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Energy consumption is one of the major issues in today’s computer science, and an increasing number of scientific communities
are interested in evaluating the tradeoff between time-to-solution and energy-to-solution. Despite, in the last two decades,
computing which revolved around centralized computing infrastructures, such as supercomputing and data centers, the wide
adoption of the Internet of &ings (IoT) paradigm is currently inverting this trend due to the huge amount of data it generates,
pushing computing power back to places where the data are generated—the so-called fog/edge computing. &is shift towards a
decentralized model requires an equivalent change in the software engineering paradigms, development environments, hardware
tools, languages, and computation models for scientific programming because the local computational capabilities are typically
limited and require a careful evaluation of power consumption. &is paper aims to present how these concepts can be actually
implemented in scientific software by presenting the state of the art of powerful, less power-hungry processors from one side and
energy-aware tools and techniques from the other one.

1. Introduction

Information and communication technologies (ICT) play a
fundamental role in supporting human activities for the
global economic, social, and environmentally sustainable
developments [1]. However, energy consumption is one of
the most relevant issues for present computing platforms,
and this trend is expected to continue in the foreseeable
future. &is implies that the electricity bill increasingly
dominates costs related to the running of applications and
the consequent environmental pollution [2].

&is situation is evident for high-performance com-
puting (HPC) infrastructures, where the sum of the energy
bills over a supercomputer’s lifetime is comparable to the

acquisition cost and represents one of the most relevant
elements of the total cost of ownership [3]. &is is because
energy is used not only for computation but also for cooling,
communication, storage, and display [4].

&e focus of performance-at-any-cost computer oper-
ations has led to the emergence of supercomputers that
consume vast amounts of electrical power and produce so
much heat in that extended cooling facilities must be
constructed to ensure proper performance.&e consequence
is that, in the context of deploying an exascale system, the
simple scaling of current technologies would result in a
supercomputer with a power consumption of 100MW,
while a limit of 20MW has been estimated as the maximum
acceptable limit [5]. &e attention to the flop-per-watt
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performance has been demonstrated by the introduction, in
2007, of the Green500 List [6] that ranks the top 500 su-
percomputers by energy efficiency [7].

&e same problem also arises in general-purpose data
centers: in the US, such infrastructures consumed about 70
billion kWh in 2014, representing 1.8% of total US electricity
consumption, as reported in [8]. Some projections estimate
for 2020 an electricity demand that varies by about 135
billion kWh, depending on the adoption rate of efficiency
measures [9].

&is scenario must be combined because in the past two
decades, computing has been focused around centralized
(and possibly complex [10]) infrastructures, but the wider
diffusion of cyber-physical systems (CPSs) is currently
inverting this trend, pushing computing power back to
where data are generated. In both cases, the energy con-
sumption of telecommunication networks is very relevant
[11]. A striking example of the trend is the Internet of&ings
(IoT) paradigm, by whichmillions of devices generate a huge
amount of data that are pre-elaborated locally before being
integrated remotely in a data analytics context. Nevertheless,
also considering science, the diffusion of powerful data
acquisition devices boosted the diffusion of pre-elaboration
computational architectures, such as in bioinformatics
[12, 13].

While HPC is a well-specific market sector, the so-called
“embedded HPC” is an emerging topic [14] to develop and
employ microservers/highly parallel embedded computing
systems in the CPS. &erefore, the adoption of energy-ef-
ficient systems represents a crucial aspect considering the
characteristics of fog/edge computing environments [15].

We can formulate the problem as the need to assess a
satisfactory tradeoff between time-to-solution and energy-
to-solution. &is problem has been faced with different
approaches, which can be summarised as follows: vendors
work on power-efficient processor architectures and soft-
ware developers on how to use them. However, to reach
exascale computing, an effective solution is possible only by
properly managing all layers of the system, from the software
stack to the cooling system [16] passing by less power-
hungry CPUs. &is can be achieved by reducing the energy
consumed in the total system via both power-efficient
software and hardware integrated solutions [17, 18].

Energy efficiency is a key design challenge for modern
computing systems for many years. Even more now, the Big
Data paradigm requires addressing both issues related to the
efficient processing of such an enormous amount of data and
how to achieve this goal in a green way, i.e., considering
issues related to sustainability and environmental concerns
[19].

&erefore, many papers proposing novel techniques for
managing power aspects and presenting real-world expe-
riences, together with surveys and overviews, have been
published. A critical analysis on how to greening the whole
life cycle of big data systems is presented in [20]. On a more
technical perspective, Czarnul et al. [21] focused on the
available methods and tools allowing proper configuration,

management, and simulation of HPC systems for energy-
aware processing. An overview of application performance
analysis tools, including the energetic profiling of an ap-
plication and auto-tuning tools for energy saving, has been
presented in [22]. &e usage of low-power System-on-Chip
(SoC) architectures for scientific (and industrial) applica-
tions is discussed in [23], intending to assess the tradeoff
among time-to-solution, energy-to-solution, and economic
aspects for both scientific and commercial purposes they can
achieve in comparison to traditional server-grade archi-
tectures adopted in present infrastructures.

However, an issue is represented by the fact that nearly
all the existing surveys focus on only one of the two main
strategies, i.e.,

(i) &e development and usage of new energy-efficient
CPUs and SoCs

(ii) &e use of software tools and frameworks for re-
ducing the power consumption of software using an
existing CPU

Moreover, as recognized by most of these papers, this is a
rapidly evolving research field where new results are con-
tinuously presented. For example, at the time of writing, the
following five European research projects and initiatives are
ongoing:

(i) Mont-Blanc 2020, European scalable, modular, and
power-efficient HPC processor

(ii) HiPEAC, High Performance and Embedded Ar-
chitecture and Compilation

(iii) LEGaTO, Low-Energy Toolset for Heterogeneous
Computing

(iv) SDK4ED, Software Development toolKit for Energy
optimization and technical Debt elimination

(v) TeamPlay, Time, Energy and security Analysis for
Multi/Many-core heterogeneous PLAtforms

&is is because the European Commission has been
aware since at least 2010 that the ICTsector is responsible for
carbon emissions which are rapidly growing and should be
kept to a minimum and therefore is supporting the devel-
opment of more energy-efficient computing technologies.

&erefore, this work’s main goal is to present the most
relevant available solutions for users interested in improving
the energy consumption of scientific software focusing on
computation. &is is achieved by investigating the avail-
ability and performance of current hardware devices and
software tools for scientific applications.

&is means that the aspects related to energy efficiency in
communications are not considered here. Interested readers
can rely on [24, 25].

&e structure of the paper is as follows: Section 2
presents hardware techniques and solutions for achieving
energy-savvy processing, Section 3 discusses tools and
methodologies for supporting developers in producing
energy-aware software, while the last section concludes the
paper.
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2. Energy-Efficient Architectures

2.1. General-Purpose Techniques. Firstly, let us review the
techniques that exploit hardware characteristics to reduce
energy consumption. Most of the present architectures, in
fact, implement energy-saving techniques.&ey are based on
the use of low-level electronic characteristics to run no faster
than necessary at a voltage no higher than acceptable. &ey
are

(i) Dynamic frequency scaling (DFS)
(ii) Dynamic voltage scaling (DVS)
(iii) Dynamic voltage and frequency scaling (DVFS)
(iv) Near-threshold voltage (NTV)
(v) Dynamic power management (DPM)

Dynamic frequency (DFS) or voltage (DVS) scaling
allows to modulate the power consumption processor and
memory [26], scaling the clock frequency of one or both
subsystems according to the execution of memory- or
compute-bound application kernels [27].

For example, voltage reduction has to be considered for
the heterogeneous accelerators equipping current systems
also because the efficient reduction of the total power can be
achieved with different voltage reduction levels for each
available chip [28].

Very often, voltage and frequency ranges are fully in-
terdependent, i.e., a change in clock frequency does imply
changes in the supply voltage, and vice versa: in these cases,
the technique is called dynamic voltage and frequency
scaling (DFVS) [29]. Specific hardware mechanisms can
implement DVFS with minimal software and operating
system involvement or through enabling software.

For example, DVFS is implemented in the Linux kernel
with the CPUfreq subsystem [30, 31]. &e original imple-
mentation of kernel 2.6 has been designed to be used when
no real-time tasks are executed. However, it is possible to
relax this constraint [32].

More recently, other projects focused on near-threshold
voltage (NTV) computing [33], making the processors work
at even lower voltages. Since this may lead to computation
errors, appropriate checks and recomputation have to be
added to algorithms in this case.

On the contrary, the Intel Turbo Boost technology op-
portunistically allows the processor to run faster than the
nominal frequency if the CPU is operating below the defined
power and temperature limits to speed up compute-inten-
sive applications [34]. In detail, as explained in [35], “the
thermal design power (TDP) represents the maximum
amount of power the cooling system in a computer requires
to dissipate. &is is the power budget under which the
system needs to operate. Nevertheless, this is not the same as
the maximum power the processor can consume. &e
processor can consume more than the TDP for a short time
without it being thermally significant.” More details on this
and the hardware power controller called Running Average
Power Limit (RAPL) introduced with the Sandy Bridge
architecture are provided in [36]. A similar solution, the

NVIDIA Management Library (NVML), has been provided
for NVIDIA GPUs [37, 38].

&e Advanced Configuration and Power Interface
specification has been developed since 1996 to provide the
possibility to manage these aspects via software, e.g., at the
operative system level. For example, ACPI defines up to 16
active states, named P0–P15, associated with a set of power/
performance/latency characteristics [39]. In P0, the process
runs at the maximum power and frequency level, while these
values are decreased from P1 till maximum supported Pi
[40].

2.2. Commercial-Off-the-Shelf Low-Power Devices. &e en-
ergy-efficient architectures range from many-core archi-
tectures, such as the Graphics Processing Unit (GPU) to
System on Chip (SoC), to Systems-on-Chip (SoCs). GPUs
feature a high performance-per-watt ratio. At the time of
writing this paper, the most powerful GPU devices, AMD
MI100 and NVIDIA A100, presented, respectively, a peak
performance of 38.33 gigaflops per watt (GFlops/W) and
24.25GFlops/W considering 64 bit floating-point opera-
tions, with a power consumption of, respectively, 300 and
260watt. It is, therefore, clear that GPUs aim at one side at
energy efficiency, but they require careful programming and
optimization to provide high computing performance.

&e increasingly adopted class of low-power processors,
often called System-on-Chip (SoC), originally designed for
the embedded and mobile market, represents an attractive
solution for scientific and industrial applications given their
increasing computing performance coupled with relatively
low cost and low electrical power demand.

SoC hardware platforms typically embed in the same die
low-power multicore processors possibly combined with a
GPU and all the circuitry needed for several I/O devices. For
the case of off-the-shelf SoCs, various limitations may arise,
such as 32 bit-only architectures, small CPU caches, small
RAM sizes, high latency interconnections, and unavailability
of ECC memory.

However, some solutions are progressively reducing the
performance gap with high-end processors, with the added
value of keeping a competitive edge on costs, reducing their
carbon footprint, and preserving the environment. For these
reasons, in this paper, we disregard devices such as Arduino
or Raspberry Pi devices that, even if considered for compute-
intensive applications [41], are mainly used for equipping
IoT systems [42, 43] without significant, local preprocessing
of data.

Fugaku represents the most important example of the
adoption of SoCs for HPC—the first supercomputer in the
TOP500 list of November 2020 and the most recent at the
time of writing this paper—which is equipped with Fujitsu’s
48-core A64FX SoC, providing a comparable performance-
per-watt value with respect to GPU-based systems [44].

In the corresponding Green500 List, we can see that
Fugaku appears in position 10 with a value of 15.418GFlops/
W, while NVIDIA DGX SuperPOD, the most energy-savvy
system which is equipped with NVIDIA A100 GPUs,
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provides 26.195GFlops/W but is ranked only at position 170
in the TOP500. A more interesting comparison is between
Fugaku and Selene, again a supercomputer equipped with
A100 GPUs: this last appears in position 5 in both lists, with
a value of 23.983GFlops/W but providing only
63,460 TFlops/s with respect to 442,010 TFlops/s provided
by Fugaku.

As for most HPC architectures, the question remains this
[45]: do the raw numbers related to performance per second
and watt correspond to achievable performance figures for
most of the scientific applications and, in particular, for the
application I am interested into?

&is was the goal of the Computing On SOC Archi-
tecture (COSA) project [46, 47], an initiative funded by the
Italian Institute for Nuclear Physics (INFN) between 2015
and 2018. In particular, the COSA project focused on
assessing the energy consumption behavior of a wide set of
state-of-the-art architectures using benchmarks and soft-
ware widely used in many scientific applications.

In particular, an in-depth comparison of the perfor-
mance of x86-based SoCs (i.e., Pentium N3700 and J4205,
Avoton C2750, Xeon D1540, and Atom C3958) and low-
power GPUs (i.e., Jetson TK1 and TX1) for state-of-the-art
high-end solutions (i.e., Xeon E5-2683 and Tesla K20) is
discussed in [23] with two benchmarks, represented by the
widely used, computationally intensive N-body algorithm
and the use of a deep learning approach applied to a clas-
sification problem, together with the real-world application
taken from the field of molecular biology.

Although comparing high-end commercial/HPC servers
with motherboards based on low-power SoC taken from the
mobile and embedded world can be considered unfair, the
results assess that the use of low-power architectures rep-
resents a feasible choice in terms of tradeoff among time-to-
solution, energy-to-solution, and economic aspects.

&e authors also discuss the economic aspects in [15, 48]
by showing how a proper placement of the computational
services considering edge and fog’s composition cloud in-
frastructures is the key factor for achieving the best tradeoff
between costs, performance, and power consumption.

Regarding the usage of SoCs based on ARM instruction
set architectures (ISAs) or FPGAs, a quantitative evaluation
is presented, for example, in [49], again using the N-body
algorithm. Both these devices have been exploited in the
ExaNoDe project to build a prototype of computing element
for exascale [50].

However, it is to note that the porting of the code on
these architectures is a bit more complex because the de-
velopment and tuning tools have not yet reached the ma-
turity level, ease of use, and does not provide the wide set of
functionalities as those provided for free by Intel or NVIDIA
[51].

2.3. HPC Low-Power Devices. If we move from off-the-shelf
products to the design of new solutions for joining high
performance and energy efficiency, one of the most im-
portant references is represented by the Mont-Blanc project,
started in 2011. Its goal is to foster the development of a low-

power European processor for Exascale, with a target of
50GFlops/W at the processor level.&is project is part of the
European Processor Initiative, a Framework Partnership
Agreement to develop the European skills in the design and
exploitation of such processors.

Also, this project, together with ExaNoDe [52], is part of
a wider group of EU-funded projects (e.g., ExaNeSt [53]
focused on interconnection and storage and Ecoscale [54]
focused on the heterogeneous architecture and, in particular,
on the use of FPGAs), pursuing a strategic vision for eco-
nomical, low-power approaches.

Also, the Mont-Blanc projects consider the use of ARM
instruction set architectures (ISAs), such as the &underX
processor family [55], and quantitative evaluations about
different energy-performance tradeoffs achievable when
designing an architecture based on mobile market tech-
nologies have been presented [56].

Heterogeneity seems to represent the most promising
way, e.g., by integrating CPUs (X86 or ARM), GPUs, and
FPGA in a single platform [57]. Also, the great efforts in
developing unified programming models and API sup-
porting all these heterogeneous hardware architectures such
as OpenCL, SYCL, and oneAPI [58] demonstrate this trend.

3. Tools for Energy-Efficient Computing

In the previous section, we saw that power and energy
consumption had become the driving metrics for computing
hardware design and the most interesting CPUs. However,
the advances in hardware efficiency must be followed by
energy-aware algorithms, appropriate choice and allocation
of specific hardware to applications, and adequate man-
agement techniques.

One of the most complete and interesting introductions
to the problem was presented by Prof. Gallaghers [59] in
summer school “ICT-Energy: Energy consumption in future
ICTdevice” organized in 2016 within the context of the ICT-
Energy European project [60].

&e key concept is that energy is consumed by hardware,
but this occurs under the control of software. Normal high-
level languages (e.g., C++ and Java) hide the hardware
characteristics, but the key aspect is that there could be many
differences in the same high-level code (e.g., C++) machine
instruction programs with different energy consumption
figures. To this extent, an interesting tool is represented by
Compiler Explorer [61], an open-source web application for
interactive compiler code generation observation based on
Node.js [62]. It shows the assembly output of the compiled
code with different compilers and compiler versions to
extract valuable information as, for example, for evaluating
the power consumption.

&erefore, energy saving has to start at the software level
to be propagated to the hardware level. Techniques for
saving energy with power-aware hardware management or
power capping [63] described in the previous section can
represent a valuable complement. However, a key aspect,
neglected by nearly all programmers, is their active en-
gagement to inspect where a program wastes energy and,
therefore, experiment with different designs. &is is
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obviously coupled with the fact that results have to be
produced within an acceptable deadline [64], an aspect often
disregarded approaching the energy efficiency problem.

3.1. Profiling Tools. &e first step for achieving energy-effi-
cient behavior is to investigate software behavior using
information gathered as a program executes (i.e., profiling it)
or simulating this through a performance model.

One of the most used tools for profiling is the Perfor-
mance API (PAPI) analysis library [65]. PAPI is platform
independent and provides developers with an interface and
methodology for gathering performance-related data made
available by hardware. &e basic principle is to allow de-
velopers to see the relation between the software perfor-
mance and processor events. As regards the power
consumption, PAPI has been extended to measure and
report energy and power values also on complex architec-
tures [66].

Also, the PowerPack framework [67] provides a set of
tools for analyzing the energetic performance. Unlike PAPI,
the measurements are gathered on a separate machine in
order to limit probe effects.

&e scalable performance measurement infrastructure
for parallel codes (Score-P) [68] has been extended for
collecting information from technologies such as the
aforementioned Intel RAPL.

Extrae is a tool relying on PAPI that allows collecting its
countermetrics (including power and thermal data) for
parallel programs [37]. Paraver effectively supports the
analysis of such information, a visual data browser devel-
oped at the Barcelona Supercomputing Center as the pre-
vious one [69].

&e Energy-Aware COmputing Framework (EACOF)
has been designed to allow developers to profile their code
for energy consumption [70]. In particular, it allows pro-
filing codes in order to know exactly where energy is being
used. Moreover, it allows applications to adapt at runtime
based on current energy consumption. As an example ap-
plication, the authors proposed a video player that may
intelligently adapt based on energy consumption readings to
ensure a video will complete before the battery runs out. &e
framework is available on GitHub [71], but no updates have
been published since 2015.

In general, many tools such as these two have been
presented in the literature. It is worth citing EProf [72],
having the main feature to support fine-grained attributions
of energy consumption to a particular function/software
segment. However, in most cases, they are not actively
maintained at the end of the projects where they have been
developed, and software becomes difficult—if not impos-
sible—to find and run.

A similar fate occurred for the Multiple Metrics Mod-
eling Infrastructure (MuMMI) [73] project, focused on
integrating existing tools such as PAPI and PowerPack for
facilitating measurement, modeling, and prediction of
software for multicore systems.

3.2. Dynamic Tuning. Some tools aim to achieve energy-
saving figures automatically. In detail, many of them have
been proposed, e.g., [74, 75], but, as stated before, not ac-
tively maintained. Here, we present just two of them because
they are not part of wider and integrated solutions, which are
discussed below.

&e Global Extensible Open Power Manager (GEOPM)
is a framework for exploring power and energy optimiza-
tions targeting high-performance computing [76]. One of
the most interesting features is the possibility to dynamically
coordinate hardware settings across all compute nodes used
by an application in response to the application’s behavior
and requests from the resource manager. For example, it is
possible to optimize MPI applications to improve energy
efficiency or reduce the effects of work imbalance, system
jitter, and manufacturing variation through built-in or user-
defined control algorithms. &e framework is available on
GitHub [77].

&eCOUNTDOWNSlack library [78] allows identifying
and automatically reducing power consumption during
communication and synchronization primitives [79]. &e
library faces the problem of power wasting in communi-
cation and synchronization operations because of the
adopted blocking mechanisms [80]: for example, nearly all
MPI implementations use a busy-waiting mechanism. &is
library, on the contrary, is able to run a processor in a low-
power mode, resulting in lower power consumption with
limited or no impact on the execution time [81].

3.3. Integrated Solutions. &e Runtime Exploitation of Ap-
plication Dynamism for Energy-efficient eXascale com-
puting (READEX) project has been funded by the European
Union’s Horizon 2020 research program between 2015 and
2018 to develop a tool-aided methodology for dynamic auto-
tuning for performance and energy efficiency [82]. &e tool
suite was released in 2018, and it is available via GitHub [83].

&e methodology is based on instrumenting an appli-
cation with Score-P. &is can be performed in an automatic
way by compiling it with Score-P.&en, the dynamism of the
application is detected and analyzed in order to identify the
significant regions that will be managed with the project
tuning methodology at runtime.

&e key advantage of this suite is that it can be exploited
by any developer even if she/he is unaware of the READEX
methodology, with the result of increasing the energy effi-
ciency of her/his application. It has been estimated that the
application of the READEX tool suite to a nearly complex
application can take several days [84], mainly for compiling
the application with Score-P.

&e Low-Energy Toolset for Heterogeneous Computing
(LEGaTO) project has been funded by the European Union’s
Horizon 2020 research program between 2017 and 2020 to
design and develop a software toolchain for energy-effi-
ciency computing on heterogeneous hardware, i.e., a system
equipped with CPUs, GPUs, and FPGA [57, 85].
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&e toolchain was released in 2020, and it is available via
GitHub [86]. It is composed by several software components
integrated to achieve a consistent programming environ-
ment across heterogeneous hardware platforms.

&e hearth of the toolchain is represented by OmpSs
[87], an extension to OpenMP developed at the Barcelona
Supercomputing Center for supporting the asynchronous
parallelism on heterogeneous resources as multicore CPUs,
GPUs, and FPGAs.

An application in the OmpSs programming model is
composed of one or more tasks with possible data depen-
dency flow among some of them. &e runtime environment
analyses the resulting graph and produces a correct and
possibly concurrent order of task execution. Several com-
piler and runtime systems (e.g., Nanos6, XiTAO [88], and
Mercurium) support the process and manage all the energy
efficiency, security, and fault-tolerance aspects [89].

&ree use cases have been defined in healthcare, IoT for
Smart Homes and Cities, and machine learning because they
have different requirements in terms of energy efficiency,
fault tolerance, and security. Results have been published in
Deliverable 5.4 [90].

&e Software Development toolKit for Energy optimi-
zation and technical Debt elimination (SDK4ED) project has
been funded by the European Union’s Horizon 2020 re-
search program between 2018 and 2020 tominimize the cost,
the development time, and the complexity of low-energy
software development processes by designing a methodo-
logical approach and a software toolchain [91].

&e SDK4ED platform [92] consists of five toolboxes:
Technical Debt Management, Energy Optimization, De-
pendability Optimization, Forecaster, and Decision Support.
&ey are implemented following the microservice paradigm
as Docker images containing the specific web service.

Focusing on the Energy toolbox, it analyses projects
available in an online repository (e.g., GitHub) on the
machine running the Docker container with regard to its
energy efficiency. &is means it finds the energy hotspots,
estimates the energy consumption through static or dynamic
analysis [93, 94], and inspects possible solutions by sug-
gesting specific code refactoring.&is is a valuable approach,
in particular, for software reusing [95].

&e project ended at the end of 2020. &erefore, at the
time of writing, not all the details and the code are available.

&e Time, Energy, and security Analysis for Multi/
Many-core heterogeneous PLAtforms (TeamPlay) project
has been funded by the European Union’s Horizon 2020
research program since 2018 to design and develop new
techniques for producing highly parallel software for low-
energy systems, such as IoT devices and CPS [96].

&e idea is to develop a set of tools for allowing pro-
grammers to reason about time, energy, and security at the
program source level. &e idea is to design new language
constructs to manage these extrafunctional properties as
first-class citizens of the source code and express contracts in
the source code that are machine-checkable by an under-
lying proof system.

&e project is ongoing; therefore, at the time of writing,
little information and software components were available.

4. Conclusions

Energy consumption is increasingly becoming one of the
most relevant issues concerning the computing platforms for
scientific applications and workloads.

As stated in [97], the huge level of energy consumption
of ICT systems is probably due to the fact that nobody really
cared for a long time, but today, things are changing because
of economic reasons and also because our way of thinking
has changed.

In this paper, we presented state-of-the-art solutions,
both hardware and software, and methodological ap-
proaches for pursuing energy efficiency in scientific software
to provide interested readers an updated introduction to the
topic. &e conclusion we can derive is that there are an
increasing number of projects focusing on these topics, and
some interesting SoC-based solutions are available. From the
software side, instead, the situation is not satisfactory be-
cause tools are sometimes difficult to be found, not inte-
grated, and, very often, disappear after the end of the project
that developed them. What is actually needed is the defi-
nition of a common methodology and a coordination effort
of groups acting in this field comparable with that of the
Virtual Institute-High-Productivity Supercomputing (VI-
HPS) [98], having in mind the tradeoff among time-to-
solution, energy-to-solution, and usability of the proposed
tools.
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Offloading computation from mobile to remote cloud servers is a promising way to reduce energy consumption and improve the
performance of mobile applications. However, a great challenge arises as automatic integration of powerful computing resources
in remote cloud infrastructure and the portability of mobile devices. In this paper, we develop a Java annotation-based offloading
framework, called MCAF, for android mobile devices..is framework is designed and committed to simplifying the development
of android applications enabled with the offload capability. All the developers need to do is to import the SDK library of our
MCAF and annotate the computation-intensive methods. MCAF can automatically extract the annotated source code and
generate the code that will be run in the Cloud. Moreover, the codes of making the offloading decisions are automatically inserted
into the original source code. We also conducted the real experiments to show the applicability of our MCAF.

1. Introduction

Advances in the portability and capability of mobile devices
such as smartphones, together with increasingly faster and
widespread wireless networks, a large number of mobile
APPs such as shopping, gaming, information management,
and so on have been made. Smartphones have changed
human lives and become indispensable gadgets in modern
society. Despite the fast increase in hardware performance of
mobile devices, it is still limited comparing with their
desktop counterparts and cannot meet the ever-increasing
demand from end-users and APP developers (e.g., CPU,
storage, and battery life). .e limited hardware resources
impede further improvement of Quality of Services (QoS)
[1] for users and also further expansion of mobile APP
categories. Integrating mobile devices with powerful Cloud
platform [2, 3] to provide the Mobile Cloud Computing
(MCC) offers a promising solution to overcoming the
challenge [4, 5].

MCC is able to save the energy consumption of mobile
devices and/or improve the running performance of the

mobile applications by offloading part of executions from
mobile devices to cloud servers. Although various offloading
frameworks have been developed, a big obstacle to hinder
the wide adoption of these offloading frameworks is that it
relies heavily on the programmers to develop the mobile
applications in a manner designated in the offloading
framework. In this work, we aim to design and develop an
offloading framework which simplifies the development of
mobile applications. Our offloading framework, called
MCAF, makes use of Java annotation, which is different
from the existing ones in the following aspects.

In all existing offloading frameworks, the programmers
either have to annotate the source code or write the source
code in a specific manner, and the framework developers
need to develop the bespoke compiler to compile the source
code embedded with the offloading ability. To use MCAF,
there is no need to develop a new compiler, and only the
existing Java compiler is needed to realize the offloading
process.

Moreover, most existing frameworks such as Cuckoo [6]
require the programmers to implement the code to be run on
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the Cloud. In contrast, MCAF aims to minimize the effort of
conducting the offload. .e programmers who employ
MCAF do not need to implement the code running on the
Cloud but write the source code as normal for the mobile
device and add the Java annotations that specify the code
offloading. MCAF automatically extracts from the source
code the part that is to be run on the Cloud according to the
Java annotation. .e extracted code is then encapsulated
automatically as a stand-alone Java program and is offloaded
to the Cloud when the conditions are met.

Another major difference between MCAF and most
existing frameworks is that MCAF offloads the task at the
granularity of the method level. MCAF extracts the source
code of a method that is to be offloaded and then wraps up
the method as a stand-alone program.

Overall, MCAF aims to reduce the efforts of the
framework developers and the programmers in realizing the
offloading capability in mobile Apps. All that the users of
MCAF have to do is to import the MCAF SDK library and
add annotation for computation-intensive methods. In this
paper, we present the design and implementation of our
offloading framework. In order to showcase the applicability
of our approach, we also developed two mobile applications
for real-life scenario by applying our offloading framework.
Experiments have also been conducted to evaluate the ef-
fectiveness of our framework.

Note that in practice confidentiality and the integrity of
the transmitted data should be ensured. .ere are the
existing measures in the literature [7, 8] to address the se-
curity issues in the offloading framework. For example, in
the work presented in [7], the data are encrypted and signed
before transmitting, and are then decrypted in the Cloud.
.e encryption and decryption costs are taken into account
when making the offloading decisions. Ensuring security is
not the focus of this paper. MCAF can make use of the
existing security measure in the literature (such as the one
presented in [4]) to ensure confidentiality and the integrity.

.e remainder of this paper is organized as follows. In
Section 2, we provide the background of Java annotation and
the related work. In Section 3, we present the design of
MCAF and also a case study to show the exact workings of
MCAF. MCAF is evaluated in Section 4. .is paper is
concluded in Section 5.

2. Background

2.1. Annotation. Annotation is an important feature in Java
since it relives Java developers from the pain of cumbersome
configurations [9]. It shifts the responsibility of writing the
boilerplate Java code from the programmer to the compiler.
Annotations were first introduced in Java 5.0 and more
advanced features are gradually supported in later Java
versions.

Annotation is a form of metadata and can be used to
describe any information about the elements (packages,
classes, methods, fields, arguments, variables, etc.) in a
program [10]. Annotations do not directly affect the pro-
gram semantics. However, since annotation does affect the
way in which the programs are treated by tools and libraries,

they can in turn affect the semantics of the running program.
Annotations can be read from source files, class files stati-
cally, or be read reflectively at runtime. For example, an-
notations, such as Deprecated, Override, or NotNull, can be
used to describe the constraints or the usages of the elements
in a method during the compilation.

Although typically an application programmer never
have to define an annotation type, it is not hard to do so..e
declaration of an annotation type is similar to that of a
normal interface. An at-sign (@) precedes the keyword
“interface.” .e declaration of a method will also define the
elements of the annotation type..e declaration of a method
must not have any parameters and can have default values.
Return types are restricted to primitives, String, Class, enum,
annotation, and arrays of these types. .e following is an
exemplar declaration of an annotation type. Once an an-
notation type is defined, program developers can use it to
annotate source code. In general, annotations will be pro-
cessed during the compilation. .e command-line utility
APT, an annotation processing tool, is used to find and
execute the annotation processors based on the annotations
inserted in the source files.

2.2. RelatedWork. Many researchers believe that combining
mobile computing with clouds is a promising solution to
overcome the battery limitation of smartphones and extend
the performance of smartphones [11]. Indeed, much recent
work has focused on building the frameworks that enable the
offloading of mobile computations to the cloud [12, 13].

Cuervo et al. proposed an offloading system called
MAUI, which can enable fine-grained energy-aware code
offloading from smartphone to the remote server [14]. In
MAUI, a method that is possible to be offloaded is declared
as a “remotable” method. MAUI then models the offloading
problem as an integer programming problem and finds the
optimal offloading decision by solving the integer program.
Microsoft.NET Common Language Runtime (CRL) is the
programming language used by MAUI. However, the
drawback of MAUI is that it needs the developers to modify
the source code run on the local mobile and implement the
source code run in the Cloud.

Compared with MAUI, CloneCloud [15, 16] goes one
step further and does not ask the programmer to label (e.g.,
declare) the offloadable methods. CloneCloud automatically
identifies the offloading costs by analyzing the source code
both statically and dynamically at runtime. It then runs an
optimizer to partition the tasks between mobile devices and
the Cloud.

MAUI and CloneCloud are the systems for offloading
parts of the existing program running on the mobile device
to the Cloud. Cuckoo [6, 17] is the application development
framework. Cuckoo can be used by programmers to develop
the mobile Apps that have the offloading ability. Cuckoo
provides a simple programming model and allows a single
interface with a local and a remote (on the Cloud) imple-
mentation. .e Apps developed using Cuckoo will decide at
runtime automatically whether the local or the remote
implementation is invoked for an interface.
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DPSF [18] is another offloading framework based on Java.
It first analyses the call-graph of the application offline and
determines which classes can be offloaded. It then partitions all
Java classes into two parts during the compilation. .e classes
in one part are run locally in the mobile phone while the other
will be offloaded to run on the server. .e entire application is
deployed in both local mobile and remote server. .e appli-
cation starts running in local mobile.When it runs to amethod
in a class that is offloaded, it makes use of the RMI (Remote
Method Invocation) mechanism in Java to invoke the method
in the Java application deployed in the remote server. Although
DPSF also makes use of the existing ability in Java to realize
offloading, there are the following differences from ourMCAF.

First, DPSF is essentially a static offloading framework
because it, whose classes are offloaded, has to be determined
at the programming stage through the offline profiling, and
then the source code has to be adjusted to fulfil the off-
loading. DPSF is dynamic only in the sense that when it
begins to run the application but detects that the network
connection is poor, it will run the original Java application.
Once the original application or the application with the
offloading ability starts running, it will run to completion.
.ere is no other mechanism in DPSF that makes the off-
loading decisions for individual classes during the appli-
cation execution. In MCAF, although we annotate which
methods can be offloaded at the programming stage, the
offloading decisions can be made for a particular method. If
the offloading condition is met, the offloading is then carried
out for that method.

Second, DPSF offloads the workload at the granularity of
the class level, while it is at the method level in MCAF.

.ird, when using DPSF, the programmer has to change
the source code, for example, changing the modifier of non-
private fields to private and generating the public getter/setter
methods for them, generating a proxy class for each offloaded
class, and so on. InMCAF, the programmer only annotates the
methods through Java annotation scheme, but does not change
the original source code, which reduces the programmer’s
effort and is less error-prone during the development stage..e
source code for running the offloaded methods in the Cloud
server is automatically generated by MCAF, not written by the
programmer. If the annotation is ignored, the application
behaviour remains unchanged.

3. MCAF

3.1. MCAF Modules. .e Mobile Cloud Annotation
Framework (MCAF) consists of the following modules: (1)
Annotation Handler: extracting all information related to
the annotated methods; (2) Cloud Proxy: realizing the
communications between the local mobile device and the
Cloud; (3) Offloading Decider: implementing the offloading
strategies; and (4) Code Rewriter: automatically wrapping up
the source codes of the extracted method as stand-alone Java
programs and compiling them as classes files.

3.1.1. Annotation Handler. APT is the existing annotation
processing tool. In MCAF, APT is used to identify which

method is annotated and save the annotation information.
.e saved annotation information contains the accessing
modifiers, the return type, and the parameters type of the
annotated methods. However, the parameter values and the
method code are not included. One of the responsibilities of
Annotation Handler is to complement the annotation in-
formation saved by APT. Annotation Handler extracts the
segment of the source code in each annotated method.
Specifically, a regular matching expression is constructed in
Annotation Handler, which is used to search the annotation
information saved by APT and to match the part of source
code which implements the annotated methods. .e
extracted code segment will be packaged as the stand-alone
Java program and compiled to the class files by the Code
Rewriter module. .e class files will be transferred to and
run on the Cloud according to the offloading decision made
by Offloading Decider.

3.1.2. Offloading Decider. After the processing of Annota-
tion Handler, all annotated methods are identified, and the
annotation information and the source file of these methods
are saved. When an annotated method is invoked, the
Offloading Decider module calculates the offloading cost of
this method. If it is beneficial to offload, the bytecode of this
method, which is obtained by the Code Rewriter module, is
retrieved and transferred to the cloud by the Cloud Proxy
module. If the Offloading Decider decides not to offload, the
method will be executed in the local mobile device.

Note that the offloading strategy is not the focus of this
paper. MCAF is a framework to realize the offloading ability.
.e developer can plug any existing offloading strategy into the
Offloading Decider. .e Offloading Decider interfaces with
other components inMCAF through its output, which is either
True or False. If the output is true, the method in question will
be offloaded. Otherwise, the method will be run locally. Al-
gorithm 1 in Section 3.2 presents an example of this.

3.1.3. Cloud Proxy. .eCloud Proxymodule is responsible for
offloading-related communications between local mobile device
and the Cloud. Firstly, when the Offloading Decider decides to
offload an annotated method, Cloud Proxy transfers the byte-
code and the arguments of themethod to the Cloud. Second, the
execution results of the offloaded method are returned to the
local mobile device and passed to the invoked method.

3.1.4. Code Rewriter. Code Rewriter generates two types of
source code (class). After AnnotationHandler extracts the code
segment of the annotated methods, Code Rewriter generates
the stand-alone source code for each annotated method. .e
source code is then compiled to a Java class, whose name is the
name of the annotated method appended by a word “Class.”
For example, if the name of the annotatedmethod is “Add,” the
name of the new class is “AddClass.”.e generated classes may
be transferred to and run on the cloud after the offloading
decision is made. In the class, a member function is defined
which includes all instructions of the annotated method. By
invoking the member function of the newly generated class on
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the cloud, we will obtain the same results of the annotated
method as it runs on the local smartphone. We call this type of
class the Cloud execution class.

.e second type of source code (class) generated by Code
Rewriter is run in the local smartphone. In this source code, the
new class inherits from the class where the annotatedmethod is
located..e name of this new class is the name of the inherited
class appended by an underscore symbol“_.” For example, if
the inherited class is “A,” the name of the new class is “A_.”
Code Rewriter overrides the new class “A_” by automatically
inserting the code which makes the offload decisions and the
code that interacts with the Cloud, such as uploading the
“AddClass” generated above, and its input parameters to the
Cloud and receiving the return results from the Cloud. If the
decision made by the added decision making code is false (i.e.,
do not offload), the original instructions of the annotated
method will be run in the local smartphone. We call this new
class the policy and local execution class.

3.2.ACase Study ofMCAF. In this subsection, we present an
example to illustrate the workings of MCAF.

We first define a new annotation named “Upload” in
Algorithm 2.

Target and Retention are two predefined annotation types
in Java. .e Target type with the value of Element-
Type.METHOD in line 1 is used to specify that the annotation is
applied at the method level. .e Retention type with the value
of RetentionPolicy.CLASS in line 2 is used to specify that the
added annotation is retained by the compiler at the compile
time (but is ignored by the Java Virtual Machine). Line 3
defines a new annotation type called Upload. Defining a new
annotation type is similar as defining an interface in Java except
that the keyword interface is preceded by the sign @. In the
body of the Upload annotation type, three annotation type
elements are declared: type, module, and valueType. .e type
element is used to identify the Upload annotation. .emodule
element is used to specify the module in which the annotated
method is located (assume the annotated method is in the
“app” module). valueType is the data type of the input pa-
rameters of the annotated method. We developed an Anno-
tation.jar package. .e “Upload” annotation type is defined in

Annotation.jar. Annotation.jar also implements the function-
ality of the Code Rewriter component.

After the Upload annotation type is defined, we can use it
to annotate a method. In Algorithm 3, a class with the name
of “A” is defined, which includes an “Add” method. .e
“Add” method takes two input parameters with the integer
type, x and y. Before the “Add” method, the newly defined
“Upload” annotation type is inserted, in which the valueType
element takes the actual types (i.e., integer) of the two input
parameters, x and y. .e other two elements, “type” and
“module,” take the default values.

When the code in Algorithm 3 is compiled, the compiler
realizes that the “Add” method is annotated by “Upload.”
Two types of source code (two classes) will be generated.

On one hand, the compiler will invoke the Code Rewriter
functionality implemented in Annotation.jar to generate a
new class named “AddClass” as shown in Algorithm 4. If the
offload decider decides to offload the “Add” method, the
“AddClass” will be uploaded to the Cloud for execution.

On the other hand, the compiler will also invoke the Code
Rewriter functionality to generate another new class named
“A_,” which extends from class “A” (the “Add” method is
located in class “A”)..en the “Add” method is overwritten by
inserting a set of instructions shown in Algorithm 1 (from line
4 to line 10) in the “Add” method. In Algorithm 1, line 3 calls
the offload decider to determine whether the “Add” method
should be uploaded. If the output of theOffloadDecider is True
(checked in line 4), the method needs to be offloaded and lines
5–8 will be run. Lines 5 and 6 check whether the “Add”method
has been offloaded (the App may be executed repetitively). If it
has been offloaded, it means that the code of the “Add”method
exists in the Cloud and there is no need to upload the code of
the method again. If the method has not been offloaded before,
it calls the Cloud Proxy to upload the “AddClass” (line 7),
which contains the code of the “Add” method that will be run
in the Cloud, and then wait for the Cloud to return the result of
running the “Add” method (line 8). If the out of the Offload
Decision is False, the calculation is performed locally (line 10).

When the Cloud server receives the “AddClass.Class”
uploaded by the smartphone, it invokes the “Add”method in
the AddClass.Class through the Java reflection mechanism.
.e segment of code that run the “Add”method in the Cloud

(1) public class A_ extends A {
(2) int Add(int x, int y) {
(3) isAddClassNeedUpload�Decider.getClassUploadStatus();
(4) if (isAddClassNeedUpload) {
(5) isAddClassRemoteExists�Decider.getRemoteExistsStatus();
(6) if (!isAddClassRemoteExists) {
(7) ClientProxy.uploadClass(“xx/xxx/AddClass.Class”);}
(8) return ClientProxy.getResult(“Add”, x, y);
(9) }
(10) return x+ y;

}
}

ALGORITHM 1: Generating a new class “A_” that extends from class “A” and then overwriting the “Add” method by inserting the offloading
instructions.
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is shown in Algorithm 5, in which x and ywill take the values
uploaded by the smartphone.

3.3. System Architecture. In this section, we present the
system architecture for implementing the Android applica-
tion with the offload capability. First, we introduce what type
of methods can be annotated using our scheme. Android
applications run their bytecode on the Dalvik Virtual Ma-
chine (Dalvik VM). .ere are some differences between
Dalvik VM and Java Virtual Machine (JVM). Dalvik VM has
optimized the execution of the android code. For example, UI
graphic, camera, and sensors cannot be executed on JVM
because their execution depends on the Android Runtime
Environment. .e methods which can be annotated must

meet the following conditions: (1) the annotated methods can
only contain the pure java code. Note that the percentage of
the code that is offloaded will not be significantly reduced due
to this condition since the methods that are most likely to be
offloaded are computation-intensive ones and all arithmetic
operations can be programed in pure Java code. (2) .e
annotated methods should not use the global variables. If the
global variables have to be used, they need to be transferred to
the Cloud server together with other method parameters. (3)
.e annotated methods have to be public methods.

3.3.1. Build Process. Figure 1 shows the process of building
an Android application using our framework from the
source code to the apk file..e only thing that the developers

(1) @Target(ElementType.METHOD)
(2) @Retention(RetentionPolicy.CLASS)
(3) public @interface Upload {
(4) String type() default “Upload”;
(5) String module() default “app”;
(6) String[] valueType() default {};
(7) }

ALGORITHM 2: Defining a new annotation type named “Upload.”

public class A extends MainActivity {
@Upload(valueType� {“int,” “int”})
int Add(int x, int y) {
return x+ y;

}
}

ALGORITHM 3: Annotating the “Add” method in the “A” class.

(1) Object[] parameters� new Object[]{x, y};
(2) Class[] parametersType�new Class[]{int.class, int.class};
(3) Object[] parameters� (Object[]) entityBean.parametersValue.toArray();
(4) Class[] parametersType� entityBean.parametersType.toArray(new Class[entityBean.parametersType.size()]);
(5) Class<?> cl�Class.forName(“org.demo.data.AddClass”);
(6) Method method� cl.getDeclaredMethod(“add,” parametersType);
(7) Object object� cl.newInstance();
(8) ret� (int) method.invoke(object, parameters);

ALGORITHM 5: .e Cloud server executes the “Add” method in the AddClass.Class through the Java reflection scheme.

package org.cloud.annotations.MainActivity;
public class AddClass {
public int Add(int x, int y) {
return x+ y;

}
}

ALGORITHM 4: Generating the “AddClass” to be run on the Cloud.
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need to do is to add the annotation, which divides the source
files into two categories: annotation source files and the
original source files. In this process, Annotation Process
Tools (APT) can find all annotated methods in annotated
source files. .en, it generates the Cloud execution classes
that can be executed on the Cloud and the classes that run on
the local smartphone through the framework SDK.

3.3.2. Runtime Architecture. Figure 2 shows the runtime
architecture of the application. In the smartphone, the
runtime architecture is mainly divided into four parts. .e
first part is Methods, which contains themethods that will be
executed when the android application runs. In Figure 2,
there are two classes in the methods part, which are divided
by the dotted line. Methods A and B are in the same class,
while methods C, D, and E are in the other. In addition, we
use the dotted ellipse to represent the annotated methods,
which are methods B, C, and E. .e second part is Policy,
which makes the offload decisions for the annotated
methods. .e third part is assets; it is a resource folder and
contains the source code of the annotated methods, which
can be uploaded and executed on the Cloud. .e last part is
Proxy; it is responsible for communication with the cloud. In

the Cloud server, the module argument is used to receive the
arguments from local smartphone when an annotated
method is executed in the Cloud.

In theCloud server, the argumentmodule is responsible for
managing the transmission of the parameters between the
smartphone and the server. When an annotated method is
invoked in the local phone during runtime, the method will
wrap the parameter values into the serialized file stream, which
is transmitted to the server through the network and is
deserialized to the parameters value on the server. By using the
serialization, we can transmit the complex type parameters
easily in addition to basic types of data. On the Cloud server, we
allocate thememory space to store the executable files uploaded
from the smartphone. .ese files are invoked through the Java
reflection mechanism. .e required parameters during the
execution are provided by the argument module. When the
Cloud server obtains the execution results, we will use the
serialization mechanism to pass the results to the smartphone.

4. Evaluation

.e aim of developing the offload framework is to save the
energy consumption of the smartphone where the mobile

Local phone Cloud server

A B

B B

C

C C

D E

E EPolicy

Methods

Proxy Proxy

Assets

Dalvik VM JVM

Argument

Figure 2: .e runtime architecture of android application generated by the framework.
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Figure 1: .e build process of an android application with MCAF.
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App is running while maintaining the performance of the
App. In this section, we evaluate the performance and power
consumption of our MCAF. We conducted real experiments
on a smartphone, which is Vivo X20 with 1.8GHz CPU, octa
core processors, 4GB RAM and Android OS 7.1.1.We used a
desktop as a Cloud server, which runs ubuntu 14.04 with a
3.40GHz CPU and 16GB RAM. .e Cloud server and
smartphone are interconnected by wifi.

We implemented two applications and ran them either on
the local phone or on the cloud server through offloading. .e
first application is to perform matrix computation, which is a
computational intensive application. In this application, we
generated the square matrix with the size of 100×100. .e

elements of the matrix are random numbers between −10 and
10. .e application computes the n-th Power of the matrix.
First, we ran the application on the smartphone. .en, we ran
the application by offloading it to the Cloud server. We also
measured the power consumption of the smartphone and the
execution time of the application in both cases. How to design
smart offloading strategies is not the focus of this work. In the
experiments, the application is always offloaded when the
wireless connection is available.

4.1. Execution Time. Table 1 lists the execution times of the
application when running in the smartphone and when

Table 1: .e execution time of the matrix computation application.

Power n
Offloading (ms)

Local phone (ms) Speedup (local_run/offloading_run)
Transmission Cloud

20 237 61 6912 23.19
40 232 77 13742 44.47
60 232 102 20610 61.71
80 214 128 27468 80.32
100 210 152 34551 95.44

Table 2: .e execution time of the Image Segmentation application.

Times
Offloading (ms)

Local phone (ms) Speedup (phone/offloading)
Transmission Remote

2 969 20 3727 3.85
4 984 27 7485 7.61
6 1003 29 11201 11.17
8 1065 43 15022 14.11
10 1067 93 18710 17.54
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Figure 3: (a).e energy consumption of the matrix computation application; the x-axis is the number of times the matrix multiplication is
performed (i.e., the power n). (b) .e energy consumption of the image segmentation application; the x-axis is the number of times the
image segmentation is performed.
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offloading. .e offloading execution time consists of 2
parts, including the communication time of uploading the
code and the parameters to the Cloud and the execution
time on the Cloud server. As the table shows, the com-
munication time is relatively stable. .is is because the
data transmitted and the network speed during the off-
loading process change little. .e execution time on the
Cloud server increases gradually as the power n (i.e., the
number of matrix multiplication) increases. We also
calculate the speedup of running through offloading over
running in the smartphone. As the computation increases,
the speedup increases too. .e results show that our
offload framework can significantly improve the running
performance of the application.

.e second application we used in the experiments is
image segmentation, which partitions a digital image into
multiple segments. It is also a computation-intensive ap-
plication. .e execution times of the application in local
phone and in the Cloud server are shown in Table 2. .e
input size of the test image is 300× 300 pixel. As the table
shows, the application incurs more communication time
compared to thematrix computation application..e results
still show good speedup when the application is offloaded.

4.2. Energy Consumption. To evaluate the energy con-
sumption of these applications, we used software called
Trepn Profiler [19]. It is an on-target power and performance
profiling application for mobile devices. In the Trepn Pro-
filer, the power measurement for a single app can be
achieved with a feature called Show Deltas. Figures 3(a) and
3(b) show the energy consumption of these two applications
when they are executed locally and through offloading. It can
be observed from the figure that offloading offers significant
energy saving. .e amount of energy saved increases as the
computation size increases.

5. Conclusion

.is paper presents a Java annotation-based offload
framework called MCAF for mobile cloud computing.
MCAF is used to upload the annotated source code to the
Cloud server at the granularity of methods. By using MCAF,
developers do not need to implement the Cloud-side service,
which can be generated automatically by MCAF during the
compilation. .e codes of making the offloading decisions
are also automatically inserted. All that the developers need
to do is to import the SDK library of our MCAF and an-
notate the computation-intensive methods. We conducted
the real experiments to showcase the applicability of MCAF.

It is possible to extend this work to allow the offloading
of the Android-related methods (i.e., the methods that are
not programed in pure Java code, but call the functions in
Android-related libraries). In order to realize the offloading
of android-related code, the following work should be
conducted: (i) extracting the offloaded method and gener-
ating a stand-alone apk that encapsulates the offloaded
method; (ii) setting up a VM in the Cloud and deploy the
Dalvik VM environment in the VM; (iii) developing a

functional component in the Cloud VM to enable the
communication between the Dalvik VM and the mobile..e
development of the above framework is expected to involve
much more engineering work than deploying a standard
Java VM as in the current MCAF. We will carry out careful
investigations as to whether it is worth the effort. After all,
only computation-intensive tasks are most likely to be
offloaded, which can be coded in pure Java code.

MCAF is originally designed for offloading the workload
from smartphones to the Cloud server. We plan to explore
the application ofMCAF in fog-edge computing. In fog-edge
computing, data processing is moved to edge devices, which
are closer to where the data are generated compared with
Cloud computing. As long as the edge devices are more
powerful than smartphones, there is no reason why MCAF
cannot be used to achieve the offloading of the workload
from smartphones to edge devices in fog-edge computing.
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Accidental falls are the main cause of fatal and nonfatal injuries, which typically lead to hospital admissions among elderly people.
A wearable system capable of detecting unintentional falls and sending remote notifications will clearly improve the quality of the
life of such subjects and also helps to reduce public health costs. In this paper, we describe an edge computing wearable system
based on deep learning techniques. In particular, we give special attention to the description of the classification and com-
munication modules, which have been developed by keeping in mind the limits in terms of computational power, memory
occupancy, and power consumption of the designed wearable device. (e system thus developed is capable of classifying 3D-
accelerometer signals in real-time and to issue remote alerts while keeping power consumption low and improving on the present
state-of-the-art solutions in the literature.

1. Introduction

Nowadays, unintentional falls are among the principal
causes of fatal injuries. Moreover, they are the most common
cause of hospitalization after nonfatal traumas. A study
conducted by the World Health Organization [1] highlights
that 25% of people aged over 65 years old fall every year, with
an increment to 32%–42% if considering only over 70.
Furthermore, even when the falls lead to less severe injuries,
the associated discomfort significantly reduces the quality of
life. It is worth noting that not only elderly people are af-
fected by unintentional falls, every person with some kind of
fragility related, for example, to postoperative conditions,
disability, or any other disease affecting mobility are part of
similar statistics. In addition, it is well known that the
majority of unintentional falls happens in the home
environment.

(ese facts highlight the importance of an automated
system capable of detecting unintentional falls sending re-
mote notifications so that timely help can be given. Among
the different approaches described in the literature, em-
bedded wearable devices are emerging as the best choice for

this kind of systems. (is is mainly due to their low in-
trusiveness, reduced power consumption, and cost effec-
tiveness. Moreover, the recent innovations on the
microcontroller units (MCUs), which are typically used for
wearable devices, provide the necessary computational
power that enables them to perform complex computations
directly on the MCU. (is allows to implement more
complex methods than in the past on-board wearable de-
vices, thus effectively enabling a very specific kind of edge
computing. Among these methods for fall detection, deep
learning techniques recently showed to be a very promising
approach [2, 3].

In this paper, we describe an embedded framework
based on edge computing and on machine learning for fall
detection on-board wearable devices. In particular, we ex-
tend our system proposed in [4] with a novel strategy to
improve the overall system performance together with the
design of a suitable Bluetooth Low Energy (BLE) protocol for
an effective minimization of data transmission.

It is worth highlighting that the adopted methodology
for this personal monitoring system based on deep learning
methods is very general and could be reused also for
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different applications beyond the reported one. As an ex-
ample, deep learning methods on embedded devices can be
used in different fields, such as automotive [5], security and
surveillance [6], augmented reality [7], and healthcare [8].

(e paper is organized as follows. In Section 2, the state
of the art of both wearable devices and fall detection through
machine/deep learning techniques is described. (en, the
proposed system is presented and the classification and
communication modules are described in detail, high-
lighting the reasons for the different design choices. (ese
modules are then evaluated from different points of view,
including computational complexity, power consumption,
and memory occupancy in Section 3, evaluating how these
modules impact on the performance of the overall system.
Section 4 gives some final remarks and possible future re-
search lines.

2. Materials and Methods

2.1. State of the Art. In the fall detection literature, two main
trends can be identified: one is based on ambient moni-
toring, while the other harnesses wearable or portable de-
vices. Ambient monitoring is typically based on cameras
mounted in rooms. (e main issues of this approach are the
expensiveness, the high power consumption, and the in-
trusiveness of the system in terms of privacy. Portable and
wearable devices do not suffer from these limitations. In the
latter category, two main approaches can be found: one is
typically based on smartphones [9–12] and another on
several kinds of wearable devices with specific hardware
[13–16]. As fall detection devices, smartphones suffer from
several limitations, which affect the overall performance
[17]. First, the sensors are shared and managed by the
operating system in a pre-emptive fashion. In a smartphone,
in fact, several applications are simultaneously executed and
this implies that all sensors are shared among all the ap-
plications which need sensory data, some of which run at a
high priority. (erefore, it is not possible in practice to
achieve the guarantee of a fixed sampling frequency and this
is a critical issue especially for artificial intelligence methods.
Last but not the least, in general, the typical duration of the
battery is not compatible with continuous monitoring
during the entire day. On the contrary, wearable devices are
designed for one specific task only, they have direct access
which guarantees a fixed sampling frequency; therefore,
battery duration can be made to be longer than with
smartphone-based solutions.

A thorough analysis of the existing wearable system
solutions for fall detection highlights two main research
tracks. In the first track, we find on-board elaboration of
sensory readings; typically, the acquired sensors data are
filtered and then processed through techniques based on a
fixed threshold or via other statistical methods, and then the
results are sent to a remote device.

Cola et al. [13] proposed a head-worn device containing
an accelerometer and a barometer integrated with a TI
MSP430 MCU. Jung et al. [14] described a system including
a three-axial accelerometer, an MCU, and a Bluetooth
module. (ese components are attached to a jacket and are

connected to each other via stretchable conductive nylon.
Nyan et al. [15] proposed a system using accelerometers and
gyroscopes. In this work, sensors are connected via Zigbee
transceivers to a board based on an Intel PXA255 processor,
where the actual processing takes place. In another system
[18], a custom processor based on FPGA technology elab-
orates the data acquired from the accelerometers.

It is worth noting that this kind of elaboration is simple
and does not require high-computational capabilities. On
the contrary, the accuracy of fixed threshold-based and
statistical methods is not so high and is outperformed by
artificial intelligence techniques.

On the second track, several works adopted more so-
phisticated methods, but by abandoning the on-board
processing in favor of remote elaboration. In these ap-
proaches, the wearable device acquires data from the sensors
and then sends them to a workstation that performs the
elaboration. A relevant example is the SHIMMER (Sensing
Health with Intelligence, Modularity, Mobility, and Ex-
perimental Reusability) integrated sensors platform [19]. In
[20], the data acquired by the SHIMMER 3D accelerometers
is sent via Bluetooth to a remote workstation, which per-
forms the classification through a Support Vector Machine
(SVM) classifier. Authors also compared the SVM with
K-Nearest Neighbours (KNN) and complex trees. A similar
study is conducted in [3], where gyroscopes and acceler-
ometers data are processed by machine learning approaches.

Apart from the SHIMMER, other Commercial Off-the-
Shelf (COTS) devices are emerging. In particular, the
SensorTile board produced by STMicroelectronics is
attracting the researchers because of its computing and
memory capability together with low power consumption.
(e core of this device is the STM32L476JGY MCU with a
maximum clock frequency of 80MHz. (e board is also
equipped with two three-axial accelerometers, a magne-
tometer, a barometer, and a gyroscope. It also integrates a
Bluetooth 4.1 transceiver, which is a popular protocol for IoT
applications.

(e mounted MCU is an ARM Cortex M4 core,
equipped with a Floating-Point Unit (FPU) which is fully
compliant with the IEEE single-precision floating-point
standard. (e board is also equipped with 1MB of flash
memory and 128KB of SRAM. (is device has been suc-
cessfully employed in human activity recognition [21] and
fall detection [4]. In the above perspective, the fall detection
system presented in [4] performs data classification through
deep learning methods elaborated on the device. (is means
that it outperforms the other devices in terms of accuracy
because it adopts deep learning methods and reduces power
consumption since the elaboration is performed on board,
without the need for continuous data transfers. However,
this system can be further optimized both from the point of
view of computational complexity and power consumption.
In this paper, we present a significant improvement of our
previous work described in [4]; in particular, the system has
been enriched with a pre-elaboration step which prevents
the MCU from classifying data that does not contain rele-
vant information. Moreover, a communication protocol
based on the BLE standard has been designed in order to
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minimize the communications between the SensorTile
board and a remote host.

2.2.DeepLearning. Deep learning methods are currently the
state-of-the-art approach for many computer vision and
signal processing problems. In particular, to process time
series signals (i.e., data acquired by sensors over time),
Recurrent Neural Networks (RNNs) are considered the best
solution [22]. Such networks are a specific kind of artificial
neural network, in which part of the output is fed back as
input.

Generally speaking, an RNN can be described by

y
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� wg Wx
(t)

+ Uh
(t− 1)

+ b􏼐 􏼑 + c, (1)

where x(t) and y(t) are the input and the output at the time t,
respectively, W, U, w, b, and c are the network parameters,
and g denotes a nonlinear function. (e term h(t) indicates
the hidden state, which is defined as follows:
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(e drawback of this kind of network is the training
phase, which is very hard to perform both in theory and in
practice.(e standard trainingmethod for RNNs is temporal
unfolding, where each training input sequence of predefined
length is fed as input to the unfolded network. (is tech-
nique is shown in Figure 1.

To analyze time series (e.g., accelerometers acquisitions
over time) the input data stream is scanned through a sliding
window of a suitable size, which must match the predefined
level of unfolding for training.

Once the training is completed, the obtained RNN can be
used to analyze an input stream by sliding a window of size
ωω over the input stream, resetting and rerunning the RNN
for each input window. (is process is known as inference
and is used to recognize specific patterns in the input. To
reduce the computational cost of inference, the input
windowωi is typically slid at interval s≫ 1 of constant length
called strides. All the concepts related to the sliding window
technique are shown in Figure 2.

Long Short-Term Memory (LSTM) [23, 24] cells are a
particular kind of RNN which are able to detect and
reproduce long-term temporal dependencies. (ey fea-
ture the capability to learn how to forget and filter part of
their hidden state during the inference. (e main ad-
vantage is that those networks are easier to train because
they do not suffer from the so-called vanishing gradient
problem. On the contrary, they are more complex than
standard RNNs from the computational point of view.
(e behavior of an LSTM cell is described by the fol-
lowing equations:
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where W ∈ RLS×LS, x(t), h(t), c
(t)
in , i(t), o(t), f(t), c(t), b ∈ RLS.

LS is a hyperparameter, called the LSTM size, and is defined
upfront by design as constant among all cells.

Figure 3 shows the typical structure of an LSTM cell, where
x(t) and h(t− 1) are given as input for computing equations
(3)–(6), indicated as circles in the figure. (e small circles with
a point inside indicate the element-wise multiplications needed
for preparing the inputs for the evaluation of equations (7) and
(8). (e result of equation (8) is the output of the cell.

2.3. Fall Detection with Deep Learning for Embedded
System. Different deep learning methods have been suc-
cessfully used for fall detection [2, 25–28]. Analyzing those
systems, we see that all these methods rely either on models
with a huge number of parameters or on remote commu-
nication. In terms of potential criticalities, in the former
approach, the set of binary parameters (usually called the
model of a network) can easily become too heavy to be
elaborated in real-time on a wearable device, while in the
latter approach, if we consider a 24/7 monitoring, intensive
data communication might well drain the battery charge too
quickly [29].

(e implementation of deep learning methods on an
embedded system is a topic of current interest, as witnessed
by the development of TensorFlow Lite [30]. (is software is
a reduced version of the complete TensorFlow software
framework and can be executed on mobile and embedded
devices. However, this software is still in an early devel-
opment stage and at present has some limitations: first, only
some MCUs are currently supported and, among the low-
power microcontrollers, only the ARM Cortex M3 MCU is
currently supported. Moreover, the part of the complete
TensorFlow framework which is implemented is at present
insufficient to implement LSTMs. To the best of the authors’
knowledge, RNNs have been successfully deployed to an
ARM Cortex M4MCU only in our previous work [4], where
we described a runtime inference module based on an RNN
network. In this work, the communication module plus
other energy-saving provisions were not discussed and, as
we will see here, such improvements can be significantly
beneficial to the whole embedded module.

2.4. Architecture of the Proposed Edge Computing System.
Overall, the proposed software system can be divided into
two main components: the first component is devoted to the
offline training of the LSTM network, while the second
relates to the real-time classification of sensor readings and
the communication to a gateway of relevant events. (e
training of a deep network directly onboard with a typical
MCU like the one used in this project is unfeasible due to
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memory and computational power constraints. �us, net-
work training must be performed o�-board, on a work-
station. In the proposed system, the training is performed on
a Dell 5810 workstation using TensorFlow 1.8. �e training
set was collected during an extensive campaign conducted at
the University of Pavia in which over 40 volunteers par-
ticipated in recording sensory data while performing sim-
ulated activities and falls, according to a prede�ned protocol
of 17 standard maneuvers. Each recording is associated to a

video sequence that describes the performed activity, and
annotations are added subsequently by identifying and
marking the actual time intervals in which speci�c events
took place [31]. Once trained, the model can be deployed on
the MCU.

In the literature, there are several strategies to optimize
both memory occupancy and power consumption. One of
the most popular techniques is integer quantization. �is
method requires the de�nition of a range of values for
parameters and variables and uses 8-bit integer encoding for
converting back and forth �oating-point values into such
range. �e gain in memory occupancy is clear since every
parameter or variable has a footprint four times lower than
adopting �oating point. However, from the computational
point of view, quantization raises also some critical issues. In
particular, the LSTM cell requires both linear and nonlinear
operations. If the precision loss in linear operations is
negligible, the nonlinear operations su�er from a substantial
inaccuracy compared to the �oating-point counterparts. In
addition, depending on the approach adopted, quantization
may require several bidirectional conversions between in-
tegers and �oats, thus making the overall gain in terms of
computational e�ciency to be clearly assessed.

Another possible strategy which is very popular in
custom hardware architectures is the �xed-point repre-
sentation. In this technique, the data are represented using a
subset of the bits of a word for the integer part and the
remaining bits for the decimal part. In this way, the basic
mathematical operations can be performed using only the
integer arithmetic unit of the MCU. However, according to
the experiments performed in our laboratory, the precision
is again a critical issue because, also in this case, the non-
linear operations su�er from signi�cant precision loss. We
also evaluated a hybrid approach when the linear operations
are performed in �xed-point format and the nonlinear
functions adopt the �oating-point format. In this case, a
conversion between the two di�erent numeric representa-
tions is mandatory. �is leads to a signi�cant loss in
computational time, which does not allow to achieve the
real-time constraint. Moreover, this solution performs even
worse than a pure �oating-point inference because the
adopted MCU is equipped with a �oating-point unit, which
can perform basic arithmetic operations in only one clock
cycle. �erefore, for those reasons, we adopted the single-
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precision �oating-point representation in our runtime
module.

Once the LSTM network is deployed on the SensorTile
device, the wearable system is ready to act as a wearable,
intelligent fall detector. �e device should be worn by the
monitored subject and, at this point, it begins to acquire
sensory data and to classify events. If the classi�er detects a
fall or a warning situation, the device sends via BLE a
message to the gateway, which then forwards it to the cloud
for the noti�cation of the alert to the service actors that are
designated to intervene.

Both the classi�er module and the BLE protocol de-
veloped in this work are described in detail in the following
sections.

�e general architecture of the fall detection system is
depicted in Figure 4.

�e LSTM training is performed on a workstation using
TensorFlow, and the model is then deployed on the MCU by
uploading a custom �rmware. Events classi�cation is per-
formed online and in real-time and, when dangerous sit-
uations are detected, the device issues a BLE message to a
gateway that forwards this information to a remote monitor
through the cloud.

2.5. Inference Runtime Module on the MCU. As a basis for
our classi�er module, we adopted the same network ar-
chitecture described in [4]. Such an architecture includes
two LSTM layers, two fully connected layers, and a softmax
layer.�e inner dimension of the LSTM cell is 32. In [4], this
network architecture performs the classifying inference in
real-time by considering a 1 second window width.

In the work described here, we have improved the overall
classifying module by introducing a procedure for the
preliminary detection of operating conditions, in particular,
whether the device has been worn by the monitored subject,
which engages the full classifying network only when sensor
readings are compatible with the occurrence of a signi�cant
event. We also modi�ed the initialization phase to perform
some self-diagnostics and signal to the gateway of hardware
malfunctions, if any. In particular, the system can detect
hardware malfunctions related to the sensors, i.e., if the chip
is not responding to theMCU requests.�e �ow chart of this
extended classifying module is shown in Figure 5.

�e �rst step is the initialization of the accelerometers,
the BLE module, and the inference module. �e latter
module is the most interesting one since it is not a standard
software routine. It manages all the memory allocations for
the network variables and initializes the weights matrices by
loading the values from the �ash memory.

During the accelerometer initialization, the routine
checks if there are hardware malfunctions and, in this case,
issues a BLE message to the gateway.

When all the initializations have been performed cor-
rectly, the main loop begins.

At every second, a window containing the accelerometer
readings is ready to be processed.�e �rst step is to compute
the variance of the accelerations. �e ARM Cortex M family
can exploit the ARM CMSIS library which includes several

�oating-point routines among which there is the variance
computation [32]. However, the variance is computed there
using the standard formula, which is not optimized. For this
reason, we implemented the variance computation
according to the Welford online algorithm:

M2,n �∑
n

i�1
xi − xn( )2,

M2,n �M2,n− 1 + xn − xn− 1( ) xn − xn( ),

s2n �
M2,n

n − 1
,

(9)

where xi is the ith sample and xn is the mean after n samples.
�is algorithm computes the variance inspecting each
sample only once, avoiding to loop over the data to compute
the mean of the sample window. �e obtained variance is
compared with two di�erent thresholds. As said before, the
�rst comparison is used to know if the device is worn by the
monitored subject (wear threshold), while the latter detects if
the dynamics of the signal is compatible with the occurrence
of interesting events (classify threshold). �ese two thresh-
olds have been experimentally estimated by recording the
accelerometer data in di�erent conditions. For the wear
threshold, the device has been put on a �at surface in dif-
ferent positions, in order to record the accelerometer out-
puts at di�erent orientations. After that, we evaluated the
accelerometer readings when the device is worn by people
performing daily activities such as walking, standing up, and
sitting down.

If the variance is lower than the wear threshold, the
device sends a BLE message to the gateway in order to signal
that the device is not worn by the monitored subject.
Otherwise, the second threshold is considered. If the dy-
namics of the reading is low, a more sophisticated and
expensive classi�cation is not necessary, since the occur-
rence of any relevant events can be simply ruled out.
Otherwise, when the sensory dynamics are higher, readings
are passed as input to the classi�cationmodule, which acts as

Trained
model

Off-board training

Online inference

Remote
monitor

Public
internet

Figure 4: �e architecture of the proposed system.
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described in [4]. When the classi�cation module detects in
turn either a fall or a warning situation, the BLE module
sends an alert message to the gateway, which noti�es the
service actors that are designed to intervene.

�e �rmware of the wearable device repeats these op-
erations every second until the user switches o� the system.

2.6. Bluetooth Low Energy Protocol. �e communication
between the wearable device and the gateway relies on the
BLE protocol.�is protocol is designed to transmit data only
occasionally. Figure 6 shows the BLE protocol stack [33].

As can be seen from Figure 6, a generic BLE application
is made up of three main components: the Application, the
Host, and the Controller [34]. �e Application is the highest
level and contains all the logic and data handling.

�e Host consists of the following layers:

(i) Logical Link Control and Adaptation Protocol
(L2CAP): it encapsulates data into BLE packets and

manages data fragmentation and recombination
tasks.

(ii) Attribute Protocol (ATT): it is a simple client/server
protocol based on attributes presented by a device.
A client requests data from a server, and the server
then sends data to its clients.

(iii) Generic Attribute Pro�le (GATT): it adds a data
model and hierarchy de�ning how data are orga-
nized and exchanged between di�erent applications.

(iv) Generic Access Pro�le (GAP): it controls adver-
tising and connections and speci�es how devices
perform control procedures such as device dis-
covery, connection, and security levels.

(v) Security Manager Protocol (SMP).

�e Controller includes the following layers:

(i) Link Layer (LL): it is in charge of establishing
connections and �lters out advertising packets
depending on the Bluetooth address or based on the
data itself

(ii) Physical Layer (PHY): it contains the circuitry to
modulate and demodulate analog signals and to
convert them into digital signals

�e GATT is the most important component to develop
in order to design an e�ective protocol. It is organized in
Services, each one containing one or more Characteristics.
�e BLE standard de�nes Services for the most common and
general task of an application, such as the Battery Service,
which includes the Battery Level characteristic, containing
the charge percentage of the battery. Besides the default
services, custom services and characteristics can be added to
the GATT.�is is of crucial importance for the fall detection
system since the actual BLE standard does not include a
service related to this task. For this reason, we de�ned a
custom service with speci�c characteristics. Figure 7 shows a
diagram of the GATT services included in our wearable
device.

It is worth noticing that, in our wearable system, the BLE
standard Battery Service coexists with the custom Fall Service
we de�ned. �e Fall Probability and Warning Probability
characteristics are represented as unsigned 8 bit integers
since their value ranges from 0 to 100. Also, the Status is an
unsigned 8 bit integer. In this case, the least signi�cant bit is
used to signal if the device is worn or not, while the bit in
position 1 is used for alerting in the case of hardware
malfunctions. �e Wear  reshold, Classify  reshold, and
Alert  reshold are characteristics that can be written by the
gateway in order to change the value of their respective
variables used as a threshold in the inference module. �ese
characteristics are represented as single-precision �oating-
point numbers. �e Postural Monitoring is a long charac-
teristic, which can have a maximum size of 512 bytes,
according to the BLE standard. It is used to transmit 10
seconds of recording to the gateway, in order to monitor the
accelerometer values which are related to the status of the
monitored subject after a fall. Even if the BLE standard
de�nes the maximum size of a long characteristic as

Start

Initialize sensors, BLE
and inference module

HW
malfunction Send BLE message Stop

No

Acquire sensor data

Compute variance

Device
worn Send BLE message

Inference

Yes

No

No

Yes

Perform inference

Fall/warning
No

Yes

Send BLE message

Figure 5: �e �ow chart of the classi�cation module implemented
on the ARM Cortex M4 MCU.
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512 bytes, in the SensorTile this limit has been set to
256 bytes by the vendor. �e 3D-accelerometer data are
sampled at a frequency of 100Hz; therefore, the total
amount of data needed for the postural monitoring is
1200 bytes. Since this value exceeds the size limit of the
device, we decided to under-sample the acquired data by a
factor of 5, achieving a data size to transmit of 240 bytes,
which is compatible with the restriction of our device.

3. Results and Discussion

In an o¥ine computational validation, the embedded
component has been tested against the TensorFlow results in
order to ensure that the classi�cation module produces the
correct outputs. We tested the wearable system classi�cation
module by feeding di�erent prerecorded signals sequences
to the network as inputs. �e results of the embedded
classi�cation module di�ered from those obtained with
TensorFlow of about 10− 7, which is a negligible error con-
sidering that the outputs are probability values ranging from
0 to 1. �e classi�cation achieves an accuracy of 90%. �e
total number of tracks acquired during the campaign per-
formed at the University of Pavia is 18032. About 80% of
those tracks have been used to train the system, while the
remaining 20% as test set. It is worth noticing that the size of
this database is much bigger than the size of other databases
in the literature.

To evaluate the impact of the proposed classi�cation
module compared to the one described in [4], it is necessary
to estimate the computational complexity of the Welford
online algorithm, used for the variance estimation, which is
the main modi�cation to the runtime module, whereas the
comparison between the variance and the threshold can be
neglected since their computational weight is not

comparable to the whole network complexity. �e Welford
online algorithm requires 30ωω + 5 FLOPS, which is sig-
ni�cantly lower than the number of FLOPS needed by the
data classi�cation complexity reported in [4]. �is consid-
eration is con�rmed by the experimental data, which
highlighted that the di�erences in the elaboration times are
negligible. On the other hand, the gain in computational
time is evident when considering that the classi�cation is
performed only for certain signal windows. �is means that
also the power consumption decreases since fewer opera-
tions are needed and theMCU can be put into sleepmode for
a longer time than performing the classi�cation.

In addition, if we consider memory occupancy, the
impact of the proposed module is negligible compared to the
work in [4]. Indeed, the Welford algorithm and the BLE
module require only some scalar variables, except for the
postural monitoring, which needs a 3ωω long array of �oat
elements, which is signi�cantly smaller than the 82 kB taken
by the network parameters.

Considering the BLE communication module, it uses the
very low-power BLE single-mode network processor in-
tegrated in the SensorTile board. �is network processor has
a current consumption of about 1.7 μA when the module is
active but not transmitting to the gateway. On the other
hand, the maximum drained current is about 8.2mA, which
is higher than the current consumption of the MCU when
performing the classi�cation (about 5mA [4]). �is is a
critical issue because it limits the quantity of data that can be
transmitted without draining the battery charge too fast. In
fact, continuous data transmission will nearly reduce to one-
third of the battery charge duration, since the absorbed
current diminishes from 5mA to about 13mA. For this
reason, the proposed communication protocol has been
designed in order to transmit only alerts related to particular
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(GAP)

Generic Attribute Profile
(GATT)

Security Manager Protocol
(SMP)

Attribute Protocol
(ATT)

Logical Link Control and Adaptation Protocol
(L2CAP)

Host Controller
Interface

(HCI)

Link Layer (LL)

LE Physical Layer (PHY)

Application

Host

Controller

Figure 6: �e BLE stack.
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events. Moreover, the number of packets to transmit and
receive to/from the gateway is minimal. When considering
unsigned 8-bit integers, these data can �t in a single BLE
packet, while �oat data require two BLE packets. �e main
limit of the proposed protocol is represented by the Postural
Monitoring long characteristic, which requires 12 packets to
be transmitted to the gateway. For this reason, the Postural
Monitoring should be performed only when it is strictly
necessary, in order to preserve the battery charge.

It is worth noticing that the transmitted data are related
to events that are infrequent, therefore, the BLE radio is
inactive for most of the time, keeping the BLU module
current consumption negligible.

�e improvements with respect to the work presented in
[4] are summarized in Table 1.

Table 1 clearly shows that the proposed system improves
and outperforms our previous work, both from the com-
putational and power consumption point of view. �e table
shows both the best case and the worst case analysis of the
proposed solution. �e �rst is related to all those situations
when the variance is below the inference threshold and
therefore it is possible to save computational power by
avoiding to evaluate the whole LSTM network. �e latter is
about data that should be analyzed by the LSTM network,

and a BLE message is sent to the remote host. It is worth
noticing that the best case is the more frequent one, since the
variance threshold has been estimated in order to avoid to
perform inference on data related to normal daily living
activities. �erefore, it is possible to say that the proposed
system is operating in the best case conditions for the
majority of the time, allowing a signi�cant gain in power
consumption. Moreover, this modi�cation requires a neg-
ligible memory occupancy increase, as it can be seen from
Table 1. Finally, this system is capable of communication
with a remote host, through a BLE protocol that has been
designed in order tominimize data transfers (again to reduce
the impact on the power consumption).

4. Conclusions

In this paper, we described the development of an edge-
computing wearable device for personal monitoring
exploiting deep learning methods, capable of detecting
unintentional falls. In particular, we discussed the optimi-
zation of the real-time classi�cation module embedded on
the wearable device, together with the developed strategies to
avoid unnecessary computations and to reduce power
consumption.

�ose strategies have been developed after analyzing the
data collected during an extensive campaign conducted at
the University of Pavia that allowed to carry out one of the
biggest databases that can be found in the literature. In
particular, the two thresholds used to avoid unnecessary
computations have been de�ned after a careful analysis of
this data.

We also described the developed BLE protocol, in order
to minimize the communications between device and
gateway, enabling a suitable alerting when speci�c events
happen, without a�ecting the battery charge duration.

�ese results clearly improve on and further complete
our previous system described in [4], enriching it with
signi�cant extensions. To the best of the authors’ knowledge,
this is the �rst edge computing wearable system for fall
detection including such deep learning techniques and with
the level of performance obtained.

Future works will be focused on integrating data from
di�erent kinds of sensors (i.e., barometers and/or gyro-
scopes) in order to improve the classi�cation accuracy.

Moreover, the developed prototype could include dif-
ferent hardware architectures, with better potential support
for the quantization of both network parameters and
nonlinear operation processing. �is is a further in-
vestigation line to explore for our research.

Sensortile

Fall service

Fall probability

Warning probability

Status

Postural monitoring

Wear threshold

Classify threshold

Alert threshold

Battery service

Charge level

Figure 7: �e GATT services and characteristics of our wearable
system.

Table 1: Comparison between [4] and this work.

System Processing
time (ms)

Memory
occupancy Power consumption

[4] 342 82 kB 5mA for 342ms
�is work
best case 0.264 83.2 kB 5mA for 0.264ms and

1.7 μA for BLE
�is work
worst case ∼342 83.2 kB 5mA for 342ms and

8.2mA for BLE
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+e Internet of +ings (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems,
ovens, blinds, etc.) using computers and mobile devices.+is idea fascinated people and originated a boom of IoTdevices together
with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing
functionalities but neglected some critical issues pertaining to device security. +is oversight gave rise to the current situation
where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices
have been produced and deployed. +is article presents our novel research protecting IOT devices using Berkeley Packet Filters
(BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions
that can be executed by GNU/Linux systems with a low impact on network packet throughput.

1. Introduction and Motivation

+e evolution of Internet and communication networks
from their emergence in the sixties to today has enabled a
revolution in the way people and businesses interact. People
today communicate worldwide using mobile devices, which
have a reliable broadband (4G) Internet connection. Despite
these great advances, Aceto et al. [1] note that network
outages are still a challenge to solve because they are fre-
quent, hard to fix, expensive, and, in particular, poorly
understood by users. Whilst there exists a variety of prob-
lems surrounding network availability (Aceto et al. [1]), this
study presents a proposal to avoid or at least minimize the
effects of problems caused by software attacks through
networks, including worms [2, 3] and remote attacks to
exploit server vulnerabilities [4].

Patching avoids the compromise of target systems
through, e.g., malware and vulnerability exploits. However,
the growth of Internet of +ings (IoT) applications running
on devices, that frequently do not support patching, using
Internet and TCP/IP networks for communication purposes,
limits this possibility. Moreover, software upgrades are not
always immediately available when the vulnerability is
discovered, as patch development and distribution depend
on developer circumstances. +e existence of proactive
defense mechanisms [5] capable of mitigating risks associ-
ated with unpatched components within an otherwise
trusted TCP/IP network would be very valuable. In this
study, we take advantage of the firewall support of operating
systems to develop a highly efficient mechanism to detect
and bring together information about malicious network
traffic.
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Firewalling support has become an essential feature of
modern operating systems. +e use of firewalls is one of the
easiest mechanisms to manage network defense. However,
its effectiveness is clearly limited to protect IoT devices
against malware and vulnerability exploiting [6]. In the well-
known Linux operating system, firewall capabilities have
been provided primarily through packet filtering technology
and have evolved from a netfilter ipfw system port (included
in Linux kernel 1.1) to netfilter/iptables (included in Linux
2.4 kernel series). +is evolution entailed the introduction of
significant innovations such as the tracking of TCP con-
nections or the possibility of altering packets in transit
(mangle table). Despite the popularity of these filters, net-
filter/iptables firewalling subsystem will be replaced in order
to speed up the filtering process and increase the in-
formation achieved for each packet to filter (such as payload
information).

Wireshark capture filters [7] are defined by using
libpcap filter language. Filter examples that are designed
to detect some worms and exploits are available in
Wireshark Wiki [8] showing the power of this filter
syntax. +e syntax of capture filters is commonly known
as Berkeley Packet Filter (BPF) and is supported in the
kernel of most UNIX-like operating systems. +is syntax
is also implemented by libpcap/Winpcap to be used at the
user level in tools such as Wireshark. BPF [9] was first
introduced in 1990 as a tool for capturing and filtering
network packets that matched specific rules. BPF support
was included in Linux kernel by implementing a small
virtual machine that runs compiled BPF programs in-
jected from user-space [10]. Later, a BPF Just-In-Time
(JIT) compiler was added to speed up the performance of
the execution of bytecodes. Currently, BPF can be loaded
for its execution into kernel with different tools to execute
different tasks, such as system monitoring (trough using
perf tool), network traffic control and quality of service
(through tc tool), and packet filtering (through ip link tool
included in iproute2 suite or iptables).

Due to its flexibility, BPF has been used by important
technology companies such as Google, Facebook,
Cloudflare, and Netflix to address network security issues,
load-balancing, traffic-filtering, and monitoring [11–14].
A comparison of the filtering performance achieved by a
BPF-based filter (BPFilter), iptables, and nftables has also
been provided in other studies [11, 15] showing that
BPFilter runs up to 5 times faster than iptables. +is
scenario led to the consideration of BPF as a reliable
candidate to replace iptables (and nftables) as the kernel
firewall subsystem for Linux [11]. However, despite the
fact that BPF syntax is more powerful than that offered by
current Linux firewalls, BPFilter only takes advantage of
the BPF virtual machine to speed up rules created by older
tools. Majkowski [16, 17] demonstrated how to take ad-
vantage of BPF in conjunction with iptables to filter
packages and define new chains. +ese works allowed
system administrators to take advantage of the rich syntax
and efficient execution of BPF expressions to filter
packages in real environments and protect IoT devices
against malware and vulnerability exploiting.

We developed Filter.tk to work in conjunction with these
tools. Filter.tk is a framework to complete the full lifecycle
(creation, debugging, and testing) of BPF iptables-compliant
pattern design for mitigating both worm and exploit attacks.
+e development of patterns will be useful for the future
creation of a BPF rules database usable in the form of well-
known community collaboration products such as Ansible
Galaxy [18, 19] or DockerHub [20], where users can share
BPF to protect IoTdevices, computers, and software against
worm and exploit attacks. Additionally, the information
about harmful network packets can be uploaded to cen-
tralized repository for research purposes. Particularly, this
data, if compiled worldwide, could allow the identification of
security threats and help in the identification of new of-
fensive packet patterns.

+e remainder of this paper is structured as follows:
Section 2 introduces the state of the art in well-known
worms, security vulnerabilities, and IoT security. Section 3
introduces our proposal to address both the protection of
devices against security vulnerabilities (and hence, worm
attacks exploiting those vulnerabilities), and the compilation
of security incident datasets in the context of IoT while
Section 4 is centered on discovering the utility of the toolset
through case studies. Finally, Section 5 presents the main
conclusions of the work and outlines the directions for
future research.

2. State of Art

During the early 2000s, Internet worms became very popular
due to the effects of well-known worms such as Code Red
(versions 1 and 2), Nimda, SQL Slammer, or Blaster. Some of
these worms are compiled in the work of Qing and Wen [2].
However, due to the increased awareness of users and de-
velopers about the importance of security, this kind of
malicious software is solely spread in P2P networks and
operates in a passive form [21]. Instead of performing an
active search to infect computers, passive worms require
human intervention, i.e., by downloading an infected file
from a P2P network, to replicate themselves. Despite the
propagation of passive worms in P2P networks mainly
connected with the illegal downloading of software and
multimedia materials, the dissemination of these Internet
worms and their mitigation has been fairly well discussed in
previous studies [21–29]. +e detection of new vulnerabil-
ities allowing remote exploitation is a very active area as
evidenced by the latest exploits published in exploit-db [4].
Although the existence of vulnerabilities allowing the exe-
cution of remote commands could provide a mechanism for
the dissemination of worms, the quick response of software
development teams to provide security patches discourages
malware developers from designing newworms.With this in
mind, the goal of this work is to mitigate attacks exploiting
software vulnerabilities, with a special interest in those
targeting an IoT device.

Many IoT applications and devices have become avail-
able for smart home automation. Querying “remote”
“hardware” exploits in exploit-db and other similar data-
bases resulted in a number of exploitable vulnerabilities in
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well-known products (such as intelligent TVs, cameras, etc.).
+is shows that IoT developers have been prioritizing the
development and creation of functionalities for most de-
manding users while frequently neglecting security
considerations.

A few works have addressed issues in IoT security,
such as the use of block-chain communications [30–33].
+ese usually refer to security issues pertaining to con-
fidentiality, integrity, and availability in the communi-
cations between IoTdevices and IoT. +e work of Ammar
et al. [34] provides a critical review of eight well-known
IoT frameworks with special emphasis on security issues
(analyzing models and approaches provided for ensuring
security and privacy, pros and cons of each framework in
terms of fulfilling the security requirements and meeting
the standard guidelines, and identifying design flaws).
Wood and Stankovic [35, 36] provide studies about
network issues. Particularly, the former work is centered
in security-related issues about IoT communication
protocols whilst the later analyzes denial of service threats
in IoT environments.

Wack et al. [37] review the risk of platform software/
firmware vulnerabilities that enable the reception of
malicious attacks. To the best of our knowledge, there is
no research work focused on the prevention, manage-
ment, and response to vulnerability exploiting and worm
attacks in IoT. Closing this gap, we studied how to take
advantage of firewalling schemes to implement these
protections.

2.1. OS Firewalling Support. Common OS firewalls, such as
those that can be implemented through GNU/Linux kernel
firewalling subsystem, are usually implemented as packet
filters [37, 38], which consist of a default policy for packets
and a sequence of rules that define the actions performed on
packets when they satisfy certain conditions. Specifically,
each firewalling rule contains a triggering condition, usually
a simple condition or the logical AND of simple conditions,
together with an action to execute when the rule is triggered.
Triggering conditions are defined over the second, third, and
fourth TCP/IP layers. +e support for stateful inspection of
connections is available for kernel versions 2.4 and above
[39].

+e first GNU/Linux firewall generation was included on
1.1 kernel through an implementation of ipfw functionalities
contributed by Alan Cox [40]. +e ipfwadm user-space tool
was used to configure the ipfw services offered by the kernel
[41]. +ese kernels allowed defining three different firewall
filters to handle (i) input packets (-I ipfwadm argument), (ii)
output packets (-O), and (iii) forwarded packets (-F, used in
conjunction with ip_forwarding feature). Accept, deny
(discard the packet), and reject actions were used either for
rules (-a command parameter) or as default policy (-p). In
order to create and design the trigger condition of each rule,
the system administrator can test for the protocol (TCP, UDP,
ICMP, or IP), the port (for TCP and UDP) or the ICMP type.
Logging is supported through the -o modifier.

+e support for ipfw was replaced by ipchains in the 2.2
version of the kernel [42]. One of the most important

changes in the ipchains scheme was the introduction of
chains to help reduce the computational cost and facilitate
its design [43]. As opposed to the others, ipchains firewalls
include INPUT, OUTPUT, and FORWARD chains, which
bring together filtering rules applied to packets where the
current computer is the destination, the origin, or a router
for the packet, respectively. Each firewall chain is com-
posed of a ruleset and a default policy. +e default policy is
applied to packets that do not match any rule. +e exis-
tence of default policies allows defining firewalls using two
different schemes: (i) accept all except those packets ex-
plicitly denied or (ii) deny all except those packets ex-
plicitly accepted. Of these, the latter is advisable for
security reasons.

New functionalities offered by ipchains with regard to
ipfw were quite limited, so it was quickly replaced by
iptables (in Linux 2.4 series) [44]. Iptables/netfilter in-
cluded the table concept to bring together chains with
similarities. Iptables included the firewall tables filter, nat,
and mangle. +e first one included three chains to support
the filtering of input, output, and forwarded connections
(INPUT, OUTPUT, and FORWARD respectively). +e
NAT table is composed of PREROUTING and POST-
ROUTING chains to add rules to change destination or
source addresses, respectively. To this end, rules included
in these chains could only use DNAT, SNAT, REDIRECT,
or MASQUERADE actions. Finally, MANGLE table al-
lows marking packages for further processing and mod-
ifying some parameters of packets including TOS or TTL.
+ese actions could be executed by using MARK, TOS,
and TTL actions. Finally, iptables brought the stateful
packet inspection to Linux firewalls making it possible to
determine whether a packet belongs to an established TCP
connection (-m state--state �ESTABLISHED) or, con-
versely, is connected with other previous packets (-m
state--state �RELATED).

Iptables have been widely used to implement packet
filters on Linux for many years [45]. However, some
limitations of iptables, such as the existence of a unique
action for a rule or the complexity of the syntax, led to the
creation of other filtering frameworks. Hence, nftables
emerged as an iptables replacement on kernel version 3.13
(2013) [44]. Nftables included a completely new and fresh
syntax that avoided the need to use hyphens and the
uppercase/lowercase flags. +e use of nftables allows ta-
bles and chains to be created with specific names and
associated with hooks, thus avoiding the strict tables/
chains structure defined by iptables.

Despite the new functionalities of nftables, most Linux
users continue using the old iptables framework, in part
due to the numerous changes in the syntax which hin-
dered adoption. Some translation utilities were in-
troduced to aid in the migration from iptables to nftables
[46]. In addition, nftables work as a sequential filter
whereby every packet is matched one by one against a list
of rules. +e speed of checking the rules is quite limited
(up to three times slower than using BPF) [11], which led
to the emergence of bpfilter as a new Linux firewalling
subsystem [47] able to outperform the speed of previous
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filtering alternatives [11]. Bpfilter has been added ex-
perimentally to Linux kernel 3.18, now allowing nftables
and iptables rules to be executed by Linux kernel as BPF.

Standard definitions within BPF only allow current
packet filtering firewall [48] schemes to analyze some
information from packet headers (such as IP and MAC
addresses, ports, TCP flags, ICMP types, etc.) and packet
state. Additional new features would improve the fire-
walling performance, such as analyzing the payload of the
packet or the information about application layer pro-
tocols. +ese features are frequently included in deep
packet inspection techniques [49, 50] but are often too
slow to be included in standard firewalls. In order to
provide a deep description of packets on the firewall layer
and quickly evaluate them, the use of BPF language to-
gether with the BPF virtual machine subsystem included
in the current versions of Linux kernel seems to be an
elegant solution, especially as BPF had been used before to
accomplish similar difficult network tasks with low
computational effort [11].

Despite its performance and low computational costs,
developing a BPF-based firewall able to exploit full packet
data (headers and payload) is a hard task that would
require both the existence of tools to aid in the devel-
opment of conditions and packet datasets. Caploader [51]
and Wireshark/tcpdump [7], which can also be integrated
with NDPI [52], are capable of loading and analyzing
packets included in PCAP files and check whether a BPF
expression match them. +ese tools can be successfully
executed with large collections of packets, such as that
shared by Netresec [53]. However, the design of BPF filters
is not easy and should be simplified to impact on real-
world firewall applications. Similarly, the evaluation of
BPF filters should be automated to improve performance.
Both the simplification and automation have been
addressed by our Filter.tlk toolset and are the main
contribution of this work. Filter.lk’s functionality and its
practical use are described in the next section.

3. Filter.tlk

+is section provides a comprehensive description of the
design architecture of Filter.tlk [54] tool and documents the
process of creating customized filters to classify network
traffic according to the content of the packets.

Filter.tlk comprises three different utilities to aid in the
creation of BPF filters: (i) an interface to design BPF filtering
conditions, (ii) a Wireshark LUA plugin to automate the
testing of BPF filters with PCAP packet datasets, and (iii) a
script to easily compile BPF filters and create iptables rules.
Figure 1 shows the different components included in Fil-
ter.tlk and their use in a real environment.

As we can deduct from Figure 1, the design of a
firewall rule with Filter.tlk comprises three stages that are
made with different tools included in the package. We
begin by taking advantage of the BDAT (BPF design aid
tool) to design a filtering condition to detect a certain
kind of packet. +e designed BPF filters can then be tested

with different packet sets (a set of packets matching the
pcap filter and others mismatching the pcap filter) using
BPF Testing tool (BTT). BTT is able to easily assess the
quality of an input filter by using different datasets. Once
BPF rules have been tested, they can be easily transformed
into iptables rules using IPTables Rule Builder (IPTRB)
script.

BDAT is responsible for creating BPF filters as con-
ditions defined from transport and network layers (see
Figure 1). By using BDAT through a simple graphical
interface, we can create a Boolean BPF filter evaluating
expressions related to network or transport headers and
payloads (UDP, TCP, IP, ICMP). In order to create header
conditions, users must select the field of the header on
which they want to establish the condition that the filter
must fulfill. Once the condition has been defined, the user
can continue adding new conditions for the same filter or
create a new one. Once all filters are defined, they can be
exported to a file for testing in BTT (BPF Testing Tool). As
an example, Figure 2 shows how administrators can easily
incorporate a condition about a HTTP POST request by
specifying conditions about TCP payload.

As depicted in Figure 2(a), we selected the first four
octets from TCP payload for comparison purposes. BDAT
allows selecting one, two, or four octets from each word
(32 bits) to check the condition. +e next step of the
wizard (see Figure 2(b)) allows to easily define the value
using Hexadecimal, ASCII, or Decimal notations. In order
to compare any octet from payload (and options/pad-
ding), the offset value (highlighted in red in Figure 2(a))
can be edited to the desired value. Please note that the
designed condition is provided as example and should be
complemented with a “header length” value of five to
ensure the absence of options/padding field. In the next
step of the wizard, the current BPF condition rule is added
to the whole BPF filter, allowing the generation of filters
comprising multiple tests.

BTT is a plugin for Wireshark that applies a filter or set
of filters over a pcap file. As a result, we obtain in-
formation for each applied filter about the number of
packages analyzed, accepted, and rejected. A set of pcaps
with the packets accepted by the filter grouped by the
destination IP is also provided for debugging purposes. In
order to detect errors, each rule should be tested using a
pcap database containing only the packets that should be
captured (ensuring a result of 0 rejected is achieved) and
another one containing normal network traffic (guaran-
teeing a result of 0 accepted is achieved).

Finally, IPTRB (IPTables Rule Builder) script can
transform the BPF uncompiled filters into full featured
IPTables rules. +e process is guided by an intuitive
libncurses-based graphical user interface that allows
customizing the generated rule. +e rule can be generated
for filtering and/or harmful packet logging purposes. A
scheduled task (i.e., crontab) could be periodically exe-
cuted (for instance once a day) to upload the compiled
information (logs) to a centralized repository for its
further analysis.
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3.1. Filter.tlk Implementation. +is subsection provides a
brief description of the most relevant implementation issues
for the development of each tool included in Filter.tlk.

BDAT was designed as a Java standalone application,
which can easily be executed using any Java Virtual Machine
implementation. +e interface was designed using JFC/
Swing library [55].

BTT is aWireshark plugin that was implemented using
the Lua programming language [56], which is supported
by Wireshark for the development of new functionalities,
such as the creation of dissectors or listeners [57]. +e
dissectors are intended to analyze part of the data of a
packet, while the listeners are used to count the number of
occurrences of an event; for example, the number of
packets matching a filter. In this study, we used Lua
language to implement a Wireshark listener to evaluate
filters and count packets fitting the target BPF condition
(accepted) or not (rejected).

IPTRB is a bash script that combines the use of dialog
command [58] to provide an easy-to-use intuitive
graphical user interface. Moreover, the compilation of
BPF rules into bytecode is done by using tcpdump [59]
functionalities.

Finally, we used Ansible [19] (a well-known IT Auto-
mation tool) to automate the installation of Filter.tlk in all
supported platforms. Ansible is a popular IT automation
tool whose main features are (i) avoiding the need of scripts
and/or custom code to deploy and update applications and

(ii) replacing agents on remote systems by standard SSH
tools. +e installation script was provided for Debian-
based GNU Linux distributions.

3.2. Deployment of Generated Filters. To take advantage of
expressions (iptables rules and BPF) generated using our
BPF framework, we consider two different scenarios: (i) IoT
devices using a GNULinux-based software/firmware (ii) and
other IoT devices with no BPF/iptables support. In the first
scenario, iptables rules can be directly integrated into the
firmware to protect them against malicious attacks. We are
working on the development of a service to share BPFs
together with a tool able to automatically download and
upgrade BPFs for different IoT devices.

Although GNU/Linux is present in some devices, there
are many appliances running other operating systems
where the execution of BPF is not possible. Taking this into
account, we are working on the design of a small bridge
router (brouter) [60] device running GNU/Linux and
ebtables. A brouter is a device that is able to transparently
forward all traffic between two ethernet interfaces and
allows the inclusion of filtering rules for network interfaces.
+is solution would be applicable for IoTdevices connected
to the network through an ethernet connection.

+e main weakness of using BPF filters to protect
devices against attacks is that we are unable to protect
802.11-based (WLAN, wireless local area network) IoT
devices that do not run GNU/Linux.

Filter.tlk

BPF testing 
tool

Wireshark plugin

IP Tables
rule builder

TCP UDP IP

BPF rules

PCAP file

Rules Analyzed Accepted
ip[8 :1] == 016 743 0
tcp[20:40] < 52 743 311
udp[0:2] < 0 × 11 743 13

tcp[13] == 64 743 0

BPF rules BPF rules IP Tables 
rules

|1| |2|

 BPF design 
aid tool

|3|

Figure 1: Filter.tlk architecture.
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Next section presents a comprehensive practical example
describing the process of using the Filter.tlk tool to design a
filter capable of detecting and filtering two important vul-
nerabilities recently discovered on well-known IoT devices.

4. Experiments

In this section, we test the filter designed to detect and filter
attacks using two vulnerabilities in two well-known IoT
devices that allow the remote execution of arbitrary

commands: (i) LG Supersign TVs, and (ii) ASUS ADSL
Router DSL-N12E_C1.+e next subsection shows the work
environment prepared in order to generate high-quality
BPF patterns. Moreover, subsection 4.2 presents the ex-
perimental protocol and results of our case studies while
subsection 4.3 measures the impact of the use of these filters
in the performance of IoT devices. Finally, subsection 4.4
shows how to compile and take advantage of the in-
formation gathered by IoT devices using Filter.tlk for
scientific purposes.

(a)

(b)

Figure 2: BPF rule definition process. (a) Select TCP payload octets. (b) Establish values for octets.
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4.1. Configuring the Working Environment. In order to
generate high-quality BPF expressions that describe the
pattern of vulnerability exploitation, the use of a large
packet database for testing purposes is advisable. Fortu-
nately, many publicly available packet datasets can be freely
downloaded from the Internet. Table 1 compiles a list of
useful datasets.

From the datasets included in Table 1 and other sources,
we built up a group of packets that would be used to ensure
that inoffensive network requests are not captured by the
designed BPF expression.

We decided to study and generate BPF filters for two
vulnerabilities of well-known IoT devices. In order to
determine the quality of the BPF expressions created using
a BTT Lua script, we used as negative samples the con-
junction of all packets from sources introduced in Table 1
and other legitimate packet sets compiled by us. In order to
aggregate all negative samples in a single pcap file, we
combined all sources using the mergecap [64] tool pro-
vided by Wireshark.

4.2. Executing the Experiment. Recently, a vulnerability
allowing remote execution of arbitrary commands
appeared on LG SuperSign TVs (CVE-2018-17173)
[65, 66]. +ese smart TVs include a CMS running on the
top of LG webOS 3.3 (a Linux-based OS). +e discovered
vulnerability allows remote code execution (by achieving a
reverse shell connection) by taking advantage of the URL
used to see thumbnails of the user images. We used the
exploit versions to generate a pcap file capturing the at-
tacks. +e Filter.tk comprises a three-stage operation. +e
first step designs the filtering condition to detect the
packets, and the second step tests the BPF filter with a set of
packets captured in a pcap filter and with a set of normal
packets. +e third step converts the BPF into iptables rules.
+e generated BPF expression is shown in Table 2. +ese
BPF expressions could be directly included in LG webOS to
protect the TV.

+e second analysis is about a remote code execution
vulnerability in ASUS DSL-N12E_C1 router, specifically in
firmware version 1.1.2.3_345 (CVE-2018-15887) [67]. +is
vulnerability has been classified as critical because it allows
the execution of arbitrary code using an unknown function
of the file “Main_Analysis_Content.asp.” A remote attacker
can then access the router as a privileged user via telnet
application and run OS commands. Again, we take ad-
vantage of our framework to generate BPF expressions to
filter this type of attack. +e generated BPF is shown in
Table 3.

As shown in Tables 2 and 3, an iptables command can be
easily generated from a BPF expression to drop and log
packets that match it. Although iptables can only check
expressions in the header of network packets, BPF expres-
sions make it possible to examine information included in
both packet headers and payload in order to find any po-
tential exploitation of vulnerabilities. +e second generated
iptables rule allows for storing security information that can
be uploaded to a centralized repository for its further

analysis. In next section, we evaluate the performance im-
pact on the IoT devices when using these filters.

4.3. Impact on Filter7roughput. We assessed the impact of
using BPF filters on IoTdevices in order to determine if they
could be successfully used to protect IoT devices against
network vulnerability exploitation. To perform this analysis,
we used an Apache web server installed on a Raspberry Pi 2
Model B [68].

We leveraged the functionalities of Apache HTTP server
benchmarking [69] and GNU parallel [70] tools to evaluate
the impact of using BPF firewalls in IoT hardware. Using
these tools, we benchmarked the execution of two parallel
tests making 10000 HTTP requests distributed in 10 threads,
with 1000 requests per thread. +e average of measurements
made for parallelized tests is provided as result. For com-
parison purposes, we used the generated BPF expressions for
the two case studies shown before. Table 4 compares the
performance between the absence of attack protections and
the usage of two BPF filtering rules.

+e results compiled in Table 4 show that the perfor-
mance impact when using BPF filters is quite limited and will
not severely affect the overall operation of IoT devices. We
analyzed the impact of progressively adding BPF rules to the
filter by adding up to 100 new rules and measured the
transfer rate after each BPF expression was added (see
Figure 3). As long as the performance is highly influenced by
the presence of additional traffic in network and other
processes consuming CPU, we plotted a trend line to observe
the degradation.

As can be seen from Figure 3, the throughput degra-
dation is close to zero when using up to 50 (nonfitting) BPF
rules. However, the inclusion of more than 50 rules clearly
damages the performance of GNU/Linux firewalling system
and would require the usage of additional iptables speedup
strategies, such as the creation of additional chains [71] and
counters-based optimizations [72].

One of the most interesting features of Filter.tlk
framework is the compilation of information about
worldwide IoT security incidents. +e information gathered
could be successfully analyzed using machine learning

Table 1: Publicly available datasets.

Dataset
Number

of
packets

Number
of files Format Short

description

Contagiodump
[61] 988898 1154 pcap

zipped

Collect
malicious and
exploit pcaps
from various

public resources
(2013–2015)

Malware traffic
analysis [62] 2445211 1291 pcap

zipped

Malicious
network traffic
(2013–2018)

GTISK PANDA
malrec [63] 100201 373 pcap

Malware
samples run in
PANDA (2018)

Scientific Programming 7



techniques to provide worthwhile knowledge about (i) the
origin of the threat, (ii) better patterns for traffic-filtering,
or (iii) the threat scale. Studying information about
systems from which the attack is performed, we can
successfully identify worms exploiting a certain vulner-
ability, the presence of an individual hacker, and the
execution of Distributed Denial of Service attacks or
botnets.

Offering IoT users a product to protect their devices
against attacks, whilst at the same time achieving information
about dangerous offensive network packets targeting IoT
products, will replicate a threat response model undertaken
by traditional antivirus products. +is knowledge allows the
identification of better and perhaps simpler BPF patterns that
can be used for network intrusion detection.

5. Conclusions and Future Work

In this paper, we have introduced an easy-to-use framework
designed to aid in the development of fast firewalls based on
using BPF, which can be executed by using standard firewall
capabilities included in the Linux kernel (IPTables/netfilter).
+ese firewalls have been specifically conceived to protect IoT
devices against the exploitation of remote vulnerabilities. Since

the use of BPF bytecode can drastically speed up the execution
of firewalls, we designed a collection of tools to facilitate the
inclusion of BPF into firewalling rules. An experiment was
carried out for the application of the introduced toolset.

Since BPF is one of the most efficient forms of filtering
traffic, it provides a reliable solution for filtering in the
context of IoT. Although, the use of specific BPF filters
allows using payload information included in packets, it can
only be directly implemented in devices using a GNU/
Linux-based firmware. We are currently working on the
design of specific hardware to overcome the limitations of
nonGNU/Linux ethernet IoT devices and on the develop-
ment of a package manager to automatically download BPF
filtering strings and configure the firewall.

One of the most relevant functionalities of this scheme
is the ability to easily build a dataset with the security
incidents occurred in worldwide IoT devices, such as
VizSec [73]. Future work will include mechanisms for
analyzing them to achieve valuable security knowledge. We
consider evolutionary computation as a candidate method
for automatic filter generation through packet captures and
consider DPI (deep packet inspection [52]) to be a reliable
way of simplifying filtering conditions, since it allows access
to application layer information to define matching

Table 2: BPF expression to mitigate CVE-2018-17173 vulnerability.

BPF expression
ip[2 : 2]> 0x008A and ip[9]�� 0x06 and tcp[2 : 2]�� 0x2378 and tcp[32]�� 0x47 and tcp[77 : 4]��

0x3d253237 and tcp[81 : 4]�� 0x2532302d and tcp[85]�� 0x3b
BPF assembler code Bytecode

(000) ldh [12] 22
(001) jeq #0x800 jt 2 jf 21 40 0 0 12
(002) ldh [16] 21 0 19 2048
(003) jgt #0x8a jt 4 jf 21 40 0 0 16
(004) ldb [23] 37 0 17 138
(005) jeq #0x6 jt 6 jf 21 48 0 0 23
(006) jeq #0x6 jt 7 jf 21 21 0 15 6
(007) ldh [20] 21 0 14 6
(008) jset #0x1fff jt 21 jf 9 40 0 0 20
(009) ldxb 4∗ ([14]&0xf) 69 12 0 8191
(010) ldh [x + 16] 177 0 0 14
(011) jeq #0x2378 jt 12 jf 21 72 0 0 16
(012) ldb [x + 46] 21 0 9 9080
(013) jeq #0x47 jt 14 jf 21 80 0 0 46
(014) ld [x + 91] 21 0 7 71
(015) jeq #0x3d253237 jt 16 jf 21 64 0 0 91
(016) ld [x + 95] 21 0 5 1025847863
(017) jeq #0x2532302d jt 18 jf 21 64 0 0 95
(018) ldb [x + 99] 21 0 3 624046125
(019) jeq #0x3b jt 20 jf 21 80 0 0 99
(020) ret #262144 21 0 1 59
(021) ret #0 6 0 0 262144

6 0 0 0
Iptables commands
iptables -t filter -A INPUT -m bpf --bytecode “22,40 0 0 12,21 0 19 2048,40 0 0 16,37 0 17 138,48 0 0 23,21 0 15 6,21 0 14 6,40 0 0 20,69 12 0
8191,177 0 0 14,72 0 0 16,21 0 9 9080,80 0 0 46,21 0 7 71,64 0 0 91,21 0 5 1025847863,64 0 0 95,21 0 3 624046125,80 0 0 99,21 0 1 59,6 0 0
262144,6 0 0 0” -j DROP
iptables -t filter -A INPUT -m bpf --bytecode “22,40 0 0 12,21 0 19 2048,40 0 0 16,37 0 17 138,48 0 0 23,21 0 15 6,21 0 14 6,40 0 0 20,69 12 0
8191,177 0 0 14,72 0 0 16,21 0 9 9080,80 0 0 46,21 0 7 71,64 0 0 91,21 0 5 1025847863,64 0 0 95,21 0 3 624046125,80 0 0 99,21 0 1 59,6 0 0
262144,6 0 0 0” -j LOG --log-prefix “Filter.tlk”
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Table 4: Performance impact when using BPF filters.

No protection With BPF
(2 rules)

HTML transferred (bytes) 107010000 107010000
Concurrent time per
request (ms) 1.9345 1.937

Time per request (ms) 19.3465 19.367
Time taken for tests (seconds) 19.3465 19.367
Total transferred (bytes) 109750000 109750000
Transfer rate (Kbytes/sec) 5539.905 5534.1

Table 3: BPF expression to mitigate CVE-2018-15887 vulnerability.

BPF expression
ip[2 : 2]> 0x0174 and ip[9]�� 0x06 and tcp[2 : 2]�� 0x0050 and tcp[32]�� 0x47 and tcp[326 : 4]��

0x3d253630
BPF assembler code Bytecode

(000) ldh [12] 18
(001) jeq #0x800 jt 2 jf 17 40 0 0 12
(002) ldh [16] 21 0 15 2048
(003) jgt #0x174 jt 4 jf 17 40 0 0 16
(004) ldb [23] 37 0 13 372
(005) jeq #0x6 jt 6 jf 17 48 0 0 23
(006) jeq #0x6 jt 7 jf 17 21 0 11 6
(007) ldh [20] 21 0 10 6
(008) jset #0x1fff jt 17 jf 9 40 0 0 20
(009) ldxb 4∗ ([14]&0xf) 69 8 0 8191
(010) ldh [x + 16] 177 0 0 14
(011) jeq #0x50 jt 12 jf 17 72 0 0 16
(012) ldb [x + 46] 21 0 5 80
(013) jeq #0x47 jt 14 jf 17 80 0 0 46
(014) ld [x + 340] 21 0 3 71
(015) jeq #0x3d253630 jt 16 jf 17 64 0 0 340
(016) ret #262144 21 0 1 1025848880
(017) ret #0 6 0 0 262144

6 0 0 0
Iptables commands
iptables -t filter -A INPUT -m bpf --bytecode “18,40 0 0 12,21 0 15 2048,40 0 0 16,37 0 13 372,48 0 0 23,21 0 11 6,21 0 10 6,40 0 0 20,69 8 0
8191,177 0 0 14,72 0 0 16,21 0 5 80,80 0 0 46,21 0 3 71,64 0 0 340,21 0 1 1025848880,6 0 0 262144,6 0 0 0” -j DROP
iptables -t filter -A INPUT -m bpf --bytecode “18,40 0 0 12,21 0 15 2048,40 0 0 16,37 0 13 372,48 0 0 23,21 0 11 6,21 0 10 6,40 0 0 20,69 8 0
8191,177 0 0 14,72 0 0 16,21 0 5 80,80 0 0 46,21 0 3 71,64 0 0 340,21 0 1 1025848880,6 0 0 262144,6 0 0 0” -j LOG --log-prefix “Filter.tlk”
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Figure 3: Analysis of the impact of BPF rules in throughput.
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expressions. While DPI expressions cannot be directly
included in BPF filters, we believe that they could be au-
tomatically transformed into simple BPF expressions to
simplify the generation of BPF filters.
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