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In this paper, we present a modified version of Hill’s dynamical system that is called the quantized Hill’s three-body problem in the
sense that the equations of motion for the classical Hill’s problem are now derived under the effects of quantum corrections. To do
so, the position variables and the parameters that correspond to the quantum corrections of the respective quantized three-body
problem are scaled appropriately, and then by taking the limit when the parameter of mass ratio tends to zero, we obtain the
relevant equations of motion for the spatial quantized Hill’s problem. Furthermore, the Hamiltonian formula and related
equations of motion are also derived.

1. Introduction

In the analysis of dynamical systems that deal with celestial
objects, the restricted three-body problem plays a funda-
mental role. (e problem gains its importance from the
variety of its modifications that approximate different real
systems [1, 2]. In addition, it can be applied and used in both
stellar and planetary dynamics as well as in space missions
[3, 4]. Also, this problem can be effectively used to determine
the possibility of sub-Jovian and terrestrial planets [5, 6].
Due to its extensive astronomical applications, considerable
variants have been proposed in order to study a test particle
in solar and planetary systems [7–9]. For example, the
modification in which the more massive body is a source of
radiation and the smaller one is either oblate or triaxial body
motivates us to apply this perturbed version in our solar
system. (is modification may be more realistic than the
classical one since in the solar system, the Sun is radiating
and some planets are not spherical but sufficiently oblate (or
triaxial) bodies [10–12].

On the other hand, the classical restricted problem has
some simpler modified versions, instead of the aforemen-
tioned complex perturbed models, such as Sitnikov and

Robe problems (see, e.g., [13, 14] and references therein).
However, the simplest of its versions is Hill’s problem, which
can be treated as a perturbed two-body problem. In par-
ticular, this problem is considered to be a limiting case of the
restricted three-body problem when the parameter mass μ
tends to zero, and it may be used to study the satellite motion
around a planet [15]. A considerable study on the circular
Hill’s problem has been established byHénon [16, 17], where
he determined the main families of periodic orbits, revealed
the phase space by means of surface of sections of the
Poincaré map, and found the stability regions in the pa-
rameters’ plane. Recently, for the same problem, Lara et al. in
[18] have employed a normalization approach in complex
variables to compute a single perturbation solution with
enough accuracy. (e solution captures the main four
families of periodic orbits for the Hill problem originated
from the libration points. (ey have also extended the so-
lution validity to energy values. In addition, Nishimura et al.
in [19] used the same model to study spacecraft orbital
motion. (ey studied 3-dimensional distant retrograde
orbits and also found a sufficient condition for a closed orbit
to be unstable. To do so, the authors transformed the relative
equations of motion into a time-independent form by using
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Fourier series. Also recently, Kalantonis in [20] have studied
the families of spatial periodic orbits bifurcating from the
vertical self-resonant periodic orbits of the basic families of
simple planar periodic orbits.

In the framework of Hill’s problem, Markellos et al. in
[21, 22] have proposed the models in which the radiation or
oblateness of the primaries are also considered. (e pro-
posed models were used in order to find estimates for the
maximum possible distance of Hill stable direct orbits
around the small primary and to estimate the maximum
sizes of accretion disks in binary stars. For Hill’s problem
where the larger primary is a source of radiation, Kalantonis
et al. in [23] considered homoclinic connections at both the
Lyapunov planar periodic orbits and collinear equilibrium
points. Markakis et al. in [24] proposed a respective Hill
model by combining the radiation pressure and oblateness
effects. (ey found approximate expressions for the loca-
tions of equilibrium points and explored their linear sta-
bility. Also, by applying singular perturbations methods,
they determined approximate expressions for the Lyapunov
orbits emanating from the collinear points in both the co-
planar and spatial cases. For the same problem, Perdiou et al.
[25] studied the network evolution of the basic families,
determined their stability as well as the stability regions of
retrograde satellites in the plane of initial conditions by
means of appropriate Poincaré surface of sections. (e el-
liptical Hill’s problem is constructed by using the same
assumptions of circular Hill’s problem, but assume that the
planet moves on an elliptic orbit around the Sun.(is model
was obtained by Ichtiaroglou in [26] in which few families of
periodic orbits were computed. A further study was
addressed by Ichtiaroglou and Voyatzis in [27] where they
explored the stability of periodic orbits. Also, for the elliptic
case, Voyatzis et al. in [28] computed a large set of families of
periodic orbits together with their linear stability and classify
them according to their resonance condition.

In this paper, we derive a quantum version for Hill’s
problem that comes from the quantized three-body problem
introduced by Alshaery and Abouelmagd [29]. (is special
variant is called the quantized Hill’s problem, and its
equations of motion are obtained in a similar way as Hill’s
problem is derived from the classical restricted three-body
problem; however, the calculations are not direct and further
assumptions are considered, which incorporate the per-
turbations of quantum corrections. In particular, our work
presents the equations of motions in both the planar and
spatial cases as well as the Hamiltonian formula with the
related equations. More precisely, our paper is organized as
follows. First, in Section 2, the quantized three-body
problem is discussed. In Section 3, the Hill version of the
latter is systematically derived, while the relevant Hamil-
tonian approach is obtained in Section 4. Finally, in Section
5, we summarize our work and conclude.

2. Quantized Three-Body Problem

We will accept the notations and nomenclature of the spatial
quantized restricted three-body problem, which is studied
by Alshaery and Abouelmagd in [29]. In this context, the

equations of a test particle within the frame of the quantized
model are given by

€ξ1 − 2n _η1 �
z

zξ1
Γ1 ξ1, η1, ζ1( 􏼁,

€η1 + 2n _ξ1 �
z

zη1
Γ1 ξ1, η1, ζ1( 􏼁,

€ζ1 �
z

zζ1
Γ1 ξ1, η1, ζ1( 􏼁,

(1)

where Γ1 is the effective potential, and it is read as

Γ1 ξ1, η1, ζ1( 􏼁 �
1
2
n
2 ξ21 + η21􏼐 􏼑

+(1 − μ)Γ11 ϱ1( 􏼁 + μΓ21 ϱ2( 􏼁,

(2)

Γi1 ϱi( 􏼁 �
1
ϱi

1 +
Qi1

ϱi
+

Qi2

ϱ2i
􏼠 􏼡, i � 1, 2. (3)

(e derivatives of this potential with respect to ξ1, η1,
and ζ1 are

z

zξ1
Γ1 � (x + μ)φ1 ϱ1( 􏼁 +(x + μ − 1)φ2 ϱ2( 􏼁,

z

zη1
Γ1 � y φ1 ϱ1( 􏼁 + φ2 ϱ2( 􏼁􏼂 􏼃,

z

zζ1
Γ1 � z φ1 ϱ1( 􏼁 + φ2 ϱ2( 􏼁 − n

2
􏽨 􏽩,

(4)

where

ϱ21 � ξ1 + μ( 􏼁
2

+ η21 + ζ21,

ϱ22 � ξ1 + μ − 1( 􏼁
2

+ η21 + ζ21,

ϱ23 � ξ21 + η21 + ζ21,

(5)

are the distances of the massless body from the two pri-
maries, while the mean motion n is given by

n
2

� 1 + 2Q1 + 3Q2. (6)

Relations (1)–(6) represent the equations of motion of a
circular restricted three-body problem in a synodic reference
frame (see [29] for details).

We would like to refer here that φ1(ϱ1) and φ2(ϱ2) are
explicit functions in the distances ϱ1 and ϱ2, which are read
as

φ1 ϱ1( 􏼁 � (1 − μ) n
2

−
1
ϱ31

−
2Q11

ϱ41
−
3Q12

ϱ51
􏼢 􏼣,

φ2 ϱ2( 􏼁 � μ n
2

−
1
ϱ32

−
2Q21

ϱ42
−
3Q22

ϱ52
􏼢 􏼣,

(7)

where
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Q1 � n1 Rm1
+ Rm2

􏼐 􏼑,

Q2 � n2 lp􏼐 􏼑
2
,

(8)

Q11 � k1 Rm1
+ Rm􏼐 􏼑,

Q12 � Q22 � k2 lp􏼐 􏼑
2
,

Q21 � k3 Rm2
+ Rm􏼐 􏼑.

(9)

(e quantities Q1, Q2, Q11, Q12, Q21, and Q22, which are
identified by equations 8 and (9), utilize quantum correc-
tions. In particular, the first two quantities are due to the
mean motion, while the last four are corrections of the
potential, which the perturbed test particle motion governs.
It is clear that the classical (unperturbed) motion can be
obtained when each quantity is assigned to zero. Details for
the estimated quantum corrections from the basic quantum
principles as well as their clear quantum mechanical
meaning were introduced in [30–32]. Also, Rm1

, Rm2
, and Rm

are the gravitational radii of the primaries m1 andm2 and the
massless body m, respectively, while lP is the Planck length.
Moreover, the numbers n1, n2, k1, k2, and k3 can be esti-
mated from the analysis of Feynman diagrams. Generally,
the values of these numbers depend on different definitions;
therefore, they are different in both sign and magnitude
[30, 31]. In fact, the constants Q1, Q11, and Q21 measure the
size of the relativistic effect or post-Newtonian approxi-
mation, while Q2, Q12, and Q22 measure control quantum
correction contributions. However, all these effects tend to
zero in the case of large distances.

Utilizing equations (2), (4), and (7), we obtain from (1)
the equation of the Jacobi integral in the form

2Γ1 ξ1, η1, ζ1( 􏼁 − _ξ
2
1 + _η21 + _ζ

2
1􏼒 􏼓 � C, (10)

where C is the constant of integration or alternatively the
well-known Jacobi constant, which can be utilized for the
study of the invariant manifolds of the considered system.

3. Hill Version of Quantized Three-
Body Problem

In order to find the quantized Hill version, we follow the
transformation of Szebehely in [15]. First, we subject the
equations of motion of the quantized restricted three-body
problem given by system (1) and the related relations to a
translation along the ξ1-axis, so we let in this way the co-
ordinates center moves to the mass center of the smaller
primary. (erefore, the relations between the old (ξ1, η1, ζ1)
and new (ξ, η, ζ) coordinates are given by

ξ1 � ξ − μ + 1,

η1 � η,

ζ1 � ζ.

(11)

Utilizing these relations in equations (1), (2), and (5), we
get

€ξ − 2n _η �
z

zξ
Γ(ξ, η, ζ),

€η + 2n _ξ �
z

zη
Γ(ξ, η, ζ),

€ζ �
z

zζ
Γ(ξ, η, ζ),

(12)

where

Γ(ξ, η, ζ) �
1
2
n
2

(ξ − μ + 1)
2

+ η2􏽨 􏽩

+(1 − μ)Γ11 ρ1( 􏼁 + μΓ21 ρ2( 􏼁,

(13)

while the relevant distances are now

ρ21 � (1 + ξ)
2

+ η2 + ζ2,
ρ22 � ξ2 + η2 + ζ2.

(14)

We now follow again Szebehely in [15] to scale the
variables by introducing

ξ � μ1/3x,

η � μ1/3y,

ζ � μ1/3z.

(15)

(e aforementioned scale preserves the magnitude of
Coriolis and centrifugal terms in the same order in the
previous equations. Substituting (15) into equations
(12)–(14), we obtain

€x − 2n _y � μ− 2/3 z

zx
Ω(x, y, z),

€y + 2n _x � μ− 2/3 z

zy
Ω(x, y, z),

€z � μ− 2/3 z

zz
Ω(x, y, z),

(16)

where

Ω(x, y, z) �
1
2
n
2 μ1/3x − μ + 1􏼐 􏼑

2
+ μ2/3y2

􏼔 􏼕

+(1 − μ)Γ11 r1( 􏼁 + μΓ21 r2( 􏼁,

(17)

and the scaled distances are

r
2
1 � 1 + 2μ1/3x + μ2/3r2,

r
2
2 � μ2/3r2,

r
2

� x
2

+ y
2

+ z
2
.

(18)

We utilize equations (16) and (17) and let the mass
parameter μ tends to zero; the existing this limit leads to
Hill’s equations. (us, equation (16) can now be rewritten as

€x � L10 + L11 + L12 + L13,

€y � L20 + L21 + L22 + L23,

€z � L31 + L32 + L33,

(19)
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where the limits Lij, i � 1, 2, 3 and j � 0, 1, 2, 3, are given by

L10 � lim
μ⟶0

2n _y + n
2
x􏽨 􏽩,

L11 � lim
μ⟶0

1 − μ
μ1/3

κ r1, x( 􏼁,

L12 � −lim
μ⟶0

1 − μ
μ1/3

αμ r1( 􏼁 1 + μ1/3x􏼐 􏼑,

L13 � −lim
μ⟶0

cμ(r)x,

(20)

with

L20 � −lim
μ⟶0

2n _x − n
2
y􏽨 􏽩,

L21 � −lim
μ⟶0

λ r1, r( 􏼁,

L22 � −lim
μ⟶0

(1 − μ)αμ r1( 􏼁y,

L23 � −lim
μ⟶0

βμ(r)y,

(21)

L31 � −lim
μ⟶0

λ r1, r( 􏼁z,

L32 � −lim
μ⟶0

(1 − μ)αμ r1( 􏼁z,

L33 � −lim
μ⟶0

βμ(r)z,

(22)

while we have abbreviated

κ r1, x( 􏼁 � n
2

−
1 + μ1/3x

r
3
1

,

λ r1, r( 􏼁 �
1 − μ

r
3
1

+
1
r
3,

αμ r1( 􏼁 �
2Q11

r
4
1

+
3Q12

r
5
1

,

βμ(r) �
2Q21

μ1/3r4
+
3Q22

μ2/3r5
,

cμ(r) �
1
r
3 + βμ(r).

(23)

From equation (18), we observe that r1→ 1 and r2→ 0
when μ→ 0. Furthermore, r2 is of order O(μ1/3), thus
(1/r1)

k→ 1 and (1/r2)
k is undefined, where k is a positive

integer. We also remark here that, if the parameters of
quantum corrections are ignored, i.e., Q1 � Q2 � 0 and
Q11 � Q12 � Q21 � Q22 � 0, then the limits (20)–(22)
converge, hence exist, and system (19) is reduced to the
classical planar and spatial Hill three-body systems
[15, 33]. In the case where these parameters are not equal
to zero, we get some divergent limits, such as
L11, L12, L13, L23, and L33. (e limits that diverge corre-
spond to the involved functions, which depend on the
parameter μ, possessing singularities and in particular,

they are not defined at μ � 0. (e first two limits have a
pole of order one due to some particular terms with co-
efficients 1/μ1/3, while the last three limits have poles of
order one and two due to some specific terms with co-
efficients 1/μ1/3 and 1/μ2/3, respectively.

On the other hand, the parameters of quantum cor-
rections are very small and can be scaled by the factors μ1/3
and μ2/3. In this sense, we can scale Rm1

, Rm2
, Rm, and lp.

Specifically, this scale may be considered by taking
Q1 � μ1/3α1, Q2 � μ2/3α2, Q11 � μ1/3α11, Q21 � μ1/3α21,
Q12 � μ2/3α12, and Q22 � μ2/3α22. After the previous dis-
cussion and by utilizing these scaled quantum corrections in
equations (20)–(22), the singularities at the poles 1/μ1/3 and
1/μ2/3 can be removed, so

L10 � 2n _y + n
2
x,

L11 � 2x + 2α1,

L12 � −2α11,

L13 � −fr(r)x,

(24)

L20 � −2 _x + y,

L21 � −hr(r),

L22 � 0,

L23 � −gr(r)y,

(25)

L31 � −hr(r)z,

L32 � 0,

L33 � −gr(r)z,

(26)

where

fr(r) �
1
r
3 1 +

2α21
r

+
3α22
r
2􏼠 􏼡,

gr(r) �
1
r
4 2α21 +

3α22
r

􏼒 􏼓,

hr(r) � 1 +
1
r
3.

(27)

Substituting equations (24)–(26) into system (19), we get

€x − 2 _y � 3x + 2 α1 − α11( 􏼁 − fr(r)x,

€y + 2 _x � −fr(r)y,

€z � −z − fr(r)z.

(28)

(e last system represents the spatial quantized Hill
problem; it is the limiting case, which is acquired from the
spatial quantized restricted three-body problem, which was
firstly presented and studied by Alshaery and Abouelmagd
[29]. System (28) can be rewritten in a similar manner as that
of the restricted three-body problem, i.e.,

€x − 2 _y � Ux(x, y, z),

€y + 2 _x � Uy(x, y, z),

€z � Uz(x, y, z),

(29)
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where

U(x, y, z) �
1
2

3x
2

+ 4 α1 − α11( 􏼁x − z
2

􏽨 􏽩 + w(r). (30)

Utilizing equations (29) and (30), the Jacobi integral is
read as Cq � 2U − V2, where explicitly it has the form

Cq � 3x
2

+ 4 α1 − α11( 􏼁x − z
2

􏽨 􏽩

+ 2w(r) − V
2
,

(31)

with V2 � _x2 + _y2 + _z2, while we have abbreviated

w(r) �
1
r

1 +
α21
r

+
α22
r
2􏼠 􏼡. (32)

4. Hamiltonian Approach

In Hamiltonian approach, a dynamical system is described
by a set of canonical coordinates (q, p) where they corre-
spond to the n-dimensional vectors q � (q1, q2, q3, . . . , qn)

and p � (p1, p2, p3, . . . , pn), while each of the aforemen-
tioned components is indexed to the frame of reference of
the respective system. (e components qi, i � 1, 2, 3, . . . , n,
are known as the generalized coordinates and are selected in
order to remove the constraints or to take into consideration
the symmetry characteristics of the system, while pi are their
conjugate momenta. In classical mechanics, the evolution of
time is determined by calculating the total force, which is
exerted on each one of the involved bodies, so the time evo-
lutions of both positions and velocities are obtained by using
Newton’s second law.However, inHamiltonianmechanics, the
evolution of time is computed by finding the relevant Ham-
iltonian function in the generalized coordinates and then using
it into the corresponding Hamilton’s equations.

(e latter method is tantamount to that which is used to
the Lagrangian approach. In fact, for the same generalized
momenta, both methods result to the same equations, but
the main reason to use Hamiltonian approach, instead that
of the Lagrangian, comes from the symplectic features of a
Hamiltonian system. In fact, Hamilton’s equations com-
prised 2n first-order differential equations, while Lagrange’s
equations are constituted by n second-order differential
equations. Although Hamilton’s equations do not generally
reduce the difficulty of determining analytical solutions, they
may offer some crucial theoretical results due to the fact that
the coordinates and momenta are independent variables
with nearly symmetric roles. In addition, if the system
possesses a kind of symmetry for which a coordinate does
not appear in the Hamiltonian, the relevant momentum is
conserved and the corresponding coordinate can be
neglected by the other equations.(is results in reducing the
number of coordinates of the dynamical system from n to
n − 1, while in the framework of the Lagrangian approach, all
the generalized velocities remain in the Lagrangian; there-
fore, we still have to deal with a system of equations in n
coordinates, which must be handled. Both approaches are of
fundamental importance in the study of classical mechanics

as well as for formulations of quantum mechanics; however,
the Hamiltonian approach provides deeper insights in
several fundamental features of some astronomical dy-
namical systems, such as planetary orbits in celestial me-
chanics [34, 35].

In our system, the time evolution is defined by the
following Hamilton’s equations:

_qχ �
zH

zpχ
,

_pχ � −
zH

zqχ
,

(33)

where χ � (x, y, z) and the Hamiltonian H is given by

H �
1
2
P
2

+ qypx − qxpy􏼐 􏼑 + Υ(q)

−
1
2

2q
2
x − q

2
y − q

2
z + 4 α1 − α11( 􏼁qx􏽨 􏽩,

(34)

with

P
2

� p
2
x + p

2
y + p

2
z,

Υ(q) � −
1
q
3 1 +

α21
q

+
α22
q
2􏼠 􏼡.

(35)

Utilizing equations (33) and (34), the equations of
motion of the spatial quantizedHill model with Hamiltonian
formula can be written as

_qx � px + qy,

_qy � py − qx,

_qz � pz,

_px � py + 2 qx + α1 − α11( 􏼁􏼂 􏼃 − fq(q)qx

_py � −px − qy − fq(q)qy,

_pz � −qz − fq(q)qz,

(36)

where q2 � q2x + q2y + q2z. Furthermore the Hamiltonian can
be rewritten as

H � H0 + σ1H1 + σ2H2, (37)

where

H0 �
1
2
P
2

+ qypx − qxpy􏼐 􏼑

−
1
2

3q
2
x − q

2
􏼐 􏼑 −

1
r
,

H1 � −2β11qx −
β12
r
2 ,

H2 � −
β22
r
3 .

(38)
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Here, σ1β11 � α1 − α11, σ1β12 � α21, and σ2β22 � α22.
Within the frame of quantum corrections, σ1 is of order
O(1/c2) and σ2 is of orderO(1/c3), where, as usual, c denotes
the speed of light. (ereby, the second and third terms in
equation (37) are of order O(1/c2) and O(1/c3), respectively.
(us, the perturbed Hamiltonian (37) can be reduced
classical to one of the unperturbed Hamiltonian as

H � H0 + O
1
c
2􏼠 􏼡. (39)

(e obtained relation (39) for Hamiltonian can be used
to extend the results of the classical Hill’s problem to the
quantized problem. Since α1 and α11 are of order O(1/c2),
thus α1 − α11 ≈ 0 and the term with coefficient can be
ignored.

5. Conclusions

A dynamical system was introduced, which is a modification
of Hill’s problem and is called quantized Hill’s problem. In
order to derive the relevant equations of motion in the three-
dimensional space, we started from the corresponding
spatial quantized restricted three-body problem, and after
scaling the parameters and the position variables, a limiting
process for the mass parameter was applied. In particular,
the technique used here was similar to the way where the
classical Hill’s model is obtained from the circular restricted
three-body problem, i.e., we translated the origin of the
synodic coordinates to the center of the primary mass body
and scaled the variables by the factor of the cubic root for the
mass parameter of the restricted problem. However, the
calculations were not direct, and further assumptions had to
be considered to remove singularities appeared in limits
calculations. In particular, the parameters corresponding to
quantum corrections were also scaled by the factors μ1/3 and
μ2/3, making thus the involved limits to be convergent and
resulting in this way to the pertinent equations of motion for
the spatial quantized Hill’s dynamical system.

(e Hamiltonian formula of the proposed system, which
includes the perturbations of quantum corrections, and the
related equations of motion were also given. (is formula is
of fundamental importance since it may reduce the problem
from n to n − 1 coordinates if a dynamical system has
symmetry. Particularly, in the case of symmetry where a
coordinate does not appear in the Hamiltonian, the re-
spective momentum is conserved; therefore, it can be
neglected by the other set of equations.

We remark that the derived dynamical system can be
reduced to the classical Hill’s problem when the parameters
of quantum corrections set to be equal to zero. Also, the
respective planar motion can be easily obtained from the
three-dimensional version of the model presented in this
work by considering in all calculations z � 0. In a future
correspondence, we intend to study the basic dynamical
features of the proposed model such as the equilibrium
points and periodic orbits which are of crucial importance in
the study of any dynamical system since they may charac-
terize the behaviour of nearby orbits.
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