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Metabonomics is an omics approach to identify and monitor
metabolic characteristics, changes, and phenotypes with
respect to various synergetic factors such as environment,
life style, diet, and potential pathophysiological processes.
Recently, metabonomics has also opened up a possibility
for functional genomics in large genome-wide studies.
Mass spectrometry (MS) and proton nuclear magnetic
resonance (NMR) spectroscopy are the two key experi-
mental technologies in the field. Recent advancements are
numerous, and methodologies currently exist that allow for
automated high-throughput experimentation in a very cost-
effective manner. Technical developments have evoked an
increasing number of metabonomics applications in clinical
and epidemiological disciplines to understand the complex
molecular foundations of various diseases. Techniques with
the aim of assessing large numbers of metabolites that are
substrates, intermediates, or products in various metabolic
pathways are particularly relevant in the risk assessment of
metabolic conditions like diabetes and vascular diseases. It
has also been envisioned that metabonomics approaches may
overtake standard analytical measurements of individual
metabolites and eventually lead to holistic multimetabolic
risk phenotyping in the early detection of high-risk indi-
viduals for various metabolic diseases. Thus, metabonomics

offers potential means to move away from single biomarkers
and thresholds in clinical medicine. And, furthermore, even
though the current medical biomarkers and thresholds are
necessary benchmarks for clinical practice, it will be crucial
to let the future diagnostics to follow from new science.
Good predictions are necessary for effective prevention; an
important step towards this is expected to happen when
complex traits will not anymore be limited by clinical
diagnoses and definitions but will be handled as multivariate
continuous dimensions. Consequently, clinical and epidemi-
ological metabonomics is likely to be one of the key new
omics areas to assist translational research in the near future.

Here, the Journal of Biomedicine and Biotechnology
presents this special issue, 2011. Although only representing
a small fraction of the contribution of metabonomics to
various biomedical disciplines, the papers presented here
show the increasing potential of metabonomics approaches
to complement clinical and epidemiological research.

To start the special issue, we have five contributions
that review several aspects of metabonomics research. M. G.
Barderas et al. discuss the concepts of metabolic profiling,
fingerprinting, and footprinting focusing on the area of
cardiovascular diseases. E. Silvestri and coworkers discuss the
timely and relevant issue of integrative analyses of related
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omics data sets in order to furnish new insights not accessible
through one-dimensional data. Further, I. Kouskoumvekaki
and G. Panagiotou give an extensive up-to-date overview
on the database resources on metabolic pathways and
metabolomes and also summarize the statistical tools often
used for the analysis of metabonomics data. Y. Kim and
S. Milner deal with the challenges related to bioactive food
components in cancer research and prevention. Moreover,
M. Sofia and coauthors review the potential use of exhaled
breath condensate as a suitable matrix for NMR-based
metabonomics of airway diseases.

This special issue contains two methodology reports. G.
Kastenmüller and coworkers have developed a freely acces-
sible methodology to facilitate automated and standardized
analysis for quantitative metabolic data, covering the steps
from data acquisition to biological interpretation. M. C.
Martı́nez-Bisbal and colleagues, using magnetic resonance
microscopy, present a critical and valuable interpretation on
the high-resolution magic angle spinning data of human
tumor tissues.

The six original research papers in this special issue start
with the paper by J. Willmann et al. who demonstrate the
advantage of combining high-pressure liquid chromatogra-
phy, MS, and NMR spectroscopy in analyzing three different
types of extracts of a common membrane component
phosphatidylcholine. Then, D. F. Brougham et al. focus on
the use of artificial neural networks in classifying proton
NMR spectroscopic data recorded on whole-cell culture
samples of four different lung carcinoma cell lines, displaying
different drug-resistance patterns. In a mouse study, D.
Otter et al. apply MS-based nontargeted urinary metabolite
profiling to identify biomarkers of colon inflammation. In
another mouse study, J. Zhou et al. provide evidence that
NMR metabonomics may be sensitive enough to detect
small differences in the composition of maternal plasma
and thus be helpful for identifying biomarkers of birth
defects. Additionally, in low-birth weight and high-birth
weight piglets P. M. Nissen and coworkers combine NMR
and MS to reveal a relationship between birth weight and
plasma inositols, suggesting their potential role in fetal
programming of type 2 diabetes. L. Guo et al. end this special
issue in providing the latest epidemiologic information on
the etiology distribution of neurodevelopmental disabilities
in Chinese, and by demonstrating, on the basis of 8-year
clinical experience, that MS-based pediatric metabonomics
is clinically helpful.

Overall, we hope that this special issue hints at the
rising potential of metabonomics approaches in clinical and
epidemiological research and translational medicine.

Mika Ala-Korpela
Veikko Salomaa

Olav M. Kvalheim
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Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different
approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the
clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well
as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular
disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly
with reference to the cardiovascular field.

1. Introduction

Cardiovascular disease (CVD) is the most prevalent cause of
death in developed nations and it is increasing in prevalence
in developing countries. While many factors contribute to
the development of this disease in adults, such as, smoking,
male gender, blood pressure, elevated cholesterol, diabetes,
and renal failure, the mechanisms underlying CVD are still
not fully understood [1–4]. One of the main problems
in clinical practice is that the symptoms become evident
late in the course of the disease. In fact, asymptomatic
processes, that are associated with plaque formation, develop
causing silent yet progressive tissue damage. If atheroma
plaques finally rupture, highly thrombogenic material is
released and an atherothrombotic event occurs. In this
context, there is an urgent need to find out novel biomarkers
of practical value for clinical intervention which, alone
or combined with existing ones, allow cardiovascular risk
prediction at individual level. Currently, controversy exists
regarding contribution of biomarkers to the information
derived from conventional risk factors. When novel markers
utility for predicting CVD was investigated in a wide cohort

of more than 5000 individuals without CVD, the gains over
conventional factors resulted to be minimal [5]. However,
positive outcomes are expected when high-risk populations
are investigated; thus, the risk level of selected patients, the
chosen biomarkers to be investigated and other factors, such
as, statistics, highly influence expected results. Combination
of multiple biomarkers in assessment of individual responses
adds only moderately to standard risk factors [6]. Therefore,
there is a substantial interest in the discovery and use of
newer biomarkers, to complement the best existing ones
and to identify persons who are at risk for the development
of cardiovascular disease and who could be targeted for
preventive measures. In particular, finding biomarkers that
predict the risk of rupture will provide the opportunity to
institute a preventive life style and permit timely pharmaco-
logical treatment. Currently, the improvements in outpatient
and inpatient care, diagnosis and biomarker discovery have
reshaped the landscape of CVD. It is important to note that
the new diagnostic methods currently available are based
on noninvasive techniques that, although they present a
number of benefits, may be limited in terms of specificity,
sensitivity, availability and cost. The progress in “-omics”
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technologies has provided sensitive, fast and robust tools to
analyze biomarkers in CVD.

Metabolites are small molecules that participate in
general metabolic reactions and that are required for the
maintenance, growth and normal function of a cell. The term
metabolome, derived from the word genome, refers to the
complete set of metabolites in an organism and its organelles
[7, 8] or the total complement of metabolites in a cell [9]. In
this way, metabolomics and metabonomics refer to the use
of analytical methods to identify and quantify all metabolites
in a biological system, as well as the monitoring of changes
in the metabolome of a biofluid, cell culture or tissue sample
following perturbation [8, 10].

In parallel with genomics, transcriptomics and pro-
teomics, application of metabolomic technologies to the
study of CVD will increase our understanding of the
pathophysiological processes involved and this should help
us to identify potential biomarkers to develop new ther-
apeutic strategies [11, 12]. Indeed, the identification and
quantification of these low molecular weight molecules (e.g.,
lipids, amino acids, and sugars) will define the phenotype
of these diseases [13]. From a clinical perspective, the study
of metabolic changes that occur in response to different
physiological processes will help establish the mechanisms
underlying the disease. In terms of personalized medicine,
pharmacometabonomic approaches can serve to predict the
action of specific drugs in a particular individual based on
the predose urinary metabolite profile. Furthermore, the
gut bacterial fauna influences drug efficacy, which could be
deliberately modified to optimize the benefits and minimize
adverse effects of a given treatment [14]. In addition, this
approach will help understanding how drugs act during
patients’ recovery or how they influence outcome.

2. Metabolomic Strategies, Analytical
Approaches and Variability

There are several analytical strategies that can be used to
analyse the metabolome [15], such as nuclear magnetic
resonance (NMR) [16], Fourier transformation infrared
spectroscopy (FT-IR) [17, 18], and mass spectrometry (MS)
coupled to separation techniques such as high performance
liquid chromatography (HPLC), gas chromatography (GC),
or capillary electrophoresis (CE). The combination of these
different analytical techniques offers important advantages
when analyzing the complete metabolome. High field 1H
NMR is one of the preferred platforms for urine and plasma
analysis [19, 20], as it is a nondestructive technique that does
not require prior separation of the analytes and it provides
detailed information on molecular structure. For example,
the capacity to predict the occurrence of exercise-induced
ischemia in patients with suspected CAD was investigated
by NMR blood analysis, demonstrating lactate, glucose,
lipids, and long-chain fatty acids to be the main metabolites
involved [21]. Xanthine and ascorbate were proposed as
possible markers of plaque formation in an atherosclerotic
mouse model [22] and lipoprotein subclasses can now be
analyzed by a commercial NMR-based protocol called NMR

LipoProfile [23, 24]. However, one of the main limitations of
NMR is the poor sensitivity, although this can be improved
enormously when it is combined with mass spectrometry.

Coupled to a separation technique, MS has recently been
introduced into the metabolomics field and its use in such
studies will constitute the main focus of this paper. Indeed,
gas chromatography/mass spectrometry (GC-MS), liquid
chromatography/mass spectrometry (LC-MS) and capillary
electrophoresis/mass spectrometry (CE-MS) are the most
powerful techniques for metabolite separation and analysis.
GC-MS provides an extraordinary resolution, permitting the
separation of structurally similar compounds that would
otherwise be very difficult to separate by HPLC. However,
this technique requires the analyte to be volatile and
thermally stable. In some cases, a chemical derivatization step
is required prior to the chromatographic separation in order
to render polar metabolites volatile. Some of the metabolites
best suited for GC-MS include fatty acids, organic acids,
steroids, di-glycerides, sugars and sugar alcohols.

For those metabolites that are not volatile and which
cannot be derivatized, LC is the separation technique of
choice. Thus, LC-MS can analyze a much wider range
of chemical species (polar and nonpolar metabolites)
with ample selectivity and sensitivity. Apart from reversed
phase chromatography (RP-LC), which is widely used in
metabolomics applications, hydrophilic interaction chro-
matography (HILIC) is a complementary approach suitable
for very polar metabolites (nonvolatile). Indeed, the metabo-
lites suited to analysis by GC or HPLC can be represented
according to their polarity (see scheme in Figure 1). Sim-
ilarly, capillary electrophoresis (CE) can be coupled to a
mass spectrometer (MS), with the particular advantage of
improving the resolution of separation as narrower peaks
than with LC are obtained. Accordingly, different approaches
have been described in combination with ion trap (IT),
triple quadrupole (QQQ), time of flight (TOF), and Q-
TOF instruments. The main advantage of QQQ and Q-
TOF instruments is that they provide the possibility of
identifying the compounds by tandem MS/MS analyses. In
order to obtain a full overview of the detectable molecules,
electrospray ionization (ESI) should be performed in both
positive and negative modes on the same sample.

Irrespective of the analytical approach used in
metabolomics, particular care has to be taken in preparing
the sample. Bearing in mind that the typical half-lives of
metabolic reactions in an organism are less than 1 s, it
is important not to monitor metabolic changes extrinsic
to the pathology or drug effect under study, producing
misleading interpretations of the situation. Evidence-
based epidemiological studies have led to the discovery of
well-established biomarkers. These studies now tend to be
complemented by control-case investigation using a different
methodology, based on two main stages: the discovery phase,
resulting in a set of novel biomarkers candidates and the
validation phase, where discovered potential biomarkers
are further validated in a different cohort of samples. In
this context, biological variation would be expected to be
higher than the analytical variability and thus, it is essential
to pay particular attention to: (a) the precise definition of
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a clinical phenotype (in this sense, network-based analysis
on associations among genes, proteins, metabolites, and
environmental factors would be encouraged to increase
sensitivity and selectivity of the diagnosis) [25] and (b)
group matching in terms of sex, age, lifestyle, diet, or
pharmacological treatment, otherwise attempts may fail in
terms of disease prediction [26]. For instance, gender and
statins treatment strongly influence the findings in studies
of CVD and when individuals with normal coronary arteries
were compared with CVD patients, a >99% confidence limit
was only obtained for 6% of the predictions in the treated
groups [27]. Technical reproducibility and sampling time are
also critical to minimize external factors that will influence
the results and their clinical relevance. Ideally, snapshots
of different conditions should be taken so that they can
be quantitatively compared. If all these considerations are
kept in mind, metabolomic research can set out to identify
characteristic patterns that can be used for diagnostic
purposes and risk prediction, substituting traditional, more
expensive clinical approaches (e.g., angiography).

In principle, metabolites can be measured in several
body fluids or tissues, although plasma and urine are the
most commonly used biological matrices in cardiovascular
research due to their availability and clinical relevance as a
source of potential biomarkers. Almost all cells in the body
communicate with the plasma, either directly or through
different tissues and biological fluids, releasing at least part
of their intracellular content [28]. By contrast, urine is

produced by renal filtration of the plasma and it is widely
considered as one of the most important samples for diag-
nosis as it contains not only many plasma components but
also the catabolic products of different metabolic pathways.
Sample pretreatment varies depending on the analytical
platform chosen (see the common strategies employed in
Figure 2). Metabolites from frozen tissue samples can be
extracted and simultaneously fractionated by treating the
ground tissue with mixtures of organic solvents, such that
molecules are extracted in different fractions according to
their polarity. If a biological fluid is the starting material
(urine, serum, plasma), metabolite fractions are usually
obtained after proteins are removed by precipitation. The
crude or diluted sample can then be injected directly,
although matrix effects causing ion suppression should be
expected. If analyzed by LC-MS(/MS), it may be desirable
to preconcentrate (e.g., by lyophilisation) or fractionate the
sample prior to chromatographic separation. In case of GC-
MS(/MS), preconcentration can be performed by solid phase
microextraction (SPME) with or without head space (HS)
procedures, which are particularly useful when analysing
volatile organic compounds (VOCs). For CE analysis, the salt
content should be minimized in the sample.

In general, three complementary approaches are used for
metabolic research (see Figure 3): metabolic fingerprinting,
metabolic profiling, and metabolic footprinting [29]. In
the first case, and like proteomics strategies, an unbiased
analysis is performed that is oriented towards defining
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clinically relevant differences rather than identifying all the
molecules present in a sample [30]. Alternatively, metabolic
profiling involves a preselection of a set of metabolites, or
a specific class of compounds, that might participate in a
targeted pathway. Metabolic footprinting does not rely on
the measurement of intracellular metabolites but rather, on
monitoring those that are secreted or fail to be taken up by a
cell or tissue [31, 32]. Below, we will discuss relevant findings
from these approaches in CVD (a compilation of the main
studies is shown in Table 1).

3. Metabolic Fingerprinting in CVD

Metabolic fingerprinting does not aim to identify the
entire set of metabolites but rather to compare patterns
or fingerprints of metabolites that change in response to a
disease state, pharmacological therapies or environmental
alterations, for example. A wide variety of biological matrices
can be used for metabolic fingerprinting, such as urine,
plasma/serum, tissues/cells and saliva. This approach can be
used as a diagnostic tool to evaluate the disease state by
comparing healthy controls and disease subjects, or to assay
the success of a particular treatment (prognosis/recovery)
[33]. However, if we want to understand the mechanisms
underlying a disease, qualitative and quantitative analyses
are required. Once a differential pattern is discovered,
which provides information that can be considered as the
pathological phenotype [34], further steps to identify the
participating compounds (qualitative) and to determine the

absolute amounts of metabolites that participate in the
processes studied (quantitative) must be followed. This is
not a trivial issue and prior to embarking on the task
of discovering metabolic biomarkers, sufficiently sensitive
and selective instruments and extensive compound libraries
for metabolite identification should be available [35], while
certain expertise in data analysis and interpretation will be
necessary.

One of the few metabolomic studies in the field of
CVD involved a comparison of the metabolomic fingerprint
obtained by GC-MS of plasma samples from non-ST-
segment elevation acute coronary syndrome (NSTEACS)
patients, stable atherosclerosis patients and healthy patients
[36]. Citric acid, 4-hydroxyproline (4OH-Pro), aspartic acid
and fructose were found to decrease in NSTEACS patients,
whereas lactate, urea, glucose, and valine increased. Both
lactate and glucose are also involved in prediction of exercise-
induced ischemia in patients with suspected CAD [21]. The
decreased in 4OH-Pro was especially interesting because
circulating 4OH-Pro is thought to prevent the binding of
LDL to lipoprotein previously deposited in the vascular
wall, as well as releasing already deposited LDL from the
atherosclerotic lesions. It is also a component of collagen,
which confers stability to the atherosclerotic plaque.

The high resolution of CE-MS makes it a powerful
technique to separate and analyse charged metabolites,
although only a few metabolomic applications have been
published to date. The isolation of polypeptide fraction
from urine or plasma was analyzed by CE-MS and used
to discriminate between coronary artery disease (CAD)



Journal of Biomedicine and Biotechnology 5

Carnitines

Alcohols
Alcohols

Aldehydes

Amino acids

Carbohydrates

Aromatics

Catecholamines

Esters

Glycerols

Hydroxyacids

Ketones

Organic acids

Steroids

Sugars

Phenols

Pyrimidines

Footprinting

Fingerprinting

Metabolome as
a whole

Condition 1 Condition 2

Characteristic pattern of disease

Preselected
metabolites subset

Profiling

Quantitation

Secreted metabolites

Cholesterol

Fatty acids
Lipids

METABOLITE
CONC.

CONTROL
CONC.

PATIENT

×103

1 2 3 4 5 6

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0R
es

po
n

se
u

n
it

s

Acquisition time

Mass-to-charge (m/z)

C
ou

n
ts
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and non-CAD patients with clinical symptoms and who
had been subjected to coronary angiography [37]. The
stability of urine samples and their resistance to oxidation
or precipitation reflect the advantages of this biological
fluid for proteomic analysis. Polypeptide profiling in urine
is more reproducible than in plasma, with no significant
loss of polypeptides over time when performing consecutive
analyses over a 24-hour period, which also demonstrates
the reproducibility of the CE-MS. In total, 200 of the most
abundant polypeptides were detected and a set of 17 urinary
polypeptides permitted CAD and non-CAD patients to be
distinguished. Among them, collagen α-1 (I and III) was
augmented in CAD samples, which was corroborated by
their increased expression found in atherosclerotic plaques.
This increase points to an important role for collagen in the
development of atherosclerosis.

4. Metabolic Profiling in CVD

Metabolite profiling focuses on the analysis of a group of
metabolites related to a specific metabolic pathway [38, 39].
In this approach, target metabolites are selected beforehand
and they are assessed using specific analytical methods. Tech-
nological advances have increased the number of metabolites
that can be quantified simultaneously. Moreover, the results
of metabolic profiling are quantitatively independent of the
technology used for data acquisition [40].

Metabolite profiling has been applied to CVD in order
to identify and quantify metabolites that might serve as

new biomarkers. A metabolite profile of peripheral blood
from individuals undergoing planned myocardial infarction
(PMI) has been established [41]. Serial blood from 36
patients were obtained before and at various intervals after
PMI, and the changes in circulating levels of metabolites were
identified by mass spectrometry-based metabolite profiling.
Most alterations produced by PMI were observed in the tri-
carboxylic acid cycle, in purine and pyrimidine catabolism,
and in the pentose phosphate pathway. Indeed, 7 metabolites
were significantly affected immediately 10 minutes after the
onset of myocardial injury (P < .005): alanine, aminoisobu-
tyric acid, hypoxanthine, isoleucine/leucine, malonic acid,
threonine, and trimethylamine N-oxide (TMNO). All these
alterations were especially interesting as they were observed
before any significant rise in the clinically available biomark-
ers in plasma (CKMB and troponin T). After 60 minutes,
six new metabolites had also changed significantly (P <
.005): 1-methylhistamine, choline, inosine, serine, proline,
and xanthine, with the later being a candidate of a marker
for plaque formation in an atherosclerotic mouse model
[22]. The anatomic origin of the early metabolic changes
observed was further explored in a subgroup of 13 patients
by simultaneously comparing the metabolite levels obtained
in samples from peripheral blood and from a catheter
placed in the coronary sinus. A further 8 metabolites were
transmyocardially enriched at least 1.3-fold 10 minutes after
PMI (taurine, ribose-5-phosphate, DCMP, lactic acid, AMP,
malic acid, glutamine and glutamic acid) and once 60
minutes had passed, six additional metabolites augmented
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Table 1: Compilation of the metabolomic studies in cardiovascular field, including candidate biomarkers.

Pathology (Patients no.) Metabolite
Body

fluid/tissue
Analytical
technique

Replication Reference

NSTACS (9), stable atherosclerosis (10),
healthy (10)

4-hydroxyproline Plasma GC-MS — [36]

CAD (15), no CAD (14)
17 polypeptides (CAD pattern)
Collagen α1 (I,III)

Urine,
Plasma

CE-MS
Test set: CAD
(26), no CAD

(12)
[37]

PMI (20), control (16)
SMI (12), control (9)

Aconitic acid, hypoxanthine,
trimethylamine N-oxide, threonine

Plasma LC-MS
Validation:
PMI (16)

[41]

High-fat diet (9), common-diet (9) rats
12 altered in plasma, 8 altered in
urine (atherosclerotic rats)

Urine,
Plasma

LC-MS — [42]

Atherosclerosis (9), healthy (10)
24 altered metabolites (insulin
resistance)

Plasma
NMR,

GC-MS
— [45]

CAD (12), LVD (10), control (17)
Acetylcarnitine,
3-hydroxybutyrylcarnitine

Plasma FI-MS — [46]

Initial: CAD (174), control (174)
Replication: CAD (140), control (140)

Dicarboxyl acylcarnitines Plasma GC-MS

Event
replication:
CAD (63),

control (66)

[49]

Inducible ischemia (18), control (18) Citric acid pathway Plasma LC-MS — [52]

Persistent AF: AF (8), SR (8)
Post-operative AF: SR-AF (18), SR (19)

β-hydroxybutyrate, ketogenic
amino acids, glycine

Atrial tissue NMR — [50]

Apo E−/− mice captroil treated (8),
untreated (8)

Allantoin (drug treatment)
Xanthine, ascorbate
(plaque formation)

Urine NMR — [22]

CAD: coronary artery disease, PMI: planned myocardial infarction, SMI: spontaneous myocardial infarction, LVD: left ventricular dysfunction, FI: flow
injection, AF: atrial fibrillation, SR: sinus rhythm. Numbers in brackets correspond to number of assayed individuals (or animals if so specified).

(glycerol-3-phosphate, orotic acid, succinic acid, glycerate-
2-phosphate, taurine and malic acid).

Plasma and urine samples from atherosclerotic and
control rats have been compared by ultra fast liquid chro-
matography coupled to ion trap-time of flight (IT-TOF)
mass spectrometry (UFLC/MS-IT-TOF) [42]. Accordingly,
12 metabolites were identified as potential biomarkers in
rat plasma and 8 metabolites in rat urine. The concen-
tration of leucine, phenylalanine, tryptophan, acetylcar-
nitine, butyrylcarnitine, propionylcarnitine and spermine
decreased in plasma, and 3-O-methyl-dopa, ethyl N2-
acetyl-L-argininate, leucylproline, glucuronate, N(6)-(N-
threonylcarbonyl)-adenosine and methyl-hippuric acid were
diminished in the urine of atherosclerosis rats. Conversely,
ursodeoxycholic acid, chenodeoxycholic acid, LPC (C16:0),
LPC (C18:0) and LPC (C18:1) increased in plasma and
hippuric acid augmented in the urine from atherosclerosis
rats. The alterations to these metabolites reflected the
abnormal metabolism of phenylalanine, tryptophan, bile
acids and amino acids. Lysophosphatidylcholine (LPC) plays
an important role in inflammation and cell proliferation,
highlighting the relationship between LPC with the progress
of atherosclerosis and other inflammatory diseases.

The lipidomic profile of mice liver homogenates from
cholesterol-free, low cholesterol and high cholesterol diets
demonstrated the influence of dietary cholesterol intake
and atherosclerosis [43]. To obtain individual metabolite
fingerprints, nearly 300 metabolites were measured in plasma

samples by LC-MS/MS, including di- and tri-glycerides,
phosphatidylcholines, lysophosphatidylcholines and choles-
terol esters. When dietary cholesterol intake increased, the
liver compensated for the elevation in plasma cholesterol
by adjusting metabolic and transport processes related to
lipid metabolism, which leads to an inflammatory, pro-
atherosclerotic state. A cholesterol-free diet did not induce
early atherosclerosis, while the low cholesterol diet only
mildly induced early atherosclerosis. By contrast, intense
early atherosclerosis was induced by the high cholesterol
diet, in association with proinflammatory gene expression.
Indeed, a relationship appears to exist between choles-
terol intake (measured as cholesterol plasma levels) and
atherosclerotic lesion size.

The lipidome of cell membranes and tissues has been
studied by measuring the plasmalogens contained in rabbit
and rat myocardial nuclei by ESI-MS [44]. Plasmalogen is
an ether lipid where the first position of glycerol binds
a vinyl residue with the double bond next to the ether
bond. The second carbon has a typical ester-linked fatty
acid and the third carbon usually has a phospholipid head
group, which can protect cells against the damaging effect of
singlet oxygen. This seems to be the reason for the strong
enrichment of plasmalogens found in the membrane of
myocardial cells.

Metabolic changes associated to atherosclerosis have also
been investigated through NMR and GC-MS metabolite
profiling [45]. There are clear biochemical explanations to
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these findings, and the alterations to these metabolites,
which cause the final atherosclerotic lesion, can be related to
different disorders. For instance, insulin resistance in diabetic
patients increases the activity of transaminases, which are
critical enzymes in amino acid metabolic pathways. Hence, if
the insulin response is deficient, these amino acid pathways
will be altered, and many others metabolites will be affected
such as glutamate, ketoglutarate, succynyl-CoA, 4-OH-L-
proline (4OHPro), 2-hydroxybutyrate, creatinine, pyruvate,
oxaloacetate, malate, glycolate and 2,3,4-trihidroxybutirate.
These effects could indicate damage to tissue at the intima
artery walls.

The myocardial metabolic response has been investigated
in CAD and left ventricular dysfunction (LVD) patients, both
at baseline and following ischemia-reperfusion (I/R) [46].
Accordingly, glucose, lactate, free fatty acids, total ketones, 3-
hydroxybutyrate, pyruvate, leucine/isoleucine and glutamate
are present at lower concentrations in a preischemia state in
the coronary sinus (CS) than in arterial samples (reflecting
myocardial uptake). By contrast, the alanine concentration is
higher (reflecting release). A principal components analysis
(PCA) shows several potentially important postoperative
metabolic changes during the clinical course of the disease.
Ventricle dysfunction are associated with the global sup-
pression of metabolic fuel uptake, and limited myocardial
metabolic reserves and flexibility following global I/R stress
is associated with cardiac surgery.

Some citric acid metabolites are depressed in acute
ischemia and acute myocardial disease [47]. The citric acid
cycle plays an important role in oxidative phosphorylation
and ATP production in cardiomyocytes, and citric acid cycle
intermediates are supplied by glycolysis and β-oxidation
of fatty acids. Metabolomic profiling based on quantitative
mass spectrometry was also used to study the heritability of
premature coronary disease in 117 individuals unaffected by
CAD but with a family member affected [48]. There was
a string heritability of amino acid levels such as arginine,
ornithine, alanine, proline, leucine/isoleucine, valine, gluta-
mate/glutamine, phenylalanine and glycine, free fatty acids
such as arachidonic, palmitic, linoleic and acylcarnitines.
Hence, it was concluded that metabolic changes associated
with CAD can be inherited and they are strongly related to
age. This would indicate that metabolic processes could be
controlled genetically, implying a correlation between geno-
type and phenotype in families with CAD. More recently,
a subset of 69 metabolites was shown to have diagnostic
value, such that some derived factors showed discriminative
capability for CAD after PCA. Moreover, a signature com-
posed of dicarboxyacylcarnitines was predictive of further
cardiovascular events in those patients and most significant
differences persisted after adjustment for CAD risk factors
[49].

Metabolic changes in human atrial fibrillation (AF)
have been investigated by NMR, performing a quantitative
analysis of 24 previously selected metabolites. Significant
differences were found for beta-hydroxybutyrate, ketogenic
amino acids and glycine, all of which augmented in AF
patients when compared to control subjects, suggesting a
pathological role for ketone bodies. Metabolic profiles enable

more than 80% of patients at risk of AF at the time of
coronary artery bypass grafting to be classified, as a discor-
dant regulation of energy metabolites was found to precede
post-operative AF [50]. The effect of drug treatment on
apoE−/− mice was investigated by NMR analysis of metabo-
lites in urine, showing allantoin to act as a marker for drug
treatment, and xanthine and ascorbate as possible markers
of plaque formation (both were elevated in untreated mice)
[22].

5. Conclusion

The application of metabolic analysis to cardiovascular
diseases is an emerging field [51], and at this incipient stage
it is not possible to clearly define a metabolic picture which
is responsible for CVD prediction and progression. Further
metabolomic investigation promises to improve researchers
and clinicians knowledge of these diseases in three critical
ways. Firstly, a complete description of the metabolites
altered in a disease will better define the pathophysiology of
the disease. Secondly, metabolic profiling will enhance the
feasibility of high-throughput patient screening to diagnose
the disease state or risk evaluation [52]. Indeed, the identifi-
cation of clinically relevant changes in circulating metabo-
lites that may be considered as potential new biomarkers
will also help with the evaluation of prognosis and will
contribute to the development of new therapeutic strategies.
Thirdly, metabolite profiling will enable the effects of
pharmacological treatments to be monitored, in particular,
assessing the individual’s response to a particular drug. In
contrast to genomics, metabolomics defines dynamic states
that reflect the actual status of an organism, which requires
the control of many variables (from an individual’s status
to metabolite degradation following sample collection).
Failure to do so may lead to the production of erro-
neous results and misleading conclusions. Minimal protocol-
specific differences can produce inconsistent findings, which
must be clearly overcome prior to proposing the use of a
biomarker to the scientific community. Similarly, the results
must be confirmed in a validation cohort composed by
a different set of samples than that used in the discovery
phase. Adequate follow-up studies must corroborate earlier
predictions, and adjustment for conventional risk factors
to assess significant contribution of a discovered metabolite
to current knowledge should be included. To date, there
have been considerable efforts in improving instrumentation
(e.g., mass spectrometry) and the analytical methods suitable
to complement these approaches (e.g., based on NMR),
resulting in an expansion of the metabolites with potential
roles in the development of atherosclerosis that can be
quantified. However, further research is still needed prior
to proposing an ideal platform for metabolite analysis
that can replace conventional CVD diagnosis in clinical
practice. With the growth of public metabolite databases,
further improvements in the sensitivity and selectivity of
analytical techniques and the development and routine use
of novel platforms of demonstrated potential, novel targets
are expected to be discovered in the near future.
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Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting
great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by
the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally
altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes.
Two popular platforms in “omics” are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses,
which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the
complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative
analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some
of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex
pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss
several new applications of proteomic analysis to the investigation of mitochondrial activity.

1. Introduction

Genomic and proteomic data analyses have proven to be
essential for an understanding of the underlying factors
involved in human disease and for the discovery of diagnostic
biomarkers, as well as for the provision of further insights
into the metabolic effects mediated by signaling molecules.

All classes of biological compounds, from genes through
mRNA to proteins and metabolites, can be analyzed by
the respective “omic” approaches, namely, genomics, tran-
scriptomics, proteomics, or metabonomics. Such an “omic”
approach leads to a broader view of the complex biolog-
ical system, including the pathology of diseases. Indeed,
while the data obtained from genomics may explain the
disposition of diseases (i.e., increased risk of acquiring a

certain disease), several other mechanisms that are not
gene mediated may be involved in the onset of disease.
Moreover, a single gene can be processed to result in several
different mRNAs or proteins, which directly determine
different cellular functions. Variations in metabolite fluxes,
which may be taken as the downstream result of changes
in gene expression and protein translation, may be expected
to be amplified relative to changes in the transcriptome
and proteome. However, time-dependent measurements and
determinations of metabolite content at a single time-point
can be misleading as these fluxes vary quickly. Therefore,
while genomics/transcriptomics enables assessments of all
potential information, proteomics enables us to assess the
programs that are actually executed, and metabolomics will
mostly display the results of such executions.
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Figure 1: Categories and potential applications of proteomics and benefits of integration of proteomics and transcriptomics in the study of
complex biological systems.

In the postgenomic era, functional analysis of genes and
their products constitutes a novel and powerful approach
since the expression levels of multiple genes and proteins
can thereby be analyzed simultaneously, in both health
and disease (Figure 1). Among the techniques used in
functional genomics, both DNA microarrays [1–3] and
classical and ongoing proteomic approaches (finalized to
protein separation and identification) [4–6] hold great
promise for the study of complex biological systems and
have applications in molecular medicine. These technologies
allow high-throughput analysis as they are complementary
to each other, and they may lead to a better understanding of
the regulatory events involved in physiological, and disease,
processes. Proteins are excellent targets in disease diagnos-
tics, prognostics, and therapeutics. Consequently, proteomic
approaches (such as two-dimensional gel electrophoresis
(2D-E), two-dimensional liquid chromatography (2-DL),
and mass spectrometry (MS)), which allow the simultaneous
measurement and comparison of the expression levels of
hundreds of proteins, represent powerful tools for (a) the
discovery of novel hormone/drug targets and biomarkers and
(b) studies of cellular metabolism and protein expressions [7,
8]. Increasingly, proteomic techniques are being adopted—in
particular, to avoid the limitations inherent in the more clas-
sical approaches—to solve analytical problems and obtain a
more comprehensive identification and characterization of
molecular events associated with pathophysiological condi-
tions (Figure 1).

In this paper, we will discuss a variety of mainly
recent transcriptomic- and proteomic-based studies that
have provided a comprehensive mechanistic insight into two
very complex biological phenomena, namely, age-associated
muscle sarcopenia and thyroid-hormone signaling. More-
over, as mitochondria are severely affected during ageing and
it is generally believed that dysfunctions of mitochondria
also cause ageing and muscle sarcopenia, we will also discuss

proteomic analysis of the alterations in rat skeletal muscle
mitochondria caused by ageing.

2. Ageing Sarcopenia

Ageing, one of the most complex biological phenomena,
is a multifaceted process in which several physiological
changes occur at both the tissue and the whole-organism
level. Indeed, the age-associated decline in the healthy
functioning of multiple organs/systems leads to an increased
incidence of, and mortality from, diseases such as type II
diabetes mellitus, neurodegenerative diseases, cancer, and
cardiovascular disease [9].

One of the major engagements of gerontology is the
understanding of the complex mechanisms involved in
ageing at the molecular, cellular, and organ levels that would
facilitate our understanding of age-related diseases. Research
in this area has accelerated with the application of high-
throughput technologies such as microarrays. To judge from
such studies, several metabolic pathways are affected during
ageing, and the picture becomes even more complex when
we realize that most of them are interconnected.

Sarcopenia, the age-related decline in skeletal muscle
mass and strength, is a major complication in the elderly
[10, 11]. Since skeletal muscle represents the most abundant
tissue in the body, fiber degeneration has severe conse-
quences for posture, movement, the overall integration of
metabolism, and heat homeostasis [12]. Although various
metabolic and functional defects in ageing muscle have been
described over the last decade, senescence-related muscle
wasting is not well understood at the molecular and cellular
levels. Consequently, no effective treatment has yet been
developed to counteract age-related fiber degeneration [13].

Over the last decades, an attractive approach to the
understanding of the molecular mechanisms involved in
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Table 1: Summary of the models used and of the major findings obtained by applying microarray technologies to the study of ageing skeletal
muscle.

Authors Experimental model
Number of

analyzed genes
Identified affected pathways

Mouse

Lee et al., 1999 [25]
Studied tissue: aged skeletal
muscle.

6347 Stress response, energy metabolism.

Rat

Sreekumar et al.,
2002 [28]

12-months-old
Sprague-Dawley rats.
Studied tissue: gastrocnemius
muscle.

800
Energy metabolism, signal transduction, stress
response, glucose/lipid metabolism, and
structural/contractile function.

Altun et al., 2007
[29]

4- and 30-months-old rats.
Studied tissue: gastrocnemius
muscle.

6240
Redox homeostasis, iron load, regulation of contractile
proteins, glycolysis, and oxidative phosphorylation.

Lombardi et al.,
2009 [26]

3- and 24-months-old rats.
Studied tissue: gastrocnemius
muscle.

1176
Energy metabolism, mitochondrial pathways,
myofibrillar filaments, and detoxification.

Human

Welle et al., 2003
[23]

21–27 yr of age and 67–75 yr
of age.
Studied tissue: vastus lateralis
muscle.

44 000

Cell cycle/cell growth, inflammation, signal
transduction, protein metabolism, transcription, stress
response/DNA repair, energy metabolism, and
hormonal.

Welle et al., 2004
[19]

20–29 yr of age and 65–71 yr
of age, women.
Studied tissue: vastus lateralis
muscle.

1000 Stress response/DNA repair, energy metabolism.

Zahn et al., 2006
[21]

16 and 89 yr of age.
Studied tissue: skeletal muscle.

54 675
Electron transport chain, cell cycle/cell growth,
extracellular matrix, chloride transport, complement
activation, ribosomes.

sarcopenia has been to screen all genetic pathways at one
time, by the use of full-genome oligonucleotide chips,
as well as the entire protein complement, by the use of
using proteomic tools. These approaches, when applied
together to the multifactorial muscle-wasting pathology
observed in aged fibers, have allowed the identification of
a variety of molecular and cellular changes. These include
increased oxidative stress, mitochondrial abnormalities, dis-
turbed microcirculation, hormonal imbalance, incomplete
ion homeostasis, denervation, and impaired excitation-
contraction coupling, as well as a decreased regenerative
potential (see, Sections 2.1 and 2.2). In addition, altered
posttranslational modifications, such as tyrosine nitration,
glycosylation, and phosphorylation, were recently described
as occurring in an age-related manner in numerous skeletal
muscle proteins (see, Section 2.3).

2.1. Transcriptomic Analysis Pertaining to Ageing Skeletal
Muscle. Knowledge of differential mRNA expressions (i.e.,
the transcriptome) constitutes the first essential level of
information when studying integrated cell functions and
cell-specific gene-expression profiles. Since the development
of DNA microarray technology, it has been possible to survey
thousands of genes in parallel, thereby obtaining information
regarding transcriptional changes on a global scale. Such

an approach has been used to study the transcriptional
alterations induced by ageing both in rodent models and
in humans. Ageing-related transcriptomic studies have been
performed both on home-spotted microarrays containing
about 4000–6000 transcripts [14–16] and on commercial
Affymetrix microarrays with from 12000 [17, 18] to about
54000 [19–26] transcripts on each array.

Concerning studies on humans, the design commonly
used involved a cross-sectional comparison of young and
elderly healthy individuals, with about eight individuals
maximum per group, or an analysis of individuals across an
age-range. In these studies, several pathways were highlighted
by genes that were differentially expressed between young
(19–29 years) and elderly (65–85 years) individuals [14],
including genes involved in energy metabolism, the cell cycle,
signal transduction, and DNA repair [19–22].

Biological pathways found to be changed with age in
human skeletal muscle are listed in Table 1 and schematized
in Figure 2. They include genes involved in the mitochondrial
electron transport chain, cell cycle, and extracellular matrix.
Zahn et al. [21], by comparing the transcriptional profile
of ageing in muscle with previous transcriptional profiles of
ageing in the kidney [22] and brain [17], found a common
signature for ageing in these diverse human tissues. This
common ageing signature consists of six genetic pathways;
four display increased expression (genes in the extracellular
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Figure 2: Integrated overview of the main ageing/T3-induced transcriptomic and proteomic alterations occurring in mammalian skeletal
muscle. Schematic representation of the common events and mechanisms underlying the response of skeletal muscle to either ageing or
T3 according to data obtained from cDNA microarray/proteomic-based studies in various mammalian models of ageing and thyroid state
(mouse, rat, and human) (for details, see text and Tables 1, 2, 3, and 4).

matrix, genes involved in cell growth, genes encoding factors
involved in complement activation, and genes encoding
components of the cytosolic ribosome) and two display
decreased expression in the aged muscle. These results
indicate that those pathways, but not necessarily individual
genes, are common elements in the age-related expression
changes among different tissues [21]. This may imply that in
addition to tissue-specific effects, a common ageing signature
may be found in any tissue that reflects the age of the whole
organism. This could have major implications for human
epidemiological studies, for which frequently only blood is
available.

Transcriptomic studies have been performed in labora-
tory animals using commercially available microarrays. As
in humans, the main design used for measuring changes
related to chronological age is a comparison between young
and old individuals. These studies are usually performed
on inbred strains, and so the variation between individual
animals is smaller than among human individuals. The range
of tissues studied includes liver, heart, skeletal muscle, aorta,
and brain. Across all species, and in most experimental
designs there is an influence of gender on ageing features
and gene expressions [24]. Biological pathways found to be
changed with age in rodent (mouse and rat) skeletal muscle
are listed in Table 1.

Transcriptomic analysis of gastrocnemius muscle from
5- and 30-month-old male C57BL/6 mice revealed that

ageing resulted in a differential gene expression pattern [25].
Of the genes that increased in expression with age, 16%
were mediators of stress responses, including heat shock-
response genes, oxidative stress-inducible genes, and DNA
damage inducible genes (Table 1). Genes involved in energy
metabolism were downregulated with ageing, including
genes associated with mitochondrial function and turnover.
This suppression of metabolic activity was accompanied by
a concerted decline in the expressions of genes involved
in glycolysis, glycogen metabolism, and the glycerophos-
phate shunt (Table 1). Ageing was also characterized by the
induction of genes involved in neuronal growth and large
reductions in the expressions of biosynthetic enzymes.

We recently performed a transcriptomic study on gas-
trocnemius muscle from rats aged 3 months (young) and
24 months (old) via a DNA array [26]. Transcript levels for
genes associated with cellular damage were elevated in the
older muscle, while transcript levels for genes involved in
energy metabolism were reduced with age. Among the bio-
logical classes of transcripts significantly decreased by ageing,
there were transcription factors as well as ribosomal proteins,
indicative of a lower transcription/translation activity in
old than in young skeletal muscle (Table 1). In agreement
with previous microarray studies on the skeletal muscles
of humans and rodents [18, 25, 27], we found that ageing
is accompanied by a decline in the expressions of genes
associated with energy-metabolism functions [26] (Table 1).
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Alterations in oxidative phosphorylation were revealed by
decreased expression levels of cytochrome c oxidase, ATPase
subunit, and carbonic anhydrase III [26]. The capacity
of mitochondria to import and oxidize fatty acids would
presumably be impaired since the mRNA levels for acylCoA
synthase as well as carnitine palmitoyl transferase 1 (CPT
1β) were reduced during ageing. Downregulation of the AK1
isoform of adenylate kinase [26] points toward decreased
AMP production and hence decreased activity of AMP-
activated protein kinase (AMPK), an inducer of glucose and
fatty acid uptake and fatty acid oxidation. Gastrocnemius
muscle from the old rats revealed increased expressions of
various factors involved in muscle differentiation toward the
“slow” phenotype (type I; oxidative fibers), including p27kip
and muscle LIM protein (MLP) [26] (Table 1). As a whole,
the above data support an ageing-induced shift towards
moderate fat burning.

Ageing has been found to increase the mRNA levels of
scavengers of free radicals such as phospholipids hydroperox-
ide glutathione peroxidase and the cytosolic superoxide dis-
mutase Cu/Zn SOD (SOD1). In addition, 14-kDa ubiquitin-
conjugating enzyme E2 mRNA (a component of the complex
that adds ubiquitin to target proteins, making them capable
of destruction by the proteasome machinery) and both pro-
teasome subunit C5 and proteasome delta subunit precursor
were downregulated in aged muscle. Since the proteasome is
the major proteolytic complex responsible for the selective
degradation of oxidized proteins, these data point toward
a defective action of the proteasome. With regard to the
lysosomal pathway of protein breakdown, cathepsin L (which
acts upstream of the ubiquitin-proteasome system) was also
downregulated in aged muscle [26], once again supporting a
decline in proteolysis during ageing.

The above studies have been successful in elucidating
some of the transcriptional changes that occur with age in
muscle, as well as in other tissues, and in providing insights
about age-related changes common to animals with different
lifespans.

2.2. Proteomic Analysis Pertaining to Ageing Skeletal Muscle.
Proteomic analysis has proved valuable in informing our
understanding of the molecular mechanisms involved in the
ageing process through the identification both of changes
in protein levels and of various posttranslational modifi-
cations such as phosphorylation [30], nitration [31, 32],
and glycosylation [33] that progress with age. In order to
identify novel biomarkers of age-dependent skeletal muscle
sarcopenia, mass spectrometry-based proteomics has been
applied to the study of global muscle protein expression
patterns. Mass spectrometric peptide fingerprinting, chemi-
cal peptide sequencing, electrophoretic mobility comparison
using international 2-D gel databanks, and/or large-scale
immunoblot analysis are among the most frequently utilized
techniques.

Over the last years, several proteomic studies have
catalogued the accessible skeletal muscle protein comple-
ment from various species and also investigated changes in
protein expression levels in the sarcopenia of old age. The

data obtained so far have furnished databanks that form
an important prerequisite for future large-scale proteomic
investigations into muscle ageing.

Table 2 lists proteomic studies on age-related changes
in skeletal muscle in rodent and human models of ageing.
Although the lists of individual proteins found to be affected
by the ageing process differ considerably between individual
proteomic surveys, the main trend of the altered proteins
involved in energy metabolism, cellular signaling, the stress
response, cytoskeleton, and contraction shows agreement
among the various studies. Gelfi et al. [34] performed a
quantitative differential analysis of muscle protein expression
in elderly and young subjects using a 2-D DIGE approach.
The main difference observed in the elderly group included
downregulation of regulatory myosin light chains, partic-
ularly the phosphorylated isoforms, a higher proportion
of myosin heavy chain isoforms 1 and 2A, and enhanced
oxidative and reduced glycolytic capacities.

Proteomic profiling of rodent muscle during ageing
has been performed in several studies, resulting in the
identification of a large cohort of sarcopenic biomarkers (for
a schema, see Figure 2).

Age-dependent differential regulation in rodent muscle
has been identified for several glycolytic and mitochondrial
enzymes, which are important for energy metabolism. The
glycolytic enzymes triosephosphate isomerase, glyoxalase I,
and β-enolase were downregulated in aged muscle. Other
features indicating perturbation of energy metabolism were
downregulation of creatine kinase, of pyruvate kinase, and
of the NADH-shuttle glycerol 3-phosphate dehydrogenase.
At the mitochondrial level, key enzymes such as isocitrate
dehydrogenase, cytochrome c oxidase, ATP synthase β
subunit, and pyruvate dehydrogenase were all decreased in
ageing muscle whereas there was an upregulation of aldehyde
dehydrogenase [26, 29, 35–38].

Differential proteomic analyses have revealed that ageing
is associated with perturbations of the myofibrillar net-
work [26, 29, 35–38]. Notably, there is a downregulation
of several isoforms of myosin long chain and of alpha-
actin, as well as a differential expression of their major
regulators. In contrast to the downregulation of myofibrillar
components, old muscles display upregulation of many
proteins of the intermediate filament, microtubules and
microfilament cytoskeleton, among which are B-tubulin,
desmin, and gelsolin. This suggests a mechanism affecting
the cytoskeleton that compensates for perturbations in
myofibrillar structure and so prevents extensive damage
to the myofibers. Muscle ageing is also associated with
the differential expression of enzymes implicated in the
detoxification of cytotoxic products. The cytoplasmic Cu/Zn
superoxide dismutase (SOD1) and H ferritin isoform, as well
as the levels of glutathione transferase and mitochondrial
aldehyde dehydrogenase, were found to be increased in older
rats, while evidence of age-associated protein misfolding
was provided by the upregulation of molecular chaperones
(including HSP 27 and disulfide isomerase ER60) [26, 29,
35–38].

Most of the proteins identified by differential proteomics
were previously unrecognized in ageing skeletal muscle.



6 Journal of Biomedicine and Biotechnology

T
a

bl
e

2:
Su

m
m

ar
y

of
th

e
m

od
el

s
u

se
d

an
d

of
th

e
m

aj
or

fi
n

di
n

gs
ob

ta
in

ed
by

ap
pl

yi
n

g
pr

ot
eo

m
ic

ap
pr

oa
ch

es
to

th
e

st
u

dy
of

th
e

ag
ei

n
g

sk
el

et
al

m
u

sc
le

.

A
u

th
or

s
E

xp
er

im
en

ta
lm

od
el

P
ro

te
om

ic
an

al
ys

is
Id

en
ti

fi
ed

aff
ec

te
d

pa
th

w
ay

s
an

d
m

aj
or

fi
n

di
n

gs

M
ou

se

C
h

an
g

et
al

.,
20

03
[3

9]
18

-m
on

th
s-

ol
d

C
57

B
16

m
ic

e.
St

u
di

ed
ti

ss
u

e:
sk

el
et

al
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

p
ol

ya
cr

ila
m

id
e

ge
le

le
ct

ro
ph

or
es

is
.

R
ep

ro
du

ci
bi

lit
y

of
th

e
2-

D
PA

G
E

sy
st

em
.

R
at

s

C
ai

et
al

.,
20

00
[3

5]
12

-,
18

-,
an

d
24

-m
on

th
s-

ol
d

ra
ts

.
St

u
di

ed
ti

ss
u

e:
ex

te
n

so
r

di
gi

to
ru

m
lo

n
gu

s
m

u
sc

le
an

d
so

le
u

s
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

ge
le

le
ct

ro
ph

or
es

is
.

A
n

al
ys

is
of

aq
u

eo
u

s
pr

ot
ei

n
s

of
sk

el
et

al
m

u
sc

le
du

ri
n

g
ag

in
g.

C
ai

et
al

.,
20

01
[4

0]
8-

,1
8-

,a
n

d
24

-m
on

th
s-

ol
d

ra
ts

.
St

u
di

ed
ti

ss
u

e:
ex

te
n

so
r

di
gi

to
ru

m
lo

n
gu

s
m

u
sc

le
an

d
so

le
u

s
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

ge
le

le
ct

ro
ph

or
es

is
.

A
n

al
ys

is
of

pa
rv

al
bu

m
in

ex
pr

es
si

on
in

ra
t

sk
el

et
al

m
u

sc
le

s.

K
an

sk
ie

t
al

.,
20

03
[3

1]

4-
an

d
-2

4
m

on
th

s
ol

d
Fi

sh
er

34
4

ra
ts

an
d

-6
an

d
-3

4
m

on
th

s
ol

d
Fi

sh
er

34
4/

B
N

F1
ra

ts
.

St
u

di
ed

ti
ss

u
e:

sk
el

et
al

m
u

sc
le

.

2-
D

ge
le

le
ct

ro
ph

or
es

is
,W

es
te

rn
bl

ot
an

al
ys

is
,

M
A

LD
I-

T
O

F
M

S
an

d
E

SI
-M

S/
M

S
an

al
ys

is
.

A
ge

-d
ep

en
de

n
t

n
it

ra
ti

on
in

m
u

sc
le

en
er

gy
m

et
ab

ol
is

m
.

P
ie

c
et

al
.,

20
05

[3
6]

7-
,1

8-
an

d
30

-m
on

th
s-

ol
d

LO
U

/c
/j

al
lr

at
s.

St
u

di
ed

ti
ss

u
e:

ga
st

ro
cn

em
iu

s
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

ge
le

le
ct

ro
ph

or
es

is
,M

A
LD

I-
To

F
M

S
an

al
ys

es
,a

n
d

im
m

u
n

ob
lo

tt
in

g.

M
yo

fi
br

ill
ar

re
gu

la
to

ry
pr

ot
ei

n
s,

si
gn

al
tr

an
sd

u
ct

io
n

,c
yt

os
ol

ic
an

d
m

it
oc

h
on

dr
ia

le
n

er
gy

m
et

ab
ol

is
m

s,
ox

id
at

iv
e

st
re

ss
,d

et
ox

ifi
ca

ti
on

,
an

d
R

N
A

m
et

ab
ol

is
m

.

K
an

sk
ie

t
al

.,
20

05
[3

2]
34

-m
on

th
s-

ol
d

Fi
sh

er
34

4/
B

ro
w

n
N

or
w

ay
F1

hy
br

id
ra

ts
.

St
u

di
ed

ti
ss

u
e:

sk
el

et
al

m
u

sc
le

.

2-
D

ge
le

le
ct

ro
ph

or
es

is
,W

es
te

rn
B

lo
t

an
al

ys
is

,
M

A
LD

I-
T

O
F

an
d

N
SI

-M
S/

M
S

an
al

ys
is

.
P

ro
te

om
ic

an
al

ys
is

of
pr

ot
ei

n
n

it
ra

ti
on

.

D
en

ch
er

et
al

.,
20

06
[4

1]
St

u
di

ed
ti

ss
u

e:
sk

el
et

al
m

u
sc

le
.

B
lu

e-
n

at
iv

e/
co

lo
rl

es
s-

n
at

iv
e

ge
le

le
ct

ro
ph

or
es

is
,

2D
-S

D
S-

PA
G

E
an

d
M

A
L

D
I

M
S.

C
el

lu
la

r
dy

sf
u

n
ct

io
n

,a
ge

in
g,

an
d

ce
llu

la
r

de
at

h
.

O
’C

on
n

el
le

t
al

.,
20

07
[3

7]
3-

an
d

30
-m

on
th

s-
ol

d
ra

t.
St

u
di

ed
ti

ss
u

e:
ga

st
ro

cn
em

iu
s

m
u

sc
le

Tw
o-

di
m

en
si

on
al

ge
le

le
ct

ro
ph

or
es

is
,M

A
LD

I-
To

F,
D

A
LT

-T
w

el
ve

ge
le

le
ct

ro
ph

or
et

ic
se

pa
ra

ti
on

sy
st

em
,2

-D
im

m
u

n
ob

lo
tt

in
g.

P
ro

te
om

ic
pr

ofi
lin

g
of

se
n

es
ce

n
t

fi
br

es
:s

tr
es

s
re

sp
on

se
,c

on
tr

ac
ti

le
ap

pa
ra

tu
s,

an
d

m
et

ab
ol

ic
re

gu
la

ti
on

.

A
lt

u
n

et
al

.,
20

07
[2

9]
4-

an
d

30
-m

on
th

s
ol

d
ra

ts
.

St
u

di
ed

ti
ss

u
e:

ga
st

ro
cn

em
iu

s
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

ge
le

le
ct

ro
ph

or
es

is
,M

A
LD

I-
To

F/
To

F,
M

A
LD

I-
M

S/
M

S,
E

SI
-L

C
-M

S/
M

S
an

d
W

es
te

rn
B

lo
t

an
al

ys
is

.

R
ed

ox
h

om
eo

st
as

is
,i

ro
n

lo
ad

,r
eg

u
la

ti
on

of
co

n
tr

ac
ti

le
pr

ot
ei

n
s,

gl
yc

ol
is

is
,a

n
d

ox
id

at
iv

e
ph

os
ph

or
yl

at
io

n
.

O
’C

on
n

el
le

t
al

.,
20

08
[3

3]
3-

an
d

30
-m

on
th

s
ol

d
ra

ts
.

St
u

di
ed

ti
ss

u
e:

ga
st

ro
cn

em
iu

s
m

u
sc

le
Tw

o-
di

m
en

si
on

al
ge

le
le

ct
ro

ph
or

es
is

,M
A

LD
I-

To
F

M
S

an
al

ys
is

.
P

ro
te

om
ic

pr
ofi

lin
g

of
se

n
es

ce
n

t
fi

be
rs

.

G
an

n
on

et
al

.,
20

08
[3

0]
3-

an
d

-3
0-

m
on

th
s

ol
d

ra
ts

.
St

u
di

ed
ti

ss
u

e:
ga

st
ro

cn
em

iu
s

m
u

sc
le

.
Tw

o-
di

m
en

si
on

al
ge

le
le

ct
ro

ph
or

es
is

,M
A

LD
I-

To
F

M
S

an
al

ys
is

.
P

h
os

ph
op

ro
te

om
ic

an
al

ys
is

of
ag

ed
sk

el
et

al
m

u
sc

le
.

Fe
n

g
et

al
.,

20
08

[4
2]

12
-

an
d

26
-m

on
th

s-
ol

d
Fi

sc
h

er
34

4
ra

ts
.

St
u

di
ed

ti
ss

u
e:

so
le

u
s,

se
m

im
em

br
an

os
u

s,
pl

an
ta

ri
s,

ex
te

n
so

r
di

gi
to

ru
m

lo
n

gu
s,

an
d

ti
bi

al
is

an
te

ri
or

m
u

sc
le

s.

SD
S-

po
ly

ac
ry

la
m

id
e

ge
le

le
ct

ro
ph

or
es

is
,μ

LC
-E

SI
M

S/
M

S
an

al
ys

is
an

d
In

ge
n

u
it

y
Sy

st
em

s
A

n
al

ys
is

.
C

ar
bo

ny
lm

od
ifi

ca
ti

on
s,

ce
llu

la
r

fu
n

ct
io

n
an

d
m

ai
n

te
n

an
ce

,f
at

ty
ac

id
m

et
ab

ol
is

m
,a

n
d

ci
tr

at
e

cy
cl

e.

L
om

ba
rd

ie
t

al
.,

20
09

[2
6]

3-
an

d
24

-m
on

th
s-

ol
d

ra
ts

.
St

u
di

ed
ti

ss
u

e:
ga

st
ro

cn
em

iu
s

m
u

sc
le

.
Tw

o-
di

m
en

si
on

al
ge

le
le

ct
ro

ph
or

es
is

,B
lu

e-
N

at
iv

e
PA

G
E

,a
n

d
M

A
LD

I-
To

F
M

S
an

al
ys

is
.

E
n

er
gy

m
et

ab
ol

is
m

,m
it

oc
h

on
dr

ia
lp

at
hw

ay
s,

m
yo

fi
br

ill
ar

fi
la

m
en

ts
,

an
d

de
to

xi
fi

ca
ti

on
.

H
u

m
an

C
ob

on
et

al
.,

20
02

[4
3]

56
–7

9
yr

of
ag

e.
St

u
di

ed
ti

ss
u

e:
va

st
u

s
la

te
ra

lis
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

po
ly

ac
ri

la
m

id
e

ge
le

le
ct

ro
ph

or
es

is
an

d
M

A
L

D
I-

T
O

F
M

S.
H

u
m

an
ag

ed
sk

el
et

al
m

u
sc

le
pr

ot
ei

n
pr

ofi
le

.

G
el

fi
et

al
.,

20
06

[3
4]

E
ld

er
ly

an
d

yo
u

n
g

su
bj

ec
ts

.
St

u
di

ed
ti

ss
u

e:
va

st
u

s
la

te
ra

lis
m

u
sc

le
.

Tw
o-

di
m

en
si

on
al

di
ff

er
en

ce
ge

le
le

ct
ro

ph
or

es
is

,
SD

S-
PA

G
E

an
d

E
SI

-M
S/

M
S.

E
ld

er
ly

gr
ou

p:
do

w
n

re
gu

la
ti

on
of

re
gu

la
to

ry
m

yo
si

n
lig

h
t

ch
ai

n
s,

(p
h

os
ph

or
yl

at
ed

is
of

or
m

s)
,h

ig
h

er
pr

op
or

ti
on

of
m

yo
si

n
h

ea
vy

ch
ai

n
is

of
or

m
s

1
an

d
2A

,a
n

d
en

h
an

ce
d

ox
id

at
iv

e
an

d
re

du
ce

d
gl

yc
ol

yt
ic

ca
pa

ci
ty

.



Journal of Biomedicine and Biotechnology 7

Their identification has not only provided further insight
into the potential mechanisms of ageing, but may lead to the
development of biomarkers of sarcopenia [26, 29, 35–38].

2.3. Proteomic Analysis Pertaining to Ageing Skeletal Muscle:
Analyses of Protein Phosphorylation, Nitration, and Glycosyla-
tion. Since posttranslational modifications are key modula-
tors of protein structure, function, signaling, and regulation,
various subdisciplines of proteomics have emerged that
focus on the cataloguing and functional characterization
of proteins with extensively modified side chains [57]. In
aged skeletal muscle, proteins undergo considerable changes
in their posttranslational modifications [58]. These include,
among others, phosphorylation, nitration, and glycosylation.
Phosphorylation represents one of the most frequent peptide
modifications [59], and abnormal phosphorylation is associ-
ated with various pathologies. A recent phosphoproteomic
survey of aged muscle detected increased phosphorylation
levels for myosin light chain 2, tropomyosin α, lactate
dehydrogenase, desmin, actin, albumin, and aconitase [30].
In contrast, decreased phospho-specific dye binding was
observed for cytochrome c oxidase, creatine kinase, and
enolase. Thus, ageing-induced alterations in phosphopro-
teins appear to involve the contractile machinery and
the cytoskeleton, as well as cytosolic and mitochondrial
metabolism.

The nitration of protein tyrosine residues represents
an oxidative and important posttranslational modification
occurring under nitrative/oxidative stress during biological
ageing. Comprehensive proteomic studies have identified an
age-related increase in the nitration of numerous skeletal
muscle proteins. These include enolase, aldolase, creatine
kinase, tropomyosin, glyceraldehyde-3-phosphate dehydro-
genase, myosin light chain, pyruvate kinase, actinin, actin,
and the ryanodine receptor [31, 32]. The nitration of these
essential muscle proteins may therefore be a significant
causative factor in the age-related decline in muscle strength
[31, 32].

Glycosylation is one of the most frequent posttransla-
tional modifications found in proteins, and it plays a central
role in cellular mechanisms in both health and disease [60].
Oligosaccharide attachment represents a common protein
modification that influences the folding of the nascent
peptide chain and the stability of glycoproteins, modi-
fies enzymatic activity, controls protein-secretion events,
presents critical information about the cellular targeting of a
newly synthesized protein, and provides specific recognition
motifs for other proteins in cell-cell interactions [61]. The
identified muscle components belong mostly to the family
of metabolic enzymes. They included glycolytic enzymes,
such as pyruvate kinase, enolase, phosphoglycerate kinase,
aldolase, glyceraldehyde-3-phosphate dehydrogenase, and
phosphoglycerate-mutase, aconitase, carbonic anhydrase,
and creatine kinase [33].

These data confirm that the sarcopenia of old age repre-
sents a complex neuromuscular pathology that is associated
with drastic changes not only in the abundance, but also in
the structure of key muscle proteins (Figure 2).

2.4. Proteomic Analysis Pertaining to Ageing Skeletal Muscle
Mitochondria. Analysis of the protein profile of mitochon-
dria, and of the changes in it that occur with age, represents
a promising approach to the unraveling of the mechanisms
involved in ageing. Although the role of mitochondria
was long thought to be restricted to an influence on
fuel metabolism, the importance of the activity of these
organelles has recently been extended to the regulation
of developmental/ageing processes [62]. Mitochondria have
their own genome (mt-DNA) and specific mechanisms for
replication, transcription, and protein synthesis. However, in
terms of protein composition they are “hybrid” organelles
resulting from the coordinated expression of the nuclear
and their own genome. A bidirectional flow of informa-
tion allows the two kinds of subcellular compartments
to communicate with each other under the control of
metabolic signals and several signal-transduction pathways
that function across the cell. These pathways are differentially
regulated by environmental and developmental signals, and
under patho/physiological conditions, they allow tissues to
adjust their energy production according to different energy
demands possibly modulating/altering the mitochondrial
phenotype. It is now beyond doubt that mitochondria are
severely affected by ageing, and it is generally believed that
dysfunctions of mitochondria trigger key steps in the ageing
process [62].

Mitochondrial proteomes (mitoproteomes) are currently
under vigorous investigation by way of both structural
and comparative proteomics. In particular, we would like
to emphasize the value of comparative proteomics as a
tool capable of providing us with valuable information on
mitochondrial physiology and on the role of these organelles
in ageing muscle. First, mitochondria can be highly purified,
leading to simplified 2D gels, which greatly facilitates the
analysis and detection of less-abundant proteins. Second,
mitochondrial proteins are generally distributed across wide
ranges of both pH and molecular mass on 2D gels,
leading to accurate protein resolution with only a few
protein-spot overlaps. Third, most of the mitochondrial
membrane-protein complexes exhibit soluble subunits that
can be analyzed on 2D gels even though the hydrophobic
subunits aggregate. Various detection methods are already
available that allow us to monitor quantitative changes in
the proteome. Of these, 2-DE-based methods appear quite
promising, with isoelectric focusing (IEF), BN-SDS, and
benzyldimethyl-nhexadecylammonium chloride (16-BAC)-
PAGE at the forefront. However, application of IEF is
restricted to proteins that are not highly hydrophobic or
have no extreme isoelectric points. Indeed, by the use
of classical 2D-E it is difficult to detect very acidic or
very basic proteins or to distinguish small changes in the
expressions of weakly expressed proteins. On the other
hand, BN-SDS-PAGE deals efficiently with even hydropho-
bic membrane proteins, although some compromises in
resolution have to be made [63]. Another advantage of
the BN-PAGE system is the conservation of protein-
protein interactions, enabling simultaneous elucidation of
multimeric and multiprotein assemblies of soluble and
membrane proteins [64]. Such a procedure might be a
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viable alternative to other methods, such as yeast two-
hybridization.

Comparative transcriptomic and proteomic studies have
been initiated to determine global changes in mitochondria
from young versus aged skeletal muscle [26, 39, 41, 62,
65–68]. Native-difference gel electrophoresis (DIGE) is an
approach that facilitates sensitive quantitative assessment
of changes in membrane and soluble proteins. Recently,
O’Connell et al. [68] analyzed the mitochondria-rich frac-
tion from aged rat skeletal muscle by DIGE. This pro-
teomic analysis showed a clear age-related increase in key
mitochondrial proteins, such as NADH dehydrogenase, the
mitochondrial inner membrane protein mitofilin, peroxire-
doxin isoform PRX-III, ATPase synthase, succinate dehy-
drogenase, mitochondrial fission protein Fis1, succinate-
coenzyme A ligase, acyl-coenzyme A dehydrogenase, porin
isoform VDAC2, ubiquinol-cytochrome c reductase core I
protein, and prohibitin [68].

To gain deeper insights both into ageing mechanisms and
into the resulting mitoproteome alterations, mitochondria
have been studied by the blue-native gel approach, both
with respect to protein abundance and the supramolecular
organization of OXPHOS complexes [26].

The profiles obtained for muscle crude mitochon-
dria from young and old rats—after detergent extrac-
tion with either dodecylmaltoside or digitonin, and sub-
sequent BN-PAGE—have been reported by us within
the past years [26]. The use of dodecylmaltoside allows
individual resolution of the respiratory complexes. Our
densitometric analysis revealed that gastrocnemius muscle
mitochondria from old rats, versus those from young
rats, contained significantly lower amounts of complex
I (NADH:ubiquinone oxidoreductase), V (FoF1-ATP syn-
thase), and III (ubiquinol:cytochrome c oxidoreductase)
(−35%, −40%, −25%, resp.). The same mitochondria, on
the other hand, contained a significantly larger amount of
complex II (succinate: ubiquinone oxidoreductase) (+25%)
and an unchanged amount of complex IV (cytochrome c
oxidase, COX). The use of a combination of BN-PAGE and
catalytic staining allowed us to detect reduced activity of all
the complexes in ageing muscle. The observed reductions
in the activities of respiratory complexes I, III, and V
reflected lower protein levels, but the reduction in complex
II activity was associated with an increase in the amount
of the same complex. To elucidate whether the ageing
process also alters the functional/structural organization of
the respiratory chain in terms of the assembly of supercom-
plexes, mitochondria were extracted using the mild detergent
digitonin since this extensively retains inner mitochondrial
membrane supercomplexes [69]. In both young and old
mitochondria, monomeric complex I and dimeric complex
III were significantly reduced versus dodecylmaltoside sol-
ubilization. However, the missing amounts were found to
be assembled in two major supercomplexes, a and b, and
two minor ones, c and d, all within the molecular mass
range of 1500–2100 kDA. The supercomplex profile of the
older rats was significantly modified, band a being less
represented in the profile than the heavier supercomplexes,
such as bands c and d. A significant increase was detected in

the supramolecular assembly of respiratory chain complexes
into respirosomes (each one being formed by complex I
assembled with a dimeric complex III and a variable copy
number of complex IV, represented by bands c and d).
Possibly, this could be a compensatory mechanism that,
in ageing muscle, is functionally directed towards substrate
channeling and catalytic enhancement advantaging. Indeed,
mitochondrial oxidative phosphorylation seems to be more
efficient in aged than in young skeletal muscle, since old
rats exhibited an increased respiratory control ratio that was
attributed principally to a reduction in the reactions able to
dissipate the proton motive force not associated with ATP
synthesis. This could be interpreted as a compensation for
the reduced level and activity of F1F0-ATP synthase.

The above data point up the ability of skeletal muscle to
face the consequences of ageing in a metabolically economic
way and highlight the occurrence of structural and metabolic
adaptations. A comparison between these two studies [26,
68] each employing different proteomic approaches leads
to the conclusion that beyond the expression/abundance
changes in proteins, an insight can be obtained about the
structural and functional heterogeneity in a given mitopro-
teome.

Another possible protein modification in skeletal muscle
mitochondria, possibly contributing to its functional decline
with age, is carbonylation, which can be considered an
oxidative modification that may render a protein more prone
to degradation. Feng et al. [42] recently identified mito-
chondrial proteins that were susceptible to carbonylation
in a manner that was dependent on muscle type (slow-
versus fast-twitch) and on age. Carbonylated mitochondrial
proteins were more abundant in fast-twitch than in slow-
twitch muscle. Twenty-two proteins displayed significant
changes in carbonylation state with age, the majority of
these increasing in their amount of carbonylation. Ingenuity
pathway analysis revealed that these proteins belong to
various functional classes and pathways, including cellular
function and maintenance, fatty acid metabolism, and the
citrate cycle. This study [42] provides a unique catalogue
of promising protein targets deserving further investigation
because of their potential role in the decline exhibited by
ageing muscle. Since carbonylation is not repairable, this
modification may, however, be of special importance in
directing the affected protein to the path toward degradation.

Of note, in view of the importance of the functional
mitochondrial membrane compartmentalization, together
with proteomic approaches, lipidomic ones would be desir-
able to gain further insight into the understanding of the
modification of lipids either as membrane components or
energy store following aging processes.

3. Thyroid Hormones and Thyroid States

Thyroid hormones [THs; 3,5,3′,5′-tetraiodo-L-thyronine,
otherwise known as thyroxine (T4), and 3,5,3′-triiodo-L-
thyronine (T3)] are essential for the regulation both of
energy metabolism and of development and growth in all
vertebrates. In humans, the early developmental role of THs
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is vividly illustrated by the distinctive clinical features of
cretinism, as observed in iodine-deficient areas. In adults,
the primary effects of THs are manifested by alterations
in metabolism. Even subclinical hyper- and hypothyroidism
can have important consequences, such as atherosclerosis,
obesity, and alterations in bone mineral density and heart
rate [70, 71]. The effects induced by THs in the regulation
of metabolism include changes in oxygen consumption and
in protein, carbohydrate, lipid, and vitamin metabolism.
Hyperthyroidism is associated with an increase (calorigenic
effect), while hypothyroidism is associated with a decrease in
metabolic rate. Of particular note, is that the number and the
complexity of the clinical features of hyperthyroidism and
hypothyroidism emphasize the pleiotropic effects of THs on
many different pathways and target organs. Although great
efforts have been made to elucidate the signaling pathways
underlying the physiopathological effects of thyroid hor-
mones, the network of factors and cellular events involved, as
well as the possible role of derivatives of THs, is complicated
and incompletely understood, as is the ultimate effect of THs
on tissue transcriptomes and proteomes.

3.1. The Complexity of Action of Thyroid Hormones: An
Overview. Most thyroid-related, direct genomic actions
leading to protein changes appear to be attributable to T3.
The mechanism of action that has gained general acceptance
for this iodothyronine involves the binding of specific nuclear
receptors (TRs) to thyroid hormone response elements
(TREs) in target genes [72]. Within the nucleus, TRs dimers
(hetero- or homodimers) bind to TREs and modulate gene
activity by either silencing or activating transcription by
recruitment of either corepressor or coactivator complexes,
depending on the absence or presence of thyroid hormone
[73–78]. In mammals, two genes encoding TRs have been
characterized, c-erb Aα and c-erb Aβ [79–81], and these
encode several proteins (α and β isoforms) with different
binding properties and patterns of tissue expression. For
example, c-Erb Aβ1 is expressed across a wide range of
tissues, while c-ErbAβ2 is found almost exclusively in the
pituitary, where it inhibits thyrotrophin (TSH) α- and β-
subunit gene transcription [82] by binding to negative TREs
present on these genes [83, 84]. New information on the
mechanisms of action of THs have been obtained from TR
gene knockout (KO) and knock-in studies [85].

In terms of cellular effects, theories proposed so far to
explain the actions of THs on metabolic rate also include
mechanisms such as: uncoupling of oxidative phosphoryla-
tion, stimulation of energy expenditure by activation of Na+-
K+ ATPase activity, and direct modulation by THs of trans-
porters and enzymes located within the plasma membrane
and mitochondria [86–89]. Moreover, T3-mediated nuclear
gene expression leads in turn to coordinated and synergistic
effects on the mitochondrial genome [90]. Actually, it
has been postulated that T3’s actions on this genome are
achieved through both an induction of nuclear-encoded
mitochondrial factors and a direct binding of T3 to specific
ligand-dependent mitochondrial transcription factors [90–
94]. These last are nuclear-receptor homologs and are

thought to act on a number of mt-DNA response elements
[95]. Indeed, T3 directly regulates the mitochondrial genes
encoding ATPase subunit six [96], NADH dehydrogenase
subunit three [97], and subunits of cytochrome-c-oxidase
[98].

The complexity of action of T3 is broadened by the
existence of nongenomic or TRE-independent actions, which
have been extensively described and are now accepted [99].
Importantly, these can be either independent or dependent
on the binding of T3 to TRs. They occur rapidly and
are unaffected by inhibitors of transcription and protein
synthesis [90, 93, 100–102]. Nongenomic actions of thyroid
hormones have been described at the plasma membrane,
in the cytoplasm, and within cellular organelles ([100] and
references therein). These actions include modulations of
Na+, K+, Ca2+, and glucose transport, activations of PKC,
PKA, and ERK/MAPK, and regulation of phospholipid
metabolism via activations of PLC and PLD [103], and they
can be independent of the presence of nuclear TRs and
mediated even by TH analogs [102]. For example, it has
recently been shown that cytosolic TRβ can interact with the
p85 subunit of PI3K and thereby activate the PI3K-Akt/PKB
signaling cascade [99, 104]. Moreover, it has been shown that
THs activate the MAPK cascade and stimulate angiogenesis
via their binding to integrin α Vβ 3 [100]. Importantly, it
appears now to be well established that an interplay exists
between the genomic and nongenomic actions when gene
expression is regulated by the TR-T3 complex and the activity
of the enzyme is modulated by a nongenomic process [100].

3.2. Transcriptomic Analysis Pertaining to the Actions of
Thyroid Hormones. Although the molecular actions of THs
have been thoroughly studied, their pleiotropic effects are
not well understood and appear to be mediated by complex
changes in the expressions of numerous, but still largely
unknown, target genes in various tissues. DNA microarrays
have been successfully used to identify T3-target genes in
mouse, rat, and human tissues, cell lines, and tumors.
Actually, pioneering systematic studies in the search for T3-
target genes were performed by Seelig and coworkers as long
ago as 1981 [105].

Feng et al. [44] first applied cDNA-microarray technol-
ogy to the study of the in vivo T3 regulation of hepatic
genes in the mouse. They identified new T3-target genes, the
majority of which had not previously been reported to be
regulated by the hormone. Surprisingly, many of these target
genes were negatively regulated. The identity of the genes
indicated that multiple cellular pathways are actually affected
by T3, including glycogenolysis, gluconeogenesis, lipoge-
nesis, cell proliferation, apoptosis, the action of insulin,
immunogenicity, and protein glycosylation.

Weitzel et al. [49] detected novel T3-target genes and
identified two T3-mediated gene-expression patterns after
the administration of T3 to hypothyroid rats. In line with
the long-known observation that T3 has profound influ-
ences over mitochondrial biogenesis and metabolic balance,
the authors reported that numerous genes implicated in
metabolic pathways (ANT2, apolipoprotein AIV, HMG-CoA
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synthase, and ATP synthase β subunit) are affected by T3,
as also are genes associated with a wide variety of cellular
pathways (encompassing translation, protein turnover, cell
structure, and apoptosis-associated proteins). These obser-
vations gave support to the idea that alongside the “classical”
pathway of T3-mediated gene regulation (involving thyroid
hormone-receptor binding to TREs), there appears to be an
additional pathway mediated by transcription factors (such
as NRF-1 and PPARγ) and coactivators (such as the PGC-1
family of coactivators).

Flores-Morales et al. [45] verified the effect of T3 on
liver in mice with a targeted mutation in the TRβ gene. In
accordance with the results of Weitzel [49], they reported that
T3 regulates the expressions of functionally different sets of
genes in temporally distinct ways. Importantly, using TRβ−/−

animals they also defined a number of T3-responsive genes
that are dependent on TRβ in vivo, thereby opening the way
for the use of similar experimental strategies to identify the
contributions made by specific transcription factors to the in
vivo actions of multiple hormones and trophic factors.

Miller et al. [50] identified genes involved in glucose
metabolism, biosynthesis, transcriptional regulation, protein
degradation, and detoxification that were associated with T3-
induced cell proliferation. Of particular significance were
the findings that T3 rapidly suppresses the expressions of
key regulators of the Wnt signaling pathway and that it
suppresses the transcriptional downstream elements of the
β-catenin-T-cell factor complex.

With the aim of defining the molecular basis of the
target-tissue phenotype related to the hereditary TRβ muta-
tions causing resistance to thyroid hormone (RTH), Miller et
al. [46] showed that in T3-target tissues such as cerebellum,
heart, and WAT in animal models of both RTH and hyper-
thyroidism, T3 acts primarily to suppress gene expression,
and that TRβ has a greater modulating effect in the heart than
originally thought. Moreover, their comprehensive multi-
tissue gene-expression analysis uncovered complex multiple
signaling pathways mediating the molecular actions of TRβ
mutants in vivo. It also revealed some T3-independent,
but mutant-dependent, genomic responses contributing to
those “changes-of-function” present in TRβ mutants that are
linked to the pathogenesis of RTH.

Dong et al. [48] studied the molecular mechanisms
involved in the responses shown by developing mice
to disruptions in maternal thyroid-hormone homeostasis.
Among differentially expressed genes, Nr4a1 (nuclear recep-
tor subfamily 4, group A, member 1), was upregulated by 3-
fold in the hypothyroid juvenile mouse liver, while treatment
of HepG2 cells with T3 resulted in its downregulation.
A potential thyroid response element −1218 to −1188 bp
upstream of the promoter region of Nr4a1 was identified and
demonstrated to bind TRα and TRβ receptors.

Notably, in recent years microarray approaches have been
used to characterize the effects of T3 on gene expression
profiles in the postnatal developing brain as well as in the
adult mouse/rat brain [106–108].

The effects of THs on gene expression profiles have been
studied less intensively in human tissues than in animal
above all because of the poor availability and accessibility

of tissue. However, both in vitro [51, 52] and in vivo [53,
109] studies have been performed. Viguerie et al. [51], who
showed that T3 regulates a large repertoire of genes in
human adipocytes, provided support for the effect of T3 on
catecholamine-induced lipolysis, and suggested downregu-
lation of SREBP1c as a link between hyperthyroidism and
insulin resistance. Moreover, in accordance with other array
studies, the data showed that thyroid hormone can affect
cellular processes such as signal transduction, apoptosis,
and inflammatory responses. Moeller et al. [52] identified
91 T3-upregulated and 5 T3-downregulated genes in skin
fibroblasts from normal humans. Some of these genes were
not previously known to be induced by T3, namely aldo-
keto reductase family 1 C1-3, collagen type VI alpha 3,
member RAS oncogene family brain antigen RAB3B, platelet
phosphofructokinase, hypoxia-inducible factor-1 alpha, and
enolase 1 alpha. Importantly, these genes have a variety of
regulatory functions in both development and metabolism.

Clèment et al. [53] studied the effects of thyroid hormone
on human skeletal muscle in vivo. Their data not only
helped to explain the effects of T3 on protein turnover and
energy metabolism, but also revealed new putative mecha-
nisms extending beyond the classic metabolic effects of the
hormone, and importantly, added to our understanding of
the permissive effects of T3 on several cellular events (such
as signal-transduction cascades, intracellular transport, and
tissue remodeling).

Very recently, Visser et al. [54] examined the skeletal
muscle transcriptome in thyroidectomized patients being
treated for differentiated thyroid carcinoma, and compared it
between those who were off or on L-thyroxine replacement.
They reported for the first time that in humans as in animals,
a large proportion of muscle genes (∼43%) is significantly
downregulated by L-thyroxine treatment. They also reported
significant regulation of the primary transcripts of the
noncoding RNAs miR-206 and miR-133b, which are key
regulators in muscle differentiation and proliferation and
may affect numerous target genes. The potential of T3 to
regulate miRs may be of particular importance since this level
of control would add an additional layer of complexity by
which T3 may regulate cellular processes.

Collectively, these studies (summarized in Table 3) have
provided a cornucopia of novel information (schematized
in Figures 2 and 3) on the regulation of transcription by
THs. However, the intrinsic nature of these studies means
that they provide no information concerning the status of
the corresponding encoded proteins, and this is particularly
relevant because of the influence of thyroid hormone on
protein half-life.

3.3. Proteomic Analysis Pertaining to the Actions of Thyroid
Hormones. As stated above, overall T3 signaling can be
modulated at many levels (i.e., the thyroid hormone-receptor
isoforms present in the tissue, the DNA-response element
in the regulated gene, the availability of receptor-binding
partners, interactions with coactivators and corepressors,
ligand availability, mRNA and protein stabilities, protein
translocation, and metabolic interference) [72, 90–93]. Con-
sequently, for a deeper investigation of the biological events
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Figure 3: Overview of the main T3-induced transcriptomic and proteomic alterations occurring in mammalian liver. Schematic
representation of the alterations in gene/protein expression underlying the response of liver to T3. Schematized are the main events
and mechanisms underlying the actions of T3. Summarized are data obtained in cDNA microarray/proteomic-based studies in various
mammalian models (mouse, rat, and human) (for details, see text and Tables 3 and 4).

modulated by T3 within target organs, a systematic analysis
of the T3-induced changes in protein profile would appear to
be appropriate.

We recently performed, on samples taken from rats
in different thyroid states, high-resolution differential pro-
teomic analysis, combining 2D-E and subsequent MALDI-
ToF MS [55, 56]. These studies (summarized in Table 4) were
the first application of proteomic technology to the study of
the modulations that T3 exerts in vivo over tissue proteins,
and they provided the first systematic identification of T3-
induced changes in the protein expression profiles of rat liver
and skeletal muscle. In the liver, we unambiguously identified
14 differentially expressed proteins involved in substrate and
lipid metabolism, energy metabolism, detoxification of cyto-
toxic products, calcium homeostasis, amino acid catabolism,
and the urea cycle [55]. We found that T3 treatment
affected the expressions of enzymes such as mitochondrial
aldehyde dehydrogenase, α-enolase, sorbitol dehydrogenase,
acyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase, and 3-
hydroxyanthranilate 3,4-dioxygenase. Interestingly, the first
two enzymes were upregulated, while the others were
downregulated.

Our data were in accordance with the reported role
played by thyroid hormone in the stimulation of the rate of
ethanol elimination [110], and they provided further insight
into the mechanisms actuated by T3 in that pathway. T3 is
known to stimulate gluconeogenesis and glucose production

in the liver, thereby opposing the action of insulin on
hepatic glucose production [111]. Our results extended this
knowledge by showing that T3 significantly enhances the
level of α-enolase, thereby participating in glycolysis and
gluconeogenesis. In addition, T3 administration induced a
significant increase in the hepatic ATP synthase α-chain con-
tent (in accordance with the ability of T3 to stimulate ATP
synthesis) and concomitantly reduced the expression level of
electron transfer flavoprotein α-subunit (α-ETF), and also
that of the acyl-CoA dehydrogenases [112]. T3 treatment is
associated with significant reductions in the expression levels
of both peroxisomal catalase and cytoplasmic glutathione-
S-transferase [55], the former being important in the pro-
tection of cells against the toxic effects of hydrogen peroxide
while the latter is implicated in the cellular detoxification of
a number of xenobiotics by means of their conjugation to
reduced glutathione. T3 treatment of hypothyroid rats is also
associated with a selective upregulation of HSP60, a molecu-
lar chaperone [113]. SMP30, also known as regucalcin, which
was previously not known to be affected by T3, has now been
identified as a T3 target [55]. This opens new perspectives
in our understanding of the molecular pathways related to
intracellular T3-dependent signaling, raising the possibility
that T3 may modulate a plethora of cellular events while also
acting on multifunctional proteins such as SMP30, which in
turn is able to modulate the levels of second messengers such
as calcium.
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Table 4: Summary of the models used and of the major findings obtained by applying 2D-E and MS to the study of THs effects.

Authors
Experimental
model

Treatments
Number of

protein spots
analyzed

Number of
identified

proteins affected
by T3

Identified affected pathways and
major findings

Rat

Silvestri et al.,
2006 [55]

3-months-
old male
Wistar rats.
Studied
tissue: liver.

Hypothyroidism was induced
by i.p. administration of PTU
(1 mg/100 g BW) for 4 weeks
together with a weekly i.p.
injection of IOP (6 mg/100 g
BW). T3 was chronically
administered by giving seven
daily i.p. injections of 15 μg
T3/100 g BW to hypothyroid
rats, while the control
euthyroid and hypothyroid
rats received saline injections.

600 14

The whole cell protein content of
rat liver was analyzed following
T3 administration. Identified
proteins were involved in
substrates and lipid metabolism,
energy metabolism,
detoxification of cytotoxic
products, calcium homeostasis,
amino acid catabolism, and the
urea cycle.

Silvestri et al.,
2007 [56]

3-months-
old male
Wistar rats.
Studied
tissue:
skeletal
muscle.

Hypothyroidism and
hyperthyroidism were
induced as above (Silvestri et
al 2006 [55]).

220 20

The whole-cell protein content of
gastrocnemius muscles was
analyzed. The differentially
expressed proteins
unambiguously identified were
involved in substrates and energy
metabolism, stress response, cell
structure, and gene expression.

T3-treated rats exhibit significant reductions in the
protein levels of both ornithine carbamoyltransferase and
arginase 1 [55]. These data are in accordance with a previous
report [114], and in line with the idea that in the hypothyroid
state there are decreases in protein synthesis and turnover.

Concerning skeletal muscle, the whole-cell protein con-
tent of gastrocnemius muscle has been analyzed, and twenty
differentially expressed proteins among euthyroid, hypothy-
roid, and hyperthyroid rats have been identified [56]. The
largest group of affected proteins (50%) was involved in
substrate and energy metabolism, another important group
was represented by stress-induced proteins (HSPs) (21.4%),
and the remainder were implicated in structural features or
gene expression (transcription, translation), each of these
two groups representing 14.3% of the identified proteins
[56]. The thyroid state was found to induce structural shifts
in gastrocnemius muscle, toward a slower phenotype in
hypothyroidism and toward a faster phenotype in hyperthy-
roidism [56].

Among the proteins involved in substrate metabolism,
three glycolytic enzymes have been identified, namely, beta-
enolase, pyruvate kinase, and triosephosphate isomerase.
Beta-enolase protein levels were increased following T3
treatment (hyperthyroidism), while pyruvate kinase and
triosephosphate isomerase levels were decreased in hypothy-
roidism and elevated in hyperthyroidism [56]. This is in
accordance with (a) a major T3-dependence on pyru-
vate kinase and triosephosphate isomerase and a generally
decreased metabolic dependence on glycolysis in hypothy-
roidism, and (b) an increased reliance on glycolysis in
hyperthyroidism [115]. Accordingly, hyperthyroidism was

found to be associated with an increased expression of
cytoplasmic malate dehydrogenase. Moreover, phosphat-
idylethanolamine-binding protein, a basic protein that shows
preferential affinity in vitro for phosphatidylethanolamine,
was significantly increased in both the hypo- and hyper-
thyroid gastrocnemius (versus the euthyroid controls), most
likely reflecting a thyroid state-associated cell-remodeling
[56].

The expression level of the ATP synthase beta subunit
was increased in both hypothyroid and hyperthyroid muscle
(versus euthyroid controls), with a slight decrease in hyper-
thyroid animals versus hypothyroid ones. Cytosolic creatine
kinase, on the other hand, was decreased in hypothyroidism
versus both euthyroidism and hyperthyroidism, suggesting a
decreased dependence of energy metabolism on the creatine
kinase shuttle in hypothyroid muscle [56].

The expression level of HSP70 was found to be sig-
nificantly increased in hypothyroid muscle (versus both
euthyroid and hyperthyroid muscle), paralleling the changes
in MHCIb [56]. A similar expression pattern was found for
HSP20 which, despite not being a heat-inducible HSP, is
biologically regulated by several cellular signalling pathways.
Also identified was HSP27, which has been demonstrated
to play important roles in smooth muscle cells (actin
polymerization, remodeling, and even cross-bridge cycling),
and which can, moreover, act as a chaperone in the regulation
of contractile-protein activation [116] and also combat
insulin resistance [117].

Concerning cell structure, in accordance with a predomi-
nant expression of MHCIb over MHCIIb in hypothyroidism
and a reversal of the ratio between the two fiber-type
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isoforms after T3 administration, the expression level of
myosin regulatory light chain 2, typical of slow-twitch
fibers, was strongly increased in hypothyroidism, with hyper-
thyroidism significantly reducing it (in each case, versus
euthyroidism) [56].

Finally, both hypothyroidism and hyperthyroidism
induced chromodomain-helicase-DNA-binding protein 1
(CHD 1), as well as eukaryotic translation initiation factor
3 subunit 10 (IF3A), two proteins that play important
roles in different steps of gene expression: (1) initiation of
transcription; and (2) initiation of translation [56].

4. Conclusions

In conclusion, although the biochemical and cellular mech-
anisms that underlie sarcopenia in ageing muscle and the
effects elicited by thyroid hormones are only beginning to be
elucidated, array-based transcriptomic studies, together with
MS-based proteomic ones, are producing new insights into
the pathophysiological mechanisms behind such complex
phenomena.

As can be seen from the above discussion, the approaches
used in the cited studies have allowed the identification
of previously unrecognized proteins, thereby increasing our
awareness of the large repertoire of proteins, and the multiple
cell processes and signaling pathways that are affected by T3
and by ageing (for a schematic representation, see Figures
2 and 3). However, as the majority of the cited studies
were performed in vivo, the possibility remains that certain
hormones and/or other factors that are affected by such
metabolic situations may have been partially responsible for
the observed results.

On the basis of what has been achieved so far, the
authors feel justified in championing the use of combined
transcriptomic and proteomic approaches in living ani-
mals for the study of complex physiological, as well as
pathophysiological, systems. Such approaches should also
prove valuable for drug-design, enabling the agonist and/or
antagonist properties of drugs (as well as their side effects) to
be characterized on the basis of the changes they induce in
protein-expression patterns.
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Metabolomics is a rapidly evolving discipline that involves the systematic study of endogenous small molecules that characterize
the metabolic pathways of biological systems. The study of metabolism at a global level has the potential to contribute significantly
to biomedical research, clinical medical practice, as well as drug discovery. In this paper, we present the most up-to-date metabolite
and metabolic pathway resources, and we summarize the statistical, and machine-learning tools used for the analysis of data from
clinical metabolomics. Through specific applications on cancer, diabetes, neurological and other diseases, we demonstrate how
these tools can facilitate diagnosis and identification of potential biomarkers for use within disease diagnosis. Additionally, we
discuss the increasing importance of the integration of metabolomics data in drug discovery. On a case-study based on the Human
Metabolome Database (HMDB) and the Chinese Natural Product Database (CNPD), we demonstrate the close relatedness of the
two data sets of compounds, and we further illustrate how structural similarity with human metabolites could assist in the design
of novel pharmaceuticals and the elucidation of the molecular mechanisms of medicinal plants.

1. Introduction

Metabolomics is a new technology that applies advanced
separation and detection methods to capture the collection
of small molecules that characterize metabolic pathways.
This rapidly developing discipline involves the study of the
total repertoire of small molecules present in the biological
samples, particularly urine, saliva, and blood plasma [1].
Metabolites are the byproducts of metabolism, which is itself
the process of converting food energy to mechanical energy
or heat. Experts believe there are at least 3,000 metabolites
that are essential for normal growth and development (pri-
mary metabolites) and thousands more unidentified (around
20,000, compared to an estimated 30,000 genes and 100,000
proteins) that are not essential for growth and development
(secondary metabolites) but could represent prognostic,
diagnostic, and surrogate markers for a disease state and
a deeper understanding of mechanisms of disease [2]. Of
particular interest to metabolomics researchers are small,

low-molecular weight compounds that serve as substrates
and products in various metabolic pathways [3].

Metabolomics, the study of metabolism at the global
level, has the potential to contribute significantly to biomedi-
cal research, and ultimately to clinical medical practice [4, 5].
It is a close counterpart to the genome, the transcriptome
and the proteome. Metabolomics, genomics, proteomics,
and other “-omics” grew out of the Human Genome Project,
a massive research effort that began in the mid-1990s and
culminated in 2003 with a complete mapping of all the genes
in the human body. When discussing the clinical advantages
of metabolomics, scientists point to the “real-world” assess-
ment of patient physiology that the metabolome provides
since it can be regarded as the end-point of the “-omics”
cascade [6]. Other functional genomics technologies do
not necessarily predict drug effects, toxicological response,
or disease states at the phenotype but merely indicate the
potential cause for phenotypical response. Metabolomics
can bridge this information gap since the identification
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and measurement of metabolite profile dynamics of host
changes provides the closest link to the various phenotypic
responses [7–9]. Thus it is clear that the global map-
ping of metabolic signatures pre- and postdrug treatment
is a promising approach to identify possible functional
relationships between medication and medical phenotype
[10–13].

At the center of metabolomics is the concept that an
individual’s metabolite state is a close representation of the
individuals overall health status. This metabolic state reflects
what has been encoded by the genome and modified by
environmental factors. In this paper, we demonstrate the
enormous potential of metabolomics in disease monitor-
ing and identification of prognostic, diagnostic, and drug
response markers (Figure 1 (i)–(iii)), as well as in drug
discovery and development in combination with systems
chemical biology and chemoinformatics (Figures 1(a)–1(c)).

2. Databases and Data Analysis Tools

Databases of metabolites and metabolic reactions offer a
wealth of information regarding the interaction of small
molecules with biological systems, notably in relation with
their chemical reactivity. In Table 1, we summarize all
such metabolite and metabolic pathway resources which
contain hundreds of reactions, metabolites, and pathways
for several organisms and are designed to facilitate the
exploration of metabolism across many different species.
For example, the BiGG database (http://bigg.ucsd.edu/) is
a metabolic reconstruction of human metabolism designed
for systems biology simulation and metabolic flux balance
modelling. It is a comprehensive literature-based genome-
scale metabolic reconstruction that accounts for the func-
tions of 1,496 ORFs, 2,004 proteins, 2,766 metabolites,
and 3,311 metabolic and transport reactions. MassBank
(http://www.massbank.jp/) is a mass spectral database of
experimentally acquired high resolution MS spectra of
metabolites. Maintained and supported by the JST-BIRD
project, it offers various query methods for standard spectra
obtained from Keio University, RIKEN PSC, and other
Japanese research institutions. It is officially sanctioned
by the Mass Spectrometry Society of Japan. The database
has very detailed MS data and excellent spectral/structure
searching utilities. More than 13,000 spectra from 1900
different compounds are available. The METLIN Metabolite
Database (http://metlin.scripps.edu/index.jp) is a repository
for mass spectral metabolite data. All metabolites are
neutral or free acids. It is a collaborative effort between
the Siuzdak and Abagyan groups and Center for Mass
Spectrometry at The Scripps Research Institute. METLIN is
searchable by compound name, mass, formula, or structure.
It contains 15,000 structures, including more than 8000
di- and tripeptides. METLIN contains MS/MS, LC/MS and
FTMS data that can be searched by peak lists, mass range,
biological source or disease. Below we describe in more detail
three interconnected databases; the Human Metabolome
Database (http://www.hmdb.ca/), the Small Molecule Path-
way Database (http://www.smpdb.ca/) and the Toxin and
Toxin-Target Database (http://www.t3db.org/) (Figure 2).

2.1. Human Metabolome Database (HMDB). Focusing on
quantitative, analytic, or molecular scale information about
metabolites, the enzymes and transporters associated with
them, as well as disease related properties the HMDB rep-
resents the most complete bioinformatics and chemoinfor-
matics medical information database. It contains records for
thousands of endogenous metabolites identified by literature
surveys (PubMed, OMIM, OMMBID, text books), data
mining (KEGG, Metlin, BioCyc) or experimental analyses
performed on urine, blood, and cerebrospinal fluid samples.
The annotation effort is aided by chemical parameter calcu-
lators and protein annotation tools originally developed for
DrugBank. The HMDB is fully searchable with many built-
in tools for viewing, sorting, and extracting metabolites,
biofluid concentrations, enzymes, genes, NMR or MS spectra
and disease information. The HMDB currently contains
7,985 compounds that are linked to 69,295 different syn-
onyms. These compounds are also connected to 908 C-
NMR and 916 H-NMR spectra as well as 7,234 associated
enzymes. All chemical structures in these pathway maps are
hyperlinked to HMDB MetaboCards and all enzymes are
hyperlinked to UniProt data cards for human enzymes. The
majority of the compounds have been detected in blood
(4,226) while 784 compounds were detected in urine, 363
in CSF (cerebrospinal fluid) and 315 in other biofluids.
In order a compound to be included in the HMDB it
must fulfil certain criteria; it should be of biological origin,
the compound weight must be <1,500 Da, and it should
be found at concentrations greater than 1 mM in one or
more biofluids/tissues. Compounds that are not covered by
the above description but are either biomedically impor-
tant metabolites, like hormones, or certain very common
drugs and some ubiquitous food additives, like vitamins,
are some notable exceptions in the HMDB. For a large
number of metabolites the concentration values in the
biofluids are given with data for both normal and abnormal
values.

A key feature that distinguishes the HMDB from other
metabolic resources is its extensive support for higher
level database searching and selecting functions. More
than 175 hand-drawn-zoomable, fully hyperlinked human
metabolic pathway maps can be found in HMDB and all
these maps are quite specific to human metabolism and
explicitly show the subcellular compartments where specific
reactions are known to take place. As an equivalent to
BLAST the HMDB contains a structure similarity search
tool for chemical structures and users may sketch or
paste a SMILES string of a query compound into the
Chem-Query window. Submitting the query launches a
structure similarity search tool that looks for common
substructures from the query compound that match the
HMDB’s metabolite database. The wealth of information
and especially the extensive linkage to metabolic diseases
to normal and abnormal metabolite concentration ranges,
to mutation/SNP data and to the genes, enzymes, reactions
and pathways associated with many diseases of interest
makes the HMDB one the most valuable tool in the hands
of clinical chemists, nutritionists, physicians and medical
geneticists.
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Figure 1: Metabolomics holds the promise to deliver valuable information about biochemical pathways perturbed in disease and upon
treatment, to monitor healthy people to detect early signs of disease, to diagnose disease or predict the risk of a disease, to subclassify
disease, to make safer drugs by predicting the potential for adverse drug reactions, and to speed the discovery and development of novel drug
molecules.

Figure 2: A screenshot montage of the HMDB, SMPDB and T3DB databases.

2.2. The Small Molecule Pathway Database (SMPDB).
SMPDB consists of approximately 350 hand-drawn pathways
with more than 280 of them unique to SMPDB. These
pathways describe small molecule metabolism or small-
molecule processes that are specific to humans and fall
into four different categories: (i) metabolic pathways; (ii)
small-molecule disease pathways, (iii) small molecule drug
pathways, and (iv) small molecule signalling pathways. In
order for a metabolic pathway to be suitable for inclusion in
SMPDB, it must be found in humans and it must contain
at least five small molecules. If it is a human disease, drug
or signalling pathway the determining factor for inclusion
is its central feature being based on the action of at least
one small molecule. More specifically, in SMPDB, disease
pathways refer to those pathways describing human disease
processes where small-molecule metabolite dysregulation is
the primary hallmark of the disease. For qualifying a small
molecule or set of small molecules to be included in SMPDB,

a significant concentration change, which is commonly used
for the diagnosis, prognosis, or monitoring for a given
disease, is required. The SMPDB interface is largely modelled
after the interface used for DrugBank and the HMDB with a
navigation panel for browsing, searching, and downloading
the database. The users can choose between two brows-
ing options, SMP-BROWSE, and SMP-TOC. The latter is
basically a scrollable hyperlinked table of contents that lists
all pathways by name and category. SMP-BROWSE is a
more comprehensive browsing tool that provides a tabular
synopsis of SMPDB’s content using thumbnail images of the
pathway diagrams, textual descriptions of the pathways, as
well as lists of the corresponding chemical components and
enzyme/protein components. All of the chemical structures
and proteins/enzymes illustrated in SMPDB’s diagrams are
hyperlinked to other online databases or tables, but this is
common in most pathway databases. Specifically, all metabo-
lites, drugs or proteins shown in the SMP-BROWSE tables
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Table 1: Machine-learning algorithms often used in metabolomics.

Technique Description

PCA

The Principal Component Analysis (PCA) is a frequently used method which is applied to extract the systematic
variance in a data matrix. It helps to obtain an overview over dominant patterns and major trends in the data. The
aim of PCA is to create a set of latent variables which is smaller than the set of original variables but still explains all
the variance of the original variables. In mathematical terms, PCA transforms a number of correlated variables into a
smaller number of uncorrelated variables, the so-called principal components.

PLS

Partial Least Squares (PLS), also called Projection to Latent Structures, is a linear regression method that can be applied
to establish a predictive model, even if the objects are highly correlated. The X variables (the predictors) are reduced
to principal components, as are the Y variables (the dependents). The components of X are used to predict the scores
on the Y components, and the predicted Y component scores are used to predict the actual values of the Y variables.
In constructing the principal components of X, the PLS algorithm iteratively maximizes the strength of the relation of
successive pairs of X and Y component scores by maximizing the covariance of each X-score with the Y variables. This
strategy means that while the original X variables may be multicollinear, the X components used to predict Y will be
orthogonal. Also, the X variables may have missing values, but there will be a computed score for every case on every
X component. Finally, since only a few components (often two or three) will be used in predictions, PLS coefficients
may be computed even when there may have been more original X variables than observations.

O-PLS

The Orthogonal Projections to Latent Structures (O-PLS) is a linear regression method similar to PLS. However,
the interpretation of the models is improved because the structured noise is modeled separately from the variation
common to X and Y. Therefore, the O-PLS loading and regression coefficients allow for a more realistic interpretation
than PLS, which models the structured noise together with the correlated variation between X and Y. Furthermore,
the orthogonal loading matrices provide the opportunity to interpret the structured noise.

PLS-DA

PLS-Discriminant Analysis (PLS-DA) is a frequently used classification method that is based on the PLS approach, in
which the dependent variable is chosen to represent the class membership. PLS-DA makes it possible to accomplish a
rotation of the projection to give latent variables that focus on class separation. The objective of PLS-DA is to find a
model that separates classes of objects on the basis of their X-variables. This model is developed from the training set
of objects of known class membership. The X-matrix consists of the multivariate characterization data of the objects.
To encode a class identity, one uses as Y-data a matrix of dummy variables, which describe the class membership. A
dummy variable is an artificial variable that assumes a discrete numerical value in the class description. The dummy
matrix Y has G collumns (for G classes) with ones and zeros, such that the entry in the gth column is one and the
entries in other columns are zero for observations of class g.

ANN

Artificial Neural Networks (ANN) is a method, or more precisely a set of methods, based on a system of simple
identical mathematical functions, that working in parallel yield for each multivariate input X a single or multiresponse
answer. ANN methods can only be used if a comparably large set of multivariate data is available which enables
ANN training by example and work best if they are dealing with nonlinear relationships between complex inputs and
outputs. The main component of a neural network is the neuron. Each neuron has an activation threshold, and a series
of weighted connections to other neurons. If the aggregate activation a neuron receives from the neurons connected
to it exceeds its activation threshold, the neuron fires and relays its activation to the neurons to which it is connected.
The weights associated with these connections can be modified by training the network to perform a certain task. This
modification accounts for learning. ANN are often organized into layers, with each layer receiving input from one
adjacent layer, and sending it to another. Layers are categorized as input layers, output layers, and hidden layers. The
input layer is initialized to a certain set of values, and the computations performed by the hidden layers update the
values of the output layers, which comprise the output of the whole network. Learning is accomplished by updating the
weights between connected neurons. The most common method for training neural networks is back propagation,
a statistical method for updating weights based on how far their output is from the desired output. To search for
the optimal set of weights, various algorithms can be used. The most common is gradient descent, which is an
optimization method that, at each step, searches in the direction that appears to come nearest to the goal.

SOM

Self-Organizing Maps (SOM) or Kohonen network is an unsupervised neural network method which has both
clustering and visualization properties. It can be used to classify a set of input vectors according to their similarity.
The result of such a network is usually a two-dimensional map. Thus, SOM is a method for projecting objects from a
high dimensional data space to a two-dimensional space This projection enables the input data to be partitioned into
”similar” clusters while preserving their topology, that is, points that are close to one another in the multidimensional
space are neighbors in the two-dimensional space as well.

SVM

Support Vector Machines (SVM) perform classification by constructing an N-dimensional hyperplane that optimally
separates the data into two categories. A SVM model using a sigmoid kernel function is equivalent to a two-layer,
perceptron neural network. The task of choosing the most suitable representation is known as feature selection. A set
of features that describes one object is called a vector. The goal of SVM modeling is to find the optimal hyperplane
that separates clusters of vectors in such a way that objects with one category of the target variable are on one side of
the plane and objects with the other category are on the other size of the plane. The vectors near the hyperplane are
the support vectors.
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Table 1: Continued.

Technique Description

K-means

K-means is a classic clustering technique that aims to partition objects into k clusters. First, you specify k, that is, how
many clusters are being sought. Then, k points are chosen at random as cluster centers. All objects are assigned to their
closest cluster center according to the ordinary Euclidean distance metric. Next, the centroid, or mean, of the objects
in each cluster is calculated. These centroids are taken to be the new center values for their, respective clusters. Finally,
the whole process is repeated with the new cluster centers. Iteration continues until the same points are assigned to
each cluster in consecutive rounds, at which stage the cluster centers have stabilized.

Genetic
Algorithms

Genetic algorithms are nondeterministic stochastic search/optimization methods that utilize the evolutionary
concepts of selection, recombination or crossover, and mutation into data processing to solve a complex problem
dynamically. Possible solutions to the problem as so-called artificial chromosomes, which are changed and adapted
throughout the optimization process until an optimus solution is obtained. A set of chromosomes is called population
and creation of a population from a parent population is called generation. In a first step, the original population is
created. For each chromosome, the fitness is determined and a selection algorithm is applied to choose chromosomes
for mating. These chromosomes are then subject to the crossover, and the mutation operators, which finally yield a
new generation of chromosomes.

or in a pathway diagram are linked to HMDB, DrugBank
or UniProt, respectively. One of the most interesting search
options in SMPDB is the SMP-MAP which offers both
multiidentifier searches as well as transcriptomic, proteomic,
or metabolomic mapping. SMP-MAP allows users to select
the type of “-omic” data, then paste in a list of identifiers and
have a table generated of appropriately highlighted pathways
containing those components.

The content of SMPDB is not normally found in other
pathway databases with 281 unique pathways (in total
of 364). More specifically, 154/168 drug pathways, 11/13
metabolite signalling pathways, 4/70 metabolic pathways
and 112/113 metabolic disease pathways of the SMPDB
cannot be found in any of the known databases (KEGG,
Reactome, EHMN, WikiPathways, HumanCyc, BioCarta,
and PharmGKB). Especially in relation to metabolic disease
pathways and drug pathways the SMPDB is currently the
only pathway database that includes significant numbers
of them. In addition SMPDB offers a significant amount
of useful graphical content including the depiction of the
relevant organs, cellular locations, organelles, cofactors and
other cellular features. Because SMPDB is focused on small
molecules, it does not include the key protein signalling
pathway information which limits significantly its use in
comparative metabolic studies, protein network analysis,
metabolic engineering or metabolic evolution.

2.3. Toxin and Toxin-Target Database (T3DB). As the name
indicates, T3DB is primarily intended to be a database
that links toxins with their biological targets. However, the
molecular interaction information is further supplemented
with detailed descriptions of the toxin’s mechanism of action,
its metabolism in the human body, its lethal or toxic
dose levels, its potential carcinogenicity, exposure sources,
symptoms or health effects and suggested treatment options.
More than 2,900 toxin entries corresponding to more than
34,000 different synonyms are currently included in the
T3DB. T3DB toxins were identified using a number of meth-
ods that include data mining, literature surveys, toxicology
textbooks but also examining lists of controlled or banned
substances. The toxic compounds that were identified were

subsequently used to derive additional substances that were
toxic by relation. In order to ensure both completeness
and correctness each toxin record entered in T3DB was
reviewed by two different members of the team. Much of
the annotation was done manually especially in areas such
as route of delivery, mechanisms of action, health effects and
target identification.

T3DB contains compounds that have been routinely
identified as hazardous in relatively low concentrations
(<1 mM for some, <1 μM for others) and which appear
on multiple toxin/poison lists provided by government
agencies such as TOXNET or the toxicological and medical
literature. In each case, the toxicity of each compound was
assessed by examining the available toxicity measurements
and health effects, such as minimum lethal dose, LD50,
LC50 values and carcinogenicity. In addition these toxins
are further connected to approximately 1,300 protein targets
through almost 33,500 toxin and toxin-target bonds. All
the above information is supported by more than 3,100
references. To facilitate browsing, the T3DB is divided into
synoptic summary tables which, in turn, are linked to
more detailed “Tox-Cards”-in analogy to the very successful
“DrugCard” concept found in DrugBank. Each Tox-Card
entry contains over 80 data fields, with ∼50 data fields
devoted to chemical and toxicological/medical data and ∼
30 data fields devoted to describing the toxin target(s). In
addition to the data viewing and sorting features, the T3DB
also offers a local BLAST search that supports both single
and multiple sequence queries, a boolean text search based
on KinoSearch (http://www.rectangular.com/kinosearch/), a
chemical structure utility based on ChemAxon’s Marvin-
View, and a relational data extraction tool similar to that
found in DrugBank and the HMDB. The SeqSearch, a
sequence searching utility of T3DB’s, provides the option to
search through T3DB’s collection of 1,300 known human
toxin targets. The SeqSearch makes possible the identifica-
tion of both orthologous and paralogous targets for known
toxins or toxin targets but facilitates also the identification
of potential targets of other animal species. The T3DB’s
data extraction utility employs a simple relational database
system that allows users to select one or more data fields and
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to search for ranges, occurrences or partial occurrences of
words, strings or numbers.

In comparison to other databases that contain toxic
substances T3DP probably has the smallest number of toxins
or poisons in its collection since T3DB was designed as
a database for common toxins and not for all known
toxic substances. A key focus of the T3DB is on providing
“depth” over “breath” and with its unique emphasis on
“common” substances should prove to be a valuable resource
in toxicometabolomics and clinical toxicology research.

3. Identification of Disease Biomarkers

In clinical metabolomics one is almost always working with
a biofluid or a fluidized tissue extract. The preference of
working with biofluids over tissues is primarily dictated by
the fact that fluids are far easier to process and analyze.
Likewise the collection of biofluids is generally much less
invasive than the collection of tissues. Biofluids analysis
is always done with the assumption that the chemicals
found in different biofluids are largely reflective of the
biological state of the organ that produces or is bathed in
this fluid. Metabolomics share many of the computational
needs with genomics, proteomics, and transcriptomics. All
four “-omics” techniques require electronically accessible
and searchable databases, all of them require software to
handle or process data from their own high-throughput
instruments, all of them require laboratory information
systems to manage their data and all require software tools
to predict or model properties, pathways, relationships, and
processes [14]. In terms of data analysis, metabolomics,
like other functional genomics technologies, produces high-
dimensional datasets, and so it is amenable to many of the
analyses applied to microarray data. Statistical modelling
(Table 2) range from univariate statistical testing to mul-
tivariate regression methods such as principal component
analysis (PCA), partial least squares (PLS) or orthogonal pro-
jections to latent squares (OPLS), cluster analysis, machine-
learning techniques and nonlinear methods, for example
Kohonen’s self organizing maps (SOM), support vector
machines (SVM), and neural networks (NN) [15–18]. In
the following section we have chosen to focus on specific
applications that demonstrate how the above statistical
modelling tools can facilitate the diagnosis of diseases and the
identification of potential biomarkers for use within disease
diagnosis.

3.1. Cancer. The paper of Guan et al. [19] is the first appli-
cation of SVMs and SVM-related feature selection methods
(recursive feature elimination with linear and nonlinear ker-
nel, L1SVM, and Weston’s method) for classifying LC/TOF
MS data of serum samples from ovarian cancer patients and
control. Sera from 37 ovarian cancer patients and 35 benign
controls were studied and three evaluation processes (leave-
one-out-cross-validation, 12-fold-cross-validation, and 52–
20-split-validation) were used to examine the SVM models
based on selected potential metabolic diagnostic biomarkers
in terms of their ability for differentiating control versus
disease serum samples. Classification of the serum sample

test set was over 90% accurate indicating promise that this
approach may lead to the development of an accurate and
reliable metabolomic-based protocol for detecting ovarian
cancer.

The aim of another recent study [20] was to elucidate
the predictability of breast cancer by means of urinary
excreted nucleosides. The authors analyzed a balanced set of
170 urine samples, 85 breast cancer women and, respective
healthy controls, and after identification of 51 nucleosides/
ribosylated metabolites in the urine of breast cancer women
a valid set of 35 candidates was selected for subsequent
computational analysis. The bioinformatic tool of Oscillating
Search Algorithm for Feature Selection (OSAF) was applied
to iteratively improve features for training of SVMs to
better predict breast cancer. The authors found a reasonable
set of tumor-related metabolite pairs with SVM prediction
performance of 83.5% sensitivity and 90.6% specificity,
demonstrating that semiquantitative measurements are valu-
able for pattern detection using nonparametric machine-
learning algorithms.

Arakaki et al. [21] described CoMet, a fully automated
and general computational metabolomics method that uses a
Systems Biology approach to predict the human metabolites
which intracellular levels are more likely to be altered in
cancer cells. The authors then prioritize the metabolites
predicted to be lowered in cancer compared to normal cells as
potential anticancer agents. They discovered eleven metabo-
lites that either alone or in combination exhibit significant
antiproliferative activity in Jurkat leukemia cells. Nine of
these metabolites that were predicted to be lowered in Jurkat
cells with respect to lymphoblasts (riboflavin, tryptamine, 3-
sulfino-L-alanine, menaquinone, dehydroepiandrosterone,
α-hydroxystearic acid, hydroxyacetone, seleno-L-methionine
and 5,6-dimethylbenzimidazole) exhibited antiproliferative
activity that has not been reported before. These results
strongly suggest that many other metabolites with important
roles in cellular growth control may be waiting to be
discovered, opening up the possibility of novel approaches
against cancer. CoMet adopts the viewpoint that the cell
is an integrated machine and the author’s resulting simple
hypothesis that inspired its creation can greatly assist in the
understanding of the contribution of metabolism to this
complex disease.

In a different approach using an animal model Southam
et al. [22] applied NMR-based metabolomics to histpatho-
logically well-characterized livers dissected from a wild-
caught species of marine flatfish. The use of metabolic profil-
ing and correlation networks enabled a more thorough inter-
pretation of this dataset. Fingerprint analysis identified single
metabolites that showed concentration changes between
phenotypes, while network analysis highlighted alterations to
the relationships of paired metabolites between phenotypes.
Tumor tissues showed elevated anaerobic respiration and
reduced TCA cycle activity, while alanine and proline were
indicated to supplement pyruvate (and NAD+) production
during anaerobic metabolism in the tumor tissue. Choline
metabolism was altered in tumor including disruptions
of the choline oxidation and CDP-choline pathways. The
author’s hypothesis was that such disruption of the choline
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Table 2: Freely available databases on metabolic pathways and the metabolome.

Metabolic Pathways Databases Webpage

BRENDA, the enzyme database, has comprehensive information
on enzymes and enzymatic reactions. It is one of several databases
nested within the metabolic pathway database set of the SRS5
sequence retreival system at EBI.

http://www.brenda.uni-koeln.de/

Reactome is an online bioinformatics database of biology
described in molecular terms. The largest set of entries refers to
human biology, but Reactome covers a number of other organisms
as well. It is an on-line encyclopedia of core human pathways-DNA
replication, transcription, translation, the cell cycle, metabolism,
and signaling cascades.

http://www.reactome.org/

KEGG Metabolic Pathways include graphical pathway maps for all
known metabolic pathways from various organisms. Ortholog
group tables, containing conserved, functional units in a molecular
pathway or or assembly, as well as comparative lists of genes for a
given functional unit in different organisms, are also available.

http://www.genome.jp/kegg/metabolism.html

MetaCyc is a database of nonredundant, experimentally elucidated
metabolic pathways. MetaCyc contains more than 1,400 pathways
from more than 1,800 different organisms, and is curated from the
scientific experimental literature. MetaCyc contains pathways
involved in both primary and secondary metabolism, as well as
associated compounds, enzymes, and genes.

http://metacyc.org/

The WIT Metabolic Reconstruction project produces metabolic
reconstructions for sequenced, or partially sequenced, genomes. It
currently provides a set of over 25 such reconstructions in varying
states of completion. Over 2900 pathway diagrams are available,
associated with functional roles and linked to ORFs.

http://ergo.integratedgenomics.com/

BioCarta website provides gene interactions in dynamic graphical
models. The online maps depicts molecular relationships and it
catalogs and summarizes important resources providing
information for more than 12,000 genes from multiple species. It
contains both classical pathways as well as suggestions for new
pathways.

http://main.biocarta.com/genes/index.asp

EcoCyc describes the genome and the biochemical machinery of E.
coli. It provides a molecular and functional catalog of the E. coli
cell to facilitates system-level understanding. Its Pathway/Genome
Navigator user interface visualizes the layout of genes, of
individual biochemical reactions, or of complete pathways. It also
supports computational studies of the metabolism, such as
pathway design, evolutionary studies, and simulations. A related
metabolic database is Metalgen.

http://ecocyc.org/

BioSilico is a web-based database system that facilitates the search
and analysis of metabolic pathways. Heterogeneous metabolic
databases including LIGAND, ENZYME, EcoCyc and MetaCyc are
integrated in a systematic way, thereby allowing users to efficiently
retrieve the relevant information on enzymes, biochemical
compounds and reactions. In addition, it provides well-designed
view pages for more detailed summary information.

http://mbel.kaist.ac.kr/lab/index ko.html

EXPASY - Biochemical Pathways is a searchable database of
metabolic pathways, enzymes, substrates and products. Based on a
given search, it produces a graphic representation of the relevant
pathway(s) within the context of an enormous metabolic map.
Neighboring metabolic reactions can then be viewed through links
to adjacent maps.

http://www.expasy.ch/cgi-bin/search-biochem-index

BioPath is a database of biochemical pathways that provides access
to metabolic transformations and cellular regulations derived from
the Roche Applied Science ”Biochemical Pathways” wall chart.
BioPath provides access to biological transformations and
regulations as described on the ”Biochemical Pathways” chart.

http://www.molecular-networks.com/biopath/
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Table 2: Continued.

Metabolic Pathways Databases Webpage

BioCyc is a collection of 505 Pathway/Genome Databases. Each
database in the BioCyc collection describes the genome and
metabolic pathways of a single organism. The BioCyc Web site
contains many tools for navigating and analyzing these databases,
and for analyzing omics data, including the following: Genome
browser, Display of individual metabolic pathways, and of full
metabolic maps, Visual analysis of user-supplied omics datasets by
painting onto metabolic map, regulatory map, and genome map,
Comparative analysis tools.

http://biocyc.org/

Metabolome Databases Webpage

The Biological Magnetic Resonance Data Bank (BMRB) focuses on
quantitative data generated by spectroscopic investigations of
biological macromolecules. It has links to search engines such as
PubChem, that connect to recent articles and new data. It also links
to projects and other databases that are all related to Metabolomics
and Metabonomics. This database focuses on the NMR research
aspect of metabolites discovery and their role in metabolism.

http://www.bmrb.wisc.edu/metabolomics/

The Madison Metabolomics Consortium Database contains
metabolites determined through NMR and MS. It contains
information with the main focus on Arabidopsis thaliana, but also
refers to many different species. The database also contains
information on the presence of metabolites under several different
physiological conditions, their structures in 2D and 3D, and links
to related resource sources and other databases.

http://mmcd.nmrfam.wisc.edu/

The Human Metabolome Database is an extremely comprehensive,
free electronic database that gives a detailed overview of human
metabolites divided into chemical, clinical, and molecular
biology/biochemistry data.

http://www.hmdb.ca/

KNApSAcK is a Java application that presents an interactive
display of biochemical information that can be searched by
organism or metabolite name. KNApSAcK focuses primarily on
the origin and mass spectra of particular metabolites.

http://kanaya.naist.jp/KNApSAcK

The BiGG database is a metabolic reconstruction of human
metabolism designed for systems biology simulation and
metabolic flux balance modeling. It is a comprehensive
literature-based genome-scale metabolic reconstruction that
accounts for the functions of 1,496 ORFs, 2,004 proteins, 2,766
metabolites, and 3,311 metabolic and transport reactions. It was
assembled from build 35 of the human genome.

http://bigg.ucsd.edu/

SetupX, developed by the Fiehn laboratory at UC Davis, is a
web-based metabolomics LIMS. It is XML compatible and built
around a relational database management core. It is particularly
oriented towards the capture and display of GC-MS metabolomic
data through its metabolic annotation database called BinBase.

http://fiehnlab.ucdavis.edu:8080/m1/

McGill-MD is a metabolome database containing metabolite mass
spectra of organisms; with abiotic/biotic stress or in homeostasis.
Users are able to obtain a table containing the metabolome of an
organism, or download mass spectra of all the metabolites entered
in the database.

http://metabolomics.mcgill.ca/

SYSTOMONAS (SYSTems biology of pseudOMONAS) is a
database for systems biology studies of Pseudomonas species. It
contains extensive transcriptomic, proteomic and metabolomic
data as well as metabolic reconstructions of this pathogen.
Reconstruction of metabolic networks in SYSTOMONAS was
achieved via comparative genomics. Broad data integration with
well established databases BRENDA, KEGG and PRODORIC is
also maintained.

http://www.systomonas.de/
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Table 2: Continued.

Metabolic Pathways Databases Webpage

MassBank is a mass spectral database of experimentally acquired
high resolution MS spectra of metabolites. Maintained and
supported by the JST-BIRD project, it offers various query
methods for standard spectra obtained from Keio University,
RIKEN PSC, and other Japanese research institutions. It is
officially sanctioned by the Mass Spectrometry Society of Japan.
The database has very detailed MS data and excellent
spectral/structure searching utilities. More than 13,000 spectra
from 1900 different compounds are available.

http://www.massbank.jp/

The Golm Metabolome Database provides public access to custom
GC/MS libraries which are stored as Mass Spectral (MS) and
Retention Time Index (RI) Libraries (MSRI). These libraries of
mass spectral and retention time indices can be used with the
NIST/AMDIS software to identify metabolites according their
spectral tags and RI’s. The libraries are both searchable and
downloadable and have been carefully collected under defined
conditions on several types of GC/MS instruments (quadrupole
and TOF).

http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html

The METLIN Metabolite Database is a repository for mass spectral
metabolite data. All metabolites are neutral or free acids. It is a
collaborative effort between the Siuzdak and Abagyan groups and
Center for Mass Spectrometry at The Scripps Research Institute.
METLIN is searchable by compound name, mass, formula or
structure. It contains 15,000 structures, including more than 8000
di and tripeptides. METLIN contains MS/MS, LC/MS and FTMS
data that can be searched by peak lists, mass range, biological
source and or disease.

http://metlin.scripps.edu/index.php

oxidation pathway could lead to reduced SAM produc-
tion and potentially DNA hypomethylation of oncogenes.

3.2. Diabetes. The paper of Altmaier et al. [23] presents
a bioinformatics analysis of what can be considered as a
standard experimental setting of a preclinical drug test-
ing experiment with two independent factors, “state” and
“medication”. Targeted quantitative metabolomics covering
a wide range of more than 800 relevant metabolites were
measured in blood plasma samples from healthy and diabetic
mice under rosiglitazone (a member of thiazolidinedione)
treatment. The authors show that known and new metabolic
phenotypes of diabetes and medication can be recovered
in a statistically objective manner. Analyzing ratios between
metabolite concentrations dramatically reduces the noise in
the data set allowing the discovery of new potential biomark-
ers of diabetes, such as the N-hydroxyacyloylsphingosyl-
phosphocholines SM(OH)28 : 0 and SM(OH)26 : 0. Using
a hierarchical clustering technique on partial η2 values the
authors identified functionally related groups of metabo-
lites, indicating a diabetes-related shift from lysophospho-
phatidylcholine to phosphatidylcholine levels.

Coupled LC/MS technology to multivariate statistical
analysis in order to study phospholipid metabolic profiling
in diabetes mellitus and to discover the potential biomarkers
was the approach of Wang et al. [24]. PCA and PLS-
DA models were compared in class separation of type
2 diabetes mellitus (DM2) patients and healthy controls.

Uv (unit variance) scaling and OSC (orthogonal signal
correction) data preprocessing methods were also developed
to improve class separation. Using the supervised PLS-DA
algorithm with Uv scaling and OSC technique on the data
set, it was found that the separation of different classes was
highly improved (compared to PCA analysis) particularly
with OSC. The application of LC/MS coupled to PLS-DA of
data with OSC scaling made it possible to classify DM2 and
control and further to discover potential biomarkers that can
be identified by MS/MS.

NMR-based metabolomics coupled with sophisticated
bioinformatics was shown capable of identifying rapid
changes in global metabolite profiles in urine and plasma
(treatment “fingerprints”) which may be linked to the well-
documented early changes in hepatic insulin sensitivity
following thiazolidinedione intervention in Type 2 diabetes
mellitus [12]. Several endogenous metabolites in urine and
plasma of T2DM patients that responded to rosiglitazone
treatment were identified. In urine these changes were related
to a gender-independent relative reduction of hippurate and
a further increase of aromatic acids. The gender-dependent
changes observed in plasma samples included an increase in
branched chain amino acids, alanine, glutamine/glutamate
and citrate, coinsiding with a decrease in lactate, acetate,
tyrosine, and phenyalanine in the female T2DM group,
where changes in the male T2DM group included an increase
in branched chain amino acids, alanine, glutamine, and
threonine. A good distinction between diabetic patients
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and healthy volunteers as well as separation by gender
was accomplished when Supervised Principal Component
Discriminant Analysis (PC-DA) of plasma or urine samples
was applied which comprises an important new addition to
the early clinical development “proof of concept” toolbox for
thiazolidinediones.

Diabetes is associated with increased incidence of vas-
cular complications, and premature aging. In the study of
Makinen et al. [25], the emphasis was on the metabolic
continuum that underlies the slow and often elusive devel-
opment of chronic complications. The authors obtained
serum samples to measure two molecular windows, —the
lipoprotein lipids (LIPO) window and the low molecular
weight molecules (LMWM)—for 613 patients with type I
diabetes, and diverse spread of complications. The H-NMR
analyses combined with SOM instead of linear decomposi-
tion methods allowed the authors to transform the spectral
data into an accesible form of information. The work of
Makinen et al. demonstrated the limitations of single diag-
nostic biomarkers and illustrated a fundamental diagnostic
challenge. Even though there is a common biochemical
basis of diabetic kidney disease, diabetic retinal disease, the
metabolic syndrome, and macrovascular diseases however
they do not conclusively define each other.

Salek et al. [26] describe the application of 1H-NMR
spectroscopybased metabolomics, combined with multi-
variate and univariate statistics, to investigate the urinary
metabolic profiles in two animal models (mice and rat)
of T2DM, and they compared these metabolic changes
with perturbations observed in a human population. This
study demonstrated metabolic similarities between the three
species examined. Along with the expected changes in
hepatic glycolysis/ gluconeogenesis changes in the excretion
of TCA cycle intermediates, polyols, amines, and amino
acids were detected. Furthermore significant changes in
pyruvate and fatty acid metabolism as well as hepatic
amino acid metabolism were observed including trypto-
phan metabolism. A profound perturbation in nucleotide
metabolism, previously linked with peroxisome prolifer-
ation, was also observed and may indicate a metabolic
consequence of substrate excess in many tissues, especially
the liver.

In the study of Connor et al. [27], the authors have
generated NMR-based metabolomic and transcriptomic data
from the db/db diabetic mouse, one of the most exten-
sively studied animal models of T2D. Db/db mice lack a
functioning leptin receptor resulting in defective leptin-
mediated signal transduction. Metabolomics data identified
24 distinct pathways that were altered in the diabetic mice
when compared to their euglycaemic littermates. Several of
these pathways were related to known disease effects, but
in addition novel effects on branched chain amino acid
metabolism, nicotinamide metabolites, pantothenic acid,
and gut microflora metabolism were also observed. Inte-
grative pathway analysis of the metabolite-centric networks
and the cross-platform transcriptomics and metabolomics
results effectively linked many of the metabolite changes to
pathways involved in gluconeogenesis, and those generating
substrates for gluconeogenesis, mitochondrial dysfunction

and oxidative stress, and altered protein turnover. Overall,
these metabolites are likely reflective of additional underlying
pathophysiology that is present in T2D.

The objective of Lanza et al. [28] was to illustrate
the utility of a combination of analytical methods and
multivariate statistical analysis for detecting a metabolic
fingerprint that reflects known pathways that are altered
with insulin deficiency. The authors analyzed plasma from
type 1 diabetic (T1D) humans during insulin treatment
(I+) and acute insulin deprivation (I−) and nondiabetic
participants (ND) and they generated correlation matrices
for the plasma metabolites measured by both MS and NMR
to create a compendium metabolic profile that integrates
the complementary information from the two analytical
methods. Multivariate statistics differentiated proton spectra
from I− and I+ based on several derived plasma metabo-
lites that were elevated during insulin deprivation (lactate,
acetate, allantoin, and ketones) as well as several underlying
physiological processes that are known to be altered by
short-term insulin deprivation in type 1 diabetic people
(e.g., mitochondrial dysfunction, oxidative stress, protein
synthesis, degradation, and oxidation, gluconeogenesis, and
ketogenesis).

Bao et al. [29] performed a metabonomic study to deter-
mine metabolic variations associated with T2DM and the
drug treatments on 74 patients who were newly diagnosed
with T2DM and received a 48-week treatment of a single
drug, repaglinide, metformin, or rosiglitazone. A total of 212
individual metabolites were consistently detected in at least
90% of the serum samples and orthogonal projections to
latent structures discriminant analysis, a newly developed
supervised pattern recognition method, was used to capture
the subtle intergroup variations and establish a prediction
model to assess the physiological impact by drug treat-
ment. As compared to healthy controls, the altered serum
metabolites in diabetic subjects, include the significantly
increased valine, maltose, glutamate, urate, butanoate, and
long-chain fatty acid (C16:0, C18:1, C18:0, octadecanoate,
and arachidonate), and decreased glucuronolactone, lysine,
and lactate suggesting a hypercatabolic state in T2DM
patients. Rosiglitazone treatment was able to reverse more
abnormally expressed metabolites, such as valine, lysine,
glucuronolactone, C16:0, C18:1, urate, and octadecanoate,
than the other two drugs.

Čuperlović-Culf [30] presented an application of fuzzy
K-means (F-KM) method for the classification of metabolic
profiles of urine samples in diabetic patients. F-KM is a
fuzzy version of standard K-means clustering. In F-KM
clustering, each sample has an overall membership, that
is, sum of membership values for all clusters, of 1. This
overall membership is appointed to clusters based on the
similarity between the sample’s metabolic fingerprint and the
profile of cluster’s centroid. From the membership values, it
is then possible to determine different levels of coclustering
between samples-based on the top membership, second
highest membership, and so forth. In their work different
clustering methods were compared with F-KM. For human
type II diabetes and healthy phenotypes membership values,
F-KM lead to better sample separation while it was the only
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method that allowed distinction on both major groups and
sample subtypes.

3.3. Neurological and Other Diseases. The study of Rozen
et al. [4] was designed to assess whether there are systematic
differences between redox-active metabolites in the blood
of patients with motor neuron disease (MND) and healthy
controls by analyzing the blood plasma of 30 healthy
controls and 28 individuals with MND. To determine which
metabolites were significantly elevated or reduced in MND
the authors used three measures of class association, the t-
statistic, Pearson’s correlation coefficient, and the “relative
class association” measure. All three measures produced sim-
ilar rankings of their metabolites by their level of association
with MND versus control. The authors assessed statistical
significance by permutation testing and all measures showed
similar numbers of metabolites to have significantly higher
or lower concentrations in MND compared to controls.
Subsequently they analyzed these data to determine if the
metabolites were capable of distinguishing four subgroups
(normal controls MND patients taking riluzole medica-
tion, MND without riluzole medication, and the subgroup
enriched for LMN-lower motor neuron disease) using the
317 metabolite concentrations. Using PLS-DA, a supervised
projection technique, the authors found a three-dimensional
projection in which these four subgroups were significantly
separated.

1H nuclear magnetic resonance spectroscopy in con-
junction with computerized pattern recognition analysis
were employed to investigate metabolic profiles of a total
of 152 cerebrospinal fluid (CSF) samples from drug-naı̈ve
or minimally treated patients with first-onset paranoid
schizophrenia and healthy controls [7]. Plots of PLS-DA
scores showed a clear differentiation between healthy vol-
unteers and drug-naı̈ve patients. The PLS-DA score plots
show that atypical antipsychotic drug treatment results in
a shift of approximately 50% of patients with schizophrenia
towards the cluster of healthy controls. A striking finding of
this study is the effect of the number of psychotic episodes
prior to commencing antiphychotic treatment on the CSF
metabolite profile in patients with schizophrenia. Of 21
patients who commenced antipsychotic medication during
their first psychotic episode, 57% clustered with healthy
controls whereas six out of the seven patients who had several
psychotic episodes prior to treatment clustered with the
group of drug-naı̈ve patients with first-onset schizophrenia.
These results suggest that the initiation of antipsychotic
treatment during a first psychotic episode may influence
treatment response and/or indeed outcome.

Pre-eclampsia is an important cause of maternal mor-
bidity and mortality while the World Health Organization
estimates that worldwide over 100,000 women die from pre-
eclampsia each year. By using GC-tof-MS the authors [31]
were able to separate and detect several hundred metabolites
from both control (87) and diseased (87) samples. The
application of genetic algorithms on these data indicated
that the pre-eclamptic plasma could be discriminated from
the matched controls on the basis of just three metabolite
peaks (two of which tended to be lower and one tended to

be higher in the samples from women with pre-eclampsia,
and to a certain extent this correlated with the severity of
the disease). In this context it is worth commenting that
genetic algorithms is advantageous over other machine-
learning methods such as neural networks and support
vector machines, as it allows one to understand the problem
in terms of small subsets of input variables that it combines
into rules. In the case of Kenny and colleagues [31], only
10 of each the disease and control samples were taken at a
gestational age of under 30 weeks, and a clear task for the
future is to establish the extent to which these diagnostic
rules apply earlier in pregnancy and thus are of greater
prognostic value.

A metabolic “bioprofile” consisting of predictive serum
metabolite features from 1H NMR spectral data of the
murine K/BxN model of arthritis were presented in the study
of Weljie et al. [32]. A unique method was developed by
combining technologies such as quantitative targeted profil-
ing, O-PLS-DA pattern recognition analysis and metabolic-
pathway-based network analysis for interpretation of results.
In total, 88 spectral features were profiled (59 metabolites
and 28 unknown resonances). A highly significant subset
of 18 spectral features (15 known compounds and 3
unknown resonances) was identified and in this metabolic
bioprofile, metabolites relating to nucleic acid, amino acid,
and fatty acid metabolism, as well as lipolysis, reactive
oxygen species generation, and methylation were among
them. Pathway analysis suggested a shift from metabolites
involved in numerous reactions (hub metabolites) toward
intermediates and metabolic endpoints associated with
arthritis.

4. Metabolomics in Drug Discovery and
Polypharmacology Studies

Drug molecules generally act on specific targets at the
cellular level, and upon binding to the receptors, they exert
a desirable alteration of the cellular activities, regarded as
the pharmaceutical effect. Current drug discovery depends
largely on ransom screening, either high-throughput screen-
ing (HTS) in vitro, or virtual screening (VS) in silico. Because
the number of available compounds is huge, several drug-
likeness filters are proposed to reduce the number of com-
pounds that need to be evaluated. The ability to effectively
predict if a chemical compound is “drug-like” or “nondrug-
like” is, thus, a valuable tool in the design, optimization, and
selection of drug candidates for development [33]. Drug-
likeness is a general descriptor of the potential of a small-
molecule to become a drug. It is not a unified descriptor
but a global property of a compound processing many
specific characteristics such as good solubility, membrane
permeability, half-life, and having a pharmacophore pat-
tern to interact specifically with a target protein. These
characteristics can be reflected as molecular descriptors
such as molecular weight, log P, the number of hydrogen-
bond donors, the number of hydrogen-bond acceptors, the
number of rotatable bonds, the number of rigid bonds, the
number of rings in a molecule, and so forth [34]. Lipinski’s
widely used rule of 5 defines drug-like “as those compounds
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that have sufficiently acceptable absorption, distribution,
metabolism, excretion, and toxicity (ADMET) properties
to survive through the completion of Human Phase I
clinical trials” [35]. It has been observed that metabolites
tend to obey in their majority the Lipinski “Rule of 5”,
which hints to the fact that drugs are indirectly synthesized
to mimic the original endogenous substrates [36]. Based
on this, metabolite-likeness and biological relevance filters
have recently been developed, which consider that chemical
compounds from virtual screens of large pharmaceutical
libraries that are similar to endogenous metabolites stand
more chances for being successful drug candidates [37, 38].
The approach leverages the “chemical similarity principle”,
which states that molecules with similar structure likely have
similar biological properties.

Drug developers have long-mined small-molecule
metabolism for the design of enzyme inhibitors chemically
similar to their endogenous substrates. The approach has
yielded many successes, including antimetabolites such
a folate derivatives used in cancer therapy [39] and the
nucleoside analog prodrugs used for antiviral therapy [40].
With the recent availability of databases of metabolites and
metabolic reactions, we have gained a wealth of information
regarding the interaction of small molecules with biological
systems. At the same time, the notion of chemical space and
the advance of chemoinformatics tools have paved the way
to link the metabolome with structural and physicochemical
properties of endogenous metabolites and to predict links
between synthetic molecules and human metabolism.

Recent developments in the area of systems biology have
lead scientists to realize the limitations of reductionism and
begin to lay emphasis on more holistic research patterns,
such as systems biology and network pharmacology [41–44],
Most diseases are not caused by changes in a single causal
gene but by an unbalanced regulating network resulting
from the dysfunctions of multiple genes or their products.
At the same time, drug molecules commonly participate in
biological networks and both their intended effect and side
effect are rather systemic than specific to a single biological
target.

On this direction, Corey Adams and coworkers have
recently demonstrated a new method to predict what
enzymes drugs might affect based on the chemical similarity
between classes of drugs and the natural chemicals used by
enzymes. The authors have applied the method to 246 known
drug classes and a collection of 385 organisms to create maps
of potential drug action on metabolism. Moreover, they show
how the predicted connections can be used to find new ways
to kill pathogens and to avoid unintentionally interfering
with human enzymes [45].

In the work of Macchiarulo and coworkers, human
metabolic pathways are projected and clustered on the
chemical space based on similarity of the involved metabo-
lites translated in a set of selected physicochemical and
topological descriptors. Further to this, the authors develop
a classifier that estimates the proximity of marketed drugs
to any given pathway, with the aim to elucidate the extend
of overlap and to uncover cross-interactions between drugs
and the major human pathways. The model performs well

for tightly clustered, isolated pathways, but it loses its
predictive ability when it comes to overlapping pathways
[46].

5. Metabolomics for the Study of
Polypharmacology of Natural Compounds.

Internationally, there is a growing and sustained interest
from both pharmaceutical companies and public in medicine
from natural sources. For the public, natural medicine
represent a holistic approach to disease treatment, with
potentially less side effects than conventional medicine. For
the pharmaceutical companies, bioactive natural products
constitute attractive drug leads, as they have been optimized
in a long-term natural selection process for optimal interac-
tion with biomolecules. To promote the ecological survival
of plants, structures of secondary products have evolved to
interact with molecular targets affecting the cells, tissues
and physiological functions in competing microorganisms,
plants, and animals. In this, respect, some plant secondary
products may exert their action by resembling endoge-
nous metabolites, ligands, hormones, signal transduction
molecules, or neurotransmitters and thus have beneficial
effects on humans due to similarities in their potential target
sites [47].

Complementary to the above studies on drug polyphar-
macology and in order to elucidate the extend of overlap
and similarity between natural compounds from plants
used in ethnomedicine and human metabolites, we created
chemical networks between natural compounds from the
Chinese Natural Products Database (CNPD v.2004.1) and
human metabolites from HMDB. CNPD is a compilation
of 57,346 compounds found in plants largely used in TCM
(Traditional Chinese Medicine). These compounds come
from 2,611 plant species belonging to 457 different plant
genera. After removal of salts, inorganic compounds, and
duplicates, we extracted 53,180 unique, organic compounds
in SDF format, which we imported into a Molecular
Operating Environment (MOE, v.2008.10) [48] database.
1417 of these compounds are annotated with experimentally
derived bioactivity information. HMDB v. 2.5 was used as
source of human metabolites and 7,985 compounds were
extracted in SDF format. All structures were washed, that
is all ionizable groups were coordinated with neutral pH
conditions, and energy minimized using the MMFF946 force
field.

To get a first overview, we compared the two databases
considering common descriptors for drug-like molecules,
namely molecular weight (MW), number of hydrogen-bond
donors (HB donors), number of hydrogen-bond acceptors
(HB acceptors), number of rings and number of rotatable
bonds. As seen in the violin plots of Figure 3, the human
metabolites have higher average molecular weight (MW =
661.2) and broader distribution (std dev = 403.4), which
is obviously due to the presence of many lipids (3800 out
of 7985 compounds are lipids in the newest version of the
HMDB) [49]. The number of HB-donors is almost the same
in both CNPD and HMDB sets, with an average value of 2.4
and 2.5, respectively and 90% of the compounds in each data
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Figure 3: Comparison of the distribution of selected druglike molecular properties for natural compounds from CNPD and human
metabolites from HMDB. Violin plots for (a) molecular weight, (b) hydrogen-bond donors, (c) hydrogen-bond acceptors, (d) number
of rings and (e) number of rotatable bonds, along with table with mean values and standard deviations. A violin plot is a combination of a
box plot and a kernel density plot and offers a more detailed view of a dataset’s variability than a box plot alone. The white marker indicates
the median of the data and the black box the interquirtile range (the difference between the third and first quartiles that contain 50% of the
distribution). The black lines extend to one and a half times the width of the box. Violin plots were made in R.
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set having ≤5 HB-donors. When it comes to HB-acceptors,
the two profiles differ slightly. 90% of the compounds in
each data set have ≤10 HB-acceptors, but there is higher
percentage of human metabolites with 9-10 HB-acceptors
(6.9%) than are natural compounds (4.7%). Due to this,
CNPD has a lower mean value and std deviation (4.8 and
4.6, respectively). The number of rings is lower in HMDB,
again because of the presence of lipids that are acyclic. As
a consequence, compounds from HMDB have on average
many more rotatable bonds than their counterparts from
CNPD. While 95% of compounds from CNPD have up to 15
rotatable bonds, half of the compounds from HMDB have
between 30 and 50 rotatable bonds.

Despite the differences noted above, there is a significant
room for overlap between the chemical spaces of the two
datasets, which we attempt to elucidate via a more thorough
structural similarity analysis that follows. First we investigate
how many compounds are present in both data sets, by
comparing their SMILES (Simplified Molecular Input Line
Entry Specification) strings. Following that, we analyze the
extend of structural similarity of the two data sets. For this,
all pairs of molecules between the two sets are compared
using a pairwise similarity metric, which consists of a
descriptor and a similarity criterion. For the descriptor,
MACCS (Molecular ACCess System) keys were calculated in
MOE. The MACCS keys represent each molecule as a vector
of 166 bits, each indicating the presence or absence of a
predefined substructure or functional group (e.g., aromatic
rings, oxygens, amine groups, etc.). The similarity criterion
is the widely used Tanimoto coefficient (Tc) [50]. Tc is
calculated as shown in (1). If two molecules have a and b bits
in their fragment bit-strings, respectively, with c of these bits
being present in both their fingerprints, then Tc corresponds
to the ratio of the number of bits the two molecules have
in common to the total number of occupied bins by both
molecules

Tc = c

a + b − c . (1)

Tc gives valules in the range of zero (no bits in common,
0% similarity) to unity (all bits the same, 100% similarity).
The Tc threshold for two compounds being similar was set
to 0.85 and the similarity networks were visualized using the
Organic Layout of Cytoscape v. 2.6.3 [51].

5.1. Overlap between Human Metabolites and Natural Com-
pounds. There are 383 compounds shared between the two
databases, which denotes that, apart from participating
in the human metabolism, these natural compounds are
secondary metabolites of plants used in ethnopharmacology.
For example, 2-pyrocatechuic acid (HMDB00397) is a
normal human benzoic acid metabolite found in plasma
that is an intermediate of the phenyl propanoid biosyn-
thesis. It is has been isolated from black currant [52],
which has long been used in European and Chinese folk
medicine as diuretic, treating diarrhea, arthritic pain, and
so forth. Recently, 2-pyrocatechuic acid was found to be
weak inhibitor of Selectin E [53] and potent inhibitor of
15-lipogygenase-catalysed oxygenation of arachidonic acid

that is involved in many aspects of inflammatory disease
and in particular in the development of colorectal cancer
[54].

Another example, indole (HMDB00738), is an aromatic
heterocyclic organic compound that occurs naturally in
human feces and has an intense fecal smell. At very low
concentrations, however, it has a flowery smell and is a
constituent of many flower scents. Natural jasmine oil that
contains around 2.5% of indole is used traditionally for
healing the female reproducing system, to treat headaches
and insomnia. In human metabolism, indole participates in
the tryptophan metabolic pathway, which is a highly regu-
lated biological process. There has been significant research
on the medical implications involved in dysregulation of
tryptophan metabolism. Abnormalities in it may play a
role in central nervous system diseases such as acquired
immunodeficiency syndrome- (AIDS-) related dementia
[55], Huntingtom’s disease [56] and psychopathological
disorders [57]. In addition, data from the literature suggest
that a mechanism dependent on tryptophan catabolism
might regulate the immune responses to a number of diseases
[58–60].

5.2. Similarity Networks of Human Metabolites and Natural
Compounds. There are 15,523 natural compounds in CNPD
(29% of the total data set) that have a Tanimoto similarity
coefficient of 0.85 or higher with at least one human
metabolite. In total, there are formed 233,211 similarity
pairs between the two datasets, which indicates that each
natural compound is similar—on average—with 15 human
metabolites.

As an illustrative example, Figures 4 and 5 below show the
similarity networks of 2-pyrocatechuic acid and indole that
were discussed in the previous section. As seen in Figure 4,
2-pyrocatechuic acid is linked with Tc ≥ 0.9 to seven other
human metabolites and 28 natural compounds from CNPD.
Interestingly, the human metabolites of this similarity net-
work belong to two main metabolic processes. HMDB01866,
HMDB06242, HMDA00152, and HMDB01856 are involved
in tyrosine metabolism/biosynthesis, while HMDB00397,
HMDB03501, and HMDB01964 are intermediates of the
phenyl propanoid biosynthesis. Recent research on tyrosine
metabolism suggests strong correlation with chronic kidney
failure [61], eating disorders and migraine [62]. The natural
compounds from CNPD that are met in the network are
primarily benzoic acid derivatives from diverse sources of
plants (e.g., picea maximowiczii, grevillea robusta), fungi
(e.g., polyporus tumulosus, boletus scaber) and flowers (e.g.,
centaurium erythraea, anthemis nobilis), many of which are
known as folk medicine.

Indole, shown in Figure 5, is linked to one other
human metabolite, and four natural compounds from
CNPD. HMDB00466 is the compound 3-methyl indole
that is involved in tryptophan metabolism as well. Three
natural compounds from CNPD have high similarity to the
two human metabolites. 1-methyl-9H-carbazole (cas: 6510-
65-2), 3-methyl-9H-carbazole (cas: 4630-20-0) and 2,4-
dimethyl-1H-indole (cas: 10299-61-3) are alkaloids found in
Tedania ignis (a sponge species) [63], glycosmis pentaphylla
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Figure 4: Similarity network of 2-pyrocatechuic acid. Pink nodes indicate human metabolites from HMDB and green nodes indicate natural
compounds from CNPD. Node labels denote the respective ID codes of the compounds. The nodes are linked when the two compounds have
Tc ≥ 0.85. Due to the high number of pairs with similarity between 0.85 and 0.90, we included in the figure only connections of Tc ≥ 0.90
to allow better visualization of the network. The width and color of the edges are analogous to the value of Tc: Cyan: 0.90 ≤ Tc < 0.95, Blue:
0.95 ≤ Tc < 1.0, Black: Tc = 1. The two nodes in yellow denote 2-pyrocatechuic acid with HMDB ID and CAS registry number, respectively.

(orangeberry) [64], and Tricholoma virgatum (a muchroom
species) [65], respectively. These natural compounds from
CNPD that are found similar to well-studied human metabo-
lites are potentially interesting leads with druglike and
metabolite-like properties that would be worth investigating
further for their medicinal properties and their impact on
human health.

In order to evaluate how the 29% similarity of CNPD to
HMDB compares with other types of data sets, we performed
the same analysis for 4,567 approved and experimental drugs

from DrugBank v.2, as well as for a randomly selected
subset of 59,025 compounds from ChemDiv, a commercial
provider of small compounds for drug discovery HTS. Quite
remarkably, the compounds from DrugBank showed the
same extend of similarity to HMDB as natural compounds
from CNPD. 1,331 drug compounds (29%) were found to
be similar to human metabolites, forming 35,635 similarity
pairs. On the other hand, only 182 compounds from the
subset of ChemDiv were found similar to any human
metabolite, forming just 1,563 similarity pairs in total.
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Figure 5: Similarity network of indole. Pink nodes indicate human metabolites from HMDB and green nodes indicate natural compounds
from CNPD. Node labels denote the respective ID codes of the compounds. The nodes are linked when the two compounds have Tc ≥ 0.85.
The width and color of the edges are analogous to the value of Tc: Cyan: 0.85 ≤ Tc < 0.95, Black: Tc = 1. The node in yellow denotes indole
with HMDB ID and CAS registry number, respectively.

This low similarity of ChemDiv could be attributed to
the fact that HTS databases contain small molecules with
simple structures that can be easily modified further to
more potent drug candidates. These finding supports the
hypothesis that as drug candidates move forward on the drug
optimization platform, there is favorable selection towards
those that mimic the endogenous substrates. The fact that
natural compounds also resemble the latter may indicate that
plants with medicinal properties may exert their action via
their molecular components resembling human endogenous
metabolites.

6. Future Perspectives

Metabolomics, the study of metabolism at the global level, is
moving to exciting directions. With the development of more
sensitive and advanced instrumentation and computational
tools for data interpretation in the physiological context,
metabolomics have the potential to impact our understand-
ing of molecular mechanisms of diseases. A state-of-the-
art metabolomics study requires knowledge in many areas
and especially at the interface of chemistry, biology, and
computer science. High-quality samples, improvements in
automated metabolite identification, complete coverage of
the human metabolome, establishment of spectral databases
of metabolites and associated biochemical identities, inno-
vative experimental designs to best address a hypothesis, as
well as novel computational tools to handle metabolomics

data are critical hurdles that must be overcome to drive the
inclusion of metabolomics in all steps of drug discovery and
drug development. The examples presented above demon-
strated that metabolite profiles reflect both environmental
and genetic influences in patients and reveal new links
between metabolites and diseases providing needed prognos-
tic, diagnostic, and surrogate biomarkers. The integration of
these signatures with other omic technologies is of outmost
importance to characterize the entire spectrum of malignant
phenotype.

Systems chemical biology networks that assemble and
integrate known and predicted links between small com-
pounds of biological relevance, including human metabo-
lites, can have a great potential in pharmaceutical research
that could be used in a variety of ways. Novel ligands can
be selected on the premise of being similar to endogenous
metabolites with the desired bioactivity profile. Pathways
for orphan metabolites could be predicted, based on their
similarity with compounds of known biological target and
mode of action. New ways to kill pathogens and to avoid
unintentionally interfering with human enzymes can be
investigated and cross-interactions between drugs and the
major human pathways can be unravelled. Last but not
least, one could predict the biological targets of bioactive
natural compounds from medicinal plants, by looking at
their similarity networks with human metabolites with
known biological targets. By adding information about
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the metabolic pathways that these metabolites are involved,
one could also extract hypotheses regarding the mode of
action and therapeutic mechanism of the medicinal plant at
the molecular level, which is at the moment the missing link
for the coupling of WM with TCM and ethnomedicine in
general.
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Cancer cells possess unique metabolic signatures compared to normal cells, including shifts in aerobic glycolysis, glutaminolysis,
and de novo biosynthesis of macromolecules. Targeting these changes with agents (drugs and dietary components) has been
employed as strategies to reduce the complications associated with tumorigenesis. This paper highlights the ability of several food
components to suppress tumor-specific metabolic pathways, including increased expression of glucose transporters, oncogenic
tyrosine kinase, tumor-specific M2-type pyruvate kinase, and fatty acid synthase, and the detection of such effects using various
metabonomic technologies, including liquid chromatography/mass spectrometry (LC/MS) and stable isotope-labeled MS. Stable
isotope-mediated tracing technologies offer exciting opportunities for defining specific target(s) for food components. Exposures,
especially during the early transition phase from normal to cancer, are critical for the translation of knowledge about food
components into effective prevention strategies. Although appropriate dietary exposures needed to alter cellular metabolism
remain inconsistent and/or ill-defined, validated metabonomic biomarkers for dietary components hold promise for establishing
effective strategies for cancer prevention.

1. Introduction

Cancer cells exhibit unique metabolic signatures that are re-
quired for their aberrant proliferation [1]. Thus, monitoring
changes in small-molecular-weight compounds (metabo-
nomics) may represent an approach for detecting subtle
shifts in tumor cell behavior [2]. Consequently, metabo-
nomics holds promise as an effective tool for diagnosing dis-
ease progression, for identifying potential molecular targets,
and for developing preventive and therapeutic agents (drugs
and bioactive food components) [3, 4].

The two most effective approaches for metabonomic
measures include nuclear magnetic resonance (NMR) and
mass spectrometry (MS). Urine [5, 6], saliva [7], and blood
plasma [8] have all been used successfully to monitor
metabonomic patterns prior to and following intervention.
Currently, a wealth of information about metabonomics is
accumulating, thanks to highly sensitive Fourier transform
ion cyclotron resonance MS (FT-ICR MS) [9, 10] and reliable

candidate technologies such as stable isotope monitoring
[11].

Scientists have long recognized that the discovery
of novel and noninvasive biomarkers is fundamental to
designing effective clinical studies, forecasting disease risk,
understanding how molecular pathways are interconnected
within cells and organisms, and ultimately predicting health.
For example, a change in serum lactate concentration, as
determined by 1H-NMR spectroscopy predicts weight gain
during chemotherapy and ultimately breast cancer recur-
rence risk [12]. Likewise, the elevated urinary prostaglandin
E(2) metabolite (11-α-hydroxy-9, 15-dioxo-2,3,4,5-tetranor-
prostane-1, 20-dioic acid) has been reported to predict a
poor prognosis in head and neck squamous cell carcinoma
patients and thus the need for more aggressive intervention
approaches [13]. Unfortunately, the relationship between a
given set of biomarkers and a particular pathological con-
dition is often complicated by adjustments and adaptations,
making the predictive value of such measures difficult to
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establish. Metabonomic profiles of blood, urine, or tissues
reflecting in situ status of metabolites may provide a means
of identifying such biomarkers.

The annotation of metabolites identified by NMR- and
MS-based experiments remains a challenge due to the
diversity of study conditions. Thus, it is important to develop
a standardized format that allows the scientific community
to understand results from studies with widely different
conditions. To facilitate this process, a working group of
the Metabolomics Standards Initiative was formed in 2004
[14]. This group has established guidelines for the exchange
and/or report of metabonomics data. Currently available
metabonomic databases, including NIST08, PubChem, and
KEGG, also help identify metabolite spectral data and
structural information. An extensive review of metabonomic
databases is found in a published paper [15]. Well-annotated
and user-friendly databases should be able to assist in
resolving unknown dietary metabolites that play a role in
cancer initiation and development.

Considerable evidence points to diet as a variable that
can influence cancer risk and/or tumor behavior [16]. This
dietary effect may arise from its interactions with key
regulatory molecules in various cancer processes, including
carcinogen metabolism, hormonal balance, cell signaling,
cell cycle control, apoptosis, and differentiation. The goal of
this paper is to provide some insights into the metabonomic
assessment of dietary effects on cancer. This is critical to
evaluate whether a single or multiple dietary component(s)
modulate the early transition phase from normal to cancer
phenotypes, including changes in specific enzymatic activi-
ties and carbon flows.

2. Metabonomic Shifts Caused by Bioactive
Food Components in Cancer Cells

Metabolic profiling of cancer cells represents global pheno-
typic changes, including those in glucose metabolism, amino
acid metabolism, and fatty acid metabolism. This section dis-
cusses diet-induced alterations in basic metabolism that are
associated with changes in cancer cell behavior and the mon-
itoring of those changes using global metabonomic profiles.

2.1. Glucose Metabolism. A distinct difference between nor-
mal and cancer cells lies in the way these cells utilize
glucose for their survival. The energy that sustains cancer
cells is preferentially derived from aerobic glycolysis, which
produces significantly higher amounts of lactate from pyru-
vate, whereas normal cells use the aerobic tricarboxylic acid
(TCA) cycle, which oxidizes pyruvate to CO2 and water.
Furthermore, proliferating cancer cells also utilize glucose
for the synthesis of nucleotides through the nonoxidative
pentose phosphate pathway (PPP) and de novo fatty acid
synthesis mediated by fatty acid synthase (FAS) [1]. These
differences in metabolism between normal and cancer cells
are particularly interesting because they are detectable by
non-invasive profiling in blood or urine and thereby can
serve as clinically useful biomarkers for predicting diet-
induced shifts in the metabolic switch. Potential metabo-
nomic targets for bioactive food components are discussed
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Figure 1: Potential metabonomic targets for bioactive food com-
ponents during glucose metabolism in cancer cells. Cancer cells
metabolize glucose and glutamine more than normal cells to sup-
port the de novo biosynthesis of nucleotides and energy required for
the high rate of cell proliferation. Tumor-specific PKM2 determines
the ratio of glucose metabolism between glycolysis and PPP, whereas
GLUT1 and TK play critical roles in energy production in neoplastic
cells via the TCA cycle and glutaminolysis, respectively. Each of
these pathways is modulated by specific bioactive food components
(see text). BFCs: bioactive food components; PKM2: pyruvate
kinase M2 isoform; PPP: pentose phosphate pathway; TK: tyrosine
kinase; GLUT1: glucose transporter 1; TCA: tricarboxylic acid.

in detail in the following sections and are summarized in
Figure 1.

2.1.1. Increased Glucose Uptake. Increased glucose uptake
is recognized as a hallmark for cancer cell malignancy
and serves as a basis for using 18F-deoxyglucose positron
emission tomography for cancer detection. Recently, a KRAS
mutation with aberrant cell proliferation was found to relate
to the upregulation of the glucose transporter (GLUT1)
gene, suggesting that genetic mutations acquired in tumor
cells account for enhanced glucose uptake [17]. This change
is critical for cell proliferation [18], and thus GLUT1
expression may represent a promising target for cancer
prevention. A number of dietary components, including
green tea polyphenolics, cinnamon polyphenol extracts, fish
n-3 fatty acids, and vegetable flavonoids such as myricetin
and quercetin, have been documented as modifiers of glucose
uptake by altering GLUT1 expression [19–22]. Impressively,
these effects occur in several cell lines, suggesting widespread
utility of their benefits. The concentrations used, at least
for some, appear physiologically relevant and therefore may
occur after a simple dietary change. Although these findings
provide promise for the diet-mediated prevention of cancer
cell proliferation, unfortunately none of these dietary effects
was examined with high-throughput metabonomic profiles.
Considering the ability of metabonomics to detect changes
in glucose metabolism in cancer cells [23], it is likely that
these dietary effects on glucose uptake, including GLUT1
expression, can be detected using the same approach.

2.1.2. Aerobic Glycolysis. The conversion of glucose to lactate
in the presence of oxygen is a critical aerobic pathway that
allows cancer cells to proliferate rapidly. In vivo expression
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of the M2 isoform of the glycolytic enzyme pyruvate kinase
(PK) is required for this process [24]. PK has four isozymes
that are tissue specific: the L and R isoforms are expressed
in liver and red blood cells, respectively the M1 in most
adult tissues and M2 in lung and embryonic cells. In
normal proliferating cells, PK exists in a tetrameric form that
transfers one phosphate group from phosphoenolpyruvate
(PEP) to adenosyl diphosphate, yielding one molecule of
adenosine triphosphate (ATP). In cancer cells, however, this
enzyme is exclusively expressed as an M2 type of pyruvate
kinase (PKM2), which results in a conformational change
from a tetrameric to a dimeric form that possesses a low
affinity for PEP and thus limits enzymatic function. This
structural change was shown to be mediated through phos-
photyrosine peptides or src in cancer cells [25], suggesting
that oncogenic tyrosine kinases (TKs) might be promising
targets for cancer prevention. Support for this conclusion
comes from observations that PKM2 is released from
tumors into the blood and can be monitored non-invasively.
Plasma tumor PKM2 is reported to increase significantly as
tumor progresses in lung cancer, qualifying it as a valuable
biomarker [26]. Recently, delphinidin, an anthocyanidin that
is abundant in grapes, cranberries, and pomegranates, has
been reported to inhibit TK activities, including receptor
TKs [27]. Additionally, isothiocyanates in broccoli have
been reported to inhibit TK [28]. Overall, these findings
suggest that some of the antiproliferative effects of bioactive
food components may arise from their ability to convert
tetrameric PKM2 to dimeric PKM2 and thereby bring about
a shift in glucose flux from a nonoxidative to an oxidative
pathway. Although some evidence exists that changes in
glucose carbon flux from glycolysis to gluconeogenesis can
be measured by the combination of LC/MS metabonomic
profiling with stable isotope techniques using 13C-labeled
glucose [29], these approaches have not been used for the
study examining dietary effects. Thus, it is warranted to
use metabonomic profiling to monitor the effects of diet
or dietary components on PKM2-mediated shifts in glucose
flux.

Although limited numbers of metabonomic studies
have examined the cancer preventive effects of dietary
components, the efficacy of the dietary supplement silib-
inin provides some proof of principle. Silibinin, extracted
from a milk thistle, has been reported to significantly
influence the metabolism of prostate cancer cells [30].
Quantitative high-resolution proton NMR spectroscopy
was used to monitor the metabonomic profile of blood
and tissue extracts in non-human animals receiving or
not receiving silibinin. The metabolomic profile suggested
that feeding TRAMP/C57BL/6 mice with a 1% silibinin-
supplemented diet reduced lactate formation, increased
glucose oxidation through the TCA cycle, reversed the
increase in citrate use, and decreased cholesterol and phos-
phatidylcholine levels in prostatic tumors, which parallels
earlier findings regarding the prostate cancer preventive
potential of silibinin in this animal model. These results
suggest that non-invasive metabolomic studies can help
monitor the effectiveness of cancer preventives against
malignancy.

2.1.3. Increased De Novo Biosynthesis of Nucleotides via the
Pentose Phosphate Pathway. Since PKM2 in cancer cells does
not convert PEP to pyruvate efficiently, the upstream glucose
metabolites are redirected towards a biosynthetic pathway
such as PPP. Any rapidly proliferating cells, including
cancer cells, utilize PPP to generate ribose-5-phosphate and
the reduced form of nicotinamide adenine dinucleotide
phosphate (NADPH) from glucose, which is essential for
de novo DNA formation. Evidence exists that vitamin E,
which is abundant in wheat germ extract and various
other fat sources, inhibits nonoxidative tumor cell PPP and
thereby suppresses cancer cell proliferation [31]. In leukemia
patients, vitamin E was found to decrease pentose cycle
substrate flow into RNA ribose, which was measured using
stable isotope-labeled [1,2-13C2] glucose as the single tracer
and biological MS. These changes in glucose carbon flux
correlated with the cell growth-controlling and apoptosis-
inducing effects of fermented wheat germ [31].

Another dietary component, genistein, which is found
in soy, has also been shown to exhibit a similar effect on
PPP without modulating fatty acid synthesis [32]. When
MIA pancreatic cancer cells were treated with a physiological
concentration of genistein (20 μM) for 3 days, the carbon flux
from 13C-labeled glucose to nucleic acid ribose through the
nonoxidative PPP decreased significantly [32]. These changes
in PPP coincided with the cancer protective effects of either
vitamin E or genistein, implying that a shift in a metabolic
signature may be a useful biomarker for monitoring the
efficacy of dietary components.

2.2. Amino Acid and Fatty Acid Metabolism

2.2.1. Glutaminolysis. Glucose is the major energy source
in normal cells. This nutrient undergoes the metabolic
switch in tumor cells from energy production to de novo
biosynthesis of macromolecules, including nucleic acids.
This shift increases the demand for carbon sources in cancer
cells to generate ATP. It has been reported that cancer cells
accumulate glutamine faster than noncancerous cells [33]
and utilize it as a substrate for the TCA cycle (glutaminol-
ysis). Ultimately, the cancer cell catabolizes glutamine to
ATP and lactate. This metabolic shift is thought to be
mediated by the myc oncogene [34]. It is well established that
the activity of this oncogene can be modulated by various
dietary components, including betaine, folic acid, genistein,
and fat [35–38]. For example, supplementing the diet with
betaine (1%) fed to rats developing liver tumors caused by
diethylinitrosamine significantly reduced liver c-myc expres-
sion [35]. 1H-NMR spectroscopy-based metabolic profiles
of plasma and urine have revealed an interaction between
betaine exposure and low-density lipoprotein receptor gene
expression [39]. Metabonomic profiles that explore the
influence of dietary fat metabolism regulators to detect
variation in c-myc oncogene expression are warranted.

2.2.2. Fatty Acid Synthase. Treatment of mouse mammary
epithelial cells (HC11) in culture with 40 nM of genistein
for 6 hours has been reported to significantly suppress
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Figure 2: Fatty acid synthase as a metabonomic target for
bioactive food components in cancer cells. Tumor cells exhibit
the increased activity of FAS, which converts citrate-originated
acetyl-CoA to fatty acids, mainly palmitate. The citrate is generated
in mitochondria and, instead of further oxidation, is exported
to cytosol as citrate. Upon exit, citrate forms acetyl CoA and is
converted to fatty acids in cytosol, which is suppressed by a variety
of dietary components, including tea catechin, DHA in fish oil,
β-glucan in barley and mushrooms, resveratrol in red grapes, the
vegetable flavonoid luteolin, and CLA in milk. FAS: fatty acid
synthase; CoA: coenzyme A; PUFA: polyunsaturated fatty acid;
DHA: docosahexaenoic acid; CLA: conjugated linoleic acid.

Wnt-1-induced, but not basal, expression of c-Myc [37]. It
is logical that several dietary components may affect myc
gene expression in vivo to regulate glutaminolysis, and this
issue should be clarified using metabonomics. In tumor
cells, the limited affinity of tumor-specific PKM2 for PEP
forces some, but not all, pyruvates to be oxidized to citrate
in the mitochondria. This citrate is then exported to the
cytosol, where it is used as a substrate for fatty acid synthesis
(Figure 2). This shift from oxidation to lipogenesis in citrate
metabolism is evident by the increased activity of FAS,
which converts glucose-originated malonyl-CoA to long-
chain fatty acids, mainly palmitate, in tumor cells. The
synthesized fatty acids are incorporated into phospholipids,
the accumulation of which may cause metabolic diseases,
including cancer. For example, the de novo biosynthesis of
fatty acids from glucose as determined by proton NMR
spectroscopy (1H-MRS) is frequently observed with the lipid
droplet formation in brain tumor glioma cells [40]. The
possibility that these synthesized fatty acids may modulate
the oncogenic PI3K/AKT pathway and thereby influence
glucose uptake and metabolism cannot be ignored.

A variety of dietary components, including tea catechin,
docosahexaenoic acid (DHA) in fish oil, β-glucan in barley
and mushrooms, resveratrol in red grapes, the vegetable
flavonoid luteolin, and conjugated linoleic acid in milk, have
been shown to suppress FAS expression and activity [41–46].
Treatment of the human breast cancer cell SK Br-3, which
constitutively expresses FAS, with 150 μM epigallocatechin-
3-gallate (EGCG) for 24 hours resulted in a marked
reduction in this enzyme activity (59%±13%), but not its
expression, compared to controls [41]. In the same study, the
suppressive effect of EGCG on FAS activity was confirmed
in vivo using C57BL/6J male mice. Likewise, the oral
feeding of C57BL/KsJ-db/db mice with DHA (1 g DHA/100 g

diet) for 4 weeks significantly reduced hepatic FAS activity
accompanied by lowered levels of triglyceride [42]. Finally,
feeding C57BL mice a high-fat diet supplemented with
4% barley containing a high amount of β-glucan for 12
weeks significantly reduced the hepatic FAS activity [43]. It
should be possible to detect diet-induced changes in FAS
with metabolomic profiling, which allows the monitoring of
changes in physiologic enzyme activities using LC/MS [47].

The responsiveness of FAS to dietary components, the
differential expression of this enzyme in various stages of
cancer development, and its critical role in de novo lipid
synthesis made it an ideal target for the dietary prevention
of cancer. It has been shown that altered FAS expression
brings about the signature metabolic changes in human
prostate cancer. Human prostatic epithelial cells are highly
unique in accumulating zinc that blocks citrate degradation.
In cancer cells, however, the prostate tissue contains low
levels of citrate, because it does not accumulate zinc and
because most of the citrate is used for fatty acid synthesis.
1H-MRS of prostate tissues confirmed the dramatic decrease
in citrate levels in prostate gland during malignancy [30].
Likewise, silibinin in milk thistle was reported to significantly
decrease the expression of FAS and its transcription factor,
sterol response element-binding protein 1c, as examined
with 1H-MRS-based metabonomic approaches in neoplastic
prostate cells [30]. The metabolic profile of prostatic tumors
obtained from TRAMP mice fed a silibinin diet for 20
weeks revealed decreases in lactate and increases in citrate.
Thus, a shift in the metabolic profile may help explain
silibinin’s antitumorigenic effects. Fatty acid synthesis is also
known to be influenced by several confounding factors,
including peroxisome proliferator-activated receptors and
choline availability [48]. Metabonomic profiles of tissue
extracts may provide important clues about the fatty acid
homeostasis that is likely to be influenced by multiple
variables, including dietary habits.

3. Stable Isotope Technologies

The activity of bioactive food components in the body is
dynamic, and thus a single point in time measurement
may not lead to appropriate conclusions. Fortunately, these
subtle shifts in metabolites can be traced using labels,
including stable isotopes. Stable isotopes such as 13C or
15N that generate mass difference and thus can be detected
by NMR or imaging technologies are widely used to trace
dynamic movements, including nutrient flux, bioavailability,
or kinetics in vivo [49]. Other major advantages of stable
isotopes include their stability and independency, which
allows long-term studies as well as the simultaneous labeling
of more than one molecule on the same compound.

Although stable isotope technologies combined with
NMR, especially 2D 1H total correlation spectroscopy, can
be used for correlating a single isotopomer to its parental
compound, the resolving power and sensitivity of this
analytical technique are much less than those of MS.
Stable isotope labeling, combined with various types of
MS equipped with versatile ion sources such as FT-ICR,
electrospray, and matrix-assisted laser desorption/ionization,
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Table 1: Preclinical and clinical nutrition studies using stable-isotope metabonomics.

Specimen Analysis
Stable

isotope
Results Reference

Blood, urine NMR, GC-MS 13C

Differential glucose metabolic pathways between normal and cancer
cells in lung: 13C glucose was infused to lung cancer patients and
showed enhanced production of Asp and Glu via glycolysis in lung
tumor tissues.

Fan et al.
[50]

Cell extracts GC/MS 13C

The treatment of MIA pancreatic adenocarcinoma cells with 200 μM
genistein for 3 days reduced the glucose (labeled with [1,2-13C]
glucose) metabolism via the nonoxidative pentose pathway, which
coincided with its antiproliferative effects.

Boros et al.
[32]

Cell extracts GC-MS 13C
The altered flux in response to gluconeogenic substrates in fasting rat
hepatocytes was measured with [1,2-13C2] glucose.

Marin et
al. [51]

Cell extracts GC-MS 13C
The treatment of butyrate-sensitive HT29 human colon
adenocarcinoma cells with 5 mM butyrate resulted in the inhibition
of glucose uptake, oxidation, and nucleic acid ribose synthesis.

Boren et
al. [52]

Plasma GC/MS 13C
The hypoglycemia seen in the fasting PPARα null mouse is due to the
reduced recycling of glucose carbon from lactate back to glucose.

Xu et al.
[53]

Table 2: Metabonomic profiles of metabolites from selected bioactive food components in human blood and urine.

Food source Component
Metabonomic
analysis

Blood Urine Reference

Green tea EGCG HPLC-MS/MS EGCG
Sulfated and glucuronidated
conjugates of EGCG, hippuric
acids

Del Rio et al. [58] Wang
JS et al. [59].

Soy Genistein LC-ESI-MS/MS
Monoglucuronides of
genistein

Glucuronidated genistein
Guy et al. [60] Kano et
al. [61].

Cruciferous
vegetables

Glucobrassicin HPLC-MS/MS DIM, LTr1, H1-1M DIM
Reed et al. [62]
Anderton et al. [63].

Red grapes Piceid
LC-MS/MS,
NMR,
HPLC/DAD

Sulfate and
glucuronide
conjugates of
transresveratrol

Sulfate and glucuronide
conjugates of trans-resveratrol

Burkon and Somoza
[64]., Boocock et al.
[65].

Cruciferous
vegetables

Glucoraphanin
HPLC-MS, LC-
(ESI)MS/MS

Sulforaphane

Mercapto-conjugates of
sulforaphane (N-acetyl cysteine
conjugates are major
metabolites.)

Egner et al. [66], Al
Janobi et al. [67].

Fish,
Mushroom

Vitamin D2, D3 LC-MS/MS 25-OH vitamin D
24,25(OH)2D3,
1α,24,25(OH)2D3

van den Ouweland et al.
[68].

can isolate and detect the molecule of interest—even when
several compounds may be crowded at one location on the
profile—and thus serves as a powerful tracing technique.
Representative preclinical and clinical studies using stable
isotope technologies involving nutrition and cancer are
provided in Table 1 [50–53]. Several excellent reviews about
the merits of stable isotopes have been recently published
[11, 54].

4. Metabonomics Can Detect Cancer
Preventive Dietary Metabolites Generated
by Microorganisms

It seems obvious that the biological functions of small-
molecular-weight compounds (metabolites) are modulated

by microbiota accounting for more than 100 trillion living
organisms in the human gut. Gastrointestinal microbes
are quick responders to dietary changes in terms of their
metabolism and/or gene expression. Evidence exists that
these changes may affect the utility of nutrients obtained
from the diet and thereby influence human health and
disease outcome [55]. The precise role of microbes in
physiological metabolic pathways was investigated using a
well-defined animal model transplanted with human fecal
microbial communities [55]. When these animals were fed
a high-fat and high-sugar diet (Harlan-Teklad TD96132),
they developed increased adiposity, which can be char-
acterized metabolically when switched to a low-fat and
plant-polysaccharide-rich diet (B&K 7378000) [55]. These
results suggest that microbes may either provide additional
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metabolic pathways to the host or directly modify the existing
processes, resulting in altered phenotypes. Specific examples
of how microbes metabolize dietary components and release
cancer preventive compounds are described in detail in an
earlier review [56]. With the current advances in “omics”
technologies, these changes caused by human gut microbes
can be directly detected by metabolomic profiles [57].
Although the application of metabolomics to microbiome
projects is in its infant stage, the effects of diet on the human
gut microbiome and the utilization of metabolomic analysis
for its detection hold promise for future investigation.

5. Metabonomics Involving Bioactive Food
Components in Clinical Studies

The current status of metabonomics that has been used for
identifying and characterizing the physiological metabolites
of food ingredients in humans is summarized in Table 2
[58–68]. The analysis of active food metabolites usually has
been conducted with compounds known to be efficacious
to human diseases. The molecules that interact with cellular
components of target tissues are not food constituents but
rather their metabolites that are absorbed and transported
to each site of action [69–71]. For example, EGCG, which
occurs in green tea, is considered to be a tumor preventive
agent. Nevertheless, the prostate tissue of men who had
consumed 6 cups of green tea daily for 6 weeks contained
both EGCG and its methylated metabolite 4′′-O-methyl
EGCG. The latter has been reported to be less active than
EGCG in terms of its cancer preventive action [69]. On the
other hand, urolithin, a microbially generated metabolite of
an active component in pomegranate juice, ellagic acid, has
been found to exhibit cancer protection in various tissues,
including colon, breast, and prostate [70, 71]. Thus, findings
from metabonomic studies should be able to assist with
clarifying how food or dietary components are metabolized
in the body, possibly modulate human cell behavior, and
ultimately and possibly influence human health. Currently,
limited numbers of investigations exist in this area, but the
science is poised to provide important new insights.

6. Future Directions

Metabonomics is the systematic study of small-molecular-
weight substances that are the final products of genes and
proteins. Although extensive research about genomics and
proteomics is beginning to unravel the role of genes and
proteins, the metabolites that dictate their characteristics for
a given phenotype remain largely ill-defined. Metabonomic
profiling using readily available biofluids, tissue extracts, or
intact tissues may provide early clues about cellular events
that influence phenotypic characteristics. Recently, there has
been increased interest in cancer metabonomics and its
potential for use in clinical and/or epidemiological investi-
gations. The enriched understanding of basic mechanisms
that account for shifts in the metabolome should become
reality for metabonomic investigations so that effective
interventions can be employed.

Although nutrition is known to modulate a number
of regulatory networks involved with pathways leading to
and promoting cancer, there is a dearth of studies that
have examined diet as an important variable. Admittedly,
there are critical issues in understanding metabonomic
profiling information from nutritional studies, including
the quantity and the temporal relationship of the bioactive
food component consumed. Regardless, the fundamental
nature of nutrition in harnessing overall cellular metabolism
deserves greater attention. Controlled human intervention
studies that incorporate physiologically relevant concentra-
tions and exposures for various times are fundamental to the
understanding of the utility of metabonomics as a tool for
predicting phenotypic change caused by diet. Although there
will be many challenges to the interpretation of these studies,
their societal implications are enormous given the central
role that diet has in health promotion and disease prevention,
especially that related to cancer.
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There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC) may help in detecting
abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction.
Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as
potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and
quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential
use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR) spectroscopy. By using this
approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and
personalized therapy.

1. Introduction

Metabonomics is “the quantitative measurement of the
dynamic multiparametric metabolic response of living sys-
tems to pathophysiological stimuli or genetic modification”
[1] due to any exposure (including drug administration),
lifestyle and environmental stress. It, therefore, appears to
be a powerful tool to monitor possible changes in metabolic
pathways, and measure the levels of biochemical molecules
generated in a living system. Metabolites are small molecules
with molecular mass ≤1 kD [2] and are the end products
of cellular activity. Observation of changes in metabolite
concentrations may reveal the range of biochemical effects
induced by a disease condition or its therapeutic interven-
tion. The metabonomic analysis has two major potential
applications, with implications in early diagnosis and disease
phenotyping. It may also allow the recognition of unexpected
or even unknown metabolites to formulate new patho-
physiological hypotheses [3]. Moreover, the identification of
individual metabolic characteristics could predict personal
drug effectiveness and/or toxicity [4, 5].

The application of metabonomic analysis in chronic
airway diseases has not been fully explored, but it holds a
valid background. Several airway diseases, such as asthma
or chronic obstructive pulmonary disease (COPD), which
are largely spread in the population, cannot be qualified
by a single biomarker and need a system biology analysis.
Furthermore, other airway diseases such as cystic fibrosis
(CF), although characterized by genetic abnormality, might
be fruitfully investigated. Finally, the respiratory tract offers a
natural matrix, the exhaled breath, which appears to be note-
worthy for metabonomic analysis. Exhaled breath contains
many different molecular species such as small inorganic
molecules like nitric oxide (NO) or carbon monoxide (CO),
volatile organic compounds (VOCs), and so forth, [6], which
can be assayed in both the liquid and gaseous phases.

2. NMR-Metabonomics

The principal techniques used in metabonomics of breath
(“breathomics”) are mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy, since they can
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handle complex biological samples with a high sensitivity,
selectivity, and high throughput [7].

MS, usually combined with chromatographic separation
methods, separates the molecules of a sample on the basis of
their retention time and mass-to-charge ratio m/z, and their
representation in a spectrum [8, 9].

Real-time measurements of breath are also possible
using direct breathing ports and techniques such as proton
transfer reaction-mass spectrometry (PTR-MS), selected ion
flow tube-mass spectrometry (SIFT-MS), and ion mobility
spectrometry (IMS), as well as other analytical techniques
including chemical sensors and various forms of laser
spectrometers [6]. MS metabonomics has recently been
applied to CF, where airway inflammation brings about an
increased production of reactive oxygen species, respon-
sible for degradation of cell membranes and causing the
formation of VOCs. Robroeks et al. [10] have evaluated if
VOCs metabonomics, analyzed by gas chromatography-time
of flight-mass spectrometry to assess VOC profiles, could
discriminate CF and controls, and CF patients with and with-
out Pseudomonas colonization. By using 22 VOCs, a 100%
correct separation of CF patients and controls was possible,
while with 10 VOCs, 92% of the subjects were correctly
classified. The reproducibility of VOC measurements with a
one-hour interval was very good. The authors concluded that
metabonomics of VOCs in exhaled breath was possible in a
reproducible way, and it was not only able to discriminate
between CF patients and controls, but also between CF
patients with or without Pseudomonas colonization.

NMR spectroscopy studies molecules by recording the
interaction of a radiofrequency electromagnetic radiation
with the nuclei (e.g., 1H, 13C, 15N, etc.) placed in a strong
magnetic field. A single nucleus in a molecule can be
“observed” by monitoring the corresponding line (a “reso-
nance”) in an NMR spectrum, and the various parameters of
that line (frequency, splitting, linewidth and amplitude) can
be used to determine the molecular structure, conformation
and dynamics of the molecule. In principle, assignment (i.e.,
identification) of NMR resonances for common metabolites
could be possible by comparing the observed chemical shifts
(i.e., the position of the line in a spectrum) with published
reference data. When dealing with metabolites of unknown
structure, chemical procedures for the separation of each
molecule and use of two-dimensional NMR experiments
(that spread signals in two dimensions) are required. Since
NMR spectra show hundred of resonances, the presence
of a discriminating element (e.g., a signal characteristic
of a specific metabolite) in a series of spectra is often
undetectable by visual inspection due to the inherent spectral
complexity generated by line overlapping, and it is better
highlighted by multivariate analysis (principal component
analysis, PCA), which carefully identifies hidden phenomena
and trends in ensembles of spectra [11]. The application of
PCA to a group of spectra can immediately show whether
all spectra behave similarly grouping in a single class, or
fall apart into different groups. The main advantage of
using NMR spectroscopy is its ability to provide a rapid
and accurate metabolic picture of the sample with minimal
sample pretreatment [12]. Furthermore, since the technique

is nondestructive, the samples can be investigated several
times as long as some preventative measures are taken to
avoid metabolite degradation.

3. Use of NMR Metabonomics for
the Study of Airways

Metabonomics has been employed to investigate several body
fluids such as urine, plasma, serum, and tissue extracts as
well as in-vivo cells and their extracts [13], but only few
applications to airway diseases characterization have been
reported.

Airway hyperreactivity (AHR), an important characteris-
tic of airway pathophysiology in human asthma, has recently
been evaluated in an animal model of asthma exacerbation
by urine NMR-based metabonomics [14]. The authors
assumed that airway dysfunction and inflammation would
produce unique patterns of urine metabolites observed
by high-resolution proton (1H) NMR spectroscopy, and
the data analyzed by multivariate statistical analysis. In
this model, challenged (ovalbumin, administered intraperi-
toneally, plus ovalbumin aerosol) guinea pigs developed
AHR and increased inflammation compared with sensitized
or control animals. Partial least-squares discriminant anal-
ysis using concentration differences in metabolites could
discriminate challenged animals with 90% accuracy. Note-
worthy, urine metabonomic profiles were able to separate
not only sensitized from challenged and from naı̈ve animals,
but also from animals treated with dexamethasone which
improves AHR. Recently, Slupsky et al. demonstrated specific
changes in NMR metabonomic urinary profiles during
episodes of pneumonia caused by Streptococcus pneumoniae
or Staphylococcus aureus [14].

NMR metabonomics was also used to study the mech-
anism behind the formation of airway biofilm caused by
Pseudomonas aeruginosa, an infection particularly prevalent
in patients with CF [15]. In this kind of patients, the sessile
lifestyle, referred to as a biofilm, allows the antibiotic resis-
tance and makes easier the process of colonization through
the synthesis of sticky, polymeric compounds. In contrast,
the planktonic, free-floating cells are more easily eradicated
with antibiotics. In this study, chemical differences between
planktonic and biofilm cells, based on 1H-NMR, have been
reported. In this study, NMR techniques have highlighted the
metabolic differences between the two modes of growth in
P. aeruginosa, and PCA, and spectral comparisons revealed
that the overall metabolism of planktonic and biofilm cells
displayed marked differences, which require more extensive
NMR investigations.

More recently [16], metabolite profiles of bronchoalveo-
lar lavage fluid (BALF) from pediatric patients with CF were
correlated to the degree of airway inflammation using NMR-
based metabonomics. BALF was collected from 11 children
with CF during clinically indicated bronchoscopy. The BALF
spectra with high levels of neutrophilic airway inflammation
displayed signals from numerous metabolites whereas the
spectra from subjects with low levels of inflammation were
very sparse. The metabolites identified in samples taken from
subjects with high inflammation include known markers of
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inflammation such as amino acids and lactate, as well as
many novel signals. Statistical analysis highlighted the most
important metabolites that distinguished the high- from
the low-inflammation groups. This first demonstration of
metabonomics of human BALF shows that clear distinctions
in the metabolic profiles can be observed between subjects
experiencing high versus low inflammation. However, the
bronchoalveolar lavage has the important limitation of being
invasive, requiring the introduction of exogenous fluid into
alveolar space.

4. EBC

EBC is a noninvasive method of sampling the airways; it can
be easily repeated and is acceptable to patients. Currently,
EBC is used to measure biomarkers of airway inflammation
and oxidative stress, and guidelines for its use have been
recently published [17]. EBC can also be considered a matrix
for analysis of environmental toxicants.

EBC collection requires the cooling of the exhaled breath
(Figure 1(a)), resulting in a fluid sample that contains
evaporated and condensed particles (water, ammonia, etc.)
plus some droplets from the airway lining fluid [17, 18].
These droplets are released by turbulent airflow and can be
added to the water vapor from anywhere between the alveoli
and the mouth. Therefore, not only volatiles, but also several
other mediators with nonvolatile characteristics can be found
in EBC samples, including adenosine, different interleukins
(-4, -5, -8), interferon-γ [17]. EBC is mainly (>99%)
formed by water vapor, but also contains aerosol particles in
which several other biomolecules including leukotrienes, 8-
isoprostane, prostaglandins, hydrogen peroxide, nitric oxide-
derived products, and hydrogen ions, can be detected [17].
EBC markers of oxidative stress such as hydrogen peroxide,
isoprostanes, nitrogen oxides, pH, ammonia, prostanoids
and leukotrienes are increased in bronchial asthma [19].
EBC pH is lower in asthmatics and correlates well with
sputum eosinophilia, total nitrate/nitrite, and oxidative stress
[20], but did not reflect the clinical status of the patients.
EBC markers that correlate with disease severity, response
to treatment, or both are hydrogen peroxide, leukotrienes,
8-isoprostane, nitrate, and nitrite [10]. It is assumed that
airway surface liquid becomes aerosolized during turbulent
airflow so that the content of the condensate reflects the com-
position of airway surface liquid, although large molecules
may not aerosolize as well as small soluble molecules.

The major advantage of EBC is represented by the
possibility to analyze both volatile and nonvolatile com-
pounds [21]. There are some recent approaches to compare
traditional blood test (glucose and urea) with the EBC
in metabolic diseases. Accordingly, glucose in EBC from
healthy volunteers was reproducible, unaffected by changes
in salivary glucose, and increased during experimental
hyperglycaemia [22].

Notably, EBC parameters are influenced by smoking,
alcohol consumption, equipment, exercise, mode and rate of
breathing, nasal contamination, environmental temperature
and humidity, and assays used [23, 24], leading to undesir-
able variability. Exogenous contamination may also originate

from the oral cavity. Ammonia and sulfur-containing com-
pounds like H2S, methyl sulfide or mercaptans are released
from the oral cavity, being produced by bacteria from
different oral niches. However, oral sterilization before
EBC collection or continuous saliva deglutition have been
suggested to limit the effects of such contaminations [14].
The influence of age, sex, circadian rhythm, and infection
remains unknown. Thus the analysis of EBC currently has
important limitations.

Reference analytical techniques are required to provide
definitive evidence for the presence of some inflamma-
tory mediators in EBC and for their accurate quantitative
assessment in this biological fluid. Finally, the physiological
meaning and biochemical origin of most of volatile com-
pounds are still not known, and biochemical pathways of
their generation, origin, and distribution are only partly
understood. Unfortunately, the concentrations of various
mediators studied are very low, requiring highly sensitive
assays.

5. Metabonomics of EBC in
Respiratory Diseases

NMR-based metabonomics can be used to analyze EBC
samples from adults, allowing a clear-cut separation between
healthy subjects and patients with airway disease [11].
Although less sensitive than ELISA and MS, NMR spec-
troscopy requires minimal sample preparation with a rapid
acquisition time of spectra (10–15 min). Furthermore, it
shows a high degree of sensitivity (≤ μmol/L), and is
nondestructive, allowing complete detection of metabolites
present in the sample (“sample metabolic fingerprint”) at a
reasonable cost. NMR is also able to detect potential con-
tamination of EBC from saliva, and examine the interfering
effect of residual external contaminants, which is crucial for
a correct EBC analysis of the variability of some biomarkers
[11, 25, 26].

To date there are several recommendations on the
methodological approach to EBC collection, but its stan-
dardization is not completely defined, as EBC can be
contaminated by metabolites originating from saliva as well
as microbes present in the mouth [27, 28]. We have recently
proposed a possible protocol for EBC collection for NMR
purposes (Figure 1) [11]. It requires that subjects breath
through a mouthpiece and a two-way nonrebreathing valve,
which also serve as a saliva trap, at normal frequency and
tidal volume, while sitting comfortably and wearing a nose-
clip, for a period of 15 minutes (Figure 1(a)) [29]. They
maintained a dry mouth during collection by periodically
swallowing excess saliva. Condensate samples (1-2 mL) are
immediately transferred into glass vials, closed with 20-mm
butyl rubber lined with PTFE septa, and crimped with perfo-
rated aluminum seals. Volatile substances, possibly deriving
from extrapulmonary sources are removed by applying a
gentle stream of nitrogen for 3 minutes before sealing
[30, 31]. Nitrogen was used because concentration of volatile
solutes in EBC is dependent on their distribution between
the saliva, exhaled air, and droplets, and the condensate,
which can be altered by multiple factors including minute
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Figure 1: Metabonomics of EBC using NMR. The exhaled breath is cooled in (a), then transferred into the NMR tube (0.5–0.7 mL) (b) and
put in the spectrometer (c) to collect the spectra (d).

ventilation, salivary pH, solubility, temperature, and sample
preparation [29]. Therefore, spectral differences may depend
upon uncontrollable variables that prevent reliable quan-
tification. The nitrogen stream also removes oxygen from
solutions, which, together with freezing of sealed samples
in liquid nitrogen, immediately “quenches” metabolism at
the collection time, and prevents any metabolic decay [32,
33]. Samples are then stored at −80◦C until NMR analysis.
Drying of the samples should be avoided to circumvent irre-
versible solute precipitation, and/or formation of insoluble
aggregates, which we observed upon dissolving the dried
condensate for NMR measurements.

Before NMR acquisition, EBC samples should be rapidly
defrosted and transferred into the NMR tube (Figure 1(b)).
To provide a field frequency lock for NMR acquisition, 70 μL
of a D2O solution [containing 1 mM sodium 3-trimethylsilyl
[2,2,3,3-2H4] propionate (TSP) as a chemical shift and
concentration reference for 1H spectra, and sodium azide at
3 mM] are added to 630 μL of condensate reaching 700 μL of
total volume.

Following acquisition (Figures 1(c) and 1(d)), 1H-NMR
spectra are automatically data reduced to 200–250 integral
segments (“buckets”) using dedicated software packages
(e.g., AMIX, Bruker Biospin, Germany). The resulting
integrated regions are then used for statistical analysis
and pattern recognition. To avoid possible errors in signal
intensity due to difference in the volume of collected EBC
samples, before pattern recognition analysis each integral

region is normalized to the sum of all integral region of
each spectrum. In the presence of contaminant peaks (e.g.,
those originating from the condenser disinfectant), which
randomly alter the total area of the spectrum, each bucket has
to be normalized to the TSP peak of known concentration,
referring to a standard region comprised, for example,
between 0.014 and −0.014 ppm.

Figure 2 represents spectra of saliva (left traces) and EBC
samples (right traces) from a healthy subject (HS, lower
spectra), a laryngectomized (middle spectra) and a COPD
(top spectra) subjects. A visual examination establishes a
striking correspondence between EBC spectra of HS and
laryngectomized, suggesting that potential oral contamina-
tion (e.g., bacteria and/or saliva) is undetectable and, if
present, beyond the sensitivity limit of NMR. By resorting to
literature data [34] and two-dimensional NMR experiments,
we identified all resonances present in EBC spectra (Fig-
ure 3). In saliva, signals between 3.3 and 6.0 ppm originate
from carbohydrates [35] and these are virtually absent in
the EBC spectra (Figure 2). Compared to saliva, EBC spectra
present fewer signals, but both saliva and EBC spectra appear
to be different among the HS, laryngectomized and COPD
classes considered (Figure 2); this is the basis for class
separation in PCA based on NMR data.

A recent study [11] has evaluated the capability of NMR
to separate EBC subjects with airway diseases (COPD) from
subjects without respiratory diseases. Based on qualitative
and quantitative spectral differences, five NMR signals
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Figure 2: Representative one-dimensional 1H-NMR spectra from
different patients. Spectra of saliva (left traces) and EBC samples
(right traces) from a healthy (HS, lower traces), a laryngectomized
(middle spectra), and a COPD (top spectra) subject are reported.
Spectra were recorded on a Bruker Avance spectrometer operating
at a frequency of 600.13 MHz (1H) and equipped with a TCI
CryoProbe. The water resonance was suppressed by using a specific
pulse sequence designed to avoid intensity alteration of signals. The
total acquisition time was ca. 10 minutes per sample. Spectra were
referred to TSP assumed to resonate at δ = 0.00 ppm. In saliva
spectra, the group of signals centered at 3.8 ppm originates from
carbohydrates, and is not visible in the corresponding EBC spectra.

appear to differentiate “respiratory” (COPD) from “non-
respiratory” (healthy and laryngectomized) subjects. It was
also clearly proved that saliva and condensate have different
profiles, with saliva contamination showing little influence
on the interpretation of EBC by NMR-based metabonomics
[11].

Likewise, Carraro et al. [36] reported the acetate signal
variation as distinctive in asthmatic children with respect to
controls, concluding that acetate increase might be related
to increased acetylation of proinflammatory proteins in the
extracellular space in the airway environment. Whether the
metabonomic of exhaled breath condensate changes during
systemic or metabolic disease is currently unknown.

NMR-based metabonomic analyses of EBC could clearly
discriminate between asthmatic and healthy children, with
95% success rate in their classification. Many authors
believe that asthma should no longer be considered a
single disease, and that efforts should be made to identify
the different biochemical and inflammatory profiles behind
asthma symptoms in order to treat them with specifically-
targeted therapies [37]. Montuschi et al. [38] recently applied
NMR-based metabonomics to discriminate between healthy
individuals, patients with stable CF, and cases of unstable CF,
showing that NMR is a powerful technique to monitor EBC
in CF.

In addition, we are currently applying NMR-based EBC
metabonomics in other genetic airway diseases such as
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Figure 3: Resonance assignments of representative 1H-NMR
spectra of EBC samples. The spectra of healthy (a), asthmatic (b),
steroid-treated asthmatic (c), and COPD (d) patients are depicted.
Peaks are labeled with progressive numbers, and assignments are
listed below.

primary ciliary dyskinesia, in light of the diffusion of fast
screening methods based on the exhaled NO on nasal or oral
breath.

6. Conclusions

The power of NMR-based metabonomics has been shown
for several biofluids, including blood, urine, and saliva. We
believe that NMR metabonomics could also be applied to
EBC, which has the advantage of being noninvasive and
reproducible; furthermore it shows a distinctive profile in
comparison to saliva, thus supporting its origin from lower
airways. Moreover, EBC metabonomic analysis is applied to
a living matrix in the absence of external induced pertur-
bations that may represent important preanalytical variable
with conventional assay measuring single compound.
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There is only limited experience with metabonomics on
EBC in humans, but reproducibility of method has been
successfully assessed, and useful protocols to differentiate
metabolic profile of patients with asthma, COPD, or cystic
fibrosis have been reported. However, more studies are
needed to show, if true, that the holistic approach of
EBC metabonomics may be a progress over the traditional
reductionistic approach in chronic airway disease.
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“Environmental temperature and relative humidity influence
exhaled breath condensate pH,” European Respiratory Journal,
vol. 31, no. 2, pp. 474–475, 2008.

[25] P. Montuschi, S. A. Kharitonov, G. Ciabattoni, and P. J. Barnes,
“Exhaled leukotrienes and prostaglandins in COPD,” Thorax,
vol. 58, no. 7, pp. 585–588, 2003.

[26] P. Montuschi, “Exhaled breath condensate analysis in patients
with COPD,” Clinica Chimica Acta, vol. 356, no. 1-2, pp. 22–
34, 2005.

[27] P. Latzin, J. Beck, A. Bartenstein, and M. Griese, “Comparison
of exhaled breath condensate from nasal and oral collection,”
European Journal of Medical Research, vol. 8, pp. 505–510,
2003.

[28] J. Chladkova, I. Krcmova, J. Chladek, P. Cap, S. Micuda, and Y.
Hanzalkova, “Validation of nitrite and nitrate measurements
in exhaled breath condensate,” Respiration, vol. 73, no. 2, pp.
173–179, 2006.

[29] R. M. Effros, “Exhaled breath condensate pH,” American
Journal of Respiratory and Critical Care Medicine, vol. 173, no.
9, pp. 1047–1048, 2006.

[30] R. M. Effros, K. W. Hoagland, M. Bosbous et al., “Dilution of
respiratory solutes in exhaled condensates,” American Journal
of Respiratory and Critical Care Medicine, vol. 165, no. 5, pp.
663–669, 2002.

[31] C. L. Whittle, S. Fakharzadeh, J. Eades, and G. Preti, “Human
breath odors and their use in diagnosis,” Annals of the New
York Academy of Sciences, vol. 1098, pp. 252–266, 2007.

[32] J. D. Bell, J. C. Brown, and P. J. Sadler, “NMR studies of body
fluids,” NMR in Biomedicine, vol. 2, no. 5-6, pp. 246–256, 1989.



Journal of Biomedicine and Biotechnology 7

[33] O. Beckonert, H. C. Keun, T. M. Ebbels et al., “Metabolic pro-
filing, metabolomic and metabonomic procedures for NMR
spectroscopy of urine, plasma, serum and tissue extracts,”
Nature protocols, vol. 2, no. 11, pp. 2692–2703, 2007.

[34] T. W. M. Fan, “Metabolite profiling by one- and two-
dimensional NMR analysis of complex mixtures,” Progress in
Nuclear Magnetic Resonance Spectroscopy, vol. 28, no. 2, pp.
161–219, 1996.

[35] M. Grootveld and C. J. L. Silwood, “1H-NMR analysis
as a diagnostic probe for human saliva,” Biochemical and
Biophysical Research Communications, vol. 329, no. 1, pp. 1–
5, 2005.

[36] S. Carraro, S. Rezzi, F. Reniero et al., “Metabolomics applied
to exhaled breath condensate in childhood asthma,” American
Journal of Respiratory and Critical Care Medicine, vol. 175, no.
10, pp. 986–990, 2007.

[37] C. Auffray, I. M. Adcock, K. F. Chung, R. Djukanovic, C. Pison,
and P. J. Sterk, “An integrative systems biology approach to
understanding pulmonary diseases,” Chest, vol. 137, no. 6, pp.
1410–1416, 2010.

[38] P. Montuschi, D. Paris, D. Melck, V. Lucidi, and A. Motta,
“Metabolomic analysis by nuclear magnetic resonance spec-
troscopy of exhaled breath condensate in patient with cystic
fibrosis,” European Respiratory Journal, vol. 34, supplement 53,
p. 63s, 2009.



Hindawi Publishing Corporation
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 839862, 7 pages
doi:10.1155/2011/839862

Methodology Report

metaP-Server: A Web-Based Metabolomics Data Analysis Tool

Gabi Kastenmüller,1 Werner Römisch-Margl,1 Brigitte Wägele,1, 2
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Metabolomics is an emerging field that is based on the quantitative measurement of as many small organic molecules occurring
in a biological sample as possible. Due to recent technical advances, metabolomics can now be used widely as an analytical high-
throughput technology in drug testing and epidemiological metabolome and genome wide association studies. Analogous to chip-
based gene expression analyses, the enormous amount of data produced by modern kit-based metabolomics experiments poses
new challenges regarding their biological interpretation in the context of various sample phenotypes. We developed metaP-server
to facilitate data interpretation. metaP-server provides automated and standardized data analysis for quantitative metabolomics
data, covering the following steps from data acquisition to biological interpretation: (i) data quality checks, (ii) estimation
of reproducibility and batch effects, (iii) hypothesis tests for multiple categorical phenotypes, (iv) correlation tests for metric
phenotypes, (v) optionally including all possible pairs of metabolite concentration ratios, (vi) principal component analysis (PCA),
and (vii) mapping of metabolites onto colored KEGG pathway maps. Graphical output is clickable and cross-linked to sample and
metabolite identifiers. Interactive coloring of PCA and bar plots by phenotype facilitates on-line data exploration. For users of
commercial metabolomics kits, cross-references to the HMDB, LipidMaps, KEGG, PubChem, and CAS databases are provided.
metaP-server is freely accessible at http://metabolomics.helmholtz-muenchen.de/metap2/.

1. Introduction

Metabolomics is an emerging “omics” technology that
focuses on the identification and quantification of all
or, in practice, the largest possible set of low-molecular-
weight metabolites in a biological sample. In the series
of the “omics” technologies genomics-transcriptomics-
proteomics-metabolomics, metabolomics describes the
physiological endpoint arising from the interplay of all
regulatory and enzymatic processes in the biological system
under consideration at a given time [1–4]. In other words,
metabolomics analyses show the net effect of environmental
and genomic factors influencing the status of a biological
system.

In the recent years, advances in nuclear magnetic res-
onance (NMR) spectroscopy and mass spectrometry (MS)

have allowed for quantitating hundreds of metabolites
in blood and urine samples in a high-throughput man-
ner. Due to the development of modern MS/MS-based
analytical pipelines and metabolomics kits, application of
metabolomics analyses is no longer restricted to specialized
laboratories but can be used widely in biological and
pharmaceutical research. As an example, metabolomics kits
from Biocrates (AbsoluteIDQ) have been used to monitor
effects of specific drugs on the metabolism of diabetic and
nondiabetic mice [5] and in epidemiological studies to gain
new insights into the effects of nutrition or genotypes on
the human metabolism [6–8]. Other possible applications
could be to data acquired on a set of different commercial
platforms, such as MS data provided by Metabolon [9],
Phenomenome [10], or NMR data processed using the
Chenomx software suite [11].
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Analogous to chip-based gene expression analyses, the
enormous amount of data produced in high-throughput
metabolomics experiments poses new challenges for
automated data analysis. Various commercial and free
stand-alone analysis tools dedicated to metabolomics
data support experimentalists in aligning and binning
peaks in MS and NMR spectra, provide functionality
for annotating peaks with metabolites, or offer
statistical analysis [12–14]. Recently, two web-based
metabolomics data analysis tools have been published: (i)
MetaboAnalyst (http://www.metaboanalyst.ca) [15], a tool
that provides data analysis focusing on biomarker discovery
and classification with respect to a single two-class
phenotype (e.g., the sample phenotype treatment with the
two classes treated and untreated), and (ii) MeltDB (http://
www.cebitec.uni-bielefeld.de/groups/brf/software/meltdb
info/index.html) [16], which provides a data analysis
pipeline for raw GC- and LC-MS data sets including
metabolite identification. For preprocessed metabolite
quantities, MeltDB offers statistical data analyses (e.g.,
t-test and PCA) with respect to the classes of a single
phenotype. In contrast to MetaboAnalyst and metaP-
server, MeltDB requires login and password to get access.
While MetaboAnalyst and MetltDB are valuable tools for
estimating the associations of a single phenotype with
metabolite quantities, many experiments involve more
than one phenotype with often more than two classes per
phenotype. As an example, a metabolomics experiment for
drug testing in mice can comprise phenotypes such as sex,
strain (e.g., wild type/knock out strain), drug dose (e.g.,
0/20/40 mg), and days of treatment (days 1–5). In this case,
each sample measured is linked to the classes of multiple
different phenotypes (e.g., Sample01: female; wild type;
20 mg; day 2). For such experiments, new tools are needed
in order to get an overview over the observed trends in the
metabolomics data across all phenotypes involved.

Here, we present metaP-server, a web-based, easy-to-use
analysis tool for the statistical analysis of metabolomics data.
In contrast to the existing web-servers, metaP-server mainly
focuses on the interactive exploration and interpretation
of metabolomics data (whether metabolite concentrations
or peak lists) in the context of multiple multiclass (e.g.,
“treated with drug A, B, C”) and metric (e.g., weight,
age) sample phenotypes. Thus, the metaP-server supports
experimentalist in gaining first insights into how the dif-
ferent sample phenotypes affect the metabolite quantities
observed. These insights facilitate choosing the data subsets
and phenotypes that should be analyzed by using further
statistical methods for classification and biomarker discovery
(as, e.g., provided by MetaboAnalyst). metaP-server provides
hypothesis tests and correlation tests for nonmetric and
metric phenotypes, optionally including all possible pairs
of metabolite concentration ratios as quantitative traits. As
shown in previous metabolomics studies, using ratios can
reduce noise caused by individual differences in absolute
metabolite concentrations and, thus, strengthen the asso-
ciation [5, 7, 8]. Furthermore, the server offers principal
component analysis (PCA). PCA plots and barplots showing
the concentration of a particular metabolite in the samples

can be colored interactively by phenotypes. Moreover,
the graphical output is clickable and cross-linked to the
respective sample or metabolite pages. Concentrations of
metabolites in samples relative to the mean are mapped onto
colored KEGG pathway maps. Interactive coloring, cross-
linking, and pathway mapping particularly aim to facilitate
on-line data exploration in the context of multiple pheno-
types. For the special needs of kit-based high-throughput
experiments, we implemented functions for the estimation of
reproducibility and batch effects, as well as outlier detection.
For users of the Biocrates AbsoluteIDQ kit, original cross
references to the HMDB [17], LipidMaps [18], KEGG [19],
PubChem [20], and CAS databases have been derived and
are freely provided. The metaP-server is freely accessible at
http://metabolomics.helmholtz-muenchen.de/metap2/.

2. Data Input

To start a new analysis in metaP-server (link: “Start a new
run” on the main page), users are asked to provide the
metabolomics quantitation data table in semicolon separated
format, which can be exported from most spreadsheets.
Users can choose between three different input formats:
(i) “quant. data”, (ii) “quant. data with KEGG ids”, and
(iii) “AbsoluteIDQ kit”. The server expects samples to be
in rows and quantitated metabolites or peak intensities
in columns. While for AbsoluteIDQ, metaP-server directly
accepts the export file (extension. csv) as produced by the
MetIQ software (shipped with the kit), data from other
experiments can be provided as a table where the first
row contains identifiers for the metabolites and the first
column contains unique sample identifiers such as barcodes.
Optionally, a second column entitled “Sample Description”
can contain user sample identifiers that are not necessarily
unique. The server also accepts files with data starting at
another column than column two or three, when the users
specifies an additional parameter input frame for auxiliary
data. Optionally, the user can provide KEGG identifiers with
the data. For this purpose, the user must choose “quant. data
with KEGG ids” and must add one or more rows with the
keyword “KEGG” in the first column after the header row of
the table.

In principle, the processing of the data can be started
immediately after providing the metabolomics quantitation
data. However, for using the full functionality of the
server, phenotypes or experimental conditions related to the
samples measured can be specified in a separate file. The
first column of this table must contain the unique sample
identifiers of the respective samples. Following columns may
include any categorical (e.g., sex, strain) or metric (e.g.,
weight, age, drug dose) sample phenotype or experimental
condition (e.g., batch number). Categorical phenotypes are
not restricted in the number of categories. If phenotypes
are described by numeric values but are categorical rather
than continuous regarding the actual values (e.g., drug dose:
10 mg, 20 mg, 40 mg corresponding to low, medium, and
high dose), these phenotypes are analyzed using both the
hypothesis test for categorical phenotypes and the correla-
tion test for metric phenotypes. Special key words for column
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Figure 1: Example for output generated by metaP-server: plot of coefficient of variation for replicated measurement of reference samples
(controls) as part of data quality checks.

headers such as “Replicates” and “Batches” can be used for
defining control samples (replicated reference samples) and
batches in the data set. By using these keywords in the
uploaded phenotype file, basically any subset of samples can
be specified as controls for the calculation of coefficients
of variation (cv) and the estimation of batch effects. For
this purpose, all control samples must be denoted by the
same word (e.g., “control”) in the “Replicates” column. For
data in AbsoluteIDQ format, replicated samples and batch
information is extracted automatically if available.

Before starting the processing, the user can specify a
job description and optionally provide an email address
for notification regarding the job status. By default jobs
are kept private. In this case, the data is only accessible
via the unique job id created by the server. Moreover, the
users can change the settings for several parameters (e.g., for
forcing deletion of reference samples, outliers, and/or noisy
metabolites before statistical data analysis, and forcing the
calculation of metabolite ratios). All job results remain on
the server for at least four weeks. Analysis results can be
downloaded as an archive (zip) file.

3. Processing and Methods

After submitting the job, the web-server first tests the
compliance of uploaded data with the format specified.
The server then starts several analyses that are related to
data quality control. Depending on the options chosen
on the submission page, the server either deletes outliers,
noisy metabolites, and reference samples before further data
analysis or the server continues analysis based on all data
points disregarding quality.

Though metaP-server does not explicitly restrict the
number of samples, quantitated metabolites/peak intensities,
or phenotypes that can be uploaded, the time required
for the complete analysis including the generation of
clickable images largely depends on these numbers. As an
example, data analysis for a typical data set from a kit-
based experiment with 96 samples and 163 metabolites
took 2 minutes for two phenotypes. For 1000 samples
and 200 metabolites the analysis of two phenotypes was
finished after 27 minutes, while the analysis of 100 samples
and 5000 peak intensities took 204 minutes When the
option for the calculation and analysis of all-against-all
metabolite ratios was chosen for the first example with 96
samples and 163 metabolites, the run time increased to
24 minutes.

3.1. Data Quality Control. If replicated measurements of ref-
erence samples (controls) are provided with the data, metaP-
server calculates the corresponding coefficient of variation
(cv) for each metabolite and tags all metabolites with a cv
above a given threshold. The cv for each metabolite is visu-
alized in a diagram (Figure 1). For estimating batch effects
in large metabolomics experiments, metaP-server provides p-
values for the association of metabolite concentrations with
batches. Boxplots showing the metabolomics data and, if
available, the corresponding reference data depending on
the batches help to immediately capture potential batch
effects. metaP-server also reports outliers among the samples.
Samples are considered as outliers if the metabolite quantities
measured for this sample lie 1.5 times the inter quartile range
(IQR) below or above the corresponding median for 30% of
the data columns.
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Figure 2: Examples for output generated by metaP-server: metabo-
lite barplot colored by the phenotype “groups” with the classes 1–4.

The uploaded phenotypes are matched with the samples
provided in the quantitation data according to the unique
sample identifiers. Empty columns and columns containing
nonnumeric values that have different values for all samples
are ignored for further analysis.

3.2. Data Analysis in the Context of Sample Phenotypes. The
main objective of metaP-server is allowing for the analysis of
metabolomics data in the context of sample phenotypes. The
following types of analyses are provided.

3.2.1. General Statistical Measures. metaP-server calculates
general statistical measures for the metabolite quantifications
including mean, median, and standard deviation in relation
to the mean. The server also provides histograms for
estimating the distribution of metabolite concentrations in
the samples. QQ-Plots plotting the actual distribution versus
the corresponding theoretical values for normal (red) and
log-normal (black) distributions allow for deciding which
of the theoretical distributions fits best. Metabolite barplots
show the concentrations of a particular metabolite in all
samples measured (Figure 2) and, vice versa, sample barplots
visualize the concentrations of all metabolite concentrations
measured for a particular sample (Figure 3). Metabolite
barplots can be easily colored by the phenotypes.

3.2.2. Principal Component Analysis. In general, principal
component analysis (PCA) transforms the original data into
a new system of orthogonal axes (components) with the
first components covering the major variance in the data.
Thus, looking at the projections of the data onto the first
principal components often reveals intrinsic groups in the
data. PCA is an unsupervised method and, thus, does not use
any prior phenotypic knowledge for calculating the principal
components. Principal components represent combinations
of the original dimensions (metabolites), whose contribu-
tions to the component can give hints which metabolites
separate intrinsic groups (if any) best. Please note that
groups becoming apparent on a PCA plot do not neces-
sarily correspond to phenotype classes, since PCA—as an
unsupervised method—is only based on the metabolomics
data matrix without using any phenotypic information
on groups. The so-called loadings of the components are
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Figure 3: Examples for output generated by metaP-server: sample
barplot with green color denoting high and red color denoting
low concentration of the respective metabolite relative to the mean
value.

provided for download in table format (semicolon separated
values). Before PCA analysis, metaP-server scales the original
data to mean 0 and standard deviation 1 in order to make
the concentrations of the metabolites comparable. The server
shows the proportion of variance covered by the first ten
principal components and plots for the projections of the
data to the first three components. The user can color
the data points (each representing a specific sample) by
the categorical phenotypes uploaded (Figure 4). Moreover,
each data point is cross-linked to a sample page describing
the details for the respective sample and showing the
sample barplot described previously. Typical representatives
of specific phenotypic groups as well as extreme samples can
thus be picked easily.

3.2.3. Hypothesis Tests and Correlation Analysis. For testing
the association of metabolite concentrations with categori-
cal phenotypes, we use the Mann-Whitney nonparametric
hypothesis test for two-class phenotypes and the non-
parametric Kruskal-Wallis test for multi-class categorical
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Figure 4: Examples for output generated by metaP-server: PCA plot
colored by phenotype.

phenotypes. For visualizing potential association, the server
creates boxplots for the metabolite concentrations depending
on the classes of the respective phenotype. The calculated
P-values are given within the boxplots. With respect to
the problem of multiple testing, only those metabolite-
phenotype associations are marked as significant that show
a P-value below the significance level after Bonferroni
correction. Thereby “∗” denotes a significance level of 5%
(after correction) and “∗∗” denotes a significant level of 1%
(after correction). If the user provides only two phenotypes
with categorical values, metaP-server additionally performs
hypothesis tests for the first phenotype depending on the
different classes of the second phenotype and vice versa (see
Section 5 and Figure 5). For each phenotype column con-
taining numeric values, metaP-server tests the correlation of
the metabolite concentrations with the phenotypes using the
non-parametric Kendall method. The resulting correlation
coefficients are visualized in a heatmap showing negative
association in red and positive correlations in green. P-values
and correlation coefficients are provided for download in
table format (semicolon separated values).

3.2.4. Ratios. If the user has chosen the respective option,
metaP-server calculates all-against-all metabolite concentra-
tion ratios (with logarithmic scaling). In this case, the server
automatically tests for associations between all ratios and the
phenotypes as described above. Using ratios instead of single
metabolites can bring up new associations if the underlying
metabolites are, for example, closely linked by occurring in
the same pathway [5, 8].

3.2.5. Mapping Metabolites on KEGG Pathways. In the
sample barplots, the metabolite quantities measured for a
sample are shown relative (up/down) to the metabolites’
mean derived from the complete uploaded data set. These
relative concentrations can be mapped onto KEGG pathway
maps by coloring the corresponding KEGG compounds red
in case of metabolites with low concentration and green in
case of metabolites with high concentration relative to their
mean values.

3.2.6. Cross-References for Kit Metabolites. For AbsoluteIDQ
data, detailed information on the kit metabolites including
cross references to HMDB, LipidMaps, KEGG, PubChem,
and CAS numbers are provided.

3.3. Implementation. The web-server is mainly based on Perl
CGI scripts. For statistical analyses, we rely on the open
source R-project (http://www.R-project.org). For coloring
metabolites on KEGG pathway maps, we use the forms
provided by KEGG.

4. Interpreting the Results

In order to illustrate how the results of metaP-server server
analysis can be interpreted, we provide two walk-through
examples from typical applications. (i) LC-MS/MS data
(raw area counts) from a drug dosing study in liver tissue
(Metabolon Inc., 2006). In this case, the phenotypes “(drug)
dose”, “day”, “group”, and “weight” are provided. (ii) Human,
mouse, and bovine plasma samples are measured using
AbsoluteIDQ. Users can easily upload the example data files
(via hyperlinks) onto the job submission page and rerun the
examples at any time.

After completion of the processing, there are several
starting points for exploring the data. The walk-through
examples contain detailed descriptions of these starting
points and of the analysis results produced by metaP-server.
Here, we only highlight a few specific possibilities how the
server can be used for data exploration in the first example.
The user can, for instance, immediately check whether the
concentrations of a specific metabolite shows the expected
difference between the control group and the treated groups.
For this purpose, the user can click on that metabolite in the
metabolite overview and color the appearing barplot by the
phenotype “groups” (Figure 2). Analogously, using PCA as
a starting point, the user can check whether the grouping
of samples in the PCA reflects the grouping given by the
various uploaded phenotypes such as “(drug) dose” or “day”
(Figure 4). The user can also pick a representative sample
for a specific group and check immediately on the sample
page which of the metabolites are up or down compared to
other samples (Figure 3). These relative concentrations can
also be automatically mapped onto KEGG pathway maps.
The user can then screen the colored maps for situations
where all metabolites downstream of a certain metabolite are
red whereas the metabolites upstream are green. Hypothesis
tests provided by the metaP-server server are another starting
point for data exploration. In particular, tests performed for
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Figure 5: Examples for output generated by metaP-server: boxplots produced for groupwise hypothesis tests applied to the data set from the
walk-through example provided with metaP-server; the association between ophthalmate and drug dose is tested for each day of treatment
separately producing three separated box plots.

a phenotype separately for the different classes of a second
phenotype can easily highlight effects that are otherwise only
seen by using more sophisticated statistical methods. In the
drug testing example, for instance, the metabolite ophthal-
mate is not significantly associated with the phenotype day
when hypothesis testing is performed on complete data.
However, in case of separated analysis as shown in Figure 5
the dependency of ophthalmate concentrations on the day of
treatment for the group taking the drug becomes apparent.
The concentration of ophthalmate is significantly increased
at day three and day five for drug intake versus control
whereas it is not significantly increased on day one.

5. Conclusion

The main objective of metaP-server is responding to
the raising need for interpretation of high-throughput
metabolomics data with respect to multiple sample pheno-
types on an easy-to-use web-server-based platform, espe-
cially in the context of identifying metabolic biomarker for
drug testing, therapy and diagnosis, and in epidemiological
and metabolome wide association studies. metaP-server is
mainly adapted to quantitative metabolomics data from kits
and commercial platforms, such as Biocrates, Chenomx,
Metabolon, and Phenomenome, but may also be used with
any other metabolomics data set that is available in tabular
format. The server has been developed in close cooperation
with experimentalists and, as a result, focuses more on
interactive and intuitive data exploration in the context of

multiple multiclass phenotypes rather than on providing
a large set of different statistical methods. Nonetheless,
the spectrum of analysis tools implemented ranging from
estimation of reproducibility and batch effects, hypothesis
and correlation tests, PCA analysis, to pathway mapping
still covers various types of typical approaches used in data
analysis. Of particular interest for the community is probably
the ability of metaP-server to directly analyze metabolite
concentration ratios, which corresponds to a relatively high
computational effort. Moreover, special emphasis has been
put on the mapping of metabolite identifiers of the Biocrates
AbsoluteIDQ kit to the major metabolomics databases. As
the metabolomics community and the number of kits will
increase, we intend to implement new features in close
cooperation with the relevant parties.
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for processing and visualization of mass spectrometry based
molecular profile data,” Bioinformatics, vol. 22, no. 5, pp. 634–
636, 2006.

[13] K. Suhre and P. Schmitt-Kopplin, “MassTRIX: mass translator
into pathways,” Nucleic Acids Research, vol. 36, Web Server
issue, pp. W481–W484, 2008.

[14] J. Xia, T. C. Bjorndahl, P. Tang, and D. S. Wishart,
“MetaboMiner—semi-automated identification of metabo-
lites from 2D NMR spectra of complex biofluids,” BMC
Bioinformatics, vol. 9, article 507, 2008.

[15] J. Xia, N. Psychogios, N. Young, and D. S. Wishart, “Metabo-
Analyst: a web server for metabolomic data analysis and
interpretation,” Nucleic Acids Research, vol. 37, Web Server
issue, pp. W652–W660, 2009.

[16] H. Neuweger, S. P. Albaum, M. Dondrup et al., “MeltDB:
a software platform for the analysis and integration of
metabolomics experiment data,” Bioinformatics, vol. 24, no.
23, pp. 2726–2732, 2008.

[17] D. S. Wishart, C. Knox, A. C. Guo et al., “HMDB: a
knowledgebase for the human metabolome,” Nucleic Acids
Research, vol. 37, Database issue, pp. D603–D610, 2009.

[18] M. Sud, E. Fahy, D. Cotter et al., “LMSD: LIPID MAPS
structure database,” Nucleic Acids Research, vol. 35, Database
issue, pp. D527–D532, 2007.

[19] M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M.
Hirakawa, “KEGG forrepresentation and analysis of molecular
networks involving diseases and drugs,” Nucleic Acids Research,
vol. 38, Database issue, pp. D355–D360, 2010.

[20] Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H.
Bryant, “PubChem: a public information system for analyzing
bioactivities of small molecules,” Nucleic Acids Research, vol.
37, Web Server issue, pp. W623–W633, 2009.



Hindawi Publishing Corporation
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 763684, 8 pages
doi:10.1155/2011/763684

Methodology Report

Magnetic Resonance Microscopy Contribution to Interpret
High-Resolution Magic Angle Spinning Metabolomic Data of
Human Tumor Tissue

M. Carmen Martı́nez-Bisbal,1, 2 Vicent Esteve,1, 2 Beatriz Martı́nez-Granados,2

and Bernardo Celda1, 2

1 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISC-III, C/Doctor Moliner 50,
46100 Burjassot, Valencia, Spain

2 Department of Physical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Valencia, Spain

Correspondence should be addressed to M. Carmen Martı́nez-Bisbal, carmen.martinez-bisbal@uv.es

Received 20 April 2010; Revised 16 July 2010; Accepted 3 August 2010

Academic Editor: Mika Ala-Korpela

Copyright © 2011 M. Carmen Martı́nez-Bisbal et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

HRMAS NMR is considered a valuable technique to obtain detailed metabolic profile of unprocessed tissues. To properly interpret
the HRMAS metabolomic results, detailed information of the actual state of the sample inside the rotor is needed. MRM (Magnetic
Resonance Microscopy) was applied for obtaining structural and spatially localized metabolic information of the samples inside
the HRMAS rotors. The tissue was observed stuck to the rotor wall under the effect of HRMAS spinning. MRM spectroscopy
showed a transference of metabolites from the tissue to the medium. The sample shape and the metabolite transfer after HRMAS
indicated that tissue had undergone alterations and it can not be strictly considered as intact. This must be considered when
HRMAS is used for metabolic tissue characterization, and it is expected to be highly dependent on the manipulation of the sample.
The localized spectroscopic information of MRM reveals the biochemical compartmentalization on tissue samples hidden in the
HRMAS spectrum.

1. Introduction

NMR is a very valuable tool for the study of healthy
or diseased brain given the possible translation of that
knowledge to the clinical practice. Brain tumors are among
the most studied pathologies by NMR in its different
modalities. In vivo NMR spectroscopy (MRS) can support
tumor presurgical diagnosis (tumor identification, border
delineation and infiltration detection) as well as treatment
monitoring [1–5]. In in vivo MRS the spatial and spectral
resolution are limited. With the purpose to obtain a better
metabolite identification and quantification, high-resolution
NMR has been applied to the tumor tissue ex vivo. These
studies were initially performed in solution, and required a
previous chemical extraction with Perchloric acid or organic
solvents [6, 7]. High-Resolution Magic Angle Spinning
(HRMAS) NMR has become in recent years a valuable

technique to obtain detailed metabolic profiles of brain
tumors [8–13]. This technique requires low tissue amount
(ca. 20 mg) and minimum sample handling compared to
chemical extracts. Probably because this limited processing
of the sample [9–11], HRMAS is considered a metabolomic
technique that provides “intact” tissue spectra. Nevertheless,
some researchers have shown some reluctance to assume
the integrity of the tissue due to the sample handling
and measurement conditions. An issue of interest is the
postmortem interval for tissue obtained from autopsies,
or in the case of pieces from resection, the time that the
sample remains in the surgery room before being preserved.
The results so far obtained show that this time period
between tissue death and tissue preservation causes changes
in the tissue metabolite concentration [8, 14] as might
be expected. Knowing this effect, the temperature to run
the experiments needs to be low to preserve as much as
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possible the biochemical profile. In fact, comparing the
biochemical profiles of experiments at 20◦C and 2◦C, there
were 4-fold reduction in the content of some metabolites
at 20◦C compared to 2◦C [8], which indicates the tissue
degradation at 20◦C. However, it has also been found that for
tissue maintained at 4◦C and spinning at 5 kHz there were
more significant changes in the metabolite concentrations
over 4 hours of measurement than the changes due to the
delayed initial freezing [14]. The cellular damage by high
spinning speed of HRMAS seems to be promoting some
release of metabolites that previously were NMR-invisible
[14]. Finally, the effect of freezing-thawing the tissue samples
has been of interest for some researchers [15, 16]. Freezing
and thawing of any tissue is likely to cause unpredictable
amounts of cell damage and lysis [16]. In some tissues there
have been reported changes in the molecular composition
of the samples frozen, compared to samples studied without
previous freezing. According to these researchers, tissue
samples that are subjected to freezing will undergo some
physical disruption of cellular compartmentalization and
changes in molecular composition [15]. Moreover, the
tissues thawed after freezing show that a great amount of
metabolites (40%–50% for human prostate and 20% for rat
brain) leak into the storage buffer at the time that thawing is
completed, and the amount of a given metabolite observed
in the medium varies from one biopsy to another and is not
proportional to the amount originally present in the tissue
[16].

Therefore, a proper biochemical interpretation of the
HRMAS results would require detailed and localized molec-
ular information on the tissue that can be correlated
with the histopathological analysis and other molecular
characterization techniques. It would be advisable as well
to know the actual state of the tissue inside the rotor
and a direct visualization could be of help, providing, as
additional information, the overall shape of the sample. This
study shows the potential role of NMR microscopy, MRM
(Magnetic Resonance Microscopy), in obtaining structural
and spatially localized metabolic information of the tissue
samples inside the HRMAS rotors and to study the real
integrity of the tissue in HRMAS. With this objective MRM
imaging, MRM spectroscopy, and HRMAS has been applied
to the study of human Glioblastoma Multiforme (GBM)
biopsies.

Gliomas are the most common primary brain tumors.
GBM is the highest glioma grade and the most common
malignant central nervous system tumor in adults [17, 18].

2. Materials and Methods

This study was reviewed and approved by the ethics commit-
tee of the Hospital de la Ribera, Alzira, Spain. Informed con-
sent was obtained from all patients as a part of eTUMOUR
Project (FP6-2002-LSH 503094). Eight GBM samples (A–
H) were studied by MRM and HRMAS inside 4 mm/50 µL
ZrO2 rotors. Sample preparation was done following already
published procedures [9]. The amount of tumoral tissue
ranged from 9.8 to 27.3 mg (see Table 1). This quantity was

split from the whole tumoral mass submerged in liquid
nitrogen. Samples were introduced in the rotor without
flushing, thus avoiding the leakage of metabolites reported
in the washing of tissues [16]. The volume of the rotor was
fitted with cool D2O. Then, the rotor was transferred into
the NMR probe precooled to 6◦C. In both probes, MRM and
HRMAS, the real temperature was internally assessed using a
100% MeOH sample in a 4 mm rotor in the same conditions
than the samples.

Several settings were tested: MRM and HRMAS exper-
iments were performed on two tissue samples extracted
from the same tumor (samples A–E), MRM before HRMAS
(sample F), and MRM after HRMAS (samples G and H).
Moreover, in sample G the solution part was separated
from the tissue at the end of the HRMAS and MRM
studies and introduced in a 4 mm/12 µL rotor to acquire
an additional HRMAS CPMG spectrum. Details of the
experiments performed on each sample are given in Table 1.

MRM studies were conducted in a 14 T magnet (Bruker
Avance DRX 600 spectrometer operating at a 1H frequency
of 600.13 MHz) connected to a microimage console with
a gradient system of 300 G/cm at 60 A current (Bruker
Biospin). The instrument was equipped with a standard bore
Micro 5 imaging probehead with an rf insert of 5 mm. A
Bruker Cooling Unit Extreme controlled the temperature
during the acquisition. HRMAS experiments were conducted
in an 11.7 T magnet (Bruker Avance DRX 500 spectrometer
operating at a 1H frequency of 500.13 MHz). The instrument
was equipped with a 4 mm triple resonance 1H/31P/13C
HRMAS probe. A Bruker cooling unit was used to control the
temperature by cooling down the bearing air flowing into the
probe. Sample temperature was 6◦C for MRM and HRMAS
experiments.

In the MRM study of each sample, a global shimming
was performed first, including the whole content of the rotor.
The tissue pieces were then localized inside the rotors using
imaging multislice sequences RARE (Rapid Acquisition
with Relaxation Enhancement) with TR/TE 2000/80 ms and
MDEFT (Modified Driven-Equilibrium Fourier Transform)
with TR/TE 5000/4.5 ms adapted to MRM. In these RARE
and MDEFT images, the FOV was 10 mm and the slice
thickness was 500 µm. The matrix dimensions were 256 ×
256 elements, which gave an in-plane spatial resolution of 39
× 39 µm. MRM-localized spectroscopy was performed with
PRESS (Point resolved spectroscopy) single voxel (TR/TE
2100/12 ms). Before acquiring each single voxel spectrum,
a specific shimming was performed, shimming only the
volume determined by each single voxel and optimizing
the 1st-order shims. This shimming procedure was repeated
in each location, tissue and solution, for each sample.
VAPOR (Variable pulse power and optimized relaxation
delays) was used for water suppression. The spectral width
was 10 ppm/6000 Hz and the number of points was 4k.
Depending on the volume selected, the number of repetitions
was from 512 to 4096. Single-voxel PRESS spectroscopy was
performed in the tissue, and the solution parts in samples A–
G. Single-voxel in sample H was acquired only in the solution
part, since the tissue piece was a thin slice stuck to the rotor
wall.
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Table 1: MRM and HRMAS experiments for each tumor and sample.

GBM tumor
Sample

ID
Weight (mg)

MRM
Weight (mg)

HRMAS
Medium

MRM single-voxel
dimensions (mm)

HRMAS performance

1 A 20.6 21.5 1 × 1 × 1

2 B 16.7 17.3 D2O 1 × 1 × 1 Parallel: other piece

3 C 15.2 20.0 1 × 1 × 1 from the same tumors

4 D 9.8 22.7 1.5 × 1.5 × 1.5

5 E 13.0 22.1 1 × 1.8 × 1.8

5 F 24.7 PBS in
D2O

1.2 × 1.2 × 1.2 after MRM

6 G 13.9 1 × 1 × 1
before MRM

4 H 11.1 1.5 × 1.5 × 1.5

In HRMAS experiments samples were spun at 4000 Hz.
The shimming was optimized checking the quality of the
signals and the resolution of the alanine doublet, usually
present in this kind of samples. HRMAS proton CPMG
spectra (Carr-Purcell-Meilboom-Gill) was performed with a
2D CPMG sequence with presaturation in the water signal.
2D CPMG spectra were acquired with a spectral width of
12 ppm/6000 Hz and the number of points in F2 was 16k.
The delay was fixed to 2 ms and the scan with 4 loops
gave and effective TE of 16 ms. This was the nearest TE for
comparison with MRM PRESS single-voxel TE 12 ms.

3. Results and Discussion

MRM images of the samples without previous HRMAS
rotation (A–F) showed the tissue suspended in the solution
and without any relevant deformation of the piece. Examples
of these images (samples D and E) are shown in Figure 1.
On the contrary, MRM images in samples G and H clearly
showed the disposition of the tissue close to the rotor wall,
due to the effect of high spinning speed on the previous
HRMAS study (see MRM axial images in Figure 1). In the
samples G and H, in which a previous HRMAS study was
acquired, the solution part that remained in the central axis
of the rotor (PBS in D2O) contained a considerable amount
of metabolites. This fact is clearly seen in the MRM single-
voxel spectrum of sample G (Figure 2(g), middle spectrum);
the main resonances were assigned to lactate, alanine, lipids,
creatine, choline, and phosphocholine, glycine and mannitol
(peaks are assigned in Figure 2(g), top spectrum) [9]. The
single-voxel spectrum in the tissue of sample G (Figure 2(g),
bottom spectrum) showed lower resolution than in solution
(Figure 2(g) middle spectrum), but still could be observed
lipids, creatine, choline, and mannitol resonances. In this
later single voxel, the tissue location close to the rotor wall
seriously precluded an adequate field homogeneity.

The HRMAS study of the separated solution part from
sample G (after the HRMAS and MRM study) confirmed the
metabolical content of the solution using the same technique
(Figure 3(d)). The resulting metabolic profile of the solution
was similar to the previous HRMAS CPMG spectrum in
the sample and to the MRM single-voxel spectrum in the
solution. The observation of this solution with a magnifying

glass (50x) assessed the absence of any tissue or cell in this
solution.

The samples either with pure D2O (A–C) or PBS in
D2O (D–F), but without previous rotation, also showed
transference of metabolites from the tissue to the medium
(Figure 2, middle spectra). A similar leakage of metabolites
had been reported in previously frozen samples [16]. The
metabolites appeared in the buffer solution (PBS in D2O)
immediately after thawing, and the amount of a given
metabolite observed in the medium varied from one biopsy
to another and was not proportional to the amount originally
present in the tissue [16]. Figure 2 gathers the MRM single-
voxel spectra from the tissue and the solution for all the
samples in this study. In all the cases the single-voxel spectra
in the solution showed the presence of metabolites.

There were substantial differences between the MRM
single-voxel spectra in solution and tissue parts. The most
striking differences were observed on the lipids, which almost
preponderantly appeared in the tissue single-voxel spectra (it
is very evident in samples A and C, see Figures 2(a) and 2(c),
bottom and middle spectra). In fact, the lipids are commonly
observed on GBM in vivo and ex vivo spectra and are
usually related to their aggressiveness. Moreover, quantitative
differences could be observed between the solution and the
tissue parts in other metabolites: in sample B the choline
derivatives proportion in the tissue and the solution was
different, and in sample E the alanine was undetectable in
the tissue but it was present in the solution part.

Noteworthy, in the samples here studied the global
metabolic profiles observed either by MRM or by HRMAS
showed some significant differences, which is in agreement
with the heterogeneous nature of GBM tumor (areas of
actively growing tumor, necrosis, border infiltration, . . .)
[17]. The metabolite transfer from the tissue to the solution
was also different, which agrees with previously published
studies on tissues [16], despite being preserved and studied
by the same procedures. An example of these differences can
be observed in the samples C and D (Figures 2(c) and 2(d)).
According to this, the percentage of the contribution of the
solution and tissue spectra to the whole HRMAS spectrum
might not be the same for each sample. In the sample C
the lipid content is high (as seen in HRMAS and MRM
tissue spectra) and a large part of these molecules remains
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Figure 1: The upper part shows the scheme of a rotor containing the sample and the solution and the axial MRM images of four samples.
The scheme of the HRMAS rotor shows the different parts with the sample and the solution in the inner cavity. The position of the axial
plane is drawn with a magenta line and the axial view of the rotor on the right (upper part) shows the axial section, which is perpendicular
to the longitudinal axis of the rotor. Below, the set of MRM images shows 10 RARE axial slices and the central sagital and coronal planes for
each of the samples showing the shape of tissue pieces inside the rotor for samples D, E, G, and H. The position of the 10 axial images is
detailed by the 10 magenta horizontal lines in the sagital and coronal planes in each sample. Axial images are zoomed to achieve the optimal
view of the sample. In these MRM RARE images the solution, the rotor, and the air outside the rotor are darker than the tissue.

in the tissue whereas a small amount of low molecular
weight metabolites are transferred to the liquid environment
(Figure 2(c)). In this case, the main contribution to the
final global spectrum will came from the tissue. On the
contrary, sample D shows a low amount of lipids and hence,
an important part of low molecular weight metabolites is
observed in the solution, and the linear combination of

solution and tissue spectra will be different to the one for the
sample C.

In the case of sample H, that underwent HRMAS previ-
ous to the MRM study, the effect of metabolite transference
is such that even some lipids signals appear clearly in the
MRM spectrum in the solution part (Figure 2(h), bottom
spectrum). As it has been demonstrated in previous studies
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Figure 2: HRMAS CPMG (top) and MRM spectroscopy PRESS single-voxel spectra from solution (middle) and tissue (bottom) in each of
the samples (A–H). MRM single-voxel location in tissue (red box) and solution (yellow box) is illustrated in the MRM images. Samples G
and H were the only samples which underwent HRMAS experiments before MRM. Sample F underwent HRMAS study after MRM. The
samples A–E underwent parallel study by HRMAS in other piece from the same biopsies. The resonances assigned in the CPMG HRMAS
spectrum of sample G are: mannitol (Man), glycine (Gly), choline and phosphocholine (Cho), creatine (Cr), alanine (Ala), lactate (Lac),
and lipids (Lip). For each sample, the MRM images shown are those that better illustrate the tissue shape and position inside the rotor.
The MRM images shown for samples A and G belong to RARE sequences and the MRM images for samples B–F and H belong to MDEFT
images. Moreover, the contrast in these MRM image was balanced to enhance the differences between the tissue and the solution part.
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Figure 3: Three orthogonal planes allowed the location of single-voxel in the tissue part (red box) and in the solution (yellow box) for
sample G. (a) MRM spectroscopy single-voxel spectra in liquid part, (b) MRM spectroscopy single-voxel spectra in tissue part, (c) the linear
combination of spectra (a) and (b), (d) shows the HRMAS CPMG only on the solution collected after the MRM study, and (e) shows the
HRMAS CPMG on the whole sample before the MRM study.
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[14], the freezing-thawing and the ischemia processes are
not the only ones that can promote changes in the spectra
but also the high spinning speed of HRMAS study even at
low temperatures. In this type of samples, as G and H, the
expected effect is still higher since the biopsies underwent
both freezing-thawing and HRMAS effects, as usually in
the metabolomic studies involving HRMAS of biological
tissues.

It is also remarkable the different peak width of these
resonances coming from the tissue and the solution parts
(Figure 2(e), bottom and middle, resp.), with two different
contributions to the HRMAS overall spectrum. The effect
is a broadening in the base of the peaks (Figure 2(e), top
spectrum) that can be a drawback when automated analyses
strategies are used. Like the linewidths, also the chemical
shifts of metabolites within the tissue and outside in the
solution may be different, and this may reduce the accuracy
of quantification [16].

4. Conclusion

In conclusion, the MRM approach here presented allowed
to visualize the great distortion of the brain tumor tis-
sue produced by the HRMAS spinning and to detect a
selective transference of metabolites from the tissue to the
medium, even in nonstressing osmotic conditions. Our
analysis implies that in some cases HRMAS spectra could
correspond mainly to a solution and not so to an “intact”
tissue. This effect must be accounted for in the subsequent
quantification and interpretation of the results of HRMAS
spectra in tissues, since the transference from the tissue to
the solution is not equivalent for all the metabolites and
for all the samples, and can also be influenced by the way
in which the sample has been obtained and preserved. It
might be expected a different contribution to the HRMAS
spectrum of those metabolites transferred to the solution and
those which preferentialy remain in the tissue (in fact, the
relaxation conditions are characteristically different in the
tissue and in the solution, and therefore the shape of the
peaks can experiment considerable variations). The MRM
analysis provides a connection between the microscopic
image and the metabolic composition, yielding spatially
localized molecular information that can be relevant in the
correlation with other molecular imaging techniques and in
the understanding of their biochemical significance.
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In respect of the manifold involvement of lipids in biochemical processes, the analysis of intact and underivatised lipids of body
fluids as well as cell and tissue extracts is still a challenging task, if detailed molecular information is required. Therefore, the
advantage of combined use of high-pressure liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic
resonance (NMR) spectroscopy will be shown analyzing three different types of extracts of the ubiquitous membrane component
phosphatidylcholine. At first, different reversed phase modifications were tested on phosphatidylcholines (PC) with the same
effective carbon number (ECN) for their applicability in lipid analysis. The results were taken to improve the separation of three
natural PC extract types and a new reversed phase (RP)-HPLC method was developed. The individual species were characterized
by one- and two-dimensional NMR and positive or negative ion mode quadrupole time of flight (q-TOF)-MS as well as MS/MS
techniques. Furthermore, ion suppression effects during electrospray ionisation (ESI), difficulties, limits, and advantages of the
individual analytical techniques are addressed.

1. Introduction

The analysis of native and underivatized lipids within body
fluids as well as cell and tissue extracts is still a challenging
task, in particular, if the molecular structure of individual
components needs to be identified in decently short time.
The lipid composition consists of different main classes such
as fatty acids, neutral lipids, and lipids with positively or
negatively charged head groups with manifold subclasses of
structural diversity. Variations within the lipid composition
were attributed to different pathologies such as neoplastic
and neurodegenerative diseases, diabetes mellitus, and many
others. Furthermore, some lipid classes are involved in cell
death (apoptosis, necrosis), cellular signaling and are precur-
sors for lysophospholipids (i.e., lysophosphatidylcholine),
diacylglycerols, and phosphatic and arachidonic acid [1–25].

1,2-Diacyl-sn-glycero-3-phosphatidylcholine (PC) rep-
resents a major constituent of cell membranes. It consists of

the polar head group phosphorylcholine attached to the sn-3
position of glycerol and differing saturated and unsaturated
fatty acids esterified to the sn-1 and sn-2 position, whereby
fatty acids in position sn-1 are preferentially saturated as a
rule. Numerous studies dealt with PCs in the past because of
their utmost biochemical and clinical importance and many
different analytical techniques have been proposed to get an
insight into metabolic turnover or to characterize pathophys-
iological deviations of the native lipid composition. Most
of these techniques suffer from various drawbacks as being
time-consuming, insensitive, destructive, or not related to
individual substructures. Gas chromatography (GC) [26–
28], thin layer chromatography (TLC) [29–31], and high-
performance liquid chromatography (HPLC) [32–37] are
commonly used for lipid analysis. GC-based techniques are
quantitative but require time-consuming sample preparation
techniques. GC is often used in combination with TLC for
the lipid class separation. The spots on a TLC plate are
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scratched out and their fatty acid residues are analyzed upon
derivatization into a volatile substrate and recorded by GC.
However, the precise molecular structure of an individual
lipid is lost because of the preceding hydrolysis of the lipids.
Enzymatic cleavage of the ester bond using phospholipases
allows a successive hydrolysis of the sn-2 and sn-1 fatty acid,
but it is rather time-consuming due to intense laboratory
work and already minor contamination of the enzyme leads
to false results. HPLC offers the separation of lipid classes
using the normal phase mode (NP) and additionally the
separation according to the different fatty acid residues of an
individual lipid in the reversed phase mode (RP). In this case,
a successful separation depends distinctly on the appropriate
selection of the stationary phase. Alternatively, MS-based
techniques are widely used, as they are fast, sensitive and
require only minor sample preparation [38]. The use of
high resolution MS systems give access to the molecular
formula. In addition, characteristic fragmentations identify
the lipid class and molecular structure. When coupled with
a HPLC-system their selectivity is much higher and benefits
from both techniques. NMR spectroscopy is capable to
measure intact biomaterials nondestructively without any
preceding derivatization. Especially 31P-NMR is well-suited
to quantify phospholipid class analysis and needs only less
sample preparation [39–44]. Again only minor information
is obtained with respect to the fatty acid residues. 1H-
NMR measurements are also widely used, as they contain
more information about the fatty acids in general, but
the connection to the glycerol backbone is missing due to
massive signal overlap. 2D-NMR involving the 13C nucleus
provides a lot more resolution and more information about
individual species, but the low NMR sensitivity of the 13C
isotope prevents a fast and wide application of this technique
in a routine analysis [44–48].

This paper presents an efficient RP-HPLC setup to sepa-
rate phosphatidylcholines, which ultimately will be extend-
able to separate other polar phospholipids. Subsequently
the HPLC tool is combined with the highly informative
molecular assignment potentials of MS and NMR [49]. Five
different types of silica-based reversed phase modifications
were tested with respect to their capability to separate lipids
containing fatty acids with an equivalent carbon number
(ECN), which is the number of carbon atoms within a fatty
acid chain minus twice the number of double bonds. The
extension of a lipid by a C=C double bond will not change
the hydrophobicity. The performance of all columns was
tested on a mixture of five PCs with the same ECN whereas
two of them are even constitutional isomers concerning the
1,2-positions of glycerol, which hampers the separation even
more.

Then, the HPLC column with best performance was
used to achieve an efficient baseline separation of three
native PC extracts (soy bean, bovine brain, and egg yolk).
Furthermore, the MS fragmentation behavior in the positive
and negative ion mode is investigated for individual PCs to
identify characteristic fragmentation patterns for this lipid
class and its fatty acid residues. 1D and 2D high-resolution
NMR spectra were also acquired to confirm the molecular
structure.

2. Material and Methods

2.1. Chemicals. Methanol-d4 and deuterated chloroform,
methanol (LC-MS grade), all fatty acids, the test mixture
compounds dipalmitoyl-phosphatidylcholine (DPPC), pal-
mitoyl-oleoyl-phosphatidylcholine (POPC), oleoyl-palmi-
toyl-phosphatidylcholine (OPPC), dioleoyl-phosphatidyl-
choline (DOPC), stearoyl-linoleoyl-phosphatidylcholine
(SLPC), and also the soy bean, bovine brain, and egg yolk
extracts were purchased from Sigma-Aldrich Chemie GmbH
(Taufkirchen, Germany). The double distilled water was
taken from the in-house system.

2.2. High-Performance Liquid Chromatography. A HP 1100
series HPLC system (Agilent Technologies, Waldbronn,
Germany) was used. The injection volume was 3 μL of the
standard prepared in methanol. Five columns with different
stationary phases were tested with respect to their separation
performance for lipid analysis:

(1) type A silica-based endcapped C18 (Nucleosil 100-5
C18, 250 × 3 mm),

(2) type A silica-based phenyl (Nucleosil 100-5 C6H5,
250 × 4 mm),

(3) type B silica-based high density C18 (Nucleodur C18
Gravity, 5 μm, 250 × 3 mm),

(4) type B silica-based polymer/cross linked C18 (Nucle-
odur C18 Isis, 5 μm, 250 × 3 mm),

(5) type B silica-based mixed mode phenyl/C18 (Nucleo-
dur Sphinx RP, 5 μm, 250 × 3 mm).

All HPLC columns and materials were a kind gift of
Macherey-Nagel (Düren, Germany).

The 3 mm columns were operated at flow rate of
0.6 mL/min and the 4 mm column at 1 mL/min. The mobile
phase was optimized by adapting the methanol content in
different runs between 90% and 100% for the alkyl phases
and between 80% and 100% for the phenyl phase with
respect to the hydrophobic interaction of the analytes with
the RP packing.

An 8 mm Nucleodur Sphinx RP was operated under
isocratic conditions at 4.1 mL/min flow with a mobile phase
consisting of methanol and water (90 : 10) for the semi
preparative approach. To collect the individual species for
NMR measurements a Gilson 215 liquid handler (Gilson
International B.V., Bad Camberg, Germany) was used. The
column temperature was kept at 40◦C in all runs.

2.3. Mass Spectrometry. An esquire LC iontrap system
(Bruker Daltonik GmbH, Bremen, Germany) was used for
mass spectrometric detection for positive and negative ion
mode mass and MS/MS spectra of each PC compound were
recorded. The capillary voltage was set to −3800 V and the
end plate offset to 500 V in positive ion mode. For the HPLC
the nebulizer gas was set to 40 psi, dry gas and dry heat were
set to 10 L/min and 300◦C, respectively. In case of direct
infusion via a syringe pump, the dry and nebulizer gases
were reduced to 5 L/min and 5 psi, respectively. The collision
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energy for MS/MS experiments was optimized with respect
to the precursor ion stability.

A micrOTOF-Q-equipped with the Apollo ESI ion source
(Bruker Daltonik GmbH, Bremen, Germany) was used for
precision mass detection. The capillary voltage was set to
4500 V and the end plate offset to −500 V in negative ion
mode. The nebulizer gas was set to 0.4 bar, dry gas and dry
heat were set to 4 L/min and 200◦C, respectively. For MS/MS
experiments the collision energy of the quadrupole was
−42 eV/z. The molecular formula was generated by matching
high mass accuracy and isotopic pattern (SigmaFit, Bruker
Daltonik GmbH, Bremen, Germany).

2.4. Nuclear Magnetic Resonance. All samples were stored
at −80◦C before the measurements. In case of dissolved
samples, the solvents were evaporated by a gentle stream
of nitrogen and redissolved in CDCl3/ CD3OD (2 : 1). 1D
(1H, 13C) and high-resolution 2D (HSQC, HSQC-TOCSY,
HMBC) NMR spectra with a digital resolution of 1k data
points in F1 and 4k data point in F2 dimension of each
PC species were acquired on a Bruker DRX 600 MHz
NMR spectrometer equipped with 5 mm TXI probe (Bruker
BioSpin GmbH, Rheinstetten/Karlsruhe, Germany).

3. Results

3.1. High-Performance Liquid Chromatography. A compar-
ison of five different reversed phase columns revealed the
following behavior: The separation of the test mixture on
type A silica-based materials showed only poor results for
all PC compounds. Although, it seems that the Nucleosil
material separates all peaks very well (see Table 1), the
extreme peak broadening and a distinct tailing spoils the
pretended peak separation. In contrast, the type B silica
based materials separated DPPC, DOPC, SLPC, and POPC
or OPPC very well. However, the two lipid isomers POPC
and OPPC were only well separated (Table 1) on the polymer
cross link RP packing (ISIS). With all RP materials it was
possible to separate lipids containing two monounsaturated
fatty acids from lipids with one or two saturated or one
polyunsaturated fatty acid. The shortest separation times
with sharp chromatographic peaks were achieved by the
mixed mode stationary phase (Sphinx). Therefore, this
stationary phase was selected to separate the individual
compounds within the lipid extracts of natural sources.

3.1.1. Separation of the Phosphatidylcholine Extracts. The
mixed mode stationary phase (Sphinx) and mobile phase
of 90% methanol and 10% water allows the baseline
separation of all species within the three different extracts
(i.e., extraction residues). The separation of the PC species is
not influenced by the type or contaminations of the extract.
The results are listed in Table 2.

Altogether, twelve PC components and one plasmalogene
(bovine brain extract) were identified. All species contained a
saturated fatty acid in position sn-1 (i.e., myristic (1 species),
palmitic (7 species) or stearic acid (4 species). Palmitic or
stearic acid were esterified to the sn-2 position within three
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Figure 1: Variation of the fragmentation energy of negative ion
mode ESI-MS2 of POPC (744.4).

compounds. The other nine compounds contained a mono-
(four times) or polyunsaturated fatty acid (five times) in
position sn-2. The plasmalogen consists of octadecanol (sn-
1) and oleic acid (sn-2). Most species were identified in
bovine brain extract (11 + 1) and the fewest in the egg yolk
extract (8).

3.1.2. Preparation of the Individual Compounds for NMR
Measurement. The same mobile phase (90% methanol and
10% water) and column type (MN Sphinx) were used
for the semipreparative HPLC runs as for the analytical
measurements. However, the HPLC column dimension was
upscaled (8 mm instead of 3 mm). The flow was splitted after
the column and a small amount was used for peak detection
and identification into the micro-TOF-Q. The residual eluent
was collected for NMR measurements.

3.2. Mass Spectrometry. The ionization efficiencies of all
equimolar concentrated saturated fatty acids were recorded
relative to the internal standard undecanoic acid in different
measurements using the negative ESI ion mode. The ion
counts of undecanoic acid were set to 100 percent in all
cases and the ion counts of all other fatty acids were
recalculated with respect to this value (Table 3). All fatty
acids with a shorter chain length as the internal standard
show lower ionization efficiencies and all fatty acids with 12
or more carbon atoms show higher ionization efficiencies.
The ionization efficiency of the fatty acids increases not
linearly.

3.2.1. Fragmentation. The positive ion mode MS spectra
showed better signal to noise ratios than in the negative
ion mode. In positive ion mode, the base peak results from
the adsorption of a sodium ion. In negative ion mode, the
base peak results from the demethylation of the parent ion
during the transfer into the ion trap mass spectrometer.
[M + A]−, whereby A is chloride or formate, was observed
to a small extent only. In positive ion mode, MS/MS the
polar headgroup of phosphorylcholine was cleaved off. In
negative ion mode, MS/MS spectra the fatty acids of each
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Table 1: Retention times of different PC-components with the same ECN on different reversed phase columns.

Lipid
Column type

Nucleosil 100-5 C6H5 Nucleosil 100-5 C18 Nucleodur C18 Gravity Nucleodur Sphinx RP Nucleodur C18 Isis

DPPC 1.46 (5.76)∗ 56.82 78.00 14.31 49.19

OPPC 1.52 (6.49)∗ 59.27 86.00 16.26 51.81

POPC 1.52 (6.48)∗ 57.36 86.00 16.26 52.19

DOPC 1.64 (7.30)∗ 57.18 98.67 19.11 56.40

SLPC 1.64 (7.58)∗ 69.95 107.00 19.66 60.81
∗mobile phase methanol/water (80 : 20).

Table 2: Identified PC compounds within extracts of bovine brain, egg yolk, and soy bean.

Fatty acid position
ECN Bovine brain Egg yolk Soy bean

sn-1 position sn-2 position

Myristic acid(14 : 0) Palmitic acid (16 : 0) 30 + − +

Palmitic acid (16 : 0) Palmitoleic acid (16 : 1) 30 + + +

Palmitic acid (16 : 0) Linoleic acid (18 : 2) 30 + + +

Palmitic acid (16 : 0) Linolenic acid (18 : 3) 28 − + −
Palmitic acid (16 : 0) Arachidonic acid (20 : 4) 28 + + +

Palmitic acid (16 : 0) Palmitic acid (16 : 0) 32 + + +

Palmitic acid (16 : 0) Oleic acid (18 : 1) 32 + + +

Stearic acid (18 : 0) Linoleic acid (18 : 2) 32 + + +

Stearic acid (18 : 0) Arachidonic acid (20 : 4) 30 + − +

C18 : 0 Plasmalogen Oleic acid (18 : 1) 34 + − −
Palmitic acid (16 : 0) Stearic acid (18 : 0) 34 + − −
Stearic acid (18 : 0) Oleic acid (18 : 1) 34 + + +

Stearic acid (18 : 0) Eicosenoic acid (20 : 1) 36 + − −

Table 3: Electrospray ionization efficiency of different fatty acid
compared to undecanoic acid (pKs = 4,69 for all acids).

Fatty acid Number of
carbons

Empirical
formula

Ionisation
efficiency∗ (%)

caprylic acid 8 C8H16O2 52

capric acid 10 C10H20O2 64

undecanoic acid 11 C11H22O2 100

lauric acid 12 C12H24O2 131

myristic acid 14 C14H28O2 194

palmitic acid 16 C16H32O2 285

stearic acid 18 C18H36O2 609

eicosanoic acid 20 C20H40O2 2300
∗compared to undecanoic acid.

PC were assigned by detection of their [M − H]− ion
accompanied by a neutral loss of the fatty acid ketene. The
sn-2 fatty acid of every PC species shows always the more
intense signal compared to the sn-1 fatty acid signal. Figure 1
shows several overlaid MS/MS iontrap spectra of POPC, but
with increasing fragmentation energy to show the energy
dependence of the different fragment ions. Table 4 lists the
individual observed fragments and their corresponding m/z
values.

3.2.2. Identification of the Phosphatidylcholines in the Different
Extracts. Negative ion mode MS and auto-MS/MS q-TOF
spectra were recorded during the HPLC runs. The fatty
acid residues of each individual PC component was assigned
by its relative fragment ion intensities. Furthermore, the
molecular formula of each detected ion was generated
by matching high mass accuracy and isotopic pattern to
confirm the results. The lipid class was confirmed by the
molecular formula and reconstructing the precursor ion
of the fragment ions. Table 2 shows the indentified species
within the three different extracts.

3.3. Nuclear Magnetic Resonance. 1D-(1H and 13C) and 2D-
(HSQC, HSQC-TOCSY, and HMBC) NMR spectra of the
five reference PCs were recorded for peak assignment. The
NMR parameters of all reference compounds are listed
in the supplements. Lipids with saturated (DPPC), mono
unsaturated fatty acids (MOFA) as in POPC, OPPC, DOPC,
or polyunsaturated fatty acids (PUFA) as in SLPC show zero,
two or four carbon signals between 120 and 130 ppm. The
MOFA and PUFA show unambiguously different chemical
shifts for the olefinic carbons; however, the three lipids
with MOFAs have nearly identical olefinic carbon shifts
respectively the distance between the double bond signals
depends on the MOFA location (sn-1 or sn-2). Figure 2



Journal of Biomedicine and Biotechnology 5

Table 4: Assignment of the individual observed fragments of POPC.

Fragment Assignment m/z

A palmitic acid [M −H]− 255.0

B oleic acid [M − H]− 281.0
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Figure 2: Overlaid 13C-NMR spectral sections of olefinic carbons of
PCs with MOFAs (top OPPC, middle POPC, and bottom DOPC).

shows the overlaid 13C NMR spectra of POPC, OPPC, and
DOPC. The chemical shift difference between these two
signals is about 50 Hz for POPC and about 47 Hz for OPPC.
The corresponding 1H-NMR spectra show identical signals
for the olefinic protons (not shown). Nonetheless, a lipid
with two MOFAs can be deduced from the intensity ratio of

the olefinic protons to the glycerol protons in the 1H-NMR
spectra.

3.3.1. NMR of the PC Extracts. HPLC-MS structural results
were confirmed for all molecular species using 1D-(1H) and
2D-(HSQC, HSQC-TOCSY, and HMBC) NMR techniques.
The results are shown in Table 2. No branched chain or
oxidized fatty acids were observed. The NMR parameter of
unsaturated fatty acids have been measured separately (see
Supplement) and are identical within the mixtures.

4. Discussion

Lipids with equal ECN should have the same hydropho-
bicity, which is the discriminating factor in reversed phase
chromatography. This holds for PCs with the same ECN
within a mixture and even more, if they are stereoisomers
such as POPC and OPPC. The successful reversed phase
separation of hydrophobic and zwitterionic molecules like
phosphatidylcholines depends on very well endcapped silica
materials, as Coulomb interactions of the choline group
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with the silica gel lead to peak broadening, retention time
shifts (data not shown), and peak tailing. Packing materials
with hydrophobic van der Waals interactions only (i.e., high
density C18 materials) show no separation of isomeric lipids.
Additional interactions like steric effects by polymer cross-
linked RP packings can overcome this problem. Stationary
phases with only aromatic modifications are not hydropho-
bic enough to achieve a good phospholipid separation. The
mixed mode stationary phase contains additionally alkyl
ligands and offers therefore more hydrophobic interactions
and good silica gel coverage. This column showed the
shortest phospholipid retention times for all alkyl stationary
phases and a good separation with narrow chromatographic
peaks. Saturated lipids have the lowest and polyunsaturated
lipids the highest retention times. Comparing lipids of the
same ECN with two MOFAs or one PUFA and one saturated
fatty acid the retention of the lipid with the PUFA is higher, as
their spatial demand is larger and the π-π interactions with a
PUFA residue is not affected by the other fatty acid.

4.1. Separation of the Phosphatidylcholine Extracts. By means
of the HPLC separation it was possible to get semiquan-
titative information of the individual compounds in the
extracts. Referring to the results of the separation of the
lipid standard mixture it was possible to separate all species
within the extracts. The elution order of lipids with the same
ECN is in the same line as for the reference mixture (lipids
with saturated fatty acids, one MOFA, two MOFAs, one
PUFA). However, in case of PUFAs with four double bonds
(i.e., arachidonic acid; 20 : 4) the π-π interactions become
so strong that this compound elutes as last compound
in the next higher ECN group (see Table 2). Nonetheless,
they are unambiguously identified by means of their MS
fragmentation or NMR spectra.

4.2. Preparation of the Individual Compounds for NMR
Measurement. The upscaling with the same type of RP
packing of the newest generation is no problem, although
a peak broadening can occur because of the higher sample
load.

4.3. Ion Suppression Effects. The ionization efficiency of the
different fatty acids during ESI increases nonlinearly. The
results can be correlated with the molecules hydrophobicity,
which shows the same progression. The hydrophobicity
is obtained from the octanol-water partitioning coefficient
(log pow) (data not shown). There are no differences between
the pKa values of the individual fatty acids (Table 3), so
that the ionization efficiency of the fatty acids depends only
on the molecules hydrophobicity, which increases by the
number of carbon atoms.

As POPC and OPPC or SLPC and DOPC, respectively,
have the same molecular weight/precision mass, they cannot
be assigned based on their mol peak only. However, they
are distinguished by MS/MS spectra, as the sn-2 fatty acid
is always cleaved off at lower fragmentation energies due to
sterical effects. In addition, the intensity ratio of the sn-2
fatty acid anion to the sn-1 fatty acid anion is constant

for a particular fragmentation energy. A semiquantitative
or even quantitative analysis of stereoisomeric PCs within
a mixture (f.e., POPC and OPPC) still is difficult, because
the anion signal of an individual fatty acid will be the same
regardless the position on the glycerol backbone and no
other distinguishing signal is observed for one of the isomers.
However, using the intensity ratio of the sn-2 fatty acid anion
to the sn-1 fatty acid anion for the pure reference compound
one can calculate the approximate POPC to OPPC ratio.

The MS detection limits also benefits from the isocratic
HPLC method with high-organic solvent concentration in
the mobile phase. In case of gradient HPLC, methods
the ionization efficiency varies with the varying organic
percentage of the mobile phase. Furthermore, the risk of ion
suppression during the ionization process is minimized by
the sample introduction after HPLC separation.

The identification of the individual species in the dif-
ferent extracts was achieved by MS/MS and comparing the
individual fragment intensities as described earlier. The use
of high-resolution spectra acquired by the micro-TOF-Q
allows the generation of the compound’s molecular formula
by matching high mass accuracy and isotopic pattern.
Abnormalities like oxidation of the double bond, and so
forth. were not observed.

It may be noted, that not only diacyl PLs can be identified
within a mixture, but also alkyl/alkenyl, acyl PLs because of
the different fragmentation pattern of the fatty acid residue
compared to an ether link.

The HPLC and MS results were confirmed by NMR
spectroscopy, especially the configuration and location of
double bonds in the fatty acid residues. Only NMR having
the highest qualitative and quantitative structure elucidation
potential allows a complete structure elucidation. 1H-, 13C-,
or 31P-NMR spectra are capable to identify the various lipid
classes. Beyond this, the degree of unsaturation is obtained
from the proton signal intensity ratio of the double bond
signal versus the choline group signal. MOFAs and PUFAs
are differentiated by the number of carbon signals within
the double bond region. The location (sn-1 or sn-2) of the
MOFA follows from the 13C-NMR spectra or from ESI-MS.
The risk of peak overlapping in the NMR spectra was avoided
by recording 2D-NMR spectra by preceding separation of
individual phosphatidylcholines by HPLC.

5. Conclusion

The separation of lipids with equivalent chain lengths in
complex mixtures can be improved using RP-HPLC packings
of the newer generation containing additional discrimina-
tors. Already simple PC mixture cannot be assigned by
a single analytical technique, while the combination of
HPLC separation power, MS sensitivity with accurate mass
measurement of molecular and fragment ions and NMR
structure elucidation power will meet most suitably the
challenge. They overcome the limits of any single technique
and also proof the potential of their combination ultimately
to analyze native (lipid) mixtures. The molecular structure
of a novel compound may not be evaluated by NMR alone,
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if the native concentration is very low. Conversely, MS data
may give molecular weight, fragmentation and molecular
formulae that may be insufficient to assign ambiguously the
molecular structure of an unknown compound. However,
online NMR and MS detections in parallel provide comple-
mentary data and minimize ambiguities between LC-MS and
LC-NMR systems very efficiently.

Combination of these data allows the identification of
a lipid class, reconstruction of the lipid structure, and both
the location of an individual fatty acid to the sn-1 or sn-2
position in the glycerol moiety or the location of double bond
within the fatty acid chains.

References

[1] F. Hullin, M.-J. Bossant, and N. Salem Jr., “Aminophospho-
lipid molecular species asymmetry in the human erythrocyte
plasma membrane,” Biochimica et Biophysica Acta, vol. 1061,
no. 1, pp. 15–25, 1991.

[2] T. Matsura, A. Togawa, M. Kai et al., “The presence of oxidized
phosphatidylserine on Fas-mediated apoptotic cell surface,”
Biochimica et Biophysica Acta, vol. 1736, no. 3, pp. 181–188,
2005.

[3] T. R. Pettitt, S. K. Dove, A. Lubben, S. D. J. Calaminus, and
M. J. O. Wakelam, “Analysis of intact phosphoinositides in
biological samples,” Journal of Lipid Research, vol. 47, no. 7,
pp. 1588–1596, 2006.

[4] H.-P. Ma, C.-F. Chou, S.-P. Wei, and D. C. Eaton, “Regulation
of the epithelial sodium channel by phosphatidylinositides:
experiments, implications, and speculations,” Pflügers Archiv
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We report the successful classification, by artificial neural networks (ANNs), of 1H NMR spectroscopic data recorded on whole-cell
culture samples of four different lung carcinoma cell lines, which display different drug resistance patterns. The robustness of the
approach was demonstrated by its ability to classify the cell line correctly in 100% of cases, despite the demonstrated presence
of operator-induced sources of variation, and irrespective of which spectra are used for training and for validation. The study
demonstrates the potential of ANN for lung carcinoma classification in realistic situations.

1. Introduction

Nuclear magnetic resonance spectroscopy (NMR, or MRS)
has enormous potential for the study of biochemical and
physiological changes in cancer tissues, due to its noninvasive
nature and the large quantity of specific molecular infor-
mation it can generate. Despite the sensitivity limitations of
the technique, the inherent complexity of the spectra, and
inevitable presence of overlapping resonances, there have
been several successful NMR-metabonomics studies of cell
tissue culture and culture extracts. The focus has been on
elucidating the physiopathology of tumors and tumor cells,
their drug toxicology and drug resistance, often with a view
to identifying diagnostic markers [1–8]. A further significant
complication in such studies arises from variability in the
metabolite profile from sample to sample. This reflects many
factors [9] including minor variations in growing conditions,
the biochemical heterogeneity of the growing cells, the effect
of different batches of sera (if used), and variations in cell and
sample preparation. These additional factors may mask the

inherent metabolite distribution, which may be diagnostic of
the pathophysiological state of interest.

Experimental complications and difficulties also com-
promise the extraction of critical information from in vivo
MRS experiments. In this case, the problems arise from
the use of different MR-protocols, which affect the quality
of the water suppression, differences in echo time and in
the baseline, and so forth. While the causes are different in
origin, they have a similar effect on the application. For both
forms of magnetic resonance, many of these issues can, in
principle, be addressed by improved experimental design,
however, it is common for additional sources of variance
to be identifiable only after extensive experimentation. In
addition to technical issues are the natural physiological
variability and the individual treatment history of the
subject. As a result, there is an ongoing requirement for the
development of magnetic resonance-based diagnostics using
advanced statistical-, or other data-, analysis techniques
which can reduce or compensate for additional sources of
variability.
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1H NMR spectra of intact tissues or whole-cell samples
are inherently complex due to the large number of con-
tributing species which results in significantly overlapping
resonance signals. Cell membranes also produce magnetic
field inhomogeneity, further broadening the spectra [10].
In the case of cancer cells, a significant proportion of
the lipids reside in a fluid environment and hence appear
in the liquid-state 1H spectra as strong “mobile-lipid”
resonances [7, 8, 11]. Although the identification of the
major resonances in 1H NMR spectra can be used to
characterise the metabolite profile, the complexity of the data
sets usually necessitates the use of data reduction and pattern
recognition techniques. These can provide information on
the biochemical and physiological changes in cancer tissues,
related to their physiopathology, drug toxicology, and drug
resistance [12, 13]. Prominent amongst such techniques is
principal component analysis (PCA), [14, 15] which involves
diagonalisation of the spectral correlation or covariance
matrix to identify independent sources of variance (principal
components) across the set of spectra, and ranking of the
components by their contribution to the overall variance.
Thus, PCA is an unsupervised approach to data reprojection
that can reveal the presence of classes, it has been applied to
a variety of problems in biological science [16, 17].

Artificial Neural Networks (ANNs) belong to the so-
called Artificial Intelligence group of methods, which were
inspired by neurobiology and by the architecture of the
human brain [18]. In recent times, these approaches have
found applications in many branches of science. For exam-
ple, they have been used in chemotaxonomy to classify
limpets [19] from HPLC mass spectrometric data and
in the identification of insect species from morphological
measurements [20]. ANNs can be used to model data where
the relations, or functions, are not known.

There have been some reports of the use of artificial
intelligence and network methods in medical diagnostics
which have involved analysis of magnetic resonance spec-
troscopic data. El-Deredy et al. [21] used ANNs to achieve
reasonable prediction of the measured in vitro chemother-
apeutic response from 1H NMR of glioma biopsy extracts.
More recently, Suna et al. [22] demonstrated the diagnostic
potential of unsupervised approaches to classification by
successfully analysing simulated 1H NMR spectra using self-
organising maps. This approach allowed the identification of
stages along a metabolic pathway ranging from “normolip-
idaemic” to “metabolic syndrome”. Tate and coworkers [23]
reported the trial of an automated decision support system
for classification of brain tumors from in vivo MRS, which
showed a small but significant improvement in diagnostic
accuracy over spectroscopy used and interpreted on its own.

In recent work [24], we reported PCA of 1H NMR
spectra recorded for a group of human lung carcinoma cell
lines in culture and 1H NMR analysis of extracts from the
same samples. The samples studied were cells of lung tumor
origin with differing chemotherapy drug resistance patterns.
For whole-cell samples, it was found that the statistically
significant causes of spectral variation were an increase in
the choline and a decrease in the methylene and mobile
lipid 1H resonance intensities, which were correlated with

our knowledge of the level of resistance displayed by the
different cell lines. In this paper, we investigate the use of
artificial neural network (ANN), a supervised method, to
classify lung carcinoma. Two sets of whole-cell 1H NMR
spectra will be examined. These were recorded for two
groups of human lung carcinoma cell lines, these were grown
in culture and characterised over two different periods by
two different groups of researchers (each consisting of a
biologist and a spectroscopist), who both adhered to the
same experimental protocol and used the same spectrometer.
The cell lines studied include (i) the parent cell line DLKP,
a human squamous nonsmall cell lung carcinoma; (ii)
DLKP-A; (iii) DLKP-A5F, two resistant daughter lines; (iv)
A549, a human lung adenocarcinoma cell line. The study
also examines the capability of supervised techniques to
compensate for experimental sources of variance, which may
include operator bias and the cell culture growth process
and in particular provide a test case for the application of
ANN architectures in the identification and monitoring of
resistance states in cancer tissue by MRS.

2. Experimental

2.1. Cell Samples. The cell lines DLKP [25, 26], DLKP-A
[27], DLKP-A5F [28], and A549 were grown in culture to
approximately 70–80% confluency in 175 cm2 tissue culture
flasks. Culture conditions were as follows: DLKP, DLKP-
A, and DLKP-A5F and were cultured in minimal essential
medium/Hams F12 (1 : 1, v/v) supplemented with 5% fetal
calf serum and 2 mM L-glutamine. A549 was cultured in
Dulbecco’s modified Eagle’s medium/Hams F12 (1 : 1, v/v)
supplemented with 5% fetal calf serum. Cells were cultured
as monolayers in tissue culture flasks and incubated at 37◦C.
A cell count was performed and c. 5 × 107 cells were
separated and pelleted. These were then resuspended in
deuterated PBS buffer and were kept in a container at 37◦C
before the start of the NMR measurements. The methods
used were described in detail previously [24]. DLKP cells
express a small amount of the multidrug resistance protein-1
(MRP-1) MDR drug efflux pump [25, 26]. DLKP-A [27] is a
highly resistant clone of DLKP, which overexpresses the P-gp
drug efflux pump. DLKP-A5F [28] was derived from DLKP
by a different drug exposure profile, it is also highly drug
resistant. A549 is an unrelated human lung adenocarcinoma
cell line which was obtained from the American Type Culture
Collection.

The first group of 13 samples, G1 13 21, were grown by
a biologist during a six-month period, they were analysed by
a first NMR spectroscopist. G1 13 21 contained 21 spectra
and so was relatively sparse, it comprised DLKP [4 samples,
6 spectra], DLKP-A [4, 6], DLKP-A5F [3, 5], and A549
[2, 4]. The second group of 17 samples, G2 17 33, was
grown independently, by a second biologist during a later six-
month period and was analysed by a second spectroscopist
[24]. G2 17 33 contained 33 spectra, it comprised DLKP
[3, 6], DLKP-A [5, 10], DLKP-A5F [5, 9], and A549 [4, 8].
Thus for the integrated study presented here, a total of 30
samples were prepared and 54 1H spectra was recorded. The
same protocols and methods were used by all the researchers
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for cell growth and NMR spectroscopy. The biologist and
spectroscopist who produced G1 13 21 will be collectively
referred to as R1, and the biologist and spectroscopist who
produced G2 17 33 will be referred to as R2. Due to the
significant work involved in producing the large number of
cells required for each spectrum, the number of samples in
the study is inevitably somewhat limited. However, the total
data set is larger than those usually reported in the analysis
of NMR data by pattern recognition methods [16, 17, 29].

2.2. 1H NMR Spectroscopy of Intact Cells. NMR spectra
of the intact cell samples were recorded in deuterated
PBS buffer on a Bruker DPX 400 spectrometer operating
at 400.13 MHz for 1H. Before all NMR experiments, the
sample temperature was calibrated and controlled at 36.4 ±
0.2◦C using an internal ethylene glycol thermometer (80%
solution of ethane-1,2-diol in dimethyl sulfoxide-d6). 1H
NMR spectra were acquired, without spinning, using WET
[30] solvent suppression, with two Carr-Purcell-Meiboom-
Gill (CPMG) echoes appended, using an echo delay of 1 ms
[10]. Chemical shifts were referenced to an external 0.1%
solution of sodium trimethylsilyl-[2,2,3,3-d4]-propionate
(TSP) in D2O. All experiments were performed with a
spectral width of 5200 Hz, an acquisition time of 3.15 s,
and relaxation delay of 2 s. Three acquisition schemes were
used to record the one-dimensional 1H NMR spectra, all
amounting to 128 scans. The first scheme (I) employed
cycles of 16 dummy scans followed by four acquisition scans,
(16,4)32, giving an acquisition time of 3/4 hour. In the second
scheme (II), 16 dummy scans were applied once prior to
acquisition 16((0,16)8), giving an acquisition time of 13
minutes. In the third scheme (III), 16 dummy scans and 128
acquisition scans were collected into 32 K data points, giving
an acquisition time of 15 minutes. The time taken from
resuspension to the start of data acquisition was typically
less than 3/4 hour, and never more than 1 hour. All the data
presented were recorded within 1 hour.

For the first group of 13 samples (G1 13 21) in the
study, the acquisition schemes (I) and (II) were used for
each sample. For the second group of 17 samples (G2 17 33),
all three schemes were tested for each sample. Hence, the
greater number of repeat spectra is for the second group.
The inclusion of multiple spectra in the analysis from the
same sample tests the stability of the samples over the time of
the analysis. The insensitivity of the spectra to the sampling
scheme used demonstrates that the samples do not change,
for example, due to sedimentation, over the timescale that a
single spectrum is acquired.

2.3. PCA Analysis. In the spectral region from 1.08 to
1.20 ppm, ethanol was observed, which was probably the
result of endogenous processes. However, its intensity was
highly variable, even within the same cell line, so this region
was excluded from the analysis. The region containing the
residual water resonance signal (3.56–6.05 ppm) was also
excluded. The region above 6.05 ppm contained no features
of sufficient intensity for reliable quantification, given the
linewidth. For this study, we chose, as descriptors, the
integrals over chemical shift regions (bins) of size 0.04 ppm

Input

Inputi
...

wij

wi j

Output

Out j

Hidden layers

Figure 1: Schematic representation of a four-layer ANN architec-
ture.

[12] which was found to produce the clearest separation of
the cell types in the scores plots and the least noise in the
corresponding loadings plots. Thus, the NMR spectra were
reduced to 71 descriptors, with bin centres in the range 0.60–
1.04, 1.24–3.56 ppm. We adopted the conventional approach
[31] of normalisation relative to the total sum of the bin
intensities in the region of interest. All the measures were
implemented through writing an MATLAB (version 6.5.1,
The Mathworks Inc.) code making use of the built in
eigensolver.

2.4. ANN Analysis. ANNs are a sophisticated computational
modelling tool, which can be used to solve a wide variety
of complex problems. The attractiveness of ANNs comes
from their capability to “learn” and/or model very complex
systems and from the possibility of using them in classifi-
cation. An ANN is a computational model formed from a
certain number of single units, artificial neurons, or nodes,
connected with coefficients (weights), wij , which constitute
the neural structure. Many different neural network archi-
tectures can be used. One of the most common is the
feed forward neural network of multilayer perceptions. The
network is conventionally constructed with three or more
layers, that is, input, output, and hidden layers, Figure 1.

Each layer has a different number of nodes. The input
layer receives the information about the system (the nodes
of this layer are simple distributive nodes, which do not
alter the input value at all). The hidden layer processes the
information initiated at the input, while the output layer is
the observable response or behaviour. The inputs, inputi,
multiplied by connection weights wij are first summed and
then passed through a transfer function to produce the
output, outi. The determination of the appropriate number
of hidden layers and number of hidden nodes in each layer
is one of the most critical tasks in ANN design. Unlike the
input and output layers, one starts with no prior knowledge
of the number and size of hidden layers.
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The use of ANN consists of two steps: “Training” and
“Prediction”. The “Training” consists first of selecting input
and output data for the network. This data is referred to
as the training set. In the training phase, where actual data
must be used, the optimum structure, weight coefficients and
biases of the network are identified. Training is considered
complete when the neural networks achieve the desired
statistical accuracy, that is, when they produce the required
outputs for a given sequence of inputs. A good criterion to
find the correct network structure and therefore to stop the
learning process is to minimise the root mean square (RMS)
error as follows:

RMS =

√
√
√
√

∑N
i=1

∑M
j−1

(

yi j − outi j
)2

N ×M , (1)

where yi j is the element of the matrix (N×M) for the training
set or test set, and outi j is the element of the output matrix
(N ×M) of the neural network, where N is the number of
variables in the pattern, and M is the number of samples.
RMS gives a single number, which summarises the overall
error.

After a supervised network performs well on training
data, it is important to check its performance with data
that has not been used in training. This process is called
verification. This testing is critical to insure that the network
has not simply memorised the training set but has learned
the general patterns involved within an application. At this
stage, other input data are submitted to the network in
order to evaluate if it can predict the outputs. In this
case, the outputs are already known, but they are not
shown to the network. The predicted value is compared
to the experimental one to see how well the network is
performing. If the system does not give reasonable outputs
for this test set, the training period is not over or the
network is able to model the data but cannot predict
them.

In this work, ANN was used as a supervised method
where a training data set was created from the library of
NMR spectra, and the lung carcinoma classification of this
training data set was known. The backpropagation method
was used throughout. Firstly, the optimal ANN architecture
was searched for and when the correct classification in the
training phase was obtained, the usefulness of the created
database and the prediction power of the networks were
validated using an independent verification set. For the
ANN analysis, we used 72 inputs; the 71 binned NMR
intensities and the identity of the pairs of researchers (R1
and R2) as numbers 1 and 2. For output 4, nominal values
were used, these identify the four cell lines, DLKP, DLKPA,
DLKP-A5F, and A549, for which there were 12, 16, 14,
and 12 spectra, respectively. All calculations were performed
using the software Trajan Neural Network Simulator, Release
3.0 D. (Trajan Software Ltd 1996–1998, UK), on a standard
PC computer running Microsoft Windows Professional XP
2000.
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Figure 2: Typical 400 MHz 1H NMR spectra of DLKP lung carcino-
ma whole cells. (a) CH3, (b) CH2, (c) CH2CH=CH, (d) CH2COO,
(e) =CHCH2CH=, (f) HC=CH/CHOCOR. The spectral regions
used for statistical analysis (0.60–1.04 and 1.24–3.56 ppm) are
indicated.

3. Results

3.1. 1H NMR Spectroscopy of Whole Cells. A typical 1H NMR
spectrum of intact DLKP cells is shown in Figure 2. The
appearance of the spectra and the assignment suggested
below are broadly similar for all the cell samples analysed.
A tentative assignment which is consistent with the literature
[2, 4, 32, 33] is included in the figure [24]. Direct quantitative
analysis of the whole-cell spectra is hampered by the
potential multiple contributions from different metabolites
to any given resonance line by the nonlorentzian lineshapes
and by the broadness of the resonance lines. The resonances
in the downfield region arise from species that are at
low concentration, so quantification is precluded by the
sensitivity limitations of the NMR measurement.

3.2. PCA Visualization of Whole-Cell Spectra. The binned
NMR spectra of the intact cells were analysed using PCA.
The scores plots are shown in Figure 3. Separation of the four
cell types, within each of the two data sets, is apparent using
the first two PCs, demonstrating that resistance type can
be classified by PCA. It also demonstrates that the samples
were stable over the course of the experiment and that
the spectra are insensitive to the NMR sampling scheme.
Loadings analysis shows that, for each data set, the spectral
regions that contribute significantly to the first two principal
components are from 1.24 to 1.50 ppm, corresponding to
overlapped resonances from lipid methylenes and lactate
methyls, and from 2.90 to 3.40 ppm, corresponding to
overlapped resonances from N-methyl signals in the choline
moieties of phosphatidylcholine, phosphocholine, and glyc-
erophosphocholine. The contribution from other spectral
regions to these two principal components is marginal.

Despite the fact that the same spectral regions allow
separation within each data set, separation using PCA fails
when the two sets of spectra are combined into one; see Sup-
plementary Material available at doi:10.1155/2011/158094. It
is apparent that, in addition to the metabolite differences
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Figure 3: PCA scores plots for A549, DLKP, DLKPA, and DLKP-A5F, whole-cell data. Analysis is shown for G1 13 21 (a), G2 17 33 (b). The
right hand panel is reproduced from [24] with permission.

of biological interest, there are subtle differences between
G1 13 21 and G2 17 33 in the distribution of metabolites,
which prevent classification of the entire (54 spectra) data
set. The loadings analysis indicates contributions from across
the spectral range, which may suggest variations in more
than one metabolite. These spectral differences arise despite
stringent efforts of the second group of researchers to adhere
to the original experimental protocols and are reflected in the
fact that there is not a simple correspondence between the
orientation of the first two principal components between
the two sets of spectra, Figure 3.

3.3. ANN Analysis of Whole-Cell Spectra. ANN analysis
consists of separate training and verification steps. For
this study, we adopted the strategy of choosing multiple
verification sets of spectra at random from the 54 spectra
available. In training, the first aim is to find an optimal ANN
architecture to enable classification of the training data set.
Several architectures of three up to four layered structures
were examined for this purpose.

3.4. 3-Layers Architecture. Initially we adopted the simplest
3 layers architecture, in which case the search of the
optimal architecture consists of optimising the number of
nodes in the single hidden layer, effectively determining
the corresponding weights, wij , to minimize the RMS (root
mean square error) value according to (1). For our analysis,
the RMS value ceases to decrease significantly above 5 to 6
nodes, Figure 4, we therefore used networks with 6 hidden
nodes for verification. This optimal architecture will be
labelled (72, 6, 4), with it we obtained an RMS = 1.38× 10−3.
Figure 4 illustrates the process of searching for the optimal
network architecture.

In spite of the fact that very low values for the residual
mean squares were achieved using the (72, 6, 4) architecture,
the appropriateness of the architecture and of the training set
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Figure 4: Plot of residual mean squares as a function of the number
of nodes in the hidden layers, in the three-layers network (�), and
in the second (Δ) and third (�) layers of the four-layers network.
For the networks labelled (Δ), 3 nodes were used in the third layer;
and for the networks labelled (�), 4 nodes were used in the second
layer. The lines have no physical meaning; they are included to better
illustrate the optimal number of nodes.

was then tested with various verification sets, that is, a “cross-
validation” procedure was undertaken. Initially, five spectra
were randomly chosen and excluded from the training set
and used then as the verification set. From 10 combinations
and 10 independent networks trained, in only two cases
were any of the 5 spectra classified as unknown, Table 1.
These results are encouraging; two cases represent ∼4% of
the total, so for (72, 6, 4) the classification was verified
as 96% successful. The failures may have arisen due to an
insufficient number of spectra in the training set or because
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Table 1: Results of cross-validation verification process for the three- and four-layer ANN networks.

Architecture (72, 6, 4)∗

Verification set no. Spectra used in verification set Results of Classification

1 2, 13, 17, 27, 38 all correct

2 21, 24, 31, 35, 51 all correct

3 4, 12, 22, 35, 44 spec. 35 classified as unknown

4 16, 17, 22, 25, 52 all correct

5 15, 16, 17, 23, 54 all correct

6 9, 15, 20, 24, 43 spec. 9 classified as unknown

7 3, 12, 15, 25, 51 all correct

8 19, 21, 43, 47, 54 all correct

9 16, 36, 37, 47, 48 all correct

10 12, 42, 44, 48, 50 all correct

Architecture (72, 4, 3, 4)

1 5, 13, 20, 21, 22, 23, 24, 31, 51, 54 all correct

2 5, 8, 12, 15, 16, 29, 35, 36, 42, 49 all correct

3 8, 10, 13, 18, 23, 28, 33, 39, 40, 53 all correct

4 3, 5, 7, 9, 17, 27, 41, 45, 50, 52 all correct

5 5, 11, 16, 14, 20, 22, 24, 26, 44, 50 all correct
∗

where (72, 6, 4) refers to (the no. of inputs, the number of nodes in the hidden layer(s), the number of outputs).

networks with three layers have insufficient complexity for
100% prediction accuracy, in this case.

3.5. 4-Layers Architecture. We then examined networks with
four layers (2 hidden). From several cases examined, it was
found that four-layer ANN architectures performed similarly
to simpler three layers architectures. Networks of the form
(72, 4, 3, 4) or (72, 5, 4, 4) were investigated, note that
the numbers in brackets refer to the number of inputs, the
number of nodes in the first and in the second hidden
layers, and the number of outputs. Acceptable RMS values,
of 1.22 × 10−3 and 1.41 × 10−3 were obtained for (72, 4,
3, 4) and (72, 5, 4, 4), respectively, which are similar to the
values obtained using the optimal three-layer architecture.
Networks with the architecture (72, 4, 3, 4) performed very
similarly to (72, 5, 4, 4) and require fewer unknowns (or
weights, wij), 312 as opposed to 396. As a result, (72, 4, 3,
4) was found to converge faster and to be less sensitive to
the number of spectra excluded from training to form the
verification set. In fact, we found that 5 to 10 samples could
be used for verification with 100% correct classification of
the spectra, see Table 1. So in summary, the optimal 3- and
4-layer architectures were found to be (72, 6, 4) and (72, 4, 3,
4), respectively, Figure 5.

4. Discussion

The 1H NMR spectra of intact cells for both G1 13 21
and G2 17 33 have similar general appearance with severe
signal overlap and line broadening. Reprojection of either
data set, using PCA, demonstrates that separation by cell
types is possible due to systematic differences in the lipid
methylene and lactate methyl resonances and the overlapped
N-methyl 1H nuclei of the choline-containing species [24].

Alterations in signal intensity and chemical shift from such
cellular metabolites and biochemical intermediates have
been described by other researchers in the area [6, 11].
However, because of the complex biochemical role played by
these substances, we cannot ascribe a particular functional
role to the findings, what is more the alterations appear to
correlate and associate with particular phenotypic changes,
for example, drug resistance. On the basis of the principal
component analysis of either group, one could speculate
that metabolite profiling by in vivo MRS has potential
applications in monitoring the development of resistance in
a given cancerous tissue. However, for the full data set such
a possibility is effectively prevented by other influences on
the metabolite distribution, which are comparable to, and
nonorthogonal with, the “relevant” biochemical variation.
We have shown that this significant obstacle can be elimi-
nated, at least for in vitro studies of cell culture, by using
a suitable ANN architecture. The most successful network
was a four-layer structure with two hidden layers. After
appropriate training, the (72, 4, 3, 4) architecture enabled
100% successful classification. Our approach may, in time,
be expanded to the classification of larger data sets of spectra
which have been recorded with less stringent control over
sources of variance unrelated to the classification of interest.
This result is encouraging and it is, to our knowledge, the
first reported application of the use of ANNs specifically
to correctly classify 1H NMR spectra in a data set when
additional “nonrelevant” sources of variance are included.

Other related examples of the combination of supervised
and unsupervised methods include a report by Griffiths and
coworkers [34], who obtained 85% accurate classification
of meningiomas from nonmeningiomas, by initially using
PCA to reduce the dimensionality of 1H NMR spectra
recorded for tumor biopsy extracts. The first thirty PCs
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Figure 5: (a) Structure of the optimal 3-layer ANN architecture (72, 6, 4). (b) Structure of the optimal 4-layer ANN architecture (72, 3, 4).

from this first stage of analysis were then classified using a
network. More recently, the performance of lineshape fitting
and quantitative ANN analyses were compared by Hiltunen
et al. [35] for both in vivo and simulated 1H spectra. The
good correlation obtained with these two approaches, for
simulated data at least, suggested that ANNs have potential
for quantification of in vivo MRS long echo time spectra. A
further advantage of ANNs in the development of analysis
methods for in vivo MRS is that they require less processing
time than line fitting or other computational approaches
[36]. Thus, our study adds to the growing number of
applications of supervised techniques for exploiting the
diagnostic potential of 1H NMR spectra for biomedical
purposes.

5. Conclusions

We have found that NMR data recorded for human lung
carcinoma whole-cell culture samples can be used for anal-
ysis and classification. When sources of variation not directly
related to the biological state of interest (drug resistance)
are minimised or kept constant, visual separation of the cell
type can be achieved using unsupervised pattern recognition
techniques, such as PCA. On the other hand, when this
condition is not met, in our case when different researchers
were responsible for cell culture and spectroscopy, successful
classification of the cell type could be achieved using artificial
neural networks. The experimental and ANN methodology
developed are a step towards the goal of robust and reliable
diagnostics based on magnetic resonance spectral data.
Furthermore, as similar experimental problems may be
encountered in metabolomics applications using other spec-
troscopic techniques, biological classification using ANNs of
data sets that include “nonbiological” sources of variance
may be generally possible.
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The interleukin-10-deficient (IL10−/−) mouse develops colon inflammation in response to normal intestinal microflora and has
been used as a model of Crohn’s disease. Short-Column LCMS metabolite profiling of urine from IL10−/− and wild-type (WT) mice
was used, in two independent experiments, to identify mass spectral ions differing in intensity between these two genotypes. Three
differential metabolites were identified as xanthurenic acid and as the glucuronides of xanthurenic acid and of α-CEHC (2,5,7,8-
tetramethyl-2-(2′-carboxyethyl)-6-hydroxychroman). The significance of several differential metabolites as potential biomarkers
of colon inflammation was evaluated in an experiment which compared metabolite concentrations in IL10−/− and WT mice
housed, either under conventional conditions and dosed with intestinal microflora, or maintained under specific pathogen-free
(SPF) conditions. Concentrations of xanthurenic acid, α-CEHC glucuronide, and an unidentified metabolite m/z 495−/497+ were
associated with the degree of inflammation in IL10−/− mice and may prove useful as biomarkers of colon inflammation.

1. Introduction

Crohn’s disease is a chronic relapsing inflammatory disorder
of the bowel which is characterized by recurring episodes
of inflammation especially in the small and large intestine
accompanied by abdominal pain and persistent diarrhea [1].
Crohn’s disease has been attributed to a dysregulation of
the intestinal mucosal immune response towards normal
intestinal microflora and results from a complex interaction
of genetic [2, 3] and environmental factors [4]. The complex
aetiology and absence of a cure means that the management
of Crohn’s disease requires the continuing assessment of the
inflammation status of the patient so that the efficacy of
treatments can be determined. Current methods of assessing
bowel inflammation require the sampling of intestinal tissue
for histological evaluation or blood for measuring plasma
biomarkers of inflammation. Metabolomic characterization,
largely by NMR, of urine [5], faeces [6–8], and colon mucosal
tissues [9] from Crohn’s disease patients has revealed a range

of metabolites whose concentrations are perturbed in asso-
ciation with established inflammation. Urinary biomarkers
predictive of inflammation status would be preferable to
sampling of intestinal tissue or blood as the collection of
urine samples is relatively noninvasive and multiple samples
can more readily be obtained.

A number of metabolomic studies of mouse models
of Crohn’s disease have been used to study the biochem-
ical changes associated with inflammation and to identify
possible biomarkers. LCMS metabolite profiling of serum
from mice treated with dextran sulphate sodium (DSS)
to induce colitis showed that colon inflammation was
increased by DSS-inhibition of stearoyl-CoA desaturase 1
(SCD1)-mediated oleic acid biogenesis [10]. Examination
by NMR of colonic mucosal samples from Sprague Dawley
rats treated with 2% carrageenan for 1 or 2 weeks to
induce inflammation showed increases in concentrations
of creatinine, phosphatidylcholine and unsaturated lipids
[11]. The interleukin-10-deficient (IL10−/−) mouse shows
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physiological, and biochemical similarities to Crohn’s disease
[3] including the development of intestinal inflammation
in response to the presence of intestinal microflora and
has been widely used as a model of Crohn’s disease [12].
Interleukin-10 (IL10) is an immunosuppressive cytokine that
down-regulates cell-mediated immune responses and has an
important role in maintaining intestinal mucosal immunity
[13]. Metabolic profiling of plasma of IL10−/− mice by NMR
indicated the inflamed state was characterised by impaired
metabolism of glyco- and lipoproteins and loss of energy
homeostasis with higher levels of fatty acid oxidation and
glycolysis and interconversion of amino acids to produce
energy [14]. NMR metabolite profiling of 24-hour pooled
urine [15] and GCMS analysis of spot urine samples [16]
from IL10−/− mice identified changes in urinary metabolites
associated with colon inflammation providing insights into
biochemical changes associated with disease progression. In
particular, fucose and xanthurenic acid were identified as
early biomarkers of inflammation in the urine of IL10−/−

mice [17].
The use of multiple metabolomic platforms extends the

range of metabolites and hence the possible perturbations
in biochemical pathways that may be observed. Recently,
in a cross-platform comparison of metabolomics methods,
LCMS was recommended as providing the best combination
of versatility and robustness on a single platform [18].
Direct infusion (DI) MS/MS [19, 20] is a recently developed
metabolomic analysis tool developed for the rapid screening
of complex biological samples. DI-MS/MS combines the
analytical power of MS/MS for metabolite characterisation
with the advantages of minimal sample handling and high
sample throughput.

For nontargeted urinary metabolite profiling, we have
modified the DI-MS/MS procedure using a short 20-mm
reversed-phase column (Short-Column LCMS) to separate
and discard to waste highly ionic material and urea which
would otherwise dominate the MS data [21]. In this study,
we demonstrate the use of this methodology to rapidly screen
sample sets and to identify metabolite differences between
the urine from IL10−/− and wild-type mice that were not
detected with other techniques. Structural identification of
three of these differential metabolites using MS/MS, high
resolution MS, and chemical synthesis has provided further
insight into the metabolic changes associated with the
IL10−/− deficiency. Finally the usefulness of these metabolites
as biomarkers of colon inflammation was tested in an
experiment where IL10−/− mice were either dosed with
intestinal microflora to initiate inflammation or maintained
under specific pathogen-free (SPF) conditions to limit the
development of inflammation.

2. Materials and Methods

2.1. Animal Experiments. All animal studies were reviewed
and approved by the Crown Research Institute Animal Ethics
Committee in Hamilton, New Zealand, according to the New
Zealand Animal Welfare Act (1999). Male IL10−/− mice of
C57BL/6 background strain (B6.129P2-Il10tm1Cgn) and wild-
type C57BL/6 mice (The Jackson Laboratory, Bar Harbor,

Maine, USA) of average age upon arrival of 4, 5.3, and
4.4 weeks old were used for experiments 1, 2 [16], and
3 [17], respectively. For experiments 1 and 2 (Figure 1),
each mouse was housed individually in a shoebox-style cage
under conventional conditions and fed powdered AIN76A
diet with food intake adjusted to equal the mean amount
of food consumed by IL10−/− mice the previous week.
Four days after arrival, mice were orally dosed with a
mixture of Enterococcus faecalis, E. Faecium, and complex
intestinal flora to ensure the same initial microbial exposure
and the development of consistent intestinal inflammation
[22]. In experiment 1, yellow-fleshed kiwifruit (Actinidia
chinensis) and in experiment 2, green-fleshed kiwifruit
(A. delicoisa “Hayward”), fruit extracts were added to
the diets of some mice [16] to test their possible anti-
inflammatory effects [23]. Transcriptomic and proteomic
results of diet treatments will be reported elsewhere. In
experiment 3, all mice were fed powdered AIN76A diet
only. Approximately half the IL10−/− and wild-type mice
were maintained under conventional conditions as above and
the other half were maintained under SPF conditions and
not dosed with intestinal microflora to maintain a lower
level of colon inflammation in the IL10−/− mice throughout
the experiment [17]. Spot urine samples were collected
from each experiment on four collection days when the
average age of mice was 5.5, 7, 8.5, and 10.5 weeks old
(experiment 1), 7, 9, 11.5 and 12 weeks old (experiment 2)
[16], and 6.3, 8.0, 9.4 and 10.4 weeks old (experiment 3) [17].
Final urine samples for experiments 1 and 2 were collected
immediately before mice were euthanized and after a cycle
of feeding, fasting, and feeding designed to standardize the
timing of the final food intake. Mice from each treatment
of experiment 3 were euthanized after three and six weeks
for histology and measurement of serum amyloid-A (SAA)
protein concentrations [17].

2.2. Sample Preparation of Urine for LCMS. Urine (4 μL) was
diluted with 0.1% formic acid (200 μL) in an Eppendorf
tube, centrifuged at 12100 g for 2 minutes to precipitate
particulates and an aliquot transferred to a vial before
injection into the LCMS. Randomised batches of samples for
each time point were analyzed sequentially.

2.3. Short-Column LCMS for Biomarker Identification. Sam-
ples were analyzed by a rapid LC-MS procedure [21] using
a Thermo Surveyor pump and auto-sampler connected to
a Thermo LTQ linear ion-trap mass spectrometer (Thermo
Electron Corporation, San Jose, CA) using negative electro-
spray ionization. The capillary temperature was 275◦C and
source ionization voltage was −4000 V. A 20 μL aliquot of
diluted urine was loaded onto a Strata-X on-line extraction
cartridge (20 × 2.0 mm, Phenomenex, Torrence, CA) with
water (300 μL min−1). For the first 0.5 min. the flow from the
cartridge was diverted away from the mass spectrometer to
waste, after which all flow entered the electrospray source.
Samples were eluted with a gradient comprising water
containing 0.1% formic acid (A) and acetonitrile containing
0.1% formic acid (B). The cartridge was eluted with solvent A
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Urine samples screened using
short column LC-MS/MS

Metabolite identification
LC-MS/MS, HR-MS and

chemical synthesis

Urine analysis by
UHPLC-MS

Biomarkers of
colonic inflammation

Differential metabolites
IL10−/− versus WT mice
(Biomarker candidates )

Mouse experiment 2

• IL10−/− and WT mice
• Standard and green-
fleshed kiwifruit diets

Mouse experiment 1

• IL10−/− and WT mice
• Standard and gold-
fleshed kiwifruit diets

Mouse experiment 3
(Biomarker validation)

• IL10−/− and WT mice
• Standard diet only
• Conventional and SPF conditions

Figure 1: Overall design of mouse experiments 1, 2, and 3 and process used to identify and validate urinary biomarkers of colonic
inflammation in the IL10−/− mouse model of Crohn’s disease.

for 1.5 min, then with a linear gradient to 100% B over 3 min
and held at 100% B for 3 min. The initial solvent (100% A)
was restored over a 0.5-minute linear gradient and eluted
for 1.5 min at 600 μL min−1 and for 0.5 min at 300 μL min−1.
The ion trap was programmed to collect an MS1 spectrum
from 100 to 1000 m/z followed by MS2 and MS3 spectra from
collision-induced dissociation of the most intense ions in
the MS1 spectrum, using a 12-second exclusion list to cycle
through coeluting ions.

2.4. LCMS/MS for Metabolite Characterization. Samples
selected for further metabolite characterisation were ana-
lyzed by LCMS/MS in negative and positive electrospray
ionization mode using a Thermo LTQ ion-trap mass spec-
trometer with temperature and voltage settings as above. The
HPLC system consisted of two binary Jasco X-LC 3185PU
pumps (Jasco Corporation, Tokyo, Japan) connected to a
HTS-PAL auto-sampler (CTC Analytics, Zwingen, Switzer-
land). A 15 μL aliquot of diluted urine was loaded onto
a Luna C18 column (150 × 2.0 mm, 5 μm particle size,
Phenomenex, Torrence, CA) with a mobile phase flow rate of
200 μL min−1. For the first 3 min, the flow from the column
was diverted away from the mass spectrometer to waste, after
which all flow entered the electrospray source. Samples were
eluted with a gradient comprising water containing 0.1%
formic acid (A) and acetonitrile containing 0.1% formic acid
(B). The gradient was 95% solvent A for the first 3 min,
then a linear gradient to 98% B over 27 min. This was held
at 98% B for 3 min and then the initial solvent (95% A)
was restored over a 1 min linear gradient and re-equilibrated

for 6 min. The ion trap was programmed to collect a MS1

spectrum from 150 to 850 m/z followed by MS2, MS3, and
MS4 spectra from collision- induced dissociation of the most
intense target ion from a parent ion list comprising candidate
negative ions as in Table 1 or the appropriate product ion
spectrum. MS data was analysed with XCalibur software
(Thermo Electron Corporation, San Jose, CA). Ion trees were
compiled from extracted product ion spectra.

2.5. UHPLC-MS. Samples were analyzed using a Jasco X-
LC UHPLC and HTS-PAL autosampler connected to the
LTQ with instrument settings as described above. A 20 μL
aliquot of diluted urine was loaded onto a Zorbax SB-C18
UPHLC column (50 × 3.0 mm, 1.8 μm particle size, Agilent
Technologies, Santa Clara, CA, USA) with a mobile phase
flow rate of 900 μL min−1. For the first 0.7 min, the flow from
the column was diverted away from the mass spectrometer
to waste, after which all flow entered the electrospray source.
Samples were eluted with a gradient comprising water
containing 0.1% formic acid (A) and acetonitrile containing
0.1% formic acid (B). The gradient was 95% solvent A for
the first 0.5 min, then with a linear gradient to 100% B over
4.5 min and then restored to the initial solvent (95% A) over a
0.5 min linear gradient and re-equilibrated for 2 min. The ion
trap was programmed to collect an MS1 spectrum from 100–
1000 m/z followed by MS2 and MS3 spectra from collision-
induced dissociation of the most intense ions in the MS1

spectrum, using a 4-second exclusion list to cycle through
coeluting ions.
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Table 1: Biomarker Candidate ions (m/z) selected from Short-Column LCMS and LC-MS/MS analysis of urine samples from IL10−/− and
wild-type (WT) mice.

Short-Column LCMS
Biomarker ion (m/z)

Average fold change
Log2(IL10−/−/WT)

P value Early difference
observed

Identification,

Negative ions

204 1.8 (expt. 1) <.01 (FDR <0.05) Y xanthurenic acid

2.5 (expt. 2) <.01 (FDR <0.05)

308 −1.5 (expt. 1) <.01 (FDR >0.05)) ? (expt. 1) unknown

−1.8 (expt. 2) <.01 (FDR <0.05) Y (expt. 2)

380 −1.1 (expt. 1) >.01 N (expt. 1)
xanthurenic acid
glucuronide

−1.6 (expt. 2) >.01 Y (expt. 2)

453 −1.5 (expt. 1) <.01 (FDR >0.05) N (expt. 1) α-CEHC glucuronide

−2.0 (expt. 2) <.01 (FDR <0.05) Y (expt. 2)

495 −1.5 (expt. 1) <.01 (FDR >0.05) Y (expt. 1) unknown

−2.2 (expt. 2) <.01 (FDR <0.05) Y (expt. 2)

Positive ions

206 1.7 (expt. 1) <.01 (FDR <0.05) Y (expt. 1) xanthurenic acid

1.2 (expt. 2) >.01 N (expt. 2)

382 −1.2 (expt. 1) >.01 N (expt. 1)
xanthurenic acid
glucuronide

−1.5 (expt. 2) <.01 (FDR <0.05) Y (expt. 2)

497 −1.2 (expt. 1) >.01 Y (expt. 1) unknown

−1.4 (expt. 2) <.01 (FDR <0.05) Y (expt. 2)

2.6. High Resolution (HR) Mass Spectrometry. Salts and
urea were removed from a pooled IL10−/− urine sample
by elution of the sample and an aqueous wash through
a C-18 SPE cartridge, and the 80% methanol eluate was
collected for MS analysis. The eluate was infused into an
LTQ-FTMS (Thermo Electron Corporation, San Jose, CA,
USA) for MS/MS and high resolution MS analysis under
both positive and negative electrospray ionisation condi-
tions. HR ions observed for xanthurenic acid were negative
ions, MS2 product ion (m/z 204 → 160) m/z 160.0405
([M–H–CO2]−, C9H5O2N− requires 160.0398) and posi-
tive ions MS1m/z 206.0450 ([M+H]+, C10H7O4N+ requires
206.0448), and MS2 product ion (m/z 206 → 188) m/z
188.0344 (C10H5O3N+ requires 188.0347). HR ions observed
for α-CEHC glucuronide were MS1m/z 453.1773 ([M–H]−,
C22H29O10

− requires 453.1761) and m/z 435.1664 ([M–H–
H2O]−, source fragment), C22H27O9

− requires 435.1655).
HR LCMS ions observed for xanthurenic acid glucuronide
were MS1m/z 382.0762 ([M+H+], C16H16NO16 requires
382.0774) and MS2 product ion m/z 206.0450 (C10H8NO4

requires 206.0453).

2.7. Bioinformatic Analysis of Short-Column LCMS/MS Data.
Raw data (positive and negative ionization) were converted
to mzXML format. Nominal mass binning (integer m/z ±
0.5) was carried out for the full m/z range of 100 to 1000
resulting in 901 nominal bins for each individual sample.
Signal intensity at nominal mass resolution was retrieved
using continuous wavelet transform (CWT) algorithms [24]

for peaks within each bin with S/N > 3 (noise defined as
95% quantile of absolute CWT coefficients of scale one). The
median peak intensity of the identified peaks in each bin was
used to represent the intensity of that bin. Peak intensity was
then normalised by a linear regression of log ion intensity
against run sequence. Empirical Bayes moderated t statistics
[25] (R Limma package) were applied to identify MS1 ions
that were significantly different (FDR adjusted P < .05)
between samples from IL10−/− and wild-type mice in each
experiment. Linear modelling of the full factorial design with
three factors (genotype, diet (experiments 1 and 2), and day
of collection of urine samples) was also carried out for each
experiment. No significant diet effects were found for the
metabolites discussed below.

2.8. Metabolite Identification. Possible metabolite structures
were inferred from MS/MS ion trees and high resolution
FTMS data using web-based metabolite databases [26] and
by comparison with authentic compounds and published
mass spectral fragmentation pathways where available. Xan-
thurenic acid was obtained from Aldrich Chemical Co.
Xanthurenic acid sulphate dipotassium salt was prepared by
chemical synthesis [27]. α-CEHC glucuronide was synthe-
sised following the method of Pope et al. [28].

3. Results

3.1. Short-Column LCMS Data Analysis. To identify
metabolic differences between IL10−/− and wild-type mice,
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Figure 2: Short-Column LCMS ion chromatogram for m/z 231 showing broad partially resolved peaks typically obtained on desorption
of analytes from the 20 mm Strata-X on-line extraction cartridge. Wavelet algorithms were used to identify local peaks, and the median
intensity of these peaks was taken to represent the intensity of m/z 231.

urine samples were collected at four time points from
each of two independent experiments (experiments 1 and
2) [16] (Figure 1). Short-Column LCMS using a short
(20 mm) solid phase extraction column enabled extremely
rapid sample analysis (8 minutes per sample) and avoided
blocking the source with salt build-up but provided only
minimal chromatographic separation of analytes. The LCMS
data for each sample consisted of broad peaks of varying
signal intensity on each of the unit mass channels of the mass
spectrometer (Figure 2). LCMS data files were processed
based on methods developed for the direct-infusion LCMS
data analysis [29] but with notable modifications. With
the short solid phase extraction column used in these
experiments, the signal distributions within mass bins varied
with time with variable and non-Gaussian chromatographic
peaks. Robust statistics were needed to summarise the
signal intensities within each mass bin. Wavelet-based signal
identification was used to identify any m/z peaks within
each bin with S/N > 3 [24] with the median average of the
identified peaks in each bin being used to represent the
intensity of that bin.

A progressive decline in ion intensity, as observed by
Koulman et al. [20], was observed during the infusion of
the large number of urine samples. Several normalization
approaches [30] including linear regression, local regression
loess and quantile were tested to correct for this decline.

The loss of ion intensity was best explained by a linear
relationship between the log of ion intensity and the position
of samples in the run sequence. Normalization based on this
model was carried out for all MS ions and the normalized
data were subjected to statistical analysis.

3.2. Selection of Biomarker Candidate Ions from Short-Column
LCMS Data. MS1 ions that were significantly different (FDR
adjusted P-value P < .05) between samples from IL10−/−

and wild-type mice in each experiment were identified
using empirical Bayes moderated t-statistics [25] (R Limma
package) (Supplementary Materials available online at doi:
10.1155/2011/974701, Table S1). More differential metabo-
lites were found by negative mode Short-Column LCMS,
however, there was also a pleasing correspondence between
the top candidate ions identified in both experiments (1 and
2) and to a lesser extent between candidate ions identified in
both positive and negative ionisation modes. From this initial
list, biomarker candidates were selected for further investi-
gation based on additional criteria: the detection and level
of significant of ions in both experiments, detection early in
the experiment, detection as both positive and negative ions,
and the presence of sufficient peak intensity to allow detailed
MS/MS analysis. A more complex analysis using linear mixed
modelling to incorporate effects of diet and the metabolic
variation of individual mice was used to evaluate changes
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in the metabolic responses over time but did not produce
additional candidate ions discriminating the IL10−/− mice.
LC-MS/MS analysis of selected samples was then carried out
to identify which candidate ions (and ion trees) identified
from Short-Column LCMS analysis corresponded to single
or to multiple metabolites, to eliminate source fragment ions
and adducts, and to obtain expanded MS/MS ion trees of
chromatographically resolved metabolites of interest. The
mass spectral ions selected by these criteria are listed in
Table 1.

3.3. Structural Characterization of Biomarker Candidates

3.3.1. Xanthurenic Acid (m/z 160, 204 [M–H]− and m/z 206
[M+H]+). Three major metabolites with m/z 204− were
detected in mouse urine by LCMS of which only the major,
and earliest eluting metabolite, was elevated in the urine
from IL10−/− mice. This metabolite co-eluted with the only
significant m/z 160− ion in the samples (also elevated in
IL10−/− mice), a likely source fragment which was shown
to arise from the m/z 204− ion, (loss of 44 amu) by
MS/MS. High resolution FTMS and LCMS comparison with
authentic material identified this metabolite as xanthurenic
acid.

3.3.2. Xanthurenic Acid Glucuronide (m/z 380 [M–H]− and
m/z 382 [M+H]+). LCMS identified the negative ions at m/z
380 and the positive ion at m/z 382 as resulting from the
same metabolite that occurred at lower concentrations in
the urine from IL10−/− mice (Table 1). LC-MS/MS showed
loss of a glucuronide-derived fragment (176 amu) in both
negative and positive ionization modes to form a product
ion (m/z 204 or 206 resp.) which underwent further frag-
mentations as observed for the corresponding xanthurenic
acid ions (Figure 3). High resolution MS data is consistent
with xanthurenic acid glucuronide, although this remains
to be confirmed by chemical synthesis. Xanthurenic acid
glucuronide was identified as a differentiating metabolite
(FDR adjusted P < .05) in both positive and negative
ion LCMS and in both experiments 1 and 2, but with
concentrations changing in the opposite direction to that of
its aglycone (Table 1).

3.3.3. α-CEHC Glucuronide (2,5,7,8-Tetramethyl-2-(2′-
Carboxyethyl)-6-Hydroxychroman Glucuronide, m/z 453 [M–
H]−). The ion (m/z 453−) occurred at lower concentrations
in urine from IL10−/− mice. A metabolite (M+ 454) not
containing nitrogen was assumed. LC-MS/MS analysis
identified this metabolite as a second glucuronide (MS2

loss of 176 amu to m/z 277) with a subsequent loss of 44
amu, implying a glucuronide acid conjugate. The molecular
formula therefore requires a minimum of nine oxygen atoms.
FTMS analysis indicated that the major m/z 453− ion in the
sample showed the required ion tree and had an accurate
mass of 453.1773. Constraining any molecular formula to
a minimum of 9 oxygen atoms gave C22H29O10

− as the
most likely formula for this ion (theoretical value 453.1761).
Similarly, the major fragment ion at m/z 435.1664 (loss of

18 amu) is assigned a formula of C22H27O9 (theoretical
value 435.1655). The molecular formula is then C22H30O10

with C16H22O4 being the formula of the aglycone (a
carboxylic acid). A search for such aglycones in the Human
Metabolome Database [31] suggested that this metabolite
was the glucuronide of α-CEHC. The MS/MS fragmentation
appeared consistent with this structure (Figure 4). α-CEHC
glucuronide was prepared by synthesis [28] and the MS/MS
and LCMS matched that of the urine metabolite. α-CEHC
is a major water-soluble metabolite of vitamin E, which
circulates in the blood and is excreted in the urine [28].

3.3.4. Unidentified Metabolites. The m/z 284− ion was
detected amongst the most significant differentiating species
between IL10−/− and wild-type mice (Table S1), and xan-
thurenic acid sulphate, a known urinary metabolite of
xanthurenic acid [27], seemed a likely candidate. UHPLC-
MS analysis, however, showed that this ion was an isotopo-
logue of m/z 283−, also a highly significant differentiating
species (Table S1), and eluted at a later retention time than
authentic xanthurenic acid sulphate [27]. Xanthurenic acid
sulphate (m/z 284 [M–H]−) was not detected by UHPLC-MS
(Experiment 3) using an authentic standard.

Two additional ions (m/z 308− and m/z 497+/495−) were
significantly reduced in urine from IL10−/− mice (Table 1).
The first metabolite (m/z 308) was found only as a negative
ion, and LC-MS/MS analysis (MS2 m/z 124, MS3 m/z 107,
80) suggested a taurine conjugate. The second pair of ions
(m/z 497+/495−) would seem to be derived from the same
metabolite as they appear at the same retention time on
LCMS/MS with the same losses of 147 and 75 (glycine)
amu from the corresponding pseudomolecular ions. The
structures of these metabolites remain unknown.

3.4. Evaluation of Candidates as Biomarkers of Colon Inflam-
mation. The biological significance of these metabolic dif-
ferences as biomarkers of colon inflammation was evaluated
in experiment 3 that compared IL10−/− and wild-type
mice housed either under conventional conditions and
dosed with intestinal microflora or maintained under SPF
conditions without dosing with intestinal microflora [17].
The rationale for this experiment was that biochemical
differences arising from colon inflammation in IL10−/−

mice should be reduced when these mice were maintained
under SPF conditions [3]. Biochemical differences arising
from other genetic differences between the mouse strains
[32] or as a consequence of microbial dosing should not
be similarly affected. IL10−/− mice housed under these
SPF conditions showed decreased colon inflammation as
measured by histology scores and SAA levels in serum [17].
Urine samples were analyzed using UHPLC-MS in both
positive and negative ionisation modes with both targeted
analysis of biomarker candidates and untargeted metabolic
profiling of all metabolites. The top scoring metabolites
identified as differing between IL10−/− and wild-type mice by
untargeted analysis included xanthurenic acid, xanthurenic
acid glucuronide, and α-CEHC glucuronide among the top
20 candidates (Supplementary Table S2: ion labels below
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Figure 3: LC-MS/MS ion trees (positive ions) for A, xanthurenic acid (m/z 206 [M–H]−) and B, xanthurenic acid glucuronide (m/z 382
[M–H]−) showing major (>80% relative intensity), intermediate (≥30 ≤80%), and minor (>1 <30%) MS/MS fragmentations using bold,
normal and dotted arrows, respectively.

refer to this table). Amongst the positive ions m/z 206
(M206T94), with isotopologues m/z 207 and 208, was the
top ranking candidate showing an average 2.4-fold increase
(P < .0001) in urine from IL IL10−/− mice. However, the
corresponding negative ion (M204T91) was only the 21st
ranking candidate despite the high ranking for this ion in
previous experiments. Targeted analysis of xanthurenic acid
monitoring the m/z 204− MS1 ion in negative mode showed
interference from a closely eluting metabolite.

Xanthurenic acid concentrations were significantly
higher in dosed mice (P = .002) with this increase
being more apparent between the dosed and SPF IL10−/−

animals (P < .001). In addition, SPF IL10−/− mice showed
an increase in xanthurenic acid concentrations from the
earliest timepoint (P < .001) supporting the hypothesis
that xanthurenic acid is an early biomarker of inflammation
and consistent with the increasing histology scores and SAA
concentrations measured for these mice [17].

UHPLC-MS analysis confirmed that xanthurenic acid
glucuronide (M382T85 and M380T82) occurred at signifi-
cantly higher concentrations in urine from WT mice (P <
.0001) (Figure 5) and showed that, while concentrations
of this metabolite increased throughout the experiment
in both types of mice (P < .001), concentrations in

IL10−/− mice were not affected by housing conditions (SPF
or conventional) (P = .5) . We therefore conclude that
the difference in concentrations of this metabolite between
IL10−/− and WT mice represents a metabolic difference
between the two mouse strains unrelated to the state of
inflammation [17, 32]. Concentrations of this metabolite
increased with time in IL10−/− mice under SPF conditions.
However, similar increases also occurred in WT mice and
would seem to be related to the age of the mice rather than
to inflammation.

UHPLC-MS analysis showed that α-CEHC glucuronide
(M453T145) occurred at significantly higher concentrations
in urine from WT mice (Figure 6) and at higher concen-
trations when either IL10−/− or WT mice were housed
under SPF conditions (P < .0001). The concentration
of this metabolite in urine from WT mice was unaltered
over the course of the experiment (P = .5) but decreased
(P = .02) in the IL10−/− mice under both SPF and
conventional conditions. Overall these results suggest that
reduced concentrations of α-CEHC glucuronide may serve
as a marker of inflammation status in the IL10−/− mice

The metabolite with ions M495T117/M497T116
appeared as the 29th and 41st ranking ions that were
significantly different between IL10−/− and wild-type
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Figure 5: Relative concentrations of xanthurenic acid (M206T94) and xanthurenic acid glucuronide (M380T82, m/z 380 ([M–H]−),
identified by LCMS/MS) measured by UHPLC-MS in urine samples from IL10−/− and wild-type (WT) mice housed either under
conventional conditions and dosed with intestinal microflora or maintained under specific pathogen free (SPF) throughout the experiments.
Urines samples were collected 7, 19, 29, and 36 days after dosing [17].
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Figure 6: Relative concentrations of α-CEHC glucuronide mea-
sured by UHPLC-MS in urine samples from IL10−/− and wild-
type (WT) mice housed either under conventional conditions
and dosed with intestinal microflora or maintained under specific
pathogen free (SPF) throughout the experiments. Urines samples
were collected 7, 19, 29, and 36 days after dosing [17].

samples. Both ions occurred at significantly lower
concentrations (P < .001) in urine from IL10−/− mice
(Figure 7) confirming results obtained by Short-Column
LCMS; however, this suppression was partially removed
by SPF treatment (Treatment effect P < .001 for m/z 495
and P = .03 for the less intense m/z 497 ion). Metabolite
concentrations in urine from IL10−/− mice were significantly
reduced as a result of microbial dosing (P < .0001).
Concentrations of the more intense m/z 495− ion were also
significantly reduced with time (P = .014 overall; P < .001
for IL10−/− mice). These results suggest that reduced
concentrations of this metabolite were related to the extent
of colon inflammation in the IL10−/− mouse.

UHPLC-MS analysis confirmed that the metabolite with
m/z 308 (M308T85) occurred at slightly higher concentra-
tions in urine from IL10−/− mice (P < .0001) and showed
that concentrations were reduced in urine from IL10−/− mice
under SPF conditions (P = .003) (Figure 8). However, the
downward trend in urinary concentrations of this metabolite
with time for all treatments (P < .0001) suggested that its
elevated concentrations in IL10−/− mice was not associated
with colon inflammation.

4. Discussion

Xanthurenic acid was previously identified by GCMS as an
early biomarker of inflammation in urine from IL10−/− mice
[16, 17] and is a product of tryptophan catabolism through
the kynurenine pathway. This pathway is activated by proin-
flammatory stimuli such as bacterial lipopolysaccharides
and interferon-γ cytokine [33]; however, metabolites of this
pathway are also associated with the induction of immune
tolerance [33–35]. Thus the elevated levels of xanthurenic
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Figure 7: Relative concentrations of biomarker M495T117 (m/z
495−) measured by UHPLC-MS in urine samples from IL10−/− and
wild-type (WT) mice housed either under conventional conditions
and dosed with intestinal microflora or maintained under specific
pathogen free (SPF) throughout the experiments. Urines samples
were collected 7, 19, 29, and 36 days after dosing [17].
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Figure 8: Relative concentrations of biomarker M308T85 (m/z
308−) measured by UHPLC-MS in urine samples from IL10−/− and
wild-type (WT) mice housed either under conventional conditions
and dosed with intestinal microflora or maintained under specific
pathogen free (SPF) throughout the experiments. Urines samples
were collected 7, 19, 29, and 36 days after dosing [17].

acid in urine from IL10−/− mice may result from the absence
of negative feedback control by IL10 on the production of
kynurenine metabolites.

Xanthurenic acid glucuronide, identified on the basis of
its high resolution LC-MS/MS fragmentation pattern, was
also a differential metabolite. Concentrations of the glu-
curonide were lower in urine from IL10−/− mice suggesting
a shift to higher free xanthurenic concentrations associated
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with colon inflammation. However, the low urinary con-
centration of the glucuronide in IL10−/− mice kept under
SPF conditions suggested its concentration was not related
to inflammation status. Similar observations have been made
for short chain dicarboxylic acids that occurred at reduced
concentrations in the urine of IL10−/− mice regardless of
inflammation status [17]. The origin of such metabolic
differences was attributed to residual 129P2 embryonic stem
cell-derived genetic material flanking the IL10 gene in the
IL10−/− C57BL/6 mouse [17, 32]. The UDP glucuronosyl-
transferase (UGT1) gene family (http://www.ensembl.org/)
also lies within this region of embryonic stem cell-derived
genetic material and may contribute to this metabolic
difference between mouse strains. Xanthurenic acid 8-O-
sulphate and 8-O-glucoside have also been identified in
human urine as natriuretic hormones that regulate sodium
excretion by the kidney [27]. Xanthurenic acid sulphate was
not detected in the present study while xanthurenic acid
glucoside (m/z 366 [M-H]−) was only tentatively detected by
UHPLC as the differential metabolite (M366T84) (Table S2);
higher in the urine from IL10−/− mice.

α-CEHC is a degradation product of vitamin E normally
present in urine [28] where its concentration may reflect that
of α-tocopherol and of α-CEHC in the liver [36]. Vitamin E
is reduced in serum from Crohn’s disease patients possibly
as a result of reduced concentrations of serum lipids and of
reduced absorption of lipids from the diet [37]. The reduced
concentrations of α-CEHC glucuronide observed in urine
of IL10−/− mice, and their recovery under SPF conditions,
is consistent with reduced availability, degradation, and
excretion of vitamin E in mice with impaired intestinal
function. Reduced concentrations of α-CEHC glucuronide,
and of the related metabolite γ-CEHC β-D-glucoside, have
also been identified in urine of mice treated with a pregnane
X receptor (PXR) activator [38]. It was suggested that these
conjugates in urine may be useful urinary biomarkers of
PXR activation. PXR is highly expressed in the intestines
where it functions as a xenosensor to regulate the expression
of metabolic enzymes and the excretion of xenobiotics
as well as of toxic endogenous metabolites such as bile
acids [39]. PXR activation was shown to be protective
in the DSS-induced colitis mouse model of inflammatory
bowel disease [40]. In IL10−/− mice, increased intestinal
permeability may likewise result in an increased ingress of
xenobiotics and toxic endogenous metabolites such as bile
acids resulting in activation of PXR and reduced urinary
vitamin E metabolites. Urinary α-CEHC glucuronide may
thus serve as a good biomarker of intestinal inflammation.

The discovery of α-CEHC glucuronide and other
unknown metabolites as potential inflammatory biomarkers
illustrates both the power and the limitations of cur-
rent analytical techniques in metabolomic analysis. Short-
Column LCMS analysis enables extremely rapid metabolic
profiling of multiple samples with simultaneous collection
of characterising MS/MS data. However, the limited sepa-
ration of individual metabolites hinders the structural and
biochemical characterisation of candidate ions and their
biological validation. UHPLC-MS allows rapid measure-
ment of chromatographically individual metabolites but

with reduced mass spectral data, so that additional MS
experimentation is required to characterise metabolites of
interest. The challenge of metabolite identification remains
a major constraint but is essential for biological validation of
biomarker candidates. Comparison of our results with those
obtained from other metabolomics studies of urine from
Crohn’s disease patients or from animal models indicates
how the different analytical tools each brings their own
selectivity [18] so that the application of new analytical
technology, as here, will reveal new metabolic biomarkers.
NMR profiling of urine from Crohn’s and ulcerative colitis
patients has identified a number of metabolites affected
by gut microbes, such as formate, hippurate, and p-cresol
sulphate, which were able to discriminate between the
patient cohorts [5]. Methylhistidine, glycine, guanidoacetate,
and citrate were further metabolites important in distin-
guishing between cohorts. Methylhistamine has previously
been reported as a urinary marker of disease activity in
Inflammatory Bowel Disease [41]. However, hippurate, p-
cresol sulphate, methylhistidine, and methylhistamine were
not detected as differentiating metabolites in the present
study. More recently, Lin et al. using GCMS [16, 17] have
proposed xanthurenic acid and fucose as early discriminating
metabolites of colon inflammation in the urine of the
IL10−/− mouse. This paper extends those observations rais-
ing wider questions about the role of tryptophan catabolism
and xanthurenic acid conjugates in the regulation of urinary
salt balance [27] and inflammation.
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Mice models are an important way to understand the relation between the fetus with cleft palate and changes of maternal biofluid.
This paper aims to develop a metabonomics approach to analyze dexamethasone-induced cleft palate in pregnant C57BL/6J mice
and to study the relationship between the change of endogenous small molecular metabolites in maternal plasma and the incidence
of cleft palate. To do so, pregnant mice were randomly divided into two groups. The one group was injected with dexamethasone.
On E17.5th day, the incident rates of cleft palate from embryos in two groups were calculated. The 1H-NMR spectra from the
metabolites in plasma in two groups was collected at same time. Then the data were analyzed using metabonomics methods (PCA
and SIMCA). The results showed that the data from the two groups displayed distinctive characters, and the incidence of cleft
palate were significantly different (P < .005). To conclude, this study demonstrates that the metabonomics approach is a powerful
and effective method in detecting the abnormal metabolites from mother in the earlier period of embryos, and supports the idea
that a change from dexamethasone induced in maternal metabolites plays an important role in the incidence of cleft palate.

1. Introduction

Congenital cleft lip and palate (CLP) is the most common
birth defect in humans. The etiology is complicated, and it
involves genetic and environmental factors [1, 2]. Maternal
condition during pregnancy also appears to play an impor-
tant role [3]. Smoking [4–6], over intake of vitamin A [7, 8],
and deficiency in folic acid and Bs may increase risk for
oral clefts [9–12]. In addition, drug-induced (corticosteroid)
teratogenesis has also received some attention [13–16]. Most
studies above are based on epidemiological investigation.
As a useful model, experiments of mouse development are
used to assess the mechanism of palate defects in fetuses
resulting from exposure to the risk factors. Current strategies
to study orofacial defects focus on the related genotype
and transcription factors [17, 18]. However, the capability
of maternal detoxification during orofacial development
is important for normal palate formation. As a result, a
fetus lacking genes associated with cleft palates still has

high risk of defect if maternal detoxification is insufficient.
[2, 19]

Metabonomics, based on the NMR spectroscopic and
multivariate statistics, can be useful for the description
and recognition of the dynamic multivariate metabolic
response of an organism to a pathological event or genetic
modification. The 1H-NMR spectra of the biofluids from an
organism contain a significant amount of useful metabolic
information. Application of automated data reduction algo-
rithms and chemometric analysis, which is called pat-
tern recognition analysis (PR), can be competent for the
description and recognition of the dynamic multivariate
metabolism. It is included two major approaches, one is
termed “unsupervised”, which could be used to not only
reduce the complex and volume data to a suitable level
but also screen for the outlier and examine condition
of the clusters, including Principal Component Analysis
(PCA), Nonlinear Mapping (NLM) and Hierarchical Cluster
Analysis (HCA). The other is termed “supervised” that
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Figure 1: Photos of fusion or lack of fusion by embryonic palatal shelves. The fusion situation of embryonic palatal shelves was observed
and photographed. (a) Fused embryonic palatal shelf. (b) Nonfused embryonic palatal shelf. (c) Fused embryonic palatal shelf in histological
section. (d) Nonfused embryonic palatal shelf in histological section.

means, make a mathematical model by a training set of
known class from the samples and then draw the estimated
or predictive model by independent validation set. There
are many methods such as Soft Independent Modeling of
Class Analogy (SIMCA), Partial Least Squares (PLS), Linear
discriminant analysis (LDA), K-nearest neighbor analysis
(KNN), and Bayesian methods. These approaches have been
successfully applied to study diseases and toxic processes
[20–27]. Principal component analysis (PCA) as a bilinear
decomposition method is one of the most easy and efficient
approaches to analyze the NMR data, A PCA model can
trustily display a summary of all samples in the data table
[27]. Combination with using a prediction model, such as
SIMCA, can be constructed to analyze the unknown samples
[28–30].

Development of the mammalian palate involves a num-
ber of critical steps: growth, elevation, contact, and fusion
(the medial edge epithelium disappearance). Any problem
arising from these steps can lead to the incidence of cleft
palate. DEX, one of the glucocorticoids (GC), can penetrate
the blood-placental barrier and bind to GC receptor (GR)
in the cytoplasm, and can depress the ability of palatal
mesenchymal proliferation. Since the palate is smaller,
development of bilateral palates is interrupted, which results
in the cleft [31–34]. We hypothesized that the metabonomic
method could provide the framework for the studies on
the consequences of maternal environmental changes during
pregnancy and for illustrating the relationship between
the changes of maternal environment and development
of palates. To test this hypothesis, we studied the plasma
samples from pregnant C57BL/6J mice, which were induced

with dexamethasone (DEX) to trigger cleft palate formation
in the fetuses. The analyses demonstrated the relationship
between the change in endogenous small molecular metabo-
lites of maternal plasma and the incidence of cleft palate (CP)
in fetuses.

2. Materials and Methods

2.1. Animal Handling and Dosing. All animal experimenta-
tion was approved by the Animal Research Committee of
the West China College of Stomatology (Sichuan University).
C57BL/6J (C57) mice, about 8 weeks of age, were obtained
from the Laboratory Animal Center of Sichuan University.
All mice were reared in plastic cages (28 cm × 16 cm ×
12 cm), under a 12/12-hour light/dark cycle. The room was
maintained at a controlled ambient temperature of 20–
27◦C with 40%–70% relative humidity. A commercial diet
(Laboratory Animal Center of Sichuan University, China)
and tap water were fed ad libitum. Mice were allowed to
acclimatize for 48 hours prior to mating. Two virgin females
and one male were placed overnight in a cage and checked on
following morning for the copulatory plug of female mice.
Females with copulation plugs were weighed immediately
and the date was designated to Embryonic day 0(E0).

Pregnant mice (42) were randomly divided into two
groups (the experimental group and the control groupeach
group 21 mice). From the 10th day to the 12th day of preg-
nancy (From E10 to E12), the mice in the experimental group
were intraperitoneally injected daily with Dexamethasone
(DEX dexamethasone sodium phosphate injection, Tianjing
China) at 6 mg/kgand while the others in the control group
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Figure 2: 600 MHz 1H-NMR spectra of plasma samples from the pregnant mice in two groups: “a” showed the spectrum from one sample
in the control group; “b” showed the spectrum from one sample in the DEX group.

with isotonic sodium chloride (0.9% NaCl). The dose levels
were based on the literature report [35].

2.2. Sample Collection. On the day of E17.5, all the pregnant
mice were sacrificed and weighed. The peripheral blood was
placed in a lithium heparin tube (Vacuette Austria) imme-
diately. Within 2 hours of the collection, the erythrocytes
were separated by centrifugation (3000× g at 4◦C or 10 min)
to pick up the biofluid top of the plasma for analysis. All
the plasma samples were stored at −80◦C before the 1H-
NMR analysis. At the same time, a stereomicroscope was
used to determine the number of live fetuses and gross
malformations.

2.3. Statistical Analysis of the Incidence of Cleft Palate.
After removal of the mandibles, embryonic palates were
calculated using stereomicroscope (10×) by morphologic
in two groups. Target palates were processed into paraffin
wax. Histological sections of embryonic palates were cut and
stained with haematoxylin and eosin (HE). The results were
photographed by a Leica photographic system (Germany).
The numbers of CP in two groups were analyzed to detect
the different incidence rates by using chi-square test and
variance-based statistical algorithm (SPSS 10.0).

2.4. Preparation of Plasma Samples for 1H-NMR Spectroscopy.
The 1H-NMR spectra were obtained immediately after each
sample was thawed at 300 K and then kept at the same
temperature in a Bruker Avance II 600 spectrometer (Bruker
Biospin, Germany), which was operating at 600.13 MHz with
a 5-mm PATXI probe. In order to obtain a deuterium lock
signal for the NMR spectrometry, 200 μl aliquots of all the
plasma were diluted up to 500 μl with 300 μl of Deuterium
oxide (D2O).

2.5. Acquisition of 1H-NMR Spectra of Plasma. The spec-
trum was obtained by using two different pulse sequences:
one is selective presaturation pulse sequence (Bruker
Biospin, Germany) for water suppression (located in
δ 4.8 ppm) and other is CPMGPR1D pulse sequence (Bruker
Biospin, Germany). The later one, which was used to attenu-
ate the broad protein signal in the plasma, is a modification
of the Carr-Purcell-Meiboom-Gill pulse sequence (CPMG-
pulse, Bruker Biospin Germany) to suppress the residual
water signal. For each sample, 1D 1H-NMR spectrum was
collected with 64 K data points, 64 scans and 15 ppm spectral
width. Other acquisition parameters were 5 s relaxation
delay, 8 dummy scans, 400 μs fixed echo time to allow the
elimination of J-mod, and 400 CPMG loops for T2 filter.
The phase and the baseline of all acquired NMR spectra were
manually calibrated, and the chemical shifts corrected by the
reference of the lactate doublet at δ1.32 [36] with TopSpin
1.3 (Bruker Biospin, Germany).

2.6. Reduction of the NMR Spectral Data. All signals of the 42
samples’ were located in the range of δ 0–7 ppm in spectral
region and have no visible resonance peak after δ 7 ppm.
Using MestReC (version 4.8.1.1, Spain), each 1H-NMR spec-
trum was divided with δ 0.04 ppm width into 162 contiguous
segments and integrated from the rang of δ 0–7 ppm [37, 38].
The region of the spectrum (δ 5.0–4.5 ppm) was removed
to exclude the influence of the water signal. The result was
set up to a kind of 2D matrix (n × d), “n” representing
the 42 samples, “d” meaning 162 contiguous segments.
The matrix data were normalized to the unit area with
the appropriate weighting coefficients in Excel (Microsoft
USA) and then exported into the SIMCA-P software package
(version11.0, Umetrics AB, Umeå, Sweden). The average
value of each variable was calculated and subtracted from the
data.
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Figure 3: The plot of PCA analysis from two groups. “�” showed the data from pregnant mice with CP fetuses in DEX group; “�” showed
the data from pregnant mice with fusion fetuses in control group. “∗” showed the pregnant mice including CP fetuses in the control group.

Table 1: Comparison of the incidence of cleft palate in the embryos between two groups.

Non-Fusion Fusion Total Incidence of non-fusion (%)

Control group 3 103 106 2.83

DEX group 27 96 123 21.95∗

Total 30 199 229 13.10
∗Significant difference with respect to control (χ2 = 18.285, P < .005).

2.7. Statistical Analysis of the Data from NMR Spectra. After
the average value being calculated from each variable and
subtracted from the data, PCA was applied to the mean-
centered data to detect the differences among the samples.
SIMCA was performed to validate the results. Firstly, separate
PC models were built for the training sets of 10 samples from
DEX group with CP fetuses and 10 samples including only
normal fetus of control group and were defined two distances
against boundaries (cross-validation) by the 95% confidence
interval. As a typically visualizing method, the Cooman’s
plot was often used to display the result [39]. SIMCA
formulated a PC model for each distinct class and estimated
its performance. Secondly, the procedure was repeated for all
samples (the test sets) in turn, to predict and assess whether
samples were separated into two classes. Finally, the result of
the Cooman’s plot illustrated the visible separation of two
groups. Each step was repeated five times in order to keep
the validation set.

3. Results

3.1. The Statistics of the Incidence of Cleft Palate in Two
Groups. Forty-two C57BL/6J pregnant mice were examined,
and 229 fetuses were collected, including 123 fetuses from
DEX treatment group and 106 fetuses from the control group
(Table 1). Each pregnant mouse had multiple fetuses. There
was at least one CP fetus in each pregnant mouse in DEX
treatment group (named DEX group), while there were 3 CP
fetuses in two pregnant mice of the control group (named
the control group with CP). The incidence of CP in the DEX
treatment group was 21.95%, significantly different from the
control group (P < .005). The character of morphology and

histology were recorded (Figure 1). “a” and “c” show fusion
of palate shelves, while “b” and “d” show a failure of the
palate shelves to fuse.

3.2. 1H-NMR Spectra from Two Groups. The 1H-NMR spec-
trum of the plasma from pregnant mice revealed great
complexity and significant information about the biofluid
(Figure 2). The chemical shift of δ 4.8 was the water signal.
The regions of the significant metabolite signals usually
ranged δ 0–4.5 ppm, including alkene (δ 4–5.5 ppm), alkyne
(δ 1.8–3.5 ppm), and the aliphatic series (δ 0–2.8 ppm).
Articles of the locations of different chemical groups and
some low-molecular-weight metabolites had already been
published [36, 40]. To detect the difference between the
two groups, special software was used in the chemometric
analysis.

3.3. PCA of the Plasma in the DEX Group and the Control
Group. The matrix data from the 1H-NMR spectra were
exported into the SIMCA-P software and processed by PCA.
The new principal component (PC) variables were created (6
new contributories of the PCs), which accounted for 84.8%
of the original data and each PC was orthogonal with all
the other PCs. The result of PCA could be shown (Figure 3)
as the clustering of the individual dataset defined by the
95% Hotelling’s T2 Limit. Except for two control samples
(∗: the blue star), all the 21 DEX samples (�: the black
triangles) and 19 control samples with fusion fetuses (�: the
open squares), obviously, were separated well along the first
principal component. It indicated that the major difference
between the two groups occurred in the first two principal
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between two outliers from the control group and the data of pregnant mice with CP fetuses in DEX group; “b” showed the PCA analysis
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Figure 5: The Cooman’s plot of two groups in test set from SIMCA. “�” showed the DEX group with CP fetuses; “�” showed the control
group with fusion fetuses; “∗” showed two outlier samples (pregnant mice with CP fetuses in control group); the red lines indicate the
D-Crit (0.05) level; two groups were located in two different spaces; the outliers not belong to either group.

components. The detailed different biochemical changes
were informed by the loadings (Table 2). In order to detect
the outliers, the two outliers as one group to be detected
with Dex group and control group respectively. PCAs were
repeated twice again using different groups (Figure 4). The
result indicated that the two outliers with CP fetuses have
some extent different from the control group, while mixed in
the Dex-injected group because of CP fetuses.

3.4. SIMCA of the Plasma in the DEX Group and the Control
Group. The result of SIMCA was shown in the Cooman’s
plot (Figure 5). All the samples had been tested with an
independent model made of train set. The condition of
samples can be classified in a pair of distances against
boundaries (red lines) for non-fusion data in DEX group and
fusion data in control group. The plot contained four regions
separated by 95% confidence limits in a 2D graph in which
samples below the horizontal line belonged to the control
group with fusion fetuses (95%), while samples in the left
region of the vertical line belonged to DEX group with CP

fetuses (95%). The data from control group with CP fetuses
(the outliers) neither belongs to DEX group nor belongs
to control group. It demonstrated that plasma classes from
pregnant mice with CP fetuses and normal control did not
share the same space. Therefore, this model should be able to
predict whether maternal environment has been affected by
DEX or not.

4. Discussion

In the normal mouse embryo, palate shelves grow and
elevate into a horizontal position by embryonic day 14 (E14).
By the day of E17, the process of fusion has completely
finished. We chose to collect samples on E17.5 for the
following reasons. It was convenient to use morphology
for embryo analysis, and it was easy to display the change
of maternal metabolism without the influence of DEX
[41]. Furthermore, another study also proved that the
spectra of plasma from Dex-injected and control male mice
showed no significant difference during different time frames
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Table 2: the main metabolites changes that were partially responsi-
ble for discriminating Dex group from control using PCA.

1H bucket region (δ) metabolites Changes in Dex group

1.32, 4.12 Lactate ↑∗
1.36 unknown ↑
1.48 Alanine CH3 ↑
1.72 Arginine(γ-H) ↓
1.92 Arginine (β-H) ↓
2.02 Acetate ↑
2.04 Lipid CH2CH2CH=CH ↑
2.12 Glutamine ↑
2.28 Valine (β-H) ↓
2.36 Glutamate ↑
2.4801 unknown ↑
2.5201 Lipid –C=C–CH2–C=C ↓
2.8 Aspartic acid (β-H) ↓
3.24 Choline N (CH3)3+ ↑
3.64 Valine (α-H) ↓
3.92 Creatine ↑
4.04 myo-inositol ↓
∗↑, relative increase in signal by loading plot.

(2 hours, 1 day, 2 days, 3 days, and 7 days). The PCAs also
show that all data from different time frames were a mixture
together, which accounted for 89.9% from the original data
(supplement).

Different murine strains also have different suscepti-
bilities to the DEX-induced cleft palate. The incidence in
our model was in accord with previous work [42]. Some
studies indicate [43–45] that the incidence of cleft palate
may be closely related to high maternal concentration of
plasma homocysteine or lower activity of the glucocorti-
coids prereceptor metabolizing enzyme11β-hydroxysteroid
dehydrogenase type 2 (11β2HSD2) in placental trophoblastic
cells. However, the exact mechanisms by which interaction
between maternal environment and DEX causes teratogenic
effects are poorly understood. NMR spectroscopy-based
metabonomic approach offers a unique opportunity to focus
on the relationship between genotype and phenotype and
is especially suited to uncover changes in drug-induced
metabolites [46, 47]. In this study, each mother at least
has one CP fetus in DEX-injected group. Some changes of
maternal metabolites informed us about the abnormality of
the embryo. Therefore, the result from two groups displayed
the different metabolites between CP fetus and fusion one.
From the spectra of 1H-NMR (Figure 2), we can see clearly
some differences between the samples of the two groups
within the range of chemical shift from δ 1.8 to δ 3.5 ppm
and the range of glucose and amino acid CH. The PCA plots
showed good separation of the two groups except for two
control samples (Figure 3), which matched the results from
morphologic analysis identifying three cleft palate fetuses
from two different individual mice in the control group. In
order to analyze the outlier from the control group, the two
outliers as a group were analyzed again. The result also show

these two samples were closely blended in the DEX group
(Figure 4(a)), while far away from the controls’ (Figure 4(b)).
Some biochemical changes such as decrease of Arginine
(1.72, 1.92 ppm), increase of Alanine (1.48 ppm), N-acetyl
glycoprotein (2.12 ppm), Choline (3.24 ppm), and Creatine
(3.92 ppm) may response to the change of methyl group
metabolism in maternal environment. The key donor of
methylation is S-adenosyl methionine (SAM) which comes
from methionine. Arginine and Creatine may increase ATP
to supply the circle from methionine to homocysteine [48].
Normally, the incidence of cleft palate in C57BL/6J natural
mice is zero. The reason may be that we injected isotonic
sodium chloride (0.9% NaCl) in control samples in order
to keep the same stimulating circumstance as in the DEX
group. After SIMCA analysis, the result of the Cooman’s
plot revealed a good fit model to detect the NMR data and
separate the CP group from the controls by using a test set of
F-statistic. Both plots clearly showed a relationship between
the fetus’ cleft palate and the plasma metabolic profile of
the mother. In conclusion, this study provides evidence that
metabonomic method is sufficiently sensitive to detect small
differences in the composition of maternal biofluids and may
be helpful for identifying biomarkers of teratogenesis.
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Epidemiological studies in man and with experimental animal models have shown that intrauterine growth restriction (IUGR)
resulting in low birth weight is associated with higher risk of programming welfare diseases in later life. In the pig, severe IUGR
occurs naturally and contribute substantially to a large intralitter variation in birth weight and may therefore be a good model for
man. In the present paper the natural form of IUGR in pigs was studied close to term by nuclear magnetic resonance (NMR-
)based metabolomics. The NMR-based investigations revealed different metabolic profiles of plasma samples from low-birth
weight (LW) and high-birth weight (HW) piglets, respectively, and differences were assigned to levels of glucose and myo-inositol.
Further studies by GC-MS revealed that LW piglets had a significant higher concentration of myoinositol and D-chiro-inositol in
plasma compared to larger littermates. Myo-inositol and D-chiro-inositol have been coupled with glucose intolerance and insulin
resistance in adults, and the present paper therefore suggests that IUGR is related to impaired glucose metabolism during fetal
development, which may cause type 2 diabetes in adulthood.

1. Introduction

It is well established that decreased growth during fetal
development, leading to intrauterine growth retardation
(IUGR) and consequently low birth weight, has crucial
influence on health later in life, and is documented in
population studies [1]. However, the relationship between
birth weight and health later on in life cannot be described
by a simple linear relationship but seems to be U-shaped
[2]. The hypothesis that poor fetal growth increases the
risk of developing metabolic disorder, like type 2 diabetes,
coronary heart disease, elevated blood pressure, and obesity,
in adult life, was first put forward by Hales and Barker[3].
Long-term epidemiological studies in humans have shown
a relationship between birth weight and adult health, and
later experimental studies mainly in animal models of IUGR
have documented the original hypothesis[4]. The term fetal

metabolic programming is generally accepted to describe the
phenomenon of the long-term effects of a stimulus or insult
during fetal development [4].

Several different experimental animal models have been
used to study fetal metabolic programming. Accordingly,
maternal metabolism during pregnancy has been manipu-
lated, and the effects on the offspring have been investigated
[5]. Maternal calorie restriction throughout gestation in
guinea pigs has a negative effect on fetal growth, and
postnatal glucose tolerance tests demonstrated a decreased
glucose tolerance and increased fasting plasma insulin levels,
suggesting insulin resistance [6]. Also maternal protein
deprivation in rats showed an alteration in the glucose
metabolism in the liver of the offspring [7]. Structural
changes in the liver of offspring from protein deprived moth-
ers were observed in the same study. Placental restriction
induced by surgery caused reduced fetal growth, increased
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adiposity postnatal, and impaired glucose-stimulated insulin
production in young sheep offspring [8]. Hyperinsulinemia
produced in the fetal rhesus monkey during the last third of
gestation indicated that insulin is important for fetal weight
characteristics [9]. The cause of the naturally occurring
IUGR is not fully understood, but decreased placental
growth and efficiency for nutrient transfer seems to be
important [10]. In litter-bearing species, like rat, mice, and
pig, a naturally occurring form of IUGR are present. In
these species, low birth weight animals have been coupled
with retarded postnatal growth, hypertension and glucose
intolerance [11]. Thus, studies in pigs showed that low birth
weight is associated with glucose intolerance at 1 year of
age [12]. It has been suggested that impairments in early
cell development result in fetal malnutrition and predispose
individuals to development of type 2 diabetes later in
life [13]. An alternative hypothesis suggests that genetic
variants predisposing the type 2 diabetes phenotype might
also reduce birth weight by altering intrauterine insulin
secretion or action [14] Other factors which likely explain
fetal programming of adult health comprise changes in DNA
methylation, increased apoptosis in the developing kidney,
alterations in renal renin-angiotensin system activity, and
increased fetal glucocorticoid exposure [15]. Nevertheless,
even though the impact of fetal metabolic programming on
adult health is well documented, the underlying mechanisms
are poorly understood.

In the present study, the naturally occurring form of
IUGR in the pig was used as an experimental model for
fetal metabolic programming. The objective was to identify
possible mechanisms during fetal development that can
couple metabolism during fetal life with later development
of the metabolic disorders.

2. Materials and Methods

2.1. Animals. Offspring from 6 Danish Landrace sows mated
with one of 6 Danish Landrace boars were used in this study.
After mating, the sows were reared under normal production
conditions at the Faculty of Agricultural Sciences, Aarhus
University, Denmark, until day 110 of gestation. Gestation
length in pigs is 113–115 days. At day 110 of gestation sows
were stunned using a captive bolt pistol, and immediately
after bleeding the uterus was taken out. The umbilical
cord of each fetus/piglet was cut and as much blood as
possible was collected through the umbilical cord. Blood
was used for production of plasma, which was kept at
−80◦ C until analysis was performed. Piglets were weighed
and their position within the uterus horns recorded. Organs
were weighed and some anatomical measures recorded.
All procedures were carried out after permission from the
Danish Animal Experiments Inspectorate.

2.2. Study Design. The data reported in this study is for a
total of 24 piglets. Within each of the 6 litters, plasma from
the 2 piglets with the lowest birth weight (LW) and the 2
piglets with the highest birth weight (HW) were analyzed by
NMR and GC-MS methods as described in what follows.
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Figure 1: Differences in the 1H NMR metabolite profile of
plasma samples from low birth weight (LW) and high birth
weight (HW) piglets. (a) PCA score plot showing the two first
principal components for HW piglet samples (closed circles) and
LW piglet samples (open circles). (b) Loading plot of first principal
component.

2.3. NMR Measurements. The NMR measurements were
performed at 310 K on a Bruker Avance III 600 spectrometer,
operating at a 1H frequency of 600.13 MHz, and equipped
with a 5-mm 1H TXI probe (Bruker BioSpin, Rheinstetten,
Germany). Prior to the measurements, plasma samples were
thawed and 400 μL aliquots were mixed with 200 μl D2O.
Sodium trimethylsilyl-[2,2,3,3-2H4]-1-propionate (TSP) was
added as an internal chemical shift reference (0.17 mg/ml).
1H NMR spectra of plasma samples were obtained using a
Carr-Purcell-Meiboom-Gill (CPMG) delay added in order to
attenuate broad signals from high-molecular-weight compo-
nents. The total CPMG delay was 50 ms. Water suppression
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Table 1: Anatomical characteristics of low birth weight (LW) and high birth weight (HW) piglets. LSMean values and standard errors of the
LSMeans (SEM) are given.

Traits LW HW SEM P

No. of piglets 12 12

No. of female piglets 6 6

No. of male piglets 6 6

Body weight, g 687 1,179 0.05 < .001

CRL, cm∗ 21.7 26.3 0.058 < .001

CRL/100 g body weight 33.0 22.1 1.9 < .001

Pancreas, g/100 g body 1.03 1.04 0.06 NS

weight

Liver, g/100 g body weight 29.1 32.2 1.3 .052
∗

Crown-rump-length.

was achieved by irradiating the water peak during the
relaxation delay of 3 s. A total of 64 transients of 32 K
data points spanning a spectral width of 17.36 ppm were
collected. An exponential line-broadening function of 0.3 Hz
was applied to the free induction decay (FID) prior to Fourier
transform (FT). All spectra were referenced to the TSP signal
at 0.0 ppm. The spectra were subdivided into 0.026 ppm
integral regions and integrated, reducing each spectrum into
345 independent variables in the region 0.52–4.60 and 5.02–
10.0 ppm.

2.4. GC-MS Measurements. Prior to GC-MS measurements,
50 μl plasma from each sample was extracted with 960 μl of
MeOH (8 : 1v/v) and 100 μl of 0.1 mg/ml D6 myo-inositol
(Isotech) was added. The sample was then centrifuged at
14,000 g for 10 min at room tempature Thereafter 100 μl
supernatant was transferred to GC-vials, evaporated and
derivatized with 30 μl of metoxyamin in pyridine (15 mg/ml)
for 90 min at 30◦C. The sample was then added to 30 μl of
MSTFA (1% TMCS; PIERCE), vortexed and left for 30 min at
37 ◦C. Thereafter, 40 μl of heptan was added and the sample
was vortexed before GC-MS.

GC-MS was performed using an Agilent 7890 GCsys-
tem with a CTC COMBI PAL autosampler coupled to a
single quadrupole mass spectrometer (Agilent 5975). Gas
chromatographic separation was performed using a 30 m
∗ 250 μm (i.d.) ∗ 0.25 μm film HP-5MS column (J & W
Scientific). A volume of 1 μl derivatized extract was injected
into the GC-MS using split mode 1 : 10 with a split flow
of 12 ml/min. The inlet temperature was 270◦C. Oven
temperature was increased from an initial 70◦C to 230◦C (15
◦C per min) and thereafter from 230◦C to 300◦C (10 ◦C per
min). The run time was 21 min. Helium 6.0 was used as a
carrier gas at a flow rate of 1.2 ml/min. The ion source and
quadrupole temperatures were 230 and 150◦C, respectively.
Chromatograms and mass spectra were evaluated using
the chemstation E.02.00.493 software. Myo-inositol-C-d-d6
(Isotech) was used as an internal standard. D-(+)-chiro-
inositol (cas 643-12-9; Aldrich) and Myo-inositol (Fluka)

was used to perform standard curves for each compound
over the expected range relative to the internal standard.
Semiquantitative concentrations of plasma myo-inositol and
D-chiro-inositol were obtained against the standard curves.

2.5. Data Analysis and Statistics. Multivariate analysis of
NMR data was performed using the Unscrambler software
version 9.2 (Camo, Oslo, Norway). Principal component
analysis (PCA) was applied to the centered data to explore
any clustering behavior of the samples, and partial least
square regression (PLS) was carried out using NMR spectra
as x-variables and birth weight as y-variable. Martens’
uncertainty test [16] was used to eliminate noisy variables,
and all models were validated using full cross-validation [17].

Statistical analysis of GC-MS data and anatomical prop-
erties were performed using the SAS version 9.2 (SAS
Institute Inc., Cary, NC, USA) using the MIXED procedure.

The MIXED model generalizes the standard linear model
as follows:

y = Xβ + Zγ + ε . (1)

In this expression, y represents a vector of observed data,
β is an unknown vector of fixed-effects parameters with
known design matrix X, γ is a vector of random-effects
parameters with known design matrix Z, and ε is an
unknown random error vector whose elements are not
required to be independent or homogeneous.

The model included the fixed effects of gender and birth
weight group (LW or HW) and their interaction and sow as
a random factor.

3. Results

3.1. Anatomical Properties of Piglets. The average birth
weight of LW and HW piglets were 687 and 1,179 g,
respectively (P < .001; Table 1). Also the crown-rump-length
(CRL) was measured and LW piglets had an average CRL of
21.7 cm whereas HW piglets had an average of 26.3 cm. The
proportional length of LW piglets was significantly higher
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Figure 2: Prediction of birth weight by the 1H NMR metabolite
profile of plasma samples from low birth weight (LW) and high
birth weight (HW) piglets. (a) Predicted versus measured birth
weight from PLS regression with NMR-variables as x-variables and
measured birth weight as y-variable. Values are given in Kg. R2 =
0.47, Root mean squared error of prediction = 0.21 Kg. (b) The
corresponding regression coefficients. The regression coefficients
show the relationship between the NMR variables used as predictors
for the birth weight. A positive coefficient shows a positive link with
birth weight, and a negative coefficient shows a negative link. NMR
variables with a small coefficient are negligible.

than of HW piglets (P < .001; Table 1), indicating that the
LW piglets were very thin. This is a trait which is often
recognized in IUGR subjects [2]. The extreme differences in
size at birth were evident in the present study, where the
variation in birth weight differed from 334 g to 1,453 g in
one of the litters. This LW piglet had an extremely low birth
weight, and in the animal science literature this extreme LW
piglet is referred to as a runt [18–20].

In this study, pancreas and liver were weighed (Table 1).
The relative weight (g/100 g body weight) of pancreas did not
differ between LW and HW piglets, but the relative weight of
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Figure 3: Myo-inositol and D-chiro-inositol levels in plasma from
low birth weight (LW) and high birth weight (HW) piglets. (a) GC-
MS spectra of a representative plasma sample. Peak at retention time
11.61 is D-chiro-inositol and peak at retention time 12.60 is myo-
inositol. The spectra reveal the large difference in concentration
of D-chiro-inositol and myo-inositol in the plasma samples. (b)
Arbitrary plasma inositol levels in LW and HW piglets, showing
that LW piglets have a significantly higher plasma concentration of
both myo- and D-chiro-inositol than HW piglets at birth. Each bar
represents the LSMeans of 12 piglets ± SEM. ab, P < .05. Bars
named ratio is representing the ratio between D-chiro-inositol and
myo-inositol.

the liver tended (P = .052) to be higher in HW than in LW
piglets (32.2 v 29.1 g/100 g body weight, resp.).

3.2. NMR Metabolomics. To investigate the early conse-
quences of IUGR and possible relation with later develop-
ment of adult health, a metabolomic approach was applied
to plasma samples from LW and HW piglets by 1H NMR
spectroscopy. Principal component analysis (PCA), which
is an unsupervised method, was performed on the pre-
processed 1H NMR spectra. The resulting plot of score
1 versus score 2 for mean-centered data shows a clear
separation of plasma samples from LW and HW piglets,
respectively, (Figure 1(a)). The corresponding X-loadings
for the first component reveal that signals at 3.29, 3.56,
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Figure 4: Relationship between piglet birth weight and (a) plasma
myo-inositol and (b) plasma D-chiro-inositol. For both inositols a
negative relationship (linear regression) exists between the plasma
inositol concentration and piglet birth weight. R2 = 0.43 for myo-
inositol; R2 = 0.42 for D-chiro-inositol. Each point represents a
single piglet.

and 3.64 ppm are determining the position of samples
along the first score, and thereby clearly dominate in the
differentiation between LW and HW piglets (Figure 1(b)).
These chemical shift values are equivalent with reference
values for myo-inositol [21]. For a further investigation of
the relationship between the 1H NMR metabolite profiles
and birth weight of the piglets, partial least squares (PLS)
regression was carried out with NMR spectra as X-variables
and birth weight as y-variable, which established a clear
correlation (R2 = 0.47) (Figure 2(a)). Analysis of the PLS
model’s regression coefficients reveals that intensities of
signals at 3.53 and 3.66 ppm are positively correlated to
birth weight (Figure 2(b)), and these signals are tentatively
assigned to glucose. In addition, the regression coefficients
disclose that NMR variables at 3.30, 3.56, and 3.64 ppm,
which are equivalent with reference values for myo-inositol

[21], contribute to the correlation between the 1H NMR
metabolite profiles and birth weight of the piglets, as the
intensity of these are negatively correlated with birth weight.

3.3. Plasma Inositol Concentrations. In order to verify that
the found effect could be ascribed to a higher myo-inositol
in LW piglets, semi-quantitative plasma myo-inositol con-
centrations were determined together with semi-quantitative
plasma concentrations of D-chiro-inositol by GC-MS. The
LW piglets in the present study had a significant higher
plasma concentration of both myo-inositol (P < .01)
and D-chiro-inositol (P < .05) than HW piglets, whereas
the myo-/D-chiro-inositol ratio did not differ between LW
and HW piglets (Figure 3(b)). Also it can be seen from
Figure 3(a) that the plasma level of myo-inositol is much
higher than the level of D-chiro-inositol.

3.4. Correlations between Plasma Inositol Concentrations and
Piglet Birth Weight. The above shown results verify that
LW piglets have a higher plasma concentration of both
myo-inositol and D-chiro-inositol than HW piglets. In this
study, piglets from 6 litters have been examined but the
variation in birth weight within each litter differs between
litters. Thus, in some litters the LW piglets are not extremely
small and may be more in the category of average weigh
piglets in other litters. We therefore tested the correlation
between piglet birth weight and both myo-inositol and D-
chiro-inositol (Figure 4). These results verify that there is a
negative correlation between piglet birth weight and myo-
inositol (R2 = 0.43) and D-chiro-inositol (R2 = 0.42)
plasma concentrations. It can also be seen in Figure 4 that
the variation in the plasma concentration of each compound
seems to be higher in the LW piglets compared to the HW
piglets. The extreme LW piglet also has a much higher
concentration of myo-inositol and especially of D-chiro-
inositol compared to the other LW and HW piglets.

4. Discussion

In the present study we used the naturally occurring form
of IUGR that exists in pigs to study the influences of IUGR
on the plasma metabolomic. Even though pigs are a litter-
bearing species (9–14 piglets/litter) they seem to be a good
model for human IUGR as there is increasing evidence that
low birth weight pigs develop the same metabolic changes in
relation to hypertension, obesity and type 2 diabetes as seen
in human IUGR [11, 12, 22]. Thus, pigs are considered an
excellent model for studying fetal metabolic programming
and the adult consequences of IUGR.

In the present study, the 2 piglets with the lowest (LW)
and the 2 piglets with the highest (HW) birth weight within
each of 6 litters were studied in order to select pigs that
had been subjected to IUGR (LW) and compared with pigs
expected to have a normal nutrient supply during fetal
development (HW). Piglets were taken from the uterus at day
110 of gestation (gestation length in sows is 113–115 days)
in order to study piglets close to birth, but at the same time
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ensuring that the piglets did not suckle and thereby ingest
food.

A fuel-mediated teratogonesis has been proposed [23].
Thus, fetal islets, fetal fat stores, fetal muscles, and a large
range of other cells may be altered mediated by changes in
fetal fuels [23]. Accordingly, the organs of IUGR subjects may
have a disproportionate growth compared to normal subject,
where for example, the weight of pancreas and liver relative
to whole body weight is lower in protein-restricted subjects
[24]. The disproportional growth of body length (CRL) and
liver in relation to body weight found in this study indicates
that some tissues and organs are more affected by the IUGR
than others, which may have long-term effects on postnatal
growth and metabolism in adulthood.

The NMR-based metabolomic data in the present study
shows that the plasma concentration of glucose is positively
correlated with birth weight. Fetal plasma glucose originates
mainly from transport across the placenta and the fetus
is therefore highly dependent on delivery of glucose from
the dam [10]. Possibly some gluconeogenesis takes place
in fetal liver at the late part of gestation, and the low-
glucose concentration in LW piglets in the present study
thus indicates either a low maternal-fetal glucose gradient
and/or decreased fetal gluconeogenesis. It is well recognized
that the placental transport of nutrients to the fetus is of
utmost importance for fetal growth, and that placental size
and efficiency of nutrient transport is reduced in relation to
IUGR [10, 25, 26].

Intriguingly, the explorative NMR-based metabolomic
investigation demonstrated differences in plasma myo-
insotiol between piglets with high and low birth weight,
respectively. These findings were confirmed by GC-MS
measurements, which also showed a difference in D-chiro-
inositol between high and low birth weight, respectively.
Since the relationship between birth weight and health seems
to be U-shaped [2], it could be questioned if the group of
high birth weight piglets is an appropriate reference group.
However, comparison of NMR data from an intermediate
birth weight group revealed that the LW pigs also had
a higher plasma myo-insotiol level than the intermediate
birth weight group (data not shown). Myo-inositol and D-
chiro-inositol, which in the present study are negatively
correlated to birth weight, have been related to glucose
intolerance and type 2 diabetes in several studies [27–29].
Consequently, these metabolites are interesting candidates
as markers for fetal programming of metabolic disease in
adult life. Myo-inositol is synthesized from glucose and is
the most abundant inositol in the body. D-chiro-inositol
is either synthesized from myo-inositol by epimerization
or obtained from the diet. Previous studies have shown
that in subjects with noninsulin-dependent and insulin-
dependent diabetes, urinary excretion of myo-inositol and
D-chiro-inositol was higher than in normal subjects both
in humans and rats [27, 30], whereas others have found
a decreased D-chiro-inositol concentration in human urine
[29, 31]. Reports on plasma concentrations of myo- and D-
chiro-inositol in relation to diabetes are sparse, but a higher
plasma concentration of inositols in acute diabetic compared
to normal or mild diabetic rats was found in one study

[32], whereas no differences were found in another study
comparing normal patients with non-insulin-dependent and
insulin-dependent diabetic patients [30].

Thus, while it remains unclear if myo-inositol and D-
chiro-inositol are useful biomarkers in adults, the present
study suggests that they act as biomarkers in newborns.
D-chiro-inositol seems to inhibit glucose-stimulated insulin
release [33], suggesting a negative feedback mechanism
after insulin-stimulated inositol phosphoglycan synthesis.
Consequences of the high concentration of D-chiro-inositol
found in LW piglets in the present study could be deficiency
of insulin during fetal development. This may leave the
insulin-responsive tissues like muscle highly sensitive to
insulin [34]. In fact, highly insulin-sensitive tissues have
been found in a low-maternal protein model for IUGR
[35]. It could therefore be speculated that in the long-
term, this could cause development of glucose intolerance
and insulin resistance, and low-insulin concentrations would
also have an impact on growth[34]. Also, the high D-
chiro-inositol found in LW piglets may be a mechanism
to decrease the glucose uptake in insulin-sensitive tissues,
through the negative feedback on insulin release, leaving the
small amount of available glucose for the more important
tissues/organs in relation to survival, like the brain and
heart. The biological significance of myo-inositol is less
well understood. Thus, the present study suggests that
myo-inositol and/or D-chiro inositol is useful markers in
newborns, however, the consequences of the high plasma
myo-inositol and D-chiro-inositol in LW piglets is not clear.

5. Conclusions

The present study demonstrated a clear positive relationship
between plasma glucose concentration and birth weight and
a negative relationship between myo-inositol and D-chiro-
inositol plasma concentrations on the one hand and birth
weight on the other hand in the naturally occurring pig
model of IUGR. Our results show that low birth weight
(LW) piglets have a significant higher concentration of both
inositols in plasma compared to larger littermates. As Myo-
inositol and D-chiro-inositol have been coupled with glucose
intolerance and insulin resistance in adults, the present study
indicates that these metabolites could be novel biomarkers
for fetal programming.
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Etiology determination of neurodevelopmental disabilities (NDDs) currently remains a worldwide common challenge on child
health. We herein reported the etiology distribution feature in a cohort of 285 Chinese patients with NDDs. Although concrete
NDD etiologies in 48.4% of the total patients could not be identified, genetic diseases (with the proportion of 35.8% in the total
cases) including inborn errors of metabolism (IEM) and congenital dysmorphic diseases, constituted the commonest etiology
category for NDDs in this study. The two key experimental technologies in pediatric metabolomics, gas chromatography-mass
spectrometry (GC-MS), and tandem mass spectrometry (MS-MS), proved to be substantially helpful for the exploration of the
NDD etiologies in this clinical investigation. The findings in this paper provided latest epidemiologic information on the etiology
distribution of NDDs in Chinese, and the syndromic NDDs caused by citrin deficiency and the novel chromosomal karyotype,
respectively, further expanded the etiology spectrum of NDDs.

1. Introduction

With global developmental delay (GDD) and mental retar-
dation (MR) as two main clinical subtypes, neurodevelop-
mental disabilities (NDDs), which are defined as a group
of chronic clinically distinct disorders that all share a
documented disturbance, quantitative, qualitative, or both,
in developmental progress in one or more developmen-
tal domains compared with established norms [1], are
conventionally categorized into syndromic type which is
characterized by associated clinical, radiological, metabolic
or biological features, and nonsyndromic type in which NDD

represents the only manifestation. The precise prevalence of
NDDs remains unclear, but this entity has been estimated to
affect 5% to 10% of children [2]. In developed countries, MR
has become the most frequent cause of severe handicap in
children and one of the main reasons for referral in clinical
genetic practice [3]. Actually, 1% to 3% of children younger
than 5 years have been reasonably given the prevalence of
MR in a specific population [4]. As the largest developing
country in the world with a population over 1.3 billion,
China also faces the difficult challenge of NDDs on its child
health. An investigation in the year 2000 has revealed that the
MR incidence in children below 6 years of age was 0.931%,
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and 136,000 children with MR were increased annually in
mainland of our country [5]. Etiology determination of
NDDs was essential not only for the option of therapeutic
imperatives and evaluation of clinical outcomes and recur-
rence risks but also for other benefits including avoidance
of unnecessary tests and access to appropriate patients for
accumulating management experiences, however, this issue
also remains far from resolved at the current stage in
pediatric practice. In this paper, we reported our eight-year
findings on NDD etiologies in a medical center in south
China.

2. Subjects and Methods

2.1. Patients. The research subjects recruited in this study
were all patients referred to, from April 2002 to March 2010,
Department of Pediatrics, First Affiliated Hospital, Jinan
University, Guangdong, China. The GDD/MR diagnosis in
most cases was made by at least 2 pediatric physicians in
different hospitals in accordance with the updated concepts
in the review [1]. For some cases who suffered from other
clinical problems such as liver diseases and malformations,
NDD was noticed and then confirmed in our department.
The patients in this study came from 22 provinces, munici-
palities, and autonomous regions in China, respectively, with
most of them from Guangdong Province.

2.2. Clinical Data. History inquiry and physical examination
were performed on all the NDDs patients in our pediatric
clinic or award and the positive findings were recorded
and preserved by the authors. Most of the laboratory
and imaging results were collected from the correspond-
ing databases in our hospital, besides some provided by
parents of the patients at their referral to the authors
for clinical counseling. In this study we, by means of
a cross-sectional study, retrospectively analyzed and sum-
marised the clinical information collected in the past 8
years.

2.3. Gas Chromatography-Mass Spectrometry (GC-MS).
Selective screening of inborn errors of metabolism (IEMs)
in this study was conducted by analysis of the urinary com-
ponents, using an urease pretreatment GC-MS procedure,
mainly with a Finnigan GC-MS instrument (TRACE DSQ),
with detailed information described previously by our group
[6].

2.4. Tandem Mass Spectrometry (MS-MS). Amino and acyl
carnitine in dried blood stains was analyzed by means of
a MS-MS procedure, and sample preparation, apparatus
settings, and data analysis were based on the detailed
information described in [7]. The analysis was conducted
with an API 3200 tandem mass spectrometer purchased from
Applied Biosystems. Neutral loss scan and precursor scan
were used for the analysis of most amino acids and acyl
carnitines, respectively, while multiple reaction monitoring
(MRM) was utilized for the detection of glycine, ornithine,
arginine, and citrulline as well.

Table 1: Main clinical manifestations besides NDDs and the
positive laboratory and imaging findings in syndromic NDDs.

No. Positive findings Cases

01 Failure to thrive 81

02 Seizure/convulsion 37

03 Hearing disability 28

04 Dysmorphic facial features 25

05 Abnormal urine odor 20

06 Eye movement obstacles 19

07 Vomitting 18

08 Hair depigmentation 15

09 Microcephaly 11

10 Skin abnormalities 10

11 Hepato/splenomegaly 10

12 Impaired swallowing and chewing 5

13 Fondus ocili abnormalities 4

14 Vision problem 4

15 Abnormal lens 3

16 Genitalia malformation 3

17 Metabolic acidosis 46

18 Hyperammonemia 12

19 Abnormal EEG 22

20 Skeleton abnormality on X ray 5

21 CT/MRI abnormal findings 85

2.5. Chromosome Karyotype Analysis. Traditional chromo-
somal banding was performed in NDD patients suspected
to have chromosomal abberations. Fluorescence in situ
hybridization (FISH) was further used, when necessary, to
determine the complex karyotypes as previously described
[8]. Briefly, the peripheral blood lymphocytes were cul-
tured under phytohemagglutinin (PHA) stimulation and
treated with colcemid and harvested by standard methods.
Metaphases were spread on clean slides, and standard G-
banding with trypsin-Giemsa was performed. The slides
for FISH were stored at −20◦C before use. The denatured
FISH probe (Abbott-Vysis, Downers Grove, IL, USA) was
added to the denatured slides with metaphase spreads in a
moist chamber for hybridizing over night. After washing,
the slide was counterstained with DAPI in an antifade
solution. The hybridized metaphase chromosomes were
captured and analyzed using a digital image analysis system
containing an Olympus BX51 microscope equipped with
LUCIA Cytogenetics system (Prague, Czech Repuplic).

2.6. SLC25A13 Gene Mutation Analysis. The diagnosis of
citrin deficiency was confirmed by mutation analysis of the
causative gene SLC25A13. Four hotspot mutations, 851-
854del(851del4), IVS6 + 5G > A, IVS16ins3kb, and 1638-
1660dup were screened by means of the routine approaches
described in reference [9]. In this study, the sequences of the
forward and backward primers for PCR amplification of the
mutation 851del4 were 5′-ggtatatttgttgcttgtgtttg-3′ and 5′-
tcttccagaggagcaatccg-3′, respectively.
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Figure 1: Chemical diagnosis of glutaric acidemia type I by GC-MS analysis of urinary metabolites for a 9-month-old female with motor and
language retardation. Figure 1(a) is a representative GC-MS total ion current (TIC) profile, in which intensities of peak 1 and 2 were both
dramatically increased. IS is the abbreviation of internal standard. Figures 1(b) and 1(c), the mass spectra for peak 1 and 2 in Figure 1(a),
revealed their identifications as trimethylsilyl derivatives of glutarate and 3-hydroxyglutarate, respectively.
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Figure 2: Chemical diagnosis of citrin deficiency by MS-MS analysis of amino and acyl carnitines in dried blood stain from a 16-month-
old male toddler (C0013) with syndromic GDD. Figures 2(a), 2(b), and 2(c) are profiles of neutral loss scan, precursor scan, and multiple
reaction monitoring, respectively. The amino and acyl carnitines with increased levels were labeled as abbreviations, with Met, Tyr, Gly, Cit,
C0, C16, and C18 : 1 representing methionine, tyrosine, glycine, citrulline, free carnitine, palmitate, and hydroxypalmitate, respectively.



4 Journal of Biomedicine and Biotechnology

Table 2: Etiology distribution in the whole cohort of NDDs.

Etiology categories Disease types Case number Proportion Concrete disease (case number)

Genetic diseases 50 102 35.8% Detailed information in Table 3

Psychobehaviour 3 23 8.1% Autism (21, including 5 cases of Rett syndrome); ADHD (2)

Acquired brain injuries 2 7 2.4% Kernicterus (4); HIE (3)

Other etiology 2 15 5.3% Cerebral palsy (7), Epilepsy (8)

Unknown 1 (NDDs) 138 48.4% No concrete etiologies were identified at the current stage

In total 58 285 100% —

Table 3: Etiology distribution in the patients with genetic diseases in Table 2.

Etiology categories Disease types Case number Proportion Concrete diseases (case
number)

IEMs 27 66 64.7% Detailed information in
Table 4

Congenital dysmorphic diseases 14 22 21.6% Detailed information in
Table 5

Chromosomal abberations 4 6 5.9% Detailed information in
Section 3.5

Endocrine disorders 3 4 3.9%

Hypoparathyroidism (1),
Pseudohypoparathyroidism
(1), Congenital
hypothyroidism (2)

Others 2 4 3.9%
Congenital muscular
dystrophy (3), Progressive
muscular dystrophy (1)

In total 50 102 100% —
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Figure 3: PCR-gel electrophoresis analysis of mutation 851del4
in the gene SLC25A13 of the two families with citrin-deficient
patients C0013 and C0016. NC, Homo C and Hetero C in this
figure are abbreviations of Normal Control, Homozygous Control
and Heterozygous Control, respectively. F and M in the two families
represent Father and Mother, respectively. The 78 bp PCR products
in both patients are 4 bp shorter than the normal size 82 bp,
suggesting that the 2 patients are both 851del4 homozygotes, and
their parents all carriers of the same mutation.

2.7. Electronic Microscopy. The muscular ultrastructure
changes were observed by transmission electronic micros-
copy in patients suspected to have Leigh syndrome and
muscular dystrophy, with biopsy samples from musculi
gastrocnemius. Muscular tissue was fixed in 2.5% glutaralde-
hyde and post-fixed in 1% osmium tetroxide solution, and
then embedded in epoxy resin before semithin sectioning,
as described in reference [10]. Two electronic microscope
instruments (JOEL-CX100 and Philips-Tecai-10) were uti-
lized for ultrastructure observation in our investigation.

This study was performed with the informed consents
from the parents of the patients, adhering to the principles

of the Declaration of Helsinki. In particular, SLC25A13
mutation analysis has been approved by the Committee
for Medical Ethics in the First Affiliated Hospital, Jinan
University, while chromosome karyotype analysis by that in
Reproductive and Genetic Hospital of Citic-Xiangya, Central
South University.

3. Results

3.1. General Information and Semiology. The NDDs cohort
in this study was composed of 285 cases in total, including
191 males and 94 females. The median age at referral was 1
year and 7 months, with minimum 1 week, and maximum
16 years. The whole cohort included 240 syndromic and
45 nonsyndromic NDD cases, with the relative proportion
of 84.2% and 15.8%, respectively. The main clinical man-
ifestations besides NDD and the laboratory and imaging
findings in the syndromic NDDs were summarized in
Table 1.

3.2. Etiology Distribution. As shown in Table 2, no concrete
etiologies, unfortunately, were found for 48.4% of the
total patients, but NDDs in the remaining 51.6% could
be attributed to complex and diverse etiologies, among
which genetic diseases were on top of the list of the
identified causes. Further analysis in Table 3 revealed that
IEMs took the first place in genetic etiologies, and then came
congenital dysmorphic disorders. These 2 entities constituted
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Table 4: Feature of etiology distribution in the patients with IEMs in Table 3.

Categories Diseases∗ Cases Major diagnostic evidences Clinical outcomes

Disorders of
Carbohydrate
metabolism

Galactosemia 1
Clinical features including congenital
cataract and leukodystrophy, and
GC-MS analysis

Lost contact

Fructosuria 2 GC-MS analysis Both lost contact

Disorders of
Amino acid
metabolism

Phenylketonuria 7
GC-MS analysis in 6 cases, and PAH
gene analysis in 1 case

Referred to local network of
management and 2 died after
treatment withdrawal

Histidinemia 1 Repeated MS-MS analysis Lost contact

Hyperhomocysteinemia 2
Total plasma homocysteine levels and
MS-MS analysis

1 died, and 1 stable without obvious
clinical or biochemical improvement

Pyroglutamic acidemia 1 GC-MS analysis Lost contact

Tyrosinemia type I 1 GC-MS and MS-MS findings Died due to acute liver failure

Hyperglycinemia 1 GC-MS and MS-MS analysis
Intractable seizures and behavioral
problem

Canavan’s disease 1 GC-MS analysis Lost contact

Organic
acidemia

Methylmalonic acidemia 11
GC-MS, MS-MS and MMACHC gene
analysis, with 5 combined with
hyperhomocysteinemia

5 died after withdrawal of treatment, 3
improved and 3 lost contact

Maple syrup urine disease 2 GC-MS and MS-MS analysis Both died

Ethylmalonic acidemia 1 GC-MS analysis Lost contact

Propionic acidemia 3 GC-MS analysis
2 stable with episodic
hyperammonemia, and 1 lost contact

Glutaric acidemia type I 2 GC-MS and MS-MS analysis 1 lost contact and 1 stable

Glutaric acidemia type II 1 GC-MS analysis Stable

2-hydroxyglutaric acidemia 1 GC-MS analysis Lost contact

4-hydroxybutyric aciduria 1 GC-MS and ALDH5A1 gene analysis Stable but with seizure episodes

Multiple carboxylase deficiency 4
GC-MS, biotinidase activity, and
HLCS gene analysis

1 died, 3 recovered/improved clinically

Urea cycle
disorders

OTCD 2 GC-MS and MS-MS analysis Recovered clinically

Hyperammonemia 4
Markedly increased serum ammonia
levels, but with etiologies
undetermined yet

All lost contact

Citrin deficiency 2 SLC25A13 mutation analysis
1 died due to liver cirrhosis, 1
improved

Mitochondrial
disease

Leigh syndrome 5

Clinical and imaging features,
serum/CSF lactate levels, and
electronic microscopy findings on
muscle biopsy samples

3 died already, and the remaining 2
stable at follow-up

Lysosome
storage
diseases

Mucopolysaccharidosis type I 1 Typical clinical manifestations
Improved after bone marrow
transplantation

Mucopolysaccharidosis type II 2
Activity analysis of
iduronate-2-sulphatase

Lost contact

Peroxisomal
disorders

X-linked adrenoleukodystrophy 2
Clinical manifestations, CT/MRI
findings, and MS-MS analysis of
VLCFA

Both Died

Others
Glyceroluria 4 GC-MS analysis

1 died after severe infection, 3 lost
contact

3-aminoisobutyric aciduria 1 GC-MS analysis Lost contact
∗

Some diseases have been reported in [6] as GC-MS screening results, and this list herein is the latest update of our findings, just focusing on the IEMs
associated with NDDs.
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Figure 4: Representative MRI findings in different malformations of cortical development (MCD). Figures 4(a) and 4(b) showed severe
cortex dysplasia in bilateral parietal lobes and frontal, temporal and occipital lobes, respectively, in the telencephalon of a 5-month-old male
with NDD. Figure 4(c) demonstrated typical lissencephaly in a 9-month-old female with Miller-Dieker syndrome. The white matter volume
was decreased while the cortex was thick and smooth due to lack of enough sulcation, forming the so-called pachygyria malformation, and
the thickened and irregular cortex in Figure 4(d) revealed the cobblestone cortical malformation in a patient with muscle-eye-brain disease.

the overwhelming majority in the genetic diseases. Other
causes such as chromosome and endocrine abnormalities
were also identified, just accounting for a minority less than
14% in the total genetic etiologies.

3.3. IEMs. As listed in Table 4, 66 patients with IEMs of 27
types and 8 categories were diagnosed in this NDD cohort.
The traditional clinical, biochemical, and imaging findings
were indispensable during the diagnostic processes, however,
the applications of two metabolome tools, GC-MS and MS-
MS, were substantially helpful in the exploration of the NDD
etiologies in this study. Figure 1 demonstrated the diagnostic
evidences of glutaric acidemia type I by GC-MS analysis of
urine sample. In particular, we diagnosed 2 GDD patients
secondary to citrin deficiency. Figure 2 illustrated the

MS-MS findings suggestive of citrin deficiency in a male tod-
dler (C0013) at his age of 1 year and 4 months, who presented
with persistent GDD due to prolonged hepatosplenomegaly
and recurrent ascites that progressed into lethal hepatic
encephalopathy at his age of 1 year and 10 months. GDD
was transient in another 7-month-old infant (C0016) with
neonatal intrahepatic cholestasis caused by citrin deficiency
(NICCD, OMIM #605814), who demonstrated catch-up
development after recovery of dyslipidemia and abnormal
liver function indices. As shown in Figure 3, mutation
analysis of the causative gene SLC25A13 clearly confirmed
their diagnosis of 851del4 homozygotes.

3.4. Congenital Dysmorphic Disorders. In this NDDs cohort,
14 kinds and 22 cases of congenital dysmorphic disorders
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Figure 5: Chromosome abberation in a 6-year-old female with mental retardation (MR). High-resolution GTG-banding in Figure 5(a)
revealed the derivative chromosomes 7 and 9 (question mark), and their detailed identities were further illustrated by the results of FISH
analysis. Figure 5(b) showed four red signals in a metaphase, by means of utilization of whole chromosome 7 painting probe (WCP 7, red).
The normal chromosome 7 had one intact red signal, but the derivative chromosome 7 (arrow) had two dispersed red signals, and a fragment
of chromosome 7(arrowhead) was inserted into a chromosome 9, forming a derivative chromosome 9. Similarly, FISH analysis with WCP 9
(red) in Figure 5(c) showed the normal chromosome 9 with intact red signal, the derivative chromosome 9 (arrow) with two dispersed red
signals, and the derivative chromosome 7 with a inserted fragment of chromosome 9 (arrowhead). Finally, the chromosome karyotype in
this patient was identified as 46, XX, ins (7;9) (p13; q32q22) inv(7) (p11.2 q11.23), ins (9;7) (q22; q22q32), ish ins(7;9) (WCP7+, WCP9+),
ins(9;7) (WCP7+,WCP9+).

were diagnosed. Most of them were, as shown in Table 5,
malformations of cortical development (MCD) such as
Miller-Dieker syndrome, Muscle-Eye-Brain disease, and iso-
lated lissencephaly sequence. Figure 4 demonstrated rep-
resentative MRI findings in the different MCD types.
Other CNS malformations like Dandy-Walker syndrome
and spinocerebellar ataxia, and some rare syndromes
including Silver-Russell syndrome, Noonan syndrome,
Poland−Moebius syndrome, and Crisponi syndrome, were
also found in our clinical practice. To our knowledge, the
patient with Crisponi syndrome reported here is the first case
in China.

3.5. Chromosome Karyotypes. By traditional chromosome
analysis, karyotype abnormalities were found in 6 patients.
Among them, 3 patients were diagnosed as having Down’s
syndrome (trisomy 21) and 1 Patau’s syndrome (trisomy
13), respectively. The remaining 2 were both complex
karyotypes, with mos. 47, XX, +der (15) (pter→ ql4::q14→
pter) [11]/48, XX, +der (15) (pter→ q14::ql4→pter)/×2
[12]. ish der(15) (WCP15+, UBE3A++, PML-) in 1 case, and
46, XX, inv ins (7;9) (p13; q32q22) inv(7) (p11.2 q11.23),
ins (9;7) (q22; q22q32), ish(7;9) (WCP7+,WCP9+), ins(9;7)
(WCP7+,WCP9+) in another, as illustrated in Figure 5. So
far as we know, the last karyotype is a novel one that has

never been reported in any other references. The patient
with this novel abnormal karyotype was a 6-year-old female
with mental retardation. History inquiry revealed motor
retardation, and examination uncovered dysmorphic facial
features including hypertelorism, downward eyeslant, and
low-set ears, constituting a clinical phenotype of syndromic
NDD.

3.6. Endocrine and Other Genetic Disorders. As shown in
Table 3, endocrine and other genetic disorders also played
important roles in NDD development in this cohort. Figure 6
clearly demonstrated not only the muscular lesions on
electronic microscopy observation, but also the existence
of leukodystrophy in MRI which indicated the involvement
of central nervous system and thus explained in part
the neurodevelopmental retardation in the patient with
congenital muscular dystrophy. It is also noteworthy that
a hypothyroidism patient in this study was combined with
hypophosphatasia with remarkable delay in bone ossification
as the radiological feature due to the reduced activity of
alkaline phosphatase. To our knowledge, the combined
clinical spectra of hypothyroidism and hypophosphatasia in
the same patient, once again, have never been reported in
other references.
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Figure 6: Muscular ultrastructure and brain MRI findings in a patient with congenital muscular dystrophy. In Figure 6(a), the myofibril
Z lines in a muscle cell were ruptured (↑), and the filaments between Z lines were arranged disorderly (�). Figure 6(b) showed the fatty
degeneration of myofibrils (∗) in a muscle cell with completely vanished sarcolemma, and large quantity of collagenous fibers (�) were
observed in the endomysium (Bar = 1μm). Figures 6(c) and 6(d) were cranial MRI findings revealing the reduced signal intensity in T1WI
while increased one in T2WI, respectively, in bilateral frontal and parietal lobes, both indicating leukodystrophy.

4. Discussion

The findings in this study provided the latest clinical
epidemiology information on the etiology distribution of
NDDs in Chinese children. As shown in Table 2, nearly
half of the NDD cases could not be attributed to con-
crete etiologies. This finding indicated the current issue
or challenge that we are facing and was consistent with
the well-known fact that the etiologies in a substantial
percentage of NDDs patients are undiagnosed even after a
comprehensive evaluation [13]. On the other hand, concrete
etiologies were identified for 51.6% of the total NDD cases,
and the etiology distribution in this cohort demonstrated
a rather heterogeneous feature. Autism spectrum disorders
(ASDs) have been well recognized as pervasive NDDs
entities, and there have been evidences suggesting that
some genes or chromosomal abberations are associated with
ASDs [14–16]. However, genetic studies have not provided
substantial insight into the 90% of cases of autism whose
cause is idiopathic, and the relative genetic contribution
to a susceptibility to autism from de novo mutations, rare

mutations, and common polymorphisms has been debated
extensively [17]. Therefore, autism was categorized into
psychobehavioral disorders other than genetic diseases in this
paper. This investigation also found 7 NDD cases caused
by kernicterus and hypoxemic and ischemic encephalopathy
(HIE) which were secondary to 2 curable and even pre-
ventable diseases, hyperbilirubinemia and birth asphyxia,
respectively. The existence of these 7 cases further suggested
the brain vulnerability to exogenous injuries in children,
especially in fetuses and neonates. We also found cerebral
palsy and epilepsy as NDD etiologies in this NDD cohort,
with several cases of refractory epilepsy. However, it is
noteworthy that, considering the brain vulnerability once
again and the possible effects of antiepileptic drugs (AEDs)
on neurodevelopment [18, 19], every child with epilepsy
must be evaluated on an individual basis as to the risk and
benefit of any particular AED used and the role of ongoing
treatment [20].

In this eight-year clinical study, various laboratory tech-
nologies were conducted in the fields of clinical biochemistry,
neuroimaging, biochemical genetics, cytogenetics, molecular
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Table 5: Congenital dysmorphic disorders in the patients with genetic diseases in Table 3.

Disorders Cases Main clinical/imaging features

Cortical dysplasia 1
Motor developmental retardation and microcephaly. Severe cortex dysplasia
in parietal lobe and frontal, temporal and occipital lobes, respectively, on
cranial MRI scanning.

Tuberous sclerosis 1

Intelligence and motor retardation, seizures, cutaneous hypomelanotic
macules, fondus ocili depigmentation, and subependymal nodules and
calcified lesions in the cortex of parietal and temporal lobes on cranial CT
scanning

Miller-Dieker syndrome 2
Intelligence and motor retardation, microcephaly, prominent occiput, narrow
forehead, small nose and chin. Seizure in 1 case and hypertonia in another
one. Agyria/pachygyria cortical malformations on MRI.

Muscle-Eye-Brain disease 2

Sibling sisters with global developmental delay. Abnormal pupils and vitreous
bodies in both cases on ophthalmologic examination. Convulsions in 1 case
and small right eyeball in another. Both have increased creatine kinase levels
and cobblestone cortical malformations on MRI.

Isolated lissencephaly sequence 1
Intelligence and motor retardation, and bilateral thickened and irregular
cortex on MRI

Lissencephaly with cerebellar hypoplasia 1
Mental/language retardation, drooling, and bilateral pachygyria
malformation and hypoplasia of cerebellum revealed by MRI.

Other malformations of cortical development 6
All have intelligence and motor retardation. Including 2 cases of cobblestone
cortical malformations and 1 classic lissencephaly revealed by CT/MRI.

Dandy-Walker syndrome 1
Intelligence and motor retardation with low-set and everted ears, and
hypoplasia and upward rotation of the cerebellar vermis and cystic dilation of
the fourth ventricle on MRI.

Spinocerebellar ataxia 1
Intelligence and motor retrogression, and severe cerebellar and pons atrophy
together with tiger-eye-like sign at the basal ganglia level and cross-sign at
pons level, respectively, on MRI.

Neurofibromatosis type I 1
Intelligence and motor retardation, and 7 cutaneous cafe-au-lait patches with
diameter over 10 mm

Silver-Russell syndrome 2

Both have dysmorphic facial features including triangular face, low-set ears,
flat nasal bridge with extroversion of nostrils and down-curving mouth
corners. Normal head circumference. Asymmetry of the lower extremities.
Postnatal failure to thrive. Intrauterine retardation in 1 case and linea alba
hernia in another.

Noonan syndrome 1
Short stature, short neck with redundancy of skin, hypertelorism, downward
eyeslant, low-set ears, cryptorchidism, and poor sucking. Atrial septal defect
and right pulmonic stenosis on ultrasonography.

Poland−Moebius syndrome 1
Signs of facial palsy, disappeared corneal reflex, and poor sucking and
swallowing. Micrognathia and high-arched palate. Small left hand, ipsilateral
brachydactyly and hypoplasia of the nails and pectoralis major muscle.

Crisponi syndrome 1
Convulsions in response to stimuli like crying and bathing. Camptodactyly in
hands. Round face, broad nose with anteverted nostrils, and micrognathia.
Major sucking difficulty and frequent apnea. Hyperthermia that led to death.

genetics, and electronic microscopy as well. Our experiences
strongly supported the viewpoint that detailed history
inquiry and physical examination are paramount in the
evaluation of NDDs, while judicious investigations can
be useful adjunct in determining etiology [21]. As the
commonest etiology category in this NDD cohort, genetic
diseases, as shown in Table 3, also covered a wide profile
of different entities, with IEMs on top of the list. The
application of two metabolomic technologies, GC-MS and
MS-MS, played irreplaceable roles in the identification
of various IEM entities in this study (Table 4). Although
other skills such as enzymatic activity and gene mutation

analysis help us to confirm the diagnosis of IEM in some
cases, selective screening for IEMs by means of GC-MS
and MS-MS provides the basis or prerequisite for further
intensive investigation. The clinical application of these
metabolomic tools in mainland of China was initiated from
the beginning of this century, however, their indispensable
function in chemical diagnosis of IEMs has been affirmed by
more and more clinical evidences in our pediatric practice
[6, 22, 23]. Actually, mass spectrometry has occupied an
increasingly prominent place in clinical chemistry and
laboratory diagnostics during the past few decades [24], and
nowadays has been recognized as one of the most frequently
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employed methods of detection in the field of metabolome
[25]. However, the metabolomic technologies including GC-
MS and MS-MS analysis in this study sometimes yields
nonspecific and nondiagnostic abnormalities. An example is
the metabolome feature of NICCD. This entity was prone to
be misdiagnosed as tyrosinemia or galactosemia in case just
based on the GC-MS and/or MS-MS findings [26, 27].

Citrin deficiency and a rare chromosome karyotype were
found in this study as novel causes for GDD and MR,
respectively, further expanding the etiology profile of NDDs.
Many “new” IEMs have been discovered in the recent years,
and some of them have been found to have features of NDDs
[28]. Citrin deficiency, first described in Japan and East Asia,
is a newly-established IEM now considered as a panethnic
disease distributed worldwide [27, 29]. We have no direct
evidence to explain why the 2 citrin-deficient patients in this
study presented with syndromic GDDs. However, their GDD
manifestations could not be explained with brain injury
directly due to deficient citrin, since this aspartate/glutamate
carrier (AGC) is predominantly found in liver, kidney, heart,
and intestine, but not in brain [29]. Interplay of multiple
factors may represent the possible underlying mechanism.
For example, secondary galactosemia and tyrosinemia in
citrin deficiency, including the 2 cases in this paper, are quite
common [26, 27], and brain injuries caused by disturbances
in the metabolism of galactose and tyrosine have been
reported [12, 30]. The detailed mechanism(s) for the child
with novel karyotype to develop MR remains unclear at the
current stage. However, the chromosome aberration in this
patient produced 4 chromosome breakpoints, changing the
genome architecture inevitably, and thus the syndromic MR
may result from one or more mechanisms including gene
interruption, gene fusion, position effect, unmasking of a
recessive allele, presence of a functional polymorphism, and
gene transvection effect [11, 31], as proved in other disorders
of genome architecture such as acute lymphoblastic leukemia
[32] and retinitis pigmentosa [33].

5. Conclusions

Although the etiologies in nearly half of the patients still
remain an unresolved issue in this NDD cohort, genetic
diseases including IEMs and congenital dysmorphic diseases
constituted the commonest identified etiology category. GC-
MS and MS-MS, the two key experimental technologies in
the field of pediatric metabolomics, proved to be substan-
tially helpful for the exploration of the NDD etiologies in
our clinical practice. The findings in this paper provided
latest epidemiologic information on the etiology distribution
of NDDs in Chinese, and syndromic NDDs caused by
citrin deficiency and the novel chromosomal karyotype,
respectively, further expanded the etiology spectrum of
NDDs.

Acknowledgments

The authors are grateful to all the patients and their parents
for their cooperation, and to those who referred NDD

patients to our department. This paper was supported
financially in part by Medical Research Fund of Guangdong
Province, China (Nos. A2008358 & A2009366) and Project
81070279 supported by National Natural Science Founda-
tion of China (NSFC), and by Grants-in-Aid for Scientific
Research (B: Nos. 16390100 & 19390096) and for Asia-Africa
Scientific Platform Program (AASPP) from the Japan Society
for the Promotion of Science.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

[1] M. Shevell, “Global developmental delay and mental retarda-
tion or intellectual disability: conceptualization, evaluation,
and etiology,” Pediatric Clinics of North America, vol. 55, no.
5, pp. 1071–1084, 2008.

[2] M. Shevell, S. Ashwal, D. Donley et al., “Practice parameter:
evaluation of the child with global developmental delay:
report of the quality standards subcommittee of the American
Academy of Neurology and The Practice Committee of the
Child Neurology Society,” Neurology, vol. 60, no. 3, pp. 367–
380, 2003.

[3] J. Chelly, M. Khelfaoui, F. Francis, B. Chérif, and T. Bienvenu,
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