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Received 7 May 2014; Accepted 7 May 2014; Published 30 June 2014
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Rheumatoid arthritis (RA) is a chronic inflammatory autoim-
mune disease that leads to severe joint destruction with
deformity and irremediable disability. Early diagnosis of RA
and timely initiation of treatments (synthetic and/or biolog-
ical disease modifying antirheumatic drugs) are both instru-
mental to limit joint damage and optimize the functional
outcome of patients, according to the well-known concept of
a “window of opportunity” to begin the treatments.

New diagnosis criteria are available since 2010, thanks
to the American College of Rheumatology (ACR) and the
European League Against Rheumatism (EULAR) [1], which
include 2 different types of biomarkers: inflammation (CRP
or ESR) and immunity (autoantibodies: rheumatoid fac-
tors (RF) and anticitrullinated peptides antibodies (ACPA)).
These new criteria allow better management of patients with
notably the early opportunity of treatmentwithmethotrexate.
However, a significant proportion of patients with early
arthritis does not fulfil these criteria for RA and are then
wrongly labelled “undifferentiated” arthritis [2]. Further-
more, among the autoantibodies family, ACPA are specific
for the RA disease but lack sensitivity, unlike RF which
have strong sensitivity but low specificity [3]. Thus there is
still a need for new diagnosis biomarkers that would allow
establishing a diagnosis of RA at the very beginning of the
disease continuum, importantly before the occurrence of the
first joint erosions.

Which type of biomarkers do we need? Several classes
of markers are available: genetic polymorphisms, proteomic
markers, gene-expression analysis [4], and autoantibodies.
All may be used in clinical practice since their utility

was demonstrated. In this special issue of “Mediators of
inflammation,” novel biomarkers in RA are described. Patrice
Fardellone et al. from the University of Picardy will discuss
bone remodellingmarkers in RA, notably for bone formation
(osteocalcin, serum aminoterminal propeptide of type I
collagen) as well as bone resorption (C-terminal telopeptide
of type 1 collagen, pyridinoline). They discuss how such
bone remodelling markers allow physicians to evaluate the
effect of drugs, notably biologicals that are able to reduce
inflammation and also exert a protecting effect on bones.
Furthermore, bone remodelling is the result of a tilted balance
towards resorption or formation and involves numerous
regulatory factors such as hormones, growth factors, vita-
mins, and cytokines, notably osteoprotegerin (OPG) and
receptor activator for nuclear factor-𝜅B (RANK) ligand [5].
The signalling pathway OPG/RANK/RANKL maintains the
balance between the activity of osteoblasts and osteoclasts.
V. Milanova et al., from the Bulgarian Academy of Sciences,
in “TLR2 elicits IL-17-mediated RANKL expression, IL-17,
and OPG production in neutrophils from arthritic mice,”
will show that the toll-like receptor 2 engagement increases
IL-17 mediated RANKL expression and also inhibits OPG
production in neutrophils from arthritic mice.

There is currently a great hope for biomarkers that would
predict the response to treatment for individual patients in
order to gain time and avoid irreversible damage, unnec-
essary risk of adverse events, as well as reduce long term
disease associated cost, since uncontrolled inflammation over
time leads to significant patient and health economic burden.
I. Duroux-Richard et al. will thus explain how circulating
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micro-RNA, and notably miRNA-125b, are potential valuable
biomarkers in RA in “Circulating miRNA-125b is a potential
biomarker predicting response to rituximab in rheumatoid
arthritis.” Circulating levels of miRNA-125 may predict the
response to rituximab in RA patients and their interest must
therefore be reassessed by other teams to be used in daily
clinical practice.

Cytokine networks are well-recognized as a relevant
source of contributive biomarkers in RA [6]. Adipokines are
biological active substances synthesized by the white adipose
tissue that regulate the energy homeostasis and metabolism
and are soluble mediators involved in chronic inflammation
and metabolic dysfunction. Their interest as biomarkers in
RA is thus to be expected. Therefore, A. Burska et al. in
“Cytokines as biomarkers in rheumatoid arthritis” and A. Del
Prete et al. will explore the interests and limitations of using
cytokines as biomarkers in RA with a special emphasis on
adipokines for the latter.

Since the interest of autoantibodies in pathogenesis,
diagnosis, and prognosis of different autoimmune diseases is
obvious, the development of their knowledge is logical.Three
main classes of posttranslational modifications are associated
with RA: citrullination, of course, but also oxidation and
carbamylation. A. Burska et al. will therefore review the
relevance of autoantibodies to these 3 types of posttransla-
tional modifications in RA in “Cytokines as biomarkers in
rheumatoid arthritis.”

Remission with minimal use of drugs is now the goal of
therapy for RA patients. Synovial (MMP3), cartilage (urinary
CTX II, COMP), and bone biomarkers may be useful in
managing drugs reduction when patients with RA achieved
clinical remission. In this special issue, D. Dénarié et al. will
try to shed light on the following issue: “Could biomarkers
of bone, cartilage, or synovium turnover be used for relapse
prediction in RA patients?” in this paper: “Could biomarkers
of bone, cartilage or synovium turnover be used for relapse
prediction in rheumatoid arthritis patients?”

We sincerely hope that this special issue of “Mediators
of inflammation on biomarkers in RA” will be of interest to
readers and deepen their knowledge of this subject. Kind
regards.

Vincent Goëb
Patrice Fardellone

Jean Sibilia
Frédérique Ponchel
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Bone loss in rheumatoid arthritis (RA) patients results from chronic inflammation and can lead to osteoporosis and fractures. A few
bone remodeling markers have been studied in RA witnessing bone formation (osteocalcin), serum aminoterminal propeptide of
type I collagen (PINP), serum carboxyterminal propeptide of type I collagen (ICTP), bone alkaline phosphatase (BAP), osteocalcin
(OC), and bone resorption: C-terminal telopeptide of type 1 collagen (I-CTX), N-terminal telopeptide of type 1 collagen (I-
NTX), pyridinolines (DPD and PYD), and tartrate-resistant acid phosphatase (TRAP). Bone resorption can be seen either in
periarticular bone (demineralization and erosion) or in the total skeleton (osteoporosis). Whatever the location, bone resorption
results from activation of osteoclasts when the ratio between osteoprotegerin and receptor activator of nuclear factor kappa-B
ligand (OPG/RANKL) is decreased under influence of various proinflammatory cytokines. Bone remodeling markers also allow
physicians to evaluate the effect of drugs used in RA like biologic agents, which reduce inflammation and exert a protecting effect
on bone. We will discuss in this review changes in bone markers remodeling in patients with RA treated with biologics.

1. Inflammation, Joint Erosions, and
Bone Mass

Rheumatoid arthritis (RA) is a chronic disease characterized
by articular erosions, periarticular bone loss, and chronic
inflammation leading to increased risk of osteoporosis [1].
Systemic bone loss associated with RA is multifactorial:
glucocorticoids, decrease of physical activity, and the disease
itself, particularly when uncontrolled. Bone loss, whether
periarticular or systemic, shares, at least partially, similar
mechanisms. From the very early stages of RA, bone loss
in RA correlates with parameters of inflammation and func-
tional status. Joint erosions measured with Larsen’s score are
correlated with bone mineral density (BMD) and vertebral
deformities [1–5]. Relevant literature on bone remodelling
markers in RA patients and the effect of biologic agents on
bone remodelling were identified using PubMed database
with bone remodellingmarkers, biologic agents, and rheuma-
toid arthritis as key words. Systematic reviews and random-
ized controlled studies were both analyzed.

2. Cytokines and Signaling Pathways

Among mechanisms involved in bone loss, proinflammatory
cytokines play amajor role in explaining hyper-osteoclastosis
[6]. The nuclear factor-kappa B (NFkappaB) signaling path-
way regulates the expression of hundreds of genes which are
involved in diverse processes like inflammation. Receptor
activator of NFkappaB Ligand (RANKL) is a membrane
protein secreted by osteoblasts that binds to the RANK
receptor on osteoclast precursors and provokes maturation
of osteoclast cells (Figure 1). Its natural decoy receptor osteo-
protegerin (OPG) produced by osteoblasts and stromal cells
binds to and confines RANKL and prevents differentiation
of osteoclasts [7, 8]. Various proinflammatory cytokines
regulate expression of RANKL including tumor necrosis
factor (TNF) and interleukin-1 (IL-1) [9–12]. RANKL values
can predict the therapeutic response to anti-TNF therapy in
RA patients [13], which is not the case for OPG [14], whereas
OPG expression is increased in synoviumof anti-TNF treated
patients: with both infliximab and etanercept. In contrast,
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RANKL is not influenced by the treatment, showing that the
ratio RANKL/OPG is ofmajor importance in regulating bone
resorption rather than each of the markers taken alone [15].
Then, it is not surprising that deleterious effects of RANKL
on BMD can be prevented by denosumab which is an anti-
RANKLmonoclonal antibody, increasing BMDand reducing
bone turnover in RA patients [16]. Bone formation is also
decreased during inflammation as shown in mice. When
Dkk-1, a protein that is a member of the dickkopf family,
is increased by TNFalpha, it exerts its negative regulation
on WNT pathway, blocking osteoblast differentiation and
inducing expression of sclerostin (SCL), leading to the death
of osteocytes [17]. Higher levels of Dkk-1 are associated with
an increased risk of articular erosions independent of age,
baseline radiologic features, C-reactive protein (CRP), or
disease activity [18]. Interleukin-6 (IL-6) directly induces
the production of RANKL by synoviocytes in RA patients
through the pathway of janus kinase/STAT, phosphorylation
of STAT3 and ERK1/2 [19, 20].

3. Bone Remodeling Markers

Bone matrix is mainly composed of type I collagen and type
I collagen telopeptide fragments: I-CTX and ICTP can be
measured in both serum and urine. They are very sensitive
and specific markers of bone degradation [21, 22]. These
two telopeptides are released from type I bone collagen by
two different enzymatic systems: (1) ICTP, which is derived
from matrix metalloprotease activity (MMP) and is very
effective in bone erosions associated with RA, and (2) I-CTX,
produced by cathepsin K which on the contrary is involved
in systemic bone resorption [23]. In RA the ratio of synovial
fluid to serum fluid is increased for ICTP but not for I-CTX.

This suggests that ICTP is a sensitive marker of periarticular
bone resorption linked to MMPs activity of various cells like
synoviocytes [24].

II-CTX is not a bone remodeling marker but a marker
of cartilage degradation, even if the two phenomena are
closely related in RA. Both bone and cartilage markers are
strong and independent predictors of articular erosions. This
is illustrated by the COBRA study where high levels of I-CTX
and II-CTXmeasured early in RA predicted an increased risk
of further articular damage [25].

4. Effect of Biological Agents on Bone
Metabolism in RA Patients

Randomized clinical trials have clearly demonstrated that
biological agents are able to prevent partial or even total
articular erosions in RA patients. This raises the question
of their ability to prevent as well the generalized bone loss
associated with inflammation encountered in RA patients.
This preventive effect might be demonstrated by variation of
bone remodeling markers or bone mineral density (BMD)
during the course of treatment.

4.1. Anti-TNFalpha. In RA patients, BMD is inversely corre-
lated with serum levels of TNFalpha. Bone formation rather
than resorption markers better showed the bone response to
anti-TNFalpha [26]. An open cohort study of 102 RA patients
treated during one year with infliximab showed both the
variations of bone loss at lumbar spine, hip, and hands and the
variation of bone remodeling induced by the anti-TNFalpha.
When BMD at lumbar spine and hip did not vary, it did incur
a significant decrease of 0.8% at the hand (𝑃 = 0.01), giving
evidence that metacarpal cortical bone loss is continuing. In
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RA treated patients with good EULAR response, variation of
BMD was favorable compared to other patients. Serum CTX
and RANKL hugely decreased in comparison with baseline
values at the same time as the decrease of DAS score and CRP
[27].

Another multicentric and prospective cohort study
included 48 women with an average age of 54.2 years
(±2.1 SD) suffering from severe RA for 10 years (11.4 ± 7.8 SD)
who initiated infliximab treatment after the failure of one
nonbiologic agent (DMARD). None received bisphospho-
nates. 77% were under glucocorticosteroid treatment. BMD
was not modified during the year of the study but serum
I-CTX rapidly and significantly decreased by 30% at the
22nd week before going back to the baseline values. Inversely,
PINP values remained stable with a P1NP/CTX ratio in
favor of bone formation.The II-CTX, witnessing the cartilage
degradation, was not modified in the study group but slightly
decreased in patients with values above normal before the
biologic agent [21].

In the “BeST” study, four different therapeutic strategies
have been evaluated in 218 early RA patients: (1) sequential
monotherapy, (2) combined treatment “step up,” (3) com-
bined treatment with glucocorticoids, and (4) treatment with
infliximab. BMD was measured at lumbar spine, hip, and
hands (from 2nd to 4th metacarpal) after 1 and 2 years. After
2 years for all treated groups there was a bone loss at each of
these regions. It should be noted though that there was less
bone loss in hands for groups treated with either prednisone
or infliximab. Progression of erosions was correlated with the
decrease of BMD at both hand and hip regions. The use of
bisphosphonates protected only lumbar spine and hip from
bone loss [28].

A search in PubMed database to identify studies analyz-
ing the effects of anti-TNFalpha treatments onBMDandbone
remodeling markers in RA patients has been able to identify
four studies [29–32] in which BMD was either stabilized or
increased at lumbar spine (up to 2.8%) or at hip (up to 13.1%).
Only one study, concerning 48 patients, was negative [21].
Variations of bone remodeling markers were heterogeneous
but showed a slight decrease of resorption and an increase of
bone formation.

4.2. Anti-iL6 Agents. In vitro, iL-6 blockade reduces osteo-
clastic differentiation and bone resorption in monocytes
cultures stimulated by RANKL or RANKL plus TNFalpha.
In transgenic mice, formation of osteoclasts is also strongly
inhibited by the anti-inflammatory effects of iL-6 blockade
[33].

A pilot study compared 22 healthy nonosteopenic control
women with 22 women suffering from active RA treated by
perfusions of 8mg/kg Tocilizumab (TCZ). At baseline, the
OPG/RANKL ratio was 5 times lower in RA patients than in
controls. Higher levels of Dkk-1, sclerostin, serum betaCTX,
and osteocalcin were seen related to a hyper remodeling
status and slowing down of bone formation in RA patients.
In serum, OPG were negatively correlated with DAS28
score when RANKL levels correlated positively with CRP.
After two months, OPG/RANKL ratio was increased when

Dkk-1 decreased.Thanks to TCZ, OPG/RANKL increase was
particularly significant in 10 patients who were in remission
or in a low activity state in contrast with other 12 patients with
still active RA. On the other hand, variations of Dkk-1 and
sclerostin were similar in both groups. Thus, inflammation
suppression by anti-IL-6 rapidly corrects bone homeostasis
troubles due to RA [34].

The “OPTION” multicentric randomized pivotal study
evaluated the effects of TCZ on bone and cartilage remod-
eling. They were 416 of 623 patients suffering from mod-
erate suffering from moderate to severe RA who were
selected because of an inadequate response to methotrexate.
Methotrexate administration alone was compared to the
administration of an association of methotrexate and TCZ
(4mg to 8mg/kg every 4 weeks). TCZ reduced in a dose-
dependent way the levels of procollagen type II N-terminal
propeptide (PIINP), collagen helical peptide (HELIX-II),
and matrix metalloproteinase-3 (MMP-3) after 4, 16, and
24 weeks. Among bone formation markers, only serum
aminoterminal propeptide of type I collagen (PINP) sig-
nificantly increased in comparison with placebo, when 1-
CTX and ICTP, markers of bone resorption, decreased [35].
TCZ increases bone formation by increasing the expression
of OPG when nonbiological agents have no effect. This is
shown in a study of bone biopsies from subjects undergoing
a prosthesis replacement of the knee [36]. Finally, TCZ also
decreases the levels of dickkopf and normalizes the ratio
OPG/RANKL [34]. In RADIATE study TCZ decreased C-
reactive protein levels and significantly inhibited cathepsin
K-mediated bone resorption, as measured by a decrease in
CTX-Iwith a significant decrease in theCTX-I/OC ratio [37].
Furthermore, the SAMURAI study showed that Tocilizumab
monotherapy is more effective at one year in reducing radio-
logical progression in patients presenting with risk factors for
rapid progression than in low-risk patients according to four
independent predictive markers for progressive joint dam-
age (urinary C-terminal crosslinking telopeptide (uCTX-II),
urinary pyridinoline/deoxypyridinoline (uPYD/DPD) ratio,
body mass index (BMI), and joint-space narrowing (JSN)
score at baseline) [38].

5. Rituximab

B lymphocytes enhance bone resorption during RA by
secreting RANKL [39]. B lymphocyte depletion obtained by
using Rituximab results in a decrease of resorption bone
markers [40] and inhibition of RA induced osteoclastosis;
this effect is obtained by a reduction of the number of
osteoclast precursors in synovium and thus increases the
ratio OPG/RANKL in serum [41] and as such could protect
BMD. In a prospective study with a follow-up of 3–15 months
after Rituximab therapy there was no significant change of
the bone formation markers (BAP) and ICTP. However, a
nonsignificant tendency of decrease of RANKL (with no
change of OPG) and a significant decrease of the bone
degradation marker deoxypyridinoline crosslinked collagen
I were observed. It appears thus that Rituximab lowered
osteoclast activity [42].
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6. Abatacept

CTLA4-Ig inhibits linking of CTLA-4 with the monocyte
surface receptor CD80/CD86 [43] and could downregu-
late differentiation and maturation of osteoclasts acting
directly on genes [44, 45]. CTLA-4 dose-dependently inhibits
RANKL- as well as tumour necrosis factor- (TNF-) mediated
osteoclastogenesis in vitro without the presence of T cells
[44]. Furthermore, in mice, Abatacept protects against bone
loss induced by PTH giving an explanation to the protective
effect of Abatacept in RA [46].

7. Conclusion

Bone loss in RA is well documented and is a frequent
comorbidity needing diagnosis and prevention. Bone remod-
eling markers are surrogates to evaluate bone formation,
resorption, and further risk of fractures. So far, there is no
consensus about their role in helping physicians in a clinical
point of view. In addition to specific antiosteoporotic agents,
whenneeded, biologic agents add their ownnonspecific effect
to protect RA patients against bone loss and osteoporotic
fractures by reducing inflammatory-linked bone loss.
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Rheumatoid arthritis (RA), a chronic inflammatory disease usually occurring in synovial tissues and joints, is highly associated
with genetic and environmental factors. ORAI1, a gene related to cellular immune system, has been shown to be involved in
the pathogenesis of chronic inflammatory diseases and immune diseases. To identify whether ORAI1 gene contributes to RA
susceptibility, we enrolled 400 patients with RA and 621 healthy individuals for a case-control genetic association study. Five tagging
single nucleotides polymorphisms (tSPNs) withinORAI1 genewere selected for genotyping. An SNP, rs7135617, showed a significant
correlation with the risk of RA. Our results indicated that genetic polymorphism of ORAI1 gene is involved in the susceptibility of
RA in a Taiwanese population.

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that
affects joints in the body. RA is also a chronic inflammatory
disease that can lead to long-term joint damage, chronic
pain, and loss of motor function in the hands. RA frequently
affects smaller joints [1]. Symptoms caused by RA include
joint stiffness, a low-grade fever, rheumatoid nodules, and
lumps of tissue under the skin. The prevalence of RA is

0.5%∼1%, which is relatively constant in many populations
[1]. A high prevalence of RA was reported in Indians; in
contrast, a low prevalence of RA was observed in Chinese
and Japanese populations [1]. Differences of RA prevalence
among populations reveal the importance of genetic factors
in the risk of RA.

The cause of RA is still unclear. The immune system
plays an important role in RA. Several genetic regions were
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Table 1: Basal characteristics of patients with rheumatoid arthritis
(RA) and of normal controls.

Characteristics Patients with RA Normal control
Number of subjects 400 621
Gender: female, no. (%) 329 (82.2%) 357 (57.5%)
Age (years) 62.4 ± 13.4 51.2 ± 16.2

Range (years) 22–90 11–88

reported to be associated with RA. The major histocompati-
bility complex (MHC) is a well-known region [2]. HLA
DRB1 alleles were shown to be significant markers of RA in
several populations [3–8]. In addition, using a genome-wide
association study, Kochi et al. identified a polymorphism in a
gene encoding chemokine (C-C motif) receptor 6 (CCR6) at
6q27, which was associated with RA [9]. The contribution of
this region is estimated to be about 30% of the total genetic
effects on RA susceptibility. This regulatory variant in CCR6
was further confirmed in Taiwanese RA patients [10].

The store-operated calcium channel plays an important
role in activation of T-lymphocytes. Orai1 is the pore-forming
subunit of the store-operated calcium channel [11]. A loss
of functional mutation of ORAI1 was found to cause severe
combined immunodeficiency (SCID) [12]. Genetic polymor-
phisms of ORAI1 were reported to be associated with a risk
of HLA-B27-positive ankylosing spondylitis [13]. However,
the role of ORAI1 in RA is still unclear. In this study, we
assessed whether genetic variations in ORAI1 contribute to
RA susceptibility in the Taiwanese population.

2. Materials and Methods

2.1. Study Subjects. In total, 1021 Taiwanese individuals
including 400 patients with rheumatoid arthritis (RA) and
621 healthy subjects were enrolled at Kaohsiung Medical
University Hospital. Patients with RA were diagnosed to
fulfill the revised criteria of the American RheumatismAsso-
ciation for RA. This study was approved by the Institutional
Review Board of Kaohsiung Medical University Hospital. All
participants were provided with sufficient information and a
consent form for the study before clinical data and samples
were collected.

2.2. DNA Extraction and Genotyping. Patients’ genomic
DNAs were isolated from whole blood samples using a
Gentra extraction kit and ethanol precipitation as described
in our previous study [14]. Genotyping for single-nucleotide
polymorphisms (SNPs) of Orai1 was conducted using a
TaqMan Allelic Discrimination Assay (Applied Biosystems,
Foster City, CA). A polymerase chain reaction (PCR) was
performed in a 96-well microplate with an ABI 9700 thermal
cycler (Applied Biosystems, Foster City, CA). After the PCR,
the fluorescence was measured and analyzed using system
SDS software version 1.2.3 (Applied Biosystems, Foster City,
CA).

2.3. Statistical Analysis. JMP 8.0 software for Windows
(SAS Institute, Cary, NC) was used for the statistical
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Figure 1: Five tSNPs on the LD map of ORAI1 gene.

analysis of genotyping results. Statistical differences in
genotypes and allelic frequencies between cases and controls
were assessed using a 𝜒2 test. A linkage disequilibri-
um (LD) map used to define the haplotype blocks
was constructed using Haploview software (version 4.2;
http://www.broad.mit.edu/mpg/haploview/). The haplotype
analysis was performed to compare distributions of haplotype
frequencies of ORAI1 between cases (RA) and controls.

3. Results

3.1. Clinical Characteristics of Subjects. To investigate
whether SNPs of ORAI1 contribute to the susceptibility to
RA, we performed a case and control association study. As
shown in the Table 1, 400 rheumatoid arthritis patients and
621 healthy controls were recruited. Of the RA patients,
82.2% were female. The mean age was 62.4 years. In the
healthy controls, 57.5% individuals were female and the
overall mean age was 51.2 years.

3.2. A Significant Association between rs7135617 and Sus-
ceptibility of RA. In this study, five tagged SNPs (tSNPs)
of ORAI1 (rs12320939, rs12313273, rs7135617, rs6486795, and
rs712853) with minor allele frequencies (MCFs) of >10%
were selected from the HapMap Han Chinese database.
Differences in genotypic and allelic frequencies of SNPs
between cases and controls were compared. As shown in
Table 2, rs7135617 revealed a significant association with RA
in both the genotypic (𝑃 = 0.004) and recessivemodels (odds
ratio (95% CI): 1.58 (1.14∼2.19); 𝑃 = 0.006).

3.3. Haplotype Analysis of ORAI1 Genetic Polymorphisms
in the Susceptibility to RA. To further identify whether
haplotypes of ORAI1 were correlated with RA, we created
an LD map (Figure 1) and analyzed haplotype frequency
differences between RA patients and controls. The haplotype
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Table 2: Genotyping and allele frequency of ORAI1 gene in rheumatoid arthritis patients and normal controls.

Genotype Case (%)
(𝑛 = 400)

Control subjects (%)
(𝑛 = 621) Allele Case (%)

(𝑛 = 400)
Control subjects
(%) (𝑛 = 621)

Genotype
𝑃 value

Recessive
𝑃 value

Allelic
𝑃 value

rs12320939
TT 95 (24.4) 144 (23.4) T 382 (49.1) 602 (48.9)

0.868
0.715 0.945

TG 192 (49.4) 314 (51.1) G 396 (50.9) 628 (51.1) 1.06 1.01
GG 102 (26.2) 157 (25.5) (0.79–1.42) (0.84–1.20)

rs12313273
CC 28 (7.8) 54 (8.8) C 202 (28.0) 355 (28.9)

0.850
0.573 0.660

CT 146 (40.4) 247 (40.2) T 520 (72.0) 873 (71.1) 0.87 0.96
TT 187 (51.8) 313 (51.0) (0.54–1.40) (0.78–1.17)

rs7135617
TT 83 (22.5) 96 (15.5) T 318 (43.1) 505 (40.9)

0.004∗
0.006∗ 0.331

TG 152 (41.2) 313 (50.7) G 420 (40.9) 731 (59.1) 1.58 1.10
GG 134 (36.3) 209 (33.8) (1.14–2.19) (0.91–1.32)

rs6486795
CC 57 (14.9) 82 (13.3) C 291 (38.1) 464 (37.7)

0.687
0.475 0.849

CT 177 (46.3) 300 (48.7) T 473 (61.9) 768 (62.3) 1.14 1.02
TT 148 (38.7) 234 (38.0) (0.79–1.65) (0.85–1.23)

rs712853
CC 37 (9.7) 64 (10.6) C 238 (31.1) 396 (32.7)

0.740
0.643 0.442

CT 164 (42.8) 268 (44.3) T 528 (68.9) 814 (67.3) 0.90 0.93
TT 182 (47.5) 273 (45.1) (1.38–0.59) (1.13–0.76)

∗Significant (𝑃 < 0.05) values are in bold.

Table 3: Haplotype frequencies of the ORAI1 gene in rheumatoid arthritis patients and normal controls patients.

rs12313273/rs7135617 Case (%)
(𝑛 = 400)

Control subjects (%)
(𝑛 = 621) OR (95% CI) 𝑃 value

T/T 304 (42.0) 501 (40.8) 1.09 (0.87–1.37) 0.4512
T/G 220 (30.4) 372 (30.3) 1.06 (0.84–1.35) 0.6210
C/G 197 (27.2) 354 (28.8) Reference
Haplotype frequency less than 1% was excluded.

analysis showed that no association was observed in pair-
wise allelic comparisons of rs12313273/rs7135617 (Table 3) or
rs7135617/rs6486795 (Table 4).

4. Discussion

In this study, we screened SNPs of ORAI1 and performed
a case-control association study. In this study, 1021 subjects
(400 cases and 621 controls) were recruited. Five genetic
polymorphisms were selected for genotyping. Our results
indicated a significant association between rs7135617 and
susceptibility to RA. Previous studies reported significant
associations between genetic polymorphisms of ORAI1 and
inflammatory diseases such as ankylosing spondylitis, cal-
cium nephrolithiasis, and atopic dermatitis [13, 15, 16]. In this
study, we found an SNP (rs7135617) located in the intron
of ORAI1 associated with a risk of RA in the Taiwanese
population.

ORAI1-mediated calcium signaling was reported to be
involved in a variety of human diseases. Feske et al. identified
a mutation in ORAI1 from SCID patients [12]. A mis-
sense mutation resulted in the dysfunction of store-operated
calcium entry that in turn attenuated immune responses

[12]. Our previous studies indicated that ORAI1 was highly
expressed in the spleen, an organ involved in immune system
[16]. The rs7135617 within ORAI1 was associated with an
autoimmune disease, ankylosing spondylitis. Consistent with
a previous report, this study also confirmed an important
role of ORAI1 polymorphism rs7135617 in RA. However,
functional role of “intronic splicing regulatory elements of
ORAI1” underlying RA susceptibility is not clear. Therefore,
we further applied Human Splicing Finder version 2.4.1
(HSF) [17] to analyze the possible functions of rs7135617G>T.
Results indicated that rs7135617 was predicted as a potential
target binding site of SR SC35 protein. SR SC35 protein is
an important splicing factor which can influence selection
of splice site [18]. The consensus value of rs7135617 wild-
type (G) motif is 75.97 whereas the mutant-type (T) motif is
91.09. The variation of the consensus value (ΔCV) is +19.9%.
A higher consensus value indicates higher strength andmore
possibility to be the splicing enhancer binding motif of
SC35 protein. Combined with bioinformatics findings and
genotyping data, our results imply thatORAI1 polymorphism
rs7135617may influence splicing processwhich further affects
calcium signaling.

This study has some limitations. First, the collection
of samples did not contain clinical biochemical data of
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Table 4: Haplotype frequencies of the ORAI1 gene in rheumatoid arthritis patients and normal controls.

rs7135617/rs6486795 Case (%)
(𝑛 = 400)

Control subjects (%)
(𝑛 = 621) OR (95% CI) 𝑃 value

T/T 295 (41.1) 501 (40.7) 1.00 (0.81–1.23) 0.9961
G/T 142 (19.8) 265 (21.5) 0.91 (0.71–1.17) 0.4629
G/C 271 (37.7) 460 (37.4) Reference
Haplotype frequency less than 1% was excluded.

RA patients. Therefore, this study was only able to detect
associations between SNPs and the risk of RA. Second,
rs7135617 is located in the intron. The T allele is a risk
allele for RA. However, further functional role of ORAI1
polymorphism rs7135617 requires experimental validation in
order to clarify the mechanism underlying calcium signaling
and susceptibility of RA.

Third, the study was limited by the modest sample size
(1021 subjects); however, we believe this might be partly
overcome by the fact that our samples are homogeneous and
well defined in terms of phenotype assessment.

Given the polygenic nature of immune diseases such as
RA, the susceptibility geneORAI1 could provide new clues to
the pathogenesis of RA. Although a larger-scale population
study is needed, our results, at least in part, indicated an
important role of ORAI1 gene in the susceptibility to RA.
Further study of the relationship between ORAI1 genotypes
and the downstream functional relevance during chronic
inflammation of the joints should be conducted in order to
understand the etiology of RA.
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Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease characterized by severe joint injury. Recently,
research has been focusing on the possible identification of predictor markers of disease onset and/or progression, of joint
damage, and of therapeutic response. Recent findings have uncovered the role of white adipose tissue as a pleiotropic organ not
only specialized in endocrine functions but also able to control multiple physiopathological processes, including inflammation.
Adipokines are a family of soluble mediators secreted by white adipose tissue endowed with a wide spectrum of actions. This
review will focus on the recent advances on the role of the adipokine network in the pathogenesis of RA. A particular attention
will be devoted to the action of these proteins on RA effector cells, and on the possibility to use circulating levels of adipokines as
potential biomarkers of disease activity and therapeutic response.

1. Introduction

Anemerging body of evidence suggests that thewhite adipose
tissue (WAT) plays more than just the role of energy storage
compartment and thermal and mechanical insulator. WAT
is now recognized as a pleiotropic organ specialized in
endocrine functions being able to produce several hormones
and other proteins involved in both physiological and patho-
logical processes, including immunity and inflammation [1].
The biological active substances secreted by WAT contribute
to the systemic “low-grade inflammatory state” associated
with obesity [2, 3]. Indeed, increased circulating levels of
severalmarkers of inflammation occur in obese subjects, such
as IL-6, TNF-𝛼, C-reactive protein (CRP), and plasminogen
activator inhibitor I (PAI-I) [4, 5]. It should be also considered
that infiltrating macrophages represent an important source
of inflammatory mediators which further promote and sus-
tain inflammation [6]. The term “adipokines” is applied
to all the biological active substances synthesized by WAT
which function as regulators of energy homeostasis and
metabolism; the same mediators are also involved in chronic
inflammation and metabolic dysfunctions [7].

Rheumatoid arthritis (RA) is a chronic systemic autoim-
mune disorder characterized by synovial inflammation, car-
tilage damage, and bone erosion, with 1% prevalence world-
wide [8]. Although the pathogenesis of this disease is poorly
understood, several observations indicate that adipokines
affect tissues and cells involved in RA, including synovium,
cartilage, bone, and immune cells [9]. In the present review
we will describe the information available on the role of
adipokines in RA pathogenesis, focusing on the role of
adiponectin, leptin, chemerin, visfatin, resistin, lipocalin 2,
SAA3, and a few others, in light of their possible consid-
eration as new potential circulating biomarkers of disease
activity and therapeutic response.

2. Adiponectin

Adiponectin (also called GBP28, AdipoQ, ApM1, and
Acrp30) is a collagen-like protein with a structure similar
to the complement factor C1q. Adiponectin is mainly pro-
duced by adipocytes and is present, in different molecular
isoforms, at high levels (3–30 𝜇g/mL) in the blood [10, 11].
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Two adipokine receptors were recently identified, AdipoR1,
mainly expressed in skeletal muscles, and AdipoR2 which
is expressed in the liver [12]. The signaling transduction
pathways of adiponectin receptors involve the activation
of the adaptor protein APLL1 [13] and many signaling
molecules, including AMPK, p38 MAP kinases, and PPAR-
𝛼 and PPAR-𝛾 [10, 14]. The main functions of adiponectin
are, in the muscle, the increase of fatty acid oxidation and
glucose uptake and, in the liver, the reduction of glucose
synthesis.

Low levels of circulating adiponectin, as those observed
in obesity, type 2 diabetes, atherosclerosis, vessel inflam-
mation, and metabolic syndrome, suggest a protective
function. Accumulating evidence supports a potential role
of adiponectin in controlling inflammation. For instance,
adiponectin was reported to inhibit the transformation of
macrophages into foam cells [15], to stimulate the pro-
duction of the anti-inflammatory cytokine IL-10 [16], to
reduce the production of TNF-𝛼 [17], to induce tolerance
in response to TLR ligands [18], and to promote the anti-
inflammatory M2 macrophage polarization (Figure 1) [19].
The anti-inflammatory effects of adiponectin have been,
to some extent, ascribed to its capacity to alter ceramide
metabolism and to promote sphingosine-1-phosphate syn-
thesis [20]. However, evidence that adiponectin may act as
a proinflammatory mediator promoting extracellular matrix
degradation and joint disruption is also available. Indeed, in
cultured chondrocytes, adiponectin increases the expression
of MMP-3 [21] and the secretion and activity of proin-
flammatory mediators, such as nitric oxide synthase type
II (NOS2/iNOS), MMP-9, IL-6, MCP-1, and IL-8 [22, 23].
Similarly, adiponectin is able to stimulate the production
of PGE2, IL-6, IL-8, vascular endothelial growth factor
(VEGF), MMP-1 and MMP-13, cyclooxygenase 2 (COX-2),
and microsomal prostaglandin E synthase 1 (mPGES-1) [24,
25] in RA synovial fibroblasts (Figure 1). In RA, the cellular
targets of adiponectin may also include lymphocytes and
endothelial cells, further supporting the role of adiponectin
in this pathology [26].

In RA patients, the serum/plasma levels of adiponectin,
as well as the levels in the synovial fluid, are associated
with radiographic damage [27] and are increased compared
to osteoarthritis patients (OA) and healthy donors [28, 29].
Increased adiponectin levels positively correlate with the
disease activity score 28 (DAS28), the erythrocyte sedimen-
tation rate (ESR), and the rheumatoid factor (RF) [30].
Recently, Klein-Wieringa et al. reported that the baseline lev-
els of adiponectin can also predict radiographic progression
over a four-year period independently of the presence of
anticyclic citrullinated peptide (CCP) antibodies and body
mass index (BMI) [31]. In addition, the elevation of total
and high molecular weight adiponectin was described in
patients with RA treated with anti-TNF agents (e.g., inflix-
imab and etanercept) [32, 33] (Table 1). Finally, considering
the detrimental effects of this adipokine in perpetuating
joint inflammation, the use of adiponectin as a potential
therapeutic target of blocking therapies has been proposed
[34].

3. Leptin

Leptin, the product of ob gene, is a 16 kDa nonglycosylated
hormone peptide [35] which binds the OB-Rb long form
leptin receptor coupled to a JAK/STAT signaling pathway
[36, 37]. Leptin is considered the major regulator of body
weight, since it induces the decrease of food intake and
increases energy consumption [38]. Leptin is mainly pro-
duced by WAT and the circulating levels of leptin correlate
positively with the amount of adipose tissue and BMI [39].
However, leptin synthesis is also regulated by the action of
inflammatory mediators [40]. Leptin is generally considered
a proinflammatory adipokine. In fact, leptin stimulates the
production of proinflammatory cytokines, such as TNF-𝛼
and IL-6, and reactive oxygen species in cultured monocytes.
In addition, it induces the production of CC-chemokines by
macrophages and alters theTh1/Th2 balance favoring theTh1
phenotype (Figure 1) [41–43]. Moreover, leptin null mice are
protected in experimental models of T cell mediated hepatitis
and experimental autoimmune encephalomyelitis [44, 45].

Leptin has been associated with autoimmune diseases,
in particular with RA. However, there are conflicting obser-
vations concerning the circulating levels of leptin in RA
patients, since some studies suggested a correlation between
leptin levels and disease activity [28, 46, 47], while others
failed to detect changes in circulating leptin levels [48]; inter-
ference of concomitant pharmacological treatments might be
responsible for these apparently contrasting results. In exper-
imental models of arthritis, leptin deficient mice showed
a milder form of antigen-induced arthritis associated with
the reduction of IFN-𝛾 production and the increase in IL-
10 secretion by in vitro reactivated lymph node cells [49].
In contrast, leptin-deficient and leptin receptor-deficient
mice exhibited a delayed resolution of the disease [50]; the
administration of leptin ameliorated disease activity [51].
These conflicting results do not allow coming to a clear
conclusion on the role of leptin in RA. To note, leptin
circulating levels apparently are not modulated in patients
treated with anti-TNF-𝛼 therapy [52–54] (Table 1). Recently,
the serum/synovial fluid ratios of leptin levels were associated
with disease duration and erosion [55]. In addition, several
in vitro studies sustained the pathogenic role of leptin in
RA. In human and murine chondrocytes, leptin synergizes
with IL-1𝛽 and IFN𝛾 for the activation of type 2 nitric oxide
synthase (NOS) and the induction of IL-8 and metallo-
proteinases via a JAK2, PI3K, and MAP kinase-dependent
signaling pathway [23, 56–58]. Leptin also induced IL-8 in
human synovial fibroblasts with a NF𝜅B-dependent pathway
[59]. Furthermore, leptin can also modulate the activities of
several immune cells [60]. For instance, in murine dendritic
cells, leptin increases CD40 expression and T cell priming
(Figure 1) [61]. Matarese et al. showed that leptin-null and
leptin receptor-null mice have increased levels of Treg cells
and are protected in experimental models of autoimmune
diseases [45]. In keeping with this observation, high leptin
levels are associated with a reduction of Treg and with
the activation of proinflammatory effector T cells [62–64].
Recently, it was shown that the leptin-induced state of overex-
pression of themTORpathway, in freshly isolatedTreg cells, is
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Figure 1: Role of adipokines on RA effector cells. The role of different adipokines on RA target cells is illustrated in the figure. WAT:
white adipose tissue, SAA3: serum amyloid A3, FLS: fibroblast-like synoviocytes, AC: articular chondrocytes, PMN: neutrophils, MMP:
metalloprotease, COX-2: cyclooxygenase 2, ROS: reactive oxygen species, iNOS: inducible nitric oxide synthase, CC-CK: CC-chemokines,
TG2: transglutaminase 2, and TERA: transitional endoplasmic reticulum ATPase.

responsible for their state of hyporesponsiveness. Therefore,
it is conceivable that Treg activation is dependent on the
dynamic regulation of mTOR activity by the composition of
the extracellular milieu, such as the concentrations of leptin
and cell nutrients [65]. These results clearly depict leptin as
a pleiotropic molecule placed at the crossroads of immune
tolerance, metabolism, and autoimmunity. Further studies
are needed in order to clarifywhether leptinmight represent a
new disease activity biomarker and to explore its therapeutic
potential in autoimmune diseases.

4. Chemerin

Chemerin is a 16 kDa protein, originally described as the
product of the Tazarotene-induced gene 2 (Tig2) [66] and
purified from ascitic fluids of ovarian cancer patients and
synovial exudates of rheumatoid arthritis patients [67].
Chemerin is secreted as an inactive precursor proteinwhich is

subsequently converted into a bioactive protein following the
proteolytic removal of the last six or seven amino acids from
the C-terminal end [68]. Chemerin was first described as
the functional ligand of the chemotactic receptor ChemR23.
Dendritic cells, macrophages, andNK cells express ChemR23
and a role for chemerin in their recruitment into inflamma-
tory sites was described in lupus erythematosus, oral lichen
planus, and psoriasis [69–72]. More recently, the adipokine
function of chemerin was proposed, since chemerin ismainly
produced by WAT and plays important regulatory role in
adipogenesis in vitro [73]. In addition, chemerin is con-
sidered a biomarker of adiposity, because chemerin levels
strongly associate with BMI [74], markers of inflammation
(e.g., TNF-𝛼, IL-6, and CRP) [75], and metabolic syndrome
[76]; chemerin circulating levels decrease with weight and fat
loss [77]. Human articular chondrocytes express chemerin
and its receptor ChemR23 and secrete proinflammatory
cytokines, such as IL-6, IL-8, and TNF-a, and metallopro-
teases, in response to chemerin stimulation (Figure 1) [78].
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Table 1: Correlation of adipokines with disease activity parameters and therapeutic response.

Adipokine Correlation with
DAS28 BMI IL-6/TNF/ESR Anti-CCP Radiographic progression Therapeutic response

Adiponectin pos [30] neg [31] pos [30] neg [31] pos [27, 31] Anti-TNF: pos [32, 33]
Leptin pos [46] neg [46] neg [31] no [31] neg [98] Anti-TNF: neg [52]
Chemerin pos [80] neg, pos [80] pos [78] ND ND Anti-TNF: pos [81]

Visfatin neg [102] neg [149] pos [31] pos [31], neg [102] pos [100] Anti-TNF: neg [101], pos [91]
Anti-CD20: pos [102]

Resistin pos [30] pos [31] pos [31, 118] No in serum but
pos in SF [111]

ND Anti-TNF: pos [118]

Lipocalin 2 ND ND ND ND ND ND
SAA3 ND ND ND ND ND ND
Vaspin SF pos [150] pos [147] SF neg [150] SF neg [150] ND ND
Omentin SF neg [150] neg [152] SF neg [150] SF pos [150] ND ND
Apelin ND ND ND ND ND DMARDs: neg [158]
Adipsin ND pos [31] pos [31] ND neg [31] DMARDs: pos [160]
Abbreviations: pos: positive; neg: negative; SF: synovial fluid; ND: not determined. Where not specified, the correlations are referred to serum levels. Positive
correlation with therapeutic response is assumed when the adipokine levels are modified (either they increase or decrease) by the treatment.

In RA patients the expression of chemerin and ChemR23
in fibroblast-like synoviocytes (FLS) was found increased
compared to OA patients. Chemerin was reported to mediate
direct proinflammatory and stimulatory effects on the RA-
FLS [79], suggesting a pivotal role of the chemerin/ChemR23
axis in the pathogenesis of RA. A recent study reported that
RA patients have increased levels of circulating chemerin
and chemerin levels positively correlated with disease activity
(DAS28, ESR, and CRP) [80]. Circulating chemerin levels are
negatively regulated by the anti-TNF therapy (adalimumab)
in parallel with the reduction of disease activity markers,
such as DAS28, ESR and CRP, and IL-6, and the macrophage
migration inhibitory factor (MIF) levels [81] (Table 1). These
results nominate chemerin serum levels as a biomarker for
disease activity and therapeutic response.

5. Visfatin

Visfatin, also known as pre-B-cell colony-enhancing fac-
tor (PBEF) and nicotinamide phosphoribosyltransferase
(Nampt), was originally described as a cytokine involved
in early B-cell development and was later renamed vis-
fatin since it is secreted mainly by visceral fat [82]. In
addition, leukocytes, in particular granulocytes and mono-
cytes/macrophages, from obese patients produce high levels
of visfatin [83–85]. Visfatin is also produced by endotoxin-
challenged neutrophils, where it functions as an antiapoptotic
molecule acting at level of caspases 3 and 8 [86]. Visfatin
was also suggested to have insulin-like functions [87, 88].
A specific receptor for visfatin has not been identified yet.
Nevertheless, the proinflammatory action of visfatin was
described to be mediated by the insulin signaling pathway
through Akt phosphorylation [89].

Circulating levels of visfatin correlate with obesity and
type 2 diabetes and are reduced after weight loss [90]. Visfatin
was also proposed to promote atherosclerosis and to cause
plaque destabilization through the induction of proinflam-
matory mediators and adhesion molecules in endothelial
cells [91–93]. Several observations sustain the hypothesis
that visfatin may play a major role in the pathogenesis of
RA. Recent studies reported the upregulation of visfatin in
activated RA-SFs in response to proinflammatory stimuli,
such as IL-6 and the activation of TLR3 [94, 95] with visfatin
acting as an autocrine positive feedback mechanism for IL-
6 production [96]. In RA synovium, visfatin was predomi-
nantly expressed in the lining layer, lymphoid aggregates, and
interstitial vessels. In RA-SFs, visfatin induced high amounts
of chemokines such as IL-8 and CCL2, proinflammatory
cytokines (i.e., IL-6), and matrix metalloproteinases (i.e.,
MMP-3) (Figure 1). Visfatin promoted fibroblast migration
and induced phosphorylation of p38 MAPK; of note, inhi-
bition of p38MAPK strongly reduced visfatin effects [97].
Finally, visfatin inhibition significantly reduced the severity
of the disease and TNF-𝛼 circulating levels in the experimen-
tal model of collagen-induced arthritis [98, 99].

In RA, circulating levels of visfatin are increased [28], as
well as its expression in synovial fluids and inflamed syn-
ovium [94–96]. Visfatin serum and synovial fluid levels cor-
related with the degree of inflammation, with the severity of
the disease, andwith joint damage [31, 95, 100]. Contradictory
results are available on visfatin levels in patients undergoing
anti-TNF-𝛼 therapy. In one study no significant changes were
observed [101], while in others a negative correlation with
therapywas found [91]. In general, visfatin serum levels better
correlated with the number of circulating B cells rather than
with the disease activity andwere profoundly affected after B-
cell depletion therapy with rituximab. The lack of change in
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serumvisfatin levels is suggested to predict worsening disease
activity [102] (Table 1).

6. Resistin

Resistin is a cysteine-rich protein of 12.5 kDa also known as
adipocyte-secreted factor (ASF) or “found in inflammatory
zone 3” (FIZZ3) [103]. In RA experimental models, resistin
promotes insulin resistance, while the function in humans is
still unclear [104]. Even if resistin was originally described to
be produced only by WAT, subsequent studies demonstrated
that, in humans, resistin mainly derives from circulating
monocytes and macrophages [105]. The resistin receptor is
still unknown and recently TLR4 was proposed to mediate
resistin proinflammatory functions in human cells [106].
Resistin has a strong impact on immune functions. It can
enhance the expansion of Treg cells through an effect on
dendritic cells (Figure 1) [107]. Proinflammatory mediators
increase resistin expression; in turn, resistin induces TNF-𝛼,
IL-12, IL-6, and IL-1𝛽 production [108, 109]. These findings,
together with the observation that the intra-articular injec-
tion of resistin in the knee joints induces arthritis, sustain
the involvement of resistin in RA pathogenesis [110]. Several
reports have demonstrated that serum resistin levels are
significantly higher in RA than in OA patients or healthy
controls [111–113]. The increased serum levels of resistin cor-
related with markers of inflammation, such as CRP, ESR, IL-
1Ra, and total leukocyte count [47, 114–117], disease activity
(DAS28), and joint destruction [112]. However, these results
were not confirmed by other groups [111], and conflicting
results were reported on the association between resistin and
radiographic progression signs [27, 31, 100]. Recently, the
anti-TNF-𝛼 therapy was reported to modulate resistin levels
in RA patients [118, 119] (Table 1). Resistin levels in synovial
fluids and in the sublining layer are higher in RA than in
OA patients [29, 110, 112]. These results strongly suggest that
resistin production is elevated at the site of inflammation and
accumulates in the synovial fluid of RA patients. In anti-CCP
positive patients, synovial fluid resistin levels, but not serum
levels, correlated with disease progression suggesting resistin
as a disease progression marker [111].

7. Lipocalin 2

Lipocalin 2 (LCN2), also known as siderocalin, 24p3, utero-
calin, andneutrophil gelatinase-associated lipocalin (NGAL),
is a recently identified glycoprotein stored in neutrophil
granules [120] but mainly produced byWAT [121, 122]. LCN2
has been isolated in different isoforms and its functions are
carried out by the activation of the cellular receptor megalin
[123]. LCN2 binds and transports small lipophilic substances,
such as retinoids, arachidonic acid, steroids, iron, and fatty
acids [124–126]. Other functions that have been attributed
to LCN2 are the induction of apoptosis in hematopoietic
cells [127], the inhibition of bacterial growth [128, 129],
regulation of iron metabolism [130], and insulin resistance
[131]. LCN2 is induced by inflammatory stimuli through

the activation of the NFkB pathway [132]; however dexam-
ethasone promotes LCN2 production in chondrocytes [133,
134]. LCN2 is involved in the allosteric activation of MMP-
9 [135] and levels of MMP-9 are higher in the serum and
synovial fluid of RA patients [136]. Recently, LCN2 synovial
fluid levels were found to be increased in RA compared
to OA patients [137]. Through a proteomic approach, GM-
CSF was found to induce LNC2 upregulation in neutrophils,
which in turn can influence synoviocyte behavior through the
release of several enzymes, such as transglutaminase 2 (TG2),
cathepsin D, and transitional endoplasmic reticulum ATPase
(TERA) (Figure 1), which contribute to both inflammation of
synovium and proliferation of synovial cells, promoting the
RA state [137].

8. SAA3

The serum amyloid A3 (SAA3) belongs to the family of acute
phase serum amyloid A proteins produced by hepatocytes
[138] and other cell types, including adipocytes [139, 140].
SAA3 was associated to altered metabolic and immunocom-
promised conditions [141, 142]. Several stimuli, such as TNF-
𝛼, IL-1𝛽, dexamethasone, IL-6, and LPS, can increase SAA3
expression [139, 140, 143]. Recently, SAA3 was suggested to
directly activate theMyD88-dependent TLR4/MD-2 pathway
[144].

In a rabbit Ag-induced arthritis model, upregulation of
SAA3 transcripts was detected in cells infiltrating into the
inflamed joint, in the areawhere pannus formation starts and,
most notably, also in chondrocytes. In vitro, recombinant
human SAA induces matrix metalloproteinase transcription
in human chondrocytes (Figure 1). Further, SAA is highly
expressed in human RA synovium [145]. Recently, Geurts et
al. proposed that a SAA3-promoter report may have a diag-
nostic value in the classification of RA molecularly distinct
forms with different degree of synovial tissue inflammation
[146].

9. Other Adipokines

Vaspin, visceral adipose tissue-derived serine protease
inhibitor, is expressed predominantly in visceral adipose
tissue [147]. Expression of the vaspin gene positively
correlates with BMI and administration of the protein
to obese mice improved glucose tolerance and insulin
sensitivity [147, 148]. Vaspin levels are increased in the serum
and synovial fluid of RA patients [149, 150] (Table 1).

Omentin, also known as intelectin, is a protein secreted
by omental adipose tissue and highly abundant in human
plasma [151]. Both circulating protein levels andmRNA levels
in adipose tissue decrease in obese subjects and correlate
negatively with markers of obesity, such as BMI, waist cir-
cumference, and circulating leptin [152] (Table 1). Expression
of the omentin gene was reported in omental adipose tissue
of patients with Crohn’s disease, suggesting a role in chronic
inflammatory diseases [151].The levels of omentinwere found
significantly reduced in the synovial fluid of patients with RA
compared to OA patients [150]. On the contrary, circulating
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levels of omentin were significantly higher in patients with
juvenile idiopathic arthritis compared to healthy controls
[153].

Apelin is a bioactive peptide, originally identified as the
endogenous ligand of the G-protein coupled receptor APJ
[154]. Apelin ismainly produced by adipocytes, its expression
is upregulated by insulin, and TNF-𝛼 and its levels are
increased in obesity [155, 156]. Apelin has been implicated
in the pathogenesis of OA, since high circulating levels are
increased in the sera and synovial fluids of OA patients [157].
In early-stage RA patients serum apelin levels were found
to be decreased but were insensitive to pharmacological
treatment [158] (Table 1).

Adipsin, also known as complement factor D, is highly
expressed in adipose tissue and in activated monocyte/
macrophages [159]. Circulating levels of adipsin did not
predict the radiographic progression of early-stage disease
[31]; however, increased adipsin levels were found to be
associated with a higher remission rate in early RA patients
treated with DMARD [160] (Table 1).

10. Conclusions

The discovery of adipokines has profoundly changed our
understanding of the functions of adipose tissue. The
adipokine network is involved in the interplay between
WAT, metabolic disorders, and immune-mediated diseases.
Adipokines have shown to be able tomodulate several aspects
of inflammation as well as both innate and adaptive immune
responses. Although in the past few years the implications of
the adipokines in autoimmune diseases, including rheuma-
toid arthritis, have greatly increased, a clear picture of the role
of these proteins in the pathogenesis and in the progression
of this disease is still missing. Nevertheless, accumulating
evidence on themodulation of serumand synovial fluid levels
of many adipokines encourages their future exploitation
as soluble biomarkers of disease activity and therapeutic
response. Further studies are needed in order to translate the
increasing number of experimental and clinical observations
to the use of adipokines as clinical diagnostic markers.
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[39] E. Jéquier, “Leptin signaling, adiposity, and energy balance,”
Annals of the New York Academy of Sciences, vol. 967, pp. 379–
388, 2002.

[40] O. Gualillo, S. Eiras, F. Lago, C. Diéguez, and F. F. Casanueva,
“Elevated serum leptin concentrations induced by experimental
acute inflammation,” Life Sciences, vol. 67, no. 20, pp. 2433–2441,
2000.

[41] J. Santos-Alvarez, R. Goberna, and V. Sánchez-Margalet,
“Human leptin stimulates proliferation and activation of human
circulating monocytes,” Cellular Immunology, vol. 194, no. 1, pp.
6–11, 1999.

[42] N. Kiguchi, T. Maeda, Y. Kobayashi, Y. Fukazawa, and S.
Kishioka, “Leptin enhances CC-chemokine ligand expression
in cultured murine macrophage,” Biochemical and Biophysical
Research Communications, vol. 384, no. 3, pp. 311–315, 2009.

[43] G. M. Lord, G. Matarese, J. K. Howard, R. J. Baker, S. R.
Bloom, and R. I. Lechler, “Leptin modulates the T-cell immune
response and reverses starvation-induced immunosuppres-
sion,” Nature, vol. 394, no. 6696, pp. 897–901, 1998.

[44] R. Faggioni, J. Jones-Carson, D. A. Reed et al., “Leptin-deficient
(ob/ob) mice are protected from t cell-mediated hepatotoxicity:
role of tumor necrosis factor 𝛼 and IL-18,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 97, no. 5, pp. 2367–2372, 2000.

[45] G. Matarese, A. di Giacomo, V. Sanna et al., “Requirement
for leptin in the induction and progression of autoimmune
encephalomyelitis,” Journal of Immunology, vol. 166, no. 10, pp.
5909–5916, 2001.

[46] S.-W. Lee, M.-C. Park, Y.-B. Park, and S.-K. Lee, “Measurement
of the serum leptin level could assist disease activitymonitoring
in rheumatoid arthritis,” Rheumatology International, vol. 27,
no. 6, pp. 537–540, 2007.

[47] T. Yoshino,N.Kusunoki,N. Tanaka et al., “Elevated serum levels
of resistin, leptin, and adiponectin are associatedwith c-reactive
protein and also other clinical conditions in rheumatoid arthri-
tis,” Internal Medicine, vol. 50, no. 4, pp. 269–275, 2011.

[48] S. Hizmetli, M. Kisa, N. Gokalp, and M. Z. Bakici, “Are plasma
and synovial fluid leptin levels correlatedwith disease activity in
rheumatoid arthritis?” Rheumatology International, vol. 27, no.
4, pp. 335–338, 2007.

[49] N. Busso, A. So, V. Chobaz-Péclat et al., “Leptin signaling
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[151] A. Schäffler,M.Neumeier,H.Herfarth, A. Fürst, J. Schölmerich,
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Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs).
Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of
anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant
to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities.
The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in
vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation,
and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM
proteins could be discovered in patients with autoimmune diseases.Many of such autoantibodiesmay provide significant biomarker
potential.

1. Introduction

Specificity and memory are the hallmarks of the adaptive
immune system. Immunological memory is well recognised
but still not fully understood. It was first observed in
antiquity, during the plague infection in Athens. It is also the
basis of vaccination, which was first attempted in India over
a thousand years ago when smallpox inoculation to healthy
people resulted in a milder epidemic, while protection lasted
many years, particularly in the absence of reexposure to the
antigen.Molecular immunology has nowunravelled the early
steps towards the establishment of immunological memory;
however, several areas remain unexplained particularly the
mechanism of plasma cell development and maintenance.
The recent recognition of the specificity of novel autoan-
tibodies in rheumatoid arthritis (RA) provides a unique

opportunity to understand human IgG and B-cell memory
development in vivo.

The early phases of B-cell development are well estab-
lished. Initially, naive B-cells are released in the circulation,
where they meet with their antigens, becoming activated
B-cells. At this stage several models have been proposed
and IgG can develop through different routes, in a T-cell
dependent or independentmanner. In a (classic) linearmodel
[1], maturation occurs in the presence of T-cells in a germinal
centre-like reaction (GCR); B-cells switch from secreting IgM
to secreting IgG and undergo affinity maturation. Some of
these B-cells then develop into memory B-cells and others
into long-lived plasma cells (LL-PC).These LL-PC thenmove
to a bone marrow niche where they can survive for years.
They are dependent on CXCL12 expression. In a variation of
this model, activated B-cells go through a short-live plasma
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cell (SL-PC) stage before fully maturing into LL-PC [2]. In
a third model both LL-PC and SL-PC secreting IgM and
IgG were shown to develop directly from activated B-cells,
independently of T-cell help. However this only occurs in
the presence of antigen and alternative signals provided by
innate immunity mechanisms such as direct TLR activation
of B-cells [3]. It appears that these three models may actually
coexist providing a first line of defense with rapid secretion
of antibodies. However, further T-cell mediated maturation
is necessary for a second line of defense involving long-
termmemory and LL-PC [4]. An inflamed environment such
as the synovial membrane in RA (where CXCL12 is highly
expressed in active disease [5]) is believed to provide an
alternative niche for the survival of LL-PC.

Autoantibodies have been associated with human
pathologies for a long time, particularly with autoimmune
diseases (AIDs). Organ specific AIDs involve single or
multiple autoantigens. In RA, autoantibodies have long
been associated with the disease. Rheumatoid factor (RF),
an autoantibody reacting against the Fc portion of IgG
antibodies, was identified in the late 1930s. It was the most
significant biomarker associated with RA until the discovery
of anticitrullinated protein antibodies (ACPA). More
recently, other posttranslational modifications (PTM) have
been associatedwith the generation of specific autoantibodies
that can be used as biomarkers [6–10]. While proteins are
encoded by different sequences of amino acids, there
are many ways to modify amino acids once introduced in
protein sequences. Glycosylation, citrullination,methylation,
acetylation, and ubiquitination are all types of physiological
modifications. Other modifications can occur due to
interaction with foreign substances (i.e., infections),
environmental damage (such as UV exposure or chemical
pollutants) leading to the formation of chemical adducts
on the protein. Modifications including carbamylation,
acetylation, ethylation, or methylation were sufficiently
immunogenic to produce specific antibodies to these
modified sequences of amino acids [11]. The analysis of
autoantigen specific B-cell differentiation and maintenance,
at the different stages of RA progression, provides a unique
opportunity to understand disease and study immunological
B-cell memory in vivo [12, 13].

Many AIDs are characterized by chronic inflammation,
which may play a major role when inflammation-associated
events such as chemical or enzyme-mediated modification
of protein provide a source of neoepitopes that can be
recognised by antibodies as non-self. In situations of stress
such as inflammation, all types of physiological responses
can be used in an abnormal manner. Citrullination is an
enzymatic PTM which has an important role in the normal
function of the immune system, epidermis differentiation
insulation of neurons and the plasticity of the central nervous
system [14]. Chlorination of protein occurs via the conversion
of hydrogen peroxide to reactive chlorine species, such as
HOCl, by granulocytes notably during inflammation. Other
forms of oxidation result from the formation of reactive
species of oxygen, nitrogen, and sulphur as a cellular response
to various stimulations by growth factors or cytokines [15].
Oxidation products of sugars and unsaturated lipids can also

react with proteins to cause chemical modifications. Nonen-
zymatic glycation is a naturally occurring phenomenon
leading to development of PTM of proteins, nucleic acid,
or lipids; it occurs in presence of high blood glucose but
is also associated with aging and other inflammatory or
degenerative diseases [16] such as RA [17], osteoarthritis
[18], and Alzheimer’s disease [19–21]. Carbamylation is a
nonenzymatic, irreversible PTM. Carbamylation of proteins,
lipids, peptides, and amino acids is widespread in health
in mammals and is a natural physiological phenomenon.
However excessive carbamylation will appear once proteins
are exposed to high concentrations of isocyanate derived
from the increased dissociation of urea and this alters the
function of proteins [22].

Important evidence that perturbations in protein struc-
tures introduced by PTM are important in RA was brought
by studies of collagen II (CII) for which PTM were shown
to dramatically alter immunogenicity [6, 23–25] rendering
some of them arthritogenic [26–30]. CII is the predominant
cartilage collagen and a known autoantigen [23, 31, 32]. The
human joint contains abundant CII and collagen-induced
arthritis is the common experimental animal model of RA
[33, 34].Thus, antibodies toCII should be of highest relevance
in RA [32]. Nevertheless, antinative CII antibodies occur only
in 3–27% of patients with RA [29, 35–37] and, as such, it has
been difficult to substantiate the role of autoimmunity to CII
in the pathogenesis of RA. However today autoimmunity to
PTM CII has been clearly demonstrated (cit-CII [24], ROS-
CII [6, 7, 10, 38], although specific anticarbamylated CII
remains to be demonstrated in human sera). These findings
support the possibility that chemical modification of self-
antigens, in RA in particular and in inflammation in general,
may be the cause of formation of neoepitopes leading to
autoimmunity [16, 39].

2. Anticitrullinated Protein Antibodies
(ACPA) in RA

ACPAwere originally described using different names such as
anti-keratin (AKA), antiperinuclear factor (APF) antibodies,
antifilaggrin antibodies (AFA), or anti-Sa [40]. ACPA have
been associated with human pathology [41] as well as pre-
clinical disease since the early 90s [42] later confirmed [43,
44]. The importance of these antibodies was then recognised
several years later when their presence was identified as a
specific event associated with RA [45–50].Many reports were
published; however, their relevancewas reduced to a few pub-
licationswhere appropriate controls and procedures had been
followed, particularly with respect to the ELISA assays used
to detect ACPA [51, 52]. In the early years, the use of ELISA
for individual reactivities (citrullinated filagrin or keratin) or
“first generation” commercially available ELISA kits (CCP1,
Immunoscan RA, Euro-diagnostica [53]) showed equal reac-
tivity between RA (22%), healthy control sera (27%), and all
kinds of arthritis and inflammatory diseases [49] although
clear differences in titres were observed (sensitivities 45–
64% but specificity over 90%). Later, “second-generation”
ELISAs, showed higher specificity (∼98%) and sensitivity
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(40–76% depending on disease stage) [54]; however, more
recent work also showed potential association of ACPA with
psoriatic arthritis [55], periodontitis [56], and osteoarthritis
[38]. The main difference between these tests resided in the
antigens used to detect ACPA.The diagnostic value of ACPA
were therefore established by demonstrating the importance
of using appropriate citrullinated peptide [40, 51, 57]. The
development of a highly sensitive noncommercial ELISA,
based on protein targets identified as reactive with ACPA in
synovial tissue (i.e., alpha and beta fibrinogen) was therefore
explored [58]. Importantly, positivity ofACPA for one or both
to these two citrullinated peptides covered all reactivity in RA
sera [59].

2.1. Citrullination. ACPA represent a family of autoanti-
bodies. However, only IgG-isotype of ACPA is specifically
associated with RA. The antigen which triggers the immune
reaction recognized by ACPA lies in the modification of pro-
tein (i.e., citrullination). In summary, after years of research,
it was shown that this modification converts an arginine
into a citrulline amino acid residue (citrullination) and is
performed by an enzyme, peptidylarginine deiminase (PAD),
thereby producing the immunogenic epitopes (Figure 1(a))
[60]. A consensus sequence, present in a wide range of
proteins, is required for the modification of the arginine
residue by the PAD. Metabolic stress related citrullination
has also been proposed to play a role in multiple sclerosis
[61, 62], Alzheimer’s disease [20, 21], and cancer [63, 64].The
modifications introduced by PAD enzymes have important
physiological roles, especially during differentiation, develop-
ment, and apoptosis. PAD enzymes are expressed in a wide
range of tissues (epidermis, sweat glands, hair follicles, ovary,
and testis). In the synovium, only the enzymes PAD 2 and 4
are expressed; however, their expression is not specific for RA
as they are also found in other forms of inflammatory and
noninflammatory arthritis [65]. How both intracellular and
extracellular proteins are citrullinated remains at the centre
of many debates. PAD enzymes are necessary to catalyse
protein deimination. PADs are not actively secreted in the
intercellular space, although quite a few of their targets
are extracellular proteins. Two immune-mediated membra-
nolytic pathways (mediated by perforin and the membrane
attack complex MAC), which are active in the RA joint
and of importance in RA pathogenesis, have been proposed
as possible ways by which PADs may be released in the
joint microenvironment [66]. Several human citrullinated
proteins have now been identified as target antigens of ACPA
in RA (collagen, fibrinogen, vimentin, enolase, etc.) [40,
58, 59, 67, 68]. ACPA recognise citrullinated cross-reactive
proteins but it is the presence of ACPA that is specific for RA
rather than their protein antigens.The local context in which
the proteins targeted for citrullination are expressed does not
seem to have much importance; for example, filaggrin, which
is an epithelial target of ACPA in RA, is not expressed in
synovial tissue [58].

2.2. Clinical Relevance of ACPA. In RA patients, the presence
of ACPA was associated with progressive and destructive

disease outcomes [69–71], X-rays demonstrating the presence
of erosions earlier and at a greater frequency in ACPA+
patients [72]. ACPA positivity was also associated with the
presence of RF and shared epitope (SE) [50]. Combination
analysis showed independent additive effects of these three
factors for high radiological risk [35, 50, 69, 73]. Furthermore,
the extraarticular manifestations that often determine the
severity and comorbidity of RA were also closely associated
with ACPA positivity [74]. Therefore, although disease onset
can follow a similar course, the erosive and destructive nature
of ACPA+ RA has resulted in clinicians and scientists con-
sidering the diseases as two distinct entities [75]. The main
clinical use of these antibodies is however their diagnostic
value, now recognised for over 25 years [45–50, 76] but only
more recently used as a diagnostic biomarker. Sensitivity
(∼40%) and specificity (over 95%) of ACPA as diagnostic
biomarker are now recognised in early inflammatory arthritis
patients with a suspicion of RA [54].

A study using matched serial serum samples (blood
donations) fromearly RApatientswith short disease duration
highlighted the importance of ACPA in predicting disease
severity [50, 77]. The results also showed that radiological
damage was more apparent in the groups which had been
ACPA+ even before diagnosis was achieved. Radiological
progression was also more substantial in this group after 2
years of follow-up. Importantly, these associations were not
observed with RF. In contrast, ACPA titres were reduced over
the course of disease when patients had a good response to
therapy and titres of ACPA at baseline were higher in patients
with poorer response. Taking this a step further, van Gaalen
and colleagues prospectively studied a cohort of patients at
an earlier stage of the disease in order to determine which
markers may predict disease progression and persistence
[78]. Individuals with an inflammatory arthritis but who did
not fulfill the American College of Rheumatology (ACR)
classification criteria were recruited. Multivariate analysis
confirmed ACPA as an important independent predictor
of RA with 93% developing RA within 3 years if ACPA+
at baseline. Given the clinical relevance of ACPA, it is
not surprising that the new ACR/European League Against
Rheumatism (EULAR) 2010 RA classification criteria have
includedACPA titre in order to improve the diagnosis of early
RA [79].

Studies which have evaluated ACPA titres while treating
RA are emerging with variable observations (recently
reviewed in [80]). Conventional antirheumatic drugs
(DMARDs, including methotrexate, hydroxychloroquine,
minocycline, or sulfasalazine) induce a marginal reduction
in ACPA titres (>25%) over the course of treatment in about
50% of patients and a more pronounced decrease (>50%) in
less than 30% of patients [81]. Response to TNF blockade was
associated with lower baseline titres for ACPA, other clinical
parameters being similar [82]. Response was also associated
with a sustained reduction in ACPA titres, other studies
showing similar ∼30% reduction of serum ACPA titres after
anti-TNF treatment [81–92]. However, several other reports
showed little or no effect on ACPA titre [93–97]. Therapeutic
B-cell depletion (using Rituximab an anti CD20 antibody
depleting naive, memory, and preplasma cells but not plasma
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Figure 1: (a) Enzymatic generation of citrulline from arginine catalyzed by peptidylarginine deiminase (PAD); (b) non-enzymatic formation
of homocitrulline by carbamylation of lysine by cyanate; (c) products of reactions between tyrosine with reactive oxygen species (forming
dityrosine), reactive nitrogen species (forming 3-nitrotyrosine) and reactive chlorine species forming 3-chlorotyrosine; (d) examples of AGEs
formed including carboxymethyl arginine and pentosidine (formed between an arginine and lysine residue).

cells) has marginal effect on ACPA titres [98–101] or not at
all [102]. Significant reductions of ACPA titres were only
observed in patients who responded to chemotherapy and
higher titers of ACPA were associated with lack of clinical
improvement [103].

3. Anticarbamylated Protein Antibodies
(Anti-CarPA) in RA

The first demonstration of the deleterious effects of protein
carbamylation in humans was made in the 1970s [104]. The
quantification of carbamylation-derived products (CDPs)
remains rarely used in clinical practice [105] and evaluation
of antibodies against carbamylated proteins is just emerging.

PTM through carbamylation has been implicated in vascular
dysfunction in renal disease, atherosclerotic plaque forma-
tion [106], and antibiotic resistance [107].

3.1. Chemical Reaction. Unlike citrullination which is cat-
alyzed enzymatically, carbamylation (often referred to as
homocitrullination) is a chemical modification. It can occur
ubiquitously in the presence of the reactive metabolite,
cyanate. One of the cyanate sources is the spontaneous
degradation of urea, which is constantly and ubiquitously
generated in the body and always in equilibriumwith cyanate.
Therefore, wherever there is urea, there is cyanate and the
potential for homocitrullination. However, under normal
physiological conditions, concentrations of both are too low
for any significant proteins modification.
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Theoretically, any protein can be carbamylated in vivo.
However, the susceptibility of each protein to such modifi-
cation depends on various parameters, such as the number
and accessibility of lysine and arginine amino groups, and
the protein lifespan. As carbamylation is nearly irreversible,
it is more likely to affect long-lived proteins as they may
acquire homocitrulline residues over time [9]. Various CDPs
can be formed, among them 𝛼-carbamyl-amino acids (or 𝛼-
carbamyl-proteins) when 𝛼-amino groups are involved, and
𝜀-carbamyl-lysine, also called homocitrulline, when 𝜀-amino
groups are involved (Figure 1(b)) [104]. The carbamylation
of amine groups leads to a change in the charge of the
molecule. Carbamylated derivatives may therefore acquire
biological and antigenic properties that are different from
those of the noncarbamylated molecules. On the other hand,
carbamylation-induced conformational changes in proteins
are also associated with partial or complete loss of protein
functions [26], inhibition of enzymatic activities particularly
relevant in RA such as matrix metalloproteinase-2 [108] or
tissue inhibitor of metalloproteinase-2 [109], modification of
hormonal activities (i.e., insulin [110], glucagon [111], adreno-
corticotropic hormone [112], and erythropoietin [113]), and
by affecting proteins such as haemoglobin [114], albumin
[115], and collagen [116, 117].

3.2. Clinical Relevance. Carbamylated proteins may have a
role in inflammation and as such in RA. They can modulate
the functions of inflammatory cells, as evidenced by the
inhibitory effect of carbamylated-albumin on the polymor-
phonuclear leukocyte respiratory burst [115, 118]. Carbamyla-
tion of low density lipoproteins (LDLs) by myeloperoxidase
(MPO) seems to play a pivotal role inatherosclerosis [119–
122] as well as in inflammation [106, 122–124]. Carbamy-
lated collagen stimulates the production of active matrix
metalloproteinase-9 (MMP-9) by monocytes, thus poten-
tially enhancing extracellular matrix turnover [104, 125].
Therefore it is intriguing that homocitrulline also represents
an immune target in RA.

In 2010, the presence of anti-CarPA (also called anti-
homocitrullinated protein/peptide antibodies; AHPA) was
demonstrated [26] in human sera and in an animal model
of autoimmune arthritis expanding the set of known autoan-
tibodies related to RA. Reactivity to carbamylated animal
protein has been reported but the exact nature of the autoanti-
gens recognised by anti-CarPA remains elusive. Fibrinogen
is extensively accessible to homocitrullination and there are
substantially more potential amino acid residues available for
this type of modification in this molecule compared to citrul-
lination [118]. The generation of antibodies to carbamylated
regions of fibrinogen in RA patients was confirmed [118].
The RA specificity of anti-CarPA was suggested (𝑛 = 84)
as these antibodies were not found in patients with other
inflammatory rheumatic conditions SLE (𝑛 = 37, 5% weakly
positive results) and psoriatic arthritis (𝑛 = 37, 3% weak
reactivity) or normal healthy individuals (𝑛 = 27). The
fact that some RA patients have reactivity to carbamylated
but not citrullinated fibrinogen supports the concept that
homocitrullination can generate unique structural antigens
on proteins, that is, although cross-reactivity between ACPA

and anti-CarPA was recently reported [118]. In another study
carbamylated vimentin was used to detect anti-CarPA in
RA patients [126]. Carbamylated vimentin was significantly
more reactive than carbamylated enolase which suggests
that the amino acids surrounding the modification (or even
the whole molecule) are contributing to its immunogenicity
[126]. The known association between ACPA and MHC
class II SE expression [127, 128] was very recently supported
for anti-CarPA with data showing that homocitrulline and
homocitrullinated peptide could potentially bind to the SE
[118].

Anti-CarPA IgG were found in the serum of 45% of RA
patients and IgA anti-CarPA in 43% [9]. The presence of
anti-CarPA partially overlapped with the presence of ACPA,
but most interestingly was also found in 16% of RA ACPA−
patients (30% were positive for anti-CarP IgA) [9]. The pres-
ence of anti-CarPA was detected in over 30% of such patients
when ACPA− therefore offering an alternative biomarker
to help the diagnostic of RA [9]. Furthermore, anti-CarPA
positivity was related to clinical outcome [9]. Detection of
anti-CarPA at disease presentation was predictive of a more
destructive disease course (evaluated using Sharp-van der
Heijde scores). Importantly, this was verified in both ACPA+
and ACPA− RA, notably offering a novel biomarker for
the diagnostic of RA and, furthermore, a clinically useful
prognostic biomarker for ACPA− disease.

In individuals with seropositive arthralgia (340 patients
positive for rheumatoid factor (IgM-RF) and/or ACPA+),
the prevalence of Anti-CarPA was 39% [129]. The presence
of anti-CarPA did not correlate with RF. Anti-CarPA were
associated with progression towards RA. Furthermore, estab-
lished association indicated that anti-CarPA positive arthral-
gia patients were more likely to develop RA and notably
within a shorter time frame compared to individual with only
RF and/or ACPA positivity. Such increased risk of developing
RA was maintained in double positive ACPA/anti-CarPA
arthralgia patients even after correction for ACPA. Higher
anti-CCP antibody levels were also observed in anti-CarPA
positive patients. These observations suggest that alternative
seropositivity in RA patients may each represent a different
disease entity with its own genetic/environmental contribu-
tions [129, 130].

Despite these promising initial findings, further research
is needed to clarify anti-CarPA responses and how they could
contribute to the clinical management of RA. Additional
studies using patients with a suspicion of RA as controls are
needed to determine the specificity of anti-CarPA for RA
diagnostics. Whether their presence predicts the develop-
ment of (ACPA−) RA in patients suffering from unclassified
joint complaints such as arthralgia or early signs of inflam-
matory arthritis remains to be established [9, 130]. Links
with environmental factors (smoking, alcohol intake, body
mass, hormonal status, periodontal disease, etc.) remains to
be elucidated. Despite the association with SE, other genetic
factors may be relevant. Early aggressive treatment in RA has
been shown to prevent future damage [131, 132]. The clinical
utility of a prognostic biomarker such as anti-CarPA in the
management of ACPA− patients with respect to their risk of
developing amore severe disease remains of great interest [9].
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4. Antioxidized Protein Antibodies in RA

Oxidative stress is a term that is used to describe situations
in which an organism’s production of oxidants exceeds the
capacity to neutralize them. The consequences are damages
to cell membranes, lipids, nucleic acids, proteins, and con-
stituents of the extracellularmatrix such as proteoglycans and
collagens. Several lines of evidence suggest a role for oxidative
stress in the pathogenesis of RA [133–139]. Epidemiologic
studies have shown an inverse association between dietary
intake of antioxidants and RA incidence [140–143], and,
reciprocally, an inverse association between antioxidant levels
and inflammation [39, 144, 145]. Reactive oxygen species
(ROS) are chemically reactive molecules containing oxygen
(such as superoxide and peroxides), and a natural byproduct
of the normal metabolism of oxygen. ROS are able to
oxidize various amino acids, according to their oxidation
potential. They have important physiological roles in cell
signaling, apoptosis, ion transport systems, wound healing
and bloodhomeostasis, and also the induction of host defense
(respiratory burst), genes, and inflammatory responses.They
can also be detrimental in situations of stress when their
levels dramatically increase to the point of harming cells.This
notably occurs when antioxidants normally protecting cells
(superoxide dismutases, catalases, peroxidases, peroxiredox-
ins, and others) are unable to manage the amount of ROS
produced [146].

Oxidative modifications by ROS are attractive candidates
as instigators of autoimmunity and this might involve a
process of “oxidative PTM intolerance” [10], resulting in a
primary B-cell response against the posttranslationally mod-
ified self-antigen [10]. Oxidative stress-induced antibodies to
carbonyl-modified protein have also been found to correlate
with severity of chronic obstructive pulmonary disease [147]
and SLE [148].

4.1. Chemical Reaction. Oxidative stress occurs during in-
flammation and causes proteins to become damaged by reac-
tive species such as reactive oxygen, nitrogen, and chlorine
species. NADPH oxidase is a major source of ROS in arthritic
joints. This enzyme reduces O

2
generating large amounts

of superoxide radical anion ∙O
2

−, which is considered the
primary ROS and may be further reduced to H

2
O
2
, which

in turn can be converted into highly reactive ∙OH or react
with Cl− to generate HOCl (in a reaction catalyzed by the
enzyme myeloperoxidase). iNOS also generates ∙NO which
is converted to ONOO− by reacting with O∙−

2
[149, 150]. In

addition, under conditions of oxidative stress, species such
as peroxynitrite (ONOO−) may be generated resulting in
nitration of tyrosine residues to form 3-nitrotyrosine (3-NT)
(Figure 1(c)) [138, 151, 152]. Indeed, antibodies recognizing 3-
NT have been identified in the synovium of RA patients and
correlate with disease activity [152].

In addition, these reactive species generate “secondary”
reactive species such as lipid peroxidation products.
Nonenzymatic oxidation by sugars can react directly or
generate reactive products such as glyoxal andmethylglyoxal;
these reactive carbonyls are capable of undergoing Maillard
reactions, first forming a Schiff base with the amine group

of amino acids, such as lysine or arginine. This intermediate
can then undergo an Amadori rearrangement to form stable
advance glycation end product (AGE) such as carboxymethyl
arginine or initiate peptide cross-linking to form pentosidine
(Figure 1(d)) [153]. The presence of these PTM on protein
increases as well as modifies their natural antigenicity and
antibodies against the native and modified forms of these
proteins are usually noncross-reacting and were detected in
RA despite the absence of hyperglycemia [17, 154]. AGEs can
have damaging effects on collagens by forming irreversible
cross-links between the fibers in the triple helix [155–158].

Another potential reaction is chlorination of aromatic
amino acids, in particular tyrosine residues, including
3-chlorotyrosine, within the polypeptide backbone
(Figure 1(c)) [159]. Under conditions of oxidative stress,
species such as peroxynitrite (ONOO−) may be generated
resulting in nitration of tyrosine residues to form 3-
nitrotyrosine (3-NT) (Figure 1(c)) [138, 151, 152]. Indeed,
antibodies recognizing 3-NT have been identified in the
synovium of RA patients and correlate with disease activity
[152]. Exposure of collagens to peroxynitrite results in
nitration of tyrosine residues and formation of posttrans-
lationally modified nitrotyrosine. These compounds
are negatively charged and further disrupt the collagen
structure. ROS levels are increased in autoimmune diseases
such as RA and SLE. The overproduction of ROS may
exceed the capacity for radical scavenging by antioxidant
enzymes or small inhibitors. Exposure of proteins, nucleic
acids, or cell membrane and free lipids to ROS modifies
amino acids creating PTM proteins and lipids by initiation
of peroxidation. There is no recognized specificity to the
protein that can be modified and oxidation depends on
steric and stochastic factors; however, enrichment for amino
acid motif YXXK in the vicinity of chlorination has been
observed [160]. Oxidized proteins identified in RA include
collagens I, II, IX, and XI, proteoglycans, and hyaluronan.
Increased oxidation of lipids is also a known feature of RA,
with the appearance of foam cell-like structures within the
rheumatoid synovium [39, 136, 161].

In the context of RA, immunoglobulins themselves can
undergo glycation to generate AGE-IgG. Autoantibodies
to such modified-IgG were also shown to be specifically
associated with RA, whereas the actual formation of AGE-
IgG was directly related to the intensity of the inflammatory
response but was not specific to RA [162–164]. Similarly,
modification of IgG by HOCl or peroxynitrite can induce a
T-cell response against IgG HOCl and peroxynitrite in RA
[165].

4.2. Clinical Relevance. The key ROS present in inflamed
joints are superoxide radical (O

2

∙−), hydrogen peroxide
(H
2
O
2
), hydroxyl radical (∙OH), hypochlorous acid (HOCl),

nitric oxide (∙NO), and peroxynitrite (ONOO−), which are
involved in acute and chronic inflammation [6, 15]. Such
ROS have been identified in synovial fluid of 90% of patients
with RA, with a shift in the oxidant/antioxidant balance in
favour of lipid peroxidation, which lead to the tissue damage
observed in joints [166, 167].
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Exposing CII to conditions which simulated those found
in an inflamed joint, resulted in chemical modifications of
native CII [6]. CII treated with hydroxyl radical (∙OH-CII),
hypochlorous acid (HOCl-CII), and peroxynitrite (ONOO−-
CII) demonstrated positivity for binding to autoantibody
specifically recognizing these various CII-modified forms in
sera from 93 of early RA patients in addition to glycation
of CII (Gly-CII) carried out with ribose. No cross-reactivity
with native CII was observed but reactivity to native CII was
seen in <20% of sera [6]. Moreover, no anti-ROS-CII reactiv-
ity was detected in other inflammatory arthritis conditions
(including psoriatic arthritis, SLE, ankylosing spondylitis,
palindromic arthritis, scleroderma, Behçet’s disease, primary
Sjögren’s syndrome, fibromyalgia, tendonitis and reactive
arthritis [6].

In 2005 we showed that CII post-translationally modified
by ROS (ROS-CII), present in the inflamed joints, is an auto-
antigen in RA [6]. In addition, cartilage damage as a result
of collagen oxidation by glycation and formation of AGE-CII
are evident despite the absence of hyperglycemia [168].

We have recently measured auto-reactivity to ROS-CII in
synovial fluid (SF) and serum samples taken from various
phases of RA [38] and demonstrated that anti ROS-CII
reactivity is not related to markers of inflammation such as
CRP and ACPA and has potential to serve as biomarker for
several purposes. We observed high anti-ROS-CII reactivity
in DMARD näıve early RA regardless of whether patients
were ACPA+ or ACPA− and with no correlation with DAS28.
The sensitivity and specificity of the binding of autoantibodies
to ROS-CII in early RA compared with healthy controls
(HC) was 92% and 98%, respectively. ROS-CII reactivity was
lower in RA patients having received their first DMARDs
treatment and achieving a good response. We also showed
that anti-ROS-CII reactivity considerably vary over time in
a mixed cohort of RA patients with established disease on
several type of treatment [38]. This was in contrast to levels
of ACPAwhich did not. We could not directly associate these
changes with DAS28, however, patients in this cohort all had
(very) active disease and it was impossible to fully ascertain
longitudinal variation between active/remitting diseases.

Further pilot data showed that in a small cohort of
ACPA+ arthralgia patients with no synovitis, only those
within a few weeks (∼12) of developing clinical evidence
of synovitis were positive for anti-ROS-CII reactivity while
those who developed symptoms after a much longer delay
were negative. Interestingly, in a study conducted in type 1
diabetes, a condition associated with RA [169], anti-ROS-CII
reactivity was restricted to SE-containing DRB1∗04 alleles
(OR 3.62; 95%CI 1.12–11.74), known to confer the greatest risk
for developing RA. Further work needs to establish whether
patients with inflammatory synovitis but not yet RA (i.e.,
undifferentiated arthritis) would be positive however, 93%
of early RA were, which altogether, strongly suggest a direct
association with the development of synovitis, hence offer a
measurable biomarker of disease development alongside the
RA continuum [38].

Anti-TNF treatment showed reduction in oxidative stress,
and these correlated with an improvement in disease activity
[170–173]. However studies evaluating changes in anti-ROS

autoantibody levels after RA anti-TNF treatment are still
missing. Our own data however suggest variation [38] which
will need to be confirmed before any biomarker value can be
confirmed.

In addition to CII, studies of RA synovial fluid and tissue
have demonstrated oxidative damage to hyaluronic acid
[174], lipid peroxidation products [175, 176], oxidized low-
density lipoproteins (ox-LDL) [136], and increased carbonyl
groups reflective of oxidation of other proteins [136, 162, 177–
179]. Evidence of oxidative damage to cartilage, extracellular
collagen, and intracellular DNA has also been demonstrated.
Protein chlorination occurs in RA at the disease site (i.e.,
synovial fluid and tissue) [159, 180] and it was proposed
that this could be the link between arthritic inflamma-
tory reactions and the initiation of autoimmune antibody
responses. The risk associated with ox-LDL in RA is mostly
related to cardiovascular risk hence not specific to RA. Ox-
LDL are strong autoantigens, essential to the development
and progression of the plaque in atherosclerosis as LDL
molecules only become immunogenic due to the oxidative
modification during early atherogenesis [181, 182]. Anti-
oxLDL antibodies are extensively prevalent in patients with
autoimmune diseases, including RA [183], SLE [184, 185],
and antiphospholipid syndrome (APS) [186, 187], diabetes
mellitus [188, 189], uremia [190]. Anti-ox-LDL antibodies
bind ox-LDL and generate immune complexes. Circulating
immune complexes are not in themselves harmful. They
cause damage only if they are deposited in tissues (notably
in the endothelium), resulting in inflammation [191, 192]. T-
cells, primarily CD4+ cells, have been found associated with
these immune complex depositions [193–196]. Cardiolipin is
also the target of oxidation (ox-CL). Anti-ox-CL antibodies
are frequent in APS patients [197, 198] due to formation of
neoepitope on cardiolipid, possibly with cross-reactivity with
anti-oxLDL antibodies notably in patients with SLE [197, 199,
200].

Finally, autoantibodies targeting AGE-modified IgG are
also present in serum of RA patients [154, 201]. Autoantibod-
ies against AGE-IgGmight be helpful in monitoring progress
in the RA disease continuum and in combination with other
clinical features of the RA might be a useful diagnostic tool
[201].

5. Animal Model Testing of PTM-Targets and
Antibody to PTM-Proteins

An important discovery in the association between anti
PTM-protein and RA was the demonstration that these
antibodies and their targets are both arthritogenic in animal
models. The citrullinated forms of collagen II appeared
more arthritogenic in rats than native collagen II [202, 203].
Within the human synovium, the immune reaction between
citrullinated fibrin and ACPA results in the activation of
effector mechanisms. Immune-complex containing ACPA
and CII citrullinated peptide can activate bloodmacrophages
via FcR resulting in the production of TNF-alpha in mice
[204, 205]. A similar response by synovial macrophage would
promote local inflammation which in turn will favour plasma
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extravasation and fibrinogen polymerisation. These deposits
then could get citrullinated by locally expressed PAD and
therefore become new target for ACPA closing the circle
for self-perpetuation. PAD 2 and 4 are expressed in the RA
synovium (and in other inflamed tissues) but importantly
in correlation with the intensity of inflammation [65]. The
arthritogenicity of chlorinated-CII versus native CII (Cl-
CII) was also demonstrated in a rat strain [159, 206, 207].
This might be caused by an increased immunogenicity of
Cl-CII, resulting in a stronger antibody-inducing capacity.
Hydroxyl radical modification of collagen type II (OH-CII)
also increases its arthritogenicity and immunogenicity and
resulted in an early and more severe arthritis compared to
native CII [208].

Anti-CarPA are now extensively studied to clarify
whether they are directly involved in the pathogenesis of
RA. carLDL induce an IgG response in LDL-R−/− mice and
autoantibodies also bind to humans plasma proteins [209].
The immunogenicity and an arthritogenic role of the anti-
homocitrulline immune responses were confirmed using
animal model of arthritis. Immunization of several mouse
lines (NMRI, BALB/c, and C57bl/6) with carbamylated-
peptides leaded to a Tcell dependent activation of B-cell and
the production of autoantibody [26]. Direct intra-articular
injection of the carbamylated-peptides in these mice induced
a severe erosive arthritis [26]. This study was also the first to
report the presence of anti-CarPA in RA patients, both in the
joints and circulation, and importantly in relation to erosions.
Rabbits immunized with carbamylated-proteins resulted in
high-affinity antibodies to homocitrulline-containing colla-
gen telopeptides and to less strong anticitrulline-containing
telopeptides and mutated citrullinated vimentin [27].

The exact pathogenic potential of anti-CarPA therefore
appears to be similar to that of ACPA [210].The possibility of
cross-reactivity between these two antibody types demands
further investigation into the identification of true targets in
RA. If antibody responses to citrulline and homocitrulline
are indeed arthritogenic, important questions remain: which
antibodies are pathogenic? Is it the specificity of the target
antigen, the quantity, and diversity of the response, and/or
merely the binding affinity to available targets in the arthritic
joint, which are important in determining arthritogenicity
and clinical disease progression [211]?

6. Autoantibodies and B-Cell
Development in RA

To date the overall development of the anti-PTM-protein
antibody producing B-cell clones remains poorly understood.
ACPA of the IgG are the immunoglobulin isotype specifically
associated with RA [57]. This suggests that an immune
reaction leading to the development of IgG ACPA is taking
place at some point before the onset of RA. ACPA of the
IgG subclasses 1 to 4, are detected; however a major bias is
observed towards an IgG1 (86% alone) and IgG4 but with
a very limited involvement of IgG2 and 3 [57]. Such bias
correlates closely with an imbalance toward Th1 polarisation
which is well described in RA.

The presence of B-cell reactivity to Cl-CII in RA patients
was established [6, 38]. Spontaneous production of ACPA
could only be obtained fromB-cells isolated from the synovial
fluid and bone marrow of IgG ACPA+ RA patients. The
presence of IgG ACPA up to 15 years before symptoms has
also been reported [44, 212]. A cross-sectional study also
reported that titres of IgG ACPA appeared higher shortly
before the onset of RA suggesting reactivation of the produc-
ing B-cells [44]. Finally, the strongest argument in favour of
this immune reaction is the T-cell response to citrullinated
peptide observed in RA patients but not in healthy controls
[213, 214].

The hypothesis that each stage of the disease represents
an evolution in ACPA specific B-cell maturation is therefore
attractive. At this stage, however, it has not yet been either
demonstrated or nullified. ACPA have been shown to be
present at detectable levels years before the firstmanifestation
of RA with high risk for these individuals to develop RA
within 5 years [22, 124]. In the preclinical phase (ACPA
positivity but no disease symptoms), ACPA-IgG circulate
(sometimes for many years) suggesting that, at least, isotype-
switched ACPA-specific B-cells are present. During this
disease initiation phase, cross-sectional analysis also showed
that ACPA titres are higher just before onset of symptoms
[215–217].

In vivo, differences in ACPA levels [73], fine specificity
or epitope spreading [218, 219], avidity [220–222], isotype
usage [223], and glycosylation [224] may be associated with
differences in the potential to activate effector mechanisms,
thereby influencing their biological potency [220]. Epitope
spreading is often a hallmark of progressive B-cell responses
and was described for ACPA and was associated with an
increase and/or shift in antigen recognition during the course
of an autoimmune response [218, 225, 226]. Fine mapping
analysis of preclinical sera compared to early and established
RA showed subtle difference in either the identity or the
numbers of epitope detected between the different phases of
the disease [43, 215, 216, 227, 228]. Our own unpublished
data using the same platform showed a particular epitope
detected exclusively in synovial fluid which may represent a
unique specificity with local retention of the ACPA (as not
detected in sera) suggesting local B-cell reactivity. Despite
the association between the presence of anti-CarPA and
the broadening of ACPA’s fine specificities, anti-CarPA are
generated independently of ACPA and, to date, are largely
noncross-reactive although the panel of currently available
carbamylated antigens remains limited. The effect of anti-
CarPA in arthralgia patients is notably independent of the
effect of ACPA (after correction) [129]. It will be of great
interest to expand the investigation for anti-CarPA and anti-
ROS specificities, particularly among ACPA− patients and
determine whether these antibodies could have pathological
effects in RA patients [229].

A few studies already have shown that circulating ACPA-
IgG differ in avidity but still relatively little is known about
avidity maturation of ACPA before and during the RA con-
tinuum [220]. Lower ACPA avidity was reported in ACPA+
asymptomatic individuals compared to avidity in ACPA+
patients with joint symptoms (arthralgia), which was similar
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to avidity observed in established RA patients [221, 222].
Following immunoablative therapy, ACPA-IgG of low avidity
developed again which suggested a newly generated autoim-
mune response [103]. However, the development of high
avidity ACPA-IgG remains speculative and their presence
may be only characteristic for specific RA patients, refractory,
or less responsive to immunosuppressive treatment [103]. As
mentioned previously, all immunoglobulin isotypes (IgM,
IgA, and IgE ACPA) contribute to overall ACPA activity in
RA serum [223, 230, 231]. Although autoantibodies of IgG
isotype are generally the most relevant, other studies have
shown that IgA were also specific for RA [231, 232]. IgG
are associated with radiographic progression in RA [73, 77],
but patients positive for IgA-ACPA with recent onset RA
were reported to suffer a more severe disease course over
the first three years [233] and the higher the number of
different isotypes, the greater long-term radiographic joint
damage at 5-year follow-up [234]. This data suggests that the
development of the anti-CCP isotype repertoire occurs early
in the course of arthritis [217, 235].

Glycosylation of the Fc-part of antibodies affects their
function with either a pro- or an anti-inflammatory outcome
functionality [236]. The glycosylation profile of ACPA in RA
is characterised by a low content of galactose (hypoglyco-
sylation) and sialic acid residues [224]. Hypoglycosylation
of ACPA was more pronounced than that of total IgG1,
resulting in a proinflammatory Fc-glycosylation pattern of
ACPA that could be one mechanism driving inflammation in
RA [224, 237]. Fc-glycosylation of ACPA showed significant
differences between SF and serum and, in contrast to ACPA
in serum, ACPA isolated from SF were found to be highly
agalactosylated [224]. IgG glycosylation showed association
with RA activity [238]; however, this pattern was not useful
to predict clinical response to MTX and anti-TNF treatment
in RA [239]. Finally, the specific ACPA-Fc hypoglycosylation
was detected already 6 months prior to RA onset [237].

TNF-alpha is an important factor in GCR. If disease
initiation was to coincide with a time when B-cells are
undergoing early TNF/GCR dependent maturation phases,
TNF-blockade in early disease should result in definite ACPA
titre reduction. Studies of the effect of TNF blockade in early
disease are still lacking and are in progress. In established
disease TNF-blockade is clinically efficient but may not be
able to interfere with the course of B-cell differentiation
anymore; hence studies analysis ACPA titres over the course
of anti-TNF therapy in established disease showed variable
results. In long lasting RA, B-cell ablation does not result
in major ACPA titres reduction in contrast to total IgM
titres (but not IgA and IgG) [98–102]. Plasma cells not being
directly depleted by the therapy due to the fact that they
do not express CD20, suggesting that, in established RA,
ACPA-LL-PC are present. The small reduction in ACPA
titres reported after B-cell depleting therapy (< than 20–30%)
nevertheless suggests that a small pool of ACPA producing
cells (memory and SL-PC) are affected by the therapy [240]
notably as SL-PC were evidenced in the synovium of RA
patients and were shown to secrete autoantibodies including
ACPA [241, 242].

The direct analysis of ACPA producing B-cells has proven
difficult. The classic molecular tools used to label antigen-
specific B-cells have not been very successful to date in iso-
lating ACPA-B-cells (MHC-tetramers, biotinylated-peptide
specific for ACPA BCR). ACPA-specific T-cell clones were
detected in established disease [213]. However, it remains to
be determined whether they play a role in anticitrullination
response in RA and most importantly when. The further
elucidation of the B-cell maturation path will require serial
samples from preclinical stages, then early and fully estab-
lished disease and the examination of somatic hypermutation
and affinity maturation.

Data generated to date therefore establish the presence
of an immune reaction resulting in the secretion of ACPA.
Yet, the primary stimulus leading to such production remains
unknown. An environmental association between the pres-
ence of ACPA and smoking has been established [219, 243],
and smoking is the most recognised environmental factor
reproducibly associated with RA. Recently, silica exposure
has also been linked to RA [244–246] and other immuno-
logically mediated diseases [247]. A study looking at the
link between genetics and environmental factors has shown
that the presence of ACPA was associated with the shared
epitope HLA-DRB1 in a dose dependent manner but that
smoking was only important in patients positive for ACPA
secretion [75, 248, 249]. This observation may suggest that
physiological processes associated with smoking have a role
in the initial generation of ACPA.Amodel has been proposed
in which smoking (and other agents) triggers the production
of IgG ACPA [250]. A second event leads to the citrullination
of synovial proteins which would direct ACPA immunity
towards the joints [218]. The disease would then be initiated,
and, if uncontrolled, become chronic. The role of ACPA in
the self-maintenance of RA, once it is established, is a more
easily understandablemodel; however, the exact nature of the
citrullinated protein target of ACPA remains elusive.

Therapeutic B-cell depletion results in disease improve-
ment (by 6 to 10 weeks) but not in ACPA serum titres
reduction. Synovial depletion of B-cells however is delayed
(26 to 30 weeks) probably accounting for the time necessary
to eliminate short-live plasma cells from the tissue [98].
Therefore some of the benefit of the therapy must be related
directly to the removal of B-cell (not plasma cells) from
the tissue. There has been speculation that synovial B-cells
in RA may have some unusual lack of responsiveness abol-
ishing their proliferative capability (anergic B-cells) leaving
intact their antibody production [251]. Two-way interaction
between B-cells and T-cells may be a great relevance here: B-
cells provide signals to T-cells through antigen presentation
and T-cells provide “help” to B-cells through the delivery
of cytokines and cell mediated stimulation, creating a self-
sustained feedback loop. Whether B-cells stimulate T-cells to
stimulate B-cells, vice versa or, more simply, which cell makes
the initial mistake and trigger autoimmunity has been a point
of debate for years [252]. In favor of B-cell, an argument has
been put forward for CD4+ T-cell activation being dependent
on B-cells in the synovium, in the context of a GCR and
in a HLA-DRBI restricted manner where the antigen is
harbored by the B-cells [253]. Breaking this loop should, in
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itself, restore self-tolerance. Therefore, the removal of ACPA
secreting B-cell may be more relevant to reestablishing self-
tolerance in RA as it may remove ACPA themselves but also
the source of activation for the two-way interaction between
B- and T-cells.

7. Conclusion

The findings presented in this review support the hypothesis
that PTM of self-antigens, in RA and in inflammation in
general, are a cause of the formation of neoepitopes giving
rise to autoantibodies. Whether the breakdown of tolerance
occurs because antibodies against modified self-protein are
promiscuous and bind both the modified and unmodified
self-antigen or whether they are truly specific for modified
proteins is unclear. Nevertheless, these processes contribute
to the vicious circle of chronicity by providing novel immune
reactivity, resulting in further stimulation of the immune
response against self-antigens. With the advancement of
research methodology it should be expected that novel
specificities of autoantibodies against PTM proteins could be
discovered in patients with autoimmune diseases. Many of
these autoantibodies could have significant biomarker poten-
tial. Clearly, animal models suggested therapeutic advantages
in preventing the generation or binding of potentially patho-
logical autoantibodies to the extracellularmatrix collagen and
collagen-like structures. B-cell responses to native CII have
long been known in RA but, as PTM-CII reactivity induces
or worsens experimental arthritis, it is possible that blocking
PTMcould ameliorate arthritis [7, 206]. As such, antioxidants
and inhibitors of oxidative enzymes have already been shown
to ameliorate arthritis in animal models [254, 255]. The
translation of antioxidant therapies to human clinical studies
has produced disappointing results, but targeted approaches
using novel inhibitors of oxidative enzymes offer new hope
for the treatment of RA.
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and P. Gillery, “Carbamylated albumin is a potent inhibitor of
polymorphonuclear neutrophil respiratory burst,” FEBS Letters,
vol. 581, no. 7, pp. 1509–1513, 2007.

[116] S. Jaisson, V. Larreta-Garde, G. Bellon, W. Hornebeck, R.
Garnotel, and P. Gillery, “Carbamylation differentially alters
type I collagen sensitivity to various collagenases,” Matrix
Biology, vol. 26, no. 3, pp. 190–196, 2007.

[117] S. Jaisson, S. Lorimier, S. Ricard-Blum et al., “Impact of
carbamylation on type I collagen conformational structure and
its ability to activate human polymorphonuclear neutrophils,”
Chemistry & Biology, vol. 13, no. 2, pp. 149–159, 2006.

[118] M. Scinocca, D. A. Bell, M. Racapé et al., “Antihomocitrulli-
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Although biologic therapies have changed the course of rheumatoid arthritis (RA), today’s major challenge remains to identify
biomarkers to target treatments to selected patient groups. Circulating micro(mi)RNAs represent a novel class of molecular
biomarkers whose expression is altered in RA. Our study aimed at quantifying miR-125b in blood and serum samples from RA
patients, comparing healthy controls and patients with other forms of rheumatic diseases and arthritis, and evaluating its predictive
value as biomarker for response to rituximab. Detectable levels of miR-125b were measured in total blood and serum samples and
were significantly elevated in RA patients compared to osteoarthritic and healthy donors. The increase was however also found
in patients with other forms of chronic inflammatory arthritis. Importantly, high serum levels of miR-125b at disease flare were
associated with good clinical response to treatment with rituximab three months later (𝑃 = 0.002). This predictive value was not
limited to RA as it was also found in patients with B lymphomas. Our results identify circulating miR-125b as a novel miRNA over
expressed in RA and suggest that serum level of miR-125b is potential predictive biomarker of response to rituximab treatment.

1. Introduction

Rheumatoid arthritis (RA) is a chronic, systemic inflamma-
tory autoimmune disorder that may affect many tissues and
organs but principally attacks the joints. RA is amultifactorial
disease of unknown aetiology and complex pathogenesis,
consisting of at least two subtypes, with different causes
and severity [1, 2]. The clinical course of RA fluctuates
and prognosis is unpredictable. A major issue is that up
to 70% of patients with recent onset of RA show evidence
of radiological erosions within 3 years. In the long term,
major outcomes include joint deformity and misalignment,

need for joint replacement surgery, functional disability, and
premature death due to accelerated atherosclerotic cardio-
vascular and coronary heart diseases [3]. Numerous studies
have demonstrated that aggressive treatment of early RA
results in better clinical outcome [4]. Nine biologics are
available for RA treatment, often used in combination with
methotrexate. Each type targets a specific inflammatory
mechanism and has largely improved the outcome of RA in
many patients [5, 6]. Biologics are however prescribed on
a trial-and-error basis when methotrexate alone has failed,
response is heterogeneous, and roughly one-third of patients
are nonresponders. It may thus take some time to find the
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Table 1: RA patient characteristics.

Blood analysis Sera analysis
RA patients (𝑛 = 16) Responders (𝑛 = 16) Nonresponders (𝑛 = 16)

Mean ± s.d. Mean ± s.d. Mean ± s.d.
Age (years) 59.1 ± 3 59.8 ± 3 57.6 ± 15

Gender (%F) 87.5 80.8 85.7
Disease duration (years) 16 ± 2.2 13.7 ± 1.45 16.3 ± 2.6

ACPA positive (%) 81.3 87.5 78.6
DMARDs failed 3.5 ± 0.25 3.7 ± 0.25 3.5 ± 0.4

M0 M3 M0 M3
Baseline DAS 28 5.4 ± 0.25 6.2 ± 0.2 3.7 ± 0.2 4.8 ± 0.3 5.2 ± 0.3

Baseline CRP level (mg/L) 12.3 ± 4 29.4 ± 6 11.4 ± 4 20.2 ± 8 15.3 ± 5

Baseline HAQ level 1.4 ± 0.1 1.7 ± 0.1 1.4 ± 0.2 1.75 ± 0.2 1.5 ± 0.2

DAS 28 score: a measure of RA activity score (28 joints were evaluated); DMARDs: disease modifying antirheumatic drugs; s.d.: standard deviation; ACPA:
anticitrullinated protein/peptide antibodies; CRP: C-reactive protein l; HAQ: health assessment questionnaire.

best drug for a patient. Considering the high cost of biologics
and the possibility of severe side effects, the identification of
predictors of response to biologic therapies would improve
patient care and medical cost-effectiveness.

Clinical and serological characteristics solely are insuf-
ficient to predict treatment outcome. Anticitrulline peptide
antibodies (ACPA), elevated CRP, serum levels of EGF,MCP-
1 or TNFR, and gene profiling have been proposed to identify
responders to biologics [7–9].More recently,micro(mi)RNAs
have emerged as a new category of biomarkers and patients
with RA have clear alterations of the expression of miRNAs
[10]. Conserved throughout evolution, miRNAs are an abun-
dant class of endogenous, short noncoding, regulatory RNA
molecules that control gene expression in a sequence-specific
manner by targeting mRNAs for degradation or translational
repression. The potential value of miRNAs as molecular
biomarkers for diagnosis, prediction of disease outcome, and
prediction of therapeutic response is well documented in
cancer [11], whereas in RA it remains poorly explored [12,
13]. Since 2008, the presence of miRNAs in human body
fluids has been documented, and several studies reported the
optimization of direct miRNAs detection in blood or sera
[14, 15]. Recently, Murata et al. identified a signature of seven
plasma miRNAs as diagnostic biomarkers specific for RA
patients, even ACPA-negative [16]. Nevertheless, there are no
reports so far about miRNA expression predicting treatment
outcome in patients with RA.

Rituximab is the world’s best-selling cancer drug and was
originally developed to treat non-Hodgkin’s lymphoma [17].
It is a chimeric monoclonal antibody directed against the
CD20 surface antigen of B cells and FDA approved in 1997
to be used in combination with methotrexate to treat RA
patientswhohavemoderate-to-severe active disease and have
failed one or more anti-TNF drugs [18]. Large randomized
controlled trial has demonstrated efficacy in longstanding RA
patients who failed to respond to methotrexate or anti-TNF
drugs [19]. Despite effective depletion of circulating B cells
in nearly all patients [20] and complete resolution of inflam-
mation in some cases, only half of them however respond
to rituximab treatment. Consequently, there is much interest
in identifying molecular biomarkers that predict whether

a patient will respond or not to rituximab. In addition to
sharing a common treatment, RA and a substantial fraction
of lymphomas share pathogenic inflammatory responses due
to aberrant activation of NF-𝜅B signals [21]. Since miR-125b
is an evolutionary conserved miRNA that regulates signal
pathways of inflammation [22], B cell differentiation [23,
24], TNF production, and apoptosis [25] that are biological
pathways of importance for both lymphoma and RA, we
assessed whether miR-125b is deregulated in RA and useful
as potential biomarker predictive for rituximab response.

2. Materials and Methods

2.1. Patients and Healthy Controls. Fresh peripheral blood
and serum samples were obtained from healthy donors (𝑛 =
13) with no history of autoimmune diseases or patients
with osteoarthritis (OA, 𝑛 = 7) and rheumatoid arthritis
(RA, 𝑛 = 48) fulfilling the 2010 ACR/EULAR criteria [26].
Among the 48 RA patients, we included 32 patients treated
by rituximab. Samples were also obtained from patients with
receptor-associated periodic syndrome (TRAPS, 𝑛 = 5) and
spondyloarthropathies (SpA, 𝑛 = 15). Informed consents
were provided in accordance with procedures approved by
the local human ethics committee (Comité de Protection des
Personnes Sud Méditerrannée IV: ID RCB 2008-A01087-48).

The characteristics of RA patients are summarized in
Table 1. Patients were assessed for overall disease activity
using the 28-joint-count Disease Activity Score (DAS28) as
previously described [27]. The criteria for patient eligibility
were combinedmethotrexate (MTX) treatment; DAS28≥ 4.5;
and resistance to at least 2 Disease Modifying Antirheumatic
Drugs (DMARDs) (MTX and anti-TNF included). For one
month or more before the start of this study, every patient
was given stable doses of oral corticosteroids and did not
receive any intra-articular steroid injections. Patients were
treated with rituximab (MabThera, Roche) as recommended
by the manufacturer and the French Drug Agency ANSM
(intravenously 1,000mg one time at day 0 and day 15).
RA patients were separated in two subgroups according
to their clinical response to the rituximab after 3 months
(M3) of treatment (DAS28M3-M0), following the EULAR
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Table 2: B lymphoma patient characteristics.

Sera analysis
Responders
(𝑛 = 8)

Nonresponders
(𝑛 = 5)

Median age (years) 56 (52–79) 59
Gender (M/F) 7/1 2/3
Histology

Diffuse large B cells 7 1
Indolent 1 4

Stage
I/II 3 2
III/IV 5 3

Treatment
Rituximab monotherapy 5 1
Rituximab chemotherapy 3 4

criteria: for nonresponders (NR), DAS28 > 5.1 and the ratio
DAS28M3-M0 ≤ 0.6; for good and intermediate responders
(R), DAS28 < 3.2 or DAS28 > 3.2 and DAS28M3-M0 > 1.2.

Staging procedures for lymphoma patients (𝑛 = 13)
were in accordance with international recommendations
[28]. Clinical characteristics are summarized in Table 2. None
of these patients presented concurrent RA. Patients were
treated either by rituximab alone for four weekly infusions
or by rituximab-chemotherapy regimen when appropriate.
Response was assessed 4–6 weeks later according to inter-
national recommendations [28, 29]. Patients in complete or
partial response were classified as responder patients and
those in stable disease or progressive disease were classified
as nonresponder patients.

2.2. Blood RNA Isolation and miRNA Quantification Using
RT-qPCR. Blood samples were collected using EDTA-coated
tubes (BD Vacutainer 5mL; BD Diagnostics, France) accord-
ing to standard procedure. Aliquots of 0.5mL of blood
samples were immediately transferred to 1.2mL of RNA
later medium (Applied Biosystems) and stored at −20∘C.
Total RNA was extracted using a modified protocol from
the Ribopure-Blood RNA isolation kit (Applied Biosystems).
Briefly, 10 𝜇L glacial acid (Sigma, France) was added to
blood cell lysate (800 𝜇L, steps 1 and 2 according to the
manufacturer’s instruction). The samples were extracted
with acid phenol/chloroform, 1mL of GuSCN lysis solu-
tion (4M guanidinium thiocyanate, 25mM sodium citrate,
0.5% (w/v) sodium N-lauroyl sarcosinate), and 0.1M beta-
mercaptoethanol and 1.25 volumes of ethanol were added
to the aqueous phase. The samples were passed through
a filter cartridge and washed, first with wash solution 1
(70% EtOH/30% GuSCN lysis solution) and second with
wash solution 2 (80% EtOH/50mM NaCl). The RNA was
eluted in 100 𝜇L elution solution preheated to 80∘C and
stored at −20∘C. The concentration and integrity of RNA
were determined by NanoDrop ND-1000 spectrophotometry
(NanoDrop Tech, Rockland, Del) and by a Bioanalyser
Agilent 1.

FormiRNAs analysis, 10 ng of total RNAwas reverse tran-
scribed using 50 nM human microRNA specific stem-loop
RT primers, 50 units/𝜇L MultiScribe reverse transcriptase,
10XRT buffer, 100mM each dNTPs, and 20 units/𝜇L RNase
inhibitor (Applied Biosystems). Reaction mixtures (15 𝜇L)
were incubated in a thermocycler Mastercycler (Eppendorf,
France) for 30 minutes at 16∘C, 30 minutes at 42∘C, and
5 minutes at 85∘C and then maintained at 4∘C. Real-time
PCR was performed on the resulting complementary DNA
using TaqMan microRNA specific primers and TaqMan
Universal PCR Master Mix. All the experiments were per-
formed according to the manufacturer’s protocols, using a
pipetting robotic platform epMotion 5070 (Eppendorf) and
a LightCycler 480 Detection system (Roche, France). The
expression of the U6B small nuclear RNA (RNU6B) was
used as endogenous control for data normalization. Relative
expression was calculated using the comparative threshold
cycle (Ct) method.

2.3. MicroRNA Extraction from Serum and Quantification
Using RT-qPCR. Whole blood was separated into serum
and cellular fractions within 2 h following collection. Sera
were stored at −20∘C. RNA extraction of 400𝜇L serum
was performed by acid phenol:chloroform extraction and
precipitated with ethanol over night at −20∘C [14]. After
precipitation, 40 𝜇L of sterile water was added to the RNA
isolation.

Typically, a 15 𝜇L reverse transcriptase reaction contained
6.7 𝜇L of purified RNA and reverse transcription was per-
formed according to the manufacturer’s instruction. Real-
time PCR was performed on the resulting complementary
DNAusing TaqManmicroRNA specific primers andTaqMan
Universal PCR Master Mix. Since U6 and 5S rRNA were
degraded in serum samples [14, 15], results were normalized
by subtracting the globalmiRNA levels in the sample (average
Ct of 6 miRNAs, hsa-miR-142-3p (ID 000464), hsa-miR-142-
5p (ID 002248), hsa-miR-24 (ID 000402), hsa-miR-181d (ID
001099), hsa-miR-15b (ID 000390), and hsa-miR-125b (ID
000449) for RA sera; average Ct of 4 miRNAs, hsa-miR-16
(ID 000391), hsa-miR-24, Let7-a (ID 000377), and hsa-miR-
125b for B lymphoma sera) from the level Ct of miR-125b.

2.4. Statistical Analysis. Patients’ parameters were analyzed
with the nonparametric Wilcoxon signed-rank test. Correla-
tions with miR-125b expression levels were quantified with
the Spearman’s correlation test and the Fisher transformation
was applied. All other data were analysed statistically using
the Mann-Whitney 𝑈 test. 𝑃 values less than 0.05 were
considered statistically significant. The Power and Precision
V3 Software (http://www.power-analysis.com/) was used to
calculate the 1-𝛽 error (the probability of a 𝑃 = 2𝛼 < 0.01
not appearing at random) for the difference in sera levels of
mir-125b between responders and nonresponders.

3. Results

3.1. Quantification of Mature miR-125b in RA Blood Samples.
Using microarray technology, we identified miR-125b as
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Figure 1: miR-125b is overexpressed in RA blood. (a) Expression levels of miR-125b in blood of healthy individuals (CT, 𝑛 = 13) and patients
with osteoarthritis (OA, 𝑛 = 5) and rheumatoid arthritis (RA, 𝑛 = 16). (b) Expression levels of miR-100 and miR-99a in blood samples from
CT (𝑛 = 7) and RA patients (𝑛 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 as determined by Mann-Whitney test.

deregulated in pooled blood samples from RA patients as
compared with healthy donors (unpublished data). First,
we validated these data analysing miR-125b expression on
individual blood samples collected from sixteen RA patients
having severe disease and similar clinical features (Table 1).
Total RNAs were isolated from 0.5mL of whole blood and
the mature miR-125b form was quantified using RT-qPCR
(Figure 1(a)). Expression levels were normalized with respect
to U6 gene expression and expressed as 2−ΔCt. Mature miR-
125b relative expression was significantly higher in patients
with full-blown RA than in samples from healthy donors and
OA patients (𝑃 = 0.026). More specifically, we observed that
miR-125b was overexpressed in 12 of 16 (75%) blood samples
(median of healthy donors = 2.22).

In humans, there are two paralogs coding for the same
mature miR-125b sequence.They are located on two different
polycistronic miRNA clusters on chromosomes 11 (hsa-miR-
125b-1) and 21 (hsa-miR-125b-2), harbouringmiR-100/let-7a-
2/miR-125b-1 and miR-99a/let-7c/miR-125b-2, respectively
[30]. To determine whether the increased mature miR-125b
expression observed could be preferentially related to the
upregulation of one of these 2 miRNA clusters, we quantified
one miRNA encoded by each cluster (Figure 1(b)). Although
only miR-100 reached statistical significance, both miR-99
and miR-100 were similarly overexpressed in blood from RA
patients as compared with healthy donors, suggesting that
both clusters are similarly deregulated in RA.

3.2. Mature miR-125b Overexpression in Serum Samples from
RA Patients. Since miRNAs are also present in serum, we
investigated whether miR-125b upregulation could also be
measured in RA serum samples. Using real-time quantitative
PCR [24, 31], detection of miR-125b was confirmed with
serum from 32 patients with full-blown RA (Figure 2(a)).
In addition, to determine whether this miRNA is specific
for RA, its expression level was analysed in patients with
OA. Analyses showed that serum miR-125b expression levels
were significantly different between RA and OA patients

(𝑃 < 0.01). To assess the potential of serum miR-125b as
noninvasive biomarker of RA, serum samples from other
rheumatic diseases including TRAPS and SpA were also
analysed (Figure 2(b)). The expression levels of miR-125b
measured in serum from RA patients were not different from
other rheumatic disorders tested. Although further studies
will be necessary, our data suggested that change in serum
miR-125b is not specific for RA.

3.3. High Expression of miR-125b in RA Serum Predicts
Good Response to Rituximab Therapy. We next determined
whether the detection of miR-125b in serum of patients
with active RA could be used as biomarker to predict
clinical responses to rituximab (Figure 3). Serum samples
were collected prior to treatment and miR-125b expression
levels quantified by RT-qPCR.When the 32 RA patients were
divided in two sub-groups according to their clinical response
to rituximab after 3 months of treatment (Figure 3(a), 𝑃 <
0.001), results showed that high expression of miR-125b was
associated with a good response to anti-CD20 therapy (𝑃 =
0.002, Figure 3(b)). Indeed, serum levels of miR-125b before
the initiation of treatment were higher in good responders
compared with nonresponders, while two othermiRNAs also
detectable in serum, namely, miR-142-3p and miR-142-5p,
were not expressed at significantly different levels in both
groups of patients (Figures 3(c) and 3(d)). These data suggest
that RA patients with low expression of miR-125b at the time
of disease flare have significantly lower chance to improve
clinically after 3 months of rituximab treatment and that
serum abundance of miR-125b could be used as predictive
biomarker. With mean value 0.36 ± 0.26 for responders
(𝑛 = 16) and 0.19 ± 0.12 for nonresponders (𝑛 = 16), the
power analysis yielded a 1-𝛽 value of 71%. Power calculations
estimated that, keeping the difference between means and
the SD-values constant, 40 patients in each treatment group
would be theminimum sample size required so that 1-𝛽 value
will be close to 100%.This signifies that an analysis of a single
sera sample for mature miR-125b contents will serve as a very
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Figure 2: Serum levels of miR-125b in various rheumatic diseases. (a) Serum levels of mature miR-125b in patients with rheumatoid arthritis
(RA, 𝑛 = 32) or osteoarthritis (OA, 𝑛 = 7). (b) Serum levels of miR-125b in patients with tumor necrosis factor receptor periodic syndrome
(TRAPS), spondyloarthropathies (SpA), and rheumatoid arthritis (RA). miR-125b was quantified by RT-qPCR as described in M&M (𝑛 = 5–
15/group). ∗∗𝑃 < 0.01 as determined by Mann-Whitney test.
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Figure 3: miR-125b as predictive biomarker for rituximab treatment outcome in RA. (a) DAS28M3-M0 represents the difference at baseline
versus 3 months after rituximab treatment. Patients were considered nonresponders (NR, 𝑛 = 16) or responders (R, 𝑛 = 16) according to
EULAR criteria. Serum mature miR-125b (b), miR-142-3p (c), and miR-142-5p (d) are quantified in RA patients according to their clinical
response. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 as determined by Mann-Whitney test.
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Figure 4: Serum miR-125b predicts rituximab response in B
lymphoma patients. Expression levels of miR-125b were quantified
by RT-qPCR as described in M&M in the serum of patients with
B lymphoma before initiation of rituximab treatment. Clinical
response was analyzed 4–6 weeks later and patients were considered
nonresponders (NR, 𝑛 = 5) or responders (R, 𝑛 = 8) according to
international recommendations.

good predictor or clinical marker for a patient’s response to
treatment.

3.4. Predictive Value of miR-125b in the Serum of Patients with
B Lymphoma under Rituximab Treatment. To assess whether
high serum expression levels of miR-125b could predict the
therapeutic outcome for disorders other than RA treatedwith
rituximab, we measured its expression levels in the serum of
thirteen patients with B lymphomas (Figure 4). Samples were
collected before initiation of the rituximab treatment and
patients were divided into responders versus nonresponders
according to their clinical response. Although it did not
reach statistical significance, there was a tendency of higher
expression levels of miR-125b in the group of responders
to rituximab versus nonresponders. Consistent with results
in RA samples, miR-125b was overexpressed in 6 out of 8
(75%) serum samples (median of nonresponders = 0.01) from
responder patients, suggesting that serum concentration of
miR-125b is a potential biomarker of rituximab response,
predicting treatment outcome for patients with RA and B
lymphomas.

4. Discussion

Rheumatoid arthritis (RA) is a heterogeneous disorder with
fluctuating and unpredictable clinical course. Although a
large panel of therapies is available to clinicians, they
sometimes fail or produce partial responses, rarely achieve

sustained remission, and are associated with systemic com-
plications. Most importantly, prolonged delay in achieving
adequate disease control impacts quality of life for RA
patients. Current classification of patients based on the cli-
nical phenotype and autoantibody production is not optimal
and today’s main challenge is to treat RA patients as early as
possible with themost adequate treatment. Towards this goal,
identification of biomarkers enabling tomatch therapies with
specific subgroups of patients is of major interest. Recently,
miRNAs emerged as an important class of new blood-based
biomarkers that can associate their specific expression profile
with disease development and severity, as well as response to
treatment.This is particularly well documented across a large
spectrum of cancers [32]. The possibility to detect miRNAs,
not only in diseased tissues, but also in body fluids, opened
great opportunities for these molecules in terms of clinical
application [14, 15, 31, 33, 34]. As few publications suggested
that miRNAs could be used as biomarkers with diagnosis
implications in RA [16, 35], we thought to investigate whether
miRNAs could also predict response to therapy. We found
that mature miR-125b is overexpressed in both serum and
blood samples from RA patients and well differentiated them
from healthy donors or patients with OA. It is however
not specific for RA as we also found elevated miR-125b
levels in samples from patients with other rheumatic diseases
including TRAPS and SpA. Furthermore, high expression
levels of circulating miR-125b before initiation of treatment
with rituximab were associated with good clinical response.

Although circulating miRNA still remains a new field
in RA, one publication compared the quantification of 5
miRNAs in the plasma and synovial tissue of RA patients
and shows that miRNAs released in the synovial fluid are
similar to synovial tissue miRNAs, but distinct from plasma
miRNAs [13]. The authors conclude that the detection of
cell-free miRNAs in the serum of RA patients is more
likely reflecting distinct composition and activation status
of the haematopoietic compartment than of the joint space;
suggesting that the systemic inflammatory aspect of the
disease more than the rheumatic part might predominantly
influence the bloodmiRNApattern in RA.Thismight explain
why we found that miR-125b well differentiated RA patients
from OA individuals but not from patients with rheumatic
disorders displaying a systemic inflammatory component
such as TRAPS and SpA. Moreover, this is in agreement with
the literature as miR-125b belongs to the miRNAs that are
involved in haematopoiesis. It is highly expressed in normal
haematopoietic stem cells (HSC) and is progressively down-
regulated in committed myeloid and lymphoid progenitors.
Its abnormal overexpression in these populations is associ-
ated with the development of lymphoproliferative diseases
[36], myelodysplasia, and acute myeloid leukemia or B-cell
acute lymphoid leukemia [23, 37, 38]. More recently, miR-
125b overexpression has been correlated with the mainte-
nance of the naive state of CD4+ T cell, preventing CD4+
T cell differentiation and acquisition of an effector/memory
phenotype by CD4+ T cells [39]. Interestingly, when ana-
lyzing the data published by Li and colleagues, miR-125b
expression appears significantly up-regulated in CD4+ T cells
of RA patients compared with healthy controls [40]. Finally,
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very high miR-125b levels have been proposed to inhibit
early steps of differentiation induction of granulopoiesis [41].
Overall, these data suggest that high levels of miR-125b in
the blood of RA patients might reflect defective lineage
differentiation and enhanced blast proliferation, leading to
abnormal abundance of haematopoietic progenitors blocked
at early stage of their lineage differentiation program, similar
to what is observed in leukemic malignancies.

A contribution fromB lymphocyte-derivedmiR-125bwas
also possible as miR-125b is up-regulated in germinal center
(GC) lymphocytes compared to memory B cells [24]. Finally,
B cells play a critical role in the pathogenesis of RA as B-
cell depletion shows positive results for the treatment of RA.
However, the expression levels ofmiR-125b in RA serumwere
not altered after 3 months of rituximab treatment (data not
shown), further suggesting that the over-expression of miR-
125b in RA patients is more likely due to the contribution of
the T lymphocyte and myeloid compartments than of the B
lymphocytes. The detection of miRNAs in serum was quite
unexpected as RNAmolecules are unstable in the circulation.
Studies showed that extracellularmiRNAs exhibit high stabil-
ity in body fluids as they circulate associated with proteins or
withinmembrane vesicles such as exosomes ormicroparticles
[15, 33]. In addition to the usefulness of circulating miRNAs
as biomarkers, there are evidences regarding their possible
function in distant cell-to-cell communication. Identification
of the form and source of extracellular miR-125b will thus
clarify its role in arthritis.

Although blood is easily accessible, noninvasive and of
great interest for new biomarker discovery, very few studies
report the detection of miRNAs in plasma or serum of RA
patients [12, 31, 42]. Until now, only Murata and coworkers
suggested miRNAs as potential biomarkers in RA [13, 16].
Authors showed that plasma miR-132 concentrations were
significantly lower in RA than in healthy donors and that
plasma levels of miR-16 were correlated with disease activity
assessed by the DAS28 (28-joint Disease Activity Score),
although not specific for RA since similarly altered in the
plasma from OA patients. More recently, they identified a
signature of seven miRNAs termed ePRAM (for “estimated
probability of RA by plasma miRNAs”), elevated in RA
plasma relative to healthy donors, and allowing RA diagnosis
with high specificity and sensitivity, even in ACPA-negative
patients [16]. Interestingly, the ePRAM signature includes
miR-125a-5p that belongs to the miR-125 family, consisting
of three homologs in humans (hsa-miR-125a, hsa-miR-125b-
1 and hsa-miR-125b-2), which are transcribed from three
different loci that code for different mature sequences with
the same seed region and therefore might have similar
functions [43]. In the present study, we show that miR-
125b is also detectable, both in blood and serum samples,
and significantly elevated in RA patients as compared to
healthy controls and OA patients, extending the observations
of Murata and colleagues to the miR-125 family members
as potential biomarkers in RA. However, we did not find
significant correlation with DAS28, HAQ and CRP (data not
shown). Circulating miR-125b has been reported as part of
the blood-based miRNA signatures of ovarian and prostate
cancers [15, 34]. Here, we add miR-125b to the short list
of blood-based miRNAs as biomarkers in RA, and more

importantly show for the first time thatmiR-125b can possibly
predict disease biotherapy success in RA.

Previous reports in the cancer field have indicated that
miRNAs could play an important role in predicting drug
responses, but nothing was known until now in RA. Molecu-
lar prediction of treatment response for RA patients is still
unmet medical need and is particularly important to help
rheumatologists to select the optimal therapy for a given
patient as they benefit from a large panel of biological drugs
for which the benefice/risk ratio is not equal depending on
patients and disease duration [44]. In case of rituximab,
better clinical responsewas found associatedwith lower levels
of IFN-𝛾 and B-cell activating factor (BAFF), with the Fc𝛾
receptor III (Fc𝛾RIII) genotype and the C/G-174 polymor-
phism in interleukin-6 (IL-6) gene [45]. In addition, an initial
nonresponse to rituximab depends on circulating preplasma
cell numbers at baseline and on incomplete depletion fol-
lowing treatment. Recently, a prospective study showed that
good clinical response to rituximab is associated with the
presence of B cell markers in the serum, more specifically
with rheumatoid factor positivity or high anti-CCP antibody
positivity and elevated IgG levels [46]. However, we found no
correlation between the presence and/or levels of anti-CCP
antibodies and miR-125b expression levels (data not shown).
Our data suggest that miR-125b might be considered as an
additional predictive biomarker for response to rituximab
treatment as its expression level in the circulation, before the
initiation of rituximab treatment, predicts therapy outcome.
Importantly, this was not only observed for patients with RA
but we found similar tendency for patients with B lymphoma,
suggesting a broader application. Indeed, further determina-
tion is required including reproducibility experiment using
other cohorts and comparisonwith other control groups such
as patientswith infection. In addition, RApatients used in our
study have established disease and failure to anti-TNF drugs.
It is thus not clear yet whether miR-125b can predict response
to rituximab for patients with earlier RA and who had never
received any biological therapy.

5. Conclusions

In conclusion, we have identifiedmiR-125b as potential useful
marker to predict successful outcome of rituximab treatment.
This is the first time a miRNA is identified as potential
biomarker for treatment efficacy and prediction of individual
targeted therapy in RA.
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We investigated the ability of neutrophils to express receptor activator of nuclear factor kappa-B ligand (RANKL), to secrete
osteoprotegerin (OPG), and to produce IL-17. Arthritis was induced by intra-articular injection of zymosan, a ligand for Toll-
like receptor 2 (TLR2). Frequencies of neutrophils in bone marrow (BM), blood and synovial fluid (SF), receptor expression, and
cytokine production were evaluated by flow cytometry. 1A8 antibody (1A8 Ab) was used to deplete neutrophils in zymosan-injected
SCIDmice. IL-17, RANKL, andOPG amounts in SF, serum, or cell cultures were determined by ELISA.The development of arthritis
was associated with increased secretion of IL-17, RANKL, and OPG in serum and SF, elevated frequencies of Ly6G+CD11b+ cells
in BM, blood, and SF and upregulated RANKL expression. Both IL-17 and OPG were absent in serum and SF after neutrophil
depletion; therefore we assume that they were released by neutrophils. In vitro blood Ly6G+CD11b+ cells from arthritic mice
produced spontaneously IL-17, IFN-𝛾, and OPG and expressed RANKL.This phenotype was sustained by IL-17. TLR2 engagement
increased IL-17 and IFN-𝛾 production, potentiated IL-17-mediated RANKL expression, and inhibited OPG secretion. We conclude
that TLR2 regulates the destructive potential of neutrophils and its targeting might limit joint alterations in arthritis.

1. Introduction

Neutrophils are the most abundant cells in SF at the initial
phase of rheumatoid arthritis (RA). They deliver signals
or/and release factors regulating the functions of synovial
fibroblasts, chondrocytes, osteoclasts, and other inflamma-
tory cells like monocytes, T and B cells, dendritic cells,
and NK cells. Neutrophils from RA patients are functionally
different from those of healthy donors (reviewed by [1]).
They have an active NF-𝜅B signaling pathway and produce
considerable amounts of reactive oxygen species and tumor
necrosis factor (TNF)-𝛼 [1].Their cytoplasm is enriched with
granules containing proteases, phospholipases, defensins,
and myeloperoxidase (just before being reviewed in [2]). The
release of all these factors in SF induces collagen and pro-
teoglycan depletion, receptor shedding, cytokines degrading,
and activation of cytokine precursors. Neutrophils from RA
patients have also delayed apoptosis and are susceptible to
stimulation via TLRs and receptors for complement frag-
ments, growth factors, and cytokines (reviewed by [3]).

Among the members of the Toll-like receptors, family
is TLR2. The receptor interacts with microbial lipopeptides
such as peptidoglycan from gram-positive bacteria, lipoara-
binomannan from mycobacteria, and zymosan (ZY) from
yeast cell wall. TLR2 has an extracellular domain with
leucine-rich repeats and a conservative intracellular Toll/IL-
1 receptor (TIR) domain. TLR2 forms homodimers or het-
erodimers with TLR1 or TLR6 [4]. Its downstream pathways
involve myeloid differentiation factor 88 (MyD88), c-Jun N-
terminal kinase, NF-𝜅B, and phosphatidylinositol 3-kinase
(PI3K), which promotes NF-𝜅B-dependent transcription too
(reviewed by [5]). Various studies have shown the role of
TLR2 signaling for the development of arthritis (reviewed
by [6]). Among them are investigations on TLR2-deficient
mice describing a direct suppression of neutrophils function
in these animals and better outcome from arthritis [7, 8].

IL-17 is characteristic for the early stage of arthritis and
plays a role in various inflammatory and autoimmune pathol-
ogies [9–11]. Elevated IL-17 mRNA expression in SF can
predict the progression of joint damage and occurs before the
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disease onset [12, 13]. The overexpression of IL-17 promotes
the development of collagen-induced arthritis, while IL-17
neutralization inhibits bone erosion and cartilage damage
[14, 15]. IL-17 interferes with RANKL signaling pathway,
osteoclastogenesis and maintains matrix turnover and car-
tilage destruction, especially in the presence of TNF-𝛼 [16,
17]. The cytokine promotes not only joint inflammation but
also a bone-protective potential of neutrophils in periodontal
disease [18].

Neutrophils from RA patients express RANKL and
secrete a decoy RANKL receptor, OPG [19]. We have found
abrogatedRANKL expression onneutrophils that contributes
to better outcome from collagen-antibody-induced arthritis
in properdin-deficient mice [20]. In a model of collagenase-
induced osteoarthritis glucosamine inhibits bone destruction
and decreases the number of RANKL-bearing neutrophils
in SF [21]. Our previous studies involving patients with
osteoarthritis show altered TNF-𝛼 production in response to
TLR2 stimulation and elevated TLR2 and RANKL expression
on blood neutrophils [22, 23]. In the present work we inves-
tigate the bone-destructive activity of Ly6G+CD11b+ cells in
TLR2 ligand driven arthritis. To confirm that neutrophils
directly participate in bone resorption monoclonal 1A8
Ab recognizing that Ly6G was administrated to zymosan-
injected SCID mice. Ly6G+CD11b+ cells were depleted in
circulation and we measured the concentrations of IL-17,
RANKL, and OPG in SF and serum. We examined IL-17 and
IFN-𝛾 production of blood neutrophils by flow cytometry
and we evaluated the effect of IL-17 and TLR2 stimulation on
cytokine production, RANKL expression, andOPG secretion
in these cell cultures.

2. Materials and Methods

2.1. Animals. All experiments were approved by the Animal
Care Committee at the Institute of Microbiology, Sofia, in
accordance with the National and European Guidelines.
BALB/c and SCID (CB17) mice were purchased from the
Charles River Laboratories (USA), kept under standard
conditions of a 12–12 hours light-dark cycle, and fed with
a laboratory diet and water ad libitum. Mice (weigh 20–
22 g) were anesthetized by intraperitoneal injection (i.p.)
of sodium pentobarbital (50mg/kg; Sigma-Aldrich, Munich,
Germany) supplemented with buprenorphine hydrochloride
analgetic (0.1mg/kg; Sigma-Aldrich).

2.2. Arthritis. BALB/c mice were injected intra-articularly
(i.a.) at ankles or knees with 10 𝜇L of zymosan suspen-
sion (20mg/mL; Sigma-Aldrich) or 10 𝜇L of endotoxin-free
phosphate-buffered saline (PBS; control group). To deplete
neutrophils in SCID mice monoclonal 1A8, Ab (endotoxin
free, 100 𝜇g in 200𝜇L per mouse; Biolegend, London, UK)
was administered i.p. at days −2, +2, and +4. At day 0 SCID
micewere injected i.a. with PBS (PBS+Abgroup) or zymosan
(ZY + Ab group). The development of disease for 7 days
was compared to untreated PBS- (PBS group) or zymosan-
(ZY group) injected SCID mice. To monitor cell depletion
Ly6G+CD11b+ cell, frequencies were assessed in BM at days
−2, +2, and +4.

2.3. Histology. At day 7 of arthritis, ankle or knee joints were
dissected, fixed in 10% paraformaldehyde/PBS, decalcified in
5% nitric acid for 1 week, dehydrated, embedded in paraffin,
cut, and stained with hematoxylin and eosin (H&E) or
Safranin O [24]. The degree of injury was graded by a three
score system applied for cell infiltration and proteoglycan
loss (score 0—no abnormality; score 3—severe abnormali-
ties) and determined by two independent observers using
light microscopy (Leica Microsystems, Wetzlar, Germany).
Cartilage erosionwas expressed as the percentage of impaired
cartilage from the total cartilage surface and was determined
after photo capturing by a DS-Ri1 Nikon camera (Nikon
Instruments Europe, Amstelveen, The Netherlands) and
image analyses by ImageJ 1.42 software (Research Services
Branch, NIH, Bethesda, MD, USA).

2.4. ELISA Assay. SF was harvested from ankles or knees by
lavage with 25𝜇L of PBS containing 1mM EDTA (Sigma-
Aldrich). Serum was obtained after centrifugation of col-
lected blood. RANKL, OPG, and IL-17 were quantified in SF,
serum, or culture supernatants by ELISA kits from Abcam
(Cambridge, UK; detection limit< 4 pg/mL and of< 1 pg/mL,
resp.) and from Biolegend (London, UK; detection limit <
8 pg/mL).The samples were assayed in triplicate.The concen-
trations of RANKL, OPG, and IL-17 were calculated from a
standard curve of the respective recombinant mouse protein
usingGen5Data Analysis Software (BioTek Instruments, Bad
Friedrichshall, Germany).

2.5. Cell Isolation and Phenotype. Synovial cells were isolated
by centrifugation of SFs. Peripheral cells were obtained from
heparinized blood after Histopaque (Sigma-Aldrich) density
gradient centrifugation. BM cells were collected from the
tibia and femur. Exclusion dye staining with 0.05% Trypan
blue showed more than 95% viable cells in isolated popula-
tions. After washing, cells were resuspended at 1 × 105/mL
in 2% FCS/PBS and incubated with Abs against mouse Ly6G
(clone 1A8; Biolegend), CD11b (clone M1-70; Biolegend),
and CD69 (clone H1.2F3; BD Pharmingen, BD Biosciences,
Heidelberg, Germany). RANKL expression was evaluated
after incubation with biotinylated Ab against mouse RANKL
(clone IK22/5; Biolegend) or biotinylated rat IgG2a (iso-
type control; Biolegend) followed by avidin-fluorescein
isothiocyanate (FITC) staining (4 𝜇g/sample, R&D Systems,
Wiesbaden-Nordenstadt, Germany) [21]. The samples were
analyzed with flow cytometer (BD LSR II) using BD FACS-
Diva v6.1.2 Software (BectonDickinsonGmbH, San Jose, CA,
USA).

2.6. Purification and Activation of Blood Neutrophils. Neu-
trophils were purified from heparinized blood as described
previously [25]. Cell population consists of >95% viable
cells and of 89-90% positive cells for Ly6G and CD11b.
Neutrophils were resuspended at concentration of 1 × 106/mL
in sterile complete RPMI-1640 medium (Biowhittaker;
Lonza, Basel, Switzerland) containing 10% FCS, 2mM L-
glutamine, 100U/mL penicillin, 100𝜇g/mL streptomycin (all
from Sigma-Aldrich), and granulocyte-macrophage colony-
stimulating factor (GM-CSF; 50 ng/mL; PeproTech EC,
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London, UK). The cells were stimulated with zymosan
(20𝜇g/mL; Sigma-Aldrich) in the absence or presence of
IL-17 (40 ng/mL; Abcam). After 24 hours, 37∘C, cells were
harvested, washed, and analyzed for RANKL expression and
intracellular cytokine production. OPG concentrations in
culture supernatants were also measured.

2.7. Intracellular Flow Cytometry. Neutrophils or synovial
cells (1 × 106/mL) were stimulated with phorbol myristate
acetate (PMA; 10 ng/mL; Sigma-Aldrich) and ionomycin
(2 𝜇M; Sigma-Aldrich) in the presence of brefeldin (Gol-
giStop, BD Pharmingen) for 4 hours. Cells were harvested,
washed, stained with antibody against Ly6G, then fixed, and
permeabilized (BD Cytofix/Cytoperm kit, BD Biosciences).
After incubation with Abs against IL-17 (clone TC11-18H10),
IFN-𝛾 (clone XMG1.2), and appropriate isotype controls (all
fromBDPharmingen), cells were subjected to flow cytometry
analysis.

2.8. Immunoblotting. Blood neutrophils (1 × 106/mL) were
stimulated with zymosan (20𝜇g/mL) and GM-CSF (50 ng/
mL) for 10min, 37∘C in the absence or presence of IL-17
(40 ng/mL). Cells were washed with ice-cold PBS and lysed
for 15min on ice with buffer containing 10mM HEPES (pH
7.9), 1.5mM MgCl

2
, 10mM KCl, 0.5mM DTT, 0.5% NP-

40, 0.5mM phenylmethanesulfonylfluoride (PMSF), 1mM
Na
3
VO
4
, 5mM NaF, and 1 𝜇g/mL protein kinase inhibitor

cocktail (all from Sigma-Aldrich). Cell lysates were cen-
trifuged at 13 000 g, 4∘C. Supernatants were discarded, and
cell pellets were resuspended and incubated for 1 h on ice in
buffer containing 20mM HEPES (pH 7.9), 1.5mM MgCl

2
,

420mM NaCl, 0.2mM EDTA, 25% v/v glycerol, 0.5mM
PMSF, and 1 𝜇g/mL protein kinase inhibitor cocktail and
centrifuged at 13 000 g, 4∘C. Cell lysates (20𝜇g/line) were
separated by 10% SDS/PAGE gel electrophoresis and trans-
ferred onto nitrocellulose membrane (Thermo Scientific,
Rockford, IL, USA). After blocking with 5% BSA/PBS buffer,
the membranes were probed overnight with Abs against
methyl histone H3 (mono methyl K9, 1 : 500 diluted, Abcam)
or lamin, nuclear lamina protein (clone C-20, Santa-Cruz
Biotech, Heidelberg, Germany). After washing, immunoblots
were incubated with peroxidase-conjugated anti-rabbit IgG
(Fab
2
) antibody (1 : 1000 diluted; Abcam) and then developed

using a chemiluminescent substrate kit (Sigma-Aldrich).
Protein band density was analyzed by ImageJ 1.42 software
(Research Services Branch, NIH, Bethesda, MD, USA). In
each sample H3K9 lines were normalized to that of lamin and
presented in units.

2.9. Statistical Analysis. Statistical analysis was accomplished
by InStat3.0 and GraphicPad Prism 5.0 software (GraphPad
Software, La Jolla, CA, USA). Data were expressed as mean
± SEM. Kruskal-Wallis and Mann-Whitney U-tests were
performed to compare the histological scores and the per-
centages of cartilage erosion between groups and to calculate
statistical significance of the differences. For other data,
the differences in the mean values between groups were
analyzedwith the two-tailed Student’s 𝑡-test. Differences were
considered significant when 𝑃 < 0.05.

3. Results

3.1. Neutrophils Depletion in Arthritic Mice Decreases IL-
17 and OPG Amounts in Synovial Fluid and Serum. TLR2-
driven arthritis was induced by i.a. injection of zymosan into
BALB/c mice. Histological evaluation of H&E and Safranin
O stained joint sections showed cell infiltration, cartilage
erosion, and proteoglycan loss at day 7 of arthritis induction
(Figures 1(a) and 1(b)). The amount of IL-17 raised in SF
and serum of arthritic mice (Figure 1(c)). Cells accumulated
in SF (Figure 1(d)). We observed increased frequencies of
Ly6G+CD11b+ neutrophils in SF and blood (Figure 1(d)).
CD69, characteristic for active and primed cell state, was
upregulated on SF and blood Ly6G+ cells from zymosan-
injected mice (Figure 1(e)).

Next we designed an experiment for neutrophil depletion
by specific 1A8 Ab. SCID mice were used in these settings
because they lack mature T and B cells but have intact innate
immunity. The mice were treated with monoclonal 1A8 Ab at
days −2, +2, and +4 of zymosan injection (Figure 2(a)).

This schedule was chosen because TLR2 ligand induced
granulopoiesis even after initial 1A8 Ab administration
(Figure 2(a), day +2) and the loss of Ly6G+CD11b+ cells
in BM granulocyte subset (Figure 2(a), day −2). Thus cell
depletion was maintained by additional Ab treatments at
days +2 and +4 (Figure 2(a)). At day 7 of arthritis and 3
days after the last administration of 1A8 Ab, the neutrophils
partially recovered in BM but were still absent from the
circulation and SF (Figure 2(b)). Histological evaluation of
the joint sections at day 7 showed a considerable decrease
in cell infiltration, PG loss, and cartilage erosion in 1A8
Ab-treated ZY group (Figure 2(c)). Disease improvement
was associated with diminished amounts of RANKL in
serum and SF (Figure 2(d)). The administration of 1A8 Ab
completely inhibited TLR2 ligand-induced production of
IL-17 (Figure 2(e)) and OPG (Figure 2(f)) suggesting that
Ly6G+CD11b+ neutrophils might be the source of both
mediators in circulation and SF. This notion, however,
posed more questions about the ability of Ly6G+CD11b+
neutrophils to produce IL-17 and OPG in response to TLR2
stimulation.

3.2. Altered IL-17 and IFN-𝛾 Production of Blood Neutrophils
from Arthritic Mice in Response to TLR2 Stimulation In
Vitro. Neutrophils in circulation of arthritic mice can be a
source of proinflammatory cytokines as they were activated
and/or primed and expressed the early activation marker
CD69 (see Figure 1(e)). We purified neutrophils from blood
of control (PBS-injected) and arthritic BALB/c mice. The
cells were cultured in the presence of GM-CSF, a factor
sustaining cell survival. Ly6G+CD11b+ cells were stimulated
in vitro with TLR2 ligand and/or IL-17 for 24 hours. The
intracellular production of IL-17 and IFN-𝛾 was evaluated by
flow cytometry (Figures 3(a) and 3(b)).

Ly6G+CD11b+ cells from nonarthritic mice were IFN-
𝛾
−/IL-17−, IL-17 induced autocrine IL-17 protein expression

and IFN-𝛾 production in control neutrophils (representative
dot-plots and graphs, Figure 3(a)). Zymosan was able to
prime the control neutrophils for IFN-𝛾 synthesis but it failed
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Figure 1: Continued.
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Figure 1: Arthritis induced by intra-articular TLR2 ligand (zymosan; ZY) injection into BALB/c mice. (a) Representative photomicrographs
of hematoxylin and eosin (H&E) stained ankle sections show cell infiltration (arrow, I) and cartilage erosion (arrows, E) at day 7 of zymosan
injection (200 𝜇g/10 𝜇L per ankle) (magnification 40x). (b) Photomicrographs of Safranin O stained sections (magnification 100x) and scores
for cell infiltration (I), proteoglycan loss (PG loss), and cartilage erosion indicates severe joint injury in zymosan-injected mice (ZY) in
comparison to PBS-injected group (PBS). Values are the mean ± SEM (10 sections/mouse; 𝑛 = 10mice/group; 5 experiments). ∗∗∗𝑃 < 0.001,
Kruskal-Wallis andMann-WhitneyU-test. (c) Increased IL-17 amounts in SF and serum of mice with arthritis (day 7). Bars show the mean ±
SEM (𝑛 = 5mice/group; 3 experiments). ∗𝑃 < 0.05; ∗∗𝑃 < 0.01, Student’s 𝑡-test. (d) Cells accumulate in SF and frequencies of Ly6G+CD11b+
cells increase in SF and blood at day 7 of arthritis. Values are the mean ± SEM (𝑛 = 10mice/group; 5 experiments). ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001
versus healthy (H) or versus PBS-injected groups (PBS), Student’s 𝑡-test. (e) Blood and SF Ly6G+ cells upregulate surface CD69 at day 7 of
arthritis. Values are the mean ± SEM (𝑛 = 5mice/group; 3 experiments). ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001, Student’s 𝑡-test. MFI: mean fluorescence
intensity.

to initiate IL-17 production even in the presence of exogenous
IL-17 (Figure 3(a)).

Neutrophils from arthritic mice produced IL-17 and
IFN-𝛾 spontaneously unlike the cells from the control
group (Figure 3(b)). We detected around 4% IL-17+ cells
and near 2% IFN-𝛾+ cells (dot-plot histograms and graphs,
Figure 3(b)). IL-17+ but not IFN-𝛾+ neutrophils were influ-
enced by exogenous IL-17 in the cultures (Figure 3(b)).
Zymosan provided stronger signal for IL-17 synthesis and
amplified the generation of IL-17+ cells more efficiently
(Figure 3(b)). However, TLR2 enhanced the frequencies of
IFN-𝛾+ neutrophils, but it failed to potentiate further IFN-
𝛾 synthesis in the presence of IL-17. Together our data
demonstrated (i) that blood neutrophils from arthritic mice
have an increased potential to produce IL-17 and IFN-𝛾 in
comparison with control cells and (ii) that TLR2 is necessary
to be stimulus (signal) for enhanced generation of IL-17+ and
IFN-𝛾+ neutrophils in cultures from arthritic group.

Neutrophil function can be regulated by epigeneticmech-
anisms involving methylation and acetylation of histones.
We evaluated by immunoblot the levels of monomethylated
H3K9 in blood neutrophils activated with zymosan and/or
IL-17. Methylated H3K9 was undetectable in the nuclear
extracts of nonstimulated Ly6G+CD11b+ cells from control
mice and present in those from arthritic group (Figure 4).

IL-17 elevated the levels of the methylated protein in neu-
trophils from control but not from arthritic mice (Figure 4).
These data suggest that TRL2 and IL-17 pathways might have
an important impact in the epigenetic control of neutrophil
functions and cytokine production. In the context of our
studies they could crosstalk and compete to regulate neu-
trophils activities in health and disease.

3.3. TLR2 Ligand and IL-17 Regulate RANKL Expression and
OPG Secretion by Neutrophils. At day 7 of arthritis induction,
the level of IL-17 in serum was elevated (Figure 1(c)) and
the frequencies of IL-17+ neutrophils were enhanced in the
circulation (Figure 3(b)). In order to study how this altered
IL-17 production influences the destructive potential of neu-
trophils, we analyzed the expression of RANKL, a molecule
directly involved in bone erosion and resorption. Blood
Ly6G+CD11b+ cells from nonarthritic mice did not express
RANKL (histograms, Figure 5(a)). Exogenous IL-17 induced
RANKL expression (histograms, Figure 5(a)) and increased
the frequencies of RANKL+ neutrophils in the control group
(graph, Figure 5(b)). However, TLR2 ligand failed to trigger
RANKL expression on neutrophils from control mice even
in the presence of IL-17 (histograms, Figure 5(a) and graph,
Figure 5(b)).
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Näıve

(%
 o

f g
ra

nu
lo

cy
te

 g
at

e)
Ly

6G
+

CD
1
1

b+
ce

lls
(a)

80

40

0

PBS

BM SF Blood

16

8

0

20

10

0

∗∗

∗∗
∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗

∗

ZY PBS ZY PBS ZYPBS
+ Ab

PBS
+ Ab

PBS
+ Ab

ZY
+ Ab

ZY
+ Ab

ZY
+ Ab

(%
 o

f g
ra

nu
lo

cy
te

 g
at

e)
Ly

6G
+

CD
1
1

b+
ce

lls

(%
 o

f t
ot

al
)

Ly
6G

+
CD

1
1

b+
ce

lls

(%
 o

f g
ra

nu
lo

cy
te

 g
at

e)
Ly

6G
+

CD
1
1

b+
ce

lls

(b)

PBS

ZY

PBS + Ab

ZY + Ab

Sa
fr

an
in

 O
 st

ai
ni

ng

∗∗∗

∗∗∗

∗∗∗
∗∗∗

∗∗∗

∗∗∗
∗∗∗

∗∗
∗∗

∗∗∗∗

∗

PBS ZY
PBS + Ab ZY + Ab

3

2

1

0

I PG

60

50

40

30

20

10

0

H
ist

ol
og

ic
 sc

or
e

PBS ZYPBS
+ Ab

ZY
+ Ab

Ca
rt

ila
ge

 er
os

io
n 

(%
)

(c)

Figure 2: Continued.
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Figure 2: Depletion of Ly6G+CD11b+ cells with monoclonal 1A8 antibody (Ab). (a) SCID mice were injected intraperitoneally (i.p) with
1A8 Ab (100 𝜇g/mouse) at days −2, +2, and +4 (arrows showing the injections). The mice received intra-articular (i.a.) knee injection of PBS
(10𝜇L; naive) or zymosan (200 𝜇g/10 𝜇L; arrow ZY) at day 0. Flow cytometry analysis indicates the loss of Ly6G+CD11b+ cells in BM after
Ab treatments. Values are the mean ± SEM (𝑛 = 7 mice/group), Student’s 𝑡-test. (b) At day 7 of TLR2 ligand injection (or 3 days after the
last 1A8 Ab administration) Ly6G+CD11b+ cells partially recover in BM but are completely lost in blood and SF of 1A8 Ab-treated mice.
Bars indicate the mean ± SEM (𝑛 = 7 mice/group). ∗𝑃 < 0.05; ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001, Student’s 𝑡-test. (c) The administration of 1A8 Ab
attenuates joint damages as shown on the representative photomicrographs (magnification 100x) and by histological scores for cell infiltration
(I), proteoglycan (PG) loss, and percentages of cartilage erosion. Values are the mean ± SEM (𝑛 = 7mice/group). ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001,
Kruskal-Wallis test and Mann-Whitney U-test. Ly6G+ cell depletion decreases the amounts of RANKL (d), IL-17 (e), and OPG (f) in serum
and SF of ZY mice. Values in (d), (e), and (f) are the mean ± SEM (𝑛 = 7 animals/group). ∗𝑃 < 0.05; ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001, Student’s
𝑡-test.

Blood Ly6G+CD11b+ cells from arthritic group expressed
RANKL unlike neutrophils from nonarthritic mice. Exoge-
nous IL-17 increased the intensity of RANKL staining but
not the frequencies of RANKL+ neutrophils (Figures 5(a)
and 5(b)). Zymosan failed to change RANKL expression
but yet in combination with IL-17 enhanced substantially
RANKL staining intensity and the frequencies of RANKL+
cells (Figures 5(a) and 5(b)).

In the same experimental setting we evaluated the
amount of secreted OPG in culture supernatants

(Figure 5(c)). Blood neutrophils from nonarthritic mice
produced OPG upon IL-17 and TLR2 ligand stimulation
alone or in combination (Figure 5(c)). Ly6G+CD11b+ cells
from arthritic mice secreted more OPG in cell cultures
than the control cells (Figure 5(c)). By contrast to controls
exogenous IL-17 failed to elevate OPG production by
neutrophils from arthritic group. The engagement of
TLR2 ligand diminished OPG secretion in cultures of
Ly6G+CD11b+ cells from arthritic mice. This effect was
amplified by IL-17 (Figure 5(c)), simultaneously to the
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Figure 3: Ly6G+CD11b+ cells fromarthriticmice produced IL-17 and IFN-𝛾. Purified blood neutrophils were cultured (1× 106/mL) inmedium
with GM-CSF (50 ng/mL) and stimulated with zymosan (20𝜇g/mL) or/and IL-17 (40 ng/mL) for 24 hours. Intracellular IL-17 and IFN-𝛾
production was evaluated by flow cytometry. (a) Ly6G+CD11b+ cells were IFN-𝛾−/IL-17− as shown on dot-plot histograms and graphs. IL-17
induces autocrine IL-17 protein expression and IFN-𝛾 synthesis in control cells. (b) Dot-plot histograms and graphs show spontaneous IL-17
and IFN-𝛾 production by Ly6G+CD11b+ cells from arthritic group. Zymosan provides stronger signals for IL-17 synthesis than exogenous
IL-17 and amplifies the generation of IL-17+ cells. Bars on graphs (a) and (b) represent the mean ± SEM (𝑛 = 5 animals/group; 3 experiments).
∗
𝑃 < 0.05; ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001, Student’s 𝑡-test.
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were obtained as described in Section 2. Methylated H3K9 in
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content. Densitometry analyses of IBs were performed by ImageJ
1.42 software (NIH, Bethesda, MD, USA). The density of methyl
H3K9 lines was normalized to lamin expression in each sample and
was presented in units.

upregulated RANKL expression on Ly6G+CD11b+ cells
(Figures 5(a) and 5(b)).

3.4. RANKL Expression, IL-17, and IFN-𝛾 Production of Ly6G+
Cells in SF. In vivo RANKL+ neutrophils in blood and SF
of arthritic mice can originate from mature neutrophils in
BM. We found more RANKL+ cells in BM Ly6G+CD11b+
population from arthritic mice in comparison with control
(Figure 6(a)). RANKL-bearing Ly6G+ cells accumulated in
SF of mice with arthritis (Figure 6(b)).

The cytokine production of synovial Ly6G+ cells was also
studied. The cell number yield from each mouse was low to
run intracellular flow cytometry.Thus, we pooled the SF cells
from five mice per group and stained them for Ly6G, IFN-𝛾,
and IL-17. Flow cytometry analyses were performed on gated
Ly6G+ population. Synovial Ly6G+ cells from arthritic mice
expressed IFN-𝛾 and IL-17 unlike the cells from control mice
(Figure 6(c)). It appeared that most of the cells were IFN-
𝛾
+IL-17+ (Figure 6(c)).

4. Discussion

The role of neutrophils in joint diseases has been mainly
associated with the secretion of proteolytic enzymes and
reactive oxygen radicals. Our study showed that the bone
destructive potential of neutrophils in arthritis was sustained
by increased IL-17 production and RANKL expression and
inhibited OPG secretion. In vitro exogenous IL-17 enhanced
the functional activity (IL-17 and IFN-𝛾 production and
RANKL expression) of blood neutrophils from both control
and arthritic mice. The effects of IL-17 were amplified by
TLR2 ligation on Ly6G+CD11b+ cells from arthritic mice
only. Therefore, we conclude that targeting TLR2 signaling
on neutrophils may limit bone resorption and joint damage
in arthritis.

Neutrophils arise from granulocyte precursors in BM.
Mature BM Ly6G+CD11b+ cells maintain the replenishment
pools in blood and spleen [25]. Various proinflammatory

factors andmediators trigger granulopoiesis and enhance the
mobilization ofmature Ly6G cells fromBM [2]. Among them
is TLR2which regulates neutrophil release via transcriptional
upregulation of G-protein-coupled receptor kinase-2 and
chemokine receptor CXCR2 downregulation [26]. In our
model the stimulatory effects of TLR2 on granulopoiesis and
neutrophils trafficking was confirmed by increased frequen-
cies of Ly6G+CD11b+ cells in BM, blood, and SF and by CD69
expression on circulating neutrophils. In vitro neutrophils
upregulate CD69 in response to various stimuli that induce
cell activation or priming like TLRs, TNF-𝛼, GM-CSF, IFN-
𝛾, or IFN-𝛼 [27].

The depletion of neutrophils by specific antibody shows a
crucial role of neutrophils for disease progression in a model
of collagen-antibody induced arthritis [28]. Two clones of
Abs are available for neutrophil elimination, clones RB6-
8C5, and 1A8. While 1A8 Ab recognizes Ly6G, RB6-8C5
binds to two Ly6 isoforms, Ly6G, and Ly6C. Besides on
neutrophils, Ly6C is found on dendritic cells, subpopulations
of lymphocytes, andmonocytes [28].We usedmore a specific
1A8 clone to target the population of mature neutrophils.
Ly6G+CD11b+ cells disappeared from blood and SFs of 1A8
Ab-treated mice. The administration of 1A8 Ab reduced the
degree of joint damages as shown by decreased scores for cell
infiltration, cartilage erosion, and PG loss and diminished
amount of bone-erosion accelerating marker RANKL in SF
and serum. 1A8 Ab completely abrogated OPG and IL-
17 production indicating that Ly6G+CD11b+ cells were the
source of both factors in serum and SF. We think that
neutrophils may provide a certain level of IL-17 that later on
during the development of arthritis can be amplified by mast
cells, monocytes, or T cells secreting also IL-17 [29, 30]. In RA
patients as well as in our study IL-17 appears at initial stage
of disease and before the disease onset [9–11]. Moreover, the
level of IL-17 in SF can predict the progression of joint damage
in RA patients [12].

Three recent studies have shown that neutrophils pro-
duced IL-17 under infectious and allergic conditions [31–33].
Intracellular IL-17 production was detected in synovial and
blood Ly6G+CD11b+ cells from arthritic BALB/c mice. IL-17
protein synthesis is regulated by IL-17 gene as well as of genes
for key transcription factors. Transcription is fine-tuned by
epigenetic histone modifications such as methylation and
acetylation. We observed the expression of monomethylated
H3K9 in neutrophils from arthritic mice but not in control
cells. The methylation of H3K9 induces gene silencing and
is associated with human and mouse granulocytes differ-
entiation and abnormalities in myeloid leukemia [34, 35].
In our study IL-17 triggered its own production and H3K9
methylation in nonarthritic neutrophils proposing that cer-
tain genes are silenced in order to acquire IL-17 expression.
Epigenetic modification of IL-17 gene expression is mainly
studied in T cells. Considerable amounts of IL-17 can be
maintained in T cells by increasing histone H3 acetylation
and methylation at the IL-17 gene promoter [36]. Our data
are too preliminary, but they outline the interest to study
IL-17 transcription and epigenetic modification of IL-17-
dependent gene expression in neutrophils and granulocytes
and in neutrophils in particular.
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Figure 5: RANKLexpression andOPGsecretion byneutrophilswere regulated byTLR2 ligand and IL-17. Purifiedneutrophilswere stimulated
as in Figure 3. (a) Representative histograms show RANKL expression on blood neutrophils from nonarthritic and arthritic mice. MFI: mean
fluorescence intensity. (b) Graphs indicate that IL-17 increases the frequencies of RANKL+ neutrophils in the control group. More RANKL+
cells are found after stimulation with TLR2 and IL-17 in arthritic group. (c) IL-17 and zymosan induce OPG secretion by control neutrophils
and inhibit OPG production by cells from arthritic mice. Values in (b) and (c) are the mean ± SEM (𝑛 = 5 animals/group; 3 experiments).
∗
𝑃 < 0.05; ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001, Student’s 𝑡-test.

Ly6G+CD11b+ cells from nonarthritic and arthritic mice
were sensitive to IL-17 stimulation, but they responded
differently to simultaneous IL-17R and TLR2 ligation in
vitro. While zymosan blocked the effects of exogenous IL-
17 on neutrophils from nonarthritic mice, it amplified IL-17
production in Ly6G+CD11b+ cells from arthritic group. TLR2
and IL-17 signaling pathways can interfere at various levels.
In particular, a conserved motif in the cytoplasmic domain
of receptor for IL-17 with homology to the TIR domain
has been identified [37]. TIR domain has a specific docking
site for adaptor protein MyD88 that allows the involvement
of TLR2 signaling pathway. Common transduction proteins
can sustain the assembly of IL-17R and can regulate the

strength of receptor expression [38]. At transcriptional level
both pathways can interfere through NF-𝜅B activation and
pathway (reviewed by [39]). We speculated that TLR2 and
IL-17R pathways directly compete for intracellular kinases,
adaptor proteins, or transcription factors. In neutrophils
from nonarthritic mice activated molecules or factors were
limited and less available for both signaling. By contrast
Ly6G+CD11b+ cells from arthritic group were primed or
activated (as shown by the expression of CD69) and in turn
they have in disposal high numbers of common transduction
molecules and transcription factors. Thus both pathways via
their crosstalk can provide a mechanism for regulation of
neutrophils activities in health and disease.
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Figure 6: RANKL expression, IL-17, and IFN-𝛾 production of Ly6G+ cells in BM or SF. (a) Dot-plot histograms show increased frequencies
of Ly6G+CD11b+ cells in BM of mice with arthritis than in control group.The density plots indicate a higher distribution of RANKL+ cells in
Ly6G+CD11b+ population from arthritic group (SSC: side scatter). (b) RANKL-bearing Ly6G+ cells accumulated in SF of mice with arthritis.
Bars represent the mean ± SEM (𝑛 = 5 animals/group; 3 experiments). ∗∗∗𝑃 < 0.001, Student’s 𝑡-test. (c) Synovial cells from 5 animals
per group were pooled and intracellular cytokine production was performed on gated Ly6G+ cells. Representative dot-plot histograms show
IFN-𝛾 and IL-17 production in Ly6G+ cells from SF of mice with arthritis (day 7) (𝑛 = 5 animals/group; representative from 3 experiments).
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IL-17 increases the recruitment of neutrophils at the site of
inflammation and influences the production of various proin-
flammatory mediators [11]. We observed that IL-17 initiated
IFN-𝛾 production in Ly6G+CD11b+ cells from nonarthritic
mice but failed to increase the frequencies of IFN-𝛾+ cells
in arthritic group. IL-17 can reduce degradation of mRNA
for certain cytokines and can enhance cell responsiveness
to second stimuli [40]. Indeed IL-17-producing neutrophils
act proximally and are required for IFN-𝛾 production [33].
In vivo TLRs, various proinflammatory cytokines, cell envi-
ronment, and disease stage can elicit the action of IL-17 on
neutrophils. In arthritic synovium IL-17 activates fibroblasts
and synoviocytes to produce IL-6, IL-8, TNF-𝛼, and GM-
CSF and to express TLR2 favoring cytokine production,
activation, and survival of neutrophils [41, 42]. In such
environment most of Ly6G+ cells in SF were double positive
for IFN-𝛾 and IL-17. The specific factors and cell populations
in blood created the conditions that likely generated single
IFN-𝛾+ or IL-17+ neutrophils. In cell cultures from arthritic
group TLR2 restimulation sustained this phenotype and
enhanced the generation of single IFN-𝛾+ and IL-17+ cells.

Bone destructive processes such as bone erosion and bone
resorption depend on the activation of osteoclasts. These
cells are sensitive to the action of IFN-𝛾 and IL-17, but
the RANKL/OPG system is crucial for their differentiation
and maturation. Various studies show a correlation between
severity of bone diseases and RANKL/OPG ratio in serum
and SF (reviewed by [43]). OPG is a soluble protein from
the TNF receptor superfamily and it inhibits osteoclast
differentiation and activity.We assume that neutrophils at the
initial stage of disease secreted OPG because the molecule
was absent in serum and SF after cell depletion by 1A8 Ab.
Experiments in vitro confirmed that OPG was released by
blood neutrophils from nonarthritic mice upon TLR2 stim-
ulation or spontaneously by neutrophils from TLR2 ligand-
injected group. Ly6G+CD11b+ cells from arthritic mice failed
to produce OPG after zymosan restimulation. This altered
responsiveness to repeated stimulation might maintain low
OPG levels during the development of arthritis that in turn
can sustain osteoclastogenesis and osteoclast activation. We
think that such mechanism may dominate at late stages of
disease when more neutrophils are accumulated in SF.

OPG decoy receptor, RANKL, exists in two isoforms,
a soluble protein, and a membrane bound protein. The
latter is sensitive to the cleavage by proteases. Thus, the
neutrophils producing proteases may affect the amount of
soluble RANKL in biological fluids. Indeed we found that
after neutrophil depletion the concentrations of RANKL
decreased in serum and SF of zymosan-injected mice.

The membrane bound RANKL is expressed by BM cells,
precursors of osteoclasts, and stromal cells [43]. In vivo TLR2
ligand induced RANKL expression on Ly6G+CD11b+ cells in
BM. Despite that RANKL+ pool of Ly6G+ cells was small, it
probablymaintained the frequencies of RANKL+ neutrophils
in circulation and even contributed to the accumulation
of RANKL-bearing cells in SF at early stage of disease
(day 7). The study describing RANKL expression on blood
neutrophils from RA patients supported our data [19]. The
same authors indicated the role of the environmental factors

since neutrophils from healthy donors upregulated RANKL
after incubationwith SF fromRApatients [19].We found that
exogenous IL-17 induced RANKL expression on RANKL-
negative blood neutrophils (control) and increased the den-
sity of surface RANKL on RANKL-bearing Ly6G+CD11b+
cells (arthritic group). TLR2 engagement potentiated the IL-
17-mediated RANKL expression only on neutrophils from
arthritic mice and inhibited OPG secretion in cell cultures at
the same time.Thus we built the hypothesis that TLR2 signal-
ing sustained the bone destructive potential of neutrophils by
an interference with IL-17-dependent RANKL/OPG system.

In summary, our study showed that (i) exogenous IL-
17 induced autocrine IL-17 production, IFN-𝛾 synthesis, and
RANKL expression on blood neutrophils from nonarthritic
mice and these effects were inhibited upon simultaneous
TLR2 stimulation; (ii) Ly6G+CD11b+ cells from arthritic
group produced IL-17, IFN-𝛾, and OPG spontaneously and
expressed RANKL; (iii) TLR2 increased IL-17-mediated
RANKL expression and inhibited OPG secretion by neu-
trophils from arthritic mice. Together these data suggest that
TLR2 signaling might be a good target to limit the bone
destructive potential of neutrophils in joint diseases.
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Objective. The aim of this review is to clarify the usefulness of bone, cartilage, and synovial biomarker in the management of
rheumatoid arthritis (RA) therapy in remission. Synovial Biomarkers. High MMP-3 levels are associated with joint progression
in RA patients, but there is no data about their utility in clinical remission. IIINys and Glc-Gal-PYD seem to be more specific to
synovium, butmore studies are required.Cartilage Biomarkers. Unbalance between cartilage break-down biomarkers (urinary CTX
II and COMP) and cartilage formation biomarker (PIIANP) was described.This unbalance is also associated with joint destruction
and prognosis of destruction. No data are available on patients in remission. Bone Biomarkers. RA activity is correlated with an
increase of bone resorption markers such as CTX I, PYD, and TRACP 5b and a decrease of bone formation markers such as OC
and BALP. RA therapies seem to improve bone turnover in limiting bone resorption. There is no study about bone marker utility
in remission. Conclusion. Biomarkers seem to correlate with RA activity and progression. They also could be used to manage RA
therapies, but we need more data on RA remission to predict relapse.

1. Introduction

Rheumatoid arthritis (RA) is the most frequent chronic
autoimmune inflammatory rheumatism, with a worldwide
prevalence around 1% [1]. RA severity is related to joint
destruction characterised by erosion and space narrowing
that is responsible for joint functional disability [2–4]. Early
diagnosis and treatment are crucial in order to prevent
joint destruction and preserve joint function defining the
“window of opportunity” concept [5, 6]. Since few years,
the concept “Outside-Inside” suggested a beginning of RA
disease also in the subchondral bone marrow [7]. In fact,
a subchondral bone loss at the metacarpal phalangeal head
starts since the early phase of RA disease [8]. Furthermore,
joint inflammation due to synovitis is one of the most
powerful predictors of new bone erosion [9]. So, the synovial
membranewas the first actormainly described by production
of some mediators induced by inflammatory cytokines such
as TNF or others. These mediators induced cartilage matrix
degradation and subchondral bone loss [10, 11]. These data

support a strong interaction between synovial membrane,
cartilage, and subchondral bone. Inflammatory joint induced
the release of specific protein fragments from its various
compartments into the serum and the urine, which may
be used as tissue specific biomarkers [12]. By this way,
biomarkers of each component of the joint could be useful
to manage RA patients.

TNF inhibitors and other biologics reduce synovitis,
biomarkers of inflammation, and bone destruction. However,
dissociation between clinical and radiological effect of TNF
inhibitors has been reported. These TNF inhibitors are able
to block joint destruction, even if RA disease is still active
[13–15]. In 2014, in front of early RA patient, the goal of
early RA therapy is to obtain remission according to the new
criteria for remission ACR/EULAR [16]. However, though
clinical remission was obtained, in some patients a structural
progression can occur [17] probably due to persistence of joint
inflammation [18, 19]. Exploration with specific biomarkers
of each component of the joint could be helpful to investigate
this paradigm [20].
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In daily practice in 2014, only DAS28 combining clinical
parameters with erythrocyte sedimentation rate (ESR) or C-
reactive protein (CRP) is used. ESR and CRP are inflam-
matory biomarkers, but not specific to the joint. So, they
are not strongly correlated with joint involvement. Despite
its large usefulness in daily practice, DAS28 fails to strongly
predict the joint progression or a real remission.At the time of
“personalized medicine,” which aims to individually improve
treatment management [21], biomarkers of the joint will be
useful in RA especially at the early stage.The aimof this paper
is to review some biomarkers of synovial, cartilage, and bone
turnover in RA, clarify their utility in RA management, and
analyze data in remission.

2. Synovial Biomarkers

Here, we focused our review on three major synovial
biomarkers.Their interests to manage RA are summarized in
Table 1.

Matrixmetalloproteinase-3 (MMP-3 or stromelysin 1) is a
proteinase secreted by synovial fibroblasts and chondrocytes.
Its activity results in degradation of aggrecan core protein,
cartilage link protein, fibronectin, and collagen types IV, VII,
IX, and XI [22]. MMP-3 is present in RA synovial fluid and
overexpressed in rheumatoid synovium [23, 24]. One MMP-
3 polymorphism was described to be associated with higher
joint damage in RA [25, 26]. Otherwise, serum MMP-3 level
was suggested as a predictor for joint destruction in early RA
[27, 28] or established RA [29, 30]. In fact, circulating MMP-
3 level seems to be genetically determined [26]. Correlation
between serum MMP-3 level and joint damage progression
appeared to be independent of rheumatoid factor (RF) or
ACPA status [31]. The next step was to assess MMP-3
variation induced by RA therapy and particularly during
biological therapies. Anti-TNF therapy decreased MMP-3
expression in RA patients [32, 33]. Similar results were
observed with tocilizumab (IL-6 blocker) [34] or abatacept
(inhibitor of costimulation) [35]. Then, MMP-3 monitoring
was investigated to improve therapeutic strategy.This was the
purpose of the T-4 study [36].The best outcomewas observed
in the group combining DAS28 and MMP-3 monitoring
[36]. Finally, MMP-3 was also investigated in RA remission
situation. Its level was similar in RA patients in remission
or not induced by anti-TNF therapy [37]. However, normal
MMP-3 level in RA patients treated with tocilizumab was
predictive to absence of relapse after tocilizumab cessation
[38]. To summarize, high MMP-3 level was associated with
disease activity and joint progression in RA patients and
should be used in association with usual inflammatory
markers to follow therapy efficiency. However, this biomarker
was never tested in patients in clinical remission to predict
structural remission.

Another synovial biomarker considered in RA is the
glycosylated form of pyridinoline (PYD) [39]. PYD is mainly
a bone resorption biomarker but is also related to remodeling
of cartilage and synovium [40]. The glycosylated analogue
of PYD, glucosyl-galactosyl-PYD (Glc-Gal-PYD), can be
assessed in urine and appeared to be specific to synovial
tissue [39]. Urinary Glc-Gal-PYD level was higher in patients

with early RA than controls and its high level is associated
with higher risk for the progression of joint damage [28].
In established RA, urinary Glc-Gal-PYD was associated with
changes of the erosion, joint space narrowing (JSN), and the
total Sharp score [41]. After one year of anti-TNF therapy,
the levels of urinary Glc-Gal-PYD was similar in RA patients
with or without progressive joint damage over one year of
anti-TNF therapy, but its reduction over one year was higher
in patients with progressive joint damage [41]. These results
suggested that, in some patients, other mechanisms were
possibly involved than TNF related inflammation.

The last synovium biomarker recently developed is the
nitrated type III collagen (IIINys), which was explored in
both osteoarthritis (OA) and RA patients. In patients with
joint disorder, the synovial membrane contains nitrated pro-
teins [42]. IIINys was increased in serum from OA patients
[43] and RA patients [44]. Its level was the highest in RA
patients which suggests that it is related to synovial tissue
inflammation [44]. However, no more data are currently
available for this biomarker.

We attempted to describe synovial biomarkers and put
out their interest in RA management. Despite many studies
reviewed, no data are currently available to predict relapse
in RA patients in remission. So, these biomarkers need to be
tested in this situation.

3. Cartilage Biomarkers

Then, we focused on three main cartilage biomarkers with
a summary of their characteristics in Table 2. Two are
biomarkers of cartilage breakdown, whereas the third one
is a biomarker of cartilage formation. Cartilage homeostasis
consists in balance between degradation and formation. In
RA, there is an imbalance in favour of destruction [45].

Cartilage is mainly composed of collagen type II (70%)
and proteoglycans including aggrecan which is the most
abundant one. MMPs and aggrecanases are mediators of car-
tilage degradation. Several cartilage degradation fragments
can be measured. Collagen type II C-telopeptide (CTX-II)
is a neoepitope generated from MMPs, derived from the
carboxy-terminal part of type II collagen [46]. In early RA,
urinaryCTX-II level was higher than in controls, and patients
with high CTX-II level have a higher risk for the progression
of joint damage over 1 year, independent of the extent of
joint destruction at baseline and of clinical indices of disease
activity [28]. In established RA, urinary CTX-II level was
associated with rapid radiologic progression [47] or changes
of the JSN Sharp score over one year [41]. Then, CTX-II
was assessed during anti-TNF therapy in RA patients. After
one year of anti-TNF therapy, the levels of urinary CTX-
II were similar in RA patients with or without progressive
joint damage over one year of anti-TNF therapy. In patients
with progressive joint damage, reduction of urinary CTX-II
was higher than in others [41]. No data on RA remission are
available at this time.

Cartilage oligomeric matrix protein (COMP) is a non-
collagenous extracellular matrix protein mainly found in
cartilage maintaining the integrity of the collagen network
[48]. Serum COMP was reduced in RA patients in remission
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Table 1: Synovium biomarkers and their interests in RA management.

Synovial biomarker Expressed in RA Treatment response Joint destruction Effects on monitoring in clinical
response and progression

MMP-3 [23, 24] [32–35] [25, 27, 29–31] [36]
Glc-Gal-PYD [28, 39, 40] No data available [28, 39, 41] No data available
IIINys [44] No data available No data available No data available
MMP-3: matrix metalloproteinase-3; Glc-Gal-PYD: glucosyl-galactosyl pyridinoline; IIINys: nitrated type III collagen.

Table 2: More studied cartilage biomarkers and their interests in RA management.

Cartilage biomarker Expressed in RA Treatment response Joint destruction
CTX-II [28, 47] [41] [28, 41, 47]
COMP [49] [37] [49]
PIIANP [50] No data available No data available
CTX-II: collagen type II C-telopeptide; COMP: cartilage oligomeric matrix protein; PIIANP: propeptide of type IIA procollagen.

induced by anti-TNF therapy compared to other patients
[37]. In early RA, early changes in serum COMP levels were
related to radiological outcome over the first 5 years [49].This
biomarker was not yet analyzed during biologic therapy or in
RA remission.

Serum propeptide of type IIA procollagen (PIIANP)
arises from the maturation of type IIA procollagen. Thus,
PIIANP is a biomarker of cartilage formation. Its level was
decreased in patients with OA or RA. In RA patients treated
with low-dose corticosteroids, serum PIIANP is significantly
higher than in untreated patients [50]. No more data are
currently available on biomarker of cartilage formation.

So unbalance between cartilage formation and break-
down is described in RA disease. No data are at this time
available to describe their interest to predict relapse in RA
patient in remission. More data are required in this situation
to improve their utilities.

4. Bone Biomarkers

Bone homeostasis is highly regulated by balance between
new bone formation and removing old bone. Activated
osteoclasts degrade bone matrix while osteoblasts form new
matrix [51]. Type I collagen constitutes 90% of bone matrix.
Bone formation markers included the serum bone formation
markers total osteocalcin (OC), the alkaline phosphatase
bone isoenzyme (BALP), and the C- and N-propeptide of
type I collagen (PICP and PINP). Bone degradation is driven
by osteoclasts and results in stimulation by RANKL induced
by IL-1𝛽, IL-6, or TNF. Osteoclasts secrete cathepsin K,
which degrades the collagen type I and releases C-terminal
crosslinked telopeptide of type I collagen (CTX-I), or N-
terminal crosslinked telopeptide of type I collagen (NTX)
neoepitope. The crosslinked carboxyterminal telopeptide of
type I collagen (ICTP) is another fragment of C-telopeptide
end, which is not released with cathepsin K action but
probably MMPs [52, 53]. Other type I collagen crosslinks are
pyridinoline (PYD) and deoxypyridinoline (DPD) [54].

In established RA, uncoupling with low level of bone
formation markers and high bone resorption markers was

described in 1999 [55]. OC, a bone formation marker, was
reduced in RA without destruction compared to controls.
On the contrary, CTX-I, a catabolic bone marker, is higher
in RA patients with destruction compared to other RA
patients [55]. This uncoupling was recently confirmed by
using an innovativeway to assess bone damage inRAby high-
resolution peripheral quantitative computed tomography
(HR-pQCT) [56]. TRAP 5b level, a catabolic bone marker,
was associated with bone erosions, whereas bone alkaline
phosphatase (BAP) was associated with osteophytes [57].
Furthermore, in longitudinal studies, catabolic bone markers
(CTX-I or PYD) are also good predictors for radiologic
progression in RA [47, 58, 59].

Like cartilage and synovium turnover markers, bone
biomarkers were assessed during various biological therapies.
During anti-TNF therapy, ratio between bone formation
markers and bone resorption markers increased during one
year of treatment, suggesting improvement of the bone
remodeling balance, mainly due to a decrease in bone
resorption [60]. A differential effect was observed at one
year of anti-TNF therapy between ICTP and CTX-I. ICTP,
which is related to MMPs activity, remained decreased at
one year, whereas CTX-I level, which is related to cathepsin
K, returned to its baseline level at one year [60]. This
suggests a strong effect of anti-TNF on local subchondral
bone related to joint inflammation. Since TNF blockers
already showed a reduction of the bone biomarker unbalance,
TNF blockers also demonstrated a positive effect on bone
mineral density in RA patients with or without a clinical
response as observed at the joint level [61]. Serum RANKL
was decreased during anti-TNF therapy [62]. All these data
support that anti-TNF therapy is not only able to prevent
joint destruction, but it is also able to prevent bone loss
in RA patients. Similarly, with tocilizumab, bone forma-
tion biomarker PINP increased whereas bone resorption
markers, ICTP and CTX-I, decreased [63]. So TNF or IL-6
inhibitors increased bone formation/bone resorption ration.
This suggests a nonspecific effect of a pathway but an effect
on suppression of joint inflammation. Denosumab is also a
biotherapy targetingRANKL [64], but not a proinflammatory
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cytokine. Denosumab reduced both serum PINP and CTX-I
levels over one year [65], whereas urinary CTX-II decreased
only at 3 months. Since denosumab targets RANKL, but not
a proinflammatory cytokine, RA disease was not improved,
but it reduced erosion progression. So according to the target,
drugs have different effects. Blocking inflammation reduces
bone loss, but blocking pathway induced in bone loss reduced
it without effect on RA activity.

Among all these biomarkers, only CTX-I has demon-
strated its ability to be associated with joint destruction,
sensitivity to treatment, and prediction of joint progression.
However, no data are available for relapse prediction in RA
remission.

5. Discussion

We showed that synovium, cartilage, and bone turnover
biomarkers are correlated with RA activity. To summarize,
resorption markers increase with RA activity in the three
components of the joint. Furthermore, these biomarkers
could be useful to identify RA patients with high risk of rapid
disease progression. This suggests that these selected RA
patients require a rapid active therapy. Since these biomarkers
reflected different compartments involved in RA, they will be
useful to define structural remission in RA. Some of these
reviewed biomarkers compose the multibiomarker disease
activity (MBDA) test developed to quantify RA disease activ-
ity [66]. Recent data suggested that lowMBDAwas associated
with clinical remission criteria [67, 68]. However, no study
currently exploredMBDA to predict relapse in RA remission.
Treat-to-target strategy emerged since few years to manage
early RA patients. This strategy aims to achieve clinical
remission and appears to be a realistic today [69]. Only one
study combining clinical and biomarkers demonstrated its
utility in the treat-to- target strategy [36]. This study is the
typical example of the “personalized medicine” [70]. The
only biomarker with enough promising results is MMP-3.
However, we need more studies to generate more data to
define the place of these biomarkers in RA remission. At this
time, we failed to have the “perfect” biomarker which could
be used in RA management such as HbA1c in diabetes [71].
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RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from
novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the
inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria) and for prognostic notably in at risk of evolution patients with
autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable.
Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow
tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential
as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to
rheumatology.We will review the current knowledge’s relation to cytokine used as biomarker in RA. However, given the complexity
and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple
biomarker signatures may represent more realistic approach for the future of personalised medicine in RA.

1. Biomarker Research

1.1. General Features of Biomarkers. Biomarkers are defined
as anatomical, physiological, biochemical, molecular param-
eters or imaging features that can be used to refine diagnosis,
measure the progress of diseases, or predict and monitor the
effects of treatment. They can also be associated with the
severity of specific disease states.

Biomarkers can be detected and measured by a variety of
methods including physical examination, laboratory assays,
and medical imaging. Some biomarkers arepresent in partic-
ular groups of patients but not others, and as a result they are
defined as qualitative biomarkers in contrast to quantitative
biomarkers that are present at various degrees/levels in all
patients. The accessibility of a biological biomarker, which is
defined by themethods that are used to access the biomaterial
necessary tomeasure it, is an important factor in relation to its
adoption in clinical practice. If a biomarker can be obtained
in a minimally invasive manner (typically from blood, saliva,

or urine) or use tissue imaging as opposed to tissue sampling
(biopsy), it will obviously be more attractive.

In the context of rheumatic diseases, typical biological
biomarkers could encompass genetic markers, products of
gene expression, autoantibodies, cytokine/growth factors,
acute phase reactants, tissue abnormalities visualized by
immunohistochemistry in synovial biopsy, a product of tissue
degradation, or a cell subset that can be phenotyped and
enumerated. The sources of these biomarkers could be the
serum/plasma, urine, synovial fluid, tissue biopsy, or cells
from blood, fluid, lymph node, or tissue. In contrast, a
clinical biomarker (i.e., clinical surrogate) would constitute
a physical variable (sign or symptom), a clinical judgment,
or an outcome measurement that emerges as a sequel of the
underlying disease process. In rheumatology, this variable
may be not only joint counts, global assessment, pain score,
duration of morning stiffness, and other clinical variables but
also composite indices or functional, radiographic scores.
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1.2. Specificity and Sensitivity. Sensitivity and specificity are
statistical measures of the performance of biomarker using a
binary classification test.Thismeasures use used a categorical
classification of patients with respect to true and false posi-
tive/negative results.

Sensitivity relates to the biomarker’s ability to identify
positive results. It measures the proportion of individuals
which are correctly identified by the biomarker. Sensitivity
is different from positive predictive value (PPV, also called
precision), representing the proportion of actual positives in
the population being tested.

On the other hand, specificity relates to the ability of the
test to identify negative results. It measures the proportion of
people without the biomarker that are correctly not assigned
to the condition. Sensitivity may be affected in case of
a number of indeterminate test results. It is possible to
exclude these cases from analysis or, alternatively, to treat
them as false negatives (which gives the worst-case value for
sensitivity but also underestimates it), but such exclusions
should be stated when quoting sensitivity.

An optimal biomarker would aim to achieve 100% sen-
sitivity (i.e., predict all people with the condition) and 100%
specificity (i.e., not predict anyone from the control group).
For any biomarker, there is usually a trade-off between the
measures and their impact, setting acceptable limits and
allowing detection of false positive (lowering specificity), but
limiting false negative (increasing sensitivity).

Taking the example of anticitrullinated peptide antibod-
ies (ACPA) in RA, sensitivity is usually reported around 68%
and specificity is reported at 95% [1]. However, sensitivity
is highly dependent on the group of individuals tested and
values observed in established diseases that do not reflect the
general RA patients’ population or early disease. Indeed, in
patient with recent onset of symptoms, studies have shown
that sensitivity ismuch lower (ranging from35% to 50%) even
if specificity remains closer to 95% [2].

Multivariate markers are as follows: the concept of
biomarker algorithm or multivariate biomarkers has recently
been developed based on the observation that a single
biomarker is often insufficient to predict the outcome of
interest, when a combination of biomarkers is better at
achieving the prediction. It is usually observed that multi-
variate biomarkers perform better in replicate studies than
univariate biomarkers.

1.3. Need for Biomarkers in Rheumatoid Arthritis (RA). RA
is a complex disease that develops as a series of events often
referred to as disease continuum. Research into the preclin-
ical and early phases of RA recently reviewed these events
and categorised groups of individuals based on risk factors
[3]. According to this new terminology, healthy individuals
without RA are described as having potentially two main
types of risks: (i) a genetic risk, for example, if they carry the
shared epitope allele and (ii) an environmental risk if they
smoke.They, however, do not present any laboratory evidence
of symptoms or any signs of inflammatory arthritis. The first
phase of RA disease progression would then be a state in
which individuals develop features of systemic autoimmunity
that can be measured by laboratory investigations and are

known to be associatedwith RA (such asACPA) [3] andmore
recently with carbamylated protein [4, 5]. These individuals
still do not present any symptoms or signs of inflammatory
arthritis. A further stage is then defined by the appearance of
symptoms (such as arthralgia/morning stiffness), still with no
evidence of any clinical synovitis.These individuals can come
from both the genetic and environmental risk groups, from
the systemic immunity group, or from the general healthy
population. Finally, the last progression stage is represented
by the development of clinically apparent inflammatory
arthritis that may not yet fulfil the criteria for RA diagnosis
[6], and hence it is being termed undifferentiated arthritis but
is likely to evolve towards RA.

There are many situations in RA, which would benefit
from biomarker discovery, considering that biomarkers may
be broadly classified as diagnostic (detected when disease is
present), prognostic (associated with disease outcome), or
predictive markers (associated with drug response). Diag-
nosis is obviously an area where new biomarkers are still
essential as RA is a condition where diagnosis relies on signs
and symptoms even if recent progress has been made with
the inclusion of ACPA to the recently updated criteria [6].
However, in RA diagnosis, the performance of biomarkers
may greatly depend on the duration of symptoms at the time
of test, the current level of inflammation, and the amount of
destructive processes already undergone, as well as on the
type of tissue tested. Prognostic biomarkers which predict
the future course of the disease and provide information
regarding the outcome irrespective of therapy would be very
important in foreseeing the evolution of undifferentiated
arthritis towards RA or with respect to the severity of RA
which can be quite variable. Prognostic biomarker validation
is therefore relatively straightforward, as it is associated with
the disease and the patient and can be established (at least
in theory) using data from a series of patients treated with
standard treatment. The discovery of specific biomarkers for
poor prognosis would, for example, enable early intervention
and intensive treatment. Risk biomarkers for predicting
rapid evolution or cardiovascular complications, for example,
remain highly desirable. Monitoring biomarkers would be
useful in predicting relapse and candidates are available
using flow cytometry based cell subset phenotyping [7–
9]. Predictive biomarkers would separate an RA patients’
population with respect to their outcome in response to a
particular event taking place (i.e., particular therapy). They
are therefore present/absent prior to the outcome occurring
and have obvious applications with the greatest potential to
affect clinical practice by targeting drugs to relevant patient
subgroups. Biomarkers allowing the selection of an optimal
drug for a particular patient (acknowledging that certain
subset of patients respond better to certain drug than others)
may represent another essential step in patients screening
that would notably allow personalised medicine models to
be developed, tailoring therapy to the individual, shortening
time from onset to effective treatment, improving cost and
risk-benefit ratios of drugs, and ultimately achieving high
response rate with minimal toxicity [10]; however, in patients
with long-standing RA heterogeneity in disease presentation,
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there remains a major obstacle even when using biomaterial
as close to the disease site as synovial tissue [11].

There are several sources of tissue and body fluid that
can be considered for biomarker discovery programs in
RA. The suitability between the levels of invasiveness and
the benefit provided by the biomarkers is however to be
considered as well as the level of investigation patients would
be likely to accept. Diagnostic biomarkers, considering the
prevalence of the disease (1-2%), would need to use biological
material which is easily accessible and a method of collection
which would not impact on the progression of the disease.
Blood and urine therefore appear more suitable compared to
synovial tissue or fluid particularly at this early stage of the
disease where mostly small joints are involved. Later in the
disease continuum, tolerability for more invasive procedure
such as fluid aspiration or biopsy collection would provide
material reflecting the disease site more closely allowing
for individual variability to be taken into account for a
personalised medicine approach.

2. Cytokines as Biomarkers

2.1. Cytokine Classification. Cytokines are small proteins
which play important roles in cell signalling. They are
secreted by a variety of cellular sources acting either on the
cell producing them (autocrine) or on the surrounding cells
(paracrine). They are classified as proteins and sometimes
peptides and can also be glycosylated. Cytokines usually
circulate in very small amounts (picomolar 10−12M) and,
nonetheless, their concentration can increase up to 1,000-
fold when required. Cytokines have originally been identified
in the context of the immune system; however, it has now
been shown that they are produced by and influence the
behaviour of a variety of nonimmune cells. Cytokines are
often referred to as “growth factors” by associationwith one of
theirmost common effects, the induction of cell proliferation,
despite a wide spectrum of roles in survival, apoptosis,
differentiation, and functional activation (contribution to the
immune response).

Over the years, cytokines have been categorized into
various classes, families, or superfamilies. It has been done
using either their numerical order of discovery (notably, in
the interleukin family, currently up to IL-38) or a given
functional activity (e.g., the larger tumour necrosis factor
family). In that case, they are further divided between
cytokines which enhance cellular immune responses (type 1)
as opposed to thosewhich favour antibody responses (type 2).
This subclassification is performed using their function (early
or late, innate or adaptive, pro- or anti-inflammatory, mito-
genic, regulatory, survival functions) or, sometimes, using
their primary cell of origin (monokine, lymphokine). More
recently, classification has been achieved using structural
homologies shared between related molecules. Nevertheless,
despite sharing sequence homology and some promiscuity
between their receptor systems, cytokines demonstrate speci-
ficity in their function and even opposing functions within
members of the same family (best illustrated in the TNF
superfamily).

Methods of detection for cytokines also vary consider-
ably. Enzyme-linked immunosorbent assays (ELISAs) have
long been considered the “gold standard,” but, nowadays,
the development of multiplexing technology has allowed
biomarker programs to investigate whole cytokine networks
as opposed to individual candidates notably enabling large
data sets to be generated from small body fluid volumes. Sev-
eral multiplexing technologies are now available, including
the bead-based immunoassay (often referred to as Luminex
assay), membrane-based ELISAs, andMosaic ELISAs, as well
as cytometric bead arrays (CBAs). Concerns have been raised
related to the sensitivity of somemultiplex solid-phase assays
[12] as well as interference from heterophilic antibodies [12–
19]. This is of particular relevance in autoimmune disease
where rheumatoid factor (RF), a heterophilic autoantibody
directed against the Fc portion of IgG is present notably in
RA [12, 20–25].

2.2. Variability and Limitations of Cytokine Measurements

2.2.1. Patient Related Variability. There are a number of fea-
tures and conditions that can influence cytokine production
which are related to donor variability in both health and
disease. Some of these characteristics are unlikely to change
during treatment (genetic/ethnic background, gender, and
age); however, others may greatly limit the ability to use
cytokines as biomarkers in everyday practice. These factors
such as diurnal rhythmicity and sample handling factors
(collection methods, storage, and plasma versus serum) may
influence the measurement of cytokines and are also likely
to change with not only therapy but also stress and cachexia.
Such factors are likely to contribute considerably to the
disparities seen among similar types of clinical studies [53–
55].

(1) Age and Gender Effects. Comprehensive analysis of 30
different biomarkers in ≈400 healthy donors, ranging in age
from 40 to 80 years, showed an increase in serum interferon-
inducible chemokines (MIG and IP-10), eotaxin, and soluble
TNFR-II with advancing age [56]. Multiple studies discussed
differences in cytokine production associated with donor age,
and several reports have demonstrated that chronic, low-
grade inflammation is linked with the aging process [57–
59]. An age-related increase in IL-6 concentration has been
reported in serum, plasma, and supernatants of mononuclear
cell cultures obtained from elderly subjects [60, 61]. Some
studies demonstrated that plasma levels of tumor necrosis
factor (TNF) are elevated in elderly populations [59, 62–
64]. Conversely, other cytokines regulating T cell functions,
such as IL-2, may be decreased with aging. The suppressed
production of IL-2 leads to a small clonal expansion of T
cells thus decreasing the ability to develop specific immune
responses [61]. Modifications of the immune system are glob-
ally evaluated as a form of deterioration called immunose-
nescence. However, ageing is also accompanied by a chronic
low-grade inflammation state, showed by a 2 to 4-fold
increase in serum levels of inflammatory mediators which
act as predictors of mortality independently of preexisting
morbidity. This proinflammatory status underlies biological
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mechanisms responsible for decline in physical function, and
inflammatory age-related diseases are initiated or worsened
by systemic inflammation [65].The term “inflammaging” has
been coined to explain the underlying changes common to
the most age-associated conditions [66, 67].

Longitudinal cytokine production in paediatric and adult
patients identified multiple differences in terms of proin-
flammatory cytokines such as IL-6, IL-8, IL-1alpha, IL-1beta,
MCP-1, MIP-1alpha, IL-15, IL-5, IL-17, IL-18, and IP-10 and
of anti-inflammatory cytokines such as IL-10, G-CSF, IL-
13, IFN-gamma, and IL-4 between the two groups [68].
Altogether, the age of onset in RA patients is to be taken into
consideration as it may reflect the cytokine production pro-
file. Men and women also present with gender related differ-
ences in the way their immune system responds to challenge
[69]. Females demonstrate better B cell-mediated immunity
than age-matchedmales (with higher immunoglobulin levels,
stronger antibody responses, and increased resistance to
certain infections). Gender also influences T cell immunity,
females having greater resistance to induced tolerance, an
increased risk to reject grafts, and higher levels of IL-1, IL-4,
and IFN-gamma in contrast to men who produce more IL-2,
-4, and -13 and whose monocytes secrete more IL-1beta and
TNF-alpha [70]. Differences in cytokine production profile
have also been suggested to play an important role in the
gender bias with regards to the ratio of relapsing remitting
and secondary progressive multiple sclerosis [71] as well as
susceptibility to urinary infection [72]. Aging has also been
associated with alterations of the musculoskeletal system
and a decline in sex hormone levels, which have a central
role in the regulation of bone turnover. The effect of age
combined with gender on cytokines and markers of bone
metabolism production showed an increased proportion of T
cells producing IFN-gamma and IL-2, IL-4, IL-10, and IL-13
particularly in elderly women after menopause [73].

(2) Circadian Rhythm. Cytokines present a circadian pattern.
For example, IFN-gamma, TNF-alpha, IL-1, and IL-12 pro-
duction exhibits distinct diurnal rhythms that peak in the
early morning [74] and are related to the rhythm of plasma
cortisol and melatonin [75–77]. Taking IL-6 as an example,
notably with respect to RA, IL-6 demonstrates important
variation in serum or plasma levels in healthy subjects over a
day period with a particular biphasic rhythm [78] altogether
amounting up to a CV >23%. After correction for analytical
variation, a rise in serum IL-6 in the late evening and the
earlymorning has been reported inRA [78–82] aswell as high
variations between andwithin days not necessarily indicating
rhythmicity [54]. Therefore, only IL-6 changes over twice the
biological variation (>50% difference) should be considered
significant [78]; however, in order to obtain comparable and
meaningful results, the time of sample collection should be
synchronized, with a morning sample collection time being
ideal. This does not affect all cytokines but is not particularly
well described for many and should be considered if/when
validating a biomarker for clinical use.

(3) Food Intake. Long-term food intake patterns (i.e., obesity
or weight loss) have been shown to affect circulating cytokine

levels, notably TNF-alpha [83]. Postprandial cytokine levels
are also affected by feeding; notably circulating IL-6 levels
are increased, while TNF-alpha levels are decreased [84–
87]. Food supplements (in particular, antioxidants such as
glutathione and vitamins E and C) can attenuate the feeding-
induced rise in plasma cytokines [88, 89]. Hence, patients
should be instructed to maintain normal dietary habits and
avoid food supplements prior to sample collection if the
cytokine of interest is sensitive to such regulation [90, 91].

(4) Exercise. Physical exercise can affect cytokine levels in the
circulation [54, 92]. While plasma cytokines are produced by
many cell types, muscle cells are a major source of secreted
cytokines during exercise [93, 94]. However, these particular
responses are highly specific to the exercise protocol and
physiological strain (duration, nature of the exercise, and
intensity) [95, 96]. Several studies reported elevation of
plasma IL-6 in healthy subjects, which peaked at the end
of exercise. The magnitude of the IL-6 response was related
to the duration and intensity of the muscle work, the mass
of muscle recruited, and the subject’s endurance capacity
[78, 97–99]. In patients with RA, no changes in serum IL-
6 were found after cycling. This could be due to the less
strenuous exercise performed by the RA patients because of
their widespread joint pain [78, 100]. In contrast, evidence
suggests that the prophylactic effect of prolonged, endurance
type exercise protocols may be mediated via the induction of
an anti-inflammatory environment (increases in circulating
levels of IL-1RA and IL-10) [101]; however, how/whether
both are linked remains poorly defined.There is nevertheless
consensus that exercise training protects against some types
of cancers by enhancing antitumour immunity and reducing
inflammatory mediators. Altogether, any unconventional
strenuous activity prior to blood collection for cytokine
measurements should be avoided.

(5) Stress. Stress and emotional problems were also shown
to influence cytokines levels; however, studies yielded con-
tradictory data with decrease, increase, and no change in
proinflammatory cytokine production being reported [102–
104].Nevertheless, lower self-rated healthwas associatedwith
higher levels of inflammatory cytokines IL-1 and TNF-alpha
(controlling for age, education, and physical health) [104].

2.2.2. Preanalytical Related Variability. There are several
specific problems posed by sampling conditions (i.e., preana-
lytical issues) in addition to those described above. Cytokines
act either in a paracrine or an autocrine manner as they are
released and consumed locally, close to the site where the
immune reaction occurs.Therefore, they are rarely detectable
in peripheral blood and then only at low levels [105]. Blood
may thus only partly reflect pathologies, including RA, and
therefore not be the material of choice. The half-life of many
cytokines is also measured in minutes; hence, the time lapse
between the collection andprocessing of the samplesmay be a
significant factor limiting the use of cytokines as biomarkers.

Data reproducibility can be affected by normal human
variability, which is relatively easy to control inmodel systems
(i.e., in cell culture or even animal models) but is much
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harder to control in real subjects. Designing and testing
the sample collection (i.e., anticoagulants, stabilizing agents)
and handling (temperature, elapsed time from collection to
initial processing, and endogenous degrading properties of
the analyte) and processing protocol/method will represent
key elements in the successful development of any biomarkers
[106].

(1) Serum or Plasma? In body fluids, cytokines can exist under
multiple molecular forms related to posttranslational modifi-
cations (i.e., glycosylation), monomers/polymers, precursors,
and degradation products or complexed with other proteins
[107]. Such molecular forms can behave differently in assays
used to determine their levels; therefore, choice of different
analytical techniques will be determinant in selecting blood
preparation. Serum and plasma are not interchangeable,
and the use of one or the other will determine which
technique should be used for analyte quantification (see
Table 1). Therefore, a lack of consensus exists with respect to
the optimal type of specimen to measure cytokines, and the
question remains open as to whether plasma or serum should
be used. It is important to determine if the method used to
collect and prepare the sample may introduce alterations to
the cytokine to be tested (i.e., cytokines, either individually or
on all proteins in the sample) or whether certain preparation
methods are desirable or not for certain cytokines [108].

Serum represents the soluble fraction of clotted blood.
Serum preparation involves the removal of fibrinogen,
platelets, and other circulating proteins. Clotting takes a
minimum of 30 minutes but no longer than 60 minutes.
Blood should then be centrifuged for 10 minutes and serum
should be separated from the clot. Blood cells may get
activated during the clot formation and cytokines may be
released as a result (such as IL-1, IL-6, and CXCL8) [27, 90,
109, 110]. Rapid sample processing is therefore essential to
accurately measure cytokines due to platelet release (i.e., IL-1,
IL-6, sCD40L, and others) [21]. For this reason, in order to
have correct estimates of specific cytokine levels, it may be
preferable to measure them in plasma rather than in serum
[34, 111]. This notably raised issues when comparing serum
and plasma levels for TGF, IL-1, IL-6, IL-7, and so forth [38].

Plasma is the soluble fraction of anticoagulated blood. To
obtain plasma, various anticoagulants can be used (ethylene-
diaminetetraacetic acid (EDTA), lithium/sodium heparin,
and sodium citrate). Cytokine measurements were shown
to be affected by the anticoagulant used [78] and, notably,
lithium heparin and sodium citrate were shown to affect
levels of IL-6 and TNF-alpha compared to EDTA plasma [35,
112, 113]. Citrate plasma collection also results in the reduction
of total protein concentration due to the volume of citrate
anticoagulant diluting the blood, in addition to an osmotic
withdrawal of water from blood cells [114]. Endotoxin present
in lithiumheparin tubeswhen sterility is broken [113] can also
induce cytokine release from cells, whereas EDTA inhibits
endotoxin [26, 31]. Variation in cytokine levels could be
attributed to anticoagulant-induced release of cytokines by
blood cells notably in heparin plasma but not in EDTA
plasma, [115]. Altogether, plasma collectionwith use of EDTA
seems to bring the most consistent results [34, 35, 116] and

more closely resembles data obtained in serum [31, 35, 39, 78,
90, 117]. Cytokine stability also appears increased in EDTA
plasma [26, 118] perhaps through EDTA’s role as a protease
inhibitor. Further mechanisms can explain differences in
stability such as change in degradation rate or modification
of cytokine’s structure due to the differential presence of
other proteins in EDTA plasma compared to citrate plasma
or serum (i.e., soluble forms of receptors) leading to a
lack of recognition of the antibodies used in the ELISA.
The limitation in using plasma remains the need for rapid
separation after collection with changes occurring as soon as
30 minutes after sample collection [34].

Over the recent years, improvements in the collection
tubes have been made, notably with the use of serum
separator tubes, which include a gel that serves as a barrier
between serum and the clot [106], or the substitution of
plastic for glass allowing direct centrifugation [119].

Altogether, no single type of sample is optimal for every
analyte; therefore, the development of assays for individual
cytokines should require optimisation on a case-by-case
basis, although it would be recommended to collect both
serum and EDTA plasma.

(2) Time to Processing. Time is an important factor that needs
to be accounted for when measuring circulating cytokines
which have a relatively short half-life and an important risk of
degradation notably when comparing them to other proteins
such as antibodies [26, 34, 120]. Changes in the amount
of cytokine detected depend on the delay and duration of
sample processing and are likely due to altered production
by cells after blood collection [31, 54, 120], or their binding
by other proteins (i.e., soluble receptors or cells surface
receptor) [42, 120, 121], or, finally, due to enzymatic activities
(proteases) leading to cytokine digestion (see also Table 1).
Rapid processing of samples is therefore essential, notably
as samples obtained from patients often present with higher
concentrations or increased activity of proteases or other
factors which render specimens even more unstable than
those obtained from healthy controls [111]. Ideally, samples
destined for cytokine detection should be collected in sterile
(endotoxin-free) tubes and processed quickly with a mini-
mum of 30 minutes of clotting time but no longer than 60
minutes after blood draw, independently of the type of tube
used (plasma or serum). Processed plasma or serum should
be frozen at −80∘C as soon as possible in small aliquots to
avoid repeated freeze-thaw cycles [107, 122]. Some reports
proposed to keep samples refrigerated at 4–8∘C (but not on
ice) after clotting for the duration of processing as room
temperature favours proinflammatory cytokine degradation
such as IL-6 but conversely stabilises TNF-alpha [26, 34,
120, 123, 124]. Most cytokines are relatively stable with the
well-known exception of TNF-alpha and IL-6 [42, 125, 126];
therefore, the interval between blood draw and separation
should not exceed 3–24 hours, even when the tubes are stored
at 4–8∘C and only when EDTA tubes are used (TNF-alpha
however cannot be reliably measured any longer), although
many cytokines have not been sufficiently tested [26, 35, 37,
78].
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at
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ra
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at
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]
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at
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ra
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∘
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]
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7]

(ii
)H

ig
he
rs
er
um

le
ve
ls
th
an

in
he
pa
rin

pl
as
m
a[

33
]
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d
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]
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]
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]
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fic
an
tc
ha
ng
ef
or

up
to

4
da
ys

of
de
lay

ed
pr
oc
es
sin

g
[2
9]
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at
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ra
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]
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at
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ad
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de
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]
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∘
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]
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The effects of centrifugation speed are more difficult to
evaluate. Gradual increase in g values (from 200 to 13,000 g)
is necessary to achieve graded depletion of platelets and
leucocytes from plasma; however, it reduces the levels of
certain cytokines (i.e., sCD40L) [52]. Of note, the use of blood
tubes with gel separator imposes a certain centrifugation
speed to allow separation of serum and cells but does not
allow tubes to be chilled before or during centrifugation [127].

(3) Storage Temperature and Freeze-Thaw Cycles. By and
large, most cytokines and soluble markers are quite stable
if frozen (see also Table 1). Storage conditions, however,
vary with a choice of temperatures from short-term storage
at room temperature (RT) or 4–8∘C (days) to medium
term (a few months) more often between −20/−30∘C and
long term (years) at −70∘C. Direct comparison of several
cytokines in plasma stored for 20 days at RT, 4∘C or −70∘C,
showed remarkably stable levels (IL-10) except for TNF-alpha
particularly at room temperature [128]. In contrast, a more
recent study of reliability and reproducibility of cytokine
measurements in healthy donors [122] showed that, while
most cytokine measurements are stable for up to 2 or 3 years
when stored at −80∘C (see details in Table 1), they do not
all remain stable after repeated freeze-thaw cycles. After 4
years, most cytokines were degraded. Importantly in RA,
levels of certain cytokines such as TNF-alpha increase with
each successive freeze-thaw cycle [54, 90, 122]. Therefore, it
remained difficult to compare studies from different centres
even when using the same assay for cytokine measurements
(i.e., commercial kit) [39]. Altogether, the consensus would
recommend storing specimens at −80∘C in as many small
aliquots as possible to limit freeze-thaw cycles [129].

2.2.3. Analytical Variability

(1) Assay Type. Numerous immunoassays exist to measure
cytokines both in their protein form: ELISA, nitrocellulose, or
other solid phase assays, immunohistochemistry, and bead-
based flow cytometry multiplex immunoassays, and in their
molecular form: reverse transcriptase PCR, microarrays, and
in situ hybridisation (Table 2). Immunoassays use antibody
to immobilise cytokines on a solid surface and then identify
them with different methods for quantification using colori-
metric enzymatic reactions, fluorescence, luminescence, or
even, in the past, radioactivity. There are two types of assays
using either one or two antibodies: one being for cytokine
capture adding more specificity compared to total protein
plastic binding and the second one being for detection.
The major benefit to using antibodies is that assays are
more specific and reproducible. Several platforms for the
detection and quantification of cytokines exist. There is no
universal best method for cytokine measurements; however,
the oldest technique (ELISA) is often used as gold standard
despite the fact that direct comparison between many com-
mercially available kits has not been performed. Cytokines
show complex protein structures (monomers/polymers, pre-
cursors, various degrees of glycosylation, and degradation
products) and their activity often depends on the integrity
of such structure. Minor changes that may not be detected

by physicochemical measurements, immunoassays, or bio-
physical methods may have dramatic effects on biological
activity (e.g., cytokines may lose most of their biological
activity but will remain detectable if measured as mass)
[130].The presence of soluble forms of the cytokine receptors
(i.e., sIL-2R, sIL-7R, and sTNF-R) in biological samples and
the existence of autoantibodies to cytokines (i.e., anti-TNF-
alpha, IL-6, and IL-1) [131] may or may not interfere with
the recognition of cytokines by either capture or detection
of antibodies [39, 132–134]. Each method has advantages and
limitations and should be carefully selected with respect to
the research purpose. To date, most cytokine measurements
in large studies essentially used ELISA, which is widely
accepted as the “gold standard” method. The main limitation
of ELISA remains that it allows the characterization of a
single cytokine at a time, hence the development of multiplex
technologies. One of the most commonly used methods
for this is the multiple target based assay [135], which can
measure up to 100 different analytes per sample from a small
volume of body fluid [136], or more recently the cytometry
bead assay (CBA) which relies on bead as solid phase
and uses flow cytometry to discriminate between analytes
[137]. Multiplex measurement of inflammatory cytokines
in human serum by electrochemiluminescence assay was
recently developed [138]. These multiplex assays are in con-
cept close to ELISAs and dependent upon the careful choice
of the capture/detection antibody pairs and proper buffering
to minimize differences in assay performances [135].

Several studies have compared cytokine levels deter-
mined by ELISA and multiplex immunoassays with results
showing either good or poor correlations between the meth-
ods. Therefore, it is not surprising that discrepancies in data
comparing measurements of cytokines were observed when
different commercial/manufacturers’ kits were used, even if
preanalytical conditions of samples collection, separation,
and storage were identical [85, 136, 139]. The use of different
antibody clones to capture and detect cytokines is also likely
to affect results and change the level of sensitivity of such
assays. Furthermore, some monoclonal antibodies recog-
nise different molecular complexes (monomers/polymers,
precursors, glycosylation, degradation products, or total
bioactive or inactive forms) [140]. In summary, comparison
of the same samples (eliminating preanalytical bias) using
several commercial ELISAs demonstrated that variability was
mostly attributable to each assay (measuring TNF-alpha, IL-1
alpha and IL-1beta, IL-6, IL-2, IFN-gamma, and the soluble
receptors of IL-2 and TNF) but yielded comparable results
when the same ELISA was used at different centres [85, 139].
The nature of the different pairs of monoclonal antibodies
employed in each ELISA is most likely the major source of
variability, but these findings also highlight the necessity of
establishing international standards for all immunoassays as
ranges are also widely variable between these commercial
assays. If cytokines are to be employed as clinical biomarkers
for diagnosis, prognosis, and prediction, accurate and repro-
ducible assays need to be adopted internationally.

(2) Interferences. Interferences within immunoassays are
numerous, complex, and usually difficult to resolve. Proteins
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Table 2: Description and characteristics of assays measuring cytokines.

Cytokine assay
technique Description Characteristics

Bioassays

Bioassays (commonly used shorthand for biological
assays) are typically assays by which the potency or the
nature of a substance is estimated by studying its effects
on living organisms
They can be conducted to measure the
concentration/effects of a cytokine on a living cell
Example: IL-2 bioassay using an IL-2 dependent cell
line that will undergo apoptosis in the absence of IL-2
in a dose dependent manner
They require tissue culture facility

Low specificity
Semiquantitative detection
Highly sensitive with detection limit < 1 pg/mL
Narrow analytical range
Time consuming (24–96 h)
Low precision (CV = 20–100%)
Drug interference
Laborious protocol with high staff cost

ELISA

Quantitative detection of a molecule (bioactive and
inactive) based on its capture by an antibody followed
by its detection by another antibody coupled with a
detection (commonly named ELISA)
It requires specialised equipment

Less sensitive than bioassays <10 pg/mL
Relatively large sample volume
Wide analytical range
High reagent cost
Excellent precision (CV = 5–10%)
No drug interference
Simple and relative rapid protocol

Solid phase assay
(Luminex)

Technology based on the detection of dyed microbeads
capturing a cytokine with a first antibody and
quantifying it with a second antibody coupled with
fluorescence and lasers detection
It allows multiplex detection

Small sample volume
Lower sensitivity than ELISA
Large range of analytes
Sensitive to interferences from heterophilic
antibodies (i.e., naturally occurring anti-antibodies),
anti-cytokine antibodies, and presence of soluble
receptors

Other solid phase
assays

Mosaic ELISA
ELISA like technology allowing multiple detection of
cytokines in a 96-well plate format by spotting capture
antibodies

Small sample volume
Lower sensitivity than ELISA
Only 8 analytes per test

Molecular techniques

All techniques allowing mRNA quantification
Earlier detection of cytokines at transcriptional level
however may not represent cytokine production and
release
They require specialised equipment

Highly specific
Highly sensitive as they can detect changes at the
single-cell level
Complete analytical range (from single cytokine to
as many as needed)
Excellent precision
No drug interference
Simple and relative rapid protocol
Relatively high cost

can show an altered expression pattern in more than one
disease.The presence of lipids, complement factors, and other
complex molecules in the blood was also shown to interfere
with a number of assays. Human anti-animal antibodies
present in biological samples (especially human anti-mouse
antibodies) may cause problems; however, these may be
blocked by the use of multiple species serums as blocking
agents [141]. Haemolysis interference occurs rarely; however,
it can affect some analytes. Lipaemia interferences were
confined when using immunonephelometric and immuno-
turbidimetric assays, and, ideally, grossly lipaemic samples
should be cleared (using ultracentrifugation of lipaemic
samples with correction for volume displacement errors) or
discarded. Antigen excess may, in some cases, result in false
low values [142]. Complement factors and paraproteins are
capable of binding to assay antibodies (capture and detection)
causing interferences [142]. In addition, biological fluids may
also contain naturally occurring antibodies to a variety of

proteins, including cytokines themselves. Such antibodies,
although at variable levels notably between normal donor
and patient populations, can interfere with assays particu-
larly if they share the same epitope on the cytokine [143].
The existence of autoantibodies against cytokines has been
documented for TNF, IL-1 (alpha and beta), IL-2, IL-6, IL-
8, IL-10, and IL-18 [144–148]. Autoantibodies against IL-1 are
the best studied. Their prevalence is high with an affinity
which can reach up to 10−11M that is very similar to the
affinity of antibodies developed for immunoassays [140].
However, the main issue remains heterophilic antibodies.
These antibodies are naturally produced polyclonal autoan-
tibodies with low specificity directed against multiple poorly
defined antigenic immunogens. Most often, they are present
in individuals exposed to foreign proteins (e.g., domestic ani-
mals and household pets). The occurrence of false positives
in immunoassays [13–16] is often the result of heterophilic
antibodies nonspecifically bridging the assay antibodies [18,
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19]. As a result, studies have often overestimated cytokine
levels notably when using the Luminex technology [12].

Blood samples from patients with autoimmune diseases,
such as RA, may be problematic due to the presence of
additional disease related autoantibodies [149]. RF is an
autoantibody directed against the Fc portion of IgG and is
found in 75% of patients presenting with RA as well as other
diseases such as Sjögren’s syndrome, infective endocarditis,
systemic sclerosis, and systemic lupus erythematous (SLE)
[24]. RF was shown to exhibit most of the heterophilic
antibody properties with several antigen cross-reactions [25]
and hence immunoassay in RA is particularly sensitive to this
issue and needs careful evaluation for RF interference [12,
150–153]. Heterophilic immunoglobulin may further develop
as a result of treatment with drugs attached to mouse (or
humanised) monoclonal antibodies.

Several methods for removing heterophilic antibody
(notably RF) frompatients sera have been developed [21, 154–
156]: (i) initial serial dilutions may be recommended, partic-
ularly when results demonstrate nonlinearity suggesting the
presence of heterophilic antibodies, (ii) the use of blocking
reagents such as nonimmune serum from the same species
as the assay antibodies, species-specific polyclonal IgG, and
multispecies mixture (20% normal mouse serum, 10% goat
serum, and 10% rabbit serum), as well as commercial reagents
such as HeteroBlock [155], and (iii) the specific removal
of immunoglobulin G using sepharose-L or polyethylene
glycol precipitation (PEG 6000) has also been used. These
methods act by physical removal of the immunocomplexes
[155], which are then separated by centrifugation. Several
reports have been published investigating interference by
heterophilic antibodies in RA sera using solid phase mul-
tiplexing technology including Luminex [23, 155, 157, 158],
a glass chip/chemiluminescence platform, or a multiplex
sandwich ELISA. They showed clear interference (i.e., false
positive) in RF-positive sera but not in negative samples [157].
In our lab, all methods were efficient at blocking/removing
relatively low RF quantities in serum samples from RA
patients [12]; however, none of these methods were effective
when high levels of RF were present (>100 U/L) and residual
RF still generated false positive results particularly when
using certain types of assays (Luminex) but not others
(ELISA, membrane-based ELISA, Mosaic ELISA, or CBA).

(3) Standardisation and Quality Control. Commercially avail-
able immunoassays in the form of “kits” are now extensively
used. Considerable variability can arise from the use of
these assays. Differences in measured levels of cytokines in
identical samples using different standards ranged from 10-
to 100-fold [130, 159–161]. Some issues are related to the
use of different epitope specificity of the antibodies, while
others arise due to the use of various reference preparations
(standards) for calibrating the assays [55]. Comparison of
cytokine levels requires unit definition by a standard that is
assay independent, which, once defined, should be used by
any laboratory, thus providing a means of ensuring unifor-
mity worldwide [130]. Variations as a result of differences
in standards account for as much variability as sample
collection, processing, or storage issues [31, 42, 125, 159–168].

All cytokine assays should therefore be calibrated against
such standards, regardless of assurances provided by the kit
manufacturers. Notably, results of cytokine assays should be
reported in picograms or nanograms per milliliter instead
of arbitrary units. Major international efforts to organise
standardisation of cytokine measurements have been con-
ducted by the World Health Organisation, (see details at
http://www.nibsc.ac.uk/products/biological reference mate-
rials.aspx), The National Institute for Biological Standards
and Control (NIBSC), and the Biologics Evaluation and
Research (TheNational Institutes of Health (NIH), Bethesda,
MD 20205, USA) (http://www.who.int/biologicals/) [130, 131,
169]. Nonetheless, baseline values for a lot of cytokines have
not yet been reliably established in healthy controls (despite
a range suggested bymost manufacturers), making it difficult
to interpret the biological significance of minor variations in
cytokine levels in patients [170]. Furthermore, some cytokine
assays are sensitive at relatively high concentrations that may
not always cover the physiological range even in diseases
[12]. Quality control (QC) measure is also an essential step
of biomarker development. Therefore, during the analytical
phase, QC should be considered to document analytical
performance during any studies to determine the acceptance
or rejection of an analytical run during postanalytical sample
analysis [136, 171]. QC samples could be prepared to evaluate
the lower, middle, and upper performance limits of an
assay. A number of validation samples (at least five different
concentrations) should also be used to estimate intra- and
interrun accuracy/precision and stability [136, 172, 173].

3. Cytokines Network in RA

Over the years, increasing numbers of cytokines have been
involved in RA pathology, further to those used as target
of cytokine-blocking therapies which emerged from the
hypothesis that the most abundant cytokines present in
the joint were more likely to be pathogenic. A large num-
ber of cytokines are detected at the disease site (through
both mRNA and protein quantification) in both synovial
tissue and fluid, where they have a role in perpetuating
inflammation, cartilage destruction, and bone remodelling
associated with RA. Several methods of detection (ELISA,
immunohistochemistry) identified TNF-alpha and IL-1 as
major players in the network of cytokines, notably directly
expressed at the disease site in joint tissue or fluid. IL-6 and
IFN-gamma are also present as well as GM-CSF and LIF.
More recently, other cytokines were added to this list (IL-7,
IL-15, IL-17, IL-18, IL-21, and MIP-1 notably) together with
cytokines with activities targeted towards fibroblasts (TGF-
betas notably) and finally several growth factors (PDGF, EGF,
and VEGF) [174] and chemokines (IL-8, SDF-1, RANTES,
andMCP-1). Cytokines favouring survival of infiltrating cells
have also been detected (such as the pairs between IL-7 and
T cell or BAFF and B cells). However, if proinflammatory
cytokines (TNF-alpha, IL-1, and IL-6) are abundant in all
patients, cytokines classically defined as anti-inflammatory
and regulatory (IL-4, IL-10, IL-13, and TGF) [175, 176] as well
as antagonist receptors (IL-1RA, or soluble IL-2R, or TNF-R)
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are also present. Most of these cytokines have dual roles with
anti- and proinflammatory aspects depending on the context
and the network they form; hence, studying their roles
and actual effects is particularly complex. The redundancy
and synergy between the effects of all cytokines in such
an intricate network may further explain the inadequate
response to single blockade therapy notably in established
disease [175].

The interplay between cytokines, where excess of one
may result in suppressed production of another, further
complicated by interactions with soluble receptors for some
of these cytokines, renders data interpretation challenging
(notably for TNF-alpha and IL-1) [88, 89]. The relationship
between blood and tissue is often complex and translating
findings often proves difficult if not conflicting. Data on
cytokine levels in humans in relation to disease activity
is still limited. Increased levels of cytokines such as IL-
l, IL-6, and TNF have been interpreted as an indicator of
the inflammatory state. It is unlikely that these cytokines
could serve as “biomarkers” in inflammatory disease, as they
are linked to the disease biological processes, hence not
specifically associated with a particular disease. Additionally,
lack of correlation is often observed between cytokine levels
(in serum/plasma) and clinical endpoints.

On the other hand, the absence of a cytokine in disease
is particularly difficult to interpret. As indicated above, there
may be multiple reasons for the inability to detect a cytokine
when actually it is expected to be found. Even in the absence
of specific or nonspecific inhibitors, excessive consumption of
a cytokine versus lack of its synthesis is hard to dissociate. As
an example, IL-7 levels were reported to be low in RA serum
[177–179]; however, they are high in synovial fluid and tissue.
The presence of high levels of sIL-7R in serum [180] may
explain this discrepancy and the associated loss of biological
activity [177, 181].

Despite these limitations, there are some cytokine
biomarkers, which appear to be relevant in RA. IL-6, despite
not being disease specific [78, 92, 182], was shown to be more
sensitive than CRP (despite being directly correlated with it)
for the prediction of therapeutic response of RA patients to
rituximab [183]. Similarly, IL-7 was shown to have some value
as diagnostic biomarker associated with potential for more
erosive disease [179].

3.1. Differential Cytokine Expression between Diseases. Over
the years, many studies provided evidence of differen-
tial expression of cytokines between healthy control (HC)
and diseases such as RA, osteoarthritis (OA), ankylosing
spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis
(ReA), systemic lupus erythematosus (SLE), or gout. These
initially used functional assays measuring the production of
cytokines in variable cell subsets using intracellular expres-
sion of cytokines (in CD4+ or CD8+, T cells or B cells,
or monocytes), ELISA, ELISOPT, or mRNA quantification.
Several important observations were derived from these
experiments and the tables below summarise all this data as
well as tissue sources and technology/experiment.

In vitro assays removed the microenvironment context;
however, they reflect good the capabilities acquired through

exposure to the priming effect that such microenvironment
may exert (i.e., Th1/Th2 polarization, transition from naı̈ve
to memory). Altogether, they demonstrate the dysregulated
expression of certain cytokines in T cells subsets notably
and increased expression by monocytes in RA patients.
Importantly, all cytokines tested were shown to be increased,
with the exception of IL-2 and IL-4. Interestingly, RApatients’
T cells showedhyporesponsiveness to stimulation of theT cell
receptor (TCR) pathways and hardly produced any cytokines
despite evidence of previous activation (memory phenotype)
[184]. This deficit was attributed to chronic exposure to
TNF-alpha [185] and/or abnormal RAP1 signalling [186–188].
The classic model of T cell naı̈ve/memory differentiation is
perturbed in RA. T cells despite being näıve with respect to
antigen stimulation [189] express chemokine receptors which
facilitate trafficking to sites of inflammation [7, 177].This phe-
nomenonwas hypothesized to result fromcytokine activation
notably of näıve T cells (by IL-6 and TNF-alpha) bypassing
the need for an antigen to achieve activation [190, 191]. Similar
cells were found in RA joint (but not OA) [192] where they
enable TNF-alpha production by monocytes in an antigen-
independent manner. These properties of cytokine activated
T cells were further extended to chemokine production and
were confirmed in vivo using a cytokine cocktail containing
IL-2, IL-6, and TNF-alpha [193]. Such increased ability to
produce all types of cytokines reflects the chronic stage
of the disease but nevertheless gives insight into potential
candidates for further biomarker program.

3.2. Differential Cytokine Levels in RA Sera or SF. There are
several studies comparing circulating levels of cytokine, they
often show discrepancy in their results, and most do not
use the appropriate biomarker development strategy. IL-1beta
and TNF-alpha are increased in RA [194] and such profile is
accentuated in active diseases compared to clinical remission
[195]. In contrast, low levels of IL-2 and IL-7 were reported
[177, 179, 194, 196]; however, those may be due to high
levels of soluble sIL-2R and sIL-7R which are also present.
IL-6 could not be detected in HC serum, while serum IL-
6 levels are substantially increased in RA with significant
circadian variations corresponding to the circadian rhythm
of symptoms in RA [79]. High IL-7 [197] and IL-16 [198]
were detected in sera and SF of RA patients compared to OA
and are also confirmed in synovial tissues by mRNA levels.
Certain cytokine levels were related to disease parameters
such as IL-1RA and the number of tender and swollen joints
[199], IL-18 (both sera and SF) and disease activity [200, 201],
and IL-7 in the tissue (both mRNA and protein) with local
levels of inflammation measured during arthroscopy [196].
IL-21 is highly produced in the synovial fluid of RA patients
compared to paired serum specimens as well as healthy
control sera.The increased levels of IL-21 correlate with those
of IL-17 [202] and an association between levels of IL-21 and
Th17 cells responses in the RA synovium was shown [202].

Similar increased serum levels of many cytokines were
indeed found in other rheumatic diseases: notably PSA [203–
205], SLE [206, 207], AS [208–210], and scleroderma [211, 212]
(IL-1, IL-6, IL-7, IL-8, IL-10, IL-12, IL-16, IL-17, IL-18, and
IFN-gamma, TGF-beta, or TNF-alpha, as well as IL-1RA
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and sIL-2R or leptin) suggesting that such rises may reflect
inflammation rather than being disease specific. Therefore,
the biomarker value of either one of the cytokines, or a
combination of them, will likely depend on whether their
disease specificity can be verified.

3.3. Cytokines as Diagnostic Biomarkers for RA. The early
diagnosis of RA is critical, as it has been demonstrated that
a therapeutic window of opportunity is available very early
in the development of RA, when disease can be stopped
efficiently, preventing structural and functional damage and
leading to remission if treated. In face of such a need,
clinical diagnosis remains difficult. At the (very) early stage,
inflammatory arthritis often has an atypical presentationwith
progression towards RA that can vary in speed. Autoantibod-
ies (RF and ACPA) are useful in RA diagnosis as recently
recognised by their inclusion in the new diagnostic EULAR
2010 criteria. However, they both lack sensitivity in early
disease (<50%) [213] even if ACPA specificity is quite high
(over 95%) [214].

The ideal RA diagnostic biomarker should therefore
be characterised by high specificity and sensitivity, both
close to 100%. An ideal biomarker should also detect the
presence of RA at early stages. Few, if any, biomarker testing
systems achieve these levels of sensitivity and specificity
although this can be approached by improvement of the
assays. In advanced disease (i.e., fully developed RA), bio-
logical differences between healthy and disease states are
easily detected. In contrast, in early disease, the biological
distinctions between healthy and disease states or alternative
diagnosis are oftenmore subtle, and clear differentiation even
for a gold standard becomesmore challenging.Therefore, the
evaluation of a candidate diagnostic biomarker requires an
infallible diagnosis to be established which in RA remains
difficult [215].

Cytokines and other soluble factors are prime candi-
dates for diagnostic biomarkers. Several studies investigated
their expression using variable methods (ELISA, multiplex
assays, or gene expression) and material (tissue and body
fluids). However, few studies actually compared very early
inflammatory arthritis with differential outcome and still
use healthy individuals or established disease patients as
controls. Cytokines detected in joints were not different in
12- month disease duration compared to more advanced RA
[216]; however, these findings remain to be established in
very early disease. Even if right and left RA knee showed
similar profiles (IL-6, IL-8, IL-10, and IFN-gamma, high
expression of IL-1beta, TNF-alpha, and TGF-beta, low levels
of IL-2 and GM-CSF, and no detectable IL-4 or IL-5) [217],
the same pattern was observed in other diseases such as
seronegative spondyloarthropathy or OAwith different levels
of expression.

Using Luminex technology with the blocking of het-
erophilic antibody, increased levels of TNF-alpha, IL-1beta,
IL-6, IL-12P40, IL-13, and several chemokines (CXCL10,
CCL11, CCL2, and IL-8) were observed in sera from RA
patients with <6-month symptom duration compared to HC
[23]. The profile was specific to RA and not reproduced in
established AS or SpA but was not investigated in patients

with early inflammatory symptoms who did not progress
towards RA.The profile was also restricted to ACPA-positive
patients suggesting increased inflammation associated with
autoreactivity. In addition, ACPA was closely related to RF
in this study (titres were directly correlated), questioning
the efficiency of the RF-blocking methodology used as most
cytokine levels were also related to ACPA levels.

In a similar study [158] comparing already diagnosed
RA patients of less than 6-month symptom duration with
established AS and PsA, a multiplex biomarker platform
(combining cytokines, bone turnover markers, metallopro-
teinases, inflammatory markers, and several citrullinated
epitopes) established a signature again including cytokines
such as TNF-alpha, IL-1alpha and beta, IL-6, IL-12p40, IL-15,
IL-17, GM-CSF, and eotaxin. However, most were also present
in AS and PsA (TNF-alpha, IL-1beta, IL-6, IL-17, and eotaxin)
and otherswere associatedwith autoantibody positive disease
(IL-1alpha, IL-12p70, and IL-15).

Studies truly investigating early diseases and the value
of cytokines as diagnostic biomarkers in a predictive man-
ner are few. SF from early inflammatory arthritis patients
before diagnosis established that patients with persistent
symptoms on development of RA showed increase in Th2
cytokines (IL-4 and IL-13) but not Th1 (IFN-gamma) [218].
IL-17 was also increased however only in established RA
[218]. In individuals who donated serum samples and later
developedRA, amultiplex study showed significant increased
levels of cytokines related to T cell activation (IL-2, IL-
6), inflammation (IL-1beta, IL-1RA, and TNF-alpha), Th1
(IL-12 and IFN-gamma), Th2 (IL-4, IL-13, and eotaxin),
and immune regulation (IL-10), while chemokines, stromal
cell-derived cytokines, and angiogenic-related markers were
elevated in patients after the development of RA rather
than in individuals before the onset of RA [219]. Levels
were particularly increased inACPA-positive andRF-positive
individuals. However, in all three studies, every cytokine and
chemokine tested were increased (even if not significantly)
and again particularly inACPA/RF-positive patients, whereas
other studies demonstrated reduction (i.e., IL-2 and IL-7).
Therefore, technical issues related to heterophilic antibody
interference may have to be considered when interpreting
these data. A similar preclinical RA study [220] showed no
detectable cytokine more than 5 years before RA onset, but
during the 5-year interval before diagnosis, increased levels
were associated with an increased likelihood of the risk of
developing RA (IL-1 alpha, IL-1beta, IL-1RA, IL-4, IL-10,
TNF-alpha, and soluble TNF-RI).

In established RA as well as in patients with less than 24-
month symptom duration, reduced levels of circulating IL-7
have been reported [177, 196]. IL-7 is a pleiotropic cytokine
regulating peripheral T cell homeostasis, notably in RA [177,
221, 222]. However, IL-7 is highly expressed in the joints
of RA patients [196, 197, 223, 224], and such discrepancies
between low systemic levels and high expression at disease
site have also been reported in systemic sclerosis [225] and
recently in ulcerative colitis and Crohn’s disease [226, 227]. A
cohort of 250 sera from patients with very early symptoms
suggesting a possible evolution towards RA (less than 6-
month duration and 5-year follow-up) designed to discover
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diagnostic biomarkers demonstrated the potential of IL-7 as
a biomarker [2].

3.4. Cytokines asMarkers for Treatment Selection andResponse
toTherapy. Biological therapies (cytokine blockade or recep-
tor antagonism) nowadays appear very effective in chronic
inflammatory conditions such as RA, however, in a limited
number of patients, with up to 40% nonresponse. Consider-
ing the cost of such therapies, biomarker prediction response
and allowing for selection of the most appropriate biological
treatment would have considerable impact. Most authorities
recommend starting therapy with biologics after the failure
to respond to at least one disease-modifying agent in RA.
However, due to the limited number of studies, there is little
guidance aboutwhich biological agent to select although anti-
TNF remains the most commonly used.

RA patients not responding to anti-TNF showed higher
synovial fluid IL-6 at baseline amongst elevated levels of IL-
1beta, IL-1RA, IL-2, IL-4, IL-8, IL-10, IL-17, IFN-gamma, G-
CSF, GM-CSF, and TNF-alpha. In contrast, responders had
elevated IL-2 and G-CSF. In plasma, however, levels were not
significantly predicting response, and IL-6 levels decreased
posttreatment. In this study, SF cytokine clustering revealed 6
groups of patients with possibly underlying different cellular
pathologies, and IL-6, IL-2, and G-CSF in SF may be useful
in predicting response to anti-TNF [228]. Recently, we also
showed that serum IL-6 was significantly higher at baseline
in rituximab nonresponders and that a significant reduction
followed treatment in responders only despite adequate B
cell depletion in nonresponders [229]. Multivariate logistic
regression analysis of synovial cytokine expression showed
that TNF at baseline could only explain ∼10–15% of the
variance in response to TNF blockade [230], suggesting that
TNF expression itself would have a limited role in relation to
personalised health care. Synovial tissue analysis associated
absence of sign of improvement with increased TNF and
MMP-3 expression [231, 232]. In contrast, another study
showed response to be associatedwith higher TNFbioactivity
in the blood [233], which is more convenient for personalised
medicine.

To date, several studies using blood have used gene
expression rather than ELISA. CCL4, IL-8, and IL-1beta dis-
criminated between responders and nonresponders to anti-
TNF [234]. Several gene signatures have been published so
far (some including IL-8, IL-2R) [235–238] with a sensitivity
of 90% and a specificity of 70% [237] and 94.4% sensitivity
and 85.7% specificity for the response to anti-TNF treatment
[238]. Response to anti-TNF (etanercept) was associated
with reduced levels of IL-6 and increased IL-23 and IL-32
posttreatment while there was no change in nonresponders;
however, no baseline level had predictive value [239].

Recently, several interferon signalling related signatures
have emerged as potential biomarkers of response to biolog-
ical therapies [240–242] as well as for the progression of “at
risk” individuals to symptomatic arthritis [243]. Such signa-
tures are interesting as theymost likely reflect an immunolog-
ical status that is favourable to responding or not to therapy,
although they are not really linked to the presence/absence of
interferon. Indeed, these signatures combined different sets of

intracellular signalling factors and transcriptional regulators
(between 8 and 15 markers) and are measured through gene
expression (using mostly qPCR).

4. Conclusion

Assays measuring known diagnostic biomarkers are com-
monly used in clinical practice. In fact, it has been reported
that about 70% of the decisions made by physicians are based
on the results provided by those tests [244]. However, the
implementation of novel biomarkers into clinical practice
proves to be a long and challenging process, which includes
convincing physicians.The assessment of the impact of using
the biomarker on general health is an essential step to
guarantee the uptake of the biomarker into clinical practice
and to further optimise its use. This area of research is likely
to become increasingly important as more biomarkers enter
clinical practice [245]. Given the complexity and heteroge-
neous nature of RA, it is unlikely that a single cytokine
may provide sufficient discrimination.Many reliable cytokine
assays are nowadays available with multiplex formats taking
the lead (although this may not be an appropriate solution
in RA due to RF interferences). These have established
clinical utility for other diseases and purposes and should
be easily (technically) transferable to rheumatology, although
the exact performance characterization and quality assurance
for the specific cytokines of interest in RA may need to be
established. At present, limitation in RA lies more in the
disease related complexity of networks, the elucidation of the
respective role, and the redundant effect that one cytokine
may have with another.

Finally, multiple biomarker signatures potentially using
genetic as well as proteomic markers may represent a more
realistic approach for the future of personalised medicine
in RA. Such multifactorial analysis may potentially reveal
patterns rather than individual biomarkers. As such, it is
interesting that IL-7 alone was able to predict diagnostic at
very early disease stage, whereas more complex combination
of markers may be needed to predict response to therapy
and define subsets of patients with more advanced and
heterogonous disease.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work has been supported by the IMI Funded Project
BeTheCure no. 115142-2.

References

[1] J. Avouac, L. Gossec, and M. Dougados, “Diagnostic and
predictive value of anti-cyclic citrullinated protein antibodies
in Rheumatoid Arthritis: a systematic literature review,” Annals
of the Rheumatic Diseases, vol. 65, no. 7, pp. 845–851, 2006.



Mediators of Inflammation 17
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M. Reimert, and K. Bendtzen, “Effects of human anti-IL-1𝛼

autoantibodies on receptor binding and biological activities of
IL-1,” Cytokine, vol. 4, no. 2, pp. 125–133, 1992.

[145] M. B. Hansen, M. Svenson, K. Abell et al., “Sex- and age-
dependency of IgG auto-antibodies against IL-1𝛼 in healthy
humans,” European Journal of Clinical Investigation, vol. 24, no.
3, pp. 212–218, 1994.

[146] K. Bendtzen, M. B. Hansen, M. Diamant, C. Ross, and M.
Svenson, “Naturally occurring autoantibodies to interleukin-
1𝛼, interleukin-6, interleukin-10, and interferon-𝛼,” Journal of
Interferon Research, vol. 14, no. 4, pp. 157–158, 1994.

[147] R. P. Revoltella, “Natural and therapeutically-induced antibod-
ies to cytokines,” Biotherapy, vol. 10, no. 4, pp. 321–331, 1998.

[148] M. B. Hansen, V. Andersen, K. Rohde et al., “Cytokine autoan-
tibodies in Rheumatoid Arthritis,” Scandinavian Journal of
Rheumatology, vol. 24, no. 4, pp. 197–203, 1995.

[149] K. Chapman, “The ProteinChip Biomarker System from
Ciphergen Biosystems: a novel proteomics platform for rapid
biomarker discovery and validation,” Biochemical Society Trans-
actions, vol. 30, no. 2, pp. 82–87, 2002.

[150] C. M. Preissner, L. A. Dodge, D. J. O’Kane, R. J. Singh, and S.
K. G. Grebe, “Prevalence of heterophilic antibody interference
in eight automated tumor marker immunoassays,” Clinical
Chemistry, vol. 51, no. 1, pp. 208–210, 2005.

[151] A. Bonetti, C. Monica, C. Bonaguri et al., “Interference by
heterophilic antibodies in immunoassays: wrong increase of
myoglobin values,”Acta Biomedica de l’Ateneo Parmense, vol. 79,
no. 2, pp. 140–143, 2008.

[152] S. S. Levinson and J. J. Miller, “Towards a better understanding
of heterophile (and the like) antibody interference withmodern
immunoassays,” Clinica Chimica Acta, vol. 325, no. 1-2, pp. 1–15,
2002.

[153] N. Bolstad, D. J.Warren, J. Bjerner et al., “Heterophilic antibody
interference in commercial immunoassays; a screening study
using paired native and pre-blocked sera,” Clinical Chemistry
and Laboratory Medicine, vol. 49, no. 12, pp. 2001–2006, 2012.

[154] W. Muller, R. Mierau, and D. Wohltmann, “Interference of
IgM rheumatoid factor with nephelometric C-reactive protein
determinations,” Journal of Immunological Methods, vol. 80, no.
1, pp. 77–90, 1985.

[155] K. Raza, F. Falciani, S. J. Curnow et al., “Early Rheumatoid
Arthritis is characterized by a distinct and transient synovial
fluid cytokine profile of T cell and stromal cell origin,” Arthritis
Research &Therapy, vol. 7, no. 4, pp. R784–R795, 2005.

[156] H. C. Vaidya and B. G. Beatty, “Eliminating interference from
heterophilic antibodies in a two-site immunoassay for creatine
kinase MB by using F(ab󸀠)2 conjugate and polyclonal mouse
IgG,” Clinical Chemistry, vol. 38, no. 9, pp. 1737–1742, 1992.

[157] D. J. Todd, N. Knowlton, M. Amato et al., “Erroneous aug-
mentation of multiplex assay measurements in patients with
Rheumatoid Arthritis due to heterophilic binding by serum
rheumatoid factor,” Arthritis & Rheumatism, vol. 63, no. 4, pp.
894–903, 2011.

[158] P. E. Chandra, J. Sokolove, B. G. Hipp et al., “Novel multi-
plex technology for diagnostic characterization of Rheumatoid
Arthritis,” Arthritis Research & Therapy, vol. 13, no. 3, article
R102, 2011.

[159] A. Ledur, C. Fitting, B. David, C. Hamberger, and J.-M.
Cavaillon, “Variable estimates of cytokine levels produced by
commercial ELISA kits: results using international cytokine
standards,” Journal of Immunological Methods, vol. 186, no. 2,
pp. 171–179, 1995.



22 Mediators of Inflammation

[160] A. R. Mire-Sluis, R. G. Das, and R. Thorpe, “The international
standard for Granulocyte Colony Stimulating Factor (G-CSF).
Evaluation in an international collaborative study,” Journal of
Immunological Methods, vol. 179, no. 1, pp. 117–126, 1995.

[161] A. R. Mire-Sluis, R. G. Das, and R. Thorpe, “The international
standard for Macrophage Colony Stimulating Factor (M-CSF).
Evaluation in an international collaborative study,” Journal of
Immunological Methods, vol. 179, no. 2, pp. 141–151, 1995.

[162] R. E. G. Das and S. Poole, “The international standard
for interleukin-6. Evaluation in an international collaborative
study,” Journal of Immunological Methods, vol. 160, no. 2, pp.
147–153, 1993.

[163] A. R.Mire-Sluis, R. G. Das, and R.Thorpe, “Implications for the
assay and biological activity of interleukin-4: results of a WHO
international collaborative study,” Journal of Immunological
Methods, vol. 194, no. 1, pp. 13–25, 1996.

[164] A. R.Mire-Sluis, R. G. Das, and R.Thorpe, “Implications for the
assay and biological activity of interleukin-8: results of a WHO
international collaborative study,” Journal of Immunological
Methods, vol. 200, no. 1-2, pp. 1–16, 1997.

[165] A. R.Mire-Sluis, R.Gaines-Das, andR.Thorpe, “Immunoassays
for detecting cytokines: what are they really measuring?”
Journal of Immunological Methods, vol. 186, no. 2, pp. 157–160,
1995.

[166] S. Poole and R. E. G. Das, “The international standards for
interleukin-1𝛼 and interleukin-1𝛽. Evaluation in an interna-
tional collaborative study,” Journal of Immunological Methods,
vol. 142, no. 1, pp. 1–13, 1991.

[167] S. Romagnani, G. del Prete, R. Manetti et al., “Role of TH1/TH2
cytokines inHIV infection,” Immunological Reviews, no. 140, pp.
73–92, 1994.

[168] N. Aziz, P. Nishanian, and J. L. Fahey, “Levels of cytokines and
immune activation markers in plasma in human immunodefi-
ciency virus infection: quality control procedures,” Clinical and
Diagnostic Laboratory Immunology, vol. 5, no. 6, pp. 755–761,
1998.

[169] A.Meager, “Measurement of cytokines by bioassays: theory and
application,”Methods, vol. 38, no. 4, pp. 237–252, 2006.

[170] R. V. House, “Cytokine measurement techniques for assessing
hypersensitivity,” Toxicology, vol. 158, no. 1-2, pp. 51–58, 2001.

[171] K. J.Miller, R. R. Bowsher, A. Celniker et al., “Workshop on bio-
analytical methods validation for macromolecules: summary
report,” Pharmaceutical Research, vol. 18, no. 9, pp. 1373–1383,
2001.

[172] J. W. Lee, “Method validation and application of protein
biomarkers: basic similarities and differences from biothera-
peutics,” Bioanalysis, vol. 1, no. 8, pp. 1461–1474, 2009.

[173] J. Smolec, B. DeSilva, W. Smith et al., “Bioanalytical method
validation for macromolecules in support of pharmacokinetic
studies,” Pharmaceutical Research, vol. 22, no. 9, pp. 1425–1431,
2005.

[174] M. L. Hetland, I. J. Christensen, T. Lottenburger et al., “Circulat-
ing VEGF as a biological marker in patients with Rheumatoid
Arthritis? Preanalytical and biological variability in healthy
persons and in patients,”DiseaseMarkers, vol. 24, no. 1, pp. 1–10,
2008.

[175] M. Chabaud, F. Fossiez, J.-L. Taupin, and P. Miossec, “Enhanc-
ing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory
factor production by Rheumatoid Arthritis synoviocytes and its
regulation by Th2 cytokines,” Journal of Immunology, vol. 161,
no. 1, pp. 409–414, 1998.

[176] P. Miossec, “Anti-inflammatory properties of interleukin-4,”
Revue du Rhumatisme, vol. 60, no. 2, pp. 87–91, 1993.

[177] F. Ponchel, R. J. Verburg, S. J. Bingham et al., “IL-7 deficiency
and therapy-induced lymphopenia in Rheumatoid Arthritis,”
Arthritis Research &Therapy, vol. 7, no. 1, pp. R82–R92, 2005.

[178] S.M. Churchman and F. Ponchel, “Interleukin-7 in Rheumatoid
Arthritis,” Rheumatology, vol. 47, no. 6, pp. 753–759, 2008.
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