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Mathematical and computational models are key tools for
understanding biological phenomena. In the last decades,
scientific and technological advances have facilitated their
evergrowing adoption in biologically oriented research. The
strongly interdisciplinary character of these areas, in which
biologistswork alongwith researchers fromphysical sciences,
engineering, and medicine, fosters the cross-fertilization
between scientific fields. However, the large degree of struc-
tural and parametric uncertainty typically associated with
biological processesmakes it nontrivial to analyze them using
techniques imported from fields in which these issues are
less prevalent. Thus, there is a need for new methodological
developments that fill this gap. The present special issue
addresses this need by providing an overview of current open
problems and presenting recent results regarding mathemat-
ical inference and modelling of biological systems.

A total of 18 submissions were received for this special
issue. Six of them, contributed by research groups from
Africa, America, Asia, and Europe, were finally accepted for
publication. Among the published papers there is a clear
distinction between methodological and application papers:
there are three methodological papers that address model
analysis from a structural viewpoint and three papers that
present recent applications. Admittedly, there is a certain
overlap between both categories, since some application

papers incorporate newmethodological developments, while
the methodological papers include biological applications as
case studies.

The application papers deal with three different types of
diseases: cancer, diabetes, and viral infections. One paper
addresses the modeling of one of the hallmarks of cancer:
angiogenesis, the formation of new blood vessels that is
both driven by and needed for the development of tumors.
In “Dynamic Modeling of the Angiogenic Switch and Its
Inhibition by Bevacizumab”, D. Csercsik and L. Kovács
present a model that describes the effect of a therapeutic
drug, Bevacizumab, in the inhibition of vascularization. The
model is built on previous work by the authors, incorporating
a description of vasculature dynamics while keeping the
number of states and parameters as low as possible. The
paper reports results of its fit to tumor volume data resulting
from two therapies and discusses identifiability issues and
other aspects. The model is part of ongoing work currently
being carried out in the ERC project Tamed Cancer. In this
framework, the model is expected to be refined and validated
in the near future and eventually to be used for therapy
optimization in open-loop and closed-loop.

H.-C. Wei et al. give a novel method to evaluate the
neurological damage associated with diabetes (in “Assess-
ment of Diabetic Autonomic Nervous Dysfunction with
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a Novel Percussion Entropy Approach”). The approach is
based on computing the so-called percussion entropy index
(PEI) to obtain information on the similarity in the pattern
of changes of two noninvasively measured digital volume
pulse signals. Using data taken from 114 individuals, the
authors show that two-dimensional PEI is safely applicable
to differentiate between healthy subjects, those with well-
controlled diabetes, and subjects with poor blood sugar
control.The advantageous properties of the proposedmethod
are also shown by comparing it to other possible approaches
such as multiscale entropy index and low- to high-frequency
power ratio computing.

A. A. M. Arafa et al. (“A Non-Integer Variable Order
Mathematical Model of Human Immunodeficiency Virus
and Malaria Coinfection with Time Delay”) propose a novel
mathematical model to investigate the spreading of HIV
and malaria infection and the mutual interactions between
the dynamics of the two infections. This is an important
application of mathematical modeling, since the coinfection
of HIV and malaria has become endemic in several devel-
oping countries. Thus, there is an urgent need for a better
understanding of the dynamics of this coinfection, in order
to design effective vaccination strategies. A feature of the
modeling approach exploited by the authors is the use of
variable (instead of constant) fractional order derivatives
with time delay. This feature is utilized to effectively describe
the variable memory of the infection progression in distinct
patients, taking also into account the important effect of
time delay after contagion, required for the individuals and
mosquitoes to become infectious.

The three methodological papers address topics such as
reachability, observability, identifiability, and model discrim-
ination of nonlinear models, using structural approaches.

The review by A. F. Villaverde (“Observability and Struc-
tural Identifiability of Nonlinear Biological Systems”) focuses
on two properties that characterize the ability to infer model
unknowns by measuring the model output. The first one,
observability, describes the possibility of reconstructing the
state vector, while the second one, structural identifiability,
refers to the parameter vector. The latter can be considered
as a special case of the former, and both properties can be
studied locally for nonlinear models using the differential
geometry approach. The paper by A. F. Villaverde provides
a brief tutorial of this approach, surveys the recent literature,
and discusses the relationship between these properties and
other concepts. Finally, it suggests some possible directions
for future research.

H. A. Harrington et al. (“A Parameter-Free Model Com-
parison Test Using Differential Algebra”) propose a model
discrimination procedure that is applicable for noisy mea-
surements without performing parameter estimation. The
candidate models are given in the form of parameterized
polynomial ordinary differential equations. Using differential
algebra, invariants can be written from the system models
which are polynomial in the inputs, outputs, and their
derivatives, and the coefficients of monomials are rational in
the parameters. By substituting the measured and computed
values of the inputs, outputs, and their derivatives into the
invariants at different time-instants, a set of linear equations

can be obtained which is uniquely solvable for the true model
in the noise-free case, but not solvable for others. For the
realistic noisy case, probability bounds can be computed for
the rejection of models, and the derivatives can be estimated
using Gaussian Process Regression.

G. Szlobodnyik and G. Szederkényi study the reachability
properties of a special class of discrete reaction networks
having at most one input and one output species beyond
the possible catalyzers from a computational point of view
(“Reachability Analysis of Low-OrderDiscrete State Reaction
Networks Obeying Conservation Laws”). The subconserva-
tivity of a discrete reaction network ensures the boundedness
of its state-space. The authors show that the reachability
problem can be rewritten as an Integer Linear Programming
feasibility problem. This computational framework allows
deciding the reachability problem and counting the number
of feasible discrete trajectories in polynomial time in the
number of species and in the distance of initial and target
states, if the number of reactions is fixed.

Overall, the aforementioned contributions show that (1)
biological problems pose challenges that are different to
those of physical and engineered systems; (2) for this reason,
they are an important driver of innovation in mathematical
and computational techniques for dynamic modelling; (3)
as a result of recent developments, these methodologies are
already capable of providing key information in biomedical
applications; (4) however, the identification of open chal-
lenges also highlights the need for further advances.

As a final remark, we would like to note that another
special issue dealing with biological modeling has
been recently published in Complexity: “Mathematical
Modeling and Dynamic Analysis of Complex Biological
Systems” (MMDACBS, https://www.hindawi.com/journals/
complexity/si/860912/).There are similarities and differences
between the MMDACBS special issue and the present one,
which can thus be seen as complementary collections. While
the present special issue has an emphasis on biomedicine, the
MMDACBS is more oriented towards biotechnological
applications. The methodologies considered in the
MMDACBS special issue include different types of flux
analysis and statistical techniques for black-box modelling,
while the present special issue focuses on the reverse
engineering, modelling, and identification of kinetic models.
Furthermore, as of writing this editorial, submissions are
being accepted for another related special issue: “Dynamical
Analysis of Biological Systems”, edited by Popescu, Voit, and
Udriste (https://www.hindawi.com/journals/complexity/si/
394076/cfp/). The proliferation of special issues on this
topic, which can also be noticed in other multidisciplinary
journals, is an indication of the strong interest among the
scientific community in the development and application of
dynamical modelling tools for unravelling the complexity of
biological systems.
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In this paper we study the reachability problem of sub- and superconservative discrete state chemical reaction networks (d-CRNs).
It is known that a subconservative network has bounded reachable state space, while that of a superconservative one is unbounded.
The reachability problem of superconservative reaction networks is traced back to the reachability of subconservative ones. We
consider network structures composed of reactions having at most one input and one output species beyond the possible catalyzers.
We give a proof that, assuming all the reactions are charged in the initial and target states, the reachability problems of sub- and
superconservative reaction networks are equivalent to the existence of nonnegative integer solution of the corresponding d-CRN
state equations. Using this result, the reachability problem is reformulated as an Integer Linear Programming (ILP) feasibility
problem. Therefore, the number of feasible trajectories satisfying the reachability relation can be counted in polynomial time in
the number of species and in the distance of initial and target states, assuming fixed number of reactions in the system.

1. Introduction

Employing deterministic ordinary differential equation sys-
tems to characterize the dynamical behavior of complex
networks of chemically interacting components (species) is
a widely used approach in mathematical and computational
systems biology [1–3]. Such a continuous state modeling
approach assumes high molecular count of species and their
homogeneous (well-mixed) distribution in the surrounding
media [4]. However, in several (bio)chemically interesting
systems, such as some enzymatic and genetic networks, the
molecular count of different species is relatively low (e.g.,< 100 molecules) [4–6] implying that the assumption of
homogeneous species distribution does not hold [7, 8]. Hence
it is necessary to introduce a discrete state model capable of
keeping track of the individual molecular counts in order
to properly characterize the qualitative dynamical behavior
of (bio)chemical networks of species with low number of

molecules [9, 10]. There exist several mathematical models
describing the state evolution of discrete state chemical
reactions networks, such as Markov chain models [8, 10] and
stochastic Petri nets [11].

In the context of chemical reaction networks of several
interacting components, in order to completely characterize
the system it is needed to simultaneously study the dynamical
behavior and the underlying network structure as well.
Moreover, it is also important to examine how the dynamical
behavior and the network structure are related to each other,
and how we can predict the dynamical behavior (e.g., in the
form of possible state space trajectories) and be aware of the
underlying network structure. For continuous state reaction
networks obeying the law of mass action, it is recognized
that the network structure (i.e., topology) is not necessarily
unique; i.e., the same system of differential equations can be
generated by different network topologies (different sets of
interactions among the given species) [12–15].
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Table 1: Notations.

R the set of real numbers
Z the set of integer numbers
Z≥0 the set of non-negative integer numbers
T𝑛×𝑚 the set of (𝑛 × 𝑚)-dimensional vectors over the set T0𝑛×𝑚 a zero matrix of dimension 𝑛 × 𝑚1𝑛×𝑚 a matrix of dimension 𝑛 × 𝑚 for which all the entries are equal to 1{0, 1}𝑛×𝑚 the set of (𝑛 × 𝑚)-dimensional binary vectors (all the entries are equal to 0 or 1){−1, 0, 1}𝑛×𝑚 the set of (𝑛 × 𝑚)-dimensional vectors composed of the entries −1, 0, 1[𝐴]𝑖,: the 𝑖th row of the matrix 𝐴𝑎 ≺ 𝑏 for 𝑎, 𝑏 ∈ R𝑛, 𝑎𝑖 < 𝑏𝑖 for 𝑖 = 1, . . . , 𝑛𝑎 ⪯ 𝑏 for 𝑎, 𝑏 ∈ R𝑛, 𝑎𝑖 ≤ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑛𝜎𝑋 an ordered sequence of states𝜎𝑟 an ordered sequence of reaction vectors𝜎𝑆 an ordered sequence of species𝜎𝐶 an ordered sequence of complexes

In the case of discrete state reaction networks the so-
called reachability is a strictly related problem to the dynam-
ical behavior; namely, is it possible to reach a prescribed
target state from a given initial one through a finite sequence
of transition (reactions)? It is known that the reachability
relation between any pair of nonnegative initial and target
states is determined by the network structure itself. Through
the reachability analysis several problems of great importance
can be analyzed; one of them having high interest is the exis-
tence of so-called extinction events: the existence of trajec-
tories resulting in the irreversible extinction of some species
from the system. It has been shown that under some condi-
tions on the network structure a discrete state chemical reac-
tion network exhibits an extinction event from any point of its
state space [9, 16, 17].The properties of recurrence (the ability
of returning to any initial state) and irreducibility (the ability
of reaching any state from any other one) are also examined
in the context of discrete state reaction networks [18, 19].

The mathematical model of discrete state chemical reac-
tion networks is equivalent to an important model of
theoretical computer science, namely, the so-called vector
addition systems with states (VASS) or equivalently Petri
nets [20, 21]. Hence the discrete chemical reaction network
reachability problem is equivalent to the extensively studied
problem of vector addition system (VAS) reachability. The
VAS reachability problem is known to be decidable [22–25],
and for the space complexity we have EXSPACE lower bound
[26]. Unfortunately, contrary to the proven polynomial time
complexity of reachability of rate independent continuous
state chemical reaction networks [21], in the case of discrete
state reaction networks it is not known whether there exists
an algorithm of primitive-recursive time complexity deciding
this problem [27].

The aim of this paper is to study of the reachability
problem of sub- and superconservative d-CRNs. We make
use of the relation between the sub- and superconservative
properties. In Propositions 15 and 17, we give necessary and
sufficient conditions on the network structure and the initial

and target states under which the reachability is equivalent to
the nonnegative integer solution of the d-CRN state equation.
Then these results in Corollaries 16 and 18 are extended to a
subclass of superconservative d-CRNs.

The paper is organized as follows. In Section 2 the
necessary mathematical notations and concepts of Chemical
Reaction NetworkTheory (CRNT) are introduced. Section 3
discusses the classes of sub- and superconservative d-CRNs
and their duality as well. In Section 4 the reachability problem
of sub- and superconservative d-CRNs is examined. Firstly
the case of low state space-dimensional d-CRNs is discussed,
followed by the extension to the general case when the
dimension of the state space is arbitrarily high. In Section 5
our findings are illustrated in a representative example.

2. Notations and Mathematical Background

In Table 1 we summarize the notations and concepts of
discrete chemical reaction networks which will be extensively
used later.

2.1. Discrete State Chemical Reaction Networks. A discrete
state Chemical Reaction Network (d-CRN) with 𝑛 species, 𝑚
complexes, and 𝑙 reactions is a tripleN = (S,C,R) so that
S = {𝑠𝑖 | 𝑖 = 1, . . . , 𝑛}
C = {𝑦𝑗 = 𝑛∑

𝑖=1

𝛼𝑗𝑖𝑠𝑖 | 𝑠𝑖 ∈ S, 𝛼𝑗𝑖 ∈ Z≥0, 𝑖 = 1, . . . , 𝑛, 𝑗

= 1, . . . , 𝑚}
R = {𝑟V = 𝑦𝑠𝑜𝑢𝑟𝑐𝑒(𝑟V)
󳨀→ 𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑟V) | 𝑦𝑠𝑜𝑢𝑟𝑐𝑒(𝑟V), 𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑟V) ∈ C, V
= 1, . . . , 𝑙}

(1)
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1

2

3

4

5

6

E+I EI

EIP E+IP

Γ =

[[[[[[[[[
[

−1 1 0 0 0 1

0 0 1 −1 1 0

−1 1 1 −1 1 1

1 −1 −1 0 0 0

0 0 0 1 −1 −1

]]]]]]]]]]
]

Figure 1: A discrete state chemical reaction network. Left: reaction network structure.The nodes and directed edges represent the complexes
and the reactions, respectively.The numbers on the edges denote a fixed ordering of the reactions. Right: the stoichiometric matrix associated
with the system, i.e. [Γ]𝑖𝑗 is the net change in the number of the 𝑖’th species upon occurring the 𝑗’th reaction.

where 𝑠𝑖 is the 𝑖’th species, 𝑦𝑗 is the 𝑗’th complex, and 𝑟V
is the V’th reaction of the network. Moreover, 𝛼𝑗𝑖 is the
stoichiometric coefficient of the 𝑖’th species in the 𝑗’th complex.
For a reaction 𝑟V = 𝑦𝑠𝑜𝑢𝑟𝑐𝑒(𝑟V) 󳨀→ 𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑟V) of R, 𝑦𝑠𝑜𝑢𝑟𝑐𝑒(𝑟V)
and 𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑟V) are the source complex and the product
complex, respectively.

For each complex 𝑦𝑗 ∈ C, 𝑗 ∈ {1, . . . , 𝑚}, the
stoichiometric coefficients of the species can be represented
as a vector of the following form:

𝑦𝑗 = [𝛼𝑗1 𝛼𝑗2 . . . 𝛼𝑗𝑛]⊤ (2)

For each 𝑟 ∈ R, a reaction vector 𝑟𝑖𝑗 ∈ Z𝑛 can be associated
with the track of the net molecular count changes of the
species upon firing the reaction:

𝑟𝑖𝑗 = 𝑦𝑗 − 𝑦𝑖 (3)

so that 𝑦𝑗 and 𝑦𝑖 are the corresponding source and product
complexes of 𝑟. In the sequel the notation 𝑟𝑖 will be used
for denoting both the 𝑖’th reaction of the d-CRN and the
associated reaction vector as well.Wewill also assume that for
all the examined d-CRNs a fixed order of the reaction vectors
is given; i.e., an order 𝑟1, 𝑟2, . . . , 𝑟𝑙 is fixed and 𝑙 = |R|.

A d-CRN can also be represented by a directed graph𝐺 = 𝐺(𝑉, 𝐸) such that the vertices and edges correspond to
the complexes and the reactions, respectively, i.e.,

𝑉 = C (4)

𝐸 =R. (5)

The direction of the edges is determined by the reactions of
R, so that if 𝑦𝑖 󳨀→ 𝑦𝑗 ∈ R, then there exists an edge𝑒 ∈ 𝐸 from the vertex representing 𝑦𝑖 to the vertex of 𝑦𝑗.
For each edge a weight corresponding to the reaction rate
constant (also called intensity or propensity) corresponding
to the respective reaction can also be associated.

Beyond the above representations it is also possible to
describe a d-CRN in an algebraic way by means of its unique
stoichiometric matrix.

Definition 1. Let us consider a d-CRN N = (S,C,R). The
stoichiometric matrix Γ ∈ Z𝑛×𝑙 ofN is defined as follows:

Γ = [𝑟1 . . . 𝑟𝑙] (6)

Note that [Γ]𝑖𝑗 encodes the net molecule count change on
species 𝑠𝑖 upon the occurrence of reaction 𝑟𝑗. Besides Γ we
also define the following matrices:

Γ+ = [𝑦+𝑟1 . . . 𝑦+𝑟𝑙]⊤ (7)

Γ− = [𝑦−𝑟1 . . . 𝑦−𝑟𝑙]⊤ (8)

where 𝑦+𝑟𝑖 denotes the vector form of the product complex
belonging to reaction 𝑟𝑖 while 𝑦−𝑟𝑗 represents the vector of
the source complex associated with reaction 𝑟𝑗. The relation
among the above defined matrices is as follows:

Γ = Γ+ − Γ− (9)

Example 2. Let us consider the d-CRN N = (S,C,R)
depicted in Figure 1. N characterizes a simple network of
a bifunctional enzyme 𝐸 having both phosphorylation and
dephosphorylation activities on species 𝐼 and 𝐼𝑝, respectively.
This network is characterized by the following sets.

S = {𝐼, 𝐼𝑝, 𝐸, 𝐸𝐼, 𝐸𝐼𝑝}
C = {𝐼 + 𝐸, 𝐸𝐼, 𝐼𝑝 + 𝐸, 𝐸𝐼𝑝}
R = {𝐸 + 𝐼 󳨀→ 𝐸𝐼, 𝐼𝐸 󳨀→ 𝐸 + 𝐼, 𝐸𝐼 󳨀→ 𝐼𝑝 + 𝐸, 𝐸
+ 𝐼𝑝 󳨀→ 𝐸𝐼𝑝, 𝐸𝐼𝑝 󳨀→ 𝐸 + 𝐼𝑝, 𝐸𝐼𝑝 󳨀→ 𝐸 + 𝐼}

(10)

We fix the order of species and reactions as they are listed in
the above sets.

N has no information on the probabilities of the reac-
tions, but at any given time instant at most one reaction can
occur.

The molecular count of each species of a d-CRN at any
time 𝑡 ≥ 0 is given by its state vector 𝑋(𝑡) ∈ Z𝑛≥0 and the
time evolution of the system is characterized by the following
discrete state equation:

𝑋 (𝑡) = 𝑋 (0) + Γ𝑁 (𝑡) (11)

where 𝑋(0) is the state vector belonging to the initial time
instant and 𝑁(𝑡) = [𝑁1(𝑡),𝑁2(𝑡), . . . , 𝑁𝑚(𝑡)]⊤ ∈ Z𝑙≥0 such
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that𝑁𝑘(𝑡) ∈ Z≥0 stores the number of occurrences of the 𝑘’th
reaction up to time 𝑡. We note that𝑁(𝑡) is typically modeled
as some point process [8, 10].

For our further analysis the time instants when the
reactions have occurred are not of interest, but only the order
of reactions; therefore we abandon the notation of time 𝑡 in
the formulas.

Definition 3. Let us consider a d-CRN N = (S,C,R). It is
said that:

(1) a species 𝑠 ∈ S is a catalyzer of a reaction 𝑟 ∈ R if it
has the form of 𝑟 = 𝑠 + 𝑠1 󳨀→ 𝑠 + 𝑠2 with 𝑠1, 𝑠2 ∈ S,

(2) a complex 𝑦 ∈ C is charged at state𝑋 ∈ Z𝑛≥0 if𝑋 ⪰ 𝑦,
(3) a reaction 𝑟 ∈ R is charged if its respective source

complex is charged,
(4) a state𝑋 ∈ Z𝑛≥0 reacts to a state𝑋󸀠 ∈ Z𝑛≥0 (denoted by𝑋 󳨀→ 𝑋󸀠) if there exists a reaction 𝑟 ∈ R such that 𝑟

is charged at state𝑋 and𝑋 + 𝑟 = 𝑋󸀠,
(5) a reaction (vector) sequence 𝜎𝑟 is an ordered set of

reaction vectors 𝜎𝑟 = 𝑟1 . . . 𝑟V where 𝑟𝑖 ∈ R, 𝑖 =1, . . . , V,
(6) a state transition sequence 𝜎𝑋 is an ordered set states𝑋0, 𝑋1, . . . , 𝑋𝑝 so that 𝑋1 󳨀→ 𝑋2 󳨀→ . . . 󳨀→𝑋𝑝−1 󳨀→ 𝑋𝑝,
(7) a state 𝑋󸀠 ∈ Z𝑛≥0 is reachable from a state 𝑋 ∈

Z𝑛≥0 (denoted by 𝑋󴁄󴀼N𝑋󸀠 ) if there exists a directed
path in the state space so that𝑋 = 𝑋](1) 󳨀→ 𝑋](2) 󳨀→⋅ ⋅ ⋅ 󳨀→ 𝑋](V) = 𝑋󸀠.

Considering a state transition sequence 𝜎𝑋 =𝑋0 𝑋1 . . . 𝑋𝑝−1 𝑋𝑝, we call 𝑋0 and 𝑋𝑝 the initial and
target states, respectively, while 𝑋𝑖 for 𝑖 ∈ {1, . . . , 𝑝 − 1} are
called transition states of 𝜎𝑋.

The condition that a reaction 𝑟 ∈R is charged at state𝑋 ∈
Z𝑛≥0 can be expressed by the inequality𝑋 ⪰ 𝑦−𝑟 . For a reaction
sequence 𝜎𝑟 a state transition sequence 𝜎𝑋 = 𝑋0 𝑋1 . . . 𝑋V
can be uniquely associated so that

𝑋𝑗 = 𝑋𝑗−1 + 𝑟𝑗, 𝑗 ∈ {1, . . . , V} (12)

where the initial state 𝑋0 is assumed to be given. A state
transition sequence 𝜎𝑋 is said to be admissible if𝑋𝑖 ⪰ 𝑟𝑖+1 for𝑋𝑖 ∈ 𝜎𝑋, 𝑖 ∈ {0, . . . , V − 1}; moreover, we say that a reaction
sequence𝜎𝑟 is admissible if the corresponding state transition
sequence is admissible.

From the reachability of a state 𝑋󸀠 ∈ Z𝑛≥0 from an initial
state 𝑋0 ∈ Z𝑛≥0, it follows that the following equation has a
nonnegative integer solution 𝑐 ∈ Z𝑙≥0:

𝑋󸀠 = 𝑋0 + Γ𝑐 (13)

where [𝑐]𝑖 encodes the number of occurrences for reaction𝑟𝑖 ∈ R for 𝑖 ∈ {1, . . . , 𝑙}. However, it is important to note that
from the existence of a nonnegative integer solution 𝑐 of (13),
the reachability relation𝑋0󴁄󴀼N𝑋󸀠 does not necessary follow.

We note that 𝑐 of (13) corresponds to𝑁(𝑡) of (11). Since a
solution 𝑐 ∈ Z𝑙≥0 of (13) encodes the number of occurrences
for each reaction in a fixed order, the following equality is
fulfilled:

Γ𝑐 = ℎ∑
𝑖=1

𝑟𝑖 (14)

where ℎ = ∑𝑙𝑖=1[𝑐]𝑖 and 𝑟𝑖 ∈ R for 𝑖 ∈ {1, . . . , ℎ}. When we
want to emphasize that a reaction vector sequence is encoded
by a particular 𝑐 ∈ Z𝑙≥0, we will use the notation 𝜎𝑐𝑟 =𝑟1, . . . , 𝑟ℎ and the state transition sequence determined by 𝜎𝑐𝑟
will be denoted by 𝜎𝑐𝑋.
Definition 4. Let us consider a d-CRNNwith stoichiometric
matrix Γ ∈ Z𝑛×𝑙 and an initial state 𝑋0 ∈ Z𝑛≥0. The reachable
state space 𝑅𝑒𝑎𝑐ℎ(N, 𝑋0) ofN with initial state 𝑋0 is the set
of nonnegative discrete states reachable from𝑋0.

𝑅𝑒𝑎𝑐ℎ (N, 𝑋0) = {𝑋 | 𝑋 ∈ Z
𝑛
≥0, 𝑋0󴁄󴀼N𝑋} (15)

3. Integer Linear Programming

In this section some relevant concepts of mathematical pro-
gramming that will be extensively employed later are briefly
reviewed. An Integer Linear Programming (ILP) instance can
be formulated as follows:

𝐼𝐿𝑃
{{{{{{{{{{{{{{{

min
𝑥
{𝑎⊤𝑥}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐴𝑥 ≤ 𝑏
𝑥 ∈ Z𝑛

(16)

where 𝑥 is the 𝑛-dimensional vector of decision variables
while 𝑎 ∈ Z𝑛, 𝐴 ∈ Z𝑚×𝑛, and 𝑏 ∈ Z𝑚 are fixed coefficients.
Generally, the above ILP computational problem is known
to be NP-hard, which may highly confine our ability to
efficiently solve problems of integers in high dimension.

However, if the value of the decision vector that mini-
mizes (or maximizes) the prescribed objective function is not
important for us, but only the existence of a 𝑥 ∈ Z𝑛 vector
satisfying the set of specified constraints, then the problem is
called ILP feasibility problem.

𝐹𝑃{{{
𝑃 = {𝑥 | 𝐴𝑥 ≤ 𝑏, 𝐴 ∈ Z𝑚×𝑛, 𝑏 ∈ Z𝑚, 𝑥 ∈ R𝑛}
𝑃 ∩ Z𝑛

?= 0 (17)

An ILP feasibility problem, as a decision problem, addresses
the question of whether the polytope 𝑃 contains an integer
lattice point, formally 𝑃 ∩ Z𝑛

?= 0. While a FP is also known
to be NP-hard, it has well-decoupled time complexity with
respect to the number of variables, the number of constraints,
and the maximum of the absolute values of the entries of𝐴 and 𝑏. Therefore, a feasibility problem of the form (17),
assuming fixed dimension 𝑛, can be decided in polynomial
time in the number of constraints 𝑚 and the maximum of
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the absolute values of the coefficients𝐴 and 𝑏 bymeans of the
Lenstra algorithm [28, 29]. Moreover, the number of integer
lattice points in 𝑃 can also be numerated in polynomial
time in 𝑚 and the maximum of the absolute value of the
coefficients using Barvinok’s integer lattice point counting
algorithm [30–33]. We note that for the Barvinok algorithm
there exists an effective implementation called LattE [34].

4. Sub- and Superconservative d-CRNs

We define conservativity and subconservativity in the same
way as they were introduced, e.g. in [4, 16].

Definition 5. Ad-CRNN = (S,C,R) having stoichiometric
matrix Γ ∈ Z𝑛×𝑙 is called subconservative (superconservative)
if there exists a strictly positive vector 𝑧 ∈ R𝑛>0 for which𝑧⊤Γ ≤ 01×𝑙 (𝑧⊤Γ ≥ 01×𝑙) holds. The vector 𝑧 is called a
conservation vector.

An important property related to subconservativity is the
strong boundedness which is defined as follows.

Definition 6. A d-CRN N is said to be strongly bounded if,
for any 𝑋0 ∈ Z𝑛≥0 initial state, the reachable state space𝑅𝑒𝑎𝑐ℎ(N, 𝑋0) is bounded.

The subconservative property of the reaction network
structure is a necessary and sufficient condition of strong
boundedness [16, 35].

Proposition 7 (see [35]). Let us consider a d-CRN N. The
following propositions are equivalent:

(1) N is subconservative,
(2) N is strongly bounded.

As a special case covered by the intersection of sub- and
superconservativity, we can define the conservative property
as well.

Definition 8. Let us consider a d-CRN N = (S,C,R) with
stoichiometric matrix Γ ∈ Z𝑛×𝑙. The d-CRN N is said to be
conservative if there exists a vector 𝑧 ∈ R𝑛>0 satisfying the
matrix equation 𝑧⊤Γ = 01×𝑙.

We note that the above structural properties can be
easily decided in polynomial time by means of an LP of the
following form:

min
𝑛∑
𝑗=1

𝑧𝑗
𝑠.𝑡.

𝑧⊤Γ ≤ 01×𝑙 (𝑜𝑟 𝑧⊤Γ ≥ 01×𝑙)
𝑧 ⪰ 0𝑛×1 + 𝜀𝑛×1, 𝜀 ≻ 0𝑛×1

(18)

The relationship between sub- and superconservativity
can be expressed by the following proposition.

Proposition 9. A d-CRNN with stoichiometric matrix ΓN ∈
Z𝑛×𝑙 is subconservative if and only if the d-CRN N󸀠 with
stoichiometric matrix ΓN󸀠 = −ΓN is superconservative.

Proof.

𝑧⊤Γ ≤ 01×𝑚 ⇐⇒ 𝑧⊤ (−Γ) ≥ 01×𝑙 (19)

We note that −ΓN means the change of the direction of
each reaction in the d-CRNN of stoichiometric matrix ΓN.

Example 10. Figure 2 depicts two d-CRNs: a subconservative
and a superconservative reaction network structure. Indeed,
these networks are counterparts that can be easily trans-
formed to each other by changing the sign of the entries in the
stoichiometric matrices. Such a transformation results in the
change of the direction of the edges in the reaction network.

From Proposition 9 it follows that, instead of the reach-
ability problem of a superconservative network structure,
one can consider an equivalent subconservative d-CRN
reachability problem as is discussed in Proposition 11.

Proposition 11. Let us consider a subconservative d-CRN N
characterized by the matrices ΓN = Γ, Γ+N = Γ+ and a
superconservative d-CRN N󸀠 with matrices ΓN󸀠 = −Γ, Γ−N󸀠 =Γ+. Let us take an initial state 𝑋0 ∈ Z𝑛≥0 and a target state𝑋󸀠 ∈ Z𝑛≥0. Then the reachability 𝑋0󴁄󴀼N𝑋󸀠 holds if and only if𝑋󸀠󴁄󴀼N󸀠𝑋0 also holds.
Proof.

(1) 𝑋0󴁄󴀼N𝑋󸀠 󳨐⇒ ∃𝑐 ∈ Z𝑙≥0 such that𝑋0+Γ𝑐 = 𝑋󸀠 which
is equivalent to𝑋󸀠 + (−Γ)𝑐 = 𝑋0.
From 𝑋0󴁄󴀼N𝑋󸀠 it follows that the solution 𝑐 ∈ Z𝑙≥0
can be decomposed to an admissible reaction vector
sequence 𝜎𝑐𝑟 = 𝑟𝑐1 . . . 𝑟𝑐ℎ, ℎ = ∑𝑙𝑖=1[𝑐]𝑖; i.e., all
the states of 𝜎𝑐𝑋 determined by 𝜎𝑐𝑟 are composed of
nonnegative entries.Then, by reversing 𝜎𝑐𝑋, we obtain
a nonnegative state transition sequence 𝜎̂𝑐𝑋 from 𝑋󸀠
to 𝑋0 which is uniquely determined by means of the
reaction vector sequence 𝜎̂𝑐𝑟 = −𝑟𝑐ℎ . . . − 𝑟𝑐1.
It is also needed to show that 𝜎̂𝑐𝑟 is an admissible
reaction sequence. This can be done as follows: for
each state 𝑋 ∈ 𝜎𝑐𝑋\𝑋0 there exists a reaction 𝑟 ∈ 𝜎𝑐𝑟
so that upon firing 𝑟 the resulting state is 𝑋, from
which it follows that 𝑋 ⪰ 𝑦+𝑟 ; moreover, considering
the reversed reaction sequence 𝜎̂𝑐𝑟 , the reaction vector
that will occur at state 𝑋 is −𝑟 ∈ 𝜎̂𝑐𝑟 which is charged
at𝑋 even if𝑋 ⪰ 𝑦+𝑟 .
Then the admissibility of 𝜎̂𝑐𝑟 follows.

(2) The proof for the other direction 𝑋󸀠󴁄󴀼N󸀠𝑋0 works
analogously as above.

The importance of Proposition 11 is that the reachability
problem of a superconservative d-CRN of unbounded reach-
able state space can be easily traced back to the reachability
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Figure 2: A pair of sub- and superconservative reaction network structures denoted byN andN󸀠, respectively.The ordering of the reactions
are denoted by the numbers on the edges of the graphs.The two networks can be transformed to each other by changing the sign of the entries
in their stoichiometric matrices. (a) Subconservative d-CRN. (b) Superconservative d-CRN.

problem of a d-CRN of bounded reachable state space which
can make the original decision problem computationally
tractable.

5. Reachability Analysis

5.1. Low-Dimensional Case. In this section the case of low-
dimensional (rank(Γ) ≤ 2) subconservative d-CRNs is
considered. We state a modified version of Proposition 5 of
[36] where the conditions on the initial and target states are
less strict. Then we extend the result to superconservative d-
CRNs.

In order to discuss low-dimensional reachability prob-
lems, we introduce a distinguished state 𝑀 = 𝑀(Γ−) as
follows:

[𝑀 (Γ−)]𝑖 = max {[Γ−]𝑖𝑗 : 𝑗 = 1, . . . , 𝑙} 𝑖 = 1, . . . , 𝑛. (20)

Here Γ− is defined by (8). Note that the set {𝑋 | 𝑋 ∈ Z𝑛≥0, 𝑋 ⪰𝑀} contains all the states where each reaction is charged.

Proposition 12. Let us consider a subconservative d-CRN N

with stoichiometric matrix Γ ∈ {−1, 0, 1}𝑛×𝑙 and Γ− ∈ {0, 1}𝑛×𝑙.
Assume that rank(Γ) ≤ 2. We consider an initial state 𝑋0 ∈
Z𝑛≥0 and a target state 𝑋󸀠 ∈ Z𝑛≥0 such that 𝑋0 ⪰ 𝑀 and 𝑋󸀠 ⪰𝑀 hold where𝑀 = 𝑀(Γ−) is defined by (20).Then the state𝑋󸀠
is reachable from 𝑋0 through a state transition sequence 𝜎𝑋 =𝑋0𝑋1 . . . 𝑋󸀠 for which, ∀𝑋 ∈ 𝜎𝑋, 𝑋 ⪰ 𝑀 if and only if the
equation

Γ𝑐 = 𝑋󸀠 − 𝑋0 (21)

has a nonnegative integer solution 𝑐.

Proof.
(1) If𝑋󸀠 is reachable from𝑋0 through an admissible state

transition sequence 𝜎𝑋, then it follows that a solution𝑐 ∈ Z𝑙≥0 exists.
(2) Assume that there exists 𝑐 ∈ Z𝑛≥0 such that 𝑋0 + Γ𝑐 =𝑋󸀠 holds. Let us consider any reaction vector decom-

position 𝜎𝑟 = 𝑟](1) . . . 𝑟](ℎ) of 𝑐 where ∑ℎ𝑗=1 𝑟](𝑗) = 𝑐
and ∑𝑙𝑗=1[𝑐]𝑗 = ℎ. We show that Algorithm 1 returns
a permutation of 𝜎𝑟 so that for all the transition states𝑋 the inequality𝑋 ⪰ 𝑀 holds.
Let us assume that there exists a transition state𝑋𝑖, 𝑋𝑖 ⪰ 𝑀, so that the forthcoming state 𝑋𝑖+1
satisfies the inequality [𝑋𝑖+1]𝑑 < [𝑀]𝑑 for some𝑑 ∈ {1, 2}. For the target state 𝑋󸀠 to be reached the
inequality𝑋󸀠 ⪰ 𝑀 holds; hence there exists a reaction
increasing the state variable along the coordinate 𝑑.
Let us assume that all the reactions increasing the state
variable along 𝑋𝑖 decrease the other coordinate 𝑑󸀠 so
that the resulting forthcoming state 𝑋𝑖+1 satisfies the
inequality [𝑋𝑖+1]𝑑󸀠 < [𝑀]𝑑󸀠 . Then 𝑋𝑖 = 𝑀 holds.
Now there are two different cases:
(𝑃1) If𝑋󸀠 = 𝑀, then Algorithm 1 terminates, and the
correctness follows.
(𝑃2) If 𝑋󸀠 ̸= 𝑀, then the subconservativity of N
implies that it is not possible to reach a state 𝑋, 𝑋 ⪰𝑀, 𝑋 ̸= 𝑀; i.e., 𝑋󸀠 is not reachable from 𝑋𝑖. This
is contradiction, since arbitrary permutation of the
initial ordering 𝜎𝑟 results in the same target state 𝑋󸀠,
given the initial state 𝑋0. Then the correctness of
Algorithm 1 follows.
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1: procedure Reorder(𝑋0 [𝑟](1) 𝑟](2) . . . 𝑟](ℎ)],𝑀)
2: 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←󳨀 𝑋0
3: for 𝑖 = 1 to ℎ do
4: if 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋󸀠 then
5: return [𝑟](1) 𝑟](2) . . . 𝑟](ℎ)]
6: end if
7: if[𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟](𝑖)]𝑙 < [𝑀]𝑙 for some 𝑙 ∈ {1, . . . , 𝑛} then
8: Choose a transition vector 𝑟](𝑗), 𝑖 < 𝑗 ≤ ℎ so that𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟](𝑗) ⪰ 𝑀
9: 𝑟󸀠 ←󳨀 𝑟](𝑖)
10: 𝑟](𝑖) ←󳨀 𝑟](𝑗)
11: 𝑟](𝑗) ←󳨀 𝑟󸀠
12: end if
13: 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←󳨀 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟](𝑖)
14: end for
15: return [𝑟](1) 𝑟](2) . . . 𝑟](ℎ)]
16: end procedure

Algorithm 1

Algorithm 1 can be easily extended to the class of
superconservative reaction networks.

Corollary 13. Let us consider a superconservative d-CRN N

with stoichiometric matrix Γ ∈ {−1, 0, 1}𝑛×𝑙 and Γ− ∈ 0, 1𝑛×𝑙.
Assume that rank(Γ) ≤ 2 holds and consider an initial state𝑋0 ∈ Z𝑛≥0 and a target state 𝑋󸀠 ∈ Z𝑛≥0 for which 𝑋0 ⪰ 𝑀
and 𝑋󸀠 ⪰ 𝑀 hold where𝑀 is defined by (20). Then the state𝑋󸀠 ∈ Z𝑛≥0 is reachable from𝑋0 if and only if the equation

Γ𝑐 = 𝑋󸀠 − 𝑋0 (22)

has a nonnegative integer solution 𝑐.
Proof. According to Proposition 11 we can consider a subcon-
servative d-CRNN󸀠 of stoichiometricmatrix −Γ and take the
reachability problem 𝑋󸀠 ?󴁄󴀼N󸀠𝑋0. Then Proposition 7 can be
applied.

5.2. Sub- and Superconservative d-CRNs of Arbitrary High
State Space Dimension. In this section the reachability prob-
lem of arbitrary high-dimensional sub- and superconser-
vative d-CRNs is considered. Firstly we examine network
structures composed of reactions having at most one input
and one output species. It is shown by an inductive proof
that, under some auxiliary condition, the reachability relation𝑋0󴁄󴀼N𝑋󸀠 is equivalent to the existence of a 𝑐 ∈ Z𝑙≥0 solution
of the d-CRN state equation 𝑋0 + Γ𝑐 = 𝑋󸀠. Then, according
to the relation between sub- and superconservative reaction
network structures, this result is generalized to a subclass of
superconservative d-CRNs as well. We also extend the results
to d-CRNs containing second-order reactions by allowing
catalyzer species.

Firstly, we adopt the following necessary and sufficient
condition of reachability from the theory of Petri nets (see
Theorem 16, [37]) whichwill be extensively used in the sequel.

Lemma 14. Let us consider a d-CRN N with stoichiometric
matrix Γ ∈ {−1, 0, 1}𝑛×𝑙 such that for all 𝑟 ∈ R reactions∑𝑛𝑖=1[𝑦+]𝑖 ≤ 1 and ∑𝑛𝑖=1[𝑦−]𝑖 = 1 holds. Assume that the
reaction network of N does not contain directed cycle (i.e., N
has an acyclic network structure). Consider two states𝑋0, 𝑋󸀠 ∈
Z𝑛≥0. Then the reachability relation𝑋0󴁄󴀼N𝑋󸀠 holds if and only
if there exists 𝑐 ∈ Z𝑙≥0 vector satisfying the state equation𝑋0 + Γ𝑐 = 𝑋󸀠.

Now we can state the result on the reachability of
subconservative d-CRNs composed of reaction having at
most one input and one output species.

Proposition 15. Let us consider a subconservative d-CRN
N = (S,C,R) of stoichiometric matrix Γ ∈ {−1, 0, 1}𝑛×𝑙 andΓ− ∈ {0, 1}𝑛×𝑙 for which C = S ∪ {0}. Assume that for all𝑟 ∈ R reactions ∑𝑛𝑖=1[𝑦+]𝑖 ≤ 1 and ∑𝑛𝑖=1[𝑦−]𝑖 = 1 hold. Let
us consider two states 𝑋0, 𝑋󸀠 ∈ Z𝑛≥0 so that 𝑋0 ⪰ 𝑀 and𝑋󸀠 ⪰ 𝑀 hold where𝑀 = 𝑀(Γ−) is defined by (20). Then the
reachability relation 𝑋0󴁄󴀼N𝑋󸀠 holds if and only if there exists
a vector 𝑐 ∈ Z𝑙≥0 satisfying the state equation 𝑋0 + Γ𝑐 = 𝑋󸀠.
Proof.

(1) 𝑋0󴁄󴀼N𝑋󸀠 󳨐⇒ ∃𝑐 ∈ Z𝑙≥0 : 𝑋0 + Γ𝑐 = 𝑋󸀠
By the definition of reachability it is guaranteed that
the state equation is satisfied with some 𝑐 ∈ Z𝑙≥0.

(2) 𝑋0󴁄󴀼N𝑋󸀠 ⇐󳨐 ∃𝑐 ∈ Z𝑙≥0 : 𝑋0 + Γ𝑐 = 𝑋󸀠
For this side an inductive proof is employed.

(a) 𝑘 = 2
If a d-CRN is 2-dimensional, according to
Proposition 12, the existence of a solution 𝑐 ∈
Z𝑙≥0 of the state equation implies that the reach-
ability relation holds.

(b) Inductive assumption
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Figure 3: Graphical explanation of how the reaction network structure of N󸀠 in the proof of Proposition 15 is constructed. (a) Reaction
network structure of an 𝑛-dimensional d-CRNN. (b) Reaction network structure ofN󸀠 resulting from merging the species 𝑠𝑘1 and 𝑠𝑘2 ofN
along their shared reaction 𝑟𝑘1𝑘2 (and reverse counterpart reaction 𝑟𝑘2𝑘1 ). Note that by merging 𝑠𝑘1 and 𝑠𝑘2 we obtain a stoichiometric matrixΓ󸀠 having redundant reactions (e.g., (𝑠1, 𝑠𝑘1 ), (𝑠1, 𝑠𝑘2 ) resulting in (𝑠1, 𝑠󸀠𝑘1 ), (𝑠1, 𝑠󸀠𝑘1 )) and zero reaction vectors (i.e., self-loops on 𝑠󸀠𝑘1 ), but they
are omitted in (b). A directed cycle on which the chosen reaction 𝑟𝑘1𝑘2 lies is depicted in gray.

For 𝑘 = 𝑛 − 1 we assume that the reachability
relation𝑋0󴁄󴀼N𝑋󸀠 holds.

(c) 𝑘 = 𝑛
We have two different cases with respect to the
existence of directed cycles.
If the reaction network has no directed cycle,
then the reachability relation 𝑋0󴁄󴀼N𝑋󸀠 is guar-
anteed by Lemma 14.
Assume that the reaction network contains at
least one directed cycle

𝜎𝑆 = 𝑠](1) . . . 𝑠](ℎ) (23)

where ℎ ≤ 𝑛, 𝑠](1) = 𝑠](ℎ) and 𝑠](𝑖) ̸= 𝑠](𝑗)
for 𝑖, 𝑗 ∈ {1, . . . , ℎ}, 𝑖 ̸= 𝑗. Note again that
C = S ∪ {0}, and hence 𝜎𝑆 can be considered
as a directed cycle of complexes in the reaction
network (i.e., 𝜎𝑆 = 𝜎𝐶 = 𝑠](1) . . . 𝑠](ℎ)). Let us
consider an arbitrary 𝑟𝑘1𝑘2 ∈R reaction defined
between some 𝑠𝑘1 , 𝑠𝑘2 ∈ 𝜎𝑆, i.e. 𝑟𝑘1𝑘2 = 𝑠𝑘1 󳨀→𝑠𝑘2 .
Now we construct a d-CRN N󸀠 = (S󸀠,C󸀠,R󸀠)
from the stoichiometric matrix Γ ∈{−1, 0, 1}(𝑛−1)×𝑙 and Γ− ∈ {0, 1}(𝑛−1)×𝑙 as
follows:

[Γ󸀠]
𝑖,:
=
{{{{{{{{{

[Γ]𝑖,: , 𝑖 < 𝑘𝑚𝑎𝑥, 𝑖 ̸= 𝑘𝑚𝑖𝑛,
[Γ]𝑘𝑚𝑖𝑛 ,: + [Γ]𝑘𝑚𝑎𝑥 ,: , 𝑖 = 𝑘𝑚i𝑛,
[Γ]𝑖+1,: , 𝑘𝑚𝑎𝑥 ≤ 𝑖 ≤ 𝑛 − 1,

(24)

and

[Γ−󸀠]
𝑖,:

=
{{{{{{{{{

[Γ−]𝑖,: , 𝑖 < 𝑘𝑚𝑎𝑥, 𝑖 ̸= 𝑘𝑚𝑖𝑛,
[Γ−]𝑘𝑚𝑖𝑛 ,: + [Γ−]𝑘𝑚𝑎𝑥 ,: , 𝑖 = 𝑘𝑚𝑖𝑛,
[Γ−]𝑖+1,: , 𝑘𝑚𝑎𝑥 ≤ 𝑖 ≤ 𝑛 − 1.

(25)

Here 𝑘𝑚𝑖𝑛 = min{𝑘1, 𝑘2} and 𝑘𝑚𝑎𝑥 =
max{𝑘1, 𝑘2}. This way we obtained a d-CRNN󸀠

satisfying the assumptions of the proposition.
Figure 3 gives an illustrative example of howN󸀠

is constructed. Now we assign to each 𝑟󸀠 ∈ R󸀠

the ordered pair of source complex and product
complex of 𝑟 ∈ R from which it is obtained.
In such a way every reaction of N󸀠 is uniquely
described by an ordered pair (𝑟󸀠, 𝑟) ∈ R󸀠 ×R.
Then by the mapping 𝑃((𝑟󸀠, 𝑟)) = 𝑟 one can
uniquely determine the reaction 𝑟 ∈ R from
which 𝑟󸀠 ∈R󸀠 is derived.
Let us construct the states𝑋𝑚0 ∈ Z𝑛−1≥0 and𝑋𝑚󸀠 ∈
Z𝑛−1≥0 as follows:

[𝑋𝑚0 ]𝑖 =
{{{{{{{{{

[𝑋0]𝑖 , 𝑖 < 𝑘𝑚𝑎𝑥, 𝑖 ̸= 𝑘𝑚𝑖𝑛,
[𝑋0]𝑘𝑚𝑖𝑛 + [𝑋0]𝑘𝑚𝑎𝑥 , 𝑖 = 𝑘𝑚𝑖𝑛,
[𝑋0]𝑖+1 , 𝑘𝑚𝑎𝑥 ≤ 𝑖 ≤ 𝑛 − 1.

(26)

[𝑋󸀠𝑚]
𝑖

=
{{{{{{{{{

[𝑋󸀠]
𝑖
, 𝑖 < 𝑘𝑚𝑎𝑥, 𝑖 ̸= 𝑘𝑚𝑖𝑛,

[𝑋󸀠]
𝑘𝑚𝑖𝑛

+ [𝑋󸀠]
𝑘𝑚𝑎𝑥

, 𝑖 = 𝑘𝑚𝑖𝑛,
[𝑋󸀠]
𝑖+1
, 𝑘𝑚𝑎𝑥 ≤ 𝑖 ≤ 𝑛 − 1.

(27)

Then we have that 𝑋𝑚0 ⪰ 𝑀(Γ−󸀠) and 𝑋󸀠𝑚 ⪰𝑀(Γ−󸀠), and hence the (𝑛 − 1)-dimensional d-
CRNN󸀠 with the initial and final states𝑋𝑚0 and𝑋󸀠𝑚 satisfies the assumptions of the proposition.
From 𝑋0 + Γ𝑐 = 𝑋󸀠 we have that 𝑋𝑚0 +Γ󸀠𝑐 = 𝑋󸀠𝑚 holds; hence, according to the(𝑛 − 1)-dimensional inductive assumption, the
reachability relation

𝑋0𝑚󴁄󴀼N󸀠𝑋󸀠𝑚 (28)

follows.
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Let us consider an admissible reaction vector
sequence 𝜎󸀠𝑟 associated with relation (28). Since
for each 𝑟󸀠 ∈ R󸀠 we associated the reaction 𝑟 ∈
R from which 𝑟󸀠 is obtained, making use of the
mapping𝑃 :R󸀠×R 󳨀→R, we can consider the
reaction vector sequence 𝜎𝑟 (𝑟 ∈ R ∀𝑟 ∈ 𝜎𝑟)
uniquely determined by 𝜎󸀠𝑟. We start from 𝑋0
andmodify the state variable𝑋 ∈ Z𝑛≥0 according
to the reaction vector sequence 𝜎𝑟. We may get
to two invalid cases:(𝐶1) [𝑋]𝑘2 = 0, but the source complex of
the forthcoming reaction 𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝜎𝑟 is 𝑠𝑘2 .
Then, according to the (𝑛 − 1)-dimensional
reachability, it is guaranteed that 𝑠𝑘1 is charged
at the current state 𝑋. Let us insert 𝑟𝑘1𝑘2 into 𝜎𝑟
before the current reaction 𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡.(𝐶2) [𝑋]𝑘1 = 0, but the source complex of
the forthcoming reaction 𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝜎𝑟 is 𝑠𝑘1 .
Then, according to the (𝑛 − 1)-dimensional
reachability, it is guaranteed that 𝑠𝑘2 is charged
at the current state 𝑋. It is known that 𝑠𝑘1 can
be reached from 𝑠𝑘2 along a reaction vector
sequence 𝜎∗𝑟 in the reaction network of N. Let
us insert 𝜎∗𝑟 into 𝜎𝑟 before the current reaction𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡.
By modifying 𝜎𝑟 according to the above dis-
cussed cases (𝐶1) and (𝐶2), we obtain an admis-
sible reaction vector sequence 𝜎𝑟𝑚𝑜𝑑 with respect
to the reachability relation

𝑋0󴁄󴀼N󸀠𝑋∗ (29)

where 𝑋∗ ⪰ 0𝑛, [𝑋∗]𝑖 = [𝑋󸀠]𝑖 for 𝑖 ∈{1, . . . 𝑛}, 𝑖 ̸= 𝑘1 and 𝑖 ̸= 𝑘2; moreover, [𝑋∗]𝑘1 +[𝑋∗]𝑘2 = 𝑋󸀠. According to the assumptions N
contains directed paths both from 𝑠𝑘1 to 𝑠𝑘2 and
from 𝑠𝑘2 to 𝑠𝑘1 ; hence the reachability relation𝑋∗󴁄󴀼N𝑋󸀠 follows. Then, due to the transitivity
of the relation 󴁄󴀼N, we have that 𝑋0󴁄󴀼N𝑋󸀠 also
holds.

Proposition 15 can be extended to the case of supercon-
servative d-CRNs.

Corollary 16. Let us consider a superconservative d-CRNN =(S,C,R) with stoichiometric matrix Γ ∈ {−1, 0, 1}𝑛×𝑙 andΓ− ∈ {0, 1}𝑛×𝑙 for which C = S. Assume that for all 𝑟 ∈ R
reactions ∑𝑛𝑖=1[𝑦+]𝑖 = 1 and ∑𝑛𝑖=1[𝑦−]𝑖 ≤ 1 hold. Let us
consider two states 𝑋0, 𝑋󸀠 ∈ Z𝑛≥0 so that 𝑋0 ⪰ 𝑀 and𝑋󸀠 ⪰ 𝑀 hold where𝑀 = 𝑀(Γ−) is defined by (20). Then the
reachability relation 𝑋0󴁄󴀼N𝑋󸀠 holds if and only if there exists
a vector 𝑐 ∈ Z𝑙≥0 satisfying the state equation 𝑋0 + Γ𝑐 = 𝑋󸀠.
Proof. By changing the sign of the entries in the stoichiomet-
ric matrix Γ, we get a subconservative d-CRN N󸀠 of stoi-
chiometric matrix −Γ. Then we can consider the reachability
problem𝑋󸀠 ?󴁄󴀼N󸀠𝑋0.

We can extend Proposition 15 by allowing the restricted
application of catalyzer species as follows.

Proposition 17. Let us consider a subconservative d-CRN
N = (S,C,R) of stoichiometric matrix Γ ∈ {−1, 0, 1}𝑛×𝑙
and Γ− ∈ {0, 1}𝑛×𝑙. Assume that for each reaction 𝑟:

(1) 𝑟 = 𝑠1 󳨀→ 𝑠2 for some 𝑠1, 𝑠2 ∈ S, 𝑠1 ̸= 𝑠2, 𝑠1 ̸= 0, OR
(2) 𝑟 = 𝑠 + 𝑠1 󳨀→ 𝑠 + 𝑠2 where 𝑠, 𝑠1, 𝑠2 ∈ S, 𝑠 ̸= 𝑠1 ̸= 𝑠2,𝑠 ̸= 0, 𝑠1 ̸= 0 and ∀𝑟󸀠 ∈R𝑟󸀠 does not consume 𝑠.

Let us consider two states 𝑋0, 𝑋󸀠 ∈ Z𝑛≥0 for which 𝑋0 ⪰ 𝑀
and 𝑋󸀠 ⪰ 𝑀 where𝑀 = 𝑀(Γ−) is defined by (20). Then the
reachability relation 𝑋0󴁄󴀼N𝑋󸀠 holds if and only if there exists
a vector 𝑐 ∈ Zl

≥0 satisfying the state equation 𝑋0 + Γ𝑐 = 𝑋󸀠.
Proof.

(1) 𝑋0󴁄󴀼N𝑋󸀠 󳨐⇒ 𝑋0 + Γ𝑐 = 𝑋󸀠
It follows from the definition of reachability.

(2) 𝑋0 + Γ𝑐 = 𝑋󸀠 󳨐⇒ 𝑋0󴁄󴀼N𝑋󸀠
Since in the initial state 𝑋0 the number of each
catalyzer molecule is higher than or equal to 1 and
there is no reaction in N consuming a catalyzer
species, it follows that for each state reachable from𝑋0
the number of each catalyzer molecule is higher than
or equal to 1. Let us remove all the catalyzer species
ofN from the reactions where they act as a catalyzer;
i.e., for each 𝑟 ∈ R of the form 𝑟 = 𝑠 + 𝑠1 󳨀→ 𝑠 + 𝑠2
we erase the catalyzer 𝑠 to obtain 𝑟󸀠 = 𝑠1 󳨀→ 𝑠2.
In such a way a d-CRN N󸀠 is obtained so that for
each 𝑋 ⪰ 𝑀, 𝑋0󴁄󴀼N󸀠𝑋 iff 𝑋0󴁄󴀼N𝑋. N󸀠 satisfies the
conditions of Proposition 15; hence the reachability
relation𝑋0󴁄󴀼N󸀠𝑋󸀠 holds implying that𝑋0󴁄󴀼N𝑋󸀠 also
holds.

According to the duality of the sub- and superconserva-
tivity properties, we can extend Proposition 17 to the case of
superconservative d-CRNs.

Corollary 18. Let us consider a superconservative d-CRNN =(S,C,R) of stoichiometric matrix Γ ∈ {−1, 0, 1}𝑛×𝑙 and Γ− ∈{0, 1}𝑛×𝑙. Assume that for each reaction 𝑟
(1) 𝑟 = 𝑠1 󳨀→ 𝑠2 for some 𝑠1, 𝑠2 ∈ S, 𝑠1 ̸= 𝑠2, 𝑠2 ̸= 0, OR
(2) 𝑟 = 𝑠 + 𝑠1 󳨀→ 𝑠 + 𝑠2 where 𝑠, 𝑠1, 𝑠2 ∈ S, 𝑠 ̸= 𝑠1 ̸= 𝑠2,𝑠 ̸= 0, 𝑠2 ̸= 0 and ∀𝑟󸀠 ∈R𝑟󸀠 does not produce 𝑠.

Let us consider two states 𝑋0, 𝑋󸀠 ∈ Z𝑛≥0 for which 𝑋0 ⪰ 𝑀
and 𝑋󸀠 ⪰ 𝑀 where𝑀 = 𝑀(Γ−) is defined by (20). Then the
reachability relation 𝑋0󴁄󴀼N𝑋󸀠 holds if and only if there exists
a vector 𝑐 ∈ Z𝑙≥0 satisfying the state equation 𝑋0 + Γ𝑐 = 𝑋󸀠.
Proof. By changing the sign of the entries in the stoichio-
metric matrix Γ, we obtain a subconservative d-CRN N󸀠

of stoichiometric matrix −Γ satisfying the conditions of
Proposition 17. We can consider the reachability problem
𝑋󸀠 ?󴁄󴀼N󸀠𝑋0.
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Figure 4: Conformational switchmodel of NFAT1 [38]. Lower case letters denote the protein located in the cytoplasmwhile upper case letters
refer to the protein in the nucleus. 𝑎𝑗, 𝐴𝑗 and 𝑖𝑗, 𝐼𝑗 for 𝑗 = 0, . . . 13 denote the active and inactive proteins, respectively. Lower indices denote
the number of phosphorylated residues.

By the above corollary, any reachability problem on a
superconservative d-CRN satisfying the conditions of Corol-
lary 18 can be easily traced back to that of a subconservative
network; hence the problem is equivalent to finding a 𝑐 ∈ Z𝑙≥0
solution for the respective d-CRN state equation.

The reaction network class covered by the above state-
ments might be beneficial in modeling first- and second-
order (bio)chemical reaction networks. For a representative
example, see Example 19 below. We also note that any mass
action type chemical reaction network can be dynamically
described by an appropriately constructed reaction network
containing at most second-order reactions [39]. Moreover,
the hypergraph representation of chemical reaction networks
(see, e.g., [40]) is helpful for checking the conditions of
Proposition 17.

Example 19. Nuclear factors of activated T-cells (NFAT) are
proteins that can exist in highly phosphorylated states [38].
They act as transcription factors; i.e., they have regulatory
role in transcription. NFAT1, which is a member of the
NFAT family, has 13 residues that can be dephosphorylated
upon stimulation. NFAT1 has two different states: active and
inactive. The transition between active and inactive states of
the protein is regulated by the level of phosphorylation such
that the higher the level of phosphorylation is, the lower the
rate of transition becomes from inactive state to the active
one and vice versa. Phosphorylation and dephosphorylation
are achieved by a kinase and calcineurin, respectively. In the
mathematical model the activities of kinase and calcineurin
are modeled as rate constants; hence the respective reactions
can be considered as first-order ones. The protein might be
located in the cytoplasm or the nucleus of the cell. Cytoplas-
mic active NFAT1 is imported to the nucleus, while inactive
NFAT1 of the nucleus is exported back to the cytoplasm.

The reaction network structure is depicted in Figure 4.
It is visible that each reaction is of first order and there is
no degradation and synthesis; hence the reaction network
structure is conservative with a particular conservativity
vector 𝑧 = 156 and Proposition 15 can be applied.

We note that a reachability problem of the discussed
reaction network class without additional constraints may
be determined in polynomial time [41]. However, by using

an ILP feasibility approach, the number of all distinct
trajectories satisfying a prescribed reachability relation can
be determined efficiently (see Remark 20), assuming the
fixed number of reactions in the network. In addition, the
ILP formulation can also be equipped with further linear
constraints.

Remark 20. Let us consider a subconservative (superconser-
vative) d-CRN N = (S,C,R) of 𝑛 species, 𝑚 complexes,
and 𝑙 reactions. Assume that N satisfies the conditions of
Proposition 17 (Corollary 18). Then for any 𝑋0, 𝑋󸀠 ∈ Z𝑛≥0
initial and target states for which 𝑋0 ⪰ 𝑀(Γ−), 𝑋󸀠 ⪰ 𝑀(Γ−)
hold we have that the number of distinct trajectories 𝜎𝑋 satis-
fying the reachability relation𝑋0 ?󴁄󴀼N𝑋󸀠 can be determined in
polynomial time in the distance of𝑋0 and𝑋󸀠, given the fixed
number of reactions 𝑙 in the d-CRN.The explanation of this is
the following. According to Proposition 17 (Corollary 18) the
reachability problem 𝑋0 ?󴁄󴀼N𝑋󸀠 is equivalent to the existence
of a nonnegative integer solution 𝑐 ∈ Z𝑙≥0 of the state equation𝑋0 + Γ𝑐 = 𝑋󸀠. In this way the reachability problem can be
reformulated as an ILP feasibility problem in terms of 𝑐, and
the Barvinok algorithm can be applied. Using the Barvinok
algorithm in this particular case, the following complexity
bounds are obtained:

(1) exponential in the dimension of the decision vari-
ables, that is, in the number of different reactions 𝑙,

(2) polynomial in the number of constraints, that is, in
the number of species 𝑛,

(3) polynomial in the maximum of the absolute values of
the coefficients Γ,𝑋󸀠 − 𝑋0.

The particular importance of Remark 20 is that the time
complexity of the trajectory counting problem between a
prescribed pair of states is polynomial in the number of
constraints and in the distance of the initial and target states
even in the case of superconservative d-CRNs for which the
associated reachable state space can be unbounded for any𝑋0
initial state.
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Figure 5: A superconservative d-CRN. 0 indicates the zero complex and the numbers denote the indices of the reactions on which they are
located. Due to the superconservativity of the network structure, the above d-CRN is unbounded for any initial state 𝑋0 ∈ Z𝑛≥0.

6. Computational Example:
A Superconservative d-CRN of
First-Order Reactions

Let us consider the d-CRN depicted in Figure 5. This system
is superconservative with a particular conservation vector𝑧 = 121×1 implying the unboundedness of its reachable state
space regardless of the initial state 𝑋0. Making use of the
above results, the reachability problem of 𝑋0 ?󴁄󴀼 𝑋󸀠 for
any 𝑋0, 𝑋󸀠 ∈ Z21≥0 can be reformulated as a subconservative
d-CRN reachability problem for which the boundedness
of the reachable state space, i.e. structural boundedness, is
guaranteed and is equivalent to the existence of a nonnegative
integer solution of the respective subconservative d-CRN
state equation.

As initial state we consider 𝑋0 given by (31) that was
randomly generated from [10, 100]21. In order to find a target
state 𝑋󸀠 satisfying the reachability relation 𝑋0 󴁄󴀼 𝑋󸀠 we

randomly generated target states so that the number of each
species was uniformly sampled from the interval [40, 100]. In
the choice of the intervals fromwhich we sample, it was taken
into consideration that the discrete state model of reaction
networks is typically employed in the case of low molecular
counts [4, 5]. In order to decide the reachability relation
between a pair of particular states𝑋0 and𝑋󸀠, we need to solve
the following decision problem.

Γ𝑐 = 𝑋󸀠 − 𝑋0
𝑐 ∈ Z
28
≥0

(30)

Clearly, Corollary 18 guarantees that Γ𝑐 = 𝑋󸀠 −𝑋0 is satisfied
with some 𝑐 ∈ Z28≥0 if and only if the reachability relation𝑋0 󴁄󴀼 𝑋󸀠 holds. Let us consider the following initial and final
states.

𝑋0 = [56 10 35 87 66 75 87 60 60 55 50 89 58 72 52 71 48 71 57 47 68]⊤ (31)

𝑋󸀠 = [50 46 65 77 88 95 71 56 59 54 43 76 55 78 40 62 51 71 53 64 91]⊤ (32)
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We found that for the target state 𝑋󸀠 given by (32) the
reachability relation holds. To solve the decision problems of
the form (30) the LattE [34] software was used.

Now, let us examine the reachability from 𝑋0 to 𝑋󸀠 with
additional constraints. One can observe that 𝑋󸀠 results in
a significant increase in the number of molecules in the
species 𝑠5, 𝑠6, 𝑠20, and 𝑠21 and any trajectory from 𝑋0 to 𝑋󸀠
results in a net increase in the number of molecules. These
together imply the flow of molecules from the zero complex
(environment). The flow of molecules over the network from
the zero complex to 𝑠5, 𝑠6, 𝑠20, and 𝑠21 can take place through
different paths. We assume that the directed paths

𝜎𝑆1 = 𝑠3 𝑠12 𝑠13 𝑠14 𝑠15 𝑠4, (33)

𝜎𝑆2 = 𝑠3 𝑠16 𝑠17 𝑠4 (34)

are slow compared to the other ones; hence we wish to
minimize the flow through them in order to lower their effect
in 𝑐. This can be easily expressed by posing addition linear
constraints on 𝑐 as is done in the decision problem (35).

Γ𝑐 = 𝑋󸀠 − 𝑋0
𝑐 ∈ Z
28
≥0

[𝑐]15 ≤ 10
[𝑐]27 ≤ 10

(35)

We also determined a particular solution 𝑐 by equipping (35)
with the objective function∑28𝑖=1[𝑐]𝑖 to be minimized.

𝑐 = [112 106 112 111 118 48 8 29 12 18 16 11 11 7 8 13 17 16 15 8 17 13 16 13 19 16 9 51]⊤ (36)

For implementation purposes we employed Python 2.7 pro-
gramming language and the Gurobi mathematical optimiza-
tion solver [42]. A Lenovo P51s workstation with two 2.70
GHz i7-7500U CPUs and 32GB RAM (DDR4 2133 MHz) was
used for all the computations.

7. Conclusion

In this paper the reachability problems of sub- and super-
conservative discrete state chemical reaction networks are
considered. It is shown that the reachability problem of a
superconservative reaction network of unbounded reachable
state space can be transformed to that of a subconserva-
tive network for which the boundedness of the reachable
state space is always guaranteed. Using an inductive proof
we provided a set of necessary and sufficient conditions
under which the equivalence between a d-CRN reachability
problem and existence of nonnegative integer solution of
the corresponding state equations is guaranteed. In such
a way the reachability problem can be traced back to an
IP-feasibility (decision) problem for which the number of
decision variables is significantly lower than that employed
in the literature [36]. Moreover the number of trajectories
satisfying the reachability relation can also be enumerated
efficiently, assuming a fixed reaction network structure.
The applicability of our approach is illustrated on a high-
dimensional superconservative d-CRN.
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The purpose of this paper is to propose a variable fractional-ordermodel with a constant time delay of the coinfection of HIV/AIDS
and malaria. The proposed model describes the interaction between HIV/AIDS and malaria. This model is presented by using
variable fractional-order derivative which is an extension of the constant fractional-order derivative to explain a certain pattern
in the development of infection of several patients. The presented model has been solved numerically via the predictor-corrector
scheme. The local and global stability conditions of the disease-free equilibrium are investigated. Also, numerical simulations are
presented for different variable fractional-order derivatives in Caputo sense.

1. Introduction

The human immunodeficiency virus (HIV) and malaria
are considered among the most challenging global public
health issues in the last few decades. HIV and malaria
are life-threatening diseases which have similar geographic
distributions [1]. They cause millions of deaths every year in
several areas especially in Africa, Asia, and Latin America. In
2017, HIV killed about one million people [2] while malaria
killed roughly 435 000 people worldwide [3]. HIV can be
transmitted through certain body fluids while malaria is
transmitted through bites of infected mosquitoes.

HIV is considered as one of the most deadly infec-
tious diseases which strikes the human immune system
and destroy the CD4+ cells. AIDS is the last stage of HIV
which occurs when the CD4+ cells of the human body
count drops below 200 cells/mm [4]. In this stage, the
immune system cannot defend the body against the attacks by
several opportunistic diseases. On the other hand, if malaria
parasite invades the bloodstream, then, it destroys red blood
cells. So, malaria infection may be developed to anemia or
cerebral malaria, which can cause disabilities and death [5].

The coinfection of HIV and malaria has become endemic
in several developing countries. World health organization
(WHO) reports indicating that more than twomillion people
die every year because of the malaria/AIDS coinfection [6].
The interaction between HIV and malaria in Sub-Saharan
Africa has become among the major public health problems
[7] and has resulted in many economic disasters [1] by
negatively affecting the contribution of the labor force to the
national economy.

Recently, increasing research efforts have been made
to obtain an effective vaccine to halt the progression and
transmission of malaria. Vaccination target is to reduce the
rate of human infection, the severity of the disease [8–10],
and the parasite’s transmission to mosquitoes. Clinical trials
in Africa proved that a malaria vaccine is partially protective
[11].

Frommathematicians’ perspective, mathematical models
are significant tools that help us to understand the current
state and the future progress of infectious diseases in human
networks in order to control and prevent such diseases. Sev-
eral mathematical models have been presented to study the
prevalence and the coinfection of HIV and malaria, but most
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of such models are integer or constant fractional-order mod-
els [12–22]. This paper is devoted to propose a delay variable
fractional-order model for the coinfection of HIV/AIDS and
malaria. In thismodel, a discrete time delay 𝜏ℎ is incorporated
in the variables of active humans who are infected by malaria
and the coinfected humans while a discrete time delay 𝜏𝑚
is incorporated in the variable of the infectious mosquitoes.
After a time 𝜏ℎ, susceptible people become infected by
malaria while exposed individuals become infectious after
the same time. On the other hand, mosquitoes become
infectious after time 𝜏𝑚. Introducing such a time delay to
the proposed model is essential to characterize the time
needed to start in vaccination and treatments processes. The
merits of the proposed model are clear from putting in
the time delay with the variable fractional-order derivative
which is an extension of the constant fractional-order in the
same model. Hence, using the proposed variable fractional-
order model with time delay gives a better understanding
of the interaction between malaria and HIV. To the best
of our knowledge, the presented model is the first variable
fractional-order model with a time delay which describes the
prevalence and interactions betweenHIV andmalaria. In this
model, the integer order derivative is used to distinguish the
short memory of systems, while the variable fractional-order
derivative is utilized to characterize the variable memory of
systems.

This paper is organized as follows. In Section 2, some
preliminaries of fractional calculus and the algorithm of the
predictor-corrector method are presented while Section 3
describes the proposed model. In Section 4, the disease-free
equilibrium and stability are presented. The basic reproduc-
tion number is computed in Section 5. Section 6 is devoted
to the numerical results and discussions. Our conclusion is
illustrated in Section 7.

2. Preliminaries

2.1. Fractional Calculus. The fractional calculus is considered
as a mathematical tool for characterizing memory of biolog-
ical and epidemiological systems. The classical integer order
derivative can be used to describe the short memory of the
dynamical systems, while fractional-order derivative has the
merit of describing the long memory of dynamical systems.
The variable fractional-order derivative is an extension of the
constant fractional-order derivative and has been introduced
in several scientific fields [23–25]. Also, it is a powerful
tool to characterize memory that varies from point to point.
Furthermore, the variable fractional-order derivative can
be applied to describe the variable memory of dynamical
systems [26].

In this section, we present some basic definitions of
constant/variable fractional-order derivatives as follows.

Definition 1 (Riemann–Liouville derivatives of fraction-
al-order 𝛼). Let 𝛼 be a bounded and continuous function;
then Riemann–Liouville fractional-order derivative of 𝑓(𝑡) :[𝑎, 𝑏] 󳨀→ R is defined as follows [27].

(i) Left Riemann–Liouville derivative of fractional-order𝛼 is defined by

𝑅𝐿

𝑎𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼)
𝑑𝑑𝑡 ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(1)

(ii) Right Riemann–Liouville derivative of fractional-
order 𝛼 is defined by

𝑅𝐿

𝑡𝐷𝛼𝑏𝑓 (𝑡) = 1Γ (1 − 𝛼)
𝑑𝑑𝑡 ∫
𝑏

𝑡
(𝑡 − 𝜔)−𝛼 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(2)

Definition 2 (Caputo derivatives of fractional-order 𝛼). Let𝛼 be a bounded and continuous function; then the Caputo
fractional-order derivative of 𝑓(𝑡) : [𝑎, 𝑏] 󳨀→ R is defined as
follows [27].

(i) Left Caputo derivative of fractional-order 𝛼 is defined
by

𝐶

𝑎𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼) ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼 𝑓󸀠 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(3)

(ii) Right Caputo derivative of fractional-order 𝛼 is
defined by

𝐶

𝑡𝐷𝛼𝑏𝑓 (𝑡) = −1Γ (1 − 𝛼) ∫
𝑏

𝑡
(𝑡 − 𝜔)−𝛼 𝑓󸀠 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(4)

Definition 3 (Riemann–Liouville derivatives of variable frac-
tional-order 𝛼(𝑡)). Let 𝛼(𝑡) be a bounded and continuous
function; thenRiemann–Liouville fractional-order derivative
of 𝑓(𝑡) : [𝑎, 𝑏] 󳨀→ R is defined as follows [27].

(i) Left Riemann–Liouville derivative of variable
fractional-order 𝛼(𝑡) is defined by

𝑅𝐿

𝑎𝐷𝛼(𝑡)𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼 (𝑡)) 𝑑𝑑𝑡 ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(5)

(ii) Right Riemann–Liouville derivative of fractional-
order 𝛼 is defined by

𝑅𝐿

𝑡
𝐷𝛼(𝑡)𝑏 = 1Γ (1 − 𝛼 (𝑡))

𝑑𝑑𝑡 ∫
𝑏

𝑡
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(6)

Definition 4 (Caputo derivatives of variable fractional-order𝛼(𝑡)). Let 𝛼(𝑡) be a bounded and continuous function; then
the Caputo fractional-order derivative of 𝑓(𝑡) : [𝑎, 𝑏] 󳨀→ R

is defined as follows [27].
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Figure 1: HIV infected individuals showing symptoms of AIDS at 𝛼(𝑡) = 0.8 with ]2 = 1.5 (solid line), ]2 = 10 (dashed line), and ]2 = 100
(dotted line). Parameters values are in Table 1 with 𝛽ℎ = 0.01.

(i) Left Caputo derivative of fractional-order 𝛼(𝑡) is
defined by

𝐶

𝑎𝐷𝛼(𝑡)𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼 (𝑡)) ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓󸀠 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(7)

(ii) Right Caputo derivative of fractional-order 𝛼(𝑡) is
defined by

𝐶

𝑡
𝐷𝛼(𝑡)𝑏 𝑓 (𝑡) = −1Γ (1 − 𝛼 (𝑡)) ∫

𝑏

𝑡
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓󸀠 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(8)

2.2. Predictor-Corrector Method. There are many techniques
for solving a delay variable fractional-order models such
as finite difference [28], Hermite wavelet [29], and Adams-
Bashforth-Morton [30] methods. In this section, we state
a predictor-corrector method for solving a delay variable
fractional-order model [31].

Let
𝐶𝐷𝛼(𝑡)𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜍)) , 0 ≤ 𝑡 ≤ 𝑇,

𝑦 (𝑡) = 𝑔 (𝑡) , − 𝜍 ≤ 𝑡 ≤ 0 (9)

where 0 < 𝛼(𝑡) ≤ 1, 𝑇 ∈ R+, and 𝑔(𝑡) is a smooth
function. Suppose a uniform grid {𝑡𝑗 = 𝑗ℎ : 𝑗 = −𝑞, 𝑞 +1, . . . , −1, 0, 1, . . . , 𝑛}, where 𝑛 and 𝑞 are integers such that𝑛 = 𝑇/ℎ and 𝑞 = 𝜍/ℎ.

The predictor approximation 𝑦𝑝𝑛+1 is defined by

𝑦𝑝𝑛+1 = 𝑦 (0) + 1
Γ (𝛼 (𝑡𝑛+1))

𝑛∑
𝑗=0

𝐵𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑦𝑗, 𝑦𝑗−𝑞) , (10)

where

𝐵𝑗,𝑛+1 = ℎ𝛼(𝑡𝑛+1)
𝛼 (𝑡𝑛+1) [(𝑛 − 𝑗 + 1)𝛼(𝑡𝑛+1) − (𝑛 − 𝑗)𝛼(𝑡𝑛+1)] ,

0 ≤ 𝑗 ≤ 𝑛.
(11)

The corrector approximation 𝑦𝑛+1 is defined by

𝑦𝑛+1 = 𝑦 (0) + ℎ𝛼(𝑡𝑛+1)
Γ (𝛼 (𝑡𝑛+1) + 2)𝑓 (𝑡𝑛+1, 𝑦𝑝𝑛+1, 𝑦𝑛+1−𝑞)

+ ℎ𝛼(𝑡𝑛+1)
Γ (𝛼 (𝑡𝑛+1) + 2)

𝑛∑
𝑗=0

𝐴𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑦𝑗, 𝑦𝑗−𝑞)
(12)

where

𝐴𝑗,𝑛+1 =
{{{{{{{{{

𝑛𝛼(𝑡𝑛+1)+1 − [𝑛 − 𝛼 (𝑡𝑛+1)] (𝑛 + 1)𝛼(𝑡𝑛+1) , 𝑗 = 0,
(𝑛 − 𝑗 + 2)𝛼(𝑡𝑛+1)+1 − 2 (𝑛 − 𝑗 + 1)𝛼(𝑡𝑛+1)+1 + (𝑛 − 𝑗)𝛼(𝑡𝑛+1)+1 , 1 ≤ 𝑗 ≤ 𝑛,
1, 𝑗 = 𝑛 + 1.

(13)
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Figure 2: HIV infected individuals showing symptoms of AIDS with ]2 = 10. Parameters values are in Table 1 with 𝛽ℎ = 0.01. (a) 𝛼(𝑡) = 0.8
comparing with 𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

3. The Model

Theproposed variable fractional-ordermodel with a constant
delay in this paper is based on the constant fractional
delay model proposed in [32]. This model consists of 12
compartments, as follows:

𝐶𝐷𝛼(𝑡)𝑁ℎ (𝑡)
= 𝐴ℎ − 𝑎ℎ1 [𝐼ℎ (𝑡) + (1 − 𝜃2) 𝑌ℎ (𝑡)] − 𝜏𝑎ℎ1𝐼𝑚ℎ𝑖V (𝑡)

− [𝜏𝑎ℎ1 + 𝜓𝛿𝐻] 𝐴𝑚ℎ𝑖V (𝑡) − 𝛿𝐻𝐴ℎ𝑖V (𝑡)

− 𝜇ℎ𝑁ℎ (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑆ℎ (𝑡)

= (1 − 𝑝)𝐴ℎ − 𝑓ℎ (𝑡) 𝑆ℎ (𝑡) − 𝛽ℎ𝑖V (𝑡) 𝑆ℎ (𝑡)
+ 𝑟ℎ [𝐼ℎ (𝑡) + 𝜃1𝑌ℎ (𝑡)] + 𝜎𝑉ℎ (𝑡) − 𝜇ℎ𝑆ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝑉ℎ (𝑡)
= 𝑝𝐴ℎ − 𝑓ℎ (𝑡) (1 − 𝛾)𝑉ℎ (𝑡) − [𝜎 + 𝜇ℎ] 𝑉ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝐼ℎ (𝑡)
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Figure 3: HIV infected individuals showing symptoms of AIDS with ]2 = 100. Parameters values are in Table 1 with 𝛽ℎ = 0.01. (a) 𝛼(𝑡) = 0.8
comparing with 𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

= 𝑓ℎ (𝑡 − 𝜏ℎ) 𝑆ℎ (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ − 𝜀2𝛽ℎ𝑖V (𝑡) 𝐼ℎ (𝑡)
− [𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ] 𝐼ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝐼𝑚ℎ𝑖V (𝑡)
= 𝜐1𝑓ℎ (𝑡 − 𝜏ℎ) 𝐼ℎ𝑖V (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ + 𝜀2𝛽ℎ𝑖V (𝑡) 𝐼ℎ (𝑡)

− [𝜁𝑎ℎ2 + 𝜙2 + 𝜏𝑎ℎ1 + 𝜇ℎ] 𝐼𝑚ℎ𝑖V (𝑡) ,
𝐶𝐷𝛼(𝑡)𝐼ℎ𝑖V (𝑡)

= 𝛽ℎ𝑖V (𝑡) 𝑆ℎ (𝑡) + 𝜙2𝐼𝑚ℎ𝑖V (𝑡) − 𝜐1𝑓ℎ (𝑡) 𝐼ℎ𝑖V (𝑡)

− [𝑎ℎ2 + 𝜇ℎ] 𝐼ℎ𝑖V (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑌ℎ (𝑡)

= 𝑓ℎ (𝑡 − 𝜏ℎ) (1 − 𝛾)𝑉ℎ (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ
− [𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ] 𝑌ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝐴𝑚ℎ𝑖V (𝑡)
= 𝜁𝑎ℎ2𝐼𝑚ℎ𝑖V (𝑡) + 𝜐2𝑓ℎ (𝑡 − 𝜏ℎ) 𝐴ℎ𝑖V (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ

− [𝜇ℎ + 𝜙3 + 𝜏𝑎ℎ1 + 𝜓𝛿𝐻] 𝐴𝑚ℎ𝑖V (𝑡) ,
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Figure 4: Individuals infected with malaria at 𝛼(𝑡) = 0.8with 𝜓 = 1.002 (solid line),𝜓 = 2 (dashed line), and𝜓 = 3 (dotted line). Parameters
values are in Table 1 with 𝛽ℎ = 0.05.

𝐶𝐷𝛼(𝑡)𝐴ℎ𝑖V (𝑡)
= 𝑎ℎ2𝐼ℎ𝑖V (𝑡) + 𝜙3𝐴𝑚ℎ𝑖V (𝑡) − 𝜐2𝑓ℎ (𝑡) 𝐴ℎ𝑖V (𝑡)

− [𝜇ℎ + 𝛿𝐻] 𝐴ℎ𝑖V (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑁𝑚 (𝑡) = 𝐴𝑚 − 𝑎𝑚𝐼𝑚 (𝑡) − 𝜇𝑚𝑁𝑚 (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑆𝑚 (𝑡) = 𝐴𝑚 − 𝑓𝑚 (𝑡) 𝑆𝑚 (𝑡) − 𝜇𝑚𝑆𝑚 (𝑡) ,
𝐶𝐷𝛼(𝑡)𝐼𝑚 (𝑡)

= 𝑓𝑚 (𝑡 − 𝜏𝑚) 𝑆𝑚 (𝑡 − 𝜏𝑚) 𝑒−𝜇𝑚𝜏𝑚
− [𝜇𝑚 + 𝑎𝑚] 𝐼𝑚 (𝑡) .

(14)

where the population of mosquitoes as follows:

𝑁𝑚 (𝑡) = 𝐼𝑚 (𝑡) + 𝑆𝑚 (𝑡) , (15)

where 𝐼𝑚(𝑡) are the infectious mosquitoes and 𝑆𝑚(𝑡) are the
susceptible mosquitoes.

And the population of human 𝑁ℎ(𝑡) is divided into the
following classes:

𝑆ℎ are the susceptible individuals𝑉ℎ are the individuals vaccinated against malaria
𝐼ℎ are the individuals infected with malaria
𝑌ℎ are individuals infected and vaccinated against
malaria
𝐼𝑚ℎ𝑖V are the coinfected individuals showing no symp-
toms of AIDS
𝐼ℎ𝑖V are the individuals asymptomatically infected
with HIV/AIDS

𝐴ℎ𝑖V are the HIV infected individuals showing symp-
toms of AIDS
𝐴𝑚ℎ𝑖V are the coinfected individuals showing symp-
toms of AIDS

Besides, all human are subject to natural death, occurring
at a rate 𝜇ℎ. Susceptible individuals get in the human
population at a rate 𝐴ℎ. The parameter p is the proportion
of individuals successfully vaccinated, where (1 − 𝑝)𝐴ℎ is the
proportion getting in the class 𝑆ℎ(𝑡) and𝑝𝐴ℎ is the proportion
getting in the class 𝑉ℎ(𝑡). Susceptible individuals enter the
class 𝐼ℎ(𝑡) after some time 𝜏ℎ. The rate of infection by malaria
parasite of susceptible individuals 𝑓ℎ(𝑡) is given by

𝑓ℎ (𝑡) = 𝛽ℎ𝑐 (1 − 𝑏𝑧) 𝐼𝑚 (𝑡)𝑁ℎ (𝑡) (16)

where 0 < 𝑏 ≤ 1 is the proportion of individuals in the
community and 0 < 𝑧 ≤ 1 models the efficacy of adopted
strategies for individuals protection. 𝑐 is the rate of female
mosquitoes’ bites. The value of the probability that a bite of
an infectious mosquito leads to the infection of a susceptible
human is 𝛽ℎ. The efficacy of the preerythrocytic vaccine is
given by 0 < 𝛾 ≤ 1. Vaccinated individuals may become
susceptible at a rate 𝜎. The rate of infection with HIV/AIDS
of susceptible individuals is 𝛽ℎ𝑖V(𝑡):
𝛽ℎ𝑖V (𝑡)
= 𝛽𝐻 [𝐼ℎ𝑖V (𝑡) + 𝜂𝐻𝑀𝐼𝑚ℎ𝑖V (𝑡) + 𝜂𝐴 [𝐴ℎ𝑖V (𝑡) + 𝜂𝐻𝑀𝐴𝑚ℎ𝑖V (𝑡)]]𝑁ℎ (𝑡)

(17)

where 𝜂𝐴 > 1 is the infectiousness of individuals in the AIDS
stage of HIV infection. 𝛽𝐻 is the effective contact rate forHIV
infection. Infectiousness to malaria of coinfected individuals
showing symptoms of AIDS is 𝜂𝐻𝑀 > 1.
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Figure 5: Individuals infected with malaria with 𝜓 = 2. Parameters values are in Table 1 with 𝛽ℎ = 0.05. (a) 𝛼(𝑡) = 0.8 comparing with𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

Parameter 0 < 𝜃2 ≤ 1 models the effect of the preery-
throcytic vaccine in the raising of the recovery. Parameter𝜃1 ≥ 1 models the effect of the preerythrocytic vaccine
in the decreasing of mortality due to disease. The rate of
recovery of individuals infected with malaria and going to
the susceptible class is 𝑟ℎ. The rate of death of individuals
infected with malaria is 𝑎ℎ1. 𝜀2 < 1 models the decrease in
sexual activity due tomalaria disease.𝜙2 is the rate of recovery
of the coinfected individuals showing no symptoms of AIDS
from malaria. 𝜏 refers to the increased malaria mortality of
individuals coinfected with HIV. 𝜓 indicates the rise in HIV
mortality due to the coinfection with malaria. 𝑎ℎ2 is the rate
of development of 𝐼ℎ𝑖V(𝑡) to AIDS. The rate of death from

AIDS is 𝛿𝐻. The rate of natural death of 𝐼ℎ𝑖V(𝑡) is 𝜇ℎ. 𝜐1 is the
assumed rise in susceptibility to malaria as a result of HIV
infection. The rate of recovery of 𝐴𝑚ℎ𝑖V(𝑡) from malaria is𝜙3. 𝜐2 is the rise in susceptibility to malaria of individuals of𝐴ℎ𝑖V(𝑡). 𝜁 > 1 defines those coinfected individuals develop to
AIDS faster than those infected only with HIV.

The rate of natural death of mosquitoes is 𝜇𝑚. The rate of
infection by the Anopheles parasite of susceptible mosquitoes𝑓𝑚(𝑡) is given by

𝑓𝑚 (𝑡) = 𝛽𝑚𝑐 (1 − 𝑏𝑧)
⋅ 𝐼ℎ (𝑡) + 𝐼𝑚ℎ𝑖V (𝑡) + (1 − 𝜀) 𝑌ℎ (𝑡) + 𝐴𝑚ℎ𝑖V (𝑡)𝑁ℎ (𝑡)

(18)
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where 𝜀 ∈ [0, 1] defines the decreasing of transmission from
vaccinated humans to susceptible mosquitoes. The probabil-
ity that a mosquito’s bite in a malaria infective human tends
to infection of the mosquito is 𝛽𝑚. The exposed mosquitoes
turn infectious after time 𝜏𝑚. The rate of increasing mortality
due to the presence of the parasite in the body is 𝑎𝑚. In other
words, all mosquitoes are subjected to a natural death, at a
rate of 𝜇𝑚. It is assumed that the infectious mosquitoes are
subjected to death rate because of the presence of the parasite
in their bodies at a rate 𝑎𝑚 and that they do not recover before
they die [32].

4. The Disease-Free Equilibrium and Stability

Theequilibrium point of a dynamical system is a solution that
does not change with time.

To obtain the disease-free equilibrium of model (14), let

𝐶𝐷𝛼(𝑡)𝑁ℎ (𝑡) = 𝐶𝐷𝛼(𝑡)𝑆ℎ (𝑡) = 𝐶𝐷𝛼(𝑡)𝑉ℎ (𝑡)
= 𝐶𝐷𝛼(𝑡)𝐼ℎ (𝑡) = 𝐶𝐷𝛼(𝑡)𝐼𝑚ℎ𝑖V (𝑡)

= 𝐶𝐷𝛼(𝑡)𝐼ℎ𝑖V (𝑡) = 𝐶𝐷𝛼(𝑡)𝑌ℎ (𝑡)
= 𝐶𝐷𝛼(𝑡)𝐴𝑚ℎ𝑖V (𝑡) 𝐶𝐷𝛼(𝑡)𝐴ℎ𝑖V (𝑡)
= 𝐶𝐷𝛼(𝑡)𝑁𝑚 (𝑡) = 𝐶𝐷𝛼(𝑡)𝑆𝑚 (𝑡)
= 𝐶𝐷𝛼(𝑡)𝐼𝑚 (𝑡) = 0

(19)

Then the disease-free equilibrium 𝐸0 is
𝐸0 = (𝐴ℎ𝜇ℎ ,

(1 − 𝑝)𝐴ℎ (𝜎 + 𝜇ℎ) + 𝜎𝑝𝐴ℎ𝜇ℎ (𝜎 + 𝜇ℎ) , 𝑝𝐴ℎ𝜎 + 𝜇ℎ , 0, 0,

0, 0, 0, 0, 𝐴𝑚𝜇𝑚 , 𝐴𝑚𝜇𝑚 , 0)
(20)

The stability of disease-free equilibrium is defined by a sign
of real part of eigenvalues of the Jacobian matrix evaluated at
disease-free equilibrium. The Jacobian matrix is the matrix of
partial derivatives of the right-hand side with respect to state
variables.

The Jacobianmatrix ofmodel (14) around the disease-free
equilibrium 𝐸0 is

𝐽 (𝐸0)

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

−𝜇ℎ 0 0 −𝑎ℎ1 −𝜏𝑎ℎ1 0 −𝑎ℎ1 (1 − 𝜃2) −𝜏𝑎ℎ1 − 𝜓𝛿𝐻 −𝛿𝐻 0 0 0
0 −𝜇ℎ 𝜎 𝑟ℎ −𝜂𝐻𝑀𝐺3 𝐺3 𝑟ℎ𝜃1 𝜂𝐴𝜂𝐻𝑀𝐺3 𝜂𝐴𝐺3 0 0 𝐺4
0 0 − (𝜎 + 𝜇ℎ) 0 0 0 0 0 0 0 0 𝐺5
0 0 0 − (𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ) 0 0 0 0 0 0 0 −𝑒−𝜇ℎ𝜏ℎ𝐺4
0 0 0 0 − (𝜁𝑎ℎ2 + 𝜙2 + 𝜏𝑎ℎ1 + 𝜇ℎ) 0 0 0 0 0 0 0
0 0 0 0 𝜙2 − 𝜂𝐻𝑀𝐺3 −𝐺3 − (𝑎ℎ2 + 𝜇ℎ) 0 −𝜂𝐴𝜂𝐻𝑀𝐺3 −𝜂𝐴𝐺3 0 0 0
0 0 0 0 0 0 − (𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ) 0 0 0 0 −𝑒−𝜇ℎ𝜏ℎ𝐺5
0 0 0 0 0 0 − (𝜇ℎ + 𝜙3 + 𝜏𝑎ℎ1 + 𝜓𝛿𝐻) 0 0 0 0
0 0 0 0 0 𝑎ℎ2 0 𝜙3 − (𝜇ℎ + 𝛿𝐻) 0 0 0
0 0 0 0 0 0 0 0 0 −𝜇𝑚 0 −𝑎𝑚
0 0 0 𝐺1 𝐺1 0 (1 − 𝜀)𝐺1 𝐺1 0 0 −𝜇𝑚 0
0 0 0 𝐺2 𝐺2 0 (1 − 𝜀)𝐺2 𝐺2 0 0 0 − (𝜇𝑚 + 𝑎𝑚)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

(21)

where

𝐺1 = −𝛽𝑚𝑐 (1 − 𝑏𝑧) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ ,
𝐺2 = 𝛽𝑚𝑐 (1 − 𝑏𝑧) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ 𝑒

−𝜏𝑚(𝜆+𝜇𝑚),

𝐺3 = −𝛽𝐻(𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ ) ,

𝐺4 = −𝛽ℎ𝑐 (1 − 𝑏𝑧) 𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ ,

𝐺5 = −𝛽ℎ𝑐 (1 − 𝑏𝑧) (1 − 𝛾) 𝑝𝜇ℎ𝜎 + 𝜇ℎ .

(22)

The eigenvalues of the Jacobian matrix are

𝜆1,2 = −𝜇ℎ,

𝜆3,4 = −𝜇𝑚,
𝜆5 = − (𝜎 + 𝜇ℎ) ,
𝜆6 = − (𝜁𝑎ℎ2 + 𝜙2 + 𝜏𝑎ℎ1 + 𝜇ℎ) ,
𝜆7 = − (𝜇ℎ + 𝜙3 + 𝜏𝑎ℎ1 + 𝜓𝛿𝐻)

(23)

The remaining five eigenvalues are obtained from the follow-
ing matrix:

𝑀 =
[[[[[[[[
[

𝐹1 0 0 0 𝐹2
0 𝐹3 0 𝐹4 0
0 0 𝐹5 0 𝐹6
0 𝐹7 0 𝐹8 0
𝐹9 0 𝐹10 0 𝐹11

]]]]]]]]
]

(24)
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where
𝐹1 = − (𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ) ,
𝐹2 = 𝛽ℎ𝑐 (1 − 𝑏𝑧) 𝜎 + 𝜇ℎ (1 − 𝑝)

𝜎 + 𝜇ℎ 𝑒−𝜏ℎ(𝜆+𝜇ℎ)

𝐹3 = 𝛽𝐻𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ − (𝑎ℎ2 + 𝜇ℎ) ,

𝐹4 = 𝛽𝐻𝜂ℎ 𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ

𝐹5 = − (𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ) ,
𝐹6 = 𝛽ℎ𝑐 (1 − 𝑏𝑧) (1 − 𝛾) 𝑝𝜇ℎ𝜎 + 𝜇ℎ 𝑒

−𝜏ℎ(𝜆+𝜇ℎ)

𝐹7 = 𝑎ℎ2,
𝐹8 = − (𝜇ℎ + 𝛿𝐻) ,
𝐹9 = 𝛽𝑚𝑐 (1 − 𝑏𝑧) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ 𝑒

−𝜏𝑚(𝜆+𝜇𝑚)

𝐹10 = 𝛽𝑚𝑐 (1 − 𝑏𝑧) (1 − 𝜀) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ 𝑒
−𝜏𝑚(𝜆+𝜇𝑚),

𝐹11 = − (𝜇𝑚 + 𝑎𝑚)

(25)

That matrix M has the characteristic equation

𝜆5 +𝑀1𝜆4 +𝑀2𝜆3 +𝑀3𝜆2 +𝑀4𝜆 +𝑀5 = 0 (26)

where

𝑀1 = − (𝐹1 + 𝐹3 + 𝐹5 + 𝐹8 + 𝐹11) (27)

𝑀2 = 𝐹11 (𝐹1 + 𝐹3 + 𝐹5 + 𝐹8) + 𝐹5𝐹8 − 𝐹10𝐹6
+ (𝐹1 + 𝐹3) (𝐹5 + 𝐹8) + 𝐹1𝐹3 − 𝐹7𝐹4 − 𝐹2𝐹9 (28)

𝑀3 = −𝐹5𝐹8 (𝐹1 + 𝐹3 + 𝐹11) + 𝐹10𝐹6 (𝐹1 + 𝐹3 + 𝐹8)
− (𝐹1 + 𝐹3) (𝐹5 + 𝐹8) 𝐹11
− 𝐹1𝐹3 (𝐹5 + 𝐹8 + 𝐹11)
+ 𝐹7𝐹4 (𝐹1 + 𝐹5 + 𝐹11)
+ 𝐹2𝐹9 (𝐹3 + 𝐹5 + 𝐹8)

(29)

𝑀4 = 𝐹3𝐹5𝐹11 (𝐹1 + 𝐹3) + 𝐹1𝐹3𝐹11 (𝐹5 + 𝐹8)
+ 𝐹1𝐹3𝐹5𝐹8 − 𝐹7𝐹4 (𝐹1𝐹11 + 𝐹1𝐹5 + 𝐹5𝐹11)
− 𝐹6𝐹10 (𝐹1𝐹8 + 𝐹3𝐹8 + 𝐹1𝐹3 − 𝐹4𝐹7)
− 𝐹2𝐹9(𝐹5𝐹8 + 𝐹3𝐹5 + 𝐹3𝐹8 − 𝐹4𝐹7

(30)

𝑀5 = −𝐹1𝐹5𝐹11 (𝐹3𝐹8 − 𝐹4𝐹7)
+ 𝐹6𝐹10 (𝐹1𝐹3𝐹8 − 𝐹1𝐹4𝐹7)
+ 𝐹2𝐹9 (𝐹3𝐹5𝐹8 − 𝐹4𝐹5𝐹7)

(31)

Using the results in [33], the disease-free equilibrium𝐸0 is locally asymptotically stable if the Routh-Hurwitz
determinants Δ 1, Δ 2, Δ 3, Δ 4, Δ 5 are

Δ 1 = 𝑀1,
Δ 2 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀1 1
𝑀3 𝑀2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

Δ 3 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀1 1 0
𝑀3 𝑀2 𝑀1
𝑀5 𝑀4 𝑀3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ 4 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀1 1 0 0
𝑀3 𝑀2 𝑀1 1
𝑀5 𝑀4 𝑀3 𝑀2
0 0 𝑀5 𝑀4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

Δ 5 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀1 1 0 0 0
𝑀3 𝑀2 𝑀1 1 0
𝑀5 𝑀4 𝑀3 𝑀2 𝑀1
0 0 𝑀5 𝑀4 𝑀3
0 0 0 0 𝑀5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(32)

satisfying Δ 𝑖 > 0, 𝑖 = 1, 2, 3, Δ 4 = 0, and 𝑀5 > 0.
These conditions are the needed sufficient conditions to verify| arg(𝜆)| > 𝛼(𝑡)𝜋/2 for 𝛼(𝑡) ∈ [0, 1).

We can put system (14) in the following form:

𝐶𝐷𝛼(𝑡)𝑦𝑖 (𝑡) = 𝑓 (𝑡, 𝑦𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏ℎ) , 𝑦𝑖 (𝑡 − 𝜏𝑚)) ,
0 ≤ 𝑡 ≤ 𝑇,

𝑦𝑖 (𝑡) = 𝑔 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0, 𝑖 = 1, 2, . . . , 12
(33)

Let 𝑦𝑖(𝑡) = 𝑢𝑖, 𝑦𝑖(𝑡 − 𝜏ℎ) = 𝑤𝑖, 𝑦𝑖(𝑡 − 𝜏𝑚) = 𝑧𝑖; then𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) ∈ 𝐶([0, 𝑇] × R12) is continuous with respect
to 𝑡 and globally Lipschitz continuous with respect to 𝑢𝑖, 𝑤𝑖,
and 𝑧𝑖 in the following norm: that is,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢1, 𝑤1, 𝑧1) − 𝑓 (𝑡, 𝑢2, 𝑤2, 𝑧2)󵄩󵄩󵄩󵄩
≤ 𝐿1 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩 + 𝐿2 󵄩󵄩󵄩󵄩𝑤1 − 𝑤2󵄩󵄩󵄩󵄩 + 𝐿3 󵄩󵄩󵄩󵄩𝑧1 − 𝑧2󵄩󵄩󵄩󵄩 (34)

for some Lipschitz constants 𝐿1 > 0, 𝐿2 > 0, and𝐿3 > 0, and 𝑡 ∈ [0, 𝑇], 𝑢1, 𝑢2, 𝑤1, 𝑤2, 𝑧1, 𝑧2 ∈ R12.
So 𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) satisfies the standard conditions for the
existence and uniqueness of solutions [34].

Also, let 𝑦∗ be an equilibrium point of system (33). To
determine the local stability of the system (33) we can use the
indirect method of Lyapunov which uses the linearization of
a system [35].

The linearization of the system (33) is

𝐶𝐷𝛼(𝑡)𝑦𝑖 (𝑡) = 𝐵0𝑢𝑖 + 𝐵1𝑤𝑖 + 𝐵2𝑧𝑖 (35)

where 𝐵0 = 𝜕𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)/𝜕𝑢𝑖, 𝐵1 = 𝜕𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)/𝜕𝑤𝑖, and𝐵2 = 𝜕𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)/𝜕𝑧𝑖 are 12 × 12 matrices evaluated at
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the disease-free equilibrium (essentially a Jacobian matrix for
each time delay) [36].

It follows that, for each fixed t, the remainder is

𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) = 𝑓 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) − 𝐵0𝑢𝑖 − 𝐵1𝑤𝑖
− 𝐵2𝑧𝑖 (36)

And the remainder tends to zero as 𝑢𝑖,𝑤𝑖, 𝑧𝑖 tend to zero.
But, the remainder may not tend to zero uniformly. So we
need a stronger condition which is

lim
‖𝑢𝑖‖󳨀→0

sup
𝑡≥0

󵄩󵄩󵄩󵄩𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑖󵄩󵄩󵄩󵄩 = 0,

lim
‖𝑤𝑖‖󳨀→0

sup
𝑡≥0

󵄩󵄩󵄩󵄩𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑤𝑖󵄩󵄩󵄩󵄩 = 0,

lim
‖𝑧𝑖‖󳨀→0

sup
𝑡≥0

󵄩󵄩󵄩󵄩𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑧𝑖󵄩󵄩󵄩󵄩 = 0

(37)

If (37) holds, then system (35) is the linearization of the
system (33). Once the linearization exits, its stability defines
the local stability of the original nonlinear system.

Let 𝐵0, 𝐵1, 𝐵2 be bounded. If 𝑦∗ is a uniformly asymp-
totically stable equilibrium point of system (35) then 𝑦∗ is a
locally uniformly asymptotically stable equilibrium point of
system (33).

5. The Basic Reproduction Number 𝑅0
In epidemiology, the basic reproduction number is defined
as the number of secondary infections due to a single
infection in a totally susceptible population. It is useful since
it decides if or not an infectious disease can spread through
a population. When 𝑅0 > 1, the infection will be able to
spread in a population. But if 𝑅0 < 1, the infection will
disappear. For 𝑅0 > 1, there was, at least, one stable endemic
equilibrium [32]. In some cases, the basic reproduction
number is not enough to predict the spread of epidemics
because bifurcation may occur.

The basic reproduction number of the model (14) is
shown in [32]

𝑅0 = max (𝑅𝑚, 𝑅ℎ𝑖V) (38)

where𝑅𝑚 is the basic reproduction number of malaria model
and 𝑅ℎ𝑖V is the basic reproduction of HIV model as follows:

𝑅𝑚 = (𝜇ℎ𝛽ℎ𝛽𝑚𝐴𝑚𝑒−𝜇ℎ𝜏ℎ𝑒−𝜇𝑚𝜏𝑚𝑐2 (1 − 𝑏𝑧)2
(𝑎𝑚 + 𝜇𝑚) 𝜇𝑚𝐴ℎ (𝜎 + 𝜇ℎ) )

⋅ (𝜎 + 𝜇ℎ (1 − 𝑝)
𝑟ℎ + 𝜇ℎ + 𝑎ℎ1 + (1 − 𝛾) (1 − 𝜀) 𝜇ℎ𝑝𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ)

(39)

𝑅ℎ𝑖V = 𝛽𝐻 (𝜇ℎ + 𝛿𝐻 + 𝜂𝐴𝑎ℎ2) (1 − 𝑝)
(𝑎ℎ2 + 𝜇ℎ) (𝜇ℎ + 𝛿𝐻) (40)

Theorem 5 (see [43]). If 𝑅0 < 1, then the disease-free
equilibrium 𝐸0 is globally asymptotically stable in Ω.Ω = (𝐴ℎ, 𝑝, 𝜎, 𝜂𝐻𝑀, 𝑐, 𝐴𝑚, 𝜙2, 𝜙3, 𝑏, 𝑧, 𝑟ℎ, 𝑎ℎ1, 𝑎ℎ2, 𝛽𝑚,𝛽ℎ, 𝜀2, 𝛿𝐻, 𝜇ℎ, 𝛾, 𝜀, 𝜇𝑚, 𝜏, 𝜓, 𝜃1, 𝜃2, 𝜐1, 𝜐2, 𝜂𝐴, 𝑎𝑚, 𝜏ℎ, 𝜏𝑚, 𝜁, 𝛽𝐻
such that the solution of the system (14) is positive.

Proof. From the previous section according to Routh-
Hurwitz conditions 𝑀5 defined by (31) must be greater than
zero so we will rewrite𝑀5 in terms of 𝑅ℎ𝑖V and 𝑅𝑚 after some
manipulation as follows:

𝑀5 = (𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ) (𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ)
⋅ (𝜇𝑚 + 𝑎𝑚) (𝑎ℎ2 + 𝜇ℎ) (𝜇ℎ + 𝛿𝐻) (1 − 𝑅ℎ𝑖V) (1 − 𝑅𝑚)
> 0.

(41)

Thus 𝑀5 > 0 if 𝑅ℎ𝑖V < 1 and 𝑅𝑚 < 1 so the disease-free
equilibrium 𝐸0 is globally asymptotically stable in Ω.

6. Numerical Results and Discussions

Applying the predictor-corrector method to solve model (14)
with initial conditions,

𝑁ℎ (0) = 430,
𝑆ℎ (0) = 300,
𝑉ℎ (0) = 100,
𝐼ℎ (0) = 5,

𝐼𝑚ℎ𝑖V (0) = 5,
𝐼ℎ𝑖V (0) = 5,
𝑌ℎ (0) = 5,

𝐴𝑚ℎ𝑖V (0) = 5,
𝐴ℎ𝑖V (0) = 5,
𝑁𝑚 (0) = 450,
𝑆𝑚 (0) = 430,
𝐼𝑚 (0) = 20

(42)

And the values of parameters are shown in Table 1
We investigate the model behavior in two cases. Firstly,

the variable fractional-order is 𝛼(𝑡) = 0.8 − (0.01/100)𝑡.
Secondly, the variable fractional-order is a periodic function𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

In Figure 1, we show the effect of the parameter ]2
which is the susceptibility to malaria of individuals showing
symptoms of AIDS. It is shown that when ]2 increases; the
number of HIV infected individuals showing symptoms of
AIDS decreases. Besides, whenwe use the variable fractional-
order 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡) means the memory of the
model is described as a periodic function; hence the behavior
of the model is also periodic. Also, when we use the variable
fractional-order 𝛼(𝑡) = 0.8 − (0.01/100)𝑡means the memory
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Figure 6: Individuals infected with malaria with 𝜓 = 3. Parameters values are in Table 1 with 𝛽ℎ = 0.05. (a) 𝛼(𝑡) = 0.8 comparing with𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

in the model is described by a decreasing function so the
model behavior is slower with time as in Figures 2 and 3.

In Figure 4, we show the effect of the parameter 𝜓 which
is HIV mortality due to the coinfection with malaria. It
is shown that when 𝜓 increases; it leads to decreasing of
new cases of malaria. Besides, when we use the variable
fractional-order 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡)means the memory
of the model is described as a periodic function; hence
the behavior of the model is also periodic. Also, when we
use the variable fractional-order 𝛼(𝑡) = 0.8 − (0.01/100)𝑡
means the memory in the model is described by a decreasing
function so the model behavior is slower with time as in
Figures 5 and 6.

The presented numerical results indicate that the pro-
posed delay variable fractional-order model is a generaliza-
tion of the constant fractional-order model with a time delay
which has been presented in [32].

7. Conclusion

A delay variable fractional-order model for the coinfection of
HIV/AIDS and malaria which includes malaria vaccination
and personal protection strategies is proposed in this paper.
Also, the basic reproduction number and stability of the
disease-free equilibrium have been studied. The numerical
results showed the impact of changing the parameters values
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Table 1: The values of parameters used in the numerical results.

Parameter Value Reference
𝐴ℎ 0.05 [32]
𝑝 0.4 [37]
𝜎 0.009 [37]
𝜂𝐻𝑀 1.5030 [32]
𝑐 0.5 [38]
𝐴𝑚 6 [37]
𝜙2 0.002 [39]
𝜙3 0.0005 [39]
𝑏 0.3 [32]
𝑧 0.9 [32]
𝑟ℎ 0.005 [37]
𝑎ℎ1 0.0004 [32]
𝑎ℎ2 0.004 [32]
𝛽𝑚 0.83 [40]
𝜀2 0.8 [32]
𝛿𝐻 0.000913 [39]
𝜇ℎ 0.000039 [41]
𝛾 0.64 [37]
𝜀 0.86 [37]
𝜏ℎ 14 [37]
𝜏𝑚 12 [42]
𝜇𝑚 0.04 [37]
𝜏 1.001 [39]
𝜓 1.002 [39]
𝜃1 4.1 [37]
𝜃2 0.06 [37]
𝜐1 1.002 [39]
𝜐2 1.5 [39]
𝜂𝐴 1.4 [39]
𝑎𝑚 0.01 [37]
𝜁 1.002 [39]
𝛽𝐻 0.001 [39]

such as ]2 and 𝜓 on the number of the infected individuals
with malaria/HIV, coinfected individuals, and infectious
mosquitoes as well. The variable fractional-order derivative
in the proposed model is used to distinguish the effect of the
memory that changes over time on the disease progression of
distinct patients. In Our future work, comparisons between
the numerical results and real data will be held in order to
examine the numerical simulation results at different variable
fractional-order 𝛼(𝑡).
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This study investigated the validity of a novel parameter, percussion entropy index (PEI), for assessing baroreflex sensitivity. PEI
was acquired through comparing the similarity in tendency of change between the amplitudes of successive digital volume pulse
(DVP) signals and changes in R-R intervals (RRI) of successive cardiac cycles. Totally 108 upper middle-aged volunteers were
divided into three groups: healthy subjects (Group 1, age 41–80, n=41), those with well-controlled type 2 diabetes mellitus (T2DM)
(Group 2, age 41–82, n=36, glycated hemoglobin (HbA1c)<6.5%), and patients with poorly controlled T2DM (Group 3, age 44–77,
n=31, HbA1c≧6.5%). Percussion entropy index (PEI) was computed from DVP signals acquired through photoplethysmography
(PPG) and RRI from electrocardiogram in 1000 successive cardiac cycles for each subject. Autonomic function was also assessed
by Poincaré index (SD1/SD2 ratio, SSR), low- to high-frequency power ratio (LFP/HFP, LHR), and small-scale multiscale entropy
index (MEISS) for comparison. Demographic, anthropometric, hemodynamic, and serum biochemical parameters of all testing
subjects were obtained for investigating the significance of associations with the three parameters. The results showed that MEISS
and PEI successfully discriminated among the three groups (p<0.017). However, only PEI showed significant associations with
indicators of both acute (i.e., fasting blood sugar concentration, p<0.017) and chronic (i.e., HbA1c level, p<0.001) blood sugar
control. Multivariate analysis also showed significant associations of PEI with fasting blood sugar and HbA1c levels in all subjects.
The interpreting effect of the two independent variables, HbA1c level and fasting blood sugar concentration, on PEI was 71.4% and
12.3%, respectively. In conclusion, the results demonstrated that additional information on diabetic autonomic dysfunction can
be obtained through comparing two simultaneously acquired physiological time series. The significant associations of percussion
entropy index with indicators of blood sugar control also highlight its possible role in early screening of the disease.

1. Introduction

Diabetes mellitus (DM) is a dominant metabolic disease
worldwide with an estimated prevalence of 108 million in
1980, which soared by almost four times to 422million in 2014
and is still on the increase [1]. Patients with type 2 DM are at
increased risk of developing autonomic nervous dysfunction
[2], atherosclerosis [3, 4], and even cancers [5]. Therefore,
early diagnosis and treatment are of vital importance. Clin-
ically, retinopathy [6], nephropathy [7], and neuropathy [8]
are the three hallmarks of the disease [9]. Although the

former two can be diagnosed through physical examina-
tion and laboratory study, respectively, the latter cannot be
easily assessed objectively. The adverse impact of diabetes-
associated neurological damage cannot be overemphasized.
In addition to diabetic sensory and motor neuropathy [8],
a number of studies have shown significant associations
between compromised autonomic nervous function and an
increased risk of cardiovascular morbidity andmortality [10–
12]. Besides, depressed autonomic function has been found
to be a predictor of rapid progression of atherosclerosis
[13].
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Baroreflex is a physiological phenomenon in which an
increase in blood pressurewould lead to a prolongation of the
R-R interval (RRI). Accordingly, a decrease in blood pressure
would shorten theRRI [14]. It is a physiological compensatory
mechanism tomaintain hemodynamic stability of an individ-
ual [15]. Baroreflex sensitivity, which refers quantitatively to
the degree of matching between a change in blood pressure
and a change in interbeat intervals (i.e., RRI) of the heart
[14, 16], has been found to be impaired in patients with
systemic diseases such as diabetes [2, 11, 17]. Previous studies
have demonstrated the successful application of noninvasive
approaches to assessing autonomic function. For instance,
frequency domain analysis of heart rate variability (HRV)
based on R-R intervals (RRI) from electrocardiograph (EKG)
is an assessment method for autonomic nervous activity and
baroreflex sensitivity [14]. The parameter of low- to high-
frequency power ratio (LFP/HFP, LHR) thus obtained is
considered to reflect the relative activities of the sympathetic
and parasympathetic nervous systems [17–19]. However, such
a frequency domain parameter has its limitations because of
the nonstationary and nonlinear nature of the physiological
signals to be analyzed [20–22]. In an attempt to tackle this
problem, the Poincaré index (SD1/SD2 ratio, SSR) was intro-
duced to assess autonomic nervous activities and baroreflex
sensitivity using a nonlinear approach to analyzing HRV [20,
23]. Nevertheless, both frequency (i.e., LHR) and time (i.e.,
SSR) domain analyses assess autonomic activities (i.e., HRV)
merely based on a one-dimensional time series (i.e., RRI)
without taking into account other simultaneous physiological
changes.

Multiscale entropy (MSE), which was first proposed by
Costa et al. [24], is a method for analyzing the complexity
of nonlinear and nonstationary signals in finite length time
series. It was used to analyze the complexity of a single
time series (i.e., RRI) to differentiate between healthy and
diseased subjects [24].The present study attempted to apply a
novel parameter of “percussion entropy index (PEI)” to assess
baroreflex sensitivity by comparing the degree of matching
between the changes of two autonomic function-related time
series (i.e., amplitude of digital volume pulse and RRI) during
successive cardiac cycles to more accurately investigate an
individual’s autonomic functions. The concept of percussion
entropy index (PEI) in the present study is based on that
of MSE index (MEI). The difference between small-scale
multiscale entropy index (MEISS) and PEI is that the former
evaluates the degree of fluctuations of a parameter within a
defined region in a time series, whereas the latter is a simple
means to assess the similarity in the pattern of changes (i.e.,
increase or decrease) of two related time series to evaluate the
adaptive capacity of a physiological system.

Although baroreflex sensitivity (BRS) has been shown to
be a good indicator of autonomic activity [15], assessment
of BRS requires the simultaneous acquisition of information
on real-time blood pressure and HRV. Previous studies
have demonstrated that the sensitivity of BRS assessment by
noninvasive means is comparable to that acquired through
invasive measurement [14, 25]. Digital volume pulse (DVP)
signals acquired noninvasively through photoplethysmogra-
phy (PPG) have been found to correlate well with changes

in blood pressure [26–28]. Besides, the current study was
designed based on the finding that baroreceptor sensitivity
was impaired in subjects with chronic systemic diseases,
particularly those that affect the cardiovascular system (e.g.,
diabetes) [2, 11, 17]. Using percussion entropy index (PEI),
the present study is aimed at investigating the validity of
a two-dimensional approach to the assessment of diabetes-
associated changes in autonomic activities using two nonin-
vasively acquired time series, including waveform amplitudes
of DVP signals from finger and RRI. Results of autonomic
function assessment from data on RRI using time (i.e.,
Poincaré index: SD1/SD2 ratio, SSR) and frequency (i.e.,
low- to high-frequency power ratio: LFP/HFP, LHR) domain
analyses as well as MEISS were also obtained for comparison.

The rest of this paper is organized as follows: Section 2
comprises study population (i.e., study period, criteria for
subject recruitment, and grouping), study protocol (i.e.,
comparison of the computational parameters with the demo-
graphic, anthropometric, hemodynamic, and serum bio-
chemical parameters of the three groups of testing subjects),
details on data acquisition and analysis including calculation
of unilateral fingertip PPG amplitude sequence and RRI
sequence (i.e., Amp and RRI), and computation of multiscale
small-scale entropy index (MEISS) and percussion entropy
index (PEI) as well as statistical analysis. In Section 3, the
choice of shift number for percussion entropy index com-
putation was first justified, followed by the comparison of
the four computational parameters for autonomic function
assessment. In Sections 4 and 5, discussion and conclusions
derived from this study are summarized with several sugges-
tions for future work.

2. Methods

2.1. Study Population. Between July 2009 and Feb. 2012, 114
volunteers were recruited for the present study. All diabetic
patients were enrolled from the diabetes outpatient clinic of
the Hualien Hospital, while healthy controls were recruited
fromaphysical check-up programat the samehospital. Of the
114 volunteers, 6 were excluded due to incomplete or unsta-
ble waveform data acquisition. The remaining 108 subjects
were then divided into three groups, namely, healthy upper
middle-aged subjects (Group 1, age range: 41-80, number =
41), upper middle-aged subjects diagnosed as having type
2 DM with satisfactory blood sugar control (Group 2, age
range: 41-82, number = 36, glycated hemoglobin (HbA1c) <
6.5%), and type 2 diabetic patients with poor blood sugar
control (Group 3, age range: 44-77, number = 31, HbA1c≧ 6.5%) (Table 1). All healthy subjects had no personal or
family history of cardiovascular diseases. Type 2 diabetes
was diagnosed by either a fasting blood sugar concentration≧ 126 mg/dL or HbA1c ≧ 6.5% [29]. All diabetic patients
underwent regular treatment and follow-up in outpatient
clinic for at least two years. Each subject was required
to refrain from theophylline-containing medications and
caffeine-containing beverages for at least 8 hours before
acquisition of data. Before taking the tests, all subjects were
requested to sign informed consent and complete question-
naires on demographics and medical histories as well as
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Table 1: Demographic, anthropometric, hemodynamic, and serum biochemical parameters of the testing subjects.

Parameters Group 1 Group 2 Group 3
(number: 41) (number: 36) (number: 31)

Female/male 24/17 16/20 11/20
Age (year) 56.75 ± 3.88 59.16 ± 8.40 56.08 ± 11.38
Body height (cm) 163.49 ± 8.30 162.59 ± 7.95 163.39 ± 5.20
Body weight (kg) 65.01 ± 13.78 71.59 ± 11.89 79.69 ± 16.35
WC (cm) 81.74 ± 11.81 94.25 ± 9.72∗∗ 100.69 ± 13.51†

BMI (kg/m2) 24.17 ± 4.12 26.96 ± 2.87∗ 29.87 ± 6.05
SBP (mmHg) 116.41 ± 15.63 125.71 ± 18.06 126.69 ± 10.29
DBP (mmHg) 73.70 ± 9.70 74.06 ± 12.41 76.38 ± 4.23
PP (mmHg) 42.41 ± 10.73 51.65 ± 11.94 50.31 ± 12.07
HDL (mg/dL) 53.22 ± 20.81 44.07 ± 9.89 40.50 ± 9.68
LDL (mg/dL) 122.34 ± 29.49 94.36 ± 21.93 118.10 ± 29.91
Cholesterol (mg/dL) 192.46 ± 40.01 170.80 ± 31.00 199.09 ± 34.63†

Triglyceride (mg/dL) 98.05 ± 85.35 112.93 ± 39.92 185.91 ± 74.89†

HbA1c (%) 5.68 ± 0.38 6.95 ± 0.39∗∗ 9.25 ± 1.63††

Fasting blood sugar (mg/dL) 93.98 ± 10.67 127.47 ± 25.70∗∗ 176.91 ± 68.71†

Group 1: healthy subjects; Group 2: diabetic subjects with satisfactory blood sugar control; Group 3: diabetic subjects with poor blood sugar control. Values
are expressed as mean ± SD; WC: waist circumference; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure;
HbA1c: glycated hemoglobin. ∗p < 0.017: Group 1 vs. Group 2; ∗∗p < 0.001: Group 1 vs. Group 2; †p <0.017: Group 2 vs. Group 3, and ††p < 0.001: Group 2 vs.
Group 3.

receive blood sampling for serum biochemical analysis. The
study was approved by the Institutional Review Board (IRB)
of Hualien Hospital.

2.2. Study Protocol. One waveform parameter (i.e., ampli-
tude, Amp) and one parameter of cardiac electricalactivity
(i.e., RRI) were acquired from all subjects. Autonomic func-
tion analysis was performed on the acquired data of RRI from
the frequency [17–19] and time [20, 23] domains to obtain
the low- to high-frequency power ratio (LFP/HFP, LHR) and
Poincaré index (SD1/SD2 ratio, SSR), respectively. Percussion
entropy index (PEI) was computed from the synchronized
Amp and RRI time series for each testing subject. The
associations of the computational parameters thus obtained
(i.e., PEI, MEISS, LHR, SSR) with the demographic (i.e., age),
anthropometric (i.e., body height, bodyweight, waist circum-
ference, body-mass index), hemodynamic (i.e., systolic and
diastolic blood pressures), and serum biochemical (i.e., high-
and low-density lipoprotein cholesterol, total cholesterol, and
triglyceride) parameters of the three groups of testing subjects
were then analyzed and compared.

2.3. Data Acquisition and Analysis. All participants were
required to rest supinely in a quiet, temperature-controlled
room at 25 ± 1∘C for 4 minutes before 30 minutes of mea-
surement.Using an automated oscillometric device (BP3AG1,
Microlife, Taiwan) with an inflatable cuff of appropriate size,
blood pressure was obtained once over left arm in supine
position. Data on left index finger waveform were collected
with a six-channel EKG-photoplethysmography (PPG) sys-
tem as described previously [30, 31]. The digitized signals
(both PPG and ECG) were processed through an analog-
to-digital converter (USB-6009 DAQ, National Instruments,

Austin, TX) using a sampling frequency of 500 Hz before
being stored in a computer for later analysis. The digital vol-
ume pulses (DVPs) were acquired through PPG as previously
reported [30]. In the present study, DVPs from the fingertip
were used for waveform contour analysis. The systolic peak
and foot point were identified from the contour of the DVP.
The amplitude of each waveform (Amp) was defined as that
between the foot point and the systolic peak of a pulse wave
[32] (Figure 1).

2.3.1. Calculation of Unilateral Fingertip PPG Amplitude
Sequence and RRI Sequence (i.e., Amp and RRI). Time
series of DVP waveform amplitude, {Amp(𝑗)} = {Amp(1),
Amp(2), . . . ,Amp(n)}, and that of RRI, {RRI(i)} = {RRI(1),
RRI(2), . . . ,RRI(n)}, were simultaneously acquired from n
successive and stable cardiac cycles with photoplethysmog-
raphy (PPG) and EKG, respectively, for each testing subject
[33]:

{Amp} = {Amp (1) ,Amp (2) ,Amp (3) , . . . ,Amp (n)} (1)

{RRI} = {RRI (1) ,RRI (2) ,RRI (3) , . . . ,RRI (n)} . (2)

2.3.2. Computation of Multiscale Small-Scale Entropy Index
(MEI�푆�푆). Multiscale entropy (MSE) was first proposed by
Costa et al. [21] as a method for analyzing the complexity of
time series of nonlinear signals in 2002 using the RRI time
series as mentioned in (2) above. MSE consists of two main
procedures, including coarse-graining and computation of
sample entropy for each coarse-grained time series as detailed
below.

(1) Coarse-Graining. Coarse-graining is the process of creat-
ing new time series of different lengths through averaging
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Figure 1: Computation of percussion rate by matching changes in the amplitudes (Amp, defined as the height of a waveform from foot point
to peak) of n successive photoplethysmography (PPG)-acquired digital volume pulse (DVP) waveforms with changes in R-R intervals (RRI)
using a shift number (s) of 1 and the dimension of vector pattern (m) (i.e., impact points) of 2. Note that n = 1000 for the present study. PPG:
photoplethysmography; EKG: electrocardiogram; Amp(n): amplitude of DVPwaveform during nth cardiac cycle; RRI(n): R-R interval during
nth cardiac cycle; a: binary code denoting increase (i.e., 1) or decrease (i.e., 0) in amplitude when compared with the previous waveform; r:
binary code denoting increase (i.e., 1) or decrease (i.e., 0) in RRI when compared with the previous cardiac cycle.

successive points in the original series according to a scale
factor, 𝜏, which is the number of points to be included:

RRI (𝑎)�휏 = 1
𝜏
�푎�휏∑

�푖=(�푎−1)�휏+1

RRI (𝑖) ,

1 ≤ 𝑎 ≤ 𝑛
𝜏 , 𝑎 is positive integer number.

(3)

Here n is the number of points in the original {RRI} time
series (i.e., n = 1000 in the present study). RRI(𝑖) refers to
the duration of RRI of the 𝑖th cardiac cycle (2). RRI(𝑎)�휏 is the
value of RRI during the 𝑎th cardiac cycle in the new time series
created according to 𝜏 (𝜏 = 1, 2, . . . , 10 in the present study).

For instance, coarse-graining (i.e., (3)) can transform a
time series {RRI} with 1000 points to a new series with 500
points when 𝜏 = 2 and to another time series with 333 points
when 𝜏 = 3. Following the same pattern of computation, a
time series with 100 points can be obtained when 𝜏 = 10.
In other words, through coarse-graining, the original {RRI}
time series can be transformed into 10 series of different
lengths (i.e., number of points). For the purpose of the
present study, the sample entropy for each of the 10 series was
computed for analysis.

(2) Sample Entropy. Sample entropy was first introduced in
the year 2000 for the assessment of complexity in physio-
logical time series [34]. The computation of sample entropy
involves three parameters, namely, m, r, and n. While m is
the dimension of vector pattern (i.e., impact points), r is the
range of acceptable fluctuation within the comparable time
segments and n is the number of points in the time series (i.e.,
length of the series). The process of computation is described
as follows:

(1) R-R intervals (RRI) of different time scales were
grouped into n-m+1 vectors with dimension m:

um (i)
= [RRI (j) RRI (j + 1) RRI (j + 2) ⋅ ⋅ ⋅ RRI (j +m − 1)] ,

1 ≤ j ≤ n −m + 1.
(4)

For instance, to analyze the changes in RRI among
three cardiac cycles, m is set at 2 (Figure 1). Accord-
ingly, to discern the fluctuations among four cardiac
cycles, m is set at 3. For the purpose of the present
study that analyzed 1000 cardiac cycles, m was set at
2 and 3 for the assessment of complexity of signals
acquired from each testing subject.
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(2) Define 𝑑[um(i), um(j)] as the maximum value:

𝑑 [um (i) , um (j)]
= max {󵄨󵄨󵄨󵄨RRI (i + k) − RRI (j + k)󵄨󵄨󵄨󵄨 : 0 ≤ k ≤ m − 1} ,

(i ̸= j) .
(5)

Two time segments were considered comparable
when the absolute value of the difference between
their respective components was less than the range
of acceptable fluctuation, r (i.e., 𝑑[um(i), um(j)] ≤ r
in (5)). The acceptable range, r, was defined as 0.15 ×
SD (where SD is the standard deviation of the original
time series) according to a previous study [35].

(3) Count the number of 𝑑[um(i), um(j)] within r dis-
tance, and let nom(r) represent the number of vectors
um(j) within r distance of um(i). Therefore, Cm(r) in
(6) represents the probability that any vectors um(j)
exist within r distance of um(i).

Cm (r) = nom (r)(n −m + 1) (6)

(4) Themeanof the probability of similarity of n-m+1 sets
of data is denoted byΦm(r).

Φm (r) = 1
n −m + 1

N−m+1∑
j=1

Cm (r) (7)

(5) Similarly, repeating step (1) to step (4) above withm+1
gives Φm+1(r). The sample entropy of the RRI time
series at a particular time scale can then be obtained.

Sample entropy (S�퐸) = ln (Φm (r)) − ln (Φm+1 (r))
= ln Φm (r)

Φm+1 (r)
(8)

After acquisition of 10 time series from (3) using different
time scales (i.e., 𝜏 from 1 to 10), the corresponding sample
entropy for each time series was computed using (8). Each
sample entropy value provides information on an aspect of
complexity. Previous studies have reported that small-scale
entropy index (MEISS) and large-scale entropy index (MEILS)
obtained by taking the average of sample entropy values
from 1 to 5 and from 6 to 10, respectively, can reflect the
complexity of different physiological systems. While MEISS
represents the complexity of signals from the autonomic
nervous system, MEILS reflects signal complexity of the
vascular system [35, 36]. Accordingly, since the present study
is aimed at investigating autonomic nervous function, MEISS
of the testing subjects was acquired for comparison.

MEISS = 1
5
5∑
�휏=1

(S�퐸) (9)

Start

Data input
(Amp, RRI)

Initialization
(n = 1000)

Binary coding for
Amp & RRI

Setting impact points (m = 2, 3)
& shi� numbers (s = 1, 2, 3, …, sn)

Computation & Summation
of percussion number for each shi�

End

Percussion Entropy
= Ｇ=2 − Ｇ=3

Computation of  with m = 2, 3

 = ＦＨ(
ＭＨ

∑
Ｍ=1

０
Ｇ
Ｍ )

Figure 2: Flow chart of percussion entropy computation. Amp:
amplitude; RRI: R-R interval.

2.3.3. Computation of Percussion Entropy Index (PEI). The
computation of percussion entropy index (PEI) comprises the
following (Figure 2).

Step 1. Binary sequence transformation for {Amp} and {RRI}
BAmp = {a1 a2 a3 ⋅ ⋅ ⋅ an} ,

ai = {{{
0, Amp (i + 1) ≤ Amp (i)
1, Amp (i + 1) > Amp (i)

(10)

BRRI = {r1 r2 r3 ⋅ ⋅ ⋅ rn} ,

ri = {{{
0, RRI (i + 1) ≤ RRI (i)
1, RRI (i + 1) > RRI (i)

(11)

Based on the previous finding that the change in amplitudes
of DVP waveforms reflects the fluctuation in blood pressure
[26–28] that gives rise to a corresponding compensatory
change in RRI because of baroreflex, the fluctuations among
successive DVP waveform amplitudes and RRIs undergo
binary transformation to give two binary sequences (i.e.,
BAmp and BRRI, respectively).
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Step 2. Define the series BAmp and BRRI with length n as well
as the two parameters of m and sn [where m is the impact
points (i.e., embedded dimension of vectors); sn is the shift
number of BRRI].

Step 3. Define n – m + 1 vectors of sample pattern, each of
size m, composed as follows:

BAmp (i) = {ai, ai+1, . . . , ai+m−1} , 1 ≤ i ≤ n–m + 1. (12)

Step 4. For s = 1 to sn (i.e., shift numbers) for the series BRRI

BRRI (i + s) = {ri+s, ri+s+1, . . . , ri+s+m−1} ,
1 ≤ i ≤ n–m + 1, s = 1 to sn. (13)

Although an increase in blood pressure would cause a
prolongation of RRI in the next cardiac cycle in healthy
young subjects, this baroreflex responsemay be delayed in the
elderly or those with systemic diseases [2, 11, 17]. Therefore,
we assumed that variations in baroreflex sensitivity would
cause corresponding delays (counted as number of cardiac
cycles, i.e., 1, 2, 3. . . sn) in the effects of blood pressure changes
(i.e., reflected in DVP amplitudes) on RRI.

Step 5. Count the match number for BAmp(i) and BRRI(i + s)
with given m.

In addition, calculate the total match number of BAmp(i)
andBRRI(i+s)with the samepattern (i.e., percussion number)
and divide by the total number of vectors of pattern (n-m-s+1)
to obtain the percussion rate, which is defined as

Pm
s = 1

(n −m − s + 1)
n−m−s+1∑

i=1
count (i) . (14)

For example (Figure 1), Pm=2
s=1 = (1/(n − 2))∑n−2

i=1 count(i) is
a binary amplitude series (BAmp) to be compared to a binary
RRI series (BRRI) with a left shift of one cardiac cycle (s=1)
in the same testing subject. Comparing the amplitudes of
three consecutive waveforms gives two binary codes [a1 a2]
denoting increase (i.e., 1) or decrease (i.e., 0). Similarly,
[r2 r3] are binary codes representing increase or decrease in
RRI of three successive cardiac cycles with a shift number of
1 (i.e., s = 1) shown on EKG.

Matching the twobinary codes fromchanges inwaveform
amplitudes and the two binary codes of changes in RRI from
EKGwith left shift of one cardiac cycle gives a number 1 or 0.

[a1 a2] = [r2 r3] 󳨀→ count + 1
[a1 a2] ̸= [r2 r3] 󳨀→ count + 0 (15)

Similarly, the process continues till the amplitude of the nth
waveform.

[an−1 an] = [rn rn+1] 󳨀→ count + 1
[an−1 an] ̸= [rn rn+1] 󳨀→ count + 0 (16)

Summation of all the numbers of matches (i.e., percussion
number) is thus obtained and divided by the total number

of vectors of pattern gives the “percussion rate” (14). For
instance, if the number of impact points (m) is 2 with a delay
of one cardiac cycle [i.e., shift number (s) = 1] (Figure 1), then

Pm=2
s=1 = 1

n − 2
n−2∑
i=1

count (i) . (17)

Step 6. Because diabetes is known to delay the reaction time
of baroreflex due to impaired sensitivity [2, 11, 17], we assume
that there would be a delay in cardiac cycle from one to sn.
Taking logarithm of the sum of percussion rates (Pm

s ) from
shift number 1 to sn (i.e., s = 1, 2, . . . , sn) gives
𝜑m (n) = ln( sn∑

�푠=1

Pm
s ) ,
ln: natural logarithmic operation.

(18)

For the present study, 𝜑m=2(n) was used to assess barore-
flex sensitivity.

Step 7. Increase impact points (i.e., the embedded dimension)
to (m+1) and repeat Steps 2–6 to get

Pm+1
s = 1

(n −m − s + 2)
n−m−s+2∑

i=1
count (i) , (19)

𝜑m+1 (n) = ln( sn∑
s=1

Pm+1
s ) . (20)

In the current study, 𝜑m=3(n) indicated the complexity of
a biological system.Thehigher the value of𝜑m=3 (n), the lower
the complexity of the biological system.

Step 8. Therefore, percussion entropy index (PEI) can be
defined from (18) and (20):

PEI (m, s, n) = 𝜑m (n) − 𝜑m+1 (n) , (21)

= ln[ ∑sn
s=1 P

m
s∑sn

s=1 Pm+1
s

] . (22)

In (21) and (22), m represents the chosen impact points (i.e.,
vector dimension), s represents a shift number for BRRI, and
n is the data length.

In other words, the degree of similarity between the
changes in the binary series of digital volume pulse (DVP)
waveform amplitudes (BAmp) and the corresponding fluctua-
tions in the binary series of RRI (BRRI) on electrocardiogram
over n cardiac cycles were first compared using a vector
dimension of m, taking into account the possible delay in
baroreflex from one cardiac cycle to sn cardiac cycles. The
computation was then repeated with a vector dimension of
m+1 over the same set of data points. Subtraction of the
latter from the former gave the percussion entropy index
(PEI) as in (21). The present study adopted an embedded
vector dimension number of 2 (i.e., impact points, m =
2) to compute the value of percussion entropy, 𝜑m=2(n).
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Similarly, using m= 3, the percussion entropy value, 𝜑m=3(n),
was obtained. PEI was then obtained through subtracting𝜑m=3(n) from 𝜑m=2(n). Physiologically, 𝜑m=2(n) represents
baroreflex sensitivity, while 𝜑m=3(n) reflects the complexity
of a biological system. The higher the former, the more
sensitive the baroreflex. By contrast, an elevated value of the
latter denotes decreased complexity of the acquired signals
that implicates an impaired physiological status. Therefore,
the optimal physiological condition would be 𝜑m=2(n) ≫𝜑m=3(n) (i.e., a high PEI value) when both baroreflex sensi-
tivity and physiological complexity are high.

2.4. Statistical Analysis. Average values are expressed as
mean ± SD. One sample Kolmogorov-Smirnov test was
used for testing the normality of distribution, while the
Statistical Package for the Social Science (SPSS, version 14.0
forWindows, SPSS Inc. Chicago, II) was adopted for verifying
the homoscedasticity of variables. The significance of differ-
ence in anthropometric, hemodynamic, and computational
parameters (i.e., PEI, MEISS, LHR, SSR) among different
groups was determined using independent sample t-test with
Bonferroni correction. The correlation between parameters
and risk factors for different groups was compared using
Pearson correlation test with Bonferroni correction. For
significant parameters acquired through univariate analysis,
multivariate regression analysis was used for further verifi-
cation of the statistical significance. SPSS was used for all
statistical analyses.

In statistical hypothesis testing, the probability value (i.e.,
p-value) or asymptotic significance is the probability for a
given statistical model that, when the null hypothesis is true,
the statistical summary (e.g., the sample mean difference
between two compared groups) would be greater than or
equal to the actual observed results. Although the level of
significance is commonly set to 0.05, the p-values may need
to be corrected for multiple test comparison. For the purpose
of the present study, a corrected p-value of 0.017 was used
because of comparison among three groups (i.e., 0.05 divided
by three). Pearson’s correlation coefficient, also referred to as
Pearson’s r, is a measure of the linear correlation between two
variables X and Y. It has a value between +1 and −1. While 1
stands for total positive linear correlation, 0 means no linear
correlation, and −1 signifies total negative linear correlation.
3. Results

3.1. Choice of Shift Number for Percussion Entropy Index
Computation. The changes in percussion entropy index with
shift number in all testing subjects are shown in Figure 3.
Successful discrimination among the three groups was noted
at shift number 5. Therefore, shift number 5 was used for
percussion entropy index computation to ensure adequate
coverage of possible delays due to impaired baroreflex sen-
sitivity; the parameters of this study were set at m = 2, n =
1000, and s = 1 to 5.

3.2. Comparison of Computational Parameters for Autonomic
Function Assessment. The results of comparing the two
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Figure 3: Changes in percussion entropy index of the three groups
of testing subjects from shift number (s) of 1 to 8; ∗∗p < 0.001: Group
1 vs. Group 2; ††p < 0.001: Group 2 vs. Group 3; Group 1: healthy
subjects; Group 2: diabetic subjects with satisfactory blood sugar
control; Group 3: diabetic subjects with poor blood sugar control.
Values are expressed as mean ± SD.

one-dimensional HRV-based computational parameters (i.e.,
LHR and SSR) with percussion entropy index (PEI) for
autonomic function assessment among the three groups of
testing subjects are shown in Table 2. Although SSR was
significantly higher in Group 2 than that in Group 1 (p< 0.017), there was no notable difference in LHR among
the three groups. On the other hand, both MEISS and PEI
successfully discriminated among the three groups (all p <
0.017), although the discrimination between Group 1 and
Group 2 was more significant with PEI (p < 0.001) compared
to that with MEISS (p < 0.017).

3.3. Correlations of Demographic, Anthropometric, Hemody-
namic, and Serum Biochemical Data with Computational
Parameters for Autonomic Function Assessment in All Testing
Subjects. Significant associations were noted between LHR
and serum triglyceride concentration as well as between
SSR and fasting blood sugar concentration (both p < 0.017)
(Table 3). MEISS showed a significant positive association
with glycated hemoglobin level (p < 0.005), which is an index
of chronic diabetes control, but not with fasting blood sugar
concentration, an indicator of acute diabetes control. On the
other hand, percussion entropy was significantly related to
fasting blood sugar concentration (p < 0.017) and highly
significantly associated with glycated hemoglobin level (p <
0.001).

3.4. Multivariate Analysis for PEI, MEI�푆�푆, SSR, and LHR. The
demographic, anthropometric, hemodynamic, and serum
biochemical parameters of the testing subjects found to be
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Table 2: Comparison of computational parameters for autonomic function assessment in three groups of testing subjects.

Parameters Group 1 Group 2 Group 3
(n = 41) (n = 36) (n =31)

LHR 1.62 ± 1.03 1.59 ± 1.54 2.48 ± 2.43
SSR 0.47 ± 0.22 0.61 ± 0.27∗ 0.61 ± 0.31
MEISS 0.56 ± 0.08 0.54 ± 0.02∗ 0.44 ± 0.13††

PEI 0.73 ± 0.04 0.63 ± 0.05∗∗ 0.56 ± 0.06††

Group 1: healthy subjects; Group 2: diabetic subjects with satisfactory blood sugar control; Group 3: diabetic subjects with poor blood sugar control. Values are
expressed as mean ± SD. LHR: low- to high-frequency power ratio; SSR: Poincaré index (SD1/SD2 ratio);MEISS: small-scale multiscale entropy index (mean
value of sample entropy from time scale from 1 to 5); PEI: percussion entropy index; ∗p < 0.017: Group 1 vs. Group 2; ∗∗p < 0.001: Group 1 vs. Group 2; ††p <
0.001 Group 2 vs. Group 3.

Table 3: Associations of demographic, anthropometric, hemodynamic, and serum biochemical data with computational parameters for
autonomic function assessment in all testing subjects.

PEI MEISS SSR LHR
r p r p r p r p

Age (years) 0.10 0.562 0.06 0.662 0.02 0.832 0.09 0.398
BH (cm) 0.14 0.251 0.13 0.351 -0.02 0.887 0.17 0.142
BW (kg) -0.10 0.397 -0.12 0.417 -0.07 0.580 0.14 0.244
WC (cm) 0.55 0.241 0.65 0.351 0.05 0.861 0.20 0.074
BMI (kg/m2) -0.16 0.173 0.03 0.573 -0.04 0.742 0.07 0.543
SBP (mmHg) -0.06 0.641 -0.01 0.741 0.10 0.421 -0.02 0.870
DBP (mmHg) 0.06 0.620 0.07 0.650 0.10 0.409 0.10 0.419
PP (mmHg) -0.15 0.189 -0.10 0.428 0.06 0.632 -0.10 0.436
HDL (mg/dL) 0.01 0.942 0.05 0.963 -0.01 0.946 -0.08 0.548
LDL (mg/dL) -0.01 0.934 -0.06 0.534 -0.04 0.749 -0.10 0.449
Cholesterol (mg/dL) -0.10 0.439 -0.09 0.539 -0.01 0.920 0.02 0.899
Triglyceride (mg/dL) -0.09 0.468 -0.10 0.439 0.21 0.079 0.30 0.012
HbA1c (%) 0.16 0.001 0.14 0.005 0.11 0.371 0.01 0.946
FBS (mg/dL) 0.13 0.012 0.13 0.018 0.03 0.014 0.07 0.587
BH: body height; BW: body weight; WC: waist circumference; BMI: body mass index, SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse
pressure; HbA1c: glycated hemoglobin;HDL: high-density lipoprotein cholesterol; LDL low-density lipoprotein cholesterol; FBS: fasting blood sugar. LHR: low-
to high-frequency power ratio; SSR: Poincaré index (SD1/SD2 ratio); MEISS: small-scale multiscale entropy index (mean value of sample entropy from time
scale from 1 to 5); PEI: percussion entropy index; |r| ≦ 0.3: correlation of low significance; 0.3 ≦ |r| ≦ 0.7: correlation of moderate significance; 0.7 ≦ |r| ≦ 1:
highly significant correlation. ∗p < 0.017; ∗∗p < 0.001. Significance of correlations determined with Pearson correlation.

Table 4: Multivariate linear regression analysis for percussion entropy index (PEI), LHR, and SSR for all subjects (n = 108).

PEI MEISS SSR LHR
B-Coef 𝛽 p B-Coef 𝛽 p B-Coef 𝛽 p B-Coef 𝛽 p

Variable
FBS (mg/dL) 0.824 0.123 0.012 0.825 0.053 0.032 0.841 0.096 0.022 0.826 0.042 0.853
HbA1c (%) 0.654 0.714 <0.001 0.702 0.156 <0.001 0.734 0.037 0.041 0.724 0.129 0.566
Constant 0.894 - <0.001 0.507 - 0.003 1.750 - 0.010 0.409 - 0.008
B-Coef: regression coefficient; �훽: standardized coefficient; FBS: fasting blood sugar; HbA1c: glycated hemoglobin; PEI: percussion entropy index;MEISS : small-
scale multiscale entropy index (mean value of sample entropy from time scale from 1 to 5); SSR: Poincaré index (SD1/SD2 ratio); LHR: low- to high-frequency
power ratio.

significantly associated with PEI in this study using Pearson
correlation test were fasting blood sugar concentration and
glycated hemoglobin level for which multivariate analysis
was performed (Table 4). The results showed significant
associations of PEI with fasting blood sugar and glycated
hemoglobin levels in all subjects as a whole without focus-
ing on the effects of age and diabetes (all p < 0.05). In

addition, the interpreting effects [37] of the two independent
variables, glycated hemoglobin level and fasting blood sugar
concentration, on dependent variable PEI were 71.4% and
12.3%, respectively. In other words, with multiple linear
regression, the results of the present study demonstrated
an 83.7% accuracy when the two independent variables
(i.e., glycated hemoglobin level and fasting blood sugar
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concentration) were used to describe the dependent variable
(i.e., PEI). In contrast, the interpreting effects of glycated
hemoglobin level and fasting blood sugar concentration (i.e.,
independent variables) on the dependent variableMEISSwere
comparatively low at 15.6% and 5.3%, respectively.

4. Discussion

Diabetes is a common metabolic disease characterized by
vasculopathy commonly involving the eyes [6] and kidneys
[7]. Neuropathy is another well-known diabetes-associated
complication [8]. Using the method of multiscale cross-
approximate entropy, we previously investigated the feasibil-
ity of adopting a multiscale cross-approximate entropy index
in detecting diabetes-related arterial stiffness as reflected
by the crest time (CT) of the study subjects [38]. The
results of that study indicated that although multiscale cross-
approximate entropy could identify diabetes-associated sub-
tle changes in vascular functional integrity, it failed to demon-
strate the impact of diabetes on autonomic nervous function
[38]. Therefore, focusing on diabetes-associated autonomic
neuropathy, the present study proposed a new approach to
the assessment of baroreflex impairment through comparing
the tendency of changes between the primary time series
(i.e., Amp that reflects fluctuations in blood pressure) and
the secondary time series (i.e., RRI that indicates correspond-
ing baroreflex-triggered heart rate alterations) among three
successive cardiac cycles. Meanwhile, taking into account
the healthy physiological complexity of human body, lack of
variation in the tendency of changes among four successive
cardiac cycles is regarded as unhealthy and was used as
a negative contributor to computation of the percussion
entropy index.The results of the current study indicated that,
through taking into account the physiology of baroreflex [14–
16], this novel approach could give additional information
on diabetic autonomic dysfunction through comparing the
pattern of changes between two simultaneously acquired
physiological time series (i.e., digital volume pulse amplitude
and R-R interval).

The present study, which attempted to assess the impact
of diabetes and its control on autonomic nervous function
by comparing the tendency of changes of two simultaneous
physiological time series (i.e., DVP amplitude and RRI) in
subjects with and without the disease, has several interest-
ing implications. First, among the three one-dimensional
approaches to HRV analysis [i.e., frequency (i.e., LHR) and
time (i.e., SSR) domain as well as multiscale (i.e., MEISS)],
only MEISS successfully discriminated among nondiabetic
subjects as well as those with diabetes with and without sat-
isfactory blood sugar control. Besides, the two-dimensional
percussion entropy index (PEI) showed better ability to
differentiate between healthy subjects and those with well-
controlled diabetes than that of MEISS. Second, PEI was the
only parameter with significant correlations with both acute
(i.e., fasting blood sugar concentration) and chronic (i.e.,
glycated hemoglobin level) blood sugar control indicators.
Third, strong interpreting effects from the two independent
sugar control variables were noted only for PEI but notMEISS,
LHR, and SSR. The results, therefore, highlight its notable

sensitivity in detecting diabetes-associated autonomic dys-
function.

Previous studies have demonstrated that diabetes is
associated with suppressed autonomic activities and blunted
baroreflex [19, 39]. Previous studies have demonstrated the
use of frequency domain [17–19] and time domain [20, 23]
parameters in noninvasively assessing autonomic nervous
function in diabetic patients but their sensitivities remain
unclear. Taking into account the fact that baroreflex sensi-
tivity is an indicator of autonomic function [15] as well as
previous findings showing a good correlation between DVP
signals and real-time changes in blood pressure [26–28], the
current study investigated the possibility of assessing auto-
nomic sensitivity through quantifying the matches between
the two time series of DVP and RRI with a shift number of 1
to 5 based on the finding of a previous report that showed a
delay of BRS between one to five heartbeats [16]. The finding
of our study was consistent with that study [16] that using a
shift number of 5 provided the best discriminating ability for
PEI (Figure 3).

While considering the integrity of baroreflex by choosing
a dimension of vector pattern (i.e., impact point, m) of 2,
the physiological health of an individual as reflected in the
complexity of signals was taken into account through adding
a dimension of vector pattern of 3 into the computation
of percussion entropy index (PEI). The major difference
between multiscale entropy (MSE) and PEI is that the former
evaluates changes in actual sample values within a defined
range over time, whereas the latter simply compares the
pattern of fluctuation between two related time series. In
addition to utilizing the concept of MSE, PEI also encom-
passes the assessment of baroreflex sensitivity (BRS) (i.e., m =
2; higher value in (8) stands for higher BRS) and complexity
(i.e., m =3; higher value in (10) represents lower complex-
ity).

The present study has its limitations. First, the number
of testing subjects in each group was relatively small. Nev-
ertheless, highly significant associations between percussion
entropy and indices of blood sugar control were still noted.
Second, direct assessment of baroreflex sensitivity with either
invasive or noninvasive means was not performed for com-
parison with the results of the current study.

5. Conclusions

This study demonstrated the validity of gaining additional
information on diabetic autonomic dysfunction through
comparing two simultaneously acquired physiological time
series (i.e., digital volume pulse amplitude and R-R interval).
The significant associations of percussion entropy with the
indices of blood sugar control also highlight its possible role
in early screening of the disease.The successful identification
of the markers for diabetes by comparing the nonlinear
coupling behavior of two synchronized time series of different
natures raises the possibility of identifying the risk factors for
diseases of other organs through analyzing the complexity of
synchronized physiological signals related to the respective
organ systems.
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We present a method for rejecting competing models from noisy time-course data that does not rely on parameter inference.
First we characterize ordinary differential equation models in only measurable variables using differential-algebra elimination.
This procedure gives input-output equations, which serve as invariants for time series data. We develop a model comparison test
using linear algebra and statistics to reject incorrect models from their invariants. This algorithm exploits the dynamic properties
that are encoded in the structure of the model equations without recourse to parameter values, and, in this sense, the approach is
parameter-free. We demonstrate this method by discriminating between different models from mathematical biology.

1. Introduction

Given competingmathematical models to describe a process,
we wish to know whether our data are compatible with the
candidate models. Often comparing models requires opti-
mization and fitting time-course data to estimate parameter
values and then apply an information criterion to select a
“best” model [1]. However sometimes it is not feasible to
estimate the value of these unknown parameters (e.g., large
parameter space, nonlinear objective function, nonidentifia-
bility, etc.). In this paper, we compare candidate models with
time-course data while avoiding the parameter estimation
problem by considering a “parameter-free” approach.

The parameter problem has motivated the growth of
fields that embrace a parameter-free flavor such as chemical
reaction network theory and stoichiometric theory [2–4].
However many of these approaches are limited to comparing
the behavior ofmodels at steady-state [5–7]. Inspired by tech-
niques commonly used in applied algebraic geometry [8] and
algebraic statistics [9], methods for discriminating between
possible models without estimating parameters have been
developed for steady-state data [10, 11]. These approaches
characterize a model in only observable variables—called

a steady-state invariant [5]—using techniques from com-
putational algebraic geometry and determine whether the
noisy steady-state data are compatible with this steady-state
invariant via a statistical test. However, unlike other Bayesian
and parameter estimation approaches, it does not select
models; it can only rule them out. Notably the method does
not require parameter estimation, hence there is the term
parameter-free.

Extending the method developed in [10], we present
a method for comparing models using time-course data
instead of steady-state data. In this approach we compute
input-output equations, which we refer to as input-output
invariants for time series data. We consider state-space
ordinary differential equations (ODE) models of the form
ẋ(t) = f(x(t), u(t), p) and y(𝑡) = g(x(𝑡), p) where 𝑥𝑘(𝑡) are
species variables, 𝑘 = 1, . . . , 𝑁, 𝑢𝑖(𝑡) is a known input into
the system, 𝑖 = 1, . . . , 𝐿, 𝑦𝑗(𝑡) is a known output (measure-
ment) from the system, 𝑗 = 1, . . . ,𝑀, p is the unknown𝑅−dimensional parameter vector, and the functions f , g are
rational functions of their arguments. The dynamics of the
model can be observed in terms of a time series where u(𝑡) is
the input at discrete points and y(𝑡) is the output.
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In this setting, we aim to characterize our ODE mod-
els by eliminating variables that we cannot measure using
differential elimination from differential algebra [12]. From
the elimination, we obtain a system of equations in 0, 1, and
higher order derivatives forming the input-output invariants:𝐹𝑗(u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . .) = 0, 𝑗 = 1, . . . ,𝑀. Importantly,
the coefficients of these equations are rational functions of
the parameters. We will see shortly that, in the linear case,𝐹𝑗 is a linear differential equation. For nonlinear models, 𝐹𝑗
is nonlinear. Computing input-output invariants is described
in Section 2.

In order to testmodel compatibility, we substitute the data
into the input-output invariant, which is given in the form of
u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . . evaluated at given time points. This
results in a linear system of equations, 𝐴𝜅 = 𝑏, where each
row of 𝐴 and 𝑏 corresponds to the input-output invariant
evaluated at a different time point. The components of 𝜅
are the coefficient functions of the parameters in the input-
output invariants. The set-up of the model compatibility test
is given in Section 3.

Then we ask: does there exist a 𝜅 such that 𝐴𝜅 = 𝑏. If𝑏 = 0, of course we are guaranteed a zero trivial solution and
the nontrivial solution can be determined via a rank test (e.g.,
singular value decomposition, or SVD). Since data may be
imperfect, we can perform the statistical criterion developed
in [10] with the bound improved in [11] to determine whether
or not to reject the model. One of the key differences in
adapting this method to time-course data is considering𝐴𝜅 = 𝑏 when 𝑏 ̸= 0. For 𝐴𝜅 = 𝑏, there may be
no solutions. Thus, we must check if the linear system of
equations 𝐴𝜅 = 𝑏 is consistent, i.e., has one or infinitely
many solutions.We present a rank test, based on the SVD, for
determining the compatibility of the data with input-output
invariants from various (potentially incorrect) models. The
linear solvability test is described in Section 4. We assume
our data have Gaussian measurement noise. In Section 5, we
derive a statistical cut-off for when the model is incompatible
with the data.

Another key difference in this approach than previous
parameter-free model discrimination methods is the occur-
rence of higher order derivatives of the input and output
variables in the input-output invariants, requiring them to
be known at various time instances. Often one does not have
data points for the higher order derivatives, then these need to
be estimated. Unlike numerical estimation or splines, which
assume a specific functional form, one can use Gaussian
Process Regression (GPR) to estimate the higher order
derivatives from time-course data. In Section 6, we present
such a method, which has previously been done for first and
second derivatives of biological data [13]. Bounding error of
derivative estimates is a difficult problem, which requires us
to remove certain data points; however, the advantage of GPR
is that one can consider a family of functions, which [13]
points out to be able to capturemanymore temporal trends in
the data than any one equation. This enables us to substitute
the newly estimated derivative data into the input-output
invariant and test model compatibility using the solvability
test with the statistical cut-off that we present in Sections 4
and 5.

In Sections 4 and 7, we showcase our method with
examples from linear and nonlinear models. Finally we
discuss special cases and other related topics in Section 8,
before concluding in Section 9.

2. Differential Elimination

We now give some background on differential algebra since
a crucial step in our algorithm is to perform differential
elimination to obtain equations purely in terms of input
variables, output variables, and parameters. For this reason,
we will only give background on the ideas from differential
algebra required to understand the differential elimination
process. For amore detailed description of differential algebra
and the algorithms listed below, see [12, 14, 15]. In what
follows, we assume the reader is familiar with concepts such
as rings and ideals, which are covered in great detail in [8].

Definition 1. A ring 𝑆 is said to be a differential ring if
there is a derivative defined on 𝑆 and 𝑆 is closed under
differentiation. A differential ideal is an ideal which is closed
under differentiation.

Let our differential ideal be equipped with a ranking, i.e.,
a total ordering, denoted <, among the variables and their
derivatives. Let 𝑧(𝜇)𝑖 and 𝑧(])𝑗 be arbitrary derivatives.Then the
ranking should be such that, for arbitrary positive integer 𝑘:𝑧(])𝑖 < 𝑧(]+𝑘)𝑖 ,𝑧(𝜇)𝑖 < 𝑧(])𝑗 󳨐⇒𝑧(𝜇+𝑘)𝑖 < 𝑧(]+𝑘)𝑗

(1)

Let 𝑢𝑗 be the leader of a polynomial 𝐴𝑗, which is the
highest ranking derivative of the variables appearing in that
polynomial. A polynomial 𝐴 𝑖 is said to be of lower rank than𝐴𝑗 if the order of 𝑢𝑖 is less than the order of 𝑢𝑗 or, whenever𝑢𝑖 = 𝑢𝑗, the highest algebraic degree of any term containing
the leader of 𝐴 𝑖 is less than the highest algebraic degree of
any term containing the leader of 𝐴𝑗. A polynomial 𝐴 𝑖 is
reduced with respect to a polynomial 𝐴𝑗 if𝐴 𝑖 contains neither
the leader of𝐴𝑗 with equal or greater algebraic degree, nor its
derivatives. If 𝐴 𝑖 is not reduced with respect to 𝐴𝑗, it can be
reduced by using the pseudodivision algorithm in Section 2.1.
A set of differential polynomials 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑟} that
are all reduced with respect to each other is called an auto-
reduced set.

Two auto-reduced sets, 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑟} and 𝐵 ={𝐵1, 𝐵2, . . . , 𝐵𝑠} ordered in increasing rank so that𝐴1 < 𝐴2 <. . . < 𝐴𝑟, 𝐵1 < 𝐵2 < . . . < 𝐵𝑠, are ranked according to the
following principle: if there is an integer 𝑘, 𝑘 ≤ min(𝑠, 𝑟) such
that rank 𝐴 𝑖 = rank 𝐵𝑖, 𝑖 = 1, . . . , 𝑘 − 1, rank 𝐴𝑘 < rank 𝐵𝑘,
then 𝐴 is said to be lower rank than 𝐵. If 𝑟 < 𝑠 and rank 𝐴 𝑖

= rank 𝐵𝑖, 𝑖 = 1, . . . , 𝑟, then 𝐴 is also said to be of lower rank
than 𝐵.

A useful description of a differential ideal is called a
differential characteristic set, which is a finite description of
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a possibly infinite set of differential polynomials. We give the
technical definition from [12].

Definition 2. Let Σ be a set of differential polynomials, not
necessarily finite. If 𝐴 ⊂ Σ is an auto-reduced set, such that
no lower ranked auto-reduced set can be formed in Σ, then𝐴
is called a differential characteristic set.

A well-known fact in differential algebra is that differen-
tial ideals need not be finitely generated [12, 15]. However,
a radical differential ideal is finitely generated by the Ritt-
Raudenbush basis theorem [16]. This result gives rise to Ritt’s
pseudodivision algorithm (see below), allowing us to com-
pute the differential characteristic set of a radical differential
ideal. We now describe various methods to find a differential
characteristic set and other related notions, and we describe
why they are relevant to our problem; namely, they can be
used to find the input-output equations.

In what follows, we will be considering the differential
ringR(p)[u, y, x], whereR(p) is the field of rational functions
in the parameter vector p. The variables in this differential
ring are the states, the inputs, the outputs, and possibly their
derivatives.

Consider an ODE system of the form ẋ(t) =
f(x(t), p,u(t)) and 𝑦𝑗(𝑡) = 𝑔𝑗(x(𝑡), p) for 𝑗 = 1, . . . ,𝑀
with f and g rational functions of their arguments. Let our
differential ideal be generated by the differential polynomials
obtained by subtracting the right-hand-side from the ODE
system to obtain ẋ(t) − f(x(t), p,u(t)) and 𝑦𝑗(𝑡) − 𝑔𝑗(x(𝑡), p)
for 𝑗 = 1, . . . ,𝑀. In what follows, we use the ranking in [17],
which is given by

u < u̇ < ü < ⋅ ⋅ ⋅ < y < ẏ < ÿ < ⋅ ⋅ ⋅< 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥̇1 < 𝑥̇2 < ⋅ ⋅ ⋅ (2)

Note that the notation reflects the fact that the ordering
among the components of u and y is immaterial, since
these are known variables, whereas different ordering of the
components of xmay lead to different characteristic sets [17].
With respect to this ordering, a differential characteristic set
is of the form [17]:𝐴1 (u, y) , . . . , 𝐴𝑀 (u, y)𝐴𝑀+1 (u, y, 𝑥1)𝐴𝑀+2 (u, y, 𝑥1, 𝑥2)...𝐴𝑀+𝑁 (u, y, 𝑥1, . . . , 𝑥𝑁)

(3)

where 𝐴 𝑖 are differential polynomials. Note that the result-
ing system is not necessarily auto-reduced in R(p)[u, y, x],
namely, 𝐴1(𝑢, 𝑦), . . . , 𝐴𝑀(𝑢, 𝑦) may not be auto-reduced.
The first 𝑀 terms of the differential characteristic set,𝐴1(u, y), . . . , 𝐴𝑀(u, y), are those terms independent of the
state variables and when set to zero form the input-output
equations:

F (u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . .) = 0. (4)

Specifically, the 𝑀 input-output equations F(u, u̇, ü, ...u, . . . , y,
ẏ, ÿ, ...y, . . .) = 0 are polynomial equations in the variables
u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . . with rational coefficients in the
parameter vector p. Note that the differential characteristic
set is in general non-unique, but the coefficients of the input-
output equations can be fixed uniquely by normalizing the
equations to make them monic.

We now discuss several methods to find the input-output
equations.The first method (Ritt’s pseudodivision algorithm)
can be used to find a differential characteristic set for a radical
differential ideal. The second method (RosenfeldGroebner)
gives a representation of the radical of the differential ideal
as an intersection of regular differential ideals and can also
be used to find a differential characteristic set under certain
conditions [18, 19]. Finally, we discuss Gröbner basismethods
to find the input-output equations.

2.1. Ritt’s Pseudodivision Algorithm. An algorithm to find
a differential characteristic set of a radical (in particular,
prime) differential ideal generated by a finite set of differential
polynomals is called Ritt’s pseudodivision algorithm. We
describe the process in detail below, which comes from
the description in [17]. Note that our differential ideal as
described above is a prime differential ideal [12, 20]. Let 𝐴 𝑖

and 𝐴𝑗 be differential polynomials.

(1) If 𝐴 𝑖 contains the 𝑘𝑡ℎ derivative 𝑢(𝑘)𝑗 of the leader of𝐴𝑗, 𝐴𝑗 is differentiated 𝑘 times so its leader becomes𝑢(𝑘)𝑗 .

(2) Multiply the polynomial 𝐴 𝑖 by the coefficient of the
highest power of 𝑢(𝑘)𝑗 ; let 𝑅 be the remainder of the
division of this new polynomial by 𝐴(𝑘)

𝑗 with respect
to the variable 𝑢(𝑘)𝑗 . Then 𝑅 is reduced with respect to𝐴(𝑘)
𝑗 . The polynomial 𝑅 is called the pseudoremainder

of the pseudodivision.
(3) The polynomial 𝐴 𝑖 is replaced by the pseudoremain-

der 𝑅 and the process is iterated using 𝐴(𝑘−1)
𝑗 in

place of 𝐴(𝑘)
𝑗 and so on, until the pseudoremainder is

reduced with respect to 𝐴𝑗.

This algorithm is applied to a set of differential poly-
nomials, such that each polynomial is reduced with respect
to each other, to form an auto-reduced set. The result is
a differential characteristic set. Note that the multiplication
mentioned in Step (2) above may yield a nonequivalent
system if that coefficient happens to belong to the ideal.
However, in practice, this does not occur for theODE systems
studied [17].

2.2. RosenfeldGroebner. Using the DifferentialAlgebra
package inMaple, one can find a representation of the radical
of a differential ideal generated by some equations, as an
intersection of radical differential ideals with respect to a
given ranking [21]. Specifically, the RosenfeldGroebner
command in Maple takes two arguments: sys and R, where
sys is a list of set of differential equations or inequations
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which are all rational in the independent and dependent vari-
ables and their derivatives and R is a differential polynomial
ring built by the command DifferentialRing specifying
the independent and dependent variables and a ranking for
them [21]. Then RosenfeldGroebner returns a represen-
tation of the radical of the differential ideal generated by
sys, as an intersection of radical differential ideals saturated
by the multiplicative family generated by the inequations
found in sys. This representation consists of a list of regular
differential chains with respect to the ranking of R. Note that
RosenfeldGroebner returns a differential characteristic set
if the differential ideal is prime [18].

2.3. Gröbner Basis Methods. Finally, both algebraic and dif-
ferential Gröbner bases can be employed to find the input-
output equations. To use an algebraic Gröbner basis, one
can take a sufficient number of derivatives of the model
equations and then treat the derivatives of the variables
as indeterminates in the polynomial ring in x, ẋ, ẍ,..., u,
u̇, ü,..., y, ẏ, ÿ,..., etc. Then a Gröbner basis of the ideal
generated by this full system of (differential) equations with
an elimination ordering where the state variables and their
derivatives are eliminated first can be found. Details of this
approach can be found in [22]. Differential Gröbner bases
have been developed by Carrà Ferro [23], Ollivier [24], and
Mansfield [25], but currently there are no implementations
in computer algebra systems [14].

3. Model Rejection Using
Input-Output Invariants

We now discuss how to use the input-output invariants
obtained from differential elimination (using Ritt’s pseudo-
division, differential Gröbner bases, or some other method)
for model selection/rejection.

We can write our input-output relations in (4), or input-
output invariants, in the form:∑

𝑖

𝑐𝑖 (p) 𝜓𝑖 (u, y) = 0 (5)

The functions 𝜓𝑖(u, y) are differential monomials, i.e., mono-
mials in the input/output variables u, u̇, ü, ...u, . . ., y, ẏ, ÿ, ...y, . . .,
etc., and the functions 𝑐𝑖(p) are rational functions in the
unknown parameter vector p. In order to uniquely fix
the rational coefficients 𝑐𝑖(p) to the differential monomials𝜓𝑖(u, y), we normalize each input/output equation to make
it monic. In other words, we can rewrite our input-output
relations as ∑

𝑖

𝑐𝑖 (p) 𝜓𝑖 (u, y) = 𝜉 (u, y) (6)

Here 𝜉(u, y) is a differential monomial in the input/output
variables u, u̇, ü, ...u, . . ., y, ẏ, ÿ, ...y, . . ., etc. If the values of
u, u̇, ü, ...u,. . ., y, ẏ, ÿ, ...y, . . ., etc., were known at a sufficient
number of time instances 𝑡1, 𝑡2, . . . , 𝑡𝑚, then one could
substitute in values of 𝜓𝑖(u, y) and 𝜉(u, y) at each of these
time instances to obtain a linear system of equations in the
variables 𝑐𝑖(p).

First consider the case of a single input-output equation. If
there are 𝑛 unknown coefficients 𝑐𝑖(p), we obtain the system:𝑐1 (p) 𝜓1 (u (𝑡1) , y (𝑡1)) + ⋅ ⋅ ⋅+ 𝑐𝑛 (p) 𝜓𝑛 (u (𝑡1) , y (𝑡1)) = 𝜉 (u (𝑡1) , y (𝑡1))...𝑐1 (p) 𝜓1 (u (𝑡𝑚) , y (𝑡𝑚)) + ⋅ ⋅ ⋅+ 𝑐𝑛 (p) 𝜓𝑛 (u (𝑡𝑚) , y (𝑡𝑚)) = 𝜉 (u (𝑡𝑚) , y (𝑡𝑚))

(7)

We write this linear system as𝐴𝜅 = 𝑏, where𝐴 is an𝑚 by𝑛 matrix of the form:

( 𝜓1 (u (𝑡1) , y (𝑡1)) ⋅ ⋅ ⋅ 𝜓𝑛 (u (𝑡1) , y (𝑡1))... ... ...𝜓1 (u (𝑡𝑚) , y (𝑡𝑚)) ⋅ ⋅ ⋅ 𝜓𝑛 (u (𝑡𝑚) , y (𝑡𝑚))) (8)

𝜅 is the vector of unknown coefficients [𝑐1(p), . . . , 𝑐𝑛(p)]𝑇, and𝑏 is of the form [𝜉(u(𝑡1), y(𝑡1)), . . . , 𝜉(u(𝑡𝑚), y(𝑡𝑚))]𝑇.
For the case of multiple input-output equations, we get

the following block diagonal system of equations 𝐴𝜅 = 𝑏:
(𝐴1 0 0 . . . 00 𝐴2 0 . . . 0... ... d

... ...0 0 0 . . . 𝐴𝑀

)(𝜅1𝜅2...𝜅𝑀) = (𝑏1𝑏2...𝑏𝑀) (9)

where 𝐴 is a 𝑚 = 𝑚1 + ⋅ ⋅ ⋅ + 𝑚𝑀 by 𝑛 = 𝑛1 + ⋅ ⋅ ⋅ + 𝑛𝑀 matrix.
In the symbolic setting, given a general input function

u and generic initial conditions and parameters, this system𝐴𝜅 = 𝑏 should have a unique solution for 𝜅, due to the
persistence of excitation conditions [26]. In other words, we
assume that the vectors of differential monomials 𝜓1, . . . , 𝜓𝑛
at various time points are linearly independent. This means
the coefficients 𝑐𝑖(p) of the input-output equations can be
uniquely determined in the generic setting [26]. Note that we
have assumed that the parameters are all unknown and we
have not taken any possible algebraic dependencies among
the coefficients into account.

The main idea of this paper is to translate the symbolic
setting to the numerical setting and can be described as
follows. Assume we have perfect data; i.e., we know values
of u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . ., etc., at many time instances𝑡1, . . . , 𝑡𝑚, perfectly. Given a set of candidate models, we
find their associated input-output invariants and then sub-
stitute in our values of u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . ., etc., at
time instances 𝑡1, . . . , 𝑡𝑚, thus setting up the linear system𝐴𝜅 = 𝑏 for each model. With perfect data and assuming
the persistence of excitation conditions mentioned above,
the solution to 𝐴𝜅 = 𝑏 should be unique for the correct
model, but there should, in theory, be no solution for each
of the incorrect models. Thus under ideal circumstances,
one should be able to select the correct model since the
input/output data corresponding to that model should satisfy
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its input-output invariant. Likewise, one should be able to
reject the incorrectmodels since the input/output data should
not satisfy their input-output invariants.

However, with imperfect data, there could be no solution
to 𝐴𝜅 = 𝑏 even for the correct model, and likewise there may
or may not be a solution to 𝐴𝜅 = 𝑏 for an incorrect model.
Thus, with imperfect data, one may be unable to select the
correct model. On the other hand, if there is no solution to𝐴𝜅 = 𝑏 for each of the candidate models, then the goal is to
determine how “badly” each of the models fails and rejects
models accordingly.

A subtle point regarding this approach is that this
model rejection technique works best if the models under
consideration are in the simplest possible form. This means
that, ideally, redundant parameters have been eliminated
from the model so that the input-output equations are as
reduced as possible; i.e., there are not extra columns in 𝐴
when considering the linear system 𝐴𝜅 = 𝑏. Extra columns
generically mean more possible solutions, which can make it
harder for our algorithm to reject incorrectmodels. However,
redundant parameters, and the related notion of parameter
unidentifiability, do not necessarily yield more coefficients in
the input-output equations, as can be seen from the structure
of input-output equations for linear compartment models as
discussed in Section 8.

A related question to model compatibility is that of
structural indistinguishability. Two models are structurally
indistinguishable if for any choice of parameters in the first
model there is a choice of parameters in the second model
that will yield the same dynamics in both models, and vice
versa [27]. One way to test for structural indistinguishability
of twomodels is to find the associated input-output equations
and then equate their coefficient functions and attempt to
solve for one set of parameters in terms of the other set of
parameters, and vice versa [27]. A necessary condition for
models to be structurally indistinguishable is to have input-
output equations with the same differential monomial terms.
Since our approach only considers the structure of the input-
output equations and not the specific coefficient functions, it
is possible to have several different models, all with the same
structure of their input-output equations, to be compatible
using our model compatibility test. Thus, if a given model is
found to be compatible, then any model that is structurally
indistinguishable from thatmodel is also compatible and thus
our approach and structural indistinguishability testing can
be applied in parallel. For more on structural indistinguisha-
bility, see [28–30]. The specific form of the coefficients of the
input-output equations is considered in Section 8.

We now describe criteria to reject models.

4. Linear Solvability

Let 𝐴 ∈ R𝑚×𝑛 and consider the linear system𝐴𝜅 = 𝑏. (10)

Here, we study the solvability of (10) under noisy perturbation
of both𝐴 and 𝑏. Let𝐴 and 𝑏̃ denote the perturbed versions of𝐴 and 𝑏, respectively, and assume that𝐴−𝐴 and 𝑏̃−𝑏 depend

only on 𝐴 and 𝑏̃, respectively (see Section 5). Our goal is to
infer the unsolvability of the unperturbed system (10) from
observation of 𝐴 and 𝑏̃ only.

Our method is based on detecting the rank of an aug-
mented matrix, but first let us introduce some notation. The
singular values of a matrix 𝐴 ∈ R𝑚×𝑛 will be denoted by𝜎1 (𝐴) ≥ ⋅ ⋅ ⋅ ≥ 𝜎ℓ (𝐴) ≥ 𝜎ℓ+1 (𝐴) = ⋅ ⋅ ⋅ = 𝜎𝑛 (𝐴) = 0,ℓ = min (𝑚, 𝑛) . (11)

(Note that we have trivially extended the number of singular
values of 𝐴 from ℓ to 𝑛.) The rank of 𝐴 is written rank(𝐴).
The range of 𝐴 is denoted R(𝐴). Throughout, ‖ ⋅ ‖ refers to
the Euclidean norm.

The basic strategy will be to assume as a null hypothesis
that (10) has a solution, i.e., 𝑏 ∈ R(𝐴), and then to derive
its consequences in terms of 𝐴 and 𝑏̃. If these consequences
are not met, then we conclude by contradiction that (10) is
unsolvable. In other words, we will provide sufficient but not
necessary conditions for (10) to have no solution; i.e., we can
only reject (but not confirm) the null hypothesis.Wewill refer
to this procedure as testing the null hypothesis.

4.1. Preliminaries. We first collect some useful results.

Theorem 3 (Weyl’s inequality). Let 𝐴,𝐴 ∈ R𝑚×𝑛. Then󵄨󵄨󵄨󵄨󵄨𝜎𝑘 (𝐴) − 𝜎𝑘 (𝐴)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, . . . , 𝑛. (12)

Corollary 4. Let 𝐴,𝐴 ∈ R𝑚×𝑛 and assume that rank(𝐴) < 𝑘.
Then 𝜎𝑘 (𝐴) ≤ 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴󵄩󵄩󵄩󵄩󵄩 . (13)

Therefore, if (13) is not satisfied, then rank(𝐴) ≥ 𝑘.
4.2. Augmented Matrix. Assume the null hypothesis. Then𝑏 ∈ R(𝐴), so rank([𝐴, 𝑏]) = rank(𝐴) ≤ min(𝑚, 𝑛).
Therefore, 𝜎𝑛+1([𝐴, 𝑏]) = 0. But we do not have access to[𝐴, 𝑏] and somust consider instead the perturbed augmented
matrix [𝐴, 𝑏̃].
Theorem 5. Under the null hypothesis,𝜎𝑛+1 ([𝐴, 𝑏̃]) ≤ 󵄩󵄩󵄩󵄩󵄩[𝐴 − 𝐴, 𝑏̃ − 𝑏]󵄩󵄩󵄩󵄩󵄩≤ 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑏̃ − 𝑏󵄩󵄩󵄩󵄩󵄩 . (14)

Proof. Apply Corollary 4.

In other words, if (14) does not hold, then (10) has no
solution.

Remark 6. This approach can fail to correctly reject the null
hypothesis if 𝐴 is (numerically) low-rank.

Remark 7. In principle, we should test directly the assertion
that rank([𝐴, 𝑏]) = rank(𝐴). However, we can only establish
lower bounds on the matrix rank (we can only tell if a
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singular value is “too large”), so this is not feasible in practice.
An alternative approach is to consider only numerical ranks
obtained by thresholding. How to choose such a threshold,
however, is not at all clear and can be a very delicate matter
especially if the data have high dynamic range.

Remark 8. The theorem is uninformative if 𝑚 ≤ 𝑛 since then𝜎𝑛+1([𝐴, 𝑏]) = 𝜎𝑛+1([𝐴, 𝑏̃]) = 0 trivially. However, this is not
a significant disadvantage beyond that described above since
if 𝐴 is full-rank, then it must be true that (10) is solvable.

4.3. Example: Perfect Data. As a proof of principle, we first
apply Theorem 5 to a simple linear model. We start by
taking perfect input and output data and then add a specific
amount of noise to the output data and attempt to reject the
incorrect model. In the subsequent sections, we will see how
to interpretTheorem 5 statistically under a particular “noise”
model for the perturbations.

Here, we take data from a linear 3-compartment model,
add noise, and try to reject the general form of the linear
2-compartment model with the same input/output compart-
ments. Linear compartment models are defined in Section 8.
In practice, one would like to compare models with the
same input and output compartments, as the number of
compartments involved may not be known, but the injection
and measurement compartments would be known. Thus,
in this particular example, we are assuming the linear 3-
compartment model is the “true model” and want to reject
a competing model, but as our method concerns model
rejection and not model selection, this notion of a “true
model” is not a requirement for our method to work.

Example 9. Let our model be a 3-compartment model of the
following form:

(𝑥̇1𝑥̇2𝑥̇3) = (−2 1 01 −3 10 1 −2)(𝑥1𝑥2𝑥3)
+ (2𝑒−3𝑡 + 12𝑒−5𝑡00 ) ,

𝑦 = 𝑥1𝑥1 (0) = 1,𝑥2 (0) = 7,𝑥3 (0) = 9

(15)

Here we have an input to the first compartment of the form𝑢1 = 2𝑒−3𝑡 + 12𝑒−5𝑡 and the first compartment is measured,
so that 𝑦 = 𝑥1 represents the output. Note that we have
chosen a smooth, persistently exciting input function [26] so
that derivatives can be taken and the coefficients of the input-
output equation can be uniquely determined, as required.The

solution to this system of ODEs can be easily found of the
form:

(𝑥1𝑥2𝑥3) = 7(111)𝑒−𝑡 + (−101 )𝑒−2𝑡 + ( 1−21 )𝑒−4𝑡
+ (−1−11 )𝑒−3𝑡 + (−53−1)𝑒−5𝑡 (16)

so that 𝑦 = 7𝑒−𝑡 − 𝑒−2𝑡 + 𝑒−4𝑡 − 𝑒−3𝑡 − 5𝑒−5𝑡.
The input-output equation for a 3-compartment model

with a single input/output to the first compartment has the
form:

...𝑦 + 𝑐1 ̈𝑦 + 𝑐2 ̇𝑦 + 𝑐3𝑦 = 𝑢̈1 + 𝑐4𝑢̇1 + 𝑐5𝑢1 (17)

where 𝑐1, 𝑐2, 𝑐3 are the coefficients of the characteristic poly-
nomial of the matrix 𝐴 and 𝑐4, 𝑐5 are the coefficients of the
characteristic polynomial of thematrix𝐴1 which has the first
row and first column of 𝐴 removed [31].

We now substitute values of 𝑢1, 𝑢̇1, 𝑢̈1, 𝑦, ̇𝑦, ̈𝑦, ...𝑦 at time
instances 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 into our input-output
equation and solve the resulting linear systemof equations for𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5. We get that 𝑐1 = 7, 𝑐2 = 14, 𝑐3 = 8, 𝑐4 = 5, 𝑐5 =5, which agrees with the coefficients of the characteristic
polynomials of 𝐴 and 𝐴1.

Wenow attempt to reject the 2-compartmentmodel using
3-compartment model data. We find the input-output equa-
tions for a 2-compartment model with a single input/output
to the first compartment, which has the form:̈𝑦 + 𝐶1 ̇𝑦 + 𝐶2𝑦 = 𝑢̇1 + 𝐶3𝑢1 (18)

where again 𝐶1, 𝐶2 are the coefficients of the characteristic
polynomial of the matrix 𝐴 and 𝐶3 is the coefficient of the
characteristic polynomial of thematrix𝐴1 which has the first
row and first column of 𝐴 removed.

We substitute values of 𝑢1, 𝑢̇1, 𝑦, ̇𝑦, ̈𝑦 at time instances𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 into our input-output equation and
attempt to solve the resulting linear system of equations for𝐶1, 𝐶2, 𝐶3.

The singular values for the matrix 𝐴 with the substituted
values of 𝑢1, 𝑦, ̇𝑦 at time instances 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 are24.8133, 7.64917, 0.0626589 (19)

The singular values of the matrix [𝐴, 𝑏] with the sub-
stituted values of 𝑢1, 𝑢̇1, 𝑦, ̇𝑦, ̈𝑦 at time instances 𝑡 =0, 0.2, 0.4, 0.6, 0.8, 1 are57.174, 7.69381, 0.326204, 0.00596031 (20)

Since the smallest singular value is greater than zero (or order
machine precision), it is evident that the 2-compartment
model can be rejected.

We now add noise to our matrix 𝐴 in the following way.
To each entry ̇𝑦, and 𝑦, we add 𝜖𝑘𝑖𝑗 where 𝑘𝑖𝑗 is a random
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real number between 0 and 1, and 𝜖 = 0.001. Then the noisy
matrix 𝐴 has the following singular values:24.8134, 7.64949, 0.0627827 (21)

We add noise to our vector 𝑏 in a similar way. To each
entry 𝑢̇1 − ̈𝑦, we add 𝜖𝑘𝑖𝑗 where 𝑘𝑖𝑗 is again a random real
number between 0 and 1. Then the noisy matrix [𝐴, 𝑏̃] has
the following singular values:57.1747, 7.69409, 0.326141, 0.00579117 (22)

To determine whether the noisy data are compatible, we
need to compute ‖[𝐴 − 𝐴, 𝑏̃ − 𝑏]‖. Due to the specific noise
model chosen, this can be bounded independently of the
true unobservable data [𝐴, 𝑏] as 𝜖‖1‖ = 0.00489898, where
1 is a matrix of all ones of the appropriate size (the actual
norm is 0.00207018). Since this norm is less than the smallest
singular value 0.00579117, we can reject this model. Thus,
using noisy 3-compartment model data, we are able to reject
the 2-compartment model.

5. Statistical Inference

We now consider the statistical inference of the solvability of
(10). First, we need a noise model.

5.1. Noise Model. If the perturbations ‖𝐴 − 𝐴‖ and ‖𝑏̃ − 𝑏‖
are bounded, e.g., ‖𝐴 − 𝐴‖ ≤ 𝜖‖𝐴‖ and ‖𝑏̃ − 𝑏‖ ≤ 𝜖‖𝑏̃‖
for some 𝜖 > 0 (representing a relative accuracy of 𝜖 in the
“measurements” 𝐴 and 𝑏̃), then Theorem 5 can be used at
once. However, it is customary to model such perturbations
as normal random variables, which are not bounded. Here,
we will assume a noise model of the form𝐴 − 𝐴 = 𝐶𝐴 ∘ 𝑍,𝑏̃ − 𝑏 = 𝐶𝑏̃ ∘ 𝑍, (23)

where 𝐶𝐴 is a (computable) matrix that depends only on𝐴 and similarly with 𝐶𝑏̃, 𝐴 ∘ 𝐵 denotes the Hadamard
(entrywise) matrix product (𝐴 ∘ 𝐵)𝑖𝑗 = 𝐴 𝑖𝑗𝐵𝑖𝑗, and 𝑍 is a
matrix-valued random variable whose entries 𝑍𝑖𝑗 ∼ N(0, 1)
are independent standard normals.

In our application of interest, the entries of𝐶𝐴 depend on
those of 𝐴 as follows. Let 𝐴 𝑖𝑗 = 𝜙𝑖𝑗(V) for some input vector
V, but suppose that we can only observe the “noisy” vector
Ṽ = (1 + 𝜖𝑍) ∘ V. Then the corresponding perturbed matrix
entries are𝐴 𝑖𝑗 = 𝜙𝑖𝑗 (Ṽ)= 𝜙𝑖𝑗 (V) + 𝜖∑

𝑘

(∇𝜙𝑖𝑗 (V))𝑘 V𝑘𝑍𝑘 + 𝑂 (𝜖2) ,𝑍𝑘 ∼ N (0, 1) . (24)

By the additivity formula∑
𝑘

𝑎𝑘𝑍𝑘 = √∑
𝑘

𝑎2
𝑘
𝑍 = ‖𝑎‖𝑍 (25)

for standard Gaussians,∑
𝑘

(∇𝜙𝑖𝑗 (V))𝑘 V𝑘𝑍𝑘 = ∑
𝑘

(∇𝜙𝑖𝑗 (V) ∘ V)𝑘 𝑍𝑘= 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (V) ∘ V󵄩󵄩󵄩󵄩󵄩 𝑍. (26)

Therefore, 𝐴 𝑖𝑗 = 𝐴 𝑖𝑗 + 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (V) ∘ V󵄩󵄩󵄩󵄩󵄩 𝑍 + 𝑂 (𝜖2)= 𝐴 𝑖𝑗 + 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (Ṽ) ∘ Ṽ󵄩󵄩󵄩󵄩󵄩 𝑍 + 𝑂 (𝜖2) , (27)

so, to first order in 𝜖,(𝐶𝐴)𝑖𝑗 = 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (Ṽ) ∘ Ṽ󵄩󵄩󵄩󵄩󵄩 . (28)

An analogous derivation holds for 𝐶𝑏̃.
The basic strategy is now as follows. Let 𝜏 be a test statistic,

i.e., 𝜎𝑛+1([𝐴, 𝑏̃]) in Section 4.2. Then since𝜏𝜔 ≤ (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩)𝜔 , (29)

where we havemade explicit the dependence of both sides on
the same underlying randommechanism𝜔, the (cumulative)
distribution function of 𝜏 must dominate that of ‖𝐶𝐴 ∘ 𝑍‖ +‖𝐶𝑏̃ ∘ 𝑍‖, i.e.,

Pr (𝜏 ≤ V) ≥ Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≤ V) . (30)

Thus,

Pr (𝜏 ≥ V) ≤ Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V) (31a)= ∫∞
0

Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 = 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡 (31b)= ∫V

0
Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 = 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡+ ∫∞
V

Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 = 𝑡) 𝑑𝑡 (31c)

≤ ∫V

0
Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡+ Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V) . (31d)

Using (31a)–(31d), we can associate a 𝑝-value to any
given realization of 𝜏 by referencing upper tail bounds for
quantities of the form ‖𝐶 ∘ 𝑍‖. Recall that 𝜏 = 0 under the
null hypothesis. In a classical statistical hypothesis testing
framework, we may therefore reject the null hypothesis if
(31d) is at most 𝛼, where 𝛼 is the desired significance level
(e.g., 𝛼 = 0.05).
5.2. Hadamard Tail Bounds. We now turn to bounding
Pr(‖𝐶 ∘ 𝑍‖ ≥ V), where we will assume that 𝐶,𝑍 ∈ R𝑚×𝑛.
This can be done in several ways.

One easy way is to recognize that‖𝐶 ∘ 𝑍‖ ≤ ‖𝐶 ∘ 𝑍‖𝐹 ≤ ‖𝐶‖𝐹 ‖𝑍‖𝐹 , (32)
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where ‖ ⋅ ‖𝐹 is the Frobenius norm, so

Pr (‖𝐶 ∘ 𝑍‖ ≥ V) ≤ Pr (‖𝐶 ∘ 𝑍‖𝐹 ≥ V)≤ Pr(‖𝑍‖𝐹 ≥ V‖𝐶‖𝐹) . (33)

But ‖𝑍‖𝐹 ∼ 𝜒𝑚𝑛 has a chi distribution with 𝑚𝑛 degrees of
freedom.Therefore,

Pr(‖𝑍‖𝐹 ≥ V‖𝐶‖𝐹) = Pr(𝑉 ≥ V‖𝐶‖𝐹) , 𝑉 ∼ 𝜒𝑚𝑛. (34)

However, each inequality in (32) can be quite loose; a slightly
better approach is to use the inequality [32]‖𝐶 ∘ 𝑍‖ ≤ ‖ min(max

𝑖

󵄩󵄩󵄩󵄩𝐶𝑖,:󵄩󵄩󵄩󵄩 ,max
𝑗

󵄩󵄩󵄩󵄩󵄩𝐶:,𝑗
󵄩󵄩󵄩󵄩󵄩) ‖𝑍‖ , (35)

where 𝐶𝑖,: and 𝐶:,𝑗 denote the 𝑖th row and 𝑗th column,
respectively, of 𝐶. The ‖𝑍‖ term can then be handled using
a chi distribution via ‖𝑍‖ ≤ ‖𝑍‖𝐹 as above or directly
using a concentration bound (see below). Variations on this
undoubtedly exist.

Here, we will appeal to a result by Tropp [33]. The
following is from Section 4.3 in [33].

Theorem 10. Let 𝐶,𝑍 ∈ R𝑚×𝑛, where each 𝑍𝑖𝑗 ∼ N(0, 1).
Then for any V ≥ 0,
Pr (‖𝐶 ∘ 𝑍‖ ≥ V) ≤ (𝑚 + 𝑛) exp(− V22𝜎2) ,

𝜎2 = max(max
𝑖

󵄩󵄩󵄩󵄩𝐶𝑖,:󵄩󵄩󵄩󵄩2 ,max
𝑗

󵄩󵄩󵄩󵄩󵄩𝐶:,𝑗
󵄩󵄩󵄩󵄩󵄩2) . (36)

5.3. Test Statistic Tail Bounds. The bound (31d) for Pr(𝜏 ≥ V)
can then be computed as follows. Let𝑃1 (V)= ∫V

0
Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡,𝑃2 (V) = Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V) (37)

so that Pr(𝜏 ≥ V) ≤ 𝑃1(V) + 𝑃2(V). Then byTheorem 10,𝑃1 (V)≤ 𝑚 (𝑚 + 𝑛)∫V

0
exp[−12 ( 𝑡2𝜎2𝐴 + (V − 𝑡)2𝜎2

𝑏

)]𝑑𝑡, (38)

where𝜎2𝐴 and𝜎2𝑏 are the “variance” parameters in the theorem
for 𝐶𝐴 and 𝐶𝑏̃, respectively. This simplifies to𝑃1 (V) ≤ 𝑚 (𝑚 + 𝑛) exp[−12 ( V2𝜎2𝐴 + 𝜎2

𝑏

)]
⋅ ∫V

0
exp[−12 (𝜎2𝐴 + 𝜎2𝑏𝜎2𝐴𝜎2𝑏 )(𝑡 − 𝜎2𝐴𝜎2𝐴 + 𝜎2

𝑏

V)2]𝑑𝑡 (39)

on completing the square. Now set𝜎2 = 𝜎2𝐴𝜎2𝑏𝜎2𝐴 + 𝜎2
𝑏

,
𝛼 = 𝜎2𝐴𝜎2𝐴 + 𝜎2

𝑏

(40)

so that the integral becomes∫V

0
exp[−12 (𝜎2𝐴 + 𝜎2𝑏𝜎2𝐴𝜎2𝑏 )(𝑡 − 𝜎2𝐴𝜎2𝐴 + 𝜎2

𝑏

V)2]𝑑𝑡
= ∫V

0
exp[−(𝑡 − 𝛼V)22𝜎2 ]𝑑𝑡. (41)

The variable substitution 𝑢 = (𝑡 − 𝛼V)/𝜎 then gives∫V

0
exp[−(𝑡 − 𝛼V)22𝜎2 ]𝑑𝑡 = 𝜎∫(1−𝛼)V/𝜎

−𝛼V/𝜎
𝑒−𝑢2/2𝑑𝑢

= √2𝜋𝜎 [Φ((1 − 𝛼) V𝜎 ) − Φ(−𝛼V𝜎 )] , (42)

where Φ (V) = 1√2𝜋 ∫V

−∞
𝑒−𝑡2/2𝑑𝑡 (43)

is the standard normal distribution function. Thus,𝑃1 (V) ≤ √2𝜋𝜎𝑚 (𝑚 + 𝑛)⋅ [Φ((1 − 𝛼) V𝜎 ) − Φ(−𝛼V𝜎 )]⋅ exp[−12 ( V2𝜎2𝐴 + 𝜎2𝐵)] . (44)

A similar analysis yields𝑃2 (V) ≤ (𝑚 + 𝑛) exp(− V22𝜎2𝐴) . (45)

Equations (44) and (45) together comprise the probability
bound on the null hypothesis that we will use hereafter.

6. Gaussian Processes to Estimate Derivatives

We next present a method for estimating higher order
derivatives and the estimation error using Gaussian Process
Regression and then apply the input-output invariantmethod
to both linear and nonlinear models in the subsequent
sections.

A Gaussian process (GP) is a stochastic process 𝑊(𝑡) ∼
N(𝜇(𝑡), Σ(𝑡, 𝑡󸀠)), where 𝜇(𝑡) is a mean function and Σ(𝑡, 𝑡󸀠)
a covariance function. GPs are often used for regres-
sion/prediction as follows.

Suppose that there is an underlying deterministic func-
tion 𝑤(𝑡) that we can only observe with some measurement
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noise as 𝑤(𝑡) = 𝑤(𝑡) + 𝜖(𝑡), where 𝜖(𝑡) ∼ N(0, 𝜎2(𝑡)𝛿(𝑡, 𝑡󸀠))
for 𝛿 (𝑡, 𝑡󸀠) = {1 if 𝑡 = 𝑡󸀠0 if 𝑡 ̸= 𝑡󸀠 (46)

the Dirac delta. We consider the problem of finding 𝑤(𝑡)
in a Bayesian setting by assuming it to be a GP with prior
mean and covariance functions 𝜇prior and Σprior, respectively.
Then the joint distribution of 𝑤(t) = [𝑤(𝑡1), . . . , 𝑤(𝑡𝑝)]⊤
at the observation points t = [𝑡1, . . . , 𝑡𝑝]⊤ and 𝑤(s) =[𝑤(𝑠1), . . . , 𝑤(𝑠𝑞)]⊤ at the prediction points s = [𝑠1, . . . , 𝑠𝑞]⊤
is [𝑤 (t)𝑤 (s)] ∼ N([𝜇prior (t)𝜇prior (s)] ,

[Σprior (t, t) + 𝜎2 (t) 𝐼 Σ⊤prior (s, t)Σprior (s, t) Σprior (s, s) ]) (47)

The conditional distribution of𝑤(s) given 𝑤(t) = 𝑤(t) is also
Gaussian: 𝑤 (s) | (𝑤 (t) = 𝑤 (t)) ∼ N (𝜇post, Σpost) , (48)

where𝜇post = 𝜇prior (s) + Σprior (s, t) (Σprior (t, t) + 𝜎2 (t) 𝐼)−1⋅ (𝑤 (t) − 𝜇prior (t)) ,Σpost = Σprior (s, s) − Σprior (s, t)⋅ (Σprior (t, t) + 𝜎2 (t) 𝐼)−1 )Σ⊤prior (s, t)
(49)

are the posterior mean and covariance, respectively. This
allows us to infer 𝑤(s) on the basis of observing 𝑤(t).
The diagonal entries of Σpost are the posterior variances
and quantify the uncertainty associated with this inference
procedure. In particular, the square roots of these variances
give us estimates on the 𝜖𝑤 term in the assumed noise model𝑤 = (1 + 𝜖𝑍) ∘ 𝑤 in Section 5.

6.1. Estimating Derivatives. Equation (48) provides an esti-
mate for the function values 𝑤(s). What if we want to
estimate its derivatives? Let cov(𝑤(𝑡), 𝑤(𝑡󸀠)) = 𝑘(𝑡, 𝑡󸀠) for
some covariance function 𝑘. Then cov(𝑤(𝑚)(𝑡), 𝑤(𝑛)(𝑡󸀠)) =𝜕𝑚𝑡 𝜕𝑛𝑡󸀠𝑘(𝑡, 𝑡󸀠) by linearity of differentiation. Thus,

[[[[[[[[[[
𝑤 (t)𝑤 (s)𝑤󸀠 (s)...𝑤(𝑛) (s)

]]]]]]]]]]
∼ N

((((
(

[[[[[[[[[[
𝜇prior (t)𝜇prior (s)𝜇(1)prior (s)...𝜇(𝑛)prior (s)

]]]]]]]]]]
,[[[[[[[[[[[

Σprior (t, t) + 𝜎2 (t) 𝐼 Σ⊤prior (s, t) Σ(1,0),⊤prior (s, t) ⋅ ⋅ ⋅ Σ(𝑛,0),⊤prior (s, t)Σprior (s, t) Σprior (s, s) Σ(1,0),⊤prior (s, s) ⋅ ⋅ ⋅ Σ(𝑛,0),⊤prior (s, s)Σ(1,0)prior (s, t) Σ(1,0)prior (s, s) Σ(1,1)prior (s, s) ⋅ ⋅ ⋅ Σ(𝑛,1),⊤prior (s, s)... ... ... d
...Σ(𝑛,0)prior (s, t) Σ(𝑛,0)prior (s, s) Σ(𝑛,1)prior (s, s) ⋅ ⋅ ⋅ Σ(𝑛,𝑛) (s, s)

]]]]]]]]]]]
))))
)

, (50)

where 𝜇(𝑖)prior(𝑡) is the prior mean for 𝑤(𝑖)(𝑡) and Σ(𝑖,𝑗)prior(𝑡, 𝑡󸀠) =𝜕𝑖𝑡𝜕𝑗𝑡󸀠Σprior(𝑡, 𝑡󸀠). This joint distribution is exactly of the form
(47). An analogous application of (48) then yields the poste-
rior estimate of 𝑤(𝑖)(s) | (𝑤(t) = 𝑤(t)) for all 𝑖 = 0, 1, . . . , 𝑛.

Alternatively, if we are interested only in the posterior
variances of each𝑤(𝑖)(s), then it suffices to consider each 2×2
block independently:

[ 𝑤 (t)𝑤(𝑖) (s)] ∼ N([ 𝜇prior (t)𝜇(𝑖)prior (s) ] ,
[[Σprior (t, t) + 𝜎2 (t) 𝐼 Σ(𝑖,0),⊤prior (s, t)Σ(𝑖,0)prior (s, t) Σ(𝑖,𝑖)prior (s, s) ]]) . (51)

The cost of computing (Σprior(t, t) + 𝜎2(t)𝐼)−1 can clearly be
amortized over all 𝑖.

6.2. Formulae for Squared Exponential Covariance Functions.
We now consider the specific case of the squared exponential
(SE) covariance function

𝑘 (𝑡, 𝑡󸀠) = 𝜃2 exp[[−(𝑡 − 𝑡󸀠)22ℓ2 ]] , (52)

where 𝜃2 is the signal variance and ℓ is a length scale. The SE
function is one of the most widely used covariance functions
in practice. Its derivatives can be expressed in terms of the
(probabilists’) Hermite polynomials

𝐻𝑛 (𝑤) = (−1)𝑛 𝑒𝑤2/2 𝑑𝑛𝑑𝑤𝑛
𝑒−𝑤2/2 (53)

(these are also sometimes denoted 𝐻𝑒𝑛(𝑤)). The first few
Hermite polynomials are 𝐻0(𝑤) = 1, 𝐻1(𝑤) = 𝑤, and𝐻2(𝑤) = 𝑤2 − 1.
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We need to compute the derivatives 𝜕𝑚𝑡 𝜕𝑛𝑡󸀠𝑘(𝑡, 𝑡󸀠). Let V =(𝑡 − 𝑡󸀠)/ℓ so that 𝑘(𝑡, 𝑡󸀠) = 𝑘(V) = 𝜃2𝑒−V2/2. Then 𝜕𝑚𝑡 𝑓(V) =(1/ℓ)𝑚𝑓(𝑚)(V) and 𝜕𝑛𝑡󸀠𝑓(V) = (−1/ℓ)𝑛𝑓(𝑛)(V). Therefore,𝜕𝑚𝜕𝑡𝑚 𝜕𝑛𝜕𝑡󸀠𝑛 𝑘 (𝑡, 𝑡󸀠) = (−1)𝑛ℓ𝑚+𝑛 𝑘(𝑚+𝑛) (V)= (−1)𝑚ℓ𝑚+𝑛 𝐻𝑚+𝑛 (V) 𝑘 (V)= (−1)𝑚ℓ𝑚+𝑛 𝐻𝑚+𝑛 (𝑡 − 𝑡󸀠ℓ ) 𝑘 (𝑡, 𝑡󸀠) . (54)

The GP regression requires us to have the values of the
hyperparameters 𝜎2, 𝜃2, and ℓ. In practice, however, these
are hardly ever known. In the examples below, we deal with
this by estimating the hyperparameters from the data by
maximizing the likelihood. We do this by using a nonlinear
conjugate gradient algorithm, which can be quite sensitive to
the initial starting point, so we initialize multiple runs over
a small grid in hyperparameter space and return the best
estimate found. This increases the quality of the estimated
hyperparameters but can still sometimes fail.

7. Results

We showcase our method on competing models: linear
compartment models (2 and 3 species), Lotka-Volterra mod-
els (2 and 3 species) and Lorenz. We compute the input-
output invariants of the Lotka-Volterra and Lorenz using
RosenfeldGroebner. The method to compute the linear
compartment input-output invariants is presented in the
following section. We simulate each of these models to
generate time-course data, add varying levels of noise, and
estimate the necessary higher order derivatives using GP
regression. Using the estimated GP regression data, we test
each of the models using the input-output invariant method
on other models.

Example 11. The two species Lotka-Volterra model is𝑥̇1 = 𝑝1𝑥1 − 𝑝2𝑥1𝑥2,𝑥̇2 = −𝑝3𝑥2 + 𝑝4𝑥1𝑥2, (55)

where 𝑥1 and 𝑥2 are variables and 𝑝1, 𝑝2, 𝑝3, 𝑝4 are parame-
ters.We assumeonly𝑥1 is observable andperformdifferential
elimination and obtain our input-output invariant in terms of
only 𝑦 = 𝑥1(𝑡):𝑝4 ̇𝑦𝑦2 − 𝑝3 ̇𝑦𝑦 − 𝑝1𝑝4𝑦3 + 𝑝1𝑝3𝑦2 = ̈𝑦𝑦 − ̇𝑦2. (56)

Example 12. By including an additional variable 𝑧, the three
species Lotka-Volterra model is𝑥̇1 = 𝑝1𝑥1 − 𝑝2𝑥1𝑥2,𝑥̇2 = −𝑝3𝑥2 + 𝑝4𝑥1𝑥2 − 𝑝5𝑥2𝑥3,𝑥̇3 = −𝑝6𝑥3 + 𝑝7𝑥2𝑥3, (57)

assuming only 𝑦 = 𝑥1 is observable. After differential
elimination, the input-output invariant is(𝑝21𝑝4𝑝6 − 𝑝31𝑝4𝑝7𝑝2 )𝑦5 + (𝑝31𝑝3𝑝7𝑝2 − 𝑝21𝑝3𝑝6)𝑦4

+ (3𝑝21𝑝4𝑝7𝑝2 + 𝑝21𝑝4 + 2𝑝1𝑝4𝑝6) ̇𝑦𝑦4
+ (2𝑝1𝑝3𝑝6 − 3𝑝21𝑝3𝑝7𝑝2 ) ̇𝑦𝑦3
+ (𝑝4𝑝6 − 2𝑝1𝑝4 − 3𝑝1𝑝4𝑝7𝑝2 ) ̇𝑦2𝑦3
+ (𝑝21𝑝7 + 3𝑝1𝑝3𝑝7𝑝2 − 𝑝3𝑝6 − 𝑝1𝑝6) ̇𝑦2𝑦2
+ (𝑝4𝑝7𝑝2 + 𝑝4) ̇𝑦3𝑦2
+ (2𝑝1 + 𝑝6 − 2𝑝1𝑝7 + 𝑝3𝑝7𝑝2 ) ̇𝑦3𝑦 + 𝑝7𝑝2 ̇𝑦4
+ (𝑝1𝑝6 − 𝑝21𝑝7𝑝2 ) ̈𝑦𝑦3
+ (2𝑝1𝑝7𝑝2 − 3𝑝1 − 𝑝6) ̈𝑦 ̇𝑦𝑦2 − 𝑝7𝑝2 ̈𝑦 ̇𝑦2𝑦+ 𝑝1 ...𝑦𝑦3 = − ̈𝑦2𝑦2 + ...𝑦 ̇𝑦𝑦2 − ̈𝑦 ̇𝑦2𝑦 + ̇𝑦4.

(58)

Example 13. Another three species model, the Lorenz model,
is described by the system of equations:𝑥̇1 = 𝑝1 (𝑥2 − 𝑥1) ,𝑥̇2 = 𝑥1 (𝑝2 − 𝑥3) − 𝑥2,𝑥̇3 = 𝑥1𝑥2 − 𝑝3𝑥3, (59)

We assume only 𝑦 = 𝑥1 is observable, perform differential
elimination, and obtain the following invariant:− (𝑝1 + 𝑝3) ̈𝑦𝑦 + 𝑝1 ̇𝑦2 − (𝑝1𝑝3 + 𝑝3) ̇𝑦𝑦 − 𝑝1𝑦4+ (𝑝1𝑝2𝑝3 − 𝑝1𝑝3) 𝑦2= ...𝑦𝑦 − ̈𝑦 ̇𝑦 + ̈𝑦𝑦 − ̇𝑦2 + ̇𝑦𝑦3. (60)

Example 14. A linear 2-compartment model without input
can be written as 𝑥̇1 = 𝑝11𝑥1 + 𝑝12𝑥2,𝑥̇2 = 𝑝21𝑥1 + 𝑝22𝑥2, (61)

where 𝑥1 and 𝑥2 are variables and 𝑝11, 𝑝12, 𝑝21, 𝑝22 are
parameters. We assume only 𝑥1 is observable and perform
differential elimination and obtain our input-output invariant
in terms of only 𝑦 = 𝑥1(𝑡):̈𝑦 − (𝑝11 + 𝑝22) ̇𝑦 + (𝑝11𝑝22 − 𝑝12𝑝21) 𝑦 = 0 (62)
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Example 15. A linear 3-compartment model without input is𝑥̇1 = 𝑝11𝑥1 + 𝑝12𝑥2 + 𝑝13𝑥3,𝑥̇2 = 𝑝21𝑥1 + 𝑝22𝑥2 + 𝑝23𝑥3,𝑥̇3 = 𝑝31𝑥1 + 𝑝32𝑥2 + 𝑝33𝑥3, (63)

where 𝑥1, 𝑥2, 𝑥3 are variables and 𝑝11.𝑝12, 𝑝13, 𝑝21, 𝑝22,𝑝23, 𝑝31, 𝑝32, 𝑝33 are parameters. We assume only 𝑥1 is
observable and perform differential elimination and obtain
our input-output invariant in terms of only 𝑦 = 𝑥1(𝑡):

...𝑦 − (𝑝11 + 𝑝22 + 𝑝33) ̈𝑦 + (𝑝12𝑝21 − 𝑝11𝑝22 + 𝑝13𝑝31+ 𝑝23𝑝32 − 𝑝11𝑝33 − 𝑝22𝑝33) ̈𝑦 − (−𝑝13𝑝22𝑝31+ 𝑝12𝑝23𝑝31 + 𝑝13𝑝21𝑝32 − 𝑝11𝑝23𝑝32 − 𝑝12𝑝21𝑝33+ 𝑝11𝑝22𝑝33) 𝑦 = 0 (64)

By assuming 𝑦 = 𝑥1 in Examples 6.1–6.5 representing
the same observable variable, we apply our method to data
simulated from each model and perform model comparison.
The models are simulated and 100 time points are obtained
for the variable 𝑥 in each model. We add different levels of
Gaussian noise to the simulated data and then estimate the
higher order derivatives from the data. Accurate estimation of
the derivatives was not always possible. For example, during
our study we found that for some parameters of the Lotka-
Volterra three species model, e.g., 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7 =[1.24; 1.68; 3.26; 0.38; 1.50; 0.15; 1.14], the data could not ade-
quately fit with a GP, as indicated by a small likelihood.
Furthermore, even when a good fit is achieved, the derivative
estimates themselves could be poor as reflected in high pos-
terior variances. This is a notoriously difficult problem and
we offer only some pragmatic guidance here. In particular,
we err on the side of being overly conservative by keeping
only “good” time points defined as follows. Let 𝜎𝑘post(𝑡) be the
posterior standard deviation of the estimate of 𝑦(𝑘)(𝑡). Then a
time point 𝑡𝑖 is considered good only if𝜎𝑘post (𝑡𝑖) ≤ mean {𝜎𝑘post (𝑡𝑗)} + std {𝜎𝑘post (𝑡𝑗)} (65)

for all 𝑘, where mean(⋅) and std(⋅) give the mean and
standard deviations, respectively, of a set. In this way, we
adaptively filter out potentially problematic inputs to the
ensuing model rejection framework. Note that filtering out
data is equivalent to removing constraints so that we can
only decrease the discriminatory power, i.e., models that are
flagged as incompatible after data filtering would have been
incompatible as well without filtering.

Once the data are obtained and derivative data are
estimated through the GP regression, each model data set
is tested against the other input-output invariants. Results
are shown in Figure 1, which gives a probability bound that
the data are compatible with a given model (i.e., ∼ 0 means
model rejected) at a variety of noise levels. We find that we
can reject the three species Lotka-Volterra model and Lorenz
model for data simulated from the Lotka-Volterra two species;
however, both linear compartment models are compatible.

For data from the three species Lotka-Volterra model, the
linear compartment models and two species Lotka-Volterra
can be rejected until the noise increases and then the method
can no longer reject any models. Finally data generated from
the Lorenz model can only reject the two species linear
compartment and two species Lotka-Volterra model.

8. Other Considerations: Known Parameter
Values and Algebraic Dependencies

We have demonstrated our model discrimination algorithm
on various models. In this section, we consider some other
theoretical points regarding input-output invariants.

As mentioned earlier, we have assumed that the param-
eters are all unknown and we have not taken any possible
algebraic dependencies among the coefficients into account.
This latter point is another reason our algorithm only con-
cerns model rejection and not model selection. Thus, each
unknown coefficient is essentially treated as an independent
unknown variable in our linear system of equations. How-
ever, there may be instances where we would like to consider
incorporating this additional information.

To analyze the effects of incorporating known parameter
values and algebraic dependencies, we will examine a par-
ticularly nice class of models, linear compartment models,
whose input-output equations can be found using linear
algebra techniques [31]; i.e., computation of the input-output
equations does not rely on more computationally intensive
approaches such as RosenfeldGroebner and Gröbner bases.
Since we will now be considering the explicit form of the
coefficients of the input-output equations, we describe the
set-up of linear compartment models below.

Let 𝐺 = (𝑉, 𝐸) be a directed graph with vertex set 𝑉
and set of directed edges 𝐸. Each vertex 𝑖 ∈ 𝑉 corresponds
to a compartment in our model and each edge 𝑗 󳨀→𝑖 corresponds to a direct flow of material from the 𝑗th
compartment to the 𝑖th compartment. Let 𝐼𝑛, 𝑂𝑢𝑡, 𝐿𝑒𝑎𝑘 ⊆ 𝑉
be three sets of compartments: the set of input compartments,
output compartments, and leak compartments, respectively.
To each edge 𝑗 󳨀→ 𝑖 we associate an independent parameter𝑝𝑖𝑗, the rate of flow from compartment 𝑗 to compartment 𝑖.
To each leak node 𝑖 ∈ 𝐿𝑒𝑎𝑘, we associate an independent
parameter 𝑝0𝑖, the rate of flow from compartment 𝑖 leaving
the system.

To such a graph 𝐺 and set of leaks 𝐿𝑒𝑎𝑘 we associate the
matrix 𝐴 in the following way:𝐴 𝑖𝑗

= {{{{{{{{{{{{{{{{{
−𝑝0𝑖 − ∑

𝑘:𝑖󳨀→𝑘∈𝐸

𝑝𝑘𝑖 if 𝑖 = 𝑗 and 𝑖 ∈ 𝐿𝑒𝑎𝑘− ∑
𝑘:𝑖󳨀→𝑘∈𝐸

𝑝𝑘𝑖 if 𝑖 = 𝑗 and 𝑖 ∉ 𝐿𝑒𝑎𝑘𝑝𝑖𝑗 if 𝑗 󳨀→ 𝑖 is an edge of 𝐺0 otherwise

(66)

Then we construct a system of linear ODEs with inputs and
outputs associated with the quadruple (𝐺, 𝐼𝑛, 𝑂𝑢𝑡, 𝐿𝑒𝑎𝑘) as
follows:
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(a) Data from Lotka-Volterra two species
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(b) Data from Lotka-Volterra three species
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(c) Data from Lorenz model
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(d) Data from linear compartment three species

Figure 1: Data simulated frommodel specified and differential algebraic statistics model rejection applied to five model invariants. Gaussian
noise is added to data in factors of 10 at levels shown in the figure. (a) Data simulated from two species Lotka-Volterra model with parameter
values 𝑝1, 𝑝2, 𝑝3, 𝑝4 = [1.24; 1.68; 3.26; 0.38] and initial condition [10, 1]. (b) Data simulated from three species Lotka-Volterra model with
parameter values 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7 = [0.178; 0.12; 0.99; 0.17; 0.03; 0.56; 0.88] and initial condition [2, 1, 1]. (c) Data simulated from the
Lorenz model with parameter values 𝑝1, 𝑝2, 𝑝3 = [3.5, .3, 2.8] and initial condition [2, 1, 1]. (d) Data simulated from the linear compartment
three species model with parameter values 𝑝11, 𝑝12, 𝑝13, 𝑝21, 𝑝22, 𝑝23, 𝑝31, 𝑝32, 𝑝33 = [−2, 1, 0, 1, −3, 1, 0, 1, −2] and initial condition [3, 1, 5].

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝑢 (𝑡)𝑦𝑖 (𝑡) = 𝑥𝑖 (𝑡) for 𝑖 ∈ 𝑂𝑢𝑡 (67)

where 𝑢𝑖(𝑡) ≡ 0 for 𝑖 ∉ 𝐼𝑛. The coordinate functions 𝑥𝑖(𝑡) are
the state variables, the functions𝑦𝑖(𝑡) are the output variables,
and the nonzero functions 𝑢𝑖(𝑡) are the inputs. The resulting
model is called a linear compartment model.

In [31], an explicit formula for the input-output equations
for linearmodels was derived. In particular, it was shown that

all linear 𝑛-compartment models corresponding to strongly
connected graphs with at least one leak and having the same
input and output compartments will have the same differ-
ential polynomial form of the input-output equations. For
example, a linear 2-compartment model with a single input
and output in the same compartment and corresponding to a
strongly connected graph with at least one leak has the form:̈𝑦 + 𝑐1 ̇𝑦 + 𝑐2𝑦 = 𝑢̇ + 𝑐3𝑢 (68)
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Thus, our model discrimination method would not work
for twodistinct linear 2-compartmentmodelswith the above-
mentioned form. In order to discriminate between two such
models, we need to take other information into account, e.g.,
known parameter values.

Example 16. Consider the following two linear 2-
compartment models:(𝑥̇1𝑥̇2) = (−𝑝01 − 𝑝21 𝑝12𝑝21 −𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1(𝑥̇1𝑥̇2) = (−𝑝21 𝑝12𝑝21 −𝑝02 − 𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1

(69)

whose corresponding input-output equations are of the
form: ̈𝑦 + (𝑝01 + 𝑝21 + 𝑝12) ̇𝑦 + 𝑝01𝑝12𝑦 = 𝑢̇ + 𝑝12𝑢̈𝑦 + (𝑝21 + 𝑝12 + 𝑝02) ̇𝑦 + 𝑝02𝑝21𝑦= 𝑢̇ + (𝑝02 + 𝑝12) 𝑢 (70)

Notice that both of these equations are of the above-
mentioned form, i.e., both 2-compartment models have a
single input and output in the same compartment and corre-
spond to strongly connected graphs with at least one leak. In
the first model, there is a leak from the first compartment and
an exchange between compartments 1 and 2. In the second
model, there is a leak from the second compartment and an
exchange between compartments 1 and 2. Assume that the
parameter 𝑝12 is known. In the first model, this changes our
invariant to(𝑝01 + 𝑝21) ̇𝑦 + 𝑝01 (𝑝12𝑦) = 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦

or, 𝑐1 ̇𝑦 + 𝑐2 (𝑝12𝑦) = 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦 (71)

In the second model, our invariant is(𝑝21 + 𝑝02) ̇𝑦 + 𝑝02𝑝21𝑦 − 𝑝02𝑢= 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦
or, 𝑐1 ̇𝑦 + 𝑐2𝑦 + 𝑐3𝑢 = 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦 (72)

In this case, the right-hand sides of the two equations are
the same, but the first equation has two variables (coefficients)
while the second equation has three variables (coefficients).
Thus, if we had data from the second model, we could try to
reject the first model (much like the 3-compartment versus 2-
compartment model discrimination in the examples above).
In other words, a vector in the span of ̇𝑦, 𝑦, and 𝑢 for 𝑡1, 𝑡2, 𝑡3
may not be in the span of ̇𝑦 and 𝑦 only.

We next consider the effect of incorporating coefficient
dependency relationships. While we cannot incorporate the

polynomial algebraic dependency relationships among the
coefficients in our linear algebraic approach to model rejec-
tion, we can include certain dependency conditions, such
as certain coefficients becoming known constants. We have
already seen oneway inwhich this can happen in the previous
example (from known nonzero parameter values). We now
explore the case where certain coefficients go to zero. From
the explicit formula for input-output equations from [31], we
get that a linear model without any leaks has a zero term
for the coefficient of 𝑦. Thus a linear 2-compartment model
with a single input and output in the same compartment and
corresponding to a strongly connected graph without any
leaks has the form: ̈𝑦 + 𝑐1 ̇𝑦 = 𝑢̇ + 𝑐2𝑢 (73)

Thus to discriminate between two distinct linear 2-
compartment models, one with leaks and one without any
leaks, we should incorporate this zero coefficient into our
invariant.

Example 17. Consider the following two linear 2-
compartment models:(𝑥̇1𝑥̇2) = (−𝑝01 − 𝑝21 𝑝12𝑝21 −𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1

(𝑥̇1𝑥̇2) = (−𝑝21 𝑝12𝑝21 −𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1 (74)

whose corresponding input-output equations are of the
form: ̈𝑦 + (𝑝01 + 𝑝21 + 𝑝12) ̇𝑦 + 𝑝01𝑝12𝑦 = 𝑢̇ + 𝑝12𝑢̈𝑦 + (𝑝21 + 𝑝12) ̇𝑦 = 𝑢̇ + 𝑝12𝑢 (75)

In the first model, there is a leak from the first compartment
and an exchange between compartments 1 and 2. In the
second model, there is an exchange between compartments1 and 2 and no leaks. Thus, our invariants can be written as𝑐1 ̇𝑦 + 𝑐2𝑦 + 𝑐3𝑢 = 𝑢̇ − ̈𝑦𝑐1 ̇𝑦 + 𝑐2𝑢 = 𝑢̇ − ̈𝑦 (76)

Again, the right-hand sides of the two equations are the
same, but the first equation has three variables (coefficients)
while the second equation has two variables (coefficients).
Thus, if we had data from the first model, we could try to
reject the second model. In other words, a vector in the span
of ̇𝑦, 𝑦, and 𝑢 for 𝑡1, 𝑡2, 𝑡3 may not be in the span of ̇𝑦 and 𝑢
only.

9. Conclusion

After performing this differential algebraic and statistical
model rejection, one has already obtained the input-output
equations and thus can test structural identifiability [17, 26,
34]. In a sense, our method extends the current spectrum of
potential approaches for comparingmodels with time-course
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data, in that one can first reject incompatiblemodels, then test
structural identifiability of compatible models using input-
output equations obtained from the differential elimination,
infer parameter values of the admissiblemodels, and apply an
information criterion model selection method to assert the
best model.

Notably the presented differential algebraic and statistical
method does not penalize for model complexity, unlike tra-
ditional model selection techniques. Rather, we reject when
a model cannot, for any parameter values, be compatible
with the given data. We found that simpler models, such
as the linear 2-compartment model, could be rejected when
data were generated from a more complex model, such as
the three species Lotka-Volterra model, which elicits a wider
range of behavior. On the other hand, more complex models,
such as the Lorenz model, were often not rejected, from data
simulated from less complexmodels. In the future it would be
helpful to better understand the relationship between input-
output invariants and dynamics. It would be useful to develop
numerical algorithms in differential algebra (similar to that in
numerical algebraic geometry); a natural extension, if such
algorithms were available, would be to analyze models with
data, although not parameter-free, similar to that done in [35,
36]. Another future direction is creating an algorithm that
takes a probabilistic or randomized approach for eliminating
variables of larger differential-algebra models [37].

We believe there is large scope for additional parameter-
free coplanarity model comparison methods. It would be
beneficial to explore whether algorithms for differential
elimination can handle larger systems and whether this area
could be extended.
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We formulate a dynamic model of vascular tumor growth, in which the interdependence of vascular dynamics with tumor volume
is considered.Themodel describes the angiogenic switch; thus the inhibition of the vascularization process by antiangiogenic drugs
may be taken into account explicitly. We validate the model against volume measurement data originating from experiments on
mice and analyze the model behavior assuming different inputs corresponding to different therapies. Furthermore, we show that a
simple extension of themodel is capable of considering cytotoxic and antiangiogenic drugs as inputs simultaneously in qualitatively
different ways.

1. Introduction

Neovascularization means the formation of new blood ves-
sels. Angiogenesis, an important form of neovascularization,
is characterized by hypoxia-driven sprouting of new capil-
laries from postcapillary venules. This mechanism plays an
important role in many physiological (e.g., wound healing
[1]) and pathological (e.g., macular degeneration [2]) pro-
cesses. In the development of tumors, angiogenesis plays an
exceptionally important role [3, 4]. In the beginning, when
the tumorous cells form a small plaque, the tumor cells
are well supported with metabolites by diffusion from the
environment. However, as the size of the tumor increases,
cells in the inside become insufficiently supported. Tumor-
induced angiogenesis is the process of blood vessel formation,
in which new vasculature is formed in order to support these
insufficiently supported tumor cells.

Lately,much has been revealed about the details of tumor-
induced angiogenesis and the underlying biochemical and
biomechanical regulatory processes. These studies served as
basis for the development of targeted molecular therapies
[5]. The aim of these therapies is to inhibit tumor-related
angiogenesis, thus cutting the tumor frommetabolic support.

Bevacizumab (Avastin) is a pharmacotherapeutic antian-
giogenic agent developed to withhold pathological angiogen-
esis [6] via the inhibition of the tumor angiogenic factor
VEGF (vascular endothelial growth factor) [7]. VEGF may
be considered as a representative member of the family of
biochemical agents promoting angiogenesis, called tumor
angiogenic factors (TAFs).

In [8], two different dosage protocols of bevacizumab
were compared. In the case of the first protocol, experimental
animals (mice) received one high dose according to the
generally accepted medical principle, while in the case of
the second protocol (quasi-continuous therapy), a much
lower dose was delivered every day of the therapy. Results
have shown that the quasi-continuous protocol was more
effective, while the total injected amount of the drug was
significantly less. As antiangiogenic agents are expensive, the
total used drug amount is an important aspect to consider
in therapeutic design. In addition, reduction of therapeutic
doses is also desirable to minimize drug side effects. The
result described in [8] underlines the importance of therapy
optimization in the case of the application of antiangiogenic
drugs and shows that computational methods may help to
exploit the potentials of this approach.
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On the other hand, based on the new data and paradigms
brought to light in biological studies on angiogenesis, compu-
tational modeling of tumor-related vasculature development
has became popular in the last decades, producing numerous
computational models describing tumor growth and tumor-
induced angiogenesis under different physiological circum-
stances (for a review on mathematical modeling of angio-
genesis, see [9–12], while for a biological viewpoint on the
mechanisms of physiological and tumor-related/pathological
angiogenesis, one may refer to [13]). An important aspect
of these modeling studies is to predict the effect of possible
therapeutic approaches in cancer treatment [14–16].

A large part of the aforementioned models exhibit a
quite high level of complexity, which implies that while
they may be potentially appropriate for the comparison of
different therapeutic approaches under the assumption of
a given parameter set, it can be challenging to fit them to
single patients. Furthermore, exact therapy optimizationmay
be computationally infeasible if one relies on complex and
spatially detailed models as [17, 18].

Feedback control [19, 20] may be an alternative to offline
therapy optimization approaches. One benefit of closed-
loop methods is that, assuming appropriate physiological
signals, they may provide performance guarantees also in
the presence of parametric uncertainties [21]. Other potential
benefits of closed-loop treatments over protocol-based can-
cer therapies are discussed in [22]. In the case of diabetes,
a similar biological control problem, such approaches have
been successfully applied [23–27]. Control theoretic meth-
ods require, however, concentrated parameter models and
ordinary differential (or difference) equation models with
moderate complexity to perform well.

Recently, a simple dynamical model of tumor growth and
the effect of the antiangiogenic drug bevacizumab has been
published [28].This model contains very few parameters and
state variables and thus it is ideal for parameter estimation
and controller design purposes. This model is based on three
state variables, namely, the proliferating tumor volume, the
necrotic tumor volume, and the concentration of the angio-
genic inhibitor. Although this model provides a good fit for
certain experimental data (see the data later in Section 2.2), it
holds some flaws.

First, as it does not include the description of vasculature
dynamics, its drawback is that it is unable to interpret
advanced measurement data corresponding to tumor and
vasculature evolution dynamics, potentially available in the
foreseeable future. Recently, several imaging techniques have
been described, which allow the reconstruction of vascular
microstructures: Doppler optical frequency domain imaging
[29] and functional photoacoustic microscopy [30] are used
today already in in vivo setups to map vascular networks,
while diffusible iodine-based contrast-enhanced computed
tomography [31] may be used in terminal experimental
animals. These methods could provide valuable data about
vasculature dynamics in the near future, which may be
used for the identification of the details of the angiogenic
processes.

Second, minimal models not including vasculature
dynamics as [28] are lacking the potential to describe the

phenomenon of the angiogenic switch [32]. This hypothesis,
formulated by Folkman, assumes that angiogenesis begins
only at a certain stage of tumor development, more precisely
at the time when the limited diffusion distance (which is
about 0.1mm [33]) makes the support of tumor cells inside
the tumor with oxygen and metabolites no longer possible.
According to the prediction of the minimal model [28],
antiangiogenic drugs significantly affect the tumor growth
also in the initial period. This contradicts with the consid-
eration based on Folkman’s hypothesis that implies that in
the initial period no insufficiently supported tumor cells are
present, so no TAF synthesis is present; thus its effect can not
be inhibited. In addition to the fact that minimal models like
[28, 34] do not explicitly consider angiogenesis, the model
[28] assumes a very simple constant rate of drug-independent
necrosis, in which the proliferating cells turn into necrotic
cells. In contrast, the process of necrosis strongly depends on
the metabolic support and thus on the vascularization state
of the tumor.

Third, paper [28] is based on the comparison of sim-
ulation results to measurement data originating from two
scenarios. In these two scenarios, the antiangiogenic drug
Bevacizumab was administered to experimental animals
according to different protocols. In the first protocol, one
200 𝜇g bevacizumab dose was used for an 18-day therapy,
while in the second (quasi-continuous) protocol one-tenth
of the 200 𝜇g (20 𝜇g) dose was spread over 18 days; that
is, 1.11 𝜇g bevacizumab was administered every day to the
animals. Paper [8] is also based on results corresponding to
these 2 administration protocols but also discusses results
corresponding to therapy/drug-free case; namely, it states
that mice that were treated with protocol 1 (one 200 𝜇g
bevacizumab dose) did not have significantly smaller tumor
volume than mice that did not receive therapy at all. In
contrast to this result, if we compare the final tumor volumes
resulting from the simulation of the model [28] in the case
of protocol 1 and in the no-therapy case, we find that, in the
case of protocol 1, the model prediction for the final tumor
volume is 4741mm3 (which is in good agreement with the
experimental results), while in the no-therapy case, themodel
prediction for the final tumor volume is 37628mm3. This
means that, according to the prediction of this model, the
no-therapy final tumor size is almost 8 times larger than the
protocol 1 case, making the validity of themodel questionable
in the no-therapy case, based on the results of [8]. We would
underline that this does not question the validity of themodel
[28] in the case of Bevacizumab protocols and feedbacks
similar to the ones discussed therein.

Another paper that aimed to formulate a control-
oriented dynamical model was also recently published [35].
This model, which uses a bicompartmental approach, does
describe the dynamics of vasculature but results in a 7-
dimensional state space and 23 parameters, which is quite
challenging size for control design. In addition, the model
described in [35] was fit only to data corresponding to the
first protocol in [8] (not both, like [28]).

According to the above preliminary results and consid-
erations, our aim in this paper is as follows. We formulate
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a dynamic model, which includes the dynamics of the
vasculature volume and describes the interplay between the
tumor and vasculature volumes. To achieve this, we also
include the dynamics of TAF in themodel, which is produced
by unsupported tumor and initiates the formation of new
blood vessels from existing ones. This way our model will be
capable of the interpretation of measurement corresponding
to tumor and vasculature evolution dynamics. Furthermore,
we aim to formulate amodel, the predictions of which are also
more acceptable in the therapy-free case.

2. Model Synthesis

In the following, we introduce the state-space variables of the
model and interpret the state equations with the discussion of
the model assumptions. Afterwards, the model parameters,
their estimation, and the contextualization of the resulting
parameters are described.

2.1. State Variables and Equations. The state-space variables
of the model are summarized in Table 1 and their dynamics
are described by the following equations:

𝑑𝑉
𝑑𝑡 = 𝑐𝑔𝛾𝑉 − 𝑐𝑛𝑉𝑢 (1)

𝑑𝑁
𝑑𝑡 = 𝑐𝑛𝑉𝑢 (2)

𝑑𝐵
𝑑𝑡 = 𝑐𝑒V𝑉̇𝑡𝑜𝑡 + 𝑐V𝑇𝐵 (3)

𝑑𝑇
𝑑𝑡 = 𝑐𝑇𝑉𝑢𝑉 − 𝑞𝑇𝑇 − 𝑐ℎ 𝑇𝐼

𝐸𝐷50 + 𝐼 (4)

𝑑𝐼
𝑑𝑡 = 𝑢 − 𝑞𝐼 𝐼

𝑘𝐼 + 𝐼 − 𝑘𝑉𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (5)

𝑉𝑡𝑜𝑡 is the total volume of the tumor, the sum of the
proliferating (living) volume and the necrotic volume: 𝑉𝑡𝑜𝑡 =𝑉 + 𝑁; thus 𝑉̇𝑡𝑜t = 𝑐𝑔𝛾𝑉. Furthermore, 𝑉𝑢 denotes the
unsupported living tumor volume𝑉𝑢 = (1−𝛾)𝑉; thus𝑉𝑢/𝑉 =(1−𝛾). 𝑢 denotes the input, the injection of the antiangiogenic
drug.

We assume a simple spherical tumor. This simplifying
assumption (one-dimensional growth in other words) is
widely used in the tumor modeling literature (see, e.g., [36–
42]).

The auxiliary variable 𝛾 in the above equation is a key
element of the model: it describes the actual ratio of the well-
supported tumor cells in the tumor. 𝛾 is the function of the
actual total volume 𝑉𝑡𝑜𝑡 and the vascularization ratio of the
tumor (𝑟V). 𝑟V can be computed as

𝑟V = 1 − [𝐵]𝑖𝑑 − [𝐵]
[𝐵]𝑖𝑑 (6)

where [𝐵]𝑖𝑑 denotes the ideal density of vasculature in
the tumor (notations with square brackets always refer to
densities). This ideal density corresponds to the vasculature

Table 1: State variables of the model.

Notation Variable Dimension
V Proliferating tumor volume mm3

N Necrotic tumor volume mm3

B Vasculature volume in the tumor mm3

T Concentration of TAF in the tumor mg/ml
I Inhibitor serum level mg/ml

density, when all tumor cells are sufficiently supported; in
otherwords, 𝑟V = 1. In accordancewith biological results [43–
45], we assume that the vasculature is present in the living
part of the tumor; thus the vasculature density is interpreted
as density of blood vessels in the living (nonnecrotic) part of
the tumor and is calculated as [𝐵] = 𝐵/𝑉. Regarding the
validity range of the model, we assume that the inequality
[𝐵] < [𝐵]𝑖𝑑 holds at all times (in other words, we assume that
the tumor is never fully vascularized).

The supported ratio of the tumor (𝛾) is computed as

𝛾 = (1 − 𝑟V) 𝑓𝑃 (𝑉𝑡𝑜𝑡) + 𝑟V (7)

which may be viewed as a linear homotopy in 𝑟V ∈ [0, 1]
between the constant 1 function and the function 𝑓𝑃(𝑉𝑡𝑜𝑡),
which is also between zero and one. Thus 𝛾 ∈ [0, 1] also
holds. The interpretation is that 𝑓𝑃(𝑉𝑡𝑜𝑡) denotes a function
that describes the ratio of tumor cells on the periphery of the
tumor, which receive nutrients from outside of the tumor,
so they are well supported. Naturally, this ratio depends on
the actual total tumor volume 𝑉𝑡𝑜𝑡. More precisely, in our
terms, the periphery of the tumor is the outer shell of the
sphere of our model, composed by tumor cells, which are
closer to the surface of the tumor than the diffusion distance.
According to [33], we assume the diffusion distance to be 150𝜇𝑚. The ratio of periphery cells depends upon the radius of
the tumor, which can be expressed from the tumor volume𝑉, according to the following simple derivation. Based on the
tumor volume, we may derive the tumor radius (in mm) as

𝑉𝑡𝑜𝑡 = 4
3𝜋𝑟3

𝑟 = 3√3𝑉𝑡𝑜𝑡4𝜋 .
(8)

If 𝑟 ≤ 0.15, there is no tumor core. Assuming 𝑟 > 0.15, the
volume of the tumor core is

𝑉𝐶 = 4
3𝜋 (𝑟 − 0.15)3 , (9)

And thus the volume of the periphery is

𝑉𝑃 = 𝑉𝑡𝑜𝑡 − 𝑉𝐶, (10)

and finally the function 𝑓𝑃(𝑉𝑡𝑜𝑡) is derived as

𝑓𝑃 (𝑉𝑡𝑜𝑡) = 𝑉𝑃𝑉𝑡𝑜𝑡 . (11)
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Figure 1: The function 𝑓𝑃(𝑉𝑡𝑜𝑡) describing the ratio of periphery
cells in the range of 20-15000mm3 tumor volume.

If the tumor radius is below the diffusion distance, all cells
are considered as periphery cells. The function 𝑓𝑃(𝑉𝑡𝑜𝑡)
describing the ratio of periphery cells in the range of 20-
15000mm3 is depicted in Figure 1 (according to [8], in the
time of the first measurement, the volume of the tumors is
about 50-60mm3).

Now let us return our focus to the auxiliary variable 𝛾.
The consideration behind the form of function (7) is that
we assume two possible ways by which a tumor cell may get
nutrient support. On one hand, if it is at the periphery of the
tumor, it gets nutrients from the environment of the tumor
via diffusion. On the other hand, if it is inside the tumor near
a blood vessel, it also receives nutrient supply. The properties
of function (7) reflect these considerations.Wemay see that if
the tumor is composed only (or because of the approximation
mostly) periphery cells or is almost fully vascularized (𝑟V ≃1), the value of 𝛾 is approximately 1. In addition, at a fixed
value of 𝑟V, it increases as the value of 𝑓𝑃(𝑉𝑡𝑜𝑡) is increased,
and at a fixed vale of 𝑓𝑃(𝑉𝑡𝑜𝑡), the value of 𝛾 is increased as 𝑟V
increases (to put it simple, it is monotonically increasing in
both variables).

Now, as we have discussed the interpretation of the
auxiliary variables and the corresponding assumptions, we
may return to the state equations. Equation (1) describes the
tumor growth. The formula originates from the assumption
that the well-supported part of the tumor volume (𝛾𝑉)
proliferates at the rate 𝑐𝑔, while the unsupported volume 𝑉𝑢
necrotizes at the rate 𝑐𝑛.

Equation (3) formalizes the dynamics of the vasculature,
which may increase by two ways. On one hand, the term𝑐𝑒V𝑉̇𝑡𝑜𝑡 describes the internalization of new vasculature from
the environment as the tumor grows, and on the other hand
the term 𝑐V𝑇𝐵 describes the formation of new blood vessels
from existing ones in response to the TAF.

Equation (2) corresponds to necrotic volume.The impor-
tance of formally describing the process of necrosis lies in the
fact that necrotized cells neither proliferate nor contribute

to TAF production, so they must be distinguished from the
general tumor volume.

Equations (4) and (5) describe the dynamics of TAF and
the inhibitor concentration, respectively. The terms

𝑐𝑇𝑉𝑢𝑉 − 𝑞𝑇𝑇 (12)

of (4) describe that the production of TAF is proportional to
the ratio of unsupported cells 𝑉𝑢/𝑉 and takes place at rate𝑐𝑇, while it is cleared at the rate 𝑞𝑇 from the tumor. In the
case of the inhibitor, the source is the injection (the input) 𝑢,
while based on [28], we assume that its clearance takes place
according to Michaelis-Menten kinetics. The terms

𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (13)

and

𝑘𝑉𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (14)

in (4) and (5), respectively, correspond to the reaction in
which the inhibitor binds the TAF molecule. Also, based on
[28], the dynamics of the inhibition are considered assuming
Michaelis-Menten kinetics with Michaelis-Menten constant𝐸𝐷50 (effective median dose).

The variable 𝑘𝑉 corresponds to the consideration that
the concentrations of TAF (𝑇) and the inhibitor (𝐼) are not
interpreted in the same volume (the compartment in the
former case is the tumor; the volume in the latter case is the
plasma). 𝑘𝑉 is the ratio of these volumes and can be computed
as

𝑘𝑉 = 𝑉𝑡𝑜𝑡1460 (15)

where the value 1460 stands for the average blood volume of
a mice in 𝜇𝑚3, in which the concentration of the inhibitor is
interpreted [46].

2.2. Model Parameters. Some parameters of the model were
taken from the literature (see Table 2), while the remaining
parameters were estimated using experimental data originat-
ing from mice. Sápi et al. [8] carried out experiments, where
C57Bl/6 mice with C38 colon adenocarcinoma were treated
with bevacizumab using two different therapies.

(i) Therapy 1 (protocol-based treatment): fivemice (mice
C1-C5) were injected with 0.171mg/ml bevacizumab
at day 3 of the treatment (day 0 is considered as the
day of the tumor implantation) (see Figure 2(a)).

(ii) Therapy 2 (daily, quasi-continuous small amount
administration): ninemice (mice E1-E9) received 9.5 ⋅10−4 mg/ml injection of bevacizumab each day for 18
days from day 3 (see Figure 2(b)).

The nominal parameter set of the model was determined
using the average of measurements as reference and mini-
mizing the mean square error of the deviance between the
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Figure 2: (a) The measured tumor volumes for mice C1-C5 that received therapy 1 and their average. (b) The measured tumor volumes for
mice E1-E9 that received therapy 2 and their average.

simulated andmeasured total volumes using the combination
of particle swarm global optimization method [47] and the
“nlinfit” function of MATLAB. During the simulations, the
initial volume of the tumor was assumed to be equal to
5mm3, while the initial values of all other state variables
were assumed to be 0. To capture the qualitatively different
response of tumor growth to the two different protocols, both
average curves (corresponding to protocols 1 and 2) were
used simultaneously for the purpose of parameter estimation.
While initial guess of the parameters was determined by the
particle swarm global search method, the final values of the
parameters were obtained using the “nlinfit” function. From
the results of this function, the 95% confidence intervals
(CI95) were determined using the function “nlparci.”

In order to potentially achieve a global optimumwith the
resulting parameter set, the estimation procedure was started
from several initial coordinates in the parameter space. Dur-
ing parameter estimation, the averagemeasurement results of
both protocols were used to capture the qualitatively different
response of the system to different inputs. Table 2 summarizes
the model parameters. These parameters are to be referenced
as nominal parameters in the further discussion and are
denoted as 𝜃𝑛𝑜𝑚.

In addition, to quantify parameter variance in the context
of single trajectories, the model was fitted also for single
growth curves as described in the Appendix.

Most estimated parameters of the model are hard to mea-
sure individually (in fact some of them are only interpreted
inside the framework of this model) and no data are available
on them which could serve as basis for comparison.

3. Results and Discussion

3.1. Fitting the Model to Measurement Data. In this subsec-
tion, we compare the model behavior and parameter values
to measurement data. Figure 3 shows the fit of the model
simulation output (total volume) to the experimental data
sets that were used for the parameter estimation (therapy 1
and therapy 2). As it can be seen in the figures, the model
sufficiently reproduces themeasured growth trajectories, and
the better fit is achieved in the case of therapy 2. For the
sake of clarity, we note that since the average curve of
measurement results was used for parameter estimation, the
number of mice used in the experiments did not influence
the objective function (in other words, this is not the reason
for better fit in the case of therapy 2). To quantify the fit, we
introduce the normalized squared deviation (NSD) as

𝑁𝑆𝐷 = ∑𝑡𝑆 (𝑉𝑡𝑜𝑡 (𝑡𝑆) − 𝑉𝑀𝑡𝑜𝑡 (𝑡𝑆))2󵄨󵄨󵄨󵄨𝑡𝑠󵄨󵄨󵄨󵄨
(16)

where 𝑉𝑡𝑜𝑡 is the simulated total volume (𝑉𝑡𝑜𝑡 = 𝑉 + 𝑁)
and 𝑉𝑀𝑡𝑜𝑡 is the measured total volume. 𝑡𝑆 stands for the set
of sample times, corresponding to days 3, 5, 7, 9, 11, 13, 15,
17, 19, and 21 in this case, while |𝑡𝑆| denotes the number
of sample days. Normalization by the number of days is
required, because we will use this measure later as well in the
case of experimental data, where the number of sample points
is lower. According to this measure, the representative values
are 𝑁𝑆𝐷𝑇1 = 5.5614 ⋅ 105 and 𝑁𝑆𝐷𝑇2 = 6.0609 ⋅ 104𝑚𝑚6 in
the case of therapy 1 and therapy 2, respectively.
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Table 2: Nominal model parameters (𝜃𝑛𝑜𝑚) and their dimension, source, and 95% confidence interval (CI95). PE stands for parameter
estimation.

Notation Dimension Value Source CI95
𝑐𝑔 1

𝑑𝑎𝑦 1.4353 PE [1.4252 1.4455]
[𝐵]𝑖𝑑 - 0.0388 PE [0.0383 0.0393]
𝑐𝑒V - 1.1586 ⋅ 10−3 PE [1.1548 1.1624] ⋅ 10−3
𝑐𝑛 1

𝑑𝑎𝑦 0.0941 PE [0.0934 0.0947]
𝑐V 𝑚𝑙

𝑚𝑔 𝑠 11.6690 PE [11.6060 11.7320]
𝑐𝑇 𝑚𝑔

𝑚𝑙 𝑠 1.1377 ⋅ 10−2 PE [1.1330 1.1423] ⋅ 10−2
𝑞𝑇 1

𝑑𝑎𝑦 0.2473 PE [0.2466 0.2480]
𝑐ℎ 𝑚𝑔

𝑚𝑙𝑚𝑚3 𝑠 0.1633 PE [0.1628 0.1637]
𝐸𝐷50 𝑚𝑔

𝑚𝑙 5 ⋅ 10−5 [48] -

𝑞𝐼 1
𝑑𝑎𝑦 0.5776 [49] -

𝑘𝐼 𝑚𝑔
𝑚𝑙 0.4409 [28] -
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Figure 3: Measured and simulated tumor volumes in the case of therapy 1 (a) and therapy 2 (b).
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The possible reason for the better fit in the case of
the quasi-continuous therapy may be that the average of
the measurements provides a more smooth, exponential-
like curve in this case, which was possibly more easy to be
achieved by the model.

The final volume of the tumor according to simulation
results is 6670mm3 in the case of therapy 1 and 3993mm3 in
the case of therapy 2. Considering the data described in Sec-
tion 2.2, the final average measured volumes (corresponding
to day 21) were 6604 and 3257mm3 in the cases of therapy 1
and therapy 2, respectively.

3.2. Model Validation

3.2.1. Qualitative Validation. In this subsection, we analyze
and compare the dynamic behavior of key model variables in
the cases of no therapy, therapy 1, and therapy 2 defined in
Section 2.2.

Figure 4 depicts the trajectory of 𝛾 and 𝑟V in the various
cases.

In general, it can be said that, in the beginning, when the
tumor is small, due to the high ratio of periphery cells, 𝛾 (i.e.,
the ratio of the well-supported tumor cells) is high. However,
as the tumor grows, the ratio of peripherial cells and so 𝛾 also
decrease.The trajectories of the various cases differ only after
day 6. The reason for this is that the process of angiogenesis
becomes significant only if a large part of unsupported cells
and TAF is already present, and the inhibition of the process
becomes important only in this period. This is also shown
in Figure 4(b), where it can be seen that the various cases
regarding the vascularization ratio (𝑟V) differ only after day
6. Furthermore, it can be seen in Figure 4 that both 𝛾 and𝑟V remain in the range [0, 1] as assumed during the model
formulation. Figure 5 depicts the inhibitor concentration
in the cases of therapy 1 and therapy 2 (in the case of no
therapy, the inhibitor concentration is constant zero during
the simulation). It can be seen in the figure that, in the case
of therapy 1, the concentration is several orders of magnitude
higher compared to therapy 2.

Figure 6 depicts the concentration of TAF (𝑇) and the
term 𝑐V𝑇𝐵 of (3) (corresponding ot TAF-dependent vascular-
ization) in response to the various levels of the inhibitor in
the case of different therapies.

In this figure (Figure 6(a)), it can be seen that the
concentration of TAF (𝑇) around days 3-8 is almost the
same in the case of therapy 1 and therapy 2, although the
concentration of the inhibitor (𝐼) differs on the orders of
magnitude. The explanation for this is the effective median
dose (𝐸𝐷50) of the inhibitor, which defines the inhibitor level
at which the effect of the drug saturates. We have to note
that this parameter was not subject to estimation but it was
taken from the article [48]. Figure 6(b) depicts that from the
time when the large bolus has been cleared in the case of
therapy 1 (aroundday 13), theTAF-dependent vascularization
(TdV) becomes significantly different in the case of the two
therapies.

Since the volume trajectories of the model follow an
exponential-like fashion in all cases, they are maybe not so

Table 3: Simulated and measured average total volumes on day 21
(mm3).

Therapy 𝑉𝑡𝑜𝑡(21) 𝑉𝑀𝑡𝑜𝑡(21)
No therapy 1.03⋅104 No data
Therapy 1 6.67⋅103 6.60⋅103
Therapy 2 3.99⋅103 3.26⋅103

Table 4: Simulated and measured average total volumes on day 19
(mm3).

Therapy 𝑉𝑡𝑜𝑡(19) 𝑉𝑀𝑡𝑜𝑡(19)
No therapy 4.68⋅103 6.15⋅103
Therapy 1 3.10⋅103 4.44⋅103
Therapy 2 2.13⋅103 2.03⋅103

informative as, for example, the plot of 𝛾, but for the sake of
completeness, they are depicted in Figure 7.

3.2.2. Validation against Measurement Data with NoTherapy.
In phase I of the experiments described in [8], the experimen-
tal animals received no treatment. In this case, the length of
the experiment was only 19 days (compared to 21 days in all
other experiments discussed before and depicted in Figure 2).
The measurement data originating from this experiment was
used to validate the model. Figure 8 shows the results of the
model validation.

The measure of the fit introduced in (16) gives a value of𝑁𝑆𝐷𝑁𝑇 = 1.5451 ⋅ 106mm6 in this case (the lower index
corresponds to “no therapy”). If one compares this value to
the NSD values corresponding to the experimental data to
which the model was fitted (see Section 3.1), or examines the
figures, it can be seen that the error of the fit is one order of
magnitude higher in this case (since the no-therapy case was
not considered during parameter estimation). On the other
hand, taking into account the significant variation among
experimental animals aswell, the themodel output in the case
of no therapy provides an acceptable fit with measurement
data.

3.2.3. Validation regarding Final Tumor Volume Values in
Various Cases. As in control applications, for which the
current model is primary proposed, the usual aim is to
minimize the final volume of the tumor (under, e.g., con-
straints corresponding to the total applied drug quantity); it
is important to compare the final tumor sizes. As the final day
of the experiments was different in the no-therapy case and
therapies 1 and 2, Tables 3 and 4 summarize the simulated and
measured tumor volumes on days 19 and 21.

For the sake of comparison to previous literature results,
let us note that the simulated volume on day 19 assuming no
therapy is 1.85 ⋅ 104 in the case of the model described in
[28] (this value has been obtained by the reproduction of the
model described in [28]). Comparing the differences of the
values, we may say that the validity of the proposed model
compared to [28] is significantly better regarding the final
volume in the no-therapy case.
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Figure 4: (a) Ratio of the well-supported tumor cells (𝛾) in the case of various therapies; (b) vascularization ratio (𝑟V) in the case of various
therapies.
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Figure 5: Concentration of the inhibitor (𝐼) in the case of various therapies on two different scales.

3.3. Model Identifiability. In the following two subsections,
we present some results related to the parameter sensitivity
and structural identifiability of the proposed model.

3.3.1. Parameter Sensitivity of the Model. In this subsection,
we analyze the parameter sensitivity of the model for the
estimated parameters.The sensitivity analysis is an important
tool to characterize how the model parameters affect the
simulation output. The presence of very large differences in
the sensitivities of parameters may point to identifiability
problems.

In order to formalize this analysis, we define the sensitiv-
ity measure detailed in the following equation:

𝑆 (𝜃) = ∫𝑇
0

(𝑉𝑡𝑜𝑡 (𝑡, 𝜃𝑛𝑜𝑚) − 𝑉̂𝑡𝑜𝑡 (𝑡, 𝜃))2
𝑇 𝑑𝑡 (17)

In (17), 𝜃𝑛𝑜𝑚 denotes the nominal parameter vector
detailed in Table 2, while 𝜃 denotes a perturbed parameter
vector. 𝑉𝑡𝑜𝑡(𝜏, 𝜃𝑛𝑜𝑚) and 𝑉̂𝑡𝑜𝑡(𝜏, 𝜃) stand for the nominal
output (𝑉𝑡𝑜𝑡(𝑡)) of the model and for the output in the case
of the perturbed parameter vector, respectively.
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Figure 6: (a) Concentration of TAF (𝑇) in the case of various therapies; (b) TAF-dependent vascularization (TdV) in the case of different
therapies.

No-Therapy Case. Table 5 summarizes the results in the
no-therapy case. Each row of this table corresponds to a
𝜃 perturbed parameter vector, in which only one element
differs from the nominal 𝜃 vector (by 20, 10, or 5%).

First, it is conspicuous that the sensitivity to the parameter𝑐ℎ is zero in this case. The explanation for this is that
this parameter corresponds to the effect of the angiogenic
inhibitor (𝐼), the concentration ofwhich is constantly 0 in this
case. In other words, there is no drug effect in this case, the
dynamics of which are affected by this parameter.

Second, we can see in Table 5 that the sensitivity for𝑐V is equal to the sensitivity of 𝑐𝑇 in the no-therapy case.
The reason for this is that while 𝑐𝑇 corresponds to the
synthesis rate of TAF, 𝑐V corresponds to the rate of TAF-
dependent vascularization. If no inhibitor is present, there is
no difference between an increase in the TAF concentration
and a more efficient TAF-driven vascularization (see (3) and
(4)). Let us note that if the inhibitor is present, not the whole
portion of the synthetized TAF takes part in the blood vessel
formation process (since some molecules are binding to the
inhibitor); thus the situation is different if input (thus nonzero
drug concentration) is also present.

Third, themodel is themost sensitive to the parameter 𝑐𝑔.
This is not surprising, as 𝑐𝑔 directly affects the dynamics of 𝑉
(see (1)) as a proportional term, so its effect in 𝑉, which is
directly present in the output, is exponential. Apart form 𝑐ℎ,𝑞𝐼, and 𝑘𝑉, the model shows the least sensitivity to 𝑐𝑛, the rate
of necrosis.

Therapy 1. Table 6 shows that the model sensitivity for 𝑐ℎ,
the parameter corresponding to the effect of the inhibitor, is
relatively low.

Table 7 shows that, in the case of therapy 2, an extreme
high sensitivity is experienced in the case of the increase of

parameter 𝑐𝑔. Moreover, the sensitivity to 𝑞𝐼 is also signifi-
cantly decreased. As the injections and thus the concentra-
tions of the inhibitor (𝐼) are by 2 orders of magnitude lower
compared to therapy one (see Figure 5), it is plausible that the
exact value of its clearance parameter (𝑞𝐼) has a significantly
less effect on the dynamics of the model compared to therapy
1, where a large dose is applied.

Apart from this, the results are similar to the case of
therapy 1.

Altogether, based on the results of the sensitivity analysis,
it can be said that further experiments focusing solely
on pharmacokinetics of the applied drugs are desirable
to estimate the parameter 𝑐ℎ decoupled from other model
parameters.

3.3.2. Structural Identifiability. Structural identifiability
properties of a system describe whether there is a theoretical
possibility for the unique determination of systemparameters
from appropriate input-output measurements or not. It is
important to emphasize that identifiability is a property
of the model structure. Basic early references for studying
identifiability of dynamical systems are [50, 51]. Since the
introduction of this concept, multiple approaches have been
proposed for the analysis of structural identifiability of
various nonlinear system classes, for example, polynomial
systems [52] or rational function state-space models [53]. A
critical comparison of methods for identifiability analysis is
described in [54].

First, let us note that as our model uses the variable [𝐵] =𝐵/𝑉 describing vasculature density, our model falls into the
class of rational function state-space models.

Second, let us consider the factors that make the
structural identifiability analysis challenging in our case.
Structural identifiability methods usually rely on iterative
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Figure 7: Volume trajectories of the model (living volume 𝑉, unsupported volume 𝑉𝑢, necrotic volume 𝑁, and total volume 𝑉𝑡𝑜𝑡,
corresponding to subfigures (a), (b), (c), and (d), resp.) in the case of various therapies.

Table 5: Sensitivities (𝑆) of the model to the changes of parameters [𝐵]𝑖𝑑, 𝑐𝑔, 𝑐𝑒V, 𝑐𝑛, 𝑐V, 𝑐𝑇, 𝑞𝑇, 𝑐ℎ, 𝑞𝐼, and 𝑘𝑉 in the no-therapy case. One unit
is 106mm3.

-20% -10% -5% +5% +10% +20%
[𝐵]𝑖𝑑 0.1321 0.0240 0.0052 0.0040 0.0143 0.0462
𝑐𝑔 0.4715 0.1601 0.0467 0.0640 0.2996 1.6456
𝑐𝑒V 0.0653 0.0173 0.0044 0.0047 0.0193 0.0821
𝑐𝑛 0.0072 0.0017 0.0004 0.0004 0.0016 0.0061
𝑐V 0.2287 0.0769 0.0224 0.0309 0.1454 0.8147
𝑐𝑇 0.2287 0.0769 0.0224 0.0309 0.1454 0.8148
𝑞𝑇 0.5561 0.0868 0.0176 0.0120 0.0405 0.1185
𝑐ℎ 0 0 0 0 0 0
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Table 6: Sensitivities (𝑆) of the model to the changes of parameters [𝐵]𝑖𝑑, 𝑐𝑔, 𝑐𝑒V, 𝑐𝑛, 𝑐V, 𝑐𝑇, 𝑞𝑇, 𝑐ℎ, 𝑞𝐼, and 𝑘𝑉 in the case of therapy 1. One unit
is 106mm3.

-20% -10% -5% +5% +10% +20%
[𝐵]𝑖𝑑 0.2926 0.0525 0.0114 0.0086 0.0305 0.0975
𝑐𝑔 0.9383 0.3259 0.0962 0.1353 0.6422 3.6265
𝑐𝑒V 0.1375 0.0368 0.0095 0.0102 0.0420 0.1807
𝑐𝑛 0.0181 0.0043 0.0011 0.0010 0.0039 0.0149
𝑐V 0.4498 0.1518 0.0442 0.0611 0.2889 1.6242
𝑐𝑇 0.4594 0.1559 0.0456 0.0634 0.3011 1.7086
𝑞𝑇 0.9364 0.1493 0.0305 0.0213 0.0720 0.2128
𝑐ℎ 0.0100 0.0023 0.0005 0.0005 0.0019 0.0069

Table 7: Sensitivities (𝑆) of the model to the changes of parameters [𝐵]𝑖𝑑, 𝑐𝑔, 𝑐𝑒V, 𝑐𝑛, 𝑐V, 𝑐𝑇, 𝑞𝑇, 𝑐ℎ, 𝑞𝐼, and 𝑘𝑉 in the case of therapy 2. One unit
is 107mm3.

-20% -10% -5% +5% +10% +20%
[𝐵]𝑖𝑑 0.1304 0.0230 0.0050 0.0038 0.0131 0.0415
𝑐𝑔 0.4012 0.1422 0.0427 0.0620 0.3015 1.7891
𝑐𝑒V 0.0582 0.0157 0.0041 0.0044 0.0185 0.0798
𝑐𝑛 0.0090 0.0021 0.0005 0.0005 0.0019 0.0072
𝑐V 0.1232 0.0402 0.0116 0.0155 0.0722 0.3971
𝑐𝑇 0.1332 0.0448 0.0131 0.0179 0.0859 0.4902
𝑞𝑇 0.1690 0.0288 0.0061 0.0045 0.0154 0.0473
𝑐ℎ 0.0135 0.0030 0.0007 0.0006 0.0023 0.0081

computation of (Lie-) derivatives of the output (see, e.g., [55],
on which the software used later is based).

For identifiability analysis, let us consider a reduced
version of the proposed model, which assumes no input (no
antiangiogenic drug is present). The simplified form of the
model is described by (18)-(21). As we will see, this submodel
already poses a challenge regarding identifiability due to the
complexity of the resulting equations.

𝑑𝑉
𝑑𝑡 = 𝑐𝑔𝛾𝑉 − 𝑐𝑛 (1 − 𝛾)𝑉 (18)

𝑑𝑁
𝑑𝑡 = 𝑐𝑛 (1 − 𝛾)𝑉 (19)

𝑑𝐵
𝑑𝑡 = 𝑐𝑒V𝑐𝑔𝛾𝑉 + 𝑐V𝑇𝐵 (20)

𝑑𝑇
𝑑𝑡 = 𝑐𝑇 (1 − 𝛾) − 𝑞𝑇𝑇 (21)

In this case, if only the total volume may be measured
(as in the case of our measurements used for the parameter
estimation),

𝑦 = 𝑉𝑡𝑜𝑡 = 𝑉 + 𝑁
̇𝑦 = 𝑉̇ + 𝑁̇ = 𝑐𝑔𝛾𝑉 (22)

If we consider further derivatives,

̈𝑦 = 𝑐𝑔 ( ̇𝛾𝑉 + 𝑉̇𝛾) (23)

where

𝛾 = (1 − 𝑟V) 𝑓𝑃 (𝑉𝑡𝑜𝑡) + 𝑟V = (1 − 𝑟V) 𝑓𝑃 (𝑉𝑡𝑜𝑡) + 𝑟V (24)

([𝐵]𝑖𝑑 − [𝐵]
[𝐵]𝑖𝑑 )𝑓𝑃 (𝑉𝑡𝑜𝑡) + (1 − [𝐵]𝑖𝑑 − [𝐵]

[𝐵]𝑖𝑑 ) (25)

It is easy to se that, in ̇𝛾, on one hand, the derivative of
the function 𝑓𝑃(𝑉𝑡𝑜𝑡) appears, and, on the other hand, the
derivative of [𝐵] = 𝐵/𝑉 is also present. These are long
and complicated expressions, the higher-order derivatives of
which are needed in the further steps.

Based on the above considerations, for the structural
identifiability analysis, we use the freely available GenSSI
[56, 57] software, which is able to handle complex expressions
with the help of computer-algebra methods. GenSSI imple-
ments iteratively the generating series method, as presented
in [58], with the help of identifiability tableaus, as described
in [55].

According to the results of this software, the parameter 𝑐𝑔
of the model is structurally globally identifiable, but neither
positive (structural global/local identifiability) nor negative
(structural nonidentifiability) results are obtained for other
parameters. This result is based on 7𝑡ℎ-order Lie-derivatives,
which has been proven to be the computational limit in our
case.

Nevertheless, let us discuss this topic a bit further
from the point of view of possible future measurements
with regard to the proposed model. In the recent years,
multiple imaging techniques have been developed, which
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Figure 8: Measured and simulated tumor volumes in the case of no
therapy.

allow the 3D reconstruction of vascular microstructures:
Doppler optical frequency domain imaging [29] and func-
tional photoacoustic microscopy [30] are used today already
in in vivo setups to map vascular networks, while dif-
fusible iodine-based contrast-enhanced computed tomog-
raphy [31] may be used in terminal experimental ani-
mals.

If these methods will be applicable in the case of
animals used in the experiments, total tumor volume 𝑉𝑡𝑜𝑡
will be accessible during measurements together with the
total vasculature volume 𝐵. Interpreted for our case, this
will mean that we will have two observables 𝑦1 = 𝑉𝑡𝑜𝑡
and 𝑦2 = 𝐵. If we rerun the structural identifiability
analysis with this new model output, we get the result that
𝑐𝑔, 𝑐𝑒V, [𝐵]𝑖𝑑, and 𝑐𝑛 are structurally globally identifiable
(and no result is obtained for other parameters, similar
to the previous case, so they might be or might be not
identifiable). In this case, the maximum order of the Lie-
derivatives, for which the computation was feasible, was the
6𝑡ℎ order.

The complete identifiability tableaus of the reducedmodel
are depicted in Figure 9. For the interpretation of these
tableaus, see [55] or the GenSSI UserGuide [56].

Based on the above, it may be suspected that the model
will have beneficial properties shall it be fitted for measure-
ments planned to be carried out in the foreseeable future.

3.4. Extension of the Model in order to Account for Combined
Therapy. In the clinical practice, antiangiogenic drugs are
often used together with conventional cytotoxic substances.
In this setup, while the cytotoxic agent enhances the degen-
eration/necrosis of tumor cells, the antiangiogenic drugs are
resposible for cutting the tumor from metabolic support via
the inhibition of angiogenesis. Several results have been pub-
lished recently corresponding to these combined therapies
[59, 60].

Models with predictive power regarding the efficiency of
combined therapies and model-based optimization of such
treatments are not prevalent in literature. Some initial results
on the optimization of combined therapies are described in
[61], using the model of [35].

As the proposed model is taking into account vasculature
and tumor cell dynamics in a differentiated way, it is able to
distinguish between qualitatively different inputs related to
different therapeutic agents. As a consequence, the proposed
modelmay be easily extended to consider not only angiogenic
drugs but also cytotoxic drugs. Let us consider the following
modified state-space model described in the following equa-
tions:

𝑑𝑉
𝑑𝑡 = 𝑐𝑔𝛾𝑉 − 𝑐𝑛𝑉𝑢 − 𝑐𝑐𝐶𝑉

𝐾𝐶 + 𝑉 (26)

𝑑𝑁
𝑑𝑡 = 𝑐𝑛𝑉𝑢 + 𝑐𝑐𝐶𝑉

𝐾𝐶 + 𝑉 (27)

𝑑𝐵
𝑑𝑡 = 𝑐𝑒V𝑉̇𝑡𝑜𝑡 + 𝑐V𝑇𝐵 (28)

𝑑𝑇
𝑑𝑡 = 𝑐𝑇𝑉𝑢𝑉 − 𝑞𝑇𝑇 − 𝑐ℎ 𝑇𝐼

𝐸𝐷50 + 𝐼 (29)

𝑑𝐼
𝑑𝑡 = 𝑢1 − 𝑞𝐼 𝐼

𝑘𝐼 + 𝐼 − 𝑘𝑉𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (30)

𝑑𝐶
𝑑𝑡 = 𝑢2 − 𝑞𝐶𝐶 (31)

First, the new equation (31) describes the time evolution
of the cytotoxic drug, the injection of which is described
by the term 𝑢2. To clarify notations, the injection of the
angiogenic inhibitor is denoted by 𝑢1 in this case. The
term 𝑞𝐶𝐶 describes the clearance of the cytotoxic drug; the
parameter 𝑞𝐶 denotes its clearance rate. In this case, we
assume a simple clearance (no saturation dynamics). The
reason for this is on one hand that this approach requires
less parameters, and on the other hand as long as the exact
identity of the cytotoxic drug is unknown, the dynamical
features of its clearance can not be precisely determined (of
course the clearance dynamics may be later refined).

The effect of the cytotoxic drug is modeled in this case as
an enzymatic reaction, in which the cytotoxic drug acts as an
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Figure 9: Complete identifiability tableaus of the reduced model in the case when the output is 𝑉𝑡𝑜𝑡 (a) and in the case when the output is[𝑉𝑡𝑜𝑡, 𝐵] (b).

enzyme, turning living cells to necrotic cells.Thismechanism
is described by the term

− 𝑐𝑐𝐶𝑉
𝐾𝐶 + 𝑉 (32)

in (26) and by the complementary term

𝑐𝑐𝐶𝑉
𝐾𝐶 + 𝑉 (33)

in (27). 𝑐𝑐 and 𝐾𝐶 are new parameters describing the effi-
ciency of the cytotoxic drug in enzymatic context assuming
Michaelis-Menten kinetics.

This way the effects of the two drugs are considered in
qualitatively different ways in the model. While the antian-
giogenic drug acts explicitly on the formation of new blood
vessels by binding to TAF and thus inhibiting angiogenesis,
the cytotoxic drug acts as an enzyme, driving living tumor
cells to necrosis, independent of the actual vascular state of
the tumor.

4. Conclusions and Future Work

In this article, we formulated a dynamic model of vascular
tumor growth, which accounts for the vasculature and TAF
concentration development of the tumor and thus is able
to reproduce the phenomenon of the angiogenic switch.
We validated the model against volume measurement data
originating from experiments on mice and found that the
model provides a good fit for tumor volume data in both
cases of the two analyzed therapies. The extension of the
model described in Section 3.4 makes the model capable of
accounting for qualitatively different effect of antiangiogenic
and cytotoxic drugs.

When comparing the proposed model to literature
results, we may state the following. Regarding the model in

[28] (considering the extended model described therein), the
proposed approach uses more state variables (5 vs 3) and
holdsmore parameters (12 versus 8) but describes vasculature
dynamics as well. This feature will allow us to fit the model
to dynamical vasculature data, hopefully available in the
foreseeable future, and thus get a more precise dynamical
representation of angiogenesis-dependent tumor growth and
its inhibition. Furthermore, the validity of the proposed
model compared to [28] seems better regarding the no-
therapy case.

Comparing the model described in the current article
to [35], we see that although the model described in [35]
accounts for vasculature dynamics as well, it uses more state
variables (7 versus 5) and significantly more parameters (22
versus 12). Furthermore, the model in [35] was fitted only
for measurement data originating from protocol 1, while the
proposed model has been validated against both protocol 1
and protocol 2. Similar to the model described in [35], the
model proposed in the current article also allows for the
analysis of combined therapies, as done in the article in [61].

Regarding future work, in the framework of the project
Tamed Cancer (ERC grant agreement number 679681),
animal experiments (mice) aiming to characterize the vas-
culature development during tumor growth are planned in
the near future. These experiments will provide reference
data for both vasculature volumes and tumor volumes,
so we will be able to fit the model in either dimension
against experimental data. This will allow further validation,
refinement, or recalibration of the model.

Experiments regarding the efficiency of various com-
bined therapies are also expected in the future, which will
serve as reference scenarios regarding the identification of the
extended model described in Section 3.4.

Once the model is identified and validated frommultiple
aspects, studies on therapy optimization in open-loop and
closed-loop setup will take place.
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Figure 10: Fitting the model to individual trajectories in the case of therapy 1: simulated output (with the parameters obtained from fitting
the model to the specific trajectory (𝜃𝑎𝑘𝑡), simulated output with nominal parameters (𝜃𝑛𝑜𝑚), and measured output.)
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Figure 11: Fitting the model to individual trajectories in the case of therapy 2: simulated output (with the parameters obtained from fitting
the model to the specific trajectory (𝜃𝑎𝑘𝑡), simulated output with nominal parameters (𝜃𝑛𝑜𝑚), and measured output.)

Appendix

In this appendix, we detail the fitting of the model to the
individual trajectories corresponding to single mice in the
case of either therapy 1 or therapy 2. 𝑉0 = 5 was assumed in
all cases. Figures 10(a)–10(e) depict the fit of themodel output
(𝑉𝑡𝑜𝑡) to the individual measured growth trajectories in the
case of therapy 1, while Figures 11(a)–11(i) depict the fit of the

model output to the individual measured growth trajectories
in the case of therapy 2.

In every case, the simulated output assuming the nominal
parameters detailed in Table 2 is also depicted to serve as
basis of comparison. Tables 8 and 9 summarize the parameter
values resulting in the case of fitting to individual trajectories
in the case of therapy 1 and therapy 2, respectively.
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Table 8: Model parameter values resulting from fitting to individual trajectories in the case of therapy 1 (mice C1-C5).

Parameter C1 C2 C3 C4 C5 Scale
[𝐵]𝑖𝑑 0.0336 0.0127 0.0289 0.0374 0.0246
𝑐𝑔 1.4336 1.4454 1.55 1.435 1.4154
𝑐𝑒V 1.4403 1.9642 1.4604 2.2084 1.2167 10−3
𝑐𝑛 0.0838 0.1684 0.0737 0.0739 0.0791
𝑐V 4.4337 5.5455 10.2252 4.4032 4.4909
𝑐𝑇 1.8021 0.5612 0.7111 1.9291 1.4795 10−2
𝑞𝑇 0.2762 0.3917 0.2517 0.1173 0.3162
𝑐ℎ 0.1995 0.1637 0.1701 0.2114 0.1369

Table 9: Model parameter values resulting from fitting to individual trajectories in the case of therapy 2 (mice E1-E9).

Par. E1 E2 E3 E4 E5 E6 E7 E8 E9 Scale
[𝐵]𝑖𝑑 0.0322 0.0393 0.0331 0.0184 0.039 0.0179 0.0422 0.0223 0.0331
𝑐𝑔 1.622 0.9568 1.436 1.433 1.408 1.442 1.634 1.609 1.432
𝑐𝑒V 1.463 2.01 1.373 2.026 1.195 2.004 1.173 0.9805 0.6332 10−3
𝑐𝑛 0.0933 0.0552 0.1056 0.0567 0.0618 0.1236 0.0933 0.0425 0.1056
𝑐V 17.34 18.67 18.08 18.66 18.66 18.08 18.08 18.65 18.08
𝑐𝑇 0.444 0.6039 0.4612 0.4512 0.923 0.1138 0.6959 0.335 0.9693 10−2
𝑞𝑇 0.2834 0.2657 0.4071 0.3201 0.3063 0.4105 0.3123 0.3311 0.4066
𝑐ℎ 0.2449 0.1011 0.2605 0.2546 0.259 0.2496 0.1749 0.2643 0.2603

Table 10: Standard deviation (STD) of the estimated parameters,
regarding fitting to individual trajectories compared to their nomi-
nal value in %.

Parameter STD (%)
𝑐𝑔 10.96
[𝐵]𝑖𝑑 23.40
𝑐𝑒V 39.60
𝑐𝑛 33.33
𝑐V 52.64
𝑐𝑇 47.20
𝑞𝑇 31.40
𝑐ℎ 32.57

Table 10 holds the standard deviation (STD) values of
the estimated parameters obtained by fitting the model
to individual trajectories. Let us emphasize that, in the
case of these estimates, only one of the protocols was
considered for the fitting, namely, the one from which the
actual trajectory originates. Naturally, it is a significantly
harder task to find a parameter set for the model which
describes the response to both protocols simultaneously (as
in Table 2). Parameters obtained by fitting to single volume
trajectories are potentially unable to appropriately describe
the response to the two protocols at the same time. The
relatively high STD values are not surprising in the light of
the significant differences among individual tumor growth
trajectories.
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Supplementary Materials

simulate MMAGS.m is the file that performs the simulation
of the model in MATLAB; it uses the following files:
inj fnc prot 1 discrete.m, description of the injection
function in the case of therapy 1; inj fnc prot 2 discrete.m,
description of the injection function in the case
of therapy 2; f gamma.m, implementation of the
function \gamma detailed in the article (see (7)).
sim tumor dynamics MMAGS 2 discrete.m is one central
file that calls simulate MMAGS.m; it has two important input
parameters, flag plot details, may be 0 or 1, if it is one, more
figures are generated, protocol - can be 0, 1 or 2 depending
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on the actual simulated protocol (therapy); it depicts the
simulation results and compares them with experimental
data (Figure 3 in the manuscript). Experimental data is
defined inside the file. Corresponding to protocol 1, the
variable “adatsor” holds the vector of the experimental data.
Corresponding to protocol 2, the variable “adatsor 2” holds
the vector of the experimental data. In both cases, the data
corresponding to various mice are integrated in one vector
(see its decomposition later in the file. In the case of protocol
1, the variable sote data holds the decomposed version; in
the case of protocol 2, the variables “Eger1” and so forth hold
the decomposed data). sim compare discrete 1.m performs
the simulations in the case of no therapy, protocol 1, and
protocol 2 and depicts the results corresponding to the 3
different cases in figures (Figures 4–7 in the manuscript).
(Supplementary Materials)
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Observability is a modelling property that describes the possibility of inferring the internal state of a system from observations
of its output. A related property, structural identifiability, refers to the theoretical possibility of determining the parameter values
from the output. In fact, structural identifiability becomes a particular case of observability if the parameters are considered as
constant state variables. It is possible to simultaneously analyse the observability and structural identifiability of a model using the
conceptual tools of differential geometry. Many complex biological processes can be described by systems of nonlinear ordinary
differential equations and can therefore be analysed with this approach. The purpose of this review article is threefold: (I) to serve
as a tutorial on observability and structural identifiability of nonlinear systems, using the differential geometry approach for their
analysis; (II) to review recent advances in the field; and (III) to identify open problems and suggest new avenues for research in this
area.

1. Introduction

Amodel is observable if it is theoretically possible to infer its
internal state by observing its output. Model parameters can
be considered as constant state variables. The particular case
of parameter observability is called structural identifiability.
Both concepts are structural in the sense that they depend
only on the model equations; that is, they are completely
determined by the system dynamics and output definition.
They are not affected by limitations related to the frequency
or accuracy of the experimental measurements, in contrast to
the related concept of practical identifiability or estimability.

The concept of observability was introduced by Kalman
in 1960 for linear time-invariant systems [1, 2]. Conditions
for checking observability of nonlinear systems were soon
developed by several authors [3–7]. At the same time, the
interest in parametric identifiability was growing among
researchers using biological models, especially in biomedical
applications. As a result, the concept of structural identifiabil-
ity was introduced in 1970, whenBellman and Åström coined
the term and presented the Laplace transform method for its
study in the context of (linear) compartmental models [8].

Both concepts, observability and structural identifiability,
are applicable to dynamic models of any kind: electrical,
chemical, mechanical, biological, etc. Observability analysis,
as well as the related question of observer design, has been
and continues to be frequently investigated by systems and
control theorists. In turn, researchers working in biolog-
ical modelling (e.g., in mathematical biology and, more
recently, in the systems biology community) have more often
addressed structural identifiability issues. This is due to the
fact that biological applications typically have more experi-
mental limitations than engineering ones in terms of which
measurements are feasible, making parameter identification
a more challenging problem and calling for a deeper study of
parametric identifiability issues and methods.

Observability and structural identifiability play a central
role in system identification. There are a number of classic
books on the subject, such as the ones byWalter and Pronzato
[9] and Ljung [10]. In the context of biological modelling a
very complete and recent reference is the book by DiStefano
[11], which covers thoroughly the topic of identifiability, both
from structural and practical points of view. The interested
reader is also referred to [12], which reviews the different
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types of identifiability and related concepts, and to [13,
14], which deal specifically with structural identifiability. In
a different context, Chatzis and coworkers have reviewed
the observability and structural identifiability of nonlinear
mechanical systems [15].

The present paper reviews observability and structural
identifiability concepts and tools, with the aim of facilitating
their application to biological models. Instead of attempting
to discuss all the existing methodologies, it focuses on
methods that adopt a differential geometry approach [16–18].
These properties may also be analysed with other symbolic
approaches, such as power series [19–21], differential algebra
[22–26], or others [27–29], to name just a few, as well as with
seminumerical [30, 31] or numerical approaches [32, 33]. A
comparison or discussion of the aforementioned methods is
out of the scope of the present paper; the interested reader is
again referred to [12–14, 34].

This manuscript begins by motivating the study in
Section 2, illustrating the possible consequences of unob-
servability and unidentifiability. In Section 3 these concepts
are analysed with the differential geometry approach, which
provides a unified view of observability and structural identi-
fiability and can be applied to a very general class of nonlinear
systems. Section 4 reports recent developments in this area,
and Section 5 concludes by suggesting some open problems
as possible research directions.

2. Motivation: Implications of Unobservability
and Unidentifiability in Biological Models

The importance of structural identifiability analysis has been
recently stressed in different areas of biological modelling,
such as animal science [36], pharmacodynamics [37], epi-
demiology [38], environmental modelling [39], physiology
[40], neuroscience [41], oncology [42], and many more. On
the other hand, assessing observability and structural identi-
fiability can be difficult even for relatively small systems and
becomes increasingly complicated as the model complexity
increases. Furthermore, the theoretical foundations of the
analyses have some aspects that are not fully studied yet.
These reasons help explain why some modellers are reluctant
to analyse these properties of their models [11], which might
be understandable taking into account the fact that even the
need of determining parameter values has been questioned
in the context of biological modelling [43]. However, such
analysis is worth the effort, since lack of identifiability and/or
observability can compromise the ability of a model to
provide biological insight [36, 37, 44–46]. For example, one
of the possible purposes of a model is for inferring the values
of certain parameters of interest; in such case, identifiability
is obviously desirable per se. Alternatively, the main purpose
of the model may be to predict the dynamic behaviour of
unmeasured states; in this case one is more interested in
state observability than in parameter identifiability (although
issues with the latter property may compromise the former).

As an example, consider the model of a possible glucose
homeostasis mechanism depicted in Figure 1, which was pre-
sented in [35] and analysed in [46].This so-called 𝛽IGmodel

describes the regulation of plasma glucose concentration (G)
bymeans of insulin (I), which is secreted by pancreatic𝛽 cells.
Themodel consists of three state variables (𝛽,I,G) whose time
courses are defined by nonlinear ordinary differential equa-
tions (ODEs) with five parameters (𝑐, 𝑠𝑖, 𝑝, 𝛼, 𝛾). For the sake
of the exercise, let us assume that glucose and 𝛽-cell mass are
the measured outputs. In this case, if the model parameters
are unknown, 𝑝 and 𝑠𝑖 are structurally unidentifiable. Figure 1
illustrates this fact by showing that changes in the model
outputs (i.e., glucose concentration and𝛽-cell mass) resulting
from halving the value of 𝑠𝑖 can be compensated by doubling
the value of 𝑝. Therefore, it is not possible to distinguish
between two parameter vectors of the form (𝑠𝑖 , 𝑝) and (𝑠𝑖/2, 2⋅𝑝).This also entails that insulin is an unobservable state, since
the impossibility of determining the true parameter vector
leads to the impossibility of determining which of the time
courses shown in the lower left plot of Figure 1 is the true
one.Therefore, themodel cannot be used for inferring insulin
concentration frommeasurements of the other variables.This
limitation can be overcome if the value of 𝑝 or of 𝑠𝑖 is known.

Such lack of structural identifiability can have important
consequences. A nice illustration is given in a recent work
[45], where Procopio et al. presented a model of the release
of a cardiac damage biomarker, cardiac troponin T, with
the purpose of diagnosing acute myocardial infarction in
a clinical setting. After the authors realized that the first
version of the model was structurally unidentifiable, which
could potentially lead to wrong conclusions, they removed
the redundancies in their model and obtained an equivalent
one that was structurally identifiable.

Structural unidentifiability is related to unobservability,
as shown in the 𝛽IG model example, in which the inability
to estimate 𝑝 leads to wrong predictions of 𝐼. However,
unidentifiability does not always entail unobservability. As
a trivial example, consider the case in which the value
of 𝑝 is known. Then the 𝛽IG model becomes structurally
identifiable and observable. If we now modify the model by
replacing parameter 𝑐 with the sum of two new parameters
(𝑐 󳨀→ 𝑐1 + 𝑐2), the two new parameters would obviously be
structurally unidentifiable, but the unmeasured state 𝐼 would
remain observable. Therefore, it is desirable to analyse both
the structural identifiability and observability of a model to
decrease the possibility of drawing false conclusions from it.

Before concluding this section, it should be noted that
a structurally identifiable model may nevertheless be prac-
tically unidentifiable, that is, the numerical estimates of its
parameters may contain large errors due to insufficient or
bad quality data. A recent example of this scenario is given
in [44], where different models of cancer chemotherapy
were analysed. The results showed that, although the mod-
els were structurally identifiable, they were not practically
identifiable. This deficiency could lead to infer incorrect
cell cycle distributions and, as a result, to the choice of
suboptimal therapies. It is thus reasonable to ask: if a model
can be structurally identifiable and yet unidentifiable in
practice, why should we care about analysing its structural
identifiability in the first place? The answer is that practical
and structural unidentifiability have different causes and
also different remedies. Practical unidentifiability may be
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Figure 1: Illustration of observability and structural identifiability issues. Top: diagram and equations of the ‘𝛽IG model’ of the glucose-
insulin system [35]. If glucose concentration (G) and 𝛽-cell mass are measured, the parameters 𝑝 and 𝑠𝑖 are structurally unidentifiable: the
bottom plots show that different combinations of 𝑝 and 𝑠𝑖 values yield identical curves of G and 𝛽, so it is not possible to distinguish between
them as long as the product 𝑝 ⋅ 𝑠𝑖, which is structurally identifiable, remains constant. Likewise, in this case insulin concentration (I) is an
unobservable state: it is not possible to determine which of the two time courses of I shown in the lower left plot is the true one.

surmounted by using more informative data for calibration,
but structural unidentifiabilities cannot be removed in this
way (unless the new data involves modifying the output
of the model, which strictly speaking entails modifying
the model structure). Any attempt to remove a structural
unidentifiability by incorporating more experimental data to
the calibration (e.g., by sampling more densely or for a longer
time) is doomed to fail, leading to a loss of resources and time.
Practical identifiability analysis is not covered in this review;
the interested reader is referred to [9, 11, 12].

In summary, it is advisable to analyse the observability
and structural identifiability of a model before attempting to
obtain insights from it. If this analysis reveals deficiencies,
actions must be taken depending on the intended application
of the model.

For example, if the intended application is for determin-
ing the value of a parameter that turns out to be structurally
unidentifiable, it is necessary to eliminate this structural iden-
tifiability. There are several ways of achieving this. Sometimes
it may be possible to determine the unidentifiable parameter
by direct measurements, either of the parameter of interest
or of the parameter(s) that are correlated with it. However,
direct measurements of parameters are seldom possible. It
is often more practical to measure additional state variables,
which may make the model (or at least the parameter of
interest) structurally identifiable; this possibility should be
analysed before performing the experiments. Finally, if the
experimental setup cannot bemodified, or if it is not practical
to obtain new experimental data, one can try to modify

the model structure by reducing the number of parameters.
This can be achieved by fixing some parameters to values
taken from the literature or bymerging several unidentifiable
parameters into an identifiable one.

If the intended application of themodel is for determining
the system states, as opposed to the parameters, a structurally
unidentifiable model may still be useful—as mentioned
previously—as long as the states of interest are observable. In
this case, lack of observability may be remedied in a similar
way as structural identifiability.

3. Background: Observability and
Structural Identifiability

To define observability it is necessary to introduce the notion
of distinguishable states.

Definition 1. Let 𝑀 be a model with internal state 𝑥 and
measurable output 𝑦. Let 𝑦𝑥0(𝑡) denote the time evolution of
the model output when started from an initial state 𝑥0 at 𝑡0.
Two states 𝑥1 and 𝑥2 are indistinguishable if 𝑦𝑥1(𝑡) = 𝑦𝑥2(𝑡)
for all 𝑡 ≥ 𝑡0. The set of states that are indistinguishable from𝑥1 is denoted by 𝐼(𝑥1).

A model is observable if it is possible to distinguish its
internal state from any other state, that is as follows.

Definition 2. Amodel𝑀 is observable at 𝑥0 if 𝐼(𝑥0) = 𝑥0.
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Observability describes the possibility of determining
the current state from present and future measurements. A
similar concept, reconstructability, refers to determining the
current state from present and past measurements.

3.1. Observability of Linear Systems. For illustration purposes,
this subsection presents the special case of linear time-
invariant (LTI) systems, whose equations can be written as

𝑀𝐿 : {{{{{{{{{
𝑥̇ (𝑡) = 𝐴 (𝜃) ⋅ 𝑥 (𝑡) + 𝐵 (𝜃) ⋅ 𝑢 (𝑡) ,𝑦 (𝑡) = 𝐶 (𝜃) ⋅ 𝑥 (𝑡) ,𝑥0 = 𝑥 (𝑡0, 𝜃) (1)

where 𝜃 ∈ R𝑞 is the parameter vector, 𝑢(𝑡) ∈ R𝑟 the input
vector, 𝑥(𝑡) ∈ R𝑛 the state variable vector, and 𝑦(𝑡) ∈ R𝑚 the
output vector. 𝐴(𝜃), 𝐵(𝜃), and 𝐶(𝜃) are constant matrices of
dimensions 𝑛×𝑛, 𝑛×𝑟, and𝑚×𝑛, respectively.Thedependence
on 𝜃may be dropped for ease of notation.

Assessing the observability of𝑀𝐿 amounts to determin-
ing whether it is possible to infer its internal state, 𝑥, by
observing its output, 𝑦. An intuitive way of obtaining a
condition for checking observability is the following. The
available knowledge consists of the output and its derivatives;
that is,𝑦 = 𝐶 ⋅ 𝑥𝑦̇ = 𝐶 ⋅ 𝑥̇ = 𝐶 ⋅ 𝐴 ⋅ 𝑥 + 𝐶 ⋅ 𝐵 ⋅ 𝑢𝑦̈ = 𝐶 ⋅ 𝐴 ⋅ 𝑥̇ + 𝐶 ⋅ 𝐵 ⋅ 𝑢̇ == 𝐶 ⋅ 𝐴2 ⋅ 𝑥 + 𝐶 ⋅ 𝐴 ⋅ 𝐵 ⋅ 𝑢+ 𝐶 ⋅ 𝐵 ⋅ 𝑢̇ ...𝑑𝑖𝑦𝑑𝑡𝑖 = 𝐶 ⋅ 𝐴𝑖 ⋅ 𝑥 + ℎ(𝐴, 𝐵, 𝐶, 𝑢, 𝑢̇, 𝑢̈, . . . , 𝑑𝑖−1𝑢𝑑𝑡𝑖−1 )

(2)

where ℎ is a knownmatrix function. Setting 𝑖 = 𝑛 and writing
the above equations in matrix form leads to

(((((
(

𝑦̇𝑦̈𝑦...𝑑(𝑛−1)𝑦𝑑𝑡(𝑛−1)
)))))
)

=((((
(

𝐶𝐶 ⋅ 𝐴𝐶 ⋅ 𝐴2...𝐶 ⋅ 𝐴𝑛−1
))))
)

⋅ 𝑥 + ⋅ ⋅ ⋅

+ ℎ(𝐴, 𝐵, 𝐶, 𝑢, 𝑢̇, 𝑢̈, . . . , 𝑑𝑛−2𝑢𝑑𝑡𝑛−2 )== O
𝐿 ⋅ 𝑥

+ ℎ(𝐴, 𝐵, 𝐶, 𝑢, 𝑢̇, 𝑢̈, . . . , 𝑑𝑛−2𝑢𝑑𝑡𝑛−2 )

(3)

where the linear observability matrix has been introduced,
O𝐿 = (𝐶|𝐶 ⋅ 𝐴|𝐶 ⋅ 𝐴2| . . . |𝐶 ⋅ 𝐴𝑛−1)𝑇. If O𝐿 is invertible,

one can uniquely obtain 𝑥 from the knowledge of 𝑦 and its
derivatives, as long as rank(O𝐿) = 𝑛. This is known as the
linear observability rank condition.

Theorem 3. Linear Observability Rank Condition. Given a
linear time-invariant model𝑀𝐿 as defined in (1), a necessary
and sufficient condition for complete observability is that
rank(O𝐿) = 𝑛, where O𝐿 = (𝐶|𝐶 ⋅ 𝐴|𝐶 ⋅ 𝐴2| . . . |𝐶 ⋅ 𝐴𝑛−1)𝑇
[2].

“Complete” observability means that all the model states
can be inferred from observations of the output.

3.2. Observability of Nonlinear Systems. Let us now consider
nonlinear ODE models. In their most general form they can
be written as

𝑀𝑁𝐿 : {{{{{{{{{
̇𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃) ,𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝜃) ,𝑥0 = 𝑥 (𝑡0, 𝜃) (4)

where 𝑓 and 𝑔 are analytic vector functions. A special case of
(4) is that of nonlinear affine-in-the-input systems:

𝑀aff : {{{{{{{{{
̇𝑥 (𝑡) = 𝑓1 (𝑥 (𝑡) , 𝜃) + 𝑓2 (𝑥 (𝑡) , 𝜃) ⋅ 𝑢 (𝑡) ,𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝜃) ,𝑥0 = 𝑥 (𝑡0, 𝜃) (5)

Shortly after Kalman’s introduction of the concept of
observability [1, 2], several researchers worked on its applica-
tion to nonlinear systems of the type defined in (4) and (5). As
a result, sufficient and/or necessary conditions for nonlinear
observability were obtained [3–6], allowing to extend the
observability rank condition in this context. For nonlinear
models, unlike for LTI models like (1), the derivatives of the
output cannot be expressed in terms of the 𝐴, 𝐵, 𝐶 arrays.
It is therefore necessary to define a nonlinear version of the
observability matrix, O𝑁𝐿; to this end Lie derivatives are
used.

Definition 4. The Lie derivative of 𝑔(𝑥) with respect to 𝑓(𝑥)
is defined by

𝐿𝑓𝑔 (𝑥) = 𝜕𝑔 (𝑥)𝜕𝑥 𝑓 (𝑥) . (6)

Higher order Lie derivatives can be recursively calculated
as

𝐿2𝑓𝑔 (𝑥) = 𝜕𝐿𝑓𝑔 (𝑥)𝜕𝑥 𝑓 (𝑥) ,...
𝐿𝑖𝑓𝑔 (𝑥) = 𝜕𝐿𝑖−1𝑓 𝑔 (𝑥)𝜕𝑥 𝑓 (𝑥) .

(7)



Complexity 5

It can be noticed from (3) that the linear observability
matrix, O𝐿, is the partial derivative of the derivatives of the
output with respect to the states; that is,

O
𝐿 =((((

(

𝐶𝐶 ⋅ 𝐴𝐶 ⋅ 𝐴2...𝐶 ⋅ 𝐴𝑛−1
))))
)

= 𝜕𝜕𝑥(((
(

𝑦̇𝑦̈𝑦...𝑦(𝑛−1)
)))
)

(8)

In a nonlinear model such as (4) with constant input,𝑢(𝑡) = 𝑢, the 𝑖𝑡ℎ Lie derivative of the output function 𝑔(𝑥)
coincides with the 𝑖𝑡ℎ time derivative of 𝑦(𝑡), i.e., 𝑦(𝑖)(𝑡) =𝐿𝑖𝑓𝑔(𝑥). Thus, Lie derivatives can be used to calculate O𝑁𝐿

for nonlinear models with constant inputs as follows:

O
𝑁𝐿 (𝑥) =((((((((

(

𝜕𝜕𝑥𝑦 (𝑡)𝜕𝜕𝑥 𝑦̇ (𝑡)𝜕𝜕𝑥 𝑦̈ (𝑡)...𝜕𝜕𝑥𝑦(𝑛−1) (𝑡)
))))))))
)

=((((((((
(

𝜕𝜕𝑥𝑔 (𝑥)𝜕𝜕𝑥 (𝐿𝑓𝑔 (𝑥))𝜕𝜕𝑥 (𝐿2𝑓𝑔 (𝑥))...𝜕𝜕𝑥 (𝐿𝑛−1𝑓 𝑔 (𝑥))
))))))))
)

(9)

The nonlinear version of the observability rank condition
can be stated as follows.

Theorem 5. Nonlinear Observability Rank Condition. If the
model 𝑀𝑁𝐿 given by (4) with constant input 𝑢 satisfies
rank(O𝑁𝐿(𝑥0)) = 𝑛, where O𝑁𝐿 is defined by (9), then it is
(locally) observable around 𝑥0 [4, 18].

Two remarks are in order. First, it should be noted that the
nonlinear observability rank condition (ORC) is a sufficient,
but not strictly necessary, condition for nonlinear observabil-
ity (unlike the linear case, in which the ORC is both sufficient
and necessary). In the nonlinear case, the ORC is “almost
necessary” in the sense that, if 𝑀𝑁𝐿 is locally observable
around 𝑥0, then rank(O𝑁𝐿(𝑥0)) = 𝑛 for an open dense subset
of the state space [18]. This is a rather technical distinction,
and in practice a failure to comply with the ORC is often
considered as a very strong indication of unobservability.
Second, it should also be noted that the ORC determines local

observability: if a model satisfies the ORC, it is possible to
distinguish between two adjacent states, but there may still be
distant states that are indistinguishable. A locally observable
model is often—although not always—globally observable
too.

3.3. Structural Local Identifiability as Observability. In this
paper structural identifiability is considered as a particular
case of observability. As noted in the preceding Section 3.2,
nonlinear observability is a local concept, which means
we will study structural local identifiability. The analysis of
structural global identifiability requires other approaches [12–
14]. Note however that the definitions provided here do
not prevent a locally identifiable model to be also globally
identifiable, and this will actually be the case in many
practical applications.

Definition 6. A parameter 𝜃𝑖 in a model 𝑀𝑁𝐿 given by (4)
is structurally locally identifiable (s.l.i.) if for almost any
parameter vector 𝜃∗ ∈ R𝑞 there is a neighbourhood N(𝜃∗)
such that the following property holds:𝜃 ∈N (𝜃∗)

and 𝑔 (𝑥, 𝜃) = 𝑔 (𝑥, 𝜃∗) 󳨐⇒𝜃𝑖 = 𝜃∗𝑖 (10)

Definition 7. A parameter 𝜃i is structurally unidentifiable
(s.u.) if (10) does not hold in any neighbourhood of 𝜃∗.
Definition 8. Amodel𝑀𝑁𝐿 is s.l.i. if all its parameters are s.l.i.

Definition 9. A model 𝑀𝑁𝐿 is s.u. if at least one of its
parameters is s.u.

Structural identifiability can be considered as a particular
case of observability by considering the parameters as state
variables with zero dynamics [31, 47–50]. The augmented
state variable vector is 𝑥 = [𝑥𝜃] (11)

Similar to the nonlinear observability matrix of (9), it is
possible to define an augmented nonlinear observability-
identifiability matrix, O𝑁𝐿𝐼 (𝑥), as

O
𝑁𝐿
𝐼 (𝑥) =((((((((

(

𝜕𝜕𝑥𝑔 (𝑥)𝜕𝜕𝑥 (𝐿𝑓𝑔 (𝑥))𝜕𝜕𝑥 (𝐿2𝑓𝑔 (𝑥))...𝜕𝜕𝑥 (𝐿𝑛+𝑞−1𝑓 𝑔 (𝑥))
))))))))
)

(12)

Theorem 10. Nonlinear Observability-Identifiability Con-
dition (OIC). If a model 𝑀𝑁𝐿 given by (4) satisfies
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rank(O𝑁𝐿𝐼 (𝑥0)) = 𝑛 + 𝑞, with O𝑁𝐿𝐼 (𝑥0) given by (12), then it
is (locally) observable and identifiable in a neighbourhood
N(𝑥0) of 𝑥0.
Remark 11. Identifiability of individual parameters: if theOIC
condition is fulfilled, all the parameters of𝑀𝑁𝐿 are s.l.i. If the
OIC does not hold,𝑀𝑁𝐿 is s.u. and at least some parameter(s)
are s.u. (and/or some states are unobservable). Since each
column in O𝑁𝐿𝐼 corresponds to the partial derivative with
respect to a state or parameter, it is possible to determine
which parameters (states) are structurally unidentifiable
(unobservable) by removing the corresponding column and
recalculating rank(O𝑁𝐿𝐼 ). If deleting the 𝑖𝑡ℎ column does
not change rank(O𝑁𝐿𝐼 ), then the 𝑖𝑡ℎ parameter (state) is
structurally unidentifiable (unobservable) [47]. We can thus
define a Structural Identifiability Condition for a parameter
as follows:

Theorem 12. Structural Identifiability Condition (SIC). Given
a model 𝑀𝑁𝐿 defined by (4), its 𝑖𝑡ℎ parameter 𝜃𝑖 is struc-
turally locally identifiable in a neighbourhood N(𝑥0) of 𝑥0 if
rank(O𝑖∗𝐼 (𝑥0)) < rank(O𝐼(𝑥0)), where O𝐼(𝑥0) is the O𝑁𝐿𝐼 (𝑥0)
defined in (12), and O𝑖∗𝐼 (𝑥0) is the array that results from
removing the column corresponding to 𝜕/𝜕𝜃𝑖 from O𝐼(𝑥0).
3.4. Example: Observability and Structural Identifiability
Analysis of a Nonlinear Model. The approach described in
Section 3.3 is demonstrated here by applying it to the non-
linear model used as motivating example in Section 2. This
case study was briefly described in Section 2 and Figure 1,
which shows its dynamic equations. It consists of 𝑛 = 3 states,𝑥 = [𝐺, 𝛽, 𝐼], 𝑚 = 2 outputs, 𝑦 = [𝐺, 𝛽], 𝑞 = 5 parameters,𝜃 = [𝑝, 𝑠𝑖, 𝛾, 𝑐, 𝛼], and 𝑟 = 1 input, 𝑢. The augmented
vector consisting of the states and parameters is 𝑥 = [𝐺, 𝛽, 𝐼,𝑝, 𝑠𝑖, 𝛾, 𝑐, 𝛼].

The observability and structural identifiability of this
system can be analysed with the observability-identifiability
condition (OIC) of Theorem 10. To this end one must build
the O𝑁𝐿𝐼 matrix defined in (12). The first two rows in O𝑁𝐿𝐼
correspond to the partial derivatives of the output function
with respect to the states and parameters; since the output is𝑦 = 𝑔(𝑥) = [𝐺, 𝛽], the first two rows of O𝑁𝐿𝐼 are𝜕𝐺𝜕𝑥 = [1, 0, 0, 0, 0, 0, 0]𝜕𝛽𝜕𝑥 = [0, 1, 0, 0, 0, 0, 0] (13)

Thematrix made up of the two rows above has rank equal
to two. Subsequent rows are calculated with Lie derivatives
as defined in (6) and (7). In principle, 𝑛 + 𝑞 − 1 = 7
Lie derivatives must be symbolically calculated. However, in
practice it may be possible to stop the calculation earlier: if
the rank of the matrix does not increase after the addition of
a new derivative, it is not necessary to calculate higher order
derivatives since they will not modify the rank.

The first Lie derivative is obtained as𝐿𝑓𝑔 (𝑥) = 𝜕𝑔 (𝑥)𝜕𝑥 𝑓 (𝑥)

= ( 𝑢 + 𝑢0 − 𝑥1 ⋅ (𝑝4 + 𝑝2 ⋅ 𝑥3)𝑥2 ⋅ ( 1.4583 ⋅ 10−5(8.4/𝑥1)1.7 + 1 − 1.7361 ⋅ 10−5(𝑥1/4.8)8.5 + 1))
(14)

Thus, the third and fourth rows of O𝑁𝐿𝐼 are𝜕𝜕𝑥 (𝐿𝑓𝑔 (𝑥))= (O3,1 0 O3,3 0 O3,5 0 O3,7 0
O4,1 O4,2 0 0 0 0 0 0) (15)

where

O3,1 = −𝑐 − 𝑠𝑖 ⋅ 𝑥3
O3,3 = −𝑠𝑖 ⋅ 𝑥1
O3,5 = −𝑥1 ⋅ 𝑥3
O3,7 = −𝑥1
O4,1 = 3.0743 ⋅ 10−5 ⋅ 𝑥2 ⋅ (𝑥1/4.8)7.5((𝑥1/4.8)8.5 + 1)2

− 0.0052 ⋅ (8.4/𝑥1)0.7(25 ⋅ 𝑥21 ⋅ (8.4/𝑥1)1.7 + 1)2
O4,2 = 1.4583 ⋅ 10−5(8.4/𝑥1)1.7 + 1 − 1.7361 ⋅ 10−5(𝑥1/4.8)8.5 + 1

(16)

By adding the two rows corresponding to (𝜕/𝜕𝑥)(𝐿𝑓𝑔(𝑥)), the rank of O𝑁𝐿𝐼 increases from two to
three. Proceeding in the same manner, the rank of the matrix
increases with every additional Lie derivative until it stops:
it is equal to 7 when O𝑁𝐿𝐼 is built with both 5 and 6 Lie
derivatives. Thus with 6 derivatives we know that the model
has some observability/identifiability issues, since its matrix
does not have full rank.

At this point we can determine the observability of each
state and the structural identifiability of each parameter using
the procedure described in Remark 11. This yields that the
unmeasured state 𝐼 is not observable, and that there are two
s.u. parameters (𝑝, 𝑠𝑖) and three s.l.i. parameters (𝛾, 𝑐, 𝛼). It
can be noticed that multiplying by 𝑠𝑖 the dynamic equation
of 𝐼 shown in Figure 1 leads to a modified model in which
the third state is (𝑠𝑖 ⋅ 𝐼) instead of 𝐼, and parameter 𝑝 only
appears in the equations as part of the product 𝑠𝑖 ⋅ 𝑝. This
model formulation highlights the fact that only the products𝑠𝑖 ⋅ 𝑝 and 𝑠𝑖 ⋅ 𝐼 are observable (identifiable).
4. Recent Developments

4.1. Computational Implementations of the Rank Conditions.
The conditions described in Section 3 involve building
observability (O𝑁𝐿) or observability-identifiability matrices
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(O𝑁𝐿𝐼 ) and calculating their rank. Building these arrays
involves symbolic calculations, which can be performed
in environments such as Mathematica (Wolfram Research,
Champaign, IL, USA), MATLAB (MathWorks, Natick, MA,
USA), or MAPLE (Maplesoft, Waterloo, ON, Canada). Some
software tools provide advanced implementations of these
calculations.

August and Papachristodoulou [49] used semidefinite
programming to evaluate the OIC (Theorem 10). They used
SOSTOOLS [51], a free MATLAB toolbox that performs a
sum of squares decomposition. This technique allows assess-
ing identifiability for all parameter values within an interval;
however, the computational cost of the rank calculation
quickly becomes high as the problem size increases, which
hinders the applicability of this method to medium-to-large
models.

Another MATLAB tool is the STRIKE-GOLDD toolbox
[52], publicly available software that analyses structural iden-
tifiability and observability using the OIC. It includes options
such as performing partial analyses and decomposing the
models, which can be helpful for analysing large models.

For rational systems, the Exact Arithmetic Rank (EAR)
method is a numerical alternative for calculating the rank. It
is based on an algorithm originally presented by Sedoglavic
[31], which was extended and implemented in Mathematica
by Jirstrand and coworkers [30].

4.2. Accessibility and the Role of Initial Conditions. The rank
conditions ofTheorems 5 and 10 provide results that are valid
for “almost all” values of the variables (state and parameter
vectors), that is, for all possible values except for a set of
measure zero (a “thin set”). Consequently, for specific values
there may be loss of identifiability. This was pointed out by
Saccomani et al. [53, 54], who analysed this phenomenon
with a differential algebra approach, tracing its cause to a loss
of accessibility from certain initial conditions. Accessibility,
also called reachability, is a property that describes the ability
to move a system to any state in a neighbourhood of the
initial one. Saccomani and coworkers noted that a loss of
accessibility from specific initial conditions could lead to loss
of structural identifiability.

This matter has been recently approached from the
differential geometry viewpoint. In [55] it was remarked that
loss of accessibility is not the only possible cause of loss
of structural identifiability from specific initial conditions:
this phenomenon can take place even for models that are
not accessible from generic initial conditions. Furthermore,
it was also noted that a decrease in rank(O𝑁𝐿𝐼 ) at a specific
initial condition 𝑥(0) does not necessarily result in a loss of
structural identifiability, even if the system is started at that
initial condition. In [55] a method for finding potentially
problematic vectors was also suggested, although it scales up
poorly with system size.

4.3. The Role of Inputs. The methodology presented in
Section 3 assumes that the input vector 𝑢 is known and
constant. Obviously, the same formulation can account for
the case of unknown constant inputs simply by considering

them as additional parameters, which are unknown and
constant by definition. For known, time-varying inputs that
are differentiable functions of time, a differential algebra
approach would still be valid. However, the differential geom-
etry procedure described in Section 3 needs to be extended
in order to cope with this case. To this end it has recently
been suggested to use extended Lie derivatives [56], which
are defined as follows:

Definition 13. The extended Lie derivative is [30]

𝐿𝑓𝑔 (𝑥) = 𝜕𝑔 (𝑥)𝜕𝑥 𝑓 (𝑥, 𝑢) + 𝑗=∞∑
𝑗=0

𝜕𝑔 (𝑥)𝜕𝑢(𝑗) 𝑢(𝑗+1) (17)

where 𝑢(𝑗) is the 𝑗𝑡ℎ derivative of the input 𝑢. Higher order
extended Lie derivatives are recursively calculated as:

𝐿𝑖𝑓𝑔 (𝑥) = 𝜕𝐿𝑖−1𝑓 𝑔 (𝑥)𝜕𝑥 𝑓 (𝑥, 𝑢) + 𝑗=∞∑
𝑗=0

𝜕𝐿𝑖−1𝑓 𝑔 (𝑥)𝜕𝑢(𝑗) 𝑢(𝑗+1) (18)

(Note that this definition considers a time-dependent
input vector 𝑢(𝑡), which is simply written as 𝑢 for ease
of notation.) Unlike the previously defined Lie derivatives
of ((6), (7)), the extended Lie derivatives are equal to the
output derivatives for time-varying inputs, 𝑦(𝑖)(𝑡) = 𝐿𝑖𝑓𝑔(𝑥).
Evaluating theOICwith aO𝑁𝐿𝐼 built with extended Lie deriva-
tives correctly determines the observability and structural
identifiability of a model. Some models may require time-
varying inputs in order to be identifiable. In [56] it was
shown how the extended Lie derivatives can be used for
experimental design, by determining the number of nonzero
derivatives of the input that are required for structural
identifiability.

The identifiability of the 𝛽IG model used in Sections 2
and 3.4 does not depend on the input derivatives. Hence in
this section this situation will be illustrated with a different
example, the following two-compartment model [56]:̇𝑥1 = − (𝑘1𝑒 + 𝑘12) ⋅ 𝑥1 + 𝑘21 ⋅ 𝑥2 + 𝑏 ⋅ 𝑢,̇𝑥2 = 𝑘12 ⋅ 𝑥1 − 𝑘21 ⋅ 𝑥2,𝑦 = 𝑥1 (19)

Compartmental models of this type are commonly used
to describe physiological processes. Note that, although the
model given by (19) is linear in the states, if the state vector
is augmented with the parameters (as needed for structural
identifiability analysis) the model becomes nonlinear.

This model is structurally unidentifiable from an exper-
iment with a constant input, but becomes structurally iden-
tifiable with a continuous time-varying input such as a ramp
[56]. This is illustrated in Figure 2. The constant input result
can be obtained by applying the procedure described in
Section 3.3 as shown in Section 3.4. Since this model has 𝑛 =2 states and 𝑞 = 4 parameters, it would require rank(O𝑁𝐿𝐼 ) =𝑛 + 𝑞 = 6 to be observable and s.l.i. However, the aforemen-
tioned procedure yields rank(O𝑁𝐿𝐼 ) = 5, and the procedure
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Figure 2: Output of the two-compartment model of (19) for two
different parameter vectors (𝜃1 given by 𝑘1𝑒 = 1, 𝑘12 = 3, 𝑘21 =1, 𝑏 = 1, and 𝜃2 given by 𝑘1𝑒 = 2, 𝑘12 = 2.5, 𝑘21 = 0.5, 𝑏 = 2),
and two different inputs, 𝑢 = 1 and 𝑢 = 𝑡 (where 𝑡 stands for
time). With a constant input 𝑢 = 1 both parameter vectors are
indistinguishable from themodel output (there is actually an infinite
number of pairs of indistinguishable parameter vectors), and the
parameters are structurally unidentifiable. However, with a ramp
input 𝑢 = 𝑡 two different parameter vectors yield two differentmodel
outputs; in this case the parameters are structurally identifiable.

in Remark 11 determines that 𝑥2 is observable but all the
parameters are s.u. The time-varying input result is obtained
by building O𝑁𝐿𝐼 with the extended Lie derivatives defined in
((6), (7)); in the corresponding symbolic derivations 𝑢̇ is set
to a constant value and higher order derivatives, 𝑢̈, ...𝑢, . . . are
set to zero. This yields rank(O𝑁𝐿𝐼 ) = 6 with 5 derivatives, and
the model is observable and s.l.i. These calculations can be
performed with STRIKE-GOLDD2 [56] and take less than
one second in a standard computer. The difference in the
results with 𝑢̇ = 0 and 𝑢̇ ̸= 0 is due to the presence of terms
containing 𝑢̇ in some entries of O𝑁𝐿𝐼 , whose contribution is
needed for a full rank. Setting 𝑢̇ = 0 removes these terms and
decreases the matrix rank, leading to a loss of identifiability.

It should be noted that this model can also be analysed
with a differential algebra approach; for example, the COM-
BOS application [57] obtains the same result in comparable
time. Compared to the differential geometry approach, the
advantages of this method are the ability to distinguish
between local and global identifiability and to find identifi-
able combinations. Its disadvantages are that in principle it
cannot consider specific derivatives being zero (e.g., ̇𝑢 ̸= 0 but𝑢̈ = 0) and that it typically has worse computational scale-up
for models with large nonlinearities.

A different problem arises when the inputs are time-
varying and unknown. Such inputs can be viewed as external
disturbances, of which there are neither measurements nor
information about their dependence on time. Martinelli [58]
extended the ORC to account for this situation for the case of
nonlinear systems that are affine with respect to the inputs,
which must be differentiable but may be known and/or
unknown. To this end, the model defined by (5) is augmented
in order to include an unknown input vector 𝑤 as follows:𝑥̇ = 𝑓1 (𝑥, 𝜃) + 𝑓2 (𝑥, 𝜃) ⋅ 𝑢 + 𝑓3 (𝑥, 𝜃) ⋅ 𝑤,𝑦 = 𝑔 (𝑥, 𝜃) , (20)

In [58] it was proposed to extend this model by augmenting
the original state 𝑥 to 𝑘𝑥, which includes the input and its
derivatives up to order 𝑘, that is 𝑘𝑥 = [𝑥, 𝜃, 𝑤̇, 𝑤̈, . . . , 𝑤(𝑘)]. An
extended observability rank condition (EORC) was then pre-
sented, allowing checking the observability of systems with
unknown inputs, although not of the inputs themselves, at
least in its published form. Although in [58, 59] the structural
identifiability problem was not explicitly considered, it is of
course possible to apply this idea to a joint observability and
structural identifiability analysis.

4.4. Model Symmetries and Identifiable Combinations. If a
set of parameters are found to be structurally unidentifiable,
a question naturally arises: it is possible to reformulate the
model by combining such parameters in an identifiable
quantity? The answer to this question entails characterizing
the form in which the structurally unidentifiable parameters
are correlated. Many methods for structural identifiability
analysis are capable of addressing this problem to a certain
extent; however, no generally applicable and automatic pro-
cedure exists.

One of the first examples, the “exhaustive modelling”
method for finding the set of models that are output indistin-
guishable from a given one, was presented in [60].This proce-
dure, also known as the similarity transformation approach,
can be used to obtain structurally identifiable versions of
linear compartmental models. An extension to controlled
nonlinear models, which requires testing controllability and
observability conditions, was presented in [28], and the case
of uncontrolled systems was considered in [61, 62].

Differential algebra is a classic approach for the study
of observability [63] and structural identifiability [25]. The
equivalence between the observability definitions from the
algebraic and differential geometric viewpoints was estab-
lished in [64] for a class of rational systems. DAISY is a
software that adopts the differential algebra approach to
assess global structural identifiability and observability [65],
and COMBOS [57] is a tool specifically developed for finding
identifiable parameter combinations using differential alge-
bra concepts such as Gröbner bases [26, 66].

Other approaches to this problem use Lie transforma-
tions. A method based on the generation of Lie algebras
that represent the symmetries of the model equations was
presented in [67]. This procedure uses random numerical
specializations and is valid for autonomous, rational systems.
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Instead of using random specializations, another method
described in [68] finds Lie symmetries by transforming
rational terms into linear terms. Finally, the aforementioned
toolbox STRIKE-GOLDD [52], which uses Lie derivatives
to calculate the observability-identifiability matrix O𝑁𝐿𝐼 ,
includes a procedure for finding identifiable parameter com-
binations that is based on ideas from [47, 69, 70]. Briefly, it
removes fromO𝑁𝐿𝐼 the columns corresponding to identifiable
parameters and calculates a basis for the null space of the
resulting matrix. The coefficients of this basis define a set
of partial differential equations, whose solutions yield the
identifiable combinations.

4.5. Sloppiness, Dynamical Compensation, and Structural
Identifiability. A structurally unidentifiable model can yield
the same output for different parameter values. This situation
might be interpreted as a sign of robustness of the system to
changes in parameter values. However, while lack of identifi-
ability is usually considered an undesirable model property,
in certain contexts robustness is seen as a desirable property.
This apparent contradiction highlights the subtle character
of the relationship between identifiability and robustness. As
an illustration of this relationship, this subsection discusses
two concepts developed in recent years – sloppiness and
dynamical compensation – that are related but not equivalent
to unidentifiability.

The first concept, sloppiness or sloppy models, was
introduced in [71] to refer to the situation in which the model
output is sensitive to changes in so-called stiff parameters, but
largely insensitive to changes in sloppy parameters. Sloppi-
ness was defined as the existence of a clear gap between the
eigenvalues of the system’s Fisher information matrix (FIM),
with large eigenvalues corresponding to stiff parameters and
small eigenvalues corresponding to sloppy parameters. It
was claimed that sloppiness is a universal feature of systems
biology models [43], which would make it impossible to
estimate all parameters accurately. More recent publications
have provided new insights about sloppiness, as reviewed in
[72]. The concept of sloppiness, which has been linked to
information theory, highlights the fact that a model’s output
behaviourmay still be tightly constrained despite the parame-
ter values being only loosely constrained. Sloppiness provides
a viewpoint for studying how distinguishable models are, and
how they can be reduced. Several papers have clarified the
relation between sloppiness and identifiability [73–76]. It is
now understood that sloppiness is related to practical rather
than structural identifiability, and that it is not equivalent to
unidentifiability of any kind, meaning that sloppymodels can
indeed be identifiable.

The second concept, dynamical compensation (DC for
short), was introduced in [35] as a property found in
certain physiological circuits. Originally DC was defined
simply as the invariance of the model output with respect
to changes in a parameter value. It was immediately noted
that according to this definition DC amounted to structural
unidentifiability [77, 78]. (Note that the glucose homeostasis
mechanism discussed in the Introduction was proposed in
[35] as a possible mechanism for achieving DC; depending

on its formulation—i.e., on which states are measured and
which parameters are known—this model can be structurally
unidentifiable). This equivalence between structural uniden-
tifiability and the original definition of DC was not discussed
in [35] and was potentially problematic, since the purpose
of DC was to describe a phenomenon different to structural
unidentifiability. More precisely, DC referred to the capability
of a physiological circuit to maintain its dynamic behaviour
unchanged after a change in the value of a model parameter,
following a transition period. An alternative definition of DC
that provided amore detailed description of the phenomenon
and that took into account the relationship with structural
identifiability was proposed in [46].

5. Open Problems and Future Directions

The differential geometry approach adopted in this review
has been used to analyse observability and structural iden-
tifiability of nonlinear systems for more than forty years.
The theoretical and computational advances made in the
last decades have increased its applicability. However, there
are still many challenges that call for more research in this
area.

For example, an intrinsic limitation of the approach is
that it yields only local results. Other methods, such as
differential algebra, are capable of providing global structural
identifiability results. They could possibly serve as an inspi-
ration for extending (hybridizing?) the differential geometry
techniques to perform global analyses.

Other desirable developments would consist of advanced
implementations to alleviate the computational burden of
the analyses. Such improvements, which may benefit from
the use of parallelization and high performance computing
techniques, would facilitate the application of these methods
to the increasingly large models being built in the biological
modelling community.

Another possible direction concerns the role of inputs
in observability and identifiability analysis. Despite recent
advances, there are still several open questions regarding this
matter. It has been noted that certain models that are struc-
turally unidentifiable froma single constant input experiment
can become identifiable if a continuously time-varying input
is used [56]. In some cases the same improvement can be
obtained with multiple constant input experiments [56, 79],
or, equivalently, with a single experiment with a piecewise
constant input.However, the question ofwhen a time-varying
input and multiple constant inputs are equivalent for the
purpose of structural identifiability has not been answered
yet. Likewise, the problem of analysing observability and
structural identifiability in presence of unmeasured inputs
has not been fully solved yet.

Finally, an important open question is the relationship
between observability/identifiability and model predictions.
On the one hand, it is known that lack of the former can lead
to errors in the latter. On the other hand, it is true that this
is not necessarily the case. Therefore, further insights into
the requisites for accurate predictive modelling would be a
valuable contribution.
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[76] C. Tönsing, J. Timmer, and C. Kreutz, “Cause and cure of
sloppiness in ordinary differential equation models,” Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 90,
no. 2, 2014.

[77] E. D. Sontag, “Dynamic compensation, parameter identifiabil-
ity, and equivariances,” PLoS Computational Biology, vol. 13, no.
4, 2017.

[78] A. F. Villaverde and J. R. Banga, “Dynamical compensation
in biological systems as a particular case of structural non-
identifiability,” 2017, https://arxiv.org/abs/1701.02562.
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