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Synchronization tracking loops are key components of the
GNSS receiver architecture. Their function is to estimate the
evolution of the satellite signals’ code and carrier phases at
the receiver’s antenna, yielding the observations required for
computing the users’ position, velocity, and time. Hence,
the tracking loop performance is intimately related to the
receiver behavior in terms of precision, sensitivity, reliability,
and robustness to interference and multipath.

While the traditional delay lock loop (DLL) and phase
lock loop (PLL) architectures have been present in com-
mercial GPS receivers since their inception, various new
developments have introduced new challenges in the design
of tracking loops for modern GNSS receivers, including
the introduction of new GNSS and their associated signal
structures, the application of GNSS technology in safety-of-
life-related systems, and its use in the distributed synchro-
nization of infrastructures such as the power grid (and thus
the associated need for robustness against unintentional and
intentional jamming).

The papers in this special issue constitute a representative
set of the various possible approaches that the synchroniza-
tion problem admits.

A. Jovanovic et al. present a tracking algorithm designed
for Galileo E1 CBOC signals, analyzing its performance in
terms of tracking accuracy, sensitivity, and robustness. The
paper provides a full theoretical analysis of the proposed two-
step tracking algorithm for Galileo E1 CBOC signals and
confirms the results through simulations as well as using real
Galileo satellite data.

The particularities of receivers operating in high-
dynamics environments have been tackled by P. A. Roncagli-
olo et al. Their paper proposes a new loop structure
named unambiguous frequency-aided phase-locked loop
(UFA-PLL) that outperforms classical coupled-loop schemes
while allowing simpler design and implementation. Their
loop design includes the selection of the correlation time
and loop bandwidth that minimize the pull-out probability,
without relying on typical rules of thumb. Hence, high-
quality phase measurements usually exploited in offline
and quasistatic applications become practical for real-time
and high-dynamics receivers. Experiments with fixed-point
implementations of the proposed loops and actual radio
signals are also shown.

M. Tahir et al. propose and demonstrate the use of a qua-
siopen loop architecture to estimate the time-varying carrier
frequency of GNSS signals, showing that this new scheme
provides an additional degree of freedom to the design. These
results are especially convenient for the design of loop filters
operating in electromagnetically harsh environments.

Antenna diversity is known to be a possible way to
address the problem of estimating the propagation time
delay of the line-of-sight signal in a GNSS receiver under
severe multipath conditions. S. Rougerie et al. present a new,
complexity-reduced implementation of the space-alternating
generalized expectation maximization (SAGE) algorithm.
This paper focuses on the trade-off between complexity and
performance thanks to the Cramér-Rao bound derivation
and shows how the proposed algorithm can be integrated
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with a classical GNSS tracking loop, constituting a very
promising approach for multipath mitigation.

Finally, P. Closas et al. undertake the synchroniza-
tion problem from a statistical standpoint, resorting to
Bayesian estimation techniques and proposing algorithms
that mitigate the bias introduced by multipath. The anal-
ysis includes trade-off among realistic propagation channel
models and the use of a realistic simulation framework. The
authors propose a filtering technique that implements Rao-
Blackwellization of linear states and a particle filter for the
nonlinear partition and compare it to traditional DLL/PLL-
based schemes.
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This paper studies Bayesian filtering techniques applied to the design of advanced delay tracking loops in GNSS receivers with
multipath mitigation capabilities. The analysis includes tradeoff among realistic propagation channel models and the use of a
realistic simulation framework. After establishing the mathematical framework for the design and analysis of tracking loops in the
context of GNSS receivers, we propose a filtering technique that implements Rao-Blackwellization of linear states and a particle
filter for the nonlinear partition and compare it to traditional delay lock loop/phase lock loop-based schemes.

1. Introduction

Global Navigation Satellite Systems (GNSS) are the general
concept used to identify those systems that allow user posi-
tioning based on a constellation of satellites. Specific GNSS
are the well-known American GPS, the Russian GLONASS,
or the forthcoming European Galileo. All those systems rely
on the same principle: the user computes its position by
means of measured distances between the receiver and the set
of in-view satellites. These distances are calculated estimating
the propagation time that synchronously transmitted signals
take from each satellite to the receiver. Therefore, GNSS
receivers are only interested in estimating the delays of signals
which are received directly from the satellites, referred to as
line-of-sight signal (LOSS), since they are the ones that carry
information of direct propagation time. Hence, reflections
distort the received signal in a way that may cause a bias in
delay and carrier-phase estimations. Multipath is probably
the dominant source of error in high-precision applications,
especially in urban scenarios, since it can introduce a bias
up to a hundred of meters when employing a 1-chip wide
(standard) delay lock loop (DLL) to track the delay of the
LOSS, which is a common synchronization method used in
spread-spectrum receivers. This error might be unacceptable
in many applications.

Sophisticated synchronization techniques estimate not
only LOSS parameters but those of multipath echoes.

This results in enhanced, virtually bias-free pseudorange
measurements. In this paper, we investigate multipath
estimating tracking loops in realistic scenarios, where this
effect is known to be severe. The analysis is driven in two
directions. Firstly, a review of statistical characterization of
the channel model in such situations is performed and a
commercial signal simulator. Secondly, a novel multipath
estimating tracking loop is discussed, providing details on
the implementation, as well as comparisons to state-of-
the-art techniques when different channel characteristics
are considered. This tracking loop resorts to the Bayesian
nonlinear filtering framework, sequentially estimating the
unknown states of the system (i.e., parameters of the LOSS
and echoes) and providing robust pseudorange estimates,
subsequently used in the positioning solution. The so-
called multipath estimating particle filter (MEPF) considers
Rao-Blackwellization of signal amplitudes and the use of a
suitable nonlinear filter for the rest of nonlinear states, for
example, time-delays and their rate. More precisely, Rao-
Blackwellization involves marginalization of linear states and
the use of a standard Kalman filter to track signal amplitudes
with the goal of reducing the estimation variance, since (i)
the dimensionality of the problem that nonlinear filters solve
is reduced and (ii) linear states are optimally tackled. For
the nonlinear part of the state space we consider sequential
Monte-Carlo methods (specifically, the standard particle fil-
tering) as one of the most promising alternatives in advanced
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GNSS receiver designs. Realistic computer simulation results
are presented using the GRANADA FCM signal simulator
and the performance of the MEPF is evaluated.

The remainder of the paper is organized as follows.
Section 2.1 provides a brief overview of the fundamentals of
GNSS, their signal structure, available channel models, and
receivers’ architecture and describes a realistic simulation
platform. Section 3 sketches the basics of particle filters, and
Section 4 is devoted to their application to GNSS signal syn-
chronization in the presence of multipath. Section 5 presents
computer simulations, and finally Section 6 concludes the
paper. For the sake of completeness, the paper shows in
the Appendix the equivalence between precorrelation and
postcorrelation processing of GNSS signals. Notice that in
this paper, the MEPF method operates after correlation is
performed in order to operate at a lower data rate.

2. Fundamentals of Global Navigation
Satellite Systems

GNSS space vehicles broadcast a low-rate navigation message
that modulates continuous repetitions of pseudorandom
spreading codes, that in turn are modulating a carrier signal
allocated in the L band. The navigation message, after proper
demodulation, contains among other information the so-
called ephemeris, a set of parameters that allow the compu-
tation of the satellite position at any time. These positions,
along with the corresponding distance estimations, allow the
receiver to compute its own position and time, as we will see
hereafter. Basically, a GNSS receiver performs trilateration, a
method for determining the intersections of three or more
sphere surfaces given the centers and radii of the spheres. In
this case, the centers of the spheres are the satellites, whose
position can be computed from the navigation message, and
the radii of the spheres are the distances between the satellites
and the receiver, estimated from the time of flight.

The distance between the receiver and a given satellite can
be computed by

ρi = c
(
tRx
i − tTx

i

)
, (1)

where c = 299792458 m/s is the speed of light, tRx
i is

the receiving time in the receiver’s clock, and tTx
i the time

of transmission for a given satellite i. Receiver clocks are
inexpensive and not perfectly in sync with the satellite
clock, and thus this time deviation is another variable to be
estimated. The clocks on all of the satellites belonging to the
same system s, where s = {GPS, Galileo, GLONASS, . . .}, are
in sync with each other, so the receiver’s clock will be out
of sync with all satellites belonging to the same constellation
by the same amount Δt(s). In GNSS, the term pseudorange
is used to identify a range affected by a bias, directly related
to the bias between the receiver and satellite clocks. There
are other factors of error: since propagation at speed c
is only possible in the vacuum, atmospheric status affects
the propagation speed of electromagnetic waves modifying
the propagation time and thus the distance estimation. For
instance, the ionosphere, that is the part of the atmosphere
above 60 km until 2000 km of the Earth surface, is a plasmatic

medium that causes a slowdown in the group velocity and a
speed up of the phase velocity, having an impact in code and
phase delays and, thus, impeding precise navigation when its
effects are not mitigated. Actually, errors can be on the order
of tens of meters in geomagnetic storm episodes [1].

For each in-view satellite i of system s, we can write

ρi =
√(

xTx
i − x

)2
+
(
yTx
i − y

)2
+
(
zTx
i − z

)2
+ cΔt(s) + σe,

(2)

where (xTx
i , yTx

i , zTx
i ) is the satellite’s position (known from

the navigation message), (x, y, z) the receiver’s position, and
σe gathers other sources of error. Since the receiver needs
to estimate its own 3D position (three spatial unknowns)
and its clock deviation with respect to the satellites’ time
basis, at least 3 + Ns satellites must be seen by the receiver
at the same time, where Ns is the number of different
navigation systems available (in-view) at a given time. Each
received satellite signal, once synchronized and demodulated
at the receiver, defines one equation such as the one defined
in (2), forming a set of nonlinear equations that can be
solved algebraically by means of the Bancroft algorithm
[2] or numerically, resorting to multidimensional Newton-
Raphson and weighted least square methods [3]. When a
priori information is added we resort to Bayesian estimation,
a problem that can be solved recursively by a Kalman filter or
any of its variants. The problem can be further expanded by
adding other unknowns (for instance, parameters of iono-
spheric and tropospheric models), sources of information
from other systems, mapping information, and even motion
models of the receiver. In the design of multi-constellation
GNSS receivers, the vector of unknowns can also include
the receiver clock offset with respect to each system in order
to take advantage of a higher number of in-view satellites
and using them jointly in the navigation solution, therefore
increasing accuracy.

2.1. Signal Model. A general signal model for most naviga-
tion systems consists of a direct-sequence spread-spectrum
(DS-SS) signal [4], synchronously transmitted by all the
satellites in the constellation. This type of signals enables
code division multiple access (CDMA) transmissions, that
is, satellite signals are distinguished by orthogonal (or quasi-
orthogonal) codes. At a glance, these signals consists of
two main components: a ranging code (the PRN spreading
sequence) and a low rate data link (broadcasting necessary
information for positioning such as satellites orbital param-
eters and corrections). The complex baseband model of the
signal transmitted by a GNSS space vehicle reads as

sT(t) = √
PT

⎛
⎝γ

∞∑
u=−∞

dI(u)pI
(
t − uTbI

)

+ j
√

1− γ2
∞∑

l=−∞
dQ(l)pQ

(
t − lTbQ

)
⎞
⎠,

(3)
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where

pI(t) =
NcI−1∑

n=0

qI
(
t − nTPRNI

)
,

qI(t) =
LcI−1∑

k=0

cI(k)gT ,I
(
t − kTcI

)
,

(4)

being PT the transmitting power, γ a parameter controlling
the power balance, dI(m) ∈ {−1, 1} the data symbols, TbI the
bit period, NcI the number of repetitions of a full codeword
that spans a bit period, TPRNI = TbI /NcI the codeword period,
cI(k) ∈ {−1, 1} a chip of a spreading codeword of length
LcI chips, gT ,I(t) the transmitting chip pulse shape, which
is considered energy normalized for notation clarity, and
TcI = TbI /NcI LcI is the chip period. Figure 1 aims at clarifying
the relation between those bits/chips parameters. Subindex
I refers to the in-phase component, and all parameters
are equivalently defined for the quadrature component,
referred to with the subindex Q. This signal model describes
all GNSS’s signals-in-space, for instance GPS L1, GPS L5,
Galileo E1, and Galileo E5. Refer to [5] for the details.

2.2. Propagation Channel Model. A key aspect in the defi-
nition of the propagation channel model between satellites’
antenna and the user’s receiver antenna is whether it can
be considered narrowband or wideband, which depends on
the bandwidth of the propagation channel in which a given
signal is transmitted, being assessed with respect to the
channel coherence bandwidth. The coherence bandwidth is
defined as the frequency band within which all frequency
components are equally affected by fading due to multipath.
In narrowband systems, all the components of the signal are
equally influenced by multipath, while in wideband systems
the various frequency components of the signal are differ-
ently affected by fading. Narrowband systems, therefore, are
affected by nonselective fading, whereas wideband systems
are affected by selective fading. The coherence bandwidth
depends on the environment and is given by

Bc = 1
2πT

, (5)

where T is the delay spread, which is the time span between
the arrival of the first and the last multipath signals that
can be sensed by the receiver. In a fading environment, a
propagated signal arrives at the receiver through multiple
paths. For a typical GNSS multipath propagation channel in
which T < 0.5μs (the limit can be greater in nonurban areas,
but in general it is not lower), we obtain that the system
is wideband if transmitted signals are wider than 320 kHz,
which is the case for GNSS waveforms (in the order of MHz).
Hence, we conclude that we need to define propagation
channel models considering wideband systems. Another
important definition within this context concerns coherence
time. The coherence time, Tcoh, is defined as the time interval

1 2

t

· · ·1· · ·· · ·
TbI

NcI NcI

TPRNI = LcI TcI

Figure 1: Relation among the parameters defining bits and spread-
ing sequences in a generic navigation signal (in-phase component).

during which the characteristics of the propagation channel
remain approximately constant, and it is given as

Tcoh = 1
2 fm

, (6)

where fm is the maximum Doppler shift. The Doppler shift
is given as v/λ, where v is the radial speed of the mobile
terminal with respect to the satellite and λ is the signal
wavelength. A channel is considered WSSUS (wide-sense
stationary with uncorrelated scatterers) during the coherence
time.

In the following, we describe four of the most relevant
satellite channel models found in the literature.

2.2.1. Jahn’s Channel Characterization. Jahn et al. provided
a wideband channel model for land mobile satellite services
[6]. The model was derived from a channel measurements
campaign performed in the L band at 1820 MHz. An aircraft
transmitted a spread spectrum signal of 30 MHz, being
received by a mobile receiver (handheld or car terminal).
From those measurements, authors characterized the chan-
nel assuming WSSUS and modeling it as a filter structure
with delay taps. Then, they provided statistical models for
LOS (Rician probability density function for the amplitude
of the direct path), shadowing (ray amplitude following a
Raileigh distribution with a lognormal distributed mean
power), near echoes (the number of the near echoes follows
a Poisson distribution, with delays being exponentially dis-
tributed and amplitudes following a Rayleigh distribution),
and far echoes (same distributions than near echoes but with
other parameters). Table 1 summarizes the main features of
Jahn’s statistical channel model.

2.2.2. Loo’s Channel Characterization. The Loo’s land mobile
satellite channel model [7] is a statistical model that assumes
that the LOS component under foliage attenuation (shad-
owing) is lognormally distributed and that the multipath
effect is Rayleigh distributed. This model provides complete
statistical descriptions for different shadowing and multipath
conditions based on an extensive measurement campaign for
different frequency bands. For the L band, the “Inmarsat’s
Marecs A” satellite was used as transmitter, while a mobile
laboratory was considered for signal reception, resulting in
a fixed 19◦ elevation. Many more investigations on L-band
measurements are also referred to in [8], obtaining results for
other elevation angles. Table 1 summarizes the main features
of Loo’s statistical channel model.

2.2.3. Pérez-Fontán’s Channel Characterization. The model
presented by Fontán et al. in [9] addressed the statistical
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modeling of shadowing and multipath effects in land mobile
satellite applications for a wide range of environments with
different clutter densities (from open to dense urban areas)
and elevation angles (from 5◦ to 90◦) at L, S, or Ka Bands,
using a comprehensive experimental database to extract the
model parameters for the different bands, environments,
and elevations. One of its main contributions consists of
producing time series of any channel parameter whose study
is required, instead of just cumulative distribution functions.
These ones may be computed later from the generated
series. The model uses a first-order Markov chain to describe
the slow variations of the direct signal, basically due to
shadowing/blockage effects. The overall signal variations due
to shadowing and multipath effects within each individual
Markov state are assumed to follow a Loo distribution with
different parameters for each shadowing condition (Markov
state). Up to this point the model is of the narrow-band type
since it does not account for time dispersion effects. These
effects are introduced by using an exponential distribution
to represent the excess delays of the different echoes. Table 1
summarizes the main features of Pérez-Fontán’s channel
model.

2.2.4. Steingass/Lehner’s Channel Characterization. The Ste-
ingass/Lehner land mobile channel model presented in [10]
was developed using data recorded in a high-resolution
measurement campaign carried out in Munich in 2002.
Different types of environments (urban, suburban, and
rural) were measured for car and pedestrian applications.
It has been approved as standard by the ITU [11]. For the
measurements, a 100 MHz signal near the GPS L1 band
was used. This signal provided a time resolution of about
10 ns. The received signal was processed using a super-
resolution algorithm to extract the single reflections. With
this information, the probability density distribution of the
parameters of the reflected rays, such as Doppler shift,
power of echoes, duration of a reflector, and number of
echoes, were extracted. In urban environments, three major
obstacles influence the propagation of the LOS signal: house
fronts, trees, and lamp posts. The model is comprised
of a deterministic part with a generated scenery, which
computes geometrically the LOS signal shadowing and knife-
edge diffraction for house fronts, lamp posts, and trees.
The other observables like the number of coexisting echoes,
life span of reflectors, and the mean power of the echoes
are generated stochastically, using the probability density
distribution extracted from the measurements. The output
of the model is a complex time-variant channel impulse
response recalculated each time step. Table 1 summarizes the
main features of Steingass/Lehner’s channel model.

2.3. A Realistic Signal/Channel Simulator. When transmitted,
satellite’s signals travel through a propagation channel
which modifies its amplitude, phase, and delay. Indeed,
many replicas of the same transmitted signal can reach
the receiver’s antenna due to multipath propagation. In
general, these replicas are caused by reflections of the direct
signal in surrounding obstacles (e.g., buildings, trees, and

ground etc.). As shown above, such propagation channel
is generically modeled by a linear time-varying impulse
response with Mi propagation paths:

hi(t; ξ) =
Mi−1∑

m=0

αi,m(t)e jφi,m(t)δ
(
ξ − τi,m(t)

)
, (7)

where αi,m, φi,m(t) and τi,m(t) are the amplitude, phase, and
delay of the mth propagation path for the ith satellite, ξ is
the multipath delay axis and the index m = 0 stands for the
line-of-sight signal. These channel parameters can be seen as
realizations of random processes with underlying probability
density functions fαp(α), fφp(φ), and fτp(τ), respectively,
whose shape and parameters are approximated by the models
outlined above.

Therefore, consideringMs visible satellites, the signal r(t)
received at the receiver’s antenna is the superposition of the
transmitted signals, as propagated through the correspond-
ing channel, and corrupted by additive noise,w(t). This reads
as

r(t) =
Ms−1∑

i=0

sT ,i(t)∗ hi(t; ξ) +w(t)

=
Ms−1∑

i=0

∫ +∞

−∞
sT ,i(t − ξ)hi(t; ξ)dξ +w(t)

=
Ms−1∑

i=0

Mi−1∑

m=0

αi,m(t)e jφi,m(t)sT ,i
(
t − τi,m(t)

)
+w(t),

(8)

where sT ,i(t) is the transmitted signal sT(t) corresponding to
the i-th satellite.

As shown in [12], the term φi,m(t) can be approximated
by its first-order Taylor expansion as φi,m(t) ≈ 2π fdi,m(t)t +
φi,m,0. Hence, the general baseband equivalent model that will
be used along this paper is

r(t) =
Ms−1∑

i=0

Mi−1∑

m=0

αi,m(t)e j2π fdi,m (t)t

· e jφi,m,0sT ,i
(
t − τi,m(t)

)
+w(t).

(9)

The first element in the receiver RF chain is a right hand
circularly polarized (RHCP) antenna, usually with nearly
hemispherical gain coverage, with the mission to receive the
radionavigation signals of all the satellites in view. The RF
signals collected by the antenna are immediately amplified
by a low noise amplifier (LNA), a key element which is the
most contributing block to the noise figure of the receiver.
The LNA also acts as a filter, minimizing out-of-band RF
interferences and setting the sharpness of the received code.
After the LNA, the amplified and filtered RF signals are
then downconverted to an intermediate frequency (IF) using
signal mixing frequencies from local oscillators (LOs). These
LOs are derived from a receiver reference oscillator, often
an oven-stabilized clock with typical accuracies of 10−8.
There is a need for one LO per down-conversion stage.
Two or three down-conversion stages are commonly devoted
to reject mirror frequencies or large out of band jamming
signals, in particular the 900 MHz used by the GSM mobile
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communication system. However, depending on the subse-
quent analog-to-digital converter (ADC) characteristics, a
one-stage downconversion or even a direct L-band sampling
is also possible [13]. The lower sideband generated by the
mixer process is selected, while the upper sideband is filtered
by a postmixer bandpass filter. It is important to point out
that signal Doppler’s and PRN codes are preserved after the
mixing stage, only the carrier frequency is lowered.

In the sequel, we focus on the contribution of a single
satellite and thus omit the dependence with i of the
signal model. Considering a generic data sequence d, chip
code c, chip-shaping pulse gT(t), chip period Tc, Nc full
codes in a whole bit, and data period Tb, the baseband
equivalent received signal for a channel model as in (7) but
particularized to Mi = 1 (i.e., only one line of sight signal)
can be put in the form

r̃0(t) = a0(t)
∞∑

u=−∞
d(u)

Nc−1∑

n=0

Lc−1∑

k=0

c(k)

· g̃R(t − τ0(t)− kTc − nTPRN − uTb) + w̃(t)

= a0(t)
∞∑

u=−∞
d(u) p̃(t − τ0(t)− uTb) + w̃(t)

= |a0(t)|e j(2π fd(t)t+φ0)
∞∑

u=−∞
d(u) p̃(t − τ0(t)− uTb)

+ w̃(t),
(10)

where g̃R(t) is the pulse received at the antenna and then
filtered by a precorrelation filter (usually the LNA), p̃(t) is the
filtered version of p(t) = pI(t) + j pQ(t), and the term w̃(t)
stands for the filtered thermal noise and other unmodeled
terms. The objective of a synchronization method is to
estimate the time delay τ0(t), Doppler shift fd(t) and the
carrier phase information φ0 embedded into the phase of the
complex amplitude a0(t) = |a0(t)|e j(2π fd(t)t+φ0).

The analog-to-digital conversion and the automatic gain
control (AGC) processes take place at IF or baseband, where
all the signals from GNSS satellites in view are buried in
thermal noise. Once the received signal is digitized, it is ready
to feed each of the N digital receiver channels. Every receiver
channel is intended to acquire and track the signal of a single
GNSS satellite; typical receivers are equipped with N = 12
channels. The multiplication of the IF digitized signal by a
local replica of its carrier frequency allows to produce the
in-phase (I) and quadrature-phase (Q) components of the
digitized signal.

Assuming w̃(t) as additive white Gaussian noise
(AWGN), at least in the band of interest, it is well known that
the optimum receiver is the code matched filter, expressed as

hMF

(
t; τ̂0, f̂d0 , φ̂0

)
=

Lc−1∑

k=0

c∗(k)g∗R (−t − kTc + τ̂0 + LcTc)

· e− jφ̂0e− j2π f̂d0 (t)t

= q∗R (−t + τ̂0 + LcTc)e− jφ̂0e− j2π f̂d0 (t)t,
(11)

where τ̂0, f̂d0 , φ̂0 are local estimates of the time delay, Doppler
shift, and carrier phase of the received signal, and (dot)∗

stands for the complex conjugate operator. Theoretically
gR(t) = gT(t), but actual implementations make use of
approximated versions: while gT(t) is a rectangular pulse
filtered at the satellite, gR(t) is digitally generated at the
receiver and therefore not filtered. In addition, gT(t) is
usually filtered again by a precorrelation filter before the
matched filter, as expressed in (10) with g̃R(t). The code
matched filter output can be written in the form

y
(
t; τ̆0, f̆d0 , φ̆0

)
= r̃0

(
t; τ0, fd0 ,φ0

)∗ hMF

(
t; τ̆0, f̆d0 , φ̆0

)
.

(12)

Notice that, in the matched filter, we have substituted
the estimates τ̂0, f̂d0 , and φ̂0 for trial values obtained from
previous (in time) estimates of these parameters which we
have defined as τ̆0, f̆d0 , and φ̆0, respectively. This is the usual
procedure in GNSS receivers, since the estimates are not
really available, but to be estimated after correlation.

In DS-SS terminology, the matched filter is often referred
to as correlator, while the processing it performs is called
despreading. Since the correlators perform accumulation of
the sampled signal during a period Tint and then release an
output, we can write the discrete version of the signal as

yn =
�Tint/Ts−1�∑

s=0

y
(
nTint − sTs; τ̆0, f̆d0 , φ̆0

)
, (13)

where Ts is the sampling period, Tint is the integration time
(usually, Tint = TcLc) and �·� stands for the nearest integer
towards zero.

Equation (13) can be expressed more conveniently by
solving the convolution in (12), which yields [14]

yn,I = |a0|
2
K

sin
(
πΔ f Tint

)

πΔ f Tint
d
(

[n]Tb/Tint

)
Rp̃q

(
Δτ0

)

· cos
(
πΔ f Tint + Δφ

)
+ vI(n),

(14)

where we defined Δ f = fd0 − f̆d0 , Δφ = φ0 − φ̆0 and Δτ0 =
τ0 − τ̆0 (i.e., the estimation errors), �·� stands for the nearest
integer toward zero, and [n]Tb/Tint

means the integer part of
nTint/Tb, being Tb the navigation bit period, and

Rp̃q(ξ) = 1
TPRN

∫ TPRN+ξ

ξ
p̃(t)q∗(t − ξ)dt (15)

is the correlation function. An equivalent derivation for the
Q arm leads to

yn,Q = |a0|
2
K

sin
(
πΔ f Tint

)

πΔ f Tint
d
(

[n]Tb/Tint

)
Rp̃q

(
Δτ0

)

· sin
(
πΔ f Tint + Δφ

)
+ vQ(n).

(16)

Terms Δ f , Δφ, and Δτ0 should be regarded as the average
local phase error over the integration interval, that is, Δφ =
Δφ + 2πΔ f (Tint/2), assuming a frequency rate error Δ ḟ
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(i.e., a phase acceleration error) equal to zero. In case of
inclusion of such effect in the model, the average phase error
can be expanded as

Δφ = Δφ + 2πΔ f
Tint

2
+ 2π

T2

6
Δ ḟ . (17)

In this expression, the terms Δφ, Δ f , and Δ ḟ are referred to
the error values at the beginning of the integration interval.

In the following, we will consider K = (Tint/Ts) as the
integer number of samples collected in an accumulation.
This number will not be integer in receiver configurations
having a sample rate incommensurable with the chip rate,
and thus some integration blocks will have K + 1 samples
instead of K . This effect can be considered negligible for the
analysis presented in this paper.

In the case of Mi > 1 (i.e., in the presence of multipath),
(12) becomes a sum of all the replicas convoluted with a
filter matched to the line of sight signal, whose estimated
parameters are possibly biased by the presence of multipath.
Since the convolution is a linear operator, the correlator
output will be a linear combination of the contributions
made by each signal path.

Note that an arbitrary number of correlators (very early,
early, prompt, late, very late, etc.) can be used in the filter
update, just adding or subtracting the correlator offset to the
argument of Rp̃q (i.e., Rp̃q(Δτ0,n + δ), Rp̃q(Δτ0,n − δ), etc.).
The correlators’ output can be stacked in a vector yn, which
will be the measurements used in next section.

In the context of this work, we used the GRANADA
(Galileo Receiver ANAlysis and Design Application) simula-
tion platform to simulate realistic channel and receiver sce-
narios. The GRANADA Factored Correlator Model (FCM)
blockset (see Figure 2) is a MATLAB/Simulink (MATLAB
and Simulink are registered trademarks of The MathWorks,
Inc.) library that provides a swift, flexible, and realistic way
of simulating different signal processing architectures, either
of standalone GNSS receivers or multisystem solutions. The
FCM was included in a Simulink blockset, which, since 2007,
has been commercially available as part of the GRANADA
product family, whose remaining products were developed
by DEIMOS Space in the frame of the Galileo Receiver
Development activities (GARDA), funded by the Galileo
Joint Undertaking (now European GNSS Agency, GSA)
under the 6th Framework Program of the European Union.

The FCM separates the effects of carrier and code
Doppler and misalignment on a GNSS receiver’s correlator
outputs into several multiplicative factors and allows the
inclusion (or not) of each factor independently. Since it is an
analytical model, the computation rate can be as low as the
tracking loop rate, dramatically increasing simulation speed:
the FCM provides directly the correlators’ output, precluding
the need of simulating the lower-level signal processing
stages, significantly reducing the computational load and
hence decreasing processing and memory requirements,
while still accounting for various effects (as filtering, carrier
phase and frequency errors, code delay error, code Doppler,
noise, and multipath), thus keeping a high level of realism
[15]. Since, statistically speaking, it is equivalent to work with
samples before or after the correlation process (proof in the

Appendix), we take advantage of working at the correlator
output since it considerably reduces the computational load.

Once configured (type of signal, propagation channel,
user dynamics, sampling frequency before correlation, num-
ber of correlators and their spacing, integration period,
environment, etc., see Figure 3), FCM provides the measure-
ments yn used in the simulations presented in Section 5.

3. Particle Filtering

Bayesian filtering involves the recursive estimation of states
xn ∈ Rnx given measurements yn ∈ Rny at time n based on all
available measurements, y1:n = {y1, . . . , yn}. To that aim, we
are interested in the filtering distribution p(xn|y1:n), which
can be recursively expressed as

p
(

xn | y1:n
) =

p
(

yn | xn
)
p(xn | xn−1)

p
(

yn | y1:n−1
) p

(
xn−1 | y1:n−1

)
,

(18)

with p(yn|xn) and p(xn|xn−1) referred to as the likelihood
and the prior distributions, respectively. Unfortunately, (18)
can only be obtained in closed-form in some special cases.
For instance, when the model is linear and Gaussian, the
Kalman Filter (KF) [16] provides the optimal solution. In
more general setups—nonlinear and/or non-Gaussian—we
should resort to more sophisticated methods [17]. In this
paper we consider particle filters (PFs) [18, 19].

PFs approximate the filtering distribution by a set of
N weighted random samples, forming the so-called set of

particles {x(i)
n ,w(i)

n }Ni=1. These random samples are drawn
from the importance density distribution, π(·),

x(i)
n ∼ π

(
xn | x(i)

0:n−1, y1:n

)
, (19)

and weighted according to the general formulation

w(i)
n ∝ w(i)

n−1

p
(

yn | x(i)
0:n, y1:n−1

)
p
(

x(i)
n | x(i)

n−1

)

π
(

x(i)
n | x(i)

0:n−1, y1:n

) . (20)

Algorithm 1 outlines the operation of the Standard PF
(SPF) when a new measurement yn becomes available.
After particle generation, weighting, and normalization, a
minimum mean square error (MMSE) estimate can be
obtained by a weighted sum of particles. A typical problem
of PFs is the degeneracy of particles, where all but one weight
tend to zero. This situation causes the particle to collapse to a
single state point. To avoid the degeneracy problem, we apply
resampling, consisting in eliminating particles with low
importance weights and replicating those in high-probability
regions [20, 21]. In this work, we consider a multinomial
sampling scheme for the resampling step.

3.1. Rao-Blackwellized Particle Filter. In this paper, we ana-
lyze a way to alleviate the dimensionality problem based on
the marginalization of linear states. The basic idea is that
a KF can optimally deal with these states, while reducing
the dimension of the state space that the nonlinear filter
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Figure 2: Schematic of the tracking stage of a GNSS receiver and substitution of the high frequency stage of the receiver (correlation and
carrier wipe-off) with the FCM blockset [22].

Figure 3: Configuration screen of the FCM blockset.

has to explore. The procedure was proposed in [23, 24]
for the case of dealing with the nonlinear states with a
PF. The algorithm was termed Marginalized particle filter
(MPF), although the same concept is also referred to as
Rao-Blackwellized PF (RBPF) in other works [25, 26]. The
latter nomenclature is because marginalization resorts to a
general result due to [27, 28] referred to as the Rao-Blackwell
theorem, which shows that the performance of an estimator
can be improved by using information about conditional

probabilities. The Rao-Blackwell theorem states let θ̂ =
g(x) represent any unbiased estimator for θ and T(x) be a
sufficient statistic for θ under p(x, θ). Then the conditional

expectation θ̂RB = E{g(x)|T(x)} is independent of θ, and
it is the uniformly minimum variance unbiased estimator
(cf. [29, 30] for the details) The result of a corollary points

Require: {x(i)
n−1,w(i)

n−1}
N

i=1 and yn

Ensure: {x(i)
n ,w(i)

n }Ni=1 and x̂n
1: for i = 1 to N do
2: Generate x(i)

n ∼ π(xn|x(i)
0:n−1, y1:n)

3: Calculate w̃(i)
n = w(i)

n−1
p(yn|x(i)

0:n, y1:n−1)p(x(i)
n |x(i)

n−1)

π(x(i)
n |x(i)

0:n−1, y1:n)
4: end for
5: for i = 1 to N do

6: Normalize weights: w(i)
n = w̃(i)

n∑N
j=1 w̃

( j)
n

7: end for

8: MMSE state estimation: x̂n =
N∑
i=1
w(i)
n x(i)

n

9: {x(i)
n , 1/N}Ni=1 = Resample({x(i)

n ,w(i)
n }Ni=1)

Algorithm 1: Standard particle filtering (SPF).

out that the use of a Rao-Blackwellized estimator effectively
reduces the variance of the estimation error. Therefore, when
possible, it is desirable to apply marginalization procedures.

Corollary: let θ̂ be an unbiased estimator and let θ̂RB be the
Rao-Blackwell estimator, then

E
{(
θ − θ̂

)2
}
≥ E

{(
θ − θ̂RB

)2
}
. (21)

Final remarks on Rao-Blackwellization are worth men-
tioning.

(i) Rao-Blackwellization is a procedure suitable when
linear substructures are present in the dynamical
model.
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(ii) It is a variance reduction technique, in the sense
that the estimation variance of a filter considering
this marginalization procedure is less than a filter
estimating the complete state space.

(iii) Filtering linear states with a Kalman filter has twofold
benefits: (1) linear states are optimally filtered and
(2) the system coped by the nonlinear filter has
reduced dimensionality (with large benefits in terms
of computational resources).

4. Joint Filtering of LOSS and
Multipath Parameters

The technique herein investigated attempts to estimate the
synchronization parameters of both the LOSS and M − 1
multipath components. We refer to the algorithm as the
multipath estimating particle filtering, or MEPF for short.
Here the term Bayesian means that the algorithm is using
some sort of a priori information regarding these parameters
(such as interdependencies and time evolution models). This
approach was first introduced in [31] and further refined in
[32], although other papers might be found following the
same scheme [33] with more complex time-evolving models.
The application of Bayesian filtering techniques becomes
straightforward when one describes the problem at hand in
terms of a measurement equation and a process equation
(i.e., how unknowns evolve randomly over time).

4.1. Observations. A receiver implementing such Bayesian
tracking loops typically processes each satellite indepen-
dently, and most of the work in the literature discusses
architectures using IF signal. Here we are interested in
operating at the output of the bank of correlators.

Observations for the i-th satellite are gathered into a
random vector yn, where we omitted the subindex i for the
sake of clarity. The th element in yn corresponds to the
sample of the -th correlator, and it is expressed as

yn,
(
αn,φn, τn

) =
M−1∑

m=0

αm,ne
jΔφm,nRn,

(
Δτ,m,n

)
+ vn, , (22)

accounting that Δτ,m,n = τm,n − τ̂0,n−1 + δ corresponds to
the point where the -th early/late sample is evaluated. As
usual, m = 0 denotes LOSS. Here we consider a noncoherent
tracking architecture that operates with the squared outputs.
This scheme avoids the estimation of carrier phases, and thus
it reduces the state-space dimension. In our implementation,
a conventional PLL/FLL network is used in parallel to the
MEPF. Therefore, the observations are the parallel outputs
of the correlation bank, which we denote as

yn =
(∣∣yn,1(αn, τn)

∣∣2, . . . ,
∣∣yn,L(αn, τn)

∣∣2
)T

, (23)

where L is the total number of correlators used at the receiver.
We made apparent the dependence of measures on unknown
states: real amplitude (αn) and time delay (τn) of each replica
m of the signal.

4.2. Process Dynamics. The state space is composed of the
unknown parameters of the model, namely, delay, delay rate,
and real amplitude of the LOSS and its multipath replica:

xn =

⎛
⎜⎜⎝τ0,n, . . . , τM−1,n︸ ︷︷ ︸

τn

, τ̇0,n, . . . , τ̇M−1,n︸ ︷︷ ︸
τ̇n

,α0,n, . . . ,αM−1,n︸ ︷︷ ︸
αn

⎞
⎟⎟⎠

T

,

(24)

where τ̇m,n is the delay rate of the m-th component, related
to the Doppler shift. We have introduced this delay rate to
better capture the dynamics of the time-evolving delay of the
signals.

One could adopt many alternatives to specify the time-
evolving processes for each state, ranging from the simplistic
(although effective in some situations) autoregressive model
to more sophisticated models. Here, we adopt a channel
state model based on that presented in [34], adapted to the
noncoherent scheme. This model was motivated by channel
modeling work for multipath prone environments such as
the urban satellite navigation channel [35].

The dynamics of time delay and delay rate for the LOSS
(i.e., m = 0) are described by

(
τ0,n

τ̇0,n

)
=
(

1 Tint

0 1

)(
τ0,n−1

τ̇0,n−1

)
+ uτ0,n, (25)

where Tint is the integration period and the process noise is
an uncorrelated zero-mean Gaussian random variable with
diagonal entries σ2

0,τ and σ2
0,τ̇ .

The evolution of τm,n and τ̇m,n for the echoes is modeled
with a truncated Gaussian distribution as in [31], which
allows us to introduce the fact that due to physical reasons

τm,n > τ0,n ∀m ∈ {1, . . . ,M − 1}, (26)

in outdoor propagation channels [6, 11, 36]. Taking (26) into
account, we force this situation using the evolution

τm,n = τ0,n +
∣∣∣τm,n−1 + uτm,n

∣∣∣,

τ̇m,n = τ̇0,n + uτ̇m,n,
(27)

with uτm,n and uτ̇m,n being zero-mean Gaussian random
variables with variances σ2

m,τ and σ2
m,τ̇ , respectively. For the

evolution of each αm,n we consider independent autoregres-
sive models with variance σ2

m,α. The overall covariance matrix
of the process is denoted as Σx and is constructed with σ2

0,τ ,
σ2
m,τ , σ2

0,τ̇ , σ2
m,τ̇ , σ2

0,α, and σ2
m,α in its diagonal.

4.3. Algorithm Implementation. From the previous mod-
eling, we realize that the state space can be partitioned
into linear and nonlinear subspaces. Clearly, these can be
identified as

xl
n = αn,

xnl
n =

(
τTn , τ̇Tn

)T
.

(28)
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By the chain rule of probability, linear states can be
analytically marginalized out from p(xn | y1:n):

p
(

xl
n, xnl

0:n | y1:n

)
= p

(
xl
n | xnl

0:n, y1:n

)
p
(

xnl
0:n | y1:n

)
(29)

and, taking into consideration that xl
n generates a linear

Gaussian state-space, p(xl
n | xnl

0:n, y1:n) can be updated
analytically via a KF conditional on xnl

0:n and only the non-
linear part of xn needs to be estimated with a nonlinear
filter. In the proposed scheme, an SPF is run to characterize
p(xnl

0:n | y1:n) and a KF is executed to obtain p(xl
n | xnl

0:n, y1:n).
Notice that both linear and nonlinear states are interde-

pendent, thus the algorithm has to be aware of this coupling.
The details might be consulted in [23] for the general
algorithm and in [12] for the specific GNSS setup considered
here. At a glance, each particle in the PF has an associated
KF that tracks amplitudes. Then, before particle generation,
KF prediction is run and the results are used in the particle
filter. Similarly, once particles are weighted this information
is used in the update step of the KF.

5. Results in Realistic Scenarios

We used the GRANADA FCM blockset of Simulink to
simulate the GPS L1 C/A signal, the propagation channel,
and the inaccuracies of the receiver front end. An initial
set of controlled scenarios is simulated to analyze the
method. Then, from the set of reviewed channel models,
we have selected Jahn’s to show simulation results in a
realistic environment. The GPS signal is spread spectrum
with a code length of 1023 chips and a chip rate of 1.023
Mchips/s (notice that a chip of the signal corresponds to
approximately 300 meters in length and the duration of an
entire codeword is one millisecond). The carrier frequency
of the transmitted signal was 1575.42 MHz and the receivers
precorrelation bandwidth was 2 MHz. Estimates of time
delay were performed at a rate of 50 Hz, which corresponds
to an integration time of 20 milliseconds, assuming bit
synchronization. The carrier-to-noise density ratio (C/N0)
of the simulated satellite was 38 dB-Hz. The dynamics of
the scenario were due to the relative motion of the satellite-
receiver, which is completely simulated by the GRANADA
FCM blockset, and the receiver performed a pedestrian-like
trajectory at 1 m/s. Simulation time was 50 seconds.

We compared the performance of the MEPF with the
results of a narrow 0.125-chip spacing DLL (state-of-the-
art in GNSS receivers) with an equivalent noise bandwidth
of 1 Hz. This architecture uses 3 correlators. Also, the
benchmark receiver implements a coherent phase lock loop
(PLL) carrier phase discriminator using a second-order filter
and an error accumulator with equivalent noise bandwidth
10 Hz. The initial time-delay ambiguity at which the filter
was initialized was drawn from N (τ0,0,Tchip/2), with Tchip

the chip period.
It has been reported in [37] that the number of correla-

tors (L) used in the PF plays an important role. For instance,
in AWGN on the order of L = 11 correlators are required
to obtain stable results. Also, the algorithm improves its
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Figure 4: Evolution of pseudorange error in DLL/PLL scheme
under severe multipath propagation.

performance with the number of particles although this
improvement saturates at 300 particles.

Figures 4–7 show the behavior of the classical DLL/PLL
scheme and the proposed MEPF, respectively, in a multipath
scenario. In this experiments, we used L = 21 correlators
for the MEPF in order to span correlators along regions of
interest in terms of multipath estimation and mitigation.
The results are organized as follows. Top figure represents
the obtained pseudorange error. Central figure is the relative
delay between the LOSS and the multipath replica, in the
first representative interval (t ∈ [10, 20]) it has been set
to 0.25 chips and in the second interval (t ∈ [25, 40]) to
0.5 chips. Bottom figure plots the signal-to-multipath ratio
(SMR) in linear scale of the simulated scenario. During
the first interval, the SMR was abruptly kept constant to
0.75 and during the second interval it grew linearly from
0 to 0.75. Since the MEPF is very sensitive to the tuning
of process covariance matrix—as many Bayesian filtering
solutions,—we have investigated three different setups with
N = 1000 particles. Namely, (i) in Figure 5 we used standard
deviations σ0,τ = .03/c, σ0,τ̇ = 0.03/c, σm,τ = 100/c, σm,τ̇ =
0.03/c, σ0,α = 0.0001, and σm,α = 0.01; (ii) in Figure 6 we
used σ0,τ = 30/c, σ0,τ̇ = 0.3/c, σm,τ = 30/c, σm,τ̇ = 0.3/c,σ0,α =
0.0001, and σm,α = 0.0001; and finally (iii) in Figure 7 we
used σ0,τ = 3/c, σ0,τ̇ = 0.3/c, σm,τ = 30/c, σm,τ̇ = 0.3/c,σ0,α =
0.0001, and σm,α = 0.01. At the light of the results, the latter
configuration provided a good performance as it allowed for
sufficient delay excursions to explore the state space and fast
variations in multipath amplitude were coped. A summary
of results in terms of bias, variance, and RMSE over the
entire simulation can be consulted in Table 2. We can observe
that, compared to DLL schemes, a remarkable performance
improvement can be obtained after properly adjusting the
covariances.

Finally, we tested the algorithm in a more realistic
scenario. We selected the Jahn’s channel model with the same
receiver parameters as before. Particularly, the considered
channel was that of a satellite at an elevation angle of 55◦

in an urban scenario with an average C/N0 of 38 dB-Hz.



12 International Journal of Navigation and Observation

0 10 20 30 40 50

0

20

40

E
rr

or
 (

m
)

0

0.5

1

SM
R

Time (s)

0 10 20 30 40 50

0 10 20 30 40 50
0

0.5

1

Δ
τ

Figure 5: Evolution of pseudorange error in MEPF scheme under
severe multipath propagation, setup number 1.
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Figure 6: Evolution of pseudorange error in MEPF scheme under
severe multipath propagation, setup number 2.

Table 2: Comparison of pseudorange error metrics in meters.

DLL/PLL MEPF (no. 1) MEPF (no. 2) MEPF (no. 3)

Bias (m) 10.66 3.97 5.48 1.24
std dev (m) 13.23 6.42 8.75 4.05
RMSE (m) 17.00 7.55 10.33 4.24

The results can be consulted in Figure 8, where it can be
observed that MEPF requires an initial convergence time
(depending on the covariance matrix set) larger than DLL
schemes. Conversely, it appears more robust to channel
impairments. Numerically, the RMSE in the overall simula-
tion is of 8.48 m and 4.82 m for DLL and MEPF, respectively.
For the MEPF we used M = 2 paths, N = 1000 particles, and
σ0,τ = .03/c, σ0,τ̇ = 0.03/c, σm,τ = 3/c, σm,τ̇ = 0.03/c, σ0,α =
0.0001, and σm,α = 0.001.

6. Conclusions

In this paper we have analyzed an advanced tracking loop
for time-delay and carrier-phase estimation in a GNSS
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Figure 7: Evolution of pseudorange error in MEPF scheme under
severe multipath propagation, setup number 3.
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Figure 8: Pseudorange error in DLL and MEPF schemes in an
urban scenario at an elevation of 55◦, as modeled by Jahn’s model.

receiver based on sequential Monte-Carlo methods. The
algorithm builds upon previous work by the authors on
Rao-Blackwellized particle filtering while introducing more
realistic process dynamics and the usage of postcorrelation
observations, that reduce the computational burden at the
receiver. The paper presents the general signal model, GNSS
concept, and trade-offs the most common propagation
channel models. A realistic scenario simulator based on
the FCM blockset of Simulink was used Section 5. Results
point out the need for properly setting not only the
number of particles but the number of correlation outputs
used as observations. Also, degradation of conventional
DLL/PLL schemes in multipath-rich scenarios became clear.
Nevertheless, the correct selection of a process covariance
matrix was seen to affect significantly the performance of the
MEPF and future work should be devoted in self-adjustment
of such matrix.



International Journal of Navigation and Observation 13

Appendix

Equivalence of Pre/Postcorrelation
Receiver Architectures

In this appendix we establish a basic result showing the
equivalence between processing pre- and postcorrelation
signals. That is to say, from a statistical point of view, an
estimator of a given parameter (e.g., time delay) computed
using a bunch of snapshots taken at the IF signal level
(r0(t; υ)) is the same as that which is derived using the
output of the correlators (y(t; υ)). It is a well-known result
in statistical signal processing that both signals are sufficient
statistics, and thus one is able to derive an estimator of
υ = (τ0, fd0 ,φ0)T using either. However, we will see that
this equivalence becomes evident when one examines the
likelihood distribution (the density where the information
from measurements is gathered) for each approach.

If we analyze first the case of using the IF signal we should
be aware of the following.

(i) This approach does not force an implementation
based on early, prompt, and late samples; as observa-
tions are directly the baseband signal at the sampling
frequency.

(ii) It is necessary to use a sufficiently large set of IF data
to be able to infer any parameter from it. That is,
one has to integrate over a certain integration time,
Tint, since the signal-to-noise ratio of GNSS signals is
typically well below the noise level.

The term rn ∈ CK stands for the vector of snapshots
of the IF signal, as gathered for the nth integration interval,
defined as

rn =

⎛
⎜⎜⎝

r0(nTint)
...

r0(nTint + (K − 1)Ts)

⎞
⎟⎟⎠, (A.1)

using the same notation conventions used along the doc-
ument. Then, the likelihood can be decomposed as the
independent contribution of each snapshot

log
(
p(rn | υn)

) =
K∏

k=1

p

⎛
⎜⎜⎝r0(nTint + (k − 1)Ts)︸ ︷︷ ︸

r0,n(k)

| υn

⎞
⎟⎟⎠, (A.2)

and assuming Gaussianity for the noise term, we could
identify that

log
(
p(rn | υn)

)∝ −
K∑

k=1

∥∥∥r0,n(k)− h(1)
n (k; υn)

∥∥∥2
, (A.3)

where h(1)
n stands for the precorrelation signal model, which

was defined earlier as

h(1)
n (t; υn) = |a0(t)|e j(2π fd0 t+φ0)dn p̃(t − τ0). (A.4)

Further manipulation of the loglikelihood yields to

log
(
p(rn | υn)

)∝
K∑

k=1

∣∣r0,n(k) p̃∗(t − υn)
∣∣2 − ∣∣r0,n(k)

∣∣2

∝ ∣∣yn(υ − υn)
∣∣2,

(A.5)

with the latter step being clear if one accounts for the
definition of yn as the output of a correlator. Recall that υ is
the true unknown parameter of the signal. An ML estimator
of υ could be obtained after maximizing the latter equation.

Drawbacks of this approach are twofold.

(i) It might be computationally expensive as large data
sets need to be processed to increase the signal-to-
noise ratio, and thus K might be large depending on
Ts.

(ii) There is a requirement for performing signal process-
ing operations at a high rate, since it operates at the
sampling frequency.

If we turn our attention to the conventional approach in
which one uses samples at the output of a bank of correlators,
we should see the following.

(i) This approach forces an implementation based on
early, prompt, and late samples; this means that
samples are taken assuming a previous estimation
(prompt) of the parameters, denoted as ῠ =
(τ̆0, f̆d0 , φ̆0)

T
.

(ii) Few samples are sufficient to infer estimates of υ.
After correlation an integration over a certain interval
is already done, Tint, and therefore the signal-to-noise
ratio is relatively high.

In this case, measurements can be expressed as yn(υ− ῠ)
at the output of the n-th integration interval. In this mea-
surement we explicitly expressed that samples are taken with
respect to the error between true and prompt parameters,
Δυ = υ−ῠ. Notice that we considered that only the prompt is
used for the sake of clarity. It is easy to obtain a similar result,
as the one shown here, when one accounts for several early
and late samples.

Then, the log-likelihood under the Gaussian assumption
is

log
(
p
(
yn | υn

))∝
∥∥∥yn(Δυ)− h(2)

n (υn − ῠ)
∥∥∥2

∝
{
yn(Δυ)

(
h(2)
n (υn − ῠ)

)∗}
,

(A.6)

with h(2)
n being the postcorrelation signal model

h(2)
n (Δυ) = |a0|

2
K

sin
(
πΔ f Tint

)

πΔ f Tint
d
(

[n]Tb/Tint

)

· Rp̃q(Δτ0) cos
(
πΔ f Tint + Δφ

)
,

(A.7)

and υn the unknown parameter we want to estimate at n.
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If we set υn = ῠ, we can identify that

log
(
p
(
yn | υn

))∝
{
yn(υ − υn)

(
h(2)
n (0)

)∗}

∝ ∣∣yn(υ − υn)
∣∣2
.

(A.8)

From the latter mathematical derivations, we can con-
clude an important result:

log
(
p(rn | υn)

)∝ log
(
p
(
yn | υn

))
(A.9)

for a given integration interval Tint considering KTs snap-
shots. As said, similar results apply for larger integration and
more early/late samples.

As a consequence, we can state the following: the ML
estimator of υ computed from the data sets rn and yn is
equivalent.

To sum up, from a statistical point of view, both
approaches are equivalent and the choice should be made
considering implementation aspects. For instance, it is clear
that using precorrelation measurements rn involves larger
computational burden than using post-correlation samples.
Another important conclusions is that since in the pre-
correlation approach we also need to integrate in order to
increase the signal-to-noise ratio, effects happening faster
than Tint will not be captured by the estimation algorithm.
The same happens in the post-correlation case. Therefore,
the limitation of which phenomena could be tracked is
inherent to the GNSS signal, instead of the way it is processed
(i.e., pre-or postcorrelated samples).
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[20] M. Bolić, P. M. Djuric, and S. Hong, “Resampling algorithms
for particle filters: a computational complexity perspective,”
Eurasip Journal on Applied Signal Processing, vol. 2004, no. 15,
pp. 2267–2277, 2004.
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The majority of 3G mobile phones have an integrated GPS chip enabling them to calculate a navigation solution. But to deliver
continuous and accurate location information, the satellite tracking process has to be stable and reliable. This is still challenging, for
example, in heavy multipath and non-line of sight (NLOS) environments. New families of Galileo and GPS navigation signals, such
as Alternate Binary Offset Carrier (AltBOC), Composite Binary Offset Carrier (CBOC), and Time-Multiplex Binary Offset Carrier
(TMBOC), will bring potential improvements in the pseudorange calculation, including more signal power, better multipath
mitigation capabilities, and overall more robust navigation. However, GNSS signal tracking strategies have to be more advanced in
order to profit from the enhanced properties of the new signals.In this paper, a tracking algorithm designed for Galileo E1 CBOC
signal that consists of two steps, coarse and fine, with different tracking parameters in each step, is presented and analyzed with
respect to tracking accuracy, sensitivity and robustness. The aim of this paper is therefore to provide a full theoretical analysis of
the proposed two-step tracking algorithm for Galileo E1 CBOC signals, as well as to confirm the results through simulations as
well as using real Galileo satellite data.

1. Introduction

New GPS and Galileo signals use new modulations, such
as AltBOC, CBOC, and TMBOC that have the potential to
improve navigation through advanced signal properties, such
as more signal power, better multipath mitigation capabili-
ties, and overall improved signal cross-correlation properties.
Certainly, a major innovation brought by the new modula-
tion schemes consists of the presence of two distinct com-
ponents, namely, the data and pilot channels that carry two
different pieces of information. The data channel contains
the navigation message, whereas the pilot channel is dataless,
allowing long coherent signal integration that, in turn, allows
more precise determination of the ranging information. For
carrier tracking, the presence of a pilot channel enables the
combined use of pure PLL (Phase Lock Loop) discriminators
and longer coherent integration time. Code tracking can be

organized as data/pilot collaborative tracking [1, 2], where
two channels (data and pilot) are used in the estimation of
the code error, decreasing the thermal noise error and im-
proving overall tracking.

Several tracking algorithms proposed for Galileo E1
CBOC signals were derived from tracking schemes developed
for BPSK (Binary Shift Keying) and BOC(1,1) signals.
BOC(1,1) tracking faces the problem of biased tracking as
already explained in [3]. Until now, the main algorithms
that were proposed to specifically address the problem of
biased tracking for BOC(1,1) and can be applied to CBOC
tracking too are Single Side Lobe, bump and jump algo-
rithm [4], ASPeCT (Autocorrelation Side-Peak Cancellation
Technique) [3], and Double Estimator [5, 6]. The Single
Side Lobe technique provides a robust solution to resolving
BOC ambiguity, but it is suitable only for low-precision
receivers. Note that the ASPeCT algorithm modifies the
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shape of the autocorrelation function and eliminates side
peaks that can be points of false locking. However, it requires
a different and more complex correlator architecture. Double
Estimator assumes an additional loop, the Subcarrier Lock
Loop (SLL), that tracks subcarrier delay. More correlators
are needed, as well as more complex loop implementation.
In addition, two tracking techniques have been proposed
exclusively for Galileo E1 CBOC tracking: TM61 and
Dual Correlator. The TM61 technique generates a one-
bit local replica, either BOC(1,1) or BOC(6,1), simplifying
the architecture, but also degrading tracking by at least
3 dB [7]. The Dual Correlator technique is based on the
investigation of two parallel correlations: one between
the incoming MBOC and a BOC(1,1) replica, and one
between the incoming MBOC and a BOC(6,1) replica.
Each correlation is weighted, and two outputs are linearly
added, such that by changing the values of the weights the
tracking can be easily modified [8]. These two E1 CBOC
tracking techniques assume separate correlations, which
degrades the tracking and brings additional complexity. In
contrast, the two-step tracking algorithm considered in this
paper is based on full four-level bit local replica generation
and consists of two steps, coarse and fine, with different
tracking parameters. The main requirements that were taken
into consideration when defining this algorithm were (1)
a relatively low implementation complexity suitable for
a mass-market solution, (2) the shape of the E1 CBOC
autocorrelation function, and (3) the correlator’s structure
since it conditions the tracking algorithm’s properties.
Regarding the second point, since the CBOC autocorrelation
function has secondary peaks that can be potential false
lock points, one of the main objectives was to design a
tracking algorithm that can avoid such false locks or, at
least, minimize their occurrence. Therefore, five complex
correlators are used with several correlator spacing options
(very early (VE) and a very late (VL) correlators have been
added to the three conventional Early (E), Prompt (P),
and Late (L) correlators). Regarding the third point, we
wanted to design a tracking architecture that can minimize
the tracking error caused by thermal noise and multipath.
Moreover, DP (Dot-Product) and HRC (High Resolution
Correlator) discriminators are used equally in the fine track-
ing step, depending on the tracking conditions.

This paper extends our previous results by fully analyzing
the theoretical performance of the previously proposed two-
step tracking schemes with respect to tracking accuracy,
sensitivity, and robustness, as well as testing the algorithm
using real satellite data. The paper is organized as follows. In
Section 2, the Galileo E1 CBOC signal is described. Section 3
provides an overview of the two-step tracking algorithm
with a thorough analysis of the discriminator curve outputs
and discussion of its stability and linearity regions. Section 4
provides theoretical analysis of the tracking loops’ perfor-
mance, especially derivation and calculation of code tracking
error and tracking thresholds for different discriminators.
A multipath mitigation analysis is provided in Section 5,
followed by simulation-based and realistic results provided
in Section 6. Finally, conclusions and outlook are provided
in Section 7.

2. Galileo E1 CBOC Signal Properties

New generations of Global Navigation Satellite Systems
(Galileo, Glonass, Compass, etc.) are rapidly evolving, and
old GPS system served localization purposes to users for
more than twenty years in positioning that is currently
undergoing a modernization process, and new European
Galileo system will be available within a few years. MBOC
modulation was chosen to be implemented on the Galileo
E1 and GPS L1C signals [9]. The power density function of
the MBOC modulation is a sum of the 10/11 normalized
BOC(1,1) and the 1/11 normalized BOC(6,1) signal spec-
trum. MBOC is defined in the frequency domain, and two
different implementations have been specified for Galileo
and GPS: CBOC and TMBOC, respectively. Although having
different time domain implementations, the power spectral
densities in both configurations of the MBOC(6,1,1/11) are
the same.

The GPS L1C signal has a pure BOC(1,1) data channel
carrying 25% of the total signal power, while the pilot signal
uses a TMBOC modulation with 75% of the total signal
power. The Galileo E1 signal on the other hand shares its
power equally between data and pilot channels, with both
channels using a CBOC modulation based on a four-level
subcarrier formed by the weighed sum of BOC(1,1) and
BOC(6,1). To acquire 100% of the signal energy, a bandwidth
of 16 MHz is needed. The only difference between data
and pilot channels besides having different PRN (Pseudo-
Random Noise) codes is in the sign of the weighted sum. The
data channel is “in phase” (CBOC(6,1,“+”)), and the pilot
channel is in “antiphase” (CBOC(6,1,“−”)). “Antiphase”
configuration exhibits better tracking performance: autocor-
relation peak is narrower. The analytical expression for the
E1 CBOC signal can be represented as

sGal(t) =
√

1
2

[
dGal(t)cd(t)CBOC

(
6, 1, p, “ + ”

)
(t)

+cp(t)CBOC
(
6, 1, p, “− ”

)
(t)
]

,

CBOC
(
6, 1, p, “ + ”

)
(t)=

(√(
1−p)sBOC(1,1)(t)+

√
psBOC(6,1)

)
,

CBOC
(
6, 1, p, “− ”

)
(t)=

(√(
1−p)sBOC(1,1)(t)−√psBOC(6,1)

)
,

(1)

and p = 1/11 for OS (Open Service), cd(t), cp(t) are the
data and pilot spreading codes, and CBOC(6, 1, p, “+”)
and CBOC(6, 1, p,“–”) are the pilot and data subcarriers,
respectively.

2.1. Galileo E1 CBOC Autocorrelation Function. The study
of the autocorrelation function is important when trying
to evaluate the tracking performance of the signal. The
E1 CBOC autocorrelation function for the data and pilot
channels, as well as for the combination of the two channels
(for the combined tracking case), is shown in Figure 1
assuming an 18 MHz bandwidth. The CBOC autocorrelation
function exhibits a very narrow main peak and two side-
correlation peaks located at approximately 0.5 chips around
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Figure 1: CBOC autocorrelation function for pilot, data, and
averaged data/pilot channels and its fit by a sum of sinusoidal
functions for bandwidth of 18 MHz.

the main peak. Dangerously, these secondary peaks can be
potential false locking points, as explained earlier.

The CBOC autocorrelation function has a narrower
main peak when compared to BOC(1,1), but it is not fully
linear. The expression for the autocorrelation function can be
approximated more simply, as it is done with the expression
for the BOC(1,1) autocorrelation function inside the one
chip width of the main autocorrelation peak [3]:

RBOC(1,1)(τ) = 1− α|τ|, (2)

where α corresponds to the absolute value of the slope of the
spreading sequence autocorrelation function’s main peak.
The value of α is equal to 3 for the BOC(1,1) signal, and
it is larger than 3 for the CBOC data/pilot autocorrelation
function for the narrow E-L spacing around the main
correlation peak. Due to the existence of ripples in CBOC
autocorrelation function, the value for the α is not constant
and it depends on correlator spacing.

In the following, the first derivative of the autocorrelation
function (α) is used as a parameter for the evaluation of the
code tracking error and tracking threshold. α varies with the
E-L correlator spacing, but for fixed E-L distances it can be
considered constant. Analytical expressions for autocorrela-
tion function should be able to provide both the properties
of the CBOC modulation and the effects of front-end
filtering on the autocorrelation peak. In order to compute
α, the analytical expression for the E1 CBOC autocorrelation
function is determined by fitting the autocorrelation curve
with a sum of sinusoidal functions. By doing so, it is possible
to compute α of the filtered autocorrelation function for
different E-L correlator spacing. The resulting analytical
expression for the CBOC autocorrelation function obtained

by fitting the autocorrelation curve and α can be written as
[10]:

R̃F(t) =
8∑

i=1

ai · sin(bi · t + ci),

α =
(
dR̃F(x)
dx

)∣∣∣∣∣
x=−d/2

,

(3)

where t is the distance from the main correlation peak (half
of E-L spacing), and ai, bi, and ci, where i = 1, . . . , 8, are fitted
constants that are different for the data and pilot channels.
Since we assume later both data and pilot channels are used
for tracking, and thus the averaged CBOC(+) and CBOC(−)
autocorrelation is used for fitting. In this case, the infinite
bandwidth is used so that 99.99% of the CBOC signal is
received. Therefore, three sets of ai, bi, and ci parameters were
used. As can be observed from Figure 1, the analytical fit
closely follows the averaged CBOC autocorrelation function
over the considered range. α for different E-L spacings and
three different combinations is provided in Table 1. If the
correlator spacing decreases below d = 1/12 chips, the
slope of the autocorrelation peak decreases as well, because
of the rounding effect of the front-end filtering on the
autocorrelation peak. Additionally, a smaller E-L spacing
reduces the linear tracking region which, at some point,
can make the tracking unreliable. Therefore, d = 1/12 was
chosen as a good tradeoff between accuracy and reliability
for the considered bandwidth of 18 MHz.

The existence of secondary code on the pilot channel
on top of the primary PRN code of duration 100 ms or
25 chips additionally complicates the tracking and requires
techniques for wiping off the secondary code before further
process the signal. The main advantages of secondary code
are increased resistance to narrow-band interference due
to the additional spectrum line, better cross-correlation
properties (which mostly help during acquisition to avoid the
near-far effects), and more robust data bit synchronization
than with the histogram method, although that does not
apply to Galileo E1-B/C, since the data bit and PRN code
have the same duration.

The algorithm used for secondary code extraction is
based on a combination of serial and parallel searches. It is
well described in [11, 12]. The search for the primary code
phase is performed serially within one primary code length,
and the secondary code phase is searched in parallel over the
entire length of the secondary code. The algorithm takes into
consideration the residual frequency offset, and it is shown
to reduce the acquisition time compared to other methods.

3. Two-Step Tracking Scheme and
Discriminator Curves Analysis

Achieving the favorable properties of the new signals is
possible by increasing the complexity of the tracking loops
design. There are many techniques proposed to provide
unambiguous tracking, as already explained in the intro-
duction. Most of them are listed with the corresponding
tracking architectures in [13, 14] as well as the code tracking
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Table 1: Slope of the autocorrelation function for different early-
late spacing for data, pilot channels, and averaged data/pilot channel
for infinite bandwidth.

Autocorrelation slope α

Correlator
spacing

Data/pilot
averaged

Pilot channel Data channel

1/20 3.98 4.50 3.39

1/12 5.35 5.96 4.63

1/10 5.51 6.06 4.82

1/5 1.49 0.09 1.89

error comparison. Most of them need complex tracking
architecture or modify the correlation function. In this
section, we present the analysis about our proposed two-
step tracking scheme, simple and with less complex tracking
architecture. Carrier and code delay tracking are analyzed
separately, putting more weight on code delay tracking.

3.1. Galileo E1 CBOC Carrier Tracking (PLL). The right
choice of the PLL discriminator is the first step towards
obtaining accurate phase error estimation. The choice of
the PLL discriminator is dependent upon the parameters
of the E1 CBOC signal structure. The pilot channel alone
can be used for the phase error estimation, since there is
no data bit on it, and, theoretically, coherent integration
can be used for as long as needed. As a consequence,
a discriminator that is insensitive to phase jumps can
be used. Using pure PLL tracking on the pilot channel
as well as longer coherent integration improves carrier
tracking sensitivity. It also enhances the carrier tracking loop
resistance to receiver dynamics. Although 3 dB are lost by
ignoring the data channel for the carrier phase estimation,
the noise sensitivity is improved by 3 dB. Therefore, the use
of an extended arctangent discriminator has been selected
(atan2), providing the widest linear tracking region. The
discriminator output can be analytically expressed as

Datan2 = arc tan 2
(
Q

I

)
. (4)

I and Q are in-phase and quadrature-phase correlator
outputs for the pilot channel. The extended arctangent (four-
quadrant) discriminator has an operational range twice as
large as the traditional arctangent discriminator ([−π,π]).
It has good noise resistance performance for high C/N0

(carrier-to-noise ratio). It can also track the phase modulo
2π, without a half cycle of ambiguity. Although pilot-only
tracking is noisier than data/pilot combined tracking, the
chance of losing lock is smaller, and the tracking is more
stable and less complex.

3.2. Galileo E1 CBOC Code Delay Tracking (DLL). Code
delay tracking is more stable than carrier tracking, since it
provides the user with more robust measurements and initial
estimates of the receiver position through pseudoranges. The

main idea behind the considered code tracking algorithm
that we call the “two-step tracking technique” [1, 15] is to
benefit from the narrowness of the CBOC autocorrelation
peak while minimizing the risk of locking onto one of
the secondary peaks of the autocorrelation function. This
algorithm can also be applied to BOC(1,1) as well as
CBOC(6,1,1/11) tracking and consists of two steps. The first
step is a coarse tracking step that is used to ensure proper
convergence towards the true lock point, since it relies on
an unambiguous discriminator. This is achieved using an
original unambiguous combination of all five correlators (E,
L, P, VE, and VL), where VE and VL are always positioned on
the secondary peaks. This ensures that the prompt correlator
is indeed located on the main correlation peak.

However, once the code tracking has converged to the
main peak, the VEMLP (Very Early Minus Late Power)
discriminator that uses five correlators’ outputs offers sub-
optimal code tracking performance since it does not benefit
from the narrow CBOC correlation peak. At this point, the
tracking process switches to a fine tracking step, where a
DP (or HRC) discriminator is used with a narrow correlator
spacing. The description and parameters of the two-step
tracking technique are provided in Table 2 [1]. Power in the
name VEMLP comes from the fact that the discriminator
function contains squared correlator outputs that relate to
the power of the signal.

As shown in Table 2, the fine tracking step fully exploits
the narrow autocorrelation peak by using (1) a DP (HRC)
discriminator with narrow E-L spacing and (2) a reduced
loop bandwidth (as enabled by the use of carrier aiding). We
proposed an HRC discriminator [16] for the fine tracking
step instead of a DP discriminator in order to improve
multipath mitigation [1]. More specifically, a combination
of traditional tracking (DP) and tracking with an HRC is
used. In the case of strong multipath, an HRC correlator is
used, since it shows good multipath mitigation, otherwise
traditional tracking (DP) is assumed, since it has a wider
stability tracking region. Details are provided in Section 5.2.
Normalization of the discriminator outputs was also per-
formed in order to provide an unbiased estimate of the
small code errors. The use of a bump-jump algorithm [4]
minimizes the false lock risk. It measures and compares the
received power in the VE, P, and VL correlator outputs and
jumps left or right if the VE or VL correlator output power is
found to be consistently higher than that of the P. Note that
the E-L correlator spacing should remain flexible, depending
on the front-end bandwidth of the receiver. We used band-
width of 18 MHz throughout the paper and generated the
results based on this assumption. However, the parameters
of the two-step tracking scheme, such as early-late spacing,
width of the stability and linearity tracking regions, slope of
the autocorrelation functions (as it is provided in Table 1),
and tracking thresholds change depending on the available
bandwidth. The scheme is designed to be flexible, for
example, when decreasing the front-end bandwidth, early-
late correlator spacing increases, and so forth.

In order to improve code tracking accuracy, both pilot
and data channels are used for the code tracking delay
estimation, making it more robust. Common data/pilot code
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Figure 2: Noncoherent collaborative tracking architecture for the fine tracking step of two-step tracking algorithm.

Table 2: Two-step tracking scheme description for the front-end bandwidth of 18 MHz.

Two-step tracking technique

Parameters Coarse tracking Fine tracking (pilot channel) Fine tracking (data channel)

E-L spacing [−1/2;−1/4; 0; 1/4; 1/2] [−1/2;−1/24; 0; 1/24; 1/2] [−1/2;−1/24; 0; 1/24; 1/2]

Discriminator type VEMLP DP/HRC DP

Loop filter BW 2 Hz 1 Hz 1 Hz

False lock detector Embedded Bump-jump Bump-jump

Carrier aiding No Yes Yes

Advantage Unambiguous Accurate multipath gain Accurate

Disadvantage Noise and MP increased Ambiguous Ambiguous

tracking is performed by linearly combining them non-
coherently. The incoming signal is separately combined with
data and pilot PRN codes. The outputs are then combined in
a noncoherent way, as shown in Figure 2. Coherent combin-
ing outperforms noncoherent combining from an accuracy
standpoint, but it also requires data bit sign recovery for
integration times greater than 4 ms, which increases the loop
complexity and becomes unreliable at low C/N0. Therefore,
data and pilot discriminator outputs are averaged using a
noncoherent combining method and fed into a unique loop
filter that updates both pilot and data NCO (Numerically
Controlled Oscillator). The discriminator output can then be
written as

Dout = αpDd + αdDp, (5)

where αp and αd are weights for the pilot and data channels,
respectively, applied to the discriminator. The weights have
to fulfill the following requirements:

αp + αd = 1,

αp =
σ2
p

σ2
p + σ2

d

,

αd = σ2
d

σ2
p + σ2

d

,

(6)

where σp and σd are the variances of the discriminator
on the pilot and data channel, respectively. If the same
modulation and code tracking loop update rate are used
for the data and pilot channels, the same variance will be
observed on both channels, reducing the channel combining
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to a simple averaging [2, 15]. However, since the data and
pilot autocorrelation functions are not rigorously identical,
the pilot channel having a slightly sharper main lobe peak
that could provide slightly better tracking accuracy, it is
therefore possible to further refine the weighting scheme so
that the tracking relies more heavily on the pilot channel.
Theoretical values for the weights for the pilot and data
channels are shown to be approximately 0.6 and 0.4,
respectively. They were obtained empirically, by computing
the standard variation of the data and pilot channels and
using a setup that consists of a Spirent GSS8000 simulator
[17], connected with a wideband front-end [18], and the data
was postprocessed in software.

The resulting collaborative tracking architecture for the
fine tracking step of the two-step tracking algorithm is
shown in Figure 2, highlighting the DLL part divided in
separate tracking architectures for data and pilot channels.
After wiping off the carrier using multiplication of the
incoming signal with a local replica that is aligned using the
information from the carrier NCO, the resulting in-phase
and quadrature-phase components are multiplied with five
code replicas: E, P, and L as well as VE and VL (not shown
in Figure 2). Ideally, if the carrier phase is aligned with the
carrier phase of the incoming signal, all the energy will be in
the in-phase component. Estimation of the code delay error
is performed in the DLL loop, using DLL discriminators. The
output is then filtered by the DLL loop filter, and updates are
provided for the code delay rate for the NCO. In the next
section, analysis of the three different types of discriminators
used in the tracking scheme described above is provided.

3.3. DLL Discriminators. As shown in Table 2, three types
of discriminators are used in the two-step tracking scheme:
VEMLP and DP, for the coarse and fine tracking steps,
respectively, and HRC as an option when high multipath
error is present in the fine tracking step. The VEMLP
discriminator is noncoherent and needs two more correlators
(VE and VL) with a fixed distance between them, to mark
points that can be potential sources of false locks. It has a
higher computational load than DP, which is quasicoherent.
After converting a signal to IF frequency, I and Q baseband
correlation outputs for the E, L, P, VE, and VL pilot channel
can be written as

IX =
√

P
2
R̃
(
ετ + β

) sin
(
πε f Ti

)

πε f Ti
cos
(
εφp
)

+ nIX ,

QX =
√

P
2
R̃
(
ετ + β

) sin
(
πε f Ti

)

πε f Ti
sin
(
εφp
)

+ nQX ,

(7)

where R̃ is the correlation of the local spreading code with the
filtered incoming spreading code, ε f is the frequency error,
ετ is the code group delay error, and εφ is the carrier phase
delay error. The noise components nIX ,nQX are independent
Gaussian noise components. X relates the correlator type
(E, P, L, VE, VL), and β represents the spacing between
correlators (for P β = 0, E β = δ/2, for L β = −δ/2, VE
β = δ, and VL β = −δ). δ represents the E-L correlator

spacing and for the coarse tracking step (β = 2δ). Therefore,
the output for the types of the discriminators can be written
analytically as

DVEMLP =
√
I2

VE +Q2
VE + I2

E +Q2
E −

√
I2

VL +Q2
VL + I2

L +Q2
L,
(8)

DDP = (IE − IL)IP + (QE −QL)QP, (9)

DHRC = (IE − IL) +
(IVE − IVL)

2
. (10)

Analytical expressions for the VEMLP, DP, and HRC
discriminators functions can be written using filtered auto-
correlation function (R̃) with the approximation that in
tracking stage sin(πε f Ti)/πε f Ti � 1 and cos(εφd ) �
1, sin(εφd ) � 0 as

DVEMLP =
√

P
2

⎛
⎝
√
R̃2

(
τ +

δ

2

)
+ R̃2(τ + δ)

−
√
R̃2

(
τ − δ

2

)
+ R̃2(τ − δ)

⎞
⎠,

(11)

DDP =
√

P
2

(
R̃
(
τ +

δ

2

)
− R̃

(
τ − δ

2

))
R̃(τ), (12)

DHRC=
√

P
2

(
R̃
(
τ+

δ

2

)
−R̃

(
τ− δ

2

)
− R̃(τ + δ)−R̃(τ − δ)

2

)
.

(13)

The performance of the tracking loops in the presence
of multipath and code tracking errors can be assessed by
studying the discriminators curves. These curves present the
discriminators’ outputs as a function of code delays (inputs).
Tracking parameters of interest that can be derived from the
curves are the linear tracking region, defined as the region in
which the discriminator responds without any bias, and the
stability region (pull-in region), defined as the region where
the discriminator reacts in the right direction [3].

A wider stability tracking region means more robust
tracking. A wider linear tracking region corresponds to
correct and unbiased discriminator response. As already
shown in [3], the discriminator output does not directly
estimate the input error. In order to obtain unbiased code
delay error, the discriminator output has to be normal-
ized by its gain, therefore achieving perfect normalization.
Normalization removes amplitude sensitivity, improving
performance under rapidly changing SNR (Signal-to-Noise
Ratio) conditions and providing unbiased code delay error
estimation. As normalization depends on the power of the
signal, discriminator outputs should be first normalized by
the estimated power of the signal. Therefore, using this
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approach, the normalization factors for three discriminator
types can be written as

NVEMLP =
√
I2

VE +Q2
VE + I2

E +Q2
E +

√
I2

VL +Q2
VL + I2

L +Q2
L,
(14)

NDP = (IE + IL)IP + (QE +QL)QP, (15)

NHRC = (IE + IL) +
(IVE + IVL)

2
. (16)

Expressions for the discriminator outputs can be sim-
plified using the assumptions that the estimated code delay
error is smaller than half of the correlator spacing, and
the E and L correlator values correspond to the points on
the autocorrelation function that are on the slope forming
its main peak. Normalization provides unbiased estimation
of the code delay error within ±δ/2 chips. Using the
equations for the correlator outputs provided above and
using the assumption that the autocorrelation function can
be approximated by small linear parts with different slopes,
the discriminator outputs can be written as

NVEMLP =
√

2P

√
2− 2αετ(αετ−2δ)−αδ

(
δ− 1− α−αδ

4

)
,

(17)

NDP =
√

P
2

(2− αδ)(1− α|ετ|), (18)

NHRC =
√

P
2

(2− αδ)(1− α|ετ|) +

√
P
2

(1− αδ). (19)

Therefore, using the normalization expressions provided
above, as well as the normalization factors that relate
to discriminator gain, the expressions for the normalized
VEMLP, HRC, and DP discriminators can be written as

DVEMLPn =
2− 3αδ + (5/4)α2δ2

3αδ − 4
DVEMLP

NVEMLP
, (20)

DDPn =
(2− αδ)

2α
DDP

NDP
, (21)

DHRCn =
2αδ − 3

3α
DHRC

NHRC
. (22)

These expressions are obtained from (18), (19), and (20)
using the analytical expression for the autocorrelation func-
tion and obtaining the slope of the autocorrelation peak at
α = −δ/2. Normalization factors were obtained analytically
and tested empirically. They include normalization by the
discriminator gain obtained by derivation of the discrimi-
nator output. Whereas normalization is straightforward for
DP discriminator, for VEMLP and HRC discriminators, the
following approximations should be used: α2ε2

τ ∼ 0 and
αετ ∼ 0. These are valid for small code tracking errors, while
the tracking is maintained.

These factors are constant for BOC(1,1) and BPSK
signals, but for CBOC they vary depending on the E-L
correlator distance. In both tracking steps, the correlators are

Table 3: Discriminator normalization factor for the two-step
tracking scheme (E-L = 1/12, VE-VL = 1/2).

Discriminator normalization factors

Discriminator type Pilot channel Data channel

DP 0.32 0.28

VEMLP 0.6 0.55

HRC 0.25 0.35
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Figure 3: Normalized DP discriminator output for CBOC data and
pilot channels and an E-L spacing of 1/12 chips.

located on the linear part of the discriminator curve, and
the factors can be considered constant for fixed E-L spacing,
as shown in Table 3. This table contains the discriminator
normalization factors for the combined data/pilot tracking
and the slope of the autocorrelation curve as provided in
Table 1.

The discriminator outputs for DP and VEMLP discrim-
inators are shown in Figures 3 and 4. The most important
point that can be observed from these figures is that,
by applying normalization, the discriminator curve’s linear
tracking region increases. Also, the discriminator curves
for the pilot channel alone and the VEMLP discriminator
(Figure 4) contain additional ripples. These ripples are due to
high-frequency components introduced by BOC(6,1) mod-
ulation. As expected, the discriminators provide an unbiased
response for input code errors below roughly 0.25 chips.
For input code errors greater than that, the discriminators’
output tends to flatten. This, in turn, should provide a
smooth convergence phase. Since VEMLP offers only limited
noise and multipath mitigation capabilities, it is therefore
used directly after acquisition to ensure convergence of the
code tracking loop to the main peak of the autocorrelation
function. Upon convergence of both the code and carrier
tracking loops, the tracking software switches to the fine
tracking step.

As was the case for the VEMLP discriminator, the overall
behavior of the DP discriminator is invariant across the two
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Figure 4: Normalized VEMLP discriminator output for CBOC data
and pilot channels and an E-L spacing of 1/2 chips.
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Figure 5: Normalized HRC discriminator output for CBOC data
and pilot channels and an E-L spacing of 1/12 chips.

MBOC modulations apart from the additional ripples that
can be observed on the two CBOC discriminators. Figure 3
also highlights the false-lock point issue inherent to all BOC
and CBOC modulations (e.g., [3]). Indeed, it is obvious from
this figure that the zero-crossing observed at approximately
0.5 chips would provide a stable lock point which would
lead to a ranging bias of 150 m. The HRC normalized
discriminator output is shown in Figure 5. It can be seen that

it has a much narrower linear tracking region in comparison
to DP and VEMLP.

Again, normalization brings improvement by increasing
the linearity region of the discriminator, making tracking
more robust. However, the stability region remains similar
to the unnormalized case. Normalization thus reveals the
true code error present at the output of the discriminator.
To conclude this section, the main advantage of using
normalization is that the discriminator will perfectly react
to a wide range of code delays. Both DP and VEMLP
discriminators have similar widths of the linearity and
stability regions before performing normalization. After
normalization, the DP discriminator shows better stability
and linearity (approximately 5% and more). Also, the
normalized DP discriminator has vertical asymptotes. This
means that the loop will overreact for large errors, and this
can cause sudden tracking jumps that might lead to a false
lock or degraded tracking.

So far, tracking loop and code discriminators have been
described assuming no external disturbances. Since the
DLL tracking loop can be affected by different sources of
disturbances, such as thermal noise, multipath and signal
dynamics, our next step is to investigate the influence of these
error sources on the overall behavior of the tracking loop.

4. Code Tracking Error and Tracking Threshold

Code tracking error besides multipath and dynamic stress
error is the dominant source of range errors in a GNSS
receiver’s DLL [19, 20]. Using carrier aiding, the dynamic
stress error is negligible; therefore, only the error induced by
thermal noise will be considered. The code tracking thresh-
old can be derived using an analytical expression for the
thermal noise-induced CBOC code tracking error variance.
For the DP discriminator used in the fine tracking step, it is
given in [3, 21], whereas, for the VEMLP discriminator, it is
derived below. Analytical expressions for both discriminators
can be written as

σ2
(DP,VEMLP,HRC) =

2BL(1− 0.5BLTI)SN (0)
K(DP,VEMLP,HRC)

. (23)

SN (0) is the noise power spectral density, andK(DP,VEMLP,HRC)

represents the discriminator loop gain given by

K(DP,VEMLP,HRC) = dD(DP,VEMLP,HRC)

dετ

∣∣∣∣
ετ=0

. (24)

Combining this equation with the expressions for the
correlator outputs provided in Section 3.3 and arranging
them using the following equality for the filtered version
of the autocorrelation function, we derived theoretical
expressions for the code tracking errors for both DP and
VEMLP discriminators for infinite front-end bandwidth:

σ2
VEMLP

=
BL(1− 0.5BLTI)

((
R̃F(0)− R̃F(δ)

)
R̃F(δ/2)

(
R̃F(δ/2) + R̃F(δ)

)
+
(
R̃F(0)− R̃F(2δ)

)
R̃2
F(δ)

)

2(P/N0)
(
R̃F(δ)

(
dR̃F(x)/dx

)∣∣∣
x=δ+R̃F(δ/2)

(
dR̃F(x)/dx

)∣∣∣
x=δ/2

)2 ·θ,



International Journal of Navigation and Observation 9

σ2
DP =

BL(1− 0.5BLTI)
(
R̃F(0)− R̃F(δ)

)

2(C/N0)
{
dR̃F(x)/dx

}2
∣∣∣∣
x=d/2

· χ.

(25)

Expressions α1 = (dR̃F(x)/dx)|x=δ and α2 =
(dR̃F(x)/dx)|x=δ/2 represent the slopes of the autocorrelation

function at E-L spacings δ and δ/2. Expressions for θ and χ
can be approximated as

θ
(

P
N0

,TI

)

= 1 +
3
(
R̃2
F(0)− R̃2

F(δ)
)

+ R̃2
F(0)− R̃2

F(2δ)

(2CTI/N0)
((
R̃F(0)− R̃F(δ)

)
R̃F(δ/2)

(
R̃F(δ/2) + R̃F(δ)

)
+
(
R̃F(0)− R̃F(2δ)

)
R̃2
F(δ)

) ,

χ
(

P
N0

,TI

)
= 1 +

1

(CTI/N0)R̃F(0)
.

(26)

BL is DLL loop bandwidth, TI is coherent integration time,
δ is the early-late spacing, C is the incoming power of
the carrier, N0 is the thermal noise, and R̃F is the filtered
correlation function of the incoming signal and θ, χ =
f (C/N0,TI) are factors that are a function of the integration
time and carrier-to-noise ratio. The expression for the
VEMLP discriminator can be simplified, using the following
equality:

R̃F(0)− R̃F(δ) � R̃F

(
δ

2

)
− R̃F

(
3δ
2

)
. (27)

This simplification is valid only for wide E-L correlator
spacings (E-L = 1/2) that are used in the coarse tracking
step. Using the values for the slope of the autocorrelation
function α from Table 1 for different correlator spacings, the
code tracking error for the CBOC fine and coarse tracking
steps can be computed. From our analysis, we observed that
VEMLP discriminator provides very high code tracking noise
error (33 m forC/N0 of 25 dB-Hz) for the basic configuration
(E-L = 1/2). High code tracking noise is the price one pays
in the coarse tracking step. Decreasing the inner correlator
spacing (E-L) while keeping the outer spacing (VE-VL) to
one chip decreases the code tracking noise as well.

When increasing the correlator spacing, the DP discrim-
inator code tracking error increases, but less dramatically
pace than is observed for the VEMLP discriminator. The
DP code tracking noise is very similar for different spacings
since the E-L spacing is small (around 1.7 m for C/N0 of
25 dB-Hz). The code tracking error for an E-L distance of

1/20 is higher than for E-L distance of 1/12. This happens
due to front-end filtering, which rounds the autocorrelation
peak, increasing the noise. DP outperforms VEMLP for large
correlator spacings. Since the first stage of the two-step
tracking scheme is short, the large code tracking noise does
not greatly influence the overall tracking performance.

As was previously shown in [2], the code tracking
error is approximately

√
2 lower for combined pilot and

data channels tracking than for single channel tracking.
Therefore, the tracking threshold decreases using combined
tracking schemes. An analysis of the tracking threshold
is provided below, starting from the code tracking noise
derivation. Following the analysis provided in [19], the
resulting analytical expression for the tracking threshold is
obtained, and it is equal to

(
C

N0

)

ThDP
=

18 ·WD

(
1 +

√
1 + δ2/9WDTIRCBOC

)

δ2
.

(28)

In the same way, the resulting tracking threshold for the
VEMLP discriminator can be written as

(
C

N0

)

ThVEMLP
=

18 ·WT

(
1 +

√
1 + δ2/9WTTIY

)

δ2
. (29)

Parameters WT and Y depend on the slope of the auto-
correlation function, integration time, and DLL parameters
and can be written as

WT =
BL(1− 0.5BLTI)

((
R̃F(0)− R̃F(δ)

)
R̃F(δ/2)

(
R̃F(δ/2) + R̃F(δ)

)
+
(
R̃F(0)− R̃F(2δ)

)
R̃2
F(δ)

)

2
(
R̃F(δ)

(
dR̃F(x)/dx

)∣∣∣
x=δ + R̃F(δ/2)

(
dR̃F(x)/dx

)∣∣∣
x=δ/2

)2 ,

Y =
2
((
R̃F(0)− R̃F(δ)

)
R̃F(δ/2)

(
R̃F(δ/2) + R̃F(δ)

)
+
(
R̃F(0)− R̃F(2δ)

)
R̃2
F(δ)

)

3
(
R̃2
F(0)− R̃2

F(δ)
)

+ R̃2
F(0)− R̃2

F(2δ)
.

(30)
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Following our analysis that cannot be fully presented
here, the tracking threshold decreases as the integration
time increases and DLL bandwidth decreases. For very long
integration durations, extremely low C/N0 values can be
tracked, such as 10 dB-Hz. What was observed is that the
results for tracking threshold for two types of discriminators
DP and VEMLP are very similar. For VEMLP, as the inner
correlator spacing decreases, the tracking threshold decreases
as well whereas, for coarse tracking step, does not drop below
20 dB-Hz. For DP, the trend is the same except the fact that
for E-L spacing of 1/20 the threshold is increased, due to the
rounding of autocorrelation peak.

5. Multipath Mitigation Analysis

Multipath represents a phenomenon that disturbs tracking
causing phase offsets in code and carrier and should
thus be properly mitigated. For automotive applications
in urban environments, the multipath conditions will
change continuously, making multipath one of the most
disturbing problems of GNSS-based navigation systems in
urban environments. As already analyzed and shown in
[22], carrier multipath is not critical, causing maximum
absolute multipath error of only 0.015 m for E1 CBOC. Code
multipath represents a much more important issue and will
be discussed here.

5.1. Code Multipath Analysis. Multipath is the main factor
that affects the pseudoranges, and it does so through
parameters such as the number of multipath signals, geo-
metric path delay, phase, and relative power. Pseudorange
measurement is performed by the code tracking loop, which
aligns the locally generated PRN code with the PRN code
of the incoming signal. The impact of multipath on code
tracking accuracy is often represented as an error envelope
representing the maximum error resulting from a single
multipath with a certain phase, delay, and amplitude. This is
called multipath error envelope (MEE). MEEs are computed
for each discriminator type in the two-step tracking scheme,
as already shown in [1], and for both steps and analyzed the
optimal solution in order to mitigate or severely minimize
the multipath error.

The first step, a coarse tracking step, uses a noncoherent
VEMLP discriminator with wide correlator spacings. The
resulting MMEs for the CBOC and BOC(1,1) signals are high
MMEs, going up to 25 m as shown in [1]. Large multipath
error is the price paid for reliable tracking in the coarse
tracking step. As already explained in [1], the E-L correlator
spacing should be as low as possible since the multipath error
rapidly increases for spacings beyond 1/20 chips. For an E-
L spacing of 1/12 chips, the MEE is close to that obtained
for 1/20 chips but the linear region is wider which implies
more robust tracking in the fine tracking step. For wider
E-L spacings between the performances of the CBOC and
BOC(1,1) are almost equal. As it it shown in [1], it is clear
that CBOC offers a better resistance to long delay multipath
than BOC(1,1) tracking. However, for short delays (<8 m), it
leads to the same multipath envelope. An additional way to

mitigate multipath is to lower the loop bandwidth as much
as possible (0.5 Hz). This way, the DLL will not be able to
track the multipath-induced error, resulting in more accurate
tracking.

5.2. Proposed Fine Tracking Step Implementation. The use of
an HRC discriminator is proposed in the fine tracking step of
two-step tracking algorithm. A potential issue with HRC is
the limited stability tracking region, as shown in Section 3.3.
This can be minimized through the implementation of
carrier aiding which reduces the dynamics experienced by the
discriminator. Since the HRC degrades the postcorrelation
SNR and since the coherent integration time on the data
channel is limited to 4 ms, it appears that implementing the
HRC on the data channel would not provide a very robust
solution. However, in the absence of unknown bit transition
and with the help of carrier aiding, the coherent integration
time can easily be extended to a couple hundred milliseconds
on the pilot channel [3]. Consequently, implementation of
the HRC on the pilot channel is the desired configuration.

Given the previous discussion, we proposed a CBOC
tracking algorithm that combines a two-step tracking
technique with the HRC on the pilot channel to lower
the multipath error. Different correlator spacing config-
urations are used on the data and pilot channels. The
data channel uses the configuration defined for the fine
code tracking, that is, [−1/2;−1/24; 0; 1/24; 1/2], and the
pilot channel uses the HRC configuration defined as
[−1/12;−1/24; 0; 1/24; 1/12], where the spacings follow the
pattern [−2δHRC;−δHRC; 0; δHRC; 2δHRC] and δHRC is the E-
L correlator spacing. The scheme then consists of using the
data channel to perform false lock detection and, in case no
false lock is detected, using the pilot channel to close the
tracking loop, which may use HRC discriminator depending
on the following two scenarios.

(1) High Multipath Case. Tracking using the HRC dis-
criminator is desired. In this case, the use of the DP
discriminator is not recommended as it would feed the
combined discriminator with its multipath-induced error.

(2) Reliably Critical Case. Tracking using the DP discrimi-
nator is desired. In this case, the use of the HRC should be
avoided so as to avoid integrating the potentially unreliable
HRC discriminator output into the combined discriminator
output.

The pilot channel should therefore implement an
“either/or” discriminator combination that would alternately
rely on the DP or the HRC discriminator. It was shown in [1]
that the MEE does not exceed 0.01 chips for the considered
E-L spacing. The discriminator output should not be greater
than this if the tracking is correctly achieved. Therefore, to
decide which discriminator to use, a test based on the DP
correlator output is run. If the code tracking error is small
(i.e., the DP discriminator output is in its linear tracking
range), then the HRC is used. Otherwise, the tracking relies
on the DP because of its wider stability range (0.3 chips in
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one direction). To summarize, the pilot discriminator output
can be written as

Dpilot = DDP, if DDP � δHRC,

Dpilot = DHRC, if DDP � δHRC.
(31)

The choice of threshold δHRC could be made to depend
on C/N0. This approach would bring robustness and will be
investigated in the future. When higher C/N0 is available,
strong multipath mitigation could be achieved, while for
lower C/N0 the tracking would remain robust.

6. Results and Discussion

After providing the overview of the theoretical performance
of the two-step tracking scheme, we present in this section
further the simulation results in order analyze if they are
consistent with the theoretically derived results. The data
collection setup consists of a Spirent GSS8000 simulator
[17] to emulate the Galileo E1 OS signal, a Fraunhofer
triple-band front-end [18] with 18 MHz of bandwidth to
filter, downconvert, and digitize the signal of interest (i.e.,
E1 CBOC signal), and a postprocessing architecture that
contains a software receiver implemented in MATLAB, based
on a modified version of the Kai Borre GPS L1 defined
software radio [20].

6.1. Simulation-Based Tracking Results. To test the proposed
tracking scheme, we created different scenarios. Using the
Spirent simulator’s build-in multipath simulation models,
we tested two types of multipath models: first type of simple
multipath models, that adds a multipath ray with 0.5 chips
delay and 6 dB of attenuation to the direct signal, and in
the second case, a multipath with a fixed delay of 100 m is
added, since this represents the point at which multipath
error is the highest. Third model adds three rays that are to
the direct signal with delays of 0.5, 0.3, and 0.1 chips with the
same attenuation of 6 dB. Fourth group of multipath models
tested was based on Land Mobile Multipath (LMM) model,
statistical model that emulates direct paths and reflected
paths as Rician or Rayleigh, depending on the different
type of environment: Urban, Suburban, and Urban Canyon
scenarios were tested. Also, two differentC/N0 configurations
were investigated: low (24 dB-Hz) and high (45 dB-Hz), as
well as static and mobile receiver.

The outputs from the I correlator of the pilot channel
for simple multipath model that assumes one reflected path
with the delay of 100 m are shown in Figure 6 for all five
correlators. The most important point to observe is that all
outputs stabilize after approximately 300 code periods from
the beginning of tracking. After this point, the tracking is
stable. The transition from coarse to fine tracking happens
around 1500 code periods, when it is assured that the main
autocorrelation peak is being tracked. We could observe
that late correlator has higher power at the beginning. The
condition for transition from coarse to fine tracking step is
related to the PLI (Phase Lock Indicator). If the PLI is less
than 0.9 (0.7 in case of low C/N0), the coarse tracking step
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Figure 6: I correlation output for two-step tracking scheme with
multipath model with fixed offset delay of 100 m.

proceeds. The transition from coarse to fine tracking step
happens only when this value is exceeded. In the Figure 6,
the threshold is achieved earlier, but the transition happens
later in order to provide a better overview of the scheme.

The DLL outputs for the six different scenarios described
above are shown in Figure 7. Note the different convergence
times for some cases. Due to the deformation of the
autocorrelation main peak, it takes more time for the DLL to
converge when multipath is present, than when no multipath
is present. Overall, approximately 500 periods are needed
(or 2000 ms) to lock to the right correlation peak and then
switch to the fine tracking step. The PLI indicators of the two
multipath cases analyzed have multiple peaks lower than 0.5
until locked to the right correlation peak.

Once it is assured that the right correlation peak is being
tracked, the fine tracking step turns on. Table 4 compares
the fine and coarse tracking steps in terms of DLL output’s
standard deviation. It can be seen that the standard deviation
drops by more than a factor of five when switching from
coarse to fine tracking for all cases under investigation. It is
also important to mention that the tracker succeeds to follow
the right autocorrelation peak in all six cases. Peaks in the
DLL output are present due to transition from coarse to fine
step, as well as due to transition from HRC to DP in the
fine tracking step. The PLL discriminator output is shown in
Figure 8. It can be noted that variation of PLL error is similar
for all cases considered, because carrier tracking is performed
independently on the pilot channel only, and the frequency
lock is well maintained. Only the secondary code was wiped
off according to [12].

It has to be mentioned that in the fine tracking step
a bump-jump algorithm was implemented, as previously
proposed in [4]. Amplitude comparison was accomplished
by a simple up/down counter mechanism. The absolute
values of the VE, VL, and P correlators were compared and,
if either VE or VL sample is the largest, the appropriate
counter was increased and the other decreased. When the set
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Table 4: Standard deviation of the DLL outputs for the two-step tracking scheme using six different scenarios.

DLL standard deviation

Scenario Coarse tracking step Fine tracking step

Low C/N0 simple multipath model 0.0585 0.0124

Mobile receiver no multipath 0.0192 0.0035

One multipath ray of 0.5 chips delay 0.0169 0.0045

One multipath ray of 100 m delay 0.0180 0.0037

Land multipath model Urban Canyon 0.0154 0.0033

High C/N0 no multipath 0.0134 0.0022
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Figure 7: DLL loop output for the two-step tracking algorithm and
six investigated scenarios.
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Figure 8: PLL loop output for the two-step tracking algorithm and
different multipath scenarios.

threshold was exceeded, the jump to the new peak occurred.
Here, we set the threshold to 50, which meant that if the VE
or VL was larger than the P for 50 consecutive periods (or
200 ms), the tracking jumped to a new peak.

6.2. Galileo Real Data Tracking Results. On the 12th of
December 2011, two Galileo in-orbit validation (IOV)
satellites that were launched on 16th of October 2011, PFM
and PM-FM2, started transmitting Galileo Open Service
signals with pseudorandom code numbers SV11 and SV12
[9]. From the end of December 2011, the signals are available
when the satellites are in the direct visibility domain of the
receiver. Using the setup described above, we were able to
receive signals from both satellites and successfully track
them. We tested the two-step tracking scheme using real
signals, and we show the first results here.

The setup differs from the simulation setup described
above that differs only in the antenna. Instead of using the
Spirent simulator output connected to the front-end receiver,
we used a fixed, nondirectional rooftop wideband Antcomm
antenna, connected via a two-stage amplifier to a front-end.
The setup was located at our premises, in IMT Neuchatel, at
latitude: 46.519617 degrees and longitude: 6.63221 degrees.

Digital IF (IF = 12.82 MHz) samples were stored in the
memory and subsequently postprocessed, using the software
receiver described earlier, on the evening of March 21st,
2012 when the satellites were in good view of the antenna.
During recording, the elevation of the Galileo-PMF satellite
(SV11) was 45.5 degrees and the elevation of the Galileo-
FM2 satellite (SV12) 65.2 degrees.

The acquisition peak acquired in 3D space for satellite
SV12 is shown in Figure 9. We can clearly observe the Galileo
signal as the correlation peak rising above the noise level.
After acquiring the signal, secondary code wipe-off was
performed, and the values for the Doppler offset and code
offset of the secondary code were passed to the tracking stage.

Correlator outputs for all five correlators are shown in
Figure 10. The outputs are stable, and a clear transition from
coarse to fine tracking is observed. The DLL discriminator
output for both satellites is shown in Figure 11. The output
is noisy in the coarse tracking step, but in the fine tracking
step it is stable with a much smaller standard deviation and
tracking is furthermore stable.

Once the receiver is in tracking mode, C/N0 at the
receiving antenna can be estimated. Approximately 20 code
periods (around 100 ms) were used for the estimation of
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Figure 10: I correlator outputs for the two-step tracking algorithm
using real data from Galileo FM2 and PFM satellites.

the C/N0. The estimated ratio is shown in Figure 12 for both
satellites and is very similar C/N0 profiles for both satellites.
Note that the displayed C/N0 relates to both the data and
pilot channels. The single channel C/N0 is around 3 dB lower.
Measured C/N0 is relatively high due to the clear view of the
satellites and good position of the satellites.

7. Conclusions

This paper provided both theoretical and experimental study
of the previously proposed two-step tracking algorithm for
Galileo E1 CBOC tracking. The proposed algorithm has
two independent tracking steps that make the algorithm
flexible enough to be easily adaptable to changing signal
environments. It was shown that this approach provides
robust, accurate, and reliable tracking since the coarse step
ensures convergence to the main autocorrelation peak while
the fine step minimizes noise and multipath errors.

The analytical expression for the CBOC autocorrelation
function was analyzed, as it is more complex than the
BOC(1,1) autocorrelation function, and cannot be consid-
ered to be fully linear. Depending on the E-L correlator
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Figure 12: Estimated C/N0 for the two-step tracking algorithm
using real data from Galileo FM2 and PFM satellites.

spacing, the slope of the autocorrelation function varies
in the range of 1–6, giving different code tracking noise
behavior. Optimal correlator spacings were discussed (VE-
VL = 1/2, E-L = 1/12), in order to minimize tracking
errors. Still, scheme remains flexible, and, depending on
the available front-end bandwidth, tracking parameters may
vary.

The analytical expression for VEMLP code tracking error
is derived, and this is one of the main contributions of this
paper, since it was not provided before according to our
best knowledge. Using this expression, it was shown that,
although the code tracking error in the first step is very high
(∼35 m), stable lock is provided in the first tracking step, and
then it decreases exponentially (down to 1.8 m) in the fine
tracking step.

We also showed experimentally using theoretical deriva-
tions that the two-step tracking algorithm has good tracking
sensitivity in both tracking steps and can be used to
track CBOC signals with low C/N0 ratio without losing
lock. The tracking stability was analyzed as well in form
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of discriminator curves analysis. It was shown that the
proposed scheme does not lose lock easily since the risk of
biased tracking is circumvented. Since the two-step tracking
algorithm assumes the usage of three discriminator types
(VEMLP, DP, and HRC), each of them were analyzed
separately and the normalization parameters optimized in
order to improve the two-step tracking algorithm.

The main source of errors, including multipath and ther-
mal noise, were evaluated, and optimal algorithm parameters
(shown in Table 2) were obtained through this evaluation,
but still staying flexible to different front-end bandwidths,
correlator spacing, and so forth. High multipath error (up
to 20 m) in the first tracking step is compensated in the
fine tracking step using a combination of DP and HRC
discriminators, reducing multipath error down to less than a
meter. It was shown by simulations that the proposed scheme
is able to well mitigate multipath in different scenarios,
including both statistical and theoretical models.

Finally, the parameters of the algorithm were further
optimized and tested in different configurations through
simulations using a Spirent GSS8000 simulator. The two-
step tracking algorithm was also implemented in a software
receiver, and performance assessments were conducted using
real data recorded from the recently launched Galileo PFM
and FM2 satellites.
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Carrier phase estimation in real-time Global Navigation Satellite System (GNSS) receivers is usually performed by tracking loops
due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly
in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop
filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named
Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL). In terms of tracking capacity and noise resistance UFA-PLL has
the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep
phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth
that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase
estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—
become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops
and actual radio signals are also shown.

1. Introduction

A fundamental task of every Global Navigation Satellite
System receiver is to synchronize with the visible satellite
signals. Since Direct Sequence Spread Spectrum (DS-SS)
signals are utilized, code and carrier synchronization is
required, but a correlation stage is necessary to despread
the signals before the synchronization algorithms can be
applied. In real-time receivers the required economy of
operations usually precludes the use of complex estimation
schemes and tracking loops are preferred. Due to the
correlation process these loops are necessarily discrete. The
typical trade-off in tracking loop design is bandwidth versus
dynamic performance: output noise increases with a larger
loop bandwidth, while dynamic tracking error decreases
with it [1]. Thus, the loop design becomes particularly
challenging when the receivers are subject to high dynamics.
To overcome this limitation other receiver structures have
been proposed in [1], claiming tracking capability up to 150 g
of acceleration, in contrast with the 5 g regularly assigned to
tracking loops. However, the required computational burden

is large since several simultaneous correlations and Fast
Fourier Transform (FFT) computations are needed. In this
paper we show a careful design of the digital loops that
can expand their tracking ability to acceleration steps up to
40 g or even more, keeping a low computational load and
reasonable tracking threshold values at the same time.

The loop structure known as FLL-assisted PLL [2] is very
often adopted for GNSS receivers. It consists of a Phase-
Locked Loop (PLL) and a Frequency-Locked Loop (FLL) in a
coupled mode, with the advantage of reducing locking times
and avoiding false locks. This solution is also a legacy of
analog loops since the FLL or Automatic Frequency Control
(AFC) has been used to reduce frequency errors as a previous
stage to phase lock for analog PLL [3]. The advantages of
adding the FLL to track spread spectrum signals in dynamic
environments were already studied in [4]. For high-dynamics
GNSS receivers, the focus is on carrier loops because the
carrier shares the same dynamics as the code. Then, the
estimation of the carrier frequency can be used to aid the
estimation of the code frequency, and a first-order code
loop is enough [5]. Usually, implementations of FLL-assisted
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PLL are not based on optimal digital loop solutions, with
each loop designed separately, leaving the analysis of their
interactions and possible modifications to the simulation
stage [2, 5, 6]. Moreover, schemes adopted to discriminate
phase or frequency errors are often justified because of
their similarity with well-known analog solutions rather
than with an optimality versus implementation complexity
criterion. We will show that digital implementations of
optimal discriminators are not necessarily more complex and
allow designing the FLL-assisted PLL in a coupled way.

Nevertheless, the FLL-assisted PLL leads to a more
complex design and a computationally more expensive
implementation than a single PLL. Moreover, when coupled-
loops lose phase lock for a moment, they present cycle
slips introducing a phase ambiguity. We will show how to
use the same frequency information as that of an FLL to
build a nonambiguous phase detector, the Unambiguous
Frequency-Aided (UFA) phase discriminator. A PLL with
this new phase discriminator, that is, a UFA-PLL, keeps
the desirable properties of an FLL without demanding an
extra loop and avoiding cycle slips. Other nonambiguous
phase discriminators are known for analog PLLs, that is,
with analog loop filter, such as the sequential discriminators
built with flip-flops presented in [7, 8] or the nonsequential
discriminator of [9]. While their goals are quite similar
to ours, they increase the PLL implementation complexity,
demanding some digital circuitry and a digital-to-analog
converter to get the analog phase error. On the contrary,
the UFA phase discriminator is easily implemented and
naturally suited for a software-based PLL, leading to a less
complex implementation than a FLL-assisted PLL. Section 2
introduces the UFA-PLL structure for GNSS tracking loops.

The optimum loop filter structure for analog PLLs was
introduced in [10], solving the mentioned bandwidth trade-
off by minimizing a quadratic functional. A widespread
technique for designing digital loops is discretizing an analog
loop with a sample rate 1/T at least ten times faster than
loop bandwidth BN [5, 11, 12]. As BNT increases above
the rule-of-thumb value of 0.1, the resulting loop deviates
from optimal and may become unstable [5], especially when
accounting for the delays of a digital implementation. This
limit imposed to the loop bandwidth is not fundamental
and an attempt to avoid it has been presented in [13]. They
introduced a digital loop design based on pole placement
that allows somewhat larger BNT values. However, the pole
location is assigned with standard second-order analog-
system rules. Our approach is to consider a completely
digital loop model and pose the bandwidth trade-off directly
in the digital domain, building upon the early and often
overlooked work of [14] for hybrid loops. We include two
delays in the loop to consider the effect of the correlation
stage, similar to the inclusion of an accumulator before the
loop error discriminator for signals without spreading codes
[15]. Our method [16] allows the design of stable loops with
BNT > 0.1, a particularly useful feature for high-dynamics
receivers. Specifically, we will focus on dynamics modeled
as acceleration steps, that is, unbounded jerk, as in the case
of launching vehicles when the engine turns on or off. In
Section 3 we first derive the optimal loop filter for arbitrary

phase inputs and then for the case of acceleration steps that
produce quadratic ramps of input phase or a linear ramp
of the input frequency. Simulations comparing the different
loop structures are also shown.

Optimization gives the structure for the loop filter,
leaving the choice of T and BN unsolved. Usually, these
parameters are selected based on some rule of thumb [2, 5],
and the ultimate loop performance, as measured by the
pull-out probability and/or tracking threshold, is obtained
later by simulation. An optimal choice of these fundamental
parameters demands an analysis of the nonlinear aspects
of the tracking loop with noise. This is quite difficult,
although some results are known for analog loops with
relatively simple loop filters, by solving a Fokker-Planck
equation [17]. They can be extended to digital loops when
an analog approximation is valid [18]. Our approach is to
get a reasonable approximation for the pull-out probability
and its relationship to the loop parameters. This new
approach introduced in [19] allows us considering dynamics
modeled as acceleration steps and digital loop filters with
zero stationary error response to these inputs. Previous
analyses are based on stationary loop responses or sinusoidal
acceleration profiles [2, 5]. For these cases, we derive approx-
imate expressions for the probability of starting a nonlinear
behavior of the mentioned loops. These expressions quantify
the role of BN andT and let us choose them in order to obtain
lower tracking thresholds for different dynamic scenarios, as
presented in Section 4.

Our optimized digital carrier tracking loops also allow
smoothing of the phase estimates incorporating more mea-
surements, at the expense of some delay. In general, an
output delay of a few samples should not be a limitation
since the navigation task in a GNSS receiver is usually slow
compared with the loop sample rate. This update of the phase
estimates can significantly reduce the noise variance and the
transient responses in high-dynamics environments. This
strategy is suitable for real-time receivers because it can be
efficiently calculated. Hence, some of the precise positioning
techniques would be applicable in real-time and for high-
dynamics receivers. Consider, for instance, smoothing of
code delay measurements with carrier phase estimates in
stand-alone receivers [12, 20], or differential positioning
applications [12, 21], or even attitude estimation with GNSS
signals [22]. In all these cases, an improvement in the
phase estimation has a direct impact on the positioning
performance. The expressions for optimal smoothing filters
are derived in Section 5, and their efficient implementation
is also discussed there. In addition, we present experimental
results obtained with actual RF signals and a fixed point
implementation of our loops tracking acceleration steps of
up to 40 g. Finally, the conclusions of this work are given in
Section 6.

2. Digital Loops Models

Correlations of the received signal with the locally generated
replicas for each visible satellite are the inputs to the
discriminator of the carrier tracking loops in a GNSS
receiver. The complex correlation for a given satellite with
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Figure 1: Block diagram of classical PLL structure.

carrier power to noise power spectral density C/N0 and for
the ith correlation interval of duration T can be written as
[12]

Ci = Di

√

TC

N0
sin c

(

Δ fi
)

R(Δτi)e j(πΔ fi+Δθi) + ni, (1)

where Δτi = τi − τ̂i is the code delay estimation error,

Δ fi = fi − ̂fi the frequency estimation error, and Δθi =
θi − ̂θi the phase estimation error, all assumed constant
during the integration time. The sequence ni is a complex
white Gaussian noise process with unit variance, R(·) is the
code correlation function, and sin c(x) = sin(πx)/(πx). It is
also assumed that the signal has binary data bits Di = ±1
and that correlations are computed within a single bit period.
This Binary Phase Shift Keying (BPSK) modulation is present
in many GNSS signals like the GPS civil signals or in the data
components of composite modernized GNSS signals [23].

In tracking conditions (i.e., after the acquisition process
has been completed [12]), estimation errors are small and
then the functions sin c(·) and R(·) can be approximated by
1. In this case the expression (1) reduces to

Ci = Ii + jQi ≈ Di

√

TC

N0
e jΔφi + nIi + jnQi , (2)

where Ii and Qi are the so-called in-phase and in-quadrature
correlations respectively, nIi = �e{ni}, nQi = �m{ni}, and
we have defined Δφi = φi − ̂φi, with φi = π fi + θi and
̂φi = π ̂fi + ̂θi. These sequences allow to model the carrier
tracking loop as a purely digital single-input single-output
(SISO) system. When the frequency is changing according
to a constant acceleration error of am/s2, we verified—
by numerical integration—that expression (2) is a good
approximation if aT2/λ � 1, where λ is the wavelength of
the signal. For L1 GPS λ = 0.19 m and with T = 5 ms, this
implies that a � 7600 ≡ 775 g. In this case, the terms Δ fi
and Δφi have to be reinterpreted as the average frequency
error and average phase error during the correlation interval,
respectively.

In the following we briefly review the basic concepts of
PLL and FLL-assisted PLL from our digital point of view, and
later we introduce the UFA-PLL.

2.1. PLL Model. The phase estimation error is typically
obtained using one of several possible discriminators [5],

which give the desired phase modified by different memory-
less nonlinearities. The optimal one—maximum likelihood
estimator—is given by

ei = tan−1
(

Qi

Ii

)

=
[

Δφi + nφi
]

π
, (3)

where the notation [·]π indicates that its argument is kept
within the interval (−π/2,π/2] by adding or subtracting π as
many times as needed. The zero-mean noise term nφi has a
rather complicated probability distribution [24], but in high
C/N0 it can be approximated by a Gaussian distribution with
zero mean and variance σ2

φi ≈ 1/(2TC/N0).
A four-quadrant tan−1(·) is not appropriate if there is

BPSK data modulation because the discriminator becomes
sensitive to the data phase changes. On the contrary, for
signals without data the range of the discriminator can
be doubled with a four-quadrant tan−1(·). We chose this
discriminator because it is not amplitude dependent and
the calculation of tan−1(·) can be easily implemented with
a lookup table, since in practice Ii and Qi are frequently
quantized to a few bits.

In order to close the loop in our model, it is of
crucial importance to consider the delays present in a real
implementation. Failure to account for a delay may turn
unstable an optimal loop design. Since ours loops are digital,
a single sample delay is expected but in fact there are two.
One of them is due to the time spent in Ii andQi calculations.
The other delay appears because the estimated values used
in the present correlations have to be known before the
calculations begin. That is, the value ̂φi is obtained with
the loop filter output of the (i − 1)th correlation interval,
which in turn is calculated with the estimation errors of ̂φi−2.
Then, with these considerations, the model of a PLL using
the classical loop filter structure of type 3, that is, with three
accumulators, is shown in Figure 1.

2.2. FLL-Assisted PLL Model. To add an FLL to our previous
PLL, a frequency discriminator is needed. In a digital loop a
frequency error estimate may be obtained as the difference
of two successive phase errors, and in fact this is often
correct. A problem appears when the discontinuities caused
by [·]π make that the difference to be wrong in±π. However,
our discrete system cannot distinguish frequencies greater
than half of the sample rate, that is, phase changes of π
between consecutive samples, and so the measured frequency
errors must be bounded. In fact, if the phase discriminator
is insensitive to BPSK data, the phase changes caused by



4 International Journal of Navigation and Observation

φi + nφi

^φi

z−1

z−1

[·]π

[·]π

p1

p2

p3ei

1
1−z−1

1
1−z−1

1
1−z−1

−
+

+

+ + +

1− z−1
e fi

f1

f2

Figure 2: Block diagram of the typical FLL-assisted PLL structure.

frequency errors must lie in the interval (−π/2,π/2] [25].
Thus, the difference of two consecutive outputs of the phase
discriminator can be corrected just using the operation [·]π .
Therefore, the frequency discriminator for the FLL can be
obtained by

e fi = [ei − ei−1]π . (4)

Figure 2 shows a diagram of the FLL-assisted PLL presented
in [2], where the second-order loop filter of the FLL shares
the same cascade of accumulators used by the PLL filter.

In the locked condition ei = Δφi and e fi = Δφi − Δφi−1

are small enough to justify a linear analysis of the loop.
The complete loop is seen as an equivalent PLL with filter
coefficients p3, p2 + f2, and p1 + f1, instead of p3, p2, and
p1. Thus, the FLL is inserted into the model of the PLL at a
design stage. This eliminates the constrain of using a narrow
bandwidth FLL to not significantly perturb the PLL behavior,
as in [2, 6]. A wide bandwidth FLL allows the loop to have
two regions of operation: “phase-locked” as it was described
before, and “frequency-locked” when the dynamics unlocks
the PLL but the FLL keeps the frequency error within the
linear range of its discriminator. In the latter region the loop
is governed by the FLL (coefficients f1 and f2) and the phase
error input acts like a zero-mean perturbation [25]. As soon
as the dynamics let the loop reduce its frequency error close
to zero, the phase lock can be restored.

2.3. The UFA-PLL Model. As we have seen so far, due to the
cyclic nature of phase a memory-less discriminator is unable
to distinguish changes of an integer number of cycles—or
half cycles if there is BPSK data—, that is, its output is
ambiguous. However, it is possible to obtain a frequency
error estimate from these ambiguous phase error estimates
correcting their difference with the nonlinear operation [·]π .
This is the reason why an FLL can cope with carrier tracking
in situations when a single PLL cannot. Assume that there is
BPSK data and the PLL phase error is rising and crosses the
value π/2. The output of the phase discriminator abruptly
changes to a value close to −π/2, reversing the evolution of
the PLL phase. Hence, the phase error will increase since
the PLL is now moving in the wrong direction. We should
instruct the phase discriminator with information of the
phase derivative to keep moving in the right direction, that
is, we should feed it with proper frequency information

available at the FLL. Therefore, the idea of the Unambiguous
Frequency-Aided (UFA) phase discriminator is to use the
same frequency information used by the FLL to get a better
phase discriminator. It works correcting the ambiguous
values of ei by adding or subtracting an integer number of
π so that the difference of successive values of the corrected
phase error, ui, gives the right frequency error. Then, the
equations that define our new phase error estimate, for i ∈ N,
are

ui = kiπ + ei, ki such that Iπ(ui − ui−1) = 0, (5)

where we define Iπ(x) = x− [x]π , an operation similar to the
function integer part but with steps at the multiples of π. A
practical formula to compute ki can be derived noting that
Iπ(x + lπ) = Iπ(x) + lπ , l ∈ Z since

Iπ(kiπ + ei − ui−1) = kiπ + Iπ(ei − ui−1) = 0 (6)

and then kiπ = −Iπ(ei − ui−1). Substituting this in (5),
we can recursively calculate the UFA phase error from the
ambiguous ei:

ui = ei − Iπ(ei − ui−1) (7)

with starting value u0 = e0. Then, the PLL structure in
Figure 1 transforms into a UFA-PLL just adding a block that
implements (7) immediately after the phase discriminator
output, as shown in Figure 3.

It is interesting to note that the UFA scheme acts
like the phase unwrapping algorithm proposed in [18] for
correcting cycle slips in the phase estimates of feed-forward
synchronizers. In this case, the phase correction does not
affect the phase estimation process since it is done once
the estimation stage is finished. On the contrary, the UFA
phase discriminator modifies the behavior of our feedback
estimator, the PLL, changing its nonlinear characteristics.
As a result, cycle slips and the rather complex transient
responses induced by them are avoided as long as the
frequency error is compatible with the loop sample rate.

2.4. Equivalence between UFA-PLL and FLL. We saw that the
frequency error estimate can be obtained as the difference
of two successive phase errors if the result is kept in range
by adding or subtracting an integer number of π. Thus,
the frequency discriminator for the FLL can be obtained
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Figure 3: Block diagram of the new UFA-PLL structure.

correcting the difference of two consecutive outputs of the
phase discriminator just using the operation [·]π . Figure 4(a)
shows a block diagram of a digital FLL, with loop filter
transfer function F(z). Notice that the two delays and the
accumulator that convert the frequency estimation to phase
before the feedback are not included in F(z).

An alternative way to obtain the same frequency error
discriminator is to use the UFA algorithm previously
described. Indeed, the output phase sequence ui is built
in such a way that the difference of consecutive values
produces the right frequency error, as seen from (4) and
(5). Therefore, the schemes of Figures 4(a) and 4(b) are
equivalent. The interesting fact in Figure 4(b) is that most
linear blocks are adjacent. Thus, the differentiator cancels
with the accumulator without changes in the dynamic loop
response, except for the mean value of the phase error,
leading to the equivalent UFA-PLL model of Figure 4(c).
In fact, this zero-pole cancellation shows why the FLL is
insensitive to constant phase errors whereas the equivalent
UFA-PLL is not. More importantly, the equivalence reveals
that the nonlinear behavior of the UFA-PLL is equal to that
of a FLL with the same F(z), and then their tracking capacity
and noise resistance are the same.

3. Optimal Loop Filter Design

We propose to design the digital loop filter minimizing a two-
term quadratic functional to handle the bandwidth trade-off
mentioned in the Introduction. The input signal is assumed
to have a part related to phase evolution φi plus additive, zero
mean,and noise nφi. The functional to be optimized is

J = σ2
N + α2ET

(

φi
)

, (8)

where α2 is a weighting factor that controls the trade-
off between noise and transient response, that is, the loop
bandwidth, σ2

N is the noise variance at the loop output,
and ET(φi) represents the energy of the tracking error Δφi
transient response. Since the functional uses the energy of
the transient response, the optimum filter must produce a
zero stationary response for the given input.

Suppose F(z) is the loop-filter transfer function to be
found, and consider that the linear model hypothesis holds
for a PLL or FLL. The closed loop transfer function including
the delays is

T(z) = F(z)z−2

1 + F(z)z−2
= Y(z)z−2, (9)
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Figure 4: Equivalence between UFA-PLL and FLL.

where Y(z) must be a causal and stable rational transfer
function. The minimization of the functional J written in
terms of Y(z) is shown in the Appendix A. The optimum
transfer function is given by

Y(z) = X(z)z
Ψ(z)

, (10)

where Ψ(z) and X(z) can be obtained from the spectral fac-
torization of (A.6) and from the partial fraction expansion
of (A.8), respectively. We repeat them here for completeness,

Ψ(z)Ψ
(

z−1) = 1 + γ2Φ(z)Φ
(

z−1), (11)

G(z) = γ2Φ(z)Φ
(

z−1
)

z

Ψ(z−1)
= X(z) +W

(

z−1), (12)

where Φ(z) is the z-transform of φi. The relation between
minimizing (8) to Wiener filtering [26] is sketched in
Appendix B. Observe that whereas the former is a mixed
criterion with a term depending on the stochastic part and a
term depending on the deterministic part of the phase signal;
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the latter criterion stems from a purely stochastic formula-
tion. The connection between both approaches arises when
modeling the input phase as white noise passing through
a rational transfer function. The Wiener filtering approach
offers other possibilities such as keeping the optimality for
a wide range of admissible transfer functions via a robust
approach as in [27] or considering continuous models for
the phase as in [28].

Optimum loop filters for an input phase step, frequency
step, and frequency ramp were derived in [16]. In the
following, only the last result is presented for the sake of
brevity. Analog loop filters optimized for these kind of inputs
are the origin of the classical methods of filter design for type
one, two, and three loops, respectively. As it will be seen, our
purely discrete design for each case has one extra pole, due to
the loop delays. This additional pole does not appear when
discretizing analog designs, but it has a decisive influence on
the stability or the range of achievable product BNT .

3.1. Optimum Filter for a Frequency Ramp. The ramp is
modeled as

Φ(z) = Δ̇ωT2

(1− z−1)3 , (13)

where Δ̇ω is the rate of frequency change. Denoting ν =
Δ̇ω2T4γ2, from (11) it is necessary to solve (z−1)6−νz3 = 0.
The six roots of this polynomial are obtained using the fact
that three of them are the inverses of the other three. This
allows us to express the following equations:

z1,2 + z−1
1,2 = 2− 1± j

√
3

2
3
√

ν,

z3 + z−1
3 = 2 + 3

√
ν

(14)

that determine the values of z1, z2, complex conjugates and a
real z3. Using these values and (11), we get

Ψ(z) =
(

1− z1z−1
)(

1− z2z−1
)(

1− z3z−1
)

(1− z−1)3(z1z2z3)1/2 , (15)

and replacing in (12)

G(z) = −(z1z2z3)−1/2νz4

(

z − z−1
1

)(

z − z−1
2

)(

z − z−1
3

)

(z − 1)3 . (16)

Then, the corresponding X(z) has only three poles in z = 1,
and the closed-loop transfer function of (10) is

Y(z) = A− Bz−1 + Cz−2

(1− z1z−1)(1− z2z−1)(1− z3z−1)
, (17)

where A = (6− 3zs + zd), B = (8− 3zs + zp), and C = 3− zs,
with zs = z1 + z2 + z3, zp = z1z2z3 and zd = z1z2 + z1z3 + z2z3.
Then, the optimum loop filter with four poles, three of the
input and the extra one, is

F(z) = A− Bz−1 + Cz−2

(1− z−1)3(1 + Cz−1)
. (18)
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Figure 5: Type 3 loop noise equivalent bandwidth.

For the purpose of implementation, it is desirable to use
a cascade of accumulators. Then, (18) can be rewritten as

F(z) = p3 + p2
(

1− z−1
)

+ p1
(

1− z−1
)2

(1− z−1)3(1 + p1z−1
) , (19)

where p1 = C, p2 = B − 2C, and p3 = A − B + C. The
closed loop noise equivalent bandwidth is shown in Figure 5.
This curve allows choosing the appropriate value of ν for a
given normalized noise bandwidth. Observe also from this
figure that the larger is the step or the parameter ν, the
more emphasis is given to the transient energy, causing the
normalized noise bandwidth to increase. The product BNT
levels out to a value of approximately 54.5. This part is not
included in the figure since it is of minor importance for
most designs of practical interest.

3.2. Design Example: Loops for Launching Vehicles. We sim-
ulate and compare the loop models presented in Section 2
taking as an example a GPS carrier tracking loop for
launching vehicles [29]. In this case the dynamic input
can be modeled as an acceleration step, which becomes a
quadratic ramp in terms of phase and a linear one, in terms
of frequency. For these inputs the optimal loop filter for a
PLL was obtained in Section 3.1. The case of an FLL-assisted
PLL, taking results from [29], leads to a type 2 FLL and a type
3 PLL.

The FLL-assisted PLL in [29] was designed to oper-
ate in “phase-locked” mode with steps up to 10 g and
in “frequency-locked” mode up to 20 g of acceleration.
These requirements were too demanding for the commonly
adopted correlation time of 10 ms, and then it was lowered
to 5 ms (at the cost of almost doubling the processor load
and an increase in the tracking threshold). A typical rule of
thumb for keeping a reasonable distance from the pull-out
values of the loop is that the peak of the error transient has a
maximum value given by half the linear range of the phase
discriminator, an eighth of cycle [2]. As it will be shown
in the simulations this condition was obtained with a value
of ν = 0.00025 for the PLL. However, as we will explain
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in Section 4, this rule is not that useful. The resulting filter
transfer function for the PLL was

F(z) = A− Bz−1 + Cz−2

(1− z−1)3(1 + Cz−1)
, (20)

where A = 0.6173, B = 1.105, and C = 0.5. Then, in the
structure of Figure 1 this implies p1 + f1 = C = 0.5, p2 + f2 =
B − 2C = 0.105, and p3 = A− B + C = 0.0123, plus a block
that implements the extra pole in z = −C. The resulting PLL
equivalent noise bandwidth is BN = 75.6 Hz.

Since the FLL design does not affect the previous results,
it was designed wider than strictly necessary in order to
facilitate the posterior implementation. The selected transfer
function is

F(z) = D − Ez−1

(1− z−1)2(1 + Ez−1)
, (21)

where D = 0.6 and E = 0.5, resulting in that the extra pole
needed for the FLL and the PLL is the same. Then, f1 = E =
0.5 and f2 = D − E = 0.1. This implis p1 = 0 and p2 ≈ 0.
With these simplifications the complete loop design reduces
to the diagram showed in Figure 6. This FLL loop can track
steps up to 40 g with transient error peaks smaller than 25 Hz,
half of the linear range of the frequency discriminator, with
an equivalent noise bandwidth of BN = 61.3 Hz.

We will use the previous loop filter as a basis for the
comparison of different loop configurations. We consider a
PLL and a UFA-PLL with the same loop filter as before, that
is p1 = C = 0.5, p2 = 0.105, p3 = 0.0123. This structure
is showed in Figure 7. The phase error response for a step of
10 g of acceleration, common to the three loops as expected,
is depicted in Figure 8. In this case the phase error detected
by the discriminators is equal to the actual phase error since
its magnitude is always less than a quarter of cycle.

In Figure 9 the discriminated phase error during a 40 g
step in the three loops is illustrated. It can be seen that
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Figure 8: Phase error during a 10 g step.

the PLL cannot track this step, whereas the others can.
The response of the UFA-PLL is a scaled version of the
response for 10 g, showing the effect of linearization of the
discriminator characteristic achieved by the UFA algorithm.
In the case of the FLL-assisted PLL the loop lost phase lock
for a moment, but could still track the dynamics because
the FLL remained locked. This nonlinear behavior could
correspond to a cycle slip. To verify this analysis the actual
phase error for each configuration is shown in Figure 10.
Clearly, there is one cycle slip in the tracked phase of the FLL-
assisted PLL, whereas the UFA-PLL is able to track this step
of acceleration without any cycle slip.

The limit of the tracking capability of the FLL-assisted
PLL and the UFA-PLL is the frequency error—the phase
change between samples—, since both are frequency-aided
loops. If this error becomes greater than 50 Hz in magnitude,
the frequency estimation will be ambiguous, in the same way
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Figure 10: Actual phase error during a 40 g step.

as the phase of the PLL does, and the loops will lose their lock.
This can be caused by excessively high dynamics or noise
power or a combination of both. Notice that the noise power
considered in this case is twice the input phase noise power
due to the differencing. In fact, we can use the UFA algorithm
applied to the frequency discrimination to further extend the
dynamics resistance of the loops. However, it will be of little
practical importance due to the noise power increase caused
by a new differentiation. The frequency error of both loops
during a 40 g step is shown in Figure 11. The peak error
is 25 Hz—half the limit—and thus, using the same rule of
thumb that we used for the phase error of the PLL, it can
be argued that 40 g is the level of acceleration steps that can
be tracked with a reasonable safety margin for noise effects.
In Section 4 we will give a totally different approach for the
consideration of the noise in the UFA-PLL.
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Figure 11: Frequency error during a 40 g step.

Another shared feature of the FLL-assisted PLL and the
UFA-PLL is the resistance to false locks. For the sake of
brevity this analysis is not included here but it can be seen
in [16].

4. Pull-Out Probability Analysis

In this section we will compute an approximation to the pull-
out probability for a loop in a given operating condition.
Since the pull-out is necessarily a consequence of nonlinear
behavior, a simple way to bound the pull-out probability is
with the probability of entering nonlinear behavior, that is,
the limits of the tan−1(·) range. We are interested in tracking
acceleration steps. Then, it is clear that for a given noise
level the instants when the loop is closer to these boundaries
approximately correspond to the peaks of the loop transient
response. Therefore, we focus on calculating the probability
of entering nonlinear behavior at the instant of the transient
response peak, given that the loop behavior has been linear
up to that time.

4.1. PLL Analysis. The PLL enters nonlinear behavior when
the phase error becomes larger than π/2. This is equivalent
to a sign reversal of the in-phase component, with respect to
the sign of the data bit. Then, the probability of nonlinear
behavior at the transient peak i = p is [19]

PP = P
{
∣

∣

∣Δφp + nφp
∣

∣

∣ >
π

2

}

= P
{

cos
(

φp − ̂φp
)

+ n′Ip < 0
}

,

(22)

where n′Ip = DpnIp/
√

TC/N0 has variance σ2 = 1/(2TC/N0).
Assuming that the PLL has had a linear behavior up to the
analyzed instant, ̂φp, can be thought of as a deterministic
value plus output noise n

̂φp
. Subtracting this deterministic

value from φp we find the peak value of the loop transient
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Figure 12: Noise Bandwidth and Peak Error Response for type 3
PLL.

response to an acceleration step, which is shown in Figure 12
as a function of ν for an integration time of 10 ms. Note
that with acceleration we refer to the Doppler rate the loop
has to track, scaled in units of g = 9.8 m/s2 instead of Hz/s
to keep an easy physical interpretation. This peak value is
proportional to the square of the integration time because an
acceleration step is a parabolic ramp of phase. The values of
the normalized closed-loop equivalent noise bandwidth are
also plotted in Figure 12 for completeness.

The noise n
̂φp

depends on the filtered past input noise—
from instants p − 2, p − 3, and so on—and is statistically
independent of n′Ip . Then, we can write φp − ̂φp = KpaT2 +
n
̂φp

, where a is the acceleration amplitude in g’s. In (22), we
obtain

PP = P
{

cos
(

KpaT
2 + n

̂φp

)

+ n′Ip < 0
}

. (23)

To further simplify (23), we use a “low noise” approximation
cos(n

̂φp
) ≈ 1 and sin(n

̂φp
) ≈ n

̂φp
and obtain

PP ≈ P
{

cos
(

KpaT
2
)

− sin
(

KpaT
2
)

n
̂φp

+ n′Ip < 0
}

. (24)

Using central limit theorem arguments, it is reasonable to
approximate the distribution of n

̂φp
as a zero mean Gaussian

with variance approximated by 2BNTσ2
φi ≈ BN/(C/N0),

using the high C/N0 variance expression for the input noise.
In this case, both random terms in (24) become a single
Gaussian random variable with zero mean and variance (1 +
2BNTsin2(KsaT2))σ2. Therefore,

PP ≈ Q

⎛

⎜

⎝

√

√

√

√

√

2TC/N0 cos2
(

KpaT2
)

1 + 2BNT sin2
(

KpaT2
)

⎞

⎟

⎠ , (25)

where Q(x) is the cumulative Gaussian distribution from x
to∞. Since the function Q(

√
x) is monotonically decreasing,

we can define a function

fPLL(ν,T , a) =
2T cos2

(

KpaT2
)

1 + 2BN (ν)T sin2
(

KpaT2
) (26)
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such that the larger is fPLL, the smaller is PP for a given C/N0,
and then a low tracking threshold is attained. For example,
fPLL(ν,T , a) for a 5 g acceleration step is plotted in Figure 13.
It can clearly be seen that the larger values of fPLL are found
in the region 5 ms < T < 7 ms and 10−3 < ν < 100, and the
maximum is approximately at ν = 0.05 and T = 6 ms. The
value of fPLL in this region is about 0.009. Larger values of
ν are not preferred because they lead to loops that produce
larger phase estimation error and only a slightly lower PP .
However, it must be emphasized that for values of ν > 10−3

the loop bandwidth is BNT > 0.5. These values of bandwidth
show that a filter loop design based on discretization of
analog solutions, only valid for BNT < 0.1, is not appropriate
to design loops with better tolerance to nonlinear behavior.
If ν = 0.02, then BNT = 1.5 and, with T = 5 ms, leads to an
optimum loop bandwidth BN = 300 Hz, which is too large
from the point of view of output phase error variance. This
shows that the main cause of pull-out in PLLs with narrow
bandwidths is the transient error response, due to the input
phase and the input noise, rather than output noise. In other
words, 5 g of acceleration is very demanding for a single PLL
and then a large bandwidth is required to track them with
small pull-out probability.

4.2. UFA-PLL Analysis. An equivalent description of the
UFA algorithm presented in Section 2 is to consider it as a
modified tan−1(·) function that produces output values in
the range (−π/2 + ui−1,π/2 + ui−1] instead of (−π/2,π/2].
Hence, we conclude that nonlinear behavior will occur if the
actual phase error differs from the previously discriminated
one by more than π/2. Assuming that the behavior before the
analysis time has been linear, ui−1 = Δφi−1 + nφi−1 and then

PU = P
{
∣

∣

∣Δφi + nφi − Δφi−1 − nφi−1

∣

∣

∣ >
π

2

}

. (27)

Writing the phase noise terms as a function of the corre-
sponding in-phase and in-quadrature components, it can be
shown that this condition is equivalent to a sign reversal of
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Figure 14: Noise bandwidth and peak error response for type 3
UFA-PLL.

the noise component in phase with Δφi−1, rather than in
phase with ̂φi−1. Therefore,

PU = P
{

C + n′′Ii + n′′Ii−1
+ n′Iin

′
Ii−1

+n′Qi
n′Qi−1

< 0
}

,
(28)

where

n′′Ii = n′Ii cos
(

Δφi−1
)− n′Qi

sin
(

Δφi−1
)

,

n′′Ii−1 = n′Ii−1 cos
(

Δφi
)− n′Qi−1

sin
(

Δφi
)

(29)

with n′Ii = DinIiδ, n′Qi
= DinQiδ, n′Ii−1

= Di−1nIi−1δ, n′Qi−1
=

Di−1nQi−1δ, δ = 1/
√

TC/N0 and C = cos(Δφi − Δφi−1).
The deterministic part of the argument of this cosine is
a differenced version of the phase error transient, and the
random part due to the output noise in the estimates is
a differenced version of n

̂φi
. Therefore, for the analysis of

UFA-PLL two additional loop parameters are needed: the
maximum difference of the error transient response, denoted
by Ku, and the equivalent noise bandwidth of the linear
model of the loop plus a differentiator, denoted by B′NT .
These quantities calculated by means of residues are plotted
in Figure 14. The value Ku is constant for values of ν > 0.003
because for this region the largest difference occurs between
the two first samples of the transient response, which in
turn are equal to the corresponding input samples due to
the delays of the loop. Then, if the peak of the differenced
transient occurs at i = d, we can write Δφd − Δφd−1 =
KuaT2 + n

̂φd
− n

̂φd−1
.

The quadratic terms in (28) have zero mean, and σ4

variance and are uncorrelated between them and with the
linear ones. For practical values of σ2 their variance is much
smaller than the variance of the linear terms. Even in this
case, they cause the probability distribution of the sum in
(28) to differ considerably from Gaussian. A more accurate
calculation will require numerical computations of the actual
distribution. On the contrary, our aim is to get reasonable
and easy-to-handle approximation and, then, we will discard
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Figure 15: Function fUFA(ν,T) for type 3 UFA-PLL and 20 g.

them, but being aware thatthe Gaussian assumption is only a
coarse approximation. Then,

PU ≈ P
{

cos
(

KuaT
2 + Δn

̂φd

)

+ n′′Ii + n′′Ii−1
< 0

}

(30)

where Δn
̂φd

= n
̂φd
− n

̂φd−1
. The input noise terms are

independent of each other and of the output ones because
of both loop delays. Therefore, comparing (30) with (23) we
replicate the reasoning for the PLL, but doubling the input
noise contribution, and changingKp byKu and BNT by B′NT .
Then, using the same approximations made for (25), we get

PU ≈ Q

⎛

⎝

√

√

√

√

2TC/N0 cos2
(

KuaT2
)

2 + 2B′NT sin2(KuaT2)

⎞

⎠, (31)

and then

fUFA(ν,T , a) = Tcos2
(

KuaT2
)

1 + B′N (ν)T sin2(KuaT2)
(32)

is the function to analyze which values of ν and T are
better for the design of low tracking threshold loops. For
accelerations of 20 g fUFA(ν,T , a) is plotted in Figure 15 as
an example. It can be seen that the larger values of fUFA are
found in the region of T near 5 ms and 10−4 < ν < 10−2,
and the maximum is approximately at ν = 0.0025 and T =
5.5 ms. The value of fUFA in this region is about 0.004. In
this case, the optimum loop bandwidth is about BN = 70 Hz,
which is a more reasonable value than in the case of the PLL.
For the UFA-PLL, the minimum pull-out probability and
minimum output variance seem not to be as contradictory
criteria as for the PLL. This can be understood noticing that
the ability of the UFA-PLL for tracking in high dynamics
depends on the smoothness of the transient error response
rather than its absolute value, and then the output noise
contribution becomes more relevant. Another important fact
that must be emphasized is that even for 20 g accelerations it
is not advisable to use correlation times T lower than 5 ms.

Notice that, as it was explained in Section 2, this
probability analysis applies also for an FLL as long as the right
F(z) is used in the computations of Ku and B′NT .
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Figure 16: Probability of NL behavior for type 3 PLL and 5 g.

4.3. Simulations. In this section we assess the accuracy of
the approximations made in the previous analysis. According
to them the filter design of Section 3 is almost optimum
when used in a UFA-PLL for tracking steps of 20 g, that
is, it produces the minimum tracking threshold. The loop
evolution with input noise according to a given C/N0 was
simulated until the transient peak instant. Runs entering the
nonlinear region before this peak were discarded. A variable
number of runs were used in order to reduce simulation
time as much as possible but keeping statistical significance
of the results. Specifically, 100,000 runs were enough for the
lowest C/N0 values, whereas 100 million had to be used for
the highest.

A step of 5 g is considered in the simulation of the PLL,
which produces a transient peak of Kp5 g (5 ms)2 = 1 rad.
Using (26) we found fPLL = 0.0033. The results of the
simulations compared with expression (25) are presented in
Figure 16. It can be seen that the approximation is slightly
optimistic and that the error is almost constant in the
simulated range of C/N0. For the UFA-PLL we adopt a step of
20 g that produces a transient peak of Kp20 g (5 ms)2 = 2 rad
and Ku20 g (5 ms)2 = 0.38 rad of peak difference. Using (25),
we get fUFA = 0.004. The results of the simulations compared
with expression (31) are shown in Figure 17. In this case
the approximation is still acceptable for tracking threshold
determination, but now it is pessimistic and the error grows
for increasing values of C/N0. This behavior is caused by
the Gaussian approximation that neglects the quadratic noise
terms in the probability expression (28).

4.4. Tracking Threshold Analysis. To illustrate how this anal-
ysis can lead to loop designs with lower tracking thresholds
we consider the design of a type 3 UFA-PLL for 20 g
acceleration steps. The tracking threshold is determined by
a given probability of pull-out, and then we will define it by
a given level of probability of starting a nonlinear behavior.
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Figure 17: Probability of NL behavior for type 3 UFA-PLL and 20 g.

Therefore, if P is the admissible pull-out probability and
C/N0|TH is the tracking threshold, then

PU ≈ Q

(√

C

N0

∣

∣

∣

∣

TH
fUFA(ν,T)

)

= P, (33)

or equivalently,

C

N0

∣

∣

∣

∣

TH
≈
(

Q−1(P)
)2

fUFA(ν,T)
. (34)

Clearly, minimum tracking threshold values will be achieved
when fUFA(ν,T) is near its maximum, that is, using ν ≈
0.00025 and T ≈ 5.5 ms. Considering ν = 0.0003 and
T = 5 ms, for example, the loop parameters are BN = 80 Hz,
B′N = 51 Hz KpaT2 = 2, KuaT2 = 0.38, and fUFA = 0.004.
Taking for instance a value of P = 0.001 and replacing in
(34), we find that C/N0|TH ≈ 34 dB/Hz.

Another design, similar to those based on analog proto-
types, can use ν = 0.000001 and T = 2 ms and then BNT =
0.1. The loop parameters become BN = 50 Hz, B′N = 13 Hz
KpaT2 = 1.4, KuaT2 = 0.1, and fUFA = 0.002. Hence,
for the same P = 0.001 if we replace in (34) the tracking
threshold results C/N0|TH ≈ 37 dB/Hz. Therefore, the use
of the digital design method together with the proposed
pull-out probability analysis can lower 3 dB the tracking
threshold compared with traditional analog-based designs.
An additional advantage is the use of longer values of T ,
requiring less computational load than analog designs.

It has to be mentioned that, even though the actual
probability distribution can be different because of the
Gaussian approximation, only the arguments of the Q(·)
are used in the comparison of both designs. Therefore, the
comparison is not affected by the Gaussian approximation,
that is, a modified Q(·) function could be used for a more
accurate probability calculation but the 3 dB threshold gain
would remain.
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5. Optimal Smoothing of the Phase Estimates

Due to the presence of two delays in the loop, the phase
estimate obtained at a given instant is not computed with
measurements up to this instant, but with measurements up
to two previous instants. Thus, in the notation of [30] the
loop phase estimate at the feedback branch is actually ̂φ[i |
i−2] = ̂φi. Naturally, the use of “closer” measurements would
produce a smoothing effect, that is, a better estimation. The
real-time constraint does not allow taking advantage of this
for the loop itself, but it is possible for other purposes as
data detection and raw data generation for the navigation
processes of the GNSS receivers. In this case, the optimal
phase estimate can be obtained in the same way as before,
but without forcing the two delays as in (9).

5.1. One Sample Smoothing. In this case the problem is
equivalent to obtaining the optimal loop filter with only one
delay. Then, if F′(z) is the new loop-filter transfer function
to be found, the corresponding closed loop transfer function
is

T′(z) = F′(z)z−1

1 + F′(z)z−1
= Y ′(z)z−1, (35)

where Y ′(z) is the rational and stable transfer function to
be found minimizing J(Y ′(z)) in (8). Following the same
optimization process done in the Appendix A, the result is

Y ′(z) = X ′(z)z
Ψ(z)

, (36)

where Ψ(z) is the same minimum phase rational function
of (11) and X ′(z) is the rational and stable transfer function
obtained from

G′(z) = γ2φ(z) φ
(

z−1
)

ψ(z−1)
= X ′(z) +W ′(z−1). (37)

Noting that G′(z) = G(z)/z, it is simple to relate X ′(z)
with X(z) since the only change needed is to extract the
possible pole in z = 0 ofW(z−1)/z to obtainW ′(z−1). Hence,

X ′(z) = X(z)
z

+
(G(0)− X(0))

z
(38)

since W(z−1) = G(z) − X(z). For the case we are interested
in, which is tracking of acceleration steps, according to (16)
G(0) = 0. Then,

X ′(z) = X(z)− X(0)
z

, (39)

Therefore, the new optimum close-loop transfer function of
(36) is

Y ′(z) = C + (A− 3C)z−1 + (3C − B)z−2

(1− z1z−1)(1− z2z−1)(1− z3z−1)
, (40)

and the corresponding optimum loop filter is now only the
three poles of the input,

F′(z) = C + (A− 3C)z−1 + (3C − B)z−2

(1− z−1)3 . (41)

Even more interesting is the expression of (36) in terms of
the cascade of accumulators,

Y ′(z) = p3 +
(

p2 − p3
)(

1− z−1
)

+
(

p1 − p2
)(

1− z−1
)2

(1− z1z−1)(1− z2z−1)(1− z3z−1)
,

(42)

If it could be possible to implement this loop filter, the
feedback of the complete loop would be ̂φ[i | i−1]. Of course
T′(z) = Y ′(z)z−1 cannot be implemented with a real-time
loop, which has two delays, but Y ′(z)z−2 can. Indeed, if the
loop filter structure of the UFA-PLL is slightly modified as
shown in Figure 18, it can be shown that amazingly ̂φ[i |
i− 1] = x(1)

i − x(2)
i . Clearly, the delay on the feedback branch

precludes the use of this value for the loop, but not for the
rest of the GNSS receiver.

5.2. Two Samples Smoothing. The previous process can be
applied again. Now, the problem is equivalent to obtaining
the optimal loop filter without delay. Then, if F′′(z) is the
loop-filter transfer function and the corresponding closed
loop transfer function is

T′′(z) = F′′(z)z−1

1 + F′′(z)
= Y ′′(z), (43)

where Y ′′(z) is the rational and stable transfer function to be
found minimizing J(Y ′′(z)) in (8) and replicating (36)–(39),
we obtain

X ′′(z) = X ′(z)− X ′(0)
z

. (44)

Therefore, the optimum transfer function of (43) is

Y ′′(z) = p3 + P2
(

1− z−1
)

+ P1
(

1− z−1
)2

(1− z1z−1)(1− z2z−1)(1− z3z−1)
, (45)

where P2 = (p2 − 2p3) and P1 = (p1 − 2p2 − p3). Now
T′′(z) = Y ′′(z) cannot be implemented with a real-time
loop, but Y ′′(z)z−2 can. Again, based on the loop structure

of Figure 18 it can be shown that ̂φ[i | i] = x(1)
i+1−2x(2)

i+1 + x(3)
i+1.

5.3. More Samples Smoothing. As it was previously men-
tioned, since G(z) in (16) has four zeros at z = 0 for inputs
modeled as accelerations steps, the previous smoothing
procedure can be done two more times. In this way, if
some latency is allowed, the following phase estimates can
be obtained based only on the real-time tracking loop of
Figure 18—the first three equations are repeated for clarity:

̂φ[i | i− 2] = x(1)
i−1,

̂φ[i | i− 1] = x(1)
i − x(2)

i ,

̂φ[i | i] = x(1)
i+1 − 2x(2)

i+1 + x(3)
i+1,

̂φ[i | i + 1] = x(1)
i+2 − 3x(2)

i+2 + 3x(3)
i+2,

̂φ[i | i + 2] = x(1)
i+3 − 4x(2)

i+3 + 6x(3)
i+3.

(46)
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Figure 18: Block diagram of the UFA-PLL model with loop filter structure modified for phase smoothing.

These phase estimates can be interpreted as a prediction
in the context of estimation theory [30]. In fact, ̂φ[i | i−2] =
x(1)
i−1 can be obtained by propagating ̂φ[i− 2 | i− 2] with the

signal dynamic model adopted for the phase estimation. If

we consider xi = [x(1)
i x(2)

i x(3)
i ] as the state of the loop input

phase model, the transition matrix must be

A =

⎡

⎢

⎢

⎢

⎣

1 1 1

0 1 1

0 0 1

⎤

⎥

⎥

⎥

⎦

. (47)

Since xi−1 include measurements up to the instant (i − 2),
̂φ[i−2 | i−2] can be found propagating backwards this state
as {A−2xi−1}(1). Notice that using this backward propagation
process with the matrix A−1, all the estimators of (46) can
be obtained. Actually, more smoothed estimates can be built.
For example, the equation

̂φ[i | i + 3] = x(1)
i+4 − 5x(2)

i+4 + 10x(3)
i+4 (48)

can be used, but it is not optimal. As it will be shown in
the simulations it can be considered useful because of its
extremely simple implementation. In some way, the quantity
of zeros in (16) at z = 0 gives a measure of the backward
propagation capacity of the states estimated by the loop filter.

5.4. Simulations. The simulated loop model is a UFA-PLL
as shown in Figure 18 with the same filter coefficients of
Section 3. The phase estimation error for an acceleration
step of 50 g (starting at i = 5 and without noise) for the
different estimators is plotted in Figure 19. In this situation
the loop error grows up to almost one cycle and therefore
the data detection during this transient will not be possible.
However, applying the smoothing process described by (46)
the transient error is consistently reduced each time that a
new input sample is used for the estimation. The response of
the suboptimal estimator of (48) is also shown. It can be seen
that its transient response is slightly worse than the obtained
with ̂φ[i | i + 2].

The smoothing process also produces a decrease of
the estimation noise variance. In Figure 20 the standard
deviation of the six previous phase estimators is plotted
for three different signal levels. These results were obtained
simulating a linearized loop fed with Gaussian noise of
variance 1/(2TC/N0). As expected, an increase of 3 dB in
the signal corresponds to a reduction of approximately

√
2

in the standard deviation. It is also possible to verify that
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Figure 19: Phase estimation error during a step of 50 g.

the standard deviation for the loop output, that is, without
smoothing, is equal to σ

̂φi
= √

BN/(C/N0). This expression
gives values 15.75◦, 11.14◦, and 7.88◦ when the values ofC/N0

are 30, 33, and 36 dB/Hz, respectively.

6. RF Test Experiments

The FLL-assisted PLL and the UFA-PLL designed in Section 3
were implemented in a System Developer Kit (SDK) for GPS
receivers from SiRF [31]. Due to the real-time nature of this
task all calculations for the loop had to be done in a fraction
of 5 ms. They were programmed in fixed-point arithmetic,
using some scaling and approximating coefficient values by
powers of 2. Details of these implementations were given
in [32]. To verify the tracking capability of the loops with
real signals and without relying on expensive equipment like
a GPS signal simulator, we used an RF signal generator to
produce a frequency modulated carrier at 1575.42 MHz (the
L1 GPS frequency). The signal was not spread with the code
of a particular satellite, and thus the code generators of the
GPS receiver were turned off during the test. This is not a
limitation since the focus of this analysis is on the carrier
loop, rather than the code loop. A triangular waveform
was used as a frequency modulation to simulate steps in
acceleration. The frequency deviation was selected according
to the magnitude of the step (an instantaneous frequency
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Figure 20: Phase estimation standard deviation.

deviation of Δ f corresponds to a λ · Δ f instantaneous
velocity, where λ is the L1 wavelength). The selected carrier
power was −113 dBm. Taking into account the noise of the
50Ω output resistance of the generator and a noise figure
of approximately 8 dB of the RF front-end gives a C/N0 =
53 dB/Hz, which is a relatively high value for GNSS receivers.
This value was selected to obtain low noise curves for a visual
comparison with the simulated responses since the noise
performance has been already characterized.

A test of 10 g acceleration steps is shown in Figure 21,
depicting the tracked frequency detrended by a linear fit
that accounts for the local clock drift. The amplitude of
the triangular waveform was increased gradually up to the
desired value to avoid large frequency steps. The measured
phase error response of the FLL-assisted PLL at the output
of the phase discriminator in one of the steps is shown
in Figure 22, the response of the UFA-PLL is the same.
The simulated response of the loop (as in Figure 8) is also
displayed to appreciate that the implemented loop is properly
characterized by our model.

The same experiment was performed for acceleration
steps of 40 g. The phase error responses of the FLL-assisted
PLL and the UFA-PLL are presented in Figures 23 and 24,
respectively. In the case of Figure 23, the step presented is
negative and therefore the phase response is upside down
with respect to the simulation in Figure 9. Again, a fine
agreement between the measurements with real laboratory
generated signals and the simulations can be appreciated.

7. Conclusions

A new carrier tracking loop design method for real-time
GNSS receivers has been presented, which is completely
optimized from the perspective of the digital nature of
the correlation measurements. An analysis of the phase
and frequency discrimination ideas from this point of
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Figure 21: Tracked frequency during a 10 g test.
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Figure 22: Measured phase error during a 10 g step.

view allowed us to choose optimum discriminators often
discarded because of the complexity of their analog counter-
parts. Also, the known structure of FLL-assisted PLL has been
considerably improved leading to a carrier loop that operates
normally in phase locked condition and in frequency locked
condition if the dynamics become severe enough. The effect
of coupling the FLL to the PLL is considered at the design
stage allowing a fine control of the effective loop bandwidth.
Moreover, this approach allowed us to develop the UFA
algorithm that corrects the cycle ambiguities of measured
phase errors using the frequency information exploited by
an FLL. With this algorithm it was possible to conceive a
PLL that has the same advantages of an FLL-assisted PLL but
avoids cycle slips and yet is easy to implement.

Regarding loop filters, their optimization was achieved
directly in the digital domain. Our procedure solves the
bandwidth trade-off considering the discrete nature of the
filter and the unavoidable computational delays in the
loops and makes possible to design loops extending beyond
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Figure 23: Phase error of FLL-assisted PLL during a 40 g step.

the restrictive constraint BNT < 0.1. This limitation is
caused by the standard technique of discretizing analog loop
filters, which only gives acceptable results for narrow loop
designs, not suitable for high-dynamics receivers. Even more
important, with our method the designed loop bandwidth
is the same as the actually implemented one, since there
are no approximations involved. This is of great importance
considering the difficulties found in ([5] pp. 183) with
respect to the stability of designed loops.

An approximate analysis of the nonlinear behavior of
digital loops has been presented. The pull-out probability is
approximated as an efficient tool for selecting the correlation
time and the loop bandwidth so that the tracking threshold
is minimized. Contrary to classical pull-out probability
studies, our approach considers nonstationary scenarios as
is often found in high-dynamics applications. The UFA-PLL
examples presented show that 3 dB of improvement in the
tracking threshold can be attained by properly selecting the
integration time and loop bandwidth. It is worthwhile to
emphasize that even for accelerations of 20 g, a loop sample
time shorter than 5 ms is not appropriate.

It was also shown that using some state variables of the
loop, smoothed phase estimates can be efficiently built with a
latency of only a few samples. This can be very useful in many
GNSS applications that use phase measurements, such as
code measurement smoothing, differential positioning, and
attitude estimation. It can also extend the use of these tech-
niques to real-time and high-dynamics applications, where
more complex phase estimation schemes are not practical
and the usual tracking loop estimates do not provide enough
phase accuracy. The simulations presented show that using
the proposed smoothing scheme the transient responses
of the loop to an acceleration step of 50 g can be almost
eliminated and the estimation noise reduced by half.

Finally, our technique was used to design a loop that
can optimally track steps of 20 g with a tracking threshold
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Figure 24: Phase error of UFA-PLL during a 40 g step.

of C/N0 ≈ 34 dB/Hz. It was implemented in a GPS receiver
using fixed-point arithmetic and tested with frequency
modulated RF signals. Simulations and experimental results
confirm that our new loop designs can track the input phase
in these severe conditions, with the same implementation
complexity as the usual loops.

This work has not considered adaptive schemes because
they tend to increase the computational requirements and
transient behavior. An adaptive version of the UFA-PLL
could be formulated for situations where time-varying filters
are affordable. Our assumptions do not deal with heavily un-
modeled dynamics or disturbances on the tracked signals
that justify a robust H∞ approach. Nevertheless, given
the Wiener filtering relation established for the present
hypotheses, the loops obtained are equivalent to a steady-
state version of Kalman-filter based-tracking loops [33].
Including robustness as one of the loop design considerations
can also be addressed with the Wiener filtering formulation
[27, 34], and a balance between robustness and adaptiveness
will be pursued elsewhere.

Appendices

A. Minimizing J(Y)

Expression (8) for J can be minimized applying a standard
procedure from variational calculus.

Assuming that the input noise is white with power
spectral density η/2, the variance of the output noise can be
calculated as

σ2
N =

η

2

∫ π

−π

∣

∣

∣Y
(

e jω
)∣

∣

∣

2 dω

2π
= η

4π j

∮

Y(z)Y
(

z−1)dz

z
,

(A.1)

where Y(e jω) is the frequency response of Y(z) and the last
integral extends over the unit circle of the complex plane.



16 International Journal of Navigation and Observation

Using Parseval’s theorem, we find that

ET
(

φi
) =

∞
∑

i=0

Δφ2
i =

∫ π

−π

∣

∣

∣ΔΦ
(

e jω
)∣

∣

∣

2 dω

2π

= 1
2π j

∮

Φ(z)Φ
(

z−1)[1− Y(z)z−2]

× [1− Y(z−1)z2]dz

z
,

(A.2)

where ΔΦ(z) = Φ(z)[1− Y(z)z−2] is the z transform of Δφi
and Φ(z) the z transform of φi. Then, replacing (A.1) and
(A.2) in (8), we get the expression of the functional J with
explicit dependence of Y(z) :

J(Y(z)) = η

4π j

∮

{

Y(z)Y
(

z−1) + γ2Φ(z)Φ
(

z−1)

×[1− Y(z)z−2][1− Y(z−1)z2] }

× dz

z
,

(A.3)

where γ2 = 2α2/η.
LetY(z) be the argument optimizing J and y(z) any other

stable causal rational transfer function:

∂J
(

Y(z) + εy(z)
)

∂ε

∣

∣

∣

∣

∣

ε=0

= −η
2π j

∮

{

γ2Φ(z)Φ
(

z−1)z

−Y(z)
[

1 + γ2Φ(z)Φ
(

z−1)]z−1}

× y
(

z−1)dz,

(A.4)

where we used the following identity that holds for all f :
C → C such that the integrals exist,

∮

f
(

z−1)dz

z
=
∮

f (z)
dz

z
. (A.5)

The optimizing value Y(z) has to produce a zero
derivative (A.4) for every y(z). To make the expression
between braces zero would not assure to get a stableY(z). It is
first necessary to make the following spectral decomposition:

Ψ(z)Ψ
(

z−1) = 1 + γ2φ(z)φ
(

z−1). (A.6)

This is always possible because the term on the right has
an even number of poles and zeros. And besides, poles as
well as zeros can be separated in two sets. If zi belongs to a
set, 1/zi belongs to the other. Hence, if zi is within the unit
circle, there is also 1/zi outside the the unit circle. Therefore,
a rational, minimum phase (all zeros inside the unit circle)
and stable Ψ(z) can be found. Then, the required Y(z) has to
make zero the following integral:

∮
{

γ2Φ(z)Φ
(

z−1
)

z

Ψ(z−1)
− G(z)Ψ(z)

z

}

g
(

z−1)Ψ
(

z−1)dz.

(A.7)

Finally, we have to split the first term between braces in
(A.7) in two, separating its partial fraction expansion in a
part with all poles inside the unit circle X(z) and a part with
all poles outside it W(z−1), that is,

G(z) = γ2Φ(z)Φ
(

z−1
)

z

Ψ(z−1)
= X(z) +W

(

z−1), (A.8)

and note that
∮

W
(

z−1)y
(

z−1)Ψ
(

z−1)dz = 0 (A.9)

because the integrand is analytic inside the unit circle.
Therefore, the optimum transfer function is given by

(10), where Ψ(z) and X(z) can be obtained from (11) and
(12), respectively. Notice the important role of asking Ψ(z)
to be of minimum phase: since it will be inverted in (10) its
zeros become poles of Y(z) that has to be causal and stable.

B. Relation to Wiener Filtering

The Wiener filtering is usually posed as minimizing the
variance of the estimation error when a measured signal
ωi related to another one φi is used to produce a linear
prediction ̂φ[i + m|i] of φi. In our case, ωi = φi + nφi. The
general solution in terms of spectral densities is given for
instance in [26],

Y(z) =
{

Sφω(z)zm

H(z−1)

}

+

H(z), (B.1)

where {·}+ means the part of the partial fraction expansion
with poles inside the unit circle and H is the whitening filter
that produces a white sequence at its output when ωi is the
input. This solution looks simple, but it does not give yet
explicit equations for the coefficients of the causal and stable
rational transfer functions needed.

The so-called polynomial framework [34] permits a
systematization of this issue. Assume the signal part of
the phase is modeled as φi = (C/D)bi where C and D
are polynomials, with C being an abbreviated notation for
C(q) = c0 + c1q−1 + c2q−2 + . . ., and the operator q−1

represents the delay operator such that q−1φi = φi−1. The
signal b is a white noise sequence of variance σ2

b . The noise
contaminating the measurements is also modeled linearly as
wi = (M/N)vi where M and N are polynomials and v is a
white noise sequence of variance σ2

v , independent of b.
The polynomial solution is given by

Y = Q1N

β
, (B.2)

where β(q) = β0 +β1q−1 +β2q−1 +· · · is a monic polynomial
(β0 = 1) obtained from the following factorization problem:

σ2
ε ββ∗ = σ2

bCC∗NN∗ + σ2
vMM∗DD∗. (B.3)

The notation β∗ means β∗(q−1) = β∗0 + β∗1 q + β∗2 q2 + · · · ,
with β∗i being the complex conjugate of βi. In order to obtain
Q1, the Diophantine equation, with r2 = σ2

ε /σ
2
b ,

qmCC∗N∗ = r2β∗Q1 + qDL∗ (B.4)
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must be solved for Q1 and L∗. Equivalently, (B.4) is the same
as doing the partial fraction expansion of

qm−1CC∗N∗
r2Dβ∗

= Q1

qD
+

L∗
r2β∗

. (B.5)

Notice that if we enforce Φ(z) = C(z)/D(z), m = 2,
w[n] = v[n], that is, M = 1 = N , σ2

v = η/(2T), and σ2
b =

γ2σ2
v ; then (11) is the same as (B.3) and Ψ(z) = γrβ(z)/D(z).

Moreover, (12) is similar to (B.5), and thus γrQ1(z)/zD(z) =
X(z). We can see how both solutions match.
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The problem of designing robust systems to track global navigation satellite system (GNSS) signals in harsh environments has
gained high attention. The classical closed loop architectures, such as phase locked loops, have been used for many years for
tracking, but in challenging applications their design procedure becomes intricate. This paper proposes and demonstrates the use
of a quasi-open loop architecture to estimate the time varying carrier frequency of GNSS signals. Simulation results show that this
scheme provides an additional degree of freedom to the design of the whole architecture. In particular, this additional degree of
freedom eases the design of the loop filter in harsh environments.

1. Introduction

In global navigation satellite systems (GNSSs) the relative
motion of both GNSS satellites and the user causes a Doppler
effect, which results in a large frequency shift in the carrier
and in the code of the received signal [1]. Precise estimation
of this frequency shift is one of the most demanding re-
quirements for GNSS receivers, because only an accurate
tracking of the carrier frequency and Doppler shift allows
the receiver to work properly, enabling reliable estimates of
position velocity and timing (PVT). In any GNSS receiver,
the acquisition stage provides an initial coarse estimation
of the frequency shift, which is subsequently refined by the
tracking systems. They are generally implemented in the
form of closed loops, that is, phase lock loops (PLLs) and
frequency lock loops (FLL), which track respectively the
phase and the frequency of the incoming carrier, [2].

The main building block of a closed loop architecture is
the loop filter. The design of a loop filter has been extensively
addressed in the literature regarding the continuous-time
PLLs, and many results and methods exist for different
scenarios. However, modern receivers work in the discrete-
time domain, and so PLLs and FLLs are digital systems,
whose loop filters are often designed starting from some

equivalent analog prototypes, by adopting transformation
techniques from the analog to the digital domain. These
tracking loops are therefore de facto digital approximations
of analog loops, whose quality breaks down as the integration
time increases. A valid assumption for this approximation
is that the product BT between the loop noise bandwidth
B, and the integration time T remains close to zero. As this
product increases, the loop becomes unstable, as discussed in
[3]. However, in high dynamic and weak signal applications,
it is necessary to work with large BT values. In these cases
the design of the loop filters based on analog-to-digital
transformations does not work properly. Therefore, other
techniques have been proposed in literature, which are more
robust when low update rates (long integration times) or
large bandwidths are required. They are the controlled root
method for the design of digital filters [4], the direct design of
loop filters in digital domain by minimization criterion [5],
the loop architectures based on Kalman filters [6], and the
fuzzy loop architectures [7].

In this paper we propose an alternative solution, based
on a novel quasi-open loop architecture, which relieves the
stress on the loop filter in terms of stability. In the first
step of our study we considered open loop techniques,
since some advantages over the closed loop counterpart



2 International Journal of Navigation and Observation

schemes can be achieved. For example, it is a known fact
that PLLs are vulnerable to fading effects, typically associated
with urban environments, and cycle slips [8]. Moreover,
because of their closed loop structure, they need a long
acquisition time before attaining the loop lock, and this
may be a serious drawback when the Doppler significantly
varies within this time interval. The use of open loop
architectures can solve these problems. Several open loop
architectures have been proposed in literature; most of
them are based on the use of the Fast Fourier Transform
(FFT) for the estimation of the frequency error between the
incoming carrier and a local carrier replica. However, this
block processing structure, typical of FFT-based methods,
increases the system complexity. In our scheme we do not use
FFT for frequency estimation; in our method we estimate the
frequency by using conventional PLL/FLL discriminators, for
example, the Kay’s estimator [9], but with a different update
of the frequency of the numerically controlled oscillator
(NCO). In particular, instead of updating the NCO at each
coherent integration time as in the closed loop architectures,
the update is performed after NT integrations intervals,
where N is an integer. Between two updating epochs the
architecture works as an open loop. Using this approach we
are actually working with a three-rate scheme, unlike the
conventional two-rate closed loop systems. We have found
that this additional degree of freedom can help us to ease the
design of the loop filter in weak signal conditions, where it is
necessary to extend the coherent integration time.

In a weak signal scenario the extension of the coherent in-
tegration time is the only possible option, since the increased
processing gain allows the successful recovery of weak and
extremely weak signals. However, the maximum coherent
integration time in a GNSS receiver is limited by a variety
of factors: the presence of navigation data modulation,
the stability issues, and the demodulation losses due to a
frequency mismatch. This effect is particularly detrimental
when the loop update time increases (long integration time)
and the incoming carrier has a high Doppler shift [3]. The
first problem is usually solved by estimating the navigation
data or using external assistance. The main contribution of
this paper is related to the second issue, that is, the stability
problem, which is solved by adopting an inherently stable
architecture. We will show that the proposed architecture can
work with extended integration times, which are not possible
in the traditional closed loop schemes under the same
conditions. In order to solve the third problem, methods
of compensation of the user dynamics are necessary. For
this purpose, PLLs are generally assisted by other systems,
for example, an FLL or a tightly coupled inertial navigation
system (INS).

The paper is organized as follows. The GNSS signal
model is introduced in Section 2. Then, a general overview
of the traditional GNSS carrier recovery systems is presented
in Section 3, stressing the aspects which motivate the scheme
proposed in this paper. Section 4 shows the novel quasi-
open loop scheme for carrier recovery, proposed to overcome
some limitations of the traditional schemes. Some simulation
results are presented in Section 5, showing the feasibility of
the proposed method in terms of tracking jitter performance,

in a dynamic scenario and with weak signals. On the basis
of these results some possibilities to refine the proposed
architecture are also discussed. Conclusions are drawn in
Section 6.

2. Signal Model

The main purpose of this paper is to propose a novel ar-
chitecture for tracking the frequency of the incoming GNSS
signal which combines the good properties of both open
loop and closed loop architectures. These systems recover the
carrier from the received signal, which can be written, after
downconversion to intermediate frequency (IF), sampling
and quantization, as

xw[n] = √2Pa[n] cos
[
2π
(
f0 + fd(nTs)

)
nTs + ψs

]
+w[n],

(1)

where P is the total received power of the useful signal,
a[n] = d[n]c[n] is the useful signal (c[n] is the code and d[n]
the navigation message), f0 is an intermediate frequency,
fd(nTs) is a frequency shift (which can be time variant), ψs
is the initial phase (the phase for n = 0), and w[n] is a
noise component. This signal is obtained by sampling an
analogical signal at a sampling frequency fs = 1/Ts. The
carrier signal is completely characterized by its instantaneous
phase

ϕs(nTs) = 2π
(
f0 + fd(nTs)

)
nTs + ψs. (2)

The noise term w[n] is a realization of a Gaussian random
process W[n], with flat power spectral density No/2 over the
receiver band Br , and with power σ2

w = NoBr .W[n] is not
generally a white sequence with a flat power spectral density,
due to front-end filtering. However, a white model is justified
because the bandwidth of the front-end filter is usually close
to the Nyquist sampling frequency, that is, Br = fs/2.

The purpose of the carrier recovery is to estimate ϕs(nTs)
in order to construct a local oscillator (LO) of the type

xcr[n] = cos ϕ̂s(nTs), (3)

where ϕ̂s(nTs) is the estimate of ϕs(nTs), and the subscript
cr denotes that this signal is recovered from the carrier.
Therefore, the LO (producing xcr[n]) can be considered
the output of the carrier recovery system. We assume that
both data and code can be wiped off and we focus on
the operations performed by the carrier recovery system by
considering the ideal signal

xs[n] = xs(nTs) = cos
[
2π
(
f0 + fd(nTs)

)
nTs + ψs

]
, (4)

where fd(nTs) is an unknown frequency, which varies with
an unknown rule, ψs is also unknown, while f0 is a known
nominal frequency. In real cases, the signal xs(nTs) is also
affected by noise, and then the carrier has to be recovered
from a noisy version of (4).

3. Traditional Tracking Architectures:
Review and Limitations

The traditional GNSS carrier recovery systems can be
classified into two categories: closed loop tracking systems
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and open loop phase and frequency estimators. In this
section we briefly review the traditional closed loop systems
and the open loop schemes, paying attention to the aspects
which motivate the quasi-open loop scheme proposed in the
next sections.

3.1. Closed Loop Architectures. Digital phase lock loops
(DPLLs) and FLLs lie into the category of the classical closed
loop architectures, whose basic scheme is shown in Figure 1.
DPLLs are able to track both the instantaneous phase and
frequency of the incoming carrier, while FLLs are only able
to track the carrier frequency.

In the following we briefly describe the DPLL opera-
tions (the operations performed by FLLs are almost sim-
ilar except for the discriminator). The estimation of the
instantaneous phase is generally performed by a DPLL,
which consists of a number of subsystems: (a) the phase
estimator/discriminator, (b) the loop filters F(z), (c) the local
oscillator (LO) also called numerically controlled oscillator
(NCO). The input signal xw[n] is first multiplied by the local
carrier xL[n] generated by the NCO, and integrated by the
integrate and dump block. During this integration process, L
input samples are processed and used to produce the prompt
correlator output yφ[k]. The corresponding integration time
is T = LTs. At this point the sampling rate of the system
changes from 1/Ts (time domain n) to 1/(LTs) (time domain
k). The instantaneous phase is estimated from yφ[k] by the
phase discriminator. This estimate is filtered through the
loop filter F(z), with a loop noise bandwidth B, and the filter
output is used to drive the LO for the carrier generation. This
estimate is then progressively updated using the information
provided by the new correlator output in a closed loop
manner. Below we present two key points that motivate the
use of a quasi-open loop scheme (for GNSS carrier recovery
systems) rather than a closed loop one.

It is important to stress that, in the traditional closed loop
carrier recovery systems, the LO role is twofold: in fact it is
both the output of the system and an integral part of the
phase estimator. In the quasi-open loop structure proposed
in this paper these two roles will be decoupled, as explained
in Section 4. This is the first key point of our method, as will
be clear in the next sections.

The loop filter F(z) is the most critical block, whose
function is also twofold. Firstly, as the received signal and,
thus, the discriminator output is corrupted by thermal noise,
the filter is required to provide a degree of noise rejection.
Secondly, it enables the processing of higher order dynamics.
Transformation methods from the Laplace domain to the
Z-domain are widely used to design loop filters [2]. These
methods simply provide a discrete version of the loop filters
that have been previously designed for the analog loops.
However, this approach neglects both the inherent delay in
the digital loop and the variation in the open loop gain due
to the NCO update interval. In [3] it has been shown that the
transformation methods properly work only if BT is close
to zero, where B is the loop noise bandwidth and T is the
integration time. As BT increases, the effective loop noise
bandwidth and the closed loop pole locations deviate from
the desired ones and eventually the loop becomes unstable,

as explained in [3]. The maximum achievable BT value
depends on the type of the Laplace-Z transformation and on
the characteristics of the original continuous-time filter. For
most communication applications, this condition is satisfied
because BT remains close to zero. Instead, for some new
GNSS applications, such as for weak signal tracking and
extremely high dynamic applications, larger BT values are
required.

Simulation experiments have been carried out to analyze
the behavior of an FLL for increasing values of BT . The
incoming GNSS signal has been generated with a carrier to
noise ratio C/No = 40 dB-Hz and with a ramp-type time
varying frequency with a slope equal to 10 Hz/s. In order to
track this frequency evolution, we have used a 2nd order FLL
with a loop noise bandwidth B = 10 Hz, and we have changed
BT (by modifying the integration time) to put progressively
more stress on the loop. The frequency estimated by the
FLL is shown in Figure 2 for three different values of BT ,
together with an estimate of C/No. The latter can be used
as an indicator to check if the system is in lock state or
not. These results show that the loop loses the lock and the
FLL is no longer able to track the input frequency when
BT = 0.3, as indicated by the estimated C/No. It is important
to emphasize that the loop filter is not the only module
in the closed loop scheme responsible for the loss of lock
and the stability problems. The loop can also lose lock or
can become unstable because of other factors, but here we
concentrate on the effect of the loop filter design based on
transformation methods on loop. To solve this problem,
some techniques for designing the loop filters have been
proposed in the literature, for example, the controlled root
method, the direct design of loop filters in digital domain
based on a minimization criterion, the loop architectures
based on Kalman filters, and the fuzzy loop architectures.
An alternative approach is to use the scheme proposed in
Section 4, which simplifies the design of the loop filter. This
is the second key point of our method.

3.2. Open Loop Architectures. In order to estimate the time
delay and the carrier frequency from the incoming signal,
the open loop schemes usually operate on batches of the
incoming signal, as depicted in Figure 3. The open loop
approach does not separate acquisition and tracking stages,
as explained in [10]. An input signal batch is correlated with
batches of a signal replica in order to obtain an entire 3-D
image of the signal, whose dimensions are the code shift,
the Doppler shift, and the signal energy. This batch-based
correlation uses joint time-frequency domain techniques
to allow some forms of parallel computing based on FFT.
After the 3-D image has been obtained, batch estimators
are applied to the 3-D function to compute the signal
parameters. They operate by searching for the location of
the maximum energy of the 3-D function and provide
an estimate of the parameters Δψ, Δ f [k], and the code
delay corresponding to this location. Since these methods
mainly rely on FFT-based correlators for the 3-D image
computation, they usually exhibit a large computational
complexity, which enormously increases as the batch size
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Figure 2: 2nd order FLL tracking tesults for input ramp frequency of 10 Hz/s, C/No = 40 dB-Hz, B = 10 Hz and different integration Times.

increases. This is the main reason to avoid the use of these
open loop processing techniques in real time receivers.

4. Proposed Quasi-Open Loop Architecture

In this section we propose a quasi-open loop scheme for
carrier recovery in a GNSS receiver. We start our discussion
from a basic open loop scheme, which utilizes a conventional
discriminator. Then, after analyzing the behavior of the
discriminator for the frequency estimation, we propose a
quasi-open loop scheme for the continuous tracking of the
incoming carrier frequency.

4.1. Basic Open Loop Scheme Utilizing Conventional Discrim-
inators. The main idea of an open loop carrier recovery
scheme that utilizes a conventional discriminator is depicted
in Figure 4.

The main blocks of this scheme are the following.

(i) The local oscillator which generates the local signal
xL[n]. This complex LO is denoted by LO(E), to
emphasize its role in the process of phase estimation.

(ii) The mixer which performs the multiplication be-
tween the local oscillator and the incoming signal.

(iii) The accumulator which accumulates L values of the
signal y[n]; this block is often called integrator as it
is equivalent to an integral in the continuous time
domain. The integrator output is provided at the
epochs n = L, 2L, . . . , kL, . . ..

(iv) The discriminator, which provides an estimate of
the instantaneous phase/frequency of the incoming
signal. It receives an input (the integrator output) at
a rate which depends on the value of L.

(v) The open loop smoothing filter.
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(vi) The local oscillator LO(R), which provides a local
carrier xcr[n], recovered from the incoming signal.

This scheme differs from its closed loop counterpart
since we use each new phase/frequency estimate to update a
separate local oscillator (the LO(R) block), instead of feeding
back the local oscillator LO(E) that is embedded in the
estimation module. This system works at two different rates,
that is, in two different discrete-time domains: the mixer and
the integrator works in the n domain with a rate rn, while
the discriminator works in the k domain, with a rate rk =
rn/L. Once the discriminator has estimated the instantaneous
phase/frequency of the incoming signal, the carrier can be
recovered by building a sinusoidal signal, xcr[n]. This is the
recovered LO, denoted as LO(R), whose update rate is rk. In a

DPLL, the LO(R) is also used to update the signal xL[n], then
LO(E) and LO(R) coincide.

In our scheme we decouple LO(R) and LO(E), so as
to design independently their denoising filters and update
rates. This idea derives from the consideration that the
update rate of LO(R) depends on the input dynamic, while
the update rate of LO(E) depends on the frequency range
the discriminator is able to process. It is evident that the
two update rates are related, but the requirements can
be different. Similar considerations can be done for the
denoising filters.

Below we perform an analysis of the integrator and
discriminator outputs which will help us to highlight the
main factors that are needed to recover a continuous carrier.
The analysis is performed in the ideal case of no noise. In
this case, the integrator outputs of Figure 4 can be written in
complex form as

yϕ[k] = 1
2L

(k+1)L−1∑

n=kL
e j(2πΔ f (nTs)nTs+Δψ), (5)

where

Δ f (nTs) = fL(nTs)− fd(nTs),

Δψ = ψL − ψs. (6)

In theory (5), should contain also a double frequency com-
ponent, which, however, can be neglected as it is filtered out
by the integrator. IfΔ f (nTs) is a constantΔ f , the summation
in (5) can be written as a geometrical progression, from
which a closed-form expression can be found. In fact by
writing i = n− kL, (5) becomes

yϕ[k] = 1
2L

L−1∑

i=0

e j(2π(i+kL)Δ f Ts+Δψ)

= e j(2πΔ f kLTs+Δψ)e jπΔ f Ts(L−1) sinπΔ f LTs
2L sinπΔ f Ts

(7)
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Figure 7: Proposed scheme tracking an input frequency ramp of 10 Hz/s, C/No = 40 dB-Hz, T = 5 ms.

whose instantaneous phase is

ϕinst[k] = 2πΔ f
(
kL +

L− 1
2

)
Ts + Δψ. (8)

If Δ f (nTs) is approximately constant in the integration
interval LTs, that is Δ f (nTs) ∼= Δ f [k] for kL ≤ n ≤ (k +
1)L− 1, then it is possible to write

ϕinst[k] ∼= 2πΔ f [k]
(
kL +

L− 1
2

)
Ts + Δψ. (9)

This phase contains an integer number Lk of cycles plus a
fractional part, from which

ϕinst[k] = Lk2π + Φ(nTs), (10)

where

Φ(nTs) = mod
(
ϕinst[k], 2π

)
. (11)

In the classical DPLL schemes for GNSS applications, this
phase is estimated at the time epochs n = kL, for k = 0, 1, . . .,
as

Φ(kLTs) = arctan
YQ[k]
YI[k]

, (12)

where YI[k] = R(yϕ[k]) and YQ[k] = I(yϕ[k]). This
discriminator function can also be substituted by other
operations which approximate the arctan function. At each
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epoch k, (12) provides a phase value available at the discrete-
time instant (k + 1)L and representative of the instantaneous
residual phase at the time instant

lkTs = Ts

[
(k + 1)L− (L + 1)

2

]
, (13)

that is, the residual phase information is provided with a
delay of (L+ 1)/2. Notice that the recovered carrier xcr[n] has
to be generated at each time instants tn = nTs, as indicated in
(3). This means that the missing values of the instantaneous
phase have to be evaluated in some way. This problem can
be easily solved if the unknown frequency Δ f (nTs) can be
estimated from the outputs of the discriminator function
(12), used for the instantaneous phase estimation. This part
is described below.

In order to estimate the instantaneous frequency, a
quantity yϕ[k]y∗ϕ [k − 1] is at first evaluated, and then its
phase is extracted using an arctan phase discriminator. This
is the usual operation performed by a 4-quadrant arctan
discriminator of the type, [2],

Δ f [k] = 1
2πT

arctan

⎛
⎝ I

(
yϕ[k]y∗ϕ [k − 1]

)

R
(
yϕ[k]y∗ϕ [k − 1]

)
⎞
⎠. (14)

Although this discriminator is termed as maximum like-
lihood estimator by [2], it is important to mention that
this estimator only achieves the Cramer-Rao lower bound
at a sufficiently high C/No, as we have demonstrated
in [11]. Notice that (14) provides the frequency value
without evaluating the instantaneous phase, just applying
the integrator output to (14). Another possibility for the
frequency evaluation is to operate on the output of the phase
discriminator given in (12). However, since in a frequency
discriminator only the phase difference is of interest, the
discriminator given in (14) is generally more convenient,
as it inherently reduces the phase wrapping problem [12].
Once the estimate of Δ f [k] is available, the carrier can be
continuously recovered, at each instant, by the oscillator
LO(R).

Before addressing the role of the filter in this scheme we
want to highlight some limitations encountered when a car-
rier with a time varying Doppler frequency has to be tracked.
The main problem with this type of scheme is that we cannot
use it alone or without a closed loop updating because of
the limited linear region of the discriminator function. In
fact, as the difference Δ f [k] between the frequencies of the
incoming and local carriers increases with time, the system
tends to operate outside the linear region, where tracking
is no longer possible. Moreover, this linear region reduces
as the coherent integration time T increases. Therefore, it
is not possible to track the frequency evolution without
updating the frequency of the local oscillator LO(E). All the
conventional discriminators exhibit the same behavior, as
discussed in [2].

As an example, Figure 5 shows the output of the discrim-
inator, given by (14), for different integration times. This
behavior is observed when we try to use the scheme, given
in Figure 4, for tracking a time varying input Doppler at
C/No = 50 dB-Hz.

4.2. Modified Scheme: Quasi Open Loop Scheme. A possible
method to overcome the problem of tracking a time varying
frequency is to update the frequency of the local oscillator
LO(E) afterN epochs, instead of updating it at each epoch, as
in the closed loop systems. This means that we are proposing
a scheme working with three different rates, as opposed to the
typical closed loop schemes working with two different rates.
In the proposed scheme, shown in Figure 6, the additional
update rate of the LO(E) frequency, equal to ru = rk/N , is
introduced.

The real motivation behind this three rate schemes is to
make the integration time T and the NCO update interval
independent of each other, obtaining in turn an additional
degree of freedom. The latter allows us to ease the design
of the loop, as it will be shown below. The system can be
considered quasi-open, as it works as an open loop between
two updating epochs.

Notice that in our scheme only the frequency of the
NCO is updated, while the phase is kept continuous at each
epoch, regardless of whether the updating is or is not applied.
The value of N depends on the specific application. For
example, in case of high dynamics we need to update the
NCO frequency more frequently, so a smaller value of N is
necessary. Furthermore, we can also decide to have either
regular update intervals, that is, to update after eachN epoch,
or irregular intervals which depend on the incoming Doppler
evolution. In this study we have only considered regular
update intervals.

4.3. Choice and Design of Loop Filter. The scheme of Figure 6
allows us to approach the design of the loop filter, taking
into account that now its role is only to reduce the
effect of noise on the frequency estimate. This is possible
thanks to the available additional degree of freedom of the
quasi-open scheme. The filter can be considered as a part
of the discriminator, whose only task is to smooth the
discriminator output. To this purpose, any reasonable choice
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Figure 9: Proposed Scheme tracking an input frequency ramp of 10 Hz/s, C/No = 40 dB-Hz, T = 20 ms.

of the filter structure and parameters can be adopted, taking
into account the specific application. Since finite impulse
response (FIR) filters are simple to design, always stable,
relatively insensitive to quantization and can have linear
phase, we decided to explore the possibility to use them for
denoising.

The transfer function Fsm(z) of an FIR filter is

Fsm(z) =
Lsm−1∑

i=0

biz
−i, (15)

where Lsm denotes the number of taps and bi are the filter
coefficients, which become bi = 1/Lsm in the simplest
case of a moving average (MA) filter. An MA-FIR filter
is an excellent smoothing filter, but its frequency roll-off
is slow and its stopband attenuation is ghastly, making it
a scarcely effective low-pass filter. This is a typical result,
as a digital filter can be generally optimized for time or
frequency domain performance, but not for both. Since in
our application the filter task is to mitigate the noise effect,
the choice of an MA-FIR structure is justified. Notice that
the purpose of this paper is to show the feasibility of a
quasi-open architecture, then we did not concentrate on the
optimization of the structure of the smoothing filter, which

could be also implemented with infinite impulse response
(IIR) filters or with more optimized versions of FIR filters.

A possible consideration for choosing the type of filter
could be to keep the computational complexity as low as
possible. This complexity can be attributed to the number of
operations (additions and multiplications) needed to com-
pute the filter response. For digital filters, the computational
complexity is more or less proportional to the number of
filter coefficients. Usually, we need more than 5 taps to get
good smoothing results in case of MA-FIR filters. With these
values the computational complexity of a quasi-open loop
scheme, which utilizes a smoothing MA-FIR filter, will be
slightly higher than the one of an FLL utilizing 2nd order
IIR filters. But, as mentioned above, we have many other
advantages of using FIR filters as compared to IIR filters.

It is important to mention that the use of these filters
changes the philosophy of the loop filter. As explained earlier,
in a closed loop architecture the filter has a twofold task: one
is to reduce the effect of the noise and the second one is to
control the loop dynamics. In the schemes with a smoothing
MA-FIR filter the loop dynamics is solely determined by the
frequency discriminator. For example, it has been shown that
the estimator proposed in (14) is unbiased if we have to track
a constant frequency shift or a linear frequency ramp. But its
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Figure 10: Proposed scheme tracking an input frequency ramp of 10 Hz/s, C/No = 40 dB-Hz, T = 20 ms.

estimate is biased when we have to track an input frequency
with a quadratic component [8]. This is not a problem in
our scheme as we can accommodate a higher order dynamics
by taking additional measures. For example, we can either
change the design of the discriminator, as discussed in [13],
or we can insert a new block after the FIR filter to account for
the higher dynamics. This problem has not been considered
in this study, which is mainly devoted to the feasibility and
performance of the quasi-open structure.

5. Results and Discussions

In this section we present some simulation results obtained
by using this new type of quasi-open loop frequency esti-
mator. We start from a basic scheme using an MA-FIR filter,
we observe the results, and we introduce some modifications
in the basic scheme to improve its performance. The system
performance is described in terms of tracking jitter, also
taking into account weak signal scenarios.

5.1. Some Implementation Aspects. In the first simulation
example, a GNSS-like signal was generated with a ramp-
type time-varying Doppler shift, with a slope of 10 Hz/s.

The signal was processed by a quasi-open loop frequency
estimator, followed by a smoothing MA-FIR filter with Lsm

= 10 taps. In the first stage (after switch-on) the system
is completely open, and, after a time interval equal to the
transient of the FIR filter, starts updating the loop. The
updating is repeated at each integration interval NT .

The results with N = 20 are shown in Figure 7, which
shows that the proposed scheme is able to successfully track
the input Doppler frequency 7(a).

However, observing the results of Figure 7, we recognize
that some problems are associated with this type of scheme.
First of all, at each new update there is a jump in the
discriminator output 7(c). These jumps give rise to undesired
outliers which depend on the type of updating. These
outliers can be compensated using the scheme shown in
Figure 8, which adopts a simple strategy to eliminate any
kind of anomaly, based on the comparison between the
current and the previous discriminator outputs, indicated
in Figure 8, respectively, as Δωk and Δωk−1, and measured
in rad units. The sudden jumps are eliminated by setting
two thresholds p and q, whose values depend on the rate
of the input Doppler frequency. We have set both of them
equal to π in all the results presented in this paper. The
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Figure 11: Tracking jitter performance.
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Figure 12: Tracking jitter performance with same integration time.

compensated discriminator output shown in Figure 7(d)
proves the effectiveness of the method.

The second problem associated to this type of scheme is
related to the inherent time-transient of any FIR filter, which
generates some regular slowly decreasing jumps at each new
updating interval. This is due to the fact that the filter output
experiences a transient, which vanishes only when the filter
memory (equal to the filter length) is completely filled with
input samples. This effect is clearly visible in Figure 9(a)
where the integration time is T = 20 ms. A possible solution
to mitigate this problem is to use a moving average FIR filter

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

E
st

im
at

ed
 d

op
pl

er
 (

H
z)

 

QOL, Lsm = 30T = 10 ms, ,N = 20

= 10 HzT = 30 ms,FLL, B

Time (s)

Figure 13: FLL versus QOL tracking results for incoming Doppler
variation of 10 Hz/s, C/No = 40 dB-Hz.

0 5 10 15 20 25 30 35

0

10

20

30

40

Time (s)

E
st

im
at

ed
 d

op
pl

er
 (

H
z)

−40

−30

−20

−10

QOL, Lsm = 10, N = 10,

= 1 Hz,T = 300 ms

T = 300 ms

FLL, B

Figure 14: FLL versus QOL tracking results for incoming Doppler
variation of 0.5 Hz/s, C/No = 30 dB-Hz.

0 10 20 30 40 50

0

5

10

15

20

25

30

 

Time (s)

QOL, Lsm = 10, N = 10,

= 0.6 Hz,T = 500 ms

T = 500 ms

FLL, B

−5

E
st

im
at

ed
 d

op
pl

er
 (

H
z)

Figure 15: FLL versus QOL tracking results for incoming Doppler
variation of 0.2 Hz/s, C/No = 20 dB-Hz.



International Journal of Navigation and Observation 11

with a time-variant length. The number of the taps is set to
one at each new updating, and then it is gradually increased
to reach the specified maximum value Lsm. The results are
presented in Figure 10, where we can see that we have no
more jumps in the output.

At this point we have an architecture where it is possible
to set the update rate of the NCO independently from the
integration time. We have also demonstrated the feasibility
of using an MA-FIR filter with a time-varying length as loop
filter. The filter design is very easy and the resulting structure
is always stable.

5.2. Performance of the Quasi-Open Scheme in User Dynamics.
The updating interval in the proposed scheme is strictly
related to the dynamics under which the system has to work.
In case of high dynamic applications the updating has to
be applied more frequently, and this implies a smaller value
of N , and vice versa. The dynamic range sustained by the
quasi-open loop scheme does not only depend onN , but also
on the linear region of the discriminator in (14), which, in
turn, depends on the integration time T . We can relate the
linear range of the discriminator, denoted by ΔD (for a given
T), and the rate of change of the input Doppler frequency,
denoted by ḟd and expressed in Hz/s as

ḟdTN <
ΔD
2

(16)

obtaining the condition for the quasi-open loop scheme to
work properly. In this equation, the term ḟdTN indicates
the amount of Doppler accumulated between two updating
intervals of the NCO. If this term lies inside the discriminator
range, then the proposed scheme successfully tracks the
Doppler variations.

As an example, for T = 10 ms, the linear range of the
discriminator is about ΔD = 100 Hz (from −50 Hz to 50 Hz
in Figure 5). Thus, for T = 10 ms andN = 20, the maximum
Doppler variation that can be tracked successfully by the
quasi-open loop scheme is given by

ḟd <
ΔD

2NT
= 250 Hz/s. (17)

If the input Doppler variation exceeds this value, then the
quasi-open loop is not able to track the incoming frequency.
The problem can be solved by updating the NCO frequency
more often. This can be achieved by decreasing the value of
N .

5.3. Tracking Jitter Performance. We carried out some sim-
ulation experiments to examine the tracking jitter perfor-
mance of the proposed quasi-open loop scheme and we
compared it with the theoretical jitter of a classical FLL.
The results shown in Figure 11 were obtained for different
integration times T and different C/No, by keeping the
number Lsm of the MA-FIR filter taps constant, and by
updating the NCO (local oscillator LO(E)) frequency after
N = 20 epochs. In this way we were able to analyze the effect
of increasing the integration time on the jitter performance.

To compare the results with those of a traditional closed
loop scheme, we used the formula of the theoretical FLL
tracking jitter, due to thermal noise, given in [2], that is

σFLL = 1
2πT

√
4FB
C/No

[
1 +

1
TC/No

]
[Hz]. (18)

These values are also shown in Figure 11 for different
integration times, and for a loop noise bandwidth B =
10 Hz. The choice of the loop noise bandwidth suitable for
comparison is not an easy task and will be discussed in the
next section.

It is clear from the obtained results that the tracking jitter
performance of the quasi-open loop is better than that of
an FLL for all the integration times at high C/No, but the
performance degrades at low C/No. The main reason for this
could be the poor quality of the frequency estimator (14) at
a low C/No.

5.4. Loop Noise Bandwidth versus Filter Taps. In this section,
we discuss the equivalence between the loop noise bandwidth
B of the closed loop schemes and the number Lsm of the filter
taps in a quasi-open loop. In traditional closed loop schemes,
like FLLs, the parameter B controls both the amount of noise
rejected by the loop and the dynamic stress. If we increase
B, the loop can sustain more dynamics, but more noise also
affects the system, and vice versa.

A similar role is played by the number Lsm of filter
taps in a quasi-open scheme. Increasing Lsm implies more
smoothing, but imposes some constraints on the update
interval N , which should be larger than Lsm. In fact, if N <
Lsm the filter never attains steady-state, thereby reducing the
effectiveness of the smoothing, which will be incomplete. In
other words, since the number of taps is variable and is set to
one at each new update, the maximum number of taps will
be N instead of Lsm. Another constraint on the value of N is
the dynamic stress which can be sustained by the quasi-open
loop scheme.

The equivalence between B and Lsm can be seen in
Figure 12, which shows the tracking jitter curves for both
schemes, with different values of B for the FLL and different
values of Lsm for the quasi-open scheme. The curves were
obtained by keeping the integration time constant. By
observing these curves we can get an idea of the number of
taps of the MA-FIR filter required to achieve the same jitter
performance of an FLL with a given noise bandwidth. As
shown in Figure 12, the jitter performance improves as Lsm

increases, and B decreases.
It is very difficult to find the exact equivalence between

these two parameters from these results. However, since we
are usually interested in low C/No regions, we can somehow
relate the two parameters. For example, to obtain the same
performance of an FLL with B = 10 Hz, we need an MA-
FIR filter with Lsm = 20 taps for T = 1 ms. On the other
hand, for B = 1 Hz, the number of taps has to be Lsm = 50,
which is quite complex in terms of computational cost. So,
a reasonable choice could be to fix an approximate limit
of Lsm ≤ 20. In this way we will get almost the same
performance of an FLL with B = 10 Hz.
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In the following section we adopt this equivalence
between B and Lsm, and, based on this, we show the
advantages obtained with a quasi-open loop scheme in weak
signal conditions.

5.5. Weak Signal Performance. In this section, we demon-
strate that, by using a quasi-open scheme, we can work with
extended coherent integration times which otherwise would
not be possible with closed loop schemes under the same
conditions, because of the resulting loop filter instability.

In the first simulation experiment, we again considered
an incoming signal with a ramp-type Doppler frequency
with a slope of 10 Hz/s, and withC/No = 40 dB-Hz. Although
this is not a weak signal, we started with this value to better
highlight the performance of both schemes, FLL and quasi-
open loop, when they work under the same conditions. We
set the update interval to N = 20, and the number of filter
taps to Lsm = 10. For this choice of Lsm, a reasonable value
of the FLL noise bandwidth could be around B = 10 Hz,
as discussed in Section 5.4. The tracking results are shown
in Figure 13 for T = 30 ms. Under these conditions BT =
0.3, which is high enough for the loop filter to become
unstable. For the quasi-open loop scheme we can extend the
integration time even more as long as the condition (16)
remains valid.

In the next simulation experiment, we considered a weak
signal with C/No = 30 dB-Hz, and with a Doppler varying at
a rate of 0.5 Hz/s. Since C/No is very low, we set T = 300 ms,
and the FLL bandwidth to B = 1 Hz, so as to have a suitable
noise rejection performance for weak signals. For the quasi-
open loop scheme, we chose Lsm = 10 and N = 10 to
fulfill the condition (16). Here the value N = 20 used in
the previous experiment cannot be kept because of condition
(16). The results are shown in Figure 14. Again we observe
the same situation observed in Figure 13: the FLL is no longer
able to track the carrier, because of the loop filter instability,
while the proposed scheme works well and successfully tracks
the incoming Doppler variation.

Figure 15 shows the tracking results for an incoming
signal with C/No = 20 dB-Hz, and a Doppler variation with
a rate of 0.2 Hz/s. The integration time is set to T = 500 ms,
since C/No is very low. For the quasi-open loop scheme, we
chose N = 10, a value which does not violate the condition
(16). The figure shows that the proposed scheme successfully
tracks the frequency of the incoming signal even at this low
C/No.

6. Conclusion

A novel quasi-open loop architecture has been proposed
for tracking the frequency of received GNSS signals. The
proposed architecture works with three different rates, unlike
the classical closed loop schemes, PLLs and FLLs, which
work with two different rates. The additional degree of
freedom of the quasi-open scheme enables us to ease the
design of the loop filter. Simulation results show that it
is possible to design this filter with an FIR structure, by
adopting some very simple rules for the design. Moreover,

the system results advantageous also in terms of stability
when compared to a traditional closed loop architecture. It is
also important to mention that if this type of scheme is used
with classical DPLL schemes in an assisted manner, then a
lower bandwidth and higher coherent integration times can
be utilized in DPLL to track the incoming carrier in very
weak signal conditions.
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and Michel Monnerat3

1 CNES—The French Space Agency, Navigation/Localization Signal & Equipment Department, 18 Avenue Edouard Belin,
31401 Toulouse Cedex 9, France

2 ONERA—The French Aerospace Lab ONERA, DEMR Department, 2 Avenue Edouard Belin, 31000 Toulouse, France
3 Thales Alenia Space, BS Navigation & Integrated Communication, 26 Avenue Jean-François Champollion, 31037 Toulouse, France
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The well-known Space-Alternating Generalized Expectation Maximisation (SAGE) algorithm has been recently considered for
multipath mitigation in Global Navigation Satellite System (GNSS) receivers. However, the implementation of SAGE in a GNSS
receiver is a challenging issue due to the numerous number or parameters to be estimated and the important size of the data to
be processed. A new implementation of the SAGE algorithm is proposed in this paper in order to reach the same efficiency with a
reduced complexity. This paper focuses on the trade-off between complexity and performance thanks to the Cramer Rao bound
derivation. Moreover, this paper shows how the proposed algorithm can be integrated with a classical GNSS tracking loop. This
solution is thus a very promising approach for multipath mitigation.

1. Introduction

In Global Navigation Satellite System (GNSS) applications,
multipath (MP) errors are still one of the major error sources
for conventional receivers. The additional signal replicas due
to reflections on the local environment introduce a bias in the
delay lock loops (DLLs), which finally leads to a positioning
error [1, 2]. Several techniques have been developed for
multipath mitigation. One of the most popular approaches
is the Narrow Correlator Spacing [3], which reduces the chip
spacing between the early and late correlators in order to mit-
igate the impact of multipath. However, this technique suf-
fers from high sensitivity to noise and cannot perform with
short delay multipath (<0.1 chip). Based on the Maximum
Likelihood (ML) estimation, the Multipath Estimating
Delay-Lock-Loop (MEDLL) [4] algorithm has also been pro-
posed to estimate the delay and the power of all the paths by
studying the shape of the cross-correlation function. This

approach shows better performances than the Narrow Cor-
relator Spacing technique, but short delay multipath mitiga-
tion is still an issue [4]. More recently, Bayesian approaches
have been proposed [5–7]. Indeed, most of the time, prior
information could be used in order to improve the delays
estimations. However in practice, it is difficult to get correct
prior information. Measurement campaigns can be used
to build a first-order Markov process for a sequential esti-
mation, but the performance will consequently be strongly
dependent on the measured environment (design of the
city. . .).

Last, the use of array antenna algorithms has been pro-
posed for multipath mitigation [8, 9]. Array antennae enable
a spatial sampling that makes it possible to distinguish differ-
ent sources in the spatial domain. Therefore, mitigation tech-
niques based on such an array are independent of the relative
delays of the MP. Consequently, the rejection of any kind
of MP seems possible (and especially short-time delay MP).
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In conventional mobile receivers, the room available to
incorporate an array antenna is reduced. Only a small
number of elements can be integrated. This study will focus
on a square 2× 2 elements antenna. The choice of the shape
of the array antenna is out of the scope of this paper, and we
will only focus on the array processing.

Using appropriate weights on each channel, beamform-
ing technics perform a spatial filtering in order to concentrate
the energy beam towards the signal of interest, while trying
to minimise the gain towards the interferences. However, in
the MP mitigation context, these classical approaches present
limited performances for the following reasons [10].

(i) Near angle signals are difficult to separate because of
the low antenna resolution [10, 11].

(ii) Line-of-sight signal (LOSS) and multipaths are
strongly correlated, which implies a severe degrada-
tion of adaptive beamforming algorithms.

(iii) Adaptive algorithms should operate after the correla-
tion step in order to work with positive SNR signals.
That implies that only a small number of samples are
available to estimate the array covariance matrix. Bad
covariance matrix estimation can lead to inversion or
eigenvalues decomposition instabilities.

To overcome these problems, several solutions have been
proposed. In [12, 13], for example, the authors propose to
use additional Choke ring techniques, GPS microstrip array
antenna, and/or angle constraint for negative elevation in
order to reject ground multipaths. However, for a generic
application, we cannot assume any specific MP DOA.

In order to improve the MP mitigation, another
approach proposes to include the different DOA paths
parameters in the estimation procedure [10, 14–18]. In
other words, we estimate a set of parameters (amplitudes,
times/delays, Doppler shifts, elevations, and azimuths) for
all the incoming sources. The main difference with the
beamforming approach is that, instead of filtering the sources
in the spatial domain only, the different incoming paths are
jointly identified in the space, time, and frequency domains.
In order to estimate the parameters of all impinging signals,
the Space Alternating Generalized Expectation Maximisation
(SAGE) algorithm [16], which is a low-complexity gener-
alization of the Maximum Likelihood (ML) algorithm, has
been considered. The SAGE algorithm is usually used in
communication systems [16], but the potential of SAGE in
a navigation context has also been proven [17, 18]. Never-
theless, the computational cost increases due to the number
of unknown parameters. Moreover, the memory size is also
a challenging issue. Thus, the SAGE algorithm can hardly
be directly implemented in real time for GNSS receivers.
Last, the SAGE algorithm provides an estimation of the time
delay and phase of the LOSS, as do the DLL and PLL (Phase
Lock Loop). Thus, the use of SAGE implies to switch off the
DLL/PLL, and, consequently, we lose the “smoothing effect”
of the tracking loops.

In order to reach the efficiency of the SAGE algorithm
with a reduced complexity, and to keep the compatibility
with conventional GNSS tracking loops (DLL/PLL), we

proposed a new implementation of SAGE in [10]. The main
idea is to apply the SAGE algorithm after the local correlation
step. Indeed, the cross-correlation between the received
signal and the local code can be seen as a compression step
of the baseband signal. Thus, by reducing the size of the
input signal, the complexity of the algorithm will reduce
in the same proportion. By applying the ML estimation on
the postcorrelated signal, we estimate the relative delay and
Doppler of the paths. These estimations are then used to
drive the GNSS tracking loops. We named this new algorithm
the SAGE/STAP multicorrelator algorithm.

Comparisons based on Monte Carlo simulations between
the SAGE/STAP algorithm, the SAGE algorithm, and beam-
formers have been done in [10]. This paper focuses on the
Cramer Rao Bound (CRB) derivation in order to present the
theoretical trade-off between the complexity reduction and
the estimation accuracy of the SAGE/STAP algorithm. More-
over, this paper presents an implementation of the proposed
algorithm hybridized with the GNSS tracking loops

This paper is organized as follows. The signal model and
the main assumptions are outlined in Section 2. A review
of the SAGE algorithm, the SAGE/STAP multicorrelator
algorithm, and its implementation in a GNSS receiver is
given in Section 3. The simulation results in Section 4 show
the trade-off between the complexity and the accuracy of the
SAGE/STAP multicorrelator algorithm and present the per-
formances of the proposed algorithm in realistic scenarios.
Finally, in Section 5 we present our conclusions.

2. Signal Model

Let us assume that we receive L narrowband planar wave
fronts of wavelength λ on an array of M isotropic sensors.
The M-sized vectorized received signal, z(t), can be written
as

z(t) =
L−1∑

l=0

sl
(
t,ψl

)
+ n(t), (1)

where sl(t,ψl) is given by

sl
(
t,ψl

) = γla
(
θl,ϕl

)
exp

(
2 jπνlt

)
c(t − τl), (2)

and n(t) ∼ N(0, σ2
nIM) is an additional complex white

Gaussian noise. Let us note that L the number of incoming
paths (LOSS included) and ψl = [γl, θl,ϕl, τl, νl]

T are, respec-
tively, the complex amplitude, elevation, azimuth, time delay,
and Doppler shift of the lth path. Note that the index
l = 0 corresponds to the LOSS. Here, c denotes the
pseudorandom-noise (PRN) sequence that consists of a Gold
code with a code period T = 1 ms, 1023 chips per period,
and a rectangular chip shape. a(θ,ϕ) represents the steering
vector of a 2 × 2 square array antenna. The channel para-
meters are assumed constant during the observation time.

Collecting the samples of the complex baseband signal
leads to aM×Nsnap, matrix, whereNsnap denotes the number
of SnapShots. Typically in GNSS, Nsnap is larger than 2000,
and, thus, a direct processing of the baseband signal is hardly
implemented in real time. In order to compress the signal,
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Figure 1: Principle of the STAP multicorrelator.

we propose to use the scheme presented in the Figure 1. The
aim of the array antenna is to sample the wave fronts and to
get access to the spatial domain. The banc of correlators is
used to compress the signal and to get access to the relative
delays of the sources, and finally the postcorrelation time taps
enable to get access to the frequency domain. We can see
that the first and last parts of this architecture are equivalent
to a STAP (space time adaptive process) array applied to
the postcorrelated signal. Thus, we call this architecture the
STAP multicorrelator array. This array is then defined by
4 parameters: the number M of antennas, the number N
of postcorrelation taps, the number P of correlators, and
the time spacing Cs between each correlator. Note that the
sampling time of the postcorrelated signal is equal to Tint.
Therefore, we have the following relation between the num-
ber of SnapShots and the number of postcorrelated Taps:
Nsnap = NTint fs, where fs denotes the sampling frequency
of the baseband signal. The nth output of one correlator
delayed by a time spacing of pCs is given by

rC,l
(
τrl, νrl, p,n

)

= 1
Tint

∫ nTint

(n−1)Tint

c(t − τl)c
(
t − τ̂ − pCs

)

× exp
[−2 jπ(νl − ν̂)t

]
dt,

(3)

with n ∈ [1,N], if P is even p ∈ [−P/2,P/2] and if P is
odd p ∈ [−(P − 1)/2, (P − 1)/2]. We introduce the relative
delay of the DLL estimation τ̂ and the relative Doppler of the
FLL (Frequency Lock Loop) estimation ν̂ with respect to the

lth path parameters: τrl = τ̂ − τl, νrl = ν̂ − νl. We can then
approximate the integral as

rC,l
(
τrl, νrl, p,n

)

= r
(
τrl + pCs

)
sinc[πνrlTint] exp

[
2 jπ

(
νrl

2n− 1
2

Tint

)]
,

(4)

with r(·) the autocorrelation function of the PRN code and
sinc[x] = sin[x]/x. The amplitude and phase components are
independent of p and n; they can be inserted in the modified
complex amplitude γ̃l of the incoming path:

γ̃l = γl sinc[πνrlTint] exp
[− jπνrlTint

]
. (5)

Then,

rC,l
(
τrl, νrl, p,n

) = γ̃l
γl
r̃C
(
τrl, νrl, p,n

)
, (6)

with

r̃C
(
τrl, νrl, p,n

) = r
(
τrl + pCs

)
exp

(
2 jπνrlnTint

)
. (7)

The outputs of the P correlators are rearranged in a
column vector. The N cross-correlation functions obtained
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are then concatenated in order to get the temporal evolution
of the postcorrelation signal:

r̃C(τrl, νrl) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̃C

(
τrl, νrl,− (P − 1)

2
, 1
)

...

r̃C

(
τrl, νrl,

(P − 1)
2

, 1
)

r̃C

(
τrl, νrl,− (P − 1)

2
, 2
)

...

r̃C

(
τrl, νrl,

(P − 1)
2

, 2
)

...

r̃C

(
τrl, νrl,

(P − 1)
2

,N
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
NP×1

. (8)

Finally, the output signal of the STAP multicorrelator
array can be collected in a mNP column vector:

x =
L−1∑

l=0

xl(Ψl) + npc, (9)

where npc is the output noise and xl(Ψl) is given by

xl(Ψl) = γ̃la
(
θl,ϕl

)⊗ r̃C(τrl, νrl), (10)

where ⊗ denotes the Kronecker product, and the parameters
are now Ψl = [γ̃l, θl,ϕl, τrl, νrl]

T , where τrl, νrl denote the
relative delay and Doppler of the path l.

3. SAGE Algorithm

3.1. Concept of SAGE. The problem associated with the
signal model (2) consists in estimating the parameters ψl =
[γl, θl,ϕl, τl, νl]

T , l = 0, 1, . . . ,L−1 for all the paths. The esti-
mation of L is not discussed in this paper. Usually, L is fixed to
a value large enough to capture all the dominant impinging
waves. Classical information theory methods for model size
selection like Akaike’s and Rissanen’s [19] criteria can be
used. The ML estimation is given by ψ̂ = arg maxψ p(Z |
ψ), where Z is the sampled complex baseband signal and
p(Z | ψ) is the likelihood function. The direct maximization
of the likelihood function is a computationally prohibitive
task since there is no analytical solution. Moreover, p(Z | ψ)
is generally not a concave function of ψ, and L is usually
high. To perform this optimization, we use the iterative
process of the SAGE algorithm [16]. The basic concept of
the SAGE algorithm is to us a hidden data space. Instead
of estimating the parameters of all impinging waves in one
search, the SAGE algorithm sequentially estimates the
parameters of each signal. The SAGE algorithm breaks down
the multidimensional optimization problem into several
smaller problems. In spite of this complexity reduction,
SAGE is still hardly implemented in real time due to the size
of the baseband signal.

3.2. The SAGE/STAP Multicorrelator Algorithm. The main
idea to take advantages of SAGE with more reasonable hard-
ware requirements is to process the data at the output of the
STAP multicorrelator array. Using the signal model (10), the
likelihood function is then

p(x | Ψ)

= 1
πNPM det Qpc

exp
(
−[x − xsi(Ψ)]HQ−1

pc [x− xsi(Ψ)]
)

,

(11)

where xsi(Ψ) = ∑L−1
l=0 xl(Ψl) contains the superimposition

of the post-correlation signals. Qpc denotes the covariance
matrix of the postcorrelation noise. The noise is no longer
white after the correlation step, and it is shown in [20] that
the postcorrelation noise covariance matrix is given by

Qpc = E
(

npcnHpc
)
= σ̃2

n(IMN ⊗QP), (12)

where σ̃2
n denotes the noise power after the correlation step,

and QP is define thanks to the auto-correlation function of
the PRN code r(·):

QP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(0) r(Cs) · · · · · · r(P · Cs)

r(Cs) r(0) r(Cs)
...

... r(Cs) r(0) r(Cs)
...

... r(Cs) r(0) r(Cs)

r(P · Cs) · · · · · · r(Cs) r(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P×P

.

(13)

The first step of the SAGE algorithm, so-called expecta-
tion step (E-STEP), consists in estimating the hidden data
space with

x̂l = x −
L−1∑

l′=0
l′ /= l

xl′(Ψl′). (14)

The second step, so-called maximization step (M-STEP),
carries out the maximization of the log-likelihood function
which is associated with the estimated hidden data space.
In the case of the STAP multicorrelator signal, the log-
likelihood function is

Λ(Ψl) = ln p(x̂l | Ψl)

= − lnπNPM

− ln det Qpc − (xl(Ψl)− x̂l)
HQ−1

pc (xl(Ψl)− x̂l).
(15)

The maximization of Λ with respect to Ψl can be concen-
trated, as the dependence to γ̃l is linear:

γ̃l =
[

a
(
θ̂l, ϕ̂l

)
⊗ r̆C(τ̂rl, ν̂rl)

]H
x̂l

Mr̆HC (τ̂rl, ν̂rl)r̃C(τ̂rl, ν̂rl)
, (16)

where r̆HC (τrl, νrl) is given by

r̆HC (τrl, νrl) = r̃HC (τrl, νrl)
[

IN ⊗Q−1
P

]
. (17)
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Finally, the reduced likelihood function to maximize is

Λ̃(Ψl) =
∣∣∣
[

aH
(
θl,ϕl

)⊗ r̆HC (τrl, νrl)
]

x̂l
∣∣∣2

Mr̆HC (τrl, νrl)r̃C(τrl, νrl)
. (18)

In order to better understand the expression (18), let us
assume no noise is present, and we can develop (10) as

xl = γ̃la
(
θl,ϕl

)⊗ r̃C(τrl, νrl)

= γ̃la
(
θl,ϕl

)⊗ e(νrl)⊗ r(τrl),
(19)

where

e(νrl) =
[
exp

(
j2πνrlTint

) · · · exp
(
j2πνrlNTint

)]T
N×1,

(20)

r(τrl) =
[
r
(
τrl − (P − 1)

2
Cs
)
· · · r

(
τrl +

(P − 1)
2

Cs
)]T

P×1
.

(21)

Then, inserting (19), (20), and (21) in (18), we can
express the reduced likelihood function as

Λ̃
(
θ,ϕ, τr , νr

)

= ∣∣γ̃l
∣∣2
∣∣aH

(
θ,ϕ

)
a
(
θl,ϕl

)∣∣2

M︸ ︷︷ ︸
space FT

∣∣eH(νr)e(νrl)
∣∣2

N︸ ︷︷ ︸
frequency FT

×
∣∣∣rH(τr)Q−1

P r(τrl)
∣∣∣2

rH(τr)Q−1
P r(τr)

.

(22)

As we can see, the first two terms are similar to space
and frequency Fourier transforms. Thus, the two parameters
M and N will mainly influence the accuracy of the DOA
and the Doppler estimations for both algorithms (SAGE and
SAGE/STAP). However, the couple {P,Cs} influences only
the performances of the SAGE/STAP algorithm with respect
to the paths delay estimation. This point will be detailed in
more detail in Section 4.

3.3. Implementation in a GNSS Receiver. To implement the
SAGE/STAP algorithm in a GNSS receiver, we propose the
architecture illustrated in Figure 2.

The first front end bloc contains the RF filters, the down-
conversion step, the ADC and a calibration stage [21]. A cal-
ibration stage aims to compensate the technological defects
such as the RF dispersion of the filters and antenna defects.

The baseband signal Z is the output of this blocx. We
must therefore use the STAP multicorrelator array for each
tracked PRN code in order to compress the data. Afterward,
we use the SAGE algorithm in the processing bloc. Finally, the
SAGE estimation of the relative delay and Doppler τr0, νr0 is
used to drive the DLL and PLL/FLL. Thus, the key idea of our
solution is to substitute the conventional DLL and PLL/FLL
discriminators by the SAGE/STAP estimation.

4. Simulation Results

The aim of this section is to study the impact of the com-
pression step (realized by the STAP multicorrelator array) on
the SAGE algorithm performances. Thus, this section focuses
on the comparison between the classical SAGE and the
SAGE/STAP multicorrelator algorithms. The estimation per-
formances of both algorithms were numerically evaluated
with Monte Carlo simulations and theoretically through
the CRB derivation. The derivation of the CRB for the
SAGE/STAP algorithm is given in the annexe. For the
conventional SAGE algorithm, the CRB can be found in [17].
The simulations parameters are as follows: σ2

n = −131 dBW,
γ0 dB = −160 dBW, θ0 = 61◦, ϕ0 = 131◦, υ0 = 100 Hz, and
we use N = 20 blocks of 1 ms of integration. The sampling
frequency of the baseband signal is fs = 10 MHz. The 2 × 2
square array antenna contains 4 isotropic identical sensors
spaced by λ/2.

In a first time, we analyze the influence of P (the number
of correlators) and Cs (the correlators’ delay spacing) on
the performances of the SAGE/STAP algorithm. In order
to cover all the cross-correlation function, we should have
PCs > 2Tc. This condition is necessary if we want to take
into account all the multipaths with a relative delay τrl ∈
[0,Tc]. Therefore, we have the following relationship P =
ceil(2Tc/Cs), where the operator ceil(x) denotes the nearest
integer greater than or equal to x. We now focus our attention
on the Cs parameters.

To study the influence of Cs, we calculate the root-
mean-square error (RMSE) of the time delay based on 100
Monte Carlo simulations for both algorithms (SAGE and
SAGE/STAP multicorrelator). In this first simulation, we
assume no multipath, and the RMSE is plotted on Figure 3
as a function of Cs, for different signal bandwidths: B =
2 MHz and B = 4 MHz, where B denotes the two-sided
RF bandwidth. When comparing the RMSE of SAGE and
SAGE/STAP algorithms, we can see that both algorithms
present the same performances in the case Cs ≤ 1/B. This
behavior is confirmed theoretically with the curve of the CRB
as a function of Cs. We can see that the standard deviation
increases when Cs becomes higher than the inverse of the
signal bandwidth. We can deduce from this observation
the following empirical rule which results from a tradeoff
between accuracy and complexity:

P = ceil(2Tc/Cs), Cs = 1
B
≈ 1

fs
. (23)

This conclusion can also be observed on the shape of the
likelihood function. In Figures 4 and 5, we plot a section
of the likelihood function through the delay for the SAGE
and SAGE/STAP multicorrelator algorithms. In other words,
we compare |rH(τr)Σ−1

P r(τr)| and |r(τr)|2 for different signal
bandwidths (B = 2 MHz on Figure 4 and B = 4 MHz on
Figure 5) and different correlator spacings Cs. We can see
that if the condition (23) is fulfilled, the likelihood functions
are identical for the SAGE and SAGE/STAP multicorrelator
algorithms. If not, the likelihood function of the SAGE/STAP
algorithm becomes wider than the classical SAGE likelihood
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Figure 2: Proposed receiver architecture.
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Figure 3: RMSE for the SAGE algorithm and RMSE and CRB for
the SAGE/STAP algorithm. RMSE and CRB are plotted as a function
of Cs, and for 2 different signal bandwidths: B = 2 MHz (black) and
B = 4 MHz (blue).

function, which will consequently increase the variance of
the estimation.

In a second time, we evaluate the performances of
both algorithms in the case of one multipath. The reflected
multipath and the LOSS are considered to be in-phase which
corresponds to one of the worst possible cases. In Figure 6,
we plot the RMSE of the estimated time delay for both
algorithms as a function of the relative time delay and relative
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Figure 4: Likelihood function section through the delay for the
SAGE and SAGE/STAP algorithms. B = 2 MHz and Cs = 0.1, 0.2
and 0.5 Chips.

azimuth between the LOSS and the MP (denoted Δτ and
Δϕ). The multipath parameters are γ1 dB = −163 dBW, θ1 =
30◦, υ1 = 105 Hz.

We assume that the receiver is perfectly synchronized
with the LOSS at the beginning of the simulation. Therefore
the initial relative parameters are υr0 = 0 Hz, υr1 = 5 Hz,
τr0 = 0 Chip. In order to choose the couple {P,Cs}, we use
the results of the first simulation together with the condition
(23): fs = B = 10 MHz, Cs = 1/B = 0.1 Chip, and P =
2Tc/Cs = 20. Here again, we can see that both algorithms
present the same performances whatever the multipath posi-
tion (in space and delay). We also plot in Figure 7 the CRB
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and 0.5 Chips.

for the SAGE and SAGE/STAP algorithms. The behaviour of
both CRB shows that the algorithms are theoretically equiv-
alent. Thus, the SAGE/STAP multicorrelator can reach the
efficiency of the SAGE algorithm but with a strongly reduced
complexity. Indeed, the size of the baseband signal is
M fsNTint compared to MNP = MN2Tc fs for the postcor-
related signal in the optimal configuration. The compression
factor is Tint/(2Tc) ≈ 500.

We compare now the RMSE and the CRB of the SAGE/
STAP algorithm in Figure 8 in the same configuration. We
can see that the RMSE reaches the CRB if the sources are
spaced by more than 50◦. This result is particularly inter-
esting because in this situation, close and far time delay
multipaths are completely mitigated by the algorithm, which
is mainly due to the multiantenna contribution. In the case
where the relative azimuth is weaker, the algorithms mainly
use the time and frequency domains to mitigate the mul-
tipath. In this condition, the array antenna is not useful
anymore, and the rejection performances are similar to single
antenna mitigation techniques (e.g., MEDLL). In Figure 9,
we plot the RMSE and the CRB for the LOSS elevation
estimation. Here again, the RMSE reaches the CRB, excepted
in the case of short-time delay (Δτ < 0.1 Chip) and close
space sources (Δϕ < 20◦). This shows the limitation of the
SAGE approach for cases where the MP is close to the LOSS
on the 4 dimensions considered in the estimation process.

The efficiency of the SAGE/STAP algorithm was illus-
trated in the previous simulations. Now, we want to address
the impact of this algorithm on the performances of
conventional GNSS tracking loops.

First of all, we evaluate the error envelope for a conven-
tional DLL enhanced by a conventional beamformer (CBF)
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algorithms. ΔγdB = −3 dB, Δθ = 31◦, Δυ = −5 Hz.
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Figure 7: RMSE of the LOSS delay as a function of the relative
azimuth and relative delay, for the SAGE and the SAGE/STAP
algorithms. ΔγdB = −3 dB, Δθ = 31◦, Δυ = −5 Hz.

and for a DLL driven by SAGE (denoted DLL/SAGE). The
loops parameters are loop order = 2, damping factor = 0.707,
BDLL = 1 Hz, BPLL = 10 Hz. In the case of classical DLL, we
use the early-minus-late discriminator (EMLD) with a chips
spacing equal to 0.1 Chip and the arctangent discriminator
for the PLL. In Figure 10, we plot the error envelope as a func-
tion of the relative azimuth and delay of the MP. Although
the DLL is enhanced by a CBF, the SAGE/STAP algorithm
provides the best multipath mitigation whatever the MP
position.
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In the last simulation, we propose to test the SAGE/STAP
algorithm with the DLR channel model available online
(http://www.kn-s.dlr.de/satnav/) [22]. The DLR channel
model generates the number of paths (LOSS + MP), their
complex amplitudes, relative delays, and Doppler shifts. In
the free version available online, the DOA are not generated.
Thus, we computed the DOA of the MP thanks to the
position of the scatterers, which are randomly positioned
based on statistics established during measurement cam-
paigns [22].

The LOSS parameters are θ0 = 43.7◦, ϕ0 = −88.61,
υ0 = 395.75 Hz, and we simulated a CBOC signal [23] on
the L1 band with B = fs = 25 MHz. Thus, according to (23),
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Figure 10: Error envelope for the DLL driven by SAGE and the
DLL enhanced by a conventional beamforming. The envelope error
is plotted as a function of the relative delay and azimuth. ΔγdB =
−3 dB, Δθ = 31◦, Δυ = −5 Hz.

we have P = 49 and Cs = 40 ns. The speed of the vehicle
has been chosen to 0 m/s in order to tackle the problem of
stationary MP. The other simulation parameters (N , DLL
and PLL) are the same as in the previous simulations. In
Figure 11, we plot the pseudorange error and the Doppler
estimation of the conventional DLL/PLL and the DLL/PLL
driven by the SAGE/STAP multicorrelators algorithm. As we
can see, the SAGE approach provides a real improvement in
the time delay and Doppler estimation with respect to the
conventional multiantenna receiver architecture in a tracking
scenario. More tracking simulations with this solution can be
found in [24].

5. Conclusion

In this work we have addressed the problem of estimating the
propagation time delay of the LOSS in a GNSS receiver under
severe multipath conditions. To reduce the influence of the
multipaths, we investigated the use of array antenna algo-
rithms. Previous studies suggest using the SAGE algorithm
with an array antenna in order to reduce the estimation error
of the delay of the LOSS. However, SAGE is hardly imple-
mented in real time due to the memory requirements and
computation cost. Moreover, SAGE is hardly compatible with
classical GNSS tracking loops.

In order to take the advantages of SAGE with more rea-
sonable hardware requirements, we proposed a new imple-
mentation based on a STAP multicorrelator array. The CRB
derivation and the Monte Carlo simulations were used in this
paper to study the trade-off between accuracy and complex-
ity. This trade-off appears by the influence of the parameters
P (number of correlators) and Cs (correlator space) on
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Figure 11: Pseudorange error and Doppler estimation for the
conventional DLL/PLL and the DLL/PLL driven by the SAGE
algorithm. θ0 = 43.7◦, ϕ0 = −88.61, υ0 = 395.75 Hz.

the SAGE/STAP multicorrelator performances. The size of
the data to be processed is then drastically reduced, and
the CRB and Monte Carlo simulations attest that there is
no performance loss between the classical SAGE algorithm
and the SAGE/STAP multicorrelator algorithm. Moreover,
the SAGE/STAP multicorrelator algorithm can constitute the
discriminator of GNSS tracking loops. Thus, with this new
implementation, the high-resolution performances of SAGE
are now available for GNSS receiver, which is a very promis-
ing approach for the multipath mitigation problem in GNSS.

Appendix

Cramer Rao Bound

The likelihood function for the signal at the output of the
STAP multicorrelator array is given in (11). Therefore, the
log-likelihood function is

ln p(x | Ψl)

= − lnπNPM − lndetQpc − (x− xsi(Ψ))HQ−1
pc (x − xsi(Ψ)),

(A.1)

where xsi(Ψ) = ∑L
l=1 xl(Ψl) contains the superimposition of

the postcorrelated signals, Σpc denotes the covariance
matrix of the postcorrelated noise, and Ψ =
[|γ̃|T arg (γ̃)TθTφTνrTτrT]5L is the parameters vector with

γ̃ = [γ̃0, γ̃1, . . . , γ̃L−1]TL×1 the modified complex amplitude

vector of the L impinging wave fronts, θ = [θ0, . . . , θL−1]T

the elevation vector, φ = [ϕ0, . . . ,ϕL−1]T the azimuth vector,
νr = [νr0, . . . , νrL−1]T the relative Doppler vector, and
τr = [τr0, . . . , τrL−1]T the vector of relative delay.

The CRB is found as the [i, i] element of the inverse of
the so-called Fisher Information Matrix (FIM) I(Ψ):

var(Ψi) ≥
[

I(Ψ)−1
]
ii
. (A.2)

The definition of the FIM is

[I(Ψ)]i, j = −E
[
∂2 ln p(x | Ψ)
∂Ψi∂Ψ j

]
. (A.3)

As we assume that the noise covariance is independent of
the parameters, the FIM for a complex multivariate Gaussian
process is [6, 11]

[I(Ψ)]i, j = 2 Re

(
∂xsi(Ψ)H

∂Ψi
Q−1
pc
∂xsi(Ψ)
∂Ψ j

)
. (A.4)

Note that the FIM can be a bloc partitioned symmetric
matrix. Thus, we can write

I(Ψ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I|γ| I|γ| arg(γ) I|γ|θ I|γ|φ I|γ|τr I|γ|νr
Iarg(γ)

Iθ
. . .

... Iφ
...

. . . Iτr

Iνr |γ| Iνr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6L

, (A.5)

where the bloc matrices can be obtained by

[
I|γ|
]
n,p
= 2 Re

⎛
⎝ ∂xnH

∂
∣∣γ̃n

∣∣Q−1
pc

∂xp

∂
∣∣∣γ̃p

∣∣∣

⎞
⎠,

[
Iarg(γ)

]
n,p
= 2 Re

⎛
⎝ ∂xnH

∂ arg
(
γ̃n
)Q−1

pc

∂xp

∂ arg
(
γ̃p
)
⎞
⎠,

[Iθ]n,p = 2 Re

(
∂xnH

∂θn
Q−1
pc

∂xp
∂θp

)
,

[
Iφ
]
n,p
= 2 Re

(
∂xnH

∂ϕn
Q−1
pc

∂xp
∂θp

)
,

[Iν]n,p = 2 Re

(
∂xnH

∂νrn
Q−1
pc

∂xp
∂νr p

)
,

[Iτ]n,p = 2 Re

(
∂xnH

∂τrn
Q−1
pc

∂xp
∂τrp

)
,

[
I|γ|θ

]
n,p
= 2 Re

(
∂xnH

∂
∣∣γ̃n

∣∣Q−1
pc

∂xp
∂θp

)
,

...

(A.6)

with 1 ≤ n ≤ L, 1 ≤ p ≤ L. Last, we need to calculate the
differential of the STAP multicorrelator signal model given
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in (10) with respect to |γ̃l|, arg(γ̃l), θl,ϕl, νrl, τrl. To that end,
we use the following signal model:

xl = γ̃la
(
θl,ϕl

)⊗ e(νrl)⊗ r(τrl). (A.7)

The differential of the Kronecker product of 2 matrixes
Ap×q and Br×l with respect to a parameter x is given by [6]

∂

∂x
[A(x)⊗ B(x)] = ∂A(x)

∂x
⊗ B(x)

+ Up×r
(
∂B(x)
∂x

⊗ A(x)
)

Ul×q,

(A.8)

with U the permutation matrix. Note that in our model,
we are working with column vectors, and each subvector is
depending on different independent parameters. Therefore,
the differential of the signal is simply given by

∂xl
∂θl

= γ̃l
∂a
(
θl,ϕl

)

∂θl
⊗ e(νrl)⊗ r(τrl),

∂xl
∂ϕl

= γ̃l
∂a
(
θl,ϕl

)

∂ϕl
⊗ e(νrl)⊗ r(τrl),

∂xl
∂νrl

= γ̃la
(
θl,ϕl

)⊗ ∂e(νrl)
∂νrl

⊗ r(τrl),

∂xl
∂τrl

= γ̃la
(
θl,ϕl

)⊗ e(νrl)⊗ ∂r(τrl)
∂τrl

,

∂xl
∂
∣∣γ̃l
∣∣ = exp

(
j arg

(
γ̃l
))

a
(
θl,ϕl

)⊗ e(νrl)⊗ r(τrl)

= exp
(− jπνrTint

)
a
(
θl,ϕl

)⊗ e(νrl)⊗ r(τrl),

∂xl
∂ arg

(
γ̃l
) = jγ̃la

(
θl,ϕl

)⊗ e(νrl)⊗ r(τrl).

(A.9)
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