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In the last few years, the importance of measuring gait characteristics has increased tenfold due to their direct relationship with
various neurological diseases. As patients suffering from Parkinson’s disease (PD) are more prone to a movement disorder, the
quantification of gait characteristics helps in personalizing the treatment. +e wearable sensors make the measurement process
more convenient as well as feasible in a practical environment. However, the question remains to be answered about the validation
of the wearable sensor-based measurement system in a real-world scenario. +is paper proposes a study that includes an al-
gorithmic approach based on collected data from the wearable accelerometers for the estimation of the gait characteristics and its
validation using the Tinetti mobility test and 3D motion capture system. It also proposes a machine learning-based approach to
classify the PD patients from the healthy older group (HOG) based on the estimated gait characteristics. +e results show a good
correlation between the proposed approach, the Tinetti mobility test, and the 3D motion capture system. It was found that
decision tree classifiers outperformed other classifiers with a classification accuracy of 88.46%. +e obtained results showed
enough evidence about the proposed approach that could be suitable for assessing PD in a home-based free-living real-
time environment.

1. Introduction

+emost important symptom of Parkinson’s disease (PD) is
the disturbances in gait that directly affects the daily ac-
tivities as well as the quality of life [1]. +e disturbances in
gait characteristics in PD patients are categorized into
continuous gait and episodic gait disturbances [2]. Typical

features of gait in PD are short-step, hypokinetic, slow gait
with decreased arm swing, and episodic gait, which includes
freezing of gait (FOG) and festinating gait [3]. Despite the
clinical importance, most clinicians usually depend on
neurological examination or self-questionnaire-based ex-
amination for a short period of time. +erefore, it is very
difficult to assess the PD patient’s gait status outside the
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clinic and in a real-world environment. Objective quanti-
fication of gait is crucial for the measurement of overall
condition as well as disease monitoring in PD. Several
clinical scales such as Tinetti mobility test (TMT), Timed Up
and Go (TUG), and Unified Parkinson’s Disease Rating
Scales (UPDRS) are widely used to assess the PD and its
severity. In the last decade, numerous studies have inves-
tigated the usefulness of gait analysis. Quantitative gait
analysis includes infrared-based motion capture (three-di-
mensional (3D) motion capture), pressure-based gait
analysis (GAITRite), and treadmill gait analysis [4–6]. De-
spite their strength of accurate quantification of gait, clinical
implication is still controversial due to high cost and large
space or laboratory required for system set up.

To overcome the previous limitations, an attempt has
been made in this study to quantify the gait characteristics
using the algorithmic-based approach with a wearable ac-
celerometer and its validation using a 3D motion capture
system as well as TMT. TMTis widely used for predicting the
fall risk of elderly people based on the balance and gait test
score. TMT test consists of two components such as the
Tinetti balance scale and the Tinetti gait scale. +e balance
scale consists of 9 parameters, and each parameter has
subparameters with a score of 0/1 or 0/1/2.+e total possible
score of the balance section is 16. +e gait scale consists of 8
parameters, and each parameter has subparameters with a
score of 0/1 or 0/1/2. +e total possible score of the gait
section is 12. Each patient has to be assessed based on these
two scores. +e combined score determines the risk of falls
in elderly people. According to Tinetti, a total score of ≤18 is
treated as high risk, 19–23 is treated as moderate risk, and
≥24 is treated as low risk [7]. Since the Korean version of
TMT has already been validated with the PD patients in the
laboratory [8], this version has been used in this study.

+e contributions of the proposed study are as follows:

(1) +is study includes enrolment of a large number of
participants with PD, higher than that recommended
by the movement disorder society [9]. While the
recommended minimum number of patients is 30,
this study involves 48 PD patients to provide proper
validity and reliability of the result. In addition, 40
healthy older patients’ group has been included in
the study for the classification of PD subjects from
healthy older group based on estimated gait char-
acteristics. Due to a large number of subjects, the
proposed study could be recommended for a real-life
scenario.

(2) +e proposed study focuses on the PD patients when
they are clinically in “on” state, i.e., after taking
dopaminergic medicine. “On” state is the state where
the effect of the medicine is present, and the im-
provement in the gait characteristics is closer to the
healthy older group.

(3) +e good accuracy found by using only accelerometer
data for estimating spatiotemporal gait characteristics
indicates that the gyroscope data could be excluded
for these kinds of studies. +is will lead to low power

consumption in wearable devices and hence a longer
battery life for gait monitoring.

(4) +e validation study provides a low-cost alternative
for assessing gait characteristics in the “on” state of PD
patients for both indoor and outdoor environments.

(5) +e proposed study demonstrates that spatiotem-
poral gait characteristics estimated by using only
accelerometer data are highly correlated with those
obtained from a 3D motion capture system. Fur-
thermore, a high correlation was also found between
results obtained from the proposed approach and
those obtained from the clinical TMT test.

(6) +e proposed study proposed an automatic system
that can classify PD patients and HOG with machine
learning techniques based on gait characteristics.

+e structure of the paper is outlined in the following
way: Section 2 describes the past work related to this study.
Section 3 describes the data collection methods as well as the
proposed methodology. Section 4 presents the results and
outcomes of the proposed approach. Section 5 provides the
discussion. Section 6 describes the conclusion.

2. Related Work

+e gait analysis performed using a conventional way using a
qualitative analysis technique is usually performed in the
clinics, and it required a complete medical history of the
patients to determine the gait characteristics. +e conven-
tional method is relatively simple; however, it depends on
the expertise of the physicians, and it is relatively difficult to
measure the parameters in a quantitative manner with high
accuracy that could be useful for clinical applications. To
address this aforementioned problem, a new method has
been introduced in this paper to quantify the gait charac-
teristics in an objective way by using quantitative mea-
surement techniques [10, 11]. Wearable devices are now
used for a wide range of healthcare observations as well as
the measurement of gait.+e triaxial wearable accelerometer
is known to be a useful tool for assessing gait as well as
various motor symptoms in PD. It is not expensive as well as
can be used in a comfortable way by the user [12]. Beck et al.
proposed a new approach to quantify the gait smoothness
using accelerometer and gyroscope signals. +ey have
implemented this method in PD patients as well as healthy
controls, and they found clear differentiation in terms of
smoothness between two groups. For validation, they have
used the correlation technique by comparing their algorithm
spectral arc length measure (SPARC) with traditional gait
measures and the UPDRS scale. +is is one of the potential
use cases for using wearable sensors; however, their method
did not use 3D motion capture and TMT gait scale for
correlation [13]. Hausdorff et al. mentioned that quantifi-
cation of gait characteristics was possible using a wearable
device. +ey have collected the accelerometer data during
the tandem walking and also validated the method. +is
method also mentioned the potential of using wearable
devices for gait analysis. +ey have not implemented this
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method to the PD patients, and at the same time, they have
not used any other methods such as 3D motion capture or
clinical scale for correlation of their method [14]. Gazit et al.
proposed a method for quantifying gait initiations using
wearable sensors. +ey have used only one IMU sensor for
evaluating the gait initiations and found good results. +ey
have validated the method with the ground truth and found
that the interclass correlation coefficient with one wearable
sensor ranges from 0.75 to 0.96. +ey have tested this
method on the data collected from younger and older adults.
+ey have not used the 3D motion capture system for
validation of their results and also not implemented for PD
patients [15]. Anwary et al. proposed a method to find the
best location in the foot to place wearable sensors. +ey have
used accelerometer data and gyroscopic data for deter-
mining the gait features. For validation of this method, they
have used a quality motion capture system. +ey have done
this analysis for healthy groups andmentioned that wearable
sensors have the potential to quantify the gait characteristics
with high accuracy [16]. Qiu et al. proposed a method that
used body-worn sensors to collect the gait data for the as-
sessment of stroke patients. +ey have found that the gait
analysis has a huge contribution towards the diagnosis and
treatment of the stroke patients and mentioned that a
wearable sensor-based gait analysis system has the potential
for supporting rehabilitation in the clinics and hospitals [17].
Byun et al. have proposed a method that uses the wearable
accelerometer to measure the gait characteristics of older
people having normal cognition. +e gait characteristics are
quantified using the signal-processing algorithm. Validation
of the measurement method was carried out using the
GAITRite system. +e two methods show a good level of
correlation with a correlation coefficient that ranges from
0.91 to 0.96. +ey have not used the 3D motion capture
system, and this method was not tested for PD patients [18].
Pham et al. have proposed a technique that used an inertial
measurement system which consists of a gyroscope and an
accelerometer to detect the gait patterns such as toe-off and
heel strike in the patients with PD as well as older adults
when they were encountered with turning as well as straight
walking. An algorithm based on continuous wavelet
transform is used to detect the gait patterns, and the vali-
dation study was carried out using the optoelectronic sys-
tem. +ey have not used any clinical scale for comparing the
result. 3D motion capture has not been used in this research
[19]. Del Din et al. have used the wearable accelerometer for
measuring the gait characteristics of older adults as well as
PD patients. Signal processing of the collected accelerometer
data provides gait characteristics, and the validation was
carried out using the instrumented walkway. Fourteen gait
characteristics were compared; it was found that four
characteristics show a good amount of correlation, another
four gait characteristics show an agreement of moderate
level, and the rest six characteristics show an agreement of a
poor level. +is paper does not have any correlation analysis
of gait characteristics with the clinical scale, and they did not
use the 3D motion capture system [20]. Aich et al. proposed
a method that used a wearable accelerometer that can detect
FoG, and the validation study was performed that shows a

good level of correlation with a correlation coefficient that
ranges from 0.961 to 0.984. +e study also proposed a
machine learning-based approach to distinguish PD with
FoG from PD with no FoG, and an accuracy of 88% has been
found using SVM classifier. In this research, the effect of
dopaminergic medicine has not been considered, and the
correlation analysis has not been performed with clinical
scale [21]. Mikos et al. proposed a method for FoG detection
using a single sensor node. +ey have developed a system
using machine learning based on the extracted features from
the signals. +ey have found a classification accuracy of
92.9% in average of sensitivity and specificity when
exploiting its patient adaptive learning capability. +is re-
search has given enough evidence that a single sensor can be
used for the detection of FoG and machine learning systems
for the classification of FoG [22]. Jeon et al. proposed a study
that used the wearable device to detect the severity of tremor
in PD. +e wearable device used in this study consists of an
accelerometer and gyroscope. +is study also used machine
learning techniques to classify the severity of tremor based
on the score of UPDRS. It was found that the decision tree
outweighs other classifiers with an accuracy of 85.5%. +is
research has provided enough evidence that the wearable
sensors can be used for the diagnosis of PD, and machine
learning techniques can be used to automate the system [23].
Samà et al. proposed a study using wearable accelerometer
that can detect freezing of gait at real-time environment
using a set of features which are related to the previous
approaches mentioned by the previous researchers. +ese
features were trained using machine learning classifiers and
used to detect the FoG with an improvement over the
previous methods. +is research suggested that the wearable
sensor has the potential to be used for measuring the gait
characteristics, and machine learning techniques could be
used for the detection of the PD group [24].

+e past works mentioned above provide a strong
recommendation about the use of the wearable device in the
field of PD as well as the effective use of machine learning
techniques for autodetection of gait patterns in PD and
HOG. +e proposed approach has got a lot of inspiration
from the previous pieces of literature cited by different
researchers. In this study, an algorithmic-based approach
has been developed, and it was validated using clinical test
and well-known measuring instruments, and a machine
learning-based approach has been proposed to detect the PD
from the healthy older group using estimated gait charac-
teristics. +is system is developed by keeping in mind that it
can be used in the home environment as well as in clinical
environments.

3. Proposed Methodology

3.1. Data Collection. +is study was performed clinically in
the “on” state, i.e., after taking dopaminergic medicine for
the PD group of patients. “On” state is the state where there
is an effect of the medicine. In this state, there is an im-
provement in gait characteristics. +e resulting gait char-
acteristics are very similar to those of the healthy older
group. +e accelerometer data for PD patients have been
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collected in the “on” state so as to study the difference
between two groups, i.e., PD patients and healthy older
group when they are in a similar state. +is study was
performed at Haeundae Paik Hospital located at Busan,
South Korea. +e approval was taken from the review board
of the institute (IRB No. 2017-01-028). Prior approval has
been taken from all participants before joining this study.
+e details about the PD group are shown in Table 1.

+e healthy older group comprises normal persons with
no signs of PD. No medication has been given to them prior
to this study. +e healthy group consists of 22 males and 18
females. All the subjects in the healthy group were age-
matched. +e details regarding the patients belonging to the
healthy group are shown in Table 2.

UPDRS and H&Y represent Unified Parkinson’s Disease
Rating Scale and Hoehn and Yahr scale, respectively.
UPDRS is widely used for checking the severity of the disease
[25]. H&Y scale is a clinical rating scale, which is used to
define different categories of motor functions in the PD [26].
Tinetti gait scale is widely used for predicting the fall risk of
elderly people.

+e participants were asked to wear the accelerometer on
the left knee as well as the right knee. Two wearable triaxial
accelerometers with a sampling frequency of 32Hz (Fit
Meter, Fit. Life, Suwon, Korea) were used. +e triaxial ac-
celerometer measures body movements in all directions:
anterior-posterior, mediolateral, and vertical. It is small and
lightweight (35mm× 35mm× 13mm and 13.7 gm). It is
sensitive to acceleration from − 8 g to 8 g, allowing for
monitoring of almost all human physical activities. All the
participants wore the accelerometers at a distance of 34 cm
from the ground, as shown in Figure 1. All the participants
were asked to walk along a six-meter track. For validation of
the proposed approach, the gait characteristics were also
measured by using the 3D motion analysis system (VICON,
Oxford, UK). +e motion was captured during the walking
process. Five important gait characteristics were measured
that include step time, stride time, step length, stride length,
and walking speed. For estimating gait status more objec-
tively, the Korean version of the Tinetti gait scale [7] was
used. +e gait characteristics obtained from the 3D motion
system and the Tinetti gait scale were used for validation of
the proposed approach.

3.2. Estimation of Gait Characteristics. A variant of the
method proposed by Del Din et al. [12] was used to detect the
gait cycle. +e measured acceleration values along X-, Y-,
and Z-axes represent linear accelerations along the medial-
lateral (ML), anterior-posterior (AP), and vertical (V) di-
rections, respectively. +e corrections are needed to over-
come the effect of gravitational component, error due to
imprecise position of wearable accelerometer, etc. [27]. +e
dynamic tilt correction approach proposed in [27] was used
to transform the acceleration from ML and AP directions to
a global horizontal-vertical coordinate system. +e resulting
vertical acceleration signal was used hereafter for gait event
identification. A low-pass fourth-order Butterworth filter
with a cutoff frequency of 15Hz was used to filter the vertical

acceleration signal. +e filtered signal was integrated for gait
event detection. +e objective was to detect the initial
contacts (ICs) of the leg, which are also termed as the heel-
strike event in a gait cycle.+e locations of ICs were detected
from the points of minima in the smoothed signal by de-
termining the first-order derivative using the Gaussian
continuous wavelet transform. +e flowchart of the pro-
posed algorithmic approach based on the accelerometer data
is shown in Figure 2.

In this study, five gait characteristics such as step time,
stride time, step length, stride length, and walking speed were
estimated for the feasibility study of objective assessment of
PD using wearable accelerometer data. +ese five charac-
teristics have received great attention from the researchers in
gait-related study and its effectiveness for the assessment of
PD. Five major domains of gait study have been proposed by
Hollman et al. using the factor analysis: (1) step time and
stride time represented by the rhythm domain; (2) tempor-
ophasic domain of gait cycle represented by the phase do-
main; (3) step variability represented by the variability
domain; (4) step length, stride length, and gait speed rep-
resented by the pace domain; (5) step width represented by
the base of the support domain [28]. +e aforementioned five
characteristics have also been used recently to detect the FoG
[20]. Walking speed, stride length, and stride time have been
given high importance by Schlachetzki et al. [29] for the
discrimination of healthy subjects from the PD subjects.

Table 1: Details of the PD group.
M/F (n� 48) 25/23
Age 70.61± 9.51
UPDRS part III 20.9± 12.31
H&Y stage 2.10± 0.74
Disease duration (months) 35.49± 27.07
Timed-up and go 20.87± 15.78
Tinetti gait scale 9.86± 2.56

Table 2: Details of the healthy group.
M/F (n� 40) 22/18
Age 69.36± 7.42
UPDRS part III 0
Disease duration (months) 0

Figure 1: Location of the accelerometers specified for the proposed
study.
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Bertoli et al. estimated the spatiotemporal parameters such as
stride time, step time, swing time, stance time, stride length,
and gait velocity for the quantitative assessment of PD, mild
cognitive impairment patients, and healthy older adults [30].

+e step time can be calculated based on the IC events
[9] as follows:

step time(i) � IC(i + 1) − IC(i). (1)

Similarly, the stride time can also be computed based on
the IC events [9] as follows:

stride time(i) � IC(i + 2) − IC(i), (2)

where i denotes the index of the IC event in the signal. In the
proposed approach, the step length has been estimated using

the inverted pendulum model [21, 31], as shown in Figure 3.
+e step length and stride length can be computed as
follows:

step length � KI ∗ 2
������������

2WhH − H2( 􏼁

􏽱

,

stride length � 2∗ step length,
(3)

where Wh represents the distance from the ground to the
wearable accelerometer and H represents the change in
height of the wearable sensor between two consecutive IC
events. +is is computed by finding the difference between
the maximum and minimum values of the double integrated
vertical acceleration signal between two IC events. +e
generic multiplying factor KI is used for mapping the center
of mass in an inverted pendulum model with that of the

Collection of acceleration data using triaxial
wearable accelerometer at knee of left and

right legs

Preprocessing of raw acceleration
data to eliminate the offsets and

misalignments

Filtering of acceleration data for the
left leg to remove noise

Detection of peaks (minima)
representing initial contact (IC) of the

left leg using continuous wavelet
transform

Calculation of spatiotemporal
parameters for the left leg using the

above data for left leg

Calculation of spatiotemporal
parameters for the right leg using

the above data for right leg

Comparison of result with
 3D motion analysis system

(gold standard)

Data Interpretation and validation of
results using statistical analysis

Filtering of acceleration data for the
right leg to remove noise

Detection of peaks (minima)
representing initial contact (IC)
of the right leg using continuous

wavelet transform

Figure 2: Flowchart of the algorithmic approach for the estimation of gait characteristics.
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wearable sensor. +e value of KI will change based on the
value of Wh. +erefore, to avoid the time-consuming task of
mapping for each participant that requires determining KI

for each participant, Wh has been fixed at 34 cm, and cor-
respondingly, KI � 4 has been chosen for this study.Walking
speed is calculated as follows [21]:

walking speed �
mean step length
mean step time

. (4)

+ese aforementioned five estimated gait characteristics
were used as features for the classification of PD groups and
healthy older group.

3.3. Machine Learning Classifiers and Its Effectiveness for8is
Study. In this study, comparative performance analysis has
been carried out between four machine learning classifiers
that have been employed to perform the classification task
between the PD patients and the healthy control adults.

3.3.1. 8e k-Nearest Neighbour Classifier (k-NN). +e k-NN
classifier performs the classification process based on the
proximity of a data point to the nearest training data points.
It generally measures the Euclidean distance to measure the
closeness between them.+e local data structure has a strong
influence on the k-NN algorithm. +ere is no standardized
rule to define the value of k. +e classes are selected based on
the majority rule from among the selected number of k-
nearest neighbors, where k is always greater than zero and an
integer. +e instability in the result, as well as an increase in
the variance, can be seen with the smaller values of k. +e
reduction in sensitivity, as well as increasing bias, can be seen
with the higher values of k. In general, the k values are
chosen depending on the dataset. In this study, a value of
k� 5 is chosen as it provides good accuracy [32, 33].

3.3.2. Support Vector Machine (SVM) Classifier. SVM is one
of the classifiers suitable to deal with binary classification
problems. +e classifier tries to maximize the margin ar-
ithmetically between two input datasets by defining a surface
in an input space, which is multidimensional in nature [34].
In another way, SVM selects the hyperplane with the highest
possible margin between two classes while separating them.
It is impossible for a hyperplane to separate the data between
two classes, but it tries to separate as much data as possible to
provide good accuracy [35]. In this study, the radial basis
kernel function is used, which provides good accuracy
compared to other available kernel functions.

3.3.3. Naı̈ve Bayes (NB) Classifier. NB classifier is one of the
simple probabilistic classifiers based on the Bayes’ theorem.
+is classifier selects mutually independent variables. +is
kind of classifier can be employed in the complex real-life
scenario as it can be trained efficiently using the supervised
learning technique. +e advantage of this algorithm is that it
needs less amount of data for training purposes to perform
the classification task. In this study, the classification task has
been performed by using the Bayes’ rule to calculate the
probability of class label PD or a healthy group [36].

3.3.4. Decision Tree Classifier. +e decision tree classifier
works on the basis of conditional statements and its possible
consequences. It is a tree-like model. Nodes and branches
are the primary components to build a decision tree model.
+ree steps are followed for building a well-designed de-
cision tree model. +e first step is splitting, followed by
stopping, and then finally pruning. +e continuation of the
splitting process stops when the model reaches the desired
stopping criteria. +e stopping rule is used to avoid the
problem of overfitting and underfitting. If the stopping rule
does not work well, the pruning method is used to improve
the overall classification accuracy [37].

A planned-designed PD detection framework should be
efficient and quick enough to perform the binary classifi-
cation for the classification of PD patients from the healthy
older group. Accuracy, sensitivity, and specificity are widely
used to measure the effectiveness of the system. +e amount
of correctness required for the distinction of PD patients
from the healthy older group could be measured using the
term accuracy. +e potential to identify PD is measured by
sensitivity, and it is usually expressed as the ratio of true
positives to the total number of PD patients [21]. +e po-
tential to identify PD when the system identifies the PD can
be measured by the term specificity. +e subjects belong to
the PD group, correctly identified as PD subject, and are
represented as true positives. +e subjects belong to a
healthy older group, correctly identified as healthy older
groups, and are represented as true negatives. +e subjects
belong to the healthy older group but wrongly identified as
PD subjects are represented as false positives. +e subjects
belong to the PD group but wrongly identified as the healthy
older group are represented as false negatives. In this study,
the objective is to reduce the false negatives as it affects the
effectiveness of the system.

H

Wh

K1Wh

IC rightStep lengthIC le�

Figure 3: Extended inverted pendulum model [20] for estimation
of step length.
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4. Results

+e mean value of five estimated gait characteristics based
on the accelerometer data as well as the mean error rate
between the algorithmic approach and the 3D motion
capture system are highlighted in Table 3. +e correlation

plots between the algorithmic approach as well as a 3D
motion capture system are shown in Figures 4–8. +e mean
error rate was calculated based on the formula [21] as
follows:

average error rate(%) �
(value estimated from acc) − (value estimated from3D capture)

(value estimated from3D capture)
∗ 100. (5)

In this paper, Tinetti mobility test (TMT) gait scale is
used to assess the spatiotemporal gait characteristics such
as step time, stride time, step length, stride length, and
walking speed and its importance in terms of clinical
practices by comparing the score with the result obtained
using other methods, in this case, computerized gait
analysis using accelerometer data and 3D motion capture
system. +e true changes in the gait characteristics can be
easily understand based on the accuracy of the clinical
observation measures, and it is an important step in clinical
practices. So, in this paper, we have used Pearson’s cor-
relation coefficient to analyze the relationship between the
TMT gait scale score, and spatiotemporal gait character-
istics derived objectively used computerized gait analysis
using accelerometer data and 3D motion capture system.
+e correlation plots between TMT gait scale and gait
characteristics measured from the 3D motion capture
system are shown in Figures 4–8. We have found strong
correlations between them, and the results were mentioned
as follows: step time (0.96, p< 0.01), stride time (0.97,
p< 0.01), step length (0.98, p< 0.01), stride length (0.99,
p< 0.01), and walking speed (0.99, p< 0.01). Similarly, the
correlation plots between TMT gait scale and gait char-
acteristics obtained from the wearable accelerometer data
are shown in Figures 9–13. We have found moderate to
strong correlations between them, and the results were
mentioned as follows: step time (0.57, p< 0.01), stride time
(0.54, p< 0.01), step length (0.84, p< 0.01), stride length
(0.84, p< 0.01), and walking speed (0.75, p< 0.01).

+is study used the split named as stratified train-vali-
dation [21] with a ratio of 70 : 30 for training and validation.

+e total number of subjects including both the groups is 88.
Out of 88 subjects, 62 subjects belong to the training group,
and the rest 26 belong to the validation group. Out of 26
subjects, which belong to the validation group, 14 subjects
belong to the PD group (PDG) and 12 subjects belong to the
healthy older group (HOG). Moreover, a 5 split cross-vali-
dation was also performed based on the subject’s data to check
the generalizability of the model. +e cross-validation was
performed in such a way where the data of 62 random subjects
were used to train a classifier and the rest data of 26 subjects
were used for checking the testing accuracy. Test set 1, test set
2, test set 3, and test set 4 consist of 26 subjects each. +e
cross-validation was performed using 4 different classifiers,
namely, KNN, SVM, Naive Bayes, and decision tree. +e
implementation of four different algorithms was done to
perform a comparative analysis between the classifiers. After
successful cross-validation, it was found that the decision tree
plotted the best set of results by prompting a maximum
accuracy of 88.46%, sensitivity of 92.86%, and specificity of
90.91%, respectively. Table 4 shows the results for the cross-
validation.

+e classifiers’ performance has been evaluated using
three parameters such as accuracy, sensitivity, and speci-
ficity. +e classification results are shown in Table 5. +e
decision tree classifier could able to provide the highest
accuracy of 88.46%with a sensitivity of 0.9286 and specificity
of 0.9091. From 14 subjects belonging to PDG, the proposed
model correctly identified 13 as PDG. Similarly, from the 12
subjects belonging to HOG, the proposed model correctly
identified 10 as HOG. +e confusion matrix is shown in
Figure 14.

Table 3: Mean value of gait characteristics and average error rate for the left and right legs.

Sl. no. Parameters Mean value (3D motion capture) Mean value (algorithm) Mean error rate (%)
Left leg
1 Step time (s) 0.57 0.54 6.94± 2.82
2 Stride time (s) 1.17 1.13 4.76± 3.55
3 Step length (m) 0.37 0.34 6.35± 2.85
4 Stride length (m) 0.74 0.71 6.51± 2.92
5 Walking speed (m/s) 0.64 0.61 7.12± 2.74
Right leg
1 Step time (s) 0.54 0.56 7.14± 2.52
2 Stride time (s) 1.18 1.14 5.25± 3.62
3 Step length (m) 0.37 0.34 6.15± 2.81
4 Stride length (m) 0.74 0.70 6.35± 2.71
5 Walking speed (m/s) 0.69 0.66 6.72± 3.14
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5. Discussion

+is study proposes an algorithmic approach to estimate the
gait characteristics of PD subjects as well as the healthy older
groups. +e approach is validated using measuring instru-
ments and clinical scale. It is also proposed that the machine

learning approach can be used for automatic detection and
differentiation of PD patients from the healthy older group.

Although wearable sensors have been widely used in
many fields, these have not been given enough importance in
PD-related assessment due to distorted gait pattern. Sijobert
et al. [38] have proposed a technique that provides a mean
error rate of 10.3% for the PD group and 6% for the healthy
group. +e comparison has been made based on the esti-
mated stride length calculated using wearable sensor data
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Figure 4: Step time correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).

0.6

0.8

1

1.2

1.4

1.6

1.8

0.4 0.5 0.6 0.7 0.8 0.9 1.11 1.2 1.3 1.4

St
rid

e t
im

e, 
3D

 m
ot

io
n 

ca
pt

ur
e

Stride time, accelerometer

r = 0.97∗

Figure 5: Stride time correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).
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Figure 6: Step length correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).
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Figure 7: Stride length correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).
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Figure 8: Walking speed correlation plot between the acceler-
ometer-based approach and 3D motion system (∗p< 0.01).
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based approach and Tinetti gait scale (∗p< 0.01).
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based approach and Tinetti gait scale (∗p< 0.01).
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Figure 11: Step length correlation plot between the accelerometer-
based approach and Tinetti gait scale (∗p< 0.01).
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Figure 12: Stride length correlation plot between the accelerom-
eter-based approach and Tinetti gait scale (∗p< 0.01).
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Figure 13: Walking speed correlation plot between the acceler-
ometer-based approach and Tinetti gait scale (∗p< 0.01).

Table 4: 5 split cross-validation.

Performance (%) KNN SVM NB Decision tree
Accuracy test set 1 82.11 81.36 84.52 86.28
Sensitivity test set 1 0.8746 0.7801 0.8225 0.9152
Specificity test set 1 0.8452 0.725 0.8654 0.8833
Accuracy test set 2 83.64 84.25 81.20 84.31
Sensitivity test set 2 0.8055 0.8139 0.8558 0.8631
Specificity test set 2 0.8519 0.8687 0.8411 0.8551
Accuracy test set 3 86.32 84.93 85.31 82.28
Sensitivity test set 3 0.9025 0.8755 0.9032 0.8111
Specificity test set 3 0.8947 0.9054 0.8748 0.8364
Accuracy test set 4 85.57 87.23 84.41 88.46
Sensitivity test set 4 0.9125 0.9189 0.8956 0.9286
Specificity test set 4 0.8836 0.8997 0.8735 0.9091
Accuracy test set 5 87.26 84.39 79.32 87.32
Sensitivity test set 5 0.8568 0.8793 0.8178 0.9025
Specificity test set 5 0.9034 0.8998 0.8227 0.9131

Table 5: Classification results.

Performance k-NN SVM NB Decision tree
Accuracy (%) 85.57 87.23 84.41 88.46
Sensitivity (%) 0.9125 0.9189 0.8956 0.9286
Specificity (%) 0.8836 0.8997 0.8735 0.9091
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Figure 14: Confusion matrix.
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and further validated using the GAITRite-based walkway sys-
tem. +e estimated mean error rate for the five gait charac-
teristics is found to be less than 8%with our proposed approach,
which used the wearable accelerometer to collect the data. +e
results of our proposed approach provide the feasibility of our
approach when compared with the previous study. +e pro-
posed study provides some new ideas that are as follows:

(i) +e results obtained in this study include various
phenotypes and severity of PD due to the large
sample size.

(ii) +is study uses the Tinetti gait scale [7] and the 3D
motion capture system [39] for validation of gait
status. +e previous report [38] has demonstrated
the validation using GAITRite that can assess
spatiotemporal data by using pressure parameters.

(iii) +e gait characteristics estimated using our pro-
posed approach have been compared with the
clinical scale, and the result shows a good level of
agreement, which makes the method feasible to be
implemented in the real-life environment.

(iii) It is observed from the study that only acceler-
ometer data can provide enough information for
performing the gait analysis, which leads to re-
dundancy of gyroscopic data, which indirectly saves
battery power, time, and cost.

+e strength and possibility of the wearable sensor-based
PD assessment are aimed at long-term monitoring of gait.
Gait disturbance usually gets aggravated in specific cases
such as starting time, meeting narrow space, or obstacle [40].
+e hospital has limited space, and therefore, it is difficult to
replicate gait disturbance observed in a real-world scenario.
+e battery mounted in our device lasts up to 72 hours. +e
limitation of this study is that the patients in the relatively
early stage of PD were not enrolled, and therefore, this study
is not intended at assessing various balance status in PD such
as a freeze of gait (FOG) or hypokinetic and short-step gait.
+e classifiers used in this study have shown good accuracy.
All the classifiers showed the acceptable results in terms of
performance parameters such as accuracy, sensitivity, and
specificity.

6. Conclusion

+e proposed study highlights the feasibility of wearable
accelerometers for gait analysis of PD patients. +e algo-
rithmic approach used in this study is able to estimate the
gait characteristics with an acceptable mean error rate. +e
validation study was performed to compare the estimated
values from the algorithmic approach with those obtained
from the 3Dmotion capture system and TMT.+e proposed
approach is a low-cost approach for the detection of PD as
well as able to distinguish PD subjects from the healthy older
group. It is also observed that the proposed classification
model could able to achieve an accuracy of 88.46% with a
sensitivity of 0.9286 and a specificity of 0.9091. +e objective
of reducing the false negatives as much as possible could be
achieved. +e proposed approach showed enough potential

to get recommended for the clinicians to use in the labo-
ratory as well as in the home environment.

In the future, we will collect gait data from a large
number of PD patients to summarize the gait characteristics
in a better way so that it could be promoted for clinical ap-
plications. We would also like to combine brain EEG signals
with the gait data to understand more about the relation and
detect the symptoms like freezing of gait before it happens.We
would like to combine the MRI image with the gait data for
more accurate diagnosis and early detection of PD.

Data Availability

+e data used to support the experiments and the finding of
the study have been duly included in Section 3 of the paper.
Section 3.1 clearly describes about the data.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is research was supported by the National Research
Foundation (NRF) of Korea grant funded by the Korea
government (MSIT) (Grant number 2019R1C1C1011197)
and also funded by Ministry of Trade, Industry and Energy
(MOTIE), Korea, through the Education program for Cre-
ative and Industrial Convergence (Grant number N0000717).

References

[1] C. C. Walton, J. M. Shine, J. M. Hall et al., “+e major impact
of freezing of gait on quality of life in Parkinson’s disease,”
Journal of Neurology, vol. 262, no. 1, pp. 108–115, 2014.

[2] J. M. Hausdorff, “Gait dynamics in Parkinson’s disease:
common and distinct behavior among stride length, gait
variability, and fractal-like scaling,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 19, no. 2, Article ID
026113, 2009.

[3] N. Giladi and Y. Balash, “+e clinical approach to gait dis-
turbances in Parkinson’s disease; maintaining independent
mobility,” Journal of Neural Transmission, vol. 70, pp. 327–
332, 2006.

[4] M. Morris, R. Iansek, J. Mcginley, T. Matyas, and F. Huxham,
“+ree-dimensional gait biomechanics in Parkinson’s disease:
evidence for a centrally mediated amplitude regulation dis-
order,” Movement Disorders, vol. 20, no. 1, pp. 40–50, 2004.

[5] T. R. Beijer, S. R. Lord, and M. A. D. Brodie, “Comparison of
handheld video camera and GAITRite measurement of gait
impairment in people with early stage Parkinson’s disease: a
pilot study,” Journal of Parkinson’s Disease, vol. 3, no. 2,
pp. 199–203, 2013.

[6] T. G. Hampton and I. Amende, “Treadmill gait analysis
characterizes gait alterations in Parkinson’s disease and
amyotrophic lateral sclerosis mousemodels,” Journal of Motor
Behavior, vol. 42, no. 1, pp. 1–4, 2009.

[7] M. E. Tinetti, T. Franklin Williams, and R. Mayewski, “Fall
risk index for elderly patients based on number of chronic
disabilities,” 8e American Journal of Medicine, vol. 80, no. 3,
pp. 429–434, 1986.

10 Journal of Healthcare Engineering



[8] J. Park, S.-B. Koh, H. J. Kim et al., “Validity and reliability
study of the Korean Tinetti mobility test for Parkinson’s
disease,” Journal of Movement Disorders, vol. 11, no. 1,
pp. 24–29, 2018.

[9] W. Maetzler, J. Klucken, and M. Horne, “A clinical view on
the development of technology-based tools in managing
Parkinson’s disease,” Movement Disorders, vol. 31, no. 9,
pp. 1263–1271, 2016.

[10] J. Taborri, E. Palermo, S. Rossi, and P. Cappa, “Gait parti-
tioning methods: a systematic review,” Sensors, vol. 16, no. 1,
p. 66, 2016.

[11] W. Zhao, M. A. Reinthal, D. D. Espy, and X. Luo, “Rule-based
human motion tracking for rehabilitation exercises: realtime
assessment, feedback, and guidance,” IEEE Access, vol. 5,
pp. 21382–21394, 2017.

[12] W. Tao, T. Liu, R. Zheng, and H. Feng, “Gait analysis using
wearable sensors,” Sensors, vol. 12, no. 2, pp. 2255–2283, 2012.

[13] Y. Beck, T. Herman, M. Brozgol, N. Giladi, A. Mirelman, and
J. M. Hausdorff, “SPARC: a new approach to quantifying gait
smoothness in patients with Parkinson’s disease,” Journal of
Neuroengineering and Rehabilitation, vol. 15, no. 1, p. 49, 2018.

[14] J. M. Hausdorff, N. Ganz, E. Gazit, A. Hadad, A. S. Buchman,
and A. Mirelman, “Automatic quantification of tandem
walking using a wearable device: validity of the instrumented
tandem walk,” Innovation in Aging, vol. 3, no. Supplement_1,
p. S335, 2019.

[15] E. Gazit, A. S. Buchman, R. Dawe et al., “What happens before
the first step? A new approach to quantifying gait initiation
using a wearable sensor,” Gait & Posture, vol. 76, pp. 128–135,
2019.

[16] A. R. Anwary, H. Yu, and M. Vassallo, “Optimal foot location
for placing wearable IMU sensors and automatic feature
extraction for gait analysis,” IEEE Sensors Journal, vol. 18,
no. 6, pp. 2555–2567, 2018.

[17] S. Qiu, Z. Wang, H. Zhao, L. Liu, and Y. Jiang, “Using body-
worn sensors for preliminary rehabilitation assessment in
stroke victims with gait impairment,” IEEE Access, vol. 6,
pp. 31249–31258, 2018.

[18] S. Byun, J. W. Han, T. H. Kim, and K. W. Kim, “Test-Retest
reliability and concurrent validity of a single tri-axial accel-
erometer-based gait analysis in older adults with normal
cognition,” PLoS One, vol. 11, no. 7, Article ID e0158956, 2016.

[19] M. H. Pham, M. Elshehabi, L. Haertner et al., “Validation of a
step detection algorithm during straight walking and turning
in patients with Parkinson’s disease and older adults using an
inertial measurement unit at the lower back,” Frontiers in
Neurology, vol. 8, 2017.

[20] S. D. Din, A. Godfrey, and L. Rochester, “Validation of an
accelerometer to quantify a comprehensive battery of gait
characteristics in healthy older adults and Parkinson’s disease:
toward clinical and at home use,” IEEE Journal of Biomedical
and Health Informatics, vol. 20, no. 3, pp. 838–847, 2016.

[21] S. Aich, P. Pradhan, J. Park, N. Sethi, V. Vathsa, and
H.-C. Kim, “A validation study of freezing of gait (FoG)
detection and machine-learning-based FoG prediction using
estimated gait characteristics with a wearable accelerometer,”
Sensors, vol. 18, no. 10, p. 3287, 2018.

[22] V. Mikos, C.-H. Heng, A. Tay et al., “A wearable, patient-
adaptive freezing of gait detection system for biofeedback
cueing in Parkinson’s disease,” IEEE Transactions on Bio-
medical Circuits and Systems, vol. 13, no. 3, pp. 503–515, 2019.

[23] H. Jeon, W. Lee, H. Park et al., “Automatic classification of
tremor severity in Parkinson’s disease using a wearable de-
vice,” Sensors, vol. 17, no. 9, p. 2067, 2017.
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Continuous blood pressure (BP) monitoring has a significant meaning for the prevention and early diagnosis of cardiovascular
disease. However, under different calibration methods, it is difficult to determine which model is better for estimating BP. +is
study was firstly designed to reveal a better BP estimation model by evaluating and optimizing different BP models under a
justified and uniform criterion, i.e., the advanced point-to-point pairing method (PTP). Here, the physical trial in this study
caused the BP increase largely. In addition, the PPG and ECG signals were collected while the cuff bps were measured for each
subject. +e validation was conducted on four popular vascular elasticity (VE) models (MK-EE, L-MK, MK-BH, and dMK-BH)
and one representative elastic tube (ET) model, i.e., M-M.+e results revealed that the VE models except for L-MK outperformed
the ET model. +e linear L-MK as a VE model had the largest estimated error, and the nonlinear M-M model had a weaker
correlation between the estimated BP and the cuff BP than MK-EE, MK-BH, and dMK-BHmodels. Further, in contrast to L-MK,
the dMK-BHmodel had the strongest correlation and the smallest difference between the estimated BP and the cuff BP including
systolic blood pressure (SBP) and diastolic blood pressure (DBP) than others. In this study, the simple MK-EE model showed the
best similarity to the dMK-BH model. +ere were no significant changes between MK-EE and dMK-BH models. +ese findings
indicated that the nonlinear MK-EE model with low estimated error and simple mathematical expression was a good choice for
application in wearable sensor devices for cuff-less BP monitoring compared to others.

1. Introduction

Increased aortic stiffness in hypertensive individuals is a
fundamental manifestation of longstanding hypertension-
related damage that stiffens the large arteries [1]. Un-
controlled hypertension or high blood pressure (BP) is a
major risk factor that links to the potential development of
serious diseases such as stroke, hypertensive heart disease,
and coronary artery disease [2]. BP is influenced by many
factors such as food, exercise, mental situations, and stress,
among others; thus, it varies considerably from time to time
[3]. Instantaneous information about BP status can be ob-
tained from conventional standard cuff-based BP mea-
surements, such as oscillometry [4] and auscultation.

However, the above methods are not applicable to ambu-
latory BP monitoring (ABPM) or home BP monitoring
(HBPM) due to the population-averaged nature of the BP
estimation algorithm [5] and the limited frequency of
measurement [6]. For cuff-based approaches, recurrent
inflating and deflating of the cuff stress the patient, which
causes periodic interruptions to blood flow, affecting the
physiological state of the patient and disturbing the quality
of sleep [7]. Moreover, cuff measurements are occlusive,
cumbersome, provide only intermittent BP readings, and do
not readily extend to low-resource settings [1, 3]. Hence,
cuff-less continuous BP monitoring has received much at-
tention due to its comfort and convenience compared to
cuff-based approaches. Moreover, the cuff-less solution has a
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promising application prospect for continuous noninvasive
BP monitoring by virtue of overcoming disturbance issues
existing in the traditional cuff-based method [8, 9]. Pho-
toplethysmography (PPG), a noninvasive optical measure-
ment technique by means of photoelectric measurement,
obtains physiological signals and characteristics of the hu-
man body by detecting changes in blood volume in
microvessels. PPG is also a feasible technology for cuff-less
continuous BP monitoring, especially in surgery, and can
provide valuable information on physiological heart mon-
itoring and cardiovascular system assessment of vascular
parameters [10, 11].

Pulse arrival time (PAT) is defined as a time interval
between R-peak and the point with maximum gradient on
the rising edge of the PPG [8] which is a noninvasive optic-
electrical signal. +e PAT in PAT-based BP measurement
can be simply measured from electrocardiography (ECG)
and from PPG by wearable devices [12, 13] or a contactless
video camera [14]. More importantly, PAT is dependent on
both ventricular contraction and vascular function [15].
+us, it has been commonly used as an indicator to cufflessly
and continuously estimate BP under various BP changing
conditions.

In the past few years, several studies reported that PAT
has shown a high correlation with BP, especially systolic
blood pressure (SBP) [8, 11, 16]. Some studies also in-
vestigated the potential of PAT-based measurement as a
surrogate for cuff BP under different protocols [17, 18].
Advances in dynamic monitoring technologies have rein-
forced these impressions, especially for wearable technolo-
gies [4, 9, 19, 20]. For example, Bilo et al. designed a wearable
device (Somnotouch NIBP) to evaluate its accuracy for
noninvasive continuous BP monitoring using PAT
according to the European Society of Hypertension In-
ternational Protocol [19]. Pandian et al. developed a smart
vest, which used an array of sensors connected to a central
processing unit with firmware for continuously monitoring
physiological signals including ECG, PPG, and BP [20].
Similarly, Zheng et al. proposed an armband wearable
system, which was evaluated against a standard cuff-based
device on both healthy and hypertensive subjects over a 24 h
period for potential use in hypertensive management [9].
Tang et al. also developed a chair-based unobtrusive mon-
itoring system that estimates BP using PAT calculated from
ECG and PPG signals for facilitating long-term HBPM [4].
Furthermore, the methods of neural network or machine
learning were paid more attention during investigating these
PAT-based approaches for BP modeling [20]. Although the
BP monitoring solutions described above were helpful, their
accuracy of estimated BP methods, such as linear estimation
[21], nonlinear estimation [4, 9, 22, 23], and regression
approaches [24, 25], is still needed to improve to meet the
association for the Advancement of Medical In-
strumentation (AAMI) standard [26].

Most importantly, the PAT-based BP estimation method
needed an individualized calibration procedure to obtain
unknown coefficients or parameters in the BP estimation
model for each subject before BP monitoring. +e model’s
parameters determined after initial calibration will not

change in the process of BP estimation. It was well known
that different calibration methods made the model showing
different performance [27]. In order to show which model
had better performance, it was necessary to employ a
comparison study under the same calibration mode. +e
least-square method (L-S) and point-to-point pairing
method (PTP) were usually employed to determine the
calibration parameters for BP estimation. For the L-S
method, sample numbers were directly related to the ac-
curacy of the BP estimation model. It was difficult to explain
how large sample numbers were needed to meet long-term
ABPM and HBPM [28]. For example, Nabeel et al. recruited
32 subjects for the calibration of the BP estimation model
[22] and Esmaili et al. collected 35 subjects for the calibration
of their model [29]. +ey largely limited BP estimation’s
practical application. Comparing with the L-S method, PTP
required only a small initial sample number for the cali-
bration of the estimation model. At present, there were
many reports that only one sample (point) was required to
calibrate the specific model [4, 9], and the model’s pa-
rameters determined after initial calibration will not change
in the process of BP estimation. +erefore, this paper used
PTP as the BP estimation model’s calibration method and
further optimized this method.

+ere was no doubt that it was essential to study and
improve the accuracy of cuff-less BP estimation models and
the simplicity of calibration methods for providing a more
practical solution to achieve long-term ABPM and HBPM.
To date, under a justified criterion, no investigations have
conducted comparative and optimal studies on the PAT-
based BP estimation to reveal a better BP estimation method
with both simplicity and accuracy. In the present study, five
representative BP-PAT models, under a uniform criterion,
were analyzed and optimized to work out which model was
accurate and fitted well in continuous cuff-less BP moni-
toring based on a cardiovascular mechanism.+is study also
offered insights into future research in ambulatory cuff-less
BP estimation.

2. Mathematical Models

Electromechanical coupling in the heart causes blood to eject
into the whole arterial tree. +is physiological process affects
the velocity of blood flow and generates systemic pressure
waves from the central to the peripheral artery. +e velocity
of this pressure pulse is determined by the elastic and
geometric properties of the arterial wall and the blood
density. +e central arteries push blood to narrow distal
arteries under the pressure of circulating blood on the walls
of blood vessels, causing the phenomenon that the heart
expands during systole and contracts during diastole. Here,
the circulatory pressure is BP. Arterial BP, as a hemody-
namic parameter, fluctuates on a beat-to-beat basis due to
the dynamic interplay from vasomotion, neural regulation,
and arterial mechanisms [30]. Physiologically, it is affected
by four factors: arterial compliance, cardiac output, pe-
ripheral resistance, and blood volume [31].

Given the fluid is contained in an elastic conduits system,
energy is transmitted predominantly in the arterial wall
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rather than through the in-compressible blood. +e material
characteristics, thickness, and lumen diameter of the arterial
wall thus become the major determinants of the pressure
wave velocity (PWV). Considering that the Moens–
Korteweg (M-K) equation [8] models a relationship between
the wave speed or pulse wave velocity (PWV) and the in-
cremental elastic modulus (a coefficient of elasticity) of the
arterial wall or its distensibility [32], VE models are built on
this basis. Combining it with an exponential arterial elas-
ticity model [21, 33], a new BP-PATmodel, called the MK-
EE model, will be obtained. It gives a logarithmic re-
lationship between BP and the PAT. For the MK-EE model,
assuming there is a negligible change in the arterial thickness
and diameter with pressure variations, BP and the PAT can
be linearly related by differentiating the M-K equation,
called the L-MK model [21]. To overcome the bad linear
correlation of DBP in the L-MK model, the Bramwell–Hill
(B-H) equation [9] is introduced in estimating BP to make it
have a high correlation, which is called the MK-BH model
[4]. Recently, Poon et al. established a mathematical re-
lationship between MBP and a factor that the change in
elasticity is caused by pressure wave variations. It could be
regarded as the development model of MK-BH, called the
dMK-BH model [9].

In recent years, models used for estimating BP based on
PAT and capturing BP variations indirectly mainly fell into
two categories: vascular elasticity (VE) models and elastic
tube (ET) model. ET models were built on the theory of
elastic tubes. It was noted that the blood flow in the arteries
could be modeled as the propagation of pressure waves
inside elastic tubes. A novel BP estimation nonlinear model
was derived from the conservation of mass and momentum
principle equation, called the M-M model [29]. Un-
derstanding the internal relationship between VE models
and ET models was necessary. +e principles of their
modeling were shown in Figure 1.

+emathematical relationships between BP and the PAT
reported in the literature were summarized in Table 1.

3. Methods

3.1. Hardware and Parameter Identification. In the experi-
ments, the PowerLab/16sp system (Castle Hill, AD In-
struments, Australia, 2002) was used to synchronously
record and amplify the ECG and PPG signals. +e ECG
signal was filtered by a 1Hz high-pass filter and a 40Hz low-
pass filter. Meanwhile, the PPG signal was filtered by a 0.5Hz
high-pass filter and a 20Hz low-pass filter, and the sampling
frequency was 1 kHz [24]. To obtain the PATparameter, the
ECG signal was employed as the proximal timing reference,
and the PPG signal was used as the distal timing reference.
+e PATwas calculated as the time elapsed from the R-peak
of the ECG signal to the maximum of the first derivative of
the PPG wave within the same cardiac cycle in Figure 2.

3.2. Data Acquisition Procedure. Twelve subjects without a
history of cardiovascular or neurological disorders partici-
pated in this study (see Table 2). All participants gave written

informed consent. +e study was approved by the health
center authorities at the University of Shanghai for Science
and Technology.

Each subject was required to climb 12 floors at a constant
rate lasting for fiveminutes, which guaranteed a greater change
in BP to obtainmore accuratemodel estimation [15].When the
physical exercise was finished, each subject was asked to sit
upright and measure the cuff BP, the ECG signal, and the PPG
signal. Each subject was asked to sit on a chair 25 cm away from
the table, with the cuff wrapped around his/her right arm at the
same level between its center and the subject’s heart. +e PPG
sensor was placed on their left hand to avoid the effect of cuff
inflation on the PPG signals [4] (see Figure 3).

During the data collection, carrying mobile phones and
wearing devices were not allowed. Moreover, subjects were
also required to remain stable and breathe naturally to avoid
motion causing interference from the collected signals. +e
data collection took approximately 15 minutes for each
subject. +e measured BPs generally decreased. Hence, the
continuous ECG and PPG signals were collected to calculate
a series of continuous PATs (PATs).

3.3. Data Analysis

3.3.1. /e Advanced PTP Method: A Justified and Uniform
Criterion. An automatic digital BP monitor device (MB-
300C, Jasun, China) was used to measure cuff BP values.
Based on its manufacturer’s introduction manual, the ac-
curacy was approximately 3mm·Hg, which was in com-
pliance with the conventional health standards [26]. For
instance, the mean absolute error (MAE) of less than
5mm·Hg was considered to be the acceptable maximum
error according to the AAMI guidelines [26]. In addition,
prior to the data collection process, we randomly measured
the BP for six subjects using both an MB-300C Jasun device
and a conventional mercury sphygmomanometer operated
by a professional nurse with the rigorous experimental
process to carry out contrast verification. During BP mea-
surement using both monitors, the measured BPs for each
subject at the rest condition were approximately the same as
expected. Specifically, the mean absolute errors (MAEs) of
SBP and DBP measurements using these two devices were
2.7 and 3.2mm·Hg for six subjects, respectively.

Considering that it took 30 seconds to measure one cuff
BP with MB-300C, an average value of PATs in these 30
seconds [22] from corresponding PPG and ECG signals was
calculated to estimate BP based on its estimation model. +e
mapping relationship between the dependent variable and
the independent variable was established through the
available initial values. +is technique was called the PTP
method, i.e., cuff BP vs. PATs. Recently, the PTP method
[4, 9, 30] only used one point (sample) to calibrate the
parameters of the corresponding BP estimation model. In
fact, such a single point (sample) played a vital role in the BP
estimation models. Consider the truth that the subject’s BP
was not a constant even in a quiet or peace state; therefore, it
was necessary to average and balance this quiet and peace
process. In this study, a new calibration method was pro-
posed, which was shown in Figure 4.
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Once the parameters of the BP estimation model were
determined, they would not be changed in the estimating BP
process. In the advanced PTP method, four pairs of cuff BP
vs. PATs were collected to obtain four sets of parameters of

BP estimation models. For example, the M-M model only
needed to select three in the four pairs of cuff BP vs. PATs to
complete one round calibration and got four (C3

4) group
model parameters. Given the possibility that cuff BP values
of subjects in quiet state were the same, four rounds of
calibration procedure were repeated to guarantee the validity
of calibration in the present study. Finally, the average values
of these parameters were taken as the final BP monitoring
parameters, i.e., SBP0, DBP0, PAT0, ai, bi . +e whole cali-
bration process took about eight minutes, and the subjects
were required peace and quiet state.

For the ET model, three cuff BPs were used with one
round calibration. For the VE models, the MK-BH and
dMK-BH required one cuff BP, and the L-MK and MK-EE
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Figure 1: +e relationships between the BP estimation models.

Table 1: Summary of mathematical models to calculate BP from PAT.

Models SBP DBP Category and mechanism (linear or nonlinear)
MK-EE [22, 23] a1∗ ln PAT + b1 a1′ ∗ ln PAT + b1′ Nonlinear Vascular elasticity (VE) models
L-MK [21] a2 + b2∗PAT a2′ + b2′ ∗PAT Linear
MK-BH [4] SBP0 − (2/(c∗ PAT0))∗ (PAT − PAT0) SBP − PP0∗(PAT0/PAT)2 Nonlinear
dMK-BH [9] DBP + PP0 ∗ (PAT0/PAT)2 MBP0 + (2/c)ln(PAT0/PAT) − (PP0/3)∗(PAT0/PAT)2 Nonlinear

M-M [29] a3 +

����������������

b3 + c3 ∗ (1/PAT2)

􏽱

a3′ +
���������������

b3′ + c3′ ∗(1/PAT2)

􏽱

Nonlinear Elastic tube (ET) model

Note. c denoted a vascular information parameter which might be altered with age and the development of cardiovascular diseases. For the healthy subjects, it
was set as 0.031mm·Hg− 1 [9]. PP0 � SBP0 − DBP0, MBP0 � (1/3)SBP0 + (2/3)DBP0. SBP0, DBP0,PP0 could be determined at the beginning of monitoring
by calibration using an additional cuff-type BP monitor device (see Subsection 3.2). ai, bi, ai

′, bi
′(i � 1, 2, 3); ci, ci

′ were the corresponding function co-
efficients. i was the subscript, and for their calibration method, see Subsection 3.2.
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Figure 2: Example of PAT delineation.

Table 2: Characteristics of the subjects.

Selection factor Number
Total number (M, F) 12 (9, 3)
Age (years) 25.3± 4.1
Height (cm) 168.5± 7.4
Body mass (kg) 60.4± 9.4
BMI (kg/m2) 21.2± 2.1
SBP (mm·Hg) 118.37± 12.95
DBP (mm·Hg) 69.40± 8.79
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needed two cuff BPs with one round calibration. +e cali-
bration was done only one time for each subject, and after
deriving parameters in the BP estimator model, the BP could
be estimated continuously.

3.3.2. Data Test. In the present experiment, over 30,000
heartbeats were analyzed. Moreover, about 3,000 heartbeats
were studied for each subject. +e estimated BP from a 30 s
period of ECG and PPG signals was calculated. To avoid the
effect of breathing, at least eight cardiac cycles [34] were used
for calculating the average value of PATs. A total of 365 pairs
of valid PATs vs. BPs were found, and 30 PATs during the
15-minute experiment were applied in the BP estimation for
each subject.

+e estimated errors between the cuff BP and the esti-
mated BP were evaluated as the mean error (ME)± standard
deviations (SD) as well as the mean absolute difference
(MAD), which were defined below:

ME �
1
n

􏽘

n

i�1
BPesti − BPcuf i

􏼐 􏼑,

MAD �
1
n

􏽘

n

i�1
BPesti − BPcuf i

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

SSE � 􏽘
n

i�1
BPesti − BPcuf i

􏼐 􏼑
2
,

σ �

�����
SSE
n − 1

􏽲

,

c.v. �
|σ|

ME
,

SD �

�����������
1
n

􏽘

n

i�1
(x − x)

2

􏽳

,

(1)

where BPesti and BPcuf i
denoted the ith BP measured

through BP estimation models and by the reference cuff
method, respectively, and n was the number of measured BP
used for evaluation. Further, the xi denoted the ith error
sample.

4. Results

+e merits of the BP model based on PAT were evaluated
from three different analytical methods, i.e., correlation
analysis, performance analysis, and statistical analysis.

4.1. Correlation Analysis. +e correlations between esti-
mated BPs (BPest) and cuff BPs (BPcuf ) for five models were
shown in Table 3.

As shown in Table 3, the correlation between estimated
SBP and cuff SBP was stronger than that between estimated
DBP and cuff DBP during each nonlinear PAT-based BP
monitoring model. +e L-Mk model, as a linear VE model,
had the weakest correlation between both SBP (R� 0.5537)
and DBP (R� 0.6837) than other nonlinear BP estimation
models. For MK-BH and M-M, the correlation between the
cuff BP and the estimated BP was weak with a correlation
coefficient of R#3 � 0.8131 for SBP and R#5 � 0.7651 for DBP.
In our experiments, MK-EE and dMK-BH had a higher
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Figure 3: Illustration of the experimental design and the data collection procedure.
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Figure 4: +e advanced PTP method for the BP monitoring system.
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correlation between both SBP and DBP than other models.
dMK-BH had the highest correlation between both SBP
(R� 0.8873) and DBP (R� 0.8611) among all subjects.

4.2. Performance Analysis. To optimize and analyze the
performance of the five popular models, the dispersion
degree, overall comparison, and sensitivity analysis were
analyzed in this study.

4.2.1. Dispersion Degree. A good BP estimation model
should be widely applicable, not only for a few individuals
to show better performance. Based on this, the estimation
errors of all subjects were analyzed and compared under
the same BP-PAT model. +e box plot of the dispersion
degree comparison was shown in Figure 5 to indicate
different levels of estimated BP quality for five popular BP-
PAT models.

In Figure 5, the L-MK model showed the largest MAD
and ME for BP and SBP, respectively. +e dMK-BH model
showed the minimum median MAD of SBP with
4.38mm·Hg and aMAD of DBP with 3.36mm·Hg, while the
ME of BP was more scattered than others in theM-Mmodel.

As mentioned above, the great changing range of BP
benefited the BP estimation for each subject. +erefore, the
subject with the largest range for cuff BP (SBP:
137.19± 12.02mm·Hg and DBP: 84.14± 5.56mm·Hg) was
further investigated to estimated BP on five models quan-
titatively during this research. +e summed square of re-
siduals (SSE) and the root mean square error (RMSE) were
computed to report how much difference between estimated
BPs and cuff BPs in this subject. +e results were reported in
Table 4.

In Table 4, it could be observed that SSE and RMSE were
largest in L-MK. Moreover, this model had the smallest CV
for BP estimation, while the dMK-BH model had the op-
posite performance as the L-MK. +e M-M model, as a ET
model, had larger SSE and RMSE and smaller CV than
others for SBP and DBP estimation. It also could be found
that the CV values were immensely different on SBP and
DBP estimation for five models in this subject. Further, their
function curves were shown in Figure 6.

As shown in Figure 6, the five models showed to be quite
different. +e MK-BH was not a bound function and not
always maintains positive, which made no sense that BP
varies in a negative and infinite range in Figure 6(a). Ad-
ditionally, the L-MK was inconsistent with the downward
trend of others in SBP and DBP estimation based on the
experiment data. +e MK-EE model and dMK-BH model
showed the closest estimated BP performance between SBP

and DBP estimation. It was worthy of note that the M-M
model converged prematurely although it was a bound
function. In other words, it was not insistent with the real
condition due to little changed BP estimation with the in-
crease of PAT.

4.2.2. Overall Comparison. Another criterion for perfor-
mance evaluation included ME, MAD of estimation, and SD
of estimation during five BP estimationmodels was shown in
Table 5.

It could be found that the L-MKmodel had a mean± SD
(MAD) of − 5.89± 12.74 (9.34)mm·Hg for SBP and
− 3.72± 6.79 (5.91)mm·Hg for DBP, respectively. +e dMK-
BH model had a mean± SD (MAD) of − 0.01± 5.90 (4.55)
mm·Hg for SBP and 0.04± 4.40 (3.38)mm·Hg for DBP,
respectively. +e M-M model had a mean± SD (MAD) of
1.11± 7.51 (5.57)mm·Hg for SBP and − 0.23± 6.47 (5.13)
mm·Hg for DBP estimated error, respectively. For the dMK-
BH model, the precision of estimation was approximately
0.06mm·Hg higher than that of MK-EE and approximately
0.1–6mm·Hg higher than all the other comparison methods.
Among the optimized methods, both MK-EE and dMK-BH
worked best for the estimated BPcuf value due to the SD of
the error bias being less than 5.90mm·Hg and MAD being
less than 4.55mm·Hg. It was noteworthy to mention that the
SD of the errors for MK-EE, MK-BH, dMK-BH, and M-M
was within 8mm·Hg for SBP and DBP. It was consistent
with the AAMI requirements of 5± 8mm·Hg (mean± SD)
for BP estimated error [26].

4.3. Statistical Analysis. Differences were tested with the
Kruskal–Wallis tests and with Dunn’s multiple comparison
tests to determine whether statistically significant differences
were observed between the mean errors of the ETmodel and
the VE models, i.e., L-MK, MK-BH, MK-EE, and dMK-BH,
as shown in Figure 7.

In Figure 7, there was a significant difference between the
linear model and the nonlinear model in terms of estimating
SBP. Similarly, a significant difference between the MK-BH
model and the other nonlinear estimation models was also
found during estimating DBP. It was noteworthy that MK-
BH and M-M showed weaker significant changes. Addi-
tionally, there were no significant changes in MK-EE and
dMK-BH models.

4.4. Sensitivity Analysis. As mentioned above, the dMK-BH
model with the smallest estimated BP error merited a more
in-depth analysis. From its mathematical representation, the
determination of c, a vascular information parameter which
might be altered with age and the development of cardio-
vascular diseases, was critical to better estimate BP in long-
term ABPM and HBPM. Next, the relationship between
MAD and the parameter c (across all 12 subjects over 30,000
heartbeats in Subsection 3.2) was plotted for the dMK-BH
model in Figure 8.

In Figure 8, some comparisons could be made. For
instance, the minimums of cardiovascular parameter c with

Table 3: +e correlations between BPest and BPcuf.

Models SBPest vs. SBPcuf DBPest vs. DBPcuf
MK-EE 0.8851 0.8571
L-MK 0.5537 0.6831
MK-BH 0.8131 0.7653
dMK-BH 0.8873 0.8611
M-M 0.8329 0.7350
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SBP and DBP estimation were different for each subject.
Moreover, these minimums mainly concentrated in a small
range about 0.001–0.03mm·Hg− 1 in most subjects. Specif-
ically, the two curves reached the minimums when c were
nearby 0.0021 and 0.0239, respectively. Besides, an upward
trend approximately with the increase of c between SBP and
DBP estimation could be observed after one minimum value
(c � 0.0239) in this model based on the experiment. Hence, c
was a sensitive cardiovascular parameter for different sub-
jects. In this paper, c was set as 0.031mm·Hg− 1 according to
Zheng et al.’s report for the healthy subjects (24–35 years
old) [9].

5. Discussion

In this study, five representative BP-PAT models were
studied and optimized based on the same justified and
uniform criterion to work out which accurate and practical

mode compared with others was well fitted in continuous
cuff-less BP monitoring through an implementation of the
designated protocol, i.e., the same advanced PTPmethod. To
better evaluate the performance of the five BP-PATmodels,
the correlation analysis, performance analysis, and statistical
analysis were applied.

As for the L-MK, similar to the linear description in the
VE models, the BP estimation error was larger than other
models. Indeed, this model neglected the complex regulation
of the cardiovascular system. +ere was no explanation for
phenomena such as subject’s BP fluctuations alternately
throughout the day. Besides, it was also not a bound function
and not always positive. +ese performances (see Subsection
4.2) further proved that L-MK was not a good BP estimation
method. Usually, linear regression was usually applied for
BP estimation, in which the indicators included PATor extra
parameters, such as HR [36], PPG intensity ratio [11, 29],
TDB, a kind of arterial stiffness index [36], and other features
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Figure 5: Box plots of dispersion degree comparison during different estimation methods in (a), (b) and (c) (d). Box and whisker plots: box,
first and third quartiles; horizontal line, median; whiskers, the furthest point that lies nomore than 1.5 times the interquartile range from the
median. Note: each point represented an independent subject (estimated error).+e dotted blue line represented the median value for dMK-
BH (the strongest correlation, see Table 3). “††” indicated the BP estimation model with the strongest correlation.

Table 4: Quantitative comparison of the SSE and RMSE for the subject with the largest BP range.

Indexes
SBP DBP

MK-EE L-MK MK-BH dMK-BH M-M MK-EE L-MK MK-BH dMK-BH M-M
SSE 306.51 11226 890.08 283.65 798.00 262.50 2500.1 256.71 264.53 428.14
RMSE 3.5737 21.628 6.0899 3.4379 5.7663 3.3072 10.206 3.2705 3.3200 4.2236
∗CV 22.593 1.2544 9.2495 951.70 16.500 27.954 1.2763 513.98 35.204 9.4641
Note. ∗CV, a standardized measure of dispersion of a probability distribution or frequency distribution, denoted the coefficient of variation.
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Figure 6:+e five BP-PATfunction curves of the subject with the largest BP range: (a) SBP trend in general. (b) SBP trend in the experiment.
(c) DBP trend in general. (d) DBP trend in experiment.

Table 5: +e estimated BP errors in different BP models.

Models
Systolic blood pressure (SBP) Diastolic blood pressure (DBP)

Mean± SD (mm·Hg) MAD (mm·Hg) Mean± SD (mm·Hg) MAD (mm·Hg)
MK-EE 0.07 ± 5.87 4.46 −0.13 ± 4.54 3.58
L-MK −5.89 ± 12.74 9.34 −3.72 ± 6.79 5.91
MK-BH 0.11± 7.53 5.48 − 2.10± 5.69 4.69
dMK-BH −0.01 ± 5.90 4.55 0.04 ± 4.40 3.38
M-M 1.11± 7.51 5.57 − 0.23± 6.47 5.13
ANSI/AAMI |mean|≤ 5mm·Hg ≤7mm·Hg |mean|≤ 5mm·Hg ≤7mm·HgSP10 standard |SD|≤ 8mm·Hg |SD|≤ 8mm·Hg
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Figure 7: Scatter plot of differences among the five models. Note: significant differences between different PATmodels were identified as
follows: ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. “†”indicates the recommended BP estimation model.
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[19, 37] that could be obtained from ECG and PPG signals.
+e accuracy of the L-MK model for BP estimation was
expected to improve through the combination of PAT and
the above indicators by means of multiple regression
analysis; however, the computation burden increased
sharply.

+e MK-BH model, as a VE model, had the lower
correlation and the greater estimated error between esti-
mated SBP and cuff SBP (see Tables 3 and 5 and Figure 5) in
nonlinear models. For MK-BH, the stroke volume was
considered as a constant; however, this parameter varied
with the body’s demand to oxygen-filled blood, e.g., during
exercise [4]. When estimating DBP, the MK-BH model
consisted of two parts: a linear function with SBP and a
power function without SBP. +is suggested that DBP might
decrease with an increase in SBP, which was inconsistent
with the situation where the SBP varied with the same trend
as DBP during the experiment. +is study also confirmed
that MK-BH was not the better BP estimation model (see
Tables 3–5 and Figures 5 and 6) for long-term ABPM and
HBPM.

Referring to Esmaili et al.’s report [29], M-M (i.e., the ET
model) was good for BP estimation. In contrast to their
expectations, this model had the lowest correlation and the
greatest estimated error for DBP and SBP, respectively (see
Section 4, especially Tables 3–5 and Figures 5 and 6). One
reason was that the denominator of the M-M model con-
tained a square root leading to no real solution, which might
cause inconvenience in calibration. Another important
reason was that the actual arterial system was obviously not a
simple tube but rather contained branches, which elastically

and geometrically tapered and terminated with the micro-
circulation [8]. Hence, the M-M model was left for further
study to take better account of the influence of the vascular
branches in this model.

+e dMK-BH model, as a nonlinear VE model and
bound function, was based on the Moens–Korteweg equa-
tion and the Bramwell–Hill equation (here, MBP as BP).+is
model, with the strongest correlation between cuff BP and
estimated BP and the lowest BP estimated error (see Section
4), was the best BP estimation model because of its rigorous
interpretation of physiological parameters (see Table 1).
Compared to MK-BH, dMK-BH in BP estimation had a
significantly higher accuracy, for which the MBP applied in
dMK-BH was a decisive factor. However, it was unsuitable
for long-term monitoring due to its complex mathematical
relationship about BP vs. PAT including a compound
function of power and logarithmic function with c (see
Figure 8). Some investigations reported c would change with
aging [9, 21, 38] and the development of cardiovascular
diseases [33]. It was not easy to obtain an optimal value in
different ages and pathophysiologic conditions. Hence, its
practicality was limited to an extent.

+e nonlinear MK-EE model was conducive to practice
due to its rational explanation of physiological information
compared to others (see Section 2). In addition, MK-EE, as
well as dMK-BH, showed a stronger correlation and lower
estimated BP error with both cuff BP and estimated BP than
others (see Subsection 4). Furthermore, it could be easily
built into wearable sensor devices [23] due to its simple
mathematical relationship about BP vs. PAT including a
traditional logarithmic function. Recently, the variate of PTT
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or PWV was suggested for introduction into the MK-EE
model for further comprehensive modeling [8, 22].

As mentioned above, the nonlinear dMK-BH model had
the strongest correlation and the smallest BP estimation
error. Further, there were no significant changes between
MK-EE and dMK-BH. Besides, the performance of the MK-
EE model showed the best similarity to the dMK-BH model.
+e MK-BH and M-M, as nonlinear models, could not
estimate BP well based on the experiment data, while the
MK-EE model and dMK-BH model could estimate BP well
(see Section 4). Although the dMK-BHmodel had the lowest
estimated BP error between estimated BP and cuff BP, it
needed a further investigation in the practical application
since a sensitive cardiovascular parameter (c) was in-
troduced in it.+ese findings indicated that MK-EE could be
a good substitute for dMK-BH in continuous cuff-less BP
monitoring. Based on this study, we were confident that the
calibration method could be used for ABPM and HBPM to
some extent in the future. It was mentioned that periodic
calibration should be considered to improve the reliability of
BP measurement since the period between calibrations was
short and might possibly affect the accuracy of parameters.
Recently, Mukkamala and Hahn proposed predictions on
the maximum calibration period and acceptable error limits
during different ages and genders [28]. Additionally, some
research had proposed several methods to improve cali-
bration accuracy. For instance, the covariates were also
introduced into calibration methods to better predict BPs,
e.g., HR [39], PWV [13], and PIR [11, 29].

+e Moens–Korteweg equation has provided a mathe-
matical foundation for advancing research towards the di-
rection of noninvasive BP monitoring. It should be noted
that the practical use of the equation implies several as-
sumptions (see Figure 1), which might be invalid for
complex behavior and for regulation of the involved arterial
tree, such as the thickness-to-radius ratio [24] seen as a
constant. Additionally, arterial segments involved in BP
estimation were formed for both elastic and muscular ar-
teries, with different biomechanical properties.+e influence
of these factors on BP estimation needed further study.

6. Conclusion and Future Work

In this study, five most popular BP estimation models were
investigated and optimized based on PAT under the same
advanced PTP method for the first time. +e investigation
revealed that the MK-EE and dMK-BH, as two VE models
based on the Moens–Korteweg equation, were more efficient
than the ET model based on the conservation of mass and
momentum equation. Considering that the change of hu-
man BP was affected by many physiological factors and
manifests as a complex nonlinear system, the L-MK with the
largest estimated BP error among VE models was not a good
choice for ABPM. For family long-term ABPM or HBPM,
we suggested selecting MK-EE, a type of VE model, as both
cuff BP and estimated BP in this model had stronger cor-
relation and lower estimated BP error than others.

One of the limitations of this investigation was the fact
that subjects engaged in the present experiment were

generally young and healthy volunteers rather than patients
with cardiovascular disease. +us, further studies with ex-
tensive validation that included a larger population of in-
dividuals recruited from different age groups and with
various pathophysiologies were needed to confirm these
outcomes. In addition, the BP-PATmodels did not take into
account the influence of the pre-ejection period (PEP) and
vascular tone changes due to the difficulties in quantitative
measuring PEP and vascular tone in ambulatory settings.
Hence, a new model including the description of PEP was
worth to be established in the future work.
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Error-related brain activation has been investigated for advanced brain-machine interfaces (BMI). However, how a delayed
response of cursor control in BMI systems should be handled is not clear. *erefore, the purpose of this study was to investigate
how participants responded to delayed cursor control. Six subjects participated in the experiment and performed a wrist-bending
task. For three distinct delay intervals (an interval where participants could not perceive the delay, an interval where participants
could not be sure whether there was a delay or not, and an interval where participants could perceive the delay), we assessed two
types of binary classifications (“Yes +No” vs. “I don’t know” and “Yes” vs. “No”) based on participants’ responses and applied
delay times (thus, four types of classification, overall). For most participants, the “Yes vs. No” classification had higher accuracy
than “Yes +No” vs. “I don’t know” classification. For the “Yes +No” vs. “I don’t know” classification, most participants displayed
higher accuracy based on response classification than delay classification. Our results demonstrate that a class only for “I don’t
know” largely contributed to these differences. Many independent components (ICs) that exhibited high accuracy in “Yes +No”
vs. “I don’t know” response classification were associated with activation of areas from the frontal to parietal lobes, while many ICs
that showed high accuracy in the “Yes vs. No” classification were associated with activation of an area ranging from the parietal to
the occipital lobes and were more broadly localized in cortical regions than was seen for the “Yes +No” vs. “I don’t know”
classification. Our results suggest that small and large delays in real-time cursor control differ not only in the magnitude of the
delay but should be handled as distinct information in different ways and might involve differential processing in the brain.

1. Introduction

In the realm of brain-machine interfaces (BMIs), attempts
have been made to decode brain activity to allow the input
of commands into BMI systems. Due to its practical ad-
vantages, electroencephalography (EEG) has been widely
used in BMI systems to infer information about intention
to move the upper limb [1], targets and distractors [2],
finger movement [3], resting states or motor attempts to
move the paretic hand [4], intention to stand or sit [5], and
intended direction of movement [6, 7]. Information that is
not directly used could still be useful for improving BMI
systems.

Passive BMIs exploit implicit information from invol-
untary brain activity [8]. Likewise, such information can be
used to make unsupervised adaptive decoders for BMI
systems to improve their performance [9]. Error-related
potentials, which occur when an error is made [10], can be
used to inhibit the previous command upon detection or to
update BMI classifiers through reinforcement learning [11].
As the case may be, the magnitude of error-related potentials
reflects the degree of error [12], and several studies have
investigated error-related potential in various situations.
During a video game task, for example, outcome error and
execution error have been classified [13]. Moreover, it has
been reported that errors resulting from failures in motor
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control and sustained attention could be classified and that
these errors might involve differential processing mecha-
nisms [14]. A BMI system capable of ignoring command
inputs and making corrections when error-related potentials
are generated by moving in the opposite direction has also
been developed [15]. Even in driving tasks, brain activity
associated with discrepancies between cued direction and
human intention has been classified [16].

Controlling a cursor in real-time is a common perfor-
mance task in BMI systems used to execute practical
functions such as reaching, which is a common and fun-
damental action required to perform tasks in daily life. Since
errors can take many different forms depending on the BMI
system being used and the fact that error-related potentials
are task-dependent [17], various kinds of errors can occur
when attempting to control a cursor, such as movement in
an unintended direction, differences in end points and
movement speed, and misclicking; however, response lag to
user inputs in BMI systems used in real-time cursor control
should be particularly considered. While it is difficult to call
the delay an “error,” in this context, the term is related to the
performance of the system. Many kinds of errors may result
from discrepancies between brain activities associated with
the input of a command and the command configuration
already programmed into the BMI system; however, lagged
responses can occur even if a user supplies the system with
suitably relevant inputs. If the user recognizes that the delay
is an error and the BMI system learns from this dummy
training data, the performance of the system will get worse
over time. Moreover, since the user also tries to learn to
control the BMI system [18], communication with the
system may be prone to failure.

Even though delayed responses can result in commu-
nication failure between the user and the BMI system, few
studies have investigated these relationships. Errors them-
selves and error-related potentials that may be similar to
response delays have been investigated. Such delayed system
responses not only occur in BMI systems but are seen in
other systems as well, such as haptic interfaces [19]. It has
been reported that in haptic interfacing, task performance
can decrease due to delayed responses of the system [20, 21],
though the degree to which the delayed response affects
performance differs depending on the task [22]. In addition,
auditory delays can also affect normal speech [23], which can
negatively impact the user’s ability to communicate. *us,
delayed responses must also be investigated in BMI systems.

*erefore, the purpose of the study was to investigate
how participants respond to delayed cursor control, which is
a typical application of BMI systems. Wrist bending was
performed to control a cursor, and we investigated brain
activity during delayed responses. We divided the delay
interval into three groups depending on its length: an in-
terval where participants were unable to perceive the delay,
an interval where participants could not be sure whether
there was a delay or not, and an interval where participants
were able to perceive the delay. *en, we performed two
kinds (“Yes +No” vs. “I don’t know” and “Yes vs. No”) of
binary classifications based on participant’s responses and
an applied delay (overall, four types of classification). In

addition, we identified independent components (ICs) that
were associated with high accuracy rates.

2. Materials and Methods

2.1. Experimental Procedure. Six individuals (five males and
one female) with a mean age of 27.0 years (standard devi-
ation: 3.22) participated in the experiment. *e lone female
participant was left-handed; the other participants were all
right-handed. All participants provided written informed
consent prior to participating in the experiment. *is study
was approved by the ethics committee of the Tokyo Institute
of Technology (ethics approval number: 2019001), and the
experimental protocol was conducted in accordance with the
ethical standards outlined in the Declaration of Helsinki.

Before the experiment, a participant sat in a chair in
front of a monitor and was allowed to adjust the chair to feel
comfortable. *e participant was affixed with an electro-
encephalogram (EEG) cap to which electrodes were at-
tached. Two markers for a motion sensor were attached on
the participant’s wrist and on a plastic stick that the par-
ticipant was instructed to hold during the experiment.
Figure 1 shows the flow of a single trial. At the start of the
experiment, a red circle, used as an initial position indicator,
was aligned in the center of the screen to fix the initial
position of movement. *e participant controlled the cyan
pole (tracer) by bending his/her wrist on the dominant side
while holding the stick with the marker. *e tracer was
moved along the gray arc as shown in Figure 1. When the
tracer reached the red circle, another red circle appeared on
the screen as a target. *e target was positioned to allow
participants to access it by bending their wrists by 35 de-
grees; this angle was selected to allow participants to bend
their wrists easily for an extended duration and to allow for
the greatest possible range of motion.*e target appeared on
the left side of the screen for the right-handed participants
and on the right side for the left-handed participants. *e
participants were instructed to wait at least 1.5 s before
reaching the target because the delay was applied to the
tracer after 1 s. *e timing of the delay was selected to make
it more difficult for the participant to know whether the
delay was applied or not as the tracer reached the initial
position indicator. *e duration of the delay was between
0ms and 200ms; the delay changed between runs by 20ms
intervals. When the participant reached the target, the tracer
and the target disappeared, and a question appeared on the
screen asking whether the participant perceived the delay or
not. When the participant was sure there was a delay, the
participant was instructed to press the key to indicate “Yes.”
When the participant was sure there was no delay, the
participant was instructed to press the key to indicate “No.”
When the participant was not sure whether there was a delay
or not, the participant was instructed to press the key to
indicate “I don’t know.” When the participant pressed the
corresponding key to respond, the initial position indicator
appeared for the next trial. *is procedure was repeated so
that all participants performed five runs, each consisting of
140 trials; therefore, each participant repeated trials ten
times for each delay between 20ms and 200ms; they then
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repeated trials 40 times per run without the delay. *e trials
were presented in pseudo-random order, with a rest between
runs.

2.2. Data Acquisition and Preprocessing. *e angle data of
the wrists were calculated from the positions of the two
markers on the wrist and the stick. Each position was
measured using the Optotrak Certus motion capture system
(NDI, Inc., Waterloo, Canada) and sampled at 100Hz. Based
on the international 10–20 system, EEG signals were
measured from 64 channels (Fp1, Fp2, Fpz, AF3, AF4, AF7,
AF8, AFz, F1, F2, F3, F4, F5, F6, F7, F8, Fz, FT7, FT8, FC1,
FC2, FC3, FC4, FC5, FC6, FCz, C1, C2, C3, C4, C5, C6, Cz,
T7, T8, TP7, TP8, CP1, CP2, CP3, CP4, CP5, CP6, CPz, P1,
P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz, PO3, PO4, PO7, PO8,
POz, O1, O2, Oz, and Iz) using the ActiveTwo system
(BioSemi, Amsterdam, *e Netherlands), sampled at
2,048Hz.

EEGLAB [24] was used for preprocessing of the EEG
signals, which were re-referenced based on an average
reference value and filtered using a band-pass filter
(1–40Hz). Epochs were then extracted from 1 s before the
onset of the movement to 1 s after the onset. Epochs in noisy
trials and trials where the participant did not wait at least
1.5 s after the target appeared were rejected. We performed
independent component analysis to obtain independent
electrical sources using the extended Infomax algorithm in
EEGLAB [25]. ICs related to noise were rejected.

2.3. Classifications. Four types of binary classification were
employed. Two classifications were based on the partici-
pants’ responses (“Yes +No vs. I don’t know” and “Yes vs.

No”); the other classifications were based on the actual
delays. Since the threshold to detect delays varies among
individuals, we classified participants into three classes: a
class where the participant detected a delay in most of the
trials (“Yes”), a class where the participant did not detect a
delay in most of the trials (“No”), and an unsure class (“I
don’t know”). Classifications based on actual delay times
were also employed for “Yes +No” vs. “I don’t know” and
for “Yes vs. No.” Table 1 shows the duration of the delay for
each class.*e interval was determined by the selection rate
for each answer for each participant (see the Results
section).

Linear discriminant analysis (LDA) classifiers were used
to generate four types of binary classifications. Classifiers
were implemented using the Statistics and Machine
Learning Toolbox in MATLAB (MathWorks, Inc., Natick,
MA, USA). During a period from the onset of the movement
to 1 s after the onset, the time series of the remaining ICs
were used for analysis. Since a high sampling frequency for
EEG signals generates too many factors, the data were
downsampled to 100Hz to reduce computation loads. We
used one IC for each classification to determine the relative
contribution of each for detecting delays; thus, the ICs could
be compared by performance within a classification. Since
each IC was used for each classification, as was the last 1 s of
each epoch, 100 features were fed into each classifier. *e
performance of each classifier was assessed using five-fold
cross validation. For each fold, the dataset for each partic-
ipant was partitioned into five smaller datasets with the same
number of datapoints using the Statistics and Machine
Learning Toolbox in MATLAB. *e last remaining dataset
had a different number of datapoints when the dataset was
not divided by five, without a remainder.

Until a
participant

reaches 

1sec

With delay 

Target appeared
without delay 

>0.5sec

Figure 1: Flow of a single trial. At the beginning of the trial, an initial position indicator (identified by the red circle on the first screen)
appeared on the screen to allow the participant to fix the initial position of the movement. When the tracer (cyan pole) reached the initial
position indicator, a new target (larger red circle on the second screen) appeared. After 1 s, a delay was applied to the tracer, but nothing
changed on the screen. During this stage, the participant performed self-paced reaching. If the participant initialized in the stage without the
delay, a “Wait more” message appeared on the screen and data for that trial were discarded. When the tracer reached the target, the target
and the tracer disappeared and the participant was asked whether he or she perceived the delay, to which they needed to respond by pressing
a corresponding key. *is procedure was repeated for each trial.
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3. Results

Figure 2 displays individual selection rates based on the
duration of the delay. For most of the participants, a delay
threshold had to be reached before they became confident
that they perceived the delay. However, participant 1 showed
a consistent selection rate for “I don’t know” at all delay
intervals, resulting in a lower selection rate in trials with a
long delay compared to other participants. All participants,
except for participant 1, were more unsure of the existence of
a delay in trials with short delays of 40–100ms compared to
other delay durations. *e selection rate for the “I don’t
know” response was the highest for participant 4 for most
delay intervals, while participant 3 exhibited the lowest
selection rate for this response for most delay intervals.

Figure 3 shows mean accuracy rates based on response
and delay classifications. For most of the participants, the
“Yes +No” vs. “I don’t know” response classification was
associated with the highest accuracy compared to other types
of classifications (p< 0.01 for participants 2, 3, 5, and 6 based
on a t-test comparing the “Yes +No” vs. “I don’t know”
response classification and the “Yes +No” vs. “I don’t know”
delay classification). For participant 4, the accuracy of the
“Yes +No” vs. “I don’t know” response classification and the
“Yes +No” vs. “I don’t know” delay classification was similar
(p> 0.05 for participant 4, based on a t-test comparing the
“Yes +No” vs. “I don’t know” response classification and the
“Yes +No” vs. “I don’t know”delay classification). Partici-
pant 1 showed the higher accuracy for the “Yes vs. No” delay
classification, while the other participants showed lower
accuracy for the “Yes vs. No” delay classification than the
other kinds of classifications. Moreover, accuracy for the
“Yes +No” vs. “I don’t know” response classification and the
“Yes vs. No” delay classification was similar for participant 1
(p> 0.1).

We investigated which ICs contributed to the highest
accuracy rates for each type of classification. Figure 4 shows
the top five ICs that achieved the highest accuracy for the
“Yes +No” vs. “I don’t know” classification. Figure 5 shows
the top five ICs that achieved the highest accuracy for the
“Yes vs. No” classification.

4. Discussion

In this study, we performed two types of binary classifica-
tions (“Yes +No” vs. “I don’t know” and “Yes vs. No”) based
on the participants’ responses and the duration of the delays.
For most participants, the “Yes vs. No” classification was
associated with higher accuracy than the “Yes +No” vs. “I
don’t know” classification. *at is, classifying participants’
confidence in their response, regardless of a delay, was easier
than classifying based on whether there was a delay or not.

From a BMI system’s viewpoint, our results imply that in
cases where brain activity can be affected by a delay in the
BMI system, short delays do not allow a user to be sure
whether there is a delay or not; these short delays may be
more problematic, as longer delays provide enough time to
perceive the lag. For the “Yes +No” vs. “I don’t know”
classification, most participants displayed higher accuracy in
the response classification than in the delay classification.
For all participants, selection rates were below 100% for
intervals where they responded with “I don’t know,” which
means that participants’ responses were different even be-
tween trials with the same delay. *e performance for the
“Yes +No” vs. “I don’t know” classification based on actual
delay times was lower than for the “Yes +No” vs. “I don’t
know” response classification. In addition, our results show
that a class solely for “I don’t know” largely contributed to
these differences, indicating that some information associ-
ated with uncertain responses, rather than delay times,
might be represented by information processing in certain
areas of the brain. Since participants might think they cannot
control the cursor when there is a significantly large delay,
“Yes vs. No” might be classified by a sense of agency [26], as
ICs are associated with brain areas related to a sense of
agency, such as the presupplementary motor area [27], the
parietal-premotor network [28], and the inferior parietal
areas [29]. For “No” and “I don’t know” responses, par-
ticipants might think they have a sense of agency, but in
cases where they respond with “I don’t know,” they might
experience poor control performance even though they can
control the cursor by themselves.

Many ICs that showed high accuracy in the “Yes +No”
vs. “I don’t know” response classification were related to
areas of the brain ranging from the frontal to the parietal
lobes, and some of these signals were narrowly localized in
the brain, as shown in Figure 4. At the same time, many ICs
that showed high accuracy in the “Yes vs. No” classification
were related to areas of the brain ranging from the parietal to
the occipital lobes, with broader cortical localization com-
pared to the areas associated with the “Yes +No” vs. “I don’t
know” classification, as shown in Figure 5. *e medial
frontal cortex plays an important role in monitoring per-
formance outcomes [30]. It has been reported that the
frontal midline in the theta band is strongly associated with
error-related negativity [31], and the medial prefrontal
cortex, which modulates error-related processing, com-
municates with the lateral prefrontal cortex to comprise a
network for action monitoring [32]. In addition, it has been
reported that brain activity in the anterior cingulate cortex is
related to processing of error-related information [33]; this
area is activated not only by the error itself but also by
correct outcomes in situations where repetitive errors can be
anticipated [34]. *ese previous studies may support our

Table 1: Delay for each response class based on the delay (unit: ms).

Was a delay felt? P1 P2 P3 P4 P5 P6
No (not felt) 0–70 0–30 0–70 0–50 0–30 0–30
I don’t know (not sure) 70–170 30–90 70–110 50–110 30–110 30–110
Yes (felt) 170–200 90–200 110–200 110–200 110–200 110–200
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results, which showed ICs related to the areas associated with
the “Yes +No” vs. “I don’t know” response classification,
reflecting how uncertain delay is perceived for a user of a
BMI system. For the “Yes vs. No” classification, few ICs that
achieved high accuracy were related to the frontal or central
areas; most of the ICs were observed from the parietal and
occipital lobes. *ese areas are related to the dorsal pathway,
which is important for information processing from the
primary visual cortex to the posterior parietal lobe [35, 36]
that is associated with visual sensory perception [37]. It is
difficult to know precisely which functional areas in the
brain are related to small delays, since the frontal lobe
performs many, varied tasks; for example, the anterior

cingulate cortex plays a role in conflict detection, error
monitoring [38], and response adaptation [39]. Our results
suggest that larger delays may not have any relationship with
these functions. Moreover, our results suggest that small and
large delays in real-time cursor control differ not only in the
magnitude of the delay but may be processed in different
ways.

We selected some ICs that achieved high accuracy to
investigate how the brain recognizes large delays within
trials. We observed event-related spectral perturbations
(ERSP) [40] of each IC that achieved high accuracy in the
“Yes vs. No” delay classification. Figure 6 shows ERSPs of
certain ICs related to the processing of visual information for
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Figure 2: Individual selection rates based on the duration of the delay. Each plot represents a “yes” response (a), a “no” response (b), and an
“I don’t know” response (c). *e selection rate for each response is plotted against the duration of the delay (ms).
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participants 1, 4, and 6. *e ICs in the trials with a delay
exhibited delayed activation compared to the trials without a
delay, suggesting that delayed recognition of the onset of the
motion is a key factor contributing to the classification.
Likewise, since this recognition of the onset of motion had
no relation to participants’ responses, more ICs that con-
tributed to high accuracy rates were found in the “Yes +No”

vs. “I do not know” delay classification than in the “Yes-
+No” vs. “I don’t know” response classification.

In our experiment, most of the participants were unsure
of the existence of a delay in trials where the duration of the
delay ranged from 40 to 100ms. However, when we tried to
categorize the delays as uncertain and certain, it was difficult
to define uncertain delays because participants could
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Figure 3: Mean accuracy (%) based on response and delay classifications.*e accuracy was averaged across the top five ICs that achieved the
highest accuracy rates. Response classification was based solely on each participant’s response, regardless of the actual delay duration. Delay
classification was based on the delay duration, regardless of participant’s response. Each class for the delay classification was determined
based on the selection rate for each participant (refer to Table 1).
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Figure 4: *e top five independent components (ICs) that achieved the five highest accuracy rates for the “Yes +No” vs. “I don’t know”
classification. Each row represents the ICs for each participant (P1–P6). *e five ICs in the left grouping are for the response classification,
and the five ICs in the right grouping are for the delay classification. *e accuracy rates of the five ICs are ranked in the order of decreasing
accuracy, moving from left to right.
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Figure 5: *e top five independent components (ICs) that achieved the five highest accuracy rates for the “Yes vs. No” classification. Each
row represents the ICs for each of the six participants (P1–P6).*e five ICs in the left grouping are for the response classification, and the five
ICs in the right grouping are for the delay classification. *e accuracy rates of the five ICs are ranked in the order of decreasing accuracy,
moving from left to right.
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respond differently even in trials where the duration of the
delay was the same. Instead, the duration of the delay was
related to task performance. Point-to-point movement is
normally modeled and assessed by Fitts’ law [41, 42], which,
when fitted with a linearly combined delay term, explained
93.5% of the variance, indicating that task performance may
be linearly related to the duration of the delay [43].

We investigated brain activity during delayed cursor
control, which can often occur in BMI systems. *is can be
used to construct intelligent BMI systems to update a decoder
online when a BMI system experiences an error. So far,
feedforward control has been employed in a BMI system that
decodes neural signals to use them as an input command and
obtain movement parameters [44]. When a BMI system
works well and a user wants to move, feedforward control is
sufficient; however, when the system experiences an error
because it does not perceive correct user intention, a feedback
controller is needed to perform calculations and correct for
the delay. *is feedback controller is different with a decoder.
For real-time control, both the feedforward controller and the
feedback controller are components of the system. Input
commands generated by the brain are corrected by summing
the output of the feedback controller and then transferred as
corrected signals, rather than the individual components
working in isolation. In this study, we investigated brain
activity involved in controlling responses based on the du-
ration of delays. Our results showed that, unlike in general
situations when a system is working optimally, when there is a
delay between intention to move and the actual movement
itself, signals can be generated that are not optimal for
feedforward control. *us, additional systems such as a
feedback controller are needed in BMIs; based on our results,
commands generated by feedforward and feedback control-
lers should be separated for the system to work optimally.

5. Conclusion

In this study, we confirmed that small and large delays in
real-time cursor control might result in differential pro-
cessing in the brain. However, since the delay may not al-
ways be an error, how the delay is related to other kinds of
errors should be investigated based on the magnitude of the
delay. Understanding these mechanisms may allow for the
advanced construction of BMI systems for real-time cursor
control in which learning can occur from these errors.
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[13] M. Spüler and C. Niethammer, “Error-related potentials
during continuous feedback: using EEG to detect errors of
different type and severity,” Frontiers in Human Neuroscience,
vol. 9, no. 9, p. 155, 2015.

[14] J. van Driel, K. R. Ridderinkhof, and M. X. Cohen, “Not all
errors are alike: theta and alpha EEG dynamics relate to
differences in error-processing dynamics,” Journal of Neu-
roscience, vol. 32, no. 47, pp. 16795–16806, 2012.

[15] P.W. Ferrez and J. D. R.Millan, “Error-related EEG potentials
generated during simulated brain-computer interaction,”

8 Journal of Healthcare Engineering



IEEE Transactions on Biomedical Engineering, vol. 55, no. 3,
pp. 923–929, 2008.

[16] H. Zhang, R. Chavarriaga, Z. Khaliliardali, L. Gheorghe,
I. Iturrate, and J. d. R. Millán, “EEG-based decoding of error-
related brain activity in a real-world driving task,” Journal of
Neural Engineering, vol. 12, no. 6, Article ID 066028, 2015.

[17] I. Iturrate, L. Montesano, and J. Minguez, “Task-dependent
signal variations in EEG error-related potentials for
brain–computer interfaces,” Journal of Neural Engineering,
vol. 10, no. 2, Article ID 026024, 2013.

[18] M. Ahn, H. Cho, S. Ahn, and S. C. Jun, “User’s self-prediction
of performance in motor imagery brain–computer interface,”
Frontiers in Human Neuroscience, vol. 12, p. 59, 2018.

[19] M. Rank, Z. Shi, and S. Hirche, “Perception of delay in haptic
telepresence systems,” Presence: Teleoperators and Virtual
Environments, vol. 19, no. 5, pp. 389–399, 2010.

[20] C. Jay, M. Glencross, and R. Hubbold, “Modeling the effects of
delayed haptic and visual feedback in a collaborative virtual
environment,” ACM Transactions on Computer-Human In-
teraction, vol. 14, no. 2, pp. 8–es, 2007.

[21] J. R. Kim, R. H. Osgouei, and S. Choi, “Effects of visual and
haptic latency on touchscreen interaction: a case study using
painting task,” in Proceedings of the 2017 IEEE World Haptics
Conference, pp. 159–164, Munich, Germany, June 2017.

[22] J. Dabrowski and E. V. Munson, “40 years of searching for the
best computer system response time,” Interacting with
Computers, vol. 23, no. 5, pp. 555–564, 2011.

[23] A. Stuart, J. Kalinowski, M. P. Rastatter, and K. Lynch, “Effect
of delayed auditory feedback on normal speakers at two
speech rates,”9e Journal of the Acoustical Society of America,
vol. 111, no. 5, pp. 2237–2241, 2002.

[24] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including inde-
pendent component analysis,” Journal of Neuroscience
Methods, vol. 134, no. 1, pp. 9–21, 2004.

[25] A. J. Bell and T. J. Sejnowski, “An information-maximization
approach to blind separation and blind deconvolution,”
Neural Computation, vol. 7, no. 6, pp. 1129–1159, 1995.

[26] N. David, A. Newen, and K. Vogeley, “*e “sense of agency”
and its underlying cognitive and neural mechanisms,” Con-
sciousness and Cognition, vol. 17, no. 2, pp. 523–534, 2008.

[27] J. W. Moore, D. Ruge, D. Wenke, J. Rothwell, and P. Haggard,
“Disrupting the experience of control in the human brain:
pre-supplementary motor area contributes to the sense of
agency,” Proceedings of the Royal Society B: Biological Sciences,
vol. 277, no. 1693, pp. 2503–2509, 2010.

[28] M. Desmurget and A. Sirigu, “A parietal-premotor network
for movement intention and motor awareness,” Trends in
Cognitive Sciences, vol. 13, no. 10, pp. 411–419, 2009.

[29] S. Shimada, K. Hiraki, and I. Oda, “*e parietal role in the
sense of self-ownership with temporal discrepancy between
visual and proprioceptive feedbacks,” NeuroImage, vol. 24,
no. 4, pp. 1225–1232, 2005.

[30] K. R. Ridderinkhof, M. Ullsperger, E. A. Crone, and
S. Nieuwenhuis, “*e role of the medial frontal cortex in
cognitive control,” Science, vol. 306, no. 5695, pp. 443–447,
2004.

[31] P. Luu, D. M. Tucker, and S. Makeig, “Frontal midline theta
and the error-related negativity: neurophysiological mecha-
nisms of action regulation,” Clinical Neurophysiology, vol. 115,
no. 8, pp. 1821–1835, 2004.

[32] J. F. Cavanagh, M. X. Cohen, and J. J. B. Allen, “Prelude to and
resolution of an error: EEG phase synchrony reveals cognitive

control dynamics during action monitoring,” Journal of
Neuroscience, vol. 29, no. 1, pp. 98–105, 2009.

[33] C. B. Holroyd, S. Nieuwenhuis, N. Yeung et al., “Dorsal
anterior cingulate cortex shows fMRI response to internal and
external error signals,” Nature Neuroscience, vol. 7, no. 5,
pp. 497-498, 2004.

[34] C. S. Carter, T. S. Braver, D. M. Barch, M. M. Botvinick,
D. Noll, and J. D. Cohen, “Anterior cingulate cortex, error
detection, and the online monitoring of performance,” Sci-
ence, vol. 280, no. 5364, pp. 747–749, 1998.

[35] C. S. Konen and S. Kastner, “Two hierarchically organized
neural systems for object information in human visual cor-
tex,” Nature Neuroscience, vol. 11, no. 2, pp. 224–231, 2008.

[36] E. Freud, D. C. Plaut, and M. Behrmann, ““What” is hap-
pening in the dorsal visual pathway,” Trends in Cognitive
Sciences, vol. 20, no. 10, pp. 773–784, 2016.

[37] J. Hyvärinen, “Posterior parietal lobe of the primate brain,”
Physiological Reviews, vol. 62, no. 3, pp. 1060–1129, 1982.

[38] D. Swick and A. U. Turken, “Dissociation between conflict
detection and error monitoring in the human anterior cin-
gulate cortex,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 99, no. 25,
pp. 16354–16359, 2002.

[39] H. D. Critchley, J. Tang, D. Glaser, B. Butterworth, and
R. J. Dolan, “Anterior cingulate activity during error and
autonomic response,”Neuroimage, vol. 27, no. 4, pp. 885–895,
2005.

[40] S. Makeig, “Auditory event-related dynamics of the EEG
spectrum and effects of exposure to tones,” Electroencepha-
lography and Clinical Neurophysiology, vol. 86, no. 4,
pp. 283–293, 1993.

[41] P. M. Fitts, “*e information capacity of the human motor
system in controlling the amplitude of movement,” Journal of
Experimental Psychology, vol. 47, no. 6, pp. 381–391, 1954.

[42] I. S. MacKenzie, “Fitts’ law as a research and design tool in
human-computer interaction,” Human-Computer Interac-
tion, vol. 7, no. 1, pp. 91–139, 1992.

[43] I. S. MacKenzie and C. Ware, “Lag as a determinant of human
performance in interactive systems,” in Proceedings of the
INTERACT’93 and CHI’93 Conference on Human Factors in
Computing Systems, pp. 488–493, Amsterdam, *e Nether-
lands, April 1993.

[44] H. Kim, N. Yoshimura, and Y. Koike, “Characteristics of
kinematic parameters in decoding intended reaching move-
ments using electroencephalography (EEG),” Frontiers in
Neuroscience, vol. 13, p. 1148, 2019.

Journal of Healthcare Engineering 9



Research Article
Tip-Over Stability Analysis of a Pelvic Support Walking Robot

Yawei Han,1 Shuai Guo ,1 Leigang Zhang,1 Fengfeng (Jeff) Xi,2 and Weiwei Lu3

1Department of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
2Department of Aerospace Engineering, Ryerson University, Toronto, Canada
3Shanghai Testing & Inspection Institute for Medical Devices, Shanghai, China

Correspondence should be addressed to Shuai Guo; guoshuai@shu.edu.cn

Received 12 August 2019; Revised 21 November 2019; Accepted 23 December 2019; Published 7 February 2020

Guest Editor: Ludovico Minati

Copyright © 2020 Yawei Han et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Discussed in this paper is the tip-over stability analysis of a pelvic support walking robot. To improve the activities of daily living
(ADL) in hemiplegic patients, a pelvic support walking robot is proposed to help patients facilitating their rehabilitation. During
the gait training with the robot, the abnormal man-machine interaction forces may lead to the tip-over of the robot, which is not
beneficial to the rehabilitation process. A new method is proposed to predict the possibility of tipping over and evaluate the
stability of the robot based on statics model, dynamics model, and zero-moment point (ZMP) theory. +rough the interaction
forces and moments analysis with static case, the safe point (ZMP) is studied, and the influence factors of force/moment are
analyzed by dynamics case. An optimization algorithm based on the genetic algorithm (GA) is proposed to reduce the risk of
tipping over. +e simulation results show that the optimization algorithm can keep the robot from tipping over when the
interaction forces exceed the safety threshold.

1. Introduction

As a result of the acceleration of population aging, theWorld
Health Organization reported over 17 million confirmed
cases of stroke in 2016 [1]. Most stroke patients suffer from
lower-extremity motor dysfunction after surgery, which
severely affects the ADL of the patient. However, ∼70–80%
of patients can benefit from the timely and effective reha-
bilitation process and can restore the motor function and
balance function. During the gait training, the fall preven-
tion and safe training environment are important. It is
necessary to analyze the safety of the robot by the tip-over
stability analysis.

In recent years, many universities, research institutes,
and hospitals have developed mechanical equipment that
can help the patients with the gait training. +e Lokomat
[2] is a highly automated suspension lower-limb reha-
bilitation robot that connects the lower-extremity exo-
skeleton system to the suspension weight reduction
device through a four-bar mechanism. +e robot is sta-
tionary and has little possibility of tipping over. +e

Andago [3] assisted rehabilitation robot developed by
HOCOMA in Switzerland reduces the load on the lower
limbs during the gait training by suspending weight loss
on the pelvis. +is suspension weight loss has a great
influence on the coordinated movement of the upper and
lower limbs. +e designers avoid the tip-over by adding
counterweight to the moving platform.+e KineAssist [4]
robot uses a pelvic support device with a moving platform
to realize the movement of the patient, but the rotation
center of the chassis is not on the same vertical line with
the rotation center of the human body, directly affecting
the patient’s steering comfort. Carleton University de-
veloped a mobile limb training robot called GaitEnable
[5]. +is robot is smaller and lighter than KineAssist. It is
a combination of a mobile lower-limb training robot and
a walking robot. GaitEnable step trainer is omnidirec-
tional. +e device controls the support polygon of the
robot, the position of the pelvis, and the posture of the
robot. +e GaitEnable and KineAssist are equipped with
universal wheels to maintain stability via the change of
the center of mass.
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During the gait training, the man-machine interaction
forces may exceed the normal values. +ere is a risk that the
robot will tip over because the forces acting on the robot are
beyond the safety threshold, causing potential harm to the
patients. Based on this concerning, the tip-over stability of
the robot should be analyzed to study the threshold of the
interaction forces and the effective ways to stabilize the
robot.

In this paper, the tip-over stability of a pelvic support
walking robot, as shown in Figure 1, is analyzed: (1) the
analysis of the safe range of interaction forces; (2) the
analysis of the influence factors of tipping over; (3) the study
of the optimization algorithm based on ZMP and GA.

2. System Description

+e mechanical structure diagram of the robot is shown in
Figure 2. Combining the revolute pair and the prismatic
pair, the robot can realize the six degrees of freedom of
motion in space: flexion and extension in the sagittal plane;
adduction and abduction in the coronal plane; internal
rotation and external rotation on the horizontal plane; and
movement of the front, back, left, and right, and up and
down. According the range of motion of healthy people
[6, 7], the workspace of the robot is designed to be larger
than the healthy people’s need. Also, the rotation center of
the robot should coincide with the people’s rotation center
to make the people more comfortable during the gait
training.

+e function of the robot is to provide the patients
with pelvic support and help them during the gait
training. +is function is realized through the mobile
platform (MP), the body weight support (BWS), and the
pelvic-assisted mechanism (PAM). +e PAM can support
the patient and help them to realize the movement in cross
section and the rotation around the sagittal axis, the
vertical axis, and the coronal axis. +e BWS can lift the
pelvic support mechanism and patient to realize the
movement in the vertical direction: the pelvis moves
periodically along the vertical axis. With the help of the
MP, the motion range of the patient can be extended
throughout the environment.

As shown in Figure 2, the MP has two driving wheels
installed on the rear to drive the mobile platform, and two
universal wheels are installed at the front. With the differ-
ential motion of the two driving wheels, the robot can realize
turning motion on the ground. And the robot can rotate
around the center of two drive wheels’ connection (around
the Z-axis).

+e BWS consists of a ball screw and a slider.+e PAM is
fixed at the slider, and the slider can move along the ball
screw with low friction. +e PAM can move along the Z-axis
to adapt the motion of the pelvis.

+e PAM provides support to the pelvis and can realize
the motion of the pelvis. And the signals that needed to
control the robot or evaluate the patient’s movement are
detected in this part.

+e movement along the X-axis and Y-axis on the
horizontal plane is realized by a four-bar mechanism as

shown in Figure 2(b). +e four-bar mechanism consists of
four links. +e rotation of J2 will produce the movement of
J3 on the horizontal plane. A potentiometer is installed on
J2 to detect θ2. +e movement of J3 can be calculated:
X � l2 cos θ2, Y � l2 sin θ2. In order to provide elasticity in
the direction of X-axis and Y-axis, a spring damping
mechanism is installed between the four links. +e forces
will overcome the movement along the X-axis and Y-axis
and make the patient know whether their pelvis center
deviates from the normal position.+e elasticity also can be
adjusted according to different patients’ needs.+e rotation
of J4 realizes the rotation around the X-axis (the sagittal
axis (α)). Springs are placed between J4 and the fixed base of
the pelvic support mechanism to provide elasticity around
the X-axis. θ4 can be detected by the potentiometer in-
stalled on J4. P5 and P6 are prismatic pairs. When P5 moves
forward and P6 moves backward, the patient will realize the
rotation around the Z-axis (the vertical axis (γ)).+e sliders
of P5 and P6 are located between springs to provide
elasticity along the Z-axis. +e pressure sensors detect the
force from patient’s rotation acting on the spring. By
analyzing the forces, the direction of the rotation along the
Z-axis can be studied. Also, the movement of P5 and P6 can
be calculated through the force F and spring stiffness k:
s � F/k. And θ5 can be calculated as: θ5 ≈ (S5 − S6)/D when
θ5 is small enough. Two universal joints are fixed at P5 and
P6 to realize the rotation around the Y-axis (coronal axis
(β)).

3. System Modeling and ZMP Theory

3.1. Statics Modeling. As shown in Figure 2, the robot co-
ordinate system (O0X0Y0Z0) is fixed at the center of the
connection of two driving wheels. +e end-effector of the
robot is the pelvis of patient, the O6X6Y6Z6 is attached.
OiXiYiZi (i� 1, 2, . . ., 5) is the joint coordinate system. +e
rotation center of the pelvis has to be consistent with the
rotation center of the mechanism: l0 � l1 + l2 + l3 + l4;
During the gait training, the parameter Z1 will change ac-
cordingly to realize the displacement in the Z-axis direction.
+e parallel four-bar mechanism composed of joints J2 and
J3 realizes the X-axis and the displacement in the Y-axis
direction: X � l2 cos θ2, Y � l2 sin θ2 (relative to the coor-
dinate system 􏽐 2). +e establishment of the positive so-
lution matrix equation is based on the recursive formula
proposed by Xi et al., which is as follows [8]:

pi � p0 + 􏽘
n

i�1
Ripi
′,

Ri � 􏽙
i

j�1
RsjRmj,

(1)

where

(i) pi is the position of each joint relative to the world
coordinate system;

(ii) pi
′ is the position vector;

(iii) Ri is the rotation transformation matrix;
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(iv) Rsj is the coordinate transformation of the adjacent
coordinate system;

(v) Rmj is the rotation around the current coordinate
system, according to the mechanism diagram:

R P
0 1

􏼢 􏼣 �

C5C6 − S5 C5S6 T1
T2 C4C5 T3 l2S2
T4 C5S4 T5 Z0
0 0 0 1
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, (2)
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Figure 1: +e components of the pelvic support walking robot. (a) +e coordinate system. (b) +e setting of the springs and sensors.
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where
C2 � cos θ2, S2 � sin θ2, and so on; T1 � l0 − l1 − l3 −

l2C2 − l4; T2 � S4S6 + C4S5C6; T3 � C4S5S6 − S4C6; T4
� C6S4S5 + C4S6; T5 � C4C6 + S4S5S6.
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, (3)

where D � 0.32m, as shown in Figure 2, is the width of the
mechanism, which hugs the pelvis.

+e center of mass of the link can be viewed as at the
center of figure of the link.+e vector of the ith link centroid
position in the 􏽐 0:

pci � pi− 1 +
1
2
pi � Ripci

′ . (4)

+e centroid velocity of the ith link _pci can be got by
derivation on both sides of the equation:

_pci � _Ripci
′ + Ri

_pci
′ � ωi × pci + Ri

_pci
′ . (5)

+e centroid acceleration of the ith link €pci can be got by
derivation on both sides of equation (5):

€pci � _ωi × pci + ωi × _pci + _Ri
_pci
′ + Ri

€pci
′

� _ωi × pci + ωi × ωi × pci + Ripci
′( 􏼁 + _RiR

T
i Ri

_pci
′ + Ri

€pci
′

� _ωi × pci + ωi × ωi × pci( 􏼁 + 2 ωi × Ripci
′( 􏼁 + Ri

€pci
′ ,

(6)

where

(i) ωi is the joint angular velocity of ith link;
(ii) pci is the vector of the ith link centroid position in

the 􏽐 0; − _pci
′ is the velocity of ith link;

(iii) Ri is the transformation from 􏽐 0 to 􏽐 i.

3.2. Dynamics Modeling. As the movement of the pelvis has
great influence on the robot’s tip-over stability, it is nec-
essary to establish a dynamics model to research the motion
parameters’ effect on the robot’s risk of tipping over.

According to Xi et al., the force and moment acting on
the ith joint:

wi � Mi
_tiJ + Bi + Hii+1wi+1 , (7)

where

(i) wi � f iJ miJ􏼂 􏼃 consists of the force and moment
of the ith joint;

(ii) Mi �
mi1 mi

􏽥pT
ic

mi
􏽥pic Ii

􏼢 􏼣 is the generalized mass

matrix of the ith link;
(iii) 􏽥pic is the skew symmetric matrix of centroid vector

of the ith joint;
(iv) Ii is the inertia tensor of each link;

(v) _tiJ �
€pci − g
αi

􏼢 􏼣 is the acceleration of the ith link;

(vi) Bi �
miωi × (ωi × pic)

ωi × (Iiωi)
􏼢 􏼣 consists of the centrif-

ugal force and gyro moment;
(vii) ωi is the angular velocity of the ith joint;
(viii) pic is the vector pointing from the center of the ith

link to the ith joint;

(ix) Hii+1 �
1 0
􏽥pi 1􏼢 􏼣 is the transformation matrix from

i+ 1th joint to ith joint;
(x) pi is the vector pointing from joint i to the tip;
(xi) 􏽥pi is the antisymmetric matrix of pi.

All the forces and moments acting on the machine
converted to joint i can be written as:

wi � Mi
_tiJ + 􏽘

5

k�i+1
􏽙

k

j�k+1
Hj− 1,j

⎞⎠Mk
_tkJ + Bi

⎛⎝

+ 􏽘
5

k�i+1
􏽙

k

j�k+1
Hj− 1,j

⎞⎠Bk + 􏽙
5

j�i+1
Hj− 1,j

⎞⎠wp,⎛⎝⎛⎝

(8)

where wp is the forces and moments between patient and
robot.

3.3. ZMP+eory. +e zero-moment point theory [9] is used
to evaluate the tip-over stability by comparing the relative
positional relationship between the ZMP and the support
polygon. +e component of the man-machine interaction
forces and moments in the horizontal plane needs to be
balanced by the friction and the friction torque:

(OP
��→

× R
→

)H + OG
��→

× msg + MA
H + OA

��→
× FA􏼒 􏼓

H

� 0, (9)

R + FA + msg � 0, (10)

where

(i) OP
��→

is the vector from the 􏽐 0 to the acting point of
the friction force;

(ii) R
→

is the friction force from the ground and can be
calculated from equation (9);

(iii) G is the center of gravity of the robot.

+e force FA and moment MA equals to the forces and
moments above the 􏽐 0.
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Rx � − FAx + msgx( 􏼁,

Ry � − FAy + msgy􏼐 􏼑,

Rz � − FAz + msgz( 􏼁.

(11)

+e position of the point P (Px, Py) (zero-moment
point) can be calculated as:

Px �

OG
��→

× msg + MH
A + OA

��→
× FA􏼒 􏼓

H

􏼠 􏼡
y

Rz

,

Py �

OG
��→

× msg + MH
A + OA

��→
× FA􏼒 􏼓

H

􏼠 􏼡
x

Rz

,

Pz � 0.

(12)

+e support polygon is made up of a rectangle. Once the
P is out of the rectangle, the robot will lose dynamic
equilibrium and tip over.

4. System Simulation and Optimization

+e simulations are carried out to analyze the possibility of
tipping over of the robot. +e input is man-machine in-
teraction forces. +ese forces can be measured and
calculated:

Fx is the force generated by the movement of the patient
along the X-axis. Fx can be measured by the pressure sensors
as shown in Figure 2(b).

Fy is the force generated by the movement of the patient
along the Y-axis. Fy can be calculated as follows:

Fy � ΔyK23, (13)

whereΔy is the movement along the Y-axis, K23 is the spring
damping stiffness between joint2 and joint3. K23 can be
calculated through experiment. In this robot,
K23 � 3.9N/mm.

Fz is the force generated by the movement of the patient
along the Z-axis. Fz can be measured and calculated by the
torque sensors as shown in Figure 2(b).

Fz �
T

d
, (14)

where T is the torque measured by the torque sensors. d is
the distance between the torque sensors and the center of the
pelvis.

+e support polygon is a rectangle: L∗W(1.03∗ 0.7m).
+e coinciding of the round reaction force acting point (P)
with the center of the rectangle can be seen as the safest
condition of the robot. Evaluation function Q can describe
the relation between the two points. If P coincides with the
center of the support polygon, the functionQ is 1.WhenQ is
closer to 1, the robot is safer and less likely to tip over. When
Q is closer to 0, the robot is more likely to tip over. If P
exceeds the support polygon boundary, the function Q will
be negative.

Q �

min Px

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, Px +(L/2)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

L
+
min Py − (W/2)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Py +(W/2)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

W
, when the ZMP Px, Py􏼐 􏼑 is inside the support polygon,

− 1, when the ZMP Px, Py􏼐 􏼑 is outside the support polygon.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

4.1. Static Simulation. An experiment is designed to study
the range of Fx, Fy, and Fz, when the subject falls over and
leans on the machine. As shown in Figure 3, there are four
cases when the subject leans on the robot and the 8 subjects
involved with different height and weight. +e result is
shown in Table 1. +e static calculation model can be got by
making ωi � 0, €pci � 0, and αi � 0 in the dynamic model.

And so on, Bi � 0 and _tiJ �
− g
0􏼢 􏼣. +e force and moment

acting on the ith joint in the static model can be written as:

wi � Mi
_tiJ + 􏽘

5

k�i+1
􏽙

k

j�k+1
Hj− 1,j

⎞⎠Mk
_tkJ + 􏽙

5

j�i+1
Hj− 1,j

⎞⎠wp.⎛⎝⎛⎝

(16)

In the statics model, the parameter Z0 is the height of the
pelvis, and the range of Z1 is from 0.55m to 1.1m. +e

simulations with different Z1 are carried out. +e results in
Figure 4 show that the higher the Z1 is, the more risk the
robot with the same interaction force.

In order to analyze the safe range of the input forces,
make Fx: − 450N∼300N, Fy: − 200N∼300N, Fz:
− 350N∼350N. Within the range of forces set, calculate Q

with each force synthesized by Fx, Fy, and Fz, and
Z1 � 1.1m. +e calculation result is shown in Figure 5, and
the force safety range: FXYZ � [FX,FY, FZ]T is as follows:

FXYZ �

FZ ≤ 3.1FY + 320,FZ ≤ 1.2FX + 180

s.t. 0≤FY ≤ 200, 0≤ FX ≤ 140,

FZ ≤ − 3.1FY + 320, FZ ≤ 1.2FX + 180

s.t. − 200≤ FY < 0, − 400≤ FX ≤ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

+e points with light color means that with the effect of
the forces the point represents, the ZMP: P is within the
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support polygon. If the color is blue, the robot will tip over
and the patient is in danger.

+e analysis of the tip-over stability in the static con-
dition provides reference for the analysis with dynamics
model. +e impact factors such as ωi, αi, €pci, and so on will
be considered, and a control system based on genetic al-
gorithm (GA) [10, 11] is used to optimize the tip-over
stability of the robot.

4.2. Dynamic Simulation. +e simulation with dynamic
model considers the effect from theωi(joint angular velocity)
on the analysis of robot. +e consideration of ωi makes Ii

(the inertia tensor of ith link) become an important influ-
encing factor:

Bi �
miωi × ωi × pic( 􏼁

ωi × Iiωi( 􏼁
􏼢 􏼣, (18)

Mi
_tiJ �

mi1 mi
􏽥pT

ic

mi
􏽥pic Ii

􏼢 􏼣
€pci − g
αi

􏼢 􏼣. (19)

As can be seen from equations (18) and (19), the larger
the ωi and Ii are, the larger the ωi is. According to the
quality of each link and the motion pattern of each joint,
ω2 and ω4 may have great influence on the tip-over sta-
bility of the robot. +e results of the simulation about ω2

and ω4 are shown in Figures 6 and 7. Although the
variation range of ω2 and ω4 is four times than the normal
value, the results show that ω2 and ω4 have little influence
on the forces and moments of last joint.

4.3. Optimization. According to the analysis above, the
height of the pelvis: Z1 has great influence on the tip-over
stability of the robot. And other parameters such as ω2 and
ω4 have little influence on the robot. Based on this, in the
progress of the optimization, Z1 and the movement along X-
axis: ΔX will be adjusted to look for the best combination of
Z1 and ΔX to make Q nearest to 1.

+e range of interaction force: Fnxyz � [Fnx,Fny,Fnz]

when healthy people walks with the robot normally can be
obtained from the study by Ji et al. [12].

According to the analysis in the static simulation, the
safe range of the interaction force: FX FY and FZ is studied.
Also, when the patient loses support and falls over, the
interaction force: Fxyz � [Fx,Fy, Fz] is beyond the safe
range. In order to make sure the robot is safer during using,
safety factorH is proposed to calculate the safety threshold of
the interaction force:

FXYZ > Fsxyz �
FXYZ

H
>Fnxyz. (20)

An optimization algorithm based on genetic algorithm
(GA) is proposed to prevent the robot from tipping over and
make the evaluation function Q nearest to 1. +e control flow
chart is shown in Figure 8. When the interaction force is
beyond Fsxyz, GA will calculate the optimal ΔZ1 and ΔX. GA
calculates theQwith different combinations ofZ1 andΔX, and
chooses ZQ1 and ΔXQ as the best combination when Q is the
maximum. And the signals will be sent to the motors to adjust
the height of the pelvic and the position of the support polygon.

Maximize􏽼√√√√􏽻􏽺√√√√􏽽
ZQ1 ,ΔXQ,Q

GA Z1,ΔX, Q( 􏼁

s.t. 0.55≤Z1 ≤ 1.1,

− 0.3≤ΔX≤ 0.3.

(21)

(a) (b) (c) (d)

Figure 3: +e four cases that the subject leans on the robot. (a) +e subject leans on the machine to the left; (b) the subject leans
on the machine to the right; (c) the subject leans on the machine to the forward; (d) the subject leans on the machine to the
backward.

Table 1: +e force along the X-axis and Y-axis when the patient
falls over.

Subject Height
(cm)

Weight
(kg)

+Fx
(N)

− Fx
(N)

+Fy
(N)

− Fy
(N)

S1 178 73 130 140 130 130
S2 170 78 160 165 155 130
S3 178 65 130 130 120 125
S4 173 55 90 90 85 75
S5 173 60 140 130 110 90
S6 173 62 100 110 100 110
S7 173 68 120 120 120 120
S8 169 63 130 140 100 110
Average 173 66 125 128 115 111
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4.4. Simulation. In order to ensure the safety of the subject,
a simulation is carried to instead of an experiment. +e
results are shown in Figures 9 and 10. In Figure 9, without
the optimization algorithm, the distribution of the zero-
moment points: P is throughout the support polygon. And
in Figure 10, with the optimization, all the points are
distributed around the center of the center of the support
polygon.
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Figure 4: +e relationship between the tip-over stability of the robot and the height of the pelvis:Z1. Each point represents an interaction
force: Fxyz. +e points with light color mean the robot will not tip over, and the points with blue color mean the robot will tip over. (a) +e
number of the safe points is 1898 with the Z1 � 0.55m. (b) +e number of the safe points is 1225 with the Z1 � 1.1m.
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Figure 6: +e influence of ω2 on the forces:FAx, FAy andFAz and
the moments: MAx, MAy andMAz.
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Figure 8: +e control flow of the optimization algorithm.
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4.5. Data Analysis and Discussion. +e tip-over stability of
the pelvic support walking robot is analyzed based on the
statics model, the dynamics model, and the ZMP theory.
Figure 3 shows the results of two simulations carried out
with Fx: − 800N∼300N, Fy: − 300N∼300N, Fz:
− 350N∼350N. In Figure 4(a), with Z1 � 0.55m, the most
points’ Q is positive with light color. +e number of safe
points is 1898. In Figure 4(b), with Z1 � 1.1m, half of the
points’ Q is negative. +e number of safe points is 1225. +e
results show that the height of the pelvis:Z1 has great in-
fluence on the tip-over stability of the robot. +e safe range
of the interaction forces is studied in Figure 5 with
Z1 � 1.1m. +e safe range of Fy is symmetric around the Y-
axis from − 200N to 200N for that the robot is symmetry
about the xoz plane. +e safe range of Fx is from
− 400N∼140N for that the center of mass position is at the
front of the robot.+e safe range of Fz is a function of Fx and
Fy as shown in (17). +e influence of ω2 and ω4 is analyzed,
and the results are shown in Figures 6 and 7. It shows that the
influence of ω2 and ω4 is not so obvious, for that the max
variation of FA andMA is 15N and 20N·m, respectively.+e

optimization based on the GA and the influence factors: Z1
and ΔX is proven to be effective in Figures 9 and 10. In
Figure 9, without the optimization algorithm, the P(ZMP) is
distributed throughout the support polygon. Some points’ Q
is close to 0.3, and the position is close to the boundary of the
support polygon. With the interaction forces, these dan-
gerous points represent the robot is likely to tip over. In
Figure 10, the Q of these points is from 0.76 to 1, and the
distribution of these points is limited to a rectangle: X:
− 0.58∼− 0.48; Y: − 0.16∼0.16. It means that with the opti-
mization algorithm, the points whose interaction forces are
beyond the safe range: Fsxyz are focused around the center of
the support polygon with the adjustments of Z1 and ΔX.

5. Conclusions

+e tip-over stability analysis of a pelvic support walking
robot was introduced in this paper, and an optimization
algorithm was proposed to optimize the tip-over stability of
the robot.+e influence of the height of the pelvis and the safe
range of the interaction forces were studied through the
simulation with statics model. With the dynamics model, it
was proven that the joint angular velocity such as ω2 and ω4
have little influence on the forces and moments of the last
joint. An optimization algorithm based on the dynamics
model and the GA was proposed to optimize the tip-over
stability when the interaction forces are beyond the safe range.
Simulations were carried to verify the effectiveness of the
optimization system.+e follow-up work will be concentrated
on the improvement of the optimization algorithm to reduce
the running time of the algorithm. Also, the counterweight of
the robot can be optimized to improve the tip-over stability.

Appendix

Rotation Matrix

+e rotation matrix referred in 3.1 kinematics modeling is
shown as:

Rs0 �

1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; P0′ �

− l0

0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; Rs1 �

1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;

P1′ �

Z1

0
Z0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; Rs2 �

1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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In this study, seven-channel electromyography signal-based two-dimensional wrist joint movement estimation with and without
handgrip motions was carried out. Electromyography signals were analyzed using the synergy-based linear regression model and
musculoskeletal model; they were subsequently compared with respect to single and combined wrist joint movements and
handgrip. Using each one of wrist motion and grip trial as a training set, the synergy-based linear regression model exhibited a
statistically significant performance with 0.7891± 0.0844 Pearson correlation coefficient (r) value in two-dimensional wrist
motion estimation compared with 0.7608± 0.1037 r value of the musculoskeletal model. Estimates on the grip force produced
0.8463± 0.0503 r value with 0.2559± 0.1397 normalized root-mean-square error of the wrist motion range. +is continuous wrist
and handgrip estimation can be considered when electromyography-based multi-dimensional input signals in the prosthesis,
virtual interface, and rehabilitation are needed.

1. Introduction

Owing to advances in surface electromyography (EMG)
signal-based models and algorithms, numerous techniques
have been proposed for prosthesis controls and clinical
controllers. +ough in a discreet fashion, several studies had
attempted to convert hand motion into input signals to
control prosthetic machines [1], virtual hands [2], and
exoskeletons [3], with the aim of estimating both the wrist
motion and hand gesture. Nishikawa et al. [1], Sebelius et al.
[2], and Kita et al. [4] classified several gestures, such as hand
gestures and wrist motions, using algorithms like machine
learning, Gaussian mixture models (GMMs), and other
linear classifiers (e.g., k-NN and Bayes).

Continuous estimations are applied in response to
feedback from real users who require various movements
suitable for daily life [5]. Vogel et al. [6] used standard
supervised machine learning algorithms to create a mapping
between arm/forearm muscle activities and 6-dimensional

(6D) position/orientation; this has extended the four rota-
tional degree-of-freedom (DOF) models for the joints of the
shoulder and elbow [7]. An algorithm for simultaneous
estimation of the three DOFs of the wrist was also proposed
[8]; it showed promise of applicability to unilateral amputees
by employing a bilateral mirror-training strategy [9].
However, these continuous estimations did not consider the
combined motions of the wrist and fingers.

Under the flexor muscles are the multiple finger muscles
that lie deep inside the forearm [10]. Many researchers use
their expertise to minimize the interference of surface EMG
(sEMG), without fully solving crosstalk. For this reason, the
sEMG electrode is not free from the inclusion of both ex-
ternal and internal muscle signals. +ese mixed signals can
influence the estimates obtained via the other.

Muscle synergy is defined as a set of muscles recruited by
a neural command [11]. A muscle synergy generates a
primitive motion, and complex motions are produced by the
combination of several synergies [12, 13]. Real-time
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classification for upper limb motion was conducted using a
machine learning technique [14]. However, synergies were
differentially weighted according to task constraints [15];
therefore, in this study, two different synergy calculations
were attempts: deriving wrist and grip synergies simulta-
neously and deriving each synergy separately. Besides,
synergy model performance with the change of synergy was
analyzed, and the choice of number of wrist synergy was
checked.

+e musculoskeletal model (MSM) is a second-order
computational motor control model with nonlinear dy-
namics. It estimates a one-degree-of-freedom joint angle for
flexion and extension considering muscle elasticity and
viscosity [16]. Kawase et al. [17] developed a simplified
computational model that investigated the estimation of
three different joint angles (i.e., elbow, wrist, and finger) with
a little influence between finger joint and wrist position
estimation.

To realize the prosthetic hand for daily use, wrist motion
and grip motion have to be controlled simultaneously;
however, few papers treat this problem [17] because of the
crosstalk of muscle activation measurement.

+is study aims to estimate wrist motion with and
without grip motion and compared the estimation perfor-
mance between optimized MSM and synergy models.

2. Materials and Methods

2.1. Subjects. Ten healthy subjects (males, aged 28.0± 5.7, 9
right-handed, 1 left-handed, none ambidextrous) partici-
pated in the experiment. +ey did not have a history of any
form of neurological disorder. +ey used their dominant
hand (either left or right hand) during the conduct of this
experiment.

2.2.ExperimentalProtocol. +e study protocol was approved
by the ethics committee of the Tokyo Institute of Technology
(2014042) and was carried out in accordance with the
Declaration of Helsinki. Written consent was obtained from
each subject before the experiment.

Table 1 indicates the muscle groups chosen to estimate the
wrist and grip movements. Five muscles are associated with
wrist motion (i.e., ECR, ECU, FCU, FCR, and APL) and two
with grip action (i.e., FDS and FDP). Previous wrist-based
experiments analyzed ECR, ECU, FCU, and FCR [17, 18],
which are the flexor and extensor muscles of the wrist with
different deviations (radial and ulnar). In addition to these
muscles, in particular APL, an extensor of the thumb was
included to trace the radial movement of the wrist. +e FDS
and FDP—the flexor muscles of the finger—were included to
estimate the grip force with a synergy-based model.

Figure 1 shows the placement of the EMG sensor on the
forearm. +e EMG signals were measured using Trigno™
EMG system.

In the experiment, two tasks were conducted. +e first
task was a wrist motion, which measured motion in different
movement conditions. For the second task, isometric grip
force was measured in different grip force levels. +us, the

trials were divided into two tasks to check the wrist
movement at a certain grip condition and grip force at a
certain posture.

In the first task, EMG was measured using wireless
Trigno™ EMG system sensors, and wrist joint angles were
measured using the IM sensors of the system. Figure 2 shows
the placement of the IM sensors, which were attached to the
back of the hand and the back of the forearm; they were at-
tached to detect the relative wrist joint angle from the forearm.

Subjects placed their forearms on the table fastened by a
wrist binder. +ereafter, they performed four wrist motions:
flexion, extension, radial deviation, and ulnar deviation.
+ese motions were conducted while the hand was free (no
gripping action) and in gripping mode (normal strength).
Wrist motions were conducted under three conditions based
on the subject’s comfort: comfortable maximum limit (with
and without grip), half of comfortable maximum limit
(without grip only), and stiffened movement with force
exertion (without grip only). +e subjects performed each
motion three times per trial. +ree trials were conducted for
each condition. +ereafter, the gripping action (without
wrist motion) was conducted in the center position (Fig-
ure 2) for which the subjects performed strong grips and
weak grips. +ree trials were conducted for the gripping
experiment.

Table 1: Forearm muscle with channel number.

Muscle position
Ch. 1 Extensor carpi radialis (ECR)
Ch. 2 Extensor carpi ulnaris (ECU)
Ch. 3 Flexor carpi ulnaris (FCU)
Ch. 4 Flexor carpi radialis (FCR)
Ch. 5 Abductor pollicis longus (APL)
Ch. 6 Flexor digitorum superficialis (FDS)
Ch. 7 Flexor digitorum profundus (FDP)

Extensor carpi
ulnaris

Flexor carpi radialis

Extensor carpi
radialisFlexor carpi ulnaris

Flexor digitorum
superficials

Abductor pollicis
longus

Flexor digitorum
profundus 

Grip muscles
Wrist movement muscles

Figure 1: Seven EMG channel placement on five wrist joint-related
muscles (red) and two grip muscles (blue).
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In the second task, EMG and grip force were measured,
with the latter done using ReachMAN robot [19]. +e
subjects adjusted the angle of the grip to their best fit while
maintaining a center position posture, as demonstrated in
Figure 2, after which the grip force was measured. +ree
levels of grip strength were performed: strongest, half, and a
quarter of gripping power. +e strongest grip force (in
newton N) varied for every subject with an average of
16.2± 3.2N.

2.3. Data Acquisition. +e data were sampled separately per
signal category using lab streaming layer (LSL) in MATLAB
2018b program base [20]. +e EMG signals were sampled at
2000Hz, IMU sensors at 74Hz, and ReachMAN force sensor
at 100Hz.

+e seven EMG signal channels were filtered and nor-
malized before computing the synergy set. +e EMG signals
were rectified and filtered using a second-order Butterworth
low-pass filtering with 5Hz cutoff frequency [21]. Figure 3
shows the conversion of an EMG signal. +e filtered EMG
signals are called “quasi-tension” because it showed a high
correlation between the joint torques of its muscle [21].

A recurring issue during experiments and analyses was
the fact that the magnitude of EMG signals for each channel
had to be changed every time the sensor was detached then
attached again. To resolve this, all signals were normalized by
the peak activation level of the whole task, including a range of
joint angles and maximum effort of trials [22]. Normalization
was performed after quasi-tension signal filtering. In this
experiment, the combined hand motion tasks, co-activating
both grip and wrist motions, were chosen; hence, the nor-
malized quasi-tension signals, which were obtained by fil-
tering and normalizing the EMG signals, were resampled into
the other sampling rates and measured together.

2.4. Wrist Angle Derivation. +e Madgwick IMU algorithm
was implemented to estimate the two-dimensional wrist
joint angle [23]. IMU sensors were placed on the back of the

hand and forearm to track the orientational difference be-
tween the hand and forearm.

Subjects performed self-paced movements without vi-
sual feedback; consequently, most of them performed di-
agonal movements even if only vertical and horizontal
movements had been requested. To compensate for this, the
two angles obtained by the IMU algorithm were normalized
by each angle’s absolute maximum value; the sum and
difference obtained can be seen in Figure 4. In each model,
these calculations were estimated and the summation was
recalculated to estimate the angle; furthermore, considering
the EMG crosstalk error and wide range of wrist angle
movements, a comfortable maximum limit trial was mainly
used as the train data.

2.5. Synergy-Based Linear Regression Model. A synergy-
based linear regression model was used to estimate wrist
and grip values. To reduce computational costs in a model
calculation, a simplified version of the nonnegative matrix
method, i.e., the hierarchical alternating least square
(HALS) method, was used [24]. Apart from the compu-
tational cost, HALS also has a wide capability: it can work
with a large number of components [24], in contrast to the
canonical NMF method [25], which is only applicable if the
number of the sources is greater than the number of
components; it can work in conditions where the number
of components is large [24]. +is feature of HALS is ap-
propriate when multiple hand gestures need to be applied.
Hence, this computation method is valid even when the
number of combined synergy set exceeds the number of
measured EMG signals. +e HALS decomposes the nor-
malized quasi-tension as follows:

[E] � [M][S]
T
, (1)

where E is the normalized quasi-tension signals in an m
by n matrix with m being the number of time series and
n the number of EMG channel inputs; S � [s1, . . . , sj] is
the synergy set, where j is the number of synergies and
sj � [c1, . . . cn]T representing a single set of synergy,
where cn is the coactivation coefficient of EMG n; and
furthermore, M is the coactivation coefficients of the
synergy in m by j matrix:

Sk􏼂 􏼃← Sk􏼂 􏼃 +
[E][M]T − [S][M][M]T􏼐 􏼑

k

Mk􏼂 􏼃 Mk􏼂 􏼃
T , (2)

Mk􏼂 􏼃← Mk􏼂 􏼃
T

+
[E]T[S] − [M]T[S]T[S]􏼐 􏼑

k

Sk􏼂 􏼃
T

Sk􏼂 􏼃
. (3)

When the synergy model is derived, learning algorithm
procedures are used to iterate (2) and (3) several times,
where k (1, 2, . . ., j) denotes the label of synergies. +e
matrices S and M were computed using one set of single
wrist motion data and single grip motion data.

In the analysis, wrist synergies with varying numbers
from one to six were calculated from a wrist movement trial
to confirm the validity number of synergies; thereafter, a
single grip synergy was taken from a grip trial. More often

Hand IMU

Forearm IMU

Extension

Flexion

Ulnar deviation

Radial deviation

Figure 2: First task: experimental posture in the center-position
and movement direction with the placement of the IMU sensors.
Yellow-colored rectangles emphasize the positions of the IMU
sensors placed at the back of the hand and forearm.
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than note, the variance account for (VAF) became the
standard means of choosing the muscle synergy number
[26–28]. In the same context, this study applies the number
of synergies that matches over 0.9 VAF to all the subjects to
ensure the synergy model consistency. +e gains of the wrist
motion synergy for the angles were derived using linear
regression to compute the normalized sum and difference of
the wrist angle (flexion-extension, radial-ulnar deviation) θi

from the following equation:

θi � a0,i + aj,imj + · · · + ε, (4)

where a0,i denotes the angle bias, aj,i s are the regression
coefficients for each synergy coefficient mj, and ε denotes the
random noise error. A combined synergy set with regression
coefficients were used to estimate both grip motion and wrist

motion task; hence, the synergies and gains from a com-
bination of two trials were applied to all other tasks.

+e computation of the wrist and grip synergies was
conducted in two different ways. A facial image study
showed that NMF learns the object in part-based repre-
sentation [29]. In the case of grip motion, the muscles of all
channels work together; therefore, multitrial-based muscle
synergy was calculated in two ways: simultaneously from
jointed wrist and grip trials (SLRM1) and separately per trial
(SLRM2). +e synergy sets were derived from comfortable
maximum limit trials and grip trials.

2.6. Musculoskeletal Model (MSM). +e musculoskeletal
model was used to compare the angle estimates of the
synergy-based model. +eMSM succeeded in estimating the
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Figure 4: (EPS cross needed) X-axis stands for flexion-extension dimension, while Y-axis stands for radial-ulnar deviation. To compensate
for the inclined diagonal movement of subjects in self-paced movement, two angles were normalized and their sum and difference were
subsequently computed.
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Figure 3: Quasi-tension data filtering process. +e low-pass filter was the second-order Butterworth filter with 5Hz cutoff frequency. (a)
Raw EMG signal. (b) Rectified EMG signal. (c) Low-pass filtered EMG signal.
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joint angles of the elbow, wrist, and index finger with little
influence from a change in wrist position [17]. +e per-
formances of SLRM and MSM were compared with each
other to ascertain how good that of SLRM is; furthermore,
the train set of MSM was taken from a comfortable maxi-
mum limit, which are the same trials used in SLRM. To
optimize the MSM performance, MSM was derived from
two different muscle numbers, namely, MSMS1 and
MSMS2; the former used all measured muscles, while the
latter used five wrist muscles. Kawase et al. constructed a
one-degree-of-freedommodel per joint [17]; to fit the model
into this experiment, two wrist joint angles were converted
as depicted in Figure 4.

2.6.1. Statistical Analysis. An exhaustive cross-validation
was used to test the performance of each model per subject,
with indices used to estimate performance. +e Pearson
correlation coefficient (r) and normalized root-mean-square
error (nRMSE) are defined as follows:

r �
Σni�1 xi − x( 􏼁 yi − y( 􏼁

�����������

Σni�1 xi − x( 􏼁
2

􏽱 �����������

Σni�1 yi − y( 􏼁
2

􏽱 ,

nRMSE �
1
a

������������

Σni�1 xi − yi( 􏼁
2

n

􏽳

,

(5)

where n is the number of samples, y is a reference, x is an
estimate, and a is defined as the normalization coefficient.
nRMSE chooses a to be 90, the limit of the wrist angle range.
All statistical analyses were conducted using t test2 function
of MATLAB 2018b.

3. Results

3.1. Synergy Number Optimization. +e reproducibility
check of SLRM1 and SLRM2 in the different number of
synergies was tested in VAF. +e number of grip synergies
was fixed to one, both in SLRM1 and SLRM2 to ensure that
SLRM1 computed the synergy onemore from the joint trials.
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Figure 5: Model condition-related wrist joint movement estimation performance changes in the synergy-based linear regression model
(SLRM) and musculoskeletal model (MSM) in terms of the Pearson correlation coefficient (r) and normalized root-mean-square error
(nRMSE). (a) r of SLRM2 had statistically significant differences with SLRM1 (p< 0.001, Student’s t-test). (b) +ere was no statistically
significant change in r between MSM1 and MSM2. (c) nRMSE of SLRM1 and SLRM2 had statistically significant differences both in wrist
average and grip motion with higher error in SLRM1. (d) +ere was no statistically significant change in the nRMSE for wrist motion trials
between MSM1 and MSM2 while having a significant difference in grip. (p< 0.001, Student’s t-test).
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SLRM1 with two wrist synergies had over 0.9 VAF on av-
erage (0.9342± 0.0245), and the minimum VAF of three
wrist synergies was 0.9529. For SLRM2, three wrist synergies
had over 0.9 VAF on average (0.9442± 0.0340), and the
minimum VAF of four wrist synergies was 0.9647. To in-
clude all subjects, four wrist motion synergy numbers were
chosen and used throughout the study.

3.2.Task1:WristMotionTest. Figures 5(a) and 5(c) show the
r and nRMSE values of SLRMs in wrist motion task. +e r

values of SLRM1 and SLRM2 were 0.7523± 0.1466 and
0.7891± 0.0844, respectively. For nRMSE, SLRM1 had
0.1864± 0.0835 in wrist motion and 0.2471± 0.1387 in grip
motion, while SLRM2 had 0.1564± 0.0388 in wrist motion
and 0.1458± 0.0251 in grip motion. +e differences are
statistically significant in both cases (p< 0.001, Student’s t-
test). From the results, SLRM2 was chosen as the repre-
sentative SLRM model.

Similarly, Figures 5(b) and 5(d) show the r values and
nRMSE values of the MSMs in wrist motion task. +e r

values of MSM1 and MSM2 were 0.7691± 0.1056 and
0.7608± 0.1037, respectively, which exhibits no statistical
significance. For nRMSE, MSM1 had 0.1695± 0.0505 in
wrist motion and 0.2368± 0.1107 in grip motion, while
MSM2 had 0.1718± 0.0608 in wrist motion and
0.1864± 0.0770 in grip motion. +e nRMSE of the grip
motion implies a statistical significance (p< 0.001, Student’s
t-test). From the results, MSM2 was chosen as the repre-
sentative MSM model.

+e time series of the wrist angle in two dimensions is
shown in Figure 6. Subjects were asked to rotate their wrists
in four directions.+ey were able to move freely at their own
pace, moving in an inclined diagonal direction at different
angles. Because of this tendency, both models appear to have
the underlying assumption that a subject moved in a di-
agonal direction even if they performed a gradual move-
ment, as shown in Figure 6(c).
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Figure 6: 2D wrist joint angle estimation in 5 different trials. Angle X corresponds to flexion-extension dimension taking extension as
positive. Angle Y corresponds to radial-ulnar deviation having radial deviation as positive. +e blue-colored line represents the IMU-
reference angle derived from two IMU sensors by differentiating relative orientation in the Euler angle. +e red-colored estimate is a
musculoskeletal model- (MSM-) based estimation having 5 input signals. Yellow-colored estimate stands for synergy-based linear regression
model- (SLRM-) based estimation deriving synergy derived separately per trial. An example of (a) a comfortable maximum limit trial, (b)
half of a comfortable maximum trial, (c) a stiffened movement trial, (d) a grip-trial having twelve times gripping, and (e) combined
movement of a comfortable maximum limit with grip.
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Table 2: MSM performance indicator per subjects and trial.

Sub Data type
Comfortable max Comfortable half Stiffened

movement Grip and motion Wrist motion
(average) Grip

r nRMSE r nRMSE r nRMSE r nRMSE r nRMSE nRMSE

Sub1 Mean
SD

0.8542
0.0218

0.1544
0.0167

0.7297
0.0725

0.1256
0.0123

0.8818
0.0156

0.1882
0.0348

0.8092
0.0661

0.1742
0.0315

0.8155
0.0805

0.1612
0.0371

0.1287
0.0214

Sub2 Mean
SD

0.8527
0.0286

0.1024
0.0140

0.7626
0.0478

0.0719
0.0103

0.8362
0.0361

0.1666
0.0161

0.7300
0.1813

0.0971
0.0334

0.7902
0.1107

0.1101
0.0429

0.1468
0.0279

Sub3 Mean
SD

0.6816
0.0475

0.1699
0.0214

0.5557
0.1039

0.1291
0.0195

0.7094
0.0590

0.2084
0.0322

0.6722
0.0616

0.1704
0.0220

0.6523
0.0968

0.1694
0.0407

0.1400
0.0608

Sub4 Mean
SD

0.8261
0.0503

0.2113
0.0371

0.7196
0.0587

0.1196
0.0185

0.8178
0.0603

0.2593
0.0415

0.8278
0.0431

0.1820
0.0235

0.7952
0.0746

0.1914
0.0646

0.0975
0.0594

Sub5 Mean
SD

0.8156
0.0835

0.1451
0.0342

0.6870
0.1324

0.1091
0.0163

0.8174
0.0526

0.2170
0.0422

0.7497
0.0604

0.2104
0.0401

0.7630
0.1019

0.1727
0.0581

0.3005
0.1109

Sub6 Mean
SD

0.8364
0.0273

0.1998
0.0281

0.6855
0.1028

0.1940
0.0140

0.8003
0.0651

0.2613
0.0351

0.8055
0.0447

0.1934
0.0271

0.7770
0.0928

0.2132
0.0425

0.1741
0.0479

Sub7 Mean
SD

0.6775
0.0697

0.2235
0.0205

0.4702
0.1268

0.1338
0.0113

0.6994
0.1093

0.2258
0.0370

0.6742
0.0790

0.1793
0.0243

0.6261
0.1386

0.1876
0.0480

0.5055
0.1803

Sub8 Mean
SD

0.8078
0.0613

0.1333
0.0278

0.6616
0.0992

0.1104
0.0150

0.8478
0.0405

0.1524
0.0214

0.7541
0.0474

0.1578
0.0293

0.7642
0.1070

0.1389
0.0330

0.4311
0.0778

Sub9 Mean
SD

0.8688
0.0443

0.1823
0.0298

0.8637
0.0420

0.1260
0.0096

0.8807
0.0256

0.1801
0.0227

0.8537
0.0407

0.1549
0.0210

0.8665
0.0425

0.1588
0.0315

0.3206
0.1702

Sub10 Mean
SD

0.7728
0.0302

0.1915
0.0501

0.7087
0.0927

0.1361
0.0436

0.8517
0.0363

0.2392
0.1044

0.7024
0.1091

0.2844
0.1058

0.7576
0.1057

0.2147
0.1006

0.1750
0.0817

Mean Mean
SD

0.7994
0.0528

0.1713
0.0343

0.6844
0.1022

0.1256
0.0219

0.8142
0.0589

0.2098
0.0558

0.7579
0.0877

0.1804
0.0511

0.7608
0.1037

0.1718
0.0568

0.1864
0.0770

Table 3: SLRM performance indicator per subjects and trial.

Sub Data type
Comfortable max Comfortable half Stiffened

movement Grip and motion Wrist motion
(average) Grip

r nRMSE r nRMSE r nRMSE r nRMSE r nRMSE nRMSE

Sub1 MeanSD 0.8847
0.0173

0.1368
0.0137

0.7850
0.0508

0.1155
0.0120

0.8618
0.0269

0.1738
0.0291

0.8625
0.0207

0.1313
0.0158

0.8452
0.0527

0.1396
0.0299

0.1121
0.0162

Sub2 Mean SD 0.8868
0.0200

0.0925
0.0148

0.7801
0.0251

0.0640
0.0073

0.8778
0.0391

0.1425
0.0166

0.7860
0.1166

0.0831
0.0184

0.8277
0.0867

0.0958
0.0339

0.1207
0.0098

Sub3 Mean SD 0.6643
0.0215

0.1658
0.0129

0.5037
0.0865

0.1205
0.0104

0.7749
0.0291

0.1704
0.0098

0.4568
0.0691

0.1750
0.0128

0.5941
0.1457

0.1572
0.0274

0.0620
0.0088

Sub4 Mean SD 0.8430
0.0178

0.1858
0.0176

0.7368
0.0661

0.1355
0.0166

0.8460
0.0208

0.2094
0.0239

0.7756
0.0305

0.1769
0.0103

0.7965
0.0654

0.1761
0.0341

0.1157
0.0189

Sub5 Mean SD 0.8368
0.0291

0.1444
0.0166

0.7698
0.0335

0.1001
0.0069

0.8321
0.0380

0.2390
0.0238

0.7598
0.0467

0.2403
0.0425

0.7963
0.0603

0.1843
0.0727

0.0888
0.0191

Sub6 Mean SD 0.8233
0.0266

0.1997
0.0179

0.7483
0.0848

0.1935
0.0074

0.8546
0.0228

0.2118
0.0155

0.8364
0.0216

0.1783
0.0169

0.8149
0.0665

0.1955
0.0215

0.2236
0.0432

Sub7 Mean SD 0.8009
0.0256

0.1622
0.0068

0.7162
0.1374

0.1328
0.0076

0.7955
0.0448

0.1767
0.0178

0.6393
0.0997

0.1762
0.0251

0.7323
0.1135

0.1620
0.0272

0.1653
0.0285

Sub8 Mean SD 0.8573
0.0243

0.1155
0.0115

0.8210
0.0541

0.0873
0.0133

0.8571
0.0320

0.1523
0.0193

0.7960
0.0454

0.1474
0.0316

0.8306
0.0547

0.1266
0.0358

0.2876
0.0503

Sub9 Mean SD 0.8417
0.0249

0.1788
0.0225

0.8240
0.0324

0.1380
0.0033

0.8316
0.0309

0.1901
0.0205

0.8196
0.0402

0.1606
0.0158

0.8281
0.0369

0.1658
0.0271

0.1037
0.0233

Sub10 Mean SD 0.8170
0.0329

0.1576
0.0227

0.7754
0.0232

0.1162
0.0049

0.8745
0.0250

0.1863
0.0270

0.8302
0.0265

0.1848
0.0363

0.8249
0.0618

0.1616
0.0417

0.1969
0.0299

Mean Mean SD 0.8256
0.0270

0.1539
0.0178

0.7460
0.0731

0.1204
0.0106

0.8406
0.0344

0.1852
0.0216

0.7562
0.0631

0.1654
0.0271

0.7891
0.0844

0.1564
0.0382

0.1458
0.0251
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+e exact performances of SLRM and MSM in r and
nRMSE are shown in Tables 2 and 3. Wrist motion per-
formances r on average are 0.7891± 0.0844 in SLRM and
0.7608± 0.1037 in MSM, implying a statistically significant
difference (p< 0.001, Student’s t-test). Similarly, nRMSE
also shows a significant difference between SLRM and MSM
(p< 0.01, Student’s t-test).+is trend continued during wrist
motion trials without a grip (comfortable maximum limit
trial, comfortable half limit trial, and stiffened movement
trial).

However, when grip motion was added, there was no
statistically significant difference in r; however, differences
were still apparent in nRMSE. +e r of the comfortable
maximum with grip trials were 0.7562 ± 0.0631 in SLRM
and 0.7579 ± 0.0877 in MSM, and nRMSEs were
0.1654± 0.0.271 in SLRM and 0.1804± 0.0511 in MSM
(p< 0.001, Student’s t-test). Finally, in the grip trial, where r

measurement was inappropriate because the wrist motion
in the trial is just an indication of a perturbation, here,
SLRM had 0.1458 ± 0.0251 andMSM had 0.1864 ± 0.0770 in
nRMSE, implying a statistically significant difference
(p< 0.001, Student’s t-test).

In detail, the r values of the comfortable maximum
limit trials were 0.8256 ± 0.0270 in SLRM and
0.7994 ± 0.0528 in MSM (p< 0.001, Student’s t-test); the
nRMSEs were 0.1539 ± 0.0178 in SLRM and
0.1713 ± 0.0343 in MSM (p< 0.001, Student’s t-test). In
comfortable half limit trials, the corresponding values were
0.7460 ± 0.0731 in SLRM and 0.6844 ± 0.1022 inMSMwhen
measuring r values (p< 0.001, Student’s t-test), and the
nRMSEs were 0.1204 ± 0.0106 in SLRM and 0.1256 ± 0.0219
in MSM (p< 0.01, Student’s t-test). +e stiffened move-
ment trials also had the same trend in r values,
being 0.8406 ± 0.0344 in SLRM and 0.8142 ± 0.0589
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Figure 7: Time series estimation of grip task with ReachMAN robot. Time series for (a) the normalized max grip force reference and
synergy-based linear regression (SLRM) grip force estimate, (b) the normalized half grip force reference and synergy-based linear regression
(SLRM) grip force estimate, (c) the normalized quarter grip force reference and synergy-based linear regression (SLRM) grip force estimate,
(d) wrist joint motion estimate from SLRM in the maximum grip force task, (e) wrist joint motion estimate from SLRM in half grip force
task, and (f) wrist joint motion estimate from SLRM in quarter grip force task. Angle X-Y is the same axis in Figure 8.
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in MSM (p< 0.001, Student’s t-test); and, for nRMSEs,
0.1852± 0.0216 in SLRM and 0.2098± 0.0558 in MSM
(p< 0.001, Student’s t-test).

3.3. Task 2: Grip Motion Test. Figure 7 shows the SLRM-
based time series grip force estimate and resulting angle
estimate perturbation. Subjects were constrained to a grip
device during the task to ensure that there was no actual
wrist motion during the entirety of task. Hence, wrist
motion estimation during grip motion was checked for
strong distortion in angle estimate. +e results showed that
during the gripping task, instability of the wrist angle es-
timation occurred in the presence of a strong force acti-
vation, as may be seen in Figure 7(d). For the half and
quarter grip force task, angle estimation was less than 30°,
as shown in Figures 7(e) and 7(f ). +e r value for grip force
estimate and nRMSE of the X-Y angle estimate, compared
with zero angle (no movement), were computed as indi-
cated in Table 4. Sub8 data were omitted in this task because
the EMG signal was saturated during the ADC converting
process using NIDAQ (±5 voltage). +e SLRM-based grip-
force estimate from nine subjects was 0.8463± 0.0503 in r
with 0.2559± 0.1397 nRMSE in wrist movement
estimation.

4. Discussion

+is study tested both MSM and SLRM in two different
conditions to optimize each model. Figure 9 shows the VAF
from SLRM1 and SLRM2 with the different number of wrist
motion synergies. +e VAF of SLRM1 converged in three

wrist motion synergies and overfitted thereafter. +is trend
was the same as obtained in other studies whether in patients
or healthy subjects [26–28]. For SLRM2, the VAF converged
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Figure 8: Trial-based wrist joint movement estimation performance changes in the synergy-based linear regression model (SLRM) and
musculoskeletal model (MSM) in terms of the Pearson correlation coefficient (r) and normalized root-mean-square error (nRMSE). (a)
SLRM andMSM had no statistically significant difference in wrist motion with grip, while wrist motion average had a statistically significant
difference between the models (p< 0.001, Student’s t-test). (b) nRMSE between SLRM and MSM had a statistically significant difference in
every trial.

Table 4: SLRM grip force estimate per subjects with corresponding
wrist movement estimate perturbation.

Sub Data type Grip force estimate Angle X-Y (average)
R nRMSE

Sub1 Mean
SD

0.8408
0.0206

0.3068
0.0748

Sub2 Mean
SD

0.7164
0.0579

0.4527
0.1922

Sub3 Mean
SD

0.7909
0.1235

0.0925
0.0760

Sub4 Mean
SD

0.8929
0.0184

0.1980
0.0370

Sub5 Mean
SD

0.8682
0.0416

0.3162
0.1192

Sub6 Mean
SD

0.9526
0.0098

0.2749
0.1652

Sub7 Mean
SD

0.9488
0.0132

0.2001
0.1733

Sub8 Mean
SD — —

Sub9 Mean
SD

0.8588
0.0318

0.2436
0.0257

Sub10 Mean
SD

0.7471
0.0198

0.2180
0.2319

Mean Mean
SD

0.8463
0.0503

0.2559
0.1397
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in four wrist motion synergies and overfitted up to five.+ere
was also a decrease in VAF in SLRM2. d’ Avella et al. sug-
gested that when the number of extracted synergies is greater
than the generator synergies combination, each additional
synergy captures an equal amount of noise-generated vari-
ation [30]. In that sense, fifth and sixth muscle synergies are
noise-derived synergies. +is study measured five wrist
motion muscles and two finger motion muscles; thus, the
sixth muscle synergy in SLRM2 formulated synergy set with
finger motion muscles, which made reproducibility impos-
sible. Such noise-derived synergies contaminated the esti-
mation performance. +e wrist joint angle estimation
performance of SLRM2 with varying numbers of wrist syn-
ergies are shown in Figure 10. +e highest performance was
obtained in four wrist motion synergies; the additional
number of synergies deteriorates the estimation performance.

In the SLRM, wrist movement estimation performance
showed statistical significance depending on the synergy

extraction method both in r and nRMSE. +is study aims
to use NMF for prosthetic and interface purposes;
therefore, synergies were modulated per subject and trial.
Separate synergy sets preserve multi-EMG coactivation in
the grip synergy, which enables synergy to cluster
movement type. In a joint-trial-based synergy set, the
NMF divided multi-EMG signals into several part-based
groups, resulting in tying the grip synergy to be a com-
bination of EMG signals not used in other synergies.
+erefore, the joint-trial-based synergy set could not
discriminate movement type. +is tendency can be seen in
Figure 11. Synergy 5 had the most distinctive shape,
representing grip synergy. In a time-domain reaction,
SLRM1 responded to grip activation regardless of grip
force. In SLRM2, it also increased other synergy coeffi-
cients albeit, relatively, by a small amount when a strong
grip was assumed. +is result could support extracting a
unique synergy for each motion [31].
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Figure 9: Two conditional SLRM-based R-square. (a) Variance account for with the different number of wrist motion synergies in SLRM1
(joint-trial-based synergy set) (b) Variance account for with the different number of wrist motion synergies in SLRM2 (separately derived
synergy set).
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Figure 10: SLRM2-based two-dimensional wrist joint angle estimation performance with regard to the wrist synergy number.
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+e FDS and FDP are flexor muscles of the fingers
from an anatomical point of view. +ose two muscles are
separated by synergy analysis, which can be observed
from Synergy 5, as shown in Figure 10. For the wrist
motion with and without grip task, the other five muscles
are appropriate to estimate joint angles. For the MSM,
the minimum number of muscles exhibited good
performance.

+e estimation performance between SLRM and MSM
had a statistically significant difference in the entire wrist-
only movement task both in r and nRMSE values; however,
there were no other r values in wrist motion with grip. +e
results show the robustness of the wrist movements with
respect to fingermovement of theMSM, which is the same as
those obtained by Kawase et al.’s experiment [17]. +e es-
timation performance of SLRM also showed comparable
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performance with previous results in the literature on tra-
jectory [6] and joint force [9] estimation. +e advantage of
SLRM is that it estimates not only continuous wrist
movements but also complex movements in addition to grip
motion. In this experiment, we confirmed that the esti-
mation performance of SLRM for complex motion was
equivalent to MSM performance.

Within the wrist-only motion trials, both SLRM and
MSM had the lowest performance in comfortable half
performance. +is is most likely due to the nonlinearity
between EMG signals and arm motion or contamination of
movement artifact and baseline noise to the EMG (repre-
sentatively, Sub3). +erefore, the nonlinear regression
techniques used in the previous studies [6, 9] could be
comparable with the synergy-based model having an al-
ternative to using linear regression.

+e linear envelope filtering used in the EMG signal
analysis was proven to have highly correlated signals with
joint torque induced by the target muscle [21]. Grip synergy,
which is a coactivation of these filtered EMG signals, also
showed a high grip force estimation performance of
0.8463± 0.0503 without resort to further conversion or
regression techniques. However, in the strong grip trial, it
was confirmed that the wrist angle estimation was distorted
by gripping EMG signals. +is strong grip distortion indi-
cates the necessity to investigate the limits of the SLRM in
grip force estimation. Within the current experiment results,
it is difficult to determine whether each subject distorted the
wrist angle estimation with a similar absolute force level or
with a specific ratio of the maximum force.

5. Conclusions

In this study, we explored a model for estimating wrist joint
angle with and without grip action. In the first task, in which
we examined wrist angle estimation of SLRM and MSM, the
SLRM exhibited a relatively higher performance in wrist
motion. In the grip task, SLRM showed robustness in angle
estimation when the grip force is half or a quarter of its
maximum force level. In addition, SLRM can provide the
extent of grip force exerted in the center position with little
perturbation. +ese characteristics of SLRM are useful for
combined wrist and grip action; however, obtaining limiting
grip force required to crash the wrist angle estimation, and
vice versa, was beyond the scope of this study. Further
studies are required to obtain the simultaneous estimation of
both parameters necessary for daily usage.
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In the nonmedical sputum monitoring system, a practical solution for phlegm stagnation care of patients was proposed. +rough
the camera, the video images of patients’ laryngeal area were obtained in real time. After processing and analysis on these video
frame images, the throat movement area was found out. A three-frame differential method was used to detect the throat moving
targets. Anomalies were identified according to the information of moving targets and the proposed algorithm. Warning on the
abnormal situation can help nursing personnel to deal with sputum blocking problem more effectively. To monitor the patients’
situation in real time, this paper proposed a VDS algorithm, which extracted the speed characteristics of moving objects and
combined with the DTW algorithm and SVM algorithm for sequence image classification. Phlegm stagnation symptoms of
patients were identified timely for further medical care. In order to evaluate the effectiveness, our method was compared with the
DTW, SVM, CTM, and HMMmethods. +e experimental results showed that this method had a higher recognition rate and was
more practical in a nonmedical monitoring system.

1. Introduction

Phlegm stagnation, airway obstruction with phlegm, and
other respiratory problems may occur during the care of
older or terminal patients, resulting in serious complications
such as hypoxia, asphyxia, pulmonary infection, and re-
spiratory failure [1, 2]. To deal with such problems in the use
of remote healthcare systems, a monitoring system is nec-
essary to monitor the physiological parameters of patients in
real time.

+e respiratory monitoring mainly focuses on param-
eters of the frequency, intensity, duration of coughs, etc., to
provide an important clinical reference for disease diagnosis,
treatment, and drug-efficacy evaluation. So far, the analysis
and recognition of cough mainly refer to the speech rec-
ognition system and depend on neural networks, dynamic
time warping (DTW), the hidden Markov model (HMM),
the classification tree method (CTM), and the k-means al-
gorithm [3–10]. For example, Kou et al. [4] detected cough
signals in continuous speech streams by using the keyword
recognition method in the HMM. Yin and Mo and Shin

[5, 6] made cough recognition by introducing a DTW-based
[11, 12] classification model. +e Hull Automatic Cough
Counter (HACC) achieved automatic cough recognition by
establishing a classification model with a probabilistic neural
network (PNN). Drugman et al. and Wang et al. [7, 13]
distinguished cough sounds from environmental sounds by
establishing a hybrid model with both a neural network and
a hidden Markov model. Sun and Zhu [14] distinguished the
two kinds of sounds by using the classification tree method
(CTM). Meng et al. [15] reduced noise and expanded the
characteristics of breathing sound by an integrated serial
algorithm. Niu et al. [16] detects sputum by using image
processing techniques. Heretofore, no research concerns
about the physical change of the human body for the di-
agnosis and prediction in cough relative respiratory mon-
itoring system. However, in a practical monitoring system of
older or terminal patients, phlegm stagnation and airway
obstruction with phlegm are rarely solved by cough rec-
ognition technology [17]. We still need manual work to
diagnose these dangerous symptoms. +ere is a wide gap
between the current health monitoring system and the
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practical nonmedical monitoring system of older or terminal
patients.

Cough recognition and extraction system can recognize
cough signals and display the severity of the coughs and the
efficacy of the treatment, which is convenient for doctors to
diagnose. During the care of older and terminal patients with
the phlegm accumulation symptom, a practical method is
needed to monitor the patients in real time and give an early
warning so that the caregiver can help the patient expel
phlegm in a timely manner. However, there is no detailed
and effective method currently. +erefore, a new method
based on image detection is proposed in this paper. Firstly,
the computer collects the video images of the patient’s throat
by a camera, and then a category learning algorithm pro-
posed in this paper is used to analyze these video images.
Finally, the computer sends the analyzed results to the client
in real time, which can timely provide the patient with
moderate care and decrease the risk of accidental death.

2. Related Work

2.1. &e DTW Method. DTW has good performance in
template matching. It generally uses an action in the training
set as a template and compares actions to be recognized with
the template. +e action closest to the template is viewed as
the action of the template. In our experiment, the nearest
neighbor algorithm is used and each action corresponds to
multiple templates. A test action can be recognized if we can
find a template closest to it.

+e main limitation of DTW is that it requires the
monotonous change of a sequence over time. In motion
recognition, however, actions occur according to time order.
Besides, DTW is believed to have nice results in the ex-
periment for the following reasons. (1) It utilizes multiple
templates and adopts the nearest neighbor method. (2) It
well displays the similarity in shape. +ough DTW is
replaced by HMM in speech recognition, it still plays an
important role in motion recognition.

Since motion features cannot be represented by a single
image, it is necessary to recognize actions by a plurality of
sequential images. In this paper, actions are recognized
through a sequence of images. From the above, we know
how to obtain the similarity in shape between two images.
But it is still difficult to obtain the similarity between se-
quential images because other information about the se-
quence is unknown, for example, the length and starting
position of the sequence and the interval between sequences.

An advanced DTWalgorithm is adopted in this thesis for
sequence comparison. DTWwas originally applied to speech
recognition [18] due to its capability of handling the problem
of inconsistent speed. +ere exist similar problems in action
sequences, such as fast or slow pace and sometimes accel-
eration in pace. All these problems can be well disposed with
DTW. Our VDS algorithm enhances DTW with the com-
bination of SVM for target classification, which will improve
the accuracy of the recognition results.

Suppose there are two action sequences x1, . . . , xm and
y1, . . . , yn, where M and N represent the lengths of the two
action sequences respectively, then the DTW distanceD (i, j)

of the two action sequences can be calculated with the
following:

D(i, j) � min D(i, j − 1), D(i − 1, j), D(i − 1, j − 1)􏼈 􏼉

+ d xi, yi( 􏼁, i � 1, . . . , M, j � 1, . . . , N.

(1)

+e distance function d(xi, yi) is a matching distance of
two motion sequences that is obtained with dynamic rules:

d xi, xj􏼐 􏼑 �
1
n

􏽘
pk∈xi qt∈xj

min c pk, A qt( 􏼁( 􏼁

+
1
m

􏽘
pk∈xi qt∈xj

min c pk, A qt( 􏼁( 􏼁.

(2)

From (M, N), we can find the matching path by roll
back. When rolling back to (1, 1), we will get the shortest
path. +e initial value of D (i, j) is 0 when i or j is less than 1.

Figure 1(a) shows the local path constraints of
D(i, j − 1), D(i − 1, j), and D(i − 1, j − 1). +ey are the
essential constraints during the matching of two action
sequences. Figure 1(b) is another local path constraint,
corresponding to a new DTW value that should be
recomputed in formula (1). +e motion is generated in
chronological order in motion recognition, and the shape is
sequentially changed accordingly. +erefore, the path con-
straint [19] of Figure 1(a) can well describe the change of the
motion sequence.

2.2. SVM Strategy. Next, we will use SVM to achieve action
classification. Set the linear separable sample set
D � (xi, yi), i � 1, 2, . . . , l, x ∈ Rd, y ∈ +1, − 1{ } to be the
category label. For linearly inseparable samples, a relaxation
term ξi ≥ 0 is introduced. A general form of the linear
discriminant function is g(x) � w · x + b, and the classifi-
cation equation is (w · x) + b � 0, which transforms the
optimized hyperplane problem into convex quadratic
programming:

Φ(w, ξ) �
1
2
w

2
+ C 􏽘

l

i�1
ξi

⎛⎝ ⎞⎠,

s.t. yi w · xi( 􏼁 + b􏼂 􏼃 − 1 + ξi ≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where C is the penalty factor. +e constraint of formula (3)
can be transformed into a maximization problem:

Φ(w, ξ) �
1
2
w

2
+ C 􏽘

l

i�1
ξi

⎛⎝ ⎞⎠ − 􏽘

l

i�1
ai yi w · xi( 􏼁 + b􏼂 􏼃 − 1 + ξi􏼈 􏼉,

(4)

where ai > 0 is a Lagrangian coefficient. +e optimal clas-
sification function is obtained by solving the Lagrangian
function:

f(x) � sgn 􏽘
l

i�1
a
∗
i yiK xi, x( 􏼁 + b

∗⎧⎨

⎩

⎫⎬

⎭, (5)
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where sgn( ) is the symbol function; l is the number of
training samples; K(xi, x) is the kernel function; xi is the
training sample; x is the sample to be decided, b∗ is the
threshold determined by the training sample; and a∗i is
determined by the quadratic programming, and the kernel
function is K(x, y) � exp(− ((‖x − y‖2)/2σ2)).

Since SVM can only handle vectors with the same length,
different sequences of eigenvectors cannot exist in the same
vector space. Different length of motion sequence data will
bring low resolution, and thus lead to less obvious separation
effect. Our VDS model is capable of matching motion se-
quences automatically so that distances and similar velocity
between motion sequences can reflect the similarity in
symptoms, and thus achieve higher recognition accuracy of
phlegm stagnation symptom accordingly. In VDS, the choice
of kernel function will directly affect the accuracy and op-
eration time. Considering the coincidence with DTW, we
choose the radial basis kernel function. +e inner product
kernel function of RBF/VDS is obtained by combining the
velocity characteristic parameters of sequential images:

K xi, x( 􏼁 � exp
− (zD +(1 − z)V)2

σ2
􏼨 􏼩, (6)

where D is calculated by the DTW, that is, D (i, j) in formula
(1). +e improvement of SVM kernel function will not affect
the construction model and training of SVM, thus we can
use SVM training method to make the classification of
phlegm stagnation status [20].

3. Design of Phlegm Stagnation Learning
Algorithm Based on Image Recognition

To judge whether the patient has phlegm stagnation
symptom, this thesis proposes a Velocity Distance Support
(VDS) algorithm. It processes the velocity of the moving
target with the DTW algorithm and combines the classifi-
cation of sequential images with the support vector machine
(SVM) to identify the physical condition of the patient. +e
monitoring system sends the message back to the client in
real time so that the caregiver can deal with problems

promptly. +e similarity distance between the feature vec-
tors of input data and the prototype is calculated by DTW. It
is a method based on nonparametric models. +ese methods
can simply be implemented and can automatically match
action sequences and calculate the distance between two
sequences as well, while keeping a higher recognition rate
than general methods based on parametric models. +ey can
combine the similarity distance with velocity and then es-
tablish a laryngeal action identification model based on the
SVM classifier. +e diagnosis of phlegm stagnation can be
carried out through parameters learning of the original
training data set and classification of phlegm stagnation
status.

3.1. Intelligent Video Surveillance System Structure. In a
remote care system, the intelligent video monitoring system
is introduced to help patients with phlegm accumulation.
+is intelligent video monitoring system can automatically
record the video images of the scene monitored in real time
through a camera. +en it will process and analyze these
video frames to find the moving areas and extract moving
targets from them [21], judge an abnormal phenomenon
according to the relevant information of the moving target,
and make an appropriate early warning for the abnormality.
+us, it can assist caregivers to deal with phlegm accu-
mulation problems more effectively and make the care
convenient. +e process consists of video image input,
moving target detection, feature extraction, classification
training, warning module, etc. +e overall process is shown
in Figure 2.

3.2. Moving Target Detection in Video Images. With the
rapid development of motion detection technology, more
and more researches have been carried out for motion
detection.+ere also exist great differences in the algorithms
when targets have different shapes, detection environments,
or camera properties changes. Most detection algorithms
have some deficiencies and cannot provide satisfactory
detection results. Motion detection algorithms mainly

(a)

3

2

3

(b)

Figure 1: Different path constraints. (a) Path constraint a. (b) Path constraint b.
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include interframe differencing, background subtraction,
and the optical flow method [8]. Due to the complexity and
heavy computation cost, the optical flow method has poor
real time performance; thus, it generally needs independent
hardware support [10, 11]. To avoid these problems, the
intelligent video monitoring system for older or terminal
patients described in this paper will turn to a three-frame
differencing.

Interframe differencing is a time-based differencing al-
gorithm. It is a technique where the difference between two
neighboring video frames is checked and a differencing
image is obtained. +en, the moving target is picked out
from the differencing image after smoothing, binarization,
and other processing. For each pixel in a frame, two con-
secutive frames are differenced by the following formula:

D(x, y) � fk(x, y) − fk− 1(x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

R(x, y) �
1, D(x, y)≥T,

0, D(x, y)<T,
􏼨

(7)

fk− 1(x, y) represents the gray value of the pixel of the
k − 1th frame, fk(x, y) represents that of the k th frame,
D(x, y) represents the differential result, R(x, y) represents
the binarization result, and T is the preset threshold. With
too large T, there will be incomplete detection or leak de-
tection; and on the contrary, there will be a lot of noise. +e
processing of interframe differencing is shown in Figure 3:

Generally, the detected moving target is regarded as
the foreground image, and the other areas are background
[12]. +ere is little difference between two consecutive
frames in the value of background pixels or the difference
only occurs in a very small area, but the pixels where the
moving targets are located may change obviously.

+erefore, a threshold filtering and morphological pro-
cessing are carried out for the differential image. Finally a
sufficiently large area with pixel changes is chosen as the
moving target. +is algorithm is simple and easy to im-
plement, with adaptable and fast computational
performance.

+e results of interframe differencing are those areas
with pixel changes in two consecutive frames. For areas
with pixel changes in two consecutive frames where the
moving targets are located, including the area where the
moving targets were located in the previous frame and that
in the current frame, the results are the sum of two areas
with pixel changes. +is means that the target displayed in
the resulting image is larger than the actual one, which is
called an image tail [13]. Besides, as many targets have little
change in pixels by themselves, the areas with the moving
targets in both frames also have little change in pixel values
and are likely to be taken as foreground images. +is ap-
pears as “holes” inside the detection results [14] and may
weaken the detection effect of the interframe differencing
largely.

To overcome the shortcomings of interframe differ-
encing, a three-frame differencing was proposed. It extracts
three consecutive frames (k − 1, k, and k+ 1) and makes
differencing computations on k − 1, k frames and k − 1, k
frames, respectively. +en, an AND operation is performed
on the differential images to remove the elongated portion of
the moving target. +erefore, the moving target obtained by
the three-frame differencing is more accurate than the
interframe differencing, but there will still be some holes in
the simultaneously detected moving target. +e formula of
three-frame differencing is described as follows:

K – 1th frame image

Image preprocessing

Differential operation

Threshold binarization

Image preprocessing

Kth frame image

Morphological processing

Connectivity analysis

Moving target

Figure 3: Process of interframe differencing.

Training samples

Feature extraction

SVM training SVM classifier

Feature extraction

Target tracking

Classification result

Alarm prompt

Video input

Target detection

Figure 2: Process of intelligent video surveillance system.
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D1(x, y) � fk(x, y) − fk− 1(x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

D2(x, y) � fk+1(x, y) − fk(x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,
(8)

R1(x, y) �
1, D1(x, y)≥T,

0, D1(x, y)<T,
􏼨

R2(x, y) �
1, D2(x, y)≥T,

0, D2(x, y)<T,
􏼨

(9)

R(x, y) � R1(x, y)∧R2(x, y). (10)

R (x, y) denotes the resulting moving target, and ∧
denotes an AND operation. +ree-frame differencing is an
improved version of interframe differencing. It solves the
problem that the moving object is elongated and enlarged
during the use of interframe differencing. When the target
color is close to the background, there will be some omis-
sions during detection, resulting in an incomplete moving
target. +e processing of three-frame differencing is shown
in Figure 4.

3.3. Feature Parameters Extract from the Moving Target.
Extracting feature parameters from themoving object means
transforming abnormal and abstract behaviors into detailed
digital features, and the velocity feature can also describe the
behavioral features of the moving object. Velocity is a
common physical quantity. In a short time, the velocity v can

be calculated by the ratio of the displacement s of the moving
object to the time interval t. It fulfills the relation v � s/t.

When velocity is used to describe the behavior of a
moving target, it can be regarded as a point particle. In
planar geometry, when a point particle moves from position
a to position b through a certain period of time t0, the
coordinates of the positions a and b are recorded as a (xa, ya)
and b (xb, yb), respectively.

Formula (11) denotes the distance that a point particle
moves within the time period t0.

d0 �

�������������������

x2 − x1( 􏼁
2

+ y2 − y1( 􏼁
2

􏽱

. (11)

After calculation of the distance d0, the velocity v0 of the
point particle in the given time period t0 can be calculated
with v0 � d0/t0.

Because the behaviors and actions of moving objects
change with time, the features for extraction are also
changing. When the object moves from one position to
another, the coordinates of its mass center are also
changing. +erefore, the displacement of an object over a
period can be denoted by the changes in the coordinates of
the mass center. Given the frame rate of a video object fw,
the moving object in the video has coordinates of mass
center f1 (x1, y1). After one frame of moving, the coordi-
nates of the mass center change to f2 (x2, y2). +e dis-
placement of the moving object that occurred during the
above process can be calculated by (12).

K – 1th frame image

Image preprocessing

Differential operation

Threshold binarization

Image preprocessing

Kth frame image

Morphological processing

Connectivity analysis

Moving target

K + 1th frame image

Image preprocessing

Differential operation

Threshold binarization

"And" operation

Figure 4: Process of three-frame differencing.
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Figure 5: Continued.
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�������������������

x2 − x1( 􏼁
2

+ y2 − y1( 􏼁
2

􏽱

, (12)

and the time it used is t � 1/fw

According to the velocity formula of moving objects, it is
easy to obtain the velocity of a moving object between
adjacent frames. In this way, the velocity features of the
moving target can be extracted with v � l/t.

3.4. Combining DTW Algorithm and SVM Algorithm for
Sequence Image Classification. After target detection, the
SVM model should be trained. +e input of the SVM

classifier is the extracted sample features, and the output is
the resulting classification decision {1, 1}. Generally, the
value − 1 means action does not belong to the class of phlegm
stagnation while value +1 means the action belongs to this
class [22]. +e training process of the SVM classifier is
described as follows:

Step 1. Prepare a training set. Divide the training set
into the same number of male and female sample sets,
which should include a positive sample set and a
negative sample set. +e size of the training sample set
directly affects the classification performance of the
SVM classifier. +e larger the training sample set is, the

(b1) (b2) (b3) (b4)

(b5) (b6) (b7) (b8)

(b9) (b10)

(b)

Figure 5: Effect of three-frame differencing for laryngeal video images. (a) Detection without a sticker. (b) Detection with a sticker.
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better the classification performance will be, and the
sample set should include all possible cases.
Step 2. Place the positive and negative samples in
different folders and normalize the size of all training
samples.
Step 3. Complete feature extraction of positive and
negative samples and assign “+1” or “− 1”olabels to all
positive and negative samples, respectively.
Step 4. Input the positive and negative sample features
and labels into the SVM for sample training and finally
obtain the SVM target classifier.

Next is the target detection and recognition with VDS.
First, carry out the feature extraction of targets to be
detected. Work out the distance of two sequence images
with DTW. Input velocity features into the trained SVM
target classifier. Finally, the classifier will output class
decisions. In this way, the target recognition process is
accomplished.

4. Experiments and Result Discussion

+e laryngeal video images were processed by three-frame
differencing, and the effect was shown in Figure 5.
Figure 5(a) is the test images without a sticker. Figure 5(b) is
the detection image with a sticker. Figures 5a(a1)–5a(a10)
are the originally collected video images without stickers and
the results obtained by simulation. Figures 5b(b1)–5b(b10)
are the originally collected video images with stickers and
the simulation images. From these comparisons, we can see
that images with stickers make the target clearer and easier
to detect, which improves the accuracy in target feature
detection and recognition. +erefore, this paper detected
phlegm stagnation symptoms in patients with stickers in the
throat to obtain better recognition accuracy. In practice, we

can achieve the sticker effect by putting something on the
patient’s throat.

Samples used in the experiment were video images
collected in those with the phlegm stagnation symptom
from October 2017 to February 2018. On the MATLAB
platform, the three-frame differencing method was
implemented to extract moving objects from video im-
ages. +e velocity of moving targets was extracted, and
then the samples (i.e., the test set) were classified and
recognized with the VDS algorithm. In this paper, we
compared the VDS algorithm with DTW, SVM, CTM, and
HMM algorithms in the target detection rate and average
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Figure 6: Detection rate of male phlegm samples.
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Figure 7: Detection rate of female phlegm samples.
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running time under the same sample size and different
sample sizes. +e selected sample size was 50, 100, 150,
200, 250, and 300 male samples and the same number of
female samples. +e male samples are divided into two
categories, namely, phlegm samples and nonphlegm
samples. Phlegm samples and nonphlegm samples were
tested at 25, 50, 75, 100, 125, and 150. Female samples were
tested in the same situation as male samples. +e detection
rate and average running time of phlegm and nonphlegm
samples in male and female samples were shown in
Figures 6–11 and Tables 1–3. According to Tables 1–3, the

detection rate of male samples, including both phlegm and
nonphlegm, is higher than the female sample detection
rate; the average running time of the experiment is lower
than the average running time of the female sample.+is is
because the male throat features are more prominent and
thus easier to detect and identify. According to
Figures 6–11, the detection rate and average running time
of the algorithm proposed in this paper were both sig-
nificantly better than the other four algorithms, which
means our method owns significant advantages. +e
feature of the SVM, CTM, and HMM classifier is that the
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Figure 8: Detection rate of male nonphlegm sample.
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Figure 9: Detection rate of female nonphlegm samples.
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Figure 10: Average detection time on male samples.
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Figure 11: Average detection time on female samples.
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larger the sample set is, the better the classification per-
formance it will have. So the trends of the VDS, SVM,
CTM, and HMM algorithm curves were different from the
DTW algorithm. +e recognition time of DTW is pro-
portional to the number of training samples, and the
overall efficiency is very poor. Compared with the DTW
model, the VDS, SVM, CTM, and HMM have very short
training time and recognition time, which gives the VDS
obvious efficiency advantages in the analysis of the
monitoring results. +erefore, the combination of DTW
and SVM algorithm can automatically match the action
sequence, and the distance between the laryngeal action
sequences and the similar rate can reflect the similarity of
the symptoms, thus achieving a higher recognition rate of
phlegm stagnation symptom. Experiments showed that
the proposed method was applicable to the phlegm
stagnation monitoring system. When the VDS algorithm
recognized the phlegm stagnation symptom, the alarm
device starts immediately. +e caregiver can make timely
sputum suction for patients. It can not only monitor the
patient’s physical condition in real time and thus promote
the performance of the monitoring system but also brings
more convenience to the caregiver. Free from real time
manual monitoring, the caregiver is largely relaxed.

5. Conclusions

+is paper proposed a VDS algorithm for phlegm stag-
nation symptom recognition in nonmedical sputum
monitoring system. It combines speed characteristics,
DTW, and SVM to identify laryngeal actions and classify
phlegm stagnation status. +e experiments showed that
our method can adapt to the laryngeal movement of
different lengths and speeds. It is applicable to the phlegm
stagnation symptom identification and monitoring sys-
tem. When the VDS algorithm recognizes the phlegm
stagnation status, an alarm device is activated immedi-
ately. +e nursing staff can solve the problem of phlegm
stagnation easily by using the suction method, which can
monitor the patient’s condition in real time, improve the
monitoring system, and bring great convenience to the
nursing staff as well. With no need of manual operation all
the time, our method will greatly reduce the pressure of
nursing staff.

Data Availability

+e image data used to support the findings of this study are
available from the corresponding author upon request.

Table 1: Detection rate of phlegm samples (%).

VDS
(male)

VDS
(female)

SVM
(male)

SVM
(female) DTW (male) DTW (female) CTM (male) CTM (female) HMM (male) HMM (female)

50 93.5 92.7 86.7 85.1 84.6 83.9 84.9 82.3 81.9 80.3
100 94 93 88 85.9 84 82.9 86.9 84.8 84.5 84.4
150 95.3 94.1 89.5 86.5 83.3 81.7 88.4 85.3 87.5 87.3
200 96.7 95.4 91 88 82.1 80.2 89.0 87.6 90.7 90.3
250 97.3 96.3 92.1 89.3 80.6 78.4 90.7 89.6 91.2 90.5
300 98.8 97.2 93.4 92.6 78.4 77.6 91.3 90.5 91.7 90.6

Table 2: Detection rate of nonphlegm samples (%).

VDS (male) VDS
(female) SVM (male) SVM

(female) DTW (male) DTW (female) CTM (male) CTM
(female) HMM (male) HMM

(female)
50 96.5 95 88.7 88.1 94.1 93.4 86.3 85.2 84.6 83.3
100 97 96.7 90 89 93 92.3 88.1 87.2 87.8 87.5
150 97.3 96.8 90.5 90 90.3 89 90.3 89.2 90.5 90.3
200 97.7 97.7 92 91.2 87.1 86.1 91.3 91.1 92.2 92.2
250 98.3 98 94.8 94.8 85.6 83.6 93.8 93.2 92.5 92.3
300 98.8 98.8 95.4 95.4 80.4 78.4 94.9 94.4 92.8 92.5

Table 3: Average detection time of samples (ms).

VDS (male) VDS
(female) SVM (male) SVM (female) DTW

(male) DTW (female CTM
(male) CTM (female) HMM

(male) HMM (female)

50 62 64 70 71 75 77 75 78 81 84
100 68 69 79 81 86 89 84 87 87 89
150 75 78 90 92 99 103 96 97 98 102
200 81 84 103 105 115 117 113 115 118 122
250 87 88 114 116 133 136 126 129 143 144
300 95 96 125 127 156 159 145 149 159 160
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*e assistive, adaptive, and rehabilitative applications of EEG-based robot control and navigation are undergoing a major
transformation in dimension as well as scope. Under the background of artificial intelligence, medical and nonmedical robots have
rapidly developed and have gradually been applied to enhance the quality of people’s lives. We focus on connecting the brain with
a mobile home robot by translating brain signals to computer commands to build a brain-computer interface that may offer the
promise of greatly enhancing the quality of life of disabled and able-bodied people by considerably improving their autonomy,
mobility, and abilities. Several types of robots have been controlled using BCI systems to complete real-time simple and/or
complicated tasks with high performances. In this paper, a new EEG-based intelligent teleoperation system was designed for a
mobile wall-crawling cleaning robot. *is robot uses crawler type instead of the traditional wheel type to be used for window or
floor cleaning. For EEG-based system controlling the robot position to climb the wall and complete the tasks of cleaning, we
extracted steady state visually evoked potential (SSVEP) from the collected electroencephalography (EEG) signal. *e visual
stimulation interface in the proposed SSVEP-based BCI was composed of four flicker pieces with different frequencies (e.g., 6 Hz,
7.5Hz, 8.57Hz, and 10Hz). Seven subjects were able to smoothly control the movement directions of the cleaning robot by
looking at the corresponding flicker using their brain activity. To solve the multiclass problem, thereby achieving the purpose of
cleaning the wall within a short period, the canonical correlation analysis (CCA) classification algorithm had been used. Offline
and online experiments were held to analyze/classify EEG signals and use them as real-time commands.*e proposed system was
efficient in the classification and control phases with an obtained accuracy of 89.92% and had an efficient response speed and
timing with a bit rate of 22.23 bits/min. *ese results suggested that the proposed EEG-based clean robot system is promising for
smart home control in terms of completing the tasks of cleaning the walls with efficiency, safety, and robustness.

1. Introduction

*e idea of interfacing brains with machines/robots has long
captured the human imagination. Brain-computer interface
(BCI) technology intend to build an interface between the
brain and any electrical/electronic device (e.g., a wheelchair,
smart home appliances, and robotic devices) using elec-
troencephalogram (EEG) which is a noninvasive technique
for measuring electrical potentials from electrodes placed on
the scalp produced by brain activity. Nowadays, the EEG

technique has been used to establish portable synchronous
and asynchronous controls for BCI applications. Nonin-
vasive EEG-based BCIs are the most promising interface for
space of applications for people with severe motor dis-
abilities because of their noninvasiveness, low cost, practi-
cality, portability, and being easy to use. For some disabled
patients with physical disability or paralysis while the brain
function is still normal, although they have a normal large
brain consciousness and thought, they cannot communicate
with the external environment through the severely
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damaged muscle and nervous system and complete the daily
work independently. *is has caused serious physical and
mental trauma, and their lives are very painful, which will
affect their recovery process to some extent. How to restore
or enhance their control and communication capabilities to
the outside world has been the goal that has been pursued for
many years in the field of medical rehabilitation. *erefore,
BCIs can be used for helping patients with severe brain
disorders or muscle damages to regain their ability to
communicate directly with the outside environment
through the brain electrophysiology response [1–3]. BCI can
also be beneficial for the elderly as advanced assistive and
rehabilitative technologies and useful for young able-bodied
for controlling video games for entertainment [4, 5] or
controlling a robotic arm for several purposes [6–9].
However, most of the traditional brain-computer interface
equipment is expensive, bulky, and tedious, which makes it
difficult to popularize and apply brain-computer interface
technology in real life. *e portable brain-computer inter-
face has become one of the hotspots in the field of the brain-
computer interface because of its advantages of easy to carry,
easy to use, safe, and reliable.

BCI technology is mainly divided into two types of
brain activity measurement, invasive BCI, and noninvasive
BCI, depending on the way of putting the electrodes to
record the electrical brain activity [10–14]. Among them,
the invasive BCI might lead to an immune reaction, which
causes serious harm to the user, and it is hardly accepted by
disabled people because of the invasiveness of the tech-
nique which requires a dedicated surgery, and its cost with
equipment is very expensive and not covered by many
governments yet. Although the noninvasive brain-com-
puter interface is less accurate than the invasive BCI, it is
still relatively cheaper compared with all other techniques
and everyone can easily accept it. *ere are several para-
digms to control machine or computer using our brain
signal characteristics and the most popular ones are motor
imagery [15, 16], P300 wave [17, 18], steady state visual
evoked potentials (SSVEP) [19–21] for building practical
brain-computer interface systems. So far, the SSVEP
method was applied widely because of the high signal-to-
noise ratio and robustness [22]. SSVEP induction means
that when the human brain receives the stimulation of a
fixed frequency scintillation block, an uninterrupted re-
sponse related to the stimulation frequency will be gen-
erated in the visual cortex of the human brain. *is SSVEP
brain response is a very useful natural involuntary phe-
nomenon which has been tested by researchers many times.
*e earliest SSVEP-BCI system, designed by Regan , in
1979, allowed subjects to select a flashing button on the
computer screen by simply looking at the computer screen
[23], basically achieving the desired design goals. *en,
Mullerputz and Guneysu and Akin applied the SSVEP-BCI
system to the physical control of neural limb and humanoid
robot, respectively, and achieved good control results [24].
In this paper, we chose SSVEP because it does not need any
training phase for subjects and has very high accuracy
compared with P300 or motor imagery using single trial
electroencephalography (EEG) signal. *e commonly used

signal processing and classification methods of SSVEP
include fast Fourier transform (FFT), wavelet transform,
canonical correlation analysis (CCA), linear discriminant
analysis (LDA), and support vector machine (SVM). In this
paper, CCA was used for developing our signal processing
algorithm. Compared with other SSVEP signal classifica-
tion algorithms [10–14, 25], CCA classification algorithm is
fast, efficient, simple, and easy to use.

In some previous researches, the SSVEP paradigm was
successfully used in writing tasks [26]. In the paper [27], we
can see that the authors proposed a hybrid brain-computer
interface system that combines P300 and SSVEP modalities.
*is combined system has improved the accuracy of EEG-
based wheelchair control. In addition, SSVEP has been also
used in the mental spelling system [28, 29]. In the paper [30],
the authors used three flash speeds to control the small robot
car. Lee et al. only use OZ as the reference electrode to collect
and process EEG signals. In the paper [31], Lu and Bi have
proposed a longitudinal control system for brain-controlled
vehicles based on EEG signals. However, it is still unknown
whether it can be used in the industry.

In this paper, a new type of intelligent crawler robot is
designed for cleaning the walls, which is considered as one of
the smart home appliances. Compared with the wheeled
robot [32], the crawler robot has the advantages of long life
and high carrying capacity.*e intelligent crawling robot for
the walls used in this experiment adds an adsorption device
using negative vacuum pressure, which effectively solves the
problem of sliding of the cleaning robot on a wall with a
certain inclination angle. *e BCI based on SSVEP can
usually provide a high information transmission rate, the
verification process of the system is relatively simple, and
no training of the subjects is required. However, because
the SSVEP of some subjects is very weak and vulnerable to
the interference of other noise signals, how to accurately
identify SSVEP from a short time window is still a chal-
lenging problem in BCI research based on SSVEP. *is is
also the subject that we will continue to study in the future.
In this study, the SSVEP paradigm was designed to control
the crawler robot for cleaning the dust on the walls. We
used the high accuracy SSVEP paradigm to cooperate with
our cleaning robot to complete the designed experiment.
To our best knowledge, this is the first report, which used
brain machine interface for crawling cleaning robot control
to help persons with disabilities to improve their quality of
life.

*is paper is arranged as follows: in the Materials and
Methods section, the experimental paradigm and analysis
method of brain signal and the motion model of the in-
telligent crawling robot were introduced. At the same time,
the offline experiment and online experiment are completed,
and the data analysis is carried out. In the Results section, the
offline and online experiments were summarized and dis-
cussed separately, and the accuracy and ITR of the exper-
iment were obtained. Our experiments validate our views
and achieve the desired results. In the Discussion part, we
mainly talk about the limitations of the system and put
forward the future changes. Finally, conclusion and pros-
pects of future work are given in Section 5.
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2. Materials and Methods

2.1. Participants and Experimental Paradigm. Seven healthy
volunteers (4 males and 3 females, 23–27 years of age) were
invited to join the experiment for performing some robot
control tasks using their brain activity. None of the subjects
have prior experience on brain-computer interfaces. Clear
written informed consent was obtained from all the par-
ticipants, who were informed in detail about the purpose and
possible consequences of the experiment. *e experimental
protocol was carried out in accordance with the latest
version of the Declaration of Helsinki.

*e experiments were carried out in a quiet and com-
fortable environment to reduce the noise effect on our EEG
recording. Subjects sat on a chair which is 60 cm away from
the screen which contains the stimulation interface. In order
to ensure the accuracy of the experiment, participants were
required to avoid gnashing during the experiment. Because
the SSVEP paradigm was easy to cause fatigue, the subjects
can take a rest after one session.*e flow of the experiment is
shown in Figure 1. *e experimental process is mainly di-
vided into three parts. Firstly, the EEG acquisition device
should be worn correctly for the subject and the subject’s
position should be adjusted. Secondly, the collected data are
processed and classified by a signal processing computer.
Finally, the processed instructions are sent to the lower
computer, that is, the intelligent crawling robot.

2.2. Experimental Materials. As shown in Figure 1, the
hardware system in this experiment mainly includes five
parts: EEG signal acquisition system (Brain Products,
Germany), computer for displaying visual stimulation in-
terface, computer for signal processing, Bluetooth module
for transmitting signals wirelessly, and intelligent crawling
robot for cleaning dust on the walls.

We have avoided in this study to use EMOTIVE EPOC
equipment which is relatively cheap consumer-grade EEG
signal acquisition device because its measurement signal
quality is not good enough for getting high classification
accuracy using SSVEP modality. On the contrary, Brain
Products can effectively collect the EEG signals induced by
SSVEP, record real-time characteristic signals, and have
good effects. EEG equipment (Brain Products) has the ad-
vantages of lightweight, flexible usage, and excellent and
stable signals. *erefore, this EEG equipment was used to
collect brain signals in our experiment. *e EEG signal
acquisition device used in our experiment is shown in
Figure 2.

*e EEG signal acquisition device selected in the ex-
periment consists of 64 electrodes. 32 black circles represent
effective electrodes and white circles are invalid electrodes.
All 32 channel electrodes which include 30 EEG signals
acquisition channels, 1 reference channel, and 1 ground
channel were used to record brain signal. *e position of
each channel was shown by black circles. *e sampling rate
was 500Hz. During the experiment, the impedance of each
channel was always below 10 k ohms to ensure the quality of
EEG signals. Because the SSVEP signal is generated by the

visual cortex of the brain, the EEG signals of O1, O2, P7, and
P8 channels near the visual cortex are collected in the ex-
periment, which will not affect the acquisition of SSVEP
signal, but also greatly reduce the amount of data processed
by EEG.

*e stimulation interface of the experimental paradigm
was designed by using MATLAB psychology toolbox. *is
interface contains four blocks which flash at frequencies
6Hz, 7.5Hz, 8.57Hz, and 10Hz, respectively, four blocks
were shown in the top, bottom, left, and right part of the
screen, and the refresh rate of the screen was set in 60Hz.
*e driving chip of the intelligent component used in the
experiment is the L298P double H-bridge DC motor driving
chip, which integrates most of the functions, making the
chip more suitable for robot development. We designed a
new crawler robot and also upgraded the adsorption ca-
pabilities of this robot. *e traditional suction cup has a
small adsorption capacity and is unstable, so the adsorption
device we use uses a vacuum pump to generate a negative
pressure to avoid the disadvantages of the conventional
suction cup. Most of the photovoltaic robots on the market
are roller brushes. *e roller brushes are not only easy to
absorb dust, but also occupy a relatively large area of the
robot. *erefore, the crawling cleaning robot we use uses a
three-legged brush head. After a series of experiments, the
most suitable for the cleaning of the walls is to use a motor
with a speed of 200 rpm to control our three-legged brush
head. *e robot relies on the suction cup to be adsorbed on
the walls, and the walls can be stably and selectively cleaned,
thereby reducing the trouble of cleaning the entire walls.

2.2.1. Offline Experiment. *e whole experiment was di-
vided into offline and online subexperiments. Offline ex-
periment was held to confirm the experiment set up and
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Figure 1: Experimental flowchart for our proposed SSVEP EEG-
based BCI for robot control system.
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adjust the parameter for each subject.*e offline experiment
steps are as follows: start our stimulation interface, which
starts with an exclamation mark to remind the subjects to
start the experiment. After that the four different frequency
blocks on the top, bottom, left, and right of the screen start to
flicker. During the offline experiment, the subjects listened
to the arrangement to look at each of the four different
frequencies blocks. *e subjects were assigned to look at
each of the four scintillation blocks for five times, and the
duration of each time was between 20 and 25 seconds.
Twenty datasets were collected for each subject.

2.2.2. Online Experiment. *e experimental process of the
subjects is shown in Figure 3. First, start our cleaning robot
and turn on the cleaning device. Before the online experi-
ment, we must ensure that the subject is in a comfortable
position and that the EEG signal collection cap is correctly
worn. Secondly, ensure that the cleaning robot is connected
to our upper computer normally. In addition, the speed of
the cleaning robot is set. After that, we started our online
experiment. In the online experiment, the subjects confirm
the position of the cleaning robot and the dirty place on the
wall. *en, the subjects make the decision, which directs the
clean robot to move and look at the responding flash block
on the screen. At the same time, the EEG data were recorded
from the participants; then it was analyzed at the host
computer. *e algorithm could recognize which block the
subject looked at and transform the control command of the
clean robot. *en, the command, which was recognized, was
sent to the clean robot by the Bluetooth module. According
to the command, the clean robot will move and make the
walls cleaner.

To evaluate the experiment performance more easily, we
set up several groups of online experiments. First, the clean
robot was put on the wall, and the dirty place was not so far
away from the original place of the clean robot. *erefore,

the subjects can control the clean robot to reach the dirty
place within 30 steps with optimized route, as shown in
Figure 4.

*is figure shows the path of a subject during an online
experiment. For each session, the subject was limited to
perform 30 steps. If the subject cannot control the clean
robot to reach the destination, this experiment will finish
and the task and system performance will be evaluated.

2.3. Signal Acquisition and Processing. *e flowchart of
signal acquisition and processing is shown in Figure 5.
During our experiment, we used BrainVision Recorder
software to record the EEG signals of the subjects. When
using BrainVision Recorder software, we ensure that the
impedance of the subjects’ electrodes is below 10 k ohms. P7,
P8, O1, and O2 channels, which cover the vision areas of the
brain, were mainly analyzed.

Wavelet transform was employed as band-pass filter,
removing DC Component of Signal. For SSVEP paradigm,
canonical correlation analysis is a multivariate statistical
analysis method that reflects the overall correlation between
two groups of indicators by using the correlation between
pairs of comprehensive variables; it has a good recognition
effect in multichannel EEG signals. Compared with other
SSVEP signal classification algorithms, CCA classification
algorithm is fast, efficient, simple, and easy to use. In the
paper [33], the CCA classification algorithm is compared
with the power spectral density analysis (PSDA). *e test
results show that the classification accuracy of CCA clas-
sification algorithm is higher than that of PSDA. In the paper
[34], the CCA classification algorithm is compared with the
minimum energy combination (MEC), and the anti-inter-
ference ability of the CCA classification algorithm is found
to be stronger. *ese results fully demonstrate the reliability
of the CCA classification algorithm. *erefore, CCA is
applied to the brain-computer interface system based on
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Figure 2: EEG electrodes placement used in our experiment using Brain Products equipment.
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Figure 4: *e online experimental paradigm with respect to the path of a representative subject.
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Figure 5: Signal analysis and processing steps of the proposed algorithm for decoding SSVEP from the EEG signal.
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SSVEP. After preprocessing, CCA was used to analyze the
brain signal.

One set of EEG signals is denoted as x(t), and the
second set of signals y(t) is composed of signals with the
same number of stimulation frequencies. We decompose
a series of periodic signals into a series of Fourier
functions. For a specific frequency f, there is the following
equation

Y(f) �

sin 2 πfn

cos 2 πfn

sin 4 πfn

cos 4 πfn

· · ·

sin 2Nhπfn

cos 2Nhπfn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

n �
1
fs

,
2
fs

, . . . ,
N

fs
,

(1)

where N is the number of sampling points. fs is the sampling
frequency, and Nh is the number of harmonics.

*e feature extraction method of CCA is shown in
Figure 6. Suppose that there are two groups of sample signals
X � (x1, . . . , xn), Y � (y1, . . . , ym), and the linear combi-
nation of x � XTWx, y � YTWy. Canonical correlation
analysis method calculated the correlation ρ(x, y) between x
and y under the condition that the coefficientsWx andWy is
maximum. *e equation was shown as follows:

max
Wx,Wy

ρ(x, y) �
E xTy􏼂 􏼃

�������
E xTx􏼂 􏼃

􏽱
E yTy􏼂 􏼃

�
E WT

xXYTWy􏽨 􏽩
��������������������������
E WT

xXXTWx􏼂 􏼃E WT
yYYTWy􏽨 􏽩

􏽱 .

(2)

*e correlation coefficient between the brain signal and
four classes was computed. *erefore, the control command
was set as the class with the maximum correlation
coefficient.

In this study, information transmission rate (ITR) was
calculated to evaluate the transmission performance of brain
machine system. ITR (bit/min) can be calculated by the
following formula:

ITR �
60
t

log2N + Acc log2 Acc +(1 − Acc)log2 Acc
1 − Acc
N − 1

􏼢 􏼣,

(3)

where t represents the sampling time, Acc represents the
correct rate, and N represents the number of classifications.

2.4. Motion Model Analysis of Intelligent Crawling Robot.
*e intelligent crawling robot we use communicates with the
upper computer through the Bluetoothmodule.*e speed of
the cleaning robot can be set according to needs using
Bluetooth serial port assistant. Among them, the running
speed of the cleaning robot affects its turning angle. *e
turning motion model is as follows:

(i) We set a time parameter t; when t� 0, the robot is in
the original position, assuming that the position of
the cleaning robot coincides with the coordinate
system X, O, Y{ }, and the coordinates of the robot
are XR0, OR0, YR0􏼈 􏼉, as shown in the blue position in
Figure 7.

(ii) After that, the robot performs a turning action.
Where the time is t, the robot reaches a new position
with coordinates of XRt, ORt, YRt􏼈 􏼉, as shown in the
red position in Figure 7.

*e whole turning process of the robot takes the origin as
the center. For the turning motion of the robot, for any time
t, we have the following:

x(t) �
1
2

􏽚
t

0
vL(t) + vR(t)􏼂 􏼃cos[θ(t)]dt � 0,

y(t) �
1
2

􏽚
t

0
vL(t) + vR(t)􏼂 􏼃sin[θ(t)]dt � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where ]L is the speed of the left wheel of the crawling robot,
]R is the speed of the right wheel of the crawling robot, and θ
represents the rotation angle of the crawling robot. We
assume that ]L � − ]R; at this time, the crawling robot makes
a rotation movement with the origin as the center, and the
rotation angle is as follows:

θ(t) �
1
D

􏽚
t

0
vR(t) − vL(t)􏼂 􏼃dt �

2vR

D
t, (5)

where D is the distance between the two crawler wheels of
the crawling robot.

3. Results

3.1. Offline Experiment and Result Analysis. For offline use,
experiment data was saved in header file “.vhdr,” and
EEGLAB toolbox was used to process the data. In order to
achieve a good effect in our online experiment, we need
to process the offline experiment data of different sub-
jects and adjust the parameters. *e CCA threshold
divides the state of subjects into idle state and task state.
By comparing the CCA correlation coefficient of the
subject in the idle state with the CCA correlation coef-
ficient in the task state, we can determine the threshold of
each subject. We adjusted the subject threshold based on
the analysis of the subjects’ offline data, which were
shown in Table 1.

3.2.OnlineExperiment andResultAnalysis. In order to make
our experimental data more accurate, when the subject
completes the cleaning task within 30 steps, the time is
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stopped when the task is completed, but the subject
continues to perform the task until the end of the 30 steps.
When the subject does not complete the task within 30
steps, the time is counted based on the time when 30 steps
are completed. Each subject has to perform six sets of
tasks.

After the experiment, we performed some statistical
analysis methods to evaluate the subjects’ completion of the
tasks. Four people were able to complete all the tasks with
high accuracy and precision. *e statistic results are shown
in Table 1. *e experimental data showed that the average
accuracy of the subjects was 89.92 (with standard deviation
of ±3.81%), and the ITR reached 22.23± 1.19 bits/min. *e
experimental situation of the subjects is shown in Table 2. In
order to further verify the reliability of our experimental
results and make the data statistically significant, we per-
formed the variance calculation, and the variance calculation

results are shown in Table 3. Accuracy in Table 3 is the
average of the ratio of the total number of correct commands
to the total number of commands in six experiments per
person.

We noticed that our online experiments seem to have
good output results compared to the existing BCIs in terms
of task, accuracy, and ITR. We have listed the graphs for
intuitive statistics and comparisons, as shown in Figure 8.
*ese results show that our experiments validate our views
and achieve the desired results.

4. Discussion

In this paper, EEG-controlled wall-crawling cleaning robot
using SSVEP brain-computer interface is proposed, and the
CCA algorithm is used for signal analysis. In this engi-
neering study, the experiment results showed that our
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proposed brain-computer interface system is very promising
and could control the proposed designed intelligent clean
robot successfully to complete the cleaning tasks of a wall.
*e offline experiment provided the threshold for the next
experiments. In addition, the test range of different exper-
imenters can be determined by the same offline experiment.
*e online experiment was used to adjust the threshold to
improve the classification accuracy of the experiment. After
analyzing and calculating the data, we got the following
results: the average accuracy of online experiment was
89.92%, and the ITR reached 22.23 bits/min. *is shows that
our experiments validate our research hypothesis and
achieve the desired target. However, there are still some
issues and limitations in the proposed BCI system.

*emain innovation of this paper is to design a new type
of cleaning robot that can enhance the abilities of the elderly
users and help handicapped patients to control home ap-
pliances that might be available in their usual environment
to increase their personal autonomy to be able to perform
daily activities. Practicing EEG-based control in daily life
might be a good option for enhancing brain abilities too.
However, eye movements are also another option instead of
using brain activity.

Electrooculography (EOG) is a technique for measur-
ing the corneo-retinal standing potential that exists be-
tween the front and the back of the human eye. *is
technique has been widely used in developing human
machine interfaces and it can be easily combined with brain
activity. However, the signal of eye movements/blinking is
relatively not weak. *erefore, it is difficult to remove this
electrical interference due to the synchronization with EEG
signal. If we use the eye movements directly to control the
cleaning robot, we need to add eye gaze/tracking equip-
ment, which needs to be well calibrated. In the process of
eye movements’ acquisition, the structure of the human eye
leads to fatigue. In addition, the users are unable to look at
the same target point for a long time. *is long gaze
concentration leads to the eye movements, the false eye
jump, and the unconsciousness blinking [35]. *ese er-
roneous and unconscious EEG signals will bring difficulties
to feature extraction and classification, resulting in a low
recognition rate [36, 37].

In this paper, SSVEP is mainly used to overcome the
shortcomings of using only eye movement instrument.
Moreover, the combination of EEG and EOG (eye move-
ment) as an innovative research for building hybrid BCIs is
the direction of our future consideration.

After Hotelling put forward the typical classical algo-
rithm in 1936, it has received great attention in various
research fields. Some Japanese researchers adopted the
canonical correlation analysis (CCA)method to extract two
layers of reference signals from the actual SSVEP signal
training concentration. Combining the obtained reference
signals with CCA, an effective spatial filter for frequency
recognition is derived, which greatly improves the recog-
nition accuracy and information transmission rate of
SSVEP [34]. Twelve categories of SSVEP signals were
generated by modulating waveforms and were analyzed by
CCA algorithm with an average accuracy of 92.31% [38].
Obviously, the application of CCA in EEG signal pro-
cessing has been quite common, especially the frequency
recognition of SSVEP signal which has high accuracy. In
this paper, the traditional classical analysis algorithm is
used. CCA algorithm is used to analyze SSVEP, the cor-
relation coefficients between brain signal and four kinds of
brain signal are extracted and calculated, and the trans-
mission rate and the accuracy of online experiment are
calculated. Although the CCA algorithm used in this paper
has great advantages in SSVEP, compared with SVM
method [25], it still needs to be improved. Because the
human brain has complex neural mechanisms, it may not
be a simple linear transformation in the transmission of
electrical signals in the brain. In addition to the time and
frequency characteristics that we usually consider, EEG
also contains other important data characteristics, such as
the variability between experiments and the specificity
between subjects [12, 39]. *erefore, improving feature
extraction and classification algorithm will be the focus of
our future research to improve the robustness and accuracy
of the system and reduce errors.

Table 1: Coefficients for different SSVEP states.

SSVEP state Mean± SD
6Hz 0.40± 0.12
7.5Hz 0.44± 0.09
8.57Hz 0.50± 0.10
10Hz 0.51± 0.05
Idle 0.16± 0.04

Table 2: Experimental statistics.

Subject Number of completed tasks *e average time
S1 6 6′25″
S2 6 6′56″
S3 6 6′17″
S4 6 5′59″
S5 4 6′00″
S6 5 6′56″
S7 4 7′00″

Table 3: Data statistics of subjects.

Subject Accuracy (%) ITR (bits/min) Variance
S1 91.11 22.52 9.88
S2 89.45 22.26 12.65
S3 91.11 22.52 6.16
S4 91.11 22.52 9.88
S5 91.67 22.61 13.89
S6 88.89 22.17 13.57
S7 86.11 21.04 5.25
Average 89.92± 3.81 22.23± 1.19 10.18± 4.93
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5. Conclusion

In this paper, we proposed a new experimental paradigm
for EEG-based clean robot control, which extended the
usage of brain-computer interface. Compared with other
paradigms like motor imager and P300, SSVEP is better
for real-time application because SSVEP-based paradigm
is not a subject-specific BCI, which requires individual
data calibration regularly and system training, and it has
achieved higher accuracy across subjects. For different
subjects, the corresponding conditions are also different.
During the experiment, we have selected the appropriate
EEG acquisition cap according to different subjects. In
addition, the fatigue issue was clearly observed in some
subjects. *erefore, we eliminated the inaccurate exper-
imental data caused. Although the conditions of different
subjects are different, we also verified our system through
our experiments.

Noninvasive brain-computer interface technology has
built a bridge between human brain and smart robots, which
has important research significance. In the near future, daily
life BCI applications will be involved in fields that are more
new. With the development of science and technology,
brain-computer interface technology will not only bring
hope to people with disabilities, but will also be more in-
tegrated into the life of ordinary people, bringing more
convenience and use to our life.*rough this experiment, we
hope that in the future, we can recruit more subjects to verify
the proposed system and make complex system in different

conditions such as controlling a swarm of cleaning robots by
one operator brain only.
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Human blood is an important medical detection index. With the development in clinical medical detection instruments and
detection technology, the requirements for detection accuracy and efficiency have been gradually improved. Fluorescent
immunochromatography is a new detection technique. It has the characteristics of high efficiency, convenience, no pollution, and
wide detection range. Human blood can be detected quickly using fluorescent immunochromatography. At present, it has
received great attention from the field of clinical testing. In this paper, a set of fluorescent immunochromatographic analyzer has
been designed. It is mainly based on the principle of fluorescence immunochromatography. A new method of signal analysis and
system design for fluorescent immunochromatography analyzer is proposed. By using the improved threshold function denoising
algorithm, the quantitative detection of fluorescent immunochromatographic strip is realized. /e concentration of pathogenic
factors (cancer cells) in human serum can be measured conveniently and accurately. /e system integrates many peripheral
modules, including fluorescence signal acquisition, fluorescence signal processing, quantitative curve fitting, and test results. In
this paper, the quantitative detection experiments of the system are carried out in three aspects: linearity, repeatability, and
sensitivity. /e experimental results show that the linear correlation coefficient is up to 0.9976, and the limit of detection is up to
0.05 ng/ml. /e requirements of the system are satisfied. /e system performance is good, and the quantitative result is accurate.
/erefore, the establishment of a fluorescence analysis system is of great significance.

1. Introduction

With the improvement in medical standards and tech-
nology, testing instruments are constantly improving. It is
developing in the direction of simple operation, accurate
results, and higher detection efficiency. At present, im-
munology is the conventional method for clinically testing
blood and body fluids, which is used for quantitative or
qualitative analysis [1, 2]. Quantitative immunoassay is an
immunological method for quantitative detection of various
physiological and pathological indexes in samples based on
the principle of antigen-antibody reaction or supplemented
by various marker-tracer techniques and special detection
equipment. It has the characteristics of high sensitivity and
high specificity. Antigens and antibodies are specific and

sensitive, so fluorescent immunochromatography has been
widely used in the detection of trace substances in clinical
specimens [3, 4]. /e most common methods are the ra-
dioimmunoassays, the enzyme-labeled immunoassay, the
chemiluminescence immunoassay, and the colloidal gold
immunoassay. /ese analytical techniques have played an
important role in biology, medicine, and other fields since
they came out one after another in the middle of the 20th
century. In recent years, with the automation of analytical
methods and the commercialization of matching reagents,
quantitative immunoassay technology has been more and
more widely used in clinical laboratories and has become an
important means of disease diagnosis and efficacy evalua-
tion. In general, the detection of blood in vivo by medical
workers is the colloidal gold immunoassay, and its marker is
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colloidal gold, which is combined with the labeled antibody
protein by physical adsorption, and then precipitates and
produces color [5]. /e most obvious characteristics of this
method are convenient operation, low cost, and high sta-
bility, so it is very suitable for hospital and family use.
Colloidal gold immunochromatography has the following
advantages: observe the results directly with the naked eye
without any instrument and equipment, rapid detection,
good stability, and it has no toxicity to the operator and no
pollution to the environment. However, these character-
istics are mainly reflected in the qualitative detection of
solid-phase immunity, which cannot meet the clinical needs
of accurate and quantitative analysis. It uses human eyes to
identify, especially in the case of weak positive, which is easy
to lead to missed detection, so the colloidal gold immu-
noassay is more suitable for semiquantitative and manual
qualitative detection, but it is difficult to meet the re-
quirements of quantitative detection. At the same time, the
external noise will cause error to the detection results of the
colloidal gold immune method, and its markers are only
gold markers, and other markers cannot be used.

In recent years, with the development in fluorescence
labeling technology, the combination of fluorescence la-
beling technology, immunochromatographic reaction, and
photoelectron analysis technology, a detection technology
called fluorescence immunochromatography is widely
used in the field of medical detection [6]. It is mainly used
in the diagnosis of bacteria, viruses, and serum antibodies.
According to the characteristics of color and photo-
luminescence, the researchers combined it as a fluorescent
marker with the substance to be tested, successfully ap-
plied it for the detection of immunochromatographic strip,
and realized the detection of sample concentration.
Compared with the colloidal gold immunochromato-
graphic method, the fluorescence immunochromato-
graphic analyzer has the advantages of convenient testing
and simple operation and overcomes the two major defects
of low sensitivity and unstable detection results. /e
fluorescence immunochromatographic detection method
has the characteristics of strong specificity, high sensi-
tivity, and good repeatability. At present, it has become a
future development trend in the fields of biomedicine and
other related fields.

/erefore, a set of fluorescent immunochromatography
analyzer based on fluorescence immunochromatography is
designed to improve the sensitivity of traditional methods.
According to the principle of fluorescence immunoassay, the
appropriate fluorescein was selected, and the best wave-
length was selected according to its characteristic spectral
characteristics to select the excitation light source. Based on
the basic principle and system requirements of fluorescent
immunochromatography, the design scheme of the system is
determined. At the same time, because of the noisy char-
acteristics of fluorescence signals, the wavelet transform
method is introduced into the quantitative detection of
fluorescent immunochromatography analyzer. Due to the
deficiency in traditional wavelet threshold denoising, this
paper proposes an improved threshold function method and
verifies its feasibility. After a large number of repeated

experiments, the test results show that the design system can
basically achieve the desired results and can achieve patient
management information and more accurate measurement
of solution concentration. If cancer patients can seek
medical treatment in time, the design instrument can be
used to predict the pathological changes, so as to meet the
needs of hospitals and patients.

2. Fluorescence Processing

2.1. Principle of Immune Chromatography.
Immunochromatography is also called immunoaffinity
chromatography. /e specific antigen-antibody binding
reaction has high affinity and specificity. Antigen or anti-
body can be coupled to column packing by using immu-
nochromatography to prepare an affinity chromatography
column. /e specific immune components that are simple
with antigens or antibodies can be quickly and efficiently
isolated and purified from complex mixed samples by the
chromatography column. It is the most selective and ef-
fective method for isolation and purification of specific
antibodies [6, 7]./e immunochromatographic reaction was
carried out on the nitrocellulose membrane of the reagent
strip. /e main immunochromatographic strip has the
characteristics of strong maneuverability, high accuracy, and
no pollution, which is mainly composed of sample pad,
binding pad, nitrocellulose membrane, and water absorption
filter paper [8]. Immunochromatographic reaction is on the
cellulose membrane and the control zone. /e realization of
chromatography requires a mobile phase and a stationary
phase [9, 10]. /e mobile phase is a substance that flows
transversely in the reagent strip, and the stationary phase is a
nitrocellulose membrane on the reagent strip, which mainly
exists in the test zone and the control zone. When the
mixture flows through the stationary phase with the mobile
phase, its different substances are separated by affinity
chromatography [11]. T-line (test line) has specific immune
response, and C-line (control line) has specific immune
response, as can be seen in Figure 1.

In this paper, double-antibody sandwich method was
used to detect the concentration of samples. It is carried out
on the basis of the indirect method of fluorescent immune
reaction. /e fluorescein used in the immunochromato-
graphic strip is a europium antibody chelate. It forms a
europium-resistant compound by adding an enhancer
containing β-diketone ligand. A schematic diagram of the
principle of immune response by double-antibody sandwich
method is showed in Figure 2.

/e specific processes are as follows: a specific antibody
containing the marker is dropped on the binding pad, and a
specific antibody is added at a location of the nitrocellulose
membrane. After the sample liquid of the sample to be tested
is added to the sample pad, through the action of the
capillary tube, the sample solution and the marker are
uniformly diffused at the binding pad. /e sample solution
reacts with the europium chelate to form the complex of the
europium antibody chelate. /e complex containing the
europium antibody chelate then flows forward. When the
complex moves to the detection band, because the detection
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band contains a specific antibody, it has a specific immune
reaction with the europium antibody chelate-containing
antigen and finally forms the immune complex of antigen-
antibody-europium antibody complex. At the same time, the
labeled antibody was also captured on the test line and stayed
in the test line, while the redundant markers continued to
flow forward and were adsorbed to the control band by the
protein antibody on the membrane, and the complex specific
binding occurred on the control line, and at the same time,
the labeled antibody was also captured on the control line.
According to the difference of marker types, the signal is
detected by color or instrument, so as to achieve the purpose
of qualitative or quantitative detection.

2.2. Traditional Wavelet Denoising Function. In the process
of quantitative detection by using a fluorescence immuno-
chromatography analyzer, the collected fluorescence signal
will be affected by external or internal noise, which will lead
to inaccurate quantitative detection results. External noise is
caused by external environment and human factors. Internal
noise includes thermal noise, particle noise, low-frequency
noise, and so on. Common filtering algorithms include
sliding average filter and wavelet analysis [12]. Wavelet
analysis is a new branch of mathematics, which is based on
the development of Fourier transform [13–15]. /e main
characteristics of wavelet analysis are that the time is sub-
divided at high frequency, and the frequency is subdivided at
low frequency, which satisfies the analysis of the time-fre-
quency signal according to different conditions. /erefore,
wavelet analysis is a new localization analysis in time and
frequency domains, but it is more beneficial to deal with
nonstationary signals than Fourier transform. /is method
not only preserves the ability of local analysis of Fourier
transform but also adapts to the window and shape of
wavelet according to the characteristics of different signals
[16]. /ere are three kinds of common wavelet analysis:

wavelet transform modulus maxima method, spatial cor-
relation filtering denoising, and wavelet threshold denoising.
/e principle of the wavelet threshold denoising method is
simple. /e wavelet decomposition coefficients of the
original and noise signals are different and processed. And
the calculation is relatively small, and the noise can be
eliminated almost completely. In this paper, according to the
characteristics of white noise in the collected fluorescent
signal, the wavelet threshold denoising method is selected to
improve the accuracy of the fluorescent signal.

After wavelet decomposition, the energy of the signal is
mainly concentrated in some large wavelet coefficients, and
most of the noise is the wavelet coefficient with small am-
plitude [17–19]. Assuming that the original signal is a (t), the
contaminated noise signal is b (t) and the noise signal is n (t),
and then the noise-containing basic model may be expressed
as represented in the following equation:

b(t) � a(t) + n(t). (1)

Formula (1) is subjected to wavelet transform to obtain
the following equation:

bj,k � aj,k + nj,k. (2)

As shown in formula (2), bj,k represents the wavelet
coefficients containing the signal b (t), and aj,k and nj,k

represent the wavelet coefficients of the original signal a (t)
and the noise signal n (t), respectively.

/e amplitude of the wavelet coefficient of the original
signal is larger than that of the noise signal, andmost of them
are distributed in the low-frequency wavelet coefficient.
/erefore, a suitable threshold T is selected, and the wavelet
coefficient threshold is processed to obtain the wavelet
coefficient 􏽢bj,k after threshold quantification at different
scales, and 􏽢bj,k is reconstructed to obtain the denoised signal
􏽢a(t). /e specific process is shown in Figure 3.

2.3. �reshold Selection and �reshold Function Selection.
Multiresolution thoughts are the basis of wavelet transform.
/e combination of the wavelet transform and the threshold
method can effectively remove the noise in the signal [20].
/e threshold selection of wavelet denoising will affect the
effect of denoising. If the threshold of selection is too large,
the useful signal may be eliminated as a signal in the process
of denoising, resulting in signal distortion. If the selected
threshold is too small, the noise cannot be completely
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R

Figure 2: Immune schematic diagram of the double-antibody
sandwich method.
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Figure 1: Schematic diagram of immunochromatography.
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eliminated, which will affect the experimental results. /e
commonly used threshold selection is as follows:
VisuShrink, Rigrsure, Sqtwolog, Heursure, and Minimax.
In this paper, the global unified VisuShrink threshold is
selected for denoising. VisuShrink can be seen as a uni-
versal threshold selector. It provides near-optimal error
properties. It also ensures that estimates are as stable as true
basic functions. It uses a threshold value T1, which is
proportional to the standard deviation of the noise. It is
defined as follows:

T1 � σn

�����
2 lnN

√
. (3)

In formula (3), σn is the estimate of noise deviation
present in the signal and N represents the signal size or
number of samples.

Wavelet threshold denoising is to decompose the signal
into L-layer discrete binary wavelet as wavelet coefficients.
Each layer has a fixed threshold. Processing of high-fre-
quency coefficients is decomposed by wavelet using different
threshold functions in the wavelet threshold denoising al-
gorithm. It is also important to select a suitable threshold
function. In general, there are two kinds of wavelet threshold
functions: hard threshold function and soft threshold
function.

If the setting T1 is the threshold, the hard threshold
function may be expressed as follows:

S �
X, |X|>T1,

0, |X|≤T1.
􏼨 (4)

/e hard threshold function decomposes the noisy signal
wavelet and obtains the high frequency coefficient, which
preserves the wavelet coefficient whose absolute value is
greater than the threshold value. When the wavelet co-
efficient is less than the threshold, the wavelet coefficient is
set to zero. Hard threshold can protect local characteristics.
/erefore, the wavelet coefficients of the whole wavelet
domain will have a certain influence on the accuracy of the
denoising result in the whole wavelet domain due to the
discontinuity in the reconstructed signal.

If T1 is set as the threshold, then the soft threshold
function can be represented as shown in the following
equation:

S �
SIGN(X) |X| − T1( 􏼁, |X|>T1,

0, |X|≤T1.
􏼨 (5)

/e soft threshold function sets the wavelet coefficient
greater than its threshold value as the difference between the
wavelet coefficient and the threshold value. And the wavelet
coefficients less than the threshold are set to zero. /e result
of the process may be relatively smooth, and there will be a
blurry at some of the contours or edge locations.

2.4. �e Improved �reshold Function. /e wavelet co-
efficients after denoising by the hard threshold method are
discontinuity although they can better retain the effective part
of the original signal. However, the reconstructed signal after
denoising will get the unsmooth signal curve, which will lead to
the concussion of the reconstructed signal. /e problem that
the denoising effect of hard threshold function is not obvious
can be solved by using soft threshold function denoising, but
the soft threshold function generates a fixed difference in the
processing process, resulting in reduced signal accuracy after
the reconstruction and also distortion of the reconstructed
signal amplitude. In the practical application, it is necessary to
carry out the derivation operation on the soft threshold
function, but the derivative of the soft threshold function is not
continuous and has certain limitations.

In order to take into account the advantages of these two
thresholds and eliminate their disadvantages, this paper
proposes a new function to solve the soft and hard threshold
functions based on the shortcomings of the above threshold
functions, as shown in the following equation:

􏽢aj,k �

sign aj,k􏼐 􏼑 aj,k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 −
Tj

1 + log
1+ aj,k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− Tj􏼐 􏼑

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, aj,k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥Tj,

0, aj,k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<Tj,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where aj,k is the original wavelet coefficient, 􏽢aj,k is the
wavelet coefficient after threshold processing, and Tj is the
threshold. /rough mathematical analysis, the continuity,
progressiveness, and deviation of threshold function in
formula (4) are verified, and the feasibility of threshold
function is proved.

As |aj,k| increases, the improved threshold function
eventually approaches aj,k. /e deviation between the
reconstructed wavelet coefficient and the actual wavelet
coefficient is also gradually reduced. /e corresponding
denominator also increases. It leads 􏽢aj,k to aj,k. /us, the
defects of soft and hard thresholds are overcome, and the
problem of deviation in 􏽢aj,k and aj,k is solved. Because the
wavelet coefficient of noise decreases with the increase in the
decomposition scale, the threshold in different de-
composition layers should decrease with the increase in the
decomposition scale. At the same time, in order to solve the
common threshold defect, an improved threshold selection
method is proposed in this paper. /e threshold selected in
this article is as shown in the following equation:

Tnj � σj

������
2 lnNj

􏽱

ln(e + j)
, (7)

where σj is the standard deviation of layer j noise signal, Nj

is the length of signal, and Tnj is the threshold of layer j.
/e new threshold function is more effective than the

traditional threshold function to eliminate the oscillation of
the reconstructed signal, and the noise reduction effect is
better. /e details are presented in Figure 4, where (a) is the

a (t)
Wavelet

transform
Signal

reconstruction
Threshold
selection

bj,k b a (t)j,k

Figure 3: Basic principle block diagram of wavelet threshold
denoising.
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Figure 4: Different kinds of threshold function denoising images: (a) original signal; (b) noisy signal; (c) signal after hard threshold function
denoising; (d) signal after soft threshold function denoising; (e) signal of a new threshold function denoising.
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original signal, (b) is the noisy signal, (c) is the signal after
hard threshold function denoising, (d) is the signal after soft
threshold function denoising, and (e) is the signal of a new
threshold function denoising.

Signal evaluation standard is the criterion to judge the
effect of signal processing [21]. /e commonly used indexes
to evaluate the quality of the signal are signal-to-noise ratio
(SNR) and root mean squared error (RMSE). SNR is defined
as follows: the ratio between the energy of the original signal
and the noise, where x (n) is for the original signal, y (n) is for
the noise signal, and N is the signal length. /e formula is
shown as follows:

SNR � 10∗ lg
􏽐

N
n�1 x(n)2

􏽐
N
n�1 [x(n) − y(n)]2

􏼠 􏼡. (8)

RMSE is used to judge the error between the original
signal and the noise signal. /e formula is shown as
follows:

RMSE �

�����������������

􏽐
N
n�1 [x(n) − y(n)]2

N

􏽳

. (9)

According to the definition, the smaller the mean square
error is, the better the denoising effect is. As shown in
Table 1, it compares the SNR and RMSE of the three
denoising methods.

In comparison of the denoising index, the improved
threshold function denoising method is used to make the
fluorescent signal have a higher signal-to-noise ratio (SNR).
Root mean square error is low. /e effect is better.

3. System Design

3.1. System Selection and Structure. /ere are two options
for the system. /e first option is based on the rapid de-
velopment of digital image processing technology and the
use of a CCD camera to take a photograph of a test strip
throughout the detection area [22, 23]. A digital image
processing algorithm is used to analyze and calculate the
gray value of the analyte concentration and the wavelength
band of the detection area and the control area. /e second
option can eliminate the defect of capturing the image data
during the mechanical transmission process and shorten
the time. /e second option is adding a mechanical scan
structure to a legacy optical module. /e light is excited by
the optical module, and the optical path is concentrated on
the test strip. /e fluorescence is excited on the test strip
and focused on the photodetector. /e optical module uses
the preamplifier circuit to complete the photocurrent ac-
quisition, and the optical module can complete the fluo-
rescence signal acquisition on the test rod. /e mechanical
transmission can drive the optical module or place the test
rod platform in the direction, which can form a straight line
in these two ways. It can complete the entire detection area
of the fluorescence collection. /e fluorescence curve of the
entire detection area is scanned, and then the fluorescence

curve is processed to infer the contents of the analyte. /is
scheme is mature and of low cost, the light module is very
small, and this is a common product scheme [24] in the
market. /e fluorescent immunochromatography analyzer
designed in this paper is mainly used in hospitals, families,
and other places. /erefore, the system is mainly consid-
ered in person from low power consumption, strong anti-
interference ability of signal acquisition, and so on.
Compared with the above two solutions, we choose the
second solution from the perspective of current techno-
logical maturity.

/e hardware system is mainly composed of optical
system and control system. /e main contents of the work
are as follows: the driving scanning reagent strip of the
motor amplifies the adopted signal and converts the optical
signal into electrical signal under the action of fluorescence
immunochromatography reaction and realizes the signal
acquisition. /e software system is mainly composed of
touch screen and PC. It can complete the analysis of the
signal and carry out data storage and query. /e system
framework of the fluorescence immunochromatographic
analyzer is shown in Figure 5.

/e specific work flow of the detection system of
fluorescent immunochromatography analyzer designed in
this paper is as follows. First, the excitation light generated
by the internal timer of the single-chip microcomputer
passes through the filter, and the whole reagent strip is
scanned under the motion of the drive driven step motor.
Silicon photodiode receives the optical signal and converts
optical signals into electrical signals. /en, the data are
transmitted to the single-chip computer through the A/D
sampling. Finally, the obtained data are sent to the single-
chip microcomputer through the serial port, and the
collected signals are processed by the single-chip mi-
crocomputer. After calculating the concentration value,
the detection results are displayed and outputted to the
user.

3.2. Selection of Light Source. In the fluorescent immuno-
chromatographic reaction, different markers should be se-
lected to correspond to different light sources [25, 26]. In the
traditional optical system, the optional types of light sources
are xenon lamp, laser, and LED lamp. /e advantages of
xenon lamp light source emit a wide range of spectra which
is from infrared to ultraviolet. /e emission intensity of the
xenon lamp is very high./e disadvantage of the xenon lamp
light source is that the light effect is low, it needs to be under
high voltage, and the requirement of power supply is very
high. /e laser light source has the advantages of a small
output pulse width, high signal-to-noise ratio, and high

Table 1: Evaluated parameters for test signals.

Signal RMSE SNR
/e hard threshold function 11.8552 20.6510
/e soft threshold function 10.3338 21.8439
/e improved threshold function 7.1187 25.0811
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sensitivity. But it has short service life, small number of
pulses per second, and large volume, which is not conducive
to the portability of the instrument. Although the LED light
source is poor in monochromaticity and brightness, it has
the advantages of small volume, output power, stable beam
wavelength, and long lifetime. Combined with the needs of
this system, LED light source is more suitable as the exci-
tation light source of fluorescent immunochromatography
analyzer.

/e function of the filter is to filter out the interference of
radiation from other spectral segments of the system. In the
receiving optical path, the bandpass filter needs to be se-
lected. And the peak of the transmission peak is 610 nm.
/erefore, a filter having a center wavelength of 610 nm, a
peak transmittance of Ts> 90%, and a cut-off depth Tp of less
than 0.1% is selected.

4. Quantitative Detection Experiments
and Results

4.1. Linearity Test. /e sample solution of Cryptococcus
pods-like polysaccharide with the concentration of 100 ng/
ml was divided into several parts./e solution was diluted to
0.05 ng/ml, 0.1 ng/ml, 1 ng/ml, 10 ng/ml, and 100 ng/m with
evaporated feed water. /e values of the control line and the
test line are measured, respectively, and the characteristic
values are obtained, as shown in Table 2.

/e fluorescence intensity of the control band and the
detection band on the test strip reflects the degree of reaction
of the antigen and the antibody. /e characteristic value in
Table 2 is the ratio of the fluorescence intensity of the control
band to the detection band, which indicates the number of
fluorescent immune complexes.

/e linear correlation coefficient of the fluorescent
immunoanalyzer used in this paper is R2 � 0.9976, as shown
in Figure 6. It is shown that the detection system improved
by this instrument has the best linear characteristics and can
truly reflect the concentration of the object to be measured.

4.2. Repeatability Test. /e repeatability of the detection
results is an important index to test the performance of the
fluorescent immunochromatography analyzer. According to
the three concentration ranges of low, medium, and high,
the experiment was prepared into three concentrations of
1 ng/ml, 10 ng/ml, and 100 ng/ml. In the same location, the
same operator uses the same device to repeat the operation 3
times. /e experimental data are shown in Table 3.

/e coefficient of variation (CV) can be obtained by
using the following equation:

CV �
X

σ
∗ 100%, (10)

where σ is the standard deviation of the sample and X is the
average value of the sample.

After statistics, the instrument was used to test the
sample solution with a concentration of 1 ng/ml, 10 ng/ml,
and 100 ng/ml using an improved algorithm. /e mea-
surement results show that the repeatability of the in-
strument at high concentration can be better. In medium
and low concentrations, the repeatability of low concen-
trations is relatively poor. But overall, it shows that the
detection system has good repeatability and meets the re-
quirements of the system.

4.3.MinimumTest. Take the same batch of the reagent strip.
/e sample concentration was 100 ng/ml, and the release
concentration was 100 ng/ml, 10 ng/ml, 1 ng/ml, 0.1 ng/ml,
and 0.05 ng/ml. /e solution was dripped on 5 strips and
blank strips, respectively, to test it as a detection limit. /e
specific test data are given in Table 4.

As shown in the table, when the sample concentration is
0.05 ng/ml, the characteristic values are close to those of the
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Figure 5: Structure of a fluorescence immunoassay system.

Table 2: Linearity test.

Sample
concentration

/e value of
T

/e value of
C

Characteristic
value

100 ng/ml 13392 20244 0.661529362
10 ng/ml 2747 26454 0.103840627
1 ng/ml 442 35354 0.012502122
0.1 ng/ml 193 36069 0.005350855
0.05 ng/ml 318 39575 0.008035376
0 292 26233 0.011131018
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Figure 6: Fitting curve of the linearity test.
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blank test paper. /erefore, the limit of Cryptococcus capsule
polysaccharide solution can be measured by this system.

5. Discussion and Conclusion

/e system of fluorescent immunochromatography analyzer
mainly adopts optical measurement and control module.
/e invention can realize the quantitative detection of the
fluorescent material on the reagent strip under the detection
of the concentration of the fluorescent substance solution.
/e measurement results are reliable and accurate. /rough
the experiment, we get the following data: the linear cor-
relation coefficient is up to 0.9976, and the limit of detection
is up to 0.05 ng/ml. /ese data prove that the system has the
advantages of convenient operation, low power consump-
tion, good stability, and high precision.

/e fluorescent immunochromatography analyzer
designed in this paper has basically completed the core
function. However, due to limited time and lack of time to
carry out and explore in depth, there is still a need for
improvement in many areas:

(1) In the process of sample detection, it will bring noise
to the outside and inner boundaries of the system.
/e next step is to improve the optical system and
build more sophisticated optical system modules to
stop the noise. At the same time, an amplification
circuit with adjustable gain is selected in the control
system. /e range of fluorescence signals can be
controlled within a certain range. And the detection
accuracy can be improved.

(2) /e degree of automation of the system needs to be
improved. In this paper, the signal denoising and
eigenvalue solution are based on Matlab software.
/e next plan can be completed in the upper
computer system instead of using Matlab to com-
plete the data processing.

(3) /e fluorescence immunochromatographic analyzer
is still being developed and tested. It is not officially

in use. A lot of data are needed before formal in-
vestment. And we need a lot of samples.

At present, most of the fluorescence signal curves
measured by the fluorescence immunochromatographic
analyzer are of great noise. /ey fit most of the curves in the
way they deal with noise, and this will bring errors to the
system analysis for quantitative analysis. And most of them
only stay in theoretical research, and the experimental re-
sults are less. /erefore, in this paper, in view of the
problems existing in the development, the in-depth study is
carried out, and a large number of existing problems are
analyzed and solved. At present, there are also many medical
enterprises into the research and development of fluorescent
immunochromatography analyzer. Although the perfor-
mance of the instrument has been improved, the cost and
maintenance costs are too high, despite the fact that a
number of enterprises and research institutes have been
well-studied. As a result, the level of technology is to be
improved, and further improvements in product innovation
and technology upgrading are needed.
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Table 3: Linearity test.

Sample
concentration

/e value of
T

/e value of
C

Characteristic
value

Average value
(X )

Standard deviation
(σ)

Coefficient of variation
(CV)

100 ng/ml
13392 20244 0.661529362

0.698657612 0.032308661 0.04624391314896 20678 0.720379174
18430 25810 0.7140643

10 ng/ml
2747 26454 0.103840627

0.115863316 0.015736094 0.1358160173928 29385 0.133673638
3131 28444 0.110075684

1 ng/ml
442 35354 0.012502122

0.016030887 0.003334025 0.207975068595 36143 0.016462386
613 32047 0.019128155

Table 4: Minimum test.

Sample concentration 100 ng/ml 10 ng/ml 1 ng/ml 0.1 ng/ml 0.05 ng/ml 0
Characteristic value 0.6987 0.1159 0.0160 0.0090 0.0085 0.0080
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Detection of the state of mind has increasingly grown into a much favored study in recent years. After the advent of smart
wearables in the market, each individual now expects to be delivered with state-of-the-art reports about his body. ,e most
dominant wearables in the market often focus on general metrics such as the number of steps, distance walked, heart rate,
oximetry, sleep quality, and sleep stage. But, for accurately identifying the well-being of an individual, another important metric
needs to be analyzed, which is the state of mind. ,e state of mind is a metric of an individual that boils down to the activity of all
other related metrics. But, the detection of the state of mind has formed a huge challenge for the researchers as a single biosignal
cannot propose a particular decision threshold for detection.,erefore, in this work, multiple biosignals from different parts of the
body are used to determine the state of mind of an individual. ,e biosignals, blood volume pulse (BVP), and accelerometer are
intercepted from a wrist-worn wearable, and electrocardiography (ECG), electromyography (EMG), and respiration are
intercepted from a chest-worn pod. For the classification of the biosignals to the multiple state-of-mind categories, a multichannel
convolutional neural network architecture was developed. ,e overall model performed pretty well and pursued some en-
couraging results by demonstrating an average recall and precision of 97.238% and 97.652% across all the classes, respectively.

1. Introduction

Biosignals or physiological signals are those signals that can
provide the details about the physiological states and their
associated dynamics in the body of a human being [1]. ,e
biosignals can be further analyzed to detect the physiological
state based on the time series analysis of the signal [2]. Till
date, many researchers have highlighted the relationship
between biosignals and its associations in several contexts
such as emotional behavior, social behavior, and expressive
behavior [3, 4]. Emotional feeling or emotional judgment,
which is also a subsection of the state of mind, mostly gets

enhanced due to the physiological responses and can be
detected by analyzing explicit patterns of the biosignals
[5, 6].,e emotional changes are found to be related with the
biosignals such as the skin conductance and heart rate, and
this relationship helps to interpret the states of emotion such
as stress and the other states of mind [7, 8]. ,erefore, the
detection of the proper state of the mind for maintaining a
balance with health is necessary.

In the past, the acquisition process of the biosignals was a
very cumbersome process that primarily included a clinical
environment with a huge number of sensors and moreover,
the process was quite expensive altogether. But, after the

Hindawi
Journal of Healthcare Engineering
Volume 2019, Article ID 5397814, 17 pages
https://doi.org/10.1155/2019/5397814

mailto:heeki@inje.ac.kr
https://orcid.org/0000-0003-1344-296X
https://orcid.org/0000-0003-4034-5882
https://orcid.org/0000-0001-7298-7930
https://orcid.org/0000-0002-5399-7647
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5397814


advent of wearable technologies or smart wearables, which
has grown into much popularity, it is now quite easier to
fetch the data and analyze it [9]. Wearable devices also help
to quantify the parameters in space and time that help to
monitor the desired state depending on the application and
the purpose.

In the proposed study, different physiological signals of
the subjects are coupled together to detect each state of the
mind more accurately and precisely.,e complete study was
performed by engineering state-of-the-art features and
followed by applying a multichannel convolutional neural
network for the prediction of the states of the mind. ,e
major novelty of the work can be put forward in multiple
ways. First, the data that have been used in the study have
been fetched from multiple subjects over a long period of
time [10]. Second, the data have been fetched by using two
different devices, namely, a wrist-worn wearable and a chest-
worn wearable device. ,e usage of two different devices
allows us to fetch much more localized information from the
data. ,ird, the engineering of the features has been per-
formed using a peak detection technique, which allows us to
understand cumulative information about the data for a
particular cycle. And finally, for the learning task, a mul-
tichannel convolutional neural network was developed. ,e
network allows different biosignals to pass through different
channels for optimum feature learning and, at the end,
provides the prediction probabilities by concatenating the
feature maps of all the channels.

,e rest of the paper is structured as follows: ,e second
section provides the details about the related work that has
been performed in a particular segment of stress detection,
wearable technology, machine learning, and deep learning.
,e third section presents a deep understanding of the data
preprocessing and feature engineering. ,e fourth section
discusses the development of the deep learning model and
discusses the training procedure. ,e fifth section provides
the results that were achieved in the work followed by the
sixth section, which discusses the complete inflow of data to
the prediction and also explains the societal impact of the
work. Lastly, the paper is concluded in the seventh section.

2. Related Work

In the past, many researchers have highlighted the impor-
tance of biosignals for detecting different positive or negative
emotions and different mental states depending on the
situations. In [10], a data set was introduced for the wearable
and stress detection known asWESAD, which holds the very
basic need for the work. ,e data set was obtained from 15
subjects who had undergone an experimental process of
answering a set of question that analyzed the affective state of
mind of a subject. ,e biological signal data from the
subjects were extracted using two wearable devices, that is, a
wrist-worn wearable device and a chest-worn pod. ,e
complete experimental procedure managed to obtain the
data for 5 different activities namely, baseline condition,
amusement condition, stress condition, meditation, and
recovery. ,e study also performed a machine-learning
classification task and a comparative analysis between the

multiple algorithms that have been considered. Further-
more, the complete classification task was divided into two
categories namely, a three-class classification based on the
baseline, stress, and amusement class, and a two-class
classification based on stress and nonstress, respectively.

But, in a perceptive case, it can be widely assumed that
the decision thresholds for identifying a particular state of
mindmay not be the same across all the times for a particular
individual. ,erefore, a normalization factor was devised in
[11] to reduce the stress variability, which was primarily
maintained to check the tradeoff between the physiological
data and the biosignals of the individual. In the study, the
author collected the data from around 10 subjects but in a
different way, that is, the data were captured for 5 days using
three devices namely, wristband, smart necklace, and a chest
band. ,e manner in which the particular work is different
from the work performed by others in stress detection is that
the data extraction process is not performed in a controlled
way or in a laboratory environment rather was extracted for
the complete time of 24 hours and that too for 5 days.
,erefore, it was suggested in the work that there are many
physiological thresholds that differ from individual to in-
dividual and must be considered for determining stress in a
person. Also, the author demonstrated the usage of few
regression models to predict the amount of stress in a
person, which also presented some astounding results.

Moreover, the type of activities that are pursued by the
people also has a different perspective towards maintaining
the decision threshold. While pursuing some strenuous
activities such as driving, the amount of mental stress
threshold for a particular person increases drastically from
the normal state to themobile state.,erefore, to answer this
particular subjective scenario, a stress detection model was
developed in [12] for drivers in the real world. In the study, a
real-world driving task across 24 drivers for around 50
minutes each was performed. However, the complete study
was based on the amount of stress undertaken by the driver
on the route driven rather than the natural stress elements.
Also, in [13], a novel method for the detection of psycho-
logical arousal while driving a car using smart wearable
sensors was proposed. ,e work performed the data ex-
traction process on 11 participants who underwent a driving
simulation while wearing a wrist wearable device that
propelled out the physiological signals such as heart rate,
skin conductance, and skin temperature.,ese physiological
signals were further trained on a convolutional neural
network that outperformed other baseline neural network
models and denoising autoencoder models.

Now, as discussed previously, a wide range of stress
detection or stress classification has been performed for the
driving activity but the relevance of the sensors used for
deriving a particular outcome is one of the concerns.
,erefore, [14] performed a study for the selection of fea-
tures and also the sensors for the detection of stress in
drivers. For the model development, supervised machine-
learning classifiers were used for two different calibrations
namely, the driver at rest versus driving and driving on the
highway versus driving in the city. From the work, it was
obtained that for differentiating between rest and driving,
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heart rate, EDA (electrodermal activity), and respiration
came out to be the best sensors. And, for distinguishing
between low stress and high stress, heart rate and respiration
turned out to be the most relevant ones. However, the study
also demonstrated an interesting method for plotting the
interindividuality between the subjects by normalizing each
feature using the standard deviation of all the features across
all the patients.

,e development of a generic model for the state of mind
detection of different individuals seemed to be quite im-
portant as each individual has a wide range of different grant
roots or thresholds for a specific condition. ,erefore, for
solving this particular scenario, a study was performed by
[15] on the stress detection using the heart rate variability.
,e method produced a normalized approach to account for
the interindividual physiological difference using a baseline
methodology. In another scenario, a classificationmodel was
devised by [16] for the detection of presurgery stress in
patients, as surgery is a strenuous situation and the adverse
effects of stress on patients undergoing surgery are irre-
futable. ,e study leveraged the electrodermal activity of the
patients that were extracted using a wrist wearable. ,e data
were fetched from 41 patients who underwent different
surgeries. ,e model developed in the work was based on
adaptive partitioning of the data for stress detection where
the interindividual variability of the electrodermal activity of
a person was based on the sweat gland density and skin
thickness.

For the stress detection of individual using electroen-
cephalography (EEG), [17] published a DEAP data for
emotion analysis using EEG and physiological signals. ,e
data were generated while the subject viewed a 40-minute
clip of a video. And after the data fetch was completed, a
learning process was initiated, which resulted in classifying
the EEG signals into different emotional classes. Reference
[18] proposed and demonstrated a method for determining
the stress level for the patients suffering from dementia. ,e
study collected data from a single wearable sensor attached
to the subjects’ body to classify the stress level in 6 classes.
,e study was performed on 36 subjects, of which 30 were
normal people and 6 were patients suffering from dementia.
,e study was further validated with the observational data
of the behavioral patterns that were extracted by the clinical
staff and were matched with the threshold-based sensor data.

Furthermore, in the study regarding emotional stress
detection using EEG signals, [19] leveraged deep learning
algorithms to analyze the fluctuations of electrical activity in
the brain. ,e data used in the study were captured from the
test subjects using a NeuroSky device, while the test subjects
were listening to the music. Furthermore, into the learning
process, a backpropagation deep neural network was
implemented for stress detection, which resulted in the
accuracy of 80%.

As primarily, the studies performed for the detection of
stress predominantly used the wearable devices and non-
invasive sensors for the extraction of signals, therefore [20]
developed a system for determining stress detection using
the bioradar respiratory signals. ,e work implemented two
unique approaches, one for the acquisition of signals and

other for the engineering of the features. For the data ac-
quisition process, a noninvasive and a noncontact method
were devised, and for the engineering of the features, re-
currence quantification analysis was performed. For the
learning process, a multilayer perceptron was designed to
perform a binary classification over steady and stress class,
respectively.

,e above-highlighted work further motivated us to
explore the proposed study by developing a multichannel
deep learning architecture with regard to stress detection by
leveraging multiple biosignals and also to perform a check
upon the interindividuality of the subjects during the
learning process.

3. Data Preprocessing and Feature Extraction

For the implementation of the multichannel convolutional
neural network, multiple prerequisite steps are to be fol-
lowed. As the data are in the raw format, generalizing the
data based on the international system of units remains one
of the most primary concerns. Moreover, as the data have
been derived from the biosensors, it contains a multitude of
abstracted information, which in turn can be difficult for the
deep learning algorithms to identify [21]. ,erefore, feature
engineering on the raw data is to be performed to find the
optimum features for the deep learning algorithms to work
upon.

3.1.Data Set. ,e data set used in the work was fetched from
the UCImachine learning repository that was posted by [10].
,e data used in the work were taken from 15 subjects who
wore the RespiBAN Professional on the chest and Empatica
E4 on the wrist. ,e RespiBAN was utilized to fetch ECG,
EMG, EDA, temperature, accelerometer, and respiration
data, whereas Empatica E4 was used to fetch the BVP, EDA,
temperature, and accelerometer data. ,e 15 participants
who participated in the data acquisition process were the
graduate students of the research facility. ,e participants
chosen for the study were of the mean age of 27.5± 2.4 years
and out of the 15 participants, 12 were male and 3 were
female. For choosing the right candidates, an exclusion
principle was introduced where people with pregnancy,
chain-smoking, psychological disorders, and cardiovascular
disorders were not entertained. For the data acquisition
process, the participants were asked to avoid caffeine and
tobacco for one hour before the beginning of the procedure.
For baseline conditions, the participants were asked to sit or
stand near a table and a random magazine was provided to
them for reading. For amusement condition, the participants
were asked to watch a set of 11 funny video clips where each
video clip had a neutral interval of 5 seconds. For de-
termining the stress condition, the participants were ex-
posed to a Trier social stress test (TSST) where the
participants were asked to deliver a five-minute speech in
front of a panel of three members on personal traits focusing
on strength and weaknesses. ,e participants were provided
with a 3-minute interval for the preparation of the speech
and were not allowed to refer to their notes while delivering
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the speech. Post delivering the speech, the participants were
asked to count from 2023 to 0 and whenever the participants
made a mistake, they were asked to start over. For calibrating
the meditation condition, the participants were subjected to
a breathing exercise in closed eyes and a comfortable sitting
position. And lastly, for the recovery condition, all the
sensors were again synchronized using a double-tap gesture
and were removed from the participant’s body.

3.2. Data Conversion and Preprocessing. ,e data generated
from both the wearable devices were in raw format.
,erefore, the primary task that had to be performed for
getting ahead in the process was to perform the conversion
and generalization of the data into the SI units.

3.2.1. Electrocardiography (ECG) Data from the Chest.
,e ECG data provided by [10] was extracted from the
subject by using RespiBAN that was attached to the subjects’
chest during the complete experimental procedure. ,e raw
data of the ECG were transformed to its SI unit that is
millivolt (mV) using the following formula:

signal
Chan_Bit

− 0.5􏼠 􏼡∗VCC mV, (1)

where the signal is the value at a particular epoch, Chan_Bit
refers to the output size, which is equal to 216, andVCC refers
to the voltage input, which is equal to 3mV.

3.2.2. Electromyography (EMG) Data from the Chest. ,e
EMG data were extracted from the subject at the sampling
rate of 700Hz from the chest using the RespiBAN device.
,e raw data of the EMG were converted to its SI unit that is
microvolts (μV) using the following formula:

signal
Chan_Bit

− 0.5􏼠 􏼡∗VCC µV, (2)

where the signal is the value at a particular epoch, Chan_Bit
refers to the output size which is equal to 216 and VCC refers
to the voltage input which is equal to 3 μV.

3.2.3. Respiration Data from the Chest. ,e respiration data
were extracted from the subject’s chest using the RespiBAN
device at 700Hz of sampling frequency during the experi-
mental procedure. ,e raw data was converted to a form of
displacement percentage using the piezoelectric sensors. ,e
formula for the conversion is as follows:

signal
Chan_Bit

− 0.5􏼠 􏼡∗ 100%, (3)

where the signal is the value at a particular epoch, and
Chan_Bit refers to the output size, which is equal to 216.

3.2.4. Triaxial Accelerometer from the Wrist. ,e triaxial
accelerometer data were captured from the wrist using
Empatica E4, which sampled the data to 32Hz, and the data

provided were in the units of 1/64 g.,erefore, the following
formula ensures the conversion of the raw data from the
triaxial accelerometer to its SI units that is m/s2:

signal∗ 2∗ 9.8
128

m/s2. (4)

3.2.5. Blood Volume Pulse (BVP) from the Wrist. ,e BVP
data are also known as the photoplethysmograph (PPG)
data that were extracted from the subjects’ wrist using the
Empatica E4 at a sampling rate of 64 Hz. ,e PPG ba-
sically narrows down the change in the volume of blood
that is being caused by the pressure pulse by illuminating
the skin with a light-emitting diode and detecting the
amount of light transmitted and reflected back using a
photodiode.

3.2.6. Temperature Data from the Wrist. ,e temperature
data from the wrist were pursued using the Empatica E4
device that performed the data generation at a sampling
frequency of 4Hz. ,e data generated from the subject were
in the unit of degree Celsius.

Post conversion and generalization of the raw data to
their SI units, the next step that was undertaken was data
preprocessing. ,e data that have been fetched in the study
comes from different regions of the subject’s body, and
multiple devices have been used for the extraction of the
data. Moreover, we can observe that there is a lot of
variance in terms of the sampling rate of different signals.
,erefore, for generalizing the frequencies of all the sig-
nals, we tend to convert all the low-sampled signals to
700Hz initially. ,erefore, the triaxial accelerometer data,
blood volume pulse, and temperature data have been
upsampled to 700Hz. Now, as the signals have been
upsampled to 700Hz, therefore the data for 15 subjects
captured for 100 minutes turned out to be huge in size. So,
the signals were further downsampled to 10Hz by ag-
gregating every 70 samples together using statistical
techniques. Also, on the other hand, the labels were
downsampled to 10Hz by taking the mode of the labels for
every 70 samples. Finally, after performing all the aggre-
gations and changes in the sampling frequency, the total
number of samples of the whole data set for 15 subjects
turned out to be 573,480.,e distribution of the state of the
mind categories has been depicted in Table 1, from which
we can find out that the data set is extremely unbalanced in
nature.

3.3. Feature Engineering. ,e features that have been
engineered from the raw biosignals data are primarily varied
in three different forms. ,e first form is the one-to-one
variance or continuous feature variable. In this type of
feature, each and every sample of the data set gets an in-
dividual value and is continuous in nature. ,e second form
is the subject-wise variance where all the samples of a
particular subject are provided with the same value for a
particular feature. ,e third form of feature is based on
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minute-based variance, where all the samples of a particular
minute are provided with the same value. ,erefore, using
suchmethods usually provides the features with an optimum
variance, which can lead to a better model in terms of
generalizability and better classification performance.

,e features derived from the ECG, EMG, respiration,
and BVP are peak-based features, and the features derived
from the accelerometer are purely statistical in nature. ,e
peak-based features for the 1-dimensional biosignals are
determined by calculating the local maxima of the cycle of
the signal by leveraging the information of the threshold and
the definite distance that is needed to be maintained between
consecutive peaks.

3.3.1. Electrocardiography (ECG) Features. ,e features for
electrocardiography are basically in the form of minute-
based variance where each minute of particular feature gets a
different value. Moreover, the features defined in the pur-
pose of ECG are peak-based features as it is a primary notion
in terms of biosignals that the peaks of the signal carry a
summative value to an entire cycle.

Figure 1 shows the ECG signal of the second subject for
the first 30 seconds, which corresponds to 300 samples as the
sampling frequency of the signal was aggregated to 10Hz.
Also, in the figure, we can see the local maximas that have
been identified, which further helps to obtain multiple
features for the work.

In Table 2, we can observe four features have been
mentioned that persuasively points out the patterns in the
ECG signal of an individual. Moreover, the features de-
scribed in the work provides a varied understanding of the
subject’s nominal peak ranges in the ECG signal, which in
turn can be used to determine the state of the subject at a
particular instant of time.

3.3.2. Electromyography (EMG) Features. ,e electromy-
ography signals are well known to measure and record the
electrical coefficient of skeletal muscles that tend to define
the activation level and figures out the medical abnormalities
in a subject. ,e features calculated for the EMG signal are
minute-wise varied to offer an optimum variance across each
feature.

Figure 2 portrays the EMG signals of subject 2 for the
first 30 seconds of the experimental procedure. ,e red
markings shown in the image are the local maxima, which
primarily depict the impulsiveness of the electrical co-
efficient of the skeletal muscles of the subject. Moreover, the
peaks or the local maxima tend to identify the pattern in the

EMG signals, which can further identify the medical ab-
normalities in the subject too.

,e features demonstrated in Table 3 points out the
initial patterns of the EMG signals of a subject, also con-
sidering the features based on the peaks of the signals rules in
summative information of the signal.

3.3.3. Respiration Features. ,e respiration data have been
extracted from the chest, which shows the tone and rhythm
of the breath and also places the ratio between multiple
breath cycles. Also, the respiration data have always been
helpful in terms of determining the state of mind and in
determining the level of arousal or rate of bio-intensity of a
particular subject. ,e features derived from the respiration
data are minute-based such as ECG and EMG. Figure 3
shows the respiration data for the first 10 seconds during the
experimental analysis on subject 2.

Moreover, Table 4 points out the features that depict the
patterns across the respiration of the subject. Seeking out the
patterns allows for performing some primary anomaly de-
tection on the behavior of the subject across a particular time
interval. ,erefore, in this work, we considered the usage of
respiration signals as a feature to analyze the state of mind of
an individual.

3.3.4. Blood Volume Pulse Features. ,e BVP signal is
specifically derived from the photoplethysmogram that il-
luminates the skin to determine the changes in the light
absorption. From the peaks of BVP, we can determine the
heart rate of an individual as every time the heart pumps
blood, there is a slight change in the volumetric quantity of
blood in arteries, which can be detected using a BVP Signal.
In Figure 4, we can see the BVP data that have been plotted
for subject 2 for 20 seconds and the peak has been
determined.

,e features for BVP signal are also varied on the terms
of a minute where each minute gets a different value. Table 5
shows the features that have been used in terms of generating
impactful patterns from the BVP data. ,e trends and the
pattern of a particular subject can be readily obtained from
the features as it intends to capture the essential details of the
signal.

3.3.5. Accelerometer Features. ,e accelerometer signals are
quite reliable in terms of analyzing the level of stress in an
individual by seeking out the patterns in the movement [22].
,e features are varied with respect to the subjects where all
the samples of a particular subject are utilized for the
computation of the feature and each subject gets a unique
value. ,e features engineered from the accelerometer signal
are being depicted in Table 6 where it can be observed that
except correlation-based features, all other features are
standalone features. Only the correlation-based are based on
the interaction of two axes. Moreover, the features that have
been mentioned in Table 6 have been calculated for all the
three axes of the accelerometer.

Table 1: State of the mind category distribution.

State of the mind class Number of samples
Baseline 274,790
Amusement 117150
Stressed 65450
Meditation 37090
Recovery 79000
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4. Deep Learning

4.1. Multichannel Convolutional Neural Network
Architecture. In recent years, it has been observed how
supervised learning techniques have evolved to create
some most innovative architectures for solving a partic-
ular problem. More evidently, the rise in popularity can be
observed for the deep learning algorithms too, which has

undergone a major paradigm shift in terms of structure,
optimizer functions, and the architecture [23]. Moreover,
in the field of health care, the usage of deep learning
algorithms has created a reform in terms of image
analysis, aneurysm detection in images, biosignals, and a
lot more.

In this work, biosignals from chest and wrist wearables
have been used for the detection of the state of the mind
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Figure 1: ECG signal for 30 seconds of subject 2.

Table 2: Electrocardiography (ECG) features.

Feature name Description

ECG_Peaks ,is gives out the number of local maxima in a
minute

ECG_Average_Amplitude ,is feature gives out the average amplitude of the
local maximas in a minute

ECG_Differ_Mean ,is feature pursues the average difference between
consecutive local maxima in a minute

ECG_Resting
,is feature shows out the resting motion of a subject,
which means the number of local maxima within 10

samples that is 1 second
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Figure 2: EMG signal for 30 seconds of subject 2.
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while undergoing a stress interview. ,e major significance
of this work stands with identifying the stress segment of an
individual. For the identification and the predictions of the
state of mind, a multichannel convolutional neural network
has been used for guaranteeing the optimum generalizability
and for identifying complex patterns in the biosignals.

,e model architecture for the multichannel convolu-
tional neural network has been depicted in Figure 5. ,e
architecture shows 5 different input channels for ECG,
EMG, respiration, BVP, and accelerometer, respectively.,e
reason for going forward in separating the channels for
different biosignals lies with the fact that the initial feature
learning using convolutional neural network for a particular
biosignal is being kept discrete with respect to other bio-
signals for preventing the initial information mixing be-
tween individuals [24, 25]. ,erefore, the features
corresponding to each biosignal such as ECG (4 features),
EMG (3 features), respiration (3 features), BVP (3 features),

and an accelerometer (15 features) have been coupled re-
spectively and passed along the respective channels.

,e most distinctive aspect of convolutional neural
networks is the convolution layer, which is used for tra-
versing along the matrix of the data to create a penultimate
feature matrix of spatially oriented features using an
adaptive kernel or a filter. ,e adaptive filters for the con-
volution layers in the multiple channels are to be adjusted on
the basis of the input shape of the data matrix.,erefore, the
following equation has been used to choose the optimum
shape for the filter.

f(x, 1)� round
x

2
􏼒 􏼓 + x%2􏼔 􏼕, (5)

where (x, 1) represents the shape of the filter. ,e equation
takes the input size or the number of features used for
training as an input, which is denoted by x. ,e term x
further undergoes a summation of a round function over x

Table 3: Electromyography (EMG) features.

Feature name Description

EMG_Peaks ,is gives out the number of local maxima in a
minute

EMG_Average_Amplitude ,is feature gives out the average amplitude of the
local maximas in a minute

EMG_Differ_Mean ,is feature pursues the average difference between
consecutive local maxima in a minute
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Figure 3: Respiration signal for 100 seconds of subject 2.

Table 4: Respiration features.

Feature name Description
RESP_Peaks Number of breath cycles in a minute

RESP_Average_Amplitude ,is feature gives out the average amplitude of the
local maximas in a minute

RESP_Differ_Mean ,is feature pursues the average difference between
consecutive local maxima in a minute
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and a modulo function over x, which further provides us the
shape of the adaptive filter or the kernel. As in the work we
are dealing with 1 − D convolutions, the shape of the kernel
is always in the form of (x, 1).

,e feature maps from the first convolution layer are
further passed to the second layer of convolution without
using any subsampling layer in between. By considering the
huge spatial volume of the data that is being trained on the
CNN architecture, it can be duly argued that using sub-
sampling layer, such as pooling in between consecutive CNN
layers, can make the solution less computationally expen-
sive. But, the usage of subsampling layers for the data whose
numerical significance is more important than the spatial
arrangement possesses information loss [26]. ,erefore, in

this architecture, the usage of pooling or subsampling layers
has been avoided.

,e generated feature matrix by the 2nd convolution
layer is then subjected to a fattening layer. ,e flattening
layer first converts the feature matrix from a 2-dimensional
matrix to a 1-dimensional array because the subsequent
stages of the network contain dense layers. And, for passing a
set of data to the dense layer, it is required that the data must
be in 1-dimensional format.

After the data are subjected to a flattening layer, they is
then subjected to a dropout layer. ,e dropout layer that has
been used in the architecture is basically used for performing
regularization and it also assists the model in preventing
overfitting. ,e dropout layer allows the model to fetch for
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Figure 4: Blood volume pulse for 30 seconds of subject 2.

Table 5: Blood volume pulse features.

Feature name Description

BVP_Peaks ,is gives out the number of local maxima in a
minute

BVP_Average_Amplitude ,is feature gives out the average amplitude of the
local maximas in a minute

BVP_Differ_Mean ,is feature pursues the average difference between
consecutive local maxima in a minute

Table 6: Accelerometer signal features.

Feature Equation Description
Mean x �(1/n)􏽐i�0n(xi)

,e mean of the signal for each subject

Standard deviation σ �
�������������
1/N􏽐i�1N(xi − x)2

􏽱 ,e standard deviation of the signal is calculated for
each value

Correlation Corr�(1/(N − 1))􏽐n�1N((xi − x)(yi − y))/(std(x)∗std(y))

,e correlation coefficient between the two
accelerometer signals

Kurtosis Kurt(x) �(E[(x − x)4]/std(x)2) − 3 Kurtosis shows the peakedness of a signal

Crest factor Crest(x) �((max(x(n)))/(
�������������������
(1/(N − 1))􏽐n�1Na(n)2 ))

􏽱 It shows the signal impulsiveness with the maximum
accelerometer value
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more complex and robust feature relationships by dropping
a set of neurons from the visible and the hidden layers to
perform more randomized feature learning.

,e 6th layer in the architecture is a dense layer, which
is the fully connected layer with 64 units. ,e dense layer
allows the model to perform a linear operation on the
feature matrix that has been generated by the convolution
layer. Moreover, as the convolution layers work locally for
the spatial set of defined filters that traverses along with the
data matrix, the dense layer acts as a global layer where all
the nodes of the layer participate and are connected to all
the other nodes in the following layers. ,erefore, the

usage of dense layers in this work allows the model to
establish a global relationship between the features and
also accounts for the abstraction of more complex patterns
in the data.

,e 9th layer in the network is the concatenation layer
that allows us to combine the feature matrices from all the
channels.,e reason behind the concatenation of the feature
matrices lies in accordance with our problem statement,
which is to detect the state of the mind based upon multiple
signals.,erefore, for obtaining the decision threshold based
upon all the biosignals, the concatenation of the feature
matrices from all the channels is required.

573480 × 4 × 1 573480 × 3 × 1 573480 × 3 × 1 573480 × 3 × 1 573480 × 15 × 1
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Figure 5: Multichannel CNN architecture.
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,e subsequent layer after the concatenation layer is fully
connected layer with 32 units. ,is fully connected layer is
used for fetching out the composite relationships between
the concatenated feature matrices from the multiple chan-
nels. ,is layer majorly plots the complex features, complex
relationships, and the patterns among the combined feature
matrices that support the generation of the decision
threshold. ,e last layer or the output layer that is depicted
in Table 7 as well as in Figure 5 consists of 5 units for the 5
classes that are to be predicted namely, baseline condition,
amusement condition, stress condition, meditation, and
recovery condition. ,e final dense layer yields the pre-
diction probability of each sample for the 5 classes.

4.2. Training Procedure and Cross Validation. ,e model
training in the work used two varied procedures namely
Type I and Type II. ,e type I procedure predominantly was
utilized for tuning the hyperparameters and choosing the
most viable optimizers for increasing the model perfor-
mance. Moreover, the type I model was also used to check an
initial performance of the model for randomized sequence.
For creating the model based on type I procedure, the
complete data set was split as 70% of the data were allotted to
the training set, 20% were allotted to the validation set and
lastly, 10% were allotted to the testing set. ,e samples that
were placed on different sets of data were chosen randomly
to remove any correlation in terms of subjects. Table 8,
therefore, points out the number of samples and input
features in all the channels for training, validation, and
testing in a more constructive way for the type I procedure.

On the other hand, another procedure for training the
model was also undertaken by using a cross-validated
approach using the data of individual subjects as the
testing set. ,is particular approach was named as Type II
procedure. More particularly, for creating the type II
model, a 15-fold cross-validation was performed on the
data of 15 subjects, where the data of a particular subject
were always kept aside for creating the test set. ,e
remaining data of 14 subjects were further allocated to the
training and the validation set based on a randomized
split with a ratio of 80 : 20. ,is particular model was
developed only for the sake of understanding the capa-
bility of the model to generalize across different subjects.
Table 9 demonstrates the number of samples that were
used in the training, validation, and testing for each fold
by keeping a particular subject’s data in the testing set
only.

4.3. Model Hyperparameters, Loss, and Optimization
Functions. ,e development of a model architecture is one
of the prime components of the system that is being de-
veloped in the work. But, more advertently, the component
that works for the state-of-the-art model architectures is the
control over the training process and to optimize themodel’s
performance and outcomes.,erefore, the components such
as the model hyperparameters, loss functions, and the op-
timizer functions are discussed in the following sections.

4.3.1. Model Hyperparameters. ,e control of the training
process is generally held by the hyperparameters that are
used for the tuning of the model. As of the current scenario,
the optimization of the models by minimizing the testing
error is considered to be one of the toughest challenges. But
in an intermittent way, the tuning of the elements that reside
outside of the model actually influences the complete per-
formance of the model and can be considered as the most
challenging part in solving the problem. ,e primary reason
behind the difficulty lies with the fact that the chosen
hyperparameters must be model-specific and not training
set-specific because hyperparameters that are tuned on the
basis of the training set often develop poor model gener-
alizability. ,erefore, choosing the right set of hyper-
parameters is important to maintain the overall tradeoff
between model generalizability and optimum objective
score.

So, for the choice of right set hyperparameters, Bayesian
Sequential Model-Based Optimization (SMBO) is used.
Bayesian SMBO is a type of hyperparameter optimization
that minimizes a particular objective function by developing
a surrogate model (probability function) based on the
previous evaluation results of the objective function. ,e
basic objective function of the Bayesian SMBO is given by

P(score | hyperparamters)�
P(hyperparamters | score)P(score)

P(hyperparamters)
.

(6)

,e surrogate model is considered to be less expensive to
be optimized than the main objective function [27].
,erefore, the next set of values that are to be evaluated are
selected by using the expected improvement criterion [28].
,e expected improvement criterion is defined by:

EI(x)� E max f(x) − f
∗
, 0( 􏼁( 􏼁, (7)

where x belongs to the set of hyperparameter values and
considered to be an improvement in the value of the ob-
jective function f(x), and f∗ is the maximum value of the
objective that has been observed.

,e set of hyperparameters that were obtained by
running Bayesian SMBO on the model are

learning rate: 0.00125,

beta 1: 0.9765841,

beta 2: 0.8541287,

decay: 0.000235.

(8)

4.3.2. Model Loss Function. ,e loss function is a very in-
tegral part of the deep learning and the machine learning
models. ,e loss functions are basically used to measure the
variability between the predicted output (􏽢y) and the actual
value (y). ,e loss functions are nonnegative values that
increase the generalizing capability of the model by de-
creasing the value of the loss function [29]. ,e basic
structure of the loss functions is
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L(θ) �
1
n

􏽘

n

i�1
L y

(i)
, f x

(i)
, θ􏼐 􏼑􏼐 􏼑, (9)

where θ represents the parameters of the model, x represents
the feature matrix of the model, and y represent the actual
labels of the model.

,e loss function used in the work is the categorical
cross-entropy loss, which is also known as the SoftMax loss.
In the categorical cross-entropy loss function, each pre-
diction is compared to the actual class value and a score is

calculated. ,e score is further used to penalize the prob-
ability of the prediction based on the difference from the
actual value. ,e penalty that is offered to the predicted
value is purely logarithmic in nature where a small score is
allotted to tiny differences and the huge score is allotted to
larger differences [30]. ,e equation for the categorical
cross-entropy loss is given by

L(y, 􏽢y) � −
1
n

􏽘

n

i�1
􏽘

c

j�1
yi,jlog 􏽢yi,j􏼐 􏼑􏼐 􏼑, (10)

Table 7: Multichannel CNN architecture.

Layer Layer type Filters Size No. of parameters Output dimension Activation

1 Input — — —

ECG: (4, 1)
EMG: (3, 1)
RESP: (3, 1)
BVP: (3, 1)

ACCL: (15, 1)

—

2 Conv1D (1st layer) 128

ECG: (2, 1)
EMG: (2, 1)
RESP: (2, 1)
BVP: (2, 1)
ACCL: (8, 1)

ECG: 384
EMG: 384
RESP: 384
BVP: 384

ACCL: 1152

ECG: (3, 128)
EMG: (2, 128)
RESP: (2, 128)
BVP: (2, 128)
ACCL: (8, 128)

ReLU

3 Conv1D (2nd layer) 64

ECG: (2, 1)
EMG: (2, 1)
RESP: (2, 1)
BVP: (2, 1)
ACCL: (8, 1)

ECG: 16448
EMG: 16448
RESP: 16448
BVP: 16448
ACCL: 65600

ECG: (2, 64)
EMG: (1, 64)
RESP: (1, 64)
BVP: (1, 64)
ACCL: (1, 64)

ReLU

4 Flatten — —

ECG: 128
EMG: 64
RESP: 64
BVP: 64
ACCL: 64

—

5 Dropout — — — —

6 Dense (1st layer) 64 —

ECG: 8256
EMG: 4160
RESP: 4160
BVP: 4160
ACCL: 4160

ECG: 64
EMG: 64
RESP: 64
BVP: 64
ACCL: 64

ReLU

7 Dropout — — — — —

8 Dense (2nd layer) 32

ECG: 2080
EMG: 2080
RESP: 2080
BVP: 2080
ACCL: 2080

ECG: 32
EMG: 32
RESP: 32
BVP: 32
ACCL: 32

ReLU

9 Concatenate — 0 160
10 Dense (3rd layer) 32 160 5152 32 ReLU
11 Dense (output) 5 32 165 5 SoftMax

Table 8: Training, validation, and testing divisions for all the channels and number of features for Type I.

Channel Training samples Testing samples Validation set No. of features
ECG channel 616,413 176,118 88,059 4
EMG channel 616,413 176,118 88,059 3
Respiration channel 616,413 176,118 88,059 3
BVP channel 616,413 176,118 88,059 3
Accelerometer channel 616,413 176,118 88,059 15
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where the double sum has been performed on the ith data
samples ranging from 1 toN and the classes that range from
1 to C. ,e term yi,j in the equation corresponds to the
actual one hot encoded label at ith index of jth category. And
the term 􏽢yi,j corresponds to the prediction of the model for
the samples as ith index [30].

4.3.3. Model Optimizer Functions. ,e optimizer functions
are the ones that play an integral part in the optimization of
the internal parameters of a model. ,e internal parameters
of the type of model that is being dealt with in the work are
the weights and biases. Now, in the previous segment, we
have discussed the loss function of themodel that needs to be
minimized over the training iterations. But the loss function
is more of a mathematical way of determining what is the
error rate between the predictions and the actual labels.
,erefore, optimizer functions are used to incorporate the
loss function with the models’ internal parameters such as
weight and biases for updating the same based on the re-
sponse generated from the loss functions.

In this work, multiple optimizer algorithms were used
and a comparative analysis was performed with regard to
which optimizer function relates to the best minimization of
the categorical cross-entropy loss and ties best with the
hypothesis of the problem. ,e comparative analysis can be
seen in Table 10 between the multiple optimizer functions
and the best optimizer for the problem statement was found
to be Adam optimizer.

5. Results

,e multichannel convolutional neural network model
developed in the work aimed to provide very sound and
effective results on the basis of the classification of the
different state of minds for a particular subject. Also, the
model developed in the work provided with the results by
prompting an average recall and precision of 97.238% and
97.652%, respectively, for all the classes. ,e model also

showcased a constant tendency of precision and recall in the
random data folds of training and testing.

Moreover, with prior accordance to the hypothesis that
was developed in the initial phase stated the rules that the
precision and recall of all the class must be above the same
threshold providing a fixed classification rate in all classes.
As in the previous work [10] we have seen that the hy-
pothesis tends to prioritize more on the third class, which is
the stress, but in this work, we tend to predict the samples of
all the five classes precisely.

In Figure 6, we can see the confusion matrix that has
been derived on the basis of the classification results of the
test data set.,erefore, we can see from the confusionmatrix
that it has full accordance with the hypothesis with regard to
the correct true positives and true negatives of each class. But
in Figure 6, it can be observed that the baseline class has a
greater number of mispredictions than other classes and also
other classes have got a lot of the samples that have been
mispredicted to the baseline class. ,e primary reason be-
hind such an incident is that the features of the data sample
belonging to the baseline class have a strong correlation with
features of the data samples belonging to other classes. But,
such a scenario can be avoided by lowering the prediction
threshold from 0.2 of all the classes except the baseline class,
which in turn will reduce the mispredictions in the baseline
class. However, dampening of the prediction threshold of
the classes may lead to an invariant scenario of less gen-
eralizability of the model. ,erefore, to maintain a tradeoff
between the correct predictions and the mispredictions, the
situation is been kept as it is.

,e metrics used for evaluating the potential of the
model are precision, recall, and the F1 score of all the classes.
In the current scope of this work, the recall of each class
provides us the information, with regard to the number of
data samples that the model has correctly predicted to be of a
particular class. ,e precision on the other hand of a par-
ticular class determines the confidence of prediction to
belong to a particular class. And lastly, the F1 score suggests
the weighted average of both precision and recall and

Table 9: Number of samples for each fold of training.

,e subject in
the test set Training set Validation set Testing

set
Subject 1 656,872 164,218 59,500
Subject 2 654,184 163,546 62,860
Subject 3 654,264 163,566 62,760
Subject 4 655,896 163,974 60,720
Subject 5 649,320 162,330 68,940
Subject 6 663,744 165,936 50,910
Subject 7 661,960 165,490 53,140
Subject 8 664,144 166,036 50,410
Subject 9 661,728 165,432 53,430
Subject 10 663,824 165,956 50,810
Subject 11 650,536 162,634 67,420
Subject 12 658,360 164,590 57,640
Subject 13 654,512 163,628 62,450
Subject 14 653,984 163,496 63,110
Subject 15 659,280 164,820 56,490

Table 10: Comparative analysis of themodel performance based on
the optimizer algorithms for subject 1 in the testing set.

Metric Adam RMSprop SGD
Accuracy 97.62 90.45 92.51
Recall “baseline” 0.9861 0.8945 0.9063
Precision “baseline” 0.9703 0.9106 0.9542
F1 score “baseline” 0.9716 0.9033 0.9311
Recall “amusement” 0.9891 0.9322 0.9256
Precision “amusement” 0.9956 0.9158 0.9428
F1 score “amusement” 0.991 0.9288 0.9299
Recall “stress” 0.9832 0.9647 0.9568
Precision “stress” 0.9784 0.94 0.9487
F1 score “stress” 0.9693 0.9561 0.9509
Recall “meditation” 0.9583 0.9428 0.9467
Precision “meditation” 0.9752 0.9022 0.9788
F1 score “meditation” 0.9680 0.9312 0.9635
Recall “recovery” 0.9456 0.9365 0.9387
Precision “recovery” 0.9711 0.9174 0.9579
F1 score “recovery” 0.9620 0.9258 0.9466
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therefore takes a leap over all the wrongly predicted samples
of a particular class.

Figure 7 shows the training and validation convergence
of the model. ,emodel iteration that has been shown in the
figure is the final model that is trained with the hyper-
parameters mentioned in Section 4.3.1 and the optimizer
algorithm Adam.

Table 10 puts forward the classification report of the
model with respect to different optimizer algorithms that
were used to optimize the internal parameters of the model.
From the table, it can be seen that all the three optimization
algorithms namely, Adam, RMSprop, and SGD provided us
with decent results. But, for the creation of the final binary
serialized object of the model, Adam was selected. ,e
reason for choosing Adam in this scenario lies behind a few
reasons:

(i) ,e overall performance of the Adam Optimized
model is better than the other two.

(ii) ,e model optimization is very much time-efficient.
(iii) ,e model optimization is computationally

efficient.
(iv) As the type of data, we are dealing within the work,

there is no prospect for an upper bound or lower
bound of a particular type of biosignal. ,erefore,
for reproducibility of the model in the future, it may
happen that the gradients might change for a
particular type of subject. So, having an algorithm to
optimize the model which is not varied by the
rescaling of the gradient will turn out to be useful
[31].

Table 11 plots the comparative analysis between the
performance of the multichannel convolutional neural
network and conventional single-channel convolutional
neural network. Both the networks have been trained with
the same optimizer function that is Adam but for the
single-channel convolutional neural network, a different
set of hyperparameters were used, which were derived by
using the same Bayesian SMBO. From Table 11, it can be
evidently observed that the single-channel also performed
respectively well. But, the performance of the multichannel
convolutional neural outperformed that of the single-
channel convolutional network. Moreover, in the

“meditation class” of the single-channel convolutional
neural network, it can be observed that the recall is pretty
low than other classes. ,e lower value of the recall for the
meditation class is because there are comparatively a
smaller number of samples in the meditation class than
other classes. ,erefore, it was found that the multichannel
convolutional neural network overcomes the hurdle re-
garding such imbalanced classification where there is an
identifiable disparity in the number of samples across the
classes.

Table 12 depicted below further shows the model per-
formance of the multichannel convolutional neural network
model, which was trained using the cross-validated ap-
proach or type II model. ,e type II model seemed to
provide decent results. But, we can see that there is quite a
difference between the performance level depicted in Ta-
ble 11 by the Type I model where the training, validation,
and testing sets were randomized samples and in Table 12 by
the Type II model where the sample of a particular subject is
only on the testing set. ,e primary reason behind this
deviation in the model performance is that every subject has
altogether different kind of thresholds when it comes to
biosignal-based predictions.

6. Discussion

In the present world, as the life of people have changed in a
varied way where they are much suited to the new cus-
tomized lifestyle and the disorientation of the biological
clock, it has been very necessary and of paramount im-
portance that the state of mind and health must be
maintained properly. But, people these days have turned
out to be more reluctant to spend their time with the
therapists or the doctors for pursuing a proper check on
their health. ,erefore, with the emergence of smart
healthcare, the process could be very much maintained and
measured using the wearable devices that have grown into
much affluence in society. We know that the smart
wearables that have presently arrived in the sector support
multiple biosignals of the user such as movement, heart
rate variability, pulse pressure, vascular respiration, per-
fusion index, etc. ,erefore, these biosignals, if properly
monitored for a particular subject, will be able to identify
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Figure 6: Confusion matrix of the multichannel CNN model.
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the health conditions as well as will be able to detect the
primary anomalies in the health.

,e data that have been used in the work have been
properly curated from the wearable device worn by the
subject during the experimental process for detecting the
certain state of mind that can be very much useful to
understand the mental conditions of the subject. In the
data amalgamation process, five key classes were noted
namely, recovery, baseline, stress, amusement, and med-
itation. And for the classification purpose, multiple bio-
signals were utilized such as accelerometer,
electrocardiography, electromyography, blood volume
pulse, and body temperature. ,e signals were further
analyzed to perform optimum feature engineering where
the summative information of complete signals is extracted
using the maxima and the minima of the signal at a
particular instance of time.

For the classification purpose, a multichannel con-
volutional neural network architecture was developed in

the work. ,e primary concern for the development of a
multichannel architecture is that as we have different
biosignals from different parts of the body, we tried to avoid
the initial intermixing of the features of different biosignals.
But later on, at the penultimate region, the feature matrixes
conceived by different channels are concatenated for
pursuing an integrated decision threshold for the detection
of the state of the mind from all the biosignals. But at a
certain point, a question can be raised that “Why deep
learning has been used for solving the particular problem?”
,e answer to the question lies in the fact that as the
biosignals are of an abstract nature and there are multiple
complex interactions and patterns in the data, manually
engineering the right features would be very difficult.
,erefore, in this work, deep learning is performed as the
method has the ability to produce extremely complex
feature representations and also allows model re-
producibility, which will allow us to perform incremental
learning if a certain new set of data arrives.
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Figure 7: Model training process using Adam optimizer for 100 epochs.

Table 11: Comparative analysis of the model performance for multichannel CNN and single-channel CNN for subject 1 in the testing set.

Metric Multi channel CNN Single channel CNN
Accuracy 97.62 87.53
Recall “baseline” 0.9861 0.9524
Precision “baseline” 0.9703 0.9347
F1 score “baseline” 0.9716 0.9435
Recall “amusement” 0.9891 0.9311
Precision “amusement” 0.9956 0.9006
F1 score “amusement” 0.991 0.9132
Recall “stress” 0.9832 0.8991
Precision “stress” 0.9784 0.9157
F1 score “stress” 0.9693 0.9036
Recall “meditation” 0.9583 0.7658
Precision “meditation” 0.9752 0.8631
F1 score “meditation” 0.9680 0.8122
Recall “recovery” 0.9456 0.9136
Precision “recovery” 0.9711 0.9217
F1 score “recovery” 0.9620 0.9178
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7. Conclusion

In the proposed study, a multichannel convolutional neural
network architecture was developed for the detection of state
of the mind by leveraging biosignals from the wearable
devices.,e different types of biosignals used in the work are
electrocardiography, electromyography, respiration, blood
volume pulse, and accelerometer. ,e model developed
performed pretty well by prompting an average recall and
precision of 97.238% and 97.652%, respectively, across all
the classes. In the work, a comparative analysis was per-
formed for choosing the right optimizer by keeping in mind
the performance of the optimizer with respect to the cost of
computation, time efficiency, and model reproducibility.
Finally, it was found that the model optimized with Adam
optimizer performed the best with respect to the other
optimizer functions.

To conclude, the outcome of the study is very motivating.
However, in the area of classification of the state of the mind
and the analysis of the biosignals, there is still a huge scope
for further research. ,erefore, it is very much recom-
mended to investigate multiple ways of solving the particular
type of problem and to understand the complete capability
of multichannel deep learning architectures, which will
further impact the society in a novel and a positive way.
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