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Object shape reconstruction from images has been an active topic in computer vision. Shape-from-shading (SFS) is an important
approach for inferring 3D surface from a single shading image. In this paper, we present a unified SFS approach for surfaces of
various reflectance properties using fast eikonal solvers. (e whole approach consists of three main components: a unified SFS
model, a unified eikonal-type partial differential image irradiance (PDII) equation, and fast eikonal solvers for the PDII equation.
(e first component is designed to address different reflectance properties including diffuse, specular, and hybrid reflections in the
imaging process of the camera. (e second component is meant to derive the PDII equation under an orthographic camera
projection and a single distant point light source whose direction is the same as the camera. Finally, the last component is targeted
at solving the resultant PDII equation by using fast eikonal solvers. It comprises two Godunov-based schemes with fast sweeping
method that can handle the eikonal-type PDII equation. Experiments on several synthetic and real images demonstrate that each
type of the surfaces can be effectively reconstructed with more accurate results and less CPU running time.

1. Introduction

In the field of computer vision, object shape reconstruction
from images has been an active topic. (ere are several
techniques, such as stereo vision, structured light, fringe
projection profilometry, and shape-from-X (X� shading,
photometric stereo, texture, focus/defocus, motion, etc.).
Shape-from-shading (SFS) is an important approach for
inferring 3D surface from a single shading image and be-
cause of its simplicity of equipment, it is widely used in face
reconstruction [1, 2], 3D reconstruction of medical images
[3, 4], lunar surface reconstruction [5, 6], and so on. It was
initiated by Horn [5] who firstly formulated a first-order
partial differential image irradiance (PDII) equation de-
scribing the relations between the 3D shape of a surface and
its corresponding 2D variation of intensities. (us one can
determine 3D surface by starting with the PDII equation.

Since Horn’s original work, a great number of different SFS
approaches have come out (for surveys, refer to Zhang et al. [7],

and Durou et al. [8]). (ere are mainly two steps when
utilizing an SFS approach. (e first step is meant to model
the image formation process of the camera which is de-
termined by the reflectance property of the surface, the light
source, and the camera projection and to derive the PDII
equation under certain assumption [9]. (e second step is
targeted at designing a numerical scheme to solve the re-
sultant PDII equation. Most of the SFS approaches con-
centrate on how to design an effective numerical scheme
assuming that the surface obeys a simple Lambertian re-
flection. (ese approaches are generally divided into two
classes: partial differential equation- (PDE-) based methods
and optimisationmethods [10, 11].(e characteristics-based
approach [5] and the viscosity solution-based approaches
[1, 3, 4, 9–16] can be categorized into the first class. We
should mention the pioneering viscosity solution-based
approach of Rouy and Tourin [12], who first described the
PDII equation under Lambertian reflectance model as a
Hamilton-Jacobi-Bellman PDE and got a nonclassical
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solution based on viscosity solution theory. Kimmel and
Sethian [13] transformed the PDII equation under the
vertical light into an eikonal-type PDE and used the first-
order fast marching method [17] to solve its viscosity so-
lution. For the oblique light case, Governi et al. [14]
reconstructed the initial surface by directly using the fast
marching method [17]. (ey rotated the normal map ob-
tained from the surface around the oblique light and then
computed the “new” image as the dot product between the
normal map and vertical light. (e final surface could be
reconstructed by applying the fast marching method to the
“new” image again.(e works of [5, 7, 8, 10–14] are thinking
of an orthographic projection for the camera. As for per-
spective camera projection, Prados and Faugeras [1] related
the PDII equation to a Hamiltonian based on the work [12]
and got its viscosity solution with optimal control theory.
Breuss et al. [15, 16] analytically and numerically studied the
perspective PDII equation formulated by Prados and Fau-
geras [1] and the associated Hamilton-Jacobi PDE. At the
same time, they proved the convergence of the finite-dif-
ference and the semi-Lagrangian schemes for the resultant
PDE. (e second class means the minimisation methods for
the SFS problem [7]. Ikeuchi and Horn [18] formulated SFS
as a minimisation problem of the difference between ob-
served intensities and the expected intensities that are given
through the PDII equation from the expected surface
normal, on which the smoothness constraint was used.
Tankus et al. [19] first derived a perspective PDII equation
and obtained an approximate solution under the assumption
that the surface is locally paraboloidal. (e 3D shape was
reconstructed by minimising a quadratic cost functional.
More recently, Santo et al. [20] revisited the numerical SFS
approach of Ikeuchi and Horn [18] and described corre-
sponding solution that was built upon different convex
relaxation strategies. It is worth mentioning that Quéau et al.
[21] combined the advantages of optimisation methods and
PDE-based methods and built a generic variational solution
that is suitable for SFS under natural illumination and can
handle a variety of scenarios for various lighting and camera
projection.

While most of the SFS approaches assume the Lam-
bertian reflection, there are a few researchers who are in-
terested in non-Lambertian SFS since the Lambertian
reflectance model has been proved to be inaccurate, espe-
cially for rough diffuse surfaces [22]. Ragheb and Hancock
[23] proposed a non-Lambertian SFS with the Oren-Nayar
reflectance model and gave two solutions: the lookup table
and the analytic solution. Ahmed and Farag [24, 25] pre-
sented several non-Lambertian SFS approaches including
Ward SFS and Oren-Nayar SFS and approximated the PDII
equations by using the Lax-Friedrichs sweeping scheme [26].
Since the actual convergence to the correct solution is very
slow in [25], Vogel and Cristiani [27] applied the Upwind
scheme to get a more efficient solution with less convergence
time. Tozza and Falcone [10, 28] addressed a general
framework for several non-Lambertian SFS problems in-
cluding Oren-Nayar SFS and Phong SFS, solved by a semi-
Lagrangian scheme, and obtained convergence results.
However, their framework can only handle a special case

where the specular reflection parameter n in the Phong
reflectance model [29] equals 1; that is, it represents the
worst case. By extending the work of Galliani et al. [30],
Ju et al. [4] adopted spherical parameterisation of the surface
into the Oren-Nayar PDII equations and thus could com-
pute them at any position of the point light source. However,
the fast-marching scheme depicted in Cartesian coordinates
needs to be converted to spherical coordinates during the
process.

In this paper, motivated by the work of Camilli and
Tozza [31] and based on our previous work [11], we first
present a unified SFS model for surfaces of different re-
flectance properties including diffuse, specular, and hybrid
reflections in the image formation process. Although our
work falls in the situation where the camera performs an
orthographic projection and the direction of the single
distant point light source is the same as the camera, these
reflections lead to more complex nonlinear PDII equations.
However, all the PDII equations corresponding to the re-
flections considered here (Oren–Nayar model and unified
model) have a similar structure, so we can look for weak
solutions to this class in the viscosity solution sense. Another
contribution of our work is that we convert the PDII
equation into an eikonal-type PDE through solving a high-
order equation by using the Newton-Raphson method, after
which we try to obtain the viscosity solution of the eikonal-
type PDE by using fast eikonal solvers which are composed
of the first- and high-order Godunov-based schemes
accelerated by the fast sweeping method.

A similar formulation for the SFS problem of the Oren-
Nayar model has been reported in our previous work [11].
As we said, in this paper we will focus our attention on the
unified reflectance model (including Lambertian model,
Oren–Nayar model, and Blinn–Phong model) and formu-
late the unified high-order PDII equation under the vertical
light. Using the Newton-Raphson method for the resultant
PDII equation, we will obtain the eikonal-type PDE that can
be solved via fast eikonal solvers presented preliminarily in
our work [11].

2. A Unified SFS Model in the Imaging Process

In this section, a very brief description for the Lambertian,
Oren–Nayar and Blinn–Phong reflectance model is given in
order to setup a unified imaging model.

2.1. Lambertian Reflectance Model. Generally, the Lamber-
tian reflectance is a classical assumption in most of the SFS
approaches [1, 3, 5, 8, 12–16, 18–21, 30] for approximating
the reflectance property of the diffuse surface. In this case,
the surface reflected radiance is addressed as [3]

Lr � I0
ρd

π
cos θi, (1)

where I0 is the intensity of point light source, ρd is the diffuse
albedo which controls the proportion of incident light that is
reflected diffusely, and θi is the angle between the surface
unit normal n and the incident light direction L illustrated in
Figure 1.
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2.2.Oren–NayarReflectanceModel. In order to get rid of the
inaccuracy resulting from the assumption of the Lambertian
reflectance model for diffuse reflection, Oren and Nayar [22]
proposed a comprehensive reflectance model for rough
diffuse surfaces.

By assuming that the surface is composed of V-shaped
cavities which are symmetric and have two planar facets and
that each facet obeys a simple Lambertian reflection, for a
Gaussian distribution of the facet normals, they got a
simplified expression for the reflected radiance:

Lr θi, ϕi; θr, ϕr( 􏼁 � I0
ρd

π
cos θi A + Bmax 0, cos ϕr(􏼂(

− ϕi􏼁􏼃sin α tan β􏼁,

(2)

where A � 1 − 0.5σ2/(σ2 + 0.33), B � 0.45σ2/(σ2 + 0.09);
(θi, ϕi) is the incident light direction L; (θr, ϕr) is the
camera direction V; α � max[θi, θr], β � min[θi, θr]. (e
parameter σ is applied as a measure of the surface
roughness, and it denotes the standard deviation of the
Gaussian distribution.

For smooth surfaces, we have σ � 0 and obviously the
Oren-Nayar reflectance model degenerate to the Lambertian
model in this situation.

2.3. Blinn–Phong Reflectance Model. It is worth mentioning
that Phong [29] developed a hybrid reflectance model by
introducing a specular component to the surface reflected
radiance (1). He described the specular component as a
power of the cosine of the angle between the reflected light
direction R and the camera direction V. Hence, the hybrid
reflected radiance can be derived in general as

Lr � wdI0
ρd

π
cos θi + wsI0

ρs

π
R

‖R‖
·
V

‖V‖
􏼠 􏼡

n

, (3)

where wd and ws are the weighting factors of diffuse and
specular components, respectively, and wd + ws ≤ 1. ρs is the
specular albedo that determines the proportion of incident
light that is reflected specularly. (e parameter n is used to
express the specular reflection property of a surface and can
be used as a measure of the surface shininess. Obviously, the
contribution of the specular component decreases when the
value of parameter n increases.

Note that it is not convenient to compute the specular
reflected radiance in terms of (R · V). (e Blinn–Phong
reflectance model, proposed by Blinn [32], is a modification
of the Phong model for computation convenience.
Substituting (n · h) into (R · V) in formula (3), the hybrid
reflected radiance based on the Blinn–Phong model can be
formulated as

Lr � wdI0
ρd

π
cos θi + wsI0

ρs

π
(n · h)

n
. (4)

2.4. A Unified Reflectance Model. As mentioned before, the
Lambertian reflectance model has been proved to be inac-
curate, especially for rough diffuse surfaces. (us, we can
combine diffuse and specular components of a surface
through a linear combination of Oren–Nayar model and the
specular part of Blinn–Phong model; that is, we substitute
surface reflected radiance (2) into the diffuse part of
Blinn–Phong model:

Lr � wdI0
ρd

π
cos θi A + Bmax 0, cos ϕr − ϕi( 􏼁􏼃sin α tan β􏼂 􏼁( + wsI0

ρs

π
(n · h)

n
. (5)

Obviously, surface reflected radiance (5) is a unified re-
flectance model including the Lambertian, the Oren–Nayar, and
the Blinn–Phong model. For ws � 0, it reduces to the Oren–
Nayar model. For σ � 0, it reduces to the Blinn–Phong model.
Specially, if ws � 0 and σ � 0, it degenerates to the Lambertian
model.

(e following relationship between the surface reflected
radiance Lr and the image irradiance Ei of the camera is well
known [9]:

Ei � Lr

π
4

D

f
􏼠 􏼡

2

cos4 χ, (6)

where D is the entrance pupil diameter of the camera lens
whose focal length is f. χ is the angle between the line of sight
to an image point of a corresponding surface point and the
optical axis of the camera. Even for uniform illumination, the
term cos4 χ implies nonuniform image irradiance. (e actual
imaging lens of the camera, however, is generally designed to
correct it. (us, one can consider Ei to be proportional to Lr:

n

θi

θr

ϕi

ϕr

θi

h

VL
R

P

δ

Figure 1: Reflection geometry of a local surface point. n is the unit
normal of the surface point P; (θr, ϕr) and (θi,ϕi) are the camera
direction V and incident light direction L, respectively; R is re-
flected light direction; h is the unit angular bisector ofV and L; that
is, h � (V + L)/‖V + L‖; δ is the angle between n and h.
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Ei � ηLr. (7)

Substituting equation (5) into (7), and if we set ρd � ρs to
a constant ρ as done in [31] and denote I � πEi/ηI0ρ as done

in most of SFS approaches, the image irradiance equation (7)
will be rewritten as

I � wd cos θi A + Bmax 0, cos ϕr − ϕi( 􏼁􏼃sin α tan β􏼂 􏼁( + ws(n · h)
n
. (8)

3. A Unified Eikonal-Type PDII Equation

In this section, we will formulate the image irradiance
equation under the situation where the camera performs an
orthographic projection and the direction of the single
distant point light source coincides with the camera.

3.1. Nonlinear PDII Equation for the Unified Model. With
the basis that the optical axis of the camera is the z−axis and
the image plane of the camera is the x − y plane, the SFS
approach can be described as inferring a 3D surface, z(x, y).
Since our work falls in an orthographic camera projection,
the first partial derivatives of the surface z(x, y) with respect
to x and y, respectively, are

p(x, y) �
zz(x, y)

zx
,

q(x, y) �
zz(x, y)

zy
.

(9)

So the unit normal n at a 3D surface point P(x, y,

z(x, y)) can be expressed as

n(x, y) �
(p(x, y), q(x, y), −1)
�������������������
1 + p2(x, y) + q2(x, y)

􏽰 �
(p, q, −1)

�������������

1 +‖∇z(x, y)‖2
􏽱 .

(10)

Considering that the direction of the distant point light
source L is the same as the camera direction V illustrated in
Figure 1, we have θi � θr, ϕi � ϕr, α � θi � β, and h � L/‖L‖,
n · h� cos θi. Consequently, image irradiance equation (8)
will be reduced to

I(x, y) � wd A cos θi + B sin2θi􏼐 􏼑 + wscos
nθi. (11)

Defining that the direction vectors of L and V both are
[0, 0, −1]; that is, they are parallel to the optical axis of the
camera lens, and because θi is the angle between n and L, we
have

cos θi � n ·
L

‖L‖
�

1
�������������

1 +‖∇z(x, y)‖2
􏽱 ,

sin2θi � 1 − cos2θi �
‖∇z(x, y)‖2

1 +‖∇z(x, y)‖2
.

(12)

Substituting equation (12) into (11), the image irradiance
equation (11) can be rewritten as

I(x, y) � wd

A
�������������

1 +‖∇z(x, y)‖2
􏽱 +

B‖∇z(x, y)‖2

1 +‖∇z(x, y)‖2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ ws

1
�������������

1 +‖∇z(x, y)‖2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

n

.

(13)

Obviously, the image irradiance equation (13) is a more
complex nonlinear PDE and is difficult to solve z(x, y).

Applying the change of variable T � 1/
�������������

1 + ‖∇z(x, y)‖2
􏽱

, the
PDII equation (13) can be considered as calculating a zero of
the function F(T), given by

F(T) � wsT
n

− BwdT
2

+ AwdT + Bwd − I; 0<T≤ 1.

(14)

3.2. Eikonal-Type PDE for theOren–NayarModel. Especially,
for ws � 0, that is, for the PDII equation of the Oren–Nayar
model, F(T) � 0 will lead to a quadratic equation:

BwdT
2

− AwdT + I − Bwd � 0. (15)

Calculating equation (15) and satisfying 0<T≤ 1, we can
obtain

T �
Awd −

���������������������

Awd( 􏼁
2

− 4Bwd I − Bwd( 􏼁

􏽱

2Bwd

. (16)

Hence, SFS problem (13) can be rewritten as an eikonal-
type PDE:

‖∇z(x, y)‖ �

������
1

T2 − 1
􏽲

, ∀(x, y) ∈ Ω,

z(x, y) � Γ(x, y), ∀(x, y) ∈ zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where Ω is a given image domain and Γ(x, y) is a boundary
condition. Similar work has been studied in our previous
work [11] and here will be extended to the unified model.

3.3. Eikonal-Type PDE for the Unified Model. For ws ≠ 0,
F(T) is a high-order function of T when n> 1 and it is
difficult to calculate the zero values. We can use the New-
ton–Raphson method to solve it. (e derivative of the
function F(T) is
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F′(T) � nwsT
n−1

+ wd(A − 2BT)≥ nwsT
n−1

+ wd(A − 2B).

(18)

If the surface roughness 0≤ σ ≤ 0.6220, then A≥ 2B≥ 0.
At the same time, 0<T≤ 1, so F′(T)> 0 and function F(T)

is monotonous. Simultaneously, we have

F(0) � −wsT
n − wdT(A − BT)< − wsT

n − wdT(A − 2B)< 0,

F(1) � ws 1 − Tn( ) + wd(1 − T)(A − B − BT)≥ws 1 − Tn( ) + wd(1 − T)(A − 2B)≥ 0.
􏼨 (19)

Hence, function (14) always has a unique zero. Starting
with the value T0 � 0, the iterative equation of the Newton-
Raphson method is applied to calculate a new value for Tk as
follows:

T
k

� T
k−1

−
F Tk−1( 􏼁

F′ Tk−1( 􏼁
. (20)

After several numbers of iterations, an accurate zero of
function (14) is obtained. Similar to the structure of the
Oren–Nayar model, we can get an eikonal-type PDE for the
unified model:

‖∇z(x, y)‖ �

��������
1

Tk( 􏼁
2 − 1

􏽳

, ∀(x, y) ∈ Ω,

z(x, y) � Γ(x, y), ∀(x, y) ∈ zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

4. Fast Eikonal Solvers for the Eikonal-
Type PDE

In this section, we will use the fast eikonal solvers which are
composed of the first-order Godunov-based scheme [12, 33]
and high-order Godunov-based scheme [11, 34] accelerated

by the fast sweeping method [33, 35] to look for the weak
solutions of the resultant eikonal-type PDE (21) in the
viscosity solution sense.

4.1. First-Order Godunov-Based Scheme. We use (xi, yj) �

(i × w, j × w) to denote a grid point in the image domain Ω,
w to denote the grid size, M × N to denote the image size,
and zi,j � z(xi, yj) to denote the numerical solution at the
3D surface z(x, y). (e first-order Godunov-based scheme
[12, 33] can be employed to discretize resultant eikonal-type
PDE (21):

zi,j − zimin

w
􏼒 􏼓

+

􏼢 􏼣

2

+
zi,j − zjmin

w
􏼒 􏼓

+

􏼢 􏼣

2

� G
2
i,j, (22)

where zimin � min[zi+1,j, zi−1,j], zjmin � min[zi,j+1, zi,j−1],
Gi,j �

������������
(1/(Tk

i,j)
2) − 1

􏽱
, and

(x)
+

�
0, x< 0,

x, x≥ 0.
􏼨 (23)

(us, the viscosity solution of eikonal-type PDE (21) can
be obtained using the first-order Godunov-based scheme:

zi,j �

min zimin, zjmin􏽨 􏽩 + wGi,j, zimin − zjmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥wGi,j,

zimin + zjmin +

���������������������

2w2G2
i,j − zimin − zjmin􏼐 􏼑

2
􏽱

2
, zimin − zjmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<wGi,j.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

4.2.High-OrderGodunov-BasedScheme. In order to obtain a
higher-order accuracy viscosity solution, the high-order
Godunov-based scheme [34] can be employed to discretize
resultant eikonal-type PDE (21):

znew
i,j − z

high
imin

w
⎛⎝ ⎞⎠

+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

2

+
znew

i,j − z
high
jmin

w
⎛⎝ ⎞⎠

+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

2

� G
2
i,j, (25)

with

z
high
imin � min z

old
i,j + wp

+
i,j􏼐 􏼑, z

old
i,j − wp

−
i,j􏼐 􏼑􏽨 􏽩,

z
high
jmin � min z

old
i,j + wq

+
i,j􏼐 􏼑, z

old
i,j − wq

−
i,j􏼐 􏼑􏽨 􏽩,

(26)

where pi,j and qi,j need to be approximated with higher-
order accuracy. According to [34], third-order weighted
essentially nonoscillatory scheme [36] is able to be chosen as
pi,j and qi,j approximations:

p
+
i,j � 1 − u+( 􏼁

zi+1,j − zi−1,j

2w
􏼒 􏼓 + u+

−zi+2,j + 4zi+1,j − 3zi,j

2w
􏼠 􏼡,

p
−
i,j � 1 − u−( 􏼁

zi+1,j − zi−1,j

2w
􏼒 􏼓 + u−

3zi,j − 4zi−1,j + zi−2,j

2w
􏼠 􏼡,

(27)

with
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u+ �
1

1 + 2v2+
,

v+ �
ε + zi+2,j − 2zi+1,j + zi,j􏼐 􏼑

2

ε + zi+1,j − 2zi,j + zi−1,j􏼐 􏼑
2,

u− �
1

1 + 2v2−
,

v− �
ε + zi,j − 2zi− 1,j + zi− 2,j􏼐 􏼑

2

ε + zi+1,j − 2Vi,j + zi−1,j􏼐 􏼑
2,

(28)

where ε is a very small number that keeps the denominator
from getting too close to zero. Similarly, q+

i,j and q−
i,j can be

defined. Now the viscosity solution of eikonal-type PDE (21)
can be obtained using the high-order Godunov-based
scheme:

z
new
i,j �

min z
high
imin, z

high
jmin􏼔 􏼕 + wGi,j, z

high
imin − z

high
jmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥wGi,j,

z
high
imin + z

high
jmin +

���������������������

2w2G2
i,j − z

high
imin − z

high
jmin􏼐 􏼑

2
􏽲

2
, z

high
imin − z

high
jmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<wGi,j.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

4.3. Fast Sweeping Method for Godunov-Based Schemes.
In order to speed up the convergence numerical schemes, we
take the philosophy of fast sweeping method [33, 35] to the
first-order or high-order Godunov-based schemes in the
following. When the derivatives p+

i,j, q+
i,j and p−

i,j, q−
i,j are

calculated, the newest available values for z are employed.
Meanwhile, the iterations do not sweep in only one direction
but in four alternating directions repeatedly: (1) from upper
left to lower right, that is, i � 1: I, j � 1:J; (2) from lower left
to upper right, that is, i � I: 1, j � 1: J; (3) from lower right
to upper left, that is, i � I: 1 , j � J: 1; (4) from upper right
to lower left, that is, i � 1: I, j � J: 1. As can be easily seen,
various values zi±1,j, zi±2,j and zi,j±1, zi,j±2 are to be taken
according to the current sweeping direction.

We summarize the fast eikonal solvers for the resultant
eikonal-type PDE (21) as follows:

Step 1 (Initialization): according to the boundary con-
dition z(x, y) � Γ(x, y), (x, y) ∈zΩ, assign exact values
at the grid points on the boundary zΩ, whose values are
fixed during iterations. At all other grid points, for first-
order Godunov-based scheme, big positive values are
used as the initial guess, which are larger than the
maximum of the true solutions and will be updated in the
process of iterations. Especially for high-order Godunov-
based scheme, the solution of the first-order Godunov-
based scheme is considered as the initial guess.
Step 2 (Alternating Sweepings): we compute znewi,j

according to the update formulation (24) or (29) by Gauss-
Seidel iterations with four alternating direction sweepings:

(1) i � 1: I, j � 1: J;
(2) i � I: 1, j � 1: J;
(3) i � I: 1, j � J: 1;
(4) i � 1: I, j � J: 1.

Step 3 (Convergence): if ‖znew − zold‖L1 ≤ μ, where μ is a
given threshold value, the schemes converge and stop;
otherwise, return to Step 2. In this paper, we use
μ � 10− 5.

5. Experimental Results

Several experiments on synthetic and real images with
different reflectance properties have been carried out in
order to assess the effectiveness of the presented unified SFS
approach. We compare our presented approach with the
Ahmed and Farag’s approach [24, 25] using Lax-Friedrichs
sweeping scheme for the same reflectance property. We
implement all the approaches in Matlab. All the experiments
are conducted on a PC with a Xeon E5-1650 processor and
16GB of DDR3 memory.

5.1. Experimental Results on Synthetic Images. We use two
synthetic surfaces including a ball and a vase, which have
been benchmark test surfaces and are determined by
equations (30) and (31), respectively:

z(x, y) �

������������

R2 − x2 + y2( 􏼁

􏽱

, (30)

where R � 75 is the radius of the ball and the generated
image size M × N is 256 × 256; that is, (x, y) ∈
[−127, 128] × [−127, 128]:

z(x, y) �

���������

g(x)2 − y2
􏽱

, (31)

where g(x) � 0.15 − 0.025(6x − 1)(2x − 1)2(3x + 2)2(2x +

1) and original range of (x, y) values is
[−0.5, 0.5] × [−0.5, 0.5]. To obtain the same image size as the
ball, we map (x, y) range to [−127, 128] and scale z(x, y)

simultaneously. (eir ground truths are shown in Figure 2.
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In order to assess the effectiveness of the presented
unified SFS approach for the surfaces of various reflectance
properties, four different parameter sets of σ, wd, ws, and n

are used to generate the shading images. Table 1 shows the
parameter values. Especially for set (1) and set (2), σ � 0
means that the unified model reduces to the Blinn–Phong
model with different diffuse and specular components, and
for set (3), it means that the unified model reduces to the
Oren–Nayar diffuse model.

(e experimental results for the synthetic ball images
are illustrated in Figure 3. Figures 3(a)–3(d) show the
shading images generated by the four parameter sets shown
in Table 1, respectively. Figures 3(e)–3(h) show the
reconstructed surfaces of Figures 3(a)–3(d) using the first-
order Godunov-based scheme, while Figures 3(i)–3(l) show
the reconstructed surfaces using the high-order Godunov-
based scheme. Finally, Figures 3(m)–3(p) show the
reconstructed surfaces of Figures 3(a)–3(d) using the Lax-
Friedrichs sweeping scheme. Figure 4 illustrates the cor-
responding experimental results for the synthetic vase
images.

As can be roughly seen from Figures 3 and 4, the fast
eikonal solvers and the Lax-Friedrichs sweeping scheme can
basically get satisfactory reconstructed results for the four
different parameter sets of the unified reflectance model.
Furthermore, we can easily see that the first- and high-order
Godunov-based schemes illustrate similar results, and both
schemes can give much better reconstructed results with
smaller differences between reconstructed surfaces and
ground truths than the Lax-Friedrichs sweeping scheme,
especially for more specular components such as
Figures 3(b), 3(d), 4(b), and 4(d).

(e effectiveness of our presented unified approach is
further described by comparisons between the fast eikonal
solvers and the Lax-Friedrichs sweeping scheme with the
mean absolute (MA) error, the root mean square (RMS)
error, and the CPU running time. Tables 2 and 3 list the
quantitative comparisons of the three schemes for the
synthetic ball and vase images. It can be seen obviously that
the first-order Godunov-based scheme shows much more
superiority in CPU running time in all the images that we

carried out since it converges after about 2 iterations. At the
same time, we can see that the high-order Godunov-based
scheme exhibits the minimal reconstructed error in both the
MA and RMS errors because the third-order weighted es-
sentially nonoscillatory scheme is adopted in the approxi-
mation process. (e Lax-Friedrichs sweeping scheme shows
a worse performance; maybe, it is difficult to look for a
perfect estimate for the artificial viscosity term.

5.2. Experimental Results on Real Images. In order to
demonstrate the performance of our presented approach for
real surface, we test it on two real images and also compare
the reconstructed results with the Lax-Friedrichs sweeping
scheme. (e first image is a vase applied in [7], which is
illustrated in Figure 5(a) and is mostly diffuse. (e second
image is a plastic bottle, which is illustrated in Figure 6(a)
and contains more specular components. Figures 5(b) and
6(b) show the masks of Figures 5(a) and 6(a) representing
the (x, y) that is used in reconstruction, respectively.
Figures 5(c)–5(e) illustrate the reconstructed surfaces using
the first-order Godunov-based scheme, the high-order
Godunov-based scheme, and the Lax-Friedrichs sweeping
scheme, respectively. Figures 6(c)–6(e) show the corre-
sponding reconstructed surfaces for the bottle.

We only evaluate the effectiveness intuitively and
qualitatively. From the reconstructed results shown in
Figures 5(c)–5(e), we can see that the fast eikonal solvers are
more accurate than the Lax-Friedrichs sweeping scheme for
mostly diffuse surface. Details of surfaces illustrated in
Figures 5(c) and 5(d) are represented more vividly and
clearly than in Figure 5(e). From the reconstructed results
shown in Figures 6(c)–6(e), we can draw the similar con-
clusions as for more specular surface. As shown previously,
from Figures 5(e) and 6(e), we can see that the Lax-Frie-
drichs sweeping scheme also exhibits a slightly worse per-
formance since it is hard to find a perfect estimate for the
artificial viscosity term. It is well worth noting that the first-
order Godunov-based scheme is the fastest and the
reconstructed surface using the high-order Godunov-based
scheme looks like the best result.
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Figure 2: (e ground truths of the ball and the vase surfaces. (a) (e ball. (b) (e vase.
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Table 1: Parameter values employed to generate the shading images.

Parameter σ wd ws n

Set (1) 0 0.8 0.2 5
Set (2) 0 0.5 0.5 10
Set (3) 0.3 1 0 —
Set (4) 0.3 0.5 0.5 10

(a) (b) (c) (d)
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Figure 3: Experimental results for the synthetic ball images. (a)–(d) (e shading images generated by the four parameter sets shown in
Table 1. (e)–(h) Reconstructed surfaces of (a)–(d) using first-order Godunov-based scheme. (i)–(l) Reconstructed surfaces of (a)–(d) using
high-order Godunov-based scheme. (m)–(p) Reconstructed surfaces of (a)–(d) using Lax-Friedrichs sweeping scheme.

(a) (b) (c) (d)

Figure 4: Continued.
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Table 2: Quantitative comparisons of schemes for the synthetic ball images.

Images
First-order Godunov-based

scheme
High-order Godunov-based

scheme Lax-Friedrichs sweeping scheme

MA RMS Time (s) MA RMS Time (s) MA RMS Time (s)
Figure 3(a) 0.7199 0.8924 0.04 0.0370 0.0883 0.64 3.2049 3.3360 2.49
Figure 3(b) 0.7228 0.9176 0.04 0.0595 0.1318 0.65 3.9782 4.1671 3.69
Figure 3(c) 0.7167 0.8902 0.04 0.0357 0.0725 0.64 2.6534 2.7687 2.67
Figure 3(d) 0.7776 1.0667 0.04 0.0940 0.1959 0.65 4.1396 4.3401 5.07

Table 3: Quantitative comparisons of schemes for the synthetic vase images.

Images
First-order Godunov-based

scheme
High-order Godunov-based

scheme Lax-Friedrichs sweeping scheme

MA RMS Time (s) MA RMS Time (s) MA RMS Time (s)
Figure 4(a) 0.5770 0.7129 0.04 0.0740 0.1371 0.81 2.2899 2.5879 2.31
Figure 4(b) 0.5791 0.7284 0.04 0.0812 0.1429 0.82 3.5141 3.8832 3.53
Figure 4(c) 0.5739 0.7095 0.04 0.0731 0.1366 0.81 1.3744 1.6557 3.61
Figure 4(d) 0.6309 0.7429 0.04 0.0953 0.1550 0.82 4.0818 4.4402 4.82

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(e)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(f )

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(g)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(h)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(i)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(j)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(k)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(l)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(m)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(n)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(o)

100
50
0
–100

–50
0
50
100 –100

–50
0 50 100

(p)

Figure 4: Experimental results for the synthetic vase images. (a)–(d) (e shading images generated by the four parameter sets shown in
Table 1. (e)–(h) Reconstructed surfaces of (a)–(d) using first-order Godunov-based scheme. (i)–(l) Reconstructed surfaces of (a)–(d) using
high-order Godunov-based scheme. (m)–(p) Reconstructed surfaces of (a)–(d) using Lax-Friedrichs sweeping scheme.
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(a) (b) (c)

(d) (e)

Figure 6: Experimental results for the real bottle image. (a) (e real image. (b) (e mask of (a). (c) Reconstructed surface of (a) using first-
order Godunov-based scheme. (d) Reconstructed surface of (a) using high-order Godunov-based scheme. (e) Reconstructed surface of
(a) using Lax–Friedrichs sweeping scheme.

(a) (b) (c)

(d) (e)

Figure 5: Experimental results for the real vase image. (a) (e real image. (b) (e mask of (a). (c) Reconstructed surface of (a) using first-
order Godunov-based scheme. (d) Reconstructed surface of (a) using high-order Godunov-based scheme. (e) Reconstructed surface of
(a) using Lax–Friedrichs sweeping scheme.
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6. Conclusions

In this paper, we have reported a unified SFS approach for
surfaces of various reflectance properties including diffuse,
specular, and hybrid reflections using fast eikonal solvers. A
unified reflectance model that is a linear combination of the
Oren–Nayar model and the specular part of the Blinn–
Phong model is presented. We have derived the unified
image irradiance equation under this unified model with an
orthographic camera projection and a single distant point
light source whose direction is the same as the camera. We
have also converted the PDII equation into an eikonal-type
PDE through solving a high-order equation by using the
Newton-Raphson method. Fast eikonal solvers which are
comprised of the first- and high-order Godunov-based
schemes accelerated by the fast sweeping method are
employed to solve the viscosity solution of the resultant
eikonal-type PDE. Finally, the experiments are conducted on
both synthetic and real images and the results verify that our
presented approach can provide satisfactory 3D surface
reconstruction with a higher accuracy in less CPU running
time.

Frankly speaking, the presented unified SFS approach
can only handle the special case which assumes an ortho-
graphic camera projection and a single distant point light
source whose direction is parallel to the optical axis of the
camera lens. In future work, we will adopt the idea of using
the Newton-Raphson method to solve the high-order PDII
equations derived from the SFS problem with a more
complex reflectance model and will relax the two assump-
tions by employing a nearby point light source and a per-
spective camera projection.(e attenuation term of the light
illumination will be also considered to eliminate the convex-
concave ambiguity which can make the SFS problem ill-
posed.
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In reconstruction of the off-axis digital hologram of diffuse reflection objects, the position of the positive first-order image cannot
be accurately obtained because of the low quality of the reconstruction image. ,is paper focuses on the above problem and
proposes a method for marking the first-order image of the 1-FFT surface based on the fast Fourier transform (1-FFT). ,e
parameters of angle of illumination light were investigated, and the maximum relative measurement error is 5.6% by standard
objects. ,e multiaperture stitching technique in cylindrical coordinates is applied to digital holography technology, and the
particle swarm optimization algorithm is used to transform the nonlinear equations into optimization problems to solve the
splicing parameters. Finally, the 3D display of a typical rotary three-dimensional mechanical part is successfully realized with
holography stitching using the above method.

1. Introduction

With the development of computers and charge-coupled
devices (CCDs), the three-dimensional object display based
on digital holography has also been developed accordingly.
Some convention optical methods of obtaining three-di-
mensional contours of objects are proposed which include
grating projection method and optical knife scanning
method [1–3]. ,ese methods have their own shortcomings,
such as the need for a projection system or a scanning
system. In contrast, the advantages of digital holography are
obvious. Digital holography does not require a cumbersome
process such as film processing as in the conventional one
and quantitatively obtains the phase information of the
object, which can obtain the three-dimensional contour of
the object. Yamaguchi et al. [4,5] obtained the three-di-
mensional contour of the object by using phase-shifted
digital holography.,ismethod eliminates conjugate images
and zero-order images and can measure millimeter-level
objects, but this method requires a high degree of envi-
ronmental stability and requires a high-precision phase
shifter. In digital holography, the dual light source method is
used to make a slight change in the angle of the illumination

light [6–9] and obtain the three-dimensional contour of the
object by calculating the phase difference between the
reconstructed images before and after. However, during the
current measurement process, there are two main problems:
(1) the reconstruction image of a weak diffusely reflecting
object has poor contrast because of its low light intensity. It
is difficult to accurately locate the positive first-order image
of the object on the reconstructed image plane, which affects
the subsequent acquisition of the interference phase map. (2)
,e imaging angle is limited and influenced by the size of the
CCD array and the total number of pixels, so some addi-
tional methods are needed to achieve the fusion of the
multiview contour.

,e off-axis digital holographic reconstruction process
of diffuse reflection objects is studied in this paper. Aiming
at the problem that the intensity of the light emitted by the
weak diffuse reflection object is low, the contrast is poor, and
the position of the positive first-order image of the object in
the reconstruction plane cannot be accurately located, and a
premarking method of the reconstructed image position for
diffusely reflecting objects is proposed. Combining of
changing the inclination of the illumination light and the
filtering-image of 4 times fast Fourier transform
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(FIMG4FFT) method [10], the three-dimensional contour of
the object at a specific perspective is obtained. A calibration
target with a height difference of 9mm is used in demon-
stration test. ,e results show that the measurement error is
between 0.1mm and 0.5mm. ,e maximum relative mea-
surement error is 5.6%. ,e multiaperture stitching tech-
nique in cylindrical coordinates is applied to accomplish the
digital holographic 3D stitching. ,e particle swarm opti-
mization algorithm is used to transform the nonlinear
equations into optimization problems to solve the splicing
parameters. ,e contour from a single viewpoint is stitched
together to realize the three-dimensional display of the
whole object. Finally, the three-dimensional stitching of
rotational three-dimensional objects in the cylindrical co-
ordinate system is carried out, and the experiment has been
verified.

2. Principles

2.1. Principle of the Inclined Illumination Method. Li and
Peng [11] derived the basic formula for three-dimensional
shape detection based on digital holography. Figure 1 shows
the measurement principle of the digital holographic three-
dimensional topography measurement. In Cartesian coor-
dinates Oxyz, the plane of z� 0 is defined as the recon-
structed plane, which is parallel to the CCD window plane
with a distance of z � d1 and tangent to the surface of the
measured object.

According to the statistical optics theory [12], the
nonoptically smooth spatial surface is illuminated with
coherent light, and the scattered light field of the surface of
the object can be regarded as the scattered light of a large
number of scattering primitives, that is, the superposition of
all primitive scattering waves. ,e reconstructed light wave
field of the entire object in the z � 0 plane can be expressed
as [13]

O(x, y, 0) � CRo(x, y, z)exp jϕ(x, y, z) + jϕr − jkz􏼂 􏼃.

(1)

In formula (1), |CRo(x, y, z)|2 denotes the intensity of
diffuse reflected light at the corresponding points on the
surface of an object because the intensity information of the
object is not mainly concerned here, so it is not discussed
here. j �

���
− 1

√
and k � 2π/λ, λ are the wavelengths of light,

ϕr denotes the random phase, the range of variation is − π: π,
and z is the reconstruction distance.

If the direction of illumination in Figure 1 is parallel to
xoz and the angle between illumination and axis z is θ, the
phase can be expressed as

ϕ(x, y, z) �
2π
λ

(x sin θ − z cos θ). (2)

In formula (2), θ is the illumination light tilt angle.
Studying the absolute phase measurement shows that if one
wavelength is used to illuminate, the projection angle can be
changed to obtain two reconstructed fields and then
superimposed to form a contour line, which realizes the
measurement of the three-dimensional shape.

According to formula (2), when the light wave with
wavelength λ illuminates the object with parallel illumina-
tion with inclination angle of illumination light θ and θ + Δθ,
the phase distributions of the light field in the reconstructed
object plane are, respectively,

ϕ1(x, y) �
2π
λ

[x sin θ − z(1 + cos θ)] + ϕr1, (3)

ϕ2(x, y) �
2π
λ

x sin(θ + Δθ) − z[1 + cos(θ + Δθ)]{ } + ϕr2.

(4)

In formulas (3) and (4), all ϕr1, ϕr2 denote the random
phase of − π: π with uniform probability.

Subtract the two formulas:

ϕ1(x, y) − ϕ2(x, y) �
2π
λ

x[sin θ − (θ + Δθ)]{

− z[cos θ − cos(θ + Δθ)]} + ϕr1 − ϕr2.

(5)

When Δθ is very small, it can be seen that the same light
wave irradiates on the surface of the object, and the scattering
characteristics of the same light wave on the surface of the object
do not change too much. At this time, ϕr1 − ϕr2 is no longer the
random phase of − π: π with uniform value probability. Because
Δθ is relatively small, so cosΔθ ≈ 1, sinΔθ ≈ Δθ and
ϕr1 − ϕr2 � ε2π(0< ε< 1), which are phase measurement
noises, and formula (5) can be rewritten:

Δϕ(x, y) �
2π
λ

(− xΔθ cos θ − zΔθ sin θ) + ε2π. (6)

Formula (6) shows that the phase difference is composed
of two parts.,e latter is highly correlated with the surface of
the object. ,e former is linearly related to the spatial co-
ordinate x, called the linear tilt term. ,e change in its value
is accompanied by a change in its coordinate value. ,e
phase difference is caused by its changes much more dra-
matically than that caused by the height change of the object
itself, which makes the phase difference Δϕ wrapped seri-
ously. In this way, the phase difference image of the object
can be obtained by removing the linear tilt term before phase
unwrapping. Formula (6) is after denoising, and the height
of the surface of the object varies with the coordinates, which
can be written as follows:

y1y

z

CCD

x

d1

x1

P1

Illumination light

Figure 1: Schematic diagram of the tilt illumination method.
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z(x, y) ≈ −
Δϕ(x, y)

2π
Λθ − x cot θ,

Λθ �
λ
Δθ sin θ

.

(7)

Λθ represents the change in the height of the object
corresponding to the change in phase difference of 2π, and it
can be seen that it is inversely proportional to the system
sensitivity. When Λθ is greater than or equal to the maxi-
mum depth measured on the surface, the phase diagram
cannot be wrapped.

2.2. FIMG4FFT Wavefront Reconstruction Method.
According to the scalar diffraction theory [14] and the
paraxial approximation of diffraction, Fresnel diffraction
integral is often used in wavefront reconstruction of digital
holography. Fresnel diffraction integral can be divided into
two forms: Fourier transform and convolution.When Fourier
transform is used, it can be calculated by one-time fast Fourier
transform (FFT). ,is method is called 1-FFT method for
short, but when reconstruction is performed by the 1-FFT
method, the area of the reconstructed digital hologram image
is smaller [15]. In order to obtain a high-quality reconstructed
image andmake the image of the selected area of the object be
displayed on the reconstructed plane completely, so that the
interference phase with high quality can be obtained later, the
image plane filtering technology [16] is used to reconstruct the
digital holographic image in 1-FFT, which is not interfered by
other factors. To ensure that the resolution of the recon-
structed image is as large as the original hologram, it is
necessary to use zero-filling operation around the image.
,en, inverse diffraction operation is to make the digital
hologram free from interference on the object plane, and then
it uses the spherical wave as the reconstruction wave to ir-
radiate, and it uses the angular spectrum diffraction method
to reconstruct the high-quality digital hologram recon-
struction image. ,is method requires four FFT calculations
(FIMG4FFT method for short) [17–19].

In the digital holographic recording system, there is a
Cartesian coordinate system Oxyz, the z � 0 plane where
the hologram is located, the distance of the object plane from
the hologram plane is z0, and the digital hologram obtained
by CCD recording is I(x, y); then, the 1-FFT reconstruction
light wave field can be expressed by the following Fresnel
diffraction integral [14]:

U(x, y) �
exp jkz0( 􏼁

jλz0
exp

jk

2z0
x
2
i + y

2
i􏼐 􏼑􏼢 􏼣

× 􏽚
+∞

− ∞
􏽚
∞

∞
I(x, y)exp

jk

2z0
x
2

+ y
2

􏼐 􏼑􏼢 􏼣􏼨 􏼩

· exp − j2π
xi

λz0
x +

yi

λz0
y􏼠 􏼡􏼢 􏼣dxdy.

(8)

In formula (8), λ is the wavelength of the light wave and
k � 2π/λ.

,e reconstructed spherical wave with a radius of zc is
used to illuminate the reconstructed image:

Rc(x, y) � exp
jk

2zc

x
2

+ y
2

􏼐 􏼑􏼢 􏼣. (9)

,e light wave field of the undisturbed digital hologram
propagating through distance zi is as follows:

Ui(x, y) � FFT
− 1

FFT w(x, y)U
∗
(x, y)Rc(x, y)􏼂 􏼃􏼚

· exp jkzi

�������������

1 − λ2 f2
x + f2

y􏼐 􏼑

􏽱

􏼔 􏼕􏼛.

(10)

In formula (10), ω(x, y) denotes the window function of
the hologram, U∗(x, y) denotes the object field in the z � 0
plane corresponding to the local image of the selected object
on the image plane, and fx, fy denote the frequency co-
ordinates corresponding to x, y.

In the above formula, if the reconstruction distance zi is
satisfied,

zi �
1
z0

−
1
zc

−
1
zr

􏼠 􏼡

− 1

. (11)

In formula (11), zr is the reference wave surface radius.
,e reconstructed image of the object field whose magni-
fication is M � z1/z0 is obtained by angular spectrum dif-
fraction formula (10).

In the off-axis digital holographic reconstruction system,
there are two basic conditions that must be met. One is
Nyquist sampling theories; another is the positive and
negative first-order image separation conditions [19]. When
these two conditions are met, the positive first-order image
in the digital hologram will be able to reconstruct. ,e
marking method of the positive first-order image of the 1-
FFT surface is based on these two conditions. ,e marking
method is as follows. Taking the virtual nut as the measured
object is shown in Figure 2.

First, the surface of the nut mainly based on specular
reflection is recorded in CCD, and the position of the positive
first-order image on the 1-FFT surface is adjusted to separate
the positive and negative first-order images from the zero-
order image; after that operation, the position of the first-order
image on the 1-FFTsurface is recorded. ,e hologram process
captured by mirror reflected light is shown in Figure 2(a).

,en, rotate the nut slightly without changing its po-
sition so that the mirror reflected light is far away from the
CCD and the diffuse reflected light from the nut enters the
CCD. ,e hologram process captured by diffuse reflection
light is shown in Figure 2(b). Because the nut is fixed on the
rotating table, it only rotates, and its spatial position does not
change, so the angle of the reference light does not change, so
the diffuse reflection image can be obtained at the same
position on the 1-FFT reconstruction image plane.

2.3.Multiaperture StitchingModel inCylindrical Coordinates.
Rotary three-dimensional objects are not easy to express in
Cartesian coordinates, and the range of the measured aper-
ture is limited. ,e central angle of the maximummeasurable
surface cannot exceed 180 degrees. As shown in Figure 3, a
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cylindrical coordinate system (Oρθx) corresponds to a
rectangular coordinate system (Oxyz). Assume that a point
P in the space has a coordinate value P(x, y, x) in a rect-
angular coordinate system and a corresponding coordinate
value P(ρ, θ, x) in a cylindrical coordinate system. Among
them, ρ is the vertical distance from point P to axis X, and θ is
the angle between the projection of the vertical line from
point P to axis X on the yoz plane and the Z-axis. ,e re-
lationship between the two can be expressed as [20,21]

ρ �
�������
y2 + z2,

􏽰

tan θ �
z

y
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

In both coordinate systems, the technology of multi-
aperture stitching is coordinate transformation, but there is
rotation between adjacent areas in the cylindrical coordinate
system, so it is necessary to solve the least square solution of
the nonlinear equations when it solves the relative position
relationship between adjacent two viewpoints. When the
object rotates, there are some motion errors in mechanical
equipment, so when it moves from one perspective to the
next one, there will be noncoincidence between adjacent
overlapping areas, and then the coordinate origin and axis
will be offset. ,e coordinate axes do not coincide, as shown

in Figure 4, which indicates that the axis of the second
coordinate system X2 is cosine (cos α, cos β, cos c) with
respect to the direction of the first coordinate system, and
the coordinate origins do not coincide as shown in Figure 5.

To investigate this offset, when two circular surfaces are
projected in the above coordinate system onto a plane where
x is constant, which are two circles with different circle
centers, the distance between the centers of the two circles
can be expressed as

ρ0′ �

��������������������������������������

ρ0 sin θ0 +
cos β
cos α

x1􏼠 􏼡

2

+ ρ0 cos θ0 +
cos c

cos α
x1􏼒 􏼓

2
􏽳

.

(13)

,e orientation between the centers of the two circles is

θ0′ � arctan
ρ0 sin θ0 +(cos β/cos α)x1

ρ0 cos θ0 +(cos c/cos α)x1
􏼠 􏼡. (14)

In formula (14), ρ0 and θ0 denote the distance and ori-
entation between two cylinders on the plane of x1 � 0 and
the centers of two circles formed by the intersection of the
two cylinders on the plane, as shown in Figure 5.

According to the overlapping area between two sub-
apertures and the geometric relationship between the cy-
lindrical coordinate systems, the transformation relationship
between the two coordinate systems can be obtained as
follows:

Nut

Mirror reflection light

Illumination light

CCD

(a)

Nut
Mirror reflection light

Illumination light

CCD

Rotating

Diffuse reflection light

(b)

Figure 2: ,e marking method of the positive first-order image of the 1-FFT surface: (a) before the nut turns; (b) after the nut turns.

z

y

x

θ
ρ

Figure 3: ,e transformation relationship between the cylindrical
coordinate system and the Cartesian coordinate system.

z1

y1

x2

x1

γ
α

β

Figure 4: Two cylindrical coordinates with uncoincidental axes.
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ρ1 �

��������������������������

ρ22 + ρ’22 − 2ρ2ρ0′ cos θ2 − θ0′ − φ( 􏼁

􏽱

,

θ1 � sin− 1 ρ0′
ρ1

􏼠 􏼡sin θ0′ − θ2 − φ( 􏼁􏼢 􏼣 + θ2 + φ,

ρ1 � f θ1, x1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

In formula (15), φ is the angle of rotation around the X1-
axis between two coordinate systems. ρ0, θ0 and any two of
the direction cosines (cos α, cos β, cos c) (due to
cos2 α + cos2 β + cos2 c � 1) can represent the relative po-
sitional relationship of the two measurement angles in their
respective coordinate systems. Because there are four unknowns,
four points can be solved in the overlapping region. However, in
order to reduce the influence of noise, several points of the
overlapping region are usually substituted into equation (14) to
form a nonlinear equation group, and by solving the least square
solution, we can get the parameters ρ0, θ0 and direction cosine
(cos α, cos β, cos c). ,en, we can transfer the measurement
results from different angles of view, i.e., local coordinates into
the global coordinate system by coordinate transformation to
achieve the purpose of multiview stitching.

,e splicing model in cylindrical coordinates is suitable
for the measurement of rotating parts, but the main dis-
advantage of this model is that the equations are severely
nonlinear, which makes the solving process complicated. On
the basis of preserving the above advantages, to simplify the
process, this paper adopts the multiaperture splicing tech-
nique in the cylindrical coordinate system based on the
particle swarm optimization algorithm, which converts the
nonlinear problem into an optimization problem to solve,
and it establishes the objective function and determines the
relevant parameters and solves them. ,en, the stitching
parameters can be obtained.

2.4. Principle of Particle Swarm Optimization. Ideally, the
surface shapes of the two subaperture overlapping areas are
identical, but in the actual measurement process, the surface
shapes of the two subaperture overlapping areas are not
equal due to mechanical motion errors. Assuming that the
datum shape of the overlapping area is ρbase’, the surface
shape to be spliced with datum is ρ � f(ρ0, θ0, α, β), and the
difference between the two is the value of the surface shape:

Δρ � ρbase − ρ. (16)

In order to reduce the influence of the error, the error of
the least square cylinder is used to describe the actual cyl-
inder. ,e least square cylinder indicates the sum of the
squares of the radial distances from the cylinder to the points
on the actual cylinder is the minimum, that is,

minΔρ �

������

􏽘

N

i�1
Δρ2i

􏽶
􏽴

. (17)

In formula (17), N is the number of points in the
overlapping region. When Δρ approaches the minimum

value of 0, corresponding (ρ0, θ0, α.β) is the solution of the
system of equation (16).

Using the particle swarm optimization algorithm, it is
necessary to determine some parameters. By consulting the
relevant literature, it can be known from [22] that when c1, c2
is not 0, it is called a complete particle swarm algorism, and
the value is easier to maintain the convergence speed and the
balance of the search results, which is a better choice, so this
paper sets c1, c2 to the random number [0, 1]. Shi and
Eberhart discussed the influence of inertia weight between
[0, 1.4] [23]. ,e conclusion is that when ω ∈ [0.8, 1.2], the
convergence speed will be increased, and when ω> 1.2, the
convergence will fail. So, ω is chosen as 0.96 in this paper.

,e flowchart of the particle swarm algorithm is shown
in Figure 6.

,rough the analysis of the principle and the whole idea of
this paper, the flowchart of the whole frame of this principle is
shown in Figure 7. It was verified by using experiments.

3. Experiments

3.1. Composition of the Experimental Device System.
Figure 8 shows an optical path diagram for measuring the
three-dimensional topography of an object by using a tilt
illumination light method, and Figure 9 shows a physical
diagram. MO is the microscopic objective, and PH is the
pinhole device; MO and PH can be combined as a pinhole
filter, which can make the laser light become the ideal point
Olite. BS1 and BS2 are beam splitters, M1, M2, and M3 are
mirrors, BA is a beam attenuator, L1 and L2 are lenses, L1
has a focal length of 100mm, and lens L2 has a focal length of
200mm. Lens L2 is mounted on a high-precision dis-
placement platform PI with a translation accuracy of 20 μm.
It can move the illumination light vertically in the direction
perpendicular, which makes the angle of illumination light
change slightly. ,e propagation process of the light path is
as follows: the laser light emitted by the laser passes through
MO, PH, and BE to become uniform parallel light. ,e
parallel light is divided into two paths of light through BE1,
one of parallel light passes through BA and mirror M3 as
reference light comes into CCD; the other path of the parallel
light is reflected by M1 and M2 after focusing and colli-
mating by lens L1 and L2, which passes the displacement
platform. ,en, the object is illuminated; finally, the CCD
receives the scattered light emitted from the surface of the
object.

,e experiment uses a green light laser with a wavelength
of 532 nm.,e pixel number of CCD is 2748(H) × 3664(V),
the single pixel value is 1.67 μm, the pixel size of the whole
CCD is 4.6mm(H) × 6.1mm(V), the illumination light tilt
angle θ � 11∘, the recording distance is 290mm, the moving
distance of lens L2 on the translation table is 30 um, and the
change of the inclination angle of illumination light is
Δθ � 0.03/200 rad ≈ 0.0086°. ,e relation between the
reference light and the object light meets the conditions
including the spectral separation condition and the sampling
theorem [24] in the off-axis digital hologram. And the in-
tensity ratio of the reference light and the object light meets
the optimum intensity ratio, that is, 1 :1.
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3.2.<e Effect of Specular Reflection and Diffuse Reflection on
Reconstructed Image Quality. In this experiment, the nut
and the stud are used. ,e nut is screwed on the stud and
fixed together on the rotary stage.,e rotary stage is fixed on
the pneumatic platform. Due to the nut of specular reflection
and diffuse reflection on the surface, the quality of the
reconstructed image will be affected, and the quality of the
reconstructed image directly affects the quality of the next
interference fringe image, which also affects the influence of
the three-dimensional shape measurement. At the same
time, the reconstructed image quality is low, and the contrast
is poor. Even with the image plane filtering technique, it is
not easy to find the image formed by the object on the 1-FFT
plane. Figure 10 shows the effect of image reconstruction on
the 1-FFT image plane by using the mirror reflection and
diffuse reflection of nuts, respectively, and the result of

angular spectrum reconstruction will be obtained after
image filtering. It can be seen that the image of the diffuse
reflection object on the 1-FFT plane is very unclear, so a
marking method of the 1-FFT reconstruction image plane is
proposed here. In this experiment, it is easy to find the
position of the first-order image of the 1-FFTreconstruction
plane by using the specular reflection of the nut. ,en, the
nut is rotated so that the reflected light from the mirror is far
away from the CCD and the diffuse reflected light from the
nut enters the CCD. Because the nut is fixed on the rotating
table, it only rotates, and its spatial position does not change,
so the angle of the reference light does not change, so the
diffuse reflection image can be obtained at the same position
on the 1-FFT reconstruction image plane. Figure 11 shows
the flowchart of the 1-FFT reconstructed image plane
positive first-order image marking method.

Figure 12 analyses the reconstructed image of specular
reflection and diffuse reflection. It can be seen that when the
specular reflection is strong, the reconstructed image can
only see one side of the nut. When the reflected light of the
specular surface is gradually weakening, the reconstructed
nut using diffuse reflection has a better effect. ,e quality of
the reconstructed image directly affects the quality of the
phase difference image because the fringe produced by the
phase difference image is subtracted from the phase of the
two reconstructed images, which affects the quality of the
phase map.

3.3. Calibration of Height Measurement Error. In order to
estimate the height measurement error of the digital ho-
lographic tilt illuminationmethod, twomeasuring blocks are
combined to form a ladder-shaped object with a height of
9mm, that is to say, two parallel planes are used to form an
object with a height difference of 9mm. As it is shown in
Figure 13, in order to make the two measuring blocks

Start

Parameter initialization 

End

Calculate the target function value of the particle

Determine the global optimal particle

Convergence
criterion

Output optimal solution

Update particle velocity and location

Calculate the particle target function

Yes

No

Figure 6: Particle swarm optimization solution flowchart.

Start

Obtaining holographic photography
by inclined illumination

Using FIMG4FFT wavefront reconstruction method
to reconstruct and mark the positive first-order image

Get the outline of the object by
using multiaperture stitching model

Particle swarm optimization (PSO) is used to solve
stitching parameters in the cylindrical coordinate to

complete stitching

End

Figure 7: ,e entire framework flowchart of this principle.
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MO: microscopic objective
PH: pinhole
BE: beam expander
BS: beam splitter
BA: beam attenuator

x Object

L2

L1

PI

MO PH BE BS1 BA

M1 M2

M3

BS2

CCD

PC

z

532nm

Figure 8: Experimental optical path map of inclined illumination light measurement.
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Figure 9: ,e diagram of the experimental device for measuring inclined illumination light.
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Figure 10: Continued.
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together, a magnet is used to absorb the back of one
measuring block.

Because these two measuring blocks are standard gauge
blocks, tolerance is very small and can be accurate to the
submicron level. But, as a standard gauge block, the

verification ofmeasurement accuracy is also required. As for a
measuring tool, its measurement accuracy must reach sub-
micron level to measure the height difference between gauge
block1 and gauge block2. Based on this, we choose an electric
vernier caliper with an accuracy of 0.01mm as the mea-
surement tool. It is shown in Figure 13. Figure 14(a) shows an
enlarged view of the reading dial in Figure 14(b). As it can be
seen from Figure 14(b), the accuracy of the electric vernier
caliper is 0.01mm, which has reached the submicron level.

,e measure method of the electric vernier caliper is as
follows.

First, using the electric vernier caliper is to measure the
distance of A in Figure 13. ,e distance of A is a total long
distance.

Second, similarly, using the electric vernier caliper is to
measure the distance of B in Figure 13. ,e distance of B is a
passive distance.

,ird, subtracting B fromA is to get the height difference
between gauge block1 and gauge block2.

Since the upper and lower surfaces of gauge blocks 1 and
2 are both polished, they can be measured as standard
measuring objects. ,e area marked by the red line in
Figure 13 is the measurement data section. ,e whole height
of C will be measured (the height difference between gauge
block1 and gauge block2). ,e measurement data are shown
in Table 1. It can be seen from the average value of the
measurement data that the error of the standard gauge block
is only 0.044%. It can be used as a standard gauge block for
calibration.

,en, the inclined illumination light method is used to
measure. Firstly, two digital holograms before and after
illumination tilt are taken, and then the 1-FFT recon-
struction image is obtained by reconstruction, respectively.
,e interference-free FIMG4FFT reconstruction image is
obtained by image plane filtering technology. ,e phase
difference image is obtained by subtracting the phase image
before and after illumination tilt. ,en, the linear tilt term
related toX is removed and then filtered. Figures 15(a)–15(f )

(c) (d)

Figure 10: Reconstruction results of specular and diffuse reflectance. (a) Result of specular reflection on the 1-FFTplane. (b) Reconstruction
of the specular reflection image after filtering. (c) Results of diffuse reflection on the 1-FFT surface. (d) Reconstruction of the diffuse
reflectance image after filtering.

Start

Adjust the angle between the
object light and the reference light

Light recording by diffuse reflection of the nut

Record the position of the positive first-order
image on the 1-FFT image plane

Light recording by specular reflection of a nut 

Yes

No

Select the positive first-order image at the 
same position on the 1-FFT image plane

Trigger PI, move 30 µm

Record the second hologram

End

Observe whether the 
angle of object light and reference light 
on 1-FFT reconstructed image plane is 

appropriate

Figure 11: Flowchart of the 1-FFT reconstructed image plane
positive first-order image marking method.
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show one of the holograms, 1-FFT reconstructed image,
FIMG4FFT reconstructed image, phase difference image,
image after removing the linear tilt term, and image after
denoising.

In order to display visually, the height difference portion
is taken out for analysis. ,e contour image corresponding
to the red lines in the red rectangular frame and the red
rectangular frame in Figure 15(f ) is shown in Figures 16 and
17.

As it can be seen from Figure 17, the height difference
between the two planes is about 8.891mm. In order to obtain

more accurate experimental results, the phase curves of four
positions are randomly selected in the phase image, and the
error range of height measurement is from 0.1mm to
0.5mm, and the maximum relative error is 5.6%.

3.4. Contour Acquisition and Mosaic of Rotary <ree-Di-
mensionalObjects. ,e threaded part under the nut which is
the double-headed stud is measured and spliced in three-
dimensional digital holography. ,e size of the stud is M6.
,e flowchart of the object contour is shown in Figure 18.

(a) (b) (c) (d)

Figure 12: Specular reflection gradually weakening effect. (a) Strong specular reflection. (b) Specular reflection weakened. (c) Simulta-
neously exist. (d) Diffuse reflection.

Gauge block 2

Gauge block 1

9mm
A

B

Figure 13: Combine two gauge blocks into one object with a height difference of 9mm.

(a) (b)

Figure 14: ,e electric vernier caliper: (a) the physical map; (b) the reading dial.
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Table 1: ,e height difference between gauge block1 and gauge block2 (mm).

Category
Time

1 2 3 4 5 Average
A 14.00 13.99 14.00 14.01 14.00 14.00
B 5.00 5.01 5.00 5.00 4.99 5.00
C 9.00 8.98 9.00 8.99 9.01 8.996

(a) (b) (c)

(d) (e) (f)

Figure 15: Measuring height of the measuring block by the inclined illumination method: (a) digital hologram; (b) 1-FFT reconstruction
image; (c) FIMG4FFT reconstruction image; (d) phase difference image; (e) remove linear tilt terms; (f ) image after denoising.
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Figure 16: ,e contour image of the red box in Figure 15(f).
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Figure 17: ,e curve corresponding to the red line in Figure 15(f ).
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Start

Read in the holograms h1, h2
before and a�er illumination tilt 

Obtain 1-FFT image plane
reconstruction image

Get FIMG4FFT
reconstruction image

Calculate the phase difference

Remove linear tilt terms

Filter

End

Phase unwarpping and
segmenting images

Figure 18: Obtaining an object outline flowchart.

(a) (b) (c)

(d) (e) (f)

Figure 19: Inclined light illumination measures the contour of a stud. (a) Digital hologram. (b) 1-FFTreconstruction image. (c) FIMG4FFT
reconstruction image. (d) Phase difference image. (e) Remove linear tilt terms. (f ) Image after denoising.

International Journal of Optics 11



Because the stud is similar to a cylinder, a single angle of
view can capture half of the area of the stud, and the cor-
responding circumference angle is 180°. ,e whole stud is
recorded four times, which means the image of the first view
was taken at a viewing angle of 0°, and then the rotating table
is rotated by 90° to obtain an image at the second viewing
angle so that the corresponding circumferential angle of the
overlapping regions at the two viewing angles is 90°, and the
overlap area is 50%. According to the steps of the flowchart,
the contour of the double-headed stud is obtained. Figure 19
shows the contour of the double-headed stud measured by
the inclined illumination method. Figure 20 shows the phase
distribution of the three-dimensional reconstruction of the
stud from different perspectives. Figure 21 shows the three-
dimensional morphology of the stud after splicing, and it can
be seen that the effect is good.

As it is shown in Figure 21, the three-dimensional
splicing contour map of the stud has been completed, and
the similarity of the stitching is basically consistent with the
original object. Although the error analysis between the real
object and the stitched object is not done, it can be seen from
the visual comparison of the stitched object and the real
object that the stitched object is very similar to the real
object.,erefore, the stitching theory described in Chapter 2
is correct. ,is technique is of great significance for 3D
reconstruction and stitching of digital holography.

4. Conclusions

,e reconstruction image of a weak diffusely reflecting
object has poor contrast because of its low light intensity and
the position of the positive first-order image cannot be
located accurately. All of results will influence the quality of
subsequent acquisition of the interference phase map. A
premarking method is proposed in this study, which
combines the FIMG4FFT method and changes the incli-
nation of the illumination light. A calibration target with a

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

–3

–3.5

2

0

–2

–4
1200

1000
800

600
400

200
0

1200
1000

800
600

400
200

0
x (p

ixel)y (pixel)

H
ei

gh
t (

m
m

)

(a)

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

–3

–3.5

2

0

–2

–4
1200

1000
800

600
400

200
0

1200
1000

800
600

400
200

0

x (p
ixel)y (pixel)

H
ei

gh
t (

m
m

)

(b)

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

–3

2

0

–2

–4
1200

1000
800

600
400

200
0

1200
1000

800
600

400
200

0

x (p
ixel)y (pixel)

H
ei

gh
t (

m
m

)

(c)

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

–3

2

0

–2

–4

1500

1000

500

0

1200
1000 800

600
400 200 0

x (
pix

el)

y (pixel)

H
ei

gh
t (

m
m

)

(d)

Figure 20: ,ree-dimensional phase distribution of studs at each viewing angle: (a) 0°; (b) 90°; (c) 180°; (d) 270°.
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Figure 21: ,ree-dimensional topography after stud splicing.
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height difference of 9mm is used in demonstration test. ,e
results show that the measurement error is between 0.1mm
and 0.5mm, and the maximum relative measurement error
is 5.6%. ,e multiaperture stitching technique in cylindrical
coordinates is applied to accomplish the digital holographic
3D stitching. ,e particle swarm optimization algorithm is
used to transform the nonlinear equations into optimization
problems to solve the splicing parameters. ,e contour from
a single viewpoint is stitched together to realize the three-
dimensional display of the whole object. Finally, the three-
dimensional stitching of rotational three-dimensional ob-
jects in the cylindrical coordinate system is carried out, and
the experiment for a mechanical part has been conducted.
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