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This study focuses on providing a simple, extensible, and multiclass classifier for imagined words using EEG signals. Six Persian
words, along with the silence (or idle state), were selected as input classes. The words can be used to control a mouse/robot
movement or fill a simple computer form. The data set of this study was 10 recordings of five participants collected in five
sessions. Each record had 20 repetitions of all words and the silence. Feature sets consist of normalized, 1Hz resolution
frequency spectrum of 19 EEG channels in 1 to 32Hz bands. Majority rule on a bank of binary SVM classifiers was used to
determine the corresponding class of a feature set. Mean accuracy and confusion matrix of the classifiers were estimated by
Monte-Carlo cross-validation. According to recording the time difference of inter- and intraclass samples, three classification
modes were defined. In the long-time mode, where all instances of a word in the whole database are involved, average accuracies
were about 58% for Word-Silence, 60% for Word-Word, 40% for Word-Word-Silence, and 32% for the seven-class classification
(6 Words+Silence). For the short-time mode, when only instances of the same record are used, the accuracies were 96, 75, 79,
and 55%, respectively. Finally, in the mixed-time classification, where samples of every class are taken from a different record,
the highest performance achieved with average accuracies was about 97, 97, 92, and 62%. These results, even in the worst case of
the long-time mode, are meaningfully better than random and are comparable with the best reported results of previously
conducted studies in this area.

1. Introduction

Brain-Computer Interface (BCI) may be defined as a sys-
tem that translates brain signals into other kinds of outputs
[1]. Electroencephalography (EEG) signals are widely used
in the development of the BCI system as well as other
investigations regarding information extraction from the
brain [2–5].

BCIs are usually concentrated on motor imagery, speech
imagination, and image perception tasks. In motor imagery,
the imagination of the movement of the hands, feet, eyes,
tongue, or other muscles is examined. Usually, there are no
physical movements due to disabilities or even absence of
the whole body part. EEG signals are used to detect these
types of imagination and perform the suitable actions like
controlling a wheelchair or moving a robotic arm [6–10].

In speech imagination, also known as Silent-Talk and
Silent-Speech, the participants imagine the pronunciation
of a particular vowel [2, 11–13], syllable [14–17], or word
[18–22] in some defined time intervals. EEG signal during
these intervals is processed to determine the imagined
word [17, 19, 23–25].

For image perception tasks, the subjects are watching
some displayed pictures, for example, simple geometric
shapes (rectangle, circle, triangle, etc.), real pictures (per-
sons, animals, planets, objects, etc.), or even written words
and letters. The BCI output resembles the type of picture
(e.g., the picture is an animal or a planet), kind of the shape
(circle or triangle), the person’s name or characteristics
(known or unknown, male or female, friend or foe, etc.),
or whether the shown letter is what the subject has in his/
her mind or not. P300 Event Related Potential (ERP) is a
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well-known and useful feature of EEG signals for these kinds
of BCIs [26, 27].

In this study, we examined imagined word recognition
for six Persian words and the silence/rest state. The aim
was to achieve a suitable classifier structure, which can be
used with different number of classes (words), using a
minimum processing power for real-time applications. The
research process and a summary of some interesting results
obtained during the experiment are demonstrated in the
succeeding sections.

2. Material and Methods

2.1. Data Set

2.1.1. Subjects and Instruments. Five male subjects partici-
pated in the experiment. They were all healthy, right-
handed, and aged between 25 and 45 years. Although the
number of subjects is not so high, it is not necessary to
incorporate more subjects because all recordings, processing,
classifier training, and performance evaluations are done
individually for each subject. Interpersonal measures and
comparisons are used to assure consistency of the results
between different subjects.

To record EEG signals, we used an EEG-3840 EEG set
from Negar Andishgan LTD, Tehran, Iran. The system has
21 EEG channels along with 8 external, two ECG, and one
EMG channel. Sampling frequency (Fs) was set to 500
samples per second. EEG electrodes were positioned on sub-
ject’s head and kept in place by a string headset, based on the
10-20 standard (Figure 1).

2.1.2. Test Procedure. In order to acquire EEG signals dur-
ing silent talk (imagined word repetition), a test procedure
was designed. To implement the tests, we developed a
special software, called Test Generating Application (TGA).
Figure 2 illustrates time sequence of tests.

Each “test” consists of several (N t) “trials” of some (Nc)
chosen “words” (or classes) in a pseudorandom order. For
example, assume three words W= {red, blue, black} with 5
trials (Nc = 3, N t = 5). A single trial has exactly one instance
of each word in a random order, e.g., (blue, red, black) or
(red, black, blue) and so on. A test (T) is a concatenation
of 5 trials (a string of 15 words) like:

T= (blue, red, black, red, black, blue, blue, black, red,
black, red, blue, red, black, blue).

The TGA program generates these random sets and pre-
sents them to the subjects by vocal and/or visual stimulators.
In the vocal mode, according to each word instance in the
test, a sound or voice is played via earphones. In the visual
mode, a shape or word will be displayed on the monitor.
The time interval between presenting two consecutive words
in a test is called instance time (Ti) and is constant during
each test. In visual mode, the time of display of each signal
is also a constant parameter (Td).

In this experiment, we used vocal stimulation to record
EEG signals of imagined words. Subjects were asked to sit
on a chair, close their eyes, and listen to the words played
on his earphone. When each word played completely, the

subject should repeat the word silently for at least 3 times.
Closing the eyes helps the subject to concentrate on test pro-
cedure. It also eliminates eye blinking, which is the most
major EEG artefact. To minimize other kinds of artefacts,
the subjects were also asked to be comfort but make no
movement by tongue, lips, eyes, or any other organs or mus-
cles. Also, an upper limit was considered for total test time,
because elongated test times leads the subjects to become
tired and lose their attention.

Subject’s EEG signal during every test were continuously
recorded and saved to a single file. Also, TGA generates
some synchronization signals, which indicates the type and
start times of each word instance. These signals were merged
into EEG data via external inputs of EEG-3840.

2.1.3. Data Set Structure. We selected six Persian words for
this experiment: { لااب،نییاپ،پچ،تسار،هلب،ریخ }. They are pro-
nounced as {(bʌlʌ), (pʌyɪn), (chæp), (rʌst), (bæle), (kheɪr)}
and are equivalents of {Up, Down, Left, Right, Yes, No},
respectively. These words have been selected for several rea-
sons, such as the following:

(i) They are complete and meaningful Persian words

(ii) They can be used for navigating a mouse/wheelchair
or filling a simple questionnaire form

(iii) Half of them (chæp, rʌst, and kheɪr) have only one
syllable, while the others have two

(iv) We can divide them into three pairs with opposite
meanings, i.e., {Up, Down}, {Left, Right}, and {Yes,
No}

(v) The pairs also have all three possible combinations
of syllable counts, (two, two), (one, one), and (one,
two)

(vi) The same pairing combines the two words, which
are usually used together

Another special item, the Silence, was also added to the
above word list to indicate the “rest” or “no word process-
ing” state of the brain.

NASION 

INION

Fp1 Fp2

F7 F3 Fz F4 F8

A1 T3 C3 Cz C4 T4 A2

T5 P3 Pz

O1 O2

P4 T6

Figure 1: 21 electrode locations of the international 10-20 system
for EEG recording [28].
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Playing (or repeating) time for each of selected words
with normal speed is about 500 to 1000mSec, so we consid-
ered instance time to be 4 seconds (Ti = 4000). If we limit the
total test time to be about 4 minutes, then each test can
contain 60 word instances. Thus, the six words were divided
into three tests, each with two words and the Silence (Nc = 3)
and set Nt = 20 trials. Specifically, there were three tests:

(T1) W= {Up, Down, Silence}; Nt=20; Ti=4000
(T2) W= {Left, Right, Silence}; Nt=20; Ti=4000
(T3) W= {Yes, No, Silence}; Nt=20; Ti=4000
Each subject incorporated in five “sessions,” each in a

single day with at least a one-week interval. Each session
consisted of two “parts” separated by a short break. In any
part, all three tests were recorded so that all of the selected
words were used in every part.

Finally, the raw EEG data set consists of 30 records (5
sessions × 2 parts × 3 records) for every subject, containing
200 instances (5 sessions ∗ 2 parts ∗ 20 trials) for each of the
six selected words and 600 instances (200 ∗ 3 tests) of
“Silence.” Each record had19 EEG channels, with two
additional sync channels sampled at 500Hz with a 16-bit
accuracy.

2.2. Preprocessing. All the recorded data were preprocessed
in offline and EEG data for each word instance was saved
as a separate record in Pre-processed EEG Database. Prepro-
cessing consists of following steps (see Figure 3).

2.2.1. Low-Pass Filtering. Frequency bands of EEG signals
spans from DC to Gamma band (above 30Hz). Sampling
frequency (Fs) was set to 500Hz, thus the recorded EEG
signals had frequency components up to 250Hz, which is

far beyond the useful EEG frequency bands. In order to
suppress higher frequencies and specially the power line
noise (50Hz), we used a 0-32Hz low-pass filter (LPF).

2.2.2. Subsampling. After removing high frequency compo-
nents, we down sampled the EEG signals from 500Hz to
100Hz by replacing each five consecutive samples with their
average. This reduced the size of the recorded data to 1/5
of its original size and improved the speed of subsequent
processes.

2.2.3. Record Segmentation. As mentioned above, each con-
tinuous record of EEG signals, consisted of Ni = 20 instances
of two words and the Silence. In this step, EEG data of word
instances were separated from each other. This was done by
using the “Sync Data”, which was generated by TGA and
saved in separate channels of EEG signal.

Although all word instances were assumed to have the
same time length (Ti = 4 sec), EEG signals for each segment
were cropped (or padded with zeros) to have exactly the
same number of samples.

2.2.4. Artifact Detection and Filtering. EEG signals may
always be corrupted by various kinds of artefacts such as
blinking, eye movement, wanted or unwanted movements,
and so on. In our experiment, due to closed eyes during
EEG recording, the major artefacts of blinking and eye
movement have been minimized. Moreover, subjects had
been asked to control and avoid any additional movement
or muscle activity during recordings.

Besides all of these, average energy of EEG signals during
an instance has been considered as a measure of signal

EEG recording
starts

EEG recording
ends

Te
Ti

TGA plays
the first words

TGA plays the
second word

TGA plays the
last word

Subject silently repeats
the first word

Subject silently repeats
the second word

Subject silently repeats
the last word

Figure 2: Time sequence of a test’s record.

Preprocessing
Input: Recorded EEG

of a test record

Low-pass
filtering

Down
sampling

Record
segmentation

Artifact
detecting &

filtering

Output: Preprocessed
EEG data

“Preprocessed EEG”
database

Figure 3: Preprocessing steps.
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quality. Any instance with an energy much above or below
the overall average energy of whole recorded signal, has been
filtered out. Total number of rejected instances was less than
2% of all recorded EEG data.

2.3. Feature Extraction. The feature vector used in this
research was simply the amplitude of each single frequency
in selected EEG channels. The advantage of frequency-

related parameters is that they are less susceptible to signal
quality variations, which may be present due to electrode
placement or the physical characteristics of subjects [5].
Figure 4 shows the feature extraction steps.

2.3.1. EEG Channel Selection. Depending on the application
and features needed, only a selected set of EEG channels are
used for processing, which may be one, all, or any other

Feature
extraction

EEG channel
selection

Time segment
selection

Fast fourier
transform

Forming
feature vector

Output:
Feature vector

Frequency
range

Resample to
1 Hz

Input:
Instance EEG

End

Figure 4: Feature extraction.

Te Tr
Ti

Word playing Rest

Tw Ts

Processed data

Silent word repeat

Figure 5: Process time selection.

Class n features
SV

M
 (n-1, n)

SV
M

 (2, 3)...SV
M

(2, n)

SV
M

 (1, 2)...SV
M

(1, n)

Class 2 features

Class 1 features

...
...

Training
feature

sets

Train

Bank of
binary
SVMs

(a)

Trained binary
SVMs

Unknown
feature

VOTE

Majority
selection

Output class

(b)

Figure 6: (a) Training of binary SVM machines and (b) classification algorithm.
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combination of the channels. For the results presented in
this article, we have used 19 EEG channels from 21 available
EEG channels in 10-20 standard (see Figure 1). Channels A1
and A2 were not used because they are not actually scalp
EEG channels. Instead, they are often used for contralateral
referencing of all other EEG electrodes [28].

2.3.2. Data Time Segment Selection. The total time duration
for signals of each instance of a word was Ti (4 seconds).
The first portion of this time (Te, up to 500mSec) corre-
sponds to excitation (hearing the played word). Then, after
a small rest time (Tr), the subject repeats the word silently
for a few times. As illustrated in Figure 5, we only processed
the EEG samples for an interval Ts, starting after Tw from
beginning of the instance. Obviously, Tw ≥ Te + Tr and
Ts ≤ ðTi − TwÞ. Experimentally, we selected Tw = 1 and
Ts = 2:5 seconds.

2.3.3. Fast Fourier Transform (FFT). To compute frequency
components, we used absolute value of FFT of EEG signals.
Furthermore, the amplitudes of these absolute FFTs were
normalized by dividing them to their maximum value.

2.3.4. Resample to 1Hz Resolution. Time duration of the
signals is Ts, therefore, the initial resolution of their spec-
trum is 1/Ts. To normalize the length of feature vectors
against sampling frequency and duration of the signals, we
resampled FFTs to one Hertz resolution. This typically
reduces the length of feature vector. Besides, since the signals
were already filtered with a 32Hz low-pass filter, only first 32
values of this resampled FFTs had valid amplitudes.

2.3.5. Frequency Range Selection. Usually, not all of the signal
frequency range are used. For example, one may filter out
EEG Delta and Gamma bands by omitting first four and last
two values of resampled FFT, corresponding to frequencies
below 4Hz (0 to 3) and above 30Hz (30, 31). In this exper-
iment, all frequency components were used, except the first
(DC) value.

2.3.6. Forming Feature Vector. Finally, the selected FFT
values (of all selected channels) were concatenated to
form instance feature vector. If Nch channels and Nf

Table 3: Word-Silence classification accuracies in all the three
modes.

Classification mode
Classification accuracy

(mean ± standard deviation)
Short-time 95:7 ± 8:3

Long-time 57:5 ± 7:2

Mixed-time 97:1 ± 5:1

Table 1: Class words and their class number.

Class word bʌlʌ bæle chæp kheɪr pʌyɪn rʌst Silence

English equivalent Up Yes Left No Down Right Silence

Abbreviation U Y L N D R S

Class no (whole data set) 1 2 3 4 5 6 7

Class no (single records) 10…19 20…29 30…39 40…49 50…59 60…69 70…79

Classification performance report

2-class 3-class Multi-class

Word-silence Word-word Word-word-silence 6 words+silence

Short
time

Long
time

Mixed
time

Short
time

Long
time

Mixed
time

Short
time

Long
time

Mixed
time

Short
time

Long
time

Mixed
time

Figure 7: Organization of evaluation results.

Table 2: Feature extraction parameters.

Parameter Value

EEG channels 19 channels (all except A1 and A2)

Frequency range 1 to 32Hz

Tw 1 second

Ts 2.5 seconds
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frequency values were used, feature vector length would
be Lf =Nch ∗Nf .

2.4. Classifier Structure. We used binary (2-class) support
vector machines (SVM) as the basis of our classification
method. One SVM was trained to classify between 2 specific
classes consisting of a pair of selected words or a word and
the Silence. Let SVM (i, j) be the machine trained for two
classes i and j. Obviously, if an arbitrary feature set is pre-
sented to such a machine, it would be classified to one of
the trained classes (i or j), even though it may belong to
neither.

For n-class classification, there would be nðn − 1Þ/2 of such
classifiers.Majority Rulewas used for winner selection. Besides
training, classification consists of the following steps (Figure 6):

(i) The unknown feature set is presented to all binary
classifiers

(ii) If a relative majority of the classifiers vote for a sin-
gle class k, then class k wins and the features are
assigned to this class

(iii) If two classes, namely k and l, had the samemaximum
vote counts, then the class voted by SVM (k,l) wins

94.3

2.0

5.7

98.0

Ave accuracy = 96.2 ± 5.6

Destination class
L2 S2

So
ur

ce
 cl

as
s

L2

S2

0

20

40

60

80

100

(a)

Classifier

[1
2 

72
]

[2
2 

72
]

[3
2 
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]

[4
2 
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]

[5
2 

72
]

[6
2 
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]
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ob
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ra
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Average accuracy over test runs (96.7 ± 4.7)

(b)

Figure 8: (a) Confusion matrix for [32 72] classification and (b) estimated classification accuracies for each Word-Silence pair in record
No 2. The last value is the global performance.
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(iv) If more than two classes had the same maximum
vote counts, then output class is undefined and the
input feature would be tagged to belong to special
class “Unknown”

Note that if we assume that every binary classifier has a
relatively good performance, then this Majority Rule is also
the Rule of Specialists. For example, in the special classifica-
tion case of two words and the silence (W1, W2 and S), if
the input sample is from the S class, then the two machines
SVM (W1, S) and SVM (W2, S) will realize it and the sample
will be correctly assigned to S, regardless of the vote of SVM
(W1, W2) machine. On the other hand, if the input belongs
to one of the words’ classes, then the former two machines
reject the S and vote for W1 and W2, respectively. Now
the third machine, the words specialist SVM (W1, W2),
would determine the correct class.

2.5. Evaluation Procedure

2.5.1. Performance Measurement. To evaluate our classifier,
Monte-Carlo cross-validation was used. EEG data of proper
classes were fetched from “Pre-processed EEG Database”
and their features were extracted.

In each round (r) of the Monte-Carlo simulation,
instant feature sets were randomly divided into two parti-
tions: the train set, with approximately 70% of samples
and the test set, with the rest 30%. As usual, SVMs were
trained with train set data and used to classify features
in the test set. A confusion matrix (Cr) was formed with
known (true) classes as rows and resulted classes from
the classifier as columns, so that the number in (i, j)-th
element of the matrix is the number of features from class
i, classified as class j. As mentioned above, in the case of
multiclass classification, an extra column, “Unknown”,
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Figure 9: Performances of Word-Silence classifiers in long-time mode with their global average.
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Figure 10: Performances of some Word-Silence classifiers in mixed-time mode and their average.
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should be added to Cr. In every iteration, the accuracy of
classification was computed:

Ar =
Number of correct classifications
Total number of classifications

=
trace Crð Þ
sum Crð Þ ,

ð1Þ

where trace (Cr) and sum (Cr) are sums of main diagonal and
all elements of Cr, respectively. When all the Monte-Carlo
iterations were done, the final confusion matrix can be
computed by the sum of all iteration matrices:

C = 〠
Nr

r=1
Cr: ð2Þ

In (2), Nr is number of Monte-Carlo iterations. The final
classification accuracy and its standard deviation were
estimated by the following:

A =
1
Nr

〠
Nr

r=1
Ar and σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nr

〠
Nr

r=1
A − Arð Þ2

s

ð3Þ

Alternatively, A can be calculated by eq. (1), with Cr
replaced by C. Values of Ar were kept in a column vector
called Class Measures (Mc) for further evaluation extensions.

2.5.2. Data Representation. For simplification, all names (the
words or class names, EEG channel names, records, etc.)
were coded with integer numbers. These codes have been
used in all figures and tables of this report.

Recording parts were numbered in chronological order
so that the first part of first session (the oldest part) is called
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Figure 11: Short-time Word-Word classification: (a) accuracies estimated for record no. 7 and (b) confusion matrix (average).
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part-0 and the second part of the last session (the newest) is
part-9. Similarly, every word was presented in 10 records,
one record in every part, except the silence, which was pres-
ent in all records. So, we may refer to part numbers of a
word as “record number.” We also considered all instances
of silence in a part as a single record.

Table 1 shows the class names and their code numbers.
As seen in this table, each word has up to 11 class numbers.
If all instances of a word in the whole database is considered,
the code will be a single digit number (from 1 to 7 for
six words and the silence). When only samples from a
specific record have to be referenced, the code should
be followed by the part number. For example, instances
of word “kheɪr “(class 4) in the second record (part no
1) have class no 41.

2.6. Classification Modes. EEG signals are not stationary,
therefore the time differences between the recording times
of EEG signals can directly affect the performance of classi-

fication. Based on recording time difference of inter- and
intraclass samples, three modes of classification were distin-
guished in this research:

(i) Long-time classification where all instances of a class
in whole database are involved

(ii) Short-time classification where only instances of the
same record (or part) are used

(iii) Mixed-time classification where samples of every
class are taken from a different record

In the first mode, the difference in the recording time of
samples of the same class spans from a few seconds to sev-
eral weeks. This is the time during which the EEG signals
of a subject were recorded. The same is true for interclass
time differences.

In the second mode, intraclass time difference is at most
as short as a test time (4 minutes). The interclass difference
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Figure 12: Long-time Word-Word classification: (a) accuracies of all classifiers and (b) confusion matrix (all classifiers average).
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would be at most equal to duration of a recording part which
was kept in about half an hour.

In the third mode, the intraclass times is the same as the
second mode, while the interclass time is typically many
days (about an hour at least and some months at most).

3. Results Evaluation

We tried several classification cases with our captured data
sets, selected feature extraction methods, and designed
classifiers. Some interesting results are presented below.
First, the results of the simplest case of a 2-class classification
are reported, then 3-class case, and, finally, some examples
of the results in multiclass classifications are mentioned. In
all cases, the above three classification modes are considered
(Figure 7).
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Figure 13: Mixed-time Word-Word classification: (a) accuracies estimated for record no. 1 vs record no. 2 and (b) average confusion matrix
(all classifiers).

Table 4: Results of classification in Word-Word case.

Classification mode
Classification accuracy

(mean ± standard deviation)
Short-time 74:5 ± 20:4

Long-time 59:5 ± 7:5

Mixed-time 96:4 ± 8:0

Table 5: Results of classification in Word-Word-Silence case.

Classification mode
Classification accuracy

(mean ± standard deviation)
Short-time 78:9 ± 13:9

Long-time 39:5 ± 5:4

Mixed-time 92:0 ± 11:1
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To avoid making the manuscript lengthy, feature extrac-
tion parameters are kept constant during this report. The
selected set of parameters are shown in Table 2. It is almost
optimal [29], but there may be other combinations, which
produce comparable results. Furthermore, otherwise speci-
fied, the results are average of all subjects.

3.1. Two-Classes Type. First, we examined the simple case of
a two-word classification. In this case, there was only one
SVM which was trained with features extracted from two
specific classes. Different combinations of classes and/or
feature parameters were examined.

3.1.1. Word-Silence. This type of classification is important
for discriminating talking/not-talking states, especially in
real-time silent-talk applications. Table 3 summarizes some
results of classifying EEG signals corresponding to silent
repeating of a single word, chosen from the above six-word
set, and the “Silence” case.

(1) Short-Time Classification. To explain the accuracies in
Table 3, we start with classifying between two classes 32
and 72 (instances of the word “Left” and the Silence in
record no. 2, or L2 and S2, see Table 1). Here, we only work
with EEG data of subject no. 1. When validating this SVM
classifier by the Monte-Carlo cross-validation method,
confusion matrix (Cr) is calculated in each iteration, and
accuracy (Ar) is estimated by eq. (1). At last, the final confu-
sion matrix (C) is obtained by eq. (2) and all (Ar) are
concatenated to form a column vector named Mc (see
Section 2.5.1).

Figure 8(a) shows a typical confusion matrix (C) for this
classifier. The values in this matrix were calculated from the
results of 30 Monte-Carlo iterations. Element colors are
graphical illustrations of their values. As mentioned, the
value in row i and column j is the percent of samples from
class i, classified as class j. For example, 94.3% of total test
samples of the word “Left” were correctly identified, but
5.7% of them were falsely classified as “Silence.” From eq.
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Figure 14: Short-time Word-Word-Silence classification, (a) accuracies estimated for record no. 7, (b) Confusion matrix of the worst case in
record 7 (17, 57, 77).
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(3) and data in Mc, the average accuracy for this classifier
was A = 96:2% with a standard deviation σ=5.6%.

We repeat the same procedure for all the six words in
record no. 2 (classes 12, 22, 32, 42, 52, and 62 against class
72) and concatenate all (Mc) into a matrix M. The average
accuracy for each word classifier and its standard deviation
can be estimated from columns of M. We can also calculate
the global mean and standard deviation for all data inM as a
measure of performance for the task of discriminating a
word from silence in this record. These values are shown
in error-bar of Figure 8(b). In this figure, green circles show
classifier’s average accuracy and red bars indicate the stan-
dard deviation around the mean. The last bar is the global
mean and standard deviation. The horizontal dashed blue
line shows the chance level accuracy, which is 50% for
balanced binary classification. Regarding the definition of
classification modes (Section 2.6), this is a short-time classi-
fication because only instances of words and silence in the
same record are used.

A better estimation for the accuracy can be obtained by
averaging the performances over all records and all subjects.
This is the value recorded as the accuracy of short-time
Word-Silence classification, in the first row of Table 3
(95:7 ± 8:3%).

(2) Long-Time Classification. In the long-time mode, all
instances of a word and silent from each particular subject
are used to train and test the classifier. Figure 9 shows the
performances of classifiers in this case. As seen, the classi-
fiers have generally a poor performance and in some cases
they even did not better than chance. The global accuracy
is weakly above 50%, thanks to the relatively good perfor-
mance of (1, 7, 5, and 7) classifiers.

(3) Mixed-Time Classification. In mixed-time mode, every
class data should be picked from a separate record of the

same subject, e.g., the word “Up” of the third record
(class no. 12) and “Silence” from the second record (class
no. 71). Hundreds of such classifiers can be defined for
every subject. Figure 10 shows performances for some
of these Word-Silence classifiers in mixed-time mode
using EEG data of subject no. 1. As may be expected,
classification performance in this mode is generally better
than both previous modes. In some cases, accuracy
reaches to 100%, and, in a worst case, it remains above
80%. The global average accuracy is also slightly better
than the short-time mode.

3.1.2. Word-Word. For this case, there was also one SVM
machine, trained with feature vectors of instances of a
selected pair of words. The procedure and results in this case
were the same as Word-Silence, with the silence replaced by
a word. Three classification modes were considered, but
since there were several words which can be picked up for
the second class, the total number of possible combinations
was much more than the previous case.

(1) Short-Time Classification. In this case, words instances of
a recording part were compared together. In each part, there
were15 (6∗5/2) possible combinations. Figure 11(a) shows
the accuracies estimated for record no. 7of subject no. 1.
There were seven classifiers with relatively good perfor-
mance (80-90%), three were moderate (60-80%), and the
other five had poor accuracies (50-60%). Three of the weak-
est results belonged to classifiers (17, 57), (27, 47) and (37
67), specifically classifiers with words (Up, Down), (Yes,
No) and (Left, Right). Note that these are the words which
were paired into three designed tests T1, T2,and T3 (sec.
2.1.3) and therefore had the smallest interclass time differ-
ence, nearly the same as their intraclass distance (a few
seconds up to less than 4 minutes).
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Figure 15: Short-time Word-Word-Silence classification confusion matrix (overall average).
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The confusion matrix for this type of classification is
shown in Figure 11(b). Global average accuracy was about
74.2 percent with a relatively large standard deviation (σ=
20.1), which means a possible but not so reliable classification.

(2) Long-Time Classification. Using the long-time data
reduces the total iterations needed to estimate Word-Word
classification performance for each subject to 15. The results
are illustrated in Figure 12(a). Although the accuracy levels
have decreased compared to Figure 11(a), the graph shapes
are roughly the same: three classifiers with chance level accu-
racies, a few in middle, and a majority in higher levels of
accuracy. The smallest accuracies belonged to the same
classifiers working on words which were paired in tests.

Figure 12(b) is the average confusion matrix for all clas-
sifiers. The average accuracy is about 60% with a standard

deviation equal to 7.5 which again has a breaking higher per-
formance than random classification.

(3) Mixed-Time Classification. In mixed time, each word in a
record are compared with other words in another record.
Classification results of words in record no. 1 against record
no. 2 of subject no. 1 have been shown in Figure 13(a).
Nearly all classifiers have excellent performance compared
with other classification modes (90-100%). The overall
accuracy, calculated by averaging over thousands word/
record combination was 96.4% with σ=8.0. Average confu-
sion matrix is shown in Figure 13(b).

Table 4 summarizes overall accuracies for Word-Word
classification in all the three modes. Compared with the cor-
responding values for Word-Silence classification, accuracies
were only slightly reduced in long- and mixed-time modes.
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Figure 16: Long-time estimated Word-Word-Silence classification, (a) accuracies, (b) confusion matrix.
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In the short-time mode, performance reduced noticeably
due to low accuracies in discriminating words which were
paired in tests.

3.2. Three Classes. In the three-class classification, there are
three possible classes (C1, C2, and C3) and the classifier con-
sists of three binary SVMs, (C1, C2), (C1, C3), and (C2, C3).
If a sample with unknown class C is presented to the three
SVMs, then with the majority rule which we have selected
for the classifier (see Section 2.4), there would be only two
possible states:

(i) If two classifiers agree on their common class (Cx)
then the unknown sample will be assigned to this
class (C = Cx). Of course the third machine cannot
agree with this choice

(ii) If every SVM has its own choice, not common to
any other machine, then the sample C will remain
unknown and will be assigned to the class of
“Unknowns” (C0)

An important case of this classifier type is the two words
and silence classifier (WWS). Table 5 shows the summarized
results for three-class WWS classification in all three modes.

3.2.1. Short-Time Classification. Figure 14(a) shows the clas-
sification results of WWS classification on EEG data from
record no. 7 of subject no. 1. The Word-Word classification
results of this record were shown in Figure 11(a). The shape
of the two curves are very close together, but the accuracies
in WWS case are slightly greater than the two-class case with
the same words. Furthermore, the chance level in three class
case is about 33% compared with 50% in binary classifiers.
These made the resulting performance to be much better
than Word-Word classifier.

Besides the overall good quality of classification, the
worst cases were again the classifiers which worked on the

words with the minimum interclass time difference.
Figure 14(b) shows confusion matrix of the worst classifier
in record no. 7, the (17, 57, 77) or more clearly the (U7,
D7, S7) classifier. It is clear that the classifier almost dose
not distinguish between the two words but has a good per-
formance for the silence.

The global average accuracy was calculated for all short-
time mode WWS classifiers of all records whose results
indicated a rate of 78.9± 13.9% which is shown with its con-
fusion matrix in Figure 15.

3.2.2. Long-Time Classification. Here the classifiers are
defined over three different words in the whole recordings.
Figure 16(a) shows the accuracies of all 15 classifiers in this
category. The accuracies were generally low (all below 50%)
and in some cases were close to random decision. The over-
all accuracy was above the chance by a very narrow margin
(39.5% with σ=5.4). Figure 16(b) is the average confusion
matrix of all classifiers.

3.2.3. Mixed-Time Classification. Figure 17 shows some
results for mixed mode three class WWS classification. The
words combinations was the same as Figure 13(a) where
the first word was picked from record no. 1 and the second
word comes from record no. 2 of subject no. 1. Silence sam-
ples were from record no. 5.

As seen in most cases, the classification accuracy was
well above 85%. When second word was taken from class
no. 12 the accuracy reduced to about 75% and if the word
was from class no. 52 the accuracy again decreased further
to 60-70%. This shows a low performance for (12, 75) and
(52 75) SVM machines. The average accuracy in about
85% which is much lower than 98% of Word-Word case.

Figure 18(a) shows a scatter of accuracies of several
thousands of WWS classifiers with a unique combination
of classes. Figure 18(b) is the overall confusion matrix of
classifiers. The global average accuracy of all classifiers was
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Figure 17: Mixed-time Word-Word-Silence classification accuracies estimated with words from records no. 1 and 2 and silence form record
no. 5.

14 BioMed Research International



about 92% which is not as good as Word-Silence and Word-
Word classifiers but is still a good result. Note that in about
0.6 percent of cases a feature set could not be classified.

3.3. Multiclass Classification

3.3.1. Short-Time Classification. As the first example for
multiclass classification, here we take a quick glance at the
classification of all the seven classes in a single record. Obvi-
ously, this is a short-time classification mode with seven
classes. The classifier has 21 SVM machines which will select
the output class by the Majority Rule. Figure 19(a) presents
the confusion matrix of such classifier for all words in record
no 8 of subject no. 1. The average accuracy was about 55%.
The silence had the maximum single class accuracy (about
95%), but no other single word accuracy exceeded 50%.
The largest error rates were between the words paired into
a test, as seen, for example, in discrimination of L8 and R8.

Note that the random selection accuracy in this classifier
was1/7 or about 14 percent. Figure 19(b) is the average
confusion matrix for all records. The average accuracy was
again about 55% and ranged from 47.5% to 65.1% for single
records.

3.3.2. Long-Time Classification. This case is similar to the
short-time case except that similar words from all records
are tagged as a single class. The accuracy of classification
in this case was about 32%. Although this accuracy is about
2 times the chance level, it cannot be considered a good
result. Once again, the highest error rate belonged to “Left”
and “Right” classes. Figure 20 shows the confusion matrix
of this classifier.

3.3.3. Mixed-Time Classification. For the classification of all
the seven classes in mixed-time mode, we should choose
every class sample from a different record. Since there are

30

40

50

60

70

80

90

100

(a)

91.7

3.4

6.6

2.2

93.1

1.9

6.0

3.2

91.3

0.1

0.3

0.2

Average accuracy (92.0 ± 11.1)

Destination class
Word 1

Word 1

Word 2

Word 2

Silence

Silence

Unknown

So
ur

ce
 cl

as
s

0

20

40

60

80

100

(b)

Figure 18: Mixed-time Word-Word-Silence classification: (a) accuracies of thousands of WWS classifiers with unique combination of
classes and (b) average confusion matrix for all classifiers.
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hundreds of thousands of ways (10!/3! = 604800 per subject)
to do this, the full estimation of classification accuracy by
averaging all possible cases is impractical. Therefore, to cal-
culate the confusion matrix shown in Figure 21, we used
the average of 100 randomly selected permutations for each
subject.

The overall accuracy was more than 88 percent, which is
much better than both short-time and long-time modes.

Another interesting case of mixed-time multiclass classi-
fication was classifying the instances of a word in a record
against the same word in other records. Figure 22(a) shows
the confusion matrix of a classifier for the word “Up” in
records no. 1 to 9 of subject no. 1. Note that how good the
words in different records are distinguished. Figure 22(b) is
a 14-class classifier of all 7 words in two different records.
We can see that the two records have almost completely
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Figure 19: Confusion matrix of multiclass classifier of all words in a record: (a) record no. 8 and (b) average of all records.
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separated so that second and third quarters of the graph is
almost empty. Consequently, in each part, words of a
record are classified with a confusion pattern very similar
to classifying the same record alone (compare patterns in
Figure 19(a) with lower right section of Figure 22(b)).

4. Discussion

At first, it is worth noting that all presented algorithms and
parameters, are the results selected after the evaluation of
many (hundreds in some cases) possible substitutions. For
example, many combinations of EEG-Channel collection
and montages, tens of feature extraction methods and
parameters, and a few classifier types and parameters are
evaluated. Some had poor absolute results like Artificial
Neural Networks (ANN) as classifier or raw EEG signal
amplitudes as features. Some had weaker results than those
reported here, e.g., Principle Component Analysis (PCA)
features with a Minimum-Distance classifier [30], or using
Banana montage for EEG signals [31]. Some did not fulfil
our requirements, for example, Random Forest Classifier
(RFC) needs to be separately configured and trained for each
class combination. Also some combinations or parameters
did not notably affect the performance and were left in their
default values or set to an arbitrary value, like SVM
machines basis function which was “Linear” by default (in
MATLAB® version we used) or ordering of channels in
EEG signal.

Table 6 shows a summary of average accuracies in all
classification types and modes described in this report. As
seen in each column of this table, the minimum accuracy
for each type of classification accrues in long-time mode,

where the data of a relatively long-time interval were merged
together. This is mainly due to the fact that EEG signals are
not stationary and their statistics (or properties) change
along the time. In long-time mode, samples from different
times and with different properties are got together in a sin-
gle class. The complexity and diversity of such large classes,
causes the SVM machines to not precisely distinguish
between them. This is evident in increased learning time of
the machine as well as its learning accuracy. Hence, it can
be concluded that we should not use (too) old EEG data in
a silent-talk BCI application.

In the 2-class classification, for the short-time mode,
relatively better accuracies were obtained, especially in the
Word-Silent classification. This means that the pattern of
brain waves, when it is busy with a word imagination (or
perhaps any other), the task is much different from its back-
ground (idle) processes. So, if the subject cannot concentrate
on his/her task, then the system performance will degrade in
this (and generally all) type of classification. In the Word-
Word classification, the large variance (20%) is due to the
high correlation of EEG signals in too close time intervals,
at least with some different but near tasks. This is a major
shortcoming of the most imagined speech BCIs.

Finally, in the mixed-time mode, the best accuracies
were obtained because in this mode we did not use both
too far and too near signals.

Since the chance level was 50% in the 2-class, 33.3% in
3-class, and 14.3% in 7-class (balanced) classification, all
accuracies were meaningfully above random classification (p
value < 0.05), even in the worst case of the long-time mode.

In other modes, the accuracies, if not better, were com-
parable with the best reported values. For example, AlSaleh
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Figure 22: Confusion matrix of mixed-time multiclass classifications: (a) a single word in different records and (b) all words in 2 records.

Table 6: Summary of average accuracies in all classification types and modes.

Classification mode
Classification accuracy (mean ± standard deviation)

Word-Silence Word-Word Word-Word-Silence 6 Words+Silence

Short-time 95:7 ± 8:3 74:5 ± 20:4 78:9 ± 13:9 55:2 ± 8:8

Long-time 57:5 ± 7:2 59:5 ± 7:5 39:5 ± 5:4 32:0 ± 2:1

Mixed-time 97:1 ± 5:1 96:4 ± 8:0 92:0 ± 11:1 88:2 ± 4:8
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et al. reported an average maximum accuracy equal to 87.4%
for 5 words classification over 9 subjects [32]. According to
the reported data accusation schema, their classification
method belonged to Mixed-time mode defined in this paper.
Therefore, this value should be compared with 92 or 88
percent accuracies of 3 and 7-class types in Table 6.

DaSalla et al. had maximum accuracy about 78% for two
class (vowel-silence) with three subjects [11]. In a similar
manner, Brigham and Kumar achieved 68.8% for two sylla-
bles and seven subjects [16], compared to 74.5% for two
words classification in our work.

Cooney et al. have published the results of their work
on binary classification of word pairs [33]. Two different
convolutional neural networks (CNN) and a baseline lin-
ear discriminant analysis (LDA) classifier were examined.
15 word pairs were constructed from six Spanish words
of the EEG data set provided by Coretto et al. [34].
Despite of much smaller acquisition time, the data set
can be considered as our long-time mode. Accuracies were
62.37% and 60.88% for deep and shallow CNNs and
57.80% for LDA classifier compared with 59.5% in our
work. Also D-Y. Lee et al. reported 45% accuracy for the
classification of the six words in Coretto’s data set [22].

In another recent work using deep learning approaches,
Panachakel et al. reported an average classification accuracy
of 57.15% on 11 prompts of the KaraOne data set [35]. The
prompts include seven phonemic/syllabic prompts (iy, uw,
piy, tiy, diy, m, n) and four words (i.e., pat, pot, knew, and
gnaw). Each prompt was presented 12 times for a total of
132 trials [36]. The recording time span was 30 to 40 minutes
for each subject and therefore the classification is more similar
to our short-time multiclass mode with 55.2% accuracy.

5. Conclusion

In this paper, we reported the results of a simple and extensible
multi-class classifier working on self-recorded EEG signals
during silent speech. Six complete and useful Persian words
were the main classes, with the rest or silence for detecting
talking/not-talking states. Although it seems that the language
by itself may not change the way of human brain processing
during speech, exploring Persian words in silent talk is new
to literature in this domain of research. Also, the use of fre-
quency spectrum as a feature and SVMs as the classifier have
been reported in some papers, but the combination of this fea-
ture set (normalized to a constant length regardless of signal
durations and sampling rates) and the purposed classifier
has not been seen in previous studies.

Introducing classification modes, according to the time
difference of EEG signals, is a new idea for discussing differ-
ent accuracy values obtained in this and other related schol-
arly explorations. We made an attempt to expand this
concept drawing on many other papers, which worked on
imagined speech classification.
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The purpose of the paper was the assessment of the success of an artificial intelligence (AI) algorithm formed on a deep-
convolutional neural network (D-CNN) model for the segmentation of apical lesions on dental panoramic radiographs. A total
of 470 anonymized panoramic radiographs were used to progress the D-CNN AI model based on the U-Net algorithm
(CranioCatch, Eskisehir, Turkey) for the segmentation of apical lesions. The radiographs were obtained from the Radiology
Archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry of Eskisehir Osmangazi University.
A U-Net implemented with PyTorch model (version 1.4.0) was used for the segmentation of apical lesions. In the test data set,
the AI model segmented 63 periapical lesions on 47 panoramic radiographs. The sensitivity, precision, and F1-score for
segmentation of periapical lesions at 70% IoU values were 0.92, 0.84, and 0.88, respectively. AI systems have the potential to
overcome clinical problems. AI may facilitate the assessment of periapical pathology based on panoramic radiographs.

1. Introduction

Chronic apical periodontitis is an infection of tissues sur-
rounding the dental apex induced by pulpal disease, mostly
because of bacterial disease in the root canal complex devel-
oping during untreated or incorrectly treated dental caries
[1–3]. Apical periodontitis is common, and its prevalence
increases with age. Epidemiological studies have reported
that apical periodontitis is present in 7% of teeth and 70%
of the general population. The diagnosis of acute apical peri-
odontitis is made clinically, but the detection of chronic api-
cal periodontitis is done by radiography [4]. In general,
following root canal treatment, complete healing of periapi-
cal lesions is expected or at least improvement in the form of

a decrease of the size of periapical lesion [1, 5]. Radiograph-
ically, apical periodontitis manifests as a widened periodon-
tal ligament space or visible lesions. Such radiolucencies, also
called apical lesions, tend to be detected incidentally or by
radiographic follow-up of endodontically treated teeth [6,
7]. Radiolucency in radiographs is an important feature of
apical periodontitis [2]. Apical periodontitis can be detected
on periapical and panoramic radiographs and by cone-beam
computed tomography (CBCT). CBCT has superior dis-
criminatory power but is costly and exposes the patient to
radiation burden [6, 8]. Periapical and panoramic radio-
graphs are the most frequently used techniques in the diag-
nosis and treatment of apical lesions [2]. Panoramic
radiography generates two-dimensional (2D) tomographic
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images of the entire maxillomandibular area [9], enabling
the evaluation of all teeth simultaneously. Also, panoramic
radiography requires a far lower dose of radiation than
CBCT imaging [6, 10]. Besides, panoramic radiography is
painless, unlike intraoral radiographs, thus well tolerated
by patients [9, 11]. One of the many recent technological
advances in artificial intelligence (AI) and its applications
are expanding rapidly, also in the area of medical manage-
ment and medical imaging [12]. AI uses computational net-
works (neural networks (NNs)) that mimic biological
nervous systems [13]. NNs were developed as one of the first
types of AI algorithms. The computing power of NNs varies
depending on the character and amount of training data.
Networks using many large layers are termed deep learning
NNs [14]. A deep convolutional neural network (D-CNN)
was used to process large and complex images [15]. Deep
learning networks, including CNNs, have displayed superior
achievement in terms of object, face, and activity recognition
[16]. Medical organ and lesion segmentation are an impor-
tant application of imaging modalities [17, 18]. The detec-
tion and classification performance of deep learning-based
CNNs concerning retinopathy caused by diabetes, skin can-
cer, and tuberculosis is very high [19, 20]. CNNs have also
been applied in dentistry for tooth detection and numbering,
as well as an assessment of periodontal bone loss and peria-
pical pathology [21–25]. U-Net and pixel-based image seg-
mentation, which is a different architecture created from
CNN layers, are more successful than classical models even
if there are few training images. The presentation of this
architecture has been realized with biomedical images. The
traditional U-Net architecture, extended to handle volumet-
ric input, has two phases: the coder portion of the network
where it learns representational features at unlikely scale-
and gather-dependent information, and the decoder portion
where the network extracts knowledge from the noticed sit-
uation and formerly learned features. The jump links used
between the corresponding encoder and decoder layers allow
deep parts of the network to be trained efficiently and com-
pare the same receiver characteristics with different receiver
areas [26].

The study is aimed at assessing the diagnostic success of
U-Net approach for the segmentation of apical lesions in
panoramic images.

2. Material and Methods

2.1. Radiographic Data Preparation. The panoramic radio-
graphs used in the study were derived from the archives of
the Faculty of Dentistry of Eskisehir Osmangazi University;
470 anonymized panoramic radiographs were applied. The
radiographs were obtained from January 2018 to January
2019 for a variety of reasons. Images with artifacts of any
type were excluded. The study design was authorized by
the Non-Interventional Clinical Research Ethics Committee
of Eskisehir Osmangazi University (decision date and num-
ber: 06.08.2019/14). The study was conducted following the
regulations of the Declaration of Helsinki. The Planmeca
Promax 2D (Planmeca, Helsinki, Finland) panoramic imag-

ing system was used to obtain panoramic radiographs with
the following parameters: 68 kVp, 16mA, and 13 s.

2.2. Image Annotation. Three dental radiologists (I.S.B. and
E. B. with 10 years of experience and F.A.K. with 3 years
of experience) annotated ground truth images with the com-
mon decision on all images using CranioCatch Annotation
software (Eskisehir, Turkey). The polygonal boxes were used
to determine the locations of the apical lesions.

2.3. Deep CNN Architecture. The deep learning was per-
formed using a U-Net implemented with the PyTorch model
(version 1.4.0). The U-Net architecture is used for semantic
segmentation assignments (Figure 1).

The U-Net architecture consists of four block levels,
including two convolutional layers with batch normalization
and a rectified linear unit activation function (ReLu). There
is a maximum pool layer in the encoding section and upcon-
volution layers in the decoding section. Each block has 32,
64, 128, or 256 convolutional filters. Besides the bottleneck,
the layer comprises 512 convolutional filters. Skip connec-
tions to the corresponding layers from the encoding layers
are present in the decoding part [26]. The Adam Optimizer
was used to train the U-Net.

2.4. Model Pipeline. PyTorch library was used for model
development on the Python open-source programming lan-
guage (v. 3.6.1; Python Software Foundation, Wilmington,
DE, USA; retrieved on August 1, 2019, from https://www
.python.org/). An AI model (CranioCatch, Eskisehir-Turkey)
was developed to automatically segment apical lesions on pan-
oramic radiographs. The training process was performed
using an individual computer implemented with 16GB
RAM and an NVIDIA GeForce GTX 1060Ti graphic card.

(i) Split: 470 panoramic radiographs were divided into
train, validation, and test group

(a) Training group: 380

(b) Validation group: 43

(c) Test group: 47

(ii) Augmentation: 1140 images from the 380 original
training group images were derived using data aug-
mentation. Augmentation was applied on the train-
ing data set, and augmentations were horizontal flip
and vertical flip (total images: 1140 (=380 × 3))
(size: 2943 × 1435)

(iii) Cropping (preprocessing step): then, all images of the
train were divided into 4 parts as upper right, upper
left, lower right, and lower left (size: 1000 × 530)

(a) Training group: 1140 × 4 = 4560
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(b) Validation group: 43 × 4 = 172

(c) Test group: 47

(iv) Remove full black masks (preprocessing step): the
regions without lesions of all data set were deleted

(a) Training group: 1629

(b) Validation group: 59

(c) Test group: 47

(v) Contrast Limited Adaptive Histogram Equalization
(CLAHE) (preprocessing step): CLAHE has applied
all images to improve image contrast and enable
the identification of apical lesions

(a) Training group: 1629

(b) Validation group: 59

(c) Test group: 47

(vi) Resize (preprocessing step): the resolution of each
piece divided into 4 (1000 × 530) was resized to
512 x 256

(a) Training group: 1629

(b) Validation group: 59

(c) Test group: 47

The segmentation model with PyTorch U-Net was
trained with 95 epochs; the model based on 43 epochs
showed the best performance and was thus used in the
experiment. The model pipeline is summarized in Figure 2.

2.5. Statistical Analysis. The confusion matrix was used to
assess the achievement of the model. This matrix is a mean-
ingful table that summarizes the predicted and actual situa-
tions. The performance of model is frequently assessed
using the data in the confusion matrix [27]. The metrics
used to evaluate the success of the model were as follows:

Conv 3×3, ReLU
Copy and crop
Max pool 2×2
Up-conv 2×2
Conv 1×1 

Figure 2: The U-Net architecture for the semantic segmentation task.

Figure 1: Annotation of the apical lesion using polygonal box method.
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(1) True Positive (TP): apical lesion was segmented,
correctly

(2) False Positive (FP): apical lesions were not detected

(3) False Negative (FN): without apical lesions, lesions
were nevertheless segmented

(4) TP, FP, and FN were determined; then, the following
metrics were computed:

(i) Sensitivity (recall): TP/ðTP + FNÞ
(ii) Precision: TP/ðTP + FPÞ
(iii) F1 score: 2TP/ð2TP + FP + FNÞ

3. Results and Discussion

3.1. Results. The AI model segmented 63 apical lesions on 47
radiographs in the test data set (True Positives) (Figures 3–5).

Twelve apical lesions were not detected (False Nega-
tives). In 5 cases without apical lesions, lesions were never-
theless segmented by the AI model (False Positives)
(Table 1).

The sensitivity, precision, and F1-score values at 70%
IoU value were 0.92, 0.84, and 0.88, respectively (Table 2).

3.2. Discussion. AI has rapidly improved the interpretation
of medical and dental images, including via the application
of deep learning models and CNNs [28, 29]. Deep learning
has been developing rapidly thus recently attracting consid-
erable attention [28–34]. The deep CNN architecture
appears to be the most used deep learning approach. This
is most likely due to its effective self-learning models and
high computing capacity, which provide superior classifica-
tion, detection, and quantitative performance based on
imaging data [28–35]. CNNs have been used in dentistry
for cephalometric landmark detection, dental structure seg-
mentation, tooth classification, and apical lesion detection
[36–39].

Tuzoff et al. presented a novel CNN algorithm for auto-
matic tooth detection and numbering on panoramic radio-
graphs. They found the sensitivity and specificity value of
tooth numbering as 0.9893 and 0.9997, respectively. The
findings showed the ability of current CNN architectures
for automatic dental radiographic interpretation and diag-
nosis on panoramic radiographs [25]. Chen et al. detected
and numbered teeth in dental periapical films using faster
region proposal CNN networks (faster R-CNN). Faster R-
CNN performed unusually well for tooth detection and
localization, showing good precision and recall and overall
performance like that of a younger dentist [24]. Miki et al.
assessed the utility of deep CNN for classifying teeth based
on dental CBCT images; the accuracy was 91.0%. The system
rapidly and automatically produces diagrams for forensic
recognition [38]. Two previous studies investigated the util-
ity of AI systems for detecting periapical lesions. Ekert et al.
investigated the capability of deep CNN algorithm to detect
apical lesions on dental panoramic radiographs. CNNs

detected the lesions despite the small number of data sets
[6]. Orhan et al. [39] compared the diagnostic ability of a
deep CNN algorithm to that of volume measurements based

Mixed size
Panoramic images

Train: 380
Validation: 43

Test: 47

Augmentation on train data

n = 1140

Split 4 area
Training: 4560
Validation: 172

Test: 47

Shape = 2943×1435
No

No Remove empty images in all
dataset

Train: 1629
Val: 59
Test: 47

Image lighting
with CLAHE

method

Create dataset images
(n = 1735)

Train set
(n = 1629)

Train set
(n = 47)

Validation set
(n = 59)

Train set
(n = 47)

Validation set
(n = 59)

Training lesion
segmentation model
with PyTorch U-net

Epoch = 95

Model evaluation

Generate blank images
and paint labeled

coordinates of lesion
and save same name

Train mask
(n = 1629)

Yes

Yes

Lesion in
dataset ?

Delete different shape
images

Figure 3: Model pipeline for apical lesion segmentation
(CranioCatch, Eskisehir, Turkey).
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on CBCT images in the context of periapical pathology. The
rate of detection of periapical lesions of the CNN model was
92.8%, and the volumetric and manual segmentation mea-
surements were similar [39]. Endres et al. [40] created a
model using 2902 deidentified panoramic radiographs. The
presence of periapical radiolucencies on panoramic radio-
graphs was evaluated by 24 oral and maxillofacial surgeons.
They show that the deep learning algorithm has better suc-
cess than 14 of 24 oral and maxillofacial surgeons. The suc-
cess metrics for this model were as follows: the precision of
0.60 and an F1 score of 0.58 corresponding to a positive pre-
dictive value of 0.67 and True Positive rate of 0.51. Setzer

et al. performed a study to use a deep learning proposal
using U-Net architecture for the automatic segmentation
of periapical lesions on CBCT images [41]. Segmentation
of lesion accuracy was found as 0.93 with a specificity of
0.88, a positive predictive value of 0.87, and a negative pre-
dictive value of 0.93. They concluded that the DL algorithm
trained in a limited CBCT images presented wonderful
results in lesion detection accuracy. In the presented study,
we created a segmentation model with PyTorch U-Net AI
architecture on panoramic radiograph. It segmented 63 api-
cal lesions on 47 radiographs in the test data set. Twelve api-
cal lesions were not detected. In 5 cases without apical
lesions, lesions were nevertheless segmented by the AI
model. The sensitivity, precision, and F1-score values at
70% IoU value were 0.92, 0.84, and 0.88, respectively. Our
results showed that AI deep learning algorithms can have
service ability in the clinical dental setting. However, the
present study had some limitations. Only one radiography
machine and standard parameters were used to image acqui-
sitions. Besides, study groups included all size of periapical
images. The external test group was not used to assess the
model’s success. We used the U-Net algorithm to model
development, only. Future studies should be used using
larger study samples and images taken from different radiog-
raphy equipment. Comparative experiments should be
planned to use different CNN algorithms, and AI model per-
formance should be compared to different human observers
which have different level professional experiences.

4. Conclusions

Deep learning AI models enable the evaluation of periapical
pathology based on panoramic radiographs. The application

Figure 4: Automatically apical lesion segmentation using AI model (CranioCatch, Eskisehir, Turkey).

Figure 5: An example real-prediction image comparison.

Table 1: The number of segmented apical lesions with AI model
(CranioCatch, Eskisehir, Turkey).

Metrics Number

True Positives (TP) 63

False Negatives (FN) 12

False Positives (FP) 5

Table 2: The prediction performance measurement of the AI
model (CranioCatch, Eskisehir, Turkey).

Measure Value Derivations

Sensitivity (recall) 0.92 TP/ TP + FNð Þ
Precision 0.84 TP/ TP + FPð Þ
F1 score 0.88 2TP/ 2TP + FP + FNð Þ
IoU value 0.79 TP/ TP + FP + FNð Þ
Dice coefficient 0.88 2TP/ 2TP + FP + FNð Þ
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of AI for apical lesion detection and segmentation can
reduce the burden on clinicians.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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The proposed method introduces algorithms for the preprocessing of normal, COVID-19, and pneumonia X-ray lung images
which promote the accuracy of classification when compared with raw (unprocessed) X-ray lung images. Preprocessing of an
image improves the quality of an image increasing the intersection over union scores in segmentation of lungs from the X-ray
images. The authors have implemented an efficient preprocessing and classification technique for respiratory disease detection.
In this proposed method, the histogram of oriented gradients (HOG) algorithm, Haar transform (Haar), and local binary
pattern (LBP) algorithm were applied on lung X-ray images to extract the best features and segment the left lung and
right lung. The segmentation of lungs from the X-ray can improve the accuracy of results in COVID-19 detection
algorithms or any machine/deep learning techniques. The segmented lungs are validated over intersection over union
scores to compare the algorithms. The preprocessed X-ray image results in better accuracy in classification for all three
classes (normal/COVID-19/pneumonia) than unprocessed raw images. VGGNet, AlexNet, Resnet, and the proposed deep
neural network were implemented for the classification of respiratory diseases. Among these architectures, the proposed
deep neural network outperformed the other models with better classification accuracy.

1. Introduction

Emerging pathogens are a big concern for global public
health, and technology may help classify potential cases
more rapidly in order to bring in timely treatments [1, 2].
The Envision 2030 agenda of the United Nations have
included 17 sustainable development goals towards a prom-
ising future for persons with disabilities aligned with Saudi
Vision 2030. As per the SD goals set and implemented by
the United Nations, the proposed work targets promoting
the transformation of disabilities. This work promises good
health and well-being (SDG 3) by diagnosing respiratory

diseases at the earlier stages based on chest X-ray images.
To achieve this, the authors have utilized innovation tech-
niques, infrastructure (SDG 9), and international partnerships
(SDG 17) to transform the world into a better place to live.

The novel coronavirus identified in December resulted in
significant quarantines worldwide, including large cities, vil-
lages, and public areas [3]. The huge impact of COVID-19 is
due to a lack of testing and medical errors. COVID-19 is a dis-
ease that mainly affects the lungs [4] apart from pneumonia.
This can exhibit various patterns or pathological symptoms
in the lungs based on different causes, and no particular symp-
tom can indicate its severe impact on the lungs. Hence, the

Hindawi
BioMed Research International
Volume 2021, Article ID 1896762, 17 pages
https://doi.org/10.1155/2021/1896762

https://orcid.org/0000-0002-9407-1795
https://orcid.org/0000-0002-0670-5138
https://orcid.org/0000-0002-1425-2749
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1896762


diagnosis should be initiated at an early stage. Based on the
symptoms, when a person approaches a clinic, few tests are
done for confirmation of the disease along with X-ray images.
X-ray images help in analyzing the condition of the lung and
the stage of the disease. Preprocessing of these images is abso-
lutely necessary for accurate diagnosis.

2. Contributions and Limitations

This paper focuses on image preprocessing techniques
applied on pneumonia, COVID-19 dataset (X-ray images),
and diagnosis of diseases from the processed X-ray images

To diagnose the disease using X-ray images, different
CNN architectures were implemented and compared to find
out the best architecture

In this study, deep neural network architecture is pro-
posed to diagnose normal/pneumonia/COVID-19 or bacte-
rial infected disease

This model is trained on COVID-19 X-ray images,
pneumonia X-ray images, and normal lung X-ray images

The failure to detect the early stages of COVID-19 is one
of the most significant limitations of chest radiography
research

But well-trained deep learning models can concentrate
on points that the human eye cannot notice, and this
method was successful in achieving the same

The only limitation to this method is the availability of
datasets (training/testing) on normal/COVID-19/pneumo-
nia X-ray images. The literature survey enabled the use of
resources in fetching the dataset from various medical
repositories

3. Related Work

COVID-19 has to be detected properly without any negli-
gence else can lead to a severe impact on the country’s econ-
omy and country’s citizen health [5]. The person who is
suspicious of COVID-19 is suggested to undergo a chest
X-ray. Analysis of X-rays by humans can lead to various
human errors, which can lead to a huge impact on patients
and society. So, a computer-aided system can help the doc-
tors for proper analysis of lungs of the COVID-19 affected
human. Throughout underdeveloped and developing
nations, where the number of patients is high and medical
care cannot be adequately delivered, these programs may
be a tremendous benefit [6, 7]. The authors have worked
on X-ray imaging techniques for the detection of bone frac-
tures. They have applied edge detection and segmentation

techniques to ease the process of the diagnosis system. These
methods will reduce the processing time and other physical
evaluation procedures [8]. So, while working with X-ray
images, we need to consider the noises which have to be
reduced. The random noises occurring during the process
of image acquisition degrades the image quality leading to
an incorrect diagnosis. Researchers suggest the application
of the temporal recursive filter. Also, they propose an
improved self-adaptive filter. This was a combination of
FPGA with image processing techniques [9]. The authors
have recommended region localization which offers a close
level of precision. Few other image preprocessing techniques
are adaptive histogram-based equalization, adaptive contrast
enhancement, and histogram equalization. There is the pres-
ence of multiple noises during capturing the images because
of device mobility and motion artefact [10]. But in X-ray
images mostly Gaussian, salt and pepper noises are present.
To reduce the noise, a digital median filtering technique is
used as per the researches.

Chest X-rays aid in the diagnosis of pneumonia.
Researchers seek the help of CNN in classifying normal
and abnormal X-rays [11]. The feature extracted from the
lung X-ray improves the functionality of the classifier. This
method is useful where a large dataset is received. In another
similar work, deep learning techniques are applied for the
analysis of chest X-rays. Pulmonary infections are easily
identified using these radiography images. This is extended
in the detection of coronavirus disease [12]. The authors
have brought hope in applying artificial intelligence in the
early detection of the disease. Supervised learning techniques
have been applied in the classification of a normal/abnormal
pneumonia dataset. A labelled dataset aids this process in
reducing the error [13]. CNN has been trained with nonaug-
mented data. The researchers have suggested a novel deep
learning architecture for pneumonia detection [14]. They
have applied transfer learning for efficient classification.
The features were extracted and pretrained on ImageNet.

Table 1: Dataset for building a model.

Chest X-
ray image

No. of images used for
training the model

No. of images used for
testing the model

Normal
lung

110 30

COVID-19 110 30

Pneumonia 110 30

Figure 1: Process flow.
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(a) (b)

Figure 4: Sample image from validated dataset: (a) normal; (b) pneumonia.

(a) (b) (c)

Figure 3: Sample image from testing dataset: (a) normal; (b) pneumonia; (c) COVID-19.

(a) (b) (c)

Figure 2: Sample image from training dataset: (a) normal; (b) pneumonia; (c) COVID-19.
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Figure 5: Model development.

Figure 6: Feature descripted images: (a) normal, (b) pneumonia, and (c) COVID-19.
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Figure 7: Block diagram on diagnosing the disease.
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A classifier predicted the possibility of pneumonia. The
developed ensemble model provided an accuracy of 96.4%.
They have utilized the Guangzhou Women and Children’s
Medical Center dataset. Ozturk et al. [15] proposed a model
to provide diagnostics on normal, COVID-19, and pneumo-
nia with binary and multiclass classification. Their model
provided classification accuracy of 98.08% for binary classes
and 87.02% for multiclass cases. In a recent research, the
authors have implemented a deep neural network to
differentiate COVID-19-induced pneumonia and other
virus-induced pneumonia from chest X-ray images [16].
Researches have analyzed the effectiveness of the deep learn-
ing model VGG16 for the detection of COVID-19 and pneu-
monia [17]. The authors have claimed the work as a
screening test based on the sensitivity and degree of specific-

ity. In a similar study [18], the authors have presented an
automatic COVID-19 screening system which used radiomic
texture descriptors to differentiate the CXR images to identify
the normal, COVID-19, and suspected infected patients.
Researchers have predicted the severity of COVID-19 from
chest X-ray images [19]. Their method can measure lung
infections as well as monitor treatment in ICU. Sharma et al.
[20] have applied transfer learning for the classification of
respiratory diseases including tuberculosis, pneumonia,
COVID-19, and normal lung. Hence, based on the recent
literature [21–29], the proposed method has implemented
few efficient image preprocessing algorithms and deep learn-
ing models to diagnose respiratory diseases. The deep learning
models developed is efficient when the input images are pre-
processed with contrast enhancement, segmentation, and

Lung X-ray images

(COVID-19 infected)

Noise removal
Contrast

adjustment

Analysis

HOG
transformation

HAAR
transformation LBP transformation

Analysis Analysis

Le�/right lung
extraction

Sliding window
object detection

Sliding window
object detection

Sliding window
object detection

Le�/right lung
extraction

Le�/right lung
extraction

Figure 8: Preprocessing of the X-ray images.

(a) (b)

Figure 9: (a) Left image shows normal lung image; (b) right image shows processed image using contrast adjustment.
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feature extraction. The accuracy improved in the classification
of respiratory diseases.

4. Methodology

The proposed method involves preprocessing and classifica-
tion of lung X-ray images using image processing algorithms
and deep learning techniques as shown in Figure 1.

The X-ray images are preprocessed to locate the lungs.
As per the literature, the stages of COVID-19 and pneumo-
nia can be detected from the lung. Hence, the left lung and
right lung have to be thoroughly analyzed to differentiate
normal/abnormal images. Various algorithms on prepro-
cessing have been applied, and the performance is evaluated.
The processed data would be used as labelled data for the
convolutional neural network model for the classification
of respiratory diseases.

5. Dataset

Data is the first step in establishing any method or therapy
for the diagnosis. The X-ray images of a COVID-19/pneu-
monia patient’s lung are used for preprocessing. The data

is collected from a public database consisting of X-ray and
CT scan images for various diseases, a project approved by
the University of Montreal’s Ethics Committee. The images
of COVID-19 are drawn out from a public database and
used for further processing. 78% of COVID-19 X-ray images
are randomly split into the training dataset for training the
classifier, and 22% of COVID-19 X-ray images are used for
validation. The lung part in images of the training dataset
is segmented physically to train the machine learning model
to segment the lungs from the COVID-19 lung X-rays.
Similarly, a total of 1200 images including normal and pneu-
monia (training and testing) were utilized for the proposed
method and shown in Table 1. Also, the sample dataset is
shown in Figures 2–4.

6. The Proposed Model Development for
Respiratory Disease Detection

The following steps have been followed in the model devel-
opment and depicted in Figure 5:

(i) Apply deep learning edge detection model on
COVID-19 images

0.0
0

20,000

40,000

60,000

80,000

1,00,000

1,20,000

1,40,000

0.2 0.4 0.6 0.8 1.0

(a)

0.0
0

2500

5000

7500

1000

12500

15000

17500

20000

0.2 0.4 0.6 0.8 1.0

(b)

0.0
0

500

1000

1500

2000

2500

3000

3500

0.2 0.4 0.6 0.8 1.0

(c)

Figure 10: (a) Normal; (b) pneumonia; (c) COVID-19.
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(ii) Apply deep learning edge detection model on
pneumonia images

(iii) Apply deep learning edge detection model on nor-
mal images

(iv) Make COVID-19 directory which contains training
(110 images) and testing (30 images) directories

(v) Make pneumonia directory which contains training
(110 images) and testing (30 images) directories

(vi) Make a directory which contains normal training
(110 images) and testing (30 images) directories

(vii) Develop a CNN model using pretrained model

(viii) Develop architecture for CNN model

(ix) Develop a hybrid model with machine learning
and deep learning

7. Preprocessing Techniques

7.1. Haar Cascade Classifier. Lung detection using Haar
feature-based cascade classifiers is an effective location tech-
nique proposed by Paul Viola and Michael Jones in 2001. It
is an AI-based methodology where a cascade work is pre-
pared from a great deal of positive and negative pictures. It
is then used to distinguish questions in different pictures.

In this proposed method, the discovery of lungs in X-ray
images is defined. At first, the algorithm needs positive (pic-
tures of appearances) and negative (pictures without lungs)
to prepare the classifier followed by feature extraction from
the images to train the model. The obtained Haar features
are utilized. The features are mostly the same as the convolu-
tional kernel. Each element is a solitary worth acquired by
deducting the aggregate of pixels under a white rectangle shape
from the entirety of pixels under the dark rectangle shape.

The cascading of the classifiers helps to evaluate even the
subimages with the greatest likelihood for all Haar transform
that differentiates an entity. This also helps in adjusting a
classifier’s accuracy. Viola and Jones were able to detect a
human face with an accuracy rate of 95 per cent using only
200 simple features. Hence, the Haar cascade classifier is
trained to classify lungs using the extracted features. This
gentle AdaBoost algorithm and Haar feature algorithms
have been implemented to train these classifiers, and in this
process, more than 6000 features were included to classify
with greater accuracy.

7.2. HOG for Lung Segmentation. HOG, or histogram of ori-
ented gradients, is an element descriptor that is frequently
used to extricate features from picture information. It is
broadly utilized in PC vision errands for object location. We
should take a gander at some significant parts of HOG that
make it unique in relation to other component descriptors.

The HOG descriptor centers on the structure or the state
of an item. Hoard can give the edge course too. This is fin-
ished by extracting the slope and direction of the edges. Fur-
thermore, these directions are determined in “restricted”
parcels. This implies that the total picture is separated into

littler locales, and for every area, the inclinations and direc-
tion are determined. The HOG would produce a histogram
for every one of these locales independently. The histograms
are made utilizing the slopes and directions of the pixel
esteems, thus the name “histogram of oriented gradients”

(i) Preprocess the data (64 × 128)
(ii) Calculating gradients (directions x and y)

(iii) Calculate the magnitude and orientation

Using each pixel’s magnitude and orientation in the X-ray,
it is graded into a lung image or not. Support vector machine
(SVM) helps in classifying an image and works more efficiently
with HOG transform. The SVMmodel is essentially a reflection
in multidimensional space of various classes in a hyperplane.
The hyperplane is created by SVM iteratively to minimize the
cost function. SVM is aimed at segmenting the datasets into
classes in order to find a maximal absolute hyperplane.

7.3. LBP Transform for Lung Segmentation. The substance of
an individual passes on huge information of data about the

Table 2: Proposed deep neural network layers.

Layer (type) Output shape Param #

conv2d (Conv2D) (None, 224, 224, 64) 1792

conv2d_1 (Conv2D) (None, 224, 224, 64) 36928

max_pooling2d
(MaxPooling2D)

(None, 112, 112, 64) 0

conv2d_2 (Conv2D) (None, 112, 112, 128) 73856

conv2d_3 (Conv2D) (None, 112, 112, 128) 147584

max_pooling2d_1
(MaxPooling2)

(None, 56, 56, 128) 0

conv2d_4 (Conv2D) (None, 56, 56, 256) 295168

conv2d_5 (Conv2D) (None, 56, 56, 256) 590080

conv2d_6 (Conv2D) (None, 56, 56, 256) 590080

max_pooling2d_2
(MaxPooling2)

(None, 28, 28, 256) 0

conv2d_7 (Conv2D) (None, 28, 28, 512) 1180160

conv2d_8 (Conv2D) (None, 28, 28, 512) 2359808

conv2d_9 (Conv2D) (None, 28, 28, 512) 2359808

max_pooling2d_3
(MaxPooling2)

(None, 14, 14, 512) 0

conv2d_10 (Conv2D) (None, 14, 14, 512) 2359808

conv2d_11 (Conv2D) (None, 14, 14, 512) 2359808

conv2d_12 (Conv2D) (None, 14, 14, 512) 2359808

max_pooling2d_4
(MaxPooling2)

(None, 7, 7, 512) 0

flatten (flatten) (None, 25088) 0

dense (dense) (None, 4096) 102764544

dense_1 (dense) (None, 4096) 16781312

dense_2 (dense) (None, 3) 12291

Total params: 134272835;
trainable params: 134272835;
nontrainable params: 0
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lung and enthusiastic condition of the individual. The
simplest operator is to set the middle pixel “Pm” value as a
threshold and associate it with the pixels in the neighbour-
hood, Pn. The value of Pm is calculated. All threshold values
of neighbourhood points are multiplied by the correspond-
ing proportion and added. The LBP code for k-bit can be
calculated as

LBP = 〠
i=k−1

i=0
F Pn − Pmð Þ2i: ð1Þ

Pn represents the nth neighbouring pixel, and “m” repre-
sents the center pixel. The histogram features of size 2i are
extracted from the obtained local binary pattern code.

The lung region is first partitioned into little areas from
which local binary patterns (LBP) and histograms are
extricated and linked into a solitary component vector. This
element vector shapes a proficient portrayal of the lung and
is utilized to quantify likenesses between pictures.

The LBP transformed image has features that can be
used for classification, and sample images are shown in
Figures 6(a)–6(c). Feature extraction helps the classification
model in classifying the image with better accuracy.

7.4. Diagnosis of Disease. The dataset consists of normal lung
images, bacterial pneumonia affected lung images, and
COVID-19 affected lung images. The images are prepro-
cessed to remove noise and to enhance the image quality.
The images are scaled and cropped for increasing the
performance of the proposed deep learning model. After
preprocessing, AlexNet, VGGNet, and the proposed neural
network are trained on normal/abnormal lung images. After
training, the models are tested with data and the algorithm
with the best accuracy is selected for further diagnosing the
process. The process is represented in the block diagram in
Figure 7.

7.5. Implementation

7.5.1. Preprocessing Algorithms. COVID-19 lung images are
used to train the classifier in the detection of lungs from

Table 3: AlexNet: deep neural network layers.

Layer (type) Output shape Parameter #

conv2d_13 (Conv2D) (None, 54, 54, 96) 34944

activation (activation) (None, 54, 54, 96) 0

max_pooling2d_5
(MaxPooling2)

(None, 27, 27, 96) 0

conv2d_14 (Conv2D) (None, 17, 17, 256) 2973952

activation_1 (activation) (None, 17, 17, 256) 0

max_pooling2d_6
(MaxPooling2)

(None, 8, 8, 256) 0

conv2d_15 (Conv2D) (None, 6, 6, 384) 885120

activation_2 (activation) (None, 6, 6, 384) 0

conv2d_16 (Conv2D) (None, 4, 4, 384) 1327488

activation_3 (activation) (None, 4, 4, 384) 0

conv2d_17 (Conv2D) (None, 2, 2, 256) 884992

activation_4 (activation) (None, 2, 2, 256) 0

max_pooling2d_7
(MaxPooling2)

(None, 1, 1, 256) 0

flatten_1 (flatten) (None, 256) 0

dense_3 (dense) (None, 4096) 1052672

activation_5 (activation) (None, 4096) 0

dropout (dropout) (None, 4096) 0

dense_4 (dense) (None, 4096) 16781312

activation_6 (activation) (None, 4096) 0

dropout_1 (dropout) (None, 4096) 0

dense_5 (dense) (None, 1000) 4097000

activation_7 (activation) (None, 1000) 0

dropout_2 (dropout) (None, 1000) 0

dense_6 (dense) (None, 3) 3003

Total params: 28040483;
trainable parameters:
28040483; nontrainable
parameters: 0

Table 4: VGGNet: deep neural network layers.

Layer (type) Output shape Parameter #

conv2d (Conv2D) (None, 444, 444, 32) 2432

max_pooling2d
(MaxPooling2D)

(None, 222, 222, 32) 0

conv2d_1 (Conv2D) (None, 220, 220, 64) 18496

max_pooling2d_1
(MaxPooling2)

(None, 110, 110, 64) 0

dropout (dropout) (None, 110, 110, 64) 0

conv2d_2 (Conv2D) (None, 108, 108, 128) 73856

max_pooling2d_2
(MaxPooling2)

(None, 54, 54, 128) 0

dropout_1 (Dropout) (None, 54, 54, 128) 0

conv2d_3 (Conv2D) (None, 52, 52, 512) 590336

max_pooling2d_3
(MaxPooling2)

(None, 26, 26, 512) 0

dropout_2 (Dropout) (None, 26, 26, 512) 0

conv2d_4 (Conv2D) (None, 24, 24, 512) 2359808

conv2d_5 (Conv2D) (None, 22, 22, 128) 589952

conv2d_6 (Conv2D) (None, 20, 20, 64) 73792

max_pooling2d_4
(MaxPooling2)

(None, 10, 10, 64) 0

dropout_3 (dropout) (None, 10, 10, 64) 0

flatten (flatten) (None, 6400) 0

dense (dense) (None, 4096) 26218496

dense_1 (dense) (None, 1024) 4195328

dropout_4 (dropout) (None, 1024) 0

dense_2 (dense) (None, 3) 3075

Total parameters: 34125571;
trainable parameters:
34125571; nontrainable
parameters: 0
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the X-ray images. Various transformations like HOG, Haar,
and LBP were applied on images, and depending on the
accurate segmentation of lungs, the best accurate algorithm
for the detection has been chosen. In Figure 8, the process
is depicted on preprocessing of COVID-19 images, and
extraction of the lungs using the sliding window technique
is highlighted. The preprocessed images (contrast enhance-
ment) are shown in Figure 9.

7.5.2. Noise Removal. The noises from the dataset are
removed to get the best features from the COVID-19/pneu-
monia lung images. Some of the preprocessing techniques
that can be applied to images are contrast adjustment, inten-
sity adjustment, histogram equalization, binarization, mor-
phology operation, etc. For lung X-ray images, contrast
adjustment and histogram equalization perform better when
compared with other preprocessing techniques. Contrast
adjustment of a COVID-19 lung image has produced a
better image to extract the features from the lungs. These
features can further be used for the detection of lungs from
X-ray images using various lung detection algorithms. As
shown in Figures 10(a)–10(c), histogram equalized images
represent normal, pneumonia, and COVID-19 with gray
level and frequency count. The histogram equalization on
an image produces images with better quality without loss
of information. This contrast adjustment using histogram
equalization helps in extracting better features in lung detec-
tion algorithms.

7.5.3. Detection of Lungs Using HOG Feature Vector, Haar
Transform, and LBP Transform. The algorithm used for lung
detection is the sliding window technique where a window
of size starting from 2 × 2 × 3 to N ×N × 3 is used to detect

the left and right lungs of an image. The window of constant
size is allowed to slide over the entire image, and the window
will be utilized with transform techniques to locate lungs.
The algorithm shown below can be used in various applica-
tions to get better accuracy.

Step 1. Contrast adjustment of X-ray image.
Step 2. Sliding window with window size from 2 to size

of the image (N).
Step 3. Classification of image in window into left the

lung using HOG feature descriptor, Haar transform, and
LBP transform.

Step 4. Classification of image in window into right lung
using HOG feature descriptor, Haar transform, and LBP
transform.

Step 5. Repeat steps from Steps 2 to 4 until the left lung
and right lungs are extracted properly with every algorithm.

Step 6. Comparing the extracted images of lungs to pre-
dict the best algorithm for feature description.

8. Proposed Deep Neural Network

The proposed DNN model is a powerful network which is
capable of getting higher accuracy on classification of respi-
ratory diseases. This architecture is used to classify X-ray
images of lungs into COVID-19, pneumonia caused by bac-
teria, and a normal lung image. This architecture can also be
extended to various object classification models.

In medical image analysis, accuracy is the major factor
for architecture to be implemented in any system. This
model consists of 7 sequentially connected convolutional
layers with different size filters. These convolutional layers
are sequentially connected to three fully connected layers.
The major characteristics of this architecture are features

(a) (b)

(c) (d)

Figure 11: (a) Original image; (b) horizontal detail; (c) vertical detail; (d) diagonal detail.
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of the image passed through strided convolutions and max
pooling layers. The architecture has used 5 × 5 and 3 × 3 size
filters. The architecture has convolutions, max pooling,
dropout, and ReLu activation layers.

8.1. Architecture. The proposed architecture has 10 layers
where 7 layers are convolutional layers and the remaining 3
are fully connected layers and shown in Table 2. A fixed size
of 448 × 448 × 3 RGB lung image of COVID-19 should be
given as input to the network. After preprocessing of the
image, the image has been subjected to the network for classi-
fication. The first layer in architecture uses “5 × 5” size filter
with stride 1 pixel. All other layers in architecture use “3 × 3”
size filter with a stride of 1 pixel. These filters can help to get
all features of an image. Max pooling is performed on different
layers over 2 × 2 size filter with stride 1. Each convolutional

layer is followed by the Rectified Linear Unit (ReLu) to add
nonlinearity to the model. This nonlinearity can classify the
images with high accuracy. The architecture contains 3 fully
connected dense layers where the first layer is of size “4096”
and the second layer is of size “1024.” The final layer which
classifies the image is of size “3”. Softmax function is applied
to the output layer to classify the image.

9. AlexNet Deep Neural Network

AlexNet is an incredibly adaptable model which, on particu-
larly problematic datasets, can achieve high accuracy.
Regardless, dispensing with the whole of the traditional
layers will profoundly degenerate AlexNet’s introduction.
AlexNet is a fundamental plan for any movement and can
have enormous consequences for issues with automated

(a) (b)

Figure 12: (a) Original image; (b) histogram of oriented gradients.

(a) (b)

Figure 13: (a) Original image; (b) local binary pattern image.
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thinking, keeping watch for PC vision. The model
includes five progressively associated convolutional layers
of lessening channel size, followed by three totally associ-
ated layers. One of AlexNet’s fundamental features is the
incredibly speedy down testing of the widely appealing
depictions through strided convolutions and max pooling
layers. The delayed consequences of AlexNet (Table 3)

have demonstrated that on an uncommonly testing data-
set, an immense significant convolutionary neural associa-
tion is good for achieving record-breaking results using
coordinated learning. AlexNet is made out of eight layers.
The underlying 5 are convolutionary, and the last 3 are
completely related layers. We also have couple “layers,”
called pooling and order.

Le� lung detected Right lung detected

Figure 15: Left and right lung detection using local binary pattern algorithm.

Table 5: Existing methods on classification models.

Author
Ozturk et al.

Methodology
Darknet model

Year of publication
2020

Accuracy on multiclass (%)
87.02%

Civit-Masot et al. VGG-16 2020 90%

Cohen et al. Regression model 2020 1.14 mean absolute error

Le� lung detected Right lung detected

Figure 14: Left and right lung detection using Haar transform.
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10. VGGNet

VGG is a contraction for the Oxford University Visual Geo-
metric Group, and VGG-16 is a 16-layer network proposed
by the Visual Geometric Group. These 16 layers contain
likely limits and various layers; for instance, the max pool
layer is available (Table 4), yet no workable limits are joined.

10.1. Architecture. The plan is essential, followed by a most
extreme pooling layer of two flanking squares of 2 convolu-
tion layers; by then, it has three adjoining squares of 3
convolution layers, followed by max pooling; finally, we have
three thick layers. The last 3 convolution layers have obvious
profundities in different models. The fundamental examina-
tion is that after each most extreme pooling measure, the
size is reduced considerably. A fixed size (224 ∗ 224) RGB
picture is given as a commitment to this association which
infers that the structure has been made (224, 224, 3). The
primary preplanning is that they deducted the mean RGB
regard from each pixel, assessed over the whole getting ready
grouping. Pieces with a size of 3 ∗ 3 and a phase size of 1
pixel were used to cover the entire idea of the image. With
stage 2, over 2 ∗ 2 pixel windows, max pooling is
accomplished. Three totally related layers were progressively
connected to these convolutionary layers, the underlying two
of which were 4096 in size, and afterward, the last layer was
a layer with 1000 channels for 1000-way ILSVRC gathering
and a softmax feature.

11. Results and Discussion

11.1. Extracting Features from Haar Transform. The original
image in Figure 11(a) is taken, and various Haar transform
filters are applied to obtain different image characteristics.
As shown in Figures 11(a)–11(d), few features are extracted
from the original X-ray image in horizontal, vertical, and
diagonal, and the respective feature image is created. These
characteristics can be extracted using various kernels. This
process with several thousand features extracted from
images provides better accuracy.

11.2. HOG Feature Descriptor. For each pixel, the gradient
direction and magnitudes are determined, and feature
vectors are extracted using histograms. The vector of the
extracted feature from an image helps extract the features
from the image. In classifying a picture into a lung image
or a nonlung image, these features are helpful. The illustra-
tion in Figure 12(a) is a pictorial representation of the mag-
nitudes and directions of the gradient. In Figure 12(b),
whenever there is no shift in contrast, hog gradients are
almost zero.

11.3. LBP Feature Descriptor. The local binary pattern is a
plain and gray-scale invariant feature descriptor which is
highly used for extracting features for an image in a classifi-
cation model. In LBP, by thresholding its neighbourhood
pixels to either 0 or 1 depending on the center pixel value,
a binary code is created at each pixel. Figure 13(b) is an
image which contains all the features descripted from the
original COVID-19 lung image in Figure 13(a).

In Figure 14, the left and right lungs are detected after
extracting thousands of features from the image in which
the lungs have to be detected. Cascade classification is used
to classify the image into lung or not. The cascade classifier
uses the features extracted using Haar transform to get the
best accuracy in the classification process. In Figure 15, the
lungs are detected using the feature description vector of
every pixel in the original COVID-19 image. Through the
support vector machine algorithm, the image would be
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Figure 16: IOU scores of proposed image processing algorithms.

Table 7: Performance of deep learning models.

Deep learning models
Proposed deep
neural network

Accuracy on X-ray
images on classification

of diseases
91.40%

AlexNet 75.00%

VGGNet 87.5%
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Figure 17: VGGNet after 100 epochs.

Table 6: Intersection over union scores for detected left and right
lungs.

Algorithm
Hog feature descriptor

Right lung (IOU)
0.59

Left lung (IOU)
0.65

Haar transform 0.86 0.81

Local binary pattern 0.36 0.54
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subjected to identification of lungs. The support vector
machine helps in classifying an image with better accuracy.
The LBP transform helps in extracting features at every pixel
with the help of neighbouring pixels. Various Machine
Learning Algorithms can be applied to LBP transformed
images to classify a COVID-19 image. The results in
Figure 14 are classified using the support vector machine
and provided better accuracy.

11.4. Result Analysis and Performance Evaluation. The
objective of this proposed method is to classify lung X-ray
images into normal (without any viral/bacterial infections),
COVID-19 disease, and pneumonia disease using deep
learning techniques. The study revealed that the preprocess-
ing of data improved the performance of the developed
model in diagnosing respiratory diseases. This study also
implemented three deep learning models for the classifica-
tion. AlexNet and VGG-16 were the pretrained models,
and the proposed deep neural networks were the developed
model. A comparative analysis of these three models
revealed that the developed model outperformed the pre-
trained model in terms of IoU scores.

The results are promising (91%) in multiclass classifica-
tion when compared to the results of existing works in respi-
ratory system disease diagnosis and tabulated in Table 5.

To measure the best algorithm out of the above three
algorithms, intersection over union scores are calculated.
Intersection over union can be calculated by

IOU = Area of overlap
Area of union : ð2Þ

In equation (2), the area of overlap is the intersection of
the area of ground truth image with the area of the predicted
image, and the area of union is the union of the area of
ground truth image with the area of the predicted image.
The algorithm with IOU scores above 0.5 can be used as
the detector algorithm. As per Table 6, detection of lungs
using Haar transform was performing better when com-
pared with the other two algorithms

In Figure 16, the applied algorithms for feature
extraction are plotted with their IOU scores for the left
and right lungs.

The results clearly depict that Haar transform outper-
formed the Hog feature descriptor and local binary pattern
methods.

11.5. Evaluation of Classification Models. The feature
extracted X-ray lung images which are subjected to the pro-
posed deep neural network, AlexNet and VGGNet. The
developed architectures classify the images into three classes
of respiratory diseases as normal, COVID-19, and pneumo-
nia. The accuracy of the lung X-ray images on test data is
given in Table 7. As per the results, the proposed deep neural
network was performing better when compared with the
other 2 predefined networks. Figures 17–19 show the
accuracy and validation accuracy per epoch which can help
to determine the best model. The validation accuracy is
almost on par with the model accuracy which proves that
the trained model is efficient in the classification of respira-
tory diseases.
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Figure 19: Proposed DNN after 100 epochs.
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Figure 18: AlexNet after 100 epochs.
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Figure 21: Continued.
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The image preprocessing techniques shown in Figure 20
along with feature descriptors (Figure 8) applied on the dataset
also aid in the classification accuracy of the proposed deep
neural networkmodel. Pseudocolor is a useful tool for contrast
enhancement and visualization of data. The contrast of the
X-ray images was poor, and hence to improve, the pro-
posed method included addition of data visualization.

The grayscale images are processes using Matplolib’s
pyplot. This is a powerful method suitable for large datasets.
Figures 21(a)–21(c) display colorbars and indicate the data
values as a colormap. The mapping highlights the most dom-
inant features in identifying the disease. A sequential color-
mapping technique, Virdis (Figures 21(d)–21(f), highlights
the infected portions. So, when a user refers to the developed
model, he/she can be visually supported with the classification.
The nipy_spectral method (Figures 21(g)–21(i)) further dis-
criminates the anatomy of the lung with respect to normal/-
COVID-19 and pneumonia affected regions. The dataset is
huge, and when we subject these three image processing tech-
niques along with segmentation, feature descriptors, and
finally with classification, the results are obvious and easy to
predict the disease without the support of human assistance.

12. Discussion

The proposed method incorporated preprocessing tech-
niques comprising noise removal and image enhancements.
Segmentation and filtering were applied to identify left/right
lungs. Then, the preprocessed images were subjected to clas-
sifiers for the classification of respiratory diseases. The
results were compared to identify the most accurate prepro-
cessing technique and classification model. Haar transform
techniques outperformed other techniques based on the
IOU scores. The proposed DNN accurately classified the dis-
eases with 91.4% with runtime of the program to be 1944
seconds (32 minutes). The processor information is Intel®
core™, 16GB RAM, 64-bit operating system. The problem
statement requires a large dataset for training the deep learn-
ing model. This is time-consuming when trained using a
32/64-bit processor. This might further reduce when simu-
lated in GPU. Hence, based on the results, we have improved

the accuracy of the classifiers by applying efficient feature
extraction techniques and image preprocessing algorithms.
The existing techniques on the classification of respiratory
diseases are 90% accurate, and our proposed method pro-
vides an in-depth analysis of preprocessing techniques to
improve the DNN model performance.

13. Conclusion

A novel method has been proposed for the efficient classifica-
tion of respiratory diseases from chest X-ray lung images. The
existing technologies focus on COVID-19 diagnosis whereas
this proposed method focuses on all bacterial and viral infec-
tion lung diseases. In this pandemic situation, it is necessary
to differentiate COVID-19 from pneumonia. The proposed
method targets preprocessing and feature descriptors to effi-
ciently classify life-threatening lung diseases. The chest X-ray
images are preprocessed by applying various image processing
algorithms. Then, the preprocessed images are subjected to
Haar transform filters with various kernels to extract predom-
inant features of the X-ray image. Gradient direction andmag-
nitudes are calculated for every pixel, and feature vectors are
also extracted using histograms. Similarly, a local binary pat-
tern is also applied for extracting features for an image in the
classification model.

Based on the features extracted by three different tech-
niques and using an appropriate classification model, the left
and right lungs are segmented.

(i) The features extracted through Haar transform pro-
vide the best accuracy in segmentation of left and
right lungs

(ii) Cascade classification and support vector machine
aid in identifying the presence of lungs

(iii) Segmentation of lungs using Haar cascade classifier
outperforms with an average IoU score of 81%
when compared with the other two algorithms

(iv) The feature descripted X-ray images are then sub-
jected to the proposed deep neural network,

(g) (h) (i)

Figure 21: (a) Normal-colorbars; (b) COVID-19-colorbars; (c) pneumonia-colorbars. (d) Normal nipy_spectral; (e) COVID-19 nipy_
spectral; (f) pneumonia nipy_spectral. (g) Normal-viridis. (h) COVID-19-viridis. (i) Pneumonia-viridis (other image preprocessing results).
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pretrained AlexNet and VGGNet for classification
of lung diseases (normal/COVID-19/pneumonia)

The proposed deep neural network performed well with
91% of accuracy in classifying images into pneumonia bacte-
ria, COVID-19, and normal. This model can help doctors to
diagnose, study the diseases, and provide appropriate treat-
ment. This architecture can be also used for diagnosing var-
ious other life-threatening diseases from medical images.
Thus, the developed method focused towards achieving the
major goals of the United Nations in promoting good health
and well-being through diagnosis of COVID-19 and other
respiratory diseases.
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The investigation and study of the limbs, especially the human arm, have inspired a wide range of humanoid robots, such as
movement and muscle redundancy, as a human motor system. One of the main issues related to musculoskeletal systems is the
joint redundancy that causes no unique answer for each angle in return for an arm’s end effector’s arbitrary trajectory. As a
result, there are many architectures like the torques applied to the joints. In this study, an iterative learning controller was
applied to control the 3-link musculoskeletal system’s motion with 6 muscles. In this controller, the robot’s task space was
assumed as the feedforward of the controller and muscle space as the controller feedback. In both task and muscle spaces,
some noises cause the system to be unstable, so a forgetting factor was used to a convergence task space output in the
neighborhood of the desired trajectories. The results show that the controller performance has improved gradually by iterating
the learning steps, and the error rate has decreased so that the trajectory passed by the end effector has practically matched the
desired trajectory after 1000 iterations.

1. Introduction

The reaching movement is accounted for a huge part of
hand movements. In all these activities, a swift and complex
process occurs in the brain, and after processing, the gener-
ated control signals are transmitted to body motors, namely,
muscles. This complex process in the brain comprises some
levels. First, the desired trajectory is determined for reaching
an object, and in the second step, the coordinates of the
specified trajectory estimated by vision are converted into
the body coordinates; in the last step, control commands
are sent to the muscular system to go through the desired
trajectory. Investigating the body’s musculoskeletal system’s
control mechanism can lead us to develop a robust control
technique that can be applied to rehabilitation robotics.
The design process and application of the actuators in such
robots are similar to the simulation of the human body’s
neural control system. Many controllers have been intro-
duced and employed to control such systems and produce
motions similar to the human movement, which are of dif-
ferent design methods and performances based on their

design space (robot task space, joint space, and muscle
space) [1, 2]. Each of these spaces has its features and com-
plexity, and as we move from the task space toward the mus-
cle space, it will be difficult to design the controller because
of the increasing space order. It should be noted that the
controller design in the muscle space should be carried out
carefully so that the forces out of the body are ignored,
and the model approaches reality. The joint redundancy
causes each angle to have no unique solution in return for
an arbitrary trajectory of the arm’s end effector [3]. Another
problem caused by redundancy is the lack of a unique solu-
tion for model forces to generate unique torque [4]. Many
optimization techniques have been proposed to overcome
this problem in classification [5], biology and robotics [6–9].

On the other hand, in everyday life, we can easily carry
out the most complex movements with the highest possible
accuracy in the presence of the same redundancies with
the least possible. One solution to overcome this complexity
is that the central nervous system activates a small group of
muscles—called muscle synergy [10]—which allows the con-
trol of body movements with less computational cost by
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reducing the required independent degrees of freedom. In
recent years, Suetani and Morimoto [11] presented an inno-
vative hypothesis under the title of “Virtual Spring-Damper
Hypothesis,” where there is no need to optimize the redun-
dancy criterion to overcome the redundancy problem. How-
ever, the previous problem is solved by applying this
hypothesis, but due to the redundancy of muscles, we will
deal with other problems that require the application of
the muscle nonlinear models. In 2013, aiming to find the
synergies of reaching and balancing movements on the mus-
culoskeletal system of the hand, Tahara et al. [12] conducted
a research study to investigate muscular integrity force data
and the data of body receptors (proprioception and vision).
The canonical correlation analysis (CCA) method, which
follows the natural behavior of the body, was used to obtain
the relation between the data related to muscles and body
receptors. In a real system, the time delay and noise should
be considered in the body’s actuator and sensor systems.
Hence, this study is aimed at examining the effects of time
delay and noise on determining the synergies of the hand’s
musculoskeletal system. The results of this study not only
can be used to understand the biological data of the motor
control system but also can be applied as an artificial con-
troller for a high-DOF robot. In this study, the motion equa-
tions for the 3-link musculoskeletal system of the human
arm and the iterative learning controller are presented in
Section 2. The results obtained from the simulation of the
ILC (iterative learning control) with the neuro-fuzzy con-
troller are discussed in Section 4. In Section 6, the remarks
concluded from this study are described.

2. DOF Human Musculoskeletal Arm Model

The 3-DOF human musculoskeletal arm model used in this
study consisting of three solid links and six monoarticular
muscles is shown in Figure 1. Since this arm moves on the
horizontal plane, the effect of the gravity force can be
ignored. As shown in Figure 1, this model consists of six
muscles that can only apply tensile forces so that each joint
moves by some of these related muscles. Muscles are
assumed to be without weight and designed based on the
Hill model, which are directly connected to links as

fm = P�α − P A �αð ÞC + C0f g_l,
�α = �α1, �α2,⋯, �α6ð Þ ϵ R6,
P = diag p1, p2,⋯, p6ð Þ ϵ R6×6,
A �αð Þ = diag �α1, �α2,⋯, �α6ð Þ ϵ R6×6,
C = diag c1, c2,⋯, c6ð Þ ϵ R6×6,
C0 = diag c01, c02,⋯, c06ð Þ ϵ R6×6:

2
666666664

ð1Þ

From Ref. [13], parameter fm is the muscles’ contractile
force, which is the nonlinear function of the muscle’s con-
tractile velocity and the control input produced in the cen-
tral nervous system.

Considering L1, L2 , and L3 to be the first, second, and
third links, respectively, as well as their relation angle with

respect to the x-axis, first link, and second link as θ1, θ2,
and θ3, respectively, the arm’s end effector position to the
joint angles is expressed by the following equation:

X = J
_

θð Þ =
L1 cos θ1ð Þ + L2 cos θ1 + θ2ð Þ + L3 cos θ1 + θ2 + θ3ð Þ
L1 sin θ1ð Þ + L2 sin θ1 + θ2ð Þ + L3 sin θ1 + θ2 + θ3ð Þ

" #
∈ R2:

ð2Þ

Defining length vectors of themuscles as l = ½l1 l2 l3 l4 l5 l6�T
results in
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Figure 1: Schematic view of the 3-DOF musculoskeletal model for
the hand.
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where r1−6 and s1−6 represent the torque levers, as shown in
Figure 1. The following equations are obtained by taking the
time derivative of equations (2) and (3) with respect to time:

_X = J _θ, ð4Þ

_l =WT _θ: ð5Þ

_X = _x _y½ �T is the end effector velocity of the arm, _θ =
_θ _θ2

_θ3
� �T is the angular velocity of joints, and _l =
_l1 _l2 _l3 _l4 _l5 _l6

� �T represents the stretch rate of mus-
cles. Also, J ∈ R2×3 is the Jacobianmatrix that shows the relation
between the linear velocities of the arm’s end effector and angu-
lar velocities while WT ∈ R6×3 is the Jacobian matrix, which
relates the contractile rate of muscles to the angular velocity of
the joints as

J =
J11 J12 J13

J21 J22 J23

" #
,

J11 = −L1 sin θ1ð Þ − L2 sin θ1 + θ2ð Þ − L3 sin θ1 + θ2 + θ3ð Þ,
J12 = −L2 sin θ1 + θ2ð Þ − L3 sin θ1 + θ2 + θ3ð Þ,
J13 = −L2 sin θ1 + θ2ð Þ − L3 sin θ1 + θ2 + θ3ð Þ,

J21 = L1 cos θ1ð Þ + L2 cos θ1 + θ2ð Þ + L3 cos θ1 + θ2 + θ3ð Þ,
J22 = L2 cos θ1 + θ2ð Þ + L3 cos θ1 + θ2 + θ3ð Þ,

J23 = L3 cos θ1 + θ2 + θ3ð Þ,

W =
−r1 r2 0 0 0 0
0 0 −r3 r4 0 0
0 0 0 0 −r5 r6

2
664

3
775:

ð6Þ

By assuming J as a full-rankmatrix, the inverse of equations
(2) and (4) is obtained as follows:

θ =G−1
x xð Þ ∈ R2, ð7Þ

_θ = J−1 _x ∈ R2: ð8Þ

G−1
x ðxÞ represents a vector with nonlinear functions, which

shows the inverse kinematics from the task space to joint space.
Also, J−1 shows the inverse kinematics from the task space
velocity to the joint’s angular velocity. By substituting equation
(8) into equations (3) and (5), we can state that

l =Gι G
−1
x xð Þ� �

∈ R6, ð9Þ

_l =WT J−1 _x ∈ R6: ð10Þ
Equation (9) demonstrates the inverse kinematics from the

task space to the muscle space, which is applied to the control-
ler’s feedforward behavior.

By applying the principle of virtual work, the work done
by muscle torque is defined as follows:

T =Wfm ∈ R2, ð11Þ

where fm = f1 f2 f3 f4 f5 f6½ �T is the vector repre-
senting the tensile forces of muscles and T =
T1 T2 T3½ �T is the joint torque vector.

By assuming thatW ∈ R3×6 is a row full-rank matrix dur-
ing movement, the inverse of equation (11) is expressed as
follows:

fm =W+T ∈ R6, ð12Þ

W+ =WT WWT� �−1 ∈ R6×3: ð13Þ
Besides, the static relation between T and the output vec-

tor of forces applied to the arm’s endpoint in the space F
∈ R2 is expressed as follows:

T = JT F ∈ R3: ð14Þ

By substituting equation (14) into equation (13), it is
concluded that

fm =W+ JT F ∈ : ð15Þ

Equation (15) demonstrates the static inverse relation
between fm and F.

3. Iterative Learning Control

An ILC strategy of the PI type has been introduced in Refer-
ence [14] to trace an arbitrary time-dependent trajectory
using the robotic arm model. The errors related to the posi-
tion and velocity in a test are stored to be tuned for the next
test by an input correction strategy. The data stored in the
first step are multiplied by a factor and added to the input
in the next test. Implementing a simple task space feedback
control for a 2-DOF arm is considered by Tahara et al. to
address the muscle space redundancy problem on the con-
tractile output force [15]. They also studied multiple space
variables to enhance the robustness of the 2-DOF arm
exposed to sensory noises. Despite the nonlinear equations
of the human arm’s motion, the suggested method suffi-
ciently improves the system’s robustness regarding the tradi-
tional ILC methods [16]. Therefore, the proposed method is
considered in our study. As discussed in the previous sec-
tion, to compensate for the iterative learning controller’s
input, there are three representatives of the state space,
namely, muscle space, joint space, and task space. Therefore,
any space that can better compensate for the control input is
of great importance in achieving the desired performance.
Furthermore, it should be noted that many noises cause
damage to sensory information, and its huge impact on the
movement of the musculoskeletal system is inevitable.
Therefore, the system’s robustness to deal with the noise var-
ies depending on the space in which the system is modeled.
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A new control strategy based on iterative learning, which
uses the sum of state-space variables, is employed to
improve the robustness of the system against noise. In the
present paper, a case study is performed by considering the
task space and muscle space as the spaces for feedback and
feedforward behaviors, respectively. The control input of
the muscles in the ith test is defined as follows:

ui = −Wi
+ Ji

T KpΔxi − KυΔ _xi
� �

+ υi, ð16Þ

where index i represents the test number, Kp = diag ½kp1,kp2�
∈ R2×2 > 0 and Kυ = diag ½kυ1,kυ2� ∈ R2×2 > 0 are the feedback
coefficients of position and velocity in the task space, and υi
is the feedforward parameter obtained from the iterative learn-
ing process. The error of position and velocity is defined as
Δxi = xi − xd ∈ R2 and Δ _xi = _xi − _xd ∈ R2, respectively; xd and
_xd also represent the end effector’s position and velocity,
respectively. The feedforward parameter, υi ∈ R6, is not
designed in the task space similar to feedback behavior, but
it is modeled in the muscle space and updated as follows:

υi =
0, i = 1,
1 − βð Þυi−1 − ΦΔιi−1 +ΨΔ_ιi−1ð Þ, i > 1,

(
ð17Þ

where Φ = diag ½ϕ1, ϕ2,⋯, ϕ6� ∈ R6×6 > 0 and Ψ = diag ½ψ1,
ψ2,⋯, ψ6� ∈ R6×6 > 0 are the coefficient matrices of position
and velocity, respectively; besides, the position error is defined
as Διi = ιi − ιd and the velocity errors in the muscle space are
expressed as Δ_ιi = _ιi − _ιd. ιd ∈ R6 and _ιd ∈ R6 are the length of
muscles and their contraction rate relative to the position
and velocity of the end effector, respectively. These parameters
are obtained by calculating the inverse dynamic as

Διi =Gι G
−1
x xið Þ� �

−Gι G
−1
x xdð Þ� �

,

Δ_ιi =WT
i J

−1
i Δ _xi:

ð18Þ

In this study, the Gaussian noise is used as a noise which is
applied to sensory information. An error in the initial condi-
tions of two consecutive tests and dynamic oscillations due
to different types of noises causes the general system to be
unstable using the iterative learning controller. Therefore, to
overcome these noises, Suetani andMorimoto [11] introduced
a forgetting factor to update the iterative learning controller.
Using this forgetting factor ensures that the final converged
trajectory after good learning is in the desired trajectory neigh-
borhood. In equation (17), β is the forgetting factor that has to
satisfy the condition of 0 < β < 1. It is assumed that the mus-
cle’s length and end effector position and velocity signals
include Gaussian noise individually. Due to Refs. [15, 17],
the magnitude of the noise existing in the end effector’s posi-
tion and velocity is 4% of real data, and the magnitude of noise
existing in the length of the muscle and its contraction rate is
50% of the real data. This is because the data related to the end
effector’s position and velocity are obtained through observa-
tion, which is relatively accurate. However, the data related to
the muscle’s length and contraction rate are received through

the muscular bulk which has large electrical noise leading to
inaccurate results [18].

4. Results

The simulation results are presented in this section. Tables 1
and 2 demonstrate the numerical values associated with the
3-link model and the values related to the muscles’ physical
properties, respectively. Also, the coefficients of the control-
ler are listed in Table 3.

The controller is aimed at tracing a semicircular trajec-
tory. Therefore, we consider the following trajectory:

x = 0:2 + 0:1 cos tð Þ,
y = 0:55 + 0:1 sin tð Þ:

(
ð19Þ

The simulation’s total time is assumed to be T = πs, and
the hand is initially located at point ð−0:1,0:55Þ. Therefore,
during the aforementioned period, the robot is expected to
cover the semi-semicircular trajectory fully. For evaluating
the robustness of the presented model against uncertainties,
the simulation parameters have been changed by 5%. To
compare the controller’s performance with similar counter-
parts, the model control results are compared to the neuro-
fuzzy control method presented in our other paper [19]. In
the cited article, the similar given trajectory was precisely

Table 1: Numerical parameters of the model.

Length
(m)

Mass
(kg)

Inertial
moment
(kg·m2)

CoM
position
(m)

1st link 0.31 1.93 0.0141 0.165

2nd link 0.27 1.32 0.0120 0.135

3nd link 0.15 0.35 0.0010 0.075

Table 2: Geometric parameters of the muscles.

Muscle Value (m)

l1 r1 = 0:055 s1 = 0:080
l2 r2 = 0:055 s2 = 0:080
l3 r3 = 0:030 s3 = 0:120
l4 r4 = 0:030 s4 = 0:120
l5 r5 = 0:035 s5 = 0:220
l6 r6 = 0:040 s6 = 0:250

Table 3: The parameters associated with the controller.

Parameter Value

Feedback gain Kp = 8080½ �
Feedback gain Kv = 5050½ �
Learning gain Φ1 =⋯ =Φ6 = 250
Learning gain Ψ1 =⋯ =Ψ6 = 140
Forgetting factor β = 0:3
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followed by the muscle optimization, and the results con-
cluded appropriate compliances with the hand’s natural
motion. The model simulation was performed in MATLAB
version 2021a running on an Intel Core i7 (2.8GHz and
16Gb RAM). For all simulations, the variable-step MATLAB
ODEs solver ode45 with relative solver tolerance 1 × 10−4
was implemented, which took 4.817 s for the ILC controller
compared to 10.045 s for the neuro-fuzzy controller.

Figure 2 depicts different trajectories that the controller
has taken over 1000 iterations to reach the desired trajectory.
As can be seen, as the controller’s performance is improved,
the error is reduced gradually. Therefore, in iteration no.
1000, the trajectory is adjusted to the desired trajectory. Such
a process is similar to learning and muscle memory that can
perfectly go through a trajectory with practice and repeti-
tion. The trajectories that both controllers have gone
through at the same time are shown in Figure 3. The results

show that the proposed controller has better performance. In
other words, if we exceed 1000 iterations in training the con-
troller, we will observe a further improvement in the controller
results. However, it should be noted that the simulation time
increases with increasing the number of iterations.

Figure 4 displays the displacement of different joints dur-
ing the movement scenario. The displacement of joints is sim-
ilar to another. The adaptive controller performance is based
on the optimization of the cost function and the iterative con-
troller performance on learning; hence, Figure 4 designates
that the proposed controller performance is acceptable com-
pared to the adaptive controller’s performance using the
neuro-fuzzy adaptive controller.

Finally, the magnitude of forces applied to each muscle
during the desired trajectory is illustrated in Figure 5. The
neuro-fuzzy controller uses muscle optimization; therefore,
its force diagrams are much more ideal. On the other hand,
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Figure 2: The trajectories passed by the model per 1000 iterations.
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Figure 3: Comparison of trajectories covered by the neuro-fuzzy adaptive controller and ILC.
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the ILC controller has a more smooth bell-shaped profile sim-
ilar to the agonist-antagonist paired muscles involved in the
natural movements of the human body. However, both con-

trollers have similar patterns. In addition, muscle forces in
both methods are in the adequate range for the human body,
where the ILC method has almost fewer force values.
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Figure 4: Comparison of joint displacement between the neuro-fuzzy adaptive controller and ILC.
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Figure 5: Comparison of the generated forces using the neuro-fuzzy adaptive controller and ILC.
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5. Discussion

The controller has two pieces, the first of which is feedback
input comprising task space variables, while the other part
is the feedforward input, which is made up of muscle space
parameters gained through the iterative learning algorithm.
Although all controller gains are tuned in all iterations, the
simulation results demonstrated that the hand endpoint in
the first iteration is significantly different from the 1000th

iteration. Despite the nonlinear equations of muscles, the
controller could pass through the desired trajectory after
the 1000th iteration. In addition, the path tracking error
has considerably been mitigated by increasing the repeti-
tion number. The use of different variable spaces in con-
junction with the learning algorithm was the primary
reason for the sufficient accuracy of path tracking in the
proposed controller.

Furthermore, the travel time of the simulation was
reduced to half using the ILC controller, compared to the
neuro-fuzzy one following the 1000th repetition of the
desired path. Force values for the given path were also in
the sufficient force ranges of the human hand muscles. In
most muscles, the endpoint passed through the given trajec-
tory with a much lower force than the neuro-fuzzy control-
ler. These results characterize the efficiency of this controller
for musculoskeletal modeling in the human body. As a
future study, we intend to conduct movement trials in actual
and uncontrolled conditions using EMG signals plus effec-
tive technologies such as user-friendly contactless path rec-
ognition to increase the method’s productivity [5].

6. Conclusion

The controller’s performance was improved by iterating
learning, and subsequently, the related error was reduced
so that the final trajectory that has gone through simulation
is practically adjusted to the desired trajectory. Such a pro-
cess is similar to learning and muscle memory that can lead
to perfectly going through a trajectory with practice and rep-
etition. The quantitative comparison between the iterative
learning controller and neuro-fuzzy controller results sug-
gested that the proposed controller has a better performance.
In other words, if we exceed 1000 iterations in training the
controller, we will observe a further improvement in the
controller results. However, it should be noted that the time
required for solving the problem increases by increasing the
number of iterations. By comparing the forces generated in
the muscles for both controllers, it was observed that the
maximum value of these forces for the current controller
was less than that of the adaptive controller, although the
average of generated force is higher for the current control-
ler. Considering that the muscle forces’ optimization is one
of the design indicators in adaptive controllers, it was not
considered in the proposed method. Here, it was important
that the controller can successfully guide the model on the
desired trajectory in the presence of system uncertainties,
and the forces applied to the muscles are in the desired
range.
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This study will concentrate on recent research on EEG signals for Alzheimer’s diagnosis, identifying and comparing key steps of
EEG-based Alzheimer’s disease (AD) detection, such as EEG signal acquisition, preprocessing function extraction, and
classification methods. Furthermore, highlighting general approaches, variations, and agreement in the use of EEG identified
shortcomings and guidelines for multiple experimental stages ranging from demographic characteristics to outcomes
monitoring for future research. Two main targets have been defined based on the article’s purpose: (1) discriminative (or
detection), i.e., look for differences in EEG-based features across groups, such as MCI, moderate Alzheimer’s disease, extreme
Alzheimer’s disease, other forms of dementia, and stable normal elderly controls; and (2) progression determination, i.e., look
for correlations between EEG-based features and clinical markers linked to MCI-to-AD conversion and Alzheimer’s disease
intensity progression. Limitations mentioned in the reviewed papers were also gathered and explored in this study, with the goal
of gaining a better understanding of the problems that need to be addressed in order to advance the use of EEG in Alzheimer’s
disease science.

1. Introduction

Alzheimer’s disease (AD) is a neurological disease and is also
the most common form of age-related dementia in today’s
culture. In 2018, it was reported that 50 million people glob-
ally have Alzheimer’s disease. In 2030, this figure will be
around 82 million, and in 2050, it will be around 152 million
[1]. In recent decades, there has been a growing focus on
using advanced electroencephalography (EEG) signal
processing to predict or differentiate Alzheimer’s disease.
Neuroimaging studies have been extensively used to investi-
gate the causes of AD and to increase the accuracy of AD
diagnosis [2]. Since the brain is such a complex structure with
complex nonlinear dynamics, complexity studies utilizing
data from brain imaging such as EEG, magneto-encephalo-
grams, and functional magnetic resonance imaging (fMRI)
are becoming more common fMRI [3]. In several experi-

ments, brain impulses from just one channel, such as an elec-
trode in EEG, a channel in magneto-encephalograms, or a
voxel in fMRI, were studied. The brain complexity waves
have recently been utilized to help explain the complexity
of AD disorders [4]. Sufficient research into brain imaging
modalities may help to describe the pathways underlying
AD and to provide valuable evidence for the diagnosis.
Recently, some research has shown that degrees of difficulty
may be used as biomarkers in the early detection of AD.
There is currently no systematic study that reviews the vari-
ous modulation techniques and discusses the complexity of
AD brain disorders. Optimizing EEG analysis is important
for designing low-cost, noninvasive wearable applications to
screen Alzheimer’s patients [5]. The choice of critical EEG
channels may also aid in the development of new wearable
technologies and the optimization of computing resources.
Many experiments have looked at multiscale entropy
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(MSE) and MSE-based measurements of EEG signals from
Alzheimer’s patients [6].

MSE represents the degree of healthfulness of a biologi-
cal process by its production physiologic signals through
measuring the complexity of a physiologic time series over
various time scales [5]. Many experiments have shown that
the MSE values of EEG signals from normal persons are
higher on small scales than those from AD patients, but
lower on large scales than someone from AD patients [5,
7]. Furthermore, at broad scales, the slope of the MSE vs.
size plot was observed to be higher for AD patients than
for healthy controls. The EEG is a noninvasive experimental
tool that shows how brain synapses work in real time. Quan-
titative EEG (qEEG) research offers many perspectives on
EEG signals, including frequency, dynamic alterations, and
source imaging. Various researches have explained that
qEEG can diagnose the foregoing anomalies in AD patients
[8]: (1) changes in EEG patterns, (2) decreased coordination,
(3) diminished sophistication, and (4) neuromodulator
defects as potential markers for brain activity assessment.
Furthermore, qEEG offers objective and quantifiable data
that can be replicated in subsequent trials, as well as the ben-
efits of having less laboratory protocols and lower costs [8].
This makes it ideal for screening large-scale and early detec-
tion of AD. For the purpose, EEG has been thoroughly
researched as a useful instrument for analyzing AD over
the past few decades. Nonetheless, as far as we can see, few
of the study findings assist physicians with their daily work
or decision-making. The concern is that the EEG signal is
noise-sensitive, with nonstationary properties, which makes
detection difficult [9]. Furthermore, since there is so much
variation between subjects, it is difficult to distinguish
objects and patterns from natural brain function. Reliable
biomarkers and rigorous diagnostic techniques that can
derive valuable knowledge from jumbled EEG signals are
also required urgently [9, 10].

For EEG signal processing, the wavelet transform has
been suggested as an efficient tool for analyzing time and
frequency. It entails convolving the EEG signal with a
variable-width time window, and higher frequencies have
narrower window widths, whereas lower frequencies have
wider window widths. This adjusts well to the features of
EEG signals, which are made up of short-duration high-
frequency incidents and long-duration low-frequency inci-
dents [11]. EEG pulse time-frequency measurement
combined with machine learning (ML) methods could help
with diagnosis and understanding of AD. Overfitting could
be avoided by using machine learning algorithms like feature
selection, which exclude data that is redundant from high-
dimensional data [12]. The thesis is aimed at investigating
robust functional biomarkers dependent on time-frequency
features of qEEG and developing a computer-aided discrim-
inant scheme for automatically classification EEG signals of
AD and normal elderly controls (NC) as a result of the
promising results obtained with the wavelet transform anal-
ysis and machine learning methods [13].

Many experiments have looked at multiscale entropy
and MSE-based measurements of EEG signals from Alzhei-
mer’s patients. MSE represents the degree of healthfulness

of a living process by its production physiologic signals
through measuring the complexity of a physiologic time
series over various time scales. Many experiments have
shown that the MSE values of EEG signals from healthy con-
trols are higher on small scales than those from AD patients,
but lower on large scales than those from AD patients.
Furthermore, at broad scales, the slope of the MSE vs. size
plot was observed to be higher for AD patients than for
healthy controls. Lately, machine learning techniques have
been introduced to EEG research in order to enhance the
recognition accuracy at AD patients of various severity
levels, as well as stable subjects. Any MSE time scale could
be used as a function in a machine learning algorithm [14].
For each EEG channel, Fan et al. [15] used 38 features
for machine learning, including MSE features and other
spectral and temporal features derived from the EEG data.
A total of 24 EEG recordings were obtained from stable,
mild, and severe AD patients. There were five binary and
one ternary classification problem to solve. Fan et al. used
19 EEG channels to remove 380 MSE functionality [15].
Each channel’s EEG signals contributed a series of 20 dis-
tinct MSE values calculated at scales 1–20. A total of 123
EEG recordings were obtained from stable people, people
with very minor AD, people with mild AD, and people
with moderate to serious AD.

2. Literature Review

During rest, generalized EEG slowdown has been noticed in
a variety of AD researches. This slowdown can be seen visu-
ally as a reduction in the dominant baseline rhythm’s tempo,
or spectrally as a rise in the strength of slow rhythms and a
reduction in the power of quicker rhythms [16]. Indeed, in
AD, the power spectrum’s peak frequency is usually among
8-12Hz variations to a lower range of 6–8Hz. Just a few
research has looked at EEG shifts in people with frontotem-
poral dementia. In frontotemporal dementia patients, quali-
tative examination of EEG recordings normally reveals no
irregular slowing [17]. We would like to find out that path-
ological EEG slowdown is a more serious version of the
general slowdown of the frame rhythm that occurs with
healthy aging. As a result, age-matched control groups are
needed in these studies; otherwise, the EEG-slowing effect
would be exaggerated. A visual grand complete EEG score
and the coordination probability as an indicator of func-
tional connectivity were used to equate mild to moderate
frontotemporal dementia and patients of Alzheimer’s dis-
ease to healthy controls (HC) [18]. The complete EEG score
in visual form did not vary significantly between frontotem-
poral dementia and HC. Using the visual grand total EEG,
patients of Alzheimer’s disease display substantial EEG slow-
ing and lack of reactivity as compared to frontotemporal
dementia and HC patients [19]. In high rates of frequency,
AD patients have a lower chance of synchronization than
frontotemporal dementia and HC patients, but there are
no variations between frontotemporal dementia and HC
patients (Figure 1). As a result, shifts in synchronization
are likely to follow the slowing trend. Higher frequency
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features, such as strength and synchronization, are dimin-
ished in AD but not in frontotemporal dementia.

The qEEG variations are between people with frontal
lobe dementia and others with Alzheimer’s disease, Parkin-
son’s disease dementia [21]. Lewy body disease has been
studied in some trials. The global field power for six fre-
quency bands was measured for the qEEG: δ (1 to 3.5Hz),
θ (4 to 7.5Hz), α (8 to 11Hz), β1 (12 to 15.5Hz), β2 (16
to19.5Hz), and β3 (20 to 23.5Hz). The number of quick fre-
quency bands was used to measure the spectral ratio α + β1
+ β2 + β3 and bands of low frequency δ + θ. Patients with
likely frontotemporal dementia were similar to AD patients
and healthy controls on cortical EEG sources’ spectral profile
[22]. The authors of this study used EEG band forces, coher-
ence, dominant frequency, peak frequency, and cortical
sources to distinguish sixteen patients with AD from nine-
teen patients by frontotemporal dementia. The most accu-
rate predictors of frontotemporal dementia and AD were
identified in a model using logistic regression analysis.
Activities such as elevated levels of visuospatial capacity
and episodic memory were among the predictors. The
model’s classification accuracy was 93.3 percent.

As a result, combining qEEG and neuropsychological
assessments substantially improves classification perfor-
mance and can be used for frontotemporal dementia and
AD differential diagnoses [23]. Using power spectral analysis
and uniform standardized low-resolution brain electromag-
netic tomography within δ, θ, α1, α2, β1, β2, and β3, Caso
et al. distinguished 39 Alzheimer’s disease patients from
among the frontotemporal dementia patients. As a result,
the sensitivity is at the degree of chance. In comparison to
HC, both studies showed higher expression of diffuse δ/θ
and lower central/posterior quicker frequency bands in AD

patients. Patients with frontotemporal dementia had
diffusely higher θ capacity than HC patients and lower δ
than AD patients. In comparison to frontotemporal demen-
tia patients, AD patients had diffusely higher θ power in the
power spectrum and reduced α2 and β1 in central/temporal
areas using standardized low-resolution brain electromag-
netic tomography. Slower frequencies are becoming more
important, whereas higher frequencies are becoming less
relevant. In patients with moderate levels of frontotemporal
dementia and in HC, studies of global field force, which is a
metric for the electric field pressure in the entire brain, were
combined with EEG neuroimaging observations with low-
resolution standardized brain electromagnetic tomography
(sLORETA) [24]. Important group effects were found in the
global field power in the δ (1.5 to 6Hz), α1 (8.5 to 10Hz), and
β1 (12.5 to 18Hz) bands. Differences in activation were seen
in the 1 band (health control > frontotemporal dementia) in
the orbital frontal and temporal lobes, the band
(Alzheimer’s disease > health control) in widespread areas like
the frontal lobe, and the δ band
(frontal lobe dementia > Alzheimer’s disease) in the parietal
lobe and sensorimotor region in low-resolution standardized
brain electromagnetic tomography research (Figure 2). As a
result, it does not appear that a particular brain area is essen-
tial in identifying these types.

Snaedal et al. used qEEG to see whether they could tell
the difference between 239 patients with AD, 52 patients to
Parkinson disease, and 14 patients to FDT [26]. For group-
ing, the authors of this Icelandic analysis used θ, α2, and
β1, as well as peak frequency. When utilizing a SVM method
to classify cases of degenerative diseases from HC, a good-
to-excellent distinction was observed, but this was less so
when the risk of comorbidity was high [27]. The investiga-
tors were able to distinguish AD from Parkinson’s disease
dementia with 91 percent accuracy, 93 percent for Parkin-
son’s disease dementia-frontotemporal dementia, and 88
percent for AD-frontotemporal dementia. Given the limited
sample size of frontotemporal dementia patients, the preci-
sion of these statistical figures must be viewed with caution.
In general, experiments including frontotemporal dementia
face challenges in attracting volunteers, so the significance
of this research should not be overlooked. Nonetheless, ade-
quate feature subset selection is required for classification
analysis, particularly in experiments with long vectors with
features, such as this one, which included 1120 entries. It is
unclear if the genetic algorithm’s 10-fold cross-validation
used a different preparation, assessment, and research
collection in this analysis. This study reduced the original
count of 382 studies to 126 studies after eliminating unqual-
ified studies, as seen in Figures 3(a) and 3(b). EEG (64
percent), magneto-encephalograms (28 percent), and fMRI
and practical near-infrared spectroscopy were the three
types of studies (7%).

3. Preprocessing of EEG Signals

Hans Berger invented EEG, a noninvasive technique of func-
tional imaging for studying the brain, in 1923. EEG
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Figure 1: Electrode interaction effects caused significant group
multiplication in the 8–10Hz frequency range [20].
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measures the electrical output of a community of neurons to
capture electric signals of the brain from the cerebral mantle
[28]. EEG has a poorer spatial resolution than functional
MRI but has a better temporal view into neuronal activity.
Until operation EEG signals, five frequency bands are usu-
ally examined, δ (up to 4Hz), θ (4 to 8Hz), α (8 to 12Hz),
β (12 to 26Hz), and γ (26 to 100Hz) [29]. Table 1 summa-
rizes these frequency bands and their associations with
human activity.

EEG has a frequency range of 1–100Hz and a voltage
range of 10–100μV. To detect a disorder or decipher brain
function using EEG data, utilizing the Fourier transform or
wavelet transform, extract features and utilize spectral infor-
mation from raw EEG dataset [29]. After that, the extracted
features or transformed raw data are utilize to train a ML-
based classifier, with deep learning algorithms proving to
be effective at automated feature extraction for testing.
Centered on the location of the reference electrode, EEG
recording can be done in two ways [29].

Experts believe that picture preprocessing is a bad idea
since it affects or alters the raw data’s actual nature. Intelli-
gent picture preprocessing, on the other hand, can give

benefits and address issues, resulting in enhanced locally
and globally feature recognition. Image preprocessing may
have a significant beneficial impact on the quality of feature
extraction and machine vision findings. The statistical
normalizing of a data collection, which is a frequent step
in many visual feature techniques, is comparable to image
preprocessing [30]. This is why a thorough study of picture
preprocessing is important. A local binary encoder utilizing
gray scale data, for instance, will involve different prepro-
cessing than a color SIFT method; moreover, some investi-
gative effort may be necessary to fine-tune the picture
preprocessing stage for optimal results. The pixel intensity
measurements of point pairs are dealt with using local
binary features. As a consequence, the evaluations are highly
insensitive to lighting, brightness, and contrast, and picture
preprocessing may not be required to get satisfactory
findings. Current literature-based local binary pattern tech-
niques do not generally require significant picture prepro-
cessing; instead, they depend on a simple matching
criterion that can be modified to accommodate for lighting
or contrast [30]. A Fourier transform calculated across the
whole picture or block is an example of a global or regional

Delta Theta Alpha 1 Alpha 2 Beta 3Beta 2Beta 1

A

P

FTD

NC

versus

P

A

−0.344 −0.258 −0.172 0.172 0.258 0.3440.000−0.086 0.086

Figure 2: For the frontotemporal dementia and control classes, current density images in Talairach space collected by sLORETA were
compared [25].

1600

7579
8018

7299
6865

6463

124
560 529 504 463 4941084

5048 5226

8227 8243

5154

1272

5713 5464 5560 5559 5484

2021 2020 2019 2018 2017 2016
EEG
MEG

fMRI
PET

(a)

74582

20174

9470

5190

1275

1213

Article

Proceeding

Meeting
abstract

Review

Editorial

Book
chapter

(b)

Figure 3: (a) Number of publications about EEG, EMG, fMRI, and PET between 2016 and 2021. (b) Types of published papers about EEG.

4 BioMed Research International



basis space feature that spans a regular-shaped polygon.
However, basis space characteristics, such as the Fourier
spectrum of the LBP summary, which may be computed
over histogram bin values of a local identifier to give rota-
tional normalization, may be part of the local features.
Another case is the Fourier descriptor, which is used to con-
struct polygon factors for radial line segment lengths to offer
rotational invariance by displaying the roundness of a fea-
ture. Rather than fixing issues, enhancements are utilized
to optimize for certain feature measuring techniques. Sharp-
ening and color balance are two common picture processing
improvements [30].

Harris hawk’s optimization [31], multiswarm whale [32],
Moth-flame optimizer [33–35], gray wolf [36, 37], fruit fly
[38, 39], bacterial foraging optimization [40], boosted binary
Harris hawk’s optimizer [41], an1t colony [42, 43],
biogeography-based whale optimization [44], and grasshop-
per optimizer [45] are some optimization methods based on
metaheuristic algorithms. Furthermore, biological applica-
tions of machine learning are common, such as tuberculosis
[46], thyroid nodules [47], Parkinson’s disease [48], and
paraquat-poisoned individuals [49, 50]. The reference elec-
trode is located on an electrically inactive region, and the
active electrode is located on an electrically active area
(e.g., an ear lobe). Scalp EEG is the standard technique for
capturing EEG signals, which involves placing electrodes
on the surface of the skull [51]. The biggest disadvantage
of scalp EEG is that due to the vast spacing among neurons
within the skull and the electrodes, the captured signals
become blurred. Intracranial electroencephalography signals
are recorded by inserting electrodes on the exposed region of
the brain to improve signal strength in terms of interference
and amplitude [51].

4. Feature Extraction of EEG Signals

Every prediction models must have consistent features that
are well associated with the preictal and interictal levels.
Those features may be classified as univariate (means that
the measurements were taken separately on any EEG chan-
nel) or multivariate (means that the EEG measurements on
two or up channels) on the basis of the amount of EEG
channels. Of these may be further classified as linear or non-
linear elements. For ES estimation, Waser et al. contrasted
the efficiency of univariate and bivariate tests that included
methods that are both linear and nonlinear [52]. They dis-
covered that preictal deviations occurred 5-30 minutes
before the start of ES by using univariate tests. Bivariate

tests, on the other hand, worked preferred by capturing pre-
ictal changes least 240 minutes afore the start of an ES.
Figure 4 depicts some of the linear and nonlinear ES estima-
tion measures utilized in the related work. Nonlinear tests
worked better or were equivalent to linear measures in some
cases. Machine learning algorithms, such as artificial neural
networks, k-means clustering, decision trees, SVM, and
fuzzy logic, are used to identify preictal and interictal
patterns from EEG results [53]. To draw conclusions, most
people use thresholds based on function values. Machine
learning-based research, on the other hand, has mostly
focused on the processing of optimized features for projec-
tion. At the clinical stage, the EEG signal is provided in the
couple the time and frequency domains. Since EEG signals
are nonstationery and brain rhythms occur in time domain,
also, the signal must be interpreted in both time and
frequency domains [53] (see Figure 4).

The calculation of relative EEG power in each EEG
frequency band is performed to check the slowing result in
the EEG signal of Alzheimer’s disease patients. Low-
frequency bands (δ and θ bands), i.e., frequency area among
0.5 to 8Hz, have a high relative power. The normative
measure of EEG signal irregularity, such as Lempel Ziv com-
plexity [54, 55], is used to quantify this irregularity. The spec-
trum of EEG signal is resulted by neurodegenerative disorders
like mild cognitive impairment (MCI) and AD. Alzheimer’s
disease and mild cognitive impairment allow the EEG signal
to slow down, according to recent research. The power in
low-frequency bands (δ and θ bands, 0.5–8Hz) is increased
in EEG signals from Alzheimer’s patients, while power in
high-frequency bands (α and β bands, 8–30Hz) is reduced.
The power spectral density function aids in the evaluation
of each epoch’s spectral characteristics [56]. To achieve a nor-
malized Postsynaptic density, also, the postsynaptic density is
multiplied with the overall power in the frequency range of
0.1 to 40Hz [56]. To acquire data from the EEG, good signal
processing methods are needed because the data recorded by
the EEG is a complex waveform. Doma and Pirouz [57]
explained why the EEG signals are not stored in their normal
state and why the captured data is not used for study in its
original form. It is preferable to preprocess the EEG signals
before beginning the process of extracting indications. The
Fast Fourier Transformmethod is themost widely used signal
processing method. Spectral, mapping, morphological locali-
zation, time metric, correlation, auxiliary, segment analysis,
and other signal processing approaches should be noted.
Figure 5 depicts the use of neural networks in the area of
EEG signal processing in this study.

Table 1: Frequency bands in EEG and associated studies of brain control [29].

Bands Range (Hz) Human nature and the relationship

δ 1-4 Infants and average adults’ deep sleep periods are the most common places to see it.

θ 4-8 A high θ rhyme meaning in awake adults indicates irregular cognitive function.

8-12 In normal relaxed people, it is usually found in the posterior area of the brain.

β 12-26 Present in the frontal lobe of the brain and in nervous people who are conscious.

γ 26-1000 Predominantly present in people who are anxious, satisfied, or conscious.
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Sadati et al. [58] used an adaptive diffusion neural net-
work to diagnose epilepsy. Use DWT subband energy to
extract features. However, their proposed method achieved
an accuracy of about 85.9%. Ocak [59] proposed a method
for feature extraction and DWT using approximate entropy
and achieved an accuracy of more than 96% when using
DWT and not using DWT. Nunes et al. did not just classify
sentences A and E [60], but checked the complete data set of
the University of Bonn (data sets A, B, C, D, and E) and
checked various combinations of feature extraction and clas-
sification methods. The average accuracy of wood as a clas-
sifier is 89.2%. Subasi and Gursoy [61] studied various
analysis methods to reduce the size of EEG data and com-

bined EEG data with principal component analysis (PCA),
linear discriminant analysis (LDA), and independent com-
ponent analysis (ICA). Subasi [62] uses wavelet transform
for feature extraction and expert model for classification.
The overall accuracy of this method has reached 94.5%.
Recently, Chen [63] introduced the double Fourier tree of
complex waveforms as a feature extraction method and used
the nearest neighbor classifier for classification. The pro-
posed method achieved the ideal classification accuracy
(100%). Djemili et al. used another newer method, which
also achieved the desired classification speed. [64] uses
empirical mode decomposition for feature extraction, and
uses a multilayer perceptual neural network as a classifier.
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5. Classification on Alzheimer Disease

EEG data are utilized to detect human brain diseases, as well
as mental and emotional states, using a variety of deep learn-
ing architectures. The electroencephalogram (EEG)monitors
the brain’s neuro-activities, also known as brainwaves. Alpha
waves, thetawaves, betawaves, gammawaves, and deltawaves
are five distinct frequency waves. The neuroscience commu-
nity has used several deep learning algorithms to analyze these
brain waves in order to diagnose brain diseases and recognize
human feelings [65]. Convolutional neural network (CNN),
auto encoder (AE), recurrent neural network (RNN), deep
belief network (DBN), restricted Boltzmann machine
(RBM), multilayer perceptron neural network (MLPNN),
optimized deep neural network, and EEG-functional mag-
netic resonance imaging- (EEGfMRI-) based deep learning
are some of the most common learning algorithms.

Most classification trials, to our knowledge, have used
data obtained from healthy people [66]. EEG data was used
in 27 of these experiments to characterize feelings. Since our
method uses a four-electrode EEG sensor, we will concen-
trate on studies that have used a small number of electrodes.
Past experiments that used EEG data from up to four elec-
trodes connected to healthy individuals are summarized in
Table 1. Seo et al. [67, 68] and Kim et al. [69] used EEG data
obtained from two electrodes. Lee et al. [70], for example,
learned an SVM model but did not disclose the model’s
accuracy. Furthermore, rather than teaching a model, Kim
et al. used general research to examine the association
between EEG and eye-tracking data [69]. Lee et al. [70] did
not go into depth about the methods they used for model
output validation (if any). Finally, 5-fold cross-validation
and leave-one-out cross-validation were used by Seo et al.
[67, 68] to test their models. The experiments in Table 2
are aimed at classifying the feelings of healthy people; as
a result, their findings may not be specific to patients with
neurological disorders. However, based on these findings,
we can infer that EEG data collected from electrodes on
the forehead has the capacity to distinguish human emo-
tions. As a result, classifying emotions using EEG data
taken from an AD patient’s forehead may be a promising
avenue to pursue.

The association among signals x and y as a frequency
structure, varying from 0 to 1, is known as coherence.
Volume conduction through the scalp can have an effect
on this measurement. In two trials, θ range coherence was
found to be stronger in than in AD [54, 55]. In one study
[74], α and β coherence were shown to be lower in dementia
with Lewy body disease relative to AD, whereas other studies
[75] found higher α and β coherence in dementia with Lewy
body disease. Granger causality is also utilizing to describe
how the time course of the EEG in channel X could be used
to estimate possible EEG signal values in channel Y . Accord-
ing to one study, parietal area Granger causality is slightly
greater in dementia with Lewy body disease than in AD,
with a high precision of ~100%. The PLI calculates a stable
causal delay among two signal sources and is slowly influ-
enced with volume conduction on the scalp. PLI ratings
range from 0 to 1, with 0 indicating no causal synchroniza-

tion and 1 indicating complete causal synchronization.
Dementia with Lewy body disease had a lower PLI within
the α spectrum than AD, suggesting more extreme improve-
ments in connectivity in dementia with Lewy body disease.
The changes in α network connectivity are consistent with
another analysis that found lower mean α band guided phase
shift entropy in dementia with Lewy body disease relative to
AD, which tests posterior-to-anterior connectivity [76].

Weighted phase lag index (PLI) is a variation of phase
lag index that entails weighting the PLI rates by the imagi-
nary portion of the cross-spectrum between the two time-
series [77]; the latter part of the cross-spectrum is related
to the phase difference, or delay, between the signals. The
two signs are nearly overlapping if the imaginary component
is close to 0. One advantage of weighted PLI can be signifi-
cantly raised by loud conducting sources, although this effect
is less pronounced in weighted PLI [78]. Only one study
used this method and found that dementia with Lewy body
disease had a lower weighted PLI in the β band than Alzhei-
mer’s disease [79]. LLC is a connectivity metric that is calcu-
lated with the aid of precise low-resolution brain
electromagnetic tomography tools. LLC is less affected by
volume conduction and calculates functional cortical source
connectivity by eliminating zero-lag instantaneous step cou-
pling among cortical sources of resting state EEG rhythms.
When comparing AD to dementia with Lewy body disease,
LLC in the α and δ levels was lower in AD, which Babiloni
et al. [22] speculated may indicate that AD had more cortical
disconnection as both disorders progressed to dementia
[22]. To test functional network connectivity, a graph tech-
nique focused on weighted network, and least spanning tree
(MST) processes was used. The one study that looked at
weighted PLI found that dementia with Lewy body disease
(LBD) had lower connectivity and more network segregation
in the β network than AD [80]. MST was used in four exper-
iments [81, 82], all of which found that dementia with LBD
had a less degree, less Euclidean distance, upper diameter,
higher eccentricity, and less leaf-fraction than AD [82],
implying a less-efficient network. Lewy body disease tends
to have a randomized sequence consistent with decreased
performance and synchronization [82]. EEG connectivity
results in dementia with Lewy body disease (LBD) are
summarized in Table 3.

6. EEG Signal Complexity Analysis of AD

A variety of nonlinear approaches have been used to investi-
gate the features of brain function in Alzheimer’s patients,
yielding a host of intriguing findings. Resting-state record-
ings offer more accurate estimates of brain adaptability
because they are not affected with task-specific arousal or
discrepancy in impetus or success [84]. Resting brain func-
tion records and task-related observations show network
dynamics that are close [85, 86] and also represent the influ-
ence of metabolically active networks. The time resolution of
the EEG signal is very high, and it has been discovered that
the signals have been studied mostly in various frequency
bands and using from electrodes to show the diversity in
signal rates.

7BioMed Research International



6.1. The Signal Complexity Analysis in EEG. The signal com-
plexity of the resting-state EEG in spinal cord injury, MCI,
and AD patients is compared to standard controls in this
segment. As applied to EEG signals, multiplex complexity
technique, such as LZC, entropy complexity, and another
complexity characteristics, has been shown to vary between
spinal cord injury, MCI, AD, and control subjects in many
experiments. Hogan et al. [87] discovered that MCI patients
had a low entropy. According to a new analysis, the difficulty
rates of EEG signals from AD patients are lower than those
of spinal cord injury patients in all channels. ApEn and
SampEn [3] in EEG signals have been seen to be slightly
lower in healthy control and Alzheimer’s disease patients
relative to healthy individuals [88]; Garn et al. used various
approaches [89] to investigate the complexity of EEG signals
from AD patients and maturity clinical trial. In the EEGs of
patients with AD, consistent findings were observed, includ-
ing a substantial decrease in complexity at electrodes P3, P4,
O1, and O2 positioned over the parietal, occipital, and tem-
poral areas as compared with the healthy people. The medial
temporal lobe, which is linked to short-term memory, is
impaired during the MCI stage, as are the lateral temporal
lobe and parietal lobe. The frontal lobe is compromised in
the moderate stage of Alzheimer’s disease. The occipital lobe
is compromised during the acute stage of Alzheimer’s dis-
ease [90]. The brain states that form during the transition
from safe to AD have been studied using a variety of entropy
approaches. The majority of the research has concentrated

on specific regions of the brain. Patients with Alzheimer’s
disease and healthy control have less En values in all five
areas (EnAD EnMCI EnControl), with major variations in
the frontal, temporal, and central areas. These findings indi-
cate that the frontal, temporal, and central EEG impulses in
AD and MCI patients’ brains were slightly less complex than
those in HC. Furthermore, AD patients have the least diffi-
culty and the most consistency. The complexity of EEG
signals declines with disease progression, as predicted, par-
ticularly for comparing HC issues to Alzheimer’s disease
patients [91].

6.2. Conditions of EEG Recording and Symptoms of AD.
Many experiments have looked at the impact of AD and its
development on EEG signals over the past few decades. EEG
signals have been used in studies under a variety of recording
environments, which can be divided into two categories:

6.2.1. Resting State. The brain background activation is mea-
sured by recording spontaneous EEG activity in the absence
of some sort of stimuli. The acquisition of EEG data
becomes less difficult, rather relaxed, and less stressful for
the user, particularly for aged people [92], since the person
is not expected to perform any particular task. A condition
of rest EEG records include recordings made while resting-
awake as well as recordings made while sleeping. AD has
been shown to have four distinct impacts on resting-state
EEG signals:

Table 2: EEG data are used to classify the emotions of healthier individuals (up to four electrodes).

Investigation Emotional responses to be targeted Method Accuracy Test

[71] Happiness, rage, sorrow, fear, relaxation Support vector machine (SVM) 73.32
Leave-one-out cross-

testing

[72]
Engagement, perplexity, dissatisfaction, positive

attitude
SVM, k-nearest neighbors (KNN) 95.69 —

[73] Sorrow, displeasure
Multiclass support vector machine

classifier
84.83 —

[70] Arousal, sensitivity SVM, K-means — —

[67] Dissatisfaction, satisfaction KNN 86.73 5-fold cross-testing

[68] Dissatisfaction, satisfaction Multilayer perceptron (MLP) 79.98 5-fold cross-testing

[69] Boredom, frustration Analysis — —

Table 3: Lewy body disease, a review of studies on EEG connectivity controls.

Author Subband Metrics Outcome

[82] β Phase transfer entropy AD > LBD
[80] β Weighted phase lag index AD > LBD
[81] α Phase lag index AD > LBD
[83] α Phase lag index AD > LBD
[81] α Phase lag index AD > LBD
[83] α Phase transfer entropy AD < LBD

[22] α Lagged linear connectivity AD < LBD/Parkinson’s disease dementia
[22] δ Lagged linear connectivity AD < LBD/Parkinson’s disease dementia
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(1) Slowing. In AD patients, power spectrum transitions
from up-frequency ingredients (α, β, and γ) to low-
frequency components (δ and θ) are normal [14,
93, 94]. The lack of cholinergic innervations in AD
patients is believed to be the cause of this transition,
which is proportional to the progression of the dis-
ease. The slowing of the EEG has been quantified
using features obtained from the power curve, power
spectrogram, and wavelet analysis

(2) Reduced Complexity. By comparing AD patients to
healthy controls, a reduction in the complexity of
brain electrical activity has been found [14, 94–96].
Massive neuronal death and decreased interactions
in cortical regions are likely to blame for this decline,
which results in simplified EEG dynamics. Entropy
metrics, auto mutual detail, Lempel-Ziv complexity,
fractal dimension, and the Lyapunov exponent are
some of the signal processing techniques used to
investigate the complexity of EEG signals [92]

(3) Synchronization Declines. This has been seen in
many AD patients as a decrease in communication
between cortical regions. While the cause of this syn-
drome is unknown, it is believed to be linked to atro-
phy in neural network connectivity

(4) Deficiencies in Neuromodulation. Via cross-frequency
interaction effects, the utilization of amplitude modu-
lation to test EEG rhythms and brain neuromodula-
tory acting has lately been proposed [92]

6.3. EEG Recordings Associated with a Particular Event. The
signals from the EEG are time-blocked, meaning they are
captured in response to the occurrence of a single event.
EEG operation is step locked as well as time-blocked, earn-
ing it the term event-related potentials. Induced activity is
described as EEG activity that is not phase locked and can
be examined using either event-related (de) synchronization
[23] or event-related oscillations. Sensorial perceptive,
motor, and cognitive functions can all be linked to events.
Recent studies of the utilized event-connected EEG for
Alzheimer’s disease detection have been published in the
AD literature. Although event-connected EEG studying
enables researchers to investigate the impact of AD on indi-
vidual brain circuits, these monitoring environments are not
suitable for most AD patients, who experience a rise in
anxiety and frustration, as well as a decline in their ability
to do new things, even in the early stages of the disease. As
a result, even completing a basic memory task may cause
the patient pain and anxiety; they can become disoriented
or unable to accomplish it [97]. Resting-state protocols, also,
do not include extraneous stimulation, making them more
straightforward and convenient for patients. Furthermore,
these protocols produce less artifacts.

Some new articles on resting-state research for Alzhei-
mer’s disease detection have also been published. None of
them, however, have focused solely on the subject of EEG-
regarding Alzheimer’s disease detection. Some reviews, for
example, do not look at EEG as a primary diagnostic tool

[93, 94, 98], whereas others are solely concerned with EEG
signal synchronization [95, 96]. Furthermore, other publica-
tions [99, 100] offer a wider overview of the entire dementia
continuum, not just AD. In revisions [101, 102], the key
function types for Alzheimer’s disease detection are thor-
oughly explored. As a result, the current research adds to
previous studies of EEG-regarding Alzheimer’s disease
detection by regularly and exclusively analyzing papers on
resting-state EEG to offer a comprehensive overview of the
current state of the subjects.

7. Datasets

Three styles of datasets had been used for enforcing and ver-
ifying our methods. The first datasets are used for epilepsy
diagnosis, and the 1/3 is used for autism diagnosis. The first
dataset is provided through the Bonn University, Germany,
and protected 5 units, named A, B, C, D, and E. Each set
includes precisely a hundred single-channel EEG signals.
Sets A and B had been accrued from scalp EEGs of neuroty-
pical persons, while units C, D, and E had been accrued the
use of intracranial EEGs from epileptic persons. The general
duration of every sign is about 23.6 s. The records had been
accrued with a sampling frequency of 173.61Hz. The refer-
ence furnished in [103] indicates an extra specified descrip-
tion of this dataset. The study crew from MIT, USA [104],
affords the second one dataset, which incorporates 906 h of
EEG records accrued from 23 epileptic patients. In this
study, handiest records for the primary twelve epileptic
topics had been used, in conjunction with the ones of 11
neurotypical topics. This record consists of 23 EEG channels
with a sampling frequency of 256Hz [105].

The 1/3 dataset become furnished with the aid of using
King Abdulaziz University (KAU) Brain–Computer Inter-
face (BCI) Group, Jeddah, Saudi Arabia. The dataset become
accumulated in a comfortable kingdom and cut up into
groups: the primary institution become named the neuroty-
pical institution and protected information from ten health-
ful volunteer subjects (all men, age 9–sixteen years) with
common intelligence and with none intellectual disorders.
The 2nd institution become classified the autistic institution
and protected 9 subjects (six men and 3 females, elderly 10–
sixteen years) with ASD. The EEG indicators had been accu-
mulated from the subjects’ scalps in a comfortable kingdom
the usage of an EEG information-acquisition machine that
protected the subsequent components: a g.tec EEG cap with
excessive accuracy, sixteen Ag/AgCl sensors (electrodes) pri-
marily based totally at the 10–20 global acquisition machine,
g.tec USB amplifiers (gtec scientific engineering company,
Schiedlberg, Austria), and BCI2000 software (The Brain-
Computer Interface R&D Program on the Wadsworth
Center of the New York State Department of Health in
Albany, NY, USA). The dataset become filtered with the
aid of using a band-byskip clear out with a passband of
0.1–60Hz, and a notch clear out become used with a
stopband frequency of 60Hz. All EEG indicators had been
digitized at a sampling frequency of 256Hz. The EEG series
time ranged from 12 to forty min for autistic sufferers with a
complete of as much as 173min. For neurotypical sufferers,
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the recording is various among five and 27min with a
complete of as much as 148min.

8. Prodromal Dementia with LBD

Even at the mild cognitive impairment level, EEG anomalies
on visual rating have been noted to be more frequent in
dementia with LBD. When comparing MCI with Lewy bod-
ies (MCI-LB) to MCI due to AD (MCI-AD), MCI-LB had
more diffused anomalies (76 percent vs. 8%) and FIRDA
(22 percent vs. 0%) [106]. EEG severity ratings were also
slightly lower in MCI-LB, with just 16 percent of MCI-LBs
having regular EEGs compared to 49 percent of MCI-ADs
[106]. MCI-LB empirical EEG results have been compared
to those published in dementia with Lewy body disease
and Alzheimer’s disease, with MCI-LB having a lower dom-
inant frequency than MCI-AD [106, 107]. This results in a
higher θ/α ratio and higher pre-α power, as well as lower α
and β power and a lower θ/α ratio [106–108]. In identifying
MCI-LB (Table 4), Schumacher et al. 2020b found that spec-
tral strength tests had sensitivities of 23 to 51 percent, preci-
sion of 81 to 97 percent, and a region under receiver

operating specification curve of 0.54 to 0.71 [108]. Van der
Zande et al. 2020, but on the other hand, registered an
AUROC of 0.76 to 0.97, but no sensitivities or specificities
[106]. The MCI-LB connection was only studied in one
study, which showed that LLC was lower in MCI-LB and
MCI-AD as compared to age-matched controls, but no
difference between the MCI groups [22] (see Table 4).

Several research looked at whether EEG features would
predict dementia development in MCI patients. In one
study, MCI patients who progressed to dementia with Lewy
body disease (MCI-LB) had a lower mean frequency and α/θ
ratio than those who suggested MCI-AD [107]. Other
research utilized CSA to assess progression from MCI to
dementia with Lewy body disease, AD, or no progression
at 3 years in patients by MCI, with an average accuracy of
76%. Both patients with MCI who progressed to dementia
with Lewy body disease had a CSA pattern of >1 (1-5) at
baseline, while 93 percent of patients who improved to
Alzheimer’s disease had a CSA pattern of 1 (stableα) at base-
line [111]. However, in 75% of patients with MCI, the
involvement of one or more central or positive clinical char-
acteristics of dementia with Lewy body disease predicted

Table 4: Basic EEG features’ classification accuracy.

EEG features Studies TPR FPR ACC AUC

Dementia with Lewy bodies vs. AD [81] 97% 100% 99% —

EEG severity grade [109] 72–79% 76–85% — 0.78–0.90

Grand total EEG
[22]
[100]

65–78% 67–74% 70–73% 0.72–0.75

Occipital α power [22] 78% 67% 73% 0.72

δ standard deviation [110] 92% 83% — 0.94

θ FP + θ power + θ − αDFV [111] ~100% ~100% ~100% —

Combined spectral array pattern [83] 93% 97% 95% —

Phase lag index β band [82] 80% 85% 0.86

Minimum spanning tree-phase lag index [80] 47% 100% 66% 0.78

P300- reversed amplitude distribution gradients

[21]
[80]
[112]
[113]

76–100% 77–100% 66–100% 0.78–0.93

Machine learning algorithms [106] — — —

EEG severity grade > 2 [106] — — — 0.76

Diffuse abnormalities
[106]
[108]

51% 86% — 0.84

Peak/dominant frequency
[106]
[108]

61% 81% — 0.70–0.89

β power
[106]
[108]

41% 97% — 0.71–0.91

α power [108] 56% 83% — 0.66–0.85

Pre-α power
[106]
[108]

33% 89% — 0.68

θ power
[106]
[108]

23% 89% — 0.60–0.94

δ power
[106]
[108]

49% 83% — 0.54–0.55

θ/α ratio [106] — — — 0.64–0.92
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progression to dementia with Lewy body disease. The dom-
inant frequency variability was comparable when MCI
patients who advanced to dementia with Lewy body disease
(MCI-LB) were compared to dementia with Lewy body dis-
ease patients, despite dementia with Lewy body disease
patients having lower mean dominant frequencies [111].
After having comparable MMSE scores at baseline and a
similar decrease on follow-up (20.6 in dementia with Lewy
body disease and 20.5 in Alzheimer’s disease), follow-up
EEG of MCI-dementia with LBD patient’s demonstrated
improvement, with all patients with CSA 1 plus progressing
to CSA 2 or 3. In contrast, considering the cognitive impair-
ment, follow-up EEG of patients with MCI-AD revealed no
progression (93 percent with CSA trend 1).

9. Conclusions

Alzheimer’s disease is a sophisticated brain disease with
massive financial, social, and medical consequences. It is rec-
ognized as the leading cause of dementia, characterized by
amyloid peptide and phosphorylated tau (p-tau) protein
accumulation and aggregation, as well as dementia, neuron
loss, and brain atrophy. Despite decades of study, no accept-
able medication exists that will stop the progression of
Alzheimer’s disease by acting on the illness’s root cause,
whereas currently existing therapies merely give symptom-
atic relief and do not provide a definitive cure or protection.
Clinical signs, health information, family consultations, and
current screening procedures such as clinical, neurological,
and psychiatric examinations are used to diagnose Alzhei-
mer’s disease, whereas neuropsychological testing can be
acknowledged as a tool for detecting unbiased signs of mem-
ory disturbances in the early stages, and laboratory studies
such as thyroid function tests and serum vitamin B12 are
used. To wrap up this report, we will discuss some of the
remaining problems and study topics. Obtaining EEG data
from MCI or AD patients is currently very complicated. In
comparison to ECG and other biomedical records, such
databases are not open to the public. As a consequence, con-
sistently benchmarking and evaluating the latest approaches
for the detection of Alzheimer’s disease from EEG signals are
difficult. Furthermore, almost none of those techniques inte-
grate biophysical information about AD; comprehensive
mathematical models of AD pathology combined with
EEG data analysis can aid in improving AD diagnosis. Com-
bining EEG with another signal and imaging methods, such
as MRI dMRI, TMS, and SPECT, may yield even better
results. The relationship among AD risk criteria (e.g., ele-
vated homocysteine levels in the blood) and EEG character-
istics needs to be studied further. Furthermore, the exact
relationship between cognitive and memory loss and EEG
disorders in Alzheimer’s patients is still largely unknown.
It is also crucial to see how EEG can help differentiate
between MCI and various phases of AD, as well as between
AD and other dementias. The EEG monitoring state is an
important degree of freedom: it may be recorded (i) when
the subject is at rest; (ii) when the subject is performing
working-memory or other tasks; and (iii) when the subject
is being activated with auditory, visual, tactile, or other cues.

EEG signals can be more or less discriminative for MCI
and AD depending on the recording situation; a thorough
exploration of various recording situations with the goal of
detecting MCI and AD is needed. In the future, it is also
essential to evaluate the EEG in clinical studies of Alzhei-
mer’s disease, where the disease’s development can be
closely monitored; such studies may help us relate EEG
abnormalities to AD neuropathology. Another intriguing
line of investigation is the effect of treatment and therapy
on the EEG of AD patients.
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Colorectal cancer is a high death rate cancer until now; from the clinical view, the diagnosis of the tumour region is critical for the
doctors. But with data accumulation, this task takes lots of time and labor with large variances between different doctors. With the
development of computer vision, detection and segmentation of the colorectal cancer region from CT or MRI image series are a
great challenge in the past decades, and there still have great demands on automatic diagnosis. In this paper, we proposed a novel
transfer learning protocol, called CST, that is, a union framework for colorectal cancer region detection and segmentation task
based on the transformer model, which effectively constructs the cancer region detection and its segmentation jointly. To make
a higher detection accuracy, we incorporate an autoencoder-based image-level decision approach that leverages the image-level
decision of a cancer slice. We also compared our framework with one-stage and two-stage object detection methods; the results
show that our proposed method achieves better results on detection and segmentation tasks. And this proposed framework
will give another pathway for colorectal cancer screen by way of artificial intelligence.

1. Introduction

Colorectal cancer is a common malignancy tumour world-
wide, which has ranked the third position as the most com-
mon cancer and the second cause of cancer-related deaths
worldwide. Also, the 2021 analysis observes that the diag-
nosed patients are rising in the crowd younger than 50 years
old [1]. In China, there are more than 480,000 new cases
with a higher than 30% death percentage in 2020, which
increases the incidence and mortality rates rank following
lung cancer [2]. In the early stages, occult blood examination
and medical images were employed for clinical detection and
diagnosis. These methods exhibited a productive approach
for the early colorectal cancer diagnosis and can improve
the survival of these patients [3]. However, mere blood
examination and colonoscopy inspection could not reveal
the biological morphology and tumour statutes [4, 5]. In
the past decades, imaging approaches such as computed
tomography (CT) and magnetic resonance imaging (MRI)

have become an effective way for colorectal cancer diagnosis;
doctors can get an overall scheme of the tumour region in a
comprehensive way without invasion [2, 6]. In addition,
medical imaging can get detailed information of the tumour
region without any physical cathartic cleansing, which has
become a prevalent screening guideline [7, 8].

Medical image processing and analysis have achieved
remarkable progress in the past several years, especially the
use of deep learning, but this field is still challenging for
the difficulty of acquisition and annotation in medical imag-
ing datasets [9, 10]. In this context, transfer learning is
another pathway for handling the lack of annotated medical
data with small-scale data training and becomes a common
protocol instead of traditional supervised learning [9, 10].
As an effective way, the transfer learning protocol in medical
image processing usually employed the ImageNet pretrained
deep architecture, e.g., ResNet, DenseNet, FCN, and U-Net
family, and then, these models are fine-tuned on small-
scale medical images to fit some certain tasks [11–15]. These
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fine-tuned models yield much better results than bottom-up
training strategy, especially when it confronts a small set of
image samples.

However, despite 3D or 2D medicine having the same
image structures, it is worth emphasizing that especially
in tasks of computer vision, these medical images have dis-
tinct interest with the natural image benchmark datasets.
In the case of medical data, most of the ROIs took part
in a small region in the whole image, resulting in sophisti-
cated yet hard example problems [16, 17]. Learning a med-
ical image analysis network transferred from the natural
scene usually leads to strong bias without considering the
characteristic of the medical image. Thus, all of the above
formations motivate developing a transfer learning proto-
col directly by a medical imaging dataset that can handle
subtle variances in these two datasets. In this situation,
ConvNets become a popular backbone in many medical
image and nature image processing protocols. But for the
3D image tasks, the traditional ConvNets cannot perform
long-range dependency modelling. In addition, applications
of pyramid ConvNets and some attention mechanisms can
facilitate the processing of these sequential image datasets
[18]. However, most of these methods have not focused
on long-range medical image pipeline on multitask tumour
region analysis.

Transformer models such as BERT and DERT have suc-
cessfully achieved the state of the art in nature language pro-
cessing and computer vision fields [19–22]. Due to its ability
to learn long-range dependencies from input tokens, the
self-attention mechanism can model the dependency among
the input tokens. The famous vision transformer (ViT) have
achieved comparable performance with the traditional deep
learning model such as the CNN model on image recogni-
tion tasks [23]. But all of these models have to be trained
on a large-scale dataset. DeiT (Data-efficient Image Trans-
formers) is the first transformer-based model adapted by
midsized datasets [24].

In this work, we propose a novel transfer learning proto-
col, called CST, which is a union framework for colorectal
cancer region detection and segmentation task based on
the transformer model, which effectively constructs the can-
cer region detection and its segmentation jointly. To make a
higher detection accuracy, we incorporate an autoencoder-
based image-level decision approach that leverages the
image-level decision of a cancer slice. First of all, we pretrain
an encoder-decoder architecture for cancer/normal image
slice representation that generates the encoding vectors of
the original input image slices as the image-level label. Then,
another transformer-based global to local architecture is pre-
trained by our colorectal medical image datasets for tumour
region detection and segmentation. To validate the effective-
ness of our proposed framework, we test the model output
on the collected colorectal cancer MRI image series and
achieved remarkable performances compared with other tra-
ditional methods.

In summary, our main contributions are as follows:

(i) We propose a novel framework for colorectal cancer
region detection and segmentation. Our framework

provides a more flexible pathway for tumour region
mining

(ii) We combine the traditional autoencoder and trans-
former architecture together for the multitask
framework for the final decision

(iii) We evaluate the proposed method on the colorectal
cancer MRI image dataset, and our method has
achieved a better result on tumour region detection
and segmentation

2. Related Works

Convolution neural networks with their excellent feature
representation ability have raised a revolution in the nature
language processing field, as well as the computer vision
and signal processing fields [25]. Position-sensitive tasks
such as semantic segmentation that contains several parts
of ROIs have been well represented by using convolutional
encoder-decoder architectures [26, 27]. The main aim of
convolutional operation is to catch local texture feature
information by the convolution kernel, and more layers
and stride kernel in the receptive field can extend the capture
range during downsampling; in this way, the model can cap-
ture global to local information explicitly. However, the size
and shape of these kernels are usually of fixed size and can-
not adapt to all the input range [28–30].

Recent advance in transformer-based architecture with a
self-attention mechanism and the ability of long-range
modelling has achieved the state of the art in natural lan-
guage processing and computer vision [31]. Vision trans-
former (ViT) can treat the whole image into several
patches and feed into the transformer pipeline as tokens.
The simple application of the transformer has shown excel-
lent results compared with the traditional CNN model [23].
However, the computation cost and large-scale dataset are
the fatal drawbacks to competing with the convolutional
neuronal network.

In the medical image processing paradigm, few anno-
tated clinical data cannot generate efficient models and have
to use the ImageNet pretrained model for the downstream
tasks [32]. In practice, most of the prevalent methods use
their pretrained weights for the medical ROI detection, such
as ResNet and DenseNet, and fine-tune the higher layers on
some special tasks. But most of these strategies is limited to
applying for new datasets [11–15]. In a word, the pretrained
model on ImageNet and other datasets by fully supervised
learning paradigm have to be severed with massive anno-
tated datasets to fit the downstream transfer learning. In
another way, a self-supervised learning framework can get
a suitable result by using few or no need of labelled datasets;
this has gained great attention in medical image analysis
recently [33, 34]. Furthermore, the self-supervised learning
paradigm has attracted great attention in the medical image
analysis field [35]. The critical challenge for self-supervised
learning is how to define a suitable proxy task from the unla-
belled data. But most of these proxy tasks have exhibited less
use on medical image-related tasks.
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3. Material and Methods

3.1. Dataset. We construct a novel dataset for this research,
which contains 375 cases of colorectal cancer tumour MRI
image datasets from 2013 to 2020, which contains 289
CRM negatives and 86 CRM positives. For segmentation
and detection tasks, we also collect 375 cases of colorectal
cancer negative samples as the negative samples for deep
architecture training. Our collaborator labels the image slices
with mask and bounding box separately as the final ground
truth. Then, the dataset was divided into training, testing,
and validation sets for the network training and evaluation.
The main aims of this dataset are to collect for colorectal
cancer region detection and segmentation, and to follow this
aim, we construct the framework in this manuscript to per-
form them and prepared for the clinical applications.
Figure 1 shows the details of the labelled tumour region
about CRM negative and positive, respectively.

3.2. Multitask Framework. The motivation of our work is to
construct a multitask framework that combines tumour
region detection and segmentation tasks. In this section,
we illustrate the overall framework of our proposed CST
framework as shown in Figure 2. Our framework is divided
into two pipelines, the tumour region detector and the
tumour segmentation pipeline. In the detection pipeline,
we first generate the region proposal of the input images,
and an encoder-decoder model is used for the position
encoder as the DETR input. In the segmentation pipeline,
we use image patches as the input and project to a sequence
of embedding for the transformer, and the class embedding
is used for the final mask prediction.

3.2.1. Detector Pipeline. In this part, we start from the region
proposals generated from an input medical image with H
and W in height and width as the initial image xrpn ∈
ℝ3×H0×W0 with 3 channels, H0 in height and W0 width of
the RPN. We choose a conventional CNN backbone to gen-
erate the lower resolution activation map f ∈ℝC×H×W ; typi-
cally, the values of C = 2048; H ′ and W ′ are resized as the
initial input of the setting H ′ =H/32,W ′ =W/32. Unfortu-
nately, the position encoding method in the original image
only reflects the location of the pixels in the column and
row, but the input position in our pipeline is from the ran-
dom selected RPNs, so in this part, we pretrained an autoen-
coder for the position representation and we added this
coding to the traditional position encoding with the anchor
position together.

For the transformer encoder, we use a 1 × 1 convolution
to reduce the dimension of the activation map into a d
-dimension vector; for the input of the transformer, the fea-
ture map is collapsed into a 1-dimension vector with a d ×
HW feature map. Each encoder layer is adopting the stan-
dard setting as is stated in the DETR [19–22]. For the trans-
former decoder, it follows the standard architecture of the
transformer, and the model can decode the tumour region
at each decoder layer. Each object/RPN is transformed into
an output embedding by the decoder. They are decoded into
bounding box coordinates and tumour/nontumour class

labels by the following feed forward network (FFN). The
FFN is a 3-layer perceptron with ReLU, hidden dimension
d, and a linear projection layer. It can predict the normalized
centre, height, and width of the tumour bounding box. In
addition, the tumour and nontumour class of the detected
bounding box is predicted by a SoftMax function.

The loss function of the tumour detection part is to opti-
mize the lowest cost:

bσ = arg min
σ∈℘N

〠
N

i

Lmatch yi, ŷσ ið Þ
� �

, ð1Þ

Lmatch yi, ŷσ ið Þ
� �

= Lbox bi, b̂σ ið Þ
� �

− p̂σ ið Þ cið Þ: ð2Þ

For efficient computing, we choose optimal assignment
with the Hungarian algorithm to accelerate the training pro-
cess. Here, we use Hungarian loss for all pairs matched, and
the object detector loss is defined like similarly loss; the total
Hungarian loss is defined as follows:

LHungarian y, ŷð Þ = 〠
N

i=1
−log p̂

bσ ið Þ cið Þ + Lbox bi, b̂
bσ
ið Þ

� �h i
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� �
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�
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�

�

�

1
,

ð4Þ
where for the prediction with index σðiÞ, yi = ðci, biÞ is the
labelled ground truth, and we define the probability of the
tumour region; we define ci as p̂

bσðiÞðciÞ and the predicted

bounding box as b̂σðiÞ, λiou ∈ℝ and ℝL1 ∈ℝ.

3.2.2. Segmenter Pipeline. The segmenter part is based on full
transformer-based architecture for pixel-level class annota-
tion. As shown in the upper part of Figure 2, we model the
sequence of patches by using a transformer encoder and a
point-wise linear mapping or a mask transformer. The
whole pipeline is trained end-to-end with cross-entropy loss
per pixel.

In the encoder part, we first split the input image into a
sequence of identical size patches, and each patch is flattened
into a 1-dimension vector to produce a sequence of patch
embeddings. For the position information encoding, we treat
each patch as a separated part from the whole image and
finally add position information to the original patch posi-
tion. After that, the traditional transformer encoder is
employed for the sequential information encoding with a
multihead self-attention block. For the decoder part, it first
learns to map patch-level encodings from the encoder to
patch-level class scores; following that, these scores are
unsampled to pixel-level scores by bilinear interpolation.
The whole mask transformer is illustrated in the lower part
of Figure 2.

For the mask transformer, we use a set of K learnable
class embeddings in the decoder; in our pipeline, K is 2. Each
class embedding is randomly initialized and assigned to a
single class so as to generate the class mask. At last, the class
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embeddings are processed jointly with patch encodings by
the decoder as depicted in Figure 2. The total loss function
is defined as follows:

Ltumour = −〠
n

i=1
ti log pið Þ, for k classes, ð5Þ

where ti is the ground truth label and pi is the softmax prob-
ability for the ith class.

In this way, we combine these loss functions to form an
end-to-end train protocol, for the total loss is defined as fol-
lows:

Ltotal = Lmatch + Ltumour: ð6Þ

Our proposed method employs a simple process to treat
the patch and tumour region segmentation jointly during
the decoding phase in the segmentator; in the whole frame-
work, we address tumour region detection and segmentation
jointly and combine them into a whole framework.

4. Results and Discussion

4.1. Implementation Details. In the tumour region detection
pipeline, we train DETR with AdamW optimizer with the
initial transformer’s learning rate to 10-4, the backbone’s to
10-5, and the weight decay to 10-4. We choose the trans-
former weights with Xavier in it and all backbone is
ImageNet pretrained ResNet50 model for the basic archi-
tecture [36, 37].

In the tumour segmentation pipeline, the architecture is
based on the vision transformer (ViT), and the head size of
the multihead self-attention block is fixed to 64, other
parameters are set as the default of the ViT model, and the
input patches are with the same size [23, 24]. The segmenta-
tion model is pretrained on ImageNet; ViT is pretrained on
ImageNet with random cropping. Following that, we fine-
tune the pretrained models for the tumour region segmenta-
tion task and the pixel-wise cross-entropy loss without
weight rebalancing. In the training phase, the SGD optimizer
with a base learning rate 0.0001 and weight decay 0 is set in
the initial training paradigm.

Here, we choose the standard evaluation method of
tumour detection and segmentation. The Jaccard index is
used for evaluating the ground truth bounding box and the
predicted bounding box variances, and formally, the IoU
measures the overlap between the ground truth box and
the predicted box over their union. The total IoU is defined
as follows:

IoUtruth
pred =

truth ∩ pred
truth ∪ pred

: ð7Þ

For comparisons with other methods, the results of our
framework and other methods are reported in terms of
recall, precision, and f1-measure values as follows:

Recall =
TP

TP + FN
, ð8Þ

Precision =
TP

TP + FP
, ð9Þ

Ground truth Faster-R-CNN Yolo V3 Ours

Figure 3: Tumour region detection results and its comparison results.
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F1 =
2PR
P + R

: ð10Þ

Our framework is performed on the environment of
Ubuntu 14.04 with Inter Core i9 platform, 32GB RAM,
and 2080Ti GPU×2 and is based on the PyTorch platform,
CUDA v10.0, cuDNN v8.0.

4.2. Experiment Results. For themodel training, we first divide
the two pipelines separated, and training them individually, it
takes about 72 hours and 103 hours for the detector and seg-
mentator. For the restriction of our GPUs, we have not
extended other comparisons with other transformer-based
methods.

For tumour detection, we divide the dataset into training
and validation sets. For the same baseline, these methods
cover the one-stage and two-stage object detection pipelines.
The most prevalent method Faster-RCNN and Yolo-V3 are
chosen as the test bed for the final comparisons. Figure 3
shows the detection results of the three methods, our pro-
posed pipeline can cover most of the tumour regions, and
the bounding box can converge to the tumour boundary
accurately. The Faster-RCNN model is a popular two-stage
object detection method, which can catch the tumour region,
but it is affected by the changes of the background; this is
largely because the tumour regions have the same texture
as other organs. The Yolo-v3 is a popular two-stage object
detection method and has been employed for many object
detection and location tasks. We have evaluated this method
on this dataset, the results are shown in column 3 of
Figure 3, it shows that Yolo-v3 has detected the tumour
region, but the result exhibits that this method usually covers
the tumour region and the neighbour organs together and

this is largely affected by the distinct boundary of these
regions.

For the tumour segmentation, we have the same separa-
tion of dataset like the detection pipeline. We set the U-Net
and FCN as the baseline for the comparison, the U-Net is a
specific method for medical image analysis, and FCN have
been greatly used in the nature image segmentation; for this
reason, we have listed the comparison result with these two
methods and to exhibit our framework’s advantages. In this
part, the U-Net model has better results than the FCN model,
and it can catch the tumour region in high contract images but
less in low contract slices. The FCN model usually needs an
intensive training protocol on large image data, but in this
program, the dataset is less than those, so it cannot get better
results. Compared with these two methods, our proposed
method has achieved an excellent result on the image segmen-
tation tasks. And the results are shown in Figure 4.

Original image Ground truth U-net FCN Our method

Figure 4: Basic rocket ship design. The rocket ship is propelled with three thrusters and features a single viewing window. The nose cone is
detachable upon impact.

Table 2: Tumour region segmentation accuracy covered by the
study.

Methods CRM+ (%) CRM- (%) Average (%) Total (%)

U-Net 82.1 81.7 81.9 81.8

FCN 67.2 66.4 66.8 66.5

Ours 91.2 90.6 90.9 91.1

Table 1: Tumour region detection results covered by the study.

Methods CRM+ (%) CRM- (%) Average (%) Total (%)

Faster-RCNN 67.1 62.3 64.7 65.6

Yolo-v3 43.4 37.6 40.5 41.2

Ours 87.5 89.1 88.3 88.6
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For a better comparison, we also compared the accuracy
of these two methods, and our proposed framework also
achieves a better result on the dataset (see Tables 1 and 2).

5. Conclusions

In this paper, we propose a novel transfer learning frame-
work, CST. We combine the colorectal cancer region detec-
tion and segmentation task jointly and fine-tuned a
transformer-based model to perform these tasks. For higher
accuracy, we incorporate image-level information into the
final cancer region detection, the results demonstrate that
the proposed framework can handle these tasks well, and
the comparison results have shown that our method has
achieved better accuracy than the traditional methods such
as CNN. In this way, the proposed framework explores a
new protocol for colorectal cancer information mining. In
future works, we mainly focus on how to use few samples
to achieve a better result.
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Health big data has already been the most important big data for its serious privacy disclosure concerns and huge potential value
of secondary use. Measurements must be taken to balance and compromise both the two serious challenges. One holistic solution
or strategy is regarded as the preferred direction, by which the risk of reidentification from records should be kept as low as
possible and data be shared with the principle of minimum necessary. In this article, we present a comprehensive review about
privacy protection of health data from four aspects: health data, related regulations, three strategies for data sharing, and three
types of methods with progressive levels. Finally, we summarize this review and identify future research directions.

1. Introduction

The rapid development and application of multiple health
information technologies enabled medical organizations to
store, share, and analyze a large amount of personal medi-
cal/health and biomedical data, of which the majority are
electronic health records (EHR) and genomic data. Mean-
while, the emerging technologies, such as smart phones and
wearable devices, also enabled third-party firms to provide
many kinds of complementary mHealth services and collect
huge tons of consumer health data. Health big data has
already been the most important big data for its serious pri-
vacy disclosure concerns and huge potential value of second-
ary use.

Health big data stimulated the development of personal-
ized medicine or precision medicine. Empowered by health
informatics and analytic techniques, secondary use of health
data can support clinical decision making; extract knowledge
about diseases, genetics, and medicine; improve patients’
healthcare experiences; reduce healthcare costs; and support
public health policies [1–3]. On the other side of the coin,
health data contains much personal privacy and confidential

information. For the guidance of protecting health-related
privacy, the Health Insurance Portability and Accountability
Act (HIPAA) of the US specifies 18 categories of protected
health information (PHI) [4]. The heavy concerns about pri-
vacy disclosure much hinder secondary use of health big
data. Much efforts tried to balance between privacy manage-
ment and health data secondary use from both the legisla-
tion side [5] and the technology side [6, 7]. But for much
more circumstances, a perfect balance is difficult to achieve;
instead, a certain tradeoff or compromise must always be
made. Recently, COVID-19 may perfectly illustrate the
conundrum between protecting health information and
ensuring its availability to meet the challenges posed by a
significant global pandemic. In this ongoing battle, China
and South Korea have mandated public use of contact trac-
ing technologies, with few privacy controls; other countries
are also adopting contact tracing technologies [7].

The direct and also important strategy to balance both
issues is reusing health data under the premise of protecting
privacy. The most primary idea is to share deidentified
health data by removing 18 specified PHI. Based on deiden-
tified health data, machine learning and data mining can be
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used for knowledge extraction or learning health system
building for the purpose of analyzing and improving care,
whereby treatment is tailored to the clinical or genetic fea-
tures of the patient [8]. However, transforming data or anon-
ymizing individuals may minimize the utility of the
transferred data and lead to inaccurate knowledge [9]. This
tradeoff between privacy and utility, also accuracy, is the cen-
ter issue of sensitive data secondary usage [10]. Deidentifica-
tion refers to a collection of techniques devised for removing
or transforming identifiable information into nonidentifiable
information and also introducing random noise into the data-
set. By deidentification, privacy protection will be leveraged,
but the outcome of analysis may be not exact, rather an
approximation. To reconcile this conflict, the privacy loss
parameter, also called privacy budget, was proposed to tune
the tradeoff between privacy and accuracy: by changing the
value of this parameter, more or less privacy resulting in less
or more accuracy, respectively [11]. Furthermore, deidentified
data may become reidentifiable through data triangulation
from other datasets, which means that the privacy harms of
big health data arise not merely in the collection of data but
in their eventual use [12]. Just deidentification is far from
needed. Instead, a holistic solution is the right direction, by
which the risk of reidentification from records should be kept
as low as possible and data be shared with the principle of
minimum necessary [13]. For the minimum necessary, user-
controlled access [6, 14] and secure network architecture
[15] can be a practical implementation. For effective reusing
health data while reducing the risk of reidentification,
attempts in three aspects can be applicable references, that is,
risk-mitigation methods, privacy-preserving data mining,
and distributed data mining without sharing out data.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the scope of health data and its corresponding
category. Section 3 summarizes regulations about privacy pro-
tection of health data in several countries. Section 4 concisely
reviews two strategies for privacy protection and secondary
use of health data. Section 5 reviews three aspects of tasks
andmethods for privacy preservation and datamining the pri-
mary tasks of data mining. Section 6 concludes this study.

2. Health Data and Its Category

Generally speaking, any data associated with users’ health con-
ditions can be viewed as health data. The most important
health data is clinical data, especially electronic medical
records (EMR), produced by different level hospitals. With
the development of health information technology and the
popularization of wearable health device, vast amounts of
health-relevant data, such as monitored physiological data
and diet or exercise data, are collected from individuals and
entities elsewhere, both passively and actively. According to
the review article by Deven McGraw and Kenneth D. Mandl,
health-relevant data can be classified into four categories [7].
In this research, we focus on the first two categories of data,
which are directly related to users’ health and privacy.

Category 1. Health data generated by healthcare system.
This type of data is clinical data and is recorded by clinical
professionals or medical equipment when a patient gets

healthcare service in a hospital or clinic. Clinical data
includes EMR, prescriptions, laboratory data, pathology
images, radiography, and payor claims data. Patients’ histor-
ical condition and current condition are recorded for treat-
ment requirement. For making better health service for
patients, it is important to track patients’ lifelong clinical
data and make clinical data sharing among different health-
care providers. Personal health record (PHR) was proposed
to integrate patients’ cross-institutions and lifelong clinical
data [16]. This type of health data is generated and collected
routinely in the process of healthcare, with the explicit aim
that those data be used for the purpose of analyzing and
improving care. For the purpose of clinical treatment, and
also because of consumers’ firm trust on healthcare experts
and institutions, clinical data contains a high degree of
health-related privacy. Therefore, the majority of health pri-
vacy laws mainly cover the privacy protection of clinical data
[7]. Under the constraints of health privacy laws, tons of
clinical data have been restricted only for internal use in
medical institutions. Meanwhile, the clinical data is also
extremely valuable for secondary usage since the data is cre-
ated by professional experts and is direct description of con-
sumers’ health conditions. The tradeoff between utility and
privacy of this type of health data has been one of the most
important issues in the age of medical big data.

Category 2. Health data generated by consumer health and
wellness industry. This type of health data is an important
complementation to clinical data. With the widespread appli-
cation of new-generation information technology, such as IoT,
mHealth, smart phone, and wearable device, consumers’
health attitude has greatly changed from passive treatment to
active health. Consumers’ health data can be generated
through wearable fitness tracking devices, medical wearables
such as insulin pumps and pacemakers, medical or health
monitoring apps, and online health service. These health data
can include breath, heart rate, blood pressure, blood glucose,
walking, weight, diet preference, position, and online health
consultation. These products or services and health data play
important role in consumers’ daily heath management, espe-
cially for chronic disease patients. This area has gained more
and more focus from industry and academia. Consumer
health informatics is the representative direction [17]. This
type of nontraditional health-relevant data, often equally
revealing of health status, is in widespread commercial use
and, in the hands of commercial companies, yet often less
accessible by providers, patients, and public health for improv-
ing individual and population health [18]. These big health
data are scattered across institutions and intentionally isolated
to protect patient privacy. For this type of health data, integra-
tion and linking at individual level are an extra challenge
except for the utility-privacy tradeoff.

Table 1 summarizes the two categories of health data and
their comparative features.

3. Regulations about Privacy Protection of
Health Data

Personal information and health-relevant data are necessary
to record in order to provide regular health service.
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Meanwhile, personal information and health-relevant data are
closely associated with user privacy and confidential informa-
tion. Therefore, several important privacy protection-related
regulations or acts are published to guide health data protec-
tion and reuse. Modern data protection law is built on “fair
information practice principles” (FIPPS) [19].

The most referenced regulation is Health Insurance Por-
tability and Accountability Act (HIPAA) [4]. HIPAA was
created primarily to modernize the flow of healthcare infor-
mation, stipulate how personally identifiable information
maintained by the healthcare and healthcare insurance
industries should be protected from fraud and theft, and
address limitations on healthcare insurance coverage. The
HIPAA Safe Harbor (SH) rule specifies 18 categories of
explicitly or potentially identifying attributes, called pro-
tected health information (PHI), that must be removed
before the health data is released to a third party. HIPAA
also covers electronic PHI, ePHI. This includes medical
scans and electronic health records. A full list of PHI ele-
ments is provided in Table 2. PHI elements in Table 2 only
cover identity information and do not include any sensitive
attribute. That is, HIPAA does not provide guidelines on
how to protect sensitive attribute data; instead, the basic idea
of the HIPAA SH rule is to protect privacy by preventing
identity disclosure. However, other sensitive attributes may
still uniquely combine into a quasi-identifier (QI), which
can allow data recipients to reidentify individuals to whom
the data refer. Therefore, a strict implementation of the SH
rule, however, may be inadequate for protecting privacy or
preserving data quality. Recognizing this limitation, HIPAA
also provides alternative guidelines that enable a statistical
assessment of privacy disclosure risk to determine if the data
are appropriate for release [20].

The Health Information Technology for Economic and
Clinical Health (HITECH) Act [21] was enacted as part of
the American Recovery and Reinvestment Act of 2009 to
promote the adoption and meaningful use of health infor-
mation technology. Subtitle D of the HITECH Act addresses
the privacy and security concerns associated with the elec-
tronic transmission of health information, in part, through
several provisions that strengthen the civil and criminal
enforcement of the HIPAA rules. It is complimentary with
HIPAA and strengthens HIPAA’s privacy regulations.

HITECH has also widened the scope of HIPAA through
the Omnibus Rule. This extends the privacy and security
reach of HIPAA/HITECH to business associates. According
to HIPAA and HITECH Act, much of data beyond category
1 in Table 1 is outside of the scope of comprehensive health
privacy laws in the U.S.

The Consumer Data Right (CDR) [22] is coregulated by
the Office of the Australian Information Commissioner
(OIAC) and Australian Competition and Consumer Com-
mission (ACCC). “My Health Record System” is run to track
citizen medical conditions, test results, and so on. The OIAC
sets out controls on how health information in a My Health
Record can be collected, used, and disclosed, which corre-
sponds to PHR integration. The Personal Information Pro-
tection and Electronic Documents Act (PIPEDA) [23] of
Canada applies to all personal health data. PIPEDA is strin-
gent and although has many commonalities with HIPAA; it
goes beyond HIPAA requirements in several areas. One such
area is in the protection of data generated by mobile health
apps which is not strictly covered by HIPAA. PIPEDA runs
to protected consumer health data. Under PIPEDA, organi-
zations can seek implied or explicit consent, which is based
on the sensitivity of the personal information collected and
the reasonable data processing consent expectations of the
data subject. The General Data Protection Regulation
(GDPR) is a wide-ranging data protection regulation in
EU, which covering health data as well as all other personal
data, even they contain sensitive attributes. GDPR also has
data consent and breach notification expectations and con-
tains several key provisions, including notification, right to
access, right to be forgotten, and portability. Under GDPR,
organizations are required to gain explicit consent from data
subjects, and individuals have the right to restriction of pro-
cessing and not to be subject to automated decision-making.

China has no specific regulations for health data privacy
protection. Several restriction rules to prohibit privacy dis-
closure scatter in China Civil Code (CCC), Medical Practi-
tioners Act of the PRC (MPAPRC), and Regulations on
Medical Records Management in Medical Institutions
(RMRMMMI), which make privacy disclosure restrictions
to individuals, medical practitioners, and medical institu-
tions, respectively. CCC specifies 9 categories of personal
information to be protected, including name, birthday, ID

Table 1: Summarization of clinical data and consumer health data.

Category 1: clinical data Category 2: consumer health data

Generated/record by
Healthcare system

Clinical professionals
Medical equipment

Wearable device (wristband, watch)
Medical wearable

Health App

Data detail
Name, id, age, address, phone, medical
history, family history, conditions,

laboratory test, treatments, prescriptions, etc.

Name, id, phone, address, position, age,
weight, heart rate, breath, blood pressure,

blood glucose, exercise data, diet preference,
online health consultation, etc.

Data characteristics
Discrete but more professional, more
clinical information and more privacy,
stored in healthcare system, passive

Continuous but less standardization, more
health information, privacy tend to be
ignored, stored by different providers,

active, vast amounts
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number, biometric information, living address, phone num-
ber, email address, health condition information, and posi-
tion tracking information. RMRMMMI only approves
reuse of health data just for medical care, teaching, and aca-
demic research. Recently, the Personal Information Protec-
tion Law of the PRC (PIPILRC) [24] is released and will
come into force on November 1, 2021. This is the first com-
plete and comprehensive regulation on personal information
protection. In this regulation, the definition of sensitive per-
sonal information and automatic decision making both
involve health data, so, this regulation is applicable to pri-
vacy protection of health data. According to this regulation,
secondary use of deidentified or anonymized health data for
automatic decision making is permitted, and data processing
consent from consumers is also required. This regulation, so
far as can be foreseen, will greatly stimulate the exploitation
and exploration of health big data.

According to the comparison of these data privacy rele-
vant regulations, shown in Table 3, PIPEDA and GDPR
and the newly released PIPILRC can cover both clinical data
and consumer health data, and others pay the majority of
attention to clinical data. Health data need to be reused for
multiple important purposes. In fact, health data processing
and reusing are never absolutely prohibited in the regula-
tions mentioned above, as long as privacy protection is
achieved as the important prerequisite. In this respect,
HIPAA sets Safe Harbor rules to make sure PHI be removed
before the health data is released to a third party. Further-
more, PIPEDA and GDPR require consumers’ consent for
data processing. Regulations from China also encourage
health data to be reused in certain restricted areas. As the
newcomer, PIPILRC presents a more complete and compre-
hensive guidance to protect and process health data.

4. Strategies and Framework

The exploitation of health data can provide tremendous ben-
efits for clinical research, but methods to protect patient pri-
vacy while using these data have many challenges. Some of
these challenges arise from a misunderstanding that the
problem should be solved by a foolproof solution. There
exists a paradox: well deidentified and scrubbed data may
lose much meaningful information results in low quality,
maintaining much PHI may have high risk of privacy
breach. Therefore, a holistic solution, or to say a unified
strategy, is needed. Three strategies are summarized in this
section. The first is for clinical data and provides a practical
user access rating system, and the second is majority for
genomic data and designs a network architecture to address
both security access and potential risk of privacy disclosure
and reidentification. From a more practical starting point,
the third tries to share a model without exposing any data.

Table 2: Protected health information defined by HIPAA.

Category Description

1 Names

2 Locations

3 Dates

4 Phone number

5 Fax numbers

6 E-mail addresses

7 Social security numbers

8 Medical record numbers

9 Health plan beneficiary numbers

10 Account numbers

11 Certificate/license numbers

12 Vehicle identifiers and serial numbers

13 Device identifiers and serial numbers

14 Web Universal Resource Locators (URLs)

15 Internet Protocol (IP) address numbers

16 Biometric identifiers, including finger and voice prints

17 Full face photographic images and any comparable images

18 Any other unique identifying number, characteristics, or code

Table 3: Regulations and corresponding data category.

Regulations
Category 1:
clinical data

Category 2: consumer
health data

HIPAA & HITECH
(USA)

✓

CDR (Australia) ✓

PIPEDA (Canada) ✓ ✓

GDPR (EU) ✓ ✓

MPAPRC &
RMRMMMI (China)

✓

CCC & PIPILRC
(China)

✓ ✓
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The tree strategies present solutions from different perspec-
tives, therefore can be complementary to each other.

4.1. Strategies for Clinical Data. As for clinical data, Murphy
et al. proposed an effective strategy to build a clinical data
sharing platform while protecting patient privacy [6]. The
proposed approach to resolving the balance between privacy
management and data secondary use is to match the level of
data deidentification with the trustworthiness of the data
recipients, in which the more identified the data, the more
“trustworthy” the recipients are required to be, and vice
versa. The level of trust for a data recipient becomes a critical
factor in determining what data may be seen by that person.
This type of hierarchical access rating is similar to the film
rating, which can accommodate the requirement and appe-
tites of different types of audiences. Murphy et al.’s strategy
sets up five patient privacy levels with three aspects of
requirements: availability of the data, trust in the researcher
and the research, and the security of the technical platforms.
Corresponding to the privacy levels are five user role levels.

The lowest level of user is “obfuscated data user.” For
this user, data are obfuscated as it is served to a client
machine with possibly low technical security. Obfuscation
methods try to add a random number to the aggregated
counts instead of providing accurate result [25, 26]. The sec-
ond level of user is “aggregated data user,” to whom exact
numbers from aggregate query results are permissible. The
third is “LDS data user,” who is granted to access HIPAA-
defined LDS (limited dataset) and structured patient data
in which PHI must be removed. The fourth is “Notes-
enabled LDS data user,” who is additionally allowed to view
PHI scrubbed text notes (such as discharge summary). The
final level of user is “PHI-viewable data user,” who has
access to all patient data.

These access level categories are summarized in Table 4.
With the guidance of health data access level categories,

Murphy et al. implemented five cases in clinical research. In
a realistic project, multiple use role or different access privi-
leges must be needed to reconcile different data access
requirements. Murphy et al. also provided three exemplar
projects and their possible privacy level user distributions.
This proposed strategy gave a complete reference for data
sensitive project and also implemented a holistic approach

to patient privacy solutions in Informatics for Integrating
Biology and the Bedside (i2b2) research framework [27].
The i2b2 framework is the most widespread open-source
framework for exploring clinical research data-warehouses
and was jointly developed by the Harvard Medical School
and Massachusetts Institute of Technology to enable clinical
researchers to use existing deidentified clinical data and only
IRB-approved genomic data for research aims. Yet, i2b2
does not provide any specific protection mechanism for
genomic data.

4.2. Strategies for Genomic Data. As for genomic data, two
potential privacy threats are loss of patients’ health data con-
fidentiality due to illegitimate data access and patients’ rei-
dentification and resulting sensitive attribute disclosure
from legitimate data access. On the basis of the i2b2 frame-
work, Raisaro et al. [15] proposed to apply homomorphic
encryption [28] to the first threat and differential privacy
[29] to the second threat. Furthermore, Raisaro et al.
designed a system model, consisting of two physically sepa-
rated networks, from the perspective of architecture. The
network architecture is shown in Figure 1. This network
architecture is aimed at isolating data that is used for clini-
cal/medical care and that is used for research activities by a
few trusted and authorized individuals.

The clinical network is used for hospital’s clinical daily
activities, containing clinical and genomic data of patients.
This network is very controlled and protected by a firewall
that blocks all incoming network traffic. Authorized users
are permitted to log in.

The research network hosts i2b2 service used by
researchers in their research activities. The i2b2 service is
composed of an i2b2 server and a proxy server, in which a
homomorphic encryption method and a differential privacy
method are implemented and deployed. The i2b2 server can
receive deidentified clinical data and encrypted genomic
data from the clinical network and perform security data
query and computation. The proxy server is devoted to sup-
port the decryption phase and the storage of partial decryp-
tion keys for homomorphic encryption. Through the
research network, researchers can get authorized data via
query execution module by the sequential five steps: query
generation, query processing, result perturbation, result

Table 4: Health data access level categories.

Privacy level of
user

Data available Trustworthiness of user Technical security

Obfuscated
data user

Users have access to data by client-side
application only

Low: only obfuscated aggregate results
are available

Low: only client-side application
exposed to users

Aggregated
data user

Users have access to HIPAA deidentified
data by client-side application only

Low: users can get exact patient counts
against deidentified data

Low: but data manager assumes
burden of deidentifying data

LDS data user
HIPAA-defined LDS and deidentified

structured data
Medium: users can see LDS as defined by

HIPAA
Medium: requires user-facing
direct access to the database

Notes-enabled
LDS data user

HIPAA deidentified data and deidentified
narrative text

Medium: users see both LDS and
narrative text that is mostly deidentified

Medium: requires user-facing
direct access to the database

PHI-viewable
data user

All patient data may be accessed
High: users can see all protected health

information on patients
High: requires management of

encryption keys
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partial decryption, and result decryption at the final user-
client side.

This network architecture and its privacy-preserving
solution have been successfully deployed and tested in Lau-
sanne University Hospital and used for exploring genomic
cohorts in a real operational scenario. This application is
also a practicable demonstration for similar scenario. It is
not a unique instance but has its counterpart. Azencott
reviewed how breaches in patient privacy can occur, and
recent developments in computational data protection also
proposed a similar secure framework for genomic data shar-
ing around three aspects, which includes algorithmic solu-
tions to deidentification, database security, and user
trustworthy access [3].

4.3. Strategies for Sharing Not Data but Models. Since the
new paradigm of the machine learning method, namely, fed-
erated learning (FL), was first introduced in 2016 [30], has
achieved a rapid development, and become a hot research
topic in the field of artificial intelligence, its core idea is to
train machine learning models on separate datasets that
are distributed across different devices or parties, which
can preserve the local data privacy to a certain extent. This
development mainly benefits from the following three facts
[31]: (1) the wide successful applications of machine learn-
ing technologies, (2) the explosive growth of big data, and
(3) the legal regulations for data privacy protection
worldwide.

The idea of federated learning is to only share the model
parameters instead of the original data. By this way, many of
these initiatives are based on federated models in which the
actual data never leave the institution of origin, allowing
researchers to share models without necessarily sharing
patient data. Federated learning has inspired another impor-
tant strategy to develop smart healthcare based on sensitive
and private medical records which exist in isolated medical
centers and hospitals. As shown in Figure 2, federated learn-
ing offers a framework to jointly train a global model using
datasets stored in separate clients.

Model building of this kind has been used in real-world
applications where user privacy is crucial, e.g., for hospital
data or text predictions on mobile devices, and it has been
stated that model updates are considered to contain less
information than the original data, and through the aggrega-
tion of updates from multiple data points, original data is
considered impossible to recover. Federated learning
emphasizes the data privacy protection of the data owner
during the model training process. Effective measures to
protect data privacy can better cope with the increasingly
stringent data privacy and data security regulatory environ-
ment in the future [32].

5. Tasks and Methods

Under the strategies of health data protection, specific tasks
and methods about privacy and data processing can be
employed and deployed. The tasks and methods can be
viewed at three progressive levels. Methods in the first level
are aimed at mitigating the risk of privacy disclosure, from
four aspects. Methods in the second level target on data min-
ing or knowledge extraction from deidentified or anon-
ymized health data. No need to share health data, methods
in the third level try to build a learning model or extract
knowledge in a distributed manner, then share the model
or knowledge.

5.1. Risk-Mitigation Methods. There are two widely recog-
nized types of privacy disclosure [33]: identity disclosure
(or reidentification) and attribute disclosure. The former
occurs when illegitimate data users try to match a record
in a dataset to an individual, and the latter occurs when ille-
gitimate data users try to predict the sensitive value(s) of an
individual record. According to Malin et al. [34], methods of
mitigating the risk of two types of privacy disclosure can be
divided into four classes: suppression, generalization, ran-
domization, and synthetization. This perspective of method
categories expects to well summarize the recent research
on risk-mitigation methods.

Genomic
data

Clinical
data

Clinical network

Encrypted
genomic

data

Decryption keys

Research network

i2b2server

De-itentified
clinical

data

Proxy server
Researcher

Figure 1: Network architecture of privacy protection for health data including genomic data.
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5.1.1. Suppression Methods. Suppression methods are aimed
at scrubbing (remove or mask) 18 PHI defined in HIPAA,
which is the most important deidentification method. Before
PHI scrubbing, the major task is to identify the PHI from
health data. For structural data, PHI identification can be
done easily according to data schema. For narrative data or
free text, such as discharge summary or progress note, natu-
ral language processing (NLP) is the preferred technology
for PHI identification. Specifically, named entity recognition
(NER) is the mainstream technology used in clinical data for
deidentification and medical knowledge extraction. The 18
PHI are regarded as predefined entity types, and machine
learning is employed to annotate type tags for each word
in a sentence, then those tags are merged, and finally, the
position and type of PHI can be identified. Conditional ran-
dom fields (CRFs) are the classic sequential tagging model
for NER and are often applied for deidentification [35].
Meystre et al. made a systematic review of deidentification
methods [36], and Uzuner et al. [37] and Deleger et al.
[38] both conducted some evaluations on a certain human-
annotated dataset. The identified PHI values are then simply
removed from or replaced with a constant value in the
released text documents, which may be inadequate for pro-
tecting privacy or preserving data quality. Li and Qin pro-
posed a new systematic approach to integrate methods
developed in both data privacy and health informatics fields.
The key novel elements of the proposed approach include a
recursive partitioning method to cluster medical text records
and a value enumeration method to anonymize potentially

identifying information in the text data, which essentially
masks the original values, to improve privacy protection
and data utility [20].

For genomic data, homomorphic encryption [28] is
applied to encrypting genomic data, and then, encrypted
data can be shared for secondary use. Raisaro et al. employed
homomorphic encryption to build a data warehouse for
genomic data [15]. Kamm et al. [39] also proposed a frame-
work for generating aggregated statistics on genomic data by
using secure multiparty computation based on homomor-
phic secret sharing. Several other works [28, 40, 41] pro-
posed using homomorphic encryption to protect genomic
information in order to allow researchers to perform some
statistics directly on the encrypted data and decrypt only
the final result.

5.1.2. Generalization Methods. These methods transform
data into more abstract representations. The much easier
implementation is abbreviation. For instance, the age of a
patient may be generalized from 1-year to 5-year age groups.
Based on this type of generation, sensitive attributes can be
generalized subgroup and be anonymized to some extent,
which is the back idea of k-anonymity and its variations. k
-anonymity seeks to prevent reidentification by stripping
enough information from the released data that any individ-
ual record becomes indistinguishable from at least (k − 1)
other records [42]. The idea of k-anonymity is based on
modifying the values of the QI attributes to make it difficult
for an attacker to unravel the identity of persons in a

Dataset A Dataset CDataset B

Model A Model B Model C

Global model

Figure 2: Architecture for a federated learning system.
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particular dataset while the released data remain as useful as
possible. This modification is a sort of generalization, by
which stored values can be replaced with semantically con-
sistent but less precise alternatives [43]. For example, let us
consider a dataset in which age is a quasi-identifier. While
the three records {age = 30, gender = male}, {age = 35,
gender = male}, and {age = 31, gender = female} are all dis-
tinct, releasing them as {age = 3 ∗, gender = male},
{age = 3 ∗, gender = male}, and {age = 3 ∗, gender = female}
ensures they all belong to the same age category and the ano-
nymity is 3-anonymity. Based on k-anonymity, l-diversity
[44, 45] were proposed to address further disclosure issues
of sensitive attributes.

5.1.3. Randomization Methods. Randomization can be used
for attribute-level data. In this case, original sensitive values
are replaced with similar but different values, with a certain
probability. For example, a patient’s name may be masked
by a randomly selected made-up name. This basic approach
may result in worse data quality. Li and Qin proposed to
obtain value via a clustering method [20].

Randomization can further be used for aggregation oper-
ation. Obfuscation is a sort of such randomization. Numer-
ous repetitions of a query by a single user must be detected
and interrupted because they will converge on the true
patient count making proper user identification absolutely
necessary for the methods to function properly [6]. Aiming
to deidentify aggregated data, obfuscation methods include
the addition of a random number to the patient counts that
has a distribution defined by a Gaussian function.18. Obfus-
cation is applied to aggregate patient counts that are
reported as a result of ad hoc queries on the client machine
[26]. Another protection model for preventing reidentifica-
tion is differential privacy [10, 46]. In this model, reidentifi-
cation is prevented by the addition of noise to the data. The
model is based on the fact that auxiliary information will
always make it easier to identify an individual in a dataset,
even if anonymized. Instead, differential privacy seeks to
guarantee that the information that is released when query-
ing a dataset is nearly the same whether a specific person is
included or not [46]. Unlike other methods, differential pri-
vacy provides formal statistical privacy guarantees.

5.1.4. Synthetization Methods. Synthetization is compelling
for two main reasons: preserving confidentiality and valid
inferences for various estimates [47]. In this case, the origi-
nal data are never shared. Instead, general aggregate statis-
tics about the data are computed, and new synthetic
records are generated from the statistics to create fake, but
realistic-like, data. Exploiting clinical data for building an
intelligent system is one of the scenarios. Developing clinical
natural language processing systems often requires access to
many clinical documents, which are not widely available to
the public due to privacy and security concerns. To address
this challenge, Li et al. proposed to develop methods to gen-
erate synthetic clinical notes and evaluate their utility in real
clinical natural language processing tasks. Thanks to the
development of deep learning, recent advances in text gener-
ation have made it possible to generate synthetic clinical

notes that could be useful for training NER models for infor-
mation extraction from natural clinical notes, thus lowering
the privacy concern and increasing data availability [48].

5.2. Privacy-Preserving Data Mining. Data mining is also
synonymously called knowledge discovery from data
(KDD), which highlights the goal of the mining process.
To obtain useful knowledge from data, the mining process
can be divided into four iterative steps: data preprocessing,
data transformation, data mining, and pattern evaluation
and presentation. Based on the stage division in the process
of KDD, Xu et al. developed a user-role-based methodology
and identified four different types of users in a typical data
mining scenario: data provider, data collector, data miner,
and decision maker. By differentiating the four different user
roles, privacy-preserving data mining (PPDM) can be
explored in a principled way, by which all users care about
the security of sensitive information but each user role views
the security issue from its own perspective [49]. In this
research, PPDM is explored from the view of a data miner
role, that is, from the data mining stage of KDD.

Privacy-preserving data mining is aimed at mining or
extracting information, via a certain machine learning-
based model, from privacy-preserving data in which the
values of individual records have been perturbed or masked
[50]. The key challenge is that the privacy-preserving data
look very different from the original records and the distri-
bution of data values is also very different from the original
distribution. Researches for this issue have started very early.
Agrawal and Srikant proposed a reconstruction procedure to
estimate the distribution of original data values and then
built a decision-tree classifier [50]. Recent studies on PPDM
include privacy-preserving association rule mining, privacy-
preserving classification, and privacy-preserving cluster.

Association rule mining is aimed at finding interesting
associations and correlation relationships among large sets
of data items. For PPDM, some of the rules may be consid-
ered to be sensitive. For hiding these rules, the original data
need to be modified to generate a sanitized dataset from
which sensitive rules cannot be mined, while those nonsen-
sitive ones can still be discovered [51]. Classification is a task
of data analysis that learns models to automatically classify
data into defined categories. Privacy-preserving classification
evolves decision tree, Bayesian model, support vector
machine, and neural classification. The strategies of adapting
the classification method to a privacy-preserving scenario
can simply be described as two aspects. The first is learning
the classification model based on data transformation, since
the transformed data is difficult to be recovered [52, 53]. The
second is learning the classification model based on secure
multiparty computation (SMC) [54], where multiparties col-
laborate to develop a classification model from vertically
partitioned or horizontally partitioned data, but no one
wants to disclose its data to others [55, 56]. Cluster analysis
is the process of grouping a set of records into multiple
groups or clusters so that objects within a cluster have high
similarity but are very dissimilar to objects in other clusters.
This process runs in an unsupervised manner. Similar to
classification, current researches on privacy-preserving
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clustering can be roughly categorized into two types, based
on data transformation [57, 58] and based on secure multi-
party computation [59, 60].

5.3. Federated Privacy-Preserving Data Mining. For the dis-
tributed or isolated data, distributed data mining is the
research topic. Distributed data mining can be further cate-
gorized into data mining over horizontally partitioned data
and data mining over vertically partitioned data. Research
on distributed data mining attracts much attention. To over-
come the difficulty of data integration and promote efficient
information exchange without sharing sensitive raw data,
Que et al. developed a Distributed Privacy-Preserving Sup-
port Vector Machine (DPP-SVM). The DPP-SVM enables
privacy-preserving collaborative learning, in which a trusted
server integrates “privacy-insensitive” intermediary results
[61]. In medical domain, much raw data can hardly leave
the institution of origin. Instead of bringing data to a central
repository for computation, Wu et al. proposed a new algo-
rithm, Grid Binary LOgistic REgression (GLORE), to fit a LR
model in a distributed fashion using information from
locally hosted databases containing different observations
that share the same attributes [62].

It is worth to note that learning (classification or clustering)
on secure multiparty computation is an important distributed
learning strategy, by which privacy disclosure concern can be
much reduced since data need not to be shared out. This
research topic probably inspired federated machine learning
[30, 32]. Today’s AI still faces twomajor challenges. One is that
data exists in the form of isolated islands. The other is the
strengthening of data privacy and security. The two challenge
is much severer in the healthcare domain. Federated machine
learning is aimed at building a learning model from decentra-
lized data [30]. Federated learning can be classified into hori-
zontally federated learning, vertically federated learning, and
federated transfer learning based on how data is distributed
among various parties in the feature and sample ID space
[32]. Horizontal federated learning, or sample-based federated
learning, is introduced in the scenarios that datasets share the
same feature space but different in samples. At the end of the
learning, the universal model and the entire model parameters
are exposed to all participants. Vertical federated learning or
feature-based federated learning is applicable to the cases that
two datasets share the same sample ID space but differ in fea-
ture space. At the end of learning, each party only holds the
model parameters associated with its own features; therefore,
at inference time, the two parties also need to collaborate to
generate output. Federated transfer learning (FTL) applies to
the scenarios that the two datasets differ not only in samples
but also in feature space. FTL is an important extension to
the existing federated learning systems and is more similar to
vertical federated learning. The challenge of protecting data
privacy while maintaining the data utility through machine
learning still remains. For a comprehensive introduction of fed-
erated privacy-preserving data mining, please refer to the sur-
vey based on the proposed 5W-scenario-based taxonomy [31].

5.4. Summary: Privacy vs. Accuracy. Privacy protection is the
indispensable prerequisite of secondary usage of health data.

As discussed above, risk-mitigation methods are aimed at
anonymizing private or sensitive information so as to reduce
the risk of reidentification. Methods about privacy-
preserving data mining target to process the privacy-
scrubbed data and extract knowledge and even build AI sys-
tems. If absolute privacy safe is pursued, the scrubbed data is
definitely useless, since the data quality is severely corrupted.
With the poor-quality data, accuracy and effectiveness of
data utilization are extremely affected. Therefore, in a prac-
tical scenario, a certain tradeoff or compromise between pri-
vacy and accuracy must always be made. The tradeoff can be
tuned to provide more or less privacy resulting in less or
more accuracy, respectively, according to the requirements
of privacy level and utility level. Federated privacy-
preserving data mining sheds light on the new direction to
compromise, even to balance, the privacy and accuracy. No
need to share data out, federated privacy-preserving data
mining first processes the original health data within institu-
tions, and the conduct federated mining or learning. This
type of method is expected to reconcile privacy and accuracy
with more elegant style and more acceptable way.

6. Conclusions

Clinical data, genomic data, and consumer health data are
the majority of health big data. Protection and reuse always
gain much focused research topics. In this review article, the
type and scope of health data are firstly discussed, followed
by the related regulations for privacy protection. Then, strat-
egies for user-controlled access and secure network architec-
ture are presented. Sharing trained model without original
data leaving out is a new important strategy and gains more
and more focus. According to different data reuse scenarios,
tasks and methods at three different levels are summarized.
The strategies and methods can be combined to form a
holistic solution.

With the rapid develop health information technology
and artificial intelligence, the capability of privacy protection
will impede the urgent demand of reusing health data. Some
potential research directions may include (1) applying mod-
ern machine learning to deidentification and anonymization
for multimodal health data while ensuring its data quality;
(2) learning model construction and knowledge extraction
based on anonymized data to leverage secondary use of
health data; (3) federated learning on isolated heath data
can both protect privacy perfectly and improve the efficiency
of data transferring and processing, being deserved more
attention; (4) research on alleviating reidentification risk,
such as linkage or inference, from a trained model.
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Objective. Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell
subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). Methods. Single-cell
RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using
the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly
variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The
marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were
obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log 2
fold change ðFCÞ ∣ >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional
enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed.
Results. After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell
populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian
cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as
metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E,
GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in
ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. Conclusion. Our findings
revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel
insight into the heterogeneity of ovarian cancer.

1. Introduction

Ovarian cancer is one of the most common gynaecological
cancers in the world, with high heterogeneity and poor prog-
nosis [1]. High-grade serous ovarian cancer is the deadliest
subtype of ovarian cancer, with up to 80% of patients recur-
ring after initial treatment [2]. Despite advances in treatments
such as surgery and chemotherapy, the 5-year survival rate of
patients with advanced ovarian cancer remains around 30%-

40% [3, 4]. Since ovarian cancer patients are usually diagnosed
at an advanced stage, genetic risk prediction and prevention
strategies will be an important way to reduce ovarian cancer
mortality [5]. Targeted therapies significantly improve the
therapeutic effects of patients with ovarian cancer [6]. How-
ever, ovarian cancer shows heterogeneity within the tumor
that may affect the therapeutic outcomes of targeted therapies.
Tumors including ovarian cancer usually consist of heteroge-
neous cells that are different in many biological features, like
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morphology, apoptosis, and invasion [7]. However, RNA-seq
data reflect the average expression levels of different cells, not
to reveal the intrinsic expression differences between different
cell subpopulations. The genetic heterogeneity of ovarian
cancer has been confirmed at single-cell resolution. The hetero-
geneity of gene expression levels greatly affects the patients’
clinical outcomes [8]. Therefore, understanding the heteroge-
neity of tumors at the transcriptome level and the precise char-
acterization of gene expression in tumors may help to identify
better therapeutic molecular targets [9]. The characterization of
heterogeneous tumor features will help to develop more effec-
tive molecular targeted therapeutics.

The basic unit of cancer is the innovative single cell along
with genetics and epigenetics. Single-cell control determines
the parameters of various aspects of cancer biology. Thus,
single-cell analysis provides the ultimate resolution for us to
understand the biology of various diseases [10]. Single-cell
RNA-seq has been become a promising approach for revealing
the clonal genotype and population structure of human can-
cers. RNA-seq of the single cell can be used to analyze the cell
type in the tumor microenvironment, the tumor heterogene-
ity, and its clinical significance [11]. Unlike traditional
sequencing methods, single-cell sequencing methods provide
different types of omics analysis for individual cells, such as
genomics and transcriptomics [12]. Among them, single-cell
RNA sequencing (scRNA-seq) is capable of measuring gene
expression at the single-cell level. Based on classical markers,
the scRNA-seq reveals the heterogeneity of gene expression
in individual cells or cells with the same type [13], rather than

simply examining differential expression between two cells. In
this study, we analyzed the heterogeneity among ovarian
cancer cells and identified marker genes by scRNA-seq.

2. Materials and Methods

2.1. Ovarian Cancer Single-Cell RNA-seq Datasets. Single-cell
RNA-seq gene expression data of ovarian cancer were
employed from the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) database with accession number
GSE123476. According to the study ofWinterhoff et al., 19 cells
were excluded due to poor cell morphology, extremely large or
small cell size, or evidence of multiple cells in the well. Mean-
while, 7 cells that did not express at least 1,000 of the highly
expressed genes were also removed [14]. As a result, 26 ovarian
cancer cells with low quality were removed from 92 cells. The
barcode information and single-cell RNA-seq gene expression
matrix were extracted for further analyses [14].

2.2. Quality Control Filtering and Data Normalization. The
gene expression matrix was imported into the Seurat pack-
age in R (version 3.1.0; http://satijalab.org/seurat/). Seurat,
as a tool for single-cell genomics, is used for quality control,
analysis, and exploration of single-cell RNA-seq data [15].
For single-cell RNA-seq data, there could be cells with low
quality, probably due to the loss of cytoplasmic RNA when
the cells were disrupted. Since mitochondria were much
larger than single transcriptional molecules, they were not
easily leaked out of the broken cell membrane, causing the
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Figure 1: Quality control filtering to remove cells with low quality. (a) Violin plots showing the counts of genes in each cell. (b) Violin plots
of the sum of the expression levels of all genes in each cell. (c) Violin plots of the percentage of mitochondrial genes. (d) Scatter plots for the
percentage of mitochondrial genes in the sum of the expression levels of all genes in each cell. (e) Scatter plots for the counts of genes in the
sum of the expression levels of all genes in each cell.
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abnormally high proportion of mitochondrial genes among
the cells in sequencing results. Thus, to remove cells with
low quality, quality control was performed. After quality con-
trol, fragments per kilobase of transcript per million mapped
read (FPKM) values were transformed into the log-space.

2.3. Detection of Highly Variable Genes across the Single Cells.
To eliminate the dimensional relationship between variable
genes and make the data comparable, using the Normalize-
Data function of the Seurat package, data were normalized
with the log-normalize method. For each gene, we calculated
the standard variance in all cells using the FindVariableFea-
ture function. Herein, mean-variance was calculated as 1.
Standard variance cut-off of 1 was used to identify highly var-
iable genes. The top 20 highly variable genes were identified.

2.4. Cell Clustering Analysis Using Seurat. Principal compo-
nent analysis (PCA) is a multivariate statistical method that
examines the correlation between different variables. PCA
was used to examine how to reveal the internal structure
between multiple variables through a few principal compo-
nents. That is, a few principal components were derived from
the original variables while they retained the information of
the original variables as much as possible and were not related
to each other. In our study, PCA was carried out based on
highly variable genes. Using the screened PCs as input, the cell
clustering was visualized using Uniform Manifold Approxi-
mation and Projection (UMAP) via the RunUMAP function.

2.5. Gene Scoring. The CellCycleScoring function of the Seu-
rat package was used to score the marker genes in the two
cell cycles G2M and S based on the gene expression levels.

We calculated the average expression value of S phase genes
and G2/M phase genes for each cell. All genes were divided
into different bins based on the average expression levels,
and then, the control genes were randomly selected as the
background from each bin. The average expression levels
of these control genes were calculated. The average expres-
sion levels of control genes were subtracted from the average
expression levels of S phase genes and G2/M phase genes to
obtain S.Score and G2M.Score. S:Score < 0 and G2M:Score
< 0 were judged as G1 phage, otherwise, which phage was
judged as which score was higher. The difference between
the cell cluster and the cell cycle distribution was examined
by Fisher’s test. The top ten differentially expressed genes
and the cell cycle were separately plotted, which were visual-
ized into heatmaps.

2.6. Detection of Marker Genes and Functional Enrichment
Analysis. The cluster marker genes with ∣log 2fold change
ðFCÞ ∣ ≥0:25, the expression ratio of cell population ≤ 0:25,
and p value ≤0.05 were identified using the “FindAllMarkers”
function in the Seurat package. An expression heatmap was
generated for given cells and genes using the DoHeatmap.
The expression level of markers in each cluster was calculated,
and the putative identities of each cell clustering were identi-
fied. The top 20 markers were plotted for each cluster. To
explore potential biological processes and pathways enriched
by markers in each cluster, functional enrichment analyses
were performed using the gProfiler package.

2.7. Reconstruction of Differentiation Trajectories Using
Monocle Analysis. The pseudotime estimation analysis of
epithelial cancer cells and stromal cells was performed using
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the Monocle package. A pseudotime plot was generated that
can account for both branched and linear differentiation pro-
cesses based on the top 2000 highly variable marker genes.

2.8. Differential Expression Analysis and Function Enrichment
Analysis Using Ovarian Cancer Datasets.A total of 593 ovarian
cancer samples were obtained from The Cancer Genome Atlas

(TCGA) using the UCSC Xena (https://tcga.xenahubs.net),
including gene expression profiles and clinical information.
Supplementary table 1 listed the IDs of all samples. After
removing 17 relapse ovarian cancer, 568 ovarian cancer
samples and 8 normal ovarian tissue samples were employed
for this study. Differential expression analysis was then
performed according to ∣log 2FC ∣ >1 and adjusted p value
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<0.05 using the limma package in R. To explore potential
biological processes and pathways, functional enrichment
analyses of upregulated and downregulated genes were
performed using the gProfiler package in R, including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). The GO terms include biological process
(BP), cellular component (CC), and molecular function (MF).
Terms with p value <0.05 were significantly enriched.

2.9. Overall Survival Analysis. Marker genes and differentially
expressed genes were overlapped. Overall survival and
recurrence-free survival analyses of differentially expressed
marker genes were performed. Kaplan-Meier survival curves
and log-rank tests were performed to evaluate the associations
between ovarian cancer prognosis and the expression of these
prognostic genes.

3. Results

3.1. Identification of Three Cell Subpopulations across Ovarian
Cells Based on Single-Cell RNA-seq. In total, 66 ovarian cancer
cells were included in this study. Considering that the amount
of data and the number of cells was relatively small, we used all
the cells without filtering (Figures 1(a)–1(e)). Then, we
detected 6000 highly variable genes across the single cells after
calculating the mean and the variance to mean ratio of each
gene. The top 20 highly variable genes such as LUM, COL3A1,
and SPARC are shown in Figure 2.

To overcome the various technical noise in any single
feature of scRNA-seq data, the Seurat package was used to
cluster cells according to their PCA scores, where each PC
represented a “meta-feature” (Figures 3(a) and 3(b)). Jack-
Straw function was used to resample the test. We randomly
replaced a subset of the data (default was 1%) and rerun
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PCA to construct an “empty distribution” of feature scores
and repeated the process (Figure 3(c)). We identified
“important” PCs with low p values. Furthermore, the PCs
were sorted based on the standard deviation using ElbowPlot
function (Figure 3(d)). Because there was no obvious elbow
point, we selected 19 PCs for downstream analysis. After
cluster analysis, we divided the cells into 3 cell populations
across ovarian cancer cells (Figure 3(e)). The number of cells
in clusters 0, 1, and 2 was 24, 22, and 20. Supplementary
table 2 listed which cells were in which cluster.

3.2. Analysis ofMarker Genes in the Three Cell Subpopulations.
The top 20 marker genes in the three cell subpopulations are
listed in heatmap (Figure 4(a)). We used the Seurat tool to
score the marker genes in the G1, G2M, and S cell cycles.
Figure 4(b) shows the cell counts in the G1, G2M, and S cell
cycles. By Fisher’s test, there was no significant difference
between the three cell subpopulations and cells in each cell
cycle (p value = 0.2834). Cell cycle heatmap shows the top
ten differentially expressed genes and cell cycle scores in each
cell subpopulation (Figure 4(c)). To explore potential biologi-
cal processes and pathways, GO and KEGG enrichment
analyses were performed (Figure 5). Genes in cluster 1
(Figures 5(a)–5(d)) and cluster 2 (Figures 5(e)–5(h)) were
mainly enriched in metabolic processes and pathways. Mean-
while, genes in cluster 2 were primarily involved in cancer-
related pathways such as PI3K-Akt pathway and pathways in
cancer (Figures 5(i)–5(l)). We found that these marker genes
were enriched in different biological processes and pathways
in different cell subpopulations such as metabolic pathways,
pathways in cancer, and mTOR signaling pathway.

3.3. Reconstruction of Differentiation Trajectories Using
Monocle Package. Cell fate decisions and differentiation tra-
jectories were reconstructed with the Monocle package. The
pseudotime estimation analysis of epithelial cancer cells and
stromal cells was performed based on the top 2000 highly
variable marker genes (Figures 6(a) and 6(b)).

3.4. Identification of Differentially ExpressedGenes Using TCGA
Ovarian Cancer Datasets. A total of 1,124 differentially
expressed genes with ∣log 2FC ∣ >1 and adjusted p value <0.05
were identified between 568 ovarian cancer samples and 8 nor-
mal samples (Figures 7(a) and 7(b)). GO enrichment analysis
results showed that upregulated genes were primarily enriched
in intracellular membrane-bounded organelle, nucleus, nuclear
lumen, cytosol, nucleoplasm, cellular nitrogen compound met-
abolic process, heterocycle metabolic process, cellular aromatic
compound metabolic process, and protein metabolic process
(Figure 7(c)). Meanwhile, upregulated genes were involved in
cell cycle, Herpes simplex virus 1 infection, human papilloma-
virus infection, human T cell leukemia virus 1 infection, and
PI3K-Akt signaling pathway (Figure 7(d)). Downregulated
genes primarily participated inmulticellular organism develop-
ment, plasma membrane, cytosol, vesicle, animal organ devel-
opment, extracellular exosome, extracellular vesicle, positive
regulation of cellular metabolic process, cellular response to
organic substance, and positive regulation of nitrogen com-
pound metabolic process (Figure 7(e)). In Figure 7(f), down-
regulated genes were mainly enriched in MAPK, metabolic,
pathways in cancer, PI3K-Akt, and Ras signaling pathways.

3.5. Identification of Differentially Expressed Marker Genes
Associated with Prognosis of Ovarian cancer. All marker
genes were overlapped with 1,124 differentially expressed
genes in TCGA samples. Survival analysis was used for iden-
tifying prognosis-related differentially expressed marker
genes. The results showed that marker genes STAT1,
ANP32E, GPRC5A, and EGFL6 were highly expressed in
ovarian cancer (Figures 8(a)–8(d)). Furthermore, marker
genes PMP22, FBXO21, and CYB5R3 were lowly expressed
in ovarian cancer (Figures 8(e)–8(g)). The high expression
of ANP32E (p = 0:031, HR: 0.79 (0.64-0.98)), STAT1
(p = 0:005, HR: 0.74 (0.59-0.91)), GPRC5A (p = 0:03, HR:
1.27 (1.02-1.57)), EGFL6 (p = 0:018, HR: 0.77 (0.62-0.96)),
and PMP22 (p = 0:043, HR: 1.25 (1.01-1.54)) was signifi-
cantly associated with better overall survival time than their
low expression (Figures 9(a)–9(e)). The high expression of
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Figure 6: Reconstruction of differentiation trajectories to ovarian cancer. (a, b) The trajectory plot in pseudotime of epithelial cancer cells
and stromal cells using Monocle analysis. Different colors represent different cell states.
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Figure 7: Differentially expressed genes of ovarian cancer. (a, b) Volcano plots and heatmap showing the differentially expressed genes with
∣log 2FC ∣ >1 and adjusted p value <0.05 between ovarian cancer and normal tissues, respectively. (c, d) GO and KEGG enrichment analysis
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Figure 8: Continued.
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FBXO21 (p = 0:027, HR: 0.57 (0.35-0.94)), ANP32E (p = 0:007,
HR: 0.51 (0.31-0.84)), and CYB5R3 (p = 0:015, HR: 1.86
(1.12-3.08)) indicated better recurrence-free survival time
compared with their low expression (Figures 9(f)–9(h)). Fur-
thermore, we found that STAT1 had the highest expression
in stage II among all stages (Figure 10(a)). PMP22 had the
highest expression in stage III among all stages (Figure 10(b)).

4. Discussion

The treatment of ovarian cancer is complicated by the hetero-
geneity of the tumor. Different histological types of epithelial
ovarian cancer have different cell origins, different mutation
profiles, and different prognosis [16, 17]. Even in a histological
type, different molecular subtypes with different prognosis can
be found. To solve these problems, it is necessary to better
characterize the heterogeneity of these ovarian cancer cells,
to find reliable biomarkers, and develop appropriate targeted
therapies. Single-cell RNA sequencing technology can explore
the intercellular heterogeneity at the single-cell level and
reconstruct lineage hierarchies. This method allows an unbi-
ased analysis of the heterogeneity profile within a population
of cells as it utilizes transcriptome reconstitution from a single
cell. Our reanalysis of the ovarian cancer single-cell tran-
scriptome may provide a deeper insight into the heterogeneity
spectrum of ovarian cancer cells.

Totally, 66 ovarian cancer cells were included in our study.
To remove cells with low quality, quality control was per-
formed using the Seurat package. Proliferation induced by
abnormal regulation of the cell cycle is thought to be critical
for ovarian cancer progression. The G1/S phase is the most
critical rate-limiting step in cell cycle promotion. Some studies
have shown that the expression of cell cycle-related genes is
significantly associated with poor prognosis in patients with
ovarian cancer. Therefore, we studied molecules involved in

cell cycle progression to discover new prognostic factors and
therapeutic targets. In this study, 66 ovarian cancer cells were
clustered into three groups (G1, G2M, and S). The marker
genes in each cluster were identified. To explore potential bio-
logical processes and pathways, KEGG and GO enrichment
analyses of these marker genes were performed. The results
showed that the marker genes in each cluster were enriched
in different biological processes and pathways.

Using ovarian cancer dataset from TCGA, a total of 1,124
differentially expressed genes with ∣log 2FC ∣ >1 and adjusted
p value <0.05 were identified between 568 ovarian cancer
tissues and 8 normal tissues. To explore potential biological
processes and pathways, these differentially expressed genes
were mainly enriched in metabolic pathways, pathways in can-
cer, PI3K-Akt signaling pathway, and the like. For example,
most ovarian cancer cells are highly proliferative; therefore,
they are highly dependent on the metabolism of glucose by
the aerobic glycolysis or the Warburg effect [18, 19]. PI3K-
Akt signaling pathway is deregulated in various malignant can-
cers including ovarian cancer, which participates in tumor cell
proliferation, survival, metabolism, and angiogenesis [20, 21].

The intercellular heterogeneity is one of the major
drivers of cancer progression [22]. Gene variation at the
single-cell level can rapidly produce cancer heterogeneity
[23]. Prognosis-related differentially expressed marker genes
were identified. We found that the expression levels of
STAT1, ANP32E, GPRC5A, and EGFL6 were all signifi-
cantly higher in ovarian cancer tissues compared with nor-
mal tissues. Furthermore, PMP22, FBXO21, and CYB5R3
expression was significantly lower in ovarian cancer tissues
compared with normal tissues. The low expression of
ANP32E, STAT1, GPRC5A, EGFL6, and PMP22 was posi-
tively associated with overall survival time of ovarian cancer.
The low expression of FBXO21, ANP32E, and CYB5R3 was
significantly associated with longer recurrence-free survival
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Figure 8: The differential expression of marker genes associated with prognosis of ovarian cancer. (a) STAT1; (b) ANP32E; (c) GPRC5A;
(d) EGFL6; (e) PMP22; (f) FBXO21; (g) CYB5R3.
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Figure 9: The survival analysis of differentially expressed marker genes in ovarian cancer. (a–e) The overall survival analysis results of
ANP32E, STAT1, GPRC5A, EGFL6, and PMP22. (f–h) The recurrence-free survival analysis results of FBXO21, ANP32E, and CYB5R3.
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time of ovarian cancer. STAT1, a member of STAT family,
has been confirmed to be highly expressed in ovarian cancer
[24, 25]. The high expression of ANP32E is in association
with better prognosis, contributing to the proliferation and
tumorigenesis of triple-negative breast cancer cells [26, 27].
GPRC5A variants may drive self-renewal of bladder cancer
stem cells according to single-cell RNA-seq analysis [28].
EGFL6, a stem cell regulator expressed in ovarian tumor cells
and vasculature, may induce the growth andmetastasis of ovar-
ian cancer [29, 30]. A previous study has found that EGFL6 is
upregulated in drug-resistant ovarian cancer cell lines using
microarray analysis [31]. The expression and function of
PMP22 in tumors remain unclear. Some studies have shown
that PMP22 is a potential tumor suppressor, and others have
indicated that PMP22 has a potential carcinogenic function in

tumors [32–35]. Studies on the role of PMP22 in the regulation
of ovarian cancer have not been reported. Furthermore, there is
no report concerning the expression and role of FBXO21 and
CYB5R3 in ovarian cancer. Collectively, our study identified
specific cell subpopulations andmarker genes in ovarian cancer.

5. Conclusion

In our study, we analyzed the intercellular heterogeneity in
ovarian cancer using single-cell RNA sequencing and identi-
fied marker genes in each cluster. Combining TCGA ovarian
cancer dataset, we identified differentially expressed marker
genes that were significantly associated with prognosis of
ovarian cancer, including ANP32E, STAT1, GPRC5A,
EGFL6, PMP22, FBXO21, and CYB5R3.
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Figure 10: The differential expression of STAT1 and PMP22 across different stages in ovarian cancer. (a) STAT1; (b) PMP22.
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This paper proposes a deep learning-based method for mitosis detection in breast histopathology images. A main problem in
mitosis detection is that most of the datasets only have weak labels, i.e., only the coordinates indicating the center of the
mitosis region. This makes most of the existing powerful object detection methods hardly be used in mitosis detection. Aiming
at solving this problem, this paper firstly applies a CNN-based algorithm to pixelwisely segment the mitosis regions, based on
which bounding boxes of mitosis are generated as strong labels. Based on the generated bounding boxes, an object detection
network is trained to accomplish mitosis detection. Experimental results show that the proposed method is effective in
detecting mitosis, and the accuracies outperform state-of-the-art literatures.

1. Introduction

Breast cancer is one of the main threats to woman health and
becomes one of the most leading causes of cancer-related
death all over the world. Early diagnosis is believed to be an
effective way for promoting the prognosis of breast cancer.

Generally, breast cancer can be classified into three levels
in histopathology based on the morphological microstruc-
ture of cancerous and the normal cells, i.e., well differenti-
ated, poorly differentiated, and intermediate. Classification is
important to the diagnosis and prognosis of breast cancer.
The most commonly used classification standard is the BRE
system proposed byWHO, in which three indications are used
to evaluate the differentiation level. The indications are vascu-
logenesis degree, nuclear atypia, and mitotic counting.

Among the indications, mitotic counting is the most
important, which can be described as the number of cells
under mitosis in tumer and around areas. In traditional
methods, mitotic counting is done by pathologists. Since
the nuclei of cells experiencing mitosis are extremely small,
therefore, attention should be highly concentrated. More-
over, the morphology of cells under various stages of mitosis
is different, and there may exist enormous normal cells

which are similar to mitotic cells. Due to these reasons,
mitotic counting is a tedious and error-prone task.

In order to reduce the workload of pathologists, many
computer algorithms and systems are proposed to automat-
ically detect mitosis. Traditional automatic mitosis detection
methods usually extract handcrafted features from breast
histopathology images and train a machine learning algo-
rithm and then perform predictions on testing images based
on the trained model. The key issue of such methods is the
feature definition. Effective features can greatly increase the
accuracy of detection, while badly defined features may dra-
matically influence the accuracy.

Recently, deep learning has attracted the attention of
researchers and becomes a new focus of computer vision.
Convolutional neural networks (CNNs) are applied to images,
and discriminative features are extracted under appropriate
loss functions. Compared with traditional learning-based
methods, the most notable advantage of CNN-based ones is
that no human interventions are needed throughout the whole
procedure. In consideration of the superiority of CNNs, many
researchers begin to employ CNN-based methods to detect
mitosis in breast histopathology images and achieve compe-
tent performances.
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In this paper, a CNN-based mitosis detection method is
proposed. The whole procedure can be separated into two
phases. For the first phase, in consideration of the lack of
strong labels in current datasets, a U-shaped network is
trained over pixellevel-labeled datasets and used to predict
bounding boxes on datasets which only have weak labels.
In the second phase, the predicted bounding boxes are then
taken as strong labels to train a network for mitosis detec-
tion. Contributions of this paper can be summarized as
follows.

(1) A mitosis detection method is proposed aiming at
solving the problem of insufficiency of strongly labeled
breast histopathology image dataset. We propose to
use pixel-wise-labeled datasets to train a segmentation
network, and then, strong labels (bounding boxes) can
be generated based on the prediction of the segmenta-
tion network. Thus, most of the current weakly labeled
datasets can be used for mitosis detection network
training

(2) For mitosis segmentation, a U-shaped network is
trained using a pixelwisely labeled dataset. Benefiting
from the multiple frequency downsampling and
upsampling layers in the network, the ability of seg-
menting small targets is promoted, which is suitable
for the mitosis segmentation task

The rest of this paper will be organized as follows. Sec-
tion 2gives a brief literature review of mitosis detection in
breast histopathology images. Section 3 proposes the mitosis
detection method with detailed network structure. Section 4
provides sufficient experiments and comparisons to show
the effectiveness of the proposed method, and finally in Sec-
tion 5, conclusions are drawn.

2. Related Works

Most of the traditional mitosis detection methods are based
on image features which are manually designed by computer
scientists and pathologists. Huang et al. [1] propose an
exclusive independent component analysis (XICA) algo-
rithm to detect mitosis. It is based on the fact that the
mitotic nucleus is darker; then, it surrenders in color, and
a sparse representation-based classifier is used to extract
mitosis from candidates. Considering there may be distinct
color variations in breast histopathological images, Tashk
et al. [2] propose to use texture features for mitosis detec-
tion. An object-oriented complete local binary pattern is
designed, and the support vector machine (SVM) is used
to separate mitosis from background. Khan et al. [3] propose
to employ a Gaussian mixture model (GMM) to model the
distributions of mitosis pixels and background pixels, and
a context-aware postprocessing is used to reduce false nega-
tives. Tek et al. [4] investigate a set of generic features, i.e.,
color, binary shape-based, Laplacian, and morphological fea-
tures to represent mitosis regions. The AdaBoost algorithm
is then used to detect mitosis. All these methods employ
handcrafted image features and a machine learning algo-

rithm to predict whether image pixels belong to the mitosis
region or not. However, since mitotic morphology may vary
greatly and the collection of tissue sections obtained by dif-
ferent instruments also increases the diversity of the appear-
ances of histopathological images, image features such as
color, texture, and intensity may be incompetent to fully rep-
resent mitosis. Besides, designing of such features requires
rich experiences of computer scientists and pathologists,
and therefore, such methods are not so satisfactory for auto-
matic mitosis detection.

Recently, researchers begin to put their focus on CNN-
based automatic mitosis detection methods. CNNs construct
high-level semantic features from low-level features and
obtain competent performances in many areas of computer
vision such as classification, segmentation, and object detec-
tion [5–9]. Ciresan et al.’s team [10] is one of the earliest
researchers who employ CNNs for mitosis detection. In their
work, a CNN with sliding window and max pooling is pro-
posed, and they achieved the first place in ICPR2012 mitosis
detection competition. Wang et al. [11] propose a mitosis
detection method which combines both handcrafted and
CNN features. Although the computational load is reduced
by incorporating manually designed features, the overall
performance is limited due to the disability of handcrafted
features in representing mitosis morphology. Veta et al.
[12] propose a similar method and obtain the first place in
ICPR2013 mitosis detection contest. Chen et al. [13] use a
cascaded CNN to detect mitosis by constructing a two-
stage deep network. A rough search network is used to
search mitosis candidates and a discriminant network to fur-
ther select mitosis from candidates. Inspired by the residual
conception proposed by He et al. [14], Zerhouni et al. [15]
propose a wide residual network (WRN) for mitosis detec-
tion. Recently, Li et al. [16] employ faster R-CNN [17] as
the detector for mitosis detection. However, since the faster
R-CNN is designed as a general purpose object detection
network, it is hard to get satisfactory performance on mitosis
detection task without sufficient training data.

A main difficulty of mitosis detection is that most exist-
ing datasets only have weak labels, i.e., only center points of
mitotic nucleus are labeled. It is difficult to construct a valid
training set to train a powerful detection network based on
such labels. At most occasions, it is unavoidably for pathol-
ogists to perform a pixel-level or bounding box-level labeling
on such datasets, which is a labor-consuming task. Some
researchers intend to solve this problem. For example, Li
et al. [18], Zerhouni et al. [15], Cai et al. [19], and Yancey
[20] crop a square area around the label point as the region
of interest. However, since mitosis is often heteromorphic in
shape, a large amount of background pixels are included into
the cropped area, which influences the detection performance.

3. Method

Mitosis detection can be seen as a special case of object
detection. In the past few years, along with the successful
employment of CNNs, object detection methods, such as
R-CNN [21], fast R-CNN [22], faster R-CNN [17], SPP-
Net [23], and YOLO [24], achieve reasonable accuracies
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and efficiencies. However, such general purpose object
detection methods are hard to be employed into the mitosis
detection task directly. The main reason is that such
methods usually need to have a training dataset with labeled
bounding boxes indicating regions of interest. In most exist-
ing breast histopathology image datasets, mitosis are weakly
labeled, i.e., only the coordinates indicating the centers of
mitosis regions are labeled. With such weakly labeled sam-
ples, a manual labeling is needed to generate bounding boxes
in order to employ a detection algorithm.

To solve this problem, this paper proposes to generate
bounding boxes for weakly labeled breast histopathology
images and construct a mitosis detection method based on
object detection networks. Firstly, a U-shaped network is
trained using pixel level-labeled dataset, and this network
is used for segmenting mitosis. Based on the segmentation
and weak labels, bounding boxes of mitosis are generated
for training a detection network. Then, the detection net-
work is used to detect mitosis. The whole process is depicted
in Figure 1. In this section, the two stages of the proposed
method will be described in detail.

3.1. Label Generation. CNNs have been successfully used in
biomedical image segmentation. Inspired by the U-Net
[25] and the multilevel wavelet CNN (MWCNN) [26], a seg-
mentation network is used in this paper to promote the abil-
ity of segmenting small targets. The structure of the network
is depicted in Figure 2.

As shown in Figure 2, each CNN block is a 4-layered
fully convolutional network (FCN) without pooling and
takes the discrete wavelet transform (DWT) subband image
as the input except the first layer. Low-frequency and high-
frequency bands of DWT in CNN help to fully explore all
frequency information of the input image, and the inverse
wavelet transform (IWT) plays the role of reconstructing
subband images into whole. Each layer of the CNN block

is composed of 3 × 3 convolution (Conv), batch normaliza-
tion (BN), and rectified linear unit (ReLU) operations. In
fact, this CNN block structure is the one that has been
proven to be effective in network training by He et al. [14].

Similar to the U-Net, the pixelwise cross entropy is used
as the loss function of the network, as defined in

E =〠
x

log pl xð Þ xð Þ
� �

, ð1Þ

where l is the true label of each pixel and pkðxÞ is the softmax
of pixel x in the output feature map, which is defined as

pk xð Þ = exp ak xð Þð Þ
∑K

k′ exp ak′ xð Þð Þ
, ð2Þ

where akðxÞ denotes the activation in feature channel k of
pixel x and K is the number of classes.

The network is trained using the MITOS2012 dataset
[27] which has pixel-level strong labels. Input images and
their corresponding segmentation maps are fed into the net-
work for training. The trained network performs an end-to-
end prediction, and the output feature map shares the same
width and height as those of the input images. The output
feature map indicates a probability of a pixel that it belongs
to mitosis.

After getting the segmented mitosis, the minimum cir-
cumscribed rectangle is labeled as the bounding box of mito-
sis, which will be taken as the ground truth. In this paper, if
the weak label (a point labeled at the center of the mitotic
nucleus) is within the marked bounding box, the sample will
be taken as positive. Figure 3 shows some examples of the
labeled bounding boxes.

3.2. Mitosis Detection. After generating strong labels, the
R-CNN [21] algorithm is employed for mitosis detection.

Dataset with strong label

Dataset with
weak label

Segmentation
mask

Segmentation
network

Detection
network

Detection result Testing sample

Samples with
bounding-box

Training

Training

Predicting

Predicting

Weak ground truth mask
(Enlarged for visual effect)

Label generation

Mitosis detection

Figure 1: Flowchart of the proposed method.
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R-CNN has been a representative and powerful CNN-based
object detection method since recent years. R-CNN performs
a four-step detection routine, i.e., region proposal generation,
CNN-based feature extraction, SVM-based region classifica-
tion, and bounding box regression. A selective search algo-
rithm is employed to generate region proposals, which will
be fed into a CNN to extract features after region wrapping.
During the training phase, the generated bounding boxes in
Section 3.1 are used as the ground truth. 32 positive samples
and 96 negative samples are composed together as a mini-

batch, which is consistent to the original R-CNN, and are
proven to be an optimized combination. It should be noticed
that theoretically any object detection method can be
employed here, and more powerful object detection method
may obtain more accurate results.

4. Experimental Results

4.1. Datasets. In the experiments, three mostly used datasets
for mitosis detection are employed, i.e., AMIDA2013 [12],

160

256 256 256 256

256 256 256 256 256 256 256 256

256 256 256 256Input Output

160160160 160 160160160

DWT Conv+BN+ReLU

Sum connectionIWT

Figure 2: Architecture of the segmentation network.

(a) (b) (c) (d)

Figure 3: Examples of labeled bounding boxes. (A) Original. (B) Original with mask. (C) Original with bounding box. (a, b) True positives.
(c, d) False positives.
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ICPR2014 [28], and TUPAC2016 [29]. All these datasets
contains H&E-stained breast cancer histopathological sec-
tion view. Figure 4 shows some exemplars from the datasets.

The AMIDA2013 dataset consists of 1083 samples from
23 volunteers, and each volunteer has at least 10 views with
dimension of 2000 × 2000 and resolution of 0:25pixels/μm.
Images from the AMIDA2013 dataset are obtained by
Aperio Scanscope XT slice scanner. Images are labeled by
experts from University Medical Center Utrecht, and each
view is labeled by two experts independently. For the
AMIDA2013 dataset, 550 samples of 12 volunteers are taken
as the training set and others as the validation set.

The ICPR2014 dataset was firstly proposed for the
ICPR2014 mitosis detection competition. It is composed of
two subsets of images scanned by Aperio Scanscope XT
and Hamamatsu Nanozoomer 2.0-HT digital slice scanner,
respectively. The dimension of images from this dataset is
1539 × 1376 and the resolution is 0.2455 pixels/μm. The
dataset is labeled by two pathologists independently, and
749 mitosis are labeled out of 1200 views from 11 volunteers.
In this paper, 816 views are selected as the training set, and
96 are taken as the validation data, which is consistent with
Ref. [18] and Ref. [20].

The TUPAC2016 dataset consists of two parts. The first
part contains samples from 23 volunteers, and this part is
the same as the AMIDA2013 dataset. The second part con-
tains samples from 50 volunteers with dimension of 5657
× 5657, which are scanned using Leica SCN 400 digital slice
scanner. Each image is labeled by two pathologists indepen-
dently. In the experiment, validation samples are selected by
every 7 volunteers from volunteer no.30, and the others are
taken as training samples. This strategy is consistent with
Ref. [18].

4.2. Evaluation Metrics. Evaluation is performed according
to the ICPR2014 contest criteria. A detected mitosis is
counted as correct if its center point is localized within a
range of 8μm from its ground truth. Here, the center point
of detected mitosis is defined as the diagonal intersection
of its bounding box. Three metrics, namely, precision, recall,

and F1-score are employed as the quantitative indicators,
which are defined in

Precision =
TP

TP + FP
,

Recall = TP
TP + FN

,

F1‐score =
2 × Recall × Precision
Recall + Precision

,

ð3Þ

where TP is the number of true mitosis which are detected,
FP is the number of falsely detected mitosis, and FN is the
number of true mitosis which are not detected. Precision
indicates how many true mitosis are detected out of all the
detected instances. Recall indicates how many true mitosis
are detected out of all mitosis. F1-score gives a comprehen-
sive combination of Precision and Recall.

4.3. Implementation Details. The experiments are carried out
on a computer with Intel Core i7 CPU, Nvidia GTX 2080Ti
GPU, and 16GB RAM. All the codes are implemented using
Python 3.6 as the programming language and PyTorch 1.9.0
as the deep learning framework. Both networks are trained
100 epochs with Adam optimizer and batch size of 8. During
training, the learning rate is initialized as 10−3 and decreased
to 10−6 after 100 epochs.

4.4. Results and Comparisons. Detection results and compar-
isons with some state-of-the-art methods considering the
three criteria are listed in Table 1. It should be noticed that
all the results of the referred methods are reported by the lit-
eratures. Some visual results are shown in Figure 5. In
Figure 5, rectangles indicate the bounding boxes of detected
mitosis, and dot marks indicate the ground truth label
(enlarged for visual effect).

From the results, we can see that the proposed method
achieves the best results compared with the referred
methods in most of the cases. Li et al.’s method [18] is a
CNN-based mitosis detection method which uses two con-
centric circles to label a mitosis area. The proposed method

(a) (b) (c)

Figure 4: Exemplars from the datasets: (a) AMIDA2013, (b) ICPR2014, and (c) TUPAC2016.
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outperforms Li et al.’s method on all the three considered
datasets with respect to most of the criteria. Since the pro-
posed method employs a segmentation network to generate
strong labels, the detection network can be better trained
with this more adequate training data, and thus, more com-
petent prediction performance is obtained. The IDSIA [12]
method employs a multicolumn max pooling convolutional
neural network (MCMPCNN) for supervised pixel classifica-
tion. However, only weak labels are used in its network
training, which influences the prediction ability of IDSIA.

4.5. Impact of Label Generation. To further corroborate the
effectiveness of the label generation strategy used in this
paper, an additional experiment is performed on the
TUPAC2016 dataset, and the results are listed in Table 2,
in which Manual means the bounding boxes of mitosis are
marked manually, i.e., the minimum rectangle that can sur-
round the mitosis and include the ground truth point, U-Net

means the mitosis is segmented using the original U-Net
network [25], and Proposed means the mitosis is segmented
using the proposed segmentation network.

From the results, we can see that labels generated by the
proposed segmentation network are slightly better than
the original U-Net, which can be attributed to the fact that
the proposed network can provide a more accurate pixel class
prediction and thus provide a more accurate bounding box.
However, different segmentation methods have similar final
detection results, and they are also similar with that of man-
ual labeling. We can conclude that segmentation-based label
generation is beneficial to mitosis detection with nearly no
accuracy loss.

5. Conclusions

In this paper, a deep learning-based method for mitosis
detection in breast histopathology images is proposed. The
method is aimed at solving the problem of the insufficiency
of strongly labeled samples by incorporating a bounding
box label generation process before mitosis detection. Exper-
imental results show that the proposed label generation
strategy can promote the mitosis detection performance in
a large extent. The main limitation of the proposed method
is that the employed object detection method R-CNN needs

Table 2: Detection results.

Label generation method Recall Precision F1-score

Proposed 0.766 0.843 0.803

U-Net 0.751 0.840 0.793

Manual 0.779 0.850 0.813

(a) (b) (c)

Figure 5: Some detection results. Rectangles indicate the bounding boxes of detected mitosis, and dot marks indicate the ground truth label
(enlarged for visual effect): (a) AMIDA2013, (b) ICPR2014, and (c) TUPAC2016.

Table 1: Detection results.

Datasets Methods Recall Precision F1-score

AMIDA2013

IDSIA [12] 0.612 0.610 0.611

Li et al. [18] 0.677 0.669 0.673

Proposed 0.689 0.690 0.689

ICPR2014

Yancey et al. [20] — — 0.507

Li et al. [18] 0.682 0.541 0.603

Proposed 0.733 0.539 0.621

TUPAC2016
Li et al. [18] — — 0.717

Proposed 0.766 0.843 0.803
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a long time of training, although it can be solved by integrat-
ing a more powerful object detection method into the pro-
posed detection routine.

Data Availability

The data used to support the findings of this study are all
publicly available datasets deposited in the following websites:
(1) AMIDA2013 dataset, https://tupac.grand-challenge.org/
Dataset/. The AMIDA2013 dataset is contained as part of
the TUPAC2016 dataset (also declared in the manuscript).
These two datasets are publish by the same organization, so
the AMIDA2013 dataset cannot be accessed as its own. Any-
one can get the AMIDA2013 dataset through downloading
the TUPAD2016 dataset. Please refer to [29]. (2) ICPR2014
dataset,https://mitos-atypia-14.grand-challenge.org/Dataset/.
(3) TUPAC2016 dataset,https://tupac.grand-challenge.org/
Dataset/. (4) MITOS2012 dataset, http://www.icpr2012.org/
contests.html
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Breast cancer diagnosis is a critical step in clinical decision making, and this is achieved by making a pathological slide and
gives a decision by the doctors, which is the method of final decision making for cancer diagnosis. Traditionally, the doctors
usually check the pathological images by visual inspection under the microscope. Whole-slide images (WSIs) have supported
the state-of-the-art diagnosis results and have been admitted as the gold standard clinically. However, this task is time-
consuming and labour-intensive, and all of these limitations make low efficiency in decision making. Medical image
processing protocols have been used for this task during the last decades and have obtained satisfactory results under
some conditions; especially in the deep learning era, it has exhibited the advantages than those in the shallow learning
period. In this paper, we proposed a novel breast cancer region mining framework based on deep pyramid architecture
from multilevel and multiscale breast pathological WSIs. We incorporate the tissue- and cell-level information together and
integrate these into a LSTM model for the final sequence modelling, which successfully keeps the WSIs’ integration and is
not mentioned by the prevalence frameworks. The experiment results demonstrated that our proposed framework greatly
improved the detection accuracy than that only using tissue-level information.

1. Introduction

Breast cancer is the leading death cause among women all
over the world [1]. Great progresses of microscopic imaging
make digital pathology come into the whole-slide image
(WSI) stage. These techniques allow a WSI image (a
whole-slide image at 40x magnification is about 2GB) to
be stored, served, and viewed in multiscale, multiview, and
multilevel than the light microscopy. In this context, modern
precision medicine approaches require careful diagnostic
with personality and precision survival prediction for each
case so as to tailor suitable therapy protocol [2]. A straight
diagnostic protocol of breast cancer is the interpretation of
digital pathology slides, which used to be a time-
consuming and labour-intensity pathway for manual inter-
pretation with significant inter- and introobserver variability
[3]. The computer-aided digital pathology analysis combines

the image processing technique that opens the door to auto-
matically depicting the pathology slides with a more objec-
tive and quantitative way [4]. Over these decades, due to
the breakthroughs in Artificial Intelligence (AI), it allows
computers to reach the state of the art in many vision-
based tasks, better than human counterparts for specific
tasks, especially in the field of medical image processing [5].

Clinically, pathological analyses on axilla lymph nodes
can indicate the original, spread, and metastasis of breast
cancer; furthermore, the pathological changes in axilla
lymph nodes are a critical factor for prognostic evaluation
[6]. However, pathological image analysis in lymph nodes
in tissue level is usually time-consuming and prone to sub-
jective variances. In addition, small metastases such as iso-
lated tumor cell clusters (ITCs) are a small region with few
cells and difficult to detect or missed [7]. Based on these
merits, there are great demands of automated breast cancer
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detection frameworks for improving the robustness and pre-
cision of the decision making [4]. WSIs excited the develop-
ment of quantitative histopathology analysis, which can now
capture nuclear and tissue architecture from different levels
and scales [8, 9]. Furthermore, cell-level analysis based on
cell shape, nuclear morphology, and cytoplasm distribution
is crucial for the tumor grading and reorganization [10]. It
has been reported that many cell analysis frameworks give
the possibility for incorporating with cell-level information
to analyze the multiscale pathological image [5, 11].

In this paradigm, many deep learning-based metastasis
detection methods have been proposed and achieved excellent
results at the challenges inMICCAI and ISBI from 2016~2020
[12, 13]. A consistent evaluation of digital pathology analysis
protocols for breast cancer diagnosis with accuracy and effi-
ciency was performed; all of these successes are dependent
on the proper designing and integrating exiting pipeline by
using transfer learning. In this way, researchers can reduce
the risk of cancer patient and slide misidentification; further-
more, tissue loss and damage can be better fixed to facilitate
covering the gaps among pathology laboratories and clinical
primary diagnosis [14]. Thus, the most important advantage
of WSIs is that the researchers can apply deep learning-
based methods in the diagnostic workflow. However, most of
these frameworks mainly focus on tissue level in the WSIs
and cannot depict the details of cell-level information.

2. Related Work

Detection of the suspected tumor region, characterization of
tumor subtype, and quantification of tumor invasive extent
are the critical procedure in breast cancer diagnostic. In deep
learning context, CNN is employed for breast cancer WSI
patch classification, in which the CNN model uses manually
annotated labels for training and gets ideal results [15].
Cruz-Roa et al. proposed a deep learning pipeline that is pre-
trained using image net for distinguishing the benign and
malignant breast cancer; at the same time, some data augmen-
tation methods have been adopted to prevent overfitting [16].
Lymph nodemetastasis is the most suitable background for AI
algorithm application; Liu et al. and Steiner et al. proposed a
challenge competition and establish a testbed for breast cancer
diagnosis; the comparison results exhibited great superiority
for the deep learning-based method than the pathologist
achievement [17, 18]. On the other hand, tumor histologic
grading and invasive tumor characterization can give a deep
inspection for breast cancer prognostic evaluation. But cell-
level and tissue-level feature identification used to be a labori-
ous task, such as the tubular formation and mitotic cell analy-
sis, which are important prognostic factors that were mined by
using manual operation, and the labour-intensive nature of
mitotic counting can lead to discordance.

Some shallow learning methods have achieved remark-
able results on this paradigm [19, 20]; recently, deep learning
methods have shown their excellent performance on this
task [21–23]. For the early achievement, Rexhepaj et al. pro-
posed a nuclear detection algorithm to quantify IHC stain-
ing cell for protein expression and get a correlation of 0.9
with manual counting [24]. Nonetheless, this method has

not achieved the state of the art at that time; the subsequent
work shows that the deep learning-based method can help
improve the level of concordance among human patholo-
gists [24]. Romo et al.’s team employed a CNN model to
detect tubule nuclei and use this information for Oncotype
DX risk category [25]. Veta et al. propose a framework based
on non-CNN model to perform cell nucleus detection and
segmentation jointly for the cell morphological analysis
[22, 25]. Biomarker finding is another element that related
with diagnosis of breast cancer. More recently, WSI-based
biomarker detection is becoming a prominent pathway for
tumor evaluation directly using image information. Couture
et al. introduced a deep learning-based multimodule frame-
work for ER status prediction and get the accuracy up to
84% [26]. Shamai et al. implemented a deep learning pipe-
line with less data of 19 biomarkers, and within the sub-
group, they get the 92% accuracy of confidence score [27].
Image of aspiration biopsy was also employed to mining
malignant and benign tumors by fitting cellular features with
machine learning paradigm [28]. The conditional GAN
model is a promising pathway of image data augmentation
for the deep model training. Sahiner et al.’s works supported
the application of GANs to boost the training phase to opti-
mize tumor classification [29].

The morphological features extracted from the breast
cancer WSIs are known to be valuable for the prognosis
evaluation. Veta et al. use breast cancer microarray data
and nuclear handcraft features to construct a general model
for patients’ prognosis evaluation, and their research open a
window for the possible direction of tumor prognosis analy-
sis by multimodule feature fusion [19, 20]. As a standard
deep learning model, CNN can extract multiple-level fea-
tures to represent the tumor region; Yuan proposed a
CNN-based model to analyze the lymphocyte spatial distri-
bution for classifying different tumors in WSIs [30]. In addi-
tion, the spatial relationship is also used for cell morphology
analysis, tumor detection, and prognosis evaluation, but
there are still few researches that focus on multilevel and
multiscale information. In this paper, we proposed an open
and multitask framework for tumor detection and grading;
we also concern some spatial information and multilevel
fusion features to depict the hidden relationship between
tumor statues and information from each level.

3. Materials and Methods

3.1. Datasets. For the framework construction, we use
Camelyon 2017 data set for the tissue-level network training
and TIM 2015 data set for cell-level detection network train-
ing, respectively [7, 31]. Although there are many other data
sets for the cancer region detection of breast cancer, we still
choose the Camelyon 2017 data set for the evaluation; this is
because of the restriction of data scale and the processing
ability of our hardware platform. Figure 1 shows the details
of the two data samples. For the framework construction,
we use the Camelyon 2017 data set for the tissue- level net-
work training and the TIM 2015 data set for cell-level detec-
tion network training, respectively. The TIM2015 data set
can be found at http://haeckel.case.edu/data/TMI2015.tgz,
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and the Camelyon 2017 data set can be found at https://
camelyon17.grand-challenge.org/.

The Camelyon 2017 data set is a multilevel WSI data set
including patients from different medical centers and up to
500 slides; for the network training, we manually selected
100 slides for this task. The glass slides were digitized by
whole-slide scanners with a pixel size of 0.23 to 0.26μm,
respectively. The WSI is a multiple-resolution and
multiple-level images that is about 1 × 105 by 2 × 105 pixels
at the highest resolution level. The whole WSI contains 10
resolution levels; each consecutive level doubled the pixel
size in both directions and halved the pixel in each dimen-
sion; in addition, the file size of a WSI with 10 levels is about
2~4GB which varies depending on the scanner and tissue
anatomy structure of the input image. The scanned images
were converted into standard multiresolution TIFF image
files according to open slide standard [7].

The TMI 2015 data set is also H&E-stained histopatho-
logical images, which were obtained from digitized glass
slides corresponding to 49 lymph node-negative and estro-
gen receptor-positive breast cancer (LN-, ER+ BC) patients
at Case Western Reserve University. The size of each image
is about 2200 × 2200 pixels, and there are about 1500 nuclei
in each image [31].

3.2. Pathological Region Generation. For the training of the
pyramid deconvolution network, balance of the training
sample is a critical problem, but in this data set, the tumor

types are unbalance in different tumor stages. For this situa-
tion, we adopted the deep convolution generative adversarial
networks (DCGAN) for boosting the tumor region patches
and extended the origin patch set into an expanded edition.
Under this situation, the data unbalance can be addressed as
a data generation problem from the existing classes, so as to
promote the balance of the training data. Figure 2 shows the
details of the pathological image generation process for the
microregion of breast cancer.

3.3. Whole-Slide Image Preprocessing. In this paper, we
employed two data sets, part of Camelyon 2017 and the
TMI 2015 from breast cancer tissue section slide. For WSIs
of Camelyon 2017, we extracted the slide area on each level
by OTSU algorithm. Following this step, we split the original
image into small patches with the same size at each scale. At
the same time, we transform the counter label of Camelyon
2017 into mask and perform the same manipulation with its
WSI image at each level. Concerning the image quality, we
chose a commonly used color equalization to reduce the
effect of unequalization and uneven illumination of original
WSI staining [32].

Because the cancer regions in the Camelyon 2017 data
set only cover a small region in the WSI slides, this led to
an unbalance situation for the deep model training. We
adopt some data augmentation methods to merge the gap,
such as random cropping, colour jittering, scaling, and rota-
tion. For some class, we use deep convolution generative

Figure 1: Data set in this paper. (a) Is the Camelyon 2017 whole-slide images [7]; (b) is the TMI 2015 data set from Xu et al. [31].

G
(generator)

D
(discriminator)

Z ~ N (0, I)

1 (Real)

0 (Fake)

1 (Real)
Real image

Fake image

Discriminator training

Generator training

Figure 2: GAN model for pathological image generation.
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adversarial networks (DCGAN) for boosting the tumor
region patches; finally, we extended the origin patch set into
an expanded edition.

For the TIM2015 data set [31], this data set is used for
training and evaluating a cell detection model; the original
data was labeled by using a binding box; for convenience
and application, we transform the binding box into a point
label by making an average position through the four coor-
dinates of the binding box. Then, following our proposed
method, we fill the dot label with Gaussian kernel for the cell
mask generation, and at last, we constructed the final train-
ing set for cell-level analysis pipeline.

3.4. Framework Architecture and Network Design. In this
paper, we construct a multilevel and multiscale tumor region
detection and segmentation framework for breast cancer. As
it is shown in Figure 3, the WSIs are stored into a multiple-
level pyramid structure with 10 levels; the user can zoom
into any level and depict the details to perform diagnosing
tasks. For this situation, we divided the total framework into

two levels of tumor analysis procedure pipeline, in the tissue
level and cell level, we adopt the same network backbone
architecture derived from the DeconvNet (see Figure 4),
and some parameter settings are also changed according to
the input image. In the following part, we will introduce
the details of our framework in the tissue level and cell level,
respectively.

The aim of the tissue level is to get the tumor region
according to the labeled mask so as to assign the TNM stage
of WSI. As shown in Figure 4, the tissue level and cell level
share the same basic network. They are all based on Deconv-
Net which consists of the stacked convolution layers, max-
pooling layers, and deconvolution layers. In the front three
blocks, max-pooling layers are followed with convolution
layers, and ReLU activation layer and convolution layer
which form deconvolution layers are followed with upsam-
pling layers which are followed by the last three blocks.
Finally, a convolution layer was used to replace fully convo-
lutional layers in the end of the network in order to obtain a
density map. Totally speaking, 3 × 3 kernel size, ReLU
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activation, Mean Squared Error (MSE) loss function, and
Adam optimizer were used in all network structures. In
order to handle different tasks, the basic network was fine-
tuned. As shown in Figure 2, the fully connected layer was
connected to the last convolution layer to get confidence
result of patch binary classification. With characteristic of
DeconvNet, images of any size can be input. However, in
actual application, images with the dimensions reduction
were used to avoid cutting the edge of the output density
map.

For the high-resolution WSI images, the content is usu-
ally up to 2GB for a single image, and the tumor region
locates at somewhere in the whole slide. For a large image,
the network has to be trained on the image patches gener-
ated from the ground scale. In order to keep the patch
sequencing, we proposed a LSTM-CFCN-based model for
the segmentation task. In this model, the stacked channel
FCN is for the patch feature encoding and the LSTM model
is used to merge these patches into a large image from these
FCN encoded patches; more details are illustrated in
Figure 5. In this part, the cancer region in the training data
set is labelled by using a mask; the channel FCN is used to
estimate the density map of a tumor region in each sequen-
tial patch; and LSTM block is used to combine the detected
result into an integrated figure. From this point of view, the
tumor density map is predicted by the deconvolution part,
and a Euclidean distance is used for measuring the difference
between the generated density map and the ground truth.
And the loss function is defined as follows:

Lt =
1
2N

〠
N

i=1
〠
p

p=1
Fi p ;ΘCFCNð Þ − F0

i pð Þ�� ��2
2, ð1Þ

where N is the batch size and FiðpÞ is the probability of
tumor at pixel p in the ith sequential patch. For some situa-
tion in low level of WSI, the global tumor region is generated
from several sequential image patches; the integration is

learned by the LSTM block. So, the total loss function
includes the basic tumor segmentation part and the LSTM
residual part. The final result is a sum of the two parts:

Ti = R Fi ;ϒ ,Ψð Þ + 〠
P

p=1
Fi pð Þ, ð2Þ

where RðFi ;ϒ ,ΨÞ is the residual count, Fi is the estimated
heat map from patch i, ϒ is the parameter of LSTM, and
Ψ is the fully connected layer’s parameter. The whole-slide
tumor detection loss function is defined as

Llstm =
1
2N

〠
N

i=1
Ti − T0

i

� �2, ð3Þ

where T0
i is the ground truth in the ith image patch and Ti is

the learned tumor region. In this way, the total loss function
for the multiple-scale LSTM-CFCN is defined as

L = Lt + αLlstm, ð4Þ

where alpha is a weight parameter of the LSTM residue and
to be tuned for the suitable accuracy. At the same time, the
tumor detection is trained with fewer parameters to achieve
a better training process. In the framework, the Adam opti-
mizer and backpropagation are used to optimize the loss
function L for different scenes.

3.5. Tissue-Level Pyramid-DeconvNet. In the tissue level,
conventional deep learning methods usually take amount
of time and space to handle all the small patches. In order
to overcome this obstacle, we introduce a flexible automatic
decision method based on the pyramid deconvolution net-
works, which can target the RoIs (Region of Interest) quickly
with higher accuracy. We first cast the problem as a super-
vised learning problem that tries to learn a mapping between
a patch IlðxÞ and a density map DlðxÞ, denoted

Image patch
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Image patch

Image patch
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LSTM

LSTM

LSTM
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sequence encoder

Patch 1
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FCN channel n

FCN channel 1
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Patch n
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shuffle
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Dimension
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Figure 5: Long short-term memory enhanced channeled fully convolutional network pipeline with a dimension shuffle layer.
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asFl : IlðxÞ⟶DlðxÞ which, ðIl ∈ Rm×n,Dl ∈ Rm×nÞ in layer l
and obtained different weights wl and biases bl. Then, we
fixed wl and bl to train the last fully connected layer for clas-

sification Clðwl, bl,w
f c
l , b

f c
l Þ. Utilizing a tree-like searching

protocol, networks in layer l will test their layer separately
with Cl and obtained the classification confidence of cancer
CðxÞ. RoI prediction probability was compared with thresh-
old t. If we find RoI, we introduce location code information,
short for LCI, which is a series of continuous coding to rep-
resent the position of each RoI and find the coordinates and
LCIs of next layer l − 1. Loop until we reach the top layer of
cell level. Details are shown in Algorithm 1.

3.6. Cell-Level DeconvNet. In the small tumor region of the
WSI images, it even contains few illness cells. The cell-
encoding information is obtained for better judgment of
small tumor areas, such as micro and ITC. For the tumor
region affirmative, we introduce a cell-level DeconvNet.
The basic network is a DeconvNet with a NMS layer embed-
ded to the last convolution layer. After training, the pro-
posed network with patches and their mask images were
filled with Gaussian kernels with Equation ((1)):

P xð Þ = 1
2πð ÞD/2 Σj j1/2

exp −
1
2

x − μð ÞTΣ−1 x − μð Þ
� �

: ð5Þ

Density maps which consist of 0-1 float values of each
layer were obtained. After that, NMS was employed to get
the accuracy of each cancer cell. And then, we view the value
of detection count results as cancer cell counting results and
cluster the detected points to form the region of cancer area.
As shown in Figure 3, a Nonmaximum Suppression (NMS)
algorithm was connected to the final layer to get the position
of each cell and obtain the result of cancer cell counting and
region area. In this way, the small region such as ITC and
micro are detected by using cell-level screening.

3.7. Cancer Region Generation. Through tissue-level detec-
tion method, if Algorithm 1 breaks with layer number larger
than two, the WSI is negative. And macro areas and large

size of microareas were detected if the total area of con-
nected RoI patches in layer two were larger than the
threshold of the area in the TNM staging system. And
then, cell level determined the areas of micro or ITC,
which were passed to a cancer cell detector to obtain the
location and number of cancer cells. The size of cancer
areas and the number of cancer cells were breast cancer
detection standard to classify the images according to the
TNM system.

3.8. Evaluation Methods. For the tumor segmentation, we
evaluated the segmentation performance by using the tradi-
tion method of image segmentation. The results of our pipe-
line are reported in terms of recall, precision, and F1
-measure value, as follows:

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 =
2PR
P + R

:

ð6Þ

For the evaluation, we choose the intersection over
union (IoU) metric and Jaccard index to quantify the per-
cent overlap between the target mask and the framework
prediction output results. The Jaccard similarity coefficient
of the segmentation result and the original labelled mask is
expressed as

Jaccard S,Mð Þ = intersection S,Mð Þj j
union S,Mð Þj j , ð7Þ

where j∗j represents the cardinal of set ∗. The Jaccard index
can also be expressed in terms of True Positives (TP), False

Input: WSI image I, patch level DeconvNet for scale l, Cl, layer number L, and confidence threshold t.
Output: Selected patches Ps.
1: Generate patches PsL-1 with step w and h in IL-1, and location code LCISL-1.
2: patches initialization with Ps = PsL-1.
3: for i = L-2 to 2 do
4: if Ps is empty then
5: Break
6: for patch p in Ps do
7: Calculate cancer confidence of p named c with Ci
8: if c > t then
9: Add LCIp to LCISi
10: for LCI in LCISido
11: Calculate LCI in i-1 layer
12: Generate patches with all LCIs named Psi-1
13: Set current patch set Ps = Psi-1

Algorithm 1: Tissue-level pathological RoI extraction.

6 BioMed Research International



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Pathological images and their detection results. The subimages (a), (c), (e), and (g) are the original pathological images; (b) and (f)
are the heat maps generated from our framework.

Table 1: Comparison results of different methods.

Methods/accuracy Normal (%) Macro (%) Micro (%) ITCs (%) Average (tumor, %)

FCN 64.3 61.1 53.6 17.3 44

U-Net 77.8 67.1 55.2 21.2 47.83

Ours 80.1 73.6 57.7 20.6 50.63

FCN + cell detection 68.7 64.7 54.2 14.1 44.33

U −Net + cell detection 79.6 70.1 58.4 23.1 50.53

Ours + cell detection 85.3 74.3 60.1 24.6 53
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Positives (FP), and False Negatives (FN) as

IoU =
TP

TP + FP + FN
: ð8Þ

4. Results and Discussion

4.1. Network Training. All experiments and test bed are car-
ried out on Intel Core (TM) i9, 12 cores, 2.90GHz processor
with 32GB of RAM and a NVIDIA GeForce GTX 2080Ti
Graphics Processor Unit. The software implementation is
performed using CUDA10.0, CuDNN8.5, and Pytorch1.5.

The proposed models have been tested on the Camelyon
2017 data sets; in this part, we divided each data set into two
parts, 70% and 30% for training and testing. We kept the
same parameters in all FCN blocks to make sure the network
stability. For making sure the cells in LSTM model, we per-
formed several tests about the cell number; finally, we choose
the N with 10 cells. The training epoch generally kept at
3000 for the pathological images. In the training processes,
random sampling and truncated back propagation are
employed for handling the huge image data and LSTM
model tuning. Adam optimizer is used in these models with
1e-3 and final learning rate with 1e-5, and the learning rate is
reduced by an equal step in each epoch until the final learn-
ing rate is reached.

4.2. Results of Tumor Region Detection. In this paper, we
proposed a multiple-level CFCN-based framework for the
tumor region detection in breast cancer WSI image data

set. The final aim is to combine the pyramid information
from different image scales to ensure the accuracy of final
segmentation results. In this part, we choose several tissue-
level and cell-level information for the segmentation task
and get a relative satisfactory decision on the test set.

The segmentation results of our proposed framework are
shown in Figure 6. For the tissue-level detection, we applied
the framework to carry out the tumor region detection task
on the Camelyon 2017 data set. Here, we selected some seg-
mentation result as the final tissue-level detection; in
Figure 6, the heat maps (b) and (f) exhibit the tumor region
in the WSI slides. For the segmentation details, (d) and (h)
are the partial details of the segmentation result on the WSIs;
it can depict that our proposed framework can distinguish
the tumor region and normal region clearly in the testing set.

For the comparisons, we choose some state-of-the-art
methods such as FCN and U-Net as the test bed for the final
method evaluation. In tissue-level segmentation, we com-
pared our proposed method with the abovementioned
methods; results are shown in Table 1; for the normal region
in WSIs, our proposed framework gets the highest accuracy
compared with the traditional methods. In addition, U-Net
usually takes the priority position in medical image process-
ing especially on segmentation task, but the U-net model
cannot depict the level-wise information. In our framework,
we use both cell-level and tissue-level information for the
final decision and get a higher accurate result. Micro and
ITCs are small regions that contain few cancer cells with
unstable variability in morphology, usually existing at an
unstable statute in the whole slide. All of these induced the

a:1 4

b:1 4

c:1 4

d:1 4

Figure 7: Comparisons of the segmentation results among different methods. (a–d) Are different views of the WSIs; from 1 to 4 are the
segmentation results of original image, FCN, U-net, and our proposed method.
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low accuracy of detection and segmentation. In this situa-
tion, our framework still catches the better results for some
fixed situation.

To refine the segmentation results, we combined the cell-
level information into the framework and make sure the seg-
mented tumor region contains multilevel information. Espe-
cially for the micro and ITC regions, the cell-level
information can indicate the existence of small tumor
regions even without screening by tissue-level scans. For
cell-level information incorporation, we can see that it can
improve the detection result, Table 1 shows the detection
results by employing cell-level and tissue-level information,
and there is a certain improvement on detection accuracy.
Figure 7 shows the segmentation result by using different
methods; it can be addressed; our proposed method can
greatly improve the segmentation result compared with
FCN and U-Net.

5. Conclusions

In this paper, we propose an automatic cancer lesion detec-
tion approach using pyramid deconvolution network (PDN)
for multilevel and multiscale H&E-stained breast pathologi-
cal WSIs. In this framework, we integrate tissue- and cell-
level information for the cancerous region detection and seg-
mentation, which is neglected by state-of-the-art methods.
The results demonstrated that our workflow greatly
improved the performance compared with those only using
tissue-level information. The comparison results showed
our framework can get better accuracy on the same testing
data set. In the future, our aim will focus on multiscale fea-
ture extraction and fine-tuning the new representation net-
work for improving the detection and segmentation
performance.
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Breast cancer is one of the most common malignancies. Pathological image processing of breast has become an important means
for early diagnosis of breast cancer. Using medical image processing to assist doctors to detect potential breast cancer as early as
possible has always been a hot topic in the field of medical image diagnosis. In this paper, a breast cancer recognition method
based on image processing is systematically expounded from four aspects: breast cancer detection, image segmentation, image
registration, and image fusion. The achievements and application scope of supervised learning, unsupervised learning, deep
learning, CNN, and so on in breast cancer examination are expounded. The prospect of unsupervised learning and transfer
learning for breast cancer diagnosis is prospected. Finally, the privacy protection of breast cancer patients is put forward.

1. Introduction

Breast cancer is one of the most common malignant tumors.
According to Chinese Women’s survey, breast cancer is the
most common malignant tumor in Chinese women, and
the incidence rate is increasing year by year. The key to
reduce the mortality of breast cancer is early diagnosis and
treatment. At present, mammography is the most com-
monly used method to detect breast cancer. However,
because of the huge amount of data and the poor imaging
features of early breast cancer, early diagnosis is very diffi-
cult. With the development of image processing technology
and early diagnosis technology, image processing of breast
pathology has become an important way of early diagnosis
of breast cancer, which mainly includes the study of masses,
calcifications, and breast density. One of the main manifes-
tations of breast cancer in breast mammography is mass.
The basic steps of pathological image processing are as fol-
lows: first is image preprocessing, which includes removing
background, marker, pectoral muscle and noise, and breast
segmentation and image enhancement. Secondly, the region
of interest is found by a basic image processing method.
Then, features that can represent the quality, such as texture
features and morphological features, are extracted. Finally,
the tumor and normal tissue were separated according to

the extracted features. Another manifestation of breast can-
cer on X-ray images is a large breast density [1].

The object of breast pathology image processing is a
variety of medical images with different imaging mecha-
nisms. The types of medical imaging widely used in clinic
include X-ray imaging (X-CT), magnetic resonance imaging
(MRI), nuclear medicine imaging (NMI), and ultrasonic
imaging (UI). X-ray imaging (X-CT), mainly through X-
ray tomography, such as head tomography, is used to diag-
nose cerebral vascular diseases and intracranial hemorrhage.
X-ray tomography has a good effect in the diagnosis of trau-
matic skull and facial fractures. Magnetic resonance imaging
(MRI) is a noninvasive imaging technique, which can pro-
duce three-dimensional anatomical images [2]. Nuclear
medicine imaging (NMI) is based on the difference of radio-
activity concentration inside and outside organs or between
different parts of organs [3, 4]. UI was used to observe the
shape, location, size, number and scope of the mass, and
the activity of abdominal organs. The edge echo, capsule,
smoothness, wall thickness, and halo were observed.
According to the clinical data, the symptoms of breast can-
cer can be adjusted by means of X-ray examination, which
is identified by X-ray mammography. MRI results of tumor
detection are higher than the actual value, while CT results
of tumor detection are lower than the actual value. Dynamic
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enhanced CT examination of breast lesions can better over-
come the situation of missed detection.

Medical image acquisition and interpretation are the
basis of breast cancer diagnosis based on medical imaging.
In recent years, the speed and resolution of image acquisi-
tion have been greatly improved. However, image diagnosis
is limited by the doctor’s experience, ability, and other sub-
jective factors, and its ability of replication and promotion
is limited. In order to minimize the dependence on doctors,
image processing technology is applied to medical imaging
processing. Medical image processing includes lesion detec-
tion, image segmentation, image registration, and image
fusion. In addition to clinical diagnosis, medical image
processing also plays an important auxiliary role in medical
teaching, operation planning, operation simulation, and var-
ious medical researches [5, 6].

2. Detection of Breast Cancer

Detection of breast cancer is mainly based on detection
methods, image processing of lesion detection, lesion loca-
tion matching, and extraction of lesion feature values.
Breast cancer detection can detect candidate lesion location
by supervised learning or classical image processing. The
combination of image processing and Convolutional Neural
Networks (CNN) is one of the successful examples of deep
learning in recent years. The CNN is applied in breast can-
cer image analysis, mapping the input layer, pool layer,
modified linear unit, all link layer, and output layer, respec-
tively, and predicting the information represented by medi-
cal images. For example, Setio et al. extracted the features of
pulmonary nodules in nine different directions of 3D chest
CT scanning, selected the appropriate candidate as the cen-
ter, and classified the candidates through CNN [3, 7–11].
Ross et al. decomposed the 3D image into 2D patches and
then rotated the 2D patches randomly to get the “2.5D”
view. The CNN was used to detect the early features of can-
cer from the 2.5D view. The combination of deep learning
and image processing greatly improves the accuracy of
lesion detection [12], while it is difficult to achieve high
accuracy by using nondeep learning classifiers such as sup-
port vector machine. The accuracy of CNN algorithm
depends on the training of initial markers by experts and
needs a wide range of case coverage. Therefore, the promo-
tion of CNN in the field of medical image processing is con-
strained by resources “transfer learning” that can reduce the
dependence of CNN on initial marker training to a certain
extent [13, 14], but the application of transfer learning itself
is limited, so it is difficult to find the application conditions
of transfer learning between medical images of human
organs.

Early diagnosis of breast cancer can be detected by
tumor markers. Tumor markers are substances produced
and secreted by tumor cells during growth and reproduc-
tion. When these substances reach a certain amount, they
can be extracted from breast images. The early feature values
of breast cancer can be identified by using SIFT (scale invari-
ant feature transform) or HOG (Histogram of Oriented Gra-
dient) and so on to provide support for the early diagnosis of

breast cancer. The combination of image processing technol-
ogy and reinforcement learning technology can reduce the
dependence on a human doctor’s experience to the greatest
extent. Image processing technology is used to process
two-dimensional slices, and then reinforcement learning is
combined to set the enhancement target. Through the judg-
ment of each discrete two-dimensional slice, the optimal
decision strategy is found, so as to maximize the benefit of
judging the pathological correctness of the whole group of
two-dimensional slices. Through the analysis and process-
ing of two-dimensional slice image, the segmentation,
extraction, three-dimensional reconstruction, and three-
dimensional display of human breast, surrounding soft tis-
sue and lesion are realized. After the calibration of features,
the reinforcement learning is used to quantitatively analyze
the lesion and the region around the breast. Combined
with the revenue target, the learning is carried out through
continuous attempts. The goal is to obtain the maximum
revenue value. Based on the reinforcement learning
method, it is found that breast cancer does not need to
know how to produce correct breast cancer recognition
action. Reinforcement learning relies on its own learning,
constantly trying and making mistakes and constantly
recording the maximum value of income in the process of
trial and error until the method of finding the maximum
value of income is found.

3. Breast Cancer Image Segmentation

Based on the given feature factors, the medical image seg-
mentation compares the similarity of feature factors between
images and divides the image into several regions. The
objects of medical image segmentation mainly include cells,
tissues, and organs. The region-based segmentation method
is mainly based on the spatial local features of the image,
such as gray, texture, and other pixel statistical characteris-
tics. The boundary-based segmentation method mainly uses
gradient information to determine the boundary of the tar-
get. For example, the fast marching algorithm and the med-
ical image segmentation method of watered transform can
segment the image quickly and accurately [15].

In recent years, with the development of other emerging
disciplines, image segmentation technology develops rap-
idly, and new methods generated by interdisciplinary
emerge in endlessly. Some new image segmentation tech-
niques have been developed for breast cancer detection, such
as the method based on statistics, the method based on fuzzy
theory, the method based on neural network, the method
based on wavelet analysis, the model-based snake model
(dynamic contour model), and the combination optimiza-
tion model. Although new segmentation methods have been
proposed, the results are not ideal. At present, the research
focus is a knowledge-based segmentation method; that is,
some prior knowledge is introduced into the segmentation
process by some means, so as to constrain the computer seg-
mentation process, so that the segmentation results can be
controlled within the range we can understand without
going too far [16]. For example, when the gray value of the
tumor in the liver is very different from that of the normal
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liver, the tumor and the normal liver will not be regarded as
two independent tissues. All of the above methods have their
own limitations. The results are good in specific scenarios,
but not ideal beyond specific scenarios. Because the bound-
aries of internal organs, muscles, blood vessels, and other
organs are usually very complex, the diseased areas of organs
are mixed with normal tissues, and the differences between
the gray levels and boundaries of diseased areas and normal
tissues are relatively small, it is very difficult to identify these
organs and diseased areas in medical images, and the exist-
ing image segmentation algorithms can not complete the
task of image segmentation independently. Human inter-
vention is also needed [17]. Medical image segmentation is
quite different from image segmentation in other fields.
The effect of existing classical algorithms in medical image
segmentation is not good. It is still necessary to continue
to study in improving the accuracy, speed, adaptability,
and robustness of image segmentation [18]. The image seg-
mentation method based on prior knowledge can well con-
trol the segmentation boundary of the image. For example,
in the segmentation of intrahepatic mass, the image segmen-
tation method based on prior knowledge can recognize
intrahepatic mass and normal liver by gray value. However,
image segmentation based on prior knowledge requires a
large number of prior data. The more prior data, the more
accurate the results. For example, Ghesu et al., based on
2891 times of cardiac ultrasound data, used deep learning
and edge space learning to detect and segment cardiac ultra-
sound images [17, 18]. Parameter space exploration and data
sparsity are important factors to improve the efficiency of
medical image segmentation. Brosch et al. proposed a 3D
deep convolution coder network through convolution and
deconvolution to segment multiple sclerosis brain lesions
and normal brain regions [19]. Data normalization and data
enhancement techniques are applied to image enhancement
and core regions of suspected tumors in brain tumor seg-
mentation research and achieved good results [20]. The
research of medical image segmentation methods has the
following remarkable characteristics: it is difficult for any
single existing image segmentation algorithm to achieve
satisfactory results for general images, so more attention
should be paid to the effective combination of multiple seg-
mentation algorithms. Due to the complexity of human
anatomical structure and the systematicness of function,
although there have been studies on the methods of auto-
matic segmentation of medical images to distinguish the
required organs and tissues or find the lesion area, the
existing software packages generally can not complete the
automatic segmentation, and the manual intervention of
anatomy is still needed [21]. At present, it is impossible
for computer to complete the task of image segmentation,
so the human-computer interactive segmentation method
has gradually become the focus of research. The research
of new segmentation methods mainly focuses on automatic,
accurate, fast, adaptive, and robust features. The compre-
hensive utilization of classical segmentation technology
and modern segmentation technology is the development
direction of medical image segmentation technology in
the future [22, 23].

4. Breast Cancer Image Registration

Image registration is the first mock exam of image fusion. In
breast cancer clinical diagnosis, multiple modes or modes of
image registration and fusion are needed. More information
can help doctors give more accurate diagnosis [24]. In the
clinical diagnosis process of breast cancer, medical image
registration mainly locates reference points in two or more
images; through spatial location transformation, such as
rotation, the reference point is located in a coordinate sys-
tem. Registration requires that the mapping of points
between images is one-to-one correspondence; that is, each
point in an image space has corresponding points in another
image space, or in the sense of medical diagnosis, the points
in the image can be accurately or approximately accurately
corresponded [25–27]. Registration can be divided into two
types: based on external features and based on internal
features. Registration based on image internal features is
noninvasive and traceable, which is the focus of research
on registration algorithm [28].

There are two major categories of medical registration
research for breast cancer: (1) a deep learning network is
used to estimate the similarity of two images and drive iter-
ative optimization, and (2) the depth regression network is
directly used to predict the conversion parameters. The for-
mer only uses deep learning for similarity measurement and
still needs the traditional registration method for iterative
optimization. It does not give full play to the advantages of
deep learning, takes a long time, and is difficult to achieve
real-time registration. Therefore, only the latter is studied
and discussed, and the conclusion is limited to this kind of
nonrigid registration method. Based on supervised learning,
there are two ways to obtain tags: (1) the traditional classical
registration method is used for registration, and the defor-
mation field is used as tags. (2) The original image is simu-
lated as a fixed image, the deformed image as a moving
image, and the simulated deformation field as a label. Based
on unsupervised learning, the registration pair is input into
the network to obtain the deformation field, and the moving
image is interpolated to obtain the registration image. The
3D image is similar to it. The 3D image is input into the net-
work to obtain the deformation field (dx, dy, dz), and then,
the registration image is obtained by interpolation. However,
the medical image registration of breast cancer is still an
unsolved classic problem. There are no universally recog-
nized gold standard and no corresponding large database
in this field. Deep learning methods have some successful
cases in breast cancer image registration. There are usually
several reasons: (1) the expert knowledge of the field is well
utilized, (2) the data are properly preprocessed and proc-
essed by data enhancement, (3) a special network structure
is designed for a single task, and (4) the appropriate super
parameter optimization method is used: such as parameter
adjustment based on intuition or the Bayesian method.
There are still some difficulties and challenges in the field
of breast cancer medical image registration: (1) there is a
lack of large databases with precise annotation. (2) Specific
tasks need guidance from experts in the field. (3) It is diffi-
cult to agree with the opinions of different experts in some
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ambiguous images. (4) The two classification models are too
simple to be competent for more complex cases. (5) the dif-
ficulties of breast cancer medical image analysis still exist in
images. Besides the analysis, we need to make full use of the
information about other dimensions of the patient, like age,
medical history, etc. (6) The slice-based neural network is
having difficulty in using the location information of the
corresponding anatomical structure in the original image,
but the method of transferring the whole image into the neu-
ral network has corresponding disadvantages. Although
Esteva et al. made amazing progress in dermatology in
2017 and Gulshan et al. in ophthalmology in 2016, they have
achieved image classification models with higher accuracy
than human experts in both fields. However, the essential
reason for its success is that the above two problems are sim-
ple enough, and the data volume of ImageNet dataset is very
large, so the existing model is applied to the above two prob-
lems and has achieved very good results. Usually, there is no
such simple structure, and there is no effective network
structure that can be used for 3D gray or multichannel
image preprocessing. The advantage of unsupervised learn-
ing over supervised learning is that unsupervised learning
does not need a large number of precisely labeled data. In
addition, unsupervised learning imitates the way of human
learning and can automatically perform the required tasks
without special labeling or can deal with a large number of
classification problems with little supervision. At present,
the main methods of unsupervised learning are self-coding
VAE and counter neural network Gan. Compared with
accurately labeled breast cancer medical images, unlabeled
breast cancer medical image data are easier to obtain. Unsu-
pervised learning can directly use standard breast cancer
medical images without any supervision, so it has more
advantages. Finally, because deep learning is similar to black
box model, the interpretation of breast cancer medical image
domain requires a higher model, and further work is needed.
At present, some work includes introducing Bayesian statis-
tics into deep learning, which will help to measure the
uncertainty of prediction.

Multimodality medical image registration is a new direc-
tion of breast cancer registration, such as nonrigid multi-
modal medical image registration based on structure
representation of PCANet [29]. PCANet can automatically
learn intrinsic features from a large number of medical
images through multilevel linear and nonlinear transforma-
tion, which has better information entropy than the artificial
feature extraction method. Multilevel image features
extracted from each layer of PCANet can effectively repre-
sent multimodal images. The fusion of medical image regis-
tration technology and informatics theory opens a new idea
for medical image registration of breast cancer. For example,
the principle of maximum information entropy is applied to
image registration, which can maximize the diversity of
information and retain the main information without
neglecting the secondary information [30–35]. Three-
dimensional multimode image registration is a new direc-
tion of medical image registration. It has more information
than two-dimensional image and can support a doctor’s
diagnosis more effectively. In addition, some new image reg-

istration algorithms, such as image recognition of breast
cancer based on topology, feature points are extracted from
existing breast cancer images. They are combined into a
matching area with a certain topological structure as the
matching template. In the breast images to be matched,
regions with similar topological structures are found; these
regions may be breast cancer. The main steps of image rec-
ognition of breast cancer based on topology are as follows:
(1) the first one is extracting feature points or feature regions
of a specific scale and combining them into topological tem-
plates. (2) The topology of the image to be matched is
extracted. (3) By comparing the topology in the image to
be matched with the topology template, regions with similar
topology are found. (4) The similarity between similar topol-
ogy and feature points in topology template is compared,
and the product of topology similarity and feature point
similarity is regarded as the final similarity. The schematic
diagram of image recognition based on topology structure
is shown in Figure 1. In Figure 1, the left dotted line is the
topology template, the middle dotted line is the topology
extracted from the image to be matched, and the right dotted
line is the region with similar topology [36].

Other methods such as algorithms based on wavelet
transform, statistical parametric mapping algorithm, and
genetic algorithm are also continuously integrated into
breast cancer image registration. The combination of multi-
objective optimization, reinforcement learning, and other
methods with medical image registration is the future devel-
opment direction of medical image registration.

5. Breast Cancer Image Fusion

Breast cancer image fusion extracts useful information from
multiple images, filters redundant information, and
improves the medical value of images. In general, image
fusion from low to high is signal level fusion, data level
fusion, feature level fusion, and decision level fusion.

(1) Signal level: at the lowest level, the unprocessed sen-
sor output is mixed in the signal domain to produce
a fused signal. The fused signal has the same form as
the source signal, but its quality is better. The signal
from the sensor can be modeled as random variables
mixed with different correlated noises. In this case,
fusion can be considered an estimation process,
and signal level image fusion is the optimal concen-
tration or distribution detection problem of signal to
a large extent, which requires the highest registration
in time and space.

(2) Pixel level: pixel level image fusion is the most basic
fusion of the three levels. After pixel level image
fusion, the obtained image has more detailed infor-
mation, such as edge and texture extraction, which
is conducive to the further analysis, processing, and
understanding of the image. It can also expose the
potential target, which is conducive to the operation
of judging and identifying the potential target pixels.
This method can save as much information as
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possible in the source image and increase the content
and details of the fused image [37]. This advantage is
unique and only exists in pixel level fusion. However,
the limitations of pixel level image fusion can not be
ignored, because it is to operate on pixels, so the
computer has to process a large number of data,
and the processing time will be relatively long, so
the fused image can not be displayed in time and
real-time processing can not be realized. In addition,
in data communication, the amount of information
is large, and it is easy to be affected by noise. In addi-
tion, if you directly participate in image fusion with-
out strict image registration, the fused image will be
blurred, and the target and details are not clear and
accurate.

(3) Feature level: feature level image fusion is to extract
the feature information from the source image. The
feature information is the information of the target
or the region of interest in the source image, such
as edge, person, building, or vehicle. Then, the fea-
ture information is analyzed, processed, and inte-
grated to get the fused image features. The accuracy
of target recognition based on fused features is obvi-
ously higher than that of the original image. The
image information is compressed by feature level
fusion and then analyzed and processed by com-
puter. Compared with pixel level, the memory and
time consumed will be reduced, and the real-time
performance of the required image will be improved.
Feature level image fusion requires less accuracy of
image matching than the first layer, and its comput-
ing speed is faster than the first layer. However, it
extracts image features as fusion information, so it
will lose a lot of detail features.

(4) Decision level: decision level image fusion is a
cognitive-based method, which is not only the high-
est level of image fusion method but also the highest
level of abstraction. Decision level image fusion is
targeted [38]. According to the specific requirements
of the problem, the feature information obtained
from the feature level image is used, and then, the
optimal decision is made directly according to cer-
tain criteria and the credibility of each decision, that
is, the probability of the existence of the target.
Among the three fusion levels, the calculation of

decision level image fusion is the smallest, but this
method has a strong dependence on the previous
level, and the image is not very clear compared with
the former two fusion methods. It is difficult to real-
ize the decision level image fusion, but the noise has
the least influence on the image transmission.

To sum up, data level fusion is the process of directly
processing the collected data to obtain the fused image,
which is the basis of high-level image fusion. Feature level
fusion preserves the information contained in different
images. Decision level fusion is the highest level of image
fusion based on subjective needs. In breast medical image
fusion, data level fusion is the main method. For example,
multimodality medical image fusion is a technology that
integrates multiple dimensions information. It can provide
more comprehensive and accurate information for clinical
detection of breast cancer [39]. The steps of image fusion
are mainly divided into image data fusion and fusion image
display. At present, the data fusion of breast image is mainly
based on pixels, which process the image point by point and
sum the gray values of the corresponding pixels of the two
images. However, the image will be blurred to a certain
extent after using this method. The fusion method based
on breast image features needs to extract image features
and do target segmentation and other processing on the
image. The display of fusion image includes pseudocolor dis-
play, tomographic display, and three-dimensional display.
Pseudocolor display takes an image as a benchmark and
superimposes the gray and contrast features of the image
to be fused with the benchmark image. The tomographic
display method can display the fused three-dimensional data
synchronously in cross-sectional, coronal, and sagittal
images, which are convenient for the observer to diagnose.
The three-dimensional display method, namely, three-
dimensional reconstruction, is to display the fused breast
data in the form of three-dimensional images, which can
more intuitively observe the spatial anatomical position of
the lesions. The earliest method of 3D reconstruction is back
projection. At present, there are two common reconstruc-
tion methods: filtered back projection and convolution back
projection. The information content of three-dimensional
image is large, and the future three-dimensional image
fusion technology will be a focus of image fusion research.
With the development of interdisciplinary research, new
image fusion methods are emerging. The application of
wavelet transform, nonlinear registration based on finite
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element analysis, and artificial intelligence technology in
breast image fusion will be the focus of image fusion
research.

6. Forecast and Challenge

(1) The application of unsupervised and supervised
learning in the field of breast cancer image process-
ing: breast cancer image classification based on
CNN is the mainstream classification method nowa-
days. Fine tuning of CNN parameters directly affects
the final image processing results. Unsupervised
learning will have more promising results in breast
cancer image processing

(2) Transfer learning and fine tuning in the application
of breast cancer image processing: transfer learning
can partially alleviate the plight of not enough anno-
tation data. In the process of transfer learning, a bet-
ter plan is to use pretrained CNN as initialization of
network and then carry out further supervision
training. The annotated dataset is still a challenge
in the field of breast cancer image processing

(3) Patients pay more and more attention to privacy
protection. The privacy of breast cancer image data
has attracted much attention. In the process of breast
cancer image processing, it is necessary to improve
the accuracy of recognition, help doctors to give
diagnosis, and pay attention to the protection of
patients’ privacy, protect the original information
of the image from unauthorized access, and diagnose
the whole process of image information authorized
access and make the image access trace checkable

7. Conclusion

Deep learning and reinforcement learning are the relatively
close combination of machine learning algorithm and breast
cancer image processing and have made considerable prog-
ress. There are obvious differences between breast cancer
image and other fields such as noise reduction, grayscale
transformation, target segmentation, and feature extraction.
The traditional image processing method is not directly
applied to breast cancer image processing. Accumulation
of deep learning in image processing can not be directly
transferred to breast cancer image processing. Reinforce-
ment learning belongs to unsupervised learning, which is
different from deep learning. It uses an incentive mechanism
that does not need a large number of sample space. Com-
pared with deep learning, reinforcement learning has a
wider applicability and lower promotion cost. Moreover,
reinforcement learning has achieved very good results in
chess, man-machine game, and other fields, which is suitable
for complex logic processing. The combination of reinforce-
ment learning and medical image processing will play a
greater role in the clinical detection and prediction of breast
cancer.
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Background. Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the
leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a
machine learning algorithm could detect complex dependencies between clinical variables in emergency departments in OHCA
survivors and perform reliable predictions of favorable neurologic outcomes. Methods. This study included adults (≥18 years of
age) with a sustained return of spontaneous circulation after successful resuscitation from OHCA between 1 January 2004 and
31 December 2014. We applied three machine learning algorithms, including logistic regression (LR), support vector machine
(SVM), and extreme gradient boosting (XGB). The primary outcome was a favorable neurological outcome at hospital
discharge, defined as a Glasgow-Pittsburgh cerebral performance category of 1 to 2. The secondary outcome was a 30-day
survival rate and survival-to-discharge rate. Results. The final analysis included 1071 participants from the study period. For
neurologic outcome prediction, the area under the receiver operating curve (AUC) was 0.819, 0.771, and 0.956 in LR, SVM,
and XGB, respectively. The sensitivity and specificity were 0.875 and 0.751 in LR, 0.687 and 0.793 in SVM, and 0.875 and
0.904 in XGB. The AUC was 0.766 and 0.732 in LR, 0.749 and 0.725 in SVM, and 0.866 and 0.831 in XGB, for survival-to-
discharge and 30-day survival, respectively. Conclusions. Prognostic models trained with ML technique showed appropriate
calibration and high discrimination for survival and neurologic outcome of OHCA without using prehospital data, with XGB
exhibiting the best performance.

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public
health problem worldwide, with an annual incidence of 50
to 100 per 100,000 in the general population [1]. OHCA
has a high societal burden when compared to all other major
causes of death, with an estimated 2.04 million years of
potential life lost for men and 1.29 million years for women
[2]. Despite advances in prehospital care, the prognosis for
OHCA remains limited, with only 5.4%–20% [3–5] of
patients surviving to hospital discharge. Neurologic injury

remains the leading cause of morbidity and mortality among
survivors of OHCA, because of inadequate cerebral perfu-
sion during cardiac arrest or reperfusion injury that occurs
in the early postresuscitation phase. The Pan Asian Resusci-
tation Outcomes Study (PAROS) Clinical Research Network
demonstrated that the survival rate with proper neurological
function was only 2.7% [5].

Many prehospital factors improve survival following
OHCA, including witnessed cardiac arrest, bystander car-
diopulmonary resuscitation (CPR), and initial heart rhythm
[6–8]. The time from collapse to initiation CPR (no-flow
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interval) and the duration of CPR (low-flow interval) were
also considered predictors of outcomes [9]. Severe scores
were developed for predicting survival with proper neuro-
logical function at the time of ICU admission after OHCA.
The OHCA score comprised five parameters, including the
initial heart rhythm, no-flow interval, low-flow interval,
serum creatinine, and arterial lactate [10]. The CAHP score
stratified patients into three-level groups using seven vari-
ables, including age, initial heart rhythm, no-flow interval,
low-flow interval, location of cardiac arrest, epinephrine
dose, and arterial pH [11]. However, no-flow or low-flow
intervals may be the result of inaccurate recall or recording
during a highly stressful event. The updated Utstein tem-
plate eliminated the necessity for recording the time of col-
lapse, and thus, the duration of the no-flow interval could
not be calculated [12].

In the past few years, machine learning (ML) techniques
were used to influence clinical research and practice, such as
prediction of sepsis through digital biomarker discovery
[13], prediction of mortality for intensive care patients
[14], and prediction of outcome in traumatic brain injury
[15]. The ML algorithms outperform conventional triage
tools and early warning scores in detecting patients at risk
for cardiac arrest in emergency departments [16]. They can
also accurately predict the need for critical care on informa-
tion acquired during emergency medical services [17].

Previous studies have suggested that ML methods could
predict neurologic and survival outcomes of OHCA patients
[18–21]. Harford et al. found that an ML model can be used
to support intervention decisions such as CPR or coronary
angiography in OHCA patients [18]. However, only limited
studies examined independent variables after patients
arrived at the emergency department (ED). This study is
aimed at investigating whether an ML algorithm could
detect complex dependencies between clinical variables dur-
ing ED in OHCA survivors and performing reliable predic-
tions of the favorable neurological outcome.

2. Materials and Method

2.1. Study Setting and Variables. This was a retrospective
study conducted from 1 January 2004 to 31 December
2014 in a tertiary medical center of southern Taiwan, which
had 72,000 ED visits on average every year. The Ethics Com-
mittee of Chang Gung Memorial Hospital (No.
202001675B0) approved the study protocol. Because of the
study’s retrospective nature, informed consent from the sub-
jects was not required.

The study included adults (≥18 years of age) who had
a sustained return of spontaneous circulation (ROSC) after
successful resuscitation from OHCA and were then admit-
ted to ICU. The demographic characteristics, baseline
comorbidities, and clinical variables were extracted from
the ED electronic database. The underlying medical condi-
tions included heart failure, cerebrovascular disease,
peripheral vascular disease, diabetes mellitus, chronic
obstructive pulmonary disease, chronic kidney disease,
liver cirrhosis, malignancy, metastatic tumor, dementia,
and moderate to severe Charlson comorbidity index

(CCI) (CCI scored ≥3) [22]. Tentative diagnosis of cardiac
arrest causes, such as hypothermia, hyperkalemia, acidosis
(pH < 7:1), acute myocardial infarction (AMI), pulmonary
embolism, tension pneumothorax, or intoxication, at the
ED was recorded. Medication administration, including
epinephrine, sodium bicarbonate, dopamine, norepineph-
rine, amiodarone, lidocaine, and calcium use or not, was
collected. Intervention at ED included percutaneous coro-
nary intervention and extracorporeal membrane
oxygenation.

The primary outcome was a favorable neurological out-
come at hospital discharge, defined as a Glasgow-
Pittsburgh cerebral performance category (CPC) of 1 to 2.
The favorable neurological outcome included patients with
full recovery or those who can independently perform daily
activities but may have a minor to moderate disability. How-
ever, CPC 3–5 was categorized as a poor functional outcome,
which included patients dependent on others, in a coma or
vegetative state, and who are dead [23, 24]. In this study,
CPC scores were collected retrospectively using electronic
medical records and physical examinations by a consensus
of neurologists who were blinded to the study. The second-
ary outcome was the 30-day survival rate and survival-to-
discharge rate.

2.2. Stepwise Feature Selection and ML Algorithms. To detect
the model performance between features and subsequently
select the best performing subset, all collected features were
subjected to stepwise feature selection. The stepwise
approach started with the evaluation of each individual fea-
ture based on forward feature selection and then checked for
elimination. In each step, a variable was considered for addi-
tion to or subtraction from the set of explanatory variables
based on mean accuracy.

We applied three ML algorithms including logistic
regression (LR), support vector machine (SVM), and
extreme gradient boosting (XGB). LR is a supervised classi-
fication algorithm. It transforms its output using a sigmoid
function to return a probability value, which can then be
mapped to two or more discrete classes. SVM belongs to
the supervised learning technique for classification, increas-
ingly used in many data mining and bioinformatics applica-
tions. SVM constructs a hyperplane based on the support
vectors and maximizes the gap width between the two cate-
gories [25, 26]. XGB is a gradient boosted tree algorithm
used for regression, binary and multiclass classification,
and ranking problems. XGB is a robust and supervised
learning algorithm capable of handling various data types,
relationships, distributions, and hyperparameters that can
be fine-tuned by users [27].

2.3. Outcome Prediction and Statistical Analysis. Categorical
data are expressed as counts and proportions, and continu-
ous data are expressed as means and standard deviations.
The patients enrolled were randomly separated into the
training set (90%) and test set (10%) for independent perfor-
mance measurement of the model’s generalizability. The
training set was randomly divided into ten equal-sized
groups for cross-validation during model development. We
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examined the area under the receiver operating characteris-
tic curve (AUC) for performance measurement and plotted
the receiver operating characteristic (ROC) curve using sen-
sitivity against (1-specificity) [28]. We also compared posi-
tive predictive value (PPV) (true positives/(true
positives+false positives)), sensitivity (true positives/(true
positives+false negatives)), and specificity (true negatives/(-
true negatives+false positives)) between each prognostic
model. The ML models were performed using Scikit-learn
(version 0.22.2) with Python (version 3.8).

3. Experiment and Result

3.1. Dataset Description. For the study period, although there
were 1076 patients, 1071 were included in our study for the
final analysis. Five patients were excluded due to missing
values. The mean age of the 1071 patients was 66:2 ± 16:8
years. The dataset included 596 (55.6%) males. There were
86 (8%) patients with favorable neurological outcomes after
discharge. Furthermore, the dataset had 249 (23.2%) patients
with 30-day survival and 216 (20.2%) patients survived to
discharge. The other population characteristics were catego-
rized and presented as underlying disease, laboratory data,
medication, and intervention at ED. ED diagnosis is demon-
strated in Table 1.

3.2. Feature Engineering. All 42 variables were subjected to
stepwise feature selection based on their individual impor-
tance and their effect on the mean accuracy to create the best
performing subset prediction model. Figure 1 depicts the
results of stepwise feature selection for the three ML models.
Table 2 ranks the results of variables by importance. We
used 10, 12, and 11 parameters for model training in the
LR, SVM, and XGB algorithms, respectively. The parameters
ranked by LR were PCI, DM, hemoglobin, troponin I,
dementia, CCI, norepinephrine use, liver cirrhosis, hypoka-
lemia, and tumor metastasis. For SVR, the features were tro-
ponin I, CCI, dementia, DKA, PCI, norepinephrine use,
ECMO, pulmonary embolism, amiodarone use, pneumotho-
rax, tumor metastasis, and acidosis. For XGB, the features
were troponin I, epinephrine dose, heart failure, PCI, amio-
darone use, calcium use, dementia, sodium bicarbonate use,
band neutrophil, malignancy, and AMI.

3.3. Prediction. Table 3 demonstrates the comparison of pre-
diction ability for neurological outcomes between the three
ML models. The AUC was 0.819, 0.771, and 0.956 in LR,
SVM, and XGB, respectively. The sensitivity and specificity

Table 1: Characteristics of the patients at baseline.

Variables All patients (n = 1071)
Demographic characteristics

Age (years),mean ± SD 66:2 ± 16:8
Sex, male, n (%) 596 (55.6)

Underlying medical conditions, n (%)

Heart failure 161 (15.0)

Cerebrovascular disease 248 (23.2)

Peripheral vascular disease 37 (3.5)

Diabetes mellitus 244 (22.8)

Chronic obstructive pulmonary disease 247 (23.1)

Chronic kidney disease 232 (21.7)

Liver cirrhosis 15 (1.4)

Malignancy 146 (13.6)

Tumor metastasis 23 (2.1)

Dementia 100 (9.3)

CCI scored ≥3 715 (61.8)

Laboratory data, mean ± SD

White blood cell (1,000/μL) 13:651 ± 7:4871
Segmented neutrophils (%) 53:05 ± 19:671
Band neutrophils (%) 2:36 ± 4:143
Hemoglobin (g/dL) 11:056 ± 2:9859
Creatinine (mg/dL) 2:570 ± 2:90
Alanine aminotransferase (ALT) (U/L) 248:97 ± 560:968
Na (mEq/L) 138:97 ± 7:935
K (mEq/L) 5:029 ± 1:588
Troponin I (ng/mL) 0:801 ± 5:364
pH 7:165 ± 0:226
ED diagnosis, n (%)

Hypothermia 5 (0.5)

Hyperkalemia 216 (20.2)

Acidosis 722 (67.4)

Acute myocardial infarction 140 (13.1)

Pulmonary embolism 4 (0.4)

Tension pneumothorax 3 (0.3)

Toxin 30 (2.8)

Diabetes ketoacidosis 27 (2.5)

Medication and intervention

Epinephrine use, n (%) 1050 (98.0)

Epinephrine dose, mean ± SD 5:35 ± 4:917
Sodium bicarbonate use, n (%) 690 (64.4)

Dopamine use, n (%) 655 (61.2)

Norepinephrine use, n (%) 212 (19.8)

Amiodarone use, n (%) 179 (16.7)

Lidocaine use, n (%) 38 (3.5)

Calcium use, n (%) 196 (18.3)

Defibrillation at ED, n (%) 93 (8.7)

PCI, n (%) 86 (8.0)

ECMO, n (%) 18 (1.7)

Table 1: Continued.

Variables All patients (n = 1071)
Outcome, n (%)

CPC class 1 or 2 86 (8.0)

Survival-to-discharge 216 (20.2)

30-day survival 249 (23.2)

CCI: Charlson comorbidity index; PCI: percutaneous coronary intervention;
ECMO: extracorporeal membrane oxygenation; CPC: cerebral performance
category.
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were 0.875 and 0.751 in LR, 0.687 and 0.793 in SVM, and
0.875 and 0.904 in XGB. Table 4 presents the comparison
of prediction ability for survival-to-discharge and 30-day
survival. The AUC was 0.766 and 0.732 in LR, 0.749 and
0.725 in SVM, and 0.866 and 0.831 in XGB, for survival-
to-discharge and 30-day survival, respectively. Figure 2
depicts the ROC curve for the prediction performance of
the three ML models.

4. Discussion

Using in-hospital data available within ED, we developed
and validated different ML algorithms to stratify neurologi-
cal outcomes after cardiac arrest. The AUC was 0.819,
0.771, and 0.956 in LR, SVM, and XGB, respectively. The
sensitivity and specificity were 0.875 and 0.751 in LR,
0.687 and 0.793 in SVM, and 0.875 and 0.904 in XGB. The
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Figure 1: Forward stepwise feature selection of machine learning models based on AUC: (a) logistic regression; (b) support vector machine;
(c) extreme gradient boosting.

Table 2: Rank of parameter importance after stepwise parameter selection.

Rank LR SVM XGB

1st PCI Troponin I Troponin I

2nd Diabetes mellitus CCI Total epinephrine dose

3rd Hemoglobin Dementia Heart failure

4th Troponin I Diabetes ketoacidosis PCI

5th Dementia PCI Amiodarone use

6th CCI Norepinephrine use Calcium use

7th Norepinephrine use ECMO Dementia

8th Liver cirrhosis Pulmonary embolism Sodium bicarbonate use

9th Hypokalemia Amiodarone use Band neutrophil

10th Tumor metastasis Pneumothorax Malignancy

11th Tumor metastasis Acute myocardial infarction

12th Acidosis

LR: logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; PCI: percutaneous coronary intervention; CCI: Charlson comorbidity
index; ECMO: extracorporeal membrane oxygenation.
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ML algorithm possessed suitable calibration and high dis-
crimination in predicting favorable neurologic outcomes.
For survival-to-discharge and 30-day survival prediction,
the AUC was 0.766 and 0.732 in LR, 0.749 and 0.725 in
SVM, and 0.866 and 0.831 in XGB, respectively. With
acceptable outcome prediction ability, ML approaches are
expected to improve clinician prognosis, earlier identifica-
tion of outliers, information provision assistance, and
physician-family communication.

In most of the current outcome prediction score and ML
algorithms for OHCA, prehospital data are often implanted
for predicting the variation in survival-to-discharge. The
OHCA score, composed of five parameters, including no-
flow and low-flow intervals, achieved an AUC of 0.82 in
the development cohort and 0.88 in the validation cohort
for neurological recovery outcome prediction [10]. Aschauer
et al. discovered that using 21 variables, an LR model
obtained an average AUC of 0.827 for survival probability,
with key predictors being prehospital variables, such as the
number of minutes to sustained restoration of spontaneous
circulation and the first rhythm [29]. Another study cohort
with 2639 patients, comparing several ML models (including
decision tree, random forest (RF), k-nearest neighbors, XGB,
light gradient boosting machine (GBM), and neural net-
works), stated that an embedded fully convolutional network
model has the best average class sensitivity of 0.825 for neu-
rological outcome prediction [18]. However, the above
models required knowledge of the periods of time with cir-
culatory no-flow and low-flow, limiting its use when prehos-
pital data are unknown or recalled incorrectly. In our ML
models, XGB exhibited the best performance with AUC of
0.956 for neurological outcome prediction, 0.866 for sur-
vival-to-discharge, and 0.831 for 30-day survival. The LR
and XGB obtained a sensitivity of 0.875 for neurological out-

come prediction. Without using prehospital data, the result
of XGB was not inferior to previous models.

Nanayakkara et al.’s study from the Australian and New
Zealand Intensive Care Society included 39,566 OHCA cases
without prehospital data, and five ML approaches (GBM,
SVM, RF, artificial neural network, and an ensemble) were
compared for predicting mortality. With a combination of
demographic, physiologic, and biochemical information, an
ensemble and GBM could reach AUC of 0.87 (95% CI
0.86–0.88) for predicting in-hospital mortality [30]. Simi-
larly, the AUC for XGB reached 0.866 and 0.831 for
survival-to-discharge and 30-day survival prediction in our
study, respectively. However, Nanayakkara et al.’s study
did not discriminate survival from neurological outcomes.
In contrast, we also found that XGB exhibited satisfactory
performance in neurological outcome prediction. To our
knowledge, this is the first study using ML models to predict
functional neurological outcomes post-OHCA using only in-
hospital variables.

We determined the order of importance among features
and the best subsets of features using forward stepwise
regression. A forward selection begins with no explanatory
features and then adds features alternately, in each step,
based on which feature is the most statistically significant,
until all statistically significant features have been tested.
The process selects explanatory variables for multiple regres-
sion models and develops the best combination of feature
subsets. Although it has been criticized for misapplying
single-step statistical tests to a multistep procedure, stepwise
regression is efficient at narrowing down a long list of plau-
sible explanatory variables to a manageable number of pre-
dictors [31]. Although different ML models disagreed on
feature importance in our study, troponin I and PCI
remained among the top five features among all three

Table 3: Area under the receiver operating curve, positive predictive value, sensitivity, and specificity between different machine learning
models for neurologic outcome.

LR SVM XGB

AUC 0:819 ± 0:017 0:771 ± 0:017 0:956 ± 0:003
PPV 0:229 ± 0:021 0:220 ± 0:044 0:437 ± 0:029
Sensitivity 0:875 ± 0:036 0:687 ± 0:005 0:875 ± 0:030
Specificity 0:751 ± 0:010 0:793 ± 0:004 0:904 ± 0:005
LR: logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; AUC: area under the receiver operating curve; PPV: positive predictive
value.

Table 4: Area under the receiver operating curve, positive predictive value, sensitivity, and specificity between different machine learning
models for survival-to-discharge and 30-day survival.

LR SVM XGB
Discharge 30 days Discharge 30 days Discharge 30 days

AUC 0:766 ± 0:020 0:732 ± 0:009 0:749 ± 0:013 0:725 ± 0:010 0:866 ± 0:006 0:831 ± 0:006
PPV 0:345 ± 0:016 0:354 ± 0:010 0:404 ± 0:018 0:368 ± 0:014 0:600 ± 0:029 0:564 ± 0:020
Sensitivity 0:780 ± 0:047 0:762 ± 0:019 0:720 ± 0:029 0:593 ± 0:021 0:840 ± 0:026 0:745 ± 0:018
Specificity 0:637 ± 0:012 0:579 ± 0:013 0:740 ± 0:009 0:692 ± 0:016 0:862 ± 0:005 0:825 ± 0:007
LR: logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; AUC: area under the receiver operating curve; PPV: positive predictive
value.
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models. Because AMI is a common cause of OHCA, some
studies have demonstrated that short-term outcomes after
OHCA due to AMI can be better than that due to other
causes of OHCA [32, 33].

Furthermore, our study faced several limitations. First,
we did not include prehospital features in our study.
Although many prehospital factors can improve survival fol-
lowing OHCA [6–8], the ML algorithms incorporate the
result of mediation before the time when measurements
were taken. In other words, the models had computed a vec-
tor component triggered by earlier intervention. Second, the
dataset used in this study only included patients from a ter-
tiary medical center in southern Taiwan. The findings of this
study must be validated in a different region with a more
ethnically diverse patient population.

5. Conclusion

Prognostic models trained using ML technique demon-
strated appropriate calibration and high discrimination for
survival and neurological outcome of OHCA, without the
use of prehospital data, with XGB providing the best
performance.
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Figure 2: Receiver operating characteristic curve of three machine learning models: (a) favorable neurologic outcome; (b) survival-to-
discharge; (c) 30-day survival.
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Choroidal neovascularization (CNV) is a type of eye disease that can cause vision loss. In recent years, many studies have
attempted to investigate the major pathological processes and molecular pathogenic mechanisms of CNV. Because many
diseases are related to genes, the genes associated with CNV need to be identified. In this study, we proposed a network-based
approach for identifying novel CNV-associated genes. To execute such method, we first employed a protein-protein interaction
network reported in STRING. Then, we applied a network diffusion algorithm, Laplacian heat diffusion, on this network by
selecting validated CNV-related genes as the seed nodes. As a result, some novel genes that had unknown but strong
relationships with validated genes were identified. Furthermore, we used a screening procedure to extract the most essential
genes. Eleven latent CNV-related genes were finally obtained. Extensive analyses were performed to confirm that these genes
are novel CNV-related genes.

1. Introduction

Choroidal neovascularization (CNV) is a typical pathogenic
process that refers to the abnormal creation of blood vessels
specifically in the choroid layer of the eye. As a severe patho-
genesis of one subtype of age-related macular degeneration
(AMD), CNV can be clinically concomitant with various
ocular symptoms such as extreme myopia and malignant
myopic degeneration. According to the recent epidemiologi-
cal statistics provided by Lancet, more than 6 million people
around the world suffered from AMD in 2015 [1]. Based
on another independent survey, the prevalence of CNV-
associated AMD was found to be 1.2% of all adults aged
43–86 years [2], indicating that CNV may be one of the
major causes of vision loss.

As mentioned above, CNV is a major threat to visual
health, especially in elderly people around the world. There-
fore, for centuries, scientists have attempted to determine
the major pathological processes and molecular pathogenic
mechanisms of CNV [3, 4]. However, the detailed and
comprehensive mechanisms of CNV have not been fully
elucidated. According to existing literatures, the major
pathogenic mechanisms of CNV can be attributed to the
imbalance of antiangiogenic factors and angiogenic factors
[5, 6]. The imbalance of these factors in the choroid may
promote vasculogenesis and angiogenesis pathologically
related to CNV [6]. In terms of regulators, PEDF (pigment
epithelium-derived factor) [6] and VEGF (vascular endothe-
lial growth factor), which are antiangiogenic and typical
angiogenic factors, respectively) [5] have both been confirmed
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to contribute to the initiation and progression of CNV.
However, the factors or initiators that drive the abnormal
biological functions of PEDF and VEGF have not been
confirmed. Hypoxia [7], high glucose [8], protein kinase C
activation [9], advanced glycation end products [10], reac-
tive oxygen species [11], activated oncogenes [12], and
abnormal cytokine production [13] may all contribute to
the pathogenesis and clinical symptoms of CNV.

Although the pathogenesis of the diseases we have dis-
cussed is complicated, we can still simply cluster all the
potential pathogenic factors into two groups: genetic factors
and environmental factors [3, 4]. In this study, we computa-
tionally investigated the genetic pathogenesis of CNV.
According to recent publications, various genetic factors
have been confirmed to contribute to CNV. Abnormal
angiogenesis and antiangiogenesis are two major pathogenic
processes in such disease [5, 6]. Recent publications revealed
that various genes related to angiogenesis and antiangiogen-
esis may directly participate in the pathogenesis of CNV.
VEGF [14] and FGF2 [15] are two typical genes associated
with angiogenesis. In 2009, these genes have been confirmed
to be related to CNV and regulate its rate of progression
[16]. Besides these genes, another functional gene called
CFI, which is related to extreme myopia, has also been
reported to contribute to CNV pathogenesis [17, 18], reveal-
ing the complicated genetic basis of CNV. Other functional
genes associated with cell proliferation, such as RELA [19],
NFKB1 [20, 21], and RELB [19], have all been reported to
promote abnormal angiogenesis during the initiation and
progression of CNV.

For decades, scientists have attempted to reveal the
comprehensive genetic background of CNV. However, iden-
tifying and validating CNV-associated genes one by one is
quite expensive and time consuming. In recent years, with
the development of high-throughput sequencing, bioinfor-
matics algorithms have provided us a novel and more
effective approach for identifying CNV-associated genes. In
2016, a systematic prediction [22] based on all the identified
CNV-related genes, protein–protein interaction (PPI) net-
work, and shortest path algorithm identified various genes
associated with CNV, including ANK1, ITGA4, and CD44.
Most of these genes have already been identified to contrib-
ute to abnormal angiogenesis or antiangiogenesis in the
choroid [22], validating the efficacy and accuracy of compu-
tational prediction on disease-associated genes. Therefore, in
this study, we introduced a novel computational method
called Laplacian heat diffusion (LHD) [23] to further explore
the pathogenic factors of CNV. This study not only identi-
fied potential CNV-associated genes but also revealed the
detailed pathogenesis of CNV.

2. Materials and Methods

2.1. CNV-Associated Genes. Genes associated with AMD
were first obtained from a previous study [24]. In detail,
we downloaded the “Additional file 3” in such study, which
contained these genes. Then, according to “Additional file
5”, genes in CNV up or CNV down modules were picked
up, accessing 37 CNV-associated genes (Table S1). These

genes were further converted to Ensembl gene IDs to be
consistent with the protein IDs in the PPI network from
the STRING database [25]. These genes comprised a seed
gene set S.

2.2. PPIs. In general, proteins interact with each other to reg-
ulate biological process; thus, they share similar biological
functions. Based on this assumption, many studies have
been devoted to infer protein functions. Therefore, potential
CNV-associated genes can be identified from the known
CNV-associated genes and their interaction network.

We downloaded 4,274,001 human protein-protein inter-
actions (PPIs) for 19,247 proteins from STRING (https://
www.string-db.org/, version 10) [26]. These interactions
were derived from genomic context predictions, high-
throughput lab experiments, (conserved) coexpression,
automated text mining, and previous knowledge in data-
bases. Thus, PPIs reported in STRING can widely measure
the associations of proteins compared with those in some
other databases [27, 28], in which PPIs were only deter-
mined by solid experiments. For each PPI, both proteins
are represented by Ensembl IDs, and a score ranging from
150 to 999 is assigned. A high score indicates that the corre-
sponding interaction is supported by high-quality evidence.
The interaction score between two proteins (P1 and P2)
was denoted as IðP1, P2Þ. Using the abovementioned data,
we can construct a PPI network consisting of 19,247 nodes
and 4,274,001 edges, which connects two nodes with interac-
tion score as the weight if and only if two proteins interact.
The PPI network is denoted as G. Such PPI network has
been widely used in many researches [29–37].

2.3. Laplacian Heat Diffusion. Nowadays, network methods
are more and more popular to deal with different biological
and medical problems [30, 32, 36, 38–41]. This study also
adopted a powerful network method, LHD algorithm. As a
type of network diffusion method, heat diffusion follows
some rules to transmit heat on the seed nodes to surround-
ing nodes in the network. The heat on a node indicates its
connections to seed nodes. In this study, the LHD algorithm
[23] was applied to search for novel CNV-related genes,
which was a heat diffusion process on a Laplacian matrix
constructed from protein-protein network.

Given a PPI network G, we can first construct its adja-
cent matrix A based on the edge weights. Then, we normal-
ize it column wisely as follows:

A′ i, j½ � = A i, j½ �
∑n

k=1A k, j½ � , ð1Þ

where i is the column index of 19,247 nodes in G and j is the
index of CNV-related genes. Each column in A′ was a
19,247-dimensional vector. Each element was the heat of a
node in the network G. Initially, the component in A′ corre-
sponding to 37 CNV-related genes was configured to be
1/37; other components were set to 0. Then, the values of
each vector were updated as follows:

Ht i½ � =H0 i½ � exp −λitð Þ, ð2Þ
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where Ht is the heat distribution at time t and λi is the ith
eigenvalue of matrix A′. We updated the vectors until the
heat distribution vectors at two consecutive time points
change as small as a defined threshold. After the diffusion
process, each node was assigned a heat value. A larger heat
value indicates that the node is more important. Thus, we
selected nodes with heat values greater than the defined cut-
off and mapped those nodes back to the corresponding
genes.

In this study, we used the LHD algorithm (https://CRAN
.R-project.org/package=diffusr) to perform the analysis with
default parameters on the PPI network G.

2.4. Postprocessing of CNV-Related Candidate Genes.
According to the LHD-based method, we can obtain a large
number of candidate CNV-related genes. However, some of
them are essential genes, while others are nonessential genes.
A three-stage method was applied to select the essential
genes by integrating other biological information: (1) Z-
score based on permutation test to exclude false positives,
(2) maximum interaction score (MIS) based on PPI infor-
mation to exclude genes with few connections to the
validated CNV-related genes, and (3) maximum function
score (MFS) based on biological function annotation infor-
mation to filter functional genes.

2.4.1. Z-Score. To evaluate the significance of the produced
heat values, we randomly sampled 1000 gene sets and calcu-
lated the mean and standard deviation of these heat values.
Then, we calculated the Z-score for all CNV-related candi-
date genes. In detail, 1000 gene sets with a size of 37 were
randomly generated. For each gene set, we performed the
LHD algorithm on the PPI network G by using it as the seed
set. Then, each gene g was assigned a heat value. The above
process was run for the produced 1000 gene sets. Each g
received 1000 heat values and a real heat value based on 37
validated CNV-related genes. We calculated the measure-
ment Z-score as follows:

Z‐score gð Þ = h − �h
sd , ð3Þ

where h is the real heat value of gene g and �h and sd are the
mean and standard deviation of 1000 heat values of the 1000
randomly produced gene sets, respectively. The higher the
Z-score of one gene is, the more likely it is a real CNV-
related gene. In this study, we selected genes with Z-score
greater than 1.96.

2.4.2. MIS. After the permutation test, some CNV-related
candidate genes were further verified to have strong associa-
tions with the validated CNV-related genes. In general,
interacting proteins always exhibit similar functions. Based
on this observation, we calculated MIS as follows:

MIS gð Þ =max I g, g′
� �

∣ g′ is a validated CNV‐related gene
n o

,

ð4Þ

where Iðg, g′Þ is the interaction score between two genes
from the STRING database. A high MIS value indicates that
this gene is strongly connected to the validated CNV-related
genes; thus, it is more likely to be true CNV-associated gene.
Here, we set a threshold of 900 (the highest confidence
score in the STRING database) to filter out genes with
low MIS values.

2.4.3. MFS. To be CNV-related genes, they must highly
contribute to certain biological processes involved in CNV.
To further select more reliable CNV-related candidate genes,
Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [42] pathways were used.
We extracted important candidate CNV-related genes with
similar GO terms and KEGG pathways to validate CNV-
related genes. The enrichment theory [43, 44] was applied
to estimate the relationships between genes and GO/KEGG
pathways. It encodes a gene as a vector. The relationship
between two genes can be calculated as follows:

Q g, g′
� �

=
E gð Þ ⋅ E g′

� �

E gð Þk k ⋅ E g′
� ����

���
, ð5Þ

where EðgÞ is the column vector obtained according to
enrichment theory.

Similarly, for each gene, MFSðgÞ was calculated as
follows:

MFS gð Þ =max Q g, g′
� �

∣ g′ is a validated CNV‐related gene
n o

:

ð6Þ

The higher the MFS of one gene is, the more GO/KEGG
pathways it shares with the validated CNV-related genes.
The final candidate CNV-related genes were extracted with
an MFS value greater than a defined cutoff of 0.9.

3. Results

In this study, we presented a computational approach to
infer novel CNV-associated genes using the LHD-based
method. The entire procedures are illustrated in Figure 1.
This approach collected verified CNV-related genes, which
were extrapolated to identify novel candidate genes on the
PPI network using Laplacian heat diffusion. Next, these
identified candidate genes were further screened to filter
out false positive genes that are not associated with any
CNV-related biological process.

We first selected genes with a heat value > e − 10, and a
total of 19,218 genes were obtained. Then, these genes were
evaluated using the permutation test with 1000 randomly
generated sets. We selected genes with a Z-score greater than
1.96 and obtained a list of 153 genes. We further filtered out
genes with fewer connections to the validated CNV-related
genes by MIS score. We kept genes with MIS value greater
than 900 and obtained 27 genes. Finally, for each of the 27
genes, we calculated the MFS and selected genes with an
MFS value greater than 0.9, resulting in a final list of 11
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CNV-related genes, which is totally different from previous
discoveries [22]. The selected numbers of putative genes in
different steps of LHD are shown in Table 1, and the detailed
information of the 11 final candidate CNV-associated genes
is listed in Table 2. The interaction network between the 11
candidate genes and 37 verified CNV-related genes is shown
in Figure 2. All measurements mentioned above are listed in
sheets 1–4 of Table S2.

4. Discussion

As we have analyzed above, we applied a novel computa-
tional method named Laplacian heat diffusion [45] to iden-
tify potential CNV-related genes based on the existing PPI
network provided in STRING [25]. According to such algo-
rithm and the database, we screened out eleven functional
genes that may directly or indirectly participate in the path-
ogenesis of CNV. To validate the efficacy and accuracy of
our newly applied computational method, we performed a
systematic datamining on the biological functions and
CNV relevance of all predicted genes. The predicted genes
have been validated by recent publications. The detailed
analysis on each gene can be seen below. For a clear descrip-
tion, we classified these genes into some classes, which is
illustrated in Figure 3.

4.1. Matrix Metalloproteinases (MMPs). MMP3 (ENSP0000
0299855), which ranks the highest in the prediction list,
has been predicted to be related to the pathogenesis of

CNV. Generally, it has been widely reported to contribute
to the activation of procollagenase [46] and matrix remodel-
ing [47]. In terms of its potential pathogenic functions in
CNV, this gene has been confirmed to act abnormally in
the choroidal neovascular membranes, implying its patho-
genic potential [48]. Further studies on the contribution of
hypoxia to CNV confirmed that our predicted gene MMP3
may contribute to hypoxia-induced apoptosis and secretion
of proangiogenic factors in the choroid under hypoxia
microenvironment, which further initiates CNV [49]. There-
fore, our predicted gene MMP3 may functionally be a
potential driving factor for CNV, demonstrating the
accuracy of our prediction result. Apart from MMP3, three
other components of the MMP family, namely, MMP13
(ENSP00000260302), MMP7 (ENSP00000260227), and
MMP10 (ENSP00000279441), have also been predicted to
contribute to the pathogenesis of CNV in our prediction list
with a high rank. With similar biological functions as
MMP3, all of such three genes (MMP13, MMP7, and
MMP10) have been reported to participate in the abnormal

String

Candidate
genes

Eleven
candidate genes Analysis

Protein-protein
interaction

network

Laplacian heat diffusion

CNV-associated
genes

Post-processing method
Z-score > 1.96

Maximum interaction score ≥ 900
Maximum function score > 0.9

Figure 1: Entire procedures to identify novel choroidal neovascularization- (CNV-) related genes. A protein-protein interaction network
reported in STRING is employed. Laplacian heat diffusion (LHD) with validated CNV-related genes as seed nodes is applied to such
network for extracting raw candidate genes. They are further filtered by a postprocessing method, resulting in eleven candidate genes.
These genes were extensively analyzed.

Table 1: Number of candidate CNV-related genes in different
stages of LHD-based method.

Method
Network diffusion

algorithm
Z-score MIS MFS

LHD-based method 19,218 153 27 11
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angiogenesis of choroidal tissues, validating their specific
contribution to CNV. In 2011, a study [50] on CNV in a
mouse model confirmed that the deficiency of MMP13 con-
tributed to the impairment of neovascularization formation
in choroid tissues, and such pathogenesis could be restored
by injecting mesenchymal cells secreting MMP13, validating
the specific role of this gene during CNV initiation and
progression. As forMMP7, basal laminar and linear deposits
are typical complications of CNV, contributing to the consti-
tution of the CNV microenvironment [51, 52]. A recent
study [53] on the typical basal laminar and linear deposits
of CNV confirmed that MMP7 together with its homologue
MMP13 may contribute to CNV by regulating the inflam-
matory processes in the microenvironment of choroidal tis-
sues. Furthermore,MMP10 has also been validated by recent
publications. Although no reports connected MMP10 and
CNV directly, the specific contribution of all metalloprotein-
ases including MMP10 on choroidal microenvironment
remodeling and inflammation mediation implies the specific
biological function of MMP10 during the progression of
CNV [54].

4.2. Growth Factors. HBEGF (ENSP00000230990) has also
been predicted to contribute to the progression of CNV.
As a typical growth factor, HBEGF participates in the ERBB2
signaling pathway and interacts with functional genes such
as EGFR and ERBB4 [55, 56]. A recent study confirmed that
HBEGF may affect the production and biological functions
of VEGF in CNV [57]. Therefore, although no direct reports
confirmed the detailed biological function of HBEGF in
CNV, this gene may interact with VEGF and play a crucial
pathogenic role during the progression of CNV. Another
functional growth factor encoding gene HGF (ENSP0000
0222390) has also been predicted to contribute to the path-
ogenesis of CNV. Generally, the binding of HGF to its target
receptor (hepatocyte growth factor) contributes to the regu-
lation of cell growth, cell motility, and morphogenesis in
various cell and tissue subtypes [58, 59]. As for its unique
pathogenic contribution to CNV, a paired experimental
study [60] on CNV confirmed that compared with normal
tissues, the pathogenic tissues of the choroid during CNV

initiation and progression have different expression profiling
of growth factors including VEGF, HGF, and FGF, implying
the potential pathogenic role of HGF in such disease. In
2011, a specific study on the biological and pathogenic
functions of cytokines in CNV confirmed that HGF has a
mitogenic effect on choroidal cells, promoting neovasculari-
zation processes [61]. Therefore, such gene may be a poten-
tial CNV-associated gene. As the next predicted growth
factor in the predicted list of genes, VEGFD (ENSP0000
0297904) has been widely reported to be a member of the
platelet-derived growth factor family. This gene has been
reported to promote angiogenesis [62], lymph angiogenesis
[62], and endothelial cell growth [63]. As the homologue
of the identified key driver gene of CNV (VEGF) generated
by differential alternative splicing, VEGFD directly partici-
pates in the pathogenesis of CNV, regulating the same bio-
logical processes of VEGF [64]. Recent clinical studies [65]
confirmed that VEGFD may also be a candidate marker
for the diagnosis and treatment of CNV, and drugs that
target VEGF to relieve symptoms may also target the
products of VEGFD.

4.3. MMP Inhibitors. TIMP2 (ENSP00000262768) has been
widely reported to act as a natural inhibitor for MMPs
[66]. With a specific expression pattern in vitreous and sub-
retinal fluid, this gene has been found to be expressed in
choroid tissues [67] and directly contribute to the activation
of the hypoxia-induced VEGF signaling pathway and MMP
regulation [68]. Considering the irreplaceable role of VEGF
in CNV, TIMP2 may be a potential CNV-associated gene.

4.4. Collagens. Based on our newly presented computational
methods, we also obtained two collagen coding genes that
may contribute to the pathogenesis of CNV, namely,
COL3A1 (ENSP00000304408) and COL18A1 (ENSP0000
0347665). COL3A1 encodes the pro-alpha1 chain of type
III collagen, a fibrillary collagen. Based on existing litera-
tures, this gene contributes to the regulation of cortical
development together with type I collagen in soft connective
tissues [69, 70]. As for its specific pathogenic contribution to
CNV, a specific study [71] confirmed that COL3A1 may

Table 2: Eleven candidate genes yielded by LHD-based method.

Ensemble ID Gene symbol Description Heat Z-score MIS MES

ENSP00000299855 MMP3 Matrix metallopeptidase 3 8:79E − 05 2.0806 999 0.9761

ENSP00000230990 HBEGF Heparin-binding EGF-like growth factor 9:01E − 05 3.0964 989 0.9608

ENSP00000260302 MMP13 Matrix metallopeptidase 13 1:54E − 04 3.9922 964 0.9600

ENSP00000260227 MMP7 Matrix metallopeptidase 7 1:25E − 04 3.8042 975 0.9580

ENSP00000262768 TIMP2 TIMP metallopeptidase inhibitor 2 1:20E − 04 3.2461 994 0.9569

ENSP00000222390 HGF Hepatocyte growth factor 1:09E − 04 4.0224 922 0.9487

ENSP00000304408 COL3A1 Collagen type III alpha 1 chain 1:40E − 04 2.6753 951 0.9461

ENSP00000279441 MMP10 Matrix metallopeptidase 10 1:31E − 04 3.2940 977 0.9186

ENSP00000347665 COL18A1 Collagen type XVIII alpha 1 chain 1:25E − 04 2.5902 991 0.9183

ENSP00000277480 LCN2 Lipocalin 2 9:96E − 05 2.1251 985 0.9141

ENSP00000297904 VEGFD Vascular endothelial growth factor D 2:13E − 04 6.6122 939 0.9078
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contribute to actin cytoskeleton remodeling and affect the
specific lesion size and fibrosis of CNV. Similarly, the next
predicted gene (COL18A1) has also been reported to partic-
ipate in collagen-associated CNV pathogenesis [72]. Cur-
rently, no direct pathogenic experiment has confirmed that
COL18A1 can induce the progression of CNV indepen-
dently. Other studies on collagen families including collagen
XVIII [48, 73, 74] in CNV and their respective angiogenic
functions have validated the potential pathogenic role of
our predicted collagen encoding genes.

4.5. Lipocalins. Apart from MMPs, collagen, and growth
factor-associated genes, we also obtained a specific lipocalin
encoding gene, namely, LCN2 (ENSP00000277480). Gener-
ally, this gene has been identified in the lung, breast [75],

and eye secretions [76] and contribute to the transport of
hydrophobic ligands [77]. As for its specific contribution to
CNV, this gene may promote angiogenesis and neovascular-
ization under pathogenic conditions [78, 79]. With a high-
expression pattern in choroid tissues [80] and its interaction
with MMPs [81], LCN2 has been confirmed to participate in
the pathogenic activation of the AKT2–NF-κB–lipocalin-2
axis in CNV [82].

Taken together, the predicted functional genes are enriched
in MMP-, growth factor-, collagen-, and lipocalin-related
genes, implying the specific role of such components during
the initiation and progression of CNV. The predicted genes
have all been confirmed by recent publications as we have
described above. Therefore, the computational approach
in this study may be quite effective and accurate for
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identifying CNV-associated genes. This study not only
identified a group of functional CNV-associated genes and
potential related biological processes but also contributed
to the improvement of current computational prediction
approaches on the genetic background of diseases.

5. Conclusions

This study employed a powerful network diffusion method
to identify possible CNV-related genes in a PPI network.
To obtain reliable genes, a three-stage method followed to
screen out key latent CNV-related genes. The analysis on
final obtained genes indicate that they can be novel CNV-
related genes with high likelihood. It is hopeful that the
new findings reported in this study can provide new insights
for investigating CNV.

Data Availability

The data used to support the findings of this study are
included within the supplementary information files.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Authors’ Contributions

Minjie Sheng and Haiying Cai contributed equally to this
work.

Supplementary Materials

Table S1: curated CNV-associated genes. Table S2: measure-
ments of genes in each step. (Supplementary Materials)

References

[1] G. B. D. Disease, I. Injury, and C. Prevalence, “Global, regional,
and national incidence, prevalence, and years lived with dis-
ability for 310 diseases and injuries, 1990-2015: a systematic
analysis for the Global Burden of Disease Study 2015,” Lancet,
vol. 388, no. 10053, pp. 1545–1602, 2016.

[2] R. Klein, B. E. Klein, and K. L. Linton, “Prevalence of Age-
related Maculopathy: The Beaver Dam Eye Study,” Ophthal-
mology, vol. 99, no. 6, pp. 933–943, 1992.

[3] E. D’Ambrosio, P. Tortorella, and L. Iannetti, “Management of
uveitis-related choroidal neovascularization: from the patho-
genesis to the therapy,” Journal of Ophthalmology, vol. 2014,
Article ID 450428, 6 pages, 2014.

[4] D. V. Do, “Detection of new-onset choroidal neovasculariza-
tion,” Current Opinion in Ophthalmology, vol. 24, no. 3,
pp. 244–247, 2013.

[5] K. Kinnunen and S. Yla-Herttuala, “Vascular endothelial
growth factors in retinal and choroidal neovascular diseases,”
Annals of Medicine, vol. 44, no. 1, pp. 1–17, 2012.

MMP3 

MMP13

MMP7

MMP10

HBEGF 

HGF

VEGFD

TIMP2 

COL3A1 

COL18A1

LCN2

Matrix 
metalloproteinases

Growth factors

MMP inhibitors

Collagens

Lipocalins

Figure 3: Classification of eleven candidate CNV-associated genes.

7BioMed Research International

https://downloads.hindawi.com/journals/bmri/2021/2295412.f1.zip


[6] J. P. Tong and Y. F. Yao, “Contribution of VEGF and PEDF to
choroidal angiogenesis: a need for balanced expressions,” Clin-
ical Biochemistry, vol. 39, no. 3, pp. 267–276, 2006.

[7] S. Takata, T. Masuda, S. Nakamura et al., “The effect of triam-
cinolone acetonide on laser-induced choroidal neovasculariza-
tion in mice using a hypoxia visualization bio-imaging probe,”
Scientific Reports, vol. 5, no. 1, p. 9898, 2015.

[8] Y. Cai, X. Li, Y. S. Wang et al., “Hyperglycemia promotes
vasculogenesis in choroidal neovascularization in diabetic
mice by stimulating VEGF and SDF-1 expression in retinal
pigment epithelial cells,” Experimental Eye Research, vol. 123,
pp. 87–96, 2014.

[9] Y. Saishin, R. L. Silva, Y. Saishin et al., “Periocular injection of
microspheres containing PKC412 inhibits choroidal neovas-
cularization in a porcine model,” Investigative Ophthalmology
& Visual Science, vol. 44, no. 11, pp. 4989–4993, 2003.

[10] L. Sun, T. Huang, W. Xu, J. Sun, Y. Lv, and Y. Wang,
“Advanced glycation end products promote VEGF expression
and thus choroidal neovascularization via Cyr61-PI3K/AKT
signaling pathway,” Scientific Reports, vol. 7, no. 1, p. 14925,
2017.

[11] R. S. Eshaq, W. S. Wright, and N. R. Harris, “Oxygen delivery,
consumption, and conversion to reactive oxygen species in
experimental models of diabetic retinopathy,” Redox Biology,
vol. 2, pp. 661–666, 2014.

[12] K. Nochioka, H. Okuda, K. Tatsumi, S. Morita, N. Ogata, and
A.Wanaka, “Hedgehog signaling components are expressed in
choroidal neovascularization in laser-induced retinal lesion,”
Acta Histochemica et Cytochemica, vol. 49, no. 2, pp. 67–74,
2016.

[13] H. Yin, X. Fang, J. Ma et al., “Idiopathic choroidal neovascular-
ization: intraocular inflammatory cytokines and the effect of
intravitreal ranibizumab treatment,” Scientific Reports, vol. 6,
no. 1, p. 31880, 2016.

[14] Y. Zhang, Q. Han, Y. Ru, Q. Bo, and R. H. Wei, “Anti-VEGF
treatment for myopic choroid neovascularization: frommolec-
ular characterization to update on clinical application,” Drug
Design, Development and Therapy, vol. 9, pp. 3413–3421, 2015.

[15] J. Kusari, E. Padillo, S. X. Zhou et al., “Effect of brimonidine
on retinal and choroidal neovascularization in a mouse
model of retinopathy of prematurity and laser-treated rats,”
Investigative Ophthalmology & Visual Science, vol. 52, no. 8,
pp. 5424–5431, 2011.

[16] K. Nakai, M. S. Rogers, T. Baba et al., “Genetic loci that control
the size of laser-induced choroidal neovascularization,” FASEB
Journal, vol. 23, no. 7, pp. 2235–2243, 2009.

[17] K. Fang, P. Gao, J. Tian et al., “Joint effect of CFH and
ARMS2/HTRA1 polymorphisms on neovascular age-related
macular degeneration in Chinese population,” Journal of Oph-
thalmology, vol. 2015, Article ID 821918, 8 pages, 2015.

[18] C. Saade, B. Ganti, M. Marmor, K. B. Freund, and R. T. Smith,
“Risk characteristics of the combined geographic atrophy and
choroidal neovascularisation phenotype in age-related macu-
lar degeneration,” The British Journal of Ophthalmology,
vol. 98, no. 12, pp. 1729–1732, 2014.

[19] K. Izumi-Nagai, N. Nagai, K. Ohgami et al., “Macular pigment
lutein is antiinflammatory in preventing choroidal neovascu-
larization,” Arteriosclerosis, Thrombosis, and Vascular Biology,
vol. 27, no. 12, pp. 2555–2562, 2007.

[20] M. Hirasawa, K. Takubo, H. Osada et al., “Angiopoietin-like
Protein 2 Is a Multistep Regulator of Inflammatory Neovascu-

larization in a Murine Model of Age-related Macular Degener-
ation,” The Journal of Biological Chemistry, vol. 291, no. 14,
pp. 7373–7385, 2016.

[21] L. Paneghetti and Y. S. Ng, “A novel endothelial-derived
anti-inflammatory activity significantly inhibits spontaneous
choroidal neovascularisation in a mouse model,” Vascular
Cell, vol. 8, no. 1, p. 2, 2016.

[22] J. Zhang, Y. Suo, Y. H. Zhang et al., “Mining for genes related
to choroidal neovascularization based on the shortest path
algorithm and protein interaction information,” Biochimica
et Biophysica Acta (BBA)-General Subjects, vol. 1860, no. 11,
pp. 2740–2749, 2016.

[23] D. E. Carlin, B. Demchak, D. Pratt, E. Sage, and T. Ideker, “Net-
work propagation in the cytoscape cyberinfrastructure,” PLoS
Computational Biology, vol. 13, no. 10, article e1005598, 2017.

[24] A. M. Newman, N. B. Gallo, L. S. Hancox et al., “Systems-level
analysis of age-related macular degeneration reveals global
biomarkers and phenotype-specific functional networks,”
Genome Medicine, vol. 4, no. 2, p. 16, 2012.

[25] D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10:
protein-protein interaction networks, integrated over the tree
of life,” Nucleic Acids Research, vol. 43, no. D1, pp. D447–
D452, 2015.

[26] D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10:
protein–protein interaction networks, integrated over the tree
of life,” Nucleic Acids Research, vol. 43, no. D1, pp. D447–
D452, 2014.

[27] I. Xenarios, D. W. Rice, L. Salwinski, M. K. Baron, E. M.
Marcotte, and D. Eisenberg, “DIP: the database of interacting
proteins,” Nucleic Acids Research, vol. 28, no. 1, pp. 289–291,
2000.

[28] C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher,
A. Breitkreutz, and M. Tyers, “BioGRID: a general repository
for interaction datasets,” Nucleic Acids Research, vol. 34,
no. 90001, pp. D535–D539, 2006.

[29] J. Gao, B. Hu, and L. Chen, “A path-based method for identi-
fication of protein phenotypic annotations,” Current Bioinfor-
matics, 2021.

[30] H. Liu, B. Hu, L. Chen, and L. Lu, “Identifying protein subcel-
lular location with embedding features learned from net-
works,” Current Proteomics, vol. 17, 2021.

[31] X. Zhang, L. Chen, Z. H. Guo, and H. Liang, “Identification of
human membrane protein types by incorporating network
embedding methods,” IEEE Access, vol. 7, pp. 140794–
140805, 2019.

[32] X. L. Zhang and L. Chen, “Prediction of membrane protein
types by fusing protein-protein interaction and protein
sequence information,” Biochimica Et Biophysica Acta-
Proteins and Proteomics, vol. 1868, no. 12, article 140524,
2020.

[33] Y. Zhang, T. Zeng, L. Chen, S. J. Ding, T. Huang, and Y. D. Cai,
“Identification of COVID-19 infection-related human genes
based on a random walk model in a virus–human protein
interaction network,” BioMed Research International, vol. 2020,
Article ID 4256301, 7 pages, 2020.

[34] X. Pan, H. Li, T. Zeng et al., “Identification of protein subcellu-
lar localization with network and functional embeddings,”
Frontiers in Genetics, vol. 11, article 626500, 2021.

[35] Y. H. Zhang, T. Zeng, L. Chen, T. Huang, and Y. D. Cai,
“Determining protein-protein functional associations by func-
tional rules based on gene ontology and KEGG pathway,”

8 BioMed Research International



Biochimica et Biophysica Acta (BBA) - Proteins and Proteo-
mics, vol. 1869, no. 6, p. 140621, 2021.

[36] R. Zhao, L. Chen, B. Zhou, Z. H. Guo, S. Wang, and Aorigele,
“Recognizing novel tumor suppressor genes using a network
machine learning strategy,” IEEE Access, vol. 7, pp. 155002–
155013, 2019.

[37] R. Zhao, B. Hu, L. Chen, and B. Zhou, “Identification of latent
oncogenes with a network embedding method and random
forest,” BioMed Research International, vol. 2020, Article ID
5160396, 11 pages, 2020.

[38] H. Liang, L. Chen, X. Zhao, and X. Zhang, “Prediction of drug
side effects with a refined negative sample selection strategy,”
Computational and Mathematical Methods in Medicine,
vol. 2020, Article ID 1573543, 16 pages, 2020.

[39] H. Y. Liang, B. Hu, L. Chen, S. Wang, and Aorigele, “Recogniz-
ing novel chemicals/drugs for anatomical therapeutic chemical
classes with a heat diffusion algorithm,” Biochimica et Biophy-
sica Acta-Molecular Basis of Disease, vol. 1866, no. 11, article
165910, 2020.

[40] Y. Zhu, B. Hu, L. Chen, and Q. Dai, “iMPTCE-Hnetwork: A
Multilabel Classifier for Identifying Metabolic Pathway Types
of Chemicals and Enzymes with a Heterogeneous Network,”
Computational and Mathematical Methods in Medicine,
vol. 2021, Article ID 6683051, 12 pages, 2021.

[41] J.-P. Zhou, L. Chen, and Z.-H. Guo, “iATC-NRAKEL: an
efficient multi-label classifier for recognizing anatomical ther-
apeutic chemical classes of drugs,” Bioinformatics, vol. 36,
no. 5, pp. 1391–1396, 2020.

[42] M. Kanehisa and S. Goto, “KEGG: Kyoto encyclopedia of
genes and genomes,” Nucleic Acids Research, vol. 28, no. 1,
pp. 27–30, 2000.

[43] J. Yang, L. Chen, X. Kong, T. Huang, and Y. D. Cai, “Analysis
of tumor suppressor genes based on Gene Ontology and the
KEGG Pathway,” PLoS One, vol. 9, no. 9, article e107202,
2014.

[44] P. Carmona-Saez, M. Chagoyen, F. Tirado, J. M. Carazo, and
A. Pascual-Montano, “GENECODIS: a web-based tool for
finding significant concurrent annotations in gene lists,”
Genome Biology, vol. 8, no. 1, p. R3, 2007.

[45] S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, “Walking the
interactome for prioritization of candidate disease genes,” The
Amerian Journal of Human Genetics, vol. 82, no. 4, pp. 949–
958, 2008.

[46] Z. Yu, R. Visse, M. Inouye, H. Nagase, and B. Brodsky, “Defin-
ing Requirements for Collagenase Cleavage in Collagen Type
III Using a Bacterial Collagen System,” The Journal of Biologi-
cal Chemistry, vol. 287, no. 27, pp. 22988–22997, 2012.

[47] X. Ji, L. Wang, B. Wu et al., “Associations of MMP1, MMP2
and MMP3 genes polymorphism with coal workers' pneumo-
coniosis in Chinese Han population,” International Journal of
Environmental Research and Public Health, vol. 12, no. 11,
pp. 13901–13912, 2015.

[48] B. Steen, S. Sejersen, L. Berglin, S. Seregard, and A. Kvanta,
“Matrix metalloproteinases and metalloproteinase inhibitors
in choroidal neovascular membranes,” Investigative Ophthal-
mology & Visual Science, vol. 39, no. 11, pp. 2194–2200, 1998.

[49] J. Zhang, J. Zhao, Y. Bai, L. Huang,W. Yu, and X. Li, “Effects of
p75 neurotrophin receptor on regulating hypoxia-induced
angiogenic factors in retinal pigment epithelial cells,” Molecu-
lar and Cellular Biochemistry, vol. 398, no. 1-2, pp. 123–134,
2015.

[50] J. Lecomte, K. Louis, B. Detry et al., “Bone marrow-derived
mesenchymal cells and MMP13 contribute to experimental
choroidal neovascularization,” Cellular and Molecular Life Sci-
ences, vol. 68, no. 4, pp. 677–686, 2011.

[51] S. Sarks, S. Cherepanoff, M. Killingsworth, and J. Sarks, “Rela-
tionship of basal laminar deposit and membranous debris to
the clinical presentation of early age-related macular degener-
ation,” Investigative Ophthalmology & Visual Science, vol. 48,
no. 3, pp. 968–977, 2007.

[52] V. K. Katsi, M. E. Marketou, D. A. Vrachatis et al., “Essential
hypertension in the pathogenesis of age-related macular
degeneration: a review of the current evidence,” Journal of
Hypertension, vol. 33, no. 12, pp. 2382–2388, 2015.

[53] A. Lommatzsch, P. Hermans, K. D. Müller, N. Bornfeld, A. C.
Bird, and D. Pauleikhoff, “Are low inflammatory reactions
involved in exudative age-related macular degeneration? Mor-
phological and immunhistochemical analysis of AMD associ-
ated with basal deposits,” Graefe's Archive for Clinical and
Experimental Ophthalmology, vol. 246, no. 6, pp. 803–810,
2008.

[54] M. Singh and S. C. Tyagi, “Metalloproteinases as mediators of
inflammation and the eyes: molecular genetic underpinnings
governing ocular pathophysiology,” International Journal of
Ophthalmology, vol. 10, no. 8, pp. 1308–1318, 2017.

[55] K. J. Thornton, E. Kamange-Sollo, M. E. White, and W. R.
Dayton, “Role of G protein-coupled receptors (GPCR), matrix
metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-
binding epidermal growth factor-like growth factor (hbEGF),
epidermal growth factor receptor (EGFR), erbB2, and
insulin-like growth factor 1 receptor (IGF-1R) in trenbolone
acetate-stimulated bovine satellite cell proliferation,” Journal
of Animal Science, vol. 93, no. 9, pp. 4291–4301, 2015.

[56] R. Roskoski Jr., “The ErbB/HER family of protein-tyrosine
kinases and cancer,” Pharmacological Research, vol. 79,
pp. 34–74, 2014.

[57] K. Nakai, K. Yoneda, T. Moriue, J. Igarashi, H. Kosaka, and
Y. Kubota, “HB-EGF-induced VEGF production and eNOS
activation depend on both PI3 kinase and MAP kinase in
HaCaT cells,” Journal of Dermatological Science, vol. 55,
no. 3, pp. 170–178, 2009.

[58] H. Ota, A. Itaya-Hironaka, A. Yamauchi et al., “Pancreatic β
cell proliferation by intermittent hypoxia via up-regulation of
Reg family genes and HGF gene,” Life Sciences, vol. 93,
no. 18-19, pp. 664–672, 2013.

[59] C. C. Chang, J. J. Chiu, S. L. Chen et al., “Activation of HGF/c-
Met signaling by ultrafine carbon particles and its contribution
to alveolar type II cell proliferation,” American Journal of
Physiology. Lung Cellular and Molecular Physiology, vol. 302,
no. 8, pp. L755–L763, 2012.

[60] W. Hu, M. H. Criswell, S. L. Fong et al., “Differences in the
temporal expression of regulatory growth factors during cho-
roidal neovascular development,” Experimental Eye Research,
vol. 88, no. 1, pp. 79–91, 2009.

[61] J. R. de Oliveira Dias, E. B. Rodrigues, M. Maia, O. Magalhaes,
F. M. Penha, and M. E. Farah, “Cytokines in neovascular age-
related macular degeneration: fundamentals of targeted com-
bination therapy,” The British Journal of Ophthalmology,
vol. 95, no. 12, pp. 1631–1637, 2011.

[62] N. I. Bower, A. J. Vogrin, L. le Guen et al., “VEGFD modulates
both angiogenesis and lymphangiogenesis during zebrafish
embryonic development,” Development, vol. 144, no. 3,
pp. 507–518, 2017.

9BioMed Research International



[63] T. Duong, K. Koltowska, C. Pichol-Thievend et al., “VEGFD
regulates blood vascular development by modulating SOX18
activity,” Blood, vol. 123, no. 7, pp. 1102–1112, 2014.

[64] R. M. Hussain and T. A. Ciulla, “Emerging vascular endothe-
lial growth factor antagonists to treat neovascular age-related
macular degeneration,” Expert Opinion on Emerging Drugs,
vol. 22, no. 3, pp. 235–246, 2017.

[65] T. Cabral, L. H. Lima, L. G. M. Mello et al., “Bevacizumab
injection in patients with neovascular age-related macular
degeneration increases angiogenic biomarkers,” Ophthalmol
Retina, vol. 2, no. 1, pp. 31–37, 2018.

[66] K. Nakamura, K. Shinozuka, and N. Yoshikawa, “Anticancer
and antimetastatic effects of cordycepin, an active component
of Cordyceps sinensis,” Journal of Pharmacological Sciences,
vol. 127, no. 1, pp. 53–56, 2015.

[67] T. Matsuo, Y. Okada, F. Shiraga, and T. Yanagawa, “TIMP-1
and TIMP-2 levels in vitreous and subretinal fluid,” Japanese
Journal of Ophthalmology, vol. 42, no. 5, pp. 377–380, 1998.

[68] P. Ottino, J. Finley, E. Rojo et al., “Hypoxia activates matrix
metalloproteinase expression and the VEGF system in mon-
key choroid-retinal endothelial cells: involvement of cyto-
solic phospholipase A2 activity,” Molecular Vision, vol. 10,
pp. 341–350, 2004.

[69] S. J. Jeong, S. Li, R. Luo, N. Strokes, and X. Piao, “Loss of
Col3a1, the gene for Ehlers-Danlos syndrome type IV, results
in neocortical dyslamination,” PLoS One, vol. 7, no. 1, article
e29767, 2012.

[70] D. Horn, E. Siebert, U. Seidel et al., “Biallelic COL3A1 muta-
tions result in a clinical spectrum of specific structural brain
anomalies and connective tissue abnormalities,” American
Journal of Medical Genetics. Part A, vol. 173, no. 9, pp. 2534–
2538, 2017.

[71] S. Caballero, R. Yang, M. B. Grant, and B. Chaqour, “Selective
blockade of cytoskeletal actin remodeling reduces experimen-
tal choroidal neovascularization,” Investigative Ophthalmology
& Visual Science, vol. 52, no. 5, pp. 2490–2496, 2011.

[72] Y. Bai, M. Zhao, C. Zhang et al., “Anti-angiogenic effects of a
mutant endostatin: a new prospect for treating retinal and cho-
roidal neovascularization,” PLoS One, vol. 9, no. 11, article
e112448, 2014.

[73] M. Aikio, M. Hurskainen, G. Brideau et al., “Collagen XVIII
short isoform is critical for retinal vascularization, and overex-
pression of the Tsp-1 domain affects eye growth and cataract
formation,” Investigative Ophthalmology & Visual Science,
vol. 54, no. 12, pp. 7450–7462, 2013.

[74] K. S. Moulton, B. R. Olsen, S. Sonn, N. Fukai, D. Zurakowski,
and X. Zeng, “Loss of collagen XVIII enhances neovasculariza-
tion and vascular permeability in atherosclerosis,” Circulation,
vol. 110, no. 10, pp. 1330–1336, 2004.

[75] L. Colina-Vegas, W. Villarreal, M. Navarro et al., “Cytotoxicity
of Ru(II) piano-stool complexes with chloroquine and chelat-
ing ligands against breast and lung tumor cells: interactions
with DNA and BSA,” Journal of Inorganic Biochemistry,
vol. 153, pp. 150–161, 2015.

[76] W. Tang, J. Ma, R. Gu et al., “Lipocalin 2 suppresses ocular
inflammation by inhibiting the activation of NF-κβ pathway
in endotoxin-induced uveitis,” Cellular Physiology and Bio-
chemistry, vol. 46, no. 1, pp. 375–388, 2018.

[77] B. Wu, C. Li, Z. Du et al., “Network based analyses of gene
expression profile of LCN2 overexpression in esophageal squa-
mous cell carcinoma,” Scientific Reports, vol. 4, p. 5403, 2014.

[78] M. Shen, Y. Tao, Y. Feng, X. Liu, F. Yuan, and H. Zhou,
“Quantitative proteomic analysis of mice corneal tissues
reveals angiogenesis- related proteins involved in corneal neo-
vascularization,” Biochimica et Biophysica Acta, vol. 1864,
no. 7, pp. 787–793, 2016.

[79] L. Wu, Y. Du, J. Lok, E. H. Lo, and C. Xing, “Lipocalin-2
enhances angiogenesis in rat brain endothelial cells via reactive
oxygen species and iron-dependent mechanisms,” Journal of
Neurochemistry, vol. 132, no. 6, pp. 622–628, 2015.

[80] S. D. Mesquita, A. C. Ferreira, A. M. Falcao et al., “Lipocalin 2
modulates the cellular response to amyloid beta,” Cell Death
and Differentiation, vol. 21, no. 10, pp. 1588–1599, 2014.

[81] K. M. Rood, I. A. Buhimschi, K. Rodewald Millen et al., “Evi-
dence for participation of neutrophil gelatinase-associated
lipocalin/matrix metalloproteinase-9 (NGAL•MMP-9) com-
plex in the inflammatory response to infection in pregnancies
complicated by preterm birth,” American Journal of Reproduc-
tive Immunology, vol. 76, no. 2, pp. 108–117, 2016.

[82] S. Ghosh, P. Shang, M. Yazdankhah et al., “Activating the
AKT2-nuclear factor-κB-lipocalin-2 axis elicits an inflamma-
tory response in age-related macular degeneration,” The Jour-
nal of Pathology, vol. 241, no. 5, pp. 583–588, 2017.

10 BioMed Research International



Research Article
A New Method for Syndrome Classification of Non-Small-Cell
Lung Cancer Based on Data of Tongue and Pulse with
Machine Learning

Yu-lin Shi ,1 Jia-yi Liu,1 Xiao-juan Hu,2 Li-ping Tu,1 Ji Cui,1 Jun Li,1 Zi-juan Bi,1 Jia-cai Li,1

Ling Xu ,3 and Jia-tuo Xu 1

1Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong, Shanghai, China
2Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road,
Pudong, Shanghai, China
3Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and
Western Medicine, 110 Ganhe Road, Hongkou, Shanghai, China

Correspondence should be addressed to Ling Xu; xulq67@aliyun.com and Jia-tuo Xu; xjt@fudan.edu.cn

Received 20 April 2021; Revised 12 July 2021; Accepted 23 July 2021; Published 11 August 2021

Academic Editor: Yue Zhang

Copyright © 2021 Yu-lin Shi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To explore the data characteristics of tongue and pulse of non-small-cell lung cancer with Qi deficiency syndrome and
Yin deficiency syndrome, establish syndrome classification model based on data of tongue and pulse by using machine learning
methods, and evaluate the feasibility of syndrome classification based on data of tongue and pulse. Methods. We collected
tongue and pulse of non-small-cell lung cancer patients with Qi deficiency syndrome (n = 163), patients with Yin deficiency
syndrome (n = 174), and healthy controls (n = 185) using intelligent tongue diagnosis analysis instrument and pulse diagnosis
analysis instrument, respectively. We described the characteristics and examined the correlation of data of tongue and pulse.
Four machine learning methods, namely, random forest, logistic regression, support vector machine, and neural network, were
used to establish the classification models based on symptom, tongue and pulse, and symptom and tongue and pulse,
respectively. Results. Significant difference indices of tongue diagnosis between Qi deficiency syndrome and Yin deficiency
syndrome were TB-a, TB-S, TB-Cr, TC-a, TC-S, TC-Cr, perAll, and the tongue coating texture indices including TC-CON, TC-
ASM, TC-MEAN, and TC-ENT. Significant difference indices of pulse diagnosis were t4 and t5. The classification performance
of each model based on different datasets was as follows: tongue and pulse< symptom< symptom and tongue and pulse. The
neural network model had a better classification performance for symptom and tongue and pulse datasets, with an area under
the ROC curves and accuracy rate which were 0.9401 and 0.8806. Conclusions. It was feasible to use tongue data and pulse data
as one of the objective diagnostic basis in Qi deficiency syndrome and Yin deficiency syndrome of non-small-cell lung cancer.

1. Introduction

Lung cancer is a common malignant tumor of the lung and is
a major cause of morbidity and mortality. It is estimated that
the number of deaths from lung cancer accounts for about
24% of all cancer deaths in the United States [1, 2]. An orga-
nization report shows that lung cancer causes approximately
1.76 million deaths worldwide each year, accounting for
18.7% of all cancer deaths [3]. Non-small-cell lung cancer
(NSCLC) is the most common histological type of lung can-

cer, accounting for more than 80% of primary lung cancers
[4]. Sixty percent of NSCLC cases have metastasized at the
time of diagnosis. The 5-year survival rate for advanced
NSCLC is lower than 5%, and early diagnosis of lung cancer
is an important opportunity to reduce mortality [5, 6]. The
current treatment methods for NSCLC mainly include sur-
gery, radiotherapy, chemotherapy, and targeted therapy [7,
8]. Chemotherapy is the most common treatment. However,
patients with poor health often have a low tolerance to con-
ventional treatment with a tendency of drug resistance [9].
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Traditional Chinese medicine (TCM) has a long history and
rich experience in the treatment of lung cancer, which is one
of the main methods of comprehensive treatment of lung
cancer in China. Systematic evaluation of TCM shows that
TCM combined with radiotherapy and chemotherapy and
targeted therapy had certain advantages in alleviating symp-
toms, stabilizing tumors, improving life quality, and prolong-
ing survival period [10]. TCM has been proved to be an
effective method for the treatment of advanced lung cancer.
On the basis of accurate syndrome differentiation, TCM
plays an active role in each stage of the occurrence and devel-
opment of lung cancer [11, 12].

Syndrome differentiation and treatment is the basic
principle of TCM to diagnose and deal with diseases. It is a
process of comprehensive judgment on the four types of
diagnostic information of patients based on the theory of
TCM combined with the doctor’s experience [13]. Accurate
syndrome differentiation is able to provide a basis for the
treatment of diseases and is the foundation of clinical effi-
cacy. Traditional syndrome differentiation and treatment
inevitably suffer from subjectivity and ambiguity, which
actually hinders the development of TCM. Microsyndrome
differentiation is a method of using modern advanced tech-
nology to go deep into the body’s microcosmic level to
understand and differentiate syndromes on the basis of
macroscopic syndrome differentiation. Microsyndrome
differentiation can be used to guide disease differentiation
and syndrome differentiation, explore the cause and patho-
genesis, and evaluate the efficacy and guide the prognosis of
the disease [14]. Previous studies have verified that there is
a close relationship between different syndromes and
physical and chemical indices. A combination of microindex
and macrosymptom can assist syndrome differentiation
effectively.

With the rapid development of modern research on ton-
gue and pulse diagnoses, a variety of tongue and pulse diag-
noses instruments are widely used in clinical practice. This
has generated a large number of objective data of tongue
and pulse diagnoses, which are also microscopic indices in
a sense. In recent years, studies based on data of tongue
and pulse diagnoses have been increasing, with many
researchers applying machine learning and data mining
methods to the fields of image recognition, target detection,
natural language processing, and others [15–18]. In addition,
studies have demonstrated that accurate detection, identifica-
tion, and multidimensional quantitative analysis based on
tongue data and pulse data have been gradually applied to
disease diagnosis. By constructing the diagnostic relationship
between tongue and pulse and health status, it not only saves
medical resources but also greatly improves diagnosis effi-
ciency and treatment [19–22]. Qi deficiency syndrome and
Yin deficiency syndrome are the two main common syn-
dromes of NSCLC. When the symptoms are not obvious,
the traditional symptom-based syndrome differentiation
cannot be carried out. The modern study of tongue and pulse
diagnoses research provides a good data basis for TCM syn-
drome differentiation.

Tongue data and pulse data are the most representative
data of four diagnoses of TCM. The data collected and ana-

lyzed under the standardized condition has a high level of
stability, which provides reliable objective data for intelligent
syndrome differentiation. Among all kinds of syndromes,
tongue and pulse are related to some extent, but the tradi-
tional syndrome differentiation cannot be clearly explained
due to the lack of accurate data. With the development of
diagnosis technology, the analysis and interpretation of the
relationship between tongue and pulse can be realized more
clearly. In this study, two common syndromes of NSCLC
were selected to explore the differences of tongue data and
pulse data and quantitatively analyze the data correlation of
tongue and pulse, using machine learning methods to estab-
lish syndrome classification models based on macrosymp-
tom, objective tongue and pulse, and macrosymptom and
objective tongue and pulse, and evaluate the contribution
rate of the objective data of tongue and pulse to syndrome
differentiation.

2. Materials and Methods

2.1. Study Design and Subjects. We selected a total of 337
patients from the oncology department of Yueyang Hospital
of Integrated Traditional Chinese and Western Medicine
from January 2018 to October 2020, including 163 patients
with Qi deficiency syndrome and 174 patients with Yin defi-
ciency syndrome. All patients were pathologically or cytolog-
ically confirmed to be NSCLC. We additionally selected a
total of 184 healthy people from Shuguang Hospital of
Shanghai University of Traditional Chinese Medicine from
January 2018 to October 2020 as the healthy controls. The
flowchart is shown in Figure 1.

2.2. Diagnostic Criteria. Diagnostic criteria of Western med-
icine: according to the clinical practice guidelines for lung
cancer screening issued by the National Comprehensive
Cancer Network (NCCN) [23] and the fourth edition lung
cancer histological classification standards of “Classification
of Lung Tumors” [24, 25] issued by the World Health
Organization.

TCM Syndrome Differentiation Standard: according to
the “Technical Guidelines for Clinical Research of New
Drugs of Syndromes” [26] and the Syndrome Part of TCM
Clinical Diagnosis and Treatment Terms [27] and textbooks
of Common Diseases and Symptoms in Internal Medicine of
Traditional Chinese Medicine.

The main manifestations of Qi deficiency syndrome are
cough, white or foamy phlegm, small amount of hemoptysis,
chest tightness, shortness of breath, low fever, spontaneous
sweating, lack of energy, pale complexion, poor appetite,
loose stools, pale red tongue with tooth marks, thin white
coating, and thin pulse. The main manifestations of Yin defi-
ciency syndrome are cough without phlegm, or less but sticky
phlegm, phlegm with blood, shortness of breath and dull
chest pain, low fever, dry mouth, night sweat, upset and
insomnia, red tongue, little or bare without tongue coating,
and thin and rapid pulse. The syndrome was determined by
at least three senior physicians to ensure the consistency
and authenticity of syndrome differentiation.

2 BioMed Research International



2.3. Inclusion and Exclusion Criteria. The inclusion criteria
are as follows: (1) meeting the above diagnostic criteria, (2)
confirmed by pathology or cytology, (3) no serious liver or
kidney damage, and (4) know and sign informed consent.

The exclusion criteria are as follows: (1) those who did not
meet the inclusion criteria for NSCLC,(2) patients with Qi
deficiency syndrome combined with Yin deficiency syndrome,
(3) patients with severe primary diseases such as cardiovascu-
lar, cerebrovascular, liver, kidney, and blood system,(4) preg-
nant or lactating women, (5) psychopath, and (6) patients
who were unable to cooperate with research work due to sub-
jective and objective reasons and who had poor compliance.

2.4. Collecting Clinical Data of Tongue and Pulse. We used
TFDA-1 digital tongue diagnosis instrument and PDA-1 dig-
ital pulse diagnosis instrument developed by the National
Key Research and Development Program to collect tongue
and pulse diagnostic data of patients, respectively. We used
the Information Record Form of TCM Clinical Four Diag-
nostics (Copyright No.: 2016Z11L025702) developed by our

research group to record the symptoms of patients [28]. All
the work of tongue and pulse diagnoses collection and
inquiry were completed by professional personnel of TCM
or integrated TCM and western medicine who had received
standardized training. Each patient was consulted by at least
two professional researchers, and the syndromes of all
patients were judged by three senior doctors to ensure the
consistency and authenticity of data collection and interpre-
tation and minimize deviation.

TFDA-1 digital tongue diagnosis instrument and tongue
diagnosis analysis system (TDAS v2.0) are shown in
Figures 2 and 3. The tongue was imaged by a video camera
(Nikon 1 J5) with a fixed-focal lens which has 12 megapixels,
and the picture resolution is 5568 ∗ 3712. TFDA-1 digital
tongue diagnosis instrument uses LED light sources, and a
curved reflector is set in front of the light sources to ensure
the uniformity of illumination in all parts when the tongue
image is collected. The color rendering index of light source
is 96, and color temperature is around 5,000–6,500K. Param-
eters of the TFDA-1 digital tongue diagnosis instrument are

Non-small-cell lung cancer
(N = 337)

Yin deficiency syndrome
(N = 174)

Machine learning methodStatistical analysis approach

Statistical analysis of
tongue Statistical analysis of pulse Logistic regression

Model based on symptom

Model based on tongue &
pulse data

Model based on symptom &
tongue & pulse data

SVM

Random forest

Neural network
Statistical significance

pulse indexes
Statistical significance

tongue indexes

Correlation analysis of
tongue & pulse

Classified as Qi deficiency syndrome & Yin deficiency
syndrome of NSCLC

Qi deficiency syndrome
(N = 163)

Healthy controls
(n = 184)

Figure 1: Flowchart.
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as follows: white balance, center-weighted metering, M
mode, shutter speed of 1/125, aperture value of F6.3, and
ISO sensitivity of 200.

PDA-1 digital pulse diagnosis instrument and its corre-
sponding sphygmogram are shown in Figure 4. The PDA-1
pulse diagnosis instrument uses a pressure sensor. Place the
probe at the guan place of the patient’s left hand, fix the strap,
and adjust the tightness of the strap so that the sphygmogram
reaches the best peak (the peak value of the main sphygmo-
gram is 2 grids and above). Collect 30 s after the waveform
is stable.

Tongue indices can be divided into two categories: ton-
gue body (TB) index and tongue coating (TC) index which

mainly come from the three color spaces of Lab, HIS, and
YCrCb [29–32]. Each parameter of tongue diagnosis and
pulse diagnosis has its corresponding medical significance
[32–34]. In tongue indices, they are R (Red), G (Green), B
(Blue), H (Hue), S(Saturation), I (Intensity) and L (Light), a
(red-green axis), b (yellow-blue axis), Y (brightness), Cr (dif-
ference between red signal and brightness), Cb (difference
between blue signal and brightness), texture indices include
CON (Contrast), ASM (Angular Second Moment), ENT
(Entropy), MEAN (Mean), and tongue coating indices
include perAll and perPart. perAll represents the ratio of
coated tongue area to total tongue area, and perPart repre-
sents the ratio of coated tongue area to noncoated tongue

Figure 2: TFDA-1 digital tongue diagnosis instrument: (a) front view; (b) profile view.

Figure 3: Tongue diagnosis analysis system (TDAS v2.0) of TFDA-1 digital tongue diagnosis instrument.
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area. In pulse indices, h1-h5 mainly represent the amplitude
height. h1 is the main wave amplitude, h3 is heavy wave front
wave amplitude, h3/h1 is the ratio of heavy wave front wave
amplitude to the amplitude of the main wave, h4 is the
dicrotic notch amplitude, h4/h1 is the ratio of the dicrotic
notch amplitude to the amplitude of the main wave, h5 is
the gravity wave amplitude, and h5/h1 is the ratio of gravity
wave amplitude to the amplitude to the amplitude of the
main wave. t represents a complete pulse cycle, and t1 is the
time value from the start point to the crest point of the main
wave on the sphygmogram. t4 is the time value from the start
point to the dicrotic notch on the sphygmogram, and t5 is the
time value from the dicrotic notch to the end point on the
sphygmogram. w1 is the width at 1/3 of the main wave, and
w2 is the width at 1/5 of the main wave. All the tongue and
pulse indices are extracted by special tongue analysis software
(TDAS v2.0) and pulse analysis software (PulseCol).

2.5. Statistical Analysis. SPSS 26.0 was used for statistical
analysis. Categorical variables were expressed as percentages
(%). Continuous variables were expressed as mean ±
standard deviation (SD) for those with normal distribution
or median (interquartile range) for those with skewed distri-
bution. Continuous variables were compared with analysis of
variance (ANOVA) or rank-sum test (Kruskal-Wallis H test),
and the correlation heat map was made by GraphPad Prism
8.0. A two-sided P value < 0.05 was considered statistically
significant.

2.6. Classification by Machine Learning Approach. We used
four machine learning methods, namely, neural network,
random forest, support vector machine (SVM), and logistic
regression to set the ratio of training set to test set at 8 : 2
using Orange (3.26.0) software. We used adjusted parameters
of each model to establish classification and diagnosis models
of Qi deficiency syndrome and Yin deficiency syndrome of

NSCLC based on “symptom,” “tongue and pulse,” and
“symptom and tongue and pulse”, respectively. We used
accuracy, precision, F1-score (F1), sensitivity, specificity,
and area under the curve (AUC) as evaluation indices to eval-
uate the predictive performance. AUC was the area under the
ROC curve. The larger the value, the better the classification
effect of the classifier. The calculation formula of each index
was as follows:

Accuracy = TP + TN
TP + TN + FP + FN

× 100%, ð1Þ

Precision =
TP

TP + FP
× 100%, ð2Þ

Sensitivity =
TP

TP + FN
× 100%, ð3Þ

Specificity = TN
TN + FP

× 100%, ð4Þ

F1 =
2 × Precision × Sensitivity
Precision + Sensitivity

: ð5Þ

In the above statements, True Positive (TP) was the pos-
itive sample predicted by the model as the positive category.
True Negative (TN) was the negative sample predicted by the
model as the negative category. False Positives (FP) was the
negative sample predicted by the model as the positive cate-
gory. False Negative (FN) was the positive sample predicted
by the model as the negative category.

3. Results

3.1. Characteristics of Participants. The basic statistical anal-
ysis result of the three groups is shown in Table 1.

The result showed that people with Qi deficiency syn-
drome and Yin deficiency syndrome had a statistically
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Figure 4: PDA-1 digital pulse diagnosis instrument and its corresponding sphygmogram: (a) PDA-1 digital pulse diagnosis instrument; (b)
sphygmogram.
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significantly higher age than healthy controls. However, there
was no difference in age between people with Qi deficiency
syndrome and Yin deficiency syndrome.

3.2. Statistical Analysis of Tongue Data. Statistical analysis
result of tongue diagnosis data in the three groups is shown
in Table 2.

The result showed that (1) compared with Qi deficiency
syndrome, there were more significant differences between
Yin deficiency syndrome and the healthy controls. (2) In

the significant difference indices between Yin deficiency syn-
drome and healthy controls, except for the texture index of
tongue coating, the changes of tongue body index of Yin defi-
ciency syndrome were more significant than that of tongue
coating index. (3) Significant difference tongue indices
between Qi deficiency syndrome and Yin deficiency syn-
drome were TB-a, TB-S, TB-Cr, TC-a, TC-S, TC-Cr, perAll,
and TC-CON, TC-ASM, TC-MEAN, and TC-ENT; among
them, TB-a, TB-Cr, TC-a, TC-S, TC-Cr, and TC-ASM of
Yin deficiency syndrome were higher than those of Qi

Table 1: Basic statistical analysis.

Characteristic Healthy controls (n = 184) Qi deficiency syndrome (n = 163) Yin deficiency syndrome (n = 174)

Sex, n (%)
Male 96 (52.17) 72 (44.17) 89 (51.15)

Female 88 (47.83) 91 (55.83) 85 (48.85)

Age, years 27.00 (29.00-24.25) 67.00 (59.00-71.00)∗∗ 67.00 (60.00-72.00)∗∗

vs. healthy controls, ∗∗P < 0:01.

Table 2: Statistical analysis of tongue diagnosis data (mean (SD), median (P25, P75)).

Domain Color space Index Healthy controls (n = 184) Qi deficiency syndrome (n = 163) Yin deficiency syndrome (n = 174)

TB

Lab

TB-L 103.99 (100.81-108.79) 96.31 (75.15-102.89)∗∗ 99.83 (80.51-103.24)∗∗

TB-a 19:98 ± 2:82 19:31 ± 3:81 21:06 ± 4:23∗##

TB-b 4.76 (0.82-7.00) 7.04 (5.47-8.28)∗∗ 7.04 (5.47-8.28)∗∗

HIS

TB-H 176.22 (168.50-180.95) 180.00 (177.98-182.83)∗∗ 180.00 (177.98-182.83)∗∗

TB-S 0.17 (0.16-0.20) 0.17 (0.15-0.19) 0.17 (0.15-0.19)∗##

TB-I 117.00 (108.00-132.00) 116.00 (109.00-126.00)∗∗ 116.00 (109.00-126.00)

YCrCb

TB-Y 114.98 (107.03-126.56) 114.35 (106.900-123.72) 114.35 (106.900-123.72Þ∗
TB-Cr 151:41 ± 3:05 152:29 ± 3:89 154:15 ± 4:44∗∗##

TB-Cb 121.61 (119.75-124.82) 119.84 (118.53-120.99)∗∗ 119.27 (118.09-120.57)∗∗

Texture index

TB-CON 71.47 (46.96-99.54) 74.56 (48.28-94.64) 60.96 (45.32-86.08)

TB-ASM 0.08 (0.07-0.10) 0.07 (0.07-0.09) 0.09 (0.07-0.10)

TB-MEAN 0.03 (0.02-0.03) 0.03 (0.02-0.03) 0.02 (0.02-0.03)

TB-ENT 1.21 (1.11-1.28) 1.22 (1.12-1.28) 1.17 (1.10-1.25)

TC

Lab

TC-L 109.24 (104.97-113.54) 89.38 (76.22-104.87)∗∗ 95.35 (82.53-105.08)∗∗

TC-a 12:31 ± 2:69 12:75 ± 3:21 14:25 ± 3:78∗∗##

TC-b 2.71(-1.16-5.32) 5.59 (4.24-6.62)∗∗ 5.86 (4.35-7.26)∗∗

HIS

TC-H 176.70 (162.43-183.25) 183.00 (180.00-186.35)∗∗ 182.58 (178.64-185.72)∗∗

TC-S 0.11 (0.09-0.13) 0.12 (0.10-0.14)∗ 0.13 (0.11-0.17)∗∗##

TC-I 130.00 (117.00-142.75) 119.00 (99.00-135.00)∗∗ 115.00 (92.75-133.00)∗∗

YCrCb

TC-Y 126.78 (115.63-137.70) 118.65 (99.72-132.07)∗∗ 114.02 (95.19-129.53)∗∗

TC-Cr 142.89 (140.89-145.181) 143.97 (142.27-146.51)∗∗ 145.49 (143.00-148.79)∗∗##

TC-Cb 123.90 (121.54-127.61) 121.36 (120.34-122.81)∗∗ 121.35 (120.01-122.67)∗∗

Area index
perAll 0.54 (0.43-0.69) 0.44 (0.34-0.50)∗∗ 0.38 (0.21-0.50)∗∗#

perPart 1.09 (1.02-1.22) 1.24 (1.11-1.42)∗∗ 1.28 (1.11-1.57)∗∗

Texture index

TC-CON 89.27 (62.31-124.17) 83.13 (63.82-123.30) 71.53 (44.56-115.98)∗∗##

TC-ASM 0.07 (0.06-0.08) 0.07 (0.06-0.08) 0.08 (0.06-0.10)∗∗##

TC-MEAN 0.03 (0.02-0.03) 0.03 (0.02-0.03) 0.03 (0.02-0.03)∗∗##

TC-ENT 1.26 (1.18-1.34) 1.25 (1.18-1.34) 1.21 (1.09-1.31)∗∗##

vs. healthy controls, ∗P < 0:05, vs. healthy controls, ∗∗P < 0:01. vs. Qi deficiency syndrome, #P < 0:05, vs. Qi deficiency syndrome, ##P < 0:01.
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deficiency syndrome, while perAll, TC-CON, and TC-ENT
of Yin deficiency syndrome were lower than those of Qi defi-
ciency syndrome.

3.3. Statistical Analysis of Pulse Data. Statistical analysis
result of pulse diagnosis data in the three groups is shown
in Table 3.

The result showed that (1) the pulse parameters t1, t4, t5,
h1, h3, h4, h5, h1/t1, h4/h1, t4/t5, w1/t, and w2/t of Qi defi-
ciency syndrome and Yin deficiency syndrome had statistical
significance compared with those of healthy controls. (2)
Only two parameters, t4 and t5, showed statistically signifi-
cant differences between Qi deficiency syndrome and Yin
deficiency syndrome.

3.4. Correlation Analysis of Tongue Data and Pulse Data.
Tongue data and pulse data were statistically significantly
correlated among people with Qi deficiency syndrome and
Yin deficiency syndrome (Figure 5 and Table 4). Heat map
result of Qi deficiency syndrome is shown in Figure 5.

Correlation analysis result of tongue data and pulse data
between Qi deficiency syndrome is shown in Table 4.

The result showed that (1) there was a strong correlation
between the tongue coating texture parameters, and the color
space parameters of the tongue coating and the tongue body
were also correlated. The correlation between the tongue
coating texture parameters and the color space parameters
was weaker than the correlation of the pulse parameters. (2)
There was a definite correlation between pulse parameters
t4 and tongue parameters TC-ASM, TC-ENT, and TC-
MEAN, with a correlation coefficient of -0.18, 0.18, and
0.18, respectively. (3) There was a weak correlation between
t5 and TB-Cr with a correlation coefficient of -0.16
(P < 0:05).

The heat map result of Yin deficiency syndrome is shown
in Figure 6.

The correlation analysis result of tongue data and pulse
data between Yin deficiency syndrome is shown in Table 5.

The result showed that (1) similar to Qi deficiency syn-
drome, the tongue coating texture parameters of Yin defi-
ciency syndrome had a strong correlation, and the color
space parameters of the tongue coating and tongue body
were also strongly correlated. The correlation between ton-
gue coating texture parameters and color space parameters
was weaker than that of pulse parameters. (2) There was a
certain correlation between pulse parameters t4 and tongue
parameters TC-ASM and TC-a. Both of the correlation
coefficients were -0.14, but the difference was not statisti-
cally significant (P > 0:05). (3) t5 was strongly correlated
with TB-a, TC-S, TC-Cr, and TB-a, and the correlation
coefficients were -0.33, -0.27, -0.23, and -0.23, respectively
(P < 0:01). The correlation coefficients of t5 with TB-Cr,
TB-S, and TC-ASM were -0.21, -0.20, and -0.20, respectively
(P < 0:01).

The correlation analysis result showed that correlation
intensity of tongue and pulse in Yin deficiency syndrome
was significantly stronger than that in Qi deficiency syn-
drome, and compared with Qi deficiency syndrome, the cor-
relation between t4 and tongue indices in Yin deficiency
syndrome was significantly reduced, while the correlation
between t5 and tongue indices was significantly increased.

3.5. Machine Learning Results. Based on neural network, ran-
dom forest, SVM, and logistic regression four machine learn-
ing methods, the modeling result of Qi deficiency syndrome
and Yin deficiency syndrome based on symptom, tongue
and pulse, and symptom and tongue and pulse is shown in
Table 6.

Table 3: Statistical analysis of pulse diagnosis data (mean (SD), median (P25, P75)).

Index Healthy controls (n = 184) Qi deficiency syndrome (n = 163) Yin deficiency syndrome (n = 174)
t1 (s) 0.13 (0.12-0.14) 0.14 (0.13-0.15)∗∗ 0.14 (0.13-0.14)∗∗

t4 (s) 0.34 (0.32-0.36) 0.37 (0.35-0.39)∗∗ 0.37 (0.34-0.39)∗∗#

t5 (s) 0.41 (0.39-0.42) 0.43 (0.41-0.46)∗∗ 0.42 (0.40-0.44)∗∗##

t (s) 0.80 (0.75-0.88) 0.86 (0.76-0.97)∗∗ 0.84 (0.72-0.94)

h1 (mv) 13.89 (11.53-16.41) 10.99 (7.62-15.42)∗∗ 11.56 (8.86-16.51)∗∗

h3 (mv) 8.48 (6.56-10.59) 6.64 (4.38-10.07)∗∗ 7.18 (4.85-10.12)∗∗

h4 (mv) 5.21 (4.18-6.32) 2.18 (1.37-3.24)∗∗ 2.53 (1.44-3.50)∗∗

h5 (mv) 0.50 (0.15-0.95) 0.23 (0.05-0.69)∗∗ 0.21 (0.05-0.60)∗∗

h3/h1 0.62 (0.52-0.70) 0.61 (0.53-0.71) 0.60 (0.49-0.73)

h1/t1 4.43 (3.49-5.35) 3.22 (2.26-4.57)∗∗ 3.45 (2.68-4.82)∗∗

h4/h1 0.38 (0.32-0.43) 0.21 (0.12-0.31)∗∗ 0.21 (0.14-0.28)∗∗

t1/t 0.16 (0.14-0.17) 0.16 (0.14-0.19) 0.17 (0.14-0.19)

t4/t5 0.83 (0.80-0.88) 0.86 (0.82-0.91)∗∗ 0.87 (0.82-0.91)∗∗

w1/t 0.20 (0.15-0.23) 0.21 (0.19-0.23)∗∗ 0.21 (0.19-0.23)∗∗

w2/t 0.12 (0.10-0.16) 0.15 (0.13-0.18)∗∗ 0.15 (0.13-0.18)∗∗

vs. healthy controls, ∗P < 0:05, vs. healthy controls, ∗∗P < 0:01. vs. Qi deficiency syndrome, #P < 0:05, vs. Qi deficiency syndrome, ##P < 0:01.
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Figure 5: Heat map of tongue and pulse correlation analysis of Qi deficiency syndrome.

Table 4: Correlation analysis of tongue data and pulse data of Qi deficiency syndrome.

Index perAll TC-CON TC-ASM TC-ENT TC-MEAN TB-S TC-S TB-a TC-a TB-Cr TC-Cr t4 t5
perAll 1.00

TC-CON 0.16∗ 1.00

TC-ASM -0.14 -0.99∗∗ 1.00

TC-ENT 0.16∗ 1.00∗∗ -0.99∗∗ 1.00

TC-MEAN 0.14 1.00∗∗ -1.00∗∗ 1.00∗∗ 1.00

TB-S -0.31∗∗ -0.32∗∗ 0.33∗∗ -0.33∗∗ -0.33∗∗ 1.00

TC-S -0.36∗∗ -0.32∗∗ 0.32∗∗ -0.32∗∗ -0.32∗∗ 0.60∗∗ 1.00

TB-a -0.36∗∗ -0.21∗∗ 0.21∗∗ -0.22∗∗ -0.21∗∗ 0.51∗∗ 0.59∗∗ 1.00

TC-a -0.40∗∗ -0.23∗∗ 0.22∗∗ -0.23∗∗ -0.23∗∗ 0.51∗∗ 0.80∗∗ 0.78∗∗ 1.00

TB-Cr -0.52∗∗ -0.15 0.14 -0.16∗ -0.15 0.41∗∗ 0.47∗∗ 0.82∗∗ 0.64∗∗ 1.00

TC-Cr -0.53∗∗ -0.03 -0.00 -0.02 -0.01 0.28∗∗ 0.50∗∗ 0.48∗∗ 0.71∗∗ 0.70∗∗ 1.00

t4 0.11 0.17∗ -0.18∗ 0.18∗ 0.18∗ -0.12 0.01 -0.06 -0.05 -0.08 -0.06 1.00

t5 0.11 0.12 -0.13 0.12 0.12 -0.07 -0.08 -0.10 -0.13 -0.16∗ -0.12 0.58∗∗ 1.00
∗P < 0:05, ∗∗P < 0:01.
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Figure 6: Heat map of tongue and pulse correlation analysis of Yin deficiency syndrome.

Table 5: Correlation analysis of tongue data and pulse data of Yin deficiency syndrome.

Index perAll TC-CON TC-ASM TC-ENT TC-MEAN TB-S TC-S TB-a TC-a TB-Cr TC-Cr t4 t5
perAll 1.00

TC-CON 0.27∗∗ 1.00

TC-ASM -0.34∗∗ -0.95∗∗ 1.00

TC-ENT 0.34∗∗ 0.96∗∗ -1.00∗∗ 1.00

TC-MEAN 0.27∗∗ 0.98∗∗ -0.97∗∗ 0.97∗∗ 1.00

TB-S -0.59∗∗ -0.40∗∗ 0.45∗∗ -0.45∗∗ -0.41∗∗ 1.00

TC-S -0.62∗∗ -0.52∗∗ 0.57∗∗ -0.58∗∗ -0.53∗∗ 0.75∗∗ 1.00

TB-a -0.64∗∗ -0.33∗∗ 0.38∗∗ -0.39∗∗ -0.33∗∗ 0.70∗∗ 0.73∗∗ 1.00

TC-a -0.62∗∗ -0.48∗∗ 0.50∗∗ -0.51∗∗ -0.46∗∗ 0.67∗∗ 0.83∗∗ 0.82∗∗ 1.00

TB-Cr -0.79∗∗ -0.27∗∗ 0.34∗ -0.34∗∗ -0.28∗∗ 0.64∗∗ 0.69∗∗ 0.89∗∗ 0.75∗∗ 1.00

TC-Cr -0.67∗∗ -0.180∗ 0.19∗ -0.20∗∗ -0.15 0.43∗∗ 0.56∗∗ 0.59∗∗ 0.74∗∗ 0.75∗∗ 1.00

t4 -0.03 0.10 -0.14 0.13 0.13 -0.10 -0.09 -0.10 -0.14 -0.08 -0.08 1.00

t5 0.15 0.18 -0.20∗∗ 0.20 0.19∗ -0.21∗∗ -0.27∗∗ -0.23∗∗ -0.33∗∗ -0.21∗∗ -0.23∗∗ 0.73∗∗ 1.00
∗∗P < 0:05, ∗∗P < 0:01.
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The ROC curves of the models based on symptom, ton-
gue and pulse, and symptom and tongue and pulse are shown
in Figures 7–9, respectively.

According to the above modeling results, the classifica-
tion efficiency of each model based on different datasets
had the following order: tongue and pulse< symptom<
symptom and tongue and pulse. Among them, the SVM
model had a better classification performance for symptom
datasets, and the area under the ROC curve was 0.9321.
The logistic regression model had a better classification per-
formance for tongue and pulse datasets, with an area under
the ROC curve of 0.9401. The neural network model had a
better classification performance for the symptom and ton-
gue and pulse datasets, with an area under the ROC curve
of 0.9401.

4. Discussion

Treatment based on syndrome differentiation is the basic
principle of TCM to recognize and treat diseases. It runs
through the whole process of prevention and rehabilitation
of medical care practices. Syndrome differentiation is used
to recognize the disease and determine the syndrome, and
treatment is to establish treatment methods and prescription
drugs based on the results of syndrome differentiation. Syn-
drome differentiation is the prerequisite and basis for treat-
ment. Accurate syndrome differentiation results in a good
therapeutic effect. Qi deficiency syndrome and Yin deficiency
syndrome are two common syndromes in TCM. According
to the basic theory of TCM syndrome differentiation, Qi defi-
ciency syndrome refers to the lack of vitality of the body and

Table 6: Performance of models for detecting Qi deficiency syndrome of NSCLC based on different datasets.

Datasets Model AUC Sensitivity Specificity F1 Precision Accuracy

Symptom

Neural network 0.9223 0.9063 0.8286 0.8657 0.8286 0.8657

SVM 0.9321 0.8750 0.8857 0.8750 0.8750 0.8806

Logistic regression 0.9000 0.8125 0.8286 0.8125 0.8125 0.8209

Random forest 0.9116 0.7813 0.8571 0.8065 0.8333 0.8209

Tongue & pulse

Neural network 0.7677 0.6316 0.6897 0.6761 0.7273 0.6567

SVM 0.7455 0.6842 0.6552 0.7027 0.7222 0.6716

Logistic regression 0.8022 0.6842 0.8276 0.7536 0.8387 0.7463

Random forest 0.7314 0.5263 0.8621 0.6452 0.8333 0.6716

Symptom & tongue & pulse

Neural network 0.9401 0.9310 0.8421 0.8710 0.8182 0.8806

SVM 0.9328 0.6552 0.9737 0.7755 0.9500 0.8358

Logistic regression 0.9301 0.7931 0.8684 0.8070 0.8214 0.8358

Random forest 0.9229 0.8966 0.8421 0.8525 0.8125 0.8657
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Figure 7: ROC curves of Qi deficiency syndrome model based on symptom.
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the decreased function of visceral organs. The mainmanifesta-
tions are fatigue, lack of energy, lazy speech, and weak pulse.
Yin deficiency syndrome refers to the lack of Yin fluid in
human body, its nourishing and nourishing functions are
reduced, or Yin does not control Yang, and Yang is too hyper-
active. The main manifestations are dry mouth and pharynx,
dysphoria in chestpalms-soles, tidal fever, and night sweating.
According to the principle of TCM syndrome differentiation
and treatment, the principle and treatment method of Qi defi-

ciency syndrome are to invigorate the spleen and replenish Qi,
and the corresponding prescription is Sijunzi decoction. The
principle and treatment method of Yin deficiency syndrome
are to nourish Yin and clear lung, and the corresponding pre-
scription is Shashen Maidong decoction.

4.1. Statistical Analysis of Tongue Data and Pulse Data of Qi
Deficiency Syndrome and Yin Deficiency Syndrome. TCM is a
promising and effective adjuvant therapy in the treatment of
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Figure 8: ROC curves of Qi deficiency syndrome model based on tongue and pulse.
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Figure 9: ROC curves of Qi deficiency syndrome model based on syndrome and tongue and pulse.
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lung cancer. Compared with chemotherapy and radiother-
apy, it has the advantages of availability, effectiveness, and
low toxicity [35], although its various mechanisms deserve
further study [36, 37]. In this study, the tongue parameters,
including TB-a, TC-a, TB-Cr, and TC-Cr of Qi deficiency
syndrome and Yin deficiency syndrome, represent the red
value of tongue body and tongue coating. Larger values of
tongue parameters reflect the redder or magenta tongue.
In Yin deficiency syndrome, TB-a, TC-a, TB-Cr, and TC-
Cr were all higher than those in Qi deficiency syndrome,
indicating that the tongue of Yin deficiency syndrome was
redder or magenta. S stands for saturation, and the higher
the value of S, the brighter the tongue color will be. TC-S
in Yin deficiency syndrome was higher than that in Qi defi-
ciency syndrome, indicating that the tongue color of Yin
deficiency syndrome was brighter. perAll is the ratio of ton-
gue coating area to total tongue area. perAll has a higher
diagnostic value for thick coating, and the higher the value,
the thicker the tongue coating. perAll in Yin deficiency syn-
drome was lower than that in Qi deficiency syndrome, indi-
cating that the tongue coating was thinner in Yin deficiency
syndrome. Among the four parameters of texture parame-
ters CON, ASM, ENT, and MEAN, the smaller the value
of CON, ENT, and MEAN, the larger the ASM, reflecting
that the more delicate the tongue texture or the more
greasy the tongue coating. In this study, TC-CON and
TC-ENT of Yin deficiency syndrome were significantly
lower than those of Qi deficiency syndrome, while TC-
ASM was higher than that of Qi deficiency syndrome, indi-
cating that the tongue coating of Yin deficiency syndrome
was greasier.

In the pulse parameters, t4 is the time value from the
starting point to the descending isthmus of the sphygmo-
gram, corresponding to the systolic period of left ventricle,
and t5 is the time value from the dicrotic notch to the end
point of the sphygmogram, corresponding to the diastolic
period of left ventricle. t4 and t5 of Yin deficiency syndrome
were smaller than those of Qi deficiency syndrome, indicat-
ing that the time of systole and diastole of Yin deficiency syn-
drome was shorter than those of Qi deficiency syndrome, and
the pulsation cycle t of Yin deficiency syndrome also showed
a decreasing trend, indicating that the pulse wave velocity of
Yin deficiency syndrome was slightly higher. In addition,
there was a phenomenon of elevation of Yin deficiency syn-
drome in dicrotic notch h4. Furthermore, indicrotic notch
h4 in Yin deficiency syndrome was elevated. In the Qi defi-
ciency syndrome, h3/h1, h1/t1, and t1 were prolonged, reflect-
ing that the pulse force of the Qi deficiency syndrome was
soft and weak, the amplitude of the main wave h1 was
reduced, and the area under the sphygmogram was smaller,
indicating that the pulse shape was thin and small. All in
all, the tongue of Qi deficiency syndrome was pale and the
pulse was weak, while the tongue body of Yin deficiency syn-
drome was more red or crimson, more brighter in tongue
color, thinner and greasy in tongue coating, and more fine
in pulse.

4.2. Modeling Analysis of Qi Deficiency Syndrome and Yin
Deficiency Syndrome Based on Data of Tongue and Pulse. In

recent years, with the rapid development of computer tech-
nology, different recognition algorithms and machine learn-
ing methods, such as logical regression [38], SVM [22, 39],
random forest [40], and neural network [15, 41], and other
data mining technologies have been widely used in medical
research. The quantitative diagnosis of diagnostic informa-
tion through various mathematical models has promoted
the development of TCM informatization. In this study,
symptom and tongue and pulse data were used to classify
syndromes. The results showed that the classification effi-
ciency of models based on different datasets was as follows:
tongue and pulse< symptom< symptom and tongue and
pulse, indicating that tongue and pulse data contributed to
the classification of syndrome to some extent. Therefore,
when faced with a complicated quantitative and qualitative,
subjective and objective, determine and fuzzy, and massive
TCM data combining linear and nonlinear, TCM syndrome
associated with complex multidimensional characteristics
and associated with multiple microindex, especially when
symptoms were not evident, to explore the relationship
between different syndromes and physical and chemical indi-
ces can effectively assist in syndrome differentiation.
Research also showed that it was very reasonable to combine
microindex with macrosymptoms. Using machine learning
or data mining methods to build TCM syndrome or disease
diagnosis model can make the process of syndrome differen-
tiation and treatment more objective, standardized, and
intelligent [42–44].

4.3. Limitations and Future Work. This research is based on
the real-world investigation, and the results basically con-
form to the syndrome distribution feature of NSCLC in
the clinic. However, there are also some limitations in the
study. First of all, due to the limitation of time and place,
the sample size of this study is not large enough. Secondly,
the basic data statistics of subjects are not comprehensive
enough, and there is a lack of statistics on height, weight,
body mass index (BMI), history of present illness, past
medical history, etc., which may affect the data results. Last
but not the least, this study mainly focused on the com-
mon NSCLC syndrome of Qi deficiency and Yin defi-
ciency, lacking more syndromes to explore. In the future,
a large-scale and multicenter epidemiological investigation
should be combined, the collection of four diagnostic infor-
mation and basic characteristics needs to be more stan-
dardized and complete, and further researches based on
more comprehensive syndrome differentiation results need
to be carried out.

5. Conclusions

In conclusion, objective tongue and pulse data of NSCLC are
useful for the classification of TCM syndrome, which can
improve the accuracy of TCM syndrome classification to a
certain extent. Tongue and pulse diagnosis parameters can
provide new ideas and methods for TCM syndrome differen-
tiation of Qi deficiency syndrome and Yin deficiency syn-
drome of NSCLC.
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Background. Patients can access medical services such as disease diagnosis online, medical treatment guidance, and medication
guidance that are provided by doctors from all over the country at home. Due to the complexity of scenarios applying medical
services online and the necessity of professionalism of knowledge, the traditional recommendation methods in the medical field
are confronting with problems such as low computational efficiency and poor effectiveness. At the same time, patients
consulting online come from all sides, and most of them suffer from nonacute or malignant diseases, and hence, there may be
offline medical treatment. Therefore, this paper proposes an online prediagnosis doctor recommendation model by integrating
ontology characteristics and disease text. Particularly, this recommendation model takes full consideration of geographical
location of patients. Objective. The recommendation model takes the real consultation data from online as the research object,
fully testifying its effectiveness. Specifically, this model would make recommendation to patients on department and doctors
based on patients’ information of symptoms, diagnosis, and geographical location, as well as doctor’s specialty and their
department. Methods. Utilizing crawler technique, five hospital departments were selected from the online medical service
platform. The names of the departments were in accordance with the standardized department names used in real hospitals
(e.g., endocrinology, dermatology, gynemetrics, pediatrics, and neurology). As a result, a dataset consisting of 20000
consultation questions by patients was built. Through the application of Python and MySQL algorithms, replacing semantic
dictionary retrieval or word frequency statistics, word vectors were utilized to measure similarity between patients’ prediagnosis
and doctors’ specialty, forming a recommendation framework on medical departments or doctors based on the above-obtained
sentence similarity measurement and providing recommendation advices on intentional departments and doctors. Results. In
the online medical field, compared with the traditional recommendation method, the model proposed in the paper is of higher
recommendation accuracy and feasibility in terms of department and doctor recommendation effectiveness. Conclusions. The
proposed online prediagnosis doctor recommendation model integrates ontology characteristics and disease text mining. The
model gives a relatively more accurate recommendation advice based on ontology characteristics such as patients’ description
texts and doctors’ specialties. Furthermore, the model also gives full consideration on patients’ location factors. As a result, the
proposed online prediagnosis doctor recommendation model would improve patients’ online consultation experience and offline
treatment convenience, enriching the value of online prediagnosis data.

1. Introduction

As the emphasis of medical care gradually shifts from disease
to patient, the role of patients’ participation in online health
improvement is becoming more prominent. The health ser-
vice in the world is not only different in terms of regions
but also varying in terms of online health services [1, 2]. Spe-

cifically, there exist phenomenon such as information asym-
metry between doctors and patients and unequal distribution
of medical resources geographically [3]. Therefore, patients
registering doctors online and intelligent department recom-
mendation have also become one of the important topics of
medical informatization. According to a report released in
2019 by the Big Data Research Institute, the scale of users
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in China’s medical and health market was about 800 million
by the end of 2018 [4]. With a large number of doctors and
patients interacting online, a large amount of real consulta-
tion data has been accumulated in the online health commu-
nity. Therefore, it is of important theoretical and practical
value to investigate how to make full use of online data to
build models to improve patients’ medical treatment experi-
ence in terms of increasing the accuracy of patients’ medical
choice and the effectiveness of department recommendation.

The existing literature has been conducting studies from
perspectives of department recommendation and doctor rec-
ommendation. The two methods of department recommen-
dation are separately based on expert system and similarity
calculation. As for department recommendation based on
the expert system, on one hand, through establishment of
medical knowledge base with the help from medical experts,
the diagnosis process of medical experts is simulated by
applying rule-based reasoning engine. As a result, patients’
diseases are predicted, so as to achieve the target department
recommendation for patients. Moreover, the expert-based
department recommendation is built upon fuzzy logic and
RBF neural network, effectively improving the recommenda-
tion accuracy [5, 6]. On the other hand, there exist many
problems due to the abundant number of reasoning rules,
such as low computational efficiency and high maintenance
cost of knowledge base. As for department recommendation
based on similarity calculation, the current literature uses
various methods to measure similarities, such as similarity
between patients’ symptoms and disease’ symptoms [7],
TF-IDF sentence-based similarity and TF-IDF algorithm that
is based on multiple words [8, 9], combination of focus shift-
ing backwards, and professional medical corpus [10]. This
similarity-based recommendation would, respectively, calcu-
late the possibility of having disease and descriptive words
that may correspond with certain symptoms, realizing the goal
of department recommendation to patients. Research of rec-
ommendation on doctor is mainly based on the content and
collaborative filtering recommendation algorithm, focusing
on user keywords, browsing history, evaluation, and other data
[11, 12]. The user collaborative filtering algorithm assumes
that one user and other user group who share similar interest
would have same product preference [13–15]. Among them,
user collaborative filtering algorithm integrating projects
mainly solves the problem of information overload through
filtering attribute collaboratively [16]. Moreover, the applica-
tion of customized relational network and tags solves the
problem of data sparsity in the matrix factorization recom-
mendation model [17, 18], and the collaborative filtering rec-
ommendation method integrates contextual perception,
project similarity, and user behavior, giving recommendation
results from perspectives of patients’ contexts, projects, and
user participation [19–21]. In addition, scholars also con-
ducted modeling research on doctor recommendation, disease
diagnosis, andmedical examination [22, 23] from the perspec-
tives of semantic characteristics of medical resources [24], user
information types [25], user ratings, and comment portraits
[26], as well as Bayesian algorithm [27].

The recommendation algorithms in the traditional med-
ical field mainly have the following three problems. First, in

terms of department recommendation, the algorithm based
on the expert system causes problems such as explosion of
knowledge rule reasoning and high maintenance cost of
knowledge base. Furthermore, the algorithm based on simi-
larity may not effectively recognize synonyms, possibly
decreasing recommendation accuracy. Second, in terms of
doctor recommendation, the user-based collaborative filter-
ing algorithm may cause problems that patients of similar
symptoms would not be diagnosed with the same disease,
due to complexity and diversity of diseases. What is more,
because of the nonnecessary relationship among patients’ eti-
ologies, the assumption of the project-based collaborative fil-
tering algorithm that users would choose doctors with the
same research field as their previous doctors may hardly be
met. Third, although relevant literatures have studied how
to reduce data sparsity [28–30], the collaborative filtering
recommendation algorithm still cannot completely avoid
the performance problems caused by data sparsity.

Based on the above theorization, it can be concluded that
the existing recommendation algorithms cannot fully meet
requirements with regard to recommendation in the context
of the Internet medical field. Patients can access medical ser-
vices provided by doctors in the online health community all
over the country online without going out, including disease
diagnosis, medical treatment guidance, and medication guid-
ance. Meanwhile, patients consulting online come from far
and near and may involve situations of offline medical treat-
ment, making it necessary to take into account the factor of
patients’ location. Therefore, this paper proposes an online
prediagnosis doctor recommendation model that integrates
ontology characteristics and disease text mining, improving
both the effectiveness of doctor recommendation within the
environment of online medical service and the convenience
of offline medical treatment for patients.

2. Research on the Doctor
Recommendation Model

The doctor recommendation model is mainly divided into
three steps. Step 1: data preprocessing. Perform word seg-
mentation and stop word removal with regard to patient’s
input of natural language. Step 2: hospital department rec-
ommendation. After screening patients’ query data, create
the most similar sentence set based on key parts of word vec-
tor or the similarity measurement for symptom descriptions,
so as to achieve department recommendation. Step 3: doctor
recommendation. Use SQL sentence query in the MYSQL
database to complete doctor recommendation (Figure 1).

3. Data Cleaning Process

There are mainly two aspects of data that are available online.
The first aspect of data is patients’ online consultation
regarding disease symptom. This source of information
mainly covers age, gender, symptom description, and other
data. The second aspect of data is doctors’ information
online, including doctors’ names, titles, hospitals, depart-
ments, and their specialties as shown in Table 1. All data is
in structured form, and information such as disease
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description, prediagnosis, and specialties are stored in text
form. Then, model will be built after word segmentation
and keyword extraction (Figure 2).

4. Data on Ontology Characteristics of Doctors
and Patients

The doctor-patient demographic data obtained from WeiYi
platform are mostly well-organized semistructured textual
data. The first step is to transform unstructured text data into

structured text data through named entity recognition and
information extraction. Organization names, people’s names,
and location names can be recognized by applying multiple
open source Chinese language processing tools [31], such as
fudanNLP developed by Fudan University [32], NLPIR word
segmentation system developed by Chinese Academy of Sci-
ences [33], and LTP Chinese natural language processing
platform of Harbin Institute of Technology [34]. In addition,
delete the missing value and duplicated information. And, for
the problem of different doctors sharing one same name, use
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fields such as “the hospital to which they belong” and “the
department to which they belong” to restrict.

5. Data on Patients’ Condition Description

Data on patients’ online condition description are presented
as specific evaluations expressed by patients in natural lan-
guage. The data in its initial form are fulfilled with problems
that the contents are nonstandardized, repetitive, short, and
single [35]. The authors marked the text content by part of
speech and synonyms and then use human tissue lexicon
and human anatomy lexicon to match the word segmenta-
tion results so as to extract disease symptoms and keywords
of human body parts. As shown in Table 1, the patient’s main
complaint was that “it was caused by pelvic effusion eight
years ago, there was no abortion history and no pregnancy.”
The common clinical symptoms that the patient did not
actually have appeared in the description make it difficult
to extract keywords. For example, “no abortion history “
was divided into “no” and “abortion history,” resulting in
the extraction of “ abortion history “ as the keyword; yet,
the patient did not have these symptoms. To deal with situa-
tions like the abovementioned, before word segmentation,
the authors would divide the description paragraph into
short sentences or phrases by punctuation marks, and the
stop words should be retained in word segmentation. Then,
while extracting keyword, the target words cannot be consid-

ered as the real target keywords if they contain negative mod-
ifiers such as none, unaccompanied, and no.

6. Data on Doctors’ Specialties

Data on doctors’ specialties are structured textual data and
are confronted with problems of synonymous naming and
missing data. An example of synonymous naming refers to
the problem that doctors in different hospitals have different
naming for their fields of expertise. Specifically, synonyms for
fields of expertise are specialties, being good at, specializing
in, being skilled in, being professional with, medical interest,
and research direction. All synonymous naming shall be inte-
grated into the same field. As for the problem of missing data,
utilize multiple data source data integration to complete
improvement or deletion.

7. Doctor Recommendation

7.1. Department Recommendation. For questions input by
patients, every keyword for each sentence can be obtained
after word segmentation and word stopping removal. Next,
the corresponding question set can be obtained by position-
ing question sentences that are associated with each keyword.
The authors divided the question set into sample dataset and
test dataset, both containing information of patients’ condi-
tion description text, online prediagnosis department recom-
mendation, etc. Then, use the word2vec library to train a

Data acquisition and storage

Data acquisition

Data storage

Data crawling and export
data from database

Database
of doctors’
ontology

Database
of patients
ontology

characteristics

Database
of doctors’
specialties

Database
of patients’
condition

Data processing
Data cleaning Data conversion

Data analysis

Patients’ data analysis Doctors’ data analysis

Department recommendation for pre-diagnosis

Doctor recommendation for pre-diagnosis

Figure 2: Data cleaning process.
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word vector model on the keywords of the sentences in the
sample data set, calculate the similarity between the ques-
tions input by the patient in the test data set and the word
vector model of the sample data set, and lastly select the most
similar questions to the sample data set in the test dataset.
Following the rule that higher similarity indicates the same
one department, after screening the similarity calculation
one by one, the department with the highest similarity would
be the final recommendation result.

8. Doctor Recommendation

The core significance of the development of online medical
and health services is to reshape the medical service process
and optimize the allocation of medical resources, so as to
meet the medical and health needs of individual consumers.

Due to its mobility, convenience, rapidness, personalization,
and interaction, the online medical services have become
the main channel for consumers to seek medical help online,
having been adopted and utilized by consumers. To some
extent, it alleviates the medical pressure and realizes the opti-
mal allocation of medical resources. The patients using
online medical service come from all sides, and the majority
of them have conventional and chronic diseases, making it
sometimes necessary for patients to confirm their diagnosis
offline. Therefore, doctor recommendation that takes into
account of patients’ location information is particularly
important to improve patients’ convenience of offline medi-
cal treatment and to attract more patients to use online med-
ical services. Based on the SQL statements query function in
the MYSQL database, matching keywords with doctors’ spe-
cialties, department, and region information, integrating

The code is as the follows:
with open(“test.txt”) as f:

document = f.read()
document_cut = jieba.cut(document)
result = “.join(document_cut)
result = result.encode(“utf-8”)
with open(“test2.txt”, “w”) as f2:

f2.write(result)
f.close()
f2.close()

Algorithm 1: This module preprocesses the sample dataset using the following code. The aim is to segment words, remove stop words, and
retain key parts or key symptoms with regard to patients’ condition description online.

The code is as the follows:
logging.basicConfig(format = “%(asctime)s: %(levelname)s: %(message)s”, level = logging.INFO)
sentences =word2vec.LineSentence(“test2.txt”)
model =word2vec.Word2Vec(sentences, hs =1,min_count =1,window=3,size =100)
model.save(u”fuke.model”)

Algorithm 2: This module used the word2VEC library to train the word vector model of dermatology on sample data such as “dermatology.
XLS.”

The code is as the follows:
#Note: Load the department’s word vector model
model_1 =word2vec.Word2Vec.load(“pifuke.model”)
for strZhengZhuang in symptom word set of a certain patient

try:
sim3 =model_1.most_similar(strZhengZhuang,topn =20)
if sim3.__len__()>0:

return 1
except:

return 0
#Note: Number of matching words/total number of symptom words for a patient =Matching probability
probability =Words/WordsCount

Algorithm 3: The module mainly had two goals to achieve. First, preprocess the test data, including word segmentation and stop word
removal, and retaining key parts or symptoms for the disease description. Second, compare the word vectors of test data and that of the
training results, and the departments with high similarity were recommended to patients.
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patients’ location information, and this paper recommends
local doctors that meet the requirements according to
patients’ region. For instance, a patient’s naming Zhang
San, living in Zhejiang province, with condition described
as thick endometrium, heavy menstrual flow, and stomach-
ache, would be recommended to see a Chief Physician from
Department of Gynecology at Zheyi hospital with family
name of Wang.

9. Sentence Similarity

9.1. Calculation of Similarity Based on Postcontent. After
obtaining the unique d-dimensional distribution vector rep-
resentation of the disease description text content, the simi-
larity and distance between each two text contents can be
obtained through similarity calculation. The author uses the
cosine formula to measure the similarity between two texts
and uses the Mahala Nobis distance to calculate the natural
language description of the two posts. Assume that two par-
agraph vectors of natural language description of text content
are expressed as PVa = ð× 11, × 12,⋯, × 1dÞ and PVb = ð×
21, × 22,⋯, × 2dÞ, where d represents two paragraph vectors.
The similarity and distance are defined as follows:

sim PVa, PVbð Þ = PVd•PVd
PVdk k2• PVdk k2

,

=
∑i=d

i−0x1ix2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i=d
i−0x

2
1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i=d
i−0x

2
2i

q

r
,

dis PVa, PVbð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PVa − PVbð ÞTS−1 PVa − PVbð Þ
q

,

ð1Þ

where S is the covariance matrix of eigenvectors PVa and
PVb.

9.2. TF-IDF Sentence Similarity Based on Co-Occurring
Words. This method believes that in two sentences, the more
the same vocabulary, the higher the similarity of the two sen-
tences [36]. Specifically,

SimScore S1, S2ð Þ = S1 ∩ S2j j
S1 ∪ S2j j 〠

wi∈S1∩S2
weight wið Þ,

weight wið Þ = Num wi, kð Þ
Nk

× log
Nt

Num wi, tð Þ + 1

� �

:

ð2Þ

Among them, |·| is the cardinality of the set, S1 and S2 are
the word sets of the two sentences to be compared, wi repre-
sents the symptom word i in the department question and
answer sentence, weight (wi) is the TF-IDF [37] weight,
Num (wi,k) represents the number of sentences in which
the symptom word wi appears in the question and answer
sentence set of department k, Nk represents the number of
all questions and answers in department k, N t represents
the total number of questions and answers in the knowledge
base, and Num (wi, t) represents the total number of ques-

tions and answers in the knowledge base. The number of sen-
tences in which the symptom word i appears in the question.
The TF-IDF sentence similarity calculation method based on
co-occurring words belongs to the surface structure analysis
method. It simply uses the surface information of the sen-
tence, that is, the word frequency, part of speech, and other
information of the words in the sentence to calculate the sen-
tence similarity, without considering synonyms. This results
in a decrease in the accuracy of sentence similarity.

9.3. Sentence Similarity Method Based onWord Vector.Word
vector sentence similarity is mainly used indepth learning
tool word2vec [38] to process words into vectors and obtain
the semantic similarity of sentence pairs to be compared by
calculating the similarity between vectors. The specific for-
mula is as follows:

CosSim
wi∈I,wj∈R

wi,wjð Þ = ∑n
i=1 xi, yið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1x

2
i

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1y

2
i

p
,

SimScore S1, S2ð Þ = ∑w∈IRβwMaxSimValue CosSim w, IRð Þð Þ
∑w∈IRβw

:

ð3Þ

Among them, IR = S1 ∪ S2, wi and wj are the two words
to be compared, which represent the words in sentence S1
and the words in sentence S2, respectively; n represents the
dimension of the word vector, and xi and yi represent the
word vector of wi, and the vector value of the ith dimension
of the word vector ofwj; MaxSimValue (CosSim (w,·)) repre-
sents the maximum value of the cosine similarity between the
word vector corresponding to word w and the word vector
corresponding to all vocabulary of another sentence;

Table 2: Summary of the characteristics of the collected data
records (N = 20000).

Characteristic Value, n (%)

Gender

Male 4540 (33.7)

Female 15460 (77.3)

Age (years)

25-30 1586 (7.9)

31-45 16800 (84.0)

46-50 1014 (5.1)

>55 600 (3.0)

Physician’s professional title

Resident physician 2670 (13.35)

Attending physician 4330 (21.65)

Associate chief physician 8040 (40.2)

Chief physician 4560 (22.8)

Other 400 (2.0)

Hospital’s ranking level

3A 19400 (97.0)

Other 600 (3.0)
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parameter βw is The TF-IDF weight value of word w in the
sentence. The greater the value of SimScore (S1, S2), the
greater the similarity between the two sentences and the
closer the semantics.

10. Experiment

10.1. The Data Set. To analyze the doctor recommendation
method proposed in this paper, an experimental study was
conducted. The data of five most common departments were
crawled from the well-known domestic medical online
platform-WeiYi. The names of the departments were in
accordance with the standardized department names used
in real hospitals (e.g., endocrinology, dermatology, gyne-
metrics, pediatrics, and neurology). As a result, a dataset with
name of T consisting of 20000 patients’ preclinical data
online were built. To conduct experimentally comparative
analysis of various algorithms, two widely used evaluation
indexes for the recommendation performance were adopted
in this paper, being accuracy rate (being P) and recall rate
(being R):

P = TP
TP + FP

R =
TP

TP + FN
ð4Þ

10.2. Parameter Setting. In the experiment, the dimension
parameter of the word vector was set as 100. With regard
to the calculated similarity results of keyword set that
would be used for department recommendation, take the
top 5 questions with the highest sentence similarity as
the recommended result data (topN = top 5), and the
threshold value of keyword set similarity was set as 0.8;
that is, when keyword and test set data were used for key-
word similarity calculation, the result must exceed 0.8 to
be included in the hospital department recommendation
set. If there were 2 or more recommended hospital depart-
ments, it would be considered as no recommendation,
being a special case.

11. Results and Analysis

Among the 20000 patients surveyed, 16170 were female
(77.3%). This may be because women are often required to
care of family health and other responsibilities in addition
to work; also, women tend to pay more attention to health
information than men. A total of 16800/20000patients
(84.0%) were 30 to 45years of age. Because of old men with
limited experiences in consulting physicians and obtaining
medicines and children that cannot master online counseling

skills, so, old men and children may not frequently consult
physicians on the internet or ask their family members to
perform online inquiries. In the 20000 records, 12600 of the
physicians (63.0%) are chief physicians or associate chief
physicians, while19400 hospitals (97.0%) were ranked 3A
(see Table 2).In order to verify the feasibility and effective-
ness of the proposed recommendation algorithms for depart-
ment and doctor, the experiment was conducted to compare
them with the content-based recommendation algorithm
and user-based collaborative filtering algorithm. First, ran-
domly extract 100 pieces of data from the dataset T based
on the hospital department name and then perform word
vector training. After the process of word segmentation and
stop word removal for data of different departments, the key-
word set was obtained, and the word vector model was
trained using this keyword set (see Table 3). The word vector
model consisted of patients’ real consultation questions, and
the other words excluding those questions within the group
were considered as noise words, representing meaningless
words unrelated to patient’s consultation. Three different
algorithms were all used to measure similarity for keywords
to give hospital department recommendation (see results of
three algorithms in Table 4).

Seen from Table 4, the proposed similarity recommenda-
tion method in this paper that incorporates ontology features
and disease text data mining was the best when applied to
consultation about selecting appropriate hospital department
since the accuracy rate and recall rate were much higher than
the other two algorithms. This is because the word vector
sentence similarity measurement strategy can better measure
the semantic similarity of sentences. For example, for sen-
tence pairs “I went to the hospital to see the dentist and went
home, dizzy, heavy head, runny nose” and “When I came
back from the dentist, I started to feel Dizziness with symp-
toms of heavy head and runny nose”. If a co-occurring
word-based measurement method based on co-occurrence
words is used, the similarity value is low, because the sen-
tence pair contains such things as (dizziness, dizziness),
(heavy head, sinking head), and (runny nose, runny nose).
Synonym pairs such as clear nose) make the content-based

Table 3: Word vector model and keyword examples.

Word vector-based model
Keyword set Department

Headache, nausea, right eye, swelling, stuffy nose, right ear, tinnitus, etc. Neurology

Keyword set

1. Migraines, nausea, loss of appetite
2. Headache, dizziness, protrusion of left eye, congestion of eyeball
3. Head distension, stuffiness, dizziness, palpitation, and restlessness

4. Palpitations and palpitations
10. Weak right hand, unable to clench a fist, palpitation, unable to breathes

Table 4: Comparison of accuracy and recall rate.

Algorithm method Accuracy rate (%) Recall rate (%)

Word vector-based 74 78

Content-based 63 67

Co-occurring word-based 54 56
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method relatively good, and the word vector method has the
best effect, indicating that it can more accurately capture the
underlying semantics of the sentence. On one hand, this is
because the method in this paper can measure the similarity
of keywords better. For instance, keywords of “headache, pal-
pitation, insomnia” and keywords of “head distension and
restlessness”were considered as similar. The results were bet-
ter than the sentence similarity measurement based on collo-
cates. On the other hand, the proposed method in this paper
took fully consideration of factors such as location informa-
tion of doctors and patients, as well as doctors’ expertise field,
which would not be the case for the content-based recom-
mendation method that only takes the patient’s disease infor-
mation into account.

Seen from Figures 3 and 4, the recommendation perfor-
mance of the word vector method was varying for different
hospital departments. The recommendation accuracy of
pediatric department was below 0.5, and that of neurology,
endocrinology, gynecology, and dermatology departments

were all above 0.5, among which the recommendation accu-
racy of gynecology was the most improved. With regard to
the four departments with relatively higher recommendation
accuracy, including neurology, obstetrics, gynecology, and
dermatology, what they had in common was that the charac-
teristics of the consultation questions were very typical and
obvious. For example, high blood sugar, sudden weight loss,
and thirst are typical for endocrinology; red rash, circular
rash, redness, swelling, and itching are typical for dermatol-
ogy; pregnancy and irregular menstruation are typical for
gynecology. However, the situation is different for pediatric
department in that if information indicating age such as
baby, child, and 6 months old is not included in the consul-
tation, it may lead to the systematic recommendation to
other departments, reducing the accuracy accordingly.

Finally,The SQL statement query function in the MYSQL
database used to integrate the patient’s regional factors.
According to the patient’s region, we use the department
and regional keyword matching and recommend the doctors
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in the hospital to patient in the region that meet the needs,
such as “Zhang San, from Zhejiang, the condition is
described as uterus Thick intima, heavy menstrual flow,
and stomachache,” and the recommended doctor is “Zhe-
jiang First Hospital-Gynecology-Dr. Wang (Chief Physi-
cian).” The process is shown in Figure 5.

12. Conclusion

Traditional manual medical guidance is increasingly unable to
meet the people’s medical needs, registration is difficult, and
the problem of not finding a clinic has become increasingly
prominent. Aiming at the shortcomings of traditional medical
department recommendation research methods and factors
such as the necessity for professional medical diagnosis exper-
tise and information asymmetry between doctors and patients
makes it impossible for patients to identify the appropriate
clinic room or doctors. Once mistakes are made, online con-
sultation time would be wasted, increasing the cost of hospitals
and patients when the patient goes offline instead for medical
treatment. In this paper, the proposed online prediagnosis
doctor recommendation model integrates ontology character-
istics and disease text mining. The experimental process uses
real data on the Internet medical comprehensive website and
is similar to the sentence based on content based, and based
on collocate based is compared; the experiment verifies the
reliability and effectiveness of the method in this paper. This
provides great convenience for patients to seek medical treat-
ment and at the same time reduces medical costs. It gives a rel-
atively more accurate recommendation advice based on
ontology characteristics such as patients’ description texts
and doctors’ specialties. As a result, the proposed online pre-
diagnosis doctor recommendation model improves patients’
online consultation experience and offline treatment conve-
nience, enriching the value of online prediagnosis data. In
addition, the primary real data from the online medical con-
sultation platform were utilized to verify the reliability and
effectiveness of the proposed method.

13. Limitations

It is not without limitation in this paper. First of all, this study
was only carried out based on data from one online medical
community, rendering its generalizability a question. Future
study may consider collecting data from multiple online
medical community platforms to verify the recommendation
effect of the proposed algorithm. Second, considering that
this study is solely focused on the proposed recommendation
model for Chinese patients, similar studies shall be carried
out in Western background in the future. Third, because of
the complexity of the medical domain knowledge, follow-
up researches shall not only incorporate techniques such as
semantic analysis and sentiment analysis to expand the sam-
ple into general practice data but also consider introducing
users’ other behavioral information to introduce the user
information behavior factor optimize the target object, for
intelligent department recommendation tasks, in addition
to controlling data quality and deep learning algorithms such
as LSTM shall be applied to improve model accuracy in the
future. The intelligent department recommendation task
can also be abstracted as a multilabel classification task for
texts. Accordingly, multiple department categories can be
recommended for patients’ questions covering multiple
departments, etc. to further improve the accuracy of the pro-
posed recommendation model, expecting to apply it to more
online medical consultation platforms.

Data Availability

The data were collected with help from the administrator of
the WeiYi platform. Due to third-party rights, patient privacy,
and commercial confidentiality, data is not open source.

Ethical Approval

The data in this paper is divided into two parts. One part is
the information crawled from the platform, such as patient

Doctors database Recommended
department Theme extraction

Geographical
location

Patient
problem

Doctor1 Doctor2 … DoctorN

Matching
calculation

Recommend a doctor

Figure 5: Doctor recommendation framework.

10 BioMed Research International



comments and doctor profiles. This kind of information is
open to the public and everyone can use computer technol-
ogy to obtain it on the platform. The other part is the
patient’s age, gender, geographical location, and other infor-
mation provided by the microdoctor. The WEI-Yi platform
is one of the hundreds of online medical platforms in China,
with tens of thousands of registered hospitals, registered doc-
tors, and hundreds of thousands of patients using the plat-
form. The platform itself has a sound risk control system,
and we have also signed a confidentiality agreement with
the platform to define the scope of data use.
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Objectives. To evaluate the value of the whole volume apparent diffusion coefficient (ADC) histogram in distinguishing between
benign and malignant breast lesions and differentiating different molecular subtypes of breast cancers and to assess the
correlation between ADC histogram parameters and Ki-67 expression in breast cancers. Methods. The institutional review board
approved this retrospective study. Between September 2016 and February 2019, 189 patients with 84 benign lesions and 105
breast cancers underwent magnetic resonance imaging (MRI). Volumetric ADC histograms were created by placing regions of
interest (ROIs) on the whole lesion. The relationships between the ADC parameters and Ki-67 were analysed using Spearman’s
correlation analysis. Results. Of the 189 breast lesions included, there were significant differences in patient age (P < 0:001) and
lesion size (P = 0:006) between the benign and malignant lesions. The results also demonstrated significant differences in all
ADC histogram parameters between benign and malignant lesions (all P < 0:001). The median and mean ADC histogram
parameters performed better than the other ADC histogram parameters (AUCs were 0.943 and 0.930, respectively). The receiver
operating characteristic (ROC) analysis revealed that the 10th percentile ADC value and entropy could determine the human
epidermal growth factor receptor 2 (HER-2) status (both P = 0:001) and estrogen receptor (ER)/progesterone receptor (PR)
status (P = 0:020 and P = 0:041, respectively). Among all breast cancer lesions, 35 tumours in the low-proliferation group
(Ki − 67 < 14%) and 70 tumours in the high-proliferation group (Ki − 67 ≥ 14) were analysed with ROC curves and correlation
analyses. The ROC analysis revealed that entropy and skewness could determine the Ki-67 status (P = 0:007 and P < 0:001,
respectively), and there were weak correlations between ADC entropy (r = 0:383) and skewness (r = 0:209) and the Ki-67 index.
Conclusion. The volumetric ADC histogram could serve as an imaging marker to determine breast lesion characteristics and
may be a supplemental method in predicting tumour proliferation in breast cancer.

1. Introduction

Breast cancer is a heterogeneous disease, and the different
subtypes can be defined by the immunohistochemical

(IHC) approach based on estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor
receptor 2 (HER-2) and Ki-67 expression levels [1–3]. The
accurate preoperative diagnosis of breast lesions and further
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classification of breast cancer are very important for the
selection of an appropriate treatment strategy and prognostic
evaluation [4].

The value of diffusion-weighted imaging (DWI) in breast
cancer detection and differentiation has already been investi-
gated in a number of previous reports [4–6]. However, the
procedure for ADC measurements in breast lesions has not
been standardized, and size and positioning of the region of
interest (ROI) affect both the ADC levels and reproducibility
of the measurements [7]. The ADCmeasurements in the pre-
vious study were mostly based on traditional 2D regions of
interest (ROIs) manually drawn from a single representative
slice of the breast lesion, which might limit these ADC mea-
surements in their ability to reflect whole tumour character-
istics [4, 8–11]. Assessments with whole volume histogram
analyses of the ADC might provide more reliable results to
reflect the biological characteristics of the heterogeneous
breast lesions [3, 8–12].

To the best of our knowledge, the Ki-67 index is consid-
ered to represent tumour proliferation status, and a high Ki-
67 is associated with an adverse clinical outcome [13]. Ki-67
is helpful for identifying women with early and advanced
stages of the disease [14–17], and the change in Ki-67 levels
through neoadjuvant therapy has been used as a marker of
treatment response recently [13]. Therefore, it makes sense
to find a noninvasive imaging biomarker to predict the Ki-
67 index.

For all imaging biomarkers, DWI maps and ADC values
correlated with tumour cell density, and a low ADC value
indicated high cell density or less extracellular space in the
histologic analysis. Therefore, the possibility of applying
ADC values to predict the Ki-67 index as a prognostic factor
has received close attention. In addition, the whole volume
ADC histogram could supply more information and predict
Ki-67 more accurately than a single ADC value. Some studies
analysed the associations between the ADC value and the
expression of Ki-67 in breast cancer [7, 18, 19] with different
ROI placements; however, data about the relationships
between the Ki-67 index and ADC value were inconsistent.
Mori et al. reported that there was a moderately significant
correlation between the whole tumour ADC histogram
(ADC-mean) and Ki-67 [13]. However, Surov et al. found
only a weak negative correlation between these two parame-
ters [18]. Some studies found that there were no statistically
significant correlations between the ADC value and Ki-67
[7, 19]. Overall, the possibility of using ADC as an imaging
marker for proliferation activity in breast cancer is uncertain
in clinical practice.

The purpose of the present study was to certify the value
of whole volume ADC histograms in differentiating between
benign and malignant breast lesions and molecular subtypes
of breast cancer and to test the correlation between the ADC
histogram parameters and expression of Ki-67 in breast
cancer.

2. Methods and Materials

2.1. Patients. The retrospective, single-centre study was
approved by our institutional review board. Between Septem-

ber 2016 and February 2019, 259 patients with suspicious
findings on mammography or ultrasound underwent breast
MRI at our institution. A total of 189 patients who fulfilled
the following inclusion and exclusion criteria were retrospec-
tively evaluated. The inclusion criteria were as follows: (1)
patients with pathologically diagnosed breast lesions after
surgery or biopsy; (2) all patients who underwent standard
breast magnetic resonance imaging, including axial T1-
weighted images, fat-suppressed T2-weighted images, axial
fat-saturated T1-weighted images pre- and postenhance-
ment, and DWI sequences; and (3) all patients who had com-
plete relevant clinical data; if the patients had breast cancer,
immunohistochemistry data and Ki-67 data were needed.
The exclusion criteria were as follows: (1) breast-related clin-
ical treatment before MRI and (2) poor image quality due to
patient motion, eddy current-induced distortions, or inade-
quate fat suppression. The patient selection process is dem-
onstrated in Figure 1.

2.2. MR Examination Protocol. A total of 189 patients under-
went breast MR imaging examinations using a 1.5T system
(uMR 560 1.5T scanner (United Imaging, Shanghai, China))
with the use of a dedicated four-channel SENSE breast coil.
The patients were placed in the prone position with the
breasts immobilized. The MRI acquisition protocols were
standardized as follows. First, transverse T1-weighted and
fat suppressed T2-weighted images were obtained. Second,
transverse DWI was performed using a single-shot spin-
echo echo-planar imaging sequence with the following
parameters: repetition time/echo time (TR/TE), 3800/78
msec; field of view, 350 × 200mm2; matrix, 156 × 156; slice
thickness, 4mm; 27 slices with 0.8mm gap; voxel size, 2:0
× 2:0 × 4:0mm3; b value, 50 and 800 sec/mm2; number of
averages, 1; and acquisition time, 103 seconds. Third, the
gadolinium-based agent Gd-DTPA (gadopentetate dimeglu-
mine, Magnevist; Bayer Healthcare, Berlin, Germany) was
intravenously injected at a dose of 0.2ml/kg of body weight
at a rate of 1.5ml/s, followed by a 20ml saline flush per-
formed with a high-pressure injector. Axial 3D fat-
saturated T1WI were obtained immediately before contrast
administration and at six consecutive time points following
the administration of the Gd-DTPA contrast agent, with
the following parameters: TR/TE, 5.1/2.1msec; flip angle,
10; field of view, 320 × 320mm2; matrix, 400 × 70; and slice
thickness, 2.4mm. ADC maps were generated with a mono-
exponential fit for the diffusion data with b values of 50 and
800 sec/mm2 using the following formula: ADC = ½lnS0 −
lnSðbÞ�/b (where S0 and S(b) represent the DWI signal inten-
sity at b = 50 and 800 sec/mm2, respectively [20, 21]). EPI
(fat-suppressed single-shot spin-echo echo-planar imaging)
was used for fat suppression.

2.3. Imaging Analysis. All DWI scans were retrospectively
reviewed by radiologist G.Y. (with 12 years of experience
in breast MRI); if the result is questionable or uncertain,
the case was discussed with a second senior radiologist
to determine by consensus. The radiologist was blinded
to the histopathological results. Axial T2-weighted MRI
images, dynamic contrast-enhanced images, DWI scans,
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and ADC maps were transmitted from the workstation to
a personal computer for the histogram analysis. The refer-
ence for tumour detection was the dynamic contrast-
enhanced images and axial T2-weighted images; the largest
lesion was chosen for analysis in cases of multifocal or
multicentric cancer.

Whole volume ROI placement approaches were
applied by each observer (ROI-w): multiple large 2D ROIs
were manually drawn on each slice containing the whole
lesion of interest and were then combined to create a 3D
ROI using the ITK-SNAP tool (http://www.itksnap.org/
pmwiki/pmwiki.php). ITK-SNAP is a software application
used to segment structures in 3D medical images, and it
is free, open-source, and multiplatform. The ROI-w,
including any cystic or necrotic portions and haemorrha-
gic components, was evaluated to assess the heterogeneity
of the tumour. The analysis was performed with python

software. The ROI containing the whole tumour generated
an entire tumour volume reconstruction and displayed the
calculated results in the form of a histogram with the Matplo-
tlib package in python. Various ADC histogram parameters
were calculated: 10th percentile, mean, 50th percentile
(median), 90th percentile, skewness (a measure of asymmetry
of the histogram about its mean), kurtosis (a measure of the
peakedness of the histogram), and entropy (measure of the
variation in the histogram distribution). We followed the
methods of Tang et al. [12].

2.4. Histopathological Analysis. All patients underwent mas-
tectomy and lumpectomy, and histopathologic evaluations
were performed on the resected specimens. All immunohis-
tochemical materials were reassessed in the breast cancer
cases, and the findings were confirmed by a dedicated
breast pathologist (W.W., with 13 years of experience).

Table 1: Summary of clinical and pathological features of study subjects and tumour characteristics.

Benign (n = 84) Malignant (n = 105) Statistical value P value

Age (years) 46:97 ± 12:83 55:37 ± 10:61 4.927 <0.001
Position -0.032 0.974

Left 43 (51.2%) 54 (51.4%)

Right 41 (48.8%) 51 (48.6%)

Menstrual status -0.676 0.499

Premenopausal 28 (33.3%) 40 (38.1%)

Postmenopausal 56 (66.7%) 65 (61.9%)

Lesion size -2.732 0.006

≤20 64 (76.2%) 40 (38.1%)

>20 20 (23.8%) 65 (61.9%)

Lesion type -1.371 0.170

Mass 82 (97.6%) 98 (93.3%)

Nonmass 2 (2.4%) 7 (6.7%)

Patients who did breast DWI examination at 1.5 T 
(n = 259)

December 2016 to February 2019 

Treatment before MR examination (n = 29)

No immunohistochemistry data for breast 
cancer (n = 22)

Pathology confirmed breast lesions (n = 189)

Benign lesions (n = 84) Breast cancer (n = 105)

No relevant clinical data (n = 15)

Inadequate image quality (n = 4)

Fibroadenoma (n = 45)
Fibrous adenosis (n = 15)

Fibrocystic change (n = 12)
Fibrocystic change with adenosis (n = 5)

Intraductal papilloma (n = 4)
Inflammatory (n = 3)

Invasive ductal carcinoma, IDC (n = 92)
Intraductal Papillary Carcinoma (n = 4)

Intraductal Carcinoma in Situ, DCIS (n = 4)
IDC with DCIS (n = 5)

Figure 1: Flowchart of the patient selection process used in this study.
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The evaluated pathological data included ER, PR, and
HER-2 expression and the Ki-67 index. All cases were
divided into luminal (luminal A and luminal B) and nonlum-
inal subtypes (HER-2 overexpressed and triple-negative
breast cancer).

2.5. Statistical Analysis. Statistical analysis was performed
using SPSS 21.0 (IBM Corp., Armonk, NY, USA), MedCalc
8 (MedCalc Software, Ostend, Belgium). Levene’s test was
used to determine whether the continuous variables of the
histogram parameters were normally distributed. Continu-

ous variables were compared with Student’s t-test or
Mann–Whitney U test if the variables were not normally dis-
tributed. Categorical variables were compared using Pear-
son’s chi-squared test or Fisher’s exact test. ROC analysis
was performed to compare the diagnostic performance of
each parameter in distinguishing between benign and malig-
nant breast lesions and different subtypes of breast cancer.
Corresponding areas under the ROC curve (AUCs), and
the 95% confidence intervals (95% CIs), cut-off value, sensi-
tivity, and specificity are listed. A P value ≤ 0.05 was consid-
ered statistically significant.
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Figure 2: Receiver operating characteristic curve (ROC) for differentiation of benign versus malignant lesions using whole volumetric ADC
histogram.

Table 2: Comparison of different parameters of whole volumetric ADC histogram ROC curves in differentiation of benign and malignant
breast lesions.

Parameter Benign Malignant AUC 95% CI Sensitivity Specificity Cut-off P value

10% 1.259 0.807 0.922 0.874~0.956 91.4 88.1 1.022 <0.001
50% 1.591 1.077 0.943 0.900~0.972 86.7 90.5 1.288 <0.001
90% 1.904 1.457 0.843 0.783~0.891 68.6 84.5 1.615 <0.001
Mean 1.585 1.106 0.930 0.884~0.962 87.6 85.7 1.331 <0.001
Skewness -0.165 0.601 0.808 0.744~0.861 78.1 71.4 0.160 <0.001
Kurtosis 0.785 1.659 0.705 0.635~0.769 77.1 65.5 0.540 <0.001
Entropy 5.691 6.724 0.768 0.701~0.826 80.0 71.4 5.740 <0.001
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3. Results

3.1. Patient Characteristics. Of the 189 breast lesions
included, 84 (44.4%) were diagnosed as benign and 105
(55.6%) were malignant. The benign and malignant lesion
characteristics are shown in Table 1. There was a significant
difference in patient age (P < 0:001) and lesion size (P =
0:006), but there were no significant differences in lesion
position (P = 0:974), lesion type (P = 0:170), and menopausal
status (P = 0:499) between the benign and malignant breast
lesions.

3.2. Performance Efficiency of the Whole Volume ADC
Histogram in Differentiating between Benign and Malignant
Breast Lesions. The results demonstrated significant differ-
ences in all ADC histogram parameters (including mean,
10th percentile, 50th percentile, 90th percentile, skewness,
kurtosis, and entropy) between the benign and malignant
lesions (all P < 0:001, Table 2). The median and mean ADC
histogram parameters performed better than the other
ADC parameters (AUC were 0.943 and 0.930, respectively),
as shown in Figure 2.

3.3. Performance Efficiency of the Whole Volume ADC
Histogram in Differentiating between Different Molecular
Subtypes of Breast Cancer. The receiver operating character-
istic analysis revealed that the 10th percentile whole volume
ADC volume and entropy could determine the Her-2 status
(P = 0:001 and P = 0:001, respectively) and ER/PR status
(P = 0:020 and P = 0:041, respectively) (Table 3).

3.4. Correlation between the ADC Histogram Parameters and
Ki-67 Index. For the 105 breast cancer lesions, pathologic
evaluation of the Ki-67 ranged from 1 to 86 (median, 45);
35 lesions had a Ki-67 of less than 14 and were categorized
as the low-proliferation group (Figure 3), and 70 had a Ki-
67 of 14 or greater and were categorized as the high-
proliferation group (Figure 4). Receiver operating character-
istic analysis revealed that the whole volume ADC entropy
and skewness could reflect the Ki-67 status (P = 0:007 and
P < 0:001, respectively) (Table 4).

Spearman’s rank correlation maps showed weak correla-
tions between ADC entropy (r = 0:383) and skewness
(r = 0:209) and Ki-67 index (Figure 5), and the 10th, 50th,
and 90th percentages had no correlation with Ki-67.

4. Discussion

We examined whether the ADC histogram analysis of the
whole lesion was reliable and helpful in determining the
breast lesion characteristics and whether the ADC histogram
parameters were correlated with the Ki-67 index in breast
cancer. In this work, the whole volume ADC histogram was
used for three purposes: (1) to discriminate between benign
and malignant lesions, (2) to assess the molecular subtypes
of cancers, and (3) to correlate the ADC parameters with
the Ki-67 expression in breast cancer.

The results indicated that the whole lesion ADC histo-
gram exhibited a higher diagnostic performance in distin-
guishing between benign and malignant breast lesions than
between different subtypes of breast cancer, and the ADC
histogram showed a relatively higher diagnostic accuracy,

Table 3: Comparison of different parameters of whole volumetric ADC histogram ROC curves in differentiation of subtypes of breast cancer.

(a)

Her-2 status

Parameter
Her-2(-)
(n = 75)

Her-2(+)
(n = 30) AUC 95% CI Sensitivity (%) Specificity (%) Cut-off P value

ADC-10% 0.779 0.872 0.679 0.581~0.767 80.00 49.33 0.771 0.001

ADC-50% 1.093 1.142 0.585 0.485~0.681 46.67 73.33 1.153 0.165

ADC-90% 1.532 1.571 0.590 0.490~0.685 53.33 70.67 1.587 0.135

Skewness 0.554 0.584 0.505 0.406~0.604 16.67 93.33 1.310 0.934

Kurtosis 1.347 1.791 0.570 0.470~0.667 40.00 78.67 2.170 0.277

Entropy 6.672 7.516 0.680 0.582~0.768 90.00 42.67 6.140 0.001

(b)

ER/PR status

Parameter
Luminal
(n = 79) Nonluminal (n = 26) AUC 95% CI Sensitivity (%) Specificity (%) Cut-off P value

ADC-10% 0.785 0.869 0.642 0.543~0.734 100 24.05 0.665 0.020

ADC-50% 1.090 1.159 0.595 0.495~0.689 42.31 78.48 1.202 0.163

ADC-90% 1.521 1.610 0.574 0.530~0.722 42.30 70.89 1.555 0.258

Skewness 0.539 0.636 0.541 0.441~0.639 19.23 92.41 1.260 0.538

Kurtosis 1.412 1.663 0.532 0.432~0.630 26.92 87.34 3.130 0.643

Entropy 6.738 7.445 0.626 0.526~0.718 92.31 39.24 6.090 0.041
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such as the 10th percentile ADC value and ADC entropy. In
addition, the results showed weak correlations among ADC
entropy, skewness, and Ki-67. These results suggest the
potential clinical advantage of ADC histograms as imaging
markers in diagnosing breast lesions and that ADC histo-
grams may be a supplement for predicting tumour prolifera-
tion in breast cancer.

Initially, there were statistically significant differences in
the patient age and lesion size between benign and malignant
lesions because in our study, most patients were young and
had benign lesions, and the masses were relatively small
(≤20mm), which is associated with the sample capacity.
Moreover, the value of ADC was emphasized, especially in
the histogram-based assessment, which has been used to
improve the performance of ADC values in a quantitative
manner. Our study showed that the mean, 10th percentile,
50th percentile, and 90th percentile ADC values and skew-
ness, kurtosis, and entropy derived from the whole lesion
ADC histogram were able to differentiate between benign
and malignant lesions with statistical significance. In malig-
nant lesions, the mean, mode, and percentile ADC values
tended to be lower, while the skewness, kurtosis, and entropy
values were higher than in benign lesions [10]. The current
results were consistent with several previous studies, in
which the usefulness of ADC values for providing a differen-
tial diagnosis between benign and malignant lesions has
been reported, either with 1.5T or 3.0T MRI [2]. Therefore,

the first aim of our study was to distinguish between
benign and malignant breast lesions; then, we paid more
attention to differentiating between the molecular subtypes
of breast cancer.

In our study, among the whole lesion ADC histograms,
the parameters with best discriminative power to differenti-
ate between different molecular subtypes of breast cancer
based on ER/PR and HER-2 status were the 10th percentile
ADC value and entropy. It is well known that ADC is
inversely correlated with tissue cellularity. We assume that
a low percentile ADC value based on a whole lesion histo-
gram analysis may accurately define invasive and high cellu-
lar density [8]. The region showing the 10th percentile ADC
value may reflect the area with the highest cellularity within
the tumour, which is highly representative of tumour grade
and aggressiveness.

Entropy is a texture-based statistical measure of the vari-
ation in the histogram distribution of a given metric and rep-
resents the predictability of the intensity of the metric within
the tissue. Malignant pathologies tend to affect a tissue het-
erogeneously and are expected to result in less predictable
intensity characteristics within the tissue and thus higher
entropy than benign pathologies [9]. In our study, the
entropy of Her-2 overexpression and nonluminal breast can-
cer were higher than those of Her-2-negative and luminal
breast cancer, which means that the former had more hetero-
geneous features.
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Figure 3: A 64-year-old woman with left breast invasive carcinoma (triple negative breast cancer). T2-weighted imaging (a) shows an
irregular left breast mass, 23mm× 12mm, with heterogeneous signal. Fat-suppressed contrast-enhanced T1-weighted imaging (b) shows a
significant enhancement mass. Diffusion weighted imaging (c) shows high signal mass. (d, e) show the measurement process of whole
lesion region of interest (ROI) measurement: manually drawn large 2D-ROIs on each slice (d), then combined multiple 2D-ROI slices to
create a 3D-ROI (e). (f) is the whole lesion ADC histogram: ADCmean: 1.267; ADC-10%: 0.758; ADC-50%: 1.212; ADC-90%: 1.917 (unit:
10-3mm2/s); skewness: 1.1; kurtosis: 3.59; entropy: 6.02. (g) HE staining shows left breast invasive carcinoma (HE staining: ×100).
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Ki-67 has been used as a prognostic biomarker for cell
proliferation in breast cancer. However, due to the invasive
nature of the examination, it could be meaningful in clinical
practice to predict the expression of Ki-67 with some nonin-
vasive imaging parameters. The Ki-67 level is evaluated
immunohistochemically in the most proliferative area of
the tumour and is expected to correlate best with the mini-
mum ADC value and thus is associated with smaller ADC
values [13]. In our study, however, none of the 10th to 90th
percentile ADC values showed correlations with the Ki-67
index; only skewness and entropy showed a weak correlation
with the Ki-67 index. We know that there were different
results regarding the correlation between the ADC value
and the Ki-67 index. These differences can be explained by
several reasons: (1) Mori et al. showed that the 25th, 50th,
and 75th percentile and mean values showed similar negative

correlations with Ki-67 in invasive breast cancer. We pre-
sume that the cause might be the differences in patient
cohorts. Only luminal breast cancer was studied by Mori
et al., which, compared to nonluminal breast cancer, has less
heterogeneous histologic components, with little or no
necrotic or degenerative components [13]. In our study, 79
luminal and 26 nonluminal breast cancers were studied,
and the heterogeneity of the latter was greater than that of
the former. (2) Surov et al. suggested that the ADC value
could not be used as a surrogate marker for proliferation
activity in breast cancer [18]. However, the threshold of the
Ki-67 value was 25% to discriminate between tumours with
low Ki-67 expression (<25%) and those with high Ki-67
expression (≥25%). In addition, the traditional manual ROI
measurement was assessed. However, this measurement
could not reflect the heterogeneity of the whole tumour. In
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Figure 4: A 62-year-old woman with left breast invasive carcinoma (luminal A). T2-weighted imaging (a) shows a round right breast mass,
18mm × 12mm, with heterogeneous signals. Fat-suppressed contrast-enhanced T1-weighted imaging (b) shows a significant heterogeneous
enhancement mass. Diffusion weighted imaging (c) shows high signal mass. (d, e) show the measurement process of whole lesion region of
interest (ROI) measurement: manually drawn large 2D-ROIs on each slice (d), then combined multiple 2D-ROI slices to create a 3D-ROI (e).
(f) is the whole tumour ADC histogram: ADCmean: 0.947; ADC-10%: 0.727; ADC-50%: 0.896; ADC-90%: 1.263 (unit: 10

-3mm2/s); skewness:
1.28; kurtosis: 2.61; entropy: 5.89. (g) HE staining shows left breast invasive carcinoma (HE staining: ×100).

Table 4: Comparison of different parameters of whole volumetric ADC histogram ROC curves in differentiation of low or high Ki-67 of
breast cancer.

Ki-67 status
Parameter <14% (n = 35) ≥14% (n = 70) AUC 95% CI Sensitivity (%) Specificity (%) Cut-off P value

ADC-10% 0.809 0.803 0.509 0.409~0.608 88.60 28.60 0.643 0.889

ADC-50% 1.114 1.103 0.532 0.433~0.630 44.29 74.29 1.029 0.591

ADC-90% 1.496 1.471 0.599 0.499~0.693 71.43 45.71 1.422 0.089

Skewness 0.397 0.646 0.647 0.547~0.737 70.00 60.00 0.390 0.007

Kurtosis 1.183 1.620 0.573 0.473~0.669 40.00 80.00 1.730 0.211

Entropy 6.103 7.319 0.746 0.651~0.826 75.71 65.71 6.290 <0.001
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our study, the threshold of the Ki-67 value was 14% for dis-
criminating between tumours, which is the most common
threshold. (3) Arponen et al. showed that there was no asso-
ciation between the whole lesion ADC values and the Ki-67
proliferation index [7], and this result was similar to ours.
However, only the mean ADC value was calculated in that
study, and there were no other parameters. In our study,
the 10th to 90th percentile ADC values showed no correla-
tions with the Ki-67 index, but skewness and entropy showed
weak correlations with the Ki-67 index. This finding may be
explained by the heterogeneous nature of breast cancer,
which is correlated with entropy.

We acknowledge several limitations. First, this was a ret-
rospective study. Further prospective and multicentre studies
are required to validate our results. Second, our study
includes a relatively small number of benign breast lesions
and different molecular subtypes of breast cancer. Therefore,
it is necessary to expand the database in the future, especially
to complement more data on different molecular subtypes of
breast cancer, to verify our results. Third, the procedure for
ADCmeasurements in breast lesions should be standardized.

In conclusion, volumetric ADC histograms exhibited a
higher diagnostic performance in distinguishing between
benign and malignant breast lesions than between different
subtypes of breast cancer. The ADC histogram showed a rela-
tively higher diagnostic accuracy than the 10th percentile
ADC value and ADC entropy, whereas ADC histogram
entropy was weakly correlated with Ki-67. All these results
suggest the potential clinical advantage of applying the ADC
histogram as an imaging marker in the diagnosis of breast
lesions and that the ADC histogram may be a supplemental
tool in predicting tumour proliferation in breast cancer.
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