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1. Introduction

Modeling of flow and transport is an essential component of many scientific and engineering

applications, with increased interests in recent years. Application areas vary widely and

include groundwater contamination, carbon dioxide sequestration, air pollution, petroleum

exploration and recovery, weather prediction, and chemical separation processes However,

accurate mathematical and numerical simulation of flow and transport remains a challenging

topic from many aspects of physical modeling, numerical analysis, and scientific computa-

tion. An important step of its numerical solution procedure is to apply advanced discretiza-

tion methods (e.g., finite elements, finite volumes, and finite differences) to the governing

equations. Another important solution step is the design of fast and accurate solvers for the

large-scale linear and nonlinear algebraic equation systems that result from discretization.

Solution techniques of interest include multiscale algorithms, mesh adaptation, parallel

algorithms and implementation, and efficient splitting or decomposition schemes.

2. Overview of Work Presented in This Annual Issue

This annual special issue covers a number of developing topics in mathematical modeling

and numerical simulations of flow and transport phenomena for a variety of applications.
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The issue effectively blends theoretical, numerical, modeling, and simulation aspects of flow

and transport problems that are usually encountered in many research areas. From biological

applications to the steel industry, and all the way to nanofluids applications, the 25 papers

of this annual issue serve as state-of-the-art important reference for any mathematician

or engineer working in a field related to modeling and simulation of flow and transport

problems. The topics of this special issue may be divided into eight sections of complex

flow and transport: (1) fluid flow problems, (2) flow in porous media, (3) fluid flow and

heat transfer, (4) nano- and biofluids, (5) traffic problems, (6) selected problems of industrial

challenges, (7) hydrogen safety issues, and (8) integration techniques for flow and transport.

We outline each of the eight areas below.

The first group of papers addresses various issues in the area of flow of fluids. A

stabilized incompressible smoothed particle hydrodynamics is proposed in the paper “A
stabilized incompressible SPH method by relaxing the density invariance condition” to simulate

free surface flow. The modification appears in the source term of pressure Poisson equation,

and the idea is similar to the recent development in Moving Particle Semi-implicit method

(MPS). In a paper entitled “Viscoelastic flow through an axisymmetric contraction using the grid-
by-grid inversion method,” by H. Park, the grid-by-grid inversion algorithm is developed to

simulate viscoelastic flow through an axisymmetric contraction. S. Peng has introduced a

paper entitled “1D and 2D numerical modeling for solving dam-break flow problems using finite
volume method” to model the flow movement in an idealized dam-break configuration. One-

dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed was

considered in this study. In the paper “Effects of regional magnetic field on rotatingMHD flow field
of unity magnetic Prandtl number” S. Hung and J. Leong studied the flow pattern of a magnetic

fluid filled within an annulus with moving inner cylinder at a constant rotational speed and

stationary outer cylinder under influence of a nonuniform external magnetic field. M. Lee

and G. Kim introduced the dispersion coefficient tensor including off-diagonal components

of the flow with secondary currents, namely, skewed shear flow dispersion (SSFD) coefficient

tensor, in the paper “Influence of secondary currents on solute dispersion in curved open channels.”
The second group concerns with flow in porous media. In “FEM analyses for T-H-

M-M coupling processes in dual-porosity rock mass under stress corrosion and pressure solution”

Y. J. Zhang et al. have introduced the models of stress corrosion and pressure solution

into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-

porosity medium. The effects of a porous fence with a nonuniform porosity on flow fields

are investigated numerically by L. M. Huang et al. in a paper entitled “A numerical study on
flow around nonuniform porous fences.” In the paper “Natural convection in an inclined porous
cavity with spatial sidewall temperature variations” M. Selamat et al. have studied the natural

convection in a porous cavity with a nonuniform hot wall temperature and a uniform cold

wall temperature. In the paper “Upscaling of permeability field of fractured rock system: numerical
examples” by K. Bao et al., several numerical examples have been considered to calculate

effective hydraulic properties for a given fractured porous medium domain. Several scenarios

of fractured systems have been considered starting with two fractures up to 800 fractures. T.

H. Jung et al. have introduced a numerical experiment in their paper “Characteristics of wave
reflection for vertical and slit caissons with porous structures” to investigate the characteristics of

a reflected wave from a porous structure located in front of a slit caisson.

Coupling of heat and fluid flow is covered by the third group. S. Almalowi

and A. Oztekin presented numerical simulation of two-dimensional convective heat

transfer problem using two-dimensional, nine directional D2Q9 thermal lattice Boltzmann

arrangements, in the paper entitled “Flow simulations using two-dimensional thermal lattice



Journal of Applied Mathematics 3

Boltzmann method.” In the paper entitled “Thermal diffusion and diffusion thermoeffects on MHD
thermosolutal Marangoni convection boundary layer flow over a permeable surface” by R. Hamid et

al., the problem of thermal diffusion and diffusion thermoeffects on thermosolutal Marangoni

convection flow of an electrically conducting fluid over a permeable surface is investigated.

The paper entitled “Airflow and heat transfer in the slot-vented room with radiant floor heating
unit” presents numerical simulation of floor radiant heating system with three types of slot

ventilation, namely, lateral slot ventilation (LSV), ceiling slot ventilation (CSV) and no slot

ventilation (NSV). J. Alinejad and S. Samar bakhsh in their paper, “Viscous flow over nonlinearly
stretching sheet with effects of viscous dissipation” have presented an analysis to study the flow

and heat transfer phenomenon in a viscous fluid over a nonlinearly stretching sheet by

considering the effects of heat dissipation.

The next group of papers is devoted to flow and transport of nanofluids and biofluids.

In the paper “Numerical investigation of nanofluid forced convection in channels with discrete heat
sources” the flow and heat transfer characteristics of channel flow with discrete heat sources

for base fluid (distilled water) and a nanofluid that is composed of distilled water and Al2O3

nanoparticles are numerically investigated by Mashaei et al. The paper entitled “Nonlinear
fluid models for biofluid flow in constricted blood vessels under body accelerations: a comparative
study” by D. Sankar and A. Nagar presents a mathematical analysis that represents various

interesting rheological properties of blood when it flows through narrow stenosed arteries

with body acceleration, treating it as different non-Newtonian fluid models with yield stress

such as Herschel-Bulkley fluid model and Casson fluid model.

The fifth group concerns with some traffic problems. The paper “Evaluation of
congestion relief proposals in a capital city” aims at analyzing three different solutions suggested

for traffic congestion relief in Port Louis, the busiest city of Mauritius. Three alternatives use

light rail transit (LRT) as an alternative mode of transport, the construction of a ring road

around Port Louis, and the upgrading of the current bus network into a bus rapid transit

(BRT) system. Assuming that platoon speed follows a truncated normal distribution, ranging

from minimum speed to maximum speed, the paper “A platoon dispersion model based on a
truncated normal distribution of speed” by M. Wei et al. develops a piecewise density function

that describes platoon dispersion characteristics as the platoon moves from an upstream to a

downstream intersection.

Selected problems from industry have been covered in the sixth group. The objective

of the paper “Mathematical analysis of inclusion removal from liquid steel by gas bubbling in
a casting tundish” is to analyze and improve the understanding of the alumina inclusion

removal rate by bubble attachment and by gas bubbling fluid dynamics effects. In a paper

entitled “Numerical simulation of oil spill in ocean,” a numerical model is employed to solve

a two-dimensional advection-diffusion-reaction equation. The model is based on a standard

split operator (fractional step) approach. N. Leitão has introduced a paper entitled “GMM
estimator: an application to intraindustry trade” to investigate the determinants of intraindustry

trade (IIT), horizontal IIT (HIIT), and vertical IIT (VIIT) in the automobile industry in

Portugal. The GMM system is applied to solve the problems of serial correlation and the

endogeneity of some explanatory variables.

The seventh group is devoted to hydrogen safety issues. In the paper “Theoretical
analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet” semianalytical

solutions are developed by M. El-Amin et al. for turbulent hydrogen-air plume. Analytical

expressions are derived for plume centerline variables (radius, velocity, and density deficit)
in terms of a single universal function. I. Ismail et al. have investigated the effect of wind

speed and tunnel geometry on the flow and dispersion of hydrogen within tunnel structures
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in a paper entitled “Modelling considerations in the simulation of hydrogen dispersion within tunnel
structures.”

Finally, in the eighth group some integration techniques for flow and transport

are introduced. In the paper “The technique of MIEELDLD in computational aeroacoustics,”
Appadu has used the technique of minimised integrated exponential error for low dispersion

and Low Dissipation (MIEELDLD) in a computational aeroacoustics framework to obtain

modifications to optimized spatial schemes constructed in a previous work. A new method

for solving nonlinear Volterra-Fredholm-Hammerstein (VFH) integral equations is presented

in the paper “A new direct method for solving nonlinear Volterra-Fredholm-Hammerstein integral
equations via optimal control problem.” The method is based on reformulation of VFH to the

simple form of Fredholm integral equations and hence converting it to optimal control

problem.

3. Conclusions

Improvement of computer hardware and numerical algorithms in recent years had made

more accurate and higher-resolution simulations of flow and transport possible, which

yielded a better and deeper understanding of flow and transport and their interaction with

other physical, chemical, biological, and sociological processes. This special issue focuses

on eight important areas of flow and transport and it highlights new applications and new

challenges. Like the previous issue, this issue is not intended to be an exhaustive collection

nor a survey of all of the current trends in flow and transport research; many additional

significant research areas of flow and transport still exist and remain to be explored, but

multidisciplinary research effort is a clear trend.
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This work numerically studies the flow pattern of a magnetic fluid filled within an annulus whose
inner cylinder is moving at a constant rotational speed, while the outer cylinder is stationary
but under the influence of a nonuniform external magnetic field. The magnetic field consists of
four basic configurations, that is, completely circular, semicircular, quarter circular, and alternately
quarter circular. The strength of the external magnetic field is characterized using a reference
Hartmann number. As the reference Hartmann number increases, the fluid elements need to
overcome greater resistance to enter the region with magnetic field. Hence, there always exists
an apparent recirculation cell within the region without externally applied magnetic field. The
strength and size of the recirculation cell depend on the reference Hartmann number, the number
and size of the discrete regions without external magnetic field. Only the shear stress on the moving
cylinder always increases in magnitude with the reference Hartmann number and the span of the
single external magnetic field region. Splitting and separating the external magnetic field may
increase the magnitude of the shear stress on the moving inner cylinder but decrease that on the
stationary outer cylinder. If the magnitude of the shear stress on the outer cylinder reduces beyond
zero, a shear stress in the opposite sense will increase in magnitude with Hartmann number.

1. Introduction

The study of magnetohydrodynamics (MHD) has recently become a topic of study which has

attracted a lot of attention. In the 1960s, Papell of NASA mixed very fine magnetite particles

below 10 nm with appropriate surfactant so that the nanomagnetite could be effectively

dispersed in nonpolar solvents [1]. He then successfully produced a magnetic fluid which

had demonstrated many very distinctive physical behaviors. In general, magnetic fluid can
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be classified as either conducting or nonconducting depending on their nature of electric

conductivity. Under the influence of an external magnetic field, a conducting magnetic fluid

in motion will produce an electromotive force that causes an induced electric current to

flow. The presence of this induced electric field then in turn produces an induced magnetic

field. At the same time, the induced electric field interacts with the overall magnetic field to

produce Lorentz force that acts on the fluid elements. Since the Lorentz force acts to oppose

the mechanisms that create it, it therefore generally serves to reduce the magnitude of fluid

element velocity field.

As a matter of fact, Hartmann, way ahead of Papell’s study, had successfully

investigated the nature of magnetic Poiseuille flow based on experimental and theoretical

approaches as early as 1937 [2]. His study was later referred to as the well-known Hartmann

flow and the dimensionless parameter appeared in the problem was named after him as

the Hartmann number. This parameter basically represents the relative importance between

the magnetic and the inertial forces. In 1970, Finlayson [3] performed a theoretical study of

a magnetic fluid behavior under the influence of perpendicular uniform external magnetic

field.

Chang and Lundgren [4] have also performed a rather complete investigation on

Hartmann flow. In their paper, they pointed out that the flow at the middle between the

upper and lower surfaces tends to become flatter as Ha increases. Not only so, the overall

velocity of the fluid decreases with Ha. In 1999, Yamaguchi et al. [5] studied the instability

of magnetic fluid in a two-dimensional enclosure subjected to an external magnetic field

through experimental and numerical simulations. As of this moment, magnetic fluid is

widely employed in various engineering applications.

(a) Medical Therapy

For cancer detection, magnetic fluids are commonly used as the MRI contrast agents.

Moreover, magnetic fluid is also used in experimental cancer treatments named magnetic

hyperthermia.

(b) Seals for Electronic Devices

Magnetic fluids are used to form liquid seals surrounding the driver shafts in hard disk

drives. A small amount of oil-based magnetic fluid can be injected into the gap between

the magnet and the rotating shaft. The magnetic attraction holds the fluid in place forming a

protection that prevents dusts from entering the hard disk drive.

(c) Lubrication

Oil-based magnetic fluids are also excellent lubricants. They can be injected into the gaps

between moving mechanical parts of distinctive speeds. During operation, the leakage of the

fluid can be prevented under the influence of magnetism. This feature is highly valued in the

industry for it greatly reduces the hassle for consistent lubricant refill [6].

(d) Transportation

Magnetic fluids are now widely used in the magnetorheological damper, a kind of active

suspension system surrounded with an electromagnet. The viscosity of the magnetic fluid in
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this kind of vehicle damper can be dramatically varied to account for the driver preference or

the vehicle overall weight. More importantly, its viscosity may be dynamically regulated to

improve overall vehicle stability control because the damping factor of the active suspension

system can be adjusted once every millisecond in response to actual road conditions. As a

matter of fact, magnetorheological dampers are also used in helicopter cockpit seats as safety

devices which serve to significantly decrease the rate of permanent injury during a crash.

(e) Energy Conversion

The energy conversion device using magnetic fluid is attractive for space use or in a situation

where no maintenance is required. Yamaguchi et al. [7] have designed and constructed

a direct-heat-to-power energy conversion device that makes use of temperature-sensitive

magnetic fluid.

For a very long period of time, fluid behaviors between a pair of independently

rotating cylinders have been investigated extensively. Perhaps all studies in rotational

MHD flow trace back to the work by Taylor [8, 9] who has investigated both theoretically

and experimentally the stability of the classical Couette-Taylor flow. Shortly after Taylor’s

discovery of the onset of axisymmetric Taylor vortices, Jeffreys [10] has extended the concept

of Couette-Taylor flow and shown that the earth rotational motion has a negligible influence

on the mantle convective motion. On the other hand, Meksyn [11] has investigated a similar

problem using a different asymptotic method of integration. Later, Coles and van Atta [12–

14] disclose nonaxisymmetric spiral vortices as a result of counter-rotating cylinders. Since

then, just to name a few, many monumental studies [15–27] mostly deal with flow instability

have been reported laying a solid foundation and inspiration for numerous future research

topics and activities.

As a matter fact, Chandrasekhar [27] has recognized the need for further understand-

ing of magnetic fluid instability associated to rotating cylinders. He extended the work by

Taylor, Jeffreys, and Meksyn and considered an electrically conducting under the influence

of an axial magnetic field. There are several factors affecting the effectiveness of the magnetic

field in suppressing the onset of thermal instability. However, instability suppression due

to the presence of the magnetic field is always more pronounced for rotational motion than

for differential heating from below. While there were many research works related to a disk

configuration, Donnelly et al. [28–30], Brahme [31], Ji et al. [32, 33] have contributed to the

understanding of megnetorotational instability (MRI) in rotating fluid.

Despite the vast collection of MHD Couette flow problems, rarely found are those

not tackling instability problems. Willis and Barenghi [34] investigated the response of a

conducting liquid in a three dimensional cylindrical geometry subjected to an imposed axial

magnetic field. The patterns of a typical nonlinear steady hydromagnetic flow were shown.

Because of the magnetic field, the Taylor cells found in classical Coutte-Taylor flow are

apparently elongated in the axial direction.

Szklarski and Rüdiger [35, 36] have actually simulated a magnetorotational MHD

Taylor-Couette flow with an external helical magnetic field at small Prandtl number limits.

Through plots of stream function contour, they showed the existence of drifting vortex pairs

within an infinitely long annular space. For an enclosure with a motionless bottom endplate

and a rotating upper endplate, a traveling wave propagates in the upward axial direction

dramatically distorting the drifting vortex pairs observed in infinitely long annulus. The

formation of Ekman-Hartmann layer is observed near the endplates where a Hartmann

current exists and penetrates the bulk of the conducting fluid.
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The purpose of this paper is to numerically study the flow pattern of a magnetic

fluid filled within an annulus under the influence of different nonuniform externally applied

magnetic field configurations. Based on the flow field obtained for different magnetic field

configurations and field strengths, the shear stress along the moving cylinder is evaluated.

The description for the formulation of the magnetic fluid confined within a pair

of infinitely long cylinders is given in Section 2. The governing equations along with

the appropriate boundary conditions were made dimensionless and numerical approach

was employed to solve the equations. The flow patterns of the magnetic fluid under the

influence of the nonuniform externally applied magnetic field are investigated in Section 3.

It is shown that the flow pattern depend strongly on the Hartmann number, that is, the

strength of the external magnetic field. In particular, it is shown that the configuration of

the external magnetic field plays a very important role in local acceleration and deceleration

of the magnetic fluid. The change in shear stress due to the change in flow pattern is also

documented. Finally, some important findings are reported in Section 4.

2. Governing Equations

Current work numerically simulates the flow field of a two-dimensional cylindrical magnetic

Couette flow. The polar coordinate system is represented by (r, θ), while the velocity and

external magnetic fields are represented by (ur, uθ) and (Br, Bθ), respectively. The radii of the

inner and outer cylinders are represented by ri and ro. Also, the inner cylinder rotates at a

constant speed Ω.

The behaviors of electromagnetism are governed by the Maxwell’s equations. As a

matter of fact, these equations are a collection of four fundamental governing equations

individually known as the Gauss’s law, the Gauss’s law for magnetism, the Faraday’s law

of induction, and the Ampère’s law with Maxwell’s correction. Together with the so-called

material equations, these equations are mathematically given as [37]

∇· ⇀B= 0, (2.1)

∇× ⇀

E= −∂
⇀

B

∂t
, (2.2)

∇× ⇀

H=
⇀

j , (2.3)

∇· ⇀D= 0, (2.4)

where the above parameters are interrelated through the following relationships:

⇀

H=
1

μ

⇀

B, (2.5)

⇀

j = σ
(⇀
E +

⇀

V × ⇀

B
)
, (2.6)

⇀

D= ε
⇀

E . (2.7)
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Combining (2.1), (2.2), (2.3), (2.5), and (2.6), the general magnetic field equation for

any magnetic fluid can be obtained in the following form:

∂�B

∂t
+
(
�V · ∇

)
�B +

(
∇ · �V

)
�B =

(
�B · ∇

)
�V +

1

μσ
∇2 �B. (2.8)

Although one can clearly understand the relationships and behaviors between the

magnetic and electric fields, the theory of electromagnetism has also suggested that an

electromagnetic force namely the Lorentz force will be produced in the magnetic fluid as

it flows in the region under the influence of magnetic field. This force later tends to influence

the motion of the fluid elements. For this reason, the magnetic, electric, and flow fields are

interinfluential. The conservations of mass and momentum of the fluid are governed by the

continuity and Navier-Stokes equation as

Dρ

Dt
= 0,

D
(
ρ �V

)
Dt

= −∇p + ρ�g +
1

μ

(
∇ × �B

)
× �B + μ∇2 �V .

(2.9)

Current study assumes that the magnetic fluid is steady, incompressible, and laminar

while the gravitational acceleration is negligible. Equation (2.9) simplifies as

∇ · �V = 0, (2.10)(
�V · ∇

)
�V = −1

ρ
∇p + �g +

1

μρ

(
∇ × �B

)
× �B + ν∇2 �V . (2.11)

With the help of continuity equation, (2.8) can be further simplified to give

(
�V · ∇

)
�B =

(
�B · ∇

)
�V +

1

μσ
∇2 �B. (2.12)

The external magnetic field varies as a function of radial direction, that is, B0/r,

where B0 will then be used to define the reference Hartmann number in current study. The

dynamical state of the magnetic fluid can therefore be determined by solving (2.10)–(2.12)
simultaneously. This set of equations is apparently too complicated to be solved directly. To

further simplify it, stream function ψ is introduced to eliminate the continuity equation and

thus to reduce the number of equation needed to solve simultaneously. The stream function

ψ is defined such that

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
, (2.13)
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where ur and uθ are the dimensionless radial and azimuthal components of velocity. On the

other hand, the following dimensionless parameters are also introduced to normalize the

remaining set of equations:

r∗ =
r

ri
, ψ∗ =

ψ

ν
, Ω∗ =

Ω
ν/r2

i

,

ω∗ =
ω

ν/r2
i

, A∗ =
A

B0
, Ha =

B0a

ri

√
σ

ρν
.

(2.14)

The parameter Ha is referred to as the reference Hartmann number because the term

B0/ri is actually the amount of reference external magnetic field density at ri. Clearly, a

larger Ha indicates a stronger external magnetic field B0. The parameters appeared within the

square root are merely electrical and mechanical properties of the magnetic fluid. To simplify

the formulation, the distribution of the magnetic potential A is more frequently solved to

replace the magnetic field density. The magnetic potential A is defined similar to the stream

function and is given as below for a two-dimensional formulation

Br =
1

r

∂A

∂θ
, Bθ = −∂A

∂r
. (2.15)

Neglecting displacement currents, induced magnetic field, dissipation, and Joule

heating, the Navier-Stokes equations can be transformed into the following nondimensional

stream function-vorticity form after dropping the asterisk in (2.14) for simplicity:

1

r

∂

∂r

(
ω
∂ψ

∂θ

)
− 1

r

∂

∂θ

(
ω
∂ψ

∂r

)

=
1

r

∂

∂r

(
r
∂ω

∂r

)
+

1

r2

∂2ω

∂θ2
− Ha2

r2

(
∂A

∂θ

∂

∂r
− ∂A

∂r

∂

∂θ

)[
∂

∂r

(
r
∂A

∂r

)
+

1

r

∂2A

∂θ2

]
,

(2.16)

where the definition of dimensionless vorticity is given below without asterisk

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
= −ω. (2.17)

To be consistent, the dimensional magnetic field equation, (2.12), was also nondimen-

sionalized and simplified after some manipulation to yield

1

r

∂

∂r

(
A
∂ψ

∂θ

)
− 1

r

∂

∂θ

(
A
∂ψ

∂r

)

=
1

r

∂

∂r

(
ω
∂A

∂θ

)
− 1

r

∂

∂θ

(
ω
∂A

∂r

)
+

1

Pm

[
1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2

∂2A

∂θ2

]
,

(2.18)

where Pm is the magnetic Prandtl number defined as Pm = μσν.
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(a) (b)

(c) (d)

Figure 1: Distribution of externally applied magnetic fields: (a) uniform, (b) a semicircular, (c) two-quarter
circular, and (d) a three-quarter circular.

Appropriate boundary conditions for the velocity field are imposed by specifying the

values of dimensionless stream function on the surface of the inner and outer cylinders. After

dropping the asterisk, they are given in terms of dimensionless rotational speed of the inner

cylinder as

Inner cylinder,

ψ =
ro − ri
ri

Ω at r = 1, (2.19a)

Outer cylinder,

ψ = 0 at r =
ro
ri
. (2.20a)

Other than the above velocity boundary conditions, an external magnetic field must

be imposed on the magnetic fluid. The various configurations of the externally applied

magnetic field considered in this study are shown in Figure 1. The dimensionless magnetic
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Figure 2: Grid distribution.

potential within the region R including its inner and outer bounds where the magnetic field

is externally applied is given as

Region with magnetic field,

A = θ for 1 ≤ r ≤ ro
ri
, θ ⊂ R, (2.21a)

Region without magnetic field,

A = 0 for 1 ≤ r ≤ ro
ri
, θ /⊂ R. (2.22a)

In the present work, a finite difference method was employed. The governing

equations (2.16)–(2.18) were approximated by algebraic equations at the nodal points over

the computational domain. A finite volume was constructed surrounding each nodal point.

The governing differential equations were then integrated over the control volume. This

ensures that the conservation laws were satisfied both over the control volume as well as

the computational domain. This numerical method has been successfully employed by the

authors [38]. The geometry and grid system of the annular space was constructed using

a structured orthogonal mesh system. The grid distribution in this work was 40 × 260, as

shown in Figure 2. Under- and over-relaxation was employed for most of the calculations to

ensure the efficiency and accuracy of the numerical results. The reference Hartmann number

investigated in this work includes 1, 3, 5, 10, 20, 30, 40, and 50. A grid refinement test had

been performed and it was found that there was no significant improvement on present

computational results even if the number of grid was increased up to 8 times denser than

the current one.

3. Results and Discussion

Since the magnetic fluid flow in the annular space is subjected to an external magnetic field,

its fluid elements experience either a local acceleration or a local deceleration. It has long
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Figure 3: Locations where the velocity profiles are displayed.

Figure 4: Distribution of the contours of stream function for a uniform external magnetic fluid of Ha =
30 (Δψ = 0.0025).

been recognized through various studies that as Ha increases, the velocity close to the inner

cylinder decelerates while that close to the outer cylinder accelerates. Not only so, the velocity

gradient at the surfaces of both the inner and outer cylinders increases with Ha. In current

study in which the external magnetic field is regional, it is found that the velocity gradient

becomes relatively more obvious when Ha > 20. For this reason, the discussion that follows

will only focus on the scenario where Ha = 30 and 50. In order to further examine these

phenomena, this paper divides the upper half section of annulus (i.e., 0◦ ≤ θ ≤ 180◦) into

12 sections which are 15◦ wide. These cross-sections between these sections are shown in

Figure 3.

The contour of stream functions for Ha = 30 is presented in Figure 4. Since the external

magnetic field is completely circular within the annular space, the flow patterns are certainly

axis-symmetrical. This fact is evident from the distribution of stream function contours.

It can be seen that the contours of stream functions appear to be a family of concentric

circles. In other words, the magnetic fluid is merely a swirl flow under the influence of the

complete circular external magnetic field proving the fact that the flow field is completely

one-dimensional and angular independent.



10 Journal of Applied Mathematics

Figure 5: Distribution of the contours of stream function for a semicircular external magnetic fluid of
Ha = 30 (Δψ = 0.0025).

Figure 5 shows the contours of stream functions for the magnetic fluid subjected to a

semicircular external magnetic field of Ha = 30. Unlike the previous case, there exists in the

lower portion of the annular space an additional recirculation cell rotating in the clockwise

direction. The eye of the cell is located to the right side of the annulus in the region without

external magnetic field. Clearly, the flow pattern is no longer axis-symmetrical. Remember

that the magnetic field is only applied in the upper half of the annulus. In this region with an

external magnetic field, the magnetic fluid simply flows in the counterclockwise direction. In

the lower half where the external magnetic field is absent, the region is mostly occupied by

a recirculation cell. The formation of the recirculation cell is solely due to the presence of the

external magnetic field in the upper half region. In the upper half region, the fluid elements

generally slow down under the influence of the Lorentz force. Prior to entering the upper

half region, the fluid elements in the lower half region has experienced a considerable flow

resistance. Hence, some of the fluid elements are forced to flow radially outward similar to the

phenomena discovered for flow impingement. This radially outward flow eventually forms

the recirculation cell. It is remarkable to see that only a very thin layer of magnetic fluid right

next to the inner rotating cylinder is capable of penetrating the upper half region because the

flow momentum at this region is continuously supplied by the rotation of the inner cylinder.

Once it enters the upper region where the recirculation cell is no longer present, it expands

almost radially and therefore fills the entire gap between the inner and outer cylinders. As

it leaves the upper half region and returns to the lower half region, its fluid elements are

squeezed radially inwards by the recirculation cell. Even though the phenomena of magnetic

fluid entering and leaving the upper half region is somewhat similar (but in a reversed

fashion), the change in velocity field is more abrupt for the magnetic fluid elements entering

than leaving the region subjected to an external magnetic field.

In Figure 6, R∗ = 0 and R∗ = 1 indicate the locations of the inner and outer cylinders,

respectively. Here, the aforementioned radial coordinate was scaled throughR∗ = (r−ri)/(ro−
ri). Similarly, the angular velocity component uθ of the magnetic fluid was calculated through

(2.10) and then normalized by the linear velocity of the inner cylinder, that is, V ∗ = uθ/ωri.

Apparently, the fluid elements on the inner cylinder move at a finite tangential velocity while

those on the outer cylinder remain motionless. Furthermore, there exists a section close to

the outer cylinder whose angular velocity component is less than zero at θ = 0◦ indicating

that the fluid elements at this section actually flow in the direction opposite to the direction
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Figure 6: Angular velocity profiles at 0◦ ≤ θ ≤ 180◦ subjected to a semicircular external magnetic field.

Figure 7: Distribution of the contours of stream function for two-quarter circular external magnetic fluids
of Ha = 30 (Δψ = 0.00025).

of the rotating inner cylinder. At other locations, that is, 30◦ ≤ θ ≤ 180◦, the angular velocity

profiles are almost identical. Based on this figure, it is not difficult to see that the magnitude

of the normalized angular velocity V ∗ in the region corresponding to 0.12 ≤ R∗ ≤ 0.84 and

30◦ ≤ θ ≤ 180◦ is about 0.06. This implies that the rotational speed in this region is inversely

proportional to its radial distance.

If the external magnetic field is applied at the first and third quadrants, the flow

patterns can be expected to bear some resemblances with that for a semicircular magnetic

field. Since there are two discrete regions without external magnetic field in this case, there

surely exist two recirculation cells within these regions, as clearly displayed in Figure 7.

However, the strength of these two cells is actually weaker than the single cell for the case

shown in Figure 5. This can be imagined as if the single recirculation cell in Figure 5 is forced

to split into two recirculation cells by the presence of the additional region with external
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Figure 8: Angular velocity profiles subjected to two-quarter circular external magnetic fields at (a) 0◦ ≤ θ ≤
90◦ and (b) 105◦ ≤ θ ≤ 180◦.

magnetic field. As the single larger recirculation cell splits into two smaller cells, their strength

apparently weakens. This means the fluid elements in Figure 7 circulate at a lower velocity.

In the regions with external magnetic fields, the distribution of stream function contours in

general is less dense in Figure 7 in comparison with those depicted in Figure 5. This clearly

suggests that, except in the vicinity very close to the rotating inner cylinder, the majority

fluid elements flow slower if the single region with an external magnetic field is split and

separated. This phenomenon implies the decrease in flow kinetic energy in the annular space

is attributed to the effect of additional flow deceleration and acceleration prior to crossing the

interface between the regions with and without external magnetic field. Based on a careful

comparison, it was also found that the flow in this case has to squeeze itself through a slightly

narrower gap between the recirculation cell and the surface of the inner rotating cylinder.

To further understand the nature of the magnetic fluid flow, the velocity profiles

in the upper half region of the annulus are plotted in Figure 8. It is observed that at θ =
0◦, there is a large section where flow reversal takes place. Among the various velocity

profiles demonstrated, the angular velocity component is all greater than 0 for 15◦ ≤ θ ≤
120◦. Although the external magnetic field is only applied at 0◦ ≤ θ ≤ 90◦, the upstream

recirculation cell actually stretches beyond the interface at θ = 0◦ while the counter-clockwise

swirl flow extends over θ = 105◦ which is beyond the other interface at θ = 90◦. In this region,

the velocity profiles at 30◦ ≤ θ ≤ 90◦ are almost the same.

The flow pattern of the magnetic fluid in the annular space under the influence of

a three-quarter-circular external magnetic field is shown in Figure 9. In this scenario, only

the forth quadrant is not subjected to an external magnetic field. In Figure 9(a), the strength

of the external magnetic field is associated to Ha = 30. The flow patterns of fluid elements

entering the region subjected to an external magnetic field are very similar to the previous

cases. However, the flow pattern of the fluid elements leaving the region is very distinctive.

Under the influence of the external magnetic field spanning over the upper half region as

in Figure 5, the fluid elements are enormously squeezed so that they manage to complete

a cycle. If the external magnetic field is split, separated, and applied alternatively over the

upper and lower half semiannular spaces as in Figure 7, the fluid elements still need to force
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(a) (b)

Figure 9: Distributions of the contours of stream function for a three-quarter-circular external magnetic
fluids of (a) Ha = 30 and (b) Ha = 50 (Δψ = 0.0025).

their way through the annular space. When an additional external magnetic field is applied

at the second quadrant as in Figure 9(a), the fluid elements actually experience less resistance

when flowing through the region without external magnetic field.

Based upon these figures, it is remarkable to find that the strength and size of the

recirculation cell are strongly dependent on the number of the discrete regions without

external magnetic field and their span in the angular direction. Among these three external

magnetic field configurations, the recirculation cell is the weakest when only a quarter of

the annular space is free of external magnetic field. As the span of this region without

external magnetic field is doubled, the strength of the cell increases due to the decrease

in Lorentz force, as evidently shown in Figure 5. If the second and third quadrants of a

semicircular external magnetic field (in Figure 5) are interchanged to form the two quarter-

circular external magnetic fields, the recirculation cell is also split into two individual cells

whose strengths are apparently less than the previous one.

Figure 9(b) shows the flow pattern for the same conditions except that Ha is increased

to 50. The flow pattern is quite similar to that in Figure 9(a) except at the regions in the

vicinity of the recirculation cell. Because of the increase in the reference Hartmann number,

the corresponding recirculation cell grows in strength and as a result it leaves the swirl

flow less space to go around. Also for this reason, the change in flow direction prior to the

formation of the recirculation cell is much more dramatic for Ha = 50 than for Ha = 30. This

also clearly proves that the strength of the recirculation cell for Ha = 50 is greater between the

two cases. As the fluid elements enter the region with an external magnetic field of Ha = 50,

they also tend to change their flow directions more rapidly under the influence of stronger

Lorentz force.

If the external magnetic field conditions shown in Figure 9 are interchanged to

form a quarter circular magnetic field, the general flow patterns interchange between the

regions with and without external magnetic field. As shown in Figure 10, the strength of

the recirculation cell actually increases tremendously as evidently depicted by the denser

distribution of the contours surrounding the eye of the recirculation cell. More surprisingly,
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Figure 10: Distributions of the contours of stream function for a quarter-circular external magnetic fluids
of Ha = 30 (Δψ = 0.0025).
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Figure 11: Variation of dimensionless shear stress on cylindrical surface: (a) inner and (b) outer.

this recirculation cell is even stronger than the one shown in Figure 9(b), which corresponds

to Ha = 50.

The shear stress τ on the inner and outer cylinders were nondimensionalized by the

product of the inner cylinder rotational speed ω and the fluid dynamic viscosity μ. The

dependence of these dimensionless shear stresses on the external magnetic field configuration

and Ha are displayed in Figure 11. As Ha increases, the shear stress on the inner cylinder

always increases but that on the outer cylinder does not necessarily follows this rule. In fact,

the formation of the recirculation cell in the region without external magnetic field serves to

reverse the shear stress the outer cylinder surface experiences. For this reason, it is found

there exists a critical reference Hartmann number beyond which the shear stress on the

outer cylinder acts on the opposite direction if only an external magnetic field is applied

to a quarter of the annular space. Not only so, whenever the external magnetic field covers

less than half of the annular space, the magnitude of the shear stress on the outer cylinder

will tends to decreases and will eventually replaced by a growing shear stress in the opposite

sense if the Hartman number is large enough. Also in these figures, the effect of splitting and

separating the external magnetic field on the shear stress on the inner and outer cylinders

is investigated. The shear stress associated with the semicircular magnetic field is found to
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increase in magnitude on the inner cylinder but to decrease in magnitude on the outer one

as it is split to form two quarter-circular magnetic field (represented by the broken lines). As

the Hartmann number is increases, this magnitude continues to reduce to zero. Then, a shear

stress in the opposite sense is anticipated to grow in magnitude. Again, this is strictly related

to the nature of the recirculation cells. As the magnetic field is split, the recirculation cell

corresponding to the semicircular magnetic field is also split to form two weaker recirculation

cells. Because of the presence of these two recirculation cells, the shear flow next to the inner

cylinder is more difficult to squeeze through the annular space leading to an increase in shear

stress magnitude. On the other hand, the two weaker recirculation cells exert greater reversed

friction force and therefore reduce the magnitude of the shear stress on the outer cylinder.

4. Summary

A computational study of magnetic fluid in an annular space subjected to a rotating inner

cylinder and nonuniform external magnetic fields is accomplished in this work. Based on

current investigation, the following conclusions can be drawn.

(1) The presence and absence of the external magnetic field brake the fluid elements

prior to entering the region with external magnetic field. This leads to the

generation of a recirculation cell.

(2) In the annular space, a recirculation cell always occupies every discrete region

without external magnetic field.

(3) The strength and size of the recirculation cell depend on the strength of the external

magnetic field, the number of discrete regions without external magnetic field, and

their span.

(4) The strength of the recirculation cell is inversely proportional to the span in the

angular direction of the region subjected to external magnetic field.

(5) The shear stress on the moving inner cylinder increases with the reference

Hartmann number and the span of the single external magnetic field region.

(6) The magnitude of the shear stress on the stationary outer cylinder may increase or

decrease with the reference Hartmann number depending on the external magnetic

field configuration.

(7) Splitting and separating an external magnetic field may cause the magnitude of the

shear stress on the moving inner cylinder to increase but that on the stationary outer

cylinder to decrease.

Nomenclature

A : Magnetic scalar potential, A

a: Gap width between cylinders, m

B: Magnetic field density, T

B0: External magnetic field density, T

D: Electric displacement field, C/m2

E: Electric field, V/m
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H: Magnetized field, A/m

Ha: Hartmann number,—

j: Current density, A/m2

Pm: Magnetic Prandtl number,—

q: Electric charge, C

r: Radial coordinate, m

t: Time, s

ur : Radial velocity, m/s

uθ: Angular velocity, m/s.

Greek Symbols

ε: Permittivity, F/m

ν: Fluid kinematic viscosity, m2/s

μ: Fluid dynamic viscosity, kg/m·s
θ: Angular coordinate,—

ρ: Fluid density, kg/m3

σ: Electric conductivity, Ω−1 m−1

ω: Rotational speed of the inner cylinder, rad/s.
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The effects of a porous fence with a nonuniform porosity on flow fields are investigated numeri-
cally. First, an experiment with a non-uniform porous fence located in a wind tunnel is performed
to obtain a reference data set. Then, a numerical model that utilizes the finite volume scheme with a
weakly compressible-flow method to solve the continuity and momentum equations is developed.
The numerical simulation is compared to experimental measurements for validation purposes.
As a result, the numerical predictions show good agreements with the experimental data. Finally,
the numerical investigations of the flow fields around porous fences with various combinations
of upper and lower fence porosity are also presented. When the upper porosity is greater than
the lower porosity, the Protection Index PI0.1, PI0.3 and PI0.5, representing the adverse sheltering
effect, decreases compared to that of the uniform porous fence. When the upper porosity is less
than the lower porosity, the PI0.5 increases and the variations of the PI0.1 and PI0.3, depend on the
upper porosity, compared to that of the uniform porous fence. The results show that the porous
fence with the upper fence porosity εU = 0% and the lower fence porosity εL = 30% gives the best
sheltering effect among the porous fences in this study.

1. Introduction

Various kinds of fences have been used as windbreaks to reduce the wind erosion effectively.

A fence blocks the oncoming flow and reduces the mean velocity of the flow behind the fence.

Flows around a fence are of complex characteristics. Flow separation from fences results in

strong shear layers, along which turbulence intensities are large. The high turbulence level and
the shear layer of the recirculation flow in the near wake region. Variations of fence porosity are not

only to modify the flow velocity but also to control the turbulence structure around the fence.

In order to evaluate the sheltering effect properly and efficiently, a deeper understanding of

the underlying dynamics of the turbulent structures is required.

The characteristics of turbulent flows around porous fences have been reported

in several studies [1–4]. Raine and Stevenson [3] measured the mean and turbulent
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Figure 1: How to handle the porous fence. (a) Reproduced as a drag law. (b) Directly reproduced configu-
ration.

characteristics of wake flow behind various porous fences. They classified the wake flow into

two regions: the bleed flow dominant region and the displacement flow dominant region.

Additionally, porous fences with low to medium porosities were more effective in reducing

the mean velocity more than the solid one. Perera [1] experimentally investigated the flow

around various porous fences immersed in a simulated atmospheric boundary layer. The

porosity of the fence was the most significant parameter on the recirculation characteristics

behind the fence, compared to other factors required for the fence design. Castro [2] and

Perera [1] showed that the recirculation flow behind the porous fence disappeared when the

fence porosity was more than ε = 30%. Yaragal et al. [4] measured the flow fields downstream

of both solid and porous fences. The fluctuating pressure of the porous fence with ε = 60%

was by about 50% less than that of the solid fence. By measuring the mean velocity and

turbulence intensity profiles, Lee et al. [5] found that the porous wind fence with porosity

ε = 30% was most effective in abating windblown sand particles.

The above experimental results demonstrated that the characteristics of turbulent

flow downstream of the porous fence significantly depended on the porosities. Hence, the

numerical model will meet some considerable both in modeling the fluid dynamics of the

recirculation flow and the porous effects. Usually, practical engineers used a drag law to

represent the porous effects due to low computational cost [6–9]. With such a drag law,

only the spatial averaged flow structures around porous fences are provided (Figure 1(a)).
The application of drag law needs to correctly acquire drag coefficients in the momentum equation.
However, very little drag data of porous fences are available. Application of the numerical

model with a drag law to predicate the local flows around porous fences is rather difficult. In

other previous studies, the flows around porous fences were solved at a local level [10]. The

computational grids lie well inside the holes of porous fences and hence flow characteristics

are calculated both inside and around the holes (Figure 1(b)). The primary application of

these models is to model the interactions between the flow through the holes and the

recirculation flow.

The above literature demonstrates the detailed investigation of the flow structures

around porous fences, and the role played by the porosity has been emphasized. However,
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data for the cases of a porous fence with a nonuniform porosity are limited. An elevated fence

constructed in a road becomes nonuniform when support structures create a gap between the

bottom of the fence and the ground. Also, the solid fences act as nonuniform porous fences

when it receives a strong wind during its construction. Cho [11] pointed out that a fence with

a bottom gap was cost effective in reducing the surface shear stress behind a porous fence.

Park and Lee [12] experimentally investigated the turbulent flow behind the porous fences

with nonuniform porosities. In their study, they focused on the effects of fence gap on the

surface pressure characteristics behind the fences rather than exhibiting the flow structures

and their interactions with the porous fences.

The main objective of this study is to numerically investigate the effects of porous

fences with nonuniform porosities on flow structures, by varying the porosity in the upper

and lower halves of a fence. We recognized in literature survey that no experimental data was

available for examining the performance of a model predicting flow through a nonuniform

porous fence. Therefore, experimental results with a nonuniform porous fence are presented

to provide a reference data set for validating the numerical model. The validated numerical

model is used to study the sheltering effect of a nonuniform porous fence. The Protection

Index described by Van et al. [13], evaluated from the area of the reduced mean streamwise

velocity behind a fence, is introduced to examine the performance of a porous fence. The

present findings are expected to provide proper guidance in the design of porous fences with

nonuniform porosities.

2. Experimental Apparatus and Methods

The experiments were conducted in an open-suction-type wind tunnel with a test section

of 0.6 W × 0.6 H × 8.0 L (m3). Spires and roughness elements were installed in front of the

test section to create a thermally neutral atmospheric boundary layer. A porous fence with a

nonuniform porosity was tested. The porosity of the lower half of the porous fence (εL) was

30%, while the upper half was solid and upper porosity (εU) was 0%. The porous fence had a

height (H) of 6.0 cm and a flat end at the fence top. The porous fence extended the full width

of the wind tunnel test section. Since the aspect ratio (height/width) of the porous fence is

small (1/10), the model fence used in this study can be assumed to be two-dimensional (2D)
one. The porous fence was installed at a position 6.0 m downstream of the inlet of the test

section. A schematic diagram of the porous fence model and coordinate system used in this

study is shown in Figure 2. The uniform inlet velocity U0 was 10.60 m/sec and the Reynolds

number ReH based on the fence height H was about 4.1 × 104. A hot-wire anemometer

(TSI IFA-300) with a probe (TSI 1241-T1.5) were used to measure the velocity profiles. A

computer-controlled translation system was used to precisely locate and move the probe.

The measurements were made at 36 points in the vertical, with distance from the bottom wall

ranging from 0.05H to 7.5H. The measurements at each location were instantaneous at a

sampling frequency of 2 kHz for 20,000 data. These data were used to compute the statistical

properties and would be compared with the corresponding numerical simulation.

3. Numerical Simulation

The flow characteristics depicted in Figure 1 can be carried out under a simplified condition.

The porous fence extended the full width of the wind tunnel test section. It involves the 2-

D turbulent flows around a porous fence. The governing equations are the continuity and
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Figure 2: Schematic diagram of the porous fence and coordinate system.

momentum equations. The LES form of the dynamic subgrid-scale model by Germano et

al. [14] is employed to take the turbulent effects into account. The numerical method used

for the solution of the governing equations is developed on the basis of the finite volume

scheme with a weakly compressible-flow method [15] in a Cartesian coordinate system. The

governing equations of continuity and momentum are as follows:

∂p

∂t
+ k∇ · V = 0

∂V

∂t
+ V · ∇V = −∇p

ρ
+∇ · [(ν + νt)∇V ],

(3.1)

where p is the pressure; V denotes velocity components on each axis on the Cartesian

coordinates; t is the time; k is the bulk modulus of elasticity of air; ν is the kinematic viscosity;

νt is the turbulent eddy viscosity. The turbulent eddy viscosity is expressed as

νt = (CSΔ)2 2SijSij where Sij =
1

2

∂ui
∂xj

+
∂uj

∂xi
, (3.2)

where CS is the Smagorinsky coefficient; Δ denotes the characteristic length of the

computational grid and the strain tensor Sij . Based on the dynamic subgrid-scale model [14],
two filters (grid and test filters) are used in the model calculations. The CS, at the next time

step, is determined through the comparison between the turbulent shear stresses resulting

from different filters in a certain time step. The computational domain used in terms of the

fence heightH is 40H long and 10H high. The geometric characteristics used in the equations

are the same ones used in the experiments. Figure 3 depicts an example of the grid system

used in this study. Mesh distributions are all geometric progressions away from the regions

of steep gradients, such as those close to the walls and around the holes of the fences. The
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upstream of the fence).
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grid structure local to the porous region is shown in Figure 4. In this study, the numerical

simulation particularly investigates the flow near a porous fence, which is difficult to be

represented by treating the porous fence as a uniform area with a drag law. In order to reflect

the physical nature of the boundaries, the following boundary conditions are used in this study:
a power-law velocity profile at the entrance; a reference pressure at the exit; a no-slip condition at the
wall and the surface of the porous fence.

4. Model Testing and Validation

Figure 5 shows the measured mean velocity profiles around the porous fence. The

approaching flow is divided into two parts just in front of the fence. The deflected flow

moves upward and passes above the fence top. In addition, the bleed flow passes through

the holes of the lower half of the porous fence. A recirculation region with negative velocities

exists behind the porous fence. Velocity profiles behind the porous fence show large velocity

gradients existing at two vertical locations, one just above the structures and the other near

the location of y/H = 0.5. The higher part indicates the separation from the top edge of

the fence. The lower part attributes to the interaction between the bleed flow and the wall

boundary layer. Meanwhile, the numerical model in this study was employed to simulate
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Figure 5: Comparison between calculated results and measured data of mean streamwise velocity profiles
around the nonuniform porous fence (εU = 0% and εL = 30%): (full line) numerical simulation, ( )
experiment.

the flow fields around nonuniform porous fences. The first run was performed under the

experimental condition. The numerical results were tested for grid independence by comparing
the velocities obtained for 301 × 46 and 351 × 51 grid cells. With these two grids, the results

are quite close while the streamwise velocities near the porous fence reveal an averaged

discrepancy of 1.2%. Therefore, all the following computations are carried out using a grid

size of 351 × 51, and are expected to be grid independent. Figure 4 also shows the detailed

comparison between the measured data and the corresponding computed results. Behind the

porous fence, the bleed flow passing through the porous fence pushes the recirculation flow

resulting in positive velocities near the wall, and the reversed flow phenomena disappear in

the region 6 < x/H < 9. This mixing interaction between the bleed flow and the recirculation

flow is well-predicted using the present model. The model gives slightly higher values than the
measured data in the recirculation region. However, the general trends of velocity profiles and the
locations of the peak value are well reproduced. The velocity distributions are in good agreement and
measures can be evaluated for the main recirculation zone behind the fence. As shown in Figure 2,
therefore, the porous fence was arranged in the wind tunnel with two vertical blocks from side walls.
The LES is considered to be sufficiently validated to carry out the numerical simulations of turbulent
flow passing through a porous fence.

5. Results and Discussion

The numerical model in this study was validated by comparing the computed results

with the experimental data. Future applications of the numerical model were to be the

numerical analysis of the manipulated flow cases. The computational conditions, including

the boundary conditions and model parameters, of the experiment in the previous section
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Figure 6: Porous fences: (a) εU = 30% and εL = 30%; (b) εU = 20% and εL = 10%; (c) εU = 30% and εL = 0%;
(d) εU = 10% and εL = 20%; (e) εU = 0% and εL = 30%.
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Figure 7: Comparison between calculated streamline patterns around various porous fences.

were used as the basis for the following numerical analysis. Various combinations of upper

and lower fence porosity were numerically studied. Five porous fences and the combinations

of upper and lower fence porosity used in this study are shown in Figure 6. Figure 7
presents the mean streamline patterns around various porous fences. For all the porous fences, the
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Figure 8: Variations of calculated mean streamwise velocity profiles around various porous fences.

streamlines are shifted and there is a recirculation flow region behind the fence. When the

porous fence is nonuniform, the bleed flow has a velocity gradient in the vertical direction.

This effect produces extra mixing interaction as the fluid passes through the fence holes.

Therefore, the recirculation region is highly dependent of the combinations of fence porosity.

This indicates that the manipulation of the bleed flow at either the upper or lower parts of

the fence has a significant effect on the recirculation region but the mechanisms involved are

different. Besides, the recirculation region behind the porous fence of case E is considerably

larger than the other cases. Figures 8 and 9 show the variations of mean streamwise

and vertical velocity profiles around porous fences. The results give the qualitative and

quantitative observations of flow patterns passing through the porous fences. The bleed flow

passing through porous holes facilitate jets toward the recirculation flow at high velocities.

When the upper porosity is greater than the lower porosity, the bleed flow passing through

the upper half of the fence increases. The strong bleed flow of the upper fence mixes with

the shear layer separated from the top edge of the fence. Hence, the downward motion of

the entrained shear flow is reduced. In cases B and C, the mean vertical velocities are smaller

than that of the uniform porous fence. When the porosity of the upper half of the fence is
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Figure 9: Variations of calculated mean vertical velocity profiles around various porous fences.

less than that of the lower half, the bleed flow passing through the lower fence becomes

strong and gradually pushes up the recirculation flow. In cases D and E, the recirculation

flow displays high vertical velocities in the region of y/H < 0.5. Contour plots of the mean

streamwise velocity for the different fences are shown in Figure 10. For all porous fences,

the approaching flow decelerates behind the fence. The optimal design of porous fences is

determined by engineer’s own purpose. For the main purpose of mean velocity reduction,

Van et al. [13] had proposed a shelter parameter to quantify the sheltering effect of the

fence. This index was evaluated from the areas under the U/U0 = 0.5 contour line of the

reduced mean streamwise velocity behind the fence. However, this index reflected only the

streamwise mean velocity at one certain value. Although the areas under the other velocity

level are relatively small compared to the areas under the U/U0 = 0.5 contour line, it must

be considered in addition to obtain an accurate shelter parameter. Therefore, this study takes

into account three streamwise velocity levels. The contour lines are the best fit curves with

a second-order polynomial. The corresponding areas under U/U0 = 0.1, 0.3 and 0.5 behind

the fences are represented by PI0.1, PI0.3, and PI0.5, respectively, and summarized in Table 1.
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Figure 10: Contour plots of the calculated mean streamwise velocity for various porous fences.

Table 1: Areas under contours U/U0 = 0.1, 0.3 and 0.5 behind the fences.

Protection Index (H2) Case

A B C D E

PI0.1 9.44 7.44 8.56 7.78 14.49

PI0.3 16.67 13.05 13.63 14.26 21.33

PI0.5 22.97 21.92 20.96 24.06 28.37

The effects of nonuniform porosity are clearly shown in terms of the values of PI0.1, PI0.3, and

PI0.5. In the cases of the upper porosity being greater than the lower porosity, the values of

PI0.1, PI0.3, and PI0.5 are slightly smaller than that of the uniform fence (case A). This may be

attributed to the downward shear flow affected by the bleed flow which reduces the length

of the recirculation flow. The velocity contours are sensitive when the upper porosity is less

than the lower porosity. In case D, PI0.1 and PI0.3 decrease but PI0.5 increases, comparison

with the respective ones of the uniform fence. In case E, however, all of the areas under the

three velocity contours significantly increase. These clearly reveal that the manipulation of the

bleed flow at the lower locations of the porous fence has a significant effect on the sheltering

effect. The values of PI0.5 increase by about 5% and 24% for cases D and E, respectively,

compared to that of the uniform fence. case E has the highest value of PI0.5 among the porous

fences in this study.
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6. Conclusion

Flows around nonuniform porous fences are numerically investigated. The numerical model

developed in this work is based on the finite volume scheme with a weakly-compressible-

flow method. Additionally, the experimental data of a nonuniform porous fence are presented

mainly for the validation of the numerical model. As a result, the numerical model is shown

to be useful and appropriate for predicting the flows around a nonuniform porous fence.

The computation results are consistent with the experimental data. The effect of nonuniform

porous fence on flow fields are simulated by varying the combinations of upper and lower

fence porosity. The bleed flow passing through a nonuniform porous fence has a velocity

gradient in the vertical direction. This manipulation of the bleed flow of the porous fence has

a significant effect on the sheltering effect evaluated by the Protection Index. In the porous

fences with the upper porosity being greater than the lower porosity, the Protection Index

decreases compared to that of the uniform porous fence. Additionally, the porous fences with

the upper porosity being less than the lower porosity effectively enhance the sheltering effect.

The porous fence with the porosity of the upper half of fence is 0% and the lower half of fence

is 30% demonstrates best performance in sheltering effect among the porous fences in this

study.
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The mechanism of inclusion removal from liquid steel by gas bubbling and bubble attachment in
the tundish is complex due to the great number of variables involved, and it is even more difficult
to study because of the turbulent flow conditions. The main objective of this work is to analyze
and improve the understanding of the alumina inclusion removal rate by bubble attachment and
by gas bubbling fluid dynamics effects. The results show that the inclusion collection probability
mainly depends on the attachment mechanism by collision. This parameter was determined by
calculating the induction time, which is shorter when the rupture time and the formation time
of a stable three phases contact (particle/liquid/gas) are ignored than when it is fully considered,
affecting the attachment probability. In addition, to achieve acceptable inclusion removal, a smaller
bubble diameter is required, such as 1 mm. This consideration is almost impossible to achieve
during tundish operation; a more realistic bubble diameter around 10 mm is employed, resulting
in a very inefficient inclusion removal process by bubble attachment. Nevertheless, in a real casting
tundish the inclusion removal rate employing argon bubbling is efficient; is mainly due to the fluid
flow pattern changes rather than bubble attachment. Consequently, it is imperative to consider the
summation of both removal mechanisms to compute a better approximation of this important
operation.

1. Introduction

Due to the stringent control on the cleanliness of the steel, many steel casting shops around

the world have studied extensively the tundish systems employed, not only to maximize the

benefits of increasing the residence time by flow control and reduce contamination, but also to

have better and faster assimilation of the non metallic inclusions by the slag. The most recent

research reported in the open literature on the subject of inclusion removal in tundish can
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be grouped in three main subjects: the effect of the fluidynamics on the inclusion trajectories

[1–5], the mechanisms of inclusions assimilation by the slag [6, 7], and the mechanisms of

inclusion removal by bubble flotation [4, 8–28].
Argon bubbling is a very attractive technology used as a flow control and inclusion

removal, it strongly affects the fluid flow patterns in the tundish by reducing the dead flow

zones and by increasing the plug flow together with the mean residence time [22–24, 27].
In addition, it has been found by industrial trial that the implementation of this operation

improves the inclusion removal rate by decreasing the final range of inclusion size, and the

inclusion ratio in the final product [25, 28]. Furthermore, there are some works focusing

on the main variables that control the particle-bubble flotation mechanisms [16–19]. Even

with all this research, there is a gap in the knowledge of the inclusion-bubble interaction

in the tundish and its effect on the removal rate. A few efforts have been done to study this

subject, such as the work done by Rogler et al. [20], where the porous zone width effect on the

inclusion removal in the tundish was studied. However, in this work many assumptions were

taken, for instance considering constant the collection probability. Another important effort

was developed by Zhang and Taniguchi [4] where the silica inclusion removal by bubble

flotation in the ladle was determined by using the oscillation model.

Equally important is to consider the detrimental effect of the submerged entry nozzle

clogging by alumina inclusions in the tundish and the limited understanding on the subject.

Therefore, the objective of this work is to analyze mathematically and analytically the

alumina inclusion removal rate before they get to the submerge entry nozzle by bubble

attachment mechanism, considering attachment by oscillation or sliding models and the

collection probability as a function of complete induction time, and by the bubbling

fluidynamic effects.

2. Model Development

A fluidynamics mathematical model was developed based on a previous published

work by the authors [9] and an analytical model was developed to understand the

attachment mechanism for inclusion removal in the tundish. The fundamental equations and

mechanisms are described as follows.

2.1. Mechanisms for Particle-Bubble Interaction

The mechanism for inclusion attachment to the bubble can take place by collision (if tc > tfr)
or by sliding (if ts > tfr). Both are considered in this work. This mechanism has been widely

studied and it is composed of six steps [14]:

(1) inclusion approximation to the bubble;

(2) liquid film formation between inclusion and bubble;

(3) oscillation or sliding of the inclusion on the bubble surface;

(4) drainage and rupture of the film to achieve the three phase contact (TPC);

(5) stabilization of the system particle-bubble against external stresses;

(6) flotation of the stable system inclusion-bubble.

This mechanism is influenced by many parameters, where the system is very sensitive.

Those parameters are as follows.
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Collision time (tc) is calculated by Evans’ model [13],

tc =

(
π2ρp

12σL

)1/2

d3/2
p . (2.1)

Drainage time (tfr) is determined by Schulze’s model [19],

tfr =
3

64

(
π

180

)2 b2
α(32uRtc)2mαμLd

3
p

σLkh
2
crit

. (2.2)

Critical film thickness (h crit ) is calculated by Sharma and Ruckenstein Hole Formation

model [13]. This model considers irregular inclusion shapes,

hcrit = −2σl +

(
4σ2

l
+ 2ρLgσl(1 − cos θ)r2

)1/2

ρLgr
. (2.3)

Sliding time (ts) is calculated by Nguyen’s model [17, 18],

ts =
dP + dB

2uB(1 − B2)A
ln

{
tan(θc/2)
tan(θ0/2)

[
cosec θc + Bcot θc

cosec θ0 + Bcot θ0

]B}
. (2.4)

Bubble diameter (db) is calculated as a function of Orifice Reynolds number,

NRe,O =
ud0ρg

μL
=

4Qgρg

πd0μL

NRe,0 < 500 −→ dB =

[
6d0σL

g
(
ρL − ρG

)]1/3

and to NRe,0 > 5000 −→ dB =
1.3Q6/5

g

g3/5
.

(2.5)

Bubble velocity (ub), Davies and Taylor’s model is used for bubbles of spherical cap

shape with a bigger diameter than 6 mm [22], and the Stokes model for the bubble diameter

smaller than 1 mm,

uB = 1.02

(
gdB

2

)1/2

, uB =
d2
B

18μL
g
(
ρL − ρG

)
. (2.6)

Induction Time (ti) is determined by the complete Nguyen’s model [18],

ti =
dP + dB

2uB(1 − B2)A
ln

⎧⎪⎨⎪⎩ 1/
√
Pat +

√
1/Pat +D2 − 1(

1/
√
Pat + B

√
1/Pat +D2 − 1

)B × (1 + BD)B

1 +D

⎫⎪⎬⎪⎭. (2.7)

The induction time is a relatively new parameter that has not been fully studied.
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2.2. Inclusion Collection Probability

The overall probability (2.8) is the product of the attachment probability (Equation (2.9),
Yoon’s model [14]), the collision probability (Equation (2.10), Nguyen’s semianalytic model

[17, 18]), and one minus the detachment probability, which is considered equal to zero,

P = PC · Pat(1 − Pdet) (2.8)

Pat = sen2

[
2 arctan exp

(
− 2tfr
db + dp

X

)]
(2.9)

X =

[{[
1 − 3

4xE
− 1

4x3
E

+
Re0.72

B

15

(
− 2

x4
E

+
1

x3
E

+
1

xE

)]
ub − up

}]
, xE = 1 + k2, k2 =

dp

db

PC =
2uBD

9(uB + uP )Y

(
dP
dB

)2[√
(X + C)2 + 3Y 2 + 2(X + C)

]2

.

(2.10)

The model proposed by Rogler et al. is used [20] to study the alumina inclusion

removal rate in the tundish. In this model the inclusion concentration is a function of the

residence time and it is given by

−dn
dt

=NT = kn, where NT =NCC ·NB =
3qGPTF

2dBT0
· n = k · n, (2.11)

where: n = n0e
−kτ .

The inclusion removal efficiency is expressed for

ε =
(

1 − ekτ
)
· 100. (2.12)

2.3. Mathematical Model Considerations and Boundary Conditions

The fluidynamic model consists-of the fundamental Navier-Stokes equations, together

with the k-ε turbulence model and the discrete phase model [9] embedded in the

commercial CFD code FLUENT. The liquid steel flowing in the tundish is assumed to have

Newtonian behavior, under isothermal and steady state conditions. Both turbulent and

laminar flows coexist in the tundish; however, only laminar flow is present close to solid

walls. Consequently, typical nonslipping conditions were applied to all solid surfaces. Wall

functions were used at the nodes close to any wall. The gravity force was considered to act

over the y-coordinate. No slag layer was considered, instead a plane surface was assumed

where the velocity gradients, turbulent kinetic energy, and its dissipation rate are taken as

zero.

To study the macroscopic flow effect, the simulated inclusions were assumed to have

a spherical rigid shape with the physical properties of alumina. No interaction among the

inclusions was considered; therefore, agglomeration and collision were not simulated. The

only inclusion removal mechanism considered was Stoke’s flotation. Inclusion trajectories
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were calculated using a Langrangian particle-tracking approach, which solves a transport

equation for each inclusion as they travel through the previous calculated velocity field of

liquid steel. This approach assumes that the interaction between steel and the inclusion is

one-way coupled, that is, only the steel affects the trajectories of inclusions but these do not

affect the steel flow. The boundary conditions for inclusion removal were as follows: any

inclusion that reached the free surface was considered removed and the rest was considered

as escaped.

2.4. Analytical Model Description and Considerations

The argon bubbles have a constant size, and they are uniformly distributed in the bubble

region. The bubble-bubble and inclusion-inclusion interactions are ignored. The inclusion-

inclusion collision as well as the agglomeration is not considered, and the inclusion size does

not affect the bubble trajectory. The removal mechanisms considered are bubble flotation and

buoyancy forces.

For the calculation of the inclusion removal rate by bubble attachment, five main

programs were developed, for those the dimensionless constants (A, B, C, D, X, Y all these

constants were calculated with the equations proposed by Nguyen et al. [17, 18]) were

calculated as a function of the Reb. Program I: calculate db, ub, ti, Pa, Pc, E ri , tc, t fr , hcrit

using small increments of the gas flow rate and the diameter of the pore in the porous plug.

Program II: calculate up, Pc, Pa, E ri , tc, ti, t fr , hcri using different width of the bubble region,

but considering constant the resident time of the steel, the bubble diameter, the gas flow rate,

and the diameter of the pore in the porous region. Program III: calculate Pc, Pa, tc, t fr , hcrit

using constant the inclusion diameter and the bubble diameter. Program IV: calculate db, ub,

Pa, Pc, E ri , tc, t fr , hcrit but employing constant the gas flow rate and the diameter of the pore

in the porous plug. Program V: calculate P , Pa, Pc, ts, tc, t fr , ti, hcrit for different bubble and

inclusion diameters. This has been summarized in Table 1.

3. Results and Discussion

3.1. Analytical Analysis

The first variable calculated was the Critical Film Thickness (hcr) for alumina inclusions, this

variable was predicted using the hole formation and oscillation models, and the Schulze

and Birzer empirical relationship. The results are shown in Figure 1(a), where hcr for this

inclusion type has values between 0.015–452 nm. Consequently, the dominant forces for the

film draining and rupture are the Van der Waals forces. It was also observed that hcr value

is bigger when it is calculated using the hole formation model indicating that the liquid film

rupture takes place easier by the formation of a hole. Since this work is focused on inclusion

sizes ranging between 1–40 microns, it can be observed that the predicted values for hcr are

in the zone of the experimental results in water systems. Furthermore, Figure 1(b) shows the

hcr results for silica inclusions reported by Zhang and Taniguchi [4], who established that

hcr value is 3 to 5 times higher for the hole formation model than the values obtained by

oscillation model, concluding that the film rupture is easier by the formation of a hole. These

authors suggested that for alumina inclusions the film drainage and rupture may occur by

the formation of a hole, which is corroborated by the present results and it was concluded
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Figure 1: The critical film thickness (hcr) calculated as a function of the inclusion diameter (dp), (a) alumina
inclusion and (b) silica inclusion [13].

Table 1: Variables, parameters, and equations for each program developed.

Program Variables calculated
Parameters
modified

Equation
numbers

employed

Dimensionless
constants

I db, ub, Pa, Pc, Eri, ti, tc, tfr, hcrit dp, n0, τ, d0, Qg
1, 2, 3, 5, 6, 7, 9,

10, 11
A,B,C,D,X, Y

II up, Pc, Pa, Eri, tc, tfr, ti, hcri dp, n0, τ, d0, Qg, db
1, 2, 3, 5, 7, 9, 10,

11
A,B,C,D,X, Y

III Pc, Pa, tc, tfr, hcrit dp, db 1, 2, 3, 10, 11 C,D,X, Y

IV db, ub, Pa, Pc, Eri, tc, tfr, hcrit dp, n0, d0, Qg
1, 2, 3, 6, 7, 9, 10,

11
A,B,C,D,X, Y

V P, Pa, Pc, ts, tc, tfr, ti, hcrit dp, db
1, 2, 3, 4, 5, 6, 7, 9,

10, 11
A,B,C,D,X, Y

that hcr is dependent of the inclusion type, and the film rupture will take place by the hole

formation mechanism, which will be the model to be considered further on.

It is well known that the inclusion attachment mechanisms to a bubble can be by

collision or by sliding. For such reason, it is required to know the collision time (tc), the

sliding time (ts), and the induction time (ti), since the controlling attachment mechanism is

determined through these three variables. The induction time is the time required to achieve

the drainage and rupture of the film, in order to reach a stable three phase contact (TPC). In

previous research works, some of the considerations were taken to predict the induction time

results in smaller values, for instance, Wang et al. [14] calculated ti = tfc without considering

TPC rupture time and the time for the formation of the stable TPC; however, the authors

advice that this assumption is not exact; this hypothesis was also considered by Rogler et

al. [20]. Nevertheless, due to its importance, in the present work it has been fully calculated

using Nguyen’s model (2.7). The numerical values of these three time variables calculated

for alumina inclusions are shown in Figure 2(a). Where it should be taken into account that

if tc > ti, the inclusion attachment is by collision if tc < ti, the inclusion does not attach if

ts > ti, the inclusion attachment is by sliding and if ts < ti the inclusion slide; but it does

not attach. Considering this as a reference, the results show that in general ti > tc for the

studied bubble diameters; consequently, the alumina inclusion attachment occurs by sliding



Journal of Applied Mathematics 7

0 0.00002 0.00004 0.00006 0.00008 0.0001

1E−6

1E−5

1E−4

1E−3

0.01

0.1

1

1E−7

1E−8

dp (m)

db = 10 mm

db = 15 mm

db = 5 mm

db = 1 mm

db = 10 mm
db = 15 mm

db = 5 mm
db = 1 mm

ti

tc

ts
t
(s
)

(a)

1 10 20 30 40 50 60 70 80 90 100

10−1

10−2

10−3

100

101

102

103

104

105

106

dp (μm)

db = 15 mmdb = 5 mm
db = 1 mm

db = 15 mm
db = 5 mm

db = 1 mm

t
(μ
s)

ts

tI

tc

(b)

Figure 2: Relationship of the Inclusion Diameter to the collision, sliding and induction times. (a) ti
calculated using the Nguyen’s equation and (b) ti reported by Zhang and Taniguchi [13].
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Figure 3: (a) Attachment Probability and (b) Collision Probability.

or bouncing back, but it will not take place by collision. About the variable ts when the bubble

size is 1 mm ts > ti, meaning that the inclusion attaches by sliding, and when the bubbles size

is 5 mm ts > ti but only for particles diameters up to 83μm. Figure 2(a) also shows the limit for

inclusion diameter that may attach to a bubble, which is identified by the intersecting point

of ts and ti. The present results show bigger ti values and therefore smaller limits compared

to those obtained previously by Zhang and Taniguchi [13]. Therefore, it is essential to select

adequately the model used for compute ti.

To predict the inclusion removal rate in the tundish, it is required the collection

probability which depends on the attachment and collision probabilities; for this reason, these

probabilities are first analyzed. Figure 3(a) shows the calculated Patt values as a function of

the bubble and particle diameters, where it can be seen that for dp < 10 microns the values

obtained are close to unity, independently of the db. This indicates that any inclusion that

impacts a bubble will be removed. On the other hand, for dp > 10 microns the Patt becomes

a function of db, for example for db = 1 mm the Patt is high; nevertheless, for db = 5 mm
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Figure 4: Collection Probability.

the Patt decreases exponentially. Moreover, for bigger bubble diameters such as 10 or 15 mm,

the Patt shows values and a declined profile similar to db = 5 mm. These results are in

accordance to previous works published in the open literature [13, 14, 20], which means that

the present model predicts correctly the Patt and allows to conclude that it is necessary to have

db < 5 mm to remove efficiently small alumina inclusions in the range of 1–40 microns.

Figure 3(b) shows that, in general, the collision probability is very low independently

of the bubble and inclusion sizes. It is important to state that if an inclusion collides with

a bubble, the removal probability will be high. In order to improve the collision probability

considering the above inclusion size range, it is required that bubble diameters be smaller

than 1 mm. However, in the liquid steel flowing inside the tundish it is extremely difficult

to get argon bubble diameters as small as 1 mm; therefore, the Pc will be very low and

consequently the collection probability will be even smaller, this can be observed in Figure 4.

Taken into consideration the calculated information, the inclusion removal rate in the tundish

by bubble attachment may not be as efficient as can be expected and it is perhaps more

dependent on other variables. According to this hypothesis, it is required to calculate the

inclusion removal rate (RE) of a typical two-strand tundish. To determin this variable, it was

necessary to define some parameters, such as the width of the porous media considering

both sides (LB), the tundish mean residence time (TR) and the mean residence time inside

the bubble zone (TRB); the last two are directly related with the steel level which was set

as constant implicating that TR is constant, and TRB depends only on the LB variable. With

these conditions, RE was calculated using the Rogler and Heaslip model [20] and the results

are shown in Figure 5(a). In this figure, the requirement of small bubble diameters to get

an efficient inclusion removal is evident once more. Through these results the declared

hypothesis in Figure 4 is confirmed, since RE values are smaller than 30% for inclusion in

the interest range with 10 mm argon bubble diameter.

In spite of the small values mentioned above, it is necessary to find out the controlling

variable onRE. In order to achieve this goal, some variations were considered and their effects

were analyzed against the RE value of 21% for dp = 30 microns and bd = 10 mm. First, the

TR was decreased from 600 to 400 seconds, Figure 5(b). This change turned out in a 33%

decrease of TRB, consequently a 34% decrease of RE reference value was observed. Second,

reducing by half LB and keeping TR constant, Figure 5(c), the TRB value was diminished to
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Figure 5: Prediction of the inclusion removal rate in a continuous casting tundish, (a) Constant TR and LB ,
(b) Decrease of TR in 200 s, (c) Decrease of LB by half, and (d) Decrease of TR and decrease of LB by half.

50% causing a drop of 52% on RE. Finally, the two previous reductions were put together,

Figure 5(d), and resulted in a TRB decrease of 66% inducing an RE value of 6%. According

to these results, RE is a direct function of TRB. As in the majority of the tundish systems

LB, TR, and TRB are constants, RE depends exclusively on the bubble attachment mechanism

which is a very inefficient process as has been shown above. However, to explain the benefices

reported from other modelling studies [8, 9, 26] and those observed in practice [8, 28], where

the argon bubbling helps a lot the inclusion removal, it is necessary to consider additionally

the fluidynamics analysis of the system. This need is focused in the strong modification of

the flow patterns produced by the argon bubbling; first of all, the bubble curtain redirects the

flow towards the free surface, and secondly, the leaving flow from the curtain shows a plug

behavior promoting a bigger inclusion uncoupling. As a consequence of these patterns, it is

possible to obtain a considerable improvement on the inclusion removal.

3.2. Mathematical Analysis

In order to confirm the last hypothesis, a mathematical simulation of the fluidynamics in a

tundish equipped with a turbulence inhibitor and under argon bubbling was carried out, in

whichRE was only calculated by fluidynamics effects (Stoke’s flotation). Since there are many
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Figure 6: Characteristic dimensions of the continuous casting tundish (a) Frontal view, (b) Turbulence
Inhibitor (TI) upper view, (c) Lateral view, and (d) Computational grid.

different tundish configurations, it was considered a typical slab tundish configuration and

the numerical assumptions employed in a previous published work [9]. The characteristic

dimensions of the tundish and the mesh used in this study are presented in Figure 6.

It should be taken into account that the inclusions are only removed when they reach

the free surface; consequently, when the movement of the steel towards the free surface is

acquired, a better removal percentage can be expected. It is important to notice that RE could

be anticipated to be bigger than the one calculated by attachment since the area of removal

is also bigger; due to the difference of densities the uncoupling mechanism is easier than the

bubble attachment mechanism.

Observing the flow pattern changes in Figures 7 and 8, it can be seen that when argon

is not injected, the fluid flow is directed by the turbulence inhibitor towards the free surface

inducing a better removal efficiency since it promotes a redirection of the inclusion to the

steel-slag interface. However, nearly at half of the distance between the inlet and the outlet,

the steel moves downwards; this change has as a consequence that the inclusions move

far from the interface, because of that, most of the inclusions are removed mainly at the

first half of the tundish. Nevertheless, when the argon is injected, the flow patterns have
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Figure 7: Velocity profiles inside the tundish without argon injection, (a) At the symmetric-longitudinal
plane and (b) At the tundish steel level.
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Figure 8: Velocity profiles inside the tundish with argon injection, (a) At the symmetric-longitudinal plane
and (b) At the tundish steel level.

a strong change since two recirculation patterns are produced before and after the argon

bubbling zone. These two changes generate a major removal percentage of inclusion due to

the recirculation patterns.

For this study, the alumina inclusions were fed in the tundish entry nozzle and it was

considered that the removed inclusions were only those that reach the tundish steel-slag

interface. Since the most difficult inclusion removal size are those smaller than 30 microns,

the results for that range are shown in Figure 9, where it can be observed that without argon,
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bubbling RE is near to 70% only by fluid flow. Now, if it is considered argon injection with

db = 1 mm, RE is improved by a further 15% just for fluidynamics, even more, if we add

the theoretical RE by bubble attachment (Figure 5(a)) the total RE should be close to 100%.

Nevertheless, for more regular bubble diameters such as db = 10 mm or bigger like 15 mm, the

bubble curtain effects on steel movement is larger inducing a major displacement of the fluid

to the interface steel-slag; consequently, RE must increase as actually is happening since RE

achieves values close to 90%. Thus, even RE by bubble attachment is quite low (near to 21%),
the total RE should be bigger than 90%. It is important to notice that the total RE is not only a

direct sum of both percentages. Figure 10 shows the combination of the two mechanisms and

shows the increasing of the total RE.

With these results it can be concluded that the inclusion removal rate in the tundish

is efficient, employing argon bubbling mainly by the fluid flow pattern changes rather than

by bubble attachment. Additionally, it can be established that it is imperative to consider the

summation of both removal mechanisms to compute a better approximation of this important

operation.

Finally, it is important to mention that these higher values of RE are a close

approximation, since many of the inclusions that reach the interface never get absorbed by

the slag and some others get back to the steel flow again, due to the strong turbulence of

the liquid steel; consequently, this removal percentage is a powerful indicative of the way

a tundish reactor is working on the inclusion removal, but until now it still impossible to

establish that these results are definitive.

4. Conclusions

The non metallic inclusion removal mechanism by argon bubbling effects in a continuous

casting tundish operation is analyzed analytically and by mathematical simulation involving

a great number of variables. After analyzing the alumina inclusion removal rate by bubble

attachment and by bubble fluidynamics effects the following conclusions can be drawn.
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(1) The results show that the film rupture between the inclusion and the bubble is easier

by the formation of a hole and this mechanism has a dependency of the inclusion

type.

(2) Since the current results show bigger ti values, this work demonstrates that the

model used to calculate ti is important and as a consequence smaller attachment

limits are obtained. At the same time, these increased values of ti turn out in smaller

percentage of the alumina inclusion collection probability.

(3) The removal rate (RE) shows more dependency on other variables such as TR and

LB; those variables show an indirect effect on RE since it affects directly TRB, which

represents the controlling variable on the inclusion removal by bubble attachment.

(4) The results indicate that it is required to have very small bubble diameters to

achieve acceptable RE percentages, however, in the real process, this consideration

is almost impossible to get, and the real bubble diameters are around 10 mm

resulting in a very inefficient inclusion removal process in the tundish by bubble

attachment.

(5) Despite of conclusion four, the inclusion removal rate in the tundish is efficient

employing argon bubbling, mainly by the fluid flow patterns changes rather than

by bubble attachment. Then, it can be established that is imperative to consider the

summation of both removal mechanisms, to compute a better approximation of this

important operation.
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Nomenclature

A : Dimensionless parameters which are functions of the Reynolds bubble

B: Dimensionless parameters which are functions of the Reynolds bubble

C: Dimensionless parameters which are functions of the Reynolds bubble

D: Dimensionless parameters which are functions of the Reynolds bubble

dp: Particle diameter

db: Bubble diameter

d0: Porous diameter

g: Gravity

hcrit: Critical film thickness

k: Shape factor = 4

no: Initial inclusion concentration

n: Inclusion concentration

NRe,O: Reynolds bubble

P : Collection probability

Patt: Attachment probability

Pc: Collision probability

Pdet: Detachment probability

Qg : Gas flow rate

RE: Inclusion removal rate

ti: Induction time

tc: Collision time

t fr : Drainage time

ts: Sliding time

t fc : Film drainage and rupture time during collision

TF : Steel temperature (1800 K)
T0: Gas temperature (300 K)
up: Particle velocity

uB: Bubble velocity.

Greek symbols

ρp: Particle density

ρg : Gas density

σL: Superficial tension

μL: Liquid viscosity

θ: Polar angle

θc: Polar angle at the end of the interaction slidingcontact

θ0: Polar angle at the beginning of the interaction slidingcontact

τ : Resident time of the steel in the bubble region in the tundish

ε: The inclusion removal efficiency.
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Offshore structures are occasionally located at a relatively deep water region, the outside of
breakwater. In this case, these structures may be damaged by the supposition of incident and
reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are
controlled by installing porous structures at the face of the vertical breakwater. In this study,
numerical experiments are carried out to identify the characteristics of wave reflection from the
porous structures installing in front of a vertical or slit caisson.

1. Introduction

Offshore structures such as oil buoys or floating structures are sometimes required to be

located outside of a breakwater. These structures may be damaged by the reflected waves

from a vertical breakwater as well as incident waves. Thus, it is important to reduce the

energy of reflected waves from a vertical breakwater to secure the stability of offshore

structures. One possible way to reduce reflected waves is dissipating wave energy by adding

porous structures at the face of a vertical breakwater.

Few studies regarding numerical experiments have been paying attention to the wave

reflection from a vertical breakwater with a frontally porous structure because of complexities

of interaction between porous flow and nonlinear waves. The mechanism of wave energy

dissipation and reflection due to a porous structure is not yet clearly understood. Therefore,

the energy dissipation efficiency of a permeable structure was assessed by measuring the

wave reflection from the breakwater. Sollit and Cross [1] performed the study on wave
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reflection and transmission through a porous structure using the linear wave theory and the

linearized friction equation for flows in porous media. Following Sollit and Cross [1], several

researches were carried out on wave and porous structure interaction [2, 3]. However, these

studies were less practical because they assumed linear wave, constant depth, or integrated

over the depth. The applicability of numerical study on water waves and porous structures

was much improved by adopting the Navier-Stokes equation [4].
In this study, a numerical experiment was carried out to investigate the characteristics

of a reflected wave from a porous structure located in front of a slit caisson. For numerical

experiment, CADMAS-SURF [5, 6] was used. The irregular wave based on Bretschneider-

Mitsuyasu’s frequency spectrum was used, and the three-point method was used to

decompose the incident and reflected waves.

2. Numerical Model

2.1. Governing Equations

CADMAS-SURF based on the Navier-Stokes equations is composed of the continuity,

momentum, VOF, and turbulence equations.

Continuity equation:

∂γxu

∂x
+
∂γzw

∂z
= Sρ. (2.1)

Momentum equation:

λv
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(2.2)

where t is the time, x and z are the horizontal and vertical coordinates, u,w are the

horizontal and vertical velocity components, ρ is the density of fluid, p is the pressure, ve
is the summation of molecular kinematic viscosity and eddy kinematic viscosity, g is the

gravitational acceleration, γv is the volume porosity (fraction of the volume of voids over the

total volume), γx andγz are the surface porosity (fraction of the area of voids over the total

area) components in the x and z projections, Sρ, Su, and Sw are wave generation source, and

Dx and Dz are the coefficients for sponge layer.
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Using the inertia coefficient Cm, and γv, γx, and γz the inertia force effects from

structure, λv, λx, and λz are written as follows:

λv = γv +
(
1 − γv

)
Cm,

λx = γx +
(
1 − γx

)
Cm,

λz = γz +
(
1 − γz

)
Cm.

(2.3)

With the drag coefficient, CD, the resistance force due to porous media Rx and Rz are defined

by the following equations:

Rx =
1

2

CD

Δx
(
1 − γx

)
u
√
u2 +w2,

Rz =
1

2

CD

Δz
(
1 − γz

)
w
√
u2 +w2.

(2.4)

Free Surface Equation (VOF)

The VOF method was used to represent the interface boundary between the water and air,

known as free surface [7]. The method introduces a volume of fluid function F(x, z, t) to

define the fluid region. The physical meaning of F is the fractional volume of a cell occupied

by water. A unit value of F corresponds to a cell full of water, and a zero value indicates that

the cell contains no water. Cells with F value between zero and one must then contain a free

surface. The advection of free surface is represented by a convective equation of F extended

for porous media as follows:

γv
∂F

∂t
+
∂γxuF

∂x
+
∂γzwF

∂z
= SF, (2.5)

where SF is a source term for the wave generation source method.

Turbulence Model

In the turbulent model, a closure k-ε turbulence model is adopted. In the closure k-ε

turbulence model, the turbulent kinetic energy k and the rate of dissipation of turbulent
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kinetic energy ε are defined in (2.6) and (2.7) using the amount of fluctuation u′;w′ and

derived from the advection-diffusion equation shown in (2.8) and (2.9):
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)
, (2.6)
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where the eddy kinematic viscosity νt and the diffusion coefficient, and νk and νε are

described as follows:

νt =
Cμk

2

ε
,

νk = ν +
νt
σk
,

νε = ν +
νt
σε

(2.11)

2.2. Boundary Conditions

To treat outgoing waves effectively, two boundary conditions are employed.

Radiation Boundary Condition

Sommerfeld’s open boundary condition is employed as follows:

∂f

∂t
+ C

∂f

∂x
= 0, (2.12)

where f is the wave property such as a mean velocity or mean free surface displacement,

and C is the phase velocity. In the case of a regular wave, it is easy to apply because the

phase velocity C is known in advance. In the case of irregular waves, however, it is difficult

to satisfy a nonreflection condition because the phase velocity C is not clear.

Absorbing Boundary Condition

Because it is difficult to satisfy Sommerfeld’s open boundary condition, sponge layer

technique, which gradually attenuates wave energy, is used. The attenuation effect is
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Figure 1: Schematic diagram of the numerical wave flume.

represented by −Dxu and −Dzu in the momentum equations of (2.2). Coefficients Dx and

Dz are defined as follows:

Dx = θx

√
g

h
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(
x − x0

l
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,

Dz = θz

√
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h
(N + 1)

(
x − x0

l

)N

,

(2.13)

where h is the water depth, l and x0 are the width of a sponge layer and starting point, N is

the order of the distribution function, and θx and θz are the nondimensional coefficients.

3. Numerical Experiments

3.1. Numerical Conditions

The numerical wave flume used in this study is shown in Figure 1. The length of wave flume

changed according to the width of the sponge layer, equivalent to 2L, where L is the incident

wave length. The water depth h was set to 0.5 m. In the sponge layer, the wave amplitude

decreased exponentially, thus it became small enough to be applied Sommerfeld’s radiation

condition at the both ends of wave flume. To generate expected target waves unaffected by

the sponge layer, the waves are generated inside the computational domain (internal wave

generation technique [8]). To analyze wave transformation, three wave gauges were placed
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Table 1: Numerical conditions.

Number Variable Notation Range

(1) Type of wave
Regular wave and
irregular wave

(2) Significant wave
height

H1/3 2 cm, 3 cm, and 4 cm

(3) Significant wave
period

T1/3
1.5 sec., 2.0 sec., and
2.5 sec.

(4) Type of upright
breakwater

Vertical caisson and
slit caisson

(5) Shape of the porous
structure

Rectangle, triangle,
and trapezoid

(6) Height of the
porous structure

0.4h and 0.8h

(7) Water depth h 0.5m

(8) Wave chamber
width

B 0.25L

as shown in Figure 2. The distances from the gauges to the porous structure were 1L, 1L +
0.2 m, and 1L+0.56 m. That is, the distances between the wave gauges were 0.2 m and 0.36 m.

Four combination of the porous structure and the caisson were considered: (1) the vertical

caisson only; (2) the vertical caisson and the porous structure; (3) the slit caisson only; (4) the

slit caisson and the porous structure. When it comes to the shape of the porous structure, the

rectangular, triangular, and trapezoidal shapes were used. The heights of the porous structure

were set to 0.4h and 0.8h. The crown height hc of two kinds of vertical breakwater was set to

1.25H1/3. Since the ratio of distance of wave chamber to wave length B/L = 0.25 is known

that it gave the minimum wave reflection [9], a constant value of 0.25 was applied to the wave

chamber. In which, the wave chamber means the space between a slit and a vertical wall in

the caisson. The significant wave periods of the incident waves were 1.5, 2.0, and 2.5 sec. The

significant wave heights of the incident waves were 2.0, 3.0, and 4.0 cm. These conditions are

summarized in Table 1.

3.2. Incident Wave

One regular wave and nine irregular waves were used as an incident wave condition. The

irregular waves were generated by using following equations:

η(t) =
M∑
m=1

am cos
(
2πfmt − εm

)
,

u(z, t) =
M∑
m=1

2πfm
cosh km(h + z)

sinh kmh
am cos

(
2πfmt − εm

)
,

w(z, t) =
M∑
m=1

2πfm
sinh km(h + z)

sinh kmh
am sin

(
2πfmt − εm

)
,

(3.1)
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Figure 2: Reflection coefficients of the regular and irregular waves.

where M is a number of frequency, subscript m is mth component, fm is the corresponding

frequency, εm is the corresponding random phase angle, km is the corresponding wavenum-

ber, and am is the corresponding wave amplitude obtained from (3.2):

am =
√

2S
(
f
)
Δf, (3.2)

where Δf is the frequency interval, and S(f) is the Bretschneider-Mitsuyasus frequency

spectrum given by:

S
(
f
)
= 0.257H2

1/3T1/3

(
T1/3f

)−5
exp

[
−1.03

(
T1/3f

)−4
]
, (3.3)

where f is wave frequency, and H1/3 and T1/3 are the significant wave height and period,

respectively.
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3.3. Wave Decomposition

The three-point method suggested by Suh et al. [10] was used to decompose the waves into

the incident and reflected waves. A brief description of this method is as follows. Incident

and reflected waves can be given by

ηi(t) =
Hi

2
cos

(
kix −ωt + φi

)
,

ηr(t) =
Hr

2
cos

(
krx +ωt + φr

)
,

(3.4)

where H is the wave height, k is the wavenumber, φ is the random phase angle, and ω is the

angular frequency. The surface elevation at the n-point can be expressed as follows:

ηn(t) = ηi(t) + ηr(t) =
Hi

2
cos

(
kixn −ωt + φi

)
+
Hr

2
cos

(
krxn +ωt + φr

)
+ en(t) (3.5)

or

ηn(t) = X1 cos(ωt − kixn) +X2 cos(ωt − krxn)
+X3 sin(ωt − kixn) −X4 sin(ωt − krxn) + en(t),

(3.6)

where xn is the distance from the first measuring point to the nth location, en is error due

to signal noise, Xi(i = 1 ∼ 4) are unknown coefficients expressed in terms of the height and

phase of the incident and reflected waves. The squared error is

ε2 =
N∑
n=1

∫T
0

[en(t)]2dt (3.7)

and, the unknowns in (3.6) can be determined by using the least-square method:

∂ε2

∂Xj
= 0, j = 1, 2, 3, 4. (3.8)

Finally, the incident and reflected wave heights can be calculated using following

relation:

Hi =
2(X1 +X3)

cosφi + sinφi
, Hr =

2(X2 +X4)
cosφr + sinφr

. (3.9)
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Figure 3: Reflection coefficient for vertical caisson with different significant wave heights.

Since the energies of the incident and reflected waves are proportional to the squares of their

heights, the reflection coefficient can be estimated from

R =

√
Er
Ei
, (3.10)

where Ei and Er are the energies of the incident and reflected waves, respectively.
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Figure 4: Reflection coefficient for slit caisson with different significant wave heights.

4. Results and Discussion

Figure 2 showed the reflection coefficients of the regular and irregular waves for the vertical

and slit caissons, respectively. The reflection coefficient decreased as the height of the porous

structure increased when the porous structure was installed in front of the vertical caisson

or the slit caisson. In the case of the regular wave, the reflection coefficient was significantly

reduced, whereas the reflection of the irregular waves was slightly reduced. This may be due

to fixed width of wave chamber. That is, the width of wave chamber using in the present

study referred to the previous study for regular waves. Therefore, it may not be effective
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Figure 5: Reflection coefficient for vertical caisson with different significant wave periods.

for irregular waves because there are many regular components, and some of them are less

affected by the width of wave chamber.

Figures 3 and 4 showed the reflection coefficients for different significant wave heights.

It was observed that the reflection coefficient decreased as the height of porous structure

increased when the porous structure was located in front of the vertical caisson or the slit

caisson. As the height of the significant waves increased, the reflection coefficient decreased.

The waves at the slit caisson were more dissipated than those at the vertical caisson.

Figures 5 and 6 showed the reflection coefficients for different significant wave

periods. As the height of a porous structure increased, the reflection coefficient decreased
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Figure 6: Reflection coefficient for slit caisson with different significant wave periods.

when the porous structure was located in front of the caisson. The reflection coefficients for a

slit caisson were much smaller than those for a vertical caisson. However, the significant wave

period rarely affected to the wave reflection. That is, the variation of reflection coefficient due

to significant wave period was very small compared to other parameters.

Figures 7 and 8 showed the reflection coefficient for different shapes of porous

structure. As the height of porous structure increased, the reflection coefficient decreased. As

for the estimated wave coefficients based on the shape of the porous structure, the rectangular

and trapezoidal porous structure showed obvious energy dissipation. On the other hand, the
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Figure 7: Reflection coefficient for vertical caisson with different shapes of porous structure.

triangular porous structure showed little reduction effect on the slit caisson and almost no

reduction on the vertical caisson.

5. Concluding Remarks

In this study, the wave reflection of a vertical and slit caissons with porous structures

was analyzed using the number model based on the Navier-Stokes equations. Both of

regular and irregular waves were used as incident waves. In the case of regular waves, the

reflection coefficient was significantly reduced, whereas the reflection coefficient for irregular
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Figure 8: Reflection coefficient for slit caisson with different shapes of porous structure.

waves reduced by a relatively small amount. As the wave height increased, the reflection

coefficient decreased for both vertical and slit caissons. The waves were more dissipated

at the slit caisson than the vertical caisson. The reflection coefficient was rarely affected by

the variation of significant wave period. The rectangular and trapezoidal porous structures

showed obvious energy dissipation, whereas the triangular porous structure showed a little

reduction effect on the slit caisson and almost no reduction on the vertical caisson. Because

porous structure with low height is not able to dissipate wave energy effectively, a proper

height is required for efficiency. Although rectangular and trapezoidal porous structures
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showed almost same energy dissipation, the trapezoidal structure is more preferred because

it has superiority in the workability and stability.
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The natural convection in an inclined porous square cavity is investigated numerically. The left
wall is assumed to have spatial sinusoidal temperature variations about a constant mean value,
while the right wall is cooled. The horizontal walls are considered adiabatic. A finite difference
method is used to solve numerically the nondimensional governing equations. The effects of
the inclination angle of the cavity, the amplitude and wave numbers of the heated sidewall
temperature variation on the natural convection in the cavity are studied. The maximum average
Nusselt number occurs at different wave number. It also found that the inclination could influence
the Nusselt number.

1. Introduction

Convective heat transfer has attracted significant attention due to wide applications in

engineering such as operation of solar collectors, cooling systems in electronics equipments,

insulations of buildings and so forth. Many studies with application to the above research

areas may be found in the book by Nield and Bejan [1].
The problem of natural convection in an enclosure has been studied extensively by

many researchers such as Weber [2], Bejan [3], Bradean et al. [4], Goyeau et al. [5], Guo and

Bathe [6] and Saeid and Pop [7]. Saeid and Mohamad [8] studied numerically the natural

convection in a porous cavity with spatial sidewall temperature variation. They found that

the average Nusselt number is dependent on the amplitude and the wave number of the

spatial sinusoidal temperature. Saeid and Yaacob [9] investigated the natural convection in
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a square cavity filled with a pure air with a nonuniform side wall temperature. They found

that the average Nusselt number along the hot wall varies sinusoidally based on the hot wall

temperature.

Most of the studies on natural convection are devoted to the classical Rayleigh-Benard

model (hot bottom wall and cold top wall) or to the case of rectangular or square cavity

with one vertical wall heated and the opposite one cooled. However, in some engineering

applications, enclosures are inclined to the direction of gravity. Hence, the flow structure

and the heat transfer within the enclosure are modified by the components of buoyancy

forced. The effects of inclination on natural convection in an enclosure have been discussed

by several investigators. For example Hart [10] studied the stability of the flow in an inclined

box. Holst and Aziz [11] and Ozoe et al. [12] studied three- and two-dimensional natural

convection in porous media, respectively. A good review on the study the inclination of

natural convection can be seen in Yang [13]. Rasoul and Prinos [14] studied the effect of

the inclination angle on steady natural convection in a square cavity for the Raleigh number

ranging from 103 to 106 and the Prandtl number from 0.02 to 4000. Baytaşc [15] investigated

entropy generation distribution according to inclination angle for saturated porous cavity

by using the second law of thermodynamics. Kalabin et al. [16] investigated the influence

of inclination angle and oscillation frequency on heat transfer through the square enclosure.

Meanwhile, Chamkha and Al-Mudhaf [17] studied the double-diffusive natural convection

in inclined porous cavities with the presence of temperature-dependent heat generation or

absorption. They concluded that the heat and mass transfer and the flow characteristics

inside the cavity are strongly dependent on the buoyancy ratio, inclination angle, and the

heated generations or absorption effect. A numerical study has been carried out by Wang et

al. [18] for the natural convection heat transfer in an inclined porous cavity with time-periodic

boundary condition. They found that, if the inclination angle is maintained at a fixed value

and the oscillating approaches infinity, the oscillating temperature on a sidewall has a little

effect on the temperature near the opposite sidewall.

In this paper we study the natural convection in a porous cavity with a non-uniform

hot wall temperature and a uniform cold wall temperature. The heated wall is assumed to

have spatial sinusoidal temperature variations about a constant mean value which is higher

than the cold sidewall temperature. This work extends in particular the work of Saeid and

Mohamad [8] to the more general setup of an inclined cavity.

2. Mathematical Formulation

The heat transfer by natural convection across porous media is considered as shown in

Figure 1. The top and bottom horizontal walls are adiabatic, and the right sidewall is

maintained at a constant cold temperature Tc. The temperature of opposing sidewall is

assumed to have spatial sinusoidal temperature variations about a constant mean value

which is higher than the cold sidewall temperature.

Applying Darcy’s flow model and the Boussinesq approximation, the governing

equations are [8]

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂y
− ∂v

∂x
=
gβK

ν

(
∂T

∂y
cosφ − ∂T

∂x
sinφ

)
,
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Figure 1: Schematic diagram of the physical model and coordinate system.

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
,

(2.1)

where u and v are the velocity components along the x- and y-axes, respectively, T is the

fluid temperature, g is the gravitational acceleration, K is the permeability of the porous

medium, α is the effective thermal diffusivity, β is the coefficient of thermal expansion, and ν

is the kinematic viscosity of the fluid. The temperature of the hot wall is assumed to have a

sinusoidal variation about a minimum value of Th in the form

Th
(
y
)
= Th + ε

(
Th − Tc

)[
1 − cos

(
2πκy

L

)]
, (2.2)

where L is the cavity height/width, κ is the wave number, and ε is the nondimensional

amplitude.

Equations (2) are subject to the following boundary conditions:

u
(
0, y

)
= v

(
0, y

)
= 0, T

(
0, y

)
= Th

(
y
)
,

u
(
L, y

)
= v

(
L, y

)
= 0, T

(
L, y

)
= Tc,

u(x, 0) = v(x, 0) = 0,
∂T(x, 0)
∂y

= 0,

u(x, L) = v(x, L) = 0,
∂T(x, L)
∂y

= 0.

(2.3)
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Using the stream functions defined by u = ∂ψ/∂y and v = −∂ψ/∂x and nondimen-

sional variables

X =
x

L
, Y =

y

L
, θ =

T − T0

Th − Tc
, Ψ =

ψ

α
, (2.4)

where T0 = (Th + Tc)/2, the governing equations (2) and boundary conditions (2.3) can be

written in dimensionless forms:

∂2Ψ
∂X2

+
∂2Ψ
∂Y 2

= Ra

(
∂θ

∂Y
cosφ − ∂θ

∂X
sinφ

)
, (2.5)

∂2θ

∂X2
+
∂2θ

∂Y 2
=
∂Ψ
∂Y

∂θ

∂X
− ∂Ψ
∂X

∂θ

∂Y
, (2.6)

Ψ(0, Y ) = 0, θ(0, Y ) = 0.5 + ε[1 − cos(2πκY )], (2.7)

Ψ(1, Y ) = 0, θ(1, Y ) = −0.5, (2.8)

Ψ(X, 0) = 0,
∂θ(X, 0)
∂Y

= 0, (2.9)

Ψ(X, 1) = 0,
∂θ(X, 1)
∂Y

= 0, (2.10)

where Ra is the Rayleigh number defined as

Ra =
gβK

(
Th − Tc

)
L

να
. (2.11)

The local Nusselt numbers along the hot and cold wall are given, respectively, by

Nuh =
hY

λ
=
(
− ∂θ
∂X

)
X=0

,

Nuc =
hY

λ
=
(
− ∂θ
∂X

)
X=1

,

(2.12)

where h is the heat transfer coefficient and λ is the thermal conductivity of the porous media.
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Table 1: Comparison of the average Nusselt number, Nu, against some previous results for isothermal
vertical walls in a square cavity in the case φ = 90◦.

References Mesh size
Ra = 100 Ra = 1000

Nuh Nuc Nuh Nuc

[3] 4.200 15.800

[5] 3.110 13.470

[8] (20 × 20) 3.081 3.081 12.890 12.890

[8] (40 × 40) 3.099 3.099 13.431 13.431

[8] (80 × 80) 3.108 3.107 13.531 13.531

[8] (160 × 160) 3.110 3.110 13.592 13.592

Present work (20 × 20) 3.005 3.005 9.865 9.864

Present work (40 × 40) 3.080 3.080 12.157 12.154

Present work (80 × 80) 3.100 3.100 13.180 13.178

Present work (160 × 160) 3.106 3.106 13.498 13.494

The average Nusselt number is defined as

Nui =
hL

λ
=
∫1

0

Nu dY, (2.13)

where Nui is Nuh or Nuc, respectively.

3. Numerical Scheme

The coupled system of (2.5) and (2.6) subject to boundary conditions (2.7)–(2.10) is solved

numerically using a finite difference method. The central difference method was applied for

discretizing the equations. The resulting algebraic equations were solved by using the Gauss-

Seidel iteration with a relaxation method. The unknowns Ψ and θ are calculated until the

following convergence criterium is fulfilled:

∑
i,j

∣∣∣ζn+1
i,j − ζni,j

∣∣∣∑
i,j

∣∣∣ζn+1
i,j

∣∣∣ ≤ ε, (3.1)

where ζ is either Ψ or θ, n represents the iteration number, and ε is the convergence criterium.

In this study, the convergence criterium was set at ε = 10−6.

The numerical code was validated in a square porous cavity with constant isothermal

vertical walls (ε = 0) using different mesh sizes, 20 × 20, 40 × 40, 80 × 80, and 160 × 160.

The average Nusselt numbers along the hot wall and cold wall of the cavity are calculated

and compared with the results by different authors for Ra = 100 and Ra = 1000 as shown

in Table 1. From Table 1, the error between Nuc and Nuh is found less than 0.004 percent for

Ra = 100, and it is less than 0.03 percent for Ra = 1000 which reflects the accuracy of the

present results. Also, Table 1 shows the good agreement between our result and the existing

results for a porous square enclosure for φ = 90◦.
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Figure 2: Effects of inclination angle φ on streamlines (left) and isotherms (right) for ε = 0.5, κ = 0.75, and
Ra = 100.
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Figure 3: Effects of inclination angle φ on streamlines (left) and isotherms (right) for ε = 0.5, κ = 0.75, and
Ra = 1000.
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Figure 5: Variation of the Nusselt number with the wavenumber for the case ε = 0.2 and Ra = 1000. The
solid line for the case φ = 90◦ is the recomputed results of Saeid and Mohamad [8].

A grid independence test has been performed in the case of maximum amplitude

(ε = 1) and maximum wavenumber (κ = 5) for Ra = 1000. The 80 × 80 mesh gives

Nuh = 40.7623 and Nuc = 41.0717, and the 120 × 120 mesh gives Nuh = 42.9346 and

Nuc = 43.7658. Meanwhile, the 100 × 100 mesh gives Nuh = 42.0375 and Nuc = 42.6741.

Therefore, the 100 × 100 mesh will give grid-independent solution for our study of sidewall

temperature variations and thus has been chosen in all the calculations in this paper.

4. Results and Discussion

Investigation is carried out for the case Ra = 100 and Ra = 1000 with ε = 0.5 and κ = 0.75

for selected inclination angles, φ between 0◦ and 180◦. The effects of inclination angle on the

flow patterns and temperature fields are presented as streamline and isotherms in Figures
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Figure 6: Variation of the local Nusselt number along the hot wall for ε = 0.5, κ = 0.75 and Ra = 1000. The
solid line for the case φ = 90◦ is the recomputed results of Saeid and Mohamad [8].

2 and 3. At φ = 0◦, the hot wall is horizontal and at the bottom. As the cavity is inclined,

the gravity components started to assist and accelerate the flow motion until the maximum

Nusselt number is reached at φ = 50◦ for Ra = 100 and φ = 60◦ for Ra = 1000. For φ close

to 180◦, two and three cells are formed along the hot walls as shown in Figures 2(c) and 2(d)
and Figures 3(c) and 3(d), indicating that the fluid from hot wall and cold wall rotates back

to the same wall. For φ = 170◦, the isotherms far from the hot wall are almost perpendicular

to the gravitational vector and the gradients are relatively small, implying the small value in

the Nusselt number along the walls.

The influence of the inclination angles on the average Nusselt number is demonstrated

in Figure 4. It is clear that the maximum average Nusselt number is attained at about φ = 50◦

for Ra = 100 and φ = 60◦ for Ra = 1000. Beyond that angle, the Nusselt number decreases

until it reaches the condition where the Nusselt number has its minimum point or close to

the pure conduction value. In general, the Nusselt number increases with increasing in Ra.

Figure 5 shows the variations of the average Nusselt number along the hot wall for

Ra = 1000 and ε = 0.2. It can be seen from Figure 5 that the average Nusselt number

varies spatially with increasing the wave number. Also, we found that the maximum average

Nusselt numbers occur at κ = 0.6, 0.65, and 0.75 for φ = 45◦, 60◦, and 90◦, respectively.

As comparison with the work by Saied and Mohamad [8], we plotted the variation of

the local Nusselt number along the hot wall for Ra = 1000, ε = 0.5, and κ = 0.75 in Figure 6.

It is found that the value of local Nusselt numbers became negative near the upper portion

of the hot wall which means that heat transfer occurred from the higher temperature parts to

the lower temperature parts of the hot wall.

5. Conclusion

In this work, the natural convection in an inclined porous cavity has been investigated

numerically using a finite difference approach. The effects of the inclination angle of the

cavity are investigated. The numerical results indicate that the maximum natural convection
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is dependent on the inclination angle, where the maximum Nusselt number occurs at

different wave numbers for different inclination angle.
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Lattice Boltzmann method is implemented to study hydrodynamically and thermally developing
steady laminar flows in a channel. Numerical simulation of two-dimensional convective heat
transfer problem is conducted using two-dimensional, nine directional D2Q9 thermal lattice
Boltzmann arrangements. The velocity and temperature profiles in the developing region
predicted by Lattice Boltzmann method are compared against those obtained by ANSYS-FLUENT.
Velocity and temperature profiles as well as the skin friction and the Nusselt numbers agree very
well with those predicted by the self-similar solutions of fully developed flows. It is clearly shown
here that thermal lattice Boltzmann method is an effective computational fluid dynamics (CFD)
tool to study nonisothermal flow problems.

1. Introduction

Historically, the Lattice Boltzman method (LBM) evolves from Lattice Gas Cellular

Automata. In 1988, LBM is proposed to be used to simulate flows for the first time. The LBM

is a branch of statistics of mechanics which is an ideal approach to simulate flows in simple or

complex geometries. Recently, LBM has been modified to solve nonlinear partial differential

equations to model complex fluid flows. Different approaches of the LBM have been

discussed by several investigators [1]. However a successfully LBM simulation rests on the

correct implementation of the boundary conditions, where unknown distribution function

originated from the operation. As it is stated in several literatures, the implementation of the

boundary conditions in LBM is the key to successfully model flow problems. Each type of

boundary condition requires different technique and has different degree of accuracy as well.

LBM has been used to model flows in various geometries by several research groups,

but only few investigators compare LBM model against other numerical methods for

computational fluid dynamics (CFD). Recently Chen et al. and Begum and Basit [2, 3]
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had proposed models to be applied to simulate complex flows. It has been shown that

LBM can easily be implemented to study single- and multiphase flows. The equations

governing conservation of mass and momentum are satisfied at each lattice nodes. The

LBM approximation is a linear discretized equation which has two terms: streaming and

collision terms. The collision term in the LBM has been approximated to be a linear term

using models introduced by Bhatngar, Gross, and Krook (BGK) [4]. Recent study by Shi et

al. [5] has shown that the LBM is a promising tool to study microscopic flows. Present work

is to illustrate that LBM can be an effective CFD tool and in order to demonstrate that 2D

developing nonisothermal flows in a channel is studied by implementing LBM method. The

results predicted by LBM have been compared against those obtained using ANSYS-FLUENT

and those obtained by self-similar solutions in the developed region for validation.

2. Lattice Boltzmann Governing Equation

Ludwig Eduard Boltzmann (1844–1906), the Austrian physicist, had the greatest achievement

in the development of statistical mechanics. This approach has been used to predict

macroscopic properties of matter such as the viscosity, thermal conductivity, and diffusion

coefficient from the microscopic properties of atoms and molecules [6–8]. The probability

of finding particles within certain range of velocities at a certain range of locations

replaces tagging each particle as in molecular dynamics simulation. The lattice Boltzmann

transportation can be governed by distribution function which represents particles at location

r(x, y) at time t, and the particle will be displaced by (dx, dy) in time dt with the application

force F on the liquid molecules [9]. The equation governing the distribution function f(r, c, t)
has two terms, the streaming step and the collision term. Here, x and y are spatial coordinates,

t is the time, and c is the lattice discrete velocity.

The collision takes place between the molecules; there will be a net difference between

the numbers of molecules in the interval drdc. The rate of change of the distribution function

is expressed as

f(r + dr, c + Fdt/m, t + dt) − f(r, c, t)
dt

=
∂f

∂t
+ cx

∂f

∂x
+ cy

∂f

∂y
+

F
m

· ∂f
∂c

= ϕ
(
f
)
. (2.1)

Here, F denotes external forces applied, and ϕ(f) is the source or the collision term. With the

absence of the external forces, (2.1) becomes

∂fi

∂t
+ c · ∇fi = ϕ

(
fi
)
. (2.2)

Equation (2.2) is known as the lattice Boltzmann governing equation. The right hand side of

equation is called a source and is approximated by BGK as

ϕ
(
fi
)
=

1

τ

(
f

eq

i − fi
)
. (2.3)
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Hereω = 1/τ is the relaxation frequency and the τ is the relaxation time feq is the equilibrium

value of distribution function and is written as

f
eq

i = wiρ

[
1 +

3ci ·V
cs2

+ 4.5
(ci ·V)2

cs4
− 1.5

V ·V
cs2

]
, (2.4)

where ci is the discrete velocities vector, V is the bulk fluid velocity, cs is the lattice sound

speed and wi is the weight factor, one has

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) i = 1

c
([

sin(i − 1)π
2

]
,

[
cos(i − 1)π

2

])
i = 2, 3, 4, 5

c
(√

2

[
cos(2i − 11)π

4

]
,
√

2

[
sin(2i − 11)π

4

])
i = 6, 7, 8, 9,

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

9
i = 1

1

9
i = 2, 3, 4, 5

1

36
i = 6, 7, 8, 9.

(2.5)

Equation (2.3) becomes

fi(r + dr, t + dt) = (1 −ω)fi(r, t) +ωfeq

i . (2.6)

3. Lattice Boltzmann Arrangements (D2Q9)

Lattice Boltzmann is relatively recent technique that has been shown to be as accurate as

traditional CFD methods having ability to integrate arbitrarily complex geometries. LBM can

be used for different arrangements such as D1Q2, D2Q4, D2Q9, D3Q15, D3Q19, or D3Q27

[10]. However, in this paper, we only use D2Q9 which implies the two-dimensional and nine

velocity components as shown in Figure 1.

Each distribution function has position (r), velocity (c), and weight factor (w).

4. Momentum Lattice Boltzmann Model

The momentum LBM represents the particles velocity [4]. For instance, for D2Q9 lattice

arrangements, the particle at the origin is at rest and the remaining particles move in different

directions with different speed. Each velocity vector denotes a lattice per unit step. These

velocities are exceptionally convenient in that all x and y components are either 0 or ±1.
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Figure 2: D2Q9 momentum lattice arrangements at boundaries and inside the flow domain.

Mass of particle is taken as unity uniformly throughout the flow domain. The macroscopic

fluid density, ρ, is governed by conservation of mass

ρ =
9∑
i=1

fi. (4.1)

The bulk fluid velocity (V = (u, v)) is the average of microscopic lattice-directional velocity

(c = (cx, cy)) and the directional density and is governed by conservation of momentum

V =
1

ρ

9∑
i=1

fici. (4.2)

Here cx = dx/dt, cy = dy/dt are x and y components of the lattice directional velocity.

Conservation of mass and momentum is also applied at each boundary, at the inlet and the

outlet as shown in Figure 2 for the D2Q9 lattice arrangement for nodes placed on boundaries.

The uniform inlet velocity is Uin, the length of channel is L, and the gap between

plates is H. u is measured in units of Uin (U = u/Uin), x and y are measured in units of L

and H (X = x/L and Y = y/H), respectively. Scaled inlet velocity becomes U = 1, and the

flow domain (X,Y ) becomes 0 ≤ Y ≤ 1, and 0 ≤ X ≤ 1.

5. Thermal Lattice Boltzmann Model

There has been rapid progress in developing the construction of stable thermal lattice

Boltzmann equation models to study heat transfer problems. McNamara and Zanetti
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Figure 3: D2Q9 thermal lattice arrangements at boundaries and inside the flow domain.

successfully applied multispeed thermal fluid lattice Boltzmann method to solve heat transfer

problems [6]. At the outlet, bounce back or extrapolation boundary conditions are considered

as the thermal and flow boundary conditions. Bounce back type boundary conditions are

proven to provide more accurate numerical approximations [11] and are used by the present

work. The temperature at each wall is specified; however, the temperatures which are

pointing to the flow domain are unknowns, and they can be evaluated from streaming and

collision steps. The thermal lattice arrangement is illustrated in Figure 3.

The rate of change of the thermal distribution function is written as

gi(r + dr, t + dt) = (1 −ω)gi(r, t) +ωgeq

i . (5.1)

With normalized temperature θ = (T − Tw)/[Tin(H/2) − Tw], the equilibrium value of the

thermal distribution function geq is given by

g
eq

i = ωiθ

[
1 +

3ci ·V
cs2

+ 4.5
(ci ·V)2

cs4
− 1.5

V ·V
cs2

]
. (5.2)

For simplicity the relaxation frequency of the thermal and momentum distribution function

is selected as the same. Hence the kinematic viscosity, υ, and the thermal diffusivity, α, are

the same and are expressed by

v = α =
(dx)2

3dt

(
1

ω
− 1

2

)
. (5.3)

Here, Tw is the wall temperature, and Tin(y) is the temperature distribution at the inlet. The

Prandtl number Pr = υ/α = 1. The temperature of the fluid is governed by the conservation

of energy

T =
9∑
i=1

gi. (5.4)
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Figure 4: (a) Velocity and (b) temperature profiles at X = 0.2 plotted for various N and M.

6. Results and Discussion

The discretized equations (2.6) and (5.1) for momentum and thermal distribution f and g

for M ×N nodes in x and y directions, respectively, are solved by employing Gauss-Siedel

iterations. For boundary nodes the detailed discretized equations for f and g are described

in Appendices A and B. The results are presented for steady incompressible two-dimensional

laminar flows in an entrance region of a channel. Flow develops hydrodynamically and

thermally in a 1 m long and 0.02 m height channel with the aspect ratio AR of 50. At the

inlet the flow is uniform (Uin = 0.02 m/sec), and the temperature of the fluid satisfies

θin = 4 × (Y − Y 2). Boundary conditions imposed on the velocity field at Y = 0 and 1 are

no-slip and no-penetration, and the thermal boundary conditions applied on each surface

are θ = 0. The physical properties are considered to be constant and are determined for

water at 300 K—(ρ = 999.1 kg/m3 and μ = 855 × 10−3 N · s/m2). For the example illustrated

in this paper, the flow rate considered is 0.4 kg/s and the corresponding Reynolds number

Re = ρ2HUin/μ = 800.

Spectral convergence is checked for LBM to ensure that the results predicted by the

LBM are not dependent on the number of nodes selected for the numerical simulations.

Nodes (M × N) are placed uniformly in the direction of x (M nodes) and y (N nodes).
The convergence test is displayed in Figure 4 as the velocity and temperature profile at

X = 0.2 plotted for various M and N. It is shown that the (50 × 1000) mesh provides

satisfactory spectral convergence and numerical accuracy and is thereby chosen for the

numerical simulation results predicted by LBM.

The velocity and temperature profiles are displayed at various cross-sections in the

developing region. The profiles that are obtained by LBM are compared against those

obtained by ANSYS-FLUENT at the same conditions. The boundary conditions at the inlet

and the outlet and on the surface of the plates are selected as the same for both methods.
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Figure 5: (a) Velocity profiles at various cross-sections predicted by LBM and FLUENT. (b) Velocity profile
at X = 0.725 predicted by LBM and FLUENT and the self-similar solution for the fully developed laminar
channel flow.

The velocity and temperature field are considered to be converged when the error tolerance

is less than 10−3.

The velocity profiles predicted by LBM and FLUENT at various cross-sections are

shown in Figure 5. The solid lines denote the prediction obtained by LBM while the

symbols denote the predictions obtained by FLUENT. The velocity profiles at all cross-

section predicted by LBM agree very well with those predicted by FLUENT, as shown in

Figure 5(a). The development length for velocity field at Re = 800 in this flow is expected to

be x/H = 47.4. The thermal field has the same development length as the hydrodynamic field

since Pr is selected to be unity. The nearly fully developed velocity profile obtained by both

methods at X = 0.725 also agrees very well with each other. They also agree well with the

analytical solution, U = 6(Y − Y 2), obtained by the self-similar solution for fully developed

laminar flow in a channel, as shown in Figure 5(b).
The temperature profiles predicted by LBM and FLUENT at various cross-sections are

shown in Figure 6. The solid lines denote the prediction obtained by LBM, and the symbols

denote the predictions obtained by FLUENT. The temperature profiles predicted by LBM

agree very well with those predicted by FLUENT.

Wall shear stress and heat transfer coefficient are predicted at various cross-sections in

the developing region. The local value of skin friction, Cf , and the Nusselt number, Nu, are

determined from the numerical solution as

Cf(X) =
μ

1/2ρU2
in

∂u

∂y
(x, 0) =

4

Re

∂U

∂Y
(X, 0), Nu(X) = 2

Tin − Tw
Tm − Tw

∂θ

∂Y
(X, 0), (6.1)



8 Journal of Applied Mathematics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Y

X = 0.08

X = 0.04

X = 0.2

X = 0.48

LBM

FLUENT

Figure 6: Temperature profile at various cross-sections predicted by LBM and FLUENT.

where Tm is the bulk temperature of the fluid and is calculated at each cross-section as

Tm =
1∫
UdA

∫
[Tw + (Tin(0.5H) − Tw)θ]UdA. (6.2)

The skin friction and the Nusselt number predicted by LBM are plotted in Figure 7 as a func-

tion x/2H. ReCf tends to 24 as the fully developed region is approached. Similarly, Nusselt

number tends to 7.54 as the thermally fully developed region is approached, as shown in

Figure 7(b). These values are in perfect agreement with the fully developed values of Cf and

Nu as well documented in the literature.

7. Conclusion

Hydrodynamically and thermally developing laminar steady flow in a channel is considered

as an example to illustrate that Lattice Boltzmann method is a promising computational fluid

dynamics tool. D2Q9 lattice arrangement is used to predict both velocity and temperature

field. Profiles obtained by LBM-D2Q9 and ANSYS-FLUENT agree very well. Away from

the inlet as the fully developed region is approached, and the profiles tend to self-similar

solutions of developed laminar channel flows. That is confirmed by prediction of the skin

friction and Nusselts number. As full-developed region is approached away from the inlet

both the skin friction coefficient and the Nusselt number tend to well-documented values in

the literature. Extension of LBM method to three-dimensional unsteady complex multiphase

flows is natural, and the implementation of LBM to tackle such problems is underway.
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Figure 7: (a) Skin friction and (b) Nusselt number plotted as a function of x/2H.

Appendices

A. Discretized LB Equations for the Velocity Field at the Inlet,
the Outlet, and at the Surface of Plates

With indices k denoting 9 directions of LB D2Q9 arrangements, i denoting the nodes placed in

the x-direction and j denoting the nodes placed in the y-directions, the distribution functions

for velocity, f , and temperature field, g, are represented by three-dimensional arrays f(k, i, j),
and g(k, i, j) for k = 1 to 9, i = 1,M and j = 1,N.

At the inlet (i = 1; j = 2 to N − 1), the conservation of mass and momentum yield

ρ
(
1, i, j

)
=

(f
(
1, i, j

)
+ f

(
5, i, j

)
+ f

(
3, i, j

)
+ 2 × (f(4, i, j

)
+ f

(
7, i, j

)
+ f

(
8, i, j

))(
1 − u(1, i, j

)) ,

f
(
2, i, j

) − feq
(
2, i, j

)
= f

(
4, i, j

) − feq
(
4, i, j

)
,

f
(
2, i, j

)
= f

(
4, i, j

)
+

2

3
ρ
(
1, i, j

) × u(1, i, j
)
,

f
(
9, i, j

)
= f

(
6, i, j

)
+

1

6
ρ
(
1, i, j

) × u(1, i, j
)
,

f
(
5, i, j

)
= f

(
7, i, j

)
+

1

6
ρ
(
1, i, j

) × u(1, i, j
)
.

(A.1)
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The boundary conditions at the surface of the lower plate (i = 1,M − 1; j = 1) imposed on

the velocity field give

ρ
(
1, i, j

)
=

(f
(
1, i, j

)
+ f

(
5, i, j

)
+ f

(
2, i, j

)
+ 2 × (f(3, i, j

)
+ f

(
9, i, j

)
+ f

(
8, i, j

))(
1 − v(1, i, j

)) ,

f
(
5, i, j

)
= f

(
3, i, j

)
+

2

3
ρ
(
1, i, j

) × v(1, i, j
)
, f

(
3, i, j

) − feq
(
3, i, j

)
= f

(
5, i, j

) − feq
(
5, i, j

)
,

f
(
6, i, j

)
= f

(
8, i, j

)
+

1

2

(
f
(
4, i, j

) − f(2, i, j
))

+
1

6
ρ
(
1, i, j

) × v(1, i, j
)
+

1

2
ρ
(
1, i, j

) × u(1, i, j
)
,

f7 = f9 − 1

2

(
f4 − f2

)
+

1

6
ρ
(
1, i, j

) × v(1, i, j
) − 1

2
ρ
(
1, i, j

) × u(1, i, j
)
.

(A.2)

At the top surface (i = 1,M − 1; j =N), the velocity boundary conditions yield

ρ
(
1, i, j

)
=

(f
(
1, i, j

)
+ f

(
2, i, j

)
+ f

(
4, i, j

)
+ 2 × (f(5, i, j

)
+ f

(
7, i, j

)
+ f

(
6, i, j

))(
1 + v

(
1, i, j

)) ,

f
(
3, i, j

)
= f

(
5, i, j

) − 2

3
ρu
(
1, i, j

) × v(1, i, j
)
,

f
(
8, i, j

)
= f

(
6, i, j

) − 1

2

(
f
(
4, i, j

) − f(2, i, j
)) − 1

6
ρ
(
1, i, j

) × v(1, i, j
) − 1

2
ρ
(
1, i, j

) × u(1, i, j
)
,

f
(
9, i, j

)
= f

(
7, i, j

)
+

1

2

(
f
(
4, i, j

) − f(2, i, j
)) − 1

6
ρ
(
1, i, j

) × v(1, i, j
)
+

1

2
ρ
(
1, i, j

) × u(1, i, j
)
.

(A.3)

The outlet conservation of mass and momentum is approximated by using second-order

extrapolation which yields

f
(
k,M, j

)
= 2f

(
k,M − 1, j

) − f(k,M − 2, j
)

where k = 2, 6, 9, j = 2,N − 1. (A.4)

B. Discretized LB Equations for the Temperature Field at the Inlet,
the Outlet, and at the Surface of Plates

The inlet (i = 1; j = 2 to N − 1) conservation of energy gives

g
(
3, i, j

) − geq
(
3, i, j

)
= g

(
5, i, j

) − geq
(
5, i, j

)
,

g
(
2, i, j

)
= θin

(
1, i, j

)
(w(4) +w(2)) − g(4, i, j

)
,

g
(
6, i, j

)
= θin

(
1, i, j

)
(w(6) +w(8)) − g(8, i, j

)
,

g
(
9, i, j

)
= θin

(
1, i, j

)
(w(7) +w(9)) − g(7, i, j

)
.

(B.1)
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With θw = 0 the thermal boundary condition at the surface of the lower plate (i = 1,M−1; j =
1) gives

g
(
7, i, j

)
= −g(7, i, j

)
,

g
(
5, i, j

)
= −g(3, i, j

)
,

g
(
6, i, j

)
= −g(4, i, j

)
,

g
(
2, i, j

)
= −g(4, i, j

)
.

(B.2)

With θw = 0 the thermal boundary condition at the surface of the upper plate (i = 1,M−1; j =
N) gives

g
(
3, i, j

) − geq
(
3, i, j

)
= g

(
5, i, j

) − geq
(
5, i, j

)
,

g
(
9, i, j

)
= −g(7, i, j

)
,

g
(
8, i, j

)
= −g(6, i, j

)
,

g
(
3, i, j

)
= −g(5, i, j

)
,

g
(
2.i.j

)
= −g(4, i, j

)
.

(B.3)

The outlet conservation of energy is approximated by the second-order extrapolation which

yields

g
(
k,M, j

)
= 2g

(
k,M − 1, j

) − g(k,M − 2, j
)

where k = 2, 6, 9, j = 2,N − 1. (B.4)

Nomenclature

f : Density distribution function

feq: Local equilibrium density distribution function

g: Temperature distribution function

geq: Local equilibrium temperature distribution function

c = (cx, cy): Lattice discrete velocity, cx and cy are x and y components

V = (u, v): Bulk velocity of the fluid, u and v are x and y components

U: Normalized x component of the fluid velocity

θ: Normalized temperature

ω: Dimensionless relaxation frequency

w: Weight factor

Tw: Wall temperature in (◦C)
cs: Lattice sound speed

τ : Dimensionless collision relaxation time

r: Position vector

(X,Y ): Dimensionless x and y coordinate

Uin: Fluid speed at the inlet

Tin: Temperature profile at the inlet in (◦C), Tin(y)
ρ: Density of fluid, kg/m3

υ: Kinematic viscosity of fluid, m2/sec

α: Thermal diffusivity of fluid, m2/sec

Pr: Prandtl number
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Re: Reynolds number

T : Bulk temperature in (◦C).
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The dispersion coefficient tensor including off-diagonal components was introduced in the flow
with secondary currents, which is called skewed shear flow dispersion (SSFD) coefficient tensor,
in this paper. To observe the detailed effect of cross-dispersion terms in SSFD model on solute
dispersion, mathematical analysis of eigenvalue problem with respect to the equation with SSFD
coefficient tensor was performed. The analysis results show the several differences of SSFD model
compared to CSFD (conventional shear flow dispersion) model: the oblique direction of principal
dispersion with respect to the streamline, the increase of peak concentration, and the change in the
eccentricity of elliptical tracer cloud. SSFD coefficient tensor in a streamwise curvilinear coordinate
system of curved channel was transformed to those components of fixed Cartesian coordinate
system, and 2D numerical model with finite element method was established in the Eulerian-
Cartesian coordinate. Through this process, the transformation equation using the depth-averaged
velocity field was derived. Several numerical tests were performed to assure the results obtained
in the mathematical analysis and to show the applicability of the derived transformation equation
on the flow with continuously changing flow direction.

1. Introduction

The advection and dispersion of passive solutes in open channels—which includes

pollutant transport in artificial canals, natural streams, and rivers—is an important topic

in environmental hydraulics. In open channels, once vertical mixing is completed in the

initial period of solute transport, the vertical shear velocity profile increases the longitudinal

spreading in the streamline direction [1]. As a result, in flows where the longitudinal flow is
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Figure 1: Schematic diagram for CSFD model: x, y: coordinate axes of the Eulerian-Cartesian coordinate
system; vx, vy : components of depth-averaged velocities on the x, y axes.

dominant, such as straight open-channel flows, solute spreading is commonly described with

longitudinal shear dispersion and transverse turbulent diffusion:

∂C

∂t
+
∂(vsC)
∂s

=
∂

∂s

(
Dss

∂C

∂s

)
+

∂

∂n

(
εn
∂C

∂n

)
, (1.1)

where s is the coordinate axis coinciding with the streamline direction; n is local coordinate

axis that is normal to the streamline; C the depth-averaged concentration; vs the longitudinal

depth-averaged velocity; Dss the longitudinal dispersion coefficient; εn the transverse

turbulent diffusion coefficient. In (1.1), the axis of the longitudinal dispersion always

coincides with the streamline of the principal flow. Thus, the distribution of concentration

shows axisymmetry with respect to the (s, n) axes, as shown in Figure 1.

However, the secondary current around pronounced curvatures in many open

channels introduces a large magnitude of transverse circulation combined with the principal

longitudinal flow. Hence, the solute dispersion by the secondary current cannot be described

by only the dispersion in the longitudinal direction; there is a dispersion effect in the

transverse direction that is much more effective than the transverse turbulent diffusion. A

flow with secondary currents, as that in Figure 2, has a structure with skewed shear profiles

having different velocity profiles in two orthogonal directions.

Fischer [2] proposed that the cross-dispersion terms should be included in the 2D

depth-averaged dispersion equation, to deal with the effect of skewed vertical profiles on the

horizontal dispersion process:

∂C

∂t
+
∂(vsC)
∂s

=
∂

∂s

(
Dss

∂C

∂s
+Dsn

∂C

∂n

)
+

∂

∂n

(
Dns

∂C

∂s
+Dnn

∂C

∂n

)
, (1.2)
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Figure 2: Schematic diagram for SSFD model: vs, vn: horizontal velocities on the s, n axes; z: coordinate
axis of the vertical direction.

where Dss, Dsn, Dns, and Dnn are components of the full dispersion coefficient tensor and

Dnn denotes the transverse dispersion coefficient. The additional cross-dispersion terms

Dsn(∂C/∂s) and Dns(∂C/∂n) indicate mass transport in the longitudinal direction caused

by the concentration gradient in the transverse direction and vice versa. These terms rotate a

dispersing tracer cloud away from symmetry on the s and n axes. Once the open-channel flow

with secondary currents is regarded as the skewed shear flow, the off-diagonal components

Dsn andDns should be clearly considered on the solute dispersion in a curved flow. However,

most studies and pollutant transport models related to the role of secondary currents in the

dispersion process only focused on activation of the transverse dispersion that only increases

Dnn [3–9]. Neglecting cross-dispersion terms, solute dispersion on a curved flow with

secondary currents is still described with only the longitudinal and transverse dispersion

coefficients in the widely used 2D environmental mixing models:

∂C

∂t
+
∂(vsC)
∂s

=
∂

∂s

(
Dss

∂C

∂s

)
+

∂

∂n

(
Dnn

∂C

∂n

)
. (1.3)

Hereafter, we call this kind of model as a conventional shear flow dispersion (CSFD) model.

In this study, we introduced the full dispersion coefficient tensor to the solute

dispersion model with respect to the stream wise curvilinear frame of reference as described

in (1.2), and we call this the skewed shear flow dispersion (SSFD) model. This model

describes the skewed shear flow dispersion process in a flow with a secondary current that

induces strong interaction between the longitudinal and transverse dispersions. For detailed

study with respect to the effect of the off-diagonal terms on the passive solute dispersion, the

dispersion equation with the SSFD coefficient tensor was mathematically analyzed by solving

the eigenvalue problem and comparing the results with the CSFD model. The finite element

formulation in fixed Cartesian coordinates was selected for computational modeling to test

the SSFD model in curved open channels. To deal with the governing equation on a fixed

Cartesian coordinate, a transformation equation for SSFD tensor, originally defined in the

stream wise curvilinear coordinate system, was derived using the depth-averaged velocity

field.
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2. Analysis of SSFD Model

Two-dimensional advection-dispersion equation is simply expressed below in (2.1) with a

substantial derivative in the stream-wise curvilinear frame of reference

dC

dt
= ∇ · (D∇C) = ∇TD∇C, ∇ =

[
∂

∂s

∂

∂n

]T
. (2.1)

By the above expression, the full dispersion coefficient tensor D of the SSFD model is

expressed in a 2 × 2 matrix to correspond to (1.2) as follows:

D =

[
Dss Dsn

Dns Dnn

]
. (2.2)

However in the CSFD model represented by (1.3), D in (2.1) is replaced by the diagonal

dispersion coefficient tensor Dc

dC

dt
= ∇ · (Dc∇C) = ∇TDc∇C, Dc =

[
Dss 0

0 Dnn

]
. (2.3)

In order to analyze the effect of off-diagonal components on the full dispersion coefficient

tensor of the SSFD model, we performed a mathematical analysis to solve eigenvalue

problems related to the dispersion tensor and equation.

Because ∇TD∇ in (2.1) is in quadratic form, we may replace D with the symmetric

matrix D by taking off-diagonal components together in pairs and writing the result as a sum

of two equal terms [10]:

dC

dt
= ∇TD∇C, D =

⎡⎣Dss Dsn

Dsn Dnn

⎤⎦, (2.4)

where Dsn = (Dsn + Dns)/2. Symmetric dispersion coefficient matrices such as D have an

orthonormal basis of eigenvectors. Thus, if we take these as column vectors, we obtain

a matrix X that is orthogonal—so that XT = X−1. According to the theory of orthogonal

eigenvectors of a specified symmetric matrix, a certain diagonal matrix D
′

is obtained by

the following relationship:

D = XD′X−1 = XD′XT . (2.5)

It should be noted that D′ is a similar matrix of D by orthogonal transformation: D′ = X−1DX.

Substituting (2.5) into (2.4) transforms the quadratic form ∇TD∇ to the principal axes form:

dC

dt
= ∇TXD′XT∇C

∣∣∣
(s,n)

= ∇ · (D′∇C)∣∣(x′,y′), (2.6)
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where XT∇|(s,n) = ∇|(x′,y′) = [∂/∂x′ ∂/∂y′]T denotes the gradient in the coordinates of

the principal axes (x′, y′). As a result, (2.1) is finally transformed to the equation with the

principal dispersion coefficient tensor D′ in the rotated (x′, y′)-coordinate system. Because D′

is a diagonal matrix, the symmetric axes of the equiconcentration line should be parallel to the

directions of the x′ and y′ axes. Because the directions of the x′ and y′ axes are rotated from

the original s and n axes by the amounts of orthogonal transformations, the axisymmetric

concentration should also be rotated from the s and n axes. We estimated the magnitude of

the rotated angle by solving the following eigenvalue problem:

D∇C = λi∇C, (2.7)

where λi (i = 1, 2) is eigenvalue of the corresponding eigenvector in X, and each value can be

derived as follows:

λ1, λ2 =
Dss +Dnn

2
±
√(

Dss −Dnn

2

)2

+Dsn

2
. (2.8)

The obtained eigenvalues in (2.8) are the diagonal components of D′:

D′ =

[
λ1 0

0 λ2

]
(2.9)

by the calculation of D′ = X−1DX. Because the principal dispersion coefficients always have

to be positive, the following is the relationship between each component of D:

√
DssDnn > Dsn. (2.10)

By (2.10), we can find the eigenvectors corresponding to λ1 and λ2 that are the column vectors

of X, and the directions of eigenvectors whose directions coincide with the directions of the

x′ and y′ axes can be derived. The angle of the counterclockwise rotation ψ of the x′ and y′

axes from the s and n axes is obtained by

ψ = arctan

⎡⎢⎣−Dss −Dnn

2Dsn

±

√√√√(
Dss −Dnn

2Dsn

)2

+ 1

⎤⎥⎦. (2.11)

Therefore, the angles of ψ represent orthogonal rotation of the axes of symmetry: (x′, y′) from

the axes of (s, n)-coordinates.

Another remarkable effect of the off-diagonal terms in the SSFD model is the

difference in the resultant peak concentration. When we present the analytical solution of

the instantaneously dumped point mass with respect to the (x′, y′)-coordinates, it is given by

C
(
x′, y′, t

)
=

M

4πht
√
λ1λ2

exp

[
− x

′2

4λ1t
− y

′2

4λ2t

]
, (2.12)
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where M is the total mass of tracer. With this solution, the equiconcentration curves are

ellipses with
√
λ1 and

√
λ2 as the lengths of semimajor and minor axes. Using (2.12), the

peak concentration at time t is inversely proportional to
√
λ1λ2, which is given by

√
λ1λ2 =

√
DssDnn −Dsn

2 ≤
√
DssDnn. (2.13)

According to (2.12) and (2.13), the peak concentration with off-diagonal terms

M/(4πht
√
DssDnn −Dsn

2
) is always larger than the peak concentration neglecting off-

diagonal terms M/(4πht
√
DssDnn). Thus, if the off-diagonal components in the SSFD

condition are ignored, the dilution degree of the pollutant is likely to be overestimated.

Assuming that the corresponding CSFD and SSFD models have the same diagonal

components for each dispersion coefficient tensor, the ratio of the overestimated dilution

degree due to neglect of the off-diagonal components by applying the CSFD model is

Cp(Dc, t)

Cp

(
D, t

) =
M/

(
4πht

√
DssDnn

)
M/

(
4πht

√
DssDnn −Dsn

2
) =

√
DssDnn −Dsn

2√
DssDnn

< 1, (2.14)

where Cp is the peak concentration. Although (2.14) is valid only in the case of instantaneous

release of mass at t = 0 in a uniform flow field, the above analytical analysis provides the

knowledge of possible overestimation in dilution degree when the CSFD model is wrongly

applied to a skewed shear flow field of secondary currents.

The final characteristic of the SSFD model compared to the CSFD model is the change

in the eccentricity of ellipses. The dispersive scale in the direction of the symmetric axes of

concentration depends on the pair of principal dispersion coefficients, which are λ1, λ2 for

the SSFD model and Dss,Dnn for CSFD. Therefore, the comparison between the magnitudes

of the principal dispersion coefficients accounts for the difference in the shapes of the ellipses

by D and Dc. The ellipses of the concentration in the SSFD model have larger eccentricity

than that of the corresponding CSFD model by the relation:

max{λ1, λ2} =
Dss +Dnn

2
+

√(
Dss −Dnn

2

)2

+Dsn

2 ≥ max{Dss,Dnn},

min{λ1, λ2} =
Dss +Dnn

2
−
√(

Dss −Dnn

2

)2

+Dsn

2 ≤ min{Dss,Dnn}.

(2.15)

Including (2.15), three characteristics of the SSFD model that contrast with the CSFD

model have been pointed out by the eigenvalue problem solved in this section; the rotation of

the major dispersion axis about the streamline, the larger peak concentration, and the larger

eccentricity of the elliptical concentration. These results show that the application of the CSFD

model to flows with a secondary current is not accurate because skewed vertical profiles

clearly exist in the secondary current combined with the principal flow along the curves.

The oblique direction of the principal dispersion with respect to the streamline and other

characteristics related to the peak concentration and shape of the equiconcentration curves
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were demonstrated in a numerical experiment that used the computational model established

in the Eulerian coordinate system, as presented in the next section.

3. Coordinate Transformation

To deal with diverse flow directions in natural streams and rivers with irregular boundaries,

conventional river hydrodynamics and mass transport models are usually established in

a fixed Eulerian coordinate system, where implementing a horizontal unstructured grid is

convenient. In computational models established for such curved channels with continuously

changing flow directions, the principal direction of anisotropic dispersion is usually not

parallel to the axes of the Cartesian coordinates. Therefore, in commonly used CSFD models,

components of Dc constantly defined in a stream-wise curvilinear frame of reference (s, n)
are transformed into nodal dispersion parameters with respect to the Eulerian-Cartesian

coordinates [11–15]. The dispersion coefficient tensor Dc of (s, n)-coordinates is related to

nodal parameters in (x, y)-coordinates through the Jacobian matrix expressed with a nodal

velocity vector.

J =

⎡⎢⎢⎣
∂x

∂s

∂x

∂n

∂y

∂s

∂y

∂n

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
vx

|vs|
− vy

|vs|
vy

|vs|
vx

|vs|

⎤⎥⎥⎥⎦, (3.1)

where vx, vy are depth-averaged velocity components in the x and y directions, respectively.

Because (3.1) is orthogonal matrix, the inverse of J is equal to JT , which results in ∇|(s,n) =
JT∇|(x,y). Thus, both (2.1) and (2.3) can then be transformed into equations with respect to

fixed Cartesian coordinate system; by applying ∇|(s,n) = JT∇|(x,y) to (2.3),

dC

dt
=
(
JT∇

)T
Dc

(
JT∇

)
C = ∇T

(
JDcJT

)
∇C. (3.2)

Dc is transformed into the nodal dispersion coefficients with respect to Eulerian-Cartesian

coordinates: JDcJT , where each component of JDcJT can be written as

Dxx = Dnn + (Dss −Dnn)
vx

2

vs
2
, (3.3a)

Dxy = Dyx = (Dss −Dnn)
vx vy

vs
2
, (3.3b)

Dyy = Dnn + (Dss −Dnn)
vy

2

vs
2
, (3.3c)

where Dxx, Dxy, Dyx, and Dyy are Cartesian components of the nodal dispersion coefficient

tensor. As we describe for the commonly used CSFD model, (3.3a), (3.3b), and (3.3c) are

the conventional way to determine nodal dispersion parameters by the longitudinal and

transverse dispersion coefficients Dss and Dnn constantly specified in a global domain.
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The full dispersion coefficient tensor introduced by Fischer [2] also include Dns and

Dsn as cross-dispersion coefficients that can be specified by physical considerations as well as

Dss and Dnn:

Dss = − 1

h

∫h
0

v′
s

∫z
0

1

ε(z)

∫z
0

v′
s dz dzdz,

Dsn = − 1

h

∫h
0

v′
s

∫z
0

1

ε(z)

∫z
0

v′
n dzdzdz,

Dns = − 1

h

∫h
0

v′
n

∫z
0

1

ε(z)

∫z
0

v′
s dz dzdz,

Dnn = − 1

h

∫h
0

v′
n

∫z
0

1

ε(z)

∫z
0

v′
n dzdzdz,

(3.4)

where h is flow depth; ε is the vertical turbulent diffusion coefficient; v′
s, v

′
n the vertical

deviations of the point velocities with respect to depth-averaged velocities in the s and n

directions, respectively. Because the tensor dispersion coefficients proposed by Fischer [2] is

expressed in fixed coordinates, the same transformation as did in (3.3a), (3.3b), and (3.3c)
is needed for components of SSFD tensor to be applied in a flow where the flow direction

continuously changes as in a curved stream: the components of JDJT in SSFD model, which

is analogous to JDcJT of CSFD model, are derived as follows:

Dxx = Dss
vx

2

vs
2
− (Dsn +Dns)

vxvy

vs
2

+Dnn

vy
2

vs
2
,

Dxy = (Dss −Dnn)
vxvy

vs
2

+Dsn
vx

2

vs
2
−Dns

vy
2

vs
2
,

Dyx = (Dss −Dnn)
vxvy

vs
2

−Dsn

vy
2

vs
2
+Dns

vx
2

vs
2
,

Dyy = Dss

vy
2

vs
2
+ (Dsn +Dns)

vxvy

vs
2

+Dnn
vx

2

vs
2
.

(3.5)

Obviously, (3.5) reduces to (3.3a), (3.3b), and (3.3c) if Dsn, Dns are assumed to be zero.

Through (3.5), the coefficients of the SSFD tensor in (s, n)-coordinates are transformed into

nodal dispersion coefficients in Eulerian (x, y)-coordinates (Figure 2).
Using the transformed component of the nodal CSFD and SSFD coefficient tensor with

respect to the global coordinate system, we present expanded the Cartesian forms of (2.1) and

(2.3) as follows:

∂C

∂t
+
∂(vxC)
∂x

+
∂
(
vyC

)
∂y

=
∂

∂x

(
Dxx

∂C

∂x
+Dxy

∂C

∂y

)
+

∂

∂y

(
Dyx

∂C

∂x
+Dyy

∂C

∂y

)
. (3.6)



Journal of Applied Mathematics 9

For complex geometries of curved streams with irregular boundaries, an unstructured grid

with the finite element or finite volume method is more useful than a numerical method

with a structure grid. Therefore, we solve (3.6) by the finite element model established in

the Eulerian coordinate system [16]. In this model, the Petrov-Galerkin approximation with

a bilinear shape function is applied for spatial discretization, and the Crank-Nicolson type of

discrete time marching is used for transient term. For each nodal point, the components of

the dispersion tensor are determined by (3.3a), (3.3b), and (3.3c) in the CSFD model and by

(3.5) in the SSFD model.

4. Test for the Direction of Principal Dispersion

In order to observe the oblique direction of the principal dispersion with respect to the

longitudinal streamline, a solute mixing in uniform oscillatory flow was simulated by the

established CSFD and SSFD models. The direction of the oscillatory flow was varied at θ = 0◦,

30◦, and 45◦ counterclockwise with respect to the x-axis, to test the applicability of the derived

(3.5) for various flow directions. Each result of the SSFD model was compared with that

of the corresponding CSFD model with the same Dss and Dnn. The velocity of the uniform

oscillatory flow was defined by a cosine curve with respect to time as

(
vx, vy

)
=
(
vs cosφt cos θ, vs cosφt sin θ

)
, (4.1)

where vs = 0.25 m/s and φ = 2π/(12 h). In this flow field, the concentration distribution with

a two-dimensional Gaussian profile was given as the initial concentration at the center of a

20 km × 20 km rectangular computational domain; this is the conventional test condition for

the advection-dispersion problem [17]. The initial Gaussian distribution was obtained by the

analytic solution after 1 day of pure diffusion of point massM = 5 × 104 kg/m with constant

isotropic diffusion coefficient k = 5 m2/s:

C
(
x, y, 0

)
=

M

4πkτ
exp

[
−x

2

4k
− y2

4k

]∣∣∣∣∣
τ=1 day

. (4.2)

By (4.2), the initial peak concentration was 9.21 ppm. A rectangular element was chosen

as a finite element grid of the test case due to its simplicity. The grid and time step sizes

were determined as Δx = Δy = 1 km and Δt = 900 sec. The maximum Courant number

was (vsΔt)/Δx = 0.225, which guaranteed a stable solution. The initial concentration was

spread under oscillatory flow conditions over 960 time steps, which covered a period of

6 days. Diagonal components of the SSFD and CSFD coefficient tensors of this case were

arbitrarily determined as Dss = 10 and Dnn = 1 m2/s. With these longitudinal and transverse

coefficients, the off-diagonal components of the SSFD coefficient were determined as Dsn =
Dns = 3.125 m2/s, following the dispersion tensor for the application example in Fischer [2]:

D =
h2

ε

⎡⎢⎢⎢⎣
Uo

2

120

5UoVo
192

5UoVo
192

Vo
2

12

⎤⎥⎥⎥⎦, (4.3)
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where Uo, Vo are magnitude of the longitudinal and transverse velocity deviation defined in

Figure 3. The dispersion coefficient in (4.3) was derived from the approximated mean velocity

profile of a continental shelf, as given in Figure 3. When we assume a skewed shear flow

structure for secondary currents as shown in Figure 3, the intensity of the secondary current

is maximized for the same transverse velocity deviation. The diagonal dispersion coefficient

tensor with eigenvalues of D is D′ =
[

10.979 0
0 0.021

]
m2/s by (2.8) and (2.9), and the coefficient

tensor of the corresponding CSFD model is Dc =
[

10 0
0 1

]
m2/s.

In Figure 3, the concentration distributions of the SSFD model C(D, t) at t = 6 days are

compared to those of the corresponding CSFD model C(Dc, t). In the results from the CSFD

model, which are given in Figures 4(a), 4(c), and 4(e), the direction of the principal dispersion

coincided with the oscillatory flow direction of each case. However, the differences in the

symmetric axes of the concentration by SSFD model and the corresponding oscillatory flow

direction were found to be ψ = 17.4◦, as shown in Figures 4(b), 4(d), and 4(f). This difference

confirmed the eigenvalue analysis results given in the previous section. The directions of the

eigenvectors of D =
[

10 3.125
3.125 1

]
m2/s were computed (2.11) to be oriented toward 17.4◦ and

−72.6◦ with respect to the s axis.

The results in Figure 4 also show the applicability of (3.5); the coordinate transforma-

tion of dispersion tensor by (3.5) successfully introduced the full SSFD coefficient tensor in

the numerical grid of Eulerian coordinates. When we consider solute transport in complex

flow with continuously changing flow direction such as meandering streams, the whole

problem is effectively solved in one domain based on the Eulerian frame of reference using

(3.5). As presented in the next section, two flows with secondary currents case studies for

application are considered. Through those examples, other aspects of the SSFD model—the

increase in peak concentration and eccentricity of the tracer ellipse—were examined.

5. Application in Flows with Secondary Currents

In order to investigate the performance of the SSFD model in a flow field with secondary

currents, an example case similar to the classic teacup experiment was considered. First, we

assumed a solid-body rotation of water in a coaxial cylindrical container, as in Figure 5, to

produce a so-called forced vortex. In this kind of fluid rotation, there is a pressure gradient

from the perimeter toward the center. When we stop the rotation of the container abruptly,

this pressure gradient coupled with the slower speed near the bottom boundary layer causes

the secondary flow that makes the boundary layer spiral inward to the axis of circulation.

Except for near the side wall and bottom, the fluid continues to rotate as before. Thus, a

rotating flow field of vortex with a constant angular velocity can be assumed for a while in

the container. We assume that a certain passive solute is dropped as an instantaneous point

source as soon as the container is stopped. For this case, both dispersion models were applied

to observe the difference in modeling results: SSFD model accounted for the effect of the

secondary flow and CSFD neglected the secondary flow effect.

The outer and inner cylinders had radii of 10 and 3 m, respectively, and the container

rotated at an angular speed of ω = 2π/(3 min). The plan view of the container and grid

for the simulation are presented in Figure 6; the grid sizes in the radial and tangential

directions were 0.5 m and πr/40, respectively, where r is the distance from the axis of

rotation. The simulation was performed by the SSFD model with an arbitrarily determined

D =
[

0.01 −0.002
−0.002 0.001

]
m2/s of which the magnitude of the off-diagonal component was smaller

than those of (4.3). The negative sign in the off-diagonal components of D was determined by
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Figure 3: Representation of the shear flow on the continental shelf of the middle Atlantic bight [2].

(3.3b) and (3.3c) and the circulating direction of the secondary current, which was negative

n-direction in the upper part of the flow and positive n-direction in the lower part. The

dispersion coefficient tensor of the corresponding CSFD model was Dc =
[

0.01 0
0 0.001

]
m2/s.

An initial concentration of 100 was dropped at the nodal point (x, y) = (6.5 m, 0).
The simulation results at t = 36, 72, . . . , 180 sec for both CSFD and SSFD model are

given in Figure 7. Figure 7(a) shows that the curvilinear axis of the principal dispersion

direction in C(Dc, t) coincided with the circular streamline of the rotating flow. However,

in Figure 7(b), the result of C(D, t) shows that the direction of the major dispersion axis

spiraled outward to the perimeter of the outer cylinder due to the rotation of the symmetric

axis of the tracer cloud. As pointed out in Section 2, the peak concentration of C(D, t) was

computed to be larger than that of C(Dc, t); when the tracer cloud rotated for one complete

round at 180 s, Cp(Dc, t) and Cp(D, t) were founded to be 3.305 and 3.851, respectively. Along

with the larger peak concentration, the SSFD model increased the eccentricity of the ellipse

of the tracer cloud. The tracer clouds in Figure 7(b) are longer and narrower than those in

Figure 7(a).
For another example case of flow with secondary currents, the dispersion problem in

a strongly curved channel with secondary flow was solved by the SSFD and CSFD modes.

The famous experiments provided by Rozovski [18] were chosen as an example problem, in

which the velocity field was measured along the bend of a U-shaped laboratory channel with

a rectangular cross-section. The width of the channel was 0.8 m with inner and outer bend

radii of 0.4 and 1.2 m, respectively, and the water flowed on the zero-slope bottom with a

mean velocity of 0.25 m/s for his experimental case Run 8.

The velocity field in the whole domain was reproduced by the commonly used depth-

averaged flow analysis model RMA-2 in TABS-MD [19]. Figure 8 compares the computed

velocities against the measured data of Rozovski [18] at five cross-sections in the bend and

shows that the computational result described the flow field along the channel bend well.

When water flowed along the bend of the rectangular channel, the usual path of velocity

maxima is located near the inner bend at the entrance to the bend and shift to near the outer
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(c) CSFD model, t = 6 day (in 30 degree flow)

0 2 4 6 8 10−10 −8 −6 −4 −2

x (km)

0

2

4

6

8

10

−10

−8

−6

−4

−2y
(k

m
)

(d) SSFD model, t = 6 day (in 30 degree flow)
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(e) CSFD model, t = 6 day (in 45 degree flow)
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(f) SSFD model, t = 6 day (in 45 degree flow)

Figure 4: Concentration distribution in uniform oscillatory flow (unit: ppm).
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Figure 5: Rotating water in coaxial cylindrical container.
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Figure 6: Grid system for coaxial cylindrical container.

bank at the exit as shown in the measurement of longitudinal velocity in curved channels [20–

22] as observed in Figure 8. This is due to the increase of the water elevation at the outer bank

and the decrease at the inner bank by centrifugal forces in curved channels [23]. The principal

flow following the velocity maxima along the bend is accompanied by the secondary flow

by which the path line is partly downstream and partly across the channel from the outer

bank toward the inner bank at the bottom. To observe the solute spreading around the bend,

the initial concentration of 100 was defined at the centered point of bend entrance (x, y) =
(6 m, −5.75 m). A dispersion coefficient tensor with D =

[
0.005 −0.002
−0.002 0.001

]
m2/s was arbitrarily

selected for the SSFD model, and Dc =
[

0.005 0
0 0.001

]
m2/s was used for the corresponding CSFD

model.

Concentration distributions at t = 4 and 8 s were presented in Figures 9 and 10,

respectively. According to Figures 9 and 10, advection by a lateral nonuniform flow coupled

with the skewed shear flow dispersion causes the remarkable change in the shape of tracer

cloud compared to the CSFD model: the elliptical curves of the equiconcentration computed
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Figure 7: Concentration distribution in coaxial cylindrical container.

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

y
(m

)

5 5.5 6 6.5 7 7.5

x (m)

0.2 m/s

Rozovski (1965)

Figure 8: Comparison between computed and measured flow fields in Rozovski’s channel.

by the CSFD model maintained the elongated shape along the streamline until the total mass

exited the bend, whereas those of the SSFD model were much shorter. These results seem to be

opposite to the elongated shape of the tracer cloud by the SSFD model shown in the previous

example of a force vortex. The mechanism for the generation of the clustered concentration

by the SSFD model in this example is explained as follows. When the SSFD coefficient tensor

is applied, the direction of the major dispersion axis becomes oblique clockwise with respect

to the streamlines; this is the typical mechanism for skewed shear flow dispersion as well as
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Figure 9: Concentration distribution in Rozovski’s channel at t = 4 s.
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Figure 10: Concentration distribution in Rozovski’s channel at t = 8 s.

the previous example. However, in contrast to the force vortex, the nonuniform longitudinal

velocities of the channel bend shift each particle in the skewed tracer cloud with different

speeds along each streamline; the particles near the inner bank move faster than the particles

near the outer bank. As a result, the dispersed particles in the tracer cloud skewed about

streamlines are centered into the mean displacement of the moving fluids. In particular, at

t = 4 s, the shape of the equiconcentration curve appeared to be rounded and concentrated.

The rotation of the major dispersion axis in the SSFD model and the nonuniform

advection along the curved streamline had a combined effect on the increase in the peak

concentration. The peak concentrations at t = 8 s, as given in Figure 10, were found to be

0.60 and 0.78 for the CSFD and SSFD models, respectively. This shows that the application

of the CSFD model in the curved channel with a strong secondary current—instead of the

SSFD model—may underestimate the peak concentration of the transported pollutant from

upstream. Although the secondary current is known to activate transverse dispersion and
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increase the dilution effect, the results in this study indicate that the skewed vertical shear

profile of the secondary current may offset the enhancement of dilution caused by the large

transverse dispersion.

6. Conclusion

In this study, it was proposed that the SSFD coefficient tensor should be applied for

2D passive solute transport modeling in the flow with secondary current because of

its vertically skewed shear flow structure. Mathematical analysis of eigenvalue problem

pointed out several significant effects of the off-diagonal terms of dispersion tensor: the

rotation of principal direction of dispersion with respect to the streamline, the increase of

peak concentration, and the change in eccentricity of elliptical concentration. To apply full

dispersion coefficient tensor defined in a stream-wise curvilinear coordinate system to the

numerical model on the Eulerian-Cartesian coordinates, transformation relationship was

derived with given depth-averaged velocity field. With the derived transformation equation,

2D numerical model was established with finite element method on the Eulerian coordinate

system. Numerical tests show that the coordinate transformation relationship derived in this

study successfully introduced the SSFD coefficient tensor in the numerical grid of Eulerian

coordinates. It was also shown that there is a possibility of overestimation in dilution of

pollutant if CSFD model was applied instead of SSFD model in the dispersion process

affected by secondary currents. The conventional 2D solute mixing modules equipped in

the various hydrodynamic modeling packages are expected to predict more reliable mixing

patterns of pollutants by including off-diagonal terms as in SSFD model, when it is applied

to flow field with secondary currents.

Nomenclature

C: Depth-averaged concentration

Cp: Peak concentration

Dss, Dsn, Dns, and Dnn: Components of the full dispersion coefficient tensor

defined in stream-wise curvilinear coordinates

Dsn: Mean value of Dsn and Dns

Dxx, Dxy, Dyx, and Dyy: Components of the nodal dispersion coefficient tensor in

the Eulerian-Cartesian coordinates

D: Matrix notation of SSFD coefficient tensor in curvilinear

coordinates

Dc: Matrix notation of CSFD coefficient tensor in curvilinear

coordinates

D: Symmetric version of SSFD coefficient tensor, which

takes Dsn as off-diagonal entries

D′: Principal dispersion coefficient tensor, which takes

eigenvalues λ1, λ2 as entries

h: Flow depth

J: Jacobian matrix for coordinate transformation

k: Isotropic diffusion coefficient

M: Total mass of tracer
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n: Axis normal to the streamline in the stream-wise curvilinear coordinate system

s: Axis along the streamline in the stream-wise curvilinear coordinate system

t: Time

Δt: Discretization size in time

Uo, Vo: Magnitude of longitudinal and transverse velocity deviations in Figure 3

vs, vn: Horizontal velocities on the s-, n-axis

vs: Longitudinal depth-averaged velocity

v′
s, v

′
n: Vertical deviations of the point velocities with respect to depth-averaged vs, vn

vx, vy: Ddepth-averaged velocity components in the x and y directions

x, y: Axes of the Eulerian-Cartesian coordinate system

x′, y′: Axes with identical directions as the principal axes of D
Δx: Discretization size in the x direction

Δy: Discretization size in the y direction

X: Matrix that takes the eigenvectors of D as column vectors

z: Axis of the vertical direction

εn: Transverse turbulent diffusion coefficient

ε: Vertical turbulent diffusion coefficient

φ: Angular frequency of oscillatory flow

θ: Angle of oscillatory direction with respect to the x-direction

λ1, λ2: Eigenvalues of D
ω: Angular speed of rotation of coaxial cylindrical container

ψ: Angle of counterclockwise rotation from the s axis of the principal dispersion axes.
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The spreading of oil in an open ocean may cause serious damage to a marine environmental
system. Thus, an accurate prediction of oil spill is very important to minimize coastal damage
due to unexpected oil spill accident. The movement of oil may be represented with a numerical
model that solves an advection-diffusion-reaction equation with a proper numerical scheme. In
this study, the spilled oil dispersion model has been established in consideration of tide and tidal
currents simultaneously. The velocity components in the advection-diffusion-reaction equation are
obtained from the shallow-water equations. The accuracy of the model is verified by applying it
to a simple but significant problem. The results produced by the model agree with corresponding
analytical solutions and field-observed data. The model is then applied to predict the spreading of
an oil spill in a real coastal environment.

1. Introduction

In an ocean environment, a spilled oil due to an unexpected accident may cause a serious

damage. Thus, an accurate prediction of behaviors of split oil is very significant to keep

coastal environmental system. The area of oil spreading can be predicted numerically by

solving the proper equations governing the flow field and the associated mass transport

phenomenon. The most reasonable choice is probably an advection-diffusion equation

consisted of both advection and diffusion. The equation is difficult to solve numerically

because it is represented by both hyperbolic- and parabolic-type partial differential equations.

A standard split operator approach is a plausible and practical choice for solving the

advection-diffusion-type partial differential equation [1]. The hyperbolic (advection) and

parabolic (diffusion) components of the equation are solved separately using methods that
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properly and simply simulate the physical behaviors. Numerical solutions obtained from the

advection and diffusion equations are then combined.

An oil spill accident is regarded as a kind of a disaster because it causes not only fatal

destruction of the marine environment but also enormous cost of the disaster prevention and

the damage compensation. Thus, it is important to accurately predict the spread range of the

spilled oil as an early stage countermeasure against a disaster. In the last three decades, many

investigators have studied the transport processes of oil spills based on the trajectory method

[2–4]. Those methods have been applied in river-lake system [5–7] and seas [8–11]. Some

commercial oil spill models, such as, COZOIL [12], NOAA [13], OILMAP [14], WOSM [15],
have been used to determine the oil movement and distribution in the water body. However,

transport of oil spills has been conducted considering tidal currents simultaneously in only

few researches. Furthermore, oil spills processes in a field of strong tide and tidal currents

have not been investigated.

In this study, the spilled oil dispersion model has been established in consideration of

tide and tidal currents simultaneously. The Hebei Spirit oil spill that occurred on December

7, 2007 is the largest oil spill accident occurred in the Yellow Sea. In the Yellow Sea, tidal

currents are very strong and should be considered to investigate related coastal processes.

Therefore, the accuracy of the model for predicting tide and tidal currents is very important to

investigate oil spreading in this area. Subsequently, by computing the diffusion distribution

on the Hebei Spirit oil spill considering tidal currents simultaneously, verification has been

made through comparison of the diffusion distribution and the field-observed data between

at 8 p.m. on December 7, 2007 when the spilled oil flowed into the whole Manripo and Sindu-

ri seashore and at 11 a.m. on December 11, 2007 when the satellite photographs exist. Also,

this study aims to prepare for a possible accident in the future and provide the basic materials

for establishing the disaster prevention of the oil spill pollution.

In the following section, the governing equations are described first. The numerical

model is then presented and detailed description is followed. Numerical simulations of tide

and tidal currents are conducted to test the applicability of the spilled oil spreading model

in the Yellow Sea, and the verification has been made comparing numerical results with the

field observed data. Also, the model is verified conducting the numerical calculations on the

simple diffusion distribution problem. The model is then applied to predict the Hebei Spirit

oil spill in a real coastal environment. Finally, concluding remarks are made.

2. Governing Equations

The behaviors of tide and tidal currents may be described by the following nonlinear shallow-

water equations [16, 17]:

∂η

∂t
+
∂P

∂x
+
∂Q

∂y
= 0, (2.1)

∂P

∂t
+

∂

∂x

(
P 2

H

)
+

∂

∂y

(
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H

)
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∂x
+
τx
ρ

= 0, (2.2)
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+
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(
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)
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∂y
+
τy

ρ
= 0. (2.3)
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Figure 1: A definition sketch of the free surface displacement and local water depth.

In (2.1)–(2.3), η represents the free surface displacement and H is the total water depth

defined as H = η + h with h being a local still water depth (Figure 1), P and Q are volume

flux components along the x- and y-axis directions defined as P = uH and Q = vH with u

and v being the depth-integrated velocity components in the x- and y-axis directions, and τx
and τy are bottom frictional effects of the x- and y-axis directions, respectively.

The study is focused to investigate the oil spreading in a limited area in the Southern

part of the Korean Peninsula and thus the Cartesian coordinate system is then employed. The

boundary conditions along the offshore are provided by a large-scale numerical model [18].
The bottom frictional effects may play a significant role in the very shallow zone. Thus, the

Manning’s empirical formula is employed in the study given as:

τx
ρ

=
gn2

H7/3
P
√
P 2 +Q2,

τy

ρ
=

gn2

H7/3
Q
√
P 2 +Q2.

(2.4)

In (2.4), n is the Manning’s roughness coefficient. In this study, the Manning coefficient of

n = 0.013 has been used.

It is well known that the change of sea level is very complicated and affected by many

physical phenomena such as waves, tides, and others. Among these, the tide may be the most

dominant force for the oil spreading in the Yellow Sea. In this study, therefore, the tide is only

investigated in a very limited area without considering any interaction with other physical

phenomena.

In this study, a source or sink can be described to a following equation [19]:

S(C) =
dS

dt
=
dS

dC

dC

dt
, (2.5)

in which C represents the concentration of the oil in the sea. The source or sink S(C) is

assumed to be nonlinear and is linearized using the Newton-Raphson iterative technique

[20] as:

S = S∗ +
dS

dC

∣∣∣∣∗(C − C∗), (2.6)
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in which the superscript (∗) represents a previous step and the sedimentation rate, k can be

derived as the following relation [21]:

k =
dS

dC

∣∣∣∣∗. (2.7)

By applying an operator splitting approach to (2.1), the following advection equation

can first be obtained by:

∂C

∂t
+
∂(CU)
∂x

+
∂(CV )
∂y

= 0, (2.8)

and the diffusion-reaction equation can then be derived by

∂C

∂t
=

1

H
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∂x

[
HDxx

∂C
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+HDxy

∂C
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]
+

1

H

∂

∂y

[
HDyx

∂C

∂x
+HDyy

∂C
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]
+ S, (2.9)

in which Dxx, Dxy, Dyx, Dyy represent the diffusion coefficients.

3. Numerical Model

The continuity and momentum equations given by (2.1)–(2.3) are solved by the finite

difference approximations. The detailed description of the finite difference method can be

found in literatures [2, 3] and is not repeated here. Firstly, the advection equation can

be discretized by using the SOWMAC (second-order wave equation method for advective

calculation) scheme based on the characteristic method and is given as [22]

(
1 − χ)(Cn+1

i−1 − 2Cn
i−1 + C

n
i−1

)
+ χ

(
Cn+1
i − 2Cn

i + C
n−1
i

)
+ α2

[
θ
(
Cn+1
i+1 − 2Cn+1

i + Cn+1
i−1

)
+ (1 − θ)(Cn

i+1 − 2Cn
i + C

n
i−1

)]
= 0,

(3.1)

in which α is the Courant number defined as α = UΔt/Δx, and superscript n and subscript

i are time level and computational point, respectively. χ and θ are weighting factors of the

finite difference scheme.

An unnecessary wave propagates upstream if the initial concentration distributions

at both t = 0 and t = −Δt are not consistent with the downstream advection progress. To

overcome this difficulty, the values of the concentration at time step (n − 1) can be employed

as shown in Figure 2 instead of time step (n − 1). Drawing the characteristic curves which

go downstream through points (i, n) and (i + 1, n), time step (n − 1) can be introduced

corresponding to time (nΔt−Δx/U) when each characteristic curve intersects the (i− 1-)axis
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Figure 2: Estimation of concentration at a previous time step.

or i-axis. According to the concept of characteristics for a pure advection, the concentrations

are conserved between two time steps and are given as follows:

C
(n−1)′

i−1 = Cn
i ,

C
(n−1)′

i = Cn
i+1.

(3.2)

Using (3.2), (3.1) can be rewritten as

2
(
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i−1 + αC

n
i

)
+ 2χ

[
Cn+1
i − (α + 1)Cn
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+ α(α + 1)(1 − θ)(Cn

i+1 − 2Cn
i + C

n
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)
.

(3.3)

The optimal values of χ and θ in (3.3) do not seem to be constant, but instead are dependent

on the Courant number α. To obtain the functional relationship of χ and θ to α, the Taylor

series expansion on (3.3) may be employed [22].
The final expression of the advection equation can be written as follows:

p1C
n+1
i−1 + p2C

n+1
i + p3C

n+1
i+1 = p4C

n
i−1 + p5C

n
i + p6C

n
i+1, (3.4)
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in which the coefficients are given by

p1 = 0.3776α0+ + 0.3152α0− − 0.5467α1+ + 0.4843α1− + 0.1691α2,

p2 = 1.3072 + 0.0624|α| − 0.3382α2,

p3 = 0.3152α0+ + 0.3776α0− + 0.4843α1+ − 0.5467α1− + 0.1691α2,

p4 = 0.3776α0+ + 0.3152α0− + 0.5157α1+ − 0.4533α1− + 0.1381α2,

p5 = 1.3072 − 0.0624|α| − 0.2762α2,

p6 = 0.3152α0+ + 0.3776α0− − 0.4553α1+ + 0.5157α1− + 0.1383α2.

(3.5)

The values of α0+, α0−, α1+ and α1− are defined as:

α0+ = AINT

{
α + 1

|α| + 1

}
,

α0− = AINT

{
1 − α

1 + |α|
}
,

α1+ =
|α| + α

2
,

α1− =
∣∣∣∣α − |α|

2

∣∣∣∣,

(3.6)

in which AINT is one of the intrinsic functions in FORTRAN that carries out the function of

truncating decimals.

Secondly, the diffusion-reaction equation can be written as:

∂C

∂t
=

∂

∂x

[
Dxx

∂C

∂x
+Dxy

∂C

∂y

]
+

∂

∂y

[
Dyx

∂C

∂x
+Dyy

∂C

∂y

]
+ kC. (3.7)

The diffusion-reaction equation is discretized by a three-level locally implicit scheme with

reference to the computational grid, as shown in Figure 3 [23].
Equation (3.7) contains two dimensions and is different from the form derived in

Hobson et al. [23]. However, their numerical scheme can be easily extended to the y-direction
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Figure 3: Computational mesh for the diffusion-reaction term.

in a similar manner and the final form of discretized equations using the finite difference

approximation is given as:

[
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(3.8)

in which K = 2DΔt/(Δx)2 is used and the diffusion coefficients are assumed as a constant

value, D. In (3.8), α and β are the artificial values which are determined to give the correct
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amount of diffusion and avoid any time lag problems. In general, a whole family of diffusion

schemes can be obtained by changing the values of α and β. The optimum scheme of this type

is the one which exhibits no time lag and is the most numerically stable.

In this study, (3.8) is solved by a two-dimensional three-level locally implicit scheme

with second-order accuracy [23]. Equation (3.8) can be rewritten for Cn+1
i,j as follows:

Cn+1
i,j = A

(
Cn−1
i+2,j + C

n−1
i,j+2 + C

n−1
i−2,j + C

n−1
i,j−2

)
+ B

(
Cn−1
i+1,j+1 + C

n−1
i+1,j−1 + C

n−1
i−1,j+1 + C

n−1
i−1,j−1

)
+ E

(
Cn−1
i+1,j + C

n−1
i,j+1 + C

n−1
i−1,j + C

n−1
i,j−1

)
+ FCn−1

i,j +G(kC),

(3.9)

in which A, B, E, F and G are given as:

A =
K2[

1 + (4α + 4)K +
(
16α − 4β

)
K2

] ,
B =

2K2[
1 + (4α + 4)K +

(
16α − 4β

)
K2

] ,
E =

K[1 − 4(1 − α)K][
1 + (4α + 4)K +

(
16α − 4β

)
K2

] ,
F =

[
1 + 4αK + 4

(
1 − β)K2

][
1 + (4α + 4)K +

(
16α − 4β

)
K2

] ,
G =

2Δt(4K + 4αK + 1)[
1 + (4α + 4)K +

(
16α − 4β

)
K2

] .

(3.10)

Since a first-order sink and zero-order reaction cannot generate numerical stability

alone, this study is concerned only with the presence of a first-order term. Thus, the zero-

order sedimentation rate, k0, is assumed to be zero, and the first-order sedimentation rate of

a suspended material, k1, is described as:

k1 = −λWs

H
, (3.11)

and a first-order sink is defined as:

sink = k1C, (3.12)
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in which λ is a coefficient for calculation of the concentration at the bottom and, for conve-

nience, is assumed to be 1, and Ws is the sedimentation rate, assumed to be 0.08 mm/sec.

4. Verification of the Numerical Model

The numerical model developed in this study is employed to simulate the change of tide

and tidal currents near the accident area of the Hebei Spirit oil spill occurred on December

7, 2007. The Hebei Spirit oil spill is the largest oil spill accident occurred in the Yellow Sea

located between Korea and China. In general, tide effects play a dominant role in coastal

processes in the Yellow Sea, which is well known for the strongest tidal currents in the world.

Therefore, the accuracy of the model for predicting tide and tidal currents is very important

to investigate oil spreading in this area. To verify the model, free surface elevations and

tidal ellipses at several points are computed and compared with the corresponding observed

data.

Figure 4 shows the computational domain and sea level observation points. Sea

bottom topography is also shown in the figure. Numerical simulations of tide and tidal

currents were conducted during 16 days (December 7 ∼ 22, 2007) and the harmonic analysis

for computed results is presented. Table 1 displays a comparison of observed data and

computed results using harmonic analysis. Computed results represent both amplitudes

and phase differences very well. Figure 5 shows a comparison of numerically obtained free

surface profiles and corresponding observed measurements at points of T-1, T-2, and T-3. The

agreement between the numerical solutions and field measurements is quite reasonable.

Tidal currents are very strong in the Yellow Sea and those may play an important

role in oil spreading. In Figure 6, tidal ellipses at points of C-1 and C-2 are computed and

compared with field-observed data to verify the accuracy of the numerical model. The

numerical model represents well-strong tidal currents observed in this area.
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5. Application of the Model

The spilled oil dispersion model as established in previous sections is applied to predict

the diffusion distribution on the Hebei Spirit oil spill. Subsequently, by conducting the

numerical calculations on the diffusion distribution considering tide and tidal currents

simultaneously, the prediction has been made through the comparison of the diffusion

distribution observation between at 8 p.m. on December 7, 2007 when the spilled oil flowed

into the whole Manripo and Sindu-ri seashore and at 11 a.m. on December 11, 2007 when the

satellite photographs exist (Figure 7). In Figure 7, a target area of the numerical simulation is

also described.

Figures 8(a) and 8(b) show distribution of simulated tidal currents field, 8(a) flood

phase and 8(b) ebb phase, where the Hebei Spirit was stranded on duration of a spring tide.

The results show that the tide current reaches the maximum speed in the northern area from

the accident and mainly flows not perpendicular to the coastline but parallel to that. As a

result, strong invasion of the oil spill to the coastline is not represented in the numerical

simulation.

Figures 9(a) and 9(b) show numerically obtained diffusion distribution at 8 p.m. on

December 7, 2007 and 11 a.m. on December 11, 2007. Figure 9(a) shows diffusion distribution
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Figure 6: Comparison of observed and predicted tidal ellipses.

after 13 hours since the Hebei Spirit had been stranded. The south-western currents on a

flood phase and north-eastern currents on ebb phase are well reproduced and those are

well reflected in the shape of oil distribution.Therefore, the numerical result shows similar
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Table 1: Observed data and computed results using harmonic analysis.

Data Pts.
Amplitude (cm) Phase (deg.)

Observed Computed Observed Computed

T-1

M2 231.6 231.8 106.6 115.5

S2 90.1 88.1 155.1 160.9

K1 34.7 36.2 287.0 288.0

O1 28.5 27.3 257.0 260.3

T-2

M2 211.1 207.5 95.4 94.2

S2 81.0 78.7 138.8 137.8

K1 35.8 33.3 280.1 278.8

O1 26.8 24.4 252.1 250.6

T-3

M2 215.7 215.5 90.0 89.3

S2 83.3 81.7 133.7 133.8

K1 35.2 34.1 277.5 275.7

O1 26.3 25.2 249.4 247.5

Target area

Figure 7: Satellite image of the Hebei Spirit oil spill (December 11, 2007).

distribution of the oil spreading with the satellite photograph (Figure 7). Since there is lack

of quantitative observed data near the target area, numerical results are compared with a

satellite image only in a qualitative viewpoint. On the other hand, by comparing the satellite

photograph and Figure 9(b), numerical results do not represent strong invasion of the oil

spill to the coastline. It may be occurred because effects of wind wave were neglected in the

numerical simulation. Nevertheless, it is obvious that the model represents well the whole

processes of the oil spreading, and the model can be applied to predict the oil spreading in a

real coastal environment.
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Figure 8: Distribution of tidal currents near the target area.

6. Concluding Remarks

In this study, a numerical model is employed to solve a two-dimensional advection-diffusion-

reaction equation. The model is based on a standard split operator (fractional step) approach.

Thus, the hyperbolic (advection) and parabolic (diffusion) portions of the equation are solved

separately by using techniques describing properly the physical behaviors of each. In the

model, the advection step is solved by using the SOWMAC scheme, while the diffusion-

reaction step is done by a three-level locally implicit scheme.

The numerical model is first applied to an idealized problem to verify its accuracy. The

model produces results agreeable with corresponding analytical solutions and field observed

data. The model is then employed to investigatethe behavior of the oil spreading in a coastal
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Figure 9: Computed diffusion distribution of the Hebei Spirit oil spreading.

environment. The model yields reasonable results. The employed model could be used to

forecast the behaviors of oil spreading in various practical situations.
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The models of stress corrosion and pressure solution established by Yasuhara et al. were intro-
duced into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-
porosity medium developed by the authors. Aiming at a hypothetical model for geological dis-
posal of nuclear waste in an unsaturated rock mass from which there is a nuclide leak, two compu-
tation conditions were designed. Then the corresponding two-dimensional numerical simulation
for the coupled thermo-hydro-mechanical-migratory processes were carried out, and the states of
temperatures, rates and magnitudes of aperture closure, pore and fracture pressures, flow veloci-
ties, nuclide concentrations and stresses in the rock mass were investigated. The results show: the
aperture closure rates caused by stress corrosion are almost six orders higher than those caused
by pressure solution, and the two kinds of closure rates climb up and then decline, furthermore
tend towards stability; when the effects of stress corrosion and pressure solution are considered,
the negative fracture pressures in near field rise very highly; the fracture aperture and porosity
are decreases in the case 1, so the relative permeability coefficients reduce, therefore the nuclide
concentrations in pore and fracture in this case are higher than those in case 2.

1. Introduction

The rock mass below thousands of meters from the ground surface, which is dual-porosity

medium with pore and fracture as the conduits of transporting, will be the site for the re-

covery of energy resources and minerals, and for the safe isolation and storage of high level

radioactive wastes, CO2, and so forth. So, the changes in the ambient stress and temperature

conditions may affect the permeability characteristics of these conduits combined effects.

Stress corrosion [1–4] and pressure solution [5–8], which are corresponding to the fractures,
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may result in the sealing and degradation of permeability through compaction driven by frac-

turing (or crushing) of the propping asperities and by dissolution at contacting asperities,

respectively.

When local tensile stresses result from the compressive loading of contacting asperi-

ties, “subcritical” or “quasistatic” cracking may occur, leading to a time-dependent or prog-

ressive failure. Specifically, sub-critical crack growth in the presence of water is believed to be

facilitated by chemical reaction, and the resulting process is termed stress corrosion. Pressure

solution incorporates three serial processes: mineral dissolution at stressed contacts, diffusive

transport of this material along the intervening thin film of water, and ultimate deposition of

the mineral matter at the pore wall.

Dove [9] rigorously investigated the dissolution kinetics of quartz under the wide

range of temperature and pH conditions and defined an empirical expression of mode I crack

velocity resulted from chemical dissolution. Based on the experimental data, Yasuhara and

Elsworth [10] investigated the evolution of fracture aperture within a sample of novaculite

containing a natural fracture, and they also presented the models which separately account

for stress corrosion and pressure solution to describe this response. Taron and Elsworth [11]
introduced a kind of coupled thermo-hydro-mechanical-chemical model of dual-porosity

medium, in which the influence of pressure solution, shrinkage and dilation of T-H-M, and

precipitation and dissolution of mineral on the opening and closure of apertures was con-

sidered by simplification. Subsequently, on the basis of modifying permeability and porosity,

the characteristics and change mechanisms of permeability within a rock mass containing

natural fractures with TOUGHREACT and FLAC3D were investigated. Taron and Elsworth

[12, 13] developed a new model of pressure solution and applied it for numerical simulation

of coupled mechanical and chemical processes in engineered geothermal reservoirs with

dynamic permeability. Using simplified expression developed by Min et al. [14], the author

improved the FEM code of T-H-M coupling of dual-porosity medium, modified the aperture

timely and established the evolution of fracture permeability with pressure solution. Aiming

at a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the

calculation example, the relative numerical simulation [15] was carried out for three cases

with different apertures. However, the concentration field of solute was not involved. It

is well known that the leakage and diffusion of nuclide from nuclear waste repository are

required to study [16]. Consequently, it is imperative to improve the existing model and FEM

code, and to perform the analyses of T-H-M-M coupling based on the above work.

The author introduced primarily the models of stress corrosion and pressure solution

by Yasuhara into the governing equations presented in [15], and the concentration of solute

was involved as well. That is, in the dual-porosity rock mass, the stress field and the tempe-

rature field were single, but the water pressures both in pore and fracture are different as

well as the concentrations. Therefore, the corresponding simulation for T-H-M-M coupling

was constructed. And then, aiming at a hypothetical model for geological disposal of nuclear

waste in an unsaturated dual-porosity rock mass, two computation cases were designed: (1)
the fracture apertures were changed with the stress corrosion and pressure solution (the poro-

sity of intact rock was also a function of stress); (2) the fracture aperture and the porosity of

matrix rock were constants. The corresponding FEM analyses were performed under certain

initial conditions of temperature, pore water pressure, in situ stress, and nuclide release in-

tensity, and both the distributions and the changes of temperatures, pore pressures, flow

rates, saturations, nuclide concentrations, and stresses in the near field of repository were

investigated. Some conclusions were obtained.
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Figure 1: Schematic of fracture compaction induced by microcrack propagation [10].

2. Modification of Fracture Permeability

2.1. Effect of Stress Corrosion on Aperture

Assume that the asperity contacts of brittle materials, schematically shown in Figure 1, within

a fracture are in Hertzian contacts, and that a circumferential crack at or outside the contact

may be induced by the tensile stress σt. And this crack is described as stress corrosion. Mode

I crack velocity for quartz was defined by Dove, given as [9]

vSi–O = AH2O exp

(−ΔHH2O

RT

)
exp

(
b∗H2OK1

)(
θH2O

Si–O

)
+AOH− exp

(−ΔHOH−

RT

)
exp

(
b∗

OH−K1

)(
θOH−

Si–O

)
,

(2.1)

where vSi–O is mode I crack velocity caused by chemical dissolution; AH2O and AOH− are the

experimentally-determined factor related to temperature; ΔHH2O and ΔHOH− are activation

enthalpies; R is the gas constant; T is temperature; b∗
H2O

and b∗
OH− are the experimentally

determined constants derived from the geometry of crack tip; K1 is the stress intensity factor;

θH2O
Si–O

and θOH−
Si–O

always satisfying θH2O
Si–O

+ θOH−
Si–O

= 1 are the fraction of Si–O reacting with mole-

cular water or hydroxyl ions, and there will be θH2O
Si–O

= 1 and θOH−
Si–O

= 0 at low pH, and θH2O
Si–O

= 0

and θOH−
Si–O

= 0 at the high one. Consequently, the closure rate of fracture mechanical aperture

due to stress corrosion, given by Yasuhara and Elsworth [10], is as follows:

dEs

dt
= −(1 − Rc) · vSi–O,

K1 ≈ σt
√

2πr,

σt = −
(
1 − 2μ

)
2

σa,

σa =
R

Rc
σ,

(2.2)
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where r is the distance parallel to the long axis direction of mode I crack caused by σt, and

it is assumed to be infinitesimal as well as initial length of crack; μ is the Poisson’s ratio of

material; σt is the tensile stress induced by σa which reaches the maximum value just at the

edge of the contact; σa is the real stress exerted over the contact area; σ is average macroscopic

effective stress. R is the nominal area of the fracture (taking unit value); Rc is the contact-area

ratio, and Rc ≤ R.

Rc can be calculated via the expression below:

Es = Er + (E0 − Er) exp[−(Rc − Rc0)a], (2.3)

where Es and Er are the mean and residual apertures caused by stress corrosion, respectively;

E0 is the initial aperture; Rc0 is the relative contact-area ratio at the reference stress; a is em-

pirical constant.

Therefore, the evolution of fracture mechanical aperture derived from stress corrosion

is

Est+Δt = E
s
t +

dEs

dt
Δt. (2.4)

2.2. Effect of Pressure Dissolution on Aperture

The dissolution defined by Yasuhara and Elsworth [10] is expressed as

dMdiss

dt
=

3πV 2
m(σa − σc)k+ρgd2

c

4RT
, (2.5)

where dMdiss/dt is the rate of addition of dissolved mass into solution at the interface; Vm
is molar volume of the solid; σc is the critical stress that defines stress state where the com-

paction will effectively halt and reach equilibrium while σa is equal to σc; k+ is the dissolution

rate constant of the solid; ρg is the density of solid; dc is the diameter of the asperity contact.

And

k+ = k0
+ exp

(
− Ea
RT

)
,

σc =
Em(1 − T/Tm)

4Vm
,

(2.6)

where k0
+ is constant factor; Ea is the activation energy; Em and Tm are the heat and tempe-

rature of fusion, respectively.

The closure rate of fracture mechanical aperture caused by pressure solution is

dEp

dt
= −dMdiss

dt
· 1

ρg
· 1 − Rc

(π/4)d2
c

= −3V 2
mk

0
+(1 − Rc)(σa − σc)

RT
exp

(
− Ea
RT

)
. (2.7)
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And the evolution of fracture mechanical aperture due to pressure solution can be

expressed as

E
p

t+Δt = E
p

t +
dEp

dt
Δt. (2.8)

2.3. Fracture Permeability

The fracture spacing in rock mass is assumed to be s, and then the total mechanical aperture

for a single fracture at the time of t + Δt is expressed as

Et+Δt =

(
E0 +

∑
Δt

dEs +
∑
Δt

dEp
)
. (2.9)

So, the hydraulic aperture for a single fracture is [17]

et+Δt =
E2
t+Δt

JRC2.5
, (2.10)

where JRC is the roughness coefficient of fractures.

Consequently, the equivalent permeability coefficient of fracture in rock mass is [18]:

Kt+Δt =
ge3

t+Δt

12vs
, (2.11)

where g is gravitational acceleration (9.81 m/s2) and v is kinematics viscosity (the magnitude

relative to purified water at 20◦C is 1.0 × 10−6 m2/s).

2.4. Effect of Stress on Permeability of Rock Matrix

According to the empirical expression presented by J. P. Davies and D. K. Davies [19], the

porosity and permeability of the rock matrix, when the stress in rock matrix changes, can be

modified as

φ = φr +
(
φ0 − φr

)
exp

(
f · σ ′

m

)
,

k = k0 exp

[
c ·
(
φ

φ0
− 1

)]
= Fφkk0,

(2.12)

where φ0 and k0 are the porosity and permeability of rock matrix at the stress state of zero,

respectively; φr is the residual porosity of rock matrix at a high stress state; σ ′
m is average

effective stress; f and c are the experimentally determined parameters, respectively; Fφk is

the modification factor of pore permeability.
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Fracture

Pore

Figure 2: Porous-fractured media.

3. Thermo-Hydro-Mechanical-Migratory Coupling Equations for
Dual-Porosity Medium

For the dual-porosity medium shown in Figure 2, it can be thought that there exist pore water

pressure and fracture water pressure, pore concentration and fracture concentration, but

stress field and temperature field are single in the medium. So, one kind of three-dimensional

model for coupled thermo-hydro-mechanical-migratory process is created. By omitting the

complex deriving steps, the governing equations are given as follows.

3.1. Equilibrium Stress Equation

Supposing there are n sets of fractures in a fractured porous rock mass, the equilibrium stress

equation can be written in the global coordinate system as below:

dσ

dt
= D

[
dε

dt
−m

(
C1 − 1

3Ks

)(
sw1 +Ds1pw1

)dpw1

dt

−m
(
C2 − 1

3Ks

)(
sw2 +Ds2pw2

)dpw2

dt
−mβS

3

dT

dt

]
,

(3.1)

where σ and ε are the total stress and total stain, respectively; D = (C1 + C2)
−1 is the elastic

matrix; mT = [1 1 0] is the unit normal column matrix; Ks, βS, and T are the bulk modu-

lus, synthesized thermal expansion coefficient, and temperature of the fractured porous rock

mass, respectively; sw1, pw1, Ds1, C1 and sw2, pw2, Ds2, C2 are the saturation degree, water

pressure, specific moisture content, and flexibility matrix of rock matrix and fractured net-

work, respectively; t is the time.

3.2. Continuity Equation for Groundwater

On the basis of the principle of mass balance, the water volume flowing into an object during

a time increment of dt is equal to the rate of water accumulation within the object. Assuming

that the seepage of water can be expressed by Darcy law, the continuity equation for rock

matrix is expressed by

− ∇T

{
k1
krw1

μw
∇(pw1 + γwz

)}
+
αk1krw1

μw

(
pw1 − pw2

)
+A1

∂ε

∂t
+ B1

∂pw1

∂t
+ E1

∂pw2

∂t
+ F1

∂T

∂t
− ∇TDt1∇T = 0,

(3.2)
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where k1 and krw1 are the intrinsic permeability tensor and relative permeability of rock

matrix, respectively; ρw, μw, and γw are the density, dynamic viscosity and unit weight of

water, respectively; z is the head above some arbitrary datum; α is a parameter determined by

the aperture and geometry of fracture; Dt1 is the thermal water diffusivity of rock matrix; and

A1, B1, E1, and F1 are the constant matrixes.

For the fractured medium, the continuity equation of groundwater is:

− ∇T

{
k2
krw2

μw
∇(pw2 + γwz

)} − αk1krw1

μw

(
pw1 − pw2

)
+A2

∂ε

∂t
+ B2

∂pw2

∂t
+ E2

∂pw1

∂t
+ F2

∂T

∂t
− ∇TDt2∇T = 0,

(3.3)

where k2 and krw2 are the intrinsic permeability tensor and relative permeability of fractured

medium, respectively; A2, B2, E2 and F2 can be obtained by replacing subscripts 1 and 2 in

expressions of A1, B1, E1 and F1 with subscripts 2 and 1; Dt2 is the thermal water diffusivity

of fractured medium.

3.3. Energy Conservation Equation

In accordance with the principle of energy conservation, the rate of heat flowing into an object

equals the increase of the internal energy within the object. The temperature field is single,

and the energy conservation equation takes the form below:

− ∇Tλ∇T +
(
sw1φ1Va

1 + sw2φ2Va
2

)
ρwCw

(
∇TT

)
+
[(

1 − ϕ1

)
CsT

ρs

Ks
ϕ1CwT

ρw

Kw

](
sw1 +Ds1pw1

)∂pw1

∂t

− {(1 − ϕ1

)
CsTρsβs +

(
ϕ1 + ϕ2

)
CwTρwβw − [(1 − ϕ1

)
ρsCs +

(
ϕ1 + ϕ2

)
ρwCw

]}∂T
∂t

+
1

2

(
1 − φ1

)
βsT

∂

∂t

(
ui,j + uj,i

)
δij = 0,

(3.4)

where Cw is the specific heat of water; Cs, ρs, and λ are the specific heat, density and thermal

conductivity matrix of fractured porous rock mass, respectively; V a
1 and V a

2 are the apparent

flow velocities of pore water and fracture water, respectively; ui and uj are the displacement

components; δij is the Kronecker’s delta.

3.4. Percolation-Migration Equation

The percolation-migration equation in [20] was improved by us with the new meaning of

adding the solute exchange between rock matrix and fractured network due to concentration
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difference. The new percolation-migration equation is derived from the old one as follows:

Riθiρw
∂ci
∂t

= ∇TθiρwDi∇ci − θiρwVi∇ci − Riθiρwχci + (−1)i+1ωθiρwD1(C1 − C2) −Qci, (3.5)

where i = 1, 2 correspond to rock matrix and fractured network, respectively; Ri is the retar-

dation coefficient and is defined as Ri = Vi/V ∗
i = (1 + (ρdi/θi)Kdi); Vi is the apparent velocity

of groundwater; V ∗
i is the transport velocity of radioactive nuclide; ρdi is the dry density of

rock matrix or fractured network; Kdi is the distribution coefficient for saturated media; Vi
is the apparent velocity of groundwater; θi the volumetric water content; Di is the diffusion

tensor; ci is the concentration of solute; Vi is the apparent velocity vector of groundwater; χ

is the radioactive decay constant; ω is the coefficient which depends on the fracture aperture

and geometry; Qci is the source term.

The diffusion tensor can be given by

Diαβ = αiT |Vi|δαβ + (αiL − αiT )
ViαViβ

|Vi| + αimτiδαβ, (3.6)

where αiT is the transversal dispersivity; αiL is the longitudinal dispersivity; |Vi| is the absolute

value of the apparent flow velocity; αim is the molecular diffusion coefficient; τi is the tor-

tuosity coefficient; δαβ is the Kronecker’s delta.

The discretizations both in space and time domains are carried out for the equilibrium

equation, the continuity equation, the energy conservation equation, and the percolation-

migration equation by Galerkin method, and then the FEM pattern can be obtained.

The models of stress corrosion and pressure dissolution developed by Yasuhare et al.

were introduced into the governing equations above for T-H-M coupling in dual-porosity

rock mass by the author, and the corresponding algorithm was consulted in [21, 22].

4. Computation Example

The computation model in laboratory scale is shown in Figure 3. A canister filled with the

vitrified radioactive nuclear waste is disposed at a certain depth beneath the ground surface,

and the surrounding rock mass is quartzite which is also an unsaturated dual-porosity

medium. As an approximate simplification, it is treated to be a plane strain problem. A com-

putation region with a horizontal length of 4 m and a vertical length of 8 m is taken. There

are 800 elements and 861 nodes in the mesh. From the midpoint at the right margin of the

vitrified waste to right, the node numbers are 432, 433, 434, 435, and 436, respectively. The

boundary conditions are as follows.

The free displacement is allowed for the top of computation domain over which the

vertical distributed load of σv = 26.7 MPa is exerted; both the left and right sides are fixed

horizontally; the bottom face is fixed vertically; on all the boundary faces the pore pressure,

fracture pressure, and temperature are constant with values of −4.59 MPa, −0.46 MPa, and

20◦C, respectively. There exist one set of horizontal fractures and one group of vertical ones

in the rock matrix, separately. The state of coupled T-H-M is to act as the role of stress corro-

sion and pressure solution on the fracture aperture. The relative calculating parameters are

tabulated in Tables 1, 2 (The parameter values in these two tables are assumed by the authors,

but they have reasonable orders.), and Table 3 (All the parameters in this table are taken from
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σv = 26.7  MPa

Pw1 = 4.59 MPa−

Pw2 = −4.6 MPa

4 m

Vitrified waste

T = 20 C

Pw1 = 4.59 MPa−

−4Pw2 = .6 MPa

T = 20 C 8 m

Daul-porosity media

Figure 3: Computation model.

[10] except Rc0, R, and JRC.). The saturations of rock matrix and fracture system are 0.44 and

0.01, respectively, and the temperature of rock mass is the uniform value of 20◦C at the initial

state. The waste continuously releases heat with a constant power of 1000 W during a period

of 4 years [23].
The water retention curves of both porous and fracture media conform to the Van

Genuchten model, that is,

sw = (sws − swr)
(
1 +

∣∣αψ∣∣n)−m + swr, (4.1)

where α = 3.86 × 10−6 m−1, n = 1.41 for the rock matrix; α = 5.26 × 10−4 m−1, n = 2.55 for the

fracture system; m = 1 − 1/n; ψ is the water potential head; sws is the maximum saturation

with a value of 1.0 while swr is the minimum saturation of which the values are 0.19 for the

rock mass and 0.01 for the fracture system, respectively.

The relationship between relative permeability and saturation degree is

krw = s2.0
w . (4.2)

Both the thermal water diffusivities of the rock matrix and fracture system are taken

as

Dt = 2.5 × 10−10 m2/s◦C. (4.3)
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Table 1: Main computation parameters.

Property Rock mass Vitrified waste

Density, ρ (kN·m−3) 26.7 25.0

Porosity, φ1 0.11 0.0

Permeability, k1/μw (m2·Pa−1·s−1) 1.24 × 10−13 1.0 × 10−27

Young’s modulus, E (GPa) 37.0 53.0

Poisson’s ratio, μ 0.3 0.25

Specific heat, C (kJ·kg−1 · ◦C−1) 1.0 0.7

Thermal expan. coeff., β (◦C−1) 8.8 × 10−6 1.0 × 10−5

Thermal conductivity, λ (W·m−1 · ◦C−1) 2.8 5.3

Table 2: Parameters for fracture sets used in calculation.

Parameter Horizontal fracture Vertical fracture

Spacing, S (m) 0.3 0.3

Continuity ratio, l 1 1

Dip angle, θ(◦) 0 90

Normal stiffness, kn (MPa/m) 1000.0 2000.0

Shearing stiffness, ks (MPa/m) 500.0 1000.0

Porosity, φ2 0.01 0.01

Permeability, k2/μw (m2/Pa·s) 9.7 × 10−9 9.7 × 10−9

Table 3: Parameters for stress corrosion and pressure solution.

Parameter Unit Values

Empirical constant, a — 5.0

Origin asperity contact-area ratio, Rc0 — 0.1

Nominal asperity contact-area ratio, R — 1.0

Roughness coefficient of fracture, JRC — 2.5

Factor, AH2O ms−1 1.12 × 10−4 T

Factor, AOH− ms−1 2.51 × 103 T

Origin aperture, E0 m 0.0125

Residual aperture, Er m 0.0025

Constant, b∗
H2O

N−1 m3/2 2.69 × 10−5 (quartz)
Constant, b∗

OH− N−1 m3/2 1.78 × 10−5 (quartz)
Activation energy, Ea J·mol−1 7.0 × 104 (quartz)
Heat of fusion, Em J·mol−1 8.57 × 103 (quartz)
Activation enthalpy for H2O, ΔHH2O J·mol−1 6.6 × 104

Activation enthalpy for OH−, ΔHOH− J·mol−1 8.27 × 104

Reference dissolution rate constant, k0
+ mol·m−2 s−1 1.59

Infinitesimal distance from crack tip, r m 1.0 × 10−6

Gas constant, R J·mol−1 K−1 8.31

Temperature of fusion, Tm K 1883 (quartz)
Molar volume, Vm m3 mol−1 2.27 × 10−5 (quartz)
Fraction of Si–O reacting with H2O, θH2O

Si–O
— 0.99921 (pH = 7)

Fraction of Si–O reacting with OH−, θOH−
Si–O

— 0.00079 (pH = 7)
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Figure 4: Temperatures versus time at some nodes for case 1.

The vitrified waste is the source term with a diffusive mass flux of radioactive nuclides

Qc1 = 1.44 × 10−10 mol·kg/m3·s−1. The constants used in the computation concerned with the

percolation-migration of nuclide are supposed as follows: the tortuosity coefficients τ1, τ2

are 0.4 and 0.8, respectively; the dispersivities in the longitudinal direction α1L and α2L are

1.0 m and 2.0 m, respectively; the dispersivities in the transversal direction are αiT = αiL/10;

the molecular diffusion coefficients α1m and α2m are 1.0 × 10−9 m2/s and 2.0 × 10−9 m2/s,

respectively; the distribution coefficients Kd1 and Kd2 are 8.0 mL/g and 5.3 mL/g, respec-

tively; the dry densities ρd1 and ρd2 are 23.0 kg/m3 and 21.0 kg/m3, respectively; the para-

meter ω is 100.0 m−2; the radioactive decay constant χ = ln 2/Thalf, where Thalf is the half life

of radioactive nuclide and is taken as 1000 years in the computation. The waste radiates con-

tinuously heat with a power of 1000 W during a period of 4 years, and the time step is taken

as 100000 s.

For the two cases with different evolutions of fracture aperture above, the change and

distribution of the temperatures, displacements, pore pressures, nuclide concentrations and

stresses in the rock mass are studied. The analyses of the main computation results are as

follows.

The changes of temperatures in calculation region for case 1 and 2 are basically the

same. Taking case 1 for instance, the temperatures versus time at nodes 432, 433, 434, and 435

are shown in Figure 4. In the early 0.1 a, the temperature of buffer increases fast, then it grows

slowly. At the termination of computation, the temperatures of nodes 432, 433, 434, and 435

are 77.8◦C, 62.0◦C, 52.5◦C, and 45.7◦C, respectively.

Induced by the stress corrosion and pressure dissolution, the aperture closure rates of

the horizontal fracture and the vertical fracture at the midpoint on the right edge of the

canister versus time are plotted in Figures 5 and 6, respectively. It can be seen that both the

rates due to these two factors climb up, then decline after the peak, and furthermore tend

towards stability slowly. The aperture closure rates caused by stress corrosion are almost six

orders higher than those caused by pressure solution. This response is similar with the con-

clusions presented in [10]. Meanwhile, the aperture closure rates of horizontal fractures are

larger than those of vertical fractures, and the reason is that the vertical stresses are higher

than the horizontal ones in rock mass. The apertures and the asperity contact-area ratios of
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Figure 5: |dEs/dt| caused by stress corrosion versus time at middle point of right margin of vitrified waste.

Horizontal fracture

Vertical fracture

Time (year)

0 1 2 3 4 5

4

9

8

7

6

5

3

2

1

0

−1

|d
E
p
/
d
t|
/

1
.0
E
−

1
6
 m
·s
−

1

Figure 6: |dEp/dt| caused by pressure solution versus time at middle point of right margin of vitrified
waste.

the horizontal fracture and the vertical fracture at the midpoint mentioned above versus time

are presented in Figures 7 and 8, respectively. For the former, the apertures decrease from the

original value and then tend towards the residual value. The contact-area ratios of asperities

increase also from initial value then towards the nominal value (unit value), and the changes

of the values corresponding to the horizontal fractures are more significant. It can be seen in

Figure 9 that stress intensity factor ratio on vertical crack is much larger than that on hori-

zontal crack at this midpoint, and both of them reduce over time. It is shown in Figure 10 that

at this midpoint, the critical stresses of horizontal fracture and vertical fracture are equal.

They decline rapidly at the beginning, and then tend towards constant. This phenomenon is

just due to the combined effects of temperature, stress, and chemistry.
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Figure 7: Fracture apertures versus time at middle point of right margin of vitrified waste.
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Figure 8: Contact-area ratios versus time at middle point of right margin of vitrified waste.

Pore and fracture pressures at nodes 432, 433, 434, and 435 versus time for case 1 and

case 2 are presented in Figures 11 and 12, respectively. It can be seen that negative pore

and fracture pressures rise higher for case 1 than those for case 2. Particularly, at node 432

where the effects of stress corrosion and pressure solution are the most intense, the negative

fracture pressure reaches a quite large value. The reason of this response is that the reduction

of stress corrosion and pressure dissolution on the fracture apertures and the change of pore

permeability with time are considered for case 1, while the fracture apertures and the pore

permeability remain constants for case 2. The negative pore and fracture pressures at node 432

at 4 a are −12.25 MPa, −7.95 MPa for case 1 and −6.03 MPa, −0.66 MPa for case 2, respectively.

Contours of pore and fracture pressures within a range of 2 m× 2 m around the canister at 4

years for case 1 and case 2 are described in Figures 13 and 14, respectively. It is found that the
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Figure 9: Stress intensity factor ratios versus time at middle point of right margin of vitrified waste.
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Figure 10: Critical stresses versus time at middle point of right margin of vitrified waste.

fracture pressures affected by the stress corrosion and pressure dissolution for case 1 have a

significant growth around the canister as compared with case 2.

The flow vector distributions of pore and fracture water in calculation domain at 4 a

for the two cases are presented in Figure 15. The fracture flow vectors for case 1, on which

the effects of stress corrosion and pressure dissolution are considered, are quite distinguished

from those for case 2, especially in the vicinity of canister. Taking the node 432 for instance,

flow velocities of pore and fracture are 3.40 × 10−8 m/s, 1.52 × 10−8 m/s for case 1 and 2.32 ×
10−8 m/s, 2.77 × 10−8 m/s for case 2, respectively.

Pore and fracture concentrations at nodes 432, 433, 434, and 435 versus time for the

two cases are presented in Figures 16 and 17, respectively. Compared with case 2 in which all

of the aperture, porosity, and pore permeability are constants, the nuclides both in fracture

and pore are gathered largely in case 1 for the reason that both the reduction of aperture
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Figure 11: Pore and fracture water pressures versus time at some nodes for case 1.
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Figure 12: Pore and fracture water pressures versus time at some nodes for case 2.

due to stress corrosion and pressure dissolution and the compression of porosity due to

mean effective stress lead to decreasing the permeabilities of pore and fracture. The nuclide

concentrations at nodes 432, 433, 434, and 435 at 4 a for the two cases are 20.18/6.82,

15.42/3.60, 12.06/2.55 and 9.36/1.76 for rock matrix, and 10.86/8.44, 8.39/6.82, 6.28/5.54 and

5.00/4.63 for fracture system, respectively, (the values in the left and right of “/” are for case

1 and 2, resp., and their units are 10−3 mol/m3). Contours of pore and fracture concentrations

within a range of 2 m× 2 m around the canister at 4 years for case 1 and case 2 are described

in Figures 18 and 19, respectively.

The differences between the magnitudes and distributions of stresses within the rock

mass in the two cases are quite small for the reason that the impacts of negative pore pres-

sure and negative fracture pressure on the mechanical balance are not considered [24]. For

instance, normal stress contours in calculation domain at 4 a for case 1 are given in Figure 20.



16 Journal of Applied Mathematics

−7.2

−7
.4

−7.6

−
6.8

−
6
.6

−6
.8

−7

−
7.2

−7.4
−7.6

−6
.6 −

6.4

−7.2

−6−6.2

−6
.8

−6
.6

−6
.4

−
7.4

−6
.4

−7

−
6
.8

−
6

−
6.2

−
6
.6

−
6.4

−
7.2

−
7

−6.8
−6.6

−6.4

−
7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

5

4.8

4.6

4.4

4.2

4

3.8

3.6

3.4

3.2

3

−7.8

(a) Pore pressure

5

4.8

4.6

4.4

4.2

4

3.8

3.6

3.4

3.2

3
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−
1

−3

−1

−5

−11

−7

−9

−5

−3

−
1

(b) Fracture pressure

Figure 13: Contours of pore and fracture pressures in a 2 m × 2 m area at 4 years for case 1 (MPa).
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Figure 14: Contours of pore and fracture pressures in a 2 m × 2 m area at 4 years for case 2 (MPa).

It can be known that the stress fields, influenced by the existence of the vitrified waste and the

effect of radiating heat, are distinguished from those caused only by the gravity of rock mass

(the contours of the latter are the horizons). At 4 a, the horizontal stress and vertical stress at

the midpoint on the right edge of the canister are −0.124 MPa and −26.75 MPa, respectively.

The compressive effect is not to be analyzed in this paper.
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(a) Pore flow (b) Fracture flow

(A) Case 1 (B) Case 2

(a) Pore flow (b) Fracture flow

Figure 15: Flow vectors of pore and fracture water in calculation domain at 4 years.
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Figure 16: Nuclide concentrations versus time at some nodes for case 1.

5. Concluding Remarks

Based on the introduction of stress corrosion and pressure dissolution of fracture aperture as

well as the concentration field of solute, the existing governing equations for T-H-M coupling

in dual-porosity rock mass were developed to a model for T-H-M-M coupling. Taking a

hypothetical model for geological disposal of nuclear waste with a nuclide leakage in an

unsaturated dual-porosity rock mass as a calculation example, on the basis of the two cases

whether the changes of fracture apertures with stress corrosion and pressure dissolution are

considered or not (meanwhile whether the porosity of rock matrix is the stress function or

not), the change and distribution of temperatures, rates and magnitudes of aperture clo-

sure, pore pressures, flow velocities, nuclide concentrations, and stresses in rock mass were



18 Journal of Applied Mathematics

Node 432

Node 433

Node 434

Node 435

0 1 2 3 4 5

Time (year)

C
o

n
ce

n
tr

a
ti

o
n

/
1
.0

E
−

3
 m

o
l·

m
−

3

12

10

8

6

4

2

0

(a) Pore concentration

Node 432

Node 433

Node 434

Node 435

0 1 2 3 4 5

Time (year)

C
o

n
ce

n
tr

a
ti

o
n

/
1
.0

E
−

3
 m

o
l·

m
−

3

9

8

7

6

5

4

3

2

1

0

−1

(b) Fracture concentration

Figure 17: Nuclide concentrations versus time at some nodes for case 2.
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Figure 18: Contours of nuclide concentration in a 2 m × 2 m area at 4 years for case 1 (10−3 mol/m3).

investigated by the two-dimensional FEM simulation for the coupled T-H-M-M processes.

It is shown from the computing results that the temperature differences between case 1 and

case 2 are not large, and the temperature in near field can reach 30.0∼80.0◦C at the end of

calculation (4 a); the aperture closure rates caused by stress corrosion are almost six orders

higher than those produced by pressure solution, and the two kinds of closure rates rise and

then reduce, and furthermore tend towards stability; the fracture apertures decrease from the

original value and tend towards the residual value while the contact-area ratios of asperities

increase from the original value and tend towards the nominal value; the tensile stress and

critical stress exerted over cracks decline over time and then tend towards constants; the

negative fracture pressures for the case in which the effects of stress corrosion and pressure

solution are considered in near field rise more highly than those for the case in which the
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Figure 19: Contours of nuclide concentration in a 2 m × 2 m area at 4 years for case 2 (10−3 mol/m3).

−
0
.1

6

−
0
.1

4
−

0
.1

3
−

0.16−
0
.1

7

−
0.15

−
0
.1

8

−
0.

18

−
0
.1

6

−
0
.1

7

(a) Horizontal stress

−26.72

−26.74

−26.76

−26.78

−26.8

−26.82

−26.84

−26.86

−26.70

(b) Vertical stress

Figure 20: Normal stress contours in calculation domain at 4 years for case 1 (MPa).

corresponding effects are not considered, and the differences of flow vectors between the

two cases are quite large; the permeabilities of fracture and pore decline resulted from stress

corrosion, pressure dissolution, and mean effective stress in case 1, while they are constants

in case 2, so the concentrations both in fracture and pore for the former are larger than those

for the latter. but the differences between the magnitudes and distributions of stresses within

the rock mass in two cases are very small.
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However, the models of stress corrosion and pressure solution by Yasuhara et al. are

based on the laboratory test for small scale rock, and the application of them in large-scale

rock mass engineering remain to be examined. They are applied on FEM analysis with

THMM coupling for a hypothetical model of geological disposal of nuclear waste in an un-

saturated rock mass by the authors, and the reliability of it is limited in a certain extent. The

further research remains to be carried out in the future.

Acknowledgments

This paper is supported by the National Key Basic Research and Development Program of

China (973 Project) (Grant no. 2010CB732101), the National Natural Science Foundation of

China (Grant no. 51079145), and the National Key Technology R&D Program (Grant no. 2009-

BAK53B03).

References

[1] B. K. Atkinson, “A fracture mechanics study of subcritical tensile cracking of quartz in wet environ-
ments,” Pure and Applied Geophysics, vol. 117, no. 5, pp. 1011–1024, 1979.

[2] P. M. Dove, “The dissolution kinetics of quartz in sodium chloride solutions at 25◦ to 300◦C,” American
Journal of Science, vol. 294, no. 6, pp. 665–712, 1994.

[3] J. S. Chester, S. C. Lenz, F. M. Chester, and R. A. Lang, “Mechanisms of compaction of quartz sand at
diagenetic conditions,” Earth and Planetary Science Letters, vol. 220, no. 3-4, pp. 435–451, 2004.

[4] Y. Nara and K. Kaneko, “Study of subcritical crack growth in andesite using the Double Torsion test,”
International Journal of Rock Mechanics and Mining Sciences, vol. 42, no. 4, pp. 521–530, 2005.

[5] P. Y. F. Robin, “Pressure solution at grain-to-grain contacts,” Geochimica et Cosmochimica Acta, vol. 42,
no. 9, pp. 1383–1389, 1978.

[6] T. Dewers and A. Hajash, “Rate laws for water-assisted compaction and stress-induced water- rock
interaction in sandstones,” Journal of Geophysical Research, vol. 100, no. 7, pp. 13–112, 1995.

[7] A. Revil, “Pervasive pressure-solution transfer: a poro-visco-plastic model,” Geophysical Research Let-
ters, vol. 26, no. 2, pp. 255–258, 1999.

[8] H. Yasuhara, D. Elsworth, and A. Polak, “Evolution of permeability in a natural fracture: significant
role of pressure solution,” Journal of Geophysical Research B, vol. 109, no. 3, pp. B03204–11, 2004.

[9] P. M. Dove, “Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses,”
Journal of Geophysical Research, vol. 100, no. 11, pp. 22–359, 1995.

[10] H. Yasuhara and D. Elsworth, “Compaction of a rock fracture moderated by competing roles of stress
corrosion and pressure solution,” Pure and Applied Geophysics, vol. 165, no. 7, pp. 1289–1306, 2008.

[11] J. Taron and D. Elsworth, “Thermal-hydrologic-mechanical-chemical processes in the evolution of
engineered geothermal reservoirs,” International Journal of Rock Mechanics and Mining Sciences, vol. 46,
no. 5, pp. 855–864, 2009.

[12] J. Taron and D. Elsworth, “Coupled mechanical and chemical processes in engineered geothermal
reservoirs with dynamic permeability,” International Journal of Rock Mechanics and Mining Sciences,
vol. 47, no. 8, pp. 1339–1348, 2010.

[13] J. Taron and D. Elsworth, “Constraints on compaction rate and equilibrium in the pressure solution
creep of quartz aggregates and fractures: controls of aqueous concentration,” Journal of Geophysical
Research B, vol. 115, no. 7, Article ID B07211, 2010.

[14] K. B. Min, J. Rutqvist, and D. Elsworth, “Chemically and mechanically mediated influences on the
transport and mechanical characteristics of rock fractures,” International Journal of Rock Mechanics and
Mining Sciences, vol. 46, no. 1, pp. 80–89, 2009.

[15] Y. J. Zhang and W. Q. Zhang, “Finite element analysis of influence of pressure solution of fracture
aperture on T-H-M coupling in dual-porosity medium,” Yantu Lixue/Rock and Soil Mechanics, vol. 31,
no. 4, pp. 1269–1275, 2010 (Chinese).



Journal of Applied Mathematics 21

[16] E. Sonnenthal, A. Ito, N. Spycher et al., “Approaches to modeling coupled thermal, hydrological, and
chemical processes in the drift scale heater test at Yucca Mountain,” International Journal of RockMecha-
nics and Mining Sciences, vol. 42, no. 5-6, pp. 698–719, 2005.

[17] R. Olsson and N. Barton, “An improved model for hydromechanical coupling during shearing of rock
joints,” International Journal of Rock Mechanics and Mining Sciences, vol. 38, no. 3, pp. 317–329, 2001.

[18] D. T. Snow, “Anisotropic permeability of fractured media,” Water Resources Research, vol. 5, no. 6, pp.
1273–1289, 1969.

[19] J. P. Davies and D. K. Davies, “Stress-dependent permeability: characterization and modeling,” in
Proceedings of the SPE Annual Technical Conference and Exhibition, SPE 56813, Houston, Tex, USA, 1999.

[20] M. Nishigaki, “Density dependent transport analysis saturateds-unsaturated porous media—3
dimensional eulerian lagrangian method,” Okayama University, 2001.

[21] Y. Zhang and W. Zhang, “3D thermo-hydro-mechanical-migratory coupling model and FEM analyses
for dual-porosity medium,” Science China Technological Sciences, vol. 53, no. 8, pp. 2172–2182, 2010.

[22] Y.-J. Zhang and C.-S. Yang, “coupled hermo-hydro-mechanical—migratory model for dual-porosity
medium and numerical analysis,” Journal of Central South University of Technology, vol. 18, no. 4, pp.
1256–1262, 2011.

[23] J. Rutqvist, B. Freifeld, K. B. Min, D. Elsworth, and Y. Tsang, “Analysis of thermally induced changes
in fractured rock permeability during 8 years of heating and cooling at the Yucca Mountain Drift Scale
Test,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 8, pp. 1373–1389, 2008.

[24] M. Chijimatsu, H. Kurikami, A. Ito, and Y. Sugita, “Implication of THM coupling on the near-field of
a nuclear waste repository in a homogeneous rock mass,” DECOVALES III-Task3-Bench Mark Test
1(BMT1)-Subtask BMT1-B, pp.1–43, 2002.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 139583, 24 pages
doi:10.1155/2012/139583

Research Article
A Stabilized Incompressible SPH Method by
Relaxing the Density Invariance Condition

Mitsuteru Asai,1 Abdelraheem M. Aly,1 Yoshimi Sonoda,1
and Yuzuru Sakai2

1 Department of Civil Engineering, Kyushu University, 744 Motooka, Nishi–ku, Fukuoka 819-0395, Japan
2 Faculty of Education and Human Science, Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku,
Yokohama 240-8501, Japan

Correspondence should be addressed to Mitsuteru Asai, asai@doc.kyushu-u.ac.jp

Received 5 January 2012; Accepted 16 March 2012

Academic Editor: Hiroshi Kanayama

Copyright q 2012 Mitsuteru Asai et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A stabilized Incompressible Smoothed Particle Hydrodynamics (ISPH) is proposed to simulate
free surface flow problems. In the ISPH, pressure is evaluated by solving pressure Poisson equation
using a semi-implicit algorithm based on the projection method. Even if the pressure is evaluated
implicitly, the unrealistic pressure fluctuations cannot be eliminated. In order to overcome this
problem, there are several improvements. One is small compressibility approach, and the other is
introduction of two kinds of pressure Poisson equation related to velocity divergence-free and
density invariance conditions, respectively. In this paper, a stabilized formulation, which was
originally proposed in the framework of Moving Particle Semi-implicit (MPS) method, is applied
to ISPH in order to relax the density invariance condition. This formulation leads to a new pressure
Poisson equation with a relaxation coefficient, which can be estimated by a preanalysis calculation.
The efficiency of the proposed formulation is tested by a couple of numerical examples of dam-
breaking problem, and its effects are discussed by using several resolution models with different
particle initial distances. Also, the effect of eddy viscosity is briefly discussed in this paper.

1. Introduction

The meshless particle methods have been applied in many engineering applications includ-

ing the free-surface fluid flows. In the particle methods, the state of a system is represented

by a set of discrete particles, without a fixed connectivity; hence, such methods are inherently

well suited for the analysis of moving discontinuities and large deformations such as the

free-surface fluid flows with breaking and fragmentation.

The SPH technique was originally proposed by Lucy [1] and further developed

by Gingold and Monaghan [2] for treating astrophysical problems. Its main advantage is
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the absence of a computational grid or mesh since it is spatially discretized into Lagrangian

moving particles. This allows the possibility of easily modeling flows with a complex

geometry or flows where large deformations or the appearance of a free surface occurs. At the

present time, it is being exploited for the solution of problems appearing in different physical

processes. Monaghan [3] has provided a fairly extensive review of SPH methods. The SPH

method had been applied into compressible and incompressible viscous flow problems [4–7].
The SPH is originally developed in compressible flow, and then some special treatment is

required to satisfy the incompressible condition. One approach is to run the simulations in the

quasi-incompressible limit, that is, by selecting the smallest possible speed of sound which

still gives a very low Mach number ensuring density fluctuations within 1% [4, 5]. This

method is known as the Weakly Compressible Smooth Particle Hydrodynamics (WCSPH).
In the WCSPH, the artificial viscosity, which is originally developed by Monaghan, has been

widely used not only for the energy dissipation but also for preventing unphysical penetra-

tion of particles. Recently, a proposal for constructing an incompressible SPH model has been

introduced, whose pressure is implicitly calculated by solving a discretized pressure Poisson

equation at every time step [8–17].
Lee et al. [13] presented comparisons of a semi-implicit and truly incompressible SPH

(ISPH) algorithm with the classical WCSPH method, showing how some of the problems

encountered in WCSPH have been resolved by using ISPH to simulate incompressible flows.

They used the function of temporal velocity divergence for discretized source terms of Pois-

son equation of pressure to ensure truly incompressible flow. Khayyer et al. [14, 15] proposed

a corrected incompressible SPH method (CISPH) derived based on a variational approach to

ensure the angular momentum conservation of ISPH formulations to improve the pressure

distribution by improvement of momentum conservation and the second improvement is

achieved by deriving and employing a higher-order source term based on a more accurate

differentiation.

The source term in pressure Poisson equation (PPE) for ISPH is not unique; it has sev-

eral formulations in the literature; one of them as a function of density variation and the other

utilizes velocity divergence condition to formulate the source term. The former formulation

with the density variation can keep a uniform particle distribution, although evaluated

pressure include high unrealistic fluctuation. On the other hand, the formulation of the

divergence-free condition evaluates much smoother pressure distribution, but density errors

may occur due to particle clustering. Then, modified schemes have been proposed to satisfy

the above two conditions: density invariant and divergence-free condition. Pozorski and

Wawrenczuk [9] proposed a modified scheme, in which both the PPEs are solved separately

at two intermediate states in each time step. Hu and Adams [16, 17] introduced internal itera-

tions to satisfy both conditions accurately at the same moment. These modified schemes need

to solve multiple PPEs in each time step, and these computational costs become expense

compared to the conventional ISPH.

Recently, in the framework of MPS, there is a trend to introduce a higher-order source

term in the PPE. Kondo and Koshizuka [18] proposed a new formulation with a source term

composed by three parts; one is main part and another two terms related to error-

compensating parts. Tanaka and Masunaga [19] introduced a similar high-order source term

with two components incorporated with quasi-compressibility. Note that the number of PPEs

per time step in their higher-order source term formulations is just one and its numerical cost

is almost same as the original scheme. In this study, we reformulate a source term of the PPE

which contains both contributions from velocity-divergence-free and density invariance

conditions. Only one PPE per time step should be solved as the recent development in
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the MPS, but our formulation with a relaxation coefficient is unique. Note that, the relaxation

coefficient depends on the initial particle distance, and a suitable relaxation coefficient can

be obtained from the hydrostatic pressure calculations as a preanalysis. The accuracy and

the efficiency of the proposed model are investigated in a couple of examples which are

previously selected in published papers.

The turbulence models in the SPH are also important issue and the effects in the

WCSPH have been nicely investigated by Violeau and Issa [20]. Lee et al. have introduced the

same turbulence model such as k-ε model into ISPH. Gotoh et al. [21] and Shao and Gotoh

[22] introduced the static Smagorinsky model into the ISPH, and he discussed the effect of

additional eddy viscosity shortly. In this paper, we also discuss the effect of eddy viscosity

from our simulation results.

2. Typical Incompressible Smoothed Particle
Hydrodynamics (ISPHs) Formulation

In this section, typical ISPH formulation, which is similar procedure in moving particle semi-

implicit method (MPS) proposed by Koshizuka and Oka [24], is summarized. The main

feature is that semi-implicit integration scheme is applied into particle discretized equations

for the incompressible flow problem. The original idea of the semi-implicit scheme is called

by projection method, which has been widely used in the finite difference method and in the

finite element method. After the basic application of projection method into SPH is described

here, several similar schemes will be categorized by the difference of treatment of PPE in the

next section.

2.1. The Governing Equations for Incompressible Flow

In the Lagrange description, the continuity equation and the Navier-Stokes equations can be

written as

Dρ

Dt
+ ρ∇ · u = 0, (2.1)

Du
Dt

= −1

ρ
∇P + υ∇2u + g +

1

ρ
∇ · τ , (2.2)

where ρ and υ are density and kinematic viscosity of fluid, u and P are a velocity vector and

pressure of fluid, respectively, g is gravity acceleration, and t indicates time. The turbulence

stress τ is necessary to represent the effects of turbulence with coarse spatial grids, and its

application into the particle simulation has been initially developed by Gotoh et al. [21]. In

the most general incompressible flow approach, the density is assumed by a constant value

with its initial value ρ0. Then, the aforementioned governing equations lead to

∇ · u = 0, (2.3)

Du
Dt

= − 1

ρ0
∇P + υ∇2u + g +

1

ρ0
∇ · τ . (2.4)
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2.2. Projection Method

In the projection method [25], the velocity-pressure-coupled problem has been solved sepa-

rately for velocity and pressure. Here, all the state variables may update from a previous time

step to current time step. Below, superscripts (n) and (n + 1) indicate previous and current

time step, respectively. In the first predictor step, intermediate state without pressure gradient

is assumed, and its velocity field is indicated by u∗. The intermediate velocity field can be

evaluated by solving the following equation:

u∗ − un

Δt
= υ∇2un + g +

1

ρ0
∇ · τ , (2.5)

(Predictor) : u∗ = un + Δt
(
υ∇2un + g +

1

ρ0
∇ · τ

)
, (2.6)

Then, the following corrector step introduces an effect of remaining “current” pressure

gradient term as follows:

un+1 − u∗

Δt
= − 1

ρ0
∇Pn+1, (2.7)

(Corrector) : un+1 = u∗ + Δu∗ = u∗ −Δt
(

1

ρ0
∇Pn+1

)
, (2.8)

where Δu∗ indicates the incremental velocity from the predicted velocity u∗.
The key point here is the evaluation of “current” pressure value. By taking the

divergence of correction step (2.7) as

∇ ·
(

un+1 − u∗

Δt

)
= −∇ ·

(
1

ρ0
∇Pn+1

)
. (2.9)

Then, the incompressible condition (2.3) leads to

∇ · u
n+1

Δt
= 0. (2.10)

By substituting (2.10) into (2.9), this leads to the following pressure Poisson equation (PPE):

∇2Pn+1 = ρ0 ∇ · u∗

Δt
. (2.11)

The above corrector step can be implemented by substituting the pressure gradient with the

solution of PPE.



Journal of Applied Mathematics 5

2.3. The SPH Methodology

A spatial discretization using scattered particles, which is based on the SPH, is summarized.

First, a physical scalar function φ(xi, t) at a sampling point xi can be represented by the

following integral form:

φ(xi, t) =
∫
W
(
xi − xj , h

)
φ
(
xj , t

)
dv =

∫
W
(
rij , h

)
φ
(
xj , t

)
dv, (2.12)

where W is a weight function called by smoothing kernel function in the SPH literature. In

the smoothing kernel function, rij = |xi−xj | and h are the distance between neighbor particles

and smoothing length, respectively. For SPH numerical analysis, the integral equation (2.12)
is approximated by a summation of contributions from neighbor particles in the support

domain.

φ(xi, t) ≈
〈
φi
〉
=
∑
j

mj

ρj
W
(
rij , h

)
φ
(
xj , t

)
, (2.13)

where the subscripts i and j indicate positions of labeled particle, and ρj andmj mean density

and representative mass related to particle j, respectively. Note that the triangle bracket 〈φi〉
means SPH approximation of a function φ. The gradient of the scalar function can be assumed

by using the above defined SPH approximation as follows:

∇φ(xi) ≈
〈∇φi〉 = 1

ρi

∑
j

mj

(
φj − φi

)∇W(
rij , h

)
. (2.14)

Also, the other expression for the gradient can be represented by

∇φ(xi) ≈ 〈∇φi〉 = ρi
∑
j

mj

(
φj

ρ2
j

+
φi

ρ2
i

)
∇W(

rij , h
)
. (2.15)

In this paper, quintic spline function [26] is utilized as a kernel function.

W
(
rij , h

)
= βd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3 − rij

h

)5

− 6

(
2 − rij

h

)5

+ 15

(
1 − rij

h

)5

, 0 ≤ rij < h,(
3 − rij

h

)5

− 6

(
2 − rij

h

)5

, h ≤ rij < 2h,(
3 − rij

h

)5

, 2h ≤ rij < 3h,

0, rij ≥ 3h,

(2.16)

where βd is 7/478πh2 and 3/358πh3, respectively, in two- and three-dimensional space. It

has been observed that a cubic spline produces fluctuations in the pressure and velocity

fields for fluid dynamics simulation, and the quintic spline shown in (2.16) gives more stable

solutions.
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2.4. Projection-Based ISPH Formulations

Here, the projection method for incompressible fluid problem, which is summarized in

Section 2.2, is descretized into particle quantities based on the SPH methodology. For this

purpose, the gradient of pressure and the divergence of velocity are approximated as follows:

∇p(xi) ≈
〈∇pi〉 = ρi∑

j

mj

(
pj

ρ2
j

+
pi

ρ2
i

)
∇W(

rij , h
)
, (2.17)

∇ · u(xi) ≈ 〈∇ · ui〉 =
1

ρi

∑
j

mj

(
uj − ui

) · ∇W(
rij , h

)
. (2.18)

Although the Laplacian could be derived directly from the original SPH approximation of a

function in (2.17), this approach may lead to a loss of resolution. Then, the second derivative

of velocity for the viscous force and the Laplacian of pressure have been proposed by Morris

et al. [5] by an approximation expression as follows:

∇ · (υ∇u)(xi) ≈ 〈∇ · (υ∇ · ui)〉 =
∑
j

mj

(
ρiυi + ρjυj

ρiρj

rij∇W
(∣∣ri − rj∣∣, h)
r2
ij + η

2

)
uij , (2.19)

where η is a parameter to avoid a zero dominator, and its value is usually given by η2 =
0.0001h2. For the case of υi = υj and ρi = ρj , the Laplacian term is simplified as

〈∇ · (υ∇ · ui)〉 =
2υi
ρi

∑
j

mj

(
rij∇W

(∣∣ri − rj∣∣, h)
r2
ij + η

2

)
uij . (2.20)

Similarly, the Laplacian of pressure in pressure Poisson equation (PPE) is given by

∇2p(xi) ≈
〈
∇2pi

〉
=

2

ρi

∑
j

mj

(
pijrij∇W

(∣∣ri − rj∣∣, h)
r2
ij + η

2

)
. (2.21)

The PPE after SPH interpolation is solved by a preconditioned (diagonal scaling) Conjugate

Gradient (PCG) method [27] with a convergence tolerance (= 1.0 × 10−9).

2.5. Modeling of the Turbulence Stress

When dealing with the turbulent flows, the turbulent stress in (2.2), which are called by sub-

particle scale stress in the particle simulations, needs to be modeled. In this paper, a large

eddy simulation approach [21, 22] is used for modeling the turbulent stress as

τIJ

ρ0
= 2υTSIJ − 2

3
kδIJ , (2.22)

where υT and k are the turbulence eddy viscosity and the turbulence kinetic energy, res-

pectively. SIJ indicates the strain rate of the mean flow, and δIJ is the Kronecker delta. It is
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assumed in this paper that the eddy viscosity is modeled by the static Smagorinsky model

as υT = (CsΔ)2|S|, in which Cs = 0.2 is the Smagorinsky constant (taken as the analytical

value in this paper), the constant Δ is taken as 2h, in which h is the smoothing length defined

in (2.12). The local strain rate |S| = (2SIJSIJ)
1/2 can be calculated in the SPH formulation as

Violeau and Issa [20].

2.6. Treatment of No-Slip Boundary Condition

The boundary condition on the rigid bodies has an important role to prevent penetration and

to reduce error related to truncation of the kernel function. Takeda et al. [28] and Morris et al.

[5] have introduced a special wall particle which can satisfy imposed boundary conditions.

Recently, Bierbrauer et al. [29] described a consistent treatment of boundary conditions,

utilizing the momentum equation to obtain approximations to velocity of image particles.

In our research, dummy particles technique, in which dummy particles are regularly

distributed at the initial state and have zero velocity through the whole simulation process,

is utilized just for simplicity in the implementation. In the following simulation, the pressure

Poisson equation is solved for all particles including these dummy particles to get an enough

repulsive force preventing penetration.

3. Stabilizations of Pressure Evaluation in Pressure Poisson Equation

Here, the pressure Poisson equation is reconsidered to overcome the error of artificial

pressure fluctuation in the ISPH. The key points are related to the accuracy of density

representation in SPH formulation and the treatment of pressure Poisson equation.

3.1. Keeping Divergence Free Scheme

Divergence free condition in the projection-based ISPH has been initially proposed by Cum-

mins and Rudman [8]. Lee et al. [13] has applied it into the Reynolds turbulence model which

uses an averaging in time. They called by “truly” incompressible SPH since the initial density

ρ0 is assumed constant for each particle. Then the divergence of the intermediate velocity has

been used to calculate the PPE as mentioned above in (2.11). The PPE can be written in SPH

approximation by substituting (2.18) and (2.21) as follows:

〈
∇2pn+1

i

〉
=
ρ0

Δt
〈∇ · u∗

i

〉
. (3.1)

3.2. Keeping Density Invariance Scheme

The alternative scheme can be derived by using a density invariance condition [14, 15]. Here,

the “particle” density in the SPH is evaluated by

ρ(xi) ≈
〈
ρi
〉
=
∑
j

mjW
(
rij , h

)
=
∑
j

mjWij . (3.2)

The particle position updates after each predictor step in the density invariance scheme

and the particle density is updated on the intermediate particle positions. The intermediate
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particle density is indicated by 〈ρ∗i 〉. By assuming incompressibility condition with 〈ρn+1
i 〉 =

ρ0, the mass conservation law (2.1) can be rewritten for each particle as follows:

〈
ρ∗i
〉 − ρ0

Δt
+ ρ0

〈∇ · u∗
i

〉
= 0. (3.3)

By substituting (3.3) into (2.11) and using the SPH form, the PPE for ISPH can be

approximately redefined by

〈∇2pn+1
i 〉 =

ρ0 − 〈ρ∗i 〉
Δt2

. (3.4)

The main difference between the keeping divergence-free and keeping density-invariance

scheme appeared in the source term of the PPE. Note that this keeping density-invariance

scheme is analogous to the formulation in the MPS, although the MPS utilizes a “particle

number” density instead of the particle density. The above two schemes have a relationship.

Ataie-Ashtiani and Shobeyri [30] has converted from a PPE in the keeping density invariance

scheme to a PPE in the keeping divergence-free scheme.

3.3. Combination Scheme of Both Divergence-Free and
Density-Invariance Condition

A notable scheme was proposed by Hu and Adams [16]. The divergence-free and density-

invariance conditions are sufficiently satisfied in their scheme. As they discussed, the

divergence-free scheme calculates a smoothed pressure field but a large density variation will

appear. Hu and Adams’s scheme includes an internal iteration at each step, and two kinds of

PPEs should be solved until both the divergence-free and density-invariance conditions are

approximately satisfied. According to Xu et al. [31], this scheme shows accurate and robust

solutions, but total calculation time shows 4-5 times higher than that of the above two scheme.

3.4. Relaxed Density Invariance Scheme Incorporated with
Divergence-Free Condition

Here, we proposed an efficient and robust ISPH scheme using both conditions without

internal iterations. In the sense of physical observation, physical density should keep its initial

value for incompressible flow. However, during numerical simulation, the “particle” density

may change slightly from the initial value because the particle density is strongly dependent

on particle locations in the SPH method. If the particle distribution can keep almost uni-

formity, the difference between “physical” and “particle” density may be vanishingly small.

In other words, accurate SPH results in incompressible flow need to keep the uniform particle

distribution. For this purpose, the different source term in pressure Poisson equation can be

derived using the “particle” density. The SPH interpolations are introduced into the original

mass conservation law before the perfect compressibility condition is applied

〈
∇ · un+1

i

〉
= − 1

ρ0

〈
ρn+1
i

〉 − 〈ρni 〉
Δt

. (3.5)
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By substituting (3.5) into (2.9) and using SPH form, the PPE can be represented by

〈
∇2pn+1

i

〉
=
ρ0

Δt
〈∇ · u∗

i

〉
+

〈
ρn+1
i

〉 − 〈ρni 〉
Δt2

. (3.6)

Here, it is assumed that the current particle density is “hopefully” closed to initial

density and the incremental particle density 〈Δρni 〉 are defined by

〈
ρn+1
i

〉
=
〈
ρni
〉
+
〈
Δρni

〉 ≈ ρ0, (3.7)

〈
Δρni

〉
:= α

(
ρ0 − 〈ρni 〉), (3.8)

where the above integration scheme is called by the method of coordinate descent with

a relaxation coefficient α (0 ≤ α ≤ 1), and the PPE is modified as follows:

〈
∇2pn+1

i

〉
=
ρ0

Δt
〈∇ · u∗

i

〉
+ α

ρ0 − 〈ρni 〉
Δt2

. (3.9)

The similar equation, in which the density is replaced by a particle number density,

was proposed by Losasso et al. [32], but they did not introduce the relaxation coefficient.

Note that our proposed scheme couples the divergence-free and a relaxed density-invariance

condition, and a special case using α = 0 leads to the original divergence-free scheme. The

effect of the relaxation coefficient will be tested in the later examples. Figure 1 shows the flow

charts of these schemes to show the difference between existing and our proposed scheme.

Similar modifications in the source term of PPE have been proposed in the MPS by Tanaka

and Masunaga [19]. Recently, Khayyer and Gotoh [33] proposed a different higher-order

source term without the unknown coefficient like the relaxation coefficient in this paper. It is

important that the relaxation coefficient is strongly dependent on the initial particle distance,

and the optimum value can be calibrated by a simple hydrostatic pressure test with the same

initial particle distance as the final simulation model. The hydrostatic pressure test is called

by preanalysis in this paper.

3.5. Tracking the Free Surface Boundary

Detection of free surface has an important role in the ISPH for free surface flow, because

the pressure values on free surface particles should be equal to zero as Dirichlet boundary

conditions of PPE. The method how to track the free surface may differ in each ISPH scheme.

Usually in the keeping density-invariance scheme, surface particles have been

detected by referring the current particle density 〈ρi〉. The details have been discussed by

Gotoh et al. [21], Shao and Gotoh [22], and Khayyer et al. [14, 15]. On the other hand, in the

keeping divergence-free scheme, Lee et al. [13] proposed a new treatment with the divergence

of a particle position vector. If the particle density keeps around its initial value, the former

free surface detection method can be utilized. In our simulation, surface particles are simply

judged by the total number of neighboring particles.

G. R. Liu and M. B. Liu [34] have investigated the number of neighboring particles

to estimate an efficient variable smoothing length for the adaptive analysis. In the case of
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Figure 2: Schematic diagram of hydrostatic pressure at point A for three values of particle sizes.

a simply cubic patterned lattice, h is usually chosen as larger than 1.2 times of the initial

particle distance d0. They showed that the number of neighboring particle within the support

domain kh with k = 2 for cubic spline kernel function should be about 21 in two-dimensional

simulations. We checked a threshold for judging free surface particles for quintic spline kernel

function with k = 3, and the threshold should be about 28 and 190 in 2D and 3D, respectively.

4. Preanalysis to Determine an Efficient Relaxation Coefficient

In this section, hydrostatic pressure evaluations are performed to investigate the effects of

relaxation coefficient and to determine a suitable range of its value with reference to an initial

particle distance.

The three particle models have been generated with different initial particles distances

d0 = 0.01, 0.005, and 0.0025 m as shown in Figure 2. The theoretical hydrostatic pressure is

given by a law: p = ρgh (= 980 N/m2) with water density ρ = 1000 kg/m3 and a water

height h = 0.1 m. Figure 3 shows pressure histories with different relaxation coefficients for
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Figure 3: Time history for pressure distributions under the effect of relaxation coefficient at different
particle size models d0 = 0.01, 0.005, and 0.0025 m, respectively.

each model. From this figure, the proper ranges of relaxation coefficient α with initial particle

distances d0 = 0.01, 0.005, and 0.0025 m are approximately about (0.1 : 0.2), (0.0005 : 0.002)
and (0.00005 : 0.0002), respectively. In this paper, a constant time is chosen by Δt = 0.1d0

corresponding to Khayyer et al. [15]. Here note that the optimum parameter calibrated from

this preanalysis can use the same value in the later examples if the model has the same particle

resolution.

5. Numerical Examples
Here, several numerical examples are solved by the current scheme with an efficient relax-

ation coefficient, which are calibrated by the hydrostatic pressure evaluation in the previous

section.
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5.1. The Effect of Relaxation Coefficient during Dam Break Simulation

A two-dimensional dam break analysis is performed to compare the proper relaxation

coefficient between hydrostatic pressure and dam break simulation with the same particle

distance. The geometry of a 2D dam break is shown in Figure 4, where the particle distance

d0 = 0.01 m, the water width L = 0.20 m, water height Hw = 2.5 L, and the wall width

Wl = 5 L.

At first, Figure 5 shows the results of free surface detection by using the number of

neighbors. It is seen that this simple free surface detection scheme is sufficiently accurate to

determine the Dirichlet boundary conditions of the pressure Poisson equation and it is also

suitable for any formulation of the pressure Poisson equation. The effects of relaxation coeffi-

cient are investigated by the density errors. Two boundary particles A and B, which position

is marked in Figure 4, are selected to output an evaluated numerical density. Figure 6 shows

the time histories of the density at particles A and B. From this observation with a particle

distance d0 = 0.01 m, it seems that, too low relaxation coefficient (below 0.01) the density

errors are high. A proper range of relaxation coefficient α = 0.1∼0.25 leads to a stable solution.

In addition, the density error fluctuations become serious when the relaxation coefficient is

larger than this proper range. In the same way, the suitable ranges of relaxation coefficient

for different particles distances d0 = 0.005, 0.0025 m are evaluated by (0.0005 : 0.0025) and

(0.00005 : 0.0001), respectively. Note that these proper ranges for each initial particle distance

are close to the preevaluated proper ranges calibrated with the hydrostatic pressure test.

Finally, the optimum values of relaxation coefficient in 2D dam break analysis for particle

sizes d0 = 0.01, 0.005, and 0.0025 m are determined by 0.15, 0.001, and 0.00006, respectively.

Figure 7 shows the pressure distributions for three models with different initial

particle distances d0 = 0.01, 0.005, and 0.0025 m. A suitable relaxation coefficient is utilized

for each model. The first water impact at the right wall generates highest pressure, and it

returns in the form of a jet. Then, it becomes a stable state after two more water impacts act

on both side walls. The snapshots for water impact, after the first water impact, reversing jet

and water stable state are captured from each model with different particle distance. These

snapshots at the same time show similar water shape. The pressure histories at the right

corner are plotted in Figure 8. Although unrealistic pressure fluctuation appears in the case

of lowest resolution model with d0 = 0.01 m, a similar tendency of pressure history can get

from different resolution models. Adjusting suitable relaxation coefficient can increase the

pressure smoothness. The hydrostatic pressure after this dam break analysis is analytically

evaluated by 1000 N/m2, and our evaluated pressure after 4 seconds looks to converge into

the analytical hydrostatic value. In this example, water front speed is plotted in Figure 9. Our

results shows a good agreement with the experimental results obtained by Koshizuka and

Oka [24] and Martin and Moyce [35], moreover the numerical results obtained by Lee et al.

[23].

5.2. Comparison of Configurations and Pressure during
Dam Break Simulation

Next, water configurations and pressure distribution are compared with an experimental data

by Zhou et al. [36] and with a result by original incompressible SPH, which is the same as

a special case of our proposed scheme with α = 0. The schematic diagram is the same as

Zhou’s experiment is shown in Figure 10, and the pressure measuring point is located at
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Figure 5: Detect free surface numerically using the number of neighbouring particles for using k = 3 and
h = 1.2d0 for quintic spline kernel function at initial particle size d0 = 0.005 m.
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a point on the right wall (0.16 m). The particle initial distance is selected as d0 = 0.005 m.

A proper relaxation coefficient for this resolution is selected by α = 0.001 which is the same

optimum value in the hydrostatic pressure test, and then the numerical solution is compared

to the truly incompressible scheme with α = 0. Figure 11 shows the comparison results of

the snapshots with pressure distribution from the initial state to the final stable state. The

snapshots from each scheme are captured at the first water impact, running up along the right

wall reversing development of splash-up and the stable state. Although the wave

configurations show similarities, the pressure value from the truly incompressible scheme

is less than that from our proposed scheme. In addition, the total volume of the water at
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and 0.0025 m, respectively.
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Figure 10: Dam break simulation corresponding to experiment by Zhou et al. [36].

the final stable state is compared between the proposed scheme and truly incompressible

scheme using the water height. It seems that the proposed scheme conserves the total volume

compared to the theoretical value of height about 0.22 m, while the truly incompressible
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scheme cannot conserve the volume at the final stable state. Figure 12 shows the comparison

of pressure history at the right corner among our proposed scheme result with a proper

relaxation coefficient, result from the truly incompressible scheme, and experimental data by

Zhou et al. [36]. Although the pressure level from the truly incompressible scheme (α = 0) is

lower than the experimental data in the entire simulation period, the evaluated pressure from

our proposed scheme shows a good agreement with the experimental data. In this figure,

imaginary pressure peak is evaluated around t = 2.04 (t(g/h)0.5 = 8.24) in the results without

turbulence model. The combination with the proposed stabilized ISPH and turbulence model

generates smoothed and accurate pressure distribution.

5.3. 3D Dam Break Flow with an Obstacle

The last application is one of the benchmark test suggested by SPH European Research

Interest Community (SPHERIC). The experimental tests on a dam break flow with an obstacle

was carried out at the Maritime Research Institute Netherlands (MARIN) as reported by

Kleefsman et al. [37].
Figures 13 and 14 show geometry of the experimental test and locations of pressure

sensor, respectively. While ps1 to ps8 sensors were used in the experimental test, here only

odd numbers of pressure sensor are utilized for the comparison. In the numerical modeling,

the initial particle distance is fixed at 0.01 m for both regions of water and wall. The total

number of particles is about 1.4 millions, and 0.67 million particles are located in the water. In

order to evaluate an efficient relaxation coefficient, the same procedure as two-dimensional

cases is applied. First, the hydrostatic pressure test has been implemented by using the same

initial particle distance d0 = 0.01 m and time increment Δt = 0.001 s in the 3D dam break

problem. Then the optimum relaxation coefficient α was fixed by 0.1.

The pressure time history on the front (ps1 and ps3) and top (ps5 and ps7) is

shown in Figure 15. Figures 16 and 17 show the snapshots with particle pressure values

and labels related to free surface, respectively. In Figure 16, the numerical solutions by our
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proposed relaxed density invariant scheme (stabilizes ISPH) are compared with Kleefsman’s

experimental results and numerical results by the keeping divergence-free scheme with

α = 0 (original ISPH). The first impact occurred at about 0.42 s both in the numerical and

experimental test, although the time of secondary hit has about 0.5 s difference (0.45 s and

0.50 s, resp.). That is, our solution shows small delay as the time goes. The pressure resulting

from the keeping divergence-free scheme shows lower value during the simulation, although

a smooth pressure distribution can be generated as in Figure 16. It seems that the keeping

divergence scheme cannot keep the total volume of water. On the other hand, except for the

local pressure oscillation especially at ps5 and ps7, the pressure histories by our proposed

scheme show good agreement with the experimental results.

Lee et al. [38] has been simulated to the same problem, and they have discussed

the difference between weakly compressible SPH and their proposed truly incompressible

SPH that is one of the keeping divergence-free scheme. According to their result, the weakly

compressible SPH shows a critical error in the pressure and their truly incompressible SPH
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Figure 15: Time history of Pressure for 3D dam break at ps1, ps3, ps5, and ps7.

solution has the similar tendency as our results. However, the original ISPH scheme cannot

keep the total volume as far as we have checked.

6. Conclusion

A stabilized incompressible smoothed particle hydrodynamics is proposed to simulate

free surface flow. The modification is appeared in the source term of pressure Poisson

equation, and the idea is similar to the recent development in Moving Particles Semi-

implicit method (MPS). Although only one set of linear equations should be solved to

evaluate pressure at each particle, both the velocity divergence-free condition and the

density invariance condition can be approximately satisfied. The additional parameter is the

relaxation coefficient, and its value can be calibrated by a simple hydrostatic simulation with

a regular initial particle distribution. It has a uniform tendency that the relaxation coefficient

becomes smaller due to decrease in the initial particle distance. The efficiency and its accuracy
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Figure 16: Time sequence of 3D dam break simulation by (a) stabilized ISPH method with eddy viscosity
effect and (b) without eddy viscosity effect.
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t= 0.42 s

t= 1 s

t= 4 s

t= 6 s
(a) (b)

Figure 17: Time sequence for detection free surface in 3D dam break simulation by (a) stabilized ISPH
method with eddy viscosity effect and (b) without eddy viscosity effect.

have been tested by the dam break in two- and three-dimension simulations compared to

their reference solutions. Our proposed scheme shows the clear advantage to keep the total

volume by comparing the original ISPH, and it may contribute to have an accurate pressure

value. However, it still has an artificial oscillation in the pressure value with original viscosity.

The additional viscosity based on the Subparticle Scale turbulence model shows an important

role to generate smoother pressure distribution and to decrease the number of isolated

particles after the splash in the dam break problems.

Acknowledgments

The first author is partially supported by the Ministry of Education, Science, Sports and

Culture of Japan (Grant-in-Aid for Young Scientist (B) 2176036).

References

[1] L. B. Lucy, “A numerical approach to the testing of the fusion process,” Astronomical Journal, vol. 88,
pp. 1013–1024, 1977.



Journal of Applied Mathematics 23

[2] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and application to
non-spherical stars,” Monthly Notices of the Royal Astronomical Society, vol. 181, pp. 375–389, 1977.

[3] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual Review of Astronomy and Astrophysics,
vol. 30, no. 1, pp. 543–574, 1992.

[4] J. J. Monaghan, “Simulating free surface flows with SPH,” Journal of Computational Physics, vol. 110,
no. 2, pp. 399–406, 1994.

[5] J. P. Morris, P. J. Fox, and Y. Zhu, “Modeling low Reynolds number incompressible flows using SPH,”
Journal of Computational Physics, vol. 136, no. 1, pp. 214–226, 1997.

[6] J. J. Monaghan, “Heat conduction with discontinuous conductivity,” in Applied Mathematics Reports
and Preprints, Monash University, 1995.

[7] N. Okahci, A. Hirota, S. Izawa, Y. Fukunishi, and H. Higuchi, “SPH simulation of pulsating pipe flow
at a junction,” in Proceedings of the 1st International Symposium on Advanced Fluid Information, pp. 388–
391, 2001.

[8] S. J. Cummins and M. Rudman, “An SPH projection method,” Journal of Computational Physics, vol.
152, no. 2, pp. 584–607, 1999.

[9] J. Pozorski and A. Wawrenczuk, “SPH computation of incompressible viscous flows,” Journal of
Theoretical and Applied Mechanics, vol. 40, pp. 917–937, 2002.

[10] S. Shao and E. Y. M. Lo, “Incompressible SPH method for simulating Newtonian and non-Newtonian
flows with a free surface,” Advances in Water Resources, vol. 26, no. 7, pp. 787–800, 2003.

[11] X. Y. Hu and N. A. Adams, “Angular-momentum conservative smoothed particle dynamics for
incompressible viscous flows,” Physics of Fluids, vol. 18, no. 10, Article ID 101702, 4 pages, 2006.

[12] M. Ellero, M. Serrano, and P. Espanol, “Incompressible smoothed particle hydrodynamics,” Journal of
Computational Physics, vol. 226, no. 2, pp. 1731–1752, 2007.

[13] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby, “Comparisons of weakly
compressible and truly incompressible algorithms for the SPH mesh free particle method,” Journal
of Computational Physics, vol. 227, no. 18, pp. 8417–8436, 2008.

[14] A. Khayyer, H. Gotoh, and S. Shao, “Corrected incompressible SPH method for accurate water-surface
tracking in breaking waves,” Coastal Engineering, vol. 55, no. 3, pp. 236–250, 2008.

[15] A. Khayyer, H. Gotoh, and S. Shao, “Enhanced predictions of wave impact pressure by improved
incompressible SPH methods,” Applied Ocean Research, vol. 31, no. 2, pp. 111–131, 2009.

[16] X. Y. Hu and N. A. Adams, “An incompressible multi-phase SPH method,” Journal of Computational
Physics, vol. 227, no. 1, pp. 264–278, 2007.

[17] X. Y. Hu and N. A. Adams, “A constant-density approach for incompressible multi-phase SPH,”
Journal of Computational Physics, vol. 228, no. 6, pp. 2082–2091, 2009.

[18] M. Kondo and S. Koshizuka, “Improvement of stability in moving particle semi-implicit method,”
International Journal for Numerical Methods in Fluids, vol. 65, no. 6, pp. 638–654, 2011.

[19] M. Tanaka and T. Masunaga, “Stabilization and smoothing of pressure in MPS method by quasi-
compressibility,” Journal of Computational Physics, vol. 229, no. 11, pp. 4279–4290, 2010.

[20] D. Violeau and R. Issa, “Numerical modelling of complex turbulent free-surface flows with the SPH
method: an overview,” International Journal for Numerical Methods in Fluids, vol. 53, no. 2, pp. 277–304,
2007.

[21] H. Gotoh, S. Shao, and T. Memita, “SPH-LES model for numerical investigation of wave interaction
with partially immersed breakwater,” Coastal Engineering Journal, vol. 46, no. 1, pp. 39–63, 2004.

[22] S. Shao and H. Gotoh, “Turbulence particle models for tracking free surfaces,” Journal of Hydraulic
Research, vol. 43, no. 3, pp. 276–289, 2005.

[23] B. H. Lee, J. C. Park, M. H. Kim, S. J. Jung, M. C. Ryu, and Y. S. Kim, “Numerical simulation of impact
loads using a particle method,” Ocean Engineering, vol. 37, no. 2-3, pp. 164–173, 2010.

[24] S. Koshizuka and Y. Oka, “Moving-particle semi-implicit method for fragmentation of incompressible
fluid,” Nuclear Science and Engineering, vol. 123, no. 3, pp. 421–434, 1996.

[25] A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Mathematics of Computation, vol.
22, pp. 745–762, 1968.

[26] I. J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic
functions,” Quarterly of Applied Mathematics, vol. 4, pp. 45–99, 1946.

[27] J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix,” Mathematics of Computation, vol. 31, no. 137, pp. 148–162,
1977.

[28] H. Takeda, S. Miyama, and M. Sekiya, “Numerical simulation of viscous flow by smoothed particle
hydrodynamics,” Progress of Theoretical Physics, vol. 92, no. 5, pp. 939–960, 1994.



24 Journal of Applied Mathematics

[29] F. Bierbrauer, P. C. Bollada, and T. N. Phillips, “A consistent reflected image particle approach to the
treatment of boundary conditions in smoothed particle hydrodynamics,” Computer Methods in Applied
Mechanics and Engineering, vol. 198, no. 41–44, pp. 3400–3410, 2009.

[30] B. Ataie-Ashtiani and G. Shobeyri, “Numerical simulation of landslide impulsive waves by
incompressible smoothed particle hydrodynamics,” International Journal for Numerical Methods in
Fluids, vol. 56, no. 2, pp. 209–232, 2008.

[31] R. Xu, P. Stansby, and D. Laurence, “Accuracy and stability in incompressible SPH (ISPH) based on
the projection method and a new approach,” Journal of Computational Physics, vol. 228, no. 18, pp.
6703–6725, 2009.

[32] F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw, “Two-way coupled SPH and particle level set fluid
simulation,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 4, pp. 797–804, 2008.

[33] A. Khayyer and H. Gotoh, “Enhancement of stability and accuracy of the moving particle semi-
implicit method,” Journal of Computational Physics, vol. 230, no. 8, pp. 3093–3118, 2011.

[34] G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamic, a Meshfree Particle Method, World Scientific,
2003.

[35] J. C. Martin and W. J. Moyce, “An experimental study of the collapse of liquid columns on a rigid
horizontal plane,” Philosophical Transactions of the Royal Society of London A, vol. 244, no. 882, pp. 312–
324, 1952.

[36] Z. Q. Zhou, J. O. De Kat, and B. Buchner, “A nonlinear 3-D approach to simulate green water
dynamics on deck,” in Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics,
Nantes, France, July 1999.

[37] K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski, and B. Buchner, “A volume-of-fluid
based simulation method for wave impact problems,” Journal of Computational Physics, vol. 206, no. 1,
pp. 363–393, 2005.

[38] E. S. Lee, D. Violeau, R. Issa, and S. Ploix, “Application of weakly compressible and truly
incompressible SPH to 3-D water collapse in waterworks,” Journal of Hydraulic Research, vol. 48, no. 1,
pp. 50–60, 2010.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 950323, 27 pages
doi:10.1155/2012/950323

Research Article
Nonlinear Fluid Models for Biofluid
Flow in Constricted Blood Vessels under Body
Accelerations: A Comparative Study

D. S. Sankar1 and Atulya K. Nagar2

1 School of Mathematical Sciences, University Science Malaysia, 11800 Penang, Malaysia
2 Centre for Applicable Mathematics and Systems Science, Department of Computer Science,
Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK

Correspondence should be addressed to D. S. Sankar, sankar ds@yahoo.co.in

Received 3 January 2012; Accepted 12 February 2012

Academic Editor: M. F. El-Amin

Copyright q 2012 D. S. Sankar and A. K. Nagar. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Pulsatile flow of blood in constricted narrow arteries under periodic body acceleration is analyzed,
modeling blood as non-Newtonian fluid models with yield stress such as (i) Herschel-Bulkley
fluid model and (ii) Casson fluid model. The expressions for various flow quantities obtained by
Sankar and Ismail (2010) for Herschel-Bulkley fluid model and Nagarani and Sarojamma (2008),
in an improved form, for Casson fluid model are used to compute the data for comparing these
fluid models. It is found that the plug core radius and wall shear stress are lower for H-B fluid
model than those of the Casson fluid model. It is also noted that the plug flow velocity and flow
rate are considerably higher for H-B fluid than those of the Casson fluid model. The estimates of
the mean velocity and mean flow rate are considerably higher for H-B fluid model than those of
the Casson fluid model.

1. Introduction

Atherosclerosis is an arterial disease in large and medium size blood vessels which involve

in the complex interactions between the artery wall and blood flow and is caused by

intravascular plaques leading to malfunctions of the cardiovascular system [1]. The intimal

thickening of an artery is the initial process in the development of atherosclerosis and one

of the most wide spread diseases in humans [2]. In atherosclerotic arteries, the lumen is

typically narrowed and the wall is stiffened by the buildup of plaque with a lipid core and

a fibromuscular cap, and the narrowing of lumen of the artery by the deposit of fats, lipids,

cholesterol, and so forth is medically termed as stenosis formation [3]. Different shapes of
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stenoses are formed in arteries like axisymmetric, asymmetric, overlapping, and multiple

and even sometimes it may be arbitrary in shape [4–7]. Once stenosis develops in an artery,

its most serious consequences are the increased resistance and the associated reduction of

blood flow to the vascular bed supplied by the artery [8, 9]. Thus, the presence of a stenosis

leads to the serious circulatory disorder. Hence, it is very useful to mathematically analyze

the blood flow in stenosed arteries.

In many situations of our day to day life, we are exposed to body accelerations or

vibrations, like swinging of kids in a cradle, vibration therapy applied to a patient with heart

disease, travel of passengers in road vehicles, ships and flights, sudden movement of body

in sports activities, and so forth [10, 11]. Sometime, our whole body may be subjected to

vibrations, like a passenger sitting in a bus/train, and so forth, while in some other occasions,

specific part of our body might be subjected to vibrations, for example, in the operation of

jack hammer or lathe machine, driver of a car, and so forth [12–14]. Prolonged exposure of

our body to high level unintended external body accelerations causes serious health hazards

due to the abnormal blood circulation [15–17]. Some of the symptoms which result from

prolonged exposure of body acceleration are headache, abdominal pain, increase in pulse

rate, venous pooling of blood in the extremities, loss of vision, hemorrhage in the face, neck,

eye-sockets, lungs, and brain [18–20]. Thus, an adequate knowledge in this field is essential to

the diagnosis and therapeutic treatment of some health problems, like vision loss, joint pain,

and vascular disorder, and so forth, and also in the design of protective pads and machines.

Hence, it is important to mathematically analyze and also to quantify the effects of periodic

body accelerations in arteries of different diameters.

Due to the rheological importance of the body accelerations and the arterial stenosis,

several theoretical studies were performed to understand their effects on the physiologically

important flow quantities and also their consequences [15–20]. Blood shows anomalous

viscous properties. Blood, when it flows through larger diameter arteries at high shear rates, it

shows Newtonian character; whereas, when it flows in narrow diameter arteries at low shear

rates, it exhibits remarkable non-Newtonian behavior [21, 22]. Many studies pertaining to

blood flow analysis treated it as Newtonian fluid [4, 15, 23]. Several researchers used non-

Newtonian fluids models for mathematical analysis of blood flow through narrow arteries

with different shapes of stenosis under periodic body accelerations [24–27]. Casson and

Herschel-Bulkley (H-B) fluid models are some of the non-Newtonian fluid models with yield

stress and are widely used in the theoretical analysis of blood flow in narrow arteries [28, 29].
The advantages of using H-B fluid model rather than Casson fluid model for modeling of

blood flow in narrow arteries are mentioned below.

Chaturani and Samy [8] emphasized the use of H-B fluid model for blood flow

modeling with the argument that when blood flows in arteries of diameter 0.095 mm,
it behaves like H-B fluid rather than other non-Newtonian fluids. Tu and Deville [21]
pronounced that blood obeys Casson fluid’s constitutive equation only at moderate shear

rates, whereas H-B fluid model can be used still at low shear rates and represents

fairly closely what is occurring in blood. Iida [30] reports “the velocity profiles of blood

when it flows in the arterioles having diameter less than 0.1 mm are generally explained

fairly by Casson and H-B fluid models. However, the velocity profiles of blood flow in

the arterioles whose diameters are less than 0.065 mm do not conform to the Casson

fluid model, but, can still be explained by H-B fluid model.” Moreover, Casson fluid’s

constitutive equation has only one parameter, namely, the yield stress, whereas the H-B

fluid’s constitutive equation has one more parameter, namely, the power law index “n” and
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thus one can obtain more detailed information about blood flow characteristics by using

the H-B fluid model rather than Casson fluid model [31]. Hence, it is appropriate to treat

blood as H-B fluid model rather than Casson fluid model when it flows through narrow

arteries.

Sankar and Ismail [32] investigated the effects of periodic body accelerations in blood

flow through narrow arteries with axisymmetric stenosis, treating blood as H-B fluid model.

Nagarani and Sarojamma [33] mathematically analyzed the pulsatile flow of Casson fluid

for blood flow through stenosed narrow arteries under body acceleration. The pulsatile flow

of H-B fluid model and Casson fluid model for blood flow through narrow arteries with

asymmetric stenosis under periodic body acceleration has not been studied so far, to the

knowledge of the authors. Hence, in the present study, a comparative study is performed

for the pulsatile flow H-B and Casson fluid models for blood flow in narrow arteries with

asymmetric shapes of stenoses under periodic body acceleration. The expressions obtained in

Sankar and Ismail [32] for shear stress, velocity distribution, wall shear stress, and flow rate

are used to compute data for the present comparative study. The aforesaid flow quantities

obtained by Nagarani and Sarojamma [33] for Casson fluid model in the corrected form are

used in this study to compute data for performing the present comparative study. The layout

of the paper is as follows.

Section 2 mathematically formulates the H-B and Casson fluid models for blood flow

and applies the perturbation method of solution. In Section 3, the results of H-B fluid model

and Casson fluid model for blood flow in axisymmetric and asymmetrically stenosed narrow

arteries are compared. Some possible clinical applications to the present study are also given

in Section 3. The main results are summarized in the concluding Section 4.

2. Mathematical Formulation

Consider an axially symmetric, laminar, pulsatile, and fully developed flow of blood

(assumed to be incompressible) in the axial (z) direction through a circular narrow artery

with constriction. The constriction in the artery is assumed as due to the formation of

stenosis in the lumen of the artery and is considered as mild. In this study, we consider

the shape of the stenosis as asymmetric. The geometry of segment of a narrow artery with

asymmetric shape of mild stenosis is shown in Figure 1(a). For different values of the stenosis

shape parameter m, the asymmetric shapes of the stenoses are sketched in Figure 1(b). In

Figure 1(b), one can notice the axisymmetric shape of stenosis when the stenosis shape

parameter m = 2. The segment of the artery under study is considered to be long enough

so that the entrance, end, and special wall effects can be neglected. Due to the presence of

the stenosis in the lumen of the segment of the artery, it is appropriate to treat the segment

of the stenosed artery under study as rigid walled. Assume that there is periodical body

acceleration in the region of blood flow and blood is modeled as non-Newtonian fluid

model with yield stress. In this study, we use two different non-Newtonian fluid models

with yield stress for blood flow simulations such as (i) Herschel-Bulkley (H-B) fluid and (ii)
Casson fluid. Note that for particular values of the parameters, H-B fluid model’s constitutive

equation reduces to the constitutive equations of Newtonian fluid, power law fluid, and

Bingham fluid. Also it is to be noted that Casson fluid model’s constitutive equation reduces

to the constitutive equation of Newtonian fluid when the yield stress parameter becomes

zero. The cylindrical polar coordinate system (r, ψ, z) has been used to analyze the blood

flow.
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Figure 1: Pictorial description of segment of the artery with asymmetric stenosis.

2.1. Herschel-Bulkley Fluid Model

2.1.1. Governing Equations and Boundary Conditions

It has been reported that the radial velocity is negligibly small and can be neglected for a

low Reynolds number flow in a narrow artery with mild stenosis. The momentum equations

governing the blood flow in the axial and radial directions simplify, respectively, to [32]

ρH
∂uH

∂t
= −∂p

∂z
− 1

r

∂

∂r
(rτH) + F

(
t
)
,

(2.1)

0 =
∂p

∂r
, (2.2)
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where ρH , uH are the density and axial component of the velocity of the H-B fluid,

respectively; p is the pressure; t is the time; τH = |τrz| = −τrz is the shear stress of the H-

B fluid; F(t) is the term which represents the effect of body acceleration and is given by

F
(
t
)
= a0 cos

(
ωbt + φ

)
, (2.3)

where a0 is the amplitude of the body acceleration, ωb = 2πfb, fb is the frequency in Hz and

is assumed to be small so that the wave effect can be neglected [14], φ is the lead angle of F(t)
with respect to the heart action. Since, the blood flow is assumed as pulsatile, it is appropriate

to assume the pressure gradient as a periodic function as given below [25]:

−∂p
∂z

(
z, t

)
= A0 +A1 cos

(
ωpt

)
, (2.4)

where A0 is the steady component of the pressure gradient, A1 is the amplitude of the

pulsatile component of the pressure gradient, and ωp = 2πfp, fp is the pulse frequency in

Hz [23]. The constitutive equation of the H-B fluid (which represents blood) is given by

τH = μ1/n
H

(−∂uH
∂r

)1/n

+ τy if τH ≥ τy,
∂uH

∂r
= 0 if τH ≤ τy,

(2.5)

where, τy is the yield stress of the H-B fluid and μH is the coefficient of viscosity of H-B

fluid with dimension (ML−1T−2)nT . The geometry of the asymmetric shape of stenosis in the

arterial segment is mathematically represented by the following equation [34]:

R(z)

R0

=

⎧⎨⎩1 −G
[
L
m−1

0

(
z − d

)
−
(
z − d

)m]
if d ≤ z ≤ d + L0,

1 otherwise,
(2.6)

where G = (δ/R0L0)m(m/m−1); δ denotes the maximum height of the stenosis at z = d +
(L0/m

(m/m−1)) such that δ/R0 � 1; L0 is the length of the stenosis; d denotes its location; R(z)
is the radius of the artery in the stenosed region; R0 is the radius of the normal artery. It is to

be noted that (2.6) also represents the geometry of segment of the artery with axisymmetric

stenosis when the stenosis shape parameter m = 2. We make use of the following boundary

conditions to solve the system of momentum and constitutive equations for the unknown

velocity and shear stress:

τH is finite at r = 0,

uH = 0 at r = R(z).
(2.7)
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2.1.2. Nondimensionalization

Let us introduce the following nondimensional variables:

z =
z

R0

, R(z) =
R(z)

R0

, r =
r

R0

, t = tω, ω =
ωb

ωp
, δ =

δ

R0

, uH =
uH(

A0R0

2
/4μ0

) ,
τH =

τH(
A0R0/2

) , θ =
2τy

A0R0

, α2
H =

R0

2
ωρH
μ0

, e =
A1

A0

, B =
a0

A0

,

(2.8)

where μ0 = μH(2/R0A0)
n−1

having dimension as that of Newtonian fluid’s viscosity

[22, 34]; αH is the generalized Wormersly frequency parameter or pulsatile Reynolds number,

and when n = 1, it reduces to the Newtonian fluid’s pulsatile Reynolds number. Using

nondimensional variables defined in (2.8), the momentum and constitutive equations (2.1)
and (2.5) can be simplified to the following equations:

α2
H

∂uH
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2

r

∂

∂r
(rτH), (2.9)

τH =
(
−1

2

∂uH
∂r

)1/n

+ θ if τH ≥ θ, (2.10)

∂uH
∂r

= 0 if τH ≤ θ. (2.11)

The geometry of the asymmetric shape of the stenosis in the arterial segment in the nondi-

mensional form reduces to the following equation:

R(z) =

{
1 −G[Lm−1

0 (z − d) − (z − d)m] if d ≤ z ≤ d + L0,

1 otherwise,
(2.12)

where G = (δ/R0L0)m(m/m−1). The boundary conditions in the nondimensional form are

τH is finite at r = 0,

uH = 0 at r = R.
(2.13)

The volume flow rate in the nondimensional is given by

Q(z, t) = 4

∫R(z)
0

uH(z, r, t)r dr, (2.14)

where Q(z, t) = Q(z, t)/[πR
4

0A0/8μ0], Q is the volumetric flow rate.
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2.1.3. Perturbation Method of Solution

Since, (2.9) and (2.10) form the system of nonlinear partial differential equations, it is not

possible to get an exact solution to them. Thus, perturbation method is used to solve this

system of nonlinear partial differential equations. Since, the present study deals with slow

flow of blood (low Reynolds number flow) where the effect of pulsatile Reynolds number αH
is negligibly small and also it occurs naturally in the nondimensional form of the momentum

equation, it is more appropriate to expand the unknowns uH and τH in (2.9) and (2.10) in the

perturbation series about α2
H . Let us expand the velocity uH in the perturbation series about

the square of the pulsatile Reynolds number α2
H as below (where α2

H � 1):

uH(r, z, t) = uH0(r, z, t) + α2
HuH1(r, z, t) + · · · . (2.15)

Similarly, one can expand the shear stress τH(r, z, t), the plug core radius Rp(z, t), the plug

core velocity up(z, t), and the plug core shear stress τp(z, t) in terms of α2
H . Substituting the

perturbation series expansions of uH and τH in (2.9) and then equating the constant term and

α2
H term, we get

∂

∂r
(rτH0) = 2r

[
(1 + e cos t) + B cos

(
ωt + φ

)]
,

∂uH0

∂t
= −2

r

∂

∂r
(rτH1).

(2.16)

Using the binomial series approximation in (2.10) (assuming (θ/τ)2 � 1) and then applying
the perturbation series expansions of uH and τH in the resulting equation and then equating

the constant term and α2
H term, one can obtain

−∂uH0

∂r
= 2τn−1

H0 [τH0 − nθ],

−∂uH1

∂r
= 2nτn−2

H0 τH1[τH0 − (n − 1)θ].
(2.17)

Applying the perturbation series expansions of uH and τH in the boundary conditions (2.13),
we obtain

τH0, τH1 are finite at r = 0,

uH0 = 0, uH1 = 0 at r = 0.
(2.18)
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Solving (2.16)–(2.17) with the help of the boundary conditions (2.18) for the unknowns

τP0, τP1, τH0, τH1, uP0, uP1, uH0, and uH1, one can get the following expressions (detail of

obtaining these expressions is given in [32]):

τP0 = g(t)R0p,

τH0 = g(t)r,

uH0 = 2
[
g(t)R

]n
R

[
1

(n + 1)

{
1 −

( r
R

)n+1
}
−
(
q2

R

){
1 −

( r
R

)n}]
,

u0p = 2
[
g(t)R

]n
R

⎡⎣ 1

(n + 1)

⎧⎨⎩1 −
(
q2

R

)n+1
⎫⎬⎭ −

(
q2

R

){
1 −

(
q2

R

)n}⎤⎦,

τP1 = −[g(t)R]nDR2

⎡⎣ n

2(n + 1)

(
q2

R

)
− (n − 1)

2

(
q2

R

)2

− n

2(n + 1)

(
q2

R

)n+2
⎤⎦,

τH1 = −[g(z)R]nDR2

⎡⎣ n

(n + 1)(n + 3)

{(
n + 3

2

)( r
R

)
−
( r
R

)n+2
}

− (n − 1)
(n + 2)

(
q2

R

){(
n + 2

2

)( r
R

)
−
( r
R

)n+1
}

− 3
(
n2 + 2n − 2

)
2(n + 2)(n + 3)

(
q2

R

)n+3(
R

r

)⎤⎦,

uH1 = −2n
[
g(t)R

]2n−1
DR3

⎡⎣ n

2(n + 1)2(n + 3)

{
(n + 2) − (n + 3)

[ r
R

]n+1

+
[ r
R

]2n+2
}

+
(n − 1)

2(n + 1)(n + 2)(n + 3)(2n + 1)

[
q2

R

]

×
{
(n + 2)(n + 3)(2n + 1)

[( r
R

)n
+
( r
R

)n+1
]

− 2

[(
2n3 + 9n2 + 11n + 3

)
+
(

2n2 + 6n + 3
)[ r
R

]2n+1
]}

+
(n − 1)2

2n(n + 2)

(
q2

R

)2{
(n + 1) − (n + 2)

[ r
R

]n
+
[ r
R

]2n
}
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+
3
(
n2 + 2n − 2

)
2(n − 1)(n + 2)(n + 3)

(
q2

R

)n+3{( r
R

)n−1

− 1

}

+
3
(
n2 + 2n − 2

)
(n − 1)

2(n − 2)(n + 2)(n + 3)

(
q2

R

)n+4{
1 −

[ r
R

]n−2
}⎤⎦,

uP1 = −2n
[
g(t)R

]2n−1
DR3

⎡⎣ n

2(n + 1)2(n + 3)

⎧⎨⎩(n + 2) − (n + 3)

[
q2

R

]n+1

+

[
q2

R

]2n+2
⎫⎬⎭

+
(n − 1)

2(n + 1)(n + 2)(n + 3)(2n + 1)

[
q2

R

]

×
⎧⎨⎩(n + 2)(n + 3)(2n + 1)

⎡⎣(q2

R

)n

+

(
q2

R

)n+1
⎤⎦

− 2

⎡⎣(2n3 + 9n2 + 11n + 3
)
+
(

2n2 + 6n + 3
)[q2

R

]2n+1
⎤⎦
⎫⎬⎭

+
(n − 1)2

2n(n + 2)

(
q2

R

)2
⎧⎨⎩(n + 1) − (n + 2)

[
q2

R

]n
+

[
q2

R

]2n
⎫⎬⎭

+
3
(
n2 + 2n − 2

)
2(n − 1)(n + 2)(n + 3)

(
q2

R

)n+3
⎧⎨⎩
(
q2

R

)n−1

− 1

⎫⎬⎭
+

3
(
n2 + 2n − 2

)
(n − 1)

2(n − 2)(n + 2)(n + 3)

(
q2

R

)n+4
⎧⎨⎩1 −

[
q2

R

]n−2
⎫⎬⎭
⎤⎦,

(2.19)

where q2 = (θ/g(t)), r|τ0p=θ = R0p = θ/g(t) = q2, g(t) = (1 + e cos t) + B cos(ωt + φ), and D =
(1/g)(dg/dt). The wall shear stress τw is a physiologically important flow quantity which

plays an important role in determining the aggregate sites of platelets [3]. The expression for

wall shear stress τw is given by [32]

τw =
(
τH0 + α2

HτH1

)
r=R

=
[
g(t)R

]
×
⎡⎣1 −

(
g(t)R

)n−1
α2R2B

2(n + 2)(n + 3)

×
⎧⎨⎩n(n + 2) − (n − 1)n(n + 3)

(
q2

R

)
− 3

(
n2 + 2n − 2

)(q2

R

)n+3
⎫⎬⎭
⎤⎦.

(2.20)
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The expression for volumetric flow rate Q(z, t) is obtained as below (see [32] for details):

Q(z, t) = 4

[(∫R0p

0

ru0pdr +
∫R
R0p

ru0dr

)
+ α2

(∫R0p

0

ru1pdr +
∫R
R0p

ru1dr

)]

=
4
[
g(t)R

] n
R3

(n + 2)(n + 3)

⎡⎣
⎧⎨⎩(n + 2) − n(n + 3)

(
q2

R

)
+
(
n2 + 2n − 2

)(q2

R

)n+3
⎫⎬⎭

− α2
[
g(t)R

] n−1

(
nDR2

4

)

×
⎧⎨⎩n − 2n(n − 1)

(
4n2 + 12n + 5

)
(2n + 1)(2n + 3)

(
q2

R

)

+
n(n − 1)2(n + 3)

(n + 1)

(
q2

R

)2

+

(
n3 − 2n2 − 11n + 6

)
(n + 1)

(
q2

R

)n+3

− (n − 1)
(
n3 − 2n2 − 11n + 6

)
n

(
q2

R

)n+4

−
(
4n5 + 14n4 − 8n3 − 45n2 − 3n + 18

)
n(n + 1)(2n + 3)

(
q2

R

)2n+4
⎫⎬⎭
⎤⎦.

(2.21)

The expression for the plug core radius is obtained as below [32]:

Rp = q2 + α2
[
g(t)R

]n−1

(
nDR3

2(n + 1)

)⎡⎣(q2

R

)
−
(
n2 − 1

n

)(
q2

R

)2

−
(
q2

R

)n+2
⎤⎦. (2.22)

The longitudinal impedance to flow in the artery is defined as

Λ =
P(t)
Q(z, t)

, (2.23)

where

P(t) = 4[1 + e cos(t)] (2.24)

is the pressure gradient in the nondimensional form.
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2.2. Casson Fluid Model

2.2.1. Governing Equations and Boundary Conditions

The momentum equations governing the blood flow in the axial and radial directions

simplify, respectively, to [33]

ρC
∂uC

∂t
= −∂p

∂z
− 1

r

∂

∂r
(rτC) + F

(
t
)
, (2.25)

0 =
∂p

∂r
, (2.26)

where uC and ρC are the axial component of the velocity and density of Casson fluid; p is the

pressure; t is the time; τC = |τrz| = −τrz is the shear stress of Casson fluid. Equations (2.3)
and (2.4) which define mathematically the body acceleration term F(t) and pressure gradient

−(∂p/∂z) are assumed in this subsection. Similarly, (2.6) which mathematically describes

the geometry of the axisymmetric shape of stenosis and asymmetric shape of stenosis in

the segment of the stenosed artery is also assumed in this subsection (the details of these

assumptions can be found in Section 2.1.1) The constitutive equation of the Casson fluid

model (which models blood) is defined as below:

√
τC =

√
μC

(−∂uC
∂r

)
+
√
τy if τC ≥ τy, (2.27)

∂uC

∂r
= 0 if τC ≤ τy, (2.28)

where τy is the yield stress of Casson fluid and μC is the coefficient of viscosity of Casson

fluid with dimension ML−1T−1. The appropriate boundary conditions to solve the system of

momentum and constitutive equations (2.25), (2.27), and (2.28) for the unknown velocity and

shear stress are

τC is finite at r = 0,

uC = 0 at r = R(z).
(2.29)
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2.2.2. Nondimensionalization

Similar to (2.8), let us introduce the following nondimensional variables for the Casson fluid

flow modeling as follows:

z =
z

R0

, R(z) =
R(z)

R0

, r =
r

R0

, t = tω, ω =
ωb

ωp
, δ =

δ

R0

, uC =
uC(

A0R
2

0/4μC

) ,
τC =

τC(
A0R0/2

) , θ =
2τy

A0R0

, α2
C =

R
2

0ωρC
μC

, e =
A1

A0

, B =
a0

A0

,

(2.30)

where αC is the Wormersly frequency parameter or pulsatile Reynolds number of Casson

fluid model. Use of the above nondimensional variables reduces the momentum and

constitutive equations (2.25), (2.27), and (2.28), respectively, to the following equations:

α2
C

∂uC
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2

r

∂

∂r
(rτC), (2.31)

√
τC =

√
−1

2

∂uC
∂r

+
√
θ if τC ≥ θ, (2.32)

∂uC
∂r

= 0 if τC ≤ θ. (2.33)

Equation (2.12) which mathematically defines the nondimensional form of the geometry of

the asymmetric shapes of stenosis in the arterial segment is assumed in this sub-section. The

boundary conditions in the nondimensional form are

τC is finite at r = 0,

uC = 0 at r = R.
(2.34)

The volume flow rate in the nondimensional is given by

Q = 4

∫R(z)
0

uC(z, r, t)r dr, (2.35)

where Q = Q/[πR
4

0A0/8μC], Q is the volumetric flow rate.
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2.2.3. Perturbation Method of Solution

As described in Section 2.1.3, perturbation method is applied to solve the system of nonlinear

partial differential equations (2.31) and (2.32). Let us expand the velocity uC in the perturba-

tion series about the square of the pulsatile Reynolds number α2
C as below (where α2

C � 1):

uC(r, z, t) = uC0(r, z, t) + α2
CuC1(r, z, t) + · · · . (2.36)

Similarly, one can expand the shear stress τC(r, z, t), the plug core radius Rp(z, t), the plug

core velocity up(z, t), and the plug core shear stress τp(z, t) in terms of α2
C. Substituting the

perturbation series expansions of uCand τC in (2.31) and then equating the constant term and

α2
C term, one can obtain

∂

∂r
(rτC0) = 2r

[
(1 + e cos t) + B cos

(
ωt + φ

)]
,

∂uC0

∂t
= −2

r

∂

∂r
(rτC1).

(2.37)

Applying the perturbation series expansions of uC and τC in (2.32) and then equating the

constant term and α2
C term, we get

−∂uC0

∂r
= 2

⎡⎣τC0 − 2

√(
θ

τC0

)
+ θ

⎤⎦,

−∂uC1

∂r
= 2τC1

⎡⎣1 −
√(

θ

τC0

)⎤⎦.
(2.38)

Applying the perturbation series expansions of uC and τC in the boundary conditions (2.34)
and then equating the constant terms and α2

C terms, one can get

τC0, τC1 are finite at r = 0,

uC0 = 0, uC1 = 0 at r = 0.
(2.39)

Solving (2.37)–(2.38) with the help of the boundary conditions (2.39) for the unknowns

τP0, τP1, τC0, τC1, uP0, uP1, uC0, and uC1, one can get the following expressions as in [33],
but in a corrected form ((2.40)–(2.50)):

τP0 = g(t)R0p, (2.40)

τC0 = g(t)r, (2.41)
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uC0 = g(t)R2

[{
1 −

( r
R

)2
}
− 8

3

(
q√
R

){
1 −

( r
R

)3/2
}
+

2q2

R

{
1 −

( r
R

)}]
, (2.42)

uP0 = g(t)R2

⎡⎣1 − 8

3

(
q√
R

)
+ 2

(
q2

R

)
− 1

3

(
q2

R

)2
⎤⎦, (2.43)

τP1 = −g(t)DR
5

12

(
q2

R

)⎡⎣3 − 4

√
q2

R
+

(
q2

R

)2
⎤⎦, (2.44)

τC1 =
g(t)DR3

8

×
⎡⎣2

( r
R

)
−
( r
R

)3

−
(
q2

R

)4(
R

r

)
− 8

21

√
q2

R

⎧⎨⎩7
( r
R

)
− 4

( r
R

)5/2

− 3

(
q2

R

)7/2(
R

r

)⎫⎬⎭
⎤⎦,

(2.45)

uC1 = −g(t)DR4

⎡⎣− 1

12

{
1 −

( r
R

)2
}
− 1

3

√
q2

R

{
1 −

( r
R

)3/2
}

− 1

16

{
1 −

( r
R

)4
}
+

53

294

√
q2

R

{
1 −

( r
R

)7/2
}

+
4

9

(
q2

R

){
1 −

( r
R

)3/2
}
− 8

63

(
k2

R

){
1 −

( r
R

)3
}

− 1

28

(
q2

R

)4

log
( r
R

)
+

1

14

(
q2

R

)9/2
⎧⎨⎩1 −

√
R

r

⎫⎬⎭
⎤⎦,

(2.46)

uP1 = −g(t)DR4

⎡⎣− 7

48
+

15

98

√√√√(
q2

R

)
− 20

63

(
q2

R

)
+

5

12

(
q2

R

)2

− 4

9

(
q2

R

)5/2

− 439

7056

(
q2

R

)4

+
1

14

(
q2

R

)9/2

− 1

28

(
q2

R

)4

log

(
q2

R

)⎤⎦,
(2.47)
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where q2 = (θ/g(t)), r|τ0p=θ = R0p = θ/g(t) = q2, g(t) = (1 + e cos t) + B cos(ωt + φ), and

D = (1/g)(dg/dt). Using (2.41) and (2.45), the expression for wall shear stress τw is obtained

as below:

τw =
(
τC0 + α2

CτC1

)
r=R

= g(t)R

⎡⎣1 − α2
CR

2D

8

⎧⎨⎩1 − 8

7

(
q√
R

)
+

1

7

(
q2

R

)4
⎫⎬⎭
⎤⎦. (2.48)

The expression for volumetric flow rate Q(z, t) is obtained as below:

Q(z, t) = 4

[(∫R0P

0

ru0pdr +
∫R
R0P

ru0dr

)
+ α2

(∫R0P

0

ru1pdr +
∫R
R0P

ru1dr

)]

= g(t)R4

⎡⎣1 − 16

7

(
q√
R

)
+

4

3

(
q2

R

)
− 1

21

(
q2

R

)4

− α2
CR

6g(t)D

×
⎧⎨⎩1

6
− 30

77

(
q√
R

)
+

8

35

(
q2

R

)
− 1

3

(
q2

R

)5/2

+
1

14

(
q2

R

)9/2

− 41

770

(
q2

R

)6

− 1

14

(
q2

R

)6

log

(
q2

R

)
+

1

14

(
q2

R

)4
⎛⎝1 −

(
q2

R

)2
⎞⎠log

(
q
)⎫⎬⎭
⎤⎦.

(2.49)

The expression for the plug core radius is obtained as below [33]:

Rp = q2 − Dα2
CR

3

4

⎡⎣(q2

R

)
− 4

3

(
q2

R

)3/2

+
1

3

(
q2

R

)3
⎤⎦. (2.50)

The longitudinal impedance to flow in the artery is defined as

Λ =
P(t)
Q(z, t)

. (2.51)

3. Numerical Simulation of the Results

The main objective of the present mathematical analysis is to compare the H-B and Casson

fluid models for blood flow in constricted arteries and spell out the advantageous of using

H-B fluid model rather than Casson fluid for the mathematical modeling of blood flow

in a narrow artery with asymmetric stenosis. It is also aimed to bring out the effect of

body acceleration, stenosis shape parameter, yield stress, and pressure gradient on the

physiologically important flow quantities such as plug core radius, plug flow velocity,

velocity distribution, flow rate, wall shear stress, and longitudinal impedance to flow. The

different parameters used in this analysis and their range of values are given below [32–35].
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Figure 2: Variation of plug core radius with axial distance for H-B and Casson fluid models with different
values of yield stress θ and with δ = 0.15, αH = αC = 0.2, B = 2, e = φ = 0.7, and t = 45◦.

Yield stress θ: 0–0.3; power law index n: 0.95–1.05; pressure gradient e: 0-1; body

acceleration B: 0–2; frequency parameter ω: 0-1; pulsatile Reynolds numbers αH and αC: 0.2–

0.7; lead angle φ: 0.2–0.5; asymmetry parameter m: 2–7; stenosis depth δ: 0–0.2.

3.1. Plug Core Radius

The variation of the plug core with axial distance in axisymmetric stenosed artery (m = 2) for

different values of the yield stress of H-B and Casson fluid models with δ = 0.15, B = 2, αH =
αC = 0.2, e = φ = 0.7 and t = 45◦ is shown in Figure 2. It is observed that the plug core radius

decreases slowly when the axial variable z increases from 0 to 4 and then it increases when

z increases further from 4 to 8. The plug core radius is minimum at the centre of the stenosis

(z = 4), since the stenosis is axisymmetric. The plug core radius of the H-B fluid model is

slightly lower than that of the Casson fluid model. One can note that the plug core radius

increases very significantly when the yield stress of the flowing blood increases. Figure 3

sketches the variation of plug core radius with pressure gradient ratio in asymmetrically

stenosed artery (m = 4) for H-B and Casson fluid models and for different values of the

body acceleration parameter with θ = δ = 0.1, t = 60◦, φ = 0.7, m = 4, and z = 4. It is noticed

that the plug core radius decreases rapidly with the increase of the pressure gradient ratio e

from 0 to 0.5 and then it decreases slowly with the increase of the pressure gradient ratio e

from 0.5 to 1. It is seen that plug core radius increases significantly with the increase of the

body acceleration parameter B. Figures 2 and 3 bring out the influence of the non-Newtonian

behavior of blood and the effects of body acceleration and pressure gradient on the plug core

radius when blood flows in asymmetrically stenosed artery.
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Figure 3: Variation of plug core radius with pressure gradient for H-B and Casson fluids and for different
values of body acceleration parameter B with θ = δ = 0.1, t = 60◦, φ = 0.7, m = 4, and z = 4.
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Figure 4: Variation of plug flow velocity with yield stress for H-B and Casson fluid models and for different
values of stenosis shape parameter m with e = 0.5, φ = 0.2, t = 60◦, z = 4, ω = 0.5, B = 1, and δ = 0.1.

3.2. Plug Flow Velocity

Figure 4 shows the variation of the plug flow velocity with yield stress for H-B and Casson

fluid models and for different values of the stenosis shape parameter with e = 0.5, φ = 0.2,

z = 4, t = 60◦, ω = 0.5, B = 1, and δ = 0.1. It is noted that for H-B fluid model, the plug flow

velocity decreases very slowly with the increase of the yield stress, whereas, in the case of

Casson fluid model, it decreases rapidly when the yield stress θ increases from 0 to 0.05 and

then it decreases slowly with the increase of the yield stress from 0.05 to 0.3. It is seen that

the plug flow velocity is considerably higher for H-B fluid model than that of the Casson

fluid model. One can easily observe that the plug flow velocity decreases significantly with

the increase of the stenosis shape parameter m. The variation of plug flow velocity with axial
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Figure 5: Variation of plug flow velocity with axial distance for H-B and Casson fluids and for different
values of B and e with δ = θ = 0.1, m = 4, t = 60◦, φ = 0.2, and ω = 0.5.

distance for H-B and Casson fluid models and for different values of the body acceleration B

and pressure gradient ratio e with δ = θ = 0.1, m = 4, t = 60◦, φ = 0.2, and ω = 0.5 is depicted in

Figure 5. It is seen that the plug flow velocity skews more to the right-hand side in the axial

direction which is attributed by the skewness of the stenosis. It is clear that the plug flow

velocity increases considerably with the increase of the body acceleration parameter B and

pressure gradient ratio e. Figures 4 and 5 show the non-Newtonian character of blood and

effects of body acceleration, pressure gradient, and asymmetry of the stenosis on the plug

flow velocity of blood when it flows through a constricted artery.

3.3. Velocity Distribution

Figure 6 sketches the velocity distribution for H-B and Casson fluid models and for different

values of yield stress θ, stenosis depth δ with m = 2, e = 0.2, αH = αC = 0.5, φ = 0.2, ω = 1,

t = 60◦, and B = 1. It is observed that the velocity of H-B fluid model is considerably higher

than that of Casson fluid model. It is also found that the velocity of the blood flow decreases

with the increase of the yield stress θ and stenosis depth δ. But the decrease in the velocity

is considerable when the stenosis depth δ increases, whereas it decreases significantly with

the increase of the yield stress. It is of interest to note that the velocity distribution of H-B

fluid with δ = 0.2 and θ = 0.05 and B = 0 is in good agreement with the corresponding plot in

Figure 6 of Sankar and Lee [34]. It is also to be noted that the velocity distribution of Casson

fluid with δ = 0.2, θ = 0.01, and B = 0 is in good agreement with the corresponding plot in

Figure 6 of Siddiqui et al. [35].

3.4. Flow Rate

The variation of flow rate with pressure gradient ratio for H-B and Casson fluid models and

for different values of the power law index n, body acceleration parameter B, and stenosis

shape parameter m with θ = δ = 0.1, αH = αC = φ = 0.2, z = 4, t = 60◦, and ω = 1 is shown
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Figure 6: Velocity distribution for different fluid models with e = 0.2, αH = αC = 0.5, φ = 0.2, ω = 1, t = 60◦,
and B = 1.

in Figure 7. It is seen that the flow rate increases with the pressure gradient ratio e. But

the increase in the flow rate is linear for H-B fluid model and almost constant for Casson

fluid model. For a given set of values of the parameters, the flow rate for H-B fluid model

is considerably higher than that of the Casson fluid model. It is also clear that for a given

set of values of n and m, the flow rate increases considerably with the increase of the body

acceleration parameter B. One can observe that for fixed values of n and B, the flow rate

decreases significantly with the increase of the stenosis shape parameter m. When the power

law index n increases from 0.95 to 1.05 and all the other parameters were held constant, the

flow rate decreases slightly when the range of the pressure gradient ratio e is 0–0.5 and this

behavior is reversed when the range of the pressure gradient ratio e is 0.5 to 1. Figure 7 brings

out the effects of body acceleration and stenosis shape on the flow rate of blood when it flows

through narrow artery with mild stenosis.

3.5. Wall Shear Stress

Figure 8 shows the variation of wall shear stress with frequency ratio for H-B and Casson

fluid models and for different values of the φ (lead angle), αH (pulsatile Reynolds number

for H-B fluid model), and αC (pulsatile Reynolds number of Casson fluid model) with m =
2, θ = δ = 0.1, e = 0.5, B = 1, z = 4, and t = 60◦. It is seen that the wall shear stress decreases

slightly nonlinearly with frequency ratio for lower values of the pulsatile Reynolds numbers

αH and αC and lead angle φ, and it decreases linearly with frequency ratio for higher values

of the pulsatile Reynolds numbers αH and αC and lead angle φ. It is found that for a given set

of values of the parameters, the wall shear stress is marginally lower for H-B fluid model than

that of the Casson fluid model. Also, one can note that for fixed value of the lead angle φ, the

wall shear stress decreases significantly with the increase of the pulsatile Reynolds numbers

αH and αC. It is also observed that the wall shear stress decreases marginally with the increase

of the lead angle φ when all the other parameters were kept as invariables. Figure 8 spells out
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the effects of pulsatility and non-Newtonian character of blood on the wall shear stress when

it flows in a narrow artery with mild stenosis.

3.6. Longitudinal Impedance to Flow

The variation of the longitudinal impedance to flow with axial distance for different values of

the stenosis shape parameter m and body acceleration parameter B with θ = δ = 0.1, t = 60◦,

αH = αC = φ = 0.2, e = 0.5, and ω = 1 is depicted in Figures 9(a) (for H-B fluid model) and 9(b)
(Casson fluid model). It is noticed that the longitudinal impedance to flow increases with

the increase of the axial variable z from 0 to the point where the stenosis depth is maximum
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Figure 9: Variation of longitudinal impedance to flow with axial distance for H-B and Casson fluid models
and for different values of m and B with θ = δ = 0.1, t = 60◦, αH = αC = φ = 0.2, e = 0.5, and ω = 1.

and then it decreases as the axial variable z increases further from that point to 8. One can

see the significant increase in the longitudinal impedance to flow when the stenosis shape

parameter m increases and marginal increase in the longitudinal impedance to flow when

the body acceleration parameter B increases. It is also clear that for the same set of values

of the parameters, the longitudinal impedance to flow is significantly lower for H-B fluid

model than that of the Casson fluid model. Figures 9(a) and 9(b) bring out the effects of body

acceleration and asymmetry of the stenosis shape on the longitudinal impedance to blood

flow.

The increase in the longitudinal impedance to blood flow due to the asymmetry shape

of the stenosis is defined as the ratio between the longitudinal impedance to flow of a fluid

model for a given set of values of the parameters in an artery with asymmetric stenosis

and the longitudinal impedance of the same fluid model and for the same set of values
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Table 1: Estimates of the increase in the longitudinal impedance to flow due to the increase in the stenosis
shape parameter and body acceleration with δ = θ = 0.1, e = 0.5, ω = 1, αH = αC = φ = 0.2, z = 4, and t = 60◦.

m H-B fluid model Casson fluid model

B = 0 B = 1 B = 2 B = 0 B = 1 B = 2

3 1.5759 1.5698 1.5657 1.6401 1.6282 1.6202

4 2.4616 2.4419 2.4289 2.6690 2.6289 2.6022

5 3.8118 3.7642 3.7331 4.3105 4.2098 4.1433

6 5.9191 5.8153 5.7484 6.9964 6.7688 6.6201

7 9.3531 9.1338 8.9944 11.6016 11.1022 10.7803

Table 2: Physiological data for different arteries.

S. no. Artery Radius (×10−2 m) A0 (×10 Kg m−2 s−1) A1 (×10 Kg m−2 s−1)
1 Aorta 1.0 7.3 1.46

2 Femoral 0.5 32.0 6.4

3 Carotid 0.4 50.0 10.0

4 Coronary 0.15 698.65 139.74

5 Arteriole 0.008 2000.0 400

of the parameters in that artery with axisymmetric stenosis. The estimates of the increase

in the longitudinal impedance to flow are computed in Table 1 for different values of the

stenosis shape parameter m and body acceleration parameter B with δ = θ = 0.1, e = 0.5,

ω = 1, z = 4, αH = αC = φ = 0.2, and t = 60◦. It is observed that the estimates of the

increase in the longitudinal impedance to flow increase considerably when the stenosis shape

parameter m increases and they decrease slightly when the body acceleration parameter B

increases. Hence, the longitudinal impedance to flow is significantly higher in the arteries

with asymmetric shape of the stenosis compared to that in the arteries with axisymmetric

stenosis. It is also noted that the presence of the body acceleration decreases the longitudinal

impedance to blood flow considerably.

3.7. Some Possible Clinical Applications

To discuss some possible clinical applications of the present study, the data (for different types

of arteries, their corresponding radii, steady and pulsatile pressure gradient values) reported

by Chaturani and Wassf Issac [23] are given in Table 2 and are used in this applications part of

our study. For these clinical data (given in Table 2), the estimates of the mean velocity of H-B

and Casson fluid models for different values of the stenosis shape parameter m and different

values of the body acceleration parameter B with θ = δ = 0.1, t = 60◦, ω = 1, z = 4, φ = 0.2, αH
= αC = 0.2, and e = 0.2 are computed in Table 3. It is recorded that the estimates of the mean

velocity increase significantly with the increase of the artery radius, except in arterioles. It is

also found that the estimates of the mean velocity of H-B fluid model are marginally higher

than those of the Casson fluid model. It is noted that the mean velocity increases considerably

with the increase of the body acceleration parameter B and the reverse behavior is found

when the stenosis shape parameter m increases.

For the clinical data given in Table 2, the estimates of the mean flow rate of H-B

and Casson fluid models are computed in Table 4 for different values of the stenosis shape

parameter m and different values of the body acceleration parameter B with θ = δ = 0.1, ω
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Table 3: Estimates of mean velocity of H-B and Casson fluid models for different values of m and B in
arteries with different radii with θ = δ = 0.1, t = 60◦, ω = 1, z = 4, e = 0.2, and αH = αC = φ = 0.2.

S. no. Artery type

H-B fluid model (×10−2 m s−1) Casson fluid model (×10−2 m s−1)
m = 2 m = 4 m = 2 m = 4

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1 B = 0 B = 1

1 Aorta 40.28 46.25 36.35 41.82 37.46 42.89 33.18 37.88

2 Femoral 46.78 52.38 40.22 45.41 42.55 49.67 37.69 42.47

3 Carotid 46.78 52.38 40.22 45.41 42.55 49.67 37.69 42.47

4 Coronary 93.85 97.55 89.45 93.48 89.24 94.38 86.12 90.59

5 Arteriole 0.62 0.75 0.55 0.68 0.57 0.69 0.51 0.63

Table 4: Estimates of mean flow rate of H-B and Casson fluid models for different values of m and B in
arteries with different radii with θ = δ = 0.1, t = 60◦, ω = 1, z = 4, e = 0.2, and αH = αC = φ = 0.2.

S. no. Artery type

H-B fluid model (×10−2 m s−1) Casson fluid model (×10−2 m s−1)
m = 2 m = 4 m = 2 m = 4

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1 B = 0 B = 1

1 Aorta 65.43 72.54 61.42 68.72 61.49 66.58 55.24 62.66

2 Femoral 14.87 20.38 12.66 17.41 11.57 16.93 10.41 15.28

3 Carotid 9.56 13.15 8.43 11.85 7.94 11.27 6.25 9.49

4 Coronary 3.12 3.55 2.85 3.25 2.75 3.15 2.37 2.84

5 Arteriole 70.8E−6 82.5E−6 67.3E−6 74.6E−6 65.8E−6 75.61 61.8E−6 69.7E−6

= 1, t = 60◦, z = 4, φ = 0.2, αH = αC = 0.2, and e = 0.2. It is observed that the estimates of

the mean flow rate decrease very significantly with the increase of the artery radius. It is also

found that the estimates of the mean flow rate of H-B fluid model are considerably higher

than those of the Casson fluid model. It is noted that the estimates of the mean flow rate

increase significantly with the increase of the body acceleration parameter B and the reverse

behavior is recorded when the stenosis shape parameter m increases.

4. Conclusions

The present mathematical analysis brings out various interesting rheological properties of

blood when it flows through narrow stenosed arteries with body acceleration, treating it as

different non-Newtonian fluid models with yield stress such as (i) Herschel-Bulkley fluid

model and (ii) Casson fluid model. By the use of appropriate mathematical expression for

the geometry of segment of the stenosed artery, both axisymmetric and asymmetric shapes of

stenoses are considered to study the effects of stenosis shape and size on the physiologically

important quantities. Some major findings of this mathematical analysis are summarized

below.

(i) The plug core radius, wall shear stress, and longitudinal impedance to flow are

marginally lower for H-B fluid model than those of the Casson fluid model.

(ii) The plug flow velocity, velocity distribution, and flow rate are considerably higher

for H-B fluid model than those of the Casson fluid model.
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(iii) The plug core radius and longitudinal impedance to flow increase significantly with

the increase of the stenosis shape parameter, and the reverse behavior is observed

for plug flow velocity, velocity distribution, and flow rate.

(iv) The estimates of the mean velocity and mean flow rate are considerably higher for

H-B fluid model than those of the Casson fluid model.

(v) The estimates of the mean velocity and mean flow rate increase considerably with

the increase of the body acceleration, and this behavior is reversed when the

stenosis shape parameter increases.

Based on these results, one can note that there is substantial difference between the

flow quantities of H-B fluid model and Casson fluid model, and thus it is expected that the use

of H-B fluid model for blood flow in diseased artery may provide better results which may

be useful to physicians in predicting the effects of body accelerations and different shapes

and sizes of stenosis in the artery on the physiologically important flow quantities. Also,

it is hoped that this study may provide some useful information to surgeons to take some

crucial decisions regarding the treatment of patients, whether the cardiovascular disease can

be treated with medicines or should the patient undergo a surgery. Hence, it is concluded

that the present study can be treated as an improvement in the mathematical modeling

of blood flow in narrow arteries with mild stenosis under the influence of periodic body

accelerations.

Nomenclature

r: Radial distance

r: Dimensionless radial distance

z: Axial distance

z: Dimensionless axial distance

n: Power law index

p: Pressure

p: Dimensionless pressure

P : Dimensionless pressure gradient

Q: Flow rate

Q: Dimensionless flow rate

R0: Radius of the normal artery

R(z): Radius of the artery in the stenosed region

R(z): Dimensionless radius of the artery in the stenosed region

F(t): Body acceleration function

a0: Amplitude of the body acceleration

RP : Plug core radius

RP : Dimensionless plug core radius

uH : Axial velocity of Herschel-Bulkley fluid

uH : Dimensionless axial velocity of Herschel-Bulkley fluid

uC: Axial velocity of Casson fluid

uC: Dimensionless axial velocity of Casson fluid

A0: Steady component of the pressure gradient

A1: Amplitude of the pulsatile component of the pressure gradient
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L: Length of the normal artery

L0: Length of the stenosis

m: Stenosis shape parameter

L0: Dimensionless length of the stenosis

d: Location of the stenosis

d: Dimensionless location of the stenosis

t: Time

t: Dimensionless time.

Greek Letters

Λ: Dimensionless longitudinal impedance to flow

φ: Azimuthal angle

γ̇ : Shear rate

τy: Yield stress

θ: Dimensionless yield stress

τH : Shear stress of the Herschel-Bulkley fluid

τH : Dimensionless shear stress of Herschel-Bulkley fluid

τC: Shear stress for Casson fluid

τC: Dimensionless shear stress of Casson fluid

τw: Dimensionless wall shear stress

ρH : Density of Herschel-Bulkley fluid

ρC: Density of Casson fluid

μH : Viscosity of Herschel-Bulkley fluid

μC: Viscosity of the Casson fluid

αH : Pulsatile Reynolds number of Herschel-Bulkley fluid

αC: Pulsatile Reynolds number of Casson fluid

δ: Depth of the stenosis

δ: Dimensionless depth of the stenosis

ω: Angular frequency of the blood flow

φ: Lead angle.

Subscripts

w: Wall shear stress (used for τ)
H: Herschel-Bulkley fluid (used for u, u, τ, τ)
C: Newtonian fluid (used for u, u, τ, τ).
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The problem of thermal diffusion and diffusion thermo effects on thermosolutal Marangoni
convection flow of an electrically conducting fluid over a permeable surface is investigated. Using
appropriate similarity transformations, the governing system of partial differential equation is
transformed to a set of nonlinear ordinary differential equations, then solved numerically using
the Runge-Kutta-Fehlberg method. The effects of thermal diffusion and diffusion thermo, magnetic
field parameter, thermosolutal surface tension ratio, and suction/injection parameter on the flow
field, heat transfer characteristic, and concentration are thoroughly examined. Numerical results
are obtained for temperature and concentration profiles as well as the local Nusselt and Sherwood
numbers are presented graphically and analyzed. It is found that these governing parameters
affect the variations of the temperature and concentration and also the local Nusselt and Sherwood
numbers.

1. Introduction

The study of Marangoni convection has received great consideration in recent years in

view of its application in industries. Marangoni convection is predictable to be very

useful in wide area especially in crystal growth melts and semiconductor processing. The

Marangoni boundary layer term was first initiated by Napolitano [1, 2] when studied the

existence of the steady dissipative layers which occur along the liquid-liquid or liquid-gas

interfaces. Marangoni convection induced by the surface tension gradient can be due to
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gradients of temperature (thermal convection) and/or concentration (solutal convection).
A lot of analyses in Marangoni convection have been discovered in various geometries and

conditions. Some of experimental works linked to Marangoni convection were discussed in

several papers by Arafune and Hirata [3], Arafune et al. [4], Galazka and Wilke [5], Neumann

et al. [6], Arendt and Eggers [7], and Xu et al. [8].
The related works to this present study were done by Al-Mudhaf and Chamkha [9]

who obtained the similarity solution for MHD thermosolutal Marangoni convection over a

flat surface in the presence of heat generation or absorption with fluid suction and injection.

Christopher and Wang [10] have analyzed the effects of Prandtl number on Marangoni

convection flow over a flat surface. Later, Pop et al. [11] studied numerically the problem

of thermosolutal Marangoni forced convection over a permeable surface and this study

continued by Hamid et al. [12] who obtained dual solutions of the problem. Chen [13]
investigated the flow and the heat transfer characteristics on the forced convection in a power

law liquid film under an applied Marangoni convection over a stretching sheet. Magyari and

Chamkha [14] found solution for steady MHD thermosolutal Marangoni convection and

present analytical solutions for velocity, temperature, and concentration field. Arifin et al.

[15] added new dimension to the Marangoni convection problem by considering the steady

thermosolutal marangoni mixed convection boundary layer flow under an external pressure

gradient. The problem is solved using the shooting method. Most lately, Hamid et al. [16]
studied the two-dimensional Marangoni convection flow past a flat plate in the presence of

thermal radiation, suction, and injection effects.

Several papers that deal with flows in the presence Dufour or diffusion thermo effect

and Soret or thermal diffusion effect are now presented. A brief literature on existence and

development of Dufuor and Soret effects can be found in the papers by Kafoussias and

Williams [17] and Puvi Arasu et al. [18]. Puvi Arasu et al. [18] investigated the impact

of thermophoresis particles deposition on two-dimensional flow over a vertical stretching

surface in the presence of chemical reaction and also Dufour and Soret effects taking place in

the flow. The temperature gradients and concentration gradients play vital role in producing

Dufour and Soret effects. The concentration gradient has generated the heat flux, namely,

Dufour effect while mass flux is created by temperature gradients and is known as Soret

effects. It is seem that the Charles Soret in 1879 is the first who found that a salt solution

contained in a tube with two ends did not remain uniform in composition at different

temperature. By this pioneering discovering, the term “Soret effect” officially introduced

regarded his contribution on study of this particular effect. Later, the fundamental study on

Soret effects remarkably grow over century (Osalusi et al. [19]).
The effects of thermal diffusion and diffusion thermo have been studied widely

by several researchers due to its importance contribution in theory and practical. Some

numerical studies on thermal diffusion and diffusion thermo effects include Afify [20] who

studied the effects of thermal diffusion and diffusion thermo with suction and injection

parameter on MHD free convection heat and mass transfer past a stretching sheet. Kafoussias

and Williams [17] considered the mixed forced convection boundary layer flow with the

effects of thermal diffusion and diffusion thermo in the presence of variable viscosity effect.

This similar work continued by Eldabe et al. [21] for non-Newtonian power law fluid

with the temperature dependent viscosity in the flow. Later, El-Aziz [22] considered the

MHD three-dimensional free convection boundary layer flows past a stretching sheet with

suction or injection and radiation in presence of Dufour and Soret effects. Next, Osalusi

et al. [19] numerically studied the effects of thermal diffusion and diffusion thermo on

combined heat and mass transfer of MHD convective and slip flow due to a rotating disk
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with the inclusion of viscous dissipation and Ohmic heating while Rashidi et al. [23] found

its analytical solution using the homotopy analysis method (HAM). Most recently, Hayat

et al. [24] obtained the series solutions for MHD two-dimensional axisymmetric flow of a

second grade fluid with the existence of thermal diffusion and diffusion thermo effects, Joule

heating and the chemical reaction effects.

The aim of this paper is to discuss the MHD thermosolutal Marangoni convection

boundary layer over a permeable flat surface considering the effects of the thermal diffusion

and diffusion thermo. The set of governing equations and boundary equation of the problem

that are transformed into a set of nonlinear ordinary differential equation with assisting of

similarity transformations are solved using the Runge-Kutta-Fehlberg method. The effects of

different physical parameters on the temperature and concentration profiles as well as the

local Nusselt and Sherwood numbers are presented. To verify the obtained results, we have

compared the present numerical results with previous work by Al-Mudhaf and Chamkha

[9]. The comparison results show a good agreement and we are confident that our present

numerical results are accurate.

2. Mathematical Formulation

We consider the laminar boundary layer flow of an electrically conducting fluid over a

permeable flat surface in the presence of Dufour and Soret effects. It is assumed that the

mass flux velocity is vw with vw < 0 for suction and vw > 0 for injection, respectively. It is also

assumed that a uniform magnetic field, B0 is imposed in the direction normal to the surface.

Then, the basic governing equation of the proposed problem (see Al-Mudhaf and Chamkha

[9] and Afify [20]):

∂u

∂x
+

∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σ∗B2

0

ρ
u,

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
DmkT
cscp

∂2h

∂y2
,

u
∂h

∂x
+ v

∂h

∂y
= Dm

∂2h

∂y2
+
DmkT
Tm

∂2T

∂y2
.

(2.1)

The surface tension σ is assumed to vary linearly with the temperature T and

concentration h as well as the wall temperature Tw and concentration hw are presumed to

be in quadratic functions of x. Hence, the boundary conditions of (2.1) is (see Al-Mudhaf

and Chamkha [9])

u = 0, v = vw, T = T∞ +Ax2, h = h∞ +A∗x2, μ
∂u

∂y
= σT

∂T

∂x
+ σh

∂h

∂x
on y = 0,

(2.2)

u −→ 0, T −→ T∞, h −→ h∞ as y −→ ∞, (2.3)
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where u, v are the components of velocity, respectively, in the x and y directions, ν is the

kinematic viscosity, σ∗ is the fluid electrical conductivity, ρ is the fluid density, and α is

the thermal diffusivity. Besides, Dm, kT , cs, cp, and Tm are the diffusion coefficient, thermal-

diffusion ratio, concentration susceptibility, specific heat at constant pressure, and mean fluid

temperature, respectively (see Puvi Arasu et al. [18]). Moreover, μ is the dynamic viscosity, σT
and σh are the rates of change of surface tension with temperature and solutal concentration

while A and A∗ are the temperature and concentration gradient coefficients, respectively.

The surface tension is defined as follow:

σ = σ0 1 − γT (T − T∞) − γh(h − h∞) , (2.4)

where

γT = −∂σ
∂T

, γh = −∂σ
∂h

. (2.5)

In order to find the similarity solutions of (2.1) subject to boundary conditions (2.2)-(2.3), we

introduced the similarity variables (see Al-Mudhaf and Chamkha [9])

η = C1y, f η =
C2ψ x, y

x
, θ η =

(T − T∞)
Ax2

, H η =
(h − h∞)
A∗x2

, (2.6)

and ψ(x, y) is the stream function defined in usual way as u = ∂ψ/∂y and v = −∂ψ/∂x where

C1 = 3
ρA(dσ/dT)

h

μ2
, C2 = 3

ρ2

μA(dσ/dT)
h

, (2.7)

are the two similarity transformation coefficients.

Substituting (2.6)-(2.7) into (2.1), we obtained the following nonlinear ordinary

differential equations:

f ′′′ + ff ′′ − f ′2 −M2f ′ = 0, (2.8)

1

Pr
θ′′ + fθ′ − 2f ′θ +DfH

′′ = 0, (2.9)

1

Sc
H ′′ + fH ′ − 2f ′H + Srθ′′ = 0, (2.10)

where a prime denotes a differentiation with respect to η,Df = DmkT (hw−h∞)/cscpν(Tw−T∞)
and Sr = DmkT (Tw−T∞)/Tmν(hw−h∞) are the Dufour and Soret numbers, respectively. Here,

M is the magnetic field parameter, Pr is the Prandtl number, and Sc is the Schmidt number.
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It is important to mention that f is the stream function similarity variable, θ and H are the

nondimensional temperature and concentration, respectively. The boundary conditions (2.2)-
(2.3) are reduced to

f(0) = f0, f ′′(0) = −2(1 + r), θ(0) = 1, H(0) = 1,

f ′(∞) = 0, θ(∞) = 0, H(∞) = 0,
(2.11)

where r = Δh(dσ/dh)|T/ΔT(dσ/dT)|h is the thermosolutal surface tension ratio.

The local Nusselt and Sherwood numbers are given by (see Al-Mudhaf and Chamkha

[9])

Nux =
q′′(x)x

λ(Tw − T∞) = −C1xθ
′(0),

Shx =
h′′(x)x

D(Tw − T∞) = −C1xH
′(0),

(2.12)

where D is the mass diffusivity, q′′ is the heat flux, and h′′ is the mass flux.

3. Results and Discussion

Numerical solutions of the ordinary differential equations (2.8)–(2.10) that subject to

boundary conditions (2.11) have been solved using the Runge-Kutta-Fehlberg fourth-

fifth order (RKF45) method using Maple 12 and the algorithm RKF45 in Maple has

been well tested for its accuracy and robustness (Aziz [25]). In this method, it is most

important to choose the appropriate finite value of the edge of boundary layer, η → ∞
(say η∞) that is between 4 to 10, which is in accordance with the standard practice in

the boundary layer analysis. The influences of the magnetic field parameter (M), the

suction/injection parameter (f0), the thermosolutal surface tension ratio (r), the combined

Dufour number Df and Soret number Sr on the velocity, temperature and concentration,

and the Nusselt and Sherwood numbers are presented in tables and some graphs. These

findings are summarized and presented in the Tables 1–4 and Figures 1–9. We have

compared the present results with the results attained by Al-Mudhaf and Chamkha [9]
when the heat generation/absorption and first-order chemical reaction effects are neglected.

It is seen that the results presented in Tables 1–3 are in very well agreement. Hence,

this leads the confidence of the present results. It should be mentioned thatf ′(0), −θ′(0)
and −H ′(0) are related to the surface velocity, Nusselt number, and Sherwood numbers,

respectively.

Figures 1, 2, and 3 display the velocity, temperature, and concentration profiles for

different values of magnetic field parameter M when the other parameters are fixed. An

application of a magnetic field within boundary layer has produced resistive-type force

which known as Lorentz force. This force acts to retard the fluid motion along surface and
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Table 1: Comparison values of f ′(0), −θ′(0) and −H ′(0) with different parameter M.

M
f ′(0) −θ′(0) −H ′(0)

Al-Mudhaf and
Chamkha [9] Present

Al-Mudhaf and
Chamkha [9] Present

Al-Mudhaf and
Chamkha [9] Present

0 1.587671 1.587401 1.442203 1.442069 1.220880 1.220731

1 1.315181 1.314596 1.206468 1.205891 1.005541 1.005808

2 0.903945 0.9032119 0.7596045 0.7625145 0.6106418 0.6188354

3 0.6448883 0.6440222 0.4422402 0.4625877 0.3473967 0.37638077

4 0.4933589 0.4924782 0.2728471 0.3114736 0.2127706 0.25873328

Table 2: Comparison values of f ′(0), −θ′(0) and −H ′(0) with different parameter f0.

f0

f ′(0) −θ′(0) −H ′(0)

Al-Mudhaf and
Chamkha [9] Present

Al-Mudhaf and
Chamkha [9] Present

Al-Mudhaf and
Chamkha [9] Present

−2 2.383451 2.382975 1.251341 1.250618 1.129218 1.128784

−1 2.000379 1.999999 1.336441 1.335853 1.173002 1.173006

0 1.587671 1.58740104 1.442203 1.442067 1.220880 1.220715

1 1.179708 1.17950902 1.634990 1.634360 1.328699 1.327979

2 0.8480268 0.8477075 2.020949 2.019468 1.593570 1.592596

Table 3: Comparison values of f ′(0), −θ′(0) and −H ′(0) with different parameter r.

r
f ′(0) −θ′(0) −H ′(0)

Al-Mudhaf and
Chamkha [9]

Present
(2011)

Al-Mudhaf and
Chamkha [9]

Present
(2011)

Al-Mudhaf and
Chamkha [9]

Present
(2011)

0 1.587582 1.587297 1.442247 1.442412 1.220880 1.222427

1 2.520988 2.519819 1.817826 1.816999 1.538960 1.538688

5 5.244303 5.241482 2.621562 2.620417 2.219093 2.218261

Table 4: The values of −θ′(0) and −H ′(0) with different parameters Df and Sr .

Df Sr −θ′(0) −H ′(0)

0.03 2.0 1.624748 −0.00587659

0.06 1.0 1.603973 0.6866464

0.15 0.4 1.541646 1.102160

0.3 0.2 1.437767 1.240664

0.6 0.1 1.230011 1.309917

2.0 0.03 0.260478 1.358394
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Figure 1: Velocity profiles for different values of M when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2,r = 0, and
f0 = 0.
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Figure 2: Temperature profiles for different values of M when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, r = 0,
and f0 = 0.

simultaneously increases its temperature and concentration values. In addition, the effect of

the magnetic parameter of the viscous shearing force and the Lorentz force is given by

ν
u

δ2
v

≈ δ∗B2
0

ρ
u. (3.1)
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Figure 3: Concentration profiles for different values of M when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2,
r = 0, and f0 = 0.
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Figure 4: Temperature profiles for different values of f0 when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, r = 0,
and M = 0.

Thus, (3.1) gives

ηV ≈ 1

M
. (3.2)

However, the effect of surface tension can be obtained from (2.2) by the relation

ν
u

δv
≈ (σT2Ax + σhA∗x). (3.3)
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Figure 5: Concentration profiles for different values of f0 when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, r = 0,
and M = 0.
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Figure 6: Temperature profiles for different values of r when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, M = 1,
and f0 = 0.

Then, (3.3) becomes

f ′(0) ≈ 2(1 + r)ηV ≈ 2(1 + r)
M

. (3.4)

Therefore, one can see that the velocity boundary layer thickness decreases with the

increase of M as shown in Figure 1. However, the temperature and concentration increase
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Figure 7: Concentration profiles for different values of r when Pr = 0.78, Sc = 0.6,Df = 0.03, Sr = 2,M = 1,
and f0 = 0.
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Figure 8: Temperature profiles for different values of Df and Sr when Pr = 0.78, Sc = 0.6, r = 1, M = 1,
and f0 = 0.

with the increasing of the magnetic field parameter M. The temperature and concentration

profiles are also affected by Pr, Sc, Df , and Sr . Figures 4 and 5 show the influences of the

suction and injection parameter f0 on the temperature and concentration profiles. The results

point out that increasing values in suction parameter (f0 > 0) at the wall tend to decrease

the temperature of the flow as shown in the Figure 4. Concurrently, the concentration profiles

decrease as well with the inclusion of the suction parameter. This phenomenon is caused by
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Figure 9: Concentration profiles for different values of Df and Sr when Pr = 0.78, Sc = 0.6, r = 1, M = 1,
and f0 = 0.

the fluid moves nearer to the surface and decreases the thermal and concentration boundary

layer thickness. Conversely, these observations are found to be opposite in the case of

injection (f0 < 0). It is seen that the imposition of the injection parameter will increase the

fluid temperature and concentration.

The effect of the inclusion of the thermosolutal surface tension ratio r on the temper-

ature and concentration profiles is illustrated in Figures 6 and 7, respectively. We observed

that the parameter r significantly decreases the fluid temperature and concentration. This

finding is obtained due to the increase of the Marangoni convection effect as r increases. From

physical point of view, by increasing the Marangoni convection effect, more induced flows are

produced. As consequences, the resulting flows will propagate within the boundary layers

impling the maximum velocity obtained at the wall.

Figures 8 and 9 show the combination effects of the Dufour and Soret numbers on

the fluid temperature and concentration. The Dufour Df and Soret Sr numbers represent

the thermal diffusion and diffusion thermal effects in this problem. Moreover, we have to

be discriminating in selection of Dufour and Soret numbers in order to guarantee that the

product of SrDf is kept constant as well as assuming the mean temperature Tm is constant. To

be practical, the Dufour and Soret values that are used in the present study are referred to the

paper reported by Kafoussias and Williams [17]. Figure 8 specifically shows the influences

of the Dufour and Soret number on the variations of the fluid temperature. For the case

of increasing Dufour number and decreasing Soret number, it is seen that the temperature

profiles show dissimilar increasing on its values. The Dufour term that describes the effect of

concentration gradients as underlined in (2.9) plays a vital role in assisting the flow and is

able to increase thermal energy in the boundary layer. This is the evident that as the parameter

Df increases and Sr decreases, the fluid temperature will increase.

In Figure 9, increasing Dufour number and simultaneously decreasing Soret number

have implied significant effects on the concentration profiles. The Soret term exemplifies the
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temperature gradient effects on the variation of concentration as noted in (2.10). It is observed

as the Dufour number increases and Soret number is decreased, the concentration values

are found to decrease. For a small Soret number Sr < 0.4, it is seen that the concentration

values decrease steadily and closely to each other with similar pattern. On the other hand,

these observations are found to be contrary in the case of Sr > 1 when the graph shows

large differences in concentration values compared to curves (3–5) with low values of Soret

number. The physical reason of this phenomena that occurs is due to a strong concentration

overshoot that happens nearly to the surface.

Furthermore, the results in the Figures 8 and 9 agree well with the data in Table 4. We

can see that combination effects of the thermal diffussion and diffusion thermo can reduce

the surface temperature gradient while increase the surface concentration gradient. Hence,

the local Nusselt number decreases and the local Sherwood number increases by increasing

the Dufour number and reducing the Soret number.

4. Conclusions

The problem of thermal diffusion and diffusion thermo effects on thermosolutal Marangoni

convection boundary layer flow over a flat surface considering the fluid suction and

injection in the presence of the magnetic field is studied. The governing partial differential

equations associated with the boundary conditions were transformed into nonlinear ordinary

differential equations before being solved using the Runge-Kutta-Fehlberg method. The

effects of thermal diffusion (Soret number Sr) and diffusion thermo (Dufour number Df),
magnetic field parameter M, thermosolutal surface tension ratio r and suction or injection

parameter f0 on the velocity, temperature and concentration field, and the physical quantities

interest in engineering problem such as surface velocity, the local Nusselt number and

Sherwood number were plotted, tabulated, and analyzed. It is found that the inclusion of the

magnetic field parameter on the flow increased the temperature, and concentration profiles

while it decreased the velocity field as well as Nusselt an Sherwood numbers. The analysis

also revealed that the same behavior was drawn as thermosolutal surface tension ratio r

was decreased. We also observed that increasing the suction parameter f0 has decreased

the fluid velocity, temperature and concentration profiles as it increased the Nusselt and

Sherwood numbers. In contrast, the opposite observation was attained for the imposition

of the injection parameter. The current analysis also signifies that the temperature profile and

Sherwood number increase with the increasing in Dufour number and decreasing in Soret

number. Opposite behavior is identified on Nusselt number and concentration profile. We

also noticed that the velocity field is insensitive by changing in Dufour and Soret numbers.
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The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly
stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity
transformation reduces the time-independent boundary layer equations for momentum and
thermal energy into a set of coupled ordinary differential equations. The obtained equations,
including nonlinear equation for the velocity field f and differential equation by variable
coefficient for the temperature field θ, are solved numerically by using the fourth order of Runge-
Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration
method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching
parameter are studied. The results presented graphically show some behaviors such as decrease
in dimensionless temperature θ due to increase in Pr number, and curve relocations are observed
when heat dissipation is considered.

1. Introduction

The study of two-dimensional boundary layer flow, heat, and mass transfer over a nonlinear

stretching surface is very important as it finds many practical applications in different

areas. Some industrial applications of viscous flow over a stretching sheet are aerodynamic

extrusion of plastic sheets, condensation process of metallic plate in a cooling bath, and

extrusion of a polymer sheet from a dye. During the manufacture of these sheets, the melt

issues from a slit and is subsequently stretched to achieve the desired thickness. The final

products of desired characteristics are notably influenced by the stretching rate, the rate of

the cooling in the process, and the process of stretching. Viscous dissipation changes the

temperature distributions by playing a role like an energy source, which leads to affecting

heat transfer rates. The merit of the effect of viscous dissipation depends on whether the

sheet is being cooled or heated. The problem of nonlinear stretching sheet for different cases
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of fluid flow has also been analyzed by different researchers. Sakiadis [1] initiated the study

of boundary layer flow over a continuous solid surface moving with constant speed as

result of ambient fluid movement; this boundary flow is generally different from boundary

layer flow over a semi-infinite flat plate. Erickson [2] studied this problem to the case in

which the transverse velocity at the moving surface is nonzero with the effects of heat and

mass transfer being taken in to account. Danberg and Fansler [3], using nonsimilar solution

method, studied the flow inside the boundary layer past a wall that is stretched with a

velocity proportional to the distance along the wall. P. S. Gupta A. S. Gupta [4], using similar

solution method, analyzed heat and mass transfer in the boundary layer over a stretching

sheet subject to suction or blowing. The laminar boundary layer on an inextensible continues

flat surface moving with a constant velocity in a non-Newtonian fluid characterized by a

power-law model is studied by Fox et al. [5], using both exact and approximate methods.

Rajagopal et al. [6] studied the flow behavior of viscoelastic fluid over stretching sheet and

gave an approximate solution to the flow field. Recently Troy et al. [7] presented an exact

solution for Rajagopal problem. Vajravelu and Roper [8] studied the flow and heat transfer

in a viscoelastic fluid over a continues stretching sheet with power law surface temperature,

including the effects of viscous dissipation, internal heat generation or absorption, and work

due to deformation in the energy equation. Vajravelu [9] studied the flow and heat transfer

characteristics in a viscous fluid over a nonlinearly stretching sheet without heat dissipation

effect. Cortell [10, 11] has worked on viscous flow and heat transfer over a nonlinearly

stretching sheet. Raptis and Perdikis [12] studied viscous flow over a nonlinear stretching

sheet in the presence of a chemical reaction and magnetic field. Abbas and Hayat [13]
addressed the radiation effects on MHD flow due to a stretching sheet in porous space.

Cortell [14] investigated the influence of similarity solution for flow and heat transfer of

a quiescent fluid over a nonlinear stretching surface. Awang and Hashim [15] obtained

the series solution for flow over a nonlinearly stretching sheet with chemical reaction and

magnetic field. In the present paper an analysis is carried out to study the flow and heat

transfer phenomenon in a viscous fluid over a nonlinearly stretching sheet by considering the

effects of heat dissipation. In order to arrive nonlinear ordinary deferential equations, stream

function is defined differently (compared to the linear stretching case) and these nonlinear

deferential equations along with pertinent boundary condition are solved.

2. Flow and Heat Transfer Analysis

Consider the steady laminar flow of a viscous incompressible over a nonlinearly stretching

sheet. The governing boundary layer equations of mass conservation, momentum, and ener-

gy with viscous dissipation are

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

μ

ρCp

∂2T

∂y2
,

(2.1)
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where u and v are the velocity components in x and y axes, respectively, T is the temperature,

ν the kinematic viscosity, ρ the density, μ the dynamic viscosity, k the thermal conductivity,

and Cp the specific heat at constant pressure. The boundary conditions to the case are

u = cxn, v = 0, T = Tw at y = 0, (2.2)

u −→ 0, T −→ T∞ as y −→ ∞. (2.3)

These conditions suggest transforming into the corresponding nonlinear ordinary differential

equations by choosing the similarity transformation as given by Vajravelu [9]:

η = y

√
c(n + 1)

2ν
x(n−1)/2,

u = cxnf ′(η),
v = −

√
cν(n + 1)

2
x(n−1)/2

[
f +

(
n − 1

n + 1

)
ηf ′

]
,

(2.4)

where a prime denotes differentiation with respect to η. The transformed nonlinear, coupled

ordinary differential equations and boundary conditions are

f ′′′ + ff ′ −
(

2n

n + 1

)(
f ′)2 = 0, (2.5)

f ′ = 1, f = 0 at η = 0, (2.6)

θ′′ + Prfθ′ + PrEc
(
f ′′)2 = 0, (2.7)

θ = 1 at η = 0, (2.8)

θ −→ 0 as η −→ ∞, (2.9)

where dimensionless parameters are defined as

θ
(
η
)
=

(T − T∞)
Tw − T∞ ,

Ec =
u2

CPΔT
(Eckert number),

Pr =
μCP

k
(Prandtl number).

(2.10)
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The shear stress at the surface of the sheet is defined as

τw = μ
(
∂u

∂y

)
y=0

,

τw = cμ

√
c(n + 1)

2ν
x(3n−1)/2f ′′(0).

(2.11)

And the local wall heat flux is defined as

qw = −k
(
∂T

∂y

)
y=0

,

qw = −k(Tw − T∞)
√
c(n + 1)

2ν
x(n−1)/2θ′(0).

(2.12)

Since there is no exact solution for nonlinearly stretching boundary problem, the differential

(2.5) and (2.7) are investigated numerically in accordance with the boundary condition (2.6)
and (2.7).

3. Numerical Analysis

The nonlinear boundary value problem represented by (2.5) and (2.7) is solved numerically

using fourth-order Runge-Kutta shooting technique. Equations (2.5) and (2.7) have been

discretized to five first-order equations as follows:

y′
1 = y2,

y′
2 = y3,

y′
3 =

(
2n

n + 1

)
y2

2 − y1y3,

y′
4 = y5

y′
5 = −Pry1y5 − PrEcy2

3 ,

(3.1)

where y1 = f, y2 = f ′, y3 = f ′′, y4 = θ, y5 = θ′. Boundary conditions (2.6) and (2.9) become

y1 = 0, y2 = 1, y4 = 1 at η = 0,

y2 −→ 0, y4 −→ 0 as η −→ ∞.
(3.2)

Regarding the above boundary conditions three values out of five that required initial values

are known, and we begin solution procedure by two initial guesses and the procedure corrects

them using Newton-Raphson iteration scheme. Initial guesses to initiate the shooting process

are very crucial in this process and it should be noted that convergence is not guaranteed,
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especially if a poor guess for the missing starting boundary values is made. Another challenge

to solve this equations system is the values of y2 and y4 at η → ∞. It is necessary to estimate

η by a known value in which dimensionless temperature profile (θ) reaches its asymptotic

state.
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4. Results and Discussion

Figures 1, 2, 3, 4, 5, and 6 described the behavior of dimensionless temperature profile

(θ) versus similarity variable η which are compared for two cases of without heat dissipation

and by considering heat dissipation effects. It can be seen that in cases with positive values

of the Eckert number, the curves are shifted to the right-hand side and in cases with
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negative values of the Eckert number the curves are shifted to the left-hand side. This is

due to involvement of heat dissipation. Furthermore, it is obvious that the dimensionless

temperature θ increases with increases in the nonlinear stretching parameter n (Figures 7

and 8).
It is seen that the dimensionless temperature θ at a point in the flow decreases with

an increase in the Prandtl number (Figure 9). Since the Prandtl number is a criterion of

relative diffusion effects of momentum and energy in velocity and thermal boundary layer,
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respectively, therefore, this result is consistent with the fact that the thermal boundary layer

thickness decreases with an increase in the Prandtl number (see the scales of Figures 1 and

2).
In cases with small Prandtl number (Pr < 1, Figures 2, 4, and 6), there is a very low

difference at the end of diagram between the curves with and without heat dissipation (the

end of boundary layer thickness) which caused by this fact that, in these cases, the thickness
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of thermal boundary layer is greater than that of velocity boundary layer and at the end

of thermal boundary layer in which velocity gradient is reduced to zero, the curves have

conformity on each other because the effect of the energy produced by viscosity is destroyed.

In cases with large Prandtl number (Pr > 1) and negative Eckert number, the dimensionless

temperature θ gains a negative value after reaching zero and, at the end of path, it reaches

zero again (Figures 1, 3, and 5). The reason for being negative of θ in a specific domain is

the presence of velocity gradient outside the thermal boundary layer. These negative values

by considering larger Eckert number are more significant. As soon as velocity gradient is

removed (at the end of velocity boundary layer) the θ reaches zero again. In Figure 9, for a

constant Eckert number the dimensionless temperature θ is drawn based on different Prandtl

number. It is observed that, in larger Prandtl number due to the above-mentioned reasons,

θ has smaller value. The dimensionless temperature profiles presented in Figures 1–9 show

that the far-field boundary conditions are satisfied asymptotically, which support the validity

of the numerical results presented.
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The flow of leaked hydrogen gas in tunnel structures is simulated through a free, open source
computational fluid dynamics (CFD) code for incompressible thermal convection flow. A one-
fifth scale experimental model of a real tunnel is the target model to be simulated. To achieve
this, studies on the effects of different boundary conditions, in particular, the wind speed, are
carried out on smaller tunnel structures with the same hydrogen inlet boundary conditions. The
results suggest a threshold/limiting value of air speed through tunnel. The target model computed
with the most suitable boundary conditions shows some agreement with the experimental ones. A
method to compute the buoyancy factor used in the code is also presented.

1. Introduction

The development of hydrogen-fuelled vehicles is currently underway. Car garages and road

tunnels—the necessary infrastructure—are partially enclosed spaces, where leaked hydrogen

might be constrained from dispersing freely into the atmosphere, and accumulate within

the structure. Hydrogen-air gas mixtures have a low ignition energy and large flammability

range—from 4 to 75% by volume concentration at room temperature—within which lies a

range where detonation is possible, generally taken to be at 18–59% by volume concentration.

As such, it is important that the behaviour of leaked hydrogen in partially enclosed spaces is

investigated before the widespread use of hydrogen by the public is put in place. However,

the inherent dangers in carrying out experiments involving hydrogen necessitate safety

measures that can be costly and prohibitive. The solution to this is to use computational fluid

dynamics (CFD).
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The literature on hydrogen dispersion in partially enclosed spaces is extensive. Basic

studies on simple geometries with a hydrogen inlet, and two vents have been carried out both

experimentally and with CFD (e.g., [1–6]). Guidelines on the use of hydrogen in confined

spaces have also been developed [7]. Works on tunnel-like structures, however, are few, for

example, [8, 9]. Most studies, whether experimental or computational, involve overpressure

calculations and concentrate on the eventual detonation of hydrogen within the tunnel for

example, [10, 11].
This work involves the simulation of tunnel structures using a finite-element code

developed in house. The code was written to solve incompressible thermal flow problems.

The experimental model studied by Sato et al. [9], HT-5, is taken as the target model to

be simulated. In this paper, the effects of the parameters—in particular the wind speed

through the tunnel—and boundary conditions are investigated. Using the most appropriate

parameters and boundary conditions, the target model is simulated and the results compared

with the experimental ones.

We describe the tunnel geometries and the basic equations used in this work in the

following section. In Section 3, we state the base boundary conditions used. We present our

results and a discussion of these in Section 4. The results for boundary conditions other than

the base settings are also presented and discussed. Finally, we state our conclusions in the last

section.

2. Tunnel Geometries and Basic Equations

In this work, we limit our investigations to a study of tunnel geometry and ventilation (i.e.,

wind through the tunnel) speeds and their effects on the hydrogen distribution and flow

within the tunnel. We explore the computational settings required to achieve converged

results and whether these settings adversely affect the flow.

We use three models in our study—two representative models and a one-fifth scale

mockup of a typical tunnel for road transport [9]. The mockup model (Model 3) is the only

one where some results on the concentration distribution of hydrogen are available, and is

thus our target model. Models 1 and 2 are representative tunnel models, used for parametric

studies and to make qualitative, if not quantitative, observations about the flow. Through

the results of Models 1 and 2, and trial runs of Model 3, the most appropriate settings and

boundary conditions are applied to the computation of Model 3.

The representative tunnel models are shown in Figures 1 and 2. The difference in these

models is the tunnel cross sectional area—0.89 m2 for Model 1 and 1.75 m2 for Model 2.

The hydrogen inlet is a block of dimensions 0.2 × 0.2 × 0.1 m (length × width × height),
giving an inlet surface area of 0.04 m2. The side from which wind blows is the tunnel entrance;

the opposite end is the tunnel exit. The roof cross-section is a semicircle with a diameter equal

to the tunnel width. Five sensors are placed downstream from the hydrogen inlet, on the

lengthwise axis.

Model 3, shown in Figures 3 and 4, is similar to test HT-5 in [9]. The only difference is

the length-test model HT-5 is 78.5 m long, whereas the model here is only 10 m. This difference

was due to memory constraints. The tunnel cross sectional area of Model 3 is 3.74 m2. The

hydrogen inlet is of the same dimensions as Models 1 and 2. In [9], only the flow rate was

given for HT-5. We use the same flow rate here.

We use ADVENTURE sFlow Ver0.5b [12], a CFD code written for incompressible

viscous flow and thermal convection problems, to carry out the computations. Developed

in-house, it is available online as a free open source code. The code uses the finite-element
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Figure 1: Model 1 and Model 2. The tunnel roof and side walls are highlighted in (a); the hydrogen inlet is
highlighted in (b).
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Figure 2: Schematic diagrams of Models 1 and 2 (not to scale).

method to discretize the coupled Navier-Stokes and advection diffusion equations, and

the domain decomposition method to enable parallel processing. The code is used for gas

dispersion problems through the application of an analogy that relates concentration and

temperature. Details regarding the formulations underlying the code, including stabilization

methods, can be found in [13]. The code is currently not equipped with any turbulence

models. Here, we show the basic equations (the Navier-Stokes and advection-diffusion

equations, (2.1)–(2.3)) and initial and boundary conditions used. In addition, we describe

methods to compute the buoyancy term and the boundary condition at the hydrogen-air

interface, both of which are not described in our previous work:

∂u
∂t

+ (u · ∇)u − 2ν∇ ·D(u) +∇p = −βCg in Ω × (0, T), (2.1)

∇ · u = 0 in Ω × (0, T), (2.2)

∂C

∂t
+ u · ∇C − aΔC = S in Ω × (0, T). (2.3)



4 Journal of Applied Mathematics

X
Z

Y

Figure 3: Model 3: geometry and mesh.
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The symbols used are as follows. Ω is a three-dimensional polyhedral domain with

boundary ∂Ω, u = (u1, u2, u3)
T is the velocity [m/s], t is time [s], v is the kinematic viscosity

coefficient [m2/s], p is the gas mixture gauge pressure (pressure) normalized by the density

[m2/s2], g = (g1, g2, g3)
T is gravity [m/s2], β is, in this case, the analogous coefficient of

buoyancy [−], C is the mass concentration of hydrogen [−], a is the hydrogen diffusion

coefficient in air [m2/s], S is the source term [1/s], and Dij is the rate of strain tensor [1/s]
defined by

Dij(u) ≡ 1

2

(
∂ui
∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, 3. (2.4)

The following boundary conditions are applied, where Γu and Γc denote the boundary with

specified velocity and concentration, respectively,

u = û on Γu × (0, T),

C = Ĉ on Γc × (0, T),

3∑
j=1

σijnj = 0 on (∂Ω − Γu) × (0, T),

a
∂C

∂n
= 0 on (∂Ω − Γc) × (0, T),

u = u0, C = C0 in Ω at t = 0,

(2.5)
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where T is the total time [s], u0 is the initial velocity [m/s], C0 is the initial concentration

[−], û is the boundary velocity [m/s], Ĉ is the boundary concentration [−], and σ(u, p) is the

stress tensor normalized by the density [m2/s2] defined by

σij = −pδij + 2νDij(u) i, j = 1, 2, 3, (2.6)

with δij being the Kronecker delta and n being the unit normal vector.

The computation of the analogous coefficient of buoyancy, β in (2.1), is as follows. The

ideal gas law may be written as

p = ρRT, (2.7)

where p is the pressure [kg m−1 s−2] of the gas, ρ the density [kg m−3], R the specific gas

constant [J kg−1 K−1], and T the temperature [K]. Taking C as the mass concentration of hy-

drogen in a hydrogen-air mixture and RH2
and Rair as the specific gas constants for hydrogen

and air, respectively, substituting these into (2.7) and rearranging gives

ρ =
p

[CRH2
+ (1 − C)Rair]T

. (2.8)

Noting that and ρH2
= p/RH2

T , ρair = p/RairT , and substituting these into the equation above

gives

ρ =
1(

C/ρH2

)
+
(
(1 − C)/ρair

) , (2.9)

which, when rearranged, give

1 − ρair

ρ
= C

(
1 − ρair

ρH2

)
, (2.10)

multiplying throughout by g, the acceleration of gravity [m s−2], and equating with the

buoyancy force (normalized by gas density) gives

(
1 − ρair

ρ

)
g = C

(
1 − ρair

ρH2

)
g = −βCg, (2.11)

from which

β =
ρair

ρH2

− 1. (2.12)

With ρH2
= 0.084 kg m−3 and ρair = 1.21 kg m−3, (2.12) yields β = 13.4. This method works for

other gas combinations as well; in the case of helium, for example, using ρHe = 0.1785 kg m−3

yields β = 5.77.
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3. Boundary Conditions and Mesh Details

For the base (reference) settings, we use conditions similar to that used in our simulation of

the so-called hallway model [13]. Γinlet, Γt ent, Γt ext and denote the boundary of the hydrogen

inlet, the tunnel entrance, and the tunnel exit, respectively. These apply to all three models.

At the inlet, hydrogen leaks at a constant rate in the vertical direction. The velocity and the

concentration are as follows:

u1 = u3 = 0 [m/s],

u2 = 0.1 or 0.67 [m/s] on Γinlet,

C = 0.0694 [−] (= 6.94 mass%).

(3.1)

The mass concentration C (=0.0694, or 6.94 by mass%) represents the density ratio

between hydrogen and air. The derivation of this value comes from the conservation of

hydrogen mass flow [13, 14]. The hydrogen flow velocity of 0.67 m s−1 and the inlet surface

area of 0.04 m2 gives a flow rate of 0.0268 m3s−1, which is the flow velocity used in test HT-5 of

[9]. At the tunnel exit, hydrogen and air are discharged outside freely. At the tunnel entrance,

air enters at a constant velocity:

3∑
j=1

σijnj = 0 [m2/s2],

a
∂C

∂n
= 0 [m/s] on Γt ext,

u1 = variable [m/s],

u2 = u3 = 0 [m/s] on Γt ent,

C = 0 [−].

(3.2)

The other boundaries are effectively non-slip walls, with no inflow or outflow of hydrogen

and/or air:

u1 = u2 = u3 = 0 [m/s]

a
∂C

∂n
= 0 [m/s]

on ∂Ω − (Γinlet + Γt ent + Γt ext). (3.3)

The initial conditions are as follows:

u1 = u2 = u3 = 0 [m/s]

C = 0 [−]
in Ω. (3.4)
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Figure 5: Model 1: plots of volumetric concentration versus time for wind speed 1.23 and 1.235 m s−1.

The numerical parameters are the kinematic viscosity of hydrogen (1.05 × 10−4 [m2/s]),
the diffusion coefficient of hydrogen in air (6.1 × 10−5 [m2/s]), the analogous coefficient of

buoyancy (13.4 [−]), gravity (0, −9.8, 0 [m/s2]), and the source term (0 [1/s]).
The same mesh density was used for all three tunnel models. This resulted in Model

1 having 100,432 elements (98,715 degrees of freedom), Model 2 with 206,462 (190,580), and

Model 3 with 443,695 (391,285). The timestep used was 1 second; this timestep-mesh size

combination was determined based on our experience with previous models. Models 1 and

2 were run to 500 s. Steady-state flow was achieved in most cases.

4. Results and Discussion

Model 1 was computed for air inlet velocities ranging from 0.7 to 3 m s−1. Steady-state flow

downstream of the hydrogen inlet was observed for all the computations, indicating (but not

guaranteeing) that for these models and their respective boundary conditions and numerical

parameters, stable flow was reached and therefore the meshsize-timestep combination used

was appropriate.

As the wind speed is increased, the computed concentration values tend to drop as

expected, but from 1 to 2 m s−1, the concentration values increase suddenly and by almost

an order of magnitude. From 2 m s−1 and above, the concentration values remain high

throughout. Further computations were conducted with wind speeds between 1 to 2 m s−1,

and the change in trend was found to have occurred with a mere 0.005 m s−1 increase in wind

speed (1.23 to 1.235 m s−1). The volumetric concentration profiles at 5 positions measured

from the tunnel inlet (Figure 2(a)) of Model 1 for wind speeds 1.23 and 1.235 m s−1 are given

in Figure 5.

Reverse flow of hydrogen gas (i.e., against the flow of air) was not observed in

concentration isosurface plots of the computed models. This indicates that the critical velocity,

where the wind speed is sufficient to ensure no reverse flow occurs, is 0.7 m s−1 or below for

this tunnel configuration.

Figures 6(a)–6(f) show combined velocity vector and concentration isosurface plots

for wind speeds 1.23 and 1.235 m s−1 at time = 100 s, when steady-state flow has already been
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Figure 6: Model 1: combined velocity vector and concentration isosurface plots for wind speeds 1.23 (a, c,
e) and 1.235 m s−1 (b, d, f) at 100 s elapsed time. The colour plot applies to all 6 figures. (a, b) Orthogonal
view. (c, d) Side view. (e, f) Top (plan) view.

reached. Comparing these two, it can be seen that the flow pattern differs significantly: for

wind speed 1.23 m s−1, air tends to flow through the hydrogen plume, whereas for the higher

wind speed, air tends to flow around the plume. In other words, hydrogen-air mixing is

greater at the slower speed than at the higher one. At higher wind speeds, hydrogen “brushes

past” the hydrogen plume, and entrainment of hydrogen by air takes place. The existence

of threshold values when using CFD to compute this type of flow has been identified. In

addition, and as a result of this, the possibility of hydrogen and air mixing at different rates

due to different velocities has also been shown.

The volumetric concentration profiles at 5 positions measured from the tunnel inlet

(Figure 2(b)) of Model 2 are given for air inlet velocities within the range of 0.7 to 0.95 m s−1

in Figure 7.

Some of the hydrogen concentration values obtained for Models 1 and 2 are very

high—up to 0.5 (50%) for Model 1 and 0.11 (11%) for Model 2. However, it should be

noted that these models have dimensions and boundary conditions that are unrealistic, and

therefore the computed results are not truly representative of the concentrations that might

occur in situations involving real tunnels.
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Figure 7: Model 2: volumetric concentration versus time for wind speeds 0.7 to 0.95 m s−1.

The last model (Model 3) was run at a fixed wind speed of 0.26 m s−1. Two hydrogen

inlet velocities were used—0.1 and 0.67 m s−1. The value for wind speed was chosen because

(i) results of Model 2 hinted that larger cross sectional areas might allow for slower wind

speeds, and (ii) 0.26 m s−1 was the value used in [9]. Model 3 with 0.1 m s−1 was used to

study the effects of the boundary condition settings on the computation; the value of 0.1

was chosen because previous experience indicated that this was the “optimal” value for trial

purposes given the other settings. The other hydrogen inlet value, 0.67 m s−1, resulted in the

same volume flow used in [9]. In this work, two boundary condition settings were explored:

the relaxing of non-slip conditions in the mean direction of flow and the introduction of an

additional boundary condition at the tunnel exit. Wall boundary conditions with no slip are

expressed below:

u1 = u2 = u3 = 0 [m/s]

a
∂C

∂n
= 0 [m/s]

on ∂Ω − (Γinlet + Γtent
+ Γtext

). (4.1)
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Figure 8: Combined velocity vector and isosurface plots for Model 3 at t = 55 s. From top to bottom:
boundary conditions as per Section 3 (base settings), slip in the x-direction, slip in the x-direction and
C = 0 at the tunnel outlet. The colour bar applies to all three figures.

Slip in the direction of mean flow (i.e., the x-direction) is implemented by removing the

essential (Dirichlet) boundary condition u1 = 0 from the tunnel walls:

3∑
j=1

σ1jnj = 0 [m2/s2]

u2 = u3 = 0 [m/s]

a
∂C

∂n
= 0 [m/s]

on ∂Ω − (Γinlet + Γt ent + Γt ext). (4.2)

The second condition is attempted by setting C = 0 at Γt ext:

3∑
j=1

σijnj = 0
[
m2/s2

]
C = 0 [mass%]

on Γt ex. (4.3)

This setting was used in the hallway model in [13, 14] to simulate air inflow conditions. Both

these conditions are believed to have little or no effect on the mean flow pattern.

Figure 8 compares the flow patterns of Model 3 at a hydrogen inlet speed of 0.1 m s−1

at three settings—base, slip in the direction of mean flow, and slip in the direction of mean

flow combined with C = 0 at the tunnel exit—at 55 seconds. Figure 9 compares slip in the
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Figure 9: Combined velocity vector and isosurface plots for Model 3 at t = 127 s. (a) Slip in the x-direction,
(b) slip in the x-direction and C = 0 at the tunnel outlet. The colour bar applies both figures.

direction of mean flow and slip in the direction of mean flow combined with C = 0 at the

tunnel exit at 127 seconds.

We see from Figures 8 and 9 that the upstream flow pattern is the same. The similarity

of the flow patterns for all three cases indicate that the changes made to the boundary

conditions have little effect on the flow, as believed.

Figure 10 shows a graph of concentration versus time at 6 sensor positions (see

Figure 4) for C = 0—slip conditions in the direction of mean flow and the hydrogen inlet

velocity at 0.67 m s−1—this velocity is the same as the target model in [9]. Steady-state flow

was not achieved, unlike Models 1 and 2. However, as mentioned previously, Model 3 has

been shortened to 10 metres as compared to 78.5 m in [9]; due to this, we only simulate

the early stages of the flow. Hydrogen is first detected in order of sensor distance from the

hydrogen inlet, with the exception of sensors at 0 m and 1 m, where the sensor at 1 m picks up

hydrogen first. This indicates that, unlike Models 1 and 2, reverse flow has occured, probably

due to the low wind speed relative to the hydrogen inlet velocity. Reverse flow was also

observed in Model 3 with 0.1 m s−1 hydrogen inlet velocity (Figure 9); both models show the

same flow patterns, but higher velocity magnitudes are observed with 0.67 m s−1, as expected.

The concentration values appear to stabilize at around 0.1 volume concentration. We find

that overall, the concentration values obtained for the first 50 seconds are slightly higher than

the values suggested in [9]. Longer run times are required to observe the development of

concentration profiles within the tunnel; however, this can only be carried out if the tunnel

length itself is lengthened or special boundary conditions, as yet undetermined, are applied

at the tunnel entrance and exit.

Due to the short run time (50 s) and shortened length of the tunnel, the results

obtained here cannot be compared directly with the experimental results given in [9]. The

concentration values shown in [9] were taken at 3 points in time when the flow through the

tunnel was steady, as opposed to the results shown in Figure 10 (where the flow is clearly

unsteady). Nonetheless, it is seen that the computed results, which average around 0.1, or

10%, compare somewhat favourably with the experimental results, which are around 0.03 to

0.07 (3–7%) in the first 5 meters downstream of the hydrogen inlet despite the difference in

flow regimes.
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Figure 10: Hydrogen volumetric concentration versus time for Model 3 (hydrogen inlet velocity of
0.67 m s−1) at 6 sensor positions, having slip in the x-direction, and C = 0 at the tunnel exit.

5. Conclusions

In this work, we have investigated the effect of wind speed and tunnel geometry on the

flow and dispersion of hydrogen within tunnel structures. Our work has suggested the

existence of “threshold,” or perhaps “limiting” values with regard to CFD modeling of tunnel

structures, in this case related to the wind speed. Large variations in entrainment and the rate

of hydrogen-air mixing occur when these threshold values (i.e., wind speeds) are crossed. In

addition, our findings imply that a change in tunnel cross-sectional area can affect change

in the flow pattern within the tunnel, even if all other parameters are maintained. This

has implications in the CFD modelling of such structures, as the appropriate computational

settings and even boundary conditions have to be reconfirmed.

In this work, we have tested two methods: removal of the non-slip condition in the

direction of mean flow, and setting C = 0 at the tunnel outlet, and we found that both enable

solutions to converge for longer simulation times without changing the mean flow pattern.

More work must be done to verify that these findings are applicable to any tunnel structure

that is analyzed with CFD. The possibility that other “threshold” values might exist for other

variables at certain mesh densities should also be studied. We plan to investigate these in the

future.
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This paper aims at analyzing three different solutions suggested for traffic congestion relief in
Port Louis, the busiest city of Mauritius. It evaluates the impact of the three alternatives which
are the use of Light Rail Transit (LRT) as an alternative mode of transport, the construction of
a Ring road around Port Louis, and the upgrading of the current bus network into a Bus Rapid
Transit (BRT) system. The impact of these three solutions has been evaluated by performing
Traffic Cellular Automata (TCA) simulations. Our studies reveal that the Ring road will lead to
more congestion while introducing the LRT or upgrading the current bus network will reduce
congestion significantly.

1. Introduction

Traffic congestion is a condition on road networks which occurs as their use increases.

It is characterized by slower speeds, longer trip times, and increased vehicular queuing.

Mauritius is an island located in the Indian Ocean with a land area of 1865 km2. At end of

2010, the population of the Republic of Mauritius stood at 1,283,415. The total road length on

the island is of 2066 km. The motorization rate in Mauritius is of 230 and is likely to reach

around 350 by the next decade [1]. In Mauritius the congestion cost has been evaluated to be

around USD 0.1 billion per year [2]. Increased congestion also implies increased emission of

Greenhouse gases (GHG). In 2010, 1323.8 thousand tons of GHG was emitted by the transport

sector in Mauritius out of which 1261.2 thousand tons consisted of CO2. The transport sector

contributes 31.9% of the total CO2 emission in Mauritius. Congestion is now common in both

the rural and urban parts of the island. However, the Curepipe-Port Louis corridor, which

accounts for nearly one-third of trips, remains the segment of greatest concern.
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Traffic simulation techniques are now widely used throughout the world by road

traffic planners and engineers to assist in decision making. Simulation in transportation is

important because it can study models too complicated for analytical or numerical treatment,

can be used for experimental studies, can study detailed relations that might be lost in

analytical or numerical treatment, and can produce attractive demos of present and future

scenarios. Traffic Cellular Automata (TCA), in recent years, has turned out to be an excellent

tool for the simulation of large-scale traffic networks [3–5]. TCA models have been applied

in Germany to develop a traffic information system for the freeway traffic in North Rhine-

Westphalia, the most populous German state [5]. TCA models have also been used in

Belgium for improving current and future traffic conditions [6]. Till now no study of traffic

using computer simulations has been carried out in Mauritius [1].
In our work, TCA has been applied to assess the impact of three proposals for reducing

the congestion level along the Curepipe-Port Louis corridor. The increased demand for

passenger transportation in and around urban areas and the resulting traffic congestion have

led many cities to build rapid transit systems and new conventional railway lines [7]. Two

proposals from the government are the construction of a Ring road around Port Louis and

the introduction of a Light Rail Transit (LRT) system. An additional proposal which we are

putting forward is the upgrading of the current bus network in the region to a Bus Rapid

Transit (BRT). Previous researchers have attempted to analyse the impact of a transit network

for bus and LRT on various transit networks around the world. The simulations in our model

have been performed using a multicell TCA model that includes anticipation and probability

randomization. Our results indicate that while the Ring road will bring more congestion to

traffic flow, the introduction of the LRT or the upgrading of the current bus network will lead

to less congested traffic. This paper is organized as follows. Section 2 gives an overview of

the region under study and the road network being considered. The methodology employed

to implement the simulation model has been explained in Section 3. Section 4 provides the

results and discussions. Finally, Section 5 gives the conclusions.

2. Region under Study

Figure 1 shows the road network in Mauritius [6]. The Port Louis to Curepipe corridor (M1)
is heavily congested during the morning and afternoon peaks as persons move from their

home to workplace and back. An origin-destination survey [8] revealed that 46% of trips

amounted to through traffic which only bypassed Port Louis. 25% of traffic enters from the

northern region while 21% enters from the southern region.

3. Methodology

3.1. Traffic Cellular Automata

TCA falls in the category of microscopic models which in particular has been very successful

in simulating dense networks like cities. The model we implemented in our simulator has

been adapted from that proposed by Hafstein et al. [5] which in turn was inspired by the one

proposed by Nagel and Schreckenberg [9]. The differences between our model and the one

implemented by Nagel and Schreckenberg are as follows:

(i) the model uses smaller cells of length 1.5 m,

(ii) a slow-to-start rule [10] has been applied,
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Figure 1: Road network map of Mauritius [6].

(iii) the model includes anticipation [4],

(iv) two classes of vehicles are used. Passenger cars occupy 4 cells while vans, lorries

and buses (VLB) occupy 6 cells. The maximum speed of cars is of 17 cells/second

(90 km/h) while that of VLB is of 10 cells/second (50 km/h).

Consider three vehicles n, m, and l occupying consecutive positions as shown in

Figure 2. The different steps used for vehicle movement can be summarized as follows.

Step 1. Read the values of vm(t), dn,m(t), and dm,l(t); vm(t) is the speed of vehicle m, dn,m(t)
is the distance between n and m, dm,l(t) is the distance between m and l.
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n n n n m m m m l l l l l l

dn,m (t) dm ,l(t)

Figure 2: Segment of road occupied by 3 vehicles.

Step 2. Calculate vmin(t) and deff(t):

vmin(t) = min(dm,l(t), vm(t) − 1),

deff(t) = dn,m(t) + max vmin(t) − ds, 0
(3.1)

where ds is the safety distance taken as 6 cells in our model.

Step 3. Compare deff to vn(t).
If vn(t) < deff, then

vn(t + 1) = min(vn(t) + 1, vmax). (3.2)

Else vn(t + 1) = dn,m(t).

Step 4 (Probability Randomization). With probability p = 0.1, the velocity of each vehicle (if
greater than zero) is decreased by one.

Step 4 introduces a slowdown probability parameter. At each time step there is a

probability p that all vehicles will slow down to vi(t) − 1. Step 4 introduces the slow-to-

start condition whereby at every time step some stopped vehicles have to wait longer before

they can continue their journey. This rule introduces individual velocity fluctuations due

to delayed acceleration (imperfect driving). Delayed acceleration is a condition generally

observed in traffic flow. Vehicle movement is updated in parallel at every time step which

makes the model collision-free. At every time step the speed of each individual vehicles

can increase by 1 cell/second. This implies that accelerating vehicles have a maximum

acceleration of 5.4 ms−2. A more detailed description of the model can be obtained from

Fowdur and Rughooputh [11]. In our simulations we restrict to the afternoon peak

congestion which is the most severe one in terms of the journey duration.

3.2. Simulation Parameters

3.2.1. The Actual Network

The actual flow of traffic in Port Louis consists of vehicles entering the motorway M1 from

Quay D and vehicles generated within Port Louis. Incoming traffic from the North merges

with traffic generated within Port Louis and exits Port Louis towards the South. Figure 3

shows the region concerned with the study.

Incoming traffic enters Port Louis at the Quay D roundabout on the M1 as from B30

junction and merges with traffic after 1.1 km (730 cells). The length of the exit road is

considered up to the proposed entry point of the Ring Road. An arbitrary number of 300 cells,
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Figure 3: Region under study.

representing a road stretch of 450 m has been assigned to the street from which vehicles merge

with those from the North. The implementation of the cellular automata model has been

represented in Figure 4.

3.2.2. The Ring Road

The Ring road is a proposed track linking the Quay D roundabout to the motorway at Pailles.

The main aim of the Ring road is to provide an alternative path for the actual through traffic

in Port Louis. It further aims, through additional entry points, to provide an alternative path

for vehicles within Port Louis to leave. Figure 5 shows the track of the Ring road [12].
The length of the Ring road is 10.6 km. Cellular automata implementation of the Ring

road will consist of a street of length 7000 cells linking the Quay D roundabout to the

motorway. It is estimated that the safe driving speed over it would be around 70 km/h.

3.2.3. The LRT

The LRT has been described as one of the centrepieces of the integrated transport system for

Mauritius [6]. Covering a distance of some 25 km, the LRT will have some 13 stations, mainly

located in town centres along the route where existing transport terminals already exist. The

end-to-end journey time would be approximately 32 minutes and carriages would be air-

conditioned, to ensure maximum attraction of car users. Headways would vary by time of
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Table 1: Operating characteristics of the LRT [6].

Characteristic

Length of line 24.9 km

Average time at stops 20 seconds

Number of stops (stations) 13 stations

Journey time, one way 32 minutes

Time round trip 70 minutes

Commercial speed 43 km/h

Peak train frequency 12 per hour

Vehicle capacity 250 per unit (500 per train)
Vehicle length 30 m per unit (running two units)
Vehicle width 2.65 m

Seating % full 25–30%

Peak pax capacity 6000 per hour/direction

Predicted traffic 93,000 pax (year 2006/working day)
Vehicle required 28 units, 14 trains

Total vehicle required 31 units

day, but are expected to be of the order of 5 minutes in peak periods. Access to stations

would be by an integrated system of comfortable and reliable feeder buses [6]. The operating

characteristics of the LRT system are summarised in Table 1.

If the LRT is implemented, the road network will remain similar to that of Section 3.2.1

since the LRT network will be an independent one and will not interfere with the current

network. In our work we investigate the effect of commuters gradually shifting to the LRT. We

independently investigate the effect of 20%, 40%, 60%, 80%, or 100% of commuters choosing

the LRT. In such a case, the traffic entering Port Louis from the North will remain the same

since the LRT is not being extended to the northern part of the island. However, the traffic

generated within Port Louis will decrease since commuters are now expected to use the LRT

to travel from Port Louis to Curepipe.

3.2.4. Transition to Bus Network

Here we consider a BRT without any dedicated lane for buses. Hence the road network will

remain similar to that of Section 3.2.1. In this case the number of cars both entering Port Louis

from the North and generated within Port Louis will decrease. However, an increase in the

number of buses will be observed at the expense of cars. It has been estimated that one bus

will replace 30 cars. This will lead to a change of the ratio of cars to buses from the actual 8 : 1

to around 3 : 2. Similar to our investigation of the LRT, we investigate the effect if 20%, 40%,

60%, 80%, or 100% commuters gradually shift to the BRT.

4. Results and Discussion

4.1. Maximum Number of Persons Displaced

The three proposed solutions which are the Ring road, the LRT, and the transition to a bus

network were compared based on travel times, the maximum number of persons displaced,
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Table 2: Total number of vehicles leaving each street.

Simulation Quay D Port Louis Centre
Exit at Ring road entry point

Cars Buses HGV Total

Actual 1224 1194 1934 242 242 2418

Ring road 491 1826 1925 240 240 2388

LRT20 1316 1050 1886 240 240 2372

LRT40 1472 896 1942 240 240 2426

LRT60 1640 724 1884 240 240 2372

LRT80 1836 554 1910 240 240 2372

LRT100 1996 394 1890 240 240 2380

BRT20 1032 1032 1548 276 240 2066

BRT40 902 902 1160 404 240 1798

BRT60 716 722 776 588 240 1600

BRT80 656 656 388 684 240 1308

BRT100 514 514 0 788 240 1024

and the total number of vehicles entering and leaving each road. The hourly number of

vehicles exiting the Quay D, the Port Louis Centre, and the exit at the Ring road entry point is

summarised in the Table 2. The terms LRT20, LRT40, LRT60, LRT80, and LRT100 correspond

to 20%, 40%, 60%, 80% and 100% of commuters shifting to the LRT, respectively. While the

terms BRT20, BRT40, BRT60, BRT80, and BRT100 correspond to 20%, 40%, 60%, 80% and 100%

of commuters shifting to the BRT, respectively.

In the actual case, the ratio of cars to buses and Heavy Goods Vehicles (HGV) is of

8 : 1 : 1. The number of passengers per car can be estimated to be 1.5. We can therefore estimate

the number of persons displaced per hour as follows:

number of persons displaced by car = 2418 × 0.8 × 1.5 = 2902,

number of persons displaced by bus = 2481 × 0.1 × 40 = 9672.
(4.1)

The number of heavy goods vehicle (HGV) is of around 240 per hour. HGV’s have

not been taken into account for the calculation of the number of persons displaced since they

are not concerned with public transportation. The maximum number of persons that can be

displaced is summarised in the Figure 6.

It is observed that the LRT will be useful only if it can attract at least 60% of users. For

the bus transition even if only 20% of users shift to it, the maximum number of users that can

use the network will be higher than in the actual case. For the case where more people shift

to the BRT, even larger number of persons can be displaced making the option sustainable

for future trends.

4.2. Travel Time Analysis

The travel times obtained in the different simulations form the Quay D to the entry point of

the Ring road are given in Figures 7 and 8.
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Figure 6: Maximum number of persons displaced.
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Figure 7: Travel time from Quay D to proposed Ring road entry point for the BRT.
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Figure 9: Average travel time from Quay D.
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Figure 10: Travel time from the City Centre to proposed Ring road entry point for the BRT.

It is observed that with the BRT, a significant decrease in travel time is obtained. For

the LRT, as drivers gradually shift to the LRT, the travel time decreases gradually. This effect

can be further observed in Figure 9 which gives the average travel time from Quay D.

Figures 10 and 11 show the travel times obtained from the City Centre. In this case it

is observed that the travel time from the City Centre for the BRT decreases while that for the

LRT increases. The average travel times are given in Figure 12.

It is therefore observed that with the Ring road, there is a significant increase in travel

time for vehicles entering from Quay D as well as those joining the motorway from within

Port Louis. The main reason for this is an additional delay introduced at the point where the

Ring road merges with the motorway. The average travel time on the Ring road has been

calculated to be of 2000 seconds (33.3 minutes) during peak congestion. This time is again far

greater than the actual travel times.

With the LRT a decrease in travel time has been achieved for vehicles entering at the

Quay D entry point. This has resulted from the fact that with the LRT traffic generated from

within Port Louis will drop drastically. As expected, the larger the number of drivers shifting

to the LRT, the greater will be the drop in traffic volume. Vehicles entering Port Louis will

then face a smaller waiting time at the intersection with the road bringing traffic generated
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Figure 12: Average travel time from Quay D.

within Port Louis. However, vehicles leaving Port Louis are bound to experience a longer

waiting time resulting in an increase in their travel time.

By the BRT a significant decrease in travel time is observed both for vehicles entering

from Quay D and vehicles generated within Port Louis. As more drivers shift to the BRT, the

travel time decreases gradually.

With the BRT40 the maximum number of persons displaced is greater than for the

LRT100. The travel time form Quay D will decrease by 49% while with the LRT100 it will

decrease by 33%. Travel time form the City Centre for the BRT 40 decreases by 24% while

for the LRT100 it increases by 46%. Hence, in terms of travel time and maximum number of

persons displaced, the BRT40 outperforms the LRT100.

4.3. Carbon Dioxide Emission Analysis

In this section we provide an analysis of the difference in the amount of CO2 emitted by the

three proposed solutions. In Mauritius the average CO2 emissions from cars is of 158 g/km

[6]. The amount of CO2 emission from buses has been taken as 1015.4 g/km while the CO2
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Table 3: Hourly CO2 emission from the 3 proposed solutions.

Quay D to Ring road
entry point

City Centre to Ring
road rntry point

Ring road Hourly CO2

emission/tons

Simulation Cars Bus CO2/tons Cars Bus CO2/tons Cars CO2/tons

Actual 982 121 1.68 952 121 1.48 0 0 3.16

Ring road 116 121 0.85 908 121 1.44 880 1.46 3.75

LRT20 1074 121 1.77 808 121 1.35 0 0 3.32

LRT40 1232 121 1.92 656 121 1.22 0 0 3.34

LRT60 1400 121 2.08 484 121 1.08 0 0 3.36

LRT80 1596 121 2.26 314 121 0.93 0 0 3.39

LRT100 1756 121 2.42 154 121 0.79 0 0 3.41

BRT20 774 138 1.59 774 138 1.42 0 0 3.01

BRT40 580 202 1.79 580 202 1.60 0 0 3.39

BRT60 388 294 2.18 394 294 1.95 0 0 4.13

BRT80 194 342 2.28 194 342 2.04 0 0 4.32

BRT100 0 394 2.41 0 394 2.16 0 0 4.57

emission resulting from electricity generation for the LRT is of 2970.2 g/km [13]. Using these

figures and data obtained from the simulations performed, the total amount of CO2 emitted

for each network has been calculated. Vehicles traveling from Quay D to the Ring road will

cover a distance of 6.045 km while those coming from the City Centre will travel 5.400 km.

Vehicles taking the Ring road will travel 10.500 km. Table 3 summarises the hourly amount of

CO2 emission from the different situations investigated.

Table 3 suggests that, compared to the actual case, a net improvement in the hourly

CO2 emission is achieved only by the BRT20. The emission of the LRT, however, compares

favourably with BRT40.

5. Conclusions

The aim of this paper was to analyse three different solutions for traffic congestion relief in

Port Louis. TCA simulations were performed to investigate the impact on travel time and the

maximum number of persons that will be displaced in the three different alternatives. Our

study has shown that Ring road option will not lead to any reduction in the congestion level

at Port Louis. On the contrary it will lead to further congestion and will have higher CO2

emissions compared to the actual case, the LRT and the BRT. This will be caused mainly by

the fact that commuters using the ring road will travel an additional 5 km before reaching

their destination and the additional delay created at the point where vehicles from the Ring

road merge with the motorway. This second inconvenience will result in a decreased capacity

of both the motorway and the Ring Road.

The LRT can be envisaged as a long-term solution because of its lower CO2 emission.

It, however, suffers from longer travel times and lower carrying capacity than the BRT. Thus,

our studies reveal that the BRT40 can be set as the target that authorities should go for.



Journal of Applied Mathematics 13

Acknowledgments

This work has been realised with the financial support of the Mauritius Research Council.

The University of Mauritius is gratefully acknowledged for providing the necessary facilities

and logistics for this work. The authors also wish to thank the anonymous reviewer for the

valuable comments provided which helped to improve the work.

References

[1] GM (Government of Mauritius), 2011, http://www.gov.mu.
[2] MRDP (Mauritius Road Decongestion Program), 2011, http://www.mauritiustollproject.net/.
[3] B. Jia, R. Jiang, and Q. S. Wu, “A realistic two-lane cellular automaton model for traffic flow,” Inter-

national Journal of Modern Physics C, vol. 15, no. 3, pp. 381–392, 2004.
[4] C. Mallikarjuna and K. R. Rao, “Cellular Automata model for heterogeneous traffic,” Journal of Ad-

vanced Transportation, vol. 43, no. 3, pp. 321–345, 2009.
[5] S. F. Hafstein, R. Chrobok, A. Pottmeier, M. Schreckenberg, and F. C. Mazur, “A high-resolution cel-

lular automata traffic simulation model with application in a freeway traffic information system,”
Computer-Aided Civil and Infrastructure Engineering, vol. 19, no. 5, pp. 338–350, 2004.

[6] MFG (Ministry of Flemish Government), Design mobility plan Flanders, Brussels, Belgium, 2001,
http://viwc.lin.vlaanderen.be/mobiliteit/.

[7] L. Gilbert, M. Angel, A. M. Juan, and P. Federico, “Designing robust rapid transit networks with
alternative routes,” Journal of Advanced Transportation, vol. 45, no. 1, pp. 54–65, 2011.

[8] Origin Destination Survey For Port Louis, 2004.
[9] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de Physique

I, vol. 2, no. 12, pp. 2221–2229, 1992.
[10] R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg, “Metastable states in cellular

automata for traffic flow,” European Physical Journal B, vol. 5, no. 3, pp. 793–800, 1998.
[11] C. Fowdur and S. D. D. V. Rughooputh, “Traffic cellular automata simulation of a congested round-

about in mauritius,” International Journal of Modern Physics C, vol. 20, no. 3, pp. 459–468, 2009.
[12] http://www.gov.mu/portal/goc/file/Mauritius web.pdf.
[13] AEA Group, “Carbon Footprinting of Policies,” Programmes and Projects, Oxfordshire, 2009.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 857824, 12 pages
doi:10.1155/2012/857824

Research Article
GMM Estimator: An Application to
Intraindustry Trade

Nuno Carlos Leitão
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This paper investigates the determinants of intraindustry trade (IIT), horizontal IIT (HIIT), and
Vertical IIT (VIIT) in the automobile industry in Portugal. The trade in this sector between Portugal
and the European Union (EU-27) was examined, between 1995 and 2008, using a dynamic panel
data. We apply the GMM system to solve the problems of serial correlation and the endogeneity of
some explanatory variables. The findings are consistent with the literature. The difference between
per capita incomes and factor endowments present a positive sign. These results are according to
Heckscher-Ohlin predictions. The economic dimension has a positive impact on trade. A negative
effect of the distance on bilateral trade was expected and the results confirm this, underlining the
importance of neighbour partnerships for all trade.

1. Introduction

The intraindustry trade (IIT) or two-way trade is explained by product differentiation and

the existence of products belonging to the same category. The big push in the literature

emerged with the work of Grubel and Lloyd [1]. The pioneering models of IIT, especially

the horizontal differentiation as in Krugman [2], Lancaster [3], and Helpman and Krugman

[4], explained this type of trade based on monopolistic competition and economies of scale.

In fact, the models of horizontal intraindustry trade (HIIT) do not predict the advantages

theory as explanatory factor. HIIT is explained by consumers with similar characteristics and

similar types of income.

In this respect, the vertical intraindustry trade (VIIT) admits different types of quality,

that is, different types of preferences. The consumers have different types of income per

capita, which emphasize the theoretical models of Falvey and Kierzkowski [5] and Shaked

and Sutton [6].
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In 1990s the intermediate goods led to interest in the academic community [7]. In

recent years, the empirical studies [8–11] have focused primarily on vertical specialization,

and this linked to the concept of fragmentation or outsourcing. This paper evaluates the

vertical intraindustry trade as well as the horizontal intraindustry trade and intraindustry

trade.

This paper presents two contributions. First we use the GMM system estimator

because we intended to evaluate the long-term effects. Second, this study contributes to the

discussion of the development of automobile industry and fragmentation theory.

The results presented in this paper for this specific industrial sector are generally

consistent with the expectations of intraindustry trade studies. The remainder of the paper

is organised as follows: Section 2 presents the theoretical background; Section 3 presents the

indexes of intraindustry trade used in this study. Section 4 displays the econometrical model;

Section 5 presents the estimation results, and the final section provides the conclusions.

2. Literature Review

In recent years, emerged in the literature an explanation of international trade based on the

transaction of intermediate goods. Fragmentation also called outsourcing of production has

received attention from many scholars especially starting in the 1990s.

In fact, the conceptual model of Jones and Kierzkowski [7] demonstrated that

the location of multinational firms was associated with economies of scale and factor

endowments. In other words, a multinational company may have several branches located

in several regional blocks. As Faustino and Leitão [11] referred, the term fragmentation has

taken various forms (outsourcing by Feenstra and Hanson [12] and vertical specialization by

Hummels and Skiba [13].
Globalisation promotes regional clusters in the international economics. As Eiteam et

al. [14] demonstrated, we have some countries as India, Russia, and Mexico that developed

highly efficiently. The sector of parts and components for vehicles, aircraft, and software

are generally referenced in the literature. According to Kol and Rayment [15] the exchange

of intermediate goods may take two forms: horizontal intraindustry trade and vertical

intraindustry trade. In fact horizontal intraindustry trade in intermediate goods cannot be

explained by different types of quality. However, vertical intraindustry trade helps to explain

the various stages of international production, since there are economies abundant in capital

(K) and other factors in labour (L). Thus, it is understood that the vertical intraindustry trade

is explained by different types of quality. The application of the index of Grubel and Lloyd

[1] and the methodology of Abd-el-Rahman [16] and Greenaway et al. [17] have allowed

validating the conceptual model of Jones and Kierzkowski [7]. Empirical studies [8–11] have

focused primarily on vertical products differentiation (vertical intraindustry trade).
The research of Ando [8] and Kimura et al. [9] validated the fragmentation and vertical

intraindustry trade (VIIT) in East Asian countries. Leitão et al. [10] used a static panel data

(OLS with time dummies and Tobit model) to explain the phenomena of fragmentation. The

article of Leitão et al. [10] concluded that vertical specialization is explained by dissimilarities

of per capita GDP, factor endowments and geographical distance. The last few years in the

literature is emerging new and important developments on the intraindustry trade (IIT). The

dynamic analysis (GMM system) for intraindustry trade was introduced by Faustino and

Leitão [18]. This analysis was also used by Faustino and Leitão [18] and Leitão [19].
The study of Faustino and Leitão [18] examined the determinants of VIIT in the

automobile components between Portugal and European Union countries and BRIC (Brazil,
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Russia, India, and China) for the period 1995–2006. The authors applied a dynamic panel data

(GMM System). Faustino and Leitão [18] demonstrated that the differences in per capita and

transaction costs are the main determinants of fragmentation.

Leitão [19] examines the long-term effects of IIT and its components—horizontal and

vertical IIT, applied to the study case of the United States. Using GMM system, the study

shows a negative correlation between factor endowments, and IIT. The findings also illustrate

that there is no positive correlation between HIIT and HO (Heckscher-Ohlin) model.

3. Grubel and Lloyd Indexes

Grubel and Lloyd [1] define IIT as the difference between the trade balance of industry i and

the total trade of this same industry. In order to make comparisons easier between industries

or countries, the index is presented as a ratio, where the denominator is total trade:

IITit = 1 − |Xi −Mi|
(Xi +Mi)

⇐⇒ IITit =
(Xi +Mi) − |Xi −Mi|

(Xi +Mi)
, (3.1)

where Xi and Mi are export and import to partner country i.

The index is equal to 1 if all trade is intraindustry. If IITit is equal to 0, all trade is

inter-industry trade.

Grubel and Lloyd [1, page 22] proposed an adjustment measure to the country IIT

index (IIT calculated for all individual industries), introducing the aggregate trade

imbalance.

Aquino [20, page 280] also considered that an adjustment measure is required, but to a

more disaggregated level, but for this, the Grubel and Lloyd method is inadequate. Following

Aquino, we require an appropriate imbalance effect. The imbalancing effect must be equi-

proportional in all industries. So, the Aquino at the 5-digit level estimates “what the values

of exports and imports of each commodity would have been if total exports had been equal

to total imports.”

3.1. HIIT and VIIT Indexes

To determine the horizontal (HIITit) and vertical intraindustry trade (VIITit), Grubel and

Lloyd [1] indexes and the methodology of Abd-el-Rahaman [16] and Greenaway et al. [17]
are used, that is, the relative unit values of exports (UVX

it ), and imports (UVm
it ).

Where HIITit:

1 − α ≤ UVX
it

UVm
it

≤ 1 + α (3.2)

and VIITit is

UVX
it

UVm
it

≤ 1 − α or
UVX

it

UVm
it

> 1 + α, (3.3)
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Figure 1: Trade between Portugal and European Countries for the period 1995–2008.

where α = 0.15. When the relative unit values of exports and imports are less than 15%,

the trade flows are horizontally differentiated (HIIT). The HIIT and VIIT indexes are also

calculated with disaggregation at 5-digit Portuguese Economic Activity Classification from

INE-Trade Statistics.

In Figure 1, the intraindustry trade between Portugal and the European Union (EU) is

over 50% for the period 1995–2008. For all of the period in analysis, the VIIT is much higher

than the HIIT. These values are in accordance with the fragmentation theory.

4. Econometric Model

The dependent variable used is the IIT Grubel and Lloyd [1] index, HIIT and VIIT indexes

at five-digit level of the Standard International Trade Classification (SITC). The explanatory

variables are country-specific characteristics. The data sources for the explanatory variables

are the World Bank Development Indicators (2011). The source used for the dependent

variable was data from INE, the Portuguese National Institute of Statistics.

This study uses a dynamic panel data (GMM system). In static panel data models,

Pooled OLS, fixed effects (FEs), and random effects (REs) estimators have some problems

like serial correlation, heteroskedasticity, and endogeneity of some explanatory variables.

The estimator GMM system (GMM-SYS) permits the researchers to solve the problems

of serial correlation, heteroskedasticity and endogeneity for some explanatory variables.

These econometric problems were solved by Arellano and Bond [21], Arellano and Bover

[22], and Blundell and Bond [23, 24], who developed the first-differenced GMM (GMM-

DIF) estimator and the GMM system (GMM-SYS) estimator. The GMM-SYS estimator is a

system containing both first differenced and levels equations. The GMM-SYS estimator is an

alternative to the standard first differenced GMM estimator. To estimate the dynamic model,

we applied the methodology of Blundell and Bond [23, 24] and Windmeijer [25] to small

sample correction to correct the standard errors of Blundell and Bond [23, 24]. The GMM

system estimator is consistent if there is no second-order serial correlation in the residuals

(m2 statistics). The dynamic panel data model is valid if the estimator is consistent and the

instruments are valid.
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4.1. Hypotheses and Definition of Explanatory Variables

Hypothesis 1. There is a negative (positive) correlation between differences in per capita

income and IIT and HIIT (VIIT).

LogDGDP is the logarithm of absolute difference in per capita GDP (PPP, in current

international dollars) between Portugal and the trading partner. Loertscher and Wolter [26]
suggested a negative sign for the IIT model. Hypothesis 1, was formulated based the Linder

[27] theory. Linder [27] considers that countries with similar demands have similar products.

So, the Linder hypothesis suggests a negative sign for the IIT model (Helpman [28]; and

Hummels and Levinsohn [29]).
Regarding Hypothesis 1, Loertscher and Wolter [26] and Balassa [30] estimated a

negative coefficient. The recent study of Leitão [19] also found a negative sign. The model

of Falvey and Kierzkowski [5] suggests a positive impact between income difference and

VIIT. The empirical works of Loertscher and Wolter [26] and Greenaway et al. [17] provide

empirical support for a negative relation between difference in per capita income and HIIT.

Hypothesis 2. IIT and HIIT occurs more frequently among countries that are similar in terms

of factor endowments.

(a) VIIT predominate among countries that are dissimilar in terms of factor endow-

ments.

LogEP is a proxy for differences in physical endowments. It is the logarithm of the

absolute difference in electric power consumption (Kwh per capita) between Portugal and its

partners. Considering Hypothesis 2, the models of Helpman and Krugman [4] and Hummels

and Levinsohn [29] suggest a negative effect of physical endowment on IIT. Zhan et al. [31]
use the absolute difference in electric power consumption in examining IIT for China. Zhang

et al. [31] found a negative sign to IIT. The findings of Leitão [19] show a positive sign to

VIIT.

Hypothesis 3. The economic dimension influences the volume of trade positively.

LogDIM is the logarithm of average GDP of the two trading partners. Usually the

studies utilized this proxy to evaluate the potential economies of scales and the variety of

differentiated product. A positive sign is expected for the coefficient of this variable (see, e.g,

Greenaway et al. [17], Hummels and Levinsohn, [29], and Leitão et al. [10]).

Hypothesis 4. Trade increases when partners are geographically close.

LogDIST is the logarithm of geographical distance between Portugal and the partner

country. Following the most empirical studies, we use kilometres between the capital cities

of the trading partners. According to the literature, we expect a negative sign (Badinger and

Breuss [32], Blanes [33], Cieślik [34], and Faustino and Leitão [11]).

4.2. Model Specification

We consider that

IITit = β0 + β1Xit + δt + ηi + εit, (4.1)



6 Journal of Applied Mathematics

where IITit stands for IIT, HIIT, or VIIT, meaning Total, Vertical, or Horizontal Portuguese

IIT index, and X is a set of explanatory variables. All variables are in the logarithm form; ηi
is the unobserved time-invariant specific effects; δt captures a common deterministic trend;

εit is a random disturbance assumed to be normal, and identically distributed with E(εit) =
0; Var (εit) = σ2 > 0.

Following the empirical work of Hummels and Levinsohn [29], we apply a logistic

transformation to IIT, HIIT, and VIIT because these indexes vary between zero and one.

LOGISTIC IIT = Ln[IIT/(1 − IIT)]. The same transformation is made for HIIT and VIIT.

The model can be rewritten in the following dynamic representation:

IITit = IITit−1 + β0 + β1Xit − ρβ1Xit−1 + δt + ηi + εit. (4.2)

5. Estimation Results

Table 1 presents summary statistics for each variable. LogDGDP, LogEP, LogDIM, and

LogDIST appear to have only little differences. However, this is not the case for the indexes

of LogIIT, LogHIIT and LogVIIT.

Before estimating the panel regression model, we have conducted a test for unit root

of the variable. Table 2 presents the results of panel unit root test (ADF-Fischer Chi square).
The most important variables such as the intraindustry trade (LogIIT), horizontal

intraindustry trade (LogHIIT), vertical intraindustry trade (LogVIIT), electric power

consumption (LogEP), economic dimension (LogDIM) do not have unit roots, that is, are

stationary with individual effects and individual specifications.

In Figure 2 we can observe the distribution of intraindustry trade.

Table 3 reports the determinants of IIT using a GMM system estimator. All explanatory

variables are significant at 1% level (LogIITt−1, LogDGDP, LogEP, LogDIM, and LogDIST).
Our model presents consistent estimates, with no serial correlation (m2 statistics). The

specification Sargan test shows that there are no problems with the validity of instruments

used. As expected for the Lagged dependent variable (LogIITt−1) the result presents a positive

sign, showing the changes in IIT have a significant impact on long-term effects. The difference

between per capita incomes, in logs (LogDGDP), presents a positive sign. We can infer that

countries have dissimilar demand. Following Falvey and Kierzkowski [5], we introduced one

proxy for the difference in factor endowments (electric power). The variable, electric power in

logs (LogEP) presents a positive sign. As Portuguese IIT is mainly vertical intraindustry trade

(VIIT), this is consistent with the neo-Heckscher-Ohlin trade theory, that is, the differences in

physical endowments promote the IIT.

The coefficient economic dimension (LogDIM) has a significant and a positive effect

on IIT. This result confirms the importance of scale economy and product differentiation.

We can conclude that economic dimension influences the volume of intraindustry trade.

The geographical distance (LogDIST) has been used as a typical gravity model variable.

A negative effect of the distance on bilateral IIT was expected and the results confirm this,

underlining the importance of neighbour partnerships for all trade.

The Table 4 presents the results using the horizontal intraindustry trade equation.

The model presents consistent estimates, with no serial correlation (m2 statistics). The

specification Sargan test shows that there are no problems with the validity of instruments

used. As expected for the Lagged dependent variable (LogHIITt−1) the result presents
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Table 1: Summary statistics.

Variables Mean Std. dev Min Max

LogIIT −0.56 0.56 −2.56 −0.01

LogHIIT −2.22 1.42 −6.14 −0.07

LogVIIT −0.92 0.63 −2.87 −0.05

LogDGDP 4.13 0.38 2.18 4.93

LogEP 3.37 0.46 1.60 4.12

LogDIM 4.31 0.20 3.77 4.82

LogDIST 3.33 0.18 2.70 3.59

Table 2: Panel unit root test results.

Intercept and trend

ADF-Fischer Chi square Statistic Probability

LogIIT 131.19 0.0000

LogHIIT 65.31 0.0319

LogVIIT 97.67 0.0000

LogEP 88.60 0.0006

LogDIM 65.63 0.0682

a positive sign. So we can infer that the changes in horizontal intraindustry trade have a a

significant impact on the long-term effects.

The absolute difference in electric power consumption (LogEP) is statistically

significant, with positive sign. We can conclude that countries have dissimilar factor

endowment. As expected, the variable LogDIM (average of per capita GDP) between

Portugal and the partner consider) has a significant and positive effect on trade. Therefore,

the intensity of HIIT is positively correlated with the similarity in per capita income between

trading partners. The coefficient of LogDIST (geographical distance) is negative as expected.

The studies of Balassa and Bauwens [35], Badinger and Breuss, [32], Blanes [33], Cieślik [34],
H. Egger and P. Egger [36] also found a negative sign.

In Figure 3 we present the distribution of horizontal intraindustry trade.

Vertical intraindustry trade estimates are report in Table 5. All explanatory variables

are significant. The results are according to previous studies. The model present consistent

estimates, with no serial correlation and Sargan test validates the instruments used.

The hypothesis for economic differences between countries (DGDP) in logs presents a

positive sign and is significant at 1% level. Falvey and Kierzkowski [5] suggest a positive

effect of income difference on VIIT model. Kimura et al. [9] found positive relationship

between income difference and VIIT for parts and components trade. We can conclude that

VIIT occurs more frequently among economies that are dissimilar, that is, differentiation by

quality of products.

In Figure 4 we can observe the distribution of vertical intraindustry trade.

The coefficients electric power consumption (EP) and the economic dimension (DIM)
are consistent with the expected sign. The result confirms that VIIT can be explained by

Heckscher-Ohlin theory.

The difference in electric power consumption per capita (LEP) reflects the difference

in endowments between Portugal and its trade partners. Regarding the hypothesis for
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Figure 2: Distribution of intraindustry trade (IIT).

Table 3: Determinants of intraindustry trade.

Variables GMM system t-statistics Significance Expected sign

LogIITt−1 0.10 (6.25) ∗∗∗ (+)
LogDGDP 0.29 (3.55) ∗∗∗ (−)
LogEP 0.38 (10.49) ∗∗∗ (−)
LogDIM 0.21 (3.09) ∗∗∗ (+)
LogDIST −1.53 (−3.09) ∗∗∗ (−)
C 2.59 (1.69) ∗

Ar(2) −0.69 [0.49]
Sargan Test 20.96 [1.00]
Observations 289

The null hypothesis that each coefficient is equal to zero is tested using one-step robust standard error. t-statistics
(heteroskedasticity corrected) are in round brackets. P values are in square brackets; ∗∗∗/∗statistically significant at the
1 percent and 10 percent levels. Ar(2) is tests for second-order serial correlation in the first-differenced residuals,
asymptotically distributed asN(0,1) under the null hypothesis of no serial correlation (based on the efficient two-step GMM
estimator). The Sargan test addresses the overidentifying restrictions, asymptotically distributed X2 under the null of the
instruments’ validity (with the two-step estimator).

Table 4: Determinants of Horizontal Intraindustry Trade.

Variables GMM system t-statistics Significance Expected sign

LogHIITt−1 0.33 (21.1) ∗∗∗ (+)
LogDGDP 2.06 (2.44) ∗ (−)
LogEP 1.09 (3.33) ∗∗∗ (−)
LogDIM 2.69 (4.19) ∗∗∗ (+)
LogDIST −1.92 (−1.79) ∗ (−)
C 3.94 (0.90)
Ar(2) 2.09 [0.36]
Sargan Test 18.54 [1.00]
Observations 138

The null hypothesis that each coefficient is equal to zero is tested using one-step robust standard error. t-statistics
(heteroskedasticity corrected) are in round brackets. P values are in square brackets; ∗∗∗/∗statistically significant at the
1, and 10 percent levels. Ar(2) is tests for second-order serial correlation in the first-differenced residuals, asymptotically
distributed as N(0,1) under the null hypothesis of no serial correlation (based on the efficient two-step GMM estimator).
The Sargan test addresses the overidentifying restrictions, asymptotically distributed X2 under the null of the instruments’
validity (with the two-step estimator).
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Figure 3: Distribution of horizontal intraindustry trade (HIIT).

Table 5: Determinants of vertical intraindustry trade.

Variables GMM system t-statistics Significance Expected sign

LogVIITt−1 0.32 (15.63) ∗∗∗ (+)
LogDGDP 0.19 (4.18) ∗∗∗ (+)
LogEP 0.01 (1.78) ∗ (+)
LogDIM 0.55 (5.13) ∗∗∗ (+)
LogDIST −0.44 (−4.25) ∗∗∗ (−)
C 0.24 (0.69)
Ar(2) 0.39 [0.70]
Sargan Test 21.14 [1.00]
Observations 267

The null hypothesis that each coefficient is equal to zero is tested using one-step robust standard error. t-statistics
(heteroskedasticity corrected) are in round brackets. P values are in square brackets; ∗∗∗/∗statistically significant at the 1
percent, 5 percent, and 10 percent levels. Ar(2) is tests for second-order serial correlation in the first-differenced residuals,
asymptotically distributed as N(0,1) under the null hypothesis of no serial correlation (based on the efficient two-step GMM
estimator). The Sargan test addresses the overidentifying restrictions, asymptotically distributed X2 under the null of the
instruments’ validity (with the two-step estimator).
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Figure 4: Distribution of vertical intraindustry trade (VIIT).
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the geographical distance on VIIT, the empirical result support the idea that the gravity model

is important to explain vertical intraindustry trade between partners.

6. Conclusion

The objective of this paper was to analyze the main determinants of intraindustry trade in

automobile sector. The IIT between Portugal and the European Union countries is over 50%

for the period 1995–2008. For all of the period in analysis, the VIIT is much higher than the

HIIT. These values are in accordance with the fragmentation theory.

The Lagged dependent variables (LogIITt−1, LogHIITt−1, and LogVIITt−1) are positive

and less than one. So we can infer that the changes in intraindustry trade, horizontal and

vertical IIT have a significant impact on the long-term effects.

The Linder theory considers that a difference in per capita incomes explains

intraindustry trade and their components (HIIT and VIIT). The variable (LogDGDP) used

to evaluate the relative factor endowments presents a positive impact on IIT, HIIT and VIIT.

In fact the decision of multinational corporations is associated with different factors as in

localization, skilled labour and economies of scales.

In relationship to the variable differences in physical capital endowments (LogEP),
our results validate the hypothesis: VIIT occurs more frequently among countries that are

dissimilar in terms of factor endowments. Our research confirms that fragmentation of

production in the automobile sector is explained by the Heckscher-Ohlin. The difference in

factor endowment allows showing that fragmentation is associated with vertical differenti-

ation of products. This reveals that the decision-making of multinational corporations are

based in reducing production costs; showing the importance of globalization to explain the

phenomenon of fragmentation or outsourcing.

For the variable size of the market (average of GDP), the study suggests that Portugal

has size to attract this type of industry. In fact, the Euro Zone countries considered in the

econometric analysis show that the removal of tariff and nontariff barriers promoted the

increase of intraindustry trade with special focus on the VIIT. In future studies it will be

interesting to extend our sample.

According to the literature we expected a negative sign to geographical distance.

Usually the literature attributes a negative sign to geographical distance, that is, trade

increases if the partners are geographically close. The findings support this hypothesis, that

is, the gravity model are important to explain the composition of trade (IIT, HIIT and VIIT)
within partners.
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Radiant floor heating has received increasing attention due to its diverse advantages, especially
the energy saving as compared to the conventional dwelling heating system. This paper presents
a numerical investigation of airflow and heat transfer in the slot-vented room with the radiant
floor heating unit. Combination of fluid convection and thermal radiation has been implemented
through the thermal boundary conditions. Spatial distributions of indoor air temperature and
velocity, as well as the heat transfer rates along the radiant floor and the outer wall, have been
presented and analyzed covering the domains from complete natural convection to forced con-
vection dominated flows. The numerical results demonstrate that the levels of average temperature
in the room with lateral slot-ventilation are higher than those without slot-ventilation, but lower
than those in the room with ceiling slot-ventilation. Overall, the slot-ventilation room with
radiant floor heating unit could offer better indoor air quality through increasing the indoor air
temperature and fresh air exchanging rate simultaneously. Concerning the airborne pollutant
transports and moisture condensations, the performance of radiant floor heating unit will be
further optimized in our future researches.

1. Introduction

Radiant floor heating is a novel indoor heating technique that has received increasing

attention in recent years. In the conventional heating methods, such as the air convection

by radiators and the hot air supply by air conditioners, the hot air is always located in the

upside or middle upside of the room instead of the occupied zone, leading to the obvious
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temperature differences between the upside and underside of the room. Under such condi-

tion, occupants usually feel uncomfortable. In the radiant floor heating, however, the effective

temperature of the floor is higher than the temperature in the upside of the room, which can

supply more heat to the underside of the room for warming the occupants’ feet instead of

their heads that follows the rule of human’s physiologic adjustment. Therefore, the radiant

floor heating improves the thermal comfort condition for the occupants as compared to the

conventional heating methods. In addition, the radiant system has the advantages of energy

saving, long life, wide selection of the heat sources, low cost, and environmental friendliness.

The theoretical and experimental research [1, 2] showed that radiant floor system can

decrease more than 30% of the energy consumption. The radiant floor system is also used

for indoor cooling in summer only by changing the heat source to the cool source. In recent

years, the indoor radiant heating or cooling system has been receiving increasing utilization

in residential and commercial buildings. For example, among the newly built European

buildings, many of them have been equipped with the radiant heating/cooling systems.

Radiant heating system is such a complex system that involves the various heat

transfer mechanisms, including the heat conduction in the floor, the radiative heat transfer

between radiant surface and other surfaces, convective heat transfer between the radiant

surface and its neighboring air, and the buoyancy’s effects. The numerical method provides a

convenient way to solve such problem. Ghaly and Elbarbary [3] and Shateyi [4] numerically

studied the convection coupled with radiative heat transfer and buoyancy’s effects. Ma et al.

[5] numerically studied the characteristics of the temperature and velocity distribution in the

room, and their results showed that radiant heat flux accounted for 50–60% of the total heat

flux. Sattari and Farhanieh [6] studied the effects of design parameters on performance of

a typical radiant floor heating system using finite element method. Bozkir and Canbazoǧlu

[7] carried out the experimental and numerical research on the radiant heating system with

an attempt to find the characteristics. In practice, the adequate fresh air supply is usually

required to ensure indoor air quality. As a result, the floor radiant heating system is usually

combined with the slot-ventilation system. However, few of the research works focuses on

the air flow and heat transfer in the slot-vented room with radiant floor heating unit.

This paper presents the numerical simulation of floor radiant heating system with

three types of slot-ventilation, that is, lateral slot-ventilation (LSV), ceiling slot-ventilation

(CSV) and no slot-ventilation (NSV). The indoor temperature, velocity, and heat flux

distributions are calculated. This work is of great significance for the design and wider

application of the floor radiant heating system.

2. Mathematical Model

The steady 2D model of the turbulent airflow and heat transfer in the room is developed

in this study. The schematic of radiant heating system and coordinate system is shown in

Figure 1. The radiant floor is assumed as the constant temperature Tfl; the outside wall is

cooled at the constant heat flux qow; other walls are adiabatic. The air velocity at the inlet is

uin, and the inflow temperature is tin. The standard K-ε two equations are used to describe

the turbulent flow and the governing equations are given as follows.

Continuity equation:

∂
(
ρu
)

∂x
+
∂
(
ρv
)

∂y
= 0. (2.1)



Journal of Applied Mathematics 3

Ceiling air supply

L
a
te

ra
l 

a
ir

 s
u

p
p

ly

y

x

H
=

2
.9

m

L = 3.6 m

Floor, fl

uin, Tin
uin, Tin

Out wall, ow

Figure 1: Schematic of radiant heating system and coordinate system.

Momentum equations:
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(2.2)

where u, v are the fluid velocities in x- and y-directions respectively; p is the pressure of the

fluid; g represents the acceleration of gravity. μeff is effective viscosity coefficient, which is

equal to the sum of molecular viscosity μ and turbulent eddy viscosity μt. Turbulent eddy

viscosity μt is determined by the local turbulent kinetic energy K and the dissipation rate ε:

μt =
cμρK

2

ε
. (2.3)

Energy equation in terms of temperature T is given below

∂
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Transport equations for turbulent kinetic energy K and dissipation rate equations ε are
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G in (2.5) is the production term given by

G = μt

{
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The closure coefficients cμ, c1, c2, σT , σK, and σε in the above turbulent model are set as

constants 0.09, 1.44, 1.92, 1.0, 1.0, and 1.3, respectively [8].
The DO radiation model is employed to handle the radiative heat transfer, and the

absorbing and scattering of air are omitted:

dI(�r, �s)
ds

+ aI(�r, �s) = a
σT4

π
, (2.7)

where �s is the distance between the two points of different wall surfaces and a is the

absorption coefficient. Each of the wall surfaces is assumed as grey-body radiation surfaces,

and the radiation emissivity at the floor is εfl = 0.6, and are taken as 0.8 at the other surfaces.

3. Numerical Method

Based on the control volume and SIMPLEC method [9], the governing equations (2.1)–(2.7)
subject to the boundary conditions are solved in the iterative manner. The grid is x × y = 200 ×
180, with the depressed mesh at near the wall to match the high velocity and temperature

gradients. In the calculation, the Boussinesq assumption is used to consider the buoyancy’s

effect, and the thermal expansion coefficient β is 0.0033. The thermophysical properties of

air are constant except the density. The converged solution is obtained when the following

convergence criteria are satisfied for the dependent variables:

∣∣∣∣∣φn+1 − φn
φn

∣∣∣∣∣ ≤ 10−5, where φ = u, v, and T. (3.1)

4. Results and Discussion

The calculation conditions are as follows: the constant wall temperature Tfl = 30◦C; the

inlet velocity uin = 0.3, 0.6 and 0.9 m/s; the cooling heat flux of the outside wall qow =
−100 W/m2. The air temperature at the inlet is equal to the mass-averaged temperature

without slot-ventilation so that no additional heat load is induced into the room. The indoor

air temperature and velocity distributions, as well as the radiative and convective heat flux
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between radiant floor and outside wall, are calculated under the different slot-ventilation

modes (i.e., LSV, CSV, and NSV).

4.1. Velocity and Temperature Distributions

Figure 2 shows the temperature and velocity distributions for the three slot ventilation modes

at Tfl = 30◦C, qow = −100 W/m2, and uin = 0.6 m/s. The air temperature in the room is quite

uniform (the temperature difference is less than 1◦C), except in the area near the floor. The

air temperature is lower in the area near outside wall. As no fresh air is supplied for NSV

(Figure 2(a)), the air near outside wall is firstly cooled down and then moves downward due

to the density difference in the vertical direction. The cooled air flows along the floor due to

the stagnation effect as it touches the floor and is warmed up at the floor. Then the heated air

moves upwards along the inside wall due to the buoyancy’ effect. As a result, the clockwise

natural convection of indoor air is formed. It is clearly seen that only in the region near the

wall the obvious air flow is observed, and the velocity is quite low elsewhere. As shown in

Figure 2(b), the indoor air temperature is higher under LSV mode as compared to the case

with NSV. Because both the air inlet and air outlet are installed at the same inside wall (one

is near the ceiling and the other is near the floor), the attaching jet flow is formed along the

ceiling as the air is supplied. The air is then cooled near the outside wall and goes downwards

so that the flow pattern similar to the natural convection is formed, but the air velocity is

higher for LSV. Due to the higher air velocity along the walls, the convective heat transfer

between the air and the wall is enhanced for LSV. Under CSV, (Figure 2(c)), the indoor air

temperature is further increased, and the air flow pattern is quite different from those under

above-mentioned two modes. As the air is supplied from the middle of ceiling, the air from

the inlet is continuously expanded and decelerated along the flow direction. The supplied air

is divided into two parts; one flows towards the outlet and is exhausted, and the other flows

towards to the outside wall which is cooled and goes down, forming the same flow pattern

as the natural convection. As the magnitude of the air velocity is close to that of natural

convection velocity, the flow pattern is the combined result of the forced convection and the

natural convection.

Figure 3 shows the temperature distribution at the different locations for the cases

shown in Figure 2. In this figure, X, Y are dimensionless distance X = x/L, Y = y/H. It

is found that the average temperature for CSV is highest, while the average temperature for

NSV is lowest. For all the cases, the temperature gradients along the height direction are quite

small except in the area near the floor and ceiling, which indicates the uniform temperature

distribution in most of the area. The temperature gradients near the floor are quite large,

especially in the area closer to outside wall (e.g., X = 0.8). This is because the air cooled at the

outside wall produces the greater temperature difference as it is passing along the floor. Near

the ceiling, because of the influences of the radiation, convection, cooling from the outside

wall, heat transfer mechanism is complex. As a result, the obvious temperature gradient is

also observed near the ceiling.

Figure 4 shows the velocity distribution at different locations for the cases shown in

Figure 2. It is clearly found that the influence of the slot-ventilation on the flow pattern

is obvious. Under these three conditions, air velocity in the occupied zone is all less than

0.2 m/s, while the air velocity of the area near the ceiling and floor is as high as 0.5 m/s.

Compared to NSV, the velocity near the floor and the ceiling for LSV and CSV is much higher,

and CSV leads to the more complex flow pattern.
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Figure 2: The temperature and velocity distribution at Tfl = 30◦C, qow = −100 W/m2 and uin = 0.3 m/s for
(a) no slot-ventilation (NSV), (b) lateral slot-ventilation (LSV), and (c) ceiling slot-ventilation (CSV).

Figure 5 shows the temperature and velocity distributions for LSV at Tfl = 30◦C, qow =
−100 W/m2, and uin = 0.3, and 0.9 m/s. It is clear that the airflow pattern and temperature

distributions are similar to the case shown in Figure 2(b). As the inlet velocity increases (uin =
0.9 m/s), (Figure 5(a)), more air flows towards the outside wall, leading to the more intensive

convective heat transfer between the indoor air and the outside wall. As a result, the air

is cooled to the lower temperature. For this reason, the bulk temperature of the indoor air
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Figure 3: The temperature distributions at different X locations for the cases shown in Figure 2.
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Figure 4: The velocity distributions at different X locations for the cases shown in Figure 2.

is lower. In reverse, as the inlet velocity is lower (uin = 0.3 m/s) (Figure 5(b)), less air reaches

the outside wall, and the bulk temperature of the indoor air is higher because of the weaker

convective heat transfer along the outside wall.

Figure 6 shows the temperature and velocity distributions for CSV at Tfl = 30◦C, qow

= −100 W/m2, and uin = 0.3 and 0.9 m/s. The airflow pattern and temperature distributions

are similar to the case shown in Figure 2(c). As the inlet velocity increases (uin = 0.9 m/s)
(Figure 6(a)), more air flows are supplied, leading to the more intensive convective heat

transfer between the air and the outside wall and the floor. However, because the direction of

the inlet velocity is towards the floor, the convective and radiative heat transfer along the floor

are dominant. As a result, the bulk temperature of the air in the room is higher. In reverse,

as the inlet velocity is lower (uin = 0.3 m/s) (Figure 6(b)), the convective heat transfer along

both the outside wall and the floor decreases, which decreases the bulk air temperature in the

room as compared to the case of uin = 0.9 m/s. However, the air temperature at uin = 0.3 m/s
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Figure 5: The velocity and temperature distributions for LSV at Tfl = 30◦C, qow = −100 W/m2, (a) uin =
0.3 m/s, and (b) uin = 0.9 m/s.

is higher than that for uin = 0.6 m/s. Therefore, the air temperature is related to the intensities

of the convective heat transfer along the outside wall and the floor. There exists an optimal

inlet velocity for CSV to increase the bulk temperature of the indoor air.

4.2. Characteristics of Radiative and Convective Heat Transfer

The different behaviors of the indoor air temperature under the different conditions are the

combined results of the different heat transfer mechanisms. The heat fluxes along the floor

and outside wall are studied and the Nusselt numbers for the convective heat transfer Nuc
and the radiative heat transfer Nur along the wall surface are given. Radiative heat flux qr
and convective heat flux qc are defined as

qr =
∫
Ω
σ
(
εw′T4

w′ − αwT4
w

)cos θ1 cos θ2

πs2
dAw′

qc = −λ ∂T
∂r

∣∣∣∣
W

,

(4.1)
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Figure 6: The velocity and temperature distributions for CSV at Tfl = 30◦C, qow = −100 W/m2, (a) uin =
0.3 m/s, and (b) uin = 0.9 m/s.

where qr is net radiative heat flux between the cells w at the outside wall or floor and w′ at

other walls; s is the distance of two points; θ1 and θ2 are the angles to the surface normal, and

λ is heat conductivity. The radiative and convective heat transfer coefficients are defined as

αr and αc:

αc =
qc

(Tw − Tb) ,

αr =
qr

(Tw − Tb) ,
(4.2)

where Tb is the bulk temperature of indoor air, Nu can be calculated through Nu = αle/λ, in

which le is characteristic length, which is taken as 3.6 m for the floor and 2.9 m for the outside

wall.

Figures 7 and 8, respectively, present the distributions of Nuc and Nur distribution

along with floor and outside wall for the cases shown in Figure 2. It is found that Nur is

greater than Nuc in most of the areas under the different conditions, which indicates that

the radiative heat transfer is stronger than the convective heat transfer. For NSV, the radiative

heat flux accounts for about 56% of the total heat flux. For LSV and CSV, the percentages of the
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Figure 7: Nuc and Nur distributions along the floor for the cases shown in Figure 2.
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Figure 8: Nuc and Nur distribution along the outside wall for the cases shown in Figure 2.

radiative heat transfer are about 54% and 61%, respectively. In the area near the outside wall,

the intense convection is observed due to the local vortex and higher temperature gradients

(Figure 3) and thus Nuc is greater Nur , indicating the stronger convective heat transfer in this

area. The magnitude of the radiative heat flux increases with the increased X; therefore, the

radiation is more significant in the area closer to the low-temperature outside wall. Under

LSV and NSV, the air velocity and hence Nuc decrease with the decreased X. The velocity

under CSV increases firstly and then decreases along X, and Nuc has the same tendency.
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Near the inside wall, the local vortex is formed that increases the convective heat transfer

and thus Nuc increases to some extent. There is no significant difference between Nur under

the three conditions. For LSV, Nuc is of the largest magnitude as the result of the strongest

convective heat transfer. As X < 0.67, Nuc for CSV is greater than that for NSV. It is also

found from Figure 8 that Nur is greater than Nuc for all the three conditions except in the area

near air inlet for the CSV (Y > 0.95), which suggests that the radiation dominates the heat

transfer mechanism. Under LSV, Nuc is larger as Y < 0.85 as compared to the two other cases,

indicating the strongest convection heat transfer in this area. As Y > 0.85, for CSV, the air

velocity significantly increases near the inlet, which increases the convection heat transfer.

5. Conclusions

The numerical stimulations of the airflow and heat transfer in the slot-vented room with

radiant floor heating unit, including LSV, CSV, and NSV, are performed. The temperature,

velocity, and the behaviors of the radiative and convective heat transfer are calculated. The

results show that the air temperatures in the room are quite uniform under these three air-

supply modes and the average temperature difference is less than 1◦C. Under LSV, the forced

ventilation has the same moving direction with the natural convection and thus increases

the air velocity. Under CSV, the flow pattern is more complex as the combined result of the

forced ventilation and natural convection. Radiation is main heat transfer mechanism at the

floor and the outside wall under all the three conditions. Radiative heat flux accounts for 50–

60% of the total heat flux, which is largest under CSV. LSV offers the strongest convection

along the floor and outside wall, which increases the convective heat transfer, especially at

cold outside wall. Therefore, the average temperature for LSV is lower than that for CSV.

Concerning the airborne pollutant transports and moisture condensations, the perfor-

mance of radiant floor heating unit will be further optimized in our future researches.
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When the permeability field of a given porous medium domain is heterogeneous by the existence
of randomly distributed fractures such that numerical investigation becomes cumbersome, another
level of upscaling may be required. That is such complex permeability field could be relaxed (i.e.,
smoothed) by constructing an effective permeability field. The effective permeability field is an ap-
proximation to the real permeability field that preserves certain quantities and provides an overall
acceptable description of the flow field. In this work, the effective permeability for a fractured rock
system is obtained for different coarsening scenarios starting from very coarse mesh all the way
towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the
pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases,
and very good agreement is obtained.

1. Introduction

The first level of upscaling encountered when studying phenomena occurring in porous

media is related to adopting the continuum hypothesis to such complex formations. That

is moving from pore scale simulations in which variables are only defined within the fluid

region to the continuum description in which macroscopic variables are defined everywhere

in the simulation domain. In doing so, certain conditions and length scale constraints need to

be fulfilled in order to generate macroscopic quantities that are scale independent [1]. While

these length scale constraints may be easily adopted in statistically homogeneous porous

media, it may be difficult to satisfy particularly closer to the interface boundaries between

media with very different textures [2]. Unfortunately, these sharp interface boundaries are

ubiquitous in rock systems which apparently contain several fractures and fissures. These

fractures have significant effects on both flow and transport in porous media. They provide

fluids and solutes with significantly less resistance paths compared with the surrounding
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matrix and therefore can lead solutes to reach further distances than what simulations ignor-

ing them would normally predict. There are two approaches to dealing with these fractures

depending on their density and distributions in rock systems. For rock systems with few

penetrating fractures, it is customary to consider the discrete fracture model (e.g., [3, 4]).
In this model, fractures are assumed as two-dimensional surfaces impeded within the given

rock matrix domain. These fracture surfaces have their own properties and equations which

include interaction terms between the rock matrix and the fractures. When the numbers of

the fractures are large and their geometrical distributions are complex such that it becomes

exceedingly difficult to consider them in simulation, another alternative is to construct an

equivalent porous medium domain by further increasing the averaging representative vol-

ume. In this approach, one abandons the fractures and considers another continuum, coarser

in nature, but may be acceptable for our engineering application and design.

In terms of simulation, although the discrete fracture model provides an elegant way

to deal with fractures when their density is manageable, the drawback of this approach,

however, is the fact that the interaction term between the fracture and the surrounding rock

matrix is, in most cases, not known and ends up as a fitting parameter. The other approach is

to refine the mesh all the way to the fractures level, which apparently poses enormous diffi-

culties in large systems particularly when modeling complex transport problems like multi-

phase compositional flows. It has been, therefore, proposed that an even higher level of up-

scaling may be required to generate field properties to reduce the required computing re-

sources and provide certain requirements satisfaction. These requirements are related to the

fact that the solution of the upscaled system should produce approximately close results to

those obtained from simulating the real system. That is if the permeability field may be re-

laxed such that the sharp interface boundaries may be smoothed, in a sense, the require-

ments for denser mesh closer to the sharp interface boundaries may be abandoned, and it may

be possible to significantly decrease the number of degrees of freedom of the system. Differ-

ent approaches have been considered in the literatures based on either deterministic ap-

proaches (e.g., [5–13], etc.) or stochastic approaches (e.g., [14–18], etc.). In the next section we

introduce a quick review of the previous work emphasizing on two methods which are re-

lated to this work closely.

2. Investigation of the Upscaling Techniques

A review on the upscaling of hydraulic conductivities in heterogeneous media may be found

in the work of Farmer [11] and in the work of Wen and Gomez-Hernandez [8]. In both

reviews the authors pointed out that the need for upscaling stems from the fact that the scales

at which measurements are taken and the scale at which reservoirs are discretized are usually

different. Therefore, it is suggested that a transformation of hydraulic conductivities from the

scale of the measurements into a coarser grid of block conductivity tensors amenable for

input to a numerical flow simulator may be needed. Holden and Nielsen [19] pointed out

that the scale at which permeability in a reservoir may change is much finer than what is

possible to use in a reservoir simulator. They proposed a methodology in which permeability

is formulated as a minimization problem. In the method, the upscaled permeability is defined

as that which minimizes the difference between the pressure and the velocity fields generated

by the fine and coarse scale pressure equations. In this work, however, we apply an averaging

over a coarser grid of the porous media domain such that certain quantities are conserved.

The problem may be casted as follows: consider a three-dimensional rectangular domain,

Ω with boundary ∂Ω, if v represents Darcy’s velocity and p the pressure field of the fluid
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saturating the porous medium domain, the governing equations describing this system may

be written as

∇ · v = q, (2.1)

v = −K∇p. (2.2)

From which one obtains an equation only in the pressure given as

−∇ ·K∇p = q. (2.3)

The upscaling problem, as described in [11], is to find a corresponding coarse hydraulic

conductivity field, K̃ such that the new velocity and pressure fields, ṽ, p̃ obtained from solv-

ing the equivalent system of equations, are close, in some sense, to the fine scale velocity and

pressure fields, v, p. The system of equations that need to be solved in this case takes the

form

∇ · ṽ = q̃,

ṽ = −K̃∇p̃.
(2.4)

The general methodology is to seek an equivalent (effective) hydraulic conductivity field K̃,

calculated from a set of boundary conditions, and it may be used afterwards to yield accurate

results with different boundary conditions. To do so, the rectangular domain is divided into

a number of segments in each direction, that is, Nx, Ny, and Nz to form boxes of sizes,

Hx, Hy, and Hz. These cells are called the coarse cells. Furthermore, each of the boxes is

divided into nx, ny, and nz finer boxes with sizes hx, hy, and hz. The hydraulic conductivity

tensor field K, generally, takes a different value in each of the fine cells. There have been

two approaches highlighted by Farmer [11], which may be used to construct the coarser

hydraulic conductivity field, namely, the global (overall) strategy and the local methods. The

first technique is performed in two stages. In the first stage one needs to perform one or more

fine grid experiment which may cover the whole domain or at least most of it. Three test cases

for each scenario are performed, one in each coordinate direction on the fine grid within each

of the coarse cells. In the second stage, the fine grid simulations are used to extract the coarse

scale permeability, K̃. In the second method, which is sometimes called the local-local or the

subdomain method, each coarse cell is considered separately, as shown in Figure 1, and the

three independent flow experiments in the three directions are performed. In each of these

experiments, no flow conditions are assigned to the four surfaces parallel to the flow direction

and constant pressure conditions on the two surfaces normal to the flow direction. If the

total flux may be computed through one of the faces that were assigned pressure boundary

condition, an equivalent permeability for this cell may be computed [20, 21].
There are, however, certain requirements for the correct upscaling as defined in [1, 2].

For the case of single phase incompressible fluids, it suffices to require that the flux across any

area in the domain should be the same for all levels of upscaled description. This requirement
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Coarse cell

Fine cell

Figure 1: Representative coarse and fine mesh.

ensures a divergence-free flow field in case there is no source/sink term. This condition can

be defined as ∫
A

ṽ(r) · ndA =
∫
A

v(r) · ndA, (2.5)

where ṽ and v are the velocity vectors at different level of upscaling, and r is the position

vector which scans the area A. Applying this requirement on the local-local method mention-

ed earlier in which each coarse cell is considered separately, the above equation reduces to

ṽ(x) · nA =
∫
A

v(r) · ndA, (2.6)

where ṽ(x) represents the velocity vector at the center of the coarse cell face, and x is the

position vector which defines the center of the cell face. Likewise for volumetric quantities

(e.g., the source/sink term, q), Salama and Van Geel [1] pointed out that

∫
v

q̃(r)dv =
∫
v

q(r)dv = q̃(x)v. (2.7)

3. The Subdomain Technique

We apply the local-local method to obtain the effective permeability field for a given complex

permeability field in fractured rock system. The simulation domain represents a rectangular

two-dimensional area with a set of randomly generated fractures. We use the cell-centered

finite difference scheme (CCFD) to approximate the governing equations because it satisfies

mass conservation law locally. Furthermore, we consider the fractures oriented horizontally

and vertically, as shown schematically in Figure 2. The local-local method deals with each

macroscopic cell separately. For this purpose, we define two different meshes; the first mesh

is the coarse mesh and it is defined globally over the whole simulation domain, and the

second mesh is fine according the complexity of the permeability field within each coarse

cell. That is we construct the coarse rectangular mesh over the whole simulation domain,

{X0, X1, X2, . . . , Xi, . . . , Xm}×{Y0, Y1, Y2, . . . , Yj , . . . , Yn}, and for each coarse mesh we construct

a finer mesh given as {x0, x1, x2, . . . , xi, . . . , xp} × {y0, y1, y2, . . . , yj , . . . , yq}.
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Figure 2: The fine and the coarse mesh used with the fractures.

i,j+ 1

i,j i+ 1,j

Figure 3: A generic cell for finite difference approximation.

4. Discretization of the Governing Equations

For the generic cell shown in Figure 3, the governing equations for this problem may be

approximated using the cell-centered finite difference scheme with the various velocity

components at the mid edges of the cell obtained as follows:

ux

(
i, j +

1

2

)
= −Kxx

(
i, j +

1

2

)
P
(
i + 1/2, j + 1/2

) − P(i − 1/2, j + 1/2
)

x(i + 1/2) − x(i − 1/2)
, (4.1)

ux

(
i + 1, j +

1

2

)
= −Kxx

(
i + 1, j +

1

2

)
P
(
i + 3/2, j + 1/2

) − P(i + 1/2, j + 1/2
)

x(i + 3/2) − x(i + 1/2)
, (4.2)

uy

(
i +

1

2
, j

)
= −Kyy

(
i +

1

2
, j

)
P
(
i + 1/2, j + 1/2

) − P(i + 1/2, j − 1/2
)

y
(
j + 1/2

) − y(j − 1/2
) , (4.3)

uy

(
i +

1

2
, j + 1

)
= −Kyy

(
i +

1

2
, j + 1

)
P
(
i + 1/2, j + 3/2

) − P(i + 1/2, j + 1/2
)

y
(
j + 3/2

) − y(j + 1/2
) . (4.4)
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Equation (2.2) is discretized, likewise, in the following form:

ux
(
i + 1, j + 1/2

) − ux(i, j + 1/2
)

x(i + 1) − x(i) +
uy
(
i + 1/2, j + 1

) − uy(i + 1/2, j
)

y
(
j + 1

) − y(j) =q
(
i +

1

2
, j +

1

2

)
.

(4.5)

Now substituting (2.7)–(4.3) into (4.4), one obtains an equation in the pressure only, as

explained earlier, which may be solved to obtain the pressure field from which the velocity

field may be determined. The permeability at cell edges is obtained based on the harmonic

mean relationship which is given as

kxx

(
i, j +

1

2

)

=
x(i + 1)−x(i − 1)

(x(i)−x(i−1))/
(
kxx

(
i − 1/2, j+1/2

))
+(x(i+1)−x(i))/(kxx(i+1/2, j + 1/2

)) ,
kyy

(
i +

1

2
, j

)

=
y(i + 1)−y(i)(

y(i)−y(i−1)
)
/
(
kyy

(
i+1/2, j−1/2

))
+
(
y(i+1)−y(i))/(kyy(i + 1/2, j+1/2

)) .
(4.6)

5. Application of the Local Upscaling Technique to
Fractured Rock System

In this work we consider the local-local upscaling technique to generate an effective per-

meability field which would require less computational load and in the same time would re-

sult in reasonable match with the fine scale modeling. As explained earlier the scheme follows

the following steps.

(i) Discretize the whole domain with the appropriate fine mesh based on the com-

plexity of the permeability field and fractures structure.

(ii) Discretize the whole domain with the required coarse mesh that conforms with the

fine mesh (i.e., the mesh coincides with the fine mesh).

(iii) For each coarse cell, solve the boundary value problem given by (2.3) over the

finer cells subject to predefined boundary conditions. That is to get the effective

permeability in the x and y-directions, Kxx and Kyy, we consider two cases as

shown in Figure 4. For example, in Figure 4(a), we consider a no-flow boundary

condition at the top and bottom boundaries and prescribed pressure boundary con-

dition (say p1 = 1 and p2 = 0) at the other two sides. Similar boundary conditions

are suggested in Figure 4(b). The velocity at the finer scale could then be calculated.

(iv) Using (2.6), one may calculate the x and y-velocity at the center of the faces of the

coarse cell which encompass the finer mesh.

(v) These velocities can then be used to calculate the effective permeability components

in x and y directions with the Darcy’s equation (2.2).
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Figure 4: The boundary condition for each coarse cell.
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Figure 5: Fractures orientations (2 fractures) and pressure contours based on the fine mesh.

6. Numerical Examples

Several scenarios with different fractures numbers and distributions have been considered.

The simulation domain in all these scenarios is [0, 0.6] × [0, 0.6]. For the sake of simplicity, the

width and the length of the fractures in all the simulation scenarios are considered identical

as 0.00015 and 0.12, respectively (i.e., 0.2 times the length of the domain). In the 2-fracture

scenario, the length of the fractures is chosen 0.3, 0.5 times of the size of the domain. The

locations of the fractures are random. The flow rate in the fracture is usually described with
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Figure 6: Continued.
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Figure 6: Effective permeability and pressure contours for the 2 fractures scenarios for different degrees of
resolutions.
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Figure 7: Fractures orientations (10 fractures) and pressure contours based on the fine mesh.

the cubic law [22] in which the flux through the fracture is given as a cubic function of the

fracture aperture, therefore

Q = −ρgb
3

12μ

Δh
ΔL

, (6.1)

where Q is the flux across the fracture section, ρ is the density, μ is the viscosity, g is the

gravity, and b is the fracture aperture. Generally, the hydraulic conductivity in the fracture

region will be much higher than that in the matrix and plays a dominant role in the flow

in the fracture-matrix system. In the paper, the hydraulic conductivity of the fracture region

is specified as 3 × 105 times that of the matrix. The mesh size of the fine mesh is 0.0006 for

the matrix and 0.00015 for the fractures. Four scenarios with different number of fractures

are considered. In the first scenario, only one fracture in the horizontal direction and one

fracture in the vertical direction, respectively, are assumed. The other three scenarios consider,

respectively, 5, 20 and 400 fractures in both the horizontal and vertical directions. At first, fine

meshes are generated with the number of the mesh cells in horizontal and vertical directions

are respectively as follows: 1002 × 1002 for the 2-fracture scenario, 1008 × 1008 for the 10-

fracture scenario, 1032× 1035 for the 40-fracture scenario, and 1480× 1500 for the 800-fracture

scenario. The flow equations are solved with the fine mesh, and the pressure distribution is

obtained for each scenario. As will be seen later, the flow in the whole domain is very much

affected by the fractures. To consider different levels of upscaling, the domain is discretized

with a coarse mesh of different resolutions. In this work we consider very coarse resolutions

and moderately fine resolutions. In all these levels of resolutions, effective permeability is

obtained based on (2.2).
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Figure 8: Continued.
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(e1) K xx (60 × 60 mesh) (e2) K yy (60 × 60 mesh) (e3) Pressure contours (60 × 60 mesh)
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Figure 8: Effective permeability and pressure contours for the 10 fractures scenarios for different degrees
of resolutions.
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Figure 9: Fractures orientations (40 fractures) and pressure contours based on the fine mesh.

6.1. Example 1: One Fracture in Both the Horizontal and Vertical Directions

In this scenario, two fractures are generated randomly as shown in Figure 5(a). The pressure

field for this system obtained by solving the governing equations using the fine mesh is

shown in Figure 5(b), from which we can see the apparent influence of the fractures in distort-

ing the pressure field.

Several coarsening scenarios are considered, namely, 2 × 2, 5 × 5, 20 × 20, 40 × 40,

100 × 100, and 500 × 500. In all these scenarios, the requirement that the flux across any sur-

face calculated using the fine mesh and any other coarse mesh is the same. The generated

effective hydraulic conductivity of each cell, k̃xx and k̃yy, for different resolution scenarios is

shown in Figure 6. Apparently, the permeability of the cells containing fractures is larger. Fur-

thermore, as the resolution of the mesh increases, the permeability contrast sharpens around

the fractures. Figure 6 also shows the pressure at the center of each cell for the different

resolution scenarios. It is apparent that the pressure field gets closer to the fine scale simu-

lation as the resolution increases. On comparing the flux at the exit boundary (Table 1), it is

clear that the flux for different coarsening scenario is close to one another.

6.2. Example 2: Five Fracture in Both the Horizontal and Vertical Directions

In this scenario, five fractures are generated randomly in both the horizontal and vertical

directions (i.e., 10 fractures in total), as shown in Figure 7(a). The pressure field for this

system as obtained by solving the governing equations using the very fine mesh is shown in

Figure 7(b). Again, the influence of the fractures in distorting the pressure field is significant.

Effective permeability in each cell is shown in Figure 8, which shows that the effective

permeability approaches that of the fine mesh simulation as the number of grid cells increase.

Again the flux at the exit boundary is very close to the different coarsening scenarios as

depicted in Table 1.
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(a1) K xx (2 × 2 mesh) (a2) K yy (2 × 2 mesh) (a3) Pressure contours (2 × 2 mesh)
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(b1) K xx (5 × 5 mesh) (b2) K yy (5 × 5 mesh) (b3) Pressure contours (5 × 5 mesh)
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(c1) K xx (10 × 10 mesh) (c2) K yy (10 × 10 mesh) (c3) Pressure contours (10 × 10 mesh)
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(d1) K xx (20 × 20 mesh) (d2) K yy (20 × 20 mesh) (d3) Pressure contours (20 × 20 mesh)
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Figure 10: Continued.
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(e1) K xx (40 × 40 mesh) (e2) K yy (40 × 40 mesh) (e3) Pressure contours (40 × 40 mesh)
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(f1) K xx (60 × 60 mesh) (f2) K yy (60 × 60 mesh) (f3) Pressure contours (60 × 60 mesh)
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(g1) K xx (200 × 200 mesh) (g2) K yy (200 × 200 mesh) (g3) Pressure contours (200 × 200 mesh)
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(h1) K xx (500 × 500 mesh) (h2) K yy (500 × 500 mesh) (h3) Pressure contours (500 × 500 mesh)
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Figure 10: Effective permeability and pressure contours for the 40 fractures scenarios for different degrees
of resolutions.
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Figure 11: Fractures orientations (800 fractures) and pressure contours based on the fine mesh.

6.3. Example 3: Twenty Fractures in Both the Horizontal and
Vertical Directions

In this scenario, 20 fractures in x and 20 in the y directions are considered, as shown in

Figure 9(a). The pressure field obtained by solving the governing equations based on the

actual permeability field is shown in Figure 9(b). The effect of the fractures on the pressure

field is apparent.

On the other hand, the effective permeability field obtained from solving the equival-

ent equations as explained earlier is shown in Figure 10. It is clear that as the number of

grid cells increases, the system approach that based on the actual permeability field. Table 1

confirms again that the flux at the exit boundary is almost identical for the different coarsen-

ing scenarios.

6.4. Example 4: 400 Fractures in Both the Horizontal and Vertical Directions

As shown in Figures 11 and 12, similar behavior is obtained for this scenario which assumes

400 fractures in both the horizontal and vertical directions for both the effective permeability

and the pressure fields. In this scenario, we consider several degrees of coarsening including,

2 × 2, 10 × 10, 20 × 20, 40 × 40, 300 × 300, and 500 × 500.

Apparently in this scenario, the large number of fractures will increase the overall

effective hydraulic conductivity field which will result in a significantly larger flux compared

with the other scenarios. Indeed this is the case as shown in Table 1.

7. Conclusions

In this work several numerical examples have been considered to calculate effective hydraulic

properties for a given fractured porous medium domain. Several scenarios of fractured

systems have been considered starting with two fractures up to 800 fractures. Cell-centered
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(a1) K xx (2 × 2 mesh) (a2) K yy (2 × 2 mesh) (a3) Pressure contours (2 × 2 mesh)
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(b1) K xx (5 × 5 mesh) (b3) Pressure contours (5 × 5 mesh)
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(b2) K yy (5 × 5 mesh)
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(c2) K yy (10 × 10 mesh)
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Figure 12: Continued.
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(e1) K xx (40 × 40 mesh) (e2) K yy (40 × 40 mesh) (e3) Pressure contours (40 × 40 mesh)
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(f1) K xx (100 × 100 mesh) (f3) Pressure contours (100 × 100 mesh)
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(f2) K yy (100 × 100 mesh)

Y

0 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0 0.2 0.3 0.4 0.5 0.60.1 0 0.2 0.3 0.4 0.5 0.60.1

(g1) K xx (300 × 300 mesh) (g3) Pressure contours (300 × 300 mesh)(g2) K yy (300 × 300 mesh)

X X X

(h1) K xx (500 × 500 mesh) (h3) Pressure contours (500 × 500 mesh)

Y

0 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0 0.2 0.3 0.4 0.5 0.60.1 0 0.2 0.3 0.4 0.5 0.60.1

(h2) K yy (500 × 500 mesh)

Figure 12: Effective permeability and pressure contours for the 800 fractures scenarios for different degrees
of resolutions.
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Table 1: Flux across the exit boundary for the different fractures and mesh scenarios.

2 fractures 10 fractures 40 fractures 800 fractures

Reference (fine mesh) 1.238536e − 03 1.140093e − 03 1.784033e − 03 4.037607e + 00

Upscaled (2 × 2) 1.2060398e − 03 1.1671849e − 03 1.7678765e − 03 4.0482439e + 00

Upscaled (5 × 5) 1.2279665e − 03 1.1480335e − 03 1.6639357e − 03 4.0201914e + 00

Upscaled (10 × 10) 1.2305291e − 03 1.1357165e − 03 1.6719508e − 03 4.0624327e + 00

Upscaled (20 × 20) 1.2377141e − 03 1.1567826e − 03 1.7251369e − 03 4.0636998e + 00

Upscaled (40 × 40) 1.2329549e − 03 1.1414539e − 03 1.7356198e − 03 4.0958317e + 00

Upscaled (60 × 60) 1.2330102e − 03 1.1364853e − 03 1.7344252e − 03 3.9842654e + 00

Upscaled (80 × 80) 1.2312922e − 03 1.1368569e − 03 1.7406374e − 03 4.0324003e + 00

Upscaled (100 × 100) 1.2368716e − 03 1.1353105e − 03 1.7651864e − 03 4.0198896e + 00

Upscaled (160 × 160) 1.2354428e − 03 1.1366243e − 03 1.7682102e − 03 3.9614817e + 00

Upscaled (200 × 200) 1.2376183e − 03 1.1376407e − 03 1.7735081e − 03 4.0495773e + 00

Upscaled (240 × 240) 1.2366092e − 03 1.1380291e − 03 1.7735767e − 03 3.9653353e + 00

Upscaled (300 × 300) 1.2393249e − 03 1.1413561e − 03 1.7762217e − 03 3.9176552e + 00

Upscaled (400 × 400) 1.2368358e − 03 1.1370930e − 03 1.7671836e − 03 3.7225614e + 00

Upscaled (500 × 500) 1.2378015e − 03 1.1405213e − 03 1.7877663e − 03 4.0850977e + 00

finite different method has been used, and therefore the fractures orientations are considered

only in the horizontal and vertical directions. Different coarsening scenarios have been

considered for each fracture scenario starting with very coarse mesh (2 × 2) all the way to

the fine mesh. The fine mesh used in this work is that associated with the actual permeability

field of both the matrix and the rock. Effective permeability for each cell is obtained for each

coarsening scenario based on the requirement that the flux at the face of each cell is the same

as that considered with the actual permeability field. It is found that the spatial distribution

of effective permeability of the medium changes with the change in the degree of coarsening.

That is for coarser mesh the effective permeability spans a larger domain while it reduces to

the actual permeability field as the mesh approaches the fine mesh. The usefulness of this

approach stems from the significantly less computational effort and memory requirement

that would be required when using the upscaled permeability field and in the same time the

satisfaction of conservation laws at the new scale.
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The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical
schemes with low dispersion and low dissipation errors. A technique has recently been devised
in a Computational Fluid Dynamics framework which enables optimal parameters to be chosen so
as to better control the grade and balance of dispersion and dissipation in numerical schemes
(Appadu and Dauhoo, 2011; Appadu, 2012a; Appadu, 2012b; Appadu, 2012c). This technique
has been baptised as the Minimized Integrated Exponential Error for Low Dispersion and Low
Dissipation (MIEELDLD) and has successfully been applied to numerical schemes discretising the
1-D, 2-D, and 3-D advection equations. In this paper, we extend the technique of MIEELDLD to the
field of computational aeroacoustics and have been able to construct high-order methods with Low
Dispersion and Low Dissipation properties which approximate the 1-D linear advection equation.
Modifications to the spatial discretization schemes designed by Tam and Webb (1993), Lockard et
al. (1995), Zingg et al. (1996), Zhuang and Chen (2002), and Bogey and Bailly (2004) have been
obtained, and also a modification to the temporal scheme developed by Tam et al. (1993) has
been obtained. These novel methods obtained using MIEELDLD have in general better dispersive
properties as compared to the existing optimised methods.

1. Introduction

Computational aeroacoustics (CAA) has been given increased interest because of the need

to better control noise levels from aircrafts, trains, and cars due to increased transport and

stricter regulations from authorities [1]. Other applications of CAA are in the simulation of

sound propagation in the atmosphere to the improved design of musical instruments.

In computational aeroacoustics, the accurate prediction of the generation of sound is

demanding due to the requirement for preservation of the shape and frequency of wave

propagation and generation. It is well known [2, 3] that, in order to conduct satisfactory

computational aeroacoustics, numerical methods must generate the least possible dispersion
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and dissipation errors. In general, higher order schemes would be more suitable for CAA

than the lower-order schemes since, overall, the former are less dissipative [4]. This is the

reason why higher-order spatial discretisation schemes have gained considerable interest in

computational aeroacoustics.

The field of CAA has grown rapidly during the last decade and there has been

a resurgence of interest in aeroacoustic phenomena characterised by harsher legislation

and increasing environmental awareness. CAA is concerned with the accurate numerical

prediction of aerodynamically generated noise as well as its propagation and far-field

characteristics. CAA involves mainly the development of numerical methods which

approximate derivatives in a way that better preserves the physics of wave propagation

unlike typical aerodynamic computations [1].
Since multidimensional finite-volume algorithms are generally more expensive in

terms of numerical cost than finite-difference algorithms, the majority of CAA codes are

based on the finite-difference methodology [5]. The trend within the field of CAA has been to

employ higher-order accurate numerical schemes that have in some manner been optimized

for wave propagation in order to reduce the number of grid points per wavelength while

ensuring tolerable levels of numerical error. Apart from acoustics and aeroacoustics, low

amplitude wave propagation takes place over distances characterized by large multiples of

wavelength in other areas such as [6]

(1) electromagnetics, for microcircuit design,

(2) elastodynamics, for nondestructive testing,

(3) seismology, for oil exploration,

(4) medical Imaging, for accurate diagnosis,

(5) hyperthermia, for noninvasive surgery.

Aerodynamics and other areas of fluid mechanics have benefitted immensely from the

development of CFD [7]. The numerical analysis of flows around full aircraft configurations

has become feasible with advances in both numerical techniques and computing machines.

The temptation to apply effective CFD methods to aeroacoustic problems has been un-

avoidable and has been met with some success, but, in some cases, it has been observed that

there is a necessity for some numerical protocols specific to problems involving disturbance

propagation over long distances. The difference between aerodynamic and aeroacoustic

problems lies mainly in the fact that for aeroacoustic computations, the solution is desired at

some large distance from the aerodynamic source, but, in the case of aerodynamic problems,

flow properties are required accurately only on the body itself [7]. Most aerodynamics

problems are time independent, whereas aeroacoustics problems are, by definition, time

dependent [8]. There are computational issues that are unique to aeroacoustics. Thus,

computational aeroacoustics requires somewhat independent thinking and development.

At specific Courant numbers and angles of propagation, the perfect-shift property

can be obtained, leading to exact propagation for all wavenumbers [9]. The perfect shift

property refers to the situation when the error from the spatial discretisation precisely cancels

that from the temporal discretisation. Several numerical schemes which combine the spatial

and temporal discretisation produce the perfect shift property at specific Courant numbers

[9]. Often this perfect cancellation of temporal and spatial errors occurs at cfl = 1.0. For

such methods, the sum of the spatial and temporal error increases when the cfl number is

decreased as the temporal error no longer cancels the spatial error. As the cfl number tends

to zero, so does the temporal error and thus only spatial error remains. For most schemes,
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a low cfl represents the worst case associated with large dispersion or large dissipation

errors as there is no cancellation of temporal and spatial errors [9]. Thus it is important to

assess numerical methods over a range of Courant numbers [9]. However, this is not an

issue for schemes built up from a high-accuracy spatial discretisation with a high-accuracy

time-marching method. These schemes generally do not rely on cancellation to achieve high

accuracy and thus the error does not increase as the Courant number is reduced.

The imaginary part of the numerical wavenumber represents numerical dissipation

only when it is negative [10]. Due to the difference between the physical and numerical

wavenumber, some wavenumbers propagate faster or slower than the wave speed of the

original partial differential equation [11]. This is how dispersion errors are induced. The

real part of the modified wavenumber determines the dispersive error while the imaginary

part determines the dissipative error [9]. The group velocity of a wavepacket governs

the propagation of energy of the wavepacket. The group velocity is characterised by

Re((d/(d(θh)))(θ∗h)) − 1.0 which must be almost one in order to reproduce exact result [12].
Otherwise, dispersive patterns appear. When Re((d/(d(θh)))(θ∗h)) = 1.0, the scheme has the

same group velocity or speed of sound as the original governing equations and the numerical

waves are propagated with correct wave speeds.

2. Organisation of Paper

This paper is organised as follows. In Section 3, we briefly describe the technique

of Minimised Integrated Exponential Error for Low Dispersion and Low Dissipation

(MIEELDLD) when used to optimise parameters in numerical methods. We also describe

how this technique can be extended to construct high order methods with low dispersive

and low dissipative properties in computational aeroacoustics. In Sections 4–8, we use

MIEELDLD to obtain some optimized spatial methods based on a modification of the

methods constructed by Tam and Webb [3], Lockard et al. [13], Zingg et al. [14], Zhuang and

Chen [15], Bogey and Bailly [16]. Section 9 introduces an optimised temporal scheme which

is obtained using MIEELDLD and based on a modification of the temporal discretisation

method constructed by Tam et al. [17]. In Section 10, we construct numerical methods based

on blending each of the five new spatial schemes with the new time discretisation scheme

when used to discretise the 1-D linear advection equation and obtain rough estimates of the

range of stability of these methods. Section 12 highlights the salient features of the paper.

3. The Concept of Minimised Integrated Exponential Error for
Low Dispersion and Low Dissipation

In this section, we describe briefly the technique of Minimized Integrated Exponential Error

for Low Dispersion and Low Dissipation (MIEELDLD). This technique have been introduced

in Appadu and Dauhoo [18] and Appadu and Dauhoo [19]. We now give a resume of how

we have derived this technique of optimisation.

Suppose the amplification factor of the numerical scheme when applied to the 1-D

linear advection equation:

∂u

∂t
+ β

∂u

∂x
= 0 (3.1)

is

ξ = A + IB. (3.2)
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Then the modulus of the Amplification Factor (AFM) and the relative phase error (RPE) are

calculated as

AFM = |ξ|,

RPE = − 1

rw
tan−1 B

A
,

(3.3)

where r and w are the cfl number and phase angle, respectively.

For a scheme to have Low Dispersion and Low Dissipation, we require

|1 − RPE| + (1 − AFM) −→ 0. (3.4)

The quantity, |1−RPE| measures dispersion error while (1−AFM) measures dissipation

error. Also when dissipation neutralises dispersion optimally, we have

||1 − RPE| − (1 − AFM)| −→ 0. (3.5)

Thus on combining these two conditions, we get the following condition necessary for dis-

sipation to neutralise dispersion and for low dispersion and low dissipation character to be

satisfied:

eldld = ||1 − RPE| − (1 − AFM)| + (|1 − RPE| + (1 − AFM)) −→ 0. (3.6)

Similarly, we expect

eeldld = exp(||1 − RPE| − (1 − AFM)|) + exp(|1 − RPE| + (1 − AFM)) − 2 −→ 0, (3.7)

in order for Low Dispersion and Low Dissipation properties to be achieved.

The measure, eeldld, denotes the exponential error for low dispersion and low dissi-

pation. The reasons why we prefer eeldld over eldld is because the former is more sensitive

to perturbations.

We next explain how the integration process is performed in order to obtain the

optimal parameter(s).

Only One Parameter Involved

If the cfl number is the only parameter, we compute

∫w1

0

eeldlddw, (3.8)

for a range of w ∈ [0, w1], and this integral will be a function of r. The optimal cfl is the one

at which the integral quantity is closest to zero.



Journal of Applied Mathematics 5

Two Parameters Involved

We next consider a case where two parameters are involved and whereby we would like to

optimise these two parameters.

Suppose we want to obtain an improved version of the Fromm’s scheme which is

made up of a linear combination of Lax-Wendroff (LW) and Beam-Warming (BW) schemes.

Suppose we apply BW and LW in the ratio λ : 1 − λ. This can be done in two ways.

In the first case, if we wish to obtain the optimal value of λ at any cfl, then we compute

∫ r1

0

∫w1

0

eeldlddwdr, (3.9)

which will be in terms of λ.

The value of r1 is chosen to suit the region of stability of the numerical scheme under

consideration while w1 is chosen such that the approximated RPE ≥ 0 for r ∈ [0, r1]. In cases

where phase wrapping phenomenon does not occur, we use the exact RPE instead of the

approximated RPE and in that case, w ∈ [0, π].
The second way to optimise a scheme made up of a linear combination of Beam-

Warming and Lax-Wendroff is to compute the IEELDLD as
∫w1

0
eeldld dw and the integral

obtained in that case will be a function of r and λ. Then a 3-D plot of this integral with respect

to r ∈ [0, r1] and λ ∈ [0, 1] enables the respective optimal values of r and λ to be located.

The optimised scheme obtained will be defined in terms of both a cfl number and the optimal

value of λ to be used.

Considerable and extensive work on the technique of Minimised Integrated Expo-

nential Error for Low Dispersion and Low Dissipation has been carried out in Appadu and

Dauhoo [18], Appadu and Dauhoo [19], Appadu [20–22].
In Appadu and Dauhoo [18], we have obtained the optimal cfl for some explicit

methods like Lax-Wendroff, Beam-Warming, Crowley, Upwind Leap-Frog, and Fromm’s

schemes. In Appadu and Dauhoo [19], we have combined some spatial discretisation

schemes with the optimised time discretisation method proposed by Tam and Webb [3]
in order to approximate the linear 1-D advection equation. These spatial derivatives are

a standard 7-point and 6th-order central difference scheme (ST7), a standard 9-point and

8th-order central difference scheme (ST9) and optimised spatial schemes designed by Tam

and Webb [3], Lockard et al. [13], Zingg et al. [14], Zhuang and Chen [15] and Bogey and

Bailly [16]. The results from some numerical experiments were quantified into dispersion and

dissipation errors and we have found that the quality of the results is dependent on the choice

of the cfl number even for optimised methods, though to a much lesser degree as compared

to standard methods.

Moreover, in Appadu [20], we obtain the optimal cfl of some multilevel schemes in

1-D. These schemes are of high order in space and time and have been designed by Wang

and Liu [23]. We have also optimised the parameters in the family of third-order schemes

proposed by Takacs [24]. The optimal cfl of the 2-D CFLF4 scheme which is a composite

method made up of Corrected Lax-Friedrichs and the two-step Lax-Friedrichs developed by

Liska and Wendroff [25] has been computed and some numerical experiments have been

performed such as 2-D solid body rotation test [26], 2-D acoustics [27], and 2-D circular

Riemann problem [26]. We have shown that better results are obtained when the optimal

parameters obtained using MIEELDLD are used.
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Some more interesting features of MIEELDLD are detailed in Appadu [21]. In that

paper, we extend the measures used by Tam and Webb [3], Bogey and Bailly [16], Berland

et al. [28] in a computational aeroacoustics framework to suit them in a computational fluid

dynamics framework such that the optimal cfl of some known numerical methods can be

obtained. Thus, we define the following integrals: integrated error from Tam and Webb [3],
(IETAM), integrated error from Bogey and Bailly [16] ((IEBOGEY), and integrated error from

Berland et al. [28] (IEBERLAND) as follows:

IETAM =
∫w1

0

|1 − RPE|2dw,

IEBOGEY =
∫w1

0

|1 − RPE|dw,

IEBERLAND =
∫w1

0

(1 − α)|1 − RPE| + α(1 − AFM)dw.

(3.10)

The optimal cfl is obtained by plotting the respective integral with respect to the cfl

number and locating the cfl at which the integral is least. The techniques used to obtain

the quantities IETAM, IEBOGEY, and IEBERLAND are named Minimised Integrated Error

from Tam and Webb [3] (MIETAM), Minimised Integrated Error from Bogey and Bailly [16]
(MIEBOGEY), and Minimised Integrated Error from Berland et al. [28] (MIEBERLAND)
respectively. It is shown that MIEELDLD has an upper hand over the other techniques of

optimisation: MIETAM, MIEBOGEY, and MIEBERLAND.

The work in Appadu [22] helps us to understand why not all composite schemes

can be effective to capture shocks with minimum dispersion and dissipation. The findings

concluded are that some efficient composite methods to approximate the 1-D linear advection

equation are as follows: composite methods using Lax-Wendroff and Beam-Warming

as either predictor or corrector steps, a linear combination of either Lax-Wendroff and

Beam-Warming schemes or MacCormack and two-step Lax-Friedrichs and the composite

MacCormack/Lax-Friedrichs schemes [29].

4. Modification to Space Discretisation Scheme Proposed by
Tam and Webb [3]

Tam and Webb [3] constructed a 7-pt and 4th-order central difference method based on a min-

imization of the dispersion error.

They approximated ∂u/∂x at x0 as

∂u

∂x
=

1

h

3∑
i=−3

aiu(x0 + ih), (4.1)

where h is the spacing of a uniform mesh and the coefficients ai are such that ai = −a−i,
providing a scheme without dissipation. On applying spatial Fourier Transform to (4.1), the

effective wavenumber θ∗h of the scheme is obtained and it is given by

θ∗h = 2
3∑
i=1

ai sin(iθh). (4.2)
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Taylor expansion of θ∗h about θh from (4.2) gives the following:

2a1

(
θh − 1

6
(θh)3 +

1

120
(θh)5

)
+ 2a2

(
2θh − 1

6
(2θh)3 +

1

120
(2θh)5

)

+ 2a3

(
3θh − 1

6
(3θh)3 +

1

120
(3θh)5

)
+ · · · .

(4.3)

To obtain a 4th-order accurate method, we must have

2a1 + 4a2 + 6a3 = 1,

a1 + 8a2 + 27a3 = 0.
(4.4)

Since, we have 2 equations and 3 unknowns, we can choose, for instance, say a1 as a

free parameter. Thus,

a2 =
9

20
− 4

5
a1,

a3 =
1

5

(
a1 − 2

3

)
.

(4.5)

Hence, the numerical wavenumber can be expressed as

θ∗h ≈ 2a1 sin(θh) + 2

(
9

20
− 4

5
a1

)
sin(2θh) + 2

(
1

5
a1 − 2

15

)
sin(3θh). (4.6)

The optimisation procedure used by Tam and Webb [3] is to find a1 which minimizes

the integrated error, E defined as

E =
∫1.1

0

|θ∗h − θh|2d(θh). (4.7)

The value obtained for a1 is 0.7708823806. The corresponding values for a2 and a3 are

−0.1667059045 and 0.0208431428.

Hence, the scheme developed by Tam and Webb [3] has numerical wavenumber, θ∗h,

and group velocity given by

θ∗h = 1.5417647612 sin(θh) − 0.3334118090 sin(2θh) + 0.0416862856 sin(3θh),
(4.8)

groupvelocity = 1.5417647612 cos(θh) − 0.6668236180 cos(2θh) + 0.1250588568 cos(3θh)
(4.9)

and is termed as “TAM” method.
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We next consider the numerical wavenumber in (4.2) and use the technique of

MIEELDLD to find optimal values of a1, a2, and a3. The integrated error using MIEELDLD is

given by

E =
∫1.1

0

(
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2

)
d(θh). (4.10)

Since we are considering a 7-point and 4th-order central difference method, the numerical

wavenumber, θ∗h, does not have an imaginary part, that is, �(θ∗h) = 0. Hence, (4.10) simpli-

fies to

E =
∫1.1

0

(
2 exp|�(θ∗h) − θh| − 2

)
d(θh), (4.11)

and on minimising this integral using the function NLPSolve in maple, we obtain a1 as

0.7677206709. Corresponding values for a2 and a3 are 0.1641765367 and 0.0202108009, re-

spectively.

Hence we have obtained a modified method which is 7-point and of 4th-order which

we term as “TAM-NEW” method. Expressions for the numerical wavenumber and the group

velocity of the “TAM-NEW” method are given by

θ∗h = 1.5354413418 sin(θh) − 0.3283530734 sin(2θh) + 0.0404216018 sin(3θh), (4.12)

groupvelocity = 1.5354413418 cos(θh) − 0.6567061468 cos(2θh) + 0.1212648054 cos(3θh).
(4.13)

We next perform a spectral analysis of the two methods. We compare the variation of

numerical wavenumber versus the exact wavenumber in Figure 1. A plot of the dispersion

error versus the exact wavenumber is depicted in Figure 2. The dispersion error for TAM-

NEW is slightly less than that for TAM for 0 < θh ≤ 1, but for 1 ≤ θh ≤ π/2, the dispersion

error from TAM is slightly less than that for TAM-NEW.

We now compare quantitatively these two methods: TAM and TAM-NEW. We use four

accuracy limits [5, 16] defined as follows:

|θ∗h − θh|
π

≤ 5 × 10−3,

|θ∗h − θh|
π

≤ 5 × 10−4,∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3,

∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

(4.14)

and compute the minimum number of points per wavelength needed to resolve a wave for

each of the four accuracy limits. The results are summarised in Table 1.
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Figure 1: Plot of the variation of numerical wavenumber versus exact wavenumber for the methods: TAM,
TAM-NEW, ZINGG, and ZINGG-NEW.
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Figure 2: Plot of the dispersion error on a logarithmic scale versus exact wavenumber for the methods:
TAM, TAM-NEW, ZINGG, and ZINGG-NEW.

It is seen that the scheme “TAM-NEW” is not superior to the TAM method as for

a given accuracy it requires more points per wavelength in regard to the dispersive and

group velocity properties. This is because the technique of MIEELDLD aims to minimize both

dispersion and dissipation in numerical methods but here our aim is to construct a 7-point

and 4th-order central difference method with no dissipation.
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Table 1: Comparing the dispersive and group velocity properties for two spatial discretisation methods
“TAM” and “TAM-NEW” in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 TAM 1.3068 4.8081

|θ∗h − θh|
π

≤ 5 × 10−3 TAM-NEW 1.2830 4.8974

|θ∗h − θh|
π

≤ 5 × 10−4 TAM 1.0820 5.8073

|θ∗h − θh|
π

≤ 5 × 10−4 TAM-NEW 1.0365 6.0617∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

TAM 0.9239 6.8007∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

TAM-NEW 0.8870 7.0835∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

TAM 0.8533 7.3636∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

TAM-NEW 0.8002 7.8517

5. Modification to Space Discretisation Scheme Developed
by Lockard et al. [13]

Lockard et al. [13] constructed a 7-point and 4th-order difference method by approximating

∂u/∂x at x0 as

∂u

∂x
=

1

h

3∑
i=−4

aiu(x0 + ih), (5.1)

and therefore the real and imaginary parts of the numerical wavenumber are obtained as fol-

lows:

�(θ∗h) = −a−4 sin(4θh) − a−3 sin(3θh) − a−2 sin(2θh) − a−1 sin(θh)

+ a1 sin(θh) + a2 sin(2θh) + a3 sin(3θh),
(5.2)

�(θ∗h) = −(a−4 cos(4θh) + a−3 cos(3θh) + a−2 cos(2θh) + a−1 cos(θh) + a0

+a1 cos(θh) + a2 cos(2θh) + a3 cos(3θh)).
(5.3)

To obtain a 4th-order method, we require 4 conditions based on the real and imaginary

parts of θ∗h, namely,

a1 + 2a2 + 3a3 − 4a−4 − 3a−3 − 2a−2 − a−1 = 1,

−a1 − 8a2 − 27a3 + 64a−4 + 27a−3 + 8a−2 + a−1 = 0,

a0 + a1 + a2 + a3 + a−4 + a−3 + a−2 + a−1 = 0,

−a1 − 4a2 − 9a3 − 16a−4 − 9a−3 − 4a−2 − a−1 = 0.

(5.4)
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The coefficients obtained by Lockard et al. [13] are

a−4 = 0.0103930209, a−3 = −0.0846974943, a−2 = 0.3420311831,

a−1 = −1.0526812838, a0 = 0.2872741244, a1 = 0.5861624738,

a2 = −0.0981442817, a3 = 0.0096622576.

(5.5)

Hence, the real and imaginary parts of θ∗h for LOCKARD scheme are given as follows:

�(θ∗h) = 1.63884375 sin(θh) − 0.44017538 sin(2θh) + 0.09433201 sin(3θh)

− 0.01039020 sin(4θh),
(5.6)

�(θ∗h) = −0.28727412 + 0.46651881 cos(θh) − 0.24388682 cos(2θh) + 0.07500749 cos(3θh)

− 0.01039020 cos(4θh),
(5.7)

respectively.

We now obtain a modification to the scheme developed by Lockard et al. [13]. We

consider the numerical wavenumber in (5.2) and (5.3) and replace a−1, a0, a1, a2, and a3 in

terms of a−2, a−3, a−4, and θh. Our aim is to minimise the following integral:

E =
∫1.1

0

(
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2

)
d(θh). (5.8)

The integral is a function of a−2, a−3, and a−4. We use the function NLPSolve and obtain

optimal values for a−4, a−3, and a−2 as 0.0113460667, −0.0891980000, and 0.3499980000. Then

the values of the other unknowns can be obtained and we are out with

a−1 = −1.0582666667, a0 = 0.2866010000, a1 = 0.5895196001,

a2 = −0.1, a3 = 0.01.
(5.9)

The modified method is termed as “LOCKARD-NEW” and has real and imaginary

parts of its numerical wavenumber described by

�(θ∗h) = 1.6477862670 sin(θh) − 0.4499980000 sin(2θh) + 0.0991980000 sin(3θh)

− 0.0113460667 sin(4θh),
(5.10)

�(θ∗h) = −0.2866010000 + 0.4687470669 cos(θh) − 0.2499980000 cos(2θh)

+ 0.0791980000 cos(3θh) − 0.0113460667 cos(4θh),
(5.11)

respectively.

We next perform a spectral analysis of the two methods: LOCKARD and LOCKARD-

NEW. We compare the variation of numerical wavenumber versus the exact wavenumber
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Table 2: Comparing the dispersive and group velocity properties for two spatial methods LOCKARD and
LOCKARD-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 LOCKARD 1.4910 4.2140

|θ∗h − θh|
π

≤ 5 × 10−3 LOCKARD-NEW 1.5197 4.1344

|θ∗h − θh|
π

≤ 5 × 10−4 LOCKARD 1.2204 5.1485

|θ∗h − θh|
π

≤ 5 × 10−4 LOCKARD-NEW 1.2596 4.9881∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

LOCKARD 1.0964 5.7309∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

LOCKARD-NEW 1.1395 5.5142∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

LOCKARD 0.9655 6.5077∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

LOCKARD-NEW 1.0240 6.1359

in Figure 3 and in Figure 4, we have the plot of the dispersion error versus the exact

wavenumber.

We now compare quantitatively the two methods by computing the minimum number

of points per wavelength needed to resolve a wave for each of the four accuracy limits and

the results are summarized in Table 2.

Clearly, LOCKARD-NEW has appreciably better phase and group velocity properties

as compared to LOCKARD scheme.

6. Modification to Spatial Discretisation Scheme Developed
by Zingg et al. [14]

Zingg et al. [14] constructed a 4-point and 4th-order difference method. They approximated

∂u/∂x at x0 by

∂u

∂x
=

1

h

3∑
i=1

ai(u(x0 + ih) − u(x0 − ih)) + 1

h

(
d0u(x0) +

3∑
i=1

di(u(x0 + ih) + u(x0 − ih))
)
.

(6.1)

The real and imaginary parts of the numerical wavenumber are obtained as

�(θ∗h) = 2(a1 sin(θh) + a2 sin(2θh) + a3 sin(3θh)), (6.2)

�(θ∗h) = −(d0 + 2d1 cos(θh) + 2d2 cos(2θh) + 2d3 cos(3θh)). (6.3)

The conditions to have a 4th-order difference method are as follows.
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Figure 3: Plot of the variation of numerical wavenumber versus exact wavenumber for the methods
LOCKARD and LOCKARD-NEW.
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Figure 4: Plot of the variation of dispersion error in logarithmic scale versus exact wavenumber for
LOCKARD and LOCKARD-NEW schemes.

(i) If we consider �(θ∗h), then

2a1 + 4a2 + 6a3 = 1,

−1

6
a1 − 8

6
a2 − 27

6
a3 = 0,

(6.4)
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and these two conditions give

a2 =
9

20
− 4

5
a1, (6.5)

a3 =
1

5

(
a1 − 2

3

)
. (6.6)

(ii) If we consider �(θ∗h), then

d0 + 2d1 + 2d2 + 2d3 = 0,

−d1 − 4d2 − 9d3 = 0,
(6.7)

and this gives

d0 = 6d2 + 16d3, (6.8)

d1 = −4d2 − 9d3. (6.9)

Based on the optimisation performed by Zingg et al. [14], the following values are

obtained:

a1 = 0.75996126, a2 = −0.15812197, a3 = 0.01876090, d0 = 0.1,

d1 = −0.07638462, d2 = 0.03228962, d3 = −0.00590500.
(6.10)

We now obtain a modification to the scheme proposed by Zingg et al. [14] using

MIEELDLD. We consider

�(θ∗h) = −(d0 + 2 d1 cos(θh) + 2 d2 cos(2θh) + 2d3 cos(3θh)). (6.11)

Since Im(θ∗h) must be negative and the method must have sufficient dissipation, we

can choose d0 = 0.1 and hence obtain

d1 = −5

8
d2 − 0.05625,

d3 = 0.00625 − 3

8
d2.

(6.12)

We next plot Im(θ∗h) versus d2 versus θh ∈ [0, 2π] and obtain the range of d2 such

that Im(θ∗h) < 0. The maximum value of d2 is 0.0323. Having fixed the values of d0 as 0.1 and

d2 as 0.0323, now we can compute the values of d1 and d3. We are out with d1 = −0.0764375

and d3 = −5.8625 × 10−3. Hence, we minimize the following integral:

∫1.1

0

exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2.0 d(θh) (6.13)

which is a function of a1, using NLPSolve.
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Figure 5: Plot of the imaginary part of numerical wavenumber versus exact wavenumber for the methods:
LOCKARD, LOCKARD-NEW, ZHUANG, and ZHUANG-NEW.

We obtain a1 = 0.7643155206, and therefore, using (6.5) and (6.6), we obtain a2 =
−0.1614524165 and a3 = 0.0195297708.

Hence, the real and imaginary parts of the real and imaginary parts of the numerical

wavenumber of the scheme ZINGG-NEW are as follows:

�(θ∗h) = 1.5286310410 sin(θh) − 0.3229048330 sin(2θh) + 0.0390595416 sin(3θh), (6.14)

�(θ∗h) = −0.1 + 0.1528750000 cos(θh) − 0.0646000000 cos(2θh) + 0.0117250000 cos(3θh).
(6.15)

Plots of �(θ∗h) versus θh and also for �(θ∗h) versus θh for ZINGG and ZINGG-NEW

schemes are depicted in Figures 1 and 6, respectively. It is observed based on Figure 6 that

the two methods have almost the same dissipation error for θh ∈ [0, π]. Based on (Figure 1),
we observe that for θh < 0.2 and 0.8 < θh < π/2, the dispersion error from ZINGG-NEW is

less than that for ZINGG. For 0.2 < θh < 0.8, the dispersion error from ZINGG is less than

ZINGG-NEW.

Based on Table 3, for the four accuracy limits tested, we can conclude that the new

scheme developed is superior to the ZINGG method in terms of both dispersive and group

velocity properties as it requires less points per wavelength in all the four cases.

7. Modification to Spatial Scheme Developed by Zhuang and Chen [15]

Zhuang and Chen [15] constructed a 7-point and 4th-order difference method by approxi-

mating ∂u/∂x at x0 as

∂u

∂x
=

1

h

2∑
i=−4

aiu(x0 + ih), (7.1)
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Figure 6: Plot of the imaginary part of numerical wavenumber versus exact wavenumber for ZINGG and
ZINGG-NEW.

Table 3: Comparing the dispersive and group velocity properties for two spatial methods ZINGG and
ZINGG-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 ZINGG 1.2239 5.1339

|θ∗h − θh|
π

≤ 5 × 10−3 ZINGG-NEW 1.2579 5.1258

|θ∗h − θh|
π

≤ 5 × 10−4 ZINGG 0.9163 6.8575

|θ∗h − θh|
π

≤ 5 × 10−4 ZINGG-NEW 0.9988 6.2904∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3
ZINGG 0.7885 7.9686∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

ZINGG-NEW 0.8471 7.4176∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

ZINGG 0.6200 10.1341∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

ZINGG-NEW 0.7379 8.5152

and therefore the real and imaginary parts of the numerical wavenumber are obtained as

�(θ∗h) = a1 sin(θh) + a2 sin(2θh) − a−4 sin(4θh) − a−3 sin(3θh)

− a−2 sin(2θh) − a−1 sin(θh),
(7.2)

�(θ∗h) = −(a−4 cos(4θh) + a−3 cos(3θh) + a−2 cos(2θh) + a−1 cos(θh) + a0

+a1 cos(θh) + a2 cos(2θh)).
(7.3)
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To obtain a 4th-order method, we require 4 conditions based on the real and imaginary

parts of θ∗h:

a1 + 2a2 − 4a−4 − 3a−3 − 2a−2 − a−1 = 1,

−a1 − 8a2 + 64a−4 + 27a−3 + 8a−2 + a−1 = 0,

a0 + a1 + a2 + a−4 + a−3 + a−2 + a−1 = 0,

−a1 − 16a−4 − 4a−2 − a1 − 4a2 − 9a−3 = 0.

(7.4)

These simplify to the following if we let a−4, a−3, a−2 as free parameters:

a2 = 10a−4 + 4a−3 + a−2 − 1

6
,

a−1 = −20a−4 − 10a−3 − 4a−2 − 1

3
,

a0 = 45a−4 + 20a−3 + 6a−2 − 1

2
,

a1 = −36a−4 − 15a−3 − 4a−2 + 1.

(7.5)

On plugging a2, a−1, a0, and a1 in terms of functions of a−4, a−3, a−2 in (7.2) and (7.3),
we get

�(θ∗h) = −5

(
16

5
a−4 + a−3 − 4

15

)
sin(θh) +

1

6
(60a−4 + 24a−3 − 1) sin(2θh)

− a−3 sin(3θh) − a−4 sin(4θh),

(7.6)

�(θ∗h) =
1

2
− 45a−4 − 20a−3 − 6a−2 +

1

6
cos(θh)(336a−4 + 150a−3 + 48a−2 − 4)

− a−3 cos(3θh) − a−4 cos(4θh) +
1

6
(−60a−4 − 24a−3 − 12a−2 + 1) cos(2θh).

(7.7)

The coefficients obtained by Zhuang and Chen [15] are

a−4 = 0.0161404967, a−3 = −0.1228212790, a−2 = 0.4553322778,

a−1 = −1.2492595883, a0 = 0.5018904380, a1 = 0.4399321927,

a2 = −0.0412145379,

(7.8)
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and, therefore, the real and imaginary parts of θ∗h are given as follows:

�(θ∗h) = 1.689191781 sin(θh) − 0.4965468157 sin(2θh) + 0.1228212790 sin(3θh)

− 0.0161404967 sin(4θh),
(7.9)

�(θ∗h) = −0.5018904390 + 0.8093273950 cos(θh) − 0.4141177399 cos(2 θh)

+ 0.1228212790 cos(3θh) − 0.0161404967 cos(4θh),
(7.10)

respectively.

We now obtain a modification to the scheme developed by Zhuang and Chen [15]. We

consider the numerical wavenumber in (7.6) and (7.7) and minimise the following integral

E =
∫1.1

0

(
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2

)
d(θh). (7.11)

The integral is a function of a−4, a−3, and a−2. We use the function NLPSolve and obtain

optimal values for a−4, a−3, and a−2 as 0.01575, −0.122, and 0.4553 respectively. Corresponding

values for a2, a−1, a0, and a1 are then obtained as −0.0418666600, −1.2495333300, 0.5005500000,

and 0.4418000000, respectively.

The modified method is termed as ZHUANG-NEW and has real and imaginary parts

of its numerical wavenumber described by

�(θ∗h) = 1.6913333333 sin(θh) − 0.4971666667 sin(2θh) + 0.1220000000 sin(3θh)

− 0.0157500000 sin(4θh),
(7.12)

�(θ∗h) = −0.5005500000 + 0.8077333330 cos(θh) − 0.4134333333 cos(2θh)

+ 0.1220000000 cos(3θh) − 0.0157500000 cos(4θh),
(7.13)

respectively.

We next perform a spectral analysis of the two methods: ZHUANG and ZHUANG-

NEW. We compare the variation of real part and imaginary parts of the numerical wavenum-

ber versus the exact wavenumber in Figures 7 and 5, respectively. We have the plot of the

dispersion error versus the exact wavenumber in Figure 8 and we observe that, for 0 < θh < 1,

ZHUANG-NEW is slightly better than ZHUANG in terms of dispersive properties.

We now compare quantitatively these two methods. We compute the minimum

number of points per wavelength needed to resolve a wave for each of the four accuracy lim-

its. The results are summarized in Table 4.

ZHUANG-NEW requires fewer points per wavelength than ZHUANG scheme for

|(θ∗h − θh)/π | ≤ 0.005.
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Table 4: Comparing the dispersive and group velocity properties for two spatial methods ZHUANG and
ZHUANG-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 ZHUANG 1.6755 3.7501

|θ∗h − θh|
π

≤ 5 × 10−3 ZHUANG-NEW 1.6957 3.7175

|θ∗h − θh|
π

≤ 5 × 10−4 ZHUANG 1.3315 4.7190

|θ∗h − θh|
π

≤ 5 × 10−4 ZHUANG-NEW 1.1417 5.5030∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

ZHUANG 1.0484 5.9932∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

ZHUANG-NEW 0.9620 6.3865∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

ZHUANG 0.9029 6.9593∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

ZHUANG-NEW 0.8052 7.5176
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Figure 7: Plot of the variation of numerical wavenumber versus exact wavenumber for the methods:
ZHUANG, ZHUANG-NEW, BOGEY, and BOGEY-NEW.

8. Modification to Spatial Discretisation Scheme Developed
by Bogey and Bailly [16]

Bogey and Bailly [16] modified the measure used by Tam and Webb [3] by minimizing the

relative difference between θh and θ∗h. They define the integrated error, E, as

E =
∫π/2

π/16

|θ∗h − θh|
θh

d(θh). (8.1)
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Figure 8: Plot of the variation of dispersion error in logarithmic scale versus exact wavenumber for the
methods ZHUANG and ZHUANG-NEW.

Bogey and Bailly [3] use a 9-point stencil with coefficients a−4, a−3, a−2, a−1, a0, a1, a2,

a3, a4 and choose a0 = 0, a−1 = −a1, a−2 = −a2, a−3 = −a3, and a−4 = −a4 and therefore the

numerical wavenumber can be written as

θ∗h = 2(a1 sin(θh) + a2 sin(2θh) + a3 sin(3θh) + a4 sin(4θh)). (8.2)

To obtain a 4th-order method, a1 and a2 are chosen such as

a1 =
2

3
+ 5a3 + 16a4,

a2 = −1

6

(
1

2
+ 24a3 + 60a4

)
,

(8.3)

respectively.

The coefficients a3 and a4 are chosen to minimize the integrated error defined in (8.1),
and the values which Bogey and Bailly [16] have obtained are as follows:

a1 = 0.841570125, a2 = −0.2446786318, a3 = 0.0594635848, a4 = −0.0076509040.

(8.4)

We now construct a method based on a 9-point stencil using MIEELDLD. The wave-

number is set as follows:

θ∗h = 2

(
2

3
+ 5a3 + 16a4

)
sin(θh) + 2

(
− 1

12
− 4a3 − 10a4

)
sin(2θh) + 2a3 sin(3θh). (8.5)
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The integrated error using MIEELDLD is defined as

∫π/2

π/16

(
2 exp|�(θ∗h) − θh| − 2

)
d(θh), (8.6)

which is a function of a3 and a4. Using NLPSolve, we obtain the optimal values of a3 and a4

as 0.0613000000 and −0.0080500000, respectively. Hence, we obtain a1 and a2 as 0.8443666667

and −0.2480333333, respectively.

Using MIEELDLD, a new scheme is obtained and is termed as BOGEY-NEW with its

numerical wavenumber given by

θ∗h = 1.6887333332 sin(θh) − 0.4960666667 sin(2θh)

+ 0.1226000000 sin(3θh)0.0161000000 sin(4θh).
(8.7)

We next perform a spectral analysis of the two methods: BOGEY and BOGEY-NEW. We

compare the variation of numerical wavenumber versus the exact wavenumber in Figures 7

and 9; we have the plot of the dispersion error versus the exact wavenumber.

We now compare quantitatively these two methods. We compute the minimum num-

ber of points per wavelength needed to resolve a wave for each of the four accuracy limits.

Table 5 indicates that BOGEY-NEW has appreciably better phase and group velocity

properties as compared to BOGEY scheme.

9. Optimized Time Discretisation Schemes

9.1. Time Discretisation Scheme by Tam et al. [17]

Tam et al. [17] have developed a time-marching scheme which is four-level and accurate up

to k3. They expressed

U(n+1) −U(n) ≈ k
3∑
j=0

bj

(
dU

dt

)(n−j)
. (9.1)

We next summarize how the coefficients have been obtained.

The effective angular frequency of the time discretisation method is obtained as

� =
I
(
exp(−Iωk) − 1

)
k
∑3

j=0 bj exp
(
Ijωk

) . (9.2)

For �k to approximate ωk to order (ωk)4, we must have

b0 + b1 + b2 + b3 = 1,

b1 + 2b2 + 3b3 = −1

2
,

b1 + 4b2 + 9b3 =
1

3
.

(9.3)
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Table 5: Comparing the dispersive and group velocity properties for two spatial methods BOGEY and
BOGEY-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 BOGEY 1.4875 4.2240

|θ∗h − θh|
π

≤ 5 × 10−3 BOGEY-NEW 1.5175 4.1405

|θ∗h − θh|
π

≤ 5 × 10−4 BOGEY 1.6529 3.8013

|θ∗h − θh|
π

≤ 5 × 10−4 BOGEY-NEW 1.6733 3.7550∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

BOGEY 1.0572 5.9433∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3

BOGEY-NEW 1.0523 5.9710∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

BOGEY 0.8784 7.1533∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

BOGEY-NEW 0.9049 6.9437
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Figure 9: Plot of the variation of dispersion error in logarithmic scale versus exact wavenumber.

Since we have 4 equations and 3 unknowns, we can choose b0 as a free parameter, and

hence we have

b1 =
53

12
− 3b0, b2 = 3b0 − 16

3
, b3 =

23

12
− b0. (9.4)

Hence, we can express � as follows:

�k =
AC + BD1 + I(BC −AD1)

C2 + (D1)2
, (9.5)
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where

A = sin(ωk),

B = cos(ωk) − 1,

C = b0 +
(

53

12
− 3b0

)
cos(ωk) +

(
3b0 − 16

3

)
cos(2ωk) +

(
23

12
− b0

)
cos(3ωk),

D1 =
(

53

12
− 3b0

)
sin(ωk) +

(
3b0 − 16

3

)
sin(2ωk) +

(
23

12
− b0

)
sin(3ωk).

(9.6)

The weighted integral error incurred by using � to approximate ω, used by Tam et al.

[17], is computed as

ET =
∫0.5

−0.5

[
σ(�(�k) −ωk)2 + (1 − σ)(�(�k))2

]
d(ωk), (9.7)

and σ is chosen as 0.36.

On minimizing ET , the value of b0 is obtained as 2.30255809 and therefore the cor-

responding values for b1, b2, and b3 are −2.49100760, 1.57434094, and −0.38589142, respec-

tively.

9.2. Modified Temporal Discretisation Scheme Using MIEELDLD

We consider the equation in (9.5) which expresses �k in terms of ωk and define the quantity,

eeldld as

exp(|�(�k) −ωk| + |�(�k)|) + exp(|�(�k) −ωk| − |�(�k)|) − 2. (9.8)

We minimize

∫0.5

−0.5

eeldld d(ωk) (9.9)

and this integral is a function of b0. Using NLPSolve, we obtain the value of b0 as

2.2796378228. A plot of ET versus b0 is shown in Figure 10.

Corresponding values of b1, b2, b3 are obtained as −2.4222468020, 1.5055801360, and

−0.3629711560. This modified temporal discretisation scheme obtained by modifying the

temporal scheme of Tam et al. [17] is termed as “TAM-MODIFIED” scheme. Plots of �(�k)
versus ωk and �(�k) versus ωk for the TAM-MODIFIED scheme are shown in Figures 11

and 12, respectively.

For |�(�k)| ≤ 3 × 10−3, we require ωk ≤ 0.42.

9.3. Comparison between Temporal Discretisation Schemes:
TAM and TAM-MODIFIED

Plots of �(�k) versus ωk for the two methods are shown in Figure 13. We also compare

their dispersive properties at two different levels of accuracy in terms of number of points
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Figure 11: Plot of �(�k) versus ωk.

per wavelength and the results are tabulated in Table 6. Clearly, TAM-MODIFIED is more

superior as it requires less points per wavelength for the same accuracy.

10. Stability of Some Multilevel Optimized Combined
Spatial-Temporal Finite Difference Schemes

The stability of the combined spatial and temporal finite difference scheme developed by Tam

and Webb [3] and Tam et al. [17], which is 7-point in space and 4-point in time and which
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Figure 13: Plot of �(�k) versus ωk for TAM and TAM-MODIFIED schemes.

is referred to as the Dispersion-Relation-Preserving (DRP) scheme, satisfies the stability

condition, r ≤ 0.229 [3]. The condition on the spatial discretisation is that |(θ∗h−θh)/π | ≤ 0.05

and this gives θh ≤ 1.76. The interval 0 < �k ≤ 0.4 has been chosen in order to maintain

satisfactory temporal resolution and this interval is obtained by requiring the condition:

�(�k) ≤ 0.003.
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Table 6: Comparing the dispersive properties for two temporal discretisation methods TAM and TAM-
MODIFIED in terms of number of points per wavelength (to 4 d.p).

Method Accuracy Max. value of ωk No. of pts per wavelength

TAM |�(�k) −ωk|
π

≤ 5 × 10−3 0.5913 10.6267

TAM-MODIFIED |�(�k) −ωk|
π

≤ 5 × 10−3 0.6280 10.0050

TAM |�(�k) −ωk|
π

≤ 5 × 10−4 0.3461 18.1565

TAM-MODIFIED |�(�k) −ωk|
π

≤ 5 × 10−4 0.3570 17.6002

Since

�k =
(
βθ
)
k, (10.1)

we also have

�k = r θh. (10.2)

Since, we require �k ≤ 0.4, this implies that r (θh) ≤ 0.4. Also, we have θh ≤ 1.76 and

thus r ≤ 0.4/1.76.

The stability of the DRP scheme therefore satisfies the condition: r ≤ 0.23.

Using the approach just described in the preceding paragraph, the ranges of

stability of some methods are obtained, namely, TAM-NEW, ZINGG-NEW, ZHUANG-NEW,

LOCKARD-NEW, and BOGEY-NEW when combined with TAMMODIFIED. We also obtain

the range of stability for the methods: ZINGG, ZINGG, ZHUANG, LOCKARD, and BOGEY

when they are combined with the temporal discretisation scheme of Tam et al. [17]. The

results are tabulated in Table 7. It is seen that the new combined spatial-temporal methods

constructed using MIEELDLD have a slightly greater region of stability than the existing

combined spatial-temporal methods.

11. Comparison of Some Metric Measures

Spatial Scheme of Tam and Webb [3]

The integrated error is defined as

∫1.1

0

|θ∗h − θh|2d(θh). (11.1)

The quantity, |θ∗h − θh|2 is equivalent to |1 − RPE|2 in a computational fluid dynamics

framework. A plot of |1 − RPE|2 versus RPE ∈ [0, 2] is shown in Figure 14(a).
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Table 7: Region of stability for some combined spatial-temporal discretisation schemes.

Spatial scheme Temporal scheme Range of θh required Range of ωk required max. value of r

TAM TAM 1.76 0.40 0.23

TAM-NEW TAM-MODIFIED 1.75 0.42 0.24

ZINGG TAM 1.72 0.40 0.23

ZINGG-NEW TAM-MODIFIED 1.73 0.42 0.24

ZHUANG TAM 2.03 0.40 0.20

ZHUANG-NEW TAM-MODIFIED 2.03 0.42 0.21

LOCKARD TAM 1.97 0.40 0.20

LOCKARD-NEW TAM-MODIFIED 1.92 0.42 0.22

BOGEY TAM 2.01 0.40 0.20

BOGEY-NEW TAM-MODIFIED 2.02 0.42 0.21

0.5 1.51 2

0

0

0.2

0.4

0.6

0.8

1

RPE

(a) |1 − RPE|2 versus RPE

0 0.5 1 1.5 2

0.2

0.3

0.1

0.4

0.5

0.7

0.9

0.6

0.8

1

RPE

(b) (|1 − RPE|)/RPE versus RPE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

RPE

(c) |1 − RPE| versus RPE

0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

5

6

A FM RPE

(d) eeldld versus AFM versus RPE

Figure 14: Plot of different metrics from Tam and Webb [3], Bogey and Bailly [16] and Appadu and Dauhoo
[18].
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Spatial Scheme of Bogey and Bailly [16]

In this case, the integrated error is defined as

∫π/2

π/16

|θ∗h − θh|
θh

d(θh), (11.2)

or ∫ lnπ/2

lnπ/16

|θ∗h − θh|d(ln(θh)). (11.3)

The quantity (|θ∗h − θh|)/θh is equivalent to (|1 − RPE|)/RPE while |θ∗h − θh| is equivalent

to |1 − RPE|. Plots of (|1 − RPE|)/RPE and |1 − RPE|, both versus RPE ∈ [0, 2], are shown in

Figures 14(b) and 14(c).

Spatial Scheme Using MIEELDLD

A plot of eeldld = exp((||1 − RPE| − (1 − AFM)|) + exp(|1 − RPE| + (1 − AFM)) − 2) versus

RPE ∈ [0, 2] versus AFM ∈ [0, 1] is shown in Figure 14(d).
We observe from Figures 14(a), 14(b), and 14(c) that the measure is zero when RPE = 1

whereas, in Figure 14(d), the measure is zero provided RPE = 1 and AFM = 1.

12. Conclusions

In this work, we have used the technique of Minimised Integrated Exponential Error for Low

Dispersion and Low Dissipation (MIEELDLD) in a computational aeroacoustics framework

to obtain modifications to optimized spatial schemes constructed by Tam and Webb [3],
Zingg et al. [14], Lockard et al. [13], Zhuang and Chen [15], and Bogey and Bailly [16], and

also a modification to the optimized temporal scheme devised by Tam et al. [17] is obtained.

It is seen that, in general, improvements can be made to the existing spatial discretisation

schemes, using MIEELDLD. The new temporal scheme obtained using MIEELDLD is

superior in terms of dispersive properties as compared to the one constructed by Tam et

al. [17]. The region of stability has also been obtained. In a nutshell, we conclude that

MIEELDLD is an efficient technique to construct high order methods with low dispersion and

dissipative properties. An extension of this work will be to use the new spatial discretisation

schemes and the novel temporal discretisation method constructed to solve 1-D wave

propagation experiments and quantify the errors into dispersion and dissipation. Moreover,

MIEELDLD can be used to construct low dispersive and low dissipative methods which

approximate 2-D and 3-D scalar advection equation suited for computational aeroacoustics

applications.

Nomenclature

I =
√
(−1)

k: Time step

h: Spatial step

n: Time level
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β: Advection velocity

θ∗h: Numerical wavenumber

θh: Exact wavenumber

r: cfl/courant number

r = βk/h

w: Phase angle in 1-D

w = θh

ω: Exact angular frequency

� : Effective angular frequency of time discretization scheme

RPE: Relative phase error per unit time step

AF: Amplification factor

AFM = |AF|
LDLD: Low Dispersion and Low Dissipation

IEELDLD: Integrated Exponential Error for Low Dispersion and Low Dissipation

MIEELDLD: Minimised Integrated Exponential Error for Low Dispersion and Low

Dissipation.
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The purpose of this study is to model the flow movement in an idealized dam-break configuration.
One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is
considered. The resulting shallow water equations are solved by finite volumes using the Roe and
HLL schemes. At first, the one-dimensional model is considered in the development process. With
conservative finite volume method, splitting is applied to manage the combination of hyperbolic
term and source term of the shallow water equation and then to promote 1D to 2D. The simulations
are validated by the comparison with flume experiments. Unsteady dam-break flow movement
is found to be reasonably well captured by the model. The proposed concept could be further
developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.

1. Introduction

Earthquakes or heavy rainfall usually caused more than a dozen landslide dams to form

across Taiwan streams, temporarily impounding large volumes of water after the Chichi

Earthquake in 1999 and Typhoon Morakot in 2009 [1]. Once formed, these natural dams

were highly exposed to catastrophic failure. Partial or complete failure can lead to severe

flooding downstream and possibly trigger further floods or debris flows such as Shiaolin

landslide events in 2009 [2]. For realizing the dam formation process and evaluate the

potential consequences of subsequent failure, it is important to be able to model the dynamics

of dam-break flows, such as computational hydraulics and laboratory experiments.

Computational Hydraulics is regarded as an important technology, which utilizes

numerical methods for solving the governing equations and discusses the relationship



2 Journal of Applied Mathematics

between the flow field and the change of water depth. The commonly used numerical

methods such as finite difference method, finite element method, method of characteristics,

and finite volume method have been studied.

The first computer-based simulation model for shallow water flows was finite

difference method (FDM), which is still widely applied at present [3]. According to Taylor

series, FDM is an approximate numerical solution directly turning shallow water equations

into algebra questions. Based on the typical numerical theory, FDM was developed early

and presented high processing efficiency that it was simple and easily accepted. In order

to enhance the calculation accuracy, FDM requires more simulated time for calculation and

is rather unstable. According to the past research applying various numerical methods to

solving such problems, Liao et al. [4] also applied the commonly used finite difference

method (FDM). When catching shock wave, discontinuous numerical oscillation appeared in

the numerical processing that the total variation diminishing scheme (TVD) was utilized as

the research method [5, 6]. It remained two-order accuracy of time and space for the optimal

solution for unsteady flows.

Finite element method (FEM) was first applied to structural mechanics. With the

development of computers in 1970s, it was applied to computational hydraulics [3]. In finite

element method, the computing zone is divided into several nonoverlapping and connected

individuals; basis functions are selected from each element for linear combinations so as to

approach the true solution of elements. A large system of linear equations is required for each

time-point (standard FEM is implicit) so that the explicit FEM could be utilized for enhancing

the efficiency. In spite of the fact that finite element method could solve irregular zones, it

requires more time to solve matrix equations. In this case, parallel computing or specific

solutions are required for saving the calculation time. FEM therefore has not been widely

applied to hydraulics computing. Idelsohn et al. [7] suggested applying meshless finite

element method (MFEM) and particle finite element method (PFEM) to the approximate

partial differential equation of fluid, where MFEM covered irregular shapes to approach

the real situation. It therefore continuously disperses the moving particles (due to gravity)
and the surface energy (owing to the interaction with the contiguous particles), as well as

density, viscosity, conductivity, and so on. The changes of particle velocity and position are

also defined. For this reason, PFEM is considered as an advantageous and effective model to

solve the surface problem and simplify the interaction between fluid structures in the papers

[7, 8].
Wu and Chen [9] applied method of characteristics (MOC) to the calculation

of kinematic wave equation. Method of characteristics does not show the drawback of

numerical diffusion as in finite difference method, and the accuracy and convenience are

better than other numerical methods. But the mathematical deduction of MOC is more

complicated and it merely shows more restrictions on the side flow term. However, it makes

more definitely physical meaning of the algorithm for method of characteristics. Shi and

Liu [10] regarded method of characteristics as the most accurate numerical solution for

hyperbolic partial differential equations. The basic theory was the one-order simulation

of linear hyperbolic partial differential equations with two-dimensional characteristics

space. The curves of the two characteristics and the correspondent characteristic arithmetic

expressions are deducted. In terms of characteristic arithmetic expressions, they are

proceeded by the numerical solutions (such as velocity and water depth) to discretize

characteristic equations. The physical concept of MOC is definite, and the calculation

accuracy of numerical analyses is high. The discontinuity of dam-break flows is rather

difficult to solve with general difference method. However, the characteristic line still exists
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and can be solved with method of characteristics. Nevertheless, the ratio of time-space is

restricted by stable conditions that the minimum time is obtained. When the analysis is

abundant, it would require longer calculation time.

Finite volume method (FVM) used to be applied to aviation and aerodynamics.

For hydraulics, finite difference method and finite element method were more widely

applied [3, 11]. However, unstructured grids are utilized for the grid computing with both

finite volume method and finite element method that they are acceptable in irregularly

natural channels. Besides, finite volume method and finite difference method present similar

calculating speed, but faster than finite element method. The application of finite volume

method has therefore been emphasized in recent years. With distinct directions, characters,

and coordinates or different grids being the numerical calculation, each method would show

different advantages. Both FVM and FEM divide calculation zone into several regular or

irregular shapes of elements or control volume, but the calculating speed of FVM is faster

than it of FEM. Bellos et al. [12] utilized finite volume method for calculation simulation

and verified by the dam-break test and observe the surges generated by the dam-break in an

extreme-wide flume.

In this paper, a numerical model by using the finite volume method is presented for

simulating the dam-break flows. Meanwhile, the model uses a splitting to deal with the

source term. The advantage of this approach is that it can develop more other computations,

for example, mudflows, debris flows, or the aggradation and degradation of sediment-laden

flows [13], in the future.

2. Numerical Model

2.1. Governing Equations

The Saint Venant equations are used to describe unsteady one-dimensional open-channel

flow. Continuity and momentum balance are, respectively, written as [14, 15]:

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

1

2
gh2

)
= gh

(
S0 − Sf

)
,

(2.1)

where h is the depth of flow above the rigid bed, q = hu is the unit width discharge, and u

is the mean velocity in the longitudinal flow direction. Letting zb denote the bed elevation

above a reference datum, the slope S0 can be written as

∂zb
∂x

= −S0. (2.2)

The friction slope Sf can also be also expressed with a relationship established for uniform

flow, by using the Manning-Strickler formula [16] as follows:

Sf =
q2n2

h10/3
, (2.3)

where n is the Manning coefficient, recalling that, for a very wide channel, the hydraulic

radius is equal to the flow depth.
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2.2. Hyperbolic Term

In this study, the above shallow water equations are solved numerically using a finite

volume approach, well suited for transient problems such as dam-break flows. An operator-

splitting approach [17] is used to separately treat the hyperbolic and source components. The

hyperbolic operator solves the homogeneous equations:

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

1

2
gh2

)
+ gh

∂zb
∂x

= 0,

∂zb
∂t

= 0.

(2.4)

The source operator, on the other hand, deals with the nonhomogeneous part in the absence

of flux terms:

∂h

∂t
= 0,

∂q

∂t
= −ghSf ,

∂zb
∂t

= 0.

(2.5)

For both operators, the procedure outlined by documents [18–20] is adapted for the

computation of geomorphic dam-break surges. In the hyperbolic operator, two schemes,

including Roe and HLL, are used to deal with the partial differential equations, and an

implicit backward Euler scheme to treat the source term which will be illustrated in the next

section.

2.2.1. Roe Scheme

Consider first the hyperbolic operator. The corresponding equations can be cast in the

following matrix form:

∂U
∂t

+
∂

∂x
F(U) +H(U)

∂U
∂x

= 0, (2.6)

where

U =

⎡⎣ hq
zb

⎤⎦, F(U) =

⎡⎢⎢⎢⎣
q

q2

h
+

1

2
gh2

0

⎤⎥⎥⎥⎦, H(U) =

⎡⎣0 0 0

0 0 gh

0 0 0

⎤⎦. (2.7)



Journal of Applied Mathematics 5

Fluxes at the interfaces between finite volumes are evaluated using the Roe scheme.

Let UL and UR denote the cell states to the left and right of a given interface. A decomposition

of the flux difference ΔF = FR − FL is sought and simultaneously satisfies

ΔU =
3∑
k=1

α̃kK̃(k), (2.8)

ΔF +HΔU =
3∑
k=1

α̃kλ̃kK̃(k), (2.9)

where the α̃k, λ̃k, and K̃(k) are the surge strengths, eigenvalues, and right eigenvectors

of the Roe linearisation of Jacobian matrix ∂F/∂U. Following the Roe-Pike procedure, the

eigenvalues and the eigenvectors are first written in terms of the averaged variables h̃, ũ, and

gh:

λ̃1 = ũ −
√
gh̃, λ̃2 = ũ +

√
gh̃, λ̃3 = 0,

K̃(1) =

⎡⎢⎢⎣
1

ũ −
√
gh̃

0

⎤⎥⎥⎦, K̃(2) =

⎡⎢⎢⎣
1

ũ +
√
gh̃

0

⎤⎥⎥⎦, K̃(3) =

⎡⎢⎢⎢⎣
1

0

ũ2 − gh̃
gh̃

⎤⎥⎥⎥⎦. (2.10)

The surge strengths α̃k are then obtained by linearising (2.8):

α̃1 =
1

2

⎡⎢⎣Δh −

√
gh̃

ũ −
√
gh̃

Δzb − h̃√
gh̃

Δu

⎤⎥⎦, α̃2 =
1

2

⎡⎢⎣Δh +

√
gh̃

ũ +
√
gh̃

Δzb +
h̃√
gh̃

Δu

⎤⎥⎦,
α̃3 =

gh̃

ũ2 − gh̃
Δzb.

(2.11)

Finally, the substitution of these expressions in (2.9) yields a set of algebraic equations

which can be solved for the averages of h̃, ũ, and gh:

h̃ =
√
hLhR, ũ =

√
hR√

hR +
√
hL
uR +

√
hL√

hR +
√
hL
uL, gh =

1

2

(
ghR + ghL

)
. (2.12)

This decomposition is exploited as follows in a finite volume framework. Let Δt be the

time step and Δx the size of each cell of a one-dimensional grid. Denoting by Un
i the state

of cell i at time nΔt, the state Un+1
i at the next time step is computed using the finite volume

statement:

Un+1
i = Un

i +
Δt
Δx

(Fi−1/2 − Fi+1/2) +
Δt
Δx

1

4
(Hi−1 +Hi+1)(Ui−1 −Ui+1), (2.13)
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where Fi−1/2 and Fi+1/2 are the fluxes across the left and right interfaces of the cell. Based on the

Roe wave decomposition derived previously, these fluxes are evaluated using the expression

Fi+1/2 =
1

2
(Fi + Fi+1) − 1

2

3∑
k=1

α̃k

∣∣∣λ̃k∣∣∣K̃(k), (2.14)

hence the hyperbolic operator is fully specified by the Roe scheme.

2.2.2. HLL Scheme

Another scheme of hyperbolic operator adopted in the present work is an extension of the

HLL scheme [20] widely used for shallow flows. Whereas the original HLL scheme applies

to the equations in full conservation form, the momentum equation feature nonconservative

product associated with pressure along the slope bed. This term is treated following the

approach [19]. The source term associated with friction along the bed is further treated in

the next section.

Adopting a finite volume point of view, each depth h(x) is discretised into piecewise

constant segments hi over finite intervals xi−1/2 < x < xi+1/2 of constant length Δx. The

corresponding discharges q(x) are represented by fluxes qi+1/2 sampled at the boundaries

xi+1/2 of the intervals. For the continuity equation, time step from t to t+Δt is achieved using

the classical finite volume statement

ht+Δti = hti +
Δt
Δx

(
qHLL
i−1/2 − qHLL

i+1/2

)
, (2.15)

where

qHLL
i+1/2 =

SR
SL − SR q

t
i −

SL
SL − SR q

t
i+1 +

SLSR
SL − SR

(
hti+1 − hti

)
(2.16)

is the standard HLL flux function [20, 21]. In the above formula, the left and the right surge

speeds SL and SR are estimated from

SL = min(Smin,i, Smin,i+1, 0), SR = max(Smax,i, Smax,i+1, 0), (2.17)

where Smin and Smax are the surge speed bounds.

Besides, the LHLL scheme [19] is used to discretize the momentum equation, which

associates with the nonconservative product gh∂zb/∂x:

q
t+(1/2)Δt
i = qti +

Δt
Δx

(
σRi−1/2 − σLi+1/2

)
, (2.18)
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where

σLi+1/2 = σHLL
i+1/2 −

SL
SR − SL

g
(
hti + h

t
i+1

)
2

(
(zb + h)

t
i+1 − (zb + h)

t
i

)
, (2.19)

σRi+1/2 = σHLL
i+1/2 −

SR
SR − SL

g
(
hti + h

t
i+1

)
2

(
(zb + h)

t
i+1 − (zb + h)

t
i

)
(2.20)

are lateralised corrections to the standard HLL flux:

σHLL
i+1/2 =

SR
SL − SRσ

t
i −

SL
SL − SR σ

t
i+1 +

SLSR
SL − SR

(
qti+1 − qti

)
, (2.21)

in which σ = (q2/h) + (1/2)gh2. In the above formulas, the surge speeds SL and SR are again

estimated from (2.17). The “lateralised flux correction” approach leading to the statements

(2.18)–(2.20) is presented by Fraccarollo et al. [19].

2.3. Source Term

Consider now the source term operator. Using the Manning-Strickler formula to specify the

friction slope Sf for the computation of clear water, the equation for the momentum source

term can be written as:

∂q

∂t
= −gh q

2n2

h10/3
. (2.22)

Using an implicit backward Euler scheme, (2.22) is discretised as:

qt+Δti = qt+(1/2)Δt
i −Δt

(
gh−7/3n2

(
qt+Δti

)2
)
. (2.23)

Using the first component of the source operator, ∂h/∂t = 0 hence ht+Δti = hti. Thus, one can

solve (2.23) for the unit width discharge of clear water at the next time step.

To advance the solution at each time step, the hyperbolic operator is first applied to

obtain a partial update. These results are then used as the initial conditions for the source

operator to yield the complete update. Since the hyperbolic update is explicit, stability of the

scheme is subject to the CFL condition on the time step:

Δt = CFL
Δx

max(|u| + c) , (2.24)

where c is the wave celerity and u the velocity at any given grid point, and CFL is the Courant

number. The value CFL should be smaller than 1 and it is found to be satisfactory in our case.
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Figure 1: Idealized dam-break problem: (a) initial depth ratio Hr/Ht = 2; (b) initial depth ratio Hr/Ht =
1000.

2.4. Extend to Two-Dimensional Model

The numerical method of two-dimensional model in this study applies the explicit square

grid to discrete governing equations in finite volume method. It also applies the approach of

one-dimensional model which deals with the Riemann solutions and with the Godunov-type

scheme [20]. The calculations of numerical fluxes apply to HLL scheme, and LHLL scheme is

utilized for calculating the nonconservative term including the slope bed [19]. Finally, Strang

splitting is applied to calculate the source term with frictions [17].
Since this study applies conservative finite volume method, the hyperbolic term and

the source term in differential equations are separately processed so that the numerical model

is largely improved. For example, the promotion of one-dimensional to two-dimensional

grids utilizes dimensional splitting that it first calculates x-sweeps and then applies the result

as the initial conditions to calculate y-sweeps [22]. Similarly, Strang splitting is also applied

to the calculation of bed shear stress. In each time step, the hyperbolic term of shallow

water equations is first calculated; the result is applied as the initial conditions for friction

calculations. In this case, it is easy to expand, such as expanding from one-dimensional model

to two-dimensional model, or expanding from clear water flows to mudflows or debris flows;

merely the geometric mesh or source term is regulated.

3. Results and Discussions

3.1. Idealized Dam-Break Problem

To test the computation of the hyperbolic term, calculations for the clear water are first

compared with the classical analytical solution of Stoker [23] for the sudden breach of a dam

over a horizontal frictionless bed. The initial data used by Tseng et al. [24] are adopted: the

ratios of water depths at the left (Hr) and the right (Ht) of the dam are set equal toHr/Ht = 2

and Hr/Ht = 1000, respectively; the total length of the channel is 1000 m; the discretisation
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Figure 2: Increasing accuracy by decreasing the grid size to Δx = 2 m.

interval is Δx = 10 m; the Courant number is set to CFL = 0.9. The results for the Roe and HLL

schemes at time t = 30 s are plotted in Figure 1. It is clearly shown in Figure 1 that the Roe and

HLL schemes can capture the shock wave but not accurate enough. Hence, the second test

refers to Wang and Shen [25] and uses the conditions: water depths to the left and the right

of the dam are set equal to h = 10 m and h0 = 1 m, respectively; the total length of the channel

is 2000 m; Δx = 2 m, and CFL = 0.9. Figure 2 indicates the reasonable results for t = 30 s, 60 s,

and 90 s, respectively, in nondimensional form. The accuracy can be increased by decreasing

the grid size from these two figures.

3.2. Dam-Break Experiment in Rigid Channel

To test the numerical model for clear water, the simulation is compared with the laboratory

experiments of the US Army Engineer Waterways Experiment Station [26] in Figure 3. The

WES’ experiments were conducted in a rectangular channel 122 m long and 1.22 m wide,

with a bottom slope of 0.005 and Manning’s coefficient of 0.009. The dam was placed at the

middle of the channel, giving the initial water depth upstream of the dam H1 = 0.305 m and

downstream of the dam H2 = 0.0 m. In this simulation, the uniform grid spacing Δx is 1.0 m

and the Courant number CFL = 0.9. The agreement between the simulation and experimental

results is satisfactory. The results also indicate that the finite volume method can capture the

surges well and the numerical model has a good ability to deal with the “contact points” at

locations where the depth reaches zero.
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Figure 3: Comparisons with WES experiment: (a) water surface profile along the channel at t = 10 sec; (b)
time evolution of water depth at x = 70.1 m; (c) time evolution of water depth at x = 85.4 m.

3.3. Comparison of 2D Numerical Simulation and Experiment

In order to prove the two-dimensional numerical model, this study designs a rectangular

flume, which is a closed tank of 1.6 m (Length) × 0.6 m (Width) × 0.6 m (Height). A gate,

located on the longitudinal x = 0.4 m, could be quickly removed for simulating the dam-

break flow. The initial depth before gate is 0.15 m and the downstream depth is 0.01 m. Two

square columns (of the length and width being 0.1 m and the height being 0.3 m) are placed

on x = 1.2 m and are paralleled placed in the middle (with the distance 0.1 m) shown as

Figure 4. Besides, in consideration of the natural channel not being as flat as the artificial

construction, six small obstacles are placed on both sides for simulating the irregular banks.

They are placed on the side walls at longitudinal x = 0.4 m, 0.8 m, and 1.2 m. The simulated

grid number is 160 × 60 (Δx = Δy = 0.01 m) that there are 9600 cells. The Manning coefficient

is n = 0.01. The boundary conditions are considered as closed boundary, that is, there is
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columns (0.1 m × 0.1 m × 0.3 m) paralleled placed at x = 1.2 m with the distance 0.1 m.
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Figure 5: Continued.
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Figure 5: Comparisons of experiments and numerical simulations—(a) and (b) when t = 0.56 sec, dam-
break flow arrives to the columns; (c) and (d) when t = 0.625 sec, dam-break flow moves to the middle of
the columns; (e) and (f) when t = 0.725 sec, dam-break flow surrounds the columns and forms vortexes;
(g) and (h) when t = 0.925 sec, dam-break flow touches the boundary of tank; (i) and (j) when t = 1.75 sec,
the flow returns to the location of gate.

no flow-out at the sides. With the total simulation time 2 sec, it is simulated the water flow

crashes the boundary after gate opening and returns to the initial location.

The experimental results show that it takes about 0.56 sec that dam-break flow touches

the square columns when the distance between the columns and the gate is 0.8 m. It presents

the same time as the simulation time of the numerical model in Figures 5(a) and 5(b). With

the flow movement of the small obstacles on both sides, it could also be simulated in the

numerical model. When the time is 0.625 sec, the time of dam-break flow moving to the center

of two columns is similar to it simulated in the model (see Figures 5(c) and 5(d)). The time

of dam-break flow surrounding the two columns and forming vortexes (t = 0.725 sec) also

corresponds to the simulated result, Figures 5(e) and 5(f). Finally, the water flow reaches the

boundary of the tank at t = 0.925 sec, which then forms surges crashing the columns and

returning to the gate at t = 1.75 sec. In the entire simulation, the water crashing obstacles and

forming surges as well as the flow movement due to small obstacles could be captured well

by the present model.
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4. Conclusions

This paper proposes the one-dimensional and two-dimensional numerical model with the

finite volume method based on the shallow water equations. A key feature of the model is

the use of an operator-splitting method to divide the governing equations into hyperbolic

and source terms. This approach provides an easy method for using different numerical

schemes such as the Roe and HLL schemes. With the conservative finite volume method,

the model can be applied to various numerical methods or spatial dimensions. As described

in the study, one-dimensional model could be easily developed into two-dimensional model

so as to save the time for programming the codes. The comparisons between the experimental

results and the model simulation are matched. In addition, it is very easy to develop another

computation, for example, non-Newtonian fluid or multilayers fluid flows, from the present

model in the future.
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A new method for solving nonlinear Volterra-Fredholm-Hammerstein (VFH) integral equations
is presented. This method is based on reformulation of VFH to the simple form of Fredholm
integral equations and hence converts it to optimal control problem. The existence and uniqueness
of proposed method are achieved. Numerical results are given at the end of this paper.

1. Introduction

The nonlinear integral equations arise in the theory of parabolic boundary value problems,

engineering, various mathematical physics, and theory of elasticity [1–3]. In recent years,

several analytical and numerical methods of this kind of problems have been presented

[4, 5]. Analytically, the decomposition methods are used in [6, 7]. The classical method of

successive approximations was introduced in [8], while some kind of appropriate projection

such as Galerkin and collocation methods have been applied in [9–13]. These methods often

transform integral or integrodifferential equations into a system of linear algebraic equations

which can be solved by direct or iterative methods. In [14], the authors used Taylor series to

solve the following nonlinear Volterra-Fredholm integral equation:

y(x) = f(x) + λ1

∫x
0

k1(x, t)
[
y(t)

]p
dt + λ2

∫1

0

k2(x, t)
[
y(t)

]q
dt, p, q ∈ R, (1.1)
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whereas the Legendre wavelets method for a special type was applied in [15] for solving the

nonlinear Volterra-Fredholm integral equation of the form

y(x) = f(x) + λ1

∫x
0

k1(x, t)
[
F
(
y(t)

)]
dt + λ2

∫1

0

k2(x, t)G
(
y(t)

)
dt, (1.2)

where f(x) and the kernels k1(x, t) and k2(x, t) are assumed to be in L2(R) on the interval

0 ≤ x, t ≤ 1. The nonlinear Volterra-Fredholm-Hammerstein integral equation is given in [16]
as follows:

y(t) = f(t) + λ1

∫ t
0

k1(t, s)
[
g1

(
s, y(s)

)]
ds + λ2

∫1

0

k2(t, s)g2

(
s, y(s)

)
ds, 0 ≤ t, s ≤ 1.

(1.3)

In this paper, we introduce a method to find the numerical solution of a nonlinear Volterra-

Fredholm-Hammerstein integral equation of the form:

φ(t) = f(t) + λ1

∫ t
0

V
(
t, s, φ(s)

)
ds + λ2

∫b
a

F
(
t, s, φ(s)

)
ds, 0 ≤ t, s ≤ 1, (1.4)

where f(t), V (t, s, φ(s)), and F(t, s, φ(s)) are assumed to be in L2(R) and satisfy the Lipschitz

condition

∣∣K(t, s, φ1(s)
) −K(t, s, φ2(s)

)∣∣ ≤N(t, s)
∣∣φ1(s) − φ2(s)

∣∣. (1.5)

This paper is organized as follows. In Section 2, we present a form of (1.4) by Fredholm type

integral equation, which can convert it into optimal control problem (OC). In Section 3, the

existence and uniqueness are presented. The computational results are shown in Section 4.

2. Problem Reformulation

Let the VFH given in (1.4) be written in the form

φ(t) = f(t) + λ
∫b
a

k
(
t, s, φ(s)

)
ds, (2.1)

such that

k
(
t, s, φ(s)

)
= G

(
t, s, φ(s)

)
+ F

(
t, s, φ(s)

)
,

G
(
t, s, φ(s)

)
= e

(
t, s, φ(s)

)
V
(
t, s, φ(s)

)
,

e
(
t, s, φ(s)

)
=

⎧⎨⎩1 a < s < t < b,

0 s > t,

(2.2)
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and the kernel k(t, s, φ(s)) ∈ C[a, b] × [a, b] satisfyies

∣∣k(t, s, φ(s))∣∣ ≤M,
∣∣f(t)∣∣ ≤ K, (2.3)

where M, K are arbitrary constants.

It is easy to see that (2.1) can be written as follows:

φ(t) − f(t) =
∫ t
a

[
φ̇(s) − ḟ(s)]ds + [φ(a) − f(a)]

=
∫b
a

δ
[
φ̇(s) − ḟ(s)]ds + [φ(a) − f(a)], where δ =

⎧⎨⎩1 a < s < t < b,

0 s > t,

(2.4)

then

∫b
a

δ
[
φ̇(s) − ḟ(s)]ds + [φ(a) − f(a)] = λ∫b

a

k
(
t, s, φ(s)

)
ds. (2.5)

Since

φ(a) − f(a) = λ
∫b
a

k
(
a, s, φ(s)

)
dt, (2.6)

therefore,

∫b
a

δ
[
φ̇(s) − ḟ(s)]ds + λ∫b

a

[
k
(
a, s, φ(s)

) − k(t, s, φ(s))]ds = 0. (2.7)

Let

G(t) =
∫b
a

{
δ
[
φ̇(s) − ḟ(s)] + λ[k(a, s, φ(s)) − k(t, s, φ(s))]}ds = 0, (2.8)

that is, if

|G(t)| = 0. (2.9)

By integrating (2.9), we have

∫b
a

|G(t)|dt = 0. (2.10)
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On the other hand, one can define the following equality:

F
(
t, s, φ(t), u(t)

)
= δ

[
φ̇(s) − ḟ(s)] + λ[k(a, s, φ(s)) − k(t, s, φ(s))]. (2.11)

This will lead us to the following inequality:

∫b
a

|G(t)|dt ≤
∫∫b

a

∣∣F(t, s, φ(t), u(t))∣∣dsdt, (2.12)

where

φ̇(s) = u(s), s ∈ [a, b]. (2.13)

With the boundary conditions

φ(a) = f(a) +
∫b
a

k
(
a, s, φ(s)

)
ds, φ(b) = f(b) +

∫b
a

k
(
b, s, φ(s)

)
ds. (2.14)

At the end, we have the following OC problem:

minimize

I =
∫
Ω

∣∣F(t, s, φ(t), u(t))∣∣dsdt (2.15)

subject to

φ̇(s) = u(s), s ∈ [a, b], (2.16)

φ(a) and φ(b) are defined in (2.14) where Ω = [a, b] × [a, b].
The existence and uniqueness of (2.1) will be considered in the next section by using

the successive approximation method.

3. Existence and Uniqueness

The solution φ(t) of (2.1) can be approximated successively as follows:

φ1(t) − λ
∫b
a

k
(
t, s, φ0(s)

)
ds = f(t). (3.1)

Thus, we obtain sequence of functions φ0(t), φ1(t), . . . , φn(t), such that

φn(t) − λ
∫b
a

k
(
t, s, φn−1(s)

)
ds = f(t), n ≥ 1, (3.2)

with φ0(t) = f(t).
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It is convenient to introduce

ψn(t) = φn(t) − φn−1(t), n ≥ 1, (3.3)

with ψ0(t) = f(t).
Subtracting from (3.2), the same equation with replacing n by n − 1, we get

φn(t) − φn−1(t) = λ
∫b
a

k
(
t, s, φn−1(s)

)
ds − λ

∫b
a

k
(
t, s, φn−2(s)

)
ds. (3.4)

Using (3.3), we have

ψn(t) = λ
∫b
a

k
(
t, s, ψn−1(s)

)
ds n ≥ 1. (3.5)

Also, from (3.3), we deduce that

φn(t) =
n∑
i=0

ψi(t). (3.6)

The existence and uniqueness of the solution can be followed.

Theorem 3.1. If the kernel k(t, s, φ(s)) and the function f(t) are continuous and satisfy condition
(2.3) in a < s < t < b, then the integral equation (2.1) possesses a unique continuous solution.

Proof. From (3.5), we get

∣∣ψn(t)∣∣ =
∣∣∣∣∣λ
∫b
a

k
(
t, s, ψn−1(s)

)
ds

∣∣∣∣∣
≤ λ∣∣k(t, s, ψn−1(s)

)∣∣ ∫b
a

ds

≤ λ(b − a)M.

(3.7)

We now show that this φ(t) satisfies (2.1).
The series (3.6) is uniformly convergent since the term ψi(t) is dominated by λ(b−a)M.

Then,

λ

∫b
a

k

(
t, s,

∞∑
i=0

ψi(s)

)
ds =

∞∑
i=0

λ

∫b
a

k
(
t, s, ψi(s)

)
ds

=
∞∑
i=0

ψi+1(t) =
∞∑
i=0

ψi+1(t) + ψ0(t) − ψ0(t).

(3.8)
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Hence, we have

λ

∫b
a

k

(
t, s,

∞∑
i=0

ψi(s)

)
ds =

∞∑
i=0

ψi(t) − f(t). (3.9)

This proves that φ(t), defined in (3.6), satisfies (2.1). Since each of the ψi(t) is clearly

continuous, therefore φ(t) is continuous, where it is the limit of a uniformly convergent

sequence of continuous functions.

To show that φ(t) is a unique continuous solution, suppose that there exists another

continuous solution φ̃(t) of (2.1), Then,

φ̃(t) − λ
∫b
a

k
(
t, s, φ̃(s)

)
ds = f(t). (3.10)

Subtracting (3.10) from (2.1), we get

φ(t) − φ̃(t) = λ
∫b
a

k
(
t, s,

{
φ(s) − φ̃(s)

})
ds. (3.11)

Since φ(t) and φ̃(t) are both continuous, there exists a constant B such that∣∣∣φ(t) − φ̃(t)∣∣∣ ≤ B. (3.12)

By using the condition of (2.3), the inequality (3.12) becomes∣∣∣φ(t) − φ̃(t)∣∣∣ ≤ λ(b − a)MB. (3.13)

For the large enough n, the right-hand side is arbitrary small, then

φ(t) = φ̃(t). (3.14)

This completes the proof.

4. Computational Results

In this section, some numerical experiments will be carried out in order to compare the

performances of the new method with respect to the classical collocation methods. The

method has been applied to the following three test problems [16, 17].

Example 4.1. Consider the Volterra-Fredholm-Hammerstein integral equation

x(s) = 2 cos(s) − 2 + 3

∫ s
0

sin(s − t)x2(t)dt +
6

7 − 6 cos(1)

∫1

0

(1 − t)cos2(s)(t + x(t))dt.

(4.1)

The exact solution is given by x(s) = cos(s).
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Table 1: Maximum errors for collocation and OC methods.

N Errors in collocation method Errors in optimal control method

8 3.17E − 11 2.22E − 13

12 1.11E − 12 1.11E − 15

16 4.03E − 13 3.33E − 16

20 7.93E − 15 2.22E − 16

24 2.22E − 16 2.22E − 16

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Exact

OC method

Collocation

Figure 1: Observed results for Example 4.1 (N = 16).

The computational maximum absolute errors for different values of N are shown in

Table 1. It is clear that the optimal control method is more accurate for small values of N.

It seems that the errors for N = 16, in case of OC method, are caused by machine error. The

numerical solutions are computed by two methods and summarized in Figure 1, and it seems

that our method compared very well with those obtained via the collocation method.

Example 4.2. Consider the following VIE:

x(s) = 1 + sin2(s) − 3

∫ s
0

sin(s − t)x2(t)dt, s ∈ [0, 10]. (4.2)

The exact solution is x(s) = cos(s). This example can be solved by using the proposed OC

method. The numerical results together with computational effort of errors in boundaries and

CPU time/iteration are given in Table 2.

The computational efforts presented here proved that we could rearrange in a way

to avoid the rounding errors in collocation and reducing the CPU time/iteration processes.

Furthermore, this rearrangement of the computation leads to a much more accurate and

robust method.
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Table 2: Observed results for Example 4.2.

Methods N CPU time/iteration Errors in boundaries

Chebyshev collocation
method

8 0.74 sec. 3.7E − 02

12 1.43 sec. 1.9E − 04

16 1.89 sec. 2.0E − 06

20 2.01 sec. 7.7E − 07

24 2.11 sec. 3.1E − 09

Optimal control method

8 0.03 sec. 1.1E − 05

12 0.28 sec. 7.6E − 07

16 0.86 sec. 5.0E − 09

20 1.01 sec. 3.2E − 11

24 1.19 sec. 4.1E − 13

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

0 0.2 0.4 0.6 0.8 1

Exact

OC method

Collocation method

Figure 2: Observed results for Example 4.2 (N = 16).

In Figure 2, the proposed OC method shows the observed results for Example 4.2 for

N = 16. It seems also that OC method is more accurate than collocation methods.

Example 4.3. Consider the nonlinear Volterra-Fredholm integral equation

x(s) = y(s) +
∫s

0

(s − t)x2(t)dt +
∫1

0

(s + t)x(t)dt, (4.3)

with y(s) = (−1/30)s6 + (1/3)s4 − s2 + (5/3)s − (5/4). We applied the OC method presented

in this paper and solved (4.3). The computational results together with the exact solution

x(s) = s2 − 2 are given in Figure 3.
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Figure 3: Observed results for Example 4.3 (N = 16).

5. Conclusion

In this paper, the optimal control method is introduced to simplify the implementation

of general nonlinear integral equations of the second kind. We have shown, in numerical

examples, that this method is fast and gains better results compared with collocation method.

The important thing to note is that the control-state constraint is satisfied everywhere.

Furthermore, the structure of the optimal control agrees with the results obtained in [16].
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Numerical simulation is performed to investigate the laminar force convection of Al2O3/water
nanofluid in a flow channel with discrete heat sources. The heat sources are placed on the bottom
wall of channel which produce much thermal energy that must be evacuated from the system.
The remaining surfaces of channel are kept adiabatic to exchange energy between nanofluid and
heat sources. In the present study the effects of Reynolds number (Re = 50, 100, 200, 400, and
1000), particle volume fraction (φ = 0 (distilled water), 1 and 4%) on the average heat transfer
coefficient (h), pressure drop (ΔP), and wall temperature (Tw) are evaluated. The use of nanofluid
can produce an asymmetric velocity along the height of the channel. The results show a maximum
value 38% increase in average heat transfer coefficient and 68% increase in pressure drop for all
the considered cases when compared to basefluid (i.e., water). It is also observed that the wall
temperature decreases remarkably as Re and φ increase. Finally, thermal-hydraulic performance
(η) is evaluated and it is seen that best performance can be obtained for Re = 1000 and φ = 4%.

1. Introduction

Localized areas of high temperature on microprocessors and various electronic components

produce hot spots that have an unfavorable effect on their performance and operating

conditions. With increasing of power density of these electronic components, good attempts

have been carried out to enhance the heat exchanger rate of them by active as well as passive

methods. While the former usually offers higher augmentation, it requires additional external

forces that can increase the capital and operating cost of the system. In contrast, passive

heat transfer enhancement can be obtained by changing the geometry or modifying thermal

properties of working fluid [1]. In recent years, the advances in manufacturing technology
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have caused the production of nanoparticles and created a special class of fluids, called

“nanofluids”. The term “nanofluid” refers to a two-phase mixture where the continuous

phase is usually a liquid and the dispersed phase is created of extremely fine metallic particles

of size about 50 nm, called “nanoparticles” [2].
Many researchers experimentally showed nanofluids have higher thermal conductiv-

ity than those of the base fluids and a lot of correlations were reported. For example Lee

et al. [3] evaluated Al2O3-water/ethylene glycol with particle diameters 24.4 and 38.4 nm

as well as CuO-water/ethylene glycol with particle diameters 18.6 and 23.6 nm and showed

that thermal conductivity increases to 20% as particle volume fraction increases from 0 to

4%. Chopkar el al. [4] measured thermal conductivity of Ag2Al-water nanofluids and Al2Cu-

water nanofluids and found that it increases about 130% with a volume fraction less than 1%.

Some researchers [5–7] investigated the thermal conductivity of nanofluids as a function of

volume fraction and temperature. They showed that the thermal conductivity of nanofluids

remarkably increases as temperature rises. Wang and Mujumdar [8] listed a large number of

correlations, which are available in the literatures, for thermal conductivity of nanofluids.

Santra et al. [11] numerically studied the effect of CuO-water nanofluid as a cooling

medium to simulate the heat transfer behavior in a two-dimensional (infinite depth)
horizontal rectangular duct, where top and bottom walls were two isothermal symmetric

heat sources. They considered the fluid Newtonian as well as non-Newtonian for a wide

range of Reynolds numbers and solid volume fractions. These authors observed that the heat

transfer enhancement is possible using nanofluid in comparison with conventional fluid for

the both cases. Maiga et al. [12] numerically investigated the flow and thermal behavior

of water-Al2O3 and Ethylene Glycol-Al2O3 mixtures for a system of parallel, coaxial, and

heated disks. A remarkable augmentation of heat transfer coefficient has been observed with

increasing of the volume fraction of nanoparticles for both nanofluids. They have reported

that the rate of increase of heat transfer is more for Ethylene Glycol-Al2O3 nanofluid in

comparison with the water-Al2O3 nanofluid. However, the wall shear stress also increases

considerably with increasing of volume fraction of nanoparticles. Feng and Kleinstreuer

[13] executed a numerical simulation for alumina-water nanofluid flow with heat transfer

between parallel disks. They reported that nanofluid produce smoother flow fields and

temperature distributions and heat transfer rate increases with higher volume fraction,

smaller nanoparticle diameter, reduced disk spacing, and larger inlet Reynolds number.

With respect the problem under study, that is, heat transfer of discrete heat sources in

channel flows, there are numerous works [14–17], both numerical and experimental, which

consider such a problem.

Bhowmik et al. [14] performed steady-state experiments to investigate general heat

transfer from an in-line four simulated electronic chips in a vertical rectangular channel

employing water as the fluid working. They evaluated the effects of heat fluxes, flow rate, and

geometrical parameters on heat transfer coefficient and illustrated heat transfer rate strongly

depends on flow rate. da Silva et al. [15] employed two different analytical approaches

to determine how to arrange discrete heat sources on wall cooled by force convection: (i)
large number of small heat sources and (ii) small number of heat sources with finite length,

which are mounted on a flat wall. Both analyses proved that heat sources should be placed

nonuniformly on the wall. Arquis et al. [16] numerically examined the fluid flow and heat

transfer characteristics associated with cooling an in-line array of discrete heated blocks in a

channel by using a single laminar slot air jet. They studied the effects of various values such

as channel height, slot weight, jet Reynolds number, spacing between blocks, block height,

and block thermal conductivities. In general, the heat transfer rate increases with the increase
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Figure 1: Parallel plates channel with discrete heat sources.

of Reynolds number and the decrease of channel weight. The effective cooling of blocks is

observed to increase for shorter and widely spaced heated blocks. Jassim and Muzychka [17]
studied the problem how to allocate discrete heat source to the space on a wall of a convergent

flow. They showed that the heat sources should be distributed nonuniformly. Furthermore,

the optimal spacing between heat sources depends on both Reynolds number and channel

shape factor.

In the present paper, the flow and heat transfer characteristics of channel flow with

discrete heat sources for base fluid (distilled water) and a nanofluid that is composed of

distilled water and Al2O3 nanoparticles are numerically investigated. The main aim of this

study is how the nanofluid affects on the heat transfer rate and pressure drop of flow in a

channel with hot spots.

2. Mathematical Formulation

2.1. Geometry Configuration

In this study the velocity and temperature fields are determined in a parallel plates channel

with height H and Length L, as shown in Figure 1. The length of duct is 50 times more

than height. Nineteen heat sources of q of length H/4 are placed on the bottom wall of the

channel. The remaining bottom wall and whole top wall are isolated. The spacing between

heat sources is 2H.

2.2. Governing Equations and Boundary Conditions

Since nanofluids are composed of extremely small particles, it is assumed that the

nanoparticles and basefluid are in thermal equilibrium and they flow at same velocity. In

the present work, the nanofluid is considered incompressible with temperature-dependent

properties. The compression work and viscous dissipation terms were considered negligible

in the energy equation. Under such assumptions, the general governing equations written

are as the followings.

Conservation of mass:

∇(ρnfV
)
= 0. (2.1)

Conservation of momentum:

∇ · (ρnfVV
)
= −∇P + μnf∇2V. (2.2)
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Conservation of energy:

∇ ·
(
ρnfV

(
Cp

)
nf
T
)

= ∇ · (knf∇T). (2.3)

Equations (2.1)–(2.3) must be solve by using appropriate boundary conditions. The flow

boundary conditions are a uniform velocity at the channel inlet, equal to V0, no-slip at the

channel walls and zero relative pressure at channel outlet. The thermal boundary conditions

are a uniform temperature at the channel entrance, equal to T0 and an adiabatic condition at

channel walls, except along the heat sources, in which a uniform heat flux is applied.

2.3. Nanofluid Thermophysical Properties

The thermophysical properties of nanofluid are chiefly functions of particle volumetric

concentration and temperature. In the absence of experimental data, nanofluid density and

specific heat are defined only as a function of volume fraction as follow.

Density:

ρnf =
(
1 − φ)ρbf + φρp. (2.4)

Specific heat:

(CP )nf =
(
1 − φ)(CP )bf + φ(Cp)p. (2.5)

In above equations, subscripts “bf”, “p” and “nf” refer to basefluid, nanoparticle and the

nanofluid, respectively.

Viscosity:

μnf = 2.9 × 10−7T2 − 2.0 × 10−4T + 0.034 for φ = 1%,

μnf = 3.4 × 10−7T2 − 2.3 × 10−4T + 0.039 for φ = 4%.
(2.6)

Thermal conductivity:

knf = 0.003352 × T − 0.3708 for φ = 1%, (2.7)

knf = 0.004961 × T − 0.8078 for φ = 4%. (2.8)

Equations (2.6) to (2.8) were presented by Roy et al. [18] for water-Al2O3 nanofluid based on

available experimental results published by Putra et al. [19].

3. Numerical Method

The governing differential equations are solved using the control volume method. A second

order upwind method is used for energy and momentum equations. The SIMPLE procedure
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Figure 2: Effect of grid density on the temperature of channel outlet (Re = 1000, φ = 4%, q = 6000).

is chosen to couple pressure and velocity. The solution converge was met when the

normalized residuals for all equations reached to the 10−7. The algebraic discretized equations

throughout the physical domain are solved by means of well-known TDMA techniques.

In order to assess the grid independent of numerical solution, three grid densities are

checked. Figure 2 illustrates the effect of grid size on the predicted temperature at outlet

channel for Re = 1000 and φ = 4%. As it can be seen a grid density of 20 × 1000 provides

satisfactory solution for the shown example.

4. Results and Discussion

The thermal performance of the channel is characterized in terms of average heat transfer

coefficient along the heat sources, have, defined as:

have =

∫
hs ds

19(H/4)
, (4.1)

where s is the coordinate along the heat sources and hs is given by

hs =
q′′

(T0 − Tw) , (4.2)

where q′′ and Tw are heat flux of heat sources and wall temperature, respectively.

Thermalhydraulic performance factor is defined as:

η =
hr

(ΔP)r
1/3

, (4.3)

where hr and ΔPr are, respectively, average heat transfer coefficient and pressure drop ratio,

referred to values obtained for basefluid.
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The heat transfer performance of cooling channel is discussed in term of the figure of

merit, FoM, which is given by [1]

FoM =
W

Wpump
. (4.4)

Here Wpump is the pumping power, which is given as:

Wpump =
1

ηpump
ṁΔp, (4.5)

where ηpump is pump efficiency which assumed to be 70%. The total heat transfer rate is

calculated as:

W = ṁ
(
Cp

)
nf
(Tm,in − Tm,out), (4.6)

where, ṁ is mass flow rate and Tm,in and Tm,out are mean temperature at inlet and outlet,

respectively. Mean temperature is obtained by

Tm =
1

HUin

∫H
0

VTdy. (4.7)

4.1. Code Validation

In order to show the validity and also accuracy of the model and numerical method, two

comparisons with the available data are carried out. The first comparison is related to a

parallel plates channel that all its walls are heated with a constant heat flux and the water

is used as fluid working. In this case, the Nusselt number is compared which is given by the

following definitions:

Nu =
qH

k(Tw − Tm) , (4.8)

where Tm is bulk temperature of fluid. The comparison is depicted in Figure 3. It is seen that

the results of the present study are in good agreement with previous data [9].
The second comparison is concerned with experimental data of nanofluid heat transfer

in a circular tube with diameter (D) equal to 4.75 mm and Length of 1.2 m, given by Anoop et

al. [10]. The nanofluid is water-Al2O3 with φ = 4% at a constant Reynolds number 1588.

Figure 4 shows remarkable agreement between the present results on local heat transfer

coefficient and those provided by [10].
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Figure 4: Comparison of heat transfer coefficient between present simulation and experimental data [10]
for water-Al2O3 nanofluid with φ = 4% in the circular tube.

4.2. Velocity Field

The values of velocity at channel outlet for Re = 50 and Re = 1000 are depicted in Figures 5(a)
and 5(b), respectively, for considered volume fractions. It can be seen that trend of velocity

profile is affected by adding the nanoparticle in basefluid for both Reynolds numbers.

However, with the increase of nanoparticle loading, as it is expected, the peak of velocity

profile will increase. This produces larger velocity gradient near the wall which can lead

to increase wall shear stress and pressure drop. Another interesting issue, which one can

perceive in Figure 5, is the asymmetric profile for φ = 1% and φ = 4% because of temperature-

depended viscosity. The magnitude of velocity near the bottom wall is lower due to decreased

viscosity. This is because of higher temperature near the bottom wall that decreases the

viscosity according to (2.6). The velocity profile is more asymmetric for Re = 50 and φ = 1%.

The values of velocity at Y/H = 0.05 and Y/H = 0.95 (i.e., near the bottom and top walls) are,

respectively, 0.00083 m/s and 0.00069 m/s for Re = 1000 and φ = 4% which indicate about
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Figure 5: Effect of particle loading parameter φ on velocity profile at channel outlet for: (a) Re = 50, (b)
Re = 1000.

20% difference, while this value is equal to 0 (symmetric) and 16% for φ = 0 (distilled water)
and φ = 4%, respectively.

4.3. Local Nanofluid Properties

Figures 6(a) and 6(b) show temperature effects on local nanofluid conductivity which

is computed inside the numerical model with (2.7) and (2.8). Since the whole top wall

is adiabatic and there is no heat transfer, the nanofluid conductivity is only illustrated

on bottom wall. One can easily notice that the behavior of nanofluid conductivity is

periodic along the channel. This is due the fact that heat sources increase wall temperature

and nanofluid conductivity. Furthermore, the remaining bottom wall, which is adiabatic,

has lower temperature that leads to lower nanofluid conductivity. With comparison of
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Figure 6: Effect of particle loading parameter φ on nanofluid conductivity profile along the channel for: (a)
Re = 50, (b) Re = 1000.

Figures 6(a) and 6(b), It can be seen that Re = 50 presents higher conductivity when

compared to Re = 1000. The reason is explained as flows. Although the higher Reynolds

number increases the heat transfer rate, but, it is not allowed fluid particles to residence for

a long time in channel because of its higher mass flow rate. So, for Re = 50 the nanofluid

temperature rises more in comparison with Re = 1000 and presents higher conductivity.

Since the variations of temperature on the top wall is negligible (less than 2 K), the

local viscosity is illustrated in Figures 7(a) and 7(b) for Re = 50 and Re = 1000, respectively,

only for bottom wall. It can be observed that the local viscosity has a decreasing periodic

behavior on bottom wall because of the growing temperature along the channel. As shown

in Figure 7, similar to the conductivity profile, the amplitude of variations in a period of local

viscosity is higher for Re = 50 in comparison with Re = 1000. This is due this fact that the

lower Reynolds number increases the residence time distribution (RTD) of nanofluid in a

period of channel and causes more temperature difference.
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Figure 7: Effect of particle loading parameter φ on nanofluid viscosity along the channel for: (a) Re = 50,
(b) Re = 1000.

4.4. Effect of Particle Volume Fraction on Heat Transfer and
Temperature Field

Results reveal that the presence of nanoparticles has a remarkable effect on heat transfer

enhancement. The average heat transfer coefficient profiles on the heat sources as a function

of Reynolds number are depicted in Figure 8(a) for φ = 0, 1, and 4. In general, the average

heat transfer coefficient increases as Reynolds number is increased. It is also observed that as

φ increases have becomes higher for a fixed value of Re. Thus, passing from φ = 0% to φ = 4%,

the maximum value of about 2366 W/m2 k for have is found at Re = 1000 and φ = 4.

Figure 8(b) illustrates the average heat transfer coefficient ratio (hr), referred to the

values obtained for basefluid, as a function of Reynolds number for φ = 0, 1 and 4%. It can

be seen that the hr is greater than one for all considered cases and rises slightly as Reynolds

number increases from 200 to 1000 for both volume fractions φ = 1 and 4%. Furthermore,
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Figure 8: Effect of parameters φ and Re on: (a) average heat transfer coefficient and (b) average heat
transfer coefficient ratio.

there is a considerable augmentation for higher volume fraction, in fact the highest value of

1.38 is detected at Re = 1000 and φ = 4%.

As we are also interested to analysis the cooling benefits of nanofluid on bottom wall,

Figures 9(a) and 9(b) show the wall temperature for various volume fractions for Re = 50

and 1000, respectively. Due to a nonuniform heat flux on bottom wall, an increasing periodic

behavior is detected in Figure 9. One can see that the wall temperature is more for Re =
50 in comparison with Re = 1000. As mentioned earlier, this is due this fact that the fluid

particles spend more time in channel. The peak values of bottom wall temperature are related

to the heat sources, while the minimum values belong to adiabatic part of bottom wall. It is

also observed that among the considered particle volume fractions, the lowest minimum and

maximum values of wall temperature in each period belong to φ = 4%. It can also be noted

the effect of volume fraction on wall cooling becomes more within the farther distance from

inlet, that is, greater X/H.



12 Journal of Applied Mathematics

= 0

= 1%

= 4%

295

300

305

310

315

320

325

330

335

0 10 20 30 40 50

T
(K

)

X/H

(a)

0 10 20 30 40 50

= 0

= 1%

= 4%

T
(K

)

X/H

298

300

302

304

306

308

310

312

(b)

Figure 9: Effect of particle loading parameter φ on bottom wall temperature at: (a) Re = 50, (b) Re = 1000.

The effect of particle volume fraction on temperature along the channel height can be

seen on Figures 10(a) and 10(b), depicting the temperature profile at the first of the last heat

source for Re = 50 and 1000, respectively. It is observed that the values of temperature are

higher for Re = 50. On the bottom wall, that is, Y/H = 0, passing from Re = 50 to Re = 1000

the temperature gradient increases which presents a better heat transfer enhancement. By

comparison of Figures 10(a) and 10(b), it is noted that the effect of the use of nanofluid on

the temperature along the height of channel is greater for lower Reynolds.

4.5. Effect of Particle Volume Fraction on Pressure Drop

It will be predictable that the use of nanoparticles in basefluid can have an adverse influence

on pressure drop because of increased viscosity. The pressure drop profiles as a function of
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Figure 10: Effect of volume fraction φ on temperature profile along channel height at the first of last heat
source for: (a) Re = 50, (b) Re = 1000.

Reynolds number are depicted in Figure 11(a) for φ = 0, 1, and 4%. As it can be noted, the

pressure drop increases as Reynolds number and particle volume fraction increase and the

highest value is found at Re = 1000 and φ = 4%. By comparison φ = 0, and φ = 1%, it

is observed that the difference between the values of pressure drop is less at lower Reynolds

number, while it will be more considerable at higher Reynolds number. This can be explained

by the temperature-dependent viscosity of nanofluid.

The pressure drop ratio (ΔPr), referred to the base fluid is described in Figure 11(b).
It is observed that the ΔPr is greater than one for all considered cases, similar to hr , and

rises slightly as Reynolds number increases from 200 to 1000 for both volume fractions φ = 1

and 4%. In fact the highest value of pressure drop ratio is equal to 1.68 that is dedicated at

Re = 1000 and φ = 4%.
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Figure 11: Effect of parameters φ and Re on: (a) pressure drop and (b) pressure drop ratio.

4.6. Effect of Heat Flux of Heat Sources on Heat Transfer and Pressure Drop

Since we use temperature-dependent properties, it is interesting to determine the effect of

heat sources heat flux (q) on heat transfer coefficient and pressure drop. The effects of (q) on

the average heat transfer and pressure drop can be seen in Figures 12(a) and 12(b), depicting,

respectively, the heat transfer coefficient and pressure drop for φ = 1 and 4%. It can easily

be seen in Figure 12(a) that the average heat transfer coefficient increases as (q) is increased

because of increased nanofluid conductivity. On the other hand, as shown in Figure 12(b),
the pressure drop decreases as (q) increases because of decreased nanofluid viscosity. Thus,

the augmentation of (q) has a good effect on thermal-hydraulic performance of channel.

4.7. Thermal Hydraulic and Overall Heat Transfer Performance

As discussed in previous sections, the use of nanofluids increases the heat transfer rate as

well as pressure drop. In order to investigate the order of magnitude of augmentation of heat

transfer and pressure drop for various Reynolds number and volume fraction, the thermal
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Figure 12: Effect of parameters φ and q on (a) averaged heat transfer coefficient and (b) pressure drop.
(Re = 100).

hydraulic performance factor as a function of Reynolds number is depicted in Figure 13 for

φ = 1 and 4%.

It is observed that the thermal hydraulic performance has different behaviors for φ = 1

and 4%. For φ = 1, thermal hydraulic performance decreases as Reynolds number increases

from 50 to 200 and after it, the profile will be unchangeable. For φ = 4%, thermal hydraulic

performance decreases as Reynolds number increases from 50 to 200, similar to φ = 1%, but

there is a remarkable augmentation as Reynolds number increases from 200 to 1000 and the

best performance of 1.16 is found at Re = 1000 and φ = 4%.

In order to have a comparison between ratio of output (heat transfer rate) to the input

(pumping power), the overal heat transfer performance of channel in term of figure of merit

(FoM) as a function of Reynolds number is illustrated in Figure 14 for φ = 1 and 4%. It can

be seen that FoM decreases as volume fraction increases. This is due this fact that specific

heat decreases as volume fraction increases. Furthermore, the increase of volume fraction

leads to increased inlet velocity, which decreases residence time distribution of nanofluid.
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So, although the heat transfer coefficient increases, but overall heat transfer performance

decreases as volume fraction increases. As Figure 14 indicates, the FoM remarkably decreases

as Reynolds number increases and the best value of 207347 is found at Re = 50 and φ = 1%.

5. Conclusion

A numerical analysis of flow and heat transfer characteristics of nanofluid in a parallel plates

channel with discrete heat sources has been presented. The heat sources are placed on bottom

wall at a constant heat flux and remaining channel surfaces are considered adiabatic. The

basefluid is water and three volume fractions of Al2O3 nanoparticles (φ = 0 (distilled water)
1 and 4%) are taken into account with a single-phase model. Furthermore, different Reynolds

numbers in the range 50–1000 are considered. The use of nanofluid can cause an asymmetric

profile velocity along the height of channel. Results clearly show that the use of nanofluid

can remarkably increase heat transfer rate and decrease the wall temperature. Furthermore,

for increasing volume fraction, nanofluid can produce lower wall temperature and higher

heat transfer rate. The average heat transfer coefficient and pressure profiles present that heat
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transfer rate increases as applied heat flux of heat sources is increased while the pressure

drop decreases.

Nomenclature

Symbols

∇: nabla operatoe (1/m)
Cp: specific heat of the fluid (J/kg K)
FoM: figure of merit

H: channel height (m)
have: average heat transfer coefficient along heat sources (W/m2 K)
k: thermal conductivity (W/m K)
ṁ: mass flow rate (Kg/s)
Nu: local Nusselt number (Nu = qH/(k(Tw − Tm)))
P : pressure (Pa)
q: heat flux of heat sources (W/m2)
Re: reynolds number (Re = (ρnf HUin)/μnf)
s: coordinate along heat sources (m)
T : temperature (K)
V : velocity vector (m/s)
W : total heat transfer rate (J/s)
Uin: inlet velocity (m/s).

Greeks

η: thermal hydraulic performance factor

ηpump: pump efficiency

μ: dynamic viscosity (Pa·s)
ρ: density (kg/m3)
φ: particle volume fraction (%).

Subscripts

w: refers to the wall conditions

bf: refers to the base fluid

nf: refers to the nanofluid

p: refers to particles

r: refers to a ratio

0: refers to the inlet conditions.
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The newly developed algorithm called the grid-by-grid inversion method is a very convenient
method for converting an existing computer code for Newtonian flow simulations to that for
viscoelastic flow simulations. In this method, the hyperbolic constitutive equation is split such
that the term for the convective transport of stress tensor is treated as a source which is updated
iteratively. This allows the stress tensors at each grid point to be expressed in terms of velocity
gradient tensor at the same location, and the set of stress tensor components is found after inverting
a small matrix at each grid point. To corroborate the robustness and accuracy of the grid-by-grid
inversion method, we apply it to the 4 : 1 axisymmetric contraction problem. This algorithm is
found to be robust and yields accurate results as compared with other finite volume methods. Any
commercial CFD packages for Newtonian flow simulations can be easily converted to those for
viscoelastic fluids exploiting the grid-by-grid inversion method.

1. Introduction

Contrary to the techniques of computational fluid dynamics for Newtonian fluids, the

numerical algorithms for viscoelastic flows are not so matured. The hyperbolic nature of the

constitutive equation incurs peculiar flow phenomena such as rod-climbing and extrudate

swell as well as causes difficulties in numerical simulation [1–3]. Since the momentum

balance equation is elliptic in steady state and parabolic in unsteady state, the complete

set for viscoelastic flows is a mixed type, hyperbolic-elliptic, or hyperbolic-parabolic. This

situation is difficult to treat numerically since it is difficult to devise a numerical algorithm

that works for mixed systems. Another difficulty associated with the hyperbolic constitutive

equation is the choice of appropriate boundary conditions for the stress field at the boundary
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of computational domain. One can impose nonslip boundary condition on the walls for

the velocity field but there exist no apparent or natural boundary conditions for the stress

components at the wall. Various numerical techniques for solving viscoelastic flows, such as

finite volume methods, finite element methods, and spectral methods, are well documented

in the references cited [4–9].
In the present investigation, a newly developed algorithm called the grid-by-grid

inversion method [10] is employed to solve the viscoelastic flows through an axisymmetric

contraction. Figure 1 shows the flow geometry for the axisymmetric contraction. Viscoelastic

fluid passes from one circular tube into the other tube of smaller radius and generates

a complex flow having a strong shear near the walls and uniaxial extension along the

centerline. The existence of strong shearing zones and uniaxial extension zone makes

this flow geometry a good test bed for numerical algorithms of viscoelastic fluids. Many

investigators of rheology adopt this flow geometry as an important benchmark problem,

especially the 4 : 1 contraction geometry [11]. We shall solve the 4 : 1 axisymmetric contraction

problem employing the newly developed “grid-by-grid inversion method” [10], which is

implemented based on a finite volume method [10].
The hyperbolic constitutive equations of viscoelastic fluids have a nonlocal character

because of the term representing convective transport of stress tensor. If this term is assumed

to be known, the constitutive equation becomes local and the stress tensor is easily evaluated

for a given velocity gradient tensor at the same location. The six stress tensor components

for the cases of a three-dimensional flow are found after inverting a six by six matrix at each

grid point and are substituted into the Navier-Stokes equation as a source term. In this way,

the numerical solution of viscoelastic flows becomes as straightforward as that of Newtonian

fluids. We call this algorithm the grid-by-grid inversion method since the viscoelastic stress

tensor is obtained by the grid-by-grid inversion of a matrix equation at each grid point. This

algorithm can easily be implemented using finite volume methods, finite element methods

and spectral methods. When applied to the 4 : 1 axisymmetric contraction problem, it is found

that the grid-by-grid inversion method yields accurate results efficiently in comparison with

numerical results of traditional algorithms.

2. Governing Equations and the Grid-by-Grid Inversion Method

We consider incompressible isothermal flows of viscoelastic fluids. The governing equations

may be written in dimensionless variables as follows:

∇ · v = 0, (2.1)

Re

(
∂v
∂t

+ v · ∇v
)

= ∇ · σ, (2.2)

σ = −PI + 2βD + τ , (2.3)

λ

(
∂τ

∂t
+ v · ∇τ

)
= 2

(
1 − β)D + λ

(
(∇v)T · τ + τ · ∇v

)
− τ . (2.4)



Journal of Applied Mathematics 3

4 r

z

27

2

49

2

D

D

D

D

Figure 1: The 4 : 1 axisymmetric contraction.

In the above equations, P is pressure, D is the rate of deformation tensor, τ is the viscoelastic

part of the stress tensor. The parameter β is the ratio of the retardation and relaxation times

of the fluid. Equation (2.4) is the constitutive equation of the Oldroyd-B model [9], λ is the

dimensionless relaxation time or the Deborah number, and Re is the Reynolds number. The

superscript T in (2.4) is the transpose. The Reynolds number and the dimensionless Deborah

number are defined by

Re =
ρUL

η
, λ =

λ1U

L
, (2.5)

where ρ is the density, λ1 the dimensional relaxation time, U the characteristic speed, and L

is the characteristic length. The characteristic velocity U and the characteristic length L are

taken as the average velocity in the downstream tube and the radius of the downstream tube,

respectively. To compare with the results of other investigators [9, 11], we take the value of β

to be 1/9.

Next, we consider the grid-by-grid inversion method as applied to the set of equations

(2.1)–(2.4). Contrary to the Newtonian fluids where the stress field τ depends on the velocity

gradient tensor ∇v locally, the stress depends on the velocity gradient tensor nonlocally due

to the fact that constitutive equation is hyperbolic partial differential equation. The convective

transport of the stress tensor, represented by v ·∇τ in (2.4), takes care of the memory effect of

τ in its dependence on ∇v and causes the functional dependence of τ on ∇v to be nonlocal. In

the grid-by-grid inversion method, v · ∇τ is assumed to be a known source term which shall

be updated iteratively in the process. Then the constitutive equation (2.4) can be converted

such that τ is represented as a local function of ∇v as in the case of Newtonian fluids. This

arrangement renders the numerical solution of viscoelastic fluids as straightforward as that

of Newtonian fluids. The steps for obtaining the velocity and the stress at time step n+1, vn+1

and τn+1, using known velocity and stress at time step n,vn and τn, proceed in an iterative

manner as follows. First, define

C ≡ vn+1(it) · ∇τn+1(it), (2.6)
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where the superscript n + 1(it) indicates variable at time step n + 1 in the itth iteration.

Discretizing (2.4) in time implicitly and representing D in terms of the velocity gradient ∇v,

we find the following local matrix equations defined at each grid point.

(
λ

Δt
+ 1.0

)
τn+1(it+1) − λ(∇v)T

n+1(it) · τn+1(it+1) − λτn+1(it+1) · (∇v)n+1(it)

=
λ

Δt
τn − λC +

(
1 − β)[(∇v)n+1(it) + (∇v)T

n+1(it)
]
.

(2.7)

Once C is evaluated using variables at n + 1(it), (2.7) can be solved for τn+1(it+1) by inverting

a six-by-six matrix at each grid point for the six independent stress components for the case

of three-dimensional flows. Equation (2.7) is also solved at the boundary grid points to find

the boundary stress field. This suggests a natural method of imposing boundary conditions

for the hyperbolic constitutive equations at all boundaries of the computational domain.

This method had been employed to impose outflow boundary conditions by Papanastasiou

et al. [12] and is called the open boundary condition. Using τn+1(it+1) obtained from (2.7),
the velocity at the n + 1 th time step in the it + 1 th iteration, vn+1(it+1), is found by solving

(2.1)–(2.3) as follows:

∇ · vn+1(it+1) = 0, (2.8)

Re

(
vn+1(it+1) − vn

Δt
+ vn+1(it+1) · ∇vn+1(it+1)

)
= −∇Pn+1(it+1) + 2β∇2vn+1(it+1) +∇ · τn+1(it+1).

(2.9)

Although (2.8)-(2.9) can be solved using any numerical methods for incompressible Navier-

Stokes equations, we employ a finite volume method based on the SIMPLE algorithm [13, 14].
To stabilize the numerical scheme for large values of λ, (2.6) is evaluated using one of the

various upwind schemes. In the present work, we adopt a higher-order upwind scheme,

MinMod [14], to evaluate C.

The case of β = 0 requires a special deliberation before employing standard algorithms

for incompressible Navier-Stokes equations in the grid-by-grid inversion technique. When

β = 0, we decompose the total stress σ into pure viscous and elastic parts −PI + 2D and Σ,

respectively, such that

σ = −PI + 2D + Σ, (2.10)

where

Σ ≡ τ − 2D. (2.11)
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Then the momentum and constitutive equations for the case of β = 0 may be written as

∇ · v = 0, (2.12)

Re

(
∂v
∂t

+ v · ∇v
)

= −∇P +∇2v +∇ · Σ, (2.13)

λ

(
∂Σ
∂t

+ v · ∇Σ − (∇v)T · Σ − Σ · (∇v)
)
+ Σ = −2λ

(
∂D
∂t

+ v · ∇D − (∇v)T ·D −D · ∇v
)
.

(2.14)

This decomposition is called the EVSS formulation and was proposed by Perera and Walters

[15]. The implementation of grid-by-grid inversion method to the set of (2.12)–(2.14) is

straightforward. First, we evaluate

E ≡ vn+1(it) · ∇Σn+1(it). (2.15)

Next, convert (2.14) to the following local matrix equations for Σ decoupled at each grid

point:

(
λ

Δt
+ 1.0

)
Σn+1(it+1) − λ(∇v)T

n+1(it) · Σn+1(it+1) − λΣn+1(it+1) · (∇v)n+1(it)

=
λ

Δt
Σn − λE − 2λ

(
1

Δt
Dn+1(it) − 1

Δt
Dn + v · ∇D − (∇v)T ·D −D · ∇v

)n+1(it)

.

(2.16)

Then, (2.12) and (2.13) are discretized as follows:

∇ · vn+1(it+1) (2.17)

Re

(
vn+1(it+1) − vn

Δt
+ vn+1(it+1) · ∇vn+1(it+1)

)
=−Pn+1(it+1)+∇2vn+1(it+1)+∇ · Σn+1(it+1). (2.18)

The structure of (2.16) is the same as that of (2.7) and can be solved for Σn+1(it+1) by

inverting a six-by-six matrix at each grid point for a three-dimensional flow once (∇v)n+1(it) is

given. After obtaining Σn+1(it+1), vn+1(it+1) is found by solving (2.17)-(2.18) using the SIMPLE

algorithm [13]. The second-order derivative terms appearing in v ·∇D of (2.14) are evaluated

using a one-sided finite difference formula at the boundaries.

The overall solution procedure for the grid-by-grid inversion method may be

summarized as follows.

(1) vn and τn have obtained in the previous time step n.

The procedure for the time step n + 1 begins as follows.

(2) Assume vn+1(it) and τn+1(it). For the first iteration (it = 1), vn+1(it)=vn and τn+1(it)=τn.
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(3) Evaluate C of (2.6) (β /= 0) or E of (2.15) (β = 0) using an upwind scheme.

(4) Using vn+1(it), solve (2.7) (β /= 0) or (2.16) (β = 0) for τn+1(it+1) by inverting a six-by-

six matrix at each grid point including the boundary grids.

(5) Using τn+1(it+1),

(β /= 0) solve the momentum equation, (2.9), and continuity equation to find vn+1(it+1).

(β = 0) solve the momentum equation, (2.18), and continuity equation to find vn+1(it+1).

(6) Convergence check for τn+1 and vn+1. If not converged, go to step (2). Otherwise,

update the time step and go to step (1).

Usually convergence is attained in two or three iterations. The novelty of the grid-

by-grid inversion method is its easiness of numerical implementation. As noted in the

above procedure, one can easily convert any existing computer code for Newtonian flow

simulations to that for viscoelastic flow simulation by adding a subroutine that solves the

viscoelastic constitutive equation using the grid-by-grid inversion method, summarized

as steps (3)∼(4), to evaluate the viscoelastic source terms in the Navier-Stokes equation,

∇ · τ . Adding a source term to the Navier-Stokes equation is an easy procedure whether

we employ a finite volume method or a finite element method. In the subroutine for the

viscoelastic constitutive equation, one inverts a small matrix at each grid point, which can

be performed cheaply. Therefore, one can easily convert any commercial CFD package for

Newtonian fluid flows to that for viscoelastic fluids employing the grid-by-grid inversion

method. Its robustness and accuracy are corroborated in the next section, where the grid-by-

grid inversion method is employed to solve the 4 : 1 viscoelastic axisymmetric contraction

problem. Although Phillips and Williams [16] solve the viscoelastic constitutive equation

by converting small matrix equations in their semi-Lagrange method, it is very difficult to

convert an existing Newtonian code to a viscoelastic code using the semi-Lagrange method

since it treats the momentum and the constitutive equation simultaneously.

3. Viscoelastic Flow through an Axisymmetric Contraction

In this section, we solve the flow of an Oldroyd-B fluid through a 4 : 1 axisymmetric

contraction geometry using the grid-by-grid inversion method. The schematic representation

of the flow geometry is depicted in Figure 1. The viscoelastic flow through the circular

contraction geometry has served as a standard benchmark problem for numerical algorithms

for viscoelastic fluids. The presence of a singularity in the entry-flow geometry as well as

regions of high shear and extension in the flow have been a significant challenge for a long

time, and many investigators have struggled to develop accurate and robust algorithms

for viscoelastic flows through contraction geometries [17, 18]. The contraction ratio 4 : 1 is

the standard one in this benchmark problem. A good review of old works may be Trebotich

et al. [18]. Recently, Phillips and Williams [11, 16] used a finite volume method to solve the

flow of an Oldroyd-B fluid through planar and axisymmetric contractions. Among these two

geometries, the axisymmetric contraction yields more dramatic viscoelastic effects. In the

present investigation, we will solve the flow of Oldroyd-B fluid through the axisymmetric

geometry using the grid-by-grid inversion method based on the SIMPLE algorithm to

corroborate the accuracy and robustness of the grid-by-grid inversion method. When solving

(2.8)-(2.9) or (2.17)-(2.18) using the SIMPLE algorithm, we adopt a collocated mesh and
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the pressure oscillation induced by the collocated mesh is eliminated using the Rhie-Chow

method [19], and a higher-order upwind scheme, MinMod [14], is used to treat the inertia

force term in the momentum equation and the convective transport of stress tensor in the

constitutive equation. For the 4 : 1 axisymmetric contraction geometry depicted in Figure 1,

the number of relevant components of stress tensor is four because the ∇ · τ term in (2.9)
contains a circular stress component τθθ as follows:

(∇ · τ)r =
1

r

∂

∂r
(rτrr) +

∂

∂z
τrz − τθθ

r
,

(∇ · τ)z =
1

r

∂

∂r
(rτrz) +

∂

∂z
τzz.

(3.1)

Although the relevant velocity components for axisymmetric flows are (vr, vz), it is necessary

to find the four stress components, τrr , τrz, τzz, and τθθ which appear in (3.1). The constitutive

equation (2.4) may be written for an axisymmetric geometry as follows:

λ

(
∂τrr

∂t
+ vr

∂τrr

∂r
+ vz

∂τrr

∂z

)
= 2

(
1 − β)∂vr

∂r
+ λ

(
2
∂vr

∂r
τrr + 2

∂vr

∂z
τrz

)
− τrr , (3.2)

λ

(
∂τrz

∂t
+ vr

∂τrz

∂r
+ vz

∂τrz

∂z

)
=
(
1 − β)(∂vz

∂r
+
∂vr

∂z

)
+ λ

(
∂vr

∂r
τrz +

∂vr

∂z
τzz + τrr

∂vz

∂r
+ τrz

∂vz

∂z

)
− τrz,

(3.3)

λ

(
∂τzz

∂t
+ vr

∂τzz

∂r
+ vz

∂τzz

∂z

)
= 2

(
1 − β)∂vz

∂z
+ λ

(
2
∂vz

∂r
τrz + 2

∂vz

∂z
τzz

)
− τzz, (3.4)

λ

(
∂τθθ

∂t
+ vr

∂τθθ

∂r
+ vz

∂τθθ

∂z

)
= 2

(
1 − β)vr

r
+ λ

(
2
vr

r
τθθ

)
− τθθ. (3.5)

It is to be noted that equations for (τrr , τrz, τzz) are coupled with each other, while that for

τθθ is decoupled. The relevant components of C of (2.6) are

CIJ = vr
∂τ IJ

∂r
+ vz

∂τ IJ

∂z
, (3.6)
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where IJ = rr, rz, zz, θθ. Assuming known values of CIJ , (3.2)–(3.4) may be represented

as a set of matrix equations at each grid point including the boundary grids as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ

Δt
+ 1 − 2λ

∂vr

∂r
−2λ

∂vr

∂z
0

−λ∂v
z

∂r

λ

Δt
+ 1 − λ

(
∂vr

∂r
+
∂vz

∂z

)
−λ∂v

r

∂z

0 −2λ
∂vz

∂r

λ

Δt
+ 1 − 2λ

∂vz

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

n+1(it)

ik

⎡⎣τrrτrz

τzz

⎤⎦n+1(it+1)

ik

=

⎡⎢⎢⎢⎢⎢⎢⎣

λτrr(n)

Δt
− λCrr + 2

(
1 − β)∂vr

∂r

λτrz(n)

Δt
− λCrz +

(
1 − β)(∂vz

∂r
+
∂vr

∂z

)
λ

Δt
τzz(n) − λCzz + 2

(
1 − β)∂vz

∂z

⎤⎥⎥⎥⎥⎥⎥⎦

n+1(it)

ik

.

(3.7)

On the other hand, from (3.5), τθθ
ik

can be found at each grid point within the computational

domain and on the boundary as follows:

(
τθθ

)n+1(it+1)

ik
=

(
λ

Δt
(
τθθ

)n − λCθθ + 2
(
1 − β)vr

r

)n+1(it)

ik(
λ

Δt
+ 1 − 2λ

vr

r

)n+1(it)

ik

. (3.8)

Once (τrr
ik
, τrz

ik
, τzz

ik
, τθθ

ik
)n+1(it+1) are obtained from (3.7)-(3.8), they are used to solve (2.8)-(2.9)

to find (vr, vz)n+1(it+1)
ik

in the 4 : 1 axisymmetric contraction geometry.

4. Results

In this section, we compare the results from the grid-by-grid inversion method with those

of Phillips and Williams [11] to corroborate the accuracy and robustness of the grid-by-grid

inversion method. To make the comparison meaningful, we adopt the same flow geometry

and inlet conditions as those employed by Phillips and Williams [11]. Namely, the contraction
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Figure 2: Confirmation of grid convergence of the grid-by-grid inversion method when Re = 0.0 and
λ = 1.0 (a) along r = 1.0 (b) along r = 0.064.

ratio is 4 : 1, the length of the larger channel is 27R, and that of smaller channel is 49R when

R is the radius of the smaller channel (cf. Figure 1). At the inlet, the parabolic Poiseuille flow

is adopted as Phillips and Williams [11] have done.

(-) inlet velocity

vz(r) =
1

64

(
16 − r2

)
, vr = 0, 0 ≤ r ≤ 4, (4.1)
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Figure 3: Stress overshoot at various λ when Re = 0.0 (a) along r = 1.0 (b) along r = 0.064.

where r ≡ r ′/R and r ′ is the dimensional radial distance. Contrary to Phillips and Williams

[11], we do not impose inlet boundary conditions for the stress field, since the grid-by-grid

inversion method does not require them and simply solve (3.7)-(3.8) at the inlet grid points

to find the stress field at the inlet location. This is also an important merit of the grid-by-grid

inversion method over other algorithms for the viscoelastic flows. Although Papanastasiou

et al. [12] employed this method of imposing open outflow boundary conditions previously

and named it open boundary condition method or free boundary condition method, it

appears very naturally in the grid-by-grid inversion method.
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Figure 4: Comparison of streamlines for λ = 0.0, λ = 0.5, λ = 1.0, and λ = 1.5 when Re = 0.0.

We have employed three sets of grid system to ensure grid convergence of numerical

results. For the three sets of grids, that is, 14,580 (Grid A), 32,535 (Grid B), and 57,960 (Grid

C), the extrastress component τzz is plotted when λ = 1.0 for Re = 0.0 along r = 1 in

Figure 2(a), and along r = 0.064 in Figure 2(b). For there three mesh systems, the numbers of

cells along r in the small tube are 30, 45, and 60, respectively. For Grid A, the minimum Δr is

0.005 at the wall and it grows gradually until it becomes 5.1 × 10−2 at the center. For Grid B,

(Δr)min is 0.003 and (Δr)max is 3.4 × 10−2 at the center, and for Grid C, (Δr)min = 0.002 at the

wall and (Δr)max = 2.3 × 10−2 at the center. The results of the present work are also compared

with those of Phillips and Williams [11]. Though the grid number increases from 32,535 to

57,960, there is not appreciable change in τzz. Therefore, we adopt Grid B in the subsequent

computations. Figure 3 shows the extrastress component τzz at Re = 0.0 for λ = 0.5, 1.0,

and 1.5 along r = 1.0 (Figure 2(a)) and along r = 0.064 (Figure 2(b)). The grid-converged

data for τzz obtained from the grid-by-grid inversion method are somewhat smaller than

the benchmark data of Phillips and Williams [11]. At the corner of the contractor, τzz has

a sharp overshoot, which increases with respect to λ, and it settles down to a downstream
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Figure 5: Comparison of streamlines for λ = 0.0, λ = 0.5, λ = 1.0, and λ = 1.5 when Re = 1.0.

value rapidly. Near the center of the contracted channel (r = 0.064), a smaller overshoot of

τzz appears, which increases as λ increases, and it settles down to a downstream value much

slowly as compared to that at the wall (r = 1.0).
Figure 4 shows comparison of streamlines for λ = 0.0, 0.5, 1.0, and 1.5 obtained from

the grid-by-grid inversion method with those from the Phillips and Williams [11] when

Re = 0.0. The grid-by-grid inversion method yields accurate results as compared with the

benchmark data for the range of λ values considered. The size of the corner vortex increases as

λ increases. Figure 5 depicts comparison of streamlines at various values of λ when Re = 1.0.

The predictions of the grid-by-grid inversion method are also in good agreement with those

of the benchmark data [11]. Comparing with the streamlines of Re = 0.0, it is found that

the vortex sizes are diminished due to the inertia effect [11]. The size of the corner vortex

can be measured using a parameter L1, as suggested by Phillips and Williams [11] and

Oliveira et al.[8], which is the distance of the upstream separation point from the salient

corner. Figure 6 shows the variation of L1 with respect to λ for Re = 0.0 and Re = 1.0.
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Figure 6: Variation of the size of corner vortex L1 with respect to λ when Re = 0.0 and Re = 1.0.

For Re = 1.0, the grid-by-grid inversion method is found to yield results similar to those

of the benchmark data of Phillips and Williams [11]. For Re = 0.0, the results of the grid-

by-grid inversion method are compared with those of Oliveira et al. [8] as well as those

of Phillips and Williams [11]. It is shown that both the grid-by-grid inversion and Phillips

and Williams [11] yield L1 somewhat larger than those of Oliveira et al. [8]. Since Oliveira

et al. [8] do not consider the case Re = 1.0, we cannot compare the grid-by-grid inversion

method with Oliveira et al. when Re = 1.0. To corroborate the accuracy of the grid-by-grid

inversion method further, we compare the results for the vortex intensity ΨR, which is defined

as the flow rate in recirculation divided by inlet flow rate, in Figure 7 when Re = 0.0. As in

previous comparison, the grid-by-grid inversion method yields results similar to those of

Phillips and Williams [11], while Oliveira et al. [8] predicts results somewhat smaller than

the grid-by-grid inversion method. The grid-by-grid inversion method yields results for λ

larger than 1.5 and Re larger than 1.0, which demonstrates the robustness of the grid-by-grid

inversion method as compared to other finite volume methods or finite element methods

[9, 11, 16, 18].

5. Conclusion

The grid-by-grid inversion method [10] has been applied to the 4 : 1 circular contraction

problem in the present investigation. Viscoelastic flows through the contraction generate

complex flows exhibiting strong shear and uniaxial extension, which is a good test bed for

the robustness and accuracy of a new numerical algorithms. In the grid-by-grid inversion
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Figure 7: Variation of the dimensionless vortex intensity ΨR with respect to λ when Re = 0.0.

method [10], the hyperbolic constitutive equation is split such that the term for the convective

transport of stress tensor is treated as a source, which is updated iteratively. This allows the

stress tensor at each grid point to be expressed in terms of velocity gradient tensor at the same

location, and the set of stress tensor components is found after inverting a small matrix at each

grid point. The grid-by-grid inversion method can be implemented easily in any commercial

CFD packages for Newtonian fluid flows to convert them to be used for viscoelastic fluid

flows. The grid-by-grid inversion method is found to yield accurate results as compared with

the benchmark data of Phillips and Williams [11]. It predicts accurately the variation of corner

vortex size and the τzz overshoot with respect to λ at Re = 0.0 and Re = 1.0.
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Understanding platoon dispersion is critical for the coordination of traffic signal control in an
urban traffic network. Assuming that platoon speed follows a truncated normal distribution,
ranging from minimum speed to maximum speed, this paper develops a piecewise density
function that describes platoon dispersion characteristics as the platoon moves from an upstream
to a downstream intersection. Based on this density function, the expected number of cars in the
platoon that pass the downstream intersection, and the expected number of cars in the platoon
that do not pass the downstream point are calculated. To facilitate coordination in a traffic signal
control system, dispersion models for the front and the rear of the platoon are also derived. Finally,
a numeric computation for the coordination of successive signals is presented to illustrate the
validity of the proposed model.

1. Introduction

At an intersection, lights change from red to green permitting drivers to proceed straight

through the intersection. On urban roads these cars will be traveling at different speeds.

While moving downstream, the platoon spreads out in a long segment and cars do not

uniformly arrive at the next intersection; this is called platoon dispersion. As a platoon moves

downstream from an upstream intersection at green phase end time, the cars in the platoon

become segmented due to compression and splitting at the downstream intersection’s signal

lights. It is obvious that using platoon dispersion theory to optimize signal timing plans for

traffic signal control could effectively reduce the number of stops and thereby lead to a sharp

decline in pollution emissions and fuel consumption.

However, platoon dispersion makes signal coordination more complicated [1–17].
Previous studies on the diffusion of traffic platoons have adopted one of three standard
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approaches: the wave theory of Lighthill and Whitham [1–3], Pacey’s diffusion theory [4–

9], and Robertson’s recursive platoon dispersion model [10–12]. The first model, also called

the LWR model in the literature of traffic flow theory, needs to have an accurate represen-

tation of the equilibrium flow-density relationship, which makes it unsuitable for practical

applications [13]. The second approach firstly proposes a purely kinematical model to des-

cribe the diffusion of traffic platoons by assuming that the speed of traffic follows a normal

distribution [4]. Its invalid input parameters (viz. the average speed of vehicles and standard

deviation of speed) to calibrate the model make it suitable only for the study of small

changes in traffic cycles [6]. The final model uses field data to derive an empirical method

for predicting platoon behavior and has been widely used in the well-known TRANSYT soft-

ware model, because of its simplicity and good explanatory power for understanding the

qualitative behavior of road traffic [12]. Both Pacey’s and Robertson’s models are probability-

based models with different probability density functions. Seddon [14, 15] concluded in

his series of studies on different models of platoon dispersion that there is little difference

between the Pacey and Robertson methods with regards to accuracy or efficiency. However, a

study by Wang et al. [16] concluded that the recursive model gives good results for short dis-

tances, while models using lognormal and normal distributions are better for longer dis-

tances.

As mentioned previously, Pacey’s model is the most successful combination of

theoretical and experimental work on traffic platoons. Most current research based on this

model assumes that platoon speed follows a normal distribution, spreading from negative

infinity to positive infinity. This does not properly reflect the field situation. Grace and Potts

[5] further investigated the density aspect of Pacey’s model. Liu and Yang [6–8] proposed

a method to correct the vehicle startup time loss of Grace’s model. Wang et al. [9] also fur-

ther refined Pacey’s model by considering travel time following a nontransformed normal

distribution.

To address the defects of Pacey’s model, the authors of this paper propose a more

realistic platoon dispersion model, which assumes that the velocity of cars follows a truncated

normal distribution, ranging from a minimum speed to a maximum speed [17]. On the basis

of the authors’ previous research, this paper analyzes platoon dispersion characteristics as the

platoon moves down from an upstream intersection at green phase end time. Finally, numeric

computation applying the model to signal coordination is presented to confirm the model’s

validity.

2. Platoon Dispersion Model

2.1. Assumptions of the Speed Density Function

In Pacey’s model, the cars in a platoon are assumed to move with unchanged speeds (i.e., it

is ideally treated as the average speed of vehicles measured between adjacent intersections).
It is assumed that (a) all the vehicles behind the stop lines uniformly start up after the signal

turns from red to green, (b) a car’s speed is independent of its position in a platoon, and (c)
there is no interaction between cars and a faster car can pass a slower one without hindrance.

A definite value is assigned to the probability that certain cars will have positive speed.

Pacey’s research has proven that car speeds in a platoon are normally distributed with mean

μ and variance σ2, which accounts for the spread of platoons. However, the proportion of cars

with v < vm and v > vf is zero in reality (vm and vf denote minimum speed and maximum
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−a x − tv 0 tvftvm − a

A car with constant spead v, which departs from its stop

position at time 0, arrives location at x at time t

Platoon stops in the road

at time 0

Platoon spreads along the section

at time t

x

Figure 1: Spreading of platoon.

speed, resp.). Hence, a speed range in a truncated normal distribution extending from vm
to vf is a much more reasonable assumption. In this case, the speed density function is as

follows:

f ′(v) =

⎧⎨⎩c
1√

2πσ
e−0.5((v−μ)/σ)2

, vm ≤ v ≤ vf ,
0, others.

(2.1)

Its calculation formula can be expressed as follows:

(a) for v < vm : F ′(v) =
∫vm
−∞ f ′(v)dx = 0;

(b) for vm ≤ v ≤ vf : F ′(v) =
∫v
−∞ f ′(v)dx =

∫v
vm
f ′(v)dx = c[

∫v
−∞(1/

(
√

2πσ))e−0.5((v−μ)/σ)2

dx − ∫vm−∞(1/(√2πσ))e−0.5((v−μ)/σ)2

dx] = c[F(v) − F(vm)];
(c) for v > vf : F ′(v) =

∫v
vm
f ′(v)dx =

∫vf
vm
f ′(v)dx = c[F(vf) − F(vm)] = 1.

As the constant c ensures that the accumulated probability of f ′(v) in the range

[vm, vf] equals 1, then 1/c = F(vm ≤ v ≤ vf) = φ(vf/σ − μ/σ) − φ(vm/σ − μ/σ).

2.2. Development of the Platoon Dispersion Model

Assuming that the start time of the upstream signal green phase t equals 0, and the stop bar

location x is 0, then the initial density distribution function k(x, 0) of the queuing vehicles

behind the stop bar at time t = 0 is

k(x, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≥ 0,

kj , −a ≤ x ≤ 0,

0, x < −a,
(2.2)

where a is the queue length and kj is the jam density within the queue length.

This paper studies the movement of a platoon from the beginning of a green phase,

until it passes a downstream intersection. As illustrated in Figure 1, the queuing vehicles at

the upstream intersection start traveling at constant speed v from their stop position x − vt ∈
[−a, 0] at the start time of the green phase t = 0. After time t, the number of vehicles having

passed the downstream intersection (real or virtual) and the number that have not past the
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downstream intersection are A(x, t) and B(x, t), respectively. The computation formula is

derived according to the aforementioned physical definition and presented as follows:

A(x, t) =
∫ t·vf
x

k
(
y, t

)
dy,

B(x, t) = kja −A(x, t) =
∫x
tvm−a

k
(
y, t

)
dy,

(2.3)

where k(y, t) is the density of the platoon past y at time t. The density distribution function

k(x, t), at downstream location x at time t, is calculated using the following piecewise

function:

k(x, t) =
∫vf
vm

f ′(v)k(x − vt, 0)dv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x > tvf ∨ x < tvm − a,

kj

∫x/t+a/t
vm

f ′(v)dv, tvm − a ≤ x < tvm,

kj

∫x/t+a/t
x/t

f ′(v)dv, tvm ≤ x ≤ tvf − a,

kj

∫vf
x/t

f ′(v)dv, tvf − a < x ≤ tvf .

(2.4)

Let u = (v − μ)/σ, and the variation coefficient α = σ/μ, as follows:

∫v2

v1

f ′(v)dv = c
∫ (v2−μ)/σ

(v1−μ)/σ

1√
2π

e−0.5u2

du = c
∫ (tv2/μ−t)/αt

(tv1/μ−t)/αt

1√
2π

e−0.5u2

du =
c

2
[F(z)]z2

z1
, (2.5)

where z2 = (tv2/μ − t)/√2αt, z1 = (tv1/μ − t)/√2αt, v1 and v2 are constants, and F(z) =

2
∫√2z

0
(1/

√
2π)e−0.5u2

du = (2/
√
π)

∫z
0
e−u

2

du is the standard normal distribution.

Following (2.4) and (2.5), the calculation formula of k(x, t) is as follows:

k(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x > tvf ∨ x < tvm − a,

ckj

2
[F(z)](x/μ+a/μ−t)/

√
2αt

(tvm/μ−t)/
√

2αt
, tvm − a ≤ x < tvm,

ckj

2
[F(z)](x/μ+a/μ−t)/

√
2αt

(x/μ−t)/√2αt
, tvm ≤ x ≤ tvf − a,

ckj

2
[F(z)]

(tvf/μ−t)/
√

2αt

(x/μ−t)/√2αt
, tvf − a < x ≤ tvf .

(2.6)
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Let G(z) =
∫
F(z)dz = zF(z) + (1/

√
π) exp(−z2); then, based on (2.6), the number of

vehicles
∫x2

x1
k(y, t)dy distributed along the road segment [x1, x2] can be calculated as follows:

∫x2

x1

k
(
y, t

)
dy =

c · kj
2

∫x2

x1

[
F
(
z2

(
y
)) − F(z1

(
y
))]

dy

=
ckjμ

√
2αt

2

[∫z2(x2)

z2(x1)
F
(
y
)
dy −

∫z1(x2)

z1(x1)
F
(
y
)
dy

]

=
ckjμ

√
2αt

2

(
[G(z)]z2(x2)

z2(x1)
− [G(z)]z1(x2)

z1(x1)

)
.

(2.7)

Using (2.6) and (2.7), A(x, t) and B(x, t) can be calculated under the following five

scenarios:

(a) for x > tvf : A(x, t) = 0 and B(x, t) =
∫ t·vm
t·vm−a k(y, t)dy +

∫ t·vf−a
t·vm k(y, t)dy +∫ t·vf

t·vf−a k(y, t)dy;

(b) for tvf − a < x ≤ tvf : A(x, t) =
∫ t·vf
x

k(y, t)dy and B(x, t) =
∫ t·vm
t·vm−a k(y, t)dy +∫ t·vf−a

t·vm k(y, t)dy +
∫x
t·vf−a k(y, t)dy;

(c) for tvm ≤ x ≤ tvf − a : A(x, t) =
∫ t·vf−a
x

k(y, t)dy +
∫ t·vf
t·vf−a k(y, t)dy and B(x, t) =∫ t·vm

t·vm−a k(y, t)dy +
∫x
t·vm k(y, t)dy;

(d) for tvm − a ≤ x < tvm : A(x, t) =
∫ t·vf−a
t·vm k(y, t)dy +

∫ t·vm
x

k(y, t)dy +
∫ t·vf
t·vf−a k(y, t)dy

and B(x, t) =
∫x
t·vm−a k(y, t)dy;

(e) for x < tvm − a : A(x, t) =
∫ t·vm
t·vm−a k(y, t)dy +

∫ t·vf−a
t·vm k(y, t)dy +

∫ t·vf
t·vf−a k(y, t)dy and

B(x, t) = 0.

The platoon dispersion model proposed in this paper is described in the previous sec-

tion. If x is set as the upstream and downstream signal location, then how dispersion cha-

racteristics of the queuing vehicles at the upstream intersection influence the downstream

green phase start time setup can be quantitatively analyzed, as the platoon moves down from

an upstream intersection at green phase end time to downstream intersection. The results can

be used to calculate the traffic flow parameters used in signal coordination, such as delay stop

and queue length.

3. The Front and Rear of a Platoon in the Dispersion Model

In general, only dispersion behavior at the front and rear of the platoon is important in traffic

signal coordination. When adjacent intersections are not too far apart, fast cars at the rear of

the platoon are unable to get to the front and the slower cars at the front do not have time to

filter back to the rear. Hence, the front and rear of the platoons may be treated separately.
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3.1. Front of the Platoon

A good design of coordinated lights aims at reducing the number of platoon leaders stopped

at the second intersection before its light turns green. The rear does not significantly affect

the front, which helps in the mathematical analysis of the behavior of the front of the platoon.

Using Pacey’s assumptions, the initial density function k(x, 0) of the front of the platoon is

defined by

k(x, 0) =

⎧⎨⎩0, x > 0,

kj , x ≤ 0.
(3.1)

The density of the front of the platoon past x at time t, as obtained from (2.4) and (2.5),
is

k(x, t) = ckj

∫ (tvf/μ−t)/αt

(x/μ−t)/αt

1√
2π

e−0.5y2

dv

=
ckj

2

[
F

(
z2 =

tvf/μ − t√
2αt

)
− F

(
z1 =

x/μ − t√
2αt

)]

=
ckj

2
[F(z)]z2

z1
.

(3.2)

As mentioned previously, cars at the front travel at a range of speeds [μ, vf], leading

to the spread of cars along the section [tμ, tvf]. Hence, the number of cars A(x, t) from the

front of the platoon that have passed the downstream location x at time t can be calculated

under the following three scenarios:

(a) for x ≤ tμ : A(x, t) = ((ckjμ
√

2 αt)/2)[zF((tvf/μ − t)/√2αt) −G(z)](tvf/μ−t)/
√

2αt)
0

;

(b) for tμ < x ≤ tvf : A(x, t) = (ckj/2)F((tvf/μ − t)/√2αt)(tvf − x) − ((ckjμ
√

2 αt)/

2)[G(z)]
(tvf/μ−t)/

√
2αt)

(x/μ−t)/√2αt)
;

(c) for x > tvf : A(x, t) = 0.

3.2. Rear of the Platoon

Another goal of signal coordination is to reduce the number of stragglers at the rear who miss

the green phase. Assuming the upstream signal green time ends at time 0, the initial density

function k(x, 0) of the rear of the platoon, according to Pacey’s assumptions, is defined by

k(x, 0) =

⎧⎨⎩0, x < 0,

k2, x ≥ 0,
(3.3)

where k2 ≤ kj is the density near the rear of the platoon.
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Applying a similar limit process to (3.2) to calculate the proportion of the rear of

platoon that has past x at time t, we obtain

k(x, t) = ck2

∫ (x/μ−t)/αt

(tvm/μ−t)/αt

1√
2π

e−0.5y2

dv

=
ck2

2

[
F

(
z2 =

x/μ − t√
2αt

)
− F

(
z1 =

tvm/μ − t√
2αt

)]
=
ck2

2
[F(z)]z2

z1
.

(3.4)

The previous calculations show that the speed of vehicles in the rear of the platoon is

less than μ, which means that these vehicles are spread out along the section [tvm, tμ]. Hence,

the number of cars B(x, t) from the rear that have not passed the downstream location x at

time t can be calculated under the following three scenarios:

(a) for x ≤ tvm : B(x, t) = 0;

(b) for tvm < x ≤ tμ : B(x, t) = ((ck2μ
√

2αt)/2)[G(z)](x/μ−t)/
√

2αt

(tvm/μ−t)/
√

2αt
− (ck2/2)(x −

tvm)F((tvm/μ − t)/√2αt);

(c) for x > tμ : B(x, t) = ((ck2μ
√

2αt)/2)[−zF((tvm/μ − t)/√2αt) +G(z)]
0

(tvm/μ−t)/
√

2αt.

4. Numerical Calculation

Form proposed model, kj and k2 are not related with diffusion of platoons, which arises

only from the differences in speed between vehicles (kj and k2 only decide how many cars

are spreading along road). Wei et al.’s study shows that the initial flow is approximately a

rectangular pulse with maximum flow Q = kjμ = k2μ [17]. Hence, k(x, t), A(x, t), and B(x, t)
could be replaced by k(x, t)/Q, A(x, t)/Q, and B(x, t)/Q to calibrate the model. Using test

data in Grace and Potts’s paper [5], upstream intersection x = 0 and downstream intersection

x = xd have the following parameters: vm = 10.1 m/s, vf = 33.5 m/s, μ = 13.4 m/s, and

σ = 2 m/s. Generally, if the offset of the downstream intersection is set as t0 = xd/μ, then

the queuing vehicles at the upstream intersection, travelling at an average speed, can pass

downstream intersection at the time.

To verify the validity of the proposed model, this paper compares the difference

between the front and rear platoon dispersion characteristics in the proposed model and in

Pacey’s model. Furthermore, the effect of changing parameter α is examined hereinafter, to

quantify how it affects the spreading of the platoon.

4.1. Platoon Density Distribution Function

The difference in the density distribution function between proposed model and Pacey’s

model decides that our model is more realistic than Pacey’s model. In order to prove that,

k(x, t)/Q, which denotes the ratio to the maximum initial flow of density of platoon past x

at time t, is calculated for both the proposed model and Pacey’s model at three time points

t = toμ/vf , to, (toμ + a)/vm under xd = 45μ, and the results are shown in Figure 2.

The following can be concluded based on Figure 2.

(a) The speed density of both Pacey’s model and proposed model follows a normal

distribution, which lead to a situation that there are more vehicles traveling
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Figure 2: Comparison of the proposed model’s and Pacey’s density distribution function k(x, t) under
xd = 45μ.

around the mean speed, and fewer vehicles at higher or lower speeds. The speed

distribution determines the platoon density distribution function. Therefore, the

density in the middle of the platoon is higher than that in the front or rear of the

platoon. As time passes, the platoon becomes more dispersed along the road, and

the hump of the platoon density distribution function becomes less significant.

(b) In the proposed model, the queuing vehicles traveling at different speed v depart

from their stop positions at time 0, and these cars are spreading along the section x ∈
[tvm −a, tvf] at time t. There are the following three stages: if time is t ∈ [0, t0μ/vf],
the front of platoon has not arrived at the downstream intersection x = xd, then

tvf < xd, and k(xd, t) = 0; if time is t ∈ [t0μ/vf , (t0μ + a)/vm], some vehicles are

starting to pass the downstream intersection x = xd, and tvm − a ≤ xd ≤ tvf and

k(xd, t)/= 0; if time is t ∈ [(t0μ + a)/vm,+∞], the rear of the platoon has passed the

downstream intersection location x = xd, and tvm − a > xd and k(xd, t) = 0.

(c) In Pacey’s model, the spread of vehicles in the speed range [vm, vf] during time

period t ∈ [t0μ/vf , (t0μ + a)/vm] is same as proposed model. However, Pacey’s

model assumes that speed is extending within the range [−∞,+∞]. It is impossible

for a vehicle to have a positive infinity speed to travel to downstream infinity or a

negative infinity speed to travel backwards to upstream infinity, which obviously

does not match the field observations. Therefore, the application of Pacey’s model

is limited.

(d) The difference in the speed density between proposed model and Pacey’s model

decides that there are also more cars in the middle of the platoon and fewer cars in

the two tails in the former, compared to the latter.

4.2. Number of Cars at the Front That Have Passed
the Downstream Intersection

If the green phase of the downstream intersection is started at t0 = xd/μ, as cars in the front

of the platoon travel at a speed greater than μ, then the downstream signal needs to turn

green th in advance of t0 to allow more vehicles to pass during the green phase. That is to say,
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the number of cars stopped at the front of platoon is A(xd, to − th). For t0 = 30, 60, 90, 120 and

th = 0, 1, 2, 10, A(xd, to − th)/Q, which denotes the ratio to the maximum initial flow of the

average number of cars stopped at the front of the platoon, is calculated for both the proposed

model and Pacey’s model, and the results are presented in Table 1.

Table 1 shows that as the distance between the successive intersections increases, the

speed range of the front of the platoon [μ + a/t0, vf] increases and A(xd, to) also increases.

Therefore, a higher preset th is needed to allow more cars at the front of platoon to pass the

downstream intersection. The difference in A(xd, to − th) between the proposed model and

Pacey’s model is 4.78%, that is, ((c − 1)/c)100%. The difference is a result of the assumption

in Pacey’s model that the speed spreads from negative infinity to positive infinity, which re-

sults in an accumulated probability in the area of [vm, vf] less than 1.

4.3. Number of Cars at the Rear That Have Not Passed
the Downstream Intersection

It is assumed that the downstream signal green time ends at time t0 = (xd + a)/μ. According

to the platoon dispersion model, the cars at the rear of the platoon are traveling at a speed

lower than μ. Therefore, the green phase needs to be postponed to time tt to allow more

vehicles at the rear of platoon to pass, which means that the number of vehicles not having

passed the downstream signal location is B(xd, tt+t0). For t0 = 30, 60, 90, 120 and tt = 0, 1, 2, 10,

B(xd, tt+t0)/Q, which denotes the ratio to the maximum initial flow of the average number of

cars stopped at the rear of the platoon, is calculated for both the proposed model and Pacey’s

model, and the results are presented in Table 2.

The data in Table 2 show that as the distance between the successive intersections

increases, the speed range of the rear of the platoon, [vm, μ − a/t0, ], increases, and B(xd, to)
also increases. Therefore, a higher preset tt is needed to allow more cars at the rear of platoon

to pass the downstream intersection. As in the analysis of the front of the platoon, the

difference in B(xd, tt + t0) between the proposed model and Pacey’s model is 4.78%, that is,

((c − 1)/c)100%.

4.4. Impact Analysis for Variation Coefficient α

It can be concluded from the previous results that c also determines the deviation of Pacey’s

model from the real situation. f ′(v) of v is affected by σ. As mentioned previously, σ, relative

to c, is affected by α. Hence, α has some influence on the accumulated probability for speed

range [vm, vf]. As α increases, the speed range becomes smaller. This is why the deviation of

Pacey’s model increases with larger values of α.

In addition, α influences the platoon dispersion. A larger α leads to a flatter shape,

and a smaller probability around the average speed area; at the same time, the probability

for both tails becomes larger. As shown in the derivation process of k(x, t), this is determined

by the speed distribution. Thus, the same phenomenon can be seen in the platoon density

distribution. To assess the impact of α on k(x, t), A(x, t)/Q of the front and B(x, t)/Q of the

rear are calculated separately for α = 0.15 and α = 0.20 under xd = 30μ and the results are

shown in Figures 3 and 4. From these figures, we can conclude that as α increases, longer

preset and extension times are separately required to allow the cars at the front and the rear

of the platoon to pass the downstream intersection. These results are consistent with visual

analysis.
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Figure 4: Influence of α on B(x, t) for the rear of the platoon.

5. Conclusion

Platoon dispersion is the foundation of coordinating traffic signal control in an urban traffic

network. This paper proposes a new platoon dispersion model which assumes that speed

density follows a truncated normal distribution. This addresses the main defect of Pacey’s

model and matches the field situation. To calibrate proposed model, values of four parame-

ters, namely, the average speed of vehicles, the standard deviation of speed, minimum speed,

and maximum speed, are quantified. Using test data in Grace and Potts’s paper [5] in the

numerical example, there are 4.78% fewer cars travelling in the front and the rear of the pla-

toon between the proposed model and Pacey’s model, and we interpret the results for ap-

plication of coordination of two traffic lights distance xd apart to prove the validity of the

proposed model. Future work needs to focus on proposed model with nonsynchronous
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start-up of all vehicles, validating the model using field data, and on simulation program

development for the application of the proposed model in the timing of signal coordination.
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Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical
expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a
single universal function, called plume function. By combining the obtained analytical expressions
of centerline variables with empirical Gaussian expressions of the mean variables, we obtain
semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit,
and mass fraction).

1. Introduction

One of the important safety issues of hydrogen energy is the hydrogen leakage into ambient

air and the associated risk of fire or explosion. In fact, industry has already produced several

prototype products using hydrogen as a fuel. Unfortunately, these products are not yet

available for commercial use because of safety concerns related to hydrogen leakage. So

studying hydrogen-air behavior is very important in order to estimate expected hazards from

leakage as well as to propose recommendations when designing hydrogen-related facilities.

Recently, El-Amin and coauthors [1–6] studied the problem of hydrogen leakage in

air. In [1–3], they introduced boundary layer theory approach to model the concentration

layer adjacent to a ceiling wall at the impinging and far regions in both planar and

axisymmetric cases for small-scale hydrogen leakage. While in [4–6], they studied the

turbulent hydrogen-air jet/plume resulted from hydrogen leakage in open air. The laminar

hydrogen jet is analyzed by Sánchez–Sanz et al. [7]. Also, experimental measurements for

turbulent hydrogen jet have been performed by Schefer and coauthors (e.g., [8–10]). On the

other hand, CFD simulations of the problem have been done by many researcher such as

Matssura and coauthors [11–14], Kikukawa [15], Agarant et al. [16], and Swain et al. [17, 18].
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Hydrogen-air jet is an example of non-Boussinesq plume; since the initial fractional

density difference is high. The initial fractional density difference is defined as Δρ0/ρ∞ =
(ρ∞ − ρ0)/ρ∞, where ρ0 is the initial centerline density (density at the source) and ρ∞ is

the ambient density. As an example, the initial fractional density differences for selected

binary low-density gases at temperature 15◦C are 0.93 for H2-Air, 0.86 for He-Air, 0.43 for

CH4-Air, and 0.06 for C2H2-N2. Crapper and Baines [19] suggested that the upper bound of

applicability of the Boussinesq approximation is that the initial fractional density difference

Δρ0/ρ∞ does not exceed 0.05. In general, one can say that the Boussinesq approximation is

valid for small initial fractional density difference, Δρ0/ρ∞ � 1 (e.g., El-Amin and Kanayama

[5]). This is correct only for the case of a plume produced by a positive source of buoyancy,

that is, a plume composed of fluid less dense than the ambient. For the cases where this

criterion is not met, Boussinesq approximation may not be used and a density equation needs

to be incorporated. El-Amin [6] introduced a numerical investigation of a non-Boussinesq,

low-density gas jet (hydrogen) leaking into a high-density ambient (air). The integral models

of jet fluxes are obtained and transformed into a set of ordinary differential equations

of the mean centerline quantities. Therefore, mean quantities are obtained in addition to

cross-stream velocity, Reynolds stresses, and turbulent Schmidt number. Furthermore, the

normalized jet-feed material density and momentum flux density are correlated.

It is worth mentioning that theoretical developments and analysis of jet/plume theory

were studied by a number of authors since 1950s (see, e.g., Morton et al. [20]; Morton [21];
Morton and Middleton [22]; Delichatsios [23]; Rooney and Linden [24]; Hunt and Kaye

[25, 26]; Carlotti and Hunt [27]). Recently, Michaux and Vauquelin [28] developed analytical

solutions for centerlines quantities of turbulent plumes rising from circular sources of positive

buoyancy in a quiescent environment of uniform density for both Boussinesq and non-

Boussinesq cases.

In this paper, semianalytical solution and theoretical analysis are developed for round

hydrogen jet leaking into air based on Michaux and Vauquelin [28]. It is assumed that the

rate of entrainment is a function of the plume centerline velocity and the ratio of the mean

plume and ambient densities. Analytical expressions for all plume variables (radius, velocity,

and density deficit) in terms of plume function for a given source parameter are derived.

2. Mathematical Analysis and Similarity Solutions

2.1. Governing Equations

Consider a vertical axisymmetric hydrogen-air buoyant jet resulting from a small-scale

hydrogen leakage in the air with a finite circular source. Using cylindrical polar coordinates

(z, r) with the z-axis vertical, the source is located at z = 0. The continuity, momentum, and

concentration equations in cylindrical coordinate system (Figure 1) for the steady vertical

axisymmetric buoyant free jet can be written as [29]:

∂
(
rρV

)
∂r

+
∂
(
rρU

)
∂z

= 0, (2.1)

∂
(
rρUV

)
∂r

+
∂
(
rρU2

)
∂z

+
∂
(
rρuv

)
∂r

= gr
(
ρ − ρ∞

)
, (2.2)

∂
(
rρVC

)
∂r

+
∂
(
rρUC

)
∂z

+
∂
(
rρvc

)
∂r

= 0, (2.3)
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Figure 1: Schematic diagram of turbulent hydrogen-air jet.

where U is the mean streamwise velocity, and V is the mean cross-stream velocity, and

C is the hydrogen concentration (mass fraction). The overbar denotes the time-averaged

quantities, u, v are the components of velocity fluctuations in z, r directions, respectively, c
is the concentration fluctuation, and ρ is the mixture density.

On the other hand, from the experimental observations, the equations for the vertical

velocity, density deficiency, and mass fraction profiles, assuming that the hydrogen-air

mixture behaves as an ideal gas, are as follows (Fisher et al. [30], Hussein et al. [31], Shabbir

and George [32], and Schefer et al. [9, 10]):

U(r, z) = Ucl(z) exp

(
− r2

b2(z)

)
, (2.4)

ρ∞ − ρ(r, z) = (
ρ∞ − ρcl(z)

)
exp

(
−λ2 r2

b2(z)

)
, (2.5)

ρ(r, z)C(r, z) = ρcl(z)Ccl(z) exp

(
−λ2 r2

b2(z)

)
, (2.6)

ρ =
1([(

1/ρ0

) − (1/ρ∞
)]
C +

(
1/ρ∞

)) , (2.7)

where U(r, z) and ρ(r, z) are the mean velocity and mean density at any point of the jet

body; Ucl(z) and ρcl(z) are the centerline velocity and density. b(z) = cm(z − z0) is the

jet/plume width which increases linearly with z, cm is the momentum spread rate of the

jet. z0 is the virtual origin, which is the distance above/below the orifice where the flow

appears to originate. The experimentally measured spread rate cm varies in the range 0.1–

0.13. The buoyancy spreading factor λ = cm/cc expresses the ratio of spreading rates between
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the velocity and density deficiency profiles. The corresponding streamwise concentration for

the axisymmetric hydrogen-air, free jet as detected experimentally by Schefer et al. [10] is

given as C = Ccl exp(−0.693 r2/b2). In general, the spread rate for the concentration cc is

given in the formula C = Ccl exp( −r2/cc
2 (z − z0)

2). In the work of Schefer et al. [10], the

momentum spread rate for the case of hydrogen jet was estimated as cm = 0.103, from which

one can find cc = 0.124, and λ = 0.832. It is well known that cC /= cm, that is, velocity and

density spread at different rates.

2.2. Similarity Solutions

Integrating the continuity (2.1) radially gives

d

dz

∫∞

0

rU(r, z)ρ(r, z)dr = −rρV (r, z)
∣∣
r=∞ = −rV (r, z)|r=∞ρ∞. (2.8)

Since U(r, z) is negligible for r > b, then integrating (2.1) for b < r <∞ gives

∫∞

b

∂

∂r

(
rV (r, z)ρ(r, z)

)
dr = 0. (2.9)

This implies that

−rV (r, z)|r=∞ = bVe, (2.10)

where Ve denotes the inflow velocity at the plume edge which is known as the entrainment

velocity. Therefore, we have

d

dz

∫∞

0

rU(r, z)ρ(r, z)dr = bVeρ∞. (2.11)

This equation indicates that the increase in plume volume flux is supplied by a radial influx

from the far field which in turn implies a flow across the plume boundary b. Batchelor

[33] concluded that a vigorous entrainment of the ambient will be obtained as the density

ratio tends to unity, ρcl/ρ∞ → 1. While as the density ratio tends to zero, ρcl/ρ∞ → 0,

the entrainment falls to zero. Between these two limits, there will be a smooth transition

of entrainment pattern. The experiments by Ricou and Spalding [34] suggest that the

entrainment velocity may be obtained using the following formula

Ve = α
(
ρcl

ρ∞

)1/2

Ucl, Ve

(
ρcl

ρ∞
−→ 1

)
= αUcl, Ve

(
ρcl

ρ∞
−→ 0

)
= 0, (2.12)

where α is the entrainment coefficient.

Also, Morton [35] assumed that the rate of entrainment into a strongly buoyant

plume is a function of both density ratio ρcl/ρ∞ and Reynolds stresses which have a

magnitude proportional to ρclU
2
cl

. Therefore, the local entrainment velocity may be obtained
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as α(ρcl/ρ∞)
1/2Ucl, which has also been suggested by Thomas [36], Steward [37], and

Townsend [38]. Therefore, (2.11) can be written in the form

d

dz

∫∞

0

2π rU(r, z)ρ(r, z)dr = 2π bρ∞α
(
ρcl(z)
ρ∞

)1/2

Ucl(z). (2.13)

For calculating the momentum flux, let us integrate (2.2) with respect to r, from r = 0 to

r = ∞, noting that |rρUV |∞0 = 0 and |rρuv|∞0 = 0, we get

d

dz

∫∞

0

2πrU2(r, z)ρ(r, z)dr =
∫∞

0

2πrg
(
ρ∞ − ρ(r, z))dr. (2.14)

Similarly, for concentration flux, integrating (2.3) with respect to r from r = 0 to r = ∞, noting

also that |rρCV |∞0 = 0 and |rρuc|∞0 = 0, we get

d

dz

∫∞

0

2πrU(r, z)ρ(r, z)C(r, z)dr = 0. (2.15)

This equation may be equivalent to the buoyancy flux equation which can be written in the

following form [19]:

d

dz

∫∞

0

2πrU(r, z)
(
ρ∞ − ρ(r, z))dr = 0. (2.16)

Substituting (2.4)–(2.6) into (2.16), one obtains

d

dz

(
b2Ucl(z)

(
1 − ρcl(z)

ρ∞

))
= 0. (2.17)

Substituting (2.5), (2.6), and (2.17) into (2.13), (2.14), and (2.15) gives

d

dz

(
b2(z)Ucl(z)

ρcl(z)
ρ∞

)
= 2bVe, (2.18)

d

dz

(
b2(z)U2

cl (z)
ρcl(z)
ρ∞

)
=
ρ∞ − ρcl(z)

ρ∞
gb2(z). (2.19)

In homogeneous surroundings of density ρ∞, the density deficit flux, (2.17), is equivalent to

B = πgb2(z)Ucl(z)
(

1 − ρcl(z)
ρ∞

)
, (2.20)

which has the dimension of a buoyancy flux.
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Recently, Michaux and Vauquelin [28] developed analytical solutions for centerlines

quantities of turbulent plumes. Now, let us introduce a modified radius β and a dimensionless

density deficit η [28]:

β(z) =
(
ρcl(z)
ρ∞

)1/2

b(z),

η(z) =
ρ∞ − ρcl(z)
ρcl(z)

.

(2.21)

Therefore, (2.17)–(2.19) can be rewritten in the following form:

d

dz

(
β2ηUcl

)
= 0,

d

dz

(
β2Ucl

)
= 2αβUcl

d

dz

(
β2U2

cl

)
= ηgβ2.

, (2.22)

In the previous work of El-Amin and Kanayama [5] and El-Amin [6], they developed the

similarity formulation and numerical solutions of the centerline quantities such as velocity

and concentration.

In the current work, we follow the work of Michaux and Vauquelin [28] to

obtain analytical/semianalytical solutions for centerline plume quantities. Using β(z) =
Cβz

m, Ucl(z) = CUcl
zn, and η(z) = Cηz

p, the constants Cβ, CUcl
, and Cη; exponents m, n,

p can be determined to obtain similarity solutions for β, Ucl, and η as

β(z) =
6α

5
z ,

w(z) =
(

3

4

)1/3(6α

5

)−2/3(B
π

)1/3

z−1/3 ,

η(z) =
1

g

(
3

4

)−1/3(6α

5

)−4/3(B
π

)2/3

z−5/3,

(2.23)

z in these expressions may be replaced by z − z0 to adapt solutions at near-source region and

z0 is virtual origin.

2.3. Plume Function and Source Parameter

Now, let us introduce the plume function as [28]:

Γ(z) =
5 g

8α

ηβ

U2
cl

. (2.24)
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At source (z = 0), Γ(0) = Γ0, corresponding to the source parameter initially introduced by

Morton [21] and defined as [26]:

Γ0 =
5Q2Bf

4αM5/2
, (2.25)

where Q, M, and Bf are the initial values of specific mass flux, specific momentum flux, and

specific buoyancy flux, respectively, defined as

Q =
1

4
πd2u0,

M =
1

4
πd2u2

0
,

Bf = gQ
Δρ∞
ρ∞

,

(2.26)

d is the inlet diameter, U0 is velocity at source, and Δρ∞ is the difference in density between

the receiving fluid and the fluid being discharged. Based on source parameter value Morton

and Middleton [22] have categorized plumes with positive buoyancy as simple (pure) plume

(Γ0 = 1), forced plume (Γ0 < 1), and lazy plume (Γ0 > 1). Other possibilities (Hunt and Kaye

[25]) for Γ0 = 0, flow is pure jet without buoyancy, and, for Γ0 < 0, flow is weak fountains

(negative buoyancy).
For hydrogen-air plume the source parameter is Γ0 � 1 (of order 10−4), so, based on

Morton et al. [20] classification, it is a forced plume.

Equation (2.22) can be rewritten in terms of Γ as follow:

dβ

dz
=

4α

5

(
5

2
− Γ

)
, (2.27)

dUcl

dz
= −8α

5

(
Ucl

β

) (
5

4
− Γ

)
, (2.28)

dη

dz
= −16α2

5 g

(
Ucl

β

)2

Γ. (2.29)

Using plume function Γ, (2.24), and (2.27)–(2.29), we may write

dΓ
dz

=
4αΓ
β

(1 − Γ). (2.30)

One can deduce that for Γ0 < 1, Γ increases monotonically with height and tends

asymptotically toward unity.

Using (2.27) and (2.30), one may get

dβ

β
=

1

2

dΓ
Γ

+
3

10

dΓ
1 − Γ

. (2.31)
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Integrating this equation subject to the source conditions, one obtains

β

β0
=
(

Γ
Γ0

)1/2(1 − Γ0

1 − Γ

)3/10

, (2.32)

therefore,

b

b0
=
(
ρ0

ρcl

)1/2( Γ
Γ0

)1/2(1 − Γ0

1 − Γ

)3/10

. (2.33)

Similarly, we can find that

dUcl

Ucl
= −1

2

dΓ
Γ

− 1

10

dΓ
1 − Γ

, (2.34)

therefore,

Ucl

U0
=
(
Γ0

Γ

)1/2( 1 − Γ
1 − Γ0

)1/10

. (2.35)

Finally, using (2.24), (2.32), and (2.34), we get

η

η0
=
(
Γ0(1 − Γ)
Γ(1 − Γ0)

)1/2

, (2.36)

or

ρ0

(
ρ∞ − ρcl

)(
ρ∞ − ρ0

)
ρcl

=
(
Γ0(1 − Γ)
Γ(1 − Γ0)

)1/2

. (2.37)

Now, Γ is a function of z to relate each plume variable to z. Substituting (2.32) into (2.30), one

gets

dΓ
dz

=
1

Λ0
Γ1/2(1 − Γ)13/10, (2.38)

where Λ0 = (β0/4α)(|1 − Γ0|3/10/Γ1/2
0 ), and β0 = (ρ0/ρ∞)

1/2 b0 is the characteristic length

defined from initial plume condition. For the case under consideration, we find Λ0 = 0.17.

Integrating (2.38), one obtains

z

Λ0
=
∫Γ

Γ0

γ−1/2
(
1 − γ)−13/10

dγ = �(Γ) − �(Γ0). (2.39)

The above integration function has no explicit form, so Michaux and Vauquelin [28]
computed and tabulated the integral function �(X) for several values of X. Unfortunately,
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they did not provide very small values as we find in this investigation when the source

parameter is Γ0 � 1 (of order 10−4). Alternatively, we can write the integration function

as

�(Γ) =
∫Γ

Γ0

γ−1/2
(
1 − γ)−13/10

dγ

=
3

4
Γ1/2

2F1

(
3

10
,

1

2
;

3

2
;Γ
)
− 10

3

Γ1/2

Γ − 1
(1 − Γ)7/10,

(2.40)

where 2F1 is the hypergeometric function defined by

2F1(a, b; c;Γ) =
∞∑
k=0

(a)k(b)k
(c)k

Γk

k!
. (2.41)

But Γ � 1 is very small (of order 10−4) for the case of hydrogen-air plume, so two terms of

the above series can approximate the function. Thus,

2F1(a, b; c;Γ) = 1 +
ab

c
Γ. (2.42)

This may lead to

�(Γ) =
3

4
Γ1/2

(
1 +

Γ
10

)
+

10

3

Γ1/2

(1 − Γ)3/10
. (2.43)

According to this relation, �(Γ0) = 0.039294, therefore,

�(Γ) = 0.039294 +
z

0.17
. (2.44)

From (2.43) and (2.44), one gets

z

0.17
=

3

4
Γ1/2

(
1 +

Γ
10

)
+

10

3

Γ1/2

(1 − Γ)3/10
− 0.039294. (2.45)

Again from (2.43), we can determine values of Γ from �(Γ) given by (2.44). It is clear that Γ
decreases as �(Γ) increases and �(Γ) increases as z increases. Thus, Γ decreases as z increases

and the maximum value of Γ is located at z = 0, which is equal to Γ0. Therefore, using (2.36),
one can find Ucl/U0 = 1, and the maximum velocity is Ucl = U0.
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Finally, by combining (2.4)–(2.6) with (2.33), (2.36), and (2.37), one can obtain

analytical expressions for vertical velocity, density deficiency, and mass fraction for

hydrogen-air mixture in terms of the universal variable Γ as follows:

U(r, z) = U0

(
Γ0

Γ

)1/2( 1 − Γ
1 − Γ0

)1/10

× exp

⎛⎜⎝−r2 (Γ0/Γ)((1 − Γ)/(1 − Γ0))
3/5

b2
0ρ∞/ρ0

((
ρ∞/ρ0 − 1

)
(Γ0/Γ)

1/2((1 − Γ)/(1 − Γ0))
1/2 + 1

)
⎞⎟⎠,

(2.46)

ρ(r, z) = ρ∞ −

⎛⎜⎝ρ∞ − ρ∞((
ρ∞/ρ0 − 1

)
(Γ0/Γ)

1/2((1 − Γ)/(1 − Γ0))
1/2 + 1

)
⎞⎟⎠

× exp

⎛⎜⎜⎜⎝−λ2r2 (Γ0/Γ)((1 − Γ)/(1 − Γ0))
3/5

b2
0ρ∞
ρ0

((
ρ∞/ρ0 − 1

)
(Γ0/Γ)

1/2((1 − Γ)/(1 − Γ0))
1/2 + 1

)
⎞⎟⎟⎟⎠,

(2.47)

C(r, z) = − ρ0

ρ∞ − ρ0
+

ρ0ρ∞
ρ(r, z)

(
ρ∞ − ρ0

) . (2.48)

3. Conclusion

This paper introduces the reader to a set of features of hydrogen-air plume, which is very

important to assess the potential hazard resulting from hydrogen sources upon leakage into

the ambient atmosphere. Throughout this work, we derived profiles of the mean quantities

for a turbulent hydrogen-air plume. These mean quantities, such as plume radius, velocity,

and density deficit, are expressed in terms of the plume function for a given source parameter.

These quantities are determined by integral relations and by analysis using similarity

variables. Therefore, mean quantities are expressed solely in terms of the plume function

and the source parameter. The plume function is valid for a range of small values of Γ as

required for hydrogen-air plume. The hypergeometric function is exploited, and the profiles

of the mean quantities are obtained. These results may be generalized and extended in a

future work to cover more complex flow types found in a prober accident of hydrogen leaks

such as leakage in hydrogen station.
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