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Integrating Radio Positioning and
Communications: New Synergies

Wireless communications and positioning systems and ser-
vices, although often coexisting into the same terminal and
sharing to some extent signal formats, have different con-
straints to cope with. Communications systems usually target
high spectral efficiency (in terms of data rate per occupied
bandwidth) with specific requirements such as low latency,
low bit error rate, and low power consumption. Positioning
terminals either base their functionality on very accurate
synchronization with the received signals for acquisition and
tracking, or they derive location information from previous
knowledge of the wireless system or even obtain their
position from knowledge of the radio propagation channel.
The two technologies have different goals and, therefore,
achieve different solutions.

However, communications and localization have a high
potential to benefit from each other and appear more and
more to be intertwined. This holds for physical (PHY) and
medium access control (MAC) layer issues as well as for
the application layer. The convergence of communications
and positioning in the PHY and MAC layers have gradually
attracted research interest and represent the enabling factor
for the application layer. In fact, positioning information
is an emerging “must-have” for numerous applications in
smart phones (location-based applications), and companies
are developing their business models on the ubiquitous
access of data and of position information. Mobile radio
services are already using nowadays positioning information
for intelligent transport systems, location sensitive billing,
and location-based advertising, just to mention a few.

The papers in this special issue represent a valid snapshot
of current research in the field, showing the new synergies of
integrated radio positioning and wireless communications.

The papers are grouped into three clusters: (i) practical
investigations in real networks to show the performance
gains based on fingerprinting techniques, (ii) focusing on
the coexistence of different communications systems and
global navigation satellite systems (GNSS), and (iii) underlay
cognitive radio system using positioning information to
support the secondary user.

In the first group of papers, the studies are carried out
by practical investigations focusing on trials and realisation
effort.

I. Ahriz et al. study handset localization with high accu-
racies by using 2G cellular mobile radio systems. The paper
focuses on an indoor environment—urban apartments—
to support health care applications. All GSM carriers are
used as fingerprints. Even by reducing the numbers of
GSM carriers that are exploited for received signal strength
(RSS) fingerprinting to less than 10% of the full set, the
performances were still in a reasonable range.

S. Spinella et al. focus on the indoor environment as well
and show an example of combining WLAN and RFID to aid
one another. WLAN is employed to build a fingerprinting
signal map to position the device. The RFID tags allow
splitting the area into zones that support the fingerprinting
algorithm to further gain in speed and accuracy. The theoret-
ical results were evaluated and confirmed in a measurement
campaign.

The second group of papers investigates systems that
use GNSS as part of their evaluation. B. Motella et al.
assess the impact of interference due to communications



2 International Journal of Navigation and Observation

systems transmitting in close bandwidths to GNSS signals.
The impact on GNSS is quantified by using interference error
envelopes which measure the correlation of the distortion
versus the characteristic of the interferer.

The next paper by C. Mensing et al. explores GNSS
critical environments. The ubiquitous available cellular
mobile radio systems are capitalized to improve acquisition
and tracking of the position of the mobile phone. In
addition, the mobility of the user is used to track the
mobile phone and help to overcome the signal loss of GNSS
in GNSS denied environments (e.g., urban canyons). The
performance evaluation for the mobile radio differs between
the different areas in a cellular radio system, for instance,
proximity of the base station or cell edge.

The hybridization of multiple signal sources through
nonlinear filters is studied by C. Fritsche and A. Klein.
The authors apply their data-fusion algorithms to (raw)
measurements in terms of time and received signal strength
(RSS) from 2G mobile radio systems as well as to partial
information (pseudoranges) coming from GNSS systems.
The baseline assumption is that the radio base stations are
all synchronized (based on GNSS timing information). They
show that hybridization improves the localization method
by increasing the accuracy of the global positioning system
(GPS) in severe scenarios.

S. Sergi et al. discuss a ranging technique based on RSS for
indoor scenarios by clustering mobile phones. The mobile
phones perform ranging by using multiple measurement
links (multiple base stations), and clustering is the enabling
factor to attain reasonably accurate positioning.

Finally, N. Yi et al. investigate the concept of underlay
cognitive radios (UCRs) which allows a secondary user to
enter a primary user’s spectrum. A location-aided UCR
physical-layer model is established and analyzed. The posi-
tioning information is linked to the channel quality, and the
knowledge of the terminal position is used to study new
spectrum and power allocation techniques to optimize the
capacity of the secondary user as well as the capacity penalty
of the first user.

We would like to thank all authors and reviewers for
their contributions. We do hope that this special issue
may serve to promote further research in this new and
exciting area. Finally, we would like to acknowledge the EU
Research Projects WHERE (Contract no. 217033) and NEW-
COM++ (Contract no. 216715) which aim at inspiring the
development of new position-aware procedures to enhance
the efficiency of communications networks and of new
positioning algorithms based both on (outdoor or indoor)
wireless communications and on satellite navigation systems.

Ronald Raulefs
Simon Plass
Marco Luise



Hindawi Publishing Corporation
International Journal of Navigation and Observation
Volume 2010, Article ID 497829, 7 pages
doi:10.1155/2010/497829

Research Article

Full-Band GSM Fingerprints for Indoor Localization Using
a Machine Learning Approach

Iness Ahriz,1 Yacine Oussar,1 Bruce Denby,2, 1 and Gérard Dreyfus1

1 Signal Processing and Machine Learning (SIGMA) Laboratory, ESPCI—ParisTech, 10 rue Vauquelin, 75005 Paris, France
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Indoor handset localization in an urban apartment setting is studied using GSM trace mobile measurements. Nearest-neighbor,
Support Vector Machine, Multilayer Perceptron, and Gaussian Process classifiers are compared. The linear Support Vector Machine
provides mean room classification accuracy of almost 98% when all GSM carriers are used. To our knowledge, ours is the first study
to use fingerprints containing all GSM carriers, as well as the first to suggest that GSM can be useful for localization of very high
performance.

1. Introduction

Location-based services for cellular telephone networks are
today very much in the public eye [1]. Global Positioning
System, or GPS, receivers integrated into cellular handsets
can provide very accurate positioning information; however,
few mobiles are so equipped at present, and GPS furthermore
performs poorly in the indoor and urban canyon environ-
ments which are prevalent in wireless networks. For these
reasons, the study of localization techniques based upon the
radio networks themselves is also a very active area. Most
commercially installed systems still rely on cell-ID, in which
the mobile station’s position is reported as that of the serving
base station. Although improvement is possible using trian-
gulation, time of arrival, and the like, the accuracy of such
methods is in practice compromised by the path loss and
multipath characteristics inherent in the radio channel [2].

The database correlation method [3] allows to overcome
channel effects to a certain extent. In this method, a mobile is
localized by comparing one of the regularly emitted Received
Signal Strength (RSS) measurements to a position-labelled
database of such measurements, which are often called
fingerprints. Existing localization services implemented in
some GSM networks rely on Network Measurement Reports
(NMR), which are a part of the GSM norm and contain the
RSS and Base Station Identity Code (BSIC) of the serving

cell and six strongest neighboring cells. The resulting 7-
component vector allows a localization precision of some
tens of meters in outdoor environments (see, e.g., [4, 5]).

As for indoor radio-based localization, most studies
which have appeared in the literature have involved WiFi
networks, describing “corridor waveguide” scenarios in
the workplace, and obtaining performance which, though
interesting, can still be improved [6–8]. Another approach,
using the household power lines as an antenna, appears
in [9]. The notion of using GSM or CDMA networks for
localization in indoor environments, particularly in domestic
settings, is still somewhat new (see, e.g., [10, 11]). The
basic idea is that inside a building, the RSS of the external
base stations will be strongly correlated with a mobile’s
exact position, due to for example the varying absorption
of electromagnetic energy by different building materials,
and the exact placement of doors and windows. There has
also been evidence that including more than the standard 7-
carriers of the NMR fingerprint is advantageous in indoor
GSM localization [10, 12].

In this article, we present tests of indoor GSM localiza-
tion using scans containing large numbers of carriers—up
to the full GSM band. In order to keep working with such
large numbers of carriers tractable, we propose to create a
mathematical model mapping fingerprints to position using
machine-learning techniques, in this case Support Vector
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Machines (SVM), and Multilayer Perceptrons (MLP), often
also referred to as neural networks. We demonstrate the
superiority of the machine learning approach, for problems
with such high input dimensionality, over more traditional
classifiers based on Euclidean (K-Nearest Neighbor) and
Mahalanobis (Gaussian process) distances. Our results show
that in an urban apartment setting, the room in which
a handset is located can be identified with nearly 98%
accuracy when the full set of GSM carriers is included. To
our knowledge, this study, which is an extension of that
described in [12], is the first to use fingerprints of all carriers
in the GSM band, and the first to demonstrate very good
performance on indoor localization using GSM.

The structure of the article is as follows. The data
sets used in our study are presented in Section 2, while a
discussion of preprocessing and the classifiers tested are given
in Section 3. Our results are discussed in Section 4, while
our conclusion, as well as some perspectives for the future
is outlined in the final section.

2. Data Sets

The TEMS [14] trace mobile system was used to take twice-
daily scans of the entire set of 498 GSM carriers in 5 rooms
of a 5th floor apartment (top floor) in Paris, France. Both the
RSS and the BSIC, where readable, were requested for each
carrier in the scans. The layout of the apartment is shown
in Figure 1. Acquisitions could be made anywhere within a
room; however, in practice, the scans were recorded in those
areas where the necessary laptop and cellphone could be
conveniently set down and accessed. An exhaustive coverage
of all rooms was thus not assured.

3. Data Analysis

3.1. Preprocessing. Ten of the carriers were found to contain
no energy and were removed from the study. As the BSICs
of the remaining 488 proved unreadable in many instances,
a decision was made to exclude the BSICs entirely from the
subsequent analysis, despite the possibility this engenders
of confusing carriers at the same frequency in separate
cellular motifs. The data set contained a total of 241 scans—
approximately 48 scans per class, where a class is defined
here simply as the index of the room within the apartment,
indicated in Figure 1. To obtain a measure of the statistical
significance of our classification results, cross-validation was
performed with ten independent randomly selected splits of
our data, each one containing 169 training examples and
72 validation examples. In a given split, the training and
validation examples were uniformly distributed over time
during the one-month acquisition period.

3.2. Dimensionality Reduction and Fingerprint Types. The
relatively small size of our dataset is a reflection of the
difficult, time-consuming nature of obtaining labeled scan
data—a point to which we will return later. Its high
dimensionality (488 carriers) also limits the complexity of
the classifiers which may be applied. To deal with these

issues, signal strength-based carrier selection was initially
carried out so as to define the four fingerprint types defined
below. Further dimensionality reduction of any fingerprint
can be obtained by a subsequent application of Principal
Component Analysis (PCA).

Three vectors are used in defining the fingerprints:

g7
j =

⎧
⎨

⎩
i = 1 · · · 488,

∑

k

1RSS(i, j)<RSS(k, j) ≤ 6

⎫
⎬

⎭
,

G7 =
⋃

j

g7
j ,

G35 =
⎧
⎨

⎩
i = 1 · · · 488,

∑

k

1〈RSS(i, j)〉 j<〈RSS(k, j)〉 j ≤ 34

⎫
⎬

⎭
,

(1)

where 1 is the so-called indicator function, and 〈〉 j represents
the mean over the index j. The first, g7

j , contains the indices
of the 7 strongest carriers, i, in example j. The vector G7,
composed of the indices of the carriers which were among
the strongest 7 in at least one scan of the training set, contains
between 36 and 40 of such “good” carriers, depending upon
the random split used. The third vector, G35, consists of the
indices of the 35 carriers which were the strongest on average,
over the whole training set. The fingerprints may then be
defined as follows.

(1) Current Top 7. These seven carrier fingerprints, RSS(g7
j ),

are meant to mimic standard “top 7” NMRs, which were
not present in our scans. Indeed, NMRs are only logged
during a communication, while our scans were obtained in
idle mode. Validation set fingerprints can in fact contain
less than 7 elements if certain carriers were not represented
in the training set. For classifiers requiring fixed labeling
of input vectors, such as KNN, SVM, and MLP, the seven
RSS(g7

j ), values are entered at the corresponding positions in
a vector of length ‖G7‖, and the rest of the elements are set to
zero.

(2) Top 7 with Memory. This fingerprint, defined as RSS(G7),
includes the values of all of the 36–40 “good” carriers; they
are thus “wider” than the Current Top 7 fingerprint defined
above.

(3) 35 Best Overall. The 35 Best Overall fingerprint, of length
35, is defined as RSS(G35). It thus gives another way of
assessing the “goodness” of a carrier, by the size of its average
RSS value over the whole training set.

(4) All 488. All of the active carriers’ RSS values are included
in the fingerprint, that is, no selection is in fact made.

3.3. Classifiers. Four types of classifier were tested:

(1) Support Vector Machines (SVM). A 2-class SVM classifier
[15] finds the separating surface which maximizes the
distance (or “margin”) between that surface and the data
points on either side of it. The SVM can be linear and operate
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Figure 1: Schematic of apartment layout.

directly upon the data, or first map the data onto a higher-
dimensional space using a non-linear transformation, before
finding the maximum margin surface. The SVM decision
rule takes the sign of

f (x) =
Ns∑

i=1

αi yiK(si, x) + b (2)

with x the RSS vector to be localized, Ns the number
of support vectors si (training vectors which are on the
boundary of the optimal margin), and yi = ±1 the class label
of the vector si. K(·) here is the selected kernel, and b as
well as the αi are parameters determined in the search for the
optimal separating surface. For large, well-behaved data sets,
the SVM rule approximates the Bayes decision rule [15].

In the case of a linear SVM, the kernel function is just the
scalar product K(si, x) = si ·x. The standard Gaussian kernel
was adopted in our tests of non-linear SVMs,

K(si, x) = e−|si−x|2/σ2
, (3)

where the variance, σ2, is optimized in the cross-validation
stage. Since a “soft margin” approach was used (i.e., some
training examples were allowed to lie within the margin),
a regularization parameter controlling the complexity of
the separating surface [15] was also estimated by cross-
validation. For m classes, it is traditional, using the “conven-
tional recipe” [16], to construct m binary, one-versus-rest
classifiers, and take as the output class that of the classifier
having the largest output value before thresholding. This
procedure is illustrated for the case of m = 5 in Figure 2.
The Spider SVM package [17] was used in all of our analyses.

(2) Multilayer Perceptron (MLP). A multilayer Perceptron is
a multivariate, nonlinear, scalar or vector function, which
is a combination of parameterized elementary nonlinear
functions called neurons [18]. A neuron is usually a function
of the form f = tanh(θ · x) where θ is the vector of
parameters of the neuron and x is the vector of variables. A
single-output “multilayer Perceptron” g(x) is a combination
of Nh “hidden” neurons fi(i = 1 to Nh) and of a constant
equal to 1. Denoting by Θ1 the vector of parameters of the
linear combination (of size Nh + 1), by Θ2 the (N + 1,Nh)
matrix whose elements are the parameters of the “hidden”
neurons, and by f the vector (of size Nh+1) of functions
computed by the Nh hidden neurons with an additional
component equal to 1, the multilayer Perceptron function is
of the form

g(x) = h(Θ1 · f(Θ2x)). (4)

Multilayer Perceptrons are frequently described pictorially as
shown in Figure 3.

The parameters of the multilayer Perceptron are esti-
mated from the available training data by minimizing the
least squared cost function

J(Θ1,Θ2) =
n∑

k=1

(
yk − g(xk)

)2 (5)

with respect to all parameters, where xk is the vector of
variables pertaining to example k and yk is the measured
value of the quantity of interest for example k. In the present
study, the gradient of the cost function was computed by
a computationally efficient algorithm known as “backprop-
agation”, and the optimization of the cost function was
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Figure 3: A multilayer Perceptron with a single output.

performed by the conjugate gradient algorithm with Powell-
Beale restarts [19].

In a two-class (A, B) classification problem, yk = +1 for
all examples of class A and yk = −1 for all examples of the
other class. After training, an unknown example described
by vector x is assigned to class A if sgn(g(x)) = +1, and
to class B otherwise. In the present study, function h was
taken identical to function f. For a c-class problem, example
k, belonging to class i (1 ≤ i ≤ c), is assigned a vector yk,
of dimension c, that encodes the class in a 1-out-of-c code:
all components are equal to −1, except component i, which
is equal to +1. The number of output neurons is equal to
the number of classes, so that the output of the multilayer
Perceptron is a vector g(x) of dimension c. The cost function
that is optimized during training is

J(Θ1,Θ2) =
n∑

k=1

∥
∥
∥yk − g(xk)

∥
∥
∥

2
. (6)

In the present study, two strategies were compared for
multiclass classification with multilayer Perceptrons.

(i) All functions h were taken identical to f (sigmoid
functions), so that the output vector of the multilayer
Perceptron was

g(x) = h(Θ1f(Θ2x)), (7)

whereΘ1 is the (c, Nh+1) matrix of the parameters of
the output neurons.

(ii) Output i (1≤ i≤ c) of the multilayer Perceptron was
computed as

gi(x) = exp[(Θ1f(Θ2x))i]
∑c

j=1 exp
[

(Θ1f(Θ2x)) j
] (softmax function).

(8)

In either case, and example described by x was assigned
to the class j such that

j = argmax1≤i≤c
(
gi(x)

)
. (9)

In the second case, the components of vector g belong to
[0, 1] and sum to 1, so that they can be interpreted safely
as estimates of the posterior probability of class c given the
observed vector x.

(3) K-Nearest Neighbor (K-NN). As a first step, K-NN
ranks the training vectors according to their RSS-space
Euclidean distances from a test vector to be localized. The
predicted class of this test vector is then the class most
often represented in the K “nearest” vectors according to the
defined metric. The K parameter is chosen empirically, to
optimize performance. When a single best neighbor is used,
K = 1, and the classifier is called 1-NN.
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Table 1: Percentage of correct radio fingerprint classifications on the 4 carrier sets described in the text. Figures quoted are averages and
standard deviations over 10 randomly selected validation sets. All classifiers achieve their best performance when all 488 carriers are included.
The most effective classifier for this case is the linear SVM.

Fingerprint Type

Classifier Current Top 7 Top 7/Memory 35 Best Overall All 488

(≤7 carriers)1 (36–40 carriers) (35 carriers) (488 carriers)

Linear SVM 71.3 ± 7.2 84.6 ± 3.6 90.4 ± 3.5 97.8 ± 1.5

Gauss. SVM
w/o PCA 72.2 ± 3.6 89.2 ± 2.9 93.2 ± 3.4 —2

w/PCA3 71.8 ± 3.2 85.6 ± 5.3 92.0 ± 3.0 96.4 ± 1.5

Linear Perceptron 66.9 ± 4.1 73.2 ± 5.1 79.7 ± 5.1 94.4 ± 2.6

MLP (one versus all)
w/o PCA 66.9 ± 7.1 87.2 ± 3.3 91.8 ± 3.4 —2

w/PCA3 68.1 ± 3.4 87.5 ± 4.5 89.6 ± 2.5 95.7 ± 2.1

MLP (multiclass) sigmoids
w/o PCA 56.8 ± 7.1 80.4 ± 12.9 92.6 ± 3.2 —2

w/PCA3 66.4 ± 5.7 85.1 ± 9.5 89.4 ± 3.6 96.1 ± 1.1

MLP (multiclass) softmax
w/o PCA 64.3 ± 7.5 85.7 ± 15.8 91.2 ± 4.2 —2

w/PCA3 67.7 ± 5.7 88.2 ± 3.9 90.4 ± 3.1 96.6 ± 2.4

Kbest K-NN 5 59.3±3.5 26 85.1±3.0 20 93.3±2.1 20 94.9±1.9

1-NN 58.1 ± 5.2 74.7 ± 3.7 86.0 ± 2.9 87.2 ± 2.8

GP (σ = 5 dB) 78.8 ± 3.7 —4

1SVM and K-NN can have < 7 carriers if some did not show up in the training set.
2Small training set size precludes training a nonlinear classifier due to Cover’s theorem [13].
3Best result obtained using the first 4 principal components.
4Gaussian process is equivalent to 1-NN for fixed input vector length.

(4) Gaussian Process (GP). As in the case of K-NN, GP
starts by comparing the test RSS vector to be localized to
every vector in the training set. The probability, P1, that
the compared vectors correspond to measurements at the
same geographical position is assumed to be Gaussian in
the Euclidean RSS distance between the two vectors, using
a fixed variance σ2 which is determined empirically. If a
carrier appears in one of the compared vectors, but not in
the other, GP presumes that the missing value was below
the reception threshold in the vector lacking it. A penalty
term probability, Pp, is introduced, in which the missing RSS
value is replaced by an estimate of the reception threshold,
taken to be the smallest RSS in the vector which is missing
the carrier. The overall GP probability, P, is the product of
P1 and Pp.

To be more precise, let A and B be sets of indices of
carriers contained in a training set vector, and a test set
vector, respectively. We define the set of common carriers as
C = A ∩ B, and the noncommon carrier sets as D = A − C
and E = B − C, for the train and test sets, respectively. We
then have

P1 = |C|
√
∏

i∈Ce
−|RSSAi −RSSBi |

2
/σ2 ,

Pp = |D|

√
∏

j∈De
−|RSSDj −min

B
(RSSB)|2/σ2

× |E|

√
∏

k∈Ee
−|RSSEk−min

A
(RSSA)|2/σ2

,

P = P1 · Pp,

(10)

where RSSAi is the signal strength of the ith carrier of set
A, and the order of each root normalizes the probability
to the number of carriers in the corresponding term. GP
is actually the only classifier tested which is able to handle
missing carriers in a natural way. When input vectors are of
fixed length—a requirement for SVM, MLP, and KNN—and
all variables must be represented, GP is equivalent to a 1-NN
classifier. As a caveat, however, as we do not use the BSIC
information, in some cases, carriers with the same index can
belong to different cellular motifs, which would penalize the
GP method.

4. Results

We define the localization performance of a given clas-
sifier as the average of the validation scores obtained
over our ten random splits, expressed as a percentage of
correctly identified locations. The standard deviation over
the ten splits is also calculated. The results are shown in
Table 1.

A few preliminary remarks about the table are in
order. First, when the All 488 fingerprint is used, it is
not meaningful to apply a non-linear classifier to the data.
This is because of Cover’s theorem [13], which states that
the examples of a training set are always linearly separable
when the number of input variables exceeds the number
of examples. The corresponding table entries are thus left
blank (footnote 2 in the table). Secondly, on the other hand,
dimensionality reduction by principal component analysis is
known to often make examples nonlinearly separable, giving
poor performance (nonlinear separability of the training
examples was verified using the Ho-Kashyap algorithm [20]).
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Table 2: Confusion Matrices for 35 Best Overall and All 488 carrier
sets, using a Linear SVM classifier. Figures quoted are in percent.
Using the full number of carriers tightens up the diagonal to give
individual room classification efficiencies near 100%.

(a)

Confusion
Matrix

True class

35 Best overall

Pred. Class 1 2 3 4 5

1 95 5.3 3.3

2 1.4 93.3 3.6

3 0.7 1.3 77.9 11.4

4 16.4 87.9 0.7

5 2.9 2.1 0.7 96

(b)

Confusion
Matrix

True class

All 488

Pred. Class 1 2 3 4 5

1 100 0.7

2 100

3 91.4 1.4 1.3

4 5.7 98.6

5 2.2 98.7

For this reason, linear classifiers are not applied in those cases
where PCA is used. A few further details are explained in the
remaining footnotes of Table 1.

The table shows that the performance of all classifiers
tested improves as more carriers are added to the fingerprint,
but that very good performance—for example, our best
result of 97.8% in the case of the linear SVM—is only
obtained on the All 488 carrier fingerprint. The implication is
that indoor position can indeed be deduced from the RSS of
GSM cell towers, but that commonly used 7-carrier NMRs
and even “wide” fingerprints are insufficient: high perfor-
mance requires fingerprints of very high dimensionality. It is
reassuring to see that this conclusion is supported by all the
classifiers tested, including a simple K-NN, even if the best
results are obtained with SVM and MLP machine learning
techniques. MLP performance appears slightly worse than
that of linear SVMs, within the statistics of our sample, with
the best MLP performance, 96.6%, obtained on a multiclass
MLP with the softmax output function applied to All 488
carriers, after an input dimensionality reduction.

A more detailed look at our conclusion is given in Table 2,
where the confusion matrices for the linear SVM classifier
on the 35 Best Overall and All 488 fingerprints appear. The
table shows once again that the ability to sharply discriminate
between rooms comes only with the inclusion of the full
GSM carrier set. The deviation of our global result from
100% is in fact dominated by the confusion between class
3 and class 4, which appears to be the most difficult case.

5. Conclusions and Perspectives

We believe this study, which is an extension of that
presented in [12], to be the first to include the full
set of GSM carriers in RSS fingerprints for localization.
Although confirmation with more extensive databases will be
required, our results strongly suggest that high-performance
room-level localization is possible through the use of such
fingerprints. The fact that good performance is obtained
irrespective of the machine learning technique used (MLPs
or SVMs,) is a further confirmation that the useful infor-
mation for localization is obtained by taking into account
many GSM carriers, including those which may be rather
weak. Finally, it is interesting to note that our result is
robust against time-dependent effects—network modifica-
tions, propagation channel changes, meteorological effects,
and so forth, as our dataset was acquired over a period of one
month.

Acquiring datasets and labeling scans is a tedious and
time-consuming activity. To address this issue, two inde-
pendent solutions are currently being investigated. First,
experiments with semisupervised classification techniques
using kernel methods (see, e.g., [21]) are being carried
out, which will permit to take advantage of the unlabeled
scans during the training procedure. The second approach
entails the design and construction, in our laboratory, of a
set of ten autonomous scanning devices which will allow
the acquisition of large datasets simultaneously in different
rooms, labeled with very little human intervention. These
devices will also enable to test the efficiency of our approach
when implemented using mixed datasets of scans acquired
both indoors and in nearby outdoor areas. For larger outdoor
areas, preliminary results indicate that a regression approach
using x-y coordinates seems more suitable than the room-
by-room classification used here for indoor localization.
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This paper addresses the important issue of position estimation in indoor environments. Starting point of the research is
positioning techniques that exploit the knowledge of power levels of RF signals from multiple 802.11 WLAN APs (Access Points).
In particular, the key idea in this paper is to enhance the performance of a WLAN fingerprinting approach by coupling it to a RFID-
based procedure. WLAN and RFID technologies are synergistically used to provide a platform for a more performing positioning
process, in which the very strong identification capabilities of the RFID technology allow to increase the accuracy of positioning
systems via WLAN fingerprinting. The algorithm performance is assessed through general and repeatable experimental campaigns,
during which the main algorithm parameters are dimensioned. The results testify both to the feasibility of the solution and to its
higher accuracy (attainable at very reduced costs) compared to traditional positioning techniques.

1. Introduction

Recently, the wireless telecommunications market has
increased its interest towards so-called “location-based”
applications, which are proposed to the end-user attention
as the most promising response to their need of personalized
communications in fields such as Infomobility, mobile
entertainment and gaming, Intelligent Transportation Sys-
tems, assisted driving, and so forth. This phenomenon has
been fostered both by the availability of mobile terminals
equipped with multiple radio network interfaces, and by
extensive research efforts undertaken by Industries and
Research Institutions to develop platforms for efficient
indoor and outdoor positioning solutions.

While the availability of low-cost GPS (Global Position-
ing System) [1] receivers, built in the mobile terminals,
promoted the development of location-based applications in
outdoor scenarios, still barriers to the spread of location-
based services are present in indoor scenarios. Therein, in
fact, the GPS technology (which relies on satellite signals)
cannot be exploited, and no other technology has shown

to be ready to play a leadership role. In order to achieve
accurate position estimation inside the buildings, several
solutions have been proposed, which differ from each
other in the used technology, positioning accuracy, offered
coverage, frequency of updates, and costs of installation and
maintenance. As it will be shown in the following, several
comparative studies on competing positioning systems are
available from the literature; most of them are based on
Radio Frequency (RF) technologies (e.g., Wi-Fi, Bluetooth)
[2–7].

The technology that has gained the greatest success,
thanks to its low cost, widespread diffusion, and robust
communication capabilities, even in non Line of Sight
(nLOS) conditions, is definitely the WLAN (Wireless Local
Area Network) technology. According to WLAN-based tech-
niques, it is possible to locate Wi-Fi card equipped devices,
with an accuracy of some meters, by means of two-phase
positioning algorithms. During the offline training phase, the
Received Signal Strength Indicator (RSSI) distributions, col-
lected from Wi-Fi Access Points (APs) situated in predefined
reference positions within the interest area, are tabulated
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together with their physical real-world coordinates. This
originates a so-called radio map (or fingerprint database),
in which any single dataset is called fingerprint. During
the subsequent online location determination phase, RSSI
samples received from a subset of APs are used to search for
similar patterns in the radio map. The best match is chosen,
and its physical coordinates are returned as the position
estimate. Although a fingerprinting technique avoids the
complicated computation of path loss, since fingerprint data
are already affected by multipath and by signal attenuation
phenomena, still the position estimation may not be accurate
enough, thus owing to false positives.

On the other hand, solutions are appearing that exploit
the Radio Frequency IDentification (RFID) technology,
which was originally introduced as a key technology only
applied to item identification in fields, such as asset tracking,
manufacturing, supply chain management, retailing, elec-
tronic payment, security and access control, and so forth.
RFID-based positioning solutions can be split into two main
categories: tag-oriented and reader-oriented. The former aims
at locating RFID tags, while the latter tries to find the
position of portable RFID readers. Both approaches are
likely to be employed as a basis to implement location-based
services.

The idea behind the proposal in the present paper is
to use both Wi-Fi and RFID technologies synergistically,
to design a platform for more performing location sensing
services. The very strong identification capability of RFID
technology can indeed be very useful for increasing the accu-
racy of positioning systems based on WLAN fingerprinting
techniques. The purpose of RFID components is to allow
a reduction in the number of iterations when searching
for the best fingerprint match in the database of the Wi-Fi
positioning system. As it will become clearer in the following
sections, a performing behaviour is achieved by splitting
(thanks to the RFID technology) the fingerprint database
into “zones” (during the offline phase) and, later (during the
online phase) by introducing a “zone matching” process. The
resulting technique shows the following points of strength:
(a) significant reduction of false positives, (b) low additional
costs compared to traditional Wi-Fi based detection systems,
and (c) ability to take advantage of tags that in the future
will be largely present in indoor environments (in the view
of the Internet of Things). Furthermore, compared to other
mechanisms, our solution is easily and quickly deployable
and does not require a high tag density.

Potentials and limitations of the proposed hybrid
WLAN-RFID positioning technique will be highlighted, and
its effectiveness validated by a comprehensive measurement
campaign. This latter will testify that the emerging synergies
between a typical communication system (like Wi-Fi) and a
typical identification technology (like RFID) are able to imple-
ment low complexity solutions to enhance performance of
location sensing mechanism.

The rest of the paper is organised as follows. In Section 2,
we survey related work in the area of location tracking
in indoor environments. Section 3 reports the rationale
of the proposed WLAN-RFID hybrid positioning solution
and describes its operational behaviour. Section 4 focuses

on experimental results obtained in different scenarios
through field tests, that aim at comparing our approach
with alternative location sensing solutions and at evaluating
the impact of design parameters on the location accuracy.
Section 5 concludes the paper.

2. Related Works

In [4, 8–10] WLAN-based location systems have been
proposed, based on empirical signal strength measurements
as well as on simple signal propagation models. RADAR [4] is
an RF-based system for locating and tracking users inside the
buildings. It uses standard IEEE 802.11 network adapters to
measure signal strengths at multiple base stations, positioned
to provide overlapping coverage in a given area. The system
combines empirical measurements and signal propagation
modeling to determine the user position. Other approaches
use a Bayesian algorithm [11] or Delaunay triangulation
with lines of constant signal strength [12]. The use of
Delaunay triangulation and interpolation allows building a
radio map with low density of calibration points and reduces
the training phase delay. WhereNet [13] uses timing signals
transmitted from tags to a network of receivers. It is based
on the same 2.4 GHz band as the 802.11 and Bluetooth
systems, but uses a dedicated standard protocol optimized
for low power spread-spectrum position determination. The
Ekahau [3] Wi-Fi positioning system computes the location
of a client device by applying a probabilistic model to the
signal strengths measured at the Wi-Fi client device (Ekahau
device). The indoor environment must be calibrated a priori
to provide the positioning engine with a signal strength map
of the room. Ekahau devices continually send their signal
strength vectors to the positioning engine, which keeps track
of each device location.

In the last few years, besides WLAN-based location, also
the location through RFID has been investigated from several
application perspectives. Two location approaches exist: tag-
oriented and reader-oriented. Earlier work on the former
class of solutions is well synthesized by LANDMARC [14],
which proposes to locate an active RFID tag through RF-
power distances with respect to reference RFID tags in fixed
and known locations. Power levels of the reference tags
are stored in a database. Tags in unknown positions are
sensed by the reader antennas and their power levels are
compared to those of the reference tags. The reference tags
with the most similar power readings are assumed to be the
closest to the target tag and used to predict the unknown
tag position by using the Nearest Neighbor Algorithm. In
[15] results of a wide campaign are reported to evaluate the
performance of LANDMARC under general experimental
conditions, especially in indoor environments. The authors
concludes that such tag-oriented algorithm may require
highly expensive infrastructures, composed of many RFID
tags and readers/antennas, if satisfactory position accuracy
is required.

As for reader-oriented location solutions, [16] proposes
a tagged environment with numerous reference tags over the
area of interest, thus creating a so-called Super-distributed



International Journal of Navigation and Observation 3

RFID tag infrastructure. In this solution, location targets are
equipped with mobile readers, thus, reversing the traditional
approach in employing readers and tags. A portable reader
position is discovered through either the identification of
the closest reference tag surrounding it or, in case of
multiple tags identification, by averaging the positions of the
identified tags. Reader-oriented location solutions have also
been studied in the field of assistance to blind people [17–
19] and in robot localization [20], where statistical filters
are exploited to enhance odometer information by means of
RFID tag identification. Researches in [17, 18] are focalized
on navigation rather than environment disclosure; instead,
Ubibus [21] has been proposed to help blind people in public
transportation scenarios.

Particle filters have also been applied in absolute location
systems. Most notable works are in [22, 23], according to
which the location of a user is based on measurements
received from a variety of sensor systems. As already
addressed, the proposal in the present paper differs from
the literature in that it is an hybrid algorithm that jointly
uses WLAN and RFID technologies to achieve improved
location accuracy, similar to other sensor fusion approaches.
The main aim is to select, by means of the RFID technology,
the WLAN RSSI points that are actually close to the target
WLAN device location and, then, to average their positions
getting a final position estimate.

3. Proposed WLAN-RFID Hybrid
Positioning Technique

In the present section the basic features of the proposed
hybrid approach to positioning via a joint exploitation of
WLAN fingerprinting and RFID technologies are intro-
duced. As already addressed, the proposed location algo-
rithm could be considered as an evolution of WLAN fin-
gerprinting techniques; in fact, the “two phases” approach is
maintained, while the RFID integration is used to overcome
some inherent drawbacks of such an approach. Our proposal
requires that the mobile target, whose location must be
determined, is equipped with both a WLAN card and a RFID
reader. Besides, a set of reference tags is associated to any
given “zone” in the observation area.

Phase 1 (offline: building the fingerprinting database). Still
the presence of reference points for RSSI measurements from
the WLAN Access Point (APs) is required. WLAN reference
points are carefully selected to populate the database and,
through an accurate measurement campaign, each of them
is characterized in terms of a set of RSSI values, one for
each available AP. The main weakness of the described mea-
surement phase is, undoubtedly, the possibility of measuring
very similar power levels in different (and often distant)
areas. This phenomenon may occur quite often in indoor
environments.

In order not to stray too far from traditional WLAN
fingerprinting techniques, we thought to maintain a tra-
ditional approach and merely increase the information
related to each reference point. Specifically, according to the

proposed approach, the observed area is split into zones and
each reference point, besides a position (x, y), has also a
“belonging zone” associated. Zones are individuated by RFID
tags, positioned within the area of interest. This hopefully
counters the possible ambiguity in the choice of the right
area.

To take into account the variability of the propagated
WLAN signal (affected by phenomena of reflection, diffrac-
tion, and scattering) measurements at one WLAN reference
point need to be repeated no times (number of observations)
and suitably selected. A preliminary study has shown that
an acceptable number of RSSI observations, which gives
a robust characterization of each reference point, is no =
40, relevant to each of the available APs. For each AP, the
most frequent value of RSSI is selected among 40 available
values. This might seem a too simplistic assumption, but
optimization of reference point characterization is not an
issue we are interested into, because the aim of the algorithm
presented in this paper is to improve the positioning
accuracy through the synergic action of two technologies.
In the literature, more effective ways to characterize the
reference points are available; whatever the choice, still the
effectiveness of our approach is granted.

Phase 2 (online: positioning the mobile unit). During the
online position determination phase, different from the
traditional approach, our proposal exploit two kinds of
measurement to identify the unknown position of a Mobile
Unit (MU). Both the WLAN interface and the RFID mobile
reader (plugged into the MU) measure the RSSI values from
APs and RFID tags, respectively. The actual advantages of the
proposal emerge during this phase. In fact, the mobile device
can take its decision about its estimated position by counting
on RFID RSSI measurements, in addition to the traditional
WLAN RSSI values to be compared with the fingerprints
in the database. More specifically, the envisaged algorithm
applies a two-step approach.

First, it identifies the “zone” in the observed area where
the MU is likely located, by basing its decision on RSSI
values received from the RFID tags scattered across the
environment and associated to each zone. During the zone
identification phase, the RFID reader in the MU generates
a sequence of interrogations, that is, it broadcasts scan
messages that wake up the reachable tags and query their IDs,
and associates to each identified tag an RF power level. In
any position, the reader will get signals from multiple tags
under its coverage and select the strongest tag signals and,
consequently, the associated zone. As a results, a “rough” MU
position estimation is performed.

Second, the information relevant to the estimated zone
is used to filter the WLAN RSSI entries in the database, over
which the best matching algorithm must be executed. This
drastically reduces ambiguities in associating measured RSSI
values to fingerprinting values, thus enhancing the accuracy
and effectiveness of the overall method. This second step
is thus a sort of “refinement” of the localization estimation
process. Figure 1 illustrates the whole process foreseen by the
proposed approach.
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Figure 1: Online (a) and offline (b) phases of the proposed algorithm.

//zone determination: get the zone with the strongest RSSI value
for each zone in numZone

for each tag in numTag
maxTagRSSI [zone] = ValueRSSI (tag, zone);

selectedZone = zone with highest maxTagRSSI;

//for each AP, the most frequent value of RSSI is selected among the
numObservations available
for each ap in numAP

for each obs in numObservations
vectorRSSI [ap] = mostFrequentRSSI (ap, obs);

//search the k nearest reference points to vectorRSSI in zone subset of
database
selectedReferencePoints = searchDB (selectedZone, vectorRSSI, k);

userPosition = weightedFunction (selectedReferencePoints)

Algorithm 1: Maximum RSSI mode: pseudocode description.

During the zone determination phase, the RFID reader
in the MU can act in two alternative ways. According to
the first mode, named maximum RSSI, the reader gener-
ates a sequence of interrogations with increased transmis-
sion power. The Reader starts interrogating at the lowest
admitted transmission power and stops when the first tag
(likely the nearest) is reached. If more than one tag is
detected, then only the one with the highest transmission
power is considered as an indicator of the location zone.
Algorithm 1 shows the pseudocode description of this
approach. According to the alternative policy, named average

RSSI instead, the Reader directly starts interrogating tags
at the highest allowed transmission power, in order to
detect the largest number of RFID tags is possible, and
calculates an average RSSI value per zone, according to
the pseudo-code in Algorithm 2. The higher computational
load of the average RSSI approach when compared to
the maximum RSSI approach, is counterbalanced by the
lower cost of the former method in terms of positioning
time; it, in fact, avoids the progressive augmentation of
the transmitted power in 1dbm steps, until a RFID tag is
detected.
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//zone determination: get the zone with the strongest average RSSI value
for each zone in numZone

for each tag in numTag
averageTagRSSI [zone] = valueRSSI (tag, zone);

selectedZone = zone with max averageTagRSSI;

//for each AP, the most frequent value of RSSI is selected among the
numObservations available
for each ap in numAP

for each obs in numObservations
vectorRSSI [ap] = mostFrequentRSSI (ap, obs);

//search the k nearest reference points to vectorRSSI in zone subset of
database
selectedReferencePoints = searchDB (selectedZone, vectorRSSI, k);

userPosition = weightedFunction (selectedReferencePoints);

Algorithm 2: Average RSSI mode: pseudocode description.

4. Performance Analysis

In this section, a comprehensive performance evaluation
campaign, which aims at assessing the behaviour of the
proposed hybrid WLAN-RFID solution, is illustrated.

The first steps are the definition of a metric to quantify
location errors, that is, the distance between estimated
position and actual position, and the setting up of a test-
bed to perform our evaluation campaign. With reference to a
given zone of interest z ∈ [1,NZ] in which the best matching
algorithm has to be run, and to a number n of APs, let’s define
Spz = {RSSIpzn}n=1,...,NA

, a generic power vector for any pth
reference point (with p ∈ [1, rz]) belonging to the zone z. As
addressed above, during the online position determination
phase, the zone z is individuated by scanning the closest
RFID tags.

As a subsequent step, the algorithm scans and collects
the RSSI values received from different APs. Let’s define θ =
{RSSIn}n=1, ...,NA

the n-uple of power values measured by the
mobile device’s WLAN card in the unknown position. Thus,
a set of distances can be defined in the RSSI space, between
the set of collected measures from the unknown position and
each reference point of the generic zone z, epz = d(θ, Spz),
E = {epz}p=1,...,rz

. The vector E of distances is used to apply

the k-nearest neighbours algorithm.
As regards the definition of distance d in the space of RSSI

measures and relevant weights w, we utilize the Euclidean
distance in signal strengths, defined as

dpz =

√
√
√
√
√

NA∑

n=1

(

θ − Spz
)2

, (1)

and a weight function, referred to as received power, defined as

wm =
1/epzm

∑k
m=1 1/epzm

. (2)

To quantify the performance levels of our approach, the
error distance is used as a metric of the accuracy of the
system.

4.1. Indoor Test-Bed Definition. An indoor test-bed is
deployed in an office floor of the University of Reggio
Calabria, Italy, and measurements are taken in “non ideal”
conditions, that is, usual environmental conditions during
working hours (please refer to Figures 2(a) and 2(b) for
the scenario layout—AP and Tag positions, as well as zone
splitting, are only for illustration purposes). Experiments are
carried out by using i-Q RFID tags produced by Identec
Solutions and operating in the UHF range [24], capable
of up to 100 m identification range; WLAN Access Point
model is WL-537 produced by 3Com [25] while the portable
RFID reader, is a low-cost Identec i-Card3 PCMCIA reader,
mounted on a Acer laptop PC with wireless card Intel(R)
PRO/Wireless 2200BG programmed to run the proposed
algorithms. The i-Card3 reader generates interrogations at
different RF transmission power values, ranging between
−60 dbm and 10 dbm.

Design parameters considered during the evaluation
campaign are: (i) number of zones (NZ) discriminated by
means of active RFID tags in the area of interest, (ii) gap
(Δ) in centimetres between reference points belonging to the
WLAN RSSI grid, (iii) number of access points (NA).

In the remaining part of the paper four different
evaluation campaigns are illustrated to give the reader an
accurate view of the algorithm potentials. Being the last set of
experiments performed outdoor, an outdoor test-area, which
will be better described later, has been exploited.

4.2. First Campaign: “Max RSSI Values” Hybrid versus
WLAN Fingerprinting. The first set of measurement aims
at comparing the performance of the Hybrid WLAN-RFID
algorithm and of the well-know RADAR [4] technique, used
as a reference in our test-bed. In the specific sample scenario
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Figure 2: (a) Indoor area chosen for the experiments; (b) example
of splitting into zones.

presented in this initial campaign, we set NZ = [0, 3, 6, 9],
Δ = [240, 120], and NA = [4, 7]. NZ = 0 is the special case of
WLAN fingerprinting approach only, without the presence
of RFID tags; obviously, this corresponds to the standard
RADAR algorithm.

Initial studies focuses on the maximum RSSI approach,
with a RFID Reader transmission power progressively
increasing in steps of 1 dbm at a time, until one (or
more) RFID tag is detected. The main objective is the
evaluation of the influence that system parameters have on
the proposed approach. To this purpose, the performance of
the positioning algorithm is evaluated by varying number of
zones NZ , gap between reference points Δ, and number of
access points NA.

What is expected is a significant decrease in location
errors consequent to denser grids of reference WLAN points
(i.e., reduction of the Δ value). Also, an increase in the
number of WLAN APs would favour a performance increase,
due to the beneficial effect of the greater number of RSSI
samples taken into consideration. Lastly, by increasing the
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Figure 3: WLAN Fingerprinting versus Hybrid WLAN-RFID:
location error; NZ = [3, 6, 9], Δ = 240 cm, NA = 4; “maximum
RSSI” mode.
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Figure 4: WLAN Fingerprinting versus Hybrid WLAN-RFID:
location error; NZ = [3, 6, 9], Δ = 120 cm, NA = 7; “maximum
RSSI” mode.

number of zones identified through the RFID technology,
the positioning errors are likely reduced, due to the more
accurate matching among measures and entries in the
fingerprinting database.

In Figure 3, a comparison between the WLAN only
and the hybrid WLAN-RFID fingerprinting technique, for
a variable number of zones, is shown. Curves illustrate the
experimental cumulative distributions of the location errors
of both fingerprinting algorithms, when k = 3 reference
WLAN points are selected as near WLAN points and received
power is used as the weight function among near WLAN
points. The choice of the number of near WLAN points
is the result of a tuning campaign that considered a trade-
off between attainable location accuracy and computational
load. In this sample configuration, the hybrid solution attains
a lower location error when increasing the number of zones;
this witnessing to the beneficial effects of the introduction of
RFID technologies into WLAN positioning methods.
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Figure 5: Response time in different configurations (“maximum RSSI” mode).
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Figure 6: WLAN Fingerprinting versus Hybrid WLAN-RFID:
location error; NZ = [3, 6], Δ = 120 cm, NA = 7; “average RSSI”
mode.

The good level of performance significantly improves
when thickening the grid of reference points and increasing
the number of WLAN APs, as Figure 4 shows.

Results are highly valuable, compared to what is available
in the literature, if we consider the good trade-off among
achieved performance, amount of used equipment, and
low cost of the solution. Each probability value plotted in
Figure 4 is computed with a 95% confidence interval.

In Table 1 location estimation errors obtained during
different measurement campaign are reported. In the last
column figures relevant to the location estimation error
when considering 90% of the measurements, Error90%, are
reported.

Parameter values considered are those that show a
better trade-off between positioning accuracy, equipment
costs, and processing time. This last aspect shall be better
investigated if we recall that, differently from a RADAR-like

Table 1: Location estimation error.

Δ NA Algorithm
Average

Error (cm)
Error90%

(cm)

240 cm

4

WLAN Fingerprinting 504 904

Hybrid - 3 zones 308 554

Hybrid - 6 zones 291 516

Hybrid - 9 zones 237 401

7

WLAN Fingerprinting 350 732

Hybrid - 3 zones 270 509

Hybrid - 6 zones 221 416

Hybrid - 9 zones 180 295

120 cm

4

WLAN Fingerprinting 441 952

Hybrid - 3 zones 250 461

Hybrid - 6 zones 198 380

Hybrid - 9 zones 171 289

7

WLAN Fingerprinting 249 455

Hybrid - 3 zones 198 342

Hybrid - 6 zones 168 295

Hybrid - 9 zones 152 263

fingerprinting approach, in a hybrid WLAN-RFID solution
the number of iterations in the fingerprint database to search
the best match is smaller, due to a reduced localization area.
Notwithstanding, one might think that this advantage is
invalidated by the lengthening of the computational time,
due to the additional phase of zone identification.

In Figure 5, an increase in the average response time
of the hybrid solution compared to traditional WLAN
fingerprinting is confirmed. Fortunately, a small increase,
ranging from 3 seconds to 4 seconds only, is observed; this
demonstrates that the advantages in terms of achievable
location accuracy overcome the disadvantages caused by the
additional processing delay.
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Figure 7: Response time: comparison of “average RSSI” (Avg) mode and “maximum RSSI” (Max) mode.
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Figure 9: Comparison of location error: Hybrid with 2 zones versus
Hybrid with 4 zones when varying per-zone RFID density.

4.3. Second Campaign: “Maximum RSSI” versus “Average
RSSI” Modes. The test campaign illustrated in the present
section aims at comparing two possible approaches to the
zone selection: “maximum RSSI” and “average RSSI” modes.
In Figure 6, sample curves of location error probability are

reported, which show how the latter approach overcomes the
former in terms of performance.

For a thorough comparison of the two approaches, the
reader can refer to the output of sample test campaigns
reported in Table 2. It is manifest that the “average RSSI”
approach allows for an additional location accuracy with
respect to the “maximum RSSI” mode.

The average performance increase is about 22,5% when
considering the 90% measurement error (about 1 addi-
tional meter of accuracy achievable) and 17,3% (about
40 cm) when considering the average localization error.
The response time also decreases (please refer to Figure 7).
Specifically, under the same test conditions an average
reduction of the response time equal to 7% (more that 1
second less) is observed.

The main reason of a better location accuracy is that
the choice of considering average RSSI values of RFID tags
better fits the radio propagation characteristics in indoor
environments (such as, severe multipath, rare LOS path,
absorption, diffraction, and reflection [26]). This reduces the
number of zone errors and false positives. The variant based
on the maximum RSSI values would, in fact, be deceived by
the likely presence of spurious peaks of power in the RFID
responses. In the average RSSI variant, during the estimation
of the reference zone, any power peak in the zone is offset.
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Table 2: Location estimation error for maximum RSSI and average
RSSI techniques.

Δ NA Algorithm Average Error
(cm)

Error90%

(cm)

240 cm

4

WLAN Fingerprinting 504 904

Hybrid
3 zones

Max 308 554

Average 264 526

Hybrid
6 zones

Max 291 516

Average 212 326

7

WLAN Fingerprinting 350 732

Hybrid
3 zones

Max 270 509

Average 215 366

Hybrid
6 zones

Max 221 416

Average 194 311

120 cm

4

WLAN Fingerprinting 441 952

Hybrid
3 zones

Max 250 461

Average 213 337

Hybrid
6 zones

Max 198 380

Average 168 284

7

WLAN Fingerprinting 249 455

Hybrid
3 zones

Max 198 342

Average 158 270

Hybrid
6 zones

Max 168 295

Average 143 260

Area 12 m× 6 m

Figure 10: Outdoor localization area.

Please notice that, besides the advantage in terms of
accuracy, response time decreases: this situation is justified
by the type of interrogation carried out by the RFID reader.
In case of “maximum RSSI”, the Reader runs a series of tag
interrogations at increasing power, awaiting for tag response
(with the consequent waste of time in case of unanswered
questions); differently, in case of “average RSSI,” the Reader
interrogates tags only at its maximum power.

4.4. Third Campaign: Dependence on the Density of RFID
Tags. So far, we have shown that the estimated location error
of the Hybrid approach depends on the number of zones
in the area of interest, the number of APs used, the gap
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Figure 11: Comparison of location error between Hybrid 4 zones
indoor and Hybrid 4 zones outdoor while varying the per-zone
RFID density.
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Figure 12: Comparison of location error between Hybrid 2 zones
and Hybrid 4 zones while varying the per-zone RFID density.

among WLAN training points, and, finally, by the algorithm
by which a zone is identified. Now we want to demonstrate
that a further parameter to be considered, to a full discussion,
is the density of RFID tags. The expected behaviour is that
the location estimate accuracy increases by increasing the
tag density because, once again, false positives are reduced.
With the introduction of our hybrid approach we are able to
distinguish two types of false positives: intra-zone and inter-
zone false positives. Intra-zone false positives are typical of
WLAN fingerprinting techniques. Inter-zone false positives
are a peculiarity of our algorithm. Parameters NZ , NA, and Δ
affect intra-zone false positives; while the area identification
algorithm and the density of RFID tags are responsible for
inter-zone false positives. The latter type of false positives
affects tracking errors more than the previous one because,
if the zone is wrongly identified, the portion of database
considered by the usual fingerprinting technique does not
include any combination [RSSI1,. . .,RSSINA] associated with
the test point (or its surroundings); therefore, localization
error certainly occurs.
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A different test area is set up (due to the need for
symmetrical conditions) to perform the analysis of the effects
of tag density, as in Figures 8(a) and 8(b). In this scenario we
consider constant parameters NA = 4 and Δ = 150, whereas
the best algorithm of zone selection, that is, average RSSI, is
used. Therefore, let us introduce a new parameter, the per-
zone RFID density (PzRd), which defines the RFID tag density
used in each zone. The location accuracy performance will be
evaluated in terms of per-zone RFID tag density (RFID/m2),
when considering the sample cases NZ = 2 and NZ = 4.

Figure 9 shows the location error vs. the density of RFID
tags, both for the hybrid algorithm with 2 zones and for
the hybrid algorithm with 4 zones. The figure shows that
curves intersect for PzRd = 0.15 RFID tags/m2. In general,
as shown in the first test campaign, the benefits in terms
of location accuracy improve when increasing the number
of zones. Actually, this rule is valid above a given RFID tag
density PzRd threshold, here Thrdensity. Below the threshold,
in fact, the phenomenon of indoor interference (multipath
fading) makes the Tag-to-Reader power response unstable
and unreliable. Then, the zone selection algorithm, although
working on average values, still shows a higher failure
probability when the number of zones increases (for the same
number of RFID tags), and commits a greater number of
inter-zone mistakes. Specifically,

(i) when PzRd < Thrdensity, the inter-zone error is more
frequent and, therefore, a limited zoning should be
considered;

(ii) when PzRd ≥ Thrdensity, the inter-zone error is
uncommon, the intra-area error (due to WLAN)
dominates, and then a more extensive zoning can be
considered.

4.5. Fourth Campaign: Outdoor Scenario. Now let us consider
an outdoor scenario (Figure 10), in order to highlight how
the performance of the proposed algorithm changes. We
consider an area in which barriers and electromagnetic
phenomena are less manifest than in typical indoor environ-
ments.

It is expected that inter-zone errors, due to the RFID
technology, and intra-zone errors, due to the WLAN tech-
nology, are less than in the indoor case. Furthermore, it is
also important to analyze how the value of Thrdensity varies in
certain conditions.

In order to compare indoor and outdoor scenarios, let
us consider again NA = 4, Δ = 150, and the “average
RSSI” algorithm for zone selection. Figure 11 shows the
performance, in terms of location error, of the hybrid algo-
rithm with 4 zones both indoor and outdoor, when varying
the RFID tag density. It is also interesting to understand
if the proposed positioning method can be exploited with
continuity when passing from the inside out. As expected,
the best performance is achieved outdoor, as less inter- and
intra-zone errors are experienced. This is due to the fact that
undesired interfering phenomena are contained, or at least
reduced, compared to the indoor case. Similar behaviour can
be demonstrated with any value of NZ .

In the outdoor environment, errors of localization with
varying density of RFID tags are illustrated in Figure 12,
both for the case Hybrid 2 zones and for the case Hybrid 4
zones. It is observed that the value Thrdensity is now lower
than indoor, about 0.08 RFID tags/m2. This feature is a
direct consequence of the lower interference conditions in
which the Hybrid algorithm is operating. We can, therefore,
state that, in outdoor environments, the proposed algorithm
works well even for low RFID tag densities.

5. Conclusions

In this paper we investigated the feasibility of a new
approach to positioning, which exploits WLAN and RFID
Integration to enhance the performance of a localization
algorithm in indoor scenarios. We started from the well-
know fingerprinting approach, based on the evaluation of RF
power levels from various WLAN 802.11 APs (Access Points).
Besides, RFID technology has been introduced to split into
zones the whole localization area. A first positive effect has
been the severe reduction of the number of search iterations
in the fingerprints database (by forcing the algorithm to
search the best match only within the actual area of interest).
A further effect of the joint use of the two technologies
has been the more accurate estimates of the client device
position and a manifest reduction in the localization error.
A thorough measurement campaign is conducted in indoor
and outdoor environments to study the impact of main
project parameters affecting the final location accuracy, in
order to determine the best operational conditions. The
results testified both to the feasibility of the proposed
solution and to its higher accuracy when compared to a
traditional WLAN-based reference positioning technique.
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back as an orientation aid for blind users of mobile
guides,” in Proceedings of the 10th International Conference on
Human-Computer Interaction with Mobile Devices and Services
(MobileHCI ’08), pp. 431–434, Amsterdam, The Netherlands,
2008.

[20] D. Hähnel, W. Burgard, D. Fox, K. Fishkin, and M. Phili-
pose, “Mapping and localization with RFID technology,” in
Proceedings of IEEE International Conference on Robotics and
Automation (ICAR ’04), pp. 1015–1020, 2004.
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Navigation/positioning platforms integrated with wireless communication systems are being used in a rapidly growing number
of new applications. The mutual benefits they can obtain from each other are intrinsically related to the interoperability level
and to a properly designed coexistence. In this paper a new family of curves, called Interference Error Envelope (IEE), is used to
assess the impact of possible interference due to other systems (e.g., communications) transmitting in close bandwidths to Global
Navigation Satellite System (GNSS) signals. The focus is on the analysis of the GPS C/A code robustness against Continuous Wave
(CW) interference.

1. Introduction

In the last years navigation technology is becoming essential
for several civil applications, some of them even unthinkable
at the time of the satellite navigation starting. Alongside
the wide use in the transports fields (e.g., aviation, mar-
itime, rail, and road), the range of civil uses is constantly
increasing. Surveying, precision agriculture, environmental
protection, scientific research (e.g., monitoring geological
change, wildlife behaviour, atmospheric modelling, oceanic
studies, space exploration), time-based applications (e.g.,
line power or telecommunications network synchronization
and management) are examples of the most various applica-
tions based on the estimation of the user Position, Velocity,
and Time (PVT).

This kind of applications, especially those devoted to
safety, requires the coexistence of different communication
systems and GNSS. The use of receivers able to provide
multiple services, such as user position estimation and data
transmission, embeds the problem of managing different
systems with different specifications.

Despite Wireless Communication Systems (WCSs) use
of different carrier frequencies with respect to GNSS bands,
they could likewise represent potential threats for GNSS

modules integrated in personal devices and communication
units. This is due to the low-received GNSS signal power
[1, 2], which makes the systems vulnerable to potential
dangerous effects caused by undesired and unintentional
interfering signals that might appear in the GNSS band-
widths. These interferences could compromise the correct
functioning of the main blocks of the GNSS receiver chain,
such as acquisition and tracking stages.

This fact would affect also the service based on the
integrated communication/positioning system and might
result in dangerous failures for those applications oriented to
safety of life or as the ones involving financial transactions.
For this reason, the development of strategies devoted to
analyze and mitigate the impact of undesired signals that
could compromise the correct integration of WCSs and
GNSS receivers becomes crucial.

In this paper a tool for the evaluation of the potential
receiver performance in presence of interfering signals is
proposed. The strategy is based on a class of curves
named Interference Error Envelope (IEE) and the derived
Interference Running Average (IRA), able to assess the error
made in the user position estimation due to the presence of
an interference signal generated by some WCSs.
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The paper is structured as follows. Section 2 gives an
overview of real cases of GNSS malfunctioning due to
presence of WCSs interference in GNSS bands. Sections 3 and
4 are dedicated to present the concepts of Interference Error
Envelope and Interference Running Average and to explore
the use of the IEE for assessing the GPS C/A code robustness.
At the end some conclusions on the use of the proposed tools
will be drawn.

2. Interference Impact on GNSS

It is well known that a GNSS receiver can be vulnerable to
many classes of undesired signals. These disturbances can
lead to a complete misbehaviour of the operational blocks in
the receiver chain with consequences such as erroneous user
position estimations or up to a full outage. This weakness
is due to the low-power level of the Signal in Space (SIS)
from which the pseudorange information is extracted (e.g.,
−158.5 dBW for GPS L1 C/A civil code [1] and −157 dBW
expected for Galileo E1 [2]).

As a demonstration of interference vulnerability and
jamming impact on GPS equipments, some trials have been
recently conducted by the General Lighthouse Authorities
of the United Kingdom and Ireland (GLA), in collaboration
with the UK Ministry of Defence (MOD), Defence Science
and Technology Laboratory (DSTL), aiming at assessing the
effects of GPS jamming on safe navigation [3]. These trials
demonstrated that when a GPS-equipped vessel enters in
a jamming zone (area covered by an intentional jamming
unit), numerous failures occur to systems based on GPS
signals.

Every kind of communication system operating by
frequencies near to the GNSS bands or with a high-
power level with respect to GNSS, due to implementation
imperfections, or to an inaccurate matching of the specifi-
cations, can affect the correct receiver functionalities. The
presence of growing wireless communication infrastructures
significantly increases the probability of spurious emissions
in GNSS bands in some geographical area. An example
of unintentional interference signal emissions is the mal-
functioning of electronic devices (e.g.,: nonlinear amplifiers
in TV transmitters) that might generate harmonics or
intermodulation products.

In [4], the Digital Video Broadcasting—Terrestrial
(DVB-T) system is analyzed as potential interference sig-
nal for both Galileo and GPS signals. Due to the high
power transmitted, the harmonics of Orthogonal Frequency
Division Multiplexing (OFDM) signal used in the DVB-T
transmission have been analyzed, showing a degradation of
the Carrier to density Noise ratio (C/N0) up to 90 Km from
the emitting sources.

In [5], an analysis of real interference sources in VHF
and UHF bands is reported, highlighting how such kind of
signals can partially or completely corrupt the GPS signal.
Systems working at frequencies relatively far away from L1
band are explored as potential emitters in band by secondary
harmonics.

Even if nonintentional Radio Frequency Interference
(RFI) is not a priori predictable, several cases have been
experienced in the past and reported in literature [6].

(i) In 1994, in Germany, Digital Repeater transmissions
at 1200 MHz degraded the C/N0 in L2 band denying
a correct acquisition of GPS signal [7].

(ii) In 1995, both in Nice (France) and Vicenza (Italy),
interferences related to secondary harmonics emitted
by TV transmissions and microwave interference
have been detected in GPS bands [7].

(iii) In 1995 at the Edinburg Airport (Germany), an
interference due to a Distance Measuring Equipment
(DME) transmitter caused a C/N0 degradation [7].

(iv) In 1993, in the metropolitan Boston area (USA) an
interference generated by TV emitters (Channel 10
and Channel 66) affected the quality of GPS signal
forcing low C/N0 with consequent tracking loss [7].

(v) In April 2006, DVB spurious emission of TV
transmitters located in Torino (Italy) degraded the
performance in the acquisition stage of a GPS receiver
operating in the area, with consequently loss of the
GPS signal tracking [8]. The interference was the
same that ESA researchers detected using the Galileo
Experimental Tracking Receiver (GETR) with the
GIOVE-A E1 signals at INRIM (Torino) [9].

(vi) In July 2006, UHF harmonics have been detected in
Sidney around TV antennas. The undesired signal in
the L1 band corrupted the correct performance of
the receiver chain observing significant variations in
the AGC/ADC block and in the final user positioning
[10].

In several cases, due to the nature of emitted signals with
respect to the GNSS bands, the interference can be modelled
as pure Continuous Wave (CW), i.e. sinusoidal signals. This
kind of RFI might saturate the first stage of receiver chain,
such as the Low Noise Amplifier (LNA) or the Automatic
Gain Control (AGC) for the Analog to Digital Conversion
(ADC), or might lead to erroneous position estimations. Due
to its spectral characteristics, as it will be shown in Section 4,
this kind of interference is considered one of the most critical
for the GPS C/A code [11].

It must be noticed that the choice of using the CW
interference as a model for WCSs do not prevent from
drawing general conclusions on the interference vulnerability
due to other interference sources. In fact, as already noticed
by the authors in [12] and [13], IEE curves obtained with a
CW interference can be easily used to predict the behaviour
of the receiver in presence of different interfering sources
(e.g., wideband interferences, applying a moving average on
the CW IEE).

Next Section is then devoted to the introduction of the
concepts of IEE and IRA curves.
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3. Interference Impact Assessment Tools

Although the impact of CW interferences on GNSS receivers
is a topic already approached in different publications, only
in some cases theoretical and/or simulative models for the
interference impact have been derived. In [14], a theoretical
formula for the code tracking bias due to Continuous
Wave interference has been introduced. In order to take
into account also the receiver front-end filtering effect, in
assessing the interference impact on receiver performance, a
novel method (intended as both an analytical and simulative
framework) has been recently defined by the authors in
[12, 13].

A new family of curves, named Interference Error Enve-
lope (IEE), is introduced as a reliable tool for evaluating the
potential GNSS receiver performance in terms of potential
positioning error due to the presence of interfering signals,
varying one or more parameters of the interference (e.g.,
the carrier frequency for a CW signal) and/or the receiver
setup (e.g., integration time, bandwidth, discriminator type,
correlator spacing).

The IEE curves are based on a concept similar to that
used for the well-known Multipath Error Envelopes (MEE,
see [15]): the idea is to measure the worst-case distortion of
the discrimination function when the useful SIS is affected
by a specific type of interference.

Figure 1 shows a qualitative example of how the presence
of an interference might distort a coherent discrimination
function obtained with a GPS L1 (Binary Phase Shift
Keying—BPSK modulation) signal. In this case the interferer
is modelled as a CW signal, with the carrier frequency
centred at 0.5 MHz from the GPS L1 carrier. Due to the CW,
the code discrimination function in Figure 1 is distorted and
a bias can be noticed in the zero-crossing (Delay Look Loop
tracking point), leading to a ranging error.

A detailed theoretical analysis of the interference impact
on GNSS receivers can be found in [13]. In general, assuming
a received signal affected by a generic interference signal i(t)
at a frequency shift fi with respect to signal carrier frequency,
the maximum bias (bmax) on the zero-crossing point of the
discrimination function can be computed as

bmax
(
fi
)

= α · 2
ML

∫∞

−∞

∣
∣I
(
f
)∣
∣
∣
∣W

(
f
)∣
∣
∣
∣C
(
f
)∣
∣ sin

(
π f Δ

)
df ,

(1)

where

(i) α = −(c · TC · Δ)/2, being c is the speed of light,
TC the code chip duration, and Δ the Early-Late
spacing;

(ii) L is the length of a code period in samples and M
is the number of integration periods in the coherent
integration time for computing the correlation val-
ues;

(iii) I( f ) is the Discrete Time Fourier Transform (DTFT)
of the interference signal i(t): I( f ) = DTFT{i(nTs)};
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Figure 1: GPS L1 signal (BPSK) discrimination function distortion
due to the presence of a CW interference (coherent Early-Late
discriminator with 1 chip spacing, integration time equal to 4 ms).

(iv) W( f ) = DTFT{w(nTs)}, being w(nTs) the discrete
time impulse response modeling the receiver front
end;

(v) C( f ) = DTFT{c(nTs)}, being c(t) the code chip
sequence, including also the SIS modulation.

In case of a CW interference at a frequency shift fi, |I( f )|
can be modeled as

∣
∣I
(
f
)∣
∣ = A · δ( f − fi

)
(2)

where A is the amplitude of the CW interference.
Substituting (2) in (1), the maximum bias bCW

max in
presence of a CW interference can then be expressed as
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It is important to remark that in (1) and (3) the
maximum distortion of the discrimination function depends
not only on the features of the interference and the received
signals, but also on the receiver setup (integration time,
front-end filter, correlator spacing). For the complete deriva-
tion and validation of previous equations please refer to [13],
where the generalization in case of wideband interferences is
also presented.

The IEE is then defined as a measure of the maximum
distortion of the discriminator function with respect to one
(or more) parameter of the interfering signal: the worst
cases corresponding to the maximum and minimum ranging
error values (expressed in meters) are plotted versus one
of the variable interference characteristics being considered
(e.g., the carrier frequency for a continuous wave interferer)
[12, 13].

The main innovation of the IEE and IRA curves with
respect to other interference assessment methods is that they
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Figure 2: Interference Error Envelope comparison in presence of a
CW interference obtained for a coherent Early-Late discriminator
with different correlator spacings (from 0.2 to 1 chip) with a BPSK
(GPS L1) signal.

are not limited to the analysis of the received signal features,
allowing detailed analysis on specific interference parameters
also taking into account the receiver setup.

As an example, in order to better understand the idea
the method is based on, some IEE curves are depicted
in Figure 2. In this case the effect of a CW interference
on the GPS L1 signal (Binary Phase Shift Keying—BPSK
modulation) is assessed, considering a coherent Early-Late
discriminator with different correlator spacings (from 1 to
0.2 chips).

This plot has been obtained simulating a carrier to
interference power ratio equal to 0 dB (same power for the
useful SIS and the CW interference). The carrier frequency
of the CW sweeps from 0 to 10 MHz with respect to the GPS
L1 carrier frequency and its phase has been varied from 0 to
2π.

The IEE curves in Figure 2 have then been obtained
considering the maximum and the minimum values (over
all the possible phases) of the ranging errors versus the CW
carrier frequency (the x axis represents the offset between
the CW and the GPS carrier frequency). In this way a
useful tool for assessing the worst-case errors (maximum and
minimum) for each CW carrier frequency is provided.

From this kind of analysis and plots the ranging errors
due to a specific interference can be easily evaluated.
Observing Figure 2, the error envelopes present symmetry
between positive and negative values with a shape similar
to the BPSK spectrum. It is possible to notice that for large
values of the correlator spacing the IEE curves present high-
ranging errors while they decrease with the reduced Early-
Late distance. But in all the cases the CW interference is
more harmful if its carrier frequency is around 0.5 MHz
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Figure 3: Interference Error Envelope in presence of a CW
interference obtained for a coherent Early-Late discriminator with
a correlator spacing of 0.4 chip with a BPSK signal.

(corresponding to the half of the main lobe of the spectrum)
and then its impact decreases moving away from the central
frequency.

The shape of the IEE and the resulting performance
also depend on the characteristics of the specific PRN code
being considered, as it will be discussed in Section 4. The
zeros of Figure 2 depend on the modulation of two different
contributes of (3) the following:

(i) The code elementary function, contained in the
DTFT C( f ). In case of a BPSK signal the contribute
is a sinc function with zeros defined by the inverse of
the chip period Tc. Notice that in case of a BOC(1,1)
modulation, the zeros position is different from the
BPSK case since the chip shaping is defined by the
combination of a sinc and a sine profile with period
1/Tc [13].

(ii) The sine function (dependent on the spacing Δ). It
introduces zeros accordingly to its period.

To show the modulation effect on the zeros placement
due to the two contributes, the IEE of a CW in case of spacing
Δ = 0.4 is reported in Figure 3. In this case two zeros at
2.5 MHz and 7.5 MHz are added to the zeros observed at
entire multiple of 1.023 MHz.

An alternative way to show the described results is the
Interference Running Average (IRA) curves, obtained aver-
aging the IEE and representing the potential average impact
of an interference whose carrier frequency is uniformly
distributed in a chosen frequency range [13]. The IRA curves
do not add information to the analysis performed using the
IEE, but provide a simplified representation of the receiver
performance, allowing an easy comparison of interference
vulnerability for different receiver configurations.

The IEE curves, together with the corresponding IRA
curves, are a reliable quantitative method that can be used
in order to assess and compare the interference robustness
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level of different GNSS signals. Some examples of analysis
already performed by means of IEE are provided in [12,
13], where the impacts of both continuous wave and wide
band interference are assessed, performing a full comparison
between different GNSS modulations (BPSK, BOC, CBOC,
and TMBOC) and considering different receiver configura-
tions. Referring to the concepts introduced in this Section,
the paper focuses the attention on the GPS C/A code.

While in [12, 13] the IEE is used to compare the
interference robustness among different modulation types
and vary the receiver configuration, here the performed
analysis is focused on comparing the robustness among the
GPS C/A PRN codes by varying the CW carrier frequency.

The final goal is to identify the worst case (i.e., the
most dangerous CW carrier frequency) for each specific GPS
satellite signal.

4. Impact on IEE of the GPS C/A Code Lines

The GPS C/A code signal is based on the Gold code char-
acteristics [1]. Such signal has a line spectrum (neglecting
the navigation data) with lines at 1 kHz from each other.
Moreover, depending on the code, there are some lines that
are stronger [11]. This means that a CW jammer might mix
with a strong C/A code line and leak through the correlator,
affecting the receiver performance or even preventing the
correct functioning of the receiver. Three facts must be
pointed out:

(i) Because of the C/A code signal structure, CWs might
be very harmful sources of interference [11];

(ii) Such a harmfulness is strictly related with the relative
position between the CW carrier frequency and the
code strongest line [16];

(iii) Also the relative carrier phase can have an impact.

From [17], the Power Spectral Density (PSD) of the C/A
code signal spectrum can be expressed as

SC/A = Tb
(NTC)2
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where

(i) |C( f )|2 = T2
CN · sinc2( f TC) · |Xcode( f )|2;

(ii) Xcode( f ) is the Discrete Time Fourier Transform of
xn: Xcode( f ) =∑N−1

n=0 xne
j2π f nTC ;

(iii) {xn}N−1
n=0 is the binary Gold code sequence;

(iv) TC = 0.976μs is the code chip duration;

(v) N = 1023 is the number of chips in 1 code period;

(vi) Tb = 20 ·N · TC = 20 ms is the data bit duration.

It must be remarked that SC/A in (4) is composed by three
functions in the frequency domain:

(i) sinc2( f TC), due to the rectangular code chip;
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Figure 4: Spectrum of 1 period of the PRN 23 C/A code (orange
line), chip waveform spectrum (solid black line), and PRN 23 C/A
code signal spectrum (solid cyan line).

(ii) Xcode( f ) which is the DTFT of the Gold code;

(iii) The third term is due to the code repetition and
consists of a comb of sinc functions, at 1 kHz from
each other.

All these three components are clearly depicted in Figure 4.
It is also possible to appreciate the three frequency func-

tions by changing the resolution bandwidth to a spectrum
analyzer linked with a RF GPS signal generator. The effect
is shown in Figure 5, where the GPS C/A code spectrum is
depicted tuning the resolution bandwidth at 100 kHz, 1 kHz,
and 100 Hz, respectively.

The difference in terms of energy carried by each line can
be noticed in Figure 6, where the spectrum of the C/A code
signal is depicted for two different codes (PRN 7 and 23).

In terms of interference robustness, the strongest line
for each C/A code can be called worst line, since it is more
susceptible to interference. Table 1 lists all the PRN codes
worst lines [11].

One of the tests that has been performed using the
IEE tool (see Section 3) verifies that, after fixing the CW
frequency shift and evaluating the IEE for each PRN code, the
maximum IEE is obtained for the PRN having the strongest
line coincident with the CW shift, as reported in Table 2.

The double check between Table 1 and Table 2 confirm
the test. All the PRN worst line combinations correspond.
Only two facts have to be remarked:

(i) For CW at 151 kHz, the maximum IEE corresponds
to PRN 9, instead of PRN 25. This is because the
strongest line of PRN 25 and the sixth strongest
line of PRN 9 have practically the same amplitude
(−23.78 and −23.81 dB);
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Figure 5: PSD evaluated by the ESA-E series Agilent 4402B
spectrum analyzer, with a resolution bandwidth of 100 kHz, 1 kHz
and 100 Hz, respectively.

(ii) Both the PRN 4 and PRN 11 have the strongest
line at 122 kHz. The maximum IEE at this frequency
corresponds to PRN 11. This fact is confirmed by the
two line amplitudes: −22.98 dB for the PRN 4 and
−22.64 dB for PRN 11.

Using the IEE curves, it is possible to define new worst
lines for the specific receiver configuration (taking into

Table 1: GPS C/A Code Worst Lines for Prn 1 to 32.

C/A code
PRN #

Worst Line
Frequency

[kHz]

C/A code PRN
#

Worst Line
Frequency

[kHz]

1 42 17 138
2 263 18 183
3 108 19 211
4 122 20 30
5 23 21 55
6 227 22 12
7 78 23 127
8 66 24 123
9 173 25 151
10 16 26 102
11 122 27 132
12 199 28 203
13 214 29 176
14 120 30 63
15 69 31 72
16 154 32 74

Table 2: Analysis of Code Lines from IEE Maximum.

CW
frequency
shift [kHz]

PRN
(IEE max)

CW frequency
shift [kHz]

PRN
(IEE max)

12 22 122 11
16 10 123 24
23 5 127 23
30 20 132 27
42 1 138 17
55 21 151 9
63 30 154 16
66 8 173 9
69 15 176 29
72 31 183 18
74 32 199 12
78 7 203 28
102 26 214 13
108 3 221 19
120 14 227 6

263 2

account the discriminator setting, the front end filter type
and bandwidth).

The new worst-case frequencies lines are listed in Table 3.
They have been obtained simulating an infinite bandwidth
signal with a coherent discriminator (Early-Late with spacing
1 chip).

Referring to first line in Table 3, Figure 7 provides an
example of the procedure followed for the definition of the
new worst line on the IEE obtained simulating the PRN 1.

It is important to point out that the definition of
“new” worst lines changes the point of view in assessing
the interference impact. This definition points out that the
strongest code line can also not be the worst one.

In fact the new definition is receiver dependent, since the
impact of a CW interferer is related to several factors:

(i) CW characteristics, that is, power, carrier frequency,
phase;
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spectra.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

CW carrier frequency (MHz)

IE
E

(m
)

308 kHz
PRN 1

Figure 7: Definition of the new GPS C/A code worst line on the IEE
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(ii) Specific code features (PRN number);

(iii) Receiver characteristics, that is, discriminator spac-
ing, and front end parameters (filter, ADC, AGC,
etc.).

As an example of the dependence of the IEE on the
receiver setup, an additional analysis has been carried out in
order to assess the impact of the discriminator spacing on the
new worst lines. In detail the GPS C/A PRN 1 signal has been
simulated with infinite bandwidth and processed by using a
coherent Early-Late discriminator with different correlator
spacings (from 0.2 to 1 chip). Figure 8 shows a zoom on
Figure 2, aiming at investigating the impact of the spacing
on the worst case error in presence of CW interference.
The obtained results in terms of worst lines are summarized
in Table 4. As already remarked in Section 3, these results
confirm that a reduction of the spacing decreases the
magnitude of the envelope errors.

Table 3: “New” GPS C/A Code Worst Lines.

C/A code
PRN #

Worst Line
Frequency

(kHz)

C/A code PRN
#

Worst Line
Frequency

(kHz)

1 308 17 434
2 402 18 456
3 447 19 394
4 456 20 461
5 381 21 453
6 347 22 364
7 376 23 438
8 435 24 384
9 354 25 257
10 443 26 417
11 397 27 441
12 410 28 355
13 412 29 433
14 369 30 426
15 338 31 423
16 423 32 376

Table 4: Worst Lines for GPS C/A PRN no. 1 varying the
Discriminator Spacing.

Coherent Early-Late
Discriminator Spacing
(chips)

Worst Line
Frequency (kHz)

IEE max (m)

1 308 19.91

0.8 466 16.94

0.6 466 14.13

0.4 466 10.16

0.2 466 5.30

In addition, it is possible to notice that, by varying the
spacing, the worst lines can match different frequencies. In
detail, the worst line is at 308 kHz only for a spacing of 1
chip, whereas other spacings lead to a different interference
vulnerability, showing a worst line at 466 kHz. It must be
remarked that these results have been obtained simulating
a BPSK modulated signal (GPS C/A code). Obviously
different results are expected considering other signals (e.g.,
BOC modulated), featuring a larger spectral occupation, or
different PRN codes, leading to different worst lines.

Finally, it must be remarked that, as noted in [12, 13],
CW analysis is the base for predicting results also in presence
of larger bandwidth interference (wideband signals), that
might affect more than one line at the time.

5. Conclusions

The increasing number of application based on the integra-
tion of wireless communications and navigation/localization
techniques leads to the need to verify their interoperability.
Within this scenario, the assessment of the GNSS interference
robustness is one of the most sensitive issues.

An innovative quantitative method to measure the
interference impact for GNSS signals has been described
in the paper. It consists in evaluating the distortion of
the discrimination function produced by the presence of
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the interference and can be customized for each type of
disturbance. A new family of curves, the Interference Error
Envelope, has been introduced. Each IEE measures the
maximum correlation distortion versus the specific interferer
characteristic being considered (e.g., the carrier frequency for
a continuous wave interferer), for a specific receiver setting.

Moreover the paper presented a detailed analysis on the
effect of CW interference on the different GPS C/A codes.
Starting from the concept of worst line (the strongest line for
each code), and exploiting the IEE tool, new worst lines, that
also take into account the receiver architecture, have been
found.
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Global navigation satellite systems (GNSSs) can provide reliable positioning information under optimum conditions, where at least
four satellites can be accessed with sufficient quality. In critical situations, for example, urban canyons or indoor, due to blocking
of satellites by buildings and severe multipath effects, the GNSS performance can be decreased substantially. To overcome this
limitation, we propose to exploit additionally information from communications systems for positioning purposes, for example,
by using time difference of arrival (TDOA) information. To optimize the performance, hybrid data fusion and tracking algorithms
can combine both types of sources and further exploit the mobility of the user. Simulation results for different filter types show
the ability of this approach to compensate the lack of satellites by additional TDOA measurements from a future 3GPP-LTE
communications system. This paper analyzes the performance in a fairly realistic manner by taking into account ray-tracing
simulations to generate a coherent environment for GNSS and 3GPP-LTE.

1. Introduction

Position information of mobile stations (MSs) in a com-
munications system has become a very important feature in
recent years. Services and applications based on very accurate
location knowledge will play a fundamental role in future
wireless systems [1]. Besides the well-known location-based
services it is stated by the United States Federal Communica-
tions Commission (FCC) that wireless service providers have
to deliver the locations of all enhanced 911 (E911) emergency
callers with specified accuracy [2]. To meet this requirement,
global navigation satellite systems (GNSSs) [3]—like the
current Global Positioning System (GPS) and the future
European Galileo system—can deliver very good position
estimates under optimum conditions. However, especially
in critical positioning scenarios with severe multipath prop-
agation and blocking of several satellites by buildings the
performance loss can be very high [4]. For instance, in urban
canyons the number of visible satellites can be below the
required four. In these situations, we propose to include
timing measurements from a communications system to
compensate the lack of satellites.

As a supplement to GNSS or as stand-alone solution,
already available communications systems can be included
in the MS localization process. Generally, measurements
in terms of time of arrival (TOA), time difference of
arrival (TDOA), angle of arrival, or received signal strength,
provided by the base stations (BSs) or the MS, can be used
[1]. Of very high interest is TDOA positioning as it is already
included in several systems (e.g., GSM, UMTS, CDMA2000)
[5, 6], in the standardization process for 3GPP-LTE (cf.
[7–9]), and also under discussion for positioning in future
systems (cf. [10, 11]).

The hybrid data fusion (HDF) of measurements from
GNSS and communications systems is important for seam-
less positioning and navigation in critical environments [12].
The additional utilization of tracking algorithms will further
improve the performance for mobile users [13]. In this paper,
we investigate a joint HDF and tracking based on different
filter types, where we focus on Positioning Kalman filter
(PKF), extended Kalman filter (EKF) [14], and particle filter
(PF) [15], that combine GNSS measurements with TDOA
measurements from a future 3GPP-LTE communications
system. Contrary to state-of-the-art work (e.g., [13]), this
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paper analyzes the performance in a fairly realistic manner,
especially by taking into account ray-tracing simulations and
mobility models for the pedestrian use-case. Since combined
channel models for GNSS and communications systems are
not yet available, this procedure allows to generate a coherent
and correlated environment for both considered systems.

Section 2 starts with a description of the system mod-
els for GNSS and the communications system, including
also an overview of positioning methods in current and
future systems. Section 3 discusses the HDF and tracking
algorithms that are employed for this investigation. Finally,
simulation results in Section 4 show the performance for
the developed approaches in coherent environments for
pedestrian positioning in urban canyons.

2. System Model

2.1. Global Navigation Satellite Systems. GPS and the future
European Galileo system will be considered in our investiga-
tions [3]. The distances between the NSat = NGPS + NGalileo

visible satellites located at the positions xμ= [xμ, yμ, zμ]T,μ ∈
{1, 2, . . . ,NSat}, which are assumed to be under line-of-sight
(LOS) conditions, and the MS at position x = [x, y, z]T are
given by

rμ(x) =
√

(xμ − x)2 + (yμ − y)2 +
(

zμ − z
)2
. (1)

The resulting pseudoranges between the satellites and MS
can then be modeled as

r̂μ = rμ(x) + bclock + bmultipath,μ + nμ, (2)

where bclock is the clock bias coming from the time-offset
of the receiver with respect to the satellite clocks, and nμ
is the elevation depending residual error chosen according
to user-equivalent range error (UERE) models for single-
band GNSS receivers and effects like tropospheric errors and
receiver noise [3]. The multipath error is included in terms
of bmultipath,μ. It will be calculated for each channel impulse
response (CIR), assuming noncoherent integration and
a state-of-the-art narrow early-minus-late correlator with
correlator spacing of 0.1 chips, where one chip corresponds
to around 300 m for GPS.

A LOS visibility analysis for GPS and GPS+Galileo cre-
ated by ray-tracing simulations is shown in Figure 1. It shows
the number of LOS-visible satellites in an urban scenario
located in Munich, Germany, where the average building
height is around 26 m. We see that especially inside the urban
canyons there occur several situations, where only less than
four satellites are visible. Hence, only limited performance
of GNSSs can be expected. Additionally, the impact of
multipath propagation to the overall error is comparably
high in these situations. Therefore, supplementation from
communications systems is of high interest and importance
in these GNSS-critical environments.

2.2. Communications Systems. Besides GNSS, also commu-
nications systems have the ability to provide positioning

information about one or several MSs. Especially in environ-
ments with limited GNSS-performance, for example, urban
canyons or indoor, communications systems usually have a
good coverage. Different principles for obtaining positioning
information can be used by communications systems. For
instance, measurements in terms of TOA, TDOA, angle of
arrival, or received signal strength can be exploited [1].
However, most of the communications systems—already
deployed, standardized, or under research—were not fore-
seen for positioning applications in advance. Hence, the
positioning capabilities are usually restricted.

The best performance can be obtained with timing
measurements (e.g., [6]), where the key implementation
is based on TDOA. They can easily be extracted from
system-inherent measurements. The basic idea is to extract
the arriving times of signals from several BSs at the MS.
To do so, the MS listens to appropriate synchronization
channels depending on the system. Then, the TDOAs can
be obtained from that. Nevertheless, many challenges have
to be overcome in real systems. For instance, for positioning
it is assumed that the BSs are fully time and frequency
synchronized which is not foreseen in all systems or only an
optional feature. However, so-called location measurement
units (LMUs) can be used to compute the misalignment
of the BSs and provide this information to the network or
MS. Furthermore, mobile radio systems are designed in a
way that only one strong serving BS should be heard due
to spectral efficiency reasons. From a positioning point of
view, we need at least three BSs with sufficient signal-to-
interference-and-noise ratios (SINRs) for two-dimensional
location estimation. This is usually only given at the cell edge.
Close to a BS the interference of the serving BS can be too
high for detection of the out-of-cell BSs with a reasonable
good quality.

Considering deployed systems, in the GSM EDGE radio
access network (GERAN), three location principles are spec-
ified (cf. [5]): besides the cell identity procedure a TDOA-
based method called enhanced observed time difference
(E-OTD) is standardized. However, due to large cells in
GSM the positioning accuracy can be in the order of
several hundred meters. Another specified method is assisted
GPS (A-GPS). In assisted solutions, parts of the navigation
data—which traditionally is included in the GNSS satellite
signals—can be communicated much faster to the MS by
the network. This can help to reduce the time-to-first-fix
in the acquisition process and to increase the sensitivity
in the tracking stage since longer integration times are
possible. In CDMA-based systems (e.g., UMTS, W-CDMA,
CDMA2000) similar positioning principles as in GSM have
been implemented [6]. However, the technical realization is
different due to the CDMA properties of the system. On the
one hand long integration times can be realized, on the other
hand the well-known near-far problem is hard to overcome.
However, also here TDOA-based positioning techniques are
used to determine the MS position without GNSS support.
Additionally, A-GPS approaches are standardized.

The deployment of CDMA-based mobile radio systems
is still on-going; nevertheless, the successors are completing
the standardization process, where in this paper we focus on
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Figure 1: Number of visible GNSS satellites.

3GPP-LTE [7]. 3GPP-LTE will be an orthogonal frequency
division multiplexing (OFDM) system with bandwidths up
to 20 MHz. For timing-based positioning the synchroniza-
tion and reference channels can be used to determine the
TDOAs at the receiver side (e.g., [8, 9]). Generally, timing-
based positioning relies on known sequences in the signals.
In 3GPP-LTE the primary and secondary synchronization
channels (P-SCH, S-SCH) as well as the downlink reference
signal (DL-RS) could be used [16] (cf. Figure 2 for the frame
structure of 3GPP-LTE, P-SCH in blue, S-SCH in green,
DL-RS in black). For the detection of the different sectors
(we assume three sectors per BS) a searching algorithm is
applied, which builds replicas of the known synchronization
sequences and correlates them with the received signals from
all surrounding sectors in time domain to determine the
arrival time of the sequences and, thus, to determine finally
the TDOAs (e.g., [17]). For our investigations, we simulate a
FDD system with 20 MHz bandwidth, directional antennas,
and transmit powers of 43 dBm (cf. [17]); however, as
specified in the standard, the synchronization sequences only
occupy 1 MHz bandwidth.

It can be expected that also the generation of mobile
radio systems after 3GPP-LTE will be OFDM based, where
the occupied bandwidth will further increase. However, it is
questionable if a target bandwidth of 100 MHz (as proposed
in [10]) can be realized in spectrum as a whole or only
by sophisticated overlay systems. The further integration of
local communications systems for hot spot situations will
also be challenging from a positioning point of view. On the
one hand, the coverage can be really high since an overlap
of these hot spots is naturally given. On the other hand, the
exact location of these plug-and-play devices is not a priori
known which encounters new difficulties in the location
determination process. Another concept under discussion is
relay enhanced cells, especially in urban environments.
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Figure 2: 3GPP-LTE frame structure.

As discussed before, for the measurements from the
communications part we use TDOAs. In TDOA only time-
differences from several BSs are used; thus, the receiver time-
offset with respect to the synchronized BSs is compensated
inherently. Hence, we obtain

dν,1(x) = rν(x)− r1(x), ν ∈ {2, 3, . . . ,NBS}, (3)

where we chose BS 1 as reference BS which gives NBS − 1
linear independent TDOAs. The TDOA measurement model
is determined as

d̂ν,1 = dν,1(x) + nν,1. (4)

Each error contribution nν,1 = nν − n1 depends on two
measurements which results in strong correlations, especially
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with respect to the reference BS. The timing information is
extracted from the synchronization algorithms between the
MS and several BSs at the same time, where—similar as for
GNSS—also here coherent channel conditions are generated
(cf. Section 2.3). Note that both multipath and NLOS
propagation are considered in the TDOA measurements.
However, as multipath is not exploited or mitigated, the
multipath effects are not explicitly denoted in this equation;
that is, all effects are included in the noise. As pointed out
before, we have used a 3GPP-LTE system to provide the
TDOAs (e.g., [17]). The cellular network structure is shown
in Figure 3, where the urban canyon scenario (cf. Figure 1) is
located at two different positions: at the cell edge or close to
a BS.

2.3. Channel and Mobility Models. To assess the performance
of HDF and tracking algorithms, realistic channel models
for GNSSs and communications systems are required, where
strong system-, spatial-, and time-correlations occur. No
current models meet these requirements in an adequate
manner so far. Thus, we created realistic models by using ray-
tracing simulations in an urban canyon scenario to generate
CIRs for satellites and BSs at several points. This allows a
coherent simulation for the HDF and tracking algorithms.
Further, we have adapted and implemented a mobility model
that is based on gas diffusion [18]. This model generates
realistic path tracks of the MS especially for slow moving
pedestrian users. Some of these tracks were already shown
in Figure 1. Typical CIRs for such a track assuming a GPS
satellite and a BS are depicted in Figure 4. We observe, for
example, the high number of reflections and also the clear
LOS situations at time-steps 80–170 and 320–350 for the GPS
satellites. Note that for each simulated track the CIRs from all
satellites and all BSs are calculated to obtain a coherent and
correlated environment.

3. Hybrid Data Fusion and Tracking Algorithms

The MS positions are usually correlated over time. For
instance—considering a pedestrian—certain information
about the position can be derived using the history of past
estimates and suitable movement or mobility models. For
instance, a pedestrian cannot jump from one position to
another in limited time. This behavior can be used as side-
information for position tracking algorithms.

We assume a hidden Markov model with unknown states
sk∈ RNs that have to be estimated in each time-step k ∈ N.
The estimation process takes into account the measurements
yk∈ RNy in each time-step k in addition to the model
parameters. The measurements yk depend only on the state
vector sk at the current time-step. This dependence is defined
by the so-called measurement model:

yk = gk(sk,nk). (5)

The function gk is a possibly nonlinear function of the state sk
and the measurement noise nk∈ RNn . The properties of the
measurement noise nk define the measurement uncertain-
ties. Another equivalent representation of the measurement
model is based on the conditioned probability density
function (PDF) of the measurements given the states, that
is, p(yk | sk).

The state model defines a relation between the previous
state sk−1 and the current state sk. It is given as

sk = fk−1(sk−1, vk−1), (6)

where the function fk−1 is a possibly nonlinear function of
the state sk−1 and the state process noise vk−1∈ RNv . The
properties of the state process noise vk−1 define how random
the state changes can be. The equivalent representation of
the state model is based on the conditioned PDF p(sk |
sk−1). In the positioning context the state vector can include
information about the MS position or its velocity. The
corresponding state model includes information about the
mobility or movement of the MS. Therefore, it is often
denoted as mobility model.

Following the Bayesian approach (e.g., [14, 19]), it is
required that the PDF of the current state is estimated by
considering all previous and the current measurements, that
is, the PDF p(sk | y1, y2, . . . , yk) has to be constructed. This
is done recursively by assuming that the prior distribution of
the state s0 is known.

In the first step of Bayesian estimation, the state model is
used to obtain the prior PDF of the state at time-step k by

p
(
sk | y1, y2, . . . , yk−1

) =
∫

p
(

sk|sk−1

)

p
(

sk−1| y1, y2, . . . , yk−1

)

dsk−1.
(7)

The PDF p(sksk−1) is defined by the state equation and the
known statistics of the state noise vk−1. This step is denoted as
prediction step since the new state is estimated as a prediction
of the old state.

For the second step, it is required that at time-step k
the measurements yk become available. They can be used
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Figure 5: Recursive Bayesian estimation.

to update the prior PDF by the Bayes’ rule resulting in a
normalized product of the likelihood p(yk | sk) and the prior
PDF, that is,

p
(
sk | y1, y2, . . . , yk

)= p
(
yk | sk

)
p
(
sk | y1, y2, . . . , yk−1

)

p
(
yk | y1, y2, . . . , yk−1

) ,

(8)

with normalization constant p(yk | y1, y2, . . . , yk−1) .
Therefore, the posterior PDF can be calculated by using
the measurement model and the known statistics of the
measurement noise nk. Since the measurements of time-
step k are used to modify the prior PDF for obtaining the
posterior PDF, this step is called update step. The complete
principle of the recursive Bayesian estimator is shown in
Figure 5 (cf. [20]).

Finally, the solution that maximizes the posterior PDF
is nothing else than the maximum-a-posteriori (MAP)
estimator:

ŝMAP,k=argmax
sk

p
(
sk | y1, y2, . . . , yk

)
. (9)

Contrary to that, the minimum mean square error (MMSE)
estimator calculates the expectation over the PDF, that is,

ŝMMSE,k =
∫

sk p
(
sk | y1, y2, . . . , yk

)
dsk , (10)

where for Gaussian noise distributions both estimators yield
the same result.

Usually there are no closed-form solutions for the general
integrals in Bayes estimation [15]. One option to handle
these integrals is certain assumptions for the models or
approximations: the classical Kalman filter (KF) approach
(Section 3.1) presumes linear models and Gaussian noise
distributions. The EKF approximates non-linear models in
a linearization step which will be shown in Section 3.2.
Another option to handle the integrals is numerical integra-
tion. An approximate solution by Monte-Carlo methods is
the PF being described in Section 3.3.

3.1. Kalman Filter. The KF (cf. [14]) is one of the most
widely used implementation of Bayesian filters. One of the
main advantages of KFs is the computational efficiency in the
implementation using only matrix and vector operations on
the mean and covariances of Gaussian processes.

To perform optimum, it must hold for the system model
in (6) and the measurement model in (5) that the system
process noise vk ∼ N (0Ns

,Qk) and measurement noise
nk ∼ N (0Ny ,Ck) are drawn from zero-mean Gaussian distri-
butions with known covariances. For GNSS the covariance
matrix of the measurement noise is based on the error
model for each satellite (which is, e.g., elevation dependent);



6 International Journal of Navigation and Observation

for the 3GPP-LTE TDOA measurements it is based on the
SINRs. Note that for a general derivation it is not necessarily
required that the noise is zero-mean (e.g., [14]) which is
assumed here for simplicity. Furthermore, fk−1 and gk have
to be known linear functions.

Then, we can rewrite (6) and (5) as

sk = Ak−1sk−1 + vk−1, (11)

yk = Hksk + nk. (12)

The matrix A∈ RNs×Ns is the state matrix and includes the
linear dependencies between the states of time-steps k and
k−1. The measurement matrixH∈ RNy×Ns reflects the linear
relation between the measurements and the state at time-step
k. In general, all matrices can be time-variant. In the context
of positioning applications this could reflect, for example,
changing mobility models over time. The optimum filter
equations can then be written as follows.

In a first step (prediction) the state of the current time-
step is calculated taking into account the state of the previous
time-step and the knowledge of the state matrix given by Ak.
Then, the estimate of the state after prediction is

ŝk|k−1 = Ak−1 ŝk−1|k−1, (13)

with the estimate of the previous time-step ŝk−1k−1. Addition-
ally, the corresponding MMSE or covariance matrix after that
prediction step can be calculated as

Mk|k−1 = Ak−1Mk−1|k−1A
T
k−1 +Qk, (14)

where Mk−1|k−1 is the MMSE matrix of the previous time-
step. From the Bayesian PDF point of view, the prior PDF
can be represented as a Gaussian distribution according to

p
(
sk | y1, y2, . . . , yk−1

) ∼ N
(
ŝk|k−1,Mk|k−1

)
. (15)

The Kalman gain matrix includes a weighting between
the predicted estimate (already calculated) and the current
measurements. It is given by

Kk =Mk|k−1H
T
k

(

Ck +HkMk|k−1H
T
k

)−1
. (16)

Finally, the correction step combines the predicted
estimates with the current measurements weighted with the
Kalman gain matrix. This results in the final estimate of the
state vector:

ŝk|k = ŝk|k−1 + Kk
(
yk −Hkŝk|k−1

)
. (17)

The corresponding MMSE or covariance matrix after the
correction step is obtained as

Mk|k =
(

INs − KkHk
)
Mk|k−1. (18)

The resulting posterior PDF can then be written as Gaussian
distribution according to

p
(
sk | y1, y2, . . . , yk

) ∼ N
(
ŝk|k,Mk|k

)
. (19)

The KF is initialized with s0|0 andM0|0 determined by the
prior distribution of the initial state.

In the context of position tracking applications, we
assume that the state vector consists of position and velocity,
that is,

sk = [xk, yk, zk, vx,k, vy,k, vz,k]T. (20)

For the mobility model, we choose a very simple model
corresponding to the principle of random walk. For that, the
resulting time-invariant system matrix is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21)

The sampling time T depends on the application. For
instance, for pedestrian positioning sampling times of
around 1 s are usually sufficient. The covariance matrix of
the process noise is a diagonal matrix including the variance
of the mobility (process drift) in all directions for position
and velocity. This model implies that the change of the MS
position is controlled by process noise of a certain variance.

For the measurement model, we assume that in every
time-step a static position estimate is available. The static
solution (cf. [12]) results in a weighted non-linear least
squares estimation problem. As an analytic solution is not
possible, an iterative procedure based on the Gauss-Newton
algorithm is applied. Hence, for the Kalman equations the
measurements are given in terms of position measurements
and have a linear dependency with the state vector which is
reflected in the time-invariant measurement matrix:

H =
⎡

⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎥
⎦. (22)

We do not consider any velocity estimates which are available
from the position estimation entity. Thus, the velocity is
handled as hidden state and estimated implicitly in the filter
equations. The resulting filter in the positioning context is
denoted as positioning KF (PKF).

3.2. Extended Kalman Filter. The performance of the PKF
is optimum if the conditions on Gaussianity and linearity
are fulfilled completely. Further, the KF requires that the
underlying entity which provides the static solutions per-
forms optimum; that is, in each time-step enough sources
(here, at least three) have to be available and the static
position estimation errors have further to fulfill the Gaussian
assumption. Especially in critical positioning situations like
urban canyons or indoor, it may happen quite often that only
less than the required number of sources are available for a
certain time. Then, the PKF would totally fail since the static
solution cannot provide any estimates.
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The EKF (e.g., [14, 21]) is a much more flexible tool being
able to handle directly non-linear models. We assume that
the state model is given by

sk = ak−1(sk−1) + vk−1 (23)

and the measurement model can be written as

yk = hk(sk) + nk. (24)

Basic idea of the EKF is a linearization of ak−1(sk−1) about
the estimate of sk−1. We obtain

ak−1(sk−1) ≈ ak−1
(
ŝk−1|k−1

)
+ Ak−1

(
sk−1 − ŝk−1|k−1

)
(25)

with the Jacobian matrix:

Ak−1 = ∂ak−1(sk−1)
∂sk−1

∣
∣
∣
∣
sk−1=ŝk−1|k−1

. (26)

Equivalently, we linearize hk(sk) about the estimate of sk, that
is,

hk(sk) ≈ hk
(
ŝk|k−1

)
+Hk

(
sk − ŝk|k−1

)
(27)

with the Jacobian matrix:

Hk = ∂hk(sk)
∂sk

∣
∣
∣
∣
sk=ŝk|k−1

. (28)

Obviously, the Jacobians have to be recalculated in every
time-step since they depend on the estimates of the previous
time-steps. However, the resulting structure of the EKF as
pointed out in the following is very similar to the PKF
solution.

It starts with the prediction, where knowledge of the MS
movement model is applied to obtain

ŝk|k−1 = ak
(
ŝk|k−1

)
, (29)

with the estimate of the previous time-step ŝk−1|k−1. Similarly,
the corresponding MMSE or covariance matrix after that
prediction step is

Mk|k−1 = Ak−1Mk−1|k−1A
T
k−1 +Qk. (30)

Hk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(Sat)
k − x1

r(Sat)
1,k (sk)

y(Sat)
k − y1

r(Sat)
1,k (sk)

z(Sat)
k − z1

r(Sat)
1,k (sk)

1

...
...

...
...

x(Sat)
k − xNBS

r(Sat)
NSat,k(sk)

y(Sat)
k − yNBS

r(BS)
NSat,k(sk)

z(Sat)
k − zNBS

r(Sat)
NBS,k(sk)

1

x(BS)
k − x2

r(BS)
2,k (sk)

− x(BS)
k − x1

r(BS)
1,k (sk)

y(BS)
k − y2

r(BS)
2,k (sk)

− y(BS)
k − y1

r(BS)
1,k (sk)

z(BS)
k − z2

r(BS)
2,k (sk)

− z(BS)
k − z1

r(BS)
1,k (sk)

0

...
...

...
...

x(BS)
k − xNBS

r(BS)
NBS,k(sk)

− x(BS)
k − x1

r(BS)
1,k (sk)

y(BS)
k − yNBS

r(BS)
NBS,k(sk)

− y(BS)
k − y1

r(BS)
1,k (sk)

z(BS)
k − zNBS

r(BS)
NBS,k(sk)

− z(BS)
k − z1

r(BS)
1,k (sk)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (31)

Due to the linearization step the resulting estimated prior
PDF in the Bayesian sense is a Gaussian approximation of the
true prior PDF. Hence, the estimated prior PDF is given as

p
(
sk | y1, y2, . . . , yk−1

)∼ N
(
ŝk|k−1,Mk|k−1

)
. (32)

The Kalman gain matrix can be obtained by

Kk =Mk|k−1H
T
k

(

Ck +HkMk|k−1H
T
k

)−1
, (33)

Finally, the correction step combines the predicted estimates
with the current measurements weighted with the Kalman
gain matrix. This results in the final estimate of the state
vector being calculated as

ŝk|k = ŝk|k−1 + Kk
(

yk − h
(
ŝk|k−1

))

. (34)

The corresponding MMSE or covariance matrix after correc-
tion is obtained as

Mk|k =
(

INs − KkHk
)
Mk|k−1. (35)

Also the resulting posterior PDF is a Gaussian distribution of
the true posterior PDF. It is given as

p
(
sk | y1, y2, . . . , yk

)∼ N
(
ŝk|k,Mk|k

)
. (36)

Compared to the PKF, the EKF has no optimality prop-
erties, where its accuracy depends on the accuracy of the
linearization. Nevertheless, the EKF turns out to be a flexible
and robust approach widely used for position tracking
applications.

Considering position tracking (as shown for the PKF
in Section 3.1), the state vector sk is only extended by
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the unknown clock offset between GNSS satellites and
MS, that is, by bclock. However, in principle we assume
the same state model, that is, a linearization of the state
equation is not necessary. Therefore, the prediction step
is similar for EKF and PKF. As measurements we process
directly the pseudorange measurements from GNSS and the
TDOA measurements from the communications system—
in contradiction to the PKF, where the measurements were
processed beforehand by a static position estimation. Since
the measurements are non-linear with respect to position,
for the update step a linearization of the measurement model
is necessary. For that, the Jacobian matrix including the
derivatives of the measurement model with respect to the
state vector has to be available. For the considered set-up, Hk

is shown in (31) with the corresponding indices for satellites
(Sat) and BSs (BS).

3.3. Particle Filter. Another important class of Bayesian filters
is based on approximation of integrals by numerical integra-
tion. These methods are commonly denoted as PFs ([15, 19,
22]) and became quite popular for position tracking applica-
tions (e.g., [23]). PFs are based on a sequential Monte-Carlo
methodology (cf. [24]) and calculate recursively the relevant
PDFs by importance sampling and approximation of PDFs
with discrete random measures. Compared to KFs the PFs
have usually a much higher complexity depending on the
number of particles that have to be generated to model the
required PDFs. In addition, they can suffer from phenomena
like sample degeneracy or sample impoverishment causing
unstable behavior.

In PFs, the posterior PDF is represented as the weighted
sum:

p
(
sk | y1, y2, . . . , yk

) =
Np∑

i=1

wi
kδ
(

sk − sik
)

, (37)

where each particle consists of a state sik and a weight wi
k,

and δ(·) is the Dirac delta measure. The particles are drawn
according to the principle of importance sampling from a
proposal density q(sk | sik, yk). The corresponding weights
can then be calculated by

wi
k ∼ wi−1

k

p
(

yk | sik
)

p
(

sik | si−1
k

)

q
(

sk | sik, yk
) . (38)

The generic PF applies the optimum proposal density
which in practice is difficult to use. Therefore, often the
so-called sampling importance resampling PF (SIR-PF) is
implemented (cf. [15, 19, 25]). It only requires that the state
and measurement functions fk and gk are known and that
sampling of realizations from the state noise distribution
of vk−1 as well as the prior distribution is possible. In
addition, the likelihood function p(sk|yk) has to be available
for pointwise evaluation.

In the first step of SIR-PF, for each particle i =
1, 2, . . . ,Np, a sample from the proposal density has to be
drawn, that is,

sik ∼ p
(

sk | sik−1

)

. (39)

This can be realized by generating a state noise sample
vik−1 with the corresponding PDF pv(vk−1) and setting

sik = fk−1

(

sik−1, vik−1

)

. (40)

In a second step, for each particle the weights have to
be calculated. With the chosen proposal density, this step
reduces to

wi
k = p

(

yk | sik
)

. (41)

Finally, all weights have to be normalized by

wi
k =

wi
k

W
, (42)

using

W =
Np∑

i=1

wi
k. (43)

A crucial problem of the PF is the degeneracy phe-
nomenon ([15, 19]). It points out that after a few iterations,
all but one particle will have weights very close to zero.
Simply using a very large number of particles is often too
inefficient from a computational complexity point of view.
A much better method is the application of resampling
where degeneracy can be reduced remarkably. The idea is an
elimination of particles with low weights to concentrate on
particles having large weights. In this manner, a new set of
states s̃ik, i = 1, 2, . . . ,Np is created by resampling Np times
from an approximate discrete representation of

p
(
sk | y1, y2, . . . , yk

) ≈
Np∑

i=1

wi
kδ
(

sk − sik
)

. (44)

Given

P
(

s̃
j
k = sik

)

= w
j
k, (45)

the resulting sample is an i.i.d. sample from the discrete
density. Even though the degeneracy can be reduced by
resampling, another effect denoted as sample impoverish-
ment is introduced in practical implementations. Besides the
problem of limited parallelization due to the fact that the
particles have to be combined, particles with large weights
are statistically selected much more often than the other
particles. So the diversity among the particles is reduced
since the resulting sample will contain many repeated points.
Especially for systems with small state noise the sample
impoverishment can be a serious problem and all particles
can be concentrated to a single state after a few iterations.

In addition to the SIR-PF, there exist several other PF
approaches in the literature. Briefly mentioned at this point
should be the auxiliary sampling importance resampling PF
[26] or the regularized PF [27].

Note that in this paper, the PF is not used as an object of
research but solely as lower bound for our positioning algo-
rithms. For that we have used the SIR-PF implementation
using 10000 particles.
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4. Simulation Results

We assume a fixed GNSS constellation during one track and
two different BS constellations. The first scenario is close to a
BS, and the second scenario is at the cell edge (cf. Figure 3).
We assume a cellular network with inter-BS distance of
1500 m, three sectors for each BS, and 3GPP-LTE parameters
following the on-going standardization process [16].

We start with simulation results for positioning with
GNSS. Figure 6 shows the performance of different GNSS
systems averaged over several noise realizations and sev-
eral generated tracks. The cumulative distribution function
(CDF) shows the probability that the position estimation
error is below a certain value x. In particular, all simulations
are performed for the 50 tracks shown in Figure 1 of
290 time-steps each. For each track 100 noise realizations
were generated. All in all this results in 1450000 simulated
estimates for creating the CDFs. As comparison, the curves
for an optimum free space situation are shown in this plot as
well. We observe very high performance losses in the urban
canyon scenario compared to the free space situation, which
comes from lack of satellites and high multipath impacts.
However, we can also see that the EKF clearly outperforms
the static solution for this situation. Furthermore, the large
benefit of additional Galileo satellites with respect to GPS-
only positioning becomes obvious.

Figure 7 compares the performance in the urban canyon
scenario for different tracking filter types using GPS+Galileo.
We observe that with the static solution an accuracy of
better than 40 m can be achieved in 90% of the cases. With
the PKF this can be improved to around 27 m. Using an
EKF implementation, we can achieve around 9 m which
comes very close to the performance bound of the PF.
For this GNSS-only scenario this is not surprising as the
requirement on Gaussianity is met and the nonlinearities are
not severe.

Next, the quality of the TDOA measurements is analyzed
in detail. Figure 8 shows the investigation for the urban
canyon scenario at the cell edge using different filter types
when processing two TDOA measurements (i.e., three BSs).
As expected, the accuracy as well as the availability is worse
compared to GNSS positioning. Nevertheless, using the PF
a 90%-accuracy of around 40 m can be achieved. The EKF
provides a slightly worse performance in terms of availability;
with static solution and PKF no precise positioning is
possible. Note that if the scenario is close to a BS (not shown
here), the performance becomes even worse. In that situation
also EKF and PF cannot provide a reliable position estimates.
Reason for this behavior is that close to a BS usually
out-of-cell BSs cannot be received with sufficient quality
due to the strong interference of the serving BS. In these
situations either a change in the standard is necessary (e.g.,
3GPP-LTE proposes a positioning reference mode with idle
periods and extended pilot grid [28]) or advanced receiver
techniques have to be applied (e.g., [17] proposes to use
interference cancellation to increase hearability of out-of-cell
BSs). From Figures 7 and 8 it can be concluded that the EKF
is a sufficiently good estimator for the considered scenario
and the—much more complex—PF gives no fundamental
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additional performance gains. Hence, in the following we
focus on HDF approaches using EKF tracking.

When using stand-alone TDOA positioning it is rea-
sonable to use two TDOAs (i.e., three BSs) for position
estimation since this is the minimum number of required
measurements. However, when we fuse GNSS with TDOA
measurements, simulations have shown that an adaptive
algorithm can help to improve the performance. Since the
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tracking filters allow a flexible number of measurements
in each time-step, we can adapt the number according to
the received SINR levels. Therefore, we define an SINR-
threshold, where we drop all measurements that are below
this threshold. Hence, unreliable TDOA estimates are not
used for the HDF process. Note that the weighting is only
based on the SINRs; however, also multipath and especially
NLOS propagation have a high impact on the TDOA
estimates which are not completely reflected by the SINRs.
As we do not assume to know the CIRs or do not consider
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any multipath mitigation, the SINR-thresholding results in
different performances. The simulation results in Figure 9
show that an SINR-threshold of −17 dB is a good choice
for the considered scenarios, achieving nearly 10 m for the
90%-accuracy in this scenario using GPS+Galileo+TDOA
compared to around 17 m for only GPS+Galileo. The
adaptive approach which uses the SINR-thresholding also
clearly outperforms the classical approach that uses a fixed
number of three BSs.

Figure 10 shows the location estimation performance
for the GNSS critical situations, where only less than
four satellites are available. In these situations, cellular
support is particular beneficial. Nevertheless, for stand-
alone cellular positioning we observe the high dependency
on the MS position in the scenario. At the cell edge a
reasonable performance can be achieved, whereas close to
the BS the accuracy is very low. Investigating the classical
GNSS-based navigation, we observe the advantage of the
additional Galileo satellites compared to GPS-stand-alone
positioning. The 90%-accuracy can be reduced from 30 m to
around 18 m using both systems. When we further include
TDOA measurements from the communications system, the
performance can be improved to around 15 m if we are close
to the BS and to below 11 m for the cell edge situation.

In Figure 11, the LOS visibility of all GNSS satellites is
plotted over time for one characteristic MS track realization.
We see that in several situations the number of LOS-visible
and, hence, detectable satellites is below four; that is, we
have a critical scenario. Figure 12 shows the corresponding
root mean square errors (RMSEs) over time for GPS+Galileo
and the TDOA supplements. It can be observed that in
critical GNSS situations the RMSE increases as expected.
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This comes on the one hand from the limited number
of visible satellites. On the other hand, these satellites
are affected by severe multipath contributions that cause
additional biases in the timing measurements. Furthermore,
the geometric constellation of these satellites is usually bad as
satellites are only visible above the MS. In this situation the
TDOA measurements can compensate the lack of satellites
and further improve the geometric conditions. However,
if the scenario is close to a BS, the performance gain is
restricted and no fundamental improvement to satellite-only
positioning can be achieved. For the cell edge situation, the
RMSE can be reduced remarkably in the considered critical
situations.

5. Conclusions

In this paper we have analyzed hybrid positioning methods
that combine measurements from GNSS and future 3GPP-
LTE communications systems. As expected, the performance
depends strongly on the location in the network, that is,
cell edge or close to a BS, where TDOA measurements
are exploited for stand-alone positioning and to support
GNSS in critical urban canyon scenarios. The simulations
were performed in a fairly realistic manner. The urban
environment was reflected by CIRs from the satellites
and BSs, which were obtained by ray-tracing. Simulation
results in this coherent and correlated scenario have shown
that in situations where several satellites are blocked, it is
very beneficial to have additional TDOA measurements to
compensate the missing satellites. Besides the static solution,
different tracking filters were investigated, in particular PKF,
EKF, and PF. The simulations showed that the EKF provides
the best trade-off between accuracy and complexity for the
considered scenarios.
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The Global Positioning System (GPS) has become one of the state-of-the-art location systems that offers reliable mobile terminal
(MT) location estimates. However, there exist situations where GPS is not available, for example, when the MT is used indoors
or when the MT is located close to high buildings. In these scenarios, a promising approach is to combine the GPS-measured
values with measured values from the Global System for Mobile Communication (GSM), which is known as hybrid localization
method. In this paper, three nonlinear filters, namely, an extended Kalman filter, a Rao-Blackwellized unscented Kalman filter,
and a modified version of the recently proposed cubature Kalman filter, are proposed that combine pseudoranges from GPS with
timing advance and received signal strengths from GSM. The three filters are compared with each other in terms of performance
and computational complexity. Posterior Cramér-Rao lower bounds are evaluated in order to assess the theoretical performance.
Furthermore, it is investigated how additional GPS reference time information available from GSM influences the performance
of the hybrid localization method. Simulation and experimental results show that the proposed hybrid method outperforms the
GSM method.

1. Introduction

In the past few years, there is an increased interest in wireless
location systems offering reliable mobile terminal (MT)
location estimates. On the one hand, this is due to upcoming
and already available commercial services (aka Location
Based Services) such as intelligent transport systems, fraud
detection, yellow page services, location sensitive billing,
and other promising services that rely on accurate MT
location estimates [1]. On the other hand, the United
States Federal Communications Commission (FCC) issued
an order, in which all wireless service providers are required
to report the location of an E-911 caller within a specified
accuracy [2]. This FCC mandate together with the emerging
Location-Based Services has pushed further the research and
standardization activities in the field of MT localization.

Until now, several localization methods have been pro-
posed to solve the problem of locating an MT in a wireless
network [3, 4]. The global navigation satellite systems
(GNSSs), such as the Global Positioning System (GPS) and

the prospective European counterpart Galileo, are promising
candidates to fulfill the FCC requirements [5]. In the GNSS,
the MT location is estimated from the propagation time; the
satellite (SAT) signals need to propagate to the MT, which is
known as time of arrival (ToA) method. If the MT receives
satellite signals from at least four different satellites, a three-
dimensional (3D) MT location estimate can be found, where
the fourth satellite signal is needed to resolve the unknown
bias between the MT and satellite clock [5]. In a similar
manner, one can obtain a 2D MT location estimate if the
MT receives signals from at least three different satellites.
However, there exist situations where the GNSS signals are
blocked, for example, when the MT is located indoors or in
urban canyons. In these scenarios, the number of satellites in
view is often not sufficient to obtain a 3D or even 2D MT
location estimate.

An alternative to the GNSS is the exploitation of com-
munication signals of the cellular radio network, in order
to obtain MT location estimates. In the Global System for
Mobile Communication (GSM), for example, measurements
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such as the received signal strength (RSS), timing advance
(TA), angle of arrival (AoA), or enhanced observed time
difference (E-OTD) exist that give information on the MT
location. An appealing advantage of these measurements
is that they are almost everywhere available. However, the
corresponding localization methods that are based on these
measurements cannot offer the same accuracy as their GNSS-
based counterpart. The combination of measured values
from the GNSS and the cellular radio network is, thus, a
promising approach in order to obtain MT location estimates
even if less than four or three satellites are in view [6–
13]. The resulting hybrid localization methods are expected
to improve the accuracy and availability of MT location
estimates.

In [6, 7], a hybrid localization method combining
pseudorange- (PR-) measured values from GPS and E-
OTD-measured values from GSM is investigated. In [8],
a hybrid method is presented that is based on the fusion
of PR-measured values from GPS and round trip delay-
measured values from a cellular radio network that is,
perfectly synchronized to GPS time. However, [6–8] only
provide general descriptions of their hybrid methods and
no algorithms or theoretical performance bounds are given.
In [9], a hybrid method based on the combination of
PR measured values from GPS and time difference of
arrival (TDoA) measured values from a cellular radio
network using a least squares approach is introduced. In
[11], a hybrid data fusion approach is presented that
combines pseudoranges from the GNSS with TDoA mea-
surements from future 3GPP-LTE communication systems
using an extended Kalman filter (EKF). In [12, 13], we
have developed an extended Kalman filter- (EKF-) based
and Rao-Blackwellized unscented Kalman filter- (RBUKF-
) based MT tracking algorithm that fuses TA- and RSS-
measured values from GSM- and PR-measured values from
GPS.

This paper deals with the combination of RSS-, TA-,
and PR-measured values from GSM and GPS, as they can
be easily obtained from off-the-shelf mobile handsets and
conventional GPS receivers. The underlying hybrid mobile
terminal tracking problem is then solved using the EKF,
RBUKF, and the recently proposed cubature Kalman filter
(CKF) [14]. Here, a novel extension of the CKF is introduced,
accounting for the linear process model structure, which
is called the modified cubature Kalman filter (MCKF).
Furthermore, it is investigated in this paper how GPS
reference time information from the GSM network, which
is available from the Radio Resource Location Services
Protocol (RRLP) [15], can help to improve the performance
of the hybrid localization methods. The different filtering
approaches are then compared to each other, the expected
computational complexity is evaluated, and their achievable
performance is compared in a realistic simulation study
with the posterior Cramér-Rao lower bound (PCRLB). The
PCRLB gives the theoretical best achievable performance of
nonlinear filters [16] and serves here as an important tool
for the design of a hybrid MT tracking system. Finally, the
three different algorithms are tested on “real world” GSM
measurements together with synthetic GPS-measured values,

and their enhanced performance compared to the GSM-
based localization method is demonstrated.

The remainder of this paper is organized as follows. In
Section 2, the hybrid localization problem is formulated as
a nonlinear filtering problem where the optimal solution
is given, at least conceptually, by the Bayesian filter. In
Section 3, the MT process model and the measurement
models for the PR, TA, RSS, and GPS reference time
uncertainty are presented that are required to use the
different filters. In Section 4, three different nonlinear filters,
namely, the EKF, RBUKF, and MCKF are introduced for
the hybrid localization problem as well as the PCRLB. The
main differences between the different filters are highlighted
and the computational complexity is analyzed. In Sections
5 and 6, simulation and experimental results are presented,
where the proposed algorithms are compared to each other,
and where the advantage of the proposed hybrid method is
demonstrated. Finally, Section 7 concludes the work.

2. Problem Statement

In this paper, the MT tracking problem is formulated as a
nonlinear filtering problem, where a sequence of measure-
ments available from GSM and GPS is used to estimate the
actual state of the MT. Consider the following discrete-time
state-space model with additive noise:

Process Model : x(k) = f(x(k − 1)) + v(k − 1),

Measurement Model : y(k) = h(x(k)) + w(k),
(1)

where k denotes the discrete-time index, x(k) ∈ Rnx denotes
the state vector, y(k) ∈ Rny denotes the measurement vector,
and f(·) and h(·) are some known vector-valued, possibly
nonlinear, mapping functions. Here, it is worth noting
that the function f(·) models the deterministic relationship
between x(k) and x(k−1). Similarly, the function h(·) mod-
els the deterministic relationship between the state vector
x(k) and the corresponding measurements y(k) available
from GPS and GSM. The process and measurement noise
v(k − 1) and w(k) are assumed to be mutually independent
zero-mean white Gaussian noise sequences with covariances
Q(k − 1) and R(k), respectively.

The aim in nonlinear filtering is to recursively compute
estimates of the state x(k) using the sequence of all available
measurements Y(k) = {y(l), l = 1, . . . , k} up to and
including time k. From a Bayesian point of view, the
aim is to recursively compute the posterior probability
density function (pdf) p(x(k) | Y(k)), since it provides
a complete statistical description of the state x(k) at that
time. The optimal Bayesian solution is given by the following
recursions:

Time Update:

p(x(k) | Y(k − 1)) =
∫

Rnx
p(x(k) | x(k − 1))

× p(x(k − 1) | Y(k − 1))dx(k − 1).
(2)
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Measurement Update:

p(x(k) | Y(k)) = p
(

y(k) | x(k)
)
p(x(k) | Y(k − 1))

p
(

y(k) | Y(k − 1)
) , (3)

where p(y(k) | Y(k − 1)) is a normalizing constant given by

p
(

y(k) | Y(k − 1)
)

=
∫

Rnx
p
(

y(k) | x(k)
)
p(x(k) | Y(k−1)) dx(k),

(4)

and where the pdfs p(x(k) | x(k − 1)) and p(y(k) |
x(k)) can be determined from (1). The above recursions are
initiated by p(x(0) | Y(0)) = p(x(0)) [17]. It is well known
that the nonlinear recursive filtering problem only allows
analytical solutions in a few special cases, for example, for
linear Gaussian models, where the Kalman filter provides the
optimal solution [18]. However, for the general model (1), an
analytical solution to the above recursions is intractable and,
thus, one has to resort to suboptimal algorithms.

For the hybrid localization method three suboptimal
nonlinear filters are investigated, namely, the extended
Kalman filter, the Rao-Blackwellized unscented Kalman filter,
and the modified cubature Kalman filter. But before these
filters will be explained in more detail, it will be first shown
how the process model and measurement models are chosen
for the hybrid localization method.

3. Process and Measurement Model

3.1. Introduction. In the following, it is assumed that the
MT location xMT = [xMT, yMT]� to be estimated and the

known base station (BS) locations x(n)
BS = [x(n)

BS , y(n)
BS ]

�
,

n = 1, . . . ,NBS, lie in the xy-plane, where [·]� denotes the
transpose of a vector or matrix. The known satellite locations

are given by x(l)
SAT = [x(l)

SAT, y(l)
SAT, z(l)

SAT]
�

, l = 1, . . . ,NSAT.
For the case of 3-D MT and BS locations, the process and
measurement models can be obtained in a similar way.
The measurements that are used for the hybrid localization
method are the PR-measured values from GPS and TA, RSS,
and GPS reference time uncertainty measured values from
GSM. Here, it is worth noting that the hybridization takes
place by combining different types of measurements from
GPS and GSM rather than location estimates from GPS
and GSM. That is, one first collects at every time step k
all the measurements from GPS and GSM and then these
measurements are processed jointly in the filter in order to
estimate the MT location. With this strategy, it is possible to
obtain MT location estimates even if less than three satellites
are visible to the MT.

3.2. Process Model. For the hybrid localization method, the
states of the process model include the 2-D MT location
and velocity, the MT clock bias, and clock drift, that is, x =
[ xMT, ẋMT, yMT, ẏMT, c0 · δt, c0 · δṫ ]�, where c0 is the speed
of light. The movement of the MT is approximated with a
nearly constant velocity (CV) model and the receiver clock
bias is modeled by a second-order Gauss-Markov process

[19, 20]. The resulting linear process model for the hybrid
localization method is, thus, given by

x(k) = Φ · x(k − 1) + Γ · v(k − 1) (5)

with

Φ = I3 ⊗
[

1 TS

0 1

]

, Γ = diag

(

I2 ⊗
[
T2

S

2
,TS

]�
, I2 · c0

)

,

(6)

where Iq is the identity matrix of size q, ⊗ denotes the
Kronecker product, and TS is the sampling time. The process
noise v = [vx, vy , vδt, vδṫ]

� is assumed to be a zero-
mean white Gaussian noise sequence with block diagonal
covariance matrix Q = diag (QCV, Qδt). The covariance
matrix QCV is given by QCV = diag(σ2

x , σ2
y), where σ2

x and
σ2
y denote the noise variances in the x- and y-direction. The

elements of the symmetric 2 × 2 matrix Qδt are given by

Q11 = h0
TS

2
+ 2h−1T

2
S +

2
3
π2h−2T

3
S ,

Q12 = Q21 = 2h−1TS + π2h−2T
2
S ,

Q22 = h0

2TS
+ 2h−1 +

8
3
π2h−2TS,

(7)

where the parameters h0,h−1, and h−2 correspond to values
of a typical quartz standard [19].

3.3. Measurement Model

3.3.1. Pseudorange. In GPS, the MT is measuring the time
the satellite signal requires to travel from the satellite to the
MT, which is known as ToA principle [5]. The corresponding
ToA-measured values are affected by delays due to the
transmission of the satellite signal through the ionosphere
and the troposphere and due to other errors, for example,
receiver noise or multipath propagation [5]. In addition to
that, the MT’s clock is generally not time-synchronized to the
clocks of the GPS satellites, resulting in an unknown receiver
clock bias δt(k) that has to be estimated. The corresponding
measured biased ranges or measured pseudoranges can be
obtained from multiplying the biased ToA-measured values
by c0.

In the following, it is assumed that each measured pseud-
orange is corrected for the known errors that are available
using parameter values in the navigation message from the
satellite [5]. Let yPR(k) denote the vector of NSAT-corrected
PR-measured values. Then, the PR measurement model can
be written as

yPR(k) = hPR(xMT(k), δt(k)) + wPR(k) (8)

with

hPR(xMT(k), δt(k))

=
[

d(1)
SAT(xMT(k)), . . . ,d(NSAT)

SAT (xMT(k))
]�

+ c0 · δt(k),

(9)
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where d(l)
SAT(xMT(k)) denotes the Euclidean distance between

the MT and the lth satellite. The random variable wPR(k)
describes unmodeled effects, modeling errors, and measure-
ment errors; each PR-measured value is affected by, for exam-
ple, delays as the signal propagates through the atmosphere,
receiver noise, as well as errors due to changing propagation
conditions, that is, line-of-sight (LOS) or non-line-of-sight
(NLOS) situations. It is assumed that wPR(k) is Gaussian

distributed with mean vector μPR = [μ(1)
PR, . . . ,μ(NSAT)

PR ]
�

accounting for NLOS propagation and covariance matrix

RPR = diag((σ (1)
PR )2, . . . , (σ (NSAT)

PR )2), where μ(l)
PR and σ (l)

PR denote
the mean and standard deviation from the PR-measured
value of the lth satellite.

3.3.2. Timing Advance. In GSM, the Timing Advance (TA)
is a parameter that is used to synchronize the transmitted
bursts of the MTs to the frame of the receiving BS [1]. In
principle, the TA is a quantized value of the round trip time,
that is, the time the radio signal requires to propagate from
the BS to the MT and back. Let yTA(k) denote the vector of
NBS TA-measured values multiplied by c0/2. Then, the TA-
measurement model is given by

yTA(k) = hTA(xMT(k)) + wTA(k) (10)

with

hTA(xMT(k)) =
[

d(1)
BS (xMT(k)), . . . ,d(NBS)

BS (xMT(k))
]�

, (11)

where d(n)
BS (xMT(k)) denotes the Euclidean distance between

the MT and the nth BS. The random variable wTA(k)
accounts for the errors each TA-measured value is affected
by, such as quantization, changing propagation conditions—
LOS or NLOS situation—and measurement noise. These
errors are assumed to be Gaussian distributed with mean vec-
tor μTA = [μ(1)

TA, . . . ,μ(NBS)
TA ]� accounting for NLOS propaga-

tion and covariance matrix RTA = diag((σ (1)
TA )2, . . . , (σ (NBS)

TA )2),

where μ(n)
TA and σ (n)

TA denote the mean and standard deviation
from the TA-measured value of the nth BS.

3.3.3. Received Signal Strength. In GSM, the RSS value is an
averaged value of the strength of a radio signal received by
the MT. The attenuation of the signal strength through a
mobile radio channel is caused by three factors, namely, fast
fading, slow fading, and path loss. Since, in GSM, the RSS-
measured values are averaged over several time-consecutive
measurements, the error due to fast fading can be neglected.
The model for the path loss in dB is given by

L(n)(xMT(k)) = A(n) + 10 · B(n) · log10

(
d(n)

BS (xMT(k))
1 km

)

.

(12)

Reference[3], where A(n) denotes the reference path loss at a
BS to MT distance of 1 km and B(n) is the path loss exponent
of the nth BS. Both parameters A(n) and B(n) strongly depend
on the propagation conditions and BS antenna settings and
can be determined either empirically or from well-known

path loss models as, for example, Hata [21] or COST 231
Walfisch-Ikegami [22].

In real systems, the BSs may be equipped with directional
antennas in order to increase the cell’s capacity. However,
the employment of directional antennas at the BSs should
be directly taken into account in the model for the RSS
measured value, because otherwise the performance of
the tracking algorithms will considerably degrade. In the
following, it is assumed that antenna gain models are a

priori available. Let A(n)
m and ϕ(n)

3 dB denote the minimum
gain and 3 dB beamwidth of the BS antenna. Let further

ϕ(n)
BS (xMT(k)) denote the azimuth angle between the MT

and the nth BS antenna, counted counterclockwise from the
boresight direction of the BS antenna. Then, a model for the
normalized antenna gain in dB scale is given by

g
(

ϕ(n)
BS (xMT(k))

)

= −min

⎧
⎪⎨

⎪⎩
12

⎛

⎝
ϕ(n)

BS (xMT(k))

ϕ(n)
3 dB

⎞

⎠

2

,A(n)
m

⎫
⎪⎬

⎪⎭
.

(13)

Reference [10], where min{a, b} denotes the smallest value
in the set {a, b}. Let yRSS(k) denote the vector of NBS RSS-
measured values. Then, the RSS measurement model in dB
scale is given by

yRSS(k) = hRSS(xMT(k)) + wRSS(k) (14)

with

hRSS(xMT(k)) =
[

h(1)
RSS(xMT(k)), . . . ,h(NBS)

RSS (xMT(k))
]�

,

h(n)
RSS(xMT(k)) = P(n)

T −
{

L(n)(xMT(k))− g
(

ϕ(n)
BS (xMT(k))

)}

,

(15)

where P(n)
T denotes the nth BS’s equivalent isotropic radi-

ated power. The random variable wRSS(k) accounts for
errors, such as errors due to slow fading, quantization,
and NLOS propagation. It is assumed that wRSS(k) is zero-
mean Gaussian distributed with covariance matrix RRSS =
diag((σ (1)

RSS)2, . . . , (σ (NBS)
RSS )2), where σ (n)

RSS denotes the standard
deviation from the RSS-measured value of the nth BS.

3.3.4. GPS Reference Time Uncertainty. In GSM, there exists
the possibility to obtain GPS reference time information that
can be used to estimate the unknown clock bias δt(k) in the
pseudorange equations (cf. (9)) according to the available
RRLP [15]. However, in [15] it is stated that this reference
time can be provided only with a specified accuracy which
is expressed by the so-called GPS reference time uncertainty.
In the following, a model connecting the GPS reference time
uncertainty to the unknown MT clock bias will be derived.

Since the satellite clocks can be assumed to be mutually
synchronized [5], the MT clock bias can be written as
δt(k) = tGPS(k)− tMTC(k), where the difference describes the
offset between the GPS reference time scale tGPS(k), which
is unknown to the MT, and the known MT clock time-scale
tMTC(k). Here, it is worth noting that the bias is not constant
over time, since the MT clock experiences errors due to clock
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drifts. Let yRTU(k) denote the GPS reference time uncertainty
measurement. Then, the GPS reference time uncertainty
measurement model is given by

yRTU(k) = tGPS(k) +wRTU(k), (16)

which can be directly converted into an MT clock bias
measurement model:

yBIAS(k) = yRTU(k)− tMTC(k) = δt(k) +wRTU(k), (17)

where the noise wRTU(k) models the GPS reference time
uncertainty which is assumed to be zero-mean Gaussian
distributed with standard deviation σRTU. Since we now have
related the GPS reference time uncertainty measurement to
the clock bias, the uncertainty of the MT clock is implicitly
modelled with the process model (cf. (5)) where the MT
clock bias evolves according to a second-order Gauss-Markov
process.

3.3.5. Combined. In the following, the PR, TA, RSS,
and MT clock bias-measured values are concatenated
into a single measurement vector, yielding y(k) =
[ y�PR(k), y�TA(k), y�RSS(k), yBIAS(k) ]�. Here, GPS reference
time uncertainty-measured values are treated as MT clock
bias-measured values according to (17). The corresponding
combined nonlinear measurement model for the hybrid
localization problem can be written as

y(k) = h(x(k)) + w(k), (18)

where

h(x(k)) = [h�PR(xMT(k), δt(k)), h�TA(xMT(k)),

h�RSS (xMT(k)), δt(k)]�,
(19)

w(k) = [w�
PR(k), w�

TA(k), w�
RSS(k),wRTU(k)

]�
. (20)

The random variable w(k) is Gaussian distributed with mean
vector μ = [ μ�PR(k),μ�TA(k), 0 ]�, where 0 denotes the zero
vector of size 1 × NBS + 1, and block diagonal covariance
matrix R = diag(RPR, RTA, RRSS, σRTU).

4. Nonlinear Filters for Hybrid Localization

4.1. Introduction. After having described the linear process
model and the nonlinear relationship between the MT
location and the PR-, TA-, and RSS-measured values, the
problem at hand is how one can efficiently sequentially
estimate the MT state from these measured values. The
optimal Bayesian solution given by ((2), (3), and (4))
provides a unified approach for nonlinear filtering problems.
However, due to the fact that the measurement model is
nonlinear (cf. (18)) the multidimensional integral involved
in (4) is intractable and, thus, one has to resort to suboptimal
algorithms [14, 16, 23–25]. In this paper, three different sub-
optimal algorithms, namely, the extended Kalman filter, the
Rao-Blackwellized unscented Kalman filter, and the modified

cubature Kalman filter, are proposed in order to solve the
underlying hybrid localization problem. These filters belong
to the class of approaches where all densities in ((2), (3), and
(4)) are assumed to be Gaussian. An appealing advantage of
this approximation is that the functional recursion in ((2),
(3), and (4)) reduces to an algebraic recursion, where only
means and covariances have to be calculated.

4.2. Extended Kalman Filter. In the EKF, the nonlinear
functions f (x(k − 1)) and h(x(k)) are approximated with
their first-order Taylor series expansion, so that an analytical
solution of (2) and (4) is possible. This approach, however,
leads to several shortcomings. On the one hand, the EKF may
have suboptimal performance or even will diverge, if we have
a high degree of nonlinearities in the measurement function.
On the other hand, the linearization of the measurement
model implies the evaluation of Jacobian matrices, which
in some cases may become difficult; for example, consider
the case when antenna gain models (cf. (13)) are available
only from measurements and, consequently, no closed form
expressions for these models exist. In these cases, it is much
easier to approximate the models using interpolation than
trying to evaluate the corresponding Jacobian matrices. The
well-known EKF equations, adopted to the proposed hybrid
localization method, are summarized in Algorithm 1 [12].

4.3. Rao-Blackwellized Unscented Kalman Filter. While the
EKF is based on a simple linear approximation of the
nonlinear measurement equation, the unscented Kalman
filter (UKF) approximates the multidimensional integrals
in (2) and (4) using the (scaled) unscented transforma-
tion [26, 27]. In the (scaled) unscented transformation,
the multidimensional integrals are approximated using a
deterministic sampling procedure. The sampling scheme
consists of deterministically choosing a symmetric set of
sigma points and weights. These sigma points are then prop-
agated through the true nonlinearity and the corresponding
mean and covariances are approximated using a weighted
sample mean and covariance. Compared to the EKF, the
advantage of the UKF is that no Jacobian matrices have
to be evaluated, since the sigma points are transformed
through the true nonlinearity. Furthermore, it can be shown
that the nonlinear transformed samples capture the mean
and covariance accurately to at least the second-order of
the Taylor series expansion whereas the EKF only achieves
first-order accuracy [27]. Since the noise in the process
model and measurement model is assumed to be additive
and Gaussian distributed, the dimension of the vector,
from which the sigma points are sampled, can be reduced.
This technique is also known as Rao-Blackwellization and
has the advantage that the quasi-Monte Carlo variance
and computational complexity can be reduced [28]. The
computational complexity can be further reduced by taking
into account that the posterior pdf p(x(k − 1) | Y(k − 1)) is
assumed Gaussian and the process model is linear Gaussian.
In this case, the multidimensional integral, given in (2), can
be evaluated in closed form, resulting in the well-known
Kalman filter update equations. The corresponding RBUKF,
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Initialization
x̂(0 | 0) = E{x(0)}
P(0 | 0) = E{(x(0)− x̂(0 | 0))(x(0)− x̂(0 | 0))�}
Time Update
Estimate the predicted state vector and error covariance matrix
x̂(k | k − 1) = Φx̂(k − 1 | k − 1),
P(k | k − 1) = ΦP(k − 1 | k − 1) Φ� + ΓQΓ�.
Measurement Update
Estimate the innovation covariance and cross-covariance matrix
Pyy(k | k − 1) = H(k)P(k | k − 1)HT(k) + R
Pxy(k | k − 1) = P(k | k − 1)HT(k).

Estimate the Kalman gain, updated state vector and error covariance matrix
K(k) = Pxy(k | k − 1)P−1

yy (k | k − 1),
x̂(k | k) = x̂(k | k − 1) + K(k)[y(k)− h(x̂(k | k − 1))− μ],
P(k | k) = P(k | k − 1)−K(k) Pyy(k | k − 1)K�(k),

where H(k) denotes the Jacobian matrix of h(x(k)) evaluated at x̂(k | k − 1).

Algorithm 1: Extended Kalman Filter.

adapted to the hybrid localization method, is summarized in
Algorithm 2 [13].

4.4. Modified Cubature Kalman Filter. In the recently pro-
posed CKF [14], the multidimensional integrals in (2) and
(4) are approximated in a different way. Since the conditional
pdfs p(x(k) | Y(k − 1)) and p(y(k) | Y(k − 1)) in (2)
and (4) are assumed Gaussian, solving approximately the
multidimensional integrals is equivalent to the evaluation
of the corresponding means and covariances of p(x(k) |
Y(k − 1)) and p(y(k) | Y(k − 1)). It can be shown that
the evaluation of the mean and covariance leads again
to multidimensional integrals, but whose integrands are
now all of the form nonlinear f unction × Gaussian density
[14]. These integrals are then solved using highly efficient
numerical integration methods known as cubature rules. As
a result, one obtains a set of cubature points and weights,
from which the corresponding mean and covariance can
be computed without evaluating Jacobian matrices. Due
to the fact that (2) can be evaluated in closed form,
the computational complexity of the CKF can be further
reduced. The modified version of the CKF that is used for the
hybrid localization problem is summarized in Algorithm 3.
Although the CKF and UKF seem to be very similar, the
authors in [14] claim that the cubature approach is more
accurate and more principled in mathematical terms than
the sigma-point approach used in the UKF. Here, it is worth
noting that the RBUKF reduces to the MCKF, when the
unknown parameters in the scaled unscented transformation
are chosen as α = 1,β = 0, and κ = 0 in Algorithm 2.

4.5. Posterior Cramér-Rao Lower Bound. After having intro-
duced the different filters for the hybrid localization problem,
their performance should be compared to a theoretical
bound. In the following, the posterior Cramér-Rao lower
bound for the hybrid localization problem is presented that
gives the best achievable performance for nonlinear filtering
[16, 29]. Let x̂(k | k) be an unbiased estimate of the state

vector x(k). Then, the covariance matrix of the estimation
error satisfies the inequality

E
{

(x̂(k | k)− x(k))(x̂(k | k)− x(k))�
}

≥ J−1(k), (21)

where E{·} is the expectation with respect to x(k), J(k)
denotes the filtering information matrix, and its inverse is
the PCRLB matrix. The matrix inequality A ≥ B should be
interpreted as the matrix A − B being positive semidefinite.
The aim is now to calculate J(k). In [29], an elegant method
is presented, where J(k) can be determined recursively.
This recursion, adapted to the hybrid localization problem
involving additive Gaussian noise (cf. (5) and (18)) can be
written as

J(k) = (ΓQΓ� + ΦJ−1(k − 1)Φ�)−1
+ E
{

H̃�(k)R−1H̃(k)
}

,

(22)

where the expectation is with respect to x(k) and H̃(k)
denotes the Jacobian matrix of the nonlinear measurement
function h(·) (cf. (19)) evaluated at the true value of the state
x(k). Since the initial distribution p(x(0)) is assumed to be
Gaussian, the recursions are initialized with the information
matrix J(0) = P−1(0 | 0) [16].

4.6. Computational Complexity. In this section, the com-
putational complexity of the EKF, RBUKF, and MCKF for
the hybrid localization method is investigated in terms of
floating-point operations (FLOPs). A FLOP is here defined as
one addition, subtraction, multiplication, or division of two
floating-point numbers. In Table 1, the computational com-
plexity of some common matrix operations is summarized.
Here, it is worth noting that the matrix square root, which
is needed to evaluate the set of cubature and sigma points, is
computed using Cholesky decomposition, whose complexity
grows cubically.

In the EKF as well as in the RBUKF and MCKF, there
are certain steps that cannot be measured in FLOPs. In the
EKF, for example, one has to evaluate at every time step k



International Journal of Navigation and Observation 7

Table 1: Computational complexity of some common matrix
operations [30].

Operation Size Mult. Add. Other

A + A A ∈ Rn×m — nm —

A · B A ∈ Rn×m, B ∈ Rm×l lmn (m− 1)ln —

C−1 C ∈ Rn×n n3 — —√
C C ∈ Rn×n — — n3/3 + 2n2

the Jacobian matrix H(k) and the nonlinear function h(·)
(cf. Algorithm 1). In the RBUKF and MCKF, one has to
propagate at every time step 2nx + 1 sigma points and 2nx
cubature points through the nonlinear function h(·) (cf.
Algorithms 2 and 3). In the following, the cost of evaluating a
certain nonlinear function and Jacobian matrix is neglected.
Furthermore, the computation of the weights in the RBUKF,
and MCKF as well as the initialization of all three filters can
be neglected, since these steps are done only once.

In Table 2, the computational complexity of the different
quantities that have to be evaluated in the EKF, RBUKF,
and MCKF is presented. Summing up the computational
complexity of the different quantities results in the total
FLOP complexity of the EKF, RBUKF, and MCKF for one
time step which is given by

CEKF

(

nx,ny
)

= 8n3
x + n3

y + 6n2
xny + 6n2

ynx − 13n2
x

− 2nxny + 9nx + 2ny ,

CRBUKF

(

nx,ny
)

= 37
3
n3
x + n3

y + 6n2
xny + 8n2

ynx − 9n2
x

+ 7nxny + 4n2
y + 10nx + 5ny ,

CMCKF

(

nx,ny
)

= 37
3
n3
x + n3

y + 6n2
xny + 8n2

ynx − 11n2
x

+ 4nxny + 3n2
y + 9nx + 2ny ,

(23)

where nx and ny denote the dimension of the state and
measurement vector, respectively.

5. Simulation Results

5.1. Scenario I. In the first simulation scenario (Scenario I),
it is assumed that a car is equipped with an MT that is capable
of providing PR-measured values from GPS and TA, RSS, and
GPS reference time uncertainty-measured values from GSM.
The car moves with a constant speed of 45 km/h in a dense
urban scenario of size 3 km × 3 km as it is shown in Figure 1.
The GSM network is composed of NBS = 7 BSs, where each
BS is equipped with a directional antenna. The BS locations
as well as the BS antenna parameters are a priori known.
The satellite locations are taken from the real GPS satellite
constellation taking into account realistic satellite elevation
masks and are assumed to be known. The parameters used in
the simulations are summarized in Table 3 and are assumed
to be equal for all BSs and all satellites for the sake of

simplicity. The following combinations of measured values
are investigated:

(i) GSM method: one TA-measured value from the
serving BS and a total of seven RSS-measured values
from serving and neighbouring BS antennas,

(ii) Hybrid 1 method: measured values of GSM method
and, in addition, one PR-measured value from one
satellite,

(iii) Hybrid 2 method: measured values of GSM method
and, in addition, two PR-measured values from two
different satellites.

Here, it is worth noting that the case when more than
two PR-measured values are available has been investigated
in [12]. For simplicity, the serving BS is assumed to be
the BS located at [750 m,1000 m]�. Here, it is worth noting
that the serving BS has been placed very close to the MT
trajectory in order to better illustrate how the nonlinearity,
inherent in the TA- and RSS-measured values, influences
the performance of the different filters. The PR-, TA-, and
RSS-measured values are updated every Ts = 0.48 s, which
corresponds to the reporting period of measured values in
GSM networks. The performance of the proposed algorithms
for the hybrid localization method is evaluated in terms
of the root mean square error (RMSE) determined from
NMC = 500 Monte Carlo trials [16]. For each Monte Carlo
trial, the MT trajectory is generated using (5) with process
noise parameters as given in Table 3 and initial state vector
x(0) = [−200 m, 8.84 m/s,−200 m, 8.84 m/s, 0 m, 0 m]�. For
the simulations, the initial error covariance matrix of the
three filters is set to P(0 | 0) = diag((200 m)2, (10 m/s)2,
(200 m)2, (10 m/s)2, (300 km)2/3, (10 m)2/3), and the initial
state vector x̂(0 | 0) is obtained from random initialization
[20]. The covariance matrix Q for the three filters, which is a
design parameter, is chosen to be Q = diag(100·Qcv, 10·Qδt),
in order to account for possible MT maneuvers and receiver
clock uncertainties. The measurement covariance matrix R
for the simulations and the filters is assumed to be the same.

5.2. Scenario II. The second simulation scenario (Scenario
II) investigates the tracking performance of the three dif-
ferent filters for a more general and realistic scenario. It is
assumed that a car is equipped with an MT that is capable of
providing PR-measured values from GPS and TA, RSS from
GSM. Here, it is worth noting that the results for taking into
account the GPS reference time uncertainty measurements
are very similar to those of Scenario I and, thus, are not
further elaborated. The car moves clockwise on a trapezoidal
route, divided into 4 sections, in an urban scenario of size
5 km × 5 km as it is shown in Figure 2. In each section,
the car moves with a different velocity in order to reflect
a more realistic car movement as depicted in Figure 3. The
GSM network is composed of NBS = 12 BSs, where each
BS is equipped with three directional antennas. The BS and
satellite locations as well as the BS antenna parameters are
assumed a priori known. The combination of measurements
investigated and the parameters used in the simulations is the
same as in Scenario I. The serving BS is assumed to be the
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Initialization
x̂(0 | 0) = E{x(0)}
P(0 | 0) = E{(x(0)− x̂(0 | 0))(x(0)− x̂(0 | 0))�}
Time Update
Estimate the predicted state vector and error covariance matrix

x̂(k | k − 1) = Φ x̂(k − 1 | k − 1)
P(k | k − 1) = Φ P(k − 1 | k − 1) Φ� + Γ Q Γ�

Measurement Update
Evaluate the sigma points (i = 1, . . . ,nx)

X0(k | k − 1) = x̂(k | k − 1),
Xi(k | k − 1) = x̂(k | k − 1) + (

√
(nx + λ)P(k | k − 1))i,

Xnx+i(k | k − 1) = x̂(k | k − 1)− (
√

(nx + λ)P(k | k − 1))i.
Evaluate the weights (i = 1, . . . , 2nx)

W (m)
0 = λ

nx + λ
, W (c)

0 = λ

nx + λ
+ (1− α2 + β),

W (m)
i =W (c)

i = 1
2(nx + λ)

.

Evaluate the propagated sigma points (i = 0, . . . , 2nx)
Yi(k | k − 1) = h(Xi(k | k − 1)).

Estimate the predicted measurement
ŷ(k | k − 1) =∑2nx

i=0 W
(m)
i Yi(k | k − 1).

Estimate the innovation covariance and cross-covariance matrix (i = 0, . . . , 2nx)
X̃i(k | k − 1) =Xi(k | k − 1)− x̂(k | k − 1),
Ỹi(k | k − 1) = Yi(k | k − 1)− ŷ(k | k − 1),

Pyy(k | k − 1) =∑2nx
i=0 W (c)

i Ỹi(k | k − 1) Ỹ�
i (k | k − 1) + R,

Pxy(k | k − 1) =∑2nx
i=0 W (c)

i X̃i(k | k − 1) Ỹ�
i (k | k − 1).

Estimate the Kalman gain, updated state vector and error covariance matrix
K(k) = Pxy(k | k − 1) P−1

yy (k | k − 1),
x̂(k | k) = x̂(k | k − 1) + K(k)[y(k)− ŷ(k | k − 1)− μ],
P(k | k) = P(k | k − 1)−K(k)Pyy(k | k − 1)K�(k),
where nx is the dimension of state vector, λ = α2(nx + κ)− nx is a scaling
parameter, α determines the spread of the sigma points, κ is a secondary scaling
parameter and β is a weight parameter. (A)i denotes the ith column of the
matrix A

Algorithm 2: Rao-Blackwellized Unscented Kalman Filter.

Table 2: Computational complexity of the EKF, RBUKF, and MCKF. The dimension of the state vector is given by nx and the dimension of
the measurement vector is given by ny . X(k | k − 1) denotes the matrix composed of sigma/cubature point vectors.

Quantity
Complexity

EKF RBUKF MCKF

x̂(k | k − 1) 2n2
x − nx 2n2

x − nx 2n2
x − nx

P(k | k − 1) 8n3
x − 15n2

x + 10nx 8n3
x − 15n2

x + 10nx 8n3
x − 15n2

x + 10nx
X(k | k − 1) — 13n3

x/3 + 2n2
x 13n3

x/3 + 2n2
x

ŷ(k | k − 1) — 2nxny + 2ny 2nxny
Pyy(k | k − 1) 2n2

ynx + 2n2
xny − nxny 4n2

ynx + 2nxny + 4n2
y + ny 4n2

ynx + 3n2
y

Pxy(k | k − 1) 2n2
xny − nxny 4n2

xny + 3nxny + 2n2
x + nx 4n2

xny + 2nxny
K(k) n3

y + 2n2
ynx − nxny n3

y + 2n2
ynx − nxny n3

y + 2n2
ynx − nxny

x̂(k | k) 2nxny + 2ny 2nxny + 2ny 2nxny + 2ny
P(k | k) 2n2

ynx + 2n2
xny − nxny 2n2

ynx + 2n2
xny − nxny 2n2

ynx + 2n2
xny − nxny

BS antenna providing the largest RSS-measured value. The
performance of the proposed algorithms is evaluated from
NMC = 500 Monte Carlo trials. For each Monte Carlo trial,
the MT trajectory is generated based on Figure 3 and initial
state vector x(0) = [500 m, 8 m/s, 1500 m, 0 m/s, 0 m, 0 m]�.
For the simulations, the initial state vector x̂(0 | 0)

is obtained from random initialization and the initial
error covariance matrix of the three filters is set to
P(0 | 0) = diag((200 m)2, (10 m/s)2, (200 m)2, (10 m/s)2,
(300 km)2/3, (10 m)2/3). The covariance matrix Q and the
measurement covariance matrix R for the three filters are
chosen as in Scenario I.



International Journal of Navigation and Observation 9

Initialization
x̂(0 | 0) = E{x(0)}
P(0 | 0) = E{(x(0)− x̂(0 | 0))(x(0)− x̂(0 | 0))�}
Time Update
Estimate the predicted state vector and error covariance matrix
x̂(k | k − 1) = Φ x̂(k − 1 | k − 1),
P(k | k − 1) = Φ P(k − 1 | k − 1)Φ� + Γ Q Γ�.
Measurement Update
Evaluate the cubature points (i = 1, . . . , 2nx)

P(k | k − 1) = S(k | k − 1)S�(k | k − 1),
Ξ = √nx · [ Inx ,−Inx ],

Xi(k | k − 1) = x̂(k | k − 1) + S(k | k − 1) ξ i.
Evaluate the weights (i = 1, . . . , 2nx)
W (m)

i =W (c)
i = 1/(2nx).

Evaluate the propagated cubature points (i = 1, . . . , 2nx)
Yi(k | k − 1) = h(Xi(k | k − 1)).

Estimate the predicted measurement
ŷ(k | k − 1)

∑2nx
i=1 W

(m)
i Yi(k | k − 1)

Estimate the innovation covariance and cross-covariance matrix
Pyy(k | k − 1) =∑2nx

i=1 W
(c)
i Yi(k | k − 1)Y�

i (k | k − 1)− ŷ(k | k − 1)ŷ�(k | k − 1) + R,
Pxy(k | k − 1) =∑2nx

i=1 W
(c)
i Xi(k | k − 1) Y�

i (k | k − 1)− x̂(k | k − 1)ŷ�(k | k − 1)
Estimate the Kalman gain, updated state vector and error covariance matrix
K(k) = Pxy(k | k − 1) P−1

yy (k | k − 1),
x̂(k | k) = x̂(k | k − 1) + K(k)[y(k)− ŷ(k | k − 1)− μ],
P(k | k) = P(k | k − 1)−K(k) Pyy(k | k − 1) K�(k).
where ξ i denotes the ith column vector of the matrix Ξ.

Algorithm 3: Modified Cubature Kalman Filter.
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Figure 1: Simulation Scenario I with NBS = 7 BSs (•). The arrows
(→ ) indicate the BS antenna boresight direction.

5.3. Simulation Results for Scenario I without GPS Reference
Time Uncertainty Measurements. In this section, the simula-
tion results for the case when there are no GPS reference time
uncertainty measurements available from the GSM network
are presented. In Figure 4, the simulation results for the MT
location RMSE in dependence of the time index k for the
GSM method are shown. From Figure 4, it can be seen that

Table 3: Simulation parameters.

Parameter Value Parameter Value

A in dB 132.8 σx in m/s2 10−2

B in dB 3.8 σy in m/s2 10−2

Pt in dBm 50 c0 in m/s 3 · 108

Am in dB 20 Ts in s 0.48

ϕ3dB in ◦ 60 h0 9.4 · 10−20

σRSS in dB 8 h−1 1.8 · 10−19

σTA in m 300 h−2 3.8 · 10−21

μTA in m 0 α 10−3

σPR in m 15 β 2

μPR in m 0 κ 0

during the first 200 time steps, the performance of the three
filters is approximately the same. However, when the MT is
located close to the serving BS, there is a “high degree” of
nonlinearity in the TA- and RSS-measured values. In this
region, it can be clearly seen that the MCKF outperforms the
EKF and RBUKF in terms of RMSE.

In Figures 5 and 6, the MT location RMSE for the Hybrid
1 and Hybrid 2 method for the different filters is shown.
Compared to the GSM method, the MT location RMSE can
only be marginally improved by the Hybrid 1 method, which
additionally takes into account one PR-measured value from
GPS. This can be explained by the fact that it is not possible
to accurately estimate the unknown MT clock bias with the
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Figure 2: Simulation Scenario II with NBS = 12 BSs (•). Each BS is
equipped with three directional antennas. The arrows (→ ) indicate
the BS antenna boresight direction. The MT starts at xMT(0) =
[500, 1500]� and moves clockwise on the trapezoidal route.
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Figure 3: MT speed versus time index k for Scenario II.

available TA- and RSS-measured values, which is depicted
in Figure 7. Furthermore, when looking at the PCRLBs of
the GSM and Hybrid 1 method for the MT location, one
can conclude that from a theoretical point of view no RMSE
improvements are possible, since the PCRLBs practically
coincide with each other.

For the Hybrid 2 method (cf. Figure 6) the improvements
are significant. Due to the fact that two PR-measured values
are available, the filters can much more accurately estimate
the MT clock bias (cf. Figure 7) which has a direct impact on
the achievable MT location RMSE. However, from Figure 6
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Figure 4: Scenario I: MT location RMSE of the GSM method for
the different filters and the corresponding PCRLB.
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Figure 5: Scenario I: MT location RMSE of the Hybrid 1 method
for the different filters and the corresponding PCRLB.

it can be also seen that the performance of the three filters
is approximately the same. This can be explained by the
fact that the two PR-measured values have a larger influence
on the MT location estimate of the filters, because these
measured values are more accurate than the TA- and RSS-
measured values. Since the distances between the MT and
the satellites are very large, and the nonlinearity of the
PR-measured values is thus “mild”, more weight is put on
the PR-measured values when the MT location estimates
are evaluated in the filters. As a result, the influence of
the nonlinearities of the TA- and RSS-measured values is



International Journal of Navigation and Observation 11

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Time index k

EKF
RBUKF PCRLB

R
M

SE
of

M
T

lo
ca

ti
on

(m
)

MCKF

Figure 6: Scenario I: MT location RMSE of the Hybrid 2 method
for the different filters and the corresponding PCRLB.

weakened and, thus, for the Hybrid 2 method, the three filters
have approximately the same performance. In Table 4, the
performance of the EKF is compared to the performance of
the RBUKF and MCKF in terms of the RMSE averaged over
the whole time period. From Table 4 it can be concluded that
for this specific scenario, the MCKF slightly outperforms the
RBUKF and EKF in terms of average RMSE.

5.4. Simulation Results for Scenario I with GPS Reference
Time Uncertainty Measurements. In this section, simulation
results for the case when there are GPS reference time
uncertainty measurements available from the GSM network
are presented. Here, the important question is investigated,
what accuracy of the GPS reference time measurements is
needed, in order to improve the performance of the MT
location RMSE.

In Figure 8, the average MT location RMSE in depen-
dence of the GPS reference time uncertainty standard
deviation σRTU for the different filters are shown. From
Figure 8, it can be seen that for the Hybrid 2 method no
significant improvements are possible and the performance
of the different filters is approximately the same. That is,
when two PR-measured values are additionally available,
then, the additional evaluation of the GPS reference time
information from the GSM network does not help to
improve the MT location RMSE of the Hybrid 2 method.
However, the improvements for the Hybrid 1 method can
be significant, when GPS reference time information is
taken into account. For the investigated scenario, the major
performance improvements for the Hybrid 1 method can be
obtained for values of σRTU that lie in the range between 10−7

and 10−6 seconds. For GPS reference time uncertainty values
outside this region, no significant improvements in terms
of average MT location RMSE can be achieved. However,
for the case when σRTU < 10−7, then, the performance of

0

10

20

30

40

50

60

R
M

SE
of

M
T

cl
oc

k
bi

as
(m

)

Hybrid 1

Hybrid 2

0 50 100 150 200 250 300 350 400

Time index k

EKF
RBUKF PCRLB

MCKF

Figure 7: Scenario I: MT clock bias RMSE of the Hybrid 1 and
Hybrid 2 method for the different filters and the corresponding
PCRLB.
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Figure 8: Scenario I: Average MT location RMSE of the Hybrid 1
and Hybrid 2 method for the different filters and the corresponding
average PCRLB.

the Hybrid 1 method reaches quickly a lower bound which
is approximately equal to the performance of the Hybrid 2
method.

When the different filters are compared with each other,
one can clearly see that for large values of σRTU, the MCKF
outperforms the RBUKF and EKF. However, when the GPS
reference time uncertainty decreases, then, the performance
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Table 4: Average RMSE performance of EKF, RBUKF, and MCKF for Scenario I.

Algorithm Method Location in m Velocity in m/s Bias in m Drift in m/s

GSM 73.9 3.6 — —

EKF [12] Hybrid 1 73.0 3.4 34.2 1.9

Hybrid 2 44.3 2.7 4.6 1.2

GSM 73.8 3.6 — —

RBUKF [13] Hybrid 1 72.1 3.5 33.7 1.9

Hybrid 2 44.2 2.7 4.6 1.2

GSM 71.5 3.6 — —

MCKF Hybrid 1 70.8 3.4 33.5 1.9

Hybrid 2 44.0 2.7 4.6 1.2

of the three filters is approximately the same. In Figures 9
and 10, the average RMSEs of the MT clock bias and drift in
dependence of the GPS reference time uncertainty standard
deviation σRTU for the different filters are shown. For the
Hybrid 1 method, the average bias and drift RMSEs can be
gradually decreased for values of σRTU smaller than 10−6. For
the Hybrid 2 method, this is true for values of σRTU smaller
than 10−7. From the achieved results one can conclude that
the MT location RMSE can be decreased until the MT clock
bias RMSE falls below a certain threshold. Beyond this point,
the MT location RMSE reaches a lower bound, even though
the RMSEs of the MT clock bias and drift states can be
further decreased.

In Table 5, the computational complexity in terms of
FLOPs for the different filters and methods is presented.
From Table 5, it can be seen that for all investigated methods,
the EKF has the lowest computational complexity, followed
by the MCKF and RBUKF. The complexity reduction of the
EKF compared to the RBUKF is about 30%. Using an MCKF
rather than an RBUKF results in a complexity reduction of
only 4%.

5.5. Simulation Results for Scenario II. In this section, the
simulation results for Scenario II are presented. In Figures 11,
12, and 13, the MT location RMSE of the GSM, Hybrid 1, and
Hybrid 2 method for the three different filters is shown. From
these three figures it can be clearly seen that the performance
of the three filters is approximately the same. Again, the GSM
method provides the worst results in terms of MT location
RMSE. The Hybrid 1 method only marginally improves the
MT location RMSE at the cost of an increased complexity
(cf. Table 5) while the best performance can be achieved by
the Hybrid 2 method.

The equal performance of the three filters for the
different methods can be explained by the fact that the
distances between the BSs and the MT are large and, thus,
the impact of the nonlinearities, inherent in the TA and
RSS measured values, is small. Compared to the simulation
results of Scenario I, there are now several distinct peaks
in the MT location RMSE. These peaks that are more
pronounced for the GSM and Hybrid 1 method (cf. Figures
11 and 12) result from the geometric constellation of the
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Figure 9: Scenario I: Average MT clock bias RMSE of the Hybrid 1
and Hybrid 2 method for the different filters and the corresponding
average PCRLB.

Table 5: Computational complexity in FLOPs of EKF, RBUKF,
and MCKF for one time step. Numbers in parentheses denote
the FLOP complexity taking into account GPS reference time
information.

Algorithm Method Complexity in FLOPs

GSM 3108

EKF Hybrid 1 6813(7974)

Hybrid 2 7974(9267)

GSM 4534

RBUKF Hybrid 1 9708(11230)

Hybrid 2 11230(12916)

GSM 4314

MCKF Hybrid 1 9360(10842)

Hybrid 2 10842(12486)
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Figure 10: Scenario I: Average MT clock drift RMSE of the Hybrid 1
and Hybrid 2 method for the different filters and the corresponding
average PCRLB.
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Figure 11: Scenario II: MT location RMSE of the GSM method for
the different filters.

BSs and satellites relative to the MT. However, for the
Hybrid 2 method (cf. Figure 13) the magnitude of the peaks
becomes smaller, because additional information from two
PR-measured values is processed and more weight is put on
the geometric constellation of the satellites relative to the MT.
The average RMSE performance of the EKF, RBUKF, and
MCKF is summarized in Table 6.
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Figure 12: Scenario II: MT location RMSE of the Hybrid 1 method
for the different filters.
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Figure 13: Scenario II: MT location RMSE of the Hybrid 2 method
for the different filters.

6. Experimental Results

In this section, the performance of the proposed hybrid
localization method is verified for the different filters with
experimental data available from a field trial. The field trial
was conducted in an operating GSM network in the city
center of a German city, with a test area of approximately
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3 km × 3 km. During the field trial, a car equipped with
a standard cellular phone is collected every Ts = 480 ms
RXLEV- (quantized RSS) and TA-measured values from
GSM. Here, it is worth noting that in GSM the RXLEV-
measured values are available from the serving BS and
between one and six strongest RXLEVs from the neighboring
BS whereas the TA-measured value is only available from
the serving BS. In addition, it should be noted that GPS
reference time uncertainty measurements have not been
collected during the field trial, so that this issue will not
be further elaborated in this section. The GSM network is
composed of NBS = 13 fixed BSs with known locations.
The BSs are equipped with either directional antennas or
a single omnidirectional antenna. The antenna boresight
directions, equivalent isotropic radiated powers, and half-
power beamwidths are a priori known, and the unknown
antenna gain patterns are approximated with (13). The
remaining parameters of the TA and RSS measurement
models (cf. (10) and (14)) are estimated from the available
field trial data. Here, it is worth noting that in order to
not overfit the different filters for this single trajectory the
standard deviations of the TA- and RSS-measured values
were chosen to be σ (n)

RSS ≥ 3 dB and σ (n)
TA ≥ 1μs. For the

path loss model (cf. (12)) the parameters are in the range of
110 dB ≤ A(n) ≤ 150 dB and 2 dB ≤ B(n) ≤ 5 dB.

For the GPS network, PR-measured values collected
from a field trial are not available, so that synthetic PR
measurement data have been generated with the parameters
given in Table 3. The constellation of the GPS satellites
during the field trial is reconstructed by taking true satellite
locations from the real satellite constellation, where the
satellite locations are assumed a priori known. For simplicity,
it is assumed that PR-measured values are available every
Ts = 480 ms. The satellite’s visibility status during the field
trial cannot be reproduced subsequently, so that it is assumed
that either NSAT = 1 or NSAT = 2 satellites are visible to
the MT. However, this assumption is only made in order
to demonstrate the improvements that can be achieved by
the proposed hybrid localization algorithm. In reality, the
number of visible satellites changes with time, so that there
will be situations where GPS (i.e., NSAT ≥ 3) is available.

In Figure 14, the true MT trajectory together with the
trajectories estimated by the EKF, RBUKF, and MCKF for
the GSM method of the field trial is shown. Here, the true
MT location was obtained from detailed maps and from GPS,
where GPS was available. From Figure 14 it can be seen that
all three filters can moderately track the MT. In Figure 15, the
corresponding MT location error in dependence of the time
index k is presented. Here, the MT location error denotes
the Euclidean distance between the true and estimated MT
location. From Figure 15 it can be seen that the RBUKF
marginally outperforms the MCKF and EKF. This rather
surprising result can be explained as follows. The MCKF
has been derived in a setting where the measurement noise
has to be Gaussian distributed [14]. The available field trial
measurements, however, are not Gaussian distributed, so
that this assumption is explicitly violated. The RBUKF has
been derived in a more general setting where the involved
densities have to be symmetric, but not necessarily Gaussian.
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Figure 14: Field trial scenario with true MT trajectory, approximate
BS locations (•), and estimated trajectories of the GSM method for
the different filters.
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Figure 15: MT location error of the GSM method for the different
filters.

As a result, the performance of the RBUKF is slightly better
than the performance of the MCKF. The peak values in
the MT location error can be explained by the geometric
constellation of the BSs relative to the MT location and the
change of the MT velocity during the field trial which results
in a mismatch to the CV model that is assumed in the filter’s
process model.

In Figures 16 and 17, the estimated trajectories and
the MT location error of the Hybrid 1 method for the
different filters is presented. Again, all three filters can track
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Table 6: Average RMSE performance of EKF, RBUKF, and MCKF for Scenario II.

Algorithm Method Location in m Velocity in m/s Bias in m Drift in m/s

GSM 119.1 4.1 — —

EKF [12] Hybrid 1 118.4 3.9 57.1 2.0

Hybrid 2 69.9 2.8 4.5 1.1

GSM 118.8 4.1 — —

RBUKF [13] Hybrid 1 118.2 3.9 56.8 2.0

Hybrid 2 70.0 2.8 4.5 1.1

GSM 118.5 4.1 — —

MCKF Hybrid 1 118.1 3.9 56.7 2.0

Hybrid 2 70.0 2.8 4.5 1.1
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Figure 16: Field trial scenario with true MT trajectory, approximate
BS locations (•), and estimated trajectories of the Hybrid 1 method
for the different filters.

the MT and the performance of the MT location error is
approximately the same. However, compared to the GSM
method, the MT location error of the Hybrid 1 method
can be slightly improved. In Figures 18 and 19, the filter’s
estimated trajectories and MT location error of the Hybrid
2 method are shown. It can be clearly seen that, compared
to the GSM and Hybrid 1 method, the performance can be
significantly improved using the Hybrid 2 method. For the
Hybrid 2 method, the MCKF yields the best performance,
followed by the RBUKF and EKF.

In Table 7, the average MT location error of the GSM,
Hybrid 1, and Hybrid 2 method for the EKF, RBUKF, and
MCKF is summarized. It can be seen that for all three
filters the GSM method provides the worst performance. The
MT location accuracy can be marginally improved with the
Hybrid 1 method and significantly improved with the Hybrid
2 method.
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Figure 17: MT location error of the Hybrid 1 method for the
different filters.

Table 7: Average MT location error in meters of EKF, RBUKF, and
MCKF for field trial scenario.

Algorithm
Method

GSM Hybrid 1 Hybrid 2

EKF [12] 59.2 55.5 43.8

RBUKF 55.1 52.3 42.8

MCKF 56.5 53.8 41.7

7. Conclusion

In this paper, the performance and computational complex-
ity of three different MT tracking algorithms, namely, the
EKF, RBUKF, and MCKF are investigated that combine TA-
and RSS-measured values from GSM and one or two PR
measurements from GPS. It has been shown by simulations
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Figure 18: Field trial scenario with true MT trajectory, approximate
BS locations (•), and estimated trajectories of the Hybrid 2 method
for the different filters.
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Figure 19: MT location error of the Hybrid 2 method for the
different filters.

and experiments that, compared to existing GSM-based MT
tracking solutions, the location accuracy can be significantly
improved by using hybrid GPS/GSM-based MT tracking
algorithms, where all three filters have approximately the
same performance, and the EKF offers the best trade-off
between performance and computational complexity. When
GPS reference time is additionally available from the GSM
network, then, the hybrid localization method using one
PR measurement can be significantly improved. It has been
shown by simulations that in this case, it is sufficient to have

GPS reference time information available, whose uncertainty
lies in the range between 10−6 to 10−7 seconds, in order to
improve the hybrid localization method.

Although this paper is focused on a specific scenario
with measured values from GPS and GSM, the general
equations and methodology presented in this paper can be
easily adapted to other network configurations and measured
values from other systems, for example, universal mobile
telecommunications system (UMTS) or wireless local area
networks. By additionally considering these measured values
in the hybrid localization solution, it is expected that the
performance will be further improved.
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A novel ranging technique based on received signal strength (RSS) and suitable to indoor scenarios is illustrated. In the proposed
technique, multiple power measurements, associated with the signals radiated by a cluster of nodes surrounding a given target,
are jointly processed to improve the quality of RSS-based estimation of the distance between the target and an anchor. Specific
algorithms for the generation of a cluster and for the acquisition of power measurements are described. Simulation results show
that, when used in indoor positioning systems, the proposed ranging technique is substantially more accurate than noncooperative
strategies. In addition, it allows to concentrate significant processing tasks in a limited number of fixed anchors, so reducing
maintenance costs and making it possible to adopt cheap and simple portable wireless nodes.

1. Introduction

Wireless sensor networks for accurate localization of people
and objects in indoor environments represent a fundamental
tool for the provisioning of high-level services in the fields
of management and logistics. Despite this, currently the
pervasive diffusion of such networks is prevented by their
large complexity and maintenance costs. This is mainly due
to the fact that, in indoor scenarios, accurate localization in
the presence of severe multipath fading usually requires a
large number of fixed sensing nodes (called anchors) with
a known location [1] and the use of complicated signal
processing algorithms for distributed distance estimation
[2]. It is also important to note that localization algorithms
are often designed under the assumption that accurate point-
to-point distance measurements between the target node
(i.e., that whose location needs to be identified) and a set
of anchors are available [3–7]. Unluckily, the first hypothesis
can be deemed realistic only when there is a line of sight
(LOS) path between the given target node and the anchors
involved in distance measurements, so that the first echo (i.e.,
the one with the shortest time of arrival) can be separated
from all the following ones, originating from nonline of
sight (NLOS) paths, via proper signal processing algorithms

[8]. However, the accuracy achievable in such measurements
reduces noticeably in indoor environments, since, generally
speaking, they are characterized by significant obstacles to
signal propagation and, frequently, by NLOS links [9].

Recently, an increasing attention has been paid to the
use of ultrawide band (UWB) transmission techniques [10]
for radio localization in indoor scenarios. This interest is
motivated by the appreciable time resolution originating
from the extremely wide bandwidth of UWB signalling
formats [11]. This means that multiple echoes of UWB
signals can be accurately resolved by sensing nodes, so
that, in principle, the quality of ranging estimation can be
substantially improved.

In this work, a new solution to indoor localization
based on a UWB wireless sensor network is illustrated.
The derivation of the proposed technique relies on the use
of low complexity ranging estimation methods based on
received signal strength (RSS) [2, 12], on some considerations
about the statistical properties of UWB channels, and the
use of multiple (i.e., of a cluster of) transmitting nodes,
placed in different points of the considered environment, to
refine the distance measurement of a target from a given
anchor. These design choices can be motivated as follows:
(1) measuring RSS is simple and can be easily accomplished
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even by receivers which have not been explicitly designed
to perform distance estimation (so avoiding the additional
costs of deploying ad hoc hardware); (2) recent studies about
statistical modeling of indoor UWB channels (e.g., see [13–
15]) provide accurate information about the power decay
model and the distribution of multipath components; (3)
RSS indirectly exploits the very wide bandwidth of UWB
signals, since such signals exhibit little small scale fading
when compared to narrowband signals [16]; and (4) the use
of multiple low-cost transmitting nodes allows to mitigate
the effects of fading, resulting in improved accuracy. As far
as the last point is concerned, it is important to note that the
adopted solution exploits a sort of cooperative diversity, since,
in the range measurement procedure, spatially separated
nodes cooperate, emitting localization signals, which travel,
however, through distinct wireless channels. It is also worth
pointing out that, as far as we know, until now statistical
modeling of UWB channels has been exploited to improve
the overall performance of localization (e.g., see [4, 17]), but
not the quality of ranging measurements.

The remaining part of the paper is organized as follow.
The use of a cluster of nodes for improving ranging
measurements is motivated in detail in Section 2, whereas
algorithms for ranging estimation based on RSS and on
the use of a cluster of nodes, and methods for cluster
generation are derived in Section 3. In Section 4, the problem
of acquiring independent RSS measurements is tackled,
whereas in Section 5 some simulation results evidencing
the enhancement in ranging accuracy provided by the
proposed algorithms are analyzed. Finally, Section 6 offers
some conclusions.

2. Cooperative Ranging Based on
a Cluster of Nodes

In a wireless sensor network for indoor localization, the
scope of each anchor is estimating its distance from a given
target node on the basis of the RSS associated with the digital
signal radiated by the node itself. In a static scenario affected
by multipath fading, the average power R associated with the
useful component of the signal received at a given anchor can
be expressed as [18]

R = P0 − (PL + LSF + SSF), (1)

where P0 is a reference power level, and PL, LSF, and SSF
denote the exponential path loss, the large scale fading, and
the small scale fading (all expressed in dBm) affecting the
communication channel, respectively. In the following an
NLOS condition is assumed for signal propagation, so that
LSF and SSF can be represented as zero mean random
parameters. In particular, LSF is modelled as a zero mean
Gaussian random variable whose variance is described, in
turn, by a Gaussian distribution characterized by known
parameters; such parameters depend on the characteristics
of the building, in which signal propagation occurs [14].
In addition, the statistical behavior of SSF is described
by a Nakagami distribution with an m-factor m ≥ 1/2
[15]. As far as the path loss PL is concerned, following

[14, 15], an exponential power decay is considered; its
path gain exponent, however, is modeled as a Gaussian
random variable having constant variance and known mean,
both depending on the macroscopic characteristics of the
considered indoor environment.

In the absence of fading, we have that SFF = LSF = 0
in (1); then, the distance of the target node from a selected
anchor can be perfectly estimated from R if the power level P0

and the mathematical model of the PL are completely known.
Unluckily, the presence of fading introduces an uncertainty
in ranging measurements based on (1). To mitigate fading
effects, we propose to exploit, in distance estimation, all the
RSSs associated with the digital signals radiated by a spatial
cluster of nodes, as illustrated in Figure 1. This cluster has
the following properties: (a) it consists of a subset of N
radiating nodes selected in a pool of NT nodes; (b) it includes
the target node; (c) the signals transmitted by its nodes, as
well as the signals transmitted by all the other nodes in the
network, are mutually orthogonal in a specific domain (e.g.,
in the time or in the frequency domain) and can be separated
perfectly by the anchor. Then, if an denotes the nth node of
a given cluster C (i.e., C is the set {an,n = 1, 2, . . . ,N}), the
average power Rav captured by the anchor is given by (see (1))

Rav � 1
N

N∑

n=1

Rn

= P0 −
⎛

⎝
1
N

N∑

n=1

PLn +
1
N

N∑

n=1

LSFn +
1
N

N∑

n=1

SSFn

⎞

⎠,

(2)

where Rn denotes the average power received from an,
whereas PLn, LSFn, and SSFn are the exponential path loss,
the large scale fading, and the small scale fading affecting
the communication channel between the anchor and an. The
path loss PLn can be expressed as

PLn = PLmean + ΔPLn, (3)

for n = 1, 2, . . . ,N , where PLmean represents the average path
loss affecting the cluster nodes, whereas ΔPLn denotes the
offset of PLn from PLmean. Intuitively, PLmean accounts for the
loss associated with the separation between the cluster and
the anchor, whereas ΔPLn can be related to the displacement
of the nodes within the cluster, as shown in Figure 2. It is
also worth noting that, generally speaking, the value of the
path loss exponent depends on the propagation link [14, 15],
so that, in principle, it can take on different values for
distinct nodes of the same cluster; however, modelling errors
concerning this parameter in the evaluation of path loss can
be incorporated in the {ΔPLn} terms.

Given (3), (2) can be rewritten as

Rav = P0 −
⎛

⎝PLmean + ΔPL +
1
N

N∑

n=1

LSFn +
1
N

N∑

n=1

SSFn

⎞

⎠,

(4)

where

ΔPL � 1
N

N∑

n=1

ΔPL(n). (5)



International Journal of Navigation and Observation 3

Anchor

Target

Node

Cluster

Figure 1: Set-up of the analysed system.

If ranging estimation of the selected anchor is based on the
quantity Rav (2) instead of R (1), a larger accuracy can be
achieved thanks to the fading mitigation effect originating
from the use of multiple contributions. This can be easily
proved if the indoor scenario is characterized by a rich
scattering, so that the channels between distinct nodes and
the selected anchor can be deemed statistically independent.
Then, the random variables {LSFn} and {SSFn} are mutually
independent and, if the radiating nodes are identical and
the associated channels are statistically equivalent, can be
considered identically distributed. Since the variance of the
fading terms {LSFn} and {SSFn} is finite, ifN is large enough,
the central limit theorem [19] can be applied, and each of
the terms

∑N
n=1 LSFn and

∑N
n=1 SSFn in (4) can be modelled

as zero mean Gaussian random variable with a variance
tending to 0 as N increases; in other words, the ranging error
component due to multipath fading can be substantially
reduced if the number N of (cooperating) cluster nodes is
large enough. Note, however, that the achievable accuracy
can be limited by the term ΔPL (5), representing the residual
error due to the spatial spread of the selected cluster. For
instance, if the nodes of the cluster are placed in a regular
fashion along a circumference and the anchor is placed in
its center, the term ΔPL will be equal to zero, independently
of the distance between the nodes and the anchor, even if
this increases to infinity (see the example of Sestion 5.1 for a
deeper insight). This means that, in principle, the term ΔPL
is not minimized if a spatially dense cluster is selected, but
if the nodes forming the cluster are enrolled according to a
clever strategy.

It is also important to point out that the approach we
propose for improving the quality of ranging measurements
can provide various practical advantages; some of them are
listed below.

(i) If the proposed method can achieve a better accuracy
in NLOS conditions then that offered by classic RSS-
based ranging techniques, the application level can be
simplified, since most of the computational burden is
concentrated at lower system layers.

(ii) The employed radio nodes can be extremely simple
(and, hence, cheap), since most of signal processing
for localization is accomplished by a small number of
fixed anchors. In fact, As pointed out in the following,

a1

Anchor

a3

a2

PLmean

ΔPL1
ΔPL2

ΔPL3

Figure 2: Decomposition of the path loss terms of a cluster of nodes
in a common cluster distance-related term (PLmean) and a set of
distance errors (ΔPLn).

each node is only expected to respond to a query with
a certain (and precise) power level.

(iii) System performance can be improved putting
dummy nodes in the environment; these have the only
scope of increasing node density.

The adoption of the proposed solution, however, raises
some important technical issues that need to be carefully
addressed. In particular, we note that

(i) a proper strategy for the generation of a cluster
is needed to identify the nodes optimising perfor-
mance, that is, the overall ranging accuracy,

(ii) the impact of node density over the system perfor-
mance should be analyzed. In fact, on the one hand,
if the cluster covers a small area, the residual error
ΔPL is negligible with respect to the mean distance
(which can be identified as the target distance)
associated with PLmean; however, it is likely that in this
situation the fading affecting distinct nodes exhibits
a substantial correlation, so that the effectiveness of
the proposed strategy can be appreciably affected. On
the other hand, if the cluster size is significant, it
is not difficult to show that the ranging error due
to the fading terms {LSFn} and {SSFn} decreases as
1/N2 only; the estimation accuracy, however, can get
worse because of ΔPL, that is, of the spread in node
locations with respect to cluster center.

The first problem can be solved using proper algorithms,
as illustrated in Section 3. Unluckily, the second problem
does not lend itself to a simple mathematical analysis. For
this reason, its relevance has been assessed via computer
simulations; some results are illustrated and commented in
Section 5.

3. Cluster Selection Strategies

In this Section, two different strategies for the selection of
the wireless nodes forming a cluster for a given target node
in a static indoor scenario are proposed. Then, the problem



4 International Journal of Navigation and Observation

of distance estimation based on a set of data acquired from a
cluster of nodes is analyzed.

Before analysing the proposed strategies in detail, it is
worth noting that any strategy for cluster selection should
aim at identifying a group of nodes (in the pool of available
ones) in a way that the fading effects in the measurement
of Rav (4) are mitigated and that, at the same time, the
amplitude of the term ΔPL (5) is not enhanced. For this
reason, the problem of selecting an optimal cluster Ĉ could
be formulated as

Ĉ = arg min
C̃,NC̃

∣
∣
∣Rav

(

C̃,NC̃

)

−
(

P0 − PLmean

(

C̃,NC̃

))∣
∣
∣,

(6)

where the dependence of Rav and PLmean on the trial cluster
C̃ and on its size N = NC̃ is explicitly indicated. Note that

(i) the cluster optimization procedure expressed by (6)
involves not only the selection of a specific set of
nodes C̃, but also that of its size NC̃ . If NC̃ is large,
fading is mitigated, but the effects of the offset ΔPL
become significant,

(ii) if NT denotes the overall number of nodes in the
environment managed by the anchor, the number of
unordered collections of NC̃ nodes extracted from a

set of NT nodes is given by
(
NT
NC̃

)

= NT !/(NC̃!(NT −
NC̃)!); this quantity (and, consequently, the computa-
tional complexity of the problem (6)) grows quickly
as NC̃ increases.

The last comment motivates the investigation of sub-
optimal strategies leading to a good accuracy in distance
estimation at the price of a reasonable complexity. In the
following, Paragraphs we show that such strategies can be
developed adopting a heuristic approach to the problem
of cluster selection. Our strategies operate in a centralized
fashion, since cluster selection is accomplished at the anchor.
For this reason, in the cluster selection procedure, each
involved node is only expected to generate a signature signal
in response to a radio frequency query from the anchor. In
the following, however, we do not tackle the problems of
identifying each node (and, in particular, of looking for the
target node in the cluster) and of managing the access to
a shared radio medium. In fact, we simply assume that the
anchor is able to identify each node, exploiting, for instance,
an unambiguous identification code wired in the hardware
of each node, like in RFID tags [20]. Moreover, the response
signal is expected to be transmitted at a certain (and precise)
power level, so that active RFIDs [20] could represent a good
technical choice in a low-cost node design.

Finally, we note that, as already mentioned in the
previous Paragraph, the identification of the optimal cluster
Ĉ relies on the availability of several independent RSS
measurements for each node of the trial clusters C̃; two
different strategies for the acquisition of such data are
illustrated in Section 4. Here we consider a static scenario,
in other wongs we assume that negligible changes occur in

the measurement scenario during the interval in which RSS
data are acquired. If such an interval is very short, then the
solutions we propose can be adopted for portable indoor
applications.

3.1. Cluster Selection Based on the Minimization of a Power
Spread. The first procedure for cluster selection evolves
through the following steps:

(1) NP independent power measurements {Rn(m), m =
1, 2, . . . ,NP} are acquired for the node an (with n = 1,
2, . . ., NT) reached by a query signal from the anchor;

(2) a trial cluster C̃, having fixed size D and including the
target node, is selected;

(3) for m = 1, 2, . . . ,NP the mean power

RC̃(m) = 1
D

∑

n∈ΛC̃

Rn(m) (7)

associated with C̃ is computed (here the set ΛC̃
consists of the D values of n that identify the subset
of nodes {an} forming C̃);

(4) the “spread” σC̃ of the set of powers {RC̃(m), m =
1, 2, . . . ,NP} is evaluated as

σC̃(m) �

√
√
√
√
√

1
NP

NP∑

m=1

(

RC̃(m)− μC̃
)2

, (8)

where

μC̃ � 1
NP

NP∑

m=1

RC̃(m); (9)

(5) the steps 2–4 are repeated for any possible trial
cluster C̃; at the end of this exhaustive procedure,
the cluster Ĉ minimizing σC̃ (8) is selected; in
other words, the cluster selection strategy, dubbed
spread minimization (SM) in the following, can be
summarized as

Ĉ = arg min
C̃
σC̃. (10)

The rationale behind this technique is to search for a
cluster such that the power measurements for its nodes
exhibit the minimum spread, that is, the smallest sensitivity
to fading; in fact, a small spread indicates that the (determin-
istic and distance-dependent) path loss term prevails over
(stochastic) fading terms in the model expressed by (2).

The main drawbacks of the SM strategy are represented

by (a) the need of evaluating of a set of
(
NT
D

)

distinct

metrics σC̃ (8), where
(
NT
D

)

= NT !/(D!(NT − D)!) indicates
the number of unordered collections of D distinct elements
extracted from a set of NT ; (b) the exhaustive search for the
minimum over this set. In fact, these tasks entail a substantial
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computational burden at the anchor. It is important to
point out, however, that the task of cluster selection can be
carried out without strict real-time constraints (hence, off
line) at the anchor, once the whole measurement process
has been completed. Moreover, the anchor can be a fixed
device connected to the power network, so that, since it is
not limited in the energy and/or size, it can be very powerful.

Finally, it is worth noting that

(i) in principle, the size D of the cluster could be
optimized considering progressively larger clusters in
our search (10), so that the optimal cluster size N
could be identified; however, this approach would
make the problem computationally unmanageable
for large values of NT ;

(ii) a conceptually similar approach has been adopted
in [4, 9] to discriminate between LOS and NLOS
conditions in a wireless link;

(iii) the performance of the SM strategy is not affected by
the presence of correlated shadowing. In fact, in this
case, adopting the representation of (3) for the PL,
the term (1/N)

∑N
n=1 LSFn in (4) can be rewritten as

LSFmean + (1/N)
∑N

n=1 ΔLSFn, where LSFmean denotes
a bias due to the above-mentioned phenomenon.
Then, it can be shown that the variability of the
right hand side of (7) as well as the spread evaluated
according to (8) undergo a reduction with respect to
the case of uncorrelated LSF terms. For this reason,
the nodes affected by correlated shadowing are likely
to be included in the cluster, and, since such nodes
are also spatially close, the weight of the terms ΔPL
and SSF can be appreciably reduced.

3.2. Cluster Selection Based on the Estimation of a Coarse
Distance. The second procedure for cluster selection is based
on the idea of grouping nodes whose distance from the
anchor appears to be close to that evaluated for the target
node. This strategy consists of the following steps:

(1) NP independent power measurements {Rn(m), m =
1, 2, . . . ,NP} are acquired by the anchor for the node
an (with n = 1, 2, . . . ,NT) reached by a query signal
from the anchor;

(2) the anchor processes Rn(m), with m = 1, 2, . . . ,NP ,
to estimate its distance dn(m) from the node an, with
n = 1, 2, . . . ,NT (the adopted estimation technique is
illustrated in Sestion 3.3);

(3) the average distance dn of the anchor from an, with
n = 1, 2, . . . ,NT , is evaluated as

dn = 1
NP

NP∑

m=1

dn(m); (11)

(4) the anchor accomplishes an exhaustive search to
identify, in the set of nodes, the D elements whose

distance is closer to the average distance dtg measured
for the target node; formally, this strategy for the
selection of the optimal cluster Ĉ can be expressed,
in analogy to (10), as

Ĉ = arg min
C̃

∑

n∈ΛC̃

∣
∣
∣dn − dtg

∣
∣
∣. (12)

Note, however, that this strategy, called distance
estimation (DE) in the following, is substantially
simpler than that expressed by (10), since it involves
a search over a set of NT nodes, instead of the family
of all possible clusters of D nodes.

Finally, it is important to point out that this algorithm
does not search for the set of D nodes spatially closer to the
target node, but identifies the nodes whose distance is closer
to that of the target node dtg. In other words, it selects the
nodes closer to a circumference having radius dtg and the
anchor in its center.

3.3. Target Distance Estimation in the Presence of a Cluster of
Nodes. It is well known that, in free space propagation, the
average power Rx(d) (in dBm) captured by a receiver placed
at a distance d from a transmitter can be expressed as [15, 18]

Rx(d) = P0 − 10ξ log
(
d

d0

)

, (13)

where P0 represents the power level (in dBm) measured at
the so-called reference distance d0, whereas ξ is the path loss
exponent. Note that this expression cannot be exploited as
it is for accurately estimating the distance d from a single
measurement of average received power, since, as already
mentioned in Section 2, the path loss exponent ξ is a random
variable. To remove this uncertainty in (13), ξ is replaced by
its mean value ξ of this parameter in the following. Then, if
Rx(d) is known, the distance d can be roughly estimated as

d = k · 10−Rx(d)/(10ξ), (14)

where k � d0 · 10−(P0/10ξ).
The expression (14) can be certainly exploited for the

same target even in the presence of a cluster of nodes. In fact,
an estimate dcoop of the distance of the target node from the
anchor can be computed as

dcoop = k · 10−Pav/(10ξ), (15)

where

Pav � 1
NNP

N∑

n=1

NP∑

m=1

Rn(m) (16)

regardless the adopted cluster selection strategy.
The proposed distance estimation algorithm benefits

from spatial diversity [21] and multiuser diversity [22],
since NP independent power measurements are acquired for
each node of a cluster Ĉ, consisting of N distinct nodes
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(i.e., users). It is also worth pointing out that the number NP

of independent measurements that can be acquired from a
single node is limited by the availability of independent chan-
nel realizations and, consequently, by the characteristics of
the considered environment [23]; in addition, the selection
of a large value for the cluster size N can lead to a significant
residual error ΔPL (see (4)). The joint exploitation of the
two forms of diversity allows to mitigate the problem of
correlated fading [23] and to improve the overall accuracy
of the system.

4. Methods to Acquire Independent
RSS Measurements

Both the SM and DE algorithms for cluster selection rely
on the availability of NP independent data for each node. In
this Section, we illustrate how such data can be acquired. In
particular, two methods are proposed below; one is based on
the use of an oscillating beam pattern at a fixed anchor, the
other one is based on the use of a frequency sweep.

4.1. Oscillating Beam. The use of an oscillating beam pattern
has been adopted in [23, 24] to generate a sort of “artificial”
time diversity in mobile wireless channels. In our scenario,
the implementation of this solution requires the anchor to
be equipped with an antenna array fed by phase-controlled
signals, so that the main lobe of the radiation pattern
can be properly steered. Note that, in a rich scattering
environment, different transmission lobes can lead to inde-
pendent multipath propagation and, hence, to independent
channel realizations. In particular, [23, 24] evidence that
this technique offers the availability of a large number (say,
one hundred) of independent channels between two wireless
terminals in a static scenario. In our simulations, however,
an oscillating beam with 10 distinct angular steps only has
been assumed for the reasons illustrated in Section 4.3; this
still provides good spatial diversity and, at the same time,
does not restrict the significance of the acquired results to
a specific propagation environment. Note that (a) when
an oscillating beam is used, the index m of Rn(m) (see
Sestions 3.1 and 3.2) uniquely identifies the orientation of the
radiation beam; (b) the use of an oscillating beam increases
the complexity of the fixed anchor, but does not affect that of
the mobile devices.

4.2. Frequency Sweep. An alternative method to extract
independent channel realizations in a static scenario consists
of exploiting frequency diversity; in fact, power measure-
ments can be deemed independent if they are collected
at multiple frequencies, such that the spacing between
adjacent frequencies exceeds the coherence bandwidth of the
communication channel [25]. Note that, in this scenario, the
index m of Rn(m) uniquely identifies the frequency at which
the mth power measurement is acquired.

Unluckily, this approach is substantially more compli-
cated than the previous one, since it requires the implemen-
tation of mobile nodes with a wideband RF front end.

4.3. Remarks. Even if the methods described above can pro-
vide a large number of independent power measurements,
only a limited number of such measurements are required by
the proposed ranging techniques in a rich scattering indoor
environment. For instance, in such a scenario, if the angular
step of the beam steering is large, the electromagnetic signals
captured along different directions are expected to have
travelled along paths characterized by different distances;
generally speaking, this does not help to improve the
accuracy of our ranging procedure. For this reason, it is
recommended to acquire a limited number of independent
measurements limiting the deviation of the beam steering,
so that small scale fading can be averaged out without
appreciably influencing the path loss. Similar considerations
apply to the case in which the step size in a frequency sweep
is large.

5. Numerical Results

This section is organized as follows. First, we comment on
the relationship between the distribution of cluster nodes
and the achievable accuracy in cluster-based ranging. Then,
we analyse various numerical results about the ranging
accuracy achieved by the proposed strategies in two different
scenarios.

5.1. Spatial Distribution of Cluster Nodes and Ranging
Accuracy. When the distances between distinct nodes of a
given cluster are not appreciably smaller than the distance
between the cluster center and the fixed anchor, the “spread”
error ΔPL is expected to seriously limit the ranging accuracy
achievable by a localization system. To understand the
relevance of this problem, let us consider a specific cluster C,
collecting 5 nodes whose structure is illustrated in Figure 3.
In this case, it is assumed that the target is the central node
and that, for the sake of simplicity, the distance between
the nodes a(1) and a(2) (a(3) and a(4)) and the anchor is
r1 = r2 = r0 − ε (r3 = r4 = r0 + ε), where r0 is the
distance between the target node and the anchor. If the path
loss model (1) characterized by an exponential decay [18] is
adopted, the power R received by a transmitter located at a
distance d from the anchor is given by

R(d) = P0 − 10ξlog10(d) + K , (17)

where K represents the sum of the LSF and SSF contribu-
tions. Then, for the nth node (with n = 0, 1, . . . , 4) and
considering the availability of a single power measurement
for each node (i.e., NP = 1) for the sake of simplicity, the
anchor exploits the power measurement

Rn = P0 − 10ξlog10(rn) + Kn (18)

to compute the mean received power

Rav = 1
5

4∑

n=0

Rn = P0 − PLmean +
1
5

4∑

n=0

Kn, (19)

where

PLmean = 10ξlog10(r0) + 20ξlog10(r1) + 20ξlog10(r3)

5
. (20)
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Figure 3: Possible spatial distribution of 5 radiating nodes.

In the last expression, the contribution of the terms {Kn}
accounts for the fading affecting the nodes; moreover, the
path loss PLmean, depending on the distance between the
cluster center and the anchor, can be rewritten as

PLmean = 10ξlog10

(
r0 · r2

1 · r2
3

)1/5

= 10ξlog10

(

r0 · (r0 − ε)2 · (r0 + ε)2
)1/5

= 10ξlog10

(
r5

0 − 2r3
0ε2 + r0ε4)1/5

,

(21)

to evidence its dependence on the term ε. In any application,
we have that ε /= 0 (since the nodes belonging to the cluster
associated with a given target cluster do not coincide with the
target itself), so that a systematic source of error (i.e., a bias)
is found in ranging estimation based on node cooperation.
Unfortunately, a theoretical analysis of this problem appears
unfeasible, since the nodes of a given cluster are not expected
to follow a regular distribution in any indoor application.
For this reason, the relevance of the irreducible residual error
ΔPL (related to the presence of ε in the above-mentioned
example) is assessed via computer simulation only in the
following.

The problem of the effects, on the achievable perfor-
mance, of the spatial distribution of the nodes forming a
cluster around a given target deserves also the following
comments. As stated in Section 2, the aim of the anchor
in cluster generation according to the proposed algorithms
is to search for the nodes that can minimize the ranging
error and not for those forming a dense set. Unluckily, in an
indoor scenario characterized by rich scattering, an anchor
looking for nodes close to a given target tends to discard all
those nodes whose transmission is affected by severe fading,
since they appear far from the target location. This explains
why the proposed techniques for the generation of clusters
take advantage of cooperating nodes which are not close to
the target node; this is evidenced by Figure 4, illustrating a
possible spatial distribution of a node population and of the
cluster nodes selected for a given target.

10 12 14 16

x

18 20

6

8

10

12

14

16

18

y

20

Cluster nodes

Other nodes

Target node

Figure 4: Example of spatial node distribution and of a cluster of
nodes selected for ranging.

5.2. Ranging Accuracy. The performance offered by the
proposed ranging technique has been assessed resorting
to computer simulations. In all the simulations, the UWB
indoor channel model adopted in [14, 15] has been used.
This model is characterized by (a) an exponential path loss
(see [14, equation (12)]) with a Gaussian distributed path
gain exponent; (b) a lognormal large-scale fading (see [14,
equation (14)]) with zero mean and random variance (a
Gaussian distribution is adopted); (c) a Nakagami small-
scale fading with the m-factor equal to 1/2 (see [15, equa-
tion (19)]). All the parameters characterizing this channel
model are summarized in [14, Table II]; note that in our
simulations, NLOS channel models have been used, when
not differently stated.

Two different bidimensional scenarios have been con-
sidered for the cluster structure. The first scenario (dubbed
scenario #1 in the following) is characterized by a uniform
distribution of nodes and aims at modelling a rich scattering
environment in an indoor industrial/commercial open space.
In this case, the anchor is placed at a fixed distance of 20 m
from the centre of an area having a square shape with a
side S ranging from 3 cm to 12 m; 20 nodes are uniformly
distributed in such an area, and one is randomly selected
as the target. The second scenario (called scenario #2 in
the following) is more suitable to modelling a residential
indoor environment (e.g., an office or an hospital) and is
characterized by (a) an anchor placed at a fixed distance
of 20 m from the centre of a square region having fixed
side equal to 12 m; (b) 20 nodes divided in 3 groups (for
instance, each group could consist of the nodes located in a
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Figure 5: Comparison between the MRE provided by the proposed
ranging techniques and by a traditional RSS-based technique in the
presence of uniformly distributed nodes and NLOS propagation.

different room of the same floor in an indoor environment);
(c) the centre of each group is randomly placed within the
square region of fixed side and the coordinates of the group
nodes are Gaussian distributed around it (the variance of this
distribution is properly adjusted to ensure that the side G of
the square area containing the group ranges from about 2 cm
to 6 m). The target is selected randomly among the nodes.
Note that, for both the scenarios, the anchor is always out of
the area over which the nodes are distributed.

System performance is assessed in terms of mean ranging
error (MRE), defined as the difference between the estimated
distance of the target from the anchor and the true distance
of the target from the anchor averaged over 500 distinct
trials of the ranging procedure. In addition, in the following
simulation results, when not differently stated, it is assumed
that 10 independent channel realizations are available for
each node; we deem this hypothesis realistic, independently
of the specific scenario (see Sestion 4.1).

Figure 5 compares the MRE, versus the spatial size S of
the area in which the nodes are distributed, of the proposed
strategy (using DE or SM for the generation of clusters) with
that of a standard single node RSS technique for ranging [12]
in scenario #1. These results show that the former strategy
substantially outperforms the latter one, characterized by an
MRE comparable to the distance of the target node. The
improvement offered by an increase in the number of nodes
forming the cluster is evidenced by Figure 6, referring to
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Figure 6: MRE provided by the SM and the DE algorithms in the
presence of uniformly distributed nodes and NLOS propagation.

the case of the DE and SM techniques only. For instance,
if the DE method is adopted, the MRE is limited to about
9 m, 8 m, and 7 m with clusters made of N = 2, 6, and
10 nodes, respectively, note that, when a cluster includes
more than 10 nodes, the residual error ΔPL can lead to a
slight performance degradation. The SM algorithm allows
to achieve even better accuracies than the DE; in fact, when
N = 2 nodes form the cluster, the MRE is approximately
equal to 4.5 m, whereas the minimum error is reduced to
about 4 m if N is increased to 6. These results also evidence
that SM technique is more sensitive to node density than the
DE, which does not appreciably depend on the size of the
environment. In fact, if the scenario is densely populated, the
SM method outperforms the DE one, whereas the accuracy
is comparable when the node distribution is more sparse
or even worse when N > 6. This result can be related to
the different rationales behind these two techniques and, in
particular, to the fact that the SM aims at mitigating fading
effects independently of the residual errors {ΔPLn}, whereas
the DE minimizes the differences in distance measurements,
so coping with all the sources of error (residual errors
{ΔPLn} and fading) indistinctly.

Similar comments can be expressed for the results
shown in Figure 7, referring to scenario #2. Note that,
despite the substantial difference between the test scenarios,
the performance enhancement provided by the proposed
techniques is similar to that achieved in scenario #1.

Our methods have been also tested in the presence
of quasi-LOS propagation conditions, assuming the node
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Figure 7: Comparison between the MRE provided by the proposed
ranging techniques and by a traditional RSS-based technique in the
presence of a clustered node distribution and NLOS propagation.

arrangement of scenario #1. Some numerical results are
illustrated in Figure 8 and show that the performance of the
SM algorithm is slightly better than that of the DE (even if the
gap is smaller than that of the NLOS scenario), and that the
performance gain offered by DE algorithm over standard RSS
techniques is similar in quasi-LOS and NLOS conditions.
This is due to the fact that in quasi-LOS channels, the MRE
is mainly due to the terms {ΔPLn} (rather than to fading),
whose effects are not accounted for by the SM algorithm.

The sensitivity of the MRE with respect to NP (i.e., to
the number of available independent power measurements
for each node) is evidenced by Figure 9, whose results have
been obtained for NP = 5. Note that, on the one hand, the
reduction in the available diversity appreciably worsens the
performance of the DE algorithm (the MRE can increase
up to 2-3 m for a small cluster). On the other hand, the
performance of the SM algorithm, relying on both spatial
and multiuser diversity, is not substantially affected.

Finally, it is important to point out that

(i) the proposed strategies outperform the standard
single node ranging techniques because they can rely
on the RSS measurements of all the nodes populating
the environment. In fact, clusterization can be viewed
as the selection of the “most convenient data” to
perform ranging for a given node,
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Figure 8: Comparison between the MRE offered by the proposed
ranging techniques and by a traditional RSS-based technique
in the presence of uniformly distributed nodes and quasi-LOS
propagation.

(ii) the ranging accuracy provided by the SM and the DE
algorithms depends on the overall number of nodes
in the environment rather than on their density;
in fact these algorithms cooperatively exploit nodes
which can be placed far away from the target node, as
already discussed in the previous Paragraph,

(iii) further simulations, whose results are not presented
here for space limitations, have been run to assess
the achievable performance when the generation
of clusters is based on a distributed procedure,
carried out by the nodes themselves. Our results
have evidenced that, since severe fading can lead to
uncorrelated channels among the nodes and between
the nodes and the anchor, distributed node selection
does not provide a substantial improvement, even
with the respect to the case of nodes randomly
selected by an anchor.

6. Conclusions

In this paper, a novel ranging technique based on RSS and
suitable to indoor scenarios affected by severe multipath
fading has been presented. The technique improves the
quality of RSS-based estimation: (a) exploiting the signals
radiated by a cluster of nodes; (b) averaging over multiple
independent power measurements for each node of the
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Figure 9: Comparison between the MRE offered by the proposed
ranging techniques and by a traditional RSS-based technique in the
presence of uniformly distributed nodes and NLOS propagation;
NP = 5 independent channel realizations are assumed for each
node.

cluster. Specific algorithms for the generation of clusters
and for the acquisition of power measurements have been
illustrated.

Numerical results have evidenced that the proposed
ranging technique is substantially more accurate than tra-
ditional strategies in specific scenarios. In addition, thanks
to the centralized nature of the algorithms for cluster
generation, it allows to move the complexity of an indoor
positioning system to a limited number of fixed anchors,
so reducing its maintenance costs and making possible to
adopt cheap and simple portable wireless nodes. Finally, it
is worth mentioning that in poorly populated areas, good
performance results can be still achieved if the node density
is artificially increased using multiple dummy devices in the
environment.

Acknowledgments

The authors wish to acknowledge the activity of the Network
of Excellence in Wireless COMmunications (NEWCOM++,
contract no. 216715), supported by the European Com-
mission and that has motivated this work. The authors
would like also to thank the anonymous reviewers for their
comments which have been extremely helpful in improving
the quality of the paper.

References

[1] http://www.ubisense.net.
[2] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L.

Moses, and N. S. Correal, “Locating the nodes: cooperative
localization in wireless sensor networks,” IEEE Signal Process-
ing Magazine, vol. 22, no. 4, pp. 54–69, 2005.

[3] T. Roos, P. Myllymaki, and H. Tirri, “A statistical modeling
approach to location estimation,” IEEE Transactions on Mobile
Computing, vol. 1, no. 1, pp. 59–69, 2002.

[4] N. A. Alsindi, K. Pahlavan, B. Alavi, and X. Li, “A novel coop-
erative localization algorithm for indoor sensor networks,”
in Proceedings of the IEEE 17th International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC
’06), pp. 1–6, Helsinki, Finland, September 2006.

[5] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and
R. J. O’Dea, “Relative location estimation in wireless sensor
networks,” IEEE Transactions on Signal Processing, vol. 51, no.
8, pp. 2137–2148, 2003.

[6] J.-C. Chen, Y.-C. Wang, C.-S. Maa, and J.-T. Chen, “Network-
side mobile position location using factor graphs,” IEEE
Transactions on Wireless Communications, vol. 5, no. 10, pp.
2696–2704, 2006.

[7] M. Castillo-Effen, W. A. Moreno, M. A. Labrador, and K.
P. Valavanis, “Adapting sequential Monte-Carlo estimation
to cooperative localization in wireless sensor networks,” in
Proceedings of the IEEE International Conference on Mobile Ad
Hoc and Sensor Sysetems (MASS ’06), pp. 656–661, Vancouver,
Canada, October 2006.

[8] J. Borras, P. Hatrack, and N. B. Mandayam, “Decision
theoretic framework for NLOS identification,” in Proceedings
of the 48th IEEE Vehicular Technology Conference (VTC ’98),
vol. 2, pp. 1583–1587, May 1998.

[9] X. Li, K. Pahlavan, D. Ramsburg, and R. Passmore, “Phase
I Final Report: Innovative Methods for Geolocation and
Communication with UWB Mobile Radio,” Internal Report
for DARPA, May 2004.

[10] S. Gezici, Z. Tian, G. B. Giannakis et al., “Localization via
ultra-wideband radios: a look at positioning aspects of future
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no.
4, pp. 70–84, 2005.
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Underlay cognitive radios (UCRs) allow a secondary user to enter a primary user’s spectrum through intelligent utilization of
multiuser channel quality information (CQI) and sharing of codebook. The aim of this work is to study two-user Gaussian UCR
systems by assuming the full or partial knowledge of multiuser CQI. Key contribution of this work is motivated by the fact that
the full knowledge of multiuser CQI is not always available. We first establish a location-aided UCR model where the secondary
user is assumed to have partial CQI about the secondary-transmitter to primary-receiver link as well as full CQI about the other
links. Then, new UCR approaches are proposed and carefully analyzed in terms of the secondary user’s achievable rate, denoted
by C2, the capacity penalty to primary user, denoted by ΔC1, and capacity outage probability. Numerical examples are provided
to visually compare the performance of UCRs with full knowledge of multiuser CQI and the proposed approaches with partial
knowledge of multiuser CQI.

1. Introduction

Cognitive radios convey a dynamic and flexible spectrum
allocation policy that allows a secondary user to access a
primary user’s spectrum through exploitation of advanced
air-interface techniques and intelligent utilization of mul-
tiuser side information such as user activity, channel qual-
ity information (CQI), message, codebook, and location
information, and so forth. A good tutorial about cognitive
radios can be found in [1], focused on the signal-processing
perspective, and in [2], focused on the information-theoretic
perspective. One group of cognitive radios is known as
the interweave paradigm, where a secondary user can
opportunistically enter temporary spectrum holes and white
spaces existing in both licensed or unlicensed radio spectrum
[3]. Fast and reliable spectrum sensing techniques are the key
to the success of interweave cognitive radios. The other group
of cognitive radios includes overlay and underlay paradigms,
where the secondary user and the primary user form a
cognitive interference channel (e.g., [4–6]). Specifically, the
overlay cognitive user is able to sense the primary user’s
message, and then employs advanced coding schemes such as
the Gel’fand-Pinsker code [7] or the dirty-paper code [8] for

interference precancellation. In the underlay paradigm, the
secondary user enters the primary spectrum only when its
activity will not cause considerable interference or capacity
penalty to the primary user. Measure of interference requires
knowledge about multiuser CQI. The focus of this paper is
on the two-user Gaussian underlay cognitive radios (UCR).

Figure 1 illustrates an example of two-user UCR system
accommodating one primary transmitter (Tx1) and receiver
(Rx1) pair in System number 1 and one secondary trans-
mitter (Tx2) and receiver (Rx2) pair in System number
2. The block diagram of this UCR system is depicted in
Figure 2(a). In the flat-Gaussian scenario, this UCR system
can be described as the following linear model (this is a well-
recognized model in the literature [8–12] where both users
are assumed to employ simple random codes. Although rate-
splitting codes have been recently introduced to cognitive
radio channels, the focus of this paper will be on this simple
system model)

Y1 = a11X1 + a21X2 +V1, (1)

Y2 = a12X1 + a22X2 +V2, (2)
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where Xi stands for the signal sent by the transmitter Txi
with power Pi and rate Ri, Yj for the signal received at
the receiver Rx j, ai j for the channel coefficient of the Txi-
Rx j link, V for the Gaussian noise with zero mean and
variance No. This linear model shows that the UCR system
is a special case of interference channels presented in [9, 10],
but the interference term (a21X2) in (1) must not cause
considerable capacity penalty to the primary user. According
to the multiuser decoding capability, we can divide the UCR
system into the following four groups. Detailed introduction
about these four modes can be found in Sections 3–6,
respectively.

(1) Individual Decoding. Both the primary user and the
secondary user always deal with the mutual interference as
noise in their decoding process.

(2) Secondary-User Side Multiuser Decoding (SSMD). The
secondary user optimally deals with the interference term
(a12X1) in its decoding process. But, the primary user always
deals with the interference term (a21X2) as noise.

(3) Primary-User Side Multiuser Decoding (PSMD). The
primary user optimally deals with the interference term
(a21X2) in its decoding process. But, the secondary user
always deals with the interference term (a12X1) as noise.

(4) Two Sides Multiuser Decoding (TSMD). Both the primary
user and the secondary user perform an optimal treatment
about the corresponding interference term in their decoding
process.

Key physical layer issues this work seeks to address are
mainly in two folds:

Issue 1. Provided full knowledge about multiuser CQI, what
is the fundamental relationship between the secondary user’s
achievable rate, denoted by C2, and capacity penalty to the
primary user, denoted by ΔC1? What are criteria for Tx2 to
perform efficient power allocation? Those questions require
an answer for various UCR modes.

Issue 2. In many practical environments, having full knowl-
edge of CQI about all links of the UCR system is not a
suitable assumption. What are more suitable assumptions
in practice? What is the efficient UCR strategy under new
assumptions? What is the secondary user’s achievable rate?
Those questions require a satisfactory answer.

The primary objective of this work is to partially answer
the above questions through a study from the information-
theoretic viewpoint. In order to focus on the major technical
issues, the following assumptions are made throughout this
paper.

(A1) We consider a two-user UCR system accommodat-
ing one primary transmitter-receiver pair and one
secondary transmitter-receiver pair. This assumption
can be easily assured by introducing orthogonal

multiple-access schemes such as TDMA or FDMA to
multiuser systems.

(A2) Users in the system are synchronized in both the
time and frequency. Although the time-frequency
synchronization is a challenge in practice, we would
argue that the achievable rate produced under this
assumption can be regarded as an upper bound of the
practical performance.

(A3) Both receivers employ maximum-likelihood (ML)
detector/decoder to offer the optimum decoding
performance.

Contribution towards this work includes the following

(1) The first work is to answer those questions listed in
Issue 1. Provided full knowledge of multiuser CQI,
the fundamental relationship between C2 and ΔC1

is investigated for four UCR groups. Criteria for
efficient power allocation at Tx2 are established. The
produced results are the key to new UCR strategies
proposed for the case with partial knowledge of the
multiuser CQI.

(2) As a starting point of the work towards Issue 2,
we study modeling of UCR systems in the absence
of full knowledge of multiuser CQI. After a careful
justification, we establish an UCR system model,
where the secondary user is assumed to have partial
knowledge of CQI about the Tx2-Rx1 link, and
have full knowledge of CQI about the other links.
Location-aided UCR is employed as an example to
support our justification.

(3) We propose new spectrum-access approaches for var-
ious UCR groups by assuming the availability of p.d.f.
of CQI about the Tx2-Rx1 link. Power allocation
criteria are carefully investigated in terms of C2, ΔC1,
and capacity outage probability. (In practice, the
performance of power allocation will be influenced
by air-interfaces and synchronization errors. The
results presented in this paper are to provide an
information-theoretic guidance to practical designs.)
Assuming the channel to be Rayleigh, numerical
results are provided to visually show the performance
of UCRs with full knowledge of multiuser CQI and
the proposed approaches with partial knowledge of
multiuser CQI.

The rest of this paper is organized as follows. Section 2
offers a brief review about capacity theorem of Gaussian
interference channel (GIC) and relates it to the UCR system.
Moreover, modeling about the UCR system with partial
knowledge of multiuser CQI is also presented. Technical
contributions towards four UCR groups are presented in
Sections 3–6, respectively. Section 7 draws the conclusion.

2. System Model and Preparation

This section first presents capacity theorem about two-user
GIC and its relationship with the UCR system, and then
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Figure 1: Illustration of an example about the two-user UCR
system and a location-aided approach.

presents modeling of the UCR system with partial knowledge
of the multiuser CQI.

2.1. Two-User UCR with Full Multiuser CQI. The UCR
system is a special case of interference channels. The
information-theoretic research towards interference chan-
nels started from Carleial’s work published in [9]. Although
lots of research efforts have been paid in the last 30 years,
capacity region of interference channels has been found
only for the case of strong interference [13]. To the best of
our knowledge, the state-of-the-art capacity bound of two-
user GIC has recently been reported in [11, 12]. Next, we
provide a brief review about capacity theorem of two-user
GIC, which offers the theoretical support to our further
investigation about the two-user UCR system.

2.1.1. Two-User GIC with Strong Interference. In the linear
model (1)–(2), the case of strong interference denotes the
scenario |a12| ≥ |a11| and |a21| ≥ |a22| [10]. In this case,
the two-user GIC is in fact a compound Gaussian multiple-
access channel (MAC), whose capacity region is known as the
following union [14]:

⋃
⎛

⎝
R1 < C

[
γ11
]
,R2 < C

[
γ22
]

R1 + R2 < min
(
C
[
γ21 + γ11

]
, C
[
γ12 + γ22

])

⎞

⎠, (3)

where γi j � (Pi|ai j|2)/(No) denotes the instantaneous signal-

to-noise ratio (SNR) and C[x] � log2(1 + x). Provided (3)
and the assumption that users share their codebook, each
receiver can reliably recover the message sent by Tx1 and Tx2,
respectively.

2.1.2. Two-User GIC with Weak or Mixed Interference. This
scenario includes cases other than the case of strong inter-
ference. The closed form of capacity region is unknown to

this date. A lookup table (but incomplete) about the channel
capacity with respect to various channel conditions has been
reported in [12]. Alternatively, we can divide the two-user
GIC into the following three groups with respect to the
way of dealing with the interference. The following result is
adequate for us to investigate the two-user Gaussian UCR
system.

Group I. Each receiver can reliably decode the message sent
by Tx1 and Tx2, respectively. The achievable rate region,
denoted by RI, is (3).

Group II. Each receiver can only decode the message sent
by its corresponding transmitter. The interference will be
regarded as noise. The achievablerate region, denoted by RII,
is (see [9])

RII =
⋃

⎛

⎜
⎜
⎜
⎜
⎜
⎝

R1 < C

[
γ11

γ21 + 1

]

R2 < C

[
γ22

γ12 + 1

]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (4)

Group III. One receiver can decode the message sent by both
transmitters, and the other can only decode the message
sent by its corresponding transmitter. In this group, the
achievable rate region, denoted by RIII, is (see [12])

RIII =
⋃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Rj < C

[
γj j

γi j + 1

]

Ri < C
[

γii + γji
]

− Rj

Ri < C
[
γii
]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i /= j. (5)

Provided γi j , i, j=1,2, we can obtain the maximum sum-rate,
max(R1 + R2), through a comparison between RI, RII, and
RIII.

2.1.3. Two-User Gaussian UCR. The UCR system is modeled
as an interference channel where the primary user wants
to keep its interference-free capacity. But in many cases,
the secondary user will cause capacity penalty ΔC1 to
the primary user. Hence, the primary user’s capacity is
expressible as [5]

C1 = C
[
γ11
]− ΔC1 (6)

and the secondary user’s achievable rate is (see [12])

C2 = max(R1 + R2)− C1. (7)

Define

ΔC1 � ρC
[
γ11
]
, (8)

where ρ is a positive coefficient. Equation (6) is expressible as

C1 =
(
1− ρ)C[γ11

]
. (9)

In order to keep the capacity penalty to be reasonably small,
we usually let ρ� 1.
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Figure 2: Block diagram of various UCR modes: (a) two-user UCR channel, (b) the individual mode, (c) the CSMD mode, and (d) the
TSMD mode.
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Figure 3: An example of capacity results for the individual decoding
mode. The secondary user’s achievable rate versus capacity penalty
to the primary user.

2.2. Two-User UCR with Partial Multiuser CQI. In practice,
the primary transmitter-receiver pair may operate in the
frequency-division duplex (FDD) manner, where the trans-
mitter Tx1 periodically sends training sequences to support
channel estimation and coherent detection/decode at the
receiver Rx1. Rx1 informs Tx1 regarding the CQI of Tx1-
Rx1 link through a feedback channel. On the secondary-user
side, we assume that Rx2 can communicate with Tx2 through
a feedback channel. This feedback channel is orthogonal

|a21|2 or E|a21|2
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Figure 4: An example of capacity results for the individual decoding
mode. The secondary user’s achievable rate versus the channel
quality of Tx2-Rx1 link.

to the primary user’s frequency band and mainly for the
purpose of signaling. Based on the above system description,
we provide the following justification of assumptions about
the knowledge of CQI:

(i) The secondary receiver Rx2 listens to the conversa-
tion between Tx1 and Rx1. Then, Rx2 can estimate
the CQI of Tx1-Rx2 link.

(ii) We assume that Rx1 employs a simple common
codebook such as repetition code to perform the
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feedback of CQI. Then, Rx2 can obtain the CQI about
Tx1-Rx1 link through sensing of the primary user’s
feedback channel.

(iii) At the beginning of cognitive communication, Rx2
requests Tx2 to send a training sequence over the
primary spectrum. This offers the knowledge of CQI
about the Tx2-Rx2 link, but introduces a short burst
of interference to the primary user. We argue that
this burst of interference will not cause considerable
performance loss to the primary user.

(iv) Rx1 may estimate the CQI of Tx2-Rx1 link if
appropriate, but does not show this information in
its feedback channel due to an upper-layer protocol.
In this case, Rx2 cannot know the CQI of Tx2-Rx1
link. Then, our assumption is that the secondary user
knows the p.d.f. of CQI about the Tx2-Rx1 link. This
assumption is suitable for a scenario such as where
the secondary user has the location information
about itself and the primary user. The secondary
user can access a well-designed and maintained
database, which records the p.d.f. of CQI between
two locations. Figure 1 illustrates an example of
location-aided UCR system, where Rx1 and Rx2 are
fixed network nodes such as base-stations or access
points, and Tx1 and Tx2 are mobile stations. The
database has a lookup table about the p.d.f. of CQI
between each fixed network node and a certain area
such as the black circle with solid line. Provided
the location of Tx2, Rx2 knows which circle Tx2 is
currently in, and thus can look up the database to
find out the p.d.f. of CQI about the Tx2-Rx1 link.
Recently, how to design and maintain the location-
related database is becoming an important research
topic. However, it is out of the scope of this paper.
Further information about location estimation and
location-related database can be found in European
ICT WHERE [15].

As a summary, when we investigate the UCR strategy
with partial multiuser CQI, the following assumptions are
made in addition to (A1)–(A3):

(A4) Rx2 has full knowledge of CQI about the Tx1-Rx1
link, the Tx1-Rx2 link, and the Tx2-Rx2 link, but only
knows p.d.f. of CQI about the Tx2-Rx1 link, denoted
by p(|a21|2) as well as the mean E(|a21|2).

(A5) Rx2 determines the secondary user’s power and
transmission rate, and then informs Tx2 through the
feedback channel.

3. The Individual Decoding Mode

Figure 2(b) depicts the individual decoding mode where
each receiver only wants to decode the message sent by its
corresponding transmitter, and deals with the corresponding
interference as noise. This mode is suitable for the following
cognitive radio scenarios:
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Figure 5: An example of capacity results for the PSMD mode with
full multiuser CQI.

(i) Both the primary user and secondary user employ
their private codebook;

(ii) Even if both users employ a common codebook, each
receiver cannot decode the other user’s message due
to reasons such as channel conditions and upper layer
protocols.

In this situation, the UCR system can be regarded as a
simple collection of individual links. This mode has recently
received an intensive investigation in both the basic and
system-level research, for example, in [16, 17].

3.1. Capacity Results with Full Knowledge of CQI. This simple
mode is already mature in terms of capacity results. The
channel capacity for both users is given by (4). The capacity
penalty ΔC1 is calculated as

ΔC1 = C
[
γ11
]−C

[
γ11

γ21 + 1

]

. (10)

Equations (4) and (10) show a known result that increasing
the secondary user’s power P2 will increase both C2 and ΔC1.
Applying (8) into (10), we can relate P2 to the capacity-
penalty coefficient ρ as

P2 = 1

|a21|2
(

γ11

(1 + γ11)(1−ρ) − 1
− 1

)

. (11)

Given a coefficient ρ, the secondary user’s power should be
no larger than (11). Otherwise, the primary user would suffer
capacity outage.

Remark 1. A remarkable issue is that ΔC1 in (10) is a
monotonically decreasing function of γ11 due to the partial
derivative (∂ΔC1)/(∂γ11) < 0. This means that the primary
user operating at a high-SNR scenario is less sensitive to the
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Figure 6: An example of capacity results for the PSMD mode with
partial multiuser CQI.

interference. Considering a high-SNR scenario that fulfills
the conditions (C1) γ11 � 1, and (C2) γ11 � γ21, (10)
approximates to

ΔC1 ≈ C
[
γ21
]
. (12)

Plugging (8) into (12) leads to

P2 ≈ No

|a21|2
((

1 + γ11
)ρ − 1

)

. (13)

This simplified result can be utilized to allocate the secondary
user’s power when the primary user operates in the high-SNR
range.

3.2. The UCR Strategy with Partial Multiuser CQI.
Section 3.1 shows that, provided the power P2, the secondary
user can employ (4) to configure its transmission rate.
However, using (11) or (13) to configure P2 requires the
knowledge about |a21|2, which is supposed to be unknown
in some situations. Next, we propose a new power-allocation
criterion based on the assumption (A4).

Criterion 1. The power P2 should be appropriately config-
ured so that the capacity-outage probability of primary user
is not larger than a given threshold Ot.

Based on Criterion 1, the power-allocation strategy can
be summarized into the following two steps.

Step 1. Outage probability to the primary user is a function
of the SNR mean of Tx2-Rx1 link denoted by γ21 =
(P2E(|a21|2))/(No). Motivated by this fact, the secondary
user can first calculate the outage probability for a given
p(|a21|2), and then determine a threshold γt corresponding
to Ot.

Step 2. The secondary user can access the primary spectrum
for the condition γ21 ≤ γt. The maximum of P2 is therefore
given by

max(P2) = γtNo

E
(

|a21|2
) . (14)

The secondary user’s transmission rate can be calculated by
applying (14) into (4). Next, we will use a numerical example
to introduce about how to determine the threshold γt, and to
show the performance in this example.

3.3. Numerical Example. Define an instantaneous SNR
threshold γt as

γt � γ11

(1 + γ11)(1−ρ) − 1
− 1. (15)

Equation (11) indicates that the secondary user will cause
capacity outage to the primary user when γ21 > γt.
Assume the p.d.f. p(|a21|) to be Rayleigh as an example.
The probability for the event (γ21 > γt) to happen can be
calculated as [18]

Pr
(
γ21 > γt

) = exp

(

− γt

γ21

)

≤ exp

(

−γt

γt

)

, (16)

where Pr(·) denotes the probability. According to Criterion
1, the threshold γt should be carefully chosen to fulfill the
following condition:

exp

(

−γt

γt

)

≤ Ot. (17)

We apply the definition of γt (15) in (17) and obtain

γt =
(1 + γ11)(1−ρ) − 1− γ11

(

(1 + γ11)(1−ρ) − 1
)

ln(Ot)
. (18)

Moreover, when the primary user fulfills the high-SNR
condition (C1)-(C2), we can use (13) to define

γt �
(
1 + γ11

)ρ − 1. (19)

Applying (19) into (17) results in

γt =
1− (1 + γ11)ρ

ln(Ot)
. (20)

Based on the above analytical results, we use a visual
example to exhibit the performance. In this example, the
UCR system is configured as |a11| = 1, |a22| = 1, |a12| = 0.1.
The primary user’s power-to-noise ratio is P1/No = 16 dB.
The secondary user’s power-to-noise ratio is also limited by
16 dB. This ratio is one of typical configurations for high-
data-rate systems. For the scenario with full multiuser CQI,
we set |a21| = 0.1. Figure 3 illustrates the secondary user’s
achievable rate (see (4)) against the capacity penalty ΔC1

(see (10)) for cases with full or partial multiuser CQI. It is
observed that the secondary user’s achievable rate generally
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increases with the pay of capacity penalty to the primary
user. Moreover, in the scenario with partial multiuser CQI,
the secondary user shows increased achievable rate for the
case of larger outage probability, for example, Ot = 0.1 or
smaller E(|a21|2), for example, E(|a21|2 = 0.005). Figure 4
illustrates the secondary user’s achievable rate with respect to
the channel quality of Tx2-Rx1 link (ΔC1 = 0.15 bit/sec/Hz).
It shows that the UCR approach with partial CQI offers the
same performance as the UCR with full CQI when the Tx2-
Rx1 channel is deep faded.

4. The SSMD Mode

Figure 2(c) depicts the SSMD mode where each receiver
wants to decode the message sent by its corresponding
transmitter. The secondary receiver Rx2 will decode the
primary user’s message if appropriate. The primary receiver
Rx1 always deals with the interference term (a21X2) as noise.
This mode is suitable for the following cognitive radio
scenario:

(i) The secondary user knows the primary user’s code-
book, and thus has a chance to decode the primary
user’s message. This is possible if the primary user
is either using a common codebook or broadcasting
its own codebook to support, for example, user
cooperation. On the other hand, the primary user
may be not aware of the existence of secondary
user, or does not know the secondary user’s private
codebook.

In this situation, the receiver Rx2 can reliably decode
the primary user’s message only for the channel condition
|a12| ≥ |a11|, otherwise the SSMD mode reduces to the
individual decoding mode presented in Section 3. (Multiuser
information theory about the interference channel shows
that Rx2 can decode the signal X1 if the rate of X1 is not
larger than the achievable rate of Tx1-Rx2 link. However, the
UCR channel requires the rate of X1 to be constrained only
by the achievable rate of Tx1-Rx1 link. In the case of weak
interference, the Tx1-Rx1 link offers larger achievable rate
than the Tx1-Rx2 link. Rx2 cannot decode X1 if the rate of X1

is larger than the achievable rate of Tx1-Rx2 link.) Therefore,
the focus of SSMD mode is on the case |a12| ≥ |a11|.

4.1. Capacity Results with Full Multiuser CQI. Suppose the
channel condition |a12| ≥ |a11|. The transmission rate for
both users is given in (5) by setting i = 2 and j = 1. More
precisely, the capacity penalty ΔC1 is (10), and the secondary
user’s achievable rate is expressible as

C2 = min
(
C
[
γ12 + γ22

]− (1− ρ)C[γ11
]
, C
[
γ22
])
. (21)

This result is subject to the power constraint of P2 given in
(11).

Remark 2. For the high-SNR conditions (C1), (C2) and the
case |a12| ≥ |a11|, we can apply (10) and (12) into (21) to
obtain

C2 = min
(
C
[
γ12 + γ22

]−C
[
γ11
]

+ ΔC1, C
[
γ22
])

≈ min

(

log2

(
γ12 + γ22

γ11

)

+ C
[
γ21
]
, C
[
γ22
]
) (22)

and the transmit power P2 is limited by (13). Next, we will
use the above capacity results to investigate the UCR strategy
with partial multiuser CQI.

4.2. The UCR Strategy with Partial Multiuser CQI. Major
difference between the SSMD mode and the individual
decoding mode is that the secondary user has improved
achievable rate due to the availability of primary user’s
codebook. However, on the primary user’s side, there is no
difference between these two modes. The spectrum access
and power allocation strategy for the SSMD mode should
also obey Criterion 1 so as to fulfill the requirement of
outage probability. Therefore, the UCR strategy for SSMD
mode is the same as that for the individual mode, and the
transmit-power P2 is limited by (14). The secondary user’s
transmission rate is restricted by the result produced by
applying (14) in (21).

Apart from (21), numerical results for the SSMD mode
is the same as those for the individual decoding mode.
Moreover, (21) is also a well-known result in the domain of
multiuser information theory. Therefore, we do not provide
a numerical example for this mode.

5. The PSMD Mode

This mode is referred to as a scenario where the secondary
user does not know the primary user’s codebook, but share
its own codebook through upper-layer protocols. In this
case, the primary user has a chance to decode the secondary
user’s message, and thus has the potential to cancel the
interference caused by the secondary user. On the other
hand, the secondary user has to deal with the interference
term (a12X1) as noise.

5.1. Capacity Results with Full Multiuser CQI. In order to
ensure reliable communication of the Tx2-Rx2 pair, the
secondary user’s transmission rate is restricted by the second
formula in (4). On the other hand, Section 2.1 Group
III shows that the primary user can reliably decode the
secondary user’s message only when

R2 ≤ C
[
γ21 + γ11

]− C1, (23)

where C1 is given by (9). Moreover, the primary user’s
capacity should fulfill the following condition:

C1 ≥ C

[
γ11

γ21 + 1

]

, (24)

where the interference term (a21X2) in (1) is treated as noise.
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Theorem 1. Suppose |a21| /= 0 and ρ = 0, the secondary user’s
achievable rate is

R2 ≤ C

[
γ22

γ12 + 1

]

, (25)

for the channel condition

|a21|2
|a22|2

>
γ11 + 1
γ12 + 1

� λ1, (26)

otherwise

R2 ≤ C
[
γ21 + γ11

]−C
[
γ11
]
. (27)

Proof. For the case of ρ = 0, the results (4) and (23) show
that the secondary user’s transmission rate should fulfill

R2 ≤ min

(

C

[
γ22

γ12 + 1

]

, C
[
γ21 + γ11

]−C
[
γ11
]
)

, (28)

otherwise, either the primary user or the secondary user
cannot perform reliable communication. Then, it is straight-
forward to justify that the right-hand term in (25) is smaller
than the right-hand term in (27) only for the channel
condition (26) to be satisfied. This theorem is therefore
proved.

Theorem 1 gives the secondary user’s achievable rate
subject to zero capacity-penalty to the primary user. It can
be observed that R2 would be almost zero if the channel gain
|a21| is deep fade. This result is inconsistent with the original
idea of UCR which takes advantage of the case |a21| ≈ 0. In
other words, it is not wise to always target on zero capacity-
penalty to the primary user. Below provides two criteria to
handle the issue of capacity penalty.

Criterion 2. The pay of capacity penalty offers improvement
of the sum rate of UCR, that is, max(R1 + R2).

Criterion 3. The capacity penalty is tolerable to the primary
user, for example, ρ� 1.

Theorem 2. Suppose the following channel condition:

|a21|2
|a22|2

<
1

γ12 + 1
� λ2; (29)

the secondary user’s achievable rate is (25) subject to the power
constraint (11).

Proof. The result (23) indicates that the pay of capacity
penalty will not improve max(R1 + R2) if the primary user
wants to reliably decode the secondary user’s message. Hence,
the only case to have an improved max(R1 + R2) is to deal
with the interference term (a21X2) as noise, for which R2 is
only limited by (25). Moreover, the following inequality has
to be satisfied so as to fulfill Criterion 2:

C

[
γ11

γ21 + 1

]

+ C

[
γ22

γ12 + 1

]

> C
[
γ11 + γ21

]
. (30)

Solving (30) leads to the channel condition (29). In order to
fulfill Criterion 3, the transmit power P2 should be limited by
(11). This theorem is therefore proved.

According to Theorems 1 and 2, we can conclude the
following results:

(1) For the channel condition (26), Tx2 can talk to Rx2
at a rate (25) without causing capacity penalty to the
primary user. The transmit power P2 is limited by the
secondary user’s local power constraint.

(2) For the channel condition (29), Tx2 can talk to Rx2 at
a rate (25). The transmit power P2 is limited by (11)
to keep the capacity penalty ΔC1 under an acceptable
level.

(3) For channel conditions other than (26) and (29),
Tx2 can talk to Rx2 at a rate (27) without causing
capacity penalty to the primary user. The transmit
power P2 is limited by the secondary user’s local
power constraint.

5.2. The UCR Strategy with Partial Multiuser CQI.
Section 5.1 shows that the spectrum access and power-
allocation strategy for the PSMD mode requires the full
knowledge of |a21|. Here, we present a new UCR strategy
under the assumption (A4). The main idea is summarized as
follows.

Define a threshold of probability denoted by ε. Based on
Theorems 1 and 2, the secondary user will access the primary
spectrum for the following three cases.

Case 1. Suppose

Pr

(
|a21|2
|a22|2

> λ1

)

> ε, (31)

the secondary user will enter the primary spectrum at a rate
(25) with P2 limited by its local power constraint. In this case,
the primary user does not have a capacity penalty, but suffers
capacity outage with the probability (1− ε).

Case 2. Suppose

Pr

(
|a21|2
|a22|2

< λ2

)

> ε, (32)

the secondary user’s transmission rate is also (25). In this
case, the primary user deals with the interference as noise,
and thus has the capacity penalty (10). Moreover, the
secondary user’s power P2 should be carefully configured
in terms of capacity penalty and outage probability to the
primary user. This issue will receive further investigation by
employing a numerical example.

Case 3. Suppose

Pr

(

λ2 ≤ |a21|2
|a22|2

≤ λ1

)

> ε. (33)

Theorem 1 shows that the secondary user can talk at a rate
(27). Unfortunately, the secondary user does not know |a21|,
and thus cannot straightforwardly employ (27) to determine
its achievable rate. In this case, we propose to use the
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following formula produced by replacing the term γ21 with
(P2L)/(No) in (27)

R2 ≤ C
[
P2L

No
+ γ11

]

−C
[
γ11
]
, (34)

where L ∈ (|a22|2λ2, |a22|2λ1) is a scaling factor. This case
will be further investigated through a numerical example.

Finally, for cases other than (31)–(33), the secondary user
will not enter the primary spectrum.

5.3. Numerical Example. Equations (31)–(33) show that the
proposed UCR strategy is based on the statistical relationship
between |a21| and |a22|. Considering |a21| to be Rayleigh as
a numerical example, we investigate the performance of the
proposed approach.

Case 1. The key issue of this case is to find out the
relationship between E(|a21|2) and the threshold of outage
probability Ot, and then to link this relationship to the
spectrum-access strategy. The following result is derived for
this issue.

Corollary 1. Given a threshold of the primary user’s outage
probability Ot, the condition for (31) to be satisfied is

E
(

|a21|2
)

>
λ1|a22|2

ln(1/(1−Ot))
. (35)

Proof. We first rewrite (31) into

Pr
(
γ21 > γ22λ1

)
> ε. (36)

Using the result derived in [18], (36) becomes

exp

(

−γ22λ1

γ21

)

> ε. (37)

Given a threshold of outage probability Ot, the probability ε
should fulfill ε ≥ (1 − Ot). Applying this result in (37), we
can easily obtain (35) by solving the inequality.

Case 2. The key issue of this case is to find out the rela-
tionship between γ21 and the primary user’s capacity penalty
and outage probability. The derived result is summarized as
below, which offers a criterion to configure the power P2.

Corollary 2. Given a probability ε and a threshold of outage
probability Ot, the condition for the secondary user to operate
in Case 2 is

γ21 ≤ min

(
λ2γ22

ln(1/(1− ε))
, γt

)

, (38)

where γt is given by (18).

Proof. The first criterion for the secondary user to operate in
Case 2 is (32). Following the derivation in [18], we can easily
justify that (32) is equivalent to

γ21 ≤
λ2γ22

ln(1/(1− ε))
. (39)

Moreover, provided the condition (32), the primary user will
always deal with the interference as noise. The SNR-mean
γ21 should fulfill the condition (14) to ensure the primary
user’s outage probability under the threshold Ot. Then, γ21
should simultaneously fulfill the conditions (39) and (14),
which leads to the result (38).

Once γ21 is determined by employing (38), we can calcu-
late maximum of the secondary user’s power as max(P2) =
(38)/(E(|a21|2)).

Case 3. This case includes three issues: (1) to find the
relationship between E(|a21|2) and ε by solving (33); (2)
to determine the scaling factor L in (34); (3) provided the
condition (33), Theorem 1 shows that the secondary user will
suffer capacity outage for the case of |a21|2 > λ1|a22|2. Then,
we should calculate the outage probability to the secondary
user. Note that, in Case 3, the primary user does not suffer
capacity outage.

Corollary 3. Given a probability ε, a necessary condition for
(33) to be satisfied is

γ11 < ε−γ11 − 1. (40)

Proof. See the appendix.

Usually, the probability ε is expected to be sufficiently
large, for example, ε > 90%. In this situation, we can use
(40) to obtain γ11 > 15 dB. It means a necessary condition
for Case 3 to happen is that the primary user operates in a
high-SNR range. Provided the condition (40), the secondary
user can employ (A.1) to relate E(|a21|2) to ε.

Using the scaling factor L in (34) will result in capacity
outage to the secondary user with the outage probability

Pr
(

L ≤ |a21|2
)

= 1− exp
(

−(L)/
(

E
(

|a21|2
)))

. (41)

If this outage probability is required to be no larger than a
threshold O1, we can obtain

L ≤ ln
(

1
1−O1

)

E
(

|a21|2
)

. (42)

This is one criterion to determine L. Moreover, L is also
limited by the range given in (34). Applying that range in
(42) results in

E
(

|a21|2
)

≥ |a22|2λ2

ln(1/(1−O1))
. (43)

Then, we can conclude the following result.

Corollary 4. Given the threshold of outage probability O1, a
necessary condition for Case 3 to happen is (43).

Corollaries 3 and 4 provide an answer to the first two
issues of Case 3. The last issue to concern is the probability
Pr(|a21|2 > λ1|a22|2) subject to the condition (33). The result
is summarized as follows.
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Corollary 5. Provided the condition (33), the probability for
the event (|a21|2 > λ1|a22|2) to happen is smaller than
(1)/(γ11 + 1).

Proof . The probability for the event (|a21|2 > λ1|a22|2) to
happen is given in (37), which can be represented into

Pr
(

|a21|2 > λ1|a22|2
)

= exp

⎛

⎝− |a22|2λ1

E
(

|a21|2
)

⎞

⎠. (44)

Provided the condition (33), (A.2) gives the maximum of
E(|a21|2). Since (44) is an increasing function of E(|a21|2),
we can apply (A.2) into (44) and obtain

Pr
(

|a21|2 > λ1|a22|2
)

≤ exp
(

ln(λ2/λ1)
1− λ2/λ1

)

(45)

≤ exp

( − ln
(
γ11 + 1

)

1− (1/γ11 + 1
)

)

. (46)

The discussion about Corollary 3 shows that γ11 � 1 is the
necessary condition for Case 3. Therefore, the right hand of
(46) approximates to (1)/(γ11 + 1).

According to Corollaries 3–5, we summarize Case 3 as
follows.

Step 1. Utilize (40) and Corollary 5 to verify whether γ11

fulfills the required condition. if true, go to Step 2.

Step 2. Utilize (43) and (A.2) to verify whether E(|a21|2) is in
the appropriate range; if true, go to Step 3;

Step 3. Utilize (42) to determine L, and apply it in (34).

Next, we use a visual example to exhibit the per-
formance. The system configuration is the same as the
setup in Section 3.3. For the scenario with full multiuser
CQI, Figure 5 shows the secondary user’s achievable rate
as a function of the ratio |a21|2/|a22|2. Calculation of the
achievable rate follows the conclusion in Section 5.1. For
the scenario with partial multiuser CQI, Figure 6 shows the
secondary user’s achievable rate as a function of the ratio
E(|a21|2)/|a22|2. Calculation of the achievable rate follows
the results presented in Corollaries 1–4 by setting the outage
probability Ot = O1 = 10% and the probability ε =
90%. It is observed that Case 1 will happen only for the
condition E(|a21|2)/|a22|2 > 300, which often does not hold
in practice. Case 3 requires the primary user to operate
at a SNR larger than 15 dB (see Corollary 3). However,
in this case, the secondary user cannot gain more than
1 bit/sec/Hz at P2/No = 16 dB. Finally, Case 2 shows a
comparable performance with the corresponding scenario
(|a21|2/|a22|2 < λ2) in Figure 5.

6. The TSMD Mode

Figure 2(d) depicts the TSMD mode where each user knows
the other’s codebook. Then, each user has the chance to
decode the other user’s message so as to cancel the inter-
ference.
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Figure 7: An example of capacity results for the TSMD mode with
full multiuser CQI.
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Figure 8: An example of capacity results for the TSMD mode with
partial multiuser CQI.

6.1. Capacity Results with Full Multiuser CQI. Capacity
theorem about two-user GIC channel [11] has told us that
the secondary user cannot reliably decode the primary user’s
message for the channel condition |a12| < |a11|. Hence, for
the case of |a12| < |a11|, the TSMD mode reduces to a special
example of the PSMD mode.

For the channel condition |a12| ≥ |a11| and |a21| ≥ |a22|,
the TSMD system becomes a compound multiple-access
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channel [10] whose capacity region is given by (3). In this
case, the primary user does not need to pay capacity penalty,
and thus the secondary user’s capacity is

C2 = min
(
C
[
γ21 + γ11

]
, C
[
γ12 + γ22

])−C
[
γ11
]
. (47)

The transmit power P2 is limited only by the local power
constraint.

For the channel condition |a12| ≥ |a11| and |a21| < |a22|,
the secondary user can access the primary spectrum without
causing capacity penalty to the primary user. In this case,
each user will decode the other’s message for interference
cancelation, and thus the secondary user’s transmission rate
is (47). Due to |a21| < |a22|, we can easily justify that (47)
equals to (27). If the primary user deals with the interference
as noise, the TSMD mode reduces to the SSMD mode.
Then, the secondary user’s transmission rate is (21), and the
transmit power P2 is limited by (11). According to Criteria
2&3, the secondary user’s achievable rate for the channel
condition |a12| ≥ |a11| and |a21| < |a22| is

R2 < max((21), (27)). (48)

6.2. The UCR Strategy with Partial Multiuser CQI. It has
been shown in Section 6.1 that the TSMD mode reduces to
the PSMD mode for the channel condition |a12| < |a11|.
Therefore, the UCR strategy here is proposed only for the
condition |a12| ≥ |a11|.

Case 1. Suppose

Pr
(

|a21|2 ≥ |a22|2
)

> ε, (49)

the secondary user will access the primary spectrum at the
transmission rate

R2 ≤ min
(

C
[
P2L
No

+ γ11

]

, C
[
γ12 + γ22

]
)

−C
[
γ11
]
. (50)

Equation(50) is produced by replacing the term γ21 in (47)
with (P2L)/(No) where L > |a22|2.

Case 2. Suppose

Pr
(

|a21|2 < |a22|2
)

> ε, (51)

the UCR strategy is described as the following steps.

Step 1. Utilize (14) to determine max(P2) with respect to a
given capacity penalty ΔC1.

Step 2. Calculate the following result which is produced by
replacing P2 in (21) with (14)

C(21)
2 = min

(

C

[

γ12 +
max(P2)|a22|2

No

]

− (
1− ρ)C[γ11

]
, C

[
max(P2)|a22|2

No

])

.

(52)

Step 3. Calculate the following result which is produced by
replacing the term γ21 in (27) with (P2L)/(No) (L < |a22|2)

C(27)
2 = C

[
P2L

No
+ γ11

]

−C
[
γ11
]
. (53)

Step 4. Determine the secondary user’s transmission rate via

R2 ≤ max(C(21)
2 ,C(27)

2 ).

6.3. Numerical Example. Considering |a21| to be Rayleigh
distributed, we derive the following results for Case 1 and
Case 2, respectively.

Corollary 6. A sufficient condition for Case 1 to happen is

E
(

|a21|2
)

≥ |a22|2
ln(1/ε)

, E
(

|a21|2
)

≥ L
ln(1/ε)

. (54)

Proof. Equation (54) can be straightforwardly obtained
through calculation of (49) and Pr(L ≤ |a21|2) ≤ ε.

Corollary 7. A sufficient condition for Case 2 to happen is

E
(

|a21|2
)

≤ |a22|2
ln(1/1− ε)

, E
(

|a21|2
)

≥ L
ln(1/ε)

. (55)

Proof. (55) can be straightforwardly obtained through calcu-
lation of (51) and Pr(L ≤ |a21|2) ≤ ε. Figures 7 and 8 show
a visual example for scenarios with full or partial multiuser
CQI, respectively. The system configuration is almost the
same as the setup in Section 3.3, but we set |a12|2 = 4 to
fulfill the condition |a12| > |a11|. For the scenario with
partial multiuser CQI, we set Ot = 10% and ε = 90% as an
example. It is observed that Case 1– Case 2 in Figure 8 offers
comparable performance with the corresponding scenario in
Figure 7.

7. Conclusion

In this paper, we have investigated two-user Gaussian UCR
systems by assuming the availability of full multiuser CQI
or partial multiuser CQI. Provided full multiuser CQI,
we have studied the fundamental relationship between the
secondary user’s achievable rate C2 and capacity penalty
to the primary user ΔC1 in four carefully classified UCR
modes. For the scenario with partial multiuser CQI, we first
established a new physical-layer model through exploitation
of the location-aided approach. Then, new spectrum access
and power allocation strategies have been investigated in
terms of C2, ΔC1, and capacity outage probability. Numerical
examples are provided to show the performance of the UCR
with full multiuser CQI and the proposed approach with
partial multiuser CQI.
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Appendix

Proof of Corollary 3

For the Rayleigh distribution, we can calculate

Pr

(

λ2 ≤ |a21|2
|a22|2

≤ λ1

)

= exp

(

−γ22λ2

γ21

)

− exp

(

−γ22λ1

γ21

)

� f
(

γ21

)

.

(A.1)

Using the first derivative of f (γ21) with respect to γ21, we
can find that f (γ21) is an increasing function of γ21 for the
condition

γ21 ≤
γ22(λ1 − λ2)

ln(λ1/λ2)
(A.2)

and otherwise a decreasing function. Hence, we have

max
(

f
(

γ21

))

= f

(

γ21 =
γ22(λ1 − λ2)

ln(λ1/λ2)

)

= exp

(

− ln
(
γ11 + 1

)

γ11

)(
γ11

γ11 + 1

)

.

(A.3)

A necessary condition for (33) to be satisfied is
max( f (γ21)) > ε. Due to (γ11)/(γ11 + 1) < 1, it is necessary
to have the following condition to be satisfied

exp

(

− ln
(
γ11 + 1

)

γ11

)

> ε. (A.4)

Solving this inequality leads to (40).
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