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Valery Y. Glizer, Israel
Laurent Gosse, Italy
Jean P. Gossez, Belgium
Jose L. Gracia, Spain
Maurizio Grasselli, Italy
Qian Guo, China
Yuxia Guo, China
Chaitan P. Gupta, USA
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Scaling, Self-Similarity, and Systems of Fractional Order
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Scaling (power-type) laws and self-similarity reveal some
featuring properties of physical-chemical objects and can be
easily noticed in nature. Moreover, also some mathematical
abstract objects, such as nondifferentiable functions and
fractals, enjoy scaling and self-similarity. Experimental data
often show some characteristic power law and self-similarity.
A self-similar (scaling) object repeats itself at different scales
in space or time. The property of self-similarity gives us a
better opportunity to study phenomena from all analytical
and computational aspects.

Scale dependence and multiscale analysis are peculiar
properties of some families of special functions and can
be observed in nature. A continuous scale transformation
from one scale to another implies a generalization and
suitable extension of differential operator, as it happens with
fractional derivatives.

Dynamical processes and systems of fractional order
attract researchers frommany areas of sciences and technolo-
gies, ranging frommathematics and physics to computer sci-
ence. From analytical point of view, these kinds of problems
often lead us to deal with the concepts of scales, fractals, and
fractional operators. For instance, medical images nowadays
play an essential role in detection and diagnosis of numerous
diseases and a suitable scale-depending interpretation of the
images is a fundamental aspect of the clinical investigation.
Nonlinear analysis of data, collected by modern devices,
offers still unsolved analytical problems related to not only
complex physics and abstract mathematical theories but also
nonlinear science.

The focus of this special issue is on both the abstract
mathematical models on scaling and self-similarity and the
applied computations on those dynamical processes and
systems of fractional order towards the applications in all
aspects of theoretical and practical study in analysis.

Scaling and self-similarity characterize several mathe-
matical topics:

(1) self-similar analytical problems: scale-depending the-
oretical and applied analytical problems;

(2) fractals, nondifferentiable functions: theoretical and
applied analytical problems of fractal type;

(3) 1/𝑓 process, fractional Brownian motion, fractional
Gaussian noise, self-similar processes, long memory
processes, heavy-tailed random processes, and power
law systems;

(4) fractional differential/integral equations, fractional
operators: systems of fractional order;

(5) complex systems, nonlinear processing;
(6) wavelets;
(7) scaling and self-similarity in applications by focus-

ing on theoretical and analytical aspects arising, for
example, in nonlinear analysis of data, image analysis,
data science, and system science.

This special issue contains 17 papers.
In the category of scale-depending problems, fractals and,

self-similarity there are many papers devoted to interesting
problem.
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H. Zhai proposes some discussion on certain modular
equations about infinite products of Ramanujan. The paper
of J. Leng and T. Huang deals with the “Construction of
fusion frame systems in finite dimensional Hilbert spaces.”
The fractional order, in particular “On the (𝑝, 𝑞)th relative
order oriented growth properties of entire functions,” has
been investigated in the paper of L. M. S. Ruiz et al. The
convergence analysis of the numerical approximation of
second kind integral equations by hybrid Bernstein block-
pulse functions has been proposed by M. Alipour et al.
The paper of C. Pang et al deals with the complex problem
of “Applying data clustering feature to speed up ant colony
optimization.”

In their paper, S. Hu, and P. Liang propose a smart model
to detect and locate singularities by using the theory analysis
of left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1.

J. Yang et al. investigate the “Nonrigid registration of
monomodal MRI using linear viscoelastic model.” The “Linear
total variation approximate regularized nuclear norm opti-
mization for matrix completion” has been discussed in the
paper of X. Han et al. The “𝜀-coverings of Hölder-Zygmund
type spaces on data defined manifolds” are the main topics of
the paper of M. Ehler and F. Filbir. In the paper of L. Dong
et al., “Nonlinear methodologies for identifying seismic event
and nuclear explosion using random forest, support vector
machine, and naive bayes classification” are studied.

Several papers are dealing more specifically with frac-
tional calculus-systems of fractional order.

Transforms within the theory of local fractional calculus
are considered, respectively, in the paper of X. Yang et al. by
focusing on the continuous wavelet transform and the paper
of K. Liu et al. which is dealing with the “Local fractional 𝑍
transforms with applications to signals on cantor sets.”

Approximate solution of fractional differential equations
is considered in the paper “Picard successive approximation
method for solving differential equations arising in fractal heat
transfer with local fractional derivative” proposed by A. Yang
et al. and in the paper of J. Duan et al. dealing with the
“Similarity solution for fractional diffusion equation.”

A new definition of fractional derivatives based on trun-
cated left-handed Grünwald-Letnikov formula with 0 < 𝛼 <
1 and median correction has been investigated by Z. Liao.

Z. Deng and X. Yang propose a “Discretized Tikhonov reg-
ularization method for a fractional backward heat conduction
problem.”

Mathematical models arising in the fractal forest gap via
local fractional calculus are studied in the paper of C. Long
et al.

Of the 36 submissions, 17 papers are accepted in this
special issue (with the acceptance rate being 47.2%). All
papers are dealing with current problems in the topics;
however, they are not an exhaustive representation of the
area of fractional order systems where the concepts of scale,
self-similarity, and fractional order interact. In all papers, the
authors have focused on the main aspects of the theory and
although they have proposed some solutions and models,
most problems remain open, thus giving the opportunity
to readers for further research and discussions in this
field.
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We first determine the asymptotes of the 𝜀-covering numbers of Hölder-Zygmund type spaces on data-definedmanifolds. Secondly,
a fully discrete and finite algorithmic scheme is developed providing explicit 𝜀-coverings whose cardinality is asymptotically near
the 𝜀-covering number. Given an arbitrary Hölder-Zygmund type function, the nearby center of a ball in the 𝜀-covering can also
be computed in a discrete finite fashion.

1. Introduction

Data processing in the digital era often deals with finitely
many high-dimensional data chunks stemming from mea-
surements that obey some continuous physical model. The
implementation and numerical evaluation require estimates
on the accuracy of the discretization with respect to the
underlying model. As an elementary tool providing accuracy
guarantees, we will address 𝜀-coverings of some function
spaces related to information theory and machine learning.

As a standard concept in discrete mathematics, the 𝜀-
covering number 𝑛

𝜀
(𝑌) is the minimal number of balls of

radius 𝜀 that cover a compact metric space 𝑌. An arbitrary
element in𝑌 can be represented by a nearby center preserving
precision up to 𝜀. As such, 𝜀-coverings are also an integral
part of approximation theory, especially if𝑌 is some function
space. Covering numbers capture the complexity of 𝑌 and the
approximation aspects are used in many fields such as infor-
mation theory, statistics, nonparametric density estimation,
and machine learning. There are estimates on the asymtotics
of the 𝜀-covering numbers of the standard function spaces
(cf. [1, 2]), but some fields such as machine learning involve
data lying on some manifold, so that target functions are
naturally defined on thismanifold. To clarify the terminology,
we consider smoothness spaces on manifolds as somewhat

nonstandard function spaces. It may be possible that the
covering number of a function space on some compact
Riemannianmanifold can be assembled by covering numbers
of standard function spaces on Euclidian spaces derived from
the charts. However, it is also important to derive explicit
𝜀-coverings whose cardinality is near the benchmark given
by the 𝜀-covering number. We believe that explicit coverings
may be harder to construct using the charts due to interface
problems, and therefore wewill not pursue this direction and,
instead, we will follow a more global approach.

In general, there is still demand for computing coverings
of many discrete and continuous spaces [3]. As an important
additional requirement, any covering of a function space
needs to come with an algorithmic scheme to determine
some function’s nearby center in an effective manner. At first
sight, the latter seems simple enough as we can take the
center whose distance is minimal. However, determining the
distance between two functions is eventually a continuous
operation, and one is particularly interested in finitemethods.

In this paper, we first determine the asymtotics of
the 𝜀-covering number for the unit ball of some Hölder-
Zygmund type space 𝑌 = C𝑠(X) on an underlying smooth
compact Riemannian manifold X (without boundary and
with nonnegative Ricci curvature). In fact, we determine
the asymtotics of the metric entropy log

2
(𝑛
𝜀
(𝑌)), which is
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the number of bits needed to enumerate the 𝜀-covering (cf.
[1]). Moreover, we compute an explicit 𝜀-covering, such that

log
2
(𝑛
𝜀
)

log
2
(𝑛
𝜀
)
≲ (1 + log

2
(
1

𝜀
)) , (1)

where 𝑛
𝜀
is the cardinality of the constructed covering and ≲

means that the left-hand side can be bounded by a generic
constant times the right-hand side. Hence, our covering is
optimal up to a logarithmic factor by means of the metric
entropy. We allow the underlying manifold to be unknown
in our scheme and, instead, to be represented through a finite
sampling. This sampling must be chosen carefully and is the
key to obtaining a finite scheme.The centers of our 𝜀-covering
can then be determined through a finite process, and we can
measure any function’s distance to these centers in a finite
manner.

For constructions of 𝜀-coverings on periodic smoothness
spaces, for instance, we refer to [4, 5]. The concept of 𝜀-
entropy is also closely related to entropy numbers; see [6–8].

The outline of this paper is as follows. In Section 2 we
introduce the setting, define the Hölder-Zygmund type space
C𝑠(X), and determine the metric entropy for its unit ball. An
explicit covering is computed in Section 3.

2. Covering Numbers for
Hölder-Zygmund Type Spaces

We first fix the setting and list some technical assump-
tions used throughout the paper. Let X ⊂ R𝑑 be an 𝛼-
dimensional compact and connected Riemannian manifold
without boundary and with nonnegative Ricci curvature,
geodesic distance 𝜌, and 𝜇 being the normalized Riemannian
volume measure on X; {𝜑

𝑘
}
∞

𝑘=0
are the eigenfunctions of

the Laplacian on X, and {−𝜆
2

𝑘
}
∞

𝑘=0
are the corresponding

eigenvalues arranged in nonincreasing order, so that 0 = 𝜆
0
≤

𝜆
1
≤ ⋅ ⋅ ⋅ . Readers who are not familiar with some terms from

differential geometry that are used here may simply think
of a “nice” manifold without boundary, such as the sphere,
the real projective space, the (real) Grassmann manifold,
or more generally compact homogeneous spaces. The above
properties ensure certain estimates on the heat kernel on X

(see [9, 10]), which were used in a series of papers [9, 11–13]
to develop approximation schemes for smooth functions on
the manifold. Here, we will make use of those approximation
schemes, but we will keep the technical details at a minimum
level.

Let 𝑁 be a positive integer and most of the time we will
restrict ourselves to 𝑁 = 2

𝑗, where 𝑗 is some nonnegative
integer. The space of diffusion polynomials up to degree𝑁 is

Π
𝑁

:= span {𝜑
𝑘
: 𝜆
𝑘
≤ 𝑁} . (2)

Later, we will use the fact that the above conditions imply the
following estimate on the Christoffel function:

∑

𝜆𝑘≤𝑁

󵄨󵄨󵄨󵄨𝜑𝑘 (𝑥)
󵄨󵄨󵄨󵄨

2

≍ 𝑁
𝛼

, 𝑥 ∈ X, 𝑁 > 0 (3)

(cf. [9–11]), so that integration and orthonormality yield
dim(Π

𝑁
) ≍ 𝑁

𝛼. Here, the symbol ≍ indicates that each side is
bounded by a generic positive constant times the other side.

In traditional scenarios, the accuracy of approximation
by polynomials is closely related to the smoothness of the
function. Therefore, the accuracy of approximation itself is
nowadays considered to be a measurement of smoothness.
This viewpoint is particularly useful in our setting because
defining smoothness in a classical manner would require
more technical details. Here, we define the Hölder-Zygmund
type space of order 𝑠 > 0 by C𝑠(X) = {𝑓 ∈ 𝐿

∞
(X) :

‖𝑓‖C𝑠(X) < ∞}, where its norm is given by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩C𝑠(X)

:=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(X)
+ sup
𝑁≥1

𝑁
𝑠

𝐸 (𝑓,Π
𝑁
, 𝐿
∞

(X)) , (4)

with 𝐸(𝑓,Π
𝑁
, 𝐿
∞
(X)) := inf

𝑔∈Π𝑁
‖𝑓 − 𝑔‖

𝐿∞(X)
. Hence, 𝑓 ∈

𝐿
∞
(X) is contained in the Hölder-Zygmund type space if

and only if it can be approximated by Π
𝑁
at rate 𝑁

−𝑠. Since
the eigenfunctions {𝜑

𝑘
}
∞

𝑘=0
are known to be smooth and

we consider the 𝐿
∞
-norm, each function in C𝑠(X) has a

continuous representative and point evaluation makes sense.
The unit ball inC𝑠(X) is denoted byC𝑠(X) := {𝑓 ∈ 𝐿

∞
(X) :

‖𝑓‖C𝑠(X) ≤ 1}. To compute its covering number, we first
establish compactness. SinceC𝑠(X) is not finite-dimensional,
C𝑠(X) is not compact in theHölder-Zygmund type space, but
we consider it as a subspace of 𝐿

∞
(X).

Lemma 1. The setC𝑠(X) is compact in 𝐿
∞
(X).

The compactness of this embedding can be derived from
(4) by abstract arguments involving Kolmogorov numbers
(cf. [6]). Here, we provide a simple elementary proof for the
sake of completeness.

Proof. We aim to verify that any sequence (𝑓
𝑗
)
∞

𝑗=1
⊂ C𝑠(X)

must have an accumulation point in this set. Since each space
Π
𝑁

is finite-dimensional, there are 𝑔
𝑗,𝑁

∈ Π
𝑁
, such that

‖𝑓
𝑗
‖
𝐿∞(X)

+ sup
𝑁≥1

𝑁
𝑠

‖𝑓
𝑗
− 𝑔
𝑗,𝑁

‖
𝐿∞(X)

≤ 1. The latter implies
that ‖𝑔

𝑗,𝑁
‖
𝐿∞(X)

is bounded for all 𝑗 and 𝑁. Thus, there is
𝑔
1

∈ Π
1
such that the subsequence (𝑔

𝜋1(𝑗),1
)
∞

𝑗=1
converges

towards 𝑔
1
. For any𝑁 = 1, 2, . . ., we can recursively construct

𝑔
𝑁

∈ Π
𝑁
such that

𝑔
𝜋𝑁(𝑗),𝑘

󳨀→ 𝑔
𝑘
, ∀𝑘 = 1, . . . , 𝑁, (5)

and (𝑔
𝜋𝑁(𝑗),𝑘

)
∞

𝑛=1
is a subsequence of (𝑔

𝜋𝑁−1(𝑗),𝑘
)
∞

𝑛=1
. For 𝑁󸀠 ≥

𝑁, this construction yields that (𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

)
∞

𝑗=1
is a subsequence

of (𝑔
𝜋𝑁(𝑗),𝑁

)
∞

𝑗=1
, so that we derive

󵄩󵄩󵄩󵄩𝑔𝑁 − 𝑔
𝑁
󸀠

󵄩󵄩󵄩󵄩𝐿∞(X)
= lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

− 𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

󸀠

󵄩󵄩󵄩󵄩󵄩𝐿∞(X)

≤ lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

− 𝑓
𝜋
𝑁
󸀠 (𝑗)

󵄩󵄩󵄩󵄩󵄩𝐿∞(X)

+
󵄩󵄩󵄩󵄩󵄩
𝑓
𝜋
𝑁
󸀠 (𝑗)

− 𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

󸀠

󵄩󵄩󵄩󵄩󵄩𝐿∞(X)

≤ 𝑁
−𝑠

+ 𝑁
󸀠
−𝑠

.

(6)
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Therefore, (𝑔
𝑁
)
∞

𝑁=1
is a Cauchy sequence and, hence, con-

verges towards some 𝑔 ∈ 𝐿
∞
(X). Standard calculations

reveal that 𝑔 is an accumulation point of (𝑓
𝑗
)
∞

𝑗=1
and is

contained inC𝑠(X), which concludes the proof.

We can now derive the asymptotes of the 𝜀-covering
number ofC𝑠(X) in 𝐿

∞
(X).

Theorem 2. If 𝑠 > 0 is fixed and 0 < 𝜀 ≤ 1, then

log
2
(𝑛
𝜀
(C𝑠 (X))) ≍ 𝜀

−𝛼/𝑠 (7)

holds, where the generic constants do not depend on 𝜀.

Analogous results can be derived for similar concepts
such as different types of 𝑛-widths of functions spaces (cf.
[14–16]). Theorem 2 and its proof are rather classical and can
be derived from [17]. To guide the interested reader, we will
provide the outline of the proof that is based on a general
Banach space result and is also used in [18, Theorem 4.1]. Let
𝑋 be a Banach space and let {𝜙

𝑘
}
∞

𝑘=1
⊂ 𝑋 be a sequence of

linearly independent elements whose linear span is dense in
𝑋, and define 𝑋

𝑘
:= span{𝜙

1
, . . . , 𝜙

𝑘
} with 𝑋

0
= {0}. Let

{𝛿
𝑘
}
∞

𝑘=0
be a nonincreasing sequence of positive numbers with

lim
𝑘→∞

𝛿
𝑘
= 0. The full approximation space is

A (𝑋; {𝛿
𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
)

:= {𝑓 ∈ 𝑋 : 𝐸 (𝑓,𝑋
𝑘
, 𝑋) ≤ 𝛿

𝑘
, for 𝑘 = 0, 1, . . .} .

(8)

A proof similar to Lemma 1 yields that this space is compact,
and we can formulate the result from Banach space theory
that goes back to Lorentz in [17].

Theorem 3 (see [19, Theorem 3.3]). Let {𝛿
𝑘
}
∞

𝑘=0
be a nonin-

creasing sequence of positive numbers such that 𝛿
2𝑘

≤ 𝑐𝛿
𝑘
,

for 𝑘 = 1, 2, . . . and some constant 𝑐 ∈ (0, 1). For ℓ ≥ 0, let
𝑀
ℓ
:= min{𝑘 : 𝛿

𝑘
≤ 𝑒
−ℓ

}. If 𝑛
𝜀
denotes the 𝜀-covering number

ofA(𝑋; {𝛿
𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
) in 𝑋, then one has, for 0 < 𝜀 ≤ 1,

log
2
(𝑛
𝜀
) ≍

𝐿

∑

ℓ=1

𝑀
ℓ
, (9)

where 𝐿 := 2 + ⌊log(1/𝜀)⌋.

At this point our preparations are complete.

Proof of Theorem 2. We aim to apply Theorem 3 with the
function system {𝜑

𝑘
}
∞

𝑘=0
and with 𝑋 being the closure of

⋃
∞

𝑁=1
Π
𝑁
in 𝐿
∞
(X). There, the index set is supposed to start

with 𝑘 = 1, so we set 𝜙
𝑘

= 𝜑
𝑘−1

, 𝑘 = 1, 2, . . .. To define the
sequence {𝛿

𝑘
}
∞

𝑘=0
, we need some preparations. As pointed out

before, integrating (3) overX yields dim(Π
𝑁
) ≍ 𝑁

𝛼. By using
𝑋
𝑘
:= span{𝜑

0
, . . . , 𝜑

𝑘−1
}, we derive, for𝑁𝛼 ≤ 𝑘 ≤ (2𝑁)

𝛼,

(2𝑁)
𝑠

𝐸 (𝑓,Π
2𝑁

, 𝑋) ≲ 𝑘
𝑠/𝛼

𝐸 (𝑓,𝑋
𝑘
, 𝑋) ≲ 𝑁

𝑠

𝐸 (𝑓,Π
𝑁
, 𝑋) .

(10)

Therefore, there are constants 𝐶
𝑖
≥ 1, for 𝑖 = 1, 2, such that

the definitions 𝛿
1;0

= 1/2, 𝛿
1;𝑘

:= (2𝐶
1
)
−1

𝑘
−𝑠/𝛼, and 𝛿

2;0
= 𝐶
2
,

𝛿
2;𝑘

:= 𝐶
2
𝑘
−𝑠/𝛼, lead to

A (𝑋; {𝛿
1;𝑘

}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
)

⊂ C𝑠 (X) ⊂ A (𝑋; {𝛿
2;𝑘

}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
) ,

(11)

which also yields

𝑛
𝜀
(A (𝑋; {𝛿

1;𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
))

≤ 𝑛
𝜀
(C𝑠 (X)) ≤ 𝑛

𝜀
(A (𝑋; {𝛿

2;𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
)) .

(12)

Since 𝛿
𝑖;2𝑘

≤ 𝑐𝛿
𝑖;𝑘
, for 𝑐 := 2

−𝑠/𝛼

∈ (0, 1), we can apply
Theorem 3. According to [18, Lemma 4.1], ∑𝐿

ℓ=1
𝑀
ℓ
≍ 𝑒
𝐿𝛼/𝑠,

so that the choice of 𝐿 in (9) implies (7).

Remark 4. The proof of Theorem 2 discovers that (7) also
holds under much weaker conditions, and we have only used
the fact that there is a sequence of linearly independent
functions {𝜑

𝑘
}
∞

𝑘=0
, so that the polynomial spaces in (2) satisfy

dim(Π
𝑁
) ≍ 𝑁

𝛼.

3. Near Optimal Covering

This section is dedicated to constructing our covering of the
unit ball in the Hölder-Zygmund type space, which is based
on localized summation kernels as developed in a series of
papers [9, 11–13]. We first need some preparations. A Borel
probability measure ] onX is called a quadrature measure of
order𝑁 if

∫

X

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝜇 (𝑥) = ∫

X

𝑓 (𝑥) 𝑔 (𝑥) 𝑑] (𝑥) , ∀𝑓, 𝑔 ∈ Π
𝑁
.

(13)

Note that our setting yields that there is a constant 𝑎 > 0 such
that 𝑓 ⋅ 𝑔 ∈ Π

𝑎𝑁
for all 𝑓, 𝑔 ∈ Π

𝑁
and all 𝑁 (cf. [11, Theorem

A.1]); see also [20] for homogeneous spaces. The existence
of quadrature measures with finite support is proved for
fairly general smooth Riemannian manifolds in [11], where
a construction procedure is outlined. In fact, the support of ]
can be chosen to be contained in any sufficiently dense finite
sampling {𝑥

ℓ
}
𝑚

ℓ=1
ofX, so that ] can be identified with {𝑥

ℓ
}
𝑚

ℓ=1

and nonnegative weights {𝜔
ℓ
}
𝑚

ℓ=1
satisfying ]({𝑥

ℓ
}) = 𝜔

ℓ
.

Examples on the sphere, for instance, are given in [21].
The results in [11] yield that we can even choose a

sequence (]
𝑁
)
∞

𝑁=1
of quadraturemeasures of order𝑁, respec-

tively, such that # supp(]
𝑁
) ≲ 𝑁

𝛼. For the remaining part
of the paper, we will suppose that this estimate holds and we
define, for 𝑁 = 2

𝑗,

𝜎
𝑁
(𝑓) := ∫

X

𝑓 (𝑦)𝐾
𝑁
(⋅, 𝑦) 𝑑]

𝑁
(𝑦) ,

where 𝐾
𝑁
(𝑥, 𝑦) =

∞

∑

𝑘=0

ℎ(
𝜆k
𝑁

)𝜑
∗

𝑘
(𝑦) 𝜑
𝑘
(𝑥) ,

(14)
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where ℎ : R
≥0

→ R is an infinitely often differentiable
and nonincreasing function with ℎ(𝑡) = 1 for 𝑡 ≤ 1/2 and
ℎ(𝑡) = 0 for 𝑡 ≥ 1. Although we will not explicitly use it in the
present paper, we want to point out that many advantageous
properties of 𝜎

𝑁
are steered by the so-called localization of

the kernel 𝐾
𝑁
; that is, for fixed 𝑆 > 𝛼 and all 𝑥 ̸=𝑦 with

𝑁 = 1, 2, . . .,

󵄨󵄨󵄨󵄨𝐾𝑁 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≲

𝑁
𝛼−𝑆

𝜌(𝑥, 𝑦)
𝑆
. (15)

See [12, 13]. Later, we will apply

sup
𝑥∈X

∫

X

󵄨󵄨󵄨󵄨𝐾𝑁 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 𝑑

󵄨󵄨󵄨󵄨]𝑁
󵄨󵄨󵄨󵄨 (𝑦) ≲ 1 (16)

(cf. [11]). Those estimates are used in [12, 13] to characterize
the Hölder-Zygmund type smoothness by means of 𝜎

𝑁
.

Theorem 5. Assume that (]
𝑁
)
∞

𝑁=1
is a family of quadrature

measures of order𝑁, respectively. Then, for all 𝑓 ∈ C𝑠(X), one
has

󵄩󵄩󵄩󵄩
𝑓 − 𝜎
𝑁
(𝑓)

󵄩󵄩󵄩󵄩𝐿∞(X)
≲ 𝑁
−𝑠󵄩󵄩󵄩󵄩

𝑓
󵄩󵄩󵄩󵄩C𝑠(X)

, (17)

where the generic constants do not depend on 𝑁 or 𝑓. On the
other hand, if, for 𝑓 ∈ 𝐿

𝑝
(X), there are generic constants not

depending on𝑁 such that ‖𝑓 − 𝜎
𝑁
(𝑓)‖
𝐿∞(X)

≲ 𝑁
−𝑠 holds, then

𝑓 ∈ C𝑠(X).

Next, by using ℎ(𝜆
𝑘
/𝑁)ℎ(𝜆

𝑘
/2𝑁) = ℎ(𝜆

𝑘
/𝑁) and

applying the quadrature property of ]
𝑁
, a straightforward

calculation yields

𝜎
𝑁
(𝑓, 𝑥) = ∫

X

𝜎
𝑁
(𝑓, 𝑦)𝐾

2𝑁
(𝑥, 𝑦) 𝑑]

𝑁
(𝑦) . (18)

For some fixed 𝑆 > 1, we define the actual approximation by

𝜎
∘

𝑁
(𝑓, 𝑥) := ∫

X

𝐼
𝑁
(𝑓, 𝑦)𝐾

2𝑁
(𝑥, 𝑦) 𝑑]

𝑁
(𝑦) ,

where 𝐼
𝑁
(𝑓, 𝑦) = 𝑁

−𝑆

⌊𝑁
𝑆

𝜎
𝑁
(𝑓, 𝑦)⌋ .

(19)

In other words, we replace 𝜎
𝑁
(𝑓, 𝑦) in (18) with a number on

the grid (1/𝑁
𝑆)Z. We define the following collection:

M
𝑆,𝑁

:= {𝜎
∘

𝑁
(𝑓) : 𝑓 ∈ C𝑠 (X)} , (20)

which induces a covering ofC𝑠(X) in 𝐿
∞
(X).

Theorem 6. For fixed 𝑠 > 0 and 𝑆 > max(1, 𝑠), one applies the
discretization (19). Then, there is a constant 𝑐 > 0 such that,
for all 𝑓 ∈ C𝑠(X), ‖𝑓 − 𝜎

∘

𝑁
(𝑓)‖
𝐿∞(X)

≤ 𝑐𝑁
−𝑠 holds. Thus, for

𝑐𝑁
−𝑠

= 𝜀 ≤ 1, the collection M
𝑆,𝑁

induces an 𝜀-covering of
C𝑠(X) in 𝐿

∞
(X). Its cardinality 𝑛

𝜀
satisfies

log
2
(𝑛
𝜀
) ≲ 𝜀
−𝛼/𝑠

(1 − log
2
(𝜀)) , (21)

where the generic constant does not depend on 𝜀.

Proof of Theorem 6. The triangle inequality yields

󵄩󵄩󵄩󵄩𝑓 − 𝜎
∘

𝑁
(𝑓)

󵄩󵄩󵄩󵄩𝐿∞(X)
≲

󵄩󵄩󵄩󵄩𝑓 − 𝜎
𝑁
(𝑓)

󵄩󵄩󵄩󵄩𝐿∞(X)

+
󵄩󵄩󵄩󵄩𝜎𝑁(𝑓, ]𝑁) − 𝜎

∘

𝑁
(𝑓)

󵄩󵄩󵄩󵄩𝐿∞(X)
.

(22)

Since Theorem 5 implies ‖𝑓 − 𝜎
𝑁
(𝑓)‖
𝐿∞(X)

≲ 𝑁
−𝑠

‖𝑓‖C𝑠(X) =

𝑁
−𝑠, we only need to take care of the term on the farmost

right. The quantization (19) immediately yields

󵄨󵄨󵄨󵄨𝜎𝑁 (𝑓, 𝑦) − 𝐼
𝑁
(𝑓, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑁
−𝑆

, ∀𝑦 ∈ supp (]N) , (23)

so that (18) and (16) imply

󵄩󵄩󵄩󵄩𝜎𝑁(𝑓) − 𝜎
∘

𝑁
(𝑓)

󵄩󵄩󵄩󵄩𝐿∞(X)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

X

(𝜎
𝑁
(𝑓, 𝑦) − 𝐼

𝑁
(𝑓, 𝑦))𝐾

𝑁
(⋅, 𝑦)𝑑]

𝑁
(𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(X)

≲ 𝑁
−𝑆

≤ 𝑁
−𝑠

.

(24)

Hence, we have derived the estimate on ‖𝑓 − 𝜎
∘

𝑁
(𝑓)‖
𝐿∞(X)

.
To tackle (21), we apply (23), which yields

󵄨󵄨󵄨󵄨𝐼𝑁 (𝑓, 𝑦)
󵄨󵄨󵄨󵄨 ≲

󵄩󵄩󵄩󵄩𝜎𝑁(𝑓)
󵄩󵄩󵄩󵄩𝐿∞(X)

. (25)

According to [13, Theorem 5.1], ‖𝜎
𝑁
(𝑓)‖
𝐿∞(X)

≲ ‖𝑓‖
𝐿∞(X)

holds. Since 𝑓 is contained in the ball of radius 1, we see that
󵄨󵄨󵄨󵄨
𝐼
𝑁
(𝑓, 𝑦)

󵄨󵄨󵄨󵄨
≲ 1. (26)

Thus, the number of possible values of 𝐼
𝑁
(𝑓, 𝑦) for fixed 𝑦 is

at most 𝑐
1
𝑁
𝑆, where 𝑐

1
≥ 1 is a positive constant. Note that

we can assume that 𝑐
1
𝑁
𝑆

≥ 1 because, otherwise, 𝐼
𝑁
(𝑓, 𝑦)

would be zero. Since # supp(]
𝑁
) ≲ 𝑁

𝛼, we have #{𝐼
𝑁
(𝑓, 𝑦) :

𝑦 ∈ supp(]
𝑁
)} ≲ 𝑁

𝛼. Therefore, we have 𝑛
𝜀
≤ (𝑐
1
𝑁
𝑆

)
𝑐2𝑁
𝛼

, for
some positive constant 𝑐

2
. By using 𝑐𝑁

−𝑠

= 𝜀 ≤ 1, we obtain

log
2
(𝑛
𝜀
) = 𝑐
2
𝑐
𝛼/𝑠

𝜀
−𝛼/𝑠log

2
(𝑐
1
(
𝑐

𝜀
)

𝑆/𝑠

)

≲ 𝜀
−𝛼/𝑠log

2
(

(𝑐
1
)
𝑠/𝑆

𝑐

𝜀
)

≲ 𝜀
−𝛼/𝑠log

2
(

(𝑐
1
/𝜀)
𝑠/𝑆

𝑐

𝜀
)

≲ 𝜀
−𝛼/𝑠

(1 + log
2
(
1

𝜀
)) ,

(27)

which concludes the proof.

According to Theorems 2 and 6, the 𝜀-covering number
𝑛
𝜀
of C𝑠(X) and the number 𝑛

𝜀
of 𝜀-balls induced by M

𝑆,𝑁

satisfy

log
2
(𝑛
𝜀
)

log
2
(𝑛
𝜀
)
≲ (1 + log

2
(
1

𝜀
)) . (28)
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Therefore, our scheme is optimal up to a logarithmic factor
by means of the metric entropy.

Our results are also related to the field of manifold
learning, in which a function must be reconstructed from
finite training data (cf. [22–25]). When actually applying our
scheme, we first acquire a set of samples {𝑥

ℓ
}
𝑚

ℓ=1
sufficiently

well covering X and we also need the function values
{𝑓(𝑥
ℓ
)}
𝑚

ℓ=1
, which altogether build the training data. Next, we

compute a quadrature measure ]
𝑁
for some maximal𝑁 such

that supp(]
𝑁
) ⊂ {𝑥

ℓ
}
𝑚

ℓ=1
; see [11, 21] for an algorithm. Here,

we need that the sample points {𝑥
ℓ
}
𝑚

ℓ=1
are well distributed

and larger𝑁 require more samples. An element inM
𝑆,𝑁

that
is 𝜀-close to 𝑓 is simply given by 𝜎

∘

𝑁
(𝑓), whose computation

only requires knowledge of 𝑓 and {𝜑
𝑘

: 𝜆
𝑘

≤ 𝑁} on
the finite set supp(]

𝑁
); see (14) and (19). In other words,

we do not need to know the entire manifold but only the
finite sampling of the training data {𝑥

ℓ
}
𝑚

ℓ=1
, the sampling

of the target function {𝑓(𝑥
ℓ
)}
𝑚

ℓ=1
, and, more delicately, the

sampling of the eigenfunctions {𝜑
𝑘
(𝑥
ℓ
) : 𝜆

𝑘
≤ 𝑁, ℓ =

1, . . . , 𝑚} of the Laplacian.Those eigenfunctions, however, are
not explicitly known except for few special cases, such as the
sphere, projective space, the Grassmann manifold, and few
more. Fortunately, approximation of those eigenfunctions is
a common procedure in manifold learning. Computational
schemes are based on the graph Laplacian to be built from
the training data and, at least under suitable assumptions,
converging towards the Laplacian on the manifold when the
cardinality of the data increases (cf. [26–28] and references
therein). Those schemes approximately sample the first few
eigenfunctions on the training data. Thus, our proposed
approach is indeed fully discrete and computationally feasible
even if the eigenfunctions {𝜑

𝑘
}
∞

𝑘=0
are not explicitly known. In

fact, themanifold itself can be unknown.As long asX satisfies
the theoretical assumptions, it is simply represented bymeans
of a finite sample.

Remark 7. The technical assumptions on the manifoldX and
the function system {𝜑

𝑘
}
∞

𝑘=0
imply certain estimates on the

heat kernel on X (see [9, 10]), mainly used to ensure that the
localization property (15) holds (cf. [12, 13]). Our assumptions
also imply the existence of quadrature measures ]

𝑁
and that

𝑓 ⋅ 𝑔 ∈ Π
𝑎𝑁

for all 𝑓, 𝑔 ∈ Π
𝑁
and some constant 𝑎 > 0. These

items lead to the characterization of the Hölder-Zygmund
type space by means of 𝜎

𝑁
in Theorem 5. Moreover, the

family (]
𝑁
)
∞

𝑁=1
can be chosen with finite support, in fact with

# supp(]
𝑁
) ≲ 𝑁

𝛼 (cf. [11]). Theorem 5 and # supp(]
𝑁
) ≲ 𝑁

𝛼

are indeed the twomain ingredients of the poof of our results
in Theorem 6.

Remark 8. The reader familiar with the approximation
scheme developed in [9, 11–13] may expect that the presented
results can be generalized to a wider class of Besov spaces on
metric spaces.This is indeed true but requires more technical
details and does not lead to a fully discrete scheme in the end.
Here, we intended to emphasize the main ideas by keeping
technical details at a minimum level and to focus on the
development of a fully discrete covering algorithm.Themore
general approach will be described elsewhere.
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3 INSERM, U1099, Rennes 35000, France
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Matrix completion that estimates missing values in visual data is an important topic in computer vision. Most of the recent studies
focused on the low rank matrix approximation via the nuclear norm. However, the visual data, such as images, is rich in texture
which may not be well approximated by low rank constraint. In this paper, we propose a novel matrix completion method, which
combines the nuclear norm with the local geometric regularizer to solve the problem of matrix completion for redundant texture
images. And in this paper we mainly consider one of the most commonly graph regularized parameters: the total variation norm
which is a widely used measure for enforcing intensity continuity and recovering a piecewise smooth image. The experimental
results show that the encouraging results can be obtained by the proposed method on real texture images compared to the state-
of-the-art methods.

1. Introduction

The problem of matrix completion, which can be seen as
the extension of recently developed compressed sensing (CS)
theory [1–3], plays an important role in the field of signal
and image processing [4–11]. This problem occurs in many
real applications in computer vision and pattern recognition,
such as image inpainting [12, 13], video denoising [14], and
recommender systems [15, 16]. Reconstruction algorithms
for matrix completion have received much attention. Cai et
al. [17] proposed an algorithm, namely, the singular value
thresholding (SVT) algorithm for matrix completion and
related nuclear norm minimization problems. In [18], a
simple and fast singular value projection (SVP) algorithm
for rank minimization with affine constraints is exploited.
Keshavan et al. [19] dealt with the matrix completion based
on singular value decomposition followed by local manifold
optimization. In order to achieve a better approximation of
the rank of matrix, Hu et al. [11] presented an approach
based on the truncated nuclear norm regularization (TNNR),
which is defined by the difference between the nuclear norm

and the sum of the largest few singular values. Since most
of the existing matrix completion models aim to solve the
low rank optimization via nuclear norm, we recall here this
model. For an incomplete matrix M ∈ R𝑚×𝑛 of rank 𝑟, the
model can be described as follows:

min
X

rank (X) s.t. X
Ω
= M
Ω
, (1)

where X ∈ R𝑚×𝑛 and M
Ω
= M
𝑖𝑗
, (𝑖, 𝑗) ∈ Ω, and Ω is the set

of locations corresponding to the observed entries.
Unfortunately, the rank minimization problem in (1) is

an NP-hard one, so the following convex relaxation is widely
used:

min
X
‖X‖
∗

s.t. X
Ω
= M
Ω
, (2)

where ‖ ⋅ ‖
∗
is the nuclear norm given by

‖X‖
∗
=

min(𝑚,𝑛)
∑

𝑘=1

𝜎
𝑘
, (3)

where 𝜎
𝑘
denotes the 𝑘th largest singular value of X.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 765782, 8 pages
http://dx.doi.org/10.1155/2014/765782

http://dx.doi.org/10.1155/2014/765782


2 Abstract and Applied Analysis

In this paper, our objective is to exploit the intrinsic
geometry of the data distribution and incorporate it as
an additional regularization term to deal with the images
which are rich in texture. The total variation (TV) norm
has demonstrated its usefulness as a graph regularizer in the
field of image processing, so we propose here a method that
combines the nuclear norm with the linear TV approximate
norm to solve the problem of matrix completion. We call
it the linear total variation approximate regularized nuclear
norm (LTVNN) minimization problem. This combination
optimization problem will be solved by simple and efficient
optimization scheme based on the alternating direction
method of multipliers (ADMM) model [20, 21].

The paper is organized as follows. In the next section,
we introduce the proposed LTVNN model and we describe
the optimization schemes. In Section 3, we establish the
convergence results for the iterations given in Section 2.
Experimental results on a set of images are provided in
Section 4. Finally, we draw some conclusions in Section 5.

2. Proposed Method

2.1. Some Preliminaries. The total variation along the vertical
and horizontal directions can be described as

𝐷
V
𝑗,𝑘
(X) = {X𝑗,𝑘 − X

𝑗+1,𝑘
, 1 ≤ 𝑗 < 𝑚

0, 𝑗 = 𝑚,
(4)

𝐷
ℎ

𝑗,𝑘
(X) = {X𝑗,𝑘 − X

𝑗,𝑘+1
, 1 ≤ 𝑘 < 𝑛

0, 𝑘 = 𝑛.
(5)

So the total variation of X is the summation for themagnitude
of the gradient of each pixel [22]:

‖X‖TV = ∑
𝑗,𝑘

√(𝐷
V
𝑗,𝑘
X)
2

+ (𝐷
ℎ

𝑗,𝑘
X)
2

. (6)

And the equvalent total variation formula as follows:

‖X‖TV = ∑
𝑗,𝑘

(
󵄨󵄨󵄨󵄨󵄨
𝐷

V
𝑗,𝑘
X󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝐷
ℎ

𝑗,𝑘
X󵄨󵄨󵄨󵄨󵄨) . (7)

Here, we use the linear total variation approximate of (7) to
approximate the second kind of total variation; that is,

‖X‖LTVA = ∑
𝑗,𝑘

((𝐷
V
𝑗,𝑘
X)
2

+ (𝐷
ℎ

𝑗,𝑘
X)
2

) . (8)

2.2. Proposed Model. As mentioned above, the key point of
the proposed approach is the combination of the nuclear
norm and the linear total variation approximate norm;
therefore, the optimization problem is described as

min
X
(1 − 𝛾) ‖X‖

∗
+ 𝛾‖X‖LTVA s.t. X

Ω
= M
Ω
, (9)

where 0 ≤ 𝛾 ≤ 1 is a penalty parameter, ‖X‖
∗
is the nuclear

norm defined in (3), and ‖X‖LTVA is linear total variation

norm approximate defined in (8), which can be reformulated
as

‖X‖LTVA = Tr [(X − X𝜙
1
) (X − X𝜙

1
)
𝑇

]

+ Tr [(X − 𝜙
2
X) (X − 𝜙

2
X)𝑇]

=
󵄩󵄩󵄩󵄩(X − X𝜙

1
)
󵄩󵄩󵄩󵄩

2

𝐹
+
󵄩󵄩󵄩󵄩(X − 𝜙2X)

󵄩󵄩󵄩󵄩

2

𝐹
,

(10)

where “Tr” means the trace of the matrix, ‖ ⋅ ‖
𝐹
denotes the

Frobenius norm of thematrix, and 𝜙
1
and 𝜙
2
are, respectively,

the column and row transform matrix given by

𝜙
1
=

[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0

1 0 ⋅ ⋅ ⋅ 0

0 1 0 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑛−1)×(𝑛−1)

0

0

...
1

]
]
]
]
]
]
]
]

]𝑛×𝑛

,

𝜙
2
=

[
[
[
[
[
[
[
[
[
[

[

(𝑚 − 1) × (𝑚 − 1)

0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 0 ⋅ ⋅ ⋅ 0

0 0 1 0 0

0
...
... d

...
... 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]
]
]
]
]

]𝑚×𝑚

.

(11)

So, the problem in (9) can be rewritten as

min
X
(1 − 𝛾) ‖X‖

∗
+ 𝛾
󵄩󵄩󵄩󵄩(X − X𝜙

1
)
󵄩󵄩󵄩󵄩

2

𝐹

+ 𝛾
󵄩󵄩󵄩󵄩(X − 𝜙2X)

󵄩󵄩󵄩󵄩

2

𝐹

s.t. X
Ω
= M
Ω
.

(12)

2.3. The Optimization Scheme. The alternating direction
method of multipliers-ADMM [20, 21] is an efficient and
scalable optimization model which exploits the structure of
the optimization problem. In this section, we use ADMM to
deal with the problem in (12), which can be reformulated as

min
X,W

(1 − 𝛾) ‖X‖
∗
+ 𝛾
󵄩󵄩󵄩󵄩(W −W𝜙

1
)
󵄩󵄩󵄩󵄩

2

𝐹

+ 𝛾
󵄩󵄩󵄩󵄩(W − 𝜙

2
W)󵄩󵄩󵄩󵄩
2

𝐹

s.t. X =W, W
Ω
= M
Ω
,

(13)

where ‖(W −W𝜙
1
)‖
2

𝐹
and ‖(W − 𝜙

2
W)‖2
𝐹
are the indicator

functions. The augmented Lagrange function of (13) is

L (X,Y,W, 𝜆) = (1 − 𝛾) ‖X‖
∗
+ 𝛾
󵄩󵄩󵄩󵄩(W −W𝜙

1
)
󵄩󵄩󵄩󵄩

2

𝐹

+ 𝛾
󵄩󵄩󵄩󵄩(W − 𝜙

2
W)󵄩󵄩󵄩󵄩
2

𝐹
+
𝜆

2
‖W − X‖2

𝐹

+ Tr (Y𝑇 (W − X)) ,

(14)

where 𝜆 > 0 is the penalty parameter and Y is the multiplier.
The solution can be obtained by incorporating the solutions
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of each regularization problem separately which are defined
as follows.

Row TV is as follows:
L
𝑅
(XR,YR,WR, 𝜆)

= (1 − 𝛾) ‖XR‖
∗
+ 𝛾
󵄩󵄩󵄩󵄩(WR − 𝜙

2
WR)󵄩󵄩󵄩󵄩

2

𝐹

+
𝜆

2
‖WR − XR‖2

𝐹
+ Tr (YR𝑇 (WR − XR)) ,

(15)

where XR denotes the optimization result along the
vertical direction of the total variation defined in (4).

Column TV is as follows:
L
𝐶
(XC,YC,WC, 𝜆)

= (1 − 𝛾) ‖XC‖
∗
+ 𝛾
󵄩󵄩󵄩󵄩(WC −WC𝜙

1
)
󵄩󵄩󵄩󵄩

2

𝐹

+
𝜆

2
‖WC − XC‖2

𝐹
+ Tr (YC𝑇 (WC − XC)) ,

(16)

where XC denotes the optimization result along the
horizontal direction of the total variation defined in
(5).

We deal with column linear TV optimization problem in
(16) by the following steps in each iteration.

Step 1 (initial setting). XC
1
= M
Ω
,WC
1
= XC
1
, YC
1
= XC
1
,

with the tolerance 𝜀.

Step 2 (computing XC
𝑘+1

). FixWC
𝑘
and YC

𝑘
, and minimize

(16) for obtaining XC
𝑘+1

as

XC
𝑘+1

= arg min
X

(1 − 𝛾) ‖XC‖
∗
+ 𝛾
󵄩󵄩󵄩󵄩(WC

𝑘
−WC

𝑘
𝜙
1
)
󵄩󵄩󵄩󵄩

2

𝐹

+
𝜆

2

󵄩󵄩󵄩󵄩WC − XC
𝑘

󵄩󵄩󵄩󵄩

2

𝐹
+ Tr (YC𝑇

𝑘
(WC − XC

𝑘
)) .

(17)

Ignoring the constant terms, (17) can be rewritten as

XC
𝑘+1

= arg min
X

(1 − 𝛾) ‖XC‖
∗

+
𝜆

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
XC − (WC

𝑘
+
1

𝜆
YC
𝑘
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

.

(18)

To solve (18), Cai et al. [17] introduce the soft-thresholding
operatorD

𝜏
which is defined as follows:

D
𝜏
(X) := UD

𝜏
(Σ)V𝑇,

D
𝜏
(Σ) = diag {max (𝜎

𝑖
− 𝜏)
+
} ,

(19)

where 𝑡
+
= max(0, 𝑡).

Using the operatorD
𝜏
in (19), the solution of (18) can be

obtained as

XC
𝑘+1

= D
(1−𝛾)/𝜆

(WC
𝑘
+
1

𝜆
YC
𝑘
) . (20)

Step 3 (computingWC
𝑘+1

). FixXC
𝑘+1

andYC
𝑘
and calculate

WC
𝑘+1

as follows:

WC
𝑘+1

= arg min
W

L (XC
𝑘+1
,YC
𝑘
,WC, 𝜆) (21)

which is a quadratic function ofWC and can be easily solved
by setting the derivation of L(XC

𝑘+1
,YC
𝑘
,WC, 𝜆) to zeros,

and then we get

WC
𝑘+1

= (𝜆XC
𝑘+1

− YC
𝑘
)

× [2𝛾 (I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) + 𝜆I

𝑛×𝑛
]
−1

.

(22)

Then we fix the values at the observed entries:

WC
𝑘+1

= (WC
𝑘+1
)
Ω𝑚

+M
Ω
, (23)

whereΩ
𝑚
denotes the set of the missing entries.

Step 4 (computing YC
𝑘+1

). Fix XC
𝑘+1

andWC
𝑘+1

and calcu-
late YC

𝑘+1
as follows:

YC
𝑘+1

= YC
𝑘
+ 𝜆 (WC

𝑘+1
− XC
𝑘+1
) . (24)

Until the stop condition: ‖XC
𝑘+1

− XC
𝑘
‖
𝐹
≤ 𝜀.

RowTVproblemdefined by (15) can be solved in a similar
way to that of column TV problem.The only difference is the
WR
𝑘+1

in the second step, which is given by

WR
𝑘+1

= [2𝛾 (I − 𝜙
2
− 𝜙
𝑇

2
+ 𝜙
𝑇

2
𝜙
2
) + 𝜆I

𝑚×𝑚
]
−1

× (𝜆XR
𝑘+1

− YR
𝑘
) .

(25)

And the stop condition is ‖XR
𝑘+1

− XR
𝑘
‖
𝐹
≤ 𝜀.

Finally, we obtained X
𝑘+1

as the average of XC
𝑘+1

and
XR
𝑘+1

; that is,

X
𝑘+1

=
XC
𝑘+1

+ XR
𝑘+1

2
. (26)

3. Convergence Analysis

In this section, we give the proof of the convergence of
column total variation (16) and the convergence of row total
variation is similar to the column total variation. Here, the
objection function (16) about column variation is as follows:

min
X
𝑓
𝜏
(X)

s.t. X
Ω
= M
Ω

𝑓
𝜏
(X) = 𝜏‖X‖

∗
+
1

2
Tr [(X − X𝜙

1
) (X − X𝜙

1
)
𝑇

] ,

𝜏 =
1 − 𝛾

2𝛾
.

(27)

Lemma 1. Let Z ∈ 𝜕𝑓
𝜏
(X) and Z󸀠 ∈ 𝜕𝑓

𝜏
(X󸀠). Then

⟨Z − Z󸀠,X − X󸀠⟩ ≥ 󵄩󵄩󵄩󵄩󵄩X − X󸀠󵄩󵄩󵄩󵄩󵄩
2

𝐹

. (28)

The details of the proof can be found in [17].
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(a) Original image (256× 256) (b) Random masked image (c) 𝛾 = 0, PSNR: 8.934

(d) 𝛾 = 0.5, PSNR: 29.183 (e) 𝛾 = 1, PSNR: 8.593 (f) Word masked image

(g) 𝛾 = 0, PSNR: 14.706 (h) 𝛾 = 0.5, PSNR: 33.421 (i) 𝛾 = 1, PSNR: 14.759

Figure 1: The recovered results with 60% random mask and word mask for 𝛾 = 0, 0.5 and 1 by LTVNN.

Theorem 2. Assuming that the sequence of step size obeys
0 < inf 𝜆

𝑘
< sup 𝜆

𝑘
< (2𝛼/𝛽), 𝛼 = ⟨(X𝑘 − X∗)(I − 𝜙

1
−

𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
),X𝑘 − X∗⟩ and 𝛽 = ‖X𝑘 − X∗‖2

𝐹
. Here, X∗ denotes

the optimization result and X𝑘 denotes the 𝑘th iteration object
variable; then by the iteration procedure defined in Section 2.3,
we can obtain the unique optimization result, that is, X∗. And
the details of the proof can be found in the Appendix.

4. Experiments

In this section, we test the proposed method on a set of
images. The algorithm was implemented with MATLAB
programming language on a PC machine, which sets up

MicrosoftWindows 7 operating system and has an Intel Core
I5 CPU with speed of 2.79GHz and 2GB RAM.

We deal with three channels (𝑟, 𝑔, 𝑏) of color images
separately and combine the results together to get the final
outcome. We use peak signal-to-noise ratio (PSNR) values to
evaluate the performance:

PSNR = 10 × log
10
(
255
2

MSE
) , (29)

where MSE denotes mean squared error,

MSE = 1

3𝑚𝑛
[error2 (𝑟) + error2 (𝑔) + error2 (𝑏)] . (30)
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Figure 2: The recovered PSNR for Pepper under different random
sample ratio and word mask sample with 𝛾 from 0 0 to 1 by LTVNN.

0.4 0.5 0.6 0.7 0.8 0.9

36

34

32

30

28

26

24

22

20

18

PS
N

R

LTVNN
TNNR
SVT

SVP
OptSpace

Sampled ratio under 𝛾 = 0.5

Figure 3: Recovered PSNR for Pepper under 𝛾 = 0.5 with different
random sample ratio by LTVNN, TNNR, SVT, SVP, and OptSpace.

In the experiments, we consider two situations: random
mask sample and word mask sample. Figure 1 describes the
recovered results with 60% randommask and word mask for
𝛾 = 0, 0.5 and 1 by LTVNN. Figure 2 shows the recovered
PSNR for Pepper under different random sample ratios and
word mask sample for 𝛾 from 0 to 1 with step of 0.1 by
LTVNN. It can be observed from these two figures that the
best result is obtained for the value of 𝛾 near to 0.5, which
corresponds to the case where the two norms (nuclear and
LTV) are equivalently used in (9). For the two extreme cases:
𝛾 = 0 (only the nuclear norm is taken into consideration)
and 𝛾 = 1 (only the linear total variation approximate norm
is considered), the algorithm loses its efficiency.

We also compare our method (LTVNN) with other
matrix completion methods including TNNR [10, 11], SVT
[12], SVP [13], andOptSpace [14]. Figure 3 plots the recovered
PSNR for Pepper for 𝛾 = 0.5 with different random sample
ratios (from 40% to 90%) by LTVNN and other fourmethods
(TNNR, SVT, SVP, and OptSpace). It can be seen from
Figure 3 that the proposed LTVNN method achieves much
higher PSNR than the other methods. Figure 4 shows the
comparison of PSNR of recovered methods for Lena under
word mask with 𝛾 = 0.5 by LTVNN and the other methods.
Table 1 lists the PSNR results under word mask sample with
𝛾 = 0.5 for different images by LTVNN and the other
methods. From Figure 4 and Table 1, we can see that the
proposed method outperforms the other matrix completion
methods under word mask for different images.

5. Conclusion

In this paper, we have proposed a new model that combines
the nuclear norm and total variation norm for the matrix
completion problem, which was then solved by ADMM
model. Experimental results demonstrate the effectiveness of
the proposed algorithm compared to other methods.

Appendix

Before we give the proof of Theorem 2, we supplement one
proof about

⟨(X − X󸀠) (I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
) ,X − X󸀠⟩ ≥ 0. (A.1)

Without loss of generality, we take an example matrix 𝜉 =
(X − X󸀠) ∈ R4×4 and the corresponding transform matrix

(I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
) = [

2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 0 0 0

]. Then,

Tr [(Ι − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) 𝜉
𝑇

𝜉]

= 2 (𝜉
2

1,1
+ 𝜉
2

2,1
+ 𝜉
2

3,1
+ 𝜉
2

4,1
)

− (𝜉
1,1
𝜉
1,2
+ 𝜉
2,1
𝜉
2,2
+ 𝜉
3,1
𝜉
3,2
+ 𝜉
4,1
𝜉
4,2
)

+ 2 (𝜉
2

1,2
+ 𝜉
2

2,2
+ 𝜉
2

3,2
+ 𝜉
2

4,2
)

− (𝜉
1,1
𝜉
1,2
+ 𝜉
2,1
𝜉
2,2
+ 𝜉
3,1
𝜉
3,2
+ 𝜉
4,1
𝜉
4,2
)

− (𝜉
1,2
𝜉
1,3
+ 𝜉
2,2
𝜉
2,3
+ 𝜉
3,2
𝜉
3,3
+ 𝜉
4,2
𝜉
4,3
)

+ 2 (𝜉
2

1,3
+ 𝜉
2

2,3
+ 𝜉
2

3,3
+ 𝜉
2

4,3
)

− (𝜉
1,2
𝜉
1,3
+ 𝜉
2,2
𝜉
2,3
+ 𝜉
3,2
𝜉
3,3
+ 𝜉
4,2
𝜉
4,3
)

= (𝜉
2

1,1
+ 𝜉
2

2,1
+ 𝜉
2

3,1
+ 𝜉
2

4,1
) + (𝜉

1,1
− 𝜉
1,2
)
2

+ (𝜉
2,1
− 𝜉
2,2
)
2

+ (𝜉
3,1
− 𝜉
3,2
)
2

+ (𝜉
4,1
− 𝜉
4,2
)
2

+ (𝜉
1,2
− 𝜉
1,3
)
2

+ (𝜉
2,2
− 𝜉
2,3
)
2

+ (𝜉
3,2
− 𝜉
3,3
)
2

+ (𝜉
4,2
− 𝜉
4,3
)
2

+ (𝜉
2

1,3
+ 𝜉
2

2,3
+ 𝜉
2

3,3
+ 𝜉
2

4,3
)

≥ 0,

(A.2)
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(a) Original image (256× 256) (b) Word masked image (c) LTVNN (PSNR: 32.920)

(d) TNNR (PSNR: 30.189) (e) SVT (PSNR: 30.760) (f) SVP (PSNR: 22.159)

(g) OptSpace (PSNR: 26.492)

Figure 4: Comparison of PSNR of recovered methods for Lena under word mask with 𝛾 = 0.5 by LTVNN, TNNR, SVT, SVP, and OptSpace.

Table 1: PSNR results under word mask sample with 𝛾 = 0.5 for different images by LTVNN, TNNR, SVT, SVP, and OptSpace.

LTVNN TNNR [10, 11] SVT [12] SVP [13] OptSpace [14]
Mandrill (256 × 256) 29.495 27.845 27.736 18.881 26.264
Pepper (256 × 256) 33.421 31.019 30.188 23.648 27.141
Barbara (240 × 192) 31.170 29.261 29.352 22.901 23.427
Barbara (512 × 512) 32.680 30.682 28.855 22.113 26.872
Girl (256 × 256) 36.797 34.298 33.848 27.128 30.977
Couple (256 × 256) 36.916 35.176 35.241 29.649 32.815
Airplane (512 × 512) 31.883 30.083 25.506 19.573 26.222
House (256 × 256) 34.340 33.288 32.646 22.374 27.505
Sailboat (512 × 512) 30.858 29.103 27.079 26.778 20.891
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so the term ⟨(X − X󸀠)(I − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
1
𝜙
𝑇

1
),X − X󸀠⟩ ≥ 0. The

proof of Theorem 2 is as follows.

Proof. Let (X∗,Y∗) be primal-dual optimization for the
problem (27). The optimality conditions give

0 = Z𝑘 −P
Ω
(Y𝑘−1) ,

0 = Z∗ −P
Ω
(Y∗) ,

(A.3)

where Z𝑘 ∈ 𝜕𝑓
𝜏
(X𝑘) and Z∗ ∈ 𝜕𝑓

𝜏
(X∗). Then from (A.3), we

deduce that

(Z𝑘 − Z∗) −P
Ω
(Y𝑘−1 − Y∗) = 0 (A.4)

and combine (A.4) with Lemma 1 that

⟨X𝑘 − X∗,P
Ω
(Y𝑘−1 − Y∗)⟩

= ⟨Z𝑘 − Z∗,X𝑘 − X∗⟩

≥ ⟨(X𝑘 − X∗) (Ι − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) ,X𝑘 − X∗⟩ .

(A.5)

We observe (23) thatP
Ω
X∗ = P

Ω
W,

󵄩󵄩󵄩󵄩󵄩
P
Ω
(Y𝑘 − Y∗)󵄩󵄩󵄩󵄩󵄩𝐹

=
󵄩󵄩󵄩󵄩󵄩
P
Ω
(Y𝑘−1 − Y∗) + 𝜆

𝑘
P
Ω
(W − X𝑘)󵄩󵄩󵄩󵄩󵄩𝐹

=
󵄩󵄩󵄩󵄩󵄩
P
Ω
(Y𝑘−1 − Y∗) + 𝜆

𝑘
P
Ω
(X∗ − X𝑘)󵄩󵄩󵄩󵄩󵄩𝐹.

(A.6)

Here, we set 𝑟
𝑘
= ‖P
Ω
(Y𝑘 − Y∗)‖

𝐹
; then

𝑟
2

𝑘
= 𝑟
2

𝑘−1
− 2𝜆
𝑘
⟨P
Ω
(Y𝑘−1 − Y∗) ,X𝑘 − X∗⟩

+ 𝜆
2

𝑘

󵄩󵄩󵄩󵄩󵄩
P
Ω
(X∗ − X𝑘)󵄩󵄩󵄩󵄩󵄩

2

𝐹

≤ 𝑟
2

𝑘−1
− 2𝜆
𝑘
⟨(X𝑘 − X∗) (Ι − 𝜙

1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
) ,X𝑘 − X∗⟩

+ 𝜆
2

𝑘

󵄩󵄩󵄩󵄩󵄩
X𝑘 − X∗󵄩󵄩󵄩󵄩󵄩

2

𝐹

= 𝑟
2

𝑘−1
− (2𝜆

𝑘
𝛼 − 𝜆
2

𝑘
𝛽) ,

(A.7)

where 𝛼 = ⟨(X𝑘 − X∗)(Ι − 𝜙
1
− 𝜙
𝑇

1
+ 𝜙
𝑇

1
𝜙
1
),X𝑘 − X∗⟩ ≥ 0,

𝛽 = ‖X𝑘 − X∗‖2
𝐹
≥ 0.

Based on (A.7), when (2𝜆
𝑘
𝛼 − 𝜆

2

𝑘
𝛽) > 0, that is, 𝜆

𝑘
∈

(0, 2𝛼/𝛽), the term ‖P
Ω
(Y𝑘 − Y∗)‖

𝐹
is nonincreasing and

converges to limit.The parameter𝜆
𝑘
is very easy for satisfying

this conditionwhen𝜆
𝑘
is smaller constant. Andwe can obtain

other properties as follows.
Let 𝜆
𝑘
= 𝛼/𝛽, and then 2𝜆

𝑘
𝛼 − 𝜆
2

𝑘
𝛽 = 𝛼

2

/𝛽. Due to the
fact that 𝛼2/𝛽 converges to zero, so 𝛼2 is infinite small about
𝛽 and converges to zero. Now we reconsider (A.2); evidently
the first column in 𝜉 converges to zero; that is, 𝜉

1,1
→ 0,

𝜉
2,1
→ 0, 𝜉

3,1
→ 0, 𝜉

4,1
→ 0. The second column converges

to the first column and then converges to zero; that is, 𝜉
1,2
→

𝜉
1,1

→ 0, 𝜉
2,2

→ 𝜉
2,1

→ 0, 𝜉
3,2

→ 𝜉
3,1

→ 0, 𝜉
4,2

→

𝜉
4,1
→ 0. The third column converges to the second column

and then converges to zero; that is, 𝜉
1,3
→ 𝜉
1,2
→ 0, 𝜉

2,3
→

𝜉
2,2

→ 0, 𝜉
4,3

→ 𝜉
4,2

→ 0, 𝜉
1,2

→ 𝜉
1,1

→ 0, so through
the iteration X𝑘 converges to X∗ except the last column due
to the definition in (4) and (5); the last column and the last
row are set to zero.

Fortunately, this problem does not have side effect for
global result. Theorem 2 is established.
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Ant colony optimization (ACO) is often used to solve optimization problems, such as traveling salesman problem (TSP). When it
is applied to TSP, its runtime is proportional to the squared size of problem 𝑁 so as to look less efficient. The following statistical
feature is observed during the authors’ long-term gene data analysis using ACO: when the data size𝑁 becomes big, local clustering
appears frequently. That is, some data cluster tightly in a small area and form a class, and the correlation between different classes
is weak. And this feature makes the idea of divide and rule feasible for the estimate of solution of TSP. In this paper an improved
ACO algorithm is presented, which firstly divided all data into local clusters and calculated small TSP routes and then assembled a
big TSP route with them. Simulation shows that the presented method improves the running speed of ACO by 200 factors under
the condition that data set holds feature of local clustering.

1. Introduction

1.1. Introduction of Ant Colony Optimization (ACO). In 1991,
ant colony optimization (ACO) was presented firstly by
Colorni et al. [1] and applied to solve TSP firstly by Dorigo
et al. [1–3]. Dorigo et al. created a new research topic which
is studied by many scholars now.

ACO is essentially a system based on agents that simulate
the natural behavior of ants, in which real ants are able to find
the shortest route from a food source to their nest, without
using visual cues by exploiting pheromone information [2].
Pheromone is deposited when ants are walking on a route. It
provides heuristic information for other ants to choose their
routes. The more dense the pheromone trail of a route is, the
more possibly the route is selected by ants. At last, nearly all
ants select the route that has the most dense pheromone trail,
and it is the shortest route potentially.

ACO has been applied to solve optimization prob-
lems widely and successfully, such as TSP [1–4], quadratic

assignment problem [5], image processing [6], data mining
[7], classification or clustering analysis [8], and biology [9].
The application of ACO leads the theoretic study of ACO.
Gutijahr firstly analyzes the convergence property of ACO
[10]. Stutzle and Dorigo prove the important conclusion that
if the running time of ACO is long enough, ACO can find
optimal solution possibly [11]. The other interesting property
is revealed currently by Birattari et al. that the sequence of
solutions of some algorithms does not depend on the scale of
problem instance [12].

ACO is especially well suited for solving difficult opti-
mization problems, where traditional optimization methods
are less efficient. However, ACO is not very efficient in solving
large problems because running time is too long and the
quality of solution is still low. To solve the twomain problems,
the configuration of the parameters is discussed [2, 3]. To
further improve ACO,many approaches have been proposed.
Among these approaches, parallel computation and other
methods are used to accelerate ACO [13]. In this study,
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we design a novel clustering algorithm named special local
clustering algorithm (SLC), which is applied to classify and
find the solution for TSP problem. Moreover, a colony of
ants acts on each class to get a local TSP path. And we use
the convergence of route length as termination criterion of
ACO. The experimental results indicated that the improved
ACO speeds up and its quality becomes higher for testing
problems. It is more robust than comparative approaches.

1.2. Clustering Correlates to the Running Time of ACO. One
of study focuses of ACO is to cut down running time. The
running time of ACO is 𝑂(𝑡max𝑀𝑁

2

), and 𝑀 = [𝑁/1.5] in
general, where 𝑡max, 𝑀, and 𝑁 denote the iteration number,
number of ants, and number of cities, respectively [4]. The
running time is proportional to 𝑁

2. Cutting down the num-
ber of cities 𝑁 is the key to reduce running time. Therefore,
classifying all cities into different classes and letting ACO
act on each class will reduce running time heavily. Hu and
Huang used this method to improve the running speed of
ACO [14], which is named ACO-K-Means. It is faster than
ACO by factors of 5–15 approximately. Simulations show that
ACO-K-Means algorithm is valid only to the set of cities that
has evident clustering feature and invalid to more general sit-
uation. ACO-K-Means implies that using clustering method
to improve the running speed of ACO is possible.

1.3. Introduction of Local Clustering Algorithm. Clustering
is classifying objects of a set (named training set) into
different clusters (or groups), so that the data in each class
(ideally) share some common traits. One of the most popular
clustering algorithms is K-Means clustering algorithm [15,
16]. K-Means clustering algorithm assigns each point to the
cluster whose center (i.e., centroid) is nearest to it and then
updates the centroid. Repeat this process until termination
criterion is satisfied [16].

During the 𝑡th iteration of K-Means algorithm, the 𝑖th
class has distortion that is defined as the average distance
of each point and the class centroid, which is denoted by
𝐷
(𝑡)

𝑖
(1 ≤ 𝑖 ≤ 𝑚), where 𝑚 is the number of classes.

Pang proves that for each 𝑖 the distortion sequence {𝐷
(𝑡)

𝑖
}

is convergent if the 𝑖th class is separated from other classes
evidently [16]. That is, distortion sequence is convergent
locally. According to this property, an algorithm named local
clustering algorithm (LC) is presented [17], and its essential
idea is introduced as below.

Step 1. K-Means is applied to a given training set to generate
classes.

Step 2. The class whose distortion 𝐷
(𝑡)

𝑖
is convergent first is

deleted from training set. Then, update training set such that
it is comprised of residual points. Go to Step 1.

Repeat the process of Steps 1 and 2 until all data is
classified.

LC algorithm is faster than K-Means algorithm by factors
of 4–13 approximately.

Suppose that the 𝑖th class is 𝑅
(𝑡)

𝑖
during the 𝑡th iteration

of K-Means algorithm. Set 𝑅
(𝑡)

𝑖
has entropy 𝐻(𝑅

(𝑡)

𝑖
), where

𝐻(𝑅
(𝑡)

𝑖
) = −∑

𝑎∈𝑅
(𝑡)

𝑖

𝑝(𝑎)log
2
𝑝(𝑎) and 𝑝(𝑎) is the probabi-

lity of data 𝑎. It is proved that entropy sequence {𝐻(𝑅
(0)

𝑖
),

𝐻(𝑅
(1)

𝑖
), . . . , 𝐻(𝑅

(𝑡)

𝑖
), . . .} is convergent [16]. That is, the con-

vergent criterion of K-Means algorithm can be replaced by
the convergence of entropy sequence [18]. The K-Means with
convergent criterion of entropy convergence is fast by factors
of 2 at least [18, 19].

2. Improve Local Clustering Algorithm to
Generate Compact Class

2.1. Compact Set and the Method of Generation. For any
subset of Euclidean space 𝑅

𝑛, every sequence in this subset
has a convergent subsequence, the limit point of which
belongs to the set. This subset is called compact set. The
conception of compact set (or compactness) is a topology
conception. To understand it easily, compactness can be
described visually as the phenomenon where many points
cluster tightly in a small region, while noncompact set is the
set of which most of points cluster loosely in a big region.

K-Means clustering, LC, or other algorithms aim to
partition a training set into classes. Some classes are compact
and some are not. The most common situation is that a class
contains a compact subset and some loose points, and points
of the compact subset are around the center of the class. That
is, the central part of class is compact possibly. To extract
compact subset from a class, the following 3𝛿-principle is
introduced.

For Gauss distribution, suppose that 𝛿 denotes the devi-
ation of random data. It is the 3𝛿-principle that there is
more than 99% probability that a random point falls into
the central region of data set whose radius is 3𝛿 [16]. The
central region contains more than 99% points.Thus, if radius
3𝛿 is small enough and the number of points is big enough,
the central region is compact. If the central region with
radius 3𝛿 is not compact, shortening the radius of central
region to 3𝛿/4, 3𝛿/16, and so on will make it compact. For
Gauss distribution which is comprised of enough points,
the compact central region always exists. In general, for a
class generated by clustering algorithm, all distances of points
from class centroid comprise a similar gauss distribution.
Therefore, the central region of a class is compact possibly.

Suppose that the 𝑖th class is 𝑅(𝑡)
𝑖

at the 𝑡th iteration of 𝐾-
Means or LC algorithm. With the increase of iteration, class
sequence {𝑅

(0)

𝑖
, 𝑅
(1)

𝑖
, . . . , 𝑅

(𝑡)

𝑖
, 𝑅
(𝑡+1)

𝑖
, . . .} (1 ≤ 𝑖 ≤ 𝑚) appears,

where𝑚 denotes the number of classes. Let

𝐷
(𝑡)

𝑖
=

1

󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨

∑

𝑥∈𝑅
(𝑡)

𝑖

𝑑 (𝑥, 𝑐
(𝑡)

𝑖
) , (1)

where |𝑅
(𝑡)

𝑖
| denotes the number of elements in 𝑅

(𝑡)

𝑖
and

𝑑(𝑥, 𝑐
(𝑡)

𝑖
) denotes distance.

Consider

𝛿
(𝑡)

𝑖
=

1

󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨

∑

𝑥∈𝑅
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑑 (𝑥, 𝑐

(𝑡)

𝑖
) − 𝐷

𝑡

𝑖

󵄨󵄨󵄨󵄨󵄨
. (2)
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Clearly, 𝐷(𝑡)
𝑖

is the distortion of class 𝑅
(𝑡)

𝑖
and 𝛿

(𝑡)

𝑖
is the

approximation of deviation of𝐷(𝑡)
𝑖
.

Consider

𝐾
(𝑡)

𝑖
= {𝑥 | 𝑑 (𝑥, 𝑐

(𝑡)

𝑖
) ≤

1

4𝑝
(𝐷
(𝑡)

𝑖
+ 3𝛿
(𝑡)

𝑖
) ,

𝑥 ∈ 𝑅
(𝑡)

𝑖
(𝑝 ≥ 0) } .

(3)

𝐾
(𝑡)

𝑖
is the central region of class 𝑅

(𝑡)

𝑖
. Parameter 𝑝 is

used to shorten the radius of central region 𝐾
(𝑡)

𝑖
and makes

it compact. Figure 1 illustrates the 3𝛿-principle and compact
subset 𝐾(𝑡)

𝑖
.

2.2. Subroutine 1: Local Clustering Algorithm with 3𝛿-Prin-
ciple. The local clustering algorithmwith 3𝛿-principle is used
to classify points into classes and to extract compact central
region of classes. Its essential idea is described as below.

Firstly, apply LC algorithm to cluster data. And apply
the criterion of entropy convergence (i.e., |𝐻(𝑅

(𝑡)

𝑖
) −

𝐻(𝑅
(𝑡+1)

𝑖+1
)|/𝐻(𝑅

(𝑡)

𝑖
) → 0) to mark the stable class 𝑅(𝑡)

𝑖
.

Secondly, extract compact central region 𝐾
(𝑡)

𝑖
from class

𝑅
(𝑡)

𝑖
and preserve it as a genuine class. Remove 𝑅

(𝑡)

𝑖
from

training set and update it. Repeat the above two steps until
all compact central regions are extracted. The details are
described in Algorithm 1.

2.3. Special LC Algorithm to Generate Compact Classes (SLC).
Note that above subroutine 1 is not a partition of training
set. Subroutine 1 extracts only compact central regions of all
classes and the residual points are unclassified. The residual
points comprise a new training set. And it is possible that
some of residual points cluster together tightly and comprise
some small compact subsets again.These small compact sub-
sets are new classes. To obtain these new classes and classify
all points, SLC algorithm is described in Algorithm 2.

2.4. The Clustering for Mixture Distribution (SLC-Mixture).
The clustering algorithm SLC presented above generates
spherical classes only. However, for a general distribution,
some classes are of spherical shape, some classes are of chain
shape in which points cluster closely around a curve (or a
line), and some classes contain isolated points. This common
distribution is called mixture distribution. For a large-scale
TSP, the distribution of cities is mixture distribution in
general. The clustering method for mixture distribution is
proposed as below.

2.4.1. The Simple Maker to Distinguish Spherical Class from
Chain-Shaped Class. The position of city on a map is two-
dimensional point. A given class can be divided into 8 areas
along the 4 directions of the north-south and west-east and
two diagonal lines through the centroid of the class. If the
class is spherical, the percentage of points in each area is close
to 1/8 and is the same approximately. If the class is chain-
shaped class (or part of chain-shaped class), it is impossible
that the percentage of every area is close to 1/8 at the same

3

2

1

0

−1

−2

−3

3210−1−2−3

Gaussian distribution

D
(t)

i
+ 3𝛿

(t)

i

1

4
p
( (D

(t)

i
+ 3𝛿

(t)

i

Figure 1: The illustration of compact central region of a class. In a
class𝑅(𝑡)

𝑖
, most of points cluster around their centroid and few points

are far away from the centroid. Subset 𝐾(𝑡)
𝑖

(i.e., the shadow part) is
the central region of class 𝑅

(𝑡)

𝑖
. Compact set is the set where many

points cluster in a small region tightly. Increasing parameter 𝑝 will
shorten radius and make 𝐾

(𝑡)

𝑖
compact.

time. Therefore, the percentage of points in each area is the
maker of spherical class. Figure 2 illustrates the marker.

2.4.2. Applying SLC to Process Mixture Distribution (SLC-
Mixture). At first, apply SLC to classify all data of training
set. Secondly, apply themarker presented above to distinguish
spherical classes and extract them from the training set.Then
all residual points comprise a new set named residual set.The
residual set contains only chain-shaped classes and isolated
points.Thirdly, apply themethod presented in [20] to classify
all residual points of residual set into different chain-shaped
classes ormarked as isolated points.Themethod presented in
[20] is named chain-shaped clustering algorithm.

The clustering method presented in this section is called
SLC-Mixture algorithm, which processes the mixture distri-
bution of spherical classes, chain-shaped classes, and isolated
points.

3. Apply SLC to ACO

3.1.The Termination Criterion of ACO. Suppose ACO acts on
a compact class and let 𝐿

𝑡
denote the minimum route length

that is generated at the 𝑡th iteration of computation. There is
sequence {𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑡
, 𝐿
𝑡+1

, . . .} and it is convergent under
ideal condition.The convergent criterion |𝐿

𝑡
−𝐿
𝑡+1

|/𝐿
𝑡
≤ 𝜀 is

proposed as the termination criterion of ACO in this paper.
In the following discussion, ACO refers to the algorithm

whose termination criterion is (|𝐿
𝑡
− 𝐿
𝑡+1

|/𝐿
𝑡
) ≤ 𝜀.

3.2. Apply SLC to Improve the Running Speed of ACO (ACO-
SLC). In this section, the clustering algorithm SLC will be
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Input parameters:
𝑇: Training Set
𝑚: The number of classes
𝜀: The stop threshold for clustering.
𝐶
(0)

= {𝑐
0

𝑖
(1 ≤ 𝑖 ≤ 𝑚)}: Initial centroids set.

𝑝: A parameter to adjust the size of compact subs-ets𝐾(𝑡)
𝑖
(𝑝 ≥ 0).

Output:
𝜑(𝑇) = {𝐾

(𝑡)

1
, 𝐾
(𝑡)

2
, . . . , 𝐾

(𝑡)

𝑖
, . . . , 𝐾

(𝑡)

𝑚
} (i.e., the set of co-mpact subset, see Figure 1)

𝜎 (𝑇) = {𝐵
(𝑡)

1
, 𝐵
(𝑡)

2
, . . . , 𝐵

(𝑡)

𝑖
, . . . , 𝐵

(𝑡)

𝑚
}, where 𝐵

(𝑡)

𝑖
= 𝑅
(𝑡)

𝑖
− 𝐾
(𝑡)

𝑖
, and it is comprised by dispersive points

(1 ≤ 𝑖 ≤ 𝑚, see Figure 1)
Void Subroutine 1 (𝑇,𝑚, 𝜀, 𝐶

(0)

, 𝑝, 𝜑(𝑇), 𝜎(𝑇))
{

Step 1. Initialization: Let iteration number 𝑡 = 0. Let 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑚. Let 𝜑 (𝑇) = 𝜙 and 𝜎 (𝑇) = 𝜙, where 𝜙

denotes empty set. According to initial centroids set 𝐶(0), generate initial partition of training set
𝜑
0

= {𝑅
0

𝑖
| 𝑅
0

𝑖
⊂ 𝑇, 1 ≤ 𝑖 ≤ 𝑚}.

Step 2. While (𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 0) {

Step 2.1. Generate new centroids set 𝐶(𝑡+1) = {𝑐
(𝑡+1)

𝑖
| 1 ≤ 𝑖 ≤ 𝑚} and new partition 𝜑

(𝑡+1)

= {𝑅
(𝑡+1)

𝑖
| 1 ≤ 𝑖 ≤ 𝑚}

/∗ Note: Check whether entropy sequence𝐻
(0)

𝑖
, 𝐻
(1)

𝑖
, . . . , 𝐻

(𝑡)

𝑖
, 𝐻
(𝑡+1)

𝑖
, . . . is convergent. If it is convergent,

let the convergent marker StableMarker (𝑅(𝑡+1)
𝑖

) = 𝑇𝑟𝑢𝑒
∗/

Step 2.2. For (𝑖 = 1; 𝑖 ≤ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟; 𝑖 + +){

Estimate the entropy of class 𝑅(𝑡+1)
𝑖

, that is,𝐻(𝑅
(𝑡+1)

𝑖
) = log

2

󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑡+1)

𝑖

󵄨󵄨󵄨󵄨󵄨
.

If (
󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑅
(𝑡)

𝑖
) − 𝐻(𝑅

(𝑡+1)

𝑖
)
󵄨󵄨󵄨󵄨󵄨

𝐻 (𝑅
(𝑡)

𝑖
)

< 𝜀) {StableMarker (𝑅(𝑡+1)
𝑖

) = 𝑇𝑟𝑢𝑒; }

Else {StableMarker (𝑅(𝑡+1)
𝑖

) = 𝐹𝑎𝑙𝑠𝑒}

}

/∗ Note: Extract the data around the centroid of class as a genuine class ∗/
Step 2.3. For (𝑖 = 1; 𝑖 ≤ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟; 𝑖 + +){

If (StableMarker (𝑅(𝑡+1)
𝑖

) = 𝑇𝑟𝑢𝑒) {

Calculate compact central region𝐾
(𝑡)

𝑖
according to formula (3)

Calculate 𝐵
(𝑡)

𝑖
:𝐵(𝑡)
𝑖

= 𝑅
(𝑡+1)

𝑖
− 𝐾
(𝑡)

𝑖

Let 𝜑 (𝑇) = 𝜑(𝑇) ∪ 𝐾
(𝑡)

𝑖

Let 𝜎 (𝑇) = 𝜎 (𝑇) ∪ 𝐵
(𝑡)

𝑖

Update Training Set: 𝑇 = 𝑇 − 𝑅
(𝑡)

𝑖

Update centroids set: 𝐶(𝑡+1) = 𝐶
(𝑡+1)

− {𝑐
(𝑡+1)

𝑖
}

𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 − 1

}

}

𝑡 = 𝑡 + 1

}

}

Algorithm 1

applied to improve the running speed of ACO.Themethod is
named ACO-SLC and it is described as below.

Input parameter:
𝑇: set of cities.
Output: the shortest TSP route obtained by the algo-
rithm.

ACO-SLC Algorithm.

Step 1. Apply SLC algorithm to partition set 𝑇. The classes
are 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑖
, . . ., and 𝐵Num, and their centroids are

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑖
, . . ., and 𝑏Num, respectively.

Step 2. Construct graph 𝐺
󸀠: centroids 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑖
, . . ., and

𝑏Num are regarded as virtual cities, respectively, and the virtual
cities are regarded as the vertices of graph 𝐺

󸀠. For a pair of
classes 𝐵

𝑖
and 𝐵

𝑗
, if there exist two cities that belong to 𝐵

𝑖
and

𝐵
𝑗
, respectively, and they join each other, use an edge to join

the two corresponding vertices 𝑏
𝑖
and 𝑏
𝑗
. The weight of edge

is the minimum distance between two classes; that is,

𝑑 (𝐵
𝑖
, 𝐵
𝑗
) = min {𝑑 (𝑥

𝑖
, 𝑥
𝑗
) | 𝑥
𝑖
∈ 𝐵
𝑖
, 𝑥
𝑗
∈ 𝐵
𝑗
} . (4)

Step 3. Calculate a TSP route of graph 𝐺
󸀠 to generate the

traveling order of all classes: let ACO algorithm act on graph
𝐺
󸀠 to find a TSP route denoted by 𝑏

𝑗1
, 𝑏
𝑗2
, . . . 𝑏
𝑗Num, where
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Input parameters:
𝑇
0
: Training Set

𝑚
0
: The initial number of classes.

𝜀: The stop threshold for clustering.
Output:
Num:The final number of classes.
CLS: The partition of 𝑇

0
, in which each class is com-pact.

SLC Algorithm:
Step 1. Initialization: Let 𝑇 = 𝑇

0
, 𝑚 = 𝑚

0
, CLS = 𝜙, and 𝑝 = 0.

Step 2. For (𝑖 = 0; 𝑖 < [log
2
𝑚]; 𝑖 + +) /∗Note: [log

2
𝑚] denotes the integer ∗/

{ Step 2.1. Generate initial centroids set 𝐶
0

= {𝑐
(0)

𝑖
| 1 ≤ 𝑖 ≤ 𝑚}.

Step 2.2. Call Subroutine1 (𝑇,𝑚, 𝐶
(0)

, 𝜀, 𝑝, 𝜑 (𝑇) , 𝜎 (𝑇))

Step 2.3. CLS = CLS ∪ 𝜑 (𝑇);
Step 2.4. 𝑇 = 𝜎 (𝑇);
/∗ Note: Increase 𝑝 to get smaller compact class ∗/
Step 2.5. 𝑚 = [

𝑚

2
]; 𝑝 = 𝑝 + 1

}

Step 3. Every residual point 𝑥 in the last set 𝜎 (𝑇) is regarded as a class {𝑥}. And let CLS = CLS ∪ {𝑥}.
Let Num denote the number of classes contained in CLS. The two outputs are CLS and Num.

Algorithm 2

𝑗
1
, 𝑗
2
, . . . 𝑗Num, is a permutation of sequence 1, 2, . . .Num.The

pair of classes 𝐵
𝑗𝑖
and 𝐵

𝑗(𝑖+1)
is called neighbor class.

Step 4. Choose an edge as the bridge to join a pair of neighbor
classes, and this edge is named bridge edge. Assume that the
two neighbor classes are 𝐵

𝑗1
and 𝐵

𝑗2
. If there exists an edge

such that

𝑑 (𝑥
𝑢
, 𝑥V) = min {𝑑 (𝑎, 𝑏) | 𝑎 ∈ 𝐵

𝑗1
, 𝑏 ∈ 𝐵

𝑗2
} , (5)

edge (𝑥
𝑢
, 𝑥V) is the bridge edge, 𝑥𝑢 and 𝑥V are called border

cities, where vertices 𝑎 and 𝑏 should be not used to join other
neighbor classes.

Step 5. Calculate a local TSP route for every class 𝐵
𝑖
(1 ≤ 𝑖 ≤

Num): add a new edge to join the two border cities in the class
and mark the edge as necessary edge of the local TSP route.
This edge is named pseudoedge. Let the ACO algorithm with
convergence criterion (|𝐿

𝑡
− 𝐿
𝑡+1

|/𝐿
𝑡
) ≤ 𝜀 act on the class to

generate a local TSP route.

Step 6. Construct a TSP route: walk along the traveling order
obtained at Step 3; for every pair of neighbor classes, delete
the pseudoedge of each class such that the local route is not
close.Then let the local route of each class and the bridge edge
between these two classes be joined.

Figure 3 illustrates the processing ofACO-SLCalgorithm.

3.3. Using the Method of Little-Window and Removing Cross-
Edge to Improve ACO-SLC (ACO-SLC-LWCR). Clustering
may cause the error of solution although it improves the
running speed of ACO heavily. If all classes are compact
and separated clearly, the quality of solution of ACO-SLC
should be very good. However, in fact, the border between
two neighbor classes is fuzzy. The fuzzy border will cause the

inaccuracy of solution, and much longer route will appear.
And recognizing the longer part and removing it will generate
better solution possibly. It is well known that the shortest
route is always at the surface of a convex hull.Thus, the longer
part should be at the inner of a convex hull and two longer
edges intersect. In other words, intersection of two edges is
a marker of longer part of a route possibly. According to the
marker, removing longer edges is called removing cross-edge
or removing intersection edges, which is similar to the method
in [4]. (Notice: in [4], before executing ACO, the long and
crossed edges are removed to improve the running speed of
ACO, not to improve the solution quality.)

Figure 4 illustrates the method of removing cross-edge.
In addition, a simple method named little-window strat-

egy is proposed to improve the running speed of ACO in
[21]. Construct a set 𝑆

𝑖
that is comprised by 𝑤 accessible and

short edges which join the 𝑖th city, where 𝑤 is a preassigned
constant. The ant which has arrived at 𝑖th city will select an
edge from window set 𝑆

𝑖
only to arrive at its next city and not

select an edge from all neighbor edges of this vertex. So, this
method improves the running speed of ACO.

The ACO-SLC with little-window strategy and cross-
edges removing is called ACO-SLC-LWCR.

3.4. The ACO-SLC for Mixture Distribution (ACO-SLC-
Mixture). ACO-SLC is suitable for the spherical shape dis-
tribution only, and the low quality of solution will appear
possibly when ACO-SLC is applied to process mixture
distribution. To process mixture distribution, the follow-
ing method named ACO-SLC-Mixture is proposed in this
paper.

Firstly, apply SLC-Mixture at Section 2.4.2 to partition
the set of cities into spherical classes, chain-shaped classes,
or isolated points. Secondly, apply ACO-SL-C-LWCR to each
class and generate a TSP route.
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Figure 2: The illustration of distinguishing spherical class from chain-shaped class. A given class is divided into 8 parts along the 8 lines
through the centroid of the class. If the class is spherical, the percentage of each part is close to threshold 𝜀 = 1/8. If the class is chain-shaped
class (or part of chain-shaped class), there are 2–4 parts whose percentage is far less than 1/8. Therefore, the percentage of each part is the
marker of spherical class. 𝜀 = 0.058 in this paper because some classes are elliptical.

A: (Step 1)

D: (Step 6) C: (Step 5)

B: (Steps 2–4)

Figure 3: The schematic diagram of ACO-SLC. Firstly, classify all
points into compact classes. Secondly, the centroid of each class is
regarded as a virtual city; calculate a virtual TSP route. Then along
the virtual route, join all classes. Thirdly, let ACO act on each class
to get a local TSP route. Fourthly, join all local TSP routes along the
virtual route to form the last route.

4. Simulation

In this section, five related algorithms ACO, ACO-K-Means,
ACO-SLC, ACO-SLC-LWCR, and ACO-SLC-Mixture are
tested and compared. In the following simulation, ACO refers
to ant-cycle presented by Colorni et al., which is very typical
[1].

A A

B

C

D

C

BD

Figure 4: The schematic diagram of ACO-SLC. Firstly, classify all
points into compact classes. Secondly, the centroid of each class is
regarded as a virtual city. And calculate a virtual TSP route. Then
along the virtual route, join all classes. Thirdly, let ACO act on each
class to get a local TSP route. Fourthly, join all local TSP routes along
the virtual route to form the last route. The illustration of removing
cross-edges from TSP route: at the left figure, AB and CD intersect
each other.There is a principle that the shortest route is at the surface
of a convex hull. Thus, edges AB and CD are the longer part of route
and should be removed. Removing these two edges will generate
shorter route (see right figure).

All test data in this paper is downloaded from
http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/tsp/. All algorithms in this paper run on personal
computer (CPU: 1.80GHz; memory: 480M; software:
Matlab). The parameters are listed as below. Initialize
pheromone trails 𝜏

𝑖𝑗
(0) = 1, iteration number 1000,

𝜀 = 0.001, 𝛼 = 1, 𝛽 = 10, 𝜌 = 0.4, 𝑄 = 300, and
𝑚 = [𝑁/1.5]. Two performance items are tested. One
item is the running time, which is defined as Ratio = Time
(ACO)/Time (Algorithm). The bigger the ratio is, the faster



Abstract and Applied Analysis 7

The ratio of running speed
Ratio = Time (ACO)/Time (Algorithm) 

Solution error (%) 
Error = (Solution−Optimum)/Optimum

ACO

ACO

ACO-K

ACO-K-Means

ACO-SLC

ACO-SLC
ACO-SLC-LWCR

ACO-SLC ACA-SLC

ACA-SLC-Mixture

-Means -LWCR -Mixture

Pr107 1.00

1.00

1.00

1.00

1.00

1.00

1.00

11.86 575.15 577.43 539.69

Ch130 13.38 754.98 765.72 465.26

Pr136 7.12 466.42 465.56 437.81

D198 5.05 415.32 390.08 257.72

Pr226 8.00 1347.06 1152.37 1346.84

Lin318 15.24 1298.11 1671.64 1630.29

P654 109.52 10735.77 10191.92 9419.74

25

20

15
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5

0
Pr107 Ch130 Pr136 D198 Pr226 Lin318 P654

Figure 5: The performance comparison with five algorithms. The figure shows that ACO-SLC algorithm, ACO-SLC, ACO-SLC-LWCR, and
ACO-SLC-Mixture are faster than ACO by 415 ∼ 10736, 390 ∼ 10192, and 257–9419 of factors, respectively! However, some solutions of
ACO-K-Means and ACO-SLC have low quality. ACO-SLC-Mixture can process mixture distribution and its inaccuracy ratio is less than
ACO in most cases and is bigger than ACO by 2% at most. It should be noted that under the condition where the data set holds feature of
local clustering significantly, the quality of solution is good.

the algorithm is. In addition, the advantage of the ratio is
that the subtle infection of other processes to runtime is
evaded as possible, and it is more accurate than raw mea-
sured runtime because the value caused by other processes
gives little contribution to the ratio. The other item is the
quality of solution, which is defined as the percentage
of error Error = (Solution-Optimum)/Optimum, where
Optimum denotes the best solution known currently. The
smaller the error is, the better the quality of solution is.

The performances of the five algorithms are listed in
Figure 5. It shows that ACO-SLC, ACO-SLC-LWCR, and
ACO-SLC-Mixture are faster than ACO by 415 ∼ 10736,
390 ∼ 101–92, and 257–9419 of factors, respectively! How-
ever, some solutions of ACO-K-Means and ACO-SLC have
low quality.The inaccuracy ratio of ACO-SLC-Mixture is less
than ACO in most cases and is bigger than ACO by 2% at
most.

TheDefect of ACO-SLC. (1) From Figure 5, it should be noted
that only under the condition that the data set holds feature of
local clustering significantly, the quality of solution is good.
(2) The simulations of this paper show that the quality of
ACO-SLC solution depends on the quality of clustering and
clustering quality of SLC is sensitive to the initial centroids
just like K-Mean algorithm. This is the main defect of ACO-
SLC.

5. Conclusion

Time Complexity of ACO. ACO is the algorithm that is
inspired by the foraging behavior of ant colonies and has been
applied to solve many optimization problems. The typical
application of ACO is the application at traveling salesman
problem (TSP). The running time of ACO is 𝑂(𝑡max𝑀𝑁

2

),
where 𝑡max, 𝑀, and 𝑁 denote the iteration number, number

of ants, and number of cities, respectively. Parameter 𝑚 is an
experiential value and is set to [𝑁/1.5] in general. Parameter
𝑁 is the key factor of running time because running time is
proportional to its square. Parameter 𝑡max and𝑁 are available,
and decreasing parameter 𝑡max and𝑁 will cut down running
time.

Focus of ACO Study. ACO can generate solution with high
quality in general. But its shortage is that running time is
too long. Cutting down running time is one of study focuses
of ACO, and one way is to decrease parameters 𝑡max and 𝑁,
especially 𝑁.

Basic Idea for this Study Focus. For this study focus, the
following basic idea is presented in this paper.

Firstly, all cities are classified into compact classes, where
compact class is the class where all cities in this class cluster
tightly in a small region. Secondly, let ACO act on every class
to get a local TSP route.Thirdly, all local TSP routes are joined
to form solution. Fourthly, the inaccuracy of solution caused
by clustering is eliminated.

Realization of Basic Idea. The realization of above idea is
based on a novel clustering algorithm presented in this paper,
which is named special local clustering algorithm (SLC). The
running time of SLC is far less than the time of ACO. SLC
generates compact classes, while current popular clustering
algorithm such asK-Means does not generate compact classes
in general. The compactness of class makes the length of TSP
route 𝐿

𝑡
at every iteration convergent; the convergence of 𝐿

𝑡

(i.e., (|𝐿
𝑡
− 𝐿
𝑡+1

|/𝐿
𝑡
) → 0) is proposed as the termination

criterion of ACO in this paper. Thus, parameter 𝑡max is cut
down to improve the running speed of ACO. In addition,
every class has small size; ACO acting on small class makes
parameter 𝑁 cut down, and running speed is improved.
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According to this analysis, ACO-SLC algorithm is presented
in this paper. Simulation shows that ACO-SLC is faster than
ACO by 415 ∼ 10736 of factors!

Elimination of the Solution Inaccuracy Caused by Clustering.
Although the running speed is improved in this paper, the
inaccuracy of solution is heavy. Two factors causing the
inaccuracy are found in this paper. One is the cross-edges
(see Section 3.3) and the other factor is the unmatching
between ACO-SLC and mixture distribution (see Section
3.4). According to these two factors, ACO-SLC-LWCR and
ACO-SLC-Mixture are presented in this paper, which is the
improvement of ACO-SLC. Simulation shows that ACO-
SLC-LWCR and ACO-SLC-Mixture are faster than ACO by
390 ∼ 101–92 and 257–9419 of factors, respectively!The inac-
curacy ratio of ACO-SLC-Mixture is less than ACO in most
cases and is bigger than ACO by 2% at most.
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This paper describes amethod for nonrigid registration of monomodalMRI based on physical laws.The proposedmethod assumes
that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid
and a viscous fluid.Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global
registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the
deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive
force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to
evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of
both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear
viscoelastic model improves the registration accuracy.

1. Introduction

A current major topic in computational neuroanatomy is
the development of nonrigid image registration algorithms.
Nonrigid image registration has many potential applications.
It can be applied to building atlases, segmentation, quantify-
ing local morphological differences, comparing the variance
of different population, and detecting pathological changes
[1–4]. Various methods have been developed to deal with
nonrigid image registration. The methods are usually clas-
sified into two categories: feature-based and intensity-based
[5]. The former first needs to build a geometric model and
identify a number of anatomic characters in themodel.These
characters include point landmarks, curves, and surfaces [6–
8]. The anatomical characters are then parameterized. The
aim of the registration is to find the optimal combinations
of the model parameters.These methods are critically depen-
dent on feature extraction quality. However, the anatomical
structures are complex, making it difficult to extract them
accurately. Usually, human interaction is required during
registration, thereby making the process inconvenient and

time consuming. The intensity-based method is used to
match regional intensity patterns based on mathematical or
statistical criteria [9–13]. This method reduces the need for
direct feature extraction or segmentation, can be automatic,
and can obtain satisfactory results and is thus widely used.
Fluid registration uses physics models and assumes that
the deformation obeys fluid mechanics laws. These methods
allow flexible deformation with large freedom and are used in
many applications.

In the early 1980s, the elastic model was proposed as a
means to match images [14]. Brain images are modeled as an
elastic solid and the deformations are calculated from elastic
mechanic equations [15, 16]. However, this model is only
suitable for small deformations. To address this problem, the
properties of brain images were assumed to be like those of
viscous fluid, and the viscous fluid model was proposed [17],
where the deformations are driven by forces that are equal to
the gradient of the sum of squared intensity difference (SSD)
metrics. The orientation and magnitude of deformation
fields are computed using the fluid-dynamical Navier-Stokes
equation.This method allows large deformations and serious
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Figure 1: Maxwell model is made of springs (𝐸) and dashpots (𝜂) in
series, and the forces acting on two parts are equal.

localized distortions, but with increased likelihood ofmisreg-
istration [18]. The Navier-Stokes equation is solved by means
of the relaxation method and requires much time. To reduce
the computation cost, Bro-Nielson proposed a convolution
filter method to solve the equation quickly [19]. However,
Wollny et al. [20] obtained unsatisfactory resultswhenusing a
small filter width in the convolution filter methods. However,
if the filter width is large, the computational costs are not
more advantageous than when using iterative methods. Thus
the relaxationmethod is currently the best method.The brain
images are also modeled as diffusions [21–23] and have been
shown to be similar to the method proposed by Bro-Nielsen
et al. [19].

In this study, we try to use the properties of both elastic
solids and viscous fluids to register images. Linear viscoelastic
matter has these properties. The deformation properties of
brain images are assumed to be similar to those of viscoelastic
matter and obey viscoelastic laws [24, 25]. As the Maxwell
model has the abilities to describe linear viscoelastic defor-
mation [26], this study hence utilizes the Maxwell model
to represent and capture large deformation of the brain
images. When a force acts on theMaxwell model, the motion
of the fluid component relaxes over time, allowing large
displacements. The deformation fields are constrained by
both elastic and fluid components. To speed up the algorithm,
an adaptive force is introduced. Given our aim ofmonomodal
anatomic image registration, the SSD is used as a similarity
metric in the registration. Both synthetic and real images
are used to demonstrate the performance of the proposed
method. The performances of both models (Maxwell and
fluid) with both forces (standard and adaptive) are compared
with each other.The fluidmodel with adaptive forces (FMAF)
has the fastest registration speed, the Maxwell model with
adaptive force (MMAF) is the second, the Maxwell model
with standard force (MMSF) is the third, and the fluid model
with standard force (FMSF) is the slowest. The ranking of
registration accuracy from high to low is as follows: MMAF,
MMSF, FMAF, and FMSF.

2. Materials and Methods

2.1. Maxwell Model. The Maxwell model [26] is made of a
spring and a dashpot in series (Figure 1), which is perfectly
elastic and viscous. Since the deformation process is assumed
to be quasistatic, inertia can be neglected and the force or
stress is the same in both parts. The total deformation is the
sum deformations of both parts. If the displacement of spring
or dashpot is ⃗𝑢

𝑠 or ⃗𝑢
𝑑, the total displacement ⃗𝑢 is

⃗𝑢 = ⃗𝑢
𝑠

+ ⃗𝑢
𝑑

. (1)

If 𝐸 is Young’s modulus of the spring and 𝜂 is the viscosity of
the dashpot, 𝜎

𝑠
and 𝜎

𝑑
are the stresses of the spring and the

dashpot. The stresses are

𝜎
𝑠
= 𝐸 ⃗𝑢
𝑠

, 𝜎
𝑑
= 𝜂 ̇⃗𝑢
𝑑

, 𝜎
𝑠
= 𝜎
𝑑
. (2)

Given that the force on the spring and the depot is equal at any
given time, the two parts can be processed independently.

2.2. Reference Frame. Two kinds of reference frames are used
to describe deformations in a floating image that is deformed
to a target image. One is the Lagrangian reference frame,
which describes the deformations by observing changes in
the positions and velocities of definite particles. The other
is the Eulerian reference frame, which describes the defor-
mations by observing velocity changes at fixed points. The
Eulerian reference frame is suitable for large deformations
because it does not trace the motion of the particles [27].
Therefore, the Eulerian reference frame is used to track the
deformations in ourmethod. Voxel grids are used as the fixed
points. A particle at grid position ⃗𝑥 in floating image 𝐼

1
( ⃗𝑥)

at time 𝑡 is originated at the position ⃗𝑥(𝑡) − ⃗𝑢( ⃗𝑥, 𝑡), where
⃗𝑢( ⃗𝑥, 𝑡) is the displacement field. The corresponding velocity

field ⃗V( ⃗𝑥, 𝑡) is expressed as

⃗V ( ⃗𝑥, 𝑡) =
𝜕 ⃗𝑢 ( ⃗𝑥, 𝑡)

𝜕𝑡
+

3

∑

𝑗=1

V
𝑗

𝜕 ⃗𝑢 ( ⃗𝑥, 𝑡)

𝜕𝑥
𝑗

, (3)

where ⃗V = [V
1
, V
2
, V
3
]. It comes from the derivative of

the displacement field about time. The second term in (3)
represents the nonlinearities of the displacement field.

2.3.The Viscoelastic Fluid Algorithm. We extend theMaxwell
model to three dimensions. The spring becomes an elastic
solid, and the dashpot becomes a viscous fluid. Therefore,
the total deformation is similar to that in (1), where ⃗𝑢

𝑠

=

[𝑢
𝑠

1
, 𝑢
𝑠

2
, 𝑢
𝑠

3
] and ⃗𝑢

𝑑

= [𝑢
𝑑

1
, 𝑢
𝑑

2
, 𝑢
𝑑

3
] are displacements of the

elastic solid part and the viscous fluid part, respectively. The
force of the two parts is equal and is expressed as

⃗𝑓
𝑠

= ⃗𝑓
𝑑

, (4)

where ⃗𝑓
𝑠 and ⃗𝑓

𝑑 are the forces acting on the elastic solid part
and the viscous fluid part, respectively.

We used the continuum mechanics method to com-
pute the displacements. The elastic solid displacements are
described by the following partial differential equations:

𝜇
𝑠

∇
2

⃗𝑢
𝑠

+ (𝜆
𝑠

+ 𝜇
𝑠

) ∇ (∇ ⋅ ⃗𝑢
𝑠

) + ⃗𝑓
𝑠

= 0, (5)

where 𝜇
𝑠 and 𝜆

𝑠 are Lame’s elastic coefficients and ⃗𝑢
𝑠

=

[𝑢
𝑠

1
(𝑥, 𝑡), 𝑢

𝑠

2
(𝑥, 𝑡), 𝑢

𝑠

3
(𝑥, 𝑡)]. The velocity of the viscous fluid

part is determined using the following equation:

𝜇
𝑑

∇
2

⃗V𝑑 + (𝜆𝑑 + 𝜇𝑑) ∇ (∇ ⋅ ⃗V𝑑) + ⃗𝑓
𝑑

= 0, (6)

where ⃗V𝑑 = [V𝑑
1
(𝑥, 𝑡), V𝑑

2
(𝑥, 𝑡), V𝑑

3
(𝑥, 𝑡)] and 𝜇𝑑 and 𝜆𝑑 are the

viscosity constants.
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The velocity field of viscous fluid in an Eulerian reference
frame can be determined by the following equation:

⃗V𝑑 ( ⃗𝑥, 𝑡) =
𝜕 ⃗𝑢
𝑑

( ⃗𝑥, 𝑡)

𝜕𝑡
+

3

∑

𝑗=1

V𝑑
𝑗

𝜕 ⃗𝑢
𝑑

( ⃗𝑥, 𝑡)

𝜕𝑥
𝑗

. (7)

The displacement fields ⃗𝑢
𝑑 are updated iteratively over time

step Δ𝑡 and are determined as follows:

⃗𝑢
𝑑

(𝑡 + Δ𝑡) = ⃗𝑢
𝑑

(𝑡) + Δ𝑡 [ ⃗V𝑑 (𝑡) − ∇ ⃗𝑢
𝑑

(𝑡) ⃗V𝑑 (𝑡)] . (8)

Time step Δ𝑡 is chosen according to the perturbation of the
deformation field; we have

Δ𝑡 = max(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⃗V𝑑 ( ⃗𝑥, 𝑡) −

3

∑

𝑖=1

V𝑑
𝑖
( ⃗𝑥, 𝑡) [

𝜕 ⃗𝑢 ( ⃗𝑥, 𝑡)

𝜕𝑥
𝑖

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) . (9)

The boundary conditions ⃗𝑢
𝑠

( ⃗𝑥, 𝑡) = 0 and 󳨀⇀V
𝑑

( ⃗𝑥, 𝑡) = 0,
and the total displacements on the boundary are set to zero.
The elastic equation (5) and fluid equation (6) are solved
simultaneously to obtain the total deformation.

2.4. The Adaptive Force. Themotivation of the adaptive force
is to speed up the registration. In the proposed method, the
key parts of the partial differential equations (PDEs) (5) and
(6) are the forces that drive the floating image to deform to the
target image 𝐼

2
( ⃗𝑥). The gradient of the SSDmetrics is used as

these forces. The standard force is defined as

𝑓 = −𝛼(𝐼
1
( ⃗𝑥 − ⃗𝑢 ( ⃗𝑥, 𝑡)) − 𝐼

2
( ⃗𝑥)) ∇𝐼

1
( ⃗𝑥)

󵄨󵄨󵄨󵄨 ⃗𝑥− ⃗𝑢( ⃗𝑥,𝑡)
, (10)

where 𝛼 is a constant.
The ∇𝐼

1
( ⃗𝑥)|
⃗𝑥− ⃗𝑢( ⃗𝑥,𝑡)

is the gradient of the floating image at
⃗𝑥 − ⃗𝑢( ⃗𝑥, 𝑡). 𝐼

1
( ⃗𝑥 − ⃗𝑢( ⃗𝑥, 𝑡)) − 𝐼

2
( ⃗𝑥) is the difference in intensity

between the deformed floating image and the target image
and weighs the ∇𝐼

1
( ⃗𝑥)|
⃗𝑥− ⃗𝑢( ⃗𝑥,𝑡)

. The force is minimized at the
location where the floating image and the target image are
aligned.

As the registration progresses, the forces become smaller
and the corresponding velocities also become smaller which
lead to very small deformation in the iteration. Therefore,
more iterations are needed to reach the final deformations.
To speed up the registration, the forces should increase in
the next iteration. Hence, an adaptive force is introduced to
solve the problem in the proposed method.Themaximum of
the displacements should not stay below a specific threshold.
When the maximum of the displacements is below the
threshold at the current iteration, the forces are adjusted
automatically to increase the maximum of the displacements
in the next iteration. In our method, an empirical formula is
used to define the adaptive force. The adaptive force in the
Eulerian reference frame is expressed as

⃗𝑓
𝑛+1

= ⃗𝑓
𝑠

𝑛+1
( ⃗𝑥, ⃗𝑢 ( ⃗𝑥, 𝑡)) = ⃗𝑓

𝑑

𝑛+1
( ⃗𝑥, ⃗𝑢 ( ⃗𝑥, 𝑡))

= −𝛼
𝑛+1

× (𝐼
1
( ⃗𝑥 − ⃗𝑢 ( ⃗𝑥, 𝑡)) − 𝐼

2
( ⃗𝑥)) ∇𝐼

1
( ⃗𝑥)

󵄨󵄨󵄨󵄨 ⃗𝑥− ⃗𝑢( ⃗𝑥,𝑡)
,

(11)

where 𝑛 + 1 is the next iteration and 𝛼
𝑛+1

is the function
with respect to the maximum displacements of the current
iteration. It is described as

𝛼
𝑛+1

= {
𝛼𝑛 (1 + 𝛽 (𝛾 −max (‖ ⃗𝑢 ( ⃗𝑥, 𝑡)‖))) , if (max (‖ ⃗𝑢 ( ⃗𝑥, 𝑡)‖)) < 𝛾,

𝛼𝑛, if (max (‖ ⃗𝑢 ( ⃗𝑥, 𝑡)‖)) ≥ 𝛾,

(12)

where max(‖ ⃗𝑢( ⃗𝑥, 𝑡)‖) is the maximum of the displacements
of the current iteration.

If the maximum displacement is below the threshold 𝛾,
1 + 𝛽(𝛾 −max(‖ ⃗𝑢( ⃗𝑥, 𝑡)‖)) should be larger than one, thereby
making 𝛼

𝑛+1
larger than 𝛼

𝑛
. The parameter 𝛼

𝑛+1
of the next

iteration increases automatically. Therefore, the correspond-
ing forces ⃗𝑓

𝑛+1
also increase to prevent the displacement from

becoming too small.

2.5. Implementation. When the floating image is deformed by
the corresponding deformation field in the registration, the
topology of the floating image should be preserved. Keeping
all Jacobian of the deformation fields positive can preserve
the topology. In the implementation, when the minimum of
the Jacobian is below 0.5, the transformation is applied to the
floating image to produce a new image and the displacement
field ⃗𝑢 is set to zero. The new image is then used as the
floating image in the subsequent registration. The process
continues as long as the SSD decreases. The pseudocode of
the algorithm is as follows.

(1) Let 𝑡 = 0 and ⃗𝑢( ⃗𝑥, 0) = 0.
(2) Calculate the force using (10), (11), and (12).
(3) If the SSD stops decreasing or the maximum number

of iterations is reached, then stop.
(4) Solve PDEs (5) and (6) for displacements ⃗𝑢

𝑠

( ⃗𝑥, 𝑡) and
instantaneous velocity ⃗V𝑑( ⃗𝑥, 𝑡), respectively.

(5) Choose time step Δ𝑡 according to (8) and calculate
⃗𝑢
𝑑

( ⃗𝑥, 𝑡).
(6) Calculate the total displacement ⃗𝑢( ⃗𝑥, 𝑡) = ⃗𝑢

𝑠

( ⃗𝑥, 𝑡) +

⃗𝑢
𝑑

( ⃗𝑥, 𝑡).
(7) If the Jacobian of the transformation is less than 0.5, a

new floating image is constructed, and then go to Step
1. Otherwise, update the displacement field according
to (4), then set 𝑡 = 𝑡 + Δ𝑡, and go to Step 2.

As it has been proved that relaxation is currently the
best method [20], we solve PDEs (6) and (7) by means of
successive overrelaxation [28].

2.6. Evaluation. The performance of the proposed method
is evaluated on the basis of three analyses. The first analysis
uses the golden deformation field ⃗𝑇. We then compare the
recovered deformation field ⃗𝑇

󸀠 by the root mean square
(RMS) error over all voxels:

RMS = √
1

𝑁
∑( ⃗𝑇

󸀠
( ⃗𝑥) − ⃗𝑇 ( ⃗𝑥))

2

, (13)

where𝑁 is the number of total voxels in the image.
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Table 1: Computing time of various methods.

FMSF (s) FMAF (s) MMSF (s) MMAF (s)
2D simulated data 36 12 26 18
2D MRI data 60 23 41 32
IBSR database 2891 1143 2025 1793
Real data 1256 532 1077 625

The second analysis uses the mean of the SSD. They are
defined as

SSD =
1

𝑁

√∑(𝐼
2
( ⃗𝑥) − 𝑇 (𝐼

1
( ⃗𝑥)))
2

, (14)

where 𝑁 is the number of total voxels in the image, 𝐼
1
( ⃗𝑥)

and 𝐼
2
( ⃗𝑥) are floating and target images, respectively. While

𝑇(𝐼
1
( ⃗𝑥)) is the deformed floating image.
The last analysis uses tissue overlaps, which are defined as

𝑂 = 2 ×
𝑉 (𝐼
2
( ⃗𝑥) ∩ 𝑇 (𝐼

1
( ⃗𝑥)))

𝑉 (𝐼
2
( ⃗𝑥)) + 𝑉 (𝐼

1
( ⃗𝑥))

, (15)

where 𝑉 is the volume of the tissues.
If the floating image completely matches the target image,

the 𝑂 value would be one, and the RMS or SSD would be
minimized. If there is no overlap between the two images,
the 𝑂 value would be zero, and the RMS or SSD would be
maximized.

3. Experiments and Results

Four experiments are conducted to demonstrate the pro-
posed method. The first two experiments are about 2D data
and the rest 3D volumes. The method is implemented in C
and complies with VC++ [29]. The whole image is modeled
using a single set of material parameters for simplification
purposes.The parameters 𝜇𝑠, 𝜆𝑑, 𝜇𝑑 are all set to one and 𝜆𝑠 is
set to zero.The parameters 𝛼

0
and 𝛽 are both set to 1, and 𝛾 is

set to 0.8 voxels. The maximum iteration is set to 200. These
parameters are used in all the experiments.

3.1. 2D Synthetic Datasets. The experiment shows that the
proposed method can deal with large deformation well. The
image sizes are 128 × 128 pixels, as shown in Figure 2.
Figure 2(a) is the floating image, with a rectangular image,
and Figure 2(b) is the target image, a C-shape image. The
results of FMSF, MMSF, FMAF, and MMAF are all suc-
cessful to deform the rectangular image to C-shape image.
Figure 2(c) shows the results of FMAF. The computing costs
are listed in the second row of Table 1. The computing times
of FMSF, FMAF, MMSF, and MMAF are 36, 12, 26, and 18
seconds, respectively.The ranking of speed from the fastest to
the slowest is as follows: FMAF, MMAF, MMSF, and FMSF.

3.2. 2D Brain MRI Datasets. The second experiment shows
the effectiveness of the proposed method when it is applied
to brain MRI. The floating image size is 256 × 256, as shown
in Figure 3(a). This image is registered to a selected image by

Table 2: Comparison of RMS and SSD for various methods.

FMSF FMAF MMSF MMAF
RMS (mm) 0.3783 0.3066 0.2742 0.2412
SSD 0.0381 0.0293 0.0367 0.0293

the finite element method [30] and obtains the deformation
fields ⃗𝑇, which is used as the golden standard. The known
deformation fields ⃗𝑇 are applied to the floating image to
obtain a target image, as shown in Figure 3(b). The known
field is shown in Figure 3(c) using the following equation:

𝑇 = √𝑇
2

𝑥
+ 𝑇
2

𝑦
, (16)

where 𝑇
𝑥
, 𝑇
𝑦
are the known deformation fields in the 𝑥 and 𝑦

directions, respectively.
Thefluidmodel and theMaxwellmodel with the standard

forces and the adaptive forces are applied to the images.
The computing time is listed in the third row of Table 1.
The FMAD only costs 23 seconds, which is the fastest. By
contrast, the MMAF and the MMSF cost 32 and 41 seconds,
respectively, and they are the second and the third in terms of
speed. The FMSF is the slowest and costs 60 seconds.

All of these methods can successfully deform the floating
image to the target image. However, the matching accuracy
is different. Table 2 lists the RMS and SSD acquired by the
various methods. The RMS of FMSF, FMAF, MMSF, and
MMFA are 0.3783, 0.3066, 0.2742, and 0.2412. According to
RMS, MMAF has obtained the best result, followed by the
MMSF, then FMAF, and FMSF last.

Figure 4 shows the difference among the known defor-
mation fields obtained using various methods using the
following equation:

Δ𝑇 = √(𝑇
𝑥
− 𝑇
󸀠

𝑥
)
2

+ (𝑇
𝑦
− 𝑇
󸀠

𝑦
)
2

, (17)

where Δ𝑇 is the difference of the known deformation fields.
𝑇
󸀠

𝑥
, 𝑇󸀠
𝑦
are the deformation fields of 𝑥 and 𝑦 directions,

respectively. We find that regardless of which forces act, the
differences of the known deformation fields with that of the
fluid model (shown in Figures 4(a) and 4(b)) are much larger
than that with the Maxwell model (shown in Figures 4(c)
and 4(d)). The Maxwell model has obtained better results.
Among them, the Maxwell model with the adaptive forces
has obtained the best result, whereas the fluid model with
the standard forces has the worst results. The SSD of FMSF,
FMAF, MMSF, and MMFA are 0.0381, 0.0293, 0.0367, and
0.0293. Based on the SSD, the results of theMMAFandFMAF
have the same rank, whereas the results of the MMSF and
the FMSF are ranked as third and fourth. It indicates that
the adaptive force is superior to the standard force and the
Maxwell model is more robust.

3.3. The Internet Brain Segmentation Repository (IBSR)
Database. High-resolution 3DMR images are used to evalu-
ate the proposedmethod.TheMRIdata are downloaded from
the IBSR [31] and include 20 normal MR brain datasets and
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(a) (b) (c)

Figure 2: Results on 2D simulated datasets: (a) floating image, (b) target image, and (c) the result of Maxwell model with adaptive forces
(MMAF).

(a) (b)
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Figure 3: (a) Floating image. (b) Target image obtained by deforming the floating image with the known deformation field. (c) The known
deformation field is obtained from FEM-based deformable registration method.

the skulls are all stripped. The column and row are 256, and
the slice is from 58 to 64. The voxel size is 1 × 1 × 3mm3. We
have randomly selected 30 couples from the data to test the
methods.Themean time is listed in the fourth row of Table 1.
The computing times of FMSF, FMAF, MMSF, and MMAF
are 2891, 1143, 2025, and 1793. The computation time of the
fluidmodel with the adaptive forces is the fastest, theMaxwell
model with the adaptive forces is the second, the model with
the standard forces is the third, and the fluid model with the
standard force is the slowest.

The mean of SSD is listed in the second row of Table 3.
The SSD of the FMSF, FMAF, MMSF, and MMAF are 0.0553,
0.0490, 0.0504, and 0.0484, respectively. According to the
SSD value, the results obtained by the MMAF and the FMAF
are ranked as the first and the second, respectively, and those
acquired by theMMSF are the third.The result obtained using
the FMSF is the worst. However, finding the difference using
visual inspections in the results is difficult. An example is
shown in Figure 5.

The average tissue overlap values are listed in the second
row of Table 4. The overlap values of FMSF, FMAF, MMSF,
andMMAF are 0.8813, 0.8879, 0.8872, and 0.8917.The overlap

values of the Maxwell model are larger than that of the fluid
model, and the model with the adaptive forces performs
better than that with the standard forces.

3.4. Real Datasets. The real datasets are acquired from the
local hospital.The scans are acquired using a SIEMENSTRIO
3 Tesla scanner installed at the Institute of Biophysics of the
Chinese Academy of Sciences. These scans are T1 sagittal
images (TR = 1730ms, TE = 3.93ms, thickness = 1.0mm,
no gap, in-plane resolution = 256 × 256, slice = 192, and flip
angle = 15). The scans are resampled as 120 × 120 × 96mm3
and the voxel size is 2.0 × 2.0 × 2.0mm3. Thirty couples are
randomly selected from the datasets. The mean time is listed
in the fifth rowof Table 1, and the SSD is listed in the third row
of Table 3.The computing times of FMSF, FMAF, MMSF, and
MMAF are 1256, 532, 1077, and 625, respectively. The SSD of
FMSF, FMAF, MMSF, and MMAF are 0.0328, 0.0293, 0.0301,
and 0.0279. The computation costs and matching accuracy
of the real datasets are similar to those of the IBSR datasets.
The overlap values are listed in the third row of Table 4.
The overlap values of FMSF, FMAF, MMSF, and MMAF are
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Figure 4:The differences of the known deformation fields with those got by various methods. (a)The difference of known deformation field
with that obtained by the FMSF. (b) The difference of known deformation field with that obtained by the FMAF. (c) The difference of known
deformation field with that obtained by the MMSF. (d) The difference of known deformation field with that obtained by the MMSF.

Table 3: Comparison of the mean values of SSD for various
databases.

FMSF FMAF MMSF MMAF
IBSR database 0.0553 0.0490 0.0504 0.0484
Real data 0.0328 0.0293 0.0301 0.0279

Table 4: Comparison of the overlap values for various methods.

FMMI FMSF FMAF MMSF MMAF
IBSR database 0.8794 0.8813 0.8879 0.8872 0.8917
Real data 0.8801 0.8823 0.8912 0.8892 0.8920

0.8823, 0.8912, 0.8892, and 0.8920. The results are similar
to those obtained in Section 3.3. The proposed method is
also compared with a method using fluid model and mutual
information (FMMI) [32]. As the second column of Table 4
shows, the overlaps of the IBSR dataset and the real dataset
from FMMI are the smallest, respectively. This indicates that
the SSD is better than mutual information in monomodal
images.

4. Conclusions

The proposed method is driven by the fluid and elastic
models [15–17], which uses the Maxwell model, a linear
viscoelastic model that combines the properties of elastic
and fluid models, to represent the image deformation. The
proposed method introduces an adaptive force to speed up
the registration.

The performances of the elastic and fluid models are
compared in [17]. Therefore, we only compare the proposed
method with the fluid method in this paper. The successive
over relaxation method is used to solve the corresponding
PDE, which is not the fastest but themost accurate among the
evaluated methods. The computational cost can be reduced
if PDEs are solved quickly, such as when using filter convo-
lution [19] with a small filter width and parallel computing.
However, the relative computation costs should be the same
as those obtained in this paper. Actually, the fluid model is a
special case of the linear viscoelastic model.When 𝜇𝑠 = 0 and
𝜆
𝑠

= 0, the linear viscoelastic model becomes a fluid model.
Our experimental results show that the linear viscoelastic

model has several potential applications and that adaptive
force can greatly reduce the registration time. The proposed
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(a) (b) (c)

(d) (e) (f)

Figure 5: An example of the results of the 24th slice with various methods on IBSR Database is shown. (a) Floating image. (b) Target image.
(c) The result of the fluid model with standard force (FMSF). (d) The result of the fluid model with adaptive force (FMAF). (e) The result of
the Maxwell model with standard force (MMSF). (f) The result of the Maxwell model with adaptive force (MMAF).

method includes many parameters, and these should be
analyzed further. We would also like to analyze the char-
acterization of the transformation and how to obtain the
optimal parameters for the corresponding transformation in
the future.
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We propose a new definition of fractional derivatives based on truncated left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1
and median correction. Analyzing the difficulties to choose the fractional orders and unsatisfied processing results in signal
processing using fractional-order partial differential equations and related methods; we think that the nonzero values of the
truncated fractional order derivatives in the smooth regions are major causes for these situations. In order to resolve the problem,
the absolute values of truncated parts of the G-L formula are estimated by the median of signal values of the remainder parts, and
then the truncated G-L formula is modified by replacing each of the original signal value to the differences of the signal value and
the median. Since the sum of the coefficients of the G-L formula is zero, the median correction can reduce the truncated errors
greatly to proximate G-L formula better. We also present some simulation results and experiments to support our theory analysis.

1. Introduction

Partial differential equations (PDEs) and related methods are
very important tools for signal processing [1–13]. Especially,
in recent years progress was achieved in the theory of
fractional calculus as a useful tool to handle applications in
the area of physics, chemistry, and engineering sciences [6–
20].

However, unlike integer-order derivatives with zeros or
small values in the smooth regions and with big values near
singularities, the values of truncated fractional derivatives are
with very large absolute values. The direct result is that the
derivative values cannot be used to measure the degrees of
singularities. That is, small derivative values perhaps relate to
singularity regions and big derivative values perhaps relate to
smooth regions.Therefore, some integer-order PDEmethods
cannot be modified to their fractional-order counterparts
directly. Hu noticed the problem in 2013 and proposed a new
fractional-order PDE with different orders of different parts
for fractional-order PM method [13]. However, he did not
give the analysis in theory.

In this paper, we study behaviors of fractional-order
derivatives of truncated left-handed Grünwald-Letnikov for-
mula with 0 < 𝛼 < 1. Based on the analysis, a new
fractional derivative formula is proposed based on truncated
left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 and
median correction. The median correction is used to reduce
the truncated errors of G-L formula.

The rest of this paper is as follows. Section 2 introduces
some basic theory backgrounds in fractional derivatives;
we also deduce some useful results based on these theory
backgrounds. In Section 3 we introduce the truncated G-L
formula and its numerical approximation. Section 4 presents
the new fractional derivative formula and gives properties
and numerical methods for the new fractional definition.The
simulation results and experiments are presented in Section 5.
We also give conclusions and acknowledgments finally.

2. Fractional Derivatives

In this section, we will introduce some preparations for the
new method, that is, Grünwald-Letnikov formula and its
matrix approximation.
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2 Abstract and Applied Analysis

2.1. Grünwald-Letnikov Formula. Fractional-order deriva-
tives are defined as operators whose orders have been
extended to noninteger numbers. There are a number of
definitions of fractional derivatives. One usual way of repre-
senting the discrete fractional derivatives is by the Grünwald-
Letnikov (G-L) formula [21, 22], which is

𝐷
𝛼

GL𝑢 (𝑥) = lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥) , (1)

where 𝑥 ∈ [𝑎, 𝑏], Δ𝑥 denotes the uniform space step, and
𝜔
(𝛼)

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) represents the normalized G-L weights

which are given by

𝜔
(𝛼)

0
= 1,

𝜔
(𝛼)

𝑘
= (−1)

𝑘
𝛼 (𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑘 + 1)

𝑘!
=
Γ (𝑘 − 𝛼)

Γ (−𝛼) Γ (𝑘 + 1)
,

for 𝑘 = 1, 2, 3, . . .
(2)

For 𝛼 = 1, (1) becomes the classical 1st derivative, and for
any 𝛼 = 𝑛, 𝑛 ∈ ℵ is a positive integer; they are classical 𝑛th
derivatives of 𝑢(𝑥). Note that for when 𝛼 is a positive integer,
equations are with limit support whose support lengths are
𝛼 + 1. However, for when 𝛼 is not an integer, fractional
derivatives are nonlocal operators. That is, the value of the
fractional derivative at a point 𝑥 depends on the function
values at all the points to the left of the point 𝑥.

Therefore, in order to handle fractional derivative numer-
ically, it is necessary to compute the coefficients 𝜔(𝛼)

𝑘
, where

𝛼 is the order of the fractional derivative. For that we can use
the recurrence relationships:

𝜔
0
(𝛼) = 1;

𝜔
(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
, 𝑘 = 1, 2, 3, . . . .

(3)

Some useful properties for left-handed G-L formula are
presented as follows.

Lemma 1. The nonlocal operator defined in (1) is a linear
operator.

Proof. 𝑢(𝑥) and V(𝑥) are two functions, and 𝑥 ∈ [𝑎, 𝑏]; 𝜆 is a
real number. We have

(1) 𝐷
𝛼

GL [𝑢 (𝑥) + V (𝑥)]

= lim
Δ𝑥→0

1

Δ𝑥
𝛼

×

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
[𝑢 (𝑥 − 𝑘Δ𝑥) + V (𝑥 − 𝑘Δ𝑥)]

= lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥)

+ lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
V (𝑥 − 𝑘Δ𝑥)

= 𝐷
𝛼

GL𝑢 (𝑥) + 𝐷
𝛼

GLV (𝑥)

(2) 𝐷
𝛼

GL [𝜆𝑢 (𝑥)] = lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
[𝜆𝑢 (𝑥)]

= 𝜆 lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥)

= 𝜆𝐷
𝛼

GL𝑢 (𝑥) .

(4)

Lemma 2. ∑∞
𝑘=0
𝜔
(𝛼)

𝑘
= 0.

Proof. Since (1 − 𝑧)𝛼 = ∑∞
𝑘=0
𝜔
(𝛼)

𝑘
𝑧
𝑘, let 𝑘 = 1; we have

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
= (1 − 1)

𝛼

= 0. (5)

Lemma 3. For 0 < 𝛼 < 1,𝑚 is a positive integer; one has

𝜔
(𝛼)

𝑘
< 0, 𝑘 = 1, 2, 3, . . . ,

∞

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
< 0.

(6)

Proof. For 𝑘 = 1, 𝜔(𝛼)
1
= −𝛼 < 0.

Assume that 𝜔(𝛼)
𝑘
< 0.

According to (3), we have 𝜔(𝛼)
𝑘+1
= (1− (𝛼+1)/(𝑘+1))𝜔

(𝛼)

𝑘
.

Since 0 < 𝛼 < 1 and 𝑘 + 1 ≥ 2, (1 − (𝛼 + 1)/(𝑘 + 1)) > 0. Thus,
sgn(𝜔(𝛼)

𝑘+1
) = sgn(𝜔(𝛼)

𝑘
) < 0. Here

sgn (𝑥) = {
1, 𝑥 ≥ 0,

−1, 𝑥 < 0.
(7)

Then, we have 𝜔(𝛼)
𝑘+1
< 0. Thus, ∑∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
< 0.
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Lemma 4. For 0 < 𝛼 < 1,𝑚 ≥ 0 is an integer. One has
∞

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0. (8)

Proof. FromLemma3, for 0 < 𝛼 < 1, 𝜔(𝛼)
𝑘
< 0, 𝑘 = 1, 2, 3, . . ..

Thus, 𝜔(𝛼)
𝑘
(−𝑘) > 0 for 𝑘 = 1, 2, 3, . . .. We have

∑
∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0,𝑚 ≥ 1.

Since 𝜔(𝛼)
0
(−0) = 0, we have ∑∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 0.

2.2. Numerical Method of G-L Formula. For G-L formula
in (1) in signal processing, the uniform space step is set to
Δ𝑥 = 1 for easy description; 𝑥 is the variant whose support is
[𝑎, 𝑏]. That is, the signal 𝑢(𝑥) is compact support. Therefore,
equations can be specified as

𝐷
𝛼

GL =
[𝑥−𝑎]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) . (9)

The coefficients can also be obtained recursively from (3).
We can discretize (1) into a finite difference on a grid on the 𝑥
axis, where the 0th lattice is 𝑎; 𝑗th lattice is 𝑥

𝑗
, 𝑗 = 1, 2, . . . , 𝑛−

1; and the 𝑛th lattice is 𝑏. That is, 𝑛 is the length of the signal.
Therefore, using thematrix approximatemethod, we have

𝐷
𝛼

GLS = 𝑀
(𝛼)S, (10)

where TGL represents truncated G-L formula, S = [𝑠(𝑥
0
),

𝑠(𝑥
1
), . . . , 𝑠(𝑥

𝑛
)]
𝑇, 𝑇 represents the transposed vector, and

𝑀
(𝛼) is an 𝑛 × 𝑛 lower triangular strip matrix defined as

𝑀
(𝛼)

=(

𝜔
(𝛼)

0
0 . . . 0

𝜔
(𝛼)

1
𝜔
(𝛼)

0
. . .

...
...

... d 0

𝜔
(𝛼)

𝑛
𝜔
(𝛼)

𝑛−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0

). (11)

3. Truncated Grünwald-Letnikov Formula

Fractional integration and fractional differentiation are gen-
eralizations of notions of integer-order integration and dif-
ferentiation and include 𝑛th derivatives (𝑛 denotes an integer
number) as particular cases. One usual way of represent-
ing the discrete fractional derivatives is by the Grünwald-
Letnikov (G-L) formula introduced in Section 2 (see (1)).

However, for digital signals, we have to discuss truncated
G-L formula rather than the G-L formula itself because of
the limited supports of digital signals. In this section, the
definition of truncated G-L formula and its properties are
discussed firstly and then we will give its numerical scheme.

3.1. Truncated Grünwald-Letnikov Formula. The truncated
G-L formula is

𝐷
𝛼

TGL𝑠 (𝑥) =
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) , (12)

where 𝑥 ∈ [𝑎, 𝑏], the uniform space step is set to 1, 𝑡 is
the length of the support, 𝜔(𝛼)

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) represents the

normalized G-L weights, and their recurrence relationship is
given by (3).

Just as above sections, we will discuss some properties of
truncated G-L formula.
Lemma 2󸀠. For 0 < 𝛼 < 1, 𝑡 ≥ 0 is an integer. One has

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
> 0. (13)

Proof. According to Lemma 2, we have

0 =

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
. (14)

According to Lemma 3, ∑∞
𝑘=𝑡+1
𝜔
(𝛼)

𝑘
< 0. Therefore,

∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0.

Lemma 3󸀠. For 0 < 𝛼 < 1, 𝑚 is a positive integer, 𝑡 ≥ 𝑚. One
has

𝑡

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
< 0. (15)

Proof. For 𝑘 = 1, 𝜔(𝛼)
1
= −𝛼 < 0.

Assume that 𝜔(𝛼)
𝑘
< 0.

According to Lemma 1, we have 𝜔(𝛼)
𝑘+1
= (1 − (𝛼 + 1)/(𝑘 +

1))𝜔
(𝛼)

𝑘
. Since 0 < 𝛼 < 1 and 𝑘+1 ≥ 2, (1−(𝛼+1)/(𝑘+1)) > 0.

Thus, sgn(𝜔(𝛼)
𝑘+1
) = sgn(𝜔(𝛼)

𝑘
) < 0. Here

sgn (𝑥) = {
1, 𝑥 ≥ 0,

−1, 𝑥 < 0.
(16)

Then, we have 𝜔(𝛼)
𝑘+1
< 0. Thus, ∑𝑡

𝑘=𝑚
𝜔
(𝛼)

𝑘
< 0.

Lemma 4󸀠. For 0 < 𝛼 < 1, 𝑚 ≥ 0 is an integer and 𝑡 is a
positive integer. One has

𝑡

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0. (17)

Proof. From Lemma 3, for 0 < 𝛼 < 1, 𝜔(𝛼)
𝑘
< 0, 𝑘 =

1, 2, 3, . . ..
Thus, 𝜔(𝛼)

𝑘
(−𝑘) > 0 for 𝑘 = 1, 2, 3, . . . , 𝑡. We have

∑
𝑡

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 0, 𝑡 ≥ 1.

3.2. Numerical Method of Truncated G-L Formula. We can
discretize (12) into a finite difference on a grid on the 𝑥 axis,
where the 0th lattice is 𝑎; 𝑗th lattice is 𝑥

𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1;

and the 𝑛th lattice is 𝑏. That is, 𝑛 is length of signals.
Therefore, using thematrix approximatemethod, we have

𝐷
𝛼

GLS ≈ 𝐷
𝛼

TGLS = 𝑀
(𝛼)

𝑇
S, (18)
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where S = [𝑠(𝑥
0
), 𝑠(𝑥
1
), . . . , 𝑠(𝑥

𝑛
)]
𝑇, 𝑇 represents the trans-

posed vector, and𝑀(𝛼)
𝑇

is an 𝑛 × 𝑛matrix defined as

𝑀
(𝛼)

𝑇
=

(
(
(
(
(
(
(
(
(
(
(

(

𝜔
(𝛼)

0
0 . . . 0 0 ⋅ ⋅ ⋅ 0

𝜔
(𝛼)

1
𝜔
(𝛼)

0
. . .

... 0 ⋅ ⋅ ⋅ 0

...
... d 0

...
...

𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
0 ⋅ ⋅ ⋅ 0

0 𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
⋅ ⋅ ⋅ 0

...
... d d d

...

0 ⋅ ⋅ ⋅ 0 𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0

)
)
)
)
)
)
)
)
)
)
)

)

. (19)

Notice that 𝑛 is the length of the signal and 𝑡 is the length
of the support. That is, 𝑛 ≥ 𝑡. Since𝑀(𝛼)

𝑇
is sparser than𝑀(𝛼)

for 𝑛 > 𝑡, the computation cost of the truncated G-L formula
is lower than that of the G-L formula.

4. New Truncated Grünwald-Letnikov Formula

Although Lemma 2 tells us the values of fractional derivatives
for a constant function 𝑠(𝑥) = 1 defined byG-L formula equal
to zeros, for truncated G-L formula, Lemma 2󸀠 shows that it
is not true.

The main awkwardness for this situation comparing with
integer-order derivatives is that the fractional derivatives
cannot be used to measure the strength of singularities.
Therefore, estimation methods based on the strength of
singularities measured by the modula of 1-order deriva-
tives cannot be generalized to their fractional counterparts
directly. These estimation methods include many popular
and state-of-art frameworks, such as anisotropic diffusion,
nonlocal means, and bilateral filtering.

Therefore, in order to generalize fractional derivatives
to these frameworks, the truncated G-L formula should be
modified as follows: for 𝑠(𝑥) = 𝑐, 𝑐 ̸= 0,𝐷𝛼𝑠(𝑥) = 0.

We start from the requirement to obtain the definition
and properties of the new truncated G-L formula, and
then the numerical method of the new model by matrix is
presented.

4.1. Motivations and Definitions. The discussion is from the
error of truncated G-L formula.

Definition 5. The error of the truncated G-L formula is

ErrTGL (𝑠 (𝑥)) =
∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) −

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘)

=

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) ,

(20)

where TGL represents truncatedG-L formula, 𝑡 is the support
length, and 𝑠(⋅) is the signal, 0 < 𝛼 < 1.

Especially, for 𝑠(𝑥) = 1, we have

ErrTGL (𝑠 (𝑥)) =
∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
, (21)

that is, the sum of all terms after 𝑡. From Lemma 2󸀠, we have
∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0, for 𝑡 ≥ 0, 0 < 𝛼 < 1 and from Lemma 3, we

have 𝜔(𝛼)
𝑘
< 0, for 𝑘 = 1, 2, . . . , 0 < 𝛼 < 1, which implies that

the error will become smaller as 𝑡 becomes bigger.

Moreover, from Lemma 2, we have ∑∞
𝑘=0
𝜔
(𝛼)

𝑘
= 0; thus,

the truncated error can be changed as follows.

Proposition 6. The truncated error of 𝑠(𝑥) = 1 is

ErrTGL (𝑠 (𝑥)) = −
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (22)

Proof. From Lemma 2 and the above equation,

0 =

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘

=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+ ErrTGL (𝑠 (𝑥)) .

(23)

Thus,

ErrTGL (𝑠 (𝑥)) = −
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (24)

For 𝑠(𝑥) = 𝑐, 𝑐 is a constant real number; we can get similar
results.

Proposition 7. The truncated error of 𝑠(𝑥) = 𝑐 ̸= 0 is

ErrTGL (𝑠 (𝑥)) = −𝑐
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (25)

Similarly, for 𝑠(𝑥) ̸= constant, values from 𝑡 + 1 to∞ are
not known and we only know the samples from 0 to 𝑡. Thus,
we should estimate errors defined in (20) by the values from
0 to 𝑡. For 𝑠(𝑥) = constant, estimate errors defined in (20)
by the values from 0 to 𝑡 have been accomplished through
Proposition 7, which reminds us that the problem can be
solved by assuming 𝑠(𝑥) a constant. Thus, times the constant
and the sum of𝜔(𝛼)

𝑘
, 𝑘 = 0, 1, . . . , 𝑘 can approximate the error

well.This constant also should be estimated from values from
0 to 𝑡.

One alternative scheme is that the median of values from
0 to 𝑡 is used as the estimate value for the constant since
median is an estimate with good performance in flexibility
and reliability.

Definition 8. The new truncated G-L formula is

𝐷
𝛼

NTGL𝑠 (𝑥) =
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) −median (S)

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
, (26)
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where NTGL represents the new truncated G-L formula,
median(S) is the median of the vector S = [𝑠(𝑥), 𝑠(𝑥 −
1), . . . , 𝑠(𝑥 − 𝑡)]

𝑇, the uniform space step is set to 1, 𝑡 is the
length of the support, and 𝜔(𝛼)

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) represents the

normalized G-L weights.

4.2. Numerical Method of New Truncated G-L Formula. We
can discretize (26) into a finite difference on a grid on the 𝑥
axis, where the 0th lattice is 𝑎; 𝑗th lattice is 𝑥

𝑗
, 𝑗 = 1, 2, . . . , 𝑛−

1; and the 𝑛th lattice is 𝑏. That is, 𝑛 is length of signals.
Therefore, using thematrix approximatemethod, we have

𝐷
𝛼

GLS ≈ 𝐷
𝛼

NTGLSc = 𝑀𝑇Sc, (27)

where NTGL represents new truncated G-L formula, S =
[𝑠(𝑥
0
), 𝑠(𝑥
1
), . . . , 𝑠(𝑥

𝑛
)]
𝑇, and 𝑇 represents the transposed

vector. Sc = [𝑠(𝑥0)−median(S), 𝑠(𝑥
1
)−median(S), . . . , 𝑠(𝑥

𝑛
)−

median(S)]𝑇 is the corrected vector of S by the median of S,
and𝑀

𝑇
is an 𝑛 × 𝑛matrix defined as

𝑀
𝑇
=

(
(
(
(
(
(
(
(
(

(

𝜔
(𝛼)

0
0 . . . 0 0 ⋅ ⋅ ⋅ 0

𝜔
(𝛼)

1
𝜔
(𝛼)

0
. . .

... 0 ⋅ ⋅ ⋅ 0

...
... d 0

...
...

𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
0 ⋅ ⋅ ⋅ 0

0 𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
⋅ ⋅ ⋅ 0

...
... d d d

...
0 ⋅ ⋅ ⋅ 0 𝜔

(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0

)
)
)
)
)
)
)
)
)

)

(28)

Notice that 𝑛 is the length of the signal and 𝑡 is the length
of the support. That is, 𝑛 ≥ 𝑡. Since𝑀

𝑇
is sparser than𝑀 for

𝑛 > 𝑡, the computation cost of the truncated G-L formula is
lower than the G-L formula’s.

4.3. Properties of the New Truncated G-L Formula. In this
subsection, wewill give some important properties of the new
truncated G-L formula.

Theorem 9. The nonlocal operator defined in (27) is a linear
operator.

Proof. 𝑢(𝑥) and V(𝑥) are two functions, and 𝑥 ∈ [𝑎, 𝑏]; 𝜆 is a
real number. We have

(1) 𝐷
𝛼

NTGL [𝑢 (𝑥) + V (𝑥)] = 𝐷
𝛼

NTGL [U + V]
= 𝑀
𝑇
[Uc + Vc]

= 𝑀
𝑇
Uc +𝑀𝑇Vc

= 𝐷
𝛼

NTGL𝑢 (𝑥) + 𝐷
𝛼

NTGLV (𝑥) ,

(2) 𝐷
𝛼

NTGL [𝜆𝑢 (𝑥)] = 𝐷
𝛼

NTGL [𝜆U]
= 𝜆𝑀

𝑇
Uc

= 𝜆𝐷
𝛼

NTGL𝑢 (𝑥) .

(29)

Here, Uc,Vc are corrected vectors of U, V, which are
defined as the corrected vector in (27).

Theorem 10. 𝑀(𝛼)
𝑇

and𝑀(𝛽)
𝑇

are two matrixes defined in (27),
that is, the approximation matrixes of truncated G-L formula
with fractional orders 𝛼 and 𝛽, respectively. Thus,

𝑀
(𝛼)

𝑇
𝑀
(𝛽)

𝑇

= 𝑀
(𝛽)

𝑇
𝑀
(𝛼)

𝑇

(
(
(
(
(
(

(

𝛾
0
0 . . . 0 0 ⋅ ⋅ ⋅ 0

𝛾
1
𝛾
0
. . .

... 0 ⋅ ⋅ ⋅ 0
...

... d 0

...
...

𝛾
𝑡
𝛾
𝑡−1
⋅ ⋅ ⋅ 𝛾

0
0 ⋅ ⋅ ⋅ 0

0 𝛾
𝑡
𝛾
𝑡−1
⋅ ⋅ ⋅ 𝛾

0
⋅ ⋅ ⋅ 0

...
... d d d

...
0 ⋅ ⋅ ⋅ 0 𝛾

𝑡
𝛾
𝑡−1
⋅ ⋅ ⋅ 𝛾
0

)
)
)
)
)
)

)

,

(30)

where 𝛾
𝑖
= ∑
𝑖

𝑘=0
𝜔
(𝛼)

𝑘
𝜔
(𝛽)

𝑖−𝑘
, 𝑖 = 0, 1, . . . , 𝑡.

Lemma 12 can be proved easily by times two matrixes.
That is, two operators of the truncated G-L formula with
different fractional orders are commutative.

We guess the following equations in Guess 1 are correct.
However, we cannot prove it.
Guess 1.We have

𝐷
𝛼

NTGL𝐷
𝛽

NTGL𝑠 (𝑥) = 𝐷
𝛽

NTGL𝐷
𝛼

NTGL𝑠 (𝑥) = 𝐷
𝛼+𝛽

NTGL𝑠 (𝑥) .

(31)

5. Numerical Simulations

For the numerical approximation, although longer memory
is more precise computation for the fractional derivatives,
a fixed number for 𝑡 is adopted for reducing computation
complexity, for example, 𝑡 = 100 or 𝑡 = 1000 and so forth. But
these truncated forms will lead to some unsatisfied results.
In this section, we will give error analysis of truncated G-
L formulas firstly and then present experiments using test
signals.
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5.1. Error Analysis of Truncated G-L Formula. The error
analysis of truncated G-L formula is very important in the
applications of fractional derivatives. Some efforts discuss the
problem in theory [23]. In this subsection we will discuss the
truncated errors by considering the signal 𝑠(𝑥) = 1 since
the most serious effect of truncated errors is that the values
of fractional derivatives are not equal to zeros when 𝑠(𝑥) =
constant.

According to Lemma 2, the values of untruncated G-L
formula for 𝑠(𝑥) = 1 are equal to zeros, which are coincident
to the 1-order derivatives. For the truncated G-L formula
when fractional order 𝛼 satisfies 0 < 𝛼 < 1, according to
Lemma 2󸀠, the remainder part of 𝑠(𝑥) = 1 is more than
zero. Thus, the truncated part is less than zero. That is, it
is a negative number. The truncated errors of truncated G-
L formula for 𝑠(𝑥) = 1 with different support lengths and
different fractional-orders 𝛼, 0 < 𝛼 < 1, are shown in Table 1,
which demonstrate the above conclusions.

Moreover, we will compare the changes of absolute values
of truncated errors with different 𝛼 and different support
lengths.

Lemma 11. The absolute values of truncated errors | −
∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
|, where 𝑡 is the support length, for 𝑠(𝑥) = 1, become

smaller as the support lengths become larger.

Proof. According to Lemma 3, 𝜔(𝛼)
𝑘
< 0, 0 < 𝛼 < 1, for 𝑘 ≤ 1

is an integer.
According to Lemma 2󸀠, ∑𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0, for 𝑡 ≥ 0 is an

integer and 0 < 𝛼 < 1.
Here, 𝑡 can be considered as the support length of the

truncated G-L formula. When 𝑡
1
> 𝑡
2
, where 𝑡

1
and 𝑡
2
are

two support lengths and 𝑡
1
≥ 0 and 𝑡

2
≥ 0, we have

𝑡1

∑

𝑘=0

𝜔
(𝛼)

𝑘
<

𝑡2

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (32)

Lemma12. Theabsolute values of truncated errors for 𝑠(𝑥) = 1
become smaller as the fractional orders 0 < 𝛼 < 1 become
larger.

Proof. Since 𝜔(𝛼)
0
= 1 and 𝜔(𝛼)

1
= −𝛼, for 𝛼

1
> 𝛼
2
, 0 < 𝛼

1
< 1,

and 0 < 𝛼
2
< 1, where 𝛼

1
and 𝛼
2
are two fractional orders, we

have

1 − 𝛼
1
> 0, 1 − 𝛼

2
> 0, 1 − 𝛼

1
< 1 − 𝛼

2
. (33)

According to Lemma 2, then 𝜔(𝛼)
𝑘
= (1 − (𝛼 + 1)/𝑘)𝜔

(𝛼)

𝑘−1
.

For 0 < 𝛼 < 1 and 𝑘 ≥ 2, we have 0 < (1 − (𝛼 + 1)/𝑘) < 1.
Thus,

𝜔
(𝛼)

𝑘
< 0,

󵄨󵄨󵄨󵄨󵄨
𝜔
(𝛼)

𝑘

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨󵄨
𝜔
(𝛼)

𝑘−1

󵄨󵄨󵄨󵄨󵄨
, 𝜔

(𝛼)

𝑘
> 𝜔
(𝛼)

𝑘−1
, (34)

where | ⋅ | represents the absolute value. Thus, for 𝛼
1
> 𝛼
2
,

0 < 𝛼
1
< 1, and 0 < 𝛼

2
< 1, we have

0 < (1 −
𝛼
1
+ 1

𝑘
) < (1 −

𝛼
2
+ 1

𝑘
) < 1. (35)
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Figure 1: Truncated errors of truncated G-L formula with support
lengths 10, 50, 100, and 500 and fractional orders 𝛼 from 0.1 to 0.9.

If 0 > 𝜔(𝛼1)
𝑘
> 𝜔
(𝛼2)

𝑘
, for 𝑘 ≥ 1, 𝛼

1
> 𝛼
2
, 0 < 𝛼

1
< 1, and

0 < 𝛼
2
< 1.

Thus, we can assume that 𝛼
1
= 𝛼
2
+ 𝑐
1
, 1 > 𝑐

1
> 0, and

𝜔
(𝛼1)

𝑘
= 𝜔
(𝛼2)

𝑘
+ 𝑐
2
, 𝑐
2
> 0. We have

𝜔
(𝛼1)

𝑘+1
= 𝜔
(𝛼1)

𝑘
(1 −
𝛼
1
+ 1

𝑘
)

= (𝜔
(𝛼2)

𝑘
+ 𝑐
2
) (1 −
𝛼
2
+ 1 + 𝑐

1

𝑘
)

= 𝜔
(𝛼2)

𝑘
(1 −
𝛼
2
+ 1

𝑘
) + 𝜔
(𝛼2)

𝑘
(−
𝑐
1

𝑘
)

+ 𝑐
2
(1 −
𝛼
2
+ 1 + 𝑐

1

𝑘
)

= 𝜔
(𝛼2)

𝑘+1
+ 𝜔
(𝛼2)

𝑘
(−
𝑐
1

𝑘
) + 𝑐
2
(1 −
𝛼
2
+ 1 + 𝑐

1

𝑘
)

(36)

Since 𝜔(𝛼2)
𝑘
(−𝑐
1
/𝑘) > 0 and 𝑐

2
(1− (𝛼

2
+1+ 𝑐

1
)/𝑘) > 0, we have

𝜔
(𝛼1)

𝑘+1
> 𝜔
(𝛼2)

𝑘+1
. (37)

Thus, ∑𝑡
𝑘=1
𝜔
(𝛼2)

𝑘
< ∑

𝑡

𝑘=1
𝜔
(𝛼1)

𝑘
< 0 and ∑𝑡

𝑘=0
𝜔
(𝛼2)

𝑘
>

∑
𝑡

𝑘=0
𝜔
(𝛼1)

𝑘
> 0.

Summary of above two lemmas: we have that the long
support and large fractional orders of truncatedG-L formulas
will have small absolute values of truncated errors. Exper-
iments shown in Table 1 and Figure 1 also support these
theory analysis results. Note that the truncated errors are
negative numbers.Therefore, discussing their absolute values
can show the differences between zeros and errors.

5.2. Experiments. In order to test if the new truncated
method can reduce the truncated errors in real signals, two
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Table 1: Truncated errors of truncated left-handed G-L formula for 𝑠(𝑥) = 1with support lengths from 10 to 500 (rows) and fractional-orders
𝛼 from 0.1 to 0.9 (columns).

Length of
support 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9

10 −0.7475 −0.5487 −0.3939 −0.2752 −0.1855 −0.1190 −0.0710 −0.0372 −0.0145
30 −0.6672 −0.4368 −0.2795 −0.1739 −0.1043 −0.0595 −0.0315 −0.0147 −0.0051
50 −0.6335 −0.3937 −0.2392 −0.1412 −0.0804 −0.0435 −0.0219 −0.0097 −0.0032
100 −0.5908 −0.3432 −0.1939 −0.1067 −0.0566 −0.0286 −0.0134 −0.0055 −0.0017
200 −0.5510 −0.2979 −0.1573 −0.0808 −0.0400 −0.0188 −0.0082 −0.0032 −0.0009
500 −0.5027 −0.2479 −0.1194 −0.0559 −0.0253 −0.0108 −0.0043 −0.0015 −0.0004
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Figure 2:The original signal (blocks with 1024 samples, blue lines), its fractional derivatives of truncated G-L with different fractional orders
((a) and (c)), and its fractional derivatives of the new method with different fractional orders ((b) and (d)), where the support length of (a)
and (b) is 30 and the support length of (c) and (d) is 500.

test signals, blocks, and bumps, with 1024 samples, are used
for analysis of the performance of our new framework (see
Figures 2 and 3).

From Figure 2, we can see both integer-order derivatives
(green lines) and fractional derivatives (𝛼 = 0.1 are
represented by red lines and 𝛼 = 0.5 are represented by black
lines) have the properties that the singularities are related
to the local extrema. Just as discussed above, the values of
truncated G-L formula are not zeros in smooth regions (see
Figures 2(a) and 2(c)). Moreover, coinciding Lemma 11, the
signals with longer truncated length will be nearer to zeros

in the smooth segments than the shorter length signals. The
bigger fractional orders will also have better performance in
sharper impulses in singularities and much more near zeros
in the smooth segments than the smaller fractional orders,
which coincides Lemma 12 (see Figures 2(a) and 2(c)).

When truncated length 𝑡 = 30 for the new definition
of fractional derivatives (see Figure 2(b)), the values of new
definition at singularities have very high impulses comparing
to the corresponding truncated G-L formula (Figure 2(a)),
which is a very impressive nature to detect, locate, and
preserve singularities.Moreover, near singularities, the values
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Figure 3:The original signal (bumps with 1024 samples, blue line), its fractional derivatives of truncated G-L with different fractional orders
((a) and (c)), and its fractional derivatives of the new method with different fractional orders ((b) and (d)), where the support length of (a)
and (b) is 30 and the support length of (c) and (d) is 500.

are decreased/increased gradually to zeros and the values of
the smooth segments are zeros. These characters together
ensure that the new fractional derivatives can obtain good
results in signal processing.

Observing Figure 3, we can find that 1-order derivatives
cannot locate “bump like” singularities: (1) there are two
extremums of 1-order derivatives even for a very narrow
bump, for example, the first bump; (2) some weak singulari-
ties cannot be detected, for example, the left singularity of the
fifth bump.

Fortunately, all fractional derivatives have better perfor-
mance in above two sides. That is, each narrow bump only
has one extremum of the fractional derivatives.

The best performance of the new definition for block
signal is the derivative with truncated length 𝑡 = 30 and
fractional order 𝛼 = 0.1, which also has the best natures
for the bump signal. That is, it has very high impulses in
singularities and equals to zeros in smooth segments. Weak
singularity in the left of the fifth bumphas a very obvious high
impulse, which can be detected and located easily. It is very
interesting thing that the weak impulses in two signals using
truncated G-L formula are enhanced by new definitions of

fractional derivativeswith small𝛼 and 𝑡by comparing Figures
2(a) and 2(b) and Figures 3(a) and 3(b).

In summary, from the simulation results of two test
signals, we can conclude that the new definition of fractional
derivatives has the best performance in three type derivatives
including 1-order derivatives, truncated G-L formula and
themselves.

6. Conclusions

In this paper, we study errors of truncated Grünwald-
Letnikov formula with 0 < 𝛼 < 1 and then the errors are
corrected by themedians of remainder parts of signals, which
has some very impressive natures in signal processing. That
is, it has very high impulses in singularities, which can detect
and locate singularities easily; the values of the new definition
are equal to zeros in smooth segments, which can be used
efficiently in signal smoothing and filtering. Moreover, it
also has good performance in weak singularity detection and
location.
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We study fractional-order derivatives of left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 to detect and locate singularities
in theory. The widely used four types of ideal singularities are analyzed by deducing their fractional derivative formula. The local
extrema of fractional derivatives are used to locate the singularities. Theory analysis indicates that fractional-order derivatives of
left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 can detect and locate four types of ideal singularities correctly, which
shows better performance than classical 1-order derivatives in theory.

1. Introduction

How to preserve singularities in image and signal process-
ing is a very important problem [1–5]. Recently, fractional
derivatives become very important tools in the field [6–17].
All of the methods based on fractional derivatives reported
good processing results by modifying some classical partial
differential equations (PDEs) to fully or partial fractional-
order derivative PDEs. Just as the recent theory analysis
efforts in fractional derivatives bymathematicians [18–20], all
theory analyses focus on how to approach the PDEs and how
to find their exact solutions.

However, we think fractional derivatives should be stud-
ied differently. It is well known that one powerful method
to preserve singularities in signal processing is to detect and
locate singularities correctly and then to protect them in sig-
nal processing. Thus, we think the most important problem
in theory analysis should be if the fractional derivatives can
detect and locate singularities well.

In this paper, we study fractional-order derivatives of
left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1

to detect and locate the widely used four types of ideal
singularities in theory. Theory analysis is from deducing
the fractional derivatives of four types of ideal singularities

with an indicated singularity in each case. The differen-
ces of these fractional derivative values are studied to
find the local extrema. The extrema are considered as
the singularities.

The rest of this paper is as follows. Section 2 introduces
some basic theory backgrounds in fractional derivatives; we
also deduce some useful results based on these theory back-
grounds. In Section 3, we introduce the 1-order differential
method used in singularity detection and location, and the
detected and located results of four types of ideal singularities
are also presented. Section 4 discusses the steps in singular-
ities detection and location using fractional derivatives, and
then they are used to detect and locate the four types of ideal
singularities.We also give conclusions and acknowledgments
finally.

2. Fractional Derivatives

In contrast to integer-order differentials 𝑑𝑛/𝑑𝑡𝑛, fractional-
order derivatives are defined as operators whose orders
have been extended to noninteger numbers. There are
a number of definitions of fractional derivatives. The
usual way of representing the fractional derivatives is by
the left-handed Riemann-Liouville formula (R-L formula).
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2 Abstract and Applied Analysis

The left-handed R-L formula of order 𝛼, for 𝑥 ∈ [𝑎, 𝑏], is
defined by [21, 22]

𝐷
𝛼

RL𝑢 (𝑥) =
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛
∫

𝑥

𝑎

𝑢 (𝜏) (𝑥 − 𝜏)
𝑛−𝛼−1

𝑑𝜏, (1)

where 𝑛 − 1 < 𝛼 < 𝑛 and 𝑛 = [𝛼] + 1, with [𝛼] denoting the
integer part of 𝛼, and Γ(⋅) is the Gamma function defined as

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡. (2)

Another way to represent the fractional derivatives is by
the Grünwald-Letnikov (G-L) formula, which is a generaliza-
tion of the ordinary discretization formulas for integer-order
derivatives. For 𝛼 > 0, the left-handed G-L formula is

𝐷
𝛼

GL𝑢 (𝑥) = lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥) , (3)

where Δ𝑥 denotes the uniform space step and 𝜔
(𝛼)

𝑘
=

(−1)
𝑘

(
𝛼

𝑘
) represents the normalized G-L weights that are

given by

𝜔
(𝛼)

0
= 1,

𝜔
(𝛼)

𝑘
= (−1)

𝑘
𝛼 (𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑘 + 1)

𝑘!

=
Γ (𝑘 − 𝛼)

Γ (−𝛼) Γ (𝑘 + 1)
, for 𝑘 = 1, 2, 3, . . . .

(4)

The above two definitions have different forms. However,
by requiring a reasonable behavior of the function 𝑢(𝑥) and
their derivatives, we can relate the two definitions with the
following proposition [21, 23].

Proposition 1. Let us assume that the function 𝑢(𝑥) is (𝑛 − 1)
times differential in [𝑎, 𝑏] and that the 𝑛th derivative of 𝑢(𝑥) is
integrable in [𝑎, 𝑏]. Then, for every 𝑛 − 1 < 𝛼 < 𝑛, one has

𝐷
𝛼

GL𝑢 (𝑥) = 𝐷
𝛼

RL𝑢 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏. (5)

Generally, the analytic definition given by (1) is used in
the formulation of the fractional partial differential equations
(PDEs), while G-L definitions in (3) are maybe used to
discretize the fractional PDEs to obtain a numerical solution.
Since the problem in this paper has discrete form, G-L
formula defined in (3) will be adopted in our following
discussion.

Remark 2. For 𝛼 = 1, (1) and (3) become the classical first
derivative, and, for any 𝛼 = 𝑛, 𝑛 ∈ ℵ is a positive integer;
they are classical 𝑛th derivatives of 𝑢(𝑥) if the function 𝑢(𝑥)
is (𝑛 − 1) times differentiable. Note that, for 𝛼 is a positive
integer, the equations are with limit support whose support
length is 𝛼 + 1. However, for 𝛼 is not an integer, fractional
derivatives defined above are nonlocal operators. That is, the
value of the fractional derivative at a point 𝑥 depends on the
function values at all the points to the left of the point 𝑥.

Therefore, in order to handle fractional derivative numer-
ically, it is necessary to compute the coefficients 𝜔(𝛼)

𝑘
, where 𝛼

is the order of the fractional derivative. For that, we can use
the recurrence relationships presented in Lemma 3.

Lemma 3. The recurrence relationship of the coefficients of G-
L formula 𝜔(𝛼)

𝑘
defined in (3) is

𝜔
0
(𝛼) = 1; 𝜔

(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
, 𝑘 = 1, 2, 3, . . . .

(6)
Proof. For 𝑘 = 0, 𝜔

0
(𝛼) = 1.

Assume that when 𝑛 = 𝑘 − 1, we have

𝜔
(𝛼)

𝑘−1
= (1 −

𝛼 + 1

𝑘 − 1
)𝜔
(𝛼)

𝑘−2
. (7)

For 𝑛 = 𝑘,

𝜔
(𝛼)

𝑘
=

Γ (𝑘 − 𝛼)

Γ (−𝛼) Γ (𝑘 + 1)
=
(𝑘 − 1 − 𝛼) Γ (𝑘 − 1 − 𝛼)

𝑘Γ (−𝛼) Γ (𝑘)

= (1 −
𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
.

(8)

Therefore, for all 𝑘 = 1, 2, 3, . . ., we have

𝜔
(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
.

(9)

Lemma 4. The nonlocal operator defined in (3) is a linear
operator.

Proof. 𝑢(𝑥) and V(𝑥) are two functions, and 𝑥 ∈ [𝑎, 𝑏], 𝜆, is a
real number, since

(1)

𝐷
𝛼

GL [𝑢 (𝑥) + V (𝑥)] = lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘

× [𝑢 (𝑥 − 𝑘Δ𝑥) + V (𝑥 − 𝑘Δ𝑥)]

= lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥)

+ lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
V (𝑥 − 𝑘Δ𝑥)

= 𝐷
𝛼

GL𝑢 (𝑥) + 𝐷
𝛼

GLV (𝑥) ,
(10)

(2)

𝐷
𝛼

GL [𝜆𝑢 (𝑥)] = lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
[𝜆𝑢 (𝑥)]

= 𝜆 lim
Δ𝑥→0

1

Δ𝑥
𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥)

= 𝜆𝐷
𝛼

GL𝑢 (𝑥) .

(11)
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Lemma 5. Consider ∑∞
𝑘=0

𝜔
(𝛼)

𝑘
= 0.

Proof. Since (1 − 𝑧)𝛼 = ∑∞
𝑘=0

𝜔
(𝛼)

𝑘
𝑧
𝑘, let 𝑘 = 1, and we have

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
= (1 − 1)

𝛼

= 0.
(12)

Lemma 6. For 0 < 𝛼 < 1, 𝑡 is a positive integer, 𝑚 ≥ 𝑡, and
one has

𝜔
(𝛼)

𝑘
< 0, 𝑘 = 1, 2, 3, . . . , (13)

and ∑∞
𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0, ∑𝑚

𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0.

Proof. For 𝑘 = 1, 𝜔(𝛼)
1
= −𝛼 < 0.

Assume that 𝜔(𝛼)
𝑘
< 0.

According to Lemma 3, we have 𝜔(𝛼)
𝑘+1

= (1 − ((𝛼 + 1)/(𝑘 +

1)))𝜔
(𝛼)

𝑘
. Since 0 < 𝛼 < 1 and 𝑘+1 ≥ 2, (1−((𝛼+1)/(𝑘+1))) >

0. Thus, sgn(𝜔(𝛼)
𝑘+1
) = sgn(𝜔(𝛼)

𝑘
) < 0. Here,

sgn (𝑥) = {
1, 𝑥 ≥ 0,

−1, 𝑥 < 0.
(14)

Then we have 𝜔(𝛼)
𝑘+1

< 0. Thus ∑∞
𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0, ∑𝑚

𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0.

Lemma 7. For 0 < 𝛼 < 1, 𝑡 ≥ 0 is an integer,

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
> 0. (15)

Proof. According to Lemma 5, we have

0 =

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
. (16)

According to Lemma 6, ∑∞
𝑘=𝑡+1

𝜔
(𝛼)

𝑘
< 0. Therefore,

∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0.

Lemma8. For 0 < 𝛼 < 1,𝑚 ≥ 0 is an integer and 𝑡 is a positive
integer

𝑡

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0,

∞

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0.

(17)

Proof. FromLemma 6, for 0 < 𝛼 < 1,𝜔(𝛼)
𝑘
< 0, 𝑘 = 1, 2, 3, . . . .

Thus, 𝜔(𝛼)
𝑘
(−𝑘) > 0 for 𝑘 = 1, 2, 3, . . ., and 𝑡 > 0. We have

∑
∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 1, and ∑𝑡

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 1,

𝑡 ≥ 1.

3. Classical Singularity Detection and Location

Singularity detection is the name for a set of mathematical
methods which aim at identifying points in a digital signal at
which the signal value changes sharply or, more formally, has
discontinuities.

3.1. Singularity Types. We can categorize singularities as step,
roof, jump, and ramp. They can be represented as

(1) ideal step

𝑠 (𝑥) = {
1, 𝑥 ≥ 𝑥

0
,

0, 𝑥 < 𝑥
0
,

(18)

(2) ideal roof

𝑠 (𝑥) = {
𝑚 (𝑥 − 𝑥

0
) + 𝑐
0
, 𝑥
0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑛 (𝑥 − 𝑥
0
) + 𝑐
0
, 𝑥
0
< 𝑥 < 𝑥

0
+ ℎ
2
,

(19)

(3) ideal impulse

𝑠 (𝑥) = {
𝑏, 𝑥 = 𝑥

0
,

0, 𝑥 ̸= 𝑥
0
,

(20)

(4) ideal ramp

𝑠 (𝑥) = {
𝑚 (𝑥 − 𝑥

0
) + 𝑐
0
, 𝑥
0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑐
0
, 𝑥 > 𝑥

0
.

(21)

4. Singularity Detection by 1-Order Derivatives

Singularity detection is the name for a set of mathematical
methods which aim at identifying points in a digital signal at
which the signal value changes sharply or, more formally, has
discontinuities.

4.1. The First-Order Derivatives for Singularities. The singu-
larity detection by 1-order derivatives detects singularities by
first computing a measure of singularity strength, usually
a first-order derivative expression, and then searching for
local absolute maxima as the locations of singularities. The
simplest approach to compute first-order derivatives is to use
left-handed differences

𝐷𝑢 (𝑥) = 𝑢 (𝑥) − 𝑢 (𝑥 − 1) . (22)

Therefore, first-order derivatives of the four types of singular-
ities are

(1) ideal step

𝐷𝑠 (𝑥) =

{{

{{

{

0, 𝑥 < 𝑥
0
,

1, 𝑥 = 𝑥
0
,

0, 𝑥 > 𝑥
0
,

(23)

(2) ideal roof

𝐷𝑠 (𝑥) = {
𝑚, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑛, 𝑥
0
< 𝑥 < 𝑥

0
+ ℎ
2
,

(24)
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(3) ideal impulse

𝐷𝑠 (𝑥) =

{{

{{

{

𝑏, 𝑥 = 𝑥
0

−𝑏, 𝑥 = 𝑥
0
+ 1

0, otherwise,
(25)

(4) ideal ramp

𝐷𝑠 (𝑥) = {
𝑚, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

0, 𝑥 > 𝑥
0
.

(26)

Then, find absolute maxima of 𝐷𝑠(𝑥) to locate the positions
of singularities. Here, absolute maxima are the maxima of
absolute values of𝐷𝑠(𝑥).

4.2. Detect and Locate Singularities. Themain steps to locate
singularities are as follows: (1)find all pointswith𝐷(𝑠(𝑥)) ̸= 0;
(2) compute absolute values of 𝐷(𝑠(𝑥)); (3) if 𝐷𝑠(𝑥) > 0,
compare absolute values of 𝐷𝑠([𝑥]) and 𝐷𝑠([𝑥 + 1]), and if
𝑎𝑏𝑠(𝐷𝑠(𝑥)) > 𝑎𝑏𝑠(𝐷𝑠(𝑥+1)),𝑥 is the singularity; if𝐷𝑠(𝑥) < 0,
compare absolute values of 𝐷𝑠([𝑥]) and 𝐷𝑠([𝑥 − 1]), and if
𝑎𝑏𝑠(𝐷𝑠(𝑥)) > 𝑎𝑏𝑠(𝐷𝑠(𝑥 − 1)), 𝑥 is the singularity. Four types
of ideal singularities are discussed as follows. Each one has a
corresponding singularity on 𝑥

0
.

Ideal Step. The absolute values of 𝐷(𝑠(𝑥)) are the same as
𝐷(𝑠(𝑥)).Therefore, the absolute maxima are 1 on the position
𝑥
0
, and then compare absolute values of𝐷𝑠(𝑥

0
) and𝐷𝑠([𝑥

0
+

1]), and we have 𝐷𝑠(𝑥
0
) = 1 > 𝐷𝑠([𝑥

0
+ 1]) = 0. Therefore,

the singularity is detected by 1-order derivative and is located
on 𝑥
0
, which means 1-order derivatives can detect and locate

ideal step singularities correctly.

Ideal Roof.The absolute value of𝐷(𝑠) is

𝑎𝑏𝑠 (𝐷𝑠 (𝑥)) = {
𝑎𝑏𝑠 (𝑚) , 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑎𝑏𝑠 (𝑛) , 𝑥
0
< 𝑥 < 𝑥

0
+ ℎ
2
.

(27)

Here, 𝑎𝑏𝑠(⋅) is

𝑎𝑏𝑠 (𝑥) = {
𝑥, 𝑥 ≥ 0,

−𝑥, 𝑥 < 0.
(28)

For 𝐷(𝑠(𝑥)) = 𝑚 > 0, 𝑥
0
− ℎ
1
< 𝑥 < 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥+1))) = 𝑚, all 𝑥 ∈ (𝑥

0
−ℎ
1
, 𝑥
0
) are

not singularities.
For 𝐷(𝑠(𝑥)) = 𝑚 < 0, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥−1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥−1))) = 𝑚, all 𝑥 ∈ (𝑥

0
−ℎ
1
, 𝑥
0
] are

not singularities.
𝐷(𝑠(𝑥

0
)) = 𝑚 > 0, and we should compare the absolute

values of 𝐷(𝑠(𝑥
0
)) and 𝐷(𝑠(𝑥

0
+ 1)). Since 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) =

𝑎𝑏𝑠(𝑚) and 𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+ 1))) = 𝑎𝑏𝑠(𝑛), if 𝑎𝑏𝑠(𝑚) > 𝑎𝑏𝑠(𝑛),

𝑥
0
is the singularity; otherwise, 𝑥

0
is not a singularity.

𝐷(𝑠(𝑥
0
+ 1)) = 𝑛 < 0, and we should compare

the absolute values of 𝐷(𝑠(𝑥
0
+ 1)) and 𝐷(𝑠(𝑥

0
)). Since

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
))) = 𝑎𝑏𝑠(𝑚) and 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
+ 1))) = 𝑎𝑏𝑠(𝑛), if

𝑎𝑏𝑠(𝑚) < 𝑎𝑏𝑠(𝑛), 𝑥
0
+ 1 is the singularity; otherwise, 𝑥

0
+ 1 is

not a singularity.
For 𝐷(𝑠(𝑥)) = 𝑛 < 0, 𝑥

0
+ 1 < 𝑥 < 𝑥

0
+ ℎ
2
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥−1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥−1))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝑛), 𝑥 ∈ (𝑥

0
+1, 𝑥
0
+ℎ
2
)

are not the singularities.
For 𝐷(𝑠(𝑥)) = 𝑛 > 0, 𝑥

0
+ 1 ≤ 𝑥 < 𝑥

0
+ ℎ
2
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥+1))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝑛), 𝑥 ∈ [𝑥

0
+1, 𝑥
0
+ℎ
2
)

are not the singularities.

Ideal Impulse. (𝐷(𝑠)) has two nonzeros, that is, 𝑥 = 𝑥
0
and

𝑥 = 𝑥
0
+ 1. For 𝐷(𝑠(𝑥

0
)) = 𝑏 > 0, comparing the absolute

values of𝐷(𝑠(𝑥
0
)) and𝐷(𝑠(𝑥

0
+ 1)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) =

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+ 1))) = 𝑎𝑏𝑠(𝑏). Thus, 𝑥

0
is not the singularity.

For 𝐷(𝑠(𝑥
0
)) = 𝑏 < 0, comparing the absolute values of

𝐷(𝑠(𝑥
0
)) and𝐷(𝑠(𝑥

0
− 1)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) = 𝑎𝑏𝑠(𝑏) >

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
− 1))) = 0. Thus, 𝑥

0
is the singularity.

For𝐷(𝑠(𝑥
0
+1)) = −𝑏 < 0, comparing the absolute values

of 𝐷(𝑠(𝑥
0
+ 1)) and 𝐷(𝑠(𝑥

0
)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
+ 1))) =

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
))) = 𝑎𝑏𝑠(𝑏). Thus, 𝑥

0
+ 1 is not the singularity.

For 𝐷(𝑠(𝑥
0
+ 1)) = −𝑏 > 0, comparing the absolute values of

𝐷(𝑠(𝑥
0
+ 1)) and 𝐷(𝑠(𝑥

0
+ 2)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
+ 1))) =

𝑎𝑏𝑠(𝑏) > 𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+2))) = 0. Thus, 𝑥

0
+1 is the singularity.

In summary, for 𝑏 > 0, no singularity is detected; for 𝑏 <
0, both 𝑥

0
and 𝑥

0
+ 1 are located as singularities.

Ideal Ramp.The absolute value of𝐷(𝑠) is

𝑎𝑏𝑠 (𝐷𝑠 (𝑥)) = {
𝑚, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

0, 𝑥 > 𝑥
0
.

(29)

For 𝐷(𝑠(𝑥)) = 𝑚 > 0, 𝑥
0
− ℎ
1
< 𝑥 < 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥 + 1))) = 𝑎𝑏𝑠(𝑚), all 𝑥

0
− ℎ
1
< 𝑥 <

𝑥
0
are not singularities.
For 𝐷(𝑠(𝑥)) = 𝑚 < 0, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥−1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥 + 1))) = 𝑎𝑏𝑠(𝑚), all 𝑥

0
− ℎ
1
< 𝑥 ≤

𝑥
0
are not singularities.
𝐷(𝑠(𝑥

0
)) = 𝑚 > 0, and we should compare the absolute

values of𝐷(𝑠(𝑥
0
)) and𝐷(𝑠(𝑥

0
+1)). Since 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) = 𝑚

and 𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+ 1))) = 0, 𝑥

0
is the singularity. Thus, when

𝑚 > 0, ideal ramp singularity can be detected and located
correctly by 1-order derivatives.

Summarizing the above conclusion, we have the follow-
ing.

Theorem 9. The detection and location of four types of ideal
singularities using 1-order derivatives are

(1) ideal step: 1-order derivative can detect and locate ideal
step singularities correctly;

(2) ideal roof: 1-order derivative can detect ideal roof
singularities when 𝑎𝑏𝑠(𝑚) ̸= 𝑎𝑏𝑠(𝑛). But, for 𝑎𝑏𝑠(𝑚) <
𝑎𝑏𝑠(𝑛), a false singularity 𝑥

0
+ 1 is located;

(3) ideal impulse: the singularity can not be detected;
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(4) ideal ramp: 1-order derivative can detect and locate
ideal ramp singularities correctly when 𝑚 > 0, for
𝑚 < 0, and the singularity can not be detected.

5. Singularity Detection by
Fractional-Order Derivatives

The singularity detection by fractional-order derivatives
detects singularities by computing fractional-order derivative
expression firstly and then searching for local extrema as the
locations of singularities.

5.1. Fractional Derivatives of Four Types of Singularities.
Fractional-order derivatives of the four types of singularities
are as follows.

Ideal Step. The fractional-order derivatives of ideal step
singularities are

𝐷
𝛼

GL𝑠 (𝑥) =
{{

{{

{

[𝑥−𝑥0]

∑

0

𝜔
(𝛼)

𝑘
, 𝑥 ≥ 𝑥

0

0, 𝑥 < 𝑥
0
.

(30)

Ideal Roof. The fractional-order derivatives of ideal roof
singularities are

𝐷
𝛼

GL𝑠 (𝑥)

=

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

𝑛

[𝑥−𝑥0]−1

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=[𝑥−𝑥0]

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥

0
< 𝑥 < 𝑥

0
+ ℎ
2
.

(31)

Ideal Impulse. Since there are only 𝑠(𝑥
0
) ̸= 0, we have

𝐷
𝛼

GL𝑠 (𝑥) =
{

{

{

𝜔
(𝛼)

[𝑥−𝑥0]
𝑏, 𝑥 − 𝑥

0
≤ 𝑡

0, otherwise.
(32)

Ideal Ramp. The fractional-order derivatives of ideal ramp
singularities are

𝐷
𝛼

GL𝑠 (𝑥)

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=[𝑥−𝑥0+1]

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥 > 𝑥

0
.

(33)

5.2. Find Extremum. The main steps to find extrema of
fractional-order derivatives 𝐷𝛼GL𝑠(𝑥) with 0 < 𝛼 < 1 are as
follows: for all 𝐷𝛼GL𝑠(𝑥) ̸= 0, compare values of 𝐷𝛼GL𝑠(𝑥 − 1),
𝐷
𝛼

GL𝑠(𝑥), and 𝐷
𝛼

GL𝑠(𝑥 + 1). If 𝐷𝛼GL𝑠(𝑥) − 𝐷
𝛼

GL𝑠(𝑥 − 1) >

𝑡
0
and 𝐷

𝛼

GL𝑠(𝑥) − 𝐷
𝛼

GL𝑠(𝑥 + 1) > 𝑡
0
or 𝐷𝛼GL𝑠(𝑥 − 1) −

𝐷
𝛼

GL𝑠(𝑥) > 𝑡
0
and 𝐷𝛼GL𝑠(𝑥 + 1) − 𝐷

𝛼

GL𝑠(𝑥) > 𝑡
0
, where 𝑡

0

is predefined threshold, 𝑥 is the singularity. Four types of
ideal singularities are discussed as follows. Each one has a
corresponding singularity on 𝑥

0
.

Based on the above discussion, we can detect and locate
four types of singularities as follows.
Ideal Step. Since 𝐷(𝑠(𝑥

0
)) = 𝜔

(𝛼)

0
= 1, 𝐷(𝑠(𝑥

0
− 1)) = 0 and

𝐷(𝑠(𝑥
0
+ 1)) = 1 + 𝜔

(𝛼)

1
. According to Lemma 6, 𝜔(𝛼)

1
< 0 for

0 < 𝛼 < 1. Thus,𝐷(𝑠(𝑥
0
)) = 1 > 𝐷(𝑠(𝑥

0
+ 1)) and𝐷(𝑠(𝑥

0
)) =

1 > 𝐷(𝑠(𝑥
0
− 1)) = 0. So, 𝑥

0
is the singularity. When 𝑥 > 𝑥

0
,

𝐷(𝑠(𝑥−1)) ≥ 𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)) ≤ 𝐷(𝑠(𝑥)), so all 𝑥 > 𝑥
0

are not singularities.
From the summary above, there is only one singularity on

𝑥
0
.

Ideal Roof. Since

𝐷
(𝛼)

GL𝑠 (𝑥0) = 𝑚

[ℎ1]

∑

𝑘=1

𝜔
(𝛼)

𝑘
(−𝑘) + 𝑐

0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 − 1) = 𝑚

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 − 1) + 𝑐

0

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = 𝑛 + 𝑚

[ℎ1+1]

∑

𝑘=2

𝜔
(𝛼)

𝑘
(−𝑘 + 1) + 𝑐

0

[ℎ1+1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

(34)

thus,

𝐷
(𝛼)

GL𝑠 (𝑥0) − 𝐷
(𝛼)

GL𝑠 (𝑥0 − 1) = 𝑚

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
+ 𝑚𝜔
(𝛼)

[ℎ1]
(− [ℎ
1
])

+ 𝑐
0
𝜔
(𝛼)

[ℎ1]
,

(35)
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𝐷
(𝛼)

GL𝑠 (𝑥0) − 𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = −𝑛 − 𝑚

[ℎ1]

∑

𝑘=1

𝜔
(𝛼)

𝑘

+ 𝑚𝜔
(𝛼)

[ℎ1+1]
[ℎ
1
] − 𝑐
0
𝜔
(𝛼)

[ℎ1]+1
.

(36)

The ideal roof implies that when𝑚 > 0, we have 𝑐
0
> 0, 𝑛 < 0,

and when𝑚 < 0, we have 𝑐
0
< 0, 𝑛 > 0.

According to Lemma 6,∑[ℎ1−1]
𝑘=0

𝜔
(𝛼)

𝑘
> 0 and, according to

Lemma 7, 𝜔(𝛼)
[ℎ1]
(−[ℎ
1
]) > 0. Moreover, −𝑚ℎ

1
+ 𝑐
0
= 0, Thus,

the right hand of (35) is 𝑚∑[ℎ1−1]
𝑘=0

𝜔
(𝛼)

𝑘
and it has the same

sign as 𝑚. That is, when 𝑚 > 0, it is a positive number while
when 𝑚 < 0, it is a negative number. The right hand of (36)
can be written as −𝑛 − 𝑚∑[ℎ1]

𝑘=1
𝜔
(𝛼)

𝑘
, which also has the same

sign as 𝑚. Therefore, when 𝑚 > 0, 𝐷(𝛼)GL𝑠(𝑥0) is a maximum
while when 𝑚 < 0, 𝐷(𝛼)GL𝑠(𝑥0) is a minimum. In summary, 𝑥

0

is a singularity.

Ideal Impulse. For 𝑥 = 𝑥
0
, 𝐷
(𝛼)

GL𝑠(𝑥0) = 𝑏, 𝐷
(𝛼)

GL𝑠(𝑥0 − 1) = 0,

and 𝐷(𝛼)GL𝑠(𝑥0 + 1) = 𝜔
(𝛼)

1
𝑏. According to Lemma 5, 𝜔(𝛼)

1
< 0

and 𝑎𝑏𝑠(𝜔(𝛼)
1
) < 1 for 0 < 𝛼 < 1. Thus, when 𝑏 > 0, we have

𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 − 1) = 𝑏 > 0 and𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 +

1) = 𝑏(1 − 𝜔
(𝛼)

1
) > 0, while when 𝑏 < 0, we have 𝐷(𝛼)GL𝑠(𝑥0) −

𝐷
(𝛼)

GL𝑠(𝑥0 − 1) = 𝑏 < 0 and 𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 + 1) = 𝑏(1 −

𝜔
(𝛼)

1
) < 0. Therefore, 𝑥

0
is the singularity.

Ideal Ramp. Since

𝐷
(𝛼)

GL𝑠 (𝑥0) = 𝑚

[ℎ1]

∑

𝑘=1

𝜔
(𝛼)

𝑘
(−𝑘) + 𝑐

0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 − 1) = 𝑚

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 − 1) + 𝑐

0

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = 𝑚

[ℎ1+1]

∑

𝑘=1

𝜔
(𝛼)

𝑘
(−𝑘 + 1) + 𝑐

0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

(37)

according to the above discussion of ideal roof, we know that
𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 − 1) has the same sign as 𝑚. Thus, we
only discuss𝐷(𝛼)GL𝑠(𝑥0) − 𝐷

(𝛼)

GL𝑠(𝑥0 + 1) as follows:

𝐷
(𝛼)

GL𝑠 (𝑥0) − 𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = 𝑚

[ℎ1]

∑

𝑘=1

(−𝜔
(𝛼)

𝑘
) + 𝑚𝜔

(𝛼)

[ℎ1]+1
[ℎ
1
]

= 𝑚

[ℎ1]

∑

𝑘=1

(𝜔
(𝛼)

[ℎ1+1]
− 𝜔
(𝛼)

𝑘
) .

(38)

According to Lemma 4, 𝜔(𝛼)
[ℎ1]+1

< 0, and 𝑎𝑏𝑠(𝜔
(𝛼)

[ℎ1]+1
) <

𝑎𝑏𝑠(𝜔
(𝛼)

𝑘
), we have ∑[ℎ1]

𝑘=1
(𝜔
(𝛼)

[ℎ1+1]
− 𝜔
(𝛼)

𝑘
) > 0. Therefore,

𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 + 1) has the same sign as 𝑚. That is,
when 𝑚 > 0, we have 𝐷(𝛼)GL𝑠(𝑥0) − 𝐷

(𝛼)

GL𝑠(𝑥0 − 1) > 0 and

𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 + 1) > 0, and when 𝑚 < 0, we have
𝐷
(𝛼)

GL𝑠(𝑥0)−𝐷
(𝛼)

GL𝑠(𝑥0−1) < 0 and𝐷
(𝛼)

GL𝑠(𝑥0)−𝐷
(𝛼)

GL𝑠(𝑥0+1) < 0.
Thus, 𝑥

0
is the singularity.

Summarizing the above conclusion, we have the follow-
ing.

Theorem 10. The fractional derivatives can detect and locate
four types of ideal singularities correctly.

6. Conclusions

In this paper, we study fractional-order derivatives of left-
handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 to detect
and locate singularities in theory. Theory analysis indicates
that fractional-order derivatives of left-handed Grünwald-
Letnikov formula with 0 < 𝛼 < 1 can detect and locate the
ideal four types of singularities correctly, which shows better
performance than classical 1-order derivatives in theory.
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The forest new gap models via local fractional calculus are investigated. The JABOWA and FORSKA models are extended to deal
with the growth of individual trees defined on Cantor sets. The local fractional growth equations with local fractional derivative
and difference are discussed. Our results are first attempted to show the key roles for the nondifferentiable growth of individual
trees.

1. Introduction

Fractals had been used to describe special problems in
biology and ecology [1–4] because of the measure of nature
objects underlying the geometry, replacing the complex real-
world objects by describing the Euclidean ideas. Fractal
dimension was applied to describe the measure of the
complexity in biology and ecology. In forestry, the fractal
geometry had been applied to estimate stand density, predict
forest succession, and describe the form of trees [5–7]. The
scaling of dynamics in hierarchical structure was investigated
in [8–12].The ecological resilience example fromboreal forest
was presented in the context [8]. The quantitative theory
of forest structure was discussed [9]. The allometric scaling
laws in biology were proposed in the works [10, 11]. Based
upon the cross-scale analysis, the geometry and dynamics
of ecosystems were considered and the structure ecosystems
across scales in time and space were discussed in [12, 13].
Fractal forestry was modeled by using the scaling of the
testing parameters for ecological complexity.

Forest gap model (JABOWA) developed by Botkin et
al. [14–16] was the first simulation model for gap-phase
replacement. It was applied to describe a forest as a mosaic
of closed canopies and simulate forest dynamics based upon

the establishment, growth, and death of individual trees [17–
20]. The JABOWA model in the form of the FORET model
(called JABOWA-FORET) was further developed in [21–24].
The JABOWA model of the simulation of stand structure in
a forest gap model was improved in [24] and the FORSKA
[25] was proposed by Botkin et al. In [14–16], the ecological
functions are continuous. In [10–13], the ecological functions
were expressed across scales in time and space. However, as
it is shown in Figure 1 the ecological functions distinguishing
hierarchical size scales in nature, such as the measures of tree
size and measure of soil fertility, are defined on Cantor sets.
The above approaches do not deal with them.

Local fractional calculus theory [26–38] was applied to
handle the nondifferentiable functions defined on Cantor
sets. The heat-conduction, transport, Maxwell, diffusion,
wave, Fokker-Planck, and themechanical structure equations
were usefully shown (see for more details [28–36] and the
cited references therein). In order to simulate forest dynamics
on the basis of the establishment, growth, and death of
individual trees defined on Cantor sets, the aim of this paper
is to present the forest new gapmodels for simulating the gap-
phase replacement by employing the local fractional calculus.

The paper has been organized as follows. In Section 2,
we review the JABOWA and FORSKA models for the forest
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Figure 1: The ecological function 𝑓(𝑥) defined on Cantor set.

succession. In Section 3, we propose JABOWA and FORSKA
models for the fractal forest succession. Finally, Section 4 is
conclusions.

2. Growth Models for Forest Gap

In this section we will revise the JABOWA and FORSKA
models.

2.1. The JABOWA Model. The growth equation with differ-
ence form is given by [15, 16, 24, 39]

Δ𝐷

Δ𝑡
= 𝐺 ⋅ 𝐷 ⋅ 𝜙 (𝐷) ⋅

1

𝑏 (𝐷)
⋅ 𝑓 (𝑒) , (1)

where the function 𝐷 is diameter at breast height of the
trees, the parameter 𝐻 is tree height, 𝐺 is a growth rate,
the function 𝑏(𝐷) is a quantity encapsulating this allometric
relationship, 𝑓(𝑒) is a quantity influencing the abiotic and
biotic environment on tree growth, 𝜙(𝐷) = (1−𝐷⋅𝐻/(𝐷max ⋅
𝐻max)), and 𝐷max and 𝐻max are the maximum measures of
the tree dimensions.

The parameter 𝑓(𝑒) is simulated as follows [24]:

𝑓 (𝑒) = 𝑔
1
(AL) ⋅ 𝑔

2
(SBAR) ⋅ 𝑔

3
(𝐷𝐷) , (2)

where 𝑔
1
(AL) is a quantity of available light, 𝑔

2
(SBAR) is a

quantity of stand basal area, and 𝑔
2
(SBAR) is a quantity of

the annual degree-day sum. It was referred to as Liebig’s law
of the minimum [24].

The allometric relationship with a parabolic form is
written as follows [24, 40]:

𝑏 (𝐷) = 𝑏
1
+ 𝑏
2
𝐷 + 𝑏
3
𝐷
2

, (3)

where 𝑏
1
, 𝑏
2
, and 𝑏

3
are parameters.

Leaf area index reads as follows [24]:

LAI = 𝜇𝐷2, (4)

where 𝜇 = 𝑐/𝑘 with a species-specific parameter 𝑐 and the
scale leaf weight per tree to the projected leaf area 𝑘.

In order to implement a newheight-diameter relationship
[40], the differential formof growth equation in the JABOWA
model was suggested as follows [41]:

𝑑𝐷

𝑑𝑡
= 𝐺 ⋅ 𝐷 ⋅ 𝜑 (𝐷) , (5)

where the function has the following form:

𝜑 (𝐷) =
1 − 𝐻/𝐻max

2𝐻max − 𝑏 (−𝑠𝐷/𝑏 + 2) 𝑒
−𝐷𝑠/𝑏

(6)

with the parameter 𝑏 = 𝐻max −137 and the initial slope value
of the height diameter relationship 𝑠.

2.2.The FORSKAModel. TheFORSKAmodel was developed
for unmanaged natural forests and tree height had 𝐻-𝐷
relationship with the FORSKAmodel given by [24, 25, 39, 41]

𝐻 = 1.3 + (𝐻max − 1.3) ⋅ (1 − 𝑒
−𝑠𝐷/(𝐻max−1.3)

) , (7)

where the parameter 𝑠 is the initial slope value of the height
diameter relationship at 𝐷 = 0, 𝐻max is the maximum
measure of the tree dimension,𝐷 is diameter at breast height
of the trees, and𝐻 is tree height.

As it is known, the trees in the real forest do not follow
the 𝐻-𝐷 relationship. The growth equation with differential
form can be written as follows [24, 25]:

𝑑𝐻

𝑑𝐷
= 𝑠 ⋅ 𝑓 (𝐻) , (8)

where

𝑓 (𝐻) =
𝐻 − 1.3

𝐻max − 1.3
. (9)

3. The JABOWA and FORSKA Models for
the Fractal Forest Succession

In this section, based upon the local fractional calculus
theory, we show the JABOWA and FORSKA models for
the fractal forest succession. At first, we start with the local
fractional derivative.

3.1. Local Fractional Derivative. We now give the local frac-
tional calculus and the recent results.

If
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)

󵄨󵄨󵄨󵄨 < 𝜀
𝛼 (10)

with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then we denote

[26–28]

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (11)

If 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏), then we have [26]

dim
𝐻
(𝐹 ∩ (𝑎, 𝑏)) = dim

𝐻
(𝐶
𝛼
(𝑎, 𝑏)) = 𝛼, (12)
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where 𝐶
𝛼
(𝑎, 𝑏) = {𝑓 : 𝑓(𝑥) is local fractional continuous,

𝑥 ∈ 𝐹 ∩ (𝑎, 𝑏)}.
Let𝑓(𝑥) ∈ 𝐶

𝛼
(𝑎, 𝑏).The local fractional derivative of𝑓(𝑥)

of order 𝛼 at 𝑥 = 𝑥
0
is defined as [26–34]

𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓 (𝑥)

𝑑𝑥
𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (13)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

For 0 < 𝛼 ≤ 1, the increment of 𝑓(𝑥) can be written as
follows [26, 27]:

Δ
𝛼

𝑓 (𝑥) = 𝑓
(𝛼)

(𝑥) (Δ𝑥)
𝛼

+ 𝜆(Δ𝑥)
𝛼

, (14)

where Δ𝑥 is an increment of 𝑥 and 𝜆 → 0 as Δ𝑥 → 0.
For 0 < 𝛼 ≤ 1, the 𝛼-local fractional differential of 𝑓(𝑥)

reads as [26, 27]

𝑑
𝛼

𝑓 = 𝑓
(𝛼)

(𝑥) (𝑑𝑥)
𝛼

. (15)

From (14), we have approximate formula in the form

Δ
𝛼

𝑓 (𝑥) ≅ Γ (1 + 𝛼) Δ (𝑓 (𝑥) − 𝑓 (𝑥
0
)) . (16)

Let 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏). The local fractional integral of 𝑓(𝑥) of

order 𝛼 is given by [26–31]

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(17)

where Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .}, and

[𝑡
𝑗
, 𝑡
𝑗+1
], 𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, 𝑡

𝑁
= 𝑏, is a partition of

the interval [𝑎, 𝑏].
The 𝛼-dimensional Hausdorff measure 𝐻

𝛼
is calculated

by [26]

𝐻
𝛼
(𝐹 ∩ (0, 𝑥)) =

0
𝐼
(𝛼)

𝑥
1 =

𝑥
𝛼

Γ (1 + 𝛼)
. (18)

3.2. The Local Fractional JABOWA Models (LFJABOWA).
Here, we structure the LFJABOWA models via local frac-
tional derivative and difference.

From (5), when

𝐺 ⋅ 𝜑 (𝐷) = 𝜆
0
𝐷
𝛽−1

, (19)

the Enquist growthmodel in JABOWAmodel reads as [11, 42]

𝑑𝐷

𝑑𝑡
= 𝜆
0
𝐷
𝛽

, (20)

where 𝐷 is the diameter at breast height, 𝜆
0
is the scaling

coefficient, and 𝛽 is the fractal dimension.
Making use of the fractional complex transform [29] and

(20), the growth equation in the JABOWA model with local
fractional derivative (LFJABOWA) is suggested by

𝑑
𝛼

𝐷

𝑑𝑡
𝛼
= 𝜆
0
𝐷
𝛽

, (21)
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Figure 2: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 1, and

𝑡
0
= 0.
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Figure 3: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 2, and

𝑡
0
= 0.

where 𝐷 is the diameter at breast height, 𝜆
0
is the scaling

coefficient, and 𝛼 and 𝛽 are the fractal dimensions. In order
to illustrate the difference from the works presented in [42],
we consider the following case: when 𝛽 = 1, (21) can be
integrated to give

𝐷 (𝑡) = 𝐸
𝛼
(𝜆
0
𝑡
𝛼

) − 𝐸
𝛼
(𝜆
0
𝑡
𝛼

0
) . (22)

For the parameters 𝛽 = 1, 𝑡 = 0, the solutions of (21) with
different values 𝜆

0
= 1, 𝜆

0
= 2, 𝜆

0
= 3, and 𝜆

0
= 4 are,

respectively, shown in Figures 2, 3, 4, and 5.
Using the fractional complex transform, (5) becomes into

𝑑
𝛼

𝐷

𝑑𝑡
𝛼
= 𝐺 ⋅ 𝐷 ⋅ 𝜑 (𝐷) . (23)

Comparing (22) and (23), we have

𝑑
𝛼

𝐷

𝑑𝑡
𝛼
= 𝜓 (𝑡, 𝐷) , (24)
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Figure 4: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 3, and

𝑡
0
= 0.

where

𝜓 (𝑡, 𝐷) = 𝐺 ⋅ 𝐷 ⋅ 𝜑 (𝐷) (25)

or

𝜓 (𝑡, 𝐷) = 𝜆
0
𝐷
𝛽

. (26)

From (25) and (26), we could get

𝜑 (𝐷) = 𝐷
𝛽−1

, (27)

𝜆
0
= 𝐺. (28)

Hence, the local fractional JABOWA model (LFJABOWA)
reads as follows:

𝑑
𝛼

𝐷

𝑑𝑡
𝛼
= 𝜓 (𝑡, 𝐷) , (29)

where 𝜓(𝑡, 𝐷) is a nondifferentiable function and 𝐷 is the
diameter at breast height.

In view of (16), from (29) we give the difference form
of local fractional JABOWA model (LFJABOWA) in the
following form:

Δ
𝛼

𝐷

(Δ𝑡)
𝛼
= 𝜓 (𝑡, 𝐷) , (30)

where 𝐷 is the diameter at breast height and Δ𝛼𝐷(𝑡) ≅ Γ(1 +
𝛼)Δ(𝐷(𝑡) − 𝐷(𝑡

0
)).

When the fractal dimension 𝛼 is equal to 1, we get the
generalized form of (1); namely,

Δ𝐷

Δ𝑡
= 𝜓 (𝑡, 𝐷) , (31)

where

𝜓 (𝑡, 𝐷) = 𝐺 ⋅ 𝐷 ⋅ 𝜙 (𝐷) ⋅
1

𝑏 (𝐷)
⋅ 𝑓 (𝑒) . (32)
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Figure 5: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 4, and

𝑡
0
= 0.

3.3. The Local Fractional FORSKA Models (LFFORSKA).
Here, we present the LFFORSKA models via local fractional
derivative and difference.

The tree height 𝐻 is the nondifferentiable function;
namely,

󵄨󵄨󵄨󵄨
𝐻 (𝐷) − 𝐻 (𝐷

0
)
󵄨󵄨󵄨󵄨
< 𝜍
𝛼

, (33)

where for 𝜍, 𝜗 > 0 𝜍, 𝜗 ∈ 𝑅, and |𝐷 − 𝐷
0
| < 𝜗.

Following the fractional complex transform [29], from (8)
we have the local fractional growth equation in the following
form:

𝑑
𝛼

𝐻

𝑑𝐷
𝛼
= 𝑠 ⋅ 𝑓 (𝐻) , (34)

where𝑓(𝐻) is a local fractional continuous function,𝐻 is the
tree height, and 𝑠 is a parameter.

Therefore, the generalized form of (34) is suggested as
follows:

𝑑
𝛼

𝐻

𝑑𝐷
𝛼
= 𝜒 (𝐷,𝐻) , (35)

where 𝐷 is the diameter at breast height and 𝐻 is the tree
height. In view of (16), (35) can be rewritten as follows:

Δ
𝛼

𝐻

(Δ𝐷)
𝛼
= 𝜒 (𝐷,𝐻) , (36)

where
󵄨󵄨󵄨󵄨𝐷 − 𝐷

0

󵄨󵄨󵄨󵄨 < 𝜗,

󵄨󵄨󵄨󵄨𝐻 (𝐷) − 𝐻 (𝐷
0
)
󵄨󵄨󵄨󵄨 < 𝜍
𝛼

.

(37)

The expression (36) is the difference form of local frac-
tional FORSKA model (LFFORSKA).
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4. Conclusions

In this work we investigated the local fractional models for
the fractal forest succession. Based on the local fractional
operators, we suggested the differential and difference forms
of the local fractional JABOWA and FORSKA models. The
nondifferentiable growths of individual trees were discussed.
It is a good start for solving the rhetorical models for the
fractal forest succession in the mathematical analysis.
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We propose a numerical reconstruction method for solving a time-fractional backward heat conduction problem. Based on the
idea of reproducing kernel approximation, we reconstruct the unknown initial heat distribution from a finite set of scattered
measurements of transient temperature at a fixed final time. The standard Tikhonov regularization technique using the norm
of reproducing the kernel Hilbert space as the penalty term is adopted to provide a stable solution when the measurement data
contains noise. Numerical results indicate that the proposed method is efficient.

1. Introduction

Let Ω ⊂ R𝑑, 𝑑 ∈ N, be a bounded domain with suf-
ficiently smooth boundary 𝜕Ω. Consider the following initial
boundary value problem for time-fractional diffusion equa-
tion (TFDE):

0
𝐷

𝛾

𝑡
𝑢 (𝑥, 𝑡) = L𝑢, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ Ω,

B𝑢 (𝑥, 𝑡) := 𝜇𝑢 (𝑥, 𝑡) + 𝛽
𝜕𝑢

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(1)

Here
0
𝐷

𝛾

𝑡
denotes the Caputo fractional derivative with

respect to 𝑡 and is defined by

0
𝐷

𝛾

𝑡
𝜓 (𝑡) =

{{

{{

{

1

Γ (1 − 𝛾)
∫

𝑡

0

𝜓
󸀠

(𝜏)

(𝑡 − 𝜏)
𝛾
𝑑𝜏, 0 < 𝛾 < 1,

𝜓
󸀠

(𝑡) , 𝛾 = 1.

(2)

Γ(⋅) is the Gamma function andL is a symmetric uniformly
elliptic operator and 𝑇 > 0 is a fixed final time, 𝜇 and 𝛽

are constants, and ] is the outward unit normal vector of the
domainΩ. In what follows, let 0 < 𝛾 < 1 andL be given by

L𝑢 (𝑥) :=

𝑑

∑

𝑖=1

𝜕

𝜕𝑥
𝑖

(

𝑑

∑

𝑗=1

𝐷
𝑖𝑗
(𝑥)

𝜕

𝜕𝑥
𝑗

𝑢 (𝑥))

+ 𝑄 (𝑥) 𝑢 (𝑥) , 𝑥 ∈ Ω,

(3)

where 𝑄 ∈ 𝐶(Ω), 𝑄(𝑥) ≤ 0 for 𝑥 ∈ Ω and𝐷
𝑖𝑗
= 𝐷

𝑗𝑖
∈ 𝐶

1

(Ω),
1 ≤ 𝑖, 𝑗 ≤ 𝑑. Moreover, we assume that there exists a positive
constant𝐷 > 0 such that

𝐷

𝑑

∑

𝑖=1

𝜂
2

𝑖
≤

𝑑

∑

𝑖,𝑗=1

𝐷
𝑖𝑗
(𝑥) 𝜂

𝑖
𝜂

𝑗
, 𝑥 ∈ Ω, 𝜂 ∈ R

𝑑

. (4)

Recently, people are shifting their partial focus to
fractional-order differential equations (FDEs) with the real-
ization that the use of fractional-order derivatives and inte-
grals leads to formulas of certain physical processes (for
instance, some anomalous diffusion processes) which ismore
economical and useful than the classical approach in terms
of Fick’s laws of diffusion. In this paper, we consider the
fractional-order partial differential equation (FPDE) in (1),
which is obtained from the standard diffusion equation by
replacing the first-order time derivative with a fractional
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derivative of order 𝛾, with 0 < 𝛾 < 1. Different models
using this kind of FDEs have been proposed [1–3], and there
has been significant interest in developing numerical schemes
for their solution. Physically, the time-fractional partial
differential equations describe the continuous time random
walk problems (the non-Markovian process). The physical
interpretation of the fractional derivative is that it represents
a degree of memory in the diffusing material [4]. Actually,
the convolution integral in the definition of the Caputo
fractional-order derivatives for 𝛾 ∈ (0, 1) at time 𝑡 requires
all the knowledge of classical derivative 𝜓󸀠

(𝜏) for 𝜏 ∈ (0, 𝑡),
which reflects the “memory effect” of fractional derivatives.
The utilization of the memory effect of fractional derivatives
comes with a high cost regarding numerical solvability. Any
algorithm using a discretization of a noninteger derivative
has to take into account its nonlocal structure which means
in general a high storage requirement and great overall
complexity of the algorithm. Similar convolution model can
be used to depict the tumor-immune system [5]. Fractional
dimensional model is also used to characterize the binary
images of DNA [6] and oscillators [7, 8]. In [9], a general
approach is proposed to approximate ideal filters based on
fractional calculus from the point of view of systems of
fractional order. Recently, numerous attempts to solve TFDE
can be found in the literature [4, 10–14]. We can refer to [15–
18] for more specified knowledge about fractional calculus.

The backward problem governed by time-fractional par-
tial differential equation in (1) is to recover the heat distribu-
tion at any earlier time 0 ≤ 𝑡 < 𝑇 from the measurement
𝑢

𝜖
(𝑥, 𝑇), written as 𝑢𝜖

𝑇
, which is noise-contaminated data for

the exact temperature 𝑢(𝑥, 𝑇):

󵄩󵄩󵄩󵄩𝑢𝜖
(⋅, 𝑇) − 𝑢 (⋅, 𝑇)

󵄩󵄩󵄩󵄩𝐿
2
(Ω)

≤ 𝜖 (5)

for some known noise level 𝜖 > 0. Such inverse problems
have been considered by several authors. Based on the eigen-
function expansions, Sakamoto and Yamamoto [19] establish
the unique existence of the weak solution and the asymptotic
behavior as the time 𝑡 goes to∞ for the forward problem and
prove the stability and uniqueness in the backward problem
in time. For the one-dimensional case, Liu and Yamamoto
[20] propose a regularizing scheme by the quasi-reversibility
to restore the stability of the backward problem. In [21], a
regularization by projection is applied to the same problem as
in [20] and the corresponding convergence rates are obtained
under a priori and a posteriori parameter choice strategies,
respectively. Here, we pay our attention to the situation of
stable reconstruction of the initial heat distribution 𝑓(𝑥)

from some scattered noisy data of 𝑢
𝜖
(⋅, 𝑇). More specifically,

the data 𝑢
𝜖
(⋅, 𝑇) are collected only at a finite set of points

{𝑧
1
, 𝑧

2
, . . . , 𝑧

𝑚
} ∈ Ω. We then reconstruct the initial tem-

perature distribution 𝑢(𝑥, 0) from the scattered noisy data
at 𝑡 = 𝑇. For solving the backward diffusion problem,
we employ a discretized Tikhonov regularization by the
Ritz approach coupled with the reproducing kernel Hilbert
space (RKHS), which is proposed in [22].

The Tikhonov regularization method has been widely
studied and applied to all varieties of ill-posed problems
[23, 24]. The discretized Tikhonov regularization method

and its relative theories are also explored in detail [24]. We
adopt the Tikhonov regularization method by a reproducing
kernel Hilbert space into the backward problem (1). As we
know, the theory and practice of reproducing kernel are a
fast growing research area.The numerical methods by RKHS
have been also rapidly developed in recent years [25, 26].
These developments are due to the increasing interest in the
use of reproducing kernel for the solution of mathematical
and engineering problems, for instance, machine learning
[27], signal processing [28], stochastic processes [29], wavelet
transforms [30], and so forth. For the details of RKHS, we are
able to refer to [31]. However, to the authors’ knowledge, there
are few applications of RKHS to inverse problems.Weprovide
the partial list of the recent works. Takeuchi and Yamamoto
[22] prove the convergence of the discretized Tikhonov reg-
ularization method by RKHS. Hon and Takeuchi [32] apply
this method into a backward heat conduction problem for
parabolic-type partial differential equations. In reproducing
the kernel Hilbert space settings, an inverse source identifi-
cation problem for parabolic equations is considered in [33].
In [34], Saitoh discusses comprehensively the corresponding
applications of RKHS in inverse problems.

The remainder of this paper is composed of five sections.
In Section 2, we discuss Green’s function for problem (1)
and use it to construct the reproducing kernel. In Section 3,
we state the reconstruction method of the fractional back-
ward diffusion problem by using the reproducing kernel. In
Section 4, some numerical examples are given to illustrate
the effectiveness of our method. A summary is made in the
Section 5. Finally, we list some existing knowledge about the
reproducing kernel Hilbert space in the Appendix.

2. Green’s Function and
the Reproducing Kernel

In this section, we explore Green’s function of system (1) and
use it to construct the reproducing kernel. Firstly, let function
𝐺(𝑥, 𝑡; 𝜉) be Green’s function of the system (1); that is, 𝐺
satisfies the following equations in distribution’s sense:

0
𝐷

𝛾

𝑡
𝐺 (𝑥, 𝑡; 𝜉) = L𝐺 (𝑥, 𝑡; 𝜉) , 𝑥, 𝜉 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝐺 (𝑥, 0; 𝜉) = 𝛿 (𝑥 − 𝜉) , 𝑥, 𝜉 ∈ Ω,

B𝐺 (𝑥, 𝑡; 𝜉) := 𝜇𝐺 (𝑥, 𝑡; 𝜉) + 𝛽
𝜕𝐺

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(6)

It is easy to know that problem (6) is equivalent to the
following problem:

0
𝐷

𝛾

𝑡
𝐺 (𝑥, 𝑡; 𝜉) −L𝐺 (𝑥, 𝑡; 𝜉) = 𝛿 (𝑥 − 𝜉) 𝛿 (𝑡) ,

𝑥, 𝜉 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝐺 (𝑥, 0; 𝜉) = 0, 𝑥, 𝜉 ∈ Ω,

B𝐺 (𝑥, 𝑡; 𝜉)

:= 𝜇𝐺 (𝑥, 𝑡; 𝜉) + 𝛽
𝜕𝐺

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(7)
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Let us employ the Laplace transform to solve the system (6).
The Laplace transform of a function 𝜑 on R+ is defined by

𝜙 (𝑠) := ∫

∞

0

𝑒
−𝑠𝑡

𝜑 (𝑡) 𝑑𝑡, Re (𝑠) > 0. (8)

The Laplace transform of the Caputo fractional derivative is
given by [10]

∫

∞

0

𝑒
−𝑠𝑡

0
𝐷

𝛾

𝑡
𝜑 (𝑡) 𝑑𝑡 = 𝑠

𝛾

𝜙 (𝑠) −

𝐽−1

∑

𝑘=0

𝑠
𝛾−𝑘−1

0
𝐷

𝑘

𝑡
𝜑 (0) , (9)

where 𝐽−1 < 𝛾 ≤ 𝐽.The Caputo fractional derivative appears
more suitable to be treated by the Laplace transforming in
that it requires the knowledge of initial values of the function
and of its integer derivatives of order 𝑘 = 1, 2, . . . , 𝐽−1. By the
Laplace transforming about the time variable 𝑡, the system (6)
becomes

𝑠
𝛾

𝑔 (𝑥, 𝑠; 𝜉) − 𝑠
𝛾−1

𝛿 (𝑥 − 𝜉)

= L𝑔 (𝑥, 𝑠; 𝜉) , 𝑥, 𝜉 ∈ Ω, Re (𝑠) > 0,

𝜇𝑔 (𝑥, 𝑠; 𝜉) + 𝛽
𝜕𝑔

𝜕]
(𝑥, 𝑠; 𝜉) = 0,

(10)

where 𝑔 denotes the Laplace transform of Green’s function
𝐺. It should be noted here that the system in (1) is only
defined on 𝑡 ∈ [0, 𝑇], not on [0, +∞). When we make the
Laplace transform, some necessary preprocess, for example,
the function continuation technique, needs to be done on
the solution of (1) to satisfy the condition of the Laplace
transform. Because we do not use the value of 𝑢 for 𝑡 > 𝑇,
the condition can be satisfied easily.

Applying this technique of eigenfunction expansions to
problems (10), we have that

𝑔 (𝑥, 𝑠; 𝜉) =

∞

∑

𝑛=1

𝑠
𝛾−1

𝑠
𝛾
+ 𝜆

2

𝑛

𝜑
𝑛
(𝜉) 𝜑

𝑛
(𝑥) , (11)

where 𝜑
𝑛
(𝑥) is the 𝑛th orthonormal eigenfunction and 𝜆

𝑛
is

the corresponding eigenvalue to the Sturm-Liouville problem

L𝜑 (𝑥) + 𝑘
2

𝜑 (𝑥) = 0, (12)

subject to the boundary conditions

𝜇𝜑 (𝑥) + 𝛽
𝜕𝜑

𝜕]
= 0. (13)

Taking the Laplace inverse of (11), we have that

𝐺 (𝑥, 𝑡; 𝜉) =

∞

∑

𝑛=1

𝐸
𝛾
(−𝜆

2

𝑛
𝑡
𝛾

) 𝜑
𝑛
(𝜉) 𝜑

𝑛
(𝑥) , (14)

where 𝐸
𝛾
(𝑧) is the Mittag-Leffler function defined by

𝐸
𝛾
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛾𝑘 + 1)
. (15)

For the details of the Mittag-Leffler function, one can refer
to [3]. Subsequently, one can easily verify that the unique
solution of system (1) with initial value 𝑢(𝑥, 0) = 𝑓 ∈ 𝐻 can
be written as

𝑢 (𝑥, 𝑡) = ∫

Ω

𝐺 (𝑥, 𝑡; 𝜉) 𝑓 (𝜉) 𝑑𝜉, (16)

where 𝐺(𝑥, 𝑡; 𝜉) is Green’s function defined by (14). With the
aid of (16), for each 𝑓 ∈ 𝐿

2

(Ω), introducing the operator 𝐾 :

𝐿
2

(Ω) → 𝐿
2

(Ω) by

𝐾𝑓 (𝑥) := ∫

Ω

𝐺 (𝑥, 𝑇; 𝜉) 𝑓 (𝜉) 𝑑𝜉, (17)

wemay formulate the inverse problem as an integral equation
of the first kind

𝐾𝑓 (𝑥) = 𝑢 (𝑥, 𝑇) . (18)
The symmetry of Green’s function indicates that the

operator 𝐾 is self-adjoint. We proceed by giving a brief
account on the close connections of the ill posedness of
operator equation (18) with the singular value system of oper-
ator 𝐾. According to the symmetry of operator 𝐾, we only
need to discuss its eigensystem. It is easy to know that the
eigensystem of𝐾 is given by

{𝐸
𝛾
(−𝑇

𝛾

𝜆
2

𝑛
), 𝜑

𝑛
}

∞

𝑛=1

, (19)

where 𝐸
𝛾
(−𝑇

𝛾

𝜆
2

𝑛
) is the eigenvalue and 𝜑

𝑛
is the correspond-

ing eigenfunction. We can see the decay of the eigenvalues
{𝐸

𝛾
(−𝑇

𝛾

𝜆
2

𝑛
)}

∞

𝑛=1
with the increase of 𝜆

𝑛
from the following

asymptotic behavior of the Mittag-Leffler function 𝐸
𝛾
(⋅)

which can be found in [20, 21] or by the results in [3].

Lemma 1 (see [20]). Let 0 < 𝛾
0
< 𝛾

1
< 1. Then there exist

constants 𝐶
1,±
, 𝐶

2,±
> 0 depending only on 𝛾

0
and 𝛾

1
such that

𝐶
1,−

𝛾
𝑒

𝑥
1/𝛾

≤ 𝐸
𝛾
(𝑥) ≤

𝐶
1,+

𝛾
𝑒

𝑥
1/𝛾

, ∀𝑥 ≥ 0, (20)

𝐶
2,−

Γ (1 − 𝛾)

1

1 − 𝑥
≤ 𝐸

𝛾
(𝑥) ≤

𝐶
2,+

Γ (1 − 𝛾)

1

1 − 𝑥
, ∀𝑥 ≤ 0. (21)

These estimates are uniform for all 𝛾 ∈ [𝛾
0
, 𝛾

1
].

Next, we consider the construction of reproducing kernel
using Green’s function 𝐺(𝑥, 𝑡; 𝜉). DefineΦ(𝑥, 𝜉) := 𝐺(𝑥, 𝑡

0
; 𝜉)

for some 𝑡
0
∈ (0, 𝑇). The symmetry about the space variable

𝑥, 𝜉 of Green’s function indicates that Φ(⋅, ⋅) : Ω × Ω → R

is symmetric. Now that Φ is a symmetric positive definite
kernel, a unique RKHS in which the given kernel acts as the
reproducing kernel can be constructed (see [26] for details).
Henceforth we denote by 𝐻

𝑡0
the RHKS generated by the

kernel Φ(𝑥, 𝜉) = 𝐺(𝑥, 𝑡
0
; 𝜉). Actually, according to [26,

Chapter 10], the inner product and norm on𝐻
𝑡0
are defined

by

(𝑓, 𝑔)
𝐻𝑡0

:=

∞

∑

𝑛=1

1

𝐸
𝛾
(−𝜆

2

𝑛
𝑡
𝛾

0
)
(𝑓, 𝜑

𝑛
)

𝐿
2
(Ω)
(𝑔, 𝜑

𝑛
)

𝐿
2
(Ω)
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻𝑡0

:=

∞

∑

𝑛=1

1

𝐸
𝛾
(−𝜆

2

𝑛
𝑡
𝛾

0
)

󵄨󵄨󵄨󵄨󵄨
(𝑓, 𝜑

𝑛
)

𝐿
2
(Ω)

󵄨󵄨󵄨󵄨󵄨

2

,

(22)
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respectively. The space𝐻
𝑡0
is actually given by

𝐻
𝑡0
= {𝑓 ∈ 𝐿

2

(Ω) :

∞

∑

𝑛=1

1

𝐸
𝛾
(−𝜆

2

𝑛
𝑡
𝛾

0
)

󵄨󵄨󵄨󵄨󵄨
(𝑓, 𝜑

𝑛
)

𝐿
2
(Ω)

󵄨󵄨󵄨󵄨󵄨

2

< ∞} .

(23)

The second inequalities in Lemma 1 show that, as the function
of 𝜆

𝑛
, 1/𝐸

𝛾
(−𝜆

2

𝑛
𝑡
𝛾

0
) ∈ SI, where SI denotes the collection

of slowly increasing functions [26] defined by

SI := {𝑓 : R
𝑑

󳨀→ R | 𝑓 (𝑥) = 𝑂 (‖𝑥‖
𝑚

2
)

as ‖𝑥‖
2
󳨀→ ∞ for some 𝑚 ∈ N

0
} .

(24)

Hence, according to the theoretical results of [26, Chapter 10],
we assert that the space 𝐻

𝑡0
is consistent with some Sobolev

space 𝐻𝑘

(Ω) for 𝑘 > 𝑑/2 and the norm on 𝐻
𝑡0
is equivalent

to the norm ‖𝑓‖
𝐻
𝑘
(Ω)

= [∑
|𝛼|≤𝑘

‖𝐷
𝛼

𝑓‖
2

𝐿
2
(Ω)
]
1/2

.

3. Formulation of the Inverse Problem and
the Reconstruction Method

In order to find the initial temperature distribution 𝑓(𝑥),
we would like to determine the solution of minimization
problem

inf
𝑓∈𝐿
2
(Ω)

󵄩󵄩󵄩󵄩𝐾𝑓 − 𝑢𝜖
(⋅, 𝑇)

󵄩󵄩󵄩󵄩𝐿
2
(Ω)
. (25)

However, the minimization element of (25) generally is a
poor approximation of the desired initial function 𝑓 due
to the error 𝜖 in 𝑢(𝑥, 𝑇) and the ill posedness of operator
equation (18). The Tikhonov regularization replaces the
minimization problem (25) by the solution of a penalized
least-squares problem

inf
𝑓∈𝐻𝑡0

(Ω)

𝐽
𝛼
(𝑓) := inf

𝑓∈𝐻𝑡0
(Ω)

󵄩󵄩󵄩󵄩𝐾𝑓 − 𝑢𝜖
(⋅, 𝑇)

󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

+ 𝛼
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻𝑡0

(26)

with regularization parameter 𝛼 > 0. We can see from [23,
Proposition 3.11] that the convergence of any regularization
method can be arbitrarily slow in general. Actually, conver-
gence rates can be given only on some subset of 𝐻

𝑡0
, that

is, under a priori assumptions on the exact data. Here, we
assume the exact solution 𝑓 belongs to the set of source
conditions

M
𝜇
:= {𝑓 ∈ 𝐻

𝑡0
(Ω) : 𝑓 = (𝐾

∗

𝐾)
𝜇

𝜔, ‖𝜔‖
𝐿
2
(Ω)

≤ 𝐸} , (27)

where 𝐸 is the a priori bound and 𝜇 > 0 is a constant.
As in [23], we know that there exists a constant 𝜇

0
, named

the “qualification” of the regularization method, such that
0 < 𝜇 ≤ 𝜇

0
. For the Tikhonov regularization method, the

qualification 𝜇
0
= 1. However, according to (21), it is easy to

know thatM
𝜇2
⊂ M

𝜇1
as 𝜇

1
> 𝜇

2
andM

1/4
= 𝐻

𝑡0
. Therefore,

here we only need consider the case of 0 < 𝜇 ≤ 1/4 for the
Tikhonov method (26).

In order to solve the minimization problem (26), some
discretization scheme needs to be given. A natural way to
obtain such discretization is to generate a finite dimensional
approximation to theminimal element of the Tikhonov func-
tional 𝐽

𝛼
. For this, we define a subspace 𝑉

𝑁
:= span{Φ(⋅, 𝜉) :

𝜉 ∈ 𝑋
𝑁
} ⊂ 𝐻

𝑡0
, where 𝑋

𝑁
:= {𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑁
} ⊂ Ω. This

approximation by discretization is equivalent to finding the
minimal norm least-squares solution of the equation

𝐾
𝑁
𝑓 := 𝐾𝑃

𝑁
𝑓 = 𝑢

𝑇
, (28)

where 𝑃
𝑁
: 𝐻

𝑡0
→ 𝑉

𝑁
is the projection operator. Moreover,

we produce a finite dimensional approximation 𝑓
𝛼,𝑁

to𝐾†

𝑢
𝑇

by minimizing the Tikhonov functional (26) over the finite
dimensional space 𝑉

𝑁
. Denote by 𝑓

𝛼,𝑁,𝜖
the minimizer of 𝐽

𝛼

for noise input data 𝑢𝜖

𝑇
. It is well known that 𝑓

𝛼,𝑁,𝜖
satisfy [23,

24]

𝑓
𝛼,𝑁,𝜖

= (𝐾
∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝑢

𝜖

𝑇
. (29)

Provided {𝑉
𝑁
} is an expanding sequence, the convergence of

the Tikhonov regularized solutions is proved [24]. Takeuchi
and Yamamoto [22] show that the discretized Tikhonov
regularized solutions converge to the exact solution without
the monotonicity of 𝑉

𝑁
under an a priori choice strategy for

𝑁 and 𝛼. However, one can see that, from the existing results,
in both cases, the regularized solutions𝑓

𝛼,𝑁
converging to the

exact solution depends on whether 𝑟
𝑁
:= ‖𝐾(𝐼 − 𝑃

𝑁
)‖ →

0, (𝑁 → ∞). Moreover, the convergence of 𝑟
𝑁
requires the

knowledge of the fill distance ℎ
𝑋𝑁,Ω

, which is defined by [26]

ℎ
𝑋𝑁,Ω

:= sup
𝑥∈Ω

min
𝜉𝑘∈𝑋𝑁

󵄩󵄩󵄩󵄩𝑥 − 𝜉𝑘

󵄩󵄩󵄩󵄩 . (30)

The fill distance can be interpreted in various geometrical
ways. For example, we can consider it as the radius of the
largest ball which is completely contained in Ω and which
does not contain a data site. In this sense ℎ

𝑋𝑁,Ω
describes the

largest data-site-free hole inΩ.
Here, we utilize the same proof as in [32] to give the

following lemma.

Lemma 2. Consider 𝑟
𝑁
= ‖𝐾(𝐼 − 𝑃

𝑁
)‖ → 0 as𝑁 → ∞.

Proof. Consider

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
)
󵄩󵄩󵄩󵄩 = sup

𝑓∈𝐻𝑡0

𝑓 ̸= 𝜃

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
) 𝑓

󵄩󵄩󵄩󵄩𝐿
2
(Ω)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑡0

. (31)

It is obvious that the kernel function Φ(𝑥, 𝑦) is sufficiently
smooth. Therefore, according to the error estimate in the
Appendix, we can find a positive constant 𝑘 such that the
estimate

󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑁
𝑓
󵄩󵄩󵄩󵄩𝐿
∞

(Ω)
≤ ℎ

𝑘

𝑋𝑁,Ω

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑡0

(32)
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holds for all 𝑓 ∈ 𝐻
𝑡0
. Meanwhile, it is easy to know

󵄩󵄩󵄩󵄩𝐾𝑓
󵄩󵄩󵄩󵄩𝐿
2
(Ω)

= [∫

Ω

󵄨󵄨󵄨󵄨𝐾𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥]

1/2

= [∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω

𝐺 (𝑥, 𝑇; 𝜉) 𝑓 (𝜉) 𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥]

1/2

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
∞

(Ω)
, ∀𝑓 ∈ 𝐻

𝑡0
,

(33)

where 𝐶 := {∫
Ω

[∫
Ω

|𝐺(𝑥, 𝑇; 𝜉)|𝑑𝜉]
2

𝑑𝑥}
1/2 is a constant. More-

over, the property of RKHS, 𝑓(𝑥) = (𝑓(⋅), Φ(𝑥, ⋅)), leads to
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
∞

(Ω)
≤ sup

𝑥∈Ω

√Φ (𝑥, 𝑥)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑡0

. (34)

Combining (32)–(34), we get
󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃

𝑁
) 𝑓

󵄩󵄩󵄩󵄩𝐿
2
(Ω)

≤ 𝑀
󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑁

𝑓
󵄩󵄩󵄩󵄩𝐿
∞

(Ω)
≤ 𝑀ℎ

𝑘

𝑋𝑁,Ω

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑡0

,

(35)

where 𝑀 is a constant. Consequently, substituting the esti-
mate (35) into (31) and letting 𝑁 → ∞, we complete the
proof.

According to the classical results on the Tikhonov regu-
larization for linear ill-posed problem (see, e.g., [23, 24]) and
in view of (1), it holds that

󵄩󵄩󵄩󵄩𝑓 − 𝑓𝛼,𝑁,𝜖

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑓 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝑢
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
(𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
(𝑢 − 𝑢

𝜖

𝑇
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝑢
󵄩󵄩󵄩󵄩󵄩
+

𝜖

2√𝛼
.

(36)

As in [35], we can estimate the noise-free term as follows:
󵄩󵄩󵄩󵄩󵄩
𝑓 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝑢
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑓 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝐾𝑓

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
[𝐼 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝐾

𝑁
] 𝑓

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
(𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
(𝐾

𝑁
− 𝐾)𝑓

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
[𝐼 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝐾

𝑁
] (𝐾

∗

𝐾)
𝜇

𝑤
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
(𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
(𝐾

𝑁
− 𝐾)𝑓

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
[𝐼 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝐾

𝑁
]

× [(𝐾
∗

𝐾)
𝜇

− (𝐾
∗

𝑁
𝐾

𝑁
)

𝜇

]𝑤
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
[𝐼 − (𝐾

∗

𝑁
𝐾

𝑁
+ 𝛼𝐼)

−1

𝐾
∗

𝑁
𝐾

𝑁
] (𝐾

∗

𝑁
𝐾

𝑁
)

𝜇

𝑤
󵄩󵄩󵄩󵄩󵄩

+
1

√𝛼

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
) 𝑓

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
[(𝐾

∗

𝐾)
𝜇

− (𝐾
∗

𝑁
𝐾

𝑁
)

𝜇

]𝑤
󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝜇

𝐸 +
1

√𝛼

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
) 𝑓

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝐾

∗

𝐾 − 𝐾
∗

𝑁
𝐾

𝑁

󵄩󵄩󵄩󵄩

𝜇

𝐸 + 𝛼
𝜇

𝐸

+
1

√𝛼

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
) 𝑓

󵄩󵄩󵄩󵄩

≤ 𝐶
󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃

𝑁
)
󵄩󵄩󵄩󵄩

2𝜇

𝐸 + 𝛼
𝜇

𝐸

+
1

√𝛼

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
) 𝑓

󵄩󵄩󵄩󵄩

≤ 𝐶
󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃

𝑁
)
󵄩󵄩󵄩󵄩

2𝜇

𝐸 + 𝛼
𝜇

𝐸

+
1

√𝛼

󵄩󵄩󵄩󵄩𝐾 (𝐼 − 𝑃
𝑁
)
󵄩󵄩󵄩󵄩

2𝜇+1

,

(37)

where𝐶 is a constant. In view of the best possible error bound
being 𝜖2𝜇/(2𝜇+1), the term ‖𝐾(𝐼 − 𝑃

𝑁
)‖ has to be chosen such

that
󵄩󵄩󵄩󵄩
𝐾 (𝐼 − 𝑃

𝑁
)
󵄩󵄩󵄩󵄩
≤ 𝜖

1/(2𝜇+1)

. (38)

From the above discussions, we have the following theorem.

Theorem 3. Under assumptions (5) and (38), there holds that

󵄩󵄩󵄩󵄩𝑓 − 𝑓𝛼,𝑁,𝜖

󵄩󵄩󵄩󵄩 ≤ 𝐶𝜖
2𝜇/(2𝜇+1)

+ 𝛼
𝜇

𝐸 +
𝜖

√𝛼
. (39)

Moreover, if the regularization parameter 𝛼 is chosen by 𝛼 =

𝑂(𝜖
2/(2𝜇+1)

), one then obtains the following estimate:

󵄩󵄩󵄩󵄩𝑓 − 𝑓𝛼,𝑁,𝜖

󵄩󵄩󵄩󵄩 ≤ 𝐶𝜖
2𝜇/(2𝜇+1)

, (40)

where the constant 𝐶 does not depend on 𝜖.

4. Numerical Tests

In this section, we present numerical results to illustrate the
feasibility of the reconstruction method as described in the
previous section.

In practical situation, we only can get the scattered noisy
data of 𝑢(⋅, 𝑇), that is, {𝑢

𝜖
(𝑧

1
, 𝑇), 𝑢

𝜖
(𝑧

2
, 𝑇), . . . , 𝑢

𝜖
(𝑧

𝑚
, 𝑇)}. As

a result, instead of solving (25) we intend to deal with the
following problem:

inf
𝑓∈𝑉𝑁

󵄩󵄩󵄩󵄩𝐾𝑓 − 𝑢𝜖
(⋅, 𝑇)

󵄩󵄩󵄩󵄩

2

R𝑚
+ 𝛼

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻𝑡0
(Ω)
, (41)

where

󵄩󵄩󵄩󵄩𝐾𝑓 − 𝑢𝜖
(⋅, 𝑇)

󵄩󵄩󵄩󵄩R𝑚
=

{

{

{

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐾𝑓 (𝑧

𝑗
) − 𝑢

𝜖
(𝑧

𝑗
, 𝑇)

󵄨󵄨󵄨󵄨󵄨

2}

}

}

1/2

. (42)

Since 𝑉
𝑁
= span{Φ(⋅, 𝜉) | 𝜉 ∈ {𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑁
}}, the minimizer

𝑓
𝛼,𝑁,𝜖

can be written as

𝑓
𝛼,𝑁,𝜖

(⋅) =

𝑁

∑

𝑘=1

𝜆̃
𝑘
Φ(⋅, 𝜉

𝑘
) =

𝑁

∑

𝑘=1

𝜆̃
𝑘
𝐺 (⋅, 𝑡

0
; 𝜉

𝑘
) , 𝜉

𝑘
∈ 𝑋

𝑁
.

(43)
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From the definition of RKHS, it follows that

󵄩󵄩󵄩󵄩𝑓𝛼,𝑁,𝜖

󵄩󵄩󵄩󵄩

2

𝐻𝑡0

=

𝑁

∑

𝑗,𝑘=1

𝜆̃
𝑘
𝜆̃

𝑗
𝐺(𝜉

𝑘
, 𝑡

0
; 𝜉

𝑗
) . (44)

In addition, we know that

𝐾𝐺(𝑧
𝑗
, 𝑡

0
; 𝜉

𝑘
)

= ∫

Ω

𝐺(𝑧
𝑗
, 𝑇; 𝜉) 𝐺 (𝜉, 𝑡

0
; 𝜉

𝑘
) 𝑑𝜉 = 𝐺 (𝑧

𝑗
, 𝑡

0
+ 𝑇; 𝜉

𝑘
)

(45)

for 𝑗 = 1, 2, . . . , 𝑚 and 𝑘 = 1, 2, . . . , 𝑁. Now, it is easy to see
that the coefficient vector 𝜆̃ = (𝜆̃

𝑘
)
𝑁

𝑘=1
satisfies the following

linear system:

(𝐴
∗

𝐴 + 𝛼𝐵) 𝜆̃ = 𝐴
∗

𝑢
𝜖

𝑇
, (46)

where 𝐴 is an𝑚 ×𝑁matrix, 𝐴∗ is the transpose of 𝐴, and 𝐵
is an𝑁 ×𝑁matrix defined by

𝐴
𝑗,𝑘
= 𝐺 (𝑧

𝑗
, 𝑡

0
+ 𝑇; 𝜉

𝑘
) , 𝑗 = 1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑁,

𝐵
𝑗,𝑘
= 𝐺 (𝜉

𝑗
, 𝑡

0
; 𝜉

𝑘
) , 𝑗, 𝑘 = 1, . . . , 𝑁.

(47)

If we truncate Green’s function to the former 𝐽 terms, matrix
𝐵 can be decomposed to the following product:

𝐵 = 𝐿
∗

𝐿, (48)

where 𝐿∗ denotes the conjugate transpose of 𝐿 and 𝐿 is given
by

𝐿 = (𝐿
𝑗,𝑘
) = ([𝐸

𝛾
(−𝜆

2

𝑗
𝑡
𝛾

0
)]

1/2

𝜑
𝑗
(𝜉

𝑘
)) ,

𝑗 = 1, 2, . . . , 𝐽, 𝑘 = 1, 2, . . . , 𝑁.

(49)

Moreover, we turn to search for the minimizer 𝜆̃ of the
following functional:

𝐹
𝛼
(𝜆) :=

󵄩󵄩󵄩󵄩𝐴𝜆 − 𝑢
𝜖

𝑇

󵄩󵄩󵄩󵄩

2

R𝑚
+ ‖𝐿𝜆‖

2

R𝐽 .
(50)

After obtaining the vector 𝜆̃, we substitute it into (43) and
then get the regularized approximation 𝑓

𝛼,𝑁,𝜖
.

In our tests, the measurement points {𝑧
𝑗
}
𝑚

𝑗=1
, which are

randomly generated by using the Matlab function rand(⋅),
are scattered in the domain Ω. Now we generate the final
measurement data at 𝑇 with noise by

𝑢
𝜖

𝑇
= 𝑢 (𝑧, 𝑇) + √

2

𝜋

𝜖

100
× rand (𝑧) × norm (𝑢 (𝑧, 𝑇)) , (51)

where 𝑧 = {𝑧
𝑗
}
𝑚

𝑗=1
are the measurement points and rand(𝑧)

generates a standard 𝑚-dimensional random vector. To

evaluate the proposed method, we compute the relative error
of the reconstructed solutions denoted by 𝑅(𝑓):

𝑅 (𝑓) =

󵄩󵄩󵄩󵄩𝑓𝛼,𝑁,𝜖
(⋅) − 𝑓 (⋅)

󵄩󵄩󵄩󵄩𝑙
2

󵄩󵄩󵄩󵄩𝑓 (⋅)
󵄩󵄩󵄩󵄩𝑙
2

, for 1-dimensional case,

𝑅 (𝑓) =

󵄩󵄩󵄩󵄩𝑓𝛼,𝑁,𝜖
(⋅) − 𝑓 (⋅)

󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝑓 (⋅)
󵄩󵄩󵄩󵄩∞

, for 2-dimensional case,

(52)

where ‖ ⋅ ‖
𝑙
2 denotes the 𝑙2 norm and ‖ ⋅ ‖

∞
denotes the ∞

norm. Before we proceed, it is natural that we have to deter-
mine 𝑡

0
, 𝑋

𝑁
, measurement points {𝑧

𝑗
}
𝑚

𝑗=1
, and observation

time𝑇 to define𝐴, 𝐵. According to the convergence theorem,
smaller ℎ

𝑋𝑁,Ω
yields better numerical solution, which implies

that we need to choose as large𝑁 as possible. However, the ill
posedness of the backward diffusion problem results in the ill
condition of the matrix 𝐴∗

𝐴, which causes us not to imple-
ment the numerical computation of the inverse of 𝐴∗

𝐴 + 𝛼𝐵

when the regularizing term 𝐵 is also ill conditioned. We
use the following one-dimensional example to depict the
change trend of the condition number of 𝐵, cond(𝐵), with
respect to𝑁.

Example 1. Consider the following Dirichlet boundary value
problem:

0
𝐷

𝛾

𝑡
𝑢 (𝑥, 𝑡) =

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥
2

, 𝑥 ∈ (0, 1) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) , 𝑥 ∈ [0, 1] ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 𝑡 ∈ [0, 1] .

(53)

The forward problem has a unique solution

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑑
𝑛
𝐸

𝛾
(−𝑛

2

𝜋
2

𝑡
𝛾

) sin 𝑛𝜋𝑥, (54)

where the coefficient

𝑑
𝑛
= 2∫

1

0

𝑢 (𝑥, 0) sin 𝑛𝜋𝑥 𝑑𝑥

=
4

𝑛
3
𝜋

3
[1 − (−1)

𝑛

] , 𝑛 = 1, 2, . . . .

(55)

To clarify the numerical influence of some relative param-
eters but 𝛾, we fix parameter 𝛾 = 1/2 firstly.

In this test, we fix 𝑚 = 59 firstly. In Figure 1, for the
cases of 𝑡

0
∈ {1𝑒 − 8, 1𝑒 − 9, 1𝑒 − 10}, we plot cond(𝐵) versus

the number of 𝑁 running from 10 to 100, respectively. The
displayed results in Figure 1 show that the condition number
cond(𝐵) increases exponentially as𝑁 increases. Nevertheless,
we can remove such influence of the ill condition of 𝐵
on numerical computation through modifying its small
singular value as a fixed small constant 𝜖. And in doing so,
the numerical precision does not change significantly. There-
fore, we can implement the proposed method without wor-
rying so much about the size limitation of 𝑁. For the
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Figure 1: The effect of an increasing number of𝑁 on the condition
number of 𝐵 for the cases when 𝑡

0
∈ {1𝑒 − 8, 1𝑒 − 9, 1𝑒 − 10}.

Table 1: Example 1: the relative errors with 𝑡
0
= 1𝑒 − 10, 𝑁 = 59,

and𝑚 = 59.

𝜖
𝑇

1 5 10

0.1% 0.0143 0.0156 0.0177

1% 0.0295 0.0239 0.0332

2% 0.0388 0.0390 0.0387

5% 0.0483 0.0441 0.0505

10% 0.0528 0.0601 0.0703

choice of 𝑡
0
, we compare the computational results for

some different 𝑡
0
’s and 𝑇’s using exact final data 𝑢(𝑥, 𝑇) for

Example 1. For this, a preset value for the regularization
parameter 𝛼 needs to be provided. Here, we simply choose
𝛼 = 10

−5

(max(𝐴∗

𝐴)/max(𝐵)) as in [32], where max(𝐶) =
max

𝑖,𝑗
𝑐
𝑖𝑗
for matrix 𝐶 = (𝑐

𝑖𝑗
). In the following computation,

the Matlab code developed by Hansen [36, 37] is used to
obtain the approximation solution for solving the discrete
system (46). In addition, note that theMittag-Leffler function
is numerically realized by implementing the Matlab toolbox
by Podlubny [38]. In Figure 2, we plot the relative errors for
different 𝑡

0
, 𝑡

0
= 1𝑒 − 5, 1𝑒 − 7, 1𝑒 − 10, versus the number

of 𝑁 running from 10 to 100 for 𝜖 = 0 and 𝑇 = 25. The
computational results show that, using smaller 𝑡

0
, we have less

relative error. In addition, we also see from Figure 2 that, with
the increase of the number of 𝑁, the relative error becomes
smaller firstly and then it remains steady after arriving to a
certain extent.

We also need to consider the effect of the number 𝐽
of truncation term of Green’s function and the number of
measurement points𝑚 on the numerical precision.With 𝑇 =

3, we display the numerical results for several𝑚 and 𝐽 as the
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Figure 2: The effect of an increasing number of 𝑁 on the relative
error for the cases when 𝑡

0
∈ {1𝑒 − 5, 1𝑒 − 7, 1𝑒 − 10} with noise-free

data.
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x

u
(
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,
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Figure 3: Exact solution 𝑢(𝑥, 0) and numerical solution for 𝜖 = 20%
with the final time 𝑇 = 25 and𝑚 = 59,𝑁 = 59, and 𝑡

0
= 1𝑒 − 10.

noise level 𝜖 = 0 in Table 2. It can be seen that when 𝐽 and𝑚
become sufficiently large, the relative errors almost remain at
the level 10−4.

Next, in the absence of the a priori information, we only
evaluate the proposed algorithm in (46) for noisy data by
using L-curve parameter choice method instead of that in
Theorem 3. In Example 1, we fix 𝑁 = 59, 𝑚 = 59, and
𝑡
0
= 1𝑒 − 10. Table 1 reports the relative errors of 𝑓

𝛼,𝑁,𝜖

for different noise levels 𝜖 and final measurement times 𝑇.
These numerical results for all noisy cases are satisfactory. In
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Table 2: Example 1: the relative errors with 𝑡
0
= 1𝑒 − 10,𝑁 = 59, and 𝜖 = 0%.

𝐽
𝑚

19 29 39 49 59 69
5 3.3721𝑒 − 3 3.4356𝑒 − 3 3.3769𝑒 − 3 3.3737𝑒 − 3 3.4008𝑒 − 3 3.3724𝑒 − 3

10 1.0725𝑒 − 3 1.5791𝑒 − 3 9.9642𝑒 − 4 9.9488𝑒 − 4 9.9616𝑒 − 4 9.9901𝑒 − 4

15 6.1811𝑒 − 4 3.4322𝑒 − 4 5.7376𝑒 − 4 3.2938𝑒 − 4 3.2952𝑒 − 4 3.3259𝑒 − 4

20 5.0304𝑒 − 3 3.5813𝑒 − 4 8.9305𝑒 − 4 4.7205𝑒 − 4 9.8808𝑒 − 4 5.4753𝑒 − 4

25 3.7310𝑒 − 3 4.3286𝑒 − 4 2.1742𝑒 − 4 1.5605𝑒 − 4 1.5743𝑒 − 4 1.5375𝑒 − 4

30 5.9706𝑒 − 3 2.6680𝑒 − 3 1.6015𝑒 − 4 1.5884𝑒 − 4 2.0451𝑒 − 4 1.3825𝑒 − 4
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Figure 4: The relative error versus order 𝛾 for Example 1 with 𝑇 =

0.5,𝑚 = 59,𝑁 = 59, and 𝑡
0
= 1𝑒 − 10 for noise 𝜖 = 1%.
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Figure 5: Exact solution 𝑢(𝑥, 0) and numerical solution for 𝜖 ∈

{11%, 7%, 3%, 0.5%} with the final time 𝑇 = 0.1 and 𝑚 = 59,
𝑁 = 55, and 𝑡

0
= 1𝑒 − 10.

0 1
0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8

0.9

Figure 6: The illustration of the set𝑋
𝑁
.

Table 3: Example 3: the relative errors with 𝑡
0
= 1𝑒−10 and𝑚 = 100

for 𝛾 = 1/2.

𝜖
𝑇

1 2 5 10
1% 0.0131 0.0117 0.0138 0.0199
2% 0.0118 0.0141 0.0229 0.0201
5% 0.0272 0.0192 0.0304 0.0535

general, it can been seen from Table 1 that, at the smaller 𝑇
and 𝜖, the numerical effects are better. In addition, when the
measurement time 𝑇 = 25, the exact solution 𝑢(𝑥, 0) and the
numerical solution𝑓

𝛼,𝑁,𝜖
with the relative noise level 𝜖 = 20%

are displayed in Figure 3. It can be observed that the method
works even for the case of 𝑇 = 25 with noise level 𝜖 = 20% as
well.

Finally, we hope to use Example 1 to show that the
proposed algorithm is robust for order 𝛾. For varying 𝛾, we
plot the relative error versus 𝛾 in Figure 4. The displayed
results show that the numerical method is robust when 𝛾 is
varying.
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Figure 7: The comparison between the exact solution and regularized solution for Example 3.
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Figure 8: The relative error versus order 𝛾 for Example 3 with 𝑇 =

1, 𝑚 = 100, and 𝑡
0
= 1𝑒 − 10 for noise 𝜖 = 1%.

Example 2. Consider the following Neumann boundary
value problem:

0
𝐷

1/2

𝑡
𝑢 (𝑥, 𝑡) =

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥
2

, 𝑥 ∈ (0, 𝜋) , 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 0) = cos𝑥 + cos 2𝑥, 𝑥 ∈ [0, 𝜋] ,

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(𝜋, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] .

(56)

The unique solution to (56) is given by

𝑢 (𝑥, 𝑡) = 𝐸
1/2

(−𝑡
1/2

) cos𝑥 + 𝐸
1/2

(−4𝑡
1/2

) cos 2𝑥. (57)

In this example, we show the numerical results for 𝑇 = 0.1

under the setting 𝑚 = 59, 𝑡
0
= 1𝑒 − 10, and 𝑁 = 55.

Figure 5 shows that the proposed method is capable of giving
satisfactory results for the case of the Neumann boundary
condition.

Example 3. We consider a two-dimensional fractional dif-
fusion problem with the Dirichlet boundary value in Ω =

(0, 1) × (0, 1):

0
𝐷

𝛾

𝑡
𝑢 (𝑥, 𝑦, 𝑡) = Δ𝑢, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 0) = sin𝜋𝑥 sin𝜋𝑦, 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑦, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(58)

The initial distribution 𝑢(𝑥, 𝑦, 0) is to be recovered by
using the exact solution

𝑢 (𝑥, 𝑦, 𝑡) = 𝐸
𝛾
(−𝜋

2

𝑡
𝛾

) sin𝜋𝑥 sin𝜋𝑦. (59)

We firstly display the choice of the set 𝑋
𝑁

in Figure 6.
According to the analysis for 1-dimensional case about the
number of 𝐽 and 𝑚, we only deal with the case of 𝑡

0
= 1𝑒 −

10 and 𝑚 = 100. The measurement points {𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑚
}

are scattered in Ω, which are generated using the Matlab
command rand. We report the relative error of 𝑓

𝛼,𝑁,𝜖
for

different final times 𝑇 and noise levels 𝜖 in Table 3 for 𝛾 =

1/2. The numerical comparison between exact solution and
regularized solution is shown in Figure 7. The numerical
results show that the proposed method is acceptable for the
2-dimensional example. We also consider the influence of
varying 𝛾 on the numerical stability. The relative error versus
𝛾 is plotted in Figure 8, from which we can see that the
proposed method is robust about parameter 𝛾.
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5. Conclusion

In this paper, in a reproducing kernel Hilbert space setting,
we propose a numerical reconstruction method, namely, the
discretized Tikhonov regularization method, to recover the
initial temperature distribution of the backward fractional
diffusion problem. The implementation of the proposed
method is simple and easy. Numerical tests show that the
method is efficient.

Appendix

Reproducing the Kernel Hilbert Spaces and
Positive Definite Kernels

Most of the material in this appendix can be found in the
excellent monograph [26]. For the readers’ convenience we
would like to repeat the theoretical results of RKHS. We are
interested in linear vector spaces consisting of functions 𝑓 :

Ω → R defined on a connected domain Ω of R𝑑.

Definition A.1. Let 𝐻 be a Hilbert space consisting of func-
tions 𝑓 : Ω → R. 𝐻 is called a reproducing kernel Hilbert
space and a kernel Φ : Ω × Ω → R is called a reproducing
kernel for𝐻 if

(i) Φ(⋅, 𝑦) ∈ 𝐻 for all 𝑦 ∈ R𝑑,

(ii) 𝑓(𝑦) = (𝑓,Φ(⋅, 𝑦))
𝐻
for all 𝑓 ∈ 𝐻 and all 𝑦 ∈ R𝑑,

where (⋅, ⋅)
𝐻
is the inner product of𝐻.

The reproducing kernel of a RKHS is uniquely deter-
mined. According to [26],𝐻 is a RKHS if and only if the point
evaluation functionals are continuous, that is, 𝛿

𝑦
∈ 𝐻

∗ for all
𝑦 ∈ Ω. Also [26] discloses the connection between RKHS
and positive definite kernels. Here, we call Φ symmetric if
Φ(𝑥, 𝑦) = Φ(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Ω.

Definition A.2. A continuous symmetric Φ : Ω × Ω → R is
called positive definite on Ω ⊂ R𝑑 if, for all 𝑁 ∈ N, all sets
of pairwise distinct centers 𝑋

𝑁
= {𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑁
} ⊂ Ω; the

quadratic form

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝜆
𝑗
𝜆

𝑘
Φ(𝜉

𝑗
, 𝜉

𝑘
) > 0,

∀𝜆 := (𝜆
1
, 𝜆

2
, . . . , 𝜆

𝑁
)

𝑇

∈ R
𝑁

\ {0} .

(A.1)

If Φ is a symmetric positive definite kernel, then a unique
RKHS in which the given kernel acts as the reproducing
kernel can be constructed. Now, it follows from the definition
of RKHS that

(i) Φ(𝑥, 𝑦) = (Φ(⋅, 𝑥), Φ(⋅, 𝑦))
𝐻
for all 𝑥, 𝑦 ∈ Ω,

(ii) ‖𝑓‖2

𝐻
= ∑

𝑁

𝑗=1
∑

𝑁

𝑘=1
𝜆

𝑗
𝜆

𝑘
Φ(𝜉

𝑗
, 𝜉

𝑘
) for all 𝑓 ∈ 𝐻 in the

form of 𝑓 = ∑
𝑁

𝑘=1
𝜆

𝑘
Φ(⋅, 𝜉

𝑘
) with 𝜉

𝑘
∈ Ω.

For a symmetric positive definite kernel, introduce integral
operator 𝑇 : 𝐿

2

(Ω) → 𝐿
2

(Ω) by

𝑇V (𝑥) := ∫
Ω

Φ(𝑥, 𝑦) V (𝑦) 𝑑𝑦, V ∈ 𝐿2

(Ω) , 𝑥 ∈ Ω. (A.2)

By [26, Proposition 10.28], 𝑇 maps 𝐿2

(Ω) continuously into
the RKHS 𝐻 and is the adjoint of the embedding operator
of the RKHS 𝐻 into 𝐿2

(Ω). For such an operator, Mercer’s
theorem [39] shows thatΦ can be represented as

Φ(𝑥, 𝑦) =

∞

∑

𝑗=1

𝜌
𝑗
𝜑

𝑗
(𝑥) 𝜑

𝑗
(𝑦) , 𝑥, 𝑦 ∈ Ω, (A.3)

where {𝜌
𝑗
} are the nonnegative eigenvalues and 𝜑

𝑗
are the

eigenfunctions of 𝑇. This allows us to derive the final
characterization for RKHS𝐻.

Theorem A.3. Suppose Φ is a symmetric positive definite
kernel on a compact set Ω ⊆ R𝑑. Then the RKHS is given by

𝐻 =

{

{

{

𝑓 ∈ 𝐿
2

(Ω) :

∞

∑

𝑗=1

1

𝜌
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓, 𝜑

𝑗
)

𝐿
2
(Ω)

󵄨󵄨󵄨󵄨󵄨󵄨

2

< ∞

}

}

}

(A.4)

and the inner product has the representation

(𝑓, 𝑔)
𝐻
=

∞

∑

𝑛=1

1

𝜌
𝑗

(𝑓, 𝜑
𝑗
)

𝐿
2
(Ω)

(𝑔, 𝜑
𝑗
)

𝐿
2
(Ω)

, 𝑓, 𝑔 ∈ 𝐻. (A.5)

For a finite set of points 𝑋
𝑁
:= {𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑁
} ⊂ Ω and 𝑓 ∈

H, consider the finite sum

𝑆
𝑓,𝑋𝑁

(𝑥) =

𝑁

∑

𝑗=1

𝜆
𝑗
Φ(𝑥, 𝜉

𝑗
) , 𝑥 ∈ Ω, (A.6)

as an approximation of𝑓(𝑥), which is actually the interpolant
function of 𝑓. We also can consider 𝑆

𝑓,𝑋𝑁
in the following

way: define a subspace H
𝑁
:= span{Φ(⋅, 𝜉) | 𝜉 ∈ 𝑋

𝑁
} ⊂ 𝐻.

We define the projection operator 𝑃
𝑁
: H → H

𝑁
⊂ H by

𝑃
𝑁
(𝑓) (𝑥) = 𝑆

𝑓,𝑋𝑁
(𝑥) , 𝑥 ∈ Ω, (A.7)

where 𝑃
𝑁
is an orthogonal projection operator [26]. If the

unknown function 𝑓 belongs to the related RKHS 𝐻, the
error bound for the interpolant 𝑆

𝑓,𝑋𝑁
setup by the reproduc-

ing kernelΦ can be obtained by the following theorem.

TheoremA.4. Let domainΩ be open and bounded, satisfying
an interior cone condition. Suppose that the Φ ∈ 𝐶

2𝑘

(Ω × Ω)

is positive definite. If 𝑓 ∈ 𝐻 and ℎ
𝑋𝑁,Ω

is small enough, then
󵄨󵄨󵄨󵄨󵄨
𝐷

𝛼

𝑓 (𝑥) − 𝐷
𝛼

𝑆
𝑓,𝑋𝑁

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶ℎ

𝑘−|𝛼|

𝑋𝑁,Ω

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
, 𝑥 ∈ Ω, (A.8)

where 𝐶 is a positive constant independent of 𝑥 and 𝑓 and 𝛼 ∈
N𝑑

0
with |𝛼| ≤ 𝑘. Here 𝐷𝛼 denotes a derivative of order 𝛼 =

(𝛼
1
, 𝛼

2
, . . . , 𝛼

𝑑
)
𝑇; that is,

𝐷
𝛼

:=

𝑑

∏

𝑘=1

𝜕
𝛼𝑘

𝜕𝑥
𝛼𝑘

𝑘

. (A.9)
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We first investigate the construction of a fusion frame system in a finite-dimensional Hilbert space F𝑛 when its fusion frame
operator matrix is given and provides a corresponding algorithm. The matrix representations of its local frame operators and
inverse frame operators are naturally obtained. We then study the related properties of the constructed fusion frame systems.
Finally, we implement the construction of fusion frame systems which behave optimally for erasures in some special sense in signal
transmission.

1. Introduction

The theory of frames has gradually become an attractive
research area in the past twenty years. A prominent feature of
frames is redundancy which has two advantages: it makes the
construction of various frames more flexible and it provides
stability and robustness of signal in transmission. This leads
to the rapid development of theory and applications of frames
in past twenty years. We refer to [1–3] and the references
therein for more details about the frame theory and its new
achievements. In applications, we only mention some areas
here such as signal and image processing [4], quantization
[5], capacity of transmission channel [1, 2, 6], coding theory
[7–12], and data transmission technology [13].

But in some modern applications, the data which need
to be handled are so large that the processing procedures
cannot be implemented effectively by using a single frame.
Fusion frames are naturally suitable tools for dealing with
this problem. One can see the systemic introduction of
theory of fusion frames in [14, 15]. In recent years, many
excellent results about the theory and applications of fusion
frames have been achieved at an amazing speed [15–20].
In fact, fusion frames are generalization of conventional
frames and go beyond them. The procedure of using fusion
frame systems to handle information can be described as
follows. A large number of data can be assigned to a set of

small spaces and processed in these subsystems, finally all
the information are fused together at a center. Fusion frames
have been applied to various fields where distributed or
parallel processing is required. For instance, in a coding
transmission process, the encoded and quantized data must
be put in numbers of packets. When one or more packets
are scrambled, lost, or delayed, fusion frames can enhance
the robustness to the packet erasures. Furthermore, we can
see the successful applications of fusion frames in sensors
network [21], transmission coding [22–25], and so forth.

However, some problems about fusion frame systems
are open. Many excellent results about conventional frames
have been obtained and applied successfully, but how to
generalize them to fusion frames? Even in mathematics
application, the relation between the theory of fusion frames
and the interesting fields studied in [26–28] is worth further
researching. It is an appealing subject due to the complexity
of the structure of fusion frames compared with conventional
frames. In this paper, we focus on the matrix representations
of fusion frame operators of fusion frame systems and the
construction of fusion frame systems if their fusion frame
operator matrices are provided. To this end, we first study
the correspondence between frames of a subspace 𝑊 with
dimension 𝑙 of an 𝑛-dimensionalHilbert spaceHwith frames
of Hilbert space F 𝑙, where 𝑙 ≤ 𝑛. We obtain the matrix
representations of the local inverse frame operators and the
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fusion frame operator of a given fusion frame system by using
the correspondence. Based on these matrix representations,
the concrete algorithm for constructing a dual fusion frame
system is provided. Then we investigate the construction
of fusion frame systems, which fusion frame operators are
given. It is essential for constructing fusion frame systems
to get their local frames. We show that the constructed local
frame of a subspace with dimension 𝑙 can inherit some
properties from the corresponding frame of Hilbert space F 𝑙
such as Parseval and harmony. Finally, we give a method for
construction of the optimal fusion frame systems for one local
frame vector erasure.

We organize the structure of this paper as follows. In
Section 2, we introduce and recall some notations, concep-
tions, and some basic theory about frames and fusion frame
systems. Then we recall the method to obtain the matrix
representation of the fusion frame operator of a given fusion
frame system in a finite-dimensional Hilbert space F𝑛. In
Section 3, we study the construction of frames of an 𝑙-
dimensional subspace 𝑊 of F𝑛 by using the corresponding
frames of F 𝑙, where 𝑙 ≤ 𝑛. We then present an algorithm
for constructing a fusion frame system when its fusion frame
operator is given.Moreover, we get thematrix representations
of its local frame operators and inverse frame operators and
research the related characteristics of the constructed fusion
frame systems. The optimal fusion frame systems under
erasures in some particular sense can be obtained by using
our method. An example is given to show the effectiveness of
our construction in imagine coding.

2. Preliminaries

We refer to [1–3, 15, 25] for the details of the basic notations,
concepts, and results about frames and fusion frame systems.
We will adopt the same notations as [25] throughout this
paper. We recall the main concepts and results about the
construction of the matrix representation of the fusion frame
operator of a given fusion frame system in this section.

LetW = {(𝑊
𝑖
, V
𝑖
)}
𝑖∈𝐼

be a fusion frame forH.The analysis
operator ΘW is defined by

ΘW :H 󳨀→ (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

with ΘW (𝑓) = {V𝑖𝑃𝑊𝑖 (𝑓)}𝑖∈𝐼,

(1)

where

(∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

= {{𝑓
𝑖
}
𝑖∈𝐼
| 𝑓
𝑖
∈ 𝑊
𝑖
, {
󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩}𝑖∈𝐼

∈ ℓ
2

(𝐼)} (2)

is called the representation space. The synthesis operator Θ∗W
(the adjoint operator of ΘW) can be defined by

Θ
∗

W : (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

󳨀→H with Θ∗W (𝑓) = ∑
𝑖∈𝐼

V
𝑖
𝑓
𝑖
,

𝑓 = {𝑓
𝑖
}
𝑖∈𝐼
∈ (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

.

(3)

The fusion frame operator 𝑆W forW is defined by

𝑆W (𝑓) = Θ
∗

WΘW (𝑓) = ∑

𝑖∈𝐼

V2
𝑖
𝑃
𝑊𝑖
(𝑓) . (4)

The following result shows how to obtain the global dual
frame from the local dual frames.

Proposition 1 (c.f. [15], Proposition 4.3). Let {(𝑊
𝑖
, V
𝑖
,

{𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖
)}
𝑖∈𝐼

be a fusion frame system for H with associated
fusion frame operator 𝑆W, common local frame bounds, and
local dual frames {𝑓

𝑖𝑗
}
𝑗∈𝐽𝑖

, 𝑖 ∈ 𝐼. Then {V
𝑖
𝑆
−1

W(𝑓𝑖𝑗)}𝑗∈𝐽𝑖,𝑖∈𝐼
is a

dual frame for the frame {V
𝑖
𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖 ,𝑖∈𝐼

.

Because we only consider finite-dimensional Hilbert
spaces, 𝐼will denote the identity operator (matrix) exclusively
in the rest of the paper.

Let {(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
be a fusion frame system for F𝑛;

then the analysis operator of the local frame of𝑊
𝑖
is a 𝑘
𝑖
× 𝑛

matrixΘ
𝐹𝑖
with𝑓∗

𝑖𝑗
as its 𝑗th row and the 𝑛×𝑘

𝑖
matrixΘ∗

𝐹𝑖

is its
synthesis operator. Furthermore, the 𝑖th local frame operator
is an 𝑛 × 𝑛matrix 𝑆

𝐹𝑖
= Θ
∗

𝐹𝑖

Θ
𝐹𝑖
.

Notation. For the purpose of coding of any 𝑓 ∈ F𝑛, Θ
𝐹𝑖

always denote the analysis operator of the system {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
in

F𝑛 throughout this paper. Hence it is a 𝑘
𝑖
× 𝑛 matrix, not a

𝑘
𝑖
× (dim𝑊

𝑖
)matrix.

The following definition is given by [25].

Definition 2. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with
a local frame 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
, where 𝑙 ≤ 𝑛. 𝑆

𝐹
is the local

frame operator of 𝐹. If there exists an operator 𝐴 such that
𝑓 = 𝑆

𝐹
𝐴(𝑓) = 𝐴𝑆

𝐹
(𝑓) holds for all 𝑓 ∈ 𝑊, we call 𝐴 the

inverse of 𝑆
𝐹
in𝑊 and denote it by 𝑆−1

𝐹
.

For any 𝑓 ∈ F𝑛, Θ
𝐹𝑖
𝑓 is its encoding version in sub-

space 𝑊
𝑖
. For obtaining 𝑃

𝑊𝑖
(𝑓) = ∑

𝑘𝑖

𝑗=1
⟨𝑓, 𝑓
𝑖𝑗
⟩𝑓
𝑖𝑗

=

∑
𝑘𝑖

𝑗=1
⟨𝑓, 𝑓
𝑖𝑗
⟩𝑆
−1

𝐹𝑖

𝑓
𝑖𝑗
= Θ
∗

𝐹𝑖

Θ
𝐹𝑖
(𝑓), the following lemma is given

to calculate the matrix representation of 𝑆−1
𝐹𝑖

and the 𝑖th local
dual frame {𝑓

𝑖𝑗
}
𝑘𝑖

𝑗=1
.

Lemma 3 (c.f. [25], Lemma 11). Let 𝑊 be an 𝑙-dimensional
subspace of F𝑛 with an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
and a frame

𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
with frame bounds𝐴, 𝐵, where 𝑙 ≤ 𝑛. Define 𝐿 to be

an 𝑙×𝑛matrix with the vector 𝑒∗
𝑖
as its 𝑖th row for 𝑖 = 1, 2, . . . , 𝑙,

where 𝑒∗
𝑖
is the conjugate-transpose of 𝑒

𝑖
. The sequence 𝐺 =

{𝑔
𝑖
}
𝑘

𝑖=1
is given by 𝑔

𝑖
= 𝐿𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘. Then {𝑔

𝑖
}
𝑘

𝑖=1
is a

frame of F 𝑙 with the same frame bounds as 𝐹. In particular, if
𝐹 is a tight (or Parseval) frame, also is 𝐺.

By applying this lemma, we can obtain a method to
compute the matrix representation of the inverse frame
operator of a subspace endowed with an orthonormal basis
in the following theorem.

Theorem4 (c.f. [25],Theorem 12). Let𝑊 be an 𝑙-dimensional
subspace of F𝑛 with an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
and a frame
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𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
, where 𝑙 ≤ 𝑛. 𝐿 is defined as the above lemma. 𝑆

𝐹
is

the frame operator of 𝐹. Then

𝑆
−1

𝐹
= 𝐿
∗

(𝐿𝑆
𝐹
𝐿
∗

)
−1

𝐿 (5)

is the inverse of 𝑆
𝐹
in𝑊. Moreover, the orthogonal projection

𝑃
𝑊
from 𝐹𝑛 onto𝑊 is 𝑃

𝑊
= 𝑆
−1

𝐹
𝑆
𝐹
= 𝑆
𝐹
𝑆
−1

𝐹
= 𝐿
∗

𝐿.

For a given fusion frame system {(𝑊
𝑖
, V
𝑖
, 𝐹
𝑖
= {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
,

we can calculate the orthonormal basis of its each subspace
by finding the maximally linear independent subset of 𝐹

𝑖

and taking the Gram-Schmidt process on it. Then by using
the above theorem, we derive the matrix representations of
all local inverse frame operators and orthogonal projections
onto the subspaces {𝑊

𝑖
}
𝑚

𝑖=1
. Furthermore, we can compute

the matrix representation of the fusion frame operator by
applying the formula provided by the following proposition.

Proposition 5 (c.f. [25], Proposition 13). Let {(𝑊
𝑖
, V
𝑖
, 𝐹
𝑖
=

{𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
be a fusion frame system for F𝑛, and let 𝐹

𝑖
=

{𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖

, 𝑖 ∈ 𝐼, be the local dual frames given by 𝑓
𝑖𝑗
= 𝑆
−1

𝐹𝑖

𝑓
𝑖𝑗

for all 𝑗 = 1, 2, . . . , 𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑚. Then the matrix

representation of the fusion frame operator is given by

𝑆W =

𝑚

∑

𝑖=1

V2
𝑖
Θ
∗

𝐹𝑖

Θ
𝐹𝑖
=

𝑚

∑

𝑖=1

V2
𝑖
Θ
∗

𝐹𝑖

Θ
𝐹𝑖

=

𝑚

∑

𝑖=1

V2
𝑖
𝑆
−1

𝐹𝑖

𝑆
𝐹𝑖
=

𝑚

∑

𝑖=1

V2
𝑖
𝑆
𝐹𝑖
𝑆
−1

𝐹𝑖

,

(6)

where Θ
𝐹𝑖

and Θ
𝐹𝑖

are the analysis operators of 𝐹
𝑖
and 𝐹

𝑖
,

respectively, and 𝑆
𝐹𝑖
is the frame operator of 𝐹

𝑖
for each 𝑖 ∈ 𝐼.

Given a fusion frame system of a finite-dimensional
Hilbert space F𝑛, thematrix representation of its fusion frame
operator as well as its one dual fusion frame system can
be obtained by using the above two results. The concrete
algorithm is presented in [25].

3. Construction of Fusion Frame Systems

In this section, we research the construction of a fusion frame
system with a given positive invertible matrix 𝑆 as its fusion
frame operator. The constructing approach should include
two stages. First, construct the orthogonal projections of all
subspaces as well as their weights if the fusion frame operator
is given. Secondly, construct the local frames of all subspaces
with the desired properties. By using this method, we can
derive the optimal fusion frame systems for erasures in some
special sense.

3.1. Construction of Fusion Frame Systems. We first recall our
previous work in [19] on the construction of fusion frames
which fusion frame operators are provided. In practise, the
local frames of a fusion frame system are served as coder in
their respective subspaces. The main distribution of this sub-
section is the derivation of the local frames with the expected
characteristics which can be implemented by constructing

frames of F 𝑙𝑖 with the same dimension as subspace𝑊
𝑖
for each

𝑖 ∈ {1, 2, . . . , 𝑚}. And then, we get the construction of fusion
frame systems combined with the previous work.

Notations and Assumptions. We set up some notations that
will be used throughout this subsection. Let 𝑆 be a positive
𝑛 × 𝑛matrix with eigenvalues {𝜆

𝑖
}
𝑛

𝑖=1
where 𝜆

𝑖
> 0 for all 1 ≤

𝑖 ≤ 𝑛 and let 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 be the orthonormal eigenvectors

of 𝑆 corresponding to the eigenvalues 𝜆
𝑖
, respectively, which

form an orthonormal basis of F𝑛. Let𝑚 be a positive integer,
and 𝐿

𝑖
= (𝑒
𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑙𝑖
)
∗; that is, thematrix 𝐿

𝑖
is constituted

by 𝑒∗
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑙

𝑖
as its rows for 𝑖 = 1, 2, . . . , 𝑚, where

𝑒
𝑖𝑗
∈ {𝑒
𝑖
}
𝑛

𝑖=1
and 𝑒

𝑖𝑗1
̸= 𝑒
𝑖𝑗2

when 𝑗
1
̸= 𝑗
2
. Assume that the

matrix [𝐿∗
1
, 𝐿
∗

2
, . . . , 𝐿

∗

𝑚
] has rank 𝑛; that is, the rows of all

𝐿
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 can span the space F𝑛. Set Λ

𝑖
= {𝑗 |

𝑒
∗

𝑖
is one of the rows of 𝐿

𝑗
} for 𝑖 = 1, 2, . . . , 𝑛.

The following theorem provides the method of orthogo-
nal projection decomposition of a given positive matrix.

Theorem 6 (c.f. [19], Theorem 3.2). Let the notations and
assumptions be as described in the previous setup. Let the
positive numbers {V

𝑖
}
𝑚

𝑖=1
satisfy the following condition:

∑

𝑗∈Λ 𝑖

V2
𝑗
= 𝜆
𝑖 (7)

for all 𝑖 = 1, 2, . . . , 𝑚; then the positive matrix 𝑆 has the
following decomposition:

𝑆 =

𝑚

∑

𝑖=1

V2
𝑖
𝑃
𝑖
, (8)

where 𝑃
𝑖
= 𝐿
∗

𝑖
𝐿
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are orthogonal projection

matrices on𝑊
𝑖
= span{𝑒

𝑖𝑗
}
𝑙𝑖

𝑗=1
.

The following proposition provides amethod for the con-
struction of a fusion frame as well as orthonormal projections
on its subspaces with a given fusion frame operator.

Proposition 7 (c.f. [19], Proposition 3.4). Let the notations
and assumptions be as described in the previous setup, and the
positive numbers {V

𝑖
}
𝑚

𝑖=1
satisfy equation (7). Then {(𝑊

𝑖
, V
𝑖
)}
𝑚

𝑖=1

is a fusion frame for F𝑛 with frame operator 𝑆W = 𝑆, where
𝑊
𝑖
= span{𝑒

𝑖𝑗
}
𝑙𝑖

𝑗=1
. In the case that 𝑆 = 𝐴𝐼, we have that if

{V
𝑖
}
𝑚

𝑖=1
satisfies the following condition:

∑

𝑗∈Λ 𝑖

V2
𝑗
= 𝐴, (9)

for all 𝑖 = 1, 2, . . . , 𝑚, where 𝐴 > 0 is a positive real
number; then {(𝑊

𝑖
, V
𝑖
)}
𝑚

𝑖=1
is an 𝐴-tight fusion frame for F𝑛. In

particular, if 𝐴 = 1, then it is a Parseval fusion frame.

Then we will focus on the construction of local frames
of the fusion frames derived by the above proposition. It is
an important step for constructing fusion frame systems. We
first show the following theorem which is the converse of
Lemma 3.
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Theorem 8. Let 𝑊 be an 𝑙-dimensional subspace of F𝑛 with
an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
be a frame

of F 𝑙 with frame bounds 𝐴, 𝐵, where 𝑙 ≤ 𝑛. 𝐿 is defined as
Lemma 3. The sequence 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
is given by 𝑓

𝑖
= 𝐿
∗

𝑔
𝑖
for

𝑖 = 1, 2, . . . , 𝑘. Then 𝐹 is a frame of 𝑊 with the same frame
bounds as 𝐺. In particular, if 𝐺 is a tight (or Parseval) frame,
also is 𝐹.

Proof. For any 𝑓 ∈ 𝑊, we have 𝐿𝑓 =

(⟨𝑓, 𝑒
1
⟩, ⟨𝑓, 𝑒

2
⟩, . . . , ⟨𝑓, 𝑒

𝑙
⟩)
𝑇

∈ F 𝑙 and ‖𝐿𝑓‖
2

=

∑
𝑙

𝑖=1
|⟨𝑓, 𝑒
𝑖
⟩|
2

= ‖𝑓‖
2. Therefore,

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

= 𝐴
󵄩󵄩󵄩󵄩𝐿𝑓
󵄩󵄩󵄩󵄩

2

≤

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨⟨𝐿𝑓, 𝑔𝑖⟩
󵄨󵄨󵄨󵄨

2

=

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨⟨𝑓, 𝐿
∗

𝑔
𝑖
⟩
󵄨󵄨󵄨󵄨

2

=

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨⟨𝑓, 𝑓𝑖⟩
󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩𝐿𝑓
󵄩󵄩󵄩󵄩

2

= 𝐵
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

,

(10)

as required. The particular assertion is obvious.

The following proposition gives the matrix representa-
tions of the local frame operator and inverse frame operator
of a subspace𝑊 of F𝑛 derived by the above theorem.

Proposition 9. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with
an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
be a frame of

F 𝑙 with frame bounds 𝐴, 𝐵, where 𝑙 ≤ 𝑛. 𝐿 and 𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
are

defined as the above theorem. 𝑆
𝐺
is the frame operator of 𝐺.

Then the frame operator of 𝐹 and its inverse are given by

𝑆
𝐹
= 𝐿
∗

𝑆
𝐺
𝐿,

𝑆
−1

𝐹
= 𝐿
∗

𝑆
−1

𝐺
𝐿.

(11)

Moreover, the orthogonal projection 𝑃
𝑊

from 𝐹
𝑛 onto 𝑊 is

𝑃
𝑊
= 𝑆
−1

𝐹
𝑆
𝐹
= 𝑆
𝐹
𝑆
−1

𝐹
= 𝐿
∗

𝐿.

Proof. Let Θ
𝐺

and Θ
∗

𝐺
be the analysis operator and

synthesis operator of 𝐺, respectively; then Θ
∗

𝐹
=

(𝐿
∗

𝑔
1
, 𝐿
∗

𝑔
2
, . . . , 𝐿

∗

𝑔
𝑘
) = 𝐿

∗

Θ
∗

𝐺
is the synthesis operator

of 𝐹. Hence, the frame operator of 𝐹 is 𝑆
𝐹
= Θ
∗

𝐹
Θ
𝐹
=

𝐿
∗

Θ
∗

𝐺
Θ
𝐺
𝐿 = 𝐿

∗

𝑆
𝐺
𝐿.

Since 𝑆
𝐺
is invertible, we will show that 𝑆−1

𝐹
= 𝐿
∗

𝑆
−1

𝐺
𝐿 is

inverse of 𝑆
𝐹
. Note that 𝐿𝐿∗ = 𝐼 and 𝐿∗𝐿𝑓 = 𝑓 for any𝑓 ∈ 𝑊.

Hence, we have

𝑆
−1

𝐹
𝑆
𝐹
𝑓 = 𝐿

∗

𝑆
−1

𝐺
𝐿𝐿
∗

𝑆
𝐺
𝐿𝑓 = 𝐿

∗

𝐿𝑓 = 𝑓,

𝑆
𝐹
𝑆
−1

𝐹
𝑓 = 𝐿

∗

𝑆
𝐺
𝐿𝐿
∗

𝑆
−1

𝐺
𝐿𝑓 = 𝐿

∗

𝐿𝑓 = 𝑓,

(12)

as claimed.The proof of the moreover part is the same as that
of Theorem 12 of [25].

The following two propositions show that the constructed
frame of𝑊 inherits some features of the corresponding frame
of F 𝑙.

Proposition 10. Let 𝑊 be an 𝑙-dimensional subspace of F𝑛

with an orthonormal basis {𝑒
𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
be

a frame of F 𝑙 with frame bounds 𝐴, 𝐵, where 𝑙 ≤ 𝑛. 𝐿 and
𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
are defined as Theorem 8. If 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
is a dual

frame of 𝐺, then 𝐹 = {𝐿
∗

𝑔
𝑖
}
𝑘

𝑖=1
is a dual frame of 𝐹.

Furthermore, if 𝐺 is the canonical one, so is 𝐹.

Proof. For any 𝑓 ∈ 𝑊, we have

𝑘

∑

𝑖=1

⟨𝑓, 𝐿
∗

𝑔
𝑖
⟩ 𝐿
∗

𝑔
𝑖
= 𝐿
∗

𝑘

∑

𝑖=1

⟨𝐿𝑓, 𝑔
𝑖
⟩𝑔
𝑖
=

𝑘

∑

𝑖=1

⟨𝑓, 𝐿
∗

𝑔
𝑖
⟩𝐿
∗

𝑔
𝑖

= 𝐿
∗

𝑘

∑

𝑖=1

⟨𝐿𝑓, 𝑔
𝑖
⟩𝑔
𝑖
= 𝐿
∗

𝐿𝑓 = 𝑓.

(13)

Hence, 𝐹 is a dual frame of 𝐹. If 𝑔
𝑖
= 𝑆
−1

𝐺
𝑔
𝑖
, then 𝑓

𝑖
= 𝐿
∗

𝑔
𝑖
=

𝐿
∗

𝑆
−1

𝐺
𝐿𝐿
∗

𝑔
𝑖
= 𝑆
−1

𝐹
𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘, which implies that 𝐹 is

the canonical dual frame of 𝐹.

Proposition 11. Let 𝑊 be an 𝑙-dimensional subspace of F𝑛

with an orthonormal basis {𝑒
𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘−1

𝑖=0
be a

harmonic frame of F 𝑙, where 𝑙 ≤ 𝑛. 𝐿 and 𝐹 = {𝑓
𝑖
}
𝑘−1

𝑖=0
are

defined as Theorem 8. Then 𝐹 is a harmonic frame of𝑊.

Proof. Since𝐺 is a harmonic frame of F 𝑙, there exists a unitary
𝑈on F 𝑙 such that𝑈𝑘 = 𝐼,𝑈𝑖 ̸= 𝐼 for 1 ≤ 𝑖 ≤ 𝑘−1, and𝑔

𝑖
= 𝑈
𝑖

𝑔
0

for 0 ≤ 𝑖 ≤ 𝑘 − 1. Let 𝐿∗𝑈𝐿 = 𝑉. For any 𝑓 ∈ 𝑊, we have

𝑉𝑉
∗

𝑓 = 𝐿
∗

𝑈𝐿𝐿
∗

𝑈
∗

𝐿𝑓 = 𝑉
∗

𝑉𝑓 = 𝐿
∗

𝑈
∗

𝐿𝐿
∗

𝑈𝐿𝑓

= 𝐿
∗

𝐿𝑓 = 𝑓.
(14)

Therefore,𝑉 is a unitary on𝑊. It is obvious that𝑉𝑖 = 𝐿∗𝑈𝑖𝐿.
So we have 𝑉𝑘 = 𝐿∗𝐿, 𝑉𝑖 ̸= 𝐿∗𝐿 for 1 ≤ 𝑖 ≤ 𝑘 − 1, and 𝑓

𝑖
=

𝐿
∗

𝑔
𝑖
= 𝐿
∗

𝑈
𝑖

𝑔
0
= 𝐿
∗

𝑈
𝑖

𝐿𝐿
∗

𝑔
0
= 𝑉
𝑖

𝑓
0
, which implies that 𝐹 is

a harmonic frame.

Summarizing the related results of this subsection, we can
obtain the algorithm for constructing a required fusion frame
system with a given fusion frame operator 𝑆 as follows.

Step 1. Compute the eigenvalues {𝜆
𝑖
}
𝑛

𝑖=1
and their corre-

sponding independent eigenvectors {ℎ
𝑖
}
𝑛

𝑖=1
of 𝑆.

Step 2. Take the Gram-Schmidt process on {ℎ
𝑖
}
𝑛

𝑖=1
to get an

orthonormal basis {𝑒
𝑖
}
𝑛

𝑖=1
for F𝑛.

Step 3. According to the requirement, construct the matrix
𝐿
𝑖
constituted by this basis as follows:

𝐿
𝑖
=

[
[
[
[

[

←󳨀 𝑒
∗

𝑖1
󳨀→

←󳨀 𝑒
∗

𝑖2
󳨀→

...
←󳨀 𝑒
∗

𝑖𝑙𝑖

󳨀→

]
]
]
]

]

, (15)

for 𝑖 = 1, 2, . . . , 𝑚, where 𝑒
𝑖𝑗
∈ {𝑒
𝑖
}
𝑛

𝑖=1
, and 𝑒

𝑖𝑗1
̸= 𝑒
𝑖𝑗2
, when

𝑗
1
̸= 𝑗
2
.
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Step 4. Resolve (7) to derive the sequence of weights {V
𝑖
}
𝑛

𝑖=1
.

Set 𝑊
𝑖
= span{𝑒

𝑖𝑗
}
𝑙𝑖

𝑗=1
. Use formula (8) to decompose 𝑆 and

get the orthogonal projections 𝑃
𝑊𝑖
, for 𝑖 = 1, 2, . . . , 𝑚. Then

we obtain a required fusion frame {(𝑊
𝑖
, V
𝑖
)}
𝑚

𝑖=1
.

Step 5. Construct the frames 𝐺
𝑖
= {𝑔

𝑖𝑗
}
𝑘𝑖

𝑗=1
in F 𝑙𝑖 with

requirement properties for 𝑖 = 1, 2, . . . , 𝑚.

Step 6. Apply Theorem 8 to compute the local frames 𝐹
𝑖
=

{𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
for 𝑖 = 1, 2, . . . , 𝑚. Then we derive a required fusion

frame system {(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
.

3.2. Construction of Optimal Fusion Frame Systems for Era-
sures. We apply our construction method to obtain optimal
Parseval fusion frame systems for the packet erasure problem
in some special sense in this subsection. Bodmann initiated
in [22] the investigation about the optimality of (𝑚, 𝑘, 𝑛)-
protocols that are used to the packet erasure problem. Let
{𝐵
𝑗
}
𝑚

𝑗=1
be a family of coordinate operators 𝐵

𝑗
: H → K

into a finite-dimensional Hilbert space K of maximal rank
𝑘 that provide a resolution of the identity 𝐼 = ∑

𝑚

𝑗=1
𝐵
∗

𝑗
𝐵
𝑗

for the Hilbert space H = F𝑛, where 𝑚, 𝑘, 𝑛 are positive
integers satisfying 𝑛 < 𝑚𝑘; then the analysis operator Θ of
such a family {𝐵

𝑗
} is called a (𝑚, 𝑘, 𝑛)-protocol.Theoptimality

of (𝑚, 𝑘, 𝑛)-protocols requires to get weighted projective
resolutions of the identity operator: 𝐼 = ∑

𝑚

𝑗=1
𝐵
∗

𝑗
𝐵
𝑗
=

∑
𝑚

𝑗=1
V
𝑖
𝑃
𝑗
, where V

𝑗
> 0, and 𝑃

𝑗
is a projection on some

Hilbert space with rank-𝑘 for 𝑗 = 1, 2, . . . , 𝑚. This can be
also phrased by Parseval fusion frames (Theorem 3.6 of [18]).
Furthermore, optimal Parseval fusion frame systems for one
local frame vector erasure have been depicted inTheorem 4.3
of [18]). We point out that a special type of Parseval fusion
frames that are optimal for the one packet erasure problem
can be easily constructed by using Proposition 7. Moreover,
Parseval fusion frame systems that are optimal for the one
local frame vector erasure problem described by [18] can
be easily constructed by using Theorem 8. Let us recall the
description of the optimal Parseval fusion frames for the one
packet erasure problem.

Definition 12. Let W = {(𝑊
𝑖
, V
𝑖
)}
𝑚

𝑖=1
be a Parseval fusion

frame for an 𝑛-dimension Hilbert space F𝑛 with analysis
operator ΘW. Define the operator 𝐷

𝑗
: (∑
𝑚

𝑖=1
⨁𝑊
𝑖
)
ℓ2

→

(∑
𝑚

𝑖=1
⨁𝑊
𝑖
)
ℓ2

by {𝐷
𝑗
(𝑔)}
𝑖
= 𝛿
𝑗𝑖
𝑔
𝑖
for all 𝑖 = 1, 2, . . . , 𝑚,

where 𝑔 = {𝑔
𝑖
}
𝑚

𝑖=1
∈ (∑
𝑚

𝑖=1
⨁𝑊
𝑖
)
ℓ2

. For any 𝑓 ∈ H, we call
𝐷
𝑗
ΘW𝑓 the 𝑗th coding packet for 𝑗 = 1, 2, . . . , 𝑚. The one

packet erasure reconstruction error 𝑒
1
(W) ofW is defined by

𝑒
1
(W) = max {󵄩󵄩󵄩󵄩Θ

∗

W𝐷𝑖ΘW
󵄩󵄩󵄩󵄩 : 1 ≤ 𝑖 ≤ 𝑚} . (16)

In practise, a signal (vector) 𝑓 ∈ H is encoded as ΘW𝑓

including 𝑚 coding packets and decoded (reconstructed) as
Θ
∗

WΘW𝑓 by using a Parseval fusion frame W. If one packet
is lost in the transmission process, then 𝑒

1
(W) depict the

reconstruction error in the worst case. The optimal Parseval
fusion frame can be used to implement the optimal coding
in this special sense in applications [18, 22]. The following

theorem describe the optimal Parseval fusion frames with a
prescribed number of subspaces and prescribed dimensions
of the subspaces under one subspace (packet) erasure.

Theorem 13 (c.f. [18], Theorem 3.6). LetW = {(𝑊
𝑖
, V
𝑖
)}
𝑚

𝑖=1
be

a Parseval fusion frame for an 𝑛-dimension Hilbert space F𝑛.
Then the following are equivalent.

(i) The Parseval fusion frameW satisfies

𝑒
1
(W) = min {𝑒

1
({(𝑊̃
𝑖
, Ṽ
𝑖
)}
𝑚

𝑖=1

) :

{(𝑊̃
𝑖
, Ṽ
𝑖
)}
𝑚

𝑖=1

is a Parseval fusion

frame with dim 𝑊̃
𝑖

= dim𝑊
𝑖
, ∀1 ≤ 𝑖 ≤ 𝑚} .

(17)

(ii) We have

V2
𝑖
=

dimH

𝑚 ⋅ dim𝑊
𝑖

, ∀1 ≤ 𝑖 ≤ 𝑚. (18)

Moreover, let 𝑓 ∈ H and 𝑓 be the reconstructed vector.
Then we have the following error bound

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
≤

dim H

𝑚 ⋅min {dim𝑊
𝑖
: 1 ≤ 𝑖 ≤ 𝑚}

. (19)

The following proposition which follows from
Proposition 7 and Theorem 13 describe the construction of
one kind of optimal Parseval fusion frames for one packet
erasure.

Proposition 14 (c.f. [19], Proposition 3.8). Let {𝑒
𝑖
}
𝑛

𝑖=1
be an

orthonormal basis for a Hilbert space F𝑛, and let 𝑘 be a positive
integer. Assume that𝑊

𝑗
is a subspace spanned by some elements

in {𝑒
𝑖
}
𝑛

𝑖=1
for 𝑗 = 1, 2, . . . , 𝑚, and span{𝑊

𝑗
}
𝑚

𝑗=1
= H. Let

ℎ
𝑖
be number of subspaces 𝑊

𝑗
that contain 𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑛).

If all dim𝑊
𝑗
are equal to 𝑙 and all ℎ

𝑖
are equal to ℎ, then

{(𝑊
𝑗
, √V𝑗)}

𝑚

𝑗=1
is an optimal Parseval fusion frame for one

packet erasure described in Theorem 13, where V
𝑗
= 𝑛/𝑚𝑙 for

all 1 ≤ 𝑗 ≤ 𝑚.

The optimal Parseval fusion frame systems with local
Parseval frames of prescribed numbers of frame vectors and
prescribed dimensions of subspaces under the erasure of
one local frame vector is presented in [18]. We find that
constructing this kind of fusion frame systems can be reduced
to constructing the conventional optimal Parseval frames
with respect to one frame vector erasure under our method.
Now let us first recall the related knowledge.

Let (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑚
) ∈ ∏

𝑚

𝑖=1
𝑀(𝑘
𝑖
× 𝑘
𝑖
, F) be a vector of

matrices, where 𝐷
𝑖0
= (𝑑
𝑖𝑗
)
𝑘𝑖0
×𝑘𝑖0

, 𝑑
𝑖𝑗
= 𝛿
𝑖,𝑗0
𝛿
𝑗,𝑗0

for some
𝑖
0
∈ {1, 2, . . . , 𝑚}, 𝑗

0
∈ {1, 2, . . . , 𝑘

𝑖0
}, and other matrices are

all zero-matrices, which simulate the erasure of vector 𝑓
𝑖0𝑗0

.
Denote the set of all these matrix vectors byD.
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Definition 15. Let W = {(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
be a Parseval

fusion frame system with local Parseval frames. Let ΘW

denote the analysis operator of the associated fusion frame,
and Θ

𝐹𝑖
the analysis operator of the local frames for 1 ≤

𝑖 ≤ 𝑚. Then the associated 1-erasure of local frame vector
reconstruction error is defined to be

𝑒
∗

1
(W) = max{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑖=1

V2
𝑖
Θ
∗

𝐹𝑖

𝐷
𝑖
Θ
𝐹𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

: (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑚
) ∈ D} .

(20)

The following theorem characterizes the optimal Parseval
fusion frame systems with subspaces of fixed dimensions and
local Parseval frames having fixed numbers of frame vectors
under one local frame vector erasure.

Theorem 16 (c.f. [18], Theorem 4.3). Let W = {(𝑊
𝑖
, V
𝑖
,

{𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
be a Parseval fusion frame system with local

Parseval frames for an 𝑛-dimension Hilbert space F𝑛. Then the
following are equivalent:

(i) The Parseval fusion frame system satisfies 𝑒∗
1
(W) =

min{𝑒∗
1
({(𝑊̃
𝑖
, Ṽ
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
) : {(𝑊̃

𝑖
, Ṽ
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
is

a Parseval fusion frame system with local Parseval
frames satisfying dim 𝑊̃

𝑖
= dim𝑊

𝑖
, for all 1 ≤ 𝑖 ≤ 𝑚}.

(ii) We have

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩

2

=
dim𝑊

𝑖

𝑘
𝑖

, ∀1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘
𝑖
. (21)

Moreover, let 𝑓 ∈ H and 𝑓 be the reconstructed vector.
Then we have the following error bound

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
≤
max {dim𝑊

𝑖
: 1 ≤ 𝑖 ≤ 𝑚}

min {𝑘
𝑖
: 1 ≤ 𝑖 ≤ 𝑚}

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 . (22)

The following proposition can be easily obtained by using
the above theorem together with Proposition 2.1 of [9] and
Theorem 8. We omit its proof.

Proposition 17. Let 𝐺
𝑖
= {𝑔
𝑖𝑗
}
𝑘𝑖

𝑗=1
be the optimal Parseval

frames with 1-erasure of F 𝑙𝑖 for 𝑖 = 1, 2, . . . , 𝑚, let {(𝑊
𝑖
, V
𝑖
, )}
𝑚

𝑖=1

be a Parseval fusion frame of F𝑛 endowed with an orthonormal
basis {𝑒

𝑖𝑗
}
𝑙𝑖

𝑗=1
for each subspace𝑊

𝑖
. Set 𝐿

𝑖
= (𝑒
𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑙𝑖
)
∗,

and 𝐹
𝑖
= {𝑓
𝑖𝑗
= 𝐿
∗

𝑖
𝑔
𝑖𝑗
}
𝑘𝑖

𝑗=1
for all 1 ≤ 𝑖 ≤ 𝑚. Then W =

{(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
is an optimal Parseval fusion frame system

with local Parseval frames for one local frame vector erasure
described in Theorem 16.

The above proposition provide amethod for constructing
the optimal Parseval fusion frame systems for one local frame
vector erasure described in Theorem 16. First, we construct
the optimal Parseval frames for 1-erasure in Hilbert space F 𝑙𝑖
for 𝑖 = 1, 2, . . . , 𝑚. Then, by using the algorithm presented
by the above subsection we can derive the required optimal
Parseval fusion frame system W = {(𝑊

𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘𝑖

𝑗=1
)}
𝑚

𝑖=1
.

Finally, we give a concrete example.

Example 18. Consider Hilbert spaceH = R4, and let

𝑆 =

[
[
[
[
[
[
[
[
[
[

[

22

3
−
2

3
−
2

3
0

−
2

3

22

3
−
2

3
0

−
2

3
−
2

3

22

3
0

0 0 0 6

]
]
]
]
]
]
]
]
]
]

]

. (23)

The eigenvalues of 𝑆 are 𝜆
1
= 𝜆
2
= 8, 𝜆

3
= 𝜆
4
= 6, and the

corresponding orthonormal eigenvectors are given by

𝑒
1
=

[
[
[
[
[
[
[
[
[
[

[

−
√2

2

√2

2

0

0

]
]
]
]
]
]
]
]
]
]

]

, 𝑒
2
=

[
[
[
[
[
[
[
[
[
[
[
[

[

−
√6

6

−
√6

6

2√6

6

0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑒
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
√3

6

−
√3

6

−
√3

6

√3

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝑒
4
=

[
[
[
[
[
[
[
[
[
[
[
[

[

1

2

1

2

1

2

1

2

]
]
]
]
]
]
]
]
]
]
]
]

]

.

(24)

Let𝑊
1
= span{𝑒

1
, 𝑒
2
},𝑊
2
= span{𝑒

1
, 𝑒
3
},𝑊
3
= span{𝑒

1
, 𝑒
4
},

𝑊
4
= span{𝑒

2
, 𝑒
3
},𝑊
5
= span{𝑒

2
, 𝑒
4
}, and𝑊

6
= span{𝑒

3
, 𝑒
4
}.

According to the condition (7), we need positive solutions for
the following equations:

V
1
+ V
2
+ V
3
= 8, V

1
+ V
4
+ V
5
= 8,

V
2
+ V
4
+ V
6
= 6, V

3
+ V
5
+ V
6
= 6.

(25)

These equations have infinite many positive solutions which
can be expressed as

V
1
= 𝑏 + 2, V

2
= 𝑎,

V
3
= V
4
= −𝑎 − 𝑏 + 6,

V
5
= 𝑎, V

6
= 𝑏,

(26)

where 𝑎 + 𝑏 < 2, 𝑎 > 0, 𝑏 > 0. For example, we can take
𝑎 = 𝑏 = 2, then we have V

1
= 4, V

2
= V
3
= V
4
= V
5
= V
6
= 2.

Then we get a fusion frame {(𝑊
𝑖
, V
𝑖
)}
4

𝑖=1
.

We can obtain a harmonic Parseval frame𝐺 = {𝑔
1
, 𝑔
2
, 𝑔
3
}

for F2 by using Example 4.1 in [8], where 𝑔
1
= (√6/3, 0)

𝑇,
𝑔
2

= (−√6/6,√2/2)
𝑇, and 𝑔

3
= (−√6/6, −√2/2)

𝑇.
Since all vectors in 𝐺 have the same norm √6/3, it is an
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optimal Parseval frame for 1-erasure by Proposition 2.1 of [9].
Set

𝐿
1
=

[
[
[
[

[

−
√2

2

√2

2
0 0

−
√6

6
−
√6

6

2√6

6
0

]
]
]
]

]

,

𝐿
2
=

[
[
[
[

[

−
√2

2

√2

2
0 0

−
√3

6
−
√3

6
−
√3

6

√3

2

]
]
]
]

]

,

𝐿
3
=

[
[
[

[

−
√2

2

√2

2
0 0

1

2

1

2

1

2

1

2

]
]
]

]

,

𝐿
4
=

[
[
[
[

[

−
√6

6
−
√6

6

2√6

6
0

−
√3

6
−
√3

6
−
√3

6

√3

2

]
]
]
]

]

,

𝐿
5
=

[
[
[

[

−
√6

6
−
√6

6

2√6

6
0

1

2

1

2

1

2

1

2

]
]
]

]

,

𝐿
6
=

[
[
[

[

−
√3

6
−
√3

6
−
√3

6

√3

2

1

2

1

2

1

2

1

2

]
]
]

]

.

(27)

We compute {𝑓
𝑖𝑗
}
6,3

𝑖=1,𝑗=1
as follows:

𝑓
11
= 𝐿
∗

1
𝑔
1
= (−

√3

3
,
√3

3
, 0, 0)

𝑇

,

𝑓
12
= 𝐿
∗

1
𝑔
2
= (0, −

√3

3
,
√3

3
, 0)

𝑇

,

𝑓
13
= 𝐿
∗

1
𝑔
3
= (

√3

3
, 0, −

√3

3
, 0)

𝑇

,

𝑓
21
= 𝐿
∗

2
𝑔
1
= (−

√3

3
,
√3

3
, 0, 0)

𝑇

,

𝑓
22
= 𝐿
∗

2
𝑔
2
= (

2√3 − √6

12
, −
2√3 + √6

12
, −
√6

12
,
√6

4
)

𝑇

,

𝑓
23
= 𝐿
∗

2
𝑔
3
= (

2√3 + √6

12
, −
2√3 − √6

12
,
√6

12
, −
√6

4
)

𝑇

,

𝑓
31
= 𝐿
∗

3
𝑔
1
= (−

√3

3
,
√3

3
, 0, 0)

𝑇

,

𝑓
32
= 𝐿
∗

3
𝑔
2
= (

2√3 + 3√2

12
, −
2√3 − 3√2

12
,
√2

4
,
√2

4
)

𝑇

,

𝑓
33
= 𝐿
∗

3
𝑔
3
= (

2√3 − 3√2

12
, −
2√3 + 3√2

12
, −
√2

4
, −
√2

4
)

𝑇

,

𝑓
41
= 𝐿
∗

4
𝑔
1
= (−

1

3
, −
1

3
,
2

3
, 0)

𝑇

,

𝑓
42
= 𝐿
∗

4
𝑔
2
= (

2 − √6

12
,
2 − √6

12
, −
4 + √6

12
,
√6

4
)

𝑇

,

𝑓
43
= 𝐿
∗

4
𝑔
3
= (

2 + √6

12
,
2 + √6

12
, −
4 − √6

12
, −
√6

4
)

𝑇

,

𝑓
51
= 𝐿
∗

5
𝑔
1
= (−

1

3
, −
1

3
,
2

3
, 0)

𝑇

,

𝑓
52
= 𝐿
∗

5
𝑔
2
= (

2 + 3√2

12
,
2 + 3√2

12
, −
4 − 3√2

12
,
√2

4
)

𝑇

,

𝑓
53
= 𝐿
∗

5
𝑔
3
= (

2 − 3√2

12
,
2 − 3√2

12
, −
4 + 3√2

12
, −
√2

4
)

𝑇

,

𝑓
61
= 𝐿
∗

6
𝑔
1
= (−

√2

6
, −
√2

6
, −
√2

6
,
√2

2
)

𝑇

,

𝑓
62
= 𝐿
∗

6
𝑔
2
= (

√2

3
,
√2

2
,
√2

3
, 0)

𝑇

𝑓
63
= 𝐿
∗

6
𝑔
3
= (−

√2

6
, −
√2

6
, −
√2

6
, −
√2

2
)

𝑇

.

(28)

Then W = {(𝑊
𝑗
, V
𝑗
, {𝑓
𝑖𝑗
}
3

𝑗=1
)}
6

𝑗=1
is an optimal Parseval

fusion frame system with local Parseval frames under one
local frame vector erasure in the sense of Theorem 16 by
Proposition 17.

The original gray image of windmill is shown in Figure 1.
We encode the data of the image by using the local frames of
the Parseval fusion frame system given by this example.Then
we decode the coded data, where first element of every local
vector is deleted by using the Parseval fusion frame of this
example. The reconstructed image is shown in Figure 2. One
can observe the reconstruction effect by comparing the two
figures.

4. Conclusion

We studied the method for constructing a fusion frame
system in a finite-dimensional Hilbert space F𝑛 according
to its fusion frame operator matrix in this paper. The
corresponding algorithm was given. Then we obtained the
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Figure 1: The original gray image of windmill.

Figure 2:The reconstructed gray image of windmill.The data of the
original image is encoded by the local frames of the Parseval fusion
frame system computed by Example 18.The first coefficient of every
local vector is deleted.The remained data is decoded by the Parseval
fusion frame of Example 18.

matrix representations of its local frame operators and inverse
frame operators and researched the related characteristics of
these fusion frame systems. We provided methods to get the
optimal fusion frame systems for erasures in some special
sense in signal transmission. Finally, we constructed a fusion
frame system as an example by our method and successfully
applied it in image coding.
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Fractional diffusion equation in fractalmedia is an integropartial differential equation parametrized by fractal Hausdorff dimension
and anomalous diffusion exponent. In this paper, the similarity solution of the fractional diffusion equation was considered.
Through the invariants of the group of scaling transformations we derived the integro-ordinary differential equation for the
similarity variable. Then by virtue of Mellin transform, the probability density function 𝑝(𝑟, 𝑡), which is just the fundamental
solution of the fractional diffusion equation, was expressed in terms of Fox functions.

1. Introduction

Standard diffusion in 𝑑-dimensional space, where 𝑑 is a pos-
itive integer, is a process described by Gaussian distribution.
A main feature of the process is the linear relation between
the mean square displacement and time; namely, ⟨𝑟2(𝑡)⟩ ∝

𝑡. Some anomalous diffusion phenomena that take place in
impure media, biological tissues, and porous media can be
simulated by the diffusion model in fractals [1–6]. In recent
years, the fractal theory has been developed rapidly, and it
was found to be closely related to the anomalous diffusion
phenomena [3–12].

In fractal media, the geometric obstacles existing on all
length scales slow down the particle motion in a random
walk. The mean square displacement behaves as [2]

𝑅
2

≡ ⟨𝑟
2

(𝑡)⟩ ∝ 𝑡
2/𝑑𝑤

, (1)

where 𝑑
𝑤
(> 2) is the anomalous diffusion exponent. The

numerical simulation found that on a large class of fractal
structures the general form of the probability density func-
tion 𝑝(𝑟, 𝑡) that the walker is at distance 𝑟 at time 𝑡 from
its starting point at time 𝑡 = 0 obeys asymptotically a non-
Gaussian shape of the form [2, 3]

𝑝 (𝑟, 𝑡) ∼ 𝑡
−𝑑𝑓/𝑑𝑤 exp [−const. × (

𝑟

𝑅
)

𝑢

] ,
𝑟

𝑅
≫ 1, (2)

where 𝑢 = 𝑑
𝑤
/(𝑑
𝑤

− 1) and 𝑑
𝑓
is the fractal Hausdorff

dimension.
In order to simulate the diffusion phenomena in fractal

media, some scholars have introduced fractional diffusion
equations [4, 5, 11–13]. In this paper, we consider the frac-
tional diffusion equation [5, 13]:

𝜕
𝛾

𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

=
1

𝑟
𝑑𝑠−1

𝜕

𝜕𝑟
(𝑟
𝑑𝑠−1

𝜕𝑝

𝜕𝑟
) , 𝑟 > 0, 𝑡 > 0, (3)

where 𝛾 = 2/𝑑
𝑤
, 𝑑
𝑠
= 2𝑑
𝑓
/𝑑
𝑤
is the spectral dimension of

the fractal, and the fractional time derivative on the left hand
side of (3) is defined as the convolution integral [14–20]:

𝜕
𝛾

𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

=
𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝜏) 𝑑𝜏, 0 < 𝛾 < 1, (4)

where Γ(⋅) is Euler’s gamma function. In the limit case, 𝑑
𝑤

→

2 and 𝑑
𝑓

→ 𝑑, (3) reduces to the standard 𝑑-dimensional
diffusion equation.

The fractional calculus has been applied to many fields in
science and engineering, such as viscoelasticity, anomalous
diffusion, biology, chemistry, and control theory [5, 11–13,
15, 19–22]. Researches on the fractional differential equations
attract much attention [15, 23–28]. For linear fractional
differential equations, the integral transforms, including the
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Laplace, Fourier, and Mellin transforms, are usually used to
obtain analytic solutions.

In this paper using the similarity method [29] we solve
(3) with the following initial and boundary conditions and
the conservation condition:

𝑝 (𝑟, 0) = 0, 𝑟 > 0,

𝑝 (∞, 𝑡) = 0, 𝑡 > 0,

𝜔 (𝑑
𝑓
)∫

∞

0

𝑝 (𝑟, 𝑡) 𝑟
𝑑𝑓−1

𝑑𝑟 = 1,

(5)

where 𝜔(𝑑
𝑓
) is a constant, which is defined as

𝜔 (𝑑
𝑓
) =

2𝜋
𝑑𝑓/2

Γ (𝑑
𝑓
/2)

. (6)

We note that the probability density function 𝑝(𝑟, 𝑡) is
just the fundamental solution of the fractional diffusion
equation. The similarity method was used by Gorenflo et al.
[30], Wyss [31], and Buckwar and Luchko [32] for solving
problems of time fractional partial differential equations in
one-dimensional case.

2. Derivation of Similarity Solution

First we determine a symmetric group of scaling transforma-
tions

𝑇
𝛼
: 𝑟 = 𝛼𝑟, 𝑡 = 𝛼

ℎ

𝑡, 𝑝 = 𝛼
𝑙

𝑝, (7)

where 𝛼 > 0 is a parameter and ℎ, 𝑙 are constants to be deter-
mined. Applying the group of scaling transformations (7), the
fractional derivative is converted as follows:

𝜕
𝛾

𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

= 𝛼
𝑙
𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝛼

−ℎ

𝜏) 𝑑𝜏

= 𝛼
𝑙−ℎ𝛾

𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏
󸀠

)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝜏

󸀠

) 𝑑𝜏
󸀠

= 𝛼
𝑙−ℎ𝛾

𝜕
𝛾

𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

,

(8)

where 𝜏
󸀠

= 𝛼
−ℎ

𝜏. Hence the problem (3)–(5) is invariant
under the group (7) if and only if

ℎ =
2

𝛾
, 𝑙 = −𝑑

𝑓
. (9)

So the symmetric group of scaling transformations is deter-
mined:

𝑇
𝛼
: 𝑟 = 𝛼𝑟, 𝑡 = 𝛼

2/𝛾

𝑡, 𝑝 = 𝛼
−𝑑𝑓

𝑝. (10)

Eliminating the parameter 𝛼 leads to two invariants:

𝑟𝑡
−𝛾/2

= 𝑟𝑡
−𝛾/2

, 𝑟
𝑑𝑓
𝑝 = 𝑟
𝑑𝑓
𝑝. (11)

Wedenote the two invariants of the group of the scaling trans-
formation 𝑇

𝛼
as

𝜂 = 𝑟𝑡
−𝛾/2

, 𝐹 = 𝑟
𝑑𝑓
𝑝. (12)

Next we use the transformation

𝑝 (𝑟, 𝑡) = 𝑟
−𝑑𝑓

𝐹 (𝜂) , 𝜂 = 𝑟𝑡
−𝛾/2 (13)

to determine the equations for the similarity solution of the
problem (3)–(5). Calculating derivative we have

𝜕𝑝

𝜕𝑟
= −𝑑
𝑓
𝑟
−𝑑𝑓−1

𝐹 (𝜂) + 𝑟
−𝑑𝑓

𝑡
−𝛾/2

𝐹
󸀠

(𝜂) , (14)

1

𝑟
𝑑𝑠−1

𝜕

𝜕𝑟
(𝑟
𝑑𝑠−1

𝜕𝑝

𝜕𝑟
) = 𝑟
−𝑑𝑓

𝑡
−𝛾

𝐹
󸀠󸀠

(𝜂) + Δ
1
𝑟
−𝑑𝑓−1

𝑡
−𝛾/2

𝐹
󸀠

(𝜂)

+ Δ
2
𝑟
−𝑑𝑓−2

𝐹 (𝜂) ,

(15)
where

Δ
1
= 𝑑
𝑠
− 1 − 2𝑑

𝑓
, Δ
2
= 𝑑
𝑓
(𝑑
𝑓
− 𝑑
𝑠
+ 2) . (16)

For the left hand side of (3), we introduce the new integral
variable

𝜉 = 𝑟𝜏
−𝛾/2

, (17)

we obtain 𝑝(𝑟, 𝜏) = 𝑟
−𝑑𝑓𝐹(𝜉), and

𝜕
𝛾

𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

=
𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝜏) 𝑑𝜏

= −𝑟
2/𝛾−𝑑𝑓−1

𝑡
−𝛾/2−1

𝑑

𝑑𝜂
∫

+∞

𝜂

[(𝜂/𝜉)
−2/𝛾

− 1]
−𝛾

Γ (1 − 𝛾)

× 𝐹 (𝜉) 𝜉
1−2/𝛾

𝑑𝜉.

(18)
Letting

𝑔 (𝑤) =

{{

{{

{

(𝑤
−2/𝛾

− 1)
−𝛾

Γ (1 − 𝛾)
, 0 < 𝑤 < 1,

0, 𝑤 > 1,

(19)

we rewrite (18) as
𝜕
𝛾

𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

= −𝑟
2/𝛾−𝑑𝑓−1

𝑡
−2/𝛾−1

𝑑

𝑑𝜂
∫

+∞

0

𝑔(
𝜂

𝜉
)𝐹 (𝜉) 𝜉

1−2/𝛾

𝑑𝜉.

(20)
From (15) and (20), we obtain the integro-ordinary differ-

ential equation for the similarity variables:

−
𝑑

𝑑𝜂
∫

+∞

0

𝑔(
𝜂

𝜉
)𝐹 (𝜉) 𝜉

−2/𝛾+1

𝑑𝜉

= 𝜂
−2/𝛾+1

𝐹
󸀠󸀠

(𝜂) + Δ
1
𝜂
−2/𝛾

𝐹
󸀠

(𝜂) + Δ
2
𝜂
−2/𝛾−1

𝐹 (𝜂) .

(21)
The conditions (5) are converted to

𝐹 (+∞) = 0, 𝜔 (𝑑
𝑓
)∫

+∞

0

𝐹 (𝜂) 𝜂
−1

𝑑𝜂 = 1. (22)

Considering the integration in (21), we use Mellin trans-
forms for the new problem (21) and (22). The Mellin trans-
form of function 𝑓(𝑥) is defined as [33]

𝑓 (𝑠) = M [𝑓 (𝑥) , 𝑠] = ∫

+∞

0

𝑓 (𝑥) 𝑥
𝑠−1

𝑑𝑥. (23)

ApplyingMellin transformwith respect to 𝜂 to both sides
of (21), we get

(𝑠 − 1) 𝑔 (𝑠 − 1) 𝐹(𝑠 −
2

𝛾
+ 1)
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= ((𝑠 −
2

𝛾
)(𝑠 −

2

𝛾
− 1) − Δ

1
(𝑠 −

2

𝛾
− 1) + Δ

2
)

× 𝐹(𝑠 −
2

𝛾
− 1) .

(24)

Calculating integrations we obtain Mellin transform of the
function 𝑔(𝑤):

𝑔 (𝑠) =
Γ (𝛾 + 𝛾𝑠/2)

𝑠Γ (𝛾𝑠/2)
. (25)

Inserting (25) into (24) and then replacing 𝑠 by 𝑠 + 2/𝛾 + 1 we
obtain the difference equation for the function 𝐹(𝑠):

Γ (𝛾 (𝑠/2 + 1/𝛾 + 1))

Γ (𝛾 (𝑠/2 + 1/𝛾))
𝐹 (𝑠 + 2) = (𝑠

2

+ 𝑠 − Δ
1
𝑠 + Δ
2
) 𝐹 (𝑠) .

(26)

In order to solve the difference equation, we introduce 𝑠 =
2𝑞 and 𝐹(2𝑞) = 𝑇(𝑞), and rewrite (26) into

𝑇 (𝑞 + 1)

𝑇 (𝑞)
= 4(𝑞 +

𝑑
𝑓

2
)(𝑞 + 1 +

𝑑
𝑓
− 𝑑
𝑠

2
)

Γ (𝛾𝑞 + 1)

Γ (𝛾𝑞 + 𝛾 + 1)
.

(27)

A particular solution of (27) is

𝑇 (𝑞) = 𝐶

4
𝑞

Γ (𝑞 + 𝑑
𝑓
/2) Γ (𝑞 + 1 + (𝑑

𝑓
− 𝑑
𝑠
) /2)

Γ (𝛾𝑞 + 1)
, (28)

where 𝐶 is an arbitrary constant. For the solution of (27), we
can multiply 𝑇(𝑞) by any function 𝑌(𝑞) which satisfies 𝑌(𝑞 +

1)/𝑌(𝑞) = 1.
We notice that 𝐹(𝑠) is a Mellin transform defined only in

some strip 0 ≤ 𝜎
1
< Re(𝑠) < 𝜎

2
from the conditions (22). So

(26) is valid only in the overlap of the two strips 𝜎
1
< Re(𝑠) <

𝜎
2
and 𝜎

1
< Re(𝑠 + 2) < 𝜎

2
, and there is no such overlap

unless 𝜎
1
+ 2 < 𝜎

2
. Thus 𝑌(𝑞) cannot have poles; otherwise,

it would have a row of poles separated exactly by one unit. In
addition, 𝑌(𝑞) cannot grow faster than |𝑞| as Im(𝑞) → ∞

in the inversion strip; otherwise the inversion integral would
diverge. Thus 𝑌(𝑞) is a bounded entire function and equals a
constant by Liouville’s theorem.

Therefore, 𝑇(𝑞) has only the form of (28) and we have

𝐹 (𝑠) = 𝑇(
𝑠

2
)

= 𝐶

2
𝑠

Γ (𝑑
𝑓
/2 + 𝑠/2) Γ (1 + (𝑑

𝑓
− 𝑑
𝑠
) /2 + 𝑠/2)

Γ (1 + 𝛾𝑠/2)
.

(29)

It follows from (22) that 𝐹(0) = 1/𝜔(𝑑
𝑓
). Thus we have

𝐶 =
1

𝜔 (𝑑
𝑓
) Γ (𝑑

𝑓
/2) Γ (1 + (𝑑

𝑓
− 𝑑
𝑠
) /2)

. (30)

The inverse Mellin transform of (29) is

𝐹 (𝜂)

=
𝐶

2𝜋𝑖
∫

𝑐+𝑖∞

𝑐−𝑖∞

2
𝑠

Γ (𝑑
𝑓
/2 + 𝑠/2) Γ (1 + (𝑑

𝑓
− 𝑑
𝑠
) /2 + 𝑠/2)

Γ (1 + 𝛾𝑠/2)

× 𝜂
−𝑠

𝑑𝑠.

(31)

Replacing 𝑠 by −𝑠 and using the definition of Fox functions
we obtain [34, 35]

𝐹 (𝜂) = 𝐶𝐻
2,0

1,2
(

𝜂

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1,𝛾/2)

(𝑑𝑓/2,1/2),(1+(𝑑𝑓−𝑑𝑠)/2,1/2)

) . (32)

Inserting the expressions into (13) and using properties of Fox
functions, we obtain the probability density function in terms
of the Fox function:

𝑝 (𝑟, 𝑡) =
𝑑
𝑤
2
−𝑑𝑓𝑡
−𝑑𝑓/𝑑𝑤

𝜔 (𝑑
𝑓
) Γ (𝑑

𝑓
/2) Γ (1 + 𝑑

𝑓
/2 − 𝑑

𝑓
/𝑑
𝑤
)

× 𝐻
2,0

1,2
(

𝑟
𝑑𝑤

2
𝑑𝑤𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1−𝑑𝑓/𝑑𝑤 ,1)

(0,𝑑𝑤/2),(1−𝑑𝑓/𝑑𝑤 ,𝑑𝑤/2)

) .

(33)

For a large class of fractal structures, the spectral dimen-
sion [2] satisfies 𝑑

𝑠
< 2; that is, 𝑑

𝑓
< 𝑑
𝑤
. So the Fox function

in (33) can be expanded into a series by using residue theorem
on the simple poles:

𝑃
𝑎
={

2𝑘

𝑑
𝑤

| 𝑘=0, 1, . . .}∪{
2

𝑑
𝑤

(1 −

𝑑
𝑓

𝑑
𝑤

+ 𝑘) | 𝑘=0, 1, . . .} .

(34)

The series representation for the probability density is calcu-
lated to be

𝑝 (𝑟, 𝑡)

=
2
1−𝑑𝑓𝑡
−𝑑𝑓/𝑑𝑤

𝜔 (𝑑
𝑓
) Γ (𝑑

𝑓
/2) Γ (1 + 𝑑

𝑓
/2 − 𝑑

𝑓
/𝑑
𝑤
)

×

∞

∑

𝑘=0

(−1)
𝑘

𝑘!
× [

Γ (1 − 𝑑
𝑓
/𝑑
𝑤
− 𝑘)

Γ (1 − 𝑑
𝑓
/𝑑
𝑤
− 2𝑘/𝑑

𝑤
)

(
𝑟
𝑑𝑤

2
𝑑𝑤𝑡

)

2𝑘/𝑑𝑤

+

Γ (𝑑
𝑓
/𝑑
𝑤
− 1 − 𝑘)

Γ (1 − 𝑑
𝑓
/𝑑
𝑤
− 2/𝑑

𝑤
(1 − 𝑑

𝑓
/𝑑
𝑤
+ 𝑘))

× (
𝑟
𝑑𝑤

2
𝑑𝑤𝑡

)

2/𝑑𝑤(1−𝑑𝑓/𝑑𝑤+𝑘)

] .

(35)
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Figure 1: Curves of 𝑝(𝑟, 0.25) versus 𝑟 for 𝑑
𝑓

= 1 and for 𝑑
𝑤

= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).
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Figure 2: Curves of 𝑝(𝑟, 0.5) versus 𝑟 for 𝑑
𝑓

= 1 and for 𝑑
𝑤

= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).

3. Discussions and Conclusions

In the limit case, 𝑑
𝑤

→ 2 and 𝑑
𝑓

→ 𝑑, (3) reduces to the 𝑑-
dimensional standard diffusion equation, and the probability
density (35) is simplified to the Gaussian distribution:

𝑝 (𝑟, 𝑡) =
1

(4𝜋𝑡)
𝑑/2

exp(−
𝑟
2

4𝑡
) . (36)

In Figures 1 and 2, we plot the curves of 𝑝(𝑟, 0.25) versus
𝑟 and 𝑝(𝑟, 0.5) versus 𝑟, respectively, for 𝑑

𝑓
= 1 and different

values of 𝑑
𝑤
. In Figures 3 and 4, we plot the curves of

𝑝(𝑟, 0.25) versus 𝑟 and𝑝(𝑟, 0.5) versus 𝑟, respectively, for 𝑑
𝑓
=

1.5 and different values of 𝑑
𝑤
. The figures display that, as the

anomalous diffusion exponent 𝑑
𝑤
increases, the peak value

of the probability density function 𝑝(𝑟, 𝑡) at 𝑟 = 0 decreases.
In addition, as the fractal Hausdorff dimension 𝑑

𝑓
increases

from 1 to 1.5, the peak value of 𝑝(𝑟, 𝑡) at 𝑟 = 0 decreases.
Compared with the similarity method for classic partial

differential equations, the similarity method for fractional
diffusion equation involves the similarity integral variable
𝜉 = 𝑟𝜏

−𝛾/2, and the reduction equation is an integro-ordinary
differential equation for the similarity solution.The obtained
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Figure 3: Curves of 𝑝(𝑟, 0.25) versus 𝑟 for 𝑑
𝑓
= 1.5 and for 𝑑

𝑤
= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).
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Figure 4: Curves of 𝑝(𝑟, 0.5) versus 𝑟 for 𝑑
𝑓
= 1.5 and for 𝑑

𝑤
= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).

probability density 𝑝(𝑟, 𝑡) is just the fundamental solution of
the fractional diffusion equation.
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The relative order of growth gives a quantitative assessment of how different functions scale each other and to what extent they are
self-similar in growth. In this paper for any two positive integers p and q, we wish to introduce an alternative definition of relative
(𝑝, 𝑞)th order which improves the earlier definition of relative (𝑝, 𝑞)th order as introduced by Lahiri and Banerjee (2005). Also
in this paper we discuss some growth rates of entire functions on the basis of the improved definition of relative (𝑝, 𝑞)th order
with respect to another entire function and extend some earlier concepts as given by Lahiri and Banerjee (2005), providing some
examples of entire functions whose growth rate can accordingly be studied.

1. Introduction

A single valued function of one complex variable which
is analytic in the finite complex plane is called an integral
(entire) function. For example, exp, sin, cos, and so forth
are all entire functions. In 1926 Rolf Nevanlinna initiated
the value distribution theory of entire functions which is
a prominent branch of Complex Analysis and is the prime
concern of this paper. Perhaps the Fundamental Theorem of
Classical Algebra which states that “If 𝑓 is a polynomial of
degree 𝑛 with real or complex coefficients, then the equation
𝑓(𝑧) = 0 has at least one root” is the most well known
value distribution theorem, and consequently any such given
polynomial can take any given, real or complex, value. In the
value distribution theory one studies how an entire function
assumes some values and, conversely, what is the influence in
some specific manner of taking certain values on a function.
It also deals with various aspects of the behavior of entire
functions, one of which is the study of their comparative
growth.

For any entire function𝑓, the so-calledmaximummodu-
lus function, denoted by𝑀

𝑓
, is defined on each nonnegative

real value 𝑟 as

𝑀
𝑓
(𝑟) = max

|𝑧|=𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 . (1)

And given two entire functions 𝑓 and 𝑔 the ratio
𝑀
𝑓
(𝑟)/𝑀

𝑔
(𝑟) as 𝑟 → ∞ is called the growth of 𝑓

with respect to 𝑔 in terms of their maximummoduli.
The order of an entire function 𝑓 which is generally used

in computational purpose is defined in terms of the growth
of 𝑓 with respect to the exponential function as

𝜌
𝑓
= lim sup

𝑟→∞

log log 𝑀
𝑓
(𝑟)

log log 𝑀exp 𝑧 (𝑟)
= lim sup

𝑟→∞

log log 𝑀
𝑓
(𝑟)

log (𝑟)
.

(2)

Bernal [1, 2] introduced the relative order between
two entire functions to avoid comparing growth just with
exp 𝑧. Extending the notion of relative order as cited in the
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reference, in this paper we extend some results related to
the growth rates of entire functions on the basis of avoiding
some restriction, introducing a new type of relative order
(𝑝, 𝑞), and revisiting ideas developed by a number of authors
including Lahiri and Banerjee [3].

2. Notation and Preliminary Remarks

Our notation is standard within the theory of Nevanlinna’s
value distribution of entire functions. For short, given a real
function ℎ and whenever the corresponding domain and
range allow it, we will use the notation

ℎ
[0]

(𝑥) = 𝑥,

ℎ
[𝑘]

(𝑥) = ℎ (ℎ
[𝑘−1]

(𝑥)) for 𝑘 = 1, 2, 3, . . .

(3)

omitting the parenthesis when ℎ happens to be the log or
exp function. Taking this into account the order (resp., lower
order) of an entire function 𝑓 is given by

𝜌
𝑓
= lim sup

𝑟→∞

log[2]𝑀
𝑓
(𝑟)

log 𝑟
,

(resp. 𝜆
𝑓
= lim inf

𝑟→∞

log[2]𝑀
𝑓
(𝑟)

log 𝑟
) .

(4)

Let us recall that Juneja et al. [4] defined the order (𝑝, 𝑞)
and lower order (𝑝, 𝑞) of an entire function 𝑓, respectively,
as follows:

𝜌
𝑓
(𝑝, 𝑞) = lim sup

𝑟→∞

log[𝑝]𝑀
𝑓
(𝑟)

log[𝑞]𝑟
,

𝜆
𝑓
(𝑝, 𝑞) = lim inf

𝑟→∞

log[𝑝]𝑀
𝑓
(𝑟)

log[𝑞]𝑟
,

(5)

where 𝑝, 𝑞 are any two positive integers with 𝑝 ≥ 𝑞. These
definitions extended the generalized order 𝜌[𝑙]

𝑓
and general-

ized lower order 𝜆[𝑙]
𝑓
of an entire function 𝑓 considered in [5]

for each integer 𝑙 ≥ 2 since these correspond to the particular
case 𝜌[𝑙]

𝑓
= 𝜌
𝑓
(𝑙, 1) and 𝜆[𝑙]

𝑓
= 𝜆
𝑓
(𝑙, 1). Clearly 𝜌

𝑓
(2, 1) = 𝜌

𝑓

and 𝜆
𝑓
(2, 1) = 𝜆

𝑓
.

In this connection let us recall that if 0 < 𝜌
𝑓
(𝑝, 𝑞) < ∞,

then the following properties hold:

𝜌
𝑓
(𝑝 − 𝑛, 𝑞) = ∞, for 𝑛 < 𝑝,

𝜌
𝑓
(𝑝, 𝑞 − 𝑛) = 0, for 𝑛 < 𝑞,

𝜌
𝑓
(𝑝 + 𝑛, 𝑞 + 𝑛) = 1, for 𝑛 = 1, 2, . . . .

(6)

Similarly for 0 < 𝜆
𝑓
(𝑝, 𝑞) < ∞, one can easily verify that

𝜆
𝑓
(𝑝 − 𝑛, 𝑞) = ∞, for 𝑛 < 𝑝,

𝜆
𝑓
(𝑝, 𝑞 − 𝑛) = 0, for 𝑛 < 𝑞,

𝜆
𝑓
(𝑝 + 𝑛, 𝑞 + 𝑛) = 1, for 𝑛 = 1, 2, . . . .

(7)

Recalling that for any pair of integer numbers 𝑚, 𝑛 the
Kronecker function is defined by 𝛿

𝑚,𝑛
= 1 for 𝑚 = 𝑛 and

𝛿
𝑚,𝑛

= 0 for 𝑚 ̸= 𝑛, the aforementioned properties provide
the following definition.

Definition 1 (see [4]). An entire function 𝑓 is said to have
index-pair (1, 1) if 0 < 𝜌

𝑓
(1, 1) < ∞. Otherwise, 𝑓 is said

to have index-pair (𝑝, 𝑞) ̸= (1, 1), 𝑝 ≥ 𝑞 ≥ 1, if 𝛿
𝑝−𝑞,0

<

𝜌
𝑓
(𝑝, 𝑞) < ∞ and 𝜌

𝑓
(𝑝 − 1, 𝑞 − 1) ∉ R+.

Definition 2 (see [4]). An entire function 𝑓 is said to have
lower index-pair (1, 1) if 0 < 𝜆

𝑓
(1, 1) < ∞. Otherwise, 𝑓

is said to have lower index-pair (𝑝, 𝑞) ̸= (1, 1), 𝑝 ≥ 𝑞 ≥ 1, if
𝛿
𝑝−𝑞,0

< 𝜆
𝑓
(𝑝, 𝑞) < ∞ and 𝜆

𝑓
(𝑝 − 1, 𝑞 − 1) ∉ R+.

An entire function 𝑓 of index-pair (𝑝, 𝑞) is said to be of
regular (𝑝, 𝑞)-growth if its (𝑝, 𝑞)th order coincides with its
(𝑝, 𝑞)th lower order; otherwise 𝑓 is said to be of irregular
(𝑝, 𝑞)-growth.

Given a nonconstant entire function 𝑓 defined in the
open complex plane C its maximum modulus function 𝑀

𝑓

is strictly increasing and continuous. Hence there exists
its inverse function 𝑀

−1

𝑓
: (|𝑓(0)|,∞) → (0,∞) with

lim
𝑠→∞

𝑀
−1

𝑓
(𝑠) = ∞.

Then Bernal [1, 2] introduced the definition of relative
order of 𝑓 with respect to 𝑔, denoted by 𝜌

𝑔
(𝑓) as follows:

𝜌
𝑔
(𝑓) = inf {𝜇 > 0 : 𝑀

𝑓
(𝑟) < 𝑀

𝑔
(𝑟
𝜇

) , ∀𝑟 > 𝑟
0
(𝜇) > 0}

= lim sup
𝑟→∞

log𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log 𝑟
.

(8)

This definition coincides with the classical one [6] if 𝑔 =

exp 𝑧. Similarly one can define the relative lower order of 𝑓
with respect to 𝑔 denoted by 𝜆

𝑔
(𝑓) as

𝜆
𝑔
(𝑓) = lim inf

𝑟→∞

log𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log 𝑟
. (9)

Lahiri and Banerjee [7] gave a more generalized concept
of relative order in the following way.

Definition 3 (see [7]). If 𝑘 ≥ 1 is a positive integer, then the
𝑘th generalized relative order of 𝑓 with respect to 𝑔, denoted
by 𝜌𝑘
𝑓
(𝑔), is defined by

𝜌
𝑘

𝑔
(𝑓) = inf {𝜇 > 0 : 𝑀

𝑓
(𝑟) < 𝑀

𝑔
(exp[𝑘−1]𝑟𝜇) ,

∀𝑟 > 𝑟
0
(𝜇) > 0}

= lim sup
𝑟→∞

log[𝑘]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log 𝑟
.

(10)

Clearly, 𝜌1
𝑔
(𝑓) = 𝜌

𝑔
(𝑓) and 𝜌1exp 𝑧(𝑓) = 𝜌

𝑓
.

In the case of relative order, it was then natural for Lahiri
and Banerjee [3] to define the relative (𝑝, 𝑞)th order of entire
functions as follows.
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Definition 4 (see [3]). Let𝑝 and 𝑞 be any two positive integers
with 𝑝 > 𝑞. The relative (𝑝, 𝑞)th order of 𝑓 with respect to 𝑔
is defined by

𝜌
(𝑝,𝑞)

𝑔
(𝑓) = inf {𝜇 > 0 : 𝑀

𝑓
(𝑟) < 𝑀

𝑔
(exp[𝑝−1] (𝜇 log[𝑞]𝑟)) ,

∀𝑟 > 𝑟
0
(𝜇) > 0}

= lim sup
𝑟→∞

log[𝑝−1]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
.

(11)

Then 𝜌(𝑝,𝑞)exp 𝑧(𝑓) = 𝜌
𝑓
(𝑝, 𝑞) and 𝜌(𝑘+1,1)

𝑔
(𝑓) = 𝜌

𝑘

𝑔
(𝑓) for any 𝑘 ≥

1.

In this paper we give an alternative definition of (𝑝, 𝑞)th
relative order 𝜌(𝑝,𝑞)

𝑔
(𝑓) of an entire function 𝑓 with respect to

another entire function 𝑔, in the light of index-pair. Our next
definition avoids the restriction 𝑝 > 𝑞 and gives the more
natural particular case 𝜌(𝑘,1)

𝑔
(𝑓) = 𝜌

𝑘

𝑔
(𝑓).

Definition 5. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞, 𝑚 are
positive integers such that 𝑚 ≥ max(𝑝, 𝑞). Then the (𝑝, 𝑞)th
relative order of 𝑓 with respect to 𝑔 is defined as

𝜌
(𝑝,𝑞)

𝑔
(𝑓) = lim sup

𝑟→∞

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
. (12)

The (𝑝, 𝑞)th relative lower order of 𝑓 with respect to 𝑔 is
defined by

𝜆
(𝑝,𝑞)

𝑔
(𝑓) = lim inf

𝑟→∞

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
. (13)

The previous definitions are easily generated as particular
cases; for example, if 𝑓 and 𝑔 have got index-pair (𝑚, 1) and
(𝑚, 𝑘), respectively, then Definition 5 reduces to Definition 3.
If the entire functions 𝑓 and 𝑔 have the same index-pair
(𝑝, 1), where 𝑝 is any positive integer, we get the definition of
relative order introduced by Bernal [1] and if 𝑔 = exp[𝑚−1]𝑧,
then 𝜌

𝑔
(𝑓) = 𝜌

[𝑚]

𝑓
and 𝜌

(𝑝,𝑞)

𝑔
(𝑓) = 𝜌

𝑓
(𝑚, 𝑞). And if 𝑓 is an

entire function with index-pair (2, 1) and 𝑔 = exp 𝑧, then
Definition 5 becomes the classical one given in [6].

3. Some Examples

In this section we present some examples of entire functions
in connection with definitions given in the previous section.

Example 6 (order of exp). Given any natural number 𝑛, the
exponential function 𝑓(𝑧) = exp 𝑧𝑛 has got𝑀

𝑓
(𝑟) = exp 𝑟𝑛,

and therefore log[2]𝑀
𝑓
(𝑟)/ log 𝑟 is constantly equal to 𝑛 and,

consequently,

𝜌
𝑓
= 𝜆
𝑓
= 𝑛. (14)

Example 7 (generalized order). Given any natural numbers
𝑘, 𝑛, the function 𝑓(𝑧) = exp[𝑘]𝑧𝑛 has got𝑀

𝑓
(𝑟) = exp[𝑘]𝑟𝑛.

Therefore log[𝑘]𝑀
𝑓
(𝑟)/ log 𝑟 is constantly equal to 𝑛 for each

natural 𝑘 ≥ 2, following that

𝜌
[𝑘+1]

𝑓
= 𝜆
[𝑘+1]

𝑓
= 𝑛. (15)

Note that 𝜌[𝑙]
𝑓
= 𝜆
[𝑙]

𝑓
= +∞ for 2 ≤ 𝑙 ≤ 𝑘 and 𝜌[𝑙]

𝑓
= 𝜆
[𝑙]

𝑓
= 0 for

𝑙 > 𝑘 + 1.

Example 8 (index-pair). Given any four positive integers 𝑘,
𝑛, 𝑝, 𝑞 with 𝑝 ≥ 𝑞, then function 𝑓(𝑧) = exp[𝑘]𝑧𝑛 generates a
constant quotient log[𝑝]𝑀

𝑓
(𝑟)/log[𝑞]𝑟, and clearly

𝜌
𝑓
(𝑝, 𝑞) = 𝜆

𝑓
(𝑝, 𝑞) = 𝑛, for (𝑝, 𝑞) = (𝑘 + 1, 1) (16)

but

𝜌
𝑓
(𝑝, 𝑞) = 𝜆

𝑓
(𝑝, 𝑞)

=

{{

{{

{

1, ∀ (𝑝, 𝑞) such that 𝑝 = 𝑞 + 𝑘, 𝑞 > 1,

∞, ∀ (𝑝, 𝑞) such that 𝑝 < 𝑞 + 𝑘,

0, ∀ (𝑝, 𝑞) such that 𝑝 > 𝑞 + 𝑘.

(17)

Thus 𝑓 is a regular function with growth (𝑘 + 1, 1).

Example 9 (regular function of growth (1,1)). Given any posi-
tive integer 𝑛, and nonnull real number 𝑎, the power function
𝑓(𝑧) = 𝑎𝑧

𝑛 generates a constant quotient log[𝑝]𝑀
𝑓
(𝑟)/log[𝑞]𝑟,

and clearly

𝜌
𝑓
(𝑝, 𝑞) = 𝜆

𝑓
(𝑝, 𝑞) = 𝑛, for (𝑝, 𝑞) = (1, 1) (18)

but

𝜌
𝑓
(𝑝, 𝑞) = 𝜆

𝑓
(𝑝, 𝑞)

=

{{

{{

{

1, ∀ (𝑝, 𝑞) such that 𝑝 = 𝑞, 𝑞 > 1,

∞, ∀ (𝑝, 𝑞) such that 𝑝 < 𝑞,

0, ∀ (𝑝, 𝑞) such that 𝑝 > 𝑞.

(19)

Thus 𝑓 is a regular function with growth (1, 1).

Example 10 (relative order between functions). From the
above examples it follows that given the natural numbers 𝑚,
𝑛 the functions

𝑓 (𝑧) = exp 𝑧𝑚, 𝑔 (𝑧) = exp 𝑧𝑛 (20)

are of regular growth (2, 1). In order to find their relative
order of growth we evaluate

log𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log 𝑟
=
log [log [exp 𝑟𝑚]]1/𝑛

log 𝑟
, (21)

which happens to be constant. Its upper and lower limits
provide

𝜌
𝑔
(𝑓) = 𝜆

𝑔
(𝑓) =

𝑚

𝑛
. (22)
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Example 11 (relative order (𝑝, 𝑞) between functions). Let 𝑘,
𝑚, 𝑛 be any three positive integers and let 𝑓(𝑧) = exp[𝑘]𝑧𝑚

and 𝑔 = exp[𝑘]𝑧𝑛. Then 𝑓 and 𝑔 are regular functions with
(𝑘 + 1, 1)-growth for which

𝜌
𝑓
(𝑘 + 1, 1) = 𝑚, 𝜌

𝑔
(𝑘 + 1, 1) = 𝑛. (23)

In order to find out their (1, 1) relative order we evaluate

log𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log 𝑟
=

log (1/𝑛) {log[𝑘] (exp[𝑘]𝑟𝑚)}
1/𝑛

log 𝑟
, (24)

which happens to be constant. By taking limits, we easily get
that

𝜌
(1,1)

𝑔
(𝑓) = 𝜆

(1,1)

𝑔
(𝑓) =

𝑚

𝑛
. (25)

The orders obtained in the last two examples will be easy
consequences of the results given in Section 4.

4. Results

In this section we state the main results of the paper. We
include the proof of the first main theorem for the sake of
completeness. The others are basically omitted since they are
easily proven with the same techniques or with some easy
reasoning.

Theorem 12. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞, 𝑚 are
all positive integers such that𝑚 ≥ 𝑝 and𝑚 ≥ 𝑞. Then

𝜆
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

≤ 𝜆
(𝑝,𝑞)

𝑔
(𝑓) ≤ min{

𝜆
𝑓
(𝑚, 𝑞)

𝜆
𝑔
(𝑚, 𝑝)

,

𝜌
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

}

≤ max{
𝜆
𝑓
(𝑚, 𝑞)

𝜆
𝑔
(𝑚, 𝑝)

,

𝜌
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

} ≤ 𝜌
(𝑝,𝑞)

𝑔
(𝑓)

≤

𝜌
𝑓
(𝑚, 𝑞)

𝜆
𝑔
(𝑚, 𝑝)

.

(26)

Proof. From the definitions of 𝜌
𝑓
(𝑚, 𝑞) and 𝜆

𝑓
(𝑚, 𝑞)we have

for all sufficiently large values of 𝑟 that

𝑀
𝑓
(𝑟) ≤ exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟} , (27)

𝑀
𝑓
(𝑟) ≥ exp[𝑚] {(𝜆

𝑓
(𝑚, 𝑞) − 𝜀) log[𝑞]𝑟} (28)

and also for a sequence of values of 𝑟 tending to infinity we
get that

𝑀
𝑓
(𝑟) ≥ exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) − 𝜀) log[𝑞]𝑟} , (29)

𝑀
𝑓
(𝑟) ≤ exp[𝑚] {(𝜆

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟} . (30)

Similarly from the definitions of 𝜌
𝑔
(𝑚, 𝑝) and 𝜆

𝑓
(𝑚, 𝑞) it

follows for all sufficiently large values of 𝑟 that

𝑀
𝑔
(𝑟) ≤ exp[𝑚] {(𝜌

𝑔
(𝑚, 𝑝) + 𝜀) log[𝑝]𝑟}

i.e., 𝑟 ≤ 𝑀
−1

𝑔
[exp[𝑚] {(𝜌

𝑔
(𝑚, 𝑝) + 𝜀) log[𝑝]𝑟}]

i.e., 𝑀−1
𝑔
(𝑟) ≥ exp[𝑝] [

log[𝑚]𝑟
(𝜌
𝑔
(𝑚, 𝑝) + 𝜀)

] ,

(31)

𝑀
𝑔
(𝑟) ≥ exp[𝑚] {(𝜆

𝑔
(𝑚, 𝑝) − 𝜀) log[𝑝]𝑟}

i.e., 𝑀−1
𝑔
(𝑟) ≤ exp[𝑝] [

log[𝑚]𝑟
(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

]

(32)

and for a sequence of values of 𝑟 tending to infinity we obtain
that

𝑀
𝑔
(𝑟) ≥ exp[𝑚] {(𝜌

𝑔
(𝑚, 𝑝) − 𝜀) log[𝑝]𝑟}

i.e., 𝑀−1
𝑔
(𝑟) ≤ exp[𝑝] [

log[𝑚]𝑟
(𝜌
𝑔
(𝑚, 𝑝) − 𝜀)

] ,

(33)

𝑀
𝑔
(𝑟) ≤ exp[𝑚] {(𝜆

𝑔
(𝑚, 𝑝) + 𝜀) log[𝑝]𝑟}

i.e., 𝑀−1
𝑔
(𝑟) ≥ exp[𝑝] [

log[𝑚]𝑟
(𝜆
𝑔
(𝑚, 𝑝) + 𝜀)

] .

(34)

Now from (29) and in view of (31), for a sequence of values of
𝑟 tending to infinity we get that

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≥ log[𝑝]𝑀−1
𝑔
[exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) − 𝜀) log[𝑞]𝑟}]

i.e., log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≥ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) − 𝜀) log[𝑞]𝑟}

(𝜌
𝑔
(𝑚, 𝑝) + 𝜀)

]

=

(𝜌
𝑓
(𝑚, 𝑞) − 𝜀)

(𝜌
𝑔
(𝑚, 𝑝) + 𝜀)

log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1

𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
≥

(𝜌
𝑓
(𝑚, 𝑞) − 𝜀)

(𝜌
𝑔
(𝑚, 𝑝) + 𝜀)

.

(35)

As 𝜀(> 0) is arbitrary, it follows that

𝜌
(𝑝,𝑞)

𝑔
(𝑓) ≥

𝜌
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

. (36)
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Analogously from (28) and in view of (34) it follows for a
sequence of values of 𝑟 tending to infinity that

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≥ log[𝑝]𝑀−1
𝑔
[exp[𝑚] {(𝜆

𝑓
(𝑚, 𝑞) − 𝜀) log[𝑞]𝑟}]

i.e., log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≥ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜆

𝑓
(𝑚, 𝑞) − 𝜀) log[𝑞]𝑟}

(𝜆
𝑔
(𝑚, 𝑝) + 𝜀)

]

=

(𝜆
𝑓
(𝑚, 𝑞) − 𝜀)

(𝜆
𝑔
(𝑚, 𝑝) + 𝜀)

log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1

𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
≥

(𝜆
𝑓
(𝑚, 𝑞) − 𝜀)

(𝜆
𝑔
(𝑚, 𝑝) + 𝜀)

.

(37)

Since 𝜀(> 0) is arbitrary, we get from above that

𝜌
(𝑝,𝑞)

𝑔
(𝑓) ≥

𝜆
𝑓
(𝑚, 𝑞)

𝜆
𝑔
(𝑚, 𝑝)

. (38)

Again in view of (32) we have from (27) for all sufficiently
large values of 𝑟 that

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≤ log[𝑝]𝑀−1
𝑔
[exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟}]

i.e., log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≤ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟}

(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

]

=

(𝜌
𝑓
(𝑚, 𝑞) + 𝜀)

(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1

𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
≤

(𝜌
𝑓
(𝑚, 𝑞) + 𝜀)

(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

.

(39)

Since 𝜀(> 0) is arbitrary, we obtain that

𝜌
(𝑝,𝑞)

𝑔
(𝑓) ≤

𝜌
𝑓
(𝑚, 𝑞)

𝜆
𝑔
(𝑚, 𝑝)

. (40)

Again from (28) and in view of (31) with the same reasoning
we get that

𝜆
(𝑝,𝑞)

𝑔
(𝑓) ≥

𝜆
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

. (41)

Also in view of (33), we get from (27) for a sequence of values
of 𝑟 tending to infinity that

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≤ log[𝑝]𝑀−1
𝑔
[exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟}]

i.e., log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≤ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜌

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟}

(𝜌
𝑔
(𝑚, 𝑝) − 𝜀)

]

=

(𝜌
𝑓
(𝑚, 𝑞) + 𝜀)

(𝜌
𝑔
(𝑚, 𝑝) − 𝜀)

log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1

𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
≤

(𝜌
𝑓
(𝑚, 𝑞) + 𝜀)

(𝜌
𝑔
(𝑚, 𝑝) − 𝜀)

.

(42)

Since 𝜀(> 0) is arbitrary, we get from above that

𝜆
(𝑝,𝑞)

𝑔
(𝑓) ≤

𝜌
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

. (43)

Similarly from (30) and in view of (32) it follows for a
sequence of values of 𝑟 tending to infinity that

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≤ log[𝑝]𝑀−1
𝑔
[exp[𝑚] {(𝜆

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟}]

i.e., log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

≤ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜆

𝑓
(𝑚, 𝑞) + 𝜀) log[𝑞]𝑟}

(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

]

=

(𝜆
𝑓
(𝑚, 𝑞) + 𝜀)

(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1

𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
≤

(𝜆
𝑓
(𝑚, 𝑞) + 𝜀)

(𝜆
𝑔
(𝑚, 𝑝) − 𝜀)

.

(44)

As 𝜀(> 0) is arbitrary, from above we obtain that

𝜆
(𝑝,𝑞)

𝑔
(𝑓) ≤

𝜆
𝑓
(𝑚, 𝑞)

𝜆
𝑔
(𝑚, 𝑝)

. (45)

The theorem follows from (36), (38), (40), (41), (43), and (45).

Corollary 13. Let 𝑓 be an entire function with index-pair
(𝑚, 𝑞) and let 𝑔 be an entire of regular (𝑚, 𝑝)-growth, where
𝑝, 𝑞, 𝑚 are all positive integers such that 𝑚 ≥ 𝑝 and 𝑚 ≥ 𝑞.
Then

𝜆
(𝑝,𝑞)

𝑔
(𝑓) =

𝜆
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

, 𝜌
(𝑝,𝑞)

𝑔
(𝑓) =

𝜌
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

. (46)
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In addition, if 𝜌
𝑓
(𝑚, 𝑞) = 𝜌

𝑔
(𝑚, 𝑝), then

𝜌
(𝑝,𝑞)

𝑔
(𝑓) = 𝜆

(𝑞,𝑝)

𝑓
(𝑔) = 1. (47)

Remark 14. The first part of Corollary 13 improves [8, Theo-
rem 2.1 andTheorem 2.2].

Corollary 15. Let 𝑓 and 𝑔 be any two entire functions with
regular (𝑚, 𝑞)-growth and regular (𝑚, 𝑝)-growth, respectively,
where 𝑝, 𝑞, 𝑚 are all positive integers with 𝑚 ≥ max{𝑝, 𝑞}.
Then

𝜆
(𝑝,𝑞)

𝑔
(𝑓) = 𝜌

(𝑝,𝑞)

𝑔
(𝑓) =

𝜌
𝑓
(𝑚, 𝑞)

𝜌
𝑔
(𝑚, 𝑝)

. (48)

Corollary 16. Let 𝑓 and 𝑔 be any two entire functions
with regular (𝑚, 𝑞)th growth and regular (𝑚, 𝑝)th growth,
respectively, where 𝑝, 𝑞, 𝑚 are all positive integers with 𝑚 ≥ 𝑝

and𝑚 ≥ 𝑞. Also suppose that 𝜌
𝑓
(𝑚, 𝑞) = 𝜌

𝑔
(𝑚, 𝑝). Then

𝜆
(𝑝,𝑞)

𝑔
(𝑓) = 𝜌

(𝑝,𝑞)

𝑔
(𝑓) = 𝜆

(𝑞,𝑝)

𝑓
(𝑔) = 𝜌

(𝑞,𝑝)

𝑓
(𝑔) = 1. (49)

Corollary 17. Let 𝑓 and 𝑔 be any two entire functions with
regular growth (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞, 𝑚
are all positive integers such that𝑚 ≥ max{𝑝, 𝑞}. Then

𝜌
(𝑝,𝑞)

𝑔
(𝑓) ⋅ 𝜌

(𝑞,𝑝)

𝑓
(𝑔) = 𝜆

(𝑝,𝑞)

𝑔
(𝑓) ⋅ 𝜆

(𝑞,𝑝)

𝑓
(𝑔) = 1. (50)

Corollary 18. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞,𝑚 are all
positive integers such that𝑚 ≥ 𝑝 and𝑚 ≥ 𝑞. If either𝑓 is not of
regular (𝑚, 𝑞)th growth or 𝑔 is not of regular (𝑚, 𝑝)th growth,
then

𝜆
(𝑝,𝑞)

𝑔
(𝑓) ⋅ 𝜆

(𝑞,𝑝)

𝑓
(𝑔) < 1 < 𝜌

(𝑝,𝑞)

𝑔
(𝑓) ⋅ 𝜌

(𝑞,𝑝)

𝑓
(𝑔) . (51)

Remark 19. Corollaries 17 and 18 can be regarded as an
extension of the Corollaries of [8, Theorems 2.1 and 2.2].

Corollary 20. Let 𝑓 be an entire function with index-pair
(𝑚, 𝑞), where 𝑚, 𝑞 are positive integers with 𝑚 ≥ 𝑞. Then for
any entire function 𝑔,

(i) 𝜆(𝑝,𝑞)
𝑔

(𝑓) = ∞ when 𝜌
𝑔
(𝑚, 𝑝) = 0,

(ii) 𝜌(𝑝,𝑞)
𝑔

(𝑓) = ∞ when 𝜆
𝑔
(𝑚, 𝑝) = 0,

(iii) 𝜆(𝑝,𝑞)
𝑔

(𝑓) = 0 when 𝜌
𝑔
(𝑚, 𝑝) = ∞,

(iv) 𝜌(𝑝,𝑞)
𝑔

(𝑓) = 0 when 𝜆
𝑔
(𝑚, 𝑝) = ∞,

where 𝑝 is any positive integer with𝑚 ≥ 𝑝.

Remark 21. The first part of Corollary 20 improves [8, Theo-
rem 2.3].

Corollary 22. Let 𝑔 be an entire function with index-pair
(𝑚, 𝑝), where 𝑚, 𝑝 are positive integers with 𝑚 ≥ 𝑝. Then for
any entire function 𝑓,

(i) 𝜌(𝑝,𝑞)
𝑔

(𝑓) = 0 when 𝜌
𝑓
(𝑚, 𝑞) = 0,

(ii) 𝜆(𝑝,𝑞)
𝑔

(𝑓) = 0 when 𝜆
𝑓
(𝑚, 𝑞) = 0,

(iii) 𝜌(𝑝,𝑞)
𝑔

(𝑓) = ∞ when 𝜌
𝑓
(𝑚, 𝑞) = ∞,

(iv) 𝜆(𝑝,𝑞)
𝑔

(𝑓) = ∞ when 𝜆
𝑓
(𝑚, 𝑞) = ∞,

where 𝑞 is any positive integer such that𝑚 ≥ 𝑞.

Example 23 (relative order between polynomials). To sim-
plify let us consider any two given natural numbers 𝑚 and
𝑛 and 𝑎 ∈ R, 𝑎 ̸= 0, so that

𝑓 (𝑧) = 𝑧
𝑚

, 𝑔 (𝑧) = 𝑎𝑧
𝑛

. (52)

Then

𝜌
𝑓
(1, 1) = 𝜆

𝑓
(1, 1) = 𝑚, 𝜌

𝑔
(1, 1) = 𝜆

𝑔
(1, 1) = 𝑛.

(53)

Now

𝜌
(1,1)

𝑔
(𝑓) = 𝜆

(1,1)

𝑔
(𝑓) =

𝜌
𝑓
(1, 1)

𝜌
𝑔
(1, 1)

=
𝑚

𝑛
. (54)

Example 24 (relative order between exponentials of the same
order). Let 𝑛 be any natural number and 𝑎 any positive real
number and consider

𝑓 (𝑧) = exp 𝑧𝑛, 𝑔 (𝑧) = exp (𝑎𝑧)𝑛. (55)

In this case𝑓 and𝑔 are two entire functionswith regular (2, 1)
growth; thus

𝜆
(1,1)

𝑔
(𝑓) = 𝜌

(1,1)

𝑔
(𝑓) =

𝜌
𝑓
(2, 1)

𝜌
𝑔
(2, 1)

=
𝑛

𝑛
= 1. (56)

Clearly

𝜌
(1,1)

𝑓
(𝑔) = 𝜆

(1,1)

𝑓
(𝑔) = 1. (57)

Example 25 (relative order between exponential and power
function). Let𝑚, 𝑛 be any two natural numbers and consider

𝑓 = exp 𝑧𝑚, 𝑔 = 𝑧
𝑛

. (58)

Then

𝜌
𝑓
= 𝜆
𝑓
= 𝑚, 𝜌

𝑔
= 𝜆
𝑔
= 0. (59)

Now

𝜌
(1,1)

𝑔
(𝑓) = 𝜆

(1,1)

𝑔
(𝑓) = ∞,

𝜌
(1,1)

𝑓
(𝑔) = 𝜆

(1,1)

𝑓
(𝑔) = 0.

(60)

When 𝑓 and 𝑔 are any two entire functions with index-
pair (𝑚, 𝑞) and (𝑛, 𝑝), respectively, where 𝑝, 𝑞, 𝑚, 𝑛 are all
positive integers such that 𝑚 ≥ 𝑞 and 𝑛 ≥ 𝑝, but 𝑚 ̸= 𝑛, the
next definition enables studying their relative order.
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Definition 26. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑛, 𝑝), respectively, where 𝑝, 𝑞,𝑚, 𝑛 are
all positive integers such that𝑚 ≥ 𝑞 and 𝑛 ≥ 𝑝. If𝑚 > 𝑛, then
the relative (𝑝+𝑚−𝑛, 𝑞)th order (resp., relative (𝑝+𝑚−𝑛, 𝑞)th
lower) of 𝑓 with respect to 𝑔 is defined as

(i)

𝜌
(𝑝+𝑚−𝑛,𝑞)

𝑔
(𝑓) = lim sup

𝑟→∞

log[𝑝+𝑚−𝑛]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
,

(resp. 𝜆(𝑝+𝑚−𝑛,𝑞)
𝑔

(𝑓) = lim inf
𝑟→∞

log[𝑝+𝑚−𝑛]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞]𝑟
) .

(61)

If𝑚 < 𝑛, then the relative (𝑝, 𝑞+𝑛−𝑚)th order (resp., relative
(𝑝, 𝑞 + 𝑛 − 𝑚)th lower) of 𝑓 with respect to 𝑔 is defined as

(ii)

𝜌
(𝑝, 𝑞+𝑛−𝑚)

𝑔
(𝑓) = lim sup

𝑟→∞

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞+𝑛−𝑚]𝑟
,

(resp. 𝜆(𝑝, 𝑞+𝑛−𝑚)
𝑔

(𝑓) = lim inf
𝑟→∞

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞+𝑛−𝑚]𝑟
) .

(62)

The following result is easy to check.

Theorem27. Under the hypothesis of Definition 26, for𝑚 > 𝑛:
(i)

𝜌
(𝑝+𝑚−𝑛, 𝑞)

𝑔
(𝑓) = lim sup

𝑟→∞

log[𝑚]𝑀
𝑓
(𝑟)

log[𝑞]𝑟
,

𝜆
(𝑝+𝑚−𝑛, 𝑞)

𝑔
(𝑓) = lim inf

𝑟→∞

log[𝑚]𝑀
𝑓
(𝑟)

log[𝑞]𝑟
,

(63)

and for𝑚 < 𝑛:
(ii)

𝜌
(𝑝, 𝑞+𝑛−𝑚)

𝑔
(𝑓) = lim sup

𝑟→∞

log[𝑝]𝑟
log[𝑛]𝑀

𝑔
(𝑟)

,

𝜆
(𝑝, 𝑞+𝑛−𝑚)

𝑔
(𝑓) = lim inf

𝑟→∞

log[𝑝]𝑟
log[𝑛]𝑀

𝑔
(𝑟)

.

(64)

The next example will make an alternative use of
Theorem 27.

Example 28 (relative order between exponentials of different
order). Let

𝑓 (𝑧) = exp[27]𝑧5, 𝑔 (𝑧) = exp[50]𝑧17. (65)

In this case 𝑓 and 𝑔 are entire functions of regular growth
(𝑚, 𝑝) = (28, 1) and (𝑛, 𝑞) = (51, 1), respectively, with

𝜌
𝑓
(28, 1) = 𝜆

𝑓
(28, 1) = 5, 𝜌

𝑔
(51, 1) = 𝜆

𝑔
(51, 1) = 17.

(66)

Now

log[𝑝]𝑀−1
𝑔
𝑀
𝑓
(𝑟)

log[𝑞+𝑛−𝑚]𝑟
=

log [log[50] (exp[27]𝑟5)]
1/17

log[24]𝑟
(67)

and by taking lim sup and lim inf, we get

𝜌
(𝑝,𝑞+𝑛−𝑚)

𝑔
(𝑓) =

1

17
= 𝜆
(𝑝,𝑞+𝑛−𝑚)

𝑔
(𝑓) . (68)

Obviously, the same limit is achieved if, by usingTheorem 27,
we consider the quotient

log[𝑝]𝑟
log[𝑛]𝑀

𝑔
(𝑟)

=
log 𝑟

log[51]𝑀
𝑔
(𝑟)

. (69)

Reciprocally, in order to evaluate 𝜌
(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔) and

𝜆
(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔), we would take limits in either

log[24]𝑀−1
𝑓
𝑀
𝑔
(𝑟)

log 𝑟

=

log[24][log[27] (exp[50]𝑟17)]
1/5

log 𝑟
or

log[51]𝑀
𝑔
(𝑟)

log 𝑟
,

(70)

obtaining that

𝜌
(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔) = 17 = 𝜆

(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔) . (71)

5. Conclusion

The main aim of the paper is to extend and modify the
notion of order to relative order of higher dimensions in case
of entire functions as the relative order of growth gives a
quantitative assessment of how different functions scale each
other and to what extent they are self-similar in growth, and
in this connection we have established some theorems. In
fact, some works on relative order of entire functions and
the growth estimates of composite entire functions on the
basis of it have been explored in [8–15]. Actually we are
trying to generalize the growth properties of composite entire
functions on the basis of relative (𝑝, 𝑞)th order and relative
(𝑝, 𝑞)th lower order and, analogously, we may also define
relative (𝑝, 𝑞)th order of meromorphic functions in order to
establish related growth properties, improving the results of
[16–18]. For any two positive integers 𝑝 and 𝑞, we are trying
to establish the concepts of relative (𝑝, 𝑞)th type and relative
(𝑝, 𝑞)th weak type of entire and meromorphic functions,
too, in order to determine the relative growth of two entire
or meromorphic functions having the same nonzero finite
relative (𝑝, 𝑞)th order or relative (𝑝, 𝑞)th lower order with
respect to another entire function, respectively.Moreover, the
notion of relative order, relative type, and relative weak type
of higher dimensionsmay also be applied in the field of slowly
changing functions and also in case of entire ormeromorphic
functions of several complex variables.
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The results of this paper in connection with Nevanlinna’s
value distribution theory of entire functions on the basis
of relative (𝑝, 𝑞)th order and relative (𝑝, 𝑞)th lower order
may have a wide range of applications in complex dynamics,
factorization theory of entire functions of single complex
variable, the solution of complex differential equations, and
so forth. In fact complex dynamics is a thrust area in modern
function theory and it is solely based on the study of fixed
points of entire functions as well as the normality of them.
For further details in the progress of research in complex
dynamics via Nevanlinna’s value distribution theory one
may see [19–24]. Factorization theory of entire functions
is another branch of applications of Nevanlinna’s theory
which actually deals with how a given entire function can
be factorized into other simpler entire functions in the sense
of composition. Also Nevanlinna’s value distribution theory
has immense applications into the study of the properties of
the solutions of complex differential equations and is still an
active area of research.
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The 𝑍-transform has played an important role in signal processing. In this paper the 𝑍-transform has been generalized by the
coupling of both the 𝑍-transform and the local fractional complex calculus. In the literature the local fractional 𝑍-transform is
applied to analyze signals, in the following it will be used to analyze signals on Cantor sets. Some examples are also given to show
the efficiency and accuracy for handling the signals on Cantor sets.

1. Introduction

Integral transforms [1, 2], such as Fourier, Laplace, Mellin,
Hilbert, and Hankel transforms, play important roles in
solving the mathematical problems arising in applied math-
ematics, mathematical physics, and engineering science. In
recent years, fractional calculus [3–11] was developed and
used to model also some anomalous behaviors of diffusion
[12–21] and transport [22–27]. Fractional integral transforms
are suitable generalizations of the classical ones and were
recently proposed by some researchers. For example, the
fractional Fourier transforms were considered in [28, 29].
In [30], the fractional Hilbert transform was presented. The
fractional Mellin transform [31, 32] was proposed to be used
in image encryption. The fractional wavelet transform was
presented and some applicationswere investigated in [33–35].
In [36], the fractionalHankel transformwas reported in order
to research the charge-amplitude state representations.

The 𝑍-transform method [1, 2, 37] was applied to handle
the linear time-invariant discrete-time systems (LTI discrete-
time systems) and difference equations in 𝑍-domain. How-
ever, the fractional derivative and integrals (the fractional
PDIs) were used to transfer the fractional LTI discrete-time
systems to 𝑍-domain [38]. There appear signals defined on

Cantor sets, which are the most striking properties of non-
differentiable functions. The classical 𝑍-transform method
and PDIs did not deal with them. In order to overcome
them, local fractional calculus [39–43] may be applied to
handle the function defined onCantor sets shown in Figure 1.
The local fractional integral transforms via local fractional
calculus theory were proposed in [44–51]. For example, local
fractional Fourier transforms reported in [40, 44] were used
to find nondifferentiable solutions for local fractional ODEs
and PDEs [45–47]. Laplace transforms via local fractional
calculus [40] were generalized and reported in order to solve
the local fractional ODEs and PDEs [48–50].

Fractal signal processing [51–59] is a hot topic for scien-
tists and engineers. Very recently, the concept of the𝑍-trans-
formmethod via local fractional calculuswas considered only
in [60]. However, there is no report on signal processing
by using the local fractional 𝑍-transforms. The main aim of
this paper is to investigate the properties of local fractional
𝑍-transforms and to present some examples for processing
signals defined on Cantor sets.

The paper is organized as follows. In Section 2, the con-
cepts of local fractional complex derivatives and integrals
are given. In Section 3, the notions and properties of local
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Figure 1: The chart of the signal 𝑦(𝑡) defined on Cantor sets.

fractional 𝑍-transform method are presented. In Section 4,
some examples and applications of this method are shown.
Finally, Section 5 is the conclusions.

2. Local Fractional Derivatives and Integrals of
Complex Functions and Recent Results

In this section, we introduce the concepts of local fraction
derivative and integrals of complex functions. Let us first give
the local fractional continuity of complex functions.

Definition 1 (see [40, 60]). The function 𝑓(𝑧) is said to be
local fractional continuous at 𝑧

0
if there exists

lim
𝑧→𝑧0

𝑓 (𝑧) = 𝑓 (𝑧
0
) . (1)

There is the local fractional continuous relation in the fol-
lowing form:

𝑓 (𝑧) ∈ 𝐶
𝛼
(R) , (2)

where

lim
𝑧→𝑧0

𝑓 (𝑧) = 𝑓 (𝑧
0
) , 𝑧, 𝑧

0
∈ R. (3)

Definition 2 (see [40, 60]). The local fractional derivative of
complex function 𝑓(𝑧) of order 𝛼 is defined as

𝑓
(𝛼)

(𝑧) =
𝑑
𝛼

𝑓 (𝑧)

𝑑
𝛼
𝑧

= lim
𝑧→𝑧0

Δ
𝛼

𝑓 (𝑧)

(𝑧 − 𝑧
0
)
𝛼
, 𝛼 ∈ (0, 1] , (4)

where

Δ
𝛼

𝑓 (𝑧) ≅ Γ (1 + 𝛼) (𝑓 (𝑧) − 𝑓 (𝑧
0
)) . (5)

If the limit of (4) exists for all 𝑧
0
in a region R, then the

complex function 𝑓(𝑧) is said to be local fractional analytic
in a regionR.

The properties of the local fractional derivatives of some
complex functions are presented as follows [40]:

𝑑
𝛼

𝑧
𝑘𝛼

𝑑𝑧
𝛼

=
Γ (1 + 𝑘𝛼)

Γ (1 + (𝑘 − 1) 𝛼)
𝑧
(𝑘−1)𝛼

,

𝑑
𝛼

𝐸
𝛼
(𝑧
𝛼

)

𝑑𝑧
𝛼

= 𝐸
𝛼
(𝑧
𝛼

) ,

𝑑
𝛼sin
𝛼
𝑧
𝛼

𝑑𝑧
𝛼

= cos
𝛼
𝑧
𝛼

,

𝑑
𝛼cos
𝛼
𝑧
𝛼

𝑑𝑧
𝛼

= −sin
𝛼
𝑧
𝛼

,

(6)

where

𝐸
𝛼
(𝑧
𝛼

) =

∞

∑

𝑘=0

𝑧
𝛼𝑘

Γ (1 + 𝑘𝛼)
,

sin
𝛼
𝑧
𝛼

=

∞

∑

𝑘=0

(−1)
𝑘

𝑧
𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]
,

cos
𝛼
𝑧
𝛼

=

∞

∑

𝑘=0

(−1)
𝑘

𝑧
2𝛼𝑘

Γ (1 + 2𝛼𝑘)
.

(7)

Definition 3 (see [40, 46–50, 60]). The local fractional inte-
gral of complex function 𝑓(𝑧) of order 𝛼 along the closed
contour 𝐶 is defined as

𝐼
𝛼

𝐶
𝑓 (𝑧) =

1

Γ (1 + 𝛼)
∮

𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼

, 𝛼 ∈ (0, 1] . (8)

The properties of the local fractional integrals of some
complex functions are suggested as follows [40]:

1

Γ (1 + 𝛼)
∫

𝐶

(𝑓 (𝑧) + 𝑔 (𝑧)) (𝑑𝑧)
𝛼

=
1

Γ (1 + 𝛼)
∫

𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼

+
1

Γ (1 + 𝛼)
∫

𝐶

𝑔 (𝑧) (𝑑𝑧)
𝛼

,

1

Γ (1 + 𝛼)
∫

𝐶1+𝐶2

𝑓 (𝑧) (𝑑𝑧)
𝛼

=
1

Γ (1 + 𝛼)
∫

𝐶1

𝑓 (𝑧) (𝑑𝑧)
𝛼

+
1

Γ (1 + 𝛼)
∫

𝐶2

𝑓 (𝑧) (𝑑𝑧)
𝛼

,

1

Γ (1 + 𝛼)
∫

𝐶1

𝑓 (𝑧) (𝑑𝑧)
𝛼

= −
1

Γ (1 + 𝛼)
∫

−𝐶1

𝑓 (𝑧) (𝑑𝑧)
𝛼

.

(9)

Theorem 4 (see [40]). If 𝑓(𝑧) is local fractional analytic
within and on a simple closed contour 𝐶 and 𝑎 is any point
interior to 𝐶, then we have

1

(2𝜋)
𝛼

𝑖
𝛼

⋅ {
1

Γ (1 + 𝛼)
∮

𝐶

𝑓 (𝑧)

(𝑧 − 𝑧
0
)
𝛼
(𝑑𝑧)
𝛼

} =
𝑓 (𝑧
0
)

Γ (1 + 𝛼)
.

(10)

Proof. See [40].
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Definition 5 (see [40, 60]). If 𝑧
0
is an isolated singular point

of 𝑓(𝑧), then we have a local fractional Laurent series of 𝑓(𝑧)

at 𝐶 : |𝑧 − 𝑧
0
| < 𝑟 given by

𝑓 (𝑧) =

∞

∑

𝑖=−∞

𝑎
𝑘
(𝑧 − 𝑧

0
)
𝑘𝛼

. (11)

The coefficient 𝑎
−1

of (𝑧 − 𝑧
0
)
−𝛼 is called the local fractional

residue of 𝑓(𝑧) at 𝑧 = 𝑧
0
and is frequently written as

Re
𝑧=𝑧0

𝑠 {𝑓 (𝑧)} = 𝑎
−1

. (12)

Theorem 6 (see [40]). If 𝑓(𝑧) is local fractional analytic
within and on the boundary𝐶 of a regionR except at a number
of poles 𝑎 withinR, having a residue 𝑎

−1
, then

1

(2𝜋)
𝛼

𝑖
𝛼

⋅ {
1

Γ (1 + 𝛼)
∮

𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼

} = Re
𝑧=𝑧0

𝑠 {𝑓 (𝑧)} .

(13)

Proof. See [40].

Theorem 7 (see [40]). If 𝑓(𝑧) is local fractional analytic
within and on the boundary𝐶 of a regionR except at a number
of poles 𝑎 withinR, having numbers of residues, then

1

(2𝜋)
𝛼

𝑖
𝛼

⋅ {
1

Γ (1 + 𝛼)
∮

𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼

} =

𝑛

∑

𝑖=1

Re
𝑧=𝑧𝑘

𝑠 {𝑓 (𝑧)} .

(14)

Proof. See [40].

3. Local Fractional 𝑍-Transforms and
Their Properties

In this section, we give the local fractional 𝑍-transforms and
their properties.

Definition 8 (see [60]). Local fractional 𝑍-transform of 𝑓(𝑛)

of order 𝛼 is defined as

𝑍
𝛼
{𝑓 (𝑛)} = 𝐹

𝛼
(𝑧) =

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
−𝑛𝛼

, (15)

where the above formula is convergent.

For a given sequence, the set R of values of 𝑧 for which
its local fractional𝑍-transform converges is called the region
of convergence (ROC), namely,

∞

∑

𝑛=∞

󵄨󵄨󵄨󵄨𝑓 (𝑛) 𝑧
−𝑛𝛼󵄨󵄨󵄨󵄨 < ∞. (16)

The inverse formula of local fractional 𝑍-transform of 𝑓(𝑛)

of order 𝛼 reads as follows (see [60]):

𝑍
−1

𝛼
{𝐹
𝛼
(𝑧)} = 𝑓 (𝑛)

=
1

(2𝜋𝑖)
𝛼

Γ (1 + 𝛼)
∮

𝐶

𝐹
𝛼
(𝑧) 𝑧
(𝑛−1)𝛼

(𝑑𝑧)
𝛼

,

(17)

where 𝐶 is a counterclockwise closed fractal path encircling
the origin and entirely in the region of convergence.

Let 𝑍
𝛼
{𝑓(𝑛)} = 𝐹

𝛼
(𝑧) within the region of convergence

R
1
and let 𝑍

𝛼
{𝑔(𝑛)} = 𝐺

𝛼
(𝑧) within the region of conver-

genceR
2
.

Property 1 (linearity). We have

𝑍
𝛼
{𝑓 (𝑛) + 𝑔 (𝑛)} = 𝐹

𝛼
(𝑧) + 𝐺

𝛼
(𝑧) (18)

within the region of convergenceR
1
∩ R
2
.

Proof. From (15) we have

𝑍
𝛼
{𝑓 (𝑛) + 𝑔 (𝑛)} =

∞

∑

𝑛=∞

(𝑓 (𝑛) + 𝑔 (𝑛)) 𝑧
−𝑛𝛼

= 𝑍
𝛼
{𝑓 (𝑛)} + 𝑍

𝛼
{𝑔 (𝑛)}

(19)

within the region of convergenceR
1
∩ R
2
.

Property 2 (time shifting). If the variable 𝑧 has a useful inter-
pretation in terms of time delay, then we have

𝑍
𝛼
{𝑓 (𝑛 − 𝑘)} = 𝑧

−𝑧𝛼

𝐹
𝛼
(𝑧) . (20)

Proof. From (15), we have

𝑍
𝛼
{𝑓 (𝑛 − 𝑘)} =

∞

∑

𝑛=∞

𝑓 (𝑛 − 𝑘) 𝑧
−𝑛𝛼

=

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
−(𝑛+𝑘)𝛼

= 𝑧
−𝑘𝛼

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
−𝑛𝛼

= 𝑧
−𝑘𝛼

𝑍
𝛼
{𝑓 (𝑛)} .

(21)

Property 3 (frequency modulation). We have

𝑍
𝛼
{𝑧
𝑛𝛼

0
𝑓 (𝑛)} = 𝐹

𝛼
(

𝑧

𝑧
0

) . (22)

Proof. From (15), we have

𝑍
𝛼
{𝑧
𝑛𝛼

0
𝑓 (𝑛)} =

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
𝑛𝛼

0
𝑧
−𝑛𝛼

=

∞

∑

𝑛=∞

𝑓 (𝑛) (
𝑧

𝑧
0

)

−𝑛𝛼

= 𝐹
𝛼
(

𝑧

𝑧
0

) .

(23)

4. Some Illustrative Examples

In this section, we give some samples for nondifferentiable
signals defined on Cantor sets.

Example 1. Let us consider the following signal in the form:

𝑓 (𝑛) = 𝛿
𝛼
(𝑛) = {

1, 𝑛 = 0,

0, 𝑛 ̸= 0.
(24)
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Figure 2: The graph of Re
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Taking local fractional 𝑍-transform, we have

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝛿
𝛼
(𝑛)} =

∞

∑

𝑛=∞

𝛿
𝛼
(𝑛) 𝑧
−𝑛𝛼

= 1. (25)

Example 2. We now suggest the following signal in the form:

𝑓 (𝑛) = 𝛿
𝛼
(𝑛 − 𝑘) = {

1, 𝑛 = 𝑘,

0, 𝑛 ̸= 𝑘.
(26)

Taking local fractional 𝑍-transform, we obtain

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝛿
𝛼
(𝑛 − 𝑘)} =

∞

∑

𝑛=∞

𝛿
𝛼
(𝑛 − 𝑘) 𝑧

−𝑛𝛼

= 𝑧
−𝑘𝛼

.

(27)

When 𝑧
𝛼

= 𝐸
𝛼
(𝑗
𝛼

𝜔
𝛼

)with the imaginary unit 𝑗𝛼 [40, 44–50],
we get

𝜙 (𝜔, 𝑘) = 𝑍
𝛼
{𝑓 (𝑛)} = 𝐸

𝛼
(−𝑗
𝛼

𝜔
𝛼

𝑘
𝛼

)

= cos
𝛼
(𝜔
𝛼

𝑘
𝛼

) − 𝑗
𝛼sin
𝛼
(𝜔
𝛼

𝑘
𝛼

) .

(28)

Hence, from (28), we get

Re
𝛼
𝜙 (𝜔, 𝑘) = cos

𝛼
(𝜔
𝛼

𝑘
𝛼

) ,

Im
𝛼
𝜙 (𝜔, 𝑘) = −sin

𝛼
(𝜔
𝛼

𝑘
𝛼

)

(29)

with the real part graph in Figure 2 and imaginary part graph
in Figure 3.

Example 3. There is the signal in the following form:

𝑓 (𝑛) = 𝛿
𝛼
(𝑛 − 𝑘) + 𝛿

𝛼
(𝑛 + 𝑘) = {

1, 𝑛 = ±𝑘,

0, 𝑛 ̸= ± 𝑘.
(30)

Taking local fractional 𝑍-transform, we have

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝛿
𝛼
(𝑛 − 𝑘) + 𝛿

𝛼
(𝑛 + 𝑘)}

=

∞

∑

𝑛=∞

(𝛿
𝛼
(𝑛 − 𝑘) + 𝛿

𝛼
(𝑛 + 𝑘)) 𝑧

−𝑛𝛼

= 𝑧
−𝑘𝛼

+ 𝑧
𝑘𝛼

.

(31)
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ln 2/ ln 3.

When 𝑧
𝛼

= 𝐸
𝛼
(𝑗
𝛼

𝜔
𝛼

), we get

𝜙 (𝜔, 𝑘) = 𝑍
𝛼
{𝑓 (𝑛)} = 𝐸

𝛼
(𝑗
𝛼

𝜔
𝛼

𝑘
𝛼

) = 2cos
𝛼
(𝜔
𝛼

𝑘
𝛼

)

(32)

with the graph of 𝜙(𝜔, 𝑘) shown in Figure 4.

Example 4. We have the following signal in the form:

𝑓 (𝑛) = {
𝑎
𝑛𝛼

, 𝑎 ≥ 0,

0, 𝑎 < 0.
(33)

Local fractional 𝑍-transform gives the following form:

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝑎
𝑛𝛼

} =

∞

∑

𝑛=0

𝑎
𝑛𝛼

𝑧
−𝑛𝛼

=

∞

∑

𝑛=0

(
𝑧

𝑎
)

−𝑛𝛼

(34)

with the region of convergence |𝑧| > |𝑎|.

Example 5. We consider the following signal in the form:

𝑓 (𝑛) = {
0, 𝑎 ≥ 0,

𝑎
𝑛𝛼

, 𝑎 < 0.
(35)
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Taking local fractional 𝑍-transform, we arrive at the follow-
ing form:

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝑎
𝑛𝛼

} =

0

∑

𝑛=∞

𝑎
𝑛𝛼

𝑧
−𝑛𝛼

=

0

∑

𝑛=∞

(
𝑧

𝑎
)

−𝑛𝛼

(36)

with the region of convergence |𝑧| < |𝑎|.

Example 6. We present the following signal in the form:

𝑓 (𝑛) = {
𝑏
𝑛𝛼

, 𝑎 ≥ 0,

𝑎
𝑛𝛼

, 𝑎 < 0.
(37)

Local fractional 𝑍-transform gives the following form:

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝑎
𝑛𝛼

+ 𝑎
𝑛𝛼

} =

∞

∑

𝑛=0

𝑏
𝑛𝛼

𝑧
−𝑛𝛼

+

0

∑

𝑛=∞

𝑎
𝑛𝛼

𝑧
−𝑛𝛼

=

∞

∑

𝑛=0

(
𝑧

𝑏
)

−𝑛𝛼

+

0

∑

𝑛=∞

(
𝑧

𝑎
)

−𝑛𝛼

(38)

with the region of convergence |𝑏| < |𝑧| < |𝑎|.

5. Conclusions

In this work, we investigated the local fractional 𝑍-trans-
forms based on the local fractional complex calculus and
some properties are also obtained. Some illustrative examples
were also given. The obtained results show the accuracy and
efficiency of the presented method.
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The discrimination of seismic event and nuclear explosion is a complex and nonlinear system. The nonlinear methodologies
including Random Forests (RF), Support Vector Machines (SVM), and Näıve Bayes Classifier (NBC) were applied to discriminant
seismic events. Twenty earthquakes and twenty-seven explosions with nine ratios of the energies contained within predetermined
“velocity windows” and calculated distance are used in discriminators. Based on the one out cross-validation, ROC curve, calculated
accuracy of training and test samples, and discriminating performances of RF, SVM, and NBC were discussed and compared. The
result of RF method clearly shows the best predictive power with a maximum area of 0.975 under the ROC among RF, SVM, and
NBC.The discriminant accuracies of RF, SVM, and NBC for test samples are 92.86%, 85.71%, and 92.86%, respectively. It has been
demonstrated that the presented RF model can not only identify seismic event automatically with high accuracy, but also can sort
the discriminant indicators according to calculated values of weights.

1. Introduction

The problems of seismic source locations and identifications
are two of the most important and fundamental issues in
earthquake monitoring, microseismic monitoring, analyses
of active tectonics, and assessment of seismic hazards [1–4].

Seismic analysts identify seismic signals from those of
explosions or blasts by visual inspection and by calculating
some characteristics of seismogram. As recorded quarry
blasts or nuclear explosions can mislead scientists interpret-
ing the active tectonics and lead to erroneous results in the
analysis of seismic hazards in the area; an event classification
task is an important step in seismic signal processing. Such
task analyses data in order to find to which class each
recorded event belongs.

Such work supposes a great deal of workload for seismic
analysts. Therefore, an automatic classification tool is neces-
sary to be developed for reducing dramatically this arduous

task, turning classification as reliable, as well as removing
errors associated with tedious evaluations and change of
personnel.

Most discrimination methods are designed for a partic-
ular source region and a particular distance of the recording
station from the epicenter [5]. Some of them heavily depend
on the heterogeneity of the uppermost crust in the sense that
they might be effective only for a given region.

The widely used methods for discriminators include
simulating explosion spectra in order to predict spectral
details indicative of explosions and not of earthquakes
or single-event explosions [6, 7]; examining compressional
and shear-wave ratios (amplitude and spectral) between
all types of explosions and earthquakes, in an attempt to
apply the basic physical conclusion that explosions excite
more compressional waves than earthquakes relative to shear
waves [8–11]; differences in high frequency S-to-P ratios
between all types of explosions and earthquakes [12–14];
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analyzing observed spectra of ripple-fired explosions, instan-
taneous explosions, and earthquakes and contrasting time-
independent modulations, path-independent modulations,
spectral ratios, spectral slopes, and spectral maxima and
minima [15–17]; and examining differences in energy ratios
of various wave in velocity windows [18, 19].

However, most of developed methods above are based on
single index or liner discriminantmethods. And themethods
seem to fail to capture the discontinuities, the nonlinearities,
and the high complexity of wave series.

Random Forests (RFs), Support Vector Machines
(SVMs), and Naive Bayes Classifier (NBC) provide enough
learning capacity and are more likely to capture the complex
nonlinear models, which are widely used in natural and sci-
ence areas, including medicine, agriculture, and geotechnics.

So far, as to our knowledge, the RFs and SVMs were
not used for seismic classification. The performance of RFs,
SVMs, and NBC in this type of application has not been
thoroughly compared.

In present work, RF, SVM, and NBC were applied to
discriminate between earthquakes and nuclear explosions.
And based on the one out cross-validation, ROC curve,
and test accuracy, their discriminating performances were
discussed and compared.

2. Materials and Methods

2.1. Materials. The measurements or parameters consist of
ratios of the “high energies” contained within predetermined
“velocity windows” on the seismograms [18]. The choice of
velocity windows is guided by the assumption that earth-
quake source mechanism is extended both in time and space
and generates a larger fraction of energy in shear waves as
compared to explosion source mechanism.

The different waves of “velocity windows” are listed as
follows:

(i) 𝑃
1
: first arrival to 4.6 km/s;

(ii) 𝑆
1
: arrival to 4.6 to 2.5 km/s;

(iii) 𝑆
2
: first arrival to 4.9 km/s;

(iv) 𝑆
2
: arrival to 4.9 to 2.0 km/s;

(v) 𝑃
𝑔
: arrival to 6.2 to 4.9 km/s;

(vi) 𝐵: arrival to 4.9 to 3.6 km/s;
(vii) 𝐿

𝑔1
: arrival to 3.6 to 3.2 km/s;

(viii) 𝑅
𝑔1
: arrival to 3.2 to 2.8 km/s; and

(ix) 𝑅: arrival to 2.8 to 2.5 km/s.

The factors, including ratios 𝑃
1
/𝑆
1
, 𝑃
2
/𝑆
2
, 𝑃
𝑔
/𝐵, 𝑃
𝑔
/𝐿
𝑔1
,

𝑃
𝑔
/(𝑅
𝑔1
+ 𝑅), 𝑃

𝑔
/(𝐿
𝑔1
+ 𝑅
𝑔1
), 𝑅/𝑅

𝑔1
, 𝑅
𝑔1
/𝐿
𝑔1
, and 𝑅

𝑔2
/𝐿
𝑔2
,

as well as Average Distance, were expressed as Ratio
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Nine ratios of energies included within certain velocity

windows have been computed for 20 earthquakes and 27
nuclear explosions by Booker and Mitronovas [18]. All
seismograms were recorded by the VELA UNIFORM LRSM
Network on short-period Benioff instruments [18]. Ratio
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Figure 1: Box plot graph showing the distribution of values of
ratios of energies (ER1, ER2, ER3, ER4, ER5, ER6, ER7, ER8, and
ER9 represented Ratio

1
, Ratio

2
, Ratio

3
, Ratio

4
, Ratio

5
, Ratio

6
, Ratio

7
,

Ratio
8
, and Ratio

9
for earthquake, respectively; NR1, NR2, NR3,

NR4, NR5, NR6, NR7, NR8, and NR9 represented Ratio
1
, Ratio

2
,

Ratio
3
, Ratio

4
, Ratio

5
, Ratio

6
, Ratio

7
, Ratio

8
, and Ratio

9
for nuclear

earthquake, resp.).

Ratio
2
, Ratio

3
, Ratio

4
, Ratio

5
, Ratio

6
, Ratio

7
, Ratio

8
, Ratio

9
,

and AD were selected as discriminant indicators. 𝑧-score is
used to standardize variables in this work. First, the mean is
subtracted from the value for each case, resulting in amean of
zero. Then, the difference between the individual’s score and
the mean is divided by the standard deviation, which results
in a standard deviation of one. If we start with a variable 𝑥
and generate a variable 𝑥∗, the process is

𝑥
∗

=
(𝑥 − 𝑚)

sd
, (1)

where 𝑚 is the mean of 𝑥 and sd is the standard deviation
of 𝑥. 𝑧-score of each ratio and distance for seismic event and
nuclear earthquake were listed in Tables 1 and 2, respectively.

Box plot graphs of energy ratios and distance were plotted
in Figures 1 and 2, respectively. Each group is represented
as a box whose top and bottom are drawn at the lower and
upper quartiles, with a small square at the median. Thus, the
box contains the middle half of the scores in the distribution.
Vertical lines outside the box extend to the largest and the
smallest observations within 1.5 interquartile ranges.We con-
clude thatRatio

1
,Ratio

2
,Ratio

3
,Ratio

4
,Ratio

5
,Ratio

6
,Ratio

7
,

Ratio
8
, Ratio

9
, Ratio

10
, and AD for earthquake and nuclear

earthquake are obviously different. Such it is reasonable to
select the ten factors as discriminating indicator.

2.2. Methodologies. The first 70% dataset of earthquake and
nuclear earthquake were used to establish discriminating
models and the other 30%dataset were used to test themodel.

2.2.1. Overview of Random Forest. Random Forest (RF),
a metalearner comprising many individual trees, was first
developed by Tin Kam Ho in 1995 and later improved by
Breiman in 2001. It was developed to operate quickly over
large datasets and to be diverse by using random samples to
build each tree in the forest. Each tree depends on the values
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Table 1: Earthquakes dataset.

No. Earthquakes 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
8

𝑋
9

𝑋
10

Ratio1 Ratio2 Ratio3 Ratio4 Ratio5 Ratio6 Ratio7 Ratio8 Ratio9 AD
1 Baja Calif 0.123 0.495 −0.570 −0.145 −0.498 1.023 0.547 1.023

2 Baja Calif −0.274 0.130 −0.207 −0.291 −0.824 2.904 1.407 2.031

3 Boxelder Creek 0.515 0.741 0.624 0.471 0.531 −0.652 0.057 0.576

4 Bridgeport −0.371 −0.101 −0.681 −0.994 0.040 −0.686 −0.531 −1.543 −0.833 −0.614

5 Cache Creek −0.803 −1.188 −1.082 −1.038 −0.860 −1.001 −0.750 −0.393 −0.875 2.114

6 Cache Creek AS −0.349 −0.157 −0.866 −0.771 −0.426 −0.578 −0.876 −0.910 −0.356 0.259

7 Colona −0.309 0.011 −0.430 −0.420 0.710 0.416 0.308 −1.453 −1.047 0.108

8 Mont.-Wyo Border −0.446 0.243 −0.873 −0.462 −0.007 −0.661 −0.368 0.825

9 Pierre, S.Dakota −1.354 −1.300 −1.574 −1.284 −1.131 −1.075 −0.719 2.498

10 Red Rock River 0.383 0.628 −0.231 0.120 0.315 −0.720 −0.579 0.945

11 Sierra De Juarez −1.090 −0.992 0.624 −0.931 −1.004 1.102 4.306 1.002

12 Teton County 0.343 0.502 0.541 −0.164 0.044 −0.700 −0.442 −0.001

13 Western Mary land −1.575 −1.546 −0.828 −1.365 −1.228 0.867 −0.459 −0.963

14 Western Vermont −1.672 −1.602 −2.047 −1.438 −1.282 −1.472 −1.048 2.956

15 Western Vermont −1.138 −1.034 −1.323 −0.779 −1.246 −0.896 2.417 1.004 0.238 1.184

16 Western Vermont −1.010 −0.929 −1.538 −0.727 −1.204 −0.932 2.919 2.277 0.719 0.612

17 Western Vermont −0.975 −0.844 −0.779 −1.023 −0.036 −0.751 0.018 −0.810 −0.842 −0.765

18 Western Vermont 0.013 0.046 0.116 −0.416 0.955 0.018 −0.758 −1.298 −0.902 −0.329

19 Western Vermont −1.164 −1.202 −0.823 −0.754 −1.164 −0.925 1.084 1.480 1.614 0.950

20 Western Vermont −0.494 −0.290 0.027 −0.462 −0.312 −0.245 0.567 −0.894 −0.476 1.023
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Figure 2: Box plot graph showing the distribution of values of the
distance between hypocenter and sensors (ER10 and NR10 repre-
sented distance between hypocenter and sensors for earthquake and
nuclear earthquake, resp.).

of a randomvector sampled independently andwith the same
distribution for all trees in the forest.The generalization error
of a forest of tree classifiers depends on the strength of the
individual trees in the forest and the correlation between
them [20]. Comprehensive review of applications of Random
Forest have been provided by Rodriguez-Galiano et al., [21],
Granitto et al. [22], and by Genuer et al. [23]. Also, a number
of researches have compared the performance of other data
mining technique and Random Forest in different kinds of
problems [23–26].The theory of RF is summarized as follows
[20].

A Random Forest is a classifier consisting of a collection
of tree-structured classifiers {ℎ(𝑥, Θ

𝑘
), 𝑘 = 1, . . .}, where the

{Θ
𝑘
} are independent identically distributed random vectors

and each tree casts a unit vote for the most popular class at
input 𝑥 [18].

Given an ensemble of classifiers ℎ
1
(𝑋), ℎ

2
(𝑋), . . . , ℎ

𝐾
(𝑋)

and with the training set drawn at random from the distri-
bution of the random vector𝑌,𝑋, define the margin function
as

mg (𝑋, 𝑌) = 𝑎V
𝐾
𝐼 (ℎ
𝐾
(𝑋) = 𝑌) −max

𝑗 ̸=𝑌

𝑎V
𝐾
𝐼 (ℎ
𝐾
(𝑋) = 𝑗) ,

(2)

where 𝐼(⋅) is the indicator function.Themargin measures the
extent to which the average number of votes at 𝑋,𝑌 for the
right class exceeds the average vote for any other class. The
larger the margin, the more confidence in the classification.
The generalization error is given by

𝑃𝐸
∗

= 𝑃
𝑋,𝑌

(mg (𝑋, 𝑌) < 0) , (3)

where the subscripts𝑋,𝑌 indicate that the probability is over
the 𝑋,𝑌 space. In Random Forests, ℎ

𝐾
(𝑋) = ℎ(𝑋, 𝑘). For a

large number of trees, it follows from the Strong Law of Large
Numbers and the tree structure the following.

As the number of trees increases, for almost surely all
sequences Θ

1
, . . . , 𝑃𝐸

∗ converges to

𝑃
𝑋,𝑌

(𝑃
Θ
(ℎ (𝑋,Θ) = 𝑌) −max

𝑗 ̸=𝑌

𝑃
Θ
(ℎ (𝑋,Θ) = 𝑗) < 0) .

(4)
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Table 2: Nuclear explosion dataset.

No. Nuclear 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
8

𝑋
9

𝑋
10

explosion Ratio1 Ratio2 Ratio3 Ratio4 Ratio5 Ratio6 Ratio7 Ratio8 Ratio9 AD
1 Aardvark 1.027 1.575 2.096 1.015 0.342 0.903 −0.523 −0.334 −0.321 −0.313

2 Agouti −0.067 −0.101 0.984 −0.124 −0.047 −0.054 −0.192 −0.547

3 Armadillo 1.164 1.042 0.761 2.079 0.202 1.315 0.535 1.102 0.324 −0.516

4 Chinchilla II 0.317 0.194 0.197 1.222 0.575 0.338 0.384 −0.562

5 Cimarron 0.335 0.095 −0.009 0.185 −0.579 −0.065 −0.515 0.827 0.093 −0.329

6 Codsaw −0.402 −0.676 −0.830 −0.378 −0.731 −0.372 0.755 −0.152 0.453 −0.859

7 Danny Boy −0.388 −0.480 −0.096 −0.458 −0.736 −0.426 0.120 −0.207 −0.209 −1.202

8 Des Moines 1.133 0.874 0.590 0.954 0.759 −0.074 −0.149 −0.646

9 Dormouse II 0.171 −0.290 0.094 −0.182 −0.278 1.160 −0.252 −0.640

10 Fisher −0.314 −0.417 0.077 −0.136 −0.565 −0.332 −0.782 0.886 0.117 −0.802

11 Gnome 2.178 2.452 1.087 2.319 1.431 2.688 −1.393 −0.914 0.100 −0.656

12 Hardhat 3.293 3.321 2.319 3.245 2.420 3.505 −0.625 −0.740 −0.562 −0.396

13 Haymaker 2.495 0.965 2.235 2.208 1.889 2.276 −0.782 −0.399 −0.583 −0.074

14 Mad −0.675 −0.746 −0.282 −0.527 −0.906 −0.545 0.206 −0.362 −0.934 −0.833

15 Madison 0.361 0.635 1.172 0.414 0.023 0.470 −0.452 −0.319 −0.020 −0.370

16 Marshmallow −0.031 −0.150 0.094 −0.099 −0.530 −0.144 −0.170 −0.015 −0.356 −0.375

17 Mississippi 0.546 0.762 1.052 0.508 −0.178 0.427 −0.225 −0.221 −0.307 −0.084

18 Packrat −0.177 −0.683 −0.657 −0.339 −1.351 −0.361 −0.230 −0.313 −1.041

19 Pampas 1.768 1.898 2.267 1.597 1.900 1.915 −1.119 −0.879 −0.614 0.134

20 Passaic 0.352 0.586 0.659 0.131 −0.257 0.156 0.002 −0.283 −0.227 −0.090

21 Platte −0.181 −0.311 0.008 −0.197 −0.206 −0.211 0.014 −1.171

22 Scaramento −0.221 −0.431 −0.436 0.145 −0.183 −0.202 0.063 −0.023 −0.599

23 Small Boy −0.018 0.264 0.111 0.370 0.231 0.567 0.181 −0.356 −0.765

24 Stillwater −0.622 −0.929 −0.916 −0.420 −0.643 1.170 0.926 −0.931

25 Stoat −0.014 −0.627 −0.334 −0.199 −0.408 1.944 3.308 −1.311

26 Witchita −0.468 −0.571 −0.300 −0.443 −0.441 −0.279 −0.330 −0.583

27 York 0.083 0.137 −0.026 −0.018 −0.086 −0.074 0.083 0.129

Themargin function for a Random Forest is

mr (𝑋, 𝑌) = 𝑃
Θ
(ℎ (𝑋,Θ) = 𝑌) −max

𝑗 ̸=𝑌

𝑃
Θ
(ℎ
𝐾
(𝑋,Θ) = 𝑗) ,

(5)

and the strength of the set of classifiers {(ℎ(𝑋,Θ)} is

𝑠 = 𝐸
𝑋,𝑌

mr (𝑋, 𝑌) . (6)

Assume that 𝑠 ≥ 0, Chebychev’s inequality gives

𝑃𝐸
∗

≤
var (mr)
𝑠
2

. (7)

Amore revealing expression for the variance of mr is derived
in the following. Let

𝑗 (𝑋, 𝑌) = argmax
𝑗 ̸=𝑌

𝑃
Θ
(ℎ (𝑋,Θ) = 𝑗) (8)

so
mr (𝑋, 𝑌) = 𝑃

Θ
(ℎ (𝑋,Θ) = 𝑌) − 𝑃

Θ
(ℎ (𝑋,Θ) = 𝑗 (𝑋, 𝑌))

= 𝐸
Θ
[ (𝐼 (𝑋,Θ) = 𝑌)

−𝐼 (ℎ (𝑋,Θ) = 𝑗 (𝑋, 𝑌))] .

(9)

The raw margin function is

rmg (Θ,𝑋, 𝑌) = 𝐼 (ℎ (𝑋,Θ) = 𝑌) − 𝐼 (ℎ (𝑋,Θ) = 𝑗 (𝑋, 𝑌)) .
(10)

Thus, mr(𝑋, 𝑌) is the expectation of rmg(Θ,𝑋, 𝑌) with
respect to Θ. For any function 𝑓 the identity

[𝐸
Θ
𝑓 (Θ)]

2

= 𝐸
Θ,Θ
󸀠𝑓 (Θ)𝑓 (Θ

󸀠

) (11)

holds where Θ,Θ󸀠 are independent with the same distribu-
tion, implying that

mr(𝑋, 𝑌)2 = 𝐸
Θ,Θ
󸀠rmg (Θ,𝑋, 𝑌) rmg (Θ󸀠, 𝑋, 𝑌) . (12)

Using (12) gives

var (mr) = 𝐸
Θ,Θ
󸀠 ( cov

𝑋,𝑌
rmg (Θ,𝑋, 𝑌) rmg (Θ󸀠, 𝑋, 𝑌))

= 𝐸
Θ,Θ
󸀠 (𝜌 (Θ,Θ

󸀠

) sd (Θ) sd (Θ󸀠)) ,
(13)
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where 𝜌(Θ,Θ󸀠) is the correlation between rmg(Θ,𝑋, 𝑌) and
rmg(Θ󸀠, 𝑋, 𝑌) holding Θ,Θ󸀠 fixed and sd(Θ) is the standard
deviation of rmg(Θ,𝑋, 𝑌) holding Θ fixed. Then,

var (mr) = 𝜌(𝐸
Θ
sd (Θ))2

≤ 𝜌𝐸
Θ
V (Θ) ,

(14)

where 𝜌 is the mean value of the correlation; that is,

𝜌 =

𝐸
Θ,Θ
󸀠 (𝜌 (Θ,Θ

󸀠

) sd (Θ) sd (Θ󸀠))
𝐸
Θ,Θ
󸀠 (sd (Θ) sd (Θ󸀠))

. (15)

Write

𝐸
Θ
var (Θ) ≤ 𝐸

Θ
(𝐸
𝑋,𝑌

rmg (Θ,𝑋, 𝑌))2 − 𝑆2 ≤ 1 − 𝑆2. (16)

In this work, A RF model of discriminating between
natural earthquake and nuclear earthquake is established
with optimal 5000 NT trees and 8 variables in rode. In the
developed RF model, the calculated weighted values of the
Ratio
1
, Ratio

2
, Ratio

3
, Ratio

4
, Ratio

5
, Ratio

6
, Ratio

7
, Ratio

8
,

Ratio
9
, and AD are 1.2713, 0.1034, 0.0759, 0.3093, 0.3432,

0.1782, 0.2536, 0.0943, 0.2463, and 0.1512, respectively.

2.2.2. SVM Algorithm. The original SVM algorithm was
invented by Vladimir N. Vapnik and the current standard
incarnation (softmargin)was proposed byCortes andVapnik
in 1995 [27].

SVMmodels were originally defined for the classification
of linearly separable classes of objects. For any original
separable set of two-class objects SVM are able to find the
optimal hyperplanes that separates themproviding the bigger
margin area between the two hyperplanes. Furthermore they
can also be used to separate classes that cannot be separated
with a linear classifier.

The feature space in which every object is projected is
a high dimensional space in which the two classes can be
separated with the linear classifier. The effectiveness of SVM
depends on the selection of kernel, the kernel’s parameters,
and soft margin parameter 𝐶.

In the present work we used the Radial Basis Function
(RBF) as Kernel functions for the SVMmodels because of its
efficiency in providing very high performance classification
results. The optimal RBF parameters 𝐶 and gamma were
found to be 9 and 0.6, respectively, reassuring that the model
does not over fit.

2.2.3. Naive Bayes Classier. The Naive Bayes Classier pro-
duces a very efficient probability estimation based on a
simply structure, requiring a small amount of training data
to estimate the parameters necessary for the classification. Its
construction relies on two main assumptions: independency
of features and absence of hidden or latent attributes.

An advantage ofNaive Bayes is that it only requires a small
amount of training data to estimate the parameters (means
and variances of the variables) necessary for classification.
Because independent variables are assumed, only the vari-
ances of the variables for each class need to be determined
and not the entire covariance matrix.

The aim of the NBC, as with other classifiers, is to assign
an object 𝐼 to one of a discrete set of categories𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚

based on its observable attributes 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
. The NBC

calculates the probability that 𝐼 belongs to each category, con-
ditioning on the observed attributes; 𝐼 is typically assigned
to the category with the greatest probability. This classifier is
naive in the sense that it makes the strong assumption that
the attributes are mutually conditionally independent; that is,
the conditional probability that 𝐼 belongs to a particular class
given the value of some attribute is independent of the values
of all other attributes. Despite this unrealistic assumption,
empirical studies demonstrate that this assumption does
not need to significantly compromise the accuracy of the
prediction, and NBCs are used in a variety of applications,
including document classification [28], medical diagnosis
[29, 30], systems performance management [31], probability
classification of rockburst [32], and other fields. Domingos
and Pazzani [33] prove optimality of the NBC under certain
conditions evenwhen the conditional independence assump-
tion is violated.

In this paper, the prior probability of natural earthquake
and nuclear earthquake is calculated according to the size
of data. The prior probabilities of earthquake and nuclear
earthquake are 0.424 and 0.576, respectively.

The discriminate functions for the earthquake and
nuclear are
𝑌
1
= 0.45𝑋

1
+ 2.72𝑋

2
− 1.28𝑋

3
− 4.6𝑋

4
+ 1.61𝑋

5
+ 0.34𝑋

6

+ 0.03𝑋
7
− 0.17𝑋

8
+ 0.68𝑋

9
+ 1.65𝑋

10
− 1.92,

𝑌
2
= − 0.87𝑋

1
− 2.28𝑋

2
+ 1.44𝑋

3
+ 4.34𝑋

4
− 2.69𝑋

5

+ 0.31𝑋
6
− 2.04𝑋

7
+ 0.11𝑋

8
+ 0.68𝑋

9
− 0.76𝑋

10

− 1.73.

(17)

If 𝑌
1
> 𝑌
2
, the record is an earthquake, otherwise a nuclear

event.

2.2.4. Classification Performance. ROC is a graphical plot
which illustrates the performance of a binary classifier system
as its discrimination threshold is varied [34]. It is created by
plotting the fraction of true positives out of the positives (TPR
= true positive rate) versus the fraction of false positives out of
the negatives (FPR = false positive rate), at various threshold
settings.

ROC analysis provides tools to select possibly optimal
models and to discard suboptimal ones independently from
(and prior to specifying) the cost context or the class distri-
bution. ROC analysis is related in a direct and natural way to
cost/benefit analysis of diagnostic decision making.

In this study, seismic event and nuclear explosion were
considered as a two-class prediction problem (binary classifi-
cation), in which the outcomes were labeled either as positive
(𝑝, events) or negative (𝑛, blasts). There are four possible
outcomes from a binary classifier. If the outcome from a
prediction is 𝑝󸀠 and the actual value is also 𝑝, then it is called
a true positive (TP); however, if the actual value is 𝑛 then it
is said to be a false positive (FP). Conversely, a true negative
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Table 3: Contingency matrix for two class prediction problem.

Actual value Total
𝑃 𝑁

Prediction
outcome
𝑝
󸀠 True Positive (TP) False Positive (FP) 𝑃

𝑛
󸀠 False Negative (FN) True Negative (TN) 𝑁

Total 𝑃 𝑁

(TN) has occurred when both the prediction outcome and
the actual value is 𝑛 and false negative (FN) is when the
prediction outcome is 𝑛󸀠, while the actual value is 𝑝.

An experiment from 𝑃 positive and 𝑁 negative was
defined, for instance. The four outcomes can be formulated
in a 2 × 2 contingency table or confusionmatrix, as follows in
Table 3.

The specificity or true negative rate (TNR) is defined as
the percentage of seismic record which is correctly identified
as being blast:

TNR = TN
TN + FP

. (18)

The quantity 1-specificity is the false positive rate (FPR)
and is the percentage of seismic records that are incorrectly
identified as being blasts. The sensitivity or true positive rate
(TPR) is defined as the percentage of seismic records which
is correctly identified as being events:

TPR = TP
TP + FN

. (19)

The accuracy (ACC) can be expressed as

ACC =
TP + TN

TP + FN + FP + FN
. (20)

3. Results and Discussions

The back-test classification for training samples is calculated
using established models. The back-test accuracies of RF,
SVM, andNBC are 100%, 100%, and 96.97% for training sam-
ples, respectively. The one out cross-validation method was
used to validate the methods. Results show that accuracies of
RF, SVM(RBF), SVM(liner), andNBCare 100%, 96.97%, and
84.88%, respectively.

The ROC curve is also used to verify and compare
the discriminating performance of established models. The
established RF model, SVM model, and NBC model were
applied to both the training and test samples.The ROC curve
is shown in Figure 3. The area under the curve is listed in
Table 4. The classification results of test samples using all
developed models are presented in Table 5.

In Figure 3, the closer a result from a contingency table is
to the upper left corner, the better it predicts, but the distance
from the random guess line in either direction or area under
curve is the best indicator of how much predictive power a
method has.
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Figure 3: ROC of established RF, SVM (RBF), SVM (liner), and
NBC models.

As shown in Figure 3 and Table 4, the result of RFmethod
clearly shows the best predictive power with amaximum area
of 0.975 among RF, SVM, and NBC.The result of SVM (area:
0.963) is better than that of NBC (area: 0.956).

According to Table 5, we can get the discriminant accu-
racy of RF, SVM, and NBC for test samples; their accuracy
are 92.86%, 85.71%, and 92.86%, respectively. From back
test results, one out cross-validation, ROC, and test results,
we get the conclusion that RF discriminant model has the
best accuracy and discriminant ability. Also, according to
weighted values of RF, the most important factors are Ratio

1
,

followed by Ratio
5
, Ratio

4
, Ratio

7
, Ratio

9
, Ratio

6
, AD, Ratio

2
,

Ratio
8
, and Ratio

3
.

4. Conclusions

RF, SVM, and NBC were applied to seismic event identifica-
tion. A thorough investigation of the discrimination capabil-
ities of the techniques were undertaken using seismograms
from 20 earthquakes and 27 nuclear explosions. Ratios 𝑃

1
/𝑆
1
,

𝑃
2
/𝑆
2
, 𝑃
𝑔
/𝐵, 𝑃
𝑔
/𝐿
𝑔1
, 𝑃
𝑔
/(𝑅
𝑔1
+ 𝑅), 𝑃

𝑔
/(𝐿
𝑔1
+ 𝑅
𝑔1
), 𝑅/𝑅

𝑔1
,

𝑅
𝑔1
/𝐿
𝑔1
, and 𝑅

𝑔2
/𝐿
𝑔2

within certain velocity windows, as
well as average distance, were selected as discriminant indi-
cators.

The classification performance of RF, SVM, and NBC
was analyzed and compared based on back test of training
samples, one out cross-validation, and ROC curve.The result
of RF method clearly shows the best predictive power with
a maximum ROC area of 0.975 among RF, SVM, and NBC.
The result of SVM (area: 0.963) is better than that of NBC
(area: 0.956). Test results show the discriminant accuracies
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Table 4: Area under the curve.

Test result variable(s) Area Std. errora Asymptotic Sig.b Asymptotic 95% confidence interval
Lower bound Upper bound

NBC 0.956 0.035 0.000 0.887 1.026
SVM 0.963 0.030 0.000 0.904 1.022
RF 0.975 0.029 0.000 0.919 1.031
aUnder the nonparametric assumption.
bNull hypothesis: true area = 0.5.

Table 5: Discriminant results of test samples.

No. Event Measured results NBC SVM result RF
Prob (N) Prob (NE) Result Prob (N) Prob (NE) Result

1 NE20 2 0.1646 0.8354 2 2 0.2354 0.7646 2
2 NE21 2 0.0276 0.9724 2 2 0.018 0.982 2
3 NE22 2 0.0041 0.9959 2 2 0.1572 0.8428 2
4 NE23 2 0.0144 0.9856 2 2 0.0178 0.9822 2
5 NE24 2 0.2324 0.7676 2 2 0.3342 0.6658 2
6 NE25 2 0.4416 0.5584 2 2 0.0744 0.9256 2
7 NE26 2 0.2447 0.7553 2 1

∗ 0.1576 0.8424 2
8 NE27 2 0.7336 0.2664 1

∗

1
∗ 0.4752 0.5248 2

9 E15 1 0.998 0.002 1 1 0.8934 0.1066 1
10 E16 1 0.9991 0.0009 1 1 0.8214 0.1786 1
11 E17 1 0.8956 0.1044 1 1 0.7562 0.2438 1
12 E18 1 0.9807 0.0193 1 1 0.4076 0.5924 2

∗

13 E19 1 0.9277 0.0723 1 1 0.8904 0.1096 1
14 E20 1 0.9725 0.0275 1 1 0.9216 0.0784 1
Note: result with “∗” is incorrect.

of RF, SVM, and NBC are 92.86%, 85.71% and 92.86%,
respectively.

From back-test results, one out cross-validation, ROC
curve, and test results, we get the conclusion that RF discrim-
inant model has the best accuracy and discriminant ability.
Not only can RF discriminant method be applied to seismic
identification with high accuracy, but also it can give the
weighted sorts of discriminant indicators. In this study, the
most important factors are Ratio

1
, followed by Ratio

5
, Ratio

4
,

Ratio
7
, Ratio

9
, Ratio

6
, AD, Ratio

2
, Ratio

8
, and Ratio

3
.
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We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These
functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid
Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to
a system of linear equations. On the other hand, convergence analysis for this method is discussed.The method is computationally
very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.

1. Introduction

In recent years,many different basic functions have been used
for solving integral equations, such as Block-Pulse functions
[1, 2], Triangular functions [3], Haar functions [4], Hybrid
Legendre and Block-Pulse functions [5], Hybrid Chebyshev
and Block-Pulse functions [6, 7], Hybrid Taylor and Block-
Pulse functions [8], and Hybrid Fourier and Block-Pulse
functions [9].

Block-Pulse functions were introduced in electrical engi-
neering by Harmuth. After that study, several researchers
have discussed applications of Block-Pulse functions [10, 11].

Bernstein polynomials have been applied in various fields
of mathematics. For example, some researchers applied the
Bernstein polynomials for solving high order differential
equations [12], some classes of integral equations [13], partial
differential equations, and optimal control problems [14].
Also, we introduced new operational matrices of fractional
derivative and integral operators by Bernstein polynomi-
als and then used them for solving fractional differential

equations [15–17], system of fractional differential equations
[18], and fractional optimal control problems [19, 20].

In this work, we combine the Bernstein polynomials
(BPs) and Block-Pulse functions (BPFs) on the interval
[0, 1]. Then, we use these bases for finding an approximate
solution of the second kind integral equation. We call this
method Hybrid Bernstein Block-Pulse Functions Method
(HBBPFM). In this method the integral equation is reduced
to a system of linear equations. Also, we discuss the conver-
gence analysis for this method. Furthermore, we compare the
accuracy of obtained results of BPFs, BPs, and HBBPFM by
some examples.

The rest of this paper is as follows. In Section 2, HBBPFs
are introduced; therefore we approximate functions by using
HBBPFs and also we discuss best approximation and conver-
gence analysis in Section 3. Then we apply HBBPF method
to find an approximate solution for the second kind integral
equations and we survey error analysis for proposed method
in Section 4. Also, we apply the proposed method on some
examples. We observe that the accuracy and efficiency of this

Hindawi Publishing Corporation
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method are more than the near methods. Finally, Section 6
concludes our work in this paper.

2. Hybrid of Bernstein and
Block-Pulse Functions

In this section, we recall some definitions and properties of
Bernstein polynomials and Block-Pulse functions.

Lemma 1 (see [19]). The Bernstein polynomials (BPs) of𝑚th-
degree are defined on the interval [0, 1] as follows:

𝐵
𝑖,𝑚
(𝑥) = (

𝑚

𝑖
) 𝑥
𝑖

(1 − 𝑥)
𝑚−𝑖

, 𝑖 = 0, 1, . . . , 𝑚, (1)

where

(
𝑚

𝑖
) =

𝑚!

𝑖! (𝑚 − 𝑖)!
. (2)

Then {𝐵
0,𝑚
, 𝐵
1,𝑚
, . . . , 𝐵

𝑚,𝑚
} in Hilbert space 𝐿2[0, 1] is a

complete basis. Therefore, any polynomial of degree 𝑚 can
be expanded in terms of linear combination of 𝐵

𝑖,𝑚
(𝑥) (𝑖 =

0, 1, . . . , 𝑚).

Lemma 2. Let a set of Block-Pulse functions (BPFs) 𝑏
𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑁 be on the interval [0, 1) such that.

𝑏
𝑖
(𝑡) =

{

{

{

1,
𝑖 − 1

𝑁
≤ 𝑡 <

𝑖

𝑁
,

0, otherwise.
(3)

Then, the following properties for these functions satisfy the
following:

(i) disjointness,
(ii) orthogonality,
(iii) completeness.

Proof. Thedisjointness property can be clearly obtained from
the definition of Block-Pulse functions as follows:

𝑏
𝑖
(𝑡) 𝑏
𝑗
(𝑡) = {

𝑏
𝑖
(𝑡) , 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗,
(4)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁.
The other property is orthogonality. It is clear that

∫

1

0

𝑏
𝑖
(𝑡) 𝑏
𝑗
(𝑡) 𝑑𝑡 =

1

𝑁
𝛿
𝑖𝑗
, (5)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁 and 𝛿
𝑖𝑗
is the Kroneker delta.

The third property is completeness. For every 𝑓 ∈

𝐿
2

([0, 1)), when𝑚 approaches the infinity, Parseval’s identity
holds:

∫

1

0

𝑓
2

(𝑥) 𝑑𝑥 =

∞

∑

𝑖=0

(𝑓
2

𝑖

󵄩󵄩󵄩󵄩𝑏𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2

) , (6)

where 𝑓
𝑖
= 𝑁∫

1

0

𝑓(𝑡)𝑏
𝑖
(𝑡)𝑑𝑡.

Definition 3 (Hybrid Bernstein Block-Pulse Functions
(HBBPFs)). 𝐻

𝑛,𝑚
(𝑡), 𝑛 = 1, 2, . . . , 𝑁, 𝑚 = 0, 1, . . . ,𝑀, have

three arguments; 𝑛 and 𝑚 are the order of BPFs and BPs,
respectively, and 𝑡 is the normalized time. HBBPFs are
defined on the interval [0, 1) as follows:

𝐻
𝑛,𝑚
(𝑡) =

{

{

{

𝐵
𝑚,𝑀
(𝑁𝑡 − 𝑛 + 1) ,

𝑛 − 1

𝑁
≤ 𝑡 ≤

𝑛

𝑁
,

0, otherwise.
(7)

In the next section, we deal with the problem of approxi-
mation of these functions.

3. Approximation of Functions by Using
HBBPFs and Convergence Analysis

Theorem 4. Suppose that the function 𝑓 : [0, 1] →

𝑅 is 𝑚 + 1 times continuously differentiable, and 𝑆 =

Span{𝐵
0,𝑚
, 𝐵
1,𝑚
, . . . , 𝐵

𝑚,𝑚
}. Then 𝑐𝑇𝐵 = 𝑠

0
= ∑
𝑚

𝑖=0
𝑐
𝑖
𝐵
𝑖,𝑚
∈ 𝑆 is

the best approximation 𝑓 out of 𝑆 ⊆ 𝐿2[0, 1] with the following
inner product:

⟨𝑓, 𝐵⟩ = ∫

1

0

𝑓 (𝑥) 𝐵(𝑥)
𝑇

𝑑𝑥

= [⟨𝑓, 𝐵
0,𝑚
⟩ , ⟨𝑓, 𝐵

1,𝑚
⟩ , . . . , ⟨𝑓, 𝐵

𝑚,𝑚
⟩] ,

(8)

where 𝐵𝑇 = [𝐵
0,𝑚
, 𝐵
1,𝑚
, . . . , 𝐵

𝑚,𝑚
] and 𝑐𝑇 = [𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑚
].

Also, one can obtain the following inequality:

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑐
𝑇

𝐵
󵄩󵄩󵄩󵄩󵄩𝐿2[0,1]

≤
𝐾̂

(𝑚 + 1)!√2𝑚 + 3

, (9)

where 𝐾̂ = max
𝑥∈[0,1]

|𝑓
(𝑚+1)

(𝑥)|.

Proof. We prove that 𝑐𝑇𝐵 is the best approximation for 𝑓
out of 𝑆. We can prove that 𝑆 is a convex subset of a real
inner product space 𝐿2[0, 1] (see [21]). Therefore, for any
𝑥 ∈ 𝐿
2

[0, 1], 𝑥 ∈ 𝑆 is its best approximation in 𝑆 if and only if
it satisfies

⟨𝑥 − 𝑥, 𝑧 − 𝑥⟩ ≤ 0 ∀𝑧 ∈ 𝑆, (10)

where the inner product is defined by ⟨𝑓, 𝑔⟩ = ∫1
0

𝑓(𝑡)𝑔(𝑡)𝑑𝑡.
Then for any 𝑥 ∈ 𝐿2[0, 1], its best approximation is unique.
Also, we know that 𝑆 ⊂ 𝐿2[0, 1] is a convex and closed finite-
dimensional subset of an inner product space 𝐿2[0, 1]. Then
for any 𝑥 ∈ 𝐿2[0, 1], there is a unique element 𝑥 ∈ 𝑆 such
that ‖𝑥−𝑥‖ = inf

𝑧∈𝑆
‖𝑥−𝑧‖. Therefore, there exist the unique

coefficients 𝑐
𝑖
, 𝑖 = 0, 1, . . . , 𝑚 such that

𝑓 ≅ 𝑠
0
=

𝑚

∑

𝑖=0

𝑐
𝑖
𝐵
𝑖,𝑚
= 𝑐
𝑇

𝐵. (11)

On the other hand, we can consider that {1, 𝑥, . . . , 𝑥𝑛} is a
basis for polynomials space of degree𝑚. Therefore we define
𝑦
1
(𝑥) = 𝑓(0) + 𝑥𝑓

󸀠

(0) + (𝑥
2

/2!)𝑓
󸀠󸀠

(0) + ⋅ ⋅ ⋅ + (𝑥
𝑚

/𝑚!)𝑓
(𝑚)

(0).
Hence, from Taylor expansion we have

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦1 (𝑥)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
(𝑚+1)

(𝜉
𝑥
)
𝑥
𝑚+1

(𝑚 + 1)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (12)
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Table 1: Absolute errors by using BPFs for 𝑁 = 4, BPs for𝑀 = 3,
and HBBPFM for𝑁 = 4,𝑀 = 3 in Example 1.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 4 𝑀 = 3 𝑁 = 4,𝑀 = 3

0 0.159448 0.000252739 2.57612 × 10
−7

0.1 0.0596148 0.0000539886 5.73616 × 10
−8

0.2 0.0392211 0.000110834 1.23088 × 10
−7

0.3 0.118936 0.0000398714 3.42659 × 10
−7

0.4 0.0250381 0.0000566614 2.06685 × 10
−7

0.5 0.167325 0.000106028 1.3331 × 10
−6

0.6 0.0821085 0.0000743689 3.07359 × 10
−7

0.7 0.00253325 0.0000243121 5.58694 × 10
−7

0.8 0.125405 0.000119641 7.24512 × 10
−7

0.9 0.0594347 0.000076931 4.20127 × 10
−7

Table 2: Absolute errors by using BPFs for 𝑁 = 5, BPs for𝑀 = 4,
and HBBPFs for𝑁 = 5,𝑀 = 4 in Example 1.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 5 𝑀 = 4 𝑁 = 5,𝑀 = 4

0 0.120718 0.0000294061 9.38506 × 10
−9

0.1 0.0208845 0.0000117512 4.43327 × 10
−10

0.2 0.124426 4.28074 × 10
−6

7.87196 × 10
−9

0.3 0.0275755 7.98903 × 10
−6

1.13157 × 10
−9

0.4 0.124293 8.7962 × 10
−6

6.2511 × 10
−9

0.5 0.034286 2.23581 × 10
−7

1.14373 × 10
−9

0.6 0.120604 8.9113 × 10
−6

1.22382 × 10
−8

0.7 0.0410285 7.57027 × 10
−6

1.62177 × 10
−9

0.8 0.230475 7.94076 × 10
−6

4.74483 × 10
−10

0.9 0.00358729 0.0000229948 9.2012 × 10
−9

where 𝜉
𝑥
∈ (0, 1). Since 𝑐𝑇𝐵 is the best approximation 𝑓 out

of 𝑆, and we assume that 𝑦
1
∈ 𝑆, therefore, we have

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑐
𝑇

𝐵
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
[0,1]

≤
󵄩󵄩󵄩󵄩𝑓 − 𝑦1

󵄩󵄩󵄩󵄩

2

𝐿
2
[0,1]

= ∫

1

0

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦1 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚+1)

(𝜉
𝑥
)
󵄨󵄨󵄨󵄨󵄨

2

(
𝑥
𝑚+1

(𝑚 + 1)!
)

2

𝑑𝑥

≤
𝐾̂
2

(𝑚 + 1) !
2
∫

1

0

𝑥
2𝑚+2

𝑑𝑥

=
𝐾̂
2

(𝑚 + 1) !
2

(2𝑚 + 3)
.

(13)

Then by taking square roots, the proof is complete.

The previous theorem shows that the error vanishes as
𝑚 → ∞.

Table 3: Absolute errors by using BPFs for 𝑁 = 4, BPs for𝑀 = 3,
and HBBPFM for𝑁 = 4,𝑀 = 3 in Example 2.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 4 𝑀 = 3 𝑁 = 4,𝑀 = 3

0 0.134438 0.000939946 2.60043 × 10
−6

0.1 0.0292675 0.000210236 6.00397 × 10
−7

0.2 0.0869644 0.000396173 1.08124 × 10
−6

0.3 0.103935 0.000126329 1.37399 × 10
−6

0.4 0.0380311 0.000213179 7.99831 × 10
−7

0.5 0.216077 0.00037144 4.28735 × 10
−6

0.6 0.0426798 0.000246979 9.89894 × 10
−7

0.7 0.148954 0.0000965353 1.78268 × 10
−6

0.8 0.167943 0.000412916 2.26538 × 10
−6

0.9 0.0661188 0.000254268 1.31873 × 10
−6

Table 4: Absolute errors by using BPFs for 𝑁 = 5, BPs for𝑀 = 4,
and HBBPFs for𝑁 = 5,𝑀 = 4 in Example 2.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 5 𝑀 = 4 𝑁 = 5,𝑀 = 4

0 0.106159 0.0000526416 1.44355 × 10
−8

0.1 0.000988576 0.0000210365 1.12472 × 10
−9

0.2 0.128144 8.80224 × 10
−6

1.65937 × 10
−8

0.3 0.000312002 0.0000141662 1.06195 × 10
−9

0.4 0.155374 0.0000171016 9.87722 × 10
−9

0.5 0.00152224 7.80052 × 10
−7

2.99127 × 10
−9

0.6 0.189012 0.0000166986 4.29645 × 10
−8

0.7 0.00262215 0.0000156271 7.92177 × 10
−9

0.8 0.230475 7.94076 × 10
−6

4.74483 × 10
−10

0.9 0.00358729 0.0000229948 9.2012 × 10
−9

Corollary 5. One can write 𝑐𝑇⟨𝐵, 𝐵⟩ ≅ ⟨𝑓, 𝐵⟩, such that one
defines 𝑄 = ⟨𝐵, 𝐵⟩ that is a (𝑚 + 1) × (𝑚 + 1) matrix and is
said dual matrix of 𝐵, and one can obtain

𝑄
𝑖+1,𝑗+1

= ∫

1

0

𝐵
𝑖,𝑚
(𝑥) 𝐵
𝑗,𝑚
(𝑥) 𝑑𝑥

=
(
𝑚

𝑖
) (
𝑚

𝑗 )

(2𝑚 + 1) (
2𝑚

𝑖+𝑗
)

, 𝑖, 𝑗 = 0, 1, . . . , 𝑚.

(14)

Proof. We know

𝑓 ≅ 𝑠
0
=

𝑚

∑

𝑖=0

𝑐
𝑖
𝐵
𝑖,𝑚
= 𝑐
𝑇

𝐵; (15)

therefore, the proof is complete.

Corollary 6. A function 𝑓(𝑡) ∈ 𝐿2([0, 1]) may be expanded
as follows:

𝑓 (𝑡) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑝
𝑛,𝑚
𝐻
𝑛,𝑚
(𝑡) . (16)
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Figure 1: Plot of error functions by using BPFs for𝑁 = 4 (a), BPs for𝑀 = 3 (b), and HBBPFM for𝑁 = 4,𝑀 = 3 (c) in Example 1.

If the infinite series in (16) is truncated, then we have

𝑓 (𝑡) ≈

𝑁

∑

𝑛=1

𝑀

∑

𝑚=0

𝑝
𝑛,𝑚
𝐻
𝑛,𝑚
(𝑡) = 𝑃

𝑇

𝐻(𝑡) , (17)

where

𝐻(𝑡) = [𝐻
1,0
(𝑡) ,𝐻

1,1
(𝑡) , . . . , 𝐻

1,𝑀
(𝑡) ,

𝐻
2,0
(𝑡) ,𝐻

2,1
(𝑡) , . . . , 𝐻

𝑁,𝑀
(𝑡)]
𝑇

,

(18)

𝑃 = [𝑝
1,0
, 𝑝
1,1
, . . . , 𝑝

1,𝑀
, 𝑝
2,0
, 𝑝
2,1
, . . . , 𝑝

𝑁,𝑀
]
𝑇

. (19)

Therefore we can get

𝑃
𝑇

⟨𝐻 (𝑡) ,𝐻 (𝑡)⟩ = ⟨𝑓 (𝑡) ,𝐻 (𝑡)⟩ . (20)

Then

𝑃 = 𝐷
−1

⟨𝑓 (𝑡) ,𝐻 (𝑡)⟩ , (21)

where

𝐷 = ⟨𝐻 (𝑡) ,𝐻 (𝑡)⟩ = ∫

1

0

𝐻(𝑡)𝐻
𝑇

(𝑡) 𝑑𝑡

=

[
[
[
[

[

𝐷
1
0 ⋅ ⋅ ⋅ 0

0 𝐷
2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐷

𝑁

]
]
]
]

]

,

(22)

where by using (7),𝐷
𝑛
(𝑛 = 1, 2, . . . , 𝑁) is defined as follows:

(𝐷
𝑛
)
𝑖+1,𝑗+1

= ∫

𝑛/𝑁

(𝑛−1)/𝑁

𝐵
𝑖,𝑀
(𝑁𝑡 − 𝑛 + 1) 𝐵

𝑗,𝑀
(𝑁𝑡 − 𝑛 + 1) 𝑑𝑡

=
1

𝑁
∫

1

0

𝐵
𝑖,𝑀
(𝑡) 𝐵
𝑗,𝑀
(𝑡) 𝑑𝑡

=

(
𝑀

𝑖
) (
𝑀

𝑗
)

𝑁 (2𝑀 + 1) (
2𝑀

𝑖+𝑗
)

, 𝑖, 𝑗 = 0, 1, . . . ,𝑀.

(23)

We can also approximate the function 𝑘(𝑡, 𝑠) ∈ 𝐿2([0, 1] ×
[0, 1]) as follows:

𝑘 (𝑡, 𝑠) ≈ 𝐻
𝑇

(𝑡) 𝐾𝐻 (𝑠) , (24)
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Figure 2: Plot of error functions by using BPFs for𝑁 = 5 (a), BPs for𝑀 = 4 (b), and HBBPFM for𝑁 = 5,𝑀 = 4 (c) in Example 1.

where𝐾 is an𝑁(𝑀+1)×𝑁(𝑀+1)matrix that we can obtain
as follows:

𝐾 = 𝐷
−1

⟨𝐻 (𝑡) , ⟨𝑘 (𝑡, 𝑠) ,𝐻 (𝑠)⟩⟩𝐷
−1

. (25)

Theorem 7. Let the function 𝑓 : [0, 1] → 𝑅 be𝑀 + 1 times
continuously differentiable; then we have

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑃

𝑇

𝐻
󵄩󵄩󵄩󵄩󵄩𝐿2[0,1]

≤
𝐾̃

𝑁
𝑀+1
(𝑀 + 1)!√2𝑀 + 3

, (26)

where 𝐾̃ = max
𝑡∈[0,1]

|𝑓
(𝑀+1)

(𝑡)|.

Proof. By usingTheorem 4 we get

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑃

𝑇

𝐻
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
[0,1]

= ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡) − 𝑃

𝑇

𝐻(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

=

𝑁

∑

𝑛=1

(∫

𝑛/𝑁

(𝑛−1)/𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑡)

−

𝑀

∑

𝑚=0

𝑝
𝑛,𝑚
𝐵
𝑚,𝑀
(𝑁𝑡 − 𝑛 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)𝑑𝑡

=
1

𝑁

𝑁

∑

𝑛=1

∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (
𝑡 + 𝑛 − 1

𝑁
) −

𝑀

∑

𝑚=0

𝑝
𝑛,𝑚
𝐵
𝑛,𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤
1

𝑁
2𝑀+3

𝑁

∑

𝑛=1

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑀+1)

(𝜉
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2 𝑡
2𝑀+2

(𝑀 + 1) !
2
𝑑𝑡

≤
1

𝑁
2𝑀+3

𝑁

∑

𝑛=1

𝐾̂
2

𝑛

(𝑀 + 1) !
2

(2𝑀 + 3)

≤
𝐾̃
2

𝑁
2𝑀+2

(𝑀 + 1) !
2

(2𝑀 + 3)
,

(27)

where 𝜉
𝑛

∈ ((𝑛 − 1)/𝑁, 𝑛/𝑁) and 𝐾̂
𝑛

=

max
𝑡∈[(𝑛−1)/𝑁,𝑛/𝑁]

|𝑓
(𝑀+1)

(𝑡)|. Therefore by taking square
roots, the proof is complete.
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Figure 3: Plot of error functions by using BPFs for𝑁 = 4 (a), BPs for𝑀 = 3 (b), and HBBPFM for𝑁 = 4,𝑀 = 3 (c) in Example 2.

The above theorem shows that the approximation error
vanishes as𝑀,𝑁 → ∞.

4. HBBPFs for the Second Kind Integral
Equations and Error Analysis

In this section, we are dealing with the following Fredholm
equations of the second kind:

𝑢 (𝑡) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑓 (𝑡) , (28)

where 𝑢, 𝑓 ∈ 𝐿2([0, 1]), 𝑘 ∈ 𝐿2([0, 1] × [0, 1]), and 𝑢(𝑡) is an
unknown function.

Let us approximate 𝑢, 𝑓, and 𝑘 by (18) and (25) as follows:

𝑢 (𝑡) ≈ 𝑈
𝑇

𝐻(𝑡) , 𝑓 (𝑡) ≈ 𝐹
𝑇

𝐻(𝑡) ,

𝑘 (𝑡, 𝑠) ≈ 𝐻
𝑇

(𝑡) 𝐾𝐻 (𝑡) .

(29)

By substituting (29) in (28) we obtain

𝐻
𝑇

(𝑡) 𝑈 = ∫

1

0

𝐻
𝑇

(𝑡) 𝐾𝐻 (𝑠)𝐻
𝑇

(𝑠) 𝑈 𝑑𝑠 + 𝐻
𝑇

(𝑡) 𝐹

= 𝐻
𝑇

(𝑡) 𝐾 (∫

1

0

𝐻(𝑠)𝐻
𝑇

(𝑠) 𝑑𝑠)𝑈 + 𝐻
𝑇

(𝑡) 𝐹

= 𝐻
𝑇

(𝑡) 𝐾𝐷𝑈 + 𝐻
𝑇

(𝑡) 𝐹 = 𝐻
𝑇

(𝑡) (𝐾𝐷𝑈 + 𝐹) .

(30)

Therefore we have the following linear system:

(𝐼 − 𝐾𝐷)𝑈 = 𝐹, (31)

that by solving this linear system we can obtain the vector𝑈.

Theorem 8. Suppose that 𝑢(𝑡) is exact solution of (28)
and 𝑢

𝑁,𝑀
(𝑡) is approximate solution by HBBPFs for 𝑢(𝑡)

and 𝐸
𝑁,𝑀
(𝑡) is perturbation function that depends only

on 𝑢
𝑁,𝑀
(𝑡) (i.e., 𝑢

𝑁,𝑀
(𝑡) = ∫

1

0

𝑘(𝑡, 𝑠)𝑢
𝑁,𝑀
(𝑠)𝑑𝑠 + 𝑓(𝑡) +

𝐸
𝑁,𝑀
(𝑡)). Let𝑅 = max

0≤𝑡,𝑠≤1
|𝑘(𝑠, 𝑡)| < ∞.Then𝐸

𝑁,𝑀
(𝑡) → 0

as𝑀,𝑁 → ∞.
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Figure 4: Plot of error functions by using BPFs for𝑁 = 5 (a), BPs for𝑀 = 4 (b), and HBBPFM for𝑁 = 5,𝑀 = 4 (c) in Example 2.

Proof. Suppose 𝑒
𝑁,𝑀
(𝑡) = 𝑢(𝑡) − 𝑢

𝑁,𝑀
(𝑡) is the error function

of approximate solution 𝑢
𝑁,𝑀
(𝑡) to the exact solution 𝑢(𝑡).

Therefore we get

𝑒
𝑁,𝑀
(𝑡) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑒
𝑁,𝑀
(𝑠) 𝑑𝑠 − 𝐸

𝑁,𝑀
(𝑡) . (32)

By taking absolute value and using Holder inequality we get

󵄨󵄨󵄨󵄨𝐸𝑁,𝑀 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

1

0

|𝑘 (𝑡, 𝑠)|
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠 +
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)

󵄨󵄨󵄨󵄨

≤ (∫

1

0

|𝑘 (𝑡, 𝑠)|
2

𝑑𝑠)

1/2

(∫

1

0

󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑠)

1/2

+
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑅
󵄩󵄩󵄩󵄩𝑒𝑁,𝑀(𝑡)

󵄩󵄩󵄩󵄩𝐿2[0,1]
+
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)

󵄨󵄨󵄨󵄨 .

(33)

Now, by taking norm 𝐿2([0, 1]) we obtain
󵄩󵄩󵄩󵄩𝐸𝑁,𝑀 (𝑡)

󵄩󵄩󵄩󵄩𝐿2[0,1]
≤ (𝑅 + 1)

󵄩󵄩󵄩󵄩𝑒𝑁,𝑀 (𝑡)
󵄩󵄩󵄩󵄩𝐿2[0,1]

. (34)

Finally, fromTheorem 7 we can write

󵄩󵄩󵄩󵄩𝐸𝑁,𝑀 (𝑡)
󵄩󵄩󵄩󵄩𝐿2[0,1]

≤
(𝑅 + 1)𝐾

𝑁
𝑀+1
(𝑀 + 1)!√2𝑀 + 3

, (35)

where𝐾 = max
𝑡∈[0,1]

|𝑢
(𝑀+1)

(𝑡)|.

Therefore, we can show that 𝐸
𝑁,𝑀
(𝑡) → 0 as𝑀,𝑁 →

∞.

5. Numerical Examples

In this section we discuss the implementation of the new
method and investigate its accuracy by applying it to different
examples. In the following examples, we suppose that 𝑢

𝑁
(𝑡),

𝑢
𝑀
(𝑡), and 𝑢

𝑀,𝑁
(𝑡) are approximate solutions by BPFs, BPs,

and HBBPFM for the exact solution 𝑢(𝑡), respectively.

Example 1. Consider the following integral equation:

𝑢 (𝑡) = ∫

1

0

(𝑡 + 𝑠) 𝑢 (𝑠) 𝑑𝑠 + sin (𝑡)

− 𝑡 + (𝑡 + 1) cos (1) − sin (1) .
(36)

We know that the exact solution is 𝑢(𝑡) = sin(𝑡).The obtained
results of BPFs, BPs, and HBBPFs are reported in Tables 1
and 2 and are plotted in Figures 1 and 2. We compare the
obtained results and observe that HBBPFM is very effective
and accuracy of approximate solutions in thismethod ismore
than methods of BPFs and BPs.
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Example 2. Consider the following integral equation:

𝑢 (𝑡) = ∫

1

0

𝑡𝑠𝑢 (𝑠) 𝑑𝑠 + 𝑒
𝑡

− 𝑡, (37)

with exact solution 𝑢(𝑡) = 𝑒𝑡. We obtain the computational
by BPFs, BPs, and HBBPFM with𝑁 = 4,𝑀 = 3, and𝑁 = 5,
𝑀 = 4; then we compare them together. The results are
reported in Tables 3 and 4 and are plotted in Figures 3 and
4. Similar to the previous example, we see that the method
HBBPFM is very effective and accuracy of solution in this
method is more than methods of BPFs and BPs.

6. Conclusion

In this paper, HBBPFs are used to solve second kind integral
equations we call this method with HBBPFM. This method
converts second kind integral equations to systems of linear
equations whose answers are coefficient of HBBPFs expan-
sion of the solution of second kind integral equations. Also,
by using several lemmas and theorems, we have discussed
convergence analysis of the proposed method. Numerical
examples show the efficiency and accuracy of the method.
Moreover we see that accuracy of solutions in HBBPFM is
more satisfactory than the methods of BPFs and BPs.
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TheFourier law of one-dimensional heat conduction equation in fractalmedia is investigated in this paper. An approximate solution
to one-dimensional local fractional Volterra integral equation of the second kind, which is derived from the transformation of
Fourier flux equation in discontinuous media, is considered. The Picard successive approximation method is applied to solve the
temperature field based on the givenMittag-Leffler-type Fourier flux distribution in fractal media.The nondifferential approximate
solutions are given to show the efficiency of the present method.

1. Introduction

Engineering problems can be mathematically described by
differential equations. Many initial and boundary value
problems associated with differential equations can be trans-
formed into problems of solving some approximate integral
equations. Heat transfer is described by theory of integral
equations. Integral equation arising in heat transfer with
smooth condition is valid for continuous media [1–4]. The
common methods for solving the equations of heat transfer
are purelymathematical are among them; the finite difference
techniques (FDT) [5], the regression analysis (RA) [6], the
Adomian decomposition method (ADM) [7], the combined
Laplace-Adomian method (CLAM) [8], the homotopy anal-
ysis method (HAM) [9, 10], the differential transformation
method (DTM) [11], the spline-wavelets techniques (SWT)
[12], the boundary element method (BEM) [13], the heat-
balance integral method (HBIM) [14, 15], the variational
iteration method (VIM) [16], the local fractional variational

iteration method (LFVIM) [17], and the Picard successive
approximation method (PSAM) [18].

On the other hand, the nanoscale heat problem can be
characterized as fractal behaviors. As usual, the materials are
called the Cantor materials. Heat transfer in fractal media
with nonsmooth conditions is a hot topic. For example, the
heat transfer equations in a medium with fractal geometry
[19] and fractal domains [20] were considered. The local
fractional transient heat conduction equations based upon
the Fourier law within local fractional derivative arising in
heat transfer from discontinuous media were presented in
[21–24].

Fractional calculus was successfully used to deal with the
real world problems [25–30]. There is its limit that the oper-
ators do not deal with the local fractional continuous func-
tions (nondifferential functions). Hence, the local fractional
Fourier flux [21] is not handled by using some approaches
from the classical and fractional operators.This paper focuses
on analytical solution to local fractional Fourier flux in fractal
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media by using Picard’s successive approximation method
[18]. This paper is organized as follows. In Section 2, we
give notations to local fractional derivative and integrals and
investigate the heat transfer in fractal media. Section 3 is
devoted to Picard’s successive approximation method based
upon local fractional integrals. Analysis solution is shown in
Section 4. Conclusions are in Section 5.

2. Heat Transfer in Fractal Media
with Local Fractional Derivative

In order to study the non-differential solution for the heat
problem in fractal media with local fractional derivative, we
here begin with the Fourier flux equation in discontinuous
media.

The temperature field reads as [21]

𝑇 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑓 (𝑥, 𝑦, 𝑧, 𝜏) at 𝜏 > 𝜏
0
and in Ω, (1)

where 𝑓(𝑥, 𝑦, 𝑧, 𝜏) is local fractional continuous at fractal
domainΩ.

For a given temperature field 𝑇, a local fractional temper-
ature gradient [21] can be written as follows:

∇
𝛼

𝑇 =
𝜕
𝛼

𝑇

𝜕𝑢
𝛼

1

󳨀⇀
𝑒
𝛼

1
+
𝜕
𝛼

𝑇

𝜕𝑢
𝛼

2

󳨀⇀
𝑒
𝛼

2
+
𝜕
𝛼

𝑇

𝜕𝑢
𝛼

3

󳨀⇀
𝑒
𝛼

3
, (2)

where the local fractional partial derivative is defined by [21–
24]

𝑓
(𝛼)

𝑥
(𝑥
0
, 𝑦) =

𝜕
𝛼

𝑓 (𝑥, 𝑦)

𝜕𝑥
𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥, 𝑦) − 𝑓 (𝑥
0
, 𝑦))

(𝑥 − 𝑥
0
)
𝛼

,

(3)

whereΔ𝛼(𝑓(𝑥, 𝑦)−𝑓(𝑥
0
, 𝑦)) ≅ Γ(1+𝛼)Δ(𝑓(𝑥, 𝑦)−𝑓(𝑥

0
, 𝑦)).

Here, the local fractional derivative is defined on the
fractal set like a Cantor set. For example, when we consider
the Cantor set, we can find the local fractional derivative of
discontinuous function 𝑇 (however, 𝑇 is a local fractional
continuous function).

We consider the heat flux per unit fractal area 󳨀⇀
𝑞 is

proportional to the temperature gradient in fractal medium.
Fourier law of heat conduction in fractal medium with local
fractional derivative is expressed by [21]

󳨀⇀
𝑞 (𝑥, 𝑦, 𝑧, 𝑡) = −𝐾

2𝛼

∇
𝛼

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) , (4)

where 𝐾
2𝛼 denotes the thermal conductivity of the fractal

material, and it is related to fractal dimensions of materials.
It is shown that the fractal dimensions of materials are an
important characteristic value. Here, we consider the fractal
Fourier flow, which is discontinuous; however, it is found that
it is local fractional continuous. Like classical Fourier flow, its
thermal conductivity is an approximate value for fractal one
when 𝛼 = 1.

Fourier lawof one-dimensional heat conduction equation
in fractal media reads as [21]

𝑞 (𝑥, 𝑡) = −𝐾
2𝛼
𝑑
𝛼

𝑇 (𝑥, 𝑡)

𝑑𝑥
𝛼

, at 𝜏 > 𝜏
0
and in 𝐴, (5)

where 𝐾
2𝛼 denotes the thermal conductivity of the fractal

materials.
When 𝜏 = 𝜏

0
, from (5) we have

𝑞 (𝑥) = −𝐾
2𝛼
𝑑
𝛼

𝑇 (𝑥)

𝑑𝑥
𝛼

, (6)

at 𝜏 > 𝜏
0
and in 𝐴, where 𝐾2𝛼 is the thermal conductivity

of the fractal materials. Namely, 𝑇 is a bi-Lipschitz mapping,
and shows the fractal characteristic behavior [21].

Local fractional heat conduction equation with heat
generation in fractal media can be written as [21]

𝐾
2𝛼

∇
2𝛼

𝑇 + 𝑔 − 𝜌
𝛼
𝑐
𝛼

𝜕
𝛼

𝑇

𝜕𝑡
𝛼
= 0 at 𝜏 > 𝜏

0
and in Ω. (7)

Local fractional heat conduction equation with no heat
generation in fractal media is suggested as [21, 22]

𝐾
2𝛼

∇
2𝛼

𝑇 − 𝜌
𝛼
𝑐
𝛼

𝜕
𝛼

𝑇

𝜕𝑡
𝛼
= 0 at 𝜏 > 𝜏

0
and in Ω, (8)

where ∇2𝛼 is a local fractional Laplace operator [21].

3. The Method

In this section, we discuss the Picard successive approxima-
tion method. Meanwhile, we transfer the Fourier law of one-
dimensional heat conduction equation in fractal media into
the local fractional Volterra integral equation of the second
kind.

3.1. Picard’s Successive Approximation Method. This method
is first proposed in [18]. Here wewill give a short introduction
to Picard’s successive approximation method within the local
fractional calculus.

In this method, we set

𝑢
0
(𝑥) = 𝑓 (𝑥). (9)

We give the first approximation 𝑢
1
(𝑥) by

𝑢
1
(𝑥) = 𝑓 (𝑥) +

𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑢
0
(𝑥) (𝑑𝑡)

𝛼

, (10)

where the local fractional integral of 𝑓(𝑥) of order 𝛼 in the
interval [𝑎, 𝑏] is defined as follows [21–24]:

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎
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𝛼

(11)
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𝑗
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𝑗+1
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,Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
2
, . . .}, and [𝑡

𝑗
, 𝑡
𝑗+1

],
𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, and 𝑡

𝑁
= 𝑏.

Here, we find that the equality 𝑢
1
(𝑥) is a local fractional

continuous function if 𝑓(𝑥), 𝐾(𝑥, 𝑡) and 𝑢
0
(𝑥) are local

fractional continuous functions.
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Continuing in thismanner, we have the infinite sequences
of functions

𝑢
0
(𝑥) , 𝑢

1
(𝑥) , 𝑢

2
(𝑥) , . . . , 𝑢

𝑛
(𝑥) , . . . (12)

such that the recurrence equations are given by

𝑢
𝑛
(𝑥) = 𝑓 (𝑥) −

1

Γ (1 + 𝛼)
∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑢
𝑛−1

(𝑥) (𝑑𝑡)
𝛼

,

(𝑛 = 1, 2, 3, . . .) ,

(13)

where 𝑢
0
(𝑥) is equivalent to any selected function, which is

the local fractional continuous function.
Hence, we have successive approximation as follows:

𝑢
1
(𝑥) = 𝑓 (𝑥) +

𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑓 (𝑡) (𝑑𝑡)
𝛼

,

...

𝑢
𝑛
(𝑥) = 𝑓 (𝑥) +

𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑢
𝑛−1

(𝑥) (𝑑𝑡)
𝛼

.

(14)

Thus, at the limit, the solution 𝑢(𝑥) is written as

𝑢 (𝑥) = lim
𝑛→∞

𝑢
𝑛
(𝑥) . (15)

3.2. An Alternative Method from Local Fractional Derivative
to Local Fractional Volterra Integral Equations. We directly
observe that the local fractional differential equation of 𝛼
order

𝐾
2𝛼
𝑑
𝛼

𝑇

𝑑𝑥
𝛼
= 𝑞 (𝑥) (0 ≤ 𝑥 ≤ 𝑏) (16)

can be written immediately as the local fractional Volterra
integral equation of thee second kind in the form

𝑇 (𝑥) = 𝑇 (𝑎) +
𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝑞 (𝑡) (𝑑𝑡)
𝛼

, (17)

where 𝜆 = 1/𝐾
2.

TheMittag-Leffler type Fourier flux distribution in fractal
media can be written as follows:

𝑞 (𝑥) = 𝑞
𝑡
(𝑡, 𝑥) = 𝐸

𝛼
(𝑥 − 𝑡)

𝛼

𝑇 (𝑡) (0 ≤ 𝑡 ≤ 𝑏) . (18)

Making use of (18), we can get the local fractional Volterra
integral equation of the second kind in the form:

𝑇 (𝑥) = 𝑇 (𝑎) +
𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐸
𝛼
(𝑥 − 𝑡)

𝛼

𝑇 (𝑡) (𝑑𝑡)
𝛼

. (19)

4. Approximate Solutions for Local
Fractional Volterra Integral Equation
of the Second Kind

Let us assume that the zeroth approximation is

𝑢
0
(𝑥) = 0. (20)

Then the first approximation can be written as follows:

𝑢
1
(𝑥) = 𝑓 (𝑥) = 𝑇 (𝑎) . (21)

Here we obtain the second approximation, which reads as

𝑢
2
(𝑥) = 𝑓 (𝑥) +

𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐸
𝛼
(𝑥 − 𝑡)

𝛼

𝑢
1
(𝑡) (𝑑𝑡)

𝛼

.

(22)

Proceeding in this manner, we have the third approximation
in the following form:

𝑢
3
(𝑥) = 𝑓 (𝑥) +

𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐸
𝛼
(𝑥 − 𝑡)

𝛼
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2
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𝛼

. (23)

Hence, continuing in this manner, we obtain

𝑢
𝑛
(𝑥) = 𝑓 (𝑥) +

𝜆
𝛼

Γ (1 + 𝛼)
∫

𝑥

0

𝐸
𝛼
(𝑥 − 𝑡)

𝛼

𝑢
𝑛−1
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× ∫
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(24)

Taking the limit, we have

𝑢 (𝑥) = lim
𝑛→∞

𝑢
𝑛
(𝑥)

= 𝑇 (𝑎) +
𝜆
𝛼

Γ (1 + 𝛼)

× ∫
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𝐸
𝛼
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𝛼

= 𝑇 (𝑎) {
2𝜆
𝛼

1 + 𝜆
𝛼
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𝛼
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)]}

= 𝑇 (𝑎) {
2

𝐾
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+ 1
𝐸
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𝛼

(1 +
1

𝐾
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)]} ,

(25)

where the term𝐸
𝛼
[𝑥
𝛼

(1+𝜆
𝛼

)] is aMittag-Leffler type Fourier
flux distribution in fractal media, which is related to the
fractal coarse-grained mass function [21, 24]. When 𝐾 = 1,
we get 𝑢(𝑥) = 𝑇(𝑎)𝐸

𝛼
[2𝑥
𝛼

]. The nondifferentiable solution
of (25) for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 1

is shown in Figure 1; the non-differentiable solution of (25)
for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 2 is
shown in Figure 2; the non-differentiable solution of (25)
for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 3 is
shown in Figure 3; the non-differentiable solution of (25) for
parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 4 is shown in
Figure 4.

5. Conclusions

This work studied the Fourier law of one-dimensional heat
conduction equation in fractal media. Mittag-Leffler type
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Figure 1: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 1.
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Figure 2: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 2.

0

20

40

60

80

100

120

0 10.2 0.4 0.6 0.8

Figure 3: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 3.
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Figure 4: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 4.

Fourier flux distribution in fractal media with temperature
field effect was considered. An approximation solution for
the local fractional Volterra integral equation of the second
kind derived from Fourier law of one-dimensional heat
conduction equation for heat conduction in discontinuous
mediawas studied by using Picard’s successive approximation
method. The non-differential approximate solutions were
given to show the efficiency of the present method.
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Ramanujan proposed additive formulae of theta functions that are related tomodular equations about infinite products. Employing
these formulaes, we derived some identities on infinite products. In the same spirit, we also could present elementary and simple
proofs of certain Ramanujan’s modular equations on infinite products.

1. Introduction

𝑄-theory is undoubtedly one of the most famous and useful
mathematical theorems, such asAndrews-Askey type integral
[1]

∫

𝑑

𝑐

(𝑞𝑡/𝑐, 𝑞𝑡/𝑑, 𝑓𝑡, 𝑟𝑠𝑡; 𝑞)
∞

(𝑎𝑡, 𝑏𝑡, 𝑒𝑡, 𝑠𝑡; 𝑞)
∞

3
𝜙
2

[

[

𝑟, 𝑏𝑡,
𝑐

𝑔

𝑟𝑠𝑡, 𝑏𝑐;

𝑞, 𝑠𝑔]

]

𝑑
𝑞
𝑡

=
𝑑 (1 − 𝑞) (𝑞, 𝑐/𝑑, 𝑞𝑑/𝑐, 𝑎𝑏𝑐𝑑, 𝑑𝑓, 𝑟𝑠𝑑; 𝑞)

∞

(𝑎𝑐, 𝑏𝑐, 𝑎𝑑, 𝑏𝑑, 𝑠𝑑, 𝑑𝑒; 𝑞)
∞

×

∞

∑

𝑘=0

(𝑓/𝑒, 𝑎𝑑, 𝑠𝑑, 𝑏𝑑; 𝑞)
𝑘
(𝑐𝑒)
𝑘

(𝑞, 𝑑𝑓, 𝑟𝑠𝑑, 𝑎𝑏𝑐𝑑; 𝑞)
𝑘

×
3
𝜙
2

[
[

[

𝑟, 𝑏𝑑𝑞
𝑘

,
𝑎𝑐𝑑𝑞
𝑘

𝑔

𝑟𝑠𝑑𝑞
𝑘

, 𝑎𝑏𝑐𝑑𝑞
𝑘

;

𝑞, 𝑠𝑔
]
]

]

,

(1)

Askey-Roy type integral [2]

∫

𝜋

−𝜋

((𝑃
𝑛
(𝑒
𝑖𝜃

, 𝑓) 𝑃
𝑚
(𝑒
𝑖𝜃

, 𝑔)

× (
𝜌𝑒
𝑖𝜃

𝑑
, 𝑞𝑑𝑒
−𝑖𝜃

, 𝜌𝑐𝑒
−𝑖𝜃

,
𝑞𝑒
𝑖𝜃

(𝑐𝜌)
; 𝑞)

∞

)

× ((𝑎𝑒
𝑖𝜃

, 𝑏𝑒
𝑖𝜃

, 𝑐𝑒
−𝑖𝜃

, 𝑑𝑒
−𝑖𝜃

; 𝑞)
∞

)
−1

)𝑑𝜃

=
2𝜋(𝑎𝑓; 𝑞)

𝑛
(𝑏𝑔; 𝑞)

𝑚
(𝑎𝑏𝑐𝑑, 𝜌𝑐/𝑑, 𝑑𝑞/ (𝜌𝑐) , 𝜌, 𝑞/𝜌; 𝑞)

∞

𝑎
𝑛
𝑏
𝑚
(𝑞, 𝑏𝑐, 𝑏𝑑, 𝑎𝑐, 𝑎𝑑; 𝑞)

∞

×

𝑛

∑

𝑘=0

(𝑞
−𝑛

, 𝑎𝑐, 𝑎𝑑; 𝑞)
𝑘
𝑞
𝑘

(𝑞, 𝑎𝑓, 𝑎𝑏𝑐𝑑; 𝑞)
𝑘

3
𝜙
2
[
𝑞
−𝑚

, 𝑏𝑐, 𝑏𝑑

𝑏𝑔, 𝑎𝑏𝑐𝑑𝑞
𝑘

;
𝑞, 𝑞] ,

(2)

Moment integrals [3]

∫

∞

−∞

𝑃
𝑛
(𝑤, 𝑐) 𝑃

𝑚
(𝑤, 𝑑)

(𝑎𝑤, 𝑏𝑤; 𝑞)
∞

𝑑𝛼
(𝑠,𝑡)

(𝑤)

=
(𝑎𝑐; 𝑞)

𝑛
(𝑏𝑑; 𝑞)

𝑚
(𝑎𝑏𝑠𝑡; 𝑞)

∞

𝑎
𝑛
𝑏
𝑚
(𝑎𝑠, 𝑎𝑡, 𝑏𝑠, 𝑏𝑡; 𝑞)

∞

×

𝑛

∑

𝑘=0

(𝑞
−𝑛

, 𝑎𝑠, 𝑎𝑡; 𝑞)
𝑘
𝑞
𝑘

(𝑞, 𝑎𝑐, 𝑎𝑏𝑠𝑡; 𝑞)
𝑘

3
𝜙
2
[
𝑞
−𝑚

, 𝑏𝑠, 𝑏𝑡

𝑏𝑑, 𝑎𝑏𝑠𝑡𝑞
𝑘

;
𝑞, 𝑞] ,

(3)

(where 𝑃
𝑛
(𝑎, 𝑏) = (𝑎− 𝑏) ⋅ ⋅ ⋅ (𝑎 − 𝑏𝑞

𝑛−1

)), 𝑞-Fractional Calcu-
lus Equations [4] and 𝑞-Calculus [5]. For more information,
please refer to [1–5].

The theta functions are very useful tool in researching
𝑞-series, especially in dealing with the form of the equation
similar to above formulas, whose left-hand side is summation
and right-hand side is integral. The additive identities of
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theta are one of the important of Ramanujan’s contributions.
Using it, we gave elementary and simple proofs of certain
Ramanujan’s modular equations on infinite products. For
more information, please refer to [1–7].

In his notebook [8, pages 34–38], Ramanujan defines the
following theta functions:

𝑓 (𝑎, 𝑏) :=

∞

∑

𝑛=−∞

𝑎
𝑛(𝑛+1)/2

𝑏
𝑛(𝑛−1)/2

= (−𝑎; 𝑎𝑏)
∞
(−𝑏; 𝑎𝑏)

∞
(𝑎𝑏; 𝑎𝑏)

∞
, |𝑎𝑏| < 1,

(4)

𝜑 (𝑞) := 𝑓 (𝑞, 𝑞) =

∞

∑

𝑛=−∞

𝑞
𝑛
2

=
(−𝑞; −𝑞)

∞

(𝑞; −𝑞)
∞

, (5)

𝜓 (𝑞) := 𝑓 (𝑞, 𝑞
3

) =

∞

∑

𝑛=1

𝑞
𝑛(𝑛−1)/2

=

(𝑞
2

; 𝑞
2

)
∞

(𝑞; 𝑞
2
)
∞

, (6)

where

(𝑎; 𝑞)
∞

:=

∞

∏

𝑛=0

(1 − 𝑎𝑞
𝑛

) ,
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 < 1, (7)

sometimes written as
(𝑎, 𝑏, 𝑐, . . . ; 𝑞)

∞
= (𝑎; 𝑞)

∞
(𝑏; 𝑞)
∞
(𝑐; 𝑞)
∞
⋅ ⋅ ⋅ . (8)

The infinite products are from the Jacobi triple product
identity [8, page 35].

In the course of deduction, we used the following simple
fact [9, 10]:

(𝑎
𝑘

; 𝑞
𝑘

)
∞

= (𝑎, 𝑎𝜔
𝑘
, . . . , 𝑎𝜔

𝑘−1

𝑘
; 𝑞)
∞

,

(𝑎, 𝑞)
∞

= (𝑎, 𝑎𝑞, 𝑎𝑞
2

, . . . , 𝑎𝑞
𝑘−1

; 𝑞
𝑘

)
∞

.

(9)

By definition of Ramanujan theta functions one can easily
verify the following identities [8, page 45]:

𝑓 (𝑎, 𝑏) + 𝑓 (−𝑎, −𝑏) = 2𝑓 (𝑎
3

𝑏, 𝑎𝑏
3

) ,

𝑓 (𝑎, 𝑏) − 𝑓 (−𝑎, −𝑏) = 2𝑎𝑓(
𝑏

𝑎
,
𝑎

𝑏
𝑎
4

𝑏
4

) .

(10)

From (4), if 𝑎𝑏 = 𝑐𝑑 = 𝑝, we have

𝑓 (𝑎, 𝑏) 𝑓 (𝑐, 𝑑) =

∞

∑

𝑚,𝑛=−∞

𝑝
(𝑚
2
+𝑛
2
)/2−(𝑚+𝑛)/2

𝑎
𝑚

𝑐
𝑛

. (11)

Thus setting 𝑚 − 𝑛 = 2𝑗 and 𝑚 + 𝑛 = 2𝑘, we find that

𝑓 (𝑎, 𝑏) 𝑓 (𝑐, 𝑑) + 𝑓 (−𝑎, −𝑏) 𝑓 (−𝑐, −𝑑)

=

+∞

∑

𝑛,𝑚=−∞

𝑚,𝑛,even

𝑝
(𝑚
2
+𝑛
2
)/2−(𝑚+𝑛)/2

𝑎
𝑚

𝑐
𝑛

= 2

∞

∑

𝑗,𝑘=−∞

𝑝
𝑗
2
+𝑘
2
−𝑘

𝑎
𝑗+𝑘

𝑐
𝑘−𝑗

= 2

∞

∑

𝑗,𝑘=−∞

𝑝
𝑘(𝑘−1)

(𝑎𝑐)
𝑘

𝑝
𝑗(𝑗−1)

(𝑏𝑐)
−𝑗

= 2𝑓 (𝑎𝑐, 𝑏𝑑) 𝑓 (𝑎𝑑, 𝑏𝑐) .

(12)

Thus when 𝑎𝑏 = 𝑐𝑑, we have

𝑓 (𝑎, 𝑏) 𝑓 (𝑐, 𝑑) + 𝑓 (−𝑎, −𝑏) 𝑓 (−𝑐, −𝑑)

= 2𝑓 (𝑎𝑐, 𝑏𝑑) 𝑓 (𝑎𝑑, 𝑏𝑐) .

(13)

Similarly we have that

𝑓 (𝑎, 𝑏) 𝑓 (𝑐, 𝑑) − 𝑓 (−𝑎, −𝑏) 𝑓 (−𝑐, −𝑑)

= 2𝑎𝑓(
𝑏

𝑐
,
𝑎𝑏𝑐𝑑

𝑏/𝑐
)𝑓(

𝑏

𝑑
,
𝑎𝑏𝑐𝑑

𝑏/𝑑
) .

(14)

The special case of these identities can be written as the
following form by using Jacobian theta function [6, 7]:

2𝜃
1
(𝑥 + 𝑦 | 2𝜏) 𝜃

1
(𝑥 − 𝑦 | 2𝜏)

= 𝜃
3
(𝑦 | 𝜏) 𝜃

4
(𝑥 | 𝜏) − 𝜃

3
(𝑥 | 𝜏) 𝜃

4
(𝑦 | 𝜏) .

(15)

The authors of [6, 7] give simple proofs and very important
use of it.

In the above two identities, putting 𝑐 = 𝑎 and 𝑑 = 𝑏, we
easily obtain

𝑓
2

(𝑎, 𝑏) + 𝑓
2

(−𝑎, −𝑏) = 2𝑓 (𝑎
2

, 𝑏
2

) 𝜑 (𝑎𝑏) , (16)

𝑓
2

(𝑎, 𝑏) − 𝑓
2

(−𝑎, −𝑏) = 4𝑎𝑓(
𝑏

𝑎
,
𝑎

𝑏
𝑎
2

𝑏
2

)𝜓 (𝑎
2

𝑏
2

) . (17)

2. Main Results

The sums and products of infinite are used in many domains
of mathematics, such as Partition Functions [11–14], Fractal
Geometry [9], Fractional Calculus [10], Fractal Time Series
[4], and so on. Then the equations of it are concentrated
by several mathematicians and engineers [15–18]. At the
same time, it can be used in dynamic equations, differential
equations [19], and partial differential equations [20].

This paper has two main purposes. The first is to derive
the identities as follows: for |𝑞| < 1,

(𝑞; 𝑞)
2

∞

(𝑞
3
; 𝑞
3
)
2

∞

+ 3
(−𝑞; 𝑞)

2

∞

(−𝑞
3
; 𝑞
3
)
2

∞

= 4𝜔
(𝑞; 𝑞)
2

∞

(𝑞
3
; 𝑞
3
)
2

∞

𝑓 (𝑞𝜔, 𝑞
3

𝜔
2

) 𝑓 (𝑞𝜔
2

, 𝑞
3

𝜔)

𝑓
2
(𝜔, 𝑞𝜔

2
)

,

(18)

(𝑞; 𝑞)
2

∞

(𝑞
3
; 𝑞
3
)
2

∞

− 3
(−𝑞; 𝑞)

2

∞

(−𝑞
3
; 𝑞
3
)
2

∞

= 2
(𝑞; 𝑞)
2

∞

(𝑞
3
; 𝑞
3
)
2

∞

𝑓 (𝜔
2

, 𝑞𝜔)

𝑓
2
(𝜔, 𝑞𝜔

2
)
𝜑 (𝑞) ,

(19)
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(𝑞; 𝑞)
2

∞

(𝑞
5
; 𝑞
5
)
2

∞

− 5
(−𝑞; 𝑞)

2

∞

(−𝑞
5
; 𝑞
5
)
2

∞

= 4𝜁
(𝑞; 𝑞)
2

∞

(𝑞
5
; 𝑞
5
)
2

∞

×

𝑓 (𝑞𝜁
2

, 𝑞𝜁
3

) 𝑓 (𝜁, 𝑞
2

𝜁
4

) 𝑓 (𝜁
3

, 𝑞
2

𝜁
2

) 𝑓 (𝑞𝜁, 𝑞𝜁
4

)

𝑓
2
(𝜁, 𝑞𝜁
4
) 𝑓
2
(𝜁
2
, 𝑞𝜁
3
)

,

(20)

in which 𝜔 = exp(2𝑖𝜋/3) and 𝜁 = exp(2𝑖𝜋/5). In the same
way, we are able to give the simple and elementary proofs of
the following identities of Ramanujan [8, 11, 12]:

(−𝑞; 𝑞)
2

∞

(−𝑞
3
; 𝑞
3
)
2

∞

+
(𝑞; 𝑞)
2

∞

(𝑞
3
; 𝑞
3
)
2

∞

= 2

(−𝑞
3

; 𝑞
6

)
2

∞

(𝑞
3
; 𝑞
6
)
2

∞

(−𝑞
2

, −𝑞
4

; 𝑞
6

)
∞

,

(21)

(−𝑞; 𝑞)
2

∞

(−𝑞
3
; 𝑞
3
)
2

∞

−
(𝑞; 𝑞)
2

∞

(𝑞
3
; 𝑞
3
)
2

∞

= 4𝑞

(−𝑞
6

; 𝑞
6

)
2

∞

(𝑞
3
; 𝑞
6
)
2

∞

(−𝑞, −𝑞
5

; 𝑞
6

)
∞

,

(22)

(−𝑞; 𝑞)
2

∞

(−𝑞
5
; 𝑞
5
)
2

∞

−
(𝑞; 𝑞)
2

∞

(𝑞
5
; 𝑞
5
)
2

∞

= 4𝑞

(−𝑞, −𝑞
2

, −𝑞
3

, −𝑞
4

, −𝑞
6

, −𝑞
7

, −𝑞
8

, −𝑞
9

; 𝑞
10

)
∞

(𝑞
5
; 𝑞
10
)
4

∞

.

(23)

3. Modular Equations of Infinite Productions

In this section, we first give the two sets refinement about the
identities (18) and (20).

Theorem 1. For |𝑞| < 1,

(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

− 𝑖√3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

= 2𝜔
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

𝑓 (𝑞𝜔, 𝑞
3

𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

,

(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

+ 𝑖√3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

= 2
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

𝑓 (𝑞𝜔
2

, 𝑞
3

𝜔)

𝑓 (𝜔, 𝑞𝜔
2
)

.

(24)

Proof. Note that 1+𝜔+𝜔
2

= 0 and 𝜔−𝜔
2

= 𝑖√3. By (9), we
get that

𝑖√3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

=

(𝜔 − 𝜔
2

) (𝑞𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝑞𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

=

𝜔 (1 − 𝜔) (1 + 𝜔) (𝑞𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(1 + 𝜔) (−𝑞𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

= −

(𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

= −

𝑓 (−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

.

(25)

From (10), we have

𝑓 (𝜔, 𝑞𝜔) − 𝑓 (−𝜔, −𝑞𝜔) = 2𝑓 (𝑞𝜔
2

, 𝑞
3

𝜔) , (26)

𝑓 (𝜔, 𝑞𝜔) + 𝑓 (−𝜔, −𝑞𝜔) = 2𝜔𝑓 (𝑞𝜔, 𝑞
3

𝜔
2

) . (27)

Dividing by 𝑓(𝜔, 𝑞𝜔), respectively, and then applying (25),
we derive

𝑖√3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

− 1

= −1 −

𝑓 (−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

= −2𝜔

𝑓 (𝑞𝜔, 𝑞
3

𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

,

(28)

𝑖√3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

+ 1

= 1 −

𝑓 (−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

= 2

𝑓 (𝑞𝜔
2

, 𝑞
3

𝜔)

𝑓 (𝜔, 𝑞𝜔
2
)

.

(29)

Multiplying by (𝑞; 𝑞)
∞
/(𝑞
3

; 𝑞
3

)
∞
, respectively, we complete

the proofs of (24).

Proof of (19). Let 𝛼 = exp(𝑖𝜋/6); then it is easy to know that
𝜔 = 𝑖𝛼 and 𝛼 + 1/𝛼 = −√3.

One has

√3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

= −(𝛼 +
1

𝛼
)

(𝑞𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝑞𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

= −
1

𝛼
(1 + 𝛼

2

)

(𝑞𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝑞𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

= −
1

𝛼
(1 − 𝑖𝛼) (1 + 𝑖𝛼)

(𝑞𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝑞𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

= −
1

𝛼
(1 − 𝜔) (1 + 𝜔)

(𝑞𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝑞𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞
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= −
1

𝛼
(1 + 𝜔)

2
(𝜔; 𝑞)
∞
(𝑞𝜔
2

; 𝑞)
∞

(−𝜔; 𝑞)
∞
(−𝑞𝜔
2
; 𝑞)
∞

= −
𝜔

𝛼

𝑓 (−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

= −𝑖

𝑓 (−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

.

(30)

Then we obtain that

1 + √3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

= 1 − 𝑖

𝑓 (−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)

,

1 − √3
(−𝑞; 𝑞)

∞

(−𝑞
3
; 𝑞
3
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
3
; 𝑞
3
)
∞

= 1 + 𝑖

(−𝜔, −𝑞𝜔
2

)

𝑓 (𝜔, 𝑞𝜔
2
)
.

(31)

In (16), let 𝑎 = 𝜔 and 𝑏 = 𝑞𝜔
2 then we have that

𝑓
2

(𝜔, 𝑞𝜔
2

) + 𝑓
2

(−𝜔, −𝑞𝜔
2

) = 2𝑓 (𝜔
2

, 𝑞
2

𝜔)𝜑 (𝑞) . (32)

Dividing by 𝑓
2

(𝜔, 𝑞𝜔), respectively, we arrive at

1 +

𝑓
2

(−𝜔, −𝑞𝜔
2

)

𝑓
2
(𝜔, 𝑞𝜔

2
)

=

2𝑓 (𝜔
2

, 𝑞
2

𝜔)𝜑 (𝑞)

𝑓
2
(𝜔, 𝑞𝜔

2
)

. (33)

Multiplying (31), combining with (33), and then multiplyed
by (𝑞; 𝑞)

2

∞
/(𝑞
3

; 𝑞
3

)
2

∞
, we are able to obtain (19).

Theorem 2. For |𝑞| < 1,

(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

− √5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

= 2𝜁
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

𝑓 (𝑞𝜁
2

, 𝑞𝜁
3

) 𝑓 (𝜁, 𝑞
2

𝜁
4

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

,

(34)

(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

+ √5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

= 2
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

𝑓 (𝜁
3

, 𝑞
2

𝜁
2

) 𝑓 (𝑞𝜁, 𝑞𝜁
4

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

.

(35)

Proof. First we recall that 𝜁5 = 1, 𝜁 + 𝜁
4

− 𝜁
2

− 𝜁
3

= √5 and
1 + 𝜁 + 𝜁

2

+ 𝜁
3

+ 𝜁
4

= 0. Using (9), we have

√5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

= (𝜁 + 𝜁
4

− 𝜁
2

− 𝜁
3

)

×

(𝑞𝜁; 𝑞)
∞
(𝑞𝜁
2

; 𝑞)
∞

(𝑞𝜁
3

; 𝑞)
∞

(𝑞𝜁
4

; 𝑞)
∞

(−𝑞𝜁; 𝑞)
∞
(−𝑞𝜁
2
; 𝑞)
∞
(−𝑞𝜁
3
; 𝑞)
∞
(−𝑞𝜁
4
; 𝑞)
∞

= (𝜁 (1 − 𝜁) (1 − 𝜁
2

) (1 + 𝜁) (1 + 𝜁
2

)

× (𝑞𝜁; 𝑞)
∞
(𝑞𝜁
2

; 𝑞)
∞

(𝑞𝜁
3

; 𝑞)
∞

(𝑞𝜁
4

; 𝑞)
∞

)

× ((1 + 𝜁) (1 + 𝜁
2

) (−𝑞𝜁; 𝑞)
∞

× (−𝑞𝜁
2

; 𝑞)
∞

(−𝑞𝜁
3

; 𝑞)
∞

(−𝑞𝜁
4

; 𝑞)
∞

)
−1

= −

𝑓 (−𝜁, −𝑞𝜁
4

) 𝑓 (−𝜁
2

, −𝑞𝜁
3

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

.

(36)

Then we know easily that

1 + √5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

= 1 −

𝑓 (−𝜁, −𝑞𝜁
4

) 𝑓 (−𝜁
2

, −𝑞𝜁
3

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

,

1 − √5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

= 1 +

𝑓 (−𝜁, −𝑞𝜁
4

) 𝑓 (−𝜁
2

, −𝑞𝜁
3

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

.

(37)

In (13) and (14), setting 𝑎 = 𝜁, 𝑏 = 𝑞𝜁
4, 𝑐 = 𝜁

2, and 𝑑 = 𝑞𝜁
3,

we get that

𝑓 (𝜁, 𝑞𝜁
4

) 𝑓 (𝜁
2

, 𝑞𝜁
3

) + 𝑓 (−𝜁, −𝑞𝜁
4

) 𝑓 (−𝜁
2

, −𝑞𝜁
3

)

= 2𝑓 (𝜁
3

, 𝑞
2

𝜁
2

) 𝑓 (𝑞𝜁
4

, 𝑞𝜁) ,

𝑓 (𝜁, 𝑞𝜁
4

) 𝑓 (𝜁
2

, 𝑞𝜁
3

) − 𝑓 (−𝜁, −𝑞𝜁
4

) 𝑓 (−𝜁
2

, −𝑞𝜁
3

)

= 2𝜁𝑓 (𝑞𝜁
2

, 𝑞𝜁
3

) 𝑓 (𝜁, 𝑞
2

𝜁
4

) .

(38)

Dividing the above two equations by 𝑓(𝜁, 𝑞𝜁
4

)𝑓(𝜁
2

, 𝑞𝜁
3

),
respectively, and then combining with (37), we obtain that

1 + √5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

= 2

𝑓 (𝜁
3

, 𝑞
2

𝜁
2

) 𝑓 (𝑞𝜁, 𝑞𝜁
4

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

,

(39)

1− √5
(−𝑞; 𝑞)

∞

(−𝑞
5
; 𝑞
5
)
∞

÷
(𝑞; 𝑞)
∞

(𝑞
5
; 𝑞
5
)
∞

= 2𝜁

𝑓 (𝑞𝜁
2

, 𝑞𝜁
3

) 𝑓 (𝜁, 𝑞
2

𝜁
4

)

𝑓 (𝜁, 𝑞𝜁
4
) 𝑓 (𝜁
2
, 𝑞𝜁
3
)

.

(40)

Multiplied by (𝑞; 𝑞)
∞
/(𝑞
5

; 𝑞
5

)
∞
, the identities (39) and (40)

become (34) and (35).
Multiplying the two refinements in Theorems 1 and 2,

respectively, we obtain the identities (18) and (20). Using the
samemethod, we can obtain refinement identities of (21) and
(22) which are similar to Theorems 1 and 2; then we can
deduce (21), (22), and (23) easily. The details of proofs are
omitted.
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The following conclusion can be obtained easily.

Corollary 3. For |𝑞| < 1,

(𝑞; 𝑞)
4

∞

(𝑞
3
; 𝑞
3
)
4

∞

− 9
(−𝑞; 𝑞)

4

∞

(−𝑞
3
; 𝑞
3
)
4

∞

= 8𝜔
(𝑞; 𝑞)
4

∞

(𝑞
3
; 𝑞
3
)
4

∞

×

𝑓 (𝜔
2

, 𝑞𝜔)𝑓 (𝑞𝜔, 𝑞
3

𝜔
2

) 𝑓 (𝑞𝜔
2

, 𝑞
3

𝜔)

𝑓
4
(𝜔, 𝑞𝜔

2
)

𝜑 (𝑞) .

(41)
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We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local
fractional wavelet transform is also presented.

1. Introduction

Wavelet transforms have been applied successfully in the
areas of signals analysis, data compression, and sound
processing (see, for details, [1–6] and the references cited
therein). Although there is scaled and shifted versions of
a mother wavelet, the daughter wavelets are structured as
follows (see [3–5]):

𝜑
𝑎,𝑏

(𝑡) =
1

𝑎
1/2

𝜑(
𝑡 − 𝑏

𝑎
) , (1)

where 𝑎 is the dyadic dilation, 𝑏 is the dyadic position, and
𝑎
−1/2 is the normalization factor. The expression of a one-

dimensional wavelet transform for a given continuous signal
𝑓(𝑡) is given by

𝑊
𝜑
𝑓 (𝑎, 𝑏) = ∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏

(𝑡)𝑑𝑡 (2)

and the reconstruction formula becomes

𝑓 (𝑥) = 𝐶
𝜑
∬

∞

−∞

1

𝑎
2
𝑊
𝜑
𝑓 (𝑎, 𝑏) 𝜑

𝑎,𝑏
(𝑡) 𝑑𝑎 𝑑𝑏, (3)

where

𝐶
𝜑
= ∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

2

|𝑥|
𝑑𝑥. (4)

Recently, fractional wavelet transform, as a generalization
of the classical wavelet transform, was proposed in [7]. The
one-dimensional fractal wavelet transform of a continuous
signal 𝑓(𝑡) has the following form:

𝑊
𝜑
𝑓 (𝑎, 𝑏) = ∬

∞

−∞

𝐵 (𝑥, 𝑡) 𝑓 (𝑡) 𝜑
𝑎,𝑏

(𝑥)𝑑𝑡 𝑑𝑥, (5)

where 𝐵(𝑥, 𝑡) denotes a bulk optics kernel.
The reconstructing formula of the input is defined as

given by the following expression:

𝑓 (𝑥) =
1

𝐶
𝜑

∬

∞

−∞

1

𝑎
3
𝑊
𝜑
𝑓 (𝑎, 𝑏) 𝐵 (𝑥, 𝑡) 𝜑

𝑎,𝑏
(𝑡) 𝑑𝑎 𝑑𝑏 𝑑𝑡 𝑑𝑡.

(6)

We notice that the fractional wavelet transforms was
applied to image encryption [8], to the simultaneous spectral
analysis in [9], and to the composite signals in [10, 11]. For
other definition of fractional wavelet transform, see [12] and
the references cited therein.
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Keeping in mind the study of the fractal signals (local
fractional continuous signals), a new local fractional wavelet
transform was developed in [13] based upon the local frac-
tional Fourier transform [14] via local fractional calculus [15–
18]. In this paper, we investigate the local fractional Fourier
transform to deal with the local fractional wavelet transforms
by implementing the local fractional calculus.

The organization of the paper is as follows. Section 2
presents the concept of local fractional Fourier transform
and wavelet. Section 3 discusses the derivation of the local
fractional continuous wavelet transform. Section 4 studies
the wave space and Section 5 present an illustrative exam-
ple. Finally, Section 6 outlines the main conclusions of our
present investigation.

2. Local Fractional Fourier
Transform and Wavelet

Let 𝑓(𝑥) be local fractional continuous function, which is
denoted as follows (see [18]):

𝑓 (𝑥) ∈ 𝐶
𝛼
(−∞,∞) . (7)

The space of local fractional continuous functions 𝐶
𝑝,𝛼

[𝑎, 𝑏],
under 𝑝-norm, is given by (see [13])

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝛼

=(
1

Γ (1+𝛼)
∫

𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

(𝑑𝑥)
𝛼

)

1/𝑝

, for 1≤𝑝 < ∞,

(8)

where the operator is local fractional operator.
The space 𝐿

𝑝,𝛼
[R] norm on 𝐶

𝑝,𝛼
[R] is defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝛼

=: (
1

Γ (1 + 𝛼)
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

(𝑑𝑥)
𝛼

)

1/𝑝

< ∞ (9)

for 1 ≤ 𝑝 < ∞. This is infinite for 𝑎 and 𝑏.
The local fractional Fourier transforms in fractal space is

defined as follows (see [13, 14]):

𝐹
𝛼
{𝑓 (𝑥)} = 𝑓

𝐹,𝛼

𝜔
(𝜔)

:=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝐸
𝛼
(−𝑖
𝛼

𝜔
𝛼

𝑥
𝛼

) 𝑓 (𝑥) (𝑑𝑥)
𝛼

.

(10)

Its inverse is formulated as follows (see [13, 14]):

𝑓 (𝑥) = 𝐹
−1

𝛼
(𝑓
𝐹,𝛼

𝜔
(𝜔))

:=
1

(2𝜋)
𝛼
∫

∞

−∞

𝐸
𝛼
(𝑖
𝛼

𝜔
𝛼

𝑥
𝛼

) 𝑓
𝐹,𝛼

𝜔
(𝜔) (𝑑𝜔)

𝛼

, 𝑥 > 0.

(11)

Let 𝜑(𝑥) ∈ 𝐿
2,𝛼

[R] and let

𝜑
𝐹,𝛼

𝜔
(𝜔) =

1

Γ (1 + 𝛼)
∫

∞

−∞

𝐸
𝛼
(−𝑖
𝛼

𝜔
𝛼

𝑥
𝛼

) 𝜑 (𝑥) (𝑑𝑥)
𝛼

,

0 < 𝛼 ≤ 1.

(12)

When

𝜑
𝐹,𝛼

𝜔
(𝜔) =

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑥) (𝑑𝑥)
𝛼

= 0, 0 < 𝛼 ≤ 1, (13)

the function 𝜑(𝑥) is called a local fractional wavelet [13].
Let 𝜑(𝑥) ∈ 𝐿

2,𝛼
[R]. Then, we have

󵄩󵄩󵄩󵄩𝜑𝑎,𝑏,𝛼 (𝑡)
󵄩󵄩󵄩󵄩

2

1,𝛼
=

1

𝑎
𝛼
Γ (1 + 𝛼)

∫

∞

−∞

󵄨󵄨󵄨󵄨𝜑𝑎,𝑏,𝛼 (𝑡)
󵄨󵄨󵄨󵄨

2

(𝑑𝑥)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

󵄨󵄨󵄨󵄨𝜑 (𝑡)
󵄨󵄨󵄨󵄨

2

(𝑑𝑥)
𝛼

=
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1,𝛼
,

(14)

so that

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎
𝛼/2

𝜑(
𝑡 − 𝑏

𝑎
) , (15)

where 𝑎, 𝑏 ∈ R and 𝑎 ̸= 0.

3. Local Fractional Continuous
Wavelet Transform

Let 𝜑 ∈ 𝐿
2,𝛼

[R]. Then, we arrive at the following relation:

󵄩󵄩󵄩󵄩𝜑𝑎,𝑏,𝛼 (𝑡)
󵄩󵄩󵄩󵄩

1

2,𝛼
=

1

𝑎
𝛼
Γ (1 + 𝛼)

∫

∞

−∞

󵄨󵄨󵄨󵄨𝜑𝑎,𝑏,𝛼 (𝑡)
󵄨󵄨󵄨󵄨

2

(𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

󵄨󵄨󵄨󵄨𝜑 (𝑡)
󵄨󵄨󵄨󵄨

2

(𝑑𝑡)
𝛼

=
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

1

2,𝛼
,

(16)

where 𝜑
𝑎,𝑏,𝛼

(𝑡) = (1/𝑎
𝛼/2

)𝜑((𝑡 − 𝑏)/𝑎), 𝑎, 𝑏 ∈ R, and 𝑎 ̸= 0.
Similarly, we get

󵄩󵄩󵄩󵄩𝜑𝑏,𝛼 (𝑡)
󵄩󵄩󵄩󵄩

1

2,𝛼
=

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

1

2,𝛼
. (17)

Taking 𝜑
𝑏,𝛼

(𝑡) in place of 𝜑
𝑎,𝑏,𝛼

(𝑡)𝐸
𝛼
(−𝑖
𝛼

𝜔
𝛼

𝑡
𝛼

), we obtain

Θ
𝜑𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) = ⟨𝑓 (𝑡) , 𝜑
𝑎,𝑏,𝛼

(𝑡)⟩

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

.

(18)

In the special case when 𝑓(𝑡) = 1, we have the following
relation:

Θ
𝜑𝑎,𝑏,𝛼

(𝑎, 𝑏) =
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼 (19)

such that
1

Γ (1 + 𝛼)
∫

∞

−∞

Θ
𝜑𝑎,𝑏,𝛼

(𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑏)
𝛼

= |𝑎|
𝛼

[
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑡) (𝑑𝑡)
𝛼

]

2

.

(20)

Hence, there exists the following relation:

1

Γ
2
(1 + 𝛼)

∬

∞

−∞

𝑎
−2𝛼

Θ
𝜑𝑎,𝑏,𝛼

(𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑎)
𝛼

(𝑑𝑏)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

|𝑥|
−𝛼

(𝑑𝑥)
𝛼

.

(21)
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In general, we also deduce the following identities:

𝑓 (𝑥) =

∫
∞

−∞

(
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨

2

/|𝑥|
𝛼

) (𝑑𝑥)
𝛼

Γ
3
(1 + 𝛼)

× ∬

∞

−∞

𝑎
−2𝛼

Θ
𝜑𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑏)
𝛼

(𝑑𝑎)
𝛼

,

Θ
𝜑𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) =
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

.

(22)

Now, we establish the following relations:

̃Θ
𝜑𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) =
𝑎
−𝛼/2

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

,

0 < 𝛼 ≤ 1,

𝑓 (𝑥) =

∫
∞

−∞

(
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨

2

/|𝑥|
𝛼

) (𝑑𝑥)
𝛼

Γ
3
(1 + 𝛼)

× ∬

∞

−∞

𝑎
−2𝛼 ̃Θ
𝜑𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏)𝜑
𝑎,𝑏,𝛼

× (𝑡) (𝑑𝑎)
𝛼

(𝑑𝑏)
𝛼

.

(23)

Hence, the local fractional continuous wavelet transform
takes the following form (see [13]):

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏)=
𝑎
−𝛼/2

Γ (1+𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

, 0<𝛼≤1.

(24)

And the inversion formula of local fractional continuous
wavelet transform is derived as follows (see [14]):

𝑓 (𝑥) =

𝐶
𝜑,𝛼

Γ
2
(1 + 𝛼)

× ∬

∞

−∞

𝑎
−2𝛼

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑎)
𝛼

(𝑑𝑏)
𝛼

,

0 < 𝛼 ≤ 1,

(25)

where

𝐶
𝜑,𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

2

|𝑥|
𝛼

(𝑑𝑥)
𝛼

, 0 < 𝛼 ≤ 1. (26)

4. The Wavelet Space

In order to differ the classical wavelets from fractional wave-
lets, here we formulate a wavelet space as follows. In fact, a
wavelet space is defined by

𝑊
𝜑,𝛼

[R] = { (𝜑, 𝛼) : 𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏)

=
𝑎
−𝛼/2

Γ (1+𝛼)
∫

∞

−∞

𝑓(𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

, 0<𝛼≤1} .

(27)

When the fractal dimension 𝛼 is equal to 1, from (27), we
deduce (see [3–5])

𝑊
𝜑,1

[R] = { (𝜑, 1) : 𝑊
𝜑,1

𝑓 (𝑎, 𝑏)

= 𝑎
−1/2

∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,1

(𝑡)𝑑𝑡, 𝛼 = 1} ,

(28)

where 𝑓(𝑡) is continuous and 𝑊
𝜑,1

𝑓(𝑎, 𝑏) ∈ 𝑊
𝜑,1

[R].
Taking the fractal dimension 0 < 𝛼 < 1, we derive a

formula given by

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏) =
𝑎
−𝛼/2

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼 (29)

with 𝑊
𝜑,𝛼

𝑓(𝑎, 𝑏) ∈ 𝑊
𝜑,𝛼

[R], where 𝑓(𝑡) is a local fractional
continuous function.

5. An Illustrative Example

In order to construct the local fractional continuous wavelet,
we suppose that 𝜙(𝑡) is𝑚𝛼 times the local fractional differen-
tiable function.

We define the local fractional wavelet𝜑(𝑡) bymeans of the
following expression:

𝜑 (𝑡) =
𝑑
𝑚𝛼

𝑦

𝑑𝑥
𝑚𝛼

, (30)

where the differential operator is the local fractional operator
proposed by Yang [18] (for other definition, see [19] and the
references cited therein).

Then, we get

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑡)
𝑡
𝑚𝛼

Γ (1 + 𝑚𝛼)
(𝑑𝑡)
𝛼

= 0 (𝑚 = 0, 1, 2, . . . , 𝑚) .

(31)

Let us consider the following nondifferentiable signal,
namely,

𝜙
𝐻(𝛼)

(𝑡) =

{{{{{{

{{{{{{

{

𝑡
𝛼

Γ (1 + 𝛼)
, 0 ≤ 𝑡 <

1

2
,

(1 − 𝑡)
𝛼

Γ (1 + 𝛼)
,

1

2
≤ 𝑡 < 1,

0, else.

(32)

For 0 ≤ 𝑡 < 1/2, we obtain

𝑑
𝛼

𝜙
𝐻(𝛼)

(𝑡)

𝑑𝑡
𝛼

=
𝑑
𝛼

𝑑𝑡
𝛼

𝑡
𝛼

Γ (1 + 𝛼)
= 1. (33)

For 1/2 ≤ 𝑡 < 1, we obtain

𝑑
𝛼

𝜙
𝐻(𝛼)

(𝑡)

𝑑𝑡
𝛼

=
𝑑
𝛼

𝑑𝑡
𝛼

(1 − 𝑡)
𝛼

Γ (1 + 𝛼)
= −1. (34)
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In view of (33)-(34), we get a local fractional wavelet given by

𝜑
𝐻(𝛼)

(𝑡) =

{{{{

{{{{

{

1, 0 ≤ 𝑡 <
1

2
,

−1,
1

2
≤ 𝑡 < 1,

0, else.

(35)

Following (35), we obtain

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑡) (𝑑𝑡)
𝛼

= 0,

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
2

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

= 1.

(36)

In view of (15), taking 𝑎 = 2
−𝑗 and 𝑏 = 𝑘2

−𝑗, we have

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎
𝛼/2

𝜑(
𝑡 − 𝑏

𝑎
) = 𝜑

𝑗,𝑘,𝛼
(𝑡)

= 𝜑
2
−𝑗
,𝑘2
−𝑗
,𝛼

(𝑡) = 2
𝑗𝛼/2

𝜑 (2
𝑗

𝑡 − 𝑘)

(37)

for integers 𝑗, 𝑘 ∈ Z.
Hence, we get the following equation:

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) = 2

𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘) . (38)

We thus conclude that
1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡)]
2

(𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

[2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘)]
2

(𝑑𝑡)
𝛼

= 2
𝑗𝛼

1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘)]
2

(𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘)]
2

(𝑑 (2
𝑗

𝑡 − 𝑘))
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝐻(𝛼)

(𝑡)]
2

(𝑑𝑡)
𝛼

= 1,

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)
∫

1/2

0

2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘) (𝑑𝑡)
𝛼

−
1

Γ (1 + 𝛼)
∫

1

1/2

2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘) (𝑑𝑡)
𝛼

= 0.

(39)

6. Concluding Remarks and Observations

A novel local fractional wavelet transformation was investi-
gated by using Fourier transform based upon local fractional
calculus. This transform has been found to be advantageous
in dealing with the functions in fractal space. The wave space
is considered and an illustrative example is shown.
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