week (more than 1000 g) /

k Does anyone in the immediate family have diabetes Yes:1,n0:0

TaBLE 2: Original case library.

D Name Sex Age ... Daily sleep ... Eat fruitper Does anyone in the.z immediate family have
week diabetes
) Zhang o es lessthané 250g-1000g ... No
San hours
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TaBLE 3: Original case library.
. Old  Daily sleep (less than Eat fruit per week Does anyone in the immediate
D Name  Sex Child ...... age 6 hours) (250g-1000g) 7T family have diabetes
g hangy 1 1 1 0
San
TABLE 4: Attribute statistics with weights.
Attribute ID Attribute content Attribute description The weight
1 Sex Male: 1, female: 0 1.03
2 Child Under the age of 12 0.86
3 Teenager Age between 12 and 18
i Daily sleep (less than 6 hours) / 2.32.
j Eat fruit per week (more than 1000 g) / 4.32
k Does anyone in the immediate family have diabetes Yes:1,n0:0 0.32

Thus, the weight vector of the Boolean attribute can be
obtained as follows:

And the weighted vector of each case i in the Boolean case
base is deduced as follows:

wl_X)(W_(xl,xz) ...... ’xn))((wl’wz’ ...... ’wn)T
= (1,0, - L, ) % (1.03,0.86, -+ - ,2.32, 00 e )T
=(1.03,0, -+ -+ ,2.32, e e )

Through the calculation method of IDF and information
entropy, the case weighted vector obtained shows a good
application effect in the allocation of case eigenvalue weight.
However, the original intention of introducing IDF is to sup-
press the negative impact of the meaningless high-frequency
attribute in the case. In addition, when the ratio between the
total number of cases and the attribute with the value of 1 is
large, the role of the low-frequency attribute is highlighted.
However, here is a question which should be discussed: Com-
mon attributes are not necessarily meaningless. On the con-
trary, some patients with chronic diseases will have some
inherent habits, or physical health indicators will have some
inherent changes. These habits and changes often indicate
that people with these habits or changes will suffer from a
chronic disease precursor. In the same way, the occasional
presence of low-frequency attributes will be treated as high-
weight keywords, which will overamplify the importance of

these attributes. Moreover, due to the differences of climate,
environment, region, living habits, age, sex, and other factors,
different categories of people in different regions will lead to
the difference in the prevalence of different chronic diseases.
In view of these deficiencies, the frequency of occurrence of
the ith attribute in different classes will directly affect whether
this attribute can become the characteristic attribute of the
case. Therefore, an item can be added between the original
cases to represent the distribution of feature attributes among
different classes, that is to say, the interclass dispersion of fea-
ture attribute distribution.

The so-called interclass dispersion is the description of
the distribution of characteristics attributed in different cate-
gories of cases. The characteristic attributes centrally distrib-
uted in a certain type of case often have a strong ability to
distinguish categories. It is assumed that all cases can be
divided into n categories, and f (i) represents the frequency
of occurrence of feature attribute i in a certain category of

cases, while f(i) represents the average frequency of occur-
rence of feature I in all types of cases.

The overall interclass dispersion is

=15 (R0 -70)°
D(i) = o . (4)




Substitute (3) into (4) to get:

iy - Y B - Ui )

A — N E
Unyifi(i) o

Combine the main idea of weight calculation before, if
the feature attribute in Formula (5) only appears in a certain
type of case, it has the strongest classification ability, so D(i)
is 1. If the frequency of the feature attribute appearing in each
category of cases is equal, it is considered that the feature
does not have the classification ability. Therefore, D(i) is 0,
and the feature is useless and can be discarded. Thus, the
value of D(i) is between [0,1]. After considered the dispersion
between classes, the weight calculation is as follows:

w, = <log D> . VUn =1 () - 1S £, ()
i ZD,‘ l/nzzzlfk(l)

(6)

Although the discreteness between classes is considered
here, if the distribution of attributes with two features is basi-
cally similar in the same class case, we still cannot accurately
judge the distribution of the two fault features. Therefore, we
define the information entropy within the same kind of cases,
so as to reflect the distribution of feature attributes within the
same kind of cases. If the distribution of some feature attri-
bute i in a similar case is more uniform, the information
entropy in this kind of case is larger, and the feature attribute
i can more easily reflect the feature information of this kind
of case. The calculation formula of the information entropy
of a case within the class is

2 Nd.  Nd,
- _ J ]
B(t, Ci) = chk '8 Ne, @)

j

wherein Nd represents the frequency of occurrence of the jth
value (0 or 1) of feature attribute i in class CK cases, and NC;
represents the total frequency of occurrence of feature attri-
bute I in class C, cases.

Finally, based on the interclass dispersion and intraclass
information entropy, a relatively accurate calculation method
to determine the weight of feature attributes is obtained for
the calculation of case class differentiation:

w;= (10g2 DB> * \/l/n =12k (fild) = UnEi (i)

TS0
D Nd, Nd,
' <_ZJ:N—CL ' N—c;>
(s

According to Formula (8), the improved weight algo-
rithm can be used to select the feature attributes, to calculate
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the weight of each feature attribute, and then to select the N
cases with the largest weight as the feature vectors of CBR.

4.2. Case Similarity Retrieval. Case similarity retrieval is the
core of CBR, which aims to retrieve as few approximate sim-
ilar cases as possible from a large number of cases, as the ref-
erence to the solution of the current problem. Common case
search strategies include template search strategy, literature
search strategy, inductive index strategy, knowledge guide
strategy, and nearest neighbor strategy. In this paper, the
nearest neighbor strategy is used for case retrieval, but the
calculation of similarity is determined by the law of cosines
instead of Euclidean distance.

In the knowledge representation of the case, since we
have established an attribute eigenvector for each case, we
can calculate the size of the angle between two eigenvectors
by using the cosine theorem. Since the weights of all indica-
tors are positive, the cosine value between the two eigenvec-
tors is between 0 and 1. The closer the cosine value between
two eigenvectors is to 1, the smaller the angle between the
two vectors is. It means that the closer the two eigenvectors
are to each other. On the contrary, the closer the cosine value
between the eigenvectors is to 0, the greater the angle
between the two eigenvectors is. It means that the two eigen-
vectors represent less correlation between the cases.

We know that the cosine of AABC is cos A = b* + ¢* —
a?/2bc.

At this point, if b and ¢ are regarded as two vectors
starting from A, the above formula can be equivalent to cos
A=(b,c)l|b||c|, where <b,c> said vector inner product,
and |[b| and |c]| has said the length of the vector.

Suppose the eigenvectors of the Boolean attributes of
case X are (x;,x, -, x,), where xi is 0 or 1, and the attri-

bute weight vector Y = (y,,y,-,¥,)", then, its weighted

eigenvector is (xp,xy - x,) = (V¥ ) = (0,
x2y2’ T xnyn)'

Therefore, if we assume that the weighted eigenvectors of two
cases AandBare (a;,a, -+~ -+ ,a,)and (b}, b,, -+, b,), then, the

cosine of the angle between them is cos 0 = a, b, + a,b, + -+ -+

+a,b,/\/al +aite o +a2\/ b} + bl oo +b2.

The smaller cos 0 value of the two vectors is, the smaller
the approximation degree of the case will be. On the contrary,
the larger cos 0 value is, the closer the two cases will be.
When cos 0 = 1, the two vectors will completely overlap, that
is to say, the attribute indexes of the two cases will be exactly
the same.

Therefore, we use the vector angle calculated by the law of
cosines to express the similarity of two vectors. For example,
if the result of two vectors calculated by the law of cosines is
0.5, then we reckon that the similarity of the two vectors is
50%. Although the nonlinear cosine function is not very
accurate to calculate the similarity of the cases, but here, we
do not need to calculate the accurate similarity between the
cases to be evaluated and each case in the case library, but
to know the relative similarity between the cases to be evalu-
ated and the cases in the case library. That is to say, we only
need to know which cases in the case library are more similar
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TaBLE 5: Diagnosis and treatment of similar cases.

Case Similarit Diagnosis and treatment ~ Diagnosis and treatment  Diagnosis and treatment Diagnosis and treatment
ID Y protocol 1 protocol 2 protocol3 7 protocol n

798 98.62% 1 0 L 1

1103 96.98% 1 1 L 0

6 95.33% 1 0 o 1

235 93.75% 1 0 o 1

39 89.99% 0 0 L 1

1295 88.73% L 0

to the case to be evaluated. Therefore, using the law of cosines
to evaluate similarity is simple, which can obtain a good
result of corresponding approximation judgment.

4.3. Case Reuse and Case Personalized Intervention. Through
the Boolean attribute feature vector expression of the above
cases and the case similarity retrieval method calculated by
the law of cosines, as well as the method of setting a threshold
or setting the number of similar cases, a certain number of
cases that are most similar to the current case can be
obtained, such as setting search for cases where the similarity
is over 90%, or search for the top 50 cases with similarity, etc.
By obtaining chronic disease diagnosis and treatment plans
of similar cases, we can obtain personalized intervention
methods for the diagnosis and treatment of new chronic dis-
ease patients.

In the process of case similarity retrieval, if we can find
cases with a similarity of 100%, we will find exactly the same
cases. Then, we can directly reuse the diagnosis and treat-
ment scheme of the case, otherwise.

First of all, we standardize the diagnosis and treatment
protocols of all chronic disease cases in the case base and con-
vert the diagnosis and treatment protocols of all cases into
Boolean options after comprehensive conversion. This trans-
formation is consistent with the standardized conversion

98.62% * 1 +96.98% * 1 +95.33% * 1+4--- ---

method of cases in the process of case similarity retrieval.
When a certain diagnosis and treatment scheme is adopted
in a case, it means that the Boolean option value of the
scheme is 1; otherwise, it is 0.

After the standardization of diagnosis and treatment
schemes, the personalized intervention of diagnosis and
treatment schemes in unknown cases are carried out accord-
ing to the similarity of similar cases CR; and the application
degree of a diagnosis and treatment scheme CT; in all
selected cases. Then, the optional rate of diagnosis and treat-
ment schemes in article jth of unknown cases is

¥, (CR, % CT))

ST CR % 100%. (9)
i=1 i

New(CTj) =

Suppose, in the case base, N optional Boolean diagnosis
and treatment protocols can be obtained after the compre-
hensive and decomposed treatment plans of all cases.
Through case search, we find the top 50 cases are the most
similar to the current unknown cases. The similarity between
similar cases and new cases, as well as the diagnosis and treat-
ment protocol of similar cases, is shown in Table 5.

Then, the probability of the new case adopting the diag-
nosis and treatment protocol 1 is

+89.99% x 0 + 88.73% = 1

98.62% + 96.98% + 95.33%+--- ---

The diagnosis and treatment protocol of the new case can
be given after the adoption rate of all the diagnosis and treat-
ment protocols of the new case has been calculated, and the
threshold value of the case adoption rate has been given
through manual intervention.

For example, after manual intervention, the adoption rate
of diagnosis and treatment protocol in new cases is more
than 95%, and these plans can be regarded as the necessary
treatment plan. The adoption rate of diagnosis and treatment
protocol in new cases is between 75% and 95%, which can be
regarded as the optional treatment plan. The adoption rate of

+89.99% + 88.73%

% 100% = 97.30%. (10)

diagnosis and treatment protocol in new cases is between
60% and 75%, as reference treatment plan.

In the process of personalized case intervention, in addi-
tion to providing case auxiliary diagnosis and treatment
information, it can also be used to expand the case base. In
the process of case similarity retrieval, if the similarity
between the new case and the cases in the case base is lower
than a certain threshold (for example, the similarity is lower
than 95%), the auxiliary diagnosis and treatment scheme of
the new case will be added to the case base as a case after
manual intervention.



5. Conclusion

This paper puts forward the method of personalized inter-
vention for chronic disease based on case-based reasoning
and gives several key techniques in the process of interven-
tion. This algorithm model can be used in the prevention of
chronic diseases and also in the auxiliary diagnosis and treat-
ment of chronic diseases. The main idea is to prevent or treat
unknown cases through the judgment of case similarity and
the diagnosis and treatment scheme of similar cases. In peo-
ple’s daily life, diseases are inevitable. In addition, different
medical staff may give different results in the process of dis-
ease diagnosis. At this point, diagnosis and treatment experi-
ence is particularly important. Patients are more inclined to
the diagnosis and treatment plan given by the medical staff
with rich diagnosis and treatment experience. We are not
saying that experience is always right, but in the case of ambi-
guity, the experience will be an important reference. The
algorithm proposed in this paper is to integrate the experi-
ence of different medical institutions and medical staff and
then to be applied. Therefore, the algorithm proposed in this
paper can not only be used for personalized intervention for
chronic diseases but also for personalized intervention for
other diseases, even used in other fields. The premise is that
the corresponding accurate case base can be established.

The accuracy of the algorithm proposed in this paper
depends on the construction of the case base. The richer
the cases in the case base are and the more accurate the diag-
nosis and treatment scheme in the case base is, the higher the
feasibility of the auxiliary diagnosis and treatment scheme
finally obtained by the algorithm will be. Of course, there
are some problems with the algorithm itself:

Second, when the eigenvector is used to represent knowl-
edge, many attributes in the Boolean case base are decom-
posed from the same attribute in the original case base,
which leads to the fact that the eigenvector used is usually a
sparse vector. In addition, the thresholds mentioned in case
reuse and personalized intervention techniques need to be
set by professionals. The manual intervention of profes-
sionals is necessary when new cases are added to the case
base, which will undoubtedly increase the degree of manual
intervention. Therefore, in practical application, how to sim-
plify the existing algorithm by sparse vector algorithm on the
basis of ensuring its effectiveness, and how to reduce the
degree of manual intervention to improve its working effi-
ciency as far as possible are the directions of future research.

Finally, the effectiveness of the algorithm in the applica-
tion process is related to the size of the case base. However,
with the continuous expansion of the case base, case similar-
ity retrieval will become more and more complex. Therefore,
how to improve the efficiency of the algorithm is also one of
the future directions.
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Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or
monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We
aimed to evaluate the performance of different machine learning models for the prediction of 1-year mortality in STEMI
patients with hyperuricemia. We compared five machine learning models (logistic regression, k-nearest neighbor, CatBoost,
random forest, and XGBoost) with the traditional global (GRACE) risk score for acute coronary event registrations. We
registered patients aged >18 years diagnosed with STEMI and hyperuricemia at the Affiliated Hospital of Zunyi Medical
University between January 2016 and January 2020. Overall, 656 patients were enrolled (average age, 62.5 + 13.6 years; 83.6%,
male). All patients underwent emergency percutaneous coronary intervention. We evaluated the performance of five machine
learning classifiers and the GRACE risk model in predicting 1-year mortality. The area under the curve (AUC) of the six
models, including the GRACE risk model, ranged from 0.75 to 0.88. Among all the models, CatBoost had the highest predictive
accuracy (0.89), AUC (0.87), precision (0.84), and F1 value (0.44). After hybrid sampling technique optimization, CatBoost had
the highest accuracy (0.96), AUC (0.99), precision (0.95), and F1 value (0.97). Machine learning algorithms, especially the
CatBoost model, can accurately predict the mortality associated with STEMI complicated by hyperuricemia after a 1-year
follow-up.

1. Introduction

The most common cardiovascular diseases currently include
hypertension, heart failure, coronary atherosclerosis, and
myocardial infarction (MI); there is widespread interest in
these conditions, as they are associated with high morbidity
and mortality. In recent years, the incidence and death rate
associated with MI have increased in China. The incidence
of MI, though not strongly associated with the regions in
China, has been found to increase with age [1]. Research
has shown that MI typically starts to develop in young and
middle-aged people. Therefore, the prevention, detection,

and treatment of MI have become an area of interest among
medical experts and scholars. In recent years, uric acid (UA)
has been increasingly recognized as a well-known cardiovas-
cular risk factor, along with hypertension, diabetes, chronic
kidney disease (CKD), and obesity [2-7]. Although it is
unclear whether UA is an independent predictor of cardio-
vascular disease, recent retrospective studies have demon-
strated that hyperuricemia is an independent predictor of
short- and long-term mortality in patients with AMI [8-
10]. Machine learning is a multidisciplinary field involving
artificial intelligence, computational complexity theory,
probability and statistics, cybernetics, information theory,
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philosophy, physiology, neurobiology, and other disciplines
that can be characterized by system self-improvement.
Machine learning was developed from the research method
based on neuron models and function approximation theory;
rule learning and decision tree learning were then incorpo-
rated based on symbolic calculus [11]. Furthermore, machine
learning plays an essential role in clinical practice and cardi-
ology. Each machine learning algorithm has its advantages in
different fields. Previous studies have found that machine
learning has good predictive power in predicting intrahospi-
tal mortality and short-term prognosis in acute MI. However,
imbalanced data distribution and quality of deaths and survi-
vors, that may lead to misclassification, are great challenges
in machine learning. If the model evaluation places excessive
emphasis on the area under the curve (AUC) index, it may
ignore the weakness of truly predicting actual deaths. At
present, there has been no research for developing a more
comprehensive machine learning prediction model for the
prognosis of ST-segment elevation myocardial infarction
(STEMI) patients with hyperuricemia. Therefore, in this
study, we evaluated multiple performance indicators for pre-
dicting 1-year mortality in STEMI patients with hyperurice-
mia, by using different machine learning models including
logistic regression (LR), k-nearest neighbor (KNN), Cat-
Boost, random forest (RF), and XGBoost. We then compared
these models with the traditional GRACE risk score. To
improve the prediction accuracy of imbalanced learning, we
used SMOTEENN, a hybrid sampling algorithm of synthetic
minority oversampling technique (SMOTE), and edited
nearest neighbor (ENN) algorithms to oversample the
minority class by creating synthetic samples.

2. Materials and Methods

2.1. Patients. This investigation followed the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guidelines for
cohort studies [12]. We enrolled consecutive patients aged
>18 years diagnosed with STEMI at the Affiliated Hospital
of Zunyi Medical University between January 2016 to Janu-
ary 2020 (Figure 1). The inclusion criteria were as follows:
(1) increase or occurrence of ischemic chest discomfort at
rest; (2) elevation of ST — segment>0.1 mV; (3) elevation
of ST-segment in two consecutive leads; (4) elevated cardiac
troponin I (>0.03 ug/L) or cardiac troponin T levels (>42
ng/L); (5) diagnosed with hyperuricemia on admission; (6)
no history of recent nephrotoxic drug intake; and (7) receipt
of emergency percutaneous coronary intervention (PCI)
treatment. The use of drugs was based on the treatment stan-
dards recommended by the published guidelines. Research
approval was obtained from the Ethics Committee of the
Affiliated Hospital of Zunyi Medical University (approval
No. KLL [2020]0144). The need for written informed consent
was waived owing to the retrospective nature of the study.

2.2. Outcomes. The primary outcome was defined as cardiac
and sudden deaths during the 1-year clinical follow-up after
discharge. Patients who had died during hospital admission
were excluded from the analysis; the follow-up period ended
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in January 2021. All eligible patients enrolled in this study
were followed up through telephone interviews or outpatient
visits.

2.3. Candidate Predictors. Data on demographic characteris-
tics, disease, electrocardiographic findings, laboratory
parameters on admission, and in-hospital events were
obtained from the patient’s medical records. Data on baseline
characteristics, demographics (age and gender), risk factors
(hypertension, diabetes, current smoking, family history),
nonweekday admission (NWDS), delay (defined as patient
FMC > 12 hours), medical history (previous stroke, previous
CKD), and electrocardiography (ECG) findings (inferior,
anterior, right ventricular, and other) were all obtained from
our electronic database. Hyperuricemia was defined by
serum UA levels of >7 mg/dL (417 mmol/L) in men and >6
mg/dL (357 mmol/L) in women at admission. The patient
data collected included demographic information, baseline
characteristics at admission, diagnosis and treatment during
hospitalization, diseased vessel identified during procedure,
diagnosis at discharge and drug treatment, and comorbidi-
ties, such as hypertension, diabetes, and renal disease; in
total, 41 characteristics were analyzed. Based on TRIPOD
reporting guidelines, the rule of thumb for sample size is to
have at least 10 outcome events per variable (EPV).

2.4. Data Collection. In our data source, all attributes that can
be subdivided are categorized into independent classes, and
each class generates a new attribute. The new attribute is
encoded with the one-hot encoding rule. The data were sus-
ceptible to incorrect notation by the researcher; data cleans-
ing and editing, consisting of removing typographical
errors, and reviewing data quality in data reporting, were per-
formed by a second researcher to avoid a flawed model train-
ing process. Assessment of predictors in our study has been
performed without knowledge of the participant’s outcome.
A single investigator assessed all demographic information
and clinical data and was blinded to the outcome of mortal-
ity. Additionally, a different researcher assessed the plausibil-
ity of the results regarding the outcome of mortality.

2.5. Missing Values. Complete case data were collected from
the electronic health records (EHRs) and analyzed; all vari-
ables can be queried in the EHRs. Some patients were
excluded as they refused to undergo the candidate predictor
laboratory test or failed to comply with 1-year follow-up.

2.6. Statistical Analysis. Continuous variables are presented
as the mean + standard deviation, and classified variables
are indicated by counts and percentages. Differences in base-
line characteristics between groups were analyzed using the
independent sample t-test. The Mann-Whitney U test was
used for continuous variables, and the chi-square test or Fish-
er’s exact test was used for categorical variables. The previ-
ously described GRACE risk score was used to analyze
mortality, and it was calculated according to the published
formula [13]. Five machine learning classifiers (LR, KNN,
CatBoost, RF, and XGBoost) and the ensemble model were
used as the supervised machine learning methods to predict
survival status after 1-year follow-up. In order to solve the
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Excluded:
N = 1556 STEMI patients

N = 2580 STEMI patients
enrolled in ZMU between
January 2016 to May 2020

without hyperuricemia on
admission

N =174 STEMI patients

with missing laboratory
data on admission.

788 STEMI patients meeting
the guideline c

riteria for PCI

N = 62 STEMI patients
with unclear diagnoses.

Excluded:

N =50 STEMI patients
in-hospital death.

738 STEMI patients
included follow-up research

Excluded:

N = 82 STEMI patients
failed 1-year follow up

STEMI patient after discharge
at 1-year follow-up
N= 656(Survival:565, Death:91)

FIGURE 1: A flow diagram showing the study process.

problem of imbalanced data classification owing to medical
diagnosis, we used SMOTEENN, a hybrid sampling algo-
rithm of SMOTE and ENN algorithms; this helped to over-
sample the minority (death cases) class by creating
synthetic samples, followed by cleaning the mislabeled
instances. Supervised learning aims to establish a concise
model of outcome type distribution (called label in machine
learning), based on predictor parameters [14]. All models
were validated by 10-fold crossvalidation. In feature engi-
neering, all classification features were transformed by one-
hot encoding, and the missing values were provided by the
missForest method. Compared with the traditional chain
multifilling method, this method results in significant perfor-
mance improvement [14-16]. The following indicators were
used to define model performance: AUC, recall, precision,
and F1 value. Python (version 3.7, https://www.python.org/
) was used for all statistical analyses.

3. Results and Discussion

Between January 2016 and January 2020, a total of 738
STEMI patients registered in the database met the inclusion
criteria. After excluding those who were lost to follow-up
(n=82), 656 patients were enrolled in this study. The
patients’ average age was 62.5 years (+£13.6 years), and
83.6% were male. All patients underwent emergency PCI.
The median follow-up duration was 25 months, and 91
patients died within 1 year of admission, resulting in a mor-
tality rate of 13.8%. Table 1 summarizes the differences in
demographic information, admission baseline characteris-
tics, and diseased vessels between the patients who survived
and those who died. Considering the imbalance of classifica-
tion data among samples (death cases : survival cases = 91
: 565), five machine learning algorithms (logistic regression,
KNN, RF, XGBoost, and CatBoost) were developed to predict
the 1-year mortality rate with all available features. RF
(accuracy = 0.89, AUC=0.88) and CatBoost
(accuracy = 0.89, AUC = 0.87) provided similar AUC values

in our study, and the predicted performance was higher than
that of the traditional GRACE score. As a traditional risk
assessment tool, GRACE (accuracy = 0.84, AUC = 0.80) also
showed good discriminatory ability in our study (Table 2).
The RF classifier outperformed the other models in terms
of the AUC crossvalidation results (Figure 2). This study used
SMOTEENN to further optimize the models; thus, the per-
formance of all machine learning models was improved sig-
nificantly (Table 2, Figure 3). After using SMOTEENN to
generate more minority class samples, the CatBoost model
(accuracy = 0.96, AUC = 0.99, recall = 0.98, precision = 0.95
, Flvalue=0.97) demonstrated the highest performance
(Figure 4). We investigated the possibility of combining dif-
ferent models to improve performance. In particular, we
tried several ensembles and combination methods, including
training of the above classifiers and combining their predic-
tions to check whether combination is better than any single
classifier (Table 3). The CatBoost was separately integrated
with Bagging and Boosting. Further, when the prediction
probability of each model was used as the combination rule
through the combination of LR, KNN, and XGBoost models
after 10-fold crossvalidation, the performance of some
models partially improved (recall from 0.33 to 0.53; F1 value
from 0.44 to 0.58) compared with that of a single model. This
shows that different models can be regarded as partially com-
plementary. When the other abovementioned models were
included in the integration method according to different
combinations, very similar results were obtained.

Owing to the recent widespread development of chest
pain centers in China, 70.8% of patients with acute STEMI
were admitted to the hospital within 12 hours of onset and
received prompt reperfusion treatment. Hospital mortality
rates have therefore decreased significantly. Timely and effec-
tive revascularization treatment is key for the reduction of
mortality and improved prognosis following AMI. The res-
cue system based on chest pain centers has played an essen-
tial role in improving the timeliness of revascularization in
AMI patients and in reducing mortality.
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TaBLE 1: Comparison of characteristics of patients with and without mortality in the cohort.
Variables Total (n = 656) Survival (n = 565) Death (n=91) P value
Demographic characteristics
Sex, n (%) 0.008
Female 107 (16) 83 (15) 24 (26)
Male 549 (84) 482 (85) 67 (74)
Age, y 64.00 (52, 74) 63.00 (51, 73) 70.00 (59, 78) <0.001
Smoking, n (%) 453 (69) 396 (70) 57 (63) 0.192
Weekend on admission, 7 (%) 248 (38) 205 (36) 43 (47) 0.059
Delay, n (%) 167 (25) 133 (24) 34 (37) 0.007
Vascular risk factors
Hypertension, n (%) 380 (58) 326 (58) 54 (59) 0.857
Diabetes mellitus, n (%) 121 (18) 98 (17) 23 (25) 0.096
Prior-stroke, n (%) 35 (5) 30 (5) 5(5) 1
CKD, n (%) 152 (23) 122 (22) 30 (33) 0.024
Clinical data
HR, beats/min 80 (72, 92) 80.00 (72, 91) 85 (73, 106) 0.003
SBP, mmHg 124 (108, 140) 127 (110, 143) 111 (92, 129) <0.001
DBP, mmHg 80 (68, 91) 80 (70, 92) 74 (58, 85) <0.001
Shock_index 0.65 (0.55, 0.77) 0.64 (0.54, 0.75) 0.75 (0.61, 1.04) <0.001
Electrocardiographic data
Inferior, 1 (%) 300 (46) 263 (47) 37 (41) 0.351
Anterior, n (%) 322 (49) 276 (49) 46 (51) 0.851
Other, 1 (%) 21 (3) 16 (3) 5(5) 0.194
Right ventricular, n (%) 7 (1) 6 (1) 1(1) 1
Laboratory examinations on admission
WBC, *10°/L 11.27 (8.60, 14.19) 10.97 (8.34, 13.57) 13.92 (10.56, 19.51) <0.001
Neutrophil count, *10°/L 8.85 (6.34, 11.83) 8.46 (6.11, 11.19) 11.40 (8.43, 16.26) <0.001
NLR 6.65 (3.89, 10.77) 6.25 (3.78, 9.85) 9.74 (5.89, 14.93) <0.001
PLR 149.03 (104.31, 224.60) 148.96 (107.43, 220.27) 151.40 (81.96, 250.07) 0.518
MLR 0.54 (0.37, 0.82) 0.51 (0.36, 0.76) 0.75 (0.41, 1.12) <0.001
SIRI 451 (2.63, 8.44) 4.19 (2.47, 7.39) 8.41 (4.38, 15.27) <0.001
SII 1285.43 (746.84, 2247.28) 1233.05 (735.30, 2139.17) 1923.99 (894.50, 2898.80) 0.003
HB, g/L 139.00 (123.00, 154.00) 140.00 (124.00, 155.00) 128.00 (115.00, 147.00) 0.001
RBC, *10"%/L 4.54 (3.98, 5.01) 4.58 (4.05, 5.02) 4.21(3.71, 4.88) 0.006
PLT, *10°/L 205.00 (161.00, 249.25) 207.00 (164.00, 250.00) 196.00 (138.00, 246.50) 0.113
ALT, U/L 33.00 (23.00, 56.00) 32.00 (22.25, 51.75) 56.00 (30.00, 193.00) <0.001
AST, U/L 72.00 (36.50, 169.5) 67.00 (35.00, 143.00) 225.00 (73.50, 456.00) <0.001
GGT, U/L 44.00 (27.00, 75.00) 43.00 (27.00, 72.75) 61.00 (29.00, 104.00) 0.007
BUN, mmol/L 6.72 (5.25,9.37) 6.38 (5.09, 8.50) 10.33 (7.45, 13.15) <0.001
Creatinine, umol/L 101.00 (82.00, 128.00) 98.00 (81.00, 119.00) 134.00 (109.00, 174.50) <0.001
Uric acid, umol/L 484.00 (449.00, 542.00) 481.00 (447.00, 535.00) 523.00 (461.00, 637.00) <0.001
Cystatin C, mg/L 1.22 (0.97, 1.58) 1.17 (0.95, 1.49) 1.65 (1.32, 2.18) <0.001
CK, U/L 507.00 (186.00, 1368.75) 463.50 (172.00, 1322.50) 745.00 (303.25, 2012.50) 0.002
CKMB, U/L 52.00 (25.00, 127.00) 48.00 (24.00, 117.25) 86.00 (33.00, 190.00) <0.001
LDH, U/L 375.00 (266.25, 639.75) 350.50 (255.25, 556.75) 695.50 (407.75, 1229.75) <0.001
a-HBDH, U/L 259.00 (173.00, 475.00) 240.00 (165.00, 427.50) 490.50 (273.75, 773.00) <0.001
CTnT, ng/L 1014.00 (213.50, 3480.00) 786.95 (185.97, 3069.00) 3077.00 (1133.00, 6711.00) <0.001
BNP, pg/mL 1022.50 (255.15, 3860.75) 884.90 (204.85, 2713.00) 5349.00 (2058.00, 15267.00) <0.001
Glucose, mmol/L 6.66 (5.56, 8.66) 6.52 (5.4, 8.19) 8.47 (6.41, 11.60) <0.001
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TastLE 1: Continued.
Variables Total (n = 656) Survival (n = 565) Death (n=91) P value
Myoglobin, ng/mL 341.10 (104.50, 910.40) 308.95 (95.96, 820.28) 615.00 (203.50, 2251.00) <0.001
Diseased vessel identified during procedure
LM, n (%) 13 (2) 13 (2) 0 (0) 0.233
LAD, 1 (%) 213 (33) 185 (33) 28 (31) 0.836
LCX, 1 (%) 70 (11) 62 (11) 8 (9) 0.674
RCA, 1 (%) 157 (24) 134 (24) 23 (26) 0.819
Risk assessment
GRACE, score 125.00 (102.00, 154.00) 121.00 (101.00, 146.00) 178.00 (140.00, 206.50) <0.001

Values are expressed as medians with interquartile ranges for continuous data. Other values are presented as numbers and percentages. Shock index: ratio of HR
to SBP; SIRI: systemic inflammatory response index; SII: systemic inflammatory reaction index; PLR: ratio of platelets to lymphocytes; NLR: the ratio of
neutrophils to lymphocytes; MLR: ratio of monocytes to lymphocytes; OHCA: out-of-hospital cardiac arrest; GRACE: Global Registry of Acute Coronary
Events score; a-HBDH: a-hydroxybutyrate dehydrogenase; BNP: B-type natriuretic peptides.

TaBLE 2: Comparison of validation results of machine learning models.

Models Accuracy AUC Recall Precision F1 value
CatBoost 0.89 0.87 0.33 0.78 0.44
RF 0.89 0.88 0.26 0.82 0.38
XGBoost 0.90 0.83 0.41 0.81 0.51
LR 0.89 0.82 0.38 0.63 0.46
KNN 0.88 0.75 0.21 0.61 0.31
Model with oversampling (SMOTEENN)
CatBoost 0.96 0.99 0.98 0.95 0.97
RF 0.95 0.99 0.98 0.94 0.96
XGBoost 0.94 0.98 0.98 0.92 0.95
LR 0.91 0.95 0.92 0.92 0.92
KNN 0.92 0.96 0.98 0.88 0.93

Tradition risk score model

GRACE score 0.84 0.80 0.46 0.59 0.51

AUC and F1 score: the higher, the better. XGBoost: Extreme Gradient Boosting; RF: random forest; LR: logistic regression; KNN: K-nearest neighbors.

Previous studies have confirmed that baseline renal dys-
function and acute kidney injury are strong predictors of
in-hospital and long-term adverse cardiovascular outcomes
after STEMI complicated by cardiogenic shock [17].
STEMI-related mortality is considerably higher in those
who have had unsuccessful invasive procedures or those with
diabetes, chronic kidney failure, or high serum lactate or glu-
cose levels [17, 18].

UA is the final product of purine metabolism and is
metabolized by xanthine oxidase. Hyperuricemia can lead
to gout and nephrolithiasis; it has also been implicated as
an indicator for diseases, such as the metabolic syndrome,
diabetes mellitus, cardiovascular disease, and chronic renal
disease. Previous studies have suggested that hyperuricemia
with STEMI is associated with a poor prognosis and a high
incidence of death and major adverse cardiovascular events
(MACEs) [19]. Although the pathophysiological mecha-
nisms of adverse reactions to hyperuricemia have not been
tully elucidated, it appears to be multifactorial. In the light
of the experimental evidence, hyperuricemia was linked to a
variety of proatherogenic processes, including increased oxi-

dative stress, inhibition of endothelial nitric oxide, activation
of the renin-angiotensin system, and increase in the micro-
vascular damage via endothelial dysfunction and vascular
smooth muscle cell proliferation [20-23].

There is currently no effective evaluation method to pre-
dict the long-term prognosis of these patients. GRACE risk
scores can be used to estimate follow-up results after acute
coronary syndrome. Although Asian populations were not
included during the development of the model, the use of
GRACE revealed a good discriminatory accuracy in predict-
ing both short-term and long-term MACEs in Asian patients
with MI [24]. Our cohort had a median follow-up duration of
25 months, similar to those of previously published studies
(accuracy =0.84, AUC=0.8). However, the statistical
methods in these traditional assessment tools include the
Cox proportional hazard regression model. Researchers
make presumptions and employ subjective feature selection
before model fitting, potentially leading to loss of informa-
tion [15]. As we enter the era of precision medicine, the
demand for risk assessment tools has gained importance. In
cases where the research goal is to generate a model that
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can predict the results most accurately, machine learning
algorithms may be more advantageous compared to tradi-
tional regression methods. First, machine learning methods
can compute multiple related predictions, nonlinear relation-
ships, and the internal interaction between predictors and
end events in large datasets. Second, as a critical component
of the TRIPOD original declaration report [25], the model
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should be verified after establishment. In cases where the
machine learning method is used, model performance is
more robust after external verification. In this study, we com-
pared several standard machine learning methods and per-
formed 10-fold crossinternal verification of the dataset in
the absence of external data to ensure model robustness.
However, in the traditional regression model, internal valida-
tion is not necessary, because one (ideally) posits an analytic
model before fitting it to the data [15]. Considering the differ-
ent effects of each machine learning method in solving med-
ical professional problems, this study compares the efficiency
and robustness of various machine learning methods with
that of the traditional risk score to obtain more cautious
results.

In previous studies, machine learning methods showed a
better ability to predict short-term mortality after STEMI,
while XGBoost showed better predictive ability than other
machine learning models in patients with anterior wall
STEMI [14]. Gradient boosted tree (GBT) methods, such as
XGBoost, RF, and CatBoost, provided similar AUC values
in our study. However, after model optimization, the Cat-
Boost model showed more accurate prediction ability. The
CatBoost algorithm, which was released in 2017, LightGBM,
and XGBoost are the three mainstream machine learning
methods for GBT. The CatBoost algorithm is a GBT frame-
work based on an asymmetrical decision tree (oblivious
trees) algorithm, with only a few parameters; it supports class
variables and has high accuracy. It mainly addresses the issue
of dealing with category features efficiently and reasonably.

Furthermore, to improve the algorithm’s accuracy and
generalization ability, a new method was proposed to
account for gradient deviation (gradient bias) and prediction
partial (prediction shift) problems. As a new algorithm
released in 2017, this method can account for category fea-
tures in clinical practice and can effectively prevent overfit-
ting; its high training accuracy has provoked widespread
interest. Our study also demonstrated the high accuracy of
the model. Interestingly, under the premise of the imbalance
of clinical samples, the machine learning method with the
oversampling technique SMOTEENN could significantly
improve performance. SMOTEENN is a hybrid sampling
technique of SMOTE and ENN algorithms, that is often
employed to oversample the minority class by creating syn-
thetic samples, followed by cleaning of mislabeled instances
[26]. It is essential to be aware of the dramatic effects of these
synthetic sampling techniques on machine learning models.

Our research has several limitations. Owing to the retro-
spective design of this study, the process of patient data col-
lection may have been accompanied by a risk of bias.
Further, this was a single-center study, including only Chi-
nese patients. Under the premise of the imbalance of clinical
samples, the machine learning method based on clinical data
alone could not obtain a higher AUC value; even the over-
sampling technique could not significantly improve perfor-
mance. Second, although the machine model based on
hybrid sampling technology has achieved excellent perfor-
mance in this study, the samples in hybrid sampling technol-
ogy are computer-generated samples and not real patients;
thus, making a more accurate assessment of the prognosis
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TaBLE 3: Ensemble of machine learning models.
Ensemble Accuracy AUC Recall Precision F1 value
RF+CatBoost+XGBoost 0.90 0.87 0.36 0.72 0.47
XGBoost+LR+KNN 0.90 0.84 0.33 0.72 0.43
RF+LR+KNN 0.89 0.86 0.30 0.71 0.39
RF+XGBoost+LR+KNN 0.90 0.86 0.37 0.73 0.46
All 0.90 0.86 0.37 0.73 0.47

of STEMI patients with hyperuricemia using big clinical data
requires further analysis using a more extensive dataset.
Despite the abovementioned limitations, our study also has
some strengths. The results provide an effective and robust
method for predicting 1-year mortality in patients with
STEMI complicated by hyperuricemia, through the crossvali-
dation of machine learning models. Further study requires
the combination of social factors, environmental parameters,
and phenotypic information (such as genome or proteomics
data) in MI for prognostic prediction.

4. Conclusion

In conclusion, the predictive ability of machine learning
methods is significantly higher than that of the traditional
statistical scoring model. The machine learning model will
be helpful for the prediction and early detection of MACEs
in patients with STEMI complicated by hyperuricemia. In
addition, in cases of clinically unbalanced samples, the over-
sampling technology can significantly improve model perfor-
mance and ability; however, it is essential to be aware of the
dramatic effects of the synthetic sampling techniques on
models. There is still uncharted territory in clinical medicine,
and methods for accurately predicting the occurrence of
some diseases or adverse events will remain the enduring
focus of clinical research. Although machine learning pres-
ently appears to have good predictive effect, further reason-
able and scientific verification is required.
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Atrial fibrillation (AF) is one of the most common cardiovascular diseases, with a high disability rate and mortality rate. The early
detection and treatment of atrial fibrillation have great clinical significance. In this paper, a multiple feature fusion is proposed to
screen out AF recordings from single lead short electrocardiogram (ECG) recordings. The proposed method uses discriminant
canonical correlation analysis (DCCA) feature fusion. It fully takes intraclass correlation and interclass correlation into
consideration and solves the problem of computation and information redundancy with simple series or parallel feature fusion.
The DCCA integrates traditional features extracted by expert knowledge and deep learning features extracted by the residual
network and gated recurrent unit network to improve the low accuracy of a single feature. Based on the Cardiology Challenge
2017 dataset, the experiments are designed to verify the effectiveness of the proposed algorithm. In the experiments, the F1

index can reach 88%. The accuracy, sensitivity, and specificity are 91.7%, 90.4%, and 93.2%, respectively.

1. Introduction

Atrial fibrillation (AF) is the most common persistent cardio-
vascular disease, which can easily lead to strokes, hemiplegia,
and other diseases, seriously threatening patients’ health;
thus, timely diagnosis and treatment are necessary. However,
owing to the shortage of medical resources and the single
model of doctor diagnosis, it becomes urgent to improve
automatic detection technology. Automatic detection of car-
diac rhythm is a meaningful and important issue in different
age groups, including adults [1] and fetuses [2]. Computa-
tional techniques and deep learning methods detecting vari-
ous types of arrhythmia have been widely developed to
analyse ECG signals and are strong candidates to help clinical
advances by providing a better understanding of medical
challenges [3, 4]. With the development of medicine, people
have gained more understanding of the physiological mech-
anism of atrial fibrillation, but further research is still needed

[5]. Physiologically, the occurrence of atrial fibrillation is due
to irregular atrial contraction, which is reflected in the elec-
trocardiogram: P waves disappear, irregular fibrillation waves
(f waves) of different sizes and shapes appear [6, 7], and there
is a severe irregularity of the RR interval.

The detection of atrial fibrillation signals is mainly
divided into four parts, including data preprocessing, feature
extraction, feature selection, and classification. Among them,
feature extraction directly affects the accuracy and efficiency
of atrial fibrillation signal classification. Commonly used fea-
ture extraction in the literature usually falls into two catego-
ries, traditional feature extraction and feature extraction
based on deep learning methods. Traditional feature extrac-
tion methods are generally divided into three categories.
The first is to extract the statistical characteristics of ECG sig-
nals, that is, use the statistical data to summarize a series of
ECG data. Typical statistics include mean, maximum, mini-
mum, variance, skewness, kurtosis, count, and percentage.


https://orcid.org/0000-0001-6214-7874
https://orcid.org/0000-0003-0832-8046
https://orcid.org/0000-0002-8350-7186
https://orcid.org/0000-0002-7136-1538
https://orcid.org/0000-0002-5441-3121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6691177

Kaya et al. [8] calculated the statistical and time characteris-
tics of a heartbeat, such as skewness, kurtosis, standard, devi-
ation, and average, and they used the best feature reduction
and classification methods, the highest classification accu-
racy, sensitivity, and specificity rates of 99.30%, 98.84%,
and 98.40%, respectively. Athif et al. [9] extracted statistical
and morphological features and then used a support vector
machine classifier to classify records into three categories:
“normal,” “AF,” and “other.” The algorithm has a sensitivity
of 77.5%, a specificity of 97.9%, and an accuracy of 96.1% in
the “Computing in Cardiology Challenge 2017 database.
The second is signal processing, which is to transform the
ECG data from the time domain to the frequency domain
or other domains through discrete Fourier transform, dis-
crete wavelet transform, and other methods. Yin et al. [10]
proposed a multidomain ECG feature extraction method.
The RR intervals were extracted as time domain feature.
The fifth-order approximate coefficients of wavelet decom-
position are used to represent the frequency domain features.
In addition, the sample entropy values of six wavelet coeffi-
cients are used as nonlinear characteristics. These three fea-
tures were fed to a classifier for automated diagnosis. The
average accuracy of the SVM classifier in the MIT-BIH
arrhythmia database was 99.70%. The third is to directly
extract the time domain or morphological features of ECG
signals, including RR interval, QRS wave width, and PR
interval. Dash et al. [11] used a statistical method to evaluate
the complexity, randomness, and variability of the RR inter-
val. Verification by the MIT-BIH atrial fibrillation database
shows the sensitivity is 94.4%, and the specificity is 95.1%.
Zabihi et al. [12] adopted time-frequency, phase space,
tuples, and other characteristics in multiple fields and used
a random forest classifier for feature selection. F1 was
82.6% on the PhysioNet Challenge 2017 atrial fibrillation
competition database. Deep learning feature extraction and
classification include convolutional neural work (CNN) [13,
14] and long and short memory networks (LSTM) [15, 16]
as well as their variants [17, 18]. Warrick and Homsi [19]
combined convolutional neural networks and long short-
term memory networks (LSTM) and used pooling, step size,
and normalization techniques to improve its accuracy. The
network predicts a classification every 18 and then selects
the final prediction for classification. The total F1 on the Phy-
sioNet Challenge 2017 dataset is 80%.

With the rapid development of deep learning, the advan-
tages of feature-level fusion have become more and more
obvious. In recent years, some researchers have used feature
fusion for ECG signal detection. Smolen [20] first used a
sequential Recurrent Neural Network (RNN) classifier to
get the probabilities for each class and then combined the
probabilities with hand-designed features. Finally, F1 is
79% in PhysioNet Challenge 2017 (CinC 2017). Chu et al.
[21] proposed a new method for arrhythmia classification
based on multilead ECG signals; the core of the design is to
tuse two types of deep learning features with some common
traditional features and then use a support vector machine
(SVM) classifier to classify the feature vectors, and according
to the AAMI standard, the accuracy on the 12-lead INCAET
dataset is 88.565%. Ghiasi et al. [22] proposed two different
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classification methods, of which the first is a feature-based
method, and the second adopts a deep neural network.
Finally, they used the decision table to combine the output
results of the two methods and divided all records into three
categories. The proposed method is evaluated using a scoring
function from the 2017 PhysioNet/CinC Challenge and
achieved an overall score of 80% and 71% on the training
dataset and hidden test dataset.

This paper presents a robust method capable of detecting
AF from single short ECG lead recording. Here are the four
main contributions of this paper: (1) novel combination of
deep learning and the traditional features; (2) proposed an
improved residual network and gated recurrent unit net-
work, which extracted deep learning features in spatial and
time series; (3) performing ECG feature fusion used discrim-
inant canonical correlation analysis; and (4) achieving supe-
rior classification results compared to the above-cited
method of the same database [23-27].

The structure of this paper is as follows: Section 2 intro-
duces the feature extraction method, Section 3 presents the
feature fusion method, Section 4 the performance metrics,
Section 5 the experimental results and analysis, and Section
6 the summary.

2. Feature Extraction

This section mainly introduces deep learning feature extrac-
tion methods and traditional feature extraction methods
based on expert knowledge.

2.1. Dataset. This article uses a large dataset released by the
PhysioNet/CinC Challenge in 2017, which contains 8528
single-lead ECG records [28]. Each ECG record in the dataset
is collected from an individual. Compared to most of the
researches based on the relatively simple dataset, such dataset
is of higher research significance. These records are collected
by AliveCor equipment. The dataset consists of single-lead
ECGs of 8528 subjects of different lengths (about 23,878
heartbeats). The categories include normal rhythm, atrial
fibrillation rhythm, other rhythms, and noise. The data dura-
tion is 9-60s. Table 1 shows the details of the database.

2.2. Data Preprocessing

2.2.1. Denoising and Padding. The Butterworth band-pass fil-
ter is used to denoise the original ECG. The frequency
response of the Butterworth filter is maximally flat (i.e., has
no ripples) in the passband and rolls off towards zero in the
stopband [29]. The attenuation of the first-order filter is
6 dB per octave, and the attenuation rate of the sixth-order
Butterworth filter is 36 dB per octave. Since the frequency
range of the ECG signal is mainly concentrated in
0.5Hz~45Hz, the blocking frequency is set to 45Hz here,
and the frequency signal output above 45 Hz will be attenu-
ated. Because the convolutional neural network requires the
input data to have the same size, but the length of the electri-
cal signal in the center of the dataset is 9 seconds to 61 sec-
onds, the ECG signal should be padded with zeros to adapt
to the model.



Computational and Mathematical Methods in Medicine

TaBLE 1: The PhysioNet 2017 dataset.

Type Recording Average time length (s)
Normal 5076 319
AF 758 31.6
Other rhythm 2415 341
Noisy 279 27.1

2.2.2. Sample Balancing. Due to the uneven number of sam-
ples in the database, the number of normal rhythms and
other rhythm samples is large, namely, 5076 and 2415,
respectively, while the number of atrial fibrillation rhythms
and noise samples is small, 758 and 279, respectively, which
easily affect the performance of model training and overfit-
ting occurs. In this paper, class_weight is used to balance
the sample and it provides weights for each output class.
The weight of normal and other signals is very small, while
the weight of atrial fibrillation and noise signal is much
bigger. The class_weight method uses balance, and its
weight calculation method: n_samples/(n_classes * np.bin-
count(y)), where n_classes =4, np.bincount(y) is the total
number of samples for a certain class, and n_sample is
the total number of samples, which is 8528. After calcula-
tion, the weight of normal ECG recording is 0.42, the
weight of the atrial fibrillation signal is 2.81, the other
weights are 0.88, and the weight of noise is 7.64.

2.3. Deep Learning Feature Extraction. This paper adopts
residual network and gated recurrent unit for deep learning
network feature extraction, which can not only reduce the
depth of the network and effectively prevent overfitting but
also extract the timing characteristics of the signal while
extracting their spatial characteristics. The specific network
structure is shown in Figure 1.

To deal with the degradation of neural networks, the
method of establishing identity mapping with residual struc-
ture simplifies the multilayer network into a shallower net-
work. According to the characteristics of the residual
network, a one-dimensional residual network suitable for
processing atrial fibrillation signals is designed. The residual
network consists of six residual convolution blocks. In the
first two residual blocks, the filter is 16. The residual Conv-
Block is composed of four convolution blocks and a one-
dimensional average pooling layer. Each convolution block
contains a one-dimensional convolution with a step length
of 1, a batch normalization, a linear unit with leakage correc-
tion, and a spatial random loss. The active layer is finally
followed by a one-dimensional average pooling layer, the
commonly used batch normalization (BN), LeakyRelu, and
SpatialDropout. The spatial random activation function pre-
vents overfitting, which is more conducive to promoting
independence between feature maps than dropout. The num-
ber of filters in every two residual blocks is doubled, and the
convolution step length in each convolution block is 1. The
data obtained through the residual network is input into
the gated recurrent unit network, and the number of neurons
is set to 32; finally, the output of the last hidden layer is
extracted as the deep learning feature.
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FIGURE 1: Deep learning feature extraction uses ResNet (residual
network) and GRU (gated recurrent unit).
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2.4. Traditional Feature Extraction. In fact, the ECG signal is
used as input to extract relevant statistical features. First, the
multilead differential electrocardiogram summation absolute
value and adaptive threshold real-time detection algorithm
[30] are used to detect QRS points. Taking A0003 in the data-
set as an example, the corresponding waveform and the
marked R wave are shown in Figure 2.

After the R wave is detected, the RR interval is calculated
based on the R wave, and the RR interval is calculated as
follows:

Rpeaks(n + 1) - Rpeaks(n)

fs

RRI=

(1)

Ryeuis (1) is the position of the nth R peak in the sample,
and f_ is the sample rate. According to the RR interval and
the traditional features of the ECG signal computed by QRS
wave, these features are outputs as a feature vector. The RR
interval and P wave are shown in Figure 3 [31].
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2.4.1. RR Interval Feature. The statistical characteristics of RR
intervals include standard deviation and variance, maximum
RR interval, minimum RR interval, average RR interval,
pNN50 (the proportion of the number of RR intervals in
the ECG sequence whose RR interval difference is greater
than 50 ms in all RR intervals), RMSSD (root mean square
of the difference between the RR intervals), SDSD (standard
deviation of the difference between the RR intervals), and
the mean, variance, skewness, and kurtosis of each of the
RR intervals divided into six segments.

2.4.2. P Wave Feature. The statistical characteristics of the P
wave include the mean, variance, skewness, kurtosis, sample
entropy, and sample entropy coeflicient, and the P wave is
divided into the average value, variance, and skewness of
each of the six segments.

2.4.3. Signal Procession Feature. In order to extract the fea-
tures of the ECG signal more comprehensively, we also
extract the signal features based on the medical field and
the frequency domain. These features first transform ECG
data from time domain into frequency domain; then,
frequency-related features are extracted. In the presented
paper, the periodogram power spectral density (PSD) and
energy spectral density are calculated. PSD is calculated using
Fast Fourier Transform (FFT). After the transformation,
energy within a specific range (band) is obtained. The chosen
bands are between 5 frequencies: 0.1, 6, 12, 20, and 30 Hz.
Another four features compute the variation based on QRS
[1], compute the sample entropy (SampleEn) [2], compute
the coefficient of variation and density histograms (CDF)
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[3], compute the thresholding on the median absolute devia-
tion (MAD) [4], and compute the heart rate variability
(variability).

3. Feature Fusion

3.1. Feature Fusion Based on Feature Concatenation. Based
on expert knowledge, this model performs time domain
and frequency domain feature extraction on the denoised
ECG signal to obtain feature vectors. It uses a convolution
residual network and gated recurrent unit to form a deep
learning network, and input data filled ECG signal deep
learning network to obtain deep feature vectors.

The two feature vectors obtained are fused into one fea-
ture vector in series and input into the classifier composed
of the fully connected layers to classify ECG signals, as shown
in Figures 4 and 5. This method is simple and but highly
applicable. Compared with single feature extraction and clas-
sification [33], this method has improved accuracy [32].
However, since the method of fusion features is simple and



Computational and Mathematical Methods in Medicine

1

(4

/1l

/1
\, 4,
A iy

W

\

‘ \\\\
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feature, solid line represents the correlation within the class, and dashed line represents the correlation between classes.

rough, there are problems of redundancy and a large amount
of calculation [34].

3.2. Feature Fusion Based on DCCA. In view of the shortcom-
ings of the above-mentioned concatenation method, this sec-
tion uses discriminant canonical correlation analysis
(DCCA) [35] for feature fusion. DCCA is an improvement
in canonical correlation analysis (CCA) [36]. The CCA fea-
ture fusion process does not consider the class structure.
The DCCA method can not only optimize the correlation
among the four types of samples but also minimize the corre-
lation among the features of different types of samples. The
proposed DCCA feature fusion method is shown in Figure 6.
In this paper, the discriminant canonical correlation
analysis (DCCA) method is used for deep learning feature
and traditional feature fusion, the preprocessed ECG signals
are extracted separately to obtain two feature vectors, and
then the DCCA method is used for feature fusion. The spe-
cific implementation is divided into four steps as follows:

(1) Find a set of projection direction w, and w, to
achieve the maximum correlation among the fea-
tures of samples of the same type and the mini-
mum correlation among the features of different
types of samples. Mathematically, DCCA is to
maximize the correlation coefficient. The formula
is as follows:

wfgxywy 2)

Ja(we wy) = ]
JwT T
Wy Sy wwy, S, w,

where Sxy =S, —#S, (adjustable parameter >0), S, is the
intraclass correlation matrix, S, is the interclass correlation
matrix, adjustable parameters # measure the relativity of
the intraclass correlation and the interclass correlation of
the sample characteristics, and the definitions of intraclass
correlation and interclass correlation are shown in Figure 7

(2) Calculate the intraclass correlation matrix S, and the
interclass correlation matrix S;, and set the processed
sample set as

DCCA

FIGURE 8: Block diagram for realizing canonical correlation analysis.

X = [l )] € RO,
bw o (3)
Y= [)’1 DAY NSy 5| »)’ﬁ;c)} € RT.

Then, the intraclass correlation matrix and the interclass
correlation matrix are, respectively, shown as

where D is a block diagonal matrix, which is also a positive
semidefinite matrix. The difference between the interclass
correlation matrix and the intraclass correlation matrix is just
a negative sign [37]

(3) Solve the eigenvalues and eigenvectors. The optimi-
zation problem of DCCA can be transformed into

T T T
max w, S,w, s.tw, S, w,=w,S, w,=1. (5)
Use the Lagrangian multiplier method to solve the above
optimization problem turning the above problem into a
problem of finding characteristic roots and characteristic
vectors.
~1/g \T 2
SwS}’}’ (Sw) wx = A Sxxwx’ (6)
T -1 2
(Suw)” SuSuw, =A"S,w,.

The eigenvector {w,, wy}‘li corresponds to the first d gen-
eralized eigenvalues, and the A, > A, > A,

(4) For each pair of samples (x, y), fusion is performed
according to the tandem method. The block diagram
of feature fusion using the DCCA algorithm is shown
in Figure 8
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4. Performance Metrics

In order to optimize the atrial fibrillation detection model, a
large number of experiments are carried out using a single-
lead ECG dataset. The experiment in this article is to train
on a server equipped with Tesla V100-SXM2 GPU and
Ubuntu 16.04 operating system, and its dynamic memory
of the computer is 32480MiB.

In this paper, normal F1 score, atrial fibrillation F1 score,
other F1 score, and the average value of three categories of F1
score are four metrics for evaluating the classification perfor-
mance of the experiments. The definition of these four met-
rics can be defined as

2xA,

Fy, = TATSa’ (7)

where A is the total number of signals identified as atrial
fibrillation by the algorithm, A, is the number of signals cor-
rectly classified as atrial fibrillation by the algorithm, and a is
the total number of atrial fibrillation signals.

2XN,

Fy,= W’ (8)

where N is the total number of normal signals recognized by
the algorithm, N, is the number of correct signals classified
as normal by the algorithm, and 7 is the total number of nor-
mal signals.

2x0,

YO+Yo’

©)

lo

where O is the total number of signals identified by the algo-
rithm as “other,” O, is the correct number of signals classified
by the algorithm as “other,” and o is the total number of
“other” signals.

B 2><PP

Fiyp= sprss (10)

where P is the total number of noise signals recognized by the
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FiGure 10: Block diagram of AF by deep learning feature
experimental pipeline.

algorithm, P, is the correct number of noise signals classified
by the algorithm, and p is the total number of noise signals.

(F1n+Fla+Flo)

] (1)

overall =

Because the noise signals are too small and unbalanced,
the result of the entire dataset is unstable, and the first three
types of signals are selected as the final F1 index. Even so, the
F1 score of noise will also affect the other three types. In addi-
tion to F1, we also use true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) to calculate
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FIGURE 12: The loss diagram of series feature fusion.

accuracy (Acc), specificity (Spe), and sensitivity (Sen). The
calculation formula is as follows:

Acc = TP + TN
" TP+ TN +FP+FN’
TN
- 12
SPe = TN 1 TP’ (12)
TP
S —_
= TPIEN

5. Results

Four experiments are used to verify the feasibility and effi-
ciency of the proposed feature fusion model. The first three
experiments are comparative experiments.

5.1. Experiments Based on Single Feature

5.1.1. Experiments Based on Traditional Feature. In this
experiment, after the ECG signal is denoised, its statistical
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FIGURE 13: The accuracy diagram of DCCA feature fusion.
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FI1GURE 14: The loss diagram of DCCA feature fusion.

features and frequency domain features are extracted
manually based on expert knowledge, and finally, the XGBoost
(Extreme Gradient Boosting) classifier is used for classifica-
tion. The experimental block diagram based on traditional fea-
ture extraction and classification is shown in Figure 9.

The XGBoost parameters are tuned using random grid
search cross-validation, and the optimal parameters are
selected. The minimum leaf node weight is set to 20, the max-
imum depth of the tree is set to 11, the subsample is set to 0.8,
the colsample_bytree is set to 0.9, the learning rate is 0.2, and
the maximum depth of the tree is 11.

The minimum loss function is reduced to 1, the softmax
objective function is used for classification, and the final F1 is
75%.

5.1.2. Experiments Based on Deep Learning Feature. In this
experiment, the ECG signal is detected based on the model
of residual network and gated recurrent unit. The experimen-
tal block diagram of using deep learning feature extraction to
classify atrial fibrillation is shown in Figure 10.
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TaBLE 2: The result of the different model.
Model Fi, Fi, Fi, Fyerall Acc Spe Sen
Expert features 87% 73% 65% 75% 79% 82% 72%
Resnet+GRU 91% 81% 77% 83% 86% 85% 84%
Simple fusion 92% 83% 80% 85% 88% 89% 86%
Proposed 93% 88% 84% 88% 92% 93% 90%
TaBLE 3: Comparison of previous studies of ECG based on the PhysioNet/CinC challenge 2017 public dataset.

Method Fi, F, F,, F o erall Acc Spe Sen
Convolutional recurrent neural network [23] 92.4% 81.4% 80.9% 84.9% 87.5% 94.6% 82.9%
Decision tree ensemble [24] 88.9% 79.1% 70.2% 79.4% —_ —_ —_
16-layer 1D residual convolutional network [25] 90.0% 82.0% 75.0% 82.0% 80.2% — —
2D convolutional network with LSTM layer [26] 88.8% 76.4% 72.6% 79.2% 82.3% —_ —_
IDCNN containing residual blocks and recurrent layers [27] 91.9% 85.8% 81.6% 86.4% —_ —_ e
Proposed in this paper 93.1% 88.3% 84.0% 88.3% 91.7% 93.2% 90.4%%

Firstly, padding the original ECG data. Since the central
electrical data of the database varies from 9s to 61s and the
convolutional network requires equal length input, the ECG
data is padded the same length. This paper uses the maxi-
mum length of the ECG signal. The sampling rate is
300 Hz, and the calculated maximum length is 18286. Each
ECG data is inputted into the residual network. The residual
network includes six residual convolution blocks, and each of
them consists of a convolution block, a residual block, and a
one-dimensional average pooling layer. Each convolutional
block includes four parts: a one-dimensional convolution
layer with a step size of 1, a batch normalization layer, a linear
unit with leakage correction, and a spatial random inactiva-
tion layer. After the residual network, data is inputted to
the gated recurrent unit for training. The number of neurons
in the gated recurrent unit is 32. Finally, it is output through
the fully connected layer. F1 ended up at 83%.

5.2. Experiments Based on Feature Concatenation Fusion. In
this experiment, the features are simply spliced and fused
and input to the fully connected layer for classification.

The feature vectors based on expert knowledge and the
feature vectors extracted by the residual network and gated
recurrent unit are spliced in series to obtain the fused features
and input to the fully connected layer for classification. The
specific process is as follows: firstly, add a flatten layer to
make the traditional feature vector one-dimensional; then,
use the deep learning model for training, the output of the
last hidden layer of the recurrent unit as the deep learning
feature vectors; finally, use the concatenation method to inte-
grate the two feature vectors into one, and add a fully
connected layer for classification. The value of F1 is 85%,
and the accuracy and loss diagrams are shown in Figures 11
and 12.

5.3. Experiments Based on DCCA Feature Fusion. In this
experiment, the feature vectors extracted by the traditional
feature extraction method based on expert knowledge and
the deep learning feature vectors extracted using the gated

recurrent unit and residual network are fused with discrimi-
nant canonical correlation analysis and then input to the fully
connected layer for feature classification. The final accuracy
on the verification set is 91.7, and F1 is 88%. The accuracy
and loss diagrams are shown in Figures 13 and 14. From
Table 2, it can be seen that the DCCA-based fusion method
is better than the concatenation fusion method. Compared
with simple concatenation fusion, the DCCA method con-
siders the correlation among samples and the category
information of the sample, which contains less redundant
information than the series fusion method.

As can be seen from Table 2 and Figure 12, that com-
pared to using single feature, the method of feature fusion
for AF signal detection can obtain better classification accu-
racy. Compared with single feature extraction, the F1 score
is increased by 2% when using simple feature fusion, and
compared with the simple feature fusion method, the F1
score is increased by 3% when using DCCA feature fusion.

5.4. Experimental Comparative Analysis. In order to verify
the effectiveness of the proposed method, comparisons are
also performed with previous studies. Table 3 lists some of
the published ECG signal detection research results based
on the same dataset, which includes traditional feature
extraction, machine learning based on expert knowledge,
and deep learning-based methods. It can be seen from
Table 3 that the use of a single method requires complex pre-
processing, and the final F1 value is 79.4%, which is not ideal
[24]. The signal detection model using the expert knowledge
feature extraction algorithm has better interpretability. On
the other hand, deep neural networks are used to autono-
mously learn features from ECG records. The conventional
method is very easy to learn. Xiong et al. [25] proposed a
16-layer deep convolutional neural network for the auto-
matic classification of ECG signal, the final F1 is 82.0%, and
the accuracy is 80.2%. The feature fusion method based on
discriminative canonical correlation analysis proposed in this
paper can fuse the advantages of the two and achieve a more
ideal result. The F1 value is 88%. The accuracy, sensitivity,
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and specificity are 91.7%, 90.4%, and 93.2%, respectively,
conducive to more accurate ECG signal detection. It is fore-
seeable that with the further accumulation of datasets, the
feature fusion model can achieve more powerful classifica-
tion capabilities.

6. Conclusion

This paper proposes a classification method for atrial fibrilla-
tion signals based on the feature fusion of discriminant
canonical correlation analysis. This method can not only
extract the deep learning features of ECG signals but also fuse
the traditional features of ECG signal samples. With DCCA,
the maximum and minimum correlations among classes of
different sample types are considered, and the recognition
results are better than that of series feature fusion as well as
the use of deep learning or traditional features alone. This
method has been verified on the public short single-lead
ECG dataset of the 2017 PhysioNet/CinC Challenge, with a
verification accuracy of 91.7%, a sensitivity of 90.4%, and a
specificity of 93.2%. The database used in this article itself
has the problem of large differences among various catego-
ries, which shows that the fusion method in this article
improves the overall accuracy while taking into account
other measurement standards, and steadily improves the
classification performance of ECG signals. However, this
paper only considers the comprehensive and complementary
representation of ECG features through feature-level fusion
and does not consider the fusion of decision-making layers,
such as neural network algorithms, hidden Markov models,
and combinations of multiple classifiers. In future researches,
the classification model and feature fusion method will be
further improved. On the basis of DCCA feature fusion tech-
nology, core-based DCCA will be introduced. At the same
time, more cutting-edge classifiers will be selected for classi-
fication and recognition, which will be more effective to
improve recognition results.
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