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At present, the network security problem is facing a serious threat, and network security events continue to occur. It has become
an important link to prevent network attacks and ensure network security. According to the network security protectionmeasures
and security technical requirements, it has become an urgent need to establish appropriate security measurement methods and
strengthen the monitoring and analysis of network security status. Tis study proposes a network behavior risk measurement
method based on trafc analysis to accurately and objectively evaluate the security state of the network. Trafc is the most basic
behavior of the network and the basis of security risk measurement. Firstly, we regard the trafc data as network behavior to build
scenarios. Trough diferential manifold modeling, the trafc data and topology of the network system are semantically described
to form a matrix. Ten, after manifold dimensionality reduction, the objective risk assessment value can be obtained by manifold
mapping and Riemann metric. In this study, the diferential manifold theory is applied to network behavior risk measurement,
and the innovation of diferential manifold in the feld of network behavior risk measurement is given. After giving the network
behavior risk measurement theory, we frst verify the efectiveness of the proposed method through the simulation experiments.
Secondly, the public CIC-IDS-2017 data set is used for analysis and calculation to prove the accuracy of the proposed method.

1. Introduction

1.1. Background. At present, computer network is playing
a more and more important role. However, the potential
threat of computer network is its own vulnerability and the
vulnerability of communication equipment. On the one
hand, computer network hardware and communication
equipment are vulnerable to the infuence of natural envi-
ronmental factors such as dust, humidity, temperature,
electromagnetic feld, and man-made physical damage [1].
On the other hand, due to the nature of information sharing
and open platform of the network itself, important assets,
software resources, and data information in the computer
are vulnerable to illegal theft, replication, tampering, and
destruction. All these lead to the damage, loss, and security
accidents of assets and data information in the computer
network system. Network behavior risk assessment can
judge the security performance of the network to a certain
extent. On this basis, it can continuously improve the

security of the network for the weak links of the network and
further improve the network security situation [2]. Tere-
fore, it is very important to propose efective network se-
curity measurement methods and improve them. With the
rapid development of computer network, trafc attacks
appear frequently which is the most common type of net-
work attacks [3]. Terefore, it is also very important to
propose network security metrics for trafc attacks.

At present, the research on network security mea-
surement is mainly divided into two perspectives: net-
work management security and network technology
security. Te research of network management security
mainly focuses on the published network security
guidelines or international standards [4]. Network
technology security measurement is mainly divided into
qualitative measurement and quantitative measurement
[2, 5]. Qualitative measurement generally does not use
mathematical methods. Te evaluator can directly draw
a conclusion on the evaluation network through expert

Hindawi
Security and Communication Networks
Volume 2023, Article ID 4501050, 15 pages
https://doi.org/10.1155/2023/4501050

https://orcid.org/0000-0003-2041-1926
https://orcid.org/0000-0002-9741-2954
https://orcid.org/0009-0006-8665-2019
https://orcid.org/0000-0002-3087-9701
https://orcid.org/0009-0006-2330-4105
mailto:xuejf@bit.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4501050


experience and existing knowledge and through the
inductive analysis of the current network security situ-
ation [6]. Quantitative measurement makes a quantita-
tive judgment on the network security situation by
constructing a mathematical model or through a certain
quantitative method [7–10]. Compared with the sub-
jective judgment of qualitative evaluation, quantitative
evaluation can efectively quantify the network security
situation, but it requires a lot of data analysis and
comparison, and the implementation is more complex
[6, 11]. Both of them have the problems of weak
objectivity and inaccurate measurement.

1.2. Innovation. Tis study summarizes and analyzes the
common methods of network security measurement.
Aiming at the problems of weak objectivity and inaccurate
measurement in the existing methods, this study puts for-
ward the network behavior risk calculation method, obtains
the network attack and defense behavior through the trafc
analysis, and uses the diferential manifold theory to describe
the network behavior state in the attack and defense process,
so as to measure the network behavior risk. Finally, based on
the measurement model proposed in this study, the feasi-
bility and efective ness of the algorithm are verifed by attack
and defense experiments in real environment and public
CIC-IDS-2017 data set.

Te network behavior risk measurement method based
on trafc analysis proposed in this study can refect the
security state of the network, intuitively analyze the change
degree of the security state of the network system in the
process of attack and defense, and accurately evaluate the
performance of the network.

Te innovation of this study is as follows:

(1) Te network trafc is regarded as network behavior,
and the defnition of network behavior risk is pro-
posed to realize the quantitative analysis of network
behavior

(2) Te local linear embedding dimension reduction
algorithm of manifold learning is used to reduce the
dimension of the index

(3) Aiming at the problems of weak objectivity and
inaccurate measurement in the existing methods of
network security measurement by describing the
network behavior state in the process of attack and
defense, the diferential manifold theory is applied to
the network behavior risk measurement, and the
network behavior risk calculation method is
proposed

2. Related Research

Network technology security is the evaluation and analysis
of the system security of the network, such as availability,
integrity and confdentiality, and the vulnerability risk of the
network. Network technology security measurement is
mainly divided into qualitative measurement and quanti-
tative measurement [2, 6].

Sheng et al. [12] introduced analytic hierarchy process,
according to the characteristics of network architecture
defned by software, selected several typical indicators af-
fecting network security status, and calculated the overall
network security value. Wang et al. [13] made full use of the
advantages of grey analytic hierarchy process to evaluate the
network security risk. Te qualitative measurement model
has the advantages of convenient evaluation and strong
applicability, but human factors have a great impact on the
fnal evaluation results, lack of objectivity, and often have the
problem of inaccurate evaluation [6].

Te network security measurement method based on
attack graph is a common quantitative measurement
method. Phillips and Swiler [14] mapped the network system
into an attack graph for the frst time, intuitively displayed
and analyzed the possible attack paths, vulnerabilities, and
important nodes in the network, and proposed a new
network security measurement algorithm based on these
attacks information. Literature [15] combined with attack
graph technology used Bayesian network to determine the
atomic attack nodes of the network, so as to obtain the
overall security value of the network and optimize the
measurement results. However, the network security mea-
surement method based on attack graph is not objective and
is not suitable for complex networks.

Te detection of network trafc data can also refect
network anomalies. Te latest trend of network anomaly
detection based on network trafc data includes emerging
machine learning technologies such as artifcial neural
network (ANN), support vector machine (SVM), l-nearest
neighbor (KNN), decision tree, clustering, and statistics [16].
In related research, trafc classifcation is the frst step to
identify malicious use of network resources by anomaly
detection and other activities [17]. Wang et al. [18] proposed
a malware trafc classifcation method based on convolu-
tional neural network and taking trafc data as image for
security detection. Marir et al. [19] used a group of multi-
layer support vector machines and deep feature extraction in
large-scale networks to identify abnormal behaviors and
detect network security. First, the distributed deep trust
network is used to nonlinear reduce the dimension of
network trafc data, and then the extracted features are used
as input to construct multilayer support vector machine
through spark-based iterative dimension reduction para-
digm. Shubair et al. [20] proposed an intrusion detection
system based on trafc data, which takes advantage of the
combination of KNNmethod and fuzzy logic.Teminimum
mean square method is used for error reduction, KNN
selects the best matching class, and fuzzy logic selects the
fow class label. Liu et al. [10] proposed a detection method
based on Riemannian measurement of trafc data, which
uses fast Fourier transform and information entropy to
detect attacks.

With the continuous development of network security
performance requirements, the previous measurement
methods are difcult to meet the needs of measurement
accuracy and accuracy, and the introduction of mathe-
matical principles can describe the network security situa-
tion with more objective and accurate methods and values
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[21, 22]. In this study, the diferential manifold theory is
applied to network behavior risk measurement. Diferential
manifolds have been widely used in theoretical physics and
high-dimensional data dimensionality reduction research
[23]. With the rapid development of network informatiza-
tion, more and more diferential manifolds have been ap-
plied in the feld of computer networks [24]. For example,
the diferential manifold and Riemann metric are applied to
the robot performance and network control simulation to
improve the robot operation and motion performance. In
the feld of computer vision, introducing diferential man-
ifold for information extraction [1, 25] and using diferential
manifold to improve image processing efciency [26]. Using
diferential Manifolds and Riemann metrics to study net-
work attack and defense efectiveness and to achieve the
evaluation of network system security performance [27, 28].
Terefore, analyzing network risk and evaluating cyber
security situation through mathematical principles have
gradually become the trend of measurement research.

To sum up, the comparison of various common network
security measurement methods is shown in Table 1.

Aiming at the problems of weak objectivity and inaccurate
measurement in the existing network security measurement
methods, this study summarizes and analyzes the common
methods, puts forward the network behavior risk calculation
method, and applies the diferential manifold theory to the
network behavior risk measurement by describing the net-
work behavior state in the process of attack and defense.
Finally, based on the measurement model proposed in this
study, we verify the feasibility and efectiveness of the algo-
rithm by using the public CIC-IDS-2017 data set and con-
ducting attack and defense experiments in real environment.

3. Traffic Behavior Analysis and
Differential Manifold

Tis study proposes the network behavior risk calculation
method, obtains the network attack and defense behavior
through trafc analysis, uses the diferential manifold theory
to model the network attack and defense behavior, and
makes the network security measurement through the
network attack and defense behavior.

3.1. Network SecurityMeasurement. Network security means
that valuable assets such as data and information in the
network system will not be leaked, tampered with, or dam-
aged due to wrong operation inside the network or malicious
attack outside the network. Te ideal situation of network
security is that the network will not be afected by external
attacks. However, the network is always facing threats.

Network security measurement is to detect the vulner-
abilities in the network, judge the possible network attack
means and several existing network attack paths, and de-
termine the current security state of the network through the
evaluation of security data indicators such as vulnerabilities,
assets, and trafc in the network [29].

Te basic steps of network security measurement are
shown in Figure 1.

3.2. Trafc Behavior Analysis. Trafc is the most basic be-
havior of the network and the basis of security risk mea-
surement.Te complete trafc includes the data information
of application layer, transport layer, network layer, and
physical layer. Te defnition of trafc [30] on the transport
layer is it describes the packet string with the same IP ad-
dress, port number, and protocol (TCP, UDP, ICMP, and
so on).

Te behavior analysis of network trafc mainly analyzes
the behavior characteristics of trafc by analyzing the
characteristic parameters such as bandwidth/throughput
and delay. Taking network trafc as the research object, this
study takes the characteristic parameters such as bandwidth
and delay of trafc as indicators to analyze the behavior of
network trafc. Te behavior analysis of network trafc is
a direct and efective means to obtain the state of the net-
work. It can understand and master the behavior of trafc,
help to obtain the characteristics of network performance,
reliability, and security, and establish the behavior model of
the network.

From the perspective of network trafc data analysis, this
study regards the network trafc data collected from the
actual network as a network behavior by collecting and
monitoring the network packet information in real time and
then proves that the network system is a topological man-
ifold, uses the diferential manifold to model the network
behavior, and measures the network security through the
network behavior.

3.3. Te Relationship between Network Security Metrics and
Diferential Manifolds. We use the diferential manifold
theory to study the network security metrics. It is nec-
essary to prove that the network system is a topological
manifold in order to calculate the network risk and judge
the network security state by using the diferential
structure and given Riemannian metric. Te specifc proof
is as follows.

Defnition 1. Network topology.
Network topology is the shape of network and the

physical connectivity of network. Network topology refers to
the physical layout of various devices interconnected by
transmission media [31].

From the defnition of network topology, it is obvious
that the network system is a topological space. Any
subsystem of a network system must also be a network
system. Several network systems can be connected to
form a large network system through topology. Haus-
dorf space is a topological space, and Hausdorf space is
a topological space whose points are “separated by do-
mains.” Terefore, the network system is
a Hausdorf space.

Defnition 2. Topological manifold.
Let m be a Hausdorf space. If there exists an open feld

U ∈M at any point such that the open feld is homeo-
morphic with the open subset in Euclidean space Rn, then M

is a topological manifold [31].

Security and Communication Networks 3
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According to the defnition of topological manifold, if
every point in a Hausdorf space can fnd an open feld
homeomorphic to a Euclidean space, then the space becomes
a topological manifold. For a network system, we can always
fnd a homeomorphism mapping, which satisfes
f: x⟶ U(x) ∈ Rn

+, and then the network system is a to-
pological manifold.

Defnition 3. Riemannian metric.
Let M be a n dimensional optical slip fow shape and

construct a positive defnite and symmetric second-order
covariant smooth tensor feld g on M, that is, g(p) is for any
p ∈M a positive defnite, symmetric second-order covariant
tensor on TM

p , then g is a Riemannian metric of M, and M is
a Riemannian manifold [32].

3.4. Te Feasibility of Measuring Network Security by Dif-
ferential Manifold. Diferential manifold has been widely
used in theoretical physics and dimensionality reduction of
high-dimensional data [23]. With the rapid development of
network informatization, there are more and more appli-
cations of diferential manifold in the feld of computer
network [24]. For example, diferential manifold and Rie-
mannian metric are applied to the simulation of robot
performance and network control to improve the robot
operation and motion performance. In the feld of computer
vision, the information extraction method of diferential
manifold is introduced to improve the efciency of image
processing [25], diferential manifold is used to improve
image processing efciency [26], diferential manifold and
Riemannian metric are used to study network attack and
defense utility, to realize the evaluation of network system
security performance [27, 28], and so on.

Network security measurement is an efective process to
measure security and protect data based on a certain scale
[33]. Te network needs to quantify the security elements
related to the system security quality, such as vulnerability,
risk, attack, and defense [34].

Diferential manifold is a mathematical model that can
objectively calculate and measure things. Te advantage of
diferential manifold is that it can keep the data topology
unchanged in the change of dimension and explore the
internal geometric structure and regularity hidden in the

data. Terefore, diferential manifolds can be used to
measure network behavior risk. Te network system itself is
regarded as a manifold in one or more scenarios.

Compared with traditional methods, network security
assessment based on diferential manifold can solve prob-
lems that are not objective and comprehensive and can
better refect the impact of changes in security metrics on
network security changes, making the metrics more ob-
jective and accurate than previous assessment methods
[21, 27]. At the same time, the network security evaluation
method based on diferential manifold can consider the
network security risk at multiple levels and explain the
transformation of the network security state from the per-
spective of attack and defense utility.

4. Research on Network Behavior Risk
Measurement Based on Manifold

Te process of using diferential manifold to measure net-
work behavior risk is as follows: frst, collect data and reduce
the dimension of indicators to obtain a series of measure-
ment indicators. In addition, second, construct a network
security measurement index group through these indexes.
Tird, calculate the network security state value before and
after network attack by using network system diferential
manifold. By comparing the risk values in diferent time
periods, we can judge whether the network is at risk in this
period.

4.1. Defnition of Network Behavior Risk. Network behavior
risk involves key elements such as vulnerability, threat, asset,
risk, and so on [35]. Te factors involved in network be-
havior risk are the result of mutual infuence and interaction.
Vulnerability and threat will increase network risk. Risk
mainly afects assets. Security measures to deal with risk can
reduce the impact of vulnerability and threat. Te re-
lationship between various factors of network behavior risk
is shown in Figure 2.

Network security events cause network behavior risk.
Te occurrence of network behavior risk is a function of the
emergence of threats and the utilization of vulnerability. Te
impact of network behavior risk is the destruction and loss of
network assets. Terefore, network behavior risk can be
defned as follows:

R � f(T, V, A). (1)

Among them, R is network behavior risk, f is network
behavior risk calculation function, T is network threat, V is
network vulnerability, and A is information assets in the
network.

4.2. Network Security Baseline. In order to realize the
quantitative assessment of network risk, it is necessary to
set an objective baseline that can refect whether the
network is safe or not. Network security baseline is the
dividing point to judge whether the network is safe or
not. By comparing the network security risk status and

Network
security

requirements

Network
system

Data index
collection

Network
security

measurement

Network
measurement

results

Network
measurement

method

Figure 1: Network security measurement process.
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network security baseline, we can determine whether the
current network is at risk. First, we need to study the
security attributes of the network security infrastructure
such as assets and information; second, the evaluation
standard and calculation model of network security
baseline are established; fnally, we compare the security
baseline to determine the current risk status of the
network. At the same time, when the security re-
quirements or security factors in the network system
change, the network security baseline should be adjusted
appropriately.

As shown in Figure 3, it is assumed that the network
security baseline value under certain security factors is α.Te
result of network behavior risk value calculated after net-
work security detection is β. By comparison, if the results of
the two values are consistent or within a certain error range,
then it shows that the network system is in a safe state in this
period of time. If the risk value is lower than the risk value β
much larger than the baseline α. So, it shows that in this
period of time, the security state of the network system has
changed, and the network may be attacked in a network
risk state.

4.3. Te Selection of Measurement Index of Network Behavior
Risk. Te selection of network behavior risk measurement
index should have the following characteristics: (1) the
index is clear, the meaning of data index is clear, each index
is relatively independent, there is no redundancy, and it is
easy to calculate; (2) it can cover all kinds of network
indicators, including trafc, host, and other common in-
dicators; and (3) it is easy to expand. With the complexity
of the network and the changes of other factors, the net-
work behavior risk measurement index can add the nec-
essary data indicators that afect the network security
factors.

In this study, the indicators selected in the measurement
network are shown in Table 2. Section 6.2 of this study uses
CIC-IDS-2017 data set for experiment. Among them, CIC-
IDS-2017 data set contains more than 80 characteristic
indicators.

4.4. Dimension Reduction of Network Behavior Risk Mea-
surement Index. Network behavior risk measurement is
a comprehensive analysis of the existing network security
state. Terefore, there are some problems in the measure-
ment: (1) there are many attributes involved in the mea-
surement index and (2) there are many kinds of indicators.
Each level collects dozens or even hundreds of indicators.
Based on the above two points, after the completion of the
index collection, we need to simplify the index. Te com-
parison of common dimensionality reduction methods is
shown in Table 3:

To sum up, locally linear embedding algorithm, which is
based on manifold learning, can better maintain the original
key features and geometric properties of data than other
methods. Terefore, this study uses manifold learning
method to reduce the dimension of the index.

Locally linear embedding algorithm considers that every
data point can be constructed by the linear weighted
combination of its nearest neighbors. Te main steps of the
LLE algorithm are divided into four steps:

(1) Find k nearest neighbors of each index data point in
the original index data sample space

(2) Approximately calculate the weight matrix M of the
index sample space through these nearest neighbors

(3) Decompose the weight matrix M to obtain eigen-
values and eigenvectors

(4) Take the eigenvector corresponding to the smallest d

eigenvalues, that is, the new index data after di-
mension reduction

4.5. Network Behavior Risk Measurement. According to the
defnition of network behavior risk in Section 4.1, this study
uses diferential manifold to measure and calculate network
behavior risk, which can describe network attack and de-
fense process, and describe network scene and network
behavior. At the same time, diferential manifold can map
network system and network index data space into a high-
dimensional space to better describe the change degree of
network behavior risk. When the network is threatened by
external attacks, the state of network indicators will also
change to a certain extent. Ten, the network security risk
value can be expressed by measuring the change value of
network indicators through a certain calculation method.
Te relationship between network risk and index changes is
shown in Figure 4.

In Section 4.3, the network risk measurement index
group has been established. Te vector group composed of
these indexes can form a high-dimensional data manifold
space. If the high-dimensional data manifold is surface
integrated, the calculated results can represent the corre-
sponding network risk state change of the network system
when the data index changes. Te surface integral of

Threaten utilize
Vulnerabi

lity

cause

Risk

cause

influence

Security

decide

decideAssets

Figure 2: Te relationship among various factors of network
behavior risk.
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a manifold is actually the volume of the manifold in a high-
dimensional space. Terefore, the results of network be-
havior risk can be expressed by the hypervolume of the high-
dimensional data manifold composed of network security
indicators.

In the high-dimensional data manifold space, we can
defne certain diferential structures and Riemannian mea-
sures to calculate the changes of these indicators in the
network attack and defense. After integral operation, the
transformation quantity can represent the risk of the net-
work. If the matrix form is used to represent the current
network index state of the network system, assume that the
data index set is (x1, x2, . . . , xm). Ten, in time
(t1, t2, . . . , tn), there are m∗ n state variables in the matrix.
Terefore, the network index state matrix S can be expressed
as follows:

S �

s x1, t1( 􏼁 s x2, t1( 􏼁 · · · s xm, t1( 􏼁

s x1, t2( 􏼁 s x2, t2( 􏼁 · · · s xm, t2( 􏼁

· · · · · · · · · · · ·

s x1, tn( 􏼁 s x2, tn( 􏼁 · · · s xm, tn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In the measurement of network behavior risk, we need to
defne the measurement function f. After the defnition of
network risk is given, the change process of network security
state is expressed as the change of points and data on the
diferential manifold. Te change state of network system
security index constitutes a “point” in the diferential

manifold. By integrating the change state of security index
on the diferential manifold, the risk measurement result is
obtained. For matrix S, the process of calculating network
risk by using diferential manifold and metric function can
be expressed as follows:

f: R
n2⟶ R

n
+. (3)

Temetric function f represents the integral function of
the diferential manifold to calculate the network risk. In the
process of network attack and defense, the risk of network
security behavior changes instantaneously. Tere is no
reference signifcance to calculate the value of network se-
curity state at a single time. Only in a period of dynamic
change can it have the signifcance of measuring security.
Terefore, in a period of time t, when the network index set
X � (x1, x2, . . . , xn) changes, the calculation of network risk
is expressed by the following formula:

R � 􏽚∆(S)ds. (4)

Trough formula (4), the index state in the network
system is mapped into a matrix, and the change of the index
is combined with the change of the network risk, and the
general calculation formula of the network risk is given. In
this study, the description of the change of the network index
set is based on the diferential manifold. Te process of the
change of the index set is the change process of the high-
dimensional manifold of the index data. Te integral of the
manifold change represents the change of the network se-
curity state. Finally, the network risk can be determined by
comparing with the security baseline value.

5. Network Behavior Risk Calculation Model

Te network behavior risk measurement process can be
divided into three parts: data index collection and pro-
cessing, network measurement manifold construction, and
network behavior risk calculation.

5.1. Index Dimension Reduction Calculation Model. In this
study, the locally linear embedding LLE algorithm is used to
reduce the dimension. Te LLE algorithm considers that the
original data sample is linear in a small part. Suppose there is
a sample xi. Ten, several sample points x can be found in
the original high-dimensional neighborhood x1, x2, . . . , xk.
It exists as follows:

xi � wi1xi + wi2x2 + · · · + wikxk, (5)

where wi1, wi2, . . . , wik is the weight coefcient. After di-
mension reduction by the LLE algorithm, part of the linear
relationship of data can still be maintained in the new space,
and the weight relationship before and after dimension
reduction can be kept unchanged or slightly changed.
Namely,

xi′ � wi1xi′ + wi2x2′ + · · · + wikxk′ . (6)

TIME

VA
LU

E-
AT

-R
IS
K

α
β

Figure 3: Network security status change.

Table 2: Network security measurement metrics.

One-level
indicators Two-level indicators Tree-level

indicators

Network security
risk

Computing storage
CPU utilization

Memory utilization
Disk utilization

Bandwidth
consumption

Bandwidth
utilization
Troughput

Flow change Flow rate
Instantaneous fow

Data packet
Packet loss rate
Packet length
Packet quantity
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Te main steps of LLE algorithm are divided into four
steps as shown in Section 4.4.

In order to illustrate the calculation process, the data
space of m n-dimensional samples X � x1, x2, . . . , xm is
selected and the loss function is matrixed to obtain as
follows:

J(W) � 􏽘
m

i�1
xi − 􏽘

j∈ Q(i)

wijxj

����������

����������

2

2

� 􏽘
m

i�1
􏽘

j∈ Q(i)

wijxi − 􏽘
j∈ Q(i)

wijxj

����������

����������

2

2

� 􏽘
m

i�1
􏽘

j∈ Q(i)

wij xi − xj􏼐 􏼑

����������

����������

2

2

� 􏽘
m

i�1
W

T
i xi − xj􏼐 􏼑 xi − xj􏼐 􏼑

T
Wi,

(7)

where Q(i) is the k nearest neighbor sample set of i,
Wi � wi1, wi2, . . . , wik

T. Te weight coefcient satisfes the
following equation:

􏽘
j∈Q(i)

wij � W
T
i Ik � 1.

(8)

Let matrix Zi � (xi − xj)(xi − xj)
T, calculate the weight

coefcient Wi as follows:

Wi �
z

−1
i Ik

I
T
k Z

−1
i Ik

. (9)

Suppose that the projection of sample set in low di-
mension d(d<m) is Y � y1, y2, . . . , ym􏼈 􏼉. In order to keep
the linear relationship after dimension reduction, the matrix
objective loss function is as follows:

J(Y) � 􏽘
m

i�1
yi − 􏽘

m

j�1
wijyi

����������

����������

2

2

� 􏽘
m

i�1
YIi − YWi

����
����

� tr Y(I − W)(I − W)
T
Y

T
􏼐 􏼑.

(10)

Let M � (I − W)(I − W)T, then J(Y) � tr(YMYT).
Ten, we can get the new data sample Y after dimension
reduction.

To sum up, the specifc fow of the LLE algorithm is
shown as follows:

Input: sample set D � x1, x2, . . . , xm

Te nearest neighbor parameter k

After dimension reduction, the dimension of space d

Process:
For i � 1, 2, . . . , m do
Calculate k-nearest neighbors of xi

Calculate reconstruction coefcient wij

End for
Obtain the correlation matrix M

Eigen decomposition of matrix M

Returns the eigenvectors corresponding to the
minimum d eigenvalues of a matrix
Output: the sample after dimension reduction of the
original sample set d

5.2. Data Index Collection and Processing. In order to
eliminate the impact of the indicator units and make each
indicator have the same impact on the calculation results, it
is necessary to standardize the collected network security
related indicator data.

Standardization can remove the restrictions of diferent
units and scales between data; that is, diferent data are scaled
as a whole according to a unifed scale and converted into
pure values in a specifc interval. Generally, the min-max
standardization method is used to map the original data to [0,
1] interval. For example, a standardized transformation of
(11) is carried out for a certain index data as follows:

yi �
xi − min1≤ j≤ n xj􏽮 􏽯

max1≤ j≤ n xj􏽮 􏽯 − min1≤ j≤ n xj􏽮 􏽯
. (11)

So, the new sequence y1, y2, . . . , yn ∈ [0, 1] is obtained
by calculation and is nondimensional, where max1≤j≤n xj􏽮 􏽯 is
the maximum value of the original data and min1≤j≤n xj􏽮 􏽯 is
the minimum value of the original data.

5.3.Te Construction of Risk Measurement Model of Network
Behavior. Te change of network security state is a function
of the change of network metrics over time. Under the
condition of function representation, a set of Cr compatible

Network
attack

Network
defense

Network
system

Network security
risk

Changes in
network

indicators

Index epidemic
change

effect

effect

result
cause

reflect

Figure 4: Relationship between network risk and network index change.
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total covers can be found in the network topological
manifold and the network topological manifold can be
constructed as a network diferential manifold. In the net-
work diferential manifold, we only need to give the cor-
responding Riemannian metric, and then we can use the
diferential manifold theory to measure the network
behavior risk.

For n-dimensional manifold space, the distance between
any two points can be expressed as follows:

ds
2

� guv(x)dx
u
dx

v
, (12)

where x � (x1, x2, . . . , xn) and guv is a Riemann metric
defned in n-dimensional space. Generally, we choose the
Riemann metric with symmetric positive defnite, guv � gvu,
and then ds2 is the distance calculationmethod of two points
in n-dimensional space under diferent Riemann metric.

If we use matrix form to describe Riemannian metric, let
g � guv, x � xα, and dx � dxα. Tus, the distance formula
(12) can be expressed as follows:

ds
2

� dx
T
gdx. (13)

For a given symmetric positive defnite Riemannian
metric matrix g, we can decompose it that is, g � hTh, where
h and g are of the same order. Ten,

ds
2

� dx
T
gdx � (hdx)

T
(hdx) � |hdx|

2
. (14)

In other words, the distance is converted into the module
length of hdx.Ten, thematrix h just describes the local local
coordinate system.Te vector dx in this coordinate system h

is equivalent to the vector hdx in the local rectangular
coordinate system. At this time, h becomes the Jacobian
matrix under coordinate transformation.

5.4. Network Behavior Risk Calculation. Because there is no
concept of measure in diferential manifold in the process of
using diferential manifold to measure network security, it is
necessary to give Riemannian measure g on diferential
manifold, so that the behavior risk value of network can be
calculated through diferential manifold. Te Riemannian
metric g selected in this study is as follows:

guv �
e

x2
u+x2

V( )/2 u � v,

0 u≠ v,

⎧⎨

⎩ (15)

where xu and xv are the coordinates of point u and point v,
respectively. After the Riemannian metric is determined, the
corresponding geometric quantity can be given on it. For
any vector A � (a1, a2, . . . , an) in a Riemannian manifold,
the module length of the vector can be expressed as follows:

|ℏA| �

����������

(ℏA)
T
(ℏA)

􏽱

�

�������

A
TℏTℏA

􏽱

�

�����

A
T
gA

􏽱

�

��������

􏽘

n

u�1
guua

2
u

􏽶
􏽴

,

(16)

For any vector A and any vector B in a manifold, their
inner product in a Riemannian manifold can be expressed as
follows:

(ℏA)
T
(ℏB) � A

TℏTℏB � A
T
gB. (17)

It can be seen from Section 4.5 that the network behavior
risk result can be expressed by the hypervolume of the high-
dimensional data manifold formed by the network
security index.

Formula (15) has given the selected Riemannian man-
ifold. Combined with the diferential manifold structure of
the network system, it can be seen that in the Riemannian
manifold, the volume element of the data manifold can be
expressed as follows:

det(ℏ) 􏽙
u

dx
u

�

��������

det 􏽢h
T
ℏ􏼒 􏼓

􏽲

􏽙
u

dx
u

�

������

det(g)

􏽱

􏽙
u

dx
u

�

������

det(g)

􏽱

dΩ,

(18)

where g is the selected Riemannian metric in Riemannian
manifold and

������
det(g)

􏽰
represents the volume scaling factor

of Riemannian manifold space relative to Euclidean space.
Given n vectors A1, A2, . . . , An in a manifold, the super
volume composed of these vectors can be expressed as
follows:

R � 􏽚Ω
������

det(g)

􏽱

dΩ. (19)

According to formula (19), we can get the network
behavior risk measurement value, which can be used to
evaluate the network risk quantitatively and judge the se-
curity state of the network.

6. Experimental Design and Analysis

6.1. Small-Scale Network Environment Experiment. In order
to verify the efectiveness of the measurement method, this
study builds a network environment to simulate DoS attacks.
First, we set up an experimental environment and then
collect the experimental data. Finally, we use the proposed
model method to calculate and draw the conclusion. In
order to simulate the attack, four attackers are set up in the
network system to simulate DoS attacks of diferent scales.
Te attack trafc enters the internal network from the
frewall and attacks the internal network through the router
R1, as shown in Figure 5. Tis study uses LOIC attack to
simulate DoS attack and Wireshark to collect data index.

Te experimental design process based on real small
environment is as follows: (1) Collection and pretreatment of
indicators. Wireshark tool is used to collect data indicators
and preprocess them. (2) Calculate the network benchmark
security value, namely, network security baseline. (3) Cal-
culate the network risk value under diferent DoS attack
scales. (4) According to the calculated network benchmark
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security value and network security risk value, the efec-
tiveness of the measurement method is judged.

Te calculation process and results are as follows:

(1) Construct the network index state matrix
Collect the data in a certain period of time to form
the network index state matrix.

(2) Index pretreatment
For the collected data, the data are standardized and
converted into dimensionless pure values between
[0, 1].

S �

0.11 0.40 0 0.03 0.34 0.07

0.02 0.40 0.14 0 0.68 0

0.12 0.40 0.01 0 0.59 0

0.12 0.40 0.02 0.02 1 0.05

0.21 0.07 0.02 0.06 0.63 0.04

0.11 0.70 0.02 0 0.81 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

(3) Construct the network Riemannian metric

guv �
e

x2
u+x2

V( )/2 u � v,

0 u≠ v.

⎧⎨

⎩ (21)

In this case, the Riemannian metric matrix under the
above network state matrix S′ is expressed as follows:

G �

1.01 0 0 0 0 0

0 1.17 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1.49 0

0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

(4) Calculate the volume scaling factor
Firstly, the volume scaling factor of Riemannian
manifold relative to Euclidean space is calculated. It
can be seen from the above that if the currently
selected Riemannian metric matrix is G, the de-
terminant of Riemannian metric matrix can be
obtained as A � |G| � 1.76. Terefore, the volume
scaling factor of Riemannian manifold relative to
Euclidean space is 1.33.

(5) Calculate the network security baseline
In the Riemannian manifold of data matrix, the
volume element can be expressed as follows:

det(ℏ) 􏽙
u

dx
u

�
������
det(G)

􏽰
dΩ � 1.33dΩ. (23)

Ten, the super volume of index data manifold is as
follows:

Attack aircraf 1

Attack aircraf 2

Attack aircraf 3

Attack aircraf 4

Firewall F Router R1

Router R2

Router R3

Host2

Host1

Host3

FTP serverDatabase server

Web server

Figure 5: Network environment topology.
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R � 􏽚Ω
������
det(G)

􏽰
dΩ � 1.33􏽚ΩdΩ � 2.905. (24)

From the above, it can be seen that in the small network
environment when the network is running normally, the
network security benchmark result is 2.905. Using the same
calculation method, we can calculate the network security
risk value of DoS attack under diferent scales, as shown in
Table 4.

6.2. CIC Open Data Set Experiment. In order to explain the
accuracy of the network behavior measurement method
based on diferential manifold, this study analyzes the CIC-
IDS-2017 public data set [36] and draws a conclusion by
comparing the calculation results of the open data set on
Monday and other time periods. CIC-IDS-2017 data set
builds abstract behaviors of 25 users based on HTTP, FTP,
and other protocols, including common attacks and trafc
analysis results [36]. Tis study calculates the network be-
havior risk value based on the attack data from Tuesday to
Friday, compares the network security benchmark value
under normal conditions on Monday, and draws
a conclusion.

Te experimental design process based on CIC public
data set is as follows: (1) Collection of indicators. Each group
of data of the same data tag is collected to form a number of
index matrix Vi. Ten, the new index state matrix Vi

′ is
obtained by preprocessing and dimensionality reduction. (2)
Calculate network benchmark security value.Te data set on
Monday is the index data collected for normal operation,
and the index state matrix of normal data after di-
mensionality reduction is set as V1′ and the network
benchmark security value is calculated. (3) Calculate the
network security risk value under each attack. Te dataset
collected data from Tuesday to Friday, including DoS attack,
Heartbleed attack, Web attack, and other types of attacks.
Analyze the index state matrix Vi

′(i � 2, 3, . . .) of these at-
tacks and calculate the corresponding network security risk
values, respectively. (4) According to the calculated network
benchmark security value and network security risk value,
judge the network security state in the attack period and
draw a conclusion.

Te experimental results are as follows.
In CIC data set, Monday is normal data and the col-

lection time is 8:55−10:27, a total of more than 500000 sets of
data and a total of more than 80 indicators. After calculation,
the network benchmark security value is 0.17. Te experi-
mental results are shown in Table 5.

6.3. Experimental Analysis and Conclusion. For the small
physical network environment, the experimental verifcation
shows that the network security benchmark value is 2.905
when the network is running normally. In addition, the
network security risk value after DoS attack is greater than
2.905 and the risk multiple is about 3 times. It indicates that
the current network is under external attack, and the net-
work is in an insecure situation. Tis is exactly the same as
the actual situation. Based on the experimental verifcation

of small-scale network environment, the security status
values of the network in the normal state, the frst DoS
attack, and the second DoS attack are compared, which
shows the efectiveness of the model method proposed in
this study.

As shown in Figure 6, the normal fuctuation range of
network risk is set between (0, 0.32) that is, the network
security risk baseline is set to 0.32. As can be seen from
Figure 6, the network security state calculated by the net-
work behavior risk measurement method based on difer-
ential manifold is basically consistent with the attack tag
given in CIC-IDS-2017. By comparing the calculation results
of network activity risk under normal conditions onMonday
and from Tuesday to Friday, it can be seen that the network
behavior risk measurement method based on diferential
manifold proposed in this study is basically efective and can
detect most of the network attacks, which proves the ef-
fectiveness of the network behavior risk measurement
method based on diferential manifold.

Furthermore, we use diferential manifold to illustrate
the accuracy of behavior risk measurement (BRM). In
Section 6.2, we used BRM and several traditional mea-
surement methods based on machine learning to measure
the risk of CIC open dataset. We use the following three
common information retrieval evaluation indicators:
precision (PR) is the proportion of the number of positive
instances correctly classifed to the number of instances
classifed as positive instances; recall (RC) is the proportion
of the predicted number of all positive samples in the data
set to all positive samples; F-measure (F1) is a weighted
harmonic average of accuracy rate and recall rate. In ad-
dition, the execution time of the test process is calculated
and displayed in Table 6. Te result of the comparison
between several mentioned machine learning methods in
reference [37] and BRM is shown in Table 6. We can
observe that the execution time of KNN is 1908.23 seconds
which is the slowest, while that of BRM is 226 seconds.
According to the weighted average of the three evaluation
indexes PR, RC, and F1, the BRM algorithm has a high
accuracy. In addition, these traditional machine learning
measurement methods rely on a large amount of data
training in the test process. By comparing the accuracy,
recall rate, and execution time of the measurement
methods, the performance of the proposed method is better
than that of some measurement methods based on machine
learning, that further proves the accuracy of the model
method in this study.

In CIC-IDS-2017 dataset experiment, this study
proposes a network behavior risk measurement method
based on diferential manifold which has limitations
under SSH attack and BOT attack. Compared with other
attacks, the fuctuation of network security risk under SSH

Table 4: Network security risk calculation results.

Operation status Security risk value
Normal operation 2.905
Te frst DoS attack 8.053
Te second DoS attack 9.976
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Table 5: Experimental result.

Time Attack type Network
security risk value

Monday Nothing 0.17

Tuesday FTP attack 25.9
SSH attack 0.297

Wednesday

DoS slowhttptest attack 4.15
DoS slowloris attack 1.44
DoS goldeye attack 0.63
Heartbleed attack 72.9

Tursday

XSS attack 53
Sql injection attack 98.3
Brute force attack 53.7
Infltration attack 267

Friday
Bot attack 0

DDoS attack 0.403
Portscan attack 0.582
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Figure 6: Comparison of network security results under various attacks.

Table 6: Comparison table of various network security measurement methods.

Common methods Pr Rc F1 Execution time (s)
KNN 0.96 0.96 0.96 1908.23
RF 0.98 0.97 0.97 74.39
AdaBoost 0.77 0.84 0.77 1126.24
MLP 0.77 0.83 0.76 575.73
Naı̈ve Bayes 0.88 0.04 0.04 14.77
QDA 0.97 0.88 0.92 18.79
ID3 0.98 0.98 0.98 235.02
BRM 0.85 0.85 0.85 226
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attack is small and the calculated network risk value is also
small. BOT attacks are malicious code that invades the
network. BOT attacks on the network are difcult to
detect, and the attack characteristics are not obvious
enough.

7. Conclusion

Tis study measures the network behavior risk based on the
trafc analysis, regards the network trafc data as the net-
work behavior, depicts the network system as a diferential
manifold, determines the network risk measurement index
group, collects the network operation index data for pre-
processing, and uses the diferential manifold theory to
calculate the security benchmark value under the normal
operation of the network and the network security risk value
under the attack, and draw a conclusion by comparison.
Finally, the proposed method is verifed by comparative
experiments.

Te following three aspects are focused on this study: (1)
Regard network trafc as network behavior and propose the
defnition and measurement method of network behavior
risk. Trough trafc analysis, carry out risk measurement
and realize the quantitative analysis of network behavior. (2)
Use the local linear embedding dimension reduction algo-
rithm of manifold learning to reduce the dimension of the
index. (3) Apply the diferential manifold theory to network
security measurement.With the help of diferential manifold
theory, the description of the security state of the whole
network system can be transformed into the change of the
state in the high-dimensional manifold composed of net-
work indicators, and then the network security activities are
abstracted in the high-dimensional space to calculate the
network behavior risk value.

Tis study focuses on the method of measuring net-
work behavior risk by diferential manifold but still has
some limitations including (1) When it comes to the
measurement of the network security, less attention is
paid to the measurement of other indicators such as the
vulnerability of the network itself, while more attention is
paid to the drastic changes of indicators in network attack
and defense. Te follow-up research needs to add the
measurement of assets and network vulnerability on the
basis of the existing network activity measurement. (2)
Use the dimension reduction method of local linear
embedding to reduce the dimension of data. Te per-
formance of the local linear embedding algorithm mainly
depends on the selection of nearest neighbor number. A
large number of nearest neighbors will cause the
smoothness of manifold, and too few nearest neighbors
may divide disjointed submanifolds. Te subsequent re-
search on dimension reduction parameters can optimize
the measurement method and improve the measurement
accuracy.
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As an important part of data management, network traffic evaluation and prediction can not only find network anomalies but also
judge the future trends of the network. To predict network traffic more accurately, a novel hybrid model, integrating Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) with long short-term memory neural network
(LSTM) optimized by the improved particle swarm optimization (IPSO) algorithm, is established for network traffic prediction.
Firstly, an LSTM prediction model for the real-time mutation and dependence of network traffic is constructed, and the IPSO is
applied to optimize the hyperparameters. ,en, CEEMDAN is introduced to decompose sequences of raw network traffic data
into several different modal components containing different information to reduce the complexity of the network traffic se-
quence. Finally, the evaluation of the experiments shows the feasibility and effectiveness of the proposed method by comparing it
with other deep neural architectures and regression models. ,e results show that the proposed model CEEMDAN-IPSO-LSTM
produced a significantly superior performance with a reduction of the prediction error.

1. Introduction

As the information storage terminals of the Internet of
,ings (IoT), and with the continuous expansion of the
data center scale, the network structure of the data center
is becoming increasingly complex, the network business
and network data flow are growing rapidly, and the fre-
quency of network congestion is also getting higher and
higher [1–3]. Network traffic monitoring, network re-
source optimization, network congestion avoidance, and
network security strategy are of great significance in the
real-time analysis of network traffic [4–8]. When the
network is overloaded or congested, accurate prediction
can ensure high-quality execution of network services with
super importance or priority [9]. In recent years, pre-
dictive analysis based on historical network traffic has
become a major research topic in the academic field.
Establishing an accurate prediction model to describe
network traffic characteristics contributes to optimizing
network topology structure and route planning, reducing

energy consumption, and providing more reliable service
quality assurance.

Network links change dynamically with limited node
processing resources. Network traffic prediction mainly
depends on the statistical characteristics of flow and the
strong correlation between time-sequence values. Modeling
analysis based on network traffic time series is an effective
method for network traffic research, which has been widely
used in network traffic prediction and network performance
evaluation. How to fully consider the complex character-
istics of network traffic, and improve the prediction accuracy
and real-time of network traffic has always been a hot and
difficult topic of network traffic research [10].

In this study, we propose a novel hybrid model based on
the Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN), the Long Short-Term
Memory (LSTM) neural network model, and the improved
particle swarm optimization (IPSO) algorithm to predict
and analyze the network traffic. Firstly, combined with the
real-time mutability, dependence, and highly nonlinear
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characteristics of network traffic, we establish the LSTM
network traffic prediction model to extract the dynamic
characteristics of network traffic. ,en, the IPSO is utilized
for hypermeters optimization. In addition, the CEEMDAN
method is employed to decompose the network traffic data
into several simplified modes. Finally, we compare the
prediction accuracy of different models to evaluate the
prediction effects of the CEEMDAN-IPSO-LSTM neural
network model.

,e main contributions of our work are presented as
follows:

(1) CEEMDAN is introduced to decompose network
traffic data into several components, which creates
modal confusion and avoids making larger impacts
on the original signal during adding the white noise.

(2) Network traffic prediction model based on LSTM is
constructed to pursue the real-time mutation of
network traffic.

(3) ,e improved PSO algorithm is proposed to opti-
mize the hyperparameters of the LSTM network
traffic model. ,e optimization of hyperparameters
of the LSTM prediction model can improve the
prediction performance.

,e rest of this paper is as follows. In section 2, we review
the related research about network traffic prediction. In
section 3, we constructed a network traffic prediction model
based on LSTM. In section 4, we study the hyperparameter
optimization of LSTM by the Improved Particle Swarm
Optimization, and network traffic data denoising by
CEEMDAN. Section 5 presents our evaluation of the pro-
posed method. Finally, the main conclusions and future
work are drawn in section 6.

2. Related Work

Due to the importance of network traffic prediction, there has
been much research on network traffic prediction methods in
recent years. Generally, network traffic prediction can be
divided into short-term prediction, medium-term prediction,
and long-term prediction according to the different cycles of
network traffic prediction, [11] while network traffic pre-
diction models are mainly divided into two categories:
parametric model and nonparametric model [12].

2.1. Parameter model. ,e parametric model has the ad-
vantage of being simple and easy to understand. Moreover, it
does not have high standards for training data, and the
solving process is easy compared to nonparametric model,
which consumes less time. However, the parametric model is
suitable for the prediction of small data volumes with ob-
vious features and stable structure, while the network traffic
has real-timemutability and dependency characteristics, and
the parametric model will lead to higher prediction errors
than the nonparametric model.

ARMA network traffic model can effectively analyze
network data with a stable flow in a short period, obtain
network traffic characteristics at the corresponding scale,

and realize data flow decomposition [13]. In the network
traffic model based on ARMA, the deployment of the multi-
scale fitting process can obtain high accuracy under any
expiration delay, simplify the ARMA model, and enhance
the integration effect of the ARMA framework in network
traffic modeling [14].

However, ARMA is not suitable for long-term network
traffic data with network anomalies because the premise of
ARMA modeling is that the data analyzed is a stationary
random process. Most of the actual network traffic data are
nonstationary [15], which can be transformed into sta-
tionary data after finite-difference. ,erefore, some scholars
proposed the Autoregressive Integrated Moving Average
(ARIMA) model in the research process [16].

2.2. Nonparametricmodel. Nonparametric model refers to a
model with no fixed structure and fixed parameters.
Common nonparametric models include Support Vector
Machine (SVM), k-Nearest Neighbor (kNN) [8], Artificial
Neural Network (ANN), etc. ,e nonparametric model can
automatically fit a variety of function forms without as-
sumption, and the training effect is good, which is suitable
for predicting large data volume.

Due to the real-time variability and dependence of
network traffic, traditional network traffic prediction models
have some disadvantages such as weak generalization ability
and limited prediction accuracy. ,erefore, more and more
researchers use nonparametric models to predict network
traffic data. ,e Support Vector Regression model (SVR)
and its variant MK-SVR are first used to predict network
traffic [17–19], which effectively predicts the changing trend
of network traffic data but lacks the consideration of tem-
poral correlation of time series data leading to a limit of
prediction accuracy.

Methods based on the artificial neural network, such as
Convolutional Neural Network (CNN) [20], improve the
effect of flow classification by autonomous feature learning
of data [21]. LSTM neural network and Gated Recurrent
Unit (GRU) neural network have a superior effect over
existing SVM andANNmodels in predicting network traffic,
which is more suitable for random nonlinear network traffic
prediction [12]. LSTM neural network was originally used
for short-term flow prediction, which can better learn the
abstract representation of nonlinear flow data and capture
the inherent characteristics of long-term dependence rela-
tionship in continuous data, thus improving the accuracy of
flow prediction [22]. LSTM neural network is used for
network traffic prediction, and the auto-correlation coeffi-
cient is added to the model to describe the trend of network
traffic change better, which improves the accuracy of the
prediction model [23]. On this basis, the improved Particle
Filter (PF) algorithm is used to optimize the LSTM model,
which improves the training rate and overcomes the
shortcoming of convergence to local optimal in the tradi-
tional LSTM network [24].

,e experiments of many neural network methods to
predict the network traffic data show that in a real-time
network data set, LSTM is of better performance than
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Recurrent Neural Network (RNN), the Feed-forward Neural
Network (FFN), and other classic methods. LSTM neural
network can more accurately simulate time series and its
long-term dependencies than the traditional RNN, in large
network traffic matrix prediction, and obtain a faster con-
vergence rate [25]. ,e variants of LSTM neural network,
GRU neural network, and identity-RNN (IRNN) have
comparable performance with LSTM [26]. Minimal Gated
Unit (MGU) overcomes the shortcoming of the high
computing cost of the LSTM network and achieves relatively
predictable performance with less model training time [27].
In addition, LSTM neural network has achieved good
prediction results in financial data forecast [28, 29], metal
price prediction [30], air quality index prediction [31],
modular temperature prediction [32], and bridge health
monitoring [33].

In summary, a single parametric or nonparametric
model has its problems and defects, while a hybrid pre-
diction model can overcome the shortcomings of a single
model by combining two or more models. ,e hybrid model
mainly combines some decomposition algorithms, optimi-
zation algorithms, and prediction algorithms, respectively,
in the data preprocessing, prediction, and result correction
stage of network traffic prediction. Although combinatorial
prediction has achieved good results in other researches
[34, 35], there are still some problems, such as how to choose
the prediction model and its parameters, how to integrate
the prediction results reasonably, and how to choose the
appropriate decomposition algorithm or optimization al-
gorithm. For network traffic prediction, using the combined
prediction model and overcoming the above problems is a
research direction worthy of further study.

3. Network Traffic Prediction Based on LSTM

3.1. LSTM Neural Network Model. LSTM neural network
(hereinafter referred to as LSTM) is an improvement of the
recurrent neural network, which aims to overcome the
defects of the recurrent neural network in processing long-
term memory [36]. ,e LSTM introduced the concept of
cellular states, which determine which states should be
preserved and which should be forgotten.,e basic principle
of LSTM is shown in Figure 1.

As shown in Figure 1, Xt is the input at time t, ht-1 is the
output of the hidden layer at time t-1, and Ct-1 is the output
of the historical information at time t-1; f, i, and, o are,
respectively, the forgetting gate, input gate, and output gate
at time t, and g is the internal hidden state, namely, the
transformed new information. LSTM conducts parameter
learning for them in the training. Ct is the updated historical
information at time t, and ht is the output of the hidden layer
at time t.

Firstly, the input xt at time t and the output ht-1 of the
hidden layer are copied into four copies, and different
weights are randomly initialized for them, to calculate the
forgetting gate f, input gate i, and output gate o, as well as the
internal hidden state g. ,eir calculation methods are shown
in formulas (1)–(4), where W is the parameter matrix from
the input layer to the hidden layer, U is the self-recurrent

parameter matrix from the hidden layer to the hidden layer,
b is the bias parameter matrix, and σ is the sigmoid function,
so that the output of the three gates remains between 0 and 1.

f � σ Wfxt + Ufht−1 + bf􏼐 􏼑, (1)

i � σ Wixt + Uiht−1 + bi( 􏼁, (2)

o � σ Woxt + Uoht−1 + bo( 􏼁, (3)

g � σ Wgxt + Ught−1 + bg􏼐 􏼑. (4)

Secondly, forgetting gate f and input gate i are used to
control how much historical information Ct-1 is forgotten
and how much new information g is saved, to update the
internal memory cell state Ct. ,e calculation method is
shown in formula (5).

Ct � ft ⊗Ct−1 ⊕ i⊗g. (5)

Finally, output gate o is used to control how much Ct
information of the internal memory unit is output to the
implicit state ht, and its calculation method is shown in
formula (6).

ht � o⊗ tan h Ct( 􏼁. (6)

3.2. Network Traffic Prediction Model Based on LSTM.
Network traffic data are modeled as a nonnegative matrix X
of an NxT, where N represents the number of nodes, T
represents the number of time slots sampled, and each
column in the data matrix represents the network traffic
value at different nodes in a specific time interval.

Network traffic prediction can obtain the predicted value
of the future time through the historical time series, X (i, j)
represents the scale of the NxT flow matrix, and xn,t rep-
resents the network traffic value of row n and column t.
Network traffic prediction is defined by a series of historical
network traffic data (xn,t-1, xn,t-2, xn,t-3,. . ., xn,t-1) to predict
the network traffic at time t in the future. In the network
traffic prediction model based on LSTM (Figure 2), it is
assumed that the network traffic at a certain point in the t-
slot is predicted, the input of the model is (xn,t-1, xn,t-2,
xn,t-3,. . ., xn,t-1), and the output is the predicted value 􏽢xt of
the network traffic at the t-slot at this point.

In Figure 2, we summarize the process of network traffic
prediction based on LSTM, and it mainly includes network
traffic data preparation, data preprocessing (data resampling
and null filling), normalization of data, data classification,
prediction network building, network compilation, network
evaluation, data prediction, and evaluation.

,e detailed contents of each process for network traffic
prediction are as follows:

(1) Network traffic data preparation and preprocessing.
To meet the time and frequency requirements
(second, minute, hour, day, etc.) of network traffic
data prediction, the original data are required to
resample, namely, the time series from one
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frequency is converted to another frequency. And to
ensure even data time interval, the uneven time
interval data are converted to equal interval data.
,ere are generally two methods of data resampling:
downward sampling and upward sampling. ,e
former is to convert high-frequency data into low-
frequency data, while the latter is to convert low-
frequency data into high-frequency data. In addition,
if there is a void value in the resampled data se-
quence, it is necessary to fill the void value. ,e
commonly used methods include the direct deletion
method, statistically based filling method, and ma-
chine-learning-based filling method. ,e direct de-
letion method may discard some important
information in the data, and the statistically based
filling method ignores the timing information of the
data [37]. ,erefore, this paper adopts the machine-

learning-based filling method–K-Nearest Neighbor
(KNN) to fill the void value of network traffic data.

(2) Data normalization. ,e range standardization
method is used to process the network traffic data so
that the sample data value is between 0 and 1. ,e
calculation method of the range standardization
method is shown in formula (7).

Xnor �
X − Xmin

Xmax − Xmin
, (7)

where Xmax represents the maximum value of net-
work traffic data and Xmin represents the minimum
value of network traffic data.

(3) Data division. After preprocessing and normaliza-
tion, the network traffic data are divided into training
set and test set according to the simple cross-

Initial network traffic data
preparation

Data cleaning

Data normalization

Training data Test data

Parameters setting

Training with LSTM

Model validation and
result analysis

Update
parameters

Get the optimal parameter
combination

Network traffic prediction with
LSTM

Predict result analysis

MAE
calculation

RMSE
calculation

MAPE
calculation

Simple cross validation

Figure 2: Process of LSTM network traffic prediction.
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Figure 1: Basic principle of LSTM.
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validation. Under the condition of keeping the
network traffic data time sequence constant, the
training set and the test set are divided by fivefold
cross-validation [38], which are used for the training
and prediction of the LSTM network traffic pre-
diction model.

(4) LSTM network traffic prediction model construc-
tion. An LSTM neural network is defined and its
parameters are set, including the values of time step
size, number of network layers, number of neurons
in each layer, dropout, activation function, type and
number of the return value, dimension size of the
hidden layer, learning rate, batch processing size,
iteration times, etc.

(5) Network compilation. Set the optimizer, error
measurement index, training record parameters, and
compile the LSTM network traffic prediction model.

(6) Network evaluation. Substitute training data into the
model for training, and evaluate the error of the
established prediction model. According to the re-
sults, finetune the parameter setting of the model to
get a better prediction effect.

(7) Prediction and evaluation. ,e optimized network
traffic prediction model is used to make a prediction,
and calculate the prediction errors by comparing
prediction results with the real data.

4. The LSTM Network Traffic Prediction Model
Optimized by IPSO and CEEMDAN

4.1. Improved Particle Swarm Optimization. Particle Swarm
Optimization (PSO) is a simple-rule, fast-convergence-
speed swarm intelligence optimization algorithm [39, 40]. It
regards every individual as a part with no size and no quality
in an n-dimension search space, which flies at a certain
speed. It improves the searching through group cooperation
and competition among the particles under the guidance of
swarm intelligence.

Particle swarm optimization in n-dimensional contin-
uous search space, for i-th (i� 1, 2,. . .,m) particle, deter-
mines that n dimensional current position vector xi(k)�

[xi1xi2,. . . xin]T represents the current position of the i-th
particle in the search space, and n dimensional velocity
vector vi(k) � [vi

1v
i
2 . . . vi

n]T represents the search direction
of the particle. ,e optimal position (pbest) experienced by
the i-th particle in the group is denoted as pi(k)� [pi1pi2 . . .

pin]T, and the optimal position (gbest) experienced by all
particles in the group is denoted as pg(k) � [p

g
1p

g
2 . . . p

g
n]T.

,e basic PSO algorithm is shown in formulas (8)
and (9).

v
i
j(k + 1) � ω(k)v

i
j(k) + c1 rand 0, a1( 􏼁 p

i
j(k) − x

i
j(k)􏼐 􏼑

+ c2 rand 0, a2( 􏼁 p
g

j (k) − x
i
j(k)􏼐 􏼑,

(8)

x
i
j(k + 1) � x

i
j(k) + v

i
j(k + 1), (9)

where i � 1, 2, . . . , m, j � 1, 2, . . . , n, ω(k) is the inertia
weight factor, c1 and c2 is acceleration constant, all of which
are nonnegative values. rand(0, a1) and rand(0, a2) are
random numbers with uniform distribution within the range
of [0, a1] and [0, a2], a1 and a2 are corresponding control
parameters.

In the PSO algorithm, ω keeps the particle moving in-
ertia so that it tends to expand the search space, the ability to
search new areas. ,e ω value usually adopts the linear
inertia weight method, that is, the ω value increases or
decreases linearly with the number of iterations. Compared
with the fixed ω value, the linear method improves the
optimization ability and convergence speed of the PSO al-
gorithm to some extent, but it is far from enough. ,e
nonlinear inertia weight method can further improve the
optimization ability and convergence speed of the PSO al-
gorithm [41]. ,erefore, the ω calculation in this paper is
improved by using the nonlinear inertia weight method, as
shown in formula (10).

ω � ωmax − ωmax − ωmin( 􏼁∗ arcsin
i

item max
∗
2
π

. (10)

In formula (10), ωmax and ωmin, respectively, represent
the maximum inertia weight and the minimum inertia
weight, and i is the current iteration number. item_max is
the maximum iteration number.

In the PSO algorithm, c1 and c2 are used to adjust the step
size of particle movement. In this paper, the sine function is
used to improve the acceleration constant [29]. ,e calcu-
lation method is shown in formulas (11) and (12).

c1 � 2
��������������������

1 − sin
π
2
∗

i

item max
􏼒 􏼓

􏽲

, (11)

c2 � 2
�����������������

sin
π
2
∗

i

item max
􏼒 􏼓

􏽲

. (12)

4.2. LSTMHyperparameter Optimization Based on Improved
PSO. ,e selection of hyperparameters of the LSTM pre-
diction model has an important influence on prediction
accuracy. ,e current hyperparameter selection method
based on the empirical method has randomness, blindness,
and nonuniversality in the parameter setting. ,erefore,
multiple hyperparameters are formed into a multidimen-
sional solution space, and the optimal parameter combi-
nation is obtained by traversing the solution space, which
can reduce the randomness and blindness of parameter
selection. Multiple hyperparameter selections are in a larger
scope, which needs a better performance optimization al-
gorithm to obtain the global optimal solution quickly, so we
introduce the improved particle swarm algorithm (Im-
proved PSO, IPSO) to optimize LSTM model parameters.
With the quick convergence speed, the IPSO promotes the
scientific nature of the model parameter selection and
further improves the prediction accuracy of the models.

It is assumed that n hyperparameters of the LSTM
network traffic prediction model are optimized, each particle
represents a set of hyperparameters of solution space. It is
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supposed in the n-dimensional continuous search space,
there are m groups of hyperparameter combinations, rep-
resenting the i-th (i� 1, 2,. . .,m) hyperparameter. ,e cur-
rent position vector xi(k)� [xi1xi2 . . . xin]T of n dimension
represents the current value of an i-th group of hyper-
parameters in the solution space. ,e velocity vector vi(k) �

[vi
1v

i
2 . . . vi

n]T of n dimension represents the search direction
of this group of hyperparameters.

,e goal of network traffic prediction is to make the
predicted value close to the actual value, that is, the error
between the predicted value and the actual value is as small
as possible. ,erefore, the Root Mean Square Error (RMSE)
of training data in the network traffic prediction model is
selected as the objective function. Let fitness�RMSE, then
the objective function is to minimize RMSE. ,e RMSE
calculation method is shown in formula (13).

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

. (13)

In formula (13), 􏽢yi is the prediction value.
􏽢y � 􏽢y1, 􏽢y2, . . . , 􏽢yi􏼈 􏼉, y is the real value, y � y1, y2, . . . , yi􏼈 􏼉.

Two important hyperparameters of the LSTM network
traffic prediction model are optimized according to IPSO:
time step size and the number of neurons in each layer. ,e
single-layer and bilayer LSTM models are taken as the re-
search objects to carry out the hyperparameter optimization.
For the single-layer LSTMmodel, the node is for the number
of neurons, and the lookback is for the time step, fit-
ness�RMSE (node, lookback); for a bilayer LSTM model,
fitness�RMSE (node1, node2, lookback).

According to the algorithm flow of IPSO, the process of
IPSO optimized LSTM network traffic prediction model
hyperparameter mainly includes six steps.

Step 1. ,e IPSO parameter is set. ,e particle swarm size is
set as the number of hyperparameter combinations m. Each
particle is randomly set as the initial value and speed of each
group of hyperparameters within the allowed range. ,e
maximum number of iterations item_max and the predic-
tion error Pre_error.

Step 2. ,e fitness of each particle is evaluated, that is, the
fitness value of the objective function of each group of
hyperparameters is calculated.

Step 3. ,e optimal objective function value Pi for each set
of hyperparameters is set. For the i-th group hyper-
parameter, its current target function value current_fitness is
compared with Pi. If it is less than Pi, then current_fitness is
used as the best target function value Pi for the ith group
hyperparameter, namely, Pi � current_fitness.

Step 4. ,e global optimal value Pg. For the hyperparameter
of i-th group, P is compared with Pg. If it is less than Pg, then
Pi is taken as the optimal value Pg of the current group,
namely, Pg � Pi

Step 5. ,e search direction and value of each set of
hyperparameters are updated according to formulas (8) and
(9).

Step 6. ,e termination conditions are checked. If the set
condition (default error or the maximum number of iter-
ations) is not met, step 2 is returned to continue execution.

4.3. Network Traffic Data Decomposition by CEEMDAN.
,e empirical mode decomposition algorithm (EMD) is a
data processing method commonly used for nonstationary
time series signals [42]. It can decompose the nonstationary
signals into a series of intrinsic mode function (IMF)
components with different time scales. However, modal
confusion exists in this method. Complete Ensemble Em-
pirical Mode Decomposition with Adaptive Noise
(CEEMDAN) algorithm improved the EMD algorithm by
adding a set of white noise with equal size and opposite signs
before decomposing data via the EMD [43].,e CEEMDAN
both confuses modal confusion and also avoids making
larger impacts on the original signal during adding the white
noise. ,e main steps of CEEMDAN are as follows:

(1) Add a group of Gaussian white noise sequence εi (t)
with opposite signs to the original sequence x (t), and
obtain a new set of time series;

x
+
i (t) � x(t) + ε+

i (t),

x
−
i (t) � x(t) + ε−

i (t).

⎧⎨

⎩ (14)

(2) Decompose each time series via EMD in formula
(15) and obtain n intrinsic mode functions
components;

x
+
i (t) � 􏽘

n

j�1
c

+
ij(t),

x
−
i (t) � 􏽘

n

j�1
c

−
ij(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

where, cij is the j-th modal component obtained by
EMD decomposition after adding white noise for the
i-th time.

(3) Add different adaptive noises and repeat steps (14)
and (15) for m times to obtain the set of m groups of
intrinsic modal components (IMF), in which the last
group is the trend term (Res);

(4) Calculate the ensemble average of all components to
obtain the final modal component group ci (t).

ci(t) �
1
2m

􏽘

m

j�1
c

+
ij(t) + c

−
ij(t)􏼐 􏼑. (16)

,e process of network traffic prediction based on IPSO-
LSTM combined with CEEMDAN is shown in Figure 3.

,e process of data decomposition and prediction in-
cludes three main steps.
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(1) ,e network traffic data are decomposed by
CEEMDAN into serval different modal components
and obtain some subsequences of IMF1, IMF2, IMF3,
. . ., IMFn;

(2) Use the IPSO-LSTM model to predict each subse-
quence and gain results1, result2, result3, . . ., resultsn;

(3) Superpose the subsequence prediction results of
results1, result2, result3, . . ., resultsn and output the
network traffic prediction result.

4.4. Network Traffic Prediction Algorithm Based on CEEM-
DAN-IPSO-LSTM. According to the process of IPSO for
hyperparameter optimization and data de-composition by
CEEMDAN, based on the network traffic prediction steps of
LSTM, the CEEMDAN-IPSO-LSTM network traffic pre-
diction algorithm is obtained. ,e pseudo-code of the al-
gorithm is shown in Algorithm 1.

Algorithm 1 firstly prepares network traffic data and
decomposes the raw data into several subsequences, and
then divides each subsequence into a training set and a test
set. ,en, it uses the IPSO-LSTM network traffic model to
obtain the optimal parameter combination. Finally, the
optimal parameters are substituted into the LSTM model to
complete the prediction of each subsequence and output the
network traffic prediction result by superposing subse-
quence prediction results.

CEEMDAN-IPSO-LSTM network traffic prediction al-
gorithm contains three processes, the time complexity of
data decomposition is O(k2), k is the size of the predicted
data set; the time complexity of hyperparameter optimiza-
tion process is O(n!); and the time complexity of the

Original network traffic data

IMF1 IMF2 IMF3 IMFn
…

IPSO-
LSTM1

IPSO-
LSTM2

IPSO-
LSTM3

IPSO-
LSTMn

…

Outout prediction results
via superposition

Result1 Result2 Result3 Resultn…

Ntework traffic prediction

Data decomposition via CEEMDAN

Figure 3: Process of data decomposition and prediction.

(1) Network traffic data preparation and preprocessing
(2) Decompose the raw data into several different modal components and ∗ obtain some subsequences of IMF1, IMF2, IMF3, . . .,

IMFn
(3) Divide each subsequence into a training set and a test set
(4) Construct the LSTM network traffic prediction model. Set partial parameters and fix the number n of the optimized parameter
(5) IPSO parameter initialization (particle swarm size m, solving space dimension d, the maximum number of iterations iter_max,

learning factor φ1, φ2, weight ω)
(6) Initialize the values of n-dimensional parameter combinations of m groups randomly in the solution space
(7) Initialize the global optimal parameter combination gbest_parameters, the partial optimal parameter combination

pbest_parameters and the best fitness function value Pg
(8) While the end condition is False
(9) Apply the n-dimensional parameter combinations ofm groups, respectively, to the LSTM network traffic prediction model for

training, and calculate the current fitness function value;
(10) Get the current best fitness value Pi and the corresponding parameter combination pbest_parameters;
(11) if Pi ＜ Pg;
(12) Pg � Pi ;//Update the best fitness value
(13) gbest_parameters� pbest_parameters;//Update the global optimal parameter combination
(14) end if;
(15) for each parameter combination
(16) Calculate the search direction and position of the new parameter combination according to equations (8) and (9)
(17) Fix the updated parameter in the selected values;
(18) end for;
(19) ,e number of iterations + 1;
(20) end while;
(21) Return to gbest_parameters;
(22) Introduce gbest_parameters into the LSTM network traffic prediction model;
(23) Predict test data of each subsequence and gain results1,result2, result3,. . ., resultsn;
(24) Superpose the subsequence prediction results of results1, result2, result3,. . ., resultsn and output the network traffic prediction

result.

ALGORITHM 1: CEEMDAN-IPSO-LSTM network traffic prediction algorithm.

Security and Communication Networks 7



prediction process is O(hp + h2 + h), h is the hidden_size, p
is the input_size. ,erefore, the time complexity of
CEEMDAN-IPSO-LSTM is

T(n) � O k
2

􏼐 􏼑 + O(n!) + O hp + h
2

+ h􏼐 􏼑. (17)

In the running process of the algorithm, the parameter
optimization process consumes the most time with the
highest computational complexity, but its time cost is ac-
ceptable because this process needs to run only once to
obtain the optimal combination of hyperparameters. Once
the hyperparameters are determined, the main time com-
plexity is reflected in the prediction process. ,e time of the
prediction process is mainly spent in the training. As long as
the training is completed, the prediction can be finished by
substituting the input data into the equation.

5. Experiment Evaluation and Discussion

5.1. Experimental Environment Configuration and Parameter
Setting. ,is experiment completed under the measured
flow data of BC-Oct89Ext provided by Bell Laboratory is
selected. ,e flow data were Ethernet data detected in ,e
Bell Morristown study, containing one million packets. ,is
paper selects some data segments of BC-Oct89Ext flow data
for model analysis.

For the prediction results of the network model, three
error analysis indicators were used to verify the prediction
accuracy, which were Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Per-
centage Error (MAPE), respectively. MAE and MAPE cal-
culation methods are shown in equations (18) and (19).

MAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (18)

MAPE �
1
n

􏽘

n

i�1

yi − 􏽢yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%. (19)

According to Equation (13), the smaller the RMSE value,
the smaller the average error between the prediction results
and the actual data, the higher the prediction accuracy of the
model, and the better the prediction performance of the
model. Similarly, it can be seen from equations (18) and (19)
that the MAE and MAPE values tend to 0, the better the
prediction effect of the model is and the more perfect the
model is. On the contrary, the greater the value is, the greater
the error is, and the worse the prediction effect of themodel is.

5.2. Network Traffic Prediction Results Based on LSTM

5.2.1. Data Processing

(1) Data resampling. As the original network traffic data in
BC-OCT89Ext were collected multiple times per second
with unequal time intervals, the data collectedmultiple times
per second were preprocessed with the mean value method,
and then the K-Nearest Neighbor (KNN) algorithm was
used to fill the void value. Figure 4 shows 1800 pieces of flow
data after packet resampling and null value processing.

(2) Data decomposition. It can be seen from Figure 5 that
network traffic data have obvious nonlinearity and non-
stationarity, which makes prediction difficult. ,en the
original time series is decomposed by the CEEMDAN
method into several more predictable time subseries, and six
groups of modal subsequences were obtained from high
frequency to low frequency. Decomposition results are
shown in Figure 5. It can be seen that the fluctuation of IMF1
to Res subsequence gradually flattens out and the frequency
becomes lower and lower.

(3) Data division. ,e data after normalization was divided
into a training set and a test set according to simple cross-
validation. ,e first 80% of the data were used as training
data for LSTM network model training. ,e remaining 20%
of the data were used as prediction data to verify the effi-
ciency of the model.

5.2.2. Network Traffic Prediction Based on Basic LSTM

(1) Network definition. In this forecast, the network structures
of three-layer LSTM (one input layer, one hidden layer, and
one output layer) and four-layer LSTM (one input layer, two
hidden layers, and one output layer) are, respectively, adopted.

,e specific connection mode of the three-layer LSTM is
as follows: the timesteps of LSTM in the first layer are 1. ,e
input of the data dimension is 3, and the number of neurons
is 64. ,e second layer hidden layer (dense) takes the output
of the first layer LSTM as input; the output layer of the third
layer takes the output of the second hidden layer as the input
and connects to a full connection layer. A one-dimensional
vector with a length of 360 output from the full connection
layer is the final output result, which represents the value of
the predicted future 360 data points. To prevent overfitting, a
dropout layer was added between the first layer and the
hidden layer for regularization. After many tests in this
experiment, it was concluded that when the dropout is 0.3,
the training set had the highest accuracy.

Compared with the three-layer LSTM network, a hidden
layer is added to the four-layer LSTM network structure.,e
hidden layer uses the results of the first layer as the input for
training and transmits its output to the next hidden layer.
,e number of neurons is the same as that of the first layer.
,e dropout� 0.3 layer is added in both the first and second
layers to prevent overfitting.

(2) Network compilation. LSTM network compilation uses
the adaptive moment estimation (Adam) algorithm as the
optimizer and the mean square error loss function as the
objective function.

(3) Network fitness. ,e LSTM network was trained on 1440
samples and 360 samples were used for testing. ,e number
of iterations epochs equals 50, look_back is made of 1, 5, and
10, respectively, and batch_size equals 128.

(4) Network evaluation. When look_back takes 1, 5, and 10,
respectively, and the number of hidden layers (LN) is 1 and
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2, respectively, the loss data of the model training process is
shown in Figure 6.

(5) Network traffic forecast. 360 test data were predicted, and
the first 100 predicted results were shown in Figure 7.
TestOriginal_result represents the original data, and test-
Predict_result_101, testPredict_result_105, and testpre-
dict_110, respectively, represent the prediction results when
LN� 1, look_back takes 1, 5, and 10, respectively. Test-
Predict_result_201, testPredict_result_205, and testPre-
dict_210, respectively, represent the prediction results when
LN� 2, and look_back takes 1, 5, and 10, respectively.

(6) Evaluate the prediction error of the model. ,e LSTM
model under different parameter combinations was exe-
cuted for network traffic prediction, and the indexes of
RMSE, MAE, and MAPE for each validation set were cal-
culated. ,e results were shown in Table 1.

It can be seen from Table 1 that the prediction error of
the model changes with the look_back increases, and the
prediction error of single-layer LSTM and double-layer
LSTM is different under the same look_back. Based on the
above experiments, four groups of experiments were added,
namely, when look_back takes 15 and 20, and multiple
predictions were made in the case of single-layer network
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Figure 4: Network traffic data after null filling.
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Figure 6: Continued.

10 Security and Communication Networks



model loss

0.00

0.05

0.10

0.15

0.20

lo
ss

2 4 6 8 100
epoch

val loss
training loss

(e)

model loss

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

lo
ss

2 4 6 8 10 120
epoch

val loss
training loss

(f )

Figure 6: Model training loss under different parameter combinations.
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and double-layer network, respectively, and corresponding
error values were calculated. ,e test results are shown in
Figure 8.

It can be seen from Figure 8 that the setting of the
number of hidden layers and the time step has a great impact
on the fitting effect of LSTM. When a hidden layer is added,
the prediction error changes, and the increase or decrease of

the prediction error is not fixed at different timesteps. When
the time step is changed, that is, the look_back value is
changed from small to large, and the trend of prediction
error is also not fixed. For example, when the look_back
value changes from 5 to 10, the prediction error of the single-
layer LSTM model decreases, while the prediction error of
the double-layer LSTM model increases.
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Figure 8: Errors of LSTM prediction model under different parameter combinations.

Table 1: Errors of LSTM prediction models under different parameter combinations.

Model Parameters RMSE MAE MAPE (%)
LSTM101 (look_back, LN) � (1,1) 71.82 41.68 32.17
LSTM105 (look_back, LN) � (5, 1) 66.81 40.39 32.77
LSTM110 (look_back, LN) � (10,1) 67.08 41.58 34.11
LSTM201 (look_back, LN) � (1,2) 71.65 42.28 33.29
LSTM205 (look_back, LN) � (5,2) 69.58 40.57 31.19
LSTM210 (look_back, LN) � (10,2) 70.43 43.01 34.97
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,erefore, for network traffic data, the prediction effect
of the parameter combination set by the empirical method is
unstable and cannot achieve the optimal prediction per-
formance. ,erefore, the Improved Particle Swarm Opti-
mization (IPSO) will be adopted to carry out model
optimization, that is, the intelligent algorithm will be used to
efficiently obtain the parameter combination with the op-
timal prediction effect.

5.2.3. Parameter Optimization of LSTM Network Traffic
Prediction Model Based on IPSO. ,e IPSO algorithm was
used to optimize the LSTMnetwork traffic predictionmodel,
and parameters were optimized for single-layer LSTM and
double-layer LSTM, respectively. ,e fitness value of the
LSTM prediction model changed as the number of iterations
increased during the experiment, as shown in Figure 9.

In Figure 9, fitness12, fitness23, and fitness22 correspond
to the fitness values of the model IPSO-LSTM12 (2 pa-
rameters node1, lookback of the single layer), IPSO-LSTM23
(3 parameters node1, node2, lookback of the double layer),
and IPSO-LSTM32 (2 parameters node1, lookback of double
layer), respectively. ,e second parameter of IPSO-LSTM22
is set as node2� 4 according to the optimization results of
LSTM23.

It can be seen from Figure 9 that the final convergence
value of fitness12 is less than fitness23 and fitness22, the
convergence rate is faster than fitness23, and the fitness22
final convergence value is only slightly smaller than the
fitness of 23. ,is shows that for the long-term prediction of
network traffic data if the fitness value from a single hidden
layer LSTM optimized by the particle swarm algorithm is
slightly smaller than that from a two-layer hidden layer
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LSTM optimized by the particle swarm algorithm, con-
vergence speed is faster.

It can be seen that compared with the empirical method
of setting LSTM parameters, the RMSE of the IPSO for
setting LSTM parameters is reduced by 20%, which means
that the IPSO algorithm can effectively find the optimal
parameter combination of LSTM network traffic prediction
and reduce the prediction error.

In addition, Figure 10 shows the changes in node
number and time step size during the IPSO-LSTM12 model
optimization that shows the process of the optimal pa-
rameter value of the LSTM network traffic model deter-
mined by the improved PSO algorithm.

It can be seen from Figure 10 that the optimal parameters
of the LSTM12 model are set as node1� 8 and look back� 1.
,erefore, in the prediction of network traffic data used in
this paper, the optimal configuration of the single-layer
LSTM model is to set the number of neurons to 8 and the
time step to 1.

,e changes in node number and time step size in IPSO-
LSTM23 model optimization are shown in Figure 11.

It can be seen from Figure 11 that the optimal parameters
of LSTM23 model are set as node1� 16, node2� 4, and look
back� 1. ,erefore, in the prediction of network traffic data
used in this paper, the optimal configuration of the two-layer
LSTMmodel is to set the number of network neurons in the
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first layer to 16, the number of neurons in the second layer to
4, and the time step length to 1.

To evaluate the prediction performance of the LSTM
model after parameter optimization by IPSO, network traffic
data samples at 180 time points are used for verification. In
this paper, the IPSO optimized single-layer LSTM
IPSO—LSTM12, double parameter optimization model
IPSO - LSTM22 of double-layer LSTM, three parameters
optimization model IPSO LSTM23-1 (no dropout in
training) of double-layer LSTM, three-parameter optimi-
zation model of IPSO LSTM23-2 (dropout in training) of
double-layer LSTM are compared, and Figure 12 shows the
model prediction results for the last 180 test data.

It can be seen from Figure 12 that the prediction results
of the LSTM model with different parameter combinations
have a good fitting effect, and the prediction results of the
single-layer LSTM dual-parameter optimization model
IPSO-LSTM12 are better than those of other parameter
configuration models. To compare the predictive perfor-
mance of the four models more clearly, the predictive
performance evaluation index values of the four models in

Figure 12 are obtained, respectively, and the results are
shown in Table 2.

As it can be seen from Table 2, compared with single-
layer LSTM12, two-layer LSTM22 has slightly fewer pre-
diction errors in RMSE and MAE, while MAPE is slightly
bigger. If only RMSE orMAE evaluation index is considered,
LSTM22 is better than LSTM12, while only MAPE evalu-
ation indicators are considered, LSTM12 is considered better
than LSTM22. On the whole, the prediction error of
LSTM12 and LSTM22 is less than that of the other three
prediction models, that is, the prediction effect of LSTM12
and LSTM22 on network traffic data is better than that of the
other three models. ,e prediction error of LSTM23-2 is less
than that of LSTM23-1, which indicates that the optimi-
zation of dropout parameters added in the training reduces
the prediction error of the model and improves the pre-
diction performance of the model.

5.2.4. Network Traffic Prediction Based on CEEMDAN-IPSO-
LSTM. ,rough testing on a 500-time data set, the pre-
dictive performance of each IMF is shown in Figure 13.
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Table 2: Errors of LSTM prediction models under different parameter combinations.

Index IPSO-LSTM12 IPSO-LSTM22 IPSO-LSTM23-1 IPSO-LSTM23-2
RMSE 46.93 46.77 47.20 46.93
MAE 21.61 40.71 42.47 41.14
MAPE (%) 20.67 31.28 33.07 32.58
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Figure 16: ,e decomposition results of three decomposition methods.

Table 3: ,e prediction error with five classical models.

Index CEEMDAN-IPSO-LSTM CEEMDAN-LSTM IPSO-LSTM LSTM ARIMA SVR DTR MLR
RMSE 46.93 51.77 47.20 52.53 90.22 65.59 89.78 71.74
MAE 21.61 27.61 42.47 41.14 53.98 37.58 51.42 41.52
MAPE (%) 20.67 27.94 33.07 32.58 43.79 25.61 49.15 32.19
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Figure 13 shows the prediction results and training loss of
eight IMFs and it has a better prediction effect. IMF0 and
IMF7 are a little poor, in which the loss of the training set is
very high during the whole training process. Especially, the
loss of IMF0 is relatively large. For the remaining IMFs,
LSTM predicts them well. Despite this problem, the overall
results were excellent when the predictions were integrated.

After finishing predicting all IMFs, the final prediction
result is integrated by superimposing the predicted results of
each IMF. Figure 14 shows the forecasting flowchart of
CEEMDAN-IPSO-LSTM.

5.3. Result Analysis. To evaluate the prediction effect of the
proposed hybrid method CEEMDAN-IPSO-LSTM, it is
compared with other neural network prediction methods
like CEEMDAN-LSTM, IPSO-LSTM, and LSTM, and other
predictive models like ARIMA, Support Vector Regression
(SVR), Decision Tree Regressor (DTR), and Multivariate
Linear Regression (MLR). Similarly, the network traffic data
samples at 180-time points were used for verification, and
the prediction results of the eight models are shown in
Figure 15.

Figure 15 shows that the prediction effects of different
models and the hybrid prediction model have a better fitting
effect which indicates that the prediction results of the
CEEMDAN-IPSO-LSTM model are better than those of
other models. To compare the prediction performance of the
eight models more clearly, their predictive performance
evaluation index values were obtained, respectively, and
shown in Table 3.

It can be seen from Table 3, that the prediction errors
of the LSTM-based model are all less than regression

prediction models, which indicates that the LSTM net-
work traffic prediction model has a better prediction effect
than other regression network traffic prediction models.
In other words, the LSTM is more suitable for solving
long-term network traffic data prediction and processing
real-time variability of network traffic data. In addition,
the RMSE, MAE, and MAPE index values of the
CEEMDAN-IPSO-LSTM prediction model are all smaller
than other neural network prediction models, indicating
that the proposed hybrid model CEEMDAN-IPSO-LSTM
is better than other prediction models in network traffic
prediction.

Besides, we make comparisons of decomposition
methods like EMD, EEMD, and CEEMDAN. Firstly, based
on a 500-time network flow data, we decompose the original
data into several IMFs and compare the decomposition
results of three decomposition methods. ,en, we make
predictions by LSTM methods combining the three de-
composition methods to explain which method works
better.

In Figure 16, there are seven IMFs of EMD, eight of
EEMD, and eight of CEEMDAN, including residue. We only
know that different decomposition results make the pre-
diction accuracy different, but it is hard to see which one
produces the better prediction. So, we make predictions by
LSTM combining the three decomposition methods and the
results are in Figure 17.

Figure 17 shows the red lines fit the raw data more
closely, which shows that the predicted result of CEEM-
DAN-LSTM is closer to the real value. To further verify the
effect of different decomposition methods, Table 4 gives the
prediction error of CEEDAN-LSTM, EEMD-LSTM, and
EMD-LSTM.
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In Table 4, the prediction error of CEEMDAN-LSTM is
significantly less than the other two methods, which indi-
cates CEEMDAN can decompose data more effectively so
that LSTM can predict better.,at is to say, the results verify
the superiority of CEEMDAN for data decomposition.

Also, based on the same 500-time network flow data, we
compare CEEMDAN-IPSO-LSTM with s three state-of-the-
art prediction models to verify the effectiveness of the
proposed network traffic prediction model, like ST-LSTM,
SA-ARIMA-BPNN, and INGARCH. ,e last 100-time
prediction data of the four methods are in Figure 18.

In Figure 18, the four predictionmethods do a good job of
forecasting network traffic. Figure 18 shows that the purple

and green lines match the raw data represented by the blue
lines better, which demonstrates that the proposed method
and the SA-ARIMA-LSTM make more effective predictions
close to reality. To compare the prediction accuracy of the
four methods more clearly, the prediction error of the four
methods is calculated similarly and shown in Table 5.

In the same appearance as Figure 18, CEEMDAN-LSTM
has the lowest prediction error.,e appearances of Figure 18
and Table 5 prove the superiority of the CEEMDAN-IPSO-
LSTM in this paper once again.

Above all, the CEEMDAN-IPSO-LSTM has a better
prediction effect and higher reliability for the future pre-
diction of network traffic.
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Figure 18: ,e prediction results of the state-of-the-art models.

Table 5: ,e prediction error of the state-of-the-art models.

Index CEEMDAN-IPSO-LSTM SA-ARIMA-LSTM ST-LSTM INGARCH
RMSE 8.59 10.79 13.45 14.12
MAE 6.9 8.23 10.00 10.94
MAPE (%) 8.02 9.18 12.20 15.69

Table 4: ,e prediction error of LSTM combining different decomposition methods.

Index CEEMDAN-LSTM EEMD-LSTM EMD-LSTM
RMSE 14.12 22.74 36.66
MAE 10.94 17.46 30.65
MAPE (%) 15.69 16.35 26.05
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6. Conclusion and Future Work

Network traffic prediction can be applied to network re-
source optimization and network congestion avoidance,
which makes great significance for network business plan-
ning, data management, fault detection, resource allocation,
and other operations. In this paper, a hybrid deep interval
prediction model has been proposed for network traffic
forecasting to improve the prediction accuracy. Firstly, the
nonparametric LSTM neural network is used to establish the
network traffic prediction model, and the Improved Particle
Swarm Optimization algorithm is used to optimize the
hyperparameters of the established LSTM prediction model,
and further obtain the optimized LSTM network prediction
model–IPSO-LSTM12,IPSO-LSTM23 and IPSO-
LSTM32–which reduces the RMSE by 20% compared to the
Experience-based LSTM. Besides, the prediction perfor-
mance of single-layer LSTM is better than double-layer
LSTM in network traffic prediction. ,en the CEEMDAN is
introduced to decompose the network traffic time series into
different modes to reduce the complexity of the network
traffic sequence. To verify the effectiveness of the proposed
models, the proposed CEEMDAN-IPSO-LSTM model is
applied to network traffic prediction and compared with
other neural network prediction methods and regression
methods.,e experimental results show that compared with
other prediction models and the traditional LSTM model,
the CEEMDAN-IPSO-LSTM model reduces the prediction
error and obtains a better fitting effect, which demonstrates
that the proposed hybrid method improves network traffic
prediction accuracy.

In future work, we plan to enhance the prediction model
from two aspects to further improve the prediction accuracy
of network traffic. On the one hand, in the data pre-
processing stage, we will try other data decomposition
methods, such as Variational Mode Decomposition (VMD),
wavelet packet, and combination method, to improve the
stability and regularity of network traffic data decomposi-
tion. On the other hand, we will focus more on the error
correction strategy of the hybrid model of network traffic
forecasting, such as analysis of different error correction
strategies, or re-decompose the IMF data, to enhance the
prediction performance.
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Supernode detection has many applications in detecting network attacks, assisting resource allocation, etc. As 5G/IoT networks
constantly grow, big network traffic brings a great challenge to collect massive traffic data in compact and real-time way. Previous
works focus on detecting supernodes in a measurement point, while only a few works consider it in the distributed monitoring
system. Moreover, they are not able to measure two types of node cardinalities simultaneously and reconstruct labels of
supernodes efficiently due to large calculation and memory cost. To address these problems, we propose a novel reversible and
distributed traffic summarization called RDS to simultaneously measure source and destination cardinalities for detecting
supernodes in the distributed monitoring system. +e basic idea of our approach is that each monitor generates a summary data
structure using the coming packets and sends the summary data structure to the controller; then, the controller aggregates the
received summary data structures, estimates node cardinalities, and reconstructs labels of supernodes according to the aggregated
summary data structure. +e experimental results based on real network traffic demonstrate that the proposed approach can
detect up to 96% supernodes with a low memory requirement in comparison with state-of-the-art approaches.

1. Introduction

Traffic measurement provides valuable information for
network security and network management, such as traffic
accounting, load balancing, and anomaly detection [1–5],
where measuring cardinality is an important task of traffic
measurement. Cardinality measurement is a prerequisite for
detecting supernodes, which have been paid extensive at-
tention to by both academic and industrial organizations,
despite many efforts in detecting supernodes over recent
decades.

+e cardinality of a node indicates the number of distinct
other nodes it communicates with. We consider two types of
node cardinalities: source cardinality and destination car-
dinality, where source cardinality indicates the number of
distinct destinations that a node connects to and destination
cardinality indicates the number of distinct sources that a

node is connected to [6]. Supernodes are defined as the
nodes whose cardinalities are more than the predefined
threshold, where nodes with large source cardinality are
supersources and nodes with large destination cardinality
are superdestinations. A packet stream in traffic measure-
ment can be modeled as the set of two-tuple (s, d), where s is
a source which consists of some source fields from packet
header, such as source address, source port, and source
address and source port pair, and d is a destination which
consists of some destination fields from packet header, such
as destination address, destination port, and destination
address and destination port pair. +e problem we solve in
this paper is called supernode detection, which is to report
nodes whose cardinalities exceed the predefined threshold in
a measurement period. For each source s, the cardinality SC
(s) of s is the number of distinct destination d. If SC (s) is
more than the predefined threshold of source cardinalities, s
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is a supersource. Similarly, for each destination d, the car-
dinality DC (d) of d is the number of distinct source s, and d
is a superdestination as DC (d) is more than the predefined
threshold of destination cardinalities.

+ere are three basic tasks in trafficmeasurement, that is,
flow size, flow persistence, and flow cardinality. Flow size is
the number of elements contained in packets with the same
flow label, where elements may be the entire packets, bytes in
payload, and the specific content in packets. Flow persistence
is the number of timeslots in which its packets occur. Flow
cardinality is the number of distinct flows with the same
source or destination. +e measurement of flow cardinality
is different from that of flow size and flow persistence.
Measuring flow cardinality only counts once when the same
flow appears several times, whereas measuring flow size and
flow persistence needs to count the number of occurrences
of one same flow. Let the measurement period be
10minutes. Considering a case where a number of 1000
distinct hosts send 100000 packets to a server in one
measurement period and these packets constitute a flow
whose flow label is server address, the flow size is obviously
100000. If these packets occur in 20 timeslots, its persistence
is only 20 as the measurement period is divided into 100
timeslots. Meanwhile, its cardinality is 1000, which may
indicate the beginning of an attack.

Of particular importance are heavy hitters with large
flow size, persistent items with large flow persistence, and
supernodes with large flow cardinality. Heavy hitter de-
tection has been extensively studied [7–14], and it has many
applications, such as traffic accounting and load balancing.
Persistent item detection is widely used in anomaly detec-
tion, stealthy network attack, etc. [15–18]. In this paper, we
focus on supernode detection, which is a more challenging
work since it is difficult to only count distinct flows
appearing in one measurement period. It is important for
many applications [19–24], such as DDoS attack detection
and network scanning detection. For DDoS attack, the at-
tacker makes use of infected hosts to launch a large number
of requests to the targeted server in a short period, leading to
consuming its resources on a large scale and making it
unable to provide normal services, where the targeted server
with large cardinality is a victim called superdestination. For
network scanning, a malicious host attempts to connect to a
large of distinct destination addresses or ports so as to
discover the vulnerability in the network system, where the
malicious host with large cardinality is an attacker called
supersource.

+ere have been many efforts on cardinality estimation.
A simple method is to maintain distinct connections be-
tween any two hosts in the network [25, 26].+emethod can
measure the cardinality of each host accurately, but it is not
practical to process massive network traffic due to large
memory overhead [27, 28]. Sampling-based methods
[29, 30] and data stream-based methods [31–33] are pro-
posed to tackle the challenges caused by big network traffic.
However, the estimation accuracy of sampling-based
methods depends on the sampling rate, that is, they maintain
a small number of distinct connections at the small sampling
rate, but the accuracy of cardinality estimation decreases; on

the contrary, the accuracy of cardinality estimation increases
at the high sampling rate, but the memory overhead also
increases. Data stream-based methods demonstrate great
superiority on memory utilization and measurement ac-
curacy, where various types of summary data structures have
been widely used in traffic measurement due to the excellent
compression efficiency and acceptable accuracy.

However, the existing data stream-based methods still
encounter challenges regarding supernode detection. First,
when massive network traffic constantly generates at a high
rate, they are difficult to store a large number of flows due to
limited system resources on measurement points.+erefore,
there need to be compact data structure by which network
traffic is efficiently compressed. Second, they cannot well
support supernode detection in the distributed monitoring
systems, including distributed traffic collection and aggre-
gation, centralized cardinality estimation, and supernode
detection where distributed traffic collection and aggrega-
tion is to merge network traffic from multiple measurement
points and centralized cardinality estimation and supernode
detection are to identify supernodes based on estimated
cardinality using the aggregated data structure. Since the
connections established by supernodes may span the entire
network, there may be a small number of its connections
observed at one measurement point, while its aggregation
from multiple measurement points will have a large car-
dinality. Hence, there is necessary a traffic collection ap-
proach, which can handle data in a distributed manner to
measure node cardinalities and detect supernodes. +ird, it
is difficult to measure two types of node cardinalities si-
multaneously. Usually, they can only measure one type of
node cardinality, since their summary data structures are
two-dimensional bit arrays with the fixed row size or col-
umn size. +ough we can measure various types of cardi-
nalities using existing summary data structures, multiple
instances of summary data structure need to be established
by distinct keys, which is likely to cause excessive memory
consumption. Besides, big network traffic brings great
challenges to simultaneously measure two kinds of super-
node cardinalities due to its one-pass requirement.+us, it is
essential to design a cardinality estimation approach for
detecting supersources and destinations simultaneously.
Fourth, they are unable to reconstruct labels of supernodes
efficiently due to large calculation cost and unavoidable false
positives and false negatives. Consequently, it is vital to
reconstruct their labels for detecting supernodes efficiently
and accurately.

Likewise, we also confront some challenges in detecting
supernodes. First of all, it is not easy to count cardinalities of
each node from multiple measurement points, since a
number of connections may cross the entire network and are
not simply added. In addition, to simultaneously measure
two types of cardinalities for supersources and destinations,
source and destination addresses need to be compressed into
summary data structure once. Finally, it is very difficult to
efficiently recover labels of supernodes by only summary
data structure without storing source and destination ad-
dresses. +ese challenges in detecting supernodes motivate
our work.
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To solve the challenges, we propose a novel solution of
supernode detection, and it obtains many flows whose
cardinalities are larger than the predefined threshold at the
end of one measurement period. +e proposed method
maps each flow to one bit of two-dimensional bit arrays,
aggregates the generated two-dimensional bit arrays, esti-
mates node cardinalities using probabilistic counting algo-
rithm, reconstructs flow labels of supernode by inverse
calculation, and detects supernodes. It mainly includes four
steps: (i) update operation is used to extract flow labels (e.g.,
source and destination pairs) from packet stream and
compress them into two-dimensional bit arrays using a
group of hash functions. +en, the generated two-dimen-
sional bit arrays are aggregated into one two-dimensional bit
array with the same size at the end of each measurement
period. It supports distributed traffic collection and cen-
tralized analysis. (ii) Estimation operation can be used to
simultaneously measure source and destination cardinalities
by only utilizing summary data structure once, and the
minimal estimated cardinalities are taken as their estima-
tions in order to mitigate the overestimation problem. (iii)
Reconstruction operation is used to efficiently create
supersources and destinations by inverse calculation without
storing the information associated with sources and desti-
nations. (iv) Detection operation is used to identify
supersources and destinations under the guidance of ab-
normal rows and columns without searching the entire
possible abnormal rows and columns through reconstruc-
tion operation. Our main contributions are summarized as
follows.

In this paper, we design a novel reversible and distrib-
uted summary data structure to be suitable for supernode
detection with accuracy and memory size guarantees in the
distributed monitoring system. It is able to effectively handle
a large amount of network traffic arriving by a group of hash
functions, simultaneously estimate two types of source and
destination cardinalities by probabilistic counting method,
and efficiently detect supersources and destinations by
reconstructing flow labels of supernodes based on the ag-
gregated summary data structure. We theoretically analyze
the computation, space complexity, and estimation accuracy
of our method. We conduct extensive experiments on real
traffic traces fromWIDE to evaluate the performance of our
method. +e experimental results demonstrate that our
method achieves superior performance compared to state-
of-the-art methods in accurately and efficiently detecting
supersources and destinations.

+e rest of this paper is organized as follows: Section 2
summarizes related works; Section 3 formulates the prob-
lem; Section 4 presents our method and its theoretical
analysis; Section 5 evaluates performance and conducts
experiments; Section 6 concludes this work.

2. Related Work

Network trafficmeasurement has been extensively applied in
many fields, where the per-flow [34–39], heavy hitter [9–12],
persistent item [16, 17], and supernode measurement
[19–21] are still hot topics.

Much prior work focuses on per-flow size and cardi-
nality measurement. +e task of per-flow size measurement
is to count the number of elements in each flow, where flows
can be TCP flows, UDP flows, or any other types defined
according to the specific application requirements, and el-
ements may be packets, bytes, or occurrences for certain
events. +e simple method allocates a counter for each flow
to measure its size. When each packet arrives, the corre-
sponding counter is increased by an integer, for instance,
one at the packet level, the number of bytes at the byte level,
or the number of accesses to websites. However, there are a
large number of flows in high-speed networks, leading to
enormous memory consumption. +erefore, many strate-
gies to improve memory utilization were proposed, for
instance, CAESAR [40] and virtual sketch [41], which make
flows share counters or sketches to reduce memory con-
sumption. Compared to per-flow size measurement, per-
flow cardinality is difficult to bemeasured, since it counts the
number of distinct elements in each flow. Per-flow size
measurement is not able to be used in that of its cardinality
directly. Most existing mechanisms were that distinct ele-
ments in each flow share the same bit vector, such as
[42–44], which create a virtual bit vector for each flow, each
bit of which is selected from the same bit vector using hash
functions, so as to reduce memory cost.

Heavy hitter measurement is to find flows whose sizes
are more than the predefined threshold in the measurement
period. +e universal approach is to keep track of a small set
of flows, trying to retain large flows in the set while replacing
small ones with new flows, such as Lossy Counting [45] and
Space Saving [46]. Persistent item measurement is to find
flows that occur in many timeslots. Supernode measurement
is to find flows whose cardinalities are more than the pre-
defined threshold in the measurement period, and it has
been used to find attackers or victims. Supernode detection
can be treated as a special case of heavy hitter detection
through identifying each source or destination with a large
number of connections. However, the existing solutions [47]
of heavy hitter detection cannot be directly used to solve the
problems of supernode identification, since they are not able
to filter repetitive connections in the data streams using
counters allocated to each flow. We discuss the existing
solutions to detect supernodes below.

+e traditional approaches maintain all distinct con-
nections for each source or destination to detect DDoS
attackers or targets in the measurement period. Although
they can detect supernodes accurately, they cause great
memory usage due to a large number of flows in high-speed
networks.

Flow sampling-based approaches are used to monitor a
set of flows whose hash values are smaller than the pre-
defined sampling rate [48]. +erefore, the flows with many
connections are very probable to be sampled. Flow sam-
pling-based approaches improve memory efficiency, but the
accuracy of supernode identification depends on the sam-
pling rate. Moreover, they maintain the sampled flows at
high calculation and memory access cost.

Data streaming-based approaches are used to detect
supernodes. Most existing solutions usually design summary
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data structures that fit in fast memory, and they encode flow
labels extracted from arriving packets to be stored in the
summary data structures. However, they cannot recover
supernodes merely using the summary data structures in fast
memory due to their irreversibility. Sketches are one type of
summary data structures, which are designed to detect
supernodes and solve irreversibility [49]. Wang et al. [20]
proposed a double connection degree sketch (DCDS) that is
used to reconstruct host addresses with large cardinalities
based on Chinese Remainder +eorem. Liu et al. [21]
designed a vector bloom filter for supernode detection,
which extracts several bits directly from flow labels. How-
ever, the calculation cost is obvious for large address space.

Some network-wide measurement systems solve the
problem of supernode detection [50, 51]. +e proposed
summary data structures can be a component of network-
wide measurement systems.

Besides, some variants of supernode detection are
proposed in the literature [52, 53]. Zhou et al. [52] proposed
the solution of persistent spread problem, which counts the
number of distinct elements in each flow persistently oc-
curring in the predefined measurement periods. Huang et al.
[53] further solved the k-persistent spread problem, which
measures the number of distinct elements in each flow
appearing in at least k out of t measurement periods.

3. Problem Formulation

In this paper, we consider a distributed monitoring system
composed of the controller and a set of monitors, as shown
in Figure 1. Let P� p1, p2, . . ., pt, . . . be a sequentially arriving
packet stream generated by network traffic packets, where
pt � (st, dt) is some fields of the tth packet, in which st and dt
are the corresponding source and destination, respectively.
Source or destination space consists of distinct source or
destination over one measurement period, which are
denoted as S and D. A source can be any combination of
source fields in the packet header, such as source IP, source
port, or their combination. Similarly, a destination can be
any combination of destination fields in the packet header,
such as destination IP, destination port, or their combina-
tion. +e source and destination are determined according
to the specific application requirement. In this work, we use
the source and destination pair of one packet as its flow label.
+e whole measurement time is partitioned into many
measurement periods Twith equal length. At the beginning
of onemeasurement period, the monitor extracts some fields
from the arriving packets and compresses them into sum-
mary data structures. At the end of onemeasurement period,
the monitor sends the generated data structures to the
controller and resets data structures. +en, the controller
aggregates the received data structures and detects
supernodes.

For any source s ∈ S, its cardinality is defined as the
number of distinct destinations that s connects to in one
measurement period. Similarly, for any destination d ∈D, its
cardinality is defined as the number of distinct sources that
connects to d in one measurement period. Supernodes are
divided into two types: supersources and superdestinations.

Supersources or superdestinations are the hosts whose
cardinality exceeds the predefined threshold θ1D1 or θ2D2 in
one measurement period, whereD1 orD2 denotes the sum of
source or destination cardinality in one measurement and θ1
and θ2 are constants, 0< θ1 and θ2< 1. Supersources and
superdestinations are expressed as

SS � s|SC(s)> θ1D1, s ∈ S􏼈 􏼉, (1)

SD � d|DC(d)> θ2D2, d ∈ D􏼈 􏼉, (2)

where SC (s) indicates the cardinality of source s, DC (d)
indicates the cardinality of destination d, D1 is computed as
􏽐s∈SSC(s), and D2 is computed as 􏽐d∈DDC(d).

Supernode detection is widely used in many areas. For
example, port scanning attacks are performed by trying to
connect to numerous distinct destination addresses or ports
for the existence of vulnerable services. In this case, the
attacker with large cardinality is a supersource. Besides,
Distributed Denial-of-Service (DDoS) attacks are launched
by using a large number of connected devices as attackers to
send a lot of requests to a victim such as server, so that
legitimate users are not able to utilize its resources. Similarly,
the victim with high cardinality is a superdestination.

+e goal of this work is to design a distributed moni-
toring framework which consists of updating module and
detecting module. +e former stores information associated
with cardinalities of flows by summary data structures on
each monitor. +e latter aggregates the generated data
structures from each monitor, estimates source and desti-
nation cardinality, reconstructs supersource and destination
candidates, and identifies supersources and destinations on
the controller. We perform theoretical analysis and per-
formance evaluation.

4. Our Algorithm

In this section, we first introduce a novel summary data
structure. +en, we define the main operations of our al-
gorithm, containing updating and aggregating summary
data structures, estimating cardinality, reconstructing
sources and destinations, and detecting supersources and
superdestinations. +eoretical analysis on updating com-
plexity and estimation accuracy is performed. Next, we
elaborate them in detail. +e framework of our method is
shown in Figure 2.

Computer Network

Controller
Monitor

ę

Data structure

Figure 1: +e distributed monitoring system.
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4.1. Data Structure. +e summary data structure is denoted
as follows:

B � B1, B2, . . . , BH( 􏼁. (3)

Each Bi (1≤i≤H) is a two-dimensional bit array with the
size of ni × mi, each bit of which is denoted as Bi[ j][k]
(0≤ j≤ ni − 1 and 0≤ k≤mi − 1), as shown in Figure 3. Each
Bi (1≤ i≤H) with different sizes is used to store sufficient
flow information and effectively trace attackers or victims.
We use a row hash function fi and a column hash function hi
to locate the index in each Bi (1≤ i≤H).+e row and column
hash functions are expressed as

fi: 0, 1, . . . , N − 1{ }⟶ 0, 1, . . . , ni − 1􏼈 􏼉, (4)

hi: 0, 1, . . . , M − 1{ }⟶ 0, 1, . . . , ni − 1􏼈 􏼉, (5)

where N and M are the size of source space and destination
space and ni and mi indicate the number of rows and col-
umns in each Bi (1≤ i≤H).

To recover abnormal sources by simple computation, the
row hash function fi and column hash function hi are defined
as

fi(x) ≡ ci mod ni( 􏼁, 1≤ i≤H, (6)

hi(x) ≡ ci
′ modmi( 􏼁, 1≤ i≤H, (7)

where ci and ci
′ are the values of modulus operation, n1, n2,

. . ., nH are selected as pair-wise coprime integers to make the

summary data structure reversible, and m1, m2, . . ., mH are
also pair-wise coprime integers.

+e monitors use the same summary data structure B as
the controller. Let the number of monitors be R. +e
summary data structure on the monitors is indicated as
follows:

B
r

� B
r
1, B

r
2, . . . , B

r
H( 􏼁, r � 1, 2, . . . , R. (8)

4.2. Updating Summary Data Structures. Updating opera-
tion is used to collect flow information from massive net-
work traffic. At the beginning of one measurement period,
all bits in B and each Br (1≤r≤R) are initialed. +en, each
monitor updates the corresponding bit in each Br

i (1≤ i≤H)

by the row hash function fi (1≤i≤H) and column hash
function hi (1≤i≤H) when a packet arrives. At the end of
one measurement period, the controller aggregates the
generated summary data structures from each monitor. +e
updating process is described in Algorithm 1.

When packet stream arrives sequentially, each monitor
extracts its flow label (st, dt) from one packet and sets the
corresponding bit in each Br

i (1≤ i≤H, 1≤ r≤R) by the row
hash function fi (st) (1≤ i≤H) and column hash function hi
(dt) (1≤ i≤H) to one, which is denoted as follows:

B
r
i fi st( 􏼁􏼂 􏼃 hi dt( 􏼁􏼂 􏼃 � 1, 1≤ r≤R, 1≤ i≤H. (9)

At the end of one measurement period, each monitor
sends the generated summary data structure to the con-
troller. +en, the controller performs the bitwise-OR op-
erations on the same bits in each Br

i (1≤ i≤H and 1≤ r≤R).
If one bit in Br

i [j][k] (1≤ r≤R) is one, the corresponding bit
in each Bi (1≤ i≤H) in B is set to one. +e bitwise-OR
operation is denoted as follows:

Bi[j][k] � B
1
i [j][k]⊕ · · ·⊕BR

i [j][k], (10)

estimating cardinality

detecting super sources and super
destinations 

network
traffic 

updating summary
data structure 

monitor r 

controller

aggregating summary data structures

reconstructing sources and destinations

updating summary
data structure 

monitor 1 

Figure 2: Framework of our method.

fi (st)

Bi

0

0 mi -1

ni -1

hi (dt)

Figure 3: Data structure.
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where Br
i [j][k] (1≤ r≤R) indicates the corresponding bit in

the ith bit array Br
i in Br and ⊕ is a bitwise-OR operator.

4.3. Estimating Source and Destination Cardinality.
Estimating operation is used to obtain an approximate es-
timation of cardinality based on the aggregated data
structure B� (B1, B2, . . ., BH). Estimating operation is shown
in Algorithm 2. For each source s ∈ S, we compute the hash
value fi(s) of source s to locate the row in each Bi (1≤ i≤H) of
B. +e flows associated with source s are mapped to H rows
Bi(s)�Bi [ fi (s)] [·] (1≤ i≤H). As a result, we obtain H bit
vectors Bi (s) (1≤ i≤H) to store the cardinality information
of source s. +e source cardinality for each bit vector Bi (s)
(1≤ i≤H) is estimated as (11) by the probabilistic counting
algorithm.

SCi(s) � − ni ln
UBi(s)

ni

, (11)

where UBi(s) is the number of zero bits in each bit vector Bi(s)
(1≤ i≤H).

If other sources are not mapped to the fi (s)th row, the
estimated source cardinality is very close to its real value.
Actually, each Bi (s) (1≤ i≤H) may contain noise caused by
other sources, so that the source cardinality may be over-
estimated. +erefore, we use the minimum value of

estimated source cardinalities SCi (s) (1≤ i≤H) as its esti-
mation [40], which is denoted as follows:

SC(s) � minN
i�1SCi(s). (12)

Similarly, for each destination d ∈D, we calculate the
hash value hi (d) of destination d to locate the column in each
Bi (1≤ i≤H) of B. +e flows associated with destination d are
hashed to H bit vectors Bi (d)�Bi [·] [hi (d)] (1≤ i≤H).
+erefore, the destination cardinality for each bit vector Bi
(d) (1≤ i≤H) is estimated as (13) by the probabilistic
counting algorithm.

DCi(d) � − mi ln
UBi(d)

mi

, (13)

where UBi(d) is the number of zero bits in each bit vector Bi
(d) (1≤ i≤H).

We use the minimum value of estimated destination
cardinalities DCi (d) (1≤ i≤H) as its estimation, which is
denoted as follows:

DC(d) � minN
i�1DCi(d). (14)

4.4. Reconstructing Sources and Destinations.
Reconstructing operation is to recover abnormal sources
and destinations. For ease of understanding, we first

Input: initialize Br � (Br
1, Br

2, . . . , Br
H), 1≤ r≤R

Output: the updated B� (B1, B2, . . ., BH)
(1) for each packet arriving at the monitor r do
(2) extract its flow label (st, dt)
(3) compute fi (st), 1≤ i≤H
(4) compute hi (dt), 1≤ i≤H
(5) Br

i [fi(st)][hi(dt)]← 1, 1≤ i≤H, 1≤ r≤R
(6) end for
(7) Bi[j][k] ← B1

i [j][k]⊕ · · ·⊕BR
i [j][k], 1≤ i≤H

ALGORITHM 1: Updating summary data structures.

Input: the updated B� (B1, B2, . . ., BH)
Output: the estimated source and destination cardinality

(1) for one source s ∈ S do
(2) compute fi(s), 1≤ i≤H
(3) Bi(s)⟵ Bi[ fi(s)][·], 1≤ i≤H
(4) compute the number UBi(s) of zero bits in each Bi (s)
(5) SCi(s)⟵ − ni ln(UBi(s)/ni) , 1≤ i≤H
(6) SC(s)⟵ minN

i�1SCi(s)

(7) end for
(8) for one destination d ∈D do
(9) compute hi(d), 1≤ i≤H
(10) Bi (d)⟵Bi [·] [hi (d)], 1i≤ i≤H
(11) compute the number UBi(d) of zero bits in each Bi (d)
(12) DCi(d)⟵ − mi ln(UBi(d)/mi), 1≤ i≤H
(13) DC(d)⟵minN

i�1DCi(d)

(14) end for

ALGORITHM 2: Estimating cardinality.
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consider the simple situation. Suppose that there is only one
abnormal row in each Bi (1≤ i ≤H), which is denoted as ci
(1≤ i ≤H). According to the predefined row hash function
fi, we can map a source s to the fi (s)th row in each Bi
(1≤ i ≤H), that is, fi (s) ≡ ci (mod mi) (1≤ i ≤H). +e
problem of finding abnormal source s is converted to the
solution of equations fi (s)≡ ci (mod mi) (1≤ i ≤H). Based
on the Chinese Remainder +eorem (CRT) [44], the so-
lutions are denoted as follows:

s ≡ 􏽘
H

i�1
MiM

− 1
i ci(modM), (15)

where M � m1m2 · · · mH, Mi � M/mi, and MiM
− 1
i ≡

1 (modmi).
Similarly, we assume only one abnormal column in each

Bi (1≤ i≤H), which is denoted as ci
′ (1≤ i≤H). +e problem

of finding abnormal destination d is converted to the so-
lution of equations hi(d) ≡ ci

′(modni) (1≤ i≤H). +erefore,
the solutions are expressed as follows using the CRT:

d ≡ 􏽘
H

i�1
NiN

− 1
i ci
′(modN), (16)

where N � n1n2 · · · nH, Ni � N/ni, and NiN
− 1
i ≡ 1(modni).

For the general situation, we assume w abnormal rows in
each Bi (1≤ i≤H). +ere are wH combinations consisting of
one abnormal row or column in each Bi (1≤ i≤H). We use
the CRT to solve the reversible problem for each combi-
nation. +e entire abnormal sources or destinations are the
union of solutions with each combination. However, the
reverse calculations cause large computational overhead and
increase false positive rate and false negative rate due to a few
false combinations and hash collisions.

We design a strategy to establish relations between two
consecutive rows to which sources are mapped by row hash
functions. Taking one source s as example, we obtain the row
index fi (s) (1≤ i≤H) and the next row index fi+ 1 (s)
(1≤ i≤H − 1) using row hash function fi (1≤ i≤H). +ere-
fore, the row index fi (s) is associated with the next row index
fi+ 1 (s) (1≤ i≤H − 1) by one hash table, that is, Ti [fi (s)]�

fi+ 1 (s) (1≤ i≤H − 1). However, different sources may be
mapped to the same rows, leading to hash collisions. As-
suming another source s´, Ti [fi (s)]� {fi+ 1 (s), fi+ 1 (s´)}
(1≤ i≤H − 1). We conduct row combinations based on the
hash table to reduce computational overhead and improve
false positive rate and false negative rate. After that, we can
accurately recover sources from row combinations using
inverse calculation. Similarly, supposing that there are two
destinations d and d´ mapped to the same columns, Ti [hi
(d)]� {hi+ 1 (d), hi+ 1 (d´)} (1≤ i≤H − 1). Likewise, we
conduct column combinations based on the hash table and
recover destinations using inverse calculation to reduce
computational overhead and improve false positive rate and
false negative rate.

As a result, it reduces false positive rate generated by false
row combinations. Supersources and destinations show
abnormal rows and columns at high probability.

4.5. Detecting Supersources and Superdestinations. For
detecting supersources, we should identify abnormal rows
generated by supersources at high probability in each Bi
(1≤ i≤H). We view each row Bi [j] [·] (1≤ i≤H, 0≤ j≤ ni − 1)
as one bit vector. For each row Bi [j] [·] (1≤ i≤H,
0≤ j≤ ni − 1), its cardinality is estimated as (17) by the
probabilistic counting algorithm.

RCj

i � − ni ln
UBi[j][·]

ni

, (17)

where UBi[j][·] is the number of zero bits in each row Bi [j] [·]
(1≤ i≤H, 0≤ j≤ ni − 1). If the cardinality RCj

i of each row Bi
[j] [·] (1≤ i≤H, 0≤ j≤ ni − ) is more than the predefined
threshold αi which is the ratio of summation of source
cardinalities in a measurement period, the row Bi [j] [·]
(1≤ i≤H, 0≤ j≤ ni − 1) is defined as one abnormal row.
Similarly, for detecting superdestinations, we should identify
abnormal columns caused by superdestinations at high
probability in each Bi (1≤ i≤H). For each column Bi [·] [j]
(1≤ i≤H, 0≤ j≤ ni − ), its cardinality is estimated as (18) by
the probabilistic counting algorithm.

Input: the updated B� (B1, B2, . . ., BH)
Output: supersources and destinations

(1) for i� 1 to H do
(2) compute the number UBi[j][·] of zero bits in each Bi [ j] [·]
(3) RCj

i ← − ni ln(UBi[j][·]/ni) , 0≤ j≤ ni − 1
(4) if RCj

i > αi then
(5) the row Bi [j] [·] is an abnormal row
(6) end if
(7) compute the number UBi[·][j] of zero bits in each Bi [·] [j]
(8) CCj

i ← − mi ln(UBi[·][j]/mi), 0≤ j≤mi − 1
(9) if CCj

i > βi then
(10) the column Bi [·] [j] is an abnormal column
(11) end if
(12) end for
(13) Obtain supersources and destinations by inverse calculation

ALGORITHM 3: Detecting supersources and superdestinations.
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CCj
i � − mi ln

UBi[·][j]

mi

, (18)

where UBi[·][j] is the number of zero bits in each column Bi [·]
[j] (1≤ i≤H, 0≤ j≤mi − 1). If the cardinality CCj

i of each
column Bi [·] [j] (1≤ i≤H, 0≤ j≤mi − 1) is more than the
predefined threshold βi which is the ratio of summation of
destination cardinalities, the column Bi [·] [j] (1≤ i≤H,
0≤ j≤mi − 1) is defined as one abnormal column.

After that, we obtain abnormal rows and columns in
each Bi (1≤ i≤H). +erefore, supersources and super-
destinations can be identified by reconstructing operation.
+e detection operation is shown in Algorithm 3.

4.6.6eoreticalAnalysis. In the updating process, there need
to be 2H hash calculations to determine the row and column
in H two-dimensional bit arrays and 2H memory accesses
for each packet. For the aggregation operation, it executes
H+ 2 memory accesses. +erefore, the time complexity to
update a packet isO (H). For simplicity, we only consider the
size of summary data structures. Each monitor needs miniH
memory to store the related cardination information, and
the controller needs the same memory size to detect
supernodes. Since the distributed monitoring system con-
sists of the controller and multiple monitors, the required
memory space is mini (H+ 1). +erefore, the space com-
plexity is O (miniH).

We only derive the deviation and standard error of
source cardinality estimation S􏽢Ci in each two-dimensional
bit array Bi (1≤ i≤H) according to the linear-time proba-
bilistic counting algorithm as follows.

Let VBi(s) � UBi(s)/ni; the estimation of source cardinality
in each two-dimensional bit array Bi (1≤ i≤H) is denoted as
follows:

S􏽢Ci � − ni ln VBi(s). (19)

+e Taylor series of ln VBi(s) at VBi(s) � e− SCi/ni is
expressed as follows:

ln VBi(s) � −
SCi

ni

+
VBi(s) − e

− SCi/ni

e
− SCi/ni

−
1
2

·
VBi(s) − e

− SCi/ni􏼐 􏼑
2

e
− 2 SCi/ni

+ · · · .

(20)

We take the first three items of (20), and the estimation
of source cardinality in each two-dimensional bit array Bi
(1≤ i≤H) is approximately represented as follows:

S􏽢Ci � ni

SCi

ni

−
VBi(s) − e

− SCi/ni

e
− SCi/ni

+
1
2

·
VBi(s) − e

− SCi/ni􏼐 􏼑
2

e
− 2 SCi/ni

⎛⎝ ⎞⎠.

(21)

+e mathematical expectation of source cardinality es-
timation is denoted as follows:

E S􏽢Ci􏼐 􏼑 � SCi +
1
2

·
niE VBi(s) − e

− SCi/ni􏼐 􏼑
2

e
− 2 SCi/ni

. (22)

Since E(VBi(s) − e− SCi/ni )2 � 1/nie
− SCi/ni (1 − (1+

SCi/ni)e
− SCi/ni ), we obtain

E S􏽢Ci􏼐 􏼑 � SCi +
e
SCi/ni − SCi/ni − 1

2
. (23)

+emathematical expectation of relative error is denoted
as follows:

E
S􏽢Ci − SCi

SCi

􏼠 􏼡 �
e
SCi/ni − SCi/ni − 1

2 SCi

. (24)

Let ri � SCi/niri � SCi/ni. Equation (24) is transformed
as follows:

E
S􏽢Ci − SCi

SCi

􏼠 􏼡 �
e

ti − ti − 1
2 SCi

. (25)

Figure 4 illustrates the relationship among these pa-
rameters, namely, the source cardinality SCi, the ratio ti, and
the relative error. When the source cardinality SCi is con-
stant, we can see that the relative error decreases as the ratio
ti decreases. +erefore, we can select the column number ni
of summary data structure to obtain the required relative
error for each SCi.

To derive the variance of the ratio S􏽢Ci/SCi, we take the
first two items of (20) as the approximate estimation of
source cardinality in each two-dimensional bit array Bi
(1≤ i≤H), which is represented as follows:

S􏽢Ci � ni

SCi

ni

−
VBi(s) − e

− SCi/ni

e
− SCi/ni

⎛⎝ ⎞⎠. (26)

+e variance of the ratio S􏽢Ci/SCi is denoted as follows:

Var
S􏽢Ci

SCi

􏼠 􏼡 �
n
2
i Var VBi(s) − e

− SCi/ni􏼐 􏼑

SC2
i e

− 2 SCi/ni
. (27)

Since Var(VBi(s) − e− SCi/ni ) � E(VBi(s) − e− SCi/ni )2, we
obtain (28) according to the previous formula:
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E=0.001

Figure 4: +e parameters SCi and ti impact on the relative error of
source cardinality estimation.
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Var
S􏽢Ci

SCi

􏼠 􏼡 �
ni e

SCi/ni − SCi/ni − 1􏼐 􏼑

SC2
i

. (28)

+erefore, the standard error of the ratio S􏽢Ci/SCi is
denoted as follows:

StdE
S􏽢Ci

SCi

􏼠 􏼡 �
nie

SCi/ni − ni − SCi􏼐 􏼑
1/2

SCi

. (29)

Let ri � SCi/ni; equation (11) is transformed as
follows:

StdE
S􏽢Ci

SCi

􏼠 􏼡 �

��
ni

√
e

ti − ti − 1􏼐 􏼑
1/2

SCi

. (30)

Figure 5 shows the relationship among these parame-
ters, namely, the source cardinality SCi, the standard error
of the ratio S􏽢Ci/SCi, and the ratio ti. When the source
cardinality SCi is constant, we can also see that the standard
error of the ratio S􏽢Ci/SCi decreases as the ratio ti decreases.
+erefore, we can select the column number ni of summary
data structure to obtain the required standard error for
each SCi.

5. Experiment and Evaluation

In this section, we evaluate the performance of our algorithm
in comparison with other ones. +e experiments are ex-
tensively conducted on real traffic data. All algorithms are
implemented using C++ on a server with Intel E-2224 CPU
and 32GB memory. +e influence of parameters on the
algorithm performance is discussed.

5.1. Datasets. To evaluate the performance of our algorithm,
we select the traffic trace in the first three minutes from
traffic traces without packet header over 15 minutes pub-
lished by MAWI [54], which are divided into three traffic
traces with one minute called data1, data2, and data3, re-
spectively. Table 1 shows the statistical information of three
traffic traces used in our experiments, where #packet denotes
the number of packets in the traffic trace, |SIP| denotes the
number of distinct source IP addresses (SIP for short), |DIP|
denotes the number of distinct destination IP addresses (DIP
for short), and |(SIP, DIP)| denotes the number of distinct
source IP address and destination IP address pairs. As shown
in Table 1, the average number of packets, source IP ad-
dresses, destination IP addresses, and source IP address and
destination IP address pairs in three traffic traces is 2.4M,
39K, 212K, and 676K.

In this paper, we use SIP and DIP as sources and des-
tinations, respectively. Figure 6 shows the cardinality dis-
tribution in three traffic traces, where the x-coordinates
indicate the logarithm of source or destination cardinality
and the y-coordinates indicate the logarithm of number of
sources or destinations. We can see that the number of
sources or destinations decreases as source or destination
cardinality increases. As shown in Figures 6(a), 6(c), and
6(e), the sources with low cardinality are obviously more

0
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6
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10

t i
2 4 6 8 100

SCi (×103)

StdE=0.01
StdE=0.001

Figure 5: +e parameters SCi and ti impact on the standard error of the ratio S􏽢Ci/SCi.

Table 1: Statistics of datasets.

Dataset #packet |SIP| |DIP| |(SIP, DIP)|
data1 2.4M 39K 212K 658K
data2 2.4M 39K 212K 660K
data3 2.3M 39K 215K 711K

Table 2: True supersources and destinations.

Dataset |SS| |SD|
data1 91 98
data2 91 72
data3 83 77
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than ones with high cardinality. +e number of sources
whose cardinality is less than 10 is about 93 percent of overall
sources. As shown in Figures 6(b), 6(d), and 6(f), we obtain
similar results, that is, the destinations with low cardinality
are apparently more than ones with high cardinality. +e
destinations whose cardinality is less than 10 are about 98
percent of overall destinations. +e cardinality approx-
imatively obeys the heavy-tailed distribution.

In the experiments, we assume that there are three
monitors in distributed monitoring systems, each of which
processes the 20-second traffic trace for each traffic trace. For

detecting supersources and destinations, we evaluate the
performance of our algorithm compared with the compact
spread estimator (CSE) [42], double connection degree
sketch (DCDS) [20], and SpreadSketch (SS) [49] in terms of
estimation accuracy, detection precision, and memory cost.
+e CSE constructs a virtual bit vector from the shared one-
dimensional bit array for each host by a group of hash
functions. It can provide good accuracy in a small memory.
+e DCDS constructs multiple two-dimensional bit arrays,
only sets several bits selected in a bit array for each coming
packet by a group of hash functions, and then reconstructs
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Figure 6: Cardinality distribution. (a) Distribution of source cardinality under data1. (b) Distribution of destination cardinality under
data1. (c) Distribution of source cardinality under data2. (d) Distribution of destination cardinality under data2. (e) Distribution of source
cardinality under data3. (f ) Distribution of destination cardinality under data3.

10 Security and Communication Networks



abnormal hosts by simple inverse calculation. +e SS con-
structs an invertible sketch that is formed by the combination
of count-min sketch and multiresolution bitmap, and multiple
sketches can be merged to provide a network-wide measure-
ment view for recovering superspreaders and their estimated
fan-outs by simple computations and small memory.

We also need to know true supersources and destina-
tions obtained using three traffic traces in advance. Table 2
shows the number of true supersources and destinations
when the predefined thresholds are 0.1 and 0.01 percent of
the overall source and destination cardinality for three traffic
traces, where |SS| and |SD| denote the number of true
supersources and destinations separately.

5.2. Influence of Parameters on Estimation Accuracy. Our
algorithm has three parameters, H, mi, and ni, where H
denotes the number of hash functions and ni and mi denote
the number of rows and columns in two-dimensional bit
arrays Bi (1≤ i≤H). Updating, estimating, and reconstructing

processes use hash functions, and the parameter H impacts
the processing time. H changes from 2 to 6. Both ni and mi
determine the size of memory consumed by our algorithm.
According to the coupon collection issue, the source and
destination cardinality can be accurately estimated when they
are less than nilnni andmilnmi. In the experiments, source IP
addresses and destination IP addresses are used as sources and
destinations.+erefore, ni is a prime from 400 to 800 andmi is
also a prime from 3000 to 7000.

We evaluate the accuracy of cardinality estimation by the
average relative error (ARE for short), which is the mean
value of difference between the true cardinality of hosts and
their cardinality estimated divided by the true cardinality.
ARE is expressed as follows:

ARE �
1
n

􏽘

n

i�1

􏽢ci − ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

ci

, (31)

where ci denotes the true cardinality of host i, 􏽢ci denotes the
estimated cardinality of host i, and n indicates the number of
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Figure 7: +e influence of parameter H on cardinality estimation under different traffic traces. (a) data1. (b) data2. (c) data3.

Security and Communication Networks 11



distinct hosts. +e smaller the ARE is, the more accurate the
estimated cardinality is.

Figure 7 shows the influence on the performance of our
algorithm under different traffic traces. As shown in
Figure 7(a), we can see that the ARE of our algorithm
decreases asH increases. As shown in Figures 7(b) and 7(c),
we obtain similar results. Since distinct sources and des-
tinations are mapped to two-dimensional bit arrays by
many hash functions, hash collisions are significantly re-
duced. Besides, the estimation error caused by hash col-
lisions is reduced because the minimum estimation in each
two-dimensional bit array is used as the cardinality
estimation.

Figure 8 shows the influence of parameter ni on the
estimation accuracy under different traffic traces. As shown
in Figure 8(a), we can see that the ARE obviously decreases
as ni varies from 400 to 600 and slowly decreases as ni
changes from 600 to 800. As shown in Figures 8(b) and 8(c),
we obtain similar results. When other parameters are fixed,
the size of memory consumed increases as ni increases.
+erefore, the probability that distinct sources are mapped
to the same bits in two-dimensional bit arrays are reduced to
improve the estimation accuracy.

Based on the above analysis, we select (H)� 4, ni � 600,
and mi � 5000 in the experiments.

Figure 9 shows the influence of parameter mi on the
estimation accuracy under different traffic traces. As shown
in Figure 9(a), we can see that the ARE obviously decreases
as mi varies from 3000 to 5000 and slowly decreases as mi
changes from 5000 to 7000 using data1. As shown in
Figures 9(b) and9(c), we obtain the similar results. Since the
size of memory consumed increases, the probability of hash
collisions is reduced. +erefore, we improve the cardinality
estimation accuracy as mi increases.

5.3. Estimation Accuracy. Figure 10 shows the cardinality
estimation accuracy under three traffic traces for CSE,
DCDS, SS, and our method called RSD.We can see that RSD
has the minimum ARE of source cardinality estimation for
each traffic trace from Figure 10(a). Similarly, RSD also has
the minimum ARE of destination cardinality estimation for
each traffic trace (Figure 10(b)). CSE, DCDS, SS, and RSD
approximately estimate the cardinality of hosts using
probabilistic methods, and their estimation accuracy de-
pends on the memory utilization. RSD can simultaneously
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and accurately estimate the cardinality of sources and
destinations based on the same summary data structure
generated by the controller in comparison with CSE, DCDS,

and SS. However, the deviation between the estimated
cardinality and the theoretical value still exists due to hash
collisions.
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5.4.DetectionPrecision. We evaluate the performance of our
algorithm called RSD compared with CSE, DCDS, and SS
under different traffic traces. +e reconstructed sources or
destinations may not be true supersources or destinations by
false combinations of abnormal rows or columns. +erefore,
we use the false positive rate and false negative rate to
evaluate the detection precision of four algorithms. +e false
positive rate (FPR for short) is the number of not corrected
identified supernodes divided by the number of supernodes
identified.+e false negative rate (FNR) is the number of not
identified supernodes divided by the number of true
supernodes. +e FPR and FNR are expressed as

FPR �
|B − A|

|B|
, (32)

FNR �
|A − B|

|A|
, (33)

where A is the set of true supernodes and B is the set of
identified supernodes.

Figure 11 shows the detection precision of three algorithms
under data1. +e FPR and FNR of detecting supersources are
shown in Figures 11(a) and 11(b). We can see that RSD has the

lowest FPR and FNR for supersources in comparison with
DCDS, CSE, and SS.+e FPR changes from 0.04 to 0.15 and the
FNR varies from 0.06 to 0.25 as the threshold θ1 increases. +e
FPR and FNR of detecting superdestinations are shown in
Figures 11(c) and 11(d). We can see that RSD has the lowest
FPR and FNR for superdestinations compared to DCDS, CSE,
and SS.+e FPR changes from 0.05 to 0.18 and the FNR varies
from 0.08 to 0.24 as the threshold θ2 increases. Although there
are some false positive and false negative due to the recon-
struction of supersources and destinations using false com-
binations of abnormal rows and columns in two-dimensional
bit arrays, RSDmitigates wrong reconstruction of supersources
and destinations using the extra hash table that conducts the
combinations of abnormal rows and columns. In general, RSD
can simultaneously identify supersources and destinations
based on their accurate cardinality estimation, and it outper-
forms DCDS, CSE, and SS in terms of FPR and FNR. Figure 12
shows the detection precision of three algorithms under data2.
As shown in Figures 11(a)–11(d), we can obtain similar results.

5.5. Memory Cost. Figure 13 shows the memory cost of
four algorithms under different traffic traces. +e
memory cost of our algorithm called RSD includes the
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Figure 11: Detection precision under data1. (a) False positive rate of supersources. (b) False negative rate of supersources. (c) False positive
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14 Security and Communication Networks



summary data structure, arrays, and hash table. +e
memory cost slightly increases when the extra bit arrays
and hash table are created in the updating and recon-
struction process. For simplicity, we treat the size of
summary data structure as the memory cost. CSE, DCDS,

and SS need to establish the data structure twice to si-
multaneously measure supersources and destinations,
leading to high memory cost. Besides, DCDS uses the
additional two-dimensional bit arrays to reduce the FPR
caused by wrong combinations of abnormal rows and
columns. CSE can only measure the cardinalities of
supersources and destinations by constructing multiple
virtual one-dimensional bit arrays and not reconstruct
supersources and destinations. SS can measure the car-
dinalities of candidate supersources and destinations
through building two-dimensional sketches, each bucket
of which consists of a multiresolution bitmap, a label
field, and a register. However, RSD can reduce the
memory cost in supersource and destination detection by
constructing row and column hash functions. In brief, the
memory cost of RSD is superior to that of the three al-
gorithms CSE, DCDS, and SS.

6. Conclusion

In this paper, we propose a novel method for detecting
supernodes in the distributed monitoring systems. It con-
structs two-dimensional reversible summary data structures
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to collect information associated with cardinalities
according to the specific application requirements. At the
end of each measurement period, the generated summary
data structures are aggregated to produce the summary data
structure with the same size. On the basis of the aggregated
summary data structure, it estimates node cardinalities and
reconstructs supersources and destinations. Compared to
other algorithms, the proposed method can simultaneously
measure two types of node cardinalities using the same
summary data structures, detect supersources and desti-
nations efficiently, and reconstruct labels of supersources
and destinations with small computational complexity. We
perform theoretical analysis and conduct extensive experi-
ments on real traffic traces. +e experimental results illus-
trate that our method has good estimation accuracy,
detection precision, and memory cost. In the future, we will
deploy our method and study superchanger detection
problem in the practical distributed monitoring systems and
study variants of supernode detection.
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Tor is vulnerable to flow correlation attacks, adversaries who can observe the traffic metadata (e.g., packet timing, size, etc.)
between client to entry relay and exit relay to the server will deanonymize users by calculating the degree of association. A recent
study has shown that deep-learning-based approach called DeepCorr provides a high flow correlation accuracy of over 96%. *e
escalating threat of this attack requires timely and effective countermeasures. In this paper, we propose a novel defense mechanism
that injects dummy packets into flow traces by precomputing adversarial examples, successfully breaks the flow pattern that CNNs
model has learned, and achieves a high protection success rate of over 97%. Moreover, our defense only requires 20% bandwidth
overhead, which outperforms the state-of-the-art defense. We further consider implementing our defense in the real world. We
find that, unlike traditional scenarios, the traffic flows are “fixed” only when they are coming, which means we must know the next
packet’s feature. In addition, the websites are not immutable, and the characteristics of the transmitted packets will change
irregularly and lead to the inefficiency of adversarial samples. To solve these problems, we design a system to adapt our defense in
the real world and further reduce bandwidth overhead.

1. Introduction

Tor is the most popular and low-latency anonymity network
that provides anonymous communication services for more
than two million people [1]. It includes over 3000 relays that
transmit massive encrypt packets and conceal client’s in-
formation. Every relay only knows its previous and latter
relay’s address.

But flow correlation attacks break this security model.
Network-level adversaries, i.e., autonomous systems (ASes)
have the power to observe traffic characteristics between
client to entry relay and exit relay to the destination server.
*ey can link these data (in particular packet timings and
packet sizes) to deanonymize users, as shown in Figure 1.
*e correlation algorithm used in the beginning studies is
usually a traditional method like Pearson correlation or
Cosine similarity. Recent research leverages a deep learning
model to correlate traffic characteristics with significantly
higher accuracies than existing algorithms.

Existing defense methods to detect or mitigate traffic
analysis attacks mainly focus on obfuscating encrypt packets,
trafficmorphing, changing network-level characteristics that
does not affect the deep-learning-based attack. And to our
best knowledge, existing defenses are all designed to mitigate
traffic analysis attacks like website fingerprint attacks or BGP
hijack attacks. *ere is no effective defense faced to flow
correlation attack.

Against this strong deep-learning-based attack, the
adversarial example is a natural choice for us to confuse
CNNs model. So, we explore how effective the adversarial
examples defend flow correlation attacks and how to im-
plement defense in the real world.

First, we reconstruct the targeted model that represents
state-of-the-art attack and gets the similar accuracy that
Milad Nasr et al. [10] mentioned. Second, we evaluate
various adversarial example methods’ effects including
FGSM, C&W, Deepfool, and BIM. *e experimental results
show that the success rate of applying adversarial examples
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to defeat the flow correlation model is more than 97% with
only 20% bandwidth overhead.

*ird, we try to implement our defense in the real world,
but we find that there are some challenges we have to face. (1)
*e websites are not immutable, so the characteristics of the
transmitted packets are not immutable. (2) *e traffic flows
are “fixed” only when they are coming, which means we
must know the next packet’s feature. (3)*e dummy packets
we add will go through entire circuit (client-> entry relay-
>middle relay-> exit relay-> server). *is has increased
bandwidth overhead. How can we reduce these extra
dummy packets after they have done their job?

To solve the first and second problem, we design a center
server that termly collects traffic characteristics of websites
and generates corresponding adversarial examples. To solve
third problem, we design a mechanism to drop redundant
dummy packets at the entry relay, which further reduces
bandwidth overhead.

*e key contributions of this work are as follows:

(1) We propose a novel defense mechanism against
deep-learning-based flow correlation attacks that
inject dummy packets into flow traces by pre-
computing adversarial examples.

(2) We further evaluate various adversarial example
methods’ effects, and the experimental results show
that even the worst method (FGSM) we used also
gain a protection success rate of over 90% with an
acceptable bandwidth overhead (30%).

(3) We analyze the challenges of applying our defense in
the real world and design a system to solve these
challenges, including center server, full-duplex
mode, and drop dummy packets mechanism.

*e rest of the paper is organized as follows: Section 2
introduces related work, including the development of traffic

analysis and adversarial examples. Section 3 describes our
proposed method in detail. Section 4 shows the details and
results of our experiment. In Section 5, we point out our
limitations and give future directions. In Section 6, we
conclude our work.

2. Related Work

2.1. Flow Correlation Attack and Defense. Flow correlation
attack was a type of traffic analysis attack, and the traffic
analysis attack was a type of side-channel attack. Side-
channel attacks always leveraged non-normal ways to infer
sensitive information from well-protected systems, such as
by observing traces (e.g., timing, power, or resource usage).
Diao et al. [2] launched inference attacks without any
permission in Android by interrupting timing analysis and
applying it to interrupt logs. Liu et al. [3] presented a side-
channel attack to infer user inputs on keyboards by
exploiting sensors in the smartwatch. Schuster et al. [4]
aimed to identify video information by using the deep-
learning model to classify encrypted video streams.

Flow correlation attacks as a significant side-channel
attack was applied in many fields. Shmatikov et al. [5] in-
vestigated an active attack called watermark attacks. *ey
modified the packet flows to “fingerprint” them and analyze
the tradeoffs between the amount of cover traffic, extra
latency, etc. In addition, they also proposed a defense
method by using adaptive padding. *e work of Paxson and
Zhang [6] made the traffic packets as a series of ON and OFF
patterns and used these data to correlate network flows.
Murdoch and Zieliński [8] developed and evaluated
Bayesian traffic analysis techniques to process sampled data.
Blum et al. [7] correlated the aggregate sizes of network
packets over time. Sun et al. [9] further combined the
asymmetric traffic analysis and BGP hijacking to dean-
onymize users.

Tor network

Correlator

Malicious RelayMalicious ISP

Fj

Destination

F i

Figure 1: *e main process of flow correlation attack on Tor. *e adversary intercepts Tor flows either by running malicious Tor relays or
eavesdropping on Internet ASes and IXPs.
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All the above papers used the static metric standard
statistical correlation metrics to correlate the vectors of flow
timings and sizes. And to gain a higher accuracy, they need
to observe the associated flow for five minutes or more. *e
time it take was too long to correlate lots of short-lived
connections. Nasr et al. [10] were the first one to use CNNs
models to learn a flow correlation function and achieve
drastically higher accuracies.

*ere was still a big gap in the defense of flow correlation
attacks, and Sun et al. [11] proposed a defense method that
mainly solved the BGP hijacking and reduced the chance of
adversary observed network traffic. *e obfs4 [12] as a Tor
official defense could randomly obfuscate packets time and
size but get a poor protection success rate with an unac-
ceptable bandwidth overhead. *e ScrambleSuit [43] was a
thin protocol layer above TCP whose obfuscated the
transported application data by using morphing techniques
and a secret exchanged out-of-band. It also had impact on
defending the flow correlation attacks but has the same
problem as obfs4.

*ere were some ways to improve classification model’s
ability of defending noisy labels. Liu et al. [47] proved that
any surrogate loss function could be used for classification
with noisy labels by using importance reweighting. Yu et al.
[45] considered the influence of noisy labels in transfer
learning and proposed a novel denoising conditional in-
variant component (DCIC) framework. Xia et al. [46]
presented granular-ball sampling that reduced the data size,
improved the data quality in noisy label, and get the same
classification accuracy on the original data sets. Noise fil-
tering is an effective method of dealing with label noise, but
most of them aimed at binary classification. Xia et al. [44]
presented a novel label noise filtering learning method for
multiclass classification. *ese methods mainly focus on the
scenario of noisy labels that could help adversary improve
their correlation model’s robustness and our methods aimed
at defending against flow correlation attacks by using
adversarial examples. Numan et al. [48] carried out a sys-
tematic review of clone detection techniques in static WSNs
and provided a comprehensive survey of the existing cen-
tralized and distributed schemes with their drawbacks and
challenges. Guo et al. [49] proposed a deep graph neural
network-based Spammer detection (DeG-Spam) model to
gain a better effect than baselines that could be a superior
choice to correlate with flow data.

2.2. Website Fingerprint Attack and Defense. *e scenario
and challenge for website fingerprint attacks are very similar
to our work. Adversaries get sensitive information about
websites such as domain or page content by analyzing
network characteristics. It used to be realized by the tra-
ditional machine learning method, but now the deep
learning method is gradually emerging.

Nowadays more andmore studies have been proposed to
defeat website fingerprint attacks. Some research focused on
the application layer [13–15], defenders changed the routing
algorithm or confused HTTP requests to make adversary
touch real traffic as little as possible. Application-layer

defense strategies were often difficult to implement because
the premise of their implementation was very harsh, such as
target websites only had HTTP protocols. And these
methods could not defend deep-learning-based attacks (less
than 60% protection success rate). Other researches focused
on the network layer. *ey aimed to fool the classification
model by inserting dummy packets. In the earlier studies
[16–18], they used constant rate padding to reduce infor-
mation leakage caused by time intervals and traffic volume.
However, these methods always require high bandwidth
overhead of 150%. A recent study [19] found that inserting
packages between two packets with a large time gap would
reduce the bandwidth overhead.*ey were also useless when
applied in defending deep-learning-based attacks (only
achieve 9% and 28% protection success rate). Finally, there
was a super sequence defense method called Walkie-talkie
[20], which committed to finding a longer package trace that
contains subsequences of different website traces. But it only
gets a 50% protection success rate against DNN attacks. In
general, no method can maintain a high success rate with a
small amount of bandwidth overhead. All related works are
present in Table 1.

2.3. Adversarial Examples. Adversarial examples are a series
of methods to fool machine learning models, such as deep
neural networks. *ey add perturbations to the clean input,
forward it to the classifie,r and get an unexpected result.
How to generate adversarial perturbations becomes a hot
topic in computer vision, natural language processing, etc.
*ere were many prior works that had shown first-order
gradient-based attacks to be fairly effective in fooling DNN-
based models in both image [21–27], audio [28–30], and text
[31–33] domains. *e idea of such adversarial attacks was to
find a good trajectory that maximally changed the value of
the model’s output and pushed the sample towards a low-
density region. However, to our best knowledge, there is no
paper to apply adversarial examples in defending deep-
learning-based flow correlation attacks.

3. Method

In this section, we introduce the target model and the
specific details of defending against deep-learning-based
flow correlation attacks with adversarial examples. Next, we
will show our system that were designed to implement
defense in the real world.

3.1. Target Model. We reconstruct the idea of Milad Nasr
et al. to perform traffic correlation attacks. *ey use a
convolutional neural network (CNN) model to learn a
correlation function for Tor’s noisy network. It is composed
of two convolutional layers and three fully connected layers.
*e input is a flow pair called Fi,j, which represents two
bidirectional network flows i and j. *e specific of Fi,j can be
described as follows:

Fi,j � T
u
i ; T

u
j ; T

d
i ; T

d
j ; S

u
i ; S

u
j ; S

d
i ; S

d
j􏽨 􏽩, (1)
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where T is the vector of interpacket delays, S is the vector of
packet size, and u and d stand for “upstream” and
“downstream,” respectively (e.g., Su

i represents the upstream
packet size of i ).

*e model hyperparameters we choose are consistent
with Milad Nasr, which are presented in Table 2. To take a
first look at the performance, we train our model using data
set that publishes with the paper [10]. It includes 50, 000
pairs of associated flow pairs and 50, 000 × 24, 999 ≈ 1.24 ×

109 pairs of nonassociated flow pairs. And we gain a similar
performance as described in the paper.

DeepCorr is able to achieve such high accuracy using
only 300 packets of each flow. It tells us that we must take
action to prevent AS/ISP level adversaries from compro-
mising the anonymity and privacy of Tor users. In the next
chapter, we will introduce the defense effect of the adver-
sarial sample against flow correlation attack model and the
system we designed to make the defense method applicable
to the real world.

3.2. Adversarial Samples against Flow Correlation Attack.
Due to the popularity of artificial intelligence and deep
learning, adversarial samples have appeared in various
scenarios and practical applications. But in many cases,
adversarial samples are usually used as a means of attack to
escape detection models. In our experiments, adversarial
samples are used as a means of defense to fight adversaries
who eavesdropping or analyzing users’ traffic.*erefore, our
defense strategies focus on improving the protection success
rate, every small increase will have a huge impact on the

adversaries. Because traffic flows are very large, the adversary
who eavesdropping traffic will take a lot of manual analysis
time if the attack success rate cannot reach 95%, which
almost means that this method of attack is no longer
meaningful. *is is the first difference between applying
adversarial samples in defending flow correlation attacks
and other traditional fields. In addition, every clean image or
text is “fixed” before adding perturbation. However, traffic
flows will be “fixed” only when it’s coming. *at means we
must know the next packet’s feature and add corresponding
adversarial perturbation. *is is the second difference

Table 1: *e related work of flow correlation attack, flow correlation defense, and website fingerprint defense.

Scheme Method Innovation points Authors Drawbacks

Flow correlation
attack

Watermark
attacks

Modified the packet flows to
“fingerprint” them. Shmatikov et al. [5]

Require high privileges and
break the original

communication easily.

Timing based Use the traffic patterns to correlate
flows. Paxson and Zhang [6] Low accuracy.

Bayesian traffic
analysis

Developed Bayesian traffic analysis
techniques to process sampled data.

Murdoch and Zieliński
[8]

Cannot correlate lots of short-
lived connections.

Fine-grained
level detection

Correlated the aggregate sizes of
network packets over time. Blum et al. [7] Low accuracy.

Asymmetric
traffic analysis

Further combined the asymmetric
traffic analysis and BGP hijacking to

deanonymize users
Sun et al. [9] Only useful for BGP hijacking.

Deep learning
based

Use CNNs models to learn a flow
correlation function and achieve
drastically higher accuracies.

Nasr et al. [10] Require hardware support.

Flow correlation
defense

Counter-
RAPTOR

Reduced the chance of adversary
observed network traffic. Sun et al. [11] Only useful for defending BGP

hijacking.

Obfs4 Randomly obfuscate packets time and
size. Tor project. [12] Unacceptable bandwidth

overhead.

ScrambleSuit Use morphing techniques. Winter et al. [43] Unacceptable bandwidth
overhead.

Website
fingerprint
defense

Application layer
defense

Changed the routing algorithm or
confused HTTP requests.

Wladimir et al. [13]
Giovanni et al. [14]
Henri et al. [15]

Hard to implement in real
world.

Network layer
defense

Fool the classification model by
inserting dummy packets.

Juarez et al. [19] Wang
et al. [20]

Cannot defend the deep-
learning-based attack.

Table 2: *e model hyperparameters of target model.

Layer Details

Convolution layer 1

Kernel num: 2000
Kernel size: (2, 30)

Stride: (2, 1)
Activation: Relu

Max pool 1 Window size: (1, 5)
Stride: (1, 1)

Convolution layer 2

Kernel num: 1000
Kernel size: (2; 10)

Stride: (4, 1)
Activation: Relu

Max pool 2 Window size: (1, 5)
Stride: (1, 1)

Fully connected 1 Size: 3000, activation: Relu
Fully connected 2 Size: 800, activation: Relu
Fully connected 3 Size: 100, activation: Relu
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between applying adversarial sample in defending flow
correlation attacks and other traditional fields.

To generate adversarial example, we use different
methods: FGSM [34], C&W [36], Deepfool [37], and BIM
[35]. *e reason for choosing these four methods is to get a
more comprehensive evaluation including gradient-based
methods and optimization-based methods.

*e fast gradient sign method (FGSM) was proposed by
Goodfellow et al. in 2015. *is algorithm performs a single
gradient ascent step as the following formula:

x∗ � x + η sign ∇xL(g(x;θ), y)( 􏼁, (2)

x is the original input sample, g(x; θ) presents the model
parameterized by θ, y is the label corresponding to the x, and
the L(g(x; θ), y) is the loss function of the classifier.∇x is the
gradient of the given loss L, whichmeans the direction where
the loss increases the most.

We can control bandwidth overhead from small to large
by adjusting param η.

Optimization-based attack C&W was proposed by
Carlini & Wagner in 2017. *is algorithm generates
adversarial perturbation based on certain constraints as the
following formula:

min‖δ‖
2
p s.t.g(x + δ)≠y and x + δ ∈ X, (3)

x is also the original input sample and the added pertur-
bation is constrained by Lp to keep small. *e g(x + δ) is
the obtained result under constraint conditions.

*e basic iterative method (BIM) was proposed by
A. Kurakin in 2016, it increases the loss of the classifier by
adjusting the direction after each step. It iteratively com-
putes as following:

Ii+1
ρ � Clipϵ I

i
ρ + α sign ∇J θ, Ii

ρ, ℓ􏼐 􏼑􏼐 􏼑􏽮 􏽯, (4)

Ii
ρ presents the perturbed input at the ith iteration and
Clipϵ .{ } clips the input in its argument at ϵ and α determines
the step size. *e BIM algorithm starts with I0ρ � Ic and runs
for the number of iterations determined by the formula
⌊min(ϵ + 4, 1.25ϵ)⌋.

Deepfool was proposed by Moosavi-Dezfooli, it perturbs
the input by a small vector, which is computed to take the
resulting image to the boundary of the polyhedron at each
iteration. *e final perturbation is accumulated by pertur-
bations added in each iteration when the original decision
boundaries of the network change their label.

All these adversarial sample methods are designed to add
perturbations to the area of the entire image. But in our scene,
we can only change the traffic characteristics between client
and entry relay. So, we can only change the part of matrix data.
In addition, the ways we add perturbations are by padding
packet to change packet size and inserting dummy packets to
change interpacket delays. *us, the value of our adversarial
perturbation will always be positive. In order to achieve these
requirements, we add extra constraints as follows:

St.
P> 0,

x ∈ S, S � T
u
i ; T

d
i ; S

u
i ; S

d
i􏽮 􏽯,

⎧⎨

⎩ (5)

where P presents the perturbations value we add, x presents
the input, and S presents the area we can change.

3.3. Implement Defense in the Real World. When we think
about the actual implementation of our defense in the real
world, we must face other challenges. First, the websites are
not immutable, and the manager could deploy new func-
tionality, update index pages, launch new activities, etc. So,
the characteristics of the transmitted packets will change
irregularly and lead to the inefficiency of adversarial samples.
Second, we have talked about the limit of adding pertur-
bation in Section 3.2, and we know that only traffic between
client and entry relay can be changed. Under this circum-
stance, we will consider two modes naturally: full-duplex
and simplex, who is better? *ird, due to network fluctu-
ations, packets might be delayed or received quicker, which
will cause the precomputing adversarial examples loss its
effect. To meet these requirements, we design a system
consisting of some components, as shown in Figure 2.

To solve the first problem, we create “traffic consensus”
concept that derives from Tor consensus [38] and stores in a
center server. Users can fetch this traffic consensus before
connecting to the destination server and add perturbation
into live traffic according to the content of traffic consensus.
In this traffic consensus, we build the mapping relationship
that has the key of website domain and value of corre-
sponding traffic characteristics.

*ere is an automatic crawler system that collects traffic
characteristics termly behind this traffic consensus. Our
center server has a Tor client that will request Wn websites
that users mostly access like Alexa top 50,00 every T time
and check the live status by status code. In addition, wemade
our exit Tor traffic tunnel through our own SOCKS proxy
server. *us, we can capture ingress Tor flows and the egress
Tor flows. If the monitored website is live, dump the traffic
file p by tcpdump. Next, we will process p and extract traffic
characteristics including the first 300 packets’ size and de-
lays. Finally, we will use these data to generate adversarial
samples and write them to the traffic consensus with
the website domain. *e specific details are shown as Al-
gorithm 1.

To solve the second problem, we need to consider dif-
ferences between full-duplex and simplex. *e simplex
means that only inserting dummy packets into flows from
client to entry relay, it could be done more easily because we
can add perturbation at Tor client directly. But it brings
other problems: the area where we can add perturbation is
further limited and bandwidth overhead is too large to bear.

*e full-duplex means we can add perturbation form
client to entry relay and entry relay to client. It has more area
to add perturbation than simplex. However, the dummy
packets we add will go through entire circuit (client-> entry
relay->middle relay-> exit relay-> server). *is has defi-
nitely increased bandwidth overhead.*us, we design a drop
dummy packets mechanism to further reduce bandwidth
overhead. *e goal of our approach is to letting adversaries
to eavesdrop on dummy packets, and the circuit does not
pass through dummy packets. *erefore, we should have a
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reasonable method to drop dummy packets at the entry relay.
We introduce a new control cell INFO, which is referred to in
this paper [13]. *is cell will record the order of transmitted
packets and be send to entry relay before communication
begins. Once the entry relay receives INFO cell, it will drop
the extra dummy packets that we add at Tor client according
to the cell INFO information and send the packets that truly
participate in communication to the middle relay.

In addition, the circuit from entry to the client is
controlled by entry relay, which means adding

perturbation is finished by entry relay. We must provide
anonymity that entry relay should not know about users’
information of visiting websites. To achieve this goal, our
idea is inspired by the rendezvous cookie applied in Tor
onion services [39] to establish a connection between the
user and an onion service. *e users will send a cell that
consists of the website domain, which will be visited, a
cookie that is a 20-byte cryptographic nonce chosen
randomly by the users, and the entry relay’s IP to the
center server. Once center server receives this cell, it will
send the perturbation according to the traffic consensus
and the cookie generated by users to the entry relay. *e
entry will store this cookie and perturbation. When users
begin to connect to the entry relay with the cookie, the
entry relay will compare the cookie that it stores with the
cookie that users send. If they are the same, the entry relay
will add perturbation into flows to the client. For the third
problem, because we already have the drop dummy
packets mechanism and full-duplex mode, the only thing
what we must do is buffering subsequent cells until the
missing cell arrives at the entry relay.

Implementation: we did not implement all components,
because it is a large project that needs the entire Tor
community’s help to modify Tor source code. But we have
designed a set of plans as mentioned above and done a lot of
experiments to prove the feasibility of our defense including
various adversarial samples methods’ effect, traffic consen-
sus used time, the advantage of full-duplex brings less
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Figure 2: *e overview of our system and the entire process of protecting users to request websites from flow correlation attacks.

Input: Cycle T, Time t, Website Groups Wn, Traffic File p,
Adversarial Samples Method A

Output: Traffic consensus
(1) While t % T � � 0
(2) For website w in Wn do
(3) If w is live then
(4) Dump p from ingress and egress Tor flows
(5) Extract traffic characteristics M from p

(6) Adversarial samples S � A (M)
(7) Write S to the traffic consensus {w: S}
(8) Else
(9) Continue
(10) End if
(11) End while

ALGORITHM 1: Traffic consensus generate algorithm.
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bandwidth overhead, etc. We will show the results in detail
in the next section.

4. Results

In this section, we perform a systematic evaluation of our
work. Specifically, we compare various adversarial example
methods’ effects and efficiency against the flow correlation
attack model. In our system, we have talked about the ad-
vantage and challenges that full-duplex brings, we will
further show that our methods’ high performance. In ad-
dition, we will compare our defense with the state-of-the-art
method, and we will test our defense against the traditional
flow correlation attack method.

4.1. Data Set. Tor Flow Correlation Data set: in our ex-
periments, we choose to use the public data set of DeepCorr
[40]. *is data set contains a large number of Tor flows that
are captured by visiting Top Alexa ’s websites. *e storage
form in the data set is pickle file, which contains the packet
size and interpacket delays. Meanwhile, flow pair that be-
longs to the same Tor connection(associated flow) is labeled
with 1, and the flow pair that belongs to arbitrary Tor
connections(nonassociated flow) is labeled with 0. We
evaluate our system’s performance with 9000 flows.

Sirinam and Rimmer Data set: to our best knowledge, the
public flow correlation attack data set has only one that is
released by Nasr et al. [10]. But we have pointed our sce-
narios and challenges are very similar to website fingerprint
attacks.*us, we use two well-knownWF data sets including
Sirinam et al. [41] and Rimmer et al. [42] to evaluate our
system’s performance. *ey both contain Tor users’ flow
pairs and their corresponding websites. *e specific details
of these two data sets are presented in Table 3.

4.2. Experiment Results. We test FGSM, C&W, Deepfool,
and BIM on the same test data set that contains 9000 flows
and compares their protection success rate with the same
bandwidth overhead (all use the L∞ perturbation norm).
Except for DeepCorr flow correlation attack, we also test our
defense against traditional flow correlation attacks including
RAPTOR, Pearson, and Cosine. Table 4 shows the result, and
we can see even the worst method FGSM could get the 71.2%
protection success rate with only 25% bandwidth overhead,
and it is also effective against traditional flow correlation
attacks. We must point that because the Pearson and Cosine
methods use the static metric to measure the correlation, any
slight perturbation will have a big impact on the result. Even
our method is oriented to the deep-learning-based attack,
and the perturbation we added will also break the pattern
that the Pearson and Cosine catch.

We also evaluate FGSM, C&W, Deepfool, BIM against
website fingerprint attacks including deep-learning-based
attack Var-CNN and non-DNN attacks k-NN, k-FP on the
Sirinam, Rimmer data set. Table 5 shows the protection
success rate of our method, and we can find adversarial
examples is effective for defending WF attacks that get
sensitive information by classification model.

In Chapter 3.3, we have talked about the difference be-
tween full-duplex and simplex. Full-duplex has more area to
add perturbation and less bandwidth overhead because of
dropping dummy packets mechanism. Figure 3 shows that
how effective of two modes are with FGSM. We find full-
duplex mode has a higher protection success rate than
simplex mode with the same bandwidth overhead and the
same adversarial example generation method. In addition,
our system will update the traffic consensus termly, which
means that this process must be within a tolerable time frame.
We evaluate our system’s efficiency on a PC computer that
has an i7 11700k CPU and four GTX 2080Ti GPU. We
evaluate the total time of generating 500 websites’ traffic
consensus and adversarial examples on our test data set.
Table 6 shows the result, and we can see that our system is
very portable. *e FGSM method can update the adversarial
perturbation in 1575 s seconds. And we should be aware that
our hardware is limited, and anyone can extend the hardware
environment to further reduce time consumption.

In Table 4, we can see the FGSM gets the worst pro-
tection success rate compared to other methods. But because
it is a one-step method, it has the highest efficiency. In our
system, time consumption is an important indicator because
when the website we focus on become more and more,
small-time consumption will be magnified a zillion time
over. As for the protection success rate, FGSM get 71.2%
with 20% bandwidth overhead. It looks a little low, but as we
all know traffic flows are very large, adversaries who
eavesdropping traffic will take a lot of manual analysis time if
the attack success rate cannot reach 95%, and it almost
means that this attack is no longer meaningful. Figure 4
shows the protection success rate of FGSM as bandwidth
overhead changes, and we can see it also can get a 95%
protection success rate with 35% bandwidth overhead,
which is lower than state-of-art defense.

4.3. Comparison

4.3.1. Obfs4. To our best knowledge, obfs4 is the state-of-art
and official defense. It is a Tor’s pluggable transports to
defeat censorship by nation-states who block all Tor traffic.
obfs4 modified packet timings and packet sizes to defeat flow
correlation, by padding or splitting packets, or by delaying
packets to perturb their timing characteristics. Table 7 shows
that our defense protection success rate compares with
obfs4. Table 8 shows that our defense bandwidth overhead
compares with obfs4. Our defense has advantages both in
protection success rate and bandwidth overhead.

4.3.2. ScrambleSuit. ScrambleSuit [43] is a thin protocol
layer above TCP whose obfuscates the transported appli-
cation data by using morphing techniques and a secret

Table 3: Two WF data sets used by our experiments.

Data set name Labels Training flows (K) Testing flows (K)
Sirinam 95 7 1
Rimmer 900 5 0.8
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exchanged out-of-band. It also has impact on defending the
flow correlation attacks. Table 7 shows that our defense
protection success rate compares with ScrambleSuit. Table 8
shows that our defense bandwidth overhead compares with
ScrambleSuit.

4.3.3. Blind Adversary. Blind Adversary [50] create universal
adversarial perturbations by GANs (generative adversarial
networks). *is approach protects against both flow

correlation attack and website fingerprint attack but require
significant additional resources and bandwidth overhead.
Table 7 shows that our defense protection success rate
compares with Blind Adversary. Table 8 shows that our
defense bandwidth overhead compares with Blind Adversary.

5. Limitations and Future Directions

As mentioned earlier, this work is focused on defeating
CNN-based flow correlation attacks with adversarial

Table 4:*e protection success rate of various adversarial examples against flow correlation attacks with the same bandwidth overhead. PSR
presents the protection success rate.

Method Bandwidth overhead (L∞) DeepCorr (PSR) (%) RAPTOR (PSR) (%) Pearson (PSR) (%) Cosine (PSR) (%)

FGSM 0.20 71.2 93.8 97.5 97.2
C&W 0.20 97.4 93.5 97.2 96.4
Deepfool 0.20 93.6 92.7 96.9 96.2
BIM 0.20 87.5 95.6 97.2 95.8

Table 5: *e protection success rate of various adversarial examples against website fingerprint attacks with the same bandwidth overhead.
PSR presents the protection success rate.

Data set Method Bandwidth overhead (L_∞) K-NN (PSR) (%) K-FP (PSR) (%) Var-CNN (PSR) (%)

Sirinam

FGSM 0.20 97.2 97.4 80.3
C&W 0.20 99.4 99.5 88.8

Deepfool 0.20 99.7 99.3 94.5
BIM 0.20 98.5 98.8 86.7

Rimmer

FGSM 0.20 97.2 96.7 86.7
C&W 0.20 99.9 99.3 93.2

Deepfool 0.20 98.7 98.1 97.5
BIM 0.20 98.2 97.5 89.4
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Figure 3: Compare full-duplex with simplex mode under the same conditions.

Table 6: Our system’s time consumption under the limited hardware environment.

Traffic consensus FGSM C&W Deepfool BIM
Time (s) 1205 1575 47382 28377 4858
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examples. At present, there are a lot of research about
defending the adversarial examples, and the adversarial
training is one of the most effective approaches. Adversary
can compute our adversarial perturbations and retrain their
models against them to improve robustness. Future work can
extend our system to defeat adversarial training and other
methods that aim to reduce the effect of adversarial examples.

6. Conclusion

In this paper, we evaluate the effect of using adversarial
samples to defend flow correlation attacks, and the

experimental results show that we achieved a good per-
formance. We further consider implementing our defense in
the real world. And we find some challenges wemust face. To
solve these problems, we design a system including traffic
consensus, full-duplex mode, and drop dummy packets
mechanism. Our system not only makes adding adversarial
perturbations become reality but also further reduce
bandwidth overhead.
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Internet of,ings (IoT) device identification is a key step in the management of IoTdevices.,e devices connected to the network
must be controlled by the manager. For this purpose, many schemes are proposed to identify IoTdevices, especially the schemes
working on the gateway. However, almost all researchers do not pay close attention to the cost. ,us, considering the gateway’s
limited storage and computational resources, a new lightweight IoTdevice identification scheme is proposed. First, the DFI (deep/
dynamic flow inspection) technology is utilized to efficiently extract flow-related statistical features based on in-depth studies.
,en, combined with symmetric uncertainty and correlation coefficient, we proposed a novel filter feature selection method based
onNSGA-III to select effective features for IoTdevice identification.We evaluate our proposedmethod by using a real smart home
IoTdata set and three different ML algorithms. ,e experimental results showed that our proposed method is lightweight and the
feature selection algorithm is also effective, only using 6 features can achieve 99.5% accuracy with a 3-minute time interval.

1. Introduction

With the popularization and development of high-speed
networks, artificial intelligence, big data, and other tech-
nologies, the number of IoT (Internet of ,ings) devices
connected to the Internet has also rapidly increased.
According to Cisco’s forecast, there will be 500 billion IoT
devices by 2030 to access the Internet [1]. ,e mounting
number of IoT devices poses threats to the network [2] and
brings more challenges to network managers [3]. In Cisco’s
recent comprehensive report on network security [4], it was
stated that an increasing number of hackers utilize the
vulnerabilities of IoTdevices to carry out cyberattacks. In the
current Internet environment, exploiting IoT devices to
implement DDoS (distributed denial of service) attacks has
become a primary form of attack [5]. ,erefore, learning
how to manage IoT devices and ensuring the security of the
IoTnetwork system have become the issues of most concern
for network managers.

Presently, there are methods to ensure the security of IoT
systems by authenticating IoT devices through crypto-
graphic approaches or deep learning [6]. However, these

methods are generally costly and unsuitable for the char-
acteristics of low energy consumption and low computing
power of networked devices, which will affect the perfor-
mance of IoT system’s effectiveness. At the same time, the
traditional anomaly detection system judges whether the
device exhibits abnormal behavior by detecting the abnor-
mality of the traffic pattern. However, the Internet of ,ings
devices have massive and heterogeneous characteristics, and
it is unmanageable to identify abnormal data behavior
patterns. ,erefore, identifying the types of IoT devices
connected to the network is of great significance to the
management of IoT devices, especially in a low cost way. In
the case of limited gateway computing resources, efficiently
and accurately identifying devices is a problem that needs to
be urgently solved.

To better identify devices on the gateway, this study
proposed a lightweight IoT device identification method
based on flow features. ,is solution studies the flow-related
statistical characteristics intensively; then to pursue less cost,
a novel NSGA-III-based [7, 8] filter type feature selection
algorithm is proposed; and finally, the extra random tree
algorithm is used to build a device recognition model to
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classify devices. ,e features used in this paper are elabo-
rated: first, the features are at the transport layer, so this
method is suitable for all IoT devices that communicate on
TCP/IP protocol stacks; second, they also do not include
plaintext features, effectively avoiding the problem of feature
invalidation caused by encrypted transmission and at the
same time efficiently perform feature extraction, model
construction, and IoT device identification; last, the pro-
posed novel feature selection method also plays an impor-
tant role in reducing the cost through the device
identification process.

Some of the important contributions of our present work
are listed below:

(1) To solve the problem of IoTdevice identification in a
low-overhead manner, we develop a lightweight IoT
device identification scheme based on feature se-
lection and machine learning algorithms. We also
demonstrate its ability to identify IoT devices with
over 99.5% accuracy with less cost than other
schemes.

(2) In-depth research has been carried out on flow-re-
lated statistical characteristics and the time interval
of feature extraction. DFI technology is used to build
features to avoid the unavailability of plaintext
features due to data encryption and improve the
performance of feature extraction, model con-
struction, and device identification.

(3) Based on NSGA-III, we introduce symmetric un-
certainty and correlation coefficient and propose a
novel low-overhead feature selection method to
perform feature selection on the extracted flow-re-
lated statistical features in IoT device identification,
and the valid features are filtered while reducing the
dimensionality of the features.

(4) Experiments are conducted on a real data set. ,e
experimental results show that the proposed feature
selection method performs well and the proposed
scheme can achieve higher accuracy in a short time
window. Its cost is much lower than the existing
method. It can also achieve the same accuracy as the
actual scheme.

,e remainder of this paper is arranged as follows:
Section 2 demonstrates the related works. In Section 3, we
explain our proposed feature selection method and the IoT
device identification model. In Section 4, we exhibit the
experimental results and data set. Finally, Section 5 contains
the conclusion of this work.

2. Related Works

Recently, researchers have proposed a variety of solutions
for identifying IoT devices. ,e current IoT device identi-
fication schemes can be classified into two categories from
the perspective of fingerprint acquisition methods: one is the
active detection method, and the other is the passive traffic
analysis method. ,e active detection method obtains the
response by sending requests to the target device and

extracts the banner for device identification by analyzing the
content of the response.,e passivemethod extracts features
by analyzing the daily traffic generated by the device. Feng
et al. [9] proposed an active detection method for device
discovery and identification, which uses the application layer
response generated by the device to extract the banner and
builds a fingerprint database and then establishes the map
between device response and device type, vendor, and
model. ,ey achieved a very fine-grained device identifi-
cation scheme, but this approach needs to send massive
packets to the network, which will bring huge cost to the
devices. ,ese methods focus more on device discovery
rather than management. To better manage IoT devices and
offer low cost, our proposed method extract feature is
passive.

Miettinen et al. [10] proposed a framework to identify
the types of networked devices and restrict the communi-
cation of vulnerable ones. ,ey used 23 features generated
from the traffic packets of the IoT devices to construct
fingerprints for each device. A classifier was trained for each
device type to identify vulnerable devices. ,is method can
differentiate vulnerable devices from normal devices easily,
but they only detect whether the devices are normal when
they are first introduced into the network. ,is approach is
not intended for long-term device management. We resolve
this problem in our method by continuously collecting the
traffic devices produced. Furthermore, Marchal et al. [11]
proposed AuDI, which divides the network traffic into
“flows,” which are several time series. ,ey defined the flow
as the traffic that uses a specific protocol to communicate
with a MAC address. When a packet is sent in 1 second, it is
marked as 1 in the time sequence. ,en, the DFT (discrete
Fourier transform) periodic features of traffic are calculated
and obtained, and 33 features related to traffic cycle are used
to classify the devices combined with the kNN algorithm.
,is novel method uses DFT to construct features, but the
features have high dimension, and the DFT process also
introduces much cost to the identification system. However,
our method avoids these expensive calculations.

Santos et al. [12] utilized the four statistical features of
traffic characteristics combined with the text information of
the user agent extracted from the packet payload and the
random forest algorithm to classify the devices. Le et al. [13]
proposed a method for device classification based on DNS
traffic. ,ey extract the content of DNS traffic packets, using
the TF-IDF algorithm for feature construction to classify and
identify the type, vendor, and model of the device. Msadek
et al. [14] proposed a dynamic sliding window traffic seg-
ment method, and they used DPI (deep packet inspection)
technology for feature construction and a variety of machine
learning algorithms for model construction and evaluation.
,ese three methods use plaintext features for device
identification. Nevertheless, for encrypt traffic, these features
will be invalid. Our method avoids using plaintext features
for this reason. Aksoy and Gunes [15] proposed a method
using GA (genetic algorithm) to reduce the dimension of the
feature vector and utilized a variety of machine learning
algorithms to build a secondary classification model to
classify devices in a genre-model granularity. Nonetheless,
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the GA algorithm and secondary classification introduce
more cost into the system. Shahid et al. [16] used the size of
the first n packets and N− 1 time intervals of TCP session
interaction between devices as features and various machine
learning algorithms for device identification. ,is method is
also not suitable for long-term device management. ,ere
are also some research developing device identification
schemes based on signal process, like [17, 18]; their research
focuses on physical layer performance of the devices, which
is not our point, but as effective methods in IoT device
identification, we also consider their works.

,e main contributions of these studies were to con-
struct special features associated with device type accom-
plishing device type identification by machine learning
algorithms. ,e features are essential in this type of work.
Sivanathan et al. [19] deeply investigated the characteristics
of traffic in a flow level, and they constructed a 2-stage
classifier for device classification. In the first stage, they
extract DNS queries, port number, and cipher suits from
these text features to obtain a class and confidence value. In
the second stage, they combined the output of the first stage
and flow-level statistics with random forest to classify de-
vices. We used their method as a baseline method for
comparison. Based on their work, we optimized the feature
selection to reduce the IoT device identification system’s
cost, attaining a lightweight method with comparable
identification accuracy.

3. The Proposed Device Identification Model

,e system model is pictured in Figure 1. First, we take the
captured traffic as input and select a fixed time interval to
split the traffic; second, we generate flows from the split
traffic, extract flow-level features by a statistical method, and
then filter out invalid and redundancy features by the
proposed feature selection method, which is based on
NSGA-III; finally, a variety of machine learning algorithms
and the features selected in the previous step are integrated
to classify devices and multiple time intervals are selected for
experimentation. ,e most suitable time interval and ma-
chine learning algorithm is then selected to build the efficient
device classification model.

3.1. Feature Description. ,e purpose of this article is to
build an efficient and accurate IoT device identification
scheme based on flow-related statistical features for device
identification. ,e first step for device identification is using
flow statistical values to represent the behavior of IoT de-
vices. In addition, the method in this paper selects the flow
generated in a fixed time window, which prevents the
problem of low efficiency of feature extraction caused by a
flow of too long duration. At the same time, it was found that
when the bilateral flow is used for feature extraction, the
features generated by the large amount of flow data pro-
duced from the frequent mutual access of devices in the LAN
will decrease classification accuracy. ,is is mainly because
the frequent mutual access of the devices generates a large
amount of the same traffic, which results in similar features.

For example, the traffic between the Belkin Wemo switch
and motion sensor in the data set has this problem.

Table 1 shows the result of address statistics on the pcap
data of the Belkin Wemo motion sensor using Wireshark.
DstIpAddress represents the destination IP address of the
packets, and Count is the count of packets. 192.168.1.223 is
the IP address of the Belkin Wemo switch. 64.14% of the
traffic is accessing each other, which will produce a large
number of similar features, leading to the deterioration of
the device identification model. In view of the fact that a
large number of network attacks require access to the In-
ternet, the flow features used in this solution are all bidi-
rectional flows when local devices interact with external
network services or devices.

Flow [19] is identified by a five-tuple group: source IP
address, destination IP address, source port, destination
port, and protocol. ,e related statistical characteristics of
flow are flowVolume’s (the sum of bytes of two-way flow
upload and download) median, mode, maximum, mini-
mum, information entropy, mean and variance, flowRate’s
(flowVolume/duration of flowVolume) the same statistics as
flowVolume. At the same time, the port number accessed by
the device can also be used as a part of the basis for clas-
sification. To fit the machine learning algorithm, the port
number-related features are processed as follows in this
scheme: first, the port numbers are classified into three
categories: the port numbers 0–1023 are assigned to certain
services as one category, represented as port1; 1024–49151
are loosely bound to the port numbers of some services as a
category, represented as port2; 49151–65535 dynamic or
private ports are in a category, and binary encoding is
performed on this three categories, represented as port3.,e
number of occurrences of the port number is recorded,
denoted as port1Cnt, port2Cnt, and port3Cnt. Moreover,
the number of occurrences of flows that belong to different
protocols (TCP/UDP) is recorded, denoted as (udpCnt,
tcpCnt).

For ease of deployment, this solution extracts flow-related
information within a fixed time window as classification fea-
tures. ,e choice of time window will affect the effect of the
solution. When the time window is short, the overhead of
storing and extracting features is small. However, in a short
period of time, the flow statistical characteristics of some devices
show high similarity, which will lead to a decrease in the ac-
curacy of the model; when a long-time window is selected, the
storage and extraction of the features will be costly, but the flow
statistical features of different devices relatively deviate from
each other. ,erefore, it is necessary to make a trade-off be-
tween the storage and extraction feature overhead and the
classification accuracy. ,e gateway device is sensitive to the
storage and calculation overhead, so the timewindow should be
shortened appropriately.

3.2. Feature Selection. ,e purpose of feature selection is to
select a valid subset of attributes and to remove irrelevant or
redundant attributes. Traditional feature selection methods
can be divided into three categories, namely the filter,
wrapper, or embedded methods. Compared with the other

Security and Communication Networks 3



two types of methods, the filter method does not require
machine learning algorithm training in the feature selection
process and is the least expensive method of the three. ,e
filter method assumes that the selected optimal feature
combination is a set of valid features. How to evaluate the
utility of the feature is a key issue in the filter method. To
better ensure the effect of selecting features, a feature se-
lection method based on multiple objective functions using
NSGA-III is proposed.

To ensure the effectiveness of features, this method
models feature selection as a multiobjective optimization
problem and uses NSGA-III to search for the optimal so-
lution. ,ere are three objective functions/evaluation
functions. In the following description, F represents the set
of all the features, SF represents the selected feature subset,

and NSF represents the unselected feature subset, which
have the following relationship:

(1) F � SF∪NSF

(2) SF∩NSF � ∅

3.2.1. Symmetric Uncertainty [20] Based Objective Function.
Mutual information (MI) of two variables is a measure of the
degree of interdependence between variables. ,e value of
mutual information represents the degree to which the
uncertainty of the other variable is reduced when one
variable is known. Mutual information MI(X; Y) between
two random variables X and Y is shown in equation (1).

MI(X, Y) � 􏽘
x∈Xy∈Y

􏽘
p

p(x, y)logb

p(x, y)

p(x)p(y)
. (1)

,e value of b is 2, p(X) and p(Y) are the probability
density functions ofX andY, respectively, and p(X, Y) is the
joint probability density function of X and Y. Symmetric
uncertainty is standardized mutual information, which
makes the information shared between random variables
comparable, and it is always used in the feature selection
process. ,e calculation of symmetric uncertainty is
exhibited by using equation (2).
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Table 1: Belkin Wemo motion sensor traffic statistics.

DstIp Address Count Percent (%)
239.255.255.250 1339 1.58
192.168.1.249 15 006 17.72
192.168.1.223 54 303 64.14
192.168.1.208 3403 4.02
192.168.1.1 8124 9.60
184.73.174.14 1494 1.76
174.129.217.97 992 1.17
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SU(X, Y) � 2.0 ×
MI(X; Y)

− 􏽐xp(x)log p(x) + 􏽐yp(y)log p(y)􏼐 􏼑
.

(2)

,e value range of SU(X, Y) is between 0 and 1. ,e
closer the symmetric uncertainty value is to 1, the more
relevant the variables X and Y are. At this point, we obtain
the first objective function, which is represented by using
equation (3).

F1 �
􏽐fi,fj∈SF,fi≠fj

SU fi, fj􏼐 􏼑

􏽐f∈SF,c�classSU(f, c)
, (3)

SU(fi, fj) is the symmetric uncertainty between feature i

and feature j in SF, and SU(f, c) is the symmetric uncer-
tainty between feature f and class in SF. ,e smaller the
function value, the better the classification effect of feature
set SF.

3.2.2. Correlation Coefficient-Based Objective Function.
Correlation coefficient is also a method used to measure the
degree of correlation between variables. ,e difference be-
tween symmetric uncertainty and the correlation coefficient
is that the latter measures the degree of correlation between
variables from the perspective of statistics, while the former
measures the degree of correlation from the perspective of
information entropy. ,e calculation of the correlation
coefficient is shown in equation (4).

COR(X, Y) �
cov(X, Y)

σXσY

, (4)

cov(X, Y) is the covariance of random variables X and Y,
and σX and σY are the standard deviations of X and Y,
respectively. We can design the second objective function,
defined as equation (5).

F2 �
􏽐fi,fj∈SF,fi≠fj

COR fi, fj􏼐 􏼑

􏽐f∈SF,c�classCOR(f, c)
, (5)

fi, fj, c have the same meaning as equation (3). ,e smaller
the function value, the better the classification result of
feature set SF. To enable the feature selection method to
achieve the purpose of dimensionality reduction, the third
objective function is introduced by using equation (6).

F3 � |SF|. (6)

3.2.3. NSGA-III Algorithm. ,e framework of the NSGA-III
[7, 8] algorithm is roughly the same as the NSGA-II algo-
rithm. ,e main difference lies in the individual selection
mechanism of the offspring: NSGA-II selects the offspring
based on the crowding distance, and NSGA-III uses the
method based on reference points. NSGA-III solves insuf-
ficient algorithm convergence and diversity when multi-
objective optimization problems with three or more

objective functions are involved.,e algorithm also makes it
easier to find the optimal solution.

To optimize the proposed three objective functions
(F1, F2, F3), the steps of the NSGA-III algorithm are as
follows:

(1) Generate an initial population that hasN individuals.
Individuals are a sequence of random values between
0 and 1. A value larger than 0.5 represents a selected
feature, otherwise, the feature is not selected.

(2) Generate reference points set Z∗ based on the three
objective functions.

(3) Use evolutionary operators to generate a child
population and evaluate objective values for every
individual.

(4) Use nondominated sort for the combination of fa-
ther and child populations.

(5) Nondominated ranking based on Pareto dominance
on the combined population.

(6) Select N individuals as the next generation based on
the former reference point set.

(7) Repeat (3)–(6) until it reaches the maximum itera-
tion times to obtain the Pareto optimal solution set.

3.3.MachineLearningAlgorithm. To achieve the best results,
we selected three machine learning algorithms based on
their descriptions in literature [21], evaluating them from the
perspectives of accuracy and training speed and selecting the
best performing algorithm to ensure that the method pro-
posed in this article has a higher classification accuracy with
less overhead.

,e following briefly introduces the three machine
learning algorithms used in the experiment:

(1) k-Nearest Neighbor (kNN) Algorithm. kNN is a
classification algorithm with no training process.,e
most important parameter is k, if the input sample x
is given, x will be classified into the k samples closest
to x in the training set for most samples in the same
category. kNN is used in the preliminary experi-
mental verification process.

(2) Random Forest (RF). RF is an ensemble learning
method that contains multiple CART decision trees.
,ere have been many articles using RF to construct
the IoT device identification scheme that achieved
excellent results, indicating it is suitable for the
device identification system.

(3) Extremely Randomized Trees (ET). ET is very similar to
RF. ,e difference between this method and RF is that
the selection of the node bifurcation attributes of the
decision tree in ETis random,while the node division in
RF of the bifurcation attribute is selected after Gini
index calculation. Given its high similarity with RF, we
select this algorithm as a part of the device identification
system for comparison with the RF’s results.
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4. Data Set, Experiment Results, and Analysis

In this section, we will conduct a detailed analysis of the used
data set [19] and the selected features of this scheme and use
different machine learning algorithms at different time in-
tervals to evaluate the classification results and cost. Finally,
the best performing ML algorithm is given, and the model is
constructed based on this algorithm.

,e experimental environment is a personal computer,
the detailed configuration is Intel core i5 9400 2.90GHz,
memory 8GB, win10 64-bit operating system. ,e experi-
mental steps are as follows: first, the collected data are
subpackaged at fixed time intervals, and then the joy tool
[19] is used to extract the flow information; second, Python
script is used to calculate the relevant statistical values from
the output of joy and constructs the features for storage and
finally uses the machine learning algorithm provided by
scikit-learn [22] to establish machine learning models and
classify the devices and evaluate the classification results.

4.1.Data Set. ,e data set used in this article comes from the
public data set of the paper [19], which is obtained by
collecting the traffic of smart home devices in the laboratory
under the campus network environment. ,e IoTdevices in
the data set include cameras, smart lighting tools, activity
sensors, and health monitors. ,e TP-Link router acts as a
gateway through which all devices connect to the Internet. In
the data collecting progress, they connect to the router
through an additional device, use tools such as tcpdump to
passively collect the traffic of all devices, and save the traffic
collected every day as a pcap file, which is stored in the hard
disk connected to the device. ,is article uses opened 20-day
data for experiments. Because the solution in this paper is
based on the characteristics of the transport layer con-
struction and classification, the provided data set only gives
the mac address corresponding to the device, and we also
analyze the IP address corresponding to the devices.

4.2. Feature Selection Results. ,is solution uses the filter
feature selection method based on NSGA-III to remove
redundant features while reducing the dimensionality of the
features, that is, to reduce the computational cost of the
model while ensuring the accuracy of the classification.
NSGA-III is a variant of the GA algorithm. For individual
construction: the number of elements contained in the in-
dividual is the same as the cardinal of the full set of features;
initially, the value of each element is a random number
between 0 and 1, and an element greater than 0.5 represents
the feature is selected. When conducting the experiment, the
number of individuals used is 40, and the number of iter-
ations is set to 100. We performed feature selection on the 1-
min time interval for small overhead introduced to the
system. Figure 2 shows the results of NSGA-III operation.

As can be seen in Figure 2, the results appear to have the
minimum value of three at the same time. ,e features
selected in the Pareto front are port2 (destination port
between 1024 and 49151), port2Cnt, tcpCnt, udpCnt, the
mode of flowVolume, and the variance of flowVolume. ,e

time complexity of NSGA-III is O(N2M), where N is the
number of individuals in the population (40) and M is the
number of objective functions (3). ,e feature selection
process only brings less additional overhead to the system.
,rough our feature selection method, we select six features
from the 22 features we described in Section 3.1. For our
objective to be lightweight, this approach markedly reduces
the classification and training overhead.

We also compared the features used in this research and
the baseline method, and the features and the selection status
are shown in Table 2. Our purpose is to deeply investigate the
applicability of flow-related statistics and establish a light-
weight IoT device identification scheme; therefore, we
construct the feature set almost from the flow-related sta-
tistics because it is easy to get the flow-related statistics,
which means the feature extraction progress only bring little
cost to the system.,e baseline method just uses themode of
flow volume and flow rate and then also forms word bag
models for port, domain name, and cypher suit, and these
text features are imported to a Bayes classification to gen-
erate the class and probability for final classification. From a
lightweight point of view, we only use one-level classifier and
remove the text features on account of text features need to
be processed additionally and cause extra cost. In the se-
lection process, the features are also selected properly to
further cut the cost. At the same time, the classification
performance can be maintained above a high level, and the
classification details are shown in the following.

About the selected features after feature selection
progress, we attempt to explain why our feature selection
algorithm chooses them. First, port2 and port2Cnt represent
the devices access the port between 1024 and 49151, users’
customized services always run on these ports, as different
devices access different services, the access times and
whether access these ports should show great discrimination
between devices. ,e variance and mode of flow volume
represent the quantity of device traffic and the fluctuation of
traffic, and they describe device communication behavior
from the traffic view. And for the TCP and UDP flow counts,
they represent the protocol discrimination between the
devices, as different devices access different services, the
flows always use different protocols, and these features
describe the devices’ behavior from the view of protocol.
Combine all selected features, we can describe the device
communication behavior comparatively comprehensively,
and therefore, the classification results can reach a high level
on accuracy.

4.3. Classification Results. In this section, we will evaluate
our scheme mainly from two points of view. ,e first is the
classification performance, which is used to measure the
applicability of an IoT identification method, and to prove
our scheme’s lightweight characteristics, the second view is
the cost of our method.

4.3.1. Classification Performance. ,e following will show
the results of classifying the data set using the three machine
learning algorithms mentioned before and the features
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Table 2: Features used in this research.

Name Explanation
Selection status

Before selection After selection Baseline
selection

VOL_MED Flow volume’s median ✓
VOL_MOD Flow volume’s mode ✓ ✓
VOL_MAX Flow volume’s maximum ✓
VOL_MIN Flow volume’s minimum ✓
VOL_IE Flow volume’s information entropy ✓
VOL_AVG Flow volume’s average ✓
VOL_VAR Flow volume’s variance ✓ ✓ ✓
RATE_MED Flow rate’s median ✓
RATE_MOD Flow rate’s mode ✓
RATE_MAX Flow rate’s maximum ✓
RATE_MIN Flow rate’s minimum ✓
RATE_IE Flow rate’s information entropy ✓
RATE_AVG Flow rate’s average ✓
RATE_VAR Flow rate’s variance ✓ ✓
PORT1 Whether the flow access port between 0 and 1023 appeared ✓
PORT2 Whether the flow access port between 1024 and 49591 appeared ✓ ✓
PORT3 Whether the flow access port between 49592 and 65535 appeared ✓
PORT1_CNT ,e count of remote IP port between 0 and 1023 ✓ ✓
PORT2_CNT ,e count of remote IP port between 1024 and 49591 ✓
PORT3_CNT ,e count of remote IP port between 49592 and 65535 ✓
UDP_CNT ,e count of flows use UDP ✓ ✓
TCP_CNT ,e count of flows use TCP ✓ ✓
DUR_MOD Flow duration’s mode ✓
SLP_TIME Time intervals’ mode between flows ✓
DNS_INT DNS intervals’ mode ✓
BAG_PORT_NUM Word bag model of port which flow accessed ✓
BAG_DOMAIN Word bag model of DNS domain names ✓
BAG_CS Word bag model of cipher suit ✓
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Figure 2: Pareto optimal fronts obtained by NSGA-III.
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obtained by feature selection progress. 80% of the data are
used as the training set, and the remaining 20% as the test
set. We conducted experiments and evaluations at intervals
of 1min, 2min, 3min, 4min, 10min, 30min, and 1 hour.
For every algorithm, we use 10-fold cross-validation to
ensure the result is stable and repeatable. Evaluation indi-
cators include model training time and classification results
related to the evaluations. ,e following indicators were
used when evaluating the classification results:

(1) Precision: Pr � TP/TP + FP
(2) Recall: Re � TP/TP + FN
(3) Accuracy: Acc � TP + TN/TP + FP + TN + FN
(4) F1score: F1 � 2 × Pr × Re/Pr + Re

TP represents the number of positive examples correctly
classified in the data, FP is the number of positive examples
incorrectly classified, TN is the number of negative examples
correctly classified, and FN is the number of negative ex-
amples incorrectly classified.

Due to the selected algorithms having hyperparameters,
different parameters will have an impact on the accuracy and
training speed of the model. RandomizedSearchCV [22] is
used in the parameter selection to ensure that the perfor-
mance of the model in each time interval is the best. ,e
accuracy shown in Figure 3 is the result obtained on the test
set. It can be seen that, for the performance of accuracy, the
longer the time interval, the greater the deviation of char-
acteristics in the streams of different devices, which brings
better classification results. When the time interval is longer
than 3min, the accuracy of the RF and baseline method is
stable at about 99.5%. However, a decrease occurred for the
kNN algorithm. As we inspected the feature set used in the
training, we found that as the time segment became longer,
the feature extract frequency became lower, so the feature set
became smaller. For the kNN algorithm, the result is
strongly dependent on the scale of the feature set unlike the
other algorithms. However, in a comparable time segment,
the performance of kNN is much worse than that of the
other algorithms. To prove that our scheme is statistically
better than the baseline method, we conduct 100 times of
training and prediction on a 1-minute time segment. As
shown in Figure 4, the accuracy of our scheme is statistically
1.5% higher than that of the baseline method.

As shown in Figures 5 and 3, in a short time window, our
method’s classification performance is better than the
baseline method’s. As we inspect the features, the DNS
interval, NTP interval, and sleep time that the baseline
method used are meaningless in a short time interval, but the
features chosen in our method always are meaningful. In
other words, with a short time segment, some features in the
baseline method especially time interval features become
homogenized and are inadequate to discriminate different
devices. But the features used in our method, constructed
from flow-related statistics and selected after the NSGA-III-
based feature selection method, are adequate to distinguish
devices whether the time segment is long or not.

We also present the detailed classification performance
on 3-min time segment because as shown in Figure 5 the

accuracy will increase and reach a peak value till the time
segment is 3min. As Table 3 shows, our proposed method
based on RF and ET can reach a comparative level with the
baseline method. ,e results show our method’s strength
clearly: comparative or superior classification performance
and much less overheads, which will be clarified in the
following.

4.3.2. Overhead of Proposed Method. In terms of training
time, the training time of ET is always the shortest, as the
time intervals become longer, the shorter the time cost to
train the model, and this is mainly for longer time intervals,
making the feature set smaller. We should notice that when
evaluating the training time of the baseline method, only the
time for the second-level classification is considered. ,e
first-level classification will generate a label and a degree of
confidence for each sample, and this process will cause heavy
cost especially for an enormous data set.

Our method also uses less storage space after feature
extraction; as shown in Table 4, as the time intervals become
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longer, the storage used by the proposed method is much
less than the baseline method, and this is mainly caused by
the text features used in the baseline method. ,erefore, our
method is superior to the baseline method on storage cost.

Whether in terms of training time or feature dimension,
our scheme achieves better performance with less cost. We
also obtained a detailed evaluation when the time interval
was 3min. As shown in Table 2, the performance of ETusing
the selected features in this article was very close to that of
the baseline method, while the overhead was significantly
reduced. ,e accuracy of ET is close to the best, which RF
achieved, but ET’s training is much faster than RF, and on
the basis of trade-off on time cost and classification accuracy,
we proved that ET is also a valid algorithm to construct an
IoT device identification scheme.

5. Conclusion

As the popularization of IoT devices are connected to the In-
ternet, managing and annotating these devices is an essential
problem for keeping network security. In this paper, we propose

a lightweight IoT device identification scheme based on traffic
analysis. ,is scheme used flow-related statistical features to
represent the behavior of IoT devices and a filter feature se-
lection method based on NSGA-III to select effective features.
Machine learning algorithms are used to classify devices. Ex-
perimental results showed that our proposed scheme can
achieve comparable accuracy with much less overhead. Based
on the ET algorithm combined with the six attributes port2,
port2Cnt, tcpCnt, udpCnt, flowVolume’s mode, and flow-
Volume’s variance, the best classification result can be achieved,
and the training speed is the fastest. When the time interval is
1min, an accuracy of 95.8% can be achieved, while the accuracy
of the basemethod is only 94.5%. As for a long time interval like
3min, our method can achieve an accuracy of 99.3%. At the
same time, the overhead is greatly reduced compared with the
base method. ,is method is suitable for deployment on the
gateway to identify IoTdevices. Future work will focus on cloud
services. How to integrate the models, ensure the trustwor-
thiness of the gateway, and improve the performance and se-
curity of the distributed device identification system will be the
focus of future work.
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Table 3: Detailed evaluation on 3min.

Algorithm Accuracy Precision Recall F1 score
kNN 0.912 0.912 0.913 0.912
Base 0.994 0.993 0.994 0.994
RF 0.995 0.995 0.995 0.995
ET 0.993 0.993 0.993 0.993

Table 4: Storage usage.

Time Seg Proposed (MB) Baseline (MB)
1min 35 75
2min 22.2 62.3
3min 17 49
4min 12.1 35.3
10min 7.4 20
30min 4.1 16
1 hour 3.3 13.4
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Data Availability

,e data set is the same as the paper “Classifying IoT Devices
in Smart Environments Using Network Traffic Character-
istics” used and the access link is https://iotanalytics.unsw.
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Security issues related to the Internet of+ings (IoTs) have attracted much attention in many fields in recent years. One important
problem in IoT security is to recognize the type of IoTdevices, according to which different strategies can be designed to enhance
the security of IoTapplications. However, existing IoTdevice recognition approaches rarely consider traffic attacks, which might
change the pattern of traffic and consequently decrease the recognition accuracy of different IoT devices. In this work, we first
validate by experiments that traffic attacks indeed decrease the recognition accuracy of existing IoTdevice recognition approaches;
then, we propose an approach called IoT-IE that combines information entropy of different traffic features to detect traffic
anomaly.We then enhance the robustness of IoTdevice recognition by detecting and ignoring the abnormal traffic detected by our
approach. Experimental evaluations show that IoT-IE can effectively detect abnormal behaviors of IoTdevices in the traffic under
eight different types of attacks, achieving a high accuracy value of 0.977 and a low false positive rate of 0.011. It also achieves an
accuracy of 0.969 in a multiclassification experiment with 7 different types of attacks.

1. Introduction

With the popularity of the Internet of +ings (IoTs) [1], the
number of devices connected to the Internet has grown
rapidly. According to the report released by Ericsson in June
2020 [2], it is expected that the number of cellular IoT
connections will exceed 5 billion by 2025, nearly three times
of that in 2020. IoT applications have penetrated into many
fields such as medical, agriculture, and logistics, providing
efficient collaborative work for human production, life, and
home travel [3, 4]. +e IoT security has aroused extensive
attention in academia and industry. From the industrial IoT,
to the vehicle IoT, and then to the smart-home IoT, there are
a large number of security requirements in any scenarios.
However, due to the use of weak keys, the security problems
caused by security flaws in the design, as well as the user’s

weak security awareness, etc., IoT devices are vulnerable to
malicious intrusion by criminals [5], leading to the disclo-
sure of user’s private data, or even the breakdown of in-
dustrial control systems, resulting in a large amount of direct
and indirect economic losses.

IoT devices’ identification based on traffic is an im-
portant safety measure to maintain and control device assets.
It has two advantages [6]: one is introducing machine
learning technology into device identification task to achieve
automated identification; the other is the difficulty of
obtaining traffic data is much easier than other data. You
only need to install the captured API on the router to capture
the two-way communication traffic between the IoT devices
and the remote servers in real time. In particular, compared
with controlling devices to actively send request packets to
obtain the desired information, it is almost zero cost to
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monitor its communication in a passive manner, and no
prior knowledge is required. Existing IoT device identifi-
cation methods can be roughly divided into encrypted traffic
identification and unencrypted traffic identification. How-
ever, according to Garnter’s report, more than 80% of the
enterprise network traffic has been encrypted by 2019, and
this is an irreversible trend. +us, in recent years, many
researches have begun to focus on the IoT device identifi-
cation based on encrypted traffic. Since the contents of the
payload in application layer cannot be extracted because of
the encrypted traffic, some statistical features would inevi-
tably be utilized under normal circumstances, including (1)
packet size; (2) packet arrival time interval (IAT) [7]; and (3)
frequency domain features of periodic time series traffic.
+ese selected features and machine learning algorithm
based on statistical features have achieved good results.

However, we find that the existing researches [8–10] are
focused on how to improve the identification accuracy,
without considering the situation of IoT devices being
attacked by malware. In fact, the two tasks of IoT device
identification and anomaly detection are complementary.
+emalicious traffic is mixed with the benign traffic, and if it
is not detected and filtered, it will inevitably affect the de-
velopment of the identification work. +is also leads to the
lack of robustness of most current identification methods.
As long as a few malicious traffic is added, it will greatly
reduce the identification accuracy. Our experiment found
that only 10% of the malicious traffic was added to the 9
types of IoTdevice traffic collected in the laboratory, and the
identification accuracy dropped from 99% to 75%. +us,
how to design an anomaly detection model of IoT devices
based on encrypted traffic is of critical significance.

Our goal is not to detect malware [11], but to detect
whether IoT devices are under attack. Existing solutions for
abnormal traffic detection of IoT devices fall into two types
according to the granularity of division. +e detection
granularity of the first solutions is accurate to each packet
[12, 13]. Its disadvantage is that the identification accuracy is
often very low and needs to extract a large number of at-
tributes for each packet to form a high-dimensional feature
vector. +e second type of solutions detects whether the
device has been attacked within a period of time [14–16]. It
usually uses statistical features over a period of time to
achieve anomaly detection. Although the real-time perfor-
mance is not as good as the first type of solutions, the se-
lection of features is more reasonable and the accuracy rate is
higher.

To improve the detection accuracy as much as possible
on the basis of ensuring real-time performance, we propose
an anomaly detection model IoT-IE based on information
entropy and sliding window. Obviously, it is an improve-
ment on the second type of solutions. Information entropy is
a statistic that describes the value distribution of a variable.
Here its most critical feature is that the changes in the
number of values that rarely occur have a greater impact on
the entropy than the changes in the number of values that
frequently occur; that is, values that rarely occur play a
significant role in IoT-IE, which matches the phenomenon
that the attribute value of abnormal packet is different from

the same attribute value of normal packet exactly. Hence, we
can effectively filter the window of abnormal traffic before
the task of IoT devices’ type identification and evaluate the
retention rate of abnormal packets as well as the loss rate of
normal packets through the anomaly detection model.

Contribution Summary. Our aim is to design an IoTdevices’
anomaly detection model based on encrypted traffic, IoT-IE.
+e main contributions are as follows:

(1) Aiming at the real 7 types of attacks on IoT devices,
verify the impact of the traffic attack model for IoT
devices on the accuracy of device identification.

(2) Comparing the normal and abnormal behavior
patterns of traffic from vulnerable devices, we pro-
posed a traffic monitoring method based on infor-
mation entropy and sliding window for specific
device types.

On the public IoT device malicious traffic dataset, our
anomaly detectionmethod can distinguish benign traffic and
abnormal traffic with an accuracy of 97.73%, which is better
than the current baseline method, and still achieves a good
result in identifying the attack types.

2. Related Works

In this section, we first discuss the IoT device identification
for unencrypted traffic and encrypted traffic based on
whether the IoTdevice traffic is encrypted or not. After that,
we will introduce some real-world attacks and threats
against IoTdevices, as well as the existing anomaly detection
researches for IoT device traffic

2.1. IoT Device Identification

2.1.1. Unencrypted Traffic. +e main characteristic of IoT
plaintext traffic is that it can extract high-level payload,
which makes a huge contribution for device type
identification.

+e paper [17] proposes a fingerprinting generation
method for discovering IoT devices in the cyberspace. It
selects TCP/IP/UDP header field values and words extracted
from application layer data as features to generate finger-
printing of IoT devices. Feng et al. design an Acquisitional
Rule-based Engine (ARE) [18]; it extracts the key fields in the
application layer in response packets as the search query of
the crawler website and utilizes the Named-Entity Recog-
nition (NER) to extract the device labels from the selected
web pages, and finally the association algorithm is utilized to
generate the annotation rules for the IoT devices and to
discover IoT devices in the cyberspace through these rules.

2.1.2. Encrypted Traffic. Although the payload of the traffic is
an intuitive and efficient feature for device type identifica-
tion, it will cause an infringement of user privacy and a
higher cost in feature extraction. In addition, identification
methods based on payload characteristics have become
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infeasible in the research of IoT devices identification for
encrypted traffic.

Radhakrishnan et al. [19] observe the heterogeneity
between devices. +ey first propose utilizing IAT to identify
IoT devices by capturing device traffic and extracting the
statistical characteristics of IAT to create the unique sig-
nature of the device type; then through Artificial Neural
Network (ANN), they identify the extracted device finger-
prints to realize accurate classification of the device type.
Aneja et al. [20] extract this feature to draw IATdiagrams for
every 100 packets as well and utilized Convolutional Neural
Networks (CNN) to process the generated IAT diagrams.

Msadek et al. [21] utilize dynamic segmentation tech-
nology on encrypted flow, extract relevant statistical dis-
tribution such as protocol type, packet size, and number of
packets as features and then compare and evaluate five types
of machine learning algorithms: KNN, Support Vector
Machine, Random Forest, AdaBoost, and Extra-Tree. +e
work of Pinheiro et al. [22] is similar, but they only utilize
three characteristics of the mean and standard deviation of
packet length generated by IoT devices in one second, and
the total number of bytes sent in this second. However, it is
only for the known device identification, the method seems
powerless for the new IoT devices that is increasing in
number at this stage.

2.2. IoT Device Attack and Anomaly Detection. +e huge
heterogeneity and scale of IoTdevices brings severe challenges
to device assets management and security protection [23, 24].
At the end of September 2016, the website KrebsOnSecurity.
com was hit by a large-scale DDoS attack launched by Mirai.
Mirai malware scans services such as Telnet on the network to
spread and then uploads its own binary files on the device
through the load service to realize infection. +e infected
devices continue to scan for other vulnerable devices. Finally,
the intruder sends control instructions through the C&C
server to attack the target [25, 26].

In order to deal with the increasingly severe IoT security
issues, especially large-scale DDoS attacks, some related
work has been carried out in recent years. In [27], Nguyen
et al. implemented an autonomous and self-learning dis-
tributed IoT device detection system. +ey built a device-
specific normal behavior model and through the GRUneural
network model to detect the deviation of benign flow and
malicious flow then isolated Infected devices. For solving the
detection of unknown suspicious activities or zero-day at-
tacks, the paper [16] designs a two-stage anomaly detection
method based on machine learning. In the first stage, a
supervised ML algorithm is used to identify known mali-
cious behaviors. In the second stage, an unsupervised ML
algorithm such as clustering is used to identify unknown
malicious behaviors or zero-day attacks. +is has achieved
good results in detecting a wide range of IoT attacks.

Anthi et al. design a supervised IoT device anomaly
detection model [12]. +ey extract the header field value of
OSI each layer for each data packet, including a total of 121
features such as packet length, flag, port, and window size,
test and evaluate the detection performance of Naive Bayes,

J48, Logistic Regression, Random Forest, SVM, and Fully
Connected Neural Network for scanning attacks, DoS at-
tacks, MIMT attacks, replay attacks, and spoofing attacks
against IoT devices. However, the disadvantage of this
method is that it utilizes a large number of redundant
features. On this basis, KS test and Pearson’s correlation
coefficient are utilized for dimensionality reduction in [13];
only 28 features are utilized to achieve high-precision de-
tection of these attacks finally.

Yair et al. propose a network-based IoT anomaly de-
tection method N-BaIoT [15], which extracts the statistical
characteristics of packet length, IAT, and packet number of
IoT benign flow in five time windows (the latest 100ms,
500ms, 1.5 s, 10 s, and 1min), and train deep autoencoders
(one for each device) to characterize the benign behavior of
IoTdevices. If the autoencoder is trained on benign samples
only, it will successfully reconstruct the normal observations,
and when a major reconstruction error is detected, it
classifies the given observation as abnormal and finally has
achieved good results in terms of accuracy and time. Wan
et al. propose an anomaly detection method based on the
minimum description length (MDL) principle [28]. +ey
extract features such as flow duration, source and destina-
tion IP address, source and destination ports, protocol type,
number of packets, number of bytes, and compressing and
encoding and then take the encoded length as the abnormal
score of the traffic to be measured. Finally, the score
threshold is set to detect malicious traffic.

3. Preliminary Work

For a general IoT device-type identification system, if an
intruder attacks various devices connected to the network
before the IoTdevice traffic is entered into the identification
system, it will inevitably lead to the destruction of the in-
herent pattern of IoT device traffic, consequently affecting
the identification system ability to determine the type of the
device under attack. +e purpose of this section is to explore
the impact of the type and volume of traffic attacks on
identification performance.

3.1. Attack Models. IoT devices are mainly subject to two
types of attacks. One is a port scanning attack, whose
purpose is to discover the open ports of the device to achieve
intrusion and then control the IoT devices; the other is a
denial-of-service attack, which is mainly to cut off the
communication between the device and the remote server
and invalidate the functions provided.

Since our IoT device-type identification system and
anomaly detection model is based on encrypted traffic, we
refer to the threat model mentioned in [14] and consider the
following 6 different types of attacks. +ese attacks do not
require the intruder to have a wealth of prior knowledge,
only a basic understanding of the attack command.

In order to enrich the abnormal traffic dataset, we
consider different reflection/DDoS attacks and ensure the
normal operation of the devices during the device identi-
fication tasks, we reduce the rate of attack traffic, aiming to
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change the traffic pattern of the devices andmake the devices
classified incorrectly. See Section 4.2.1 for details on how to
attack and the process of collecting benign and abnormal
traffic.

(1) ArpSpoof. ARP is a protocol that converts IP ad-
dresses into physical addresses. ARP spoofing refers
to the fact that the intruder sends a forged ARP reply
message to the device so that it utilizes wrong in-
formation to update the ARP cache table, resulting in
communication errors [29].

(2) Ping of Death. Ping of Death is a common denial of
service attack. When the IP packet length exceeds the
maximum size of the Ethernet frame, the packet will
be fragmented and sent as multiple frames. +e
receiving end can only reassemble after receiving all
the fragments. Normally, the reassembled IP packet
will not exceed the specified maximum size. Ping of
Death is to send a large number of IP packets that
exceeding the maximum size, and the extra data in
the packet will be written into other normal areas,
which will cause buffer overflow.

(3) TCP SYN. TCP SYN flooding mainly occurs at the
fourth layer of OSI. +e principle of the attack is that
after the intruder forges the connection request from
the sender and the receiver returns the response
packet of the first handshake, it cannot receive the
feedback of the third handshake from the sender and
finally consumes the server’s memory and causes to
crash.

(4) SNMP Reflection. SNMP is mainly used to manage
the devices in the local area network and can obtain
the basic configuration information and status in-
formation of the devices. +e intruder forges the
SNMP request packets of the source IP address, and
the reflection servers send a large number of re-
sponse packets to the victim devices after receiving
them, which will cause network congestion [30].

(5) SSDP Reflection. SSDP is commonly applied to
Universal Plug and Play (UPnP) devices for device
discovery. In view of the limitation of SSDP is that it
does not check whether the querier is in the same
network as the device, similar to SNMP, it is also a
UDP protocol that can easily be used for reflection
attacks.

(6) Smurf. +e ICMP Echo request packet is utilized to
diagnose the network. +e device will respond with
an ICMP Echo Reply to the source address of the
message after receiving it. Once the source address is
set to the broadcast address, all devices on the local
network must process these broadcast messages. A
large number of Reply broadcast messages will cause
the network to flood [31].

3.2. Traffic Attacks Decrease Device Identification Accuracy.
After reading a large number of literatures on fingerprint
identification schemes that are vulnerable to traffic attacks, it
is found that packet size and IATare the two most common

features they used. We adopt the strategy of making things
simple, utilizing the above two features and several general
machine learning algorithms to identify, and consequently
explore the impact of the traffic attack model for IoTdevices
on the performance of the conventional device identification
method.

For a mixed traffic dataset containing benign traffic and
malicious traffic, when extracting statistical features for
classification tasks, malicious attacks will change the in-
herent pattern of traffic sent by IoT devices; the statistical
features and time series features of traffic will definitely
occur changes. After that, whether the traffic is divided
according to the session as the sample, or divided by a time
window cutting method as the sample, will lead to a decline
in the identification rate.

In one-way ARP spoofing, the victim IoTdevice receives
many response packets; the time interval between these
response packets remains stable and differs significantly
from the normal packets time interval, while the packet size
is controlled by the attack script, which can be random or of
a specified size but always differs significantly from the
normal case. We refer to several traditional machine
learning methods mentioned in [6, 21, 22, 32, 33]. Here, we
attack devices using the ArpSpoof. Figure 1 shows that
Random Forest has the best performance in identification
accuracy on benign test dataset and identification robustness
under attack, which is consistent with the conclusions of
[22, 34]. +erefore, the subsequent verification experiments
choose Random Forest as the machine learning identifica-
tion model baseline.

+en, we consider all the attack types for IoT devices
mentioned in the previous subsection and take the pro-
portion of the malicious traffic to the total traffic as an
independent variable to explore its impact on the identifi-
cation accuracy of IoT devices.

As shown in Figure 2, it is obvious that as the proportion
of the malicious traffic increases, that is, the longer the attack
takes, the more obvious the decline in the identification
accuracy of IoT devices. At the same time, we find that the
top 10% of malicious traffic volume will lead to a sharp
decline in the identification accuracy, and then the degree of
decline is diminished. In other words, the intruder only
needs to inject a small amount of malicious traffic before the
device traffic is sent to the identification model to greatly
reduce the classification accuracy of the model.

In addition, the type of attack seems to have nothing to
do with the decline in the classification accuracy. +e reason
is that nomatter what kind of attack, their traffic patterns are
different from the normal traffic. +is deviation is the main
reason for the decline in classification accuracy.

3.3. Some Observations on IoT Traffic Patterns. Compared
with traditional connected devices (PCs andmobile phones),
IoTdevices are simple in structure. At the beginning of their
design, they usually only make use of running a single task or
perform a single function. +us, their traffic always shows a
repeated communication mode and generates the same
volume of data periodically. Figure 3 shows the distribution
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Figure 1: +e impact of traffic attacks on the identification accuracy.
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Figure 2: +e impact of attack type and volume on identification accuracy.
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Figure 3: IoT/non-IoT device communication volume for one day. (1) Amazon Echo. (2) iHome Smart Plug. (3) Laptop.
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of communication volume for two IoTdevices and one non-
IoT device for one day. Among them, the IoT devices are
Amazon Echo and iHome Smart Plug, and the non-IoT
device is laptop. It is obvious from the figure that the
communication volume of non-IoTdevice is more irregular
than that of IoT devices. +is is because all the traffic of
laptop comes from the usage records of users, and its
communication volume conforms to people’s routines. +e
communication volume in the daytime is much higher than
at night.

+e packets sending rate of these two IoTdevices are in a
stable state throughout the whole process for one day, and
the number of packets sent within the same size time
window tends to be close; here, we assume that IoT devices
are in an idle state. And for different types of IoT devices,
their packets’ sending rates are different. +e number of
packets sent by Amazon Echo per hour is between 270 and
330, with a fluctuation of about 10%, while the number of
packets sent per hour by iHome is less than 60 basically, and
it sends 45 packets or 51 packets in most windows, which is
related to the specific functions they execute. +e functions
of smart speakers are far richer than those of smart plugs,
and the number of protocols used by smart speakers is also
greater than that of smart plugs. So, the average packets
sending rate of IoT devices can be used as an important
feature for device type identification.

It is known that different destination ports of IoTdevices
traffic correspond to different protocols/services. +us, in
order to further mine the communication patterns of IoT
devices, we continue to find the potential regulations of IoT
devices traffic after classifying traffic according to destina-
tion port/service type. Figure 4 shows the corresponding
data flow after Amazon Echo classified by the most fre-
quently appearing destination ports; the destination ports
shown in the figure account for 83% of the total traffic for
one day. It can be seen from the figure that the packets’
sending frequency belonging to the same service has obvious
periodicity: 12 http packets from the device are sent out
every 300 seconds, https packets are sent out every
30 seconds basically, and the packets to destination port
33434 is sent every 27 seconds, which is the same as the
packets to destination port 49317. +e phenomenon is
caused by the unique characteristics of IoTdevices; they will
send packets to their respective servers periodically to re-
main connected. And it is predictable that the contents of
these packets payload are the same basically. From the re-
sults, this phenomenon provides a basic follow for the slight
statistical differences in each feature between each window
after the flow is divided by the sliding window, and the
constant traffic pattern can be used as the precondition of
anomaly detection.

In addition to describing the IoTdevices traffic from the
time perspective, we also extract important and commonly
used header field values from each packet as spatial infor-
mation to describe the characteristics of IoT devices traffic.
So as to know that the number of attribute values is limited,
we draw the Sankey graph to observe. Figure 5 is a Sankey

diagram of the Amazon Echo traffic (24,609 packets col-
lected over a 24-hour period). +e figure shows statistical
information, such as the protocol used by the device, the IP
address of the remote server it communicates with, and the
destination port. We see that Amazon Echo not only in-
volves the necessary 80/443 ports, but also communicates
with diverse protocols, a large number of local/external
server IP addresses, and different ports that provide various
services. It is worth noting that the remote IP associated with
port 80 is only 93.184.216.34, while port 443 has several
remote IP addresses. Besides, in addition to the common
high-level protocol based on UDP, Amazon Echo makes
connections to ports 33434 and 49317 of the remote server
for maintenance of device-specific services and points to the
same remote IP.

4. IoT-IE Overview

In this section, to start with, we introduce the overview and
architecture of IoT-IE. Subsequently, we discussed each
module of IoT-IE, which work together to monitor IoT
device communication.

4.1. System Structure. In the experimental environment we
deployed, the gateway acts as a bridge between IoT devices
and remote servers, and local IoTdevices connect to network
via WiFi or Ethernet. +us, in order to collect IoT devices
traffic more conveniently, as well as can be processed and
detected in a timely manner at the same time, the IoT
gateway also needs to be responsible for hosting our anomaly
detection system IoT-IE.

+e system architecture of IoT-IE is mainly composed of
four key modules: traffic capture, IoT communication data
characterization, malicious traffic detection based on infor-
mation entropy, and alarm/isolation. +e traffic capture
module is responsible for running the traffic capture com-
mands of IoT devices on the IoT gateway and collects the
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traffic of the bidirectional communication between the IoT
devices and the external cloud servers of IoT providers or
other remote servers on the Internet. +e main work of the
IoT communication data characterization module is to mine
the inherent traffic communication patterns of IoTdevices in a
normal state (without malicious attacks) and build a baseline
of IoT devices’ benign traffic behaviors, providing basic
guidance for subsequent malicious traffic detection work. +e
task of the malicious traffic detection module based on in-
formation entropy is to utilize information entropy as a
quantitative metric to measure the statistical differences be-
tween benign traffic and malicious traffic so that benign traffic
and malicious traffic can be well distinguished, and then
machine learning algorithms are used for normal/abnormal
binary classification. Finally, the alarm/isolation module
isolates the IoT devices that are confirmed to have been
attacked so that they cannot communicate with other IoT
devices in the experimental environment and prohibit com-
munication with remote servers and alarm at the same time.

4.2. System Models

4.2.1. Traffic capture. As is known to all, the main advantage
of an IoT Gateway centric security monitoring system
consists in its flexibility to collect all IoT device traffic in a
centralized location [16]. Our IoT device traffic collection
setup in the laboratory is shown in Figure 6. Use hostapd
command on a laptop with Ubuntu Linux operating system
to create an IoTgateway, which serves as the access point for
the WiFi or Ethernet interfaces of all IoT devices, and then
use the traffic capture commands or tools such as TCPdump
andWireshark to capture the traffic data of the bidirectional

communication between IoT devices and IoT provider’s
cloud servers via the IoT gateway. After that, we refer to the
attack scripts published in [14] and use a computer under the
local area network to run these scripts to attack the target
IoT devices.

4.2.2. Some Observations on IoT Traffic Patterns. +e IoT
devices that we adopted in the experiment are all consumer
IoT devices, which simulate the smart homes’ IoT envi-
ronment. In this module, we mine traffic patterns to prove
the difference between IoTdevices and traditional connected
devices. +e predictability of IoT device traffic patterns can
make it possible to utilize machine learning to realize type
identification and anomaly detection. In general, IoTdevices
will not be attacked immediately after it is connected to the
network, so we consider analyzing the normal communi-
cation patterns of IoT devices during the period before they
are attacked. +is benign traffic can be used for building
training set, which can be used for IoT device identification
and as negative samples for anomaly detection. Nowadays,
personal user privacy is gettingmore andmore attention; the
traffic of IoT devices produced by many vendors on the
market is encrypted. +us, we consider the metafeatures of
IoT device traffic without any information extracted from
the payload of packets, so it does not need rich prior
knowledge and feature extraction cost.

Specifically, the traffic features used by IoT-IE can be
packet size, IAT, number of bytes, source port, destination
port, source IP address, destination IP address, protocol,
flow duration, flow average rate, etc. Here, we do not utilize
all features but try to explore which features may cause
obvious changes after malicious attack to filter out the best

Figure 5: Sankey diagram of Amazon echo traffic. Bars from left to right represent device name, WAN or LAN, protocol, server IP address,
and destination port. +e protocol ICMP has no port.
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features that can effectively distinguish between benign and
malicious traffic. In addition, selecting appropriate features
can also reduce the burden of the anomaly detection module
and improve the detection efficiency.

4.2.3. Anomaly Detection Based on Information Entropy.
In this module, we propose a malicious traffic detection
method based on information entropy and sliding window,
as shown in Figure 7. Information entropy is used as a
metrics to describe the value distribution of features in a
period of time. Different from human-centered Internet
traffic, in general, IoT devices repeat the same operations
throughout the entire capture process and generate the same
amount of data regularly, and each IoT device has its own
unique normal communication pattern, so the value of
information entropy only fluctuates in a small range over
time. However, once malicious traffic appears, some of its
attributes will change in the value distribution. For instance,
some values that have never appeared before will appear,
which is very sensitive to the entropy; it is because the
change of information entropy is more sensitive to values
with a small probability of appearance than values with a
large probability of appearance, resulting in a large differ-
ence between the entropy of benign traffic and that of
malicious traffic. +en, the inherent feature measurement is
sent to the machine learning model for training, and by
judging the statistical difference between benign and
malicious traffic, whether an attack occurs can be detected.

Alarm/Isolation. Once IoT-IE determines which IoTdevices
in the experimental environment are under attack, the
module will immediately cut off the communication be-
tween the infected devices and all other devices in the ex-
perimental environment as well as remote servers to take
isolation measures and notify people which devices have
been attacked by means of alerts.

5. Anomaly Detection Method

Our purpose is to find suitable features or indices to detect
whether there is malicious traffic in the IoT network. From
the perspective of features value distribution, we can find

differences between the header field values distribution of
benign packets and that of malicious packets. Information
entropy is a metric that describes the occurrence probability
of attribute various possible values, so it can describe the
values distribution of each attribute in packets well.

Entropy is a concept in thermodynamics originally, and
it is utilized to measure the uncertainty of an attribute in
information theory [35].

Firstly, the concept of information quantity is intro-
duced as a measure of “how much” information. +e
amount of information of a specific event should decrease
with its occurrence probability and cannot be negative, so it
can be represented by a logarithm, as shown in formula (1).
Information entropy is actually the expectation of the
amount of information that may be generated before the
result comes out. Considering all possible values of the
random variable, the expectation of the amount of infor-
mation that can be brought by all possible events.

h(x) � −log p(x) , (1)

H(X) � 􏽘
n

i�1
p xi( 􏼁 · h xi( 􏼁 � − 􏽘

n

i�1
p xi( 􏼁log p xi( 􏼁( 􏼁 . (2)

p(x) represents the probability that the attribute X takes
the value x, and there are a total of n possible values for the
attribute X.

It can be seen from the previous section that IoTdevices
have a fixed traffic pattern. If the value of a certain attribute is
different from the previous pattern or completely deviates
from the pattern, it will cause a huge change in the entropy
value. Furthermore, a significant advantage that distin-
guishes entropy from other statistical features is that it can
calculate string-type values, such as IP address. As long as
the value distribution is stable, entropy can be effectively
used. +e entropy feature extraction process is shown in
Algorithm 1. For a given window size M and step size T, S

samples are generated by cutting flow through a sliding
window. For each sample Si, we extract the appropriate
attributes and add them to the corresponding attribute lists,
use these lists as input to calculate the entropy value, and
finally form the entropy feature vector.

Remote Server

Internet

tcpdump

IoT Gateway

attack

...

Figure 6: IoT device traffic collection platform.
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We take part of the IoT devices in the experiment to
calculate the entropy value of common features, including
the normal communication traffic of IoT devices and the
abnormal communication traffic represented by Smurf at-
tacks; the benign communication traffic of IoT devices
comes from Amazon Echo. +e initial value of the sliding
window is set to 300 seconds. As shown in Figure 8, the
information entropy in the sliding window for Smurf attack
is quite different from that in the same size window for
benign traffic. For instance, the entropy value of the packet
length basically fluctuates between 3 and 4, and the wave-
forms of each attribute are relatively similar, indicating that
each attribute value of the IoT device corresponds to each
other. +e entropy values of the destination IP address,
source port, destination port, and packet length under Smurf
attack are much smaller than the entropy values of the
corresponding feature in benign traffic. We delineate a
dashed line as a threshold to isolate the benign traffic
window and the malicious traffic window. +us, we can
realize malicious traffic monitoring by calculating the de-
viation degree between the entropy values of the malicious
packets attribute field and the corresponding attribute en-
tropy values of the benign packets.

6. Experiment

6.1. Datasets Description. We experimented on the public
dataset UNSW-2018 [14]. +e UNSW-2018 dataset contains
benign traffic and malicious traffic of IoT devices; these two
types of data are unbalanced, while the benign traffic is too
much. In order to eliminate the impact of unbalanced
dataset during training and testing, we take a part of benign
dataset only. +e authors designed two attack modes: direct
attacks (e.g., ARP spoofing, TCP SYN flooding, Fraggle
(UDP flooding), and Ping of Death) and reflection attacks
(e.g., SNMP, SSDP, TCP SYN, and Smurf), which involve
some protocols such as ARP, TCP, UDP, ICMP, DNS, and so
on. In order to ensure that the devices remain functional
during attack and reflect the attack traffic to the infected
devices, a total of 200 attacks were launched at different
rates, each attack lasting 10minutes.

6.2. Evaluation Metrics. We consider the accuracy, preci-
sion, TPR (True Positive Rate), FPR (False Positive Rate),
FNR (False Negative Rate), and F1-score as the evaluation
metrics and adaptability measurement of the test result.

Device Traffic
Entropy of 

FeaturesCut traffic Through
sliding window

...

Classification
Result

Model
Training

Figure 7: Anomaly detection process based on entropy and sliding window.

Input: Raw pcap file, sliding window sizeM set in advance, sliding step T set in advance, number of attributes to be extracted N.
Output: Feature vector

(1) Feature vector ⇐∅
(2) Take the firstM package according to the window size, move backward T steps each time to form F1, F2, F3, . . ., Fs, s represents the

number of samples.
(3) for each Fi do
(4) attribute1_list, . . ., attributeN_list ⇐[ ],K, . . . [ ]

(5) for each packet P in Fi do
(6) attribute1, . . ., attributeN ⇐ Extract attributes, such as packet size, source port, destination port, destination IP, etc. in P
(7) for each attribute A in attributei do
(8) attribute1_list, . . ., attributeN_list ⇐∪A

(9) end for
(10) end for
(11) for each attribute_list in attributeI_list do
(12) Entropy ⇐ F2 (attribute1_list), which is mentioned in Section 5
(13) Feature_vector ⇐ Feature_vector ∪ Entropy
(14) end for
(15) end for
(16) return Feature_vector

ALGORITHM 1: Entropy feature extraction.

Security and Communication Networks 9



Acc �
TP + TN

TP + TN + FP + FN
,

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
.

(3)

Among them, TP represents the number of abnormal
flow samples that are correctly classified as abnormal type of
flow (True Positives), FN is the number of abnormal flow
samples that are incorrectly classified as benign type of flow
(False Negatives), and TN represents the number of benign
flow samples that are correctly classified as benign type of
flow (True Negatives); FP represents the number of benign
flow samples that are incorrectly classified as abnormal type
of flow (False Positives).

FPRmeasures the rate that incorrectly classified a sample
of benign flow as abnormal flow, which can raise false
alarms. TPR represents the percentage of abnormal flow
samples correctly classified to abnormal type. +us, the
designed abnormal traffic detection system needs to maxi-
mize TPR when FPR is as low as possible, so as to prevent
users from being overwhelmed by a large number of false
alarms and failing to effectively perform the alarm function
of the detection system. On this basis, it is also necessary to
implement accurate identification of abnormal traffic in
order to satisfy the basic requirements of a good abnormal
traffic detection system.

7. Results

We choose IoTArgos [16] as the comparison work of our
proposed anomaly detection methods because the difference
between them is that the extracted features are completely
different, even if they are statistical features over a period of
time, IoTArgos mostly utilizes average IAT, average packet
size and flow volume, etc., while we utilize entropy features,
the subsequent detection algorithms are the same.

As shown in Figure 9, we set the sliding window to 200 in
advance, comparing the detection metrics of the two.
Compared with IoTArgos, our proposed method IoT-IE has
a 1% to 2% improvement in accuracy, precision, and TPR,
although the IoTArgos method has more than 95% data on
various metrics already. Besides, the result of IoT-IE on FPR
is much better than IoTArgos, from 0.025 to 0.007, which is
essential for the normal operation of a detection system.

Secondly, we evaluated the performance of our detection
method when considering various IoT devices individually,
and assume that the window size is 200. +e result is il-
lustrated in Table 1 from part of devices. Different algo-
rithms show different detection performance on various
types of devices. On the whole, Naive Bayes algorithm is
overall inferior to the other four algorithms, and the per-
formance gap of the other four algorithms is very small. +is
shows that the entropy feature can represent the differ-
entiator between benign traffic and malicious traffic, which
has good adaptability to most machine learning algorithms.

For LiFX, all algorithms tested can approach almost
100% detection accuracy, as did for the TP-Link Plug.+is is
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Figure 8: Comparison of the benign traffic window entropy and the Smurf window entropy from Amazon Echo in (1) destination IP, (2)
source port, (3) destination port, and (4) packet length.
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related to the function they have. +e bulb only has two
operations of light on and light off, while the plug only has
power off and power on. In contrast, IoT devices such as
camera or media player have more functions. As a result, the
former has a much smaller change in the benign traffic
pattern than the latter.

+irdly, we explore the influence of sliding window size
on detection performance. With the increase of window size,
the evaluation metrics of detection performance tend to be
stable quickly. When the window size exceeds 40, the ac-
curacy can also rise to more than 95%. Moreover, the
method we proposed is always better than IoTArgos obvi-
ously after curve tends to be stable.

+e two metrics we first proposed are abnormal packets
retention rate and benign packets loss rate. +e former

means the ratio of abnormal packets in windows which are
misclassified as benign traffic windows, and the latter refers
to the ratio of benign packets in benign traffic windows
which are misclassified to be malicious traffic windows. As
shown in Figure 10, its curve with the window size is closely
related to the detection accuracy; when the detection is not
accurate, there will be more abnormal packets retained and
normal packets discarded due to misclassification. In ad-
dition, we find that the curve rises slightly when the window
size is larger than 400; more packets are retained and dis-
carded due to misclassification in a window, while the total
number of packets remains unchanged, resulting in a larger
proportion.

Finally, we utilize entropy features to classify the attack
types, the classification result is 96.9%, and confusion matrix
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0.0
Accuracy
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Figure 9: Performance comparison of IoT-IE and IoTArgos under 200 size window.

Table 1: Detection performance for individual devices.

Algorithm
AE TP NC CU LX

Acc
(%)

TPR
(%)

FPR
(%)

Acc
(%)

TPR
(%)

FPR
(%)

Acc
(%)

TPR
(%)

FPR
(%)

Acc
(%)

TPR
(%)

FPR
(%)

Acc
(%)

TPR
(%)

FPR
(%)

KNN 98.5 97.0 0.0 98.9 98.7 0.4 96.8 95.3 1.6 94.6 91.0 1.7 99.6 99.2 0.0
DT 98.5 100.0 3.1 98.2 99.1 4.5 95.2 94.6 4.2 93.3 91.7 5.0 99.4 98.9 0.0
RF 99.5 99.0 0.0 99.4 99.4 0.4 96.5 95.1 2.1 94.2 92.0 3.6 99.4 100.0 1.2
SVM 100.0 100.0 0.0 99.1 99.0 0.4 97.5 96.5 1.6 94.3 91.1 2.5 99.4 99.2 0.4
NB 99.5 99.0 0.0 98.9 99.0 1.2 85.9 88.8 17.0 86.1 89.3 53.2 99.2 98.9 0.4
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Figure 10: Detection performance varying with window size.
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is shown in Figure 11. Among them, the results of ArpSpoof
and Ping of Death are not satisfactory. +rough the analysis
of the original malicious traffic dataset and its annotation
documents, ArpSpoof will affect all features, and zero is
added to the missing value in the preprocessing. While it is
learned from the annotation document that TCP SYN attack
in the dataset affects a specific port of a specific IP, their
entropy on IP and port will be very close, which is the same
for the Ping of Death.

8. Conclusion

+is article introduces a method for detecting anomaly
traffic of IoT devices based on information entropy.
Firstly, we start from the traffic characteristics of IoT
devices and compare with non-IoTdevices to highlight the
unity and distinguishability of IoT devices in communi-
cation patterns. +en, we propose to utilize information
entropy and sliding window to detect and locate the
malicious traffic of IoT devices, utilizing information
entropy to describe the statistical differences of packet
attributes and seeking the best classification performance
by constantly changing the size of window. Experiments
show that our method can still reach an accuracy of
97.73% in response to various types of IoT attacks and has
good real-time performance. Even if the window size is
compressed to about 40, the detection accuracy can also
reach 95%.

Since our method is deployed in a smart home IoT
environment currently, the focus of future work is to deploy
IoT-IE in power IoT scenarios to evaluate its detection ef-
ficiency in different scenarios, mining the inherent com-
munication patterns of IoT device traffic in different
scenarios, achieving differentiation in the feature selection,
and improving the robustness of anomaly detection.
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Nowadays, robust watermark is widely used to protect the copyright of multimedia. Robustness is the most important ability for
watermark in application. Since the watermark attacking algorithm is a good way to promote the development of robust
watermark, we proposed a new method focused on destroying the commercial watermark. At first, decorrelation and
desynchronization are used as the preprocessing method. Considering that the train set of thousands of watermarked images is
hard to get, we further use the Bernoulli sampling and dropout in network to achieve the training instance extension. +e
experiments show that the proposed network can effectively remove the commercial watermark. Meanwhile, the processed image
can result in good quality that is almost as good as the original image.

1. Introduction

With the development of Internet technology and smart-
phones, the copyright protection of digital images has be-
come increasingly important. Digital watermarking
technology is an important branch of information hiding,
and it provides a solution for the copyright protection of
multimedia products. Watermark can be classified into
visible watermarks and invisible watermarks in terms of
visibility. A common commercial watermark is visualized.
+e classic style is a logo with a degree of transparency. +e
emphasis is on copyright declaration, but it is not safe.
Infringement can be reached directly by intercepting or
erasing by image processing software. Invisible watermark
can be subdivided into robust watermark, semi-fragile
watermark, and fragile watermark according to the differ-
ence in robustness. Images containing fragile watermark can
be easily located after being tampered with, while semi-
fragile watermark is robust to certain attacks and only
vulnerable to certain specific attacks. Robust watermark is
the most widely studied and used watermark. As it is most
resistant to attacks, the robust watermark can be extracted

after many kinds of attacks, so it is often used in OSN for
copyright protection Voloshynovskiy et al. [1]. +e QIM
Chen and Wornell [2] algorithm quantifies the original
cover into several different index intervals by different
quantifiers, which is also the embedding process. +e
watermarking will be extracted according to the quantitative
index interval of modulated data. +e receiver can detect
hidden data by the shortest distance method when the
channel interference is not serious. +e spread spectrum
code with pseudorandom and cross-correlation properties
plays a key role in SS Dixon [3] algorithm, and the energy
distribution of embedded watermarking signal is extended
to a wider spectrum, which improves the security and ro-
bustness capability. ULPM Kang et al. [4] eliminates the
interpolation distortion and expands the embedding space.
A discrete log-polar point can be obtained by performing the
ULPM to the frequency index in the Cartesian system, and
the data of which are then embedded to the corresponding
DFT coefficient in the Cartesian system. Figure 1 shows the
general steps of using the robust watermark in OSN. After
transmission through the lossy channel, the robust water-
mark can still be extracted correctly to protect the copyright.
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+e original robust watermarking technology was also
developed from least significant bit (LSB). In addition, the
method based on image pixel histogram is also a repre-
sentative research in the early stage Coltuc and Bolon [5].
Same as steganography, the embedding domain of image
watermark is also divided into spatial domain and transform
domain. Compared with embedded in spatial domain,
watermark embedded in transform domain usually has less
impact on image vision with the same robustness. In the
transform domain, the discrete cosine transform (DCT)
attracts the most research attention, which is mainly due to
the widespread use of JPEG format images Parah et al. [6]. In
addition to DCT, the commonly used transform domains
include Fourier–Mellin transform (FMT), singular value
decomposition (SVD), and discrete wavelet transform
(DWT) Li et al. [7]. In practical applications, watermark
needs to consider the application scenarios using different
transform domains or composite combinations. In addition
to the research in laboratories, the commercial watermark
Digimarc is also very typical. +is application is integrated
with software Adobe Photoshop in the form of a plug-in.

Unlike steganography, which hardly considers active
attacks, watermark faces a variety of attacks. Images
transmitted in OSN have their compression operation.
Image cropping, video capture tools, and the addition of
mosaics and textures are also very common. In terms of
types, anti-watermarking can be roughly divided into re-
moval attacks Su and Girod [8]; geometric attacks D’angelo
et al. [9] D’Angelo [10]; cryptographic attacks Cox and
Linnartz [11]; and protocol attacks Craver et al. [12]; Kutter
et al. [13]. Cryptographic attacks and protocol attacks are
mainly aimed at watermarks that use cryptographic theories,
and the hidden vulnerabilities in the transmission of
watermarking images. Due to limited applications, they have
been rarely studied nowadays. However, removal attacks
and geometric attacks can still be seen in cutting-edge
watermarking research. +e most common one is JPEG
compression. After the lossy compression process, the
watermarked image loses its information, and the amount of
loss is related to the compression strength. +e geometric
attack is to geometrically warp the image to change the
position of the original pixel coefficients and break the rules
of the watermarking algorithm.

In the field of information security, we often research the
two sides of the problem.+e research of new watermarking

attacks is not only to put forward better standards for
measuring the robustness of watermarks but also to prevent
watermarking algorithms from being applied to illegal
transmission. We need better watermarking attack tech-
nology, which can destroy the watermark more effectively
than the traditional methods while ensuring that the quality
of the processed image will not be affected too much. In
today’s popularization of deep learning research, we should
consider using new related technologies to update methods.

In this study, we proposed a new watermarking attack
framework focused on destroying the commercial water-
mark. +e advantages of our proposed method lie in the
following twofold:

(i) We proposed a preprocessing method, which in-
cludes two parts: decorrelation and
desynchronization.

(ii) +e results of experiments show the excellent attack
ability of our network, and compared with tradi-
tional attacks, the processed image maintains good
image quality.

+e rest of this study is organized as follows. Section 2
reviews the related work with our method. +e proposed
scheme is specified in detail in Section 3. Section 4 provides
the experimental results, and Section 5 concludes the study.

2. Related Work

2.1. Attack Methods on Digital Watermark. +e water-
marking attack technology has been developed for many
years. We mainly introduce two traditional watermark
attacking methods: removal attacks and geometric attacks. It
is not necessary to know the principle of watermarking
algorithm to remove attacks and geometric attacks.
Destroying the secret carrier is essentially destroying the
watermarking information probabilistically. +e increas-
ingly developed watermarking technology has also devel-
oped adequate countermeasures.

+e removal attack aims to completely remove the
watermark from the protection carrier, and it is the most
used attack method with the most categories. +e removal
attack can be divided into denoising attack Shukla et al. [14],
remodulation attack, and lossy compression attack Wallace
[15], mainly using filtering, coding, and other technologies
Langelaar et al. [16]. +e basic idea of the denoising attack is
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Figure 1: Robust watermark used in OSN. “· · ·” used in the image represents the unknown operations.
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to assume that the watermark is a layer of additive noise in
the carrier, which theoretically defines the expected goal of
removing the watermark. Considering the speed require-
ments of real-time attack applications, Geng, Zhang, Chen,
Fang and Yu [17] used a denoising network based on
DnCNNZhang et al. [18] architecture to remove watermark.
+e inputs of the network are the watermarked image
preprocessed, and the corresponding original images are as
labels. In this network, the residual features extracted by
CNN are considered as the watermark, and the time cost of
estimate is short enough to meet most real-time require-
ments and destroys the correlation between the water-
marked image and the real watermark, which causes the
burden of the watermarking decoder. Lossy compression
attacks use the JPEG compression method to compress the
three YUV components of the image. Different from the
removal attack to eliminate the embedded watermark, the
geometric attack method is used usually to spatially warp the
carrier image to change the original pixel position. +e
purpose is to make the watermarking extraction algorithm
and the embedded information lose synchronization, to
complete the destruction of the watermark.

+e other methods of attack include cryptographic at-
tacks and average joint attacks. +e attack methods of
cryptographic attacks are very similar to the early methods
of decrypting passwords, and the calculation is very com-
plicated. A cryptographic attack method can only target the
watermark of a specific method.+emost representative one
is the oracle attack method. Average attacks and joint attacks
are mostly used on video watermark Deguillaume et al. [19],
Pereira and Pun [20]. Video is composed of continuous
images, and there is a strong correlation between frames,
especially in static scenes. Both the average and joint attack
operations require the use of a large number of video frames
as the datasets.

According to Zhu, Kaplan, Johnson, and Fei-Fei [21], a
triple convolutional network of encoder, decoder, and
discriminator is used. +e carrier information and em-
bedded information are input into the encoder to obtain the
coded image. +e decoder is responsible for reconstructing
information from the coded image, and the discriminator
guarantees the quality of the watermarked image. +e coded
image is attacked, so that the decoder can extract water-
marking information from the attacked image and realize
the robustness of the watermark. +is method is stable and
excellent in the face of various traditional attack methods.
We can also realize that the research on anti-watermarking is
far from enough in this study. We should consider more
comprehensive and complete attack methods to promote the
development of watermark.

2.2. Digimarc Watermark. Digimarc is a commercial wa-
termark, usually used as a plug-in integrated into the ap-
plication software, the most common of which is Adobe
Photoshop. Like the watermarks mentioned in the intro-
duction, the Digimarc watermark is visually invisible with
strong robustness. When embedding a watermark, the
available options include image information, image

attributes, and watermarking durability. +e first two are
differences in information content, and watermarking du-
rability is the most critical option. +e software divides the
durability into four levels. +e levels are denoted by a in the
experimental part below. As the number increases, the
embedded watermark is more robust, and the corresponding
impact on the vision of cover is also increased. When
extracting information, the software will display two results,
one is the content of the embedded information and the
other is the strength of the extracted watermark. +e
strength of the watermark cannot be quantified, but it can be
roughly divided into six levels, namely very strong, strong,
medium, weak, very weak, and none. If it is only the
weakening of the intensity, the expected purpose cannot be
achieved. Only when the result is displayed as none, the
watermark is considered to be destroyed.

3. Proposed Framework

Different from the watermarking algorithms studied in
laboratory, as a commercial watermark, the principle of
Digimarc is unknown. +erefore, we cannot design and
optimize the network in a targeted manner according to the
selection of their embedding domain and the process of
embedding and extracting information, such as the use of
high-pass filters. Used as a plug-in, the Digimarc watermark
is a complete black box, and it is difficult to have prior
knowledge that can be relied on.

Figure 2 shows the framework of Digimarc watermark
attacking model. To ensure the success of the attack, the
input watermarked image is preprocessed before the training
starts. +e preprocessing includes two operations of
decorrelation and synchronization. In addition, different
from the datasets usually used in network training, it is hard
to get thousands of images with the same type of commercial
watermark. +erefore, we use a deep convolutional encoder-
decoder network based on single-image training. +e net-
work is based on the idea of removing attacks, regarding the
Digimarc watermark as additive noise on the cover, and
allows the original image to be used as a learning target. +e
main body is made up of an encoder-decoder network. To
fully avoid the overfitting of small data training, some
neurons are dropped out during the training and testing
phases, and the Bernoulli rules are followed. In the early
stage of training, the train set is expanded by the Bernoulli
sampling to further improve the generalization ability.

3.1. (e Preprocessing of Watermarked Images. Before
training the encoder-decoder network, we first proposed a
preprocessing method.+e preprocessing of the input image
mainly includes two parts: decorrelation and desynchroni-
zation. +e flow chart is shown in Figure 3. Assuming that
the length and width of the watermarked image IW are H

and W, respectively, we applied a Wiener filter with φ × φ
size filter kernel in decorrelation. Starting from minimizing
the mean square error, the purpose is to reduce the cor-
relation between the watermark signal and the original
carrier. Assuming that the original carrier image is IC and

Security and Communication Networks 3



the reconstructed image after decorrelation is IM, the mean
square error between the two images can be expressed as
follows:

MSE � E IC(n) − IM(n)􏼂 􏼃
2

� E I
2
C(n)􏽨 􏽩 − 2E IC(n)IM(n)􏼂 􏼃 + E I

2
M(n)􏽨 􏽩,

(1)

where E [·] represents mathematical expectation, n� 1, 2, . . .,
H×W. +e right part of equation (1) can be further derived
as follows:

E I
2
C(n)􏽨 􏽩 � RIC

(0),

E IC(n)IM(n)􏼂 􏼃 � E IC(n) 􏽘
∞

k�−∞
h(k)IM(n − k)⎡⎣ ⎤⎦

� 􏽘
∞

k�−∞
h(k)RICIW

(k),

E I
2
M(n)􏽨 􏽩 � 􏽘

∞

k�−∞
􏽘

∞

m�−∞
h(k)h(m)RIW

(m − k).

(2)

Among them, R (·) represents the correlation function,
and h is the filter element. If h0 is the optimal filter that meets
the minimummean square error, then h can be expressed as
follows:

h(n) � h0(n) + g(n). (3)

Among them, g is the error. Substituting h0 into
equation (1), we can get the minimum mean square error 0.
Combining the above equation, we can get the following:

MSE � MSE0 + f1 + f2,

f1 � 2 􏽘
∞

m�−∞
g(m) 􏽘

∞

k�−∞
h0(k)RIW

(m − k) − RICIW
(k)⎡⎣ ⎤⎦,

f2 � 􏽘
∞

m�−∞
􏽘

∞

k�−∞
g(m)g(k)RIW

(m − k).

(4)

Since MSE must be greater than or equal to MSE0, it is
easy to know that f2 must be greater than zero, so f1 needs
to be equal to zero.

Destroy the Robust Commercial Watermark via Deep Convolutional Encoder-Decoder Network

Preprocessing

TrainingWatermarked
image De-correlation De-synchronize Encoder-decoder

Network
Processed

image

Figure 2: +e framework of Digimarc watermark attacking model.
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Figure 3: Preprocessing operations on watermarked images.
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RICIW
(m) � 􏽘

∞

k�−∞
h0(k)RIW

(m − k). (5)

Converting equation (5) into the form of power spec-
trum, the filter expression at the energy level can be obtained
as follows:

H0(s) �
ΦICIW(s)

ΦIW(s)
. (6)

Equation (6) is the key to reducing the correlation be-
tween the watermark and the original carrier. To explain
from the perspective of image pixels, the local neighborhood
of the pixel can be used to estimate the mean and standard
deviation of the filter h under the filter kernel size φ.

μ �
1
φ2 􏽘

i,j∈η
bi,j,

σ �

������������
1
φ2 􏽘

i,j∈η
b
2
i,j − μ2

􏽳

.

(7)

Among them, bi,j is the (i, j) pixel in IW, so the
decorrelated image IM can be expressed as follows:

IM � IW ⊗H. (8)

Among them, ⊗ represents the convolution operation,
and H is the convolution kernel of the filter.+e filter core of
φ � 3 is used in this scheme. +e neighborhood of pixel 8 in
the natural image has the strongest correlation. Choosing
this size is enough to complete the initial weakening of the
correlation between the watermark and the carrier image. In
Figure 3, the filter kernel is represented as a green square.
After convolving the black pixels of IW, the blue pixels in IM

are obtained.
Further, the image IM is desynchronized, the pixel

collection matrix in IM by M is indicated, and the pixel
matrix of the image IT after desynchronization can be
expressed as follows:

T � M r: W − r, r: H − r{ }. (9)

We set r � 1 here, and finally, IT will be upsampled to the
original image size to complete the preprocessing of the
watermarked image.

3.2. Data Augmentation. Many image processing methods,
such as denoising, restoration, and super-resolution, often
have a similar goal, which is to minimize the difference
between the image generated and the original image. +e
goal can usually be expressed by the following equation:

􏽥y � minyE(y; x) + R(y), (10)

where y represents the generated image and x represents the
original image. E(y; x) is a optimization goal, which will be
changed according to different requirements. +e most
common optimization goal is ‖y − x‖2. R(y) is a regularizer,
which is generally obtained as a priori information based on

a large amount of dataset. +e choice of regularizer, which
usually captures a generic prior on natural images, is more
difficult and is the subject of much research. In this work, we
replace the regularizer R(y) with the implicit prior captured
by the neural network as follows:

θ∗ � argminθE fθ(z); x( 􏼁,

􏽥y � fθ∗(z).
(11)

+eminimizer θ∗ is obtained using an optimizer such as
gradient descent starting from a random initialization of the
parameters.

InDIPUlyanov et al. [22], the author believes that the same
training results can be obtained by relying on the parameters of
the network itself through only one image used for repeated
iterations. DIP proposed a hand-designed priori function. In
some cases, the performance is comparable to that of networks
based on large datasets. +e most urgent problem for single-
image training is overfitting. If the network is regarded as the
Bayesian estimation, then the prediction accuracy can be
represented by the mean square error (MSE). +e variance in
the MSE will increase sharply because the training samples are
particularly small, which will make the model lose its gener-
alization ability. +erefore, the focus of network design is to
reduce the variance to solve the problem of overfitting.

While learning only by a single image, to make full use of
the information of the train sets, we first extended with the
single image. We use the Bernoulli sampling to generate a
large number of samples. +ese samples essentially contain
image content, but are different from the original image, and
have a good optimization effect on training tasks. +e
Bernoulli distribution can be explained simply by the coin
tossing problem, and it describes a binary problem. For
example, for a variable x, there are two possible values of 0
and 1, and the probability of x � 1 can be represented in
formula (12). When expressed as the Bernoulli distribution,
it can be written as formula (13).

P(x � 1 | ρ) � ρ(0≤ ρ≤ 1), (12)

P(x | ρ) � (1 − ρ)
1− xρx

. (13)

For a sample set, although the samples are independent
of each other, but conform to the same distribution, the
likelihood function can be expressed by the following
formula:

P(S | ρ) � 􏽙
M

m�1
P xm | ρ( 􏼁

� 􏽙
M

m�1
(1 − ρ)

1− xmρxm ,

(14)

where S represents the sample set, S � x1, x2, . . . , xm􏼈 􏼉.
In the field of image computing, it can be represented by

a simple mathematical model. In this study, we suppose that
the original image and the watermarked image are IC and
IW, respectively, end expanded into corresponding sample
pairs with a total of M copies. +e sample pairs can be
represented as 􏽥I

m

c􏽮 􏽯
M

m�1 and 􏽥I
m

W􏽮 􏽯
M

m�1.
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􏽥I
m

label􏽮 􏽯
M

m�1 � Bn ⊙ I
M
labelm�1, (15)

where label represents C or W. In practical applications, Pm

is the Bernoulli distribution with the same size as the tensor
and the probability conforms to ρ. Denote the element as K,
and (15) can be redefined as follows:

􏽥I
m

label[k] �
Ilabel[k], ρ,

0, 1 − ρ.
􏼨 (16)

Let gθ(·) be the objective mapping function, and then,
the loss function can be expressed as follows:

minθ 􏽘

M

m�1
gθ

􏽥I
m

W􏼐 􏼑 − 􏽥I
m

C

�����

�����
2

Bn

. (17)

In this subsection, we use the Bernoulli sampling to
increase the training samples and initially solve the over-
fitting problem. +e loss of each pair of samples is only
performed on the mask represented by the current Bernoulli
distribution. Because the mask tensor is completely selected
at random, when we obtain a sufficient number, we can use
the sum of the loss of all samples to measure the perceptual
loss on the overall image.

3.3. Network Architecture. Inspired by Quan, Chen, Pang,
and Ji [23], we propose to use the network depicted in
Figure 4. +is model has been proved useful in denoising
task. Different from the existing denoising methods, this
network can only use the input noisy image itself for
training, which meets our need perfectly. It is mainly
composed of two parts: encoder and decoder. Assuming that
the original image IC is embedded in the Digimarc water-
mark by software, the watermarked image IW is obtained.
+e size of each image is H × W × C, H and W represent the
length and width of the image, and C is the number of image
channels. To prevent overfitting, before IW is sent to the
network for training, it is first sampled by the Bernoulli
sampling to get the sample set. +en, after a partial con-
volution (PConv, partial convolutional), and activated by
LeakyReLU, 3 × 3 PConv is used for pixel normalization.

+e whole encoder is composed of six coding units. +e
first five coding units have a similar structure, and they are
all composed of a local convolution layer activated by
LeakyReLU and a maximum pooling layer with a sampl-
ing kernel of 2 × 2 size with the step of 2. +e feature
number of each layer is set to 64, and finally, the result is
output by the last coding unit, and then, it is upsampled to
the decoder.

+e decoder contains a total of five decoding units, the
first four are collectively referred to as decoding unit A and
the last one is decoding unit B. For each decoding unit, the
encoding feature map is connected first, and after that, two
3 × 3 convolution layers are applied. +e convolutional
layers are also activated by LeakyReLU. To further solve the
overfitting problem, “dropout” is applied to delete some
neurons and then continues to enter the next decoding unit
through an upsampling. +e numbers of convolution

kernels of the decoding unit A are all 128, and the number of
channels of the convolutional layer included in the decoding
unit B is 96, 64, 32, and C, and finally, the output image is
generated.

+e convergence goal of the network is given in formula
(17) in the previous section. As can be seen from the in-
troduction in this section, the single-image training network
must first face the problem of its own overfitting and then
the performance index. Although it is difficult to achieve the
performance of a network based on large datasets by
learning from a single image under the full conditions, it can
play a very good effect when the data source is lacking.

4. Experimental Results and Analysis

4.1.(eMethod of Test. Assuming that gθ(·) is the mapping
function model obtained by training, if the test image is
processed by this model, it is equivalent to a mapping of the
sampled instance from test set. Generally, a network with
“dropout” will scale the weight of the model through related
rules during testing. +erefore, to better optimize the per-
formance, in the actual testing phase, we use the Bernoulli
sampling and “dropout” again on the model to generate a set
of submodels and then average the final results. We define
the submodel set of gθ(·) after K Bernoulli sampling as
gk
θ(·)􏼈 􏼉

k

k�1 and the generated image IG can be expressed as
follows:

IG �
1
K

􏽘

K

k�1
g

k
θ BN+k · IPre( 􏼁. (18)

4.2. Experimental Settings. In this section, we conduct ex-
periments to analyze the performance of proposed network.
+e goal of this study is the commercial Digimarc water-
mark, and the embedding and extraction of the watermark
are carried out on the Photoshop software platform. +e
datasets we use are Set9 and Set14 Bevilacqua et al. [24]; all
images are color and resized as 512× 512. +e examples of
test image are shown in Figure 5. As mentioned in Sub-
section 2.2, the most important variable in the embedding
process is the durability of the watermark, where the variable
S refers to the strength of the watermark. Each group of
experiments will test the watermarked images of four in-
tensities separately. +e objective evaluation indicators in-
clude the strength of the watermark after attack, PSNR, and
SSIM. PSNR and SSIM are two common metrics for
assessing the quality of the reconstructed image. Higher
PSNR and SSIM values generally indicate a better quality of
the imageHore and Ziou [25].We therefore used the average
PSNR and SSIM values to assess the quality of processed
images. In addition, to better reflect the excellent perfor-
mance of the proposed network, we have also compared the
proposed method with StirMark. +e most famous software
in the traditional anti-watermarking technology is StirMark
software.+e integration of this application covers almost all
traditional watermark attacking methods, which can be
described as a benchmark. Because of the variety of
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Figure 4: Overview of the network architecture.

(a) (b) (c) (d) (e)

Figure 5: +e examples of test image. (a) F16. (b) Lena. (c) Man. (d) Pepper. (e) Baboon.

Table 1: Strength of watermark extracted after different methods of attack.

Test images F16a1 F16a2 F16a3 F16a4

Proposed method None None None None
Wang et al. [26] None None None None

StirMark

Cropping
c � 0.75 Weak Medium Medium Medium
c � 0.5 Very weak Weak Weak Weak
c � 0.25 None None None None

Rotation
r � 180° Medium Medium Medium Medium
r � 150° Medium Medium Medium Medium
r � 90° Medium Medium Medium Medium

Scaling
sc � 0.5 Weak Weak Weak Weak
sc � 1.5 Medium Strong Strong Strong
sc � 2 Medium Medium Medium Medium
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Table 2: Visual effects after being processed by various attacks. +e strength of extracted watermark is in the ().
Lena_a3 The proposed method Cropping c =0.75 Cropping c =0.25

Rotation r =180 Rotation r =90 Scaling sc =0.5 Scaling sc =0.75
(Medium) (Medium) (Very weak) (Medium)

JPEG Compress QF =50 JPEG Compress QF =30 Desynchronization SS =3 Desynchronization SS =2
(Weak) (Very weak) (Strong) (Medium)

Median filter k =5 Median filter k =9 Gaussian noise =4 Gaussian noise =8
(Strong) (Weak) (Weak) (Very weak)

Random distortion d =0.95 Random distortion d =1.05 Affine transformation f =5 Affine transformation f =2
(Medium) (Medium) (Very weak) (Weak)

(None) (Medium) (None)
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watermark attacking method types, only the representative
part is selected in the experiment of this article.

We initial the Adam optimizer with a learning rate of
1e − 4 to train the model and train our network on a single
GPU NVIDIA GTX1080ti for 1.5 × 105 iterations. +e time
cost of each training is about 3.5 hours. +e LeakyReLU
activation function with a hyperparameter of 0.1, the Ber-
noulli with a sampling probability of 0.1, and a decoder with
a “dropout” rate of 0.3 are used in training. In the test phase,
a total of 100 dropouts were performed on the model, and
the actual result is the average of the 100 processing results.

4.3. Performance Evaluation. In this section, we will show
the results of attack on watermarking of different strengths
through our method and the comparison experiments with
Wang, Qian, Feng, and Zhang [26] and StirMark.We choose
the “F16” in Set9 as the test image and embed the watermark
with the strength a with 1, 2, 3, and 4, and then, we will get
the four images to be attacked. Table 1 shows the results after
processing with the method proposed, and the comparison
withWang et al. [26] and several common geometric attacks
in StirMark. Let the parameter of the cropping attack be c,
and the value is 0.75, 0.5, 0.25{ }; the rotation attack pa-
rameter be r, and the value is 180°, 150°, 90°{ }; and the scaling
attack parameter be sc, and the value is 0.5, 1.5, 2{ }. It can be
seen from the table that the Digimarc watermark has a very
high correction ability in resisting rotation attacks. In a
scaling attack, the reduction operation weakens the water-
mark more than the zoom operation. +e cropping attack
has a higher destruction rate than the other two methods,
and it can completely eliminate the watermark in the case of
great damage to the image. For the Digimarc watermark, the
weakening of the strength does not mean that the water-
marking information disappears. Only the effect of the at-
tack makes the software identification result “none,” and this
attack is meaningful. Although the method proposed in
Wang et al. [26] can also meet the requirement, the proposed
method is more convenient when training. In our opinion,
the visual quality of the image should not be affected too
much while the watermark is erased. Different from Stir-
Mark, our method can completely erase watermark of dif-
ferent durability while maintaining good image quality.

To show the visual effect of our method more intuitively,
we take the Lena image as the test image and embed the
Digimarc watermark with intensity 3 in it. Table 2 shows the
results of Lenaa3 under each attack. +e quality factor of
JPEG compression is defined as QF, the mean value of
Gaussian noise is 0, and the standard deviation is defined as
σ. +e kernel size of the median filter is k. +e parameters of
desynchronization attack, random distortion attack, and
affine transformation are denoted by ss, d, and f,
respectively.

It can be seen from Table 2 that although traditional
attacks have different methods, the results will inevitably
cause serious visual distortion, and the watermark still exists
in this case. Taking the most common JPEG compression
attack in reality as an example, the image compression factor
in online social networks (OSN) will be around 70, and even
when the QF is set as 30, the Digimarc watermark cannot be
completely removed. +e quality of the watermarked image
processed by our method is almost unchanged from that
before processing. Table 3 used two objective evaluation
indicators, PSNR and SSIM, to illustrate the image quality
after processing.

In Table 3, three test images of Man, Pepper, and Baboon
are selected for watermark embedding. When the embed-
ding intensity is 4, “Mana4,” “Peppera4,” and “Baboona4” are
obtained, respectively. +e result shows the comparison of
the watermarking strength and visual quality of the test
image after several methods of attack. Table 3 further verifies
the robustness of Digimarc watermark itself. Even if the
standard deviation of Gaussian noise is set to 8, the wa-
termark still cannot be removed. As a comparison, our
method can not only remove the watermark perfectly, but
also improve the image quality compared with other
methods. Taking the “Man” as an example, compared with
our method, the PSNR is improved by 24.65 dB, and the
SSIM is improved by 0.757 3. +e image quality has reached
a level that cannot be detected by the human eye.

We use four intensities to embed watermark on the five
test images. After all the objects are processed by the pro-
posed method, no watermark can be extracted from the
images. Table 4 also shows the image quality results of all the
attacked images, which meets the expectation that the attack
is invisible.

Table 3: Performance comparison in terms of removal effect and image quality for test images.

Test images
Mana4 Peppera4 Baboona4

Strength of
watermark PSNR SSIM Strength of

watermark PSNR SSIM Strength of
watermark PSNR SSIM

Proposed method None 39.48 0.974 4 None 36.76 0.915 4 None 36.35 0.941 3

JPEG
Q � 30 None 24.28 0.786 6 Very weak 23.04 0.762 7 Very weak 22.96 0.780 5
Q � 50 Very weak 24.76 0.824 8 Weak 24.45 0.800 2 Weak 23.61 0.827 5
Q � 70 Weak 25.18 0.860 4 Weak 24.76 0.838 7 Weak 24.13 0.862 6

Gaussian
noise

σ � 2 Medium 26.61 0.670 3 Medium 26.50 0.541 7 Medium 26.48 0.7771
σ � 4 Weak 20.94 0.430 8 Weak 20.61 0.286 7 Weak 20.51 0.5351
σ � 8 Very weak 14.83 0.2171 Very weak 14.49 0.129 3 Weak 14.55 0.276 8

Median filter
k � 2 Strong 22.77 0.779 9 Medium 23.55 0.876 0 Medium 21.40 0.779 7
k � 5 Strong 22.59 0.668 7 Medium 23.58 0.819 0 Medium 20.53 0.548 3
k � 7 Medium 22.10 0.594 4 Medium 23.42 0.779 4 Medium 19.92 0.422 5

Security and Communication Networks 9



5. Conclusions

In this study, we propose an attack model against the
commercial Digimarc watermark. We have solved the
problem that the principle of commercial watermark is
unknown and the amount of training data is scarce. +e
attack rate of our method is very high, so that the water-
marking information after the attack cannot be extracted
completely, not only weakening the strength of the water-
mark. +e experimental results show that our method has a
remarkable improvement in attack performance and image
quality compared with various attack methods in StirMark.
In the future, we will explore how to add the process of
extracting the watermark to the back propagation, which
may achieve better results.
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With the increase in the proportion of encrypted network traffic, encrypted traffic identification (ETI) is becoming a critical
research topic for network management and security. At present, ETI under closed world assumption has been adequately
studied. However, when the models are applied to the realistic environment, they will face unknown traffic identification
challenges and model efficiency requirements. Considering these problems, in this paper, we propose a lightweight unknown
traffic discovery model LightSEEN for open-world traffic classification and model update under practical conditions. +e
overall structure of LightSEEN is based on the Siamese network, which takes three simplified packet feature vectors as input on
one side, uses the multihead attention mechanism to parallelly capture the interactions among packets, and adopts techniques
including 1D-CNN and ResNet to promote the extraction of deep-level flow features and the convergence speed of the network.
+e effectiveness and efficiency of the proposed model are evaluated on two public data sets. +e results show that the ef-
fectiveness of LightSEEN is overall at the same level as the state-of-the-art method and LightSEEN has even better true
detection rate, but the parameter used in LightSEEN is 0.51% of the baseline and its average training time is 37.9% of
the baseline.

1. Introduction

Network traffic identification refers to classifying net-
work traffic into different sets by observing its charac-
teristics according to specific targets, which is the focus of
network behaviour analysis, network planning and
construction, network anomaly detection, and network
traffic model research [1]. In recent years, with the rapid
development of network technology and the widespread
use of encryption technology in the network, the amount
of encrypted network traffic has gained a fierce increase,
and the issue of encrypted traffic identification (ETI) has
attracted wide attention from researchers.

Currently, ETI in closed environments has been amply
studied. However, for the application in an open-world

environment, there are more practical problems to be
considered, including the challenge of unknown traffic
discovery and model efficiency.

To be deployable to practical applications, an ETI model
needs to discover unknown classes of traffic that were not
anticipated in the training phase. However, most of the existing
models are based on the closed-world assumption, which
means that the training dataset is assumed to contain all the
traffic classes in themodel deployment environment. However,
such assumption cannot be held inmany practical applications.
Consequently, the classifier trained with a closed set is easy to
classify the samples from an unknown class to some class in the
training setmistakenly. To solve this problem, researchers try to
develop models supporting both known class sample classifi-
cation and unknown class sample discovery.
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Recently, a model named SEEN is proposed for un-
known traffic discovery [2], which applies the Siamese
network in the ETI area for the first time. SEEN can classify
known traffic into the correct classes and distinguish un-
known traffic. However, the traffic features that SEEN uses
are relatively rough, and the network structure of SEEN is
rather complicated, which limits its practical application.

Many ETI models with high classification accuracy use
complex neural network structures, and some use models
with a low degree of parallelism (e.g., RNN). +ese models
have strong feature extraction ability, but they need a large
amount of training data. Moreover, the efficiency of these
models is not high enough, and the model update is com-
plex, whichmakes it barely able to deal with the complex and
changeable network environment.

In this paper, we focus on improving the real-time
performance and flexibility of unknown traffic discovery.
Inspired by SEEN and Transformer [3], we try to design
appropriate inputs and neural networks for reducing the
space and time complexity of our task. More precisely, the
contribution of this paper includes the following:

(1) We put forward a lightweight model LightSEEN for
unknown traffic discovery. To the best of our
knowledge, there are few lightweight deep learning
methods in this area. +e overall structure of
LightSEEN is a Siamese network, and we use the
multihead attention mechanism to capture the as-
sociations between packets and promote the degree
of parallelism. Meanwhile, 1D-CNN is introduced
for further feature extraction and integration, and we
reuse part of the network structure to reduce pa-
rameter amount.

(2) We design compact packet-level features as the
network input, meaning that only the most infor-
mative field information and a small amount of
payload are selected. In addition, to reduce the
quality and length requirements of the packet
stream, we try to shrink the number of packets used.

(3) We analyse the efficiency and effectiveness of
LightSEEN with abundant experiments on two
public datasets. In the model, techniques including
ResNet and layer normalization are used to increase
the convergence speed of the model and avoid it
from degradation. Experimental results show that
the effectiveness of LightSEEN is overall at the same
level as SEEN, whereas the parameter number of the
former is 0.51% of the latter, and the average training
time of the former is 37.9% of the latter.

+e rest of this paper is organized as follows. In Section
2, we review the related work on unknown traffic discovery.
In Section 3, we introduce the problem definition and the
architecture of the Siamese network. +e LightSEEN is
presented in Section 4, followed by the corresponding
analysis. In Section 5, we evaluate the efficiency and effec-
tiveness of LightSEEN by conducting comparative experi-
ments on two data sets. Finally, we conclude this paper in
Section 6.

2. Related Work

In this section, under the background of encrypted traffic
analysis, we briefly introduce the machine learning methods
used to discover unknown traffic, which includes conven-
tional machine learning methods and deep learning
methods.

2.1. Conventional Machine Learning Methods. Firstly, we
introduce the conventional machine learning methods for
unknown traffic discovery briefly, mainly including semi-
supervised and unsupervised methods.

Since under most circumstances, labeled samples are
insufficient while unknown flows are sufficient, many
existing results on unknown traffic identification use sem-
isupervised methods. In 2007, Erman et al. [4] firstly pro-
posed a semisupervised classification method for traffic
classification, in which the labeled training data was used to
solve the problem of mapping from flow clusters to actual
classes; thus, it could be used to classify known and un-
known applications. In its subsequent work, Zhang et al. [5]
proposed a robust statistical traffic classification (RTC)
solution on the basis of [4] by combining supervised and
unsupervised machine learning technology to solve the
unknown Zero-Day application challenge in traffic classi-
fication. +is method can identify the Zero-Day application
traffic and accurately distinguish the applications of pre-
defined classes, and its effectiveness was verified by com-
parative experiments. In the same year, Lin et al. [6]
proposed UPCSS to detect unknown protocols, which was
based on flow correlation and semisupervised clustering
ensemble learning. Similarly, Ran et al. [7] proposed a
semisupervised learning system for adaptive traffic classi-
fication in 2017, which adopted techniques including iter-
ative semisupervised k-means and dynamically adding
centers to select the optimal parameters and achieved high
accuracy.

Considering that traffic data of known classes only ac-
counts for a small part of the massive network traffic, re-
searchers also try to extract unknown features from
unlabeled data, namely, using unsupervised learning
methods in network classification. Mapping the extracted
clusters to classes is the main challenge in implementing
these methods. In 2009, Este et al. [8] proposed a method
based on SVM to solve multiclass classification problem,
applied it to traffic classification, and carried out simple
optimization, making the classifier trained with a small
number of hundreds of samples classify traffic from different
topological points on the Internet with high accuracy.
Likewise, in 2018, Fu et al. [9] also proposed the FlowCop
method based on multiple one-class classifiers, which could
not only identify predefined traffic, but also detect undefined
traffic with selected prominent features for each one-class
classifier. Both of the solutions in [8, 9] are based on the
method of multiple one-class classifiers, but the binary
classifiers for each class in this method are heuristics.
Moreover, this method relies on a predefined distance
threshold, which may lead to unsatisfactory results. In 2019,
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Le et al. [10] discussed the extent to which the self-orga-
nizing map (SOM) could be applied to network traffic
analysis and malicious behaviors detection in practice.
Experiment results showed that the approach could identify
malicious behaviors both on network and service datasets
used, and that it was also beneficial for security management
with visualization capabilities for network/service data
analytics.

+e conventional machine learning methods have rel-
atively low time and space cost, and they have scored some
achievements in unknown traffic discovery. However, they
suffer from a high dependence on expert experience for
feature selection, which makes it laborious to build the
models and limits their performance.

2.2. Deep LearningMethods. With the rapid development of
deep learning and its wide application in various fields, many
researchers have applied deep learning to unknown traffic
identification.

In 2017, Ma et al. [11] used a CNN model to identify
protocols in the complex network environment according
to the protocol type of the application layer. Experiments
showed that, in the payload information of about 200,000
traffic flows, the accuracy of identifying unknown protocol
traffic was 86.05%. In 2019, Zhang et al. [12] proposed a
method, DePCK, for identifying unknown traffic, which
could divide the mixed unknown traffic into multiple
clusters. Each cluster contained only one application traffic
as much as possible, thus improving the clustering purity.
+is method uses a deep autoencoder to extract features
from traffic and then lets flow correlation guide the process
of pair-constrained k-means. In the same year, Zhu et al.
[13] proposed a method using deep neural networks to
select appropriate protocol flow statistical features with the
help of known application layer protocols. +ey then used
an improved semisupervised clustering algorithm to divide
the protocols into different sets, achieving unknown pro-
tocol classification. In 2020, Wang et al. [14] proposed a
CNN model for unknown protocol syntax analysis
according to the characteristics of the bit-flow protocol
data format. +e model preprocesses the protocol data to
obtain the image format data suitable for CNN and then
lets CNN process the image data to obtain the prediction
results of the unknown protocol. Besides, Zhang et al. [15]
studied how extreme value theory (EVT) could be utilized
in unknown network attack detection systems and brought
out a network intrusion detection method. By fitting the
activation of the known class to the Weibull distribution,
the open-CNN model was constructed to estimate the
pseudo-probability of the unknown class from the acti-
vation score of the known class to achieve the purpose of
detecting unknown attacks. In addition, Yang et al. [16]
proposed a transfer learning method using deep adaptation
networks (DAN). +is method first trains a CNN model on
the unlabeled data set with sampling time-series features,
then jointly trains the extended version of the model on the
labeled and unlabeled samples, uses labeled samples of
known traffic to improve the clustering purity of unknown

traffic. +is method achieves a purity of 98.23% on two
published data sets.

Most of the above works need prior knowledge of un-
labeled traffic, leading to their insufficient capability of fine-
grained identification of unknown traffic. To fix this prob-
lem, Chen et al. [2] firstly applied the Siamese network to
unknown traffic discovery. +eir method, SEEN, can classify
known traffic into correct classes and distinguish unknown
traffic. However, the rough traffic features that SEEN uses
and its bloated network structure make it not suitable for a
realistic environment. Compared with SEEN, the method in
this paper uses simplified input and a carefully designed
lightweight network, which makes it more practical.

3. Preliminaries

In this section, we briefly review the preliminaries used in
our model, including the definition of unknown traffic
discovery and the work process of the Siamese network.

3.1. Problem Definition. Encrypted traffic identification re-
fers to using rules or models to give traffic samples correct
labels. It can be conducted with multiple granularities, in-
cluding packet, flow, and host level [17]. In this paper, we
focus on bidirectional flow analysis. A bidirectional flow is
composed of all packets with the same quintuple values, that
is, source IP, source port, destination IP, destination port
and transport layer protocol, in which the source and
destination are interchangeable [18]. For a flow fi con-
taining N packets, it can be expressed as shown in equation
(1). Typically, a model for traffic identification is trained with
labeled flow data firstly, and the trained model is used to
classify flow samples without label into classes correctly. In
particular, the model may face the unknown traffic discovery
problem in practice.

fi � p
i
1, . . . , p

i
N􏽮 􏽯. (1)

Unknown traffic discovery requires a classifier to reject a
flow from classes unseen during training rather than
assigning it an incorrect label [19]. Given a training set
Dtrain � (f1, y1), . . . , (fn, yn)􏼈 􏼉, where fi is the ith flow
sample and yi ∈ ΩK � CK

i , i � 1, . . . , P􏼈 􏼉 is its corresponding
class label, the goal is to learn a classifierA that can not only
classify the samples from known classes correctly but also
categorize samples from unknown classes as unknown. For a
test sample f∗, whose actual class label is y∗, the ideal effect
of A is shown in the following equation:

A f∗( 􏼁 �
y∗, if y∗ ∈ Ω

K
,

unknown, if y∗ ∉ Ω
K

.

⎧⎨

⎩ (2)

3.2. Siamese Network. Siamese neural network is a class of
network architectures that consists of two (or more) identical
subnetworks. +e subnetworks have the same structure with
the same parameters and shared weights, which are syn-
chronously updated. A loss function connect them at the end,
which computes a similarity metric based on the Euclidean
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distance between the feature representations produced by the
subnetworks. A commonly used loss function in the Siamese
network is the contrastive loss [20] defined as follows:

L x1, x2, y( 􏼁 � α(1 − y)D
2
w + βymax 0, m − Dw( 􏼁

2
, (3)

where x1 and x2 are two samples, y is a binary label denoting
whether the two samples are of the same class or not, α and β
are constants, and m is the margin.
Dw � ‖f(x1; w1) − f(x2; w2)‖2 is the Euclidean distance in
the embedded feature space, f is an embedding function
mapping a sample to the feature space via neural networks,
and w1 andw2 are the learned networks weights.

Siamese network aims to let the loss function bring the
output feature vectors of similar inputs closer and push
those of dissimilar inputs away.+en, to decide if two inputs
belong to the same class, one needs to determine a threshold
value on the feature vector distance. If the distance between
the two inputs is smaller than the threshold, they are treated
as similar samples or from the same class. Otherwise, they
are judged as from different classes.

4. The Lightweight Model for Unknown
Traffic Discovery

In this section, we introduce the lightweight model for
unknown traffic discovery we proposed, and Figure 1 dis-
plays the structure of the model. Besides, we illustrate the
details of model training, model validation, model test, and
system update and also analyse the space and time com-
plexity of the model.

4.1. Model Structure. As mentioned in Section 3.2, the Si-
amese network is generally composed of two identical
subnetworks, which are joined by the margin-based loss
function at the end.+erefore, we only need to introduce the
structure of one subnetwork to make the composition of the
whole model clear.

In general, the subnetwork structure here consists of four
parts, that is, preprocessing, feature embedding, attention
module, and dense layer. Moreover, we will explain each part
in detail.

Preprocessing: the purpose of preprocessing is to extract
valuable packet information as features. For a raw PCAP file,
the packets in it can be combined into flows according to the
quintuple. +en, the flow can be preprocessed by extracting
its packet features, which are carefully designed for the
lightweight traffic analysis task.

Considering our lightweight detection task, we choose
features as lean as possible. In detail, firstly, the three-way
handshake is skipped since it can barely provide infor-
mation for traffic classification. Besides, only the first N � 3
packets are picked to get features, which are most likely to
disclose useful information. For each packet, S � 5 fields of
features are concerned, namely, position, timestamp, di-
rection, key flags in IP and TCP header, and packet pay-
load, and the details and meanings of the features are as
follows.

(1) Position (one dimension): it is the sequence number
of a packet in a flow, which provides order
information.

(2) Timestamp (one dimension): it marks the arrival
time of a packet, which provides temporal
information.

(3) Direction (two dimensions): a bidirectional flow
includes packets of two directions, namely, from
source to destination and the reverse direction,
which can be represented as [0,1] and [1,0].

(4) Key flags in IP and TCP header (nine dimensions):
the key flags include ip_len, ip_off, ip_ttl, PSH, URG,
th_seq, th_urp, and th_win.+e ip_len means packet
length, the ip_off means fragment offset, the ip_ttl
stands for Time to Live, the PSH indicates the data
transmission pattern, the URG means urgent data,
the th_seq means the relative sequence, the th_urp is
the urgent data offset, and the th_win means the
window size. Other flags are abandoned since they
do not contribute to the task.

(5) Packet payload (77 dimensions): if the payload is less
than 77 bytes, it will be completed with zero bytes
and conversely truncated to 77 bytes.

4.1.1. Feature Embedding. +e embedding layer converts the
raw packet features into packet vectors that can be better
analysed by the neural networks. Since we have multiple
features with different dimensions, how to integrate them is
worth studying, and there are a wide range of choices. A
recent work on this is [21], in which a method of unifying
different kinds of features’ dimensions was proposed. Be-
sides, feature fusion can also be achieved by neural networks.
However, in this work, to reduce model complexity and
promote efficiency, we choose to concatenate the raw fea-
tures directly as a simple embedding. Let xi, i � 1, . . . , S􏼈 􏼉

denote the raw features obtained from preprocessing and
pi, i � 1, . . . , N􏼈 􏼉 denote the packet vectors generated by
feature embedding; then, we have

pi � x1, . . . , xS􏼈 􏼉, i � 1, . . . , M. (4)

+en, the packet vector pi has a dimension of dp � 90,
and pi, i � 1, . . . , N􏼈 􏼉 will be the input of the attention
module, which has a dimension of d � Ndp � 270.

4.1.2. Attention Module. +e structures of the attention
module and dense layer are shown in Figure 2. +e design of
the attention module is partly derived from the Transformer
encoder, and we adjust the network to support lightweight
unknown discovery. In brief, we leverage the multihead
attention mechanism to capture the interactions between
different packets, reuse the basic block, and introduce 1-
dimensional CNN (1D-CNN) to accumulate information
and decrease the scale of network parameters.

+e attention module mainly consists of three compo-
nents, namely, (1) multihead attention, (2) add & norm, and
(3) 1D-CNN, which will be explained in detail.
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(1) Multihead Attention. +e function of multihead attention
is to jointly collect deep-level information of the input from
multiple representation subspaces. We use packet k as an
example to explain how the information delivered and or-
ganized efficiently to produce a new packet vector with deep-
level features. +e number of heads is denoted by H, so the

attention head h ∈ 1, . . . , H{ }. Let σh(·, ·) denote the rela-
tionship between two packets, and αh

k,l denote the attention
weight between packet k and l; then,

αh
k,l �

σh pk, pl( 􏼁

􏽐
N
i�1 σ

h pk, pi( 􏼁
. (5)

σh(·, ·) can be achieved by inner product or a neural
network, and we choose inner product for better efficiency;
hence,

σh pk,pl( 􏼁 �〈Qhpk, K
hpl〉, Q

h
, K

h ∈ Rd′×d
, (6)

where Qh and Kh are transformation matrices mapping the
packet vector from original space Rd into a new space Rd′.
+en, the representation of packet k of head h is

􏽢phk � 􏽘
N

i�1
αh

k,i V
hpi􏼐 􏼑, V

h ∈ Rd′×d
. (7)

And, the packet vector in new space can be obtained by
concatenating the 􏽢phk of all heads:

􏽢pk � Concat 􏽢p1k, . . . , 􏽢pHk􏼐 􏼑. (8)

On the whole, the multihead attention mechanism up-
dates the representation of all packets with the idea of
weighted summation. For each packet, the weight is gen-
erated from its association with all the other packets in
parallel, resulting in much fewer parameters and a much
shorter running time. Besides, a packet is projected into
different subspaces for capturing multiview feature associ-
ations. Since the computation of all the heads is also par-
allelized, it benefits for speeding up the model.

(2) Add &Norm. +e add & norm part uses ResNet and layer
normalization for avoiding network degradation and faster
training. It has been discussed that the ResNet can make it
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easier for information to flow between layers, including
providing feature reuse in forward propagation and allevi-
ating gradient signal disappearance in back propagation
[22]. +e effect of the ResNet on the representations of
packet k can be expressed as

pk � ReLU 􏽢pk + Wrespk( 􏼁, (9)

where Wres ∈ Rd×d is a transformation matrix and ReLU is
an activation function.

+e subsequent layer normalization technique can
normalize the distributions of mid-tier layers, making
gradients smoother and generalization better.

(3) 1D-CNN. +e 1D-CNN part is designed for further
mining the hidden patterns contained by the packet rep-
resentation obtained from previous layers. Besides, com-
pared with the fully connected network, CNN needs much
fewer parameters. Specifically, the kernel size of the 1D-
CNN layer is d and the channel number r � d, making the
input and output dimensions consistent.

+e output of 1D-CNN will be the input of another add
& norm layer, and a basic block is composed of multihead
attention, 1D-CNN and 2 add & norm layers, as is shown in
Figure 2. +e basic block is reused T � 2 times for a better
balance between effectiveness and efficiency.

4.1.3. Dense Layer. Let 􏽥pi, i � 1, . . . , N􏼈 􏼉 denote the output
of the whole attention module, which will be concatenated
into a vector 􏽥f as flow representation, shown in equation
(10). +en, 􏽥f will be fed into the dense layer, as equation (11)
shows, and the output vector f with length L will be the final
flow vector.

􏽥f � Concat 􏽥p1, . . . , 􏽥pN( 􏼁, (10)

f � ReLU WD
􏽥f + b􏼐 􏼑, WD ∈ R

L×N d
. (11)

4.2. Model Training and Validation

4.2.1. Model Training. +e model training means using
labeled samples to train the Siamese network, and the first
step is the pairwise dataset generation. Different from other
networks, the input of the Siamese network is a pair of flows
rather than a single data. +erefore, it is necessary to choose
data from the labeled known class dataset to construct a new
dataset containing positive and negative pairs. To be specific,
a positive pair, which is labeled as 0, is a pair of flows that
belong to the same class, and a negative pair with label 1
contains flows from different classes. To avoid the influence
of imbalanced data, the ratio of positive to negative pairs is
about 1 :1. +e model will learn a metric to tell similar and
dissimilar pairs apart through these positive and negative
samples.

Given a pair of flows fi and fj, the true label of the pair
is denoted by lt. Let xi and xj denote the corresponding raw
flow features input to the network, and vi and vj denote the
output of the network. +e function of the network can be

represented as FL(x; θ), where θ denotes the parameters;
then, we have vi � FL(xi; θ) and vj � FL(xj; θ). +e distance
between fi and fj, denoted by Di,j, can be calculated as
follows:

Di,j � D FL xi; θ( 􏼁, FL xj; θ􏼐 􏼑􏼐 􏼑 � 􏽘
z

viz − vjz􏼐 􏼑
2⎡⎣ ⎤⎦

1/2

.

(12)

With the pairwise dataset generated and the hyper-
parameter margin m set, the model can be trained for the
binary classification problem. +e margin-based loss func-
tion is shown in Section 3.2, which encourages positive pairs
to be close together in the space of network mapping while
pushing negative pairs apart. Let α � β � 1/2; the loss
function for our model training is shown as follows:

L xi, xj, lt􏼐 􏼑 �
1
2

1 − lt( 􏼁D
2
i,j +

1
2
lt max 0, m − Di,j􏼐 􏼑

2
. (13)

4.2.2. Model Validation. +e model validation means vali-
dating that the model can differentiate the positive and
negative pairs with high accuracy. +e positive and negative
pairs are also generated from known classes. However, it is
suggested that the pairs for validation should be avoided
from overlapping with those in the training process. An
appropriate method is generating a group of nonredundant
pairs from the known classes and splitting the group into
training and validation datasets. Besides, a threshold t

should be determined through experience or attempts. Let lt
denote the true label of a pair and lp denote the predicted
label. If the Euclidean distance Di,j of a flow pair (fi, fj) is
beyond the threshold, then the predicted label is lp � 1;
namely, the pair is judged as negative. Otherwise, the pair is
judged as positive with the predicted label lp � 0, as is shown
in equation (14).+en, we can compare lt and lp of each pair,
if they are the same, the judgment of the model is correct.
+e model validation can be used to validate the training
result of the model and adjust the value of t and even the
margin.

lp �
1, if Di,j > t,

0, otherwise.
􏼨 (14)

4.3. Model Test and System Update

4.3.1. Model Test. Model test means using the trained
LightSEEN model for traffic classification and unknown
discovery; that is, it should not only classify the flows from
known classes correctly but also detect flows from unknown
classes. For a flowf, the actual label of f is denoted byΦ(f),
and its predicted label is denoted by φ(f). Recall that ΩK is
the set of known classes labels; then, the known flow dataset
can be expressed by OK

f in equation (15). +e defined dis-
tance between flows is not enough for the task, a distance
between a test flow sample f∗ and a known class CK

i must be
defined. We use the same distance as [2] uses, which is
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defined as the average distance between the test sample f∗

and q samples fij, j � 1, . . . , q􏽮 􏽯 randomly chosen from
the class CK

i . +e calculation of the sample-class distance is
expressed by equation (16). +en, there is a known class CK

∗
which is the closest to f∗; let Df∗ denote the distance. If Df∗

is not larger than the preset threshold t, it is decided that f∗

belongs to CK
∗ . Otherwise, f∗ belongs to no known class;

namely, its class is unknown. +e model test algorithm is
shown in Algorithm 1.

O
K
f � f|Φ(f) ∈ ΩK

� C
K
1 , . . . , C

K
P􏽮 􏽯􏽮 􏽯, (15)

D f
∗
, C

K
i􏼐 􏼑 �

1
q

􏽘

q

j�1
D f
∗
, fj􏼐 􏼑,Φ fj􏼐 􏼑 � C

K
i , j � 1, . . . , q.

(16)

+emodel test dataset is made up equally of flow samples
from known and unknown classes, and the related metrics
will be introduced in Section 5.1.

4.3.2. System Update. To update the system, an unsuper-
vised framework should be leveraged to divide the detected
unknown traffic into multiple clusters, which can be used as
a supplement to known classes. +e trained network can be
used as an encoder to convert the original flow data to high-
level feature vectors, which can be clustered by existing
algorithms like k-means. After that, the clusters are iden-
tified through manually labeling and used to complement
the system’s identification area. For instance, if we want to
add a new class C∗ to the known classes, we only need to use
samples from C∗ and known classes to generate positive and
negative pairs, with at least one sample from C∗ in each pair.
+en, we use the generated pairs to retrain themodel, and we
get a model for P + 1 known classes.

4.4. Space and Time Complexity Analysis. For deep learning
models, the space complexity is related to its parameter
amount, and the time complexity depends on its inner
structure. Table 1 shows the space and time complexity of
LightSEEN, and the corresponding analysis is as follows.

4.4.1. Space Complexity. In our method, there is no pa-
rameter in the embedding layer. For the attention module,
the parameters are mainly in the weight matrices, and the
scale is about T × Qh, Kh, Vh,Wres,W1D−CNN􏼈 􏼉, which is
O(THdd′ + Tdr). +e parameter scale of the dense layer is
O(NdL). +erefore, the total space complexity is
O(THdd′ + Tdr + NdL).

4.4.2. Time Complexity. In the attention module, for each
head, the time cost for attention weight calculation is
O(Ndd′ + N2d′) and that for combinatorial feature for-
mulation is O(N2dd′). Besides, the time complexity of the
add & norm, 1D-CNN, and dense layer are O(Hdd′),
O(Nd2r), and O(NdL), respectively. Considering that the

attention module reuse T times, the total space complexity is
O(Tdd′(H + N2) + TNd2r + NdL).

5. Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency of
LightSEEN. Since LightSEEN is built to enhance the real-
time performance and flexibility of deep learning based
unknown traffic discovery, we mainly compare the Light-
SEEN method with SEEN [2].

5.1. Experiment Setup

5.1.1. Datasets and Partition Strategy. We tested the per-
formance of LightSEEN on two extensively used public
traffic datasets, namely, USTC-TFC2016 [23] and
ISCXVPN2016 [24]. As is shown in Table 2, USTC-TFC2016
contains 20 classes of traffic, of which half are malware traffic
classes. +e ISCXVPN2016 dataset includes seven classes of
regular encrypted traffic and seven classes of traffic through
the VPN encrypted tunnel, and we use 12 of them to conduct
experiments.

+e partition strategy for known and unknown sets is the
same as that in [2], namely, some classes are manually set as
unknown classes, including three malware classes and three
normal classes traffic from USTC-TFC2016, two VPN
classes, and two non-VPN classes from ISCXVPN2016.

Experiment Environment and Details: as for the ex-
periment environment, we used PyTorch 1.8 to implement
the structure of LightSEEN. Note that the training and
testing processes were performed on a Linux machine
(Ubuntu 16.04 LTS) with 32GB RAM andGeForce Gtx1080.
+e training process is guided by minimizing the contrastive
loss, and we take the Adam optimizer with β1 � 0.9 and
β2 � 0.999. +e parameters of LightSEEN are shown in
Table 3. +e dropout strategy is applied with a keep pro-
portion of 0.9 for themultihead attention part and 0.6 for the
dense layer. +e learning rate is 0.0002, and batch size in
model training is 128. For the balance of efficiency and
effectiveness, we set the margin m � 6 for USTC-TFC2016
and m � 12 for ISCXVPN2016.

5.1.2. Evaluation Metrics. +e performance of LightSEEN
mainly includes the efficiency and effectiveness of unknown
discovery. To evaluate its efficiency, we count the training
and test time per 100 batches, and the average training and
test time are used as evaluation metrics. As to its effec-
tiveness, four evaluation metrics are used [25]: purity rate
(PR), accuracy (Acc), false detection rate (FDR), and true
detection rate (TDR). To illustrate the metrics, some other
symbols are defined. KP (known positive) denotes the
number of the known class flows correctly identified, KN

(known negative) denotes the number of the known class
flows mistaken for other known classes, UP (unknown
positive) denotes the number of unknown class flows de-
tected, and UN (unknown negative) denotes the number of
unknown flows wrongly classified as known. +en, the
metrics can be computed with these statistics as follows.
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From the equations, it is easy to see that the solution with
high PR, Acc, and TDR and low FDR has favorable
performance.

PR �
KP + UP

KP + KN + KU + UP + UN
,

Acc �
KP

KP + KN + KU
,

FDR �
KU

KP + KN + KU
,

TDR �
UP

UP + UN
.

(17)

Besides, the clustering purity (CP) is used to evaluate the
performance of LightSEEN as a feature extractor, which will
be explained in detail in Section 5.5. +e definition of
Clustering Purity is shown in equation (18), where |D| is the
number of samples, Ω � wi, i � 1, . . . , K􏼈 􏼉 is the set of
clusters, and C � ci, j � 1, . . . , J􏼈 􏼉 is the set of classes.

CP(Ω, C) �
1

|D|
􏽘

i�1,...,K

maxj�1,...,J wi ∩ cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (18)

5.2. Selection of Hyperparameters. +ere are two hyper-
parameters that are not used in model training but indis-
pensable for unknown traffic discovery (i.e., k (the number
of compared samples from each class to calculate class
average distance) and t (the threshold for determining
whether the test sample belongs to a certain class)). To obtain
the reasonable range of t, we use the trained model to predict
pairwise Euclidean distances of the two datasets and display
the corresponding histograms in the range [0, 7] in Figure 3.
We set green bars for positive pairs and orange bars for
negative pairs. It can be seen that the distances of positive
pairs are close to 0, and those of negative pairs are mostly far
from 0. +e coincided field of green and orange bars mainly
lies in [0,1.5] for USTC-TFC2016 and [0.5, 2.5] for
ISCXVPN2016; thus, we choose t � 1.2 for USTC-TFC2016
and t � 2.1 for ISCXVPN2016. As to the number of samples
k, experiments show that its influence on the performance of
LightSEEN is small. +erefore, we adopt the same setting as
[2] for the convenience of comparison between LightSEEN
and SEEN, meaning that we set k � 10 for both datasets.

5.3. Effectiveness Analysis. To observe the effectiveness of
LightSEEN under different situations, we change the per-
centage of unknown classes in the model test procedure
from 10% to 50% and compare different models’ perfor-
mance. Figures 4 and 5 show the result comparison among
LightSEEN, SEEN, and a one-class SVM method [8] on the
USTC-TFC2016 and ISCXVPN2016 datasets, respectively.
We set the green bars for LightSEEN, orange bars for SEEN,
and blue bars for one-class SVM. It can be seen that the
comparative advantages among the three methods are
similar on the two datasets.

Table 1: Space and time complexity of the proposed model.

Layer Space complexity Time complexity
Attention module O(THdd′ + Tdr) O(T(N2 + H)dd′ + TNd2r)

Dense layer O(NdL) O(NdL)

All O(THdd′ + Tdr + NdL) O(Tdd′(N2 + H) + TNd2r + NdL)

Table 2: USTC-TFC2016 dataset and ISCXVPN2016 dataset.

Dataset Labels
USTC-
TFC2016

Cridex, Ceodo, Hitbot, Miuref, Neris, Nsis-ay, Shifu, Tinba, Virut, Zeus, BitTorrent, Facetime, FTP, Gmail, MySQL,
OutLook, Skype, SMB, Weibo, and WorldOfWarcraft

ISCXVPN2016 Chat, Email File, P2P, Streaming, VoIP, VPN-Chat, VPN-Email, VPN-File, VPN-P2P, VPN-Streaming, and VPN-VoIP

Input: test flow sample f∗, known class flow dataset OK
f , number of samples for average distance calculation q, threshold t.

(1) Calculate the distance between f∗ and each class D(f∗, CK
i ), i � 1, . . . , P􏼈 􏼉;

(2) Find the class with the shortest distance away from f∗, denoted as CK
∗ ;

(3) If D(f∗, CK
∗ )≤ t, φ(f∗) � CK

∗ . Otherwise, φ(f∗) � unknown.
Output: the predicted class φ(f∗).

ALGORITHM 1: Model test algorithm.

Table 3: +e parameters of LightSEEN.

Meaning Parameter Value
Number of packets N 3
Times of attention module reuse T 2
Number of headers H 3
Dimension of embedding d/r 270
Dimension of attention head mapping d′ 90
Dimension of flow vectors L 200
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Figure 3: Part of the distance histogram of positive and negative pairs from two datasets. (a) USTC-TFC2016. (b) ISCXVPN2016.
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Figure 4: Performance comparison of different methods for the USTC-TFC2016 dataset.
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To be specific, firstly, both of the purity rates (PR) of
LightSEEN and SEEN are higher than that of one-class SVM
and mostly above 0.9. Although the PR of LightSEEN is
slightly lower than that of SEEN, they are very close, and
both of them are stable with the percentage of unknown
increases.+e situation of the accuracy (Acc) result is almost
the same as that of the PR result; that is, the result of SEEN is
slightly better than LightSEEN on Acc, and both of them
outperform the one-class SVM method. As for the false
detection rate (FDR), SEEN has the lowest bar, LightSEEN’s
bar is slightly higher, and the one-class method’s bar is the
highest. Since a lower FDR means better performance, still
SEEN is the best. However, for the true detection rate (TDR),
LightSEEN is higher than SEEN and the one-class method.
Note that in some reality applications like intrusion de-
tection, the TDR is significantly crucial, meaning that
LightSEEN is the best choice under these circumstances.

In summary, the effectiveness of LightSEEN on evalu-
ation metrics is overall at the same level as SEEN and
sometimes even better, meaning that its effectiveness is
validated.

5.4. Efficiency Analysis. We demonstrate the efficiency of
LightSEEN from three aspects, namely, quantity of pa-
rameters, average training time, and average test time. To
promote the model efficiency, we take measures including
multihead attention and reuse of the basic block in the
attention module. Table 4 shows the comparision results of
efficiency between LightSEEN and SEEN. +e parameter
number of our LightSEEN model is about 648000, which is
0.51% of that of SEEN. Besides, LightSEEN’s average
training time is 37.4ms, which is 37.9% of that of SEEN. And
its average test time is also obviously shorter. +rough the
efficiency analysis results, we can draw the conclusion that
we substantially reduce the scale of model parameters and
training time cost in LightSEEN, whose efficiency has been
validated.

5.5. Unknown Clustering. In this part, we explore the per-
formance of LightSEEN as a feature extractor. After
detecting unknown traffic, we can separate them into dif-
ferent groups through clustering algorithm and update the
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Figure 5: Performance comparison of different methods for the ISCXVPN2016 dataset.
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model as mentioned in Section 4.3. Moreover, we suggest
that the clustering algorithm should be operated on the flow
vectors output by the network of LightSEEN rather than the
raw flow features.

We compare the clustering purity of traffic data with and
without the processing of the network in LightSEEN, and
Figure 6 shows the corresponding result. +e blue line re-
veals the result of directly applying k-means to the flow
vector composed by concatenating raw packet feature
vectors and the green line for operating on the output of the
trained network instead. It indicates that LightSEEN can
extract deep features that more discriminative than raw
features.

6. Conclusion

In this paper, we propose a lightweight model for unknown
traffic discovery. Specifically, the model takes the cautiously
selected packet features as input, adopts the Siamese network
architecture, and guides the training process by contrastive
loss. To capture the associations between packets and im-
prove the parallel degree of the model, we use the multihead
attention mechanism within the network. Besides, we in-
troduce 1D-CNN, ResNet, and layer normalization, and
reuse the basic modules to facilitate the model convergence
with a limited number of parameters. +e experimental
results show that the model is effective and efficient.

In the future, further work can be done on open-set
traffic recognition. Firstly, the contrastive loss in our model
can be replaced by better loss functions (e.g., circle loss [26]
and ArcFace loss [27]). Furthermore, the model can be
applied to other practical tasks, including intrusion

detection and malicious traffic discovery. When intruders
and attackers carry out actions against information systems,
there will be anomalous traffic, which can be seen as un-
known traffic and detected by unknown discovery systems.
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Website fingerprinting attacks allow attackers to determine the websites that users are linked to, by examining the encrypted traffic
between the users and the anonymous network portals. Recent research demonstrated the feasibility of website fingerprinting
attacks on Tor anonymous networks with only a few samples. .us, this paper proposes a novel small-sample website fin-
gerprinting attack method for SSH and Shadowsocks single-agent anonymity network systems, which focuses on analyzing
homology relationships between website fingerprinting. Based on the latter, we design a Convolutional Neural Network-Bi-
directional Long Short-Term Memory (CNN-BiLSTM) attack classification model that achieves 94.8% and 98.1% accuracy in
classifying SSH and Shadowsocks anonymous encrypted traffic, respectively, when only 20 samples per site are available. We also
highlight that the CNN-BiLSTM model has significantly better migration capabilities than traditional methods, achieving over
90% accuracy when applied on a new set of monitored sites with only five samples per site. Overall, our experiments demonstrate
that CNN-BiLSTM is an efficient, flexible, and robust model for website fingerprinting attack classification.

1. Introduction

With the continuous development of Internet technologies,
privacy protection has become one of the most critical
concerns. .us, a continuously increasing number of users
protect their anonymity while browsing the Internet by
utilizing anonymous network communication systems.
However, current research [1–10] shows that privacy can be
compromised even though clients use privacy-enhancing
technologies such as Shadowsocks [11], I2P [12], Tor [13],
Anonymizer [14], SSH, and VPN. Among several cyber-
attacks compromising anonymity, the website finger-
printing attack is one of the most representative ones. .e
core idea of this type of attack is that although the user’s
communication content is encrypted when visiting dif-
ferent websites, the traffic characteristics generated by each
website are unique due to each web page content, e.g., web
code, images, scripts, and style sheets. .erefore, the at-
tacker can analyze the anonymous traffic and infer the
user’s network behavior by passively extracting the traffic
between the user and the anonymous network portal using
the WF attack.

Current literature [1–5, 7, 8, 10, 15–17] considers website
fingerprinting attacks a classification problem. Indeed, the
attacker first builds a unique fingerprint model for each
website and trains a suitable classifier using the fingerprint
features, which can then be used to classify the collected user
traffic. Early researchers used machine learning models such
as Support Vector Machines [16] (SVM), k-Nearest
Neighbors (k-NN) [10], and Random Forests [8], managing
an attack accuracy of up to 90%. Nevertheless, in these
techniques, the model performance mainly depends on
handcrafted features. With the wide application of deep
learning techniques in the field of traffic identification, at-
tackers have applied deep learning models to website fin-
gerprinting attacks [1–5, 7, 9], dramatically increasing the
attack accuracy and effectively solving the challenging
problem of feature extraction and selection. Although the
advent of deep learning models has improved the attack
accuracy, researchers need to collect hundreds of training
samples for each website to enable the neural network to
extract high-dimensional fingerprint features. Involving a
large training dataset is crucial because when the training
sample size is small, the model suffers significantly from
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overfitting affecting the model’s training process. Simulta-
neously, the traditional deep models are less flexible, with
their performance dropping dramatically when applied to an
entirely new classification task.

Spurred by the drawbacks of current deep learning
methods, we propose a homology analysis-based approach
for website fingerprinting attacks that employ a Siamese
Networks [18] structure. Our deep learning architecture
analyzes the homology relationship between website fin-
gerprinting features and significantly reduces the training
samples required for model training and managing an
improved migration capability for the model. .e main
contributions of our work are as follows:

(i) We study and propose a homology analysis-based
website fingerprinting attack model, relying on a
Convolutional Neural Network-Bidirectional Long
Short-Term Memory (CNN-BiLSTM), which ach-
ieves 94.8% and 98.1% attack accuracy in a closed
world composed of encrypted traffic from SSH and
Shadowsocks anonymity networks, respectively,
with only 20 training samples per site. .e per-
formance of the proposed architecture is signifi-
cantly better compared to traditional methods.

(ii) We innovatively construct one-hot matrices by
sequence symbolization to represent the direction,
size, and time interval attributes exposed in the
traffic sequences. .is strategy improves the data
feature dimensionality and the fault tolerance for
sample burst features.

(iii) Compared to previous studies, we design a more
challenging scenario to evaluate the model’s mi-
gration capability. Specifically, we complete training
using SSH anonymous network encrypted traffic
and then utilize the trained model to classify
Shadowsocks anonymous network encrypted traffic.
.e results demonstrate that, with only five sample
attacks per site, our technique exceeds 90% classi-
fication accuracy.

.e remainder of this paper is organized as follows.
Section 2 summarizes and reviews previous approaches to
website fingerprinting attacks. In Section 3, we present the
threat model for website fingerprinting attacks and the
design of the CNN-BiLSTM model. Section 4 summarizes
the datasets used and the data processing methods, while
Section 5 provides the results of our experiments and the
corresponding analysis. .e limitations of our work and
directions for future research are discussed in Section 6.
Section 7 concludes this work.

2. Background and Related Work

Website fingerprinting attacks use a passive traffic analysis
technique. .e attacker first configures a network envi-
ronment similar to the monitored target, exploits the same
anonymous network encryption proxy to access each site in
the monitored set, and collects adequate training samples.
After that, the attacker builds a fingerprint library for each

monitored site and identifies the actual address of the user’s
communication counterpart by analyzing, extracting, and
comparing the features of the communication traffic ob-
tained during monitoring.

In 1998, Cheng et al. [19] were the first to apply the
website fingerprinting attack to traffic identification by using
the feature of file size to identify some specific SSL-protected
files. With the rise of anonymous networks, Herramnn et al.
[17] in 2009 performed website fingerprinting to identify JAP,
Tor, OpenSSH, OpenVPN, Stunnel, and CiscoIPsec-VPN. In
2011, Panchenko et al. [16] introduced a unique traffic
burstiness combined with an SVM algorithm that achieved a
54% identification rate for Tor traffic. In subsequent studies,
Wang et al. [10] extracted over 3000-dimensional feature
vectors to model website fingerprinting and employed a
weighted distance-based metric and a k-NN classifier to
measure the similarity of website fingerprinting. Panchenko
et al. [15] proposed the CUMUL method that exploited the
feature of cumulative packet size, while Hayes et al. [8]
proposed a random forest-based attack method (k-FP) to
describe website fingerprinting by selecting 150 important
features from the total 4,000 dimensions. Current methods
are implemented by handcrafted feature sets combined with
machine learning algorithms for website fingerprinting at-
tacks and managing an accuracy exceeding 90%.

With the development of deep learning techniques in
image, speech, and video, researchers have extended using
deep learning schemes for website fingerprinting attacks.
In 2016, Abe et al. [9] first succeeded using a Stacked
Denoising Autoencoder (SDAE) for website fingerprinting
attacks. In 2017, Rimmer et al. [7] extensively evaluated the
performance of deep learning methods such as SDAE,
CNN, and LSTM in a dataset consisting of 900 sites (each
with 2500 samples). .e reported results revealed that
CNN provided the best results, achieving 96.66% accuracy
in a closed world, while in an open environment, it
achieves a TPR of 71.3% and an FPR of 3.4%. In 2018,
Sirinam et al. [5] designed a more complex deep learning
model (DF) with a deeper network structure that involves
more convolutional and Batch Normalization layers. It
eventually achieved 98.3% accuracy in a closed world
consisting of 95 websites and 99% accuracy in an open
world with 94% recall.

However, using deep learning for website fingerprinting
attacks requires a large number of training samples per site.
Hence, to solve this problem, Sirinam et al. [3] in 2019 first
designed a Triplet Fingerprinting (TF) method for website
fingerprinting attacks using a small-sample technique
[18, 20–22], which involved a triplet network including an
anchor (A), positive (P), and negative (N) as subunits of the
triplet network. .is method employs the cosine distance
algorithm to measure the relationship between A-P and
A-N, so that A and P are close to each other, while A and N
are far away in the embedding space generated by the model.
.is means that the feature vectors generated by the same
website sample traffic are close to each other, and the feature
vectors generated by different website sample traffic are far
apart. After training, the trained model is used as a feature
extractor for website traffic, and then k-NN is used as a
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classifier to finally achieve 95% accuracy requiring a small
number of samples per website. Oh et al. [1], in 2021, first
proposed another highly representative fingerprinting attack
technique for low data sites, entitled GANDaLF, based on
generative adversarial networks (GAN). .is method uses a
small number of labeled data and amore extensive unlabeled
set to train the generator and the discriminator. .e gen-
erator is trained to convert random seeds into pseudotraces
with the same statistical distribution as the training data..e
discriminator is trained to correctly exploit data for clas-
sification while distinguishing between the generator’s true
traces and pseudotraces output. .is approach uses the
generator as an additional data source to help improve the
performance of the discriminator, making the website fin-
gerprinting attack effective even in low data settings.

3. Attacks Based on Homology Analysis

3.1. Attack (reat Model. .e website fingerprinting attack
aims to disrupt the user’s anonymity while visiting a website
by utilizing traffic analysis; that is, the eavesdropper can infer
the target websites visited by users from the encrypted
anonymous traffic, with the primary attack model presented
in Figure 1.

In this paper, we adopt the important assumptions of a
website fingerprinting attack; that is, the attacker can only
obtain the network packets on the communication link
passively and cannot modify, delete, or insert any packet and
encrypt, decrypt, or analyze the packets directly..e attacker
collects the traffic, compares it with previously known traffic
characteristics such as packet size, direction, and time in-
terval, and finally finds the best match to the targeted website
data stream record. In this way, the attacker is informed
about the websites visited by a user and thus compromises
the user’s anonymity.

3.2. Website Fingerprinting Homology Analysis. .e essence
of the website fingerprinting attack is matching traffic
characteristics, which is essentially the same goal as the
homology detection of proteins and DNA in biology. Both
scenarios aim to find similar segments between sequences, so
we consider homology analysis feasible for the website
fingerprinting attack. .e homology analysis methods are
commonly used in biology and are divided into three cat-
egories [23]: comparison-based, ranking-based, and dis-
criminative-based methods. .e most commonly used
comparison-based methods are sequence, sequence spec-
trum, and HMM comparison, i.e., comparing sequences by
dynamic programming and scoring functions. For example,
in 2017, Zhuo et al. [6] implemented a website fingerprinting
attack using a PHMM model. .e core idea of the sorting-
based approach is to regard homology detection as an in-
formation retrieval problem and sort the known sequences
in the database and the unknown query sequences according
to the homology relationship from near to far. .e critical
process of this method is the design of the sorting algorithm.
According to the closeness of homology relationship, the
discriminative-based approach involves dividing the

sequences into positive and negative sample training and test
sets. .en use the sequences in the training set to train the
classification model based on machine learning and deep
learning, and the test set evaluates the classifier’s
performance.

Traditional website fingerprinting attacks using deep
neural networks require a large amount of data, and when
the training data is insufficient, the model is less effective
during classification. Additionally, the website content
changes significantly over time, and these changes affect the
website fingerprinting features..erefore themodel needs to
be retrained after a while. At the same time, the migration
ability of the model is weak, and the classification accuracy
will drop significantly when the trained model is applied to a
new classification task.

In this paper, we adopt a discriminative approach for
website fingerprinting homology analysis. Unlike the tra-
ditional direct classification of website fingerprinting using
machine learning and deep learning models, we adopt the
structure of Siamese Networks [18]. During training, the
purpose of our model is to change from directly attributing
traffic sequences to corresponding website categories and
train the network to learn the correlation between website
traffic features, that is, the homology between website fin-
gerprinting. .is is achieved by using less data for model
training to achieve a higher accuracy rate of website fin-
gerprinting attacks.

3.2.1. Siamese Networks. Siamese Networks are a particular
type of neural network structure, which, unlike a network
model that learns to classify inputs directly, aim to learn the
similarities and the correlations between the two inputs. .e
model selects the most likely identical category for a clas-
sification task by comparing each example in the test set with
the training set..e Siamese Networks consider two samples
on the input simultaneously and finally output the proba-
bility that they belong to the same category.

As shown in Figure 2, the Siamese Networks have two
inputs X1 and X2, in each cell structure, where X1 and X2 are
input into the neural networks Network_1 and Network_2
with shared weights (in the usual case, it can be considered
that Network_1 and Network_2 are two identical neural
network structures). .en, a similarity measure algorithm is
used to calculate the distance between the high-dimensional

SSH/Shadowsocks/…

User

Attacker

Figure 1:.reat structure model for website fingerprinting attacks.
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features Gw(X1) and Gw(X2) extracted by the neural net-
work and the output value as the correlation measure of X1
and X2.

.e training test of the Siamese Networks contains
multiple Siamese Network units, and each twin unit accepts
two input data. Figure 3 illustrates the training test structure
of the Siamese Networks, including the input, network,
distance, and output layers. .e input layer combines the
input data, and the two inputs are logically symmetric be-
cause the network layer weights are shared, and the network
structure is consistent. .e network layer uses deep neural
networks to extract high-dimensional features from the
input data, commonly used as a CNN. .e distance layer
calculates the correlation between the high-dimensional
features, and the typically used distance metrics are the
cosine and sine. .e output layer uses the results of the
distance layer to get the probability that two inputs belong to
the same category.

3.2.2. Dataset Construction Method. Each unit of a Siamese
Network requires two inputs, and therefore the dataset needs
to be correctly reconstructed. Assuming that N websites are
to be classified, the training and test sets are defined by

Strain(k) � S
+
train(k)∪ S

−
train(k)

Stest(k) � S
+
test(k)∪ S

−
test(k)

(k � 1, 2, 3, . . . , N)
⎧⎨

⎩ ,

(1)

where k denotes the dataset for the k-th website prediction
classification, S+

train(k) and S−
train(k) are the positive and

negative sample training set for the k-th website, respec-
tively, and S+

train(k) and S−
train(k) together constitute the

training set Strain(k) for the k-th website. S+
test(k) denotes the

positive sample test set of the k-th website, S−
test(k) denotes

the negative sample test set of the k-th website, and S+
test(k)

and S−
test(k) together constitute the test set Stest(k) of the k-th

website:

S
+
train(k) � k

+
i ∪ k

+
j

S
−
train(k) � k

+
i ∪ k

−
l

⎧⎨

⎩ (1≤ i< j≤P, 1≤ l≤P ) . (2)

We assume that each website provides P samples for
model training (equation (2)), k+

i and k+
j denote any two

training samples from the k -th website, and the two inputs
of the Siamese Networks unit are logically symmetric. .en,
S+
train(k) � k+

i ∪ k+
j denotes that S+

train(k) consists of any two
training samples from the k-th website, with k−

l referring to
the training samples of other sites than the training samples
of the k-th site. To balance the number of samples of S+

train(k)

and S−
train(k) in the training set, we select only one random

sample as k−
l for each site other than the training samples of

the k-th site, and S−
train(k) � k+

i ∪ k−
l indicates that the two

combinations of k+
i and k−

l together form a negative sample
training set for the k-th website.

S
+
test(k) � k

+
i ∪ k

+
j

S
−
test(k) � k

+
i ∪ k

−
l

⎧⎨

⎩ (1≤ i< j≤Q, 1≤ l≤Q) . (3)

We also assume that each site provides Q samples for
model test evaluation (equation (3)), and then under the
same principle, we obtain the positive sample test set S+

test(k)

and the negative sample test set S−
test(k) for the k-th site.

3.3. CNN-BiLSTM-Based Siamese Networks Attack Model
Construction

CNN. A convolutional neural network has four sig-
nificant features, that is, the local perceptual domain,
shared weights, pooling, and multilayer network, which
can capture the complex features in the original data,
and therefore it is widely used to process serial and
image data..e original data is convolved with the local
perceptual domain, and shared weights are utilized to
form a feature map composed of local features. .ese
are then passed through the pooling layer for inte-
gration and to perform data dimensionality reduction.
.e in-depth features involve high-dimensional,
complex, and abstract features created after several
convolutional and pooling layers. In previous studies
[3, 5, 7], CNNs have been widely used as the dominant
feature extraction method for website fingerprinting
attacks.
LSTM. .e long short-term memory network dy-
namically processes the input sequence according to
the time series, and the output processed in the pre-
vious time step is used as the input on the next time
step. At the same time, LSTM achieves the purpose of
blocking irrelevant information, absorbing relevant
information, and maintaining information in a cell
state through the collaboration among input gates,
forgetting gates, and output gates, which solves the
problem of gradient disappearance and gradient ex-
plosion often encountered in the training process of
recurrent neural networks (RNN). .erefore, LSTM is
widely used in sequence information processing. .e
possibility of using LSTM for website fingerprinting
attacks was also discussed in [8].

As shown in Figure 4, our deep learning architecture
uses a combined network comprising a CNN and a

Distance<Gw (X1), Gw (X2)>

X1 X2

Gw (X)
Network_2

Gw (X)
Network_1 W

Value

Gw (X1) Gw (X2)

Figure 2: .e structure model of Siamese Networks unit.
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bidirectional LSTM (BiLSTM) as the base model of the
Siamese Networks. Firstly, the CNN is used to extract the
high-dimensional features of the two original input se-
quences, and then the dependencies in the high-dimensional
features of the sequences are extracted through the BiLSTM
layer. However, due to the long sequences generated by the
network traffic, the output of LSTM at the last time step
cannot represent the dependencies containing all subse-
quences, so we consider using the intermediate output of
LSTM at each time step to better handle the local and global
dependencies between the traffic sequences and the captured
subsequences. At the same time, we choose a BiLSTM to
replace the commonly used unidirectional LSTM. .e
forward LSTM in the BiLSTM model can extract the de-
pendencies between the current input subsequence and its
left subsequence, while the backward LSTM can extract the
dependencies between the current input and its right

subsequence. Hence, the concatenation of these two inter-
mediate outputs allows for more comprehensive informa-
tion on the dependencies between the sequences. In the
distance layer of twin networks, traditional distance mea-
surement metrics such as cosine, sine, Euclidean, or other
linear ones often underperform in evaluating the correlation
between the high-dimensional features of the sequences.
.us, in this paper, we consider using fully connected neural
networks as the distance measuring function. .e features
extracted from two original sequences are spliced, com-
bined, and input to the fully connected layer to evaluate the
homology relationship between the traffic sequences.

3.4. Model Parameters. To select the optimal hyper-
parameters for our model, we evaluate several CNN-
BiLSTM model structures and parameters using the
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extensive candidate search method. Table 1 presents some
of the critical parameter search spaces and the final
selection.

We use Layer Normalization [24] for the Batch Nor-
malization layer because the number of training samples we
exploit is small, and Batch Normalization [24], which uses
the mean and variance of the samples, does not reflect the
global statistical distribution. Nevertheless, the Layer Nor-
malization algorithm is independent of the batch size, and its
statistics depend on the number of nodes in the hidden layer.
For the network’s activation function layer, we choose
LeakyReLU [25], which presents the advantage of avoiding
the neuron “death” faced by ReLU during training, reduces
the parameters that need to be debugged, and improves
training speed.

4. Dataset

4.1.DataCollection. .e datasets used in this experiment are
Liberatore’s open dataset [26] and the Shadowsocks [6]. As
shown in Table 2, we also exploit two open datasets to
construct the closed world and open-world datasets required
for the experiment.

4.1.1. Closed World

SSH-200 Dataset. Built from the Liberatore open
dataset, this dataset contains encrypted network traffic
data from 2000 different sites accessed using SSH
tunnels. However, this dataset involves many empty
packets due to various failures during the collection
process. For consistency, this experiment screens out
sites with average instance SSH packet sequence length
greater than 100 (based on the original dataset) and
randomly selects 200 sites from them, with 25 instances
selected for each site to generate the SSH-200 dataset.
Shadowsocks-200 Dataset. 200 different domains were
randomly selected from the top 1000 Alexa rankings,
and each domain was accessed 25 times each using
Shadowsocks tunneling encryption to generate the
Shadowsocks-200 dataset.

4.1.2. Open World

SSH-2000 Dataset. One randomly selected instance
from Liberatore’s open dataset generates the SSH-2000
dataset for each site.
Shadowsocks-2000 Dataset. It includes randomly 2000
selected websites from Alexa top 1000 to 10000 and
uses Shadowsocks tunnel to visit each website only once
to generate Shadowsocks-2000 dataset.

4.2. Data Processing. We process packets to filter out
fragmented packets that do not provide reliable information
in transmission, including missing, retransmitted, ACK loss,
duplicate answers, and transmission packets with zero data
segment length. Since the subject of this paper is SSH and
Shadowsocks anonymous network encrypted traffic without
restrictions on the size of transmission units and packet
delays like Tor [10], we extract the size, transmission di-
rection, and time interval from each payload packet as the
original sequence features.

.is paper uses a one-hot matrix [23] to represent the
original feature data, which requires sequence symbolization
and construction of one-hot matrix processing for the
original direction, size, and time interval feature sequences.
After processing, we extend the feature dimension and the
homology relationship between website fingerprinting fea-
tures to enhance the measured feature distance.

4.2.1. Sequence Symbolization. Algorithm 1 describes the
symbolization steps of the packet size and feature data di-
rection, where the first two lines input the original packet
sequence into the algorithm and extract them in order. Lines
3 to 7 merge the two attributes of size and direction, and
lines 8 to 10 maximize the highlighted direction and size
attributes in the form of double-symbol bits based on the
maximum transmission unit MTU and the standard number
of symbols Num. Finally, the double symbols are filled in
cyclically to obtain the symbolized sequence S&D Seq.

Algorithm 2 describes the symbolization step of the
packet time interval feature data with the input of the
standard number of symbols Num and the maximum
symbolization time interval Maxtime. .e first two lines

0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

Input1

CNN

Bidirectional 
LSTM

0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

Input2

+

FC

Loss 
Function

…

…

…

Figure 4: Structure of CNN-BiLSTM attack mode.
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indicate that the original packet sequence is input to the
algorithm, and the average symbolization time interval
Time.interval is calculated based on the standard number of
symbols Num and the maximum symbolization time in-
terval Maxtime. .e time of the first packet is also set as the
base time. Lines 3 to 8 symbolize the time interval char-
acteristics of the original packet sequence by first calculating
the sequential two packet time interval ΔTime, which is set
as a fixed character if the time interval ΔTime is greater than
the maximum symbolization time interval. If the time in-
terval ΔTime is less than the maximum symbolization time
interval, each time interval Time.interval corresponds to a

symbol. Finally, the symbols are filled in cyclically to obtain
the symbolization sequence TSeq.

4.2.2. Building a One-Hot Matrix. .e original sequence is
symbolized and can be expressed by

Seq � S1, S2, S3, . . . , SL, (4)

where Si denotes the i-th character of the symbolized se-
quence Seq and L denotes the length of the sequence. In this
paper, the one-hot matrix, commonly used to represent
DNA, RNA, and protein sequences in biology, represents the

Table 1: Model hyperparameter search space and final selection.

Hyperparameters Search space Selected value
Number of filters
Conv2d1 [8 . . . 32] 16
Conv2d2 [16 . . . 64] 32
Normalization methods [Batch Normalization, Layer Normalization] Layer Normalization
Activation functions [ReLU, ELU, LeakyReLU] ReLU
Pooling layers [Average, max] Max
BiLSTM [64 . . . 256] 128
Number of FC layers [1 . . . 4] 3
[Filter, pool, stride] sizes [2 . . . 8] [3, 3, 1]
Loss function [Cross-entropy loss] Cross-entropy loss
Optimizer [SGD, adam, Adamax, RMSProp] Adam
Learning rate [0.0001 . . . 0.01] 0.001
Training epochs [10 . . . 50] 30
Minibatch size [16 . . . 64] 48

Table 2: Dataset used in the experiment.

Name Anonymous method Training set Test set Purpose
SSH-200 SSH 200× 20 200× 5 Close world
Shadowsocks-200 Shadowsocks 200× 20 200× 5 Close world
SSH-2000 SSH N/A 2000×1 Open world
Shadowsocks-2000 Shadowsocks N/A 2000×1 Open world

Input: Packets Sequence Seq, Number of symbols Num
Output: Size and direction symbol sequences S&D Seq
Steps:
(1) S&DSeq⟵Null
(2) for packet a ∈ Seq do
(3) if a.Direction � “ + ” then
(4) a.size⟵MTU.size + a.size
(5) else
(6) a.size⟵MTU.size − a.size
(7) end if
(8) a.S&D.interval⟵ (2 × MTU.size)/Num2

(9) a.S&D.symbol[0]⟵ Symbol(a.size/(a.S&D.interval × Num))

(10) a.S&D.symbol[0]⟵ Symbol(a.size%(a.S&D.interval × Num))

(11) S&D Seq.append(a.S&D.symbol)
(12) end for

ALGORITHM 1: Size and direction symbolization algorithm.
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symbolized sequences. For a sequence Seq, its one-hot
matrix can be expressed as

M �

e1,1 · · · e1,L

⋮ ⋱ ⋮

enum,1 · · · enum,L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ei,j �
1, Sj � Symboli,

0, otherwise,
􏼨

(5)

where num denotes the number of standard characters and
Symboli denotes the i-th standard character (1≤ i≤num).
Intuitively, each character of the symbolized sequence can be
represented by a num-dimensional vector, and only this
character is activated in this vector. .e value of this di-
mension is one, and the rest of the dimensions are zero.

To facilitate the training of the neural network model, we
normalize the length L of the symbolized sequence. When
the sequence length is greater than the preset normalized
value L, we truncate the sequence, and if the length does not
satisfy L, we complement it with zero (the num dimensional
vector corresponding to zero in constructing a one-hot
matrix is the zero-vector). Finally, all the original sequences
are processed into num × L matrices.

5. Experimental Evaluation

5.1. Assessment Indicators. To evaluate the experimental
results, we use the following evaluation metrics: accuracy,
true positive (TP), false positive (FP), true negative (TN),
false positive (FP), precision, and recall. Accuracy indicates
the ratio of the number of website categories correctly
identified to the total number of websites in the same test set
and is calculated by

accuracy �
TP + TN

TP + FP + TN � FN
× 100% , (6)

where TP is the number of monitored websites correctly
classified, FP is the number of unmonitored websites in-
correctly classified as monitored, TN is the number of
unmonitored websites correctly classified, and FN is the

number of monitored websites incorrectly classified as
different monitored or unmonitored websites. Recall refers
to the percentage of monitored sites among the sites cor-
rectly classified by the classifier, and precision and recall are
calculated by

precision �
TP

TP + FP
,

recall �
TP

TP + TN
.

(7)

5.2. Closed World Assessment. We evaluate the proposed
model in the closed world case using SSH-200 and Shad-
owsocks-200 and demonstrate the parameter’s interplay
with the overall model’s performance.

.e accuracy of the model tested in the dataset SSH-200
is shown in Table 3. In a closed world and given some
parameter setting conditions, our proposed CNN-BiLSTM
model requires only 20 training samples and achieves up to
94.8% accuracy, performing significantly better than the
traditional machine learning k-FP, k-NN, and PHMM
models. Moreover, compared to the recently emerging
small-sample website fingerprinting attack methods, the test
results are slightly better overall than TF, the small-sample
website fingerprinting attack model first proposed by Sir-
inam et al. in 2019 [3]. Additionally, our method’s optimal
test accuracy is equal to that of GANDaLF, the current state-
of-the-art and data fingerprinting attack model proposed by
Oh et al. [1].

In this section, we design comparative experiments to
investigate the impact of using different combinations of
traffic features and data representations on the accuracy of
fingerprinting attacks. In the closed world, we employ the
original direction and size features, that is,
Raw Size&Direction, and the original direction, size, and
packet spacing combination features, that is,
Raw Size&Direction,ΔTime, the one-hot processed

Input: Packets Sequence Seq, Number of symbols Num, Max Time interval Maxtime,
Output: Time interval symbol sequences TSeq
Steps:
(1) TSeq⟵Null,Time.base⟵ First packet.Time.now
(2) Time.interval←Maxtime/Num
(3) for packet a ∈ Seq do
(4) ΔTime⟵ a.Time.now − Time.base
(5) if ΔTime≥Maxtime then
(6) a.Time.symbol⟵ Symbol(Max)

(7) else
(8) a.Time.symbol⟵ Symbol(ΔTime/Time.interval)
(9) end if
(10) Time.base⟵ a.Time.now
(11) TSeq.append(a.Time.symbol)
(12) end for
(13) return TSeq

ALGORITHM 2: Time interval symbolization algorithm.
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S&D Seq matrix, and the one-hot processed S&D Seq and
TSeq combined matrix. Also, we compare our technique
with the newly proposed directional timing-based attack
(Tik-Tok attack) by Rahman et al. [2] in 2020. Table 3
highlights that the attack accuracy of the model can be
improved by 4-5 percentage points using our proposed data
representation technique compared with the direct use of
raw traffic features and is significantly higher than the Tik-
Tok approach using the combination of packet direction and
timestamp features.

Meanwhile, we count the packet sequence lengths of the
visited sites in the SSH-200 dataset. Figure 5 highlights that
more than 75% of the sites have sequence lengths within 500,
and thus, we set L � 200, 300, 400, and 500. It can be seen
from Table 3 that the highest accuracy of the model clas-
sification, when tested directly using the original feature
sequences of size and direction, is 89.3%, and the model
classification accuracy decreases slightly because of the
feature increment introduced in the dimension of the time
interval. .e latter is due to exploiting only 20 training
samples and the subtle perturbation brought by the change
of time interval affects the model’s final training effect.

Additionally, due to the introduction of packet size and
time symbolization interval, the original feature sequence
after data processing presents for the same site multiple
sample collections, imposing data changes in a particular
range that does not change the symbol but improves the
stability of the site fingerprint data features, making these
statistical features uniquely representing a site. .erefore,
after data processing, adding the dimensional feature of time
interval improves the classification accuracy by 1.5%, and
the model’s highest attack accuracy is achieved at L � 300.
Using the combined sequence of S&D Seq andTSeq after the
one-hot matrix processing, the accuracy increases to 94.8%.
.e test results in Table 3 also indicate that, after data
processing, as the normalized sequence length L increases,
the model reaches the peak classification accuracy earlier.
.is is because the one-hot matrix introduces more zero
elements in the vector while expanding the feature di-
mension, and the increase of the normalized sequence length
L leads to more and more traffic sequences generated by the
sites needing to be zero-complemented, making the se-
quences look more similar to each other after data
processing.

.e test results in Table 3 reveal that the highest clas-
sification accuracy is improved by nearly 5% after sym-
bolizing the original feature data and constructing the one-
hot matrix. We designed the following validation experi-
ments to analyze the interplay between the number of
standard symbols (packet size symbolization interval and
time symbolization interval) and the accuracy during the
symbolization process.

Figure 6 presents the model attack accuracy curves,
where the number of standard symbols Num involves se-
quence lengths of L � 200, 300, and 400. It is clear that the
accuracy rate keeps improving with the increase of Num (for
0≤Num≤ 20), and the attack performance of the model
reaches the optimum when the standard number of symbols
is Num � 20. After that, the performance of the model starts
to gradually decrease (for Num≥ 20). Hence, we conclude
that the model’s performance is related to the size of the
symbolized interval division. When the standard number of
symbols Num is small, the symbolization interval is large.
.e serialization process is more fault-tolerant to minor
variations in packet size and time intervals in different
samples from the same site. .ese features allow the model
to categorize the samples originating from the same site, but
a too-large interval will lead to the sequence not being
obvious enough. .e sequence generated by the samples of
different sites varies less, which is not conducive to the
differentiation of different sites, thus affecting the model’s
overall performance. When the number of standard symbols
Num is larger, the symbolization interval is smaller. After
symbolizing the original data, the samples from different
sites will have apparent differences, which is beneficial to
classify samples from different sites. However, for the dif-
ferent samples generated by multiple visits to the same site,
the perturbations generated by the packet size and time
interval change will show more apparent differences in their
symbolization sequences, which is not conducive to the
homology analysis. .is is because samples from the same
site will affect the classification ability of the model.

.e tested accuracy of the CNN-BiLSTM model on the
dataset Shadowsocks-200 is shown in Table 4. .e model
remains efficient in classifying and identifying Shadowsocks
anonymous encrypted traffic, achieving a maximum attack
accuracy of 98.1% with only 20 training samples per site
when classifying against SSH anonymous encrypted traffic.

Table 3: Test accuracy of dataset SSH-200 (%).

Method name Test methods L � 200 L � 300 L � 400 L � 500

CNN-BiLSTM

Raw Size&Direction 87.2 88.5 89.3 88.6
Raw Size&Direction,ΔTime 85.6 87.9 88.3 89.7

Directional Timing 86.9 88.9 90.2 89.8
S&D Seq, one-hot 92.8 93.4 93.1 92.2

S&D Seq, TSeq, one-hot 93.7 94.8 94.1 93.9
TF S&D Seq, TSeq, one-hot 92.9 94.1 93.5 93.2
GANDaLF S&D Seq, TSeq, one-hot 94.3 94.6 94.9 94.7
PHMM S&D Seq, TSeq 85.9 87.3 88.2 86.5
Method name Test methods K� 1 K� 2 K� 3
k-FP S&D Seq, TSeq 90.6 91.2 91.1
k-NN S&D Seq, T Seq 90.8 86.4 82.3
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.is shows that each site’s packet direction, size, and time
interval in the Shadowsocks anonymous environment are
more prominent, while each site’s traffic has fewer burst
features and a smoother state, making it easier for eaves-
droppers to perform website fingerprinting attacks.

5.3. Migration Capability Assessment. Transfer learning [27]
is a deep learning-related technique, where an already
trained CNN is partially retrained on an entirely new
classification task. .e performance of the newly trained
model involves measuring its migration ability. Deep
learning models can automatically extract data features from
large amounts of data by semisupervised or unsupervised
feature learning algorithms and hierarchical feature

extraction schemes and manage a higher classification ac-
curacy than traditional machine learning methods. How-
ever, traditional website fingerprinting classification
methods that employ deep learning, such as DF and AWF,
require the training and test data to be independent and
codistributed. If a model trained in the monitored website
dataset collection A is used to classify fingerprint data in the
untrained monitored website collection B, the attack ac-
curacy of the deep learning model will drop drastically.
Additionally, much time is required to collect the monitored
website data in collection B and retrain the attack model,
which is unacceptable to the attacker.

To evaluate the migration capability of the model, we
consider a more challenging scenario and conduct experi-
ments using the SSH-200 and Shadowsocks-200 datasets.
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Table 4: Test accuracy of dataset Shadowsocks-200 (%).

Method name L � 200 L � 300 L � 400
CNN-BiLSTM 97.6 98.1 96.3
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SSH and Shadowsocks are two completely different
anonymous communication systems producing very dif-
ferent fingerprint data characteristics and collect signifi-
cantly different site information. Our model is trained
using one dataset, and the trained model is retrained by
randomly selecting R(R≤ 10) samples for each site in the
other dataset, with the latter dataset also exploited as a
testing dataset to evaluate the model’s classification ac-
curacy. Considering our trials, we evaluate the classification
accuracy of the CNN-BiLSTM, TF, AWF, DF, and GAN-
DaLF models with SSH anonymous fingerprint data as the
training set and employ the Shadowsocks anonymous
fingerprint data as the test set. .e corresponding results
are illustrated in Figure 7.

As seen in Figure 7, the TF, GANDaLF, and CNN-
BiLSTM models significantly outperform the traditional
deep learning models. Since the test set and the training set
are different types of traffic data, the data distribution is
weakly correlated, and the trained model is directly applied
to the classification task of the Shadowsocks dataset. .e
accuracy of the traditional deep learning AWF, DF, and
GANDaLF models based on the GAN network is less than
10%. In comparison, the attack accuracy of both TF and
CNN-BiLSTM models exceeds 70%. As the number of
samples (R) involved in the transfer learning process (sec-
ondary training) increases, the model’s attack accuracy
gradually improves with TF and CNN-BiLSTM’s accuracy
when 1≤R≤ 3, but in principle, this improvement effect
remains the same. .e accuracy of TF and CNN-BiLSTM
stabilizes above 90%, and when R � 10, the CNN-BiLSTM
model accuracy is close to 92%, which is a 6% improvement
over the TF method. .e GANDaLF model has a significant
improvement in attack accuracy as the sample number R
increases due to its robust data generation capability,
managing a close to the TF model performance for R� 10,
and the accuracy curve still maintains a slow upward trend.
.e accuracy improvement effect of the traditional methods
AWF and DF as the sample number R increases is more
evident than TF and CNN-LSTM methods but much lower
than GANDaLF model. .e accuracy rate is already close to
50% at R� 10, but still, 40% lower compared with the CNN-
LSTM method. .is indicates that traditional deep learning
models have limitations in adapting to new classification
tasks and that CNN-LSTM, TF, and GANDaLF models can
all better mitigate the adverse effects of data mismatch.
However, the CNN-LSTM method has better migration
ability in environments where samples are lacking.

5.4. Open-World Assessment. .e performance of classifiers
in the open world is another essential evaluation metric in
website fingerprinting attacks..e goal is to assess the ability
of the model to distinguish traffic generated by monitored
websites from traffic generated by any other unknown
websites. We use precision and recall to evaluate the CNN-
BiLSTM model in an open-world scenario by plotting the
precision-recall curve.

.is section evaluates the model’s performance in the
SSH and Shadowsocks anonymous communication systems.

To balance the number of monitored site samples with the
number of monitored samples, we randomly select 10
samples for each site from the SSH-200 and Shadowsocks-
200 datasets to construct a monitored test sample set. .e
latter is then combined with the SSH-2000 and Shadows-
ocks-2000 datasets to form the SSH and the Shadowsocks
open-world test set. At the same time, to better distinguish
the monitored and unmonitored sites, we use the standard
model during training and treat the unmonitored sites as an
additional label.

Figure 8 presents the precision-recall curves of the
CNN-BiLSTM model for sequence lengths of L � 200, 300,
and 400 in the SSH and Shadowsocks open world. .is
figure highlights that the accuracy and recall rates are
better in Shadowsocks than in SSH, which indicates that
the model is more suitable for Shadowsocks’ open-world
environment for website fingerprinting attacks. As the
recall rate increases, the classification accuracy rate sig-
nificantly decreases for SSH and Shadowsocks but is still
between 0.7 and 0.8. Also, in both environments, the
model performance is optimal for a sequence length of
L � 300.

Under small-sample conditions, we further evaluate two
extremely optimal models for website fingerprinting attacks
in the open world: TF and GANDaLF. We test the per-
formance of eachmodel for sequence length L� 300 and plot
the precision-recall curves with the corresponding results
shown in Figure 9. All three models perform better in the
open-world environment of Shadowsocks, indicating that
the individual characteristics of Shadowsocks anonymous
traffic data sites are more prominent and easier for model
classification. .e CNN-BiLSTM model performs signifi-
cantly better than the TF model in both open-world envi-
ronments. Furthermore, compared with the GANDaLF
model in both open environments, each has its advantages
and disadvantages.

.e model’s performance is appropriately optimized for
precision or recall at L � 200, 300, and 400 (Table 5). When
the model is tuned for optimum precision rate, SSH reaches
the highest precision rate of 0.889 at a sequence length of
L � 400 with the corresponding recall rate being 0.831.
Shadowsocks reaches the highest precision rate of 0.912 at
L � 300, with the recall rate being 0.899. Accordingly, when
the model is optimized for the recall rate, both SSH and
Shadowsocks reach the highest performance at L � 300,
managing the highest recall rates of 0.934 and 0.963, re-
spectively, while the corresponding precision rates are 0.742
and 0.789.

Figure 8 and Table 5 highlight that the CNN-BiLSTM
model is still highly usable in the open-world scenario, and
the attacker can tune the model in the open world utilizing
the task target. If the goal is to identify the traffic of
monitored websites in the network data, then the recall rate
should be of more concern to the attacker, and the accuracy
rate can be appropriately sacrificed to improve the recall
rate. Furthermore, when the attacker’s goal is to accurately
monitor the websites’ visitors, the accuracy rate is more
critical, and the recall rate needs to be appropriately
reduced.
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6. Discussion

In this section, we discuss the possible limitations of this
work and directions for future work.

6.1. Segmentation of Anonymized Web Data. In our exper-
iments, we use previously collected representative datasets to
ensure the purity of the data assuming that users open only
one web page at a time during data collection. However, in a
real-world attack scenario, users will open web pages ac-
companied by a lot of background traffic. .erefore, effi-
ciently splitting the anonymous traffic from the background
traffic is an important research topic.

6.2. (e Definition of Website Fingerprinting Attack. Our
work is consistent with most current studies that only
identify single-page website fingerprinting classification and
do not include the hyperlinks and other subpages on the
website homepage. .e next step is to focus on how to
characterize the overall fingerprint of the website.

6.3. Model Breakthroughs on Website Fingerprinting Defense
Technology. .is paper identifies and classifies the SSH and
Shadowsocks single-agent anonymous encrypted traffic and
employs the packet size, direction, and time interval as the
essential features to achieve better attack results. To defend
against website fingerprinting attack techniques that com-
promise user privacy, Tor, the currently best anonymous
network communication system, was designed to transmit
data in units in units of 512 bytes, called cells, and always pad
all data transfers up to a cell boundary, with targeted defense
against the important feature of packet size. Subsequent
researchers have further defended against other features.
Examples are the WTF-PAD based on adaptive padding
proposed by Juarez et al. [28], Walkie-Talkie based on half-
duplex communication and burst traffic proposed by Wang
et al. [29] in 2017, Traffic Silver presented at USENIX Se-
curity 2020 proposed by Cadena et al. [30], zero-delay
proposed by Gong and Wang et al. [31], and Mockingbird
based on GAN techniques proposed by Rahman et al. [32].
.ese anonymity network defense techniques change the
original direction, transmission time, and other character-
istics of website traffic, blurring the differences between
website traffic characteristics and increasing the difficulty for
attackers to implement website fingerprinting attacks.
.erefore, the model will have predictable degradation in
attack effectiveness when applied to this more challenging
anonymous network environment. A deeper analysis is
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needed on how to achieve a highly accurate small-sample
website fingerprinting attack under such more complex
conditions.

7. Conclusion

.is paper proposes a website fingerprinting attack method
based on homology analysis and designs a CNN-BiLSTM
website fingerprinting attack model using a Siamese Net-
work structure. Our architecture manages a high accuracy
rate with only a small number of training samples per
website. At the same time, we innovatively propose a data
processing method to increase the data feature dimension
and increase the fault tolerance of the sample’s burst
features.

We train our model with SSH anonymous network
encrypted traffic and then exploit it to classify the Shad-
owsocks anonymous network encrypted traffic, managing
over 90% accuracy with only five samples per site, which is
significantly higher than current methods. Additionally, this
experimental setup (training versus testing datasets are of
different nature) highlights that the proposed model has a
very appealing migration capability. Finally, the experi-
mental results indicate that attackers can still achieve ef-
fective website fingerprinting attacks with fewer resources.
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Timely and accurate network traffic prediction is a necessary means to realize network intelligent management and control.
However, this work is still challenging considering the complex temporal and spatial dependence between network traffic. In
terms of spatial dimension, links connect different nodes, and the network traffic flowing through different nodes has a specific
correlation. In terms of spatial dimension, not only the network traffic at adjacent time points is correlated, but also the im-
portance of distant time points is not necessarily less than the nearest time point. In this paper, we propose a novel intelligent
network traffic prediction method based on joint attention and GCN-GRU (AGG). )e AGG model uses GCN to capture the
spatial features of traffic, GRU to capture the temporal features of traffic, and attention mechanism to capture the importance of
different temporal features, so as to realize the comprehensive consideration of the spatial-temporal correlation of network traffic.
)e experimental results on an actual dataset show that, compared with other baseline models, the AGG model has the best
performance in experimental indicators, such as root mean square error (RMSE), mean absolute error (MAE), accuracy (ACC),
determination coefficient (R2), and explained variance score (EVS), and has the ability of long-term prediction.

1. Introduction

Cisco annual Internet report (2018–2023) notes that device
functionality will be combined with higher bandwidth and
more intelligent networks by 2023, and the number of
devices linked to IP networks will be more than three times
the global population [1]. With the increasing number of
terminals, the enrichment of multimedia applications, and
the continuous expansion of network capabilities, network
traffic management has become a critical and challenging
task. Real-time and accurate network traffic prediction can
greatly improve the control gain of the network.

)e existing network traffic prediction methods are
divided into model-driven traffic prediction methods and
data-driven traffic prediction methods. Model-driven traffic
prediction methods are also called parameterization
methods, including autoregressive moving average model
(ARMA) and autoregressive integrated moving average
mode (ARIMA). Laner et al. introduced the ARMA model,

which can predict network traffic [2]. Guo et al. introduced
the ARIMA model and tested the algorithm with the data
collected by a backbone switching node. )e experimental
results show that compared with other network traffic
prediction methods, the model has a better effect in dealing
with nonstationary series and higher prediction accuracy
[3], so the ARIMA model and its variants are widely used
and can well explore the time correlation of network traffic
[4–6]. Model-driven traffic prediction methods mostly use a
polynomial fitting function to approximate the actual net-
work traffic and then make the fitting effect better through a
large number of parameter tuning. However, it is difficult to
capture the nonlinear characteristics of network traffic, such
as fast fluctuation and time dependence.

)e data-driven traffic prediction method can auto-
matically learn statistical rules from a large quantity of
historical data to intelligently capture the nonlinear char-
acteristics of network traffic. Specifically, data-driven traffic
prediction methods can be divided into machine learning
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prediction methods and deep learning prediction methods.
Among them, machine learning prediction methods include
support vector regression (SVR) and k-nearest neighbor
algorithm (k-NN). Bermolen et al. applied support vector
regression (SVR) to link load prediction [7]. Kremer et al.
chose two different machine learning algorithms, SVR and
KNN, to explore the balance between complexity and es-
timation accuracy [8]. However, machine learning methods
are not sufficient for processing high-dimensional data and
rely on feature engineering. )erefore, the universality of
this method is weak.

Compared with machine learning prediction methods,
deep learning prediction methods can not only retain the
learning characteristics but also ensure the relevance be-
tween tasks and effectively address time series problems. Wu
et al. proposed a network traffic prediction method based on
a deep neural network (DNN), which proves the superiority
of the deep learning prediction method in traffic prediction
[9]. Lazaris et al. used actual network traffic tracking from
ISPs to train long-term short-term memory (LSTM) neural
network and generate predictions in a short time. Experi-
ments show that LSTM can predict network traffic with low
error [10]. Azzouni et al. proposed an LSTM RNN frame-
work for predicting a large-scale network traffic matrix and
proved the fast convergence ability of the LSTM model
through actual data from GEANT [11]. Although this kind
of deep learning prediction model has achieved good results,
the above models all predict the time series of network traffic
in a single area but ignore the spatial structure of the net-
work, that is, the spatial correlation of network traffic. To
extract the spatial characteristics of network traffic, re-
searchers introduced convolutional neural networks
(CNNs) into the task of network traffic prediction. Zhang
et al. used a convolutional neural network to capture the
temporal and spatial dependence of traffic by processing
traffic data to images. )e experimental results show that the
prediction performance of this method in terms of root
mean square error (RMSE) is significantly improved [12]. Li
et al. proposed a CNN fusion LSTM model for prediction,
used a one-dimensional CNN to obtain the spatial char-
acteristics of network traffic, and used LSTM to obtain the
temporal correlation of network traffic. However, the spatial
structure of the CNNmodel is in Euclidean space; that is, the
CNN can only deal with Euclidean data, but it cannot ef-
fectively deal with non-Euclidean data such as communi-
cation network topology.

)erefore, researchers hope to effectively extract spatial
features from non-Euclidean data structures such as topo-
logical maps [13], so GCNs have become a new research
focus. He et al. proposed a spatial-temporal network based
on graph attention, which is called GSATN. )is model
integrates spatial-temporal characteristics, characterizes
spatial correlation through geographical relationship graphs,
characterizes temporal correlation through recurrent neural
networks, and predicts network traffic by combining spa-
tiotemporal characteristics [14]. Yang et al. proposed a
network traffic prediction model combining a graph con-
volution neural network (GCN) and a gate control recursive
unit (GRU).)e model uses GCN to learn network topology

and extract spatial characteristics of traffic and uses GRU to
learn the temporal characteristics of network traffic. )us,
the intelligent prediction of network traffic is realized [15].
Although these models have achieved excellent prediction
accuracy, most models tend to extract static spatial de-
pendencies in traffic, and such spatial dependencies may
evolve over time [16, 17]. )erefore, by introducing an at-
tention mechanism into the GCN-GRU model, this paper
proposes a novel intelligent network traffic prediction
method based on joint attention and GCN-GRU.)is model
can not only capture spatial-temporal correlation infor-
mation but also collect temporal global change information.
)e main contributions of this paper are as follows:

(1) A network traffic prediction method combining
GCN, GRU, and attention mechanism is proposed.
)e method uses GCN to capture the spatial features
of traffic, GRU to capture the temporal features of
traffic, and attention mechanism to capture the
importance of different temporal features, so as to
realize the comprehensive consideration of the
spatial-temporal correlation of network traffic.

(2) )e attention mechanism is introduced into the
GRU, and the weight matrix calculation method in
the GRU unit is redesigned. In this mechanism, the
state vector is generated by combining the hidden
states at different times, a scoring function is
designed to calculate the weight of each hidden state,
and an attention function is designed to calculate the
context vector that can describe the global traffic
change information, so as to adjust the importance of
different time points and collect the global time
information to improve the prediction accuracy.

(3) Considering that the length of the sliding window
and the number of hidden units have a significant
impact on the timeliness and accuracy of network
traffic prediction, an action to determine the ex-
perimental parameters is performed, so as to obtain
the optimal length of sliding window and optimal
number of hidden units, which effectively supports
the comparative analysis of the network traffic
prediction model AGG proposed in this paper with
other baseline models.

(4) )e AGG model is trained on the Milan traffic
network dataset for many times. )e results show
that compared with several existing baseline models,
the AGG model has the best performance in ex-
perimental indicators, such as root mean square
error (RMSE), mean absolute error (MAE), accuracy
(ACC), determination coefficient (R2), explained
variance score (EVS), and has the ability of long-
term prediction.

)e rest of this paper is organized as follows. In Section
2, we present the problem formulation of network traffic
prediction and design a framework to solve the network
traffic prediction problem. Based on the design of the spatial
feature extraction model, temporal feature extraction model,
and attention mechanism model, a complete intelligent
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network traffic prediction model is given in Section 3. In
Section 4, we introduce the experimental environment and
analyze the performance of the proposed traffic prediction
model. We conclude this paper in Section 5.

2. The Proposed Prediction Framework

2.1. Problem Formulation. )e goal of network traffic pre-
diction is to predict the network traffic information in the
future according to the measured historical network traffic
information. We can define this process as

xt−M+1, . . . , xt−1, xt⟶
f

(·) 􏽢xt+1, . . . , 􏽢xt+H−1, 􏽢xt+H, (1)

where xt ∈ Rn is the observation vector of n observation
points at the sampling time t. )e purpose of the traffic
prediction model is to learn a mapping function f(·) based
on the traffic data of the previous M sampling time to predict
the network traffic of the H sampling time in the future.

Definition 1 (network topology). )e network is composed
of nodes and links, which are generally represented by di-
graphs G � (V, E). V represents the nodes in the network,
and V � V1, V2, . . . , VN􏼈 􏼉, where N is the number of nodes,
and E represents the links between nodes. )e adjacency
matrix A is used to represent the connection relationship of
nodes, A ∈ RN×N. )e adjacency matrix only contains the
elements 0 and 1. When the element is 0, there is no
connection between nodes, and when the element is 1, there
is a connection between nodes.

Definition 2 (network traffic prediction). In G, each link is
ei(1≤ i≤ n), and the time series xt−n, . . . , xt−1, xt represents
the network traffic of ei in the time interval N. )e principle
of the prediction model proposed in this paper is to learn a
mapping function f based on the topological graph struc-
ture and network traffic time series to obtain the network
traffic data spatial-temporal characteristics and then predict
the network traffic information xt+1, . . . , xt+T in the future
from the characteristic matrix. )e network traffic predic-
tion formula is as follows:

xt+1, . . . , xt+T􏼂 􏼃 � f G, xt−n+1, . . . , xt−1, xt( 􏼁( 􏼁. (2)

2.2. Traffic Prediction Framework. For the problem de-
scribed in Section 2.1, the prediction architecture proposed
in this paper is shown in Figure 1. First, the time series data
in each region in the dataset at n time sampling points and
the adjacency matrix representing the relationship between
regions are taken as the input. )en, the GCN model is used
to extract the input data spatial features, and the time series
with spatial features are used as the input of the GRU model
to extract the temporal correlation features between time
series. Furthermore, the attention mechanism is introduced
into GRU, and the weight matrix calculation method in the
original GRU unit is replaced by the attention weight
mechanism, which reweights the influence of historical
network traffic data to capture the global variation trend of

network traffic. Finally, the prediction results of data with
spatial-temporal correlation are obtained through the fully
connected layer.

3. Prediction Models

3.1. Spatial Feature Extraction Model. Spatial feature ex-
traction is one of the critical problems in network traffic
prediction. A regional topological network is a graph
structure, and its network traffic data belong to non-Eu-
clidean data. Although traditional convolutional neural
networks (CNNs) can obtain spatial features, they can only
be used in Euclidean data and cannot effectively extract
spatial features from graph data. In this paper, the graph
convolution network (GCN) model is used to process the
non-Euclidean data represented by graph data, and the
spatial features of each region are learned from the network
structure.

)e principle of GCN is to construct a filter in the
Fourier domain and then process the graph nodes and the
first-order domain of the nodes with the constructed filter to
obtain the spatial features between the nodes in the graph.
Finally, the GCN model is established by superposition of
multiple convolution layers. In this paper, we designed two
convolutional layer processing graph structures, and the
formula is as follows:

f(X, A) � σ A􏽢ReLU AXW0( 􏼁W1( 􏼁, (3)

where X represents the network traffic characteristic matrix,
A represents the adjacency matrix, σ(·) and ReLU represent
the activation function. 􏽢A � 􏽥D

− 1/2 􏽥A 􏽥D
− 1/2 represents the

preprocessing step, 􏽥D is the degree matrix, 􏽥D � 􏽐i
􏽦Aij. 􏽥A �

A + IN represents the matrix with a self-connection struc-
ture, and W0 and W1 represent the weight matrix in the first
and second convolution layers, respectively.

3.2. Temporal Feature Extraction Model. Temporal feature
extraction is another critical problem in network traffic
prediction. At present, the recurrent neural network (RNN)
is the most widely used neural network model for processing
sequence data. However, due to the defects of gradient
disappearance and gradient explosion, the traditional

GCN GCN GCN GCN

Input Layer

Spatial Feature Extraction

Output Layer

GRU GRU GRU GRU Temporal Feature Extraction

Attention Attention Mechanism

xt+1

xt-1xt-n+1

xt+2 xt+r

xt

. . .

. . .

Figure 1: AGG prediction architecture.
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recurrent neural network has limitations in terms of long-
term prediction. )e LSTM model and GRU model are
variants of recurrent neural networks, which can better solve
the above defects. As variants of RNN, LSTM, and GRU have
the same basic principle, they both use a gate control
mechanism to memorize as much long-term information as
possible. In this paper, we use the GRU network unit.
Compared with the LSTM unit, the GRU unit has fewer
parameters. Under the premise of ensuring the prediction
accuracy, it can reduce the time of model optimization.

)e structure diagram of theGRUunit is shown in Figure 2,
in which xt represents the input data at time t, ht, ht−1, and ht+1
indicate the hidden state at different times, rt is a reset gate,
which controls the degree of information reservation or
abandonment at the previous time, ut is an update gate, which is
used to control the extent towhich state information of the prior
moment enters the current state, ct is the information stored at
time t, and the principle of GRU is to use the hidden state of the
prior moment and the input of the current moment together to
obtain the network state information of the next moment. )e
model not only captures the current network information but
also retains the change trend of historical network information
and has the ability to capture temporal dependence.

3.3. AttentionMechanismModel. When capturing temporal
features, we introduce an attention mechanism into GRU in
this section and redesigns the weight matrix calculation
method in the original GRU unit with the attention weight
mechanism.

After replacing the original matrix calculation method in
GRU with an attention mechanism, Xt and ht−1 are used to
obtain the information of the reset gate rt and update gate ut

at time t. )e formulas are as follows:

rt � σ W
k

Xt, ht−1 + br􏼂 􏼃􏼐 􏼑,

ut � σ W
k

Xt, ht−1 + bu􏼂 􏼃􏼐 􏼑,
(4)

where Wk is the weight matrix information in the attention
mechanism, Xt represents the input traffic at the current
time, ht−1 represents the hidden state passed down from the
previous time, andbr and bu are deviation parameters.

After obtaining the information of the reset gate rt and
update gate ut, the reset data ht−1′ � rt ⊙ ht−1 can be obtained
first, and then the value range of the data of ht−1′ and Xt can
be controlled within [−1, 1] through the tanh activation
function. )at is, the state of memorizing the current mo-
ment h′ can be obtained. )e formula is as follows:

h′ � tanh W
k

Xt, rt ⊙ ht−1( 􏼁􏼂 􏼃 + bn􏼐 􏼑, (5)

where bu is a deviation parameter.
After obtaining the current time state of memory, the last

step is to update the memory stage, in which the update gate
ut is used. )e formula is as follows:

ht � ut ⊙ ht−1 + 1 − ut( 􏼁⊙ h′. (6)

)rough the multilayer GRU with attention mechanism,
the temporal features of network traffic can be better

captured. )e internal structure of the redesigned GRU is
shown in Figure 3.

3.4. Traffic Prediction Model. )e network traffic prediction
model, named AGG model, introduces the attention
mechanism based on the GCN-GRU model and reweights
the influence of historical network traffic data to capture the
global variation trend in network traffic.)emodel structure
is shown in Figure 4.

)e AGG model calculation is shown in the following
formulas:

ut � σ Wu GC A, Xt( 􏼁, ht−1􏼂 􏼃 + bu( 􏼁,

rt � σ Wr GC A, Xt( 􏼁, ht−1􏼂 􏼃 + br( 􏼁,

ct � tanh Wc GC A, Xt( 􏼁, rt ∗ ht−1( 􏼁􏼂 􏼃 + bc( 􏼁,

ht � ut ∗ ht−1 + 1 − ut( 􏼁∗ ct,

(7)

where ut is the update gate which is used to control the
extent to which the state information of the last time enters
the state of current time, σ is the activation function of the
nonlinear model, Wu, Wu, and Wu are the weight param-
eters, GC is the graph convolution process, A is the adja-
cency matrix, Xt is the input of the model at the current
time, ht−1 and ht are the hidden state at t − 1 and t, re-
spectively, bu, bu, and bu are deviation parameters, rt is the
reset gate which controls the level of information retention
or abandonment at the previous time, and ct is the infor-
mation stored at time t.

)e AGG model is constructed by the GCN model
combined with the GRU model. )e principle is to input n
historical time series network traffic data into the AGG
model to obtain n hidden states and obtain the vector
containing spatial-temporal features: ht−n+1, . . . , ht−1, ht􏼈 􏼉.

)en, the hidden state is inputted into the attention
model, and the multilayer perceptron (MLP) is used to
calculate the weight of each hidden state
h: at−n+1, . . . , at−1, at􏼈 􏼉. )e information vector covering the
global traffic change is calculated by the sum of the weights.
)e formulas are as follows:

ai �
exp ei( 􏼁

􏽐
n
k�1 exp ek( 􏼁

,

ei � W(2) W(1)H + b(1)􏼐 􏼑 + b(2).

(8)

)en, an attention function is used to describe the vector
Ct of global traffic change information, and the formula is as
follows:

Ct � 􏽘
n

i�1
ai ∗ hi. (9)

Finally, the final predicted value is obtained through the
fully connected layer.

4. Simulation Results and Analysis

In this part, we first introduce the actual traffic dataset of
the telephone service provider in the European city of
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Milan and then analyze comparative experiments based
on this dataset to verify the advantages of our proposed
model.

4.1. Dataset Description. In this paper, we select an open
network traffic dataset which is in https://dataverse.harvard.
edu/dataset.xhtml?persistentId� doi:10.7910/DVN/
EGZHFV, and the traffic collection time is from 00 : 00 on
November 1, 2013, to 00 : 00 on January 1, 2014. Table 1
shows the relevant dataset information. In this experiment,
the data of 11/04-11/10 for seven days are selected as the
dataset. )e time interval of the original data is 10 minutes,
and there are 144 data points in each region. In this paper,
nine regions are selected, and the data of a week are col-
lected. )e grid and map of the area where the dataset is
located are shown in Figure 5. Figure 6 shows the network
traffic trend of the nine regions within a week.

4.2. Experimental Indicators. In order to thoroughly verify
the performance of the model, we set five experimental
indicators to judge the flow prediction model proposed in
this paper, as follows:

(1) Root mean square error (RMSE) reflects the pre-
diction error of the model. )e value range of RMSE
is [0, +∞). )e closer the RMSE is to zero, the better
the performance of the model is.

RMSE �

����

1
T

􏽘

T

t�1

􏽶
􏽴

Y
t

−
􏽢
Y

t
􏼒 􏼓 . (10)

(2) Mean absolute error (MAE) is used to measure the
mean absolute error between the predicted value and
the true value. )e value range of MAE is [0, +∞).
)e closer the MAE is to zero, the better the per-
formance of the model is.

MAE �
1
T

􏽘

T

t�1
Y

t
−

􏽢
Y

t
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (11)

(3) Accuracy (ACC) reflects the prediction accuracy of
the model. )e value range of ACC is [0, 1]. )e
closer the ACC is to 1, the better the performance of
the model is.

Accuracy � 1 −
􏽐

T
t�1 Y

t
−

􏽢
Y

t
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

􏽐
T
t�1 Y

t
. (12)

(4) Determination coefficient (R2) represents the quality
of model fitting. )e value range is [0, 1]. )e closer
the R2 is to 1, the better the model fits the data.

R
2
(Y, 􏽢Y) � 1 −

􏽐
T
t�1 Y

t
− 􏽢Yt􏼐 􏼑

2

􏽐
T
t�1 Yt − 􏽢Yt􏼐 􏼑

2. (13)

(5) Explained variance score (EVS) is the variance score
of the model. )e value range is [0, 1]. )e closer the
EVS is to 1, the better the independent variable can
explain the variance change of the dependent
variable.
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Figure 2: Schematic diagram of the GRU structure.

X +

X
X

1–Attention
Attention

ht–1

Xt

σ tanh

ht

rt ut
ct

Figure 3: Internal structure of the GRU after redesign.
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EVS � 1 −
􏽐

T
t�1 Var Y

t
−

􏽢
Y

t
􏼚 􏼛

􏽐
T
t�1 Var Y

t
􏽮 􏽯

, (14)

where Yt denotes the actual value of traffic data at the
time t and 􏽢Yt denotes the predicted value of traffic
data at the time t. Yt denotes the mean value of traffic
data, and T is the number of samples.

4.3. Experimental Parameters. In this experiment, we use a
deep learning server to configure the experimental envi-
ronment, in which the production type of CPU is AMD
Ryzen 52600, the production type of GPU is Nvidia
GT745M, the size of Memory is 16GB. In addition, Ten-
sorFlow is used to build the network framework and Python
is used as the programming environment. Table 2 lists the
detailed environment configuration parameters.

Further, we need to determine the model training pa-
rameters. In this experiment, Adam is chosen as the opti-
mizer, the learning rate is set to 0.001, and the epoch for
model training is 3000. As for the selection of the sliding
window length and the number of hidden units, theoreti-
cally, on the one hand, the larger the sliding window length
is, the larger the perception range will be, and the more
features will be predicted, which may cause some interfer-
ence to the accuracy of prediction. On the other hand, when
the number of hidden units increases to a certain extent, the
complexity and difficulty of model calculation will also
increase, and the accuracy of prediction will also decrease.

Considering that the sliding window length L and the
number of hidden units H have a significant impact on the
timeliness and accuracy of the traffic prediction, we com-
pared ACC and R2 under different L and H and obtained the
optimal sliding window length and the number of hidden
units under the current configuration.

Specifically, the optional range of sliding window length
L is set to [4,8,12,16], and by comparing the prediction
performance under different L conditions in Figure 7, we
obtain the optimal sliding window length, which is 8.)at is,
we use 8 historical network traffic data
(Xt−7, Xt−6, Xt−5, Xt−4, Xt−3, Xt−2, Xt−1, Xt) to predict future
traffic. Similarly, the optional range of the number of hidden
units H is set to [32,64,100,128], and by comparing the
prediction performance under different H conditions in
Figure 8, we obtain the optimal number of hidden units,
which is 100.

In conclusion, when the sliding window length is set to 8
and the number of hidden units is set to 100, the prediction
result is optimal. )erefore, the model training parameters
containing the above results are listed in detail in Table 3.

4.4. Result Analysis

4.4.1. Comparison Results between AGG Model with Other
Baseline Models. To verify the performance of AGG model,
80% of traffic data are selected as the training dataset, and
20% of traffic data are selected as the verification dataset.)e
comparison indicators are described in Section 4.2. In ad-
dition, five baseline models are selected including model-
driven methods and data-driven methods to compare with
the model proposed in this paper. )e comparison results
are listed in Table 4; because the sampling interval of the
traffic data is 10minutes, we use 10 minutes (one point) and
20minutes (two points) to carry out single-step prediction
and multistep prediction, respectively.

(1) Historical average model (HA), which models net-
work traffic as a periodic process to predict the time
series

(2) An autoregresive moving composite average model
(ARIMA), which is used to fit the time series into a
parameter model for completing the network traffic
prediction

(3) Support vector machine model (SVR), which adopts
the machine learning algorithm and uses historical
data to fit the relationship between input and output
and then predicts future network traffic data

(4) Gated recurrent unit (GRU), which is an efficient
solution to the gradients vanishing issue after a long
sequence of inputs

(5) GCN-GRU, which is a combination model com-
bining a graph convolution neural network (GCN)
and a gate control recursive unit (GRU)

Table 4 shows that the experimental indicators of the
AGG model proposed in this paper are significantly better
than those of other baseline models. To be specific, we have
the following:

(1) At the 10min prediction span, the AGG model
proposed in this paper has optimal values in RMSE,
MAE, ACC, R2, and EVS. For example, the RMSE of
the AGG model is 3.7% lower than that of the GCN-
GRUmodel, 4.2% lower than that of the GRUmodel,
5.5% lower than that of the SVR model, 6.3% lower
than that of the ARIMA model, and 14.7% lower
than that of the HA model. )e ACC of the AGG
model is 1.5% higher than that of the GCN-GRU
model, 2% higher than that of the GRU model, 2.3%
higher than that of the SVR model, 15.9% higher
than that of the ARIMAmodel, and 6.9% higher than
that of the HA model. )e AGG model proposed in
this paper has optimal values in RMSE, MAE, ACC,
R2, and EVS. It can be further seen that both AGG
and GRU are superior to model-driven traffic pre-
diction methods.

(2) At the 20min prediction span, the AGG model
proposed in this paper still has optimal values in
RMSE, MAE, ACC, R2, and EVS. For example, the
RMSE of the AGG model is 1.6% lower than that of

Table 1: Dataset.

Dataset Milan telephone service provider
City Milan
Time span 2013/11/01–2014/01/01
Time interval 10minutes
Grid size (100,100)

6 Security and Communication Networks



the GCN-GRU model, 1.7% lower than that of the
GRUmodel, 1.9% lower than that of the SVR model,
2.5% lower than that of the ARIMAmodel, and 7.4%
lower than that of the HA model. )e prediction
accuracy of the AGG model is 0.7% higher than that
of the GCN-GRUmodel, 1.8% higher than that of the
GRUmodel, 2.5% higher than that of the SVRmodel,
12.2% higher than that of the ARIMA model, and
3.5% higher than that of the HA model.

(3) It can be further concluded from the prediction
results that, in horizontal comparison, the data-
driven prediction methods, whether SVR or GRU,
are better than other model-driven methods. )is
result is due to the poor fitting ability of HA and
ARIMA for this long series of unstable data, while

the neural network models fit the nonlinear data
much better. In longitudinal comparison, the per-
formance indicators of the AGG model proposed in
this paper decrease with the increase of prediction
time, but the decline trend is relatively stable, and it
still has long-term prediction ability.

4.4.2. Influence of Spatial-Temporal Correlation and Atten-
tion Mechanism on Prediction Performance. In order to
further explore the influence of spatial-temporal correlation
and attention mechanism on prediction performance, two
experimental indicators, RMSE and ACC, are used to
compare AGG model with other baseline models at the
10min prediction scale, and the comparison results are
shown in Figures 7 and 8, respectively.

Figure 9 shows the comparison results of RMSE between
AGG model and other baseline models. )ese baseline models
include model-driven traffic prediction methods HA and
ARIMA, and data-driven traffic predictionmethods SVR,GRU,
and GCN-GRU. Specifically, RMSE of model-driven traffic
prediction method are 6.1774 (HA) and 5.6241 (ARIMA) re-
spectively, and RMSE of data-driven traffic prediction method
are 5.5817 (SVR), 5.4932 (GRU), 5.4761 (GCN-GRU), and
5.2721 (AGG), respectively. )erefore, RMSE on the whole
presents a downward trend, and the AGG model proposed in
this paper has the smallest RMSE, which means that the model
of spatial-temporal correlation and the introduction of an at-
tention mechanism are fundamental to reduce the RMSE of
network traffic prediction results.

Figure 10 shows the comparison results of ACC between
AGG model and other baseline models. )ese baseline models
are consistent with Figure 9. Specifically, ACC of model-driven
traffic prediction method are 0.6785 (HA) and 0.6264
(ARIMA), respectively, and ACC of data-driven traffic pre-
diction method are 0.7095 (SVR), 0.7114 (GRU), 0.7150 (GCN-
GRU), and 0.7256 (AGG), respectively. )erefore, ACC on the
whole presents an upward trend, and the AGGmodel proposed
in this paper has the largest RMSE, whichmeans that themodel
of spatial-temporal correlation and the introduction of an at-
tention mechanism are significant to improve the ACC of
network traffic prediction results.
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Figure 5: Grid and map of the area.
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Table 2: Environment configuration parameters.

Environment component Parameter
CPU production type AMD Ryzen 52600
GPU production type Nvidia GT745M
Memory size 16GB
TensorFlow version 1.4
Python version 3.7
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4.4.3. Analysis of Visual Results of Traffic Prediction. In
order to more intuitively see the prediction results of the
proposed AGGmodel, Figures 11 and 12, respectively, show
the traffic trend comparison diagram between the prediction
value and the true value of AGGmodel in 10min and 20min
prediction spans of area 2270. In the experiment, the sliding
window length is set to 8 and the number of hidden units is
set to 100, which has been proved in Section 4.3 that these
parameters are optimal.

It can be seen from Figures 11 and 12 that the AGG
model proposed in this paper has good prediction perfor-
mance, but it has the following two flaws. On the one hand,
the prediction result of network traffic at the peak is poor.
)e main reason is that the GCNmodel defines a smoothing

filter in the Fourier domain and captures the spatial char-
acteristics by continuously moving the filter and signal for
winding operation. )is process leads to smoother predic-
tion of the mutation region. On the other hand, there is a
certain error between the true network traffic data and the
prediction results. )e possible reason is that when there is
no communication at a certain time in the region, the value
of network traffic may be zero, or the value of network traffic
may be very small, and a small difference may cause a large
relative error. Further, by comparing Figures 11 and 12, we
can also get that, with the increase in the prediction time
scale, the fitting level between the prediction value and the
actual value also decreases, indicating that the small pre-
diction scale always has a better prediction effect.
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Figure 7: Performance comparison under different sliding window lengths.
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Table 3: Model training parameters.

Model component Parameter
Batch size 32
Learning rate 0.001
Training epoch 3000
Sliding window length 8
Hidden units 100

8 Security and Communication Networks



Table 4: Comparison results between AGG model with other baseline models.

T (min) Metric HA ARIMA SVR GRU GCN-GRU AGG

10

RMSE 6.1774 5.6241 5.5817 5.4932 5.4761 5.2721
MAE 3.2447 3.9729 2.8332 2.7525 2.7009 2.5788
ACC 0.6785 0.6264 0.7095 0.7114 0.7150 0.7256

R2 0.7613 0.0356 0.8051 0.8078 0.8124 0.8261
EVS 0.7613 0.0008 0.8065 0.8086 0.8125 0.8265

20

RMSE 6.1774 5.8655 5.8321 5.8211 5.8189 5.7209
MAE 3.2447 3.9767 2.9926 2.9836 2.9732 2.8362
ACC 0.6785 0.6262 0.6856 0.6898 0.6973 0.7024
R2 0.7613 0.0356 0.7749 0.7853 0.7888 0.7959
EVS 0.7613 0.0009 0.7896 0.7914 0.7931 0.7969
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Figure 9: Comparison results of RMSE between AGG model and other baseline models.
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5. Conclusion

In this paper, we propose a network traffic prediction
method combining GCN, GRU, and attention mechanism.
In this method, GCN is used to capture the network to-
pology to obtain the spatial features of network traffic. GRU
model is used to capture the dynamic changes of traffic on
nodes, so as to obtain the time features of network traffic.
Furthermore, the attention mechanism is used to weight the
historical traffic data to dynamically adjust the importance of
network traffic information at each sampling time. By using
the actual network traffic dataset to carry out the experiment
and comparing it with the baseline models such as HA,
ARIMA, SVR, GRU, and GCN-GRU, it can be concluded
that the AGGmodel proposed in this paper achieves the best
prediction effect under different performance indicators.

Data Availability

)is paper selects an open network traffic dataset, the
download address is https://dataverse.harvard.edu/dataset.
xhtml?persistentId�doi:10.7910/DVN/EGZHFV, and the
traffic collection time is from 00 : 00 on November 1, 2013, to
00 : 00 on January 1, 2014.
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Nowadays, botnet has become a threat in the area of cybersecurity, and, worse still, it is difficult to be detected in complex network
environments.+us, traffic analysis is adopted to detect the botnet since this kind of method is practical and effective; however, the
false rate is very high. +e reason is that normal traffic and botnet traffic are quite close to the border, making it so difficult to be
recognized. In this paper, we propose an algorithm based on a hybrid association rule to detect and classify the botnets, which can
calculate botnets’ boundary traffic features and receive effects in the identification between normal and botnet traffic ideally. First,
after collecting the data of different botnets in a laboratory, we analyze botnets traffic features by processing a data mining on it.
+e suspicious botnet traffic is filtered through DNS protocol, black and white list, and real-time feature filteringmethods. Second,
we analyze the correlation between domain names and IP addresses. Combining with the advantages of the existing time-based
detection methods, we do a global correlation analysis on the characteristics of botnets, to judge whether the detection objects can
be botnets according to these indicators. +en, we calculate these parameters, including the support, trust, and membership
functions for association rules, to determine which type of botnet it belongs to. Finally, we process the test by using the public
dataset and it turns out that the accuracy of our algorithm is higher.

1. Introduction

Botnet is a group of centrally controlled bots on the Internet,
and these computers using the botnet are called controlled
hosts, which are often utilized by hackers to launch a large-scale
cyberattack. +ese computers contain spams port scans,
phishing sites, etc. +e botnet host can also control the in-
formation stored in those computers, such as passwords of
bank account and social accounts. In the meantime, hackers
can also get the function of “access” of their computers easily.
No matter it is the safe operation of the network or the users’
data security protection, the botnets are perilous risks. How-
ever, current technology cannot recognize those botnets easily
for they are usually controlled by hackers long distantly. In
other words, users are often unaware of these hosts.

Nowadays, the main botnet detection algorithms are to
detect network traffic. +e existing detection methods have

some shortcomings, however. For instance, if we only rely on
bots’ similarity detection method, the result is prone to get
false. When it is difficult to determine the number of clusters
by using the clustering algorithm, we need to establish a
blacklist to complete the test. However, the blacklist depends
on the bot’s malicious attacks, and the efficiency of detection
will be quite low.

According to different classification criteria, there are
several classification methods of botnet detection: host-
based detection methods, network-traffic-based detection
method, and real-time detection methods. Host-based de-
tection methods detect botnets by analyzing information
logs and acting on the host. Because botnets will bring a
series of changes while running, such as changing the
registry, skipping the firewall, establishing a network con-
nection, bypassing intrusion detection, and turning off
antivirus software[1]. System changes caused by bots and
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legal programs are very different; thus, some research de-
tected botnets by analyzing the host information [2–5].

Host-based detection method detects at a faster speed
but with a lower cost. However, to apply host-based de-
tection, the method needs to install specific software on each
host, indicating its poor expansibility and adaptability. In
addition, because of the various information in hosts, the
formats of different operating systems are not the same
information sources, which make this method difficult to be
adopted.+erefore, the detectionmethods based on network
traffic become the mainstream. Moreover, there is a method
combining host and network traffic, and we can get the
details from the literature [6, 7].

Methods based on network traffic detection can be di-
vided into two types: active detection and passive detection.
Active detection sends probe packets to the Internet to detect
the existence of bots, while passive detection collects net-
work traffic passively, analyzing and processing network
traffic to detect botnets after that.

Active detection method has higher detection effi-
ciency, it can detect whether there exists a botnet swiftly.
However, the active detection method has some obvious
shortcomings: the probe packets sent with the help of this
method will add additional traffic to the network. It means
that attackers can easily find them out and then avoid
being detected.

In most of the time, passive detection technology can
acquire network traffic from the measured network core,
switch firstly, then analyze and process the collected traffic,
and finally detect botnets. Passive detection technology will
not generate extra traffic, and so attackers will not find it
easily.

+e detection method based on real-time reduces the
detection time to a few seconds [8] without affecting the
detection accuracy. Because of Botnets’ long delay in the
HTTP response, it can be used as a result of request re-
laying through the botnet proxy. +is process usually
takes extra time, and the nodes associated with the botnet
agent have relatively limited calculating capability and
network bandwidth. +e real-time detection method may
produce a relatively high false alarm rate because it may
misclassify a legitimate web server as a malicious domain
name.

2. Related Work

In our previous research [9], we have proposed an effective
botnet detection method based on fuzzy association rules
(FARR). +is method can calculate the features of botnet
traffic accurately, which can be used to recognize the normal
traffic and botnet traffic, while the false alarm rate is rela-
tively high.

Perdisciet et al [10] suggested that we should adopt the
real-time tracking method (including queries) of DNS
traffic, collect DNS responses by inserting monitors at some
key positions in the ISP network, and analyze the traffic to
facilitate searching for the coverage area of the botnet. +e
C4.5 decision tree classifier is used to classify the domain
names. Different from the active detection method, the

advantage of this method is that it does not create extra load
on network resources to form active DNS queries and re-
quests. It also makes it impossible for botnet attackers to
detect these traces. However, such systems have a high false
rate relatively. In addition, the detection delay of this
technique is longer than any other task.

Tyagi and Aghila [11] proposed an analysis-based de-
tection technique (ABDT) specifically for detecting botnets
using a geographically dispersed set of proxy hosts with
FFSN. HT Wang et al. [12] proposed a method for identi-
fying botnets in real time by using a Local Spatial Geo-
location Detection (LSGD) system, while also using
Autonomous System Numbers (ASNs) to enhance localized
geographic features. Huang et al. [13] proposed a Spatial
Snapshot Fast-Flux Detection (SSFD) system based on two
new spatial measuring methods: spatial distribution esti-
mation and spatial service relationship evaluation. +is
system can capture the geographic location of the host, and
the IP addresses from the response to the DNS response are
mapping to the geographic coordinate system to detect the
fast-flux botnets in real time and mitigate the harm caused
by it.

Kang et al. [14] proposed a method of passive P2P
monitor (PPM) which can identify the infected host’s
firewall or NAT. +is method is derived from the authors of
the study after the Storm Botnet, that is, the probability of
establishing the coverage model (probability-based coverage
model). +e authors also utilized a verification tool (Firewall
Checker, FWC) to verify the result of the identification.
Research results suggest that 40% of the infected hosts are
being used after a firewall or a NAT.

Saad et al. [15, 16] adopted the method of feature ex-
traction of network traffic to detect P2P botnets, and this
paper presents a dozen of feature values of network traffic,
including the length of load average packet, the number of
packets switching, and packet averaging intervals. +en they
used machine learning methods to build a classifier to detect
P2P botnets.

Wang et al. [17] proposed a fuzzy recognition algorithm
to detect botnets. +e paper points out that they regularly
have DNS traffic and TCP traffic, and there are three steps to
detect botnets: first, reducing the traffic to improve the
detection efficiency; second, distributing the data packet
whose feature is regarding the total number of DNS queries
and the number of failures of DNS queries as the feature of
DNS traffic. Meanwhile, we use TCP queries and response
time distribution, the total number of TCP queries, and TCP
data stream size distribution as TCP traffic’s feature. Finally,
we utilize the fuzzy recognition algorithm to detect domain
names and IP addresses associated with botnets, thereby
detecting botnets.

To solve the above problems, we propose a hybrid as-
sociation rule algorithm to detect and classify the botnets. It
includes global associations and fuzzy associations, and it
also adds the detection of fast-flux botnets. Global associ-
ations can detect whether the data are a botnet, and fuzzy
associations use global associations to determine what type
of botnet it is. +e results show that we can detect botnets
quite well, to classify the botnets well.
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3. Our Approach

According to the characteristics of traffic in a high-speed
network environment, we propose a suspicious traffic fil-
tering method based on real-time characteristics to reduce
the total traffic that the system needs to process, the re-
sources’ consumptions, and improve the system perfor-
mance. Taking the limitations of time-based detection
methods currently into consideration, a hybrid association
botnets detection method is derived according to the global
association features extracted from the idea of bipartite
graphs and combining local time features with fuzzy rec-
ognition. It includes global associations and fuzzy associa-
tions, which is shown clearly in Figure 1.

In global association, we analyze the global association
between domain names and IP addresses, and we apply
XGBoost machine learning algorithm with high detection
speed and accuracy to botnet’s detection to improve the
accuracy of detection further. Consequently, it also enriches
the botnet’s dimension of the feature vector, breaks the
limitations of the current research methods, improves de-
tection efficiency and accuracy, and reduces detection false
alarms and the rate of false alarms.

In fuzzy recognition, we have to divide the extracted
features in a strict way. More specifically, different levels
represent different degrees, the closer the botnet, the closer
the level of optimization features to the botnet. According to
the fuzzy algorithm principle of the maximum degree of
membership, we can determine the attributes of the dataset.
We also propose botnet association rules based on support
and confidence formulae, and they can be used for mining
association rules between botnets’ features, which help us to
determine the type of botnets and recognize normal and
abnormal data.

3.1. Data Type. We set up botnet environment and collect
data through public datasets. 36 normal datasets, 33 botnets
datasets, 3 public botnets datasets [18], and 13 public botnets
datasets [19] are collected together and shown in Table 1. We
collected data and published three datasets for doing traffic
analysis, and these abnormal datasets contain IRC, HTTP,
P2P, fast-flux, and other botnets.

Besides, we utilize the real blacklist to access the traffic
generated and the ISOT botnets’ data collection and re-
combination and then utilize the TCPReplay tool to highly
simulate the high-speed environment and replay the com-
bined data stream packets. +e high-speed network envi-
ronment used in the test utilizes TCPReplay tool to simulate
a 1Gbps network and a 10Gbps network, respectively.
Table 2 shows the sources for collecting blacklists.

At this stage, the malicious domain names were collected
for up to 48 hours. To increase the diversity of data, the top
500 popular domain names of Alexa [20] were selected for
collection, and a 2.32GB data stream package was chosen.

3.2. Traffic Filtering. +e real-time suspicious traffic filtering
method combines the advantages of black/white list and
general real-time feature filtering of botnets to enhance the

real-time and relative accuracy of filtering. In a complex
network environment, the real-time detection of suspicious
botnet domain names can further reduce and clean up
complex DNS traffic, to provide an effective DNS data
stream for the subsequent accurate detection, improve the
system’s speed of filtering DNS traffic, and reduce the
overhead of system resources. Table 1 indicates the pro-
cessing flow of the suspicious traffic filtering method based
on real-time characteristics.

+e real-time filtering methods for DNS traffic are here
mentioned as follows:

(1) Protocol Filtering.+e DNS parsing service uses port
53 for data transmission.+erefore, the first step is to
use port 53 and the DNS packet header to filter DNS
traffic.

(2) Black and White Lists’ Filtering. +e DNS traffic
generated by most users on the Internet is harmless.
A whitelist-based filtering method can filter a large
amount of benign DNS access data, to reduce the
data that the algorithm will use quickly and in real-
time. Speaking of a specific fast-flux botnet real-time
detection method that cannot distinguish the defects
of the CND network and the fast-flux network, we
use the first 100,000 domain names of Alexa, which
can filter most CDN networks. +e blacklist can
directly filter malicious domain names, then alert the
user and store it in the blacklist database, which
provides technical support for mixed association
botnet detection methods.

(3) 0e Real-Time Feature Filtering of Botnets. In real-
time detection of botnets, feature vectors relatively
are used to improve the real-time performance of the
detection algorithm. However, due to the similarity
between the CDN network and the fast-flux botnet,
the real-time detection method has a high false
positive rate and false negative rate. +is article
summarizes some general characteristics of real-time
detection based botnets, relaxes filtering rules,
eliminates false alarms, and filters suspicious fast-
flux traffic, to provide accurate and effective data for
the following algorithms, which can improve the
detection performance and effectiveness.

3.3. Feature Extraction. We divide the crawling traffic into
UDP and TCP flow by following UDP and TCP protocols so
that we can count and analyze each flow and packet of
datasets. A large number of bots will send a control message
to the controlled host. +erefore, when the controlled host
accepts messages, it will send it as a response to the bots,
where there will be a lot of problems of traffic functions, for
instance, a packet being sent successfully, packet trans-
mission time intervals, large amounts of data emanating
from the same port, but not containing specific ports.

+e method proposed by Wang et al. [17] is inactive
botnets, and it changes DNS intervals by the impact of bots.
Based on this work, we propose a new method to analyze the
TCP protocol of PSH and UDP protocol by utilizing the

Security and Communication Networks 3



DNS response intervals. If there is no active botnet, there is
no data needed to transmit, and PSH will be 0. +e pro-
portion of PSH in the dataset has changed, and DNS re-
sponse will have a fixed interval. +is will also affect the
proportion of the TCP data’s, and the source IP ratio will
change greatly. When botnet’s network node changes or
controlled host strengthens defense, it will affect the success
rate of data transmission. Some botnets transmit data
through the C & C server, which relates to the existence of a
specific port. Among the fixed TCP ports, the fixed UDP
port, and interval DNS request, one is Boolean attribute,
while another is a quantitative attributes.

In the TCP process, we need to analyze the following
features, and Table 3 shows the related statistics.

We also select real-time function to further refine DNS
traffic after the filtering of black/white lists. Paper [21]
mentioned if any DNS A records TTL� 0, that domain will
be marked as suspicious. If the TTL is not 0, we use the real-
time characteristics in Table 4 to classify the domain into
suspicious domain names or benign domain names. In each
DNS response, both the A record and the NS record have a
TTL field, which is used to specify the response retention
time, or it means the effective intervals of the DNS cache.

Although the RFC suggests calculating the minimum TTL in
days, most legitimate high-availability websites use TTL
values between 600 and 3600 seconds.

It is worth noting that in some fast-flux botnets, to
change the IP address and IP of NS servers quickly, the
attacker usually uses a TTL value of less than 300 seconds so
that bots can connect to C & C hosts in time. In addition, to
achieve the better load balancing and higher fault tolerance
ability, the existing content distribution and Round-Robin
DNS (RRDNS) networks usually have a smaller TTL value.
Table 5 shows the TTL values of the types of network A’s
records.

Most benign Fully Qualified Domain Names (FQDNs)
are mapped to even closer hosts and are part of the same
ASN. Some fast-flux zombie hosts are geographically dis-
persed on the Internet randomly. +eir characteristics be-
long to different autonomous systems.+e A and NS records
for domain names also occupy some more countries.
+erefore, all IP addresses of a domain have the same ASN
and country/region, which means that the domain is legal;
otherwise, it may be suspicious. Table 6 lists and shows the
number of ASN distributions and country distributions of
benign and fast-flux domain names.

Traffic
data 

DNS-based filtering

Black and white list
based filtering 

Filtering based on
real-time features 

Filtering system 

Global-based
association

Fuzzy-based
association

Hybrid association

Benign

Abnormal

Figure 1: Botnet detection and classification process.

Table 1: Botnet type, number, and name.

Type Amount Botnet name
Normal 33 Normal (ISCX+ ISOT)
IRC botnet 24 Neris, Rbot, Menti, Murlo, Tbot, IRC ISCX
HTTP botnets 7 Virut, Sogou
P2P botnets 12 NSIS.ay, SMTP Spam, Zeus (C & C), UDP Storm, Zeus, Zero access, Weasel
PS botnets 3 Zeus
Fast-flux botnets 3 Waledac

Table 2: Blacklist.

Blacklist Source
1 DNS Blackhole http://www.malwaredomains.com
2 Spam http://untroubled.org/spam
3 Phish http://www.phishtank.com
4 Zeus malicious domain names http://www.malwaredomainlist.com/forums/index.php
5 ZEUS tracker https://zeustracker.abuse.ch/blocklist.php
6 Malicious domain names http://www.abuse.ch/
7 Long-term malicious domain names http://www.malwaredomains.com/wordpress/?p�1282
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In the fast-flux botnet, the IP address corresponding to
the domain name is constantly changing. +e global asso-
ciation mapping between the extracted domain name and
the IP address is shown in Figure 2. +e central points in the
figure represent the domain name nodes, and the divergent
nodes are represented as IP nodes. +e global feature ex-
traction is shown in Table 7.

3.4. Clustering Features and Dividing the Boundaries.
Effective botnet’s feature discretization is the key to the
mining association rules; it is completely based on the
method of part K to support the existence of inadequacies,
especially when dealing with the difficulty in reflecting the
actual distribution result from the high skewness of data

effectively. +ere are excellent demarcation features on the
division of the interval. +erefore, by using the FCM al-
gorithm, we divide eight botnets features (including
quantitative and Boolean attributes) into number of fuzzy
sets; then, such fuzzy sets can convert between a set of el-
ements and nonelements, to achieve softening the feature
attributes of demarcation. When dealing with high skewness
of data, FCM algorithm can effectively reflect the actual
distribution of the data.

To classify the botnet features accurately, we must use
various types of botnet datasets. In the FCM clustering of
botnet matrix, 50 iterations, we divide it into five categories,
and sizes of the center are divided into higher, high, me-
dium, low, and lower, represented by numbers 5, 4, 3, 2, 1,

Table 3: Botnet features.

TCP protocol

PSH� 1 proportion the dataset
TCP packet incoming and outgoing ratio

ICMP success rate of sending
Containing a specific TCP port, such as 6665,6667,8000,9000

Source IP proportion

UDP protocol
DNS request interval 90–110 s

+e same UDP port proportion of all ports
+e highest proportion of fixed UDP port

Table 4: Selection of global correlation features.

Category Description

TTL value A recorded survival time
NS recorded survival time

+e diversity of ASN Diversity of ASN (autonomous domain number) of IP address in a record
Diversity of ASN (autonomous domain number) of IP addresses in NS records

Number of IP addresses Number of IP addresses in the a record
Number of name server IP addresses in NS records

Table 5: TTL for fast-flux and high-availability networks.

Fast-flux botnets High-performance benign
network

Domain name TTL (s) Domain name TTL (s)
jaaphram.com 60 yahoo.com 1574
p-alpha.ooo.al 60 google.com 52
prtscrinsertcn.net 60 youtube.com 129
Entryrxshop.com 300 baidu.com 455
towardplian.com 120 163.com 444
gty5.ru 542 microsoft.com 3600
mp3for-you.com 60 huya.com 600

Table 6: ASN and country distribution number of fast-flux and
normal domain names.

Fast-flux botnets High-performance benign
network

Domain name ASN Country Domain name ASN Country
leddamp.com 98 54 taobao.com 1 1
envoyee.com 112 31 renren.com 1 1
spampro.info 55 23 qq.com 1 1
leolati.com 102 30 baidu.com 2 1

Figure 2: Association map of suspicious mapping of malicious
domain names based on DNS Map.
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respectively. Based on the calculated botnets feature matrix
and the center, the level of fuzzy sets can be determined by
comparing the size of each of the centers. +e largest center
of fuzzy sets corresponding to the maximum level and the
largest center of the corresponding elements of the matrix
rows is the botnet ambiguity on fuzzy set maximum level.
We list the feature PSH and ICMP’s original datasets and
classify those fuzzy sets. According to the different features
of botnets classification, we can conclude the membership of
each dataset’s features, which means the features of botnets
are different from each other. In other words, because of the
different botnet’s control nodes, the way of delivering
messages, sending commands, and controlling the con-
trolled host should be different.

We use fuzzy clustering to divide the quantitative fea-
tures of botnets into five ranges, and we use the same
quantitative feature values as the target dataset. In each
interval in each class, the maximum and minimum values
are taken as a maximum and a minimum range respectively.
+us, the quantitative attributes of Botnets could be divided
into five ranges. In these fuzzy intervals, we can better re-
spond to the actual distribution of botnet functions.

After analyzing all botnet datasets, we found that most
botnets are at a lower level in PSH function. TCP packet
incoming and outgoing ratio stay at two different points, one
is at a high level while another is lower. We believe that
different botnets have different proportions; IP source
distribution is mainly in the higher level, and ICMP success
rate is in a lower level, while the same UDP port functions

are still in the lower level. DNS intervals, TCP, and UDP
fixed port are distributed evenly.

With the basis of the conclusions acquired before, we
divided the definition of this characteristic range dataset into
five levels: higher, high, medium, low, and lower. +ese five
levels represent the probability of Botnets as very high, high,
medium, low, and very low, respectively. In Boolean fea-
tures, we use different types of statistical methods to assess
each level. Finally, we obtain a more accurate range of Botnet
features, as it is shown in Table 8.

4. Association Rules for Botnet Recognition

In most botnets existing between features and feature
necessary links, some are very closely linked while some are
not, so our goal is to find features linked closely.

4.1. Botnet FuzzyAssociationRules. According to the level of
the dataset to be divided, the numerical feature values will be
converted into approximate Boolean feature values.

We set the botnet dataset feature dimension as p, class
label dimension as q, then

X � y1, . . . , yp􏽮 􏽯,

Y � yp+1, . . . , yp+q􏽮 􏽯.
(1)

Botnet datasets and class labels can be expressed as

S � sj � (X, Y)j � y1, . . . , yp; yp+1, . . . , yp+q􏼐 􏼑
j

� yj1, . . . , yjp; yj(p+1), . . . , yj(p+q)􏼐 􏼑|j � 1, . . . , n􏼚 􏼛. (2)

Fuzzy sets of botnets features and class labels can be
expressed as

MF � A
k
m yjm􏼐 􏼑|j � 1, . . . , n; m � 1, . . . , p + q; k � 1, . . . , kjm􏽮 􏽯. (3)

+en,

FSup(X) � 􏽘
n

j�1
􏽙

p

m�1
tj ym( 􏼁 � 􏽘

n

j�1
􏽙

p

m�1
max

k�1,...,kjm

A
k
m yjm􏼐 􏼑􏽮 􏽯.

(4)
Fuzzy association rule “X⇒Y” fuzzy support is calcu-

lated by

FSup � 􏽘
n

j�1
􏽙

p+q

m�1
tj ym( 􏼁 � 􏽘

n

j�1
􏽙

p+q

m�1
max

k�1,...,kjm

A
k
m yjm􏼐 􏼑􏽮 􏽯. (5)

Fuzzy association rule “X⇒Y” fuzzy confidence is cal-
culated by

Fconf �
FSup(X∪Y)

FSup(X)
. (6)

Table 7: Selection of global correlation features.

Category Description

Number of nodes Number of IP addresses
Number of FQDN

Node degree Maximum and average degrees of FQDN nodes
Betweenness Betweenness FQDN node’s largest IP node intermediary centrality
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We define the minimum support as equal to 0.06 and
minimum confidence equal to 0.2, which is a meaningful
association rule. According to the different features of dif-
ferent memberships and formula, we calculate the botnet’s
association rules. Antecedents i1, i2, i3, i4, i5, i6, i7, i9, i10
represent 10 botnet features; then, the i10 indicates the
datasets’ types: normal, Botnet, IRC, P2P, HTTP, Fast-Flux,
Mix (IRC, P2P, HTTP, and PS), and part of fuzzy association
rules. i9 represents fast-flux botnet TTL< 300. i10 represents
fast-flux botnet number of ASN distributions >2. As shown
in Table 9, if X is A, then Y is B, X� {i1, i2, i3, i4, i5, i6, i7, i8},
Y� {i11}, A represents the association rules, and B represents
the properties of Y.

Selecting meaningful association rules from the table of
analysis, we can obtain flag i6, i7, i8, which are used to
determine the flag of botnets. Normal dataset features i6, i7,
i8 are all equal to 0, which is a high degree of confidence.

After calculation, we get FSup (i7)� 0.72, FConf (i7)�

0.566, which can be explained in the botnet.+e same source
IP distribution must be accounted for a large proportion of
the whole IP, which explains the bots will always continue to
send information to the target host.

Botnet featuresi6, i7, i8for IRC botnet also have strong
association rules. It can be used to identify IRC Botnets. In
other features, we can find IRC Botnets being divided into
two categories, the first is the lower the transmission effects
are, the lower incoming packets outgoing ratio will be. +e
source IP distribution is obvious and there are DNS requests
frequently, indicating that this type of IRC botnets has
breakpoints in network nodes. In other words, controlled
hosts add defensive measures to prevent bots’ control. +e
second category is that the botnet has high efficiency of
transmitting data. Transmission data packet also increased,
indicating that this type of Botnets is very active.

When i3 � 3∧i5 � 3∧i8 �1, i9 � http botnet and
support� 6.1% and confidence� 50%. +e proportion of
http botnet explained in the same UDP port and the pro-
portion of port number 0&161 have obvious characteristics.
For identifying the http botnet, it has great help.

When i1 � 2∧i2 �1∧i5 � 1∧i6 � 1∧i8 � 0,� i9mixed botnet.
At this time, support� 11.5% and confidence� 42.8%.

It is noteworthy that when i4 � 1, ICMP has a high
success rate. It may also be associated with a strong botnet or
a normal dataset.

4.2. Detection of Botnets Based on Hybrid Associations.
Hybrid association detection is a more accurate analysis and
detection of filtered suspicious network traffic. First, we
check whether there exists a botnet in the controlled

network; then, the global feature correlation and local fea-
ture mixingmethods are utilized to detect the botnet. For the
lack of botnet detection, it greatly improves the detection
accuracy and efficiency of botnets.

Based on the characteristics of global association and
according to the idea of bipartite graph, we observe the
global association relationship between the domain name
and its mapped IP in a certain period of time. If the IP
address hosting the malicious domain name (fast-flux do-
main name) hosts another unknown domain name, the
unknown domain name may also be malicious. Because the
fast-flux domain name will map a large number of IP ad-
dresses, and attackers can utilize more domain names to
organize the fast-flux network. Using the association rela-
tionship, we can find the emerging and dying fast-flux
domain names. We utilize the DNSMap tool to extract the
global mapping relationship between domain names and IP
addresses and then calculate the global correlation features,
which can enrich the feature vector dimension of the fast-
flux botnet.

According to the characteristics of botnets, local char-
acteristics based on time are obtained by parsing DNS data
packets and doing statistics on related data. Based on the
real-time detection method, we analyze the DNS, and fast-
flux domain names can be detected by obtaining 3-4
characteristics. However, the rapid development of existing
CDN networks and RRDNS networks has shown the same
trend as fast-flux networks’ characteristics, so an amount of
false alarms is generated during real-time detection. +e
time-based feature extraction method mainly counts

Table 8: Botnet features of range.

Features Higher High Medium Low Lower
PSH� 1 0–4.2% 18.5–32.7% 66.8–84.4% 94.3–100% 44.1–47.1%
TCP packet IN/OUT 122.8–160% 0–22.2% 25.1–58.2% 75.9–97.2% 218–230%
Source IP 18.5–36.4% 70.0–82.1% 0–8% 85.5–89.9% 57.5–59.4%
ICMP rate 0–8.5% 35.7–42.4% 27–25.2% 98.9–99.9% 92.9–97.2%
UDP port 0–9.7% 38.5–52.8% 66.7–71% 84.7–100% 22.3–36.3%

Table 9: Part meaningful association rules.

Rules FSup FConf
i6 � 1̂i7 � 1̂i8 � 1�>� IRC 0.091 0.261
i6 � 1̂i7 � 1̂i8 � 0�>i11 � IRC 0.091 0.200
i1 � 1̂i2 � 5̂i6 � 0̂i7 �1�>� IRC 0.091 0.261
i1 � 4̂i2 � 1̂c� 1, i7 � 1�>� IRC 0.091 0.261
i6 � 0�>� IRC 0.393 0.684
i7 � 1�>� IRC 0.424 0.736
i8 � 1�>� IRC 0.424 0.736
i6 � 0̂i7 � 0̂i8 � 0�>�Normal 0.530 0.97
i1 � 2̂i2 � 5̂i6 � 0�>� P2P 0.375 0.50
i1 � 2̂i2 � 1̂i5 � 1̂i6 � 1̂i8 � 0�>i11 �Mix 0.109 0.42
i3 � 3̂i5 � 3̂i8 �1�>i9 �HTTP 0.061 0.50
i3 � 5�>i11 � botnet 0.472 0.566
i4 � 1�>� botnet 0.303 0.606
i11 � 1�>� normal 0.470 0.939
i9 � 1̂i10 � 1�>� Fast-flux 0.236 0.710
i9 � 1̂i10 � 0�>� normal 0.391 0.452
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information such as the number and growth of IP addresses
corresponding to botnet domain names over a period of
time, together with the size and average value of TTL values
corresponding to domain names. +erefore, although the
time-based detection method uses time for detecting, it
reduces the false alarm and false alarm rate of the system,
which is acceptable in a large high-speed network
environment.

During our experiments, we selected 7582 experimental
data, which included 77 fast-flux botnet domain names and
7505 benign legal domain names. At the same time, the
XGBoost learning algorithm is used for training the data and
establishing the optimal classification model.

+en, this experiment verifies the extracted features by
doing research on it, mainly to verify the validity of the
features based on global correlation. We duplicate the
extracted feature dataset into two duplicates, one of which
removes the global associated features and only retains the
time-based features, while another retains all features. +en
we perform ten-fold cross-validation on the feature dataset
by utilizing XGBoost machine learning algorithm. Figure 3
shows the accuracy and precision in the case of ten-fold
cross-validation.

From Figure 3, we can find that after removing the global
correlation features, the detection accuracy and precision
have decreased in the case of using ten-fold cross-validation,
which have dropped by 2.2% and 2.3%, respectively. At the
same time, the number and the rate of false alarms have also
decreased. It can be figured out that it is very helpful to
improve the detection accuracy and efficiency based on
global correlation features.

5. Method Comparison

According to our association rules, the test has already been
done with the help of the public data [19]. +e accuracy rate
can reach 98.2%, and the comparison of various algorithms
is shown in Table 10. TPR (true-positive rate) can be un-
derstood as how many of all positive classes in the result are
predicted to be positive classes in our experiment (correct
positive class prediction). FPR (false-positive rate) can be

understood as how many of all negative classes in the result
are predicted to be positive classes in our experiment (wrong
positive class predictions). We can figure out that using our
algorithm to identify the advantages of botnets receives great
effects. Meanwhile, it can also mine in their rules deeply,
especially for IRC and fast-flux botnets. +e reason of it is
that we are looking for functions similar to those of IRC and
fast-flux botnets.

6. Conclusion

+is paper proposes a new hybrid association method to
detect and classify botnets. +is method can well solve the
boundary and classification problems of botnets and normal
data. +is new detection algorithm contains four steps. First,
the collected traffic is filtered by using a suspicious DNS
protocol, black/white lists, and real-time function moni-
toring, which can greatly reduce the detection overhead and
improve the detection efficiency. +e second is feature ex-
traction for filtered traffic, and it ranges from time-related
functions and domain name functions to basic traffic
functions. +e third is performing global correlation and
using machine learning to identify botnets. Finally, we make

Global correlation experiment

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Preserve global associationsRemove global associations

Accuracy
Precision

Figure 3: Accuracy and precision in the case of ten-fold cross-
validation.

Table 10: Comparison of results.
Public datasets scene 1, IRC botnet

Method TNR FPR
BH 0.5 ＜0.0
CA1 0.9 ＜0.0
BCLus 0.5 0.4
FARR 0.9 0.1
Hybrid association 0.9 ＜0.0

Public datasets scene 2, IRC botnet
Method TNR FPR
BH 0.99 ＜0.0
CA1 0.9 ＜0.0
BCLus 0.7 0.2
FARR 0.9 0.1
Hybrid association 0.9 ＜0.0

Public datasets scene 6, PS botnet
Method TNR FPR
BH 0.99 ＜0.0
CA1 0.9 ＜0.0
BCLus 0.8 0.2
FARR 0.7 0.2
Hybrid association 0.8 0.1

Public datasets scene 9, MIX botnet
Method TNR FPR
BH 0.99 ＜0.0
CA1 0.9 ＜0.0
BCLus 0.6 0.3
FARR 0.8 0.1
Hybrid association 0.8 ＜0.0

Fast-flux datasets
Method TNR FPR
BH 0.99 ＜0.0
CA1 0.9 ＜0.0
BCLus 0.6 0.3
FARR 0.8 0.1
Hybrid association 0.9 ＜0.0
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the botnets fuzzy associated, determine the association rules
by calculating the support and trust degree, and then classify
those botnets after that. In botnets’ classification, we use
various functions between support and confidence degree to
filter association rules. We can classify not only IRC and
HTTP botnets, but new ones including P2P and fast-flux
botnets.

Our next task is to study the double fast-flux botnet and
detect it.

Data Availability

+e normal and abnormal botnet traffic.pcap data used to
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With the great changes in network scale and network topology, the difficulty of DDoS attack detection increases significantly.
Most of the methods proposed in the past rarely considered the real-time, adaptive ability, and other practical issues in the real-
world network attack detection environment. In this paper, we proposed a real-time adaptive DDoS attack detection method RT-
SAD, based on the response to the external network when attacked. We designed a feature extraction method based on sketch and
an adaptive updating algorithm, which makes the method suitable for the high-speed network environment. Experiment results
show that our method can detect DDoS attacks using sampled Netflowunder high-speed network environment, with good real-
time performance, low resource consumption, and high detection accuracy.

1. Introduction

Distributed denial of service (DDoS) attack has been one of
the most difficult attacks in the network. DDoS attacks can
interrupt the network service temporarily or even make the
system break down. DDoS attacks are usually launched by
botnet devices. In recent years, the number of IoT devices is
increasing rapidly, which are more vulnerable [1] than
traditional network equipment. *e IoT botnet expands the
scales of DDoS attacks significantly. In 2016, DNS service
provider Dyn was attacked bymassive IoTdevices controlled
by Mirai Botnet, which directly led to a large area of services
unavailable on the east coast of the United States. Another
difficulty in defense against DDoS attacks is the rise of re-
flection amplification attacks. In 2018, GitHub was attacked
by a reflection amplification DDoS attack by leveraging the
Memcached protocol vulnerability, with the reflection
multiple as high as 50,000 times and the peak traffic of
1.35 Tbps.

According to Akamai’s annual summary [2] of DDoS
attacks in 2020, the number of large-scale DDoS attacks has
increased significantly. In the largest DDoS attack event [3],

the attack traffic has reached 1.44 Tbps, and the attack is very
complex. It is necessary to combine multiple mitigation
methods as soon as possible to block the attack. However, for
large-scale DDoS attacks, it is difficult to deploy attack
detection and defense devices near the victims for effective
defense. A more effective way is to collect traffic and detect
DDoS attacks on the backbone network.

In the past decades, researchers have proposed many
detection methods for DDoS attacks. Most of the existing
methods are based on machine learning or deep learning.
*ese methods need to train the model on a large number of
labeled network traffic data in advance to ensure the ac-
curacy of attack detection. However, there are some prob-
lems in these methods:

(a) At present, new attack vectors are constantly being
mined. For example, at the end of July 2020, the FBI
issued an alert [4] that CoAP, WS-DDARMS, and
other protocols may be used to launch DDoS attacks.
DDoS attacks based on new attack vectors may have
great changes in the statistical characteristics such as
packet speed and packet spacing used in traditional
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methods, which makes traditional methods less
adaptable to different attacks.

(b) Most of the models need to be trained in advance
before they are used for detection. If the network
environment changes, the current network traffic
may not follow the data distribution of the pre-
trained model. At this time, the traditional methods
need to retrain the model to maintain high accu-
racy. However, in the scene of attack detection in
the backbone network of operators, it is very dif-
ficult to obtain labeled data and retrain the model
frequently. In addition, it is also difficult to de-
termine the right time to update the detection
model.

(c) For DDoS attack detection method design and
performance evaluation, most of the methods only
consider the detection accuracy, false alarm rate, and
false alarm rate but do not consider the real-time
performance and resource consumption of the
method. Although their methods can work in small
DDoS attacks simulated by tools such as hping3 [5]
and LOIC [6], they did not consider the performance
of such methods in the real-world high-speed net-
work environment, like the ISP network.

In order to adapt to various types of DDoS attacks in the
high-speed network environment, we propose an real-time
adaptive DDoS detection method based on sketch for ISP
network. *e method implements dynamic adjustments of
parameters of the detection model according to the current
network situation, and realizes the real-time adaptive DDoS
detection in a high-speed network. Compared with the
previous DDoS attack detection method, the main contri-
butions in this paper are as follows:

(1) We proposed an adaptive DDoS attack detection
algorithm, which can update the model adaptively
according to the network situation without manually
setting the detection threshold parameters in
advance.

(2) We collected high-speed network traffic from the
real-world backbone network boundary. In addition,
we sampled the network traffic at different rates to
make it closer to the real-world network detection
environment.

(3) We evaluated our detection method in compre-
hensive aspects, including the resource consump-
tion, the real-time performance which rarely
appeared in previous work.

*e rest of this paper is arranged as follows: Section 2
describes the related work. Section 3 introduces the attack
detection method. Section 4 is the experiment and verifi-
cation. Section 5 is the summary and prospect.

2. Related Work

DDoS attack detection is different from the deployment of
detection points, which can be divided into source detection,

intermediate network detection, and victim detection. Some
of the work is summarized as follows:

(1) For the scene of DDoS attack detection at the attack
source, Mergendahl et al. [7] proposed an improved
FR-WARD method based on D-WARD for IoT
environment, which can accurately detect and de-
fend DDoS attacks and reduce the retransmission
overhead of benign IoT devices. Tang et al. [8]
proposed a framework FDDA for fast detection and
defense of DDoS attacks in the web application
environment. *ey used the DBSCAN method to
establish the blacklist in the scanning stage, which
makes attack mitigation faster. Biswas et al. [9]
proposed a DDoS attack detection method based on
behavior similarity between virtual machines for
DDoS attacks in the data center.

(2) For the scene of DDoS attack detection at the victim
end, Rahmani et al. [10] proposed a statistical
method based on network anomaly and joint en-
tropy of multiservice distribution, which judges the
occurrence of attacks by measuring the statistical
correlation between the time series of the number of
IP flows and the total traffic size. Compared with
some methods only using the traffic size, the method
has fewer false positives. Mallikarjunan et al. [11]
used PCA to reduce the dimension of features and
tested the accuracy of machine learning algorithms
such as naive Bayes, j48, and random forest on the
data set created by the author. *e results show that
the performance of naive Bayes is better. Aamir et al.
[12] used a semisupervisedmachine learningmethod
to cluster the data using traffic rate, processing delay,
and CPU utilization information collected by the
victim.

(3) For the scene of DDoS attack detection at the in-
termediate network, Barati et al. [13] proposed a
DDoS attack detection algorithm based on hybrid
machine learning. *e method uses a genetic algo-
rithm to select features and the multilayer perception
(MLP) in ANN to detect attacks. *e accuracy of the
algorithm is higher than that of the simple machine
learning algorithm. Yusof et al. [14] proposed a
method of attack detection of PTA-SVM, by com-
biningSVM with data packet threshold algorithm
(PTA). Compared with the improved k-means and
logistic regression technology, the PTA-SVM
method has a smaller false alarm rate and higher
accuracy.

Attack detection in ISP level large-scale network envi-
ronments is a typical example of intermediate network
detection. Compared with the other two attack scenes, more
network traffic data can be obtained in intermediate network
detection, which makes the detection more accurate and
flexible. However, at the same time, the network traffic
collected in the intermediate network is larger and the
network flow rate is faster, which puts forward higher re-
quirements for the feature storage and calculation.
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Many researchers focus on sampling technology for the
measurement and statistics of the high-speed network. Ujjan
et al. [15] used deep learning, with sFlow sampling and
adaptive polling sampling, to detect DDoS attacks. Biswas
et al. [9] proposed a flow grouping method based on the
behavior similarity between virtual machines and combined
with the optimization solver to specify a better sampling rate.
*e main work of our paper is to focus on the use of light
features and based on sketch to achieve high-speed network
traffic processing.

In the implementation of DDoS attack detection
methods, most of the methods are based on machine
learning. Zekri et al. [16] proposed an attack detection al-
gorithm based on decision tree in the cloud environment.
Both Hou et al. [17] and Filho et al. [18] used the random
forest method to identify attacks. *e method proposed by
Idhammad et al. [19] combines entropy estimation with
Extra-Trees to detect DDoS attacks.

In addition, some researchers have compared different
machine learning methods. For example, Priya et al. [20]
used three classification algorithms KNN, Random Forest,
and Naive Bayesian to detect DDoS Attacks based on the
features of incremental time and packet size. Saini et al. [21]
used random forest algorithm, Naive Bayes algorithm, and
j48 algorithm to detect attacks, and the j48 algorithm
produced the best results.

*ere are also some works based on deep learning. *e
method proposed by Doshi et al. [22] uses a combination of
deep learning and support vector machine to detect attacks.
Yuan et al. [23] proposed a DDoS attack detection method
based on the recurrent neural network (RNN).

Since most of these methods are supervised or semi-
supervised, it is time-consuming to training the classifier on
a large amount of network traffic data. *erefore, real-time
detection is not guaranteed if the algorithm is deployed in a
high-speed network.

Given above, we propose a real-time sketch-based
adaptive DDoS detection method. We address more practical
issues in real-world detection, such as real-time performance
and adaptive ability in the high-speed network environment.

3. Real-Time Sketch-Based Adaptive
DDoS Detection

In this paper, we designed an adaptive DDoS attack de-
tection method named RT-SAD, which is based on the
asymmetry of network traffic when DDoS attacks occur.

*is section is divided into four parts. Firstly, we will
describe the overall framework of the detection method.
Secondly, we will explain the principle of attack detection.
Finally, we will introduce the realization of two core
functions: feature statistics and model updating.

3.1. Overview. *e overall architecture of this DDoS de-
tection system is shown in Figure 1. *e system is mainly
composed of the feature statistics module, the attack

detection module, and the model updating module, which is
implemented based on sketches.

In the detection process, multiple flow records in fixed
time intervals will form a time window. When each flow
record in the time window arrives, it will go through the
feature statistics module first. Two sketch tables in the
module work together to realize the statistics and update
asymmetric flow features. After the feature statistics, the
attack detection module will use three sketch tables to
detect the attack. *e three tables used in the detection
module are dynamically updated. After the detection
module detects all the flow records in a time window, the
model updating module will start to work. *e module
updates the predictive value and threshold of the current
window by learning the features of the history window.*e
predictive value and threshold used in the next time
window for attack detection are the updated predictive
value and threshold.

*e meanings and functions of the five sketch tables in
the detection system are shown in Table 1.

In the next part of the article, we will introduce the
principle of attack detection in detail.

3.2.AttackDetection. In the network communication model
of client-server, there should be both requests and responses.
When the server suffers a DDoS attack, the request traffic
sent by the botnet will be much larger than the response
traffic returned by the server. Because the attacker wants to
exhaust the resources of the server as much as possible, the
network traffic between clients and the server will show the
phenomenon of asymmetry.

In order to quantify the asymmetry of network flow, we
propose a quantitative method of asymmetry. We use a pair
of IP addresses to represent the flow record. As shown in
Figure 2, there are bidirection data transfers between IP-A
and IP-C, so it is considered that the request from A to C is
normal. As for IP-B and IP-C, there is only traffic from B to
C and no traffic from C to B, it is considered that traffic
between IP-B and IP-C is asymmetric. And in the current
time window, the asymmetric flow feature of IP-C will be
increased by 1.

After the analysis of real network traffic, we found that
when a DDoS attack occurs, the victim server usually cannot
respond to all the clients. *ere will be a large number of
one-way traffic whose destination address is the victim host.
*at is, when a DDoS attack occurs, the value of asymmetric
feature corresponding to some IP addresses will be signif-
icantly higher than the normal situation, as shown in Fig-
ure 3. In this paper, we mainly use asymmetric of traffic to
detect DDoS attacks.

*e complete attack detection process is shown in
Figure 4. *ere are two important parts during the detection
process. One is the feature statistics and attack detection
when each flow record arrives, and the other is the model
updating process, including predicted value update and
threshold update at the end of the current time window.
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Table 1: Function of sketch.

Sketch name Meaning Function
Stat_Asym *e asymmetric flow features of destination IP To complete the statistical function of feature in a single time windowStat_Exist *e existence of SIP and DIP
Detect_Asym *e feature value in the attack detection window

To provide the judgment conditions for the attack detection module to
work

Detect_Pred *e predicted value in the attack detection
window

Detect_*ld *e threshold value in the attack detection
window

Model update

Detect_Pred

Feature estimation 

Stat_Asym

Stat_Exist

Detect_Thld

Detect_Asym

Detect_Thld
Update

Update

After the current time window 
is finished, the threshold and 
predicted value are updated

Detect_Pred

Update

Attack detection

Figure 1: Overall architecture.
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Figure 2: Definition of asymmetric flow.
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*e two important parts are as follows:

(1) When a flow record (SIP and DIP) arrives at the
detection system, the system will first update the
feature corresponding to the DIP in the current
window. And then the system will use the feature of
DIP, the predicted value, and the threshold calcu-
lated according to the feature in the history window,
to identify whether the destination IP address in the
current flow record is suffering from DDoS attacks.
*e system will give an attack warning of the victim
IP if the detection result is true.

(2) At the end of the current time window, the system
will update the predicted value and threshold of the
feature corresponding to the flow records, and the
update is only for the normal IP without attack
warning, while the feature of attacked IP will not be
updated until they return to normal.

*e specific detection method is shown as Algorithm 1.
*e next part of this paper will describe the algorithm

and implementation of feature statistics and model
updating.

3.3. Sketch-BasedEstimation ofAsymmetric Flows. As shown
in Figure 1, we use two Sketch tables, Stat_Asym and
Stat_Exist to record and update the features of asymmetric
flows corresponding to IP in the current time window. More
specifically, Stat_Asym is used to record the actual asym-
metric flow value of each IP, and stat_ Exist is used to record
the existence of IP pairs (SIP and DIP).

Figure 5 shows the statistics and update rules of the
features. When the flow record arrives, the system will
update the Stat_Asym according to the existence of IP pairs
recorded in Stat_Exist.

More specifically, for arriving flow record (SIP and DIP),
the system finds the values of Stat_Exist[SIP|DIP] and
Stat_Exist[DIP|SIP], respectively, which represents the ex-
istence of two tuples (SIP and DIP) and (DIP and SIP), and
updates the current asymmetric feature according to the
different existence conditions of these IP pairs. *e value of
Stat_Exist represents the existence of IP pairs. If Stat_Exist
[SIP|DIP] is 0, it means that the traffic corresponding to the
tuple (SIP and DIP) has not appeared in this time window. If
the value is greater than 0, it means that the traffic corre-
sponding to the tuple (SIP and DIP) has appeared in this
time window.

*ere are four combinations of Stat_Exist[SIP|DIP] and
Stat_Exist[DIP|SIP]. In the attack detection process, we
mainly focus on whether the destination IP is attacked; that
is, we mainly consider the asymmetric feature of DIP, so
only in some cases, the system needs to update the
Stat_Exist. *e specific update algorithm is shown in
Algorithm 2.

After the above steps, the statistics and updates of fea-
tures are completed. Sketch Stat_Asym[DIP] represents the
feature value corresponding to DIP in the current time
window.

3.4.ModelUpdating. At the end of the current time window,
the detection system will update the predicted value,
threshold, and model parameters. In the system imple-
mentation, the sketch table Detect_*ld is responsible for
the storage of threshold, and the calculation of threshold is
related to the sequence of historical residuals
(res1, res2, . . . , resn). *e residuals of an IP in the time
window m, resm, means the difference between the feature
value and the predicted feature value.

*e threshold corresponding to an IP in the current
window is calculated by three-sigma rule, as shown in the
following equation:

threshold � mean(residual) + 3∗ std_dev(residual),
(1)

where residual refers to the sequence of historical residuals
(res1, res2, . . . , resn). *e mean (residual) is the average
value of the historical residual sequence. *e
std_dev(residual) is the standard deviation of the historical
residual sequence.

For the storage and update of dynamic threshold, if the
historical values of residuals corresponding to all IP in the
past n windows are completely recorded and then the mean
and variance of residuals are calculated, too much storage
space will be consumed. *erefore, in order to save re-
sources as much as possible, the residual values in all the
latest n historical time windows are not directly recorded,
but the threshold values are updated by rolling update. And
the variance and mean values in multiple historical win-
dows are replaced by progressive variance and mean values.
In this paper, the online mean and variance algorithm
proposed by Welford [24] is used. *e specific formula is
shown as

NetFlow
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Figure 4: DDoS attack detection process.
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meann (X) � meann−1(X) +
x − meann−1(X)

n
, (2)

where X is a random variable, x is the nth number of X, and
meann (X) represents the mean of the first n numbers in X.

*e progressive variance calculation method is shown as

VarDn(X) � VarDn−1(X)

+ x − meann−1(X)( 􏼁 x − meann(X)( 􏼁,

(3)

Varn(X) �
VarDn(X)

n
, (4)

where X is a random variable, x is the nth number of X,
meann (X) represents the mean of the first n numbers in X,
and Varn(X) represents the variance of the first n numbers
in X.

In order to improve the calculation accuracy, only the
intermediate value VarDn(X) is recorded, which will be
used to calculate the variance value. *erefore, we only need
to record the progressive mean value, the progressive var-
iance median value, and the number of cycles to update the
mean value and variance.

In the process of threshold calculation, the predicted
value used in the calculation also needs to be updated
adaptively. *e system uses the table Detect_Pred to record
and update the predicted value. *e update rule adopts a
simple and efficient single exponential smoothing method,
as shown in

predAsymValnew[IP] � (1 − α)∗ predAsymValold[IP]

+ α∗ currAsymVal
(5)

where predAsymValold[IP] is the predicted value of the old
asymmetric flow number features of the current IP, and the
new one is predAsymValNew [IP]; currAsymVal is the
number of asymmetric flows corresponding to the IP in the
current window.

*e value of parameter α in the single exponential
smoothing formula is usually set to a specific value between
0.3 and 0.7, but this setting method does not take into
account the changes of the current traffic and detection
situation. *e method in the paper updates α by learning the

historical traffic by adopting a specific strategy. *e specific
parameter value update algorithm is shown in Algorithm 3.

*e above strategy, used to update the α parameter, can
make the system recover as soon as possible after the oc-
currence of false positives, to reduce the possibility of
continuous false positives caused by one false positive.

In the current system, we set αmin � 0.3, αmax � 0.7, and
Δα � 0.1.

4. Experiment and Evaluation

4.1. Dataset. *e experiment dataset is a mixture of the
background network traffic collected from the real-world
backbone network and the attack traffic generated by stress
testing tool:

(1) In the mixed traffic, the background traffic data are
collected from the CERNET backbone network for
60 minutes. In addition, we only intercepted the first
64 bytes of each packet. *e intercepted data are
about 83GB, the total amount of original data is
about 1373GB, and the actual flow rate is about
3Gbps.

(2) *e attack traffic data in the mixed traffic are
composed of 13 kinds of network layer and transport
layer DDoS attack traffic, including UDP Flood,
UDP Fragmentation Flood, ICMP Flood, ICMP
Fragmentation Flood, TCP SYN Flood, TCP-SYN
ACK Flood, TCP ACK Flood, TCP ACK Frag-
mentation Flood, TCP PUSH ACK Flood, TCP RST
Flood, TCP FIN Flood, TCP URG Flood, and
X_MAS Flood. *e attack traffic is generated by
stress testing tool and mixed with normal back-
ground traffic at different time points. *e scale of
each attack traffic is about 1Gbps, and the IP number
of the attack target is 5.

*e network flow speed under different sampling rates in
this experiment is shown in Table 2.

4.2. Evaluation Criteria. Our solution uses the sliding
window method in the detection process, so we use the time
window as the unit to evaluate our experiment result.
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In the whole attack detection process, there are four
kinds of detection results corresponding to the actual data
for the current window, as shown in Table 3.

In each subsequent experiment, we use three indicators
to evaluate the effectiveness of the method, namely, accuracy
rate (AR), false positive rate (FPR), and false negative rate
(MR).

4.3. Resource Evaluation. In this paper, the sampling tech-
nique and probability data structure in high-speed network
measurement are used to optimize the cost of storage and
computing resources. In order to evaluate the resource cost
of the proposed algorithm, we conducted two experiments,
sampling rate experiment and sketch size experiment. *e
sketch experiment is to evaluate the detection performance
of the algorithm when using different sizes of sketch data
structures. *e sampling rate experiment evaluates the de-
tection performance of the algorithm for network traffic data
with different sampling rates.

*e size of the sketch will have an impact on the accuracy
of the detection algorithm. *erefore, our sketch resource
consumption experiment mainly compares the detection
performance of the algorithm by setting a fixed sampling
rate and selecting different sizes of the sketch. *e sampling
rate of the experiment data is 10 :1, and the size of the sliding
window is 1 second. Under this configuration, the number of
flows per second is about 9000 without attack and 17,000
under attack.*erefore, the sketch size is set to the following
five groups, ranging from 212 (4K) to 215 (32K). *e ex-
periment results are shown in Table 4.

Under this condition, when the sketch size is 213 or
higher, the algorithm can achieve better results. At the same
time, if we want to get better performance, we need to
consume more storage resources. In practice, we need to
select an appropriate sketch size according to current net-
work flow speed and current hardware performance.

In the case of a high-speed network, the performance of
the detection algorithm not only depends on the complexity
of its own algorithm but also has a great relationship with the

current flow speed. In order to make the network flow speed
match the processing flow speed of the algorithm as much as
possible, we conducted four groups of experiments using the
mixed network flow with different sampling rates: 10 :1, 20 :
1, 100 :1, and 200 :1.

*e size of the sketch is 215, and the size of the detection
window is 1 second. Table 5 shows the performance results
of the detection algorithm under different sampling rates.

It can be seen from the experiment results that when the
algorithm configuration is appropriate, it has good detection
performance for different sampling rates of network traffic.

4.4. Real-TimeDDoSDetection. In order to evaluate the real-
time performance of the algorithm for DDoS attack de-
tection, we design a real-time evaluation experiment. We
take the time from attack occurrence to detection algorithm
alarm as the experiment measurement criteria. eWe tested
the detection time of the current algorithm for different
sampling rates, and the experiment results are shown in
Table 6.

From the experiment results, it can be seen that in the
current experiment, the algorithm has good real-time per-
formance for the different sampling rates of network traffic.
In addition, as the sampling rate increases, the number of
flows per unit time decreases, so the processing efficiency of
the algorithm increases and the detection time decreases.

4.5. Results on Different DDoS Attack Detection. In order to
evaluate the applicability of our algorithm for different
DDoS attacks, we designed an attack detection applicability
experiment. In this experiment, we generate attack traffic for
each attack and then mix it into the background traffic
separately to detect the performance. *e results of the
performance for different attacks are shown in Table 7, with
the sketch size of 215 and sampling rate of 10 :1.

From the experiment results, it can be seen that the
algorithm has higher detection accuracy for different types
of the network layer and transport layer DDoS attacks with
lower false alarm rate and missing alarm rate.

Input: NetFlow Record, Sketch Detect_Asym, Detect_Pred, Detect_*ld
Output: DDoS attack detection results
(1) while Current window not end do
(2) Get a NetFlow record (SIP, DIP)

(3) Update the Detect Asym [DIP] by using (SIP, DIP)

(4) Residual = abs (Detect Pred [DIP] − Detect Asym [DIP])
(5) if Residual >Detect Thld[DIP] then
(6) Alert of DDoS
(7) else
(8) Put the DIP into Update_Set
(9) end if
(10) end while
(11) for each DIP in Update_Set do
(12) Update Detect_Pred [DIP]

(13) Update Detect Thld[DIP]

(14) end for

ALGORITHM 1: DDoS attack detection algorithm.
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Table 2: Flow speed with the different sampling rates.

Sampling rate
Flow speed/flows per second

Without attack Under attack
10 :1 9476 17,418
20 :1 5403 9382
100 :1 1351 2151
200 :1 727 1132

Input: Sketch Stat_Exist, Stat_Asym
Output: Sketch Stat_Exist, Stat_Asym

(1) if Stat_Exist[SIP|DIP] � 0 then
(2) Stat_Exist[SIP|DIP]= Stat_Exist[SIP|DIP]+ 1
(3) if Stat_Exist[DIP|SIP] � 0 then
(4) Stat_Asym[SIP]= Stat_Asym[SIP]+ 1
(5) end if
(6) if Stat_Exist[DIP|SIP] > 0 then
(7) Stat_Asym[SIP]= Stat_Asym[SIP] − 1
(8) end if
(9) end if

ALGORITHM 2: Feature updating algorithm.

Input: Current residual res, Historical residual sequence res_list, Δα, α, αmin, αmax
Output: α

(1) if res>mean(res list) + 3∗ std dev(res list) then
(2) if α< αmaxthen
(3) α= α+Δα
(4) end if
(5) else if res<mean(res list) + std dev(res list) then
(6) if α> αmin then
(7) α= α−Δα
(8) end if
(9) end if

ALGORITHM 3: Parameter value α update algorithm.

Table 3: Confusion matrix.

Algorithm detection results in the current window
Attack detected No attack detected

Actual situation in
current window

Under attack Correct (TP) Failing to report (FN)
Without attack Wrong report (FP) Correct (TN)

Table 4: Performance of different sketch sizes.

Sketch size AR (%) FPR (%) MR
212 89.87 14.03 0
213 96.89 4.34 0
214 99.82 0.24 0
215 99.77 0.32 0

Table 5: Performance of different sampling rates.

Sampling rate AR (%) FPR (%) MR (%)
10 :1 99.77 0.32 0
20 :1 99.77 0.12 0.48
100 :1 99.11 0 2.98
200 :1 99.88 0 0.39
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5. Conclusions

Given the current threat of DDoS attacks, we propose a real-
time DDoS attack detection method based on sketch for
intermediate networks. In this paper, the sketch is used to
record and update the features which are needed for attack
detection, and the adaptive threshold of the feature is dy-
namically updated by the historical network traffic. *e
experiment results show that the method has good per-
formance in accuracy, resource consumption, and real-time
performance. At the same time, there are still some im-
provements in this method, such as adaptive network traffic
sampling and adaptive size adjustment of sketch structure
changed with the network situation. *is is also the content
of our following work.
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