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A. Eĺıas-Zúñiga, Mexico
Anders Eriksson, Sweden
Vedat S. Erturk, Turkey
Moez Feki, Tunisia
Ricardo Femat, Mexico
Robertt A. Valente, Portugal
C. Fuerte-Esquivel, Mexico
Zoran Gajic, USA
Ugo Galvanetto, Italy
Furong Gao, Hong Kong
Xin-Lin Gao, USA
Behrouz Gatmiri, Iran
Oleg V. Gendelman, Israel
Didier Georges, France
Paulo B. Gonçalves, Brazil
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Functionally graded structures such as beams, plates, and
shells are those in which the volume fractions of two or
more materials are varied continuously as a function of
position along certain direction(s) of the structure to achieve
a required function. Due to the dramatic increase in the
use of functionally graded materials (FGMs) in a variety
of engineering structures (e.g., mechanics, aerospace, auto-
motive, nuclear, civil engineering, and medical prosthetics),
as typical and principal mathematical issues, modeling and
optimization of functionally graded structures have attracted
the attention of many scientists in recent years for predicting
the mechanical behavior of such structures [1–9].

This special issue collects selected papers on modeling
aspects and the analysis of structures embedding functionally
graded materials (FGMs).

S. Topal and S. Dag presented in their paper two different
𝐽𝑘-integral-based computational techniques, which can be
used to conduct fracture mechanics analysis of orthotropic
functionally graded materials subjected to hygrothermal
stresses. The methods presented in this paper are shown to
be effective ways of taking into account hygrothermal effects
and evaluating fracture mechanics parameters and thus can
be used to solve fracture and fatigue problems involving
complex geometric configurations and loading conditions.

In the paper by S. R. Mahmoud et al., the effect of
nonhomogeneity and rotation on the free vibrations for
elastodynamic problem of orthotropic hollow sphere is dis-
cussed. Comparisons aremade with the result in the presence
and absence of nonhomogeneous and rotation in cases of

orthotropic hollow sphere. An analytic solution method,
without integral transformation, is developed in the paper
by S. Y. Lee and C. C. Huang to find the exact solutions
for transient heat conduction in functionally graded circular
hollow cylinders with time-dependent boundary conditions.
Limiting studies and numerical analyses are given to illustrate
the efficiency and the accuracy of the analysis. Y. Yilmaz
et al. introduced a localized differential quadrature method
(LDQM) for buckling analysis of axially functionally graded
nonuniform columns with elastic restraints. To the best of
these authors’ knowledge, in the open literature, LDQM has
not been applied before to solutions of generalized eigen-
value problems governed by fourth-order variable coefficient
differential equations. Comparison of the results obtained
by Y. Yilmaz et al. shows the potential of the LDQM for
solving such generalized eigenvalue problems governed by
fourth-order variable coefficient differential equations with
high accuracy and less computational effort.

Nonlocal elasticity model for bending analysis of sigmoid
functionally graded materials (S-FGMs) nanoscale plates
is presented in the paper by W. Y. Jung and S. C. Han
using a first-order shear deformation theory and Hamilton’s
principle. The material properties of S-FGM nanoscale plate
are assumed to vary according to sigmoid function (two
power law distributions) of the volume fraction of the
constituents. The effects of nonlocal parameters, power law
index, aspect ratio, elastic modulus ratio, side-to-thickness
ratio, and loading type on bending and vibration response
are investigated in detail. The work presented in the paper
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by W. Y. Jung and S. C. Han can be helpful while designing
nanoelectromechanical system and microelectromechanical
system devices using the S-FGM nanoscale plates. In the
paper of F. Tornabene and A. Ceruti, the generalized differ-
ential quadrature method has been presented as a means,
to investigate the static and dynamic analysis of functionally
graded and laminated composite doubly curved shells and
panels. The mechanical models presented by F. Tornabene
and A. Ceruti, is based on the so-called first-order shear
deformation theory (FSDT). Three different optimization
schemes and methodologies are implemented. The particle
swarm optimization, Monte Carlo, and genetic algorithm
approaches have been applied to define the optimum volume
fraction profile for optimizing the first natural frequency
and the maximum static deflection of the considered shell
structure.

In the paper presented by A. E. Alshorbagy et al., the
boundary value problem of the uncoupled thermoelastic
behavior of functionally graded plate is formulated and
solved. First, the temperature distribution is predicted to
be used in the thermoelastic analysis of functionally graded
plate. Then, a finite element model based on the first-
order shear deformation plate (FSDT) theory is proposed,
accounting for the exact neutral plane position, for modeling
the functionally graded plates. A comparative study is per-
formed to illustrate the effect of considering the neutral plane
position.

The paper presented by S. Kim et al. deals with the
thermoelastic characteristics of circular disk TBC specimens
with and without a functionally graded layer between the
top and bond coats. Two partial differential equations are
derived based on thermoelastic theory, and the thermoelastic
characteristics, such as temperature distribution profiles, dis-
placement, and stresses, are determined through mathemat-
ical approaches. Because of the complexity of the governing
equations, a finite volume approach is adopted to analyze the
thermoelastic characteristics.

The papers published in this special issue only discuss
some of the most significant topics about the mathematical
modeling and optimization of functionally graded structures.
However, the included papers present significant contribu-
tions and promising methods.
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This paper puts forward two different 𝐽𝑘-integral-based methods, which can be used to perform mixed-mode fracture analysis
of orthotropic functionally graded materials subjected to hygrothermal stresses. The first method requires the evaluation of both
components of 𝐽𝑘-integral, whereas the second method employs the first component 𝐽1 and the asymptotic crack tip displacement
fields. Plane orthotropic hygrothermoelasticity is the basic theory behind the 𝐽𝑘-integral formulation, which is carried out by
assuming that all material properties are functions of the spatial coordinates. Developed procedures are implemented by means of
the finite elementmethod and integrated into a general purpose finite element analysis software. Temperature and specificmoisture
concentration fields needed in the fracture analyses are also computed through finite element analysis. Each of the developed
methods is utilized in conjunction with the superposition technique to calculate the hygrothermal fracture parameters. An inclined
crack located in a hygrothermally loaded orthotropic functionally graded layer is examined in parametric analyses. Comparisons
of the results generated by the proposedmethods do indicate that both methods lead to numerical results of high accuracy and that
the developed form of the 𝐽𝑘-integral is domain independent. Further results are presented so as to illustrate the influences of crack
inclination angle, crack length, and crack location upon the modes I and II stress intensity factors.

1. Introduction

Functionally graded materials (FGMs) are heterogeneous
composite materials, which were originally proposed to be
employed in high temperature applications as protective
coatings [1]. However, since then, the concept of introducing
gradations in certain physical properties has been realized
in a number of other technological applications such as
biomedical materials [2], high-performance cutting tools [3],
surfaces possessing improved contact-damage resistance [4],
and solid oxide fuel cells [5]. The heterogeneity of FGMs
stems from the fact that volume fractions of the constituents
vary along a particular direction in a predetermined manner.
Certain kinds of functionally graded materials are known
to be orthotropic in addition to being heterogeneous. For
example, FGMs generated by means of plasma spray forming
have a lamellar structure and thus contain weak cleavage
planes parallel to the bounding planes [6]. Graded materials
produced through the use of electron beam physical vapor

deposition technique on the other hand have a columnar
structure with weak cleavage planes perpendicular to the
boundaries [7]. Moreover, fiber-reinforced composites pos-
sessing a variable fiber volume fraction can be considered as
orthotropic functionally graded materials [8].

Considerable emphasis has been placed on fracture
mechanics in research studies pertaining to orthotropic func-
tionally gradedmaterials due to the low fracture toughness of
commonly used constituents such as ceramics and plastics.
Both analytical and computational methods have been set
forth for the purpose of evaluating fracture parameters for
orthotropic FGMs. Analytical methods presented are almost
invariably based on the approach of singular integral equa-
tions [9, 10]. Among the computational methods applied for
fracture analysis of orthotropic FGMs, we can mention dis-
placement correlation technique [11], modified crack closure
method [12], interaction integral method [13], continuum
shape sensitivity technique [14], and the 𝐽𝑘-integral approach
[15]. In the studies on fracture analysis of orthotropic FGMs
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in the literature, the graded medium is assumed to be
under either mechanical or thermal loading. However, for
certain types of orthotropic functionally graded materials,
such as polymer-matrix FGMs with variable fiber spacing, in
addition to the mechanical and thermal effects, hygroscopic
stresses are also critical. Hygroscopic stresses are induced due
to changes in moisture concentration within the polymeric
matrix; andwhen these stresses are sufficiently large theymay
lead to fracturemechanics-related problems such as cracking,
delamination, or fatigue. In many instances, thermal and
hygroscopic effects act simultaneously on the structure. In
these cases, the combined loading due to changes in temper-
ature and moisture concentration is generally referred to as
hygrothermal loading.

This paper presents two different 𝐽𝑘-integral-based com-
putational techniques, which can be used to conduct frac-
ture mechanics analysis of orthotropic functionally graded
materials subjected to hygrothermal stresses. The first method
developed makes use of both components 𝐽1 and 𝐽2 of the
𝐽𝑘-integral vector, whereas in the second method the first
component 𝐽1 is utilized in conjunction with the asymptotic
crack tip displacement fields. The formulation of the 𝐽𝑘-
integral is carried out by considering the constitutive rela-
tions of plane orthotropic hygrothermoelasticity. All material
properties are assumed to be functions of the spatial coor-
dinates in the derivations. The formulation yields a domain
independent form for the 𝐽𝑘-integral, which comprises area
and line integrals. Developed procedures are implemented
by means of the finite element method and integrated into
the general purpose finite element analysis software ANSYS
[16]. Parametric analyses are performed by considering a
hygrothermally loaded orthotropic functionally graded layer
that contains an inclined edge crack. Comparisons of the
hygrothermal fracture parameters computed by the proposed
methods indicate that both techniques are capable of produc-
ing numerical results of high accuracy. Additional numerical
results presented illustrate the influences of factors such as
crack length, crack location, and inclination angle on modes
I and II stress intensity factors (SIFs).

The organization of the paper is as follows: In Section 2,
we outline the formulation of 𝐽𝑘-integral; Section 3 provides
the details of the two different fracture analysis methods;
finite element analysis techniques used in the implementa-
tion are elucidated in Section 4; and numerical results are
presented in Section 5. Finally, the paper concludes with
Section 6, which contains our final remarks.

2. Formulation of the 𝐽𝑘-Integral
for Orthotropic FGMs Subjected to
Hygrothermal Loading

Figure 1 depicts an inclined edge crack located in an
orthotropic functionally graded material that is subjected to
hygrothermal stresses.Themedium is assumed to be in a state
of either plane stress or strain. 𝑥 and 𝑦 axes are aligned along
the principal directions of orthotropy; and the 𝑥1 and 𝑥2 axes
lie parallel and perpendicular to the crack plane, respectively.
Thus, 𝜙 in the figure represents the angle of inclination of

x2
x1

x

y

A

Ey

Ex

Orthotropic FGM

𝜙

Figure 1: An inclined edge crack in an orthotropic functionally
graded medium.

the edge crack with respect to the principal direction of
orthotropy 𝑥. 𝐴 is an arbitrary area enclosing the crack tip.
All material properties are assumed to be functions of the
spatial coordinates.Thus, the medium possesses the property
of being both orthotropic and inhomogeneous.

Constitutive relations of plane orthotropic hygrother-
moelasticity are expressed as follows in the principal coor-
dinate system:

[

[

𝜀𝑥𝑥
𝜀𝑦𝑦
2𝜀𝑥𝑦

]

]

= [

[

𝑐11 𝑐12 0

𝑐12 𝑐22 0

0 0 𝑐66

]

]

[

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

]

]

+ [

[

𝑑1
𝑑2
0

]

]

Δ𝑇 + [

[

𝑒1
𝑒2
0

]

]

Δ𝑐.

(1)

In this equation, 𝜀𝑖𝑗 and 𝜎𝑖𝑗, respectively, stand for strain and
stress;Δ𝑇 = 𝑇−𝑇𝑟 andΔ𝑐 = 𝑐−𝑐𝑟, where𝑇 is the temperature,
𝑐 is the specific moisture concentration, 𝑇𝑟 is the reference
temperature, and 𝑐𝑟 designates the reference specificmoisture
concentration. For plane stress, entries of the matrices are
given by

𝑐11 =
1

𝐸𝑥
, 𝑐12 = −

]𝑥𝑦
𝐸𝑥

,

𝑐22 =
1

𝐸𝑦
, 𝑐66 =

1

𝐺𝑥𝑦
,

(2a)

𝑑1 = 𝛼𝑥, 𝑑2 = 𝛼𝑦,

𝑒1 = 𝛽𝑥, 𝑒2 = 𝛽𝑦,

(2b)

and for plane strain

𝑐11 =
1 − ]𝑧𝑥]𝑥𝑧

𝐸𝑥
, 𝑐12 = −

]𝑥𝑦 + ]𝑥𝑧]𝑧𝑦
𝐸𝑥

,

𝑐22 =
1 − ]𝑦𝑧]𝑧𝑦

𝐸𝑦
, 𝑐66 =

1

𝐺𝑥𝑦
,

(3a)

𝑑1 = ]𝑧𝑥𝛼𝑧 + 𝛼𝑥, 𝑑2 = ]𝑧𝑦𝛼𝑧 + 𝛼𝑦,

𝑒1 = ]𝑧𝑥𝛽𝑧 + 𝛽𝑥, 𝑒2 = ]𝑧𝑦𝛽𝑧 + 𝛽𝑦.

(3b)

In (2a), (2b), (3a), and (3b), 𝐸𝑖, ]𝑖𝑗, and 𝐺𝑥𝑦 are material
parameters of plane orthotropic elasticity, and 𝛼𝑖 and 𝛽𝑖 are
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thermal and moisture expansion coefficients, respectively. In
general, all material parameters are functions of the spatial
coordinates in a graded medium. Moreover, the following
relations are valid for an orthotropic material:

]𝑦𝑥
𝐸𝑦

=
]𝑥𝑦
𝐸𝑥

,
]𝑧𝑥
𝐸𝑧

=
]𝑥𝑧
𝐸𝑥

,

]𝑧𝑦
𝐸𝑧

=
]𝑦𝑧
𝐸𝑦

.

(4)

Constitutive relations in the crack tip coordinate system
comprising the axes 𝑥1 and 𝑥2 are derived by considering
coordinate transformation rules valid for the strain and stress
tensors. These constitutive relations are obtained as

[

[

𝜀11
𝜀22
2𝜀12

]

]

= [

[

𝑎11 𝑎12 𝑎16
𝑎12 𝑎22 𝑎26
𝑎12 𝑎26 𝑎66

]

]

[

[

𝜎11
𝜎22
𝜎12

]

]

+ [

[

𝑔1
𝑔2
𝑔12

]

]

Δ𝑇 + [

[

ℎ1
ℎ2
ℎ12

]

]

Δ𝑐.

(5)

The entries of the compliance, thermal expansion, and mois-
ture expansion matrices are provided in the appendix. Note
that all of the entries are derived in terms of the inclination
angle 𝜙 shown in Figure 1.

The structure of the constitutive relation (5) indicates
that the principle of superposition can be used to generate
the mixed-mode stress intensity factors corresponding to
hygrothermal loading.The results due to thermal loading can
be found by assuming Δ𝑐 = 0, and the results corresponding
to hygroscopic loading can be calculated by taking Δ𝑇 = 0.
Utilizing the principle of superposition, these two separate
sets of results can be combined to evaluate the results for
hygrothermal loading. Thus, it suffices to formulate the
problem in terms ofΔ𝑇 and thermal expansionmatrix entries
𝑔1, 𝑔2, and 𝑔12. When the results for hygroscopic loading are
to be calculated, these quantities need to be replaced byΔ𝑐,ℎ1,
ℎ2, and ℎ12. The respective sums of the modes I and II stress
intensity factors are the final results valid for hygrothermal
loading. In what follows, we provide the formulation for
thermal loading, which can be used to generate the numerical
results for both thermal and hygroscopic loading cases.

For the crack depicted in Figure 1, the 𝐽𝑘-integral is
derived to be in the following form:

𝐽𝑘 = ∬
𝐴

{𝜎𝑖𝑗𝑢𝑖,𝑘 −𝑊𝛿𝑘𝑗} 𝑞,𝑗𝑑𝐴 −∬
𝐴

(𝑊,𝑘)expl𝑞 𝑑𝐴

− ∫
Γ
𝑐

(𝑊
+
−𝑊
−
) 𝛿2𝑘𝑞 𝑑𝑠, (𝑖, 𝑗, 𝑘 = 1, 2) .

(6)

This equation is valid in the local coordinate system 𝑥1-𝑥2. 𝑢𝑖
here stands for the displacement vector; 𝑊 designates the
mechanical strain energy density function; 𝛿𝑘𝑗 is Kronecker
delta; 𝑞 is a piecewise smooth function that is equal to unity
at the crack tip and zero on the circumference of area 𝐴;
(𝑊,𝑘)expl denotes the explicit derivative of 𝑊; and s is the
arc length. Γ𝑐 is the straight line that is initiated at the point
where 𝐴 intersects crack faces and terminates at the origin.
The outcome of the analysis is independent of the size and

Γc

𝜃

𝜙𝛿

x2

x1

x

y

R

A

O

Inclined crack

s

r

Figure 2: Integration domains used in the evaluation of the 𝐽𝑘-
integral.

shape of area𝐴used around the crack tip. In the present study,
𝐴 is specified as a circular areawith its center lying at the crack
tip. The 𝑞-function utilized is in the form

𝑞 (𝑥1, 𝑥2) = 1 −

√𝑥2
1
+ 𝑥2
2

𝑅
,

(7)

where 𝑅 is the radius of area 𝐴. The integration domains 𝐴
and Γ𝑐 are depicted in Figure 2.

Although (6) is to be evaluated in the local coordinate
system 𝑥1-𝑥2, the scalar quantities 𝑊 and (𝑊,𝑘)expl can be
computed in any coordinate system since they are indepen-
dent of coordinate transformation. In this study, these two
quantities are computed in the principal coordinate system
for the sake of simplicity. For plane stress, the expression of
𝑊 in the principal coordinate system is derived as

𝑊 =
𝐸
2

𝑥
(𝜀𝑥𝑥 − 𝛼𝑥Δ𝑇) + ]𝑥𝑦𝐸𝑥𝐸𝑦 (𝜀𝑦𝑦 − 𝛼𝑦Δ𝑇)

2 (𝐸𝑥 − ]2
𝑥𝑦
𝐸𝑦)

× (𝜀𝑥𝑥 − 𝛼𝑥Δ𝑇) + 2𝐺𝑥𝑦𝜀
2

𝑥𝑦

+
]𝑥𝑦𝐸𝑥𝐸𝑦 (𝜀𝑥𝑥 − 𝛼𝑥Δ𝑇) + 𝐸𝑥𝐸𝑦 (𝜀𝑦𝑦 − 𝛼𝑦Δ𝑇)

2 (𝐸𝑥 − ]2
𝑥𝑦
𝐸𝑦)

× (𝜀𝑦𝑦 − 𝛼𝑦Δ𝑇) ,

(8)

and for plane strain𝑊 reads

𝑊 =
𝐸𝑥𝜀𝑥𝑥

2𝐷

× {(1 −
𝐸𝑦]𝑥𝑧]

2

𝑧𝑦

𝐸𝑥]𝑧𝑥
)𝐸𝑥𝜀𝑥𝑥 + (]𝑥𝑦 + ]𝑥𝑧]𝑧𝑦) 𝐸𝑦𝜀𝑦𝑦}

+ 2𝐺𝑥𝑦𝜀
2

𝑥𝑦
+
𝐸𝑥𝐸𝑦𝜀𝑦𝑦

2𝐷
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× {(]𝑥𝑦 + ]𝑥𝑧]𝑧𝑦) 𝜀𝑥𝑥 + (1 − ]𝑧𝑥]𝑥𝑧) 𝜀𝑦𝑦}

+
𝐸𝑥]𝑧𝑥
2]𝑥𝑧

𝛼
2

𝑧
(Δ𝑇)
2
,

(9a)

𝐷 = 𝐸𝑥 (1 − ]𝑧𝑥]𝑥𝑧) − 𝐸𝑦(
]2
𝑧𝑦
]𝑥𝑧

]𝑧𝑥
+ ]2
𝑥𝑦

+ 2]𝑥𝑦]𝑥𝑧]𝑧𝑦) ,

(9b)

𝜀𝑥𝑥 = 𝜀𝑥𝑥 − (]𝑧𝑥𝛼𝑧 + 𝛼𝑥) Δ𝑇,

𝜀𝑦𝑦 = 𝜀𝑦𝑦 − (]𝑧𝑦𝛼𝑧 + 𝛼𝑦) Δ𝑇.

(9c)

The explicit derivatives of the mechanical strain energy
density function are derived by considering (8), (9a), (9b),
and (9c). For the cases of plane stress and strain, these
derivatives are given by

(
𝜕𝑊

𝜕𝑥𝑘
)

expl
=

𝜕𝑊

𝜕𝐸𝑥

𝜕𝐸𝑥

𝜕𝑥𝑘
+
𝜕𝑊

𝜕𝐸𝑦

𝜕𝐸𝑦

𝜕𝑥𝑘
+

𝜕𝑊

𝜕]𝑥𝑦

𝜕]𝑥𝑦
𝜕𝑥𝑘

+
𝜕𝑊

𝜕𝐺𝑥𝑦

𝜕𝐺𝑥𝑦

𝜕𝑥𝑘
+
𝜕𝑊

𝜕𝛼𝑥

𝜕𝛼𝑥

𝜕𝑥𝑘
+
𝜕𝑊

𝜕𝛼𝑦

𝜕𝛼𝑦

𝜕𝑥𝑘

+
𝜕𝑊

𝜕 (Δ𝑇)

𝜕 (Δ𝑇)

𝜕𝑥𝑘
,

(𝑘 = 1, 2) for plane stress,

(10a)

(
𝜕𝑊

𝜕𝑥𝑘
)
expl

=
𝜕𝑊

𝜕𝐸𝑥

𝜕𝐸𝑥

𝜕𝑥𝑘
+
𝜕𝑊

𝜕𝐸𝑦

𝜕𝐸𝑦

𝜕𝑥𝑘
+

𝜕𝑊

𝜕]𝑧𝑦

𝜕]𝑧𝑦
𝜕𝑥𝑘

+
𝜕𝑊

𝜕]𝑥𝑧

𝜕]𝑥𝑧
𝜕𝑥𝑘

+
𝜕𝑊

𝜕]𝑥𝑦

𝜕]𝑥𝑦
𝜕𝑥𝑘

+
𝜕𝑊

𝜕]𝑧𝑦

𝜕]𝑧𝑦
𝜕𝑥𝑘

+
𝜕𝑊

𝜕𝐺𝑥𝑦

𝜕𝐺𝑥𝑦

𝜕𝑥𝑘
+
𝜕𝑊

𝜕𝛼𝑥

𝜕𝛼𝑥

𝜕𝑥𝑘
+
𝜕𝑊

𝜕𝛼𝑦

𝜕𝛼𝑦

𝜕𝑥𝑘

+
𝜕𝑊

𝜕𝛼𝑧

𝜕𝛼𝑧

𝜕𝑥𝑘
+

𝜕𝑊

𝜕 (Δ𝑇)

𝜕 (Δ𝑇)

𝜕𝑥𝑘
,

(𝑘 = 1, 2) for plane strain.

(10b)

Derivatives of 𝑊 with respect to the material parameters
and the temperature difference in (10a) and (10b) are found
in closed form. The remaining partial derivatives in these
equations, that is, the derivatives of the material properties
and the temperature difference with respect to spatial coor-
dinates, are calculated numerically during the finite element
computations.

3. 𝐽𝑘-Integral-Based Methods

In this section, we elucidate two different 𝐽𝑘-integral-based
methods, which can be employed to compute mixed-mode
stress intensity factors for orthotropic functionally graded
materials under hygrothermal stresses. For both thermal
and hygroscopic loading cases, the formulation given in

the previous section is applicable provided that the appropri-
ate loading function (i.e., Δ𝑇 or Δ𝑐) and material properties
are considered. Once mixed-mode stress intensity factors
are computed for thermal or hygroscopic loading cases, the
resultant SIFs can be obtained by combining the separate
stress intensity factors evaluated for these loads.Themethods
presented in this section allow the evaluation of the mixed-
mode SIFs for both thermal and hygroscopic types of loading.
The first method makes use of both components of the 𝐽𝑘-
integral, 𝐽1 and 𝐽2, whereas in the second method we utilize
the first component 𝐽1 and the asymptotic displacement
fields.

3.1. Method I. In this method, we use the relations between
the components of the 𝐽𝑘-integral and the mixed-mode stress
intensity factors 𝐾I and 𝐾II. Equation (6) indicates that
the first component of the 𝐽𝑘-integral comprises solely area
integrals, while the second component 𝐽2 involves both area
and line integrals.The expression of 𝐽2 is further simplified by
separating the line integral into two parts, one evaluated over
a region away from the crack tip and the other evaluated near
the crack tip. The integral evaluated over a domain near the
crack tip is determined in closed form.Then, the components
of the 𝐽𝑘-integral are written as follows:

𝐽1 = ∬
𝐴

{𝜎𝑖𝑗𝑢𝑖,1 −𝑊𝛿1𝑗} 𝑞,𝑗 𝑑𝐴

−∬
𝐴

(𝑊,1)expl𝑞 𝑑𝐴 (𝑖, 𝑗 = 1, 2) ,

(11a)

𝐽2 = ∬
𝐴

{𝜎𝑖𝑗𝑢𝑖,2 −𝑊𝛿2𝑗} 𝑞,𝑗 𝑑𝐴 −∬
𝐴

(𝑊,2)expl𝑞 𝑑𝐴

− ∫

𝑅−𝛿

0

(𝑊
+
−𝑊
−
) 𝑞 𝑑𝑠 − √

2𝛿

𝜋
𝐶 (𝑖, 𝑗 = 1, 2) ,

(11b)

where 𝛿 is the length of the domain over which the line
integral is evaluated analytically. This length is also depicted
in Figure 2. The term 𝐶 in (11b) is derived in the form

𝐶 = −2𝑎
tip
11
𝜎
0

11
{(𝛼1𝜂2 + 𝛼2𝜂1)𝐾I + (𝜂1 + 𝜂2)𝐾II} , (12)

where 𝜎0
11

is the constant term in the asymptotic expansion
of the stress component 𝜎11 and 𝑎

tip
11

is the value of 𝑎11 at the
crack tip. 𝑎11 is given by (A.1a) for plane stress and by (A.2a)
for plane strain in the appendix. 𝛼𝑖 and 𝜂𝑖 are the real and
imaginary parts of the two roots of the characteristic equation

𝑎
tip
11
𝑠
4
− 2𝑎

tip
16
𝑠
3
+ (2𝑎

tip
12

+ 𝑎
tip
66
) 𝑠
2
− 2𝑎

tip
26
𝑠 + 𝑎

tip
22

= 0, (13)

whose imaginary parts are positive. 𝑎tip
𝑖𝑗

in this equation are
the crack-tip values of 𝑎𝑖𝑗. The expressions of 𝑎𝑖𝑗 are provided
in the appendix for both plane stress and strain.

𝐽1 given by (11a) consists of only area integrals and can be
evaluated numerically in a straightforward manner by using
theGauss-quadraturemethods.However, the expression of 𝐽2
given by (11b) contains 𝜎0

11
,𝐾I, and𝐾II, which are unknowns.



Mathematical Problems in Engineering 5

In order to be able to evaluate 𝐽2, we define a new variable 𝐽2
as follows:

𝐽2 = ∬
𝐴

{𝜎𝑖𝑗𝑢𝑖,2 −𝑊𝛿2𝑗} 𝑞,𝑗𝑑𝐴 −∬
𝐴

(𝑊,2)expl𝑞 𝑑𝐴

− ∫

𝑅−𝛿

0

(𝑊
+
−𝑊
−
) 𝑞 𝑑𝑠.

(14)

For a given loading condition, 𝐽2 is calculated for two
different values of 𝛿. Denoting these 𝛿 values by 𝛿1, 𝛿2, the
corresponding 𝐽2 values by 𝐽

1

2
, 𝐽2
2
and considering (11b), 𝐽2 is

expressed as

𝐽2 =
1

√𝛿2/𝜋 − √𝛿1/𝜋

{

{

{

√
𝛿2

𝜋
𝐽
1

2
− √

𝛿1

𝜋
𝐽
2

2

}

}

}

. (15)

Once 𝐽1 is calculated using (11a) and 𝐽2 using (15), mixed-
mode stress intensity factors can be evaluated by the following
equalities that relate the components of the 𝐽𝑘-integral to 𝐾I
and𝐾II [17]:

𝐽1 =
𝑎
tip
11

2
{𝑐11𝐾

2

I + 𝑐12𝐾I𝐾II + 𝑐22𝐾
2

II} ,
(16a)

𝐽2 = −
𝑎
tip
11

4
{𝑑11𝐾

2

I + 𝑑12𝐾I𝐾II + 𝑑22𝐾
2

II} ,
(16b)

where

𝑐11 = 𝛼
2

1
𝜂2 + 𝛼

2

2
𝜂1 + 𝜂

2

1
𝜂2 + 𝜂1𝜂

2

2
, (17a)

𝑐12 = 2 (𝛼1𝜂2 + 𝛼2𝜂1) , (17b)

𝑐22 = 𝜂1 + 𝜂2, (17c)

𝑑11 = 𝛼1𝜂2 + 𝛼2𝜂1, (17d)

𝑑12 = 4 {𝜂
2

1
𝜂2 + 𝜂1𝜂

2

2
− 𝛼1𝛼2 (𝜂1 + 𝜂2)} , (17e)

𝑑22 = 2 {𝛼
2

1
𝜂2 + 𝛼

2

2
𝜂1 + 𝛼1𝛼2 (𝜂1 + 𝜂2)} − 𝛼1𝜂2 − 𝛼2𝜂1.

(17f)

The nonlinear equation set (16a) and (16b) is solved by
employing the Newton-Raphson method. Although in gen-
eral the outcome of the Newton-Raphsonmethod is sensitive
to the initial guesses, it is found that convergence is assured
by initially specifying𝐾I as an arbitrary positive number and
𝐾II as zero.

3.2. Method II. The second method we developed is based
on the use of the first component of the 𝐽𝑘-integral 𝐽1 and
the asymptotic crack tip displacement fields. Referring to
Figure 2, asymptotic relative displacements of the crack faces
can be written as follows [18]:

𝑢1 (𝑟, 𝜋) − 𝑢1 (𝑟, −𝜋) = 2√
2𝑟

𝜋
{𝐷11𝐾I + 𝐷12𝐾II} , (18a)

𝑢2 (𝑟, 𝜋) − 𝑢2 (𝑟, −𝜋) = 2√
2𝑟

𝜋
{𝐷21𝐾I + 𝐷22𝐾II} , (18b)

where

𝐷11 = Im{
𝑠2𝑃11 − 𝑠1𝑃12

𝑠1 − 𝑠2
} ,

𝐷12 = Im{
𝑃11 − 𝑃12

𝑠1 − 𝑠2
} ,

(19a)

𝐷21 = Im{
𝑠2𝑃21 − 𝑠1𝑃22

𝑠1 − 𝑠2
} ,

𝐷22 = Im{
𝑃21 − 𝑃22

𝑠1 − 𝑠2
} ,

(19b)

𝑃1𝑖 = 𝑎
tip
11
𝑠
2

𝑖
+ 𝑎

tip
12

− 𝑎
tip
16
𝑠𝑖 (𝑖 = 1, 2) , (19c)

𝑃2𝑖 = 𝑎
tip
12
𝑠𝑖 +

𝑎
tip
22

𝑠𝑖
− 𝑎

tip
26

(𝑖 = 1, 2) , (19d)

and 𝑠1 and 𝑠2 are the roots of the characteristic equation (13)
with positive imaginary parts. We define a ratio involving the
relative displacements of the crack faces at a radial location 𝑟𝑎
in the following form:

𝐴𝑟 =
𝑢2 (𝑟𝑎, 𝜋) − 𝑢2 (𝑟𝑎, −𝜋)

𝑢1 (𝑟𝑎, 𝜋) − 𝑢1 (𝑟𝑎, −𝜋)
. (20)

From (18a), (18b), and (20) it then follows that

𝐾I
𝐾II

=
𝐴𝑟𝐷12 − 𝐷22

𝐷21 − 𝐴𝑟𝐷11
= 𝐵. (21)

Substituting this result into (16a),𝐾I is derived as

𝐾I = √
2𝐽1

𝑎
tip
11

(𝑐11 + (𝑐12/𝐵) + (𝑐22/𝐵
2))

. (22)

In this second method, once 𝐽1 is determined through (11a),
𝐾I and 𝐾II can be computed by the use of (22) and (21),
respectively.

4. Numerical Implementation

The methods described in Section 3 are implemented by
means of the finite element method. The proposed proce-
dures are integrated into the general purpose finite element
analysis software ANSYS [16]. In thermal fracture analy-
sis, the first step is the determination of the temperature
field. In the case of hygroscopic loading, specific moisture
concentration distribution needs to be determined at the
outset. These fields are computed by solving the governing
partial differential equations through the use of finite element
method. The governing partial differential equation for the
temperature distribution is the heat equation, which is given
by

𝜕

𝜕𝑥
(𝑘𝑥 (𝑥, 𝑦)

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦 (𝑥, 𝑦)

𝜕𝑇

𝜕𝑦
) = 0, (23)

where 𝑇 denotes the temperature; 𝑥 and 𝑦 are the principal
coordinates of orthotropy shown in Figure 1; and 𝑘𝑥 and
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𝑘𝑦 are the principal thermal conductivities. The governing
partial differential equation for the specific moisture concen-
tration is

𝜕

𝜕𝑥
(𝐷𝑥 (𝑥, 𝑦)

𝜕𝑐

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑦 (𝑥, 𝑦)

𝜕𝑐

𝜕𝑦
) = 0. (24)

𝑐 in this equation is specific moisture concentration and 𝐷𝑥
and𝐷𝑦 are the principal mass diffusivities.

The temperature and specific moisture concentration
distributions computed through the solutions of (23) and
(24) are used to calculate the components of the 𝐽𝑘-integral
and the modes I and II stress intensity factors 𝐾I and
𝐾II for each type of loading, that is, for thermal and
hygroscopic loadings. The SIFs generated for these separate
loads are then superposed to determine the results valid
for hygrothermal loading. Smooth spatial variations of the
hygrothermomechanical properties of orthotropic FGMs are
taken into account in the finite element analyses by specifying
the material properties of each finite element at its centroid.
This approach is generally referred to as homogeneous finite
element approach and leads to computational results of high
accuracy provided that there is an appropriate degree ofmesh
refinement in the finite element model [11, 19]. The finite
element meshes employed in the analyses are constructed by
utilizing 6-node triangular elements.

The area and line integrals required to be evaluated in
𝐽𝑘-integral computations are calculated by using the Gauss
quadrature in conjunction with the isoparametric finite
element concept. Area integrals are computed over circular
domains centered at the tip of the crack. The accuracy of the
outcome of the numerical procedures developed is influenced
by certain parameters needed in the solution. For instance, 𝛿1
and 𝛿2 values used in (15) and 𝑟𝑎 value used in (20) have to
be set sufficiently small to evaluate the hygrothermal fracture
parameters within a high degree of accuracy. It is found
that for both thermal and hygroscopic loading cases, highly
accurate results can be obtained by setting 𝛿1, 𝛿2, and 𝑟𝑎,
respectively, as 𝑎/2000, 𝑎/1000, and 𝑎/8000, where 𝑎 is the
length of the inclined crack.

5. Numerical Results

Hygrothermal fracture analysis methods developed in this
study are used to compute the fracture parameters for the
problem depicted in Figure 3. The figure illustrates both the
geometry and hygrothermal boundary conditions. A graded
orthotropic layer of length 𝐿 contains an inclined edge crack
whose length is denoted by 𝑎. The axes 𝑥 and 𝑦 are the
principal axes of orthotropy, and the angle of inclination
between the crack plane and 𝑥-axis is symbolized by 𝜙. We
suppose that the medium is in a state of plane strain. 𝑇0
and 𝑐0 values used in hygrothermal loading are also the
reference values for the temperature and the specificmoisture
concentration. In all analyses𝑇0 and 𝑐0 are, respectively, set as
20∘C and 0.005. As also mentioned in the previous sections,
the modes I and II stress intensity factors for the considered
hygrothermal loading are determined by superposing the
results calculated for thermal and hygroscopic loads.

T = 2T0, c = 2c0

c = 2c0

x2

x1
x

y

a

R

A

Ey
Ex

h

hc

T = T0, c = c0
L

c = c0

Orthotropic FGM

𝜙

T = 2T0, T = T0,

𝜉

Figure 3: Problem geometry and hygrothermal boundary condi-
tions.

Table 1: Material properties at 𝜉 = 0 and 𝜉 = ℎ and the exponents.

𝜉 = 0 𝜉 = ℎ Exponent
𝐸𝑥 (GPa) 80 80 𝛾𝑥

𝐸𝑦 (GPa) 80 40 𝛾𝑦

𝐺𝑥𝑦 (GPa) 32 26.7 𝛾𝑥𝑦

]𝑥𝑦 0.25 0.25 𝜔𝑥𝑦

]
𝑥𝑧

0.25 0.25 𝜔
𝑥𝑧

]𝑧𝑥 0.25 0.3 𝜔𝑧𝑥

]𝑧𝑦 0.25 0.3 𝜔𝑧𝑦

𝛼𝑥 (1/∘C) 3(10)−5 3(10)−5 𝜆𝑥

𝛼𝑦 (1/∘C) 3(10)−5 6(10)−5 𝜆𝑦

𝛼𝑧 (1/∘C) 3(10)−5 4.5(10)−5 𝜆𝑧

𝛽𝑥 0.33 0.33 𝜅𝑥

𝛽𝑦 0.33 0.66 𝜅𝑦

𝛽𝑧 0.33 0.495 𝜅𝑧

𝑘𝑥 (W/m⋅
∘C) 0.5 0.5 𝜂𝑥

𝑘𝑦 (W/m⋅
∘C) 0.5 1 𝜂𝑦

𝐷𝑥 (m2/s) 3(10)−15 3(10)−15 𝜌𝑥

𝐷𝑦 (m2/s) 3(10)−15 6(10)−15 𝜌𝑦

The layer is assumed to be a fiber-reinforced composite
with a fiber volume fraction decreasing as 𝜉 increases from
0 to ℎ. As a result, all of the material properties of the layer
become functions of the thickness coordinate 𝜉. Each of the
material property required in the analysis is represented by a
power function in the following form:

𝑀(𝜉) = 𝑀0 + (𝑀ℎ −𝑀0) (
𝜉

ℎ
)

𝑝

, (25)

where 𝑀0 and 𝑀ℎ are the values of the material property
at 𝜉 = 0 and 𝜉 = ℎ, respectively, and 𝑝 is the exponent
of the power function characterizing the nature of the
property distribution across the thickness. The properties of
the orthotropic FGM layer at 𝜉 = 0 and 𝜉 = ℎ and the symbols
designating the exponents are provided in Table 1.
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Figure 4:Normalized crack tip temperature versus inclination angle
𝜙 and 𝑎/𝐿. 𝜂𝑥 = 𝜂𝑦 = 2.5, ℎ𝑐/ℎ = 0.25, and ℎ/𝐿 = 0.4.

Temperature and specific moisture concentration fields
for the layer are computed by solving (23) and (24) through
the finite element method. Normalized crack tip temperature
variations are provided in Figure 4. This figure shows the
normalized crack tip temperature as functions of the crack
inclination angle 𝜙 and normalized crack length 𝑎/𝐿. It is
seen that crack tip temperature is an increasing function
of the inclination angle. This is the expected result since
the crack tip gets closer to the boundaries at the higher
temperature as 𝜙 becomes larger. The figure also indicates
that at a given inclination angle, crack tip temperature is a
decreasing function of 𝑎/𝐿.The trends observed for the crack
tip specific moisture concentration are very similar to those
presented in Figure 4.

In order to be able to verify the developed computational
methods, in Table 2 we provide comparisons of the normal-
ized mixed-mode stress intensity factors computed for the
hygrothermal loading shown in Figure 3. Normalized stress
intensity factors are defined as

𝐾I𝑛 =
𝐾I

𝛼 (0) 𝐸𝑥 (0) 𝑇0√𝜋𝑎
,

𝐾II𝑛 =
𝐾II

𝛼 (0) 𝐸𝑥 (0) 𝑇0√𝜋𝑎
.

(26)

The hygrothermal mixed-mode stress intensity factors are
calculated by considering four different values of the incli-
nation angle 𝜙, and for each inclination angle the results
are given for four different values of the normalized domain
radius 𝑅/𝑎. Examining the results, it is seen that the SIFs
generated by each method are independent of the domain
radius. Hence, it can be deduced that the developed form
of the 𝐽𝑘-integral is domain independent. Furthermore,
the results obtained by methods I and II are in excellent
agreement, which is indicative of the high level of accuracy of

Figure 5: Deformed shape of the finite elementmesh under thermal
loading. 𝛾𝑥 = 𝛾𝑦 = 𝛾𝑥𝑦 = 2, 𝜔𝑥𝑦 = 𝜔𝑥𝑧 = 𝜔𝑧𝑥 = 𝜔𝑧𝑦 = 2, 𝜆𝑥 = 𝜆𝑦 =

𝜆𝑧 = 2.5, 𝜅𝑥 = 𝜅𝑦 = 𝜅𝑧 = 1.5, 𝜂𝑥 = 𝜂𝑦 = 2.5, 𝜌𝑥 = 𝜌𝑦 = 1.5,
ℎ𝑐/ℎ = 0.25, ℎ/𝐿 = 0.4, and 𝑎/𝐿 = 0.1.

the results generated by means of the developed techniques.
Deformed shape of the finite element mesh under thermal
loading is provided in Figure 5.

Further results are provided in Figures 6 and 7, which
illustrate the influences of inclination angle, crack length, and
crack location upon the mixed-mode stress intensity factors.
Since both methods are shown to be capable of producing
highly accurate numerical results, it is deemed as sufficient to
usemethod I in the generation of the further results presented
in these figures. Normalized domain radius 𝑅/𝑎 is set as 0.1
in the pertaining calculations.

Figure 6 shows the variations of the normalized mixed-
mode SIFs with respect to 𝜙 for four different values of
normalized crack length 𝑎/𝐿. It is seen that 𝐾I𝑛 curves go
throughmaximums at 𝜙 values close to 60∘, while𝐾II𝑛 attains
maximums at 𝜙 values between 0∘ and 30∘. 𝐾I𝑛 decreases as
𝑎/𝐿 is increased from 1/12 to 1/8. On the other hand, 𝐾II𝑛 is
found to be an increasing function of 𝑎/𝐿 except for relatively
small values of 𝜙. We also note that 𝐾I𝑛 is positive and the
crack is open for all𝜙 considered, whereas𝐾II𝑛 can be positive
or negative depending on the value of the inclination angle.

In Figure 7, we present plots of normalized modes I and
II SIFs as functions of the inclination angle 𝜙 and the relative
crack location ℎ𝑐/ℎ. ℎ𝑐 is the height of crack mouth and
ℎ stands for the height of the orthotropic FGM layer. For
𝜙 values approximately less than 45∘, 𝐾I𝑛 is an increasing
function of ℎ𝑐/ℎ; that is, 𝐾I𝑛 increases as ℎ𝑐/ℎ is increased
from 0.15 to 0.3. When 𝜙 is close to 60∘, 𝐾I𝑛 is not that
sensitive to the variations in the relative crack location.
For relatively small values of 𝜙, normalized mode II stress
intensity factor is an increasing function of ℎ𝑐/ℎ. However,
for larger values of the inclination angle 𝐾II𝑛 drops with a
corresponding increase in ℎ𝑐/ℎ.

6. Closure

This study sets forth two different 𝐽𝑘-integral-basedmethods,
which can be employed to conduct fracture mechanics
analysis of orthotropic functionally graded materials that
are under the influence of hygrothermal stresses. In the first
of these methods, both components of the 𝐽𝑘-integral are
evaluated, whereas the second technique requires the com-
putation of only the first component. Proposed procedures
are implemented by means of the finite element method
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Table 2: Comparisons of the mixed-mode stress intensity factors. 𝛾𝑥 = 𝛾𝑦 = 𝛾𝑥𝑦 = 2, 𝜔𝑥𝑦 = 𝜔𝑥𝑧 = 𝜔𝑧𝑥 = 𝜔𝑧𝑦 = 2, 𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 2.5, 𝜅𝑥 =

𝜅𝑦 = 𝜅𝑧 = 1.5, 𝜂𝑥 = 𝜂𝑦 = 2.5, 𝜌𝑥 = 𝜌𝑦 = 1.5, ℎ𝑐/ℎ = 0.25, ℎ/𝐿 = 0.4, and 𝑎/𝐿 = 0.1.

𝜙 𝑅/𝑎
Method I Method II

𝐾I𝑛 𝐾II𝑛 𝐾I𝑛 𝐾II𝑛

0
∘

0.1 0.0098 0.0122 0.0098 0.0119
0.2 0.0099 0.0122 0.0098 0.0120
0.3 0.0099 0.0123 0.0098 0.0120
0.4 0.0099 0.0123 0.0097 0.0119

30
∘

0.1 0.0251 0.0080 0.0250 0.0076
0.2 0.0252 0.0080 0.0251 0.0077
0.3 0.0253 0.0080 0.0252 0.0077
0.4 0.0253 0.0081 0.0252 0.0077

45
∘

0.1 0.0296 −0.0006 0.0296 −0.0008
0.2 0.0298 −0.0006 0.0298 −0.0008
0.3 0.0300 −0.0006 0.0300 −0.0007
0.4 0.0301 −0.0008 0.0301 −0.0007

60
∘

0.1 0.0287 −0.0081 0.0288 −0.0089
0.2 0.0292 −0.0083 0.0292 −0.0090
0.3 0.0297 −0.0086 0.0296 −0.0091
0.4 0.0301 −0.0086 0.0299 −0.0092
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Figure 6: Normalized mixed-mode stress intensity factors versus inclination angle 𝜙 and 𝑎/𝐿: (a) mode I SIFs; (b) mode II SIFs. 𝛾𝑥 = 𝛾𝑦 =

𝛾𝑥𝑦 = 2, 𝜔𝑥𝑦 = 𝜔𝑥𝑧 = 𝜔𝑧𝑥 = 𝜔𝑧𝑦 = 2, 𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 2, 𝜅𝑥 = 𝜅𝑦 = 𝜅𝑧 = 2, 𝜂𝑥 = 𝜂𝑦 = 2, 𝜌𝑥 = 𝜌𝑦 = 2, ℎ𝑐/ℎ = 0.25, and ℎ/𝐿 = 0.4.

and integrated into a general purpose finite element analysis
software. Superposition technique is utilized in the extraction
of the hygrothermal modes I and II stress intensity factors.

The comparisons provided do indicate that the derived
form of the 𝐽𝑘-integral possesses the required domain
independence and that both methods are capable of pro-
ducing numerical results of high accuracy. Further results
are presented to illustrate the impacts of inclination angle,
normalized crack length, and relative crack location on the

normalized mixed-mode stress intensity factors. In general,
the influence of each of these parameters on the fracture
behavior is significant. Especially, the effect of the crack
inclination angle is seen to be rather pronounced. Under
hygrothermal stresses, both𝐾I and𝐾II go throughmaximum
values as the inclination angle is increased from zero.

In studies on fracture mechanics and fatigue of
orthotropic functionally graded materials, correct evaluation
of the mixed-mode stress intensity factors is a basic
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Figure 7: Normalized mixed-mode stress intensity factors versus inclination angle 𝜙 and ℎ𝑐/ℎ: (a) mode I SIFs; (b) mode II SIFs. 𝛾𝑥 = 𝛾𝑦 =

𝛾𝑥𝑦 = 2, 𝜔𝑥𝑦 = 𝜔𝑥𝑧 = 𝜔𝑧𝑥 = 𝜔𝑧𝑦 = 2, 𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 2, 𝜅𝑥 = 𝜅𝑦 = 𝜅𝑧 = 2, 𝜂𝑥 = 𝜂𝑦 = 2, 𝜌𝑥 = 𝜌𝑦 = 2, ℎ/𝐿 = 0.4, and 𝑎/𝐿 = 0.1.

requirement.Moreover, existence of thermal and hygroscopic
effects in the examined problems makes it necessary
to incorporate these loadings into the computational
framework. The methods presented in this paper are shown
to be effective ways of taking into account hygrothermal
effects and evaluating fracture mechanics parameters and
thus can be used to solve fracture and fatigue problems
involving complex geometric configurations and loading
conditions.

Appendix

The Entries of the Compliance, Thermal
Expansion, and Moisture Expansion Matrices

The elements of the compliance, thermal expansion, and
moisture expansion matrices used in (5) are derived by
coordinate transformation. For the case of plane stress, these
elements are given by

𝑎11 = 𝑆11, 𝑎12 = 𝑆12, 𝑎16 = 2𝑆16, (A.1a)

𝑎22 = 𝑆22, 𝑎26 = 2𝑆26, 𝑎66 = 2 (𝑆66 + 𝑆69) , (A.1b)

𝑔1 = 𝛼1, 𝑔2 = 𝛼2, 𝑔12 = 2𝛼6. (A.1c)

ℎ1 = 𝛽1, ℎ2 = 𝛽2, ℎ12 = 2𝛽6, (A.1d)

and for plane strain

𝑎11 = 𝑆11 −
𝑆
2

13

𝑆33
, 𝑎12 = 𝑆12 −

𝑆13𝑆23

𝑆33
,

𝑎16 = 2(𝑆16 −
𝑆36𝑆13

𝑆33
) ,

(A.2a)

𝑎22 = 𝑆22 −
𝑆
2

23

𝑆33
, 𝑎26 = 2(𝑆26 −

𝑆23𝑆36

𝑆33
) ,

𝑎66 = 2(𝑆66 + 𝑆69 −
2𝑆
2

36

𝑆33
) ,

(A.2b)

𝑔1 = 𝛼1 −
𝑆13

𝑆33
𝛼3, 𝑔2 = 𝛼2 −

𝑆23

𝑆33
𝛼3,

𝑔12 = 2(𝛼6 −
𝑆36

𝑆33
𝛼3) ,

(A.2c)

ℎ1 = 𝛽1 −
𝑆13

𝑆33
𝛽3, ℎ2 = 𝛽2,

ℎ12 = 2(𝛽6 −
𝑆36

𝑆33
𝛽3) .

(A.2d)

𝑆𝑖𝑗, 𝛼𝑖, and 𝛽𝑖 in these equalities are derived as follows:

𝑆11 =
1

𝐸𝑥
(cos2𝜙 − sin2𝜙]𝑥𝑦) cos

2
𝜙

+ (
sin2𝜙
𝐸𝑦

−
]𝑥𝑦
𝐸𝑥

cos2𝜙) sin2𝜙 +
cos2𝜙 sin2𝜙

𝐺𝑥𝑦
,

(A.3a)

𝑆12 =
1

𝐸𝑥
(cos2𝜙 − sin2𝜙]𝑥𝑦) sin

2
𝜙

+ (
sin2𝜙
𝐸𝑦

−
]𝑥𝑦
𝐸𝑥

cos2𝜙) cos2𝜙 −
cos2𝜙 sin2𝜙

𝐺𝑥𝑦
,

(A.3b)
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𝑆16 =
1

𝐸𝑥
(]𝑥𝑦sin

2
𝜙 − cos2𝜙) cos𝜙 sin𝜙

+ (
sin2𝜙
𝐸𝑦

−
]𝑥𝑦
𝐸𝑥

cos2𝜙) cos𝜙 sin𝜙

+
1

2𝐺𝑥𝑦
(cos3𝜙 sin𝜙 − cos𝜙 sin3𝜙) ,

(A.3c)

𝑆22 =
1

𝐸𝑥
(sin2𝜙 − ]𝑥𝑦cos

2
𝜙) sin2𝜙

+ (
cos2𝜙
𝐸𝑦

−
]𝑥𝑦
𝐸𝑥

sin2𝜙) cos2𝜙 +
cos2𝜙 sin2𝜙

𝐺𝑥𝑦
,

(A.3d)

𝑆26 =
1

𝐸𝑥
(]𝑥𝑦cos

2
𝜙 − sin2𝜙) cos𝜙 sin𝜙

+ (
cos2𝜙
𝐸𝑦

−
]𝑥𝑦
𝐸𝑥

sin2𝜙) cos𝜙 sin𝜙

+
1

2𝐺𝑥𝑦
(cos𝜙 sin3𝜙 − cos3𝜙 sin𝜙) ,

(A.3e)

𝑆66 =
1

𝐸𝑥
(]𝑥𝑦 + 1) cos2𝜙 sin2𝜙

+ (
]𝑥𝑦
𝐸𝑥

+
1

𝐸𝑦
) cos2𝜙 sin2𝜙 +

1

2𝐺𝑥𝑦
(cos4𝜙 + sin4𝜙) ,

(A.3f)

𝑆69 =
1

𝐸𝑥
(]𝑥𝑦 + 1) cos2𝜙 sin2𝜙

+ (
]𝑥𝑦
𝐸𝑥

+
1

𝐸𝑦
) cos2𝜙 sin2𝜙 −

cos2𝜙 sin2𝜙
𝐺𝑥𝑦

,

(A.3g)

𝑆13 = −
]𝑥𝑧
𝐸𝑥

cos2𝜙 −
]𝑦𝑧
𝐸𝑦

sin2𝜙, (A.3h)

𝑆23 = −
]𝑥𝑧
𝐸𝑥

sin2𝜙 −
]𝑦𝑧
𝐸𝑦

cos2𝜙, (A.3i)

𝑆33 =
1

𝐸𝑧
, (A.3j)

𝑆36 = (
]𝑥𝑧
𝐸𝑥

−
]𝑦𝑧
𝐸𝑦

) cos𝜙 sin𝜙, (A.3k)

𝛼1 = cos2𝜙𝛼𝑥 + sin2𝜙𝛼𝑦, (A.3l)

𝛼2 = sin2𝜙𝛼𝑥 + cos2𝜙𝛼𝑦, (A.3m)

𝛼3 = 𝛼𝑧, (A.3n)

𝛼6 = cos𝜙 sin𝜙 (𝛼𝑦 − 𝛼𝑥) , (A.3o)

𝛽1 = cos2𝜙𝛽𝑥 + sin2𝜙𝛽𝑦, (A.3p)

𝛽2 = sin2𝜙𝛽𝑥 + cos2𝜙𝛽𝑦, (A.3q)

𝛽3 = 𝛽𝑧, (A.3r)

𝛽6 = cos𝜙 sin𝜙 (𝛽𝑦 − 𝛽𝑥) . (A.3s)

Nomenclature

𝐴: Area of the region around the crack tip
𝐴𝑟: Ratio of the relative displacements of the

crack faces
𝑎: Crack length
𝑎𝑖𝑗: Elements of the compliance matrix in the

crack tip coordinate system
𝑐: Specific moisture concentration
𝑐𝑖𝑗: Elements of the compliance matrix in the

principal coordinate system
𝐷𝑥, 𝐷𝑦: Mass diffusivities
𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦: Elastic moduli and shear modulus
ℎ: Height of the orthotropic functionally

graded layer
ℎ𝑐: Height of the crack mouth
𝐽𝑘: 𝐽𝑘-integral vector
𝐾I: Mode I stress intensity factor
𝐾II: Mode II stress intensity factor
𝑘𝑥, 𝑘𝑦: Thermal conductivities
𝐿: Length of the orthotropic functionally

graded layer
𝑅: Radius of the area around the crack tip
𝑟𝑎: Radial location at which relative

displacements of crack faces are calculated
𝑇: Temperature
𝑢𝑖: Displacement vector
𝑊: Mechanical strain energy density function
𝛼𝑥, 𝛼𝑦, 𝛼𝑧: Thermal expansion coefficients
𝛽𝑥, 𝛽𝑦, 𝛽𝑧: Moisture expansion coefficients
𝛿: Length of the region over which the line

integral is evaluated analytically
𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑥𝑦: Total strains in the principal coordinate

system
𝜀11, 𝜀22, 𝜀12: Total strains in the crack tip coordinate

system
𝜙: Crack inclination angle
]𝑥𝑦, ]𝑥𝑧, ]𝑧𝑥, ]𝑧𝑦: Poisson’s ratios
𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦: Stress components in the principal

coordinate system
𝜎11, 𝜎22, 𝜎12: Stress components in the crack tip

coordinate system.

Conflict of Interests

The authors declare that there is no conflict of interests in this
study.

Acknowledgment

This work was supported by the Scientific and Technological
Research Council of Turkey (TUBITAK) through Grant
MAG-109M511.



Mathematical Problems in Engineering 11

References

[1] N. Noda, “Thermal stresses in functionally graded materials,”
Journal of Thermal Stresses, vol. 22, no. 4, pp. 477–512, 1999.

[2] F. Watari, A. Yokoyama, M. Omori et al., “Biocompatibility of
materials and development to functionally graded implant for
bio-medical application,” Composites Science and Technology,
vol. 64, no. 6, pp. 893–908, 2004.

[3] T. Nomura, H.Moriguchi, K. Tsuda, K. Isobe, A. Ikegaya, andK.
Moriyama, “Material designmethod for the functionally graded
cemented carbide tool,” International Journal of Refractory
Metals and Hard Materials, vol. 17, no. 6, pp. 397–404, 1999.

[4] D. C. Pender, N. P. Padture, A. E. Giannakopoulos, and S.
Suresh, “Gradients in elastic modulus for improved contact-
damage resistance—part I: The silicon nitride-oxynitride glass
system,” Acta Materialia, vol. 49, no. 16, pp. 3255–3262, 2001.

[5] Y. Liu, C. Compson, andM. Liu, “Nanostructured and function-
ally graded cathodes for intermediate temperature solid oxide
fuel cells,” Journal of Power Sources, vol. 138, no. 1-2, pp. 194–198,
2004.

[6] S. Sampath, H. Herman, N. Shimoda, and T. Saito, “Thermal
spray processing of FGMs,”MRS Bulletin, vol. 20, no. 1, pp. 27–
31, 1995.

[7] W. A. Kaysser and B. Ilschner, “FGM research activities in
Europe,”MRS Bulletin, vol. 20, no. 1, pp. 22–26, 1995.

[8] M. A. Benatta, I. Mechab, A. Tounsi, and E. A. Adda Bedia,
“Static analysis of functionally graded short beams including
warping and shear deformation effects,” Computational Mate-
rials Science, vol. 44, no. 2, pp. 765–773, 2008.

[9] S. Dag, B. Yildirim, and F. Erdogan, “Interface crack problems
in graded orthotropic media: Analytical and computational
approaches,” International Journal of Fracture, vol. 130, no. 1, pp.
471–496, 2004.

[10] S. Dag, B. Yildirim, and D. Sarikaya, “Mixed-mode fracture
analysis of orthotropic functionally graded materials under
mechanical and thermal loads,” International Journal of Solids
and Structures, vol. 44, no. 24, pp. 7816–7840, 2007.

[11] S. Dag and A. A. Ilhan, “Mixed-mode fracture analysis of
orthotropic functionally graded material coatings using analyt-
ical and computational methods,” Journal of Applied Mechanics,
Transactions ASME, vol. 75, no. 5, Article ID 051104, 2008.

[12] J.-H. Kim and G. H. Paulino, “Mixed-mode fracture of
orthotropic functionally graded materials using finite elements
and the modified crack closure method,” Engineering Fracture
Mechanics, vol. 69, no. 14–16, pp. 1557–1586, 2002.

[13] J.-H. Kim and G. H. Paulino, “The interaction integral for frac-
ture of orthotropic functionally graded materials: Evaluation
of stress intensity factors,” International Journal of Solids and
Structures, vol. 40, no. 15, pp. 3967–4001, 2003.

[14] B. N. Rao and S. Rahman, “A continuum shape sensitivity
method for fracture analysis of orthotropic functionally graded
materials,”Mechanics of Materials, vol. 37, no. 10, pp. 1007–1025,
2005.

[15] S. Dag, E. Erhan Arman, and B. Yildirim, “Computation
of thermal fracture parameters for orthotropic functionally
graded materials using Jk-integral,” International Journal of
Solids and Structures, vol. 47, no. 25-26, pp. 3480–3488, 2010.

[16] ANSYS, ANSYS Basic Analysis Procedures Guide, Release 5.4,
ANSYS Inc., Canonsburg, Pa, USA, 1997.

[17] J.-H. Kim and G. H. Paulino, “Mixed-mode J-integral formu-
lation and implementation using graded elements for fracture

analysis of nonhomogeneous orthotropic materials,”Mechanics
of Materials, vol. 35, pp. 107–128, 2003.

[18] P. Sollero and M. H. Aliabadi, “Fracture mechanics analysis of
anisotropic plates by the boundary element method,” Interna-
tional Journal of Fracture, vol. 64, no. 4, pp. 269–284, 1993.

[19] B. Yildirim, S.Dag, and F. Erdogan, “Three dimensional fracture
analysis of FGM coatings under thermomechanical loading,”
International Journal of Fracture, vol. 132, no. 4, pp. 369–395,
2005.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 250567, 11 pages
http://dx.doi.org/10.1155/2013/250567

Research Article
On Free Vibrations of Elastodynamic Problem in Rotating
Non-Homogeneous Orthotropic Hollow Sphere

S. R. Mahmoud,1,2 M. Marin,3 S. I. Ali,4,5 and K. S. Al-Basyouni1

1 Department of Mathematics, Science Faculty, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Mathematics Department, Science Faculty, Sohag University, Sohag 82524, Egypt
3Mathematics Department, Faculty of Mathematics, Brasov University, Brasov, Romania
4Department of Mathematics, Science Faculty, Hail University, Saudi Arabia
5 Department of Mathematics, Science Faculty, Al-Azhar University, Nassr City, Egypt

Correspondence should be addressed to K. S. Al-Basyouni; kalbasyouni@kau.edu.sa

Received 30 April 2013; Accepted 23 June 2013

Academic Editor: Abdelouahed Tounsi

Copyright © 2013 S. R. Mahmoud et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The effect of non-homogenity and rotation on the free vibrations for elastodynamic problem of orthotropic hollow sphere is
discussed.The free vibrations are studied on the basis of the linear elasticity.The determination is concerned with the eigenvalues of
the natural frequency formixed boundary conditions.Thenumerical results of the frequency equations are discussed in the presence
and absence of non-homogenity and rotation. The computer simulated results indicate that the influence of non-homogenity and
rotation in orthotropic material is pronounced.

1. Introduction

Hollow spheres are frequently encountered in engineer-
ing industries and the corresponding free vibration prob-
lem has become one of the basic problems in elastody-
namics. The analyses for transient problems of spherical
structures are important and interesting research fields
for engineers and scientists. The applications for non-
homogeneous orthotropic hollow sphere have continuously
increased in some engineering areas, including aerospace,
offshore, infrared detectors, frequency control filters, chem-
ical vessels, information storage devices, and signal pro-
cessing devices. Accidental failures of rotating sphere due
to flexural vibrations have frequently occurred in rotody-
namic machinery such as steam turbines and gas turbines.
Free vibrations of elastodynamic have many applications
in a micropolar porous cubic crystal, poroelastic material
[1–3]. Many applications dealing with the elastic bodies
and materials, we can only mention a few recent inter-
esting investigations [4–8], the analysis of the dynamic
problems of elastic bodies is an important and interest-
ing research field for engineers and scientists. The hollow
spheres are frequently used as structural components and

their vibration characteristics are obviously important for
practical design. Mahmoud et al. [1, 2] discussed the effect
of the rotation on plane vibrations in a transversely
isotropic infinite hollow cylinder and the effect of the
rotation on wave motion through cylindrical bore in a
micropolar porous cubic crystal. Mahmoud [3] studied
wave propagation in cylindrical poroelastic dry bones.
Abd-Alla and Mahmoud [8, 9] solved magnetothermoe-
lastic problem in rotating non-homogeneous orthotropic
hollow cylindrical under the hyperbolic heat conduc-
tion model and investigated problem of radial vibra-
tions in non-homogeneity isotropic cylinder under influ-
ence of initial stress and magnetic field. Influences of
rotation, magnetic field, and gravity on Rayleigh waves in a
homogeneous orthotropic elastic half space and the solution
of electromechanical wave propagation are investigated by
Abd-Alla et al. [10–13]. Marin et al. [14, 15] studied porous
materials and nonsimple material problems addressed by
the Lagrange’s identity. Wang [16] studied the elastodynamic
solution for an anisotropic hollow sphere. Ding et al. [17, 18]
discussed elastodynamic solution of a non-homogeneous
orthotropic hollow cylinder, a solution of a non-homogene-
ous orthotropic cylindrical shell for axisymmetric plane
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strain dynamic thermo elastic problems. Inclusion of arbi-
trary shape in magnetoelectro-elastic composite materials
has been investigated by Wang and Shen [19]. Ding et al.
[20] obtained the analytical solution for the axisymmetric
plane strain electroelastic dynamics of a non-homogeneous
piezoelectric hollow cylinder. Hou and Leung [21] further
study the corresponding problem of magnetoelectroelas-
tic hollow cylinders. Buchanan and Liu [22] discussed
an analysis of the free vibration of thick-walled isotropic
toroidal shells. Yu et al. [23] investigated wave propagation in
non-homogeneous magnetoelectroelastic hollow cylinders.
Recently, Abd-Alla and Mahmoud [24] discussed analyt-
ical solution of wave propagation in non-homogeneous
orthotropic rotating elasticmedia. Abd-Alla et al. [25] studied
the effect of the rotation, magnetic field, and initial stress on
peristaltic motion of micropolar fluid. Mahmoud [26] inves-
tigatedwave propagation in piezoelectric hollow cylinder and
influence of rotation and generalized magnetothermoelastic
on Rayleigh waves in a granular medium under effect of
initial stress and gravity field. Sharma et al. [27] studied
free vibration analysis of a viscothermoelastic solid sphere.
Abd-Alla et al. [28–33] investigated problem of radial and
free vibrations in non-homogeneity cylinder under influence
of initial stress rotation and magnetic field. Ozsahin and
Taskner [34] investigated contact problem for an elastic
layer on an elastic half plane. Daouadji et al. [35] studied
the Free transverse vibration of the fluid-conveying single-
walled carbon nanotube using nonlocal elastic theory. The
present paper deals with the problem of free vibrationsof
elastodynamic equations of rotating non-homogeneous and
orthotropic hollow sphere. The effect of non-homogeneous
and rotation in the equations of motion has been taken into
account and the numerical results of the fundamental fre-
quency equations are discussed. Comparisons are made with
the result in the present and absence of non-homogeneous
and rotation in cases of orthotropic hollow sphere.

2. Formulation of the Problem

Take the spherical coordinates (𝑟, 𝜃, 𝜑) and consider elastody-
namic problem of non-homogeneous rotating hollow sphere
of inner radius 𝑎 and outer radius 𝑏, as Figure 1. The stresses-
strain relations for non-homogeneous spherically orthotropic
material in two dimensions are in the form

𝜎𝑟𝑟 = 𝑟
2𝑚
(𝛼11𝑒𝑟𝑟 + 𝛼12𝑒𝜃𝜃 + 𝛼13𝑒𝜑𝜑) ,

𝜎𝜃𝜃 = 𝑟
2𝑚
(𝛼12𝑒𝑟𝑟 + 𝛼22𝑒𝜃𝜃 + 𝛼23𝑒𝜑𝜑) ,

𝜎𝜑𝜑 = 𝑟
2𝑚
(𝛼13𝑒𝑟𝑟 + 𝛼23𝑒𝜃𝜃 + 𝛼33𝑒𝜑𝜑) ,

𝜏𝑟𝜃 = 𝑟
2𝑚
𝛼44𝑒𝑟𝜃, 𝜏𝑟𝜃 = 0, 𝜏𝜃𝜑 = 0.

(1a)

The strain-displacements relations in two dimensions are
in the form

𝑒𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
, 𝑒𝜃𝜃 =

1

𝑟
(
𝜕𝑢𝜃

𝜕𝜃
+ 𝑢𝑟) ,

𝑒𝜑𝜑 =
1

𝑟 sin 𝜃
(𝑢𝑟 sin 𝜃 + 𝑢𝜃 cos 𝜃) ,

z

x

y

Ωr

r̂

𝜃̂

𝜃

𝜑̂

𝜑

Figure 1: Problem geometry of non-homogeneous orthotropic
material.

𝑒𝑟𝜃 =
1

2
(
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+
𝜕𝑢𝜃

𝜕𝑟
−
𝑢𝜃

𝑟
) , 𝑒𝑟𝜑 = 0, 𝑒𝜃𝜑 = 0.

(1b)

Substituting from (1b) into (1a) we obtain the stresses-
displacements relations in two dimensions in the form

𝜎𝑟𝑟 = 𝑟
1+2𝑚
( (𝛼11 + 𝛼13) 𝑢𝑟 + 𝛼13𝑢𝜃cot𝜃

+ 𝛼12
𝜕𝑢𝜃

𝜕𝜃
+ 𝑟𝛼11

𝜕𝑢𝑟

𝜕𝑟
) ,

𝜎𝜃𝜃 = 𝑟
1+2𝑚
( (𝛼22 + 𝛼22) 𝑢𝑟 + 𝛼23𝑢𝜃cot𝜃

+ 𝛼22
𝜕𝑢𝜃

𝜕𝜃
+ 𝑟𝛼12

𝜕𝑢𝑟

𝜕𝑟
) ,

𝜎𝜑𝜑 = 𝑟
1+2𝑚
( (𝛼23 + 𝛼33) 𝑢𝑟 + 𝛼33𝑢𝜃cot𝜃

+ 𝛼23
𝜕𝑢𝜃

𝜕𝜃
+ 𝑟𝛼13

𝜕𝑢𝑟

𝜕𝜃
) ,

𝜏𝑟𝜃 =
1

2
𝑟
1+2𝑚
𝛼44 (−𝑢𝜃 +

𝜕𝑢𝑟

𝜕𝜃
+ 𝑟
𝜕𝑢𝜃

𝜕𝑟
) ,

𝜏𝑟𝜃 = 0, 𝜏𝜃𝜑 = 0,

(2)

where 𝑢𝑟 and 𝑢𝜃 are, respectively, the components of displace-
ment in the radial and tangential directions, 𝑒𝑖𝑗 are the strain
components, and 𝜎𝑖𝑗 are the stress components. Where we
have characterized the elastic constants 𝑐𝑖𝑗 and the density
𝜌 of non-homogeneous material in the form

𝑐𝑖𝑗 = 𝛼𝑖𝑗𝑟
2𝑚
, 𝜌 = 𝜌0𝑟

2𝑚
, 𝑖, 𝑗 = 1, 2, 3, (3)
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where𝛼𝑖𝑗 and𝜌0 are the values of 𝑐𝑖𝑗 and𝜌 in the homogeneous
case, respectively, and𝑚 is the non-homogeneous parameter.
The displacement equations of motion in the rotating frame
have two additional terms centripetal acceleration 󳨀⇀Ω × (󳨀⇀Ω ×
󳨀⇀
𝑢) = (−Ω

2
𝑢𝑟, −Ω

2
𝑢𝜃, 0), due to time varying motion only,

where 󳨀⇀Ω = (0, 0, Ω), and 󳨀⇀𝑢 = (𝑢𝑟, 𝑢𝜃, 0).
The elastodynamic equations of rotating non-homoge-

neous medium in two dimensions in the direction 𝑟, 𝜃 are
given by:

𝜕𝜎𝑟𝑟

𝜕𝑟
+
1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+
1

𝑟
(2𝜎𝑟𝑟 − 𝜎𝜃𝜃 − 𝜎𝜑𝜑 + 𝜏𝑟𝜃cot𝜃)

+ 𝜌0𝑟
2𝑚
Ω
2
𝑢𝑟 = 𝜌0𝑟

2𝑚 𝜕
2
𝑢𝑟

𝜕𝑡2
,

(4)

𝜕𝜏𝑟𝜃

𝜕𝜃
+
1

𝑟

𝜕𝜎𝜃𝜃

𝜕𝜃
+
1

𝑟
((𝜎𝜃𝜃 − 𝜎𝜑𝜑) cot𝜃 + 3𝜏𝑟𝜃)

+ 𝜌0𝑟
2𝑚
Ω
2
𝑢𝜃 = 𝜌0𝑟

2𝑚 𝜕
2
𝑢𝜃

𝜕𝑡2
.

(5)

Substituting from (1a), (1b), and (2) into (4) and (5), we
obtain:

𝑟
−1+𝑚

[2 (𝑎0 + 𝑟
2
𝜌0Ω
2
) 𝑢𝑟 + 𝑎1𝑢𝜃cot𝜃 + 𝑎2

𝜕𝑢𝜃

𝜕𝜃

+ 𝛼44cot𝜃
𝜕𝑢𝑟

𝜕𝜃
−
𝜕𝑢𝜃

𝜕𝜃
+
𝜕
2
𝑢𝑟

𝜕𝜃2
+ 𝑟 − 2𝑟𝜌0

𝜕
2
𝑢𝜃

𝜕𝑡2

+ 4 (1 + 𝑚) 𝛼11
𝜕𝑢𝑟

𝜕𝑟
+ (2𝛼13 + 𝛼44) cot𝜃

𝜕𝑢𝜃

𝜕𝑟

+ (2𝛼12 + 𝛼44)
𝜕
2
𝑢𝜃

𝜕𝑟𝜕𝜃
+ 2𝛼11𝑟

𝜕
2
𝑢𝑟

𝜕𝑟2
] = 0,

(6)

where 𝑎0 = 𝛼12 + 2𝑚𝛼12 + 𝛼13 + 2𝑚𝛼13 − 𝛼22 − 2𝛼23 − 𝛼33,
𝑎1 = ((2 + 4𝑚)𝛼13 − 2(𝛼23 + 𝛼33) − 𝛼44), and 𝑎2 = 2(𝛼12 +
2𝑚𝛼12 − 𝛼22 − 𝛼23).

One has

𝑟
−1+𝑚

[2 (𝛼22 − 𝛼33) 𝑢𝑟cot𝜃

− 2 (𝑎3 − 𝑟
2
𝜌0Ω
2
+ 𝛼33csc

2
𝜃) 𝑢𝜃

+ 𝑎4
𝜕𝑢𝑟

𝜕𝜃
+ 2𝛼22cot𝜃

𝜕𝑢𝜃

𝜕𝜃
+
𝜕
2
𝑢𝜃

𝜕𝜃2

+ 𝑟(−2𝑟𝜌0
𝜕
2
𝑢𝜃

𝜕𝑡2
+ 2 (𝛼12 − 𝛼13) cot𝜃

𝜕𝑢𝑟

𝜕𝑟

+ 2 (1 + 𝑚) 𝛼44
𝜕𝑢𝜃

𝜕𝑟
)

+ 𝑟(𝑎5
𝜕
2
𝑢𝑟

𝜕𝑟𝜕𝜃
+ 𝑟𝛼44

𝜕
2
𝑢𝜃

𝜕𝜃2
)] = 0,

(7)

where 𝑎3 = 𝛼23−𝛼33+𝛼44+𝑚𝛼44, 𝑎4 = 2(𝛼22+𝛼23+𝛼44+𝑚𝛼44),
and 𝑎5 = 2𝛼12 + 𝛼44.

3. Solution of the Problem

By Helmohltz’s theorem, the displacement vector ←󳨀𝑢 can be
written as

←󳨀
𝑢 = ∇Φ1 + ∇ ∧

←󳨀
Ψ, (8)

where the two functions Φ1 and
←󳨀
Ψ are known in the

theory of elasticity, by Lame’ potentials irrotational and
rotatoinal parts of the displacement vector ←󳨀𝑢 , respectively.
The displacement potentials are introduced for facilitating
the solution of the field equations (5) and (6). It is possible
to take only one components of the vector←󳨀Ψ to be nonzero
←󳨀
Ψ = (0, 0, 𝜓1). From (8), we obtain

𝑢𝑟 =
cot𝜃 Ψ1 + (𝜕/𝜕𝜃)Ψ1

𝑟
+
𝜕Φ1

𝜕𝑟
,

𝑢𝜃 = −
Ψ1 − 𝜕Φ1/𝜕𝜃 + 𝑟 (𝜕/𝜕𝑟)Ψ1

𝑟
.

(9)

Substituting from (9) into (6) and (7) and regrouping them
lead to the following equations forΦ1 and Ψ1:

𝑟
−2+𝑚

[2 (𝑎1 + 𝑟
2
𝜌0Ω
2
) ℎ1 − 𝑎2cot𝜃(𝜓1 −

𝜕𝜙1

𝜕𝜃
+ 𝑟
𝜕𝜓1

𝜕𝑟
)

− 𝑎3 (
𝜕𝜓1

𝜕𝜃
−
𝜕
2
𝜙1

𝜕𝜃
2
+ 𝑟
𝜕
2
𝜓1

𝜕𝑟 𝜕𝜃
)

+ 𝛼44 (cot𝜃csc
2
𝜃𝜓1 − csc

2
𝜃
𝜕𝜓1

𝜕𝜃
−
𝜕
2
𝜙1

𝜕𝜃
2

+ 2cot𝜃
𝜕
2
𝜓1

𝜕𝜃
2
+
𝜕
3
𝜓1

𝜕𝜃
3
+ 𝑟ℎ2)

−2𝜌0𝑟
2
(cot𝜃

𝜕
2
𝜓1

𝜕𝑡
2
+
𝜕
3
𝜓1

𝜕𝜃𝜕𝑡
2
+ 𝑟
𝜕
3
𝜙1

𝜕𝑟𝜕𝑡
2
)

+ 4 (1 + 𝑚) 𝛼11𝑟
2
ℎ3 + (2𝛼13 + 𝛼44)

× cot𝜃ℎ3 + (2𝛼12 + 𝛼44) ℎ4

+ 2𝛼11 (2cot𝜃𝜓1 + 2
𝜕𝜓1

𝜕𝜃
+ 𝑟ℎ5)] = 0,

(10)

where

ℎ1 = (cot𝜃𝜓1 +
𝜕𝜓1

𝜕𝜃
+ 𝑟
𝜕𝜙1

𝜕𝑟
) ,

ℎ2 = (cot𝜃
𝜕
2
𝜙1

𝜕𝑟𝜕𝜃
+
𝜕
2
𝜓1

𝜕𝑟𝜕𝜃
+
𝜕
3
𝜙1

𝜕𝑟𝜕𝜃
2
) ,
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ℎ3 = ( − (cot𝜃𝜓1 + (
𝜕𝜓1

𝜕𝜃
)

−𝑟(cot𝜃 (
𝜕𝜓1

𝜕𝑟
) +
𝜕
2
𝜓1

𝜕𝑟𝜕𝜃
))

× 𝑟
−2
+
𝜕
2
𝜙1

𝜕𝑟2
) ,

ℎ3 = (𝜓1 −
𝜕𝜙1

𝜕𝜃
− 𝑟(

𝜕𝜓1

𝜕𝑟
−
𝜕
2
𝜙1

𝜕𝑟𝜕𝜃
+ 𝑟
𝜕
2
𝜓1

𝜕𝑟2
)) ,

ℎ4 = (
𝜕𝜓1

𝜕𝜃
−
𝜕
2
𝜙1

𝜕𝜃
2
− 𝑟(

𝜕
2
𝜓1

𝜕𝑟𝜕𝜃
−
𝜕
3
𝜙1

𝜕𝑟𝜕𝜃
2
+ 𝑟
𝜕
3
𝜓1

𝜕𝑟2𝜕𝜃
)) ,

ℎ5 = (−2cot𝜃
𝜕𝜓1

𝜕𝑟
− 2
𝜕
2
𝜓1

𝜕𝑟𝜕𝜃

+ 𝑟(cot𝜃
𝜕
2
𝜓1

𝜕𝑟2
+
𝜕
3
𝜓1

𝜕𝑟2𝜕𝜃
+ 𝑟
𝜕
3
𝜙1

𝜕𝑟3
)) .

(11)

One has

𝑟
−2+𝑚

(2 (𝛼22 − 𝛼33) cot𝜃(cot𝜃𝜓1 +
𝜕𝜓1

𝜕𝜃
+ 𝑟
𝜕𝜙1

𝜕𝑟
)

+ 2 (𝑎3 − 𝑟
2
𝜌0Ω
2
+ 𝛼33csc

2
𝜃) (𝜓1 −

𝜕𝜙1

𝜕𝜃
+ 𝑟
𝜕𝜓1

𝜕𝑟
)

+ 2(𝑎6 (−csc
2
𝜃𝜓1 + cot𝜃

𝜕𝜓1

𝜕𝜃
+
𝜕
2
𝜓1

𝜕𝜃2
+ 𝑟
𝜕
2
𝜙1

𝜕𝑟𝜕𝜃
)

− 𝛼22 (
𝜕
2
𝜓1

𝜕𝜃2
−
𝜕
3
𝜙1

𝜕𝜃
3

+ cot𝜃(
𝜕𝜓1

𝜕𝜃
−
𝜕
2
𝜙1

𝜕𝜃2
+ 𝑟
𝜕
2
𝜓1

𝜕𝑟𝜕𝜃
)

+ 𝑟
𝜕
3
𝜓1

𝜕𝑟𝜕𝜃2
))

+ 𝑟
2
(2𝜌0 (

𝜕
2
𝜓1

𝜕𝑡
2
−
𝜕
3
𝜙1

𝜕𝜃𝜕𝑡
2
+ 𝑟
𝜕
3
𝜓1

𝜕𝑟𝜕𝑡
2
)

− 𝛼44 (
𝜕
2
𝜓1

𝜕𝜃2
−
𝜕
3
𝜙1

𝜕𝜃3
+ 𝑟
𝜕
3
𝜓1

𝜕𝑟𝜕𝜃2
)

+ 2 (𝛼12 − 𝛼13)

× cot𝜃(−
ℎ8

𝑟2
+
𝜕
2
𝜙1

𝜕𝑟2
) −
2 (1 + 𝑚) 𝛼44ℎ7

𝑟2

+
(2𝛼12 + 𝛼44) ℎ6

𝑟2
)) = 0,

(12)

where

𝑎6 = (𝛼22 + 𝛼23 + 𝛼44 + 𝑚𝛼44) ,

ℎ6 = (−cot𝜃
𝜕𝜓1

𝜕𝜃
−
𝜕
2
𝜓1

𝜕𝜃2
+ csc2𝜃(𝜓1 − 𝑟

𝜕𝜓1

𝜕𝑟
)

+ 𝑟cot𝜃
𝜕
2
𝜓1

𝜕𝑟𝜕𝜃
+ 𝑟
𝜕
3
𝜓1

𝜕𝑟𝜕𝜃2
(𝑟
𝜕
3
𝜙1

𝜕𝑟2𝜕𝜃
)) ,

ℎ7 = (−𝜓1 +
𝜕𝜙1

𝜕𝜃
+ 𝑟(

𝜕𝜓1

𝜕𝑟
−
𝜕
2
𝜙1

𝜕𝑟𝜕𝜃
+ 𝑟
𝜕
2
𝜓1

𝜕𝑟2
)) ,

ℎ8 = cot𝜃𝜓1 +
𝜕𝜓1

𝜕𝜃
− 𝑟(cot𝜃

𝜕𝜓1

𝜕𝑟
+
𝜕
2
𝜓1

𝜕𝑟𝜕𝜃
) .

(13)

To study the propagation of harmonic waves, we assume a
solution in the form

Φ1 (𝑟, 𝜃, 𝑡) = Φ2 (𝑟) 𝑒
𝑖 (𝛾𝜃−𝜔𝑡)

,

Ψ1 (𝑟, 𝜃, 𝑡) = Ψ2 (𝑟) 𝑒
𝑖 (𝛾𝜃−𝜔𝑡)

.

(14)

Substituting from (14) into (10) and (12) and regrouping them
lead to the following equations forΦ2 and Ψ2:

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

𝑟
−1+𝑚

[2𝛾 (𝑎7 − 𝑎8cot𝜃) 𝜙2

+ ( − 𝑖𝛾 (𝑎9 − 2𝑟
2
𝜌0 (𝜔
2
+ Ω
2
)

+ 𝛼44csc
2
𝜃)

+ cot𝜃 (2 (𝑎10 + 𝑟
2
𝜌0 (𝜔
2
+ Ω
2
))

+ 𝛼44csc
2
𝜃))Ψ2

+ 𝑟(2 (𝑎11 + 𝑟
2
𝜌0 (𝜔
2
+ Ω
2
)

+ 𝑖 (𝑎13 + 𝛼44) 𝛾cot𝜃)
𝑑Φ2

𝑑𝑟

+ 2 (𝑎12 + 𝑎13cot𝜃)
𝑑Ψ2

𝑑𝑟

+ 𝑟(4 (1 + 𝑚) 𝑎11
𝑑
2
Φ2

𝑑𝑟2

+ (𝑎14 + 𝑎15cot𝜃)
𝑑
2
Ψ2

𝑑𝑟2

+ 2𝑟𝛼11
𝑑
3
Φ2

𝑑𝑟3
))] = 0,

(15)
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where

𝑎7 = (−2𝑚𝛼12 + 𝛼22 + 𝛼23 + 𝛼44) 𝛾,

𝑎8 = 𝑖 (−2𝑚𝛼13 + 𝛼23 + 𝛼33 + 𝛼44) ,

𝑎9 = − 2𝛼12 + 4𝑚 (𝛼11 − 𝛼13) − 2𝛼13 + 2𝛼23

+ 2𝛼33 + 𝛼44 (−1 + 𝛾
2
) ,

𝑎10 = 𝛼12 + 2𝑚 (−𝛼11 + 𝛼12) + 𝛼13 − 𝛼22

− 𝛼23 + 𝛼44 − 𝛼44𝛾
2
,

𝑎11 = 𝛼12 + 2𝑚𝛼12 + 𝛼13 + 2𝑚𝛼13 − 𝛼22

− 2𝛼23 − 𝛼33 − (𝛼12 + 𝛼44) 𝛾
2
,

𝑎12 = 𝑖 (2𝑚𝛼11 − 2𝛼12 − 2𝑚𝛼12 + 𝛼22 + 𝛼23) 𝛾,

𝑎13 = 2 (2𝑚𝛼11 − 2𝛼13 − 2𝑚𝛼13 + 𝛼23 + 𝛼33) ,

𝑎14 = 𝑖 (2𝛼11 − 2𝑚𝛼12 − 𝛼44) 𝛾 + (2𝛼11 − 2𝛼13 − 𝛼44) ,

𝑎15 = (2𝑚𝛼11 − 2𝛼13 − 𝛼44) .

(16)

One has

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

𝑟
−1+𝑚

[ − 𝑖𝛾 (𝑎16 + 𝛼44 (4 + 4𝑚 + 𝑟
2
𝛾
2
)

− 2𝑟
2
𝜌0 (𝜔
2
+ Ω
2
) − 2𝑖𝛼22𝛾cot𝜃

+ 2𝛼33csc2𝜃)Φ2 + 2 (𝛼12 − 𝛼13) Ψ2

+ (𝑎17 + (−1 − 2𝑚 + 𝑟
2
) 𝛼44𝛾

2

− 2𝛼23 (−1 + 𝛾
2
) − 2𝑟

2
𝜌0 (𝜔
2
+ Ω
2
)

−𝑎18cot𝜃 + 𝑎19csc
2
𝜃)Ψ2

+ 𝑟(2𝑖 (𝑎20 − 𝑖 (𝛼22 − 𝛼23) cot𝜃)
𝑑Φ2

𝑑𝑟

− (𝑎21 + 2𝑟
2
𝜌0𝜔
2
+ 2𝑟
2
𝜌0Ω
2

−𝑎22cot𝜃 + 𝑎23csc
2
𝜃)
𝑑Ψ2

𝑑𝑟

+ 𝑟 (𝑖 (2𝛼12 + 𝛼44) 𝛾

+2 (𝛼12 − 𝛼13) cot𝜃)
𝑑
2
Φ2

𝑑𝑟2

−2 (1 + 𝑚) 𝛼44𝑟
𝑑
2
Ψ2

𝑑𝑟2
)] = 0,

(17)

where

𝑎16 = 2𝛼23 − 2𝛼33 + 2𝛼22𝛾
2
,

𝑎17 = − 2𝛼22 + 4 (1 + 𝑚) 𝛼44 + 2𝛼12𝛾
2
,

𝑎18 = 𝑖 (4𝛼12 − 2 (𝛼13 + 𝛼22 + 𝛼23 − 𝛼33)

− (1 + 2𝑚) 𝛼44) 𝛾,

𝑎19 = (2𝛼13 − 2𝛼23 − 𝛼44 − 2𝑚𝛼44) ,

𝑎20 = (𝛼22 + 𝛼23 + 2 (1 + 𝑚) 𝛼44) 𝛾,

𝑎21 = − 2 (𝛼13 + 𝛼23 − 𝛼33) − 2𝛼22𝛾
2

+ 𝛼44𝛾
2
− 𝑟
2
𝛼44𝛾
2
+ 2𝛼12 (1 + 𝛾

2
) ,

𝑎22 = 𝑖 (4𝛼12 − 2 (𝛼13 + 𝛼22) + 𝛼44) 𝛾,

𝑎23 = (2𝛼13 − 2𝛼33 + 𝛼44) ,

(18)

where 𝛾 is the wave number, 𝜔 is the angular frequency, 𝛾 =
2𝜋/𝜆, and 𝜆 is the wavelength. Substituting from (14) into (15)
and (17) and after regrouping them leads to two independent
equations for Φ2 and Ψ2; these equations are called spherical
Bessel’s equations whose general solution is in the form

Φ2 (𝑟) = 𝐴1𝑗𝑛 (𝑘𝑟) + 𝐴2𝑦𝑛 (𝑘𝑟) ,

Ψ2 (𝑟) = 𝐴3𝑗𝑛 (𝑘1𝑟) + 𝐴4𝑦𝑛 (𝑘1𝑟) ,

(19)

where

𝑛 (𝑛 + 1) =
(𝛼22 + 𝛼33 + 2𝛼23) − (2𝑚 + 1) (𝛼12 + 𝛼13)

𝛼11

+ 𝑚 (𝑚 + 1) ,

𝑘
2
=
𝛼44 + 𝜌0𝜔

2

𝛼11
+ 𝐿1 − 𝛾

2
(𝛼11 − 2𝛼43) +

𝜌0

𝛼11
(Ω
2
+ 𝜔
2
) ,

𝑘
2

1
=
𝜌0

𝛼11
(Ω
2
+ 𝜔
2
) +
(𝐿2 + 𝜌0𝜔

2
)

𝛼11

+ 2𝛾
2
(𝛼12 + 2𝑚𝛼12 − 𝛼22 − 𝛼23) ,

𝐿1 = ((2 + 4𝑚) 𝛼13 − 2 (𝛼23 + 𝛼33) − 𝑚𝛼44) ,

𝐿2 = 2𝛼12 + 2𝑚𝛼13 − 𝛼22 − 2𝛼𝑚23 − 𝛼33,

(20)

where 𝐴1, 𝐴2, 𝐴3, and 𝐴4 are arbitrary constants and
𝑗𝑛(𝑘𝑟) and 𝑦𝑛(𝑘𝑟) denote spherical Bessel’s functions of the
first and second kind of order 𝑛, respectively, which are
defined in terms of Bessel’s function as follows: 𝑗𝑛(𝑘𝑟) =
√𝜋/2𝑘𝑟𝐽𝑛+1/2(𝑘𝑟), 𝑦𝑛(𝑘𝑟) = √𝜋/2𝑘𝑟𝑌𝑛+1/2(𝑘𝑟). From (19)
and (14) we get the following solutions for Φ1 and Ψ1 as
follows:

Φ1 (𝑟, 𝜃, 𝑡) = 𝑒
𝑖 (𝛾𝜃−𝑤𝑡)

[𝐴1𝑗𝑛 (𝑘𝑟) + 𝐴2𝑦𝑛 (𝑘𝑟)] ,

Ψ1 (𝑟, 𝜃, 𝑡) = 𝑒
𝑖 (𝛾𝜃−𝑤𝑡)

[𝐴3𝑗𝑛 (𝑘1𝑟) + 𝐴4𝑦𝑛 (𝑘1𝑟)] .

(21)
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Substituting from (21) into (9), we obtain the final solution of
the displacement components in the following form:

𝑢𝑟 =
1

𝑟
𝑒
𝑖(𝛾𝜃−𝑤𝑡)

[𝐴1 {𝑛𝑗𝑛 (𝑘𝑟) − 𝑟𝑘𝑗𝑛+1 (𝑘𝑟)}

+ 𝐴2 {𝑛𝑦𝑛+1 (𝑘𝑟) + 𝑦𝑛+1 (𝑘𝑟)}

+𝐴3 (𝑖𝛾 + cot𝜃) 𝑗𝑛 (𝑘1𝑟) + 𝐴4𝑦𝑛+1 (𝑘1𝑟)] ,

𝑢𝜃 =
1

𝑟
𝑒
𝑖(𝛾𝜃−𝑤𝑡)

[𝐴1𝑖𝛾𝑗𝑛 (𝑘𝑟) + 𝐴2𝑦𝑛 (𝑘𝑟)

− 𝐴3 {(1 + 𝑛) 𝑗𝑛 (𝑘1𝑟) + 𝑘1𝑟𝑗𝑛+1 (𝑘1𝑟)}

−𝐴4 {(1 + 𝑛) 𝑦𝑛 (𝑘1𝑟) + 𝑟𝑘1𝑦𝑛+1 (𝑘1𝑟)}] .

(22)

Substituting from (22) into (2), we obtain the final solution of
the stress components in the following form:

𝜎𝑟𝑟 = 𝑟
−2+2𝑚

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴1 { ((𝛼12 + 𝛼13) 𝑛

+ 𝛼11 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑟
2
) − 𝛼12𝛾

2

+ 𝑖𝛼13𝛾cot𝜃) 𝑗𝑛 (𝑘𝑟)

+ (2𝛼11 − 𝛼12 − 𝛼13) 𝑘𝑟𝑗𝑛+1 (𝑘𝑟) }

+ 𝐴3 {(𝑖 (𝛼13 + 𝛼11 (−1 + 𝑛) − 𝛼12𝑛) 𝛾

+ (𝛼12 + 𝛼11 (−1 + 𝑛)

−𝛼13𝑛) cot𝜃) 𝑗𝑛 (𝑘1𝑟)

+ 𝑘1𝑟 (−𝑖 (𝛼11 − 𝛼12) 𝛾 + (−𝛼11 + 𝛼13)

× cot𝜃) 𝑗𝑛+1 (𝑘1𝑟) }

+ 𝐴2 {((𝛼12 + 𝛼13) 𝑛 + 𝛼11 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑟
2
)

− 𝛼12𝛾
2
+ 𝑖𝛼13𝛾cot𝜃) 𝑦𝑛 (𝑘𝑟)

+ (2𝛼11 − 𝛼12 − 𝛼13) 𝑘𝑟𝑦𝑛+1 (𝑘𝑟) }

+ 𝐴4 {(𝑖 (𝛼13 + 𝛼11 (−1 + 𝑛) − 𝛼12𝑛) 𝛾

+ (𝛼12 + 𝛼11 (−1 + 𝑛)

−𝛼13𝑛) cot𝜃) 𝑦𝑛 (𝑘1𝑟)

+ 𝑘1𝑟 (−𝑖 (𝛼11 − 𝛼12) 𝛾

+ (−𝛼11 + 𝛼13) cot𝜃) 𝑦𝑛+1 (𝑘1𝑟)}] ,
(23a)

𝜎𝜃𝜃 = 𝑟
−2+2𝑚

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴1 {((𝛼22 + 𝛼23) 𝑛

+ 𝛼12 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑟
2
) − 𝛼22𝛾

2

+ 𝑖𝛼23𝛾cot𝜃) 𝑗𝑛 (𝑘𝑟)

+ (2𝛼12 − 𝛼22 − 𝛼23) 𝑘𝑟𝑗𝑛+1 (𝑘𝑟)}

+ 𝐴3 {(𝑖 (𝛼23 + 𝛼12 (−1 + 𝑛) − 𝛼22𝑛) 𝛾

+ (𝛼22 + 𝛼12 (−1 + 𝑛)

−𝛼23𝑛) cot𝜃) 𝑗𝑛 (𝑘1𝑟)

+ 𝑘1𝑟 (−𝑖 (𝛼12 − 𝛼22) 𝛾 + (−𝛼12 + 𝛼23)

× cot𝜃) 𝑗𝑛+1 (𝑘1𝑟) }

+ 𝐴2 {((𝛼22 + 𝛼23) 𝑛 + 𝛼12 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑟
2
)

− 𝛼22𝛾
2
+ 𝑖𝛼23𝛾cot𝜃) 𝑦𝑛 (𝑘𝑟)

+ (2𝛼12 − 𝛼22 − 𝛼23) 𝑘𝑟𝑦𝑛+1 (𝑘𝑟) }

+ 𝐴4 {(𝑖 (𝛼23 + 𝛼12 (−1 + 𝑛) − 𝛼22𝑛) 𝛾

+ (𝛼22 + 𝛼12 (−1 + 𝑛)

−𝛼23𝑛) cot𝜃) 𝑦𝑛+1 (𝑘1𝑟)

+ 𝑘1𝑟 (−𝑖 (𝛼12 − 𝛼22) 𝛾

+ (−𝛼12 + 𝛼23) cot𝜃) 𝑦𝑛+1 (𝑘1𝑟)} ] ,
(23b)

𝜎𝜑𝜑 =𝑟
−2+2𝑚

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴1 {((𝛼23 + 𝛼33) 𝑛

+ 𝛼13 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑟
2
) − 𝛼23𝛾

2

+ 𝑖𝛼33𝛾cot𝜃) 𝑗𝑛 (𝑘𝑟)

+ (2𝛼13 − 𝛼23 − 𝛼33) 𝑘𝑟𝑗𝑛+1 (𝑘𝑟)}

+ 𝐴3 {(𝑖 (𝛼33 + 𝛼13 (−1 + 𝑛) − 𝛼23𝑛) 𝛾

+ (𝛼23 + 𝛼13 (−1 + 𝑛)

−𝛼33𝑛) cot𝜃) 𝑗𝑛 (𝑘1𝑟)

+ 𝑘1𝑟 (−𝑖 (𝛼13 − 𝛼23) 𝛾 + (−𝛼13 + 𝛼33)

× cot𝜃) 𝑗𝑛+1 (𝑘1𝑟)}

+ 𝐴2 {((𝛼23 + 𝛼33) 𝑛 + 𝛼13 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑟
2
)

− 𝛼23𝛾
2
+ 𝑖𝛼33𝛾cot𝜃) 𝑦𝑛 (𝑘𝑟)

+ (2𝛼13 − 𝛼23 − 𝛼33) 𝑘𝑟𝑦𝑛+1 (𝑘𝑟) }

+ 𝐴4 {(𝑖 (𝛼33 + 𝛼13 (−1 + 𝑛) − 𝛼23𝑛) 𝛾

+ (𝛼23 + 𝛼13 (−1 + 𝑛)

−𝛼33𝑛) cot𝜃) 𝑦𝑛 (𝑘1𝑟)

+ 𝑘1𝑟 (−𝑖 (𝛼13 − 𝛼23) 𝛾

+ (−𝛼13 + 𝛼33) cot𝜃) 𝑦𝑛+1 (𝑘1𝑟)}] ,
(23c)



Mathematical Problems in Engineering 7

𝜏𝑟𝜃 = −
𝑟
−2+2𝑚

2
𝛼44𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴1 {−2𝑖 (−1 + 𝑛) 𝛾𝑗𝑛 (𝑘𝑟) + 2𝑖𝑘𝑟𝛾𝑗𝑛+1 (𝑘𝑟)}

+ 𝐴3 {(−2 + (−1 + 𝑛) 𝑛 − 𝑘
2

1
𝑟
2
+ 𝛾
2
− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑗𝑛 (𝑘1𝑟) + 2𝑘1𝑟𝑗𝑛+1 (𝑘1𝑟)}

− 𝐴2 {2𝑖 (−1 + 𝑛) 𝛾𝑦𝑛 (𝑘𝑟) + 2𝑖𝑘𝑟𝛾𝑦𝑛+1 (𝑘𝑟)}

+ 𝐴4 { (−2 + (−1 + 𝑛) 𝑛 − 𝑘
2

1
𝑟
2
+ 𝛾
2
− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑦𝑛 (𝑘1𝑟) + 2𝑘1𝑟𝑦𝑛+1 (𝑘1𝑟)}] .
(23d)

From the solutions of elastic wave equations, the systems
of equations depend on non-homogenity, rotation and the
frequency.

4. Boundary Conditions and
Frequency Equation

The solutions of the hollow sphere with different boundary
conditions are performed, the mixed boundary conditions
which consist of two kinds of boundary conditions, the inner
surface fixed and the outer surface free, that is,

𝑢𝑟 = 𝑢𝜃 = 0, 𝑟 = 𝑎, 𝜎𝑟𝑟 = 𝜏𝑟𝜃 = 0, 𝑟 = 𝑏. (24)

In this case, from (22), (23a), (23b), (23c), (23d), and (24)
we have

𝐴1 {𝑛𝑗𝑛 (𝑘𝑎) − 𝑎𝑘𝑗𝑛+1 (𝑘𝑎)}

+ 𝐴2 {𝑛𝑦𝑛+1 (𝑘𝑎) + 𝑦𝑛+1 (𝑘𝑎)}

+ 𝐴3 (𝑖𝛾 + cot𝜃) 𝑗𝑛 (𝑘1𝑎) + 𝐴4𝑦𝑛+1 (𝑘1𝑎) = 0,

(25a)

𝐴1𝑖𝛾𝑗𝑛 (𝑘𝑎) + 𝐴2𝑦𝑛 (𝑘𝑎)

− 𝐴3 {(1 + 𝑛) 𝑗𝑛 (𝑘1𝑎) + 𝑘1𝑎𝑗𝑛+1 (𝑘1𝑎)}

− 𝐴4 {(1 + 𝑛) 𝑦𝑛 (𝑘1𝑎) + 𝑎𝑘1𝑦𝑛+1 (𝑘1𝑎)} = 0,

(25b)

𝐴1 {((𝛼12 + 𝛼13) 𝑛 + 𝛼11 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑏
2
)

− 𝛼12𝛾
2
+ 𝑖𝛼13𝛾cot𝜃) 𝑗𝑛 (𝑘𝑏)

+ (2𝛼11 − 𝛼12 − 𝛼13) 𝑘𝑏𝑗𝑛+1 (𝑘𝑏) }

+ 𝐴2 {((𝛼12 + 𝛼13) 𝑛 + 𝛼11 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑏
2
)

− 𝛼12𝛾
2
+ 𝑖𝛼13𝛾cot𝜃) 𝑦𝑛 (𝑘𝑏)

+ (2𝛼11 − 𝛼12 − 𝛼13) 𝑘 𝑏𝑦𝑛+1 (𝑘𝑏) }

+ 𝐴3 {(𝑖 (𝛼13 + 𝛼11 (−1 + 𝑛) − 𝛼12𝑛) 𝛾

+ (𝛼12 + 𝛼11 (−1 + 𝑛) − 𝛼13𝑛)

× cot𝜃) 𝑗𝑛 (𝑘1𝑏)

+ 𝑘1𝑏 (−𝑖 (𝛼11 − 𝛼12) 𝛾 + (−𝛼11 + 𝛼13)

×cot𝜃) 𝑗𝑛+1 (𝑘1𝑏) }

+ 𝐴4 {(𝑖 (𝛼13 + 𝛼11 (−1 + 𝑛) − 𝛼12𝑛) 𝛾

+ (𝛼12 + 𝛼11 (−1 + 𝑛) − 𝛼13𝑛)

× cot𝜃) 𝑦𝑛 (𝑘1𝑏)

+ 𝑘1𝑏 (−𝑖 (𝛼11 − 𝛼12) 𝛾 + (−𝛼11 + 𝛼13)

× cot𝜃) 𝑦𝑛+1 (𝑘1𝑏)} = 0,
(25c)

𝐴1 {−2𝑖 (−1 + 𝑛) 𝛾𝑗𝑛 (𝑘𝑏) + 2𝑖𝑘𝑏𝛾𝑗𝑛+1 (𝑘𝑏)}

− 𝐴2 {2𝑖 (−1 + 𝑛) 𝛾𝑦𝑛 (𝑘𝑏) + 2𝑖𝑘𝑏𝛾𝑦𝑛+1 (𝑘𝑏)}

+ 𝐴3 { (−2 + (−1 + 𝑛) 𝑛 − 𝑘
2

1
𝑏
2
+ 𝛾
2
− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑗𝑛 (𝑘1𝑏) + 2𝑘1𝑏𝑗𝑛+1 (𝑘1𝑏)}

+ 𝐴4 { (−2 + (−1 + 𝑛) 𝑛 − 𝑘
2

1
𝑏
2
+ 𝛾
2
− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑦𝑛 (𝑘1𝑏) + 2𝑘1𝑏𝑦𝑛+1 (𝑘1𝑏)} .

(25d)

From (25a), (25b), (25c), and (25d) we get the following
frequency equation:

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
= 0, 𝑖, 𝑗 = 1, 2, 3, 4, (26)

where the coefficients 𝑎𝑖𝑗 are functions of rotation, non-
homogenity, frequency, the radius 𝑟. Finally, we confined
our attention to make these quantities dimensionless to
simplify the calculation of the eigenvalues of equations. The
coefficients 𝑎𝑖𝑗 are

𝑎11 =𝑛𝑗𝑛 (𝑘𝑎) − 𝑟𝑘𝑗𝑛+1 (𝑘𝑎) ,

𝑎12 =𝑛𝑦𝑛+1 (𝑘𝑎) + 𝑦𝑛+1 (𝑘𝑎) ,

𝑎13 = (𝑖𝛾 + cot𝜃) 𝑗𝑛 (𝑘1𝑎) ,

𝑎14 =𝑦𝑛+1 (𝑘1𝑎) , 𝑎21 = 𝑖𝛾𝑗𝑛 (𝑘𝑎) ,

𝑎22 =𝑦𝑛 (𝑘𝑎) ,

𝑎23 = − (1 + 𝑛) 𝑗𝑛 (𝑘1𝑎) − 𝑘1𝑎𝑗𝑛+1 (𝑘1𝑎) ,

𝑎24 = (1 + 𝑛) 𝑦𝑛 (𝑘1𝑎) + 𝑎𝑘1𝑦𝑛+1 (𝑘1𝑎) ,

𝑎31 = ((𝛼12 + 𝛼13) 𝑛 + 𝛼11 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑏
2
)

− 𝛼12𝛾
2
+ 𝑖𝛼13𝛾cot𝜃) 𝑗𝑛 (𝑘𝑏)

+ (2𝛼11 − 𝛼12 − 𝛼13) 𝑘𝑏𝑗𝑛+1 (𝑘𝑏) ,



8 Mathematical Problems in Engineering

𝑎32 = ( (𝛼12 + 𝛼13) 𝑛 + 𝛼11 ((−1 + 𝑛) 𝑛 − 𝑘
2
𝑏
2
)

− 𝛼12𝛾
2
+ 𝑖𝛼13𝛾cot𝜃) 𝑦𝑛 (𝑘𝑏)

+ (2𝛼11 − 𝛼12 − 𝛼13) 𝑘 𝑏𝑦𝑛+1 (𝑘𝑏) ,

𝑎33 = { (𝑖 (𝛼13 + 𝛼11 (−1 + 𝑛) − 𝛼12𝑛) 𝛾

+ (𝛼12 + 𝛼11 (−1 + 𝑛) − 𝛼13𝑛)

×cot𝜃) 𝑗𝑛 (𝑘1𝑏)

+ 𝑘1𝑏 (−𝑖 (𝛼11 − 𝛼12) 𝛾 + (−𝛼11 + 𝛼13)

× cot𝜃) 𝑗𝑛+1 (𝑘1𝑏) } ,

𝑎34 = (𝑖 (𝛼13 + 𝛼11 (−1 + 𝑛) − 𝛼12𝑛) 𝛾

+ (𝛼12 + 𝛼11 (−1 + 𝑛) − 𝛼13𝑛)

× cot𝜃) 𝑦𝑛 (𝑘1𝑏)

+ 𝑘1𝑏 (−𝑖 (𝛼11 − 𝛼12) 𝛾

+ (−𝛼11 + 𝛼13) cot𝜃) 𝑦𝑛1+1 (𝑘1𝑏) ,

𝑎41 = − 2𝑖 (−1 + 𝑛) 𝛾𝑗𝑛 (𝑘𝑏) + 2𝑖𝑘𝑏𝛾𝑗𝑛+1 (𝑘𝑏) ,

𝑎42 = − 2𝑖 (−1 + 𝑛) 𝛾𝑦𝑛 (𝑘𝑏) − 2𝑖𝑘𝑏𝛾𝑦𝑛+1 (𝑘𝑏) ,

𝑎43 = (−2 + (−1 + 𝑛) 𝑛 − 𝑘
2

1
𝑏
2
+ 𝛾
2

− 𝑖𝛾cot𝜃 + csc2𝜃) 𝑗𝑛 (𝑘1𝑏)

+ 2𝑘1𝑏𝑗𝑛+1 (𝑘1𝑏) ,

𝑎44 = ( − 2 + (−1 + 𝑛) 𝑛 − 𝑘
2

1
𝑏
2
+ 𝛾
2

−𝑖𝛾cot𝜃 + csc2𝜃) 𝑦𝑛 (𝑘1𝑏)

+ 2𝑘1𝑏𝑦𝑛+1 (𝑘1𝑏) .

(27)

5. Numerical Results and Discussion

To examine the influence of non-homogenity, rotation and
variation of the non-dimensional frequency in hollow sphere
with the radius 𝑟 have been shown graphically. Free vibra-
tions have been studied using a half-interval method. The
frequency equations have been obtained under the effects
of non-homogenity and rotation. It is found that the non-
dimensional frequency increases with the increases of radius
𝑟 for all cases. As an illustrative example, the elastic constants
for an orthotropic non-homogeneous material from Hear-
mon [36, 37] are 𝛼23 = 3.945, 𝛼11 = 3.198, 𝛼33 = 2.7951,
𝛼13 = 2.310, 𝛼12 = 0.713, 𝛼22 = 4.560, and 𝜌 = 2.680.
Numerical calculations are carried out for the displacement
and the stress components along the 𝑟-direction at different
values of the rotation Ω = 0.0, 1.3, 2.6 in the case of non-
homogeneous material and orthotropic material. Figure 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

18

16

14

12

10

8

6

4

2

0

N
on

-d
im

en
sio

na
l f

re
qu

en
cy

r

Ω = 2.6

Ω = 1.3

Ω = 0.0

Figure 2: Variation of non-dimensional frequency versus the radius
𝑟, for the various values of rotation Ω and non-homogeneous 𝑚 =
0.65 (inner fixed surfaces and outer free surfaces) and 𝑛 = 0.
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Figure 3: Variation of non-dimensional frequency versus the radius
𝑟, for the various values of non-homogeneous 𝑚 and rotation Ω =
2.5 (inner fixed surfaces and outer free surfaces) and 𝑛 = 0.

shows the response histories of the non-dimensional frequen-
cies with the radius 𝑟 for rotating hollow sphere Ω = 2.5.
With the effect of various values of non-homogeneous 𝑚 =
0.0, 0.5, 0.9 in the case of orthotropicmaterial, it can be found
that the distribution of the non-dimensional frequencies is
increasing as the increase in the radius 𝑟 and the non-
dimensional frequencies are increasing with the increase in
the non-homogenity. Figure 3 shows the variation of the non-
dimensional frequencies with the radius 𝑟 for hollow sphere
with the effect of various values of rotation Ω = 0.0, 1.3, 2.6
in the case of non-homogeneous 𝑚 = 0.65 orthotropic
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Figure 4: Variation of non-dimensional frequency (three modes)
versus the radius 𝑟 of the hollow sphere at rotation Ω = 2.5 and
non-homogeneous 𝑚 = 0.65 (inner fixed surfaces and outer free
surfaces) and 𝑛 = 0.
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Figure 5: Variation of non-dimensional frequency (three modes)
versus the radius 𝑟 of the hollow sphere at absent of rotationΩ = 0.0
and non-homogeneous𝑚 = 0.5 (inner fixed surfaces and outer free
surfaces) and 𝑛 = 0.

material. It can be found that the distribution of the non-
dimensional frequencies is increasing with the increase in the
radius 𝑟, but the non-dimensional frequencies are increasing
with the decrease in the rotation. Figure 4 shows the response
histories of the non-dimensional frequencies (the first mode,
the second mode, and the third mode) with the radius 𝑟
at value of non-homogeneous 𝑚 = 0.65 and the rotation
Ω = 2.5. It can be found that the distribution of the non-
dimensional frequencies is increasing with the increase in the
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Figure 6: Variation of non-dimensional frequency (three modes)
versus the radius 𝑟 of the hollow sphere at rotationΩ = 2.5 and non-
homogeneous𝑚 = 0.0 (inner fixed surfaces and outer free surfaces)
and 𝑛 = 0.

radius 𝑟, for various boundary conditions, inner fixed surface,
and outer free surface. Figure 5 shows the variation of the
non-dimensional frequencies (three modes) with the radius
𝑟 for orthotropic sphere in the absence of rotation Ω = 0.0
in the case of non-homogeneous material 𝑚 = 0.65. We
observed that the frequency is increasing with the increase
of the radius 𝑟 in the case of free traction surfaces, 𝑛 =
0. Figure 6 shows the first three modes of non-dimensional
frequency for homogeneous 𝑚 = 0.0 orthotropic material
in presence of the rotation Ω = 2.5. We observed that the
frequency is increasing with the increase in the radius 𝑟 in the
case of orthotropic homogeneous hollow sphere more than
in the case non-homogeneous hollow sphere. It is evident;
non-homogenity, rotation, and orthotropic have a significant
influence on non-dimensional frequencies.

6. Conclusion

The effect of non-homogenity and rotation on surface wave
dispersion in elastodynamic problem in orthotropic hollow
sphere is studied.The vibration of sphere with the mixed sur-
faces boundary conditions is evaluated. The natural frequen-
cies (eigenvalues) are calculated and compared with those
reported in the absence and presence of non-homogenity and
rotation. The effects of non-homogenity and rotation on the
natural frequencies are shown graphically.
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An analytic solutionmethod, without integral transformation, is developed to find the exact solutions for transient heat conduction
in functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions. By introducing suitable shifting
functions, the governing second-order regular singular differential equation with variable coefficients and time-dependent
boundary conditions is transformed into a differential equation with homogenous boundary conditions. The exact solution of the
system with thermal conductivity and specific heat in power functions with different orders is developed. Finally, limiting studies
and numerical analyses are given to illustrate the efficiency and the accuracy of the analysis.

1. Introduction

The applications of heat conduction in functionally graded
(FG) circular hollow cylinders with time-dependent bound-
ary conditions can be widely found in many engineering
fields, such as cannon barrels, heat exchanger tubes, time var-
ied heating on walls of circular structure, and heat treatment
on hollow cylinders. As such, an accurate solution method is
very helpful for relevant developments.

The problem of heat conduction with time-dependent
boundary conditions cannot be solved directly by themethod
of separation of variables. In most of the analyses, an integral
transformhas been used to remove the time-dependent term.
For the problem of heat conduction in circular hollow uni-
form cylinders with time-dependent boundary conditions,
the associated governing differential equation is a second-
order Bessel differential equation with constant coefficients.
After conducting a Laplace transformation, the analytical
solution can be obtained and found in the book by Őzisik [1].

When the structure is an FG circular hollow cylinder,
the associated governing differential equation is a second-
order regular singular differential equation with variable
coefficients. For problems with time-independent boundary

conditions, various numerical methods have been developed,
such as the perturbation method [2], the finite difference
method [3], and the finite element method [4]. Jabbari et al.
[5, 6] derived analytical solutions for thermal stresses of
FG hollow cylinders whose material properties vary with
power law distribution through the thickness due to radially
symmetric loads and nonaxisymmetric loads. By using the
Laplace transformation and a series expansion of Bessel func-
tions, Ootao and Tanigawa [7] analyzed one-dimensional
transient thermoelastic problem with the material properties
varying with the powerlaw form of the radial coordinate
variable. Zhao et al. [8] analyzed the temperature change
when the thermal and thermoelastic properties are assumed
to vary exponentially in the radial direction. Hosseini et al.
[9] considered the material properties to be nonlinear with
a power law distribution through the thickness, while the
temperature distribution was derived analytically using the
Bessel functions.

In the study of heat conduction in FG circular hollow
cylinders with time-dependent boundary conditions, only
limited studies can be found. Ootao et al. [10] studied
the transient temperature and thermal stress distribution in
an infinitely long nonhomogeneous hollow cylinder due to
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a moving heat source in the axial direction from the inner
and/or outer surfaces using the layerwise theory in con-
junction with the method of Fourier cosine and the Laplace
transformations. Shao and Ma [11] employed the Laplace
transform techniques and the series solving method to study
thermomechanical stresses in FG circular hollow cylinders
with linearly increasing boundary temperature. Jabbari et al.
[12] developed an analytical solution for the one-dimensional
temperature distribution, mechanical and thermal stresses in
an infinitely long FG hollow cylinder under a moving heat
source, which moves across the thickness of the cylinder.
Asgari andAkhlaghi [13] employed the finite elementmethod
to study the transient thermal stresses in a thick hollow
cylinder with finite length mad of 2D-FGM that its material
properties are varied in the radial and axial directions with
a power law function. The thermal boundary conditions at
the inner and outer radiuses are time dependent. Singh et al.
[14] applied the finite integral transform method and the
separation of variables method to solve time-dependent heat
conduction problem in a multilayer annulus. Malekzadeh
andHeydarpour [15] used the differential quadraturemethod
(DQM) in conjunctionwith the finite elementmethod (FEM)
to study the response of FG cylindrical shells under moving
thermomechanical loads. Recently, Wang and Liu [16] have
employed the method of separation of variables to develop
the analytical solution of transient temperature fields for two-
dimensional transient heat conduction in a fiber-reinforced
multilayer cylindrical composite.

In the study of thermal elastic response of FG cylinders
without mechanical loading, the heat conduction problem
is not incorporated with the elastic field and can be studied
independently. However, the thermal field will be coupled
with the temperature field. In this paper, one considers
the heat conduction problem of FG cylinders only. A new
solution method, which is a modification on the method
developed by Lee and Lin [17] and Chen et al. [18], is used to
develop the analytical solution for transient heat conduction
in FG circular hollow cylinders with time-dependent bound-
ary conditions. By introducing suitable shifting functions,
the governing second-order differential equation with vari-
able coefficients and time-dependent boundary conditions is
transformed into a differential equation with homogenous
boundary conditions.The analytic solution of the systemwith
thermal conductivity and specific heat in power functions
with different orders is developed. Finally, limiting studies
and numerical analysis are given to illustrate the efficiency
and accuracy of the solution method.

2. Mathematical Modeling

Consider the transient heat conduction in an FG circular
hollow cylinder with time-dependent boundary condition
at the inner and outer surfaces, as shown in Figure 1. The
governing differential equation of the system is

1

𝑟

1

𝜕𝑟
[𝑟𝑘 (𝑟)

𝜕𝑇 (𝑟, 𝑡)

𝜕𝑟
] + ̇𝑔 (𝑟, 𝑡) = 𝜌𝑐 (𝑟)

𝜕𝑇 (𝑟, 𝑡)

𝜕𝑡
.

𝑎 < 𝑟 < 𝑏, 𝑡 > 0.

(1)

a

b

Initially
T0(r)

T(b, t) = T2(t)

T(a, t) = T1(t)

Figure 1: FG circular hollow cylinder with time-dependent bound-
ary conditions.

The boundary conditions are

𝑇 (𝑎, 𝑡) = 𝑇1 (𝑡) ,

𝑇 (𝑏, 𝑡) = 𝑇2 (𝑡) ,

(2)

and the initial condition is

𝑇 (𝑟, 0) = 𝑇0 (𝑟) . (3)

Here, 𝑟 is the space variable and 𝑡 is the time variable, 𝑐(𝑟)
is the specific heat, 𝑘(𝑟) is the thermal conductivity, 𝑇(𝑟, 𝑡) is
the temperature, 𝜌 is the mass density, and ̇𝑔(𝑟, 𝑡) is the heat
source inside the circular hollow cylinder. 𝑇1(𝑡) and 𝑇2(𝑡)
are the time-dependent temperatures at the inner and outer
surfaces, respectively.

In terms of the following dimensionless parameters

𝐾 (𝜉) =
𝑘 (𝑟)

𝑘 (𝑎)
, 𝐶 (𝜉) =

𝑐 (𝑟)

𝑐 (𝑎)
, 𝐺 (𝜉, 𝜏) =

̇𝑔 (𝑟, 𝑡) 𝑏
2

𝑘 (𝑎) 𝑇𝑟
,

𝜉 =
𝑟

𝑏
, 𝑟 =

𝑎

𝑏
, 𝜃 =

𝑇

𝑇𝑟
, 𝜃0 =

𝑇0

𝑇𝑟
,

𝜃𝑖 =
𝑇𝑖

𝑇𝑟
, 𝜏 =

𝑘 (𝑎) 𝑡

𝑐 (𝑎) 𝜌𝑏2
,

(4)

where 𝑇𝑟 is the reference temperature, the boundary value
problem of heat conduction becomes

1

𝜉

1

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉
] + 𝐺 (𝜉, 𝜏) = 𝐶 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜏
,

𝑟 < 𝜉 < 1, 𝜏 > 0,

𝜃 (𝑟, 𝜏) − 𝜃1 = 0,

𝜃 (1, 𝜏) − 𝜃2 = 0,

𝜃 (𝜉, 0) = 𝜃0 (𝜉) .

(5)
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3. Solution Method

3.1. Change of Variables. To find the solution for the second-
order differential equation with nonhomogeneous boundary
conditions, the shifting variable method developed by Lee
and Lin [17] and Chen et al. [18] was extended by taking

𝜃 (𝜉, 𝜏) = ] (𝜉, 𝜏) + 𝑓1 (𝜏) 𝑔1 (𝜉) + 𝑓2 (𝜏) 𝑔2 (𝜉) , (6)

where 𝑔𝑖(𝜉), 𝑖 = 1, 2 are shifting functions to be specified and
](𝜉, 𝜏) is the transformed function. Substituting (6) into (5)
yields the following partial differential equation:

1

𝜉

𝜕

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜉
] − 𝐶 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜏

= −𝐺 (𝜉, 𝜏) +

2

∑

𝑖=1

{{{

{{{

{

𝐶 (𝜉) 𝑔𝑖 (𝜉)
𝑑𝑓𝑖 (𝜏)

𝑑𝜏

−𝑓𝑖 (𝜏)
1

𝜉

𝑑

𝑑𝜉
[𝜉𝐾 (𝜉)

𝑑𝑔𝑖 (𝜉)

𝑑𝜉
]

}}}

}}}

}

,

(7)

the associated boundary conditions:

] (𝑟, 𝜏) + 𝑓1 (𝜏) 𝑔1 (𝑟) + 𝑓2 (𝜏) 𝑔2 (𝑟) = 𝑓1 (𝜏) ,

] (1, 𝜏) + 𝑓1 (𝜏) 𝑔1 (1) + 𝑓2 (𝜏) 𝑔2 (1) = 𝑓2 (𝜏) ,
(8)

and the associated initial condition

] (𝜉, 0) = 𝜃 (𝜉, 0) − 𝑓1 (0) 𝑔1 (𝜉) − 𝑓2 (0) 𝑔2 (𝜉) . (9)

3.2. Shifting Functions. To simplify the analysis, the shifting
functions are specifically chosen such that they satisfy the
following differential equations and the boundary conditions

𝑑
2
𝑔𝑖 (𝜉)

𝑑𝜉2
= 0, 𝑖 = 1, 2,

𝑔1 (𝑟) = 1,

𝑔1 (1) = 0,

𝑔2 (𝑟) = 0,

𝑔2 (1) = 1.

(10)

These two shifting functions can be easily determined as

𝑔1 (𝜉) =
1

1 − 𝑟
(1 − 𝜉) ,

𝑔2 (𝜉) =
1

1 − 𝑟
(−𝑟 + 𝜉) .

(11)

3.3. Reduced Homogenous Problem. With these two shift-
ing functions, (11), the governing differential equation (7)
becomes

1

𝜉

𝜕

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜉
] − 𝐶 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜏
= 𝐹 (𝜉, 𝜏) , (12)

where

𝐹 (𝜉, 𝜏)

= −𝐺 (𝜉, 𝜏)

+

2

∑

𝑖=1

{𝐶 (𝜉) 𝑔𝑖 (𝜉)
𝑑𝑓𝑖 (𝜏)

𝑑𝜏
−
𝑓𝑖 (𝜏)

𝜉

𝑑

𝑑𝜉
[𝜉𝐾 (𝜉)]

𝑑𝑔𝑖 (𝜉)

𝑑𝜉
} .

(13)

The two nonhomogenous boundary conditions, (8), for the
transformed function ](𝜉, 𝜏) are reduced to homogenous
ones:

] (𝑟, 𝜏) = 0,

] (1, 𝜏) = 0.
(14)

The transformed initial condition is

] (𝜉, 0) = 𝜃0 (𝜉) − 𝑓1 (0) 𝑔1 (𝜉) − 𝑓2 (0) 𝑔2 (𝜉) = ]0 (𝜉) . (15)

3.4. Solution of Transformed Variable

3.4.1. Characteristic Solution. To find the solution ](𝜉, 𝜏), we
use the eigenfunction expansion method and assume the
solution to be in the form

] (𝜉, 𝜏) = 𝜙 (𝜉) 𝐵 (𝜏) . (16)

The separation equation for the dimensionless time variable
𝐵(𝜏) is

𝑑𝐵 (𝜏)

𝑑𝜏
= −𝜆
2
𝐵 (𝜏) , (17)

and the dimensionless space variable 𝜙(𝜉) satisfies the follow-
ing self-adjoin operator:

1

𝜉

d
𝑑𝜉
[𝜉𝐾 (𝜉)

𝑑𝜙 (𝜉)

𝑑𝜉
] + 𝜆
2
𝐶 (𝜉) 𝜙 (𝜉) = 0, 𝜉 ∈ (𝑟, 1) ,

(18)

𝜙 (𝑟) = 0, (19)

𝜙 (1) = 0. (20)

Let 𝑋𝑗(𝜉), 𝑗 = 1, 2, be the two linearly independent fun-
damental solutions of the system; then, the solution of the
differential equation (18) can be expressed as

𝜙 (𝜉) = 𝐶1𝑋1 (𝜉) − 𝐶2𝑋2 (𝜉) , (21)

where 𝐶1 and 𝐶2 are constants to be determined from the
boundary conditions, (19)-(20).

After substituting solutions, (21), into the boundary con-
ditions, (19)-(20), we obtain the following characteristic
equation

𝑋1 (1)𝑋2 (𝑟) − 𝑋1 (𝑟)𝑋2 (1) = 0. (22)
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Consequently, the eigenvalues 𝜆𝑛, 𝑛 = 1, 2, 3, . . . can be deter-
mined.The associated 𝑛th eigenfunction 𝜙𝑛(𝜉) is determined
as

𝜙𝑛 (𝜉) = 𝑋2 (1)𝑋𝑛,1 (𝜉) − 𝑋1 (1)𝑋𝑛,2 (𝜉) , (23)

where 𝑋𝑛,1(𝜉) and 𝑋𝑛,2(𝜉) are, respectively, the fundamental
solutions𝑋1(𝜆𝑛, 𝜉) and𝑋2(𝜆𝑛, 𝜉) associated with eigenvalues
𝜆𝑛, 𝑛 = 1, 2, 3, . . .. They are defined as 𝑋𝑛,1(𝜉) = 𝑋1(𝜆𝑛, 𝜉)
and 𝑋𝑛,2(𝜉) = 𝑋2(𝜆𝑛, 𝜉). The eigenfunctions 𝜙𝑛(𝜉) constitute
an orthogonal set in the interval 𝑟 ≤ 𝜉 ≤ 1, with respect to a
weighting function 𝜉𝐶(𝜉):

∫

1

𝑟

𝜉𝐶 (𝜉) 𝜙𝑚 (𝜉) 𝜙𝑛 (𝜉) 𝑑𝜉 = {
0, for 𝑚 ̸= 𝑛

𝛿𝑛, for 𝑚 = 𝑛,
(24)

where

𝛿𝑛 = ∫

1

𝑟

𝜉𝐶 (𝜉) 𝜙
2

𝑛
(𝜉) 𝑑𝜉. (25)

In terms of eigenfunctions, the transformed variable
](𝜉, 𝜏) can be expressed as

] (𝜉, 𝜏) =
∞

∑

𝑛=1

𝜙𝑛 (𝜉) 𝐵𝑛 (𝜏) . (26)

Substituting (26) into (12), multiplying it by 𝜉𝜙𝑚, and inte-
grating from 𝑟 to 1, we obtain

𝑑𝐵𝑛 (𝜏)

𝑑𝜏
+ 𝜆
2

𝑛
𝐵𝑛 (𝜏) = −𝛾𝑛 (𝜏) , (27)

where

𝛾𝑛 (𝜏) =
1

𝛿𝑛
∫

1

𝑟

𝜉𝜙𝑛 (𝜉) 𝐹 (𝜉, 𝜏) 𝑑𝜉. (28)

The general solution of (27) is

𝐵𝑛 (𝜏) = 𝑒
−𝜆
2

𝑛
𝜏
[𝛼𝑛 − ∫

𝜏

0

𝑒
𝜆
2

𝑛
𝜒
𝛾𝑛 (𝜒) 𝑑𝜒] , (29)

𝛼𝑛 is determined from the initial condition (15), and

𝛼𝑛 = 𝐵𝑛 (0) =
1

𝛿𝑛
∫

1

𝑟

𝜉𝐶 (𝜉) 𝜙𝑛 (𝜉) ]0 (𝜉) 𝑑𝜉. (30)

After substituting the solution of the transformed variable
(26) and the shifting functions (11) back to (6), the exact
solution for the general system is obtained.

4. Verification and Examples

To illustrate the previous analysis, the following examples and
limiting cases are given.

Example 1. Consider the heat conduction in an uniform
circular hollow cylinder with time-dependent boundary con-
ditions. The boundary value problem of the heat conduction
in dimension-less form is

1

𝜉

1

𝜕𝜉
[𝜉
𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉
] =

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜏
, 𝑟 < 𝜉 < 1, 𝜏 > 0,

𝜃 (𝑟, 𝜏) =
𝜓1 (𝜏)

𝑇𝑟
,

𝜃 (1, 𝜏) =
𝜓2 (𝜏)

𝑇𝑟
,

𝜃 (𝜉, 0) =
𝜃0 (𝜉)

𝑇𝑟
.

(31)

In this case, 𝐾(𝜉) = 1, 𝐶(𝜉) = 1. The two shifting func-
tions are

𝑔1 (𝜉) =
1

1 − 𝑟
(1 − 𝜉) ,

𝑔2 (𝜉) =
1

1 − 𝑟
(𝜉 − 𝑟) .

(32)

The two linearly independent fundamental solutions are

𝑋1 (𝜆𝑛, 𝜉) = 𝐽0 (𝜆𝑛𝜉) ,

𝑋2 (𝜆𝑛, 𝜉) = 𝑌0 (𝜆𝑛𝜉) .

(33)

This leads to

𝐹 (𝜉, 𝜏) =
1

(1 − 𝑟) 𝑇𝑟
[ (1 − 𝜉) 𝜓

󸀠

1
(𝜏) + (−𝑟 + 𝜉) 𝜓

󸀠

2
(𝜏)

+
𝜓1 (𝜏)

𝜉
−
𝜓2 (𝜏)

𝜉
] ,

(34)

where the characteristic equation is

𝑋1 (1)𝑋2 (𝑟) − 𝑋1 (𝑟)𝑋2 (1) = 0. (35)

The associated 𝑛th eigenfunction 𝜙𝑛(𝜉) is determined as

𝜙𝑛 (𝜉) =
𝐽0 (𝜆𝑛𝜉)

𝐽0 (𝜆𝑛)
−
𝑌0 (𝜆𝑛𝜉)

𝑌0 (𝜆𝑛)
. (36)

The eigenvalues 𝜆𝑛 and the associated eigenfunctions 𝜙𝑛(𝜉)
are obtained from (35) and (36). The two coefficients in (28)-
(29) are derived as

𝛾𝑛 (𝜏) =
1

𝛿𝑛

1

(1 − 𝑟) 𝑇𝑟

× ∫

1

𝑟

{𝜙𝑛 (𝜉) [ (𝜉 − 𝜉
2
) 𝜓
󸀠

1
(𝜏) + (−𝑟𝜉 + 𝜉

2
) 𝜓
󸀠

2
(𝜏)

+ 𝜓1 (𝜏) − 𝜓2 (𝜏) ] } 𝑑𝜉

𝐵𝑛 (𝜏) = 𝑒
−𝜆
2

𝑛
𝜏
[𝛼𝑛 − ∫

𝜏

0

𝑒
𝜆
2

𝑛
𝜒
𝛾𝑛 (𝜒) 𝑑𝜒] ,

(37)
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where

𝛿𝑛 = [∫

1

𝑟

𝜉 𝜙
2

𝑛
(𝜉) 𝑑𝜉] ,

𝛼𝑛 =
1

𝛿𝑛𝑇𝑟
∫

1

𝑟

𝜉𝜙𝑛 (𝜉) 𝜃0 (𝜉) 𝑑𝜉.

(38)

As a result, the analytic closed solution of the system in
dimensionless form is

𝜃 (𝜉, 𝜏) =

∞

∑

𝑛=1

[𝜙𝑛 (𝜉) 𝐵𝑛 (𝜏)]

+ (
1 − 𝜉

1 − 𝑟
)
𝜓1 (𝜏)

𝑇𝑟
+ (
−𝑟 + 𝜉

1 − 𝑟
)
𝜓2 (𝜏)

𝑇𝑟
,

(39)

when

𝜓1 (𝜏) = 𝜓2 (𝜏) = 0. (40)

The analytic closed solution, in dimensionless form, is re-
duced to

𝜃 (𝜉, 𝜏) =

∞

∑

𝑛=1

[𝑒
−𝜆
2

𝑛
𝜏
𝜙𝑛 (𝜉) 𝛼𝑛] . (41)

The solution is exactly the same as the one given by Őzisik [1].

Example 2. Consider the heat conduction in an FG circular
hollow cylinder with time-dependent boundary conditions.
The coefficients of thermal conductivity and the specific
heat are 𝐾(𝜉) = 𝑘𝑚𝜉

𝛽
1 and 𝐶(𝜉) = 𝑐𝑚𝜉

𝛽
2 , respectively.

The boundary value problem of the heat conduction in
dimensionless form is

1

𝜉

𝜕

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉
] − 𝐶 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜏
= 0,

𝑟 < 𝜉 < 1, 𝜏 > 0,

(42)

𝜃 (𝑟, 𝜏) = 0, (43)

𝜃 (1, 𝜏) = (1 − 𝑒
−𝐶
0
𝜏
) 𝜃2, (44)

𝜃 (𝜉, 0) = 0. (45)

In this case, two shifting functions are

𝑔1 (𝜉) =
1

1 − 𝑟
(1 − 𝜉) ,

𝑔2 (𝜉) =
1

1 − 𝑟
(𝜉 − 𝑟) .

(46)

The route to two independent fundamental solutions of of
(42) lies in the use of the Frobenius method which can be
represented in terms of the Bessel functions:

𝑋1 (𝜆𝑛, 𝜉) = 𝜉
−𝛽
1
/2
𝐽] (𝜂𝑛𝜉

(2+𝛽
2
−𝛽
1
)/2
) ,

𝑋2 (𝜆𝑛, 𝜉) = 𝜉
−𝛽
1
/2
𝑌] (𝜂𝑛𝜉

(2+𝛽
2
−𝛽
1
)/2
) ,

(47)

where

𝜂𝑛 = √
𝑐𝑚

𝑘𝑚
(

2𝜆𝑛

𝛽1 − 𝛽2 − 2
) ,

] =
𝛽1

𝛽1 − 𝛽2 − 2
.

(48)

Now,

𝐹 (𝜉, 𝜏)

= 𝑒
−𝐶
0
𝜏
𝜃2 [𝑐𝑚𝜉

𝛽
2𝐶0 (𝑎

∗
+ 𝑏
∗
𝜉) + 𝑏

∗
(𝛽1 + 1) 𝑘𝑚𝜉

𝛽
1
−1
]

− 𝑏
∗
[𝜃2 (𝛽1 + 1) 𝑘𝑚𝜉

𝛽
1
−1
] ,

(49)

where

𝑎
∗
=
−𝑟

1 − 𝑟
,

𝑏
∗
=

1

1 − 𝑟
.

(50)

The characteristic equation is

𝑋1 (1)𝑋2 (𝑟) − 𝑋1 (𝑟)𝑋2 (1) = 0. (51)

The associated 𝑛th eigenfunction 𝜙𝑛(𝜉) is determined as

𝜙𝑛 (𝜉) = 𝑋2 (1)𝑋𝑛,1 (𝜉) − 𝑋1 (1)𝑋𝑛,2 (𝜉) . (52)

The eigenvalues 𝜆𝑛 and the associated eigenfunctions 𝜙𝑛(𝜉)
are obtained from (51) and (52) by numerical analysis. Two
coefficients in (28)–(30) are derived as

𝛾𝑛 (𝜏) = 𝛾𝑛1 (𝜉) 𝑒
−𝐶
0
𝜏
+ 𝛾
𝑛2
(𝜉) ,

𝐵𝑛 (𝜏) = [𝛼𝑛 +
𝛾
𝑛1
(𝜉)

𝜆2
𝑛
− 𝐶0

+
𝛾
𝑛2
(𝜉)

𝜆2
𝑛

] 𝑒
−𝜆
2

𝑛
𝜏

−
𝛾
𝑛1
(𝜉)

𝜆2
𝑛
− 𝐶0

𝑒
−𝐶
0
𝜏
−
𝛾
𝑛2
(𝜉)

𝜆2
𝑛

,

(53)

where

𝛿𝑛 = [∫

1

𝑟

𝑐𝑚𝜉
𝛽
2
+1
𝜙
2

𝑛
(𝜉) 𝑑𝜉] ,

𝛾
𝑛1
(𝜉) =

𝜃2

𝛿𝑛
{∫

1

𝑟

𝜙𝑛 (𝜉) [𝑐𝑚𝜉
𝛽
2𝐶0 (𝑎

∗
+ 𝑏
∗
𝜉)

+𝑏
∗
(𝛽1 + 1) 𝑘𝑚𝜉

𝛽
1
−1
] 𝑑𝜉} ,

𝛾
𝑛2
(𝜉) =

−𝑏
∗
𝜃2

𝛿𝑛
[∫

1

𝑟

𝜙𝑛 (𝜉) (𝛽1 + 1) 𝑘𝑚𝜉
𝛽
1
−1
𝑑𝜉] ,

𝛼𝑛 = 0.

(54)
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Table 1: Temperature distribution of FG circular hollow cylinders with constant value of 𝛽2 and various parameters of 𝛽1 and 𝐶0 at 𝜏 = 0.5,
[𝑘𝑚 = 1, 𝑐𝑚 = 1, 𝜃(1, 𝜏) = (𝐶0 sin𝜔𝜏)𝜃2 : 𝜃2 = 4 and 𝜔 = 2.5].

𝐶0 𝛽1 𝛽2
𝜉

0.5 0.6 0.7 0.8 0.9 1.0

0.1
0.75

1
0 4.595 2.259 1.845 1.632 0.380

1 0 4.592 2.285 1.990 1.820 0.380

1.25 0 4.486 2.279 2.133 1.975 0.380

1
0.75

1
0 45.952 22.589 18.453 16.320 3.796

1 0 45.920 22.848 19.895 18.202 3.796

1.25 0 44.865 22.788 21.329 19.752 3.796

10
0.75

1
0 459.520 225.888 184.526 163.201 37.959

1 0 459.196 228.480 198.950 182.017 37.959

1.25 0 448.647 227.881 213.290 197.520 37.959

3.0

2.5

2.0

1.5

1.0

0.5

0.0

𝜃

𝜏

C0 = 10

𝛽1 = 1, 𝛽2 = 5

𝛽1 = 1, 𝛽2 = 0.5

𝛽1 = 1, 𝛽2 = 5

𝛽1 = 1, 𝛽2 = 0.5

C0 = 1

0.01 0.1 1 10

Figure 2: Temperature variation of FG circular hollow cylinders
with constant value of 𝛽1 and various values of 𝛽2 and𝐶0 at 𝜉 = 0.75,
[𝑘𝑚 = 1, 𝑐𝑚 = 1, 𝜃(1, 𝜏) = (1 − 𝑒

−𝐶
0
𝜏
)𝜃2 : 𝜃2 = 4].

Consequently, the analytic closed solution for the system
can be derived as

𝜃 (𝜉, 𝜏)

=
(1 − 𝑒

−𝐶
0
𝜏
) 𝜃2

1 − 𝑟
(𝜉 − 𝑟)

+

∞

∑

𝑛=1

{𝑋2 (1)𝑋𝑛,1 (𝜉) − 𝑋1 (1)𝑋𝑛,2 (𝜉)}

×

{{{{{

{{{{{

{

[
𝛾
𝑛1
(𝜉)

𝜆2
𝑛
− 𝐶0

+
𝛾
𝑛2
(𝜉)

𝜆2
𝑛

] 𝑒
−𝜆
2

𝑛
𝜏

−
𝛾
𝑛1
(𝜉)

𝜆2
𝑛
− 𝐶0

𝑒
−𝑐
0
𝜏
−
𝛾
𝑛2
(𝜉)

𝜆2
𝑛

}}}}}

}}}}}

}

.

(55)

3.0

3.5

4.0

2.5

2.0

1.5

1.0

0.5

0.0

𝜃

0.5 0.6 0.7 0.8 0.9 1.0
𝜉

C0 = ∞

C0 = 10

𝛽1 = 0, 𝛽2 = 0

𝛽1 = 1, 𝛽2 = 5

𝛽1 = 1, 𝛽2 = 1

𝛽1 = 0, 𝛽2 = 0

C0 = 1

𝛽1 = 1, 𝛽2 = 5

𝛽1 = 1, 𝛽2 = 1

Figure 3: Temperature distribution of FG circular hollow cylinders
with constant value of 𝛽1 and various values of 𝛽2 and 𝐶0 at 𝜏 = 0.2,
[𝑘𝑚 = 1, 𝑐𝑚 = 1, 𝜃(1, 𝜏) = (1 − 𝑒

−𝐶
0
𝜏
)𝜃2 : 𝜃2 = 4].

In Figure 2, the temperature variation of FG circular
hollow cylinders with various parameters of 𝛽1, 𝛽2, and 𝐶0
at 𝜉 = 0.75 is shown. It can be found that when 𝐶0 is a
positive constant, the temperature parameter of the mediums
at 𝜉 = 0.75 increases then reaches the associated constant
temperatures over time. The temperature increase rate for
the system with a higher value of 𝐶0 is greater than that
of one with a lower value of 𝐶0. Figures 3 and 4 show the
temperature distribution of FG circular hollow cylinders with
various parameters of 𝛽1, 𝛽2, and 𝐶0 at 𝜏 = 0.2. From these
figures, it can be observed that with constant parameter 𝛽1,
the temperature of the mediums increases as parameter 𝛽2
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3.0

3.5

2.5

2.0

1.5

1.0

0.5

0.0

𝜃

0.5 0.6 0.7 0.8 0.9 1.0
𝜉

C0 = 10 C0 = 1
𝛽1 = 0.75, 𝛽2 = 1

𝛽1 = 1, 𝛽2 = 1

𝛽1 = 1.25, 𝛽2 = 1

𝛽1 = 1, 𝛽2 = 1

𝛽1 = 1.25, 𝛽2 = 1

𝛽1 = 0.75, 𝛽2 = 1

Figure 4: Temperature distribution of FG circular hollow cylinders
with constant value of 𝛽

2
and various values of 𝛽

1
and 𝐶

0
at 𝜏 = 0.2,

[𝑘𝑚 = 1, 𝑐𝑚 = 1, 𝜃(1, 𝜏) = (1 − 𝑒
−𝐶
0
𝜏
)𝜃2 : 𝜃2 = 4].

400
350
300
250
200
150
100

50
0

−50
−100
−150
−200
−250
−300
−350
−400

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

𝜃

𝜏

C0 = 10

𝛽1 = 1, 𝛽2 = 0.75

𝛽1 = 1, 𝛽2 = 1

𝛽1 = 1, 𝛽2 = 1.25

Figure 5: Temperature variation of FG circular hollow cylinders
with constant value of 𝛽1 and various values of 𝛽2 at 𝜉 = 0.75,
[𝑘𝑚 = 1, 𝑐𝑚 = 1, 𝜃(1, 𝜏) = (𝐶0 sin𝜔𝜏)𝜃2 : 𝜃2 = 4, 𝐶0 = 10 and
𝜔 = 2.5].

is increased. With constant parameter 𝛽2, the temperature of
the mediums increases as parameter 𝛽1 is increased.

Example 3. Consider the same physical system as discussed
in Example 2. In this case, the time dependent boundary
condition at 𝜉 = 1, (44), is changed to the form

𝜃 (1, 𝜏) = (𝐶0 sin𝜔𝜏) 𝜃2. (56)

In this case, the eigenvalues and eigenfunctions are the same
as those given in Example 2.

Now,

𝐹 (𝜉, 𝜏) =
−𝜃2𝐶0

1 − 𝑟
[(𝛽1 + 1) 𝑘𝑚𝜉

𝛽
1 sin𝜔𝜏

− (𝜉 − 𝑟) 𝜔𝑐𝑚𝜉
𝛽
2 cos𝜔𝜏] .

(57)

Following the same solution procedures as shown, the
exact solution for the general system can be derived as

𝜃 (𝜉, 𝜏) =
𝐶0 sin𝜔𝜏
1 − 𝑟

𝜃2 (𝜉 − 𝑟)

+

∞

∑

𝑛=1

[𝑋2 (1)𝑋𝑛,1 (𝜉) − 𝑋1 (1)𝑋𝑛,2 (𝜉)] 𝐵𝑛 (𝜏) ,

(58)

where

𝐵𝑛 (𝜏) =
1

𝜔 [(𝜆2
𝑛
/𝜔)
2
+ 1]

×

{{{{

{{{{

{

(
𝜆
2

𝑛

𝜔
cos𝜔𝜏 + sin𝜔𝜏 −

𝜆
2

𝑛

𝜔
𝑒
−𝜆
2

𝑛
𝜏
)𝛾
𝑛1
(𝜉)

−(
𝜆
2

𝑛

𝜔
sin𝜔𝜏 − cos𝜔𝜏 − 𝑒−𝜆

2

𝑛
𝜏
)𝛾
𝑛2
(𝜉)

}}}}

}}}}

}

,

𝛿𝑛 = [∫

1

𝑟

𝑐𝑚𝜉
𝛽
2
+1
𝜙
2

𝑛
(𝜉) 𝑑𝜉] ,

𝛾
𝑛1
(𝜉) =

−𝜃2𝐶0

(1 − 𝑟) 𝛿𝑛
[∫

1

0

𝜙𝑛 (𝜉) (𝜉 − 𝑟) 𝜔𝑐𝑚𝜉
𝛽
2
+1
𝑑𝜉] ,

𝛾
𝑛2
(𝜉) =

−𝜃2𝐶0

(1 − 𝑟) 𝛿𝑛
[∫

1

0

𝜙𝑛 (𝜉) (𝛽1 + 1) 𝑘𝑚𝜉
𝛽
1
+1
𝑑𝜉] ,

𝛼𝑛 = 0.

(59)

Figure 5 shows the harmonic temperature variation of FG
circular hollow cylinders with constant value of 𝛽1, various
parameters of 𝛽2 at 𝜉 = 0.75, 𝐶0 = 10, and 𝜔 = 2.5. It can
be observed that with constant value of 𝛽1, the amplitude of
temperature oscillation for the system with a higher value of
𝛽2 will be more than that of one with a lower value of 𝛽2.

In Table 1, the temperature variations of FG circular
hollow cylinders with constant value of 𝛽2 and various values
of 𝛽1 and 𝐶0 at 𝜏 = 0.5 are given. It can be observed that with
constant parameter 𝛽2, the temperature of the mediums will
decrease as parameter 𝛽1 is decreased.

5. Conclusions

Theproblemof heat conductionwith general time-dependent
boundary conditions cannot be solved directly by themethod
of separation of variables. In most of the analyses, an integral
transform was used to remove the time-dependent term.
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In this paper, a new analytic solution method is developed
to find the analytic closed solutions for the transient heat
conduction in FG circular hollow cylinders with general
time-dependent boundary conditions. The developed solu-
tion method is free of any kind of integral transformation.

By introducing suitable shifting functions, the governing
second-order regular singular differential equation with vari-
able coefficients and time-dependent boundary conditions is
transformed into a differential equation with homogenous
boundary conditions.The analytic solution of the systemwith
thermal conductivity and specific heat in power functions
with different orders is developed. Finally, limiting studies
and numerical analyses are given to illustrate the efficiency
and the accuracy of the analysis. The proposed solution
method can also be extended to the problems with various
kinds of FG materials and time-dependent boundary condi-
tions.
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A localized differential quadrature method (LDQM) is introduced for buckling analysis of axially functionally graded nonuniform
columns with elastic restraints. Weighting coefficients of differential quadrature discretization are obtained making use of
neighboring points in forward and backward type schemes for the reference grids near the beginning and end boundaries of the
physical domain, respectively, and central type scheme for the reference grids inside the physical domain. Boundary conditions
are directly implemented into weighting coefficient matrices, and there is no need to use fictitious points near the boundaries.
Compatibility equations are not required because the governing differential equation is discretized only once for each reference
grid using neighboring points and variation of flexural rigidity is taken to be continuous in the axial direction. A large case of
columns having different variations of cross-sectional profile and modulus of elasticity in the axial direction are considered. The
results for nondimensional critical buckling loads are compared to the analytical and numerical results available in the literature.
Some new results are also given. Comparison of the results shows the potential of the LDQM for solving such generalized eigenvalue
problems governed by fourth-order variable coefficient differential equations with high accuracy and less computational effort.

1. Introduction

Beams and columns with variable flexural rigidities are
commonly used in complex structures to achieve a better
distribution of strength and weight and sometimes to satisfy
architectural and functional requirements. The accurate pre-
diction of dynamic behavior of beams and columns, partic-
ularly when the properties of the material and cross-section
are variable, is of crucial importance in many areas of science
and engineering such as civil, mechanical, biomedical, and
aerospace engineering. Moreover, elastic restraints may also
become an important issue for determination of critical buck-
ling loads. The continuous change of the material properties
can be achieved by gradually varying the volume fraction
of the individual constituent materials from one point to
another through any of the spatial coordinates. These types
of materials are specifically called as functionally graded
materials (FGMs). Continuity in FGM properties allows the
elimination of interlayer delamination due to high stress and

crack initiation and propagation in intermediate faces caused
by high plastic deformation, frequently seen in laminated
composites. The property variation of FGMs can be tailored
to obtain the desired mechanical properties for different
applications. With the advent of more advanced techniques,
FGMs are now used in production of beam, plate, and shell
structures that are emerging as promising structural elements
in today’s industry (automotive and aircraft industry, space
vehicles, machine elements, etc.) [1].

There are many analytical and numerical studies for
buckling analysis of beams and columns in the literature, but
most of them are limited to the case of uniform case and
a few studies take into account variation of both material
properties and cross-section through the axial direction for
columns with elastic restraints. Closed form solutions for
these types of columns are only available for some special
cases [2–8], and to obtain a general solution, numerical
methods should be employed. As far as numerical methods
are concerned, differential quadrature method (DQM) is
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claimed to be an efficient and powerful numerical technique
with minimum computational effort and also an alternative
to the finite difference and finite element methods. DQM,
introduced firstly by Bellmann and his coworkers [9, 10],
discretizes any derivative at a point in the solution domain by
a weighted linear sum of function values along the direction
of its respective coordinate. Since its advance, DQMhas been
successfully applied to a variety of problems in engineering
science and a review can be found in [11]. The DQM and its
modified versions are applied to buckling analyses of nonuni-
form and functionally graded columns in [12–15]. Other
numerical methods such as differential transform method
[15], semi-inverse method [16–18], functional perturbation
method [19], variational iteration method [20, 21], homotopy
perturbation method [22, 23], finite difference method [24],
finite element method [25], integral-equation approach [26],
dynamic stiffness method [27], Newton’s eigenvalue iteration
method [28], and Fredholm integral technique [29] are also
successfully applied to buckling analyses of nonuniform and
axially functionally graded columns. Recently, Huang and
Luo [30] proposed a method that uses power series and inte-
gral technique to obtain a polynomial characteristic equation
in terms of critical buckling loads for axially inhomogeneous
beams with elastic restraint. Then they solved this equation
for smallest positive root using a commercial software.

The key procedure in DQM lies in the determination of
the weighting coefficients. Also, implementation of boundary
conditions is another important issue. With this respect,
many studies are conducted to overcome deficiencies of the
DQM. Detailed information about the DQM and its devel-
opment stages can be found in [31]. Even though, DQM has
been regarded as an efficient numerical technique with high
accuracy at the beginning, large number of grid numbers
cannot be used, that is, more than 21, due to the stability
problems. To overcome these deficiencies, more advanced
version of DQM, localized differential quadrature method
(LDQM) is proposed and applied to some engineering and
physical problems such as 2D wave equation [32], 2D stream
function formulation of Navier–Stokes equations [33], and
mild slope equation [34]. The basic idea in the LDQ method
is to apply DQ approximation to a small neighborhood of
the grid point of interest rather than to the whole domain.
The derivatives at each grid point are then approximated
by a weighted sum of function values on its neighboring
points, rather than on all of the grid points. Thus, a very
accurate solutionwithout losing stability can be obtained.The
discussion and basic ideas beyond the LDQM are given in
detail in [35].

In this study, LQDM is applied to the buckling analyses
of nonuniform axially functionally graded columns with
elastic restraints for different boundary conditions. To the
best of the authors’ knowledge, in the open literature, LDQM
is not applied before to solutions of generalized eigen-
value problems governed by fourth-order variable coefficient
differential equations. Fictitious points are not used for
implementation of boundary conditions at the tip nodes and
boundary conditions are directly implemented into weight-
ing coefficient matrices. It is seen that problems encountered
in original DQ method for implementation of clamped

P

L

z, w

x

Figure 1: Column with continuous elastic restraint.

boundary conditions into weighting coefficient matrices are
eliminated using LDQM. There is no restriction in the
continuous variation of cross-section and elastic modulus in
the axial direction. In the following at first, mathematical
formulation of the problem is provided and an introduction is
given for classical DQM and LDQM.Then numerical results
for critical buckling loads are given for a large case of columns
using LDQM.

2. Mathematical Formulation

2.1. Governing Differential Equation. A nonuniform axially
functionally graded column of length 𝐿 subjected to an axial
compressive load 𝑃 at the centroid axis with a continuous
elastic restraint is considered (see Figure 1). The material
properties and cross-section of the beam are assumed to vary
continuously along the axial direction, 𝑥. According to Euler-
Bernoulli beam theory, the effects of shear deformation and
rotary inertia are neglected; thus the governing differential
equation for buckling of an axially FG nonuniform beam on
elastic foundation can be written as follows [8]:

𝑑
2

𝑑𝑥2
[𝐸 (𝑥) 𝐼 (𝑥)

𝑑
2
𝑤

𝑑𝑥2
] + 𝑃

𝑑
2
𝑤

𝑑𝑥2
+ 𝑘𝑤 = 0, 0 < 𝑥 < 𝐿,

(1)

where 𝑤(𝑥) is the lateral displacement, 𝐸(𝑥) and 𝐼(𝑥) are
axially varying modulus of elasticity and moment of inertia
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of the column, respectively, and 𝑘 is the stiffness of the uni-
formly distributed lateral springs per unit length. Introducing
nondimensional coordinate and deflection as

𝜉 =
𝑥

𝐿
, 𝑊 (𝜉) =

𝑤 (𝑥)

𝐿
, (2)

(1) can be written as [30]

𝑑
2

𝑑𝜉2
[𝐸 (𝜉) 𝐼 (𝜉)

𝑑
2
𝑊

𝑑𝜉2
] + 𝛼
∗ 𝑑
2
𝑊

𝑑𝜉2
+ 𝛽
∗
𝑊 = 0, 0 < 𝜉 < 1,

(3)

where 𝛼∗ = 𝑃𝐿
2 is the normalized critical load and 𝛽

∗
= 𝑘𝐿
4

is the normalized restrained stiffness parameter.

2.2. Boundary Conditions. End supports of the beam directly
affect the critical buckling load of the column. In the present
study, four types of boundary conditions shown in Figure 2
are considered [8]. The explicit expressions for the boundary
conditions can be given in terms of𝑊(𝜉) as follows.

Clamped support (C):

𝑊 = 0,
𝑑𝑊

𝑑𝜉
= 0. (4a)

Pin support (P):

𝑊 = 0,
𝑑
2
𝑊

𝑑𝜉2
= 0. (4b)

Free end (F):

𝑑
2
𝑊

𝑑𝜉2
= 0,

𝑑

𝑑𝜉
[𝐸 (𝜉) 𝐼 (𝜉)

𝑑
2
𝑊

𝑑𝜉2
] + 𝛼
∗ 𝑑𝑊

𝑑𝜉
= 0. (4c)

Guided end (G):

𝑑𝑊

𝑑𝜉
= 0,

𝑑

𝑑𝜉
[𝐸 (𝜉) 𝐼 (𝜉)

𝑑
2
𝑊

𝑑𝜉2
] + 𝛼
∗ 𝑑𝑊

𝑑𝜉
= 0. (4d)

The problem is to find the critical buckling load of the
column using the fourth-order variable coefficient ordinary
differential equation (3) subject to corresponding boundary
conditions given in (4a), (4b), (4c), and (4d). A closed-form
solution of the problem is not generally possible for arbitrarily
varying coefficients except for some special cases [3–7] and
it is of crucial importance to find the smallest root of the
equations for general case in engineering applications. In
Section 3, LDQM discretization of the governing differential
equation and boundary conditions will be shown for general
case of axial variation of material properties and cross-
section and, in Section 4, various types of nonuniform axially
FG beams will be considered and corresponding numerical
solutions will be obtained for the critical buckling loads.

C-F P-P C-P C-C C-G

Figure 2: Boundary conditions.

3. Numerical Discretization and
Method of Solution

3.1. Classical Differential Quadrature Method (DQM). The
method of differential quadrature (DQ) is based on an
assumption that the derivative of a function with respect to
a space variable at a given discrete point can be expressed as
a weighted linear sum of the function values at all discrete
points in the solution domain. Weighting coefficients of
DQM can be calculated in several ways. In order to find
simple algebraic expressions for the weighting coefficients
without restricting the choice of grid points, the generalized
DQM was developed by Shu and Richards [36]. Consider a
function 𝑓(𝑥) prescribed in a field domain 𝑎 ≤ 𝑥 ≤ 𝑏. Let
𝑓(𝑥𝑖) be the function values specified in a finite set of 𝑁
discrete points 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑁) of the field domain. The
𝑟th-order derivative of 𝑓(𝑥) at any discrete point 𝑥𝑖 can be
written in DQ analog form as

𝑑
𝑟
𝑓 (𝑥𝑖)

𝑑𝑥𝑟
=

𝑁

∑

𝑗=1

𝑎
(𝑟)

𝑖𝑗
𝑓 (𝑥𝑗) , 𝑖 = 1, 2, . . . , 𝑁, (5)

where 𝑎
(𝑟)

𝑖𝑗
are the weighting coefficients of the 𝑟th-order

derivative of the function 𝑓(𝑥) associated with points 𝑥𝑖.
In the generalized DQM, the test functions are assumed

to be the Lagrange interpolation test functions such as

ℓ𝑗 (𝑥) =
𝑀 (𝑥)

(𝑥 − 𝑥𝑗)𝑀
(1) (𝑥𝑗)

, 𝑗 = 1, 2, . . . , 𝑁, (6)

where

𝑀(𝑥) =

𝑁

∏

𝑚=1

(𝑥 − 𝑥𝑚) ,

𝑀
(1)

(𝑥𝑗) =
𝑑𝑀(𝑥𝑗)

𝑑𝑥
=

𝑁

∏

𝑚=1,𝑚 ̸= 𝑗

(𝑥𝑗 − 𝑥𝑚) .

(7)
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The weighting coefficients for the first-order derivative
can be obtained using Lagrange interpolation polynomial as
follows:

𝑎
(1)

𝑖𝑗
=
𝑑ℓ𝑗 (𝑥𝑖)

𝑑𝑥
=

𝑀
(1)

(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑀
(1) (𝑥𝑗)

,

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗,

(8a)

𝑎
(1)

𝑖𝑖
=
𝑑ℓ𝑖 (𝑥𝑖)

𝑑𝑥
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
(1)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, (8b)

and these coefficients give the [𝐴(1)]matrix as

[𝐴
(1)
] =

[
[
[
[
[
[

[

𝑎
(1)

11
𝑎
(1)

12
⋅ ⋅ ⋅ 𝑎
(1)

1𝑁

𝑎
(1)

21
𝑎
(1)

22
⋅ ⋅ ⋅ 𝑎
(1)

2𝑁

...
... d

...
𝑎
(1)

𝑁1
𝑎
(1)

𝑁2
⋅ ⋅ ⋅ 𝑎
(1)

𝑁𝑁

]
]
]
]
]
]

]

. (9)

Similarly, the weighting coefficients for the 𝑟th-order deriva-
tive can be evaluated using the following equations:

𝑎
(𝑟)

𝑖𝑗
=
𝑑
𝑟
ℓ𝑗 (𝑥𝑖)

𝑑𝑥𝑟
= 𝑟(𝑎

(𝑟−1)

𝑖𝑖
𝑎
(1)

𝑖𝑗
−

𝑎
(𝑟−1)

𝑖𝑗

(𝑥𝑖 − 𝑥𝑗)
) ,

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗, 𝑟 ≥ 2,

(10a)

𝑎
(𝑟)

𝑖𝑖
=
𝑑
𝑟
ℓ𝑖 (𝑥𝑖)

𝑑𝑥𝑟
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
(𝑟)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2.

(10b)

The weighting coefficients for second- and higher-order
derivatives can also be evaluated using the following expres-
sion:

𝑎
(𝑟)

𝑖𝑗
=

𝑁

∑

𝑘=1

𝑎
(𝑟−1)

𝑖𝑘
𝑎
(1)

𝑘𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2. (11)

These coefficients give the matrix 𝐴
(𝑟) which can be inter-

preted as follows:

[𝐴
(𝑟)
] =

[
[
[
[
[
[

[

𝑎
(𝑟)

11
𝑎
(𝑟)

12
⋅ ⋅ ⋅ 𝑎
(𝑟)

1𝑁

𝑎
(𝑟)

21
𝑎
(𝑟)

22
⋅ ⋅ ⋅ 𝑎
(𝑟)

2𝑁

...
... d

...
𝑎
(𝑟)

𝑁1
𝑎
(𝑟)

𝑁2
⋅ ⋅ ⋅ 𝑎
(𝑟)

𝑁𝑁

]
]
]
]
]
]

]

. (12)

When 𝑥 is taken in the interval 𝑥 ∈ [0, 𝐿] instead of
𝑥 ∈ [0, 1], the right-hand side of (14) must be divided by 𝐿𝑟
which can be smaller or greater than 1. Then, the weighting
coefficient matrix takes the following form:

[𝐴
(𝑟)
] = (

𝑑

𝑑𝑥
)

𝑟

=
𝑑
𝑟

𝑑𝑥𝑟
=

1

𝐿𝑟

[
[
[
[
[
[

[

𝑎
(𝑟)

11
𝑎
(𝑟)

12
⋅ ⋅ ⋅ 𝑎
(𝑟)

1𝑁

𝑎
(𝑟)

21
𝑎
(𝑟)

22
⋅ ⋅ ⋅ 𝑎
(𝑟)

2𝑁

...
... d

...
𝑎
(𝑟)

𝑁1
𝑎
(𝑟)

𝑁2
⋅ ⋅ ⋅ 𝑎
(𝑟)

𝑁𝑁

]
]
]
]
]
]

]

.

(13)

Figure 3: Discretization of boundary and near boundary reference
points for𝑁𝑥 = 7 and𝑁 = 21.

Figure 4: Discretization of an interior reference point for 𝑁𝑥 = 7

and𝑁 = 21.

After calculating the matrix 𝐴
(1), weighting coefficient

matrices for second- and higher-order derivatives can also be
calculated using the following formulae:

[𝐴
(𝑟)
] = [𝐴

(1)
] [𝐴
(𝑟−1)

] = [𝐴
(𝑟−1)

] [𝐴
(1)
] . (14)

3.2. Localized Differential Quadrature Method (LDQM) and
Sampling Points. In LDQM, firstly neighboring grids of any
discrete point 𝑥𝑖 in the computational domain should be
determined according to the position of the point of interest
and order of the first derivative approximation. For example if
the function is discretized at the beginning boundary of the
physical domain with respect to space variable 𝑥 (at 𝑥 = 0)
or nearby it and a sixth-order first derivative approximation
is used that means 7 neighboring points are needed (𝑁𝑥 =

7), the selection of the neighboring grid points should be
forward type in the direction of the space variable, and
if the function is discretized at the end boundary of the
physical domain with respect to space variable 𝑥 (at 𝑥 = 𝐿)
or nearby it, the selection of the neighboring grid points
should be backward type. At the other interior reference
points central type scheme is used. Figures 3 and 4 show the
selection of neighboring points of a discrete point 𝑥𝑖 in the
solution domain for the previously mentioned cases. Then,
the discretization of the first-order derivative of a function
𝑓(𝑥) with respect to space variable, 𝑥, at any discrete point
𝑥𝑖 can be approximated using a weighted linear combination
of the function values at some of the neighboring reference
points within the computational domain as [32]

𝑑𝑓 (𝑥𝑖)

𝑑𝑥
= ∑

𝑗∈𝑆
𝑖

𝑎
(1)

𝑖𝑗
𝑓 (𝑥𝑗) , 𝑖 = 1, 2, . . . , 𝑁, (15)

where 𝑆𝑖 represents the corresponding set of the neighboring
nodes for the discrete grid point 𝑥𝑖 in the domain or
at the boundaries, 𝑁 is the total amount of grid points
in the direction of 𝑥. Weighting coefficients of the first-
order derivative with respect to spatial coordinate 𝑥 can be
evaluated using the following equations:

𝑎
(1)

𝑖𝑗
=

∏
𝑚∈𝑆
𝑖
,𝑚 ̸= 𝑖

(𝑥𝑖 − 𝑥𝑚)

(𝑥𝑖 − 𝑥𝑗) ⋅ ∏𝑚∈𝑆
𝑖
,𝑚 ̸= 𝑗

(𝑥𝑗 − 𝑥𝑚)
,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 ∈ 𝑆𝑖, 𝑖 ̸= 𝑗,

(16a)

𝑎
(1)

𝑖𝑖
= − ∑

𝑗∈𝑆
𝑖
,𝑗 ̸= 𝑖

𝑎
(1)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁. (16b)
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Similarly, the discretization of the higher-order derivatives of
𝑓(𝑥)with respect to space variable, 𝑥, at any discrete point 𝑥𝑖
can be expressed as

𝑑
𝑟
𝑓 (𝑥𝑖)

𝑑𝑥𝑟
= ∑

𝑗∈𝑆
𝑖

𝑎
(𝑟)

𝑖𝑗
𝑓 (𝑥𝑗) , 𝑖 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2. (17)

The weighting coefficients for the 𝑟th-order derivative at
any discrete point 𝑥𝑖 can be evaluated using the following
equations:

𝑎
(𝑟)

𝑖𝑗
= 𝑟 ⋅ (𝑎𝑖𝑗𝑎

(𝑟−1)

𝑖𝑖
−

𝑎
(𝑟−1)

𝑖𝑗

(𝑥𝑖 − 𝑥𝑗)
) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 ∈ 𝑆𝑖, 𝑖 ̸= 𝑗, 𝑟 ≥ 2,

(18a)

𝑎
(𝑟)

𝑖𝑖
= − ∑

𝑗∈𝑆
𝑖
,𝑗 ̸= 𝑖

𝑎
(𝑟)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2. (18b)

It is instructive to note that (18a) and (18b) are rewritten forms
of (10a) and (10b) in the neighborhood of the reference point
𝑥𝑖.

A frequently used and convenient choice for the sampling
points is that of the equally spaced sampling points which can
be given in normalized coordinate of the space variable 𝑥𝑖 by

𝜉𝑖 =
𝑖 − 1

𝑁 − 1
, 𝑖 = 1, 2, . . . , 𝑁. (19)

In the present study, equally spaced sampling points are used.

3.3. LDQM Formulation of the Governing Differential Equa-
tion and Boundary Conditions. Introducing 𝐷(𝜉) = 𝐸(𝜉)𝐼(𝜉)

for flexural rigidity, (3) can be expanded into following form:

𝐷 (𝜉)
𝑑
4
𝑊

𝑑𝜉4
+ 2

𝑑𝐷 (𝜉)

𝑑𝜉

𝑑
3
𝑊

𝑑𝜉3

+
𝑑
2
𝐷 (𝜉)

𝑑𝜉2

𝑑
2
𝑊

𝑑𝜉2
+ 𝛼
∗ 𝑑
2
𝑊

𝑑𝜉2
+ 𝛽
∗
𝑊 = 0.

(20)

For the numerical computation equation (20) can be dis-
cretized using LDQM as follows:

𝐷(𝜉𝑖) ∑

𝑗∈𝑆
𝑖

𝑎
(4)

𝑖𝑗
𝑊(𝜉𝑗) + 2

𝑑𝐷 (𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=𝜉
𝑖

∑

𝑗∈𝑆
𝑖

𝑎
(3)

𝑖𝑗
𝑊(𝜉𝑗)

+
𝑑
2
𝐷 (𝜉)

𝑑𝜉2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=𝜉
𝑖

∑

𝑗∈𝑆
𝑖

𝑎
(2)

𝑖𝑗
𝑊(𝜉𝑗) + 𝛼

∗
∑

𝑗∈𝑆
𝑖

𝑎
(2)

𝑖𝑗
𝑊(𝜉𝑗)

+ 𝛽
∗
𝑊(𝜉𝑖) = 0, 𝑖 = 1, 2, . . . , 𝑁.

(21)

Boundary conditions given in (4a), (4b), (4c), and (4d) can
be discretized at 𝜉 = 0 using LDQM as follows.

Clamped support (C):

𝑊(𝜉1) = 0, ∑

𝑗∈𝑆
𝑖

𝑎
(1)

1𝑗
𝑊(𝑥𝑗) = 0. (22a)

Pin support (P):

𝑊(𝜉1) = 0, ∑

𝑗∈𝑆
𝑖

𝑎
(2)

1𝑗
𝑊(𝑥𝑗) = 0. (22b)

Free end (F):

∑

𝑗∈𝑆
𝑖

𝑎
(2)

1𝑗
𝑊(𝑥𝑗) = 0,

𝑑𝐷 (𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0
∑

𝑗∈𝑆
𝑖

𝑎
(2)

1𝑗
𝑊(𝑥𝑗)

+ 𝐷 (𝜉1) ∑

𝑗∈𝑆
𝑖

𝑎
(3)

1𝑗
𝑊(𝑥𝑗) + 𝛼

∗
∑

𝑗∈𝑆
𝑖

𝑎
(1)

1𝑗
𝑊(𝑥𝑗) = 0.

(22c)

Guided end (G):

∑

𝑗∈𝑆
𝑖

𝑎
(1)

1𝑗
𝑊(𝑥𝑗) = 0,

𝑑𝐷 (𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0
∑

𝑗∈𝑆
𝑖

𝑎
(2)

1𝑗
𝑊(𝑥𝑗)

+ 𝐷 (𝜉1) ∑

𝑗∈𝑆
𝑖

𝑎
(3)

1𝑗
𝑊(𝑥𝑗) + 𝛼

∗
∑

𝑗∈𝑆
𝑖

𝑎
(1)

1𝑗
𝑊(𝑥𝑗) = 0.

(22d)

Boundary conditions at 𝜉 = 1 can also be discretized in a
similar manner. Boundary conditions given in (22a), (22b),
(22c), and (22d) can directly be substituted into weighting
coefficient matrices as described by Shu [31]. It will be shown
in the next section that the disadvantages of substituting
boundary conditions into weighting coefficient matrices,
encountered in classical DQM for clamped boundary condi-
tion, disappeared in LDQM. It is also worth mentioning that
no compatibility equations are needed in LDQM because the
governing differential equation is discretized only once for
each reference grid using neighboring points and variation
of flexural rigidity is continuous in the axial direction.

Resulting set of algebraic equations can be put intomatrix
form to solve the generalized eigenvalue problem for critical
buckling loads. Required matrix dimension is (𝑁− 2) × (𝑁−

2) for combination of clamped and simply supported end
conditions since the function values at 𝜉 = 0 and 𝜉 = 1

are known. For combination of clamped and other boundary
conditions (free and guided), the resulting matrix dimension
is (𝑁 − 1) × (𝑁− 1) since function value is only known at the
clamped end.

4. Numerical Results and Discussions

In this section, LDQM is used to investigate the buckling
behavior of axially FG nonuniform beams with a continuous
elastic restraint. Firstly buckling behavior of homogeneous
uniform columns with elastic restraints that has analytical
solution is investigated to show the effectiveness of the
method. Then the effects of variable cross-section and vari-
able elastic modulus are investigated individually and both
together.
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4.1. Uniform Homogeneous Column with Elastic Restraints.
For this case, (3) has an analytic solution and Wang et al. [8]
have derived the stability criteria in nondimensional critical
buckling load𝛼 = 𝑃𝐿

2
/𝐸𝐼 andnormalized restrained stiffness

parameter 𝛽 = 𝑘𝐿
4
/𝐸𝐼 for the columns with different end

conditions. Stability criteria are as follows:

P-P Column:

sin𝑇 = 0. (23)

C-P Column:

𝑇 cos𝑇 sin 𝑆 − 𝑆 sin𝑇 cos 𝑆 = 0. (24)

C-G Column:

𝑇 sin𝑇 cos 𝑆 − 𝑆 cos𝑇 sin 𝑆 = 0. (25)

C-C Column:

2𝑆𝑇 [cos𝑇 cos 𝑆 − 1] + (𝑇
2
+ 𝑆
2
) sin𝑇 sin 𝑆 = 0. (26)

C-F Column:

[𝛼 (𝑆
2
+ 𝑇
2
) − 2𝑆

2
𝑇
2
] cos𝑇 cos 𝑆 − 𝛼 (𝑆

2
+ 𝑇
2
)

+ (𝑆
4
+ 𝑇
4
) + 𝑆𝑇 [2𝛼 − (𝑆

2
+ 𝑇
2
)] sin𝑇 sin 𝑆 = 0,

(27)

where

𝑆 = √ 𝛼

2
− √(

𝛼

2
)

2

− 𝛽, 𝑇 = √𝛼

2
+ √(

𝛼

2
)

2

− 𝛽.

(28)

The stability criteria given in (23)–(27) are extremely non-
linear and finding the smallest root of the equation which
is the critical buckling load is not easy for any assumed
stiffness parameter. To show the effectiveness of the LDQM,
nondimensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼, are

calculated for clamped-clamped beams with different nor-
malized restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸𝐼 and

compared to the exact results. In calculations the number of
neighboring grids 𝑁𝑥 is taken to be 11 and total number of
grid points 𝑁 is changed from 21 to 41. As can be seen from
Table 1, critical buckling load converges to exact results as𝑁
increases from 11 to 41. In the following, neighboring grids𝑁𝑥
is taken to be 11 and total number of grid points𝑁 is taken to
be 41 unless otherwise specified.

The critical buckling loads of the aforementioned
columns have also been calculated by Atay and Coşkun
[21] using a variation iteration approach and Huang and
Luo [30] using power series and the integral technic.

Nondimensional critical buckling loads for other boundary
conditions are also obtained using LDQM and compared
with the exact results [8], and with [21, 30]. The LDQM
results given in Table 2 are in good agreement with the exact
and other numerical results. It is also seen from Tables 1
and 2 that although the critical buckling load increases as
the normalized restrained stiffness parameter increases for
all of the boundary conditions, the column with C-G end
condition is more sensitive to normalized restrained stiffness
parameter change than the others.

4.2. Effect of Variable Cross-Section. Euler-Bernoulli columns
with nonuniform cross-section along the axial direction are
considered to see the effect of variable cross-section on
critical buckling load. For this case elastic modulus 𝐸 is taken
to be constant andmoment of inertia term changes according
to a power law:

𝐼 (𝜉) = 𝐼0(1 + 𝑎𝜉)
𝑝
, 𝑎 > −1, (29)

where 𝑎 is a geometric parameter and 𝑝 = 1, 2, and 3.
First let us consider the case 𝑝 = 1 which corresponds to

the columns of linearly varying width and constant height.
Nondimensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼0, are

calculated using LDQM for different geometric parameter
values, 𝑎, and normalized restrained stiffness parameters
𝛽 = 𝑘𝐿

4
/𝐸𝐼0. The results are compared to available results

in the literature and given in Tables 3 and 4. It is seen
from Tables 3 and 4 that with 𝑎 changes from negative
to positive values, nondimensional critical buckling load
increases since negative values of 𝑎 correspond to decreasing
width and positive values of 𝑎 correspond to increasing width
as 𝜉 changes from 0 to 1. As normalized restrained stiffness
parameter increases, critical buckling loads also increase for
all of the boundary conditions as in the case of uniform
columns.

𝑝 = 2 case corresponds to the columns of parabolic
varying width and constant height. For this case nondimen-
sional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼0, are calculated

using LDQM for different geometric parameter values, 𝑎, and
normalized restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸𝐼0. The

results are compared to available results in the literature and
given in Tables 5 and 6. Comparison of results given in Tables
3 and 4 with the results given in Tables 5 and 6 shows that
critical buckling loads for 𝑝 = 2 case are higher than 𝑝 = 1

case for 𝑎 > 0 and critical buckling loads for 𝑝 = 2 case
are lower than 𝑝 = 1 case for 𝑎 < 0 for all of the boundary
conditions since decrease and increase in column width are
influenced by a factor of 2 for the case of 𝑝 = 2. It is also
seen from Tables 5 and 6 that although C-P and P-C columns
have the same critical buckling loads for 𝛽 = 0, they have
somewhat different critical buckling loads for 𝛽 = 25, 50, and
100.

For the case of 𝑝 = 3, column has constant width and
linearly varying height. The numerical results for nondi-
mensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼0, are given

in Table 7 for different geometric parameter values, 𝑎, and
normalized restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸𝐼0.

Looking at Table 7, it is seen that the increase in critical
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Table 1: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼) for clamped-clamped uniform homogeneous columns with continuous elastic

restraint (𝛽 = 𝑘𝐿
4
/𝐸𝐼).

𝛽 Exact [8] DQM
𝑁 = 21

DQM
𝑁 = 31

DQM
𝑁 = 41

LDQM
𝑁𝑥 = 11,
𝑁 = 21

LDQM
𝑁𝑥 = 11,
𝑁 = 31

LDQM
𝑁𝑥 = 11,
𝑁 = 41

0 39.47841760 39.47841735 39.46144027 — 39.47841219 39.47841756 39.47841760
50 43.26056590 43.26107726 38.55373074 — 43.26023292 43.26056213 43.26056583
100 47.00660086 47.00980042 37.89095672 — 47.00612534 47.00659571 47.00660072

Table 2: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼) for uniform homogeneous columns with continuous elastic restraint (𝛽 =

𝑘𝐿
4
/𝐸𝐼).

BC 𝛽 = 0 𝛽 = 50 𝛽 = 100

Exact [8] Reference
[21]

Reference
[30] LDQM Exact [8] Reference

[21]
Reference

[30] LDQM Exact
[8]

Reference
[21] Reference [30] LDQM

C-P 20.1907 20.1908 20.190729 20.190729 24.2852 24.2855 24.285198 24.285198 28.3066 28.3080 28.306631 28.306631
P-P 9.8696 9.8696 9.869604 9.869604 14.9357 14.9357 14.935664 14.935664 20.0017 20.0017 20.001723 20.001723
C-G 9.8696 9.8696 9.869604 9.869604 23.5717 23.5722 23.571661 23.571659 32.6690 32.6482 32.668976 32.668976
C-F 2.4674 2.4674 2.467401 2.467401 8.8614 8.8614 8.861396 8.861396 11.9964 11.9964 11.996413 11.996413

Table 3: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼0) for

the columns of linearly varying width and constant height (𝐼(𝜉) =

𝐼0(1 + 𝑎𝜉)) for 𝛽 = 0.

BC 𝑎 Reference [28] Reference [3] Reference [30] LDQM

C-F
−0.5 — — — 2.06209226
0.5 — — — 2.81006133
1.0 3.12277257 3.11769623 3.11769623 3.11769628

F-C
−0.5 — — — 1.55884812
0.5 — — — 3.31117993
1.0 — 4.12418445 4.12418445 4.12418442

P-P
−0.5 — — — 7.25562477
0.5 — — — 12.25041131
1.0 14.50520092 14.51124954 14.51124954 14.51124954

C-P
−0.5 — — — 14.73942213
0.5 — — — 24.99361144
1.0 29.49596465 29.44896281 29.44896281 29.44896281

P-C
−0.5 — — — 14.72448141
0.5 — — — 24.99874044
1.0 — 29.47884426 29.47884426 29.47884426

C-C
−0.5 — — — 28.69697807
0.5 — — — 48.81145815
1.0 57.44524609 57.39395614 57.39395614 57.39395614

C-G
−0.5 — — — 7.16883539
0.5 — — — 12.19969805
1.0 — — — 14.33767077

buckling loads for 𝑎 > 0 and the decrease in critical buckling
loads for 𝑎 < 0 are more pronounced as compared to 𝑝 = 2

case because this time moment of inertia term is affected
by a factor of 3. In Section 4.4, a column that has linearly
varying width and height is also considered with varying
elastic modulus.

4.3. Effect of Material Nonhomogeneity in the Axial Direc-
tion. Euler-Bernoulli columns with material nonhomogene-
ity along the axial direction are considered to see the effect
of variable elastic modulus on critical buckling loads. For
this case moment of inertia term, 𝐼, is taken to be constant
and elastic modulus varies according to a power law or an
exponential low gradient assumption.

4.3.1. Power Law Gradient Assumption. For power law gra-
dient assumption, the variation of elastic modulus along the
axial direction is taken as

𝐸 (𝜉) = 𝐸0 + (𝐸1 − 𝐸0) 𝜉
𝑚
, 𝑚 > 0, (30)

where 𝑚 is a material gradient index and takes the values
of 0.25, 0.5, 1, 2, and 4 in the present study. Specifically,
two constituent materials are taken to be Aluminum and
Alumina. The elastic moduli of these constituents are 70GPa
(𝐸0) and 380Gpa (𝐸1), respectively [37]. Poisson’s ratio is
taken to be constant. The LDQM results for nondimensional
critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸0𝐼, are given in Table 8 for

different material gradient index values, 𝑚, and normalized
restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸0𝐼. It is seen

that although the constituent materials are not changed, the
critical buckling loads change drastically as material gradient
index value changes, that is, increase as𝑚 gets smaller values
because as 𝑚 goes to zero, the volume fraction of Alumina
becomes dominant.

4.3.2. Exponential Law Gradient Assumption. For exponen-
tial law gradient assumption, the variation of elastic modulus
along the axial direction is taken to be

𝐸 (𝜉) = 𝐸0𝑒
𝜇𝜉
, (31)

where 𝜇 is a material gradient index and takes the values
of −1, −0.5, 0.5, and 1 in the present study. Negative values
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Table 4: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for the columns of linearly varying width and constant height (𝐼(𝜉) =

𝐼0(1 + 𝑎𝜉)) with continuous elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸𝐼0).

BC 𝑎 = −0.5 𝑎 = 0.5 𝑎 = 1

𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100

C-F 5.320851 7.249834 9.496180 7.002455 10.034833 13.926981 7.575957 10.969773 15.525985
F-C 5.484886 7.762992 10.365666 7.065179 9.787644 13.328385 7.822199 10.641702 14.499668
P-P 9.774589 12.290572 17.308835 14.778728 17.306502 22.359993 17.030858 19.549179 24.581143
C-P 16.663069 18.556531 22.240823 27.120454 29.236109 33.430687 31.622334 33.787588 38.091765
P-C 16.893794 19.045882 23.289167 26.982108 28.949869 32.834737 31.409689 33.326139 37.113062
C-C 30.583452 32.457228 36.164501 50.705246 52.591875 56.342983 59.283541 61.166905 64.914456
C-G 13.693532 18.852382 24.928160 19.887489 26.982550 38.296345 22.292684 29.808724 42.676370

Table 5: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼0) for

the columns of parabolic varying width and constant height (𝐼(𝜉) =
𝐼0(1 + 𝑎𝜉)

2
) for 𝛽 = 0.

BC 𝑎 Reference [28] Reference [3] Reference [30] LDQM

C-F
−0.5 — — — 1.68296637
0.5 — — — 3.17193009
1.0 3.85763006 3.83637692 3.83637692 3.83637679

F-C
−0.5 — — — 0.95909423
0.5 — — — 4.40655924
1.0 — 6.73186541 6.73186541 6.73186555

P-P
−0.5 — — — 5.19807211
0.5 — — — 15.07084413
1.0 20.79163330 20.79228846 20.79228846 20.79228846

C-P
−0.5 — — — 10.52729403
0.5 — — — 30.72425899
1.0 42.31345100 42.10917612 42.10917612 42.10917612

P-C
−0.5 — — — 10.52729403
0.5 — — — 30.72425899
1.0 — 42.10917612 42.10917612 42.10917612

C-C
−0.5 — — — 20.48084102
0.5 — — — 59.97123859
1.0 82.22844561 81.92336388 81.92336364 81.92336379

C-G
−0.5 — — — 5.19807212
0.5 — — — 15.07084413
1.0 — — — 20.79228847

of 𝜇 correspond to the case; the column is ceramic rich at
𝜉 = 0 and metal rich at 𝜉 = 1 whereas positive values of 𝜇
corresponds to the case; the column is metal rich at 𝜉 = 0 and
ceramic rich at 𝜉 = 1. The LDQM results for nondimensional
critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸0𝐼, are given in Table 9 for

different material gradient index values, 𝜇, and normalized
restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸0𝐼. As can be seen

from Table 9, critical buckling load increases for all of the
boundary conditions with an increase in material gradient
index as expected and it is also seen that restrained stiffness
parameter has an important influence on critical buckling
loads.

4.4. Effects of Both Material Nonhomogeneity and Variable
Cross-Section. To investigate the effects of varying elastic
modulus and cross-section along the axial direction together,
a column that has linearly varying width and height and
linearly varying elastic modulus is considered.

Width of the column:

𝑏 (𝜉) = 𝑏0 (1 − 𝑐𝑏𝜉) , 0 < 𝑐𝑏 < 1. (32a)

Height of the column:

ℎ (𝜉) = ℎ0 (1 − 𝑐ℎ𝜉) , 0 < 𝑐ℎ < 1. (32b)

Moment of inertia of the column:

𝐼 (𝜉) = 𝐼0 (1 − 𝑐𝑏𝜉) (1 − 𝑐ℎ𝜉)
3
. (32c)

Elastic modulus of the column:

𝐸 (𝜉) = 𝐸0 (1 + 𝜉) , (32d)

where 𝑏0, ℎ0, 𝐼0, and 𝐸0 are width, height, moment of inertia,
and elastic modulus of the column at 𝜉 = 0, respectively, 𝑐𝑏
and 𝑐ℎ are geometric parameters that correspond towidth and
height taper ratios, respectively.

The case of 𝐸(𝜉) = 𝐸0(1 + 𝜉) with linearly varying
width and height is investigated by Shahba and Rajasekaran
[15] using differential quadrature element method of lowest
order (DQEL) for 𝛽 = 0 case, that is, there are no elastic
restraints. In [15], 12 elements each consisting of 11 nodes
were chosen; thus total number of reference grids were taken
to be 121. In DQEL, four compatibility equations should be
written at the connection points of the elements and required
matrix dimension to solve the problem is 576 × 576. To
be consistent with [15], in LDQM solution of the problem
total number of reference grids and neighboring nodes are
also taken to be 121 and 11, respectively, but now required
matrix dimension to solve the problem is 121 × 121. The
nondimensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸0𝐼0, of

the columns for C-F, C-C, P-P, and C-P end conditions are
given in Tables 10, 11, 12, and 13, respectively. For 𝛽 = 0
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Table 6: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for the columns of parabolic varying width and constant height (𝐼(𝜉) =

𝐼
0
(1 + 𝑎𝜉)

2
) with continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
).

BC 𝑎 = −0.5 𝑎 = 0.5 𝑎 = 1

𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100

C-F 4.341228 5.715021 7.305691 7.704323 11.199778 15.954946 8.844363 13.022270 19.259820
F-C 4.814955 6.692851 8.861021 8.038782 10.842500 14.737209 10.168566 13.021924 17.364909
P-P 7.672218 10.127971 14.937938 17.585157 20.097766 25.116851 23.271880 25.748067 30.688871
C-P 12.293759 14.009160 17.265144 32.912173 35.092823 39.430646 44.369842 46.626819 51.129119
P-C 12.782280 15.020605 19.433707 32.627483 34.516476 38.249232 43.893645 45.666325 49.175037
C-C 22.316590 24.131698 27.694119 61.849231 63.721127 67.446145 83.766543 85.604838 89.266360
C-G 10.832136 14.608627 18.532817 23.114885 30.762149 44.091245 29.276062 37.551999 53.151712

Table 7: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼0) for the columns of constant width and linearly varying height (𝐼(𝜉) =

𝐼0(1 + 𝑎𝜉)
3
) with continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸𝐼0).

𝑎 = −0.5 𝑎 = 0.5 𝑎 = 1

𝛽 = 0 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 0 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 0 𝛽 = 25 𝛽 = 50 𝛽 = 100

C-F 1.336426 3.406304 4.350010 5.487807 3.551010 8.394751 12.332922 18.020661 4.612119 10.082221 14.934526 22.864147
F-C 0.576515 4.175688 5.657646 7.558428 5.811363 9.281395 12.095892 16.252824 10.691414 13.774455 16.483421 20.954255
P-P 3.627812 6.022524 8.352143 12.576225 18.375617 20.866994 23.355361 28.321680 29.022499 31.437359 33.847167 38.650332
C-P 7.362241 8.951802 10.460281 13.205198 37.498111 39.736262 41.969764 46.421968 58.957688 61.272201 63.584952 68.205009
P-C 7.369711 9.677768 11.969157 16.483968 37.490417 39.306827 41.110477 44.677867 58.897925 60.520678 62.134215 65.333104
C-C14.348488 16.093293 17.802510 21.098101 73.217187 75.065707 76.908867 80.578722 114.787912 116.546905 118.302355 121.800784
C-G 3.757964 8.394621 10.934803 13.536789 18.603820 26.955608 35.048357 49.998675 30.063711 38.940072 47.723673 64.917551

Table 8: Non-dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸0𝐼) for

the axially functionally graded uniform columns with continuous
elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸0𝐼) for power law gradient assumption

(𝐸(𝜉) = 𝐸0 + (𝐸1 − 𝐸0)𝜉
𝑚
).

BC 𝛽 𝑚 = 0.25 𝑚 = 0.5 𝑚 = 1 𝑚 = 2 𝑚 = 4

C-F
0 10.246957 7.735606 4.817137 3.371243 2.744415
50 19.568013 17.538824 14.864166 12.616815 10.701577
100 27.169221 25.136738 22.408392 18.876263 15.432611

P-P
0 45.748909 38.940772 28.774564 18.792973 13.011352
50 50.803306 43.960898 33.699710 23.651864 17.958863
100 55.857000 48.977666 38.610936 28.483003 22.886075

C-P
0 88.219496 73.141853 56.085968 40.610932 29.196866
50 92.644745 77.725784 60.691265 45.136468 33.591204
100 97.057453 82.298033 65.2873438 49.648452 37.960864

C-C
0 171.978825 141.782221 108.012834 79.801395 61.973263
50 194.878114 164.325089 111.724718 83.269291 65.289531
100 198.515086 167.927968 115.422272 86.713451 68.575996

C-G
0 43.162442 36.512699 26.886961 21.480866 17.319545
50 66.091837 59.354530 44.201739 38.490118 33.745313
100 79.619024 73.035781 60.849096 54.508426 48.551928

case, the results are compared to results of [15] for available
boundary conditions and found to be perfectly consistent.
The results show the potential of LDQM for solution of
generalized eigenvalue problems governed by fourth order
varying coefficient ordinary differential equations with high
accuracy and less computational effort.

Table 9: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸0𝐼) for

the axially functionally graded uniform columns with continuous
elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸0𝐼) for exponential law gradient

assumption (𝐸(𝜉) = 𝐸0𝑒
𝜇𝜉
).

BC 𝛽 𝜇 = −1 𝜇 = −0.5 𝜇 = 0.5 𝜇 = 1

C-F
0 1.782102 2.112127 2.844778 3.241181
50 6.272146 7.534741 10.200538 11.507320
100 8.112043 9.940415 14.224745 16.544646

P-P
0 5.826546 7.634493 12.587151 15.838195
50 10.824282 12.684208 17.638042 20.845819
100 15.772528 17.725908 22.685148 25.842687

C-P
0 11.988386 15.639912 25.782548 32.554915
50 15.640533 19.528086 30.050913 36.962919
100 19.113129 23.299501 34.275138 41.344887

C-C
0 23.490038 30.598353 50.448156 63.852545
50 27.172950 34.353512 54.212593 67.556554
100 30.785108 38.059830 57.948273 71.236233

C-G
0 5.972525 7.682708 12.666644 16.235007
50 16.438031 19.863476 27.642188 32.240813
100 21.152920 26.511574 39.345458 46.225436

5. Conclusions

In this study an LDQM is proposed and applied to the
critical buckling load analyses of axially functionally graded
nonuniform columns with elastic restraint. The method can
be applied for any type of nonhomogeneity in the axial
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Table 10: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸0𝐼0) for the axially functionally graded non-uniform columns with continuous

elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸0𝐼0) for C-F boundary condition.

𝛽 𝑐ℎ
𝑐
𝑏

0 0.2 0.4 0.6 0.8

0

0 Reference [15] 3.1177 2.9497 2.7676 2.5652 2.3285
LDQM 3.117663 2.949668 2.767637 2.565141 2.328495

0.2 Reference [15] 2.6225 2.4638 2.2915 2.0992 1.8725
LDQM 2.622455 2.463779 2.291515 2.099165 1.872518

0.4 Reference [15] 2.1054 1.9585 1.7988 1.6200 1.4074
LDQM 2.105415 1.958547 1.798693 1.619887 1.407356

0.6 Reference [15] 1.5522 1.4217 1.2798 1.1208 0.9309
LDQM 1.552205 1.421546 1.279989 1.120782 0.930901

0.8 Reference [15] 0.9245 0.8217 0.7109 0.5883 0.4441
LDQM 0.924469 0.821641 0.710897 0.588251 0.444050

50

0 LDQM 10.969897 10.399534 9.730454 8.911626 7.828378
0.2 LDQM 9.235948 8.649698 7.968922 7.148865 6.086033
0.4 LDQM 7.195173 6.631250 5.989832 5.235064 4.284203
0.6 LDQM 4.857766 4.387832 3.866699 3.271051 2.544323
0.8 LDQM 2.344717 2.062718 1.758631 1.421514 1.024155

100

0 LDQM 15.525762 14.520910 13.367622 11.997451 10.254518
0.2 LDQM 12.557084 11.612707 10.545695 9.300364 7.742857
0.4 LDQM 9.374096 8.560820 7.656126 6.617654 5.337232
0.6 LDQM 6.093411 5.484473 4.816329 4.058816 3.136808
0.8 LDQM 2.854117 2.516107 2.150262 1.741823 1.254405

Table 11: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸0𝐼0) for the axially functionally graded non-uniform columns with continuous

elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸0𝐼0) for C-C boundary condition.

𝛽 𝑐ℎ
𝑐𝑏

0 0.2 0.4 0.6 0.8

0

0 Reference [15] 57.3940 51.7856 45.7356 38.9917 30.8922
LDQM 57.393956 51.785589 45.735646 38.991689 30.892202

0.2 Reference [15] 41.9169 37.6023 32.9638 27.8171 21.6802
LDQM 41.916891 37.602328 32.963838 27.817083 21.680218

0.4 Reference [15] 28.1794 25.0890 21.7813 18.1332 13.8242
LDQM 28.179398 25.089039 21.781290 18.133162 13.824196

0.6 Reference [15] 16.3412 14.3958 12.3266 10.0639 7.4275
LDQM 16.341179 14.395830 12.326582 10.063919 7.427477

0.8 Reference [15] 6.6801 5.7836 4.8399 3.8228 2.6649
LDQM 6.680051 5.783574 4.839860 3.822760 2.664885

50

0 LDQM 61.166910 55.582013 49.557537 42.839820 34.759070
0.2 LDQM 45.734227 41.416605 36.768958 31.599542 25.400286
0.4 LDQM 31.958849 28.829688 25.466443 21.730794 17.253425
0.6 LDQM 19.880964 17.847607 15.659665 13.222303 10.279687
0.8 LDQM 9.367432 8.320721 7.182753 5.897801 4.324708

100

0 LDQM 64.914455 59.351070 53.349176 46.652798 38.579025
0.2 LDQM 49.518379 45.193527 40.530226 35.326471 29.036478
0.4 LDQM 35.683768 32.505243 29.069896 25.216920 20.502165
0.6 LDQM 23.285078 21.132662 18.778906 16.088335 12.689894
0.8 LDQM 11.549700 10.288383 8.886242 7.271719 5.279100
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Table 12: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼
0
) for the axially functionally graded non-uniform columns with continuous

elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸0𝐼0) for P-P boundary condition.

𝛽 𝑐ℎ
𝑐𝑏

0 0.2 0.4 0.6 0.8

0

0 Reference [15] 14.5112 13.1398 11.6969 10.1451 8.3957
LDQM 14.511250 13.139786 11.696914 10.145084 8.395671

0.2 Reference [15] 10.6860 9.5971 8.4543 7.2284 5.8498
LDQM 10.686041 9.597121 8.454289 7.228449 5.849840

0.4 Reference [15] 7.2831 6.4715 5.6228 4.7164 3.7019
LDQM 7.283103 6.471476 5.622776 4.716370 3.701880

0.6 Reference [15] 4.3287 3.7892 3.2283 2.6338 1.9748
LDQM 4.328693 3.789166 3.228315 2.633792 1.974761

0.8 Reference [15] 1.8667 1.5950 1.3157 1.0239 0.7075
LDQM 1.866691 1.595022 1.315685 1.023937 0.707517

50

0 LDQM 19.549179 18.192929 16.760939 15.207995 13.417864
0.2 LDQM 15.752005 14.659979 13.503215 12.238938 10.750059
0.4 LDQM 12.298411 11.454703 10.551443 9.542443 8.289481
0.6 LDQM 9.058173 8.426077 7.721329 6.876642 5.694553
0.8 LDQM 5.246198 4.728938 4.126561 3.402176 2.479665

100

0 LDQM 24.581143 23.242950 21.824406 20.269884 18.419554
0.2 LDQM 20.817957 19.721682 18.544637 17.218652 15.521898
0.4 LDQM 17.286073 16.384686 15.372020 14.125521 12.234643
0.6 LDQM 13.406960 12.499393 11.357450 9.833780 7.688312
0.8 LDQM 6.909430 6.121287 5.250381 4.263196 3.070432

Table 13: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸0𝐼0)

for the axially functionally graded non-uniform columns with
continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸0𝐼0) for C-P boundary

condition.

𝛽 𝑐ℎ
𝑐𝑏

0 0.2 0.4 0.6 0.8

0

0 29.448963 26.600568 23.560586 20.230563 16.374540
0.2 21.553772 19.335410 16.972868 14.391143 11.408619
0.4 14.537718 12.927659 11.218322 9.357427 7.216955
0.6 8.475484 7.447400 6.361291 5.186232 3.845576
0.8 3.499195 3.018030 2.514197 1.975492 1.371273

50

0 33.787588 30.872734 27.742199 24.278066 20.188428
0.2 25.672288 23.367048 20.888218 18.137705 14.868142
0.4 18.300248 16.579568 14.724334 12.655490 10.170102
0.6 11.626112 10.462193 9.200015 7.780077 6.049347
0.8 5.487561 4.864484 4.184411 3.415437 2.479706

100

0 38.091765 35.101502 31.866729 28.245336 23.874818
0.2 29.723039 27.314852 24.695929 21.738031 18.107927
0.4 21.920220 20.060135 18.018363 15.680300 12.748168
0.6 14.463191 13.118252 11.623244 9.887789 7.688601
0.8 6.910808 6.130247 5.269028 4.287546 3.090197

direction either in cross-section or in material properties.
No fictitious points are used and boundary conditions are
directly substituted into weighting coefficient matrices. The
matrix dimension in the solution procedure reduces drasti-
cally compared to other DQ methods since there is no need

to write any compatibility equations.The introduced method
can easily be extended to 2Dimensional problems.
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Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) nanoscale plate with first-order
shear deformation is studied.Thematerial properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function
(two power law distribution) of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM) nanoscale
plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The
equations ofmotion of the nonlocal theories are derived usingHamilton’s principle.The nonlocal elasticity of Eringen has the ability
to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory
on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect
ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results
of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of
size-dependent S-FGM nanoscale plate models developed in the future.

1. Introduction

The nanoscale plates have attracted attention of scientific
community in solid-state physics, materials science, and
nanoelectronics due to their superior mechanical, chemical,
and electronic properties. Conducting experiments with
nanoscale size specimens is both expensive and difficult.
Hence, development of appropriate mathematical models for
nanostructures is an important issue concerning the applica-
tion of nanostructures. The nanostructures are modeled into
three main categories using atomistic [1, 2], hybrid atomistic-
continuum mechanics [3–5] and continuum mechanics [6,
7]. Continuum mechanics approach is less computationally
expensive than the former two approaches. Further, it has
been found that continuum mechanics results are in good
agreement with those obtained from atomistic and hybrid
approaches. Due to the presence of small scale effects at the
nanoscale structures, size-dependent continuum mechanics
models such as the strain gradient theory (Nix and Gao
[8]), couple stress theory (Hadjesfandiari and Dargush [9]),

modified couple stress theory (Asghari et al. [10]; Ma et al.
[11]; Reddy [12]), and nonlocal elasticity theory (Eringen [13])
are used.

The small size analysis using local theory overpredicts the
results. Thus the consideration of small effects is necessary
for correct prediction of micro/nano-structures. Peddieson
et al. [14] applied nonlocal elasticity to formulate a nonlocal
version of the Euler-Bernoulli beam model and concluded
that nonlocal continuum mechanics could potentially play a
useful role in nanotechnology applications. One of the well-
known continuummechanics theory that includes small scale
effects with good accuracy is the nonlocal theory of Eringen
[6, 7, 13]. Unlike the local theories which assume that the
stress at a point is a function of strain at that point, the
nonlocal elasticity theory assumes that the stress at a point is a
function of strains at all points in the continuum. Compared
to classical continuummechanics theories, nonlocal theory of
Eringen has capability to predict behavior of the large nano-
sized structures, while it avoids solving the large number of
equations.
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Functionally graded material (FGM) is a class of com-
posites in which the material properties vary smoothly and
continuously from one surface to the other and thus elimi-
nates the stress concentration found in laminated composites.
The other advantage of FGM is that it mitigates singular-
ities at intersections between interfaces usually presented
in laminate composites due to their abrupt transitions in
material compositions and properties. A generally FGM is
made from a mixture of ceramic and metal. The FGM is a
composite material whose composition varies according to
the required performance. The increase in FGM applications
requires accurate models to predict their responses. A critical
review of recentworks on the bending analysis of functionally
graded (FG) plates can be found in Jha et al. [15]. Since the
shear deformation has significant effects on the responses
of FG plates, shear deformation theories such as first-order
shear deformation theory (FSDT) should be used to analyze
FG plates. If a high external pressure is applied to the com-
posite plate and shell structures, the high stresses occurred in
the structure will affect its integrity, and the structure, as the
result, susceptible to failure. For these reasons, understanding
the mechanical behavior of FGM plates and shells is very
important to assess the safety of the shell and plate structure.
Chung and Chi [16] proposed a sigmoid FGM (S-FGM),
which is composed of two power-law functions to define
a new volume fraction. The effect of loading conditions,
the aspect ratio, and the change of elastic modulus on the
mechanical behavior of S-FGMplates was investigated in Chi
and Chung [17]. Recent work on the vibration, buckling, and
geometrically nonlinear analysis of S-FGM plates and shells
can be founded in Han et al. [18] and Han et al. [19].

In the literature a great deal of attention has been
focused on studying the bending, vibration, and buckling
behavior of one-dimensional nanostructures using nonlocal
elasticity theory (Aydogdu [20]; Civalek and Demir [21];
Reddy [22]; Reddy and Pang [23]; Reddy [24]; Roque et
al. [25]; Wang and Liew [26]; Wang et al. [27]). These
nanostructures include nanobeams, nanorods, and carbon
nanotubes. In recent years, the application of FGMs has
broadly been spread in micro- and nanoscale devices and
systems such as thin films [28, 29], atomic force microscopes
[30],micro- andnanoelectromechanical systems (MEMSand
NEMS) [31, 32]. In such applications, size effects have been
experimentally observed [33–36]. On the contrary a few
works appear related to the bending analysis of functionally
graded material (FGM) nanoscale plate based on first-order
shear deformation theory. The present study deals with
the use of the nonlocal first-order plate theory in bending
response of S-FGM nanoscale plates. Based on the nonlocal
constitutive relations of Eringen, equations of motion of
nanoscale plates are derived using Hamilton’s principle.
Closed-form solutions of deflection are obtained for simply
supported S-FGMnanoscale plates.The effects of (i) nonlocal
parameters, (ii) power law indexes, (iii) 𝐸1/𝐸2 ratios, (iv)
aspect ratios, (v) side-to-thickness ratios, and (vi) loading
types on nondimensional bending responses are investigated.
To illustrate the accuracy of the present theory, the numerical
examples are investigated and compared with those solutions
from the previous literatures. The present work would be

helpful while designing nano-electro-mechanical system and
micro-electro-mechanical systems devices using the S-FGM
nanoscale plates.

2. Review of Nonlocal Elasticity

According to Eringen [6, 7, 13], the stress field at a point
𝑥 in an elastic continuum not only depends on the strain
field at the point (hyperelastic case) but also on strains at
all other points of the body. Eringen attributed this fact
to the atomic theory of lattice dynamics and experimental
observations on phonon dispersion.Thus, the nonlocal stress
tensor components 𝜎𝑖𝑗 at point x are expressed as

𝜎𝑖𝑗 (x) = ∫
𝑉

𝐾 (|x − x| , 𝜏) 𝑡𝑖𝑗 (x) 𝑑x, (1)

where 𝑡𝑖𝑗(x) are the components of the classical macroscopic
stress tensor at point x and the kernel function 𝐾(|x − x|, 𝜏)
represents the nonlocalmodulus, |x−x| being the distance (in
Euclidean norm) and 𝜏 is a material constant that depends on
internal and external characteristic lengths (such as the lattice
spacing and wavelength, resp.). The macroscopic stress t at
point x in a Hookean solid is related to the strain at the point
by the generalized Hooke’s law

𝑡 (x) = C (x) : 𝜀 (x) or 𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (2)

where C is the fourth-order elasticity tensor and: denotes the
“double-dot product” (see Reddy [22]).

In the nonlocal linear elasticity, equations of motion can
be obtained from nonlocal balance law

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 𝜌 ̈𝑢𝑖, (3)

where 𝑖, 𝑗 take the symbols 𝑥, 𝑦, 𝑧 and 𝑓𝑖, 𝜌, and 𝑢𝑖 are the
components of the body force,mass density anddisplacement
vector [13]. By substituting (1) into (3), the integral form of
nonlocal constitutive equation is obtained. Because solving
an integral equation is more difficult than a differential
equation, Eringen [6, 7, 13] proposed a differential form of
the nonlocal constitutive equation as

𝑡𝑖𝑗,𝑗 +L (𝑓𝑖 − 𝜌 ̈𝑢𝑖) = 0, (4)

in which the linear differential operatorL was defined by

L = 1 − 𝜇∇
2
, 𝜇 = 𝑒

2

0
𝑎
2
, (5)

where 𝜇 is the nonlocal parameter, 𝑒0 is material constant
which is defined by the experiment, and 𝑎 is the internal
characteristic length.

By applying this operator on (1), the constitutive equation
can be simplified to

L (𝜎𝑖𝑗) = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙. (6)

Equation (6) is simpler andmore convenient than the integral
relation (1) to apply to various linear elasticity problems.
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3. Plate Equations of Nonlocal Elasticity

Using (2) and (6), stress resultants introduced in plate and
shell theories can be reformulated in terms of strain for
the nonlocal theory. In plate theories based on plane-stress
assumption, we take 𝜎𝑧𝑧 = 0 and the resulting theory
becomes two-dimensional.

Consider a (𝑥, 𝑦, 𝑧) coordinate system with the 𝑥𝑦-plane
coincidingwith themid-plane of the plate. So the stress-strain
relations of plane-stress can be expressed as

𝑡𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿𝜀𝛾𝛿, (7)

where𝐶𝛼𝛽𝛾𝛿 = 𝐶𝛼𝛽𝛾𝛿−𝐶𝛼𝛽𝑧𝑧𝐶𝑧𝑧𝛾𝛿/𝐶𝑧𝑧𝑧𝑧, and transverse shear
stress-strain relation is expressed as

𝑡𝛼𝑧 = 2𝐶𝛼𝑧𝛾𝑧𝜀𝛾𝑧, (8)

where 𝛼, 𝛽, 𝛾, s the shear correction factoand 𝛿 take the
symbols 𝑥, 𝑦.

The relations between stress resultants in local theory and
nonlocal theory are defined by integrating (6) through the
plate thickness:

L (𝑁𝑖𝑗) = 𝑁
𝐿

𝑖𝑗
, L (𝑀𝑖𝑗) = 𝑀

𝐿

𝑖𝑗
, (9)

where

{

{

{

𝑁𝛼𝛽, 𝑁
𝐿

𝛼𝛽

𝑀𝛼𝛽,𝑀
𝐿

𝛼𝛽

}

}

}

= ∫

ℎ/2

−ℎ/2

{𝜎𝛼𝛽, 𝑡𝛼𝛽} {
1

𝑧
} 𝑑𝑧, (10)

{𝑁𝛼𝑧, 𝑁
𝐿

𝛼𝑧
} = ∫

ℎ/2

−ℎ/2

{𝜎𝛼𝑧, 𝑡𝛼𝑧} 𝑑𝑧. (11)

The superscript 𝐿 denoted the quantities in local first-order
shear deformation theory and ℎ is the thickness of the plate.
The governing equation of the plate in nonlocal theory can
be determined by integrating (3) through the plate thickness
and noting (10)

𝑁𝛼𝑖,𝛼 + 𝐹𝑖 = ∫

ℎ/2

−ℎ/2

𝜌 ̈𝑢𝑖 𝑑𝑧, (12)

where 𝐹𝑖 = ∫
ℎ/2

−ℎ/2
𝑓𝑖𝑑𝑧. By multiplying (3) by 𝑧 and then inte-

grating from it through plate thickness and using integration-
by-parts, we obtain

𝑀𝛼𝛽,𝛽 − 𝑁𝛼𝑧 = ∫

ℎ/2

−ℎ/2

𝜌 ̈𝑢𝛼𝑧 𝑑𝑧. (13)

In general, differential operator ∇ in (6) is the 3D Laplace
operator. For 2D problems, the operator ∇ may be reduced
to 2D one. Thus, the linear differential operatorL becomes

L = 1 − (
𝜕
2

𝜕𝑥2
+
𝜕
2

𝜕𝑦2
) . (14)

It is clear that the operator L is independent of the 𝑧
direction.

4. Nonlocal First-Order Shear
Deformation Theory

The classical plate theory is based on the Kirchhof assump-
tions, in which transverse normal and shear stresses are
neglected. In the first-order shear deformation theory
(FSDT), a constant state of transverse shear stresses is
accounted for, and often the transverse normal stress is
neglected. The displacement field of the first-order theory of
plates is given by

𝑢𝛼 = 𝑢
0

𝛼
+ 𝑧𝜙𝛼, 𝑢𝑧 = 𝑤

0
, (15)

where 𝑢𝛼 are the inplane displacements of point on the mid-
plane (i.e., 𝑧 = 0) at 𝑡 = 0, 𝑢𝑧 is the transverse displacement
of the mid-plane of the plate, and 𝜙𝛼 denotes the slope of the
transverse normal on mid-plane.

By substituting the displacement field into (12)-(13), we
obtain

𝑁𝛼𝑖,𝛼 + 𝐹𝑖 = 𝐼0 ̈𝑢
0

𝑖
, (16)

𝑀𝛼𝛽,𝛽 − 𝑁𝛼𝑧 = 𝐼2
̈𝜙𝛼. (17)

Then (16) for 𝑖 = 𝑧 and (17) can be combined to drive the
following governing equations for flexural response of the
nonlocal first-order plate theory:

𝑁𝛼𝑧,𝛼 + 𝑞𝑧 = 𝐼0 ̈𝑤
0
, (18)

𝑀𝛼𝛽,𝛽 − 𝑁𝛼𝑧 = 𝐼2
̈𝜙𝛼, (19)

where 𝐼𝑘 = ∫
ℎ/2

−ℎ/2
𝜌(𝑧)
𝑘
𝑑𝑧 (𝑘 = 0, 2).

5. Variational Statements

The variational statements facilitate the direct derivation of
the equations ofmotion in terms of the displacements.Hence,
we also present the variational form of governing equations
which is useful in integral formulations and displacement
finite element formulations. The governing equations of
the first-order nonlocal plate theory can be derived using
dynamic version of the principle of virtual displacement
(Hamilton’s principle)

0 = ∫

𝑇

0

(𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾) 𝑑𝑡. (20)

By substituting nonlocal stress resultants in terms of the
displacements into the principle of virtual displacements and
integrate by part, the equations of motion can be obtained as
follows:

𝛿𝑢
0

𝑥
: 𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 −L (𝐼0 ̈𝑢

0

𝑥
) = 0, (21)

𝛿𝑢
0

𝑦
: 𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 −L (𝐼0 ̈𝑢

0

𝑦
) = 0, (22)

𝛿𝑤
0
: 𝑁𝑥𝑧,𝑥 + 𝑁𝑦𝑧,𝑦 −L [𝑞𝑧 − 𝐼0 ̈𝑤

0
] = 0, (23)

𝛿𝜙𝑥 : 𝑀𝑥𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑁𝑥𝑧 −L [𝐼2
̈𝜙𝑥] = 0, (24)

𝛿𝜙𝑦 : 𝑀𝑥𝑦,𝑥 +𝑀𝑦𝑦,𝑦 − 𝑁𝑦𝑧 −L [𝐼2
̈𝜙𝑦] = 0. (25)
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6. Constitutive Relations of S-FGM Structures

The functionally graded material (FGM) can be produced by
continuously varying the constituents of multiphase materi-
als in a predetermined profile.Themost distinct features of an
FGM are the nonuniformmicrostructures with continuously
graded properties. An FGM can be defined by the variation
in the volume fractions. Most researchers use the power-
law function, exponential function, or sigmoid function to
describe the volume fractions. This paper uses FGM plates
and shells with sigmoid function.

The volume fraction using two power-law functions
which ensure smooth distribution of stresses is defined as

𝑉
1

𝑓
(𝑡) = 1 −

1

2
(
ℎ/2 − 𝑡

ℎ/2
)

𝑝

for 0 ≤ 𝑡 ≤ ℎ
2
, (26a)

𝑉
2

𝑓
(𝑡) =

1

2
(
ℎ/2 + 𝑡

ℎ/2
)

𝑝

for − ℎ
2
≤ 𝑡 ≤ 0. (26b)

By using the rule of mixture, the material properties of the
S-FGM can be calculated by

𝐻(𝑡) = 𝑉
1

𝑓
(𝑡)𝐻1 + (1 − 𝑉

1

𝑓
(𝑡))𝐻2 for 0 ≤ 𝑡 ≤ ℎ

2
, (27a)

𝐻(𝑡) = 𝑉
2

𝑓
(𝑡)𝐻1 + (1 − 𝑉

2

𝑓
(𝑡))𝐻2 for − ℎ

2
≤ 𝑡 ≤ 0.

(27b)

Figure 1 shows that the variation of Young’s modulus in
(27a) and (27b) represents sigmoid distributions, and this
FGM structure is thus called a sigmoid FGM structure (S-
FGM structures). In this paper, the volume fraction using two
power-law functions by Chung and Chi [16] is used to ensure
smooth distribution of stresses among all the interfaces.

Consider an elastic rectangular plate and shell. The local
coordinates 𝑟 and 𝑠 define the mid-plane of the plate and
shell, whereas the 𝑡-axis originated at the middle surface of
the plate and shell is in the thickness direction. The material
properties, both of Young’s modulus and the Poisson’s ratio,
the upper and lower surfaces are different but are pre-
assigned according to the performance demands. However,
the Young’s modulus and Poisson’s ratio of the plates and
shells vary continuously only in the thickness direction (𝑡-
axis); that is, 𝐸 = 𝐸(𝑡), ] = ](𝑡). It is called functionally
graded material (FGM) plate and shell.

The constitutive relations of the FGM structures are as
follows:

{
𝑁𝛼𝛽
𝑀𝛼𝛽

} = [

[

𝐴
𝛼𝛽𝛾𝛿

FGM 𝐵
𝛼𝛽𝛾𝛿

FGM

𝐵
𝛼𝛽𝛾𝛿

FGM 𝐷
𝛼𝛽𝛾𝛿

FGM

]

]

{
𝜀
𝑚

𝛾𝛿

𝜀
𝑏

𝛾𝛿

} , (28)

{𝑁𝛼𝑧} = [𝐴
𝛼𝑧𝛽𝑧

FGM] {𝜀
𝑠

𝛽𝑧
} . (29)

The coefficients of (28) and (29) for FGM structures are
defined as follows:

𝐴
𝛼𝛽𝛾𝛿

FGM, 𝐵
𝛼𝛽𝛾𝛿

FGM, 𝐷
𝛼𝛽𝛾𝛿

FGM = ∫
ℎ/2

−ℎ/2

𝐶
𝛼𝛽𝛾𝛿

FGM (1, 𝑧, 𝑧
2
) 𝑑𝑧,

𝐴
𝛼𝑧𝛽𝑧

FGM = 𝑘𝑠 ∫
ℎ/2

−ℎ/2

𝐶
𝛼𝑧𝛽𝑧

FGM 𝑑𝑧,

(30)

where 𝑘𝑠 is the shear correction factor (𝑘𝑠 = 5/6). For details
see Han et al. [18].

7. The Navier Solutions of S-FGM
Nanoscale Plates

Here, analytical solutions for bending of simply supported
S-FGM nanoscale plates are presented using the nonlocal
first-order plate theory to illustrate the small scale effects
on deflections of the nan-scale plates. For the static case, all
time derivative terms are set to zero. For the set of simply
supported boundary conditions, the analytical solution can
be obtained [37]. According to theNavier solution theory, the
generalized displacements at middle of the plane (𝑧 = 0) are
expanded in double Fourier series as follows:

𝑢
0

𝑥
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑈𝑚𝑛Λ 1,

𝑢
0

𝑦
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑉𝑚𝑛Λ 2,

𝑤
0
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑊𝑚𝑛Λ 3,

𝜙𝑥 (𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑋𝑚𝑛Λ 1,

𝜙𝑦 (𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑌𝑚𝑛Λ 2,

𝑞𝑧 (𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑄𝑚𝑛Λ 3,

(31)

where Λ 1 = cos 𝜉𝑥 sin 𝜂𝑦 ⋅ 𝑒𝑖𝜛𝑚𝑛𝑡, Λ 2 = sin 𝜉𝑥 cos 𝜂𝑦 ⋅ 𝑒𝑖𝜛𝑚𝑛𝑡,
and Λ 3 = sin 𝜉𝑥 sin 𝜂𝑦 ⋅ 𝑒𝑖𝜛𝑚𝑛𝑡 in which 𝜉 = 𝑚𝜋/𝑎, 𝜂 = 𝑛𝜋/𝑏,
and 𝜛𝑚𝑛 is the natural frequency.

By substituting (31) into (21)–(25), matrix form is as
follows:

[K] {Δ} + [M] {Δ̈} = {𝑄} , (32)

where {Δ} = {𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛, 𝑋𝑚𝑛, 𝑌𝑚𝑛}, the superposed dots
denote differentiation with respect to time, [K] is the stiffness
matrix, [M] is the mass matrix, and {𝑄} is the force vector.

8. Numerical Results and Discussion

In order to validate, several numerical examples are solved to
test the performance in bending analysis. Examples include
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Figure 1: The variation of Young’s modulus of S-FGM plate and
shell.

P-FGM to check some crucial features and to make compar-
ison with previous published analysis results.

8.1. Validation. Firstly, since the results of nanoscale plate
made of S-FGM are not available in the open literature,
homogeneous and P-FGM (𝑝 = 1) plates are used herein for
the verification.

Table 1 shows the nondimensional displacements of sim-
ply supported plates with various values of side-to-thickness
ratio 𝑎/ℎ in homogeneous and functionally graded (𝑝 =

1) plates. The nanoscale plate is made of epoxy with the
following material properties:

𝐸1 = 14.4 GPa, 𝐸2 = 1.44 GPa, ] = 0.38,

ℎ = 17.6 × 10
−6m, 𝑞0 = 1.0N/m,

𝜌1 = 12.2 × 10
3 kg/m3, 𝜌2 = 1.22 × 10

3 kg/m3.

(33)

The nondimensional displacement and frequency are defined
as

𝑤 = 𝑤
𝐸2ℎ
3

𝑞0𝑎
4
× 10
2
, 𝜔 = 𝜔

𝑎
2

ℎ
√
𝜌2

𝐸2
. (34)

A shear correction factor of 5/6 is used for FSDT plate theory.
The calculated displacements based on FSDT plate theory
with S-FGM power law index (𝑝 = 1) are compared with
those reported by Thai and Choi [38] based on Mindlin
plate theory (MPT) with P-FGM index (Table 2). It can be
observed that the present results are identical with those
given by Thai and Choi [38] based on MPT. There is no
difference between the present S-FGM results and those P-
FGM results given by Thai and Choi [38]. This is due to the
fact that the S-FGM material properties are identical with P-
FGM, when the power law index is 1.

Secondly, the analytical bending solutions are numeri-
cally evaluated here for an isotropic plate to discuss the effects
of nonlocal parameter 𝜇 on the plate bending response.

FGM plate

𝑥

𝑏

𝑦

𝑧

ℎ

𝑎

E(z), �(z), 𝜌(z)

Figure 2: Geometry of S-FGM plate.

Table 3 shows the non-dimensional displacements of
simply supported plates with various values of nonlocal
parameter 𝜇 in homogeneous plates. The nanoscale plate is
made of the following material properties:

𝐸 = 30 × 10
6
, ] = 0.3, 𝑞0 = 1.0. (35)

The results based on FSDT plate theory with various values
of nonlocal parameter 𝜇 are compared with those reported
by Lee et al. [39] based on HSDT. It can be observed that the
present results are identical with those given by Lee et al. [39]
when the side-to-thickness ratio is 100. For the case of the
𝑎/ℎ = 10, there is small difference between the present results
and those given by Lee et al. [39]. This is due to the fact
that Lee et al. [39] used HSDT to calculate the displacement,
whereas the present results are based on the FSDT.

Thirdly, in Tables 4 and 5, the calculated frequency based
on FSDT plate theory with S-FGMpower law index (𝑝 = 1) is
compared with those reported byThai and Choi [38] with P-
FGM index.The present results are identical with those given
byThai and Choi [38]. As we expected, there is no difference
between the present S-FGM results and those P-FGM results
given byThai and Choi [38].

Fourthly, the results of S-FGM plates (see Figure 2) using
the classical plate theory [17] are compared with present solu-
tions using the FSDT for validation. The material properties
are

𝐸1 = 2.1 × 10
6 kg/cm2, 𝐸2 = varied, ] = 0.3,

𝑎 = 100 cm, ℎ = 2 cm, 𝑞0 = 1.0 kg/cm
2
.

(36)

The results of classical plate theory by Chi and Chung [17]
and the results of first-order shear deformation theory are
plotted in Figure 3. It shows that themore of𝐸1/𝐸2 brings the
larger deflection, because lager 𝐸1/𝐸2 decreases the stiffness
of the FGMplate.The present and reference results agree very
well.

In order to investigate the effects of the aspect ratio 𝑎/𝑏,
the center deflection of the FGM plate is shown in Figure 4.
The center deflection increases upon raising the aspect ratio
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Table 1: Nondimensional displacement of simply supported FGM plate.

𝑎/ℎ
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
5 0.5147 0.5147 1.1536 1.1536
10 0.4415 0.4415 1.0205 1.0205
20 0.4232 0.4232 0.9873 0.9873
100 — 0.4173 — 0.9766

Table 2: Nondimensional displacement of simply supported nano-scale FGM plate.

𝜇
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
0 0.4415 0.4415 1.0205 1.0205
1.0 — 0.6969 — 1.6123
2.25 — 1.0160 — 2.3521
4.0 — 1.4629 — 3.3878
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Figure 3: The deflection of S-FGM plate along the 𝑥 direction for
different 𝐸1/𝐸2.
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Figure 4: Normalized center deflection of S-FGM plate versus the
aspect ratio for different 𝐸1/𝐸2.

Table 3: Nondimensional displacement of simply supported nano-
scale plate (100 term series).

𝜇
𝑎/ℎ = 10 𝑎/ℎ = 100

Lee et al. [39] Present Lee et al. [39] Present
0 4.6658 4.6658 4.4384 4.4384
0.5 5.0836 5.0836 4.8408 4.8408
1 5.5014 5.5012 5.2432 5.2432
1.5 5.9192 5.9189 5.6456 5.6456
2 6.3370 6.3365 6.0480 6.0480
2.5 6.7548 6.7542 6.4504 6.4504
3 7.1726 7.1718 6.8528 6.8528
3.5 — 7.5895 — 7.2552
4 — 8.0071 — 7.6576

for 𝑎/𝑏 is less than 3. In Figures 3 and 4, it is clear that the
results show very good agreement, because of the large side-
to-thickness ratio. As expected, the less side-to-thickness
ratio is, the error is larger. In this study, all discussions are
based on the first-order shear deformation theory.

8.2. Parameter Studies. Consider a simply supported square
plate with the material properties of (33). Parameter studies
are presented to investigate the influences of transverse shear
deformation, nonlocal parameter (𝑁𝑇 = 𝜇), and power law
index 𝑝 on bending responses of S-FGM nanoscale plate.

To illustrate the effect of nonlocal parameter on responses
of S-FGM nanoscale plate, Figure 5 plots the deflection with
respect to dimensionless nonlocal parameter 𝜇 for a simply
supported S-FGM plate with 𝑝 = 1.0 and 𝑎/ℎ = 10. The
nonlocal parameters are taken as 𝜇 = 0, 1.0, 2.25, and 4.These
values are taken because 𝑒0𝑎 in (5) should be smaller than
2.0 nm for carbon nanotubes as described by Q. Wang and
C. M. Wang [40]. The inclusion of the nonlocal scale effect
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Table 4: Nondimensional frequency of simply supported FGM plate.

𝑎/ℎ
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
5 5.3871 5.3871 4.8744 4.8744
10 5.9301 5.9301 5.2697 5.2697
20 6.0997 6.0997 5.3880 5.3880
100 — 6.1579 — 5.4280

Table 5: Nondimensional frequency of simply supported nano-scale FGM plate.

𝜇
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
0 5.9301 5.9301 5.2697 5.2697
1.0 — 4.6345 — 4.1184
2.25 — 3.8012 — 3.3779
4.0 — 3.1478 — 2.7973
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Figure 5: Effect of the nonlocal parameter on the nondimensional
displacement of a simply supported S-FGM plate with 𝑎/ℎ = 10.

will decrease the stiffness of the S-FGM nanoscale plate, and
consequently, leads to an enlargement of deflection.

The effect of the power law index 𝑝 on the dimensionless
deflection is presented in Figure 6 for a simply supported
square plate with 𝜇 = 4.0 and 𝑎/ℎ = 10. The increasing
value of the power law index decreases the stiffness of the S-
FGM nanoscale plates. It can be seen that increasing value of
the power law index leads to an increase in the magnitude
of deflection. When the nonlocal parameter (NT) is 0, a
nonlocal S-FGM nanoscale plate is treated as a local nano-
plate.

To show the effect of 𝐸1/𝐸2 of S-FGM nanoscale plate,
Figure 7 plots the nondimensional displacement with 𝜇 =
4.0, 𝑝 = 1.0, and 𝑎/ℎ = 10. In this case, 𝐸1 is varied and
𝐸2 is fixed. It shows that the more of 𝐸1/𝐸2 brings the smaller
deflection, because lager 𝐸1/𝐸2 increases the stiffness of the
S-FGM nanoscale plate.
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Figure 6: Effect of the power law index on the nondimensional
displacement of a simply supported S-FGM plate with 𝑎/ℎ = 10.

It is shown that the effects of side-to-thickness ratio on the
dimensionless deflection is presented in Figure 8 for a simply
supported square plate with 𝜇 = 4.0 and 𝑎/ℎ = 10. Figure 8
clearly shows the diminishing effect of transverse shear
deformation on deflections, the effect being negligible for
side-to-thickness ratios larger than 30.The increasing value of
the power law index leads to an increase in the magnitude of
deflection and the increasing value of side-to-thickness ratio
leads to a decrease in the deflection. As expected, the effect
of transverse shear deformation is to increase deflection.
The differences in deflection values predicted by the present
model and the classical model are significant when the side-
to-thickness ration is small, but they are negligible when the
side-to-thickness ratio becomes larger.

Figure 9 shows that the effect of power law index on the
dimensionless deflection is presented for a simply supported
square platewith various nonlocal parameters.The increasing
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value of the power law index decreases the stiffness and the
increasing value of the nonlocal parameter increases the load
vector of the S-FGMnanoscale plates.The increasing value of
the power law index leads to an increase in the magnitude of
deflection and the increasing value of the nonlocal parameter
leads to an increase in the deflection.

It is shown that the effect of the aspect ratio on the
dimensionless deflection is presented in Figure 10 for a simply
supported square plate with various nonlocal parameters
and 𝑝 = 10.0. The increasing values of the aspect ratio
(𝑏/𝑎) and nonlocal parameter decrease the stiffness of the
S-FGM nanoscale plates. When the width 𝑏 of a nanoscale
plate is very small compared to the length 𝑎, it is treated
as a nanoscale beam. The increasing value of the aspect
ratio leads to an increase in the magnitude of deflection
and the increasing value of the nonlocal parameter leads
to an increase in the deflection. The nondimensional center
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deflection increases upon raising the aspect ratio for 𝑏/𝑎 less
than 5.

Figure 11 shows that the aspect ratio on the dimensionless
deflection is presented for a simply supported square plate
with various power law indexes and 𝜇 = 4.0. As we
expected, the increasing value of power law index decreases
the stiffness of the S-FGM nanoscale plates. For this reason,
it increases the deflection.The nondimensional center deflec-
tion increases upon raising the aspect ratio for 𝑏/𝑎 less than
5. When the aspect ratio (𝑏/𝑎) is greater than 5, a S-FGM
nanoscale plate is treated as a nanobeam.

To illustrate the effect of the loading type on responses
of S-FGM nanoscale plate, Figure 12 plots the deflection with
respect to uniform and sinusoidal load for a simply supported
S-FGM plate with 𝜇 = 4.0, 𝑝 = 10.0, and 𝑎/ℎ = 10. The
sinusoidal load on the S-FGM nanoscale plate is small in
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magnitude compared to the uniform load. As we expected,
it is observed that the deflections investigated under the
uniform load are larger than those investigated under the
sinusoidal load. It may be noticed that the load-displacement
curve under the sinusoidal load exhibits the value of 20% of
the uniform load.

9. Conclusions

Nonlocal elasticity model for bending analysis of sigmoid
functionally graded materials (S-FGM) nanoscale plates is
presented using a first-order shear deformation theory and
Hamilton’s principle. The present models contain one non-
local parameter and can capture the size effect, and two-
constituent material variation through the plate thickness.
Also, the present model can be reduced to the homogeneous
nanoscale plates by setting 𝐸1 = 𝐸2 and S-FGM plates
of local elasticity theory by setting the nonlocal parameter

equal to zero. Analytical solutions for deflection of a simply
supported rectangular S-FGM nanoscale plate are presented.
The numerical results reveal that the inclusion of the small
scale effect and power law index leads to an enlargement
of the magnitude of deflection. The differences in deflection
values predicted by the presentmodel and the classical model
are significant when the side-to-thickness ratio is small, but
they are negligible when the side-to-thickness ratio becomes
larger.

From the present work the following conclusions are
drawn.

(1) The inclusion of the nonlocal scale effect and increas-
ing value of the power law indexwill decrease stiffness
of the S-FGM nanoscale plate, and consequently,
leads to an enlargement of deflection.

(2) The increasing value of side-to-thickness ratio leads to
a decrease in the deflection. As expected, the effect of
transverse shear deformation is to increase deflection.

(3) The increasing value of the aspect ratio leads to an
increase in the magnitude of deflection. The nondi-
mensional center deflection increases upon raising
the aspect ratio for 𝑏/𝑎 is less than 5.

(4) As expected, it is observed that the deflections inves-
tigated under the uniform load are larger than those
investigated under the sinusoidal load.

These predicted trends agree with the size effect at the
micron scale observed in experiments. These results can be
used for evaluating the reliability of size-dependent plate
models developed in the future. Further, in the analysis of
S-FGM structures it is necessary to include the nonlocal
elasticity theory for nanoscale shell and other boundary
conditions.
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[21] Ö. Civalek and Ç. Demir, “Bending analysis of microtubules
using nonlocal Euler-Bernoulli beam theory,” Applied Mathe-
matical Modelling, vol. 35, no. 5, pp. 2053–2067, 2011.

[22] J. N. Reddy, “Nonlocal theories for bending, buckling and vibra-
tion of beams,” International Journal of Engineering Science, vol.
45, no. 2-8, pp. 288–307, 2007.

[23] J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of
beams for the analysis of carbon nanotubes,” Journal of Applied
Physics, vol. 103, no. 2, Article ID 023511, 2008.

[24] J. N. Reddy, “Nonlocal nonlinear formulations for bending of
classical and shear deformation theories of beams and plates,”
International Journal of Engineering Science, vol. 48, no. 11, pp.
1507–1518, 2010.

[25] C. M. C. Roque, A. J. M. Ferreira, and J. N. Reddy, “Analysis
of Timoshenko nanobeams with a nonlocal formulation and
meshless method,” International Journal of Engineering Science,
vol. 49, no. 9, pp. 976–984, 2011.

[26] Q. Wang and K. M. Liew, “Application of nonlocal continuum
mechanics to static analysis of micro- and nano-structures,”
Physics Letters, vol. 363, no. 3, pp. 236–242, 2007.

[27] C. M. Wang, S. Kitipornchai, C. W. Lim, and M. Eisenberger,
“Beam bending solutions based on nonlocal Timoshenko beam
theory,” Journal of Engineering Mechanics, vol. 134, no. 6, pp.
475–481, 2008.

[28] Y. Fu, H. Du, and S. Zhang, “Functionally graded TiN/TiNi
shape memory alloy films,”Materials Letters, vol. 57, no. 20, pp.
2995–2999, 2003.

[29] C. Lu, D. Wu, and W. Chen, “Non-linear responses of nano-
scale FGM films including the effects of surface energies,” IEEE
Transactions on Nanotechnology, vol. 10, no. 6, pp. 1321–1327,
2011.

[30] M. Rahaeifard, M. H. Kahrobaiyan, and M. T. Ahmadian,
“Sensitivity analysis of atomic forcemicroscope cantilevermade
of functionally graded materials,” in Proceedings of the 3rd
International conference onmicro- and nanosystems (DETC ’09),
pp. 539–544, September 2009.

[31] A. Witvrouw and A. Mehta, “The use of functionally graded
poly-SiGe layers for MEMS applications,” Materials Science
Forum, vol. 492-493, pp. 255–260, 2005.

[32] Z. Lee, C. Ophus, L. M. Fischer et al., “Metallic NEMS compo-
nents fabricated from nanocomposite Al-Mo films,” Nanotech-
nology, vol. 17, no. 12, article 042, pp. 3063–3070, 2006.

[33] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson,
“Strain gradient plasticity: theory and experiment,” Acta Metal-
lurgica et Materialia, vol. 42, no. 2, pp. 475–487, 1994.

[34] J. S. Stolken and A. G. Evans, “A microbend test method for
measuring the plasticity length scale,” Acta Materialia, vol. 46,
no. 14, pp. 5109–5115, 1998.

[35] A. C. M. Chong, F. Yang, D. C. C. Lam, and P. Tong, “Torsion
and bending of micron-scaled structures,” Journal of Materials
Research, vol. 16, no. 04, pp. 1052–1058, 2001.

[36] D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong,
“Experiments and theory in strain gradient elasticity,” Journal
of the Mechanics and Physics of Solids, vol. 51, no. 8, pp. 1477–
1508, 2003.

[37] J. N. Reddy, Mechanics of Composite Plates and Shells: Theory
and Analysis, CRC Press, Boca Raton, Fla, USA, 2nd edition,
2004.

[38] H. T.Thai and D. H. Choi, “Size-dependent functionally graded
Kirchhoff andMindlin platemodels based on amodified couple
stress theory,” Composite Structures, vol. 96, pp. 376–383, 2013.

[39] W. H. Lee, S. C. Han, andW. T. Park, “Nonlocal elasticity theory
for bending and free vibration analysis of nano plates,” Journal of
the Korea Academia-Industrial Cooperation Society, vol. 13, no.
7, pp. 3207–3215, 2012 (Korean).

[40] Q. Wang and C. M. Wang, “The constitutive relation and
small scale parameter of nonlocal continuum mechanics for
modelling carbon nanotubes,” Nanotechnology, vol. 18, no. 7,
Article ID 075702, 2007.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 867079, 33 pages
http://dx.doi.org/10.1155/2013/867079

Research Article
Mixed Static and Dynamic Optimization of Four-Parameter
Functionally Graded Completely Doubly Curved and Degenerate
Shells and Panels Using GDQ Method

Francesco Tornabene1 and Alessandro Ceruti2

1 DICAM-Department, School of Engineering, University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy
2 DIN-Department, School of Engineering, University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy

Correspondence should be addressed to Francesco Tornabene; francesco.tornabene@unibo.it

Received 14 February 2013; Accepted 2 April 2013

Academic Editor: Abdelouahed Tounsi

Copyright © 2013 F. Tornabene and A. Ceruti. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This study deals with a mixed static and dynamic optimization of four-parameter functionally graded material (FGM) doubly
curved shells and panels. The two constituent functionally graded shell consists of ceramic and metal, and the volume fraction
profile of each lamina varies through the thickness of the shell according to a generalized power-law distribution. The Generalized
Differential Quadrature (GDQ) method is applied to determine the static and dynamic responses for various FGM shell and
panel structures. The mechanical model is based on the so-called First-order Shear Deformation Theory (FSDT). Three different
optimization schemes andmethodologies are implemented.TheParticle SwarmOptimization,Monte Carlo andGenetic Algorithm
approaches have been applied to define the optimum volume fraction profile for optimizing the first natural frequency and the
maximum static deflection of the considered shell structure. The optimization aim is in fact to reach the frequency and the
static deflection targets defined by the designer of the structure: the complete four-dimensional search space is considered for
the optimization process. The optimized material profile obtained with the three methodologies is presented as a result of the
optimization problem solved for each shell or panel structure.

1. Introduction

Shell structures are widely used in many fields of engineering
thanks to their optimum dynamic behavior, strength, and
stability guaranteed by the curvature effect. The dynamic
and static deflection of these structures, caused by different
external forces, can have serious consequences for their
strength and safety, like resonance. Therefore, an accu-
rate static deflection and frequency determination are of
paramount importance for the technical design of these
structural elements. One of the aims of this work is to
study the static and dynamic behavior of completely doubly
curved shell structures. During the last sixty years, two-
dimensional linear theories of thin shells and plates have

been developed including important contributions [1–12].
The transverse shear deformation has been incorporated into
shell theories by applying the theory of Reissner-Mindlin
[13, 14], also named First-order Shear Deformation Theory
(FSDT). Abandoning the assumption of the preservation of
the normals to the shell middle surface after the deformation,
a comprehensive analysis for elastic isotropic shells and plates
wasmade by Kraus [7] andGould [15, 16]. Indeed, the present
work is just based on the FSDT. In order to include the
effect of the initial curvature in the evaluation of the stress
resultants a generalization of the classical Reissner-Mindlin
theory (CRMT) has been proposed in the literature by Kraus
[7], by Leissa and Chang [17], by Qatu [18, 19] and by Toorani
and Lakis [20]. As a consequence of these contributions
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the stress resultants directly depend on the geometry of
the structure in terms of the curvature coefficients, and
the hypothesis of the symmetry of the in-plane shearing
force resultants and the torsional couples declines. A further
improvement of the previous theories of shells has been
proposed by Toorani and Lakis [21]. In the present work the
kinematicalmodel is generalized in order to include the effect
of the curvatures from the beginning of the shell formulation.
In this way, the strain relationships have been changed, and
the equilibrium equations in terms of displacements have
to be modified. The General First-order Shear Deformation
Theory (GFSDT) is herein considered. It is worth noting that
no results are available in the literature about this general
theory for doubly curved shells. Thus, the motivation of the
present work is based on the lack of results about completely
doubly curved shells and panels.

Due to the significant developments that have taken place
in composite materials [22], the laminated composite doubly
curved shells and panels are considered in this work. As for
the static and dynamic analysis of shells, several studies have
been presented earlier [23]. Furthermore, some complicated
effects in shell structures have been considered in the recent
years [24, 25]. Referring to the formulation of the static and
dynamic equilibrium in terms of midsurface displacements
and rotations, in this paper the system of second-order linear
partial differential equations is solved.The static and dynamic
solutions are obtained by using the numerical technique
named Generalized Differential Quadrature (GDQ) method.
The mathematical fundamentals and recent developments
of the GDQ method as well as its major applications in
engineering are discussed in detail in the book by Shu [26].
In the GDQ method the governing differential equations of
equilibrium are directly transformed in one step to obtain the
final algebraic form. The interest in researches dealing with
this procedure is increasing due to its great simplicity and
versatility. As shown in the literature [23, 27], GDQ technique
is a global method, which can obtain very accurate numerical
results by using a considerably small number of grid points.
Therefore, this simple direct procedure has been applied in a
large number of cases [28–77] to circumvent the difficulties of
programming complex algorithms for the computer, as well
as to avoid the excessive use of storage and computing time.

In the last decades, the increased use of functionally
gradedmaterials (FGMs) [39, 49–55, 57–62, 64, 65, 70, 75, 78–
91] in engineering structures calls for improved analysis and
tailored design tools. Thus, in the present paper, functionally
graded shells are considered. Typically, FGMs consist of a
mixture of ceramic and metal, or a combination of different
materials. In this study, ceramic-metal graded shells and pan-
els with two different volume fraction power-law variations
of the constituents in the thickness direction are considered.
Two different four-parameter power-law distributions, pro-
posed by Tornabene [49], are used for the ceramic volume
fraction. Various material profiles through the functionally
graded lamina thickness are chosen by varying the four
parameters of the power-law distributions.

The need for optimization lies in the mathematical
formulation of FGMs, based on the four coefficients [49]:
it is in fact quite difficult to handle these materials from

the perspective of a designer. Small changes in parame-
ters can lead in fact to strong changes in the distribution
of base materials mixing in the thickness. Moreover, the
domain of the four parameters is not continuous since
some combinations of the parameters lead to distribution
in which the mix of ceramics and metal resulting from
the mathematical formula is negative or a complex number.
From an operative perspective, a typical structural design
scenario can include the need for minimizing the weight,
the request of avoiding a resonance frequency, the control
of the maximum displacement, or other constraints: in this
case, there is no way to analytically relate the four parameter
values to these important design requirements. As an answer,
several authors proposed to apply optimization methods
to achieve a feasible solution. For instance, Yas et al. [92]
propose tominimize the weight of FGMs by using Imperialist
Competitive Algorithm and Artificial Neural Networks. A
very similar approach has been followed by Jam et al. [93] to
optimize FGM conical shells. According to these examples,
heuristic or semi heuristic methods are suitable in such a
case since they consider the function to optimize as a “black
box”, in which only inputs and outputs are considered. A
lot of heuristic (or semi heuristic) optimization techniques
have been proposed in the literature. A comprehensive
but not complete list includes Tabu Search [94], Simulated
Annealing [95, 96], Ant Colonies Optimization [97, 98],
Genetic Algorithms [99–109], Differential Evolution [110],
Particle Swarm Algorithm [111–116], Immune Systems [117,
118], Gravity Optimization [119], Imperialist Competitive
Algorithm [120], and Intelligent Water Drop [121, 122]. In
this paper, Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) will be used since they are tested,
and widespread methods and other techniques could have
been applied. Also an optimization with Monte Carlo (MC)
technique [115, 123–127] will be presented to check the good
performance of GA and PSO and to evaluate howmuch these
methods are efficient and reliable with respect to a completely
random approach. From the point of view of the software
implementation, the PSO method is more simple than the
GA, but it requires more attention to boundary conditions.
MC is considered as a support to theGA and PSO techniques:
in this paper, it is used to check the functionality of GA
and PSO and to confirm that heuristic methods are to be
preferred to random approaches. A well-designed algorithm
implementing optimization techniques like GA or PSO can
be useful to obtain a better solution than MC, requiring a
shorter time to solve the optimization problem. MC is in
fact a random technique, in which large number of tries is
necessary to obtain a good result: moreover, the search is
blind and without memory of the past, so that the previous
tests of the optimization domain are not exploited by the
following computations. The above considerations suggested
the application of heuristic methods to the optimization of
FGMs; a more detailed description of the implementation of
these methods will be provided in the next sections of the
present work.

The structure of this article is as follows: after this
introduction, the second section describes the mathematical
framework necessary to model and study FGM doubly
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curved shell structures; the third section shows the GDQ
numerical implementation for the static and dynamic anal-
yses; the fourth section describes the implementation of GA,
PSO, and MC methods with respect to peculiarities of the
case study, while the fifth one presents the results of the FGM
optimization procedure applied to a set of six structures. A
final section provides some conclusive comments regarding
the problem description, the approach followed to solve it,
and results obtained. The main novelty of the papers lies in
the proposal of a design methodology which can be used by
the designer involved in FGM applications to achieve a short
time particular performances or characteristics for the FGM
doubly curved shell structures.

2. Geometry Description and Shell
Fundamental Systems of Equations

A 2D Equivalent Single Layer (ESL) model is proposed to
study generic doubly curved shells and panels. The position
of an arbitrary point within the shell medium is defined
by coordinates 𝛼1(𝛼

0

1
≤ 𝛼1 ≤ 𝛼

1

1
), 𝛼2(𝛼

0

2
≤ 𝛼2 ≤ 𝛼

1

2
)

upon the middle surface or reference surface r(𝛼1, 𝛼2), and
𝜁 directed along the outward normal n(𝛼1, 𝛼2) and measured
from the reference surface (−ℎ/2 ≤ 𝜁 ≤ ℎ/2), where ℎ(𝛼1, 𝛼2)
is the total thickness of the shell (Figure 1). The differential
geometry [7, 11, 12, 23, 74] is used to describe the shell
structure, starting with the position vector written in the
global reference system:

R (𝛼1, 𝛼2, 𝜁) = r (𝛼1, 𝛼2) +
ℎ (𝛼1, 𝛼2)

2
𝑧n (𝛼1, 𝛼2) , (1)

where 𝑧 = 2𝜁/ℎ(𝛼1, 𝛼2) and 𝑧 ∈ [−1, 1]. The basic configu-
ration of the problem considered is a laminated composite
doubly curved shell, as shown in Figure 1. For a laminated
composite shell made of 𝑙 laminae or plies, the total thickness
ℎ is defined as

ℎ =

𝑙

∑

𝑘=1

ℎ𝑘 (2)

in which ℎ𝑘 = 𝜁𝑘+1 − 𝜁𝑘 is the thickness of the 𝑘th lamina or
ply. In this study, doubly curved shells and degenerate shells
such as plates are considered. It should be noted from (1) that
the location of each point of the 3D shell is a function of the
location of the point on the reference surface r(𝛼1, 𝛼2) and the
normal vector n(𝛼1, 𝛼2) to the reference surface at the given
point (Figure 1). Moreover, the position of the generic point
of the shell volume is also a function of the shell thickness
ℎ(𝛼1, 𝛼2). Hence, writing the position vector of the reference
surface, it is possible to define the three components along the
three global axes 𝑂𝑥1𝑥2𝑥3 as

r (𝛼1, 𝛼2) = 𝑟1 (𝛼1, 𝛼2) e1 + 𝑟2 (𝛼1, 𝛼2) e2 + 𝑟3 (𝛼1, 𝛼2) e3,
(3)

where e1, e2, and e3 are the unit vector of the global reference
system𝑂𝑥1𝑥2𝑥3. From the definition of the first fundamental

form [7, 11, 12, 23] of the reference surface r(𝛼1, 𝛼2), the Lamé
parameters can be expressed as

𝐴1 (𝛼1, 𝛼2) = √r,1 ⋅ r,1,

𝐴2 (𝛼1, 𝛼2) = √r,2 ⋅ r,2.
(4)

The comma in expressions (4) defines the partial derivative
with respect to 𝛼1 or 𝛼2, respectively. Moreover, by consid-
ering an orthogonal curvilinear coordinate system 𝑂

󸀠
𝛼1𝛼2𝜁

[7, 11, 12, 23, 74] from the position vector (3) the normal vector
n(𝛼1, 𝛼2) can be written as

n (𝛼1, 𝛼2) =
r,1 × r,2
𝐴1𝐴2

. (5)

Finally, due to the fact that an orthogonal curvilinear
coordinate system 𝑂

󸀠
𝛼1𝛼2𝜁 is considered and following the

definition of the second fundamental form [7, 11, 23, 74] of
the reference surface r(𝛼1, 𝛼2), the principal radii of curvature
can be evaluated as

𝑅1 (𝛼1, 𝛼2) = −
r,1 ⋅ r,1
r,11 ⋅ n

,

𝑅2 (𝛼1, 𝛼2) = −
r,2 ⋅ r,2
r,22 ⋅ n

.

(6)

As concerns the shell theory, the present study is based
on the following assumptions: (1) the transverse normal is
inextensible so that the normal strain is equal to zero: 𝜀𝑛 =
𝜀𝑛 (𝛼1, 𝛼2, 𝜁, 𝑡) = 0; (2) the transverse shear deformation
is considered to influence the governing equations so that
normal lines to the reference surface of the shell before
deformation remain straight but not necessarily normal
after deformation (a relaxed Kirchhoff-Love hypothesis is
considered); (3) the shell deflections are small and the strains
are infinitesimal; (4) the shell is moderately thick, therefore
it is possible to assume that the thickness-direction normal
stress is negligible so that the plane assumption can be
invoked: 𝜎𝑛 = 𝜎𝑛 (𝛼1, 𝛼2, 𝜁, 𝑡) = 0; (5) the linear elastic
behavior of anisotropic materials is assumed; and (6) the
rotary inertias and the initial curvatures are also taken into
account.The theory under development is meant to be in the
group ofmoderately thick shells, inwhich the following ratios
of thickness over curvature and curve length are valid:

1

100
≤ max( ℎ

𝑅min
,
ℎ

𝐿min
) ≤

1

10
. (7)

Consistent with the assumptions of a moderately thick shell
theory reported above, the displacement field considered in
the present study is that of the First-order Shear Deformation
Theory (FSDT) and can be put in the following form:

𝑈1 (𝛼1, 𝛼2, 𝜁, 𝑡) = 𝐻1𝑢1 (𝛼1, 𝛼2, 𝑡) + 𝜁𝛽1 (𝛼1, 𝛼2, 𝑡) ,

𝑈2 (𝛼1, 𝛼2, 𝜁, 𝑡) = 𝐻2𝑢2 (𝛼1, 𝛼2, 𝑡) + 𝜁𝛽2 (𝛼1, 𝛼2, 𝑡) ,

𝑈3 (𝛼1, 𝛼2, 𝜁, 𝑡) = 𝑢3 (𝛼1, 𝛼2, 𝑡) ,

(8)
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where

𝐻1 = 1 +
𝜁

𝑅1
,

𝐻2 = 1 +
𝜁

𝑅2
,

(9)

and 𝑢1, 𝑢2, and 𝑢3 are the displacement components of points
lying on the middle surface (𝜁 = 0) of the shell, while 𝑡
is the time variable. 𝛽1 and 𝛽2 are normal-to-mid-surface
rotations, respectively. The kinematic hypothesis expressed
by relations (8) should be supplemented by the statement that

the shell deflections are small and strains are infinitesimal,
that is 𝑢3 ≪ ℎ. In-plane displacements 𝑈1 and 𝑈2 vary
linearly through the thickness, while𝑈3 remains independent
of 𝜁. Differently from the previous works [43, 44, 47, 49–
53, 67, 68, 70], the displacement field has been improved
taking into account the effective geometry of the shell and in
particular the curvature effect has been directly introduced
into the kinematicalmodel, as proposed by Toorani and Lakis
[21].

Due to the change of the kinematical model, the relation-
ships between strains and generalized displacements along
the shell reference surface (𝜁 = 0) become the following:
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that are different from those presented in previous papers
[43, 44, 47, 49–53, 67, 68, 70]. In the above (10), the first
four strains 𝜀0

1
, 𝜀
0

2
, 𝛾
0

1
, and 𝛾0

2
are the in-plane components,

and 𝜒0
1
, 𝜒

0

2
, 𝜔

0

1
, and 𝜔0

2
are the analogous curvature changes.

The last two components 𝛾0
1𝑛
, 𝛾
0

2𝑛
are the transverse shearing

strains. The shell is assumed to be made of a linear elastic
composite material. Accordingly, the following constitutive
equations relate internal stress resultants and internal couples
with generalized strain components (10) on the middle
surface:
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, (11)

where the elastic engineering stiffnesses𝐴(𝜏)
𝑖𝑗(𝑝𝑞)

are defined as
follows:

𝐴
(𝜏)

𝑖𝑗(𝑝𝑞)
=

𝑙

∑

𝑘=1

∫

𝜁
𝑘+1

𝜁
𝑘

𝑄
(𝑘)

𝑖𝑗
𝜁
𝜏 𝐻1𝐻2

𝐻
𝑝

1
𝐻
𝑞

2

𝑑𝜁, 𝜏, 𝑝, 𝑞 = 0, 1, 2. (12)

Different approaches can be found in the literature to evaluate
the engineering elastic constants 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
[7, 17–20, 73, 76].

In the present paper, the relations of the elastic engineering
stiffnesses 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
are numerically evaluated using an integral

function in order to avoid numerical instabilities. It is worth
noting that due to the fact that the elastic engineering
stiffnesses 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
depend on curvatures, the corresponding

derivatives, with respect to the coordinates along 𝛼1 and 𝛼2
directions of the reference surface, have to be evaluated. In
order to perform this operation the Differential Quadrature
rule [26] is used.Thus, the derivatives of the elastic engineer-
ing stiffnesses 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
are numerically evaluated. The corre-

sponding elastic constants 𝑄 (𝑘)

𝑖𝑗
can be found in the article

by Tornabene et al. [70, 73], in which all the constants above
introduced are explicitly defined for laminated composite
and functionally graded shells and panels. 𝜅 is the shear
correction factor, which is usually taken as 𝜅 = 5/6, such as
in the present work. In particular, the determination of shear
correction factors for composite laminated structures is still
an unresolved issue, since these factors depend on various
parameters [20]. In (11), the four components 𝑁1, 𝑁2, 𝑁12,
and 𝑁21 are the in-plane force resultants, and𝑀1,𝑀2,𝑀12,
and 𝑀21 are the analogous couples, while 𝑇1, 𝑇2 are the
transverse shear force resultants. In the above definitions

(11) the symmetry of shearing force resultants 𝑁12, 𝑁21 and
torsional couples 𝑀12,𝑀21 is not assumed as a further
hypothesis, as done in Reissner-Mindlin theory [7, 12, 22].
This hypothesis is satisfied only in the case of spherical
shells and flat plates [7]. The assumption under discussion is
derived from the consideration that ratios 𝜁/𝑅1, 𝜁/𝑅2 cannot
be neglected with respect to unity.

Typically, the functionally graded materials are made of a
mixture of two constituents. In the presentwork, it is assumed
that the functionally graded material lamina is made of a
mixture of ceramic and metal constituents: Silicon Nitride
and Stainless Steel.Thematerial properties of the functionally
graded shell vary continuously and smoothly in the thickness
direction 𝜁 of each lamina and are functions of volume
fractions of two constituent materials. The Young’s modulus
𝐸
(𝑘)
(𝜁), shear modulus 𝐺(𝑘)(𝜁), Poisson’s ratio ](𝑘)(𝜁), and

mass density 𝜌(𝑘)(𝜁) of the functionally graded shell 𝑘th
lamina can be expressed as

𝜌
(𝑘)
(𝜁) = (𝜌

(𝑘)

𝐶
− 𝜌

(𝑘)

𝑀
)𝑉

(𝑘)

𝐶
(𝜁) + 𝜌

(𝑘)

𝑀
, 𝐸

(𝑘)
(𝜁)

= (𝐸
(𝑘)

𝐶
− 𝐸

(𝑘)

𝑀
)𝑉

(𝑘)

𝐶
(𝜁) + 𝐸

(𝑘)

𝑀
, ](𝑘) (𝜁)

= (](𝑘)
𝐶
− ](𝑘)

𝑀
)𝑉

(𝑘)

𝐶
(𝜁) + ](𝑘)

𝑀
, 𝐺

(𝑘)
(𝜁)

=
𝐸
(𝑘)
(𝜁)

2 (1 + V(𝑘) (𝜁))
, for 𝜁𝑘 ≤ 𝜁 ≤ 𝜁𝑘+1,

(13)

where 𝜌(𝑘)
𝐶
, 𝐸

(𝑘)

𝐶
, ](𝑘)
𝐶
, 𝑉

(𝑘)

𝐶
and 𝜌

(𝑘)

𝑀
, 𝐸

(𝑘)

𝑀
, ](𝑘)
𝑀
, 𝑉

(𝑘)

𝑀
represent

mass density, Young’s modulus, Poisson’s ratio, and volume
fraction of the ceramic and metal constituent materials,
respectively. In this work, the ceramic volume fraction𝑉(𝑘)

𝐶
(𝜁)
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follows two simple four-parameter power-law distributions
[49, 51, 53, 70, 75]:

FGM1(𝑎(𝑘)/𝑏(𝑘)/𝑐(𝑘)/𝑝(𝑘))
: 𝑉

(𝑘)

𝐶
(𝜁)

= (1 − 𝑎
(𝑘)
(
𝜁

ℎ𝑘
−
𝜁𝑘

ℎ𝑘
) + 𝑏

(𝑘)
(
𝜁

ℎ𝑘
−
𝜁𝑘

ℎ𝑘
)

𝑐
(𝑘)

)

𝑝
(𝑘)

,

FGM2(𝑎(𝑘)/𝑏(𝑘)/𝑐(𝑘)/𝑝(𝑘))
: 𝑉

(𝑘)

𝐶
(𝜁)

= (1 − 𝑎
(𝑘)
(
𝜁𝑘+1

ℎ𝑘
−
𝜁

ℎ𝑘
) + 𝑏

(𝑘)
(
𝜁𝑘+1

ℎ𝑘
−
𝜁

ℎ𝑘
)

𝑐
(𝑘)

)

𝑝
(𝑘)

,

(14)

where the volume fraction index 𝑝(𝑘)(0 ≤ 𝑝
(𝑘)

≤ ∞)

and the parameters 𝑎(𝑘), 𝑏(𝑘), and 𝑐(𝑘) dictate the material
variation profile through the functionally graded shell lamina
thickness. It is important to remark that the volume fractions
of all the constituent materials should add up to unity:

𝑉
(𝑘)

𝐶
+ 𝑉

(𝑘)

𝑀
= 1. (15)

In order to choose the three parameters 𝑎(𝑘), 𝑏(𝑘), and 𝑐(𝑘)
suitably, the relation (15) must be always satisfied for every
volume fraction index 𝑝(𝑘) in each lamina. By considering
the relations (14), when the power-law exponent is set equal
to zero (𝑝(𝑘) = 0) or equal to infinity (𝑝(𝑘) = ∞), the
homogeneous isotropic material is obtained as a special case
of functionally graded material. In fact, from (15), (14), and
(13) it is possible to obtain

𝑝
(𝑘)
= 0 󳨀→ 𝑉

(𝑘)

𝐶
= 1, 𝑉

(𝑘)

𝑀
= 0 󳨀→ 𝜌

(𝑘)
(𝜁) = 𝜌𝐶,

𝐸
(𝑘)
(𝜁) = 𝐸𝐶, ](𝑘) (𝜁) = ]𝐶,

𝑝
(𝑘)
= ∞ 󳨀→ 𝑉

(𝑘)

𝐶
= 0, 𝑉

(𝑘)

𝑀
= 1 󳨀→ 𝜌

(𝑘)
(𝜁) = 𝜌𝑀,

𝐸
(𝑘)
(𝜁) = 𝐸𝑀, ](𝑘) (𝜁) = ]𝑀.

(16)

Some material profiles through the functionally graded shell
thickness are illustrated in Figures 2 and 3.

Following the Hamilton’s principle [7, 12, 19, 22, 23], the
five governing equations in terms of internal actions can be
written for the shell element:

1

𝐴1𝐴2

𝜕 (𝑁1𝐴2)

𝜕𝛼1
+

1

𝐴1𝐴2

𝜕 (𝑁21𝐴1)

𝜕𝛼2

+
𝑁12

𝐴1𝐴2

𝜕𝐴1

𝜕𝛼2
−

𝑁2

𝐴1𝐴2

𝜕𝐴2

𝜕𝛼1

+
1

𝑅1
(

1

𝐴1𝐴2

𝜕 (𝑀1𝐴2)

𝜕𝛼1

+
1

𝐴1𝐴2

𝜕 (𝑀21𝐴1)

𝜕𝛼2

+
𝑀12

𝐴1𝐴2

𝜕𝐴1

𝜕𝛼2
−

𝑀2

𝐴1𝐴2

𝜕𝐴2

𝜕𝛼1
)

+ 𝑞1 = (𝐼0 +
2𝐼1

𝑅1
+
𝐼2

𝑅2
1

) ̈𝑢1 + (𝐼1 +
𝐼2

𝑅1
) ̈𝛽1,

1

𝐴1𝐴2

𝜕 (𝑁12𝐴2)

𝜕𝛼1
+

1

𝐴1𝐴2

𝜕 (𝑁2𝐴1)

𝜕𝛼2

+
𝑁21

𝐴1𝐴2

𝜕𝐴2

𝜕𝛼1
−

𝑁1

𝐴1𝐴2

𝜕𝐴1

𝜕𝛼2

+
1

𝑅2
(

1

𝐴1𝐴2

𝜕 (𝑀12𝐴2)

𝜕𝛼1

+
1

𝐴1𝐴 2

𝜕 (𝑀2𝐴1)

𝜕𝛼2

+
𝑀21

𝐴1𝐴2

𝜕𝐴2

𝜕𝛼1
−

𝑀1

𝐴1𝐴2

𝜕𝐴1

𝜕𝛼2
)

+ 𝑞2 = (𝐼0 +
2𝐼1

𝑅2
+
𝐼2

𝑅2
2

) ̈𝑢2 + (𝐼1 +
𝐼2

𝑅2
) ̈𝛽2,

1

𝐴1𝐴2

𝜕 (𝑇1𝐴2)

𝜕𝛼1
+

1

𝐴1𝐴2

𝜕 (𝑇2𝐴1)

𝜕𝛼2

− (
𝑁1

𝑅1
+
𝑁2

𝑅2
) + 𝑞𝑛 = 𝐼0 ̈𝑢3,

1

𝐴1𝐴2

𝜕 (𝑀1𝐴2)

𝜕𝛼1
+

1

𝐴1𝐴2

𝜕 (𝑀21𝐴1)

𝜕𝛼2
+
𝑀12

𝐴1𝐴2

𝜕𝐴1

𝜕𝛼2

−
𝑀2

𝐴1𝐴2

𝜕𝐴2

𝜕𝛼1
− 𝑇1 + 𝑚1 = (𝐼1 +

𝐼2

𝑅1
) ̈𝑢1 + 𝐼2

̈𝛽1,

1

𝐴1𝐴2

𝜕 (𝑀12𝐴2)

𝜕𝛼1
+

1

𝐴1𝐴2

𝜕 (𝑀2𝐴1)

𝜕𝛼2
+
𝑀21

𝐴1𝐴2

𝜕𝐴2

𝜕𝛼1

−
𝑀1

𝐴1𝐴2

𝜕𝐴1

𝜕𝛼2
− 𝑇2 + 𝑚2 = (𝐼1 +

𝐼2

𝑅2
) ̈𝑢2 + 𝐼2

̈𝛽2,

(17)
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𝑥3

𝑥1

𝑥2

𝛼1

𝜁𝑃

ℎ(𝛼1, 𝛼2)

Reference surface

𝜁

𝜁

𝑂

𝑃󳰀

𝛼2

𝜁

ℎ

2

1
2

𝑘

𝑙

ℎ𝑘 = 𝜁𝑘+1 − 𝜁𝑘

𝜁𝑙+1 𝜁𝑙
𝜁𝑘+1

𝜁𝑘

𝛼1

𝜁1

𝜁2

𝜁3 ℎ

2

n(𝛼1, 𝛼2)

𝜁n

𝑂󳰀

R

e1

r

e2

e3

Figure 1: Geometry description and coordinate system of a doubly curved shell.

where

𝐼𝜏 =

𝑙

∑

𝑘=1

∫

𝜁
𝑘+1

𝜁
𝑘

𝜌
(𝑘)
𝜁
𝜏
𝐻1𝐻2𝑑𝜁, 𝜏 = 0, 1, 2. (18)

Furthermore, the generalized external actions 𝑞1, 𝑞2, 𝑞𝑛, 𝑚1,
and 𝑚2 due to the external forces, acting on the top and
bottom surfaces of the shell, can be evaluated using the
static equivalence principle [7, 23] and can be written on the
reference surface of the doubly curved shell as follows:

𝑞1 = 𝑞
+

1
(1 +

ℎ

2𝑅1
)

2

(1 +
ℎ

2𝑅2
)

+ 𝑞
−

1
(1 −

ℎ

2𝑅1
)

2

(1 −
ℎ

2𝑅2
) ,

𝑞2 = 𝑞
+

2
(1 +

ℎ

2𝑅1
)(1 +

ℎ

2𝑅2
)

2

+ 𝑞
−

2
(1 −

ℎ

2𝑅1
)(1 −

ℎ

2𝑅2
)

2

,

𝑞𝑛 = 𝑞
+

𝑛
(1 +

ℎ

2𝑅1
)(1 +

ℎ

2𝑅2
)

+ 𝑞
−

𝑛
(1 −

ℎ

2𝑅1
)(1 −

ℎ

2𝑅2
) ,

𝑚1 = 𝑞
+

1

ℎ

2
(1 +

ℎ

2𝑅1
)(1 +

ℎ

2𝑅2
)

− 𝑞
−

1

ℎ

2
(1 −

ℎ

2𝑅1
)(1 −

ℎ

2𝑅2
) ,

𝑚2 = 𝑞
+

2

ℎ

2
(1 +

ℎ

2𝑅1
)(1 +

ℎ

2𝑅2
)

− 𝑞
−

2

ℎ

2
(1 −

ℎ

2𝑅1
)(1 −

ℎ

2𝑅2
) ,

(19)

where 𝑞+
1
, 𝑞
−

1
, 𝑞
+

2
, 𝑞
−

2
, 𝑞
+

𝑛
, and 𝑞−

𝑛
are the external forces in

the three principal directions 𝛼1, 𝛼2, and 𝜁 at the top and
the bottom surface of the shell, respectively. The three basic
sets of equations, namely, the kinematic (10), constitutive
(11), and motion (17) equations, may be combined to give
the fundamental system of equations, also known as the
governing system of equations. By replacing the kinematic
equations (10) into the constitutive equations (11) and the
result of this substitution into the motion equations (17), the
complete equations of motion in terms of displacement and
rotational components can be written as



8 Mathematical Problems in Engineering

[
[
[
[
[

[

𝐿11 𝐿12 𝐿13 𝐿14 𝐿15
𝐿21 𝐿22 𝐿23 𝐿24 𝐿25
𝐿31 𝐿32 𝐿33 𝐿34 𝐿35
𝐿41 𝐿42 𝐿43 𝐿44 𝐿45
𝐿51 𝐿52 𝐿53 𝐿54 𝐿55

]
]
]
]
]

]

[
[
[
[
[

[

𝑢1
𝑢2
𝑢3
𝛽1
𝛽2

]
]
]
]
]

]

+

[
[
[
[
[

[

𝑞1
𝑞2
𝑞𝑛
𝑚1

𝑚2

]
]
]
]
]

]

=

[
[
[
[
[

[

𝐼01 0 0 𝐼11 0

0 𝐼02 0 0 𝐼12
0 0 𝐼0 0 0

𝐼11 0 0 𝐼2 0

0 𝐼12 0 0 𝐼2

]
]
]
]
]

]

[
[
[
[
[

[

̈𝑢1
̈𝑢2
̈𝑢3
̈𝛽1
̈𝛽2

]
]
]
]
]

]

, (20)

where 𝐿 𝑖𝑗, 𝑖, 𝑗 = 1, . . . , 5 are the equilibrium operators and the
new mass inertias are defined as follows:

𝐼01 = 𝐼0 +
2𝐼1

𝑅1
+
𝐼2

𝑅2
1

,

𝐼11 = 𝐼1 +
𝐼2

𝑅1
,

𝐼02 = 𝐼0 +
2𝐼1

𝑅2
+
𝐼2

𝑅2
2

,

𝐼12 = 𝐼1 +
𝐼2

𝑅2
.

(21)

Differently from previous works [43, 44, 47, 49–53, 67, 68,
70], the equilibrium operators 𝐿 𝑖𝑗, introduced in (20), have
been changed due to the choice of using the kinematical
model (8).

Three kinds of boundary conditions are considered,
namely, the fully clamped edge boundary condition (𝐶), the
simply supported edge boundary condition (𝑆), and the free
edge boundary condition (𝐹). The equations describing the
boundary conditions can be written as follows:

Clamped edge boundary conditions (C):

𝑢1 = 𝑢2 = 𝑢3 = 𝛽1 = 𝛽2 = 0 at 𝛼1 = 𝛼
0

1

or 𝛼1 = 𝛼
1

1
, 𝛼

0

2
≤ 𝛼2 ≤ 𝛼

1

2
,

𝑢1 = 𝑢2 = 𝑢3 = 𝛽1 = 𝛽2 = 0 at 𝛼2 = 𝛼
0

2

or 𝛼2 = 𝛼
1

2
, 𝛼

0

1
≤ 𝛼1 ≤ 𝛼

1

1
,

(22)

Simply supported edge boundary conditions (S):

𝑢1 = 𝑢2 = 𝑢3 = 𝛽2 = 0, 𝑀1 = 0 at 𝛼1 = 𝛼
0

1

or 𝛼1 = 𝛼
1

1
, 𝛼

0

2
≤ 𝛼2 ≤ 𝛼

1

2
,

𝑢1 = 𝑢2 = 𝑢3 = 𝛽2 = 0, 𝑀2 = 0 at 𝛼2 = 𝛼
0

2

or 𝛼2 = 𝛼
1

2
, 𝛼

0

1
≤ 𝛼1 ≤ 𝛼

1

1
,

(23)

Free edge boundary conditions (F):

𝑁1 +
𝑀1

𝑅1
= 0, 𝑁12 +

𝑀12

𝑅 2

= 0,

𝑇1 = 0, 𝑀1 = 𝑀12 = 0 at 𝛼1 = 𝛼
0

1

or 𝛼1 = 𝛼
1

1
, 𝛼

0

2
≤ 𝛼2 ≤ 𝛼

1

2
,

(24)

𝑁2 +
𝑀2

𝑅 2

= 0, 𝑁21 +
𝑀21

𝑅 1

= 0,

𝑇2 = 0, 𝑀2 = 𝑀21 = 0 at 𝛼2 = 𝛼
0

2

or 𝛼2 = 𝛼
1

2
, 𝛼

0

1
≤ 𝛼1 ≤ 𝛼

1

1
.

(25)

In addition to the external boundary conditions (22)–(25),
the kinematic and physical compatibility conditions should
be satisfied at the common closingmeridians with 𝛼2 = 0, 2𝜋,
if a complete shell of revolution has to be considered. The
kinematic compatibility conditions include the continuity
of displacements. The physical compatibility conditions can
only be represented by the five continuous conditions for the
generalized stress resultants. To consider complete revolute
shells characterized by 𝛼1

2
= 2𝜋, it is necessary to implement

the kinematic and physical compatibility conditions between
the two computational meridians with 𝛼0

2
= 0 and with 𝛼1

2
=

2𝜋:

Kinematic compatibility conditions along the closing meridian
(𝛼2 = 0, 2𝜋)

𝑢1 (𝛼1, 0, 𝑡) = 𝑢1 (𝛼1, 2𝜋, 𝑡) , 𝑢2 (𝛼1, 0, 𝑡) = 𝑢2 (𝛼1, 2𝜋, 𝑡) ,

𝑢3 (𝛼1, 0, 𝑡) = 𝑢3 (𝛼1, 2𝜋, 𝑡) ,

𝛽1 (𝛼1, 0, 𝑡) = 𝛽1 (𝛼1, 2𝜋, 𝑡) , 𝛽2 (𝛼1, 0, 𝑡) = 𝛽2 (𝛼1, 2𝜋, 𝑡)

𝛼
0

1
≤ 𝛼1 ≤ 𝛼

1

1
,

(26)

Physical compatibility conditions along the closing meridian
(𝛼2 = 0, 2𝜋)

𝑁2 (𝛼1, 0, 𝑡) +
𝑀2 (𝛼1, 0, 𝑡)

𝑅2

= 𝑁2 (𝛼1, 2𝜋, 𝑡) +
𝑀2 (𝛼1, 2𝜋, 𝑡)

𝑅2
,
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Figure 2: Variations of the ceramic volume fraction 𝑉𝐶 through the thickness for different values of the three parameters 𝑎(1), 𝑏(1),
and 𝑐

(1) and the power-law index 𝑝
(1) for a single-layered shell: (a) FGM1(𝑎(1)=1/𝑏(1)=0/𝑐(1)/𝑝(1))

, (b) FGM2(𝑎(1) = 1/𝑏(1) = 0/𝑐(1)/𝑝(1))
, (c)

FGM1(𝑎(1) = 1/𝑏(1) = 1/𝑐(1) = 2/𝑝(1))
, (d) FGM2(𝑎(1)=1/𝑏(1)=1/𝑐(1)=2/𝑝(1))

, (e) FGM1(𝑎= 1/𝑏= 0.5/𝑐= 2/𝑝)
, and (f) FGM2(𝑎(1) = 1/𝑏(1) = 0 .5/𝑐(1) = 2/𝑝(1))

.

𝑁21 (𝛼1, 0, 𝑡) +
𝑀21 (𝛼1, 0, 𝑡)

𝑅1

= 𝑁21 (𝛼1, 2𝜋, 𝑡) +
𝑀21 (𝛼1, 2𝜋, 𝑡)

𝑅1
,

𝑇2 (𝛼1, 0, 𝑡) = 𝑇2 (𝛼1, 2𝜋, 𝑡) ,

𝑀2 (𝛼1, 0, 𝑡) = 𝑀2 (𝛼1, 2𝜋, 𝑡) ,

𝑀21 (𝛼1, 0, 𝑡) = 𝑀21 (𝛼1, 2𝜋, 𝑡) ,

𝛼
0

1
≤ 𝛼1 ≤ 𝛼

1

1
.

(27)

In analogous way, in order to consider a toroidal shell of
revolution it is necessary to implement the kinematic and
physical compatibility conditions between the two computa-
tional parallels with 𝛼0

1
= 0 and with 𝛼1

1
= 2𝜋:

Kinematic compatibility conditions along the closing parallel
(𝛼1 = 0, 2𝜋)

𝑢1 (0, 𝛼2, 𝑡) = 𝑢1 (2𝜋, 𝛼2, 𝑡) , 𝑢2 (0, 𝛼2, 𝑡) = 𝑢2 (2𝜋, 𝛼2, 𝑡) ,

𝑢3 (0, 𝛼2, 𝑡) = 𝑢3 (2𝜋, 𝛼2, 𝑡) ,

𝛽1 (0, 𝛼2, 𝑡) = 𝛽1 (2𝜋, 𝛼2, 𝑡) , 𝛽2 (0, 𝛼2, 𝑡) = 𝛽2 (2𝜋, 𝛼2, 𝑡) ,

𝛼
0

2
≤ 𝛼2 ≤ 𝛼

1

2
,

(28)
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Figure 3: Variations of the ceramic volume fraction 𝑉𝐶 through the thickness for two-layered and three-layered laminated shells for
different values of the power-law index 𝑝 = 𝑝

(1)
= 𝑝

(2) and 𝑝 = 𝑝
(1)
= 𝑝

(3): (a) FGM1(𝑎(1) = 1/𝑏(1) = 0/𝑐(1)/𝑝(1))
/FGM2(𝑎(2) = 1/𝑏(2) = 0/𝑐(2)/𝑝(2))

,
(b) FGM2(𝑎(1) = 1/𝑏(1) = 0/𝑐(1)/𝑝(1))

/FGM1(𝑎(2) = 1/𝑏(2) = 0/𝑐(2)/𝑝(2))
, (c) FGM2(𝑎(1) = 1/𝑏(1) = 0/𝑐(1)/𝑝(1))

/FGM𝐶/FGM1(𝑎(3) = 1/𝑏(3) = 0/𝑐(3)/𝑝(3))
, and (d)

FGM2(𝑎(1) = 1/𝑏(1) = 0.5/𝑐(1) = 2/𝑝(1))
/FGM𝐶/FGM1(𝑎(3) = 1/𝑏(3) = 0.5/𝑐(3) = 2/𝑝(3))

.

Physical compatibility conditions along the closing parallel
(𝛼1 = 0, 2𝜋)

𝑁1 (0, 𝛼2, 𝑡) +
𝑀1 (0, 𝛼2, 𝑡)

𝑅1

= 𝑁1 (2𝜋, 𝛼2, 𝑡) +
𝑀1 (2𝜋, 𝛼2, 𝑡)

𝑅1
,

𝑁12 (0, 𝛼2, 𝑡) +
𝑀12 (0, 𝛼2, 𝑡)

𝑅2

= 𝑁12 (2𝜋, 𝛼2, 𝑡) +
𝑀12 (2𝜋, 𝛼2, 𝑡)

𝑅2
,

𝑇1 (0, 𝛼2, 𝑡) = 𝑇1 (2𝜋, 𝛼2, 𝑡) ,

𝑀1 (0, 𝛼2, 𝑡) = 𝑀1 (2𝜋, 𝛼2, 𝑡) ,

𝑀12 (0, 𝛼2, 𝑡) = 𝑀12 (2𝜋, 𝛼2, 𝑡)

𝛼
0

2
≤ 𝛼2 ≤ 𝛼

1

2
.

(29)

3. Discretized Equations and
Numerical Implementation

The Generalized Differential Quadrature method is used to
discretize the spatial derivatives in the governing equations
in terms of generalized displacements, as well as boundary
conditions (see Tornabene [49] for a brief review). Through-
out the paper, the Chebyshev-Gauss-Lobatto (C-G-L) grid
distribution is assumed, for which the coordinates of grid
points (𝛼1𝑖, 𝛼2𝑗) along the reference surface are in the discrete
form:

𝛼1𝑖 = (1 − cos( 𝑖 − 1
𝑁 − 1

𝜋))
(𝛼

1

1
− 𝛼

0

1
)

2
+ 𝛼

0

1
,

𝑖 = 1, 2, . . . , 𝑁, for 𝛼1 ∈ [𝛼
0

1
, 𝛼

1

1
] ,

𝛼2𝑗 = (1 − cos(
𝑗 − 1

𝑀 − 1
𝜋))

(𝛼
1

2
− 𝛼

0

2
)

2
+ 𝛼

0

2
,

𝑗 = 1, 2, . . . ,𝑀, for 𝛼2 ∈ [𝛼
0

2
, 𝛼

1

2
] ,

(30)
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Six different types of FGM shells and panels: (a) rectangular plate (degenerate panel), (b) cylindrical panel (singly curved panel),
(c) conical shell (singly curved shell), (d) toroidal shell panel (doubly curved shell panel of revolution), (e) catenoidal panel (doubly curved
panel of revolution), and (f) elliptic paraboloid (completely doubly curved panel).

where𝑁,𝑀 are the total number of sampling points used to
discretize the domain in 𝛼1 and 𝛼2 directions, respectively,
of the doubly curved shell. It has been proven that, for the
Lagrange interpolating polynomials, the Chebyshev-Gauss-
Lobatto sampling points rule guarantees convergence and
efficiency to the GDQ technique [23, 43–45, 67, 68]. For
the static analysis, when the inertias (21) are set to zero, the
GDQ procedure enables to write the governing equations
(20) and the boundary and compatibility conditions (22)–
(29) in discrete form, transforming each space derivative into
a weighted sumof node values of independent variables using
the Differential Quadrature rule [26, 49]:

𝜕
𝑛
𝑓 (𝑥)

𝜕𝑥𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
𝑚

=

𝑇

∑

𝑘=1

𝜍
(𝑛)

𝑚𝑘
𝑓 (𝑥𝑘) , 𝑚 = 1, 2, . . . , 𝑇. (31)

Each approximate equation is valid in a single sampling point.
Thus, the whole system of differential equations has been

discretized and the global assembling leads to the following
set of linear algebraic equations:

[
K𝑏𝑏 K𝑏𝑑

K𝑑𝑏 K𝑑𝑑

] [
𝛿𝑏

𝛿𝑑
] = [

f𝑏
f𝑑
] . (32)

In the abovementionedmatrices and vectors, the partitioning
is set forth by subscripts 𝑏 and 𝑑, referring to the system
degrees of freedom and standing for boundary and domain,
respectively. In this sense, 𝑏-equations represent the discrete
boundary conditions, which are valid only for the points lying
on the constrained edges of the shell, while 𝑑-equations are
the equilibrium equations, assigned on the interior nodes. In
order to make the computation more efficient, static conden-
sation of nondomain degrees of freedom is performed:

(K𝑑𝑑 − K𝑑𝑏K
−1

𝑏𝑏
K𝑏𝑑) 𝛿𝑑 = f𝑑 − K𝑑𝑏K

−1

𝑏𝑏
f𝑏. (33)

Thedeflection of the considered structures can be determined
by solving the linear algebraic problem (33). In particular, the
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Figure 5: Square plate: Monte Carlo optimization with 𝜂 = 1; final optimized frequency 𝑓 = 265.364Hz.

solution procedure by means of the GDQ technique has been
implemented in a personal code.

Differently from the static case, when the external forces
𝑞
+

1
, 𝑞
−

1
, 𝑞
+

2
, 𝑞
−

2
, 𝑞
+

𝑛
, and 𝑞−

𝑛
(19) are set to zero, the free vibration

of laminated composite doubly curved shells and panels can
be studied. Using the method of variable separation, it is
possible to seek solutions that are harmonic in time and
whose frequency is𝑓 = 𝜔/2𝜋.The generalized displacements
can be written as follows:

𝑢1 (𝛼1, 𝛼2, 𝑡) = 𝑈
1
(𝛼1, 𝛼2) 𝑒

𝑖𝜔𝑡
,

𝑢2 (𝛼1, 𝛼2, 𝑡) = 𝑈
2
(𝛼1, 𝛼2) 𝑒

𝑖𝜔𝑡
,

𝑢3 (𝛼1, 𝛼2, 𝑡) = 𝑈
3
(𝛼1, 𝛼2) 𝑒

𝑖𝜔𝑡
,

𝛽1 (𝛼1, 𝛼2, 𝑡) = 𝐵
1
(𝛼1, 𝛼2) 𝑒

𝑖𝜔𝑡
,

𝛽2 (𝛼1, 𝛼2, 𝑡) = 𝐵
2
(𝛼1, 𝛼2) 𝑒

𝑖𝜔𝑡
,

(34)

where the vibration spatial amplitude values 𝑈1, 𝑈2, 𝑈3, 𝐵1,
and 𝐵2 fulfil the fundamental differential system (20). Each
approximate equation is valid in a single sampling point.
Thus, the whole system of differential equations can be
discretized and the global assembling leads to a set of

linear eigenvalue problem. When kinematic condensation of
nondomain degrees of freedom is performed, one gets

(K𝑑𝑑 − K𝑑𝑏(K𝑏𝑏)
−1K𝑏𝑑) 𝛿𝑑 = 𝜔

2M𝑑𝑑𝛿𝑑. (35)

The natural frequencies of the structure 𝑓𝑟 = 𝜔𝑟/2𝜋, for
𝑟 = 1, 2, . . . , 5 (𝑁 − 2) × (𝑀 − 2), can be determined by
solving the standard eigenvalue problem (35). In particular,
the solution procedure by means of the GDQ technique has
been implemented in a personal code.The above partitioning
(35) is set forth by subscripts 𝑏 and 𝑑, referring to the system
degrees of freedom and standing for boundary and domain,
respectively. Finally, the results in terms of frequencies are
obtained using an eigenvalue function. With the present
approach, differing from the finite element method, no
integration occurs prior to the global assembly of the linear
system, and this represents a further computational cost
saving in favour of the Differential Quadrature technique.

4. Optimization Algorithms

4.1. Genetic Algorithm (GA) Optimization Method. The GA
approach to optimization was probably introduced at first
by Holland [107], while a comprehensive reference including
implementation procedures and application notes can be
found in later work, like, for instance, the seminal book
by Goldberg [99]. GA tries to implement and imitate in
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Figure 6: Square plate: Genetic Algorithm optimization with 𝜂 = 1; final optimized frequency 𝑓 = 268.816Hz.

a mathematical framework the law of evolution, which
Darwin introduced to explain the changes in nature towards
individuals better suited to the environment in which they
live: GA can be in fact classified as a typical population-
based optimization algorithm. Generation by generation,
populations evolve improving the fitness function which
represents the ability to survive in a defined environment;
the individuals less adapting to the surrounding environment
do not mate and their genetic set of chromosomes is lost.
A solution is represented by a chromosome, constituted by
a set of genes representing the parameters of the solution.
The mathematical implementation follows with the coding
of a chromosome in binary and with the application of
some computational functions like mutations, crossover, and
elitarism. When elitarism is set, some of the best individuals
are replicated in the following generation without any change
in a perfect replication from father to son. The concept of
crossover implies a change between genes of two solutions
and imitates the reproduction in which the son possesses
a part of genes from his mother and the remaining from
the father. Aim of mutations, as it happens in nature, is
to randomly change some genes of the individual to test
new configurations: from an optimization point of view,
mutations help in exploring new zones of the space and are
useful to avoid the problem of “local minimum” capturing.

According to the work by Konak et al. [106], the fitness is
the main driver of the capability to survive and to pass genes
to the next generation: the chromosome is in fact decoded
from binary to decimal and tested in the fitness only after the
application of mating functions requiring a binary coding.
Modern approaches to the application of GA lie in new
formulations and in the introduction of hybridization with
other optimization strategies [108]; also Pareto-based analysis
for multiobjective optimization [103] has been evaluated, and
improvement of GA by the application of fuzzy sets and
neural networks [109] has been proposed to solve complex
tasks. The algorithm implemented in this work follows the
procedure proposed by Goldberg [99], and the fitness has
been defined by authors considering the closeness of the
solution found to the value set by the designer and the
feasibility of the volume fraction distribution in the thickness
(0 < 𝑉(𝑘)

𝐶
< 1). The pseudocode of the GA implemented is

shown in the following Pseudocode 1.

4.2. Monte Carlo (MC) Optimization Method. The Monte
Carlo technique has been developed to support early studies
related to the nuclear physics; the idea is to find the best
approximation of a constant or to solve a problem through
a statistical way, obtaining the results from a very large set
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Figure 7: Square plate: Particle Swarm Optimization with 𝜂 = 1; final optimized frequency 𝑓 = 268.710Hz.

of random inputs. From a mathematical and formal point of
view, for instance, the paper by Mosegaard and Sambridge
[123] introduces the way by which an integral in the form

𝐼 = ∫
𝑋

𝑔 (𝑥) 𝑓 (𝑥) 𝑑𝑥 (36)

can be evaluated by the generation of random samples
𝑥1, 𝑥2, 𝑥3, 𝑥4, . . . , 𝑥𝑆 of 𝑥, when 𝑓(𝑥) is an appropriate
probability distribution and 𝑔(𝑥) is the function of which
the integral have to be computed. The integral can be so
computed by the expression

𝐼 ≈
1

𝑆

𝑆

∑

𝑠=1

𝑔 (𝑥𝑠) . (37)

The MC methods are very simple, but studies are focused on
the probability distribution shapes providing best results and
on the software methods to generate random numbers; this
is not a trivial issue, since it can be complex to generate a set
of random numbers which are not dependent on the clock
of the processor or on other hardware timers. Obviously,
considering computational efforts, the MC method is very
time expensive; however, due to the increasing computations
capabilities of personal computers and the improving of the

capabilities which are a constant trend in years, this approach
has been recently reconsidered and still applied to a wide
range of applications. The continuous improvement in ran-
domizer algorithms helps in the gain of good performances,
which are often obtained exploiting the capabilities of clusters
of computers. The main critical aspect related to the MC
methods application in engineering is that it requires a lot
of iteration to obtain a solution; following this approach,
in fact, the space is explored in a completely random way
and no attention is focused on zones in which solutions
are better than the average. The literature presents a lot of
interesting applications of MC to engineering problems, like
theworks [124–126] show;MC is also widely applied to games
and strategy since it allows keeping in consideration all the
possible scenarios evolving from a situation: some papers
dealing with this issue can be found in [127]. A pseudocode
of the MC algorithm is included in Pseudocode 2.

4.3. Particle Swarm Optimization (PSO) Method. The PSO
algorithm used in this paper is similar to the one proposed
by Birge [115], with some variations due to the particular
application to the FGM optimization problem. According to
the general implementation of PSO, the position of a particle
in the 𝑛-dimensional solution space can be considered a
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Figure 8: Cylindrical panel: Monte Carlo optimization with 𝜂 = 1; final optimized displacement 𝑤 = 1.1596 ⋅ 10−5m.

solution to the problem in the 𝑛-dimensional space of the
parameters; the 𝑛-dimensional speed which is computed in
the algorithm represents the direction towards a new position
in the 𝑛-dimensional space. The velocity can be obtained by

V(𝑚)
𝑖

= 𝜙
(𝑚)V(𝑚−1)

𝑖
+ 𝑐1𝑎1(𝑃𝑏𝑖 − 𝑃

(𝑚−1)

𝑖
) + 𝑐2𝑎2 (𝑃𝑏𝐺

𝑏

− 𝑃
(𝑚−1)

𝑖
),

(38)

where𝑚 is the algorithm step (𝑛𝐺 generations); 𝑖 is the index
of parameter of the single particle; 𝜙(𝑚) is the inertia function;
V(𝑚)
𝑖

is the velocity of the 𝑖th particle at the 𝑚-step; 𝑃𝑏𝑖 is
the best position found by the 𝑖th particle; 𝐺𝑏 is the global
best position (it is the best position found by the whole
swarm); 𝑎1, 𝑎2 are the acceleration constants; 𝑐1, 𝑐2 are random
numbers in the interval [0, 1].

The following formulation can be applied to obtain the
new position:

𝑃
(𝑚)

𝑖
= 𝑃

(𝑚−1)

𝑖
+ V(𝑚)

𝑖
, (39)

where 𝑃(𝑚)
𝑖

is the position of the 𝑖th particle at the 𝑚-step
and V(𝑚)

𝑖
is the velocity of the 𝑖th particle at the 𝑚-step. One

of the problems of the FGM profile shape in the thickness
is that a small variation in 𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), and 𝑝(𝑘) power-law

parameters can lead to a solution showing a volume fraction
inconsistent (𝑉(𝑘)

𝐶
< 0 or 𝑉(𝑘)

𝐶
> 1). The PSO algorithm, in

fact, belongs to the so-called “trajectory based methods” and
sweeps the space following a path inwhich the newposition is
equal to the previous one plus a constant segment (the speed).
For this reason, sometimes the updated position of a particle
lies in a zone in which the volume fraction is out of limit; in
this case, the classical implementation of the algorithm stops
since the trajectory enters in a trap fromwhich it is impossible
to escape. The new position, in fact, can lead to inconsistent
volume fractions and the algorithm stalls. In order to solve
this problem, a check has been introduced in the algorithm
(step 11 and step 12 in Pseudocode 3), so that if an unfeasible
position is found by the algorithm, the velocity is rejected and
changed until a new valid position is found. By this way, a
forecast of the new position is computed and the PSO velocity
is accepted if leading to a valid solution, randomized if it
does not. The end criterion is due to one of these conditions:
the achievement of the maximum number of iterations, or a
condition in which after 𝑛𝜀 generations the solution does not
improve.ThePSO seems to be very attractive for optimization
since the studies by Hu et al. [116] and by Ceruti et al. [102]
present advantages with respect to GA: easiness of software
code implementation, need for the definition of few setting
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Figure 9: Cylindrical panel: Genetic Algorithm optimization with 𝜂 = 1; final optimized displacement 𝑤 = 1.1668 ⋅ 10−5m.
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Figure 11: Conical shell: Monte Carlo optimization with 𝜂 = 0.5; final optimized frequency𝑓 = 330.946Hz and final optimized displacement
𝑤 = 5.2073 ⋅ 10

−7m.

parameters, and good fitting to engineering application. The
PSO implementation and the modifications introduced for
this application are described in Pseudocode 3, where an
illustrative pseudocode is presented.

5. Numerical Applications and Results

In the present section, some results and considerations about
the mixed static and dynamic optimization problem of four-
parameter functionally graded doubly curved and degenerate
shells and panels are presented.The analysis has been carried
out by means of numerical procedures illustrated above.
Different types of structures are considered in the present
paper.One of the aims of this study is to show somenumerical
examples about flat plates, singly curved, and doubly curved
shells and panels made of FGMs. The six considered struc-
tures are depicted in Figure 4. In order to describe themiddle
surface of the given structures, theoretical formulae of differ-
ential geometry [7, 23, 43, 74, 78] are used.Themathematical
development of the differential geometry applied to doubly
curved shells was deeply explained in [23, 43, 74, 78]. So, in
the following, only a few formulae are reported. Furthermore,
it is worthwhile noting that the GDQ procedure enables
to evaluate the parameters concerning the shell geometry
as reported in [74, 78]. For all the GDQ results presented
below, the Chebyshev-Gauss-Lobatto grid distributions (30)
with 𝑁 = 𝑀 = 31 along the reference surface have

been assumed, and the geometrical parameters with their
derivatives are numerically evaluated using the GDQmethod
[26]. The FGM nomenclature used in the present work is
identified by the same convention presented in the previous
work by Tornabene et al. [70]. In an analogous way, the
geometrical boundary conditions are defined considering
similar convention used in the previous works [23, 43, 44, 47,
49–53, 68–76] for shell and panel structures.

For a rectangular flat plate, the position vector [74, 78] can
be written as

r (𝛼1, 𝛼2) = −𝛼2e2 + 𝛼1e3. (40)

In Figure 4(a) the considered square plate has the sides 𝑎 =
𝑏 = 1m, thickness ℎ = 0.1m, and it is subjected to a
normal load 𝑞+

𝑛
= −10000Pa at the top surface. The plate

is free on two adjacent sides and clamped on the other
two. The boundary conditions are indicated by the current
nomenclature as CCFF. The square plate is a single-layered
structure with FGM1(𝑎(1)/𝑏(1)/𝑐(1)/𝑝(1))

four-parameter power-
law distribution. In this case, the four parameters 𝑎 = 𝑎(1), 𝑏 =
𝑏
(1)
, 𝑐 = 𝑐

(1), and 𝑝 = 𝑝
(1) have to be determined by the

optimization procedure.
The position vector for the cylindrical panel and conical

shell of Figures 4(b) and 4(c) can be obtained from the conical
shell formula, already presented in [74, 78] and reported here
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Figure 12: Conical shell: Genetic Algorithm optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 321.890Hz and final optimized
displacement 𝑤 = 5.2624 ⋅ 10−7m.

Step (1) Set a max and min value for each gene
Step (2) Set the max number of generations (𝑇), the convergence tolerance (𝜀) and the number of consecutive no improvements

loops (𝑛𝜀) after which algorithm ends, the number of genes (𝑛𝑔), and the number of population (𝑛pop) members
Step (3) Initialize the first generation of population (𝑃) by randomly set 𝑛pop chromosomes, each one made by 𝑛𝑔 genes
Step (4) while (𝑖 < 𝑇) or (𝜀 for 𝑛𝜀 loops false)
Step (5) Select 𝑃󸀠 ⊂ 𝑃 (mating pool), initialize 𝑃󸀠󸀠 = 0 (set of children)
Step (6) for 𝑗 = 1 to 𝑛
Step (7) Randomly select individuals (chromosomes 𝑥𝑎 and 𝑥𝑏) from 𝑃

󸀠

Step (8) Obtain 𝑥child by applying crossover to 𝑥𝑎 and 𝑥𝑏 (with probability 𝑝cross)
Step (9) Mutate produced child 𝑥child to 𝑥𝑎 and 𝑥𝑏 (with probability 𝑝mut)
Step (10) Apply elitarism (if set)
Step (11) Update population 𝑃󸀠󸀠 = 𝑃󸀠 ∪ 𝑥child
Step (12) end for
Step (13) P = survival respect to the fitness∗ (𝑃󸀠, 𝑃󸀠󸀠)
Step (14) end while
Step (15) best chromosome detection
∗In this case the fitness is multiplied by a penalty term if one of the sets [𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), 𝑝(𝑘)] leads to volume fractions which are
not feasible (e.g. percentage of one constituent in the thickness larger than 1, less than 0, imaginary number).

Pseudocode 1: Genetic Algorithm pseudocode.
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Step (1) Set a max and min value for each parameter
Step (2) Set the max number of population (𝑛

𝑔
) members, the convergence tolerance (𝜀) and

the number of consecutive no improvements loops (𝑛𝜀)
Step (3) while (𝑖 < 𝑛𝑔) or (𝜀 for 𝑛𝜀 loops false)
Step (4) Randomly generate a member of population 𝑃𝑖, following a probability

distribution (normal, exponential, Weibull [113]).
Step (5) Compute volume fraction distribution (𝑉𝐶) in the thickness for 𝑃𝑖
Step (6) if 0 < 𝑉

𝐶
< 1

Step (7) 𝑖 = 𝑖 + 1

Step (8) Compute Fitness
Step (9) if Fitness (𝑖) > Best Fitness
Step (10) Best Fitness = Fitness (𝑖)
Step (11) Best member = 𝑖
Step (12) end if
Step (12) end if
Step (13) end while

Pseudocode 2: Monte Carlo pseudocode.

Step (1) Set number of particles (𝑛𝑃), number of parameters for each particle (𝑛param), max
number of generations (𝑛𝐺), convergence tolerance (𝜀) and the number of
consecutive no improvements loops (𝑛𝜀), 𝛿 (ratio between position and speed)

Step (2) Set particles boundary values: max (1 : 𝑛param), min (1 : 𝑛param)
Step (3) Randomly generate particles position (𝑃(0)

𝑖
) | min (𝑖) < 𝑃(0)

𝑖
< max (𝑖) and velocity V(0)

𝑖

Step (4) Evaluate fitness function 𝐹𝑖 = 𝑓 (𝑃
(0)

𝑖
) , 𝑖 = 1, . . . , 𝑛𝑃

Step (5) Set 𝑃𝑏 = 𝑃
(0), 𝐹best = 𝐹, 𝐺𝑏 = min (𝐹𝑖), 𝑔𝑏 = index of the (min (𝐹𝑖)) value

Step (6) for𝑚 = 1 to 𝑛𝐺
Step (7) for 𝑖 = 1 to 𝑛

𝑃

Step (8) ΔV𝑖 = 𝑐1𝑎1 (𝑃𝑏𝑖 − 𝑃
(𝑚−1)

𝑖
) + 𝑐2𝑎2(𝑃𝑏𝐺

𝑏

− 𝑃
(𝑚−1)

𝑖
)

Step (9) V(𝑚)
𝑖
= 𝜙

(𝑚)V(𝑚−1) + ΔV𝑖
Step (10) 𝑃

(𝑚)

𝑖
= 𝑃

(𝑚−1)

𝑖
+ V(𝑚)

𝑖

Step (11) Compute Volume fraction distribution (𝑉𝐶) in the thickness for 𝑃(𝑚)
𝑖

Step (12) while (𝑃(𝑚)
𝑖

> max (𝑖)) or (𝑃(𝑚)
𝑖

< min (𝑖)) or (𝑉
𝐶
< 0) or (𝑉

𝐶
> 1)

Step (13) V(𝑚)
𝑖
= V(𝑚−1) + 𝛿 ⋅ (max (𝑖) −min (𝑖)) ⋅ random (0 ÷ 1)

Step (14) 𝑃
(𝑚)

𝑖
= 𝑃

(𝑚−1)

𝑖
+ V(𝑚)

𝑖

Step (15) end while
Step (16) Evaluate fitness 𝐹𝑖 = 𝑓 (𝑃

(𝑚)

𝑖
) , 𝑖 = 1, . . . , 𝑛𝑃

Step (17) for 𝑖 = 1, . . . , 𝑛𝑃
Step (18) if 𝐹𝑖 < 𝐹𝑏𝑖 then 𝑃𝑏𝑖 = 𝑃

(𝑚)

𝑖
and 𝐹𝑏𝑖 = 𝐹𝑖

Step (19) if 𝐹𝑖 < 𝐺𝑏 then 𝐺𝑏 = 𝐹𝑖 and 𝑔𝑏 = 𝑖
Step (20) end for
Step (21) end for
Step (22) end for

Pseudocode 3: Particle Swarm Optimization pseudocode.

for the sake of completeness. The position vector for the
conical shell can be written as follows:

r (𝛼1, 𝛼2) = (𝑅𝑏 + 𝛼1 sin𝛼) cos𝛼2e1

− (𝑅𝑏 + 𝛼1 sin𝛼) sin𝛼2e2 + 𝛼1 cos𝛼e3.
(41)

As it is well known [7, 74, 78], a conical shell [23, 42, 43, 49,
52] is a 2D structure having the middle surface generated by
the rotation, about a fixed vertical axis, of an inclined straight
line. The angle 𝛼 is the top vertex angle of the cone, where

the meridian angle 𝜑 can be written as a function of it: 𝜑 =
𝜋/2 − 𝛼. Thus, for cylindrical panel, considering 𝛼 = 0, the
position vector (41) takes the form

r (𝛼1, 𝛼2) = 𝑅𝑏 cos𝛼2e1 − 𝑅𝑏 sin𝛼2e2 + 𝛼1e3. (42)

The meridian abscissa 𝛼1 is defined as 𝛼1 ∈ [0, 𝐿], where
𝐿 is the length of the meridian. The presented parameters
are graphically shown in the works [23, 42, 43, 49, 52]. The
cylindrical panel (Figure 4(b)) is defined by 𝑅 = 𝑅𝑏 = 2m,
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Table 2: Optimization of the six different structures of Figure 4: (a) square plate, (b) cylindrical panel, (c) conical shell, (d) toroidal shell
panel, (e) catenoidal panel, and (f) elliptic paraboloid. 𝜂 = 1: optimization of the first frequency 𝑓1; 𝜂 = 0: optimization of maximum bending
displacement 𝑤max = 𝑢3max; 𝜂 = 0.5: optimization of the first frequency 𝑓1 and maximum bending displacement 𝑤max = 𝑢3max.

Method 𝑎 𝑏 𝑐 𝑝 Final frequency Final displacement Final fitness Computational time (min)
Rectangular plate

𝜂 = 1: target frequency 𝑓1𝑇 = 268.753Hz
MC 0.05582 −0.56831 17.86455 9.14279 265.36499 1.8270𝐸 − 05 1.2606𝐸 − 02 25
GA 0.08800 −0.06160 5.02440 9.53080 268.81630 1.7493𝐸 − 05 2.3583𝐸 − 04 42
PSO −0.25829 −0.13011 0.67170 3.43176 268.71000 1.7466𝐸 − 05 1.5970𝐸 − 04 31

Cylindrical panel
𝜂 = 0: target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 1.1646 ⋅ 10

−5m
MC 1.11895 1.10588 1.09493 13.33798 186.78559 1.1596𝐸 − 05 4.3053𝐸 − 03 32
GA 0.12710 −0.33040 6.11930 3.03030 202.41150 1.1668𝐸 − 05 1.8770𝐸 − 03 14
PSO 0.35190 −0.26277 6.90518 1.75727 197.75230 1.1653𝐸 − 05 5.8904𝐸 − 04 20

Conical shell
𝜂 = 0.5: target frequency 𝑓1𝑇 = 268.753Hz and target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 5.2639 ⋅ 10

−7m
MC 0.00984 −0.74086 14.77422 27.83370 330.94622 5.2073𝐸 − 07 1.9799𝐸 − 02 35
GA 0.08800 −0.32650 16.65690 7.72240 321.89420 5.2624𝐸 − 07 4.9477𝐸 − 04 25
PSO 0.05769 −0.49331 9.85753 8.35549 322.04900 5.2615𝐸 − 07 8.2088𝐸 − 04 43

Toroidal shell panel
𝜂 = 0: target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 3.9516 ⋅ 10

−5m
MC 0.05350 −0.54251 17.60320 20.64836 20.21863 3.9727𝐸 − 05 5.3396𝐸 − 03 21
GA 0.02930 −0.78200 12.72730 25.90420 20.56750 3.9495𝐸 − 05 5.3143𝐸 − 04 3
PSO 0.10430 −0.58284 8.53859 8.22430 20.48775 3.9519𝐸 − 05 7.5919𝐸 − 05 6

Catenoidal panel
𝜂 = 1: target frequency 𝑓1𝑇 = 590.557Hz

MC 1.06122 0.90588 2.06831 2.50895 595.86858 3.9753𝐸 − 07 8.9937𝐸 − 03 55
GA 0.08800 −0.48390 13.11830 13.97850 590.77480 4.0135𝐸 − 07 3.6832𝐸 − 04 45
PSO 0.09089 −0.32061 18.33638 14.94431 590.11938 4.0129𝐸 − 07 7.4152𝐸 − 04 43

Elliptic paraboloid
𝜂 = 0.5: target frequency 𝑓1𝑇 = 327.239Hz and target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 1.9073 ⋅ 10

−6m
MC 0.29917 0.02997 19.54311 2.65521 332.68799 1.8923𝐸 − 06 1.2258𝐸 − 02 43
GA 0.08800 −0.29910 3.01080 4.93650 327.62800 1.9075𝐸 − 06 6.4729𝐸 − 04 22
PSO 0.25269 −0.65120 13.49764 2.90612 327.39815 1.9065𝐸 − 06 4.5339𝐸 − 04 25

Table 3: Perceptual relative errors in first frequtency 𝑒𝑓 = ((𝑓1 − 𝑓1𝑇)/𝑓1𝑇) ⋅ 100 and in maximum bending displacement 𝑒𝑤 = ((𝑤max −

𝑤max𝑇)/𝑤max𝑇) ⋅ 100 with Monte Carlo, Particle Swarm Optimization, and Genetic Algorithm methods.

Optimization
method

Square plate Cylindrical panel Conical shell Toroidal shell panel Catenoidal panel Elliptic paraboloid
𝑒𝑓 𝑒

𝑤
𝑒𝑓 𝑒

𝑤
𝑒
𝑤

𝑒𝑓 𝑒𝑓 𝑒
𝑤

MC −1.261 −0.431 2.884 −1.076 0.534 0.899 1.665 −0.786
GA 0.024 0.188 0.070 −0.029 −0.053 0.037 0.119 0.010
PSO −0.016 0.059 0.118 −0.046 0.008 −0.074 0.049 −0.042

𝐿 = 3m, circumferential angle 𝛼2 = 𝜗 ∈ [0, 120
∘
], and

a thickness ℎ = 0.2m. It is subjected to a normal load
𝑞
+

𝑛
= −10000Pa at the top surface, and its boundary

conditions are SFSF. On the contrary, the conical shell
(Figure 4(c)) has 𝑅𝑏 = 1m, 𝐿 = 3m, circumferential angle
𝛼2 = 𝜗 ∈ [0, 360

∘
], 𝛼 = 30∘, and a thickness ℎ = 0.3m. Also

the conical shell is subjected to a normal load 𝑞+
𝑛
= −10000Pa

at the top surface. The conical shell is clamped at the bottom
and free at the top, so the boundary conditions are indicated
by CF. The cylindrical panel is a two-layered structure
with FGM2(𝑎(1)/𝑏(1)/𝑐(1)/𝑝(1))

/FGM1(𝑎(2)/𝑏(2)/𝑐(2)/𝑝(2))
lamination

scheme, while the conical shell presents FGM1(𝑎(1)/𝑏(1)/𝑐(1)/𝑝(1))
/
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Figure 13: Conical shell: optimization by Particle Swarm Algorithm with 𝜂 = 0.5; final optimized frequency 𝑓 = 322.049Hz and final
optimized displacement 𝑤 = 5.2615 ⋅ 10−7m.

FGM2(𝑎(2)/𝑏(2)/𝑐(2)/𝑝(2))
lamination scheme. In these two cases

the FGM four parameters of the two different power-law
distributions are assumed to be equal to the two different
laminae of the structure. Thus, only the four parameters
𝑎 = 𝑎

(1)
= 𝑎

(2)
, 𝑏 = 𝑏

(1)
= 𝑏

(2)
, 𝑐 = 𝑐

(1)
= 𝑐

(2), and
𝑝 = 𝑝

(1)
= 𝑝

(2) have to be determined by the optimization
procedure.

As already reported in [74, 78], the position vector of a
toroidal shell panel (Figure 4(d)) can be written as

r (𝛼1, 𝛼2) = (𝑅𝑏 + 𝑅 sin𝛼1) cos𝛼2e1

− (𝑅𝑏 + 𝑅 sin𝛼1) sin𝛼2e2 + 𝑅 cos𝛼1e3,
(43)

where 𝑅𝑏 is the shift of the circular meridian curve with
respect to the axis of revolution [23, 43, 44, 47, 68, 69] and 𝑅
is the radius of the circular curve section of the toroidal shell
panel. The toroidal structure is characterized by 𝑅𝑏 = 9m,
𝑅 = 3m, meridian angle 𝛼1 = 𝜑 ∈ [0, 360

∘
], circumferential

angle 𝛼2 = 𝜗 ∈ [0, 120
∘
], and a thickness ℎ = 0.6m.

Also the toroidal shell has CF boundary conditions, and the
normal load 𝑞+

𝑛
= −10000Pa is applied at its top surface.

When a catenary curve is considered as a meridian curve of

a revolution shell, the position vector of the catenoidal panel
(Figure 4(e)) assumes the aspect

r (𝛼1, 𝛼2) = (𝐴 cosh(arcsinh( 1

tan𝛼1
)) + 𝑅𝑏) cos𝛼2e1

− (𝐴 cosh(arcsinh( 1

tan𝛼1
)) + 𝑅𝑏) sin𝛼2e2

+ 𝐴 arcsinh( 1

tan𝛼1
) e3,

(44)

where 𝐴 is the distance of the throat apex of the catenary
curve. For further details about the geometry definition of
the catenary curve, the reader might refer to [23, 43, 74, 78].
Regarding the catenoidal panel (Figure 4(e)) its geometrical
properties are 𝐴 = 2m, 𝐵 = 2m, 𝐷 = 1m, 𝑅𝑏 = 0m,
circumferential angle 𝛼2 = 𝜗 ∈ [0, 90

∘
], and a thickness ℎ =

0.5m. The catenoidal panel has CFCF boundary conditions,
and it is subjected to a normal load 𝑞+

𝑛
= −10000Pa at the

top surface. The toroidal shell panel and catenary panel of
revolution have the same three-layered lamination scheme
FGM2(𝑎(1)/𝑏(1)/𝑐(1)/𝑝(1))

/FGM𝐶/FGM1(𝑎(3)/𝑏(3)/𝑐(3)/𝑝(3))
. The lami-

nation scheme presents the middle lamina of the structure
made of ceramic isotropic material. Also, in these two
cases the FGM parameters of the two different power-law
distribution are assumed to be equal to the first and the third
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Figure 14: Toroidal shell panel: Monte Carlo optimization with 𝜂 = 0; final optimized displacement 𝑤 = 3.9727 ⋅ 10−5m.
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Figure 15: Toroidal shell panel: Genetic Algorithm optimization with 𝜂 = 0; final optimized displacement 𝑤 = 3.9495 ⋅ 10−5m.
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Figure 16: Toroidal shell panel: Particle Swarm Optimization with 𝜂 = 0; final optimized displacement 𝑤 = 3.9519 ⋅ 10−5m.
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Figure 17: Catenoidal panel: Monte Carlo optimization with 𝜂 = 1; final optimized frequency 𝑓 = 595.868Hz.
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Figure 18: Catenoidal panel: Genetic Algorithm optimization with 𝜂 = 1; final optimized frequency 𝑓 = 590.800Hz.

laminae of the structure. In this way, only the four parameters
𝑎 = 𝑎

(1)
= 𝑎

(3)
, 𝑏 = 𝑏

(1)
= 𝑏

(3)
, 𝑐 = 𝑐

(1)
= 𝑐

(3)
, and

𝑝 = 𝑝
(1)
= 𝑝

(3) have to be determined by the optimization
procedure.

Finally, the position vector of the reference surface of the
elliptic paraboloid is given in [74, 78]:

r (𝛼1, 𝛼2) = (𝑅
𝛼
1

0
(𝛼1) − 𝑥

𝛼
2

3
(𝛼2) sin𝛼1) cos𝛼2e1

− 𝑅
𝛼
2

0
(𝛼2) e2 + (𝑥

𝛼
1

3
(𝛼1) + 𝑥

𝛼
2

3
(𝛼2) cos𝛼1) e3.

(45)

If the generatrix parabola needs to be characterized (the other
parabola can be defined analogously), it can be described by
the following equation:

(𝑅
𝛼
1

0
)
2
− 𝜅

𝛼
1𝑥

𝛼
1

3
= 0, (46)

where 𝜅𝛼1 = (𝐴2 − 𝐷2
)/𝐵 is a characteristic parameter of the

parabolic curve, 𝑅𝛼1
0
is the abscissa of a point of the parabola,

and 𝑥𝛼1
3
is its ordinate in the generatrix plane of the parabolic

curve. The abscissa 𝑅𝛼1
0
(𝛼1) of the parabolic curve assumes

the form

𝑅
𝛼
1

0
(𝛼1) =

𝜅
𝛼
1 tan𝛼1
2

. (47)

The parameters describing the two parabolas of the elliptic
paraboloid under consideration are 𝐴 = 3m, 𝐶 = −3m,
𝐷 = 0m, and 𝐵 = 0.8m, and the thickness is ℎ = 0.4m.
The elliptic paraboloid is completely clamped at its four edges
(CCCC), and it is subjected to a normal load 𝑞+

𝑛
= −10000Pa

at the top surface. The elliptic paraboloid is a single-layered
structure with FGM2(𝑎(1)/𝑏(1)/𝑐(1)/𝑝(1))

four-parameter power-
law distribution. In this case, the four parameters 𝑎 = 𝑎(1), 𝑏 =
𝑏
(1)
, 𝑐 = 𝑐

(1), and 𝑝 = 𝑝
(1) have to be determined by the

optimization procedure.
In Table 1 the first ten frequencies and maximum static

deflections for the six structures of Figure 4 are presented. In
particular, the two limit cases of functionally gradedmaterials
are considered. For the first case, named FGM𝐶, the single-
layered structure is made of ceramic isotropic material, while
for the second one, named FGM𝑀, the single-layered struc-
ture is made of metal isotropic material. In the present work,
it is assumed that the functionally graded material lamina is
made of a mixture of ceramic and metal constituents: Silicon
Nitride and Stainless Steel. Young’s modulus, Poisson’s ratio,
andmass density for the SiliconNitride are 𝐸𝐶 = 322.27GPa,
]C = 0.24, and 𝜌𝐶 = 2370 kg/m

3, and for the Stainless Steel
are 𝐸𝑀 = 207.78GPa, ]𝑀 = 0.3177, and 𝜌M = 8166 kg/m3,
respectively.



26 Mathematical Problems in Engineering

0 5 10

0

5

10

0 10 20 30 40 50
0

5

10

15

20

0 0.5 1

0

0.1

0.2

0 2 4 6
500

520

540

560

580

600

620

640

0 2 4 6

3.8

4

4.2

4.4

0 2 4 6

0.01

0.02

0.03

0.04

0.05

0.06

−10
−10

−5

−5
−0.1

−0.2

𝑓 𝑤

𝑎 𝜁

𝐹

𝑐

×10−7

𝑝 𝑉𝑐𝑏

n n n

Figure 19: Catenoidal panel: Particle Swarm optimization with 𝜂 = 1; final optimized frequency 𝑓 = 590.119Hz.

As described before, one of the goals of the present paper
is to develop and test an operative methodology to support
the design of FG materials. Several problems can be faced
by the designer; in particular some of the most commonly
occurred engineering needs are to avoid resonance frequency,
to reduce or control the deformations, to increase the strength
to weight ratio, to reduce stresses due to different dilatation
properties of two materials, and so on. In this study, fre-
quency and deformation and a combination of the two will
be considered. The fitness function 𝐹 has been modelled to
obtain a defined first resonance frequency target (𝑓1𝑇) set by
user, a maximum displacement target (𝑤max𝑇 = 𝑢3max𝑇) due
to bending deformation, or to try to satisfy at the best both
the requirements. In this latter case, the designer candecide to
stressmore the importance on one of the two requirements by
using the coefficient 𝜂 which acts as a weight: in this way the
fitness 𝐹 is still monodimensional but keeps into account two
aspects, ranging 𝜂 from zero to one. According to the above
considerations, the fitness expression 𝐹 can be so represented
by the formula

𝐹 = 𝜂√(
𝑓1 − 𝑓1𝑇

𝑓1𝑇
)

2

+ (1 − 𝜂)√(
𝑤max − 𝑤max𝑇

𝑤max𝑇
)

2

. (48)

It is worth to note that the minimization of the fitness
𝐹 is equivalent to obtain values of frequency (𝑓 = 𝑓1)

and of displacement (𝑤 = 𝑤max = 𝑢3max) as close as
possible to the desired ones (𝑓1𝑇, 𝑤max𝑇 = 𝑢3max𝑇), and

the ratio between the difference from the obtained value
minus the target and the target value itself is used to make
dimensionless frequencies and displacements. By this way,
parameters with different magnitudes can be compared,
allowing to equate itemswith unit ofmeasurement defined by
the experimenter depending on his practice. In the paper, this
simplemonoobjective fitness has been considered to privilege
the simplicity and to suggest the use of this approach also
in industrial applications, but more complex multiobjective
fitness functions can be implemented depending on the
specific case study and on the requirements and needs
expressed by the designer.

Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, and 22 present the results of the optimization of the six
structures described above. A mix of values of 𝜂 parameter
has been chosen (𝜂 = 0, 0.5, 1), keeping it constant for
each structure as to make possible the comparison of the
optimization methods. Following formula (48), if 𝜂 = 1

only the frequency is optimized, while for 𝜂 = 0 only the
displacement is considered; an intermediate value 𝜂 = 0.5

can be set to find the better compromise between the guess
of both frequency and displacement. Each figure presents in
the upper left corner the values of 𝑎 and 𝑏 parameter for
each try; the best solution is represented by a red circle. In
the upper centre there are the values of 𝑐 and 𝑝 parameters
for each try with the best solution in red; in the upper left
corner there is the material distribution in the thickness of
the structure; an FGM made by one, two, or three layers
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Figure 20: Elliptic paraboloid: Monte Carlo optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 332.688Hz and final optimized
displacement 𝑤 = 1.8923 ⋅ 10−6m.

can be visualized, depending on the structure definition
(e.g. rectangular plate presents only one layer; cylindrical
panel presents two symmetric layers, while, for instance, the
conical shell ismade by a sandwich between an homogeneous
material and two symmetric about the midplane layers of
FG materials): the final optimized distribution is in red. The
lower part of the figures from left to right presents the trend of
frequency, displacement, and fitness in time. In case ofMonte
Carlo frequency anddisplacement of the single run are shown
(with in blue the trend of the best solution found), while in
case of Particle Swarm andGenetic Algorithms the frequency
and the displacement referred to the best individual found
at the moment are shown. A green line represents the target
values for the frequency and the displacement, while in case
of the fitness, the ideal value is obviously equal to zero.

Figures 5–7 present the optimization of a rectangular
plate when the designer is interested in setting the first
resonance frequency of the structure. The plate is made by
only one FGM lamina, and a value of 𝜂 = 1 is set. Figures 8–
10 depict the result of the optimization with MC, PSO, and
GA of a cylindrical panel made by two symmetrical FGM
distributions about themidplane; in this case 𝜂 = 0 is set since
the need for a required maximum displacement is simulated.
Figures 11–13 refer to a singly curved conical shell made by
two FGM laminae, with a distribution symmetric about the
midplane of the whole structure; in this case 𝜂 = 0.5 is set
to consider an interest both in frequency and in maximum

displacement. Figures 14–16 present a toroidal shell panel
which is a doubly curved shell panel of revolution, made
by three laminae: a homogeneous core and two external
symmetrical FGM laminae as to simulate a typical sandwich
structure.The interest is in maximum displacement, so that 𝜂
is set equal to zero. Figures 17–19 list the optimization trend
of a catenoidal panel structure which can be defined as a
doubly curved panel of revolution; the laminate is obtained by
three layers also in this case, representing a typical sandwich
structure; in this case the attention is focused on frequency
optimization, so that 𝜂 = 1 is set. Finally, Figures 20–22
present an elliptic paraboloid which is a completely doubly
curved panel structure made by only one FGM lamina;
considerations will be addressed both on frequency and
displacement since 𝜂 = 0.5.

As to help the interpretation of the optimization process,
the final results are collected in Table 2: the final value of
the fitness provides an idea of the goodness of the results
found. It is important to note that heuristic methods do not
provide the best solution, but a suboptimal solution; in other
words, sometimes, similar results of the fitness function can
be found with several different set of parameters 𝑎, 𝑏, 𝑐, and
𝑝. The Genetic Algorithm has been run with a population
of 30 individuals and the Particle Swarm with a number
of particles of 30; these algorithms stop when a maximum
number of runs are reached or no improvements are found
in solution (or alternatively when the percentage error is less
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Figure 21: Elliptic paraboloid: Genetic Algorithm optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 327.600Hz and final optimized
displacement 𝑤 = 1.9075 ⋅ 10−6m.

than the 0.5%). The Monte Carlo simulation has been run
for 200 times for each optimization problem, in order to
obtain a comparable number of runs with Genetic Algorithm
and Particle Swarm Optimizers. A first comparison between
methods can be performed based on Figure 23, in which
there is a graph collecting final fitness versus computational
time for each optimization performed. Values for Monte
Carlo are in red triangles, Particle Swarm in blue squares,
while Genetic Algorithm in red circles. As expected GA and
PSO results are better than MC ones and provide data with
good approximation in a relative short time, which is also
compatible with the needs of conceptual design or Multidis-
ciplinary Optimization. Simulations have been carried out
on a Notebook equipped with an 8GB RAM, a 2GHz core
processor, and Windows 7 operating system. Table 3 lists
the errors in frequency and in displacement (depending on
the case study) for each simulation run; as can be seen by
data provided, both GA and PSO present a similar efficiency.
The two methods exploit different strategies to solve the
optimization problem in this complex task: in this case, in
fact, the domain is not continuous and some combinations of
the four parameters 𝑎, 𝑏, 𝑐, and 𝑝 can lead to a distribution
of metal and ceramics which is not consistent (percentage
represented by a negative or complex or major than one
number, which is physically unfeasible). As well described
before in the paper, one of the challenges is that slight

changes in one of the four parameters can lead to inconsistent
solutions. When a particle of the PSO arrives to the border
of the domain with a speed pointing to an inconsistent zone
of the domain, it is needed to randomly redirect the particle
towards an allowed zone, and this reduces the efficiency of
themethod. On the other hand, GA solves in a better way this
problem sincemutations and crossover help in exploring new
zones of the domain in which the solution is feasible and the
distribution percentage of the FGM distributions (ceramics
and metal) is always a positive number between zero and one
in all the thickness of the structure. Only a small part of the
individuals of a generation should mutate because it slows
down the convergence. After tests performed it seems that
these two effects compensate and both PSO andGA present a
very good behavior in optimization.The comparison between
random optimization (MC) with heuristic methods (GA,
PSO) shows a different relative efficiency ofMCwhen applied
to cases in which only frequency or displacement is studied
or when both are considered. In the first case the difference
in precision obtained by MC with respect to GA and PSO
is quite small, while this difference increases dramatically
when both frequency and displacement are considered: it can
be inferred that when the fitness function deals with only
one parameter also the MC alone can be used, while in case
of fitness involving more parameters an heuristic or semi
heuristic method provides better results.
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Figure 22: Elliptic paraboloid: Particle Swarm Optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 327.398Hz and final optimized
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6. Conclusion Remarks and Summary

Functionally graded material applications are increasing due
to their potentialities in problems related to aggressive envi-
ronments, thermal properties, and special structural needs.

Theoretical frameworks have been developed to solve the
static and dynamic analysis of this type of structures. In
the present paper, the Generalized Differential Quadrature
method has been presented as a mean to investigate the static
and dynamic analysis of functionally graded and laminated
composite doubly curved shells and panels.The adopted shell
theory is the First-order Shear Deformation Theory. In par-
ticular, the Toorani-Lakis theory has been used as a starting
point to obtain the governing equations for shells. The 2D
equilibrium equations have been discretized with the GDQ
method through standard linear algebraic and eigenvalue
problems.Thanks to the mathematical approach, the analysis
of an FGM shell or panel can be provided. The material
distribution can be expressed by a four-parameter power-
law. However, the main drawback of this approach from a
designer perspective is that it is impossible to analytically
relate the set of the four parameters to static or dynamic
performances of the structures. An approach based on the
application of optimization algorithms to the problem has
been carried out to evaluate its suitability to the topic. Due
to the domain of the four parameters which includes zones in
which no solutions can be found, the optimization algorithms
have been modified and tested. Genetic Algorithm, Particle
SwarmOptimization, andMonte Carlo algorithms have been
selected for tests and applied to six different geometrical
structures optimizing the first frequency, maximum bending
displacement, or a mix of the two. Results obtained show
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the convergence of the optimization for GA and PSO, which
provides better results than MC for similar computational
effort. In particular, GA and PSO aremore precise when both
frequency and displacement are considered at the same time.
The herein developedmethodology can dramatically help the
designer in the definition of the mix ceramics/metal which
can present the requested properties.
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[109] E. Verdú, M. J. Verdú, L. M. Regueras, J. P. De Castro, and R.
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The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the
uncoupled thermomechanical behavior of functionally graded (FG) plates. Functionally graded materials are mainly constructed
to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and
magnetic), where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic,
etc.) are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to
thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have
considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should
be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position.The volume
fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of
the material position, along the thickness of the plate.

1. Introduction

Functionally graded materials (FGMs) are microscopically
inhomogeneous composite materials, in which the volume
fraction of the two or more materials is varied smoothly
and continuously as a continuous function of the material
position along one or more dimension of the structure.
These materials are mainly constructed to operate in high
temperature environments.

In conventional laminated composite structures, homo-
geneous elastic laminae are bonded together to obtain
enhanced mechanical and thermal properties. The main
inconvenience of such an assembly is the creation of stress
concentration sources along the interfaces and specifically
when the structure is exposed to elevated temperatures. This
can lead to many deficiencies such as delaminations, matrix
cracks, and other damage mechanisms which may result
from the abrupt change of the mechanical properties at the
interface between the layers. One of the ways to overcome
this problem is to use functionally graded materials (FGMs)
with continuous material properties variations, which can

lead to a continuity of the material properties.The concept of
functionally gradedmaterial (FGM) was proposed in 1984 by
thematerial scientists in Japan [1]. Alieldin et al. [2] suggested
three approaches to transform the laminated composite
plate, with stepped material properties, to an equivalent
functionally graded (FG) plate with a continuous property
function across the plate thickness. Such transformations
are used to determine the details of a functionally graded
plate equivalent to the original laminated one. In addition
it may provide an easy and efficient way to investigate the
behavior of multilayer composite plates, with direct and less
computational efforts. FGMs are usuallymade of amixture of
ceramic and metals. The ceramic constituent of the material
provides a high temperature resistance due to its low thermal
conductivity, while the ductilemetal constituent, on the other
hand, prevents the fracture caused by thermal stress due to
high temperature gradient in a very short period of time.

The FGM is suitable for various applications, such as
thermal coatings of barrier for ceramic engines, gas tur-
bines, nuclear fusions, optical thin layers, and biomaterial
electronics. Cheng and Batra [3] studied thermo-mechanical
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deformations of the FG plates. Tanigawa et al. [4] studied the
linear thermal bending of FGMplate in steadystate condition.
They also studied the stress in transient heat conduction
with temperature-dependent material properties. Using the
first-order shear deformation theory (FSDT), Praveen and
Reddy [5] analyzed nonlinear static and dynamic responses of
FG ceramic-metal plates in a steady temperature field. They
used finite element method. Lanhe [6] used the FSDT and
derived equilibrium and stability equations of a moderately
thick rectangular plate made of FGM under thermal loads.
He assumed that the material properties varied as a power
law of thickness. Alibeigloo [7] derived an exact solution
for thermoelastic response of functionally graded rectangular
plates subjected to thermo-mechanical loads. A finite element
analysis of thermoelastic field in a rotating FGM circular
disk is studied by Afsar and Go [8]. This study focuses
on the finite element analysis of thermoelastic field in a
thin circular functionally graded material disk subjected to
a thermal load and an inertia force due to rotation of the
disk. Tung and Duc [9] derived a simple analytical approach
to investigate the nonlinear stability of functionally graded
plates under mechanical and thermal loads. Equilibrium and
compatibility equations for FG plates are derived by using
the classical plate theory. The nonlinear behaviors of FGM
plates under transverse distribution load are investigated
by Singha et al. [10] using a high precision plate bending
finite element. Material properties of the plate are assumed
to be graded in the thickness direction according to the
simple power law distribution. The formulation is developed
based on the FSDT considering the exact natural surface
position. A high-order control volume finite element method
is propose by Chareonsuk and Vessakosol [11] to explore
thermal stress analysis for functionally graded materials
(FGMs) at steady state with unstructured mesh capability for
arbitrary-shaped domain. This formulation, also known as
cell-vertex finite volume formulation, is useful for material
engineers and scientists in determining the thermal response
and thermo deformation in FGM that subjected to thermal
and mechanical loads. The heat conduction is considered for
thermal analysis, whereas the plane elasticity is considered
for stress analysis. Wang and Shen performed a nonlinear
bending analysis for a FG plate [12] and also performed a
nonlinear vibration, a nonlinear bending, and a postbuckling
analyses for sandwich plate with FGM face sheets [13]. The
two plates are resting on an elastic foundation and subjected
to thermal environments.

Functionally graded materials are used in many applica-
tions, owing to their stability in high thermal environments.
To this aim, many approaches are developed to study the
thermoelastic behavior of functionally gradedmaterials. One
of these approaches is the finite element analysis of such
material type.

In this paper the boundary value problem of the uncou-
pled thermoelastic behavior of FG plate is formulated and
solved. First, the temperature distribution is predicted to be
used in the thermoelastic analysis of FG plate.Then, the first-
order shear deformation plate theory is proposed, accounting
for the exact neutral plane position, for modeling the func-
tionally graded plates. A parametric study is developed to

𝑧, 𝑧1

𝑧 𝑧 + ℎ0

ℎ0
𝑥

𝑥1

Figure 1: Coordinate system used for a typical FG plate.

investigate the effects of different distributions of thematerial
properties on the response of the plates. Moreover, some
numerical comparisons are performed to show the lack of
accuracy while neglecting the effect of neutral plane position
for FG plates.

2. Mathematical Formulation of the
Uncoupled Thermoelasticity System

In this section, a mathematical model is derived for the
uncoupled thermoelasticity systems considering the exact
neutral plane position. The temperature distribution and the
effective material properties of the FGMs are determined
firstly and used in the developed model as input data. The
effect of neutral plane position is typically neglected in most
previous studies, while the position of neutral plane for func-
tionally graded plates must be predetermined. Modifications
over the model formulated at [2] are presented to account for
the thermal load effects on the finite element model and the
neutral plane position effects on the material stiffnesses.

2.1. Governing Equations. Based on the FSDT assumptions,
the transverse normals would not remain perpendicular
to the midsurface but remain straight after deformation.
Thus, the transverse shear strains and consequently the shear
stresses are constant throughout the laminate thickness. In
practice a convenient shear correction factor, equals to 5/6,
is assumed for the analysis of the plates [14, 15]. So, the
displacement fields based on FSDT assumptions are

𝑢 (𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) + (𝑧 + ℎ0) 0𝑥 (𝑥, 𝑦) ,

V (𝑥, 𝑦, 𝑧) = V0 (𝑥, 𝑦) + (𝑧 + ℎ0) 0𝑦 (𝑥, 𝑦) ,

𝜔 (𝑥, 𝑦, 𝑧) = 𝜔0 (𝑥, 𝑦) ,

(1)

where (𝑢0, V0, 𝜔0, 0𝑥, 0𝑦) are unknown functions to be deter-
mined. ℎ0 denotes the position of the neutral plane (see
Figure 1) where for isotropic homogenous plates ℎ0 = 0.

The total strain is the variation of the continuum defor-
mation with respect to its volume, so the linear Green-
Lagrange strains components for small deformations and
moderate rotations (100 − 15

0) can be determined from (1)
as follow:

𝑒𝑥𝑥 = 𝑢0,𝑥 + (𝑧 + ℎ0) 0𝑥,𝑥,

𝑒𝑦𝑦 = V0,𝑦 + (𝑧 + ℎ0) 0𝑦,𝑦,
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𝛾𝑥𝑦 = 𝑢0,𝑦 + V0,𝑥 + (𝑧 + ℎ0) (0𝑥,𝑦 + 0𝑦,𝑥) ,

𝛾𝑥𝑧 = 𝑤0,𝑥 + 0𝑥,

𝛾𝑦𝑧 = 𝑤0,𝑦 + 0𝑦,

(2)
where 𝑒𝑖𝑗 are the total strain components. The total strain
components are the sum of the elastic strains 𝜀𝑖𝑗, resulting
from the applied mechanical loads and the thermal strains
𝜀𝑇𝑖 produced due to temperature change. So, the total strains
are given by

𝑒𝑖𝑗 = 𝜀𝑖𝑗 + 𝜀𝑇𝑖. (3)
The total strain components could be divided into {𝑒𝑏}

bending strain and {𝑒𝑠} shear strain components as follows:

{{{

{{{

{

𝑒𝑥𝑥 (𝑥, 𝑦, 𝑧)

𝑒𝑦𝑦 (𝑥, 𝑦, 𝑧)

𝛾𝑥𝑦 (𝑥, 𝑦, 𝑧)

}}}

}}}

}

=
[
[
[

[

1 0 0 (𝑧 + ℎ0) 0 0

0 1 0 0 (𝑧 + ℎ0) 0

0 0 1 0 0 (𝑧 + ℎ0)

]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[

[

𝑢0,𝑥 (𝑥, 𝑦)

V0,𝑦 (𝑥, 𝑦)

𝑢0,𝑦 (𝑥, 𝑦) + V0,𝑥 (𝑥, 𝑦)

0𝑥,𝑥 (𝑥, 𝑦)

0𝑦,𝑦 (𝑥, 𝑦)

0𝑥,𝑦 (𝑥, 𝑦) + 0𝑦,𝑥 (𝑥, 𝑦)

]
]
]
]
]
]
]
]
]
]
]

]

or {𝑒𝑏} = [𝑍𝑏] {𝑒
0

𝑏
} ,

(4)

{
𝛾𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝛾𝑦𝑧 (𝑥, 𝑦, 𝑧)
}

= [
1 0

0 1
][

𝜔0,𝑥 (𝑥, 𝑦) + 0𝑥 (𝑥, 𝑦)

𝜔0,𝑦 (𝑥, 𝑦) + 0𝑦 (𝑥, 𝑦)
]

or {𝑒𝑠} = [𝑍𝑠] {𝑒
0

𝑠
} ,

(5)

where {𝑒
0

𝑏
} are the nodal bending strains and {𝑒

0

𝑠
} are the

nodal shear strains. The nodal strain components will be
determined in the coming sections.

The governing equations for the plate equilibrium are
derived based on the principle of minimum total potential
energy. So, the total potential energy takes the form

Π = (0.5 ∫
𝐴

{𝑒
0

𝑏
}
𝑇

[𝐷𝐸𝑏] {𝑒
0

𝑏
} 𝑑𝐴 − ∫

𝐴

{𝑒
0

𝑏
}
𝑇

{𝐷𝑇𝑏} 𝑑𝐴)

+ (0.5 ∫
𝐴

{𝑒
0

𝑠
}
𝑇

[𝐷𝐸𝑠] {𝑒
0

𝑠
} 𝑑𝐴 − ∫

𝐴

{𝑒
0

𝑠
}
𝑇

{𝐷𝑇𝑠} 𝑑𝐴)

− ∑{𝑃} {𝑢
𝑜
} ,

(6)

where {𝐷𝑇𝑏} and {𝐷𝑇𝑠} are given by

{𝐷𝑇𝑏} = ∫
𝑧

[𝑍𝑏]
𝑇
[𝐷𝑏] {𝜀𝑇𝑏} 𝑑𝑧,

{𝐷𝑇𝑠} = ∫
𝑧

[𝑍𝑠]
𝑇
[𝐷𝑠] {𝜀𝑇𝑠} 𝑑𝑧,

where {𝜀𝑇𝑏} =

{{

{{

{

𝛼 (𝑧) 𝛿𝑇 (𝑧)

𝛼 (𝑧) 𝛿𝑇 (𝑧)

0

}}

}}

}

, {𝜀𝑇𝑠} = {
0

0
} ,

(7)

where 𝛼(𝑧) is the thermal coefficient of expansion and 𝛿𝑇(𝑧)

is the continuum temperature change through the plate
thickness.

Based on the concept that the equivalent single-layer
theories are built up, that a heterogeneous plate is treated as
a statically equivalent, single layer having a complex consti-
tutive behavior, reducing the 3D continuum problem to 2D
problem, the equivalent layer of the FG plate can be obtained.
By integrating for the plate material properties through the
plate thickness the equivalent single-layermaterialmatrix can
be determined to be

[𝐷𝐸𝑏] = ∫

ℎ/2

−ℎ/2

[𝑍𝑏]
𝑇
[𝐷𝑏]
𝑇

[𝑍𝑏] 𝑑𝑧,

[𝐷𝐸𝑠] = ∫

ℎ/2

−ℎ/2

[𝑍𝑠]
𝑇
[𝐷𝑠]
𝑇

[𝑍𝑠] 𝑑𝑧,

(8)

where [𝐷𝑏] and [𝐷𝑠] are the bending and shear material
matrices, respectively. These material matrices provide the
stress-strain relations for FG plates as follows:

[𝐷𝑏] =
[
[
[

[

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

]
]
]

]

, [𝐷𝑠] = [
𝑄44 𝑄45

𝑄45 𝑄55

] . (9)

For FG plates, the two equivalent material matrices can be
written in the form

[𝐷𝐸𝑏] = [
𝐴 𝑖𝑗 𝐵𝑖𝑗

𝐵𝑖𝑗 𝐷𝑖𝑗

] , [𝐷𝐸𝑠] = [
0 0

0 𝑆𝑖𝑗
] , (10)

where𝐴 𝑖𝑗 are the extensional stiffness components,𝐵𝑖𝑗 are the
bending-extensional coupling stiffness components, and 𝐷𝑖𝑗
are the bending stiffness components.

Prior to the determination of the material stiffnesses, the
location of the neutral plane must be given. Clearly, due to
varying young’s modulus of the plate, the neutral plane is
no longer at the midplane but shifted from the midplane
unless for a plate with symmetrical young’s modulus [16].
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The material stiffnesses can be determined considering the
exact neutral plane position to be in the form

𝐴 𝑖𝑗 = ∫

ℎ/2

−ℎ/2

𝑄𝑖𝑗 (𝑧) 𝑑𝑧 𝑖, 𝑗 = 1, 2, 6,

𝐵𝑖𝑗 = ∫

ℎ/2

−ℎ/2

(𝑧 + ℎ0) 𝑄𝑖𝑗 (𝑧) 𝑑𝑧 𝑖, 𝑗 = 1, 2, 6,

𝐷𝑖𝑗 = ∫

ℎ/2

−ℎ/2

(𝑧 + ℎ0)
2
𝑄𝑖𝑗 (𝑧) 𝑑𝑧 𝑖, 𝑗 = 1, 2, 6,

𝑆𝑖𝑗 = 𝐴 𝑖𝑗 = ∫

ℎ/2

−ℎ/2

𝑄𝑖𝑗 (𝑧) 𝑑𝑧 𝑖, 𝑗 = 4, 5.

(11)

Note that 𝑄𝑖𝑗(𝑧) are the equivalent material property stiff-
nesses as a function of the material thickness direction 𝑧,
where in FG plate, its material properties vary smoothly and
continuously over the thickness of the structure (plate).

The equivalent material stiffnesses of isotropic FG plate
are

𝑄11 (𝑧) = 𝑄22 (𝑧) =
𝐸 (𝑧)

1 − 𝜐2
, 𝑄12 (𝑧) = 𝜐𝑄11 (𝑧) ,

𝑄66 (𝑧) =
1 − 𝜐

2
𝑄11 (𝑧) ,

𝑄44 (𝑧) = 𝑄55 (𝑧) = 𝐾
1 − 𝜐

2
𝑄11 (𝑧) ,

𝑄16 (𝑧) = 𝑄26 (𝑧) = 𝑄45 (𝑧) = 0,

(12)

where 𝐾 is the material shear correction factor, 𝐸(𝑧) is the
effective young’smodulus, and 𝜐 is the effective Poisson’s ratio
of the material through the plate thickness. The convenient
shear correction factor has been assumed to be given by 5/6
in our analysis of FG plates.

So, by minimizing the total potential energy (6), the
equilibrium equations for the FG plate can be obtained.

2.2. Thermal Analysis. Knowledge of the temperature distri-
bution within a body is basically important in many engi-
neering problems. This information will be highly required
in computing the capacity of the heat flow in or out the body.
Further, if a body is not free to expand in all the directions,
some stresses may be developed inside the body. The magni-
tude of these thermal stresses will influence dramatically on
the design of devices such as boilers, steam turbines, and jet
engines. The first step in calculating the thermal stresses is to
determine the temperature distribution within the body.

FGMs are primarily used in situations where large tem-
perature gradients are encountered. Also, FG plates are used
in many applications (such as mechanical, electrical, and
magnetic), where an amount of heat may be generated into
the FG plate whenever other forms of energy (electrical,
magnetic, etc.) are converted into thermal energy.Within our
analysis, constant temperatures are imposed at the ceramic
and metal surfaces, but a scalar temperature field is assumed
to vary continuously along the 𝑧 coordinate, such that

𝜕𝑇/𝜕𝑥 = 𝜕𝑇/𝜕𝑦 = 0. Furthermore, a stress free reference
temperature 𝑇0 = 0 is considered. The one-dimensional
differential equation governing the steady state heat conduc-
tion in a FGM with heat source strength, by assuming a FG
plate (ceramic/metal) with a continuous material properties
distribution along its thickness, can be written as [17]

𝜕

𝜕𝑧
(𝑘 (𝑧)

𝜕𝑇

𝜕𝑧
) + ̇𝑞 = 0, (13)

where 𝑘(𝑧) is the thermal conductivity through the plate
thickness, 𝑇(𝑧) is the temperature distribution through the
plate thickness, and ̇𝑞 is the strength of a heat source inside
the body (rate of heat generated per unit volume).

The temperature distribution along the thickness can be
obtained by solving the one-dimensional steady state heat
transfer equation with the presence of a heat source (13),
subject to the following boundary conditions:

𝑇 = 𝑇𝑈 at 𝑧 = −
ℎ

2
, 𝑇 = 𝑇𝐿 at 𝑧 =

ℎ

2
, (14)

by performing integration

𝑘 (𝑧)
𝑑𝑇

𝑑𝑧
+ ̇𝑞𝑧 = 𝐶1 (15)

by rearranging (15) and considering neutral plane position
integration

∫

𝑇
𝑈

𝑇(𝑧)

𝑑𝑇 = ∫

ℎ/2

𝑧

𝐶1 − ̇𝑞(𝑧 + ℎ0)

𝑘 (𝑧)
𝑑𝑧 (16)

after solving integral

𝑇𝑈 − 𝑇 (𝑧) = 𝐶1 ∫

ℎ/2

𝑧

𝑑𝑧

𝑘 (𝑧)
− ∫

ℎ/2

𝑧

̇𝑞(𝑧 + ℎ0)
𝑑𝑧

𝑘 (𝑧)
. (17)

By imposing one of the previous boundary conditions, the
constant in (15) may be evaluated as follows:

𝐶1 =
𝑇𝑈 − 𝑇𝐿

∫
ℎ/2

−ℎ/2
(𝑑𝑧/𝑘 (𝑧))

+
̇𝑞∫
ℎ/2

−ℎ/2
(𝑧 + ℎ0) (𝑑𝑧/𝑘 (𝑧))

∫
ℎ/2

−ℎ/2
(𝑑𝑧/𝑘 (𝑧))

.

(18)

So, in (17), the temperature distribution through the plate
thickness, for a steady state FG plate with heat source of
strength ̇𝑞, for any distribution of 𝑘(𝑧) is given by

𝑇 (𝑧) = 𝑇𝑈 − 𝐶1 ∫

ℎ/2

𝑧

𝑑𝜉

𝑘 (𝜉)
+ ∫

ℎ/2

𝑧

̇𝑞𝑧
𝑑𝜉

𝑘 (𝜉)

+ ℎ0 ̇𝑞∫

ℎ/2

𝑧

𝑑𝜉

𝑘 (𝜉)
.

(19)

If the plate is in a steady state without any heat sources,
(13) reduces to the one-dimensional steady state heat transfer
equation [18]

𝜕

𝜕𝑧
(𝛾 (𝑧)

𝜕𝑇

𝜕𝑧
) = 0. (20)
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So, the temperature distribution through the plate thickness
for any distribution of 𝑘(𝑧), where in our upcoming thermal
analyses a power law distribution (the linear rule ofmixtures)
of thermal conductivity 𝑘(𝑧) is assumed, can be written as

𝑇 (𝑧) = 𝑇𝑈 −
𝑇𝑈 − 𝑇𝐿

∫
ℎ/2

−ℎ/2
(𝑑𝑧/𝑘 (𝑧))

∫

ℎ/2

𝑧

𝑑𝜉

𝑘 (𝜉)
, (21)

where

𝑘 (𝑧) = 𝑘𝑈 + (𝑘𝐿 − 𝑘𝑈) (
𝑧 + (ℎ/2)

ℎ
)

𝑛

, (22)

where 𝑘𝑈 and 𝑘𝐿 are the thermal conductivity of the upper
and lower surfaces of the FG plate, respectively [19]. The
grading material parameter 𝑛 can be any nonnegative real
number. In the case of a thermally homogenous plate; that is,
when 𝑘 does not depend on 𝑧, the temperature distribution
is linear through the thickness. Excursions from the linear
distribution are obtained by changing the grading parameter
𝑛.

It is convenient here to mention that, in general, there are
many approaches for homogenization of FGMs. The choice
of the approach should be based on the gradient of gradation
relative to the size of a typical representative volume element.
One of such approaches is the approximation approach. The
linear rule of mixtures and the modified rule of mixtures by
Tamura are convenientmethods for estimating the equivalent
material properties of the FGMs based on the approximation
approach. Previous studies predicted that the linear rule of
mixtures cannot reflect the detailed constituent geometry
and the microstructure and provides a highly questionable
accuracy compared to the modified rule of mixtures. On the
other hand, themodified rule ofmixtures byTamura provides
a convenient accuracy for a wide range of volume fractions
and loading conditions. But, the modified rule of mixtures
is restricted to the Young’s modulus, so any appropriate
averagingmethodmust be used to estimate the other thermo-
mechanical properties. Usually the linear rule of mixtures is
being conventionally employed [20].

2.3. Position of Neutral Surface. For the analyses of the
flexural behavior of a functionally graded plate, subjected
only to transversal applied load, we have to determine the
location of the neutral plane before solving the equilibrium
equation of the plate. Clearly, due to the varying of Young’s
modulus of the FG plate through the thickness, the neutral
plane is no longer located at the midplane but shifted from it.
To determine the position of the neutral plane, we construct
a new coordinate system such that the new 𝑥-axis is placed
at the neutral axis, which will be determined in the following
(see Figure 1). Then we have [16]

𝑥 = 𝑥1, 𝑧 = 𝑧1 − ℎ0, (23)

where ℎ0 is the distance of the neutral plane from the
midplane of the plate.

In this case, similar to the usual treatment in the FSDT,
the axial force for an infinitely wide FG plate subjected to
transverse mechanical load is given by

𝑁𝑥𝑥 = 𝐵11𝜑𝑥,𝑥. (24)

By putting the axial force equal to zero to determine the
position of the neutral surface, where the position of the
neutral plane can be determined by choosing ℎ0, such that
the axial force at the cross-section vanishes

𝐵11 = ∫

(ℎ/2)+ℎ
0

−(ℎ/2)+ℎ
0

𝑧1𝐸 (𝑧1)

1 − 𝜐2
𝑑𝑧1 = 0. (25)

By changing the interval of integral we have

∫

ℎ/2

−ℎ/2

(𝑧 + ℎ0) 𝐸 (𝑧)

1 − 𝜐2
𝑑𝑧 = 0. (26)

Then, assuming 𝜐 is constant across the thickness

(∫

ℎ/2

−ℎ/2

𝑧𝐸 (𝑧) 𝑑𝑧) + (ℎ0 ∫

ℎ/2

−ℎ/2

𝐸 (𝑧) 𝑑𝑧) = 0. (27)

The position of neutral plane for FG plates can be determined
from

ℎ0 = −(
∫
ℎ/2

−ℎ/2
𝑧𝐸 (𝑧) 𝑑𝑧

∫
ℎ/2

−ℎ/2
𝐸 (𝑧) 𝑑𝑧

) . (28)

Equation (28) provides an applicable way to manage and
control the position of neutral plane for FG plates. For design
considerations, sometimes we have to adapt the neutral plane
position with the required design constraints. Changing the
grading continuous function of the FG plate controls the
position of the neutral plane.

3. The Finite Element Model

The displacements and normal rotations at any point into a
finite element 𝑒 may be expressed, in terms of the 𝑛 nodes of
the element, as follow

{{{{{{{

{{{{{{{

{

𝑢0 (𝑥, 𝑦)

V0 (𝑥, 𝑦)

𝜔0 (𝑥, 𝑦)

0𝑥 (𝑥, 𝑦)

0𝑦 (𝑥, 𝑦)

}}}}}}}

}}}}}}}

}

=

𝑛

∑

𝑖=1

[
[
[
[
[

[

𝜓
𝑒

𝑖
0 0 0 0

0 𝜓
𝑒

𝑖
0 0 0

0 0 𝜓
𝑒

𝑖
0 0

0 0 0 𝜓
𝑒

𝑖
0

0 0 0 0 𝜓
𝑒

𝑖

]
]
]
]
]

]

{{{{{{{

{{{{{{{

{

𝑢𝑗

V𝑗
𝜔𝑗

𝑆
1

𝑗

𝑆
2

𝑗

}}}}}}}

}}}}}}}

}

, (29)

where𝜓𝑒
𝑖
is the Lagrange interpolation function at node 𝑖.The

Lagrange interpolation functions for nine-node rectangular
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element (see Figure 2) are given by in terms of the natural
coordinates [15]

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝜓1
𝜓2
𝜓3
𝜓4
𝜓5
𝜓6
𝜓7
𝜓8
𝜓9

}}}}}}}}}}}}

}}}}}}}}}}}}

}

=
1

4

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(1 − 𝜉) (1 − 𝜂) (−𝜉 − 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

(1 + 𝜉) (1 − 𝜂) (𝜉 − 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

(1 + 𝜉) (1 + 𝜂) (𝜉 + 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

(1 − 𝜉) (1 + 𝜂) (−𝜉 + 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

2 (1 − 𝜉
2
) (1 − 𝜂) − (1 − 𝜉

2
) (1 − 𝜂

2
)

2 (1 + 𝜉) (1 − 𝜂
2
) − (1 − 𝜉

2
) (1 − 𝜂

2
)

2 (1 − 𝜉
2
) (1 + 𝜂) − (1 − 𝜉

2
) (1 − 𝜂

2
)

2 (1 − 𝜉) (1 − 𝜂
2
) − (1 − 𝜉

2
) (1 − 𝜂

2
)

4 (1 − 𝜉
2
) (1 − 𝜂

2
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(30)
The nodal bending strain can be written as follows:

{𝑒
0

𝑏
} =

{{{{{{{{{

{{{{{{{{{

{

𝑢0,𝑥 (𝑥, 𝑦)

V0,𝑦 (𝑥, 𝑦)

𝑢0,𝑦 (𝑥, 𝑦) + V0,𝑥 (𝑥, 𝑦)

0𝑥,𝑥 (𝑥, 𝑦)

0𝑦,𝑦 (𝑥, 𝑦)

0𝑥,𝑦 (𝑥, 𝑦) + 0𝑦,𝑥 (𝑥, 𝑦)

}}}}}}}}}

}}}}}}}}}

}

=

9

∑

𝑗=1

[
[
[
[
[
[
[
[

[

𝜓
𝑒

𝑗,𝑥
0 0 0 0

0 𝜓
𝑒

𝑗,𝑦
0 0 0

𝜓
𝑒

𝑗,𝑦
𝜓
𝑒

𝑗,𝑥
0 0 0

0 0 0 𝜓
𝑒

𝑗,𝑥
0

0 0 0 0 𝜓
𝑒

𝑗,𝑦

0 0 0 𝜓
𝑒

𝑗,𝑦
𝜓
𝑒

𝑗,𝑥

]
]
]
]
]
]
]
]

]

{{{{{{

{{{{{{

{

𝑢𝑗
V𝑗
𝜔𝑗

𝑆
1

𝑗

𝑆
2

𝑗

}}}}}}

}}}}}}

}

or {𝑒
0

𝑏
} =

𝑛=9

∑

𝑗=1

[𝐵𝑏𝑗] {𝑢
0

𝑗
} ,

(31)

{𝑒
0

𝑠
} = {

𝜔0,𝑥 (𝑥, 𝑦) + 0𝑥 (𝑥, 𝑦)

𝜔0,𝑦 (𝑥, 𝑦) + 0𝑦 (𝑥, 𝑦)
}

=

9

∑

𝑗=1

[
0 0 𝜓

𝑒

𝑗,𝑥
𝜓
𝑒

𝑗
0

0 0 𝜓
𝑒

𝑗,𝑦
0 𝜓
𝑒

𝑗

]

{{{{{{

{{{{{{

{

𝑢𝑗
V𝑗
𝜔𝑗

𝑆
1

𝑗

𝑆
2

𝑗

}}}}}}

}}}}}}

}

or {𝑒
0

𝑠
} =

𝑛=9

∑

𝑗=1

[𝐵𝑠𝑗] {𝑢
0

𝑗
} ,

(32)

1 2

34

5

6

7

8 9

𝜂

𝜉

Lagrange biquadratic
element

at each node
𝑢0, �0, 𝑤0, 0𝑥, 0𝑦

Figure 2: Nine-node quadratic Lagrange rectangular element.

where [𝐵𝑏𝑗] is the curvature-displacement matrix, [𝐵𝑠𝑗] is
the shear strain-displacement matrix, and {𝑢

0

𝑗
} = {𝑢𝑗 V𝑗 𝜔𝑗

𝑆
1

𝑗
𝑆
2

𝑗
}
𝑇 are the nodal degrees of freedom.

So, the total potential energy can be obtained, and (6) can
be written as follow:

Π = (0.5 ∫
𝐴

{𝑢
0
}
𝑇

[𝐵𝑏]
𝑇
[𝐷𝐸𝑏] [𝐵𝑏] {𝑢

0
} 𝑑𝐴

−∫
𝐴

{𝑢
0
}
𝑇

[𝐵𝑏]
𝑇
{𝐷𝑇𝑏} 𝑑𝐴)

+ (0.5 ∫
𝐴

{𝑢
0
}
𝑇

[𝐵𝑠]
𝑇
[𝐷𝐸𝑠] [𝐵𝑠] {𝑢

0
} 𝑑𝐴

−∫
𝐴

{𝑢
0
}
𝑇

[𝐵𝑠]
𝑇
{𝐷𝑇𝑠} 𝑑𝐴) − ∑{𝑢

𝑜
}
𝑇
{𝑝} .

(33)

The minimum potential energy principle states that

𝛿Π = (∫
𝐴

[𝐵𝑏]
𝑇
[𝐷𝐸𝑏] [𝐵𝑏] 𝑑𝐴) {𝑢

0
}

+ (∫
𝐴

[𝐵𝑠]
𝑇
[𝐷𝐸𝑠] [𝐵𝑠] 𝑑𝐴) {𝑢

0
}

− ∫
𝐴

{𝐷𝑇𝑏} 𝑑𝐴 − ∫
𝐴

{𝐷𝑇𝑠} 𝑑𝐴

−

𝑛

∑

𝑖=1

[𝜓
𝑒

𝑖
]
𝑇
{𝑝} = 0.

(34)

In another form

[[𝐾𝑏] + [𝐾𝑠]] {𝑢
0
} = {𝐹𝑇} + {𝑃} , (35)
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where [𝐾𝑏], [𝐾𝑠] are the element bending and shear stiffness
matrices, respectively, defined as

[𝐾𝑏] = ∫
𝐴

[𝐵𝑏]
𝑇
[𝐷𝐸𝑏] [𝐵𝑏] 𝑑𝐴,

[𝐾𝑠] = ∫
𝐴

[𝐵𝑠]
𝑇
[𝐷𝐸𝑠] [𝐵𝑠] 𝑑𝐴

(36)

and {𝐹𝑇}, {𝑃} are the element thermal and mechanical load
vectors, respectively, defined as

{𝑃} = ∫
𝐴

[𝜓
𝑒

𝑖
]
𝑇
{𝑝} 𝑑𝐴,

{𝐹𝑇𝑏} = ∫
𝐴

[𝐵𝑏]
𝑇
{𝐷𝑇𝑏} 𝑑𝐴,

{𝐹𝑇𝑠} = ∫
𝐴

[𝐵𝑠]
𝑇
{𝐷𝑇𝑠} 𝑑𝐴.

(37)

So by substitution of (31) and (32), into (4) and (5) the
bending and shear strain vectors can be obtained.The normal
stress components can be determined as follow:

{

{

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}

}

}

=[

[

𝑄11 (𝑧) 𝑄12 (𝑧) 0

𝑄12 (𝑧) 𝑄22 (𝑧) 0

0 0 𝑄66 (𝑧)

]

]

×
{

{

{

{

{

{

𝑒𝑥𝑥
𝑒𝑦𝑦
𝛾𝑥𝑦

}

}

}

−
{

{

{

𝛼 (𝑧) 𝛿𝑇 (𝑧)

𝛼 (𝑧) 𝛿𝑇 (𝑧)

0

}

}

}

}

}

}

or {𝜎𝑏} = [𝐷𝑏] {𝜀𝑏} ,

(38)

and the shear stress components are

{
𝜎𝑦𝑧
𝜎𝑥𝑧

} = [
𝑄44 (𝑧) 0

0 𝑄55 (𝑧)
] {{

𝛾𝑦𝑧
𝛾𝑥𝑧

} − {
0

0
}}

or {𝜎𝑠} = [𝐷𝑠] {𝜀𝑠} .

(39)

4. Numerical Result

In this section we present several numerical simulations in
order to assess the behavior of functionally graded plates
subjected to thermo-mechanical loads. A simple supported
plate is considered for the investigation.The plate is made up
of a ceramic material at the top and a metallic at the bottom.
The simple power lawwith different values of 𝑛 = 0 : 2 is used
for the through-the-thickness variation.Theplate is subjected
to mechanical loadings in addition to a temperature gradient
through its thickness.

4.1. A Functionally Graded Plate Subjected to a Steady State
Thermomechanical Load. The analysis of FG plates is per-
formed for a combination of materials of type ceramic-
metal. The lower plate surface is assumed to be aluminum,
while the top surface is assumed to be zirconia. Material
properties parameter 𝑛 = [0, 2] is considered. Physical
material properties are given in Table 1. An all edges simply

Table 1: Material properties.

Property Aluminum Zirconia
Young’s modulus 𝐸

𝐿
= 70Gpa 𝐸

𝑈
= 151 Gpa

Poisson’s ratio ]𝐿 = 0.3 ]𝑈 = 0.3
Thermal conductivity 𝑘𝐿 = 204W/mK 𝑘𝑈 = 2.09W/mK
Thermal expansion 𝛼𝐿 = 23 × 10

−6
/C 𝛼𝑈 = 10 × 10

−6
/C

Zirconia (300∘C)

𝑥

𝑧

𝑦

Al (20∘C)
𝑎 𝑏

ℎ

Uniformly
distributed (𝑝)

Figure 3: A simply supported FG plate subjected to a uniformly
distributed mechanical load and thermal loading.
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Figure 4: Temperature distribution through the FG plate thickness
for various values of grading parameter 𝑛 (without heat source).

supported square plate, of side 𝑎 = 0.2m and thickness ℎ =

0.01m, is taken for study.Theplate is subjected to a uniformly
distributed mechanical transverse load on the top surface, in
addition to a temperature gradient along the thickness, where
the temperature of the ceramic rich top surface is 300

∘C and
the temperature of the metal rich bottom surface is 20∘C (see
Figure 3).

To investigate the thermo-mechanical behavior of the
plate, the temperature distribution through the FG plate
thickness should be firstly determined. Figure 4 shows the
steady state temperature distribution given by (21), for the
aforementioned FG plate. The results are highly consistent
with that given at [18]. It is obviously noticed that the
resulted temperature distributionwithin FG plates of ceramic
and metallic constituents is usually smaller than those of
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Figure 5: Nondimensional center deflection of P-FGM plate versus nondimensional load intensity (mechanical load): (a) neglecting neutral
plane position, (b) considering neutral plane position.

homogeneous plates, either purely ceramic or purely metallic
plates. The material parameter 𝑛 has dominant effect on the
thermal behavior of the FG plates, where the temperature
distribution depends basically on the equivalent thermal
conductivity of the constituents and the temperatures of both
the upper and lower surfaces.

To investigate the elastostatic behavior of FG plates,
with aluminum and zirconia material constituents, several
numerical simulations are performed, for different values
of the grading parameter 𝑛. The following nondimensional
parameters have beenmanipulated throughout the numerical
simulations:

central deflection 𝜔 = 𝜔/ℎ;
nondimensional load intensity 𝑃 = 𝑎

4
𝑝/𝐸𝐿ℎ

4;
thickness ℎ = ℎ/𝑎,

where 𝑝 denotes the intensity of the applied mechanical load
and 𝐸𝐿 is the Young’s modulus of the aluminum bottom face.

Figure 5, shows the nondimensional central deflection of
a uniform temperature FG plate, subjected to a mechanical
load and free of any thermal excitation. From Figure 5, it
can be noticed that the central deflection of the FG plate
(of the previous example) decreases noticeably by raising the
value of the material index (𝑛), because of the increasing of
the material rigidity. The rigidity of the material increases by
increasing the volume fraction of ceramic, as a consequence
of raising the value of (𝑛). Table 2 shows the numerical results
of a set of numerical simulations with different values of
(𝑛). The table shows a difference in central deflection while
considering and neglecting neutral plane position. The plate

provides a higher central deflectionwhen considering neutral
plane position rather than the midplane of the plate. The
results of Figure 5(a) are consistent with those presented in
[18].

Figure 6 shows the central deflection 𝜔 = 𝜔/ℎ due to a
sequence of mechanical loads for different values of 𝑛. The
nondimensional load 𝑃 takes values in the interval [0, 12]. In
addition to the uniformly distributed mechanical transverse
load on the top surface, the plate is subjected to a thermal
field where the ceramic rich top surface is held at 300∘C and
the metal rich bottom surface is held at 20∘C (see Figure 1).
One may see that all the plates with intermediate material
properties experience intermediate values of deflection. This
was expected since themetallic plate is the onewith the lowest
stiffness and the ceramic plate is the one with the highest
stiffness. Also, the figure shows that the contribution of the
thermal load is higher than that of themechanical load, which
reduces with increasing of the mechanical load intensity.
Table 3 shows the numerical results of the simulations. The
results of Figure 6(a) are in excellent agreement with those
presented in [18, 21].

The variation of the axial stress 𝜎𝑥𝑥 at the center of the FG
plate and along the thickness direction, for different values
of the material parameter 𝑛, is shown in Figure 7. The stress
of power law FGM (P-FGM) plate can be represented as
a cubic function of 𝑧 for material parameter 𝑛 = 2. The
maximum tensile stress along the thickness of the FG plate
is located at the bottom edge (𝑧 = ℎ/2) and increases as the
ratio 𝐸𝑈/𝐸𝐿 increases. However, the maximum compressive
stress is occurred at the top surface (𝑧 = −ℎ/2) and is
high for small 𝐸𝑈/𝐸𝐿. For the ratio 𝐸𝑈/𝐸𝐿 = 1 in which
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Table 2: Nondimensional deflection of midpoint versus nondimensional load intensity (𝑃).

Nondimensional central deflection (𝜔)
𝑃 Metal 𝑛 = 0.5 𝑛 = 1 𝑛 = 2 Ceramic

Midplane Neutral plane Midplane Neutral plane Midplane Neutral plane
1 0.0452 0.0317 0.0328 0.0287 0.03 0.0267 0.0277 0.021
2 0.0905 (0.089)∗ 0.0633 (0.061) 0.0656 0.0573 (0.056) 0.06 0.0534 (0.052) 0.0554 0.042 (0.0413)
3 0.1357 0.095 0.0985 0.086 0.09 0.0801 0.0831 0.0629
4 0.181 (0.1804) 0.1266 (0.124) 0.1313 0.1146 (0.113) 0.119 0.1067 (0.103) 0.1108 0.0839 (0.083)
5 0.2262 0.1583 0.1641 0.1433 0.149 0.1334 0.1385 0.1049
6 0.2714 (0.269) 0.1899 (0.185) 0.1969 0.172 (0.1695) 0.179 0.1601 (0.154) 0.1662 0.1258 (0.126)
7 0.3167 0.2216 0.2298 0.2006 0.209 0.1868 0.1939 0.1468
8 0.3619 (0.361) 0.2532 (0.248) 0.2626 0.2293 (0.228) 0.239 0.2135 (0.208) 0.2216 0.1678 (0.166)
9 0.4072 0.2849 0.2954 0.2579 0.269 0.2402 0.2493 0.1888
10 0.4524 (0.452) 0.3166 (0.308) 0.3282 0.2866 (0.285) 0.299 0.2669 (0.261) 0.277 0.2097 (0.206)
11 0.4979 0.3482 0.361 0.3153 0.329 0.2935 0.3047 0.2307
12 0.5428 (0.54) 0.3799 (0.365) 0.3939 0.3439 (0.343) 0.359 0.3202 (0.313) 0.3324 0.2517 (0.252)
∗The consistent results of Croce and Venini [18].
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Figure 6: Nondimensional center deflection of P-FGM in steady state without heat source present versus nondimensional load intensity (𝑃)
(thermo-mechanical load): (a) neglecting neutral plane position, (b) considering neutral plane position.

the FGM plate becomes a homogenous isotropic plate, the
stress distribution is a linear function of 𝑧, and the maximum
stress value is occurred at the top and bottom surfaces of the
plate. The neutral plane—where zero axial stress is located—
is shifted from the midplane to the top surface, (Figure 7(b)),
by variation of grading parameter 𝑛, while for isotropic
homogenous plate, the zero stress is located at the midplane.
The results of Figure 7(a) are consistent with those presented
by Croce and Venini [18], where they assumed that neutral
plane coincides with the midplane.

Figure 8 illustrates the through-the-thickness maximum
axial stress along the center line of the plate on the centroidal

axis (midplane). We observe in Figure 8 that the stresses are
compressive both at the top and at the bottom surfaces. The
profiles of the compressive stress for the graded plates are
close to each other, and their magnitude is less than the one
of the homogeneous plates. All the results of Figure 8(a) are
in agreement with those presented in [18, 21].

4.2. A Functionally Graded Plate Subjected to a Steady State
Thermomechanical Load and Including a Heat Source. The
plate considered at the previous section is used to simulate
a FG plate in a steady state with heat source strength (rate
of heat generated per unit volume) ̇𝑞 = 100 × 10

6 watt/m3.
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Table 3: Nondimensional deflection of midpoint versus nondimensional load intensity (𝑃) (thermo-mechanical load without heat source).

(𝜔) Nondimensional central deflection for
𝑃 Metal 𝑛 = 1 𝑛 = 2 Ceramic

Midplane Neutral plane Midplane Neutral plane
1 −0.205 (−0.2)∗ −0.0665 (−0.0654) −0.0338 −0.0547 (−0.0595) −0.0338 −0.0879 (−0.083)
2 −0.1598 (−0.1547) −0.0379 (−0.0345) −0.0038 −0.028 (−0.0298) −0.0061 −0.0669 (−0.0654)
3 −0.1146 (−0.1083) −0.0092 (−0.0095) 0.0262 −0.0013 (−0.0015) 0.0216 −0.0459 (−0.0452)
4 −0.069 (−0.0654) 0.0195 (0.0189) 0.0562 0.0254 (0.0226) 0.0493 −0.025 (−0.0238)
5 −0.024 (−0.0214) 0.0481 (0.0476) 0.0862 0.0521 (0.0571) 0.077 −0.004 (−0.0038)
6 0.021 0.0768 0.1161 0.0788 0.1047 0.017
7 0.066 0.1054 0.1461 0.1054 0.1324 0.038
8 0.1115 0.1341 0.1761 0.1321 0.1601 0.0589
9 0.1568 0.1628 0.2061 0.1588 0.1878 0.0799
10 0.202 0.1914 0.2361 0.1855 0.2155 0.1009
11 0.2473 0.2201 0.2661 0.2122 0.2432 0.1219
12 0.2925 0.2487 0.296 0.2389 0.2709 0.1428
∗The consistent results of Croce and Venini [18].
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Figure 7: Nondimensional axial stress distribution through the thickness of FG plate subjected to mechanical loads: (a) neglecting neutral
plane position, (b) considering neutral plane position (∗nondimensional axial stress 𝜎𝑥𝑥 = 𝜎𝑥𝑥(ℎ

2
/𝑎
2
𝑝), ∗nondimensional coordinate across

the thickness ℎ = 𝑧/ℎ).

In addition to a uniformly distributed mechanical transverse
load on the top surface, the plate subjected to a thermal field
where the ceramic rich top surface is held at 300∘C and the
metal rich bottom surface is held at 20∘C.

Figure 9 shows the temperature distribution for the con-
sidered FG plate. It is observed that temperature within the
FGM plates of ceramic and metallic constituents is always
smaller than that corresponding to a purely ceramic or
metallic plate. Figure 4 shows the temperature distribution
for a steady state behavior of the FG plate, without heat

source, where the temperature distribution for the isotropic
material is a linear function of the plate thickness coordinate.
However, in Figure 9, the temperature distribution for metal
through the plate thickness is nearly a linear function,
although it is exactly not a linear function. The reason for
the extreme difference of the temperature distributions for
isotropic materials (zirconia and aluminum) is due to the
extreme difference in the thermal conductivity for the two
materials, where the temperature distribution depends on
the thermal conductivity of the material. While increasing
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Figure 8: Nondimensional axial stress distribution, through the plate thickness, for steady state thermo-mechanical loads: (a) neglecting
actual neutral plane position. (b) Considering the location of the neutral plane position (∗nondimensional axial stress 𝜎𝑥𝑥 = 𝜎𝑥𝑥(ℎ
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∗nondimensional coordinate across the thickness ℎ = 𝑧/ℎ).
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Figure 9: Temperature distributions through the plate thickness for
various values of grading parameter 𝑛 (with heat source present).

the value of material parameter 𝑛, the FG plate becomes
more sensitive for the amount of heat delivered from the heat
source.

Figure 10 and Table 4 show the central deflection𝜔 = 𝜔/ℎ

due to a sequence of mechanical loads for different values of
𝑛.

Figure 11, shows the maximum axial stress 𝜎𝑥𝑥 distri-
bution through the plate thickness for different material
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Figure 10:Nondimensional center deflection of P-FGplate in steady
state with heat source present versus nondimensional load intensity
(𝑃) (thermo-mechanical load).

parameter 𝑛. The plate is expected to be a steady state heat
conductive plate subjected to an amount of generated heat of
strength ( ̇𝑞 = 100×10

6W/m3) and thermo-mechanical loads.
Figure 12 shows the axial stress distribution through the plate
thickness for a steady state plate in which an amount of heat
is generated from heat source ( ̇𝑞 = 100×10

6W/m3) and only
thermal load. Figure 13 shows the nondimensional deflection
of the FG steady state plate versus the heat source strength.
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Table 4: Nondimensional deflection of midpoint versus nondimen-
sional load intensity (𝑃) (thermo-mechanical load with heat source
present).

𝑃
(𝜔) Non dimensional central deflection for

Metal 𝑛 = 1 𝑛 = 2 Ceramic
1 −0.2051 −0.0387 −0.0471 −0.0879
2 −0.1599 −0.0087 −0.0194 −0.0669
3 −0.1146 0.0213 0.0083 −0.0459
4 −0.0694 0.0513 0.036 −0.025
5 −0.0241 0.0813 0.0637 −0.004
6 0.0211 0.1112 0.0914 0.017
7 0.0663 0.1412 0.1192 0.038
8 0.1116 0.1712 0.1469 0.0589
9 0.1568 0.2012 0.1746 0.0799
10 0.2021 0.2312 0.2023 0.1009
11 0.2473 0.2612 0.2300 0.1219
12 0.2925 0.2911 0.2577 0.1428

0 0.1 0.2 0.3 0.4 0.5

0

N
on

di
m

en
sio

na
l a

xi
al

 st
re

ss

−0.5 −0.4 −0.3 −0.2 −0.1

Thickness coordinate (𝑧/ℎ)

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Metal
𝑛 = 1

𝑛 = 2

Ceramic

Figure 11: Nondimensional axial stress distributions through the
thickness of a steady state plate, with heat source present, for
thermo-mechanical loads.

Figures 6 and 10 show that the isotropic homogenous
materials experience nearly the same deflection, independent
on the amount of strength of the heat source. However, for
FGMs, it is observed that they are more sensitive for the heat
strength change. Also, Figure 13 proves that isotropicmaterial
provides a very lack sense for heat strength change. But FGMs
provide a changeable deflection by changing the amount of
heat source strength.

Figures 11 and 12 show that the stress distribution through
the plate thickness depends mainly on the material prop-
erties more than any other parameter. The reason for the
extreme difference of the stress profiles for isotropicmaterials
(zirconia and aluminum) is due to the extreme difference
in the thermal conductivity for the two materials, where
the temperature distribution and consequently the thermal
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thickness of a steady state plate, with heat source present, for thermal
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Figure 13: Non dimensional deflection of the central point of a
steady state plate versus the heat source strength (𝑃 = 2).

strains depend on the thermal conductivity of the material.
Figures 11 and 12 show that the ceramic material is subjected
to the highest thermal stresses because of its low thermal
conductivity. Metal material is subjected to thermal stresses
that are less than the ceramic material due to its high ther-
mal conductivity, while the FGMs are subjected to thermal
stresses that are less than the isotropic materials due to their
moderate thermal conductivity. Also, Figures 11 and 12 show
the high ability of FGMs to withstand thermal stresses, which
reflects its ability to operate at elevated temperatures.

5. Conclusions

In this study, a finite element model based on the first-
order shear deformation plate (FSDT) theory is developed for
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the investigation of thermo-mechanical behavior of func-
tionally graded plates. Different numerical simulations have
been developed to investigate the thermoelastic behavior
of a simply supported FG plate, with different material
distributions along the thickness. The numerical results lead
to the following conclusions:

(1) there is a difference in plate deflection while consid-
ering the effect of shifting the neutral plane position;

(2) the neutral plane of the FG plate is shifted towards
the surface with the higher young’s modulus. Also,
the position of the neutral plane depends mainly on
the ratio of the young’s modulus of the two plate
constituents;

(3) FG plates provide a high ability to withstand thermal
stresses, which reflects its ability to operate at elevated
temperatures;

(4) the FGMs are more sensitive to the variation of the
intensity of the heat flow, in or out of the structure,
than that may be happened in the case of the isotropic
material structures.The FGMs provide a highly stable
response for the thermal loading comparing to that of
the isotropic materials;

(5) due to the continuity of the material properties
distribution along the thickness of the plates, the
strains and stresses are varied smoothly without any
sort of singularities and on contrary to what may be
happened in the conventional laminated plates.
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A graded layer was introduced at the interface between the top and bond coats to reduce the risk of failure in a thermal barrier
coating (TBC) system, and the thermoelastic behavior was investigated throughmathematical approaches. Two types of TBCmodel
with and without the graded layer, subject to a symmetric temperature distribution in the longitudinal direction, were taken into
consideration to evaluate thermoelastic behaviors such as temperature distribution, displacement, and thermal stress. Thermo-
elastic theorywas applied to derive two governing partial differential equations, and a finite volumemethodwas developed to obtain
approximations because of the complexity. The TBC with the graded layer shows improved durability in thermoelastic charac-
teristics through mathematical approaches, in agreement with the experimental results. The results will be useful in discovering
technologies for enhancing the thermomechanical properties of TBCs.

1. Introduction

The deposition process for thermal barrier coatings (TBCs)
exerts a critical influence on the determination of the ther-
momechanical properties, such as elastic modulus, thermal
conductivity, and coefficient of thermal expansion.Moreover,
failure phenomena usually occur at the interface between the
top and bond coats because of the mismatch of mechanical
and thermal properties as the TBC system cools from a high
operating temperature to ambient temperature. To improve
the thermal durability of TBCs for protecting hot compo-
nents such as combustors and turbine parts, functionally
graded materials (FGMs) and composite materials (CMs)
are widely employed [1–9]. FGMs consist of two or more
distinctmaterial phaseswhose volume fractions continuously
vary with space variables, thus yielding continuously varying
mechanical and thermal properties in the FGM system. CMs
are products composed of two or more distinct constituent
materials involving different physical or chemical properties
such that their constituents remain still distinguishable at
the macroscopic or microscopic scale within the structure.
The original purpose of these materials is, simultaneously, to

resist high temperature and ensure low thermal conductivity
through TBC techniques.

CMs make use of improved characteristics such as
strength, fatigue life, stiffness, temperature-dependent behav-
ior, thermal insulation, thermal conductivity, and weight. For
example, TBCs are applied in building aircraft to obtain light
and strong materials in surfacing while insulating against
hazardous physical factors such as heat and lightning. In air-
craft, aerospace, automotive, and shipping applications, fiber-
reinforced and resin-matrix CMs contribute to the improve-
ment through their higher strength and stiffness benefits
[10–12]. However, owing to different macroscopic or micro-
scopic scales within the structure, CMs are exposed to the
risk of delamination during service. On the other hand,
FGMs represent improved bonding strength, toughness, wear
and corrosion resistance, and reduced residual and thermal
stresses because of the graded material properties.These out-
standing advantages of FGMs over conventional composites
and monolithic materials have led to extensive study for
potential applications as structural elements, such as FGM
beams [13, 14], plates [15, 16], shells [17], and cylinders [18,
19], and have provoked the interest of researchers toward
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the development of potential new structural and functional
applications.Therefore, FGMs andCMs are being explored to
determine their characteristics from various points of view.

Themicrostructural characterizations of TBCs are greatly
influenced by the size, shape, and density of the feedstock
powder [20–23]. In addition, the deposition process parame-
ter is an essential element in determining its microstructure.
Cernuschi et al. [24] and Jung et al. [25] analyzed the micro-
structure features of TBCsmanufactured using the air plasma
spray process, and the effects of thermal annealing on the
microstructure of TBCs deposited by electron beam physical
vapor deposition have been investigated by Kulkarni et al.
[26] and Schulz and Schmücker [27]. Moreover, the study of
microstructural behavior has been extended to functionally
graded (FG) TBC materials. The microstructure and phase
stability of FG TBCs based on LaMgAl11O19 (LaMa)/YSZ
have been investigated by Chen et al. [28], and the results
indicated that all of the LaMa and LaMa-containing inter-
mediate composite coatings suffer irreversible phase trans-
formations induced by the recrystallization of amorphous
LaMa coating. Schulz et al. [29] tried to optimize the thermal,
wear, and corrosion properties of FGMs and found that
TBCs deposited ontoCu substrates by pulsed laser deposition
showed improved spallation behavior by a graded lamella
microstructure with improved interface fracture toughness.
Shaw [30] studied the thermal residual stresses in multilay-
ered and compositionally graded plates and coatings.

In the present paper, the thermoelastic characteristics of
circular disk TBC specimens with and without an FG layer
between the top and bond coats are analyzed through math-
ematical approaches. Two partial differential equations are
derived based on thermoelastic theory, and the thermoelastic
characteristics, such as temperature distribution profiles, dis-
placement, and stresses, are determined through mathemat-
ical approaches. Because of the complexity of the governing
equations, a finite volume approach is adopted to analyze the
thermoelastic characteristics.

2. Mathematical Modeling

2.1.Thermoelastic Formulation. According to the assumption
that the temperature profiles pressure the circular disk to the
longitudinal direction only, all quantities are independent of
circumferential 𝜃-direction. Equilibrium equations in polar
coordinates thus are
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Let 𝑢 be the displacement to the radial direction, and let 𝑤
be the displacement to the longitudinal direction.The strain-
displacement relations are as follows:

𝜀𝑟 =
𝜕𝑢

𝜕𝑟
, 𝜀𝜃 =

𝑢

𝑟
, 𝜀𝑧 =

𝜕𝑤

𝜕𝑧
,

𝛾𝑟𝜃 = 0, 𝛾𝑧𝜃 = 0, 𝛾𝑟𝑧 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
.

(2)

𝑟

𝑧

0.2mm

0.4mm

0.3mm

5mm

Top coat

FG layer

Bond coat

Substrate

Figure 1: Schematic diagram of a circular disk model for thermoe-
lastic characteristics of TBCs.

In addition, the strain-stress relations due to the action of
thermal loading can be expressed as
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where 𝐺 = 2𝐸(1 + ]).
The combination of (1)–(3) leads to the following govern-

ing equations:
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where𝐾 = 𝐸/(1 + ])(2] − 1).

2.2. Temperature Distribution Formulation. Since the circular
disk is subject to a uniform temperature loading in the
longitudinal 𝑧-direction only (see Figure 1), the differential
equation for the temperature distribution profile is

𝜕
2
𝑇

𝜕𝑧2
= 0. (5)

The general solution of (5) is

𝑇 (𝑧) = 𝑐𝑖1𝑧 + 𝑐𝑖2, (6)
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where 𝑐𝑖1 and 𝑐𝑖2 are integration constants for the 𝑖th layer
temperature distribution. The integration constants will be
determined based on the following boundary conditions:

𝑇 (𝑧0) = 𝑇in, 𝑇 (𝑧1) = 𝑇1, 𝑇 (𝑧2) = 𝑇2,

𝑇 (𝑧3) = 𝑇3, 𝑇 (𝑧𝑏) = 𝑇out,
(7)

but only two boundary values 𝑇in and 𝑇out are known, and so
heat flux at each layer point is considered.The heat flux at 𝑖th
layer point is expressed as
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where 𝑞𝑖 is the heat flux into 𝑖th layer, 𝑘𝑖 is the conductivity,
and 𝐿 𝑖 is the length of 𝑖th layer. At each 𝑖th layer point, the
integral constants for the temperature distribution profile are
determined uniquely by solving the following linear system:
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The 𝑇𝑖−1 is a known value solved by (𝑖 − 1)th layer linear
system and 𝑇out is a given initial value, and thus the number
of 2(𝑛− 𝑖)+3 equations will determine 2(𝑛− 𝑖)+3’s unknown
coefficients. Here, 𝑛 is the number of layers. The temperature
distribution profiles obtained through this process will be
applied to (4a) and (4b) for the thermoelastic characteristics.

2.3. FG Layer Formulation. The elastic modulus 𝐸, Poisson’s
ratio ], thermal expansion coefficient 𝛼, and thermal conduc-
tivity 𝑘 are assumed to vary exponentially with the variable 𝑧;
that is,
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Figure 2: Finite volume mesh for a two-dimensional domain.

the materials in the top and bond coats, respectively, at the
inner and outer areas of the disk. Thus, the constants in (4a)
and (4b) can be determined as
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The subscripts 𝑇 and 𝐵 on a variable represent the properties
of the constituent materials in the top and bond coats,
respectively.Themechanical and thermal properties obtained
through this process will be used to analyze the thermoelastic
characteristics of graded layer between the top coat and bond
coat.

2.4. Discretization of the Governing Equation Based on a
Finite Volume Method. The governing equations for the
microstructural characterization of TBCs are too complicated
to be solved analytically, and a finite volume method is
adopted for numerical approximations.The model is divided
up into control volumes and integrates the field equations
over each control volume (see Figure 2). In formulating a
numerical approximation for the present problem, the finite
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surface mesh is denoted by (𝑖, 𝑗), and the discretizations for
the governing equations are developed based on the following
relations at the adjacent locations:
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In the previous equations a subscript 1/2 implies the value
of the displacement at the boundary of the control surface.
According to the above relations at the adjacent locations,
(4a) is discretized as follows:
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Similar process is adjusted to (4b) and arrives at
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Figure 3: Temperature distribution profiles under the symmetric
temperature distribution of 1100–950∘C.
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(14b)

The finite volume model is developed based on the following
boundary conditions:

𝑢 (0, 𝑧) = 0, 𝑢 (𝑅, 𝑧) = 0, 𝜎𝑟 (𝑅, 𝑧) = 0,

𝜎𝑧 (𝑟, 0) = 0, 𝜎𝑧 (𝑟, 𝑧𝑏) = 0.

(15)

3. Results and Discussion

The temperature distribution profiles and thermoelastic char-
acteristics were investigated based on the mechanical and
thermal properties shown in Table 1 using the processes in
Sections 2.2 and 2.3. The mechanical and thermal properties
of the FG layer are obtained based on (11a), (11b), (11c), and
(11d). The temperature distribution profiles of the TBCs with
and without the FG layer are shown in Figure 3. At the top
coat of the TBC without the FG layer (hereafter CM), the
decrease in temperature is linear, while the TBC with the
FG layer (hereafter FGM) exhibits an exponential decrease.
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Table 1: Mechanical and thermal properties used in this study for analyzing thermoelastic characteristics.

Material/property Elastic module (GPa) Poisson’s ratio Thermal expansion coefficient
(10−6/∘C)

Thermal conductivity
(W/m ∘C)

Top coat∗
(8 wt% Y2O3 doped ZrO2)

100 0.2 9.5 (20–1300∘C) 2.0

Bond coat
(AMDRY 995C) 200 0.3 14 11

Substrate
(NIMONIC 263) 221 0.3 11.1 (20–100∘C) 11.7
∗

Properties of the top coat prepared using an air plasma spray with METCO 204 NS-G powder.

0

0.02

0.04

0.06

0.08

0.10

0.12

D
isp

la
ce

m
en

t𝑤
(m

m
)

−0.02

−0.04
0 1 2 3 4 5 6

Variable 𝑧 (mm)

CM
FGM

1100–950∘C

Figure 4: Displacement in the longitudinal direction of TBCs under
the symmetric temperature distribution of 1100–950∘C.

Over the entire domain, the circle with the FG layer is
under a loading from a lower temperature, which implies an
improved durability for the FGM. The rate of temperature
decrease becomes slower as themetal concentration increases
along the longitudinal direction and demonstrates that the
mathematical approach is reliable and reasonable.

The longitudinal and radial displacement profiles are
presented in Figures 4 and 5, respectively. Unlike the dis-
placement profile of the CM at the top and bond coats, the
longitudinal displacement of the FGM fluctuates at the top
coat, the FG layer, and the bond coat (see Figure 4). At the
substrate, the two models exhibit similar behavior, although
a lower displacement develops along the 𝑧-direction in the
FGM. The radial displacement profiles of each layer in the
FGM are displayed in Figure 5(a). At the top coat, a larger
fluctuation appears near the center, while the magnitude of
the radial displacement at the FG layer is almost constant for
the interval 0 < 𝑟 < 7, which implies that the durability is
increased through the FG layer. A small radial displacement
develops at the bond coat because of the relaxation of
delamination. The radial behaviors at the bond coat in both

the CM and the FGM are compared in Figure 5(b). The
magnitude of the radial displacement of the FGM is almost
negligible, whereas the bond coat of the CM undulates with a
large magnitude in comparison with the FGM.

Figure 6 represents the longitudinal and circumferential
stresses. The tensile longitudinal stress appearing at the
interface between the bond coat and the substrate of the CM
converts into a compressive stress in the FGM, and the FGM
experiences larger compressive longitudinal stress at the top
coat, the FG layer, and the bond coat (see Figure 6(a)), indi-
cating that the FGM will improve the thermal stability of
the TBC system during service. A tensile longitudinal stress
develops at the substrate in the FGM. In the circumferential
stress, the magnitude is larger at the top coat, the FG layer,
and the bond coat in the FGM; on the other hand, a smaller
magnitude appeared at the substrate (see Figure 6(b)). Both
models are influenced by the compressive circumferential
stress over the entire domain.

The radial stress profiles are displayed in Figure 7. At
the top coat, the largest undulation occurs near the center
and the magnitude decreases as the radius 𝑟 increases
(see Figure 7(a)). A fluctuation with the smallest magnitude
develops at the bond coat because of the alleviation of stress
at the FG layer. A comparison of the radial stress at the bond
coat between the CM and the FGM is shown in Figure 7(b).
For the interval 3 < 𝑟 < 6, a large fluctuation is produced in
the CM, while the influence of the radial stress is negligible
in the FGM, showing the superiority of the FGM.

Overall, as compared with the models, the FG layer in
TBCs provides buffer zone interactions between the top coat
and the bond coat and absorbs critical shocks. This phe-
nomenon is shown through the thermoelastic behavior at
the bond coat of the FGM: (i) the magnitude of the radial
displacement is trivial in comparison with that of the CM,
(ii) the tensile longitudinal stress at the interface between
the bond coat and the substrate in the CM converts into
a compressive stress, and (iii) a negligible fluctuation is
developed along the radius in comparison with that of the
CM. The results demonstrate that the thermal durability of
the TBC can be improved by introducing an FG layer bet-
ween the top coat and the bond coat, and the mathematical
analysis presented is a reasonable approach. The results and
analysis performed here contribute further understanding to
the behavior of TBCs.
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Figure 5: Displacement in the radial direction of TBCs under the symmetric temperature distribution of 1100–950∘C: (a) TBC with FG layer
and (b) comparison at the bond coat.
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Figure 6: Stresses in TBCs under the symmetric temperature distribution of 1100–950∘C: (a) longitudinal stress and (b) circumferential stress.

4. Conclusion

The thermoelastic behavior of the FGM (circular disk TBC
with FG layer) was investigated and comparedwith that of the
CM (circular disk TBCwithout FG layer).The FGM is subject
to a lower temperature loading over the entire domain, which
reduces the magnitude of the longitudinal displacement. The
FG layer in the FGM converts the tensile longitudinal stress
appearing at the interface between the bond coat and the
substrate of the CM into a compressive stress and increases

the magnitude of the compressive stress at the top coat, the
FG layer, and the bond coat. Moreover, an insignificant radial
stress is developed at the bond coat in the FGM, contributing
to the improved performance of the FG layer. Consequently,
the thermoelastic characteristics obtained for temperature,
displacements, and stresses demonstrate that the FG layerwill
decrease the risk of failure in the TBC system and the thermal
durability of the TBC system can be improved during the
lifetime cycle.
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Figure 7: Radial stresses in TBCs under the symmetric temperature distribution of 1100–950∘C: (a) TBC with FG layer and (b) comparison
at the bond coat.
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