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Swarm intelligence (SI) represents the collective behavior
of decentralized, self-organized systems. SI systems consist
typically of a population of simple agents that interact locally
with one another andwith their environment.The inspiration
of SI originates from biological systems. The agents follow
very simple rules, and although there is no centralized control
structure dictating how individual agents should behave,
local, and to a certain degree random, interactions between
such agents lead to the emergence of intelligence, unknown
to the individual agents. Natural examples of SI include ant
colonies, bird flocking, animal herding, bacterial growth,
and fish schooling. Besides the applications to conventional
optimization problems, SI is employed in various fields such
as library materials acquisition, communications, medical
dataset classification, dynamic control, heating system plan-
ning, moving objects tracking, pattern recognition, and
statistical prediction.

The main objective of this special issue is to provide the
readers with a collection of high quality research articles that
address the broad challenges in application aspects of swarm
intelligence and reflect the emerging trends in state-of-the-art
algorithms.

The paper authored by Z.-C. Wang and X.-B. Wu (Tongji
University) investigates the applicability and performance
of biogeography-based optimization (BBO) for integer pro-
gramming. They find that the original BBO algorithm does
not perform well on a set of benchmark problems of

integer programming. Hence, they modify the mutation
operator and/or the neighborhood structure of the algo-
rithm, resulting in three new BBO-based methods, named
BlendBBO, BBO DE, and LBBO LDE, respectively. Com-
putational experiments show that these methods are com-
petitive approaches to solve integer-programming problems,
and the LBBO LDE shows the best performance on the
benchmark problems.

In the paper by J. Wang et al. (North China Electric
Power University), theymodel the complex process-planning
problem as a combinatorial optimization problem with con-
straints. An ant colony optimization (ACO) approach is
developed to deal with process planning problem by simulta-
neously considering activities such as sequencing operations,
selecting manufacturing resources, and determining setup
plans to achieve the optimal process plan. A weighted
directed graph is conducted to describe the operations, prece-
dence constraints between operations, and the possible vis-
ited path between operation nodes. A representation of pro-
cess plan is described based on the weighted directed graph.
Ant colony goes through the necessary nodes on the graph to
achieve the optimal solutionwith the objective ofminimizing
total production costs. Two cases are carried out to study the
influence of various parameters of ACO on the system per-
formance. Extensive comparative experiments are conducted
to demonstrate the feasibility and efficiency of the proposed
approach.
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R. Kalatehjari et al. (Universiti Teknologi Malaysia) apply
particle swarm optimization (PSO) in three-dimensional
(3D) slope stability problem to determine the critical slip
surface (CSS) of soil slopes. A detailed description of adopted
PSO is presented to provide a good basis for more contribu-
tion of this technique to the field of 3D slope stability prob-
lems. A general rotating ellipsoid shape is introduced as the
specific particle for 3D slope stability analysis. A detailed
sensitivity analysis is designed and performed to find the
optimum values of parameters of PSO. Example problems are
used to evaluate the applicability of PSO in determining the
CSS of 3D slopes. The first example presents a comparison
between the results of PSO and PLAXI-3D finite element
software. The second example compares the ability of PSO
to determine the CSS of 3D slopes with other optimization
methods from the literature. The results demonstrate the
efficiency and effectiveness of PSO in determining the CSS
of 3D soil slopes.

Another paper is by Y. Sun et al. (Beijing University
of Posts and Telecommunications, Columbia University). It
focuses on how to outsource computation task to the cloud
securely and proposes a secure outsourcing multiparty com-
putation protocol on lattice-based encrypted data in two-
cloud-server scenario. The main idea is to transform the
outsourced data, respectively, encrypted by different users’
public keys to the ones encrypted by the same two private
keys of the two assisted servers, so that it is feasible to operate
on the transformed cipher-texts to compute an encrypted
result following the function to be computed. In order to
keep the privacy of the result, the two servers cooperatively
produce a custom-made result for each user that is authorized
to get the result, so that all authorized users can recover
the desired result while other unauthorized ones including
the two servers cannot. Compared with previous research,
the protocol is completely noninteractive between any users.
Both of the computation and the communication complex-
ities of each user in their solution are independent of the
computing function.

In their paper, M.-Y. Ju et al. (National University of
Tainan) propose a hybrid evolutionary algorithm using
scalable encoding method for path planning problems. The
scalable representation is based on binary tree structure
encoding. To solve the problem of hybrid genetic algorithm
and particle swarm optimization, the “dummy node” is added
to the binary trees to deal with the different lengths of repre-
sentations. The experimental results show that the proposed
hybrid method uses fewer turning points than traditional
evolutionary algorithms and generate shorter collision-free
paths for mobile robot navigation.

Thepaper byH.Mo et al. (Harbin EngineeringUniversity,
Harbin University of Commerce, University of Pretoria, and
Shaoxing University) proposes a novel constrained multi-
objective biogeography optimization algorithm (CMBOA).
It is the first biogeography optimization algorithm for con-
strained multiobjective optimization. In CMBOA, a distur-
bance migration operator is designed to generate diverse fea-
sible individuals, in order to promote the diversity of indi-
viduals on Pareto front. Infeasible individuals nearby feasible
region are evolved to feasibility by recombining with their

nearest nondominated feasible individuals. The convergence
of CMBOA is proved by using probability theory. The
performance of CMBOA is evaluated on a set of 6 benchmark
problems. The experimental results show that the CMBOA
performs better than or similar to the classical NSGA-II and
IS-MOEA.

The paper authored by I. C. Obagbuwa and A. O.
Adewumi (University of KwaZulu-Natal) introduces the
hunger component to the existing cockroach swarm opti-
mization (CSO) algorithm, to improve its searching ability
and population diversity. The original CSO is modelled
with three components: chase-swarming, dispersion, and
ruthlessness; additional hunger component modelled using
partial differential equation (PDE) method is included. The
performance of the proposed algorithm is tested on well-
known benchmarks and compared with the existing CSO,
modified cockroach swarm optimization (MCSO), roach
infestation optimization RIO, and hungry roach infestation
optimization (HRIO). The comparison results show clearly
that the proposed algorithm outperforms the existing algo-
rithms.

In the paper by L. Liu et al. (Harbin Engineering Univer-
sity), they propose a distribution model of ant colony forag-
ing, through analysis of the relationship between the position
distribution and food source in the process of ant colony
foraging. They design a continuous domain optimization
algorithm based on the model.They give the form of solution
for the algorithm, the distribution model of pheromone,
the update rules of ant colony position, and the processing
method of constraint condition. The algorithm is tested
against a set of test trials by unconstrained optimization test
functions and a set of optimization test functions.The results
of other algorithms are compared and analyzed, to verify the
correctness and effectiveness of the proposed algorithm.

A. Shabri and R. Samsudin (Universiti Teknologi Malay-
sia) propose a hybrid model integrating wavelet and multiple
linear regressions (MLR) for crude oil price forecasting.
In this model, Mallat wavelet transform is first selected to
decompose an original time series into several subseries with
different scale.Then, the principal component analysis (PCA)
is used in processing subseries data inMLR for crude oil price
forecasting.The particle swarm optimization (PSO) is used to
adopt the optimal parameters of the MLR model. To assess
the effectiveness of this model, daily crude oil market and
West Texas Intermediate (WTI) are used as the case study.
Time-series prediction capability performance of theWMLR
model is compared with the MLR, ARIMA, and GARCH
models using various statistics measures. The experimental
results show that the proposed model outperforms the indi-
vidual models in forecasting of the crude oil prices series.

In their paper, F. A. Ahmad et al. (Universiti Putra
Malaysia) propose a new approach based on integrated intel-
ligent system inspired by foraging of honeybees applied to
multimobile robot scenario. This integrated approach caters
for both working and foraging stages for known/unknown
power station locations. Swarm mobile robot inspired by
honeybee is simulated to explore and identify the power
station for battery recharging. The mobile robots will share
the location information of the power stationwith each other.
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The results show that mobile robots consume less energy
and less time when they are cooperating with each other for
foraging process. The optimizing of foraging behavior will
result in the mobile robots spending more time to do real
work.

The paper by J.-Q. Li et al. (Northeastern University
and Liaocheng University) proposes a hybrid algorithm that
combines particle swarm optimization (PSO) and iterated
local search (ILS) for solving the hybrid flow-shop scheduling
(HFS) problem with preventive maintenance (PM) activities.
In the proposed algorithm, different crossover operators and
mutation operators are investigated. In addition, an efficient
multiple insert mutation operator is developed for enhancing
the searching ability of the algorithm. Furthermore, an ILS-
based local search procedure is embedded in the algorithm to
improve the exploitation ability of the proposed algorithm.
The detailed experimental parameter for the canonical PSO
is tuning. The proposed algorithm is tested on the variation
of 77 Carlier and Néron’s benchmark problems. Detailed
comparisons with the present efficient algorithms, including
hGA, ILS, PSO, and IG, verify the efficiency and effectiveness
of the proposed algorithm.

The paper authored by Q. Xu et al. (Shandong University)
proposes a fast elitism Gaussian estimation of distribution
algorithm (FEGEDA). The Gaussian probability model is
used to model the solution distribution. The parameters of
Gaussian come from the statistical information of the best
individuals by fast learning rule, which enhances the effi-
ciency of the algorithm. An elitism strategy is used to main-
tain the convergent performance. The performances of the
algorithm are examined based upon several benchmarks.
In the simulations, a one-dimensional benchmark is used
to visualize the optimization process and probability model
learning process during the evolution, and several two-
dimensional and higher dimensional benchmarks are used to
testify the performance of FEGEDA.The experimental results
indicate the capability of FEGEDA, especially in the higher
dimensional problems, and the FEGEDA exhibits a better
performance than some other algorithms and EDAs. Finally,
FEGEDA is used in PID controller optimization of PMSM
and is compared with the classical PID and GA.

In the paper by K. S. Lim et al. (Universiti Teknologi
Malaysia, Universiti Malaysia Pahang, Universiti Malaya, and
Hanbat National University), their research incorporates the
concept ofmultiple nondominated leaders to further improve
the vector evaluated particle swarm optimization (VEPSO)
algorithm. Multiple nondominated solutions that are best at
a respective objective function are used to guide particles in
finding optimal solutions.The improved VEPSO is measured
by the number of nondominated solutions found, genera-
tional distance, spread, and hypervolume. The results from
the conducted experiments show that the proposed VEPSO
significantly improves the existing VEPSO algorithms.

Z. Yin et al. (Harbin Institute of Technology) focus on
multiuser detection in tracking and data relay satellite
(TDRS) system forward link. Minimum mean square error
(MMSE) is a low complexity multiuser detection method,
but MMSE detector cannot achieve satisfactory bit error
ratio and near-far resistance, whereas artificial fish swarm

algorithm (AFSA) is expert in optimization and it can
realize the global convergence efficiently. Therefore, a hybrid
multiuser detector based on MMSE and AFSA (MMSE-
AFSA) is proposed. The result of MMSE and its modified
formations are used as the initial values of artificial fishes to
accelerate the speed of global convergence and reduce the
iteration times for AFSA. The simulation results show that
the bit error ratio and near-far resistance performances of
the proposed detector are much better, compared with MF,
DEC, and MMSE, and are quite close to OMD. Furthermore,
the proposed MMSE-AFSA detector also has a large system
capacity.

In their paper, S.Molla-Alizadeh-Zavardehi et al. (Islamic
Azad University and University of Tehran) deal with a prob-
lem of minimizing total weighted tardiness of jobs in a real-
world single batch-processing machine (SBPM) scheduling
in the presence of fuzzy due date. First, a fuzzy mixed integer
linear programming model is developed. Then, due to the
complexity of the problem that is NP hard, they design
two hybrid metaheuristics called GA-VNS and VNS-SA
applying the advantages of genetic algorithm (GA), variable
neighborhood search (VNS), and simulated annealing (SA)
frameworks. Besides, they propose three fuzzy earliest due
date heuristics to solve the given problem. Through com-
putational experiments with several random test problems,
a robust calibration is applied on the parameters. Finally,
computational results on different-scale test problems are
presented to compare the proposed algorithms.

The paper byH. Liu et al. (Beijing Institute of Technology,
University of Science and Technology Liaoning, and Nan-
chang University) presents a human behavior-based PSO,
which is called HPSO. There are two remarkable differences
between PSO and HPSO. First, the global worst particle
is introduced into the velocity equation of PSO, which is
endowedwith randomweight that obeys the standard normal
distribution; this strategy is conducive to trade off exploration
and exploitation ability of PSO. Second, the two acceleration
coefficients 𝑐

1
and 𝑐
2
in the standard PSO (SPSO) are elimi-

nated to reduce the parameters sensitivity of solved problems.
Experimental results on 28 benchmark functions, which
consist of unimodal, multimodal, rotated, and shifted high-
dimensional functions, demonstrate the high performance of
the proposed algorithm in terms of convergence accuracy and
speed with lower computation cost.

The paper authored by B. Crawford et al. (Pontificia
UniversidadCatólica deValparaı́so,Universidad Finis Terrae,
Universidad Autónoma de Chile, and Universidad Diego
Portales) presents a novel application of the artificial bee
colony algorithm to solve the nonunicost set covering prob-
lem. The artificial bee colony algorithm is a recent swarm
metaheuristic technique based on the intelligent foraging
behavior of honey bees. Experimental results show that the
artificial bee colony algorithm is competitive in terms of
solution quality with other recent metaheuristic approaches
for the set covering problem.

In the paper by J.-S. Wang et al. (University of Science &
Technology Liaoning), they propose an echo state network
(ESN) based fusion soft-sensor model optimized by the
improved glowworm swarm optimization (GSO) algorithm,
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for predicting the key technology indicators (concentrate
grade and tailings recovery rate) of flotation process. Firstly,
the color feature (saturation and brightness) and texture fea-
tures (angular secondmoment, sum entropy, inertiamoment,
etc.) based on grey-level cooccurrence matrix (GLCM) are
adopted to describe the visual characteristics of the flotation
froth image. Then, the kernel principal component analysis
(KPCA) method is used to reduce the dimensionality of the
high-dimensional input vector composed by the flotation
froth image characteristics and process datum and extracts
the nonlinear principal components in order to reduce the
ESN dimension and network complex. The ESN soft-sensor
model of flotation process is optimized by the GSO algorithm
with congestion factor. Simulation results show that the
model has better generalization and prediction accuracy to
meet the online soft-sensor requirements of the real-time
control in the flotation process.

B. Li et al. (Shandong University and Qilu University
of Technology) propose a novel KELM learning algorithm
using the PSO approach to optimize the parameters of kernel
functions of neural networks, which is called the AKELM
learning algorithm, for improving the prediction accuracy
of robot execution failures. The simulation results with the
robot execution failures datasets show that, by optimizing the
kernel parameters, the proposed algorithm has good gener-
alization performance and outperforms KELM and the other
approaches in terms of classification accuracy. Other bench-
mark problems simulation results also show the efficiency
and effectiveness of the proposed algorithm.

In the paper by T. S. Kiong et al. (Universiti Tenaga
Nasional, Universiti Kebangsaan Malaysia), their research
considers the adaptive beamforming technique used to cancel
interfering signals (placing nulls) and produce or steer a
strong beam toward the target signal according to the calcu-
lated weight vectors. Minimum variance distortion response
(MVDR) beamforming is capable of determining the weight
vectors for beam steering; however, its nulling level on the
interference sources remains unsatisfactory. Beamforming
can be considered as an optimization problem, such that opti-
mal weight vector should be obtained through computation.
Hence, in their paper, a new dynamic mutated artificial
immune system (DM-AIS) is proposed to enhance MVDR
beamforming for controlling the null steering of interference
and increase the signal to interference-noise ratio (SINR) for
wanted signals.

Finally, F. Zou et al. (Xi’an University of Technology,
Huaibei Normal University) present a new teaching-learn-
ing-based optimization (TLBO) variant called barebones
teaching-learning-based optimization (BBTLBO), to solve
the global optimization problems. In their method, each
learner of teacher phase employs an interactive learning
strategy, which is the hybridization of the learning strategy of
teacher phase in the standard TLBO and Gaussian sampling
learning based on neighborhood search, and each learner of
learner phase employs the learning strategy of learner phase
in the standard TLBO or the new neighborhood search
strategy. To verify the performance of their approaches, 20
benchmark functions and 2 real-world problems are utilized.
Conducted experiments can be observed that the BBTLBO

performs significantly better than, or at least comparable to,
TLBO and some existing bare-bone algorithms. The results
indicate that the proposed algorithm is competitive to some
other optimization algorithms. We expect that this special
issue offers a comprehensive and timely view of the area of
applications of SI and that it will offer stimulation for further
research.
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Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one
of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-
based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase
employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO
and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy
of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches,
20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO
performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate
that the proposed algorithm is competitive to some other optimization algorithms.

1. Introduction

Many real-life optimization problems are becomingmore and
more complex and difficult with the development of scientific
technology. So how to resolve these complex problems in an
exactmanner within a reasonable time cost is very important.
The traditional optimization algorithms are difficult to solve
these complex nonlinear problems. In recent years, nature-
inspired optimization algorithms which simulate natural
phenomena and have different design philosophies and
characteristics, such as evolutionary algorithms [1–3] and
swarm intelligence algorithms [4–7], are a research field
which simulates different natural phenomena to solve a wide
range of problems. In these algorithms the convergence rate
of the algorithm is given prime importance for solving real-
world optimization problems. The ability of the algorithms
to obtain the global optima value is one aspect and the faster
convergence is the other aspect.

As a stochastic search scheme, TLBO [8, 9] is a newly
population-based algorithm based on swarm intelligence and
has characters of simple computation and rapid convergence;
it has been extended to the function optimization, engineer-
ing optimization, multiobjective optimization, clustering,

and so forth [9–17]. TLBO is a parameter-free evolutionary
technique and is also gaining popularity due to its ability
to achieve better results in comparatively faster convergence
time to genetic algorithms (GA) [1], particle swarm optimizer
(PSO) [5], and artificial bee colony algorithm (ABC) [6].
However, in evolutionary computation research there have
been always attempts to improve any given findings further
and further. This work is an attempt to improve the con-
vergence characteristics of TLBO further without sacrificing
the accuracies obtained in TLBO and in some occasions
trying to even better the accuracies. The aims of this paper
are of threefold. First, authors propose an improved version
of TLBO, namely, BBTLBO. Next, the proposed technique
is validated on unimodal and multimodal functions based
on different performance indicators. The result of BBTLBO
is compared with other algorithms. Results of both the
algorithms are also compared using statistical paired 𝑡-test.
Thirdly, it is applied to solve the real-world optimization
problem.

The remainder of this paper is organized as follows.
The TLBO algorithm is introduced in Section 2. Section 3
presents a brief overview of some recently proposed
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(1) Begin
(2) Initialize𝑁 (number of learners) and𝐷 (number of dimensions)
(3) Initialize learners𝑋 and evaluate all learners𝑋
(4) Donate the best learner as Teacher and the mean of all learners𝑋 asMean
(5) while (stopping condition not met)
(6) for each learner𝑋

𝑖
of the class % Teaching phase

(7) TF = round(1 + rand(0, 1))
(8) for 𝑗 = 1 :𝐷
(9) 𝑛𝑒𝑤𝑋

𝑖𝑗
= 𝑋
𝑖𝑗
+ rand(0, 1) ∗ (𝑇𝑒𝑎𝑐ℎ𝑒𝑟(𝑗) − TF ∗𝑀𝑒𝑎𝑛(𝑗))

(10) endfor
(11) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋

𝑖
) is better than 𝑓(𝑋

𝑖
)

(12) endfor
(13) for each learner𝑋

𝑖
of the class % Learning phase

(14) Randomly select one learner𝑋
𝑘
, such that 𝑖 ̸= 𝑘

(15) if 𝑓(𝑋
𝑖
) better 𝑓(𝑋

𝑘
)

(16) for 𝑗 = 1 :𝐷
(17) 𝑛𝑒𝑤𝑋

𝑖𝑗
= 𝑋
𝑖𝑗
+ rand(0, 1) ∗ (𝑋

𝑖𝑗
− 𝑋
𝑘𝑗
)

(18) endfor
(19) else
(20) for 𝑗 = 1 :𝐷
(21) 𝑛𝑒𝑤𝑋

𝑖𝑗
= 𝑋
𝑖𝑗
+ rand(0, 1) ∗ (𝑋

𝑘𝑗
− 𝑋
𝑖𝑗
)

(22) endfor
(23) endif
(24) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋

𝑖
) is better than 𝑓(𝑋

𝑖
)

(25) endfor
(26) Update the Teacher and theMean
(27) endwhile
(28) end

Algorithm 1: TLBO( ).

bare-bones algorithms. Section 4 describes the improved
teaching-learning-based optimization algorithm using
neighborhood search (BBTLBO). Section 5 presents the tests
on several benchmark functions and the experiments are
conducted along with statistical tests. The applications for
training artificial neural network are shown in Section 6.
Conclusions are given in Section 7.

2. Teaching-Learning-Based Optimization

Rao et al. [8, 9] first proposed a novel teaching-learning-
based optimization (TLBO) inspired from the philosophy of
teaching and learning. The TLBO algorithm is based on the
effect of the influence of a teacher on the output of learners in
a class which is considered in terms of results or grades. The
process ofworking of TLBO is divided into twoparts.Thefirst
part consists of “teacher phase” and the second part consists
of “learner phase.” The “teacher phase” means learning from
the teacher and the “learner phase” means learning through
the interaction between learners.

A good teacher is one who brings his or her learners up to
his or her level in terms of knowledge. But in practice this is
not possible and a teacher can only move the mean of a class
up to some extent depending on the capability of the class.
This follows a random process depending on many factors.
Let𝑀 be the mean and let 𝑇 be the teacher at any iteration. 𝑇
will try tomovemean𝑀 toward its own level, so now the new

mean will be 𝑇 designated as𝑀new. The solution is updated
according to the difference between the existing and the new
mean according to the following expression:

𝑛𝑒𝑤𝑋 = 𝑋 + 𝑟 × (𝑀new − TF ×𝑀) , (1)

where TF is a teaching factor that decides the value of mean
to be changed and 𝑟 is a random vector in which each element
is a random number in the range [0, 1]. The value of TF can
be either 1 or 2, which is again a heuristic step and decided
randomly with equal probability as

TF = round [1 + rand (0, 1)] . (2)

Learners increase their knowledge by two different
means: one through input from the teacher and the other
through interaction between themselves. A learner interacts
randomly with other learners with the help of group discus-
sions, presentations, formal communications, and so forth.
A learner learns something new if the other learner has
more knowledge than him or her. Learner modification is
expressed as

𝑛𝑒𝑤𝑋
𝑖
= {

𝑋
𝑖
+ 𝑟 ∗ (𝑋

𝑖
− 𝑋
𝑗
) if𝑓 (𝑋

𝑖
) < 𝑓 (𝑋

𝑗
)

𝑋
𝑖
+ 𝑟 ∗ (𝑋

𝑗
− 𝑋
𝑖
) otherwise.

(3)

As explained above, the pseudocode for the implementa-
tion of TLBO is summarized in Algorithm 1.
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3. Bare-Bones Algorithm

In this section, we only presented a brief overview of some
recently proposed bare-bones algorithms.

3.1. BBPSO and BBExp. PSO is a swarm intelligence-based
algorithm, which is inspired by the behavior of birds flocking
[5]. In PSO, each particle is attracted by its personal best
position (𝑝best) and the global best position (𝑔best) found
so far. Theoretical studies [18, 19] proved that each particle
converges to the weighted average of 𝑝best and 𝑔best:

lim
𝑡→∞

𝑋
𝑖
(𝑡) =

𝑐
1
⋅ 𝑔best + 𝑐2 ⋅ 𝑝best

𝑐
1
+ 𝑐
2

, (4)

where 𝑐
1
and 𝑐
2
are two leaning factors in PSO.

Based on the convergence characteristic of PSO, Kennedy
[20] proposed a new PSO variant called bare-bones PSO
(BBPSO). Bare-bones PSO retains the standard PSO social
communication but replaces dynamical particle update with
sampling from a probability distribution based on 𝑔best and
𝑝best𝑖 as follows:

𝑥
𝑖,𝑗
(𝑡 + 1) = 𝑁(

𝑔best + 𝑝best𝑖,𝑗 (𝑡)

2

,








𝑔best − 𝑝best𝑖,𝑗 (𝑡)







) , (5)

where 𝑥
𝑖,𝑗
(𝑡 + 1) is the 𝑗th dimension of the 𝑖th particle in

the population and𝑁 represents a Gaussian distributionwith
mean (𝑔best + 𝑝best𝑖,𝑗(𝑡))/2 and standard deviation |𝑔best −
𝑝best𝑖,𝑗(𝑡)|.

Kennedy [20] proposed also an alternative version of the
BBPSO, denoted by BBExp, where (5) is replaced by
𝑥
𝑖,𝑗 (
𝑡 + 1)

=

{
{
{

{
{
{

{

𝑁(

𝑔best + 𝑝best𝑖,𝑗 (𝑡)

2

,








𝑔best − 𝑝best𝑖,𝑗 (𝑡)







) rand (0, 1) > 0.5

𝑝best𝑖,𝑗 (𝑡) otherwise,

(6)
where rand (0,1) is a random value within [0, 1] for the 𝑗th
dimension. For the alternative mechanism, there is a 50%
chance that the search process is focusing on the previous best
positions.

3.2. BBDE, GBDE, and MGBDE. Inspired by the BBPSO
and DE, Omran et al. [21] proposed a new and efficient
DE variant, called bare-bones differential evolution (BBDE).
The BBDE is a new, almost parameter-free optimization
algorithm that is a hybrid of the bare-bones particle swarm
optimizer and differential evolution. Differential evolution is
used tomutate, for each particle, the attractor associated with
that particle, defined as a weighted average of its personal and
neighborhood best positions. For the BBDE, the individual is
updated as follows:
𝑥
𝑖,𝑗
(𝑡 + 1)

= {

𝑝
𝑖3 ,𝑗
(𝑡) + 𝑟

2
⋅ (𝑥
𝑖1 ,𝑗
(𝑡) − 𝑥

𝑖2 ,𝑗
(𝑡)) rand (0, 1) > CR

𝑝best𝑖3,𝑗 (𝑡) otherwise,
(7)

where 𝑖
1
, 𝑖
2
, and 𝑖

3
are three indices chosen from the set

{1, 2, . . . ,NP} with 𝑖
1
̸= 𝑖
2
̸= 𝑖, rand (0, 1) is a random value

within [0, 1] for the 𝑗th dimension, and 𝑝
𝑖,𝑗
(𝑡) is defined by

𝑝
𝑖,𝑗
(𝑡 + 1) = 𝑟

1,𝑗
⋅ 𝑝best𝑖,𝑗 (𝑡) + (1 − 𝑟2,𝑗) 𝑔best𝑖 (𝑡) , (8)

where 𝑝best and 𝑔best are personal best position and the global
best position, 𝑟

1,𝑗
, is a random value within [0, 1] for the 𝑗th

dimension.
Based on the idea that the Gaussian sampling is a fine

tuning procedure which starts during exploration and is
continued to exploitation, Wang et al. [22] proposed a new
parameter-freeDE algorithm, calledGBDE. In theGBDE, the
mutation strategy uses a Gaussian sampling method which is
defined by

V𝑖,𝑗 (𝑡 + 1)

=

{{{{{{

{{{{{{

{

𝑁(

𝑋best,𝑗 (𝑡) + 𝑥𝑖,𝑗 (𝑡)

2
, rand (0, 1) ≤ CR ∨ 𝑗 = 𝑗rand


𝑋best,𝑗 (𝑡) − 𝑥𝑖,𝑗 (𝑡)


)

𝑥𝑖,𝑗 (𝑡) otherwise,
(9)

where 𝑁 represents a Gaussian distribution with mean
(𝑋best,𝑗(𝑡)+𝑥𝑖,𝑗(𝑡))/2 and standard deviation |𝑋best,𝑗(𝑡)−𝑥𝑖,𝑗(𝑡)|
and CR is the probability of crossover.

To balance the global search ability and convergence rate,
Wang et al. [22] proposed amodifiedGBDE (calledMGBDE).
The mutation strategy uses a hybridization of GBDE and
DE/best/1 as follows:

V
𝑖,𝑗 (
𝑡 + 1)

=

{
{
{

{
{
{

{

𝑋best,𝑗 (𝑡)+𝐹 ⋅ (𝑥𝑖1,𝑗 (𝑡)−𝑥𝑖2,𝑗 (𝑡)) rand (0, 1) ≤ 0.5

𝑁(

𝑋best,𝑗 (𝑡)+𝑥𝑖,𝑗 (𝑡)

2

,






𝑋best,𝑗 (𝑡)−𝑥𝑖,𝑗 (𝑡)






) otherwise.

(10)

4. Proposed Algorithm: BBTLBO

The bare-bones PSO utilizes this information by sampling
candidate solutions, normally distributed around the for-
mally derived attractor point. That is, the new position is
generated by a Gaussian distribution for sampling the search
space based on the 𝑔best and the 𝑝best at the current iteration.
As a result, the new position will be centered around the
weighted average of 𝑝best and 𝑔best. Generally speaking, at
the initial evolutionary stages, the search process focuses on
exploration due to the large deviation. With an increasing
number of generations, the deviation becomes smaller, and
the search process will focus on exploitation. From the search
behavior of BBPSO, the Gaussian sampling is a fine tuning
procedure which starts during exploration and is continued
to exploitation. This can be beneficial for the search of many
evolutionary optimization algorithms. Additionally, the bare-
bones PSO has no parameters to be tuned.

Based on a previous explanation, a new bare-bones TLBO
(BBTLBO) with neighborhood search is proposed in this
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Begin

Initialize learners size (NP), dimension (D), and hybridization 
factor (u)

Calculate the NTeacher and NMean of each learner

Modify each learner Xi in the class
= + r ∗ (NTeacher − TF ∗ NMean)
= N((NTeacher + Xi)/2, (NTeacher − Xi))

newXi = u ∗ newX1 + (1 − u) ∗ newX2Teacher phase

newXi better Xi

Xi = newXi Xi = Xi

Yes

Yes

Yes

Yes

No

No

No

No

Denote the NTeacheri and randomly select a Xk for each Xi

Learner
 phase

rand(0, 1) < 0.5

The original TLBO learning Neighborhood search strategy

newXi better Xi

Xi = newXi Xi = Xi

Termination criteria satisfied

End

gen = gen + 1

XiV1
V2

Figure 1: Flow chart showing the working of BBTLBO algorithm.

paper. In fact, for TLBO, if the new learner has a better
function value than that of the old learner, it is replaced
with the old one in the memory. Otherwise, the old one is
retained in the memory. In other words, a greedy selection
mechanism is employed as the selection operation between
the old and the candidate one. Hence, the new teacher and the
new learner are the global best (𝑔best) and learner’s personal
best (𝑝best) found so far, respectively. The complete flowchart
of the BBTLBO algorithm is shown in Figure 1.

4.1. Neighborhood Search. It is known that birds of a feather
flock together and people of a mind fall into the same
group. Just like evolutionary algorithms themselves, the
notion of neighborhood is inspired by nature. Neighborhood
technique is an efficient method to maintain diversity of

the solutions. It plays an important role in evolutionary
algorithms and is often introduced by researchers in order
to allow maintenance of a population of diverse individuals
and improve the exploration capability of population-based
heuristic algorithms [23–26]. In fact, learners with similar
interests form different learning groups. Because of his or
her favor characteristic, the learner maybe learns from the
excellent individual in the learning group.

For the implementation of grouping, various types of
connected distances may be used. Here we have used a
ring topology [27] based on the indexes of learners for the
sake of simplicity. In a ring topology, the first individual
is the neighbor of the last individual and vice versa. Based
on the ring topology, a 𝑘-neighborhood radius is defined,
where 𝑘 is a predefined integer number. For each individual,



The Scientific World Journal 5

NeighborhoodiXi

Xi−1

Xi+1

Figure 2: Ring neighborhood topology with three members.

its 𝑘-neighborhood radius consists of 2𝑘 + 1 individuals
(including oneself), which are 𝑋

𝑖−𝑘
, . . . , 𝑋

𝑖
, . . . , 𝑋

𝑖+𝑘
. That is,

the neighborhood size is 2𝑘 + 1 for a 𝑘-neighborhood. For
simplicity, 𝑘 is set to 1 (Figure 2) in our algorithm.Thismeans
that there are 3 individuals in each learning group. Once
groups are constructed, we can utilize them for updating the
learners of the corresponding group.

4.2. Teacher Phase. To balance the global and local search
ability, a modified interactive learning strategy is proposed in
teacher phase. In this learning phase, each learner employs an
interactive learning strategy (the hybridization of the learning
strategy of teacher phase in the standard TLBO and Gaussian
sampling learning) based on neighborhood search.

In BBTLBO, the updating formula of the learning for a
learner 𝑋

𝑖
in teacher phase is proposed by the hybridization

of the learning strategy of teacher phase and the Gaussian
sampling learning as follows:

𝑉
1,𝑗
(𝑡 + 1) = 𝑋

𝑖,𝑗
(𝑡) + rand (0, 1)

⋅ (𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑖,𝑗
(𝑡) − TF ⋅ 𝑁𝑀𝑒𝑎𝑛

𝑖,𝑗
(𝑡)) ,

𝑉
2,𝑗
(𝑡 + 1) = 𝑁(

𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑖,𝑗
(𝑡) + 𝑁𝑀𝑒𝑎𝑛

𝑖,𝑗
(𝑡)

2

,











𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑖,𝑗
(𝑡) − 𝑁𝑀𝑒𝑎𝑛

𝑖,𝑗
(𝑡)











) ,

𝑛𝑒𝑤𝑋
𝑖,𝑗
(𝑡 + 1) = 𝑢 ⋅ 𝑉

1,𝑗
(𝑡 + 1) + (1 − 𝑢) ⋅ 𝑉

2,𝑗
(𝑡 + 1) ,

(11)

where 𝑢 called the hybridization factor is a random number
in the range [0, 1] for the 𝑗th dimension, 𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟 and
𝑁𝑀𝑒𝑎𝑛 are the existing neighborhood best solution and the
neighborhood mean solution of each learner, and TF is a
teaching factor which can be either 1 or 2 randomly.

In the BBTLBO, there is a (𝑢 ∗ 100)% chance that the
𝑗th dimension of the 𝑖th learner in the population follows the
behavior of the learning strategy of teacher phase, while the
remaining (100 − 𝑢∗ 100)% follow the search behavior of the
Gaussian sampling in teacher phase. This will be helpful to
balance the advantages of fast convergence rate (the attraction

of the learning strategy of teacher phase) and exploration (the
Gaussian sampling) in BBTLBO.

4.3. Learner Phase. At the same time, in the learner phase, a
learner interacts randomly with other learners for enhancing
his or her knowledge in the class. This learning method can
be treated as the global search strategy (shown in (3)).

In this paper, we introduce a new learning strategy in
which each learner learns from the neighborhood teacher and
the other learner selected randomly of his or her correspond-
ing neighborhood in learner phase.This learningmethod can
be treated as the neighborhood search strategy. Let 𝑛𝑒𝑤𝑋

𝑖

represent the interactive learning result of the learner𝑋
𝑖
.This

neighborhood search strategy can be expressed as follows:

𝑛𝑒𝑤𝑋
𝑖,𝑗
= 𝑋
𝑖,𝑗
+ 𝑟
1
∗ (𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟

𝑖,𝑗
− 𝑋
𝑖,𝑗
)

+ 𝑟
2
∗ (𝑋
𝑖,𝑗
− 𝑋
𝑘,𝑗
) ,

(12)

where 𝑟
1
and 𝑟
2
are random vectors in which each element

is a random number in the range [0, 1], 𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟 is the
teacher of the learner 𝑋

𝑖
’s corresponding neighborhood,

and the learner 𝑋
𝑘
is selected randomly from the learner’s

corresponding neighborhood.
In BBTLBO, each learner is probabilistically learning by

means of the global search strategy or the neighborhood
search strategy in learner phase.That is, about 50%of learners
in the population execute the learning strategy of learner
phase in the standard TLBO (shown in (3)), while the
remaining 50%execute neighborhood search strategy (shown
in (12)). This will be helpful to balance the global search and
local search in learner phase.

Moreover, compared to the original TLBO, BBTLBOonly
modifies the learning strategies. Therefore, both the original
TLBO and BBTLBO have the same time complexity 𝑂 (NP ⋅
𝐷 ⋅ Genmax), where NP is the number of the population, 𝐷
is the number of dimensions, and Genmax is the maximum
number of generations.

As explained above, the pseudocode for the implementa-
tion of BBTLBO is summarized in Algorithm 2.

5. Functions Optimization

In this section, to illustrate the effectiveness of the proposed
method, 20 benchmark functions are used to test the effi-
ciency of BBTLBO. To compare the search performance of
BBTLBO with some other methods, other different algo-
rithms are also simulated in the paper.

5.1. Benchmark Functions. Thedetails of 20 benchmark func-
tions are shown in Table 1. Among 20 benchmark functions,
𝐹
1
to 𝐹
9
are unimodal functions, and 𝐹

10
to 𝐹
20

are multi-
modal functions. The searching range and theory optima for
all functions are also shown in Table 1.

5.2. Parameter Settings. All the experiments are carried out
on the same machine with a Celoron 2.26GHz CPU, 2GB
memory, andWindows XP operating system withMatlab 7.9.
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(1) Begin
(2) Initialize𝑁 (number of learners),𝐷 (number of dimensions) and hybridization factor 𝑢
(3) Initialize learners 𝑋 and evaluate all learners𝑋
(4) while (stopping condition not met)
(5) for each learner𝑋

𝑖
of the class % Teaching phase

(6) TF = round(1 + rand(0, 1))
(7) Donate the𝑁 𝑇𝑒𝑎𝑐ℎ𝑒𝑟 and the𝑁 𝑀𝑒𝑎𝑛 in its neighborhood for each learner
(8) Updating each learner according (11)
(9) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋

𝑖
) is better than 𝑓(𝑋

𝑖
)

(10) endfor
(11) for each learner𝑋

𝑖
of the class % Learning phase

(12) Randomly select one learner𝑋
𝑘
, such that 𝑖 ̸= 𝑘

(13) if rand(0, 1) < 0.5
(14) Updating each learner according (3)
(15) else
(16) Donate the𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟 in its neighborhood for each learner
(17) Updating each learner according (12)
(18) endif
(19) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋𝑖) is better than 𝑓(𝑋

𝑖
)

(20) endfor
(21) endwhile
(22) end

Algorithm 2: BBTLBO( ).

For the purpose of reducing statistical errors, each algorithm
is independently simulated 50 times. For all algorithms, the
population size was set to 20. Population-based stochastic
algorithms use the same stopping criterion, that is, reaching
a certain number of function evaluations (FEs).

5.3. Effect of Variation in Parameter 𝑢. The hybridization
factor u is set to {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Comparative
tests have been performed using different 𝑢. In our exper-
iment, the maximal FEs are used as ended condition of
algorithm, namely, 40,000 for all test functions. Table 2 shows
the mean optimum solutions and the standard deviation of
the solutions obtained using different hybridization factor
𝑢 in the 50 independent runs. The best results among
the algorithms are shown in bold. Figure 3 presents the
representative convergence graphs of different benchmark
functions in terms of the mean fitness values achieved by
using different hybridization factor 𝑢 on all test functions.
Due to the tight space limitation, some sample graphs are
illustrated.

The comparisons in Table 2 and Figure 3 show that when
the hybridization factor 𝑢 is set to 0.9, BBTLBOoffers the best
performance on 20 test functions. Hence, the hybridization
factor 𝑢 is set to 0.9 in the following experiments.

5.4. Comparison of BBTLBO with Some Similar Bare-Bones
Algorithms. In this section, we compare BBTLBO with five
other recently proposed three bare-bones DE variants and
two bare-bones PSO algorithms. Our experiment includes
two series of comparisons in terms of the solution accuracy
and the solution convergence (convergence speed and success
rate). We compared the performance of BBTLBO with other

similar bare-bones algorithms, including BBPSO [20], BBExp
[20], BBDE [21], GBDE [22], and MGBDE [22].

5.4.1. Comparisons on the Solution Accuracy. In our exper-
iment, the maximal FEs are used as ended condition of
algorithm, namely, 40,000 for all test functions. The results
are shown in Table 3 in terms of the mean optimum solution
and the standard deviation of the solutions obtained in the 50
independent runs by each algorithm on 20 test functions.The
best results among the algorithms are shown in bold. Figure 4
presents the convergence graphs of different benchmark
functions in terms of the mean fitness values achieved by 7
algorithms for 50 independent runs. Due to the tight space
limitation, some sample graphs are illustrated.

From Table 3 it can be observed that the mean optimum
solution and the standard deviation of all algorithms perform
well for the functions 𝐹

15
and 𝐹
17
. Although BBExp performs

better than BBTLBO on function 𝐹
9
and MGBDE performs

better than BBTLBO on function 𝐹
20
, our approach BBTLBO

achieves better results than other algorithms on the rest of test
functions. Table 3 and Figure 4 conclude that the BBTLBO
has a good performance of the solution accuracy for test
functions in this paper.

5.4.2. Comparison of the Convergence Speed and SR. In order
to compare the convergence speed and successful rate (SR)
of different algorithms, we select a threshold value of the
objective function for each test function. For other functions,
the threshold values are listed in Table 4. In our experiment,
the stopping criterion is that each algorithm is terminated
when the best fitness value so far is below the predefined
threshold value (𝑇 Value) or the number of FEs reaches to
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Table 1: Details of numerical benchmarks used.

Function Formula 𝐷 Range Optima

Sphere 𝐹
1
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100] 0

Sum square 𝐹
2
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
2

𝑖
30 [−100, 100] 0

Quadric 𝐹
3
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random(0, 1) 30 [−1.28, 1.28] 0

Step 𝐹
4
(𝑥) =

𝐷

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 30 [−100, 100] 0

Schwefel 1.2 𝐹
5
(𝑥) =

𝐷

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

30 [−100, 100] 0

Schwefel 2.21 𝐹
6
(𝑥) = max {


𝑥
𝑖





, 1 ≤ 𝑖 ≤ 𝐷} 30 [−100, 100] 0

Schwefel 2.22 𝐹
7
(𝑥) =

𝐷

∑

𝑖=1





𝑥
𝑖





+

𝐷

∏

𝑖=1





𝑥
𝑖






30 [−10, 10] 0

Zakharov 𝐹
8
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
+ (

𝐷

∑

𝑖=1

0.5𝑖𝑥
𝑖
)

2

+ (

𝐷

∑

𝑖=1

0.5𝑖𝑥
𝑖
)

4

30 [−100, 100] 0

Rosenbrock 𝐹
9
(𝑥) =

𝐷−1

∑

𝑖=1

⌊100(𝑥
2

𝑖
− 𝑥
𝑖+1
)

2

+ (𝑥
𝑖
− 1)
2

⌋ 30 [−2.048, 2.048] 0

Ackley 𝐹
10
(𝑥) = 20 − 20 exp((−1

5

)√(

1

𝐷

)

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp(( 1

𝐷

)

𝐷

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 𝑒 30 [−32, 32] 0

Rastrigin 𝐹
11
(𝑥) =

𝐷

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) 30 [−5.12, 5.12] 0

Weierstrass
𝐹
12
(𝑥) =

𝐷

∑

𝑖=1

(

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 (𝑥

𝑖
+ 0.5))]) − 𝐷

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 × 0.5)]

𝑎 = 0.5 𝑏 = 3 𝑘max = 20

30 [−0.5, 0.5] 0

Griewank 𝐹
13
(𝑥) =

𝐷

∑

𝑖=1

(

𝑥
2

𝑖

4000

) −

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 30 [−600, 600] 0

Schwefel 𝐹
14
(𝑥) = 418.9829𝐷 +

𝐷

∑

𝑖=1

(−𝑥
𝑖
sin√abs(𝑥

𝑖
)) 30 [−500, 500] 0

Bohachevsky1 𝐹
15
(𝑥) = 𝑥

2

1
+ 2𝑥
2

2
− 0.3 cos (3𝜋𝑥

1
) − 0.4 cos (4𝜋𝑥

2
) + 0.7 2 [−100, 100] 0

Bohachevsky2 𝐹
16
(𝑥) = 𝑥

2

1
+ 2𝑥
2

2
− 0.3cos (3𝜋𝑥

1
) ∗ cos (4𝜋𝑥

2
) + 0.3 2 [−100, 100] 0

Bohachevsky3 𝐹
17
(𝑥) = 𝑥

2

1
+ 2𝑥
2

2
− 0.3cos((3𝜋𝑥

1
) + (4𝜋𝑥

2
)) + 0.3 2 [−100, 100] 0

Shekel5 𝐹
18
(𝑥) = −

5

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]

−1

4 [0, 10] −10.1532

Shekel7 𝐹
19
(𝑥) = −

7

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]

−1

4 [0, 10] −10.4029

Shekel10 𝐹
20
(𝑥) = −

10

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]

−1

4 [0, 10] −10.5364

the maximal FEs 40,000. The results are shown in Table 4
in terms of the mean number of FEs (MFEs) required to
converge to the threshold and successful rate (SR) in the
50 independent runs. “NaN” represents that no runs of the
corresponding algorithm converged below the predefined
threshold before meeting the maximum number of FEs. The
best results among the six algorithms are shown in boldface.

FromTable 5 it can be observed that all algorithms hardly
converge to the threshold for unimodal functions 𝐹

3
, 𝐹
5
, 𝐹
6
,

and 𝐹
8
and multimodal functions 𝐹

11
, 𝐹
12
, and 𝐹

14
. BBTLBO

converges to the threshold except for functions 𝐹
3
, 𝐹
9
, and

𝐹
14
. From the results of total average FEs, BBTLBO converges

faster than other algorithms on all unimodal functions and
the majority of multimodal functions except for functions
𝐹
15
,𝐹
16
,𝐹
19
, and𝐹

20
.The acceleration rates between BBTLBO

and other algorithms are mostly 10 for functions 𝐹
1
, 𝐹
2
, 𝐹
4
,

𝐹
7
, 𝐹
9
, 𝐹
10
, and 𝐹

13
. From the results of total average SR,

BBTLBO achieves the highest SR for those test functions of
which BBTLBO successfully converges to the threshold value.
It can be concluded that the BBTLBOhas a good performance
of convergence speed and successful rate (SR) of the solutions
for test functions in this paper.
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Figure 3: Comparison of the performance curves using different 𝑢.

5.5. Comparison of BBTLBO with DE Variants, PSO Variants,
and Some TLBO Variants. In this section, we compared
the performance of BBTLBO with other optimization algo-
rithms, including jDE [28], SaDE [29], PSOcfLocal [27],
PSOwFIPS [30], and TLBO [8, 9]. In our experiment, the
maximal FEs are used as the stopping criterion of all algo-
rithms, namely, 40,000 for all test functions. The results are
shown in Table 5 in terms of the mean optimum solution
and the standard deviation of the solutions obtained in the
50 independent runs by each algorithm on 20 test functions,

where “𝑤/𝑡/𝑙” summarizes the competition results among
BBTLBO and other algorithms. The best results among the
algorithms are shown in boldface.

The comparisons in Table 5 show that that all algorithms
perform well for 𝐹

15
, 𝐹
16
, and 𝐹

17
. Although SaDE outper-

forms BBTLBOon𝐹
14
, PSOcfLocal outperforms BBTLBOon

𝐹
9
and PSOwFIPS outperforms BBTLBO on 𝐹

19
and 𝐹
20
, and

BBTLBO offers the highest accuracy on functions 𝐹
3
, 𝐹
4
, 𝐹
5
,

𝐹
7
, 𝐹
8
, 𝐹
10
, 𝐹
11
, and 𝐹

18
. “𝑤/𝑡/𝑙” shows that BBTLBO offers

well accuracy for the majority of test functions in this paper.
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Figure 4: Comparison of the performance curves using different algorithms.

Table 5 concludes that BBTLBO has a good performance of
the solution accuracy for all unimodal optimization problems
and most complex multimodal optimization problems.

6. Two Real-World Optimization Problems

In this section, to show the effectiveness of the proposed
method, the proposed BBTLBO algorithm is applied to
estimate parameters of two real-world problems.

6.1. Nonlinear Function Approximation. The artificial neural
network trained by our BBTLBO algorithm is a three-layer

Input x Output y

Desired output dBBTLBO algorithm

ANN

−

Figure 5: BBTLBO-based ANN.

feed-forward network and the basic structure of the proposed
scheme is depicted in Figure 5. The inputs are connected
to all the hidden units, which in turn all connected to all
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Table 4: The mean number of FEs and SR with acceptable solutions using different algorithms.

Fun 𝑡 value BBPSO BBExp BBDE GBDE MGBDE BBTLBO
MFEs SR MFEs SR MFEs SR MFEs SR MFEs SR MFEs SR

𝐹
1

1𝐸 − 8 15922 100 17727 100 11042 100 19214 100 11440 100 1390 100
𝐹
2

1𝐸 − 8 17515 54 19179 94 12243 100 20592 90 12634 100 1500 100
𝐹
3

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0
𝐹
4

1𝐸 − 8 11710 24 8120 84 3634 6 7343 40 4704 34 525 100
𝐹
5

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 4100 100
𝐹
6

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 2603 100
𝐹
7

1𝐸 − 8 17540 6 21191 90 17314 100 22684 94 15322 98 2144 100
𝐹
8

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 9286 100
𝐹
9

1𝐸 − 2 17073 62 18404 42 14029 24 18182 52 17200 80 NaN 0
𝐹
10

1𝐸 − 8 24647 26 27598 90 18273 26 29172 82 18320 84 2110 100
𝐹
11

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 2073 100
𝐹
12

1𝐸 − 8 NaN 0 25465 50 NaN 0 27317 64 19704 24 2471 100
𝐹
13

1𝐸 − 8 16318 32 21523 58 11048 16 22951 64 14786 58 1470 100
𝐹
14

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0
𝐹
15

1𝐸 − 8 658 100 1176 100 1274 100 1251 100 1206 100 799 100
𝐹
16

1𝐸 − 8 657 98 1251 100 1294 100 1343 100 1308 100 813 100
𝐹
17

1𝐸 − 8 995 100 2626 100 1487 100 2759 100 1921 100 973 100
𝐹
18

−10.15 1752 34 6720 44 2007 52 4377 32 8113 64 1684 94
𝐹
19

−10.40 2839 34 8585 48 1333 42 6724 50 3056 66 2215 90
𝐹
20

−10.53 1190 36 8928 74 1115 40 6548 76 5441 80 2822 82

the outputs. The variables consist of neural network weights
and biases. Suppose a three-layer forward neural network
architecture with 𝑀 input units, 𝑁 hidden units, and 𝐾

output units, and the number of the variables is shown as
follows:

𝐿 = (𝑀 + 1) ∗ 𝑁 + (𝑁 + 1) ∗ 𝐾. (13)

For neural network training, the aim is to find a set of
weights with the smallest error measure. Here the objective
function is the mean sum of squared errors (MSE) over all
training patterns which is shown as follows:

MSE = 1

𝑄 ∗ 𝐾

𝑄

∑

𝑖=1

𝐾

∑

𝑗

1

2

(𝑑
𝑖𝑗
− 𝑦
𝑖𝑗
)

2

, (14)

where 𝑄 is the number of training data set, 𝐾 is the number
of output units, 𝑑

𝑖𝑗
is desired output, and 𝑦

𝑖𝑗
is output inferred

from neural network.
In this example, a three-layer feed-forward ANN with

one input unit, five hidden units, and one output unit is
constructed tomodel the curve of a nonlinear functionwhich
is described by the following equation [31]:

𝑦 = sin (2𝑥) exp (−2𝑥) . (15)

In this case, activation function used in the output layer is
the sigma function and activation function used in the output
layer is linear. The number (dimension) of the variables is
16 for BBTLBO-based ANN. In order to train the ANN,

200 pairs of data are chosen from the real model. For each
algorithm, 50 runs are performed. The other parameters
are the same as those of the previous investigations. The
results are shown in Table 6 in terms of the mean MSE
and the standard deviation obtained in the 50 independent
runs for three methods. Figure 6 shows the predicted time
series for training and test using different algorithms. It can
conclude that the approximation achieved by BBTLBO has
good performance.

6.2. Tuning of PID Controller. The continuous form of a
discrete-type PID controller with a small sampling period Δ𝑡
is described as follows [32]:

𝑢 [𝑘] = 𝐾𝑃
⋅ 𝑒 (𝑘) + 𝐾

𝐼
⋅

𝑘

∑

𝑖=1

𝑒 [𝑖] ⋅ Δ𝑡 + 𝐾𝐷
⋅

𝑒 [𝑘] − 𝑒 [𝑘 − 1]

Δ𝑡

,

(16)

where 𝑢[𝑘] is the controlled output, respectively. 𝑒[𝑘] = 𝑟[𝑘]−
𝑦[𝑘] is the error signal, 𝑟[𝑘] and 𝑦[𝑘] are the reference signal
and the system output, and 𝐾

𝑃
, 𝐾
𝐼
, and 𝐾

𝐷
represent the

proportional, integral and derivate gains, respectively.
For an unknown plant, the goal of this problem is to

minimize the integral absolute error (IAE), which is given as
follow [32, 33]:

𝑓 (𝑡) = ∫

∞

0

(𝜔
1 |
𝑒 (𝑡)| + 𝜔2

𝑢
2
(𝑡)) 𝑑𝑡 + 𝜔

3
𝑡
𝑟
, (17)
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Figure 6: Comparison of the performance curves using different algorithms.

Table 6: Comparisons between BBTLBO and other algorithms on
MSE.

Algorithm Training error Testing error
Mean Std Mean Std

TLBO 9.85𝑒 − 004 9.26𝑒 − 004 9.43𝑒 − 004 9.18𝑒 − 004

BBTLBO 3.45𝑒 − 004 2.02𝑒 − 004 2.76𝑒 − 004 1.82𝑒 − 004

where 𝑒(𝑡) and 𝑢(𝑡) are used to represent the system error and
the control output at time 𝑡, 𝑡

𝑟
is the rising time, and 𝜔

𝑖
(𝑖 = 1,

2, 3) are weight coefficients.
To avoid overshooting, a penalty value is adopted in the

cost function. That is, once overshooting occurs, the value

of overshooting is added to the cost function, and the cost
function is given as follows [32, 33]:

if 𝑑𝑦 (𝑡) < 0

𝑓 (𝑡) = ∫

∞

0

(𝜔
1 |
𝑒 (𝑡)| + 𝜔2

𝑢
2
(𝑡)

+𝜔
4





𝑑𝑦 (𝑡)





) 𝑑𝑡 + 𝜔

3
𝑡
𝑟

else

𝑓 (𝑡) = ∫

∞

0

(𝜔
1 |
𝑒 (𝑡)| + 𝜔2

𝑢
2
(𝑡)) 𝑑𝑡 + 𝜔

3
𝑡
𝑟

end,

(18)
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Table 7: Comparisons of parameters of PID controllers using different algorithms.

Algorithm 𝐾
𝑃

𝐾
𝐼

𝐾
𝐷

Overshoot (%) Peak time (s) Rise time (s) Cost function CPU time (s)
GA 0.11257 0.02710 0.28792 2.90585 1.65000 1.05000 16.34555 7.05900
PSO 0.11772 0.01756 0.27737 1.04808 1.65000 0.65000 11.60773 6.91000
BBTLBO 0.11605 0.01661 0.25803 0.34261 1.80000 0.70000 11.34300 7.04500
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Figure 7: Performance curves using different methods.

where 𝜔
4
is a coefficient and 𝜔

4
≫ 𝜔
1
, 𝑑𝑦(𝑡) = 𝑦(𝑡) −𝑦(𝑡− 1),

and 𝑦(𝑡) is the output of the controlled objective.
In our simulation, the formulas for the plant examined

are given as follows [34]:

𝐺 (𝑠) =

1958

𝑠
3
+ 17.89𝑠

2
+ 103.3𝑠 + 190.8

. (19)

The system sampling time is Δ𝑡 = 0.05 second and the
control value 𝑢 is limited in the range of [−10, 10]. Other rel-
evant system variables are 𝐾

𝑃
∈ [0, 1], 𝐾

𝐼
∈ [0, 1], and 𝐾

𝐷
∈

[0, 1]. The weight coefficients of the cost function are set as
𝜔
1
= 0.999, 𝜔

2
= 0.001 𝜔

3
= 2, and 𝜔 = 100 in this example.

In the simulations, the step response of PID control
system tuned by the proposed BBTLBO is compared with
that tuned by the standard genetic algorithm (GA) and the
standard PSO (PSO). The population sizes of GA, PSO, and
BBTLBO are 50, and the corresponding maximum numbers
of iterations are 50, 50, and 50, respectively. In addition, the
crossover rate is set as 0.90 and the mutation rate is 0.10 for
GA.

The optimal parameters and the corresponding perfor-
mance values of the PID controllers are listed in Table 7 and
the corresponding performance curves and step responses
curves are given in Figures 7 and 8. It can be seen from
Figure 7 and Table 7 that the PID controller tuned by
BBTLBO has the minimum cost function and CPU time.
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Figure 8: Step response curves using different methods.

Although PID controllers tuned by PSO have a smaller peak
time and rise time, their maximum overshoots are much
larger than the overshoot tuned by BBTLBO. It concludes that
the PID controller tuned by the BBTLBO could perform the
best control performance in the simulations.

7. Conclusion

In this paper, TLBO has been extended to BBTLBO which
uses the hybridization of the learning strategy in the stan-
dard TLBO and Gaussian sampling learning to balance the
exploration and the exploitation in teacher phase and uses a
modified mutation operation so as to eliminate the duplicate
learners in learner phase. The proposed BBTLBO algorithm
is utilized to optimize 20 benchmark functions and two
real-world optimization problems. From the analysis and
experiments, the BBTLBO algorithm significantly improves
the performance of the original TLBO, although it needs to
spend more CPU time than the standard TLBO algorithm
in each generation. From the results compared with other
algorithms on the 20 chosen test problems, it can be observed
that the BBTLBO algorithm has good performance by using
neighborhood search more effectively to generate better
quality solutions, although the BBTLBO algorithm does not
always have the best performance in all experiments cases of
this paper. It can be also observed that the BBTLBOalgorithm
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gives the best performance on two real-world optimization
problems compared with other algorithms in the paper.

Further work includes research into neighborhood search
based on different topological structures. Moreover, the
algorithm may be further applied to constrained, dynamic,
and noisy single-objective and multiobjective optimization
domain. It is expected that BBTLBOwill be used tomore real-
world optimization problems.
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“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.



The Scientific World Journal 17

[29] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[30] R. Mendes, J. Kennedy, and J. Neves, “The fully informed
particle swarm: simpler, maybe better,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 204–210, 2004.

[31] F. Herrera and M. Lozano, “Gradual distributed real-coded
genetic algorithms,” IEEE Transactions on Evolutionary Compu-
tation, vol. 4, no. 1, pp. 43–62, 2000.

[32] J. Liu, Advanced PID Control and MATLAB Simulation, Elec-
tronic Industry Press, 2003.

[33] J. Zhang, J. Zhuang, H. Du, and S. Wang, “Self-organizing
genetic algorithm based tuning of PID controllers,” Information
Sciences, vol. 179, no. 7, pp. 1007–1017, 2009.

[34] R. Haber-Haber, R. Haber, M. Schmittdiel, and R. M. del
Toro, “A classic solution for the control of a high-performance
drilling process,” International Journal of Machine Tools and
Manufacture, vol. 47, no. 15, pp. 2290–2297, 2007.



Research Article
Minimum Variance Distortionless Response
Beamformer with Enhanced Nulling Level Control via
Dynamic Mutated Artificial Immune System

Tiong Sieh Kiong,1 S. Balasem Salem,2 Johnny Koh Siaw Paw,2

K. Prajindra Sankar,2 and Soodabeh Darzi3

1 Power Engineering Center, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
2 Center of System and Machine Intelligence, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
3 Department of Electrical, Electronic & Systems Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

Correspondence should be addressed to Soodabeh Darzi; sdtutn@yahoo.com

Received 18 February 2014; Accepted 23 March 2014; Published 5 June 2014

Academic Editors: V. Bhatnagar and Y. Zhang

Copyright © 2014 Tiong Sieh Kiong et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce
or steer a strong beam toward the target signal according to the calculatedweight vectors.Minimumvariance distortionless response
(MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference
sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimalweight vector should
be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed
to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio
(SINR) for wanted signals.

1. Introduction

The evolution of adaptive beamforming was initiated in
military and aerospace applications through the employ-
ment of electronically steered antennas based on phased-
array technology. Typical applications include long-range
surveillance radar, active jammer rejection, and multibeam
antennas for space communications [1]. The same antenna
array techniques were then assumed suitable for mobile
radio communication to solve multipath fading and the
cochannel interference problem. A partially adaptive antenna
array technology, known as the intermediate frequency side
lobe canceller (SLC), was invented by Howells in the late
1950s [2]. This technology incorporates the capability of
automatic interference nulling. However, SLC was not fully
adaptive because the main beam has a fixed pattern, and the
auxiliary array contains only a few controlled elements. This
simple adaptive antenna facilitated the development of fully
adaptive array by Howells’ coworker, Applebaum, in 1965.

The algorithm, commonly known as the Howells-Applebaum
algorithm, was developed to maximize the signal-to-noise
ratio (SNR) at the output of the beamformer. At the same
time, in 1960, another independent research group led by
Windrow invented another adaptive array approach based
on linear covariance minimum variance (LCMV) [3]. This
algorithm, later known as theWindrow-Hoff LMS algorithm,
was developed based on the minimum mean square error
(MMSE) criterion for the automatic adjustment of array
weights. This algorithm is well known for its simplicity
but only achieves satisfactory performance under specific
operational conditions.Themajor drawback of this algorithm
is its low convergence rate, which refers to the speed by which
the mean of the estimated weights approaches the optimal
value, thereby making it unsuitable for certain applications.

In 1969, Capon introduced another adaptive beam-
former known as minimum variance distortionless response
(MVDR), which is a technique capable of resolving signals
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separated by a fraction of antenna beam width. This opti-
mum beamformer, also known as the LCMV beamformer,
requires only the knowledge of the desired signal direction
of arrival (DOA) to maximize the SNR. Another important
contribution was by Reed, Mallett, and Brennen in 1974.
They introduced a fast convergence algorithm known as the
sample matrix inversion (SMI) technique, which overcame
the problemof slow convergence faced by the LMS algorithm.
One of themost important factors in smart antenna processes
is beamforming, which refers to the allocation of signals in
particular positions and phase angles for each antenna for the
corresponding angle of the system [4].

Beamforming technology is a key technique in nulling
antenna. By performing some processes with the received
array signals, such as weighting and summation, beamform-
ing can help the antenna realize many advanced functions,
such as beam shaping, beam scanning, and beam nulling [5].
Reception beamforming is independently achieved at each
receiver; however, the transmitter in transmit beamforming
has to consider all receivers to optimize the beamformer
output [6, 7].

One of the beamforming algorithmused in smart antenna
is MVDR beamforming, which can calculate the weight
vector to determine the desired signal from the interference.
Moreover, MDVR maximizes the sensitivity in one direction
only [8]. The MVDR beamformer, also known as Capon
beamformer, minimizes the output power of the beamformer
under a single linear constraint on the response of the array
toward the desired signal. The idea of combining multiple
inputs in a statistically optimummanner under the constraint
of no signal distortion can be attributed to Darlington. Sev-
eral researchers developed beamformers, in which additional
linear constraints are imposed (e.g., Er and Cantoni) [9, 10].

Many approaches proposed the use of a mathematical
model to improve the robustness of the MVDR beamformer,
as presented in [11, 12]. Research on the artificial immune
system (AIS) and its application has become increasingly
important in the field of intelligent information systems [13–
15]. A new optimization technique was presented for the
design of linear antenna arrays. The proposed technique was
based on a novel variant of particle swarm optimization
(PSO) called Boolean PSO with adaptive velocity mutation.
The antenna arrays were optimized based on the require-
ments for maximizing the power gain at a desired direc-
tion and minimizing the side lobe level of the radiation
pattern [16]. A complex-valued genetic algorithm for the
optimization of beamforming in linear array antennas was
proposed. The algorithm was proven to enhance searching
efficiency significantly while effectively avoiding premature
convergence. Numerical results were presented to illustrate
the advantages of the proposed technique over conventional
pattern synthesis methods [17].

In this paper, the main goal is to design a beamforming
method based on MVDR in corporation with new dynamic
mutated artificial immune system (DM-AIS) algorithm in
order to enhance the null level at interference sources.
By using this method, finding a new mathematical model,
changing the filter hardware for signal processing, or chang-
ing the design of antenna based on the increased number

of elements is no longer necessary. Another reason for
proposing the new method is the difficulty in obtaining
the optimum value using any normal algorithm without
intensification. In this investigation, DM-AIS have been
applied in beamforming with uniform linear antenna arrays
of 0.5 𝜆 spacing between adjacent elements and radiating at
a frequency of 2.3 GHz. The rest of this paper is organized
as follows. Section 2 introduces the basics of adaptive beam-
forming. Sections 3 and 4 summarized a basis to describe
the conventional MVDR beamforming and AIS, respectively.
Section 5 shows the incorporation of MVDR with DM-AIS.
Simulation results of one user with two interferences and
comparison of conventional MVDR with mp-QP MVDR
and DM-AIS are reported in Section 6. And finally Section 7
concludes this investigation.

2. Background of Adaptive Beamforming

Adaptive beamforming is a technique for receiving a signal
of interest (SOI) from specific directions while suppressing
the interfering signals adaptively in other directions using an
array of sensors. This technique can automatically optimize
the array pattern by adjusting the elemental control weights
until a prescribed objective function is satisfied. This tech-
nique provides a means for separating a desired signal from
interfering signals.

Beamforming has numerous applications in radar, sonar,
seismology, microphone array speech processing, and, more
recently, wireless communications. In particular, the use of
antenna arrays, in combination with signal processing algo-
rithms at the base station, offers the possibility of exploiting
the spatial dimension to separate multiple cochannel users.
This approach provided increased channel capacity andwider
area coverage. Array beamforming methods in such systems
use the spatial dimension to combat interference, noise, and
multipath fading of the desired signal [11]. The outputs of the
individual sensors were linearly combined after being scaled
with the corresponding weights. This process optimizes the
antenna array to achieve maximum gain in the direction of
the desired signal and nulls in the direction of interferers. For
a beamformer, the output at any time 𝑛, 𝑦(𝑛) is given by a
linear combination of the data at𝑀 antennas, with 𝑥(𝑛) being
the input vector and 𝑤(𝑛) being the weight vector, as shown
in Figure 1:

𝑦 (𝑛) = 𝑤
𝐻
(𝑛)
∗
(𝑛) . (1)

Weight vector𝑊(𝑛) can be defined as follows:

𝑤 (𝑛) =

𝑀−1

∑

𝑁=0

𝑤
𝑛
,

𝑥 (𝑛) =

𝑀−1

∑

𝑛=0

𝑋
𝑛
.

(2)

For any algorithm that evades the matrix inverse operation
and uses the immediate gradient vector ∇𝐽(𝑛) for weight
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Figure 1: Linear array with elements along the 𝑦-axis.

vector upgrading, the weight vector at time 𝑛 + 1 can be
written as follows:

𝑊(𝑛 + 1) = 𝑊 (𝑛) +

1

2

𝜇 [∇𝐽 (𝑛)] , (3)

where 𝜇 is the step size parameter, which controls the speed
of convergence and lies between 0 and 1. The minimum
values of 𝜇 facilitate the sluggish concurrence and high-
quality estimation of the cost function. Comparatively, the
huge values of 𝜇 may direct to a rapid union. However, the
constancy over the least value may disappear:

0 < 𝜇 <

1

𝜆

. (4)

An exact calculation of instantaneous gradient vector ∇𝐽(𝑛)
is not possible because prior information on covariance
matrix 𝑅 and cross-correlation vector 𝑝 is needed. Thus, an
instantaneous estimate of gradient vector is given by

∇𝐽 (𝑛) = − 2𝑝 (𝑛) + 2𝑅 (𝑛)𝑊 (𝑛)

𝑅 (𝑛) = 𝑋 (𝑛)𝑋
𝐻
(𝑛) ,

𝑃 (𝑛) = 𝑑(𝑛)
∗
𝑋 (𝑛) .

(5)

By substituting values from (5) into (3), the weight vector
is derived as follows:

𝑊(𝑛 + 1) = 𝑊 (𝑛) + 𝜇 [𝑝 (𝑛) − 𝑅 (𝑛)𝑊 (𝑛)]

= 𝑊 (𝑛) + 𝜇𝑋 (𝑛) ⌊𝑑
∗
(𝑛) − 𝑋 (𝑛)𝑊 (𝑛)⌋

= 𝑊 (𝑛) + 𝜇𝑋𝑒
∗
(𝑛) .

(6)

The desired signal can be defined by the following three
equations:

𝑦 (𝑛) = 𝑤
𝐻
(𝑛) 𝑥 (𝑛)

𝑒 (𝑛) = 𝑑 (𝑛) ⋅ 𝑦 (𝑛)𝑊 (𝑛 + 1)

= 𝑊 (𝑛) + 𝜇𝑋 (𝑛) 𝑒
∗
(𝑛) .

(7)

Numerous algorithms were introduced for the design of
an adaptive beamformer [8]. One of the most popular

approaches for adaptive beamforming was proposed by
Capon [4]. His algorithm leads to an adaptive beamformer
with an MVDR. Some constraints, such as the antenna
gain being constant in the desired direction, are used to
ensure that the desired signals are not filtered out along
with the unwanted signals. The MVDR beamformer not
only minimizes the array output power but also maintains a
distortionless main lobe response toward the desired signal.
However, the MVDR beamformer may have an unacceptably
low nulling level, whichmay significantly degrade the perfor-
mance in the case of unexpected interfering signals. In partic-
ular, the performance of MVDR degrades in rapidly moving
jammer environments. This degradation occurs because of
jammer motion, which may bring jammers out of the sharp
notches of the adapted pattern. To achieve high interference
suppression and SOI enhancement, an adaptive array must
introduce deep and widened nulls in the DOAs of strong
interferences while keeping the desired signal distortionless.
Thus, the issue of nulling level control is especially important
for both deterministic and adaptive arrays [18].

3. Conventional MVDR Beamforming

When a beamformer has a constant response in the direction
of a useful signal, the LCMV algorithm becomes an MVDR
algorithm [19]. The MVDR algorithm is capable of suppress-
ing the interference, but with high value in SNR and low
noise. At the same time, theMVDRalgorithmdepends on the
steering vectors, which in turn depend on the incident angle
of the received signal from the element of the array antenna.
The direction of useful signal must be known and the output
power subject to a unity gain constraint in the direction of
desired signal must be minimized. The array output is given
by

𝑦 = 𝑤
𝐻
𝑥. (8)

The output power is as follows:

𝑝 = {𝐸




𝑦





2

} = 𝐸 {𝑤
𝐻
𝑥𝑥
𝐻
𝑤} = 𝑤

𝐻
𝐸 {𝑥𝑥

𝐻
𝑤} = 𝑤

𝐻
𝑅, (9)

where the 𝑅 covariance matrix should be (𝑀, 1) for the
received signal 𝑥 and𝐻 is the hermitian transpose.

The optimum weights are selected to minimize the array
output power𝑃MVDR whilemaintaining unity gain in the look
direction 𝑎(𝜃), which is the steering vector of the desired
signal. The MVDR adaptive algorithm can be written as
follows:

min
𝑤
{𝑤
𝐻
𝑅𝑤} subject to 𝑤𝐻𝑎 (𝜃) = 1. (10)

The steering vector 𝑎(𝜃) is given by

𝑎 (𝜃) =

[

[

[

[

[

[

[

1

exp {𝑗2𝜋
𝜆

(sin 𝜃
𝑖
) 𝑑}

exp {𝑗2𝜋
𝜆

(sin 𝜃
𝑖
) (𝑚 − 1) 𝑑}

]

]

]

]

]

]

]

, (11)
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Figure 2: (a, b) Four elements of the linear array.

where 𝑑 is the space between the elements of the antenna, 𝜃
𝑖
is

the desired angle, and𝑚 is the number of elements, as shown
in Figure 2.

The optimization weight vectors can then be acquired
using the following formula [20]:

𝑊MVDR =
𝑅
−1
𝑎 (𝜃)

𝑎
𝐻
(𝜃) 𝑅
−1
𝑎 (𝜃)

. (12)

These weights are the solution of the optimization problem
mentioned at (10) and with the use of four elements of array
antenna, four weights as below will be obtained:

𝑤MVDR =
[

[

[

[

𝑤
1

𝑤
2

𝑤
3

𝑤
4

]

]

]

]

. (13)

Subsequently, the beamformer weights are selected based
on minimum mean value of output power according to the
number of users inside the coverage area while maintain-
ing unity response in the desired direction. Nevertheless,
the restraint ensures that the signal passes through the
beamformer undistorted. Consequently, the output signal
power is similar to the look direction source power. The
total noise, including interferences and uncorrelated noise,
is then reduced by the minimization process. Notably, the
minimization of the total output noise, while constantly
maintaining the output signal, is the same as maximizing
the output SINR. However, for the optimal beamformer to
perform as described above and to maximize the SINR by
cancelling interferences, the number of interferences must
be less than or equal to 𝑀 − 2 because an array with 𝑀
elements has𝑀−1 degrees of freedom and has been utilized
by the constraint in the look direction. Given that theMVDR
beamformer maximizes sensitivity in one direction only, this
beamformer is unsuitable formultipath environments, where
the desired signal spreads in all directions [21].Themultipath
occurs in non-line-of-sight environments such as populated
urban areas, where numeorus scatterers are close to the users
and the base station.Thus, theMVDR beamformer may have
an unacceptably low nulling level, which may significantly
degrade performance in the case of unexpected interfering
signals. As a result, the beamforming optimization problem
is formulated as a multiparametric quadratic programming
(mp-QP) [18].

4. Artificial Immune System

The proposed usage of artificial intelligent system as the
enhancement method for the adaptive beamforming tech-
nique is based on a framework that is built around the
concept of reactive artificial immune system (AIS). AIS,
which is inspired by theoretical immunology and observed
immune functions, is a branch of the metaheuristic algo-
rithm with promising results in the field of optimization.
While AIS resembles some other metaheuristics algorithms
such as genetic algorithm (GA), except the recombination
operator, the former has code simplicity and is low in
computational cost.This AIS system is indeed based upon the
normal human immune system in the way that it is reactive
towards foreign elements. The immune system is highly
robust, adaptive, inherently parallel, and self-organized. It has
powerful learning and memory capabilities and presents an
evolutionary type of response to infectious foreign elements
[22, 23].

The main agents of the adaptive immune system are
lymphocytes that are are called the B cells which produce
antibodies to attack the enemy. Some B cells become “mem-
ory cells” which keep molecular records of past invader
and minimize the body’s response time to an infection. The
clonal selection principle is the whole process of antigen
recognition, cell proliferation, and differentiation into a
memory cell.

The clonal-selection theory proposes that as an antigen
enters the immune system certain B cells are selected based
on their reaction to this antigen to undergo rapid cloning
and expansion. This reaction is often termed the affinity
of that B cell (or antibody) for the given antigen. Those
B cells are selected, based on their affinity to an antigen,
to produce a number of clones to attack or neutralize the
invading antigen. Cells that have a higher degree of affinity
are allowed to produce more clones. The clonal production
develops immune cells that aremore adept at recognizing and
reacting to the antigen through mutation. B cell offsprings
undergo mutation based on an inverse proportionality to
their affinity values. Through this process, the affinity of
subsequent generations of B cells will have greater reaction
to the antigen, and more diversity will also have been added
to the system through the wider exploration afforded by
the high mutation rates of the cells with lower affinity
measures.
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The process of a standard clonal selection algorithm can
be summarized as follows [24, 25].

(1) Generate a random initial population of antibody𝐴𝑏,
given by

𝑃 (0) := {𝐴𝑏
1
(0) , . . . ., 𝐴𝑏

𝑛
(0)} . (14)

(2) Compute the fitness of each 𝐴𝑏

𝑃 (0) : {𝑓 (𝑥
1
(0) , . . . ., 𝑥

𝑛
(0))} . (15)

(3) Generate clones by cloning all cells in the 𝐴𝑏 popula-
tion. The amount of clone is given by

𝑁
𝐶
=

𝑛

∑

𝑖=1

round(
𝛽 ∙ 𝑁

𝑖

) , (16)

where𝑁
𝐶
is the total clones generated for each 𝐴𝑏, 𝛽

is the multiplying factor, and𝑁 is the number of 𝐴𝑏.
(4) Mutate the clone population to produce a mature

clone population with 𝛿 number of children.The new
𝐴𝑏 is composed of

𝑃

:= {𝐴𝑏



1
, . . . ., 𝐴𝑏



𝛿
} . (17)

(5) Evaluating affinity values of the clones’ population is

𝑃

: {𝑓 (𝑥



1
, . . . ., 𝑥



𝛿
)} . (18)

The next generation of𝐴𝑏 is obtained using𝐺 = 𝜀+ 𝛿
selection by choosing the best 𝜀 individuals out of the
𝐺 population.

(6) Select the best𝐴𝑏 to compose the new𝐴𝑏 population
by

𝑃new := 𝑠𝐺𝑃

. (19)

(7) Steps 3 to 6 are repeated until a predefined stopping
condition is reached.

5. MVDR Beamforming Incorporation
with New Dynamic Mutated Artificial
Immune System

In this paper, AIS with dynamic mutation (DM) was uti-
lized to enhance the null level of the MVDR beamforming
technique. In analogy, the adaptive antenna represents the
body of an organism, whereas the interference and noise
signal sources represent external harmful attacks toward the
organism. Hence, the adaptive antenna system will organize
its antibody to protect the body of organism from external
antigen attacks. The adaptive antenna system will try to
optimize through its AIS iteration process to develop deep
null at the DOA of the interference sources to achieve the
maximum SINR.

In this AIS algorithm, the weight vector 𝑤 will be gen-
erated as the system antibody. The algorithm will initiate by

generating a population of𝑁 antibodies, which is represented
by weight vectors 𝑊

𝑁
. The number of generated weight

vectors depends on the population size 𝑃size. For the first
iteration, the first set of weight vectors𝑊

1
is obtained from

the computation of the conventional MVDR weight vector.
The weight vectors in every antibody contain an𝑀 number
of weight vectors, depending on the number of sensors or
antenna elements used, and can be expressed as follows:

𝑤
1𝑀
= Real{𝑤mvdr}𝑀 + Imag{𝑤mvdr}𝑀

𝑤
2𝑀
= Real {𝑤

1𝑀

∗rand (𝑀, 𝑃Size − 1)}

+ Imag {𝑤
1𝑀

∗rand (𝑀, 𝑃Size − 1)}

...

𝑤
𝑁𝑀

= Real {𝑤
(𝑁−1)𝑀

∗rand (𝑀, 𝑃Size − 1)}

+ Imag {𝑤
(𝑁−1)𝑀

∗ rand (𝑀, 𝑃Size − 1)} .

(20)

In matrix format, the weight vectors in the population of
any iteration can be represented by

𝑊
𝑁𝑀

=

[

[

[

[

[

[

[

[

𝑤mvdr1 𝑤mvdr2 𝑤mvdr3 𝑤mvdr4
𝑤
11

𝑤
12

𝑤
13

𝑤
14

𝑤
21

𝑤
22

𝑤
23

𝑤
24

. . . .

. . . .

𝑤
𝑛1

𝑤
𝑛2

𝑤
𝑛3

𝑤
𝑛4

]

]

]

]

]

]

]

]

, (21)

where

𝑊
𝑁𝑀

is weight vectors of total population𝑁 with𝑀
sensors in each antenna;
𝑤mvdr is weight vectors fromMVDR beamformer;
𝑀 is number of sensor. In this study, antenna sensor
of (4, 1) is used;
𝑃size is population size;
𝑀 is number of sensor.

Each set of antibodies 𝑊 has amplitude and phase (𝐴∀𝜃)
to steer the radiation beam toward its target user and place
the deep null toward the interference sources to achieve
the optimum SINR. The best weight vector is determined
according to the fitness value obtained from fitness function
as shown below:

Fitness Function (FF) =
𝑃User

∑
𝑁

𝑛=1
𝑃Inter 𝑛 +Noise

, (22)

where 𝑃User = power of target user, 𝑃Inter = power of
interference, and𝑁 = number of interference sources.

The new candidate population of antibodies (weight
vectors) based on the mutation rate depends on the fitness
value of 𝑤 in (22), which is given by

𝑀rate = 𝑒
−(
5
√(𝐹𝑤best)

2
)
,

(23)

where 𝑀rate = mutation rate and 𝐹𝑤best = fitness of best
population weight.
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The mutation rate of clones is inversely proportional to
their antigenic affinity [24, 26]. A higher affinity denotes a
smaller mutation rate.

Themutations and clones needed to create the newweight
are given by

𝑊 = 𝑤best +𝑀rate
∗
(Real {rand (𝑀, 𝑃Size − 1)}

−Imag {rand (𝑀, 𝑃Size − 1)}) .
(24)

The 𝑛 antibodies generate 𝑁𝑐 clones proportional to their
affinities. The number of cloned antibodies 𝑁𝑐 can be
computed by

𝑁
𝐶
=

𝑛

∑

𝑖=1

round𝐵 ⋅ 𝑤
𝑖

, (25)

where 𝐵 is a multiplying factor with a value of 1 and 𝑤 is the
weight vector.

Each term of this sum corresponds to the clone size of
each selected antibody.The clones are then subjected to hyper
mutation and receptor editing. To enable the algorithm to
find the best solution, a deep null must be achieved to obtain
the maximum SINR. Therefore, the DM was introduced
to identify the best solution. The selection of the 10 best
solutions depends on the maximum SINR value. Thus, from
these 10 best solutions, DM-AIS can select three random
values from the 10 best weights to achieve the SINR size.
When the scaling factor is (0, 1, 2), the best value of the deep
null is derived:

𝑤
𝐷𝑀

= 𝑤
1𝑀
+ sf∗ (𝑤

2𝑀
− 𝑤
3𝑀
) , (26)

where𝑊
1
,𝑊
2
,𝑊
3
= randomweight select from the best three

solutions and sf = scaling factor from (0, 1, 2).
The next step is the clonal operation to obtain the best

solution.
Affinity is applied to achieve the maximum power for

target and deep null for interference. If this value is the
best, it will store and yield the final weight value to stop the
calculation. The DM-AIS steps in an adaptive antenna are as
follows.

(1) A random initial population of𝑊 is generated, which
is given by

𝑊
𝑁
(𝑖) := {𝑊

1
(𝑖) , . . . ,𝑊

𝑛
(𝑖)} . (27)

(2) The fitness of each𝑊 is computed:

𝑃 (𝑖) : {𝑓 (𝑤
1
(𝑖) , . . . , 𝑤

𝑛
(𝑖))} . (28)

(3) Clones are generated by cloning all the cells in the
𝑊 population.The amount of clone is obtained using
(23).

(4) The clone population is mutated to produce a mature
clone population with 𝑖 number of weight.The rate of
mutation is given by

𝑀rate = 𝑒
−(
5
√(𝐹𝑤best)

2
)
.

(29)

Thus, the new 𝑊 is composed of 𝑊


𝑁
(𝑖) =

{𝑊


1
, . . . ,𝑊



𝑖
}.

(5) The affinity values of the clone population are
expressed as follows:

𝑊


𝑁
(𝑖) : {𝑓 (𝑊



1
, . . . ,𝑊



𝑖
)} . (30)

The next generation of 𝑊 is obtained using (20).
The best 𝑊best is selected to compose the new 𝑊new
population as follows:

𝑊new = 𝑊best 𝑊


𝑁
(𝑖) . (31)

(6) The 10 best weight vectors are selected depending on
the selection assumption (𝑃size) to identify the best
number of the weight.

(7) The vectors are mutated by selecting three random
weights from the 10 best weights using (26).

(8) Steps 3 to 6 are repeated until a predefined stopping
condition is reached.

Remarks. Similar to weight vector optimization techniques
based on the support vector regression (SVR-AS) [27] and
mp-QPMVDR [18], the proposedDM-AISMVDR technique
is also effective in finding the optimal weight vector for
an antenna array under specific conditions. The differences
among the methodologies are as follows.

(1) The proposed DM-AIS MVDR determines the opti-
mal weight vector of an antenna array through its
cloning and mutation process to fine-tune the weight
vector toward a radiation pattern that can generate
deep null toward the interference source, while main-
taining high gain at the target users’ directions for an
instantaneous scenario.

(2) The mp-AP MVDR produces the optimal weight
vector of an antenna array for the optimal problem
of the receiving beam based on a multiparametric
approach [18].

(3) The SVR-AS requires the radiation pattern as the train
data to find the optimal weight vector of an antenna
array [27].

The benefits of the proposed approach are as follows.

(1) The nulling extent can be deepened.
(2) This approach can guarantee that the nulling levels

in the specified areas are better than conventional
MVDR.

(3) This approach does not require pretrain data and does
not require complex mathematical computation to
identify the optimal weight vector. Instead,merely the
DOAs of the target user and interference sources are
required for DM-AISMVDR to determine its optimal
weight vector for best radiation beamforming.

6. Simulation and Results

6.1. One User with Two Interferences. In this section, simu-
lations were conducted to validate the proposed approach.
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Table 1: Parameters of DM-AIS.

Dynamic mutated parameters Value
Number of population 20
Allocated number of best population 10
Clone size 4
Number of max. iteration 20
Scaling factor (0, 1, 2)

Table 2: Weight vector after 10 and 20 iterations for one user at 40∘
and interference at 50∘ and 30∘.

Sensor number Weight 10 iterations 20 iterations
1 𝑊

1
−4.5333 − 0.6902𝑗 −4.6171 − 0.7212𝑗

2 𝑊
2

−2.4985 + 3.8447𝑗 −2.5978 + 3.9071𝑗

3 𝑊
3

−1.3543 − 1.9258𝑗 −1.3966 − 1.9127𝑗

4 𝑊
4

−3.7544 + 0.6641𝑗 −3.7899 + 0.6865𝑗

The uniform linear array (ULA) consists of four elements
(𝑀 = 4) equispaced by half-wavelength. The desired signal
and two interference signals are plane waves impinging on
the ULA from the directions 50∘, 30∘, and 40∘, respectively.
In this simulation, the SNR from 5 dB to 30 dB was used
for the desired signal and the two interference signals. The
beam pattern nulling level should be below −70 dB. The
complex vector of beamformer weights calculated by the
aforementioned (27)–(31) is presented in Table 2, whereas the
beam patterns generated are plotted in Figure 3. All the beam
patterns have nulls at the DOAs of the interference signals
and maintain a distortionless response for the SOI. However,
DM-AIS place deep nulls (with nulling level equal to −80 dB)
at the DOAs of two interference signal sources. The MVDR
after 10 iterations reduces nulling levels compared with the
MVDR after 20 iterations (Table 1).

Figure 3 gives the ratio of SINR 67.9479 dB in 20 iterations
while at 10 iterations the SINR is 40.5387 dB of the aforemen-
tioned beamformer for the previous scenario. It can be seen
that the DM-AIS at 20 iterations shows better ratio which is
122.49% of improvement. If we compare the improvement in
SINR between normal AIs andDM-AIS for the same scenario
in 10 iterations we obtain the percentage 131.48%.

But an insignificant increase in the SINRof 0.2 is obtained
for an increase in the number of iterations. The iterations
were taken from 30 till 50, as shown in Figure 4. This implies
that there is no need to increase the time required for
simulations. The 20 iterations will give the best results by
the short time. These results should be saved. The simulated
results demonstrate that the DM-AIS with dynamic mutation
rate give a good result effectively at a faster speed. The
simulated results are dynamically adapting its value when the
SINR changes. In comparison, the dynamicmutation rate has
shown better results with finer resolutions.

We can then discriminate the difference in results after
using the new method with DM-AIS. To justify the results,
the new method must be proven to be more effective than
any previously suggested method. The new method should
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Figure 3: Power response DM-AIS with 10 and 20 iterations for user
at 40∘ with interference at 30∘ and 50∘.
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Figure 4: Number of iterations with SINR of DM-AIS for one user
at 40∘ and interference at 50∘ and 30∘ by using 4 elements.

Table 3: Weight vector for two users with four interferences using
DM-AIS.

Sensor number Weight 10 iterations 20 iterations
1 𝑊

1
0.3330 − 0.2789𝑗 0.3652 − 0.2806𝑗

2 𝑊
2

0.4506 − 0.0414𝑗 0.4622 − 0.0401𝑗

3 𝑊
3

0.4590 + 0.0487𝑗 0.5500 + 0.0474𝑗

4 𝑊
4

0.3348 + 0.2723𝑗 0.3292 + 0.2748𝑗

have more applications by increasing the number of users
and reducing interference. The results shown in Table 3 and
Figure 5 provide details for two users at angles 0∘ and 10∘ with
interference at angles 50∘, −50∘, 30∘, and −30∘.
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Table 4: Weight vector values of conventional MVDR, mp-QP
MVDR, and DM-AIS.

Sensor number Conventional
MVDR mp-QP MVDR DM-AIS MVDR

1 0.1626 − 0.0118𝑗 0.1077 + 0.0469𝑗 0.1594 − 0.0123𝑗

2 0.1249 + 0.0093𝑗 0.1269 + 0.0072𝑗 0.1224 + 0.0123𝑗

3 0.0630 − 0.0026𝑗 0.0808 + 0.0264𝑗 0.0626 − 0.0020𝑗

4 0.0143 + 0.0059𝑗 0.0441 − 0.0007𝑗 0.0185 + 0.0055𝑗

5 0.1264 + 0.0058𝑗 0.1106 − 0.0188𝑗 0.1196 + 0.0110𝑗

6 0.1107 − 0.0291𝑗 0.1043 − 0.0196𝑗 0.1232 − 0.0308𝑗

7 0.0212 − 0.0075𝑗 0.1015 − 0.0267𝑗 0.0180 − 0.0080𝑗

8 0.0794 − 0.0279𝑗 0.0846 − 0.0012𝑗 0.0747 − 0.0209𝑗

9 0.1337 + 0.0280𝑗 0.1293 + 0.0069𝑗 0.1274 + 0.0230𝑗

10 0.1639 + 0.0306𝑗 0.1102 − 0.0204𝑗 0.1743 + 0.0223𝑗
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Figure 5: Power response for two users at 0 and 10 interference
sources at 50∘, −50∘, 30∘, and −30∘ with DM-AIS after 10 and 20
iterations.

6.2. Comparison of Conventional MVDR with MP-QPMVDR
and DM-AIS. To prove the importance of this project, the
results of this work were those of previous work to enhance
theMVDR in smart antennas. From the studied literature, no
researcher has discussed or addressed beamforming by using
four elements in the smart antenna or by applying DM-AIS
in the smart antenna.Therefore, the results of this project are
compared with robust MVDR beamforming for nulling level
control via multiparametric quadratic programming results
using 10 elements and with the direction of user at 0∘ with
interference at 40∘ and −40∘ [8]. Figure 6 and Table 4 show
the results.

Figure 6 shows that all beam patterns have nulls in the
interference signals and maintain a distortionless response
for the SOI.However,DM-AISMVDRplaces deepnulls (with
nulling level equal to −90 dB) at the two interference signal
sources, whereas mp-QP MVDR obtained a null level equal

mp-QP MVDR
Conventional MVDR
DM-AIS MVDR
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Figure 6: Comparison among DM-IS, mp-QPMVDR, and MVDR
of one user at 0∘ and interference 40∘ and −40∘.

Table 5: Illustration of the SINR for DM-AIS, mp-QP MVDR, and
MVDR.

MVDR SINR
(dB)

mp-QP MVDR
SINR (dB)

DM-AIS MVDR
SINR (dB)

25 76.9897 86.9897

to −80 dB. Therefore, the DM-AIS with MVDR response
presents lower nulling levels compared with the new mp-QP
MVDR.Themaximum SINRs calculation for each technique
is compared with one another. The maximum value obtained
from DM-AIS is shown in Table 5.

This result shows that the new beamforming using
artificial intelligence to determine the desired signal of
user is effective and that mathematical equations or filter
hardware signal processing are unnecessary. For the proposed
approach, the weights value vectors make it difficult to obtain
the optimum value by using any other algorithm without
intensification.

7. Conclusion

A new DM-AIS was presented and applied in adaptive
beamforming with four elements of linear antenna arrays.
The proposed DM-AIS was able to enhance the MVDR
technique through further optimization of weight vector,
which aimed to control the nulling level of interference
and the directionality of the desired signal. Very low levels
of interference with good accuracy were achieved even in
the case of multiple users or multiple interferences. The
results of the proposed approach were compared with those
of the mp-QP MVDR and conventional MVDR, and the
effectiveness of the proposed approach in minimizing the
power of interference and increasing SINR was observed.
Finally, the DM-AIS can be useful to antenna engineers
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for the pattern synthesis of antenna arrays because of its
good accuracy and the lack of a requirement for complicated
mathematical functions.
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Biogeography-based optimization (BBO) is a relatively new bioinspired heuristic for global optimization based on themathematical
models of biogeography. By investigating the applicability and performance of BBO for integer programming, we find that the
original BBO algorithm does not performwell on a set of benchmark integer programming problems.Thuswemodify themutation
operator and/or the neighborhood structure of the algorithm, resulting in three new BBO-based methods, named BlendBBO,
BBO DE, and LBBO LDE, respectively. Computational experiments show that these methods are competitive approaches to solve
integer programming problems, and the LBBO LDE shows the best performance on the benchmark problems.

1. Introduction

An integer programming problem is a discrete optimization
problem where the decision variables are restricted to inte-
ger values. In computer science and operations research, a
remarkably wide range of problems, such as project schedul-
ing, capital budgeting, goods distribution, and machine
scheduling, can be expressed as integer programming prob-
lems [1–6]. Integer programming also has applications in
bioinspired computational models such as artificial neural
networks [7, 8].

The general form of an integer programming model can
be stated as

min 𝑓 ( ⃗𝑥)

s.t. ⃗𝑥 ∈ ⃗𝑆 ⊆ Z
𝐷
,

(1)

where ⃗𝑥 is a 𝐷-dimensional integer vector, Z𝐷 is a 𝐷-
dimensional discrete space of integers, and ⃗𝑆 is a feasible
region that is not necessarily bounded. Any maximization
version of integer programming problems can be easily
transformed to a minimization problem.

One of themost well-knowndeterministic approaches for
solving integer programming problems is the branch-and-
bound algorithm [9]. It uses a “divide-and-conquer” strategy
to split the feasible region into subregions, obtaining for
each subregion a lower bound by ignoring the integrality
constraints and checkingwhether the corresponding solution
is a feasible one; if so, the current solution is optimum to the
original problem; otherwise recursively split and tackle the
subregions until all the variables are fixed to integers.

However, integer programming is known to be NP-
hard [10], and thus the computational cost of deterministic
algorithms increases very rapidly with problem size. In recent
years, evolutionary algorithms (EA), which are stochastic
search methods inspired by the principles of natural biolog-
ical evolution, have attracted great attention and have been
successfully applied to a wide range of computationally diffi-
cult problems. These heuristic algorithms do not guarantee
finding the exact optimal solution in a single simulation
run, but in most cases they are capable of finding acceptable
solutions in a reasonable computational time.

Genetic algorithms (GA) are one of the most popular EA,
but the encoding of the integer search space with fixed length
binary strings as used in standard GA is not feasible for inte-
ger problems [11].Many other heuristics, such as evolutionary
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strategy (ES) [12], particle swarm optimization (PSO) [13],
and differential evolution (DE) [14], are initially proposed
for continuous optimization problems. However, they can be
adapted to integer programming by embedding the integer
space into the real space and truncating or rounding real
values to integers, and the applicability and performance of
such approach are demonstrated by experimental studies.

Kelahan and Gaddy [15] conducted an early study that
performs random search in integer spaces in the spirit
of a (1 + 1)-ES; that is, at each iteration a child solu-
tion vector is generated by adding a random vector to
the parent vector, and the better one between the parent
and the child is kept for the next generation. Rudolph
[11] developed a (𝜇 + 𝜆)-ES based algorithm, which uses
the principle of maximum entropy to guide the con-
struction of a mutation distribution for arbitrary search
spaces.

Laskari et al. [16] studied the ability of PSO for solving
integer programming problems. On their test problems, PSO
outperforms the branch-and-bound method in terms of
number of function evaluations (NFE), and PSO exhibits
high success rates even in cases where the branch-and-bound
algorithm fails. Improved versions of PSO, including the
quantum-behaved PSO which is based on the principle of
state superposition and uncertainty [17] and barebones PSO
which is based on samples from a normal distribution and
requires no parameter tuning [18], have also been applied
and shown to be efficient alternatives to integer programming
problems.

Omran and Engelbrecht [19] investigated the perfor-
mance of DE in integer programming. They tested three
versions of DE and found that the self-adaptive DE (SDE)
requiring no parameter tuning is the most efficient and
performs better than PSO.

In this paper, we propose three algorithms for integer
programming based on a relatively new bioinspired method,
namely, biogeography-based optimization (BBO).Wemodify
the mutation operator of the original BBO to enhance
its exploration or global search ability and adopt a local
neighborhood structure to avoid premature convergence.
Experimental results show that our methods are competitive
approaches to solving integer programming problems.

2. Biogeography-Based Optimization

Biogeography is the science of the geographical distribution
of biological organisms over space and time. MacArthur and
Wilson [20] established the mathematical models of island
biogeography, which show that the species richness of an
island can be predicted in terms of such factors as habitat
area, immigration rate, and extinction rate. Inspired by this,
Simon [21] developed the BBO algorithm, where a solution
vector is analogous to a habitat, the solution components are
analogous to a set of suitability index variables (SIVs), and
the solution fitness is analogous to the species richness or
habitat suitability index (HSI) of the habitat. Central to the
algorithm is the equilibrium theory of island biogeography,
which indicates that high HSI habitats have a high species

HSI

Ra
te

I = E

𝜇

𝜆

Figure 1: A linear model of emigration and immigration rates of a
habitat.

emigration rate and low HSI habitats have a high species
immigration rate. For example, in a linear model of species
richness (as illustrated in Figure 1), a habitat𝐻

𝑖
’s immigration

rate 𝜆
𝑖
and emigration rate 𝜇

𝑖
are calculated based on its

fitness 𝑓
𝑖
as follows:

𝜆
𝑖
= 𝐼(

𝑓max − 𝑓𝑖
𝑓max − 𝑓min

)

𝜇
𝑖
= 𝐸(

𝑓
𝑖
− 𝑓min

𝑓max − 𝑓min
) ,

(2)

where 𝑓max and 𝑓min are, respectively, the maximum and
minimum fitness values among the population and 𝐼 and
𝐸 are, respectively, the maximum possible immigration rate
and emigration rate. However, there are other nonlinear
mathematical models of biogeography that can be used for
calculating the migration rates [22, 23].

Migration is used to modify habitats by mixing features
within the population. BBO also has a mutation operator
for changing SIV within a habitat itself and thus probably
increasing diversity of the population. For each habitat 𝐻

𝑖
,

a species count probability 𝑃
𝑖
computed from 𝜆

𝑖
and 𝜇

𝑖

indicates the likelihood that the habitat was expected a priori
to exist as a solution for the problem. In this context, very
high HSI habitats and very low HSI habitats are both equally
improbable, andmediumHSI habitats are relatively probable.
Themutation rate of habitat𝐻

𝑖
is inversely proportional to its

probability:

𝜋
𝑖
= 𝜋max (1 −

𝑃
𝑖

𝑃max
) , (3)

where 𝜋max is a control parameter and 𝑃max is the maximum
habitat probability in the population.

Algorithm 1 describes the general framework of BBO
for a 𝐷-dimensional global numerical optimization problem
(where 𝑙

𝑑
and 𝑢

𝑑
are the lower and upper bounds of the 𝑑th

dimension, respectively, and rand is a function that generates
a random value uniformly distributed in [0, 1]).
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(1) Randomly initialize a population of 𝑛 solutions (habitats);
(2) while stop criterion is not satisfied do
(3) for 𝑖 = 1 to 𝑛 do
(4) Calculate 𝜆

𝑖
, 𝜇
𝑖
, and 𝜋

𝑖
according to 𝑓

𝑖
;

(5) for 𝑖 = 1 to 𝑛 do
(6) for 𝑑 = 1 to 𝐷 do
(7) if rand() < 𝜆

𝑖
then //migration

(8) Select a habitat𝐻
𝑗
with probability∝ 𝜇

𝑗
;

(9) 𝐻
𝑖,𝑑
← 𝐻
𝑗,𝑑
;

(10) for 𝑖 = 1 to 𝑛 do
(11) for 𝑑 = 1 to 𝐷 do
(12) if rand() < 𝜋

𝑖
then //mutation

(13) 𝐻
𝑖,𝑑
← 𝑙
𝑑
+ rand() × (𝑢

𝑑
− 𝑙
𝑑
);

(14) Evaluate the fitness values of the habitats;
(15) Update 𝑓max, 𝑃max, and the best known solution;
(16) return the best known solution.

Algorithm 1: The original BBO algorithm.

Typically, in Line 8 we can use a roulette wheel method
for selection, the time complexity of which is 𝑂(𝑛). It is
not difficult to see that the complexity of each iteration of
the algorithm is 𝑂(𝑛2𝐷 + 𝑛𝑂(𝑓)), where 𝑂(𝑓) is the time
complexity for computing the fitness function 𝑓.

3. Biogeography-Based Heuristics for
Integer Programming

In BBO, the migration operator provides good exploitation
ability, while the broader exploration of the search space is
mainly based on themutation operator. Simon [21] suggested
that 𝜋max should be set to a small value (about 0.01), which
results in low mutation rates. However, when being applied
to integer programming, we need to use higher mutation
rates to improve the exploration of search space. According to
our experimental studies, when 𝜋max is set to about 0.25∼0.3,
the BBO algorithm exhibits the best performance on integer
programming problems.

Note that the migration operator does not violate the
integer constraints, and the rounding of real values to integers
is required only aftermutations (Line 13 of Algorithm 1). Nev-
ertheless, even using a higher mutation rate, the performance
of BBO is far from satisfactory for integer programming.This
is mainly because randommutation operator does not utilize
any information of the population to guide the exploration of
search space. In this work, we introduce two other mutation
operators to BBO, which results in three variants of BBO for
integer programming.

3.1. A BlendedMutationOperator. In the first variant, namely,
BlendBBO, we use a blended mutation operator, which
is motivated by the blended crossover operator used by
Mühlenbein and Schlierkamp-Voosen [24] in GA and by Ma
and Simon [25] in constrained optimization. In our approach,
if a component of vector 𝐻

𝑖
is subject to mutate, we first

select another vector 𝐻
𝑗
with probability ∝ 𝜇

𝑗
and then

use the following equation to work out the new value of the
component:

𝐻
𝑖,𝑑
= round (𝛼𝐻

𝑖,𝑑
+ (1 − 𝛼)𝐻

𝑗,𝑑
) , (4)

where 𝛼 is a random value uniformly distributed in [0, 1].
Note that if the 𝑑th dimension of the search space has a
bound, (4) will never result in a value outside the bound.

Moreover, we employ an elitism mechanism in solution
update (as used in ES [12, 26]): the migration operator
always generates a new vector𝐻

𝑖
for each existing vector𝐻

𝑖

(rather than directly changing𝐻
𝑖
); if𝐻

𝑖
is better than𝐻

𝑖
, no

mutation will be applied and 𝐻
𝑖
directly enters to the next

generation; otherwise the mutation operator is applied to𝐻
𝑖
.

This not only decreases the required NFE but also increases
the convergence speed of the algorithm. The algorithm
flow of BBO with the blended mutation is presented in
Algorithm 2.

3.2. DE Mutation Operator. The second variant, namely,
BBO DE, replaces the random mutation operator with the
mutation operator of DE, which mutates a vector component
by adding theweighted difference between the corresponding
components of two randomly selected vectors to a third one:

𝐻
𝑖,𝑑
= round (𝐻

𝑟1 ,𝑑
+ 𝐹 (𝐻

𝑟2 ,𝑑
− 𝐻
𝑟3 ,𝑑
)) , (5)

where 𝑟
1
, 𝑟
2
, and 𝑟

3
are three unique randomly selected habitat

indices that are different to 𝑖, and 𝐹 is a constant scaling
coefficient.

DE is well known for its good exploration ability, and the
combination of BBO migration and DE mutation achieves a
good balance between exploitation and exploration. BBO DE
also uses our new solution update mechanism described
above. Therefore, the algorithm flow of BBO DE simply
replaces Lines 15 and 16 of Algorithm 2 with the DEmutation
operation described by (5).
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(1) Randomly initialize a population of 𝑛 solutions (habitats);
(2) while stop criterion is not satisfied do
(3) for 𝑖 = 1 to 𝑛 do
(4) Calculate 𝜆

𝑖
, 𝜇
𝑖
, and 𝜋

𝑖
according to 𝑓

𝑖
;

(5) for 𝑖 = 1 to 𝑛 do
(6) Let𝐻

𝑖
= 𝐻
𝑖
;

(7) for 𝑑 = 1 to 𝐷 do
(8) if rand() < 𝜆

𝑖
then //migration

(9) Select a habitat𝐻
𝑗
with probability∝ 𝜇

𝑗
;

(10) 𝐻


𝑖,𝑑
← 𝐻
𝑗,𝑑
;

(11) if 𝑓(𝐻
𝑖
) < 𝑓(𝐻



𝑖
) then 𝐻

𝑖
← 𝐻


𝑖
;

(12) else
(13) for 𝑑 = 1 to 𝐷 do
(14) if rand() < 𝜋

𝑖
then //mutation

(15) Let 𝛼 = rand() and select a habitat𝐻
𝑗
with probability∝ 𝜇

𝑗
;

(16) 𝐻
𝑖,𝑑
← round(𝛼𝐻

𝑖,𝑑
+ (1 − 𝛼)𝐻

𝑗,𝑑
);

(17) Evaluate the fitness values of the habitats;
(18) Update 𝑓max, 𝑃max, and the best known solution;
(19) return the best known solution.

Algorithm 2: The BBO with the blended mutation for integer programming.

3.3. Local Topology of the Population. The original BBO uses
a fully connected topology; that is, all the individual solutions
are directly connected in the population and can migrate
with each other. But such a global topology is computa-
tionally intensive and is prone to premature convergence.
To overcome this problem, our third variant replaces the
global topology with a local one. One of the simplest local
topologies is the ring topology, where each individual is
directly connected to two other individuals [27, 28]. But here
we employ a more generalized local topology, the random
topology, where each individual has 𝐾 immediate neighbors
that are randomly selected from the population and 𝐾 is a
control parameter [28].

In consequence, whenever an individual vector 𝐻
𝑖
is to

be immigrated, the emigrating vector is chosen from its
neighbors rather than the whole population, based on the
migration rates. The neighborhood structure can be saved
in an 𝑛 × 𝑛 matrix 𝐿: if two habitats 𝐻

𝑖
and 𝐻

𝑗
are directly

connected then 𝐿(𝑖, 𝑗) = 1; otherwise 𝐿(𝑖, 𝑗) = 0. It is easy to
see that the complexity of each iteration of the algorithm is
𝑂(𝑛𝐾𝐷 + 𝑛𝑂(𝑓)).

Storn and Price [14] have proposed several different
strategies on DE mutation. The scheme of (5) is denoted
as DE/rand/1. Another scheme is named DE/best/1, which
always chooses the best individual of the population as𝐻

𝑟1
in

(5). Omran et al. [29] extended it to the DE/lbest/1 scheme,
which uses a ring topology and always chooses the better
neighbor of the vector to be mutated.

In our approach, BBO migration and DE mutation share
the same local random topology. That is, each 𝐻

𝑖
individual

has 𝐾 neighbors, and at each time an 𝐻
𝑗
is chosen from

the neighbors with probability ∝ 𝜇
𝑗
to participate in the

mutation such that

𝐻
𝑖,𝑑
= round (𝐻

𝑗,𝑑
+ 𝐹 (𝐻

𝑟2,𝑑
− 𝐻
𝑟3 ,𝑑
)) . (6)

Moreover, if the current best solution has not been
improved after every 𝑛

𝑝
generation (where 𝑛

𝑝
is a predefined

constant), we reset the neighborhood structure randomly.
The third variant is named LBBO LDE, and it also uses

the same solution update mechanism as the previous two
variants.

4. Computational Experiments

We test the three variants of BBO on a set of integer
programming benchmark problems, which are taken from
[16, 30, 31] and frequently encountered in the relevant liter-
ature. The details of the benchmark problems are described
in the Appendix. For comparison, we also implement the
basic BBO, DE, and SDE [19] for integer programming. The
branch-and-bound method is not included for comparison,
because it has shown that DE outperforms branch-and-
bound on most test problems [16, 19].

For all the six algorithms, we use the same population size
𝑛 = 50 and run them on each problem for 40 times with
different random seeds. The migration control parameters
are set as 𝐼 = 𝐸 = 1 for BBO, BlendBBO, BBO DE,
and LBBO LDE, and the mutation control parameter 𝜋max
is set to 0.01 for BBO and 0.25 for BlendBBO (BBO DE
and LBBO LDE do not use this parameter). Empirically, the
neighborhood size 𝐾 and the threshold of nonimprovement
generations 𝑛

𝑝
are both set to 3 for LBBO LDE. The other

parameters with regard to DE and SDE are set as suggested in
[14, 32].

The first two problems 𝐹
1
and 𝐹

2
are high-dimensional

problems. For 𝐹
1
, we, respectively, consider it in 10 and

30 dimensions. Table 1 presents the success rates (SR) and
required NFE of the algorithms to achieve the optimum
in 10 dimensions, and Figure 2 presents the corresponding
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Table 1: SR and required NFE of the algorithms on 𝐹
1
in 10

dimensions.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 20% 1946 2215 2080.50 190.21
DE 100% 3200 4100 3777.50 239.78
SDE 100% 3050 4050 3762.40 265.23
BBO DE 100% 3102 3964 3674.80 269.07
LBBO LDE 100% 2061 2694 2493.75 145.59

Table 2: SR and required NFE of the algorithms on 𝐹
1
in 30

dimensions.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 0% NA NA NA NA
DE 0% NA NA NA NA
SDE 85% 7850 11350 9301.00 1130.10
BBO DE 90% 6765 9752 8204.25 920.39
LBBO LDE 100% 5923 7071 6471.60 272.29

convergence curves of the algorithms. As we can see, the
original BBO fails to solve the problem, and the SR of
BlendBBO is only 20%. The four algorithms utilizing the DE
mutation operator can guarantee the optimal result on the 10-
dimensional problem, among which LBBO LDE shows the
best performance, and the other three algorithms have similar
performance, but the result of BBO DE is slightly better than
DE and SDE.

Table 2 and Figure 3, respectively, present the results
and the convergence curves of the algorithms on 𝐹

1
in

30 dimensions. On this high-dimensional problem, BBO,
BlendBBO, and DE all fail to obtain the optimum, SDE and
BBO DE, respectively, have SR of 85% and 90% for obtaining
the optimum, and only our LBBO LDE can always guarantee
the optimum.

From the convergence curves we can also find that the
BBO algorithm converges very fast at the early stage, but
thereafter its performance deteriorates because it is ineffective
to explore other potentially promising areas of the search
space. By combining with the DE mutation operator, our
hybrid BBO methods inherit the fast convergence speed of
BBO, at the same time taking advantage of the exploration
ability of DE.

For𝐹
2
, we, respectively, consider it in 5 and 15 dimensions,

the experimental results of which are, respectively, presented
in Tables 3 and 4 and the convergence curves of which are
presented in Figures 4 and 5. The results are similar to those
of 𝐹
1
: for the low dimensional problem, SDE, BBO DE, and

LBBO LDE are efficient; for the high-dimensional problem,
only LBBO LDE can guarantee the optimum; the perfor-
mance LBBO LDE is the best while that of BBO is the worst;
SDE performs better than DE and BBO DE performs slightly
better than SDE, and BlendBBO outperforms BBO but is
worse than the algorithms with the DE mutation operator.
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Figure 2: The convergence curves of the algorithms on 𝐹
1
in 10

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.
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Figure 3: The convergence curves of the algorithms on 𝐹
1
in 30

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.

Table 3: SR and required NFE of the algorithms on 𝐹
2
in 5

dimensions.

Method SR Best Worst Mean Std
BBO 10% 3663 5168 4415.50 1064.20
BlendBBO 55% 1154 1545 1363.36 121.94
DE 95% 1500 2100 1797.37 188.91
SDE 100% 1450 2600 2022.35 368.17
BBO DE 100% 1773 2669 2336.65 258.22
LBBO LDE 100% 1058 1898 1451.20 214.48

𝐹
3
is a 5-dimensional problem more difficult than 𝐹

2
.

As we can see from the results shown in Table 5, BBO
and BlendBBO always fail on the problem, and DE, SDE,
and LBBO LDE can guarantee the optimum. The required
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Figure 4: The convergence curves of the algorithms on 𝐹
2
in 5

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.
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Figure 5: The convergence curves of the algorithms on 𝐹
2
in 15

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.

Table 4: SR and required NFE of the algorithms on 𝐹
2
in 15

dimensions.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 2.5% 4815 4815 4815 NA
DE 95% 5300 6650 5978.95 335.95
SDE 95% 5000 6400 5698.32 389.24
BBO DE 97.5% 5030 6210 5639.11 362.69
LBBO LDE 100% 3488 4528 4188.30 300.77

NFE of DE is slightly better than SDE and LBBO LDE, but
LBBO LDE converges faster than DE, as shown in Figure 6.
𝐹
4
is a relatively easy problem, on which even the worst

BBO has an SR of 75%, and all the other algorithms can
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Figure 6:The convergence curves of the algorithms on𝐹
3
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.
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Figure 7:The convergence curves of the algorithms on𝐹
4
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.

guarantee the optimum. LBBO LDE is the best one in terms
of both NFE and convergence speed, as shown in Table 6 and
Figure 7.

The remaining three test problems are also relatively easy.
The experimental results are presented in Tables 7, 8, and 9,
and the convergence curves are shown in Figures 8, 9, and 10,
respectively. As we can clearly see, the four algorithms with
the DE mutation operator can always obtain the optima on
these problems, and LBBO LDE shows the best performance.

In summary, our LBBO LDE outperforms the other
algorithms on all of the test problems. Generally speaking,
the original BBO converges fast at first, but it is easy to
be trapped by the local optima. BlendBBO alleviates the
dilemma to a certain degree, but the DE mutation operator
is more effective than the blended mutation operator, as
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Figure 8:The convergence curves of the algorithms on𝐹
5
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.
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Figure 9:The convergence curves of the algorithms on𝐹
6
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.

Table 5: SR and required NFE of the algorithms on 𝐹
3
.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 0% NA NA NA NA
DE 100% 2050 2950 2490.00 262.38
SDE 100% 2500 4050 3260.00 638.05
BBO DE 10% 4810 5246 5028.00 308.30
LBBO LDE 100% 1758 4181 2958.85 849.24

demonstrated by our experimental results. By combining
BBO and DE, the BBO DE algorithm provides an efficient
alternative to popular methods such as SDE. The local
topology used in LBBO LDE further improves the search
ability and suppresses the premature convergence, especially
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Figure 10: The convergence curves of the algorithms on 𝐹
7
, where

the vertical axis represents the objective value and the horizontal axis
represents the number of generations.

Table 6: SR and required NFE of the algorithms on 𝐹
4
.

Method SR Best Worst Mean Std
BBO 75% 477 3429 1726.87 1020.19
BlendBBO 100% 258 552 424.50 85.34
DE 100% 300 650 420.00 93.75
SDE 100% 250 600 520.00 129.65
BBO DE 10% 59 1058 632.30 277.77
LBBO LDE 100% 236 525 400.60 72.20

Table 7: SR and required NFE of the algorithms on 𝐹
5
.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 25% 1223 2676 1842 692.53
DE 100% 1200 1700 1445.00 140.39
SDE 100% 1100 1750 1550.50 196.45
BBO DE 100% 2473 4498 3681.25 620.36
LBBO LDE 100% 1012 1874 1532.35 249.46

Table 8: SR and required NFE of the algorithms on 𝐹
6
.

Method SR Best Worst Mean Std
BBO 45% 140 1989 1150.22 678.16
BlendBBO 80% 178 635 455.81 128.81
DE 100% 200 550 392.50 140.39
SDE 100% 200 500 405.20 103.72
BBO DE 100% 196 995 708.50 198.38
LBBO LDE 100% 183 511 410.05 86.37

on high-dimensional problems where the performance of
DE and SDE deteriorates quickly. Therefore, LBBO LDE
is a very competitive heuristic method for solving integer
programming problem.
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Table 9: SR and required NFE of the algorithms on 𝐹
7
.

Method SR Best Worst Mean Std
BBO 60% 167 3403 1714.75 986.18
BlendBBO 70% 262 721 459.50 149.00
DE 100% 350 600 480.00 76.78
SDE 100% 300 650 451.00 89.33
BBO DE 100% 479 1327 978.40 311.11
LBBO LDE 100% 249 614 389.45 96.08

5. Conclusion

In this paper we develop three algorithms for integer pro-
gramming based on the BBO heuristic.The BlendBBO uses a
blendedmutation operator, BBO DE integrates theDEmuta-
tion operator, and LBBO LDE further uses a local neigh-
borhood structure for selecting individuals for migration
and mutation. Experimental results show that LBBO LDE
has the best performance on a set of benchmark integer
programming problem.

In general, the LBBO LDE algorithm with local neigh-
borhood size 𝐾 of 3∼5 is efficient on the test problem, but
none of the values can provide the best performance on
all the problems. Currently we are studying a mechanism
that dynamically adjusts the neighborhood size as well as
other control parameters according to the search state [33].
Moreover, the test problems considered in the paper only
have bounds for decision variables but do not include other
constraints, and we are extending the proposed approach
to solve more complex constrained optimization problems,
including multiobjective ones [34–36]. We also believe that
our approach can be adapted to effectively handle other kinds
of combinatorial optimization problems, such as 0-1 integer
programming and permutation-based optimization.

Appendix

Integer Programming Benchmark Problems

Consider

𝐹
1
( ⃗𝑥) =

𝐷

∑

𝑖=1

𝑥
𝑖
, ⃗𝑥
∗
= (0)
𝐷
, 𝐹
1
( ⃗𝑥
∗
) = 0,

𝐹
2
( ⃗𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
, ⃗𝑥
∗
= (0)
𝐷
, 𝐹
2
( ⃗𝑥
∗
) = 0,

𝐹
3
( ⃗𝑥) = − (15, 27, 36, 18, 12) ⃗𝑥

⊤

+ ⃗𝑥(

35 −20 −10 32 −10

−20 40 −6 −31 32

−10 −6 11 −6 −10
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−10 32 −10 −20 32

) ⃗𝑥
⊤
,

⃗𝑥
∗
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∗
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3
( ⃗𝑥
∗
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𝐹
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2
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2
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⃗𝑥
∗
= (0, 1) , 𝐹

7
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∗
) = 3833.12.

(A.1)

In the above problems, the ranges of variables are all set as
⃗𝑥 ∈ [−100, 100]

𝐷.
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The complex process planning problem is modeled as a combinatorial optimization problem with constraints in this paper. An ant
colony optimization (ACO) approach has been developed to deal with process planning problem by simultaneously considering
activities such as sequencing operations, selecting manufacturing resources, and determining setup plans to achieve the optimal
process plan. A weighted directed graph is conducted to describe the operations, precedence constraints between operations, and
the possible visited path between operation nodes. A representation of process plan is described based on the weighted directed
graph. Ant colony goes through the necessary nodes on the graph to achieve the optimal solution with the objective of minimizing
total production costs (TPC). Two cases have been carried out to study the influence of various parameters of ACO on the system
performance. Extensive comparative experiments have been conducted to demonstrate the feasibility and efficiency of the proposed
approach.

1. Introduction

Process planning is the function which translates the
design requirements into the detailed technologically feasi-
ble instructions, which involves selecting machining oper-
ations, sequencing these operations, choosing manufactur-
ing resources, determining setup plans, machining param-
eters, and so forth. These activities must be carried out
simultaneously to achieve an optimal process plan. But,
due to the complexity of part structures and variability of
machining environment, process planning is well known
as a complicated decision-making process. Computer-aided
process planning (CAPP) system will assist human planners
in completing the process planning, which is an essential
component for linking the various models and processes in
a computer-integrated manufacturing system (CIMS) [1].

With the development of computer technologies, CAPP
has received much attention during the last three decades
and played an increasingly important role in a CIMS [2].
The initial “variant” CAPP systems are based on the group
technology (GT) coding and classification system. A base-
line process plan for a part family has been defined in

such systems. According to the part code, approximately
90% of the process plans can be yielded automatically
while the remaining 10% is achieved through modifying
the process plans manually. The application of artificial
intelligence in CAPP system accelerates the generation of
a complete process plan, namely, from the variant CAPP
system to the generative CAPP system. A generative CAPP
system consists of three main consecutive activities: (1)
identifying manufacturing features, (2) determining feasible
machining operation and available machining resources, and
(3) selecting machining operation and machining resources
and sequencing machining operations [3, 4]. This paper
focuses on the solution of the third activity and presents
an ACO approach to solve the process planning prob-
lem.

The rest of this paper is organized as follows. Section 2
introduces previous related work. Process planning problem
is described in Section 3. The proposed ACO approach for
process planning is given in Section 4. In Section 5, simu-
lation experiments are made and the results are discussed
comparedwith other approaches. Finally, Section 6 concludes
the present study and outlines the future study.
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2. Previous Related Works

In the past three decades, many optimization approaches
have been developed and widely applied for solving pro-
cess planning problem, such as knowledge-based reasoning
approach [5, 6], graph manipulation [7, 8], the genetic
algorithm (GA) [9–11], tabu search approach (TS) [4, 12],
simulated annealing (SA) algorithm [3, 13], particle swarm
optimization (PSO) [14, 15], artificial neural networks [16],
ant colony optimization (ACO) [17, 18], and artificial immune
system (AIS) [19].

Usher and Sharma [5] proposed an approach of intelligent
reasoning based on the feathers of part. Many constraints
and criteria were present in operation planning, which were
analyzed intelligently to generate the potential operation
plans. Usher and Bowden [1] apply an improved operation
sequence coding of genetic algorithms for process planning
problem, which can determine optimal operation sequences
for parts of varying complexity. Zhang et al. [10] proposed
a GA for a novel computer-aided process planning (CAPP)
model in a job shop manufacturing environment. GA is
used to select machining resources and sequence operations
simultaneously. The dynamic status of machining resources
in the job shop and alternative optimal plans are not taken
into account. Li et al. [4] consider the process planning
problem as a constraint-based optimization problem and
propose a tabu search-based approach to solve it. In the
proposed optimization approach, precedence constraints
between features and their related operations are defined
and classified according to their effects on the plan feasi-
bility and processing quality. Ma et al. [13] modeled the
constraints of process planning problems in a concurrent
manner. Precedence relationships among all the operations
are used to generate the entire solution space with multiple
planning tasks. Based on the proposed model, they used an
algorithm based on simulated annealing (SA) to search for
the optimal solution. Guo et al. [14] proposed a PSO approach
to operation planning problem. The initial process plans
randomly generated are encoded into particles of the PSO
algorithm. To avoid falling into local optimal and improve
the particles’ movements, several new operators have been
developed. Penalty strategy is used considering the evaluation
of infeasible particles. Krishna and Mallikarjuna Rao [17]
proposed a novel approach to apply the ant colony algorithm
as a global search technique for process planning problem by
considering various feasibility constraints. Chan et al. model
themachine tool selection and operation allocation of flexible
manufacturing systems and solve process problem by a fuzzy
goal—programming approach based on artificial immune
systems.

Recently, to improve the quality of results and efficiency
of the search, many hybrid approaches are developed for
process planning problem, for example, GA + SA [3], graph
manipulation + GA [8], and local search algorithm + PSO
[20]. Li et al. [3] developed a hybrid genetic algorithm and
a simulated annealing approach for optimizing process plans
for prismatic parts. They modeled the process planning as
a combinatorial optimization problem with constraints. The
evaluation criterion was the combination of machine costs,

cutting tool costs, machine change costs, tool change, and
setup costs. Ding et al. [20] proposed a hybrid approach to
incorporate a genetic algorithm, neural network, and analyti-
cal hierarchical process (AHP) for process planning problem.
A globally optimized fitness function is defined including
the evaluation of manufacturing rules using AHP, calculation
of cost and time, and determination of relative weights
using neural network techniques. Huang et al. [8] model the
process planning problem as a combinatorial optimization
problem with constraints and developed a hybrid graph and
genetic algorithm (GA) approach. In the approach, graph
theory accompanied with matrix theory is embedded into
the main frame of GA. The precedence constraints between
operations are formulated in an operation precedence graph
(OPG). An improved GA was applied to solve process
planning problem based on the operation precedence graph
(OPG). Wang et al. [21] proposed an optimization approach
based on particle swarm optimization (PSO) to solve the
process planning problem and introduced a novel solution
representation scheme for the application of PSO. In the
hybrid approach, two kinds of local search algorithms are
incorporated and interweavedwith PSOevolution to improve
the best solution in each generation.

Although significant improvements have been achieved
for process planning problem, there still remains potential
for further improvement [22]. For example, optimization
approach needs to be improved to be more efficient, and a
more reasonable constraint modeling and handling mecha-
nism needs to be developed; also, some practical manufac-
turing environment should be considered, and the approach
should provide the multiple alternative optimal plans.

3. Process Planning Problem Description

3.1. Process Plan Representation. In CAD systems, a part
is generally described by features with specific machining
meanings, such as planes, chamfers, holes, slots, and steps.
Given a part and a set ofmanufacturing resources, the process
planning problem of CAPP can be described as follows.

The CAD information of part is read before process
planning. Then, the machining method of each feature is
selected according to the attributes of different features,
which can be expressed by the various operations eventually.
So, it is necessary to determine one or several operations for
each feature in advance. The operations consist of machines,
cutting tools, and tool approach directions (TAD). A TAD is
defined as a direction from which a cutting tool can access
a feature [7, 10]. For each feature of part, the selection of
machines, cutting tools, and TADs is based on the feature
geometry and available machining resources. For a part
with 𝑚 feathers, the relationships between part, feather, and
operation are shown in Figure 1.

An example part is shown in Figure 2. The part includes
six feathers: F1 (a step), F2 (two holes arranged in a replicated
feature), F3 (a through hole), F4 (a slot), F5 (a chamfer),
and F6 (two blind holes arranged in a replicated feature).
Some feathers may have more than one machining method.
Each machining method has different selection of machines,
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Figure 2: An example part.

cutting tools, and TADs. For the example part, the feather of
F3 may have two different machining methods of drilling→
reaming and drilling→ grinding. However, it is possible to
have different combination of machines, cutting tools, and
TAD even though the selection is overlapped [11]. For any
part, TAD includes six directions, that is, +𝑋, −𝑋, +𝑌, −𝑌,
+𝑍, and −𝑍. However, it is common that some TAD will be
likely to be discarded for the interference between feathers.
For example, the drilling of F6 has two possible TADs, that
is, −𝑋 and +𝑋, because the tool cannot access the hole from
the direction of −𝑋, and the TAD of −𝑋 will be discarded.
The features and their valid TADs can be recognized using
a geometric reasoning approach [23, 24]. The final result of
operation selection for the example part is shown in Table 1.
“Op” represents operation; for example, “Op

1
” represents

operation 1. There is only 1 operation for the feathers of F1,
F4, and F5 and 2 operations for the feathers of F2, F3, and F6.

3.2. Precedence Constraints. Process planning involves deter-
mining in what order to perform a set of selected operations
such that the resulting order satisfies the precedence con-
straints.These constraints are established by considering both
a large number of geometrical interactions and technological
requirements between the various factors [1, 3, 8, 25], which
cause process planning to become more complicated. The
constraints can be divided into the feasibility constraints

and optimality constraints [1]. A feasible process plan is
deemed to be one which does not violate any of the feasibility
constraints. The optimality constraints affect the quality,
cost, and efficiency of a feasible process plan, which may
be violated at certain times in cases of contradictions to
some feasibility constraints. Faheem et al. indicate constraint
affecting the generation of process plans which can be
classified as “hard” or “soft” constraints [25]. Hard constraints
affect the manufacturing feasibility and a process plan should
be consistent with these constraints. Soft constraints only
affect the quality, cost, or efficiency of a feasible process
plan. Many constraints and rules have been proposed and
summarized [1, 4, 9, 10]. These precedence constraints are
summarized as follows [18].

Rule 1. Primary surfaces prior to secondary surface.

Rule 2. Planes prior to its associated features.

Rule 3. Rough machining operation prior to finishing
machining operation.

Rule 4. Datum surfaces prior to its associated features.

Rule 5. Some good manufacturing practice. For example,
features related to thin wall should bemachined first; features
that caused tool damage and failure of clamping potentially
should be machined before or later, and feathers that affect
the cost or the quality of machining should bemachined first.

These constraints between machining operations can be
used to constrain the search in a smaller space and enhance
search efficiency. Some examples of the above precedence
constraints for the example part in Figure 2 are illustrated in
Table 2.

3.3. Process Plan Evaluation Criterion. The most common
evaluation criteria for process plan include minimum num-
ber of setups, shortest process time, andminimummachining
cost. Váncza and Márkus used number of setups, number
of tool changes, and total cost of individual operations as
evaluation criteria [9]. Usher and Sharma used number
of setups, continuity of motion, and loose precedence as
evaluation criteria [5]. Zhang et al. used machine costs,
cutting tool costs, number of machine changes, number of
tool changes, and number of setups as evaluation criteria
[10]. Many evaluation criteria have been proposed, which
include process time, number of setups, number of tool
changes, number of machine changes, continuity of motion,
and total cost of individual operations. Because the detailed
information on machining parameters is not available at this
stage, the total machining time cannot be used for plan
evaluation. In this paper, five cost evaluation criteria are
adopted and are similar to the criteria in paper [3, 4].

(1) Total machine cost (TMC) is

TMC =

𝑛

∑

𝑖=1

MC
𝑖
, (1)
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Table 1: Operation selection for the example part.

Feathers Operations Machines Tools TADs
F1 Milling (Op1) Vertical milling machine (M1) Milling cutter (T1) +X, +Z

F2 Drilling (Op2) Vertical milling machine (M1) Drill (T2)
−Z

Tapping (Op3) Drilling press (M2) Tapping tool (T3)

F3 Drilling (Op4) Vertical milling machine (M1) Drill (T4)
−X

Reaming (Op5) Drilling press (M2) Reamer (T5)
F4 Milling (Op6) Vertical milling machine (M1) Slot cutter (T6) +Z
F5 Milling (Op7) Vertical milling machine (M1) Chamfer cutter (T7) −Z, +Y

F6 Drilling (Op8) Vertical milling machine (M1) Drill (T8) +X
Reaming (Op9) Drilling press (M2) Reamer (T9)

Table 2: Precedence constraints between operations.

Features Operations Precedence constraints description

F1 Op1
Op1 is prior to Op2 and Op3 for Rule 2.
Op1 is prior to Op4 and Op5 for Rule 5.

F2 Op2 Op2 is prior to Op3 for Rule 3.

F3

Op4 Op4 is prior to Op5 for Rule 3.

Op4, Op5
Op4 and Op5 are prior to Op6 for Rule 5.
Op4 and Op5 are prior to Op7 for Rule 5.

F4 Op6 Op6 is prior to Op2 and Op3 for Rule 4.

F6
Op8 Op8 is prior to Op9 for Rule 3.

Op8, Op9 Op8 and Op8 are prior to Op7 for Rule 5.

Table 3: Definition of a tool change.

Conditions of machining two consecutive
operations Tool change

Same tool and same machine No
Same tool and different machines Yes
Different tools and same machine Yes
Different tools and different machines Yes

Table 4: Definition of a setup change.

Conditions of machining two consecutive
operations Setup change

Same TAD and same machine No
Same TAD and different machines Yes
Different TADs and same machine Yes
Different TADs and different machines Yes

where 𝑛 is the total number of operations and MC
𝑖
is

the machine cost of the 𝑖th machine for an operation,
a constant for a specific machine.

(2) Total tool cost (TTC) is

TTC =

𝑛

∑

𝑖=1

TC
𝑖
, (2)

where TC
𝑖
is the tool cost of the 𝑖th tool for an

operation, a constant for a specific tool.

(3) Total machine change cost (TMCC): a machine
change is needed when two adjacent operations are
executed on different machines

TMCC = MCC ∗NMC, (3)

where MCC is the machine change cost and NMC
is the number of machine changes, which can be
calculated by

NMC =

𝑛−1

∑

𝑖=1

Ω
1
(𝑀
𝑖+1
,𝑀
𝑖
) , (4)

where 𝑀
𝑖
is the machine for the 𝑖th operation and

Ω
1
(𝑥, 𝑦) is a judging function:

Ω
1
(𝑥, 𝑦) = {

1 𝑥 ̸=𝑦,

0 𝑥 = 𝑦.

(5)

(4) Total tool change cost (TTCC): a tool change is
defined in Table 3 [3]

TTCC = TCC ∗NTC, (6)

where TCC is the tool change cost and NTC is the
number of tool changes, which can be calculated by

NTC =

𝑛−1

∑

𝑖=1

Ω
2
(Ω
1
(𝑀
𝑖+1
,𝑀
𝑖
) , Ω
1
(𝑇
𝑖+1
, 𝑇
𝑖
)) , (7)

where𝑇
𝑖
is the 𝑖th tool.Ω

2
(𝑥, 𝑦) is a judging function:

Ω
2
(𝑥, 𝑦) = {

0 𝑥 = 𝑦 = 0,

1 otherwise.
(8)

(5) Total setup cost (TSCC): a setup change is defined in
Table 4 [3]

TSCC = SCC ∗NSC, (9)

where SCC is the setup cost and NSC is the number
of setups, which can be calculated by

NSC =

𝑛−1

∑

𝑖=1

Ω
2
(Ω
1
(𝑀
𝑖+1
,𝑀
𝑖
) , Ω
1
(TAD

𝑖+1
,TAD

𝑖𝑖
)) + 1,

(10)

where TAD
𝑖
is the 𝑖th TAD.
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Table 5: Cost indexes for the example part in Figure 2.

MC TC MCC TCC SCC
M1 M2 T1 T2 T3 T4 T5 T6 T7 T8 T9
40 10 10 3 7 3 8 10 10 3 8 300 60 20

Table 6: An optimal process plan for the example part in Figure 2.

Operation Op1 Op8 Op9 Op4 Op5 Op6 Op7 Op2 Op3
Machine M1 M1 M1 M1 M1 M1 M1 M1 M1
Tool T1 T8 T9 T4 T5 T6 T7 T2 T3
TAD +X +X +X −X −X +Z −Z −Z −Z

NMC = 0, NCC = 8, NSC = 4. TMC = 360, TTC = 62, TMCC = 0, TTCC = 480, TSCC = 80, TPC = 982.

(6) Total production cost (TPC) is

TPC = 𝑤
1
∗ TMC + 𝑤

2
∗ TTC + 𝑤

3
∗ TMCC

+ 𝑤
4
∗ TTCC + 𝑤

5
∗ TSCC.

(11)

In (11), TPC is total production cost. 𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, and

𝑤
5
are weights of TMC, TTC, TMCC, TTCC, andTSCC,

respectively. These weights can be assigned referring to the
active situations, which provide the flexibility to customize
the optimization objective function according to various
situations. The different values of 𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, and 𝑤

5

constitute the flexible combination to meet the requirement
of process planning in different manufacturing environment.
The detailed method of setting these parameters is given in
the subsequent sections.

4. The Proposed ACO Algorithm

4.1. Graph-Based Representation of Process Plan. The pro-
posed ACO algorithm basically generates solutions by stan-
dard ACO procedures [26]. To construct a feasible process
plan with the ACO approach, the process planning problem
has to be visualized and represented by a weighted directed
graph [27].

The weighted graph is denoted by 𝐷 = (𝑂,𝐴, 𝐵), where
𝑂 is a set of nodes, 𝐴 is a set of directed arcs, and 𝐵 is
a set of undirected arcs. The nodes of 𝑂 stand for all of
the operations Op

𝑖
, and 𝐴 corresponds to the precedence

constraints between the operations of the parts. 𝐵 represents
the set of arcs connecting all possible combination of the
nodes. Both 𝐴 and 𝐵 represent possible paths for ants
travelling from one node to another. The ants are basically
free to travel along the paths unless there is a precedence
constraint specified by 𝐴. Figure 3 is the weighted graph for
the example in Figure 2.

The approach in this paper applying the ACO algorithm
for process planning is to search for a path in a weighted
graph (Figure 3), where all necessary nodes have to be
visited to complete the process plan to minimize TPC. The
characteristic of this approach is to construct process plans
from an autocatalytic process, in which artificial ants favor
the process plan with smaller TPC and they will deposit more
pheromones on the visited paths so that there is a higher

probability for the following ants to continue choosing the
better paths.

4.2. Initialization. Before starting the ACO for process plan-
ning, the ant colony was placed on the initial node. The
selection of the initial node determines which features can be
machined firstly, which affects the result of process planning
and the performance of ACO. Only these operations attached
to the features with no precedent features may be selected as
the initial node. For the example part in Figure 2, only F1 has
no precedent features, so Op

1
will be allowed to be the first

visited node. In fact it is difficult to select the initial node from
many operation nodes, because the initial node is not unique
in most of the process planning. In this paper a dummy node
Op
𝑑
, acting as the initial node, is added to the weighted graph

to connect the first feasible operations of the parts, as shown
in Figure 3. In addition, the undirected arc is added from the
initial node to the possibly first visited operation nodes. The
number of ants (𝐾) in the colony is arbitrary, and it can be set
as a parameter, which is allowed to be adjusted in accordance
with the scale of the problem and the performance of the
algorithm.

4.3. Iteration. For the ant 𝑘, a path will be achieved after
traversing all the nodes in a weighted graph, which represents
the one of feasible process plans. To choose the next visiting
node, the ant 𝑘 is guided by the heuristic information 𝜂

𝑢V
on the node and the pheromone amount 𝜏

𝑢V on the arc
linking the source node 𝑢 and possible destination node V.
The heuristic information 𝜂

𝑢V can reflect the attractiveness of
the next visiting node for the ant 𝑘. Whenminimizing TPC is
used to be objective function for process planning, MC and
TC of the operation node will be treated to calculate 𝜂

𝑢V. The
heuristic information 𝜂

𝑢V can be given as follows:

𝜂
𝑢V =

𝐸

PC
, (12)

where 𝐸 is a positive constant, and it can be set by trial and
error. PC is the processing cost of the selected node operation
and it is calculated as follows:

PC = 𝑤
1
∗MC + 𝑤

2
∗ TC. (13)
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Table 7: Features, operations, and machining information of the sample part.

Features Feature descriptions Operations TADs Machines Tools
F1 Planar surface Milling (Op1) +𝑍 M2, M3 T6, T7, T8
F2 Planar surface Milling (Op2) −𝑍 M2, M3 T6, T7, T8
F3 Two pockets arranged as a replicated feature Milling (Op3) +𝑋 M2, M3 T6, T7, T8
F4 Four holes arranged as a replicated feature Drilling (Op4) +𝑍, −𝑍 M1, M2, M3 T2
F5 A step Milling (Op5) +𝑋, −𝑍 M2, M3 T6, T7
F6 A protrusion (rib) Milling (Op6) +𝑌, −𝑍 M2, M3 T7, T8
F7 A boss Milling (Op7) −𝑎 M2, M3 T7, T8

F8 A compound hole
Drilling (Op8) −𝑎 M1, M2, M3 T2, T3, T4
Reaming (Op9) M1, M2, M3 T9
Boring (Op10) M2, M3 T10

F9 A protrusion (rib) Milling (Op11) −𝑌, −𝑍 M2, M3 T7, T8

F10 A compound hole
Drilling (Op12) −𝑍 M1, M2, M3 T2, T3, T4
Reaming (Op13) M1, M2, M3 T9
Boring (Op14) M3, M4 T10

F11 Nine holes arranged Drilling (Op15) −𝑍 M1, M2, M3 T1
Tapping (Op16) M1, M2, M3 T5

F12 A pocket Milling (Op17) −𝑋 M2, M3 T7, T8
F13 A step Milling (Op18) −𝑋, −𝑍 M2, M3 T6, T7

F14 A compound hole Teaming (Op19) +𝑍 M1, M2, M3 T9
Boring (Op20) M3, M4 T10

Opd

Op1
(M1, T1, +X)

(M1, T1, +X)

Op2
(M1, T2, −Z)

(M2, T2, −Z)

Op3
(M1, T3, −Z)

(M2, T3, −Z)

Op6
(M1, T6, +Z)

Op5
(M1, T5, +X)

(M2, T5, +X)

Op4
(M1, T4, +X)

(M2, T4, +X)

Op7
(M1, T7, −Z)

(M1, T7, +Y)

Op8
(M1, T8, +X)

(M2, T8, +X)

Op9
(M2, T9, +X)

(M2, T9, +X)

Figure 3: A disjunctive weighted directed graph for the example part.
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Figure 4: A sample part.

Equation (12) shows that the nodes with the smaller
processing cost have the higher heuristic information amount
and these nodes have more attraction for the ant 𝑘.

The pheromone amount 𝜏
𝑢V can reflect the attractiveness

of the arc accessing to the destination node from the current
node, which specifies how good the previous process plans
are for the following ants. It will be updated according to

the value of TPC of the process plan achieved by the ant 𝑘.
The pheromone amount 𝜏

𝑢V can be given as follows:

𝜏
𝑘

𝑢V = (1 − 𝜌) ∗ 𝜏
𝑘

𝑢V + Δ𝜏
𝑘

𝑢V, (14)

where 𝜌 is an evaporation coefficient of the pheromone on
the arc linking the source node 𝑢 and possible destination
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Table 8: Available machining resources and costs in a workshop
environment.

Number Types MC
Machines

M1 Drilling press 10
M2 Three-axis vertical milling machine 40
M3 CNC 3-axis vertical milling machine 100
M4 Boring machine 60

Number Types TC
Tools

T1 Drill 1 7
T2 Drill 2 5
T3 Drill 3 3
T4 Drill 4 8
T5 Tapping tool 7
T6 Mill 1 10
T7 Mill 2 15
T8 Mill 2 30
T9 Ream 15
T10 Boring tool 20

MCC = 160, SCC = 100, TCC = 20

node V. Δ𝜏𝑘
𝑢V is the quantity of the pheromone trail on the

arc(𝑢, V) generated by the ant 𝑘 after each iteration. Also, it
can be given as

Δ𝜏
𝑘

𝑢V =
{

{

{

𝑄

TPC
if ant 𝑘 passes the arc (𝑢, V) ,

0 otherwise,
(15)

where 𝑄 is a positive constant. Before ant colony begins the
iteration, the pheromone amount on every arc is set to be 𝜏

0

initially.
The heuristic information and the pheromone amount

constructed a probability of moving from a node to another
node for an ant. The more the pheromone amount on
the arc and the heuristic information on the node, the
higher the selective probability. For the ant 𝑘, the selective
probability 𝑝

𝑘

𝑢V from the source node 𝑢 to the destination
node V can be given as follows:

𝑝
𝑘

𝑢V =

{
{
{

{
{
{

{

[𝜏
𝑢V]
𝛼

[𝜂
𝑘

𝑢V]
𝛽

∑
𝑤∈𝑆𝑘

[𝜏
𝑢𝑤
]
𝛼

[𝜂
𝑘

𝑢𝑤
]
𝛽

V ∈ 𝑆
𝑘
,

0 V ∉ 𝑆
𝑘
,

(16)

where 𝛼 and 𝛽 denote the weighting parameters controlling
the relative importance of the pheromone amount and the
heuristic information, respectively. 𝑆

𝑘
represents the set of

nodes allowed to be visited at the next step for the ant 𝑘.

4.4. Termination. If all of the ants almost constructed the
same process plans repeatedly at the early stage of the
ACO algorithm, the algorithm would fall into the local
convergence, which leads to failure in the exploration of new
paths for the subsequent iteration. Once the algorithm falls

into the local convergence, the output of process planning
would not be the optimal result, even far from the optimal
results. To void the local convergence, the parameter of𝑀

𝑟𝑝𝑡

controlling the repeated number of the same process plan
is set in advance. When the adjacent two-process plan is
completely the same, the variable of 𝑆

𝑟𝑝𝑡
will increase by 1;

otherwise 𝑆
𝑟𝑝𝑡

will be reset to be 0.When 𝑆
𝑟𝑝𝑡

reaches to𝑀
𝑟𝑝𝑡
,

it means that no improvement on the solutions is made in
the recent iterations. The ants may have converged to local
optimal results. In addition, the local convergence occurs at
the early stage of the ACO algorithm. To prevent the quick
convergence, the maximum iteration 𝑀

𝑖𝑡𝑒
is set in advance.

Obviously, with the number of iterations 𝑆
𝑖𝑡𝑒
increasing, even

approaching to the 𝑀
𝑖𝑡𝑒
, the 𝑀

𝑟𝑝𝑡
will increase and can be

calculated as follows:

𝑀
𝑟𝑝𝑡

= 𝑆
𝑖𝑡𝑒
∗ 𝑞 ∗

𝑆
𝑖𝑡𝑒

𝑀
𝑖𝑡𝑒

, (17)

where 𝑞 is random number, 𝑞 ∈ (0, 1).
If the two events of 𝑆

𝑟𝑝𝑡
= 𝑀

𝑟𝑝𝑡
and 𝑆

𝑖𝑡𝑒
< 𝑀

𝑖𝑡𝑒

are satisfied simultaneously, it is considered that the local
convergence occurs and the algorithmwill be restarted. If the
only event of 𝑆

𝑖𝑡𝑒
= 𝑀
𝑖𝑡𝑒
is satisfied, the resulting process plan

will be output and algorithm will be terminated.

5. Experiments and Results

5.1. Walkthrough Example. When ACO is applied in process
planning, those parameters including 𝐾, 𝜌, 𝛼, 𝛽, 𝐸, 𝑄, 𝜏

0

have to be adjusted according to the situation to achieve the
optimal process plan. The example part in Figure 2 is used to
illustrate the proposed ACO approach. All the cost indexes
are shown in Table 5 and it is assumed that all the machines
and tools are available; namely, 𝑤

1
–𝑤
5
in (11) and (13) are set

as 1.
A lot of preliminary experiments are dominated to test

the effect of various parameters. In each experiment, one
parameter is changed and the other parameters were fixed,
and the effect of the changed parameter on the algorithm
properties was analyzed at different levels. The resulting
process plan is shown in Table 6 by the proposed ACO
approach at the value of𝐾 = 5, 𝜌 = 0.8, 𝛼 = 2, 𝛽 = 1, 𝐸 = 45,
𝑄 = 1000, 𝜏

0
= 1,𝑀

𝑖𝑡𝑒
= 50.

5.2. Simulation Experiments. More complex process plan-
ning problems are considered in extensive simulation exper-
iments. A sample part taken from the work of Li et al. [3, 4]
is used to test the proposed ACO approach (Figure 4). The
part consists of 14 defined manufacturing features, including
planes, holes, and pockets. The detailed information of fea-
tures, operations, manufacturing resources, and precedence
relationship of the part is given in Tables 7, 8, and 9.

The above simulation experiment for the example part
in Figure 2 shows that the selection of parameters is very
important to the quality of the results. For the sample example
in Figure 4, the method of determining those parameters is
more complex, due to the enlargement of the problem size.
It is assumed that all the machines and tools are available;
namely, 𝑤

1
–𝑤
5
in (11) and (13) are set as 1.
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Table 9: Precedence relationship between features and operations.

Features Operation Precedence constraints description
F1 Milling (Op1) F1 (Op1) is the datum face for the part; hence, it is machined before all features
F2 Milling (Op2) F2 (Op2) is before F10 (Op12, Op13, Op14) and F11 (Op15, Op16) for Rule 2
F3 Milling (Op3)
F4 Drilling (Op4)
F5 Milling (Op5) F5 (Op5) is before F4 (Op4) and F7 (Op7) for Rule 4
F6 Milling (Op6) F6 (Op6) is before F10 (Op12, Op13, Op14) for Rule 4
F7 Milling (Op7) F7 (Op7) is before F8 (Op8, Op9, Op10) for Rule 4

F8
Drilling (Op8)
Reaming (Op9) Op8 is before (Op9 and Op10); Op9 is before Op10 for Rule 3
Boring (Op10)

F9 Milling (Op11) F9 (Op11) is before F10 (Op12, Op13, Op14) for Rule 4

F10
Drilling (Op12) Op12 is before Op13 and Op14; Op13 is before Op14 for Rule 3; F10 (Op12, Op13, Op14) is before F11

(Op15, Op16) for Rule 4;Op12 of F10 is before F14 (Op19, Op20)
Reaming (Op13)
Boring (Op14)

F11 Drilling (Op15) Op15 is before Op16 for Rule 3Tapping (Op16)
F12 Milling (Op17)
F13 Milling (Op18) F13 (Op18) is before Op4 and Op17 for Rule 2 and Rule 1, respectively

F14 Reaming (Op19) Op19 is before Op20 for Rule 3Boring (Op20)

Table 10: Four of the fifty process plans.

Process plan 1
Operation 1 2 18 11 6 12 13 19 17 3 5 7 8 9 10 20 14 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 1 1 1
Tool 7 7 7 7 7 3 9 9 7 7 7 7 3 9 10 10 10 2 1 5
TAD +𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 +𝑍 −𝑋 +𝑋 +𝑋 −𝑎 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 10, NSC = 9, TMCC = 320, TTCC = 200, TSCC = 900, TMC = 750, TTC = 265, TPC = 2435
Process plan 2

Operation 1 11 6 2 12 18 13 19 17 3 5 7 8 9 10 20 14 15 16 4
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 1 1 1
Tool 7 7 7 7 3 6 9 9 7 7 7 7 3 9 10 10 10 1 5 2
TAD +𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 +𝑍 −𝑋 +𝑋 +𝑋 −𝑎 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 11, NSC = 9, TMCC = 320, TTCC = 220, TSCC = 900, TMC = 750, TTC = 260, TPC = 2450
Process plan 3

Operation 1 5 3 18 6 2 11 12 13 17 7 8 9 19 14 20 10 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1
Tool 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 2 1 5
TAD +𝑍 +𝑋 +𝑋 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑋 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 +𝑍 −𝑎 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 9, NSC = 10, TMCC = 320, TTCC = 200, TSCC = 1000, TMC = 770, TTC = 237, TPC =2527
Process plan 4

Operation 1 3 5 6 2 18 11 12 13 17 7 8 9 19 14 20 10 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1
Tool 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 2 1 5
TAD +𝑍 +𝑋 +𝑋 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑋 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 +𝑍 −𝑎 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 9, NSC = 10, TMCC = 320, TTCC = 200, TSCC = 1000, TMC = 770, TTC = 237, TPC = 2527
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Table 11: Average results of simulation experiment.

Type Mean Maximum Minimum Standard deviation
TMC 754.2 800 750 9.82
TTC 261.88 267 237 7.63
TMCC 320 320 320 320
TTCC 202 220 180 10.77
TSCC 918 1000 900 38.42
TPC 2456.1 2527.0 2435.0 37.98

Table 12: Results compared to other algorithms for the sample part in Figure 4.

Condition Proposed approach ACO TS SA GA
(1)

Mean 2456.1 2490.0 2609.6 2668.5 2796.0
Maximum 2527.0 2500.0 2690.0 2829.0 2885.0
Minimum 2435.0 2450.0 2527.0 2535.0 2667.0

(2)
Mean 2115.4 2117.0 2208.0 2287.0 2370.0
Maximum 2380.0 2120.0 2390.0 2380.0 2580.0
Minimum 2090.0 2090.0 2120.0 2120.0 2220.0

(3)
Mean 2600 2600.0 2630.0 2630.0 2705.0
Maximum 2740.0 2600.0 2740.0 2740.0 2840.0
Minimum 2580.0 2600.0 2580.0 2590.0 2600.0

The sample example is solved by the ACO approach
with the varied values of 𝐾 ∈ {5, 10, 20, 40}, 𝜌 ∈

{0.05, 0.1, 0.25, 0.5, 0.8}, 𝛼 ∈ {0.5, 1, 5, 10}, 𝛽 ∈ {0.5, 1, 5, 10},
𝐸 ∈ {50, 55, 65, 80}, 𝑄 ∈ {1500, 2000, 2500, 3000}, and𝑀

𝑖𝑡𝑒
∈

{100, 2000, 300, 400} and with the fixed value of 𝜏
0
= 1. 50

trials were separately conducted to evaluate the performance
of the proposed approach. Experimental observation has
shown that 𝐾 = 10, 𝜌 = 0.8, 𝛼 = 1, 𝛽 = 1, 𝐸 = 80,
𝑄 = 3000, 𝜏

0
= 1, and𝑀

𝑖𝑡𝑒
= 200 are the best choices of these

parameters. Four of the process plans generated are listed in
Table 10. The best process plan (minimal TPC) is shown as
process plan 1 in Table 10. The average result of 50 trials is
shown in Table 11.

5.3. Comparative Tests. Three conditions are used to test the
proposed algorithm for the sample parts [3, 4].

(1) Allmachines and tools are available, and𝑤
1
–𝑤
5
in (11)

and (13) are set as 1.
(2) Allmachines and tools are available, and𝑤

2
= 𝑤
5
= 0,

𝑤
1
= 𝑤
3
= 𝑤
4
= 1.

(3) Machine M2 and tool T7 are down, 𝑤
2
= 𝑤
5
= 0,

𝑤
1
= 𝑤
3
= 𝑤
4
= 1.

In Table 12, the TPC generated by the proposed ACO is
compared with those of GA and SA approaches by Li et al.
[3] and TS by Li et al. [4], as well as the ACO by Liu et al. [18].

Under condition (1), a lower TPC (2435.0) has been
found using the proposed ACO approach, and themean TPC
(2456.1) is better than the costs of the other four algorithms.
Under condition (2), theminimumTPC (2090) is the same as

the ACO [6]. Under condition (3), the minimumTPC (2580)
is the same as the TS [4]. The mean TPC generated by the
proposed approach is better than the other four algorithms
under the three conditions.

6. Conclusions

A graph-based ACO approach is developed to solve the
process planning optimization problem against process con-
straints for prismatic parts, which considers the selec-
tion of machine resources, determining process operation,
and sequencing operation according to machine cost. The
approach is characterized by the following aspects.

(1) A graph-based representation of process plan is
proposed. A weighted directed graph is used to represent
process planning problem. The graph includes nodes set,
directed arcs set, and undirected arcs set, which stand for
operations, precedence constraints between the operations,
and possible visited path connecting the nodes, respectively.

(2) A lower TPC is found by the proposed approach for
the sample part, which means that the optimal process plan
is generated by now under the same conditions. Compar-
ing with the other algorithms, the proposed approach has
generated the better process plan results under the three
conditions.

In the further study, a deep discussion of selecting
the ACO approach parameters is conducted. In addition,
the multiobjective optimization will be incorporated into
the ACO approach for handling the multiobjective process
planning problem.
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Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering
including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This
paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A
detailed description of adopted PSOwas presented to provide a good basis for more contribution of this technique to the field of 3D
slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A
detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were
used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between
the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the
CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of
PSO in determining the CSS of 3D soil slopes.

1. Introduction

Slope stability analysis is a major concern in projects related
to man-made or natural slopes. Several techniques are
applied to analyze the stability state of a slope, of which
limit equilibriummethod (LEM) is themost popular [1].This
method undertakes the static behavior of the slope at the
verge of failure and develops equilibriums of the soil body in
static condition. Consequently, no stress-strain relationship
is considered and corresponding deformation within the soil
body is not studied [2]. As a result, the shape of each potential
slip surface which defines the lower boundary of sliding body
has to be assumed. A numerical ratio as factor of safety (FOS)
is used to determine the critical slip surface (CSS) as the least
stable slip surface among all potentials. FOS compares the
available shear strength of the soil with the existing shear
stress (mobilized shear strength) on the assumed slip surface
as follows [3]:

FOS =

𝑆

𝑇

, (1)

where 𝑆 is mobilized shear strength force (kN) and 𝑇 is
available shear strength of the soil (kN). The mobilized shear
strength force is defined as

𝑆 = (

[𝑐

+ (𝜎
𝑛
− 𝑢
𝑤
) tan𝜙]

FOS
) , (2)

where FOS is factor of safety, 𝑆 is mobilized shear strength
force (kN), 𝑐 is cohesion of the soil in terms of effective
stress (kN/m2), 𝜙 is angle of internal friction of soil in terms
of effective stress (kN/m2), and 𝜎

𝑛
is normal stress on the

slip surface (kN/m2), and 𝑢
𝑤
is pore water pressure on the

slip surface (kN/m2). In general, the following principles are
required to analyze the stability of a slope within LEM [2].

(1) A kinematically admissible slip surface is assumed to
define the mechanism of failure.

(2) Two static principles as the assumption of plastic
behavior for soil mass and validity of Mohr-coulomb
failure criterion are employed to determine the shear-
ing strength along the assumed slip surface.
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(3) Equation of FOS is developed for the assumed slip
surface by dividing the available shear strength at the
surface by the required shear resistance to bring the
equilibrium into limiting condition.

(4) An iterative process is used to find the satisfying value
of FOS.

(5) By using the steps above, a search technique is
employed to find the CSS among all assumed slip
surfaces.

Although all the LEMs havemutual principles, they differ
in utilizing static equilibrium, assumptions, and simplifica-
tions. They can be considered as two-dimensional (2D) and
three-dimensional (3D) methods. 2D methods simplify the
geometry of slopes by transforming the problem into an
assumed 2D form. Consequently, some internal and external
forces are simplified or ignored in this process. Such simplifi-
cations in 2Dmethods may result in different outcomes form
the results of 3D methods. Although the assumptions of 3D
methods are mostly derived from the related 2D basics, some
new definitions are only available in 3D methods due to plus
one dimension that 3D methods have. Ability to consider 3D
shapes of slip surface, asymmetric and complex slopes, sliding
direction, and intercolumn forces are some of the privileges of
3Dmethods. However, 3Dmethods might consider, simplify,
or ignore any of these aspects.

Determining the CSS, despite of utilized 2D or 3D
method, needs a massive search among possible slip sur-
face. Searching problem is usually defined as optimization
problem in engineering. This problem is framed to find
appropriate solution among the candidates by minimizing or
maximizing an objective function. If more than one solution
exists among candidates of a problem, it turns to global
optimization. Global optimization methods try to find the
global solution, while avoiding local solutions.

Particle swarm optimization (PSO) was initially intro-
duced by Kennedy and Eberhart [4] as a global optimization
technique. PSO simulates the birds flock activities when they
randomly search for food in their path. Since PSO has been
released, its successful application in various engineering
problems has begun. The popularity of PSO is mainly due
to its comprehensible performance as well as its simple
operation [5]. Many researchers applied PSO to solve their
problems in the fields of structural [6–8], environmental [9–
11], hydrological [12, 13], and geotechnical [14–16] engineer-
ing.

Cheng et al. [17] tried to determine the CSS of seven
slopes by using PSO as one of the first applications of PSO in
slope stability analysis and came to the conclusion that PSO
produces appropriate and reasonable results. Furthermore, in
a comparison with pattern method, they [17] reported that
PSO is capable of finding the global minimum FOS and its
related CSS in different slopes. Ever since, PSO has been
used progressively as an effective technique to deal with the
problem of determining the CSS, to name a few, Cheng et
al. [17], Cheng et al. [18], Zhao et al. [19], Tian et al. [20],
Li et al. [21], Kalatehjari et al. [22, 23], and W. Chen and P.
Chen [24]. However, the contribution of PSO was limited to
2D slope stability problem. In fact, only a few researchers

published their results in determining the CSS in 3D slope
stability problems and none of them applied PSO [25–30].

Based on the successful performance of PSO in 2D slope
stability analysis as well as other problems of geotechnical
engineering, it is believed that it can contribute well to
determining the CSS of 3D slopes. This paper applies PSO in
3D slope stability problem to determine theCSS of soil slopes.
A detailed description of adopted PSO is presented to provide
a good basis for more contribution of this technique to the
field of 3D slope stability problems.

2. Overview of Particle Swarm Optimization

Kennedy and Eberhart [4] initialized PSO by simulating
the behavior of a birds swarm with defined instructions for
individual behaviors as well as intercommunications. These
instructions help in decision making process of individuals
which is based on the following items [4]:

(i) experience of individual as its best results so far;
(ii) outlay of experience of swarmas the best result among

all individuals.

Swarm intelligence as the ability of each individual to
use the experience of others guides the swarm toward its
optimumgoal.Three principals of the swarmbehavior in PSO
were similar to what described by Reynolds [31].

(i) Individuals are collision-proof.
(ii) Individuals travel toward swarm objective.
(iii) Individuals travel to the center of swarm.

The standard flowchart of PSO is shown in Figure 1. This
process starts by randomly generating a certain number of
individuals, namely particles, where each represents a possi-
ble solution for the problem [4, 17].The structure of a particle
may contain three sections that separately record its current
position, best position so far, and velocity, respectively, as
coordinates of current position, coordinates of best position
so far, and velocity vectors in a D-dimensional space, where
D starts from one [32]. Consequently, a 3 × D-dimensional
particle is fitting for a particle in D-dimensional space.

PSO reaches its goal if meets the termination criteria.
These criteria are set to guarantee the ending of iterative
search process. Appropriate termination criteria are neces-
sary to accomplish a successful search by avoiding premature
or late convergence [33]. The commonly used termination
criteria are set as follows:

(i) reaching a maximum number of iterations;
(ii) finding a satisfactory solution;
(iii) achieving a constant fitness for a certain number of

iterations.

The closeness of each particle to the best possible solution
is defined by the objective function which is aimed to be
minimized or maximized by PSO. A fitness function related
to the objective function is usually set to calculate fitness
value of each particle by assessing its current position. The
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Figure 1: Standard flowchart of PSO.

velocity of particles is determined by (3) based on their
best position and global best position in the swarm. To
continue the search, (4) updates the position of all particles
based on their current position and the obtained velocity.
Through an iterative process, the improvement of fitness of
particles continues until PSO meets the termination criteria.
The global solution is then achieved by the current position
of the best particle in the last iteration:

V
𝑛(𝑖)

= V
𝑛(𝑖−1)

+ 𝑢 (0, 𝜗
1
) (𝑏𝑝
𝑛(𝑖)

− 𝑥
𝑛(𝑖)
)

+ 𝑢 (0, 𝜗
2
) (𝑏𝑔
𝑛(𝑖)

− 𝑥
𝑛(𝑖)
) ,

(3)

𝑥
𝑛(𝑖+1)

= 𝑥
𝑛(𝑖)

+ V
𝑛(𝑖)
, (4)

where V
𝑛(𝑖−1)

and V
𝑛(𝑖)

are, respectively, the velocity of 𝑛th
particle in past and current iterations, 𝑢(0, 𝜗

1
) and 𝑢(0, 𝜗

2
)

are the vectors of random numbers of 𝑛th particle uniformly
distributed, respectively, in [0, 𝜗

1
] and [0, 𝜗

2
], 𝑏𝑝
𝑛(𝑖)

is the best
position of 𝑛th particle so far, 𝑏𝑔

𝑛(𝑖)
is the position of the

best particle of the swarm so far, and 𝑥
𝑛(𝑖−1)

and 𝑥
𝑛(𝑖)

are the
positions of 𝑛th particle, respectively, in the current and the
next iterations.

Initial, cognitive, and social parts are three components
of velocity equation. The values of 𝜗

1
and 𝜗
2
in this equation

control the exploration and exploitation behaviours of the
swarm. While equal values of 2 are commonly used for
these parameters in early search, greater values of 𝜗

1
and

𝜗
2
, respectively, provide faster convergence to the solution

and enhance discovering the searching space. The velocity
of particles may increase surprisingly by adjusting these

parameters, so a limiting bound of velocity as [−Vmax, Vmax]
is attached to PSO as constriction coefficients [34]. Shi and
Eberhart [35] modified the original equation of velocity to
reduce the role of constriction coefficient and introduced (5)
by introducing 𝜔 as the inertia weight of particles. Later on,
Clerc and Kennedy [36] demonstrated that inertia weights
of greater than one may cause converge problems in PSO
and proposed (6) by introducing 𝜉 as the constant multiplier
in (7). This modification prevents the swarm to explode,
guarantees the mature converge, and almost eliminates the
need of constriction coefficient. Principally, interior param-
eters (inertia weight and velocity coefficient) and exterior
parameters (swarm size and topology) of PSO should be
carefully adjusted to provide the best results:

V
𝑛(𝑖)

= 𝜔V
𝑛(𝑖−1)

+ 𝑢 (0, 𝜗
1
) (𝑏𝑝
𝑛(𝑖)

− 𝑥
𝑛(𝑖)
)

+ 𝑢 (0, 𝜗
2
) (𝑏𝑔
𝑛(𝑖)

− 𝑥
𝑛(𝑖)
) ,

(5)

V
𝑛(𝑖)

= 𝜉 [V
𝑛(𝑖−1)

+ 𝑢 (0, 𝜗
1
) (𝑏𝑝
𝑛(𝑖)

− 𝑥
𝑛(𝑖)
)

+ 𝑢 (0, 𝜗
2
) (𝑏𝑔
𝑛(𝑖)

− 𝑥
𝑛(𝑖)
)] ,

(6)

𝜉 =

2

(𝜗
1
+ 𝜗
1
) − 2 + √(𝜗

1
+ 𝜗
1
)
2

− 4 (𝜗
1
+ 𝜗
1
)

,

(𝜗
1
+ 𝜗
1
) > 4.

(7)

Topology in the method of intercommunication between
particles controls the convergence of a swarm. Topology is
divided into static and dynamic categories. In static topolo-
gies, the number of connected neighbors to a particle is
constant throughout the optimization process. However, this
number increases by the progress of optimization process in
dynamic topologies to enhance the searching abilities [37].

The original PSO aided a conical static topology based
on intercommunication of all particles with the global best
particle. However, Eberhart and Kennedy [38] proposed
another static topology by introducing intercommunication
between individuals and local best particles. In this model,
each particle was connected to 𝐾 number of its neighbors in
the swarm array. The main advantage of this method was the
ability of subconvergence in different regions of the search
space. Although the convergence of this method was slower
than the conical method, it was able to better escape from
local optima. For each problem, the appropriate topology can
be defined by performing sensitivity analysis on convergence
and execution time of PSO. Figure 2 illustrates conical and
local (𝐾 = 2) topologies for randomly generated 100 particles
in a 2D search space.

The size of swarm is defined as the number of its particles.
While a small swarm may fail to converge over a global
solution, a large swarm may have late convergence. The size
of swarm commonly varies from 20 to 50, but the optimum
number is usually determined through sensitivity analysis on
the convergence parameter of the swarm [36].
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Figure 2: (a) Local and (b) global topologies in 2D search space.

3. Application of PSO in Slope
Stability Analysis

PSO is mainly applied in stability analysis of soil slopes
within the framework of LEM [1]. This analysis involves two
consequent steps, that is, calculating FOS of candidate slip
surfaces and determining the CSS among all candidates [39].
PSO commonly contributes to the second step to determine
the shape and location of the CSS which are generally
unknown in soil slopes [40].

PSO can be applied in both 2D and 3D slope stability
analyses [32]. In 2D analysis, it can be employed to determine
the shape of the CSS in a predefined 2D section of the slope.
Different shapes are possible for slip surfaces in 2D analysis,
such as circular, ellipse, spiral, and polygonal or arbitrary
surfaces [22, 41, 42]. In contrast, 3D slip surfaces such as
spherical, ellipsoidal, and Nonuniform Rational B-Splines
(NURBS) are commonly assumed in 3D analysis [23, 43, 43,
44].

Figure 3 shows flowchart of PSO to determine the CSS
in slope stability analysis. The optimization procedure is
started by setting initial parameters of PSO. Then, a certain
number of particles (𝑁) is generated in a random pattern
over the search space. Since the improvement of swarm has
just begun, personal bests of all particles in initial swarm
are identical to the particles themselves. Based on the same
reason, the velocity of all initial particles is set to zero. After
setting up the initial values, the first particle is arranged as
its corresponding slip surface. This surface is qualified if it

can satisfy the conditions of the problem. Otherwise, it is
disqualified. A predefined minimum fitness value is given to
disqualify slip surfaces. This value represents a predefined
maximum FOS. For a qualified surface, FOS is calculated and
the corresponding fitness values of particle are assigned by
the fitness function of PSO. This process is repeated for all
particles of the swarm.

Current positions of particles that improved their fitness
values are recorded to update their personal bests, while
previous personal bests are used for other particles. The
global best particle is defined by the greatest fitness value in
the current swarm. Through an iterative process, subsequent
swarms are generated by updating velocities and positions
of former particles. The optimization process is terminated
by meeting the termination criteria. Eventually, the global
best particle of the last swarm represents the CSS of the
slope.

3.1. Coding of the Particles. The structure of particles followed
the standard PSO particles involving three sections as current
position, previous best position, and the velocity. A rotating
ellipsoid was selected as the general 3D shape of slip surfaces.
This ellipsoid can rotate on𝑥-𝑦plane (0 ≤ 𝜃

𝑥𝑦
≤ 𝜋) to provide

various slip surfaces (Figure 4).
In order to achieve the equation of rotated ellipsoid, the

parametric equation of general ellipsoid was transferred into
new axes by the rotation angle, 𝜃

𝑥𝑦
. The result presents the

rotated ellipsoid in (8). It should be noted that this ellipsoid
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Figure 3: Flowchart of PSO to determine the CSS in slope stability
analysis.

can be easily transformed to spherical and cylindrical slip sur-
face by, respectively, setting equal three and two semiradiuses:

(cos 𝜃
𝑥𝑦
(𝑥 − 𝑋

𝑐
) − sin 𝜃

𝑥𝑦
(𝑦 − 𝑌

𝑐
))

2

𝑅
2

𝑥

−

(cos 𝜃
𝑥𝑦
(𝑦 − 𝑌

𝑐
) + sin 𝜃

𝑥𝑦
(𝑥 − 𝑋

𝑐
))

2

𝑅
2

𝑦

+

(𝑧 − 𝑍
𝑐
)
2

𝑅
2

𝑧

= 1,

(8)

where 𝜃
𝑥𝑦

is rotation angle of the ellipsoid in 𝑥-𝑦 plane, 𝑋
𝑐
,

𝑌
𝑐
, and 𝑍

𝑐
are coordinates of center of ellipsoid in 𝑥-, 𝑦-, and

𝑧-directions, 𝑅
𝑥
, 𝑅
𝑦
, and 𝑅

𝑧
are semiradiuses of ellipsoid in

𝑥-, 𝑦-, and 𝑧-directions, and 𝑥, 𝑦, and 𝑧 are coordinates of an
arbitrary point on the surface of ellipsoid.

Based on the parameters of the rotating ellipsoid, Figure 5
shows schematic structure of a PSO particle. The section of
current position records the coordinates of center of ellipsoid,
its semiradiuses, and its rotation angle. Considering best
position and velocity sections, PSO has seven-dimensional
search space and twenty-one-cell particles.
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3.2. Fitness Function. The quality of particles can be cal-
culated by the fitness function. This function is related to
the objective function and provides quantitative tracking of
improvement of particles. Consequently, it makes it possible
to compare and rank particles in the swarm, wheremaximum
fitness shows the best particle andminimum fitness identifies
the worst particle of the swarm. PSO attempts to increase the
maximum fitness of swarms during its iterations. Since the
objective function of 3D slope stability analysis is equation of
FOS, PSO attempts to find the CSS with the minimum FOS
by maximizing the fitness value in

Fitness
𝑛(𝑖)

=

1

FOS (𝑥
𝑛(𝑖)
)

, (9)

where Fitness
𝑛(𝑖)

is fitness value of the 𝑛th particle in 𝑖th
iteration and FOS(𝑥

𝑛(𝑖)
) is FOS of 3D slip surface described

by 𝑥
𝑛(𝑖)

.

3.3. Sensitivity Analysis on PSO Parameters. The best per-
formance of PSO is guaranteed by initializing appropriate
parameters for it. A sensitivity analysis can help to do so.
The optimum values PSO parameters in 3D slope stability
analysis were defined by designing and performing several
independent tests on swarm size, coefficients of velocity, and
inertia weight of the swarm. In addition, the convergence



6 The Scientific World Journal

Table 1: Properties of slope in sensitivity analysis.

Parameters
𝛾 (kN/m3) 𝑐

 (kN/m2) 𝜙
 (∘)

Layer 1 19.78 12 17
Layer 2 17.64 24.5 20

Table 2: Results of sensitivity tests on swarm size.

Test number
1 2 3 4 5 6 7

Swarm size 5 15 25 35 45 55 65
Total CPU time (s) 365 625 549 1726 2792 2241 10101

behavior of PSO as the average fitness of swarms was
observed during the tests. A 3D soil slope was designed
with complex geometry, layers of soil, and piezometric line
(Figure 6). It should be noted that coding of the study was
done by the authors in MATLAB software (Licensed by
Universiti TeknologiMalaysia).The overall shape of the slope
shows two imbalanced hills with steep sides makes it difficult
to find the CSS for conventional slope stability analyses.
This specific shape was selected to verify the effectiveness of
PSO in complex 3D slopes. The properties of soil layers are
described in Table 1.

The size of the swarm is defined based on the condition
of search space, dimension of particles, and/or other specifi-
cations of the problem. The most common population sizes
are 20 to 50 [25]. However, Clerc and Kennedy [36] proposed
a relationship to determine the optimum value of swarm size
as follows:

𝑁
𝑠
= 10 + [√𝐷

𝑠
] , (10)

where 𝑁
𝑠
is swarm size, 𝐷

𝑠
is dimension of the particles,

and [ ] is calculator of integer part. Since the dimension
of particles in the present problem is seven, the proposed
optimum swarm size by this equation is 12. Considering
the most common range of the swarm size and the result
of equation, an interval of swarm sizes was prepared for
sensitivity test. It should be noted that the first swarm of
all tests was produced by the same random pattern and the
maximum iteration number was set to 100 for all tests. Table 2
shows the results of tests.The phrase “CPU time” in this table
means the exact amount of time that CPU spent on each test.
CPU time was used to produce fair comparisons, since some
factors including the operating system and available memory
can affect the overall duration of the tests.

Figure 7 illustrates the convergence behavior of PSO
in corresponding swarm sizes of Table 2. Three different
convergence behaviors as good, late, and failure can describe
these trends. Swarm sizes 5, 15, 25, 35, and 55 provided
good convergence over maximum iterations, while swarm
sizes 45 and 65, respectively, delivered delay and failure
in convergence. Among all the tests, the best convergence
was obtained by swarm size of 35 that provided the best
convergence with the highest average fitness.

Layer 1 interface
Water table
Layer 2 interface

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
5

4 3
2 1

0

Z
-a

xi
s

X-axisY-axis

5
4

3
21

0

Figure 6: Generated slope model for sensitivity analysis.
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Figure 7: Convergence behavior of PSO with different swarm sizes.

The next tests were performed to find the optimumvalues
of coefficients 𝜗

1
and 𝜗

2
of velocity equation. Based on the

original coefficients of Kennedy and Eberhart [4] and the
modified coefficients of Clerc and Kennedy [36], a series
of combinations were established as shown in Table 3. All
tests were performed by the same initial swarm with the size
of 35 (previously obtained as optimum) and the maximum
iterations of 100.

The results can be presented in two separated groups
including unequal and equal coefficients. Figure 8 illustrate
the results of the tests. The first group failed to converge over
the maximum iteration period, but the second group showed
different performances. Overall, the best convergence and the
greatest average fitness belonged to equal coefficients of 1.75
that makes it the optimum coefficient of velocity equation.
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Figure 8: Results of sensitivity tests on (a) unequal and (b) equal coefficients.

Table 3: Combinations of velocity equation coefficients in different
tests.

Test number Relationship 𝜗
1

𝜗
2

𝜗
1
+ 𝜗
2

1 𝜗
1
= 0.25𝜗

2
0.800 3.200 4

2 𝜗
1
= 0.50𝜗

2
1.333 2.667 4

3 𝜗
1
= 0.75𝜗

2
1.714 2.286 4

4 𝜗
2
= 0.25𝜗

1
3.200 0.800 4

5 𝜗
2
= 0.50𝜗

1
2.667 1.333 4

6 𝜗
2
= 0.75𝜗

1
2.286 1.714 4

7 𝜗
1
= 𝜗
2

2.500 2.500 5
8 𝜗

1
= 𝜗
2

2.000 2.000 4
9 𝜗

1
= 𝜗
2

1.750 1.750 3.5
10 𝜗

1
= 𝜗
2

1.500 1.500 3
11 𝜗

1
= 𝜗
2

1.000 1.000 2
12 𝜗

1
= 𝜗
2

0.500 0.500 1

The last sensitivity tests were performed to find the
optimum inertia weight (𝜔) of velocity equation. The same
initial swarm with size of 35 and equal coefficients of velocity
equation as 1.75 (previously defined as optimum values) were
applied for all the tests. Five tests with inertia weights of 0,
0.25, 0.5, 0.75, and 1, respectively, were performed based on
the proposed values of Shi and Eberhart [35] and Clerc and
Kennedy [36]. Figure 9 shows the convergence behavior of
PSO in the tests. The results showed successful convergence
in all tests, except test 3. It should be noted that test 5 was
identical with the original PSO, where no inertia weight
was present in velocity equation. Immature convergence
has occurred for tests 1 and 2. Although fast convergence
appears an advantage at first, it is a sign of trapping a
swarm in local solutions. Test 3 failed to converge, test 4 had
instable convergence, and test 5 failed to improve its average
fitness over themaximum iterations. Consequently, it was not
possible to introduce an optimum inertia weight to guarantee
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Figure 9: Results of sensitivity tests on inertia weight.

the convergence of PSO and improvement of average fitness
over the maximum iteration number simultaneously.

A dynamic inertia weight was utilized by the present
study to overcome the convergence problem of PSO.The pro-
posed strategy started with the most anticonvergence inertia
weight (0.5), continued with the normal convergence inertia
weight (0.75), and ended upwith themost stable convergence
(0.25). The switching levels of inertia weights were defined as
one-third and two-thirds of maximum iterations. Figure 10
shows the results of sensitivity tests on dynamic inertiaweight
with different maximum iterations from 50 to 300 by steps
of 50. All tests performed well to converge and improve the
average fitness over their maximum iterations, so dynamic
inertia weight was adopted for PSO.

4. Example Problems

Two example problems were analyzed to verify the perfor-
mance of PSO in determining the CSS. The properties of the
slope materials are shown in Table 4. Example problem 1 was
performed to verify the performance of PSO in determining
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Figure 10: Results of sensitivity tests on dynamic inertia weight.

Table 4: Properties of slopes in example problems.

Properties 𝑐 (kN/m2) 𝜙
 (degree) 𝛾 (kN/m3) 𝜐 𝐸 (kN/m2)

Problem 1 15 20 17 0.3 1𝐸 + 6

Problem 2 10 10 18 — —

the CSS in comparison with PLAXIS-3D finite element soft-
ware (License byUniversiti TeknologiMalaysia). Alkasawneh
et al. [44] applied different search techniques to determine
the CSS in 2D slope stability analysis. Figure 11 illustrates the
geometry of the slope. A 3D model was developed based on
this 2D section inwhich the third dimensionwas extended by
100 meters. Figure 12 shows the generated 3D models of the
slope by the present study and PLAXIS-3D. In both methods,
cylindrical slip surface was employed to determine the CSS of
the slope.

PSO improved average and best fitness of the swarm
as shown in Figure 13. Figure 14 shows the minimum FOS
versus iterations. PSO provided continuous reduction of FOS
to find the CSS. The present study obtained FOS of 1.78
versus theminimumFOS of 1.77 of the PLAXIS-3D. Figure 15
shows the CSS obtained by the present study and the result
of PLAXIS-3D. The present study and PLAXIS-3D obtained
similar FOS for the CSS with a small difference of 0.3%. This
result demonstrates the ability of PSO to determine the CSS
with the minimum FOS in 3D slope stability analysis.

Example problem 2 was performed to verify the ability
of PSO to determine the CSS with general ellipsoid shape in
a comparison with previous studies from the literature. This
example was initially analyzed by Yamagami et al. [45] and
was reanalyzed by Yamagami and Jiang [25] Yamagami et al.
[45] used random generation of surfaces to determine the
CSS of this slope, while Yamagami and Jiang [25] employed a
combination of dynamic programming and random number
generation to do so. It should be noted that the same equation
of FOS as previous studies was used to make fair comparison
of the results. The example involved a homogeneous slope
with gradient of 2 : 1 subjected to a square load of 50 kPa on
the top. The uniform load was applied on a square surface
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Figure 11: Geometry of 2D section of example problem 1.
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Figure 12: Generated 3D models of example problem 1 by (a) the
present study and (b) PLAXIS-3D.

with 8 meters sides at the top center of the slope. Figure 16
illustrates the geometry of example problem 1.

Figure 17 shows the generated 3D model by the present
study for example problem 2. Figure 18 plots the process of
PSO to improve fitness of the swarm.The trend of average fit-
ness value of the swarm experienced some instability during
the process. The main reason of this behavior is the presence
of disqualified slip surfaces in the swarm that dramatically
decreases the average fitness value.These surfaces were rarely
presented in the previous example due to adopted simpler
cylindrical shape compared with more complicated ellipsoid
shape in this example. The trend of minimum FOS versus
iterations is shown in Figure 19. Continuous decrement of
FOS by PSO leads to determining the CSS of the slope.

In spite of similar equation of FOS, the present study
found the CSS with a smaller FOS than other methods which
is the best result so far. The minimum FOS obtained by PSO
was 0.95 compared with 1.14 and 1.03 of random generation
of surfaces [45] and DP with RNG [25], respectively. This
result demonstrates the ability of PSO to accurately determine
the ellipsoid CSS in 3D slope stability analysis. Figure 20
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Figure 15: (a) The CSS obtained by the present study and (b) exag-
gerated displacement vectors of PLAXIS-3D in example problem 1.
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Figure 16: (a) Half-plan view and (b) central cross-section of slope
in example problem 2.
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Figure 17: Generated 3D models of example problem 2 by the
present study.

illustrates the CSS obtained by the present study in example
problem 2.

5. Conclusion

Determining the critical slip surface of a soil slope is a
traditional problem in geotechnical engineering which is still
challenging for researchers. This problem needs a massive
searching process. Although classical searching methods
work for relatively simple problems, they are surrounded by
local minima. Moreover, their processes become particularly
slow by increasing the number of possible solutions. To
eliminate these limitations, PSO has been applied in slope
stability analysis based on its successful results in advanced
engineering problems. However, this contribution was lim-
ited to 2D slope stability analysis. This paper applied PSO in
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3D slope stability problem to determine theCSS of soil slopes.
A detailed description of adopted PSO was presented to
provide a good basis for more contribution of this technique
to the field of 3D slope stability problems.

The application of PSO in slope stability analysis was
described by presenting a general flowchart. A general rotat-
ing ellipsoid shape was introduced as the specific particle for
3D slope stability analysis. In order to find the optimum val-
ues of parameters of PSO, a sensitivity analysis was designed
and performed. The related codes were prepared by the
authors in MATLAB. A 3D model with complex geometry,

soil layers, and piezometric line was used in the analysis.
This analysis included three steps to find the optimum swarm
size, coefficients, and inertia weight of the velocity equation,
respectively. Moreover, the performance of PSO to converge
over a global optimum solution was verified during the
tests. Based on the obtained values of parameters, PSO was
prepared for 3D slope stability analysis.

The applicability of PSO in determining the CSS of 3D
slopes was evaluated by analyzing two example problems.
The first example presented a comparison between the results
of PSO and PLAXI-3D finite element software. The second
example compared the ability of PSO to determine the CSS
of 3D slopes with other optimization methods from the
literature. Both of the example problems demonstrated the
efficiency and effectiveness of PSO in determining the CSS of
3D soil slopes. Based on the results, it is believed that PSO is
highly capable of contributing to the field of 3D slope stability
analysis.
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We focus on how to securely outsource computation task to the cloud and propose a secure outsourcing multiparty computation
protocol on lattice-based encrypted data in two-cloud-servers scenario. Our main idea is to transform the outsourced data
respectively encrypted by different users’ public keys to the ones that are encrypted by the same two private keys of the two assisted
servers so that it is feasible to operate on the transformed ciphertexts to compute an encrypted result following the function to be
computed. In order to keep the privacy of the result, the two servers cooperatively produce a custom-made result for each user that
is authorized to get the result so that all authorized users can recover the desired result while other unauthorized ones including
the two servers cannot. Compared with previous research, our protocol is completely noninteractive between any users, and both
of the computation and the communication complexities of each user in our solution are independent of the computing function.

1. Introduction

Secure multiparty computation (SMC) [1–7] is dedicated
to computing a certain function among a set of mutually
distrusted participants on their private inputs without reveal-
ing private information. Informally speaking, assuming that
there are 𝑚 participants, 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
, each of them has

a private number, respectively, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
. They want to

cooperate to compute the function 𝑦 = 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

without revealing 𝑥
𝑖
of 𝑃
𝑖
to other parties 𝑃

𝑗
, 𝑗 ̸= 𝑖, 𝑖, 𝑗 ∈

{1, . . . , 𝑚}, as well as guaranteeing that any unauthorized
ones cannot get the result 𝑦. In the past, researchers mainly
focused on designing the style of secure multiparty com-
putation protocols by which users themselves cooperatively
accomplish the function evaluation through their internal
interactions [1, 3, 8–11].The computation and communication
complexities always depend polynomially on the complexity
of the function to be computed. Therefore, users suffer from
the heavy overload of these protocols.

The emergence of the cloud [12, 13] inspires users to
apply the powerful computing ability of the cloud to help
them to conduct complicated computations, that is, secure

outsourcing computation [14–18] to the cloud. They expect
that the cloud can independently complete any function
computation on their outsourced data although the data has
been encrypted by their own keys for security. Moreover, the
final result should be kept private to the cloud even though it
is the cloud that conducts all of the computations about the
computing function. In this way, users only need to encrypt
their data and decrypt the returnedmessage to get the desired
result. All computations about the computing function are in
the charge of the cloud.There are no interactions between any
users, and the computation and communication complexities
of each user are independent of the computing function.
However, this expectation is proven to be impossible in the
single cloud server setting due to the impossibility of program
obfuscation [19]. Therefore, in this paper, we try to realize it
by introducing one more cloud server to the original model
described above. More precisely, we consider the following
scenario.

There are 𝑚 + 2 distrusted parties including 𝑚 users
and two cloud servers in our system. We assume that all of
them act semihonestly. The 𝑚 users 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
, with each

having a private input, respectively, 𝑥
𝑖
, as well as a pair of
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public-private keys (𝑝𝑘
𝑖
, 𝑠𝑘
𝑖
), 𝑖 = 1, . . . , 𝑚, encrypt their

respective private inputs by their own public keys and then
upload the ciphertexts of the inputs to a cloud server. They
want to obtain the value 𝑦 = 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) even if they

may not be aware of what the computing function 𝑓(⋅) is
by applying two cloud servers to operate on the outsourced
encrypted data without revealing 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
and the result

𝑦.
In this paper, we study the outsourcing computation

problem in multiple users-two-cloud-servers scenario and
propose a two-cloud-servers-assisted secure outsourcing
multiparty computation protocol to compute any function
on lattice-based encrypted data under multiple keys of the
users. Herein, we apply one cloud server called the storing-
cloud (SC) to store the outsourced data encrypted by users
and make a midtransformation to these ciphertexts once
some function begins to be computed. We call the other
cloud server the computing-cloud (CC). It is responsible for
transforming the midtransformed ciphertexts by SC to the
ones that are blinded by the same two private keys of the
two assisted cloud servers so that CC can further compute
𝑦 following the function on the ciphertexts. Finally, in order
to protect the result, the two servers cooperatively produce a
custom-made result for each user. Compared with previous
solutions, our protocol has the following three advantages.

(1) Our protocol is completely noninteractive between
any users.

(2) The cloud is to do all of the computations related
to the computing function, while users would do
nothing except for encrypting their private inputs and
decrypting the returned result.

(3) The computation and communication complexities
of each user in our solution are independent of the
computing function.

Organization.The rest of this paper is organized as follows. In
Section 2, we briefly give an overview of some recent related
works. Herein, we consider the problems in secure outsourc-
ing computation from the point of view of the users and
the cloud servers, respectively, and then rationally construct
our protocol in the multiple users-two-cloud-servers setting.
In Section 3, we briefly introduce a lattice-based encryption
scheme and the securitymodel and then present our protocol
in Section 4 in detail. In Section 5, we analyze the proposed
protocol in detail and give a strict proof based on real-ideal
simulation paradigm. Finally, we summarize our work of this
paper in the last section.

2. Related Works

According to previous research, there are many problems to
be considered when outsourcing private data for function
computation to the cloud.We discuss the difficulties in secure
outsourcing computation to the cloud from the following two
aspects.

(1) To Users: Privacy of the Inputs and Results. In secure out-
sourcing computation, users have to contribute their private

data as the inputs of the function while not participating in
the computation process.Moreover, all parties of the protocol
including all users and cloud servers are mutually distrusted.
Therefore, users would not like to submit their private data
to the cloud. Allowing for security, a usual solution is to
encrypt the private data before outsourcing them to the cloud.
And there are some basic encryptionmodels according to the
encryption keys that users used.

In 2009, Gentry [20] presented a model where all users
use a joint public key to encrypt their own private inputs
while sharing the private key. Therein, the cloud cannot
obtain the inputs or the result because they are protected by
the encryption scheme, while the cloud does not have the
private key. However, users have to participate in another
interactive protocol to firstly recover the private key and then
achieve the desired result. The processes, producing a joint
public key, sharing the private key, and jointly recovering
the result by their shared private key, bring large number of
additional interactions among users, which is contrary to our
expectation that we want to design a secure protocol with the
least communications. Encrypting private data by the joint
public key is not so satisfactory either. In cloud outsourcing
scenario, it means that there are no interactions among the
users whatsoever and the least two rounds of inevitable inter-
actions between the user and the cloud server, sending out the
inputs and receiving the result. Therefore, we look forward
to a protocol with the least communications as well as low
computations and high security. A recent work by Asharov et
al. [21] proposes a schemewhere users utilize their ownpublic
keys to encrypt their inputs, respectively, and guarantee that
the cloud can succeed in computing the function on their
private inputs by computing on the ciphertexts of the inputs
encrypted under different keys. Although users still have
to interact to obtain the result in the last step, encrypting
respective input by the public key of each user is the best
encryption model so far.

As to the privacy of the result, in 2011, Halevi et al. [22]
proposed a noninteractive protocol to securely realize out-
sourcing computation. Therein, the server is entitled to learn
the result. However, the computing result may be the vital
information to the users in some scenario and so it cannot
be revealed to others. Hence, besides the security of the inputs
discussed above, usersmust consider the security of the result
when constructing protocols. It should guarantee that any
unauthorized users are not able to get the result although
they may contribute their inputs and the cloud servers are
not able to get the result although the result is computed by
them. To this aspect, [20] has already protected the result by
a joint public key of the users. However, this method is still
not satisfactory since each authorized user is also not able to
get it individually.

(2) To Cloud Servers: Feasibility of Operating on Encrypted
Inputs. As discussed above, users would like to upload the
encrypted inputs under their respective public keys to the
cloud server rather than the original inputs. Therefore, the
cloud servers, whose task is to compute a function on users’
private inputs, would only obtain the ciphertexts of the
inputs.Thatmeans that the cloud has to compute the function
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(i) KeyGen(1𝑘): sample a ring element vector 𝑎 ← 𝑅
𝑛

𝑞
and a ring element 𝑠 from the

distribution 𝜒, denoted as 𝑠 ← 𝜒, a ring element vector 𝑥 from the distribution 𝜒𝑛, denoted
as 𝑥 ← 𝜒

𝑛. Then, the private key is 𝑠𝑘 = 𝑠; the public key is 𝑝 = 𝑎𝑠 + 2𝑥 ∈ 𝑅𝑛
𝑞
.

(ii) Enc(𝑝𝑘,𝑚): sample 𝑒 ← 𝜒
𝑛 and compute 𝑐

0
:= ⟨𝑝, 𝑒⟩ + 𝑚 ∈ 𝑅

𝑞
and 𝑐
1
:= ⟨𝑎, 𝑒⟩ ∈ 𝑅

𝑞
. Output

the ciphertext 𝑐 := (𝑐
0
, 𝑐
1
) ∈ 𝑅
2

𝑞
.

(iii) Dec(𝑠𝑘, 𝑐): compute 𝜇 = 𝑐
0
− 𝑐
1
𝑠 ∈ 𝑅
𝑞
and output𝑚 := 𝜇(mod2).

Algorithm 1

on users’ private inputs through performing corresponding
computations on the ciphertexts of the inputs encrypted by
different public keys of users. As we know, fully homomor-
phic encryption (FHE) [20, 23] can operate on the ciphertexts
of the inputs to compute the desired result produced by the
inputs. But the usual FHE schemes are single-key schemes
in the sense that they only can perform computations on
ciphertexts encrypted under the same key. It is not feasible
to conduct computations on the ciphertexts encrypted under
different keys. In order to solve this problem, López-Alt et al.
[24] propose a new FHE called multikey fully homomorphic
encryption (MFHE) which has applied the techniques of
bootstrapping, modulus reduction, and relinearization to
operate on the ciphertexts of the inputs encrypted by mul-
tiple, unrelated keys. When outsourcing private data to the
cloud, user can firstly encrypt it by its own key by applying
MFHE. It is indeed the optimal solution from the point of
view of the feasibility of ciphertexts and the privacy of inputs.
However, as we mentioned before, it is still not satisfactory
because users need to evaluate the decryption key and then
use it to recover the result interactively by participating in
another SMC protocol.

In fact, according to [19], it is proved that it is indeed
impossible to construct a completely noninteractive protocol
in the single server setting due to the impossibility of program
obfuscation. Hence, if we want to obtain a secure protocol
with complete noninteraction of users in outsourcing com-
putation, we need at least two cloud servers.

In brief, allowing for the privacy of inputs and results
from the perspective of users as well as the feasibility of oper-
ating on the outsourced encrypted data from the perspective
of the cloud servers, if we want to construct a completely
noninteractive secure outsourcing multiparty computation
protocol where the computation and communication com-
plexities of each user are independent of the computing
function, we have the following conclusions.

(1) All private data should be encrypted by the owners
themselves using their respective public keys before
outsourcing to the cloud servers.

(2) The returned messages for each user should be dif-
ferent so that all authorized users can recover the
final result by their respective private key but the
unauthorized ones cannot.

(3) It is reasonable to consider it in two-cloud-servers
scenario.

3. Preliminaries

3.1. Lattice-Based Encryption. Since the privacy of the inputs
and the computation complexity of each user depend on
the encryption algorithm that the user used, an encryption
schemeoutstanding in both security and efficiency is the right
one that users want to adopt. Hence, lattice-based encryption,
which is against quantum attacks and is much more efficient
than RSA and even the elliptic curve cryptosystem, becomes
the first choice of rational users. Herein, we will show how the
two cloud servers deal with the outsourced data encrypted by
the lattice-based public key encryption scheme proposed in
[24, 25] (denoted as LE scheme in this paper). Specifically, we
recall it as follows.

Notations. Let 𝑘 be the security parameter. Then, the LE
scheme is parameterized by a prime 𝑞 = 𝑞(𝑘), a degree 𝑛
polynomial 𝑓(𝑥) ∈ Z[𝑥], and an error distribution 𝜒 over
the ring𝑅

𝑞
= Z
𝑞
[𝑥]/⟨𝑓(𝑥)⟩.The parameters 𝑛,𝑓, 𝑞, and𝜒 are

public. It assumes that, given the security parameter 𝑘, there
are polynomial-time algorithms that output 𝑓 and 𝑞 and a
sample from the error distribution 𝜒.

The LE encryption scheme consists of the following three
algorithms: KeyGen(⋅), Enc(⋅), and Dec(⋅) (Algorithm 1).

In [24], they apply the techniques of bootstrapping, mod-
ulus reduction, and relinearization to realize and to operate
on the ciphertexts of the inputs encrypted by multiple, unre-
lated keys. Therein, they have obtained a secure outsourcing
multiparty computation protocol on lattice-based encrypted
data under multiple keys of users in one server scenario.
However, it is not satisfactory because the interaction in the
decryption stage is still inevitable.

In this paper, based on this encryption scheme, we con-
sider the outsourcing problem in two-cloud-servers scenario
and succeed to construct a secure noninteractive outsourcing
protocol that achieves the least computation and communi-
cation complexities for users.

3.2. SecurityModel. In this paper, wewill discuss our protocol
in the semihonest model and analyze its security using the
real-ideal paradigm [5].

Firstly, in the ideal world, the computation of the func-
tionality F on users’ private inputs is conducted by an
additional trusted party that receives 𝑥

𝑖
from user 𝑃

𝑖
, 𝑖 =

1, 2, . . . , 𝑚, and returns the result 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) to the

authorized users 𝑃
𝑡
, while other unauthorized parties do not

get any output. Hence, in the ideal world, all users’ private
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Figure 1: Framework of our construction.

inputs are well protected, and only authorized users are able
to learn about the result. However, there is no trusted party
in the real world, and so all parties have to run a protocol
Π to get the desired result. During executing the protocol Π,
all parties act semihonestly following the protocol but make
effort to gain more information about other parties’ inputs,
intermediate results, or overall outputs by the transcripts of
the protocol. An adversary can corrupt a party to receive all
messages directed to it and control the messages to be sent
out from it.

Herein, we denote the joint output of the ideal world
adversary S and the outputs of the remaining parties in
an ideal execution for computing the functionality F with
inputs ⃗𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) as IDEALF,S( ⃗𝑥), the joint

output of the real world adversary A, and the outputs of
the remaining parties in an execution of protocol Π with
inputs ⃗𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) as REAL

Π,A( ⃗𝑥). Then, we say
that protocol Π securely realizes functionalityF if, for every
real adversary A corrupting any parties and possibly the
cloud servers, there exists an ideal world adversary S with
black-box access to A such that, for all input vectors ⃗𝑥,
IDEALF,S( ⃗𝑥)

𝑐

≈ REAL
Π,A( ⃗𝑥).

4. Our Result

We consider the secure outsourcing computation problem
in the multiple users-two-cloud-servers scenario described
as follows. There are 𝑚 + 2 parties including 𝑚 users and 2
noncolluding cloud servers: one is called the storing-cloud
(SC), and the other is called the computing-cloud (CC). Each
user 𝑃

𝑖
has a private input denoted as 𝑥

𝑖
and a pair of public-

private keys (𝑝𝑘
𝑖
, 𝑠𝑘
𝑖
) while sharing a private random 𝑟

𝑖
with

SC that has a private number 𝑘sc. CC has a private number
𝑘cc. Users want to outsource the task of computing function
𝑓(⋅) on users’ private inputs to the two cloud servers. They
only provide the ciphertexts of the private data encrypted by
a lattice-based encryption schemeunder their different public
keys and require the cloud servers to give the authorized
users the result while keeping the security of the inputs.
What is more, users wish that the cloud servers take charge
of all of the computations related to the function 𝑓(⋅) and
that there is noninteraction of users whatsoever so that the
computation and communication complexities of each user
are independent of the function to be computed. Herein, we
deem that the two rounds of inevitable communications and
a request from a user to the cloud servers for computing
function 𝑓(⋅) are the three basic rounds of communication in
this paper. Then, for each user, they expect that there are no
other interactions at all between any user-to-user or user-to-
server except the three basic rounds of communication. Fur-
thermore, the computation complexity of each user depends
on the encryption scheme it has used. The framework of our
construction can be illustrated in Figure 1.

In this following section, we formally propose our solu-
tion denoted as protocol Π for convenience in detail and
then analyze its security using the real-ideal paradigm in the
semihonest model.

Without loss of generality, we represent the function 𝑓(⋅)
to be computed by means of arithmetic circuitC

𝑓
consisting

of any number of addition gates and 𝑙 multiplication gates
where each gate has two input wires and one output wire.
Then, any functionality can be reduced to the two basic
operations, addition andmultiplication, over two inputs. Our
construction can be summarized in Algorithm 2.
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Protocol 𝜋: Two cloud servers-assisted secure outsourcing computation protocol
Setup.
For 𝑖 = 1, 2, . . . , 𝑚, sample a ring element vector 𝑎

𝑖
← 𝑅
𝑛

𝑞
, a ring element 𝑠

𝑖
← 𝜒, and a ring

element vector 𝑥
𝑖
← 𝜒
𝑛. Then, the private key of 𝑃

𝑖
is 𝑠𝑘
𝑖
:= 𝑠
𝑖
; the public key of 𝑃

𝑖
is

𝑝
𝑖
:= 𝑎
𝑖
𝑠
𝑖
+ 2𝑥
𝑖
∈ 𝑅
𝑛

𝑞
. And then, 𝑃

𝑖
shares a private random 𝑟

𝑖
with SC that has a private

number 𝑘sc. CC has a private number 𝑘cc. As a preparation, user 𝑃𝑖 firstly sends 𝑟𝑖 ⋅ 𝑠𝑖 to CC;
CC computes 𝑘cc ⋅ 𝑟𝑖 ⋅ 𝑠𝑖 and then sends it back to SC. Then, SC can obtain 𝑘cc ⋅ 𝑠𝑖 by
removing 𝑟

𝑖
.

Upload.
For 𝑖 = 1, 2, . . . , 𝑚, each user 𝑃

𝑖
encrypts its own private input 𝑥

𝑖
by the LE scheme. Firstly, 𝑃

𝑖

samples 𝑒
𝑖
← 𝜒
𝑛 and computes 𝑐𝑖

0
:= ⟨𝑝
𝑖
, 𝑒
𝑖
⟩ + 𝑥
𝑖
∈ 𝑅
𝑞
and 𝑐𝑖
1
:= ⟨𝑎
𝑖
, 𝑒
𝑖
⟩ ∈ 𝑅

𝑞
. Then, it

outputs the ciphertext 𝑐
𝑖
:= (𝑐
𝑖

0
, 𝑐
𝑖

1
) ∈ 𝑅

2

𝑞
.

Outsourcing Computation.
After receiving all ciphertexts of the private inputs from users, SC stores all ciphertexts and
executes a midtransformation to the outsourced data when computing some function 𝑓(⋅).
After that, CC further transforms the midtransformed ciphertexts and then computes the
function 𝑓(⋅) following the circuitC

𝑓
that consisted of addition gates and multiplication gates.

(1) Midtransforming.
Firstly, SC midtransforms the ciphertexts encrypted by users’ own keys as 𝑐

𝑖
→ 𝑐
𝑖

, where
𝑐
𝑖


= (𝑐
𝑖

0



, 𝑐
𝑖

1



) = (𝑘sc ⋅ 𝑐
𝑖

0
, 𝑘sc ⋅ (𝑘cc ⋅ 𝑠𝑖) ⋅ 𝑐

𝑖

1
), and sends 𝑐

𝑖

 to CC.

(2) Computing.
After receiving 𝑐

𝑖

, CC further transforms 𝑐
𝑖

 to 𝑐
𝑖


= (𝑘cc ⋅ 𝑘sc ⋅ 𝑐

𝑖

0
, 𝑘sc ⋅ (𝑘cc ⋅ 𝑠𝑖) ⋅ 𝑐

𝑖

1
).

Denote 𝑘 = 𝑘sc ⋅ 𝑘cc; then, 𝑐𝑖

= (𝑐
𝑖

0



, 𝑐
𝑖

1



) = (𝑘 ⋅ 𝑐
𝑖

0
, 𝑘 ⋅ 𝑠
𝑖
⋅ 𝑐
𝑖

1
). CC then computes the

ciphertext of the result by the transformed ciphertexts of users’ private inputs.
Add. For each addition gate, 𝑐

𝑖


⊕ 𝑐
𝑗


= (𝑐
𝑖

1



− 𝑐
𝑖

0



) ⊕ (𝑐
𝑗

1



− 𝑐
𝑗

0



) = 𝑘 ⋅ (𝑥
𝑖
+ 𝑥
𝑗
).

Mul. For each multiplication gate, 𝑐
𝑖


⊗ 𝑐
𝑗


= (𝑐
𝑖

1



− 𝑐
𝑖

0



) ⊗ (𝑐
𝑗

1



− 𝑐
𝑗

0



) = 𝑘
2
⋅ (𝑥
𝑖
× 𝑥
𝑗
).

(3) Producing Custom-Made Result.
After computing gate by gate following the circuitC

𝑓
, CC obtains the intermediate result

encrypted by the private numbers of the two assisted cloud servers SC and CC; that is,
𝑦

= 𝑘
𝑙+1

⋅ 𝑦 = 𝑘sc
𝑙+1

⋅ 𝑘cc
𝑙+1

⋅ 𝑦, where 𝑦 = 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) and 𝑙 is the number of the

multiplication gates ofC
𝑓
. To produce a custom-made result for each user, CC firstly sends

𝑦
 to SC. SC removes 𝑘𝑙+1sc and adds 𝑟

𝑡
to compute 𝑦

𝑡


= 𝑟
𝑡
⋅ 𝑘
𝑙+1

cc ⋅ 𝑦 and then sends 𝑦
𝑡

 back
to CC. CC finally removes 𝑘𝑙+1cc to produce the custom-made ciphertext 𝑦

𝑡
= 𝑟
𝑡
⋅ 𝑦 and sends

it to the authorized party 𝑃
𝑡
, 𝑡 ∈ {1, 2, . . . , 𝑚}.

Output
For each authorized party 𝑃

𝑡
, 𝑡 ∈ {1, 2, . . . , 𝑚}, it obtains the result 𝑦 by removing 𝑟

𝑡
.

Algorithm 2

In setup, each user 𝑃
𝑖
invokes KeyGen(1𝑘) to compute its

public-private keys (𝑝𝑘
𝑖
, 𝑠𝑘
𝑖
). At the same time, each𝑃

𝑖
selects

a random 𝑟
𝑖
and sends it to SC via secure channels, while

SC and CC, respectively, choose private numbers 𝑘sc and 𝑘cc.
Assuming that all users’ private data 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are

the real inputs of function𝑓(⋅), then each 𝑃
𝑖
sends 𝑟

𝑖
⋅ 𝑠
𝑖
to CC.

CC further computes 𝑘cc ⋅ 𝑟𝑖 ⋅ 𝑠𝑖 and sends it to SC. After that,
𝑃
𝑖
submits the ciphertext 𝑐

𝑖
of the private input 𝑥

𝑖
encrypted

by its own public key 𝑝
𝑖
to SC in the upload process.

In computation process, SCfirstlymidtransforms the out-
sourced data which are encrypted by different keys of users,
and CC further transforms the midtransformed ciphertexts
to the ones that are blinded by the same private numbers of
the two servers so that CC can operate on the ciphertexts to

compute 𝑓(⋅). Specifically, for addition/multiplication gate,
CC can easily get the result by (𝑐𝑖

1
− 𝑐
𝑖

0
) ⊕ (𝑐

𝑗

1
− 𝑐
𝑗

0
) =

𝑘 ⋅ (𝑥
𝑖
+ 𝑥
𝑗
) and (𝑐𝑖

1
− 𝑐
𝑖

0
) ⊗ (𝑐

𝑗

1
− 𝑐
𝑗

0
) = 𝑘

2
⋅ (𝑥
𝑖
× 𝑥
𝑗
).

Computing gate by gate following the circuit C
𝑓
, CC can

obtain the intermediate result 𝑦 = 𝑘𝑙+1 ⋅ 𝑦 = 𝑘𝑙+1sc ⋅ 𝑘
𝑙+1

cc ⋅ 𝑦.
In order to guarantee that only the authorized user can get

the final result, SC and CC cooperatively produce a custom-
made result for each authorized user as follows. (Herein, we
assume that 𝑃

𝑡
, 𝑡 ∈ {1, 2, . . . , 𝑚}, is authorized to get the

result.) Firstly, CC sends 𝑦 to SC. SC removes 𝑘𝑙+1sc and adds
𝑟
𝑡
to compute 𝑦

𝑡
= 𝑟
𝑡
⋅ 𝑘
𝑙+1

cc ⋅ 𝑦 and then sends 𝑦
𝑡
back to CC.

CCfinally removes 𝑘𝑙+1cc to obtain the custom-made ciphertext
𝑦
𝑡
= 𝑟
𝑡
⋅ 𝑦 and sends it to 𝑃

𝑡
.
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In the last process, the authorized user 𝑃
𝑡
obtains the

result 𝑦 by removing 𝑟
𝑡
from 𝑦

𝑡
.

5. Analysis

From the protocol described above, the correctness is obvious
due to the homomorphic properties of the transformed
ciphertexts. We will have a detailed discussion on its secu-
rity. Note that, before the actual computations which are
performed by SC and CC, there are setup and upload
processes.We will individually illustrate their security at first.
Afterwards, we will prove the security of the core of our
protocol, that is, the outsourcing computation process, in the
real-ideal framework. Finally, from the composition theorem
[5], we can conclude that our protocol is secure.

Theorem 1. Protocol Π is secure as long as the LE scheme is
secure and SC and CC are noncolluding.

Proof. Firstly, we look at the setup and upload processes
individually.

In setup, each user, respectively, encrypts its private input
by its own public key which is produced by invoking a
semantically secure LE scheme. The security of this process
is obvious. Afterwards, 𝑃

𝑖
sends 𝑟

𝑖
⋅ 𝑠
𝑖
to CC and CC sends

𝑘cc ⋅ 𝑟𝑖 ⋅ 𝑠𝑖 to SC. Herein, 𝑃𝑖’s private key 𝑠𝑖 is protected by the
blinding factors: 𝑟

𝑖
which is private to𝑃

𝑖
and SC and 𝑘cc which

is private to CC. Therefore, the private keys of users will not
be revealed in this process.

In upload, users outsource the encrypted data to SC. Since
the LE scheme is semantically secure, given two ciphertexts
𝑐
𝑖
(𝑚
1
), 𝑐
𝑖
(𝑚
2
) of the two plaintexts 𝑚

1
, 𝑚
2
uploaded by 𝑃

𝑖
,

it is computationally infeasible for SC to distinguish the two
ciphertexts. Hence, users can store their encrypted data in SC
securely.

In outsourcing computation process, SC firstly midtrans-
forms 𝑐

𝑖
to 𝑐


𝑖
and sends 𝑐

𝑖
to CC. It is obvious that it is

secure since SC blinds the midtransformed ciphertext 𝑐
𝑖
by

the private number 𝑘sc, which is secret to CC. As to the core
of the computation process, we will discuss the security in
the real-ideal framework. From the security definition, we
say that protocol Π is secure if all adversarial behavior in the
real world can be simulated in the ideal model where there
exists an additional trusted party to perform all computations
related to the function 𝑓(⋅) to be computed. We assume that
there is a simulator S in the ideal world and then prove that
it can simulate the semihonest adversaryA that exists in the
real execution. Since CC is able to independently complete
addition andmultiplication operations, we only need to prove
thatAdd andMul are secure against the semihonest adversary
A corrupting CC. We prove this as follows.

Simulator S. RunA on input{𝑐S(𝑚1), 𝑐S(𝑚2)}.
Firstly, S computes

𝑐S (𝑚1) = Enc (𝑝𝑘S, 1) ;

𝑐S (𝑚2) = Enc (𝑝𝑘S, 1)
(1)

and sends 𝑐S(𝑚1), 𝑐S(𝑚2) toA.

Secondly, A sends two ciphertexts 𝑐S(𝑚
∗

1
), 𝑐S(𝑚

∗

2
) to S.

Then, S computes

𝑐S (𝑚
∗

1
+ 𝑚
∗

2
) = 𝑐S (𝑚

∗

1
) ⊕ 𝑐S (𝑚

∗

2
) ;

𝑐S (𝑚
∗

1
× 𝑚
∗

2
) = 𝑐S (𝑚

∗

1
) ⊗ 𝑐S (𝑚

∗

2
)

(2)

and returns 𝑐S(𝑚
∗

1
+ 𝑚
∗

2
), 𝑐S(𝑚

∗

1
× 𝑚
∗

2
) toA.

Finally, S outputs whatA outputs.
Now, we can prove the security of Add and Mul algo-

rithms by contradiction. Firstly, we assume that the view of
the adversary A in the real world is distinguishable from
the view simulated by the simulator S. Then, we could find
an algorithm to distinguish the ciphertexts encrypted by the
LE encryption scheme, which is contrary to our assumption
that the LE is semantically secure. Hence, the view of the
adversary A in the real world is indistinguishable from the
view simulated by the simulator S. That is,

IDEALF,S (𝑐S (𝑚𝑖))
𝑐

≈ REAL
Π,A (𝑐S (𝑚𝑖)) , 𝑖 = 1, 2. (3)

Therefore, the two algorithms Add and Mul are secure.
Furthermore, from the composition theorem [5], we can
conclude that our protocol is secure as long as the LE scheme
is secure and SC and CC are noncolluding in semihonest
scenario.

6. Conclusion

Only contributing the encrypted forms of their private inputs
under their own public keys to gain the desired result of
some function on the private inputs via powerful cloud with
minimal computations and communications is the optimal
method especially when users want to compute some com-
plex function. In this paper, we introduce two noncolluding
cloud servers to construct a secure outsourcing multiparty
computation protocol on lattice-based encrypted cloud data
under multiple keys in semihonest scenario. All computa-
tions related to the computing function are in the charge of
the two cloud servers.Therefore, the computation complexity
of each user only depends on the encryption scheme it has
used. What is more, the communication complexity of each
user is also independent of the function to be computed and
there is no interaction of users whatsoever any more.
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A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable
representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm
optimization, the “dummynode” is added into the binary trees to deal with the different lengths of representations.The experimental
results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms
to generate shorter collision-free paths for mobile robot navigation.

1. Introduction

Path planning is one of the important research issues in
mobile robot. When executing a task, the robot is supposed
to plan optimal or feasible paths to avoid obstacles in its
way and to minimize cost such as time, energy, and distance.
Accordingly, path planning can be regarded as an issue in
optimization.

A general solution to optimization problem is the use
of evolutionary algorithm because of the model-free char-
acteristic. When dealing with an optimization problem,
evolutionary algorithm uses some mechanisms inspired by
biological evolution to find the approximate solutions. The
most famous evolutionary algorithm is genetic algorithm
(GA) [1]. Another technology for solving the optimization
problem is swarm intelligence. Similarly, the swarm intel-
ligence is inspired from artificial life research. The most
famous swarm intelligence is particle swarm optimization
(PSO) [2–4]. One of the advantages of GA is its mechanism
of probabilistic and useful exchange of information among
chromosomes to find an optimal solution, but it is a time-
consuming process. In contrast to GA, the advantage of PSO
is that each particle’s movement is influenced by its local best
known position but is also guided towards the best known
positions in the search-space to accelerate the convergence.
However, PSO does not guarantee that an optimal solution is
ever found. Therefore, the idea of integrating two techniques

to solve the path planning problem is feasible. Although
a number of studies have been made on hybrid GA and
PSO, the problem of hybrid algorithms still needs to be
improved on the encoding method. Many studies use the
fixed number of turning points to represent the path without
considering the environmental complexity and then lead to
poor path quality. The main reason is due to the solution
dimension of PSOwhichmust be fixed.However, the number
of turning points used to encode a path should depend on
the complexity of the environment. More turning points are
needed to accomplish the plan ofmaking a collision-free path
in cluttered environments.

This paper adopts a scalable encoding method and devel-
ops a novel approach to solve the problem of hybrid GA
and PSO. The scalable representation is based on binary tree
structure encoding. Each binary tree represents a path. The
path can be acquired by tracing the binary tree using the in-
order traversal. In the binary tree, each node represents a turn
in the path.Withmore obstacles in the workspace, the binary
tree has more nodes. With no obstacles in the workspace,
the binary tree only has the starting point and the end point.
The number of the nodes depends on the complexity of the
environment. The proposed binary tree structure also can
solve the learning problem in PSO.

The remainder of this paper is organized as follows.
Section 2 introduces the related work to hybrid evolutionary

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 746260, 8 pages
http://dx.doi.org/10.1155/2014/746260

http://dx.doi.org/10.1155/2014/746260


2 The Scientific World Journal

algorithm. Section 3 elaborates the proposed hybrid GA-
PSO approach as well as a brief explanation of how the
binary tree is built. Section 4 illustrates the experimental
results for comparing the proposed hybrid approach with
traditional GA and PSO. Concluding remark and future work
are presented in Section 5.

2. Related Work

The methods for hybrid GA and PSO can be categorized to
parallel hybrid [5, 6] and series hybrid [7]. In parallel hybrid
strategy, GA and PSO are two independent subsystems. After
the evolutionary process starts, the two subsystems execute
simultaneously. The main system will check whether the
best solution in the two subsystems satisfies the termination
criterion or not. If the generations can be divided by the
designated iterative times, the main system will perform
the hybrid process. In the hybrid process, the main system
selects a fixed number of individuals from both subsystems
randomly. In contrast, series hybrid strategy uses a series
of connections to cascade GA and PSO. In each generation,
every individual is sorted according to its fitness value. Only
the top-half best-performing individuals, called elites, in each
generation are used as parents to generate offspring. The
learning mechanism of PSO is adopted to enhance elites.
The crossover operator and the mutation operator are then
applied to the elites to produce new individuals for the next
generation.

We can easily tell the principal differences between these
two categories of hybrid methods. Parallel hybrid method
generates two different subpopulations by GA and PSO indi-
vidually for solving a problem. The communication between
GA and PSO only exchanges the individuals. In contrast
to parallel hybrid, series hybrid uses the same population
to search for a better candidate solution iteratively. Series
hybrid method applies all the GA and PSO operations
on the same population. However, the coding way of all
hybrid methods still uses fixed number of turning points
to represent a candidate solution for path planning. The
required number of turning points in a path should depend
on the complexity of the environment. The encoding way
using fixed number of turning points is not appropriate. In
[8, 9], the traditional grid-based encoding way is used to
represent the candidate paths. In contrast to the grid-based
encoding, [10] demonstrates a new approach to represent the
path based on binary tree structure. Although there are many
studies on combining GA and PSO, the main solution to
scalable encoding way still remains unsatisfactory.

3. Methodology

The flowchart of the proposed hybrid evolutionary approach
is shown in Figure 1. First, the initial paths and the cor-
responding binary trees are created. Then, every path is
evaluated according to its fitness value. After getting the
fitness value, the system sorts the paths from the best to the
worst.The top half paths, called elites, are saved and the worst
half paths are deleted.The elite paths are enhanced by the PSO

Create initial paths

Evaluate and sort
all paths

Apply PSO
to enhance paths 

Use crossover operator
to create new paths

Use mutation operator
to modify paths

Meet criteria?

Output solutions

PSO

GA

Yes

No

Figure 1: The flowchart of hybrid evolutionary algorithm.

operator. Because worst half paths are deleted, the crossover
operator is applied to create new paths. When applying the
crossover operator, the parents are selected from the elite
paths. And each new created path has probability to apply the
mutation operator of GA. Finally, the system will check each
path to find whether it meets the criteria or not. If no path
meets the criteria, the system returns to the evaluating step.

In order to make the hybrid evolutionary algorithm work
properly, a good encoding method to combine two kinds
of evolutionary algorithms is needed. The proposed hybrid
method applies the binary tree structure and adds some
dummy nodes to solve the hybrid problem of GA and PSO.

3.1. The Creation of Initial Paths. This part describes how
to generate a binary tree to represent a path. As shown in
Figure 2(a), there is an obstacle between the starting point
(S) and the end point (G). First of all, a direct line would
be used to connect the starting point and the end point. If
there is no obstacle on the line, this line will be the shortest
path. If there are obstacles on the line, a new turning point
with a random offset distance 𝑑 perpendicular to the line
segment would be generated from the middle of the line. An
obstacle-free path will be created as shown in Figure 2(b).
There are two directions for a line to create a new node,
as shown in Figure 3. Every time a new turning point is
created, the system will check whether every line segment
is obstacle-free or not. If the path is still not obstacle-free,
a new turning point will be created until the path can avoid
every obstacle. If the number of turning points exceeds the
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Figure 2: A simple example of creating a collision-free path.

S G

(a)

S G

(b)

Figure 3: Two directions for a path to create a new turning point.

predefined threshold, new turning points will not be created
anymore. A path with the maximum number of turning
points is not a good candidate solution and will be deleted
after the sorting process. As shown in Figure 4, all the turning
points of a path are encoded to a binary tree for the process
of evolution [10].

3.2. Operator of Particle Swarm Optimization. Since PSO
does not allow solutions with different dimensions, a novel
method is proposed to solve the hybrid problem based on
the scalable binary tree structure. Figures 4 and 5 illustrate
two different paths and their binary tree representation,
respectively. Figures 4(a) and 5(a) show the original paths,
and Figures 4(b) and 5(b) represent the corresponding binary
trees. Two binary trees have different node numbers and
different attitudes. The updating mechanism of PSO cannot
apply to two paths with different node numbers. The concept
of the proposed hybrid approach is the use of “dummynodes.”
The dummy nodes are created and added when two binary
trees have different node numbers in the updating step.

In Figure 6, tree 1 has 6 nodes and tree 2 has 9 nodes. Tree
1 will generate four dummy nodes and tree 2 will generate
one dummy node, as shown in Figure 6. At this step, tree
1 and tree 2 have the same attitude. The dummy node is
different from the common node because the dummy node

Path 1

P1P2

P3

P4
P5

P6

(a)

Tree 1

P1

P2

P3

P4

P5 P6

(b)

Figure 4: A path with 6 turning points and its corresponding binary
tree.

is a “null” node and the offset distance 𝑑 of dummy node is
zero. In the corresponding path of tree 1 and tree 2 as shown
in Figure 7, the gray nodes are dummy nodes. According to
the updating mechanism of PSO, the path with lower fitness
will be influenced by its local best known position but at the
same time is guided towards the best known positions in the
search space as well.Therefore, the attitude of the path will be
similar to the path from which it learns.

Consider that path 1 is the global best solution. As shown
in Figure 7, S→ P2 segment in path 1 and S → P4 → P3
→ P5 → P2 segment in path 2; the P4, P3, and P5 in path
2 learn from dummy nodes in path 1 so their offset distances
will approach zero and the path length can be reduced. After
the updating mechanism step, those dummy nodes will be
deleted.

3.3. Operators of Genetic Algorithm

3.3.1. Crossover Operator. Crossover is a way to produce
chromosomes diversity in genetic algorithm. Two individuals
can exchange information by applying crossover. In binary
tree structure encoding, we exchange the subtree or node to
accomplish the crossover operator.

(a) Swap Subtree Crossover Operator. First, select two paths
randomly. Then, select a node randomly from two paths,
respectively. Secondly, exchange two subtrees. The coordi-
nates will be computed again after exchange, in order to
update their current correct location. As shown in Figure 8,
both tree 1 and tree 2 randomly select subtrees to exchange.
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Path 2

P1
P2

P3
P4

P5
P6

P7

P8 P9

(a)

Tree 2

P1

P2

P3

P4 P5

P6

P7

P8

P9

(b)

Figure 5: A path with 9 turning points and its corresponding binary
tree.

The corresponding path applying swap subtree crossover
operator is shown in Figure 9.

(b) Generate New Individuals Crossover Operator.The process
is the same as swap subtree crossover operator. First, two
paths (tree 1 and tree 2) will be selected randomly.Then, select
a node in two trees, respectively. Second, the front part of tree
1 will be combined with the subtree of tree 2 to generate a new
tree 3, as shown in Figure 10. And the corresponding path is
shown in Figure 11. This operator will produce a new path.
Therefore, this operator is used to make up the number of
generations.

(c) One Point Swap Crossover Operator. The difference
between swap subtree crossover operator and one point
crossover operator is that the latter only exchanges one
node. A simple example is shown in Figure 12 and the
corresponding path is shown in Figure 13.

3.3.2. Mutation Operator. Mutation is another way to gen-
erate chromosomes diversity in GA. This operator will be
applied only when a new path is generated. Mutation changes
the contents of a single chromosome so that the path may
have a greater variability. Therefore, the system may generate
higher probability to find a better solution. Of course, this
variation also may make an individual worse. Each node has
the possibility to mutate except at start point and end point.

(a) Perturb Mutation Operator. The function of perturb
mutation is to change the offset distance 𝑑 of a tree node.

Tree 1

Tree 2

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

P7

P8

P9

Figure 6: After adding the dummy nodes, symbolized as the grey
circles, the two different binary trees have the same attitude.

Path 1

Path 2

P1P2

P3

P4
P5

P6

P1
P2

P3
P4

P5
P6

P7

P8 P9

Figure 7: The corresponding path of Figure 6.

The new offset distance 𝑑 is generated randomly. A simple
example is shown in Figure 13.The gray node becomes farther
from the original path than before but the direction does not
change.

(b) Flip Mutation Operator. Flip mutation is similar to the
perturb mutation but changes the direction of the offset
distance 𝑑. A simple example is shown in Figure 14. The gray
node only change the direction but the distance 𝑑 does not
change.

4. Experimental Results and Analysis

In order to evaluate the performance of the proposed hybrid
approach, three different types of test environments are used
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Tree 1 Tree 2

Tree 1 Tree 2

Figure 8: Apply swap subtree crossover operator to generate the
offspring from the given parents.

in our experiments. Table 1 illustrates the control parameters
used in those experiments. The number of population size is
30, which represents 30 individuals to perform the evolution.
The maximum number of generations is set to 2,000. If the
evolution reaches 2,000 generations and does not satisfy the
termination threshold, the evolution will be stopped. Muta-
tion probability is set as 0.1%.The inertia weight and learning
factors of the PSO are given as 0.5 and 1.3, respectively. The
fitness value is defined as the length of a path plus the penalty
for collision condition. The penalty is set to 1,000 as collision
occurrence; otherwise, the penalty is given as zero. According
to different experimental environments, we set the different
starting points and ending points.

Figure 15 displays a workspace with 20 overlapped obsta-
cles. In this experiment, the starting point is set at (0, 0)
and the ending point at (200, 200). To emphasize genetic
length variability of the proposed hybrid method, we use two
different tree sizes, 7 and 15 nodes, to perform comparison.
Having more nodes can mean having more opportunities to
avoid obstacles, but more nodes may also cause unnecessary
detour. Table 2 shows the results for the GA and PSO with
7 tree nodes. According to the results, the proposed hybrid
method gets a large advantage on effective path, although the
proposed hybrid algorithm loses in the shortest path length of
PSO. However, the result indicates that the proposed method
is more stable to find a valid path. As the results of GA and
PSO with 15 nodes shown in Table 3, the proposed hybrid
method and GA won PSO in the valid number of paths.

The second test environment, shown in Figure 16, for the
path planning problem is one that is commonly used for
performance evaluation. In this form of obstacle distribution,
the proposed hybrid method can produce more numbers of
effective paths than the other two algorithms. Experimental
results are illustrated in Tables 4 and 5. It is noticeable that the
number of effective paths generated by the proposed hybrid
method is substantially better than GA and PSO.

The difference between the third experiment environ-
ment, shown in Figure 17, and the previous ones is that the

Path 1 Path 2

Path 1 Path 2

Figure 9: The corresponding paths of Figure 8.

Tree 1 Tree 2

Tree 3

Figure 10: Apply individual crossover operator to generate a new
offspring from the given parents.

Table 1: Experiment parameters.

Name Value Comment
Population size 30
Maximum
generation
allowed

2000 Termination criterion I

Fitness
threshold 10

Termination criterion II:
if the change of best fitness is
smaller than the predefined

threshold by 10 times, terminate
the evolutionary process

Crossover
probability 1 For GA

Mutation
probability 0.001 For GA

Inertia weight 0.5 For PSO
Learning factors 1.3 For PSO

obstacles do not overlap in the test environment, and so the
obstacles take up more proportion on the map. As shown
in Table 6, whether in the mean length of effective paths or
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Path 1 Path 2

Path 3

Figure 11: The corresponding paths of Figure 10.

Path 1 Path 2

Path 1 Path 2

Figure 12: Apply one point swap crossover operator to generate
offspring.

Table 2: Comparison in performance among the proposed hybrid
approach, PSO, and GA for test environment I.

Hybrid PSO GA
Initial tree size
(number of nodes) ≤7 7 7

Number of valid paths 2979 2730 2934
Mean length of valid paths 311.9088 306.2684 314.4024
Standard deviation
of valid paths 21.0225 13.9147 21.4342

Shortest valid path 295.5128 295.2754 295.5218
Average solution tree size
(average number of nodes) 3.3283 7 7

the number of valid paths, the results of the proposed hybrid
method are better than the other two algorithms.

5. Conclusion and Future Work

This study describes a method using binary tree struc-
ture encoding to hybrid genetic algorithm and particle
swarm optimization for solving the path planning problems.
Dummy nodes are added to the binary trees to deal with
the different lengths of solution/chromosome problem for

Figure 13: Apply perturb mutation operator to generate offspring.

Figure 14: Apply flip mutation operator to generate offspring.

Figure 15: Test environment I.
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Figure 16: Test environment II.

Figure 17: Test environment III.

Table 3: Comparison in performance among the proposed hybrid
approach, PSO, and GA for test environment I.

Hybrid PSO GA
Initial tree size
(number of nodes) ≤15 15 15

Number of valid paths 2996 2931 2996
Mean length of valid paths 314.3656 311.4129 315.1283
Standard deviation
of valid paths 21.8718 19.0713 21.4997

Shortest valid path 295.3884 294.8781 295.6429
Average solution tree size
(average number of nodes) 3.2774 15 15

PSO.The experimental results show that the proposed hybrid
method uses fewer turning points than the traditional grid

Table 4: Comparison in performance among the proposed hybrid
approach, PSO, and GA for test environment II.

Hybrid PSO GA
Initial tree size
(number of nodes) ≤7 7 7

Number of valid paths 2032 307 211
Mean length of valid paths 326.1601 300.8695 316.1638
Standard deviation
of valid paths 31.3879 14.8971 17.1472

Shortest valid path 274.7688 283.5653 289.0466
Average solution tree size
(average number of nodes) 5.9975 7 7

Table 5: Comparison in performance among the proposed hybrid
approach, PSO, and GA for test environment II.

Hybrid PSO GA
Initial tree size
(number of nodes) ≤15 15 15

Number of valid paths 2620 1410 952
Mean length of valid paths 370.1507 304.9307 320.2028
Standard deviation
of valid paths 84.7093 21.1082 20.7493

Shortest valid path 275.2839 270.8929 279.0292
Average solution tree size
(average number of nodes) 7.3294 15 15

Table 6: Comparison in performance among the proposed hybrid
approach, PSO, and GA for test environment III.

Hybrid PSO GA
Initial tree size
(number of nodes) ≤15 15 15

Number of valid paths 3000 2982 2966
Mean length of valid paths 317.2784 317.6262 323.0512
Standard deviation
of valid paths 22.9993 23.6171 24.3007

Shortest valid path 284.6030 285.6138 286.2925
Average solution tree size
(average number of nodes) 4.52167 15 15

based methods and the number of obstacle-free paths is
generated more than traditional evolutionary algorithms. In
the future, we will improve this method to generate a curve
path so that the method can be applied to the system.
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Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this
study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography
optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to
generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby
feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of
CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and
experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA.

1. Introduction

In the domain of science and engineering, most of the
problems are attributed to constrained multiobjective opti-
mization problems (CMOPs), which need to optimize mul-
tiple conflicting objectives subject to various inequality and
equality constraints. So the algorithms of solving CMOPs
have to search the set of nondominated feasible solutions
fulfilling all constraints. It is desirable that those gained
solutions can approximate the true Pareto front with better
diversity and even distribution. Evolutionary algorithms
(EAs) are population-based search algorithms and can find
multiple optimal solutions in one single run, and they are
suitable to solve multiobjective problems (MOPs). But for the
specific application of solving CMOPs, we find that most of
the existing constrainedmultiobjective EAs (MOEAs) cannot
effectively exploit the population because their obtained con-
vergence and diversity are not acceptable.

Biogeography-based optimization (BBO) algorithm is a
population-based search algorithm [1, 2], which had been

applied to solve single objective optimization problems
(SOPs) and some engineering problems [3–5]. In the aspect
of MOPs, Ma et al. decomposed multiobjective optimization
problems into several related subproblems and used parallel
BBO to optimize each subproblem [6]. We successfully
improved BBO for MOPs, which had proved that the migra-
tion strategy of BBO is effective for solving MOPs [7, 8].
In view of good population exploiting ability of BBO, in
this study, we propose a novel constrained multiobjective
biogeography optimization algorithm (CMBOA) for the first
time and analyze its convergence by the probability theory.

The proposed CMBOA includes the following features.
First, the individuals are classified into the feasible and
infeasible ones based on their constraint violation. Sec-
ond, feasible individuals are evaluated by combining their
objective functions value and crowded distance. Infeasible
individuals are evaluated by combining their constraint viola-
tion and Euclidean distance from the nearest nondominated
feasible individual. Third, a new migration operator with
additional disturbance is designed to generate diverse feasible
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solutions. And infeasible solutions nearby feasible regions
are recombined with their nearest nondominated feasible
solutions to evolve towards feasibility.

In rest of the paper, reviews of multiobjective evolution-
ary algorithms (MOEAs) for CMOPs are given in Section 2,
and basic conception of CMOPs, the review of CMOPs,
and the BBO are briefly introduced. The CMBOA is pro-
posed in Section 3. In Section 4, compared with the classical
algorithms on benchmark CMOPs, simulation results on
CMBOA are analyzed and discussed. At last, conclusions are
drawn in Section 5.

2. Related Background

2.1. Problem Statement. The aim of the constrained multi-
objective optimization problems (constrained MOPs) is to
find multiple nondominated solutions under constraints. If
these nondominated solutions are uniformly distributed and
widely spread along the Pareto front, their quality is better.
Without the loss of generality, we consider the minimization
of CMOPs, which can be defined as follows:

min y = 𝐹 (x) = [𝑓
1
(x) , 𝑓

2
(x) , . . . , 𝑓

𝑚
(x)]

s.t 𝑔
𝑖
(x) ≤ 0, 𝑖 = 1, 2, . . . , 𝑞

ℎ
𝑗
(x) = 0, 𝑗 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑙

x = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
)

𝑥
min
𝑖

≤ 𝑥
𝑖
≤ 𝑥

max
𝑖

, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where x = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛 is a decision vector with 𝑛

decision variables. y = (𝑓
1
, 𝑓

2
, . . . , 𝑓

𝑚
) ∈ 𝑅

𝑚 is an objec-
tive vector with 𝑚 objects. Each dimension variable of the
decision space is bounded by its upper bound 𝑥

max
𝑖

and
lower bound 𝑥

min
𝑖

. 𝑔
𝑖
(x) and ℎ

𝑗
(x) are inequality constraints

and equality constraint, respectively.The equality constraints
generally should be transformed into inequality form and
combined with other inequality constraints as follows:

𝐺
𝑗
(x) = {

max {𝑔
𝑖
(x) , 0) ,

max {| ℎ
𝑗
(x) − 𝛿, 0) ,

(2)

where 𝑖 = 1, 2, . . . , 𝑞, 𝑗 = 𝑞 + 1, 𝑞 + 2, . . . , 𝑙, and 𝛿 is a
tolerance parameter for the equality constraint. In this paper,
only CMOPs with inequality constraints are considered.
Constraint violation function of a solution 𝑥 is defined as
follows:

V (𝑥) =
𝑛

∑

𝑖=1

(𝐺
𝑖
(𝑥))

2

, (3)

where V(𝑥) ≥ 0. If V(𝑥) > 0, then 𝑥 is an infeasible solution;
otherwise, it is a feasible solution. By the degree of constraint
violation, infeasible solutions can be compared with another
one. For feasible solutions, Pareto domination is defined as
follows, which is applied to evaluate their fitness.

Definition 1 (Pareto domination solution). Let 𝑥, 𝑦 ∈ 𝑅
𝑛, and

a solution vector 𝑥 is said to dominate a solution 𝑦 and is
denoted by 𝑥 ≺ 𝑦 if

∀𝑖 ∈ {1, 2, . . . , 𝑚} : 𝑓
𝑖
(𝑥) ≤ 𝑓

𝑖
(𝑦) ,

∃𝑗 ∈ {1, 2, . . . , 𝑚} : 𝑓
𝑗
(𝑥) ≤ 𝑓

𝑗
(𝑦) .

(4)

2.2. Reviews of CMOEA. Most of MOEAs are proposed
for solving unconstrained multiobjective optimization [9].
According to different constraint handling methods adopted
in MOEAs, the existing constrained multiobjective evolu-
tionary algorithms (CMOEAs) can be categorized into five
main groups.

The first group adopts the constraint handling techniques
applied for single objective constraint optimization [10–12].
Geng et al. proposed a constrained evolutionary multiob-
jective optimization with infeasible elitists and stochastic
ranking selection (IS-MOEA) [10]. The algorithm conserves
infeasible elitists that acts as bridges connecting discon-
nected feasible regions, and stochastic ranking is adopted
to balance objectives and constraints. IS-MOEA especially
obtains improvement on the problems with two or more
disconnected feasible regions.

The second group uses the basic mechanism of MOEAs
and handles constraints by optimizing them as additional
objectives. Mezura-Montes and Coello put forward a naı̈ve
method to solve CMOPs by ignoring infeasible solutions [13].
The algorithm is easy to implement, but when feasible regions
are small and surrounded by infeasible solutions, it is difficult
to find feasible solutions.

The third group is based on ranking of priority of the fea-
sible and infeasible solutions [14–16]. Fonseca and Fleming
proposed a unified approach for multiobjective optimization
and multiple constraint handling [14]. Their algorithm han-
dled constraints by assigning high priority to constraints and
low priority to objective functions, when focusing on search
of feasible solutions. Srinivas andDeb proposed a constrained
multiobjective algorithm, in which constrained dominating
relation of individuals is defined [16]. In this algorithm,
all feasible solutions dominate all infeasible ones. Feasible
solutions are sorted by their Pareto dominating relations
and infeasible solutions are sorted based on their constraint
violation. The algorithm can gain better performance but
unfortunately it ignored the contribution of infeasible solu-
tions to the Pareto front.

The forth group uses repair scheme to reproduce feasible
solutions or less violated solutions from the original infeasible
solutions [17–19]. Jimenez et al. proposed the evolution-
ary algorithm of nondominated sorting with radial slots
(ENORA) [17], which employs themin.-max. formulation for
constraint handling. Feasible individuals evolve toward opti-
mality, while infeasible individuals evolve toward feasibility.
Harada et al. proposed Pareto descent repair (PDR) operator
that searches feasible solutions out of infeasible individuals in
the constraint function space [19].

The fifth group designs new mechanisms to evolve fea-
sible solutions towards Pareto front and evolve the infea-
sible solutions towards feasible regions [20–23]. Ray et al.



The Scientific World Journal 3

suggested using three different nondominated rankings of
the population [20]. The first ranking is performed by using
the objective function values; the second is performed by
using different constraints; and the last ranking is based
on the combination of all objective functions and con-
straints. Depending on these rankings, the algorithm per-
forms according to the predefined rules. Chafekar et al.
proposed two novel approaches for solving constrained mul-
tiobjective optimization problems [21]. One method called
objective exchange genetic algorithm of design optimization
(OEGADO) runs several GAs concurrently with each GA
optimizing one objective and exchanging information about
its objective with others. Another called objective switching
genetic algorithm for design optimization (OSGADO) runs
each objective sequentially with a common population for
all objectives. Deb proposedGA’s population-based approach
that does not require any penalty parameter. Once sufficient
feasible solutions are found, a niching method (along with a
controlled mutation operator) is used to maintain diversity
among feasible solutions [23].

2.3. Biogeography-Based Optimization (BBO). Biogeography
is the science of the geographical distribution of biological
organisms. In BBO, each problem solution is considered
as a “habitat” with habitat survival index (HSI), which is
similar to the fitness of EAs to evaluate an individual. High
HSI habitats share their features with low HSI habitats. The
process of sharing good features among solutions is denoted
as migration. BBO adopts the migration strategy to share
information among solutions. Good individuals’ information
can be conserved during the evolutionary process to ensure
the population convergence. A mutation operator is used to
generate diverse solutions to promote the diversity of the
population. The detailed operations are described as follows.

Suppose that the species number of each individual 𝑖 is 𝑆
𝑖
,

and then its immigration rate 𝜆
𝑖
and emigration rate 𝜇

𝑖
can

be calculated as follows [1]:

𝜆
𝑖
= 𝐼(1 −

𝑆
𝑖

𝑆max
) ,

𝜇
𝑖
=

𝐸𝑆
𝑖

𝑆max
,

(5)

where 𝑆max is the most species number of all habitats.
𝐼 and 𝐸 represent the maximization of immigration rate
and emigration rate, respectively. In migration operator,
the individuals’ immigration rate and emigration rate are
used to decide whether a solution should share its feature
value with the other solutions. A better solution has a
higher immigration rate and a lower emigration rate. By the
migration, the solutions with high emigration rate tend to
share their information with those with high immigration
rate. Solutions with high immigration rate accept a lot of
features from solutions with high emigration rate. With the
aid of migration, BBO shows good exploitation ability in the
search space.

Consider that species number change with species
migrating; the probability 𝑃

𝑠
that the habitat contains exactly

𝑆 species can be calculated using the following differential
equation:

̇𝑃
𝑠
=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

− (𝜆
𝑠
+ 𝜇

𝑠
) 𝑃

𝑠
+ 𝜇

𝑠+1
𝑃
𝑠+1

,

𝑆 = 0,

− (𝜆
𝑠
+ 𝜇

𝑠
) 𝑃

𝑠
+ 𝜆

𝑠−1
𝑃
𝑠−1

+ 𝜇
𝑠+1

𝑃
𝑠+1

,

1 ≤ 𝑆 < 𝑆max − 1

− (𝜆
𝑠
+ 𝜇

𝑠
) 𝑃

𝑠
+ 𝜆

𝑠−1
𝑃
𝑠−1

,

𝑆 = 𝑆max.

(6)

Then the mutation rate𝑚
𝑖
is defined as [1]

𝑚
𝑖
= 𝑃mute (1 −

𝑃
𝑖

𝑃max
) , (7)

where𝑃mute is a predefined parameter,𝑃
𝑖
is calculated accord-

ing to (6), and 𝑃max = max
1≤𝑖≤𝑁

{𝑃
𝑖
}.Themutation operator is

implemented based on𝑚
𝑖
. A solution with low probability 𝑃

𝑖

is likely tomutate other solutions. Conversely, some solutions
with high𝑃

𝑖
have very little chance tomutate. By themutation

operator, the diverse solutions are produced. The detailed
operator on migration and mutation can refer to [1].

3. The Proposed Constrained
Multiobjective Biogeography-Based
Optimization Algorithm

3.1. CMBOA Description. In CMBOA, infeasible solutions
recombine with nondominated feasible individuals and
evolve towards feasibility. Firstly, the initial population is
produced stochastically, and then the population is classified
into the feasible and infeasible ones based on each individual’s
constraint violation. Secondly, depending on whether the
feasible population is empty or not, infeasible population will
adopt two types of operators. If feasible population is empty,
infeasible population will implement differential evolution
operator until feasible individuals present; otherwise, infea-
sible solutions nearby feasible regions recombine with their
nearest nondominated feasible solutions to obtain feasibility.
Diverse nondominated feasible solutions are generated from
feasible individuals by applying the novel migration operator.
With the increasing of nondominated feasible solutions,
update operator is used to limit their number and ensure their
even distribution. Both the feasible and infeasible solutions
are combined in an external archive. The proposed CMBOA
is described as Algorithm 1.

The procedure of CMBOA is described as follows.

Step 1 (initialization). Initialize the iterative number 𝑡 =

1; the size of feasible elitist and infeasible elitist archive
are 𝑁

1
and 𝑁

2
, respectively. Generate randomly the initial

population 𝐴(𝑡) with 𝑁(𝑡) individuals; that is 𝐴(𝑡) = {𝑎
1
(𝑡),

𝑎
2
(𝑡), . . . , 𝑎

𝑁(𝑡)
(𝑡)}, the external archive𝑀(𝑡) = Φ.

Step 2. Update the external archive.

Step 2.1. Divide the combination populations𝐴(𝑡)∪𝑀(𝑡) into
the feasible and infeasible ones.
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Step 1: Parameter setting: population size𝑁, the size of feasible elitist archive𝑁
1
, the size of

infeasible elitist archive𝑁
2
, maximum generation 𝑔max. Generate an initial population 𝐴(𝑡),

set the iterative generation 𝑡 = 1, and archive𝑀(𝑡) = Φ,
Step 2: Update of the archive𝑀(𝑡)

Step 2.1: Divide the population 𝐴(𝑡) ∪ 𝑀(𝑡) into the feasible set 𝑃(𝑡) and the infeasible set
𝑄(𝑡) based on their constraint violation.

Step 2.2: Select𝑁
1
individuals with small fitness from 𝑃(𝑡) by individuals’ fitness sorting to

update feasible archive 𝑃(𝑡), and select𝑁
2
individuals with small constraint violation

from 𝑄(𝑡) to update infeasible archive 𝑄(𝑡).
Step 2.3: Combine 𝑃(𝑡) and 𝑄(𝑡) to gain archive set𝑀(𝑡 + 1),𝑀(𝑡 + 1) = 𝑃(𝑡) ∪ 𝑄(𝑡);

If 𝑡 ≥ 𝑔max is satisfied, output 𝑃(𝑡) and the algorithm stops; otherwise go the next step.
Step 3: Generate the offspring population

Step 3.1: If 𝑃(𝑡) = Φ, then 𝑃(𝑡 + 1) = Φ, and perform the differential evolution operator on
infeasible population 𝑄(𝑡) to obtain 𝑄(𝑡 + 1). Otherwise, go to Step 3.2

Step 3.2: Implement selection operation on 𝑃(𝑡) to gain the breeding pool 𝐷(𝑡), and then
execute migration operation on𝐷(𝑡) to generate 𝑃(𝑡 + 1);

Step 3.3: Implement the crossover and mutation on infeasible population 𝑄(𝑡) to generate 𝑄(𝑡 + 1).
Step 3.4: Combine 𝑃(𝑡 + 1) and 𝑄(𝑡 + 1) to obtain the offspring population 𝐴(𝑡 + 1),

𝐴(𝑡 + 1) = 𝑃(𝑡 + 1) ∪ 𝑄(𝑡 + 1)

Step 4: let 𝑡 = 𝑡 + 1 and return Step 2.

Algorithm 1: CMBOA.

Computing the constraint violation of the individuals in
𝐴(𝑡) ∪ 𝑀(𝑡) according to (3), we have

V (𝐴 (𝑡) ∪ 𝑀 (𝑡)) = {V (𝑎
1
(𝑡)) , V (𝑎

2
(𝑡)) , . . . , V (𝑎

𝑁(𝑡)
(𝑡))} .

(8)

Depending on whether the value of V(𝑎
𝑖
(𝑡)) is zero or

not, the population 𝐴(𝑡) ∪ 𝑀(𝑡) is divided into the feasible
subpopulation 𝑃(𝑡):

𝑃 (𝑡) = {𝑝
1
(𝑡) , 𝑝

2
(𝑡) , . . . , 𝑝

𝑁𝑓(𝑡)
(𝑡)} (9)

and the infeasible subpopulation 𝑄(𝑡):

𝑄 (𝑡) = {𝑞
1
(𝑡) , 𝑞

2
(𝑡) , . . . , 𝑞

𝑁if(𝑡)
(𝑡)} . (10)

Note that𝑁
𝑓
(𝑡) + 𝑁if(𝑡) = 𝑁(𝑡).

Step 2.2 (elitist feasible and infeasible archive). According to
Definition 1, identify nondominated individuals of 𝑃(𝑡) to
form the temporary set 𝑃(𝑡):

𝑃

(𝑡) = {𝑝



1
(𝑡) , 𝑝



2
(𝑡) , . . . , 𝑝



non(𝑡) (𝑡)} . (11)

If the size of 𝑃(𝑡) is smaller than the predefined size 𝑁
1
,

let 𝑃(𝑡) = 𝑃

(𝑡). Otherwise, the crowding distance 𝐼

𝑖.cd(𝑝


𝑖
(𝑡))

of individual 𝑝
𝑖
(𝑡), 1 ≤ 𝑖 ≤ non is computed as follows [24]:

𝐼cd (𝑝


𝑖
(𝑡)) = (𝑓

1
(𝑝



𝑖
(𝑡)) − 𝑓

1
(𝑝



𝑖−1
(𝑡)))

+ (𝑓
2
(𝑝



𝑖
(𝑡)) − 𝑓

2
(𝑝



𝑖−1
(𝑡))) ,

(12)

where 𝑓
𝑘
(𝑝



𝑖
(𝑡)) denotes the kth objective function value of

individual 𝑝
𝑖
(𝑡), 1 ≤ 𝑖 ≤ non. According to the sequencing

of crowding distance, select 𝑁
1
largest crowding distance

individuals from 𝑃

(𝑡) to form the elitist feasible archive 𝑃(𝑡):

𝑃 (𝑡) = 𝑇
𝑑
(𝑃


(𝑡))

= 𝑇
𝑑
{𝑝



1
(𝑡) , 𝑝



2
(𝑡) , . . . , 𝑝



non(𝑡) (𝑡)}

= {𝑝
1
(𝑡) , 𝑝

2
(𝑡) , . . . , 𝑝

𝑁1
(𝑡)} .

(13)

For the infeasible population 𝑄(𝑡), if its size is smaller
than the predefined size 𝑁

2
, then 𝑄(𝑡) keeps invariable.

Otherwise, the fitness of its individual 𝑞
𝑖
(𝑡) is calculated as

follows:

fit (𝑞
𝑖
(𝑡)) = {

(1 − 𝛾) V (𝑞
𝑖
(𝑡)) + 𝛾𝑑 (𝑞

𝑖
(𝑡)) , 𝛾 > 0,

V (𝑞
𝑖
(𝑡)) , 𝛾 = 0,

(14)

where 𝛾 is the proportion of nondominated feasible individu-
als in current population, V(𝑞

𝑖
(𝑡)) is constraint violation of the

individual 𝑞
𝑖
(𝑡), and 𝑑(𝑞

𝑖
(𝑡)) denotes its Euclidean distance

away from the nearest nondominated feasible solution. And
then the proceeding 𝑁

2
individuals with small fitness from

𝑄(𝑡) are conserved in elitist infeasible archive 𝑄(𝑡).

Step 2.3 (formation of the archive). Combine elitist feasible
archive 𝑃(𝑡) and elitist infeasible archive 𝑄(𝑡) to gain the
archive𝑀(𝑡):
𝑀(𝑡) = 𝑃 (𝑡) ∪ 𝑄 (𝑡)

= {𝑝
1
(𝑡) , 𝑝

2
(𝑡) , . . . , 𝑝

𝑁1
(𝑡) , 𝑞

1
(𝑡) , 𝑞

2
(𝑡) , . . . , 𝑞

𝑁2
(𝑡)}

= {𝑚
1
(𝑡) , 𝑚

2
(𝑡) , . . . , 𝑚

𝑁1
(𝑡) , . . . , 𝑚

𝑁1+𝑁2
(𝑡)} .

(15)

If 𝑡 ≥ 𝑔max is satisfied, export 𝑃(𝑡) as the output of the
algorithm and the algorithm stops; otherwise, 𝑡 = 𝑡 + 1 and
go to Step 3.
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For 𝑖 = 1 to𝑁
1

Randomly select two individuals 𝑑
𝑠1
, 𝑑

𝑠2
from the population𝐷(𝑡)

Select individual 𝑑
𝑠
based on its immigration rate 𝜆

𝑆

For 𝑗 = 1 to n
If rand < 𝜆

𝑖
then

𝑝
𝑖,𝑗
(𝑡 + 1) = 𝑑

𝑠,𝑗
(𝑡) + 𝜔(𝑡)(𝑑

𝑠1,𝑗
(𝑡) − 𝑑

𝑠2,𝑗
(𝑡))

Else
𝑝
𝑖,𝑗
(𝑡 + 1) = 𝑑

𝑖,𝑗
(𝑡)

End if
End for

End for

Algorithm 2: Disturbance migration operator 𝑇
𝑖
.

Step 3. Generate the offspring population.
Step 3.1 (operation on feasible solutions). In CMBOA, when
there are no feasible solutions in the current population, that
is, 𝑝(𝑡) = Φ, we use the mutation operator of differential
evolution to produce feasible individuals [25]. That is, three
individuals 𝑞

𝑟1
(𝑡), 𝑞

𝑟2
(𝑡), and 𝑞

𝑟3
(𝑡) are selected randomly

from 𝑄(𝑡) and the mutation operator is performed as (16)
until feasible solutions set 𝑝(𝑡) is not empty:

𝑝
𝑖,𝑗
(𝑡) = 𝑞

𝑟1,𝑗
(𝑡) + 𝜂 (𝑞

𝑟2,𝑗
(𝑡) − 𝑞

𝑟3,𝑗
(𝑡)) , (16)

where 𝜂 is a mutation constant and is a random number in
the region (0, 1). Otherwise, go to the next step.

Step 3.2 (selection operation). For feasible population 𝑃(𝑡),
in order to ensure its convergence and even distribution, we
define the fitness value of each individual by combining the
nondominated rank and crowed distance of each individual
𝑝
𝑖
(𝑡), 1 ≤ 𝑖 ≤ 𝑁

1
as

fit (𝑝
𝑖
(𝑡)) =

(1 − 𝛾)

𝑐
𝑖𝑘
(𝑝

𝑖
(𝑡))

+ 𝛾𝐼cd (𝑝𝑖 (𝑡)) , (17)

where 𝐼cd(𝑝𝑖(𝑡)) and 𝑐
𝑖𝑘
(𝑝

𝑖
(𝑡)) denote the individual 𝑝

𝑖
(𝑡)’s

crowed distance and nondominated rank, respectively, and
𝛾 is defined in (14). By this fitness, when the number of
nondominated feasible solutions is small, individuals with
lower ranks have high fitness so that they have more chance
to be selected. With the number of nondominated feasible
solutions increasing, more individuals with large crowded
distance are selected with high probability.

Perform tournament selection operator 𝑇
𝑆
on 𝑃(𝑡) to

form the breeding pool𝐷(𝑡):

𝐷 (𝑡) = 𝑇
𝑆
(𝑃 (𝑡))

= 𝑇
𝑆
{𝑝

1
(𝑡) , 𝑝

2
(𝑡) , . . . , 𝑝

𝑁1
(𝑡)}

= {𝑑
1
(𝑡) , 𝑑

2
(𝑡) , . . . , 𝑑

𝑁1
(𝑡)} .

(18)

Step 3.3 (migration operation).The original migration opera-
tor of BBOhas good exploitation ability of the population, but
it is designed for the integer encoded individuals and single
optimization problem. For continuous MOPs, the migration

operator cannot ensure to produce the diverse solutions. So
we propose a new migration operator. During the process
of species migration, an individual is often affected by the
other individuals. So we introduce a disturbance term in
the migration operation to promote the diversity of the
population. The detail process is shown in Algorithm 2.

In Algorithm 2, the disturbance factor 𝜔(𝑡) is defined as

𝜔 (𝑡) =

4

5

(1 −

1

1 + 𝑒
−0.1(𝑡−𝑔max/2)

) , (19)

where 𝑑
𝑖,𝑗
(𝑡) is the 𝑗th variable of the individual 𝑑

𝑖
(𝑡),

𝑔max denotes the maximum iteration number, and 𝑡 is the
number of iteration at current generation. The amplitude
of disturbance factor 𝜔(𝑡) decreases constantly with the
increasing of generation 𝑡. At the beginning, large disturbance
makes the population explore a wide region in decision space.
Diverse solutions will be generated to promote the diversity
of population because of difference of𝜔(𝑡). At the end, a small
disturbance is used to exploit effectively the local regions to
guarantee its convergence.

The migration operator 𝑇
𝑖
on the population 𝐷(𝑡) is

defined as

𝑃 (𝑡 + 1) = 𝑇
𝑖
(𝐷 (𝑡))

= {𝑇
𝑖
(𝑑

1
(𝑡)) , 𝑇

𝑖
(𝑑

2
(𝑡)) , . . . , 𝑇

𝑖
(𝑑

𝑁1
(𝑡))}

= {𝑝
1
(𝑡) , 𝑝

2
(𝑡) , . . . , 𝑝

𝑁1
(𝑡)} .

(20)

Step 3.4 (crossover and mutation operation on the infeasible
population). It had been noticed that infeasible solutions
can contribute to the diversity of solutions on the Pareto
front.When feasible solutions exist in the current population,
an individual 𝑞

𝑟1
(𝑡) is selected randomly from 𝑄(𝑡) and

recombined with the nearest individual 𝑑
𝑟2
(𝑡) of 𝐷(𝑡). The

crossover operator is described as

𝑞
𝑖,𝑗
(𝑡 + 1) = 𝜆𝑞

𝑟1,𝑗
(𝑡) + (1 − 𝜆) 𝑑

𝑟2,𝑗
(𝑡) , (21)

where 𝜆 is a recombination parameter in the region (0, 1). By
the operator, infeasible individuals nearby the feasible region
will approximate the feasibility.
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The above crossover operation 𝑇
𝑐
on 𝑄(𝑡) is

𝑄 (𝑡 + 1) = 𝑇
𝑐
(𝑄 (𝑡))

= {𝑇
𝑐
(𝑞

1
(𝑡)) , 𝑇

𝑐
(𝑞

2
(𝑡)) , . . . , 𝑇

𝑐
(𝑞

𝑁2
(𝑡))}

= {𝑞
1
(𝑡 + 1) , 𝑞

2
(𝑡 + 1) , . . . , 𝑞

𝑁2
(𝑡 + 1)} .

(22)

Step 3.5. Combine𝑃(𝑡+1) and𝑄(𝑡+1) to obtain the offspring
population 𝐴(𝑡 + 1); namely, 𝐴(𝑡 + 1) = 𝑃(𝑡 + 1) ∪ 𝑄(𝑡 + 1).

Step 4. If the stopping criteria is not satisfied, 𝑡 = 𝑡 + 1 and
return to Step 2.

3.2. Time Complexity Analysis of CMBOA. The objectives of
optimization problem are 𝑚, the size of population is 𝑁, the
size of feasible archive is 𝑁

1
, the size of infeasible archive

is 𝑁
2
, and the maximum of iterative times is 𝑔max. Time

complexity for computation of constraint violation is 𝑂(𝑁).
Formigration andmutation operators on feasible individuals,
its time complexity is 𝑂(𝑁

1
), while time complexity for

crossover operator on infeasible individuals is 𝑂(𝑁
2
); time

complexity for updating of feasible archive is 𝑂(𝑚(2𝑁
1
+

𝑁
2
)
2
), updating of infeasible archive is𝑂(𝑚(𝑁

1
+2𝑁

2
)
2
), and

then the worst time complexity of CMBOA is

𝑂 (𝑁) + 𝑂 (𝑁
1
) + 𝑂 (𝑁

2
) + 𝑂 (𝑚(2𝑁

1
+ 𝑁

2
)
2

)

+ 𝑂 (𝑚(𝑁
1
+ 2𝑁

2
)
2

) = 𝑂 (𝑚(2𝑁
1
+ 𝑁

2
)
2

) .

(23)

3.3. Convergence Analysis of CMBOA. According to the
description of CMBOA, it can be considered as an evolution
Markov chain:

𝐴 (𝑡)

𝑇𝑑

→ 𝑃 (𝑡)

𝑇𝑠

→ 𝐷(𝑡)

𝑇𝑖

→ 𝑃 (𝑡 + 1) → 𝐴 (𝑡 + 1) .
(24)

Let 𝑆 be feasible solution space, 𝑆 ≤ 𝑁 represents a state
space composed of populations whose size is not more than
𝑁, and 𝑠

𝑖
denotes the ith state in state space. 𝐴𝑖

𝑡
denotes that

the population 𝐴(𝑡) is in the state 𝑠
𝑖
, and 𝑝(𝑃

𝑡

𝑗
| 𝐴

𝑖

𝑡
) means

the transformation probability from 𝐴
𝑖

𝑡
to 𝑃

𝑡

𝑗. According to
the description of CMBOA, we know that the series {𝐴

𝑡
}
𝑡≥1

is
an inhomogeneous Markov chain [26]. By using probability
theory, the convergence of CMBOA is analyzed as follows.

Lemma 2. There exists 0 < 𝛿
1
< 1, s.t. 𝑝(𝑃𝑒

𝑡+1
| 𝐷

𝑑

𝑡
) ≥ 𝛿

1
.

Proof.

𝑝 (𝑃
𝑒

𝑡+1
| 𝐷

𝑑

𝑡
) = ∏

𝑥∈𝐷𝑡 ,𝑦∈𝑃𝑡+1

𝑝 (𝑥, 𝑦)

= ∏

𝑥∈𝐷𝑡 ,𝑦∈𝑃𝑡+1

𝜆
𝑥

𝑘(𝑥,𝑦)
(1 − 𝜆

𝑥
)
𝑛−𝑘(𝑥,𝑦)

≥ min (𝜆min, 1 − 𝜆max)
𝑁1

= 𝛿
1
,

(25)

where 𝛼 = min
𝑥∈𝐷𝑡

{𝜆
𝑥
}, 𝛽 = max

𝑥∈𝐷𝑡
{𝜆

𝑥
}, and 𝑘(𝑥, 𝑦) =

∑
𝑥𝑖 ̸=𝑦𝑖 ,1≤𝑖≤𝑛

sgn |𝑥
𝑖
− 𝑦

𝑖
|.

Lemma 3. There exists 0 < 𝛿
2
< 1, s.t. 𝑝(𝐴𝑗

𝑡+1
| 𝑃

𝑒

𝑡+1
) ≥ 𝛿

2
.

Proof.

𝑝 (𝐴
𝑗

𝑡+1
| 𝑃

𝑒

𝑡+1
) =






𝑀

𝑓
(𝑃

𝑡+1
∪ 𝑄

𝑡+1
∪𝑀

𝑡+1
, ≺) ∩ 𝑀

𝑓
(𝑆, ≺)











𝑃
𝑡+1

∪ 𝑄
𝑡+1

∪𝑀
𝑡+1






≥ (

𝑀
∗

2(𝑁
1
+ 𝑁

2
)

)

2𝑁1

= 𝛿
2
,

(26)

where 𝑀
∗

= |𝑀
𝑓
(𝑃

𝑡+1
∪ 𝑄

𝑡+1
∪ 𝑀

𝑡+1
, ≺) ∩ 𝑀

𝑓
(𝑆, ≺)| and

𝑀
𝑓
(𝑃

𝑡+1
∪𝑄

𝑡+1
∪𝑀

𝑡+1
, ≺) denotes the nondominated feasible

solutions of the population 𝑃
𝑡+1

∪ 𝑄
𝑡+1

∪𝑀
𝑡+1

.

Lemma 4. Let 𝑀
𝑓
(𝑠, ≺) be the nondominated feasible solu-

tions set; if 𝑠
𝑖
∩ 𝑀

𝑓
(𝑠, ≺) = Φ and 𝑠

𝑗
∩ 𝑀

𝑓
(𝑠, ≺) ̸=Φ, then

there exists 0 < 𝛿 < 1, s.t. 𝑝(𝐴𝑗

𝑡+1
| 𝐴

𝑖

𝑡
) ≥ 𝛿.

Proof. Using K-C equation, we can obtain

𝑝 (𝐴
𝑗

𝑡+1
| 𝐴

𝑖

𝑡
) = ∑

𝑠𝑑

∑

,𝑠𝑒∈𝑆
≤2(𝑁1+𝑁2)

𝑝 (𝐷
𝑑

𝑡
| 𝐴

𝑖

𝑡
) 𝑝 (𝑃

𝑒

𝑡+1
| 𝐷

𝑑

𝑡
)

× 𝑝 (𝐴
𝑗

𝑡+1
| 𝑃

𝑒

𝑡+1
) .

(27)

Note that 𝑝(𝐷𝑑

𝑡
| 𝐴

𝑖

𝑡
) = 1; based on Lemmas 2 and 3, we

derive

𝑝 (𝐴
𝑗

𝑡+1
| 𝐴

𝑖

𝑡
) ≥ 𝛿

1
𝛿
2
≡ 𝛿. (28)

Theorem 5. CMBOA is weakly convergent for any initial
population distribution; that is,

lim
𝑡→∞

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ) = 0. (29)

Proof. If 𝑠
𝑖
∩𝑀

𝑓
(𝑠, ≺) = Φ, then

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ | 𝐴

𝑖

𝑡
) ≤ 1 − 𝛿. (30)

If 𝑠
𝑖
∩ 𝑀

𝑓
(𝑠, ≺) ̸=Φ, the archive 𝑀(𝑡) is applied to conserve

the elitist individuals; then

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ | 𝐴

𝑖

𝑡
) = 0. (31)
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By (27) and (28), we can obtain

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ)

= ∑

𝑠𝑖∩𝑀𝑓(𝑠,≺)=Φ

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ | 𝐴

𝑖

𝑡
) 𝑝 (𝐴

𝑖

𝑡
)

+ ∑

𝑠𝑖∩𝑀𝑓(𝑠,≺) ̸=Φ

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ | 𝐴

𝑖

𝑡
) 𝑝 (𝐴

𝑖

𝑡
)

≤ (1 − 𝛿)
𝑡
,

lim
𝑡→∞

𝑝 (𝐴
𝑡+1

∩𝑀
𝑓
(𝑠, ≺) = Φ) = 0.

(32)

Hence, CMBOA is weakly convergent for any initial popula-
tion distribution.

4. Simulation Results

4.1. Experimental Setup. In order to test the validity of
the proposed CMBOA, several benchmark functions with
multiple features are selected including OSY [27], TNK [26],
CONSTR [27], CTP1-CTP5 [28], CF1, CF2, CF4, and CF6
[29]. For OSY, its Pareto front is a concatenation of five
regions and every region lies on the intersection of certain
constraints; for TNK, its Pareto optimal solutions lie on
a non-linear constraint surface; for CONSTR, its Pareto
optimal set is concatenation of the constraint boundary and
some parts of unconstrained Pareto optimal; for CTP serious
functions, their Pareto optimal set is a collection of a number
of discrete regions and most of solutions lie on non-linear
constraint boundary. OSY, CONSTR, CTP1, CF4 and CF6
have continuous Pareto fronts, while the remaining ones have
disjoint Pareto fronts (TNK, CTP2-CTP5, CF1, and CF2).

4.2. Performance Metrics. In this experiment, two perfor-
mance metrics are selected to do quantitatively comparison.

Cover Metric C [30]. Suppose that U and V are two approxi-
mate Pareto optimal sets obtained by Algorithms 1 and 2:

𝐶 (𝑈,𝑉) =

|{𝑢 ∈ 𝑈; ∃V ∈ 𝑉 : 𝑢 ≤ V}|
|𝑉|

, (33)

where ≤ denotes the dominated or equal relation. The value
𝐶(𝑈,𝑉) = 1 represents that all individuals in 𝑉 are weakly
dominated by individuals in 𝑈. 𝐶(𝑈,𝑉) = 0 denotes no
individuals in 𝑉 which is weakly dominated by 𝑈. Note
that 𝐶(𝑈,𝑉) ̸=1 − 𝐶(𝑉,𝑈); hence two directions must be
considered simultaneously.

Hyper Volume HV [30]. The indicator calculates the volume
covered by all nondominated solutions in the objective space.
For each solution 𝑋

𝑖
, a hypercube ℎV

𝑖
is constructed with a

predefined reference point and the solution𝑋
𝑖
as the diagonal

corners of the hypercube ℎV
𝑖
. All hypercubes are found and

HV is calculated as follows:

HV =

|𝑥|

⋃

𝑖=1

ℎV
𝑖
. (34)

The indicator is related to the approximation anddiversity
of the nondominated solution set.The higher the value of HV
is, the better the diversity and approximation of solution set
obtained is.

4.3. Performance of CMBOA on Benchmark Functions
4.3.1. Test on Benchmark Functions. Todemonstrate the effec-
tiveness of the proposed CMBOA for CMOPs, 12 benchmark
functions are chosen to show its validity. In the experiment,
each individual is described as a real vector. The parameters
of CMBOA are set as follows: population size = 100, feasible
elitist maximum size 𝑁

1
= 100, infeasible elitist maximum

size𝑁
2
= 20, the maximum immigration rate and migration

rate 𝐸 = 𝐼 = 1, the termination generation = 100, 𝐹 is a
random in the interval (0.2, 0.8), and 𝐶𝑅 = 0.5.

For all benchmark function, the Pareto fronts obtained
by CMBOA are shown in Figure 1. From this figure, it can be
seen that the Pareto optimal solutions obtained by CMBOA
are very close to the true Pareto front for all benchmark
functions. For most of benchmark functions, the solutions
generated by the proposed algorithm can be distributed
evenly on the true Pareto front except CF2, CF4, and CF6
because they have variable linkages.

4.3.2. ComparisonwithOriginalMigrationOperator. In order
to demonstrate the effectiveness of the novel migration
operation, OSY and CTP4 are selected. The Pareto fronts
gained by the algorithms with original and novel migration
operator are shown in Figure 2, where “∗” denotes the Pareto
front gained by CMBOA with the novel migration and “o”
is the ones gained by the algorithm with original migration
operator. FromFigure 2, it can be seen that the algorithmwith
original migration cannot converge to the true Pareto front
for OSY and CTP4, and only few solutions are produced for
OSY. However, CMBOA with the novel migration operator
obtains good convergence and diversity for OSY and CTP4,
which demonstrates that the novel migration operator is
superior to the original migration operator for OSY and
CTP4.

4.3.3. Parameter Sensitivity Analysis. Thedisturbance param-
eter 𝐹(𝑡) is not tuned elaborately but is set as (20). In
this section, to investigate the robustness of the disturbance
parameter 𝐹(𝑡), simulations with different settings 𝐹(𝑡) =

0.2, 0.4, 0.6, 0.8 are performed. Benchmark functions OSY
and CTP4 are selected to test the sensitivity of 𝐹(𝑡). The
Pareto fronts gained under different𝐹(𝑡) settings are shown in
Figure 3. From the results, it is observed that the algorithms
with different 𝐹(𝑡) settings can all converge to the true Pareto
front for OSY and CTP4, which illustrates that the distur-
bance parameter 𝐹(𝑡) is capable to perform consistently and
effectively for OSY and CTP4. So the disturbance parameter
𝐹(𝑡) is reliable and robust to produce better solutions.
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Figure 1: Final Pareto front for all test functions by the proposed algorithm CMBOA.

4.4. Comparison with Other Algorithms. To show the supe-
rior performance of the proposed algorithm, it is compared
with the most popular multiobjective algorithms including
NSGA-II [24] and IS-MOEA [1]. ForNSGAII, the parameters
are set as population size = 100, crossover probability = 0.9,
mutation probability = 1/𝑛, SBX crossover parameter = 20,

polynomial mutation parameter = 20, and the termination
generation = 100. For IS-MOEA, the parameters are set as
population size = 100, crossover probability = 0.9, mutation
probability = 1/𝑛, SBX crossover parameter = 20, polynomial
mutation parameter = 20 comparison probability = 0.45,
penalty parameters 𝜔

𝑗
= 1, 𝛽 = 1, and the termination
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Figure 2: Final Pareto front for OSY and CTP4 under original and novel migration operator.
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Figure 3: Final Pareto front for OSY and CTP4 under 𝐹(𝑡) = 0.2, 0.4, 0.6, 0.8.

generation = 100. For the proposed CMBOA, the parameters
are set the same as the previous section. For all algorithms, 30
independent runs are conducted on each of the benchmark
functions to get the statistical results in cover metric 𝐶 and
hypervolume HV. Their distribution of simulation results is
shown in Tables 1–6.

In Table 1, if the value of C (CMBOA, NSGA-II) is larger
than that of C (NSGA-II,CMBOA), it indicates that the
proposed CMBOA has better convergence than NSGA-II;
otherwise, it indicates that the proposed CMBOA is inferior
to NSGA-II in term of convergence. From Table 1, it can be
seen that for CONSTR, CF2, CF4, and CF6, and NSGA-II is
better thanCMBOA in termof convergence.However, for the
other eight test functions, CMBOA has better convergence
than NSGA-II. Wilcoxon rank-sum test is used to examine
their difference [31] and the results are shown in Table 2. The
alternative hypothesis is 𝑝 ≤ 𝛼 and 𝛼 = 0.05. If 𝑝 ≤ 𝛼 is met,

the algorithms have significant difference; otherwise, they
have no difference. From Table 2, we can see that, compared
with NSGA-II, CMBOA is significantly superior on OSY,
CTP1, CTP3, CTP4, CTP5, CF1, and CF6 in converging
close to Pareto front. In order to analyze their difference in
convergence, the distribution of their cover metric values is
studied by Wilcoxon rank-sum test which is summarized in
Table 3. In Table 3, the CMBOA is significantly superior to
IS-MOEA in most benchmark functions except TNK, CTP1,
and CTP2 on convergence. In Table 4, we can see that, except
TNK,CMBOA is superior to IS-MOEA in convergence, while
IS-MOEA is better than CMBOA in TNK.

In order to evaluate the convergence and the diversity
of solutions obtained by the proposed CMBOA, statistical
results of hypervolume metric are summarized in Table 5.
In this table, higher hypervolume value indicates that the
algorithm has better diversity. From Table 5, it can be seen
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Table 1: Mean and variance (Var.) of the cover metric on CMBOA and NSGA-II.

Algorithm Benchmark functions
OSY TNK CONSTR CTP1 CTP2 CTP3

C(CMBOA, NSGA-II)
Mean 0.3003 0.2007 0.1320 0.2643 0.2690 0.7543
Var. 0.0324 0.0019 0.0012 0.0023 0.0039 0.0319

C(NSGA-II, CMBOA)
Mean 0.1683 0.1940 0.1517 0.1270 0.2397 0.2567
Var. 0.0160 0.0011 0.0016 0.0026 0.0043 0.0262

Algorithm Benchmark functions
CTP4 CTP5 CF1 CF2 CF4 CF6

C(CMBOA, NSGA-II)
Mean 0.7507 0.6863 0.8403 0.1433 0.0860 0.2250
Var. 0.0540 0.0675 0.0138 0.0152 0.0209 0.0100

C(NSGA-II, CMBOA)
Mean 0.1793 0.3150 0.1550 0.1683 0.2500 0.4093
Var. 0.0274 0.0296 0.0120 0.0080 0.0961 0.0135

Table 2: Wilcoxon rank-sum test on C value of CMBOA and NSGA-II.

OSY TNK CONSTR CTP1 CTP2 CTP3
(C(CMBOA, NSGA-II),
C(NSGA-II, CMBOA)) 0.0020 0.3937 0.0738 5.6395e − 010 0.1096 4.3641e − 010

CTP4 CTP5 CF1 CF2 CF4 CF6
(C(CMBOA, NSGA-II),
C(NSGA-II, CMBOA)) 6.3039e − 010 1.7176e − 006 3.1436e − 011 0.1408 0.7492 4.9194e − 007

Table 3: Wilcoxon rank-sum test on C value of CMBOA and IS-MOEA.

OSY TNK CONSTR CTP1 CTP2 CTP3
(C(CMBOA, IS-MOEA),
C(CMBOA, IS-MOEA)) 4.4824e − 012 2.8394e − 011 0.0010 0.0685 5.7712e − 009 0.0058

CTP4 CTP5 CF1 CF2 CF4 CF6
(C(CMBOA, IS-MOEA),
C(CMBOA, IS-MOEA)) 3.2785e − 011 9.1907e − 009 1.8685e − 011 2.3115e − 010 1.1817e − 008 9.7713e − 012

Table 4: Mean and variance (Var.) of the cover metric on CMBOA and IS-MOEA.

Algorithm Benchmark functions
OSY TNK CONSTR CTP1 CTP2 CTP3

C(CMBOA, IS-MOEA)
Mean 0.9044 0.0997 0.1670 0.1823 0.1773 0.5976
Var. 0.0456 0.0010 0.0010 0.0048 0.0037 0.0318

C(IS-MOEA, CMBOA)
Mean 0.0517 0.3093 0.1367 0.1523 0.3167 0.4710
Var. 0.0140 0.0029 0.0012 0.0017 0.0045 0.0249

Algorithm Benchmark functions
CTP4 CTP5 CF1 CF2 CF4 CF6

C(CMBOA, IS-MOEA)
Mean 0.7990 0.6701 0.9667 0.6591 0.6190 0.8472
Var. 0.0241 0.0334 0.0020 0.0680 0.0957 0.0305

C(IS-MOEA, CMBOA)
Mean 0.1767 0.3223 0.0520 0.0787 0.0713 0.0143
Var. 0.0173 0.0133 0.0045 0.0109 0.0210 0.0011
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Table 5: Mean and variance (Var.) of the hypervolume (HV) metric.

Algorithm HV Benchmark functions
OSY TNK CONST CTP1 CTP2 CTP3

CMBOA Mean 0.9835 0.998 0.9992 0.9995 0.9992 0.9949
Var. 0.0032 3.0145𝑒 − 007 2.2481𝑒 − 007 9.3282𝑒 − 008 1.5011𝑒 − 007 1.3630𝑒 − 005

NSGA-II Mean 0.9107 0.9965 0.9993 0.9944 0.9983 0.9763
Var. 0.0162 5.7807𝑒 − 006 3.1099𝑒 − 007 4.1408𝑒 − 005 2.8101𝑒 − 006 0.0029

IS-MOEA Mean 0.7576 0.9965 0.9992 0.9757 0.9579 0.9609
Var. 0.0257 1.5731𝑒 − 004 2.8652𝑒 − 007 0.0021 0.0069 0.0011

Algorithm HV Benchmark Functions

CTP4 CTP5 CF1 CF2 CF4 CF6

CMBOA Mean 0.9289 0.9190 0.9956 0.9549 0.8820 0.9535
Var. 0.0015 0.0014 1.4497𝑒 − 005 0.0016 0.0077 8.3474𝑒 − 004

NSGA-II Mean 0.8581 0.8180 0.9901 0.8971 0.9319 0.9445
Var. 0.0185 0.0181 4.6140𝑒 − 005 0.0037 0.0026 0.0017

IS-MOEA Mean 0.8716 0.8518 0.9670 0.7838 0.7444 0.8472
Var. 0.0115 0.0088 3.899𝑒 − 004 0.0208 0.0496 0.0127

Table 6: Distribution of HV value using Wilcoxon rank-sum test.

OSY TNK CONSTR CTP1 CTP2 CTP3

HV(CMBOA, NSGA-II) 2.5721𝑒 − 007 3.0199𝑒 − 011

0.0555
>0.05 4.6159𝑒 − 010

0.0824
>0.05

8.9934𝑒 − 011

HV(CMBOA, IS-MOEA) 1.4110𝑒 − 009 3.0199𝑒 − 011 2.8314𝑒 − 008 3.3242𝑒 − 006

0.3255
>0.05

9.8329𝑒 − 008

CTP4 CTP5 CF1 CF2 CF4 CF6

HV(CMBOA, NSGA-II) 4.0772𝑒 − 011 1.0937𝑒 − 010 2.6099𝑒 − 010 0.0044 0.8534
>0.05

5.9706𝑒 − 005

HV(CMBOA, IS-MOEA) 3.3384𝑒 − 011 4.5726𝑒 − 009 3.0199𝑒 − 011 1.0937𝑒 − 010 4.1825𝑒 − 009 3.0199𝑒 − 011

that CMBOA has better diversity than the other two algo-
rithms for almost all test functions except CONSTR and CF4.
From the variance of metric HV, we can see that CMBOA has
the smallest variance which indicates that it is more reliable
and robust than NSGA-II and IS-MOEA in producing better
solutions. In order to analyze the distribution of HV value
in further, its Wilcoxon rank-sum test value is summarized
in Table 6. From Table 6, we can conclude that CMBOA is
superior to NSGA-II and IS-MOEA in terms of the distribu-
tion and diversity of solutions except CONSTR, CTP2, and
CF4. Experiment results above show that the CMBOA has
competitive performance withNSGA-II and IS-MOEA in the
terms of convergence and diversity.

5. Conclusions

In this paper, we propose a new constrained multiobjective
biogeography-based optimization algorithm. A new distur-
bance migration operator is designed to generate diverse
feasible solutions. Infeasible solutions nearby the feasible
region are recombined with their nearest feasible ones to
change the feasibility. Theoretically, the weak convergence

of CMBOA is proved by the probability theory and its time
complexity is analyzed. Experimentally, CMBOA is tested
on several typical benchmark functions and compared with
classical NSGA-II and IS-MOEA.The statistical results show
that the proposed CMBOA is highly competitive in terms of
convergence and diversity. In future work, we may improve
CMBOA to obtain better performance on variable linkage
problems.
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Hunger component is introduced to the existing cockroach swarm optimization (CSO) algorithm to improve its searching ability
and population diversity. The original CSO was modelled with three components: chase-swarming, dispersion, and ruthless;
additional hunger component which is modelled using partial differential equation (PDE) method is included in this paper. An
improved cockroach swarm optimization (ICSO) is proposed in this paper.The performance of the proposed algorithm is tested on
well known benchmarks and compared with the existing CSO,modified cockroach swarm optimization (MCSO), roach infestation
optimization RIO, and hungry roach infestation optimization (HRIO). The comparison results show clearly that the proposed
algorithm outperforms the existing algorithms.

1. Introduction

Swarm intelligence (SI) is a method of computing whereby
simple decentralized agents get information by interacting
locally with one another and their environment [1]. The
local information received is not controlled centrally; local
interaction of agents results in amazing and emergent global
patterns which can be adopted for solving problems [1].

SI algorithms draw inspiration from insects and animals
social behaviour and have been proven in literature to be
efficient in solving global optimization problems. Examples
of existing SI algorithms include particle swarm optimization
(PSO), ant colony optimization (ACO), and bee colony
optimization (BCO). PSO based on bird social behaviour,
introduced by Kennedy and Eberhart [2], has been applied
to several problems, including power and management pro-
cesses [3, 4] and combinatorial optimization problem in [5].
ACO based on ant social behaviour, introduced by Dorigo
[6], has been applied to problems such as vehicle routing
problem [7] and network routing problem [8]. BCO based on
bees social behaviour, introduced by Pham et al. [9], has been
applied to real world problems by Karaboga and his research
group [10–12].

One of the recent developments in SI is cockroach opti-
mization [13–16]. Cockroach belongs to Insecta Blattodea,

abodes in warm, dark, and moist shelters, and exhibits habits
which include chasing, swarming, dispersing, being ruthless
and omnivorous, and food searching. Cockroaches interact
with peers and respond to their immediate environment and
make decisions based on their interaction such as selecting
shelter, searching for food sources and friends, dispersing
when danger is noticed, and eating one another when food
is scarce.

The original cockroach swarm optimization (CSO) algo-
rithm, introduced by Zhaohui and Haiyan [14], was modified
byZhaoHuiwith the introduction of inertial weight [15]. CSO
algorithms [14, 15] mimic chase swarming, dispersion, and
ruthless social behaviour of cockroaches.

Global optimization problems are considered as very hard
problems, ever increasing in complexity. It became necessary
to design better optimization algorithms; this necessitated the
design of a better cockroach algorithm. This paper extends
MCSO with the introduction of another social behaviour
called hunger behaviour. Hunger behaviour prevents local
optimum and enhances diversity of population. An improved
cockroach swarm optimization (ICSO) is presented in this
paper.

The organization of this paper is as follows: Section 2
presents CSO, MCSO, and ICSO models with algorithmic
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steps; Section 3 shows the experiments carried out and results
obtained; the paper is summarised in Section 4.

2. Cockroach Swarm Optimization

CSO algorithm is a population based global optimization
algorithm which has been applied to problems in literature
including [17–19]. CSO [14] models are given as follows.

(1) Chase-Swarming Behaviour.

𝑥
𝑖
= {

𝑥
𝑖
+ step ⋅ rand ⋅ (𝑝
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− 𝑥
𝑖
) , 𝑥
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(1)

where 𝑥
𝑖
is the cockroach position, step is a fixed value, rand

is a random number within [0, 1], 𝑝
𝑖
is the personal best

position, and 𝑝
𝑔
is the global best position. Consider

𝑝
𝑖
= Opt

𝑗
{𝑥
𝑗
,






𝑥
𝑖
− 𝑥
𝑗






≤ visual} , (2)

where perception distance visual is a constant, 𝑗 = 1, 2, . . . , 𝑁,
𝑖 = 1, 2, . . . , 𝑁. Consider

𝑝
𝑔
= Opt

𝑖
{𝑥
𝑖
} . (3)

(2) Dispersion Behaviour.

𝑥
𝑖
= 𝑥
𝑖
+ rand (1, 𝐷) , 𝑖 = 1, 2, . . . , 𝑁, (4)

where rand(1, 𝐷) is a𝐷-dimensional random vector that can
be set within a certain range.

(3) Ruthless Behaviour.

𝑥
𝑘
= 𝑝
𝑔
, (5)

where 𝑘 is a random integer within [1,𝑁] and 𝑝
𝑔
is the global

best position.

2.1. Modified Cockroach Swarm Optimization. ZhaoHui pre-
sented a modified cockroach swarm optimization (MCSO)
[15] with the introduction of inertial weight to chase swarm-
ing component of original CSO as shown below. Other
models remain as in original CSO.

Chase-swarming behaviour is as follows:

𝑥
𝑖
= {

𝑤 ⋅ 𝑥
𝑖
+ step ⋅ rand ⋅ (𝑝

𝑖
− 𝑥
𝑖
) , 𝑥

𝑖
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𝑖

𝑤 ⋅ 𝑥
𝑖
+ step ⋅ rand ⋅ (𝑝

𝑔
− 𝑥
𝑖
) , 𝑥

𝑖
= 𝑝
𝑖
,

(6)

where 𝑤 is an inertial weight which is a constant.

2.2. Improved Cockroach Swarm Optimization. In this paper,
MCSO is extended with additional component called hunger
behaviour.

2.2.1. Hunger Behaviour. At interval of time, when cockroach
is hungry, it migrates from its comfortable shelter and friends
company to look for food [13, 20]. Hunger behaviour is

modelled using partial differential equation (PDE) migration
techniques [21]. Cockroach migrates from its shelter to
any available food source 𝑥food within the search space. A
threshold hunger is defined, when cockroach is hungry and
threshold hunger is reached; it migrates to food source.
Hunger behaviour prevents local optimum and enhances
diversity of population.

PDE migration equation is described by Kerckhove [21]:

𝜕𝑢

𝜕𝑡

= −𝑐

𝜕𝑢

𝜕𝑥

(7)

with 𝑢(0, 𝑥) = 𝑢
0
(𝑥).

Parameter 𝑐 is the controlling speed of the migration. 𝑢 is
the population size, 𝑡 is time, and 𝑥 is location or position.
𝑢(𝑡, 𝑥) is the population size at time 𝑡 in location 𝑥 with
𝑢(0, 𝑥) = 𝑢

0
(𝑥) being the initial population distribution.

Consider
𝜕𝑢

𝜕𝑡

= − 𝑐

𝜕𝑢

𝜕𝑥

,

𝜕𝑢

𝜕𝑡

+ 𝑐

𝜕𝑢

𝜕𝑥

= 0.

(8)

The characteristic equations are

𝑑𝑡

1

=

𝑑𝑥

𝑐

=

𝑑𝑢

0

,

𝑑𝑥 − 𝑐𝑑𝑡 = 0.

(9)

By integration, we have

𝑥 − 𝑐𝑡 = 𝛼,

𝑢 = 𝑢 (𝛼) ,

𝑢 = 𝑢 (𝑥 − 𝑐𝑡) ,

𝑢 [𝑡, 𝑥] = 𝑢0 [
−𝑐𝑡 + 𝑥] .

(10)

Consider displacement = speed × time.
In 𝑢
0
(𝑥 − 𝑐𝑡), 𝑢

0
(𝑥) displaces 𝑐𝑡.

𝑢
0
(𝑥 − 𝑐𝑡) satisfies migration equation at any initial

population distribution 𝑢
0
(𝑥) [21].

Hunger behaviour is modelled as follows:
If (hunger == 𝑡hunger)

𝑥
𝑖
= 𝑥
𝑖
+ (𝑥
𝑖
− 𝑐𝑡) + 𝑥food, (11)

where 𝑥
𝑖
denotes cockroach position, (𝑥

𝑖
− 𝑐𝑡) denotes

cockroach migration from its present position, 𝑐 is a constant
which controls migration speed at time 𝑡, 𝑥food denotes food
location, 𝑡hunger denotes hunger threshold, and hunger is a
random number [0, 1].

2.2.2. Improved Cockroach Swarm Optimization Models

(1) Chase-Swarming Behaviour.

𝑥
𝑖
= {

𝑤 ⋅ 𝑥
𝑖
+ step ⋅ rand ⋅ (𝑝

𝑖
− 𝑥
𝑖
) , 𝑥

𝑖
̸=𝑝
𝑖
,

𝑤 ⋅ 𝑥
𝑖
+ step ⋅ rand ⋅ (𝑝

𝑔
− 𝑥
𝑖
) , 𝑥

𝑖
= 𝑝
𝑖
,

(12)
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INPUT: Fitness function:𝑓(𝑥), 𝑥 ∈ 𝑅𝐷
set parameters and generate an initial population of cockroach
set 𝑝
𝑔
= 𝑥
1

for 𝑖 = 2 to 𝑁 do
if 𝑓(𝑥

𝑖
) < 𝑓(𝑝

𝑔
) then

𝑝
𝑔
= 𝑥
𝑖

end if
end for
for 𝑡 = 1 to 𝑇max do

for 𝑖 = 1 to 𝑁 do
for 𝑗 = 1 to 𝑁 do

if abs(𝑥
𝑖
− 𝑥
𝑗
) < visual; 𝑓(𝑥

𝑗
) < 𝑓(𝑥

𝑖
) then

𝑝
𝑖
= 𝑥
𝑖

end if
end for
if 𝑝
𝑖
== 𝑥
𝑖
then

𝑥
𝑖
= 𝑤 ⋅ 𝑥

𝑖
+ step ⋅ rand ⋅ (𝑝

𝑔
− 𝑥
𝑖
)

else
𝑥
𝑖
= 𝑤 ⋅ 𝑥

𝑖
+ step ⋅ rand ⋅ (𝑝

𝑖
− 𝑥
𝑖
)

end if
if 𝑓(𝑥

𝑖
) < 𝑓(𝑝

𝑔
) then

𝑝
𝑔
= 𝑥
𝑖

end if
end for
if Hunger == 𝑡hunger then
𝑥
𝑖
= 𝑥
𝑖
+ (𝑥
𝑖
− 𝑐𝑡) + 𝑥fd)

hunger
𝑖
= 0

Increment hunger
𝑖
counters

end if
for 𝑖 = 1 to 𝑁 do
𝑥
𝑖
= 𝑥
𝑖
+ rand(1, 𝐷)

if 𝑓(𝑥
𝑖
) < 𝑓(𝑝

𝑔
) then

𝑝
𝑔
= 𝑥
𝑖

end if
end for
𝑘 = randint([1,𝑁])
𝑥
𝑘
= 𝑝
𝑔
;

end for
Check termination condition

Algorithm 1: An improved cockroach swarm optimization algorithm.

where 𝑤 is an inertial weight which is a constant, step is a
fixed value, rand is a random number within [0, 1], 𝑝

𝑖
is the

personal best position, and 𝑝
𝑔
is the global best position.

Consider

𝑝
𝑖
= Opt

𝑗
{𝑥
𝑗
,






𝑥
𝑖
− 𝑥
𝑗






≤ visual} , (13)

where perception distance visual is a constant, 𝑗 = 1, 2, . . . , 𝑁,
𝑖 = 1, 2, . . . , 𝑁. Consider

𝑝
𝑔
= Opt

𝑖
{𝑥
𝑖
} . (14)

(2) Hunger Behaviour. If hunger == 𝑡hunger,

𝑥
𝑖
= 𝑥
𝑖
+ (𝑥
𝑖
− 𝑐𝑡) + 𝑥food, (15)

where 𝑥
𝑖
denotes cockroach position, (𝑥

𝑖
− 𝑐𝑡) denotes

cockroach migration from its present position, 𝑐 is a constant

which controls migration speed at time 𝑡, 𝑥food denotes food
location, 𝑡hunger denotes hunger threshold, and hunger is a
random number within [0, 1].

(3) Dispersion Behaviour.

𝑥
𝑖
= 𝑥
𝑖
+ rand (1, 𝐷) , 𝑖 = 1, 2, . . . , 𝑁, (16)

where rand(1, 𝐷) is a𝐷-dimensional random vector that can
be set within a certain range.

(4) Ruthless Behaviour.

𝑥
𝑘
= 𝑝
𝑔
, (17)

where 𝑘 is a random integer within [1,𝑁] and 𝑝
𝑔
is the global

best position.
The algorithm for ICSO is illustrated in Algorithm 1 and

its computational steps given as follows.
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(1) Initialise cockroach swarm with uniform distributed
random numbers and set all parameters with values.

(2) Find 𝑝
𝑖
and 𝑝

𝑔
using (12) and (13).

(3) Perform chase-swarming using (11).
(4) Perform hunger behaviour using (14)
(5) Perform dispersion behaviour using (15).
(6) Perform ruthless behaviour using (16).
(7) Repeat the loop until stopping criterion is reached.

Series of experiments are conducted in Section 3 using
established global optimization problems to test ICSO per-
formance. The performance of ICSO is compared with that
of existing algorithms RIO, HRIO, CSO, and MCSO.

3. Simulation Studies

The speed, accuracy, robustness, stability, and searching
capabilities of ICSO are evaluated in this section with 23
benchmark test functions. The test functions were adopted
from [22–24]; any further information about the test func-
tions can be found in these references. The test functions are
of different characteristics such as unimodal (𝑈), multimodal
(𝑀), separable (𝑆), and nonseparable (𝑁). Table 1 of this
paper shows the test functions used, whose problem ranges
from 2 to 30 in dimension as in [22–24].

All algorithms were implemented in MATLAB 7.14
(R2012a) and run on a computer with 2.30GHz processor
with 4.00GB of RAM. Experimental setting of [13–15] is used
for the experiments of this paper; experiment runs 20 times
with maximum iteration 1000, perception distance visual =
5, the largest step was step = 2, and inertia weight was
𝑤 = 0.618; we defined hunger threshold 𝑡hunger = 0.5

and hunger as a randomly generated number [0, 1] in each
iteration for ICSO. Cockroach parameters [13] are used for
RIO and HRIO; 𝑐

0
= 0.7 and 𝑐max = 1.43, hunger threshold

𝑡hunger = 100, and hunger as randomly generated number
[0, (𝑡hunger −1)]. Cockroach population size𝑁 = 50 is used in
this paper for all the algorithms. Further details about RIO,
HRIO, CSO, and MSCO can be found in [13–15].

ICSO along with similar algorithms, that is, CSO, MSCO,
RIO, and HRIO, was implemented with several simulation
experiments conducted and reported. Success rate, average
and best fitness, standard deviation (STD), and execution
time in seconds are used as performance measure for com-
parative purpose (see Tables 2, 3, and 4 of this paper).

ICSO locates minimum values for the tested benchmark
problems such as Bohachevsky, Rastrigin, Easom, Schaffer,
Step, and Storn’s Tchebychev problems as shown in Tables 2,
3, and 4.The comparison of the average performance of ICSO
with that of RIO, HRIO, CSO, andMCSO is shown in Table 5;
the comparison result clearly shows that ICSO outperforms
other algorithms. Similarly, the best performance of ICSO
with that of RIO,HRIO, CSO, andMCSO is shown in Table 6;
ICSO has better performance than others.

ICSO algorithm has consistent performance in each
iteration. This is proved by very low standard deviation
of the average optimal recoded during experiments. The

ICSO average optimal STD is compared with the STD of
RIO, HRIO, CSO, and MCSO in Table 7. ICSO has better
minimum STD than others.

ICSO locates good solutions in each experiment; this is
proved by the success rate of the algorithm. Table 8 shows
the comparison of the success rate of the proposed algorithm
with the existing algorithms RIO, HRIO, CSO, and MCSO.
ICSO has 100% success rate in all test functions except
Rosenbrock.

ICSO utilizes minimum time in executing the selected
test function. Table 9 shows the comparison of the execution
time of ICSO and that of RIO, HRIO, CSO, andMCSO; ICSO
is shown to have utilized minimum time.

To determine the significant difference between the
performance of the proposed algorithm and the existing
algorithms, test statistic of Jonckheere-Terpstra (J-T) test was
conducted using the statistical package for the social science
(SPSS). The Null hypothesis test for J-T test is that there
is no difference among several independent groups. As the
usual practice in most literature, 𝑃 value threshold value
for hypothesis test was set to 0.05. If 𝑃 value is less than
0.05, the Null is rejected which means there is significant
difference between the groups.Otherwise theNull hypothesis
is accepted. Table 10 shows the result of J-T test; 𝑃 value
(Asymp. Sig.) was computed to be 0.001. The 𝑃 value is less
than the threshold value 0.05; therefore, there is significant
difference in performance of ICSO and that of RIO, HRIO,
CSO, and MCSO for benchmarks evaluated.

Effect size of the significant difference is the measure of
the magnitude of the observed effect. The effect size 𝑟, (1 >
𝑟 < 0) of the significant difference of J-T test, was calculated
as

𝑟 =

𝑍

√𝑁

, (18)

where 𝑍 is the standard data of J-T statistic as shown in
Table 10, 𝑁 is the total number of samples, and 𝑁 = 114.
Consider

𝑍 =

𝑥 − 𝜇

𝜎

, (19)

where𝑥denotes observed J-T statistic,𝜇denotes themean J-T
statistic, and 𝜎 denoted the standard deviation of J-T statistic.
Consider

𝑍 =

1952 − 2599

199.355

= −3.245,

𝑟 =

−3.245

√114

= −0.3.

(20)

The distance between the observed data and the mean
in units of standard deviation is absolute value of |𝑍| (𝑍
is negative when observed data is below the mean and
positive when above). The effect size 0.3 is of medium size,
using Cohen’s guideline on effect size [25, 26]. The statistics
of 0.3 effect size shows that there is significant difference
of medium magnitude between proposed algorithm and
existing algorithms.
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Table 2: Simulation results of RIO, HRIO, CSO, MCSO, and ICSO.

SN Fn. Dim. Opt. RIO HRIO CSO MCSO ICSO

1 Boha1 2 0

Ave. 3.4405𝐸 − 05 3.2877𝐸 − 04 2.9893𝐸02 3.5153𝐸 − 09 0.0000
STD 2.5963𝐸 − 05 3.0334𝐸 − 04 5.0332𝐸02 1.4392𝐸 − 08 0.0000
Best 1.3520𝐸 − 07 5.2651𝐸 − 06 2.0651𝐸 − 05 0.0000 0.0000

Success 20/20 20/20 5/20 20/20 20/20
Time 1.137525 0.886356 23.913237 0.075212 0.097187

2 Boha2 2 0

Ave. 4.2829𝐸 − 05 4.6703𝐸 − 04 9.0941𝐸02 8.4459𝐸 − 12 0.0000
STD 3.0070𝐸 − 05 3.4047𝐸 − 04 1.7794𝐸03 2.9240𝐸 − 11 0.0000
Best 2.2910𝐸 − 06 9.374𝐸 − 06 1.3775𝐸 − 05 0.0000 0.0000

Success 20/20 20/20 4/20 20/20 20/20
Time 0.998178 0.946887 26.492095 0.072021 0.074106

3 Boha3 2 0

Ave. 5.3479𝐸 − 05 4.7575𝐸 − 04 7.4284𝐸02 2.1388𝐸 − 14 0.0000
STD 2.9141𝐸 − 05 2.3273𝐸 − 04 1.6739𝐸03 4.8670𝐸 − 14 0.0000
Best 3.1200𝐸 − 06 4.6981𝐸 − 05 2.3093𝐸 − 07 0.0000 0.0000

Success 20/20 20/20 3/20 20/20 20/20
Time 1.089920 0.885252 25.028054 0.080908 0.068189

4 3camel 2 0

Ave. 1.4962𝐸 − 02 4.3021𝐸 − 04 5.003𝐸09 7.098𝐸 − 11 5.9853𝐸 − 31

STD 6.6769𝐸 − 02 2.8371𝐸 − 04 1.7137𝐸10 3.0201𝐸 − 10 2.5457𝐸 − 30

Best 1.1739𝐸 − 06 2.2449𝐸 − 05 1.7642𝐸 − 05 3.1395𝐸 − 19 2.2320𝐸 − 53

Success 19/20 20/20 12/20 20/20 20/20
Time 4.231533 0.794983 18.281683 0.104132 0.078845

5 6camel 2 −1.03163

Ave. −4.3522𝐸 − 01 −4.7652𝐸 − 01 1.5763𝐸05 −1.0263𝐸 − 08 −2.9798𝐸 − 25

STD 3.3322𝐸 − 01 3.1284𝐸 − 01 7.0503𝐸05 4.4391𝐸 − 08 1.3325𝐸 − 24

Best −1.0215 −1.0034 −9.4052𝐸 − 01 −1.9879𝐸 − 07 −5.9589𝐸 − 24

Success 20/20 20/20 19/20 20/20 20/20

Time 0.406355 0.330198 5.723039 0.0945856 0.086637

6 Easom 2 −1

Ave. −1 −1 −4.3165𝐸 − 01 −1 −1

STD 3.7518𝐸 − 02 2.1031𝐸 − 02 3.4470𝐸 − 01 1.4897𝐸 − 08 4.4116𝐸 − 17

Best −1 −1 −1 −1 −1

Success 20/20 20/20 20/20 20/20 20/20
Time 0.124022 0.107303 0.106738 0.077179 0.092393

7 Matyax 2 0

Ave. 4.9470𝐸 − 05 3.2297𝐸 − 04 7.5712 2.6876𝐸 − 13 4.0732𝐸 − 35

STD 3.0244𝐸 − 05 2.6018𝐸 − 04 1.1247𝐸01 8.9347𝐸 − 13 1.8125𝐸 − 34

Best 6.2897𝐸 − 06 1.2684𝐸 − 05 8.8777𝐸 − 06 6.6695𝐸 − 21 1.1292𝐸 − 55

Success 20/20 20/20 11/20 20/20 20/20
Time 0.973322 0.711734 13.559576 0.88536 0.076693

8 Schaffer1 2 −1

Ave. −1.9069 −1.6211 −2.9174𝐸 − 01 −1 −1

STD 7.0381𝐸 − 01 5.9214𝐸 − 01 7.5142𝐸 − 01 5.9575𝐸 − 07 4.1325𝐸 − 15

Best −2.7458 −2.7164 −2.7438 −1 −1

Success 20/20 20/20 20/20 20/20 20/20
Time 0.109048 0.086433 0.119076 0.072400 0.081599

9 Schaffer2 2 0

Ave. 2.0179𝐸 − 03 1.6566𝐸 − 03 7.1618 3.3168𝐸 − 04 2.2149𝐸 − 09

STD 2.6407𝐸 − 03 1.4451𝐸 − 03 5.3095 3.0328𝐸 − 04 2.9483𝐸 − 09

Best 6.2423𝐸 − 05 4.1422𝐸 − 04 2.8354𝐸 − 01 1.5810𝐸 − 05 1.9383𝐸 − 14

Success 2/20 13/20 0/20 20/20 20/20

Time 62.567654 31.415836 29.194283 0.084127 0.082320
Dim. denotes dimension. Opt. denotes optimum value. Boha1 denotes Bohachevsky1. Boha2 denotes Bohachevsky2. Boha3 denotes Bohachevsky3. 3camel
denotes three hump camel back. 6camel denotes six hump camel back.
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Table 3: Simulation results of RIO, HRIO, CSO, MCSO, and ICSO.

SN Fn. Dim. Opt. RIO HRIO CSO MCSO ICSO

10 Sphere 30 0

Ave. 2.2168𝐸 − 05 1.6676𝐸 − 04 1.8123𝐸02 1.5201𝐸 − 12 3.3448𝐸 − 34

STD 2.4528𝐸 − 05 2.4018𝐸 − 04 8.1048𝐸02 6.7224𝐸 − 12 1.3324𝐸 − 33

Best 5.7627𝐸 − 09 5.5635𝐸 − 08 4.9195𝐸 − 07 2.9978𝐸 − 24 2.8205𝐸 − 54

Success 20/20 20/20 19/20 20/20 20/20
Time 0.617544 0.557871 25.378161 0.82512 0.199373

11 Rastrigin 30 0

Ave. 3.8135𝐸 − 05 3.2150𝐸 − 04 3.6022𝐸03 9.1994𝐸 − 11 0.0000
STD 3.4436𝐸 − 05 3.0003𝐸 − 04 5.5728𝐸03 3.9456𝐸 − 10 0.0000
Best 2.7098𝐸 − 07 2.1450𝐸 − 07 3.1340𝐸 − 04 0.0000 0.0000

Success 20/20 20/20 5/20 20/20 20/20
Time 0.956329 0.826770 71.811170 0.175563 0.369987

12 Rosenbrock 30 0

Ave. 2.5281𝐸06 3.3571𝐸06 9.5067𝐸11 2.9000𝐸01 2.9000𝐸01

STD 4.0528𝐸06 7.1150𝐸06 2.2713𝐸12 0.0000 0.0000
Best 1.6773𝐸04 3.7562𝐸04 4.4068𝐸01 2.9000𝐸01 2.9000𝐸01

Success 0/20 0/20 0/20 0/20 0/20
Time 126.618734 127.469638 81.361663 76.084929 78.572185

13 Ackley 30 0

Ave. 2.0001𝐸01 2.0005𝐸01 1.9222𝐸01 5.1593𝐸 − 06 1.0651𝐸 − 15

STD 3.0455𝐸 − 03 1.5671𝐸 − 02 5.8258 1.9149𝐸 − 05 7.9441𝐸 − 16

Best 2.0001𝐸01 1.9998𝐸01 2.0133𝐸01 6.4623𝐸 − 09 8.1818𝐸 − 16

Success 0/20 0/20 0/20 20/20 20/20
Time 122.216187 117.635854 82.227210 0.235012 0.192339

14 Quadric 30 0

Ave. 2.4498𝐸 − 05 2.2711𝐸 − 04 3.4991𝐸 − 04 4.4754𝐸 − 13 7.2183𝐸 − 28

STD 2.7957𝐸 − 05 2.3635𝐸 − 04 3.3725𝐸 − 04 1.9751𝐸 − 12 3.2218𝐸 − 27

Best 1.1360𝐸 − 08 5.8230𝐸 − 07 4.1551𝐸 − 08 5.6309𝐸 − 23 5.910𝐸 − 52

Success 20/20 20/20 20/20 20/20 20/20
Time 0.718785 0.512242 31.075809 0.247456 0.227244

15 Schwefel2.22 30 0

Ave. 2.3131𝐸02 2.4395𝐸02 2.9013𝐸54 6.3587𝐸 − 06 6.0407𝐸 − 16

STD 1.3193𝐸02 1.2341𝐸02 1.2971𝐸55 1.1936𝐸 − 05 1.2203𝐸 − 15

Best 6.7400𝐸01 1.7354𝐸01 3.6854𝐸01 5.9410𝐸 − 08 5.1670𝐸 − 24

Success 0/20 0/20 0/20 20/20 20/20
Time 128.445013 127.084387 79.924516 0.217104 0.219296

16 Griewangk 30 0

Ave. 7.9510𝐸 − 01 7.7746𝐸 − 01 2.6148𝐸01 3.3151𝐸 − 11 0.0000
STD 3.7583𝐸 − 01 2.5454𝐸 − 01 3.6626𝐸01 1.4672𝐸 − 10 0.0000
Best 2.9324𝐸 − 01 3.2031𝐸 − 01 6.3912𝐸 − 05 0.0000 0.0000

Success 0/20 0/20 5/20 20/20 20/20
Time 126.872461 126.210153 70.852376 0.211351 0.210934

17 Sumsquare 30 0

Ave. 1.9818𝐸03 4.6771𝐸03 9.0499𝐸05 4.2446𝐸 − 11 1.5600𝐸 − 24

STD 2.8370𝐸03 6.7104𝐸03 1.0253𝐸06 1.2930𝐸 − 10 6.9785𝐸 − 24

Best 1.6463𝐸01 2.0516𝐸02 1.8730𝐸02 1.49990𝐸 − 16 1.3765𝐸 − 47

Success 0/20 0/20 0/20 20/20 20/20
Time 122.748646 125.154349 78.809270 0.273780 0.236129

18 Sinusoidal 30 −3.5

Ave. −4.2587𝐸 − 01 −3.7898𝐸 − 01 −2.449 −3.1030 −3.1030

STD 2.6632𝐸 − 01 1.9791𝐸 − 01 1.0203 5.0473𝐸 − 05 1.9436𝐸 − 14

Best −1.1922 −8.3111𝐸 − 01 −3.3087 −3.1032 −3.1030

Success 20/20 20/20 20/20 20/20 20/20
Time 0.204559 0.240200 0.234205 0.200361 0.217635

Dim. denotes dimension. Opt. denotes optimum value.
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Table 4: Simulation results of RIO, HRIO, CSO, MCSO, and ICSO.

SN Function Dim. Opt. RIO HRIO CSO MCSO ICSO

19 Zakharov 30 0

Ave. 1.0167𝐸04 1.0216𝐸04 6.3663𝐸18 2.3878𝐸 − 09 4.1579𝐸 − 26

STD 3.8643𝐸03 5.1012𝐸03 2.2732𝐸19 8.8529𝐸 − 09 1.8549𝐸 − 25

Best 2.6634𝐸03 2.3151𝐸03 1.3578𝐸09 2.0954𝐸 − 15 6.3965𝐸 − 57

Success 0/20 0/20 0/20 20/20 20/20
Time 115.192226 114.691827 79.926232 0.205280 0.259202

20 Step 30 0

Ave. 0.0000 0.0000 2.0004𝐸04 0.0000 0.0000
STD 0.0000 0.0000 8.4815𝐸04 0.0000 0.0000
Best 0.0000 0.0000 0.0000 0.0000 0.0000

Success 20/20 20/20 16/20 20/20 20/20
Time 0.686403 0.633264 39.136696 0.239525 0.225102

21 Powell 24 0

Ave. 1.8348𝐸 − 03 3.7434𝐸 − 03 1.0840𝐸08 2.6031𝐸 − 12 1.8207𝐸 − 24

STD 1.6248𝐸 − 03 6.1711𝐸 − 03 4.1180𝐸08 6.9959𝐸 − 12 5.6824𝐸 − 24

Best 9.6693𝐸 − 05 6.8033𝐸 − 04 5.2392𝐸01 1.2287𝐸 − 19 1.2265𝐸 − 54

Success 2/20 12/20 0/20 20/20 20/20
Time 122.796991 92.876086 74.794730 1.527170 0.853751

22 ST 9 0

Ave. 0.0000 0.0000 0.0000 0.0000 0.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000
Best 0.0000 0.0000 0.0000 0.0000 0.0000

Success 20/20 20/20 20/20 20/20 20/20
Time 0.435911 0.426320 0.437944 0.431122 0.436741

23 ST 17 0

Ave. 0.0000 0.0000 0.0000 0.0000 0.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000
Best 0.0000 0.0000 0.0000 0.0000 0.0000

Success 20/20 20/20 20/20 20/20 20/20
Time 1.066161 1.052169 1.159830 1.089657 1.147114

Dim. denotes dimension. Opt. denotes optimum value.

Table 5: Comparison of average performance of RIO, HRIO, CSO, MCSO, and ICSO.

SN Function RIO HRIO CSO MCSO ICSO Optimum
1 Bohachevsky1 3.4405𝐸 − 05 3.2877𝐸 − 04 2.9893𝐸02 3.5153𝐸 − 09 0.0000 0
2 Bohachevsky2 4.2829𝐸 − 05 4.6703𝐸 − 04 9.0941𝐸02 8.4459𝐸 − 12 0.0000 0
3 Bohachevsky3 5.3479𝐸 − 05 4.7575𝐸 − 04 7.4284𝐸02 2.1388𝐸 − 14 0.0000 0
4 3 Hump camel back 1.4962𝐸 − 02 4.3021𝐸 − 04 5.003𝐸09 7.098𝐸 − 11 5.9853E − 31 0
5 6 Hump camel back −4.3522𝐸 − 01 −4.7652𝐸 − 01 1.5763𝐸05 −1.0263𝐸 − 08 −2.9798E − 25 −1.03163

6 Easom −1 −1 −4.3165𝐸 − 01 −1 −1 −1

7 Matyax 4.9470𝐸 − 05 3.2297𝐸 − 04 7.5712 2.6876𝐸 − 13 4.0732E − 35 0
8 Schaffer1 −1.9069 −1.6211 −2.9174𝐸 − 01 −1 −1 −1

9 Schaffer2 2.0179𝐸 − 03 1.6566𝐸 − 03 7.1618 3.3168𝐸 − 04 2.2149E − 09 0
10 Sphere 2.2168𝐸 − 05 1.6676𝐸 − 04 1.8123𝐸02 1.5201𝐸 − 12 3.3448E − 34 0
11 Rastrigin 3.8135𝐸 − 05 3.2150𝐸 − 04 3.6022𝐸03 9.1994𝐸 − 11 0.0000 0
12 Rosenbrock 2.5281𝐸06 3.3571𝐸06 9.5067𝐸11 2.9000E01 2.9000E01 0
13 Ackley 2.0001𝐸01 2.0005𝐸01 1.9222𝐸01 5.1593𝐸 − 06 1.0651E − 15 0
14 Quadric 2.4498𝐸 − 05 2.2711𝐸 − 04 3.4991𝐸 − 04 4.4754𝐸 − 13 7.2183E − 28 0
15 Schwefel2.22 2.3131𝐸02 2.4395𝐸02 2.9013𝐸54 6.3587𝐸 − 06 6.0407E − 16 0
16 Griewangk 7.9510𝐸 − 01 7.7746𝐸 − 01 2.6148𝐸01 3.3151𝐸 − 11 0.0000 0
17 Sumsquare 1.9818𝐸03 4.6771𝐸03 9.0499𝐸05 4.2446𝐸 − 11 1.5600E − 24 0
18 Sinusoidal −4.2587𝐸 − 01 −3.7898𝐸 − 01 −2.449 −3.1030 −3.1030 −3.5

19 Zakharov 1.0167𝐸04 1.0216𝐸04 6.3663𝐸18 2.3878𝐸 − 09 4.1579E − 26 0
20 Step 0.0000 0.0000 2.0004𝐸04 0.0000 0.0000 0
21 Powell 1.8348𝐸 − 03 3.7434𝐸 − 03 1.0840𝐸08 2.6031𝐸 − 12 1.8207E − 24 0
22 ST9 0.0000 0.0000 0.0000 0.0000 0.0000 0
23 ST17 0.0000 0.0000 0.0000 0.0000 0.0000 0
Number of good optimums 4 4 2 7 23
ST9 denotes Storn’s Tchebychev 9. ST17 denotes Storn’s Tchebychev 17.
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Table 6: Comparison of best performance of RIO, HRIO, CSO, MCSO, and ICSO.

SN Function RIO HRIO CSO MCSO ICSO Optimum
1 Bohachevsky1 1.3520𝐸 − 07 5.2651𝐸 − 06 2.0651𝐸 − 05 0.0000 0.0000 0
2 Bohachevsky2 2.2910𝐸 − 06 9.374𝐸 − 06 1.3775𝐸 − 05 0.0000 0.0000 0
3 Bohachevsky3 3.1200𝐸 − 06 4.6981𝐸 − 05 2.3093𝐸 − 07 0.0000 0.0000 0
4 3 hump camel back 1.1739𝐸 − 06 2.2449𝐸 − 05 1.7642𝐸 − 05 3.1395𝐸 − 19 2.2320E − 53 0
5 6 hump camel back −1.0215 −1.0034 −9.4052𝐸 − 01 −1.9879𝐸 − 07 5.9589E − 24 −1.03163

6 Easom −1 −1 −1 −1 −1 −1

7 Matyax 6.2897𝐸 − 06 1.2684𝐸 − 05 8.8777𝐸 − 06 6.6695𝐸 − 21 1.1292E − 55 0
8 Schaffer1 −2.7458 −2.7164 −2.7438 −1 −1 −1

9 Schaffer2 6.2423𝐸 − 05 4.1422𝐸 − 04 2.8354𝐸 − 01 1.5810𝐸 − 05 1.9383E − 14 0
10 Sphere 5.7627𝐸 − 09 5.5635𝐸 − 08 4.9195𝐸 − 07 2.9978𝐸 − 24 2.8205E − 54 0
12 Rosenbrock 1.6773𝐸04 3.7562𝐸04 4.4068𝐸01 2.9000E01 2.9000E01 0
14 Quadric 1.1360𝐸 − 08 5.8230𝐸 − 07 4.1551𝐸 − 08 5.6309𝐸 − 23 5.910E − 52 0
15 Schwefel2.22 6.7400𝐸01 1.7354𝐸01 3.6854𝐸01 5.9410𝐸 − 08 5.1670E − 24 0
16 Griewangk 2.9324𝐸 − 01 3.2031𝐸 − 01 6.3912𝐸 − 05 0.0000 0.0000 0
17 Sumsquare 1.6463𝐸01 2.0516𝐸02 1.8730𝐸02 1.49990𝐸 − 16 1.3765E − 47 0
18 Sinusoidal −1.1922 −8.3111𝐸 − 01 −3.3087 −3.1032 −3.1030 −3.5

19 Zakharov 2.6634𝐸03 2.3151𝐸03 1.3578𝐸09 2.0954𝐸 − 15 6.3965E − 57 0
20 Step 0.0000 0.0000 0.0000 0.0000 0.0000 0
21 Powell 9.6693𝐸 − 05 6.8033𝐸 − 04 5.2392𝐸01 1.2287𝐸 − 19 1.2265E − 54 0
22 ST9 0.0000 0.0000 0.0000 0.0000 0.0000 0
23 ST17 0.0000 0.0000 0.0000 0.0000 0.0000 0
Number of good optimums 4 4 5 11 22
ST9 denotes Storn’s Tchebychev 9. ST17 denotes Storn’s Tchebychev 17.

Table 7: Comparison of standard deviation of mean global optimum values of RIO, HRIO, CSO, MCSO, and ICSO.

SN Function RIO HRIO CSO MCSO ICSO
1 Bohachevsky1 2.5963𝐸 − 05 3.0334𝐸 − 04 5.0332𝐸02 1.4392𝐸 − 08 0.0000
2 Bohachevsky2 3.0070𝐸 − 05 3.4047𝐸 − 04 1.7794𝐸03 2.9240𝐸 − 11 0.0000
3 Bohachevsky3 2.9141𝐸 − 05 2.3273𝐸 − 04 1.6739𝐸03 4.8670𝐸 − 14 0.0000
4 3 hump camel back 6.6769𝐸 − 02 2.8371𝐸 − 04 1.7137𝐸10 3.0201𝐸 − 10 2.5457E − 30
5 6 hump camel back 3.3322𝐸 − 01 3.1284𝐸 − 01 7.0503𝐸05 4.4391𝐸 − 08 1.3325E − 24
6 Easom 3.7518𝐸 − 02 2.1031𝐸 − 02 3.4470𝐸 − 01 1.4897𝐸 − 08 4.4116E − 17
7 Matyax 3.0244𝐸 − 05 2.6018𝐸 − 04 1.1247𝐸01 8.9347𝐸 − 13 1.8125E − 34
8 Schaffer1 7.0381𝐸 − 01 5.9214𝐸 − 01 7.5142𝐸 − 01 5.9575𝐸 − 07 4.1325E − 15
9 Schaffer12 2.6407𝐸 − 03 1.4451𝐸 − 03 5.3095 3.0328𝐸 − 04 2.9483E − 09
10 Sphere 2.4528𝐸 − 05 2.4018𝐸 − 04 8.1048𝐸02 6.7224𝐸 − 12 1.3324E − 33
11 Rastrigin 3.4436𝐸 − 05 3.0003𝐸 − 04 5.5728𝐸03 3.9456𝐸 − 10 0.0000
12 Rosenbrock 4.0528𝐸06 7.1150𝐸06 2.2713𝐸12 0.0000 0.0000
13 Ackley 3.0455𝐸 − 03 1.5671𝐸 − 02 5.8258 1.9149𝐸 − 05 7.9441E − 16
14 Quadric 2.7957𝐸 − 05 2.3635𝐸 − 04 3.3725𝐸 − 04 1.9751𝐸 − 12 3.2218E − 27
15 Schwefel2.22 1.3193𝐸02 1.2341𝐸02 1.2971𝐸55 1.1936𝐸 − 05 1.2203E − 15
16 Griewangk 3.7583𝐸 − 01 2.5454𝐸 − 01 3.6626𝐸01 1.4672𝐸 − 10 0.0000
17 Sumsquare 2.8370𝐸03 6.7104𝐸03 1.0253𝐸06 1.2930𝐸 − 10 6.9785E − 24
18 Sinusoidal 2.6632𝐸 − 01 1.9791𝐸 − 01 1.0203 5.0473𝐸 − 05 1.9436E − 14
19 Zakharov 3.8643𝐸03 5.1012𝐸03 2.2732𝐸19 8.8529𝐸 − 09 1.8549E − 25
20 Step 0.0000 0.0000 8.4815𝐸04 0.0000 0.0000
21 Powell 1.6248𝐸 − 03 6.1711𝐸 − 03 4.1180𝐸08 6.9959𝐸 − 12 5.6824E − 24
22 ST9 0.0000 0.0000 0.0000 0.0000 0.0000
23 ST17 0.0000 0.0000 0.0000 0.0000 0.0000
Number of good STD 2 2 2 4 23
ST9 denotes Storn’s Tchebychev 9. ST17 denotes Storn’s Tchebychev 17.
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Table 8: Comparison of success performance of RIO, HRIO, CSO, MCSO, and ICSO.

SN Function RIO HRIO CSO MCSO ICSO
1 Bohachevsky1 1 1 2.5 1 1
2 Bohachevsky2 1 1 0.2 1 1
3 Bohachevsky3 1 1 0.15 1 1
4 3 hump camel back 0.95 1 0.6 1 1
5 6 hump camel back 1 1 0.95 1 1
6 Easom 1 1 1 1 1
7 Matyax 1 1 0.55 1 1
8 Schaffer1 1 1 1 1 1
9 Schaffer2 0.1 0.65 0 1 1
10 Sphere 1 1 0.95 1 1
11 Rastrigin 1 1 0.25 1 1
12 Rosenbrock 0 0 0 0 0
13 Ackley 0 0 0 1 1
14 Quadric 1 1 1 1 1
15 Schwefel2.22 0 0 0 1 1
16 Griewangk 0 0 0.25 1 1
17 Sumsquare 0 0 0 1 1
18 Sinusoidal 1 1 1 1 1
19 Zakharov 0 0 0 1 1
20 Step 1 1 0.8 1 1
21 Powell 0.1 0.6 0 1 1
22 ST9 1 1 1 1 1
23 ST17 1 1 1 1 1
Number of 100% success rates 14 15 6 22 22
ST9 denotes Storn’s Tchebychev 9. ST17 denotes Storn’s Tchebychev 17.

Table 9: Comparison of exec1ution time of RIO, HRIO, CSO, MCSO, and ICSO.

SN Function RIO HRIO CSO MCSO ICSO
1 Bohachevsky1 1.137525 0.886356 23.913237 0.075212 0.097187
2 Bohachevsky2 0.998178 0.946887 26.492095 0.072021 0.074106
3 Bohachevsky3 1.089920 0.885252 25.028054 0.080908 0.068189
4 3 hump camel back 4.231533 0.794983 18.281683 0.104132 0.078845
5 6 hump camel back 0.406355 0.330198 5.723039 0.0945856 0.086637
6 Easom 0.124022 0.107303 0.106738 0.077179 0.092393
7 Matyax 0.973322 0.711734 13.559576 0.88536 0.076693
8 Schaffer1 0.109048 0.086433 0.119076 0.072400 0.081599
9 Schaffer2 62.567654 31.415836 29.194283 0.084127 0.082320
10 Sphere 0.617544 0.557871 25.378161 0.82512 0.199373
11 Rastrigin 0.956329 0.826770 71.811170 0.175563 0.369987
12 Rosenbrock 126.618734 127.469638 81.361663 76.084929 78.572185
13 Ackley 122.216187 117.635854 82.227210 0.235012 0.192339
14 Quadric 0.718785 0.512242 31.075809 0.247456 0.227244
15 Schwefel2.22 128.445013 127.084387 79.924516 0.217104 0.219296
16 Griewangk 126.872461 126.210153 70.852376 0.211351 0.210934
17 Sumsquare 122.748646 125.154349 78.809270 0.273780 0.236129
18 Sinusoidal 0.204559 0.240200 0.234205 0.200361 0.217635
19 Zakharov 115.192226 114.691827 79.926232 0.205280 0.259202
20 Step 0.686403 0.633264 39.136696 0.239525 0.225102
21 Powell 122.796991 92.876086 74.794730 1.527170 0.853751
22 ST9 0.435911 0.426320 0.437944 0.431122 0.436741
23 ST17 1.066161 1.052169 1.159830 1.089657 1.147114
Number of minimum execution times — 2 — 9 12
ST9 denotes Storn’s Tchebychev 9. ST17 denotes Storn’s Tchebychev 17.
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Table 10: Jonckheere-Terpstra test statisticsa.

Fitness
Number of levels in algorithm 5
𝑁 114
Observed J-T statistic 1952.000
Mean J-T statistic 2599.500
STD of J-T statistic 199.355
Standard data of J-T statistic −3.245

Asymp. Sig. (2-tailed) 0.001
aGrouping variable: algorithm.

4. Conclusion

Cockroach swarm optimization algorithm is extended in
this paper with a new component called hunger compo-
nent. Hunger component enhances the algorithm diversity
and searching capability. An improved cockroach swarm
optimization algorithm is proposed. The efficiency of the
proposed algorithm is shown through empirical studies
where its performance was compared with that of existing
algorithms, that is, CSO, MSCO, RIO, and HRIO. Results
show its outstanding performance compared to the existing
algorithms. Application of the algorithm to real life problems
can be considered in further studies.
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Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm.
In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position
distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based
on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony
position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained
optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed
to verify the correctness and effectiveness of the proposed algorithm.

1. Introduction

Optimization is a kind of application technology using
mathematical method to study how to search for the optimal
solution for the problem in numerous solutions, as an impor-
tant branch of science, which has been a widespread concern,
and the rapid popularization and application in industrial
production, economic and other fields. In the 1940s, with
the increasingly widespread application of high-speed digital
computers, optimization theory and algorithms developed
rapidly and formed a new discipline. In recent years, swarm
intelligence optimization theory has gradually developed
into a new research direction of optimization techniques,
typical algorithms with genetic algorithm [1], particle swarm
optimization [2], ant colony optimization algorithm [3],
artificial bee colony algorithm [4], firefly algorithm [5], and
bat algorithm [6].

Inspired by the real ant colony foraging behavior in
nature, early in the 1990s, the Italian scholars Dorigo et
al. proposed ant colony optimization algorithm [3]. The
algorithm adopts the distributed control, self-organizing, and
positive feedback, and the optimization process does not
depend on rigorous mathematical properties of optimization

problem in itself and has the potential parallelism. Research
on ant colony algorithm has shown that superiority of
the algorithm for solving complex optimization problems.
Because the ant colony optimization algorithm is essentially
a kind of discrete optimization ideas, so the study of the
optimization algorithm is mainly aimed at the problems of
discrete domain optimization. But in real life, there are many
optimization problems that are usually expressed as opti-
mization problems of continuous domains. Therefore, how
essentially discrete ant colony optimization algorithm would
be applied to solve the optimization problems of continuous
domains has become a new direction for research on ant
colony optimization algorithm. In recent years, the studies of
ant colony optimization algorithm for continuous domains
have obtained some achievements and many scholars have
proposed a variety of ant colony optimization algorithms
for continuous domain [7–17]. Bilchev and Parmee first
proposed a continuous ant colony optimization algorithm
CACO [7], the algorithm for solving problems using genetic
algorithms for global search of the solution space firstly and
then using the ant colony optimization algorithm for local
optimization to all the results. Dréo and Siarry proposed con-
tinuous interactive ant colony optimization algorithm CIAC
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Figure 1: Process of ant colony foraging.

[8], the algorithm modify the way of pheromone update and
rules of path-searching, and use two ways of pheromone
communication to guide ant optimization. Monmarché et
al. proposed API algorithm [9]; All the ants set out from
the same starting point, and each ant uses a complementary
strategy that carried out optimization independently. Socha
and Dorigo, who proposed continuous domain ant colony
optimization algorithm ACOR [10], used a Gaussian kernel
probability density function express as distribution model of
pheromone and gave ACOR metaheuristic framework.

This paper proposes position distribution model of ant
colony foraging and designs ant colony optimization algo-
rithm for continuous domains based on the model to solve
the standard test functions to verify the correctness and
effectiveness of the algorithm. This paper is organized as
follows. The relationship between the position distribution
and food source in the process of ant colony foraging is
analyzed in Section 2, and the position distribution model
of ant colony foraging is given. To solve the unconstrained
optimization problems and constrained optimization prob-
lems for ant colony optimization algorithm of continuous
domains is designed in Section 3.The algorithmperformance
test trials and comparative analysis are given in Section 4.The
conclusion is given in Section 5.

2. Position Distribution Model of
Ant Colony Foraging

In the process of real-world ant colony foraging, people find
that ant colony have a built-in optimization capability: they
always can find the shortest path from nest to food. By
studying this phenomenon, people propose the ant colony
optimization algorithm.

We can see the process of ant colony foraging from
another perspective. As shown in Figure 1, an individual ant

has no guidance of pheromone in the initial of foraging and
searches for food sources blindly in the whole space; at this
point, ant colony is distributed uniformly in the continuous
space. As the process for feeding food, ants aggregated around
the source will be increased, and the density of pheromone
will increase in the vicinity, thus raising more ants to the
food source. Also, the higher quality of the food source will
attract a greater number of ants. Thus, in the process of ant
colony foraging, the position distribution of ant colony and
food source and quality is the same.

We can give such a model through the above process
of analysis and expansion: assuming the food source is
everywhere throughout in the continuous space, the quality
of food source is different. At the initial moment, ants of
ant colony distribute uniformly in the continuous space
and release pheromones according to food sources of their
position. The higher the quality of the food source, the more
the pheromone ants released. The pheromone is distributed
throughout the continuous space in a certain dispersed
model, and ants perceive spatial concentration of pheromone
intensity, moving to the position of a higher concentration
of pheromone in a certain way and achieve the exploration
of unknown regions during the move. The movement of the
single antwill cause the change of thewhole position distribu-
tion of ant colony, so that all the ants keep aggregating to the
higher quality of food source and search the highest quality
of food source in the continuous space eventually.Thismodel
is called position distribution model of ant colony foraging.

3. Ant Colony Algorithm of
Continuous Domains Design

Below, we discuss the design process of ant colony
optimization algorithm of continuous domain for solving
unconstrained optimization problems and constrained
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optimization problems based on position distribution model
of ant colony foraging.

3.1. Design of Algorithm for Solving Unconstrained
Optimization Problem

3.1.1. Expression of Solution. Assuming the whole ant colony
consists of 𝑚 groups of substructure, each group contains 𝑛
of ants. As shown in the following equation:
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, (1)

the position ant
𝑖𝑗
corresponding to the value𝑥

𝑗
of the variable

for j-ant in any subcolony 𝑖, the subcolony 𝑖 of all the ants in
the sequence of {ant

𝑖1
, ant
𝑖2
, . . . , ant

𝑖𝑛
} represents a solution

of the optimization problem.

3.1.2. Distribution Model of Pheromones. In the position
distribution model of ant colony foraging, each ant releases
pheromone according to the quality of a food source of
their position; pheromones are dispersed in the entire space,
with increasing distance of the source and the concentration
decreasing.Therefore, we need to choose a probability density
function as distributionmodel of ant pheromone in optimiza-
tion algorithm of continuous domains. Gaussian function is
a common probability density function; we assume ants of
the ant colony release pheromone externally on the function.
At this point, 𝑗 ant in any subcolony ant 𝑖 corresponding to
pheromone distribution model 𝜏

𝑖𝑗
(𝑥) can be expressed as

𝜏
𝑖𝑗
(𝑥) =

1

√2𝜋𝜎
𝑗

𝑒
−((𝑥−𝜇𝑖𝑗 )

2
/2𝜎
2

𝑗
)
,

𝜎
𝑗
=

(𝑢
𝑗
− 𝑙
𝑗
)

𝜓 ⋅ (1 + ln (𝑛))
,

(2)

where 𝜇
𝑖𝑗
is the position ant

𝑖𝑗
of ant 𝑗 in the subcolony of

ants 𝑖, namely, the distribution center, 𝜎
𝑗
(𝜎
𝑗
> 0) means

the width of the distribution function, 𝑢
𝑗
is the maximum

allowable value of the variable𝑥
𝑗
, 𝑙
𝑗
is theminimumallowable

value of the variable 𝑥
𝑗
, 𝑛 is the dimension of solution for the

optimization problem, 𝜓 (𝜓 > 0) is a parameter, and 𝜎
𝑗
is

used to adjust size.

3.1.3. Updating Position of Ant Colony. Before updating the
position of ant colony, we need to choose a group as a parent
fromm subcolony. First, we use formula (3) to calculate each
group of subcolony corresponding to the assessed value of
solution. Consider the following:

eval
𝑖
=

1

(1 + 𝑒
𝑓(ant𝑖1 ,ant𝑖2 ,...,ant𝑖𝑛)/𝑇)

, (3)

where 𝑓(ant
𝑖1
, ant
𝑖2
, . . . , ant

𝑖n) is the assessment value of the
subcolony ant 𝑖; 𝑇 (𝑇 > 0) is the adjustment coefficient used
to adjust the pressure of selection.

After assessment value for each group of subcolony is
obtained, we calculate the selected probability for each group
of subcolony according to

𝑝
𝑖
=

eval
𝑖

∑
𝑚

𝑗=1
eval
𝑗

. (4)

Finally, we select parent colony 𝑐 according to formula (5)

𝑐 =

{

{

{

arg max
𝑖=1,2,...,𝑚

(eval
𝑖
) , 𝑞 ≤ 𝑞

0
,

𝐶 𝑞 > 𝑞
0
,

(5)

where 𝑞
0
(0 ≤ 𝑞

0
≤ 1) is a given parameter, 𝑞 is a random

variable which distributed in [0, 1] uniformly. 𝐶 is a random
variable which is generated according to formula (4).

After getting the parent ant colony c, the ant pheromone
distribution model function 𝜏

𝑐𝑗
(𝑥) in the ant colony corre-

sponding to random number generator for sampling, the 𝑘
groups of children colony are generated. Then, according to
the size of assessment value for each group of subcolony, we
select the large assessment value of 𝑚 group from (𝑚 + 𝑘)

group of subcolony in order to achieve position of ant colony
update.

3.2. Algorithm of Solving Constrained Optimization Problem.
First, we define a solution 𝑥 of measure constrained opti-
mization problem violatemeasure for the degree of constraint
condition:

viol (𝑥) =
𝑟

∑
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(𝑥) . (6)
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(7)

where ℎ
𝑗Min is a small positive number. viol(𝑥) is equal to zero

represent 𝑥 is feasible solution. viol(𝑥) which is greater than
0 represent 𝑥 is infeasible solution.

When using this algorithm for solving constrained opti-
mization problems, we allow infeasible solutions with proba-
bility 𝑝Max (0 ≤ 𝑝Max ≤ 1) existing. Algorithm calculation
process is consistent with Section 3.1, and we only adjust the
update process of the position of ant colony to the following
process.

(1) Calculate the number 𝑒Num = (𝑚+𝑘)×𝑝Max of the
maximum expected infeasible solutions in the group
(𝑚 + 𝑘) of subcolony.

(2) Calculate the number 𝑟Num of real infeasible solu-
tions based on the value viol(𝑥) in the group (𝑚 + 𝑘)
of ant colony.

(3) If 𝑟Num is less than 𝑒Num, then reserve the max-
imum of the assessment for group 𝑚 of ant colony
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Table 1: Parameter values.
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Figure 2: Curves of minimum function.

directly. If 𝑟Num is greater than 𝑒Num, the infeasible
solutions are ranked by the value of viol(𝑥), the
greater number (𝑟Num − 𝑒Num) of assessment value
for the infeasible solutions from the value viol(𝑥) is
set to 0, and then reserve 𝑚 group of the maximum
fitness for (𝑚 + 𝑘) group of ant colony according to
the assessment value.

4. Testing and Analysis of
Algorithm Performance

4.1. Solution of Unconstrained Optimization Problems. In
the process of solving unconstrained optimization problems
algorithm performance testing, we refer to [10] method; the
entire test is divided into three groups; the use of this algo-
rithm with a kind of probabilistic learning methods, a kind
of continuous domains ant colony algorithm, and a kind of
metaheuristic methods is compared. The operating parame-
ters of the algorithmdesign in this paper are shown in Table 1.

4.1.1. Compare with a Kind of Learning of Probability Method.
In this experiment, we use the algorithm in this paper to
compare with [10, 21–24] which used a kind of probabilistic
learning method for performance. In order to ensure the
fairness of the results of comparison, the entire test method
according to [10, 21] is given.The baseline function of this set
of tests is given in Table 2.The stop condition of the algorithm
is satisfied in





𝑓 − 𝑓

∗



< 𝜀min, (8)

where 𝑓 is the optimal solution for algorithm, 𝑓∗ is the
known optimal solution, and 𝜀min needs to satisfy the accu-
racy, taken as 10−10.

The comparative test results are shown in Table 3, where
the results of other methods for solving are provided by
[10, 21]. In the data of Table 3, the “1.0” represents the best
algorithm for solving the extreme value of the basis functions.
The actual median number of function evaluations is given in
parentheses.Other algorithms corresponding evaluation data
are the ratio of the evaluation number of the function and the
best algorithms function when the stop condition is satisfied.
“∞” represents the use of the algorithm that can not seek to
satisfy the stop condition. The results marked “∗” represent
the use of the algorithm to get the corresponding extreme
value of the basis functions, not to satisfy stop condition
results are found every time.

By the test results, it can be found that the algorithm has
better searching capability and faster speed of convergence.
In the process of solving seven of the basis functions, four
functions of solution have results significantly better than
other probability learning algorithms.

4.1.2. Compare with a Kind of Ant Colony Algorithm of Con-
tinuousDomains. In this experiment, we use the algorithm in
this paper and a kind of ant colony of continuous domains in
[10] for performance comparison.Themethod of test is given
according to [10]. The basis functions of this test are given in
Table 4. The stop condition of algorithm is satisfied in





𝑓 − 𝑓

∗



< 𝜀
1
⋅ 𝑓 + 𝜀

2
, (9)

where 𝜀
1
is relative error, the value is 10−4, 𝜀

2
is the absolute

error, and the value is 10−4.
The results of comparative tests are shown in Table 5,

where the percentage in brackets represents the minimum
value of the independent use of the method for solving the
corresponding basis functions 100 times, and ultimately the
number of the stop conditions satisfied as a percentage of
the total number of the algorithms is obtained. The symbol
“—”represents that the algorithm is not used for solving the
corresponding minimum of basis function; there is no data
available for reference.

The results of this test prove that algorithm of this paper
has better searching capability and faster speed of conver-
gence. But we also find that the stability of the algorithm
in this paper is relatively worse. In the process of solving
the minimum of six basis functions, there are five solving
functions which cannot guarantee that each stop solution
condition satisfied the required accuracy.

4.1.3. Compare with a Kind of Metaheuristic Method. In this
experiment, we use the algorithm in this paper and a kind of
metaheuristic method in [10] for performance comparison.
The test is carried out according to methods given in [10].
The basis functions of this set of tests are shown in Table 6.
In this experiment, except for the three basis functions given
in Table 6, the function also uses B

2
function, GP function,

and R
2
and R

5
functions given in Table 4.

The results of comparative tests are shown in Table 7. We
can find that algorithm of this paper has better searching
capability and faster speed of convergence. But it also expose
the instability of the algorithm.
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Table 2: Basis functions of test 1 [10].

Function Formula (𝑛 = 10) Range Optimum 𝑓(𝑥)

Plane (PL) 𝑓PL( ⃗𝑥) = 𝑥1 ⃗𝑥 ∈ [0.5, 1.5]
𝑛 1.5

Diagonal Plane (DP) 𝑓DP( ⃗𝑥) =
1
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Table 3: Results of test 1.

Function This paper (1 + 1) ES CSA-ES CMA-ES IDEA
PL 1.0 (15) 52.5 84 75.5 ∞

DP 1.0 (58) 14.4 21.7 18.8 ∞

SP 1.0 (199) 6.9 11 8.9 34.4
EL 3.2 66 110 1.0 (4450) 1.6
CG 60.1 610 80 1.0 (3840) 4.6
TB 1.0 (550) 214.7 303.4 7.9 13.5
Rn 4.7∗ 51∗ 180 1.0 (7190) 210∗

Table 4: Basis functions of test 2 [10].

Function Formula Range Optimum
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Table 5: Results of test 2.

Function This paper ACOR CACO API CIAC
𝑅
2

1.0 [95%] (62) 13.2 109.8 158.7 185.2
SM 1.0 (69) 11.3 316.9 147.1 724.4
GP 1.0 [97%] (54) 7.1 99.6 — 433.8 [56%]
MG 1.0 [99%] (53) 6.5 32.5 — 221.3 [20%]
𝐵
2

1.0 [95%] (80) 6.8 — — 149.6
𝑅
5

1.4 [78%] 1.0 [97%] (2487) — — 16 [90%]
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Figure 3: Change of the distribution of ant colony.

Table 6: Basis functions of test 3 [10].

Function Formula Range Optimum 𝑓(𝑥)

Easom 𝑓ES( ⃗𝑥) = − cos(𝑥1) cos(𝑥2)𝑒
−((𝑥1−𝜋)
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+(𝑥2−𝜋)

2
) ⃗𝑥 ∈ [−100, 100]

𝑛

𝑛 = 2

−1

DeJong 𝑓DJ( ⃗𝑥) = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3

⃗𝑥 ∈ [−5.12, 5.12]
𝑛

𝑛 = 3

0

Zakharov 𝑓Zn( ⃗𝑥) = (

𝑛

∑

𝑖=1

𝑥
2

𝑖
) + (

𝑛

∑

𝑖=1

𝑖𝑥
𝑖

2

)

2

+ (

𝑛

∑

𝑖=1

𝑖𝑥
𝑖

2

)

4

⃗𝑥 ∈ [−5, 10]
𝑛
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0

When solving the minimum of the basis function Easom,
stop condition to satisfy the accuracy requirements of the
solution is found in the process of the algorithm indepen-
dently running 100 times in only 43.

The algorithm for solving the convergence curve of the
minimum of B

2
function is shown in Figure 2. After the 158th

iteration in the algorithm of this paper, the values of function
have been less than 10−10; then the optimal solution has been
found in the algorithm.

In the process of solving the function B
2
in Figure 3,

each group of ant colony corresponding to the solution
with the change of the distribution of algorithm iteration



The Scientific World Journal 7

Table 7: Results of test 3.

Function This paper CGA ECTS ESA DE
𝐵
2

1.0 [95%] (80) 5.4 — — —
Easom 1.0 (75) [43%] 19.6 — — —
GP 1.0 [97%] (54) 7.7 4.3 14.5 —
𝑅
2

1.0 [95%] (62) 15.5 7.7 13.2 10.1
𝑍
2

1.0 [98%] (48) 13 4.1 329.1 —
DJ 1.0 (56) 13.3 — — 7
𝑅
5

1.7 [78%] 1.9 1.0 (2142) 2.5 —
𝑍
5

1.0 (81) 17 27.8 861.6 —

Table 8: Parameter value.

Parameter 𝑚 𝑘 𝑞
0

𝜓 pMax
Value 100 50 0.1 4 0.2

is shown. Where the initial distribution of ant colony is
shown in Figure 3(a), all initial ant colony corresponding
positions are distributed in [−100, 100]. With the operation
of the algorithm, each group of ant colony rapidly approaches
the optimal solution; in the 50th iteration, each ant of
all the ant colony has been distributed in [−1, 1]. In the
158th step, the results of the algorithm for solving have
satisfied stop conditions; then each ant colony is distributed
in [−10−5, 10−5], and there are two groups of ant colony of
overlapping position.

4.2. Solution of Constrained Optimization Problems. In this
set of test experiments, we use this algorithm for solving the
basis function G01∼G12 of constrained conditions, and [18–
20] are compared. In order to guarantee the fairness of the test
results, the method of test is consistent with the methods of
[18–20] adopted.Using the algorithm for solving various basis
functions 50 times independently, best results are compared.
In the process of running each algorithm, if the optimal value
function obtained by consecutive 150 times does not change,
the running algorithm exits. Otherwise, the algorithm exited
after iteration 30,000 times.

During solving the basis test function of constrained
conditions, the parameter values of the algorithm in this
paper are shown in Table 8.

The results of comparative tests are shown in Table 9.
We can see from the test results that effect of the algo-

rithms in this paper for solving functions G01 and G02 was
poor and solving the extreme values of function G03∼G06,
G08, G09, G11, and G12 gets minimum. It is evident that the
algorithm in this paper for solving constrained optimization
problems is effective. The algorithm in this paper for solving
the maximum convergence curve of function G08 is shown
in Figure 4.

In the process of solving, the feasible solution is found
in the 17th iteration; after the 19th iteration, each group of
subcolony corresponding solution is a feasible solution; the
maximum value 0.095825 is founded by algorithm in the
157th iteration; all 10 groups of ant colony have found the
maximum value in the 210th iteration.
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Figure 4: Maximum value curve of function.

The process of the algorithm in this paper for solving
function G08 shown in Figure 5. Distribution changes of
each group of ant colony corresponding to the solution
with algorithm iteration are shown. The initial distribution
of ant colony is shown in Figure 5(a); position of all ant
colony does not satisfy all constraint conditions. There have
been 7 groups of ant colony corresponding to the position
that satisfied the constraint condition in the 25th iteration
(Figure 5(b)); all 10 groups of ant colony corresponding to
the position are distributed in 𝑥

1
∈ [1.227968, 1.227973],

𝑥
2
∈ [4.245396, 4.245377], and there is a group of ant colony

that had found the optimal solution in the 157th iteration
(Figure 5(d)).

5. Conclusion

In this paper, in the process of position distribution rela-
tionship between food sources of ant colony foraging for
analysis, a new position distribution model by ant foraging
is proposed. Any point in the solution space could be
seen as a food source in the model, using multiple groups
of subcolony for optimization; each group of subcolony
represented a solution of the problem. In every iteration step,
a group of ant colony was chosen from all subcolonies as the
parent ant colony firstly and then sampled from pheromone
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Table 9: Results of test functions for solving constrained optimization problems [18–20].

Function Known optimal This paper ESSR KM DP PEPS S
G01 −15.000 −13.934798 −15.000 −14.7864 −15.000 −15.000
G02 −0.803619 −0.781996 −0.803515 −0.79953 −0.803587 −0.803540
G03 −1.000 −1.000 −1.000 −0.9997 −0.583 −1.000
G04 −30665.539 −30665.539 −30665.539 −30664.5 −30365.488 −30665.538
G05 5126.498 5126.498 5126.497 — — 5126.508
G06 −6961.814 −6961.814 −6961.814 −6952.1 −6911.247 −6961.814
G07 24.306 24.329 24.307 24.620 24.309 24.308
G08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
G09 680.630 680.630 680.630 680.91 680.632 680.631
G10 7049.331 7078.146 7054.316 7147.9 — 7081.068
G11 0.750 0.750 0.750 0.750 0.750 0.750
G12 −1.000000 −1.000000 −1.000000 −0.999999857 −1.000000 −1.000000
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density function of the group, generated children colony, and
finally updated position of ant colony, so that each group of
subcolony continued moving towards the solution space of
the higher fitness value, converging to the optimal solution
eventually. By simulating the above process, we designed ant
colony optimization algorithm of continuous domains; a set
of test functions for unconstrained optimization problems
and a set of test functions optimization comparison test
were compared and gave the solving process of the B

2
test

function and test function G08. Test results show that, in
solving unconstrained optimization problems, the proposed
algorithm has better searching capability and faster speed of
convergence, but the stability of the algorithm is poor; when
solving constrained optimization problems, the proposed
algorithm has the basic optimization capability consistent
with other algorithms.
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Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation,
and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for
crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several
subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude
oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess
the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series
prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various
statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of
the crude oil prices series.

1. Introduction

Crude oil prices do play significant role in the global economy
and constitute an important factor affecting government’s
plans and commercial sectors. Forecasting crude oil price is
among the most important issues facing energy economists.
Therefore, proactive knowledge of its future fluctuations can
lead to better decisions in several managerial levels.

The literature dealing with forecasting crude oil is sub-
stantial. The application of the classical time series models
such as autoregressive moving average (ARMA) (Yu et al. [1],
Mohammadi and Su [2], and Ahmad [3]) and econometric
model such as generalized autoregressive conditional het-
eroscedasticity (GARCH) typemodels (Agnolucci [4],Wei et
al. [5], Liu andWan [6]) for crude oil forecasting has received
much attention in the last decade. But because the crude
oil price has the volatility, nonlinearity, and irregularity, the
classical and econometric model can lead to the decrease of
the accuracy.

Due to the limitations of the classical and econometric
models, soft-computing models, such as neural fuzzy (Ghaf-
fari and Zare [7]), artificial neural networks (Kaboudan [8],
Mirmirani and Li [9], Shambora and Rossiter [10], and Yu et
al. [11]), support vector machines (Xie et al. [12]), and genetic
programming (GP), provide powerful solutions to nonlinear
crude oil price prediction. Many experiments found that
the soft-computing models often had some advantages over
statistical-based models. However, these AI models also have
their own shortcomings and disadvantages. For example,
ANN often suffers from local minima and over-fitting, while
other soft-computingmodels, such as SVMandGP, including
ANN, are sensitive to parameter selection [1].

To remedy the above shortcomings, some hybrid meth-
ods have been used recently to predict crude oil price and
obtain the best performances. In last year, wavelet transform
has become a useful method for analyzing such as variations,
periodicities, and trends in time series. The hybrid models
with wavelet transform processes have been improved for
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forecasting. For example wavelet-neural network (Jammazi
and Aloui [13], Qunli et al. [14], and Yousefi et al. [15]),
wavelet-least square support vector machines (LSVM) (Bao
et al. [16]), and wavelet-fuzzy neural network (Liu et al. [17])
have been employed recently on some studies in crude oil
forecasting. They observed that the wavelet transform fairly
improves forecasting accuracy.

A major drawback of wavelet transform for direction
prediction is that the input variables lie in a high-dimensional
feature space depends on the number of sub-time series
components. Because the number of sub-time series compo-
nents for wavelet is inadvisable to be too many, in this study
principal component analysis (PCA) is proposed to reduce
the dimensions of sub-time series components.

The multiple linear regressions (MLR) model that is
much easier to interpret is considered as an alternative to
ANN model. In this paper, a hybrid wavelet multiple linear
regression (WMLR) model integrating wavelet and MLR is
proposed for short-term daily crude oil price forecasting.The
study applies particle swarm optimization (PSO) to adopt
the optimal parameters to construct the MLR model. For
verification purpose, the West Texas Intermediate (WTI)
crude oil sport price is used to test the effectiveness of the
proposedWMLR ensemble learning methodology. Finally to
evaluate themodel ability, the proposedmodel was compared
with individual ARIMA and GARCHmodels.

2. Methodology

2.1.TheARIMAModel. Themost comprehensive of all popu-
lar and widely known statistical methods used for time series
forecasting are Box-Jenkins models (Box and Jenkins [18]).
It has achieved great success in both academic research and
industrial applications during the last three decades. The
general form of ARIMA models can be expressed as

𝑦
𝑡
=

𝑝

∑

𝑖=1

𝜙
𝑖
𝑦
𝑡−𝑖
+

𝑞

∑

𝑖=1

𝜃
𝑖
𝑒
𝑡−𝑖
+ 𝑒
𝑡
, (1)

where 𝑝 is the order of the autoregressive, 𝑞 is the order of the
moving average, and 𝑒

𝑡
is the random error. The Box-Jenkins

methodology is basically divided into four steps: identifica-
tion, estimation, diagnostic checking, and forecasting.

2.2. The GARCH Model. GARCH models have found exten-
sive application in the literature and themost popular volatil-
itymodel is GARCH (1, 1)model proposed by Bollerslev [19].
The standard GARCH (1, 1) can be described as follows:

𝑟
𝑡
= 𝜇
𝑡
+ 𝜀
𝑡
= 𝜇
𝑡
+ ℎ
1/2

𝑡
𝜂
𝑡
𝜂
𝑡
∼ 𝑁 (0, 1) ,

ℎ
𝑡
= 𝜔 + 𝛼𝜀

2

𝑡−1
+ 𝛽ℎ
𝑡−1
,

(2)

where 𝜇
𝑡
denote the conditional mean and ℎ

𝑡
is the con-

ditional variances and 𝜂
𝑡
is a standardized error and 𝑟

𝑡
=

ln(𝑥
𝑡
/𝑥
𝑡−1
) is log return.

2.3. Multiple Linear Regressions. Multiple linear regressions
(MLR) model is one of the modelling techniques to investi-
gate the relationship between a dependent variable and sev-
eral independent variables. Let the MLR have 𝑝 independent
variables with 𝑛 observations. Thus the MLR can be written
as

𝑌 = 𝑤
0
+ 𝑤
1
𝑥
𝑖
+ 𝑤
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑝
𝑥
𝑝
+ 𝜀
𝑡
, (3)

where 𝑤 are regression coefficients, 𝑌 is dependent variable,
𝑥
𝑖
are independent varaiables and 𝜀

𝑡
is fitting errors. The

method of least squares is generally used to estimate the
coefficients model. In many applications, the results of a least
squares fit are often unacceptable when themodel is wrong or
when the model is misspecified (Bozdogan and Howe [20]).

In this study, particle swarm optimization (PSO) method
is presented to determine the optimal parameters of theMLR
model. The PSO methods have proven to be very effective
in solving a variety of difficult global optimization problems
in forecasting (Chen and Kao [21] and Alwee et al. [22]),
heat problem (Ma et al. [23] and Tyagi and Pandit [24]), and
dynamic environments (Liu et al. [25]).

The classic solution of MLR model involves the mini-
mization of the sum of the square errors between the model-
predicted value and the corresponding data value:

min𝑓 (𝑤) =
𝑛

∑

𝑖=1

(𝑌
𝑖
− �̂�
𝑖
)

2

, (4)

where 𝑛 is the number of training data samples, 𝑌
𝑖
is the

actual value, and �̂�
𝑖
is the forecasted value of train data.

The same methodology was used to solve this problem using
PSO algorithms. The solution with a smaller fitness 𝑓(𝑤) of
the training data set has a better chance of surviving in the
successive generations.

2.4. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is a population-based heuristic method inspired
by the collective motion of biological organisms, such as
bird flocking and fish schooling, to simulate the seeking
behavior to a food source (Bratton and Kennedy [26]). The
population of PSO is called a swarm and each individual in
the population of PSO is called a particle. The PSO begins
with a random population and searchers for fitness optimum
just like genetic algorithm (GA). To find the optimum
solution, each particle adjusts the direction through the best
experience which it has found (𝑝best) and the best experience
that has been found by all other members (𝑔best). Therefore,
the particles fly around in a multidimensional space towards
the better area over the search process.

Each particle consists of three vectors: the position
for 𝑖th individual particle can be denoted as 𝑋

𝑖
=

(𝑥
(1)

𝑖
, 𝑥
(2)

𝑖
, . . . , 𝑥

(𝐷)

𝑖
), the best previous position 𝑝best that the

𝑖th particle has searched is 𝑃
𝑖
= (𝑝
(1)

𝑖
, 𝑝
(2)

𝑖
, . . . , 𝑝

(𝐷)

𝑖
), and

the fly velocity of the 𝑖th is 𝑉
𝑖
= (V(1)
𝑖
, V(2)
𝑖
, . . . , V(𝐷)

𝑖
). The

performance of each particle is measured using a fitness
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function varying from problem in hand. During the iterative
procedure, the 𝑖th particle at iteration 𝑡 is updated by

V𝑑
𝑖
(𝑡 + 1) = 𝜔


× V𝑑
𝑖
(𝑡) + 𝑐

1
× 𝜑
1
× [𝑝
𝑑

𝑖
(𝑡) − 𝑥

𝑑

𝑖
(𝑡)]

+ 𝑐
2
× 𝜑
2
× [𝑝
𝑑

𝑔
(𝑡) − 𝑥

𝑑

𝑖
(𝑡)] ,

𝑥
𝑑

𝑖
(𝑡 + 1) = 𝑥

𝑑

𝑖
(𝑡) + V𝑑

𝑖
(𝑡 + 1) ,

(5)

where𝜔 is called inertia weight, 𝑐
1
and 𝑐
2
are acceleration con-

stants, and 𝜑
1
and 𝜑

2
are stochastic value of [0, 1]. In a PSO

system, particles change their positions at each time step until
a relatively unchanging position has been encountered or a
maximum number of iterations have been met. In general,
the performance of each particle is measured according to a
fitness function, which is problemdependent. InMLRmodel,
(4) is the fitness function under consideration. Figure 1 shows
the flowchart of the developed PSO algorithm. For further
details regarding PSO, please refer to Kennedy and Eberhart
[27] and Bratton and Kennedy [26].

2.5. Wavelet Analysis. Wavelet transformations provide use-
ful decomposition of original time series by capturing use-
ful information on various decomposition levels. Discrete
wavelet transformation (DWT) is preferred in most of the
forecasting problems because of its simplicity and ability to
compute with less time. The DWT can be defined as

𝜓
𝑚,𝑛
(

𝑡 − 𝜏

𝑠

) =

1

√𝑠
𝑚/2

0

𝜓(

𝑡 − 𝑛𝜏
0
𝑠
𝑚

0

𝑠
𝑚

0

) , (6)

where𝑚 and 𝑛 are integers that control the scale and time.The
most common choices for the parameters 𝑠

0
= 2 and 𝜏

0
= 1.

𝜓(𝑡) called themother wavelet can be defined as∫∞
−∞
𝜓(𝑡)𝑑𝑡 =

0.
For a discrete time series𝑥(𝑡)where𝑥(𝑡) occurs at discrete

time 𝑡, the DWT becomes

𝑊
𝑚,𝑛
= 2
−𝑚/2

𝑁−1

∑

𝑡=0

𝜓 (2
−𝑚
𝑡 − 𝑛) 𝑥 (𝑡) , (7)

where𝑊
𝑚,𝑛

is the wavelet coefficient for the discrete wavelet
at scale 𝑠 = 2𝑚 and 𝜏 = 2𝑚𝑛. According to Mallat’s theory,
the original discrete time series 𝑥(𝑡) can be decomposed into
a series of linearity independent approximation and detail
signals by using the inverse DWT.The inverse DWT is given
by (Mallat [28])

𝑥 (𝑡) = 𝑇 +

𝑀

∑

𝑚=1

2
𝑀−𝑚−1

∑

𝑡=0

𝑊
𝑚,𝑛
2
−𝑚/2

𝜓 (2
−𝑚
𝑡 − 𝑛) (8)

or in a simple format as

𝑥 (𝑡) = 𝐴
𝑀
(𝑡) +

𝑀

∑

𝑚=1

𝐷
𝑚
(𝑡) , (9)

where 𝐴
𝑀
(𝑡) is called approximation subseries or residual

term at levels 𝑀 and 𝐷
𝑚
(𝑡) (𝑚 = 1, 2, . . . ,𝑀) are detail

subseries which can capture small features of interpretational
value in the data.

Generate initial 
population

Fitness
evaluation

Convergence
check

Updating

Parameters
optimization

Yes

Training MLR

Cross validationNo

Figure 1: Flowchart of PSO algorithm.

2.6. Principal Component Analysis. In an MLR, one of main
tasks is to determine the model input variables that affect the
output variables significantly. The choice of input variables
is generally based on a priori knowledge of causal variables,
inspections of time series plots, and statistical analysis of
potential inputs and outputs. PCA is a technique widely used
for reducing the number of input variables when we have
huge volume of information and we want to have a better
interpretation of variables (Çamdevýren et al. [29]).

The PCA approach introduces a few combinations for
model input in comparison with the trial and error process.
Given a set of centred input vectors 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
and

∑
𝑚

𝑡=1
𝑥
𝑡
= 0, usually 𝑛 < 𝑚. Then the covariance matrix of

vector is given by

𝐶 =

1

𝑙

𝑙

∑

𝑡=1

𝑥
𝑡
𝑥
𝑇

𝑡
. (10)

The principal components (PCs) are computed by solving the
eigenvalue problem of covariance matrix 𝐶,

𝜆
𝑖
𝑢
𝑖
= 𝐶𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, (11)

where 𝜆
𝑖
is one of the eigenvalues of 𝐶 and 𝑢

𝑖
is the

corresponding eigenvector. Based on the estimated 𝑢
𝑖
, the

components of 𝑧
𝑡
(𝑖) are then calculated as the orthogonal

transforms of 𝑥
𝑡
:

𝑧
𝑡
(𝑖) = 𝑢

𝑇

𝑖
𝑥
𝑡
, 𝑖 = 1, 2, . . . , 𝑚. (12)

The new components, 𝑧
𝑖
(𝑡), are called principal components.

By using only the first several eigenvectors sorted in descend-
ing order of the eigenvalues, the number of principal com-
ponents in 𝑧

𝑡
can be reduced. So PCA has the dimensional

reduction characteristic. The principal components of PCA
have the following properties: 𝑧

𝑡
(𝑖) are linear combinations

of the original variables, uncorrelated and have sequentially
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maximum variances (Jolliffe [30]). The calculation variance
contribution rate is

𝑉
𝑖
=

𝜆
𝑖

∑
𝑚

𝑖=1
𝜆
𝑖

× 100%. (13)

The cumulative variance contribution rate is

𝑉 (𝑝) =

𝑝

∑

𝑖=1

𝑉
𝑖
. (14)

The number of the selected principal components is based on
the cumulative variance contribution rate, which as a rule is
over 85∼90.

3. Computer Simulation

3.1. An Application. In this study, the West Texas Intermedi-
ate (WTI) crude oil price series was chosen as experimental
sample.Themain reason of selecting theWTI crude oil is that
these crude oil prices are the most famous benchmark prices,
which are widely used as the basis of many crude oil price
formulae. The daily data from January 1, 1986, to September
30, 2006, excluding public holidays, with a total of 5237 was
employed as experimental data. For convenience of WMLR
modeling, the data from January 1, 1986, to December 31,
2000, is used for the training set (3800 observations), and
the remainder is used as the testing set (1437 observations).
Figure 2 shows the daily crude oil prices from January 1, 1986,
to September 30.

In practice, short-term forecasting results aremore useful
as they provide timely information for the correction of
forecasting value. In this study, three main performance
criteria are used to evaluate the accuracy of themodels.These
criteria are mean absolute error (MAE), root mean squared
error (RMSE), and𝐷stat. TheMAE and RMSE can be defined
by

RMSE = √ 1
𝑛

𝑛

∑

𝑡=1

(𝑦
𝑡
− 𝑦
𝑡
)
2

,

MAE = 1
𝑛

𝑛

∑

𝑡=1





𝑦
𝑡
− 𝑦
𝑡





.

(15)

In crude oil price forecasting, improved decisions usually
depend on correct forecasting of directions, of actual price,
𝑦
𝑡
and forecasted price, 𝑦

𝑡
. The ability to predict movement

direction can bemeasured by a directional statistic (𝐷stat) (Yu
et al., [1]), which can be expressed as

𝐷stat =
1

𝑁

𝑛

∑

𝑡=1

𝑎
𝑡
× 100%,

𝑎
𝑡
= {

1, if (𝑦
𝑡+1
− 𝑦
𝑡
) (𝑦
𝑡+1
− 𝑦
𝑡
) ≥ 0

0, otherwise.

(16)

3.2. Application and Result. At first, the MLR model without
data preprocessing was used to model daily oil prices. In
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Figure 2: Daily crude oil prices from January 1, 198, to September
30, 2006.

the next step, the preprocessed data which uses subtime
series components obtained using discrete wavelet transform
(DWT) on original data were entered to the MLR model in
order to improve themodel accuracy. For theMLRmodel, the
original log return time series are decomposed into a certain
number of subtime series components. Deciding the optimal
decomposition level of the time series data in wavelet analysis
plays an important role in preserving the information and
reducing the distortion of the datasets. However, there is no
existing theory to tell how many decomposition levels are
needed for any time series.

In the present study, the previous log return of daily oil
price time series is decomposed into various subtime series
(DWs) at different decomposition levels by using DWT to
estimate current price value. Three decomposition levels (2,
4, and 8 months) were considered for this study. For theWTI
series data, time series of 2-day mode (DW1), 4-day mode
(DW2) and 8-day mode (DW3), and approximate mode are
presented in Figure 3.

For the WTI series, six input combinations based on
previous log return of daily oil prices are evaluated to esti-
mate current prices value. The input combinations evaluated
in the study are (i) 𝑟

𝑡−1
, (ii) 𝑟

𝑡−1
, 𝑟
𝑡−2

, (iii) 𝑟
𝑡−1
, 𝑟
𝑡−2
, 𝑟
𝑡−3

,
(iv) 𝑟

𝑡−1
, 𝑟
𝑡−2
, 𝑟
𝑡−3
, 𝑟
𝑡−4

, (v) 𝑟
𝑡−1
, 𝑟
𝑡−2
, 𝑟
𝑡−3
, 𝑟
𝑡−4
, 𝑟
𝑡−5

, and (vi)
𝑟
𝑡−1
, 𝑟
𝑡−2
, 𝑟
𝑡−3
, 𝑟
𝑡−4
, 𝑟
𝑡−5
, 𝑟
𝑡−6

. In all cases, the output is the log
return of current oil prices, 𝑟

𝑡
.

Each of DWs series plays distinct role in original time
series and has different effects on the original prices oil
series. The selection of dominant DWs as inputs of MLR
model becomes important and effective on the output data
and has positive effect excessively on model’s ability. The
model becomes exponentially more complex as the number
of subtime series as input variables increases. Using a large
number of input variables should be avoided to save time and
calculation effort. Therefore, the effectiveness of new series
obtained by PCA is used as input to theMLRmodel.ThePCA
approach helps us to reduce the number of original variables
to a set of new variables. Generally, the objective of PCA is to
identify a new set of variables such that each variable, called a
principal component, is a linear combination of the original
variables. The new set of variables accounts for 85%−90% of
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Figure 3: Decomposed wavelet subtime series components (Ds) of
WTI crude oil price data.
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Figure 4: The structure of the WMLR model.

Table 1: Eigen value and cumulative variance contribution rate of
the 8 principal components.

PC 1 2 3 4 5 6 7 8
Eigen value 1.97 1.79 1.59 1.33 0.67 0.41 0.21 0.03
Cumulative
Variance Rate 0.25 0.47 0.67 0.84 0.92 0.97 1.00 1.00

the total variation were considered as the number of new
variables.

For example, taking two previous daily oil prices as a
random variable. Every previous daily oil price time series
are decomposed using DWT into three decomposition levels,
respectively. Thus there were 8 subseries considered for
the PCA analysis. The result of PCA analysis is shown in
Table 1. Table 1 shows that the first four principle components
can explain 84% variation of the data variation with the
eigenvalues greater than 1 to be retained, in which all the 4
PCs were included in the MLR model. Thus the 8 original
variables can be replaced by 4 new irrelevant variables. For
training MLR, the PSO algorithm solving the recognition
problem is implemented and the program code including
wavelet toolbox was written in MATLAB language. The
WMLRmodel structure developed in present study is shown
in Figure 4.

The forecasting performances of the MLR and WMLR
models in terms of the MAE, RMSE, and 𝐷stat testing phase
are compared and shown in Table 2. Table 2 shows MLR
model; the M1 with 1 lag obtained the best MAE statistics
of 0.6948 and the M6 with 6 lags obtained the best RMSE
statistics of 0.9450, while the M1 with 5 lags obtained the best
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Table 2: Forecasting performance indices of MLR and WLR.

Model Input Lag MLR WMLR
MAE RMSE 𝐷stat MAE RMSE 𝐷stat

M1 1 0.6948 0.9514 0.4788 0.6660 0.9001 0.5198
M2 1, 2 0.6972 0.9517 0.4781 0.6448 0.8842 0.5003
M3 1, 2, 3 0.6985 0.9545 0.4816 0.5345 0.7505 0.5797
M4 1, 2, 3, 4 0.6979 0.9550 0.4753 0.4834 0.6572 0.6722
M5 1, 2, 3, 4, 5 0.6976 0.9545 0.4878 0.5770 0.8046 0.5734
M6 1, 2, 3, 4, 5, 6 0.6969 0.9450 0.4850 0.5385 0.7389 0.6444

𝐷stat statistics of 0.4878. For WMLR, model M4 with 4 lags
obtained the best MAE, RMSE, and 𝐷stat statistics of 0.4834,
0.6572, and 0.6722, respectively. The equations of MLR with
six input variables and WMLR with four input variables,
respectively, are

𝑦
𝑡
= − 0.025𝑦

𝑡−1
− 0.047𝑦

𝑡−2
+ 0.22𝑦

𝑡−3

− 0.082𝑦
𝑡−4
− 0.060𝑦

𝑡−5
+ 0.0004𝑦

𝑡−6
,

𝑟
𝑡
= 0.076𝑧

1
(𝑡) − 0.221𝑧

2
(𝑡) − 0.213𝑧

3
(𝑡)

− 0.510𝑧
4
(𝑡) + 0.416𝑧

5
(𝑡) − 0.930𝑧

6
(𝑡) ,

(17)

where 𝑧
𝑖
(𝑡) are called principal components and 𝑦

𝑡
=

𝑦
𝑡−1

exp(𝑟
𝑡
).

For further analysis, the best performance of the LR,
WMLR, ARIMA, and ARIMA-GARCH models was com-
pared with the best results of ARIMA and forward neural
network (FNN) studied by Yu et al. [1]. In Table 3, it
shows that WMLR outperform MLR, ARIMA, GARCH, Yu’
ARIMA and Yu’ FNN models in terms of RMSE statistics.
This results show that the new series (DWT) have significant
extremely positive effect on MLR model results.

Figure 5 shows the Box-plot for the ARIMA, ARIMA-
GARCH, MLR, andWMLR models for testing period. It can
be seen that the errors of WMLR model are quite close to
the zero. Overall, it can be concluded that the WMLR model
provided more accurate forecasting results than the other
models for crude oil forecasting.

Table 3: The RMSE and MAE comparisons for different models.

Model RMSE MAE
ARIMA (2, 1, 5) 1.3835 1.0207
GARCH (1, 1) 0.9513 0.6947
MLR 0.9450 0.6969
WMLR 0.6572 0.4834
Yu’ ARIMA (Yu et al., [1]) 2.0350 —
Yu’ FNN (Yu et al., [1]) 0.8410 —

4. Conclusions

The accuracy of the wavelet multiple linear regression
(WMLR) technique in the forecasting daily crude oil has been
investigated in this study. The PCA is used to choose the
principle component scores of the selected inputs which were
used as independent variables in theMLRmodel and the par-
ticle swarm optimization (PSO) is used to adopt the optimal
parameters of the MLR model. The performance of the pro-
posed WMLR model was compared to regular LR, ARIMA,
and GARCH model for crude oil forecasting. Comparison
results indicated that the WMLR model was substantially
more accurate than the other models. The study concludes
that the forecasting abilities of the MLR model are found to
be improved when the wavelet transformation technique is
adopted for the data preprocessing.Thedecomposed periodic
components obtained from the DWT technique are found to
be most effective in yielding accurate forecast when used as
inputs in the MLR model. The accurate forecasting results
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indicate that WMLR model provides a superior alternative
to other models and a potentially very useful new method
for crude oil forecasting. The WMLR model presented in
this study is a simple explicit mathematical formulation. The
WMLR model is much simpler in contrast to ANN model
and can be successfully used in modeling short-term crude
oil price. In the present study, three resolution levels were
employed for decomposing crude oil time series. If more
resolution levels were used, the results from WMLR model
may turn out better. This may be a subject of another study.
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of principal component scores in multiple linear regression
models for prediction of Chlorophyll-a in reservoirs,” Ecological
Modelling, vol. 181, no. 4, pp. 581–589, 2005.

[30] I. T. Jolliffe, Principal Component Analysis, Springer, New York,
NY, USA, 1986.



Research Article
Optimization of Power Utilization in Multimobile Robot
Foraging Behavior Inspired by Honeybees System

Faisul Arif Ahmad, Abd Rahman Ramli, Khairulmizam Samsudin,
and Shaiful Jahari Hashim

Department of Computer and Communication Systems Engineering, Faculty of Engineering,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Correspondence should be addressed to Faisul Arif Ahmad; faisul@upm.edu.my

Received 6 February 2014; Accepted 9 March 2014; Published 7 May 2014

Academic Editors: P. Agarwal, S. Balochian, V. Bhatnagar, and Y. Zhang

Copyright © 2014 Faisul Arif Ahmad et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Deploying large numbers ofmobile robotswhich can interactwith each other produces swarm intelligent behavior.However,mobile
robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required
human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials
to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system
inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and
foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore
and identify the power station for battery recharging. The mobile robots will share the location information of the power station
with each other.The result showed that mobile robots consume less energy and less time when they are cooperating with each other
for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.

1. Introduction

Today, research on multimobile robots using large numbers
with biologically inspired system is increasing [1–3]. Mul-
timobile robots consisting of more than one mobile robot
are used in different environments and different types of
mobile robot. The aim of multimobile robot application is
applied to environment that is difficult or high risk work for
human, especially in hazardous area and disaster area such
as search and rescue in collapsed building. Currently, mobile
robots are widely used in hazardous environment such as
investigation in dangerous environment and exploration of
nonhuman living environment such as space exploration and
deep sea exploration. One of the examples was in Fukushima
Daiichi nuclear power plant. The nuclear plant has been hit
by disaster of earthquake and tsunami in east coast of Japan
in year 2011 and caused the nuclear disaster to the nearest
area. Mobile robots were used to explore the area of disaster
in semiautonomous system [4].

In early day, several mobile robots with big size are
used [5–8]. Nowadays, small size of body and simple mobile

robots are very popular in research and education [1, 8–
12]. Multimobile robot systems inspired by biological system
such as ants, termites, honeybees, and fishes are defined as
a swarm robot. Intelligence algorithm for control system
which is inspired by biological system is defined as swarm
intelligent system [13]. Swarm intelligence has been applied to
homogeneous robotic system [11, 14] which is simple robots.
But in [9, 15, 16], they used a group of various types of mobile
robots which is defined as heterogeneous swarm robotic
system.Most of the research on swarmmobile robotic system
is

(i) focusing on communication systems among mobile
robots [11, 15, 16] in order to share information,

(ii) focusing on developed autonomous battery recharg-
ing [17–19] to have fully autonomous swarm robots
without human intervention,

(iii) focusing on developed navigation system [3] in order
to run mobile robot without loss,
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(iv) focusing on developed management and optimiza-
tion of energy system based on adaptation from
biologically swarm behaviors [12, 19, 20],

(v) focusing on development of physical robot (small
robot or macrorobot) [1, 11, 21] or simulated tools for
swarm robotics [22–24].

Mobile robot is designed to be operated with finite energy
resource, which is supplied by batteries.The energy of battery
decreased with time due to robot processing, control system,
and so forth. The battery power will run out if no action
is taken to recharge it when it is running low. Researchers
have developed an autonomous charging platform system
for autonomous mobile robot systems. The first autonomous
charging system on mobile robot is developed by Grey
Walter in 1950, known as tortoise robot. Silverman et al.
[18] had designed a docking platform for mobile robots
recharging system. They defined threshold of battery voltage
when robot needed to be recharged. A pan-tilt-zoom (PTZ)
camera mounted on the mobile robot is used as a visual tool
for searching orange colored piece of paper that is labeled
above docking source. Cassinis et al. [25] developed a dock-
ing system for autonomous mobile robot charging system.
Processing for docking operation system is implemented
by creating a marker for reference by mobile robot during
docking operation.Themarker is identified by a vision system
that is mounted on Pioneer 2DX robot. Ngo and Schiøler
[26] developed a recharging system by exchanging the bat-
teries. If a robot has low power battery during operation it
will notify the coordinator robot (host) through the radio
communication. The host will identify the nearest charger
source or nearest robot that has high energy to the robot that
requires energy. Then, the host will command the robot to
go to nearest power station or command another robot that
has high energy to go to the robot and exchange the battery.
The message in communication is embedded with current
position and status of the robot energy.

To operate mobile robot continuously, it needs to be
recharged before its power resource is exhausted.The process
of recharging battery needs to be fully autonomous; mobile
robots need a capability of self-maintained or self-recharging
battery system. In the previous paragraph, the researchers
developed power station and function for autonomous
recharging battery, but they did not identify how to handle the
charging behaviorwith other behaviors such as robot task and
robot interactions. Couture-Beil and Vaughan [27] applied
the effect of charger location to evaluate system performance
in limited environment. There were two environments that
they examined which are location along robot’s working path
and nearby robot’s working path. A minimum threshold of
energy has been identified to drive the robot to the charging
station. As the researcher limits the path environment of
mobile robotwith twoways of traveling, the time is increasing
whenever numbers of mobile robots increased. Liu et al.
[20] developed an autonomous ratio adjustment for several
types of behaviors based on division labor from honeybees to
maximize the net energy income to mobile robots.They used
the assumption to identify the crowdedness of the foraging by
assuming the frequent intersection of mobile robots. They

did not study the relationship between number of power
source and the number of intersection of mobile robot.

Several algorithms based on honeybee intelligent have
been developed as optimization tools, such as artificial
bee colony (ABC) [28] and honeybee mating optimization
(HBMO) [29]. In the mobile robot application, both algo-
rithms currently have been applied in the path-planning
navigation [30, 31]. For example, in the ABC algorithm,
four parameters have been divided, which are employed
bee, onlooker bee, scout bee, and food source position. The
division of bees in the environment will reduce the number
of working robots in time. Based on that, the ABC algorithm
is found not suitable to be applied to the mobile robots with
working and foraging behavior that need to do task faster.
Whereas inHBMO, the algorithm is based on finding the best
result among the random execution of bee to find the optimal
path. Another intelligent system from honeybee, which is
based on foraging and working behavior, is more suitable
to be applied to mobile robots having working and foraging
power station as the main behavior.

In this paper, the work inspired by biological honeybees
system is designed to optimize the working energy in the
working behavior of mobile robots. In order to do that, the
time utilization, power consumption, and traveling distance
of the foraging behavior in the foraging area need to be
decreased. Based on knowledge sharing and static threshold
behavior, the system is applied to honeybees inspired envi-
ronment and local communication.

A group of homogeneous mobile robots, known as AMiR
[11], were used in simulation environment which is divided
into two areas, which are home area and foraging area. This
paper is divided to several sections. Section 2 will discuss
the background of autonomous recharging battery in mobile
robots. In Section 3, the methodology of the development
which is a swarm robotic system based on foraging behavior
of honeybees is discussed and then continues with the exper-
imental method. The result and discussion will be written in
Section 4 and the conclusion in Section 5, respectively.

2. Background

In biological system, a swarm of honeybees shows that swarm
intelligence and self-organisation task are done without
centralized control decision [32], where each honeybee is
capable of receiving inputs, makes its own decision, and then
executes the decision by itself. In a beehive, honeybeesworker
is categorized based on different stages of age. The stage of
honeybees has been identify as the honeybees worked from
the first day of their life which is cleaning blood cells, tending
larvae, hive construction, guarding the hive and foraging food
[32, 33] (see Table 1).

In biological honeybees, the information of the food
source is shared with others through local communication.
The information embeddedwith distance and direction of the
food sources (I, II, III) is referring to beehive and the sun as
shown in Figure 1. Two types of dances have been identified
by vonFrisch [34], which arewaggle dance for longer distance
and round dance for near distance.
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Figure 1: Honeybees communication through dances [32].

Table 1: Division of labor for honeybees [32, 33].

Period Day Stage
First 1-2 Cleaning blood cells
Second 3–9 Tending larvae
Third 10–16 Construction
Fourth 17–20 Guarding the hive
Fifth 21 and above Foraging food

Table 2: Threshold energy of behavior mobile robot.

Remaining energy Behaviors
𝐸
𝑤
⩾ 𝐸th Robot’s worker
𝐸
𝑓
< 𝐸th Robot’s forager

Application of swarm intelligent system to mobile robots
has been widely used with small or macromobile robots,
such as swarm bot [14], autonomousminiature robot (AMiR)
[11], EPUCK [21], JASMINE [35, 36], and ALICE [37]. Even
though the size and the structure of mobile robot are small
and simple, robotic system which is composed of large
numbers can give better performance and robust compared
to a complex and singlemobile robot [38].This type ofmobile
robot can be used in operation in small area such as a jet
turbine and the complex engineering structure [10]. Another
advantage is that the small size of robot can be easily and
economically developed and replicated for being applied to
bigger size of swarm robot. As the size is small, the processing

power is also limited. But with large number of unit mobile
robots that succeed by cooperation, it can overcome these
disadvantages.

3. Methodology

Mobile robots behavior was divided in two different behav-
iors which were workingmobile robot for doing task in home
area and foraging mobile robot for forage power station in
foraging area. This behavior is inspired by the honeybees
foraging and working system. For working behavior, mobile
robots arewalking around the home area in randomway until
their battery decreased to the threshold of remaining energy
by percentage. For foragingmobile robot, it forages for power
station randomly without remembering the path (Table 2).
The following subsection describes the simulation platform
and environment used in this work.

3.1. Simulation Environment. Inspired by behaviors of hon-
eybees from their working stage, 10 mobile robots of AMiR
are designed on the simulation platform which is known as
Player/Stage [22]. Figure 2 shows the experimental environ-
ment with two separated areas, a working area (left side) and
a foraging area (right side). The experimental environment
imitated the environment of honeybees which work in a
beehive and forage for food (honey) outside their home.

The foods (normally come from flower) of honeybees
are allocated randomly outside area of their beehive. In the
foraging area of mobile robot, three power stations which
are power station A, power station B, and power station C
are randomly placed in different locations (see Figure 2). All
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Figure 2: Environment for experiment of multimobile robots.

mobile robots have no information about the location of
all power stations as also honeybees. Referring to Figure 2,
working area (home area) and foraging area are separated
by wall with doors as work area for biological honeybees is
also separated from foraging area. The top door is provided
for robot moving from working area to foraging area which
is identified as home out (H(o)). The bottom door is used
for mobile robot moving to working area from foraging
area, identified as home in (H(i)). Mobile robots will be
running randomly in home area and also searching for power
station in foraging area when needed. Mobile robots started
in the experimentwith carrying energy in different capacities.
Each of mobile robots has knowledge on exit and entry
door for home area as honeybees have knowledge on their
beehive’s exit and entry. In the real environment, this could
be implemented on office and house which normally have
partition of rooms.

Figure 3 depicted foraging behaviors of multimobile
robot in Player/Stage platform. Forager robot is moving
randomly in foraging area (Figure 3(a)) looking for power
station (A, B, or C). Whenever mobile robot finds a power
station, it will identify the position of the location, remember
it, and then charge until its battery is full (Figures 3(b) and 4).

After the full charging, the mobile robot returns home
through the entry door. The entry location is known by
mobile robot as honeybees know the entry area of the
beehive. The mobile robot used coordinate information as
its guidance in the movement, as honeybees used their
movement based on the reference of the beehive and the sun
location (Figure 5).

As in honeybees environment, the communication is
done through the dance, which needs other nonknowledge
honeybees face to face with the knowledge honeybees. Based
on this, in mobile robots system, the movement of honeybees
is converted to allocate the infrared (IR) surrounding the
body of mobile robot. So the mobile robot does not need
to move around during the communication, as location
information is shared through infrared (IR) communication
[39]. To adapt the IR communication in simulation platform,
the UDP port is used as medium to transfer message between
mobile robots as imitating an IR intercommunication in
the real robot. Figure 6 illustrates 9 character strings of
message format. Each message is determined by availability
of message, robots’ identifications (robot ID), and location
of power station. Table 3 shows the detailed explanation of
message format by each string. Example 1 is mobile Robot01
that detected power station by itself sending the message to
mobile Robot02, while Example 2 is message that mobile
Robot02 received information of location from Robot01 and
lastly Example 3 shows initial message of Robot02 before it
received the information from Robot01.

Figure 7 shows the flowchart of algorithm in behaviors
of multimobile robots during the foraging power station
for charging their battery, sending and receiving message
process, randomlymoving in home area forworking task, and
also docking and undocking function to the power station.

In this work, the mobile robot that has work and change
from working to foraging behavior is known as finishing
one working iteration. After that, when it finished the
foraging, recharged the battery, and moved back to home
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Table 3: Illustration of code used in the message format.

Number Reference Characters number Example

1 Location information
F: knowledge got by itself

FC: nonknowledge
A: knowledge got from other robots

2 Own Robot ID Numbers 1, 2, 3, . . .
3 Separator mark Robot ID separate mark $
4 Opponent robot ID Numbers 1, 2, 3, . . .
5 Separator mark Robots ID separate mark $
6 Coordinate-x Floating number 2.345
7 Separator mark Coordinate-x separate mark ;
8 Coordinate-y Floating number 2.345
9 End mark of message Mark of message end !

Number of strings

Example 1

Example 2

Example 3

1 2 3 4 5 6 7 8 9

F

A

C

1

1

2

2

2

;

;

;

$

$

$ $

$

$

00 0

!

!

!

x0

x0

y0

y0

Figure 6: Message format in robots communication.

area, it is defined as finishing one foraging trip. Each of the
working iterations or the foraging trips is measured by the
performance metric.

3.2. Performance Metric. Three parameters are used to eval-
uate the foraging performance. The parameters are time
consumption, power consumption, and traveling distance in
foraging area. These three parameters are selected because

(i) time is determined by how long the mobile robot is
foraging in the foraging area;

(ii) power is determined by how much power is utilized
in the foraging area.The assumption is that themobile
robot that utilizes little power in the foraging area will
utilize more power in the working area. This means
that mobile robot can do more work based on the
more power that has been decreased;

(iii) distance is determined by how long the distance can
mobile robots take for their foraging. The short dis-
tance in the foraging behavior will result in themobile
robots consuming less time, less power consumption
in the foraging area.

Foraging time, 𝑡, is measured as shown in (1) where 𝑡exit
is the time that mobile robot reaches H(o) and 𝑡charge is time
that mobile robots start to charge at the power station. The
time unit is second (s). Consider

𝑡forage = 𝑡charge − 𝑡exit (0) . (1)
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Figure 7: Algorithm of mobile robots behavior inspired by honeybees system.

Power consumption for foraging (𝑃forage) mobile robot
is measured by (2), where 𝑃charge is the remaining of power
battery at the time that mobile robot reached the power
station and 𝑃exit is the remaining of power battery at H(o)
position. Power is measured with unit Joule (J). Consider

𝑃forage = 𝑃charge − 𝑃exit. (2)

Finally, the traveling distance by foraging robot 𝑛, 𝐷
𝑛
,

is calculated using (3). Each of the iterations 𝑖 of distance,
𝑑
𝑖
, is defined based on two points before the rotation angle

is changed as equation (see Figure 8 for the illustration).
Consider

𝐷
𝑛
= ∑𝑑

𝑖
,

𝑑
𝑖
= √(𝑦

1
− 𝑦
0
)
2

+ (𝑥
0
− 𝑥
1
)
2

.

(3)

4. Result

The results of time consumption in the foraging behavior for
power station are shown in Figure 9. Mobile robots with ID

5.
0

W

5.0
W

5.
0

WA(x0, y0)

d1

d2

B(x1, y1)

C(x2, y2)

Figure 8: Traveling distance of mobile robot.

R01, R02, R08, and R09 consumed a lot of time to forage
power station during the first foraging trip. After the first
foraging trip, the mobile robots shared the locations infor-
mation with other mobile robots such as R03 and R04. With
this information, mobile robots will consumed less time to
reach power station. The difference of the time consumption
for mobile robot without information compared to mobile
robot with information is quite large which is almost 6 times
larger as shown in Figure 10(a).
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Figure 9: Time consumption in the foraging behavior of 10 mobile
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During the first foraging trip, R01, R02, R08, and R09
consumed a lot of time because the mobile robots need to
forage power station randomly without information. They
needed to forage until they found the station.Theother robots
with information did not consume a lot of time because they
were heading directly to the power station without random
forage. This difference is dynamic, because mobile robots
forage in random way and without memorizing their path.
This is proved by the result in the first trip of foraging mobile
robots R01, R02, R08, and Robot09 which foraged to power
stations A, B, and C (see Figure 9).

Figure 10(a) shows the comparison of the foraging time
mobile robots with and without knowledge. R01, R09, and
R10 are mobile robots that forage without information to
the power stations A, C, and B, respectively. It is shown that
the time consumption of mobile robot without knowledge is
much longer than for the mobile robots that forage to power
station with knowledge sharing. All the foraging was done
in random way; R10 suddenly got high value in the third
foraging trip compared to others.This is different withmobile
robots that forage with the knowledge sharing environment,
such as R03, R04, and R05, which forage with low value of
time consumption beginning from the second foraging trip.
When the time consumption is low in the foraging behavior,
the time for mobile robots to do their task is increased. In
that case, mobile robot should have much time to do task
and work. These matters will make the task complete faster
or earlier.

Figure 10(b) shows the average and standard deviation of
foraging time by 10 mobile robots with sharing and without
sharing knowledge. In environment of sharing knowledge,
R01, R02, R08, and R09 show the high variance compared
to other mobile robots. The mobile robots forage without

knowledge in the first foraging trip and then memorized the
information of the location power station. The average of
time taken by mobile robots that forage for power station
with information is less than 100 s, and their variance is very
small compared to the mobile robots that forage without
information at the first foraging trip. Meanwhile the mobile
robots in environment without sharing knowledge show that
the average of foraging ismore than 600 s.The variance is also
high compared to the mobile robots with sharing knowledge
environment.

Figure 11 shows the power consumption of foraging
power station by four foraging trips. The graph shows a
lot of differences in foraging with knowledge and foraging
without knowledge during the first foraging trip. As shown
in the figure, R02 consumed high power to forage power
station A during the first foraging trip because it does
not have knowledge of the location. The mobile robot had
foraged randomly until it found the power station and then
memorized its location and in the next foraging trips the
robot consumed less power. R02 not only memorized the
location for itself but also shared the knowledge among other
mobile robots such as R03, R04, andR05, so that othermobile
robots do not need to forage and consumed a lot of power to
do recharging.

Mobile robot with ID R01, R08 and R09 are consumed
high power only at the first foraging trip, and then con-
sumed low power for following trips with the knowledge.
Among 10 mobile robots, in average R01, R02, R08, and R09
consumed high power in the foraging behavior. From the
results of power consumption in foraging with knowledge
sharing, three samples have been taken to compare with
other three mobile robots that forage without knowledge
sharing as shown in Figure 12(a). Mobile robots with ID
R04 in environment with knowledge sharing show that they
only consumed high power in the first trip, and other R03
and R05 consumed less power starting at the first foraging
trip which is less than 1 kW, while for mobile robots that
forage in environment without knowledge sharing, the power
consumption is high which is more than 3 kW.

The average of power consumption in the foragingmobile
robots with knowledge sharing and without knowledge shar-
ing is shown in Figure 12(b). In without knowledge sharing
case, the lowest value of power consumption is R03 and R09
with 2.9 kW.Themaximum value is R04 with 4.6 kW. Robots
with IDR01, R02, R08, and R09 consumed high power during
foragingwhich ismore than 650W,while othermobile robots
such as R03, R04, and R06 consumed less power which is less
than 400W.This happened because, during the first foraging
trip, R01, R02, R08, and R09 need to forage in random way
without the knowledge. But other mobile robots received the
knowledge of the location power station before they changed
to foraging behavior. In standard deviation the high variance
of power consumption occurred onmobile robots that forage
without knowledge in first foraging trip.

The result of traveling distance in foraging behavior for
power station is depicted in Figure 13. Mobile robots with
ID R01, R02, R08, and R09 traveled much longer than other
mobile robots in the first trip as they are foraging without
knowledge. But the other mobile robots such as R03 and R04
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got the knowledge of the location on power station A from
R02 and consumed shorter distance.

Figure 14(a) shows the analysis of traveling distance
by choosing three mobile robots that forage with sharing
knowledge and another three mobile robots without sharing
knowledge. Mobile robots without knowledge sharing show
long distance in traveling. Only R02 foraged in the first

foraging trip with short distance but then foraged with long
distance in the following foraging. Meanwhile, in environ-
ment with knowledge sharing, the short distance traveling is
taken by mobile robots starting from second foraging trip. In
the first foraging trip, the distance is far from the second trip,
because the mobile robots did not have any information of
the location power station. Whenever mobile robots got the
information, they memorized the location and shared it to
other mobile robots. Then for next trips, the mobile robots
went to power station directly.

Average of foraging distance by mobile robots in the
environment without knowledge sharing shows the high
value compared to the mobile robot with knowledge sharing
environment. The lowest foraging distance of mobile robot
in environment without knowledge sharing is around 133m
compared to themobile robots in knowledge sharingwhich is
around 39m.Thedifference in the foraging distance is around
4 times.

The average of foraging distance in knowledge sharing
environment shows that the mobile robots that forage with-
out knowledge for the first foraging trip are higher than the
mobile robots that forage with knowledge (see Figure 14(a)).
Mobile robots with ID R01, R02, R08, and R09 had to travel
further compared to others that already got the knowledge
and had foraged more than 30m in average. Meanwhile
mobile robots that already received the information from
other robots had traveled less than 30m.

Meanwhile, in the standard deviation, the mobile robots
in environment without knowledge sharing show high vari-
ance compared to the mobile robots in environment with
knowledge sharing. As a result of mobile robots with knowl-
edge sharing, R01, R02, R08, and R09 have high variance
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compared to others as they forage without knowledge during
the first foraging trip, while others already had the knowledge
of power station.

5. Discussion and Conclusion

Based on all results from the measuring parameters in the
foraging behavior, decrease in the time consumption, power

consumption, and traveling distance is shown. As for time
consumption in the foraging area, the applied algorithm
to mobile robot system had reduced almost 85% to 89%
compared to the nonsharing environment. Meanwhile in the
power consumption in the foraging area, the mobile robots
with knowledge sharing have been reduced around 78% to
88% compared to mobile robots without knowledge sharing.
Andfinally, the traveling distance in the foraging also reduced
around 77% to 84%. The reducing of these parameters in
the foraging mobile robots for recharging their battery will
increase the time utilization, the power utilization, and the
working distance of mobile robot in the working area. The
longer the mobile robots in the working area with more
power are being utilized and the longer the distance had been
traveled to work, this would increase the work utilization in
the mobile robot.

This work had identified the algorithm and environment
inspired by honeybees system which is applied to multi-
mobile robots by reducing the time consumption, power
consumption, and traveling distance during the foraging
behavior. Even though the threshold of the behavior of
work and foraging is defined by a static threshold and the
foraging behavior is random, the three parameters are still
reduced with high value.Thismethod has optimized the time
consumption, power consumption, and traveling distance
in mobile robots by reducing them in foraging area and
increasing them in working area.

This system can be improved in the future by restruc-
turing the methods of the system, for example, restructur-
ing the threshold between working and foraging behavior.
The threshold could be adaptive in order to maximize the
energy in working area for mobile robots that already have
the knowledge. Other methods are equipping the mobile
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Figure 14: Traveling distance in foraging behavior with knowledge sharing and without knowledge sharing by (a) selected 3 mobile robots
of each environment and (b) average and standard deviation of traveling distance in foraging for power station.

robots with the path identification, which means that mobile
robots know the path that they already go through. Another
matter that also needs to be concerned is the numbers of
mobile robots in the environment. This could prevent the
unwanted mobile robot that could increase the crowdedness
environment.
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A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving
the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different
crossover operators andmutation operators are investigated. In addition, an efficientmultiple insertmutation operator is developed
for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the
algorithm to improve the exploitation ability of the proposed algorithm.The detailed experimental parameter for the canonical PSO
is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron’s benchmark problems. Detailed comparisons
with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed
algorithm.

1. Introduction

The hybrid flowshop scheduling (HFS) problem has been
researched by more and more literatures during last decades.
HFS is a typical version of the flowshop scheduling problem
(FSP), which has been proved to be an NP-hard problem.
Therefore, HFS is also an NP-hard problem and has been
researched bymore andmore heuristics ormetaheuristics [1–
11]. In the most present literature about HFS, the common
situation is assumed that all machines are available in the
production horizon. However, for some critical factors, such
as machine random breakdown and preventive maintenance
(PM) activity, machines are not available during the whole
production horizon. Allaoui and Artiba solved the HFS with
maintenance constraints by using an integrating simulation
and optimization [12]. Xie andWang discussed the complex-
ity and algorithms for two-stage flexible flowshop schedul-
ing with availability constraints [13]. Allaoui and Artiba
again considered the two-stage HFS with maintenance con-
straints [14]. Ruiz et al. considered scheduling and preven-
tive maintenance in the flowshop sequencing problem [15].

Naderi et al. applied variable neighborhood structure (VNS)
algorithm for solving flexible flow line problems with
sequence dependent setup times and different preventive
maintenance policies [16]. Berrichi et al. presented a biobjec-
tive optimization algorithm for joint production and mainte-
nance scheduling in the parallel machine environments [17].
Luo et al. developed a genetic algorithm for solving two-stage
HFS with blocking and machine availability [18]. Allaoui
and Artiba investigated Johnson’s algorithm for solving opti-
mally or approximately flowshop scheduling problems with
unavailability periods [19]. Jabbarizadeh et al. developed a
hybrid algorithm for solving the hybrid flexible flowshops
with sequence-dependent setup times andmachine availabil-
ity constraints [20]. Besbes et al. tackled hybrid flowshop
problem with nonfixed availability constraints [21]. Ma et
al. gave a survey of scheduling with deterministic machine
availability constraints [22]. Luo et al. solved the HFS
with batch-discrete processors and machine maintenance in
time windows [23]. Safari and Sadjadi tackled the flowshop
scheduling problem with condition-based maintenance con-
straint and machines breakdown through a hybrid method
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[24]. Wang and Liu solved the two-stage hybrid flowshop
schedulingwith preventivemaintenance usingmultiobjective
tabu searchmethod [25]. Rabiee et al. developed an intelligent
hybrid metaheuristic for solving a case of no-wait two-stage
flexible flowshop scheduling problem with unrelated parallel
machines [26]. Allaoui and Artiba surveyed the maintenance
constraints in HFS scheduling problems [27].

In this study, we developed a hybrid algorithm combining
particle swarm optimization (PSO) and iterated local search
(ILS) algorithms for solving the hybrid flowshop scheduling
problems with PM activity.The rest of this paper is organized
as follows: Section 2 briefly describes the problem. Next,
the related algorithms are presented in Section 3. Section 4
reports the framework of the proposed algorithm. Section 5
illustrates the experimental results and compares them to the
present performing algorithms from the literature to demon-
strate the superiority of the proposed algorithm. Finally, the
last section gives the concluding remarks and future research
directions.

2. Problem Definition

In this study, we consider a hybrid flowshop scheduling
problem in reality production system. The PM activity is
considered in the considered HFS problems. Firstly, we give
the following assumptions.

(1) Each machine can process only one operation at a
time, while each operation can be processed by only
one machine at a time.

(2) Preemption is not allowable; that is, each operation
must be completed without interruption before its
completion.

(3) At each stage, more than one machine from identical
parallel machines can be selected for each operation.

(4) The processing time for each operation at each stage
is determined.

Under the above assumption, themathematicalmodel for
the problem is given as follows.

2.1. Variables

𝑖: job index, 𝑖 = 1, 2, . . . , 𝑛,
𝑗: stage index, 𝑗 = 1, 2, . . . , 𝑠,
𝑘: machine index, 𝑘 = 1, 2, . . . , 𝑚,
𝑝
𝑖𝑗
: the processing time of job 𝑖 at stage 𝑗,

𝑠
𝑖,𝑗
: the starting time of job 𝑖 at stage 𝑗,

𝑐
𝑖,𝑗
: the completion time of job 𝑖 at stage 𝑗,

𝑠
𝑖,𝑗
: the starting time of job 𝑖 at stage 𝑗 considering the

PM activity,
𝑐
𝑖,𝑗
: the completion time of job 𝑖 at stage 𝑗 considering

the PM activity,

𝑃𝑀
𝑘

𝑠
: the starting time point of the PMactivity on𝑀

𝑘
,

𝑃𝑀
𝑘

𝑒
: the completion time point of the PM activity on

𝑀
𝑘
:

𝑍
𝑖𝑗𝑘
=

{
{

{
{

{

1, if machine 𝑘 is selected to process job 𝑖
at stage 𝑗

0, otherwise,

𝑌
𝑖𝑗𝑘
= {

1, if 𝑠
𝑖𝑗
∈ [𝑃𝑀

𝑘

𝑠
, 𝑃𝑀
𝑘

𝑒
] ∧ 𝑍
𝑖𝑗𝑘
= 1

0, otherwise.

(1)

2.2. Problem Formula

𝑓 = min {max
1≤𝑖≤𝑛

𝑐
𝑖,𝑚
} (2)

s.t.

𝑐
𝑖,𝑗
≥ 𝑠
𝑖,𝑗
+ 𝑝
𝑖,𝑗
+ 𝑌
𝑖𝑗𝑘
(𝑃𝑀
𝑘

𝑒
− 𝑃𝑀

𝑘

𝑠
) , (3)

𝑠
𝑖+1,𝑗

≥ 𝑠
𝑖,𝑗
+ 𝑝
𝑖,𝑗
, (4)

𝑠
𝑖+1,𝑗+1

≥ 𝑐
𝑖,𝑗
, (5)

∑

1≤𝑘≤𝑚

𝑍
𝑖𝑗𝑘
= 1, ∀𝑖, 𝑗, (6)

𝑍
𝑖𝑗𝑘
= {0, 1} ∀𝑖, 𝑗, 𝑘,

𝑌
𝑖𝑗
= {0, 1} ∀𝑖, 𝑗,

0 ≤ 𝑤
1
≤ 1.

(7)

In the mathematical model, the objective is given in for-
mula (2). Constraint (3) guarantees that the PM time should
be considered in processing any operation. In Constraint (4),
the operation sequence is realized for the same job; that is, the
following operation cannot be started until the completion
of the predecessor operation of the same job. Constraint (5)
shows that, on the same machine, the following operation
must wait for the completion of the predecessor operation.
Constraint (6) guarantees that each job can select only one
available machine at each stage.

3. The Related Algorithm

In this study, we consider combining PSO and ILS to con-
struct a hybrid algorithm for solving the HFS with PM activ-
ity. The following is to illustrate the literature review of the
two related algorithms.

3.1. ILS Algorithm. Iterated local search (ILS), firstly pro-
posed by Stützle [28], is a metaheuristic to increase the ability
to jump out of the local optima for the canonical local search
methods. It has attracted much attention of researchers for
its simplicity, effectiveness, and efficiency, and it has been ap-
plied successfully to traveling salesman problem, flowshop
scheduling problem, job shop scheduling problem, and vehi-
cle scheduling problem, [28–31] during recent years. The
main frame of the canonical ILS is as follows.
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Step 1. Generate an initial solution 𝑥; let 𝑥 = 𝑥 and 𝑥∗ = 𝑥.

Step 2. Generate a certain number of neighboring solutions
around the given solution 𝑥

, find the best neighboring
solution 𝑥, and update the best solution found so far.

Step 3. Let 𝑥 = Accept(𝑥, 𝑥).

Step 4. If the stop condition is not satisfied, generated 𝑥 =
perturb(𝑥), go back to Step 2; otherwise, stop the algorithm.

3.2. Particle SwarmOptimization. In 1995,mimicking the fly-
ing behavior of a swarm of birds, a novel optimization algo-
rithm named particle swarm optimization (PSO) was devel-
oped by Kennedy and Eberhart, which has been verified effi-
cient for solving both continuous and discrete optimization
problems [32]. During recent years, many researchers have
applied PSO for solving lots of optimization problems [33–
43].

The flowchart of the canonical PSO is given as follows.

Step 1. Set the system parameters, such as the initial popula-
tion size, the possibility (𝑝

𝑙
) for learning from local best, and

the possibility (𝑝
𝑔
) for learning from the best solution found

so far.

Step 2. Generate the initial population of particles.

Step 3. Store each particle into a vector named local best,
where each solution corresponds to the local best of the
corresponding particle. Memorize the best solution found so
far.

Step 4. For each particle, perform the following steps until
the stop condition is satisfied.

Step 5. Randomly generate a number 𝑟
1
between 0 and 1, if

𝑟
1
is less than 𝑝

𝑙
, and then perform the learning process from

the local best of the current particle.

Step 6. Randomly generate a number 𝑟
1
between 0 and 1, if 𝑟

1

is less than 𝑝
𝑔
, and then perform the learning process from

the global best of the current particle.

Step 7. Record the local best for each particle and the global
best found so far.

Step 8. Learn by itself.

Step 9. Go back to Step 4.

4. Framework of the Proposed Algorithm

4.1. Solution Representation. For solving the HFS scheduling
problems with PM activity, we use the permutation represen-
tation mechanism. Give a HFS scheduling problem 𝑛 jobs,
𝑠 stages, and 𝑚 machines; each solution is represented by a
vector of integer values, where each integer value represents
a job number.Therefore, the length of the solution equals the
number of jobs. For example, for aHFS problemwith ten jobs

2 3 1 5 6 8 4 9 10 7

J2 J2J3 J6 J8 J4 J9 J7J1 J10

Figure 1: Solution representation.

Stage 2

Stage 1

Stage 3

PM

Affected operation 

M1

M2

M3

M4

J2

J2

J3 J4J1

J1

J1 J3

J3

J2 J4

J4

t1 t2

Figure 2: Situation 1 of PM activity.

and three stages, Figure 1 gives one solution representation,
where the scheduling sequence is 𝐽

2
, 𝐽
3
, . . ., and 𝐽

7
.

The sequence in Figure 1 is only for the first stage; that
is, at the first stage, each job is scheduled according to the
above sequence, while for the following stages, the decoding
mechanism is given as follows.

4.2. Decoding without Disruption. It can be seen from the so-
lu-tion representation that the machine selection is not in-
cluded in the solution representation. The decoding for the
above solution representation is given as follows.

Step 1. For the first stage, each job is scheduled according to
their sequence in the solution representation. In Figure 1 the
first job to be scheduled is 𝐽

2
and the last one is 𝐽

7
. Each job

selects the first available machine.

Step 2. In the following stages, each job is to be scheduled just
after its completion of the previous stage, and select the first
available machine from the candidate machines.

4.3. Decoding with PM Activity. When considering the PM
activity, that is, at time 𝑡, there is a PM activity occurring on
a givenmachine𝑀

𝑘
.Then two situations we should consider,

that is, the first is that when an operation is just being pro-
cessed on𝑀

𝑘
when the disruption event occurs. The second

situation is that the affected machine𝑀
𝑘
is idle and no op-

eration is affected by the PM activity.

(1) Situation 1. For the first situation, an operation is affected
by the PM activity. Figure 2 gives the example chart for the
situation. From Figure 2, we can see that, at time point 𝑡

1
, the

machine 𝑀
2
shows a PM activity. It will restart its work at
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Figure 3: Situation 2 of PM activity.

time point 𝑡
2
. However, before the PMactivity of themachine,

the operation 𝐽
1
has started its work and cannot complete its

work at time point 𝑡
1
. In this situation, we have to do the

following works for different realistic production systems.

(i) When an operation is being processed and the pro-
cessing machine needs to be maintenanced, we have
to drop the affected operation and all its following
operations. This is appliable for some certain realistic
production system, such as steelmaking-casting sys-
tem. Because of temperature restriction, an operation
cannot wait for the restart work of the machine and
has to be erased from the system because of its
temperature loss. For example, for iron body, when its
temperature decreases, its component structure will
be destroyed.

(ii) In another situation, the affected operation will keep
its previous work and wait for the restart of the
affected machine. When the affected machine is
available, the affected operation can restart its work
and continue the following work.

(2) Situation 2. For the second situation, no working opera-
tion is affected by the PM activity. In this situation, we should
consider whether there is any operation which is allocated
to the affected machine during the PM activity. That is, if
an operation is scheduled to be processed on the affected
machine before its restart, then we should reconsider the
assignment rule, which is given as follows.

(i) If an operation is scheduled to be processed on the
affected machine, then the start time of the operation
is located between the start and end time point of
the PM activity. At that situation, we should assign
a new machine for the affected operation if there is
another available machine for the affected operation.
For example, in Figure 3, the start time of the job 𝐽

3

is between the start and end time of the PM event on
𝑀
2
. When the PM event occurs on the machine, we

should assign another machine for 𝐽
3
; here, we can

select𝑀
3
for processing 𝐽

3
.

(ii) Another situation is thatwe cannot select anotherma-
chine for the affected operation, because of the in-
stability of the system. At that situation, we can only
choose to keep the assignment machine for the af-
fected operation and start its work after the availabil-
ity of the affected machine.

4.4. Initialization Heuristic. In the initialization phase, we
presented two heuristics, which are presented as follows.

(1)The First Initial Heuristic. The first initial heuristic is very
simple and easy to implement, which is named INT-I with the
following steps.

Step 1. Perform the following step for 𝑃
𝑠
times.

Step 2. Randomly generate a particle.

Step 3. Evaluate the new-generated particle and insert it into
the current population.

(2)The Second Initial Heuristic. The second initial heuristic is
named INT-II, which is given as follows.

Step 1. Generate a particle using the NEH approach [44] and
insert it into the initial population.

Step 2. Perform the following step for 𝑃
𝑠
− 1 times.

Step 3. Randomly generate a particle and evaluate the new-
generated particle.

Step 4. If the new-generated particle is not equal with any
individual in the current population, then insert it into the
initial population; otherwise, ignore it.

4.5. Discrete PSO Process. Each particle in the current pop-
ulation updates its status through the following three pro-
cedures: (1) learning through its history status, (2) learning
through its local best, and (3) learning through the global best
found so far.

Similar to [34], the discrete version of PSO is realized as
follows.

(i) For the process of learning through its history status,
we embed the mutation operator in the PSO algo-
rithm. The mutation operators include swap, insert,
multiple swap [34], and multiple insert. The multiple
insert operator is developed firstly in this study.
The detailed steps are as follows. Firstly, randomly
produce a position 𝑟

1
range at [2, 𝑙en − 1], 𝑐, where 𝑙en

represents the length of the solution. Secondly, insert
the element in the position (𝑟

1
− 1) to the position at

(𝑟
1
+ 1). Thirdly, evaluate the new-generated solution

and replace the current solution if a better individual
is found.

(ii) For the process of learning through its local best and
learning through the global best, apply the crossover
operator between the two selected solutions.
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The detailed implementation of the crossover
operators is discussed in the following section.

4.6. Crossover Operators. In [45], the authors verified many
crossover operators for the regular flowshop (PMX or par-
tially mapped crossover, OP or one point order crossover, TP
or two-point order crossover, OX or order crossover, UOB or
uniform order based, and several others). The results showed
that the offspring generated after crossover tended to beworse
than their progenitors on many occasions. In this study, we
tested the following crossover operators in HFS with PM
environments:

(i) PMX or partially mapped crossover;
(ii) OP or one point order crossover;
(iii) TP or two-point order crossover;
(iv) PTL crossover [34].

4.7. ILS-Based Local Search. To further improve the searching
ability of the proposed algorithm, we apply the ILS-based
local search for the best solution found so far in each iteration.
That is, after the three learning processes discussed in the
above section, the ILS-based local search will be applied for
the best solution for enhanced searching. The detailed steps
of the ILS-based local search are given as follows.

Step 1. For the best solution, perform the following steps until
the stop condition is satisfied.

Step 2. Destruction phase: randomly generate aposition in
the current solution. Delete the corresponding element from
the current solution.

Step 3. Construction phase: for the deleted element, perform
the following steps.

Step 3.1. For each candidate position in the current solution,
insert the deleted element and evaluate the partial solution.

Step 3.2. Select the best position for the deleted element and
insert it into the best position.

4.8. Framework of the Proposed Algorithm. In this study, we
proposed a hybrid algorithm for solving the HFS problem
with PMactivity. In the decoding procedure, we select the fol-
lowing rules to decode each solution; in Situation 1, we choose
to keep the work of the affected operation and continue its
work after the affectedmachine is available. In Situation 2, we
choose to assign another machine for the affected operation.

The flowchart of the proposed algorithm is given as
follows.

Step 1. Set the system parameters.

Step 2. Produce the initial population of particles.

Step 3. Evaluate each particle and record the best solution
found so far.

Step 4. If the stop condition is satisfied, stop the algorithm.
Otherwise, perform the following steps.

Step 5. Perform learning phase.

Step 5.1. Perform the procedure of learning by itself.

Step 5.2. Perform the procedure of learning through its local
best.

Step 5.3. Perform the procedure of learning through the global
best.

Step 6. ILS-based local search phase: for the best solution
found so far, perform the ILS-based local search procedure.

Step 7. Go back to Step 4.

5. Numerical Analysis

The proposed algorithm is coded in C++, on DELL i7
CPU with 16GB memory. For each instance, we conduct 20
independently runs, and the best, worst, and average values
are collected for comparisons.

5.1. Experimental Data. The proposed PSO-ILS algorithm
was tested using the variation of the benchmark problems
provided by Carlier andNéron [46].There are 77 instances in
Carlier and Néron’s benchmark problems, which range from
10 jobs and 5 stages to 15 jobs and 10 stages. Each instance is
represented by a three-number file name.The three numbers
are number of jobs, number of stages, and problem structure
index, which can be referred in [46]. For simplicity, the
variations of the 77 benchmark problems are set with the
same name.The variation implementation is implemented as
follows.

(i) For each instance, run the proposed algorithm with-
out considering any PM activity and get the baseline
result.

(ii) In each baseline result, at each stage, randomly select a
time point 𝑡 at which a machine (hereafter called𝑚

𝑘
)

is working.
(iii) Select the working machine (𝑚

𝑘
) and generate a

random PM activity duration 𝑑
𝑏
.

(iv) Record the PM activity data, including the PM time
window [𝑡, 𝑡 + 𝑑

𝑏
], and the affected machine𝑚

𝑘
.

5.2. Parameter Tuning for PSO. In the canonical PSO algo-
rithm, the parameters are as follows:

(i) population size: 𝑃
𝑠
;

(ii) learning probability from the local best: 𝑐
1
;

(iii) learning probability from the global best: 𝑐
2
;

(iv) learning probability by itself: 𝑝
𝑚
;

(v) crossover operator type;
(vi) mutation operator type.
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Table 1: Crossover type.

Crossover type Description
CT-I OP
CT-II TP
CT-III PMX
CT-IV SJ2OX
CT-V PTL

For each instance, we memorized the best solution found
by all the compared algorithms and calculated the relative
percentage deviation over the best solution for each com-
pared algorithm, which is computed as follows:

RPD
𝑖
=

Comp𝑘
𝑖
− Best

𝑖

Best
𝑖

× 100, (8)

where Comp𝑘
𝑖
is the optimal solution found by the 𝑘th

compared algorithm, while Best
𝑖
is the best solution found

by all the compared algorithms. In the comparison results,
we just calculated the average relative percentage deviation
(RPD) for each instance.

5.2.1. Crossover Type. To test the impact of different
crossover operators, we implemented five kinds of crossover
operators, that is, one-point crossover (OP), two-point
crossover (TP), partially mapped crossover (PMX), similar
job 2-point crossover (SJ2OX), and PTL crossover operator
[34].The description of the given crossover operators is given
in Table 1. The comparisons results of different crossover
types are given in Table 2. In Table 2, the instance name is
given in the first column, while the following five columns
report the RPD values for the five compared algorithms.
From the results we can see that (1) the algorithm with PTL
crossover operator gets better values for 75 out of 77 instances,
except for the two instances, that is, Case 13 and Case 22; (2)
for solving the given 77 instances with PMactivity, in average,
the algorithm with PTL crossover operator obtains a relative
better result, which is obviously better than the other four
compared algorithms. The following algorithms are SJ2OX,
TP, PMX, and OP, respectively.

5.2.2. Crossover Probability. The crossover probability for
learning from the local best (𝑐

1
) and the learning probability

from the global best (𝑐
2
) are critical for the algorithm. In

order to test different learning probabilities, we test five kinds
of probabilities, which are given in Table 3. The comparison
results for different learning probability are given in Table 4.
It can be seen fromTable 4 that CP-I is the best among the five
compared algorithms.That is, the two crossover probabilities
𝑐
1
and 𝑐
2
are set to 0.2 and 0.2, respectively.

5.2.3.Mutation Type. To test the impact of differentmutation
operators, we implemented four kinds of mutation operators,
that is, the swap, insert, multiple swap, and multiple insert
operators, which are given in Table 5. Table 6 gives the

Table 2: Comparisons of different crossover types.

Case RPD
CT-I CT-II CT-III CT-IV CT-V

j10c5a2 0.00 0.00 0.00 0.00 0.00
j10c5a3 0.00 0.00 0.00 0.00 0.00
j10c5a4 0.00 0.00 0.00 0.00 0.00
j10c5a5 0.00 0.00 0.00 0.00 0.00
j10c5a6 0.00 0.00 0.00 0.00 0.00
j10c5b1 0.00 0.00 0.00 0.00 0.00
j10c5b2 0.00 0.00 0.00 0.00 0.00
j10c5b3 0.00 0.00 0.00 0.00 0.00
j10c5b4 0.00 0.00 0.00 0.00 0.00
j10c5b5 0.00 0.00 0.00 0.00 0.00
j10c5b6 0.00 0.00 0.00 0.00 0.00
j10c5c1 0.00 0.00 0.00 0.00 0.00
j10c5c2 0.00 1.35 1.35 1.35 1.35
j10c5c3 0.00 0.00 0.00 0.00 0.00
j10c5c4 1.52 0.00 0.00 0.00 0.00
j10c5c5 0.00 0.00 0.00 0.00 0.00
j10c5c6 0.00 0.00 0.00 0.00 0.00
j10c5d1 0.00 0.00 0.00 0.00 0.00
j10c5d2 0.00 0.00 0.00 0.00 0.00
j10c5d3 0.00 0.00 0.00 0.00 0.00
j10c5d4 0.00 0.00 0.00 0.00 0.00
j10c5d5 0.00 1.52 3.03 1.52 1.52
j10c5d6 0.00 0.00 0.00 0.00 0.00
j10c10a1 0.00 0.00 0.00 0.00 0.00
j10c10a2 0.00 0.00 0.00 0.00 0.00
j10c10a3 0.00 0.00 0.00 0.00 0.00
j10c10a4 0.00 0.00 0.00 0.00 0.00
j10c10a5 0.00 0.00 0.00 0.00 0.00
j10c10a6 0.00 0.00 0.00 0.00 0.00
j10c10b1 0.00 0.00 0.00 0.00 0.00
j10c10b2 0.00 0.00 0.00 0.00 0.00
j10c10b3 0.00 0.00 0.00 0.00 0.00
j10c10b4 0.00 0.00 0.00 0.00 0.00
j10c10b5 0.00 0.00 0.00 0.00 0.00
j10c10b6 0.00 0.00 0.00 0.00 0.00
j10c10c1 0.00 0.00 0.00 0.00 0.00
j10c10c2 0.00 0.00 0.00 0.00 0.00
j10c10c3 0.86 0.00 0.00 0.00 0.00
j10c10c4 0.00 0.00 0.00 0.00 0.00
j10c10c5 0.00 0.00 0.00 0.00 0.00
j10c10c6 0.00 0.00 0.00 0.00 0.00
j15c5a1 0.00 0.00 0.00 0.00 0.00
j15c5a2 0.00 0.00 0.00 0.00 0.00
j15c5a3 0.00 0.00 0.00 0.00 0.00
j15c5a4 0.00 0.00 0.00 0.00 0.00
j15c5a5 0.00 0.00 0.00 0.00 0.00
j15c5a6 0.00 0.00 0.00 0.00 0.00
j15c5b1 0.00 0.00 0.00 0.00 0.00
j15c5b2 0.00 0.00 0.00 0.00 0.00
j15c5b3 0.00 0.00 0.00 0.00 0.00
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Table 2: Continued.

Case RPD
CT-I CT-II CT-III CT-IV CT-V

j15c5b4 0.00 0.00 0.00 0.00 0.00
j15c5b5 0.00 0.00 0.00 0.00 0.00
j15c5b6 0.00 0.00 0.00 0.00 0.00
j15c5c1 1.18 1.18 0.00 1.18 0.00
j15c5c2 0.00 0.00 0.00 0.00 0.00
j15c5c3 1.15 0.00 1.15 0.00 0.00
j15c5c4 1.12 1.12 1.12 1.12 0.00
j15c5c5 2.67 0.00 0.00 0.00 0.00
j15c5c6 0.00 0.00 0.00 0.00 0.00
j15c5d1 0.00 0.00 0.00 0.00 0.00
j15c5d2 1.18 0.00 0.00 0.00 0.00
j15c5d3 0.00 0.00 0.00 0.00 0.00
j15c5d4 2.38 1.19 1.19 1.19 0.00
j15c5d5 0.00 1.25 1.25 0.00 0.00
j15c5d6 1.23 1.23 0.00 1.23 0.00
j15c10a1 0.00 0.00 0.00 0.00 0.00
j15c10a2 0.00 0.00 0.00 0.00 0.00
j15c10a3 0.00 0.00 0.00 0.00 0.00
j15c10a4 0.00 0.00 0.00 0.00 0.00
j15c10a5 0.00 0.00 0.00 0.00 0.00
j15c10a6 0.00 0.00 0.00 0.00 0.00
j15c10b1 0.00 0.00 0.00 0.00 0.00
j15c10b2 0.00 0.00 0.00 0.00 0.00
j15c10b3 0.00 0.00 0.00 0.00 0.00
j15c10b4 0.00 0.00 0.00 0.00 0.00
j15c10b5 0.00 0.00 0.00 0.00 0.00
j15c10b6 0.00 0.00 0.00 0.00 0.00
Average 0.17 0.11 0.12 0.10 0.04

Table 3: Crossover probability.

Crossover probability c1 c2
CP-I 0.2 0.2
CP-II 0.2 0.8
CP-III 0.5 0.5
CP-IV 0.8 0.2
CP-V 0.8 0.8

Table 4: Comparisons of different crossover probabilities.

Case RPD
CP-I CP-II CP-III CP-IV CP-V

Average 0.08 0.20 0.15 0.13 0.11

comparison results of different mutation types. It can be
seen from Table 6 that the proposed multiple insert mutation
operator performs the best among the compared algorithms.

Table 5: Mutation probability.

Mutation type Description
MT-I Swap
MT-II Insert
MT-III Multiple swap
MT-IV Multiple insert

Table 6: Comparisons of different mutation types.

Case RPD
MT-I MT-II MT-IIII MT-IV

Average 0.08 0.08 0.02 0.01

Table 7: Mutation probability.

Mutation probability 𝑝
𝑚

MP-I 0.1
MP-II 0.2
MP-III 0.5
MP-IV 0.8
MP-V 0.9

Table 8: Comparisons of different mutation types.

Case RPD
MP-I MP-II MP-III MP-IV MP-V

Average 0.12 0.09 0.06 0.08 0.02

Table 9: Population size.

Population size 𝑝
𝑠

PS-I 10
PS-II 20
PS-III 30
PS-IV 50
PS-V 100

Table 10: Comparisons of different population sizes.

Case RPD
PS-I PS-II PS-III PS-IV PS-V

Average 0.06 0.08 0.03 0.06 0.00

Table 11: Different parameters for the canonical PSO.

Parameter Value Description
1 Crossover type CT-V PTL
2 Crossover probability CP-I 𝑐

1
= 0.2, 𝑐

2
= 0.2

3 Mutation type MT-IV Multiple insert
4 Mutation probability MP-V 0.9
5 Population size PS-V 100

5.2.4. Mutation Probability. To test the impact of different
mutation probabilities, we implemented five kinds of muta-
tion probabilities, that is, 0.1, 0.2, 0.5, 0.8, and 0.9, which
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Table 12: Comparisons of the best RPD values.

Case RPD
PSO-ILS ILS IG PSO hGA

j10c5a2 0.00 0.00 0.00 0.00 0.00
j10c5a3 0.00 0.00 0.00 0.00 0.00
j10c5a4 0.00 0.00 0.00 0.00 0.00
j10c5a5 0.00 0.00 0.00 0.00 0.00
j10c5a6 0.00 0.00 0.00 0.00 0.00
j10c5b1 0.00 0.00 0.00 0.00 0.00
j10c5b2 0.00 0.00 0.00 0.00 0.00
j10c5b3 0.00 0.00 0.00 0.00 0.00
j10c5b4 0.00 0.00 1.64 0.00 0.00
j10c5b5 0.00 0.00 0.00 0.00 0.00
j10c5b6 0.00 0.00 0.00 0.00 0.00
j10c5c1 0.00 7.35 5.88 0.00 0.00
j10c5c2 0.00 2.70 2.70 0.00 0.00
j10c5c3 0.00 4.17 2.78 0.00 0.00
j10c5c4 0.00 4.55 4.55 0.00 0.00
j10c5c5 0.00 5.13 1.28 0.00 0.00
j10c5c6 0.00 4.35 1.45 0.00 0.00
j10c5d1 0.00 4.55 1.52 0.00 0.00
j10c5d2 0.00 1.35 0.00 0.00 0.00
j10c5d3 0.00 3.13 1.56 0.00 0.00
j10c5d4 0.00 2.86 2.86 0.00 0.00
j10c5d5 0.00 4.55 4.55 1.52 1.52
j10c5d6 0.00 4.84 3.23 0.00 0.00
j10c10a1 0.00 0.00 0.00 0.00 0.00
j10c10a2 0.00 2.53 3.16 0.00 0.00
j10c10a3 0.00 1.35 0.00 0.00 0.00
j10c10a4 0.00 0.00 0.00 0.00 0.00
j10c10a5 0.00 0.00 0.00 0.00 0.00
j10c10a6 0.00 2.05 4.11 0.00 0.00
j10c10b1 0.00 0.00 0.00 0.00 0.00
j10c10b2 0.00 0.64 0.64 0.00 0.00
j10c10b3 0.00 0.00 0.00 0.00 0.00
j10c10b4 0.00 0.00 0.00 0.00 0.00
j10c10b5 0.00 0.00 0.00 0.00 0.00
j10c10b6 0.00 0.00 0.00 0.00 0.00
j10c10c1 0.00 2.61 1.74 0.00 0.00
j10c10c2 0.00 2.52 1.68 0.00 0.00
j10c10c3 0.00 3.45 2.59 0.00 0.00
j10c10c4 0.00 2.50 1.67 0.00 0.00
j10c10c5 0.00 1.59 3.17 0.00 0.00
j10c10c6 0.00 1.89 3.77 0.00 0.00
j15c5a1 0.00 0.00 0.00 0.00 0.00
j15c5a2 0.00 0.00 0.00 0.00 0.00
j15c5a3 0.00 0.00 0.00 0.00 0.00
j15c5a4 0.00 0.00 0.00 0.00 0.00
j15c5a5 0.00 0.00 0.00 0.00 0.00
j15c5a6 0.00 0.00 0.00 0.00 0.00
j15c5b1 0.00 0.00 0.00 0.00 0.00
j15c5b2 0.00 0.00 0.00 0.00 0.00
j15c5b3 0.00 0.00 0.00 0.00 0.00

Table 12: Continued.

Case RPD
PSO-ILS ILS IG PSO hGA

j15c5b4 0.00 0.00 0.00 0.00 0.00
j15c5b5 0.00 0.60 0.00 0.00 0.00
j15c5b6 0.00 0.00 0.00 0.00 0.00
j15c5c1 0.00 5.88 8.24 0.00 1.18
j15c5c2 0.00 4.40 4.40 0.00 0.00
j15c5c3 0.00 10.34 8.05 0.00 0.00
j15c5c4 0.00 3.37 5.62 0.00 0.00
j15c5c5 0.00 9.46 10.81 0.00 1.35
j15c5c6 0.00 7.69 6.59 0.00 0.00
j15c5d1 0.00 0.00 0.00 0.00 0.00
j15c5d2 0.00 9.52 9.52 1.19 0.00
j15c5d3 0.00 7.23 6.02 0.00 0.00
j15c5d4 0.00 7.14 5.95 1.19 1.19
j15c5d5 0.00 8.86 8.86 1.27 0.00
j15c5d6 0.00 4.94 4.94 1.23 1.23
j15c10a1 0.00 0.00 0.00 0.00 0.00
j15c10a2 0.00 2.00 2.00 0.00 0.00
j15c10a3 0.00 0.00 1.01 0.00 0.00
j15c10a4 0.00 0.00 1.78 0.00 0.00
j15c10a5 0.00 0.55 0.00 0.00 0.00
j15c10a6 0.00 1.00 0.00 0.00 0.00
j15c10b1 0.00 0.00 0.00 0.00 0.00
j15c10b2 0.00 0.00 0.00 0.00 0.00
j15c10b3 0.00 0.00 0.00 0.00 0.00
j15c10b4 0.00 0.00 0.00 0.00 0.00
j15c10b5 0.00 0.00 0.00 0.00 0.00
j15c10b6 0.00 0.00 0.00 0.00 0.00
Average 0.00 2.00 1.82 0.08 0.08

are given in Table 7. Table 8 gives the comparison results of
different mutation probabilities. It can be seen from Table 8
thatmutation probability with the value 0.9 performs the best
among the compared algorithms.

5.2.5. Population Size. To test the impact of different popula-
tion sizes, we implemented five kinds of population sizes, that
is, 10, 20, 30, 50, and 100, which are given in Table 9. Table 10
gives the comparison results of different population sizes. It
can be seen from Table 10 that population size with the value
100 performs the best among the compared algorithms.

5.2.6. The Final Parameters. After the comparison results for
each kind of parameter, we can conclude the best parameters
for the canonical PSO algorithm, which are given in Table 11.

5.3. Comparisons Analysis. To make a pair comparison with
the present efficient algorithms, we coded the following
algorithms to solve the HFS problem with PM activity. These
compared algorithms include hGA by Ruiz and Maroto [47],
IG by Ruiz and Stützle [48], ILS by Dong et al. [31], and PSO
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Table 13: Comparisons of average RPD values.

Case RPD
PSO-ILS ILS IG PSO hGA

j10c5a2 0.00 0.00 0.00 0.00 0.00
j10c5a3 0.00 0.00 0.00 0.00 0.00
j10c5a4 0.00 0.00 0.00 0.00 0.00
j10c5a5 0.00 0.00 0.00 0.00 0.00
j10c5a6 0.00 0.73 1.45 0.00 0.00
j10c5b1 0.00 0.00 0.00 0.00 0.00
j10c5b2 0.00 0.00 0.00 0.00 0.00
j10c5b3 0.00 0.55 0.00 0.00 0.00
j10c5b4 0.00 0.49 3.44 0.00 0.00
j10c5b5 0.00 0.00 0.00 0.00 0.00
j10c5b6 0.00 0.00 0.00 0.00 0.00
j10c5c1 0.29 8.82 8.53 0.00 0.00
j10c5c2 0.81 3.50 3.77 0.00 0.00
j10c5c3 0.00 5.83 4.17 0.00 0.00
j10c5c4 0.00 6.36 6.06 0.00 0.00
j10c5c5 0.00 6.41 3.59 0.00 0.00
j10c5c6 0.00 5.80 4.93 0.00 0.00
j10c5d1 0.00 5.15 4.85 0.00 0.00
j10c5d2 0.00 2.97 2.70 0.00 0.00
j10c5d3 0.00 6.25 5.94 0.00 0.00
j10c5d4 0.00 3.71 4.57 0.00 0.00
j10c5d5 0.00 5.11 5.11 0.60 0.60
j10c5d6 0.00 6.45 5.81 0.00 0.00
j10c10a1 0.00 0.00 0.00 0.00 0.00
j10c10a2 0.00 3.67 3.67 0.00 0.00
j10c10a3 0.00 2.03 0.68 0.00 0.00
j10c10a4 0.00 0.00 1.48 0.00 0.00
j10c10a5 0.00 0.00 3.24 0.00 0.00
j10c10a6 0.00 3.70 4.79 0.00 0.00
j10c10b1 0.00 0.00 0.00 0.00 0.00
j10c10b2 0.00 0.89 2.80 0.00 0.00
j10c10b3 0.00 0.12 0.00 0.00 0.00
j10c10b4 0.00 0.00 0.00 0.00 0.00
j10c10b5 0.00 0.00 0.12 0.00 0.00
j10c10b6 0.00 0.36 0.36 0.00 0.00
j10c10c1 0.00 3.83 3.48 0.00 0.00
j10c10c2 0.00 3.53 2.69 0.00 0.00
j10c10c3 0.00 3.61 3.09 0.17 0.34
j10c10c4 0.00 3.17 2.83 0.00 0.00
j10c10c5 0.00 4.92 5.71 0.00 0.00
j10c10c6 0.00 2.45 4.53 0.00 0.00
j15c5a1 0.00 0.79 0.56 0.00 0.00
j15c5a2 0.00 0.00 0.00 0.00 0.00
j15c5a3 0.00 0.00 0.00 0.00 0.00
j15c5a4 0.00 0.00 0.26 0.00 0.00
j15c5a5 0.00 0.00 0.49 0.00 0.00
j15c5a6 0.00 0.00 0.00 0.00 0.00
j15c5b1 0.00 0.00 0.00 0.00 0.00
j15c5b2 0.00 0.00 0.00 0.00 0.00
j15c5b3 0.00 0.00 0.13 0.00 0.00

Table 13: Continued.

Case RPD
PSO-ILS ILS IG PSO hGA

j15c5b4 0.00 0.54 0.68 0.00 0.00
j15c5b5 0.00 1.93 1.08 0.00 0.00
j15c5b6 0.00 0.00 0.11 0.00 0.00
j15c5c1 0.00 7.71 8.88 0.23 0.47
j15c5c2 0.00 6.81 6.59 0.22 0.00
j15c5c3 0.00 11.72 10.11 0.23 0.23
j15c5c4 0.00 5.58 5.80 0.22 0.00
j15c5c5 0.00 10.46 12.06 0.80 1.88
j15c5c6 0.00 9.45 9.01 0.00 0.00
j15c5d1 0.00 0.00 0.00 0.00 0.00
j15c5d2 0.00 9.48 9.48 0.95 0.47
j15c5d3 0.00 7.93 7.45 0.24 0.00
j15c5d4 0.00 7.58 7.58 0.71 0.71
j15c5d5 0.25 10.53 10.53 0.25 0.00
j15c5d6 0.00 6.14 6.39 0.74 0.74
j15c10a1 0.00 0.17 0.00 0.00 0.00
j15c10a2 0.00 3.30 3.20 0.00 0.00
j15c10a3 0.00 0.61 2.32 0.00 0.00
j15c10a4 0.00 0.00 1.96 0.00 0.00
j15c10a5 0.00 0.77 0.77 0.00 0.00
j15c10a6 0.00 2.70 0.10 0.00 0.00
j15c10b1 0.00 0.00 0.00 0.00 0.00
j15c10b2 0.00 0.00 0.21 0.00 0.00
j15c10b3 0.00 0.00 0.00 0.00 0.00
j15c10b4 0.00 0.00 0.00 0.00 0.00
j15c10b5 0.00 0.60 0.20 0.00 0.00
j15c10b6 0.00 0.00 0.00 0.00 0.00
Average 0.02 2.67 2.73 0.07 0.07

by Liao et al. [49]. The parameters for the compared algo-
rithms are set to the same values in their literature, except that
the stop condition is set to 20 seconds.

The comparison results for the best RPD values are given
in Table 12. It can be seen from Table 12 that (1) for solving
the HFS with PM activities, the proposed algorithm obtains
all optimal results for 77 benchmark instances, which is
obviously better than the other compared algorithms; (2) in
average, the proposed algorithm is also better than the other
compared algorithms; (3) the proposed PSO-ILS algorithm is
better than the canonical PSO algorithm, which also verifies
the efficiency of the ILS-based local search; (4) the proposed
algorithm is better than the canonical IG algorithm, which
shows the exploration ability of the proposed algorithm.

Table 13 reports the comparison results for the average
RPD values. It can be seen fromTable 13 that (1) the proposed
algorithm obtains 74 optimal values out of 77 instances;
(2) in average, the PSO-ILS algorithm obtains the best
average RPD values, which is obviously better than the other
algorithms.The following algorithms are PSO, hGA, ILS, and
IG, respectively.
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6. Conclusions

In this study, we proposed a hybrid algorithm for solving
the HFS with PM activities. In the proposed algorithms, dif-
ferent crossover and mutation operators are applied for the
learning procedure. The ILS-based local search procedure is
embedded in the proposed algorithm to further improve the
searching ability of the algorithm. Variation versions of 77
Carlier and Néron’s benchmark problems are presented to
adapt to the realistic industrial horizon. Experimental com-
parisons with four present algorithms show the efficiency
and effectiveness of the proposed algorithm.The future work
is to apply the proposed algorithm for solving rescheduling
problems in hybrid and flexible environments [50–52].
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Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A
fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is
used tomodel the solution distribution.The parameters of Gaussian come from the statistical information of the best individuals by
fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain
the convergent performance.The performances of the algorithm are examined based upon several benchmarks. In the simulations,
a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the
evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA.The
experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits
a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM
and compared with the classical-PID and GA.

1. Introduction

Various optimization problems exist in engineering and
academic research, which expect to find the best solution. If
the problems are conventional or linear, the common math-
ematical methods will be effective. However, if the problems
are too complicated to the commonmethods, some heuristic
algorithmswill be considered. Evolutionary algorithms (EAs)
are very popular heuristic optimization techniques in the
recent years. EAs are general terms of several optimization
algorithms that are inspired by the Darwinian theory of
natural evolution. It has the capability of solving the compli-
cated optimization problems with nonlinear, high dimension
and non-continuous characteristics. The algorithms search
the optimal solution from many possible solutions, and the
genetic operators, which simulate the principle of natural
genetic evolution, are used to update the individuals. By
several iterations, the optimal solution will be obtained,
such as the genetic algorithms (GAs) [1], evolution strategies
(ES), differential evolution (DE) [2, 3], and the artificial
immune system (AIS) [4, 5] and also swarm evolutionary
algorithm like particle swarm optimization (PSO) [2, 6, 7].

Although these algorithms have applied success to solve
kinds of optimization problems [8], there are some inherent
drawbacks. For example, if the building blocks spread all over
the solutions, the standard EAs have very poor performance
[9]. The recombination operators ether breaks the building
blocks frequently or do not mix them effectively.

In recent years, estimation of distribution algorithms
(EDAs) have attracted a lot of attention. It was proposed by
Miuhlenbein and Paaß [10] and emerged as a generalization
of EAs for overcoming some problems of EAs, like build-
ing blocks broken, poor performance in high dimensional
problems, and the difficulty of modeling the distribution
of solutions. Sometimes the gene blocks are built based on
simple selection and crossover operators are not effective
enough to get optimum solution as the blocks may be broken
in EAs [9, 11]. Compared with building blocks in EAs, EDAs
do not use the crossover or mutation operator to update
individuals [12]. Instead, they extract the global statistical
information from the superiority individual of previous
iteration and build the distribution probability model of
solution for sampling new individuals [13]. It is the main
advantages of EDAs compared with EAs that the search
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process is guided by the probabilistic model with explanatory
and transparent characteristics [14, 15]. The algorithms are
based on the probabilistic models following two steps: (1)
Statistics the information of selected individuals and establish
the probability model and (2) generate new population by
sampling the probability model. Therefore, the new offspring
of EDAs is based on the probability distribution instead of
performing recombination of individuals as EAs.

The type of probabilistic models used by EDAs and the
methods employed to learn them may vary according to the
characteristics of the optimization problem.Therefore, differ-
ent EDAs have been proposed for discrete and continuous
problems. In traditional EDAs, the individuals are encoded
with binary strings inheritance from EAs. In the population-
based incremental learning (PBIL) algorithm [16], the indi-
viduals are encoded as fixed length binary strings. The
population of solutions is updated by the probability vector,
which is initially set to probability 0.5 for each position
of the binary strings. For univariate marginal distribution
algorithm (UMDA) [10], the frequencies of values on each
position are computed according to the selected individuals,
which are then used to generate the new population. The
compact genetic algorithm (cGA) [17] updates the population
according to the probability vector like the PBIL. However,
unlike the PBIL, it modifies the probability vector according
to the contribution of individuals.

In case of real-valued problems, there are some appro-
aches to extend EDAs to other domains, such as mapping
other domains to the domain of fixed-length binary strings
and then mapping the solution back to the problem’s original
domains, or extend or modify the class of probabilistic
models to other domains. This first approach might lead to
undesirable limitations and errors on real-coded problems.
For the second method, the normal pdf is commonly used
in continuous EDAs to represent univariate or multivariate
distributions. Therefore, some EDAs based on the Gaussian
distribution have been designed. In the stochastic hill-
climbing with learning by vectors of normal distributions
[18], the population of solutions is modeled by a vector of
mean of Gaussian normal distribution 𝜇

𝑖
for each variable.

The standard deviation 𝜎 is stored globally and it is the same
for all variables. After generating a number of new solutions,
the mean 𝜇

𝑖
are shifted towards the best solutions and the

standard deviation 𝜎 is reduced to make future exploration
more specifically. Various ways of modifying the 𝜎 parameter
have been exploited in [19]. Regularized estimation of distri-
bution algorithms (RegEDA) [20] makes use of regularized
model estimation in EDAs for continuous optimization. The
regularization techniques can lead to more robust model
estimation in EDAs. Continuous Gaussian estimation of
distribution algorithm (CGEDA) [14] which is a kind of
multivariate EDAs is proposed for real-coded problems.
Gaussian data distribution and dependent individuals are two
assumptions that are considered inCGEDA. In the algorithm,
the joint distribution of promising solutions is used in every
dimension of the problem. In literature [21, 22], an estimation
of distribution algorithm with Gaussian process based on
a subspaces method was proposed, which can reduce the
computation of complex problems. A real-coded EDA using

Initialization

Evaluation individuals

Elitism strategy
Copy (BN) best individuals to next generation

Statistical information obtaining

Build probability model

Sampling (N-BN) new individuals

Termination criteria?

End

No

Yes

Figure 1: Flowchart of FEGEDA.

multiple probabilistic models (RMM) was proposed [23],
which includes multiple types of probabilistic models with
different learning rates and diversities. There are also other
EDAs, which adopt more involved probability models and
mixtures of pdfs. However, the probability models cannot
reflect the problem completely, because it is hard to obtain an
accurate model. In particular, with the increases of number
of variables and the number of mixture components, the
optimization results become unreliable [24]. Therefore, we
specifically focus on the use of the single normal distribution
in this paper, as it is more intuitive to be analyzed. Moreover,
the use of single and easy normal pdf will not prevent us
from obtaining a better understanding of the exploitation
of the solutions. We propose a fast elitism Gaussian EDA
(FEGEDA) based on the standard process of EDA. A fast
learning rule is used to parameters of pdf learning, and an
elitism strategy is used for a better performance. Hence, the
increased convergence exhibited in this study is expected.

2. The Fast Elitism Gaussian EDA

2.1. The Framework of the Algorithm. EDA is realized by
probability estimation and sampling.Theprobabilitymodel is
used to estimate the solution distribution, and the probability
sampling is used to generate new individuals. In order to
improve the performance of standard EDA, we adopt an
elitism strategy in FEGEDA. Figure 1 is the flowchart of
FEGEDA.

The steps of the FEGEDA are as follows.

Step 1 (initialization). Set the population size 𝑁, define
the number 𝐵𝑁 of best individuals for probability model
establishment and generate the initialized population
Pop(0).
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Step 2 (population evaluation). Evaluate the 𝑁 individuals
𝑥
1
, 𝑥
2
, . . . 𝑥
𝑁
according to fitness function 𝑓(𝑥).

Step 3 (statistical information obtaining). Select BN best
individuals according to the fitness and obtain the statistical
information of mean 𝜇 and standard deviation 𝜎.

Step 4 (probability model 𝑃(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) establishment).

Use the fast learning rule and build the Gaussian normal
distribution by the 𝑢 of means and a covariance 𝜎.

Step 5 (new population Pop(𝑘) generation). Make use of
sampling technique to generate a new population according
to the probability model built in Step 4.

Step 6. Finally, the iteration is terminated according to the
termination criteria. These criteria can be as simple as a
fixed number of generations or imply a statistical analysis
of the current population to evaluate the stopping condition
criteria. If the stopping conditions do not meet, return to
Step 2.

The probability model is built according to the distribu-
tion of the best solutions in the current population.Therefore,
sampling solutions from this model should fall in promising
areas with high probability. For some iterations, the solutions
should be more likely to be close to the global optimum.The
details of the main algorithm are explained in the following.

2.2. Initialization. In the algorithm, little parameters are
needed to set except for the population size 𝑁 and the
best individuals size 𝐵𝑁 selected to build the probability
model.Then, a random function is used to generate the initial
population according to the variable domain [𝐿

𝑖
, 𝐻
𝑖
]. Make

use of random function generating variables 𝑧
𝑖
∈ [𝑎
𝑖
, 𝑏
𝑖
] and

then convert to the domain [𝐿
𝑖
, 𝐻
𝑖
] by

𝑥
𝑖

𝑛
= 𝐿
𝑖
+

𝐻
𝑖
− 𝐿
𝑖

𝑏
𝑖
− 𝑎
𝑖

(𝑧
𝑖
− 𝑎
𝑖
) , (1)

where 𝑥𝑖
𝑛
is the 𝑖th optimization variable of 𝑛th individual,

𝑧
𝑖
is the 𝑖th random variable, 𝑎

𝑖
and 𝑏

𝑖
are the bounds of

𝑖th random variable, and 𝐿
𝑖
, and 𝐻

𝑖
are the bounds of 𝑖th

optimization variable.

2.3. Population Evaluation. In the individuals’ evaluation, it
depends on the characteristics of the problem. Convention-
ally, we should define an objective function 𝑓(𝑥) in order to
evaluate the fitness of individuals. Consider

Min (&Max) 𝑦 = 𝑓 (𝑥)

S.t. 𝑔 (𝑥) = [𝑔
1
(𝑥) , 𝑔

2
(𝑥) , . . . , 𝑔

𝑘
(𝑥)] ≤ 0

ℎ (𝑥) = [ℎ
1
(𝑥) , ℎ

2
(𝑥) , . . . , ℎ

𝑗
(𝑥)] = 0

𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑚
]

𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝐻
𝑖
(𝑖 = 1, 2, . . . , 𝑚) ,

(2)

where 𝑥 is 𝑚 dimensional optimization variable, 𝑓(𝑥) is the
objective function,𝑔

𝑘
(𝑥) is the 𝑘th inequality constraints, and

ℎ
𝑗
(𝑥) is the 𝑗th equality constraints. 𝐿

𝑖
and𝐻

𝑖
are the bounds

of variable.

2.4.The Establishment of ProbabilityModel. Themost impor-
tant and crucial step of EDAs is the construction of proba-
bilistic model for the solution distribution; to do this step of
FEGEDA, Gaussian distribution of individuals is assumed to
model and estimate the distribution of promising solutions
in every dimension of the problem. Therefore, mean and
standard deviation parameters of promising population are
requiredwhich computed adaptively bymaximum likelihood
technique.

2.4.1. Statistical Information Acquisition. In order to con-
struct a pdf model of the promising solutions, we should
obtain the statistical information of promising solutions.
Hence, statistical techniques have been extensively applied
to the optimization problems. Fortunately, these parameters
can be efficiently computed by the maximum-likelihood
estimations [24].

In the pdf models that assume full independence, every
variable is assumed independent of any variable. It must
be noted that, in difficult optimization problems, different
dependency relations can appear between variables and,
hence, considering all of them independent may provide
a model that does not represent the problem accurately.
However, even if more involved probability models and mix-
tures of pdfs are defined and used in EDAs, the probability
models cannot reflect the problem completely. For system
modeling, the dependency relations between variables are
very important. Conversely, for optimization problem, the
problem decoupled as the combination of some independent
variables is expected. Therefore, we specifically focus on
the use of independent probability model to construct a
fast elitism Gaussian EDA with better performance. That is,
the probability distribution 𝑃(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) of the vector

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) of 𝑚 variables is assumed to consist of a

product of the distributions of individual variables:

𝑃 (𝑥
1
, 𝑥
2
, . . . 𝑥
𝑚
) =

𝑚

∏

𝑖=1

𝑃 (𝑥
𝑖
) . (3)

This is very suitable for calculation. Different from the
discrete case, the number of parameters to be estimated does
not grow exponentially with 𝑚. Therefore, it is relatively fast
and efficient.

The mean and covariance parameters of the normal pdf
can be estimated from the selected individuals. Consider

𝜇
𝑖
(𝑘) =

1

𝑁

𝐵𝑁

∑

𝑛=1

𝑥
𝑛

𝑖
(𝑘) ,

𝜎
2

𝑖
(𝑘) =

1

𝑁

𝐵𝑁

∑

𝑛=1

(𝑥
𝑛

𝑖
(𝑘) − 𝜇

𝑖
(𝑘)) (𝑥

𝑛

𝑖
(𝑘) − 𝜇

𝑖
(𝑘))
𝑇

,

(4)
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𝜇
𝑖
(𝑘) is the mean of 𝑖th variable in 𝑘th iteration, 𝐵𝑁 is the

selected individuals size, and 𝜎2
𝑖
(𝑘) is the covariance of 𝑖th

variable in 𝑘th iteration.
These parameters are always learned in the process of

optimization. The iterative learning approaches are used in
some literatures [23, 25–27] as follows:

𝜇
𝑖
(𝑘) = 𝛼𝜇

𝑖
(𝑘) + 𝛽𝜇

𝑖
(𝑘 − 1) , (5)

𝜎
2

𝑖
(𝑘) = 𝛼𝜎

2

𝑖
(𝑘) + 𝛽𝜎

2

𝑖
(𝑘 − 1) , (6)

where 𝛼 and 𝛽 are the weights of 𝜇
𝑖
(𝑘) and 𝜇

𝑖
(𝑘 − 1). The

learning method depends on the class of models used; this
step involves parametric or structural learning, also known
as model fitting and model selection, respectively. This can
improve the performance of EDAs, no matter how simple or
complex the learning rule is.We adopt a fast learningmethod
(𝛼 = 1 and 𝛽 = 0) in this paper, and an elitism strategy is
adopted to maintain a smooth convergence process.

2.4.2. Probability Model. In this paper, the normal pdf
𝑁(𝜇
𝑖
, 𝜎
𝑖
) for variables 𝑥

𝑖
is parameterized by the 𝑢 of means

and covariance 𝜎, which is defined by

𝑁(𝑥
𝑖
, 𝜇
𝑖
, 𝜎
𝑖
) =

1

𝜎
𝑖
√2𝜋

𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

𝑖
. (7)

The probability distribution 𝑃(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) of the vec-

tor (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) of𝑚 variables is

𝑃 (𝑥
1
, 𝑥
2
, . . . 𝑥
𝑚
) =

𝑚

∏

𝑖=1

1

𝜎
𝑖
√2𝜋

𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

𝑖
. (8)

The parameters (𝜇
𝑖
, 𝜎
𝑖
) have been estimated according

to the selected best individuals. The estimation of marginal
parameters (𝜇

𝑖
, 𝜎
𝑖
) is updated in every iteration.

2.5. Probability Sampling. The probability sampling is used
to generate new individuals using the learned probabilistic
models. The sampling method depends on the type of
probabilistic model and the characteristics of the problem.
For normal pdf problem, a conversion is used in order to
convert the normal pdf to a standard normal pdf.

Suppose

𝑦 =

𝑥 − 𝜇

𝜎

. (9)

The normal pdf about 𝑥 is converted to a standard normal
pdf about 𝑦. Consider

𝑁(𝑥, 𝜇, 𝜎) → 𝑁(𝑦, 0, 1) . (10)

The variable 𝑥 can be calculated by

𝑥 = 𝜎𝑦 + 𝜇. (11)

In the probability models, every variable (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

is assumed independent of any variable. The mean and
variance of variable 𝑥

𝑖
are 𝜇
𝑖
and 𝜎

𝑖
; when 𝑛 → ∞,

𝑦 =

(∑
𝑛

𝑖=1
𝑥
𝑖
− ∑
𝑛

𝑖=1
𝜇
𝑖
)

√∑
𝑛

𝑖=1
𝜎
2

𝑖
→ 𝑁(𝑦, 0, 1)

. (12)
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Figure 2: Cartogram of sampling data.

If 𝑥
𝑖
is the evenly distributed random number of [0, 1],

𝜇
𝑖
= 𝐸 (𝑥) =

1

2

,

𝜎
2

𝑖
= 𝑉 (𝑥) =

1

12

.

(13)

Therefore,

𝑦 =

(∑
𝑛

𝑖=1
𝑥
𝑖
− 𝑛/2)

√𝑛/12

(14)

when 𝑛 → ∞ and 𝑦 → 𝑁(0, 1). We can select an appro-
priate 𝑛 to generate a normal pdf for probability sampling.
Figure 2 shows the cartogram of sampling data in different 𝑛.
From the figure, we can see the sampling data following the
pdf better with the increasing of 𝑛.

2.6. Elitism Strategy. Elitism strategy is an effective strategy
to ensure that the best individual is selected as the next
generation in EAs, because the best individual may include
the information of optimal solution. Therefore, elitism can
improve the convergence performance of EAs in many cases
[28], and elitism has long been considered an effective
method for improving the efficiency of EAs [29]. This is
achieved by simply copying the best individual directly to the
newgeneration [30].However, the number of best individuals
selected as the next generationmust be handled properly and
carefully; otherwise it may lead to premature convergence or
cannot improve the efficiency of algorithm. Figure 3 is the
process of new population generation.The elitism individuals
will be selected as the new generation directly, and the
best individuals are used to establish a probability model to
generate other individuals of the next generation. Consider

Pop (𝑘) = Elitism(𝐵𝑁)
𝑘−1
∪ Sample(𝑁 − 𝐵𝑁)

𝑘−1
, (15)

where Elitism(𝐵𝑁) is the operator to copy the best solution
of Pop(𝑘 − 1) to Pop(𝑘) Sample() is the sampling function,
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Figure 3: Population operation diagram.

𝑁 is the population size, and 𝐵𝑁 is the best selected
individuals number.

3. Simulation

In the simulation, in order to exhibit the performance of
FEGEDA, we carry out several different simulations, includ-
ing one-dimensional benchmark, two-dimensional bench-
marks, and higher dimensional benchmarks. Moreover, we
compare the FEGEDA with other EDAs and other kinds of
optimization algorithms.

3.1. One-Dimensional Benchmark. One-dimensional prob-
lem is easy for FEGEDA. In order to visualize the information
of optimization process and models learning process during
the evolution clearly, we carry out a one-dimensional bench-
mark optimization simulation:

𝑓
0
(𝑥) = sin (𝑥) + sin(10

3

𝑥) + log (𝑥) − 0.84𝑥 + 3, (16)

where𝑓
0
is amultimodal [31],𝑥 ∈ [2.7, 7.5], with several local

minimum value, and the global minimum value 1.6013 at 𝑥 =
5.19978.

The best individuals number 𝐵𝑁 selected to build
the probability model is a very important parameter for
FEGEDA. The elitism strategy is a very important strategy
to maintain a smooth optimization process in this paper.
Therefore, in order to visualize the performance of corre-
sponding part, we use different BN to testify the effect of
outstanding individuals No. to the algorithm performance,
and the elitism strategy is optional to testify the effect of
the elitism strategy to the convergent performance of the
algorithm. Many literatures [32–34] have proved that EDAs
are convergent under certain conditions. From Figure 4, we
can see that the optimization processes are unstable due to the
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Figure 4: The optimum solutions of each iteration under different
conditions.

use of fast learning rule when the algorithm is without elitism
strategy no matter what 𝐵𝑁 is. The elitism strategy can make
the convergent process smooth and improve the convergent
performance too.

In Figure 5, the individuals’ distribution and probability
models of some iteration are exhibited. The individuals’
distributions of iterations 1, 10, and 100 are shown in the
Figure 5. The individuals spread over the optimized function
at initial iteration, and then the individuals will focus on
the area of optimum solution with the iterations going on.
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Figure 5: The individuals distribution and probability model of different iterations.

Therefore, the diagram of pdf is flat at the beginning. The
parameter 𝜇 of pdf is smaller and smaller with the increase
of iteration and focus on the global optimum solution. The
probability models learning process is shown in Figure 5.The
elitism strategy is a very important part of the algorithm.
Form the exhibition of probability models learning process
in Figure 5, we can see that the probability model learning
process of solution is smooth when adopting elitism strategy;
otherwise it is unstable.

The best selected individuals number is also an important
parameter. The convergent speed is faster when the best

selected individuals number 𝐵𝑁 is𝑁/2. However, if it is too
small, it will lead to premature.

Figure 6 is the statistics information of population of
some iteration. Form Figure 6, we can see the population dis-
tribution when 𝐵𝑁 = 𝑁 using elitism strategy (Figure 6(a))
or without elitism strategy (Figure 6(b)), and 𝐵𝑁 = 𝑁/2
using elitism strategy (Figure 6(c)) or without elitism strategy
(Figure 6(d)). According to Figure 6, the distribution of
population is stable when using elitism strategy; otherwise it
is fluctuant regardless of 𝐵𝑁 = 𝑁 or 𝐵𝑁 = 𝑁/2. A small 𝐵𝑁
can make the individuals focus on a certain area quickly.
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Figure 6: The boxplot of population for different iterations.

3.2. Two-Dimensional Problems. In order to testify the opti-
mization capability of FEGEDA further, three two-dimensi-
onal complex functions are considered:

𝑓
1
(𝑥, 𝑦) = 0.5 −

sin2√𝑥2 + 𝑦2 − 0.5

(1 + 0.001 ∗ (𝑥
2
+ 𝑦
2
)
2

)

2
,

𝑓
2
(𝑥, 𝑦) = (

3

0.05 + (𝑥
2
+ 𝑦
2
)
2
)

2

+ 𝑥
2
+ 𝑦
2

𝑓
3
(𝑥, 𝑦) = −(𝑥

2
+ 𝑦
2
)

0.25

(sin250 ∗ (𝑥2 + 𝑦2)
0.1

+ 0.1) ,

(17)

where 𝑥, 𝑦 ∈ [−5.12, 5.12]. 𝑓
1
has infinite maximum value,

and the global maximum value 1 is point (0, 0). A circuit
ridge surrounds the global maximum value. Hence, it is easy
to fall into local maximum, which can be used to test the
global searching capability of the algorithm. 𝑓

2
is a local

peak function, and the maximum value is 3600 at point
(0, 0). This function can be used in determining the local



8 The Scientific World Journal

1

0.8

0.6

0.4

0.2

0
5

5
0

0

−5 −5
x

y

f1

(a) Function𝑓1

×103

f2

1

2

3

4

0

5
5

0
0

−5 −5
x

y
0

0
x

y

(b) Function 𝑓2

−1

−2

−3

−4

−5

−6

0

f3

5

5
0

0

−5 −5
x

y
0

0y

(c) Function 𝑓3

Figure 7: Function diagrams of 𝑓
1
, 𝑓
2
, and 𝑓

3
.

searching capability of the algorithm. The 𝑓
3
function is a

complicated function with a vibrating circuit ridge outside
the global maximum value 0. This function can verify the
global and local optimization capability of the algorithm
simultaneously. Figure 7 shows the functions 𝑓

1
, 𝑓
2
, and 𝑓

3

correspondingly. We compare the optimization result with
three other algorithms [35].
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Figure 8: Comparisons of convergent results.

The population size𝑁 is set to 50, themaximum iteration
is set to 100, and𝐵𝑁 is set to𝑁/2 in order to have comparison
under the same conditions. FromFigure 8, we can see that the
FEGEDA can get the optimum solution faster. It has similar
optimization capability of CDMIA, which has preferable
performance for the three benchmarks.

3.3. Higher Dimensional Problems. The advantage of
FEGEDA is the capability of higher dimensional problems
solution. Some typical benchmarks are considered, including
Quadric, Rosenbrock, Ackley, Griewank, Rastrigrin, and
Schaffer’s 𝑓

7
function [21], which are shown in Table 1. In

addition, they are configured with a dimension 𝑛 = 10.
In order to compare with other EDAs under the same
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Table 1: High dimensional benchmarks.

Quadric
𝑛 = 10

𝑓
4
(𝑥) =

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

, −100 ≤ 𝑥
𝑖
≤ 100

Rosenbrock
𝑛 = 10

𝑓
5
(𝑥) =

𝑛−1

∑

𝑖=1

[100(𝑥
𝑖+1
− 𝑥
2

𝑖
)

2

+ (1 − 𝑥
1
)
2

], −50 ≤ 𝑥
𝑖
≤ 50

Ackley
𝑛 = 10

𝑓
6
(𝑥) = −20 exp(−0.2√

∑
𝑛

𝑖=1
𝑥
2

𝑖

𝑛

) − exp(√
∑
𝑛

𝑖=1
cos (2𝜋𝑥

𝑖
)

𝑛

) + 20 + 𝑒, −30 ≤ 𝑥
𝑖
≤ 30

Griewank
𝑛 = 10

𝑓
7
(𝑥) =

1

4000

𝑛

∑

𝑖=1

(𝑥
𝑖
)
2

−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1, −300 ≤ 𝑥
𝑖
≤ 300

Rastrigrin
𝑛 = 10

𝑓
8
(𝑥) =

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 𝐴 cos (2𝜋𝑥

𝑖
) + 𝐴], −5.12 ≤ 𝑥

𝑖
≤ 5.12

Schaffer’s 𝑓
7

𝑛 = 10

𝑓
9
(𝑥) =

𝑛

∑

𝑖=1

(𝑥
2

𝑖
+ 𝑥
2

𝑖+1
)

0.25

× {sin [50 × (𝑥2
𝑖
+ 𝑥
2

𝑖+1
)

0.1

] + 1.0}, −100 ≤ 𝑥
𝑖
≤ 100

conditions, the population size𝑁 of FEGEDA is 300 and the
maximum iteration is 100.

The algorithm is testified under different 𝐵𝑁 (from𝑁 to
𝑁/20). The convergent results under different 𝐵𝑁 are shown
in Figure 9. Form Figure 9, we can see that the optimization
process is slow when 𝐵𝑁 = 𝑁. With the decrease of
𝐵𝑁, the convergent speed is faster. However, the increase
of convergent speed is limited. If the 𝐵𝑁 is too small, the
optimization will trap into local minimum easily.

We have a comparison of FEGEDA with other EDAs in
[21]. Figure 10 is the comparison diagram. From Figure 10,
we can see that FEGEDA is superior to standard EDA and
other improved ones for the six benchmarks. For Ackley
function, the performance of FEGEDA is the same as EDA.
For Rosenbrock function, the initial fitness of FEGEDA
is lower than other EDAs. Therefore, we put an enlarger
diagram of corresponding area.

4. PID Controller Optimization

PID is the most used controller in the permanent magnet
synchronous motors (PMSM) control. However, PID con-
troller has poor performance in PMSM control due to the
inappropriate parameters. During the past decades, great
attention has been paid to the stochastic approach, which is
potential in dealing with the problem [36, 37]. In this paper,
we adopt FEGEDA to optimize the PID controller of PMSM.

4.1. Mathematic Model of PMSM. The mathematical model
of PMSM in a 𝑑, 𝑞 two-phase rotating coordinate system is
shown below [38]. The voltage equation is

𝑢
𝑞
= 𝑅
𝑠
𝑖
𝑞
+ 𝐿
𝑞
̇𝑖
𝑞
+ 𝜔
𝑒
𝐿
𝑑
𝑖
𝑑
+ 𝜔
𝑒
𝜓
𝑓
,

𝑢
𝑑
= 𝑅
𝑠
𝑖
𝑑
+ 𝐿
𝑑
̇𝑖
𝑑
− 𝜔
𝑒
𝐿
𝑞
𝑖
𝑞
,

(18)

where 𝑢
𝑑
and 𝑢

𝑞
represent the stator winding shaft in a

straight axis and the quadrature voltage, respectively; 𝑖
𝑑
and

𝑖
𝑞
are the direct-axis current and quadrature-axis current,

respectively; 𝑅
𝑠
is the stator phase resistance; 𝐿

𝑑
is the

straight axis inductance;𝐿
𝑞
is the quadrature axis inductance;

𝜓
𝑓
is the permanent-magnet fundamental excitation mag-

netic field and stator winding of the magnetic chain;𝑤
𝑒
is the

electric angular speed of rotor.
The magnetic linkage equation can be expressed as

follows:

𝜓
𝑑
= 𝐿
𝑑
𝑖
𝑑
+ 𝜓
𝑓
,

𝜓
𝑞
= 𝐿
𝑞
𝑖
𝑞
,

(19)

where 𝜓
𝑑
and 𝜓

𝑞
represent the syntheses of the magnetic

fields in space-direct and quadrature-axis stator winding of
the magnetic chain, respectively.

The electromagnetic torque of PMSM in the 𝑑, 𝑞 coordi-
nate is

𝑇
𝑒
= 𝑝
𝑛
(𝜓
𝑓
𝑖
𝑞
− (𝐿
𝑑
− 𝐿
𝑞
) 𝑖
𝑝
𝑖
𝑑
) , (20)

where 𝑝
𝑛
is number of pole pairs.

According to the motion equation of motor,

𝐽𝑝Ω̇
𝑟
= 𝑇
𝑒
− 𝑇
𝑙
− 𝐵Ω
𝑟
,

Ω
𝑟
=

𝜔
𝑒

𝑝
𝑛

,

(21)

where Ω
𝑟
is mechanical angular speed of rotor, 𝐵 is the

viscous friction coefficient, 𝐽 is the total moment inertia of
rotor and load, and 𝑇

𝑙
is the load torque.

Thus, the state equation can be derived from the above
equations as follows:

̇𝑖
𝑞
=

1

𝐿
𝑞

(𝑢
𝑞
− 𝑅
𝑠
𝑖
𝑞
− 𝐿
𝑑
𝑖
𝑑
𝑤
𝑒
− 𝜓
𝑓
𝑤
𝑒
) ,

̇𝑖
𝑑
=

𝑢
𝑑

𝐿
𝑑

(𝑢
𝑑
− 𝑅
𝑠
𝑖
𝑑
− 𝑤
𝑒
𝐿
𝑞
𝑖
𝑞
) ,

̇𝑤
𝑒
=

1.5𝑝
2

𝑛
(𝜓
𝑓
𝑖
𝑞
+ (𝐿
𝑑
− 𝐿
𝑞
) 𝑖
𝑑
𝑖
𝑞
) − 𝑝
𝑛
𝑇
𝑚
− 𝐵𝑤
𝑒

𝐽

.

(22)



10 The Scientific World Journal

12

12

10

10

8

8

6

6

4

4

2

2
0

×103

14 16 18 20

Fi
tn

es
s (

Q
ua

dr
ic

)

Iterations

(a)

12

10

10

8

8

6

6

4

4

2

2
0

×103

14 16 18 20

Fi
tn

es
s (

Ro
se

nb
ro

ck
)

Iterations

(b)
20

20 25 30

15

15

10

10

5

5
0

Fi
tn

es
s (

Ac
kl

ey
)

Iterations

(c)

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Fi
tn

es
s (

G
rie

w
an

k)

Iterations

(d)

40

60

80

100

60

20

5040302010
0

70 80 90 100

Fi
tn

es
s (

Ra
str

ig
rin

)

Iterations
BN =

N/1

N/2

N/3

N/4

N/5

N/6

N/7

N/8

N/9

N/10

N/11

N/12

N/13

N/14

N/15

N/16

N/17

N/18

N/19

N/20

(e)

Iterations
BN =

N/1

N/2

N/3

N/4

N/5

N/6

N/7

N/8

N/9

N/10

N/11

N/12

N/13

N/14

N/15

N/16

N/17

N/18

N/19

N/20

5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

0

Fi
tn

es
s (

Sc
ha

ffe
r’s
f
7
)

(f)
Figure 9: The convergent results under different 𝐵𝑁.

In the VC system of PMSM, 𝑖
𝑑
= 0. Therefore, the state

space equation (22) is described as

̇𝑖
𝑞
=

1

𝐿
𝑞

(𝑢
𝑞
− 𝑅
𝑠
𝑖
𝑞
− 𝜓
𝑓
𝑤
𝑒
) ,

̇𝑤
𝑒
=

1.5𝑝
2

𝑛
𝜓
𝑓
𝑖
𝑞
− 𝑝
𝑛
𝑇
𝑚
− 𝐵𝑤
𝑒

𝐽

.

(23)

4.2. PID Controller. The continuous form of a PID controller,
with input 𝑒 and output 𝑢, is shown as follows:

𝑢 (𝑡) = 𝐾
𝑝
𝑒 (𝑡) + 𝐾

𝑖
∫ 𝑒 (𝑡) + 𝐾

𝑑
̇𝑒(𝑡) , (24)

where𝐾
𝑝
is the proportional gain,𝐾

𝑖
is the integral gains, and

𝐾
𝑑
is the derivative gains.
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Figure 10: Comparisons of convergent results.
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Figure 11: MATLAB/Simulink model of PMSM.

There are two types of discrete PID by discretization of
continuous PID. The position-type discrete PID is described
as

𝑢 (𝑘) = 𝐾
𝑝
𝑒 (𝑘) + 𝐾

𝑖

𝑘

∑

𝑗=0

𝑇
𝑠
𝑒 (𝑘) +

𝐾
𝑑

𝑇
𝑠

(𝑒 (𝑘) − 𝑒 (𝑘 − 1)) ,

(25)

where 𝑢(𝑘) is the controller output, 𝑒(𝑘) is the error. In
practical system control, the integral part is not flexible.
Therefore, another velocity-type discrete PID is described as

Δ𝑢 (𝑘)

= 𝐾
𝑝
Δ𝑒 (𝑘) + 𝐾

𝑖
𝑇
𝑠
𝑒 (𝑘) +

𝐾
𝑑

𝑇
𝑠

(Δ𝑒 (𝑘) − Δ𝑒 (𝑘 − 1)) ,

Δ𝑒 (𝑘) = 𝑒 (𝑘) − 𝑒 (𝑘 − 1) ,

(26)

where 𝑇
𝑠
is the sample time. For velocity-type PID, we do not

need to calculate the integral part, and the controller output
is the increment of PID.Therefore, it is often used in practical
system control.

Aggregation function is a conventional method, which
can convert a multiobjective problem to a single-objective
problem. Consider

fitness =
𝑛

∑

𝑖=1

𝑤
𝑖
𝑓
𝑖
, (27)

where fitness is the summation of fitness, 𝑤
𝑖
is the weight of

𝑖th objective, and 𝑓
𝑖
is the fitness value of 𝑖th objective.

In the optimization process, the objective is to evaluate
the performance of PIDs. Thus, for PID, the fitness function
is written as [39]

𝑓
1
= ∫

∞

0

|𝑒 (𝑡)| 𝑑𝑡

𝑓
2
= ∫

∞

0

𝑢
2
(𝑡) 𝑑𝑡

𝑓
3
= 𝑡
𝑟
,

(28)

where 𝑒(𝑡) is the system error, 𝑢(𝑡) is the control output, and
𝑡
𝑟
is the rising time.

To avoid overshoot, a penalty value is adopted in the
fitness function. That is, once overshoot occurs, the value of
overshoot is added to the fitness function. Hence, the penalty
function is written as

𝑓
4
=

{

{

{

∫

∞

0

(𝑦 (𝑡) − 𝑦 (𝑡 − 1)) 𝑑𝑡 if 𝑒 (𝑡) < 0

0 if 𝑒 (𝑡) ≥ 0,
(29)

where 𝑦(𝑡) is the control output.
Making use of the aggression function, the fitness func-

tion is constructed as follows:

𝑓 = 𝑤
1
𝑓
1
+ 𝑤
2
𝑓
2
+ 𝑤
3
𝑓
3
+ 𝑤
4
𝑓
4
, (30)

where 𝑤
1
, 𝑤
2
, 𝑤
3
, and 𝑤

4
are the weight coefficients, and

𝑤
4
≫ 𝑤
1
.

4.3. PID Controller Optimization Based on FEGEDA. Acco-
rding to state space equation (6), we can build the state space
model of PMSM in MATLAB/Simulink as Figure 11. The
parameters of PMSM are that 𝑅

𝑠
is 0.9664, 𝐿

𝑞
is 0.00621, 𝑃

𝑛

is 4, 𝐽 is 0.00033, 𝐵 is 0.0001619, and 𝜓
𝑓
is 0.09382 according

to motor.
The component of PMSM is encapsulated into a module.

A speed controller added to the speed closed loop. Figure 12
is the diagram of PMSM control system. The “simouterror,”
“simoutui,” and “simout” units are used to record the simula-
tion data for optimization.

In order to testify the algorithm, GA and traditional PID
are selected to compare against FEGEDA. 𝑤

1
, 𝑤
2
, 𝑤
3
, and 𝑤

4

of 𝑓
𝑖
are set according to the requirement of control system.

𝑤
1
is corresponding to the control variable of error, 𝑤

2
is a

weight coefficient of controlled variable, 𝑤
3
is for the control

variable of rising time, and 𝑤
4
is the penalty of overshoot.

If we want a system without overshoot and have a small
rising time, 𝑤

1
, 𝑤
3
, and 𝑤

4
will be set bigger, and 𝑤

2
is

smaller. If the controlled variable is limited, 𝑤
2
will be set

bigger.Therefore, these parameters can be set according to the
practical requirement. In the test,𝑤

1
is 1,𝑤

2
is 0.1,𝑤

3
is 2, and

𝑤
4
is 200. The parameters of GA are that the population size

is 30, crossover probability is 0.9, and mutation probability
is adaptive to individual fitness. The variable domain of 𝐾

𝑝

is [0, 20] and 𝐾
𝑖
and 𝐾

𝑑
are [0, 1]. The iteration number is
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50. The optimal results are shown in Figure 13. Although the
optimal result of traditional PID has shorter response time,
the overshoot is bigger. The optimal result of GA has no
overshoot, but the system response is slower. Therefore, the
performance of FEGEDA is promising.

5. Conclusions

We studied the estimation of distribution algorithm in
this paper and proposed a fast elitism Gaussian EDA for
continuous optimization. Every dimension of individuals is
represented by means and standard deviations of Gaussian
distribution.These parameters are estimated usingmaximum
likelihood technique by fast learning rule. Then the new
population is generated by sampling and elitism strategy.
The elitism strategy improves the convergent performance
of the algorithm. In the one-dimensional test, we exhibit the
optimization process and probabilitymodels learning process
clearly. In the two-dimensional and higher dimensional
problems, we compare the FEGEDA with danger immune
algorithm and other EDAs, and the FEGEDA exhibits a
good performance. Although the performance of FEGEDA
is promising, further studies are still recommended, for

instance, how to increase the diversity of population under
fast convergence rate.
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The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated
solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto
front and also did not distribute evenly over the Pareto front.Therefore, in this study, the concept of multiple nondominated leaders
is incorporated to further improve the VEPSO algorithm. Hence, multiple nondominated solutions that are best at a respective
objective function are used to guide particles in finding optimal solutions. The improved VEPSO is measured by the number of
nondominated solutions found, generational distance, spread, and hypervolume.The results from the conducted experiments show
that the proposed VEPSO significantly improved the existing VEPSO algorithms.

1. Introduction

Multiobjective optimisation (MOO) problems involve the
simultaneous minimisation/maximisation of multiple objec-
tive functions, which usually conflict with each other. Due
to the conflict between objective functions, a single solu-
tion could not satisfy all objective functions. Hence, MOO
problem usually results in a set of tradeoffs or nondominated
solutions. The vector evaluated particle swarm optimisation
(VEPSO) [1] algorithm has been widely used to solve MOO
problems [2–7]. As an example, VEPSO algorithm has been
implemented in solving DNA sequence problem by min-
imising four objective functions, namely,𝐻measure, similarity,
continuity, and hairpin, and two constraints, namely, melting
temperature and GCcontent [7]. Compared to DNA sequence
design using binary particle swarm optimization which
produces single set of DNA sequences [8], VEPSO is able to
generate several sets of good DNA sequences which fulfil the
four objective functions and two constraints.

The VEPSO algorithm is adapted from the vector eval-
uated genetic algorithm (VEGA) [9], in which each swarm

optimises one objective function by using the best solution
from another swarm as a guidance. However, the VEPSO suf-
fers fromperformance drawback.Therefore, it is improved by
redefining the selection of the guidance from nondominated
solution, known as VEPSOnds [10]. Although VEPSOnds
has shown better performance than conventional VEPSO,
the VEPSOnds suffers from weak performance in terms of
lacking solution distributions and convergence to the true
Pareto front.

Other than VEPSOnds, there are various MOO algo-
rithms which used nondominated solution to guide parti-
cle in finding the optimum solutions for MOO problem.
For example, in Multiobjective particle swarm optimisation
(MOPSO) algorithm [11, 12], all nondominated solutions
are separated into groups according to their location in the
objective space. A guiding solution for each particle is then
randomly selected from the group containing the fewest
solutions. Besides, in nondominated sorting PSO (NSPSO)
algorithm [13], which uses the main mechanism of the
nondominated sorting fenetic algorithm-II [14], each particle
is guided by a nondominated solution that is randomly
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selected using the niche count and the nearest neighbour
density estimator. A nondominated solution is selected based
on binary tournament selection for the purpose of guiding
the other particles in the optimised MOPSO (OMOPSO)
algorithm [15]. Additionally, Abido [16] introduces the use of
two nondominated solutions, which are called the local set
and the global set. The guide is selected based on the nearest
distance in objective space between each particle and each
member of the nondominated solution of both sets.

Noticeably, most particle swarm optimisation- (PSO-)
based MOO algorithms, including conventional VEPSO and
VEPSOnds, only use one solution as the particle guide.
In particular, in VEPSOnds, particles from a swarm will
be guided by the nondominated solution which has the
best fitness at one objective function. Thus, the particles
may guide the searching with limited information about the
other objective functions during the optimisation process.
Therefore, VEPSOnds can be further improved by usingmore
than one nondominated solution as particle guide. In this
context, this improved VEPSO algorithm will use the best
solution from all swarms as guidance during the optimisation
process.

The next section of this paper explains the particle
swarm optimisation (PSO), the conventional VEPSO, VEP-
SOnds algorithm, and the proposed VEPSO algorithms. The
following section presents the experimental work and the
description of the benchmark test problems and performance
measures and the discussion of the results. The final section
concludes the proposed technique and discusses few possible
future works.

2. Multiobjective Optimization

For explanation, consider a minimization problem

minimize fitness function,

⃗𝐹 ( ⃗𝑥) = {𝑓
𝑖
( ⃗𝑥) , 𝑖 = 1, 2, . . . ,𝑀}

subject to = {

𝑔
𝑗
( ⃗𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝

ℎ
𝑘
( ⃗𝑥) = 0, 𝑘 = 1, 2, . . . , 𝑞,

(1)

where ⃗𝑥 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is the decision variable vector

which represents the possible solution, 𝑀 is the number of
objectives, and 𝑓

𝑖
∈ R𝑛 → R is the objective function.

{𝑔
𝑗
, ℎ
𝑘
} ∈ R𝑛 → R are the inequality and equality con-

straint function, respectively. The Pareto optimality concept
is defined as follows.

Definition 1. Given {

→

𝐹
𝑎
,

→

𝐹
𝑏
} ∈ R𝑚 as two vectors,

→

𝐹
𝑎

dominates
→

𝐹
𝑏 (denote as

→

𝐹
𝑎
≺

→

𝐹
𝑏) if and only if 𝑓𝑎

𝑖
≤ 𝑓
𝑏

𝑖

for 𝑖 = 1, 2, . . . , 𝑚 and 𝑓𝑎
𝑖
< 𝑓
𝑏

𝑖
for at least once. Dominance

relation of
→

𝐹
𝑎
≺

→

𝐹
𝑏 and

→

𝐹
𝑎
≺

→

𝐹
𝑐 can be illustrated as the

labelled circles in Figure 1 for a two-objective problem.

Definition 2. A decision variable vector
→

𝑥
𝑎 is a nondominated

solution when there is no other solution
→

𝑥
𝑏 such that ⃗𝐹(

→

𝑥
𝑎
) ≺

f2

f1
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Fc

Fb

Fa
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Figure 1: Dominance relation for two-objective problem.

⃗𝐹(

→

𝑥
𝑏
). Nondominated solution is also known as Pareto

optimal solution.

Definition 3. The set of nondominated solutions of a MOO
problem is known as Pareto optimal set,P.

Definition 4. The set of objective vectors with respect toP is
known as the Pareto front,PF = { ⃗𝐹( ⃗𝑥) ∈ R𝑚 | ⃗𝑥 ∈ P}.PF
for a two-objective problem is illustrated as the black circles
in Figure 1.

Themotivation ofMOO is to find asmany nondominated
solutions as possible according to the objective functions
and constraints. However, it is possible to have different
solutions which map to the same fitness value in objective
space. Therefore, it will be more challenging to find more
nondominated solutions.

3. Particle Swarm Optimisation

3.1. Original Particle SwarmOptimisation Algorithm. Particle
swarm optimisation (PSO) is a population-based stochastic
optimisation algorithm introduced by Kennedy and Eberhart
[17].This algorithm finds an optimal solution using amethod
inspired by the social behaviour of birds flocking and fish
schooling. In the PSO algorithm, an individual is known as a
particle, and it holds the possible solution to the optimisation
problem, given its position. A particle explores the search
space, looking for a better solution with respect to the
objective functions defined by the optimisation problem.The
search process requires the particle to compare its current
position with the best positions that it and the whole swarm
have found, so that all particles collaborate with each other.

The PSO algorithm is shown in Algorithm 1. Consider a
minimisation problem in which a swarm of 𝐼 particles are
flying around in an 𝑁-dimensional search space, each with
a position 𝑝

𝑖

𝑛
(𝑖 = 1, 2, . . . , 𝐼; 𝑛 = 1, 2, . . . , 𝑁) representing

the possible solution. At initialization stage, all particles
are randomly positioned in the search space with random
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begin
Initialise position & velocity;
Evaluate objective;
Initialise pBest;
Initialise gBest (2);
while 𝑖 ≤ 𝑖max do

Update velocity (3);
Update position (4);
Evaluate objective;
Update pBest;
Update gBest (2);
𝑖 ++;

end
end

Algorithm 1: The PSO algorithm.

velocity, V𝑖
𝑛
(𝑡). Subsequently, the objective fitness

→

𝐹
𝑖
(𝑡) of each

particle is evaluated based on the objective function for 𝑝𝑖(𝑡).
After that, the particle’s best position, 𝑝Best𝑖(𝑡), is set to
its initial position. Additionally, the swarm’s best position,
𝑔Best(𝑡), is the best 𝑝Best𝑖(𝑡) among all particles, as in (2),
where 𝑆 is the swarm of particles

𝑔Best = {𝑝Best𝑖 ∈ 𝑆 | 𝑓 (𝑝Best𝑖) = min𝑓 (∀𝑝Best𝑖 ∈ 𝑆)} .
(2)

In the search process, the algorithm will iterate until
the maximum number of iterations is reached. Within an
iteration, the velocity and position of each particle are
updated using (3) and (4), respectively,

V𝑖
𝑛
(𝑡 + 1) = 𝜒 [𝜔V𝑖

𝑛
(𝑡) + 𝑐

1
𝑟
1
(𝑝Best𝑖

𝑛
− 𝑝
𝑖

𝑛
(𝑡))

+ 𝑐
2
𝑟
2
(𝑔Best

𝑛
− 𝑝
𝑖

𝑛
(𝑡))] ,

(3)

𝑝
𝑖

𝑛
(𝑡 + 1) = 𝑝

𝑖

𝑛
(𝑡) + V𝑖

𝑛
(𝑡 + 1) , (4)

where 𝜒 is the constriction factor and 𝜔 is the inertia weight.
The 𝑟
1
and 𝑟
2
are both random numbers ranging from zero

to one. The 𝑐
1
and 𝑐
2
are the cognitive and social constants,

respectively, which control the attraction of the 𝑝Best𝑖(𝑡)
and 𝑔Best(𝑡). Then, the ⃗

𝐹
𝑖
(𝑡) for each particle is evaluated

again. After updating the fitness, the new position of particle
𝑖 is compared with 𝑝Best𝑖(𝑡), and the more optimal of the
two is saved as 𝑝Best𝑖(𝑡). Next, the 𝑔Best(𝑡) is updated as
well with the best among all 𝑝Best𝑖(𝑡), as in (2). When the
search process ended, the𝑔Best(𝑡)will then represent the best
solution found for the problem by this algorithm.

3.2. Vector Evaluated Particle Swarm Optimisation Algorithm.
The VEPSO algorithm, introduced by Parsopóulos and Vra-
hatis [1], uses the multiswarms concept from the VEGA
algorithm [9]. Each swarm optimises one objective function
using the 𝑔Best(𝑡) from another swarm. In the VEPSO
algorithm, the 𝑝Best𝑖(𝑡) which has the best fitness with

respect to the𝑚th objective is the𝑔Best(𝑡) for the𝑚th swarm,
as in (5)

𝑔Best𝑚 = {𝑝Best𝑖 ∈ 𝑆𝑚 | 𝑓
𝑚
(𝑝Best𝑖)

= min𝑓
𝑚
(∀𝑝Best𝑖 ∈ 𝑆𝑚)} .

(5)

The flow of the VEPSO algorithm is given as in
Algorithm 2. For problem with 𝑀 objective functions,
VEPSO algorithm is similar to that of the PSO but some
processes are repeated for all 𝑀-swarm and nondominated
solutions are recorded in an archive. However, the velocity
update is reformulated and it is given in (6). Note that the
particles in the 𝑚th swarm will fly using 𝑔Best𝑘(𝑡) where 𝑘
is defined by (7). The sharing of 𝑔Best(𝑡) between swarms is
illustrated in Figure 2:

V𝑚
𝑛
𝑖 (𝑡 + 1) = 𝜒 [𝜔V𝑚𝑖

𝑛
(𝑡) + 𝑐

1
𝑟
1
(𝑝Best𝑚𝑖

𝑛
− 𝑝
𝑚𝑖

𝑛
(𝑡))

+𝑐
2
𝑟
2
(𝑔Best𝑘

𝑛
− 𝑝
𝑚𝑖

𝑛
(𝑡))]

(6)

𝑘 = {

𝑀, 𝑚 = 1

𝑚 − 1, otherwise.
(7)

The nondominated solutions are recorded in an archive
after the objective functions are evaluated. In the recording

process, the fitness
→

𝐹
𝑖
(𝑡) of each particle is compared to all

others, before it is compared to the nondominated solutions
in the archive, using thePareto optimality criterion, so that the
archive only contains nondominated solutions. At the end of
the computation, all nondominated solutions are the possible
solutions to the problem.

3.3. The Improved VEPSO Algorithm by Incorporating Non-
dominated Solutions. In the search process of conventional
VEPSO, as in Figure 3(a), particles from a swarm are opti-
mised using the 𝑔Best𝑚(𝑡) from another swarm that has
the best fitness at the objective function optimised by the
other swarm. However, based on the velocity update of
conventional VEPSO in (5), the 𝑔Best𝑚(𝑡) is not updated
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begin
Initilise position & velocity for allM-swarm;
Evaluate objective for allM-swarm;
Initialise archive;
Initialise pBest for allM-swarm;
Initialise gBest (5) for allM-swarm;
while 𝑖 ≤ 𝑖max do

Update velocity (6) & (7) for allM-swarm;
Update position (4) for allM-swarm;
Evaluate objective for allM-swarm;
Update archive;
Update pBest for allM-swarm;
Update gBest (5) for allM-swarm;
𝑖 ++;

end
end

Algorithm 2: The VEPSO algorithm.

Swarm 1 Swarm 2

Swarm mSwarm M

gBest1

gBestM

gBestM−1

gBest2

Figure 2: The best position found by the swarms, shared between
all swarms.

unless there is a 𝑝Best𝑚𝑖(𝑡) that has better fitness than that
at the 𝑚-objective. Consequently, in a two-objective MOO
problem, the 𝑔Best1(𝑡) of the first swarm is not updated
when particle in the first swarm has found a solution with
equal fitness at the first objective and better fitness at the
second objective. Thus, particles from the second swarm will
be guided toward the 𝑔Best1(𝑡).

Due to this limitation, Lim et al. [10] have introduced an
improvedVEPSO algorithmby incorporating nondominated
solutions (VEPSOnds). In VEPSOnds, as specified by (8), the
𝑔Best𝑚(𝑡) is still the solution with best fitness at 𝑚-objective
function but is selected from the set of nondominated
solutions and not from all 𝑝Best𝑚𝑖(𝑡) of the𝑚-swarm

𝑔Best𝑚 = {𝑋 ∈ P | 𝑓
𝑚
(𝑋) = min𝑓

𝑚
(∀𝑋 ∈ P)} , (8)

where 𝑋 is a nondominated solution and P is the set of
nondominated solutions in the archive.

This improvement is illustrated in Figure 3(b) where
the 𝑔Best𝑚(𝑡) is always the best solution with respect to
𝑚-objective function because the other objective functions
are considered as well. Hence, particles from the second
swarm can converge faster towards the 𝑔Best1(𝑡), which
is a nondominated solution. As a result, better quality of
Pareto front is obtained. From an algorithm perspective, the
VEPSOnds is similar to the conventional VEPSO except that
(5) in Algorithm 2 is replaced with (8).

3.4. The Improved VEPSO Using Multiple nondominated
Leader. Based on the results of VEPSOnds [10], this

algorithm suffers weak performance in obtaining solutions
that has a weak diversity performance where the solution
distributions along the Pareto front are not well distributed.
Besides, in comparison to other state-of-the-art MOO algo-
rithm, the VEPSOnds also has a problem in convergence
where the obtained solution is far distant from the Pareto
front.This weak performance could possibly be caused by the
fact that particles in each swarm are guided by one 𝑔Best𝑚(𝑡)
only so the obtained solutions do not well diverse to the other
objective functions.

Thus, the use of nondominated solutions to enhance the
VEPSO algorithm can be further improved by the use of
multileader concept in this work. According to (6), which is
the velocity equation of the VEPSO, the particles of a swarm
are guided by its 𝑝Best(𝑡) and another swarm’s 𝑔Best(𝑡).
For example, as shown in Figure 4(a), the particles from the
second swarm optimise the second objective function using
𝑔Best1(𝑡) only, which may not be the solution that has the
best fitness with respect to the second objective function.
Thus, this original mechanism of VEPSO may limit the
convergence rate of the algorithm. Therefore, an improved
VEPSO algorithm is proposed by including 𝑔Best2(𝑡) as
additional guidance to optimise both objective functions, as
shown in Figure 4(b).

Hence, the general velocity equation of this improved
VEPSO is formulated as in (9)

V𝑚
𝑛
𝑖 (𝑡 + 1) = 𝜒[𝜔V𝑚𝑖

𝑛
(𝑡) + 𝑐

1
𝑟
1
(𝑝Best𝑚𝑖

𝑛
− 𝑝
𝑚𝑖

𝑛
(𝑡))

+

𝑀

∑

𝑞=1

𝑐
𝑞

2
𝑟
𝑞

2
(𝑔Best𝑞

𝑛
− 𝑝
𝑚𝑖

𝑛
(𝑡))] ,

(9)

where for each 𝑞, 𝑐
𝑞

2
, and 𝑟

𝑞

2
are independent constant

and random values, respectively. In addition, from (9), as
compared to the improved VEPSO at previous section, the
particles will search toward the nondominated solutions
which located at different end of the Pareto front. Therefore,
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Figure 3: (a) Particles guided by the best solution from the other swarm (b) Particles guided by a nondominated solution with respect to
another swarm.
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Figure 4: (a) A particle is guided based on 𝑔Best1(𝑡). (b) A particle is guided based on 𝑔Best1(𝑡) and 𝑔Best2(𝑡).

the diversity performance of the algorithm is expected to be
better as the search area is wider, rather than a single point.

Because the improved VEPSO algorithm uses multiple
nondominated solutions as particle guides, or leaders, this
algorithm is called VEPSO using multiple nondominated
leaders (VEPSOml). Also, a polynomial mutation mecha-
nism from NSGA-II [14] is used to modify particle positions

at some probability. By mutating the position of some
particles out of the locally optimal solution, this mechanism
broadens the search for a globally optimal solution. In this
study, the position of one out of every fifteen particles is
mutated in the algorithm. Therefore, the complete VEPSO
algorithm using multiple nondominated leaders is shown in
Algorithm 3.
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begin
Initialise position & velocity for allM-swarm;
Evaluate objective for allM-swarm;
Initialise archive;
Initialise pBest for allM-swarm;
Initialise gBest (8) for allM-swarm;
while 𝑖 ≤ 𝑖max do

Update velocity (9) for allM-swarm;
Update position (4) for allM-swarm;
Mutate position for allM-swarm;
Evaluate objective for allM-swarm;
Update archive;
Update pBest for allM-swarm;
Update gBest (8) for allM-swarm;
𝑖 ++;

end
end

Algorithm 3: The VEPSO algorithm using multinondominated leaders.

4. Experiment

4.1. PerformanceMeasure. MOO algorithms face difficulty in
converging to and distributing the nondominated solutions
over the true Pareto front, PF

𝑡
. Hence, the algorithm per-

formance is measured by the quality of the obtained Pareto
front, PF

𝑜
. Several performance measures are used for

comparison to highlight any improvement in the proposed
algorithm.

The number of solutions (NS) measured will calculate
the total number of nondominated solutions found by an
algorithm. The best algorithm, by this measure, gives the
most nondominated solutions. A more advanced measure
uses the generalized distance (GD) [18], which is a popular
measure of convergence [14]. This performance measure first
evaluates the average distance between the true Pareto front
and the one obtained by the algorithm. Equation (10) is
used to compute the average distance, with a smaller value
corresponding to a better performance. Then, the minimum
distance of a nondominated solution from the true Pareto
front is calculated using (11)

GD =

(∑
‖PF𝑜‖

𝑞=1
𝑑
𝑀

𝑞
)

1/𝑀





PF
𝑜






(10)

𝑑
𝑞
= min
1≤𝑔≤‖PF𝑡‖

√

𝑀

∑

𝑚=1

(PF𝑚
𝑜 𝑞

−PF𝑚
𝑡 𝑔
)

2

. (11)

In addition, SP [14] is a commonly used measure of the
diversity performance, or the distribution of nondominated
solutions [14] is used. Equations (12), (13), and (14) evaluate
the diversity performance, as measured by SP. The 𝑑

𝑓
and 𝑑

𝑙

are the Euclidean distances between the boundary solution
and the nondominated solutions returned by the algorithm
and the true Pareto front, respectively.TheEuclidean distance
between two solutions can be calculated using (13). Thus, SP
actually measures the average distance of one solution and
of the next solution to all nondominated solutions returned

by the algorithm as well as two boundary solutions in the
true Pareto front. Hence, it is desirable that the Pareto front
returned by the algorithm produces a small SP:

Spread =
𝑑
𝑓
+ 𝑑
𝑙
+ ∑
‖PF𝑜‖−1

𝑞=1






𝑑
𝑞
− 𝑑







𝑑
𝑓
+ 𝑑
𝑙
+ 𝑑 (





PF
𝑜





− 1)

, (12)

𝑑
𝑞
= √(PF1

𝑜𝑞
−PF1

𝑜𝑞+1
)

2

+ (PF2
𝑜𝑞
−PF2

𝑜𝑞+1
)

2

, (13)

𝑑 =

∑
‖PF𝑜‖−1

𝑞=1
𝑑
𝑞





PF
𝑜





− 1

. (14)

Additionally, the hypervolume (HV) [19] measures the
area (in a two-objective problem) or the volume between
a reference point, 𝑅 and the Pareto front with respect to
the nondominated solutions obtained by the algorithm, as
illustrated in Figure 5. Thus, it is desirable that the Pareto
front returned by the algorithm produces a large HV.

4.2. Test Problems. Because different features in MOO prob-
lems are responsible for decreasing the likelihood of obtain-
ing Pareto front with good convergence and diversity, the
standard test functions with well-defined true Pareto fronts
are important for testing optimisation algorithms. Five test
functions from Zitzler et al. [20] (ZDT) are used here for
this reason. The ZDT test problems have two objectives and
are formulated with one feature in each problem. ZDT5
is not used because it is binary coded, whereas this work
focuses on real-value problems. During testing, the GD, SP,
and HV measure require the true Pareto front for the ZDT
test problems, the standard database generated by jMetal
(http://jmetal.sourceforge.net/problems.html) is used for this
purpose. Additionally, all test problems used here are set up
as recommended by [20].

4.3. Evaluation of VEPSO Algorithms. The performance
comparison between conventional VEPSO, VEPSOnds, and
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Figure 5: Hypervolume measure with area covered by nondominated solutions and reference point.

Table 1: Algorithm parameters.

Parameter Value
Function evaluation 25000 (based on paper [14])
(i) Number of swarm 2
(ii) Particle for each swarm 50
(iii) Iterations for each run 250
𝑐
1
and 𝑐
2

Random [1.5, 2.5]
𝜔 Linearly degrade from 1.0 to 0.4

VEPSOml is conducted without the use of polynomial
mutation as to clarify that the polynomial mutation is not
the sole reason for any performance improvement. Thus,
this experiment compares the conventional VEPSO and the
VEPSOnds without mutation against two different variations
of VEPSOml: VEPSOml1 is the VEPSOml without mutation
and VEPSOml2 is the VEPSOml with mutation, respectively.

All improved VEPSO algorithms are compared to the
conventional VEPSO algorithm. Hence, similar parameters
are used for all experimented algorithms which are listed in
Table 1. In addition, the archive size is set to 100 solutions
and is controlled by removing the nondominated solutions
with the smallest crowding distance [14]. Each test problem is
simulated for 100 runs on each algorithm to obtain statistical
results for a fair comparison because the convergence and
diversity performance varies in each run.

Table 2 lists the performance of each algorithm on the
ZDT1 test problem. In the NS measure, the number of non-
dominated solutions significantly increases in all improved
algorithms. Under the GD measure, VEPSOnds performs
approximately 10 times better than conventional VEPSO.
However, under the samemeasure, VEPSOml1 shows a more

dramatic improvement, performing approximately 100 times
better than VEPSO, as the concept of multiple nondominated
leaders shows its benefit in finding more accurate solutions.
Additionally, when the polynomial mutation is included, as
in VEPSOml2, the GD performance improved much better
at about 600% as compared to the conventional VEPSO.
Under the SP measure, VEPSOnds also gives a significant
improvement in performance. Meanwhile, the VEPSOml1
and VEPSOml2 show significant improvement in diversity
performance as compared to the VEPSOnds. This shows the
significance of using more than one nondominated solution
which diversify the search toward the nondominated solu-
tions at different end. The above mentioned improvements
are supported by the higher HV measures when compared
to the conventional VEPSO, which indicates that they return
better Pareto fronts.

Figure 6 shows plots of the nondominated solutions with
the best GD measure returned by each algorithm tested on
ZDT1. From the first plot, it is clear that the nondominated
solutions obtained by VEPSO are far away from the true
Pareto front, which explains the poor performance of this
algorithm for this test problem. In addition, the nondomi-
nated solutions are distributed unevenly, and so VEPSO has
a larger SP value. Meanwhile for all the improved VEPSO
algorithms, their nondominated solutions fall very close
to the true Pareto front. However, VEPSOnds produces a
distribution of nondominated solutions that contain empty
spaces along the true Pareto front, which results in higher SP
value as compared to the other improved VEPSO algorithms.

Table 3 lists the performance of the algorithms on the
ZDT2 test problem. The average number of nondominated
solutions found by VEPSOnds1 slightly improves over the
number found by VEPSO, but VEPSOnds2, VEPSOml1,
and VEPSOml2 greatly improve over VEPSO by this same
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Figure 6: Plot of nondominated solutions returned by each algorithm for the ZDT1 test problem.

measure. Similarly, by the GD measure, VEPSOnds1 shows
a small improvement, whereas VEPSOnds2 and VEPSOml1
show a larger improvement over the performance of VEPSO.
In the same measure, VEPSOml2 shows a more significant
improvement over the VEPSO and all other improved algo-
rithms. Additionally, by the SP measure, VEPSOnds1 shows

negligible improvement, whereasVEPSOnds2 shows a signif-
icant improvement over the performance of VEPSO. Besides,
with the use of multileader, VEPSOml shows much better
diversity performance than both the VEPSOnds. Finally,
by the HV measure, VEPSO was unable to produce any
hypervolume because its nondominated solutions are worse
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Figure 7: Plot of nondominated solutions returned by each algorithm for the ZDT2 test problem.

than the reference point, 𝑅. On the other hand, all improved
algorithms are able to create a hypervolume, especially the
VEPSOml2 which produce the largest hypervolume.

Figure 7 displays the nondominated solutions, plotted for
each the best GD measure obtained for each algorithm using

the ZDT2 test problem. The first plot shows that VEPSO
returns nondominated solutions that are far from the true
Pareto font and poorly distributed. Although VEPSOnds
and VEPSOml1 return a low GD measure, the number of
nondominated solutions is found to have low value, which
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Figure 8: Plot of nondominated solutions returned by each algorithm for the ZDT3 test problem.

is clearly displayed in the second and third plots, respectively,
of Figure 6. In fact, there is only one nondominated solution
found by both algorithms which falls exactly on the true
Pareto front and yields a GD value of zero. On the other
hand, the fourth plot of Figure 6 shows that VEPSOml2
returns the nondominated solutions that converge nicely and
are well distributed over the true Pareto front. Besides, the
nondominated solutions found by VEPSOml2 distributed
evenly which yield a good SP value.

Table 4 lists the performance of the algorithms on the
ZDT3 test problem. All improved VEPSO algorithms are able
to find more nondominated solutions than the conventional
VEPSO algorithm. In addition, the performances of the
improved VEPSO algorithms, with respect to convergence,
improve on conventional VEPSO, while VEPSOml2 shows
the greater improvement. However, by the SP measure, the
VEPSOnds algorithm performs worse than the conventional
VEPSO algorithm. However, although the SP value of the
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Table 2: Algorithm performance tested on ZDT1 problem.

Measure VEPSO VEPSOnds VEPSOml1 VEPSOml2

NS

Ave. 30.220000 100.000000 99.490000 98.820000
SD 5.697031 0.000000 3.942760 6.979595
Min. 16.000000 100.000000 63.000000 47.000000
Max. 44.000000 100.000000 100.000000 100.000000

GD

Ave. 0.295865 0.022637 0.002730 0.000497
SD 0.051645 0.014201 0.006219 0.002213
Min. 0.139491 0.000283 0.000045 0.000047
Max. 0.432478 0.073477 0.031891 0.015598

SP

Ave. 0.834481 0.729350 0.212479 0.182157
SD 0.039111 0.160298 0.149696 0.113453
Min. 0.705367 0.322322 0.106082 0.109998
Max. 0.917087 1.219625 0.738619 0.779572

HV

Ave. 0.001886 0.428153 0.628841 0.657830
SD 0.010058 0.113432 0.078273 0.023359
Min. — 0.185313 0.283932 0.456556
Max. 0.087426 0.659603 0.662065 0.662022

Table 3: Algorithm performance tested on ZDT2 problem.

Measure VEPSO VEPSOnds VEPSOml1 VEPSOml2

NS

Ave. 8.070000 38.120000 91.090000 99.620000
SD 6.356822 25.747131 28.474726 3.800000
Min. 1.000000 1.000000 1.000000 62.000000
Max. 24.000000 100.000000 100.000000 100.000000

GD

Ave. 0.766956 0.039653 0.005109 0.000152
SD 0.324444 0.063791 0.010867 0.001009
Min. 0.240509 0.000000 0.000000 0.000043
Max. 1.679803 0.310345 0.028380 0.010144

SP

Ave. 0.944524 0.947356 0.267797 0.098572
SD 0.065266 0.111963 0.315008 0.065826
Min. 0.797757 0.695715 0.059578 0.064648
Max. 1.080351 1.278655 1.000004 0.721104

HV

Ave. — 0.137784 0.250495 0.328291
SD — 0.117596 0.127625 0.004182
Min. — — 0.000000 0.286901
Max. — 0.311075 0.328807 0.328816

conventional VEPSO algorithm is better, the superior conver-
gence of the VEPSOnds algorithmmaintains its performance
advantage. In contrast, both improved VEPSO algorithm
using multiple nondominated leaders show better SP mea-
sure than the conventional VEPSO, which strengthen the
hypothesis that using multiple nondominated leaders will
improve diversity performance. In addition, the HV value
of the conventional VEPSO algorithm is smaller than of
all improved algorithms which suggest that the improved
algorithms have better performance.

Figure 8 displays the nondominated solutions, plotted for
the best GD measure obtained for each algorithm using the
ZDT3 test problem.The nondominated solutions returned by
the conventional VEPSO algorithm were distributed equally
but not well converged with respect to the true Pareto front.

On the other hand, the nondominated solutions from all
improved VEPSO algorithms are well converged with respect
to the true Pareto front. However, the nondominated solu-
tions returned by the VEPSOnds algorithm are denser at the
upper left of the Pareto front, which causes the increase in its
SP value. In contrast, the nondominated solutions obtained
by bothVEPSOml algorithms are equally distributed over the
Pareto front and yield better SP value.

Table 5 lists the performance of the algorithms on the
ZDT4 test problem. The average number of nondominated
solutions obtained by VEPSO is relatively low, while all
improved VEPSO algorithms found most of the solutions.
In this test, the conventional VEPSO algorithm produced
a very large GD value due to the multimodality feature in
the test problem, and so the improved VEPSO algorithms
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Table 4: Algorithm performance tested on ZDT3 problem.

Measure VEPSO VEPSOnds VEPSOml1 VEPSOml2

NS

Ave. 35.150000 99.600000 95.710000 96.500000
SD 6.853997 3.405284 11.528003 11.372037
Min. 21.000000 66.000000 46.000000 49.000000
Max. 53.000000 100.000000 100.000000 100.000000

GD

Ave. 0.173060 0.009607 0.002586 0.001456
SD 0.031253 0.008293 0.003904 0.002533
Min. 0.079595 0.000433 0.000153 0.000159
Max. 0.276801 0.039481 0.017547 0.007328

SP

Ave. 0.871146 1.109448 0.761061 0.752151
SD 0.043319 0.086041 0.056129 0.050459
Min. 0.701884 0.902861 0.701924 0.703181
Max. 1.001428 1.322024 0.934796 0.981492

HV

Ave. 0.004722 0.373133 0.476679 0.493073
SD 0.021699 0.083015 0.060626 0.045211
Min. — 0.112859 0.289513 0.391275
Max. 0.167359 0.506222 0.515919 0.515941

Table 5: Algorithm performance tested on ZDT4 problem.

Measure VEPSO VEPSOnds VEPSOml1 VEPSOml2

NS

Ave. 6.610000 95.250000 82.730000 51.470000
SD 3.920665 16.518967 30.304800 35.623864
Min. 1.000000 15.000000 6.000000 4.000000
Max. 21.000000 100.000000 100.000000 100.000000

GD

Ave. 5.062543 0.383646 0.231380 0.449095
SD 3.167428 0.478535 0.841726 1.060986
Min. 0.000000 0.000155 0.000062 0.000146
Max. 13.350278 2.049212 7.013747 6.835452

SP

Ave. 0.858655 1.035510 0.572461 0.735715
SD 0.147255 0.347336 0.286004 0.201246
Min. 0.483073 0.077112 0.135264 0.269484
Max. 1.236461 1.419225 1.139773 1.088971

HV

Ave. 0.228824 0.399914 0.357553 0.307568
SD 0.188151 0.159971 0.281263 0.272435
Min. — — — —
Max. 0.573978 0.661941 0.661917 0.660309

clearly performed better in this respect. However, the diver-
sity performance of nondominated solutions returned by
conventional VEPSO is small compared to the VEPSOnds
algorithm. Once again, the use of multiple nondominated
leaders in VEPSO algorithms could diversify the search
and result in better diversity performance. Additionally, all
algorithms produce a hypervolume from the reference point,
and all improved algorithms return larger HV values than the
conventional algorithm.

Figure 9 displays the nondominated solutions, plotted
for the best GD measure obtained for each algorithm using
the ZDT4 test problem. The first plot shows that VEPSO
converges to the Pareto front but only manages to obtain a
single nondominated solution.TheVEPSOnds algorithm not

only converges to the Pareto front but also returns a diverse
set of nondominated solutions. On the other hands, both
VEPSOml also returned the nondominated solutions with
good convergence but they are not well distributed as com-
pared to the VEPSOnds, in this case. Thus, the VEPSOnds
shows better HV value as compared to the VEPSOml.

Table 6 lists the performance of the algorithms on the
ZDT6 test problem. All algorithms find a similar number of
nondominated solutions. In the GD measure, all algorithms
are capable of returning the nondominated solutions that
converge well to the Pareto front. On the other hand,
both VEPSOml1 and VEPSOml2 algorithms outperform
the conventional VEPSO and VEPSOnds algorithm in the
GD measure. In addition, the SP and HV values for each
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Table 6: Algorithm performance tested on ZDT6 problem.

Measure VEPSO VEPSOnds VEPSOml1 VEPSOml2

NS

Ave. 76.590000 78.040000 86.920000 88.590000
SD 32.884891 26.684055 23.586368 23.600674
Min. 11.000000 22.000000 25.000000 16.000000
Max. 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.338537 0.260666 0.217503 0.217929
SD 0.370336 0.158592 0.214344 0.263966
Min. 0.001746 0.044137 0.031135 0.000482
Max. 1.552521 0.709692 1.184075 1.316312

SP

Ave. 1.201796 1.276529 1.301493 1.273612
SD 0.146782 0.083293 0.085611 0.186562
Min. 0.492064 0.987981 0.931549 0.082405
Max. 1.435395 1.437289 1.430321 1.439400

HV

Ave. 0.304584 0.303381 0.303676 0.315964
SD 0.134813 0.102216 0.123985 0.121842
Min. 0.000000 0.038143 0.000779 0.000001
Max. 0.400964 0.400780 0.401403 0.401483

algorithm are similar. However, the VEPSOml2 algorithm
shows superiority in getting the minimum SP value and
average HV value.

As can be predicted from the similar quantitative per-
formance of the algorithms on ZDT6, the plot of non-
dominated solutions returned by each algorithm is very
similar, especially in convergence performance, as shown in
Figure 10. The plots do show that VEPSO has slightly less
diversity compared to VEPSOnds and VEPSOml2 because
of some small gaps in coverage along the middle of the
Pareto front. On the other hand, the VEPSOml1 shows weak
distribution of nondominated solutions over the Pareto front.
In contrast, the nondominated solutions found byVEPSOnds
and VEPSOml2 completely cover the true Pareto front and
are spaced out equally.

As seen from the results of all the test problems, the
VEPSO algorithms using multiple nondominated leaders
shows more improvement in terms of convergence and
diversity of the nondominated solutions found than the VEP-
SOnds. The additional leader, specifically the nondominated
solution with respect to the objective function optimised by a
swarm, not only guides the particles to optimise the objective
function with respect to the swarm. It also increased the
search area because all leaders used to guide the particles are
located at the different end of the Pareto front.

4.4. Analysis of the Number of Particles. This experiment
analysed the performance of the VEPSOml2 algorithm with
various numbers of particles. Similar parameters from the
previous experiment were used except for the total number
of particles as it is equally divided into two swarms; the total
number of particles was varied to be 10, 30, 50, 100, 300, 500,
and 1000. Figure 11 shows plots of the performance measures
for each benchmark problem against the total number of
particles.

The VEPSOml2 algorithm performance improved as
the number of particles increased. The performance of the
VEPSOml2 algorithm was sufficient when there were 100
particles computed for 250 iterations, which corresponds to
25000 function evaluations. However, the performance of the
VEPSOml2 algorithm exhibited better results when the total
number of particles was increased. Unfortunately, when the
number of particles is increased, the algorithm requires more
computational effort to solve the problem.

4.5. Analysis of the Number of Iterations. This experiment
investigated the performance of VEPSOml2 for various
numbers of iterations. The number of iterations was fixed to
be 10, 30, 50, 100, 300, 500, 1000, 3000, 5000, and 10 000.
Meanwhile, the other parameters were kept the same as in
the previous experiment except that the number of particles,
which were divided equally among swarms, was fixed to
100 divided equally between all swarms. Figure 12 plots the
performance measures for each benchmark problem against
the number of iterations.

As expected, the performance of VEPSOml2 is improved
when the number of iterations was increased. When 100
particles were used, the VEPSOml2 algorithm started to yield
acceptable results when there were 500 iterations, which
is equivalent to 50000 function evaluations. However, if
computational cost is not critical, the VEPSOml2 algorithm
could use 3000 iterations because the performance saturated
after this value.

4.6. Benchmarking with the State-of-the-Art Multiobjec-
tive Optimisation Algorithms. For benchmarking, the VEP-
SOml2 algorithm was compared to four other state-of-
the-art MOO algorithms: nondominated sorting genetic
algorithm-II (NSGA-II) [14], strength Pareto evolutionary
algorithm 2 (SPEA2) [21], archive-based hybrid scatter search
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Figure 9: Plot of nondominated solutions returned by each algorithm for the ZDT4 test problem.

(AbYSS) [22], and the speed-constrained multiobjective PSO
(SMPSO) algorithm [23]. All algorithms only computed
25000 function evaluations, and the archive size was set to
100 for fair comparison.The population size for NSGA-II was
set to 100 for optimisation. The Simulated Binary Crossover

(SBX) operator was used with crossover probability 𝑝
𝑐
= 0.9.

The polynomial mutation [24] operator was also used with
mutation probability 𝑝

𝑚
= 1/𝑁. Meanwhile, the distribution

indices for both operators were set to 𝜇
𝑛
= 𝜇
𝑚
= 20. The

parameters in SPEA2 were set the same as in NSGA-II. The
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Figure 10: Plot of nondominated solutions returned by each algorithm for the ZDT6 test problem.
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Figure 11: Plots of the performance measures versus numbers of particles. (a) Number of solutions. (b) Generational distance. (c) Spread. (d)
Hypervolume.

population size for AbYSS was set to 20 and the pairwise
combination parameters 𝑅𝑒𝑓𝑆𝑒𝑡

1
and 𝑅𝑒𝑓𝑆𝑒𝑡

2
were both set

to 10. In addition, the polynomial mutation parameters in
AbYSS were also set similarly as in NSGA-II and SPEA2.
Finally, SMPSO was set to have a population size of 100
particles and a total number of iterations of 250. Moreover,
the 𝑟
1
= 𝑟
2
= random[0.1, 0.5], and the terms 𝑐

1
= 𝑐
2
=

random[1.5, 2.0].The polynomialmutation [25] operatorwas
also used in SMPSO with 𝑝

𝑚
= 1/𝑁 and 𝜇

𝑚
= 20.

The performance measures for the ZDT1 problem for
all algorithms are listed in Table 7. The average number of
solutions obtained by the VEPSOml2 was very similar to the
other algorithms. Although VEPSOml2 algorithm had a GD
measure approximately twice as large as those of the other
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Figure 12: Plots of the performance metrics for various numbers of iterations. (a) Number of solution. (b) Generational distance. (c) Spread.
(d) Hypervolume.

algorithms, its minimum GD was still the smallest among
them. However, the SP was, on average, better than NSGA-
II. Interestingly, the HV measure of VEPSOml2 was as good
as those of the other algorithms.

Table 8 presents the performance measure of the algo-
rithms for the ZDT2 problem. The VEPSOml2 was suf-
ficiently competitive at obtaining a reasonable number of
solutions. In the GD measure, on average, the VEPSOml2
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Table 7: Performance comparison based on ZDT1 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOml2

NS

Ave. 100.000000 100.000000 100.000000 100.000000 98.820000
SD 0.000000 0.000000 0.000000 0.000000 6.979595
Min. 100.000000 100.000000 100.000000 100.000000 47.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.000185 0.000223 0.000220 0.000117 0.000497
SD 0.000035 0.000038 0.000028 0.000031 0.002213
Min. 0.000125 0.000146 0.000154 0.000053 0.000047
Max. 0.000343 0.000374 0.000400 0.000172 0.015598

SP

Ave. 0.105387 0.379129 0.148572 0.076608 0.182157
SD 0.012509 0.028973 0.012461 0.009200 0.113453
Min. 0.080690 0.282485 0.116765 0.056009 0.109998
Max. 0.136747 0.441002 0.174986 0.099653 0.779572

HV

Ave. 0.661366 0.659333 0.659999 0.661801 0.657830
SD 0.000269 0.000301 0.000301 0.000100 0.023359
Min. 0.660267 0.658486 0.659347 0.661372 0.456556
Max. 0.661724 0.659909 0.660629 0.661991 0.662022

Table 8: Performance comparison based on ZDT2 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOml2

NS

Ave. 100.000000 100.000000 100.000000 100.000000 99.620000
SD 0.000000 0.000000 0.000000 0.000000 3.800000
Min. 100.000000 100.000000 100.000000 100.000000 62.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.000131 0.000176 0.000182 0.000051 0.000152
SD 0.000067 0.000066 0.000039 0.000003 0.000152
Min. 0.000056 0.000093 0.000090 0.000044 0.000043
Max. 0.000433 0.000707 0.000304 0.000060 0.010144

SP

Ave. 0.130425 0.378029 0.158187 0.071698 0.098572
SD 0.090712 0.028949 0.027529 0.013981 0.065826
Min. 0.080831 0.311225 0.118114 0.035786 0.064648
Max. 0.833933 0.430516 0.365650 0.106749 0.721104

HV

Ave. 0.325483 0.326117 0.326252 0.328576 0.328291
SD 0.023209 0.000297 0.000908 0.000077 0.004182
Min. 0.096409 0.325278 0.318785 0.328349 0.286901
Max. 0.328505 0.326696 0.327559 0.328736 0.328816

algorithm was as good as the other algorithms, but SMPSO
had greater performance. Surprisingly, the VEPSOml2 algo-
rithm was able to obtain a better minimum GD measure
than the SMPSO algorithm. Additionally, the SP measure of
the VEPSOml2 algorithm was better than those of the other
algorithms except SMPSO. All algorithms had similar HV
values, but VEPSOml2 yielded the best HV performance.

The performance measures for the ZDT3 problem for all
algorithms are listed in Table 9. Both SMPSO andVEPSOml2
were unable to obtain the maximum number of solutions
consistently for all 100 runs but still yielded solutions within
a reasonable range. Noticeably, the average GD measure for
VEPSOml2 was the largest among all algorithms. However,

the diversity for VEPSOml2 was similar to that of the others.
Moreover, although the HV value of VEPSOml2 was the
smallest, it still yielded a very large HV.

Table 10 presents the performance measures for the
algorithms for the ZDT4 problem. VEPSOml2 faced great
challenges from the multiple local optima featured in this
problem, where it cause the algorithm to obtain a very
small number of solutions. Additionally, the convergence and
diversity of VEPSOml2 were bad, as indicated by the very
large GD and SP values. As expected, the HV performance
was also very poor because the multiple local optima feature
is one of the natural weaknesses of PSO-based algorithms
[26, 27].
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Table 9: Performance comparison based on ZDT3 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOml2

NS

Ave. 100.000000 100.000000 100.000000 99.900000 96.500000
SD 0.000000 0.000000 0.000000 0.904534 11.372037
Min. 100.000000 100.000000 100.000000 91.000000 49.000000
Max. 100.000000 100.000000 100.000000 100.00000 100.000000

GD

Ave. 0.000193 0.000211 0.000230 0.000203 0.001456
SD 0.000019 0.000013 0.000019 0.000061 0.002533
Min. 0.000144 0.000180 0.000184 0.000155 0.000159
Max. 0.000264 0.000268 0.000327 0.000717 0.007328

SP

Ave. 0.707651 0.747853 0.711165 0.717493 0.752151
SD 0.013739 0.015736 0.008840 0.032822 0.050459
Min. 0.696859 0.715199 0.698590 0.697943 0.703181
Max. 0.796404 0.793183 0.775317 0.950901 0.981492

HV

Ave. 0.512386 0.514813 0.513996 0.514996 0.493073
SD 0.011314 0.000159 0.000675 0.001737 0.045211
Min. 0.463776 0.514449 0.510764 0.500484 0.391275
Max. 0.515960 0.515185 0.514668 0.515818 0.515941

Table 10: Performance comparison based on ZDT4 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOml2

NS

Ave. 99.680000 100.000000 100.000000 100.000000 51.470000
SD 3.100603 0.000000 0.000000 0.000000 35.623864
Min. 69.000000 100.000000 100.000000 100.000000 4.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.001231 0.000486 0.000923 0.0001347 0.449095
SD 0.002632 0.000235 0.001428 0.000027 1.060986
Min. 0.000148 0.000163 0.000176 0.000070 0.000146
Max. 0.014472 0.001374 0.012292 0.000187 6.835452

SP

Ave. 0.159842 0.392885 0.298269 0.092281 0.735715
SD 0.120180 0.037083 0.125809 0.011777 0.201246
Min. 0.078244 0.324860 0.137934 0.067379 0.269484
Max. 1.073669 0.473358 0.884091 0.124253 1.088971

HV

Ave. 0.646058 0.654655 0.645336 0.661401 0.307568
SD 0.034449 0.003406 0.018773 0.000162 0.272435
Min. 0.472299 0.642177 0.505799 0.660934 —
Max. 0.661594 0.659710 0.658784 0.661726 0.660309

Finally, the performancemeasures for the ZDT6 problem
for all algorithms are listed in Table 11. VEPSOml2 algorithm
was inconsistent in obtaining the maximum number of
solutions. Moreover, the convergence and diversity measures
for VEPSOml2 were significantly larger than those for the
other algorithms. However, the VEPSOml2 algorithm was
able to obtain the minimum GD value. Additionally, the
HV performance for VEPSOml2 was relatively weak, on
average, but its maximum HV value was the largest of all the
algorithms.

An overall performance comparison for state-of-the-
art algorithms against VEPSOml2 was investigated in this

experiment. In some cases, the VEPSOml2 algorithm yielded
better results than some of the other algorithms.

5. Conclusions

Most PSO-based MOO algorithms, including conventional
VEPSO and VEPSOnds, only use one solution as the particle
guide. Thus VEPSOml is proposed in this study where the
particles are guided by multiple nondominated solutions
while retaining the unique information shared between
swarms that are inherent in conventional VEPSO.
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Table 11: Performance comparison based on ZDT6 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOml2

NS

Ave. 100.000000 100.000000 100.000000 100.000000 88.590000
SD 0.000000 0.000000 0.000000 0.000000 23.600674
Min. 100.000000 100.000000 100.000000 100.000000 16.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.000549 0.001034 0.001761 0.012853 0.217929
SD 0.000015 0.000102 0.000192 0.024813 0.263966
Min. 0.000510 0.000804 0.001267 0.000502 0.000482
Max. 0.000596 0.001360 0.002207 0.092434 1.316312

SP

Ave. 0.097740 0.357160 0.226433 0.390481 1.273612
SD 0.013129 0.031711 0.020658 0.497140 0.186562
Min. 0.070455 0.282201 0.179482 0.042666 0.082405
Max. 0.130389 0.441311 0.292897 1.377582 1.439400

HV

Ave. 0.400346 0.388304 0.378377 0.401280 0.315964
SD 0.000172 0.001604 0.002714 0.000076 0.121842
Min. 0.399821 0.383637 0.371907 0.401081 0.000001
Max. 0.400842 0.392123 0.385626 0.401402 0.401483

Five ZDT test problems were used to investigate the
performance of the improved VEPSO algorithm based on the
measures of the number of nondominated solutions found,
the generational distance, the spread, and the hypervolume.
The proposed VEPSOml algorithm obtained a higher-quality
Pareto front as compared to conventional VEPSO and VEP-
SOnds. The VEPSOml2 algorithm that included polynomial
mutation has exhibited further improvement for most of the
performance measures.

Using more nondominated solutions as particle guides
yielded faster convergence performance improvements, espe-
cially for the ZDT1, ZDT2, and ZDT3 test problems. The
use of more than one leader reduced the risk of trapping
at local Pareto front. In future, the success of using two
leaders motivates the investigation of the use of more than
two leaders during the optimisation process.
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This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimummean
square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error
ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global
convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this
paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed
of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far
resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to
OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity.

1. Introduction

In 1963, due to the limited coverage of low-altitude orbiting
spacecraft by a practical number of ground stations, F. O.
Vonbun conceived the idea of tracking anddata relay satellites
(TDRS). Decades of space technology development now offer
a practical extension frompresent ground-to-ground and air-
to-ground communication via satellites to new applications
[1].

Tracking and data relay satellite system (TDRSS) can
provide services of data relaying, continuous tracking, and
telemetry tracking and command (TT&C) for communi-
cations between spacecraft such as low earth orbit (LEO),
middle earth orbit (MEO), and ground stations, which
constitute important part of global space-based integrated
information networks [2]. TDRSS provides S-band services
through the S-band multiple access (SMA) phased array
[3]. Actually the multiple access interference (MAI) is a
serious limiting condition for improving the performance
and the user capacity of this MA system, particularly when
the number of users in this system is large.

Multiuser detection is a useful method to eliminate the
bad effect of MAI. The best performance is acquired by
OMD provided by Verdu in 1986, which is based on the

maximum likelihood function [4]. However, this method
tends to be quite complex. Consequently, multiuser detectors
based on compressive sensing [5], Tikhonov regularization
[6], ant colony optimization [7], adaptive LMS, and GA [8]
have been devoted to the development of lower-complexity
techniques that can achieve some of the benefits of the
optimal procedures. However, the tradeoff problem between
computational complexity and BER performance still exists.

Swarm intelligence (SI) is an innovative artificial intel-
ligence technique for optimization [9]. The underlying per-
ception in most of the biological case studies of SI has been
that the individual animal is cognitively relatively simple
and restricted in what it can achieve, whereas the group
collectively is capable of astonishing feats [10]. As ones of
the latest methods in the field of signal processing [11]
(especially for combinatorial optimization problems [12]),
several detectors based on swarm intelligence, such as ant
colony optimization [13], particle swarm optimization [14,
15], and improved particle swarm optimization [16], have
been considered. The artificial fish swarm algorithm (AFSA)
reflects many excellent properties in applications such as
insensitivity to initial values, strong robustness and much
flexibility in practice, optimization precision, rapidness to
search the global optimum, tolerance of parameter setting,
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and searching adaptation [17]. It is applied in various opti-
mization applications such as solving III-conditioned linear
systems of equations [18] and reactive power optimization
for power system [19]. And several improved AFSAs have
been proposed [20, 21]. In [20], an artificial fish swarm
algorithm based on chaos search is proposed, which can not
only overcome the disadvantage of easily getting into the local
optimum in the later evolution period but also keep the rapid-
ity of the previous period. In [21], two artificial fish swarm
algorithms based on fuzzy system are proposed; the overall
results show that proposed algorithms can surprisingly be
effective.

In this paper, a multiuser detector in TDRS system
forward link is employed. In order to accelerate the speed
of global convergence and reduce the number of iterations
for AFSA, the result of MMSE and its modified formations
are used as the initial values of artificial fishes. Experimental
results demonstrate that the BER and near-far resistance
performances of the proposed MMSE-AFSA detector are
better, compared with matched filter (MF), decorrelating
detector (DEC), and MMSE, and are quite close to OMD.

This paper is organized as follows. Section 2 introduces
the system model of multiuser detector in TDRS systems
and several existing detectors. In Section 3, basic principle
of AFSA and the proposed MMSE-AFSA detector are illus-
trated. Then in Section 4, experiments that compare with the
performances of MF, DEC, MMSE, MMSE-AFSA, and OMD
are analyzed. The paper is concluded in Section 5.

2. System Model and Several Existing Methods

2.1. System Model. Consider a TDRS system with S-band
code division multiple access (CDMA). Assume there are 𝐾
simultaneously active users. Over additive white Gaussian
noise (AWGN) channel, the equivalent low-pass received
waveform can be expressed as

𝑦 (𝑡) =

𝐾

∑

𝑘=1

√𝐸
𝑘
𝑠
𝑘
(𝑡) 𝑏
𝑘
+ 𝑛 (𝑡) 0 ≤ 𝑡 ≤ 𝑇, (1)

where 𝐸
𝑘
, 𝑠
𝑘
(𝑡), and 𝑏

𝑘
∈ {−1, 1} represent energy per bit,

unit-energy signature waveform, and bit value of the kth user,
respectively, 𝑛(𝑡) is the noise, and 𝑇 is the bit interval.

The output of the matched filter of user 𝑘 sampled at 𝑇 is
achieved by the following equation:

𝑦
𝑘
= ∫

𝑇

0

𝑦 (𝑡) 𝑠
𝑘
(𝑡) d𝑡 = √𝐸

𝑘
𝑏
𝑘
+

𝐾

∑

𝑖=1

𝑖 ̸= 𝑘

√𝐸
𝑖
𝜌
𝑖𝑘
𝑏
𝑖
+ 𝑛
𝑘
, (2)

where the noise at the output of the kth matched filter is
𝑛
𝑘
= ∫

𝑇

0
𝑠
𝑘
(𝑡)𝑛(𝑡)d𝑡, and the cross correlation of the signature

waveforms of users 𝑖 and 𝑘 is 𝜌
𝑖𝑘
= ∫

𝑇

0
𝑠
𝑖
(𝑡)𝑠
𝑘
(𝑡)d𝑡.

The matched filter outputs can be expressed in vector
form as follows:

y = [𝑦
1
𝑦
2
. . . 𝑦
𝐾
]
𝑇

= RAb + n, (3)

whereR is the normalized cross correlationmatrix of the sig-
nature waveforms, R

𝑖𝑗
= 𝜌
𝑖𝑗
,A = diag [√𝐸

1
√𝐸
2
⋅ ⋅ ⋅√𝐸

𝐾
]
𝐾×𝐾

,
and n is the zero-mean AWGN noise vector.

The symbol decisions of matched filter are given by

̂b = sgn (y) . (4)

2.2. DecorrelatingDetector. Numerous suboptimal approach-
es to multiuser detection have been proposed to trade off
performance and complexity. Awidely studied linear solution
is decorrelating detector. In this category, the decorrelator
completely eliminates the MAI by orthogonalizing the users.
The transformation R−1 is applied to the output of matched
filters; the symbol decisions are given by

̂bDEC = sgn (R−1𝑦) = sgn (Ab + R−1n) . (5)

It can be immediately inferred that each component of the
decision vector ydec is interference-free. On the other hand,
the background noise can be enhanced by the transformation
R−1.

2.3. Minimum Mean Square Error Detector. Another impor-
tant linear detector is minimum mean square error detector.
The aim of MMSE detector is to choose the 𝐾 × 𝐾matrixM
that minimizes

Ω (M) = min𝐸 {

b −My



2

} . (6)

It can be easily seen that M = A−1[R + 𝜎
2A−2]−1 is the

solution to (6). The symbol decisions are

̂bMMSE = sgn (My) . (7)

It balances the desire to completely eliminate the MAI with
the desire to avoid the background noise enhancement.

2.4. Optimal Multiuser Detector. On the basis of matched
filter, optimal detector takes advantage of the maximum
likelihood sequence detection algorithm to improve the
performance of multiuser detector. The likelihood function
of 𝑦 given 𝑏 is given by

𝑝 (y | b) = exp(
− (1/2) (y − RAb)𝑇(𝜎2R)

−1

(y − RAb)

(2𝜋)
𝐾/2

𝜎|R|1/2
) ,

(8)

where |R| denotes the determinant of R. The maximum
likelihood symbol decisions are determined as

̂bOMD = arg max
b

{2b𝑇Ay − b𝑇ARAb} . (9)

The above maximization problem is a combinatorial opti-
mization problem which is known to be NP-hard: its
computational complexity increases exponentially with the
number of users in TDRS system.This𝑂(2𝐾) implementation
complexity required by OMD makes it impractical for real
system. OMD represents, however, a basis for comparison for
other suboptimal detectors.
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3. MMSE-AFSA Detector

3.1. Basic Principles of AFSA. Artificial fish swarm algorithm
is a new bionic optimization algorithm based on the study
of fish swarm’s intelligence and behaviors in nature. There
are mainly three types of fish behaviors: preying behavior,
swarming behavior, and following behavior. The general
AFSA is introduced below.

3.1.1. Several Definitions for AFSA. In the AFSA, suppose
there are 𝑛 artificial fishes. The state of each artificial
fish can be expressed as a 𝐾-dimensional vector X =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐾
)
𝑇. The objective function Y = 𝑓(X) denotes

the food concentration level of this state. The distance
between states X

𝑖
and X

𝑗
is defined as

𝑑
𝑖𝑗
=






X
𝑖
− X
𝑗







= √(𝑥
𝑖1
− 𝑥
𝑗1
)

2

+ (𝑥
𝑖2
− 𝑥
𝑗2
)

2

+ ⋅ ⋅ ⋅ + (𝑥
𝑖𝐾
− 𝑥
𝑗𝐾
)

2

.

(10)

Besides, Visual denotes the local visual (or searching)
distance of artificial fishes; 𝛿 is the factor of crowdedness that
affects the number of artificial fishes in the local space; step
is the movement size of artificial fishes; try number is the
random searching times in preying behavior.

3.1.2. Behaviors of AFSA

Preying Behavior. Suppose that the current state of an artificial
fish isX

𝑖
.X
𝑗
is a random state chosen in its visual field. In the

maximum problem, if 𝑓(X
𝑗
) > 𝑓(X

𝑖
), this artificial fish will

move from state X
𝑖
to X
𝑗
as

X
𝑖next = X

𝑖
+ rand (0, 1) × step ×

X
𝑗
− X
𝑖






X
𝑗
− X
𝑖







. (11)

Otherwise, choose a new state X
𝑗
randomly again and judge

whether it satisfies themovement condition (𝑓(X
𝑗
) > 𝑓(X

𝑖
)).

If there is no such X
𝑗
that can satisfy this condition after

trying try number times, this artificial fish will move one step
randomly at last

X
𝑖next = X

𝑖
+ rand (0, 1) × step. (12)

Swarming Behavior.The current state of an artificial fish isX
𝑖
,

and 𝑛
𝑓
is the number of companions within its visual range.

Thus, the central state of these artificial fishes is given by

X
𝑐
=

𝑛𝑓

∑

𝑗=1

X
𝑗

𝑛
𝑓

. (13)

If 𝑓(X
𝑐
)/𝑛
𝑓
> 𝛿𝑓(X

𝑖
), which means the food concentration

of X
𝑐
is sufficient and this area is not too crowded, then this

artificial will move to the central state X
𝑐
as

X
𝑖next = X

𝑖
+ rand (0, 1) × step ×

X
𝑐
− X
𝑖





X
𝑐
− X
𝑖






. (14)

Otherwise, preying behavior will be executed.
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Figure 1: The behavior of each artificial fish in AFSA.

Following Behavior. Within the visual range of X
𝑖
, Xmax

denotes the state whose food concentration 𝑓(Xmax) is
maximum. If 𝑓(Xmax)/𝑛𝑓 > 𝛿𝑓(X

𝑖
) and 𝑓(Xmax) > 𝑓(X

𝑖
),

this artificial fish will move to state Xmax as follows:

X
𝑖next = X

𝑖
+ rand (0, 1) × step ×

Xmax − X
𝑖





Xmax − X

𝑖






. (15)

Otherwise, preying behavior will be executed.

3.1.3. Bulletin Board. Abulletin board is established to record
the optimal state and the optimal value of these artificial
fishes. Each artificial fish will compare its current state to the
state on the bulletin board. If its food concentration is better,
update the bulletin board with the better state.

3.1.4. Behavior Selection. Evaluate the current environment
of artificial fishes according to the problem to be solved, and
then select a behavior. In the maximum problem, simulate
swarming behavior and following behavior of each artificial
fish and compare the food concentration of two behaviors,
and the better behavior will be implemented. If none of
them can improve the former state of the certain artificial
fish, preying behavior will be executed. The behavior of each
artificial fish in AFSA is shown in Figure 1.
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Figure 2: Diagram of MMSE-AFSA detector.

3.2. The Discretization of AFSA. The process of OMD is
similar to that of a function’s optimization. Whereas AFSA
is expert in optimization and it can realize the global
convergence efficiently, the optimization function for OMD
is shown in (9), which is a discrete optimization function.
Therefore, the model of AFSA should be discretized. AFSA
applied to multiuser detection problem with some additional
explications in the discrete Euclidean solution space E𝐾 are
expressed as follows.

(1) In the Euclidean solution space E𝐾, the state of each
fish is encoded by +1 or −1. If there are𝐾 active users
in a TDRS system, the state is a𝐾-dimensional vector,
like X = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐾
)
𝑇, where 𝑥

𝑖
∈ {+1, −1}, 𝑖 =

1, 2, . . . , 𝐾.
(2) The initial value of each artificial fish is selected

randomly in the discrete solution space with 2𝐾 likely
solutions.

(3) In this case, the operator XOR is used to calcu-
late distance between states of two artificial fishes.
For instance, the state of an artificial fish X

𝑖
=

(+1, +1, −1, +1, −1), the state of another artificial fish
X
𝑗
= (+1, −1, +1, −1, +1), then the distance between

the two artificial fishes 𝑑
𝑖𝑗
= X
𝑖
XOR X

𝑗
= 4.

(4) The central state of a certain artificial fish is given by

X
𝑐
= sgn (X

1
+ X
2
+ ⋅ ⋅ ⋅ + X

𝑛
) , (16)

where 𝑛 is the number of artificial fishes.
(5) The fitness function for AFSA is the criterion of OMD

given by

𝑓 (X) = 2X𝑇Ay − X𝑇ARAX, (17)

where X is the state of a certain artificial fish.
(6) Equations (11), (14), and (15) are, respectively, modi-

fied as follows:
X
𝑖next = X

𝑗
,

X
𝑖next = X

𝑐
,

X
𝑖next = Xmax.

(18)

3.3. The Procedure of the Proposed MMSE-AFSA Detector.
Since AFSA is a random searching swarm intelligence algo-
rithm, the initial values have a great effect on its convergence
speed. This suggests that, in order to decrease the number of
iterations, the initial states of these artificial fishes should be
selected with the a priori knowledge rather than selected ran-
domly. Therefore, a novel MMSE-AFSA detector is proposed
here. The result of MMSE and its modified formations are
used as the initial values of artificial fishes. The initialization
of artificial fishes is described below.

Step 1. Execute MMSE detector to get a suboptimal solution.
Assign the result b

1
= (𝑏
11
, 𝑏
12
, . . . , 𝑏

1𝐾
)
𝑇 as the initial state of

the first artificial fish, where 𝑏
1𝑖
∈ {+1, −1} and 𝑖 = 1, 2, . . . , 𝐾.

Step 2. Then, randomly change an element 𝑏
1𝑖
of b
1
; that is,

let 𝑏
2𝑖
= −𝑏
1𝑖
. And assign the new state b

2
which is modified

from b
1
to another artificial fish.

Step 3. Repeat Step 2 and initialize the rest of the artificial
fishes in the same way.

After initialization, run AFSA to get the optimal solution
of multiuser detection. As described above, the overall struc-
ture of MMSE-AFSA detector is shown in Figure 2.

3.4. Convergence Analysis of the Proposed Algorithm. After
each iteration in this algorithm, preying behavior obviously
provides a better solution than the previous solution; swarm-
ing behavior improves the state of each artificial fish in their
own visual range; artificial fishes move towards the optimal
state within their visual range after following behavior. The
behavior selection described in Section 3.1.4 chooses the
best behavior after each alteration. All these processes are
beneficial to the convergence of the proposed algorithm.

Besides, appropriate parameters have great influence on
the convergence of the algorithm. A smaller try number
helps artificial fishes to avoid local optimum and move
towards global optimal solution. Artificial fishes are easier
to find global optimal solution with a bigger Visual, whereas
smaller try number and bigger Visual usually mean higher
computational complexity.
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Table 1: Simulation parameters.

Parameter Value
Communication link Forward link
Multiple access CDMA
Modulation QPSK
Spreading codes Gold sequences
Length of spreading codes 1023
Communication channel AWGN
Number of tested information bits 1,000,000
Number of artificial fishes 3
Visual 4
try number 3
Number of iterations 5

The number of artificial fishes also affects the perfor-
mance of the algorithm. With more artificial fishes, the
algorithm is easier to converge and achieve global optimum.
However, the price is higher computational complexity.

So appropriate parameters and proper number of artifi-
cial fishes are beneficial to the convergence of the proposed
algorithm.

4. Simulations and Discussions

In this Section, Monte Carlo simulations are utilized to verify
the proposed MMSE-AFSA detector. And the performances
of MF, DEC, MMSE, OMD, and MMSE-AFSA are compared
over AWGN channel. Most of the parameters used for these
simulations are summarized in Table 1.

4.1. The BER Performance versus 𝐸
𝑏
/𝑁
0
. The BER perfor-

mance versus 𝐸
𝑏
/𝑁
0
with perfect power control over AWGN

channel is shown in Figure 3. There are 10 users in the TDRS
system and 𝐸

𝑏
/𝑁
0
ranges from 0 to 10.

It can be easily seen from Figure 3 that the BER perfor-
mance versus 𝐸

𝑏
/𝑁
0
of MMSE-AFSA is superior compared

withMF,DEC, andMMSE. In addition, it even coincideswith
OMD.MMSE is a suboptimalmethod ofmultiuser detection,
and AFSA can efficiently find the optimal solution with the
result ofMMSE and itsmodified formations as initial states of
artificial fishes. Rather than random initial values,MMSE and
its modified formations are approximations of the optimal
solution. That is the reason why the BER performance of
MMSE-AFSA is quite close toOMDandwhy only 5 iterations
are needed in MMSE-AFSA.

4.2. The BER Performance versus Number of Users 𝐾. The
BER performance curves of these detectors with different
number of active users are explored here. In this experiment,
𝐸
𝑏
/𝑁
0
is set to 5 for all the detectors.

Figure 4 shows the simulation results. As an overall trend,
BER of all the detectors increases when there are more active
users in the system. OMD shows the best BER performance
versus the number of active users among all these detectors.
The performance of MMSE-AFSA is also better than MF,
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Figure 3: The BER performance versus 𝐸
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Figure 4: The BER performance versus user number 𝐾.

DEC, and MMSE. In this experiment, as the number of users
increases, the solution space expands, while the parameters
such as Visual and try number of AFSA remain unchanged.
Thus, there exists a gap between MMSE-AFSA and OMD.

4.3. The Near-Far Resistance of MMSE-AFSA. In this experi-
ment, the BER performance of these detectors with imperfect
power control is employed. The user number is set to 10 and
𝐸
𝑏
/𝑁
0
of the first user is 5. While 𝐸

𝑏
/𝑁
0
of the remaining

users changes from 1 to 10 simultaneously. Simulation results,
compared with MF, DEC, MMSE, and OMD, are shown in
Figure 5.
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Figure 5: The near-far resistance of different detectors.

Table 2: Relative computational complexity of different detectors.

MF DEC MMSE MMSE-AFSA OMD
1 1.42 1.67 2.13 76.9

As is revealed in Figure 5, OMD shows the best near-far
resistance, while MF shows the worst.The near-far resistance
performance of MMSE-AFSA is better than MF, DEC, and
MMSE. MMSE-AFSA takes advantages from the suboptimal
result of MMSE and AFSA is expert in optimization and it
can realize the global convergence efficiently.

4.4. Different Initial States of Artificial Fishes. As an itera-
tive optimization scheme, the convergence rate reflects the
computational complexity. Different initial values have great
influence on iteration times. In this experiment, an AFSA
detector whose initial values are generated randomly and the
MMSE-AFSA detector whose initial values are the result of
MMSE and its modified formations are discussed. The BER
performance of different iteration times is shown in Figure 6,
respectively. The number of users is 10.

From Figure 6, we can see that, even after only 5 times
of iterative inMMSE-AFSA detector, the BER performance is
quite close to OMD.However, the BER performance of AFSA
detector with random initial states is worse than MMSE-
AFSA despite the number of iterations being 30. It is because
that there are only 3 artificial fishes, and they cannot reach
global optimum easily with randomly selected initial values.

4.5. Computational Complexity Analysis. In order tomeasure
the computational complexity of these detectors, relative
execution time is used in this experiment. Let the exe-
cution time of MF be equal to 1; the relative execution
time of DEC, MMSE, MMSE-AFSA, and OMD is shown in
Table 2, respectively (suppose there are 10 active users and

0 2 4 6 8 10
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R 

AFSA 5 iterations
AFSA 15 iterations
AFSA 30 iterations

MMSE-AFSA 5 iterations
OMD

Eb/N0 (dB)

100
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Figure 6: Convergence rate of AFSA detector and MMSE-AFSA
detector.

𝐸
𝑏
/𝑁
0
= 5; other simulation parameters are the same as

shown in Table 1).
It can be seen from Table 2 that the computational

complexity ofMMSE-AFSA increases slightly compared with
MMSE and is much lower than that of OMD, because, in a
𝐾-user TDRS system forward link, the number of iterations
of OMD is 2𝐾 for OMD is known to be NP-hard. DEC
and MMSE are linear detectors so that they have a low
computational complexity. The computational complexity
of MMSE-AFSA contains two parts. The first part is the
computational complexity of MMSE; another part is the
complexity of AFSA. From Section 4.4, we can see that only 3
artificial fishes and 5 iterations are needed for MMSE-AFSA
to coincide performance of OMD.

5. Conclusion

In this paper, a hybrid multiuser detector based on MMSE
and AFSA in TDRS system forward link is explored. In order
to apply AFSA in multiuser detection, the discretization of
AFSA is employed.Then the result ofMMSE and its modified
formations are used as the initial values of discrete artificial
fishes. Simulation results demonstrate that the BER perfor-
mance, user capacity, near-far resistance, and computational
complexity of MMSE-AFSA are superior, compared withMF,
DEC, and MMSE, and are quite close to OMD. Besides, the
convergence rate of the novel MMSE-AFSA detector is much
quicker than AFSA detector.
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This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine
(SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is
developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS
and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing
(SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational
experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on
different-scale test problems are presented to compare the proposed algorithms.

1. Introduction

A batch-processing machine (BPM) is a special variant of a
scheduling problem, in which several jobs can be simulta-
neously processed in such a way that all the jobs in a batch
start and complete their processing at the same time. The
main advantage is to reduce setups and/or facilitation of
material handling. The problem of BPM scheduling is often
encountered in real industries. The industrial application
of these machines can be found in semiconductor burn-in
operations, environmental stress-screening (ESS) chambers,
chemical, food, and mineral processing, pharmaceutical and
construction materials industries, and so forth.

The BPM scheduling problem is important because the
scheduling of batching operations has a significant economic
impact. It is mainly motivated by an industrial application,
namely, the burn-in operation found in the final testing phase
in semiconductormanufacturing [1, 2]. In the semiconductor
manufacturing, the jobs have different processing times and

sizes that are both required by the customers. The jobs are
grouped in batches where a batch means a subset of jobs.
The BPM can process a batch of jobs as long as the sum of
all the job sizes in the batch does not violate the capacity of
the machine. The processing time of a batch is equal to the
longest processing time of all the jobs in that batch.

Ikura and Gimple [3] were the first researchers who
studied the BPM problem and Lee et al. [4] first presented
a detailed description for burn-in operation. As reported in
the studies, the exact algorithms have a slow convergence rate
and they can solve only small instances to optimality.

As this study addresses SBPM with fuzzy due dates using
metaheuristics, the review on SBPMscheduling under a fuzzy
environment and the application of metaheuristics to these
problems is carried out. For an extensive review on BPM
scheduling problems, we refer to Potts and Kovalyov [5] and
Mathirajan and Sivakumar [6].

In BPM scheduling problems, Wang and Uzsoy [7] firstly
proposed a metaheuristic algorithm. Considering dynamic
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job arrivals, they combined a dynamic programming algo-
rithmwith a randomkey genetic algorithm (GA) tominimize
the maximum lateness. Melouk et al. [8] used a simulated
annealing (SA) to minimize the makespan. Koh et al. [9]
proposed a random key representation-based GA for the
problems of minimizing the makespan and total weighted
completion time. Sevaux and Dauzère-Pérès [10], Hussein-
zadeh Kashan et al. [11], and Damodaran et al. [12] used a GA
and redesigned the coding and decoding methods.

Mönch et al. [13] presented a GA combined with dom-
inance properties to minimize the earliness tardiness of
the jobs. Chou et al. [14] and Wang et al. [15] presented
a hybrid GA and a hybrid forward/backward approach to
minimize the makespan. Kashan and Karimi [16] developed
two versions of an ant colony optimization (ACO) framework
under the situation considered in Koh et al. [9]. Chou and
Wang [17], Mathirajan et al. [18], and Wang [19] proposed
a hybrid GA, SA, and iterated heuristic for the objective
of the total weighted tardiness, respectively. Husseinzadeh
Kashan et al. [20] considered bicriteria scheduling for the
simultaneous minimization of the makespan and maximum
tardiness.

In the classic scheduling problems, it is usually assumed
that the aspects of the problem in hand are certain. Most
existing models neglect the presence of uncertainty within
a scheduling environment. In many real-world scheduling
problems, however, uncertainty and vagueness in due date
often do exist that make the models more complex. This
uncertaintymay come about because of production problems
(e.g., defect in raw material and machine malfunctioning)
or problems with delivery itself (e.g., transportation delay
and traffic jam). Although classic BPM scheduling models
are extensively studied in the literature, there are only three
studies on fuzzy-based BPMmodels.

Ishii et al. [21] introduced the concept of fuzzy due dates
to scheduling problems; fuzzy due dates scheduling problems
have been investigated by many researchers. Harikrishnan
and Ishii [22] presented a polynomial time algorithm for
bicriteria scheduling of serial-batching problem with fuzzy
due dates to minimize the total weighted resource consump-
tion and maximize the minimal satisfaction degree. Yimer
and Demirli [23] considered a fuzzy goal programming
problem for batch scheduling of jobs in a two-stage flow shop
to minimize the total weighted flow time of jobs. Cheng et al.
[24] proposed ACO to minimize the fuzzy makespan on an
SBPM with triangular fuzzy processing times.

Till now, none has considered the objective ofminimizing
the fuzzy total weighted fuzzy tardiness penalties. So, a
new approach to solve a fuzzy SBPM (FSBPM) is proposed
and a related fuzzy number is considered for due dates
and modeled by fuzzy sets, in which the corresponding
membership functions represent satisfaction degree with
respect to jobs’ completion times. Hence, for the first time,
we present a new programming approach. Since the problem
is NP-hard for solving the addressed problem, two hybrid
metaheuristics (GA-VNS and VNS-SA) are developed to
obtain better results.

The remainder of this paper is as follows. Section 2
describes the problem in detail and presents the fuzzy math-
ematical model. Section 3 explains the proposed algorithms.
Section 4 describes the experimental design and compares
the computational results. Finally, conclusions are provided
and some areas of further research are then suggested in
Section 5.

2. Fuzzy Mathematical Model and
Problem Descriptions

2.1. Deterministic Model. The objective of this problem is to
minimize the total weighted tardiness penalties. Suppose that
there are 𝑛 jobs to be processed and each job 𝑗 ∈ 𝐽 has a
processing time 𝑝

𝑗
and a corresponding size 𝑠

𝑗
. The total size

of all the jobs in a batch does not exceed machine capacity
𝑆. The processing time of a batch 𝑏 is given by the longest
job in the batch (i.e., 𝑃𝑏 = max{𝑝

𝑗
| 𝑗 ∈ batch 𝑏}). The

formulation is as follows.

Notations
Sets

𝐽: Jobs, 𝑗 ∈ 𝐽
𝐵: Batches, 𝑏 ∈ 𝐵.

Parameters

𝑝
𝑗
: Processing time of job 𝑗

𝑠
𝑗
: Size of job 𝑗

cap: Machine capacity
𝛽
𝑗
: Tardiness penalty (/unit/h) of job j

𝑑
𝑗
: Due date of job j.

Decision Variables

𝑋
𝑗𝑏
: A binary variable indicates the assignment of job

j to batch b
𝑃
𝑏: Processing time of batch b
𝑐
𝑗
: Completion time of job j

𝐶
𝑏: Completion time of batch b
𝑇
𝑗
: Tardiness of job j.

According to the mentioned sets, parameters, and deci-
sion variables, the mathematical formulation of the total
weighted tardiness penalties can be written below:

Min 𝑍 = ∑

𝑗∈𝐽

𝛽
𝑗
𝑇
𝑗
𝑠
𝑗 (1)

s.t : ∑

𝑏∈𝐵

𝑋
𝑗𝑏
= 1 ∀𝑗 ∈ 𝐽 (2)

∑

𝑗∈𝐽

𝑠
𝑗
𝑋
𝑗𝑏
≤ cap ∀𝑏 ∈ 𝐵 (3)
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𝑃
𝑏
≥ 𝑝
𝑗
𝑋
𝑗𝑏

∀𝑗 ∈ 𝐽, ∀𝑏 ∈ 𝐵 (4)

𝐶
𝑏
=

𝑏

∑

𝑖=1

𝑃
𝑖
∀𝑏 ∈ 𝐵 (5)

𝑐
𝑗
≥ 𝐶
𝑏
−𝑀(1 − 𝑋

𝑗𝑏
) ∀𝑗 ∈ 𝐽, ∀𝑏 ∈ 𝐵;

𝑀 is a very large positive number
(6)

𝑇
𝑗
≥ 𝑐
𝑗
− 𝑑
𝑗
∀𝑗 ∈ 𝐽 (7)

𝑋
𝑗𝑏
∈ {0, 1} ∀𝑗 ∈ 𝐽, ∀𝑏 ∈ 𝐵. (8)

The objective function is to minimize the total weighted
tardiness penalties of jobs. Constraint set (2) ensures that
each job can be processed in only one batch. Constraint set
(3) ensures that the machine capacity is not exceeded when
jobs are assigned to a batch. Constraint set (4) states that
the processing time of a batch is the longest processing time
among all the jobs in that batch. Constraint set (5) determines
the completion time of each batch. Constraint set (6) defines
the completion time of each job as the completion time of
the batch that it is processed in. Constraint set (7) defines the
tardiness of a job as the difference between the due date of a
job and its completion time or 0 if it is negative. Constraint
set (8) specifies the type of decision variable𝑋

𝑗𝑏
.

Due to minimization of just only tardiness or total
weighted tardiness penalties in the objective function, the
model chooses the minimum 𝑃

𝑏 in the constraint sets (4)
to reach the longest processing time among all the jobs in
that batch.The smaller the completion time of jobs, the more
desirable the objective function. Similarly, themodel finds the
minimum 𝑐

𝑗
and 𝑇

𝑗
in the constraint sets (6) and (7).

2.2. Fuzzy Model. We briefly introduce some basic concepts
and results about fuzzy measure theory.

Definition 1. IfX is a collection of objects denoted generically
by x, then a fuzzy set in X is a set of the ordered pairs:

̃
𝑑 = {𝑥,

̃
𝑑 (𝑥) | 𝑥 ∈ 𝑋} , (9)

where ̃𝑑(𝑥) is called the membership function that is associ-
ated with each 𝑥 ∈ 𝑋 a number in [0, 1] indicating to what
degree x is a number.

Definition 2. ̃𝑑
𝑗
= {𝑑

𝑗,𝑙
, 𝑑
𝑗,𝑢
} denotes a fuzzy number as

shown in Figure 1.

As mentioned in the literature, the concept of fuzzy
due dates has been used in scheduling problems. Here, this
concept is being firstly utilized in the BPM scheduling prob-
lem. In a fuzzy due date, the membership function assigned
to each job represents the customer satisfaction degree for

the delivery or completion time of that job. The membership
function of a fuzzy due date of a job is represented below:

𝜇
𝑗
(𝐶
𝑗
) =

{
{
{
{

{
{
{
{

{

1 if 𝑐
𝑗
≤ 𝑑
𝑗,𝑙

𝑑
𝑗,𝑢
− 𝑐
𝑗

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

if 𝑑
𝑗,𝑙
< 𝑐
𝑗
< 𝑑
𝑗,𝑢

0 if 𝑐
𝑗
≥ 𝑑
𝑗,𝑢
.

(10)

From Figure 1, we can see that the full satisfaction (i.e.,
𝜇
𝑗
(𝐶
𝑗
) = 1) is attained if 𝑐

𝑗
≤ 𝑑
𝑗,𝑙
, and the satisfaction grade

is positive if 𝑑
𝑗,𝑙
< 𝑐
𝑗
< 𝑑
𝑗,𝑢

in the membership function (8).
If 𝑑
𝑗,𝑙
= 𝑑
𝑗,𝑢
, the fuzzy due date is transformed to interval due

date or due window.
According to the mentioned fuzzy due date, the studied

problem can be formulated as a maximization problem of the
total degree of satisfaction over given jobs or equivalently a
minimization problem of the total degree of dissatisfaction.
For the fuzzy mathematical formulation, the objective func-
tion (11) and constraint sets (12) and (13) are replaced instead
of objective function (1) and constraint set (7) to calculate the
total degree of satisfaction:

Max𝑍 = ∑
𝑗∈𝐽

𝑤
𝑗
𝜇
𝑗
𝑠
𝑗 (11)

𝜇
𝑗
= 1 if 𝑐

𝑗
≤ 𝑑
𝑗,𝑙 (12)

𝜇
𝑗
=

𝑑
𝑗,𝑢
− 𝑐
𝑗

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

if 𝑑
𝑗,𝑙
< 𝑐
𝑗
< 𝑑
𝑗,𝑢
. (13)

We can also use the following objective function (20) to
calculate the total degree of satisfaction instead of expressions
(11)–(13):

Max𝑍 = ∑
𝑗∈𝐽

𝑤
𝑗
𝑠
𝑗
((

max (0, 𝑑
𝑗,𝑙
− 𝑐
𝑗
)

𝑑
𝑗,𝑙
− 𝑐
𝑗

)

+ (

max (0, 𝑐
𝑗
− 𝑑
𝑗,𝑙
)

𝑐
𝑗
− 𝑑
𝑗,𝑙

)

× (

max (0, 𝑑
𝑗,𝑢
− 𝑐
𝑗
)

𝑑
𝑗,𝑢
− 𝑐
𝑗

)

× (

𝑑
𝑗,𝑢
− 𝑐
𝑗

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

)) .

(14)

It is clear that max(0, 𝑑
𝑗,𝑙
− 𝑐
𝑗
)/(𝑑
𝑗,𝑙
− 𝑐
𝑗
) = 1 results in

𝑐
𝑗
≤ 𝑑
𝑗,𝑙
, while max(0, 𝑐

𝑗
− 𝑑
𝑗,𝑙
)/(𝑐
𝑗
− 𝑑
𝑗,𝑙
) and max(0, 𝑑

𝑗,𝑢
−

𝑐
𝑗
)/(𝑑
𝑗,𝑢
−𝑐
𝑗
)= 1 result in𝑑

𝑗,𝑙
< 𝑐
𝑗
< 𝑑
𝑗,𝑢
. Formore explanation

of (max(0, 𝑑
𝑗,𝑙
− 𝑐
𝑗
)/(𝑑
𝑗,𝑙
− 𝑐
𝑗
)) + (max(0, 𝑐

𝑗
− 𝑑
𝑗,𝑙
)/(𝑐
𝑗
−

𝑑
𝑗,𝑙
))(max(0, 𝑑

𝑗,𝑢
− 𝑐
𝑗
)/(𝑑
𝑗,𝑢
− 𝑐
𝑗
))((𝑑
𝑗,𝑢
− 𝑐
𝑗
)/(𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙
)),
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consider a simple example of ̃𝑑
𝑗
= {𝑑
𝑗,𝑙
, 𝑑
𝑗,𝑢
} = {4, 7} with

different completion times:

(1) 𝑐
𝑗
= 3 ⇒ (

max (0, 4 − 3)
4 − 3

) + (

max (0, 3 − 4)
3 − 4

)

× (

max (0, 7 − 3)
7 − 3

) (

7 − 3

7 − 4

) = 1 + 0 × 1 ×

4

3

= 1.

(2) 𝑐
𝑗
= 5 ⇒ (

max (0, 4 − 5)
4 − 5

) + (

max (0, 5 − 4)
5 − 4

)

× (

max (0, 7 − 5)
7 − 5

) (

7 − 5

7 − 4

) = 0 + 1 × 1 ×

2

3

=

2

3

.

(3) 𝑐
𝑗
= 8 ⇒ (

max (0, 4 − 8)
4 − 8

) + (

max (0, 8 − 4)
8 − 4

)

× (

max (0, 7 − 8)
7 − 8

) (

7 − 8

7 − 4

) = 0 + 1 × 0 ×

−1

3

= 0.

(15)

As mentioned above, similar to the expressions (11)–
(14), expressions (1) and (16)–(18) can be used for the
equivalent fuzzymathematical formulation of the total degree
of dissatisfaction as follows:

𝑇
𝑗
=

𝑐
𝑗
− 𝑑
𝑗,𝑙

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

if 𝑑
𝑗,𝑙
< 𝑐
𝑗
< 𝑑
𝑗,𝑢 (16)

𝑇
𝑗
= 1 if 𝑐

𝑗
≥ 𝑑
𝑗,𝑢 (17)

Min𝑍 = ∑
𝑗∈𝐽

𝛽
𝑗
𝑠
𝑗
((

max (0, 𝑐
𝑗
− 𝑑
𝑗,𝑙
)

𝑐
𝑗
− 𝑑
𝑗,𝑙

)

× (

max (0, 𝑑
𝑗,𝑢
− 𝑐
𝑗
)

𝑑
𝑗,𝑢
− 𝑐
𝑗

)

× (

𝑐
𝑗
− 𝑑
𝑗,𝑙

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

)

+(

max (0, 𝑐
𝑗
− 𝑑
𝑗,𝑢
)

𝑐
𝑗
− 𝑑
𝑗,𝑢

)) .

(18)

Linearization. Obviously, the proposed fuzzy model is a
nonlinear mathematical model because of the conditional
expressions in the constraint sets (12), (13), (16), and (17).
Also, multiplication of variables and max function in the
objective functions (14) and (18) are used. An attempt is
made in this part to linearize the fuzzymodel via introducing

binary variable. Hence, the following constraints should be
used instead of nonlinear constraint sets (12) and (13):

𝑑
𝑗,𝑢
− 𝑐
𝑗
≥ 𝑀(𝑦

𝑗
− 1) ∀𝑗 ∈ 𝐽 (19)

𝜇
𝑗
≤

𝑑
𝑗,𝑢
− 𝑐
𝑗

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

+𝑀(1 − 𝑦
𝑗
) ∀𝑗 ∈ 𝐽 (20)

𝜇
𝑗
≤ 𝑦
𝑗
∀𝑗 ∈ 𝐽 (21)

𝑦
𝑗
∈ {0, 1} ∀𝑗 ∈ 𝐽. (22)

Similarly, the constraint (22), following objective function
and constraints, should be used instead of objective function
(1) and nonlinear constraint sets (16) and (17):

Min𝑍 = ∑
𝑗∈𝐽

𝛽
𝑗
(𝑇
𝑗,1
+ 𝑇
𝑗,2
) 𝑠
𝑗

𝑐
𝑗
− 𝑑
𝑗,𝑢
≤ 𝑀𝑇

𝑗,1
∀𝑗 ∈ 𝐽

𝑑
𝑗,𝑢
− 𝑐
𝑗
≤ 𝑀𝑦

𝑗
∀𝑗 ∈ 𝐽

𝑇
𝑗,2
≥

𝑐
𝑗
− 𝑑
𝑗,𝑙

𝑑
𝑗,𝑢
− 𝑑
𝑗,𝑙

−𝑀(1 − 𝑦
𝑗
) ∀𝑗 ∈ 𝐽.

(23)

3. Solution Approach

The evolutionary computation community has shown for
many years significant interest in optimization problems, in
particular in the global optimization of real valued problems,
for which exact and analytical methods are not productive.
These techniques have shown great promise in several real-
world applications [25, 26]. Hence, these methods are often
utilized in order to solve the problem in a shorter run time.

3.1. Proposed Earliest Due Date Heuristics. In this subsection,
we propose three constructive greedy heuristics based on
EDD as a well-known heuristic method related to the due
date. The details of these proposed heuristics are as follows.

(i) Calculate the index of jobs to be scheduled.
(ii) Sort jobs in increasing order of their index.
(iii) Apply the first-first (FF) heuristic to group jobs into

batches.

Accordingly, the details of these three variants of EDDs are as
follows:

EDD Algorithm. In this variant, the indexes are equal to
the EDD of the respective jobs. The centroid-based distance
method is used for ranking fuzzy numbers as follows:

Crisp due date (𝑑)

=

∫

𝑑𝑙

0
𝑥 𝑑𝑥 + ∫

𝑑𝑢

𝑑𝑙

𝑥 ((𝑑
𝑢
− 𝑥) / (𝑑

𝑢
− 𝑑
𝑙
)) 𝑑𝑥

∫

𝑑𝑙

0
𝑑𝑥 + ∫

𝑑𝑢

𝑑𝑙

((𝑑
𝑢
− 𝑥) / (𝑑

𝑢
− 𝑑
𝑙
)) 𝑑𝑥

=

1

3

(𝑑
𝑙
+ 𝑑
𝑢
−

𝑑
𝑙
𝑑
𝑢

𝑑
𝑙
+ 𝑑
𝑢

) .

(24)
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The jobs are sorted in increasing order of their crisp due dates.
So, the job that has the earliest due date will be allotted first.

EDDL Algorithm. Sort jobs in increasing order of their 𝑑
𝑙
.

EDDU Algorithm. Sort jobs in increasing order of their 𝑑
𝑢
.

3.2. Encoding Scheme and Initialization. Asmentioned earlier
in the literature, the random key (RK) method is used for
solving BPM scheduling problems. To generate a sequence
by this method, random real numbers between zero and one
are generated for each job. By ascending sorting of the value
corresponding to each job, the sequence of job is obtained
and then the FF heuristic is applied to group the jobs into the
batches. After having a permutation and forming the batches,
we can use it to compute the objective function value of this
solution.

3.3. Hybrid Metaheuristics. Over the last years, considerable
research has been conducted in hybrid metaheuristics in the
field of optimization. The trade-off between intensification
and diversification mechanisms is the main aspect of these
algorithms. Generally, metaheuristics can be categorized into
two main classes: local search methods and population
based methods. Population based methods deal with a set
of solutions in every iteration of the algorithm, while local
search heuristics only deal with a single solution.

Although local search heuristics only deal with a single
solution, it has shown its potential in both exploring and
exploiting the promising regions in the search space with
high quality solutions such as VNS. On the other hand, the
basic scheme of VNS and its extensions requires few and
sometimes no parameters. However, it is still prone to inferior
solutions due to the limited exploration and exploitation
ability.

There are two major approaches to hybridize the VNS
with other metaheuristics to improve its performance:
hybridizing with a local base metaheuristic and hybridizing
with a population based metaheuristic. The first idea is to
embed SA into VNS, so that it is replaced with local search,
whereas SA in hybrid VNS addresses how to get out of large
valleys. Besides, SA acts as the local searchmethod, because it
is good at searching the neighborhood of a solution.The three
neighborhoods employed are swap, insertion, and inversion.

As one of the most well-known population based meth-
ods, genetic algorithm (GA) shows robust performance with
various problems. Usually, GA has been proven to be very
good at shuffling the solution space or global exploration abil-
ity but fail to intensify the search towards promising regions.
Nevertheless, GA usually takes more computing efforts to
locate the optimal in the region of convergence [27], owing to
the lack of local search ability. Therefore, hybridization with
local search methods may overcome this weakness and lead
to powerful search schemes. So, the second idea is to embed
VNS as a local search into GA and may be a likely choice to
consider the hybridization of them. In GA, VNS is applied as
a local search to a subset of offspring generated by one-point

Table 1: Test problems characteristics.

Parameters Levels Count

Number of jobs (N) 10, 20, 30, 50, 75, 100, 125,
150, 175 and 200 10

Processing time of
jobs (P)

Uniform distributions
[1, 10], [1, 20]

2

Size of jobs (S) Uniform distributions
[1, 10], [2, 4], [4, 8]

3

Tardiness cost (T) [5, 8] 1

𝑑
𝑗,𝑢

Uniform distributions
(0.7 × BP, BP) 1

𝑑
𝑗,𝑙

Uniform distributions
(0.6 × 𝑑

𝑗,𝑢
, 0.8 × 𝑑

𝑗,𝑢
) 1

Cap 10 1
Total number of problem instances 60

crossover and swap mutation operator to search for better
solutions.

4. Computational Experiments

4.1. Instances. To compare the proposed algorithms, some
test problems are needed. In this regard, we generate the
required data that can affect the performance of the algo-
rithms including the number of jobs (n), range of processing
time of jobs (𝑝

𝑗
), size of jobs (𝑠

𝑗
), tardiness costs (𝛽

𝑖
), and

due date of jobs (𝑑
𝑗
). The crisp due dates in Tavakkoli-

Moghaddam et al. [28] test problems are generated from
a uniform distribution. We use such procedure with some
modifications to adapt the procedure for our problem as
follows:

𝑃 =

∑
𝑛

𝑗=1
𝑝
𝑗

𝑛

,

𝐵 =

∑
𝑛

𝑗=1
𝑠
𝑗

0.8 × cap
,

𝐵𝑃 = 𝐵 × 𝑃.

(25)

After generating the BP, the 𝑑
𝑗,𝑙
, and 𝑑

𝑗,𝑢
are generated as

explained in Table 1.

4.2. Parameter Setting. Because of the dependency of meta-
heuristic algorithms on the correct selection of parameters
and operators, we study the behavior of different parameters
of proposed algorithms. The parameters of proposed algo-
rithms are as follows: initial temperature (𝑇

0
), number of

neighborhood search (𝑛max), reduction ratio of temperature
(𝛼) population size (popsize), crossover percentage (𝑝

𝑐
),

and mutation probability (𝑝
𝑚
). Levels of these factors are

illustrated in Table 2.
In order to be fair, the stopping criterion for all algorithms

is equal to 6× 𝑛milliseconds.This criterion is sensitive to the
problem size. Using this stopping criterion, searching time
increases according to the rise in number of jobs. To yield
more reliable information and due to having stochastic nature
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Table 2: Factors and their levels.

SA, VNS and VNS-SA GA and GA-VNS
Parameters SA levels VNS levels VNS-SA levels Parameters GA levels GA-VNS levels

𝑇
0

A(1)—300 — A(1)—200
popsize

A(1)—45 A(1)—30
A(2)—350 — A(2)—250 A(2)—50 A(2)—35
A(3)—400 — A(3)—300 A(3)—60 A(3)—40

nmax

B(1)—600 A(1)—400 B(1)—400
𝑝
𝑐

B(1)—80% B(1)—80%
B(2)—650 A(2)—450 B(2)—450 B(2)—85% B(2)—85%
B(3)—700 A(3)—500 B(3)—500 B(3)—90% B(3)—90%

𝛼

C(1)—0.91 — C(1)—0.89
𝑝
𝑚

C(1)—0.1 C(1)—0.1
C(2)—0.92 — C(2)—0.9 C(2)—0.15 C(2)—0.15
C(3)—0.93 — C(3)—0.91 C(3)—0.2 C(3)—0.2

nmax

D(1)—300
D(2)—350
D(3)—400

of algorithms, we tackle each test problem ten times. Because
the scale of objective functions in each instance is different,
they cannot be used directly. To solve this problem, the
relative percentage deviation (RPD) is used for each instance.
The RPD is obtained by the following formula:

RPD =
Algsol −Minsol

Minsol
× 100, (26)

where Algsol and Minsol are the obtained objective value
and minimum objective value found from both proposed
algorithms for each instance, respectively. So, we use the RPD
measure in the proposed algorithms.

After obtaining the results of the test problems, the results
are transformed into RPD measures. The RPD measures are
averaged and their value is depicted in Figures 2–6. In SA,
better robustness happens when parameters T

0
, 𝑛max and 𝛼

are 350, 650, and 0.92, respectively, as depicted in Figure 2. In
Figure 3, the RPD measure for the single parameter of VNS
(𝑛max) is depicted and the second level or 450 is the best. Also,
for hybrid VNS, as illustrated in Figure 4, T

0
, 𝑛max, and 𝛼 are

defined as 250, 450, and 0.9. In conformity with Figure 5, best
magnitude for popsize, 𝑝

𝑐
, and 𝑝

𝑚
in GA are 50, 85%, and 15.

Besides, in accordance with Figure 6, in the proposed GA-
VNS, best quantity for popsize, 𝑝

𝑐
, 𝑝
𝑚
, and 𝑛max are 35, 85%,

15, and 350, respectively.

4.3. Experimental Results. In this section, we present and
compare the results of EDDL, EDDU, SA,VNS,GA,VNS-SA,
and GA-VNS with the EDD dispatching rule as a well-known
heuristic algorithm related to the due date. As mentioned
above, we have 60 problem instances, in which each one
includes 10 performed replications to achieve the more
reliable results. Table 3 demonstrated the results obtained
from EDD, EDDL, and EDDU, in which the first and
fourth columns represent the data sets characteristics and the
remaining columns show the results on instances.

According to Table 3, among heuristics, EDDL has the
worst results, and it can be concluded that EDDU is better
than EDD. In order to analyze the interaction between quality

0
0

𝜇j(Cj)

1

Cj
dj,l dj,u

Figure 1: Membership function.
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Figure 2: Mean RPD plot for each level of the factors in SA.

of the algorithms and different problem sizes more concisely,
the RPD results are calculated for test problems and averaged
for each problem size. The average RPDs obtained by each
algorithm are shown in Figures 7 and 8. In these figures,
each point represents the average results obtained from six
test problems considered in each size of problems with ten
replications in each algorithm.

It is noticeable that with increasing the problem size,
gradually the RPDs of the proposed EDD, EDDL, and EDDU
decrease. In spite of decreasing the RPDs, they are not capable
to be completive even in the four last sizes.

As it can be seen, the GA-VNS keeps its robust perfor-
mance in all ranges of problem sizes. On the contrary to SA
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3.07

3.056

3.042

3.028

3.014

3

A
(1

)-
20
0

A
(2

)-
25
0

A
(3

)-
3
00

B(
1

)-
4
00

B(
2

)-
4
5
0

B(
3

)-
5
00

C(
1

)-
0.
89

C(
2

)-
0.
9

C(
3

)-
0.
9
1

RP
D

Figure 4: Mean RPD ratio plot for each level of the factors in VNS-
SA.

and VNS, both VNS-SA and GA have good results. VNS-SA
has better performance in 10 j and 30 j; however, in the last six
problem sizes,GAoutperforms it. In the first problem size, SA
yields the best result, but with increasing the problem size,
gradually its RPDs increase. In the first four problem sizes,
VNS does not show a good performance, but with increasing
the problem size, its RPDs decrease, while in latter sizes it
outperforms SA.

From Figures 7 and 8, there is no significant difference
between proposed EDD and EDDU or SA and VNS. So,
we perform an analysis of variance (ANOVA) to accurately
analyze the results among them. The means plot and LSD
intervals (at the 95% confidence level) for the presented
algorithms are shown in Figures 9 and 10. According to the
results, the average RPD obtained by the proposed EDD,
EDDL, and EDDU are 128.04, 141, and 132.33 respectively. So,
EDD is better than EDDU and EDDL.

Also, the average RPD obtained by the proposed GA-
VNS is 0.22, while for GA, VNS-SA, SA, and VNS are 0.37,
0.41, 0.6, and 0.65, respectively. As is evident, GA-VNS has
outperformed other algorithm. As it can be seen, between
GA and VNS-SA, and also between SA and VNS, there is not
a significant difference. However, they failed to statistically
overcome each other. However, based on the results, we
conclude that the proposedGA-VNS can be used to effectively
solve the problem.
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Figure 7: Means plot for the interaction among heuristic algo-
rithms.

1.4

1.2

1

0.8

0.6

0.4

0.2

0

SA
VNS
GA

VNS-SA
GA-VNS

10j 20j 30j 50j 75j 100j 125j 150j 175j 200j

Figure 8: Means plot for the interaction among metaheuristic
algorithms.
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Table 3: Results of EDD, EDDL, and EDDU on test problems.

Problem EDD EDDL EDDU
10jp1s1 113.9 101.15 113.9
10jp1s2 140.49 189.19 140.49
10jp1s3 123.16 91.03 132.06
10jp2s1 119.33 130.42 185.23
10jp2s2 113.42 114.74 113.42
10jp2s3 155.56 166.44 185.35
20jp1s1 203.7 208.63 189.57
20jp1s2 196.16 190.16 175.72
20jp1s3 256.24 204.22 203.58
20jp2s1 120.96 134.36 122.45
20jp2s2 214.69 193.68 162.22
20jp2s3 153.54 172.27 153.37
30jp1s1 195.61 193.39 198.37
30jp1s2 252.3 267.01 252.26
30jp1s3 488.24 772.72 569.51
30jp2s1 191.91 234.04 197.27
30jp2s2 351.17 362.43 379.27
30jp2s3 396.51 400.85 410.41
50jp1s1 539.52 686.09 476.37
50jp1s2 424.3 443.42 398.52
50jp1s3 708.06 682.57 701.39
50jp2s1 559.46 591.87 665.65
50jp2s2 410.91 423.84 412.4
50jp2s3 527.77 390.2 565.44
75jp1s1 761.27 707.47 701.15
75jp1s2 594.23 635.03 515.88
75jp1s3 682.1 774.99 716.68
75jp2s1 896.54 1085.56 1117.63
75jp2s2 517.24 507.16 507.64
75jp2s3 872.84 852.19 917.32
100jp1s1 573.12 631.37 655.84
100jp1s2 874.41 932.05 864.1
100jp1s3 1015.52 1032.15 1052.11
100jp2s1 991.97 1047 946.9
100jp2s2 810.87 716.69 636.58
100jp2s3 1365.03 1402.12 1342.32
125jp1s1 1263.82 1602.84 1236.04
125jp1s2 978.41 910.7 989.08
125jp1s3 1090.05 1125.03 1088.53
125jp2s1 968.01 1303.24 1148.23
125jp2s2 962.34 942.8 947.46
125jp2s3 1261.83 1250.44 1254.45
150jp1s1 1523.47 1473.88 1199.04
150jp1s2 1185.04 1079 1417.27
150jp1s3 1654.88 1730.38 1579.02
150jp2s1 992.93 992.75 897.83
150jp2s2 1167.75 1279.56 1143.29
150jp2s3 1727.18 1684.63 1676.66
175jp1s1 1150.47 1261.93 1025.12
175jp1s2 1303.52 1414.09 1335.53
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Table 3: Continued.

Problem EDD EDDL EDDU
175jp1s3 1888.85 1805.08 2013.34
175jp2s1 1623.61 1761.51 1876.28
175jp2s2 1408.78 1437.47 1406.21
175jp2s3 1651.22 1699.95 1520.91
200jp1s1 1198.46 1142.2 1160.17
200jp1s2 1556.72 1828.91 1724.02
200jp1s3 2266.57 2261.79 1935.25
200jp2s1 1486.81 1935.52 1912.32
200jp2s2 1708.57 1774.06 1731.21
200jp2s3 1892.47 2006.77 1885.73
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Figure 9: Means plot and LSD intervals for proposed heuristics.
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Figure 10: Means plot and LSD intervals for proposed metaheuris-
tics.

5. Conclusions and Future Research Directions

In this paper, we discussed the single batch-processing
machine (SBPM) scheduling problem in the presence of
fuzzy due date to minimize the total weighted tardiness.
We developed a mixed integer linear programming model
with the objective functions of the total satisfaction or
dissatisfaction degree. To solve this model, three heuristics
(EDD, EDDL, and EDDU), three metaheuristics (GA, VNS,

and SA), and two hybrid metaheuristics (GA-VNS and VNS-
SA) are developed. Also, a plan was developed and utilized to
generate test problems in a fuzzy environment. To enhance
the performance of the proposed method, the experimental
design method was used by setting their parameters. The
computational results showed that the hybrid GA-VNS were
robust and superior to other proposed algorithms. As a future
work, total weighted earliness tardiness can be considered as
the objective function and the same proposed algorithms can
be developed for it. Another direction is to work on other
algorithms, such as Cuckoo Optimization Algorithm [29],
Honey Bees Optimization [30], Differential Evolution [31],
Cuckoo Search [32], and Firefly Algorithm [25, 26].
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Particle swarm optimization (PSO) has attractedmany researchers interested in dealing with various optimization problems, owing
to its easy implementation, few tuned parameters, and acceptable performance. However, the algorithm is easy to trap in the
local optima because of rapid losing of the population diversity. Therefore, improving the performance of PSO and decreasing the
dependence on parameters are two important research hot points. In this paper, we present a human behavior-based PSO, which
is called HPSO.There are two remarkable differences between PSO and HPSO. First, the global worst particle was introduced into
the velocity equation of PSO, which is endowed with random weight which obeys the standard normal distribution; this strategy is
conducive to trade off exploration and exploitation ability of PSO. Second, we eliminate the two acceleration coefficients 𝑐

1
and 𝑐
2
in

the standard PSO (SPSO) to reduce the parameters sensitivity of solved problems. Experimental results on 28 benchmark functions,
which consist of unimodal, multimodal, rotated, and shifted high-dimensional functions, demonstrate the high performance of the
proposed algorithm in terms of convergence accuracy and speed with lower computation cost.

1. Introduction

Particle swarm optimization (PSO) [1] is a population-based
intelligent algorithm, and it has been widely employed to
solve various kinds of numerical and combinational opti-
mization problems because of its simplicity, fast convergence,
and high performance.

Researchers have proposed various modified versions of
PSO to improve its performance; however, there still are
premature or lower convergence rate problems. In the PSO
research, how to increase population diversity to enhance the
precision of solutions and how to speed up convergence rate
with least computation cost are two vital issues. Generally
speaking, there are four strategies to fulfill these targets as
follows.

(1) Tuning control parameters. As for inertial weight,
linearly decreasing inertial weight [2], fuzzy adaptive inertial
weight [3], rand inertial weight [4], and adaptive inertial
weight based on velocity information [5], they can enhance
the performance of PSO. Concerning acceleration coef-
ficients, the time-varying acceleration coefficients [6] are
widely used. Clerc and Kennedy analyzed the convergence

behavior by introducing constriction factor [7], which is
proved to be equivalent to the inertial weight [8].

(2) Hybrid PSO, which hybridizes other heuristic oper-
ators to increase population diversity. The genetic operators
have been hybridized with PSO, such as selection operator
[9], crossover operator [10], and mutation operator [11].
Similarly, differential evolution algorithm [12], ant colony
optimization [13], and local search strategy [14] have been
introduced into PSO.

(3) Changing the topological structure. The global and
local versions of PSO are the main type of swarm topologies.
The global version converges fast with the disadvantage
of trapping in local optima, while the local version can
obtain a better solution with slower convergence [15]. The
Von Neumann topology is helpful for solving multimodal
problems and may perform better than other topologies
including the global version [16].

(4) Eliminating the velocity formula. Kennedy proposed
the bare-bones PSO (BPSO) [17] and variants of BPSO [18,
19]. Sun et al. proposed quantum-behaved PSO (QPSO) and
relative convergence analysis [20, 21].
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Initialize Parameters:
𝑁 ⇐ population size;
𝐷 ⇐ the dimensionality of search space;
𝑇 ⇐ the number of maximum iteration;
𝑤 ⇐ the inertial weight;
[𝑥
𝑑

min, 𝑥
𝑑

max] ⇐ the allowable position boundaries, 𝑑 = 1, 2, . . . , 𝐷;
[V𝑑min, V

𝑑

max] ⇐ the allowable velocity boundaries, 𝑑 = 1, 2, . . . , 𝐷;
Initialize Population: 𝑉

𝑖
= (V1
𝑖
, V2
𝑖
, . . . , V𝐷

𝑖
),𝑋
𝑖
= (𝑥
1

𝑖
, 𝑥
2

𝑖
, . . . , 𝑥

𝐷

𝑖
), 𝑖 = 1, 2, . . . , 𝑁;

V𝑑
𝑖
⇐ V𝑑min + rand

𝑑

𝑖
⋅ (V𝑑max − V

𝑑

min);
𝑥
𝑑

𝑖
⇐ 𝑥
𝑑

min + rand
𝑑

𝑖
⋅ (𝑥
𝑑

max − 𝑥
𝑑

min);
Initialize 𝑃best, 𝐺best and 𝐺worst:

Evaluate fitness of all particles in𝑋 = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
};

𝑃best⇐ 𝑋;
𝐺best⇐ argmin {𝑓(𝑃best

1
), 𝑓(𝑃best

2
), . . . , 𝑓(𝑃best

𝑁
)};

𝐺worst⇐ argmax {𝑓(𝑃best
1
), 𝑓(𝑃best

2
), . . . , 𝑓(𝑃best

𝑁
)};

For 𝑡 = 1, 2, . . . , 𝑇
For each particle 𝑖 = 1, 2, . . . , 𝑁

Update velocity according to (5) and check the boundaries;
Update position according to (3) and check the boundaries;

Endfor
Evaluate fitness of all particles in {𝑋};
Update 𝑃best, 𝐺best and 𝐺worst;

Endfor.
Return the best solution.

Algorithm 1: HPSO.
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Figure 1: Cognition and social terms in PSO.
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Figure 2: Impelled/penalized term in HPSO.



The Scientific World Journal 3

Table 1: Functions’ names, dimensions, ranges, and global optimum values of benchmark functions used in the experiments.

Number Function name Dimension (𝐷) [Range]𝐷 𝐹opt

𝐹
1

Sphere model 30/50/100 [−100, 100]𝐷 0
𝐹
2

Schwefel’s problem 2.22 30/50/100 [−10, 10]𝐷 0
𝐹
3

Schwefel’s problem 1.2 30/50/100 [−100, 100]𝐷 0
𝐹
4

Schwefel’s problem 2.21 30/50/100 [−100, 100]𝐷 0
𝐹
5

Step function 30/50/100 [−100, 100]𝐷 0
𝐹
6

Quartic function, that is, noise 30/50/100 [−1.28, 1.28]𝐷 0
𝐹
7

Rosenbrock’s function 30/50/100 [−10, 10]𝐷 0
𝐹
8

Schwefel’s function 30/50/100 [−500, 500]𝐷 0
𝐹
9

Generalized Rastrigin’s function 30/50/100 [−5.12, 5.12]𝐷 0
𝐹
10

Noncontinuous Rastrigin’s function 30/50/100 [−5.12, 5.12]𝐷 0
𝐹
11

Ackley’s function 30/50/100 [−32, 32]𝐷 0
𝐹
12

Generalized Griewank’s function 30/50/100 [−600, 600]𝐷 0
𝐹
13

Weierstrass’s function 30/50/100 [−0.5, 0.5]𝐷 0
𝐹
14

Generalized penalized function 30/50/100 [−50, 50]𝐷 0
𝐹
15

Cosine mixture problem 30/50/100 [−1, 1]𝐷 −0.1 × 𝐷

𝐹
16

Rotated elliptic function 30/50/100 [−1.28, 1.28]𝐷 0
𝐹
17

Rotated Schwefel’s function 30/50/100 [−500, 500]𝐷 0
𝐹
18

Rotated Ackley’s function 30/50/100 [−32, 32]𝐷 0
𝐹
19

Rotated Griewank’s function 30/50/100 [−600, 600]𝐷 0
𝐹
20

Rotated Weierstrass’s function 30/50/100 [−0.5, 0.5]𝐷 0
𝐹
21

Rotated Rastrigin’s function 30/50/100 [−5.12, 5.12]𝐷 0
𝐹
22

Rotated Salomon’s function 30/50/100 [−100, 100]𝐷 0
𝐹
23

Rotated Rosenbrock’s function 30/50/100 [−100, 100]𝐷 0
𝐹
24

Shifted Rosenbrock’s function 30/50/100 [−100, 100]𝐷 390
𝐹
25

Shifted Rastrigin’s function 30/50/100 [−5, 5]𝐷 −330
𝐹
26

Shifted Schwefel’s problem 2.21 30/50/100 [−100, 100]𝐷 −450
𝐹
27

Shifted rotated Ackley’s function 30/50/100 [−32, 32]𝐷 −140
𝐹
28

Shifted rotated Weierstrass’s function 30/50/100 [−0.5, 0.5]𝐷 90

In recent years, some modified PSO have extremely
enhanced the performance of PSO. For example, Zhan et al.
proposed adaptive PSO (APSO) [22] and Wang et al. pro-
posed so-called diversity enhanced particle swarm optimiza-
tion with neighborhood search (DNSPSO) [23]. The former
introduces an evolutionary state estimation (ESE) technique
to adaptively adjust the inertia weight and acceleration
coefficients.The later ones, a diversity enhancing mechanism
and neighborhood-based search strategies, were employed to
carry out a tradeoff between exploration and exploitation.

Though all kinds of variants of PSO have enhanced per-
formance of PSO, there are still some problems such as hardly
implement, new parameters to just, or high computation
cost. So it is necessary to investigate how to trade off the
exploration and exploitation ability of PSO and reduce the
parameters sensitivity of the solved problems and improve the
convergence accuracy and speed with the least computation
cost and easy implementation. In order to carry out the
targets, in this paper, the global worst position (solution) was
introduced into the velocity equation of the standard PSO
(SPSO), which is called impelled/penalized learning accord-
ing to the corresponding weight coefficient. Meanwhile, we
eliminate the two acceleration coefficients 𝑐

1
and 𝑐

2
from

the SPSO to reduce the parameters sensitivity of the solved
problems. The so-called HPSO has been employed to some
nonlinear benchmark functions, which compose unimodal,
multimodal, rotated, and shiftedhigh-dimensional functions,
to confirm its high performance by comparing with other
well-known modified PSO.

The remainder of the paper is structured as follows. In
Section 2, the standard particle swarmoptimization (SPSO) is
introduced.The proposed HPSO is given in Section 3. Exper-
imental studies and discussion are provided in Section 4.
Some conclusions are given in Section 5.

2. Standard PSO (SPSO)

The PSO is inspired by the behavior of bird flying or fish
schooling; it is firstly introduced by Kennedy and Eberhart
in 1995 [1] as a new heuristic algorithm. In the standard PSO
(SPSO) [2], a swarm consists of a set of particles, and each
particle represents a potential solution of an optimization
problem. Considering the 𝑖th particle of the swarm with 𝑁
particles in a 𝐷-dimensional space, its position and velocity
at iteration 𝑡 are denoted by 𝑋

𝑖
(𝑡) = (𝑥

1

𝑖
(𝑡), 𝑥
2

𝑖
(𝑡), . . . , 𝑥

𝐷

𝑖
(𝑡))

and 𝑉
𝑖
(𝑡) = (V1

𝑖
(𝑡), V2
𝑖
(𝑡), . . . , V𝐷

𝑖
(𝑡)). Then, the new velocity
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Table 2: Experimental results obtained by SPSO and HPSO on function from 𝐹
1
to 𝐹
10
.

Fun Dim Best Worst Meadian Mean SD Significant

𝐹
1

30 SPSO 1.1992𝑒 − 04 1.0000𝑒 + 04 9.9690𝑒 − 04 666.6686 2.5371𝑒 + 03

HPSO 0 0 0 0 0 +

50 SPSO 9.4288𝑒 − 04 1.0000𝑒 + 04 0.0078 3.6667𝑒 + 03 3.6667𝑒 + 03

HPSO 0 0 0 0 0 +

100 SPSO 1.0013𝑒 + 04 7.0017𝑒 + 04 4.0087𝑒 + 04 4.0698𝑒 + 04 2.0974𝑒 + 04

HPSO 0 10000 0 333.3333 1.8257e + 03 +

𝐹
2

30 SPSO 6.8555𝑒 − 04 30.0018 10.0017 11.3364 10.0777
HPSO 0 0 0 0 0 +

50 SPSO 0.0329 70.0010 40.0006 37.3438 15.2918
HPSO 0 0 0 0 0 +

100 SPSO 51.0214 181.4054 110.5934 114.3039 29.0723
HPSO 0 0 0 0 0 +

𝐹
3

30 SPSO 6.4613𝑒 + 03 3.7311𝑒 + 04 2.2333𝑒 + 04 2.1337𝑒 + 04 6.7035𝑒 + 03

HPSO 0 5.1779e + 03 0 172.5975 945.3557 +

50 SPSO 4.0023𝑒 + 04 1.0191𝑒 + 05 6.5660𝑒 + 04 7.0328𝑒 + 04 1.7603𝑒 + 04

HPSO 0 6.9787e + 03 0 232.6222 1.2741e + 03 +

100 SPSO 1.7694𝑒 + 05 3.0086𝑒 + 05 2.4789𝑒 + 05 2.4752𝑒 + 05 3.6623𝑒 + 04

HPSO 0 2.6987e + 04 0 3.8008e + 03 6.9150e + 03 +

𝐹
4

30 SPSO 8.6091 21.2711 12.9945 13.3502 3.5341
HPSO 0 0 0 0 0 +

50 SPSO 24.2031 39.5127 31.0562 31.1715 4.2886
HPSO 0 0 0 0 0 +

100 SPSO 54.1172 75.3686 64.7834 64.2358 4.2202
HPSO 0 0 0 0 0 +

𝐹
5

30 SPSO 0 10001 0 1.0005𝑒 + 03 3.0512𝑒 + 03

HPSO 0 0 0 0 0 +

50 SPSO 0 20004 4.5000 5.0028𝑒 + 03 6.8230𝑒 + 03

HPSO 0 0 0 0 0 +

100 SPSO 127 90040 40068 4.3086𝑒 + 04 2.2747𝑒 + 04

HPSO 0 0 0 0 0 +

𝐹
6

30 SPSO 0.0344 18.8556 0.0959 3.5587 5.1400
HPSO 1.4522e − 04 0.0030 0.0012 0.0012 8.5738e − 04 +

50 SPSO 0.0780 72.6594 13.6489 19.6604 19.3860
HPSO 7.4623e − 05 0.0017 5.3645e − 04 6.3534e − 04 4.7283e − 04 +

100 SPSO 86.7855 381.9209 200.8146 211.9720 88.3159
HPSO 3.5210e − 05 0.0019 2.9387e − 04 4.0826e − 04 3.5395e − 04 +

𝐹
7

30 SPSO 14.3237 1.0083𝑒 + 04 140.5176 2.4686𝑒 + 03 4.2581𝑒 + 03

HPSO 28.6353 28.9456 28.8793 28.8461 0.0932 +

50 SPSO 97.0317 9.4285𝑒 + 05 376.2306 3.4093𝑒 + 04 1.7169𝑒 + 05

HPSO 48.4886 48.8766 48.7600 48.7513 0.0875 +

100 SPSO 706.1328 2.8333𝑒 + 06 9.4375𝑒 + 05 8.8851𝑒 + 05 8.9157𝑒 + 05

HPSO 98.4280 98.8373 98.7133 98.7129 0.0818 +

𝐹
8

30 SPSO 2.0226e + 03 4.8935e + 03 3.5787e + 03 3.6128e + 03 733.1063
HPSO 3.5886𝑒 + 03 8.0516𝑒 + 03 6.6047𝑒 + 03 6.3505𝑒 + 03 1.0893𝑒 + 03 −

50 SPSO 5.8499e + 03 9.7913e + 03 7.8862e + 03 7.7139e + 03 1.0101e + 03
HPSO 6.5496𝑒 + 03 1.4460𝑒 + 04 1.1191𝑒 + 04 1.0866𝑒 + 04 2.1757𝑒 + 03 −

100 SPSO 1.8110𝑒 + 04 2.4259e + 04 2.0949e + 04 2.1084e + 04 1.7384e + 03
HPSO 1.2615e + 04 3.1402𝑒 + 04 2.4302𝑒 + 04 2.4077𝑒 + 04 4.9510𝑒 + 03 −



The Scientific World Journal 5

Table 2: Continued.

Fun Dim Best Worst Meadian Mean SD Significant

𝐹
9

30 SPSO 28.7299 160.3815 87.6754 92.5142 32.6994
HPSO 0 0 0 0 0 +

50 SPSO 175.2643 351.6480 260.4359 258.0518 48.4078
HPSO 0 0 0 0 0 +

100 SPSO 555.8950 993.3887 750.1694 749.1658 749.1658
HPSO 0 0 0 0 0 +

𝐹
10

30 SPSO 61.4129 221.0445 132.7694 134.5414 33.8073
HPSO 0 0 0 0 0 +

50 SPSO 157.1020 440.0897 324.2632 310.3595 64.3675
HPSO 0 0 0 0 0 +

100 SPSO 623.5658 1.0433𝑒 + 03 804.6981 813.3435 88.5932
HPSO 0 25 0 0.8333 4.5644 +

Yes

Output the best solution

Evaluate fitness of particles

Start

No

Meet end of criterion?

Update the next particles positions as (3)

Update the next particles velocities as (5)

Initialize parameters

Randomly initialize velocities and positions of population

Update Pbest, Gbest, and Gworst

Initialize Pbest, Gbest, and Gworst

Figure 3: HPSO flowchart.

and position on the 𝑑-dimension of this particle at iteration
𝑡 + 1 will be calculated by using the following:

V𝑑
𝑖
(𝑡 + 1) = 𝑤 ⋅ V𝑑

𝑖
(𝑡) + 𝑐

1
⋅ 𝑟
𝑑

1
(𝑡) ⋅ (𝑃best𝑑

𝑖
(𝑡) − 𝑥

𝑑

𝑖
(𝑡))

+ 𝑐
2
⋅ 𝑟
𝑑

2
(𝑡) ⋅ (𝐺best𝑑 (𝑡) − 𝑥𝑑

𝑖
(𝑡)) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑁, and 𝑁 is the population size; 𝑑 =
1, 2, . . . , 𝐷, and𝐷 is the dimension of search space; 𝑟𝑑

1
and 𝑟𝑑
2

are two uniformly distributed random numbers in the inter-
val [0, 1]; acceleration coefficients 𝑐

1
and 𝑐
2
are nonnegative

constants which control the influence of the cognitive and
social components during the search process. 𝑃best

𝑖
(𝑡) =

(𝑃best1
𝑖
(𝑡), . . . , 𝑃best𝐷

𝑖
(𝑡)), called the personal best solution,

represents the best solution found by the 𝑖th particle itself
until iteration 𝑡; 𝐺best(𝑡) = (𝐺best1(𝑡), . . . , 𝐺best𝐷(𝑡)), called
the global best solution, represents the global best solution
found by all particles until iteration 𝑡. 𝑤 is the inertial weight
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Table 3: Experimental results obtained by SPSO and HPSO on functions from 𝐹
11
to 𝐹
20
.

Fun Dim Best Worst Median Mean SD Significant

𝐹
11

30 SPSO 0.0043 19.9630 0.0595 2.3935 5.4041
HPSO 8.8818e − 16 8.8818e − 16 8.8818e − 16 8.8818e − 16 0 +

50 SPSO 0.0598 19.9646 12.6912 10.5673 6.3042
HPSO 8.8818e − 16 8.8818e − 16 8.8818e − 16 8.8818e − 16 0 +

100 SPSO 15.4237 20.2143 19.5200 19.4135 0.8672
HPSO 8.8818e − 16 8.8818e − 16 8.8818e − 16 8.8818e − 16 0 +

𝐹
12

30 SPSO 7.0274𝑒 − 04 90.8935 0.0178 12.0794 31.2763
HPSO 0 0 0 0 0 +

50 SPSO 0.0014 270.8170 0.0415 45.1971 70.1274
HPSO 0 0 0 0 0 +

100 SPSO 1.1140 721.0594 361.0858 376.1758 158.6584
HPSO 0 0 0 0 0 +

𝐹
13

30 SPSO 0.1403 4.3952 0.3210 1.0567 1.4863
HPSO 0 0 0 0 0 +

50 SPSO 0.8657 15.2389 7.5828 8.2388 3.6607
HPSO 0 0 0 0 0 +

100 SPSO 27.6235 64.4826 49.3984 47.7138 10.0126
HPSO 0 0 0 0 0 +

𝐹
14

30 SPSO 6.4114𝑒 − 05 2.2031 0.4202 0.5373 0.5730
HPSO 0.0710 0.2803 0.1301 0.1444 0.0513 +

50 SPSO 0.1882 6.9784 2.2774 2.3889 1.5688
HPSO 0.1016 0.3137 0.1652 0.1702 0.0438 +

100 SPSO 32.5063 5.1200𝑒 + 08 457.9143 7.6801𝑒 + 07 1.5257𝑒 + 08

HPSO 0.1866 0.5097 0.2703 0.2736 0.0653 +

𝐹
15

30 SPSO −3.0000 −2.8522 −3.0000 −2.9507 0.0709
HPSO −3 −3 −3 −3 0 +

50 SPSO −5.0000 −2.3044 −4.4827 −4.2127 0.6865
HPSO −5 −5 −5 −5 0 +

100 SPSO −7.9165 4.7637 −5.2127 −4.6977 2.8465
HPSO −10 −10 −10 −10 0 +

𝐹
16

30 SPSO 2.3604𝑒 + 03 3.8233𝑒 + 04 3.8233𝑒 + 04 1.2375𝑒 + 04 9.2463𝑒 + 03

HPSO 0 5.8369𝑒 + 03 0 390.6710 1.2756𝑒 + 03 +

50 SPSO 7.1213𝑒 + 03 1.0427𝑒 + 05 3.3195𝑒 + 04 3.4891𝑒 + 04 2.2914𝑒 + 04

HPSO 0 4.0529𝑒 + 03 0 224.6749 873.6249 +

100 SPSO 6.2317𝑒 + 04 2.7386𝑒 + 05 1.4222𝑒 + 05 1.4697𝑒 + 05 5.7699𝑒 + 04

HPSO 0 1.9403𝑒 + 04 0 1.0583𝑒 + 03 3.8088𝑒 + 03 +

𝐹
17

30 SPSO 6.7986𝑒 + 03 9.7587𝑒 + 03 8.3387𝑒 + 03 8.2508𝑒 + 03 739.7223
HPSO 8.3590𝑒 + 03 9.8803𝑒 + 03 9.0866𝑒 + 03 9.0790𝑒 + 03 442.4330 −

50 SPSO 1.3020𝑒 + 04 1.7080𝑒 + 04 1.4999𝑒 + 04 1.5149𝑒 + 04 1.0581𝑒 + 03

HPSO 1.5003𝑒 + 04 1.7349𝑒 + 04 1.6514𝑒 + 04 1.6310𝑒 + 04 669.3538 −

100 SPSO 2.7400𝑒 + 04 2.7400𝑒 + 04 3.1087𝑒 + 04 3.1149𝑒 + 04 2.1654𝑒 + 03

HPSO 3.0329𝑒 + 04 3.5493𝑒 + 04 3.4226𝑒 + 04 3.3586𝑒 + 04 1.5320𝑒 + 03 −

𝐹
18

30 SPSO 20.7888 21.0951 21.0053 20.9848 0.0712
HPSO 8.8818𝑒 − 16 21.1210 20.9931 11.2354 10.6894 +

50 SPSO 21.0515 21.2478 21.1455 21.1436 0.0536
HPSO 8.8818𝑒 − 16 21.2404 21.1366 12.0016 10.6745 +

100 SPSO 21.2367 21.3931 21.3368 21.3358 0.0364
HPSO 8.8818𝑒 − 16 21.3949 21.3545 15.6658 9.6084 +
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Table 3: Continued.

Fun Dim Best Worst Median Mean SD Significant

𝐹
19

30 SPSO 1.0517 495.3131 273.6408 243.6176 154.3551
HPSO 0 0 0 0 0 +

50 SPSO 265.0558 1.4393𝑒 + 03 798.8065 786.0782 289.8401
HPSO 0 0 0 0 0 +

100 SPSO 1.9937𝑒 + 03 4.0158𝑒 + 03 2.9388𝑒 + 03 2.9263𝑒 + 03 543.9053
HPSO 0 0 0 0 0 +

𝐹
20

30 SPSO 22.5705 34.8494 28.6842 28.8734 3.5028
HPSO 0 39.9834 0 3.1393 9.7817 +

50 SPSO 45.9462 70.7399 55.5532 55.6014 5.7839
HPSO 0 66.4051 0 2.2135 12.1239 +

100 SPSO 106.4483 139.8394 120.6118 121.4481 7.8030
HPSO 0 129.4941 0 8.3487 31.7918 +

to balance the global and local search abilities of particles in
the search space, which is given by

𝑤 = 𝑤max −
𝑤max − 𝑤min

𝑇

× 𝑡, (2)

where 𝑤max is the initial weight, 𝑤min is the final weight, 𝑡 is
the current iteration number, and𝑇 is themaximum iteration
number. Then, update particle’s position using the following:

𝑥
𝑑

𝑖
(𝑡 + 1) = 𝑥

𝑑

𝑖
(𝑡) + V𝑑

𝑖
(𝑡 + 1) (3)

and check 𝑥𝑑min ≤ 𝑥
𝑑

𝑖
(𝑡 + 1) ≤ 𝑥

𝑑

max, where 𝑥
𝑑

min and
𝑥
𝑑

max represent lower and upper bounds of the 𝑑th variable,
respectively.

3. Human Behavior-Based PSO (HPSO)

In this section, a modified version of SPSO based on human
behavior, which is called HPSO, is proposed to improve the
performance of SPSO. In SPSO, all particles only learn from
the best particles 𝑃best and 𝐺best. Obviously, it is an ideal
social condition. However, considering the human behavior,
there exist some people who have bad habits or behaviors
around us, at the same time, as we all known that these bad
habits or behaviors will bring some effects on people around
them. If we take warning from these bad habits or behaviors,
it is beneficial to us. Conversely, if we learn from these bad
habits or behaviors, it is harmful to us. Therefore, we must
give an objective and rational view on these bad habits or
behavior.

In HPSO, we introduce the global worst particle, who is
of the worst fitness in the entire population at each iteration.
It is denoted as 𝐺worst and defined as follows:

𝐺worst (𝑡)

= argmax {𝑓 (𝑃best
1
) , 𝑓 (𝑃best

2
) , . . . , 𝑓 (𝑃best

𝑁
)} ,

(4)

where 𝑓(⋅) represents the fitness value of the corresponding
particle.

To simulate human behavior and make full use of the
𝐺worst, we introduce a learning coefficient 𝑟

3
, which is a

random number obeying the standard normal distribution;
that is, 𝑟

3
∈ 𝑁(0, 1). If 𝑟

3
> 0, we consider it as an

impelled learning coefficient, which is helpful to enhance
the “flying” velocity of the particle; therefore, it can enhance
the exploration ability of particle. Conversely, if 𝑟

3
< 0,

we consider it as a penalized learning coefficient, which
can decrease the “flying” velocity of the particle; therefore,
it is beneficial to enhance the exploitation. If 𝑟

3
= 0, it

represents that these bad habits or behaviors have not effect
on the particle. Meanwhile, in order to reduce the parameters
sensitivity of the solved problems, we take place of the two
acceleration coefficients 𝑐

1
and 𝑐
2
with two random learning

coefficients 𝑟
1
and 𝑟

2
, respectively. Therefore, the velocity

equation has been changed as follows:

V𝑑
𝑖
(𝑡 + 1) = 𝑤 ⋅ V𝑑

𝑖
(𝑡) + 𝑟

1
(𝑡) ⋅ (𝑃best𝑑

𝑖
(𝑡) − 𝑥

𝑑

𝑖
(𝑡))

+ 𝑟
2
(𝑡) ⋅ (𝐺best𝑑 (𝑡) − 𝑥𝑑

𝑖
(𝑡))

+ 𝑟
3
(𝑡) ⋅ (𝐺worst𝑑 (𝑡) − 𝑥𝑑

𝑖
(𝑡)) ,

(5)

where 𝑟
1
and 𝑟
2
are two random numbers in range of [0, 1]

and 𝑟
1
+ 𝑟
2
= 1. The random numbers 𝑟

1
, 𝑟
2
, and 𝑟

3
are the

same for all 𝑑 = 1, 2, . . . , 𝐷 but different for each particle, and
they are generated anew in each iteration. If V𝑑

𝑖
(𝑡+1) overflows

the boundary, we set boundary value to it. Consider

V𝑑
𝑖
(𝑡 + 1) =

{
{
{

{
{
{

{

V𝑑min, if V𝑑
𝑖
(𝑡 + 1) < V𝑑min,

V𝑑max, if V𝑑
𝑖
(𝑡 + 1) > V𝑑max,

V𝑑
𝑖
(𝑡 + 1) , otherwise,

(6)

where V𝑑min and V
𝑑

max are theminimumandmaximumvelocity
of the 𝑑-dimensional search space, respectively. Similarly, if
𝑥
𝑑

𝑖
(𝑡 + 1) flies out of the search space, we limit it to the

corresponding bound value.
In SPSO, the cognition and social learning terms move

particle 𝑖 towards good solutions based on 𝑃best
𝑖
and 𝐺best

in the search space as shown in Figure 1. This strategy makes
a particle fly fast to good solutions, so it is easy to trap in
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Table 4: Experimental results obtained by SPSO and HPSO on functions from 𝐹
21
to 𝐹
28
.

Fun Dim Best Worst Median Mean SD Significant

𝐹
21

30 SPSO 67.1541 307.3070 213.8939 203.8842 61.8125
HPSO 0 0 0 0 0 +

50 SPSO 158.2955 715.0245 518.1705 500.5593 135.5998
HPSO 0 269.3463 0 8.9782 49.1757 +

100 SPSO 1.0850𝑒 + 03 1.9021𝑒 + 03 1.5793𝑒 + 03 1.5669𝑒 + 03 190.5584

HPSO 0 582.0882 0 35.5882 136.0270 +

𝐹
22

30 SPSO 0.7999 14.9999 1.2522 2.9025 4.3553
HPSO 0 0 0 0 0 +

50 SPSO 2.0999 26.0999 13.9628 12.8291 6.9033
HPSO 0 0 0 0 0 +

100 SPSO 16.5013 41.9999 35.4551 33.9791 6.3075
HPSO 0 0 0 0 0 +

𝐹
23

30 SPSO 81.0577 4.0119𝑒 + 09 2.0685𝑒 + 08 6.8745𝑒 + 08 1.0469𝑒 + 09

HPSO 28.8214 28.9856 28.9323 28.9252 0.0421 +

50 SPSO 3.7253𝑒 + 03 2.1495𝑒 + 10 3.6515𝑒 + 09 3.6515𝑒 + 09 5.3957𝑒 + 09

HPSO 48.7069 48.8900 48.8205 48.8139 0.0479 +

100 SPSO 6.7997𝑒 + 09 9.2655𝑒 + 10 3.3160𝑒 + 10 3.8223𝑒 + 10 2.0050𝑒 + 10

HPSO 98.6590 98.8846 98.8109 98.7983 0.0545 +

𝐹
24

30 SPSO 6.2312𝑒 + 08 2.3418𝑒 + 10 4.9110𝑒 + 09 5.8767𝑒 + 09 5.6099𝑒 + 09

HPSO 5.9432𝑒 + 05 6.2859𝑒 + 09 7.6373𝑒 + 06 3.7982𝑒 + 08 1.2316𝑒 + 09 +

50 SPSO 4.3540𝑒 + 09 3.3195𝑒 + 10 1.3961𝑒 + 10 1.6077𝑒 + 10 8.3270𝑒 + 09

HPSO 3.9454𝑒 + 06 8.9387𝑒 + 09 3.1766𝑒 + 07 7.0962𝑒 + 08 1.9565𝑒 + 09 +

100 SPSO 4.9031𝑒 + 10 1.5465𝑒 + 11 9.1986𝑒 + 10 9.7151𝑒 + 10 2.8460𝑒 + 10

HPSO 2.0551𝑒 + 08 5.4553𝑒 + 09 6.7593𝑒 + 08 1.1373𝑒 + 09 1.2367𝑒 + 09 +

𝐹
25

30 SPSO −229.5551 −78.6646 −176.9746 −174.7148 35.8633
HPSO −204.3636 −100.1465 −148.1389 −149.7299 27.1636 −

50 SPSO −77.4305 156.8323 22.8512 24.6168 62.2086
HPSO −102.9219 132.8077 −16.6107 −4.1921 58.2317 +

100 SPSO 475.3838 860.0386 612.6947 632.8693 100.6069
HPSO 394.3532 805.2473 581.1779 590.3932 80.6175 +

𝐹
26

30 SPSO −425.5452 −331.1195 −385.1191 −387.6682 22.2647
HPSO −439.6877 −399.0205 −423.4928 −422.5533 11.3496 +

50 SPSO −399.6029 −326.6739 −379.4869 −370.8387 18.7600
HPSO −415.6822 −391.7124 −401.4635 −400.8395 6.5162 +

100 SPSO −358.3688 −300.6930 −322.8060 −324.4641 15.5861
HPSO −380.3478 −360.8031 −369.0319 −370.4683 5.1369 +

𝐹
27

30 SPSO −119.2212 −118.8710 −119.0179 −119.0258 0.0866
HPSO −119.1100 −118.8700 −118.9469 −118.9589 0.0545 −

50 SPSO −119.0222 −118.7656 −118.8316 −118.8535 0.0603
HPSO −118.9117 −118.7327 −118.7780 −118.7911 0.0421 −

100 SPSO −118.7259 −118.6013 −118.6485 −118.6537 0.0310
HPSO −118.6872 −118.5986 −118.6231 −118.6289 0.0204 −

𝐹
28

30 SPSO 113.2663 126.0977 118.5782 119.4693 3.6330
HPSO 114.4722 132.2305 124.3094 124.5205 4.3399 −

50 SPSO 137.8303 153.5400 145.1433 145.1503 4.2018
HPSO 141.9493 162.4008 153.9547 153.1087 5.4273 −

100 SPSO 194.1222 232.4306 215.9257 215.9174 8.6772
HPSO 212.5258 245.0126 229.4886 230.4426 7.4650 −
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Table 5: Some well-known PSOs algorithms in the literature.

Algorithm Year Topology Parameter settings
GPSO 1998 Global star 𝑤: 0.9 − 0.4, 𝑐

1
= 𝑐
2
= 2.0

LPSO 2002 Local ring 𝑤: 0.9 − 0.4, 𝑐
1
= 𝑐
2
= 2.0

FIPS 2004 Local Uring 𝜒 = 0.729, ∑𝑐
𝑖
= 4.1

HPSO-TVAC 2004 Global star 𝑤: 0.9 − 0.4, 𝑐
1
: 2.5 − 0.5, and 𝑐

2
: 0.5 − 2.5

UPSO 2004 Global star 𝑤: 0.9 − 0.4, 𝑐
1
= 𝑐
2
= 2.0, and 𝑈 = 0.5

DMS-PSO 2005 Dynamic multiswarm 𝑤: 0.9 − 0.2, 𝑐
1
= 𝑐
2
= 2.0,𝑚 = 3, and 𝑅 = 5

VPSO 2006 Local Von Neumann 𝑤: 0.9 − 0.4, 𝑐
1
= 𝑐
2
= 2.0

CLPSO 2006 Comprehensive learning 𝑤: 0.9 − 0.4, 𝑐 = 1.49445, and𝑚 = 7
QIPSO 2007 Global star 𝑤: 0.9 − 0.4, 𝑐

1
= 𝑐
2
= 2.0

APSO 2009 Global star 𝑤: 0.9, 𝑐
1
= 𝑐
2
= 2.0; 𝛿 : random in [0.05, 0.1], 𝜎: 1 − 0.1

AFPSO 2011 Global star 𝑤: 0.9 − 0.4, 𝑐
1
, and 𝑐

2
are based on fuzzy rule

AFPSO-QI 2011 Global star 𝑤: 0.9 − 0.4, 𝑐
1
, and 𝑐

2
are based on fuzzy rule

local optima. From Figure 2, we can clearly observe that both
impelled learning term and penalized term provide a particle
with the chance to change flying direction. Therefore, the
impelled/penalized term plays a key role in increasing the
population diversity, which is beneficial in helping particles
to escape from the local optima and enhance the conver-
gence speed. In HPSO, the impelled/penalized learning term
performs a proper tradeoff between the exploration and
exploitation.

To sum up, Figure 3 illustrates the flowchart of HPSO.
Meanwhile, the pseudocodes of implementing the HPSO are
listed as shown in Algorithm 1.

4. Experimental Studies and Discussion

To evaluate the performance of HPSO, 28 minimization
benchmark functions are selected [22, 24, 25] as detailed in
Section 4.1. HPSO is compared with SPSO in different search
spaces and the results are given in Section 4.2. In addition,
HPSO is compared with some well-known variants of PSO in
Section 4.3.

4.1. Benchmark Functions. In the experimental study, we
choose 28 minimization benchmark functions, which consist
of unimodal, multimodal, rotated, shifted, and shifted rotated
functions. Table 1 lists the main information; please refer to
papers [22, 24, 25] to obtain further detailed information
about these functions. Among these functions, 𝐹

1
–𝐹
6
are

unimodal functions. 𝐹
7
is the Rosenbrock function, which

is unimodal for 𝐷 = 2 and 𝐷 = 3 but may have multiple
minima in high dimension cases. 𝐹

8
–𝐹
15

are unrotated
multimodal functions and the number of their local minima
increases exponentially with the problem dimension. 𝐹

16
–𝐹
23

are rotated functions. 𝐹
24
–𝐹
26

are shifted functions and 𝐹
27

and 𝐹
28

are shifted rotated multimodal functions and 𝑂 =

(𝑜
1
, 𝑜
2
, . . . , 𝑜

𝐷
) is a randomly generated shift vector located in

the search space. To obtain a rotated function, an orthogonal
matrix 𝑀 [26] is considered and the rotated variable 𝑦 =
𝑀 × 𝑥 is computed. Then, the vector 𝑦 is used to evaluate
the objective function value.

4.2. Comparison of HPSO with SPSO. The performance on
the convergence accuracy of HPSO is compared with that
of SPSO. The test functions listed in Table 1 are evaluated.
For a fair comparison, we set the same parameters value.
Population size is set to 30 (𝑁 = 30), upper bounds of
velocity 𝑉max = 0.5 × (𝑋max − 𝑋min), and the corresponding
lower bounds 𝑉min = −𝑉max, where 𝑋min and 𝑋max are the
lower and upper bounds of variables, respectively. Inertia
weight 𝑤 is linearly decreased from 0.9 to 0.4 in SPSO and
HPSO. Acceleration coefficients 𝑐

1
and 𝑐
2
in SPSO are set to

2. The two algorithms are independently run 30 times on the
benchmark functions. The results in terms of the best, worst,
median, mean, and standard deviation (SD) of the solutions
obtained in the 30 independent runs by each algorithm in
different search spaces are as shown in Tables 2, 3, and 4. At
the same time, the maximum iteration 𝑇 is 1000 for 𝐷 = 30,
2000 for𝐷 = 50, and 3000 for𝐷 = 100, respectively.

From Tables 2–4, we can clearly observe that the conver-
gence accuracy of HPSO is better than SPSO on the most
benchmark functions. An interesting result is that HPSO can
find the global optimal solutions on functions 𝐹

2
, 𝐹
4
, 𝐹
5
,

𝐹
9
, 𝐹
12
, 𝐹
13
, 𝐹
15
, 𝐹
19
, and 𝑓

22
in all search spaces; that is to

say, HPSO can obtain the 100% success rate on the listed
functions. Considering𝐹

1
and𝐹
10
, thoughHPSO can find the

global optimal solutions in all different search ranges, it only
obtained the mean values 333.3333 and 0.8333, respectively,
in 100-dimensional space. At the same time, HPSO offers
the higher convergence accuracy on functions 𝐹

3
, 𝐹
6
, 𝐹
7
, 𝐹
11
,

𝐹
14
, 𝐹
16
, 𝐹
20
, 𝐹
21
, 𝐹
23
, and 𝐹

26
. However, we must observe

that SPSO has higher performance on function 𝐹
8
. As for

𝐹
25
, SPSO has better performance in 30-dimensional search

space, but HPSO has better performance in 50- and 100-
dimensional search spaces. As for shifted rotated functions
𝐹
27

and 𝐹
28
, both SPSO and HPSO have worst convergence

accuracy. As seen, the dimension of the selected functions has
great effect on SPSO. For example, considering function 𝐹

1
,

SPSO has mean value 666.6686, 3.6667𝑒 + 03, and 4.0698𝑒 +
04 in 30-dimensional, 50-dimensional, and 100-dimensional
search spaces, respectively, while HPSO has mean values 0, 0,
and 333.333 in the corresponding search space. Therefore, we
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Figure 4: Convergence comparison of HPSO and SPSO on the selected test functions with𝐷 = 30,𝑁 = 30, and 𝑇 = 1000.
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Table 6: Comparison results of eight PSO algorithms [22] with HPSO on 10 functions (𝑁 = 20,𝐷 = 30, and FEs = 2 × 105).

Function GPSO LPSO VPSO FIPS HPSO-TVAC DMS-PSO CLPSO APSO HPSO
𝐹
1

Mean 1.98𝑒 − 53 4.77𝑒 − 29 5.11𝑒 − 38 3.21𝑒 − 30 3.38𝑒 − 41 3.85𝑒 − 54 1.89𝑒 − 19 1.45𝑒 − 150 0
SD 7.08𝑒 − 53 1.13𝑒 − 28 1.91𝑒 − 37 3.60𝑒 − 30 8.50𝑒 − 41 1.75𝑒 − 53 1.49𝑒 − 19 5.73𝑒 − 150 0
Rank 4 8 6 7 5 3 9 2 1

𝐹
2

Mean 2.51𝑒 − 34 2.03𝑒 − 20 6.29𝑒 − 27 1.32𝑒 − 17 6.9𝑒 − 23 2.61𝑒 − 29 1.01𝑒 − 13 5.15𝑒 − 84 0
SD 5.84𝑒 − 34 2.89𝑒 − 20 8.68𝑒 − 27 7.86𝑒 − 18 6.89𝑒 − 23 6.6𝑒 − 29 6.51𝑒 − 14 1.44𝑒 − 83 0
Rank 3 7 5 8 6 4 9 2 1

𝐹
3

Mean 6.45𝑒 − 2 18.60 1.44 0.77 2.89𝑒 − 7 47.5 395 1.0e − 10 167
SD 9.45𝑒 − 2 30.71 1.55 0.86 2.97𝑒 − 7 56.4 142 2.13e − 10 913
Rank 3 6 5 4 2 7 9 1 8

𝐹
5

Mean 0 0 0 0 0 0 0 0 0
SD 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1

𝐹
6

Mean 7.77𝑒 − 3 1.49𝑒 − 2 1.08𝑒 − 2 2.55𝑒 − 3 5.54𝑒 − 2 1.1𝑒 − 2 3.92𝑒 − 3 4.66𝑒 − 3 1.03e − 04
SD 2.42𝑒 − 3 5.66𝑒 − 3 3.24𝑒 − 3 6.25𝑒 − 4 2.08𝑒 − 2 3.94𝑒 − 3 1.14𝑒 − 3 1.7𝑒 − 3 8.99e − 05
Rank 5 8 6 2 9 7 3 4 1

𝐹
9

Mean 30.7 34.90 34.09 29.98 2.39 28.1 2.57𝑒 − 11 5.8𝑒 − 15 0
SD 8.68 7.25 8.07 10.92 3.71 6.42 6.64𝑒 − 11 1.01𝑒 − 14 0
Rank 7 9 8 6 4 5 3 2 1

𝐹
10

Mean 15.5 30.40 21.33 35.91 1.83 32.8 0.167 4.14𝑒 − 16 0
SD 7.4 9.23 9.46 9.49 2.65 6.49 0.379 1.45𝑒 − 15 0
Rank 5 7 6 9 4 8 3 2 1

𝐹
11

Mean 1.15𝑒 − 14 1.85𝑒 − 14 1.4𝑒 − 14 7.69𝑒 − 15 2.06𝑒 − 10 8.52𝑒 − 15 2.01𝑒 − 12 1.11𝑒 − 14 8.88e − 16
SD 2.27𝑒 − 15 4.80𝑒 − 15 3.48𝑒 − 15 9.33𝑒 − 16 9.45𝑒 − 10 1.79𝑒 − 15 9.22𝑒 − 13 3.55𝑒 − 15 0
Rank 5 7 6 2 9 3 8 4 1

𝐹
12

Mean 2.37𝑒 − 2 1.10𝑒 − 2 1.31𝑒 − 2 9.04𝑒 − 4 1.07𝑒 − 2 1.31𝑒 − 2 6.45𝑒 − 13 1.67𝑒 − 2 0
SD 2.57𝑒 − 2 1.60𝑒 − 2 1.35𝑒 − 2 2.78𝑒 − 3 1.14𝑒 − 2 1.73𝑒 − 2 2.07𝑒 − 12 2.41𝑒 − 2 0
Rank 9 5 6 3 4 7 2 8 1

𝐹
14

Mean 1.04𝑒 − 2 2.18𝑒 − 30 3.46𝑒 − 3 1.22𝑒 − 31 7.07𝑒 − 30 2.05e − 32 1.59𝑒 − 21 3.76𝑒 − 31 1.70𝑒 − 2

SD 3.16𝑒 − 2 5.14𝑒 − 30 1.89𝑒 − 2 4.85𝑒 − 32 4.05𝑒 − 30 8.12e − 33 1.93𝑒 − 21 1.2𝑒 − 30 1.42𝑒 − 2

Rank 8 4 7 2 5 1 6 3 9
Average rank 5 6.2 5.6 4.4 4.9 4.6 5.3 2.9 2.5
Final rank 6 9 8 3 5 4 7 2 1

also conclude that HPSO has better stability than SPSO from
the data in different search spaces.

In the 9th columns of Tables 2–4, we report the statistical
significance level of the difference of the means of the two
algorithms. Note that here “+” indicates that the 𝑡 value is
significant at a 0.05 level of significance by two-tailed test, and
“−” stands for the difference of means that is not statistically
significant.

Figure 4 graphically presents the comparison in terms of
convergence characteristics of the evolutionary processes in

solving the selected benchmark functions in 30-dimensional
search space with𝑁 = 30 and 𝑇 = 1000.

4.3. Comparison of HPSOwith Other PSO Algorithms. In this
section, a comparison of HPSO with some well-known PSO
algorithmswhich are listed in Table 5 is performed to evaluate
the efficiency of the proposed algorithm.

At first, we choose 10 unimodal andmultimodal test func-
tions for this evaluation. According to [22], the algorithms
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Table 7: Comparison results of seven PSO algorithms [25] with HPSO on six functions (𝑁 = 30,𝐷 = 30, and 𝑇 = 10,000).

Function SPSO QIPSO UPSO FIPS CLPSO AFSO AFSO-Q1 HPSO
𝐹
9

Mean 52.30 25.61 59.40 106.1 74.39 17.93 15.69 0
SD 27.35 15.98 58.05 30.54 9.77 5.63 4.47 0
Rank 5 4 6 8 7 3 2 1

𝐹
13

Mean 0.534 36.38 8.70 6.40 1.39𝑒 − 03 4.52𝑒 − 03 1.50𝑒 − 03 0
SD 1.74 4.66 3.08 3.04 3.28𝑒 − 04 9.20𝑒 − 03 3.48𝑒 − 03 0
Rank 5 8 7 6 2 4 3 1

𝐹
21

Mean 320.2 317.5 309.5 434.1 263.3 266.3 253.3 0
SD 14.70 23.24 25.88 34.99 11.96 12.00 12.63 0
Rank 7 6 5 8 3 4 2 1

𝐹
22

Mean 17.03 15.20 14.29 26.60 11.94 10.38 8.46 0
SD 2.55 1.32 2.15 1.42 1.37 1.38 0.948 0
Rank 7 6 5 8 4 3 2 1

𝐹
27

Mean −119.10 −119.10 −119.10 −119.90 −119.00 −119.70 −119.80 −119.05
SD 7.09𝑒 − 02 5.68𝑒 − 02 3.24𝑒 − 02 3.78𝑒 − 02 4.28𝑒 − 02 3.85𝑒 − 02 5.45𝑒 − 02 5.50𝑒 − 02

Rank 4 4 4 1 6 3 2 5
𝐹
28

Mean 115.90 121.90 113.20 113.60 118.30 123.20 123.10 117.32
SD 2.90 4.90 6.14 3.63 2.40 2.25 3.01 3.65
Rank 3 6 1 2 5 8 7 4

Average rank 5.17 5.67 4.67 5.50 4.50 4.17 3.00 2.17
Final rank 6 8 5 7 4 3 2 1

GPSO [2], LPSO [16], VPSO [27], FIPS [28], HPSO-TVAC
[6], DMS-PSO [29], CLPSO [24], and APSO [22] are consid-
ered as detailed in Table 5. The experimental results of the
algorithms are directly from [22] as shown in Table 6. In this
trial, the population size𝑁 = 20, the dimension𝐷 = 30, and
the maximum fitness evaluations (FEs) were set to 2 × 105
also.The parameter configurations of the selected algorithms
have been set according to their corresponding references.
The inertia weight 𝑤 is linearly decreased from 0.9 to 0.4 in
HPSO. HPSO is independently run 30 times and the mean
and SD are shown in Table 6. As seen, HPSO has the first rank
among the algorithms and obtains the global minimum on
functions 𝐹

1
, 𝐹
2
, 𝐹
5
, 𝐹
9
, 𝐹
10
, and 𝐹

12
and gives the good near-

global optima on functions 𝐹
6
and 𝐹

11
. Meanwhile, HPSO

has the worst performance on functions 𝐹
3
and 𝐹

14
. As for

𝐹
3
, APSO has the best convergence accuracy, and HPSO

only wins CLPSO. Considering 𝐹
14
, DMS-PSO has the best

performance.
Then, in the next step, we choose six functions from [25]

and seven algorithms ofGPSO,QIPSO [30], UPSO [31], FIPS,
AFSO [25], and AFSO-Q1 [25] as detailed in Table 5. For a
fair comparison, the population size 𝑁 = 30, the dimension
𝐷 = 30, and the maximum iteration 𝑇 = 10, 000 also in
HPSO, and the inertia weight 𝑤 is linearly decreased from
0.9 to 0.4. HPSO is independently run 30 times and the mean

and SD are shown in Table 7. As seen, HPSO shows better
performance and has the first rank. HPSO finds the global
optimal solution on functions 𝐹

9
, 𝐹
13
, 𝐹
21
, and 𝐹

22
. FIPS and

UPSOhave better convergence accuracy on functions𝐹
27
and

𝐹
28
, respectively.
Therefore, it is worth saying that the proposed algorithm

has considerably better performance than the other well-
known PSO algorithms in unimodal and multimodal high-
dimensional functions.

5. Conclusion

In this paper, a modified version of PSO called HPSO
has been introduced to enhance the performance of SPSO.
To simulate the human behavior, the global worst particle
was introduced into the velocity equation of SPSO, and
the learning coefficient which obeys the standard normal
distribution can balance the exploration and exploitation
abilities by changing the flying direction of particles. When
the coefficient is positive, it is called impelled leaning coef-
ficient, which is helpful to enhance the exploration ability.
When the coefficient is negative, it is called penalized learning
coefficient, which is beneficial for improving the exploitation
ability. At the same time, the acceleration coefficients 𝑐

1
and 𝑐
2

have been replaced with two random numbers, whose sum is
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equal to 1 in [0, 1]; this strategy decreases the dependence on
parameters of the solved problems. The proposed algorithm
has been evaluated on 28 benchmark functions including
unimodal, unrotatedmultimodal, rotated, shifted, and shifted
rotated functions, and the experimental results confirm the
high performance of HPSO on the main functions. However,
as seen, HPSO has the worst performance on shifted rotated
functions, so it is worth researching how to enhance the per-
formance of HPSO on shifted rotated functions in the future.
Meanwhile, applying HPSO to solve real-world problems is
also a research field.
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The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is
to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee
colony algorithm to solve the non-unicost set covering problem.The artificial bee colony algorithm is a recent swarmmetaheuristic
technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony
algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

1. Introduction

The set covering problem (SCP) is a classic problem in
combinatorial analysis, computer science, and theory of
computational complexity. It is a problem that has led to
the development of fundamental technologies for the field of
the approximation algorithms. Also it is one of the problems
from the list of 21 Karp’s NP-complete problems; its NP-
completeness was demonstrated in 1972 [1].

SCP has many applications, including those involving
routing, scheduling, stock cutting, electoral redistricting, and
other important real life situations [2]. Although the best
known application of the SCP is airline crew scheduling [3],
where a given set of trips has to be covered by a minimum-
cost set of pairings, a pairing being a sequence of trips that
can be performed by a single crew.

Different solving methods have been proposed in the
literature for the set covering problem. Exact algorithms
are mostly based on branch-and-bound and branch-and-cut
techniques [4–6], linear programing, and heuristic methods
[7]. However, these algorithms are rather time consuming
and can only solve instances of very limited size. For this

reason, many research efforts have been focused on the
development of heuristics to find a good result or near-
optimal solutions within a reasonable period of time.

Classical greedy algorithms are very simple, fast, and easy
to code in practice, but they rarely produce high quality
solutions for their myopic and deterministic nature [8]. In
[9] a greedy algorithm was improved incorporating random-
ness and memory into it and obtained promising results.
Compared with classical greedy algorithms, heuristics based
on Lagrangian relaxation with subgradient optimization are
much more effective. The most efficient ones are those
proposed by [10, 11].

Metaheuristics were also applied to the SCP as top-level
general search strategies. An incomplete list of this kind
of metaheuristics for the SCP includes genetic algorithms
[12, 13], simulated annealing [14], tabu search [15], cultural
algorithms [16, 17], and ant colony optimization [18]. For a
deeper comprehension of effective algorithms for the SCP in
the literature, we refer the interested reader to the survey by
[7].

In this paper we propose a novel application of artificial
bee colony (ABC) to solve SCP. This paper is organized as
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Table 1: Incidence matrix example.

𝐴 =

𝑆
1
𝑆
2
𝑆
3
𝑆
4
𝑆
5

𝑥
1
0 0 1 0 1

𝑥
2
0 1 0 0 0

𝑥
3
1 0 1 0 0

𝑥
4
0 1 0 0 1

𝑥
5
0 0 0 0 1

𝑥
6
0 0 0 1 0

𝑥
7
1 0 1 1 0

𝑥
8
0 1 1 0 0

𝑥
9
1 0 0 0 1

𝑥
10
0 1 0 0 0

follows. In Section 2, we explain the problem. In Section 3, we
describe theABC framework.OurABCproposal is described
in Section 4. In Section 5, we present the experimental results
obtained. Finally, in Section 6, we conclude the paper and give
some perspectives for further research.

2. Problem Description

The set covering problem is a fundamental problem in the
class of covering problems. Given a finite set 𝑋 and a family
𝐹 = 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
of subsets of 𝑋 (i.e., 𝑆

𝑗
⊆ 𝑋, 𝑗 = 1, . . . , 𝑛),

the SCP aims to find a minimum cardinality 𝐽 ⊆ {1, . . . , 𝑛}
such that ⋃

𝑗∈𝐽
𝑆
𝑗
= 𝑋. The elements of 𝑋 are called points.

Given a 𝐽 ⊆ {1, . . . , 𝑛}, a point is set to be covered if belongs
to ⋃
𝑗∈𝐽
𝑆
𝑗
. In the minimum-cost set covering problem each

set 𝑆
𝑗
, 1 ≤ 𝑗 ≤ 𝑛, has a cost 𝑐

𝑗
and the problem is to find

a 𝐽 ⊆ {1, . . . , 𝑛}, where each point is covered and ∑
𝑗∈𝐽
𝑐
𝑗
is

minimum. This minimum-cost optimization version of SCP
is NP-hard.

Let us define the incidence matrix 𝐴 of a set covering
problemas follows.There are |𝑋| rows in𝐴, one for each point
of 𝑥
𝑖
∈ 𝑋, and 𝑛 columns in 𝐴, one for each set 𝑆

𝑗
. The entry

𝑎
𝑖𝑗
at 𝐴 (the entry at the intersection of the 𝑖th row and the
𝑗th column) is one if point 𝑥

𝑖
is in set 𝑆

𝑗
; otherwise 𝑎

𝑖𝑗
is zero.

Table 1 shows an example of an incidence matrix.
For the upcoming reference cases, a generalmathematical

model of the SCP can be formulated as follows:

Minimize 𝑍 =
𝑛

∑

𝑗=1

𝑐
𝑗
𝑥
𝑗 (1)

Subject to
𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
≥ 1 ∀𝑖 = {1, 2, 3, . . . , 𝑚} (2)

𝑥
𝑗
∈ {0, 1} ∀𝑗 = {1, 2, 3, . . . , 𝑛} . (3)

Equation (1) is the objective function of the SCP, where 𝑐
𝑗

refers to the weight or cost of 𝑗-column and 𝑥
𝑗
is the decision

variable. Equation (2) is a constraint to ensure that each row
is covered by at least one column; 𝑚 × 𝑛 matrix 𝐴 = (𝑎

𝑖𝑗
)

is a constraint coefficient matrix whose elements can be “1”
or “0” to indicate the covering possibilities. Finally, (3) is the

integrality constraint where the value 𝑥
𝑗
can be “1” if column

𝑗 is activated (selected) or “0” otherwise.

3. Artificial Bee Colony Algorithm

ABC is one of themost recent algorithms in the domain of the
collective intelligence. It was created by Dervis Karaboga in
2005, whowasmotivated by the intelligent behavior observed
in the domestic bees to take the process of foraging [19].

ABC is an algorithm of combinatorial optimization based
on populations, in which the solutions of the problem
of optimization, the sources of food, are modified by the
artificial bees that function as operators of variation.The aim
of these bees is to discover the food sources withmajor nectar.

In the ABC algorithm, an artificial bee moves in a
multidimensional search space choosing sources of nectar
depending on its past experience and its companions of
beehive or fitting its position. Some bees (exploratory) fly
and choose food sources randomly without using experience.
When they find a source ofmajor nectar, theymemorize their
positions and forget the previous ones. Thus, ABC combines
methods of local search and global search, trying to balance
the process of the exploration and exploitation of the search
space.

Although, the performance of different optimization
algorithm is dependent on applications, some recent works
demonstrate that the artificial bee colony is more rapid
than either genetic algorithm or particle swarm optimization
solving certain problems [20–24]. Additionally, ABC has
demonstrated an ability to attack problems with a lot of
variables (high-dimensional problems) [25].

3.1. Elements andBehavior. Themodel defines three principal
components which are enunciated as follows.

Food Source. The value of a food source depends on many
different factors, as its proximity to the beehive, wealth or the
concentration of the energy, and the facility of extraction of
this energy.

Employed Bees or Workers. They are associated with a current
food source, or in exploitation, they take with them informa-
tion about this source, especially the distance, location, and
profitability, to share this with a certain probability with other
companions.

Unemployed or Exploratory Bees. They are in constant search
of a food source. There are two types:

(i) scouts: they are the ones in charge of searching in
the environment that surrounds the beehive for new
sources of food.

(ii) onlookers (curious or in wait): they look for a food
source across the information shared by the employ-
ees or by other explorers in the nest.

3.2. Biological Behavior. The exchange of information be-
tween the bees is the most important incident in the for-
mation of a collective knowledge, since the meaning of this
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Table 2: Summary of ABC main elements.

Generation of food sources A solution to the optimization problem is a food source. It moves in a random way and with base in the
low and superior limits of every variable of the problem

Working bees

Their number is proportional to the number of food sources, where for every source there is a working
bee, and its function is to evaluate and to modify the current solutions to improve them (it looks for new
sources near the current one). If the new position is not better than the current, it will keep the original
position

Bees in wait
The number of bees in wait must be proportional to the number of sources. These bees will choose a food
source, based on the information of the working bees by means of the waggle dance, where the food
source with better value of objective function is selected

Scout bees These bees generate new sources of food in a random way to replace existing sources that have not been
improved

Limit

It defines the maximum number of cycles that a food source can keep without improving before being
replaced. The limit increases from the source that is not modified by the bees; already they are used or in
wait, up to obtaining its maximum allowed value. After this, the scout bees take charge of initializing the
limit to 0 for every new generated position. The limit is initialized to 0 whenever a source is modified
(improved) by a used bee or in wait

Column adding When solving SCP, it defines the number of columns to be added to the current food source
Column elimination When solving SCP, it defines the number of columns to be eliminated from the current food source

(1) Begin
(2) InitPopulation()

(3) While remain iterations do
(4) Select sites for the local search
(5) Recruit bees for the selected sites and to evaluate fitness
(6) Select the bee with the best fitness
(7) Assign the remaining bees to looking for randomly
(8) Evaluate the fitness of remaining bees
(9) UpdateOptimum()

(10) EndWhile
(11) Return BestSolution

(12) End

Algorithm 1: ABC pseudocode.

interaction the bees will decide the behavior that must take
the beehive. The principal ways of bee behaviour are

(i) the incorporation to a source of nectar: the commu-
nication between the bees related to the quality of
food sources is realized in the zone of dance (dance of
the bees), where with the information obtained about
all the sources of food that are available, they decide
which of all the sources is the most profitable to join.

(ii) the abandon of a source: by means of the dance it
is determined if a source is no longer profitable and
consequently it must be abandoned.

3.3. Artificial Behavior. In Table 2 the elements of the ABC
are described in a general way.

The pseudocode of artificial bee colony is as in Algo-
rithm 1.

The procedure for determining a food source in the
neighborhood of a particular food source which depends on
the nature of the problem. Karaboga [26] developed the first
ABC algorithm for continuous optimization. The method

for determining a food source in the neighborhood of a
particular food source is based on changing the value of
one randomly chosen solution variable while keeping other
variables unchanged. This is done by adding to the current
value of the chosen variable the product of a uniform variable
in [−1, 1] and the difference in values of this variable—
current food source—and some other randomly chosen
food source. This approach cannot be used for discrete
optimization problems forwhich it generates at best a random
effect.

Singh [27] subsequently proposed a method, which is
appropriate for subset selection problems. In his model,
to generate a neighboring solution, an object is randomly
dropped from the solution and in its place another object,
which is not already present in the solution, is added. The
object to be added is selected from another randomly chosen
solution. If there are more than one candidate object for
addition, then ties are broken arbitrarily.

This approach is based on the idea that if an object is
present in one good solution, then it is highly likely that
this object is present in many good solutions. This method
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Figure 1: Representation of a solution.

provides another advantage, consisting in that if the method
fails to find an object different from the others objects in the
original solution, this means that the two solutions are equal,
such situation is called “collision” and it is resolved bymaking
the employed bee associated with the original solution, a
scout bee eliminating duplication.

4. Description of the Proposed Approach to
Solve SCP

Step 1 (initialization). This step includes initializing the
parameters of ABC as size of the colony, number of workers
and curious (onlookers or “in wait”) bees, limit of attempts,
and maximum number of cycles.

Step 2 (generation of initial population). To generate the ini-
tial population by every row—SCP constraint—a column—
SCP variable—is selected at random from the set of columns
with covering possibilities. A solution is represented by
means of an entire vector as shown in Figure 1 keeping the
columns considered in the solution. Then, we use an integer
encoding as the encoding rule.

Step 3 (evaluation of the fitness of the population). Thefitness
function is equal to the objective function of the SCP (1).

Step 4 (modification of position and selection of sites for
worker bees). A hard-working bee modifies its position by
means of the creation of a new solution based on a different
food source selected randomly. It sees if at least it has a
different column, in case of having not even a different
column, the hard-working bee is transformed to an explorer
in order to eliminate duplicated solutions. In opposite case,
it proceeds to add a certain random number of columns
between 0 and themaximumnumber of columns to be added.

After this, it proceeds to eliminate a certain random
number of columns between 0 and the maximum number
of columns to be eliminated. In case that new solution
does not meet constraints, it is repaired. The fitness of the
solution is evaluated; if the fitness (cost) is minor than the
solution obtained in the beginning, the solution is replaced.
In opposite case, it increases the number of attempts for
improving this solution (limit).

Step 5 (recruiting curious bees for the selected sites). A
curious bee evaluates the information of the nectar through
the workers and it chooses a source of food with the fitness
proportionate selection method or roulette-wheel selection.

Step 6 (modification of position for the curious bees). They
work alike to hard-working bees in Step 4.

Step 7 (leaving a source exploited by the bees). If the so-
lution representing a source of food does not improve for

a predetermined number of attempts (limit), then the source
of food is left and is replaced by a new source of food
generated as in Step 1.

Step 8. This step involves memorizing the best solution and
increasing the counter of the cycle.

Step 9. The process stops if the criteria of satisfaction expire;
in opposite case return to Step 3.

5. Experimental Results

The ABC algorithm has been implemented in C in a 2.5 GHz
Dual Core with 4GB RAM computer, running windows 7.

Parameter values have a profound influence on the per-
formance of ABC.The parameters were empirically adjusted,
we determined their values in an experimental way, and for
each parameter, a set of candidate values were considered.
We modified the value of one parameter while keeping the
others fixed.According to the best results, as parameter values
in our experiments, we use ABC runs 1000 iterations with
a population of 200 bees, where 100 corresponds to hard-
working and 100 to curious. Limit = 50, maximum number
of columns to add = 0.5% of columns in the SCP instance,
andmaximum number of columns to eliminate = 1.2% of the
SCP instance.

These parameters showed good results, but they cannot
be the ideal ones for all the instances. ABC has been tested
on 65 standard non-unicost SCP instances available fromOR
Library at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.
Table 3 summarizes the characteristics of each of these sets of
instances, each set contains 5 or 10 problems and the column
labeled Density shows the percentage of nonzero entries in
the matrix of each instance. ABC was executed 30 times on
each instance, each trial with a different random seed.

5.1. Comparison with Other Works. In comparison with very
recent works solving SCP—with cultural algorithms [16] and
ant colony + constraint programming techniques [28]—our
proposal performs better than the SCP instances reported
in those works. In order to bring out the efficiency of our
proposal, the solutions of the complete set of instances have
been compared with other metaheuristics. We compared
our algorithm solving the complete set of 65 standard non-
unicost SCP instances from OR Library with the newest
ACO-based algorithm for SCP in the literature: ant-cover
+ local search (ANT + LS) [29], genetic algorithm (GA)
proposed by Beasley and Chu (1996) [13], and simulated
annealing (SA) proposed by Brusco et al. (1999) [14].

Tables 4 and 5 show the detailed results obtained by
four algorithms. Column 2 reports the optimal or the best
known solution value of each instance. The third and fourth
columns show the best value and the average obtained by
our ABC algorithm in the 30 runs (trials). The next columns
show the average values obtained by GA, SA, and ANT + LS,
respectively. The last column shows the relative percentage
deviation (RPD) value over the instances tested with ABC.
The quality of solutions can be evaluated using the RPD; its
value quantifies the deviation of the objective value 𝑍 from
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Table 3: Details of the 65 test instances.

Instance set Number of instances 𝑚 𝑛 Cost range Density (%) Optimal solution
4 10 200 1000 [1, 100] 2 Known
5 10 200 2000 [1, 100] 2 Known
6 5 200 1000 [1, 100] 5 Known
A 5 300 3000 [1, 100] 2 Known
B 5 300 3000 [1, 100] 5 Known
C 5 400 4000 [1, 100] 2 Known
D 5 400 4000 [1, 100] 5 Known
NRE 5 500 5000 [1, 100] 10 Unknown
NRF 5 500 5000 [1, 100] 20 Unknown
NRG 5 1000 10000 [1, 100] 2 Unknown
NRH 5 1000 10000 [1, 100] 5 Unknown
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Figure 2: Convergence analysis to a better solution (benchmarks:
SCP41, SCP42, and SCP43).

𝑍opt which in our case is the best known cost value for each
instance. This measure is computed as follows:

RPD =
(𝑍 − 𝑍opt)

𝑍opt
× 100. (4)

Examining Tables 4 and 5, we observe the following.

(i) ABC is able to find the optimal solution consistently,
that is, in every trial, for 43 of 65 problems.

(ii) ABC is able to find the best known value in all
instances of Table 5.

(iii) ABC is able to find the best known value in all trials
of Table 5.

(iv) ABC has higher success rate compared to genetic
algorithm, simulated annealing, and ants in sets NRE,
NRF, NRG, and NRH. The RPD of BEE is 0.00%, the
RPD of GA is 1.04%, the RPD of SA is 0.72%, and the
RPD of ANT + LS is 0.86%.

(v) ABC can obtain optimal solutions in some instances
where the other metaheuristics failed.
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Figure 3: Convergence analysis to a better solution (benchmarks:
SCP51, SCP52, and SCP53).

5.2. Convergence to the Best Solution. Our approach shows
an excellent tradeoff between the quality of the solutions
obtained and the computational effort required. In all cases,
ABC converged very quickly (mainly from the 10th iteration)
and its computation time in the runs was less than 2 seconds
(except for NRG and NRH instances where the computation
time was less than 30 secs).

Figures 2 and 3 illustrate howABC converges through the
iterations to a better solution. We consider only 3 problems
per chart in favor of clarity and readability: scp41, scp42, and
scp43 for the first chart and scp51, scp52, and spc53 for the
second one. 𝑥-axis represents the iteration number while 𝑦-
axis represents the reached fitness value.

6. Conclusion

In this paper we have presented an ABC algorithm for
the SCP. We have performed experiments throught several
ORLIB instances; our approach has been shown to be
very effective, providing an unattended solving method, for
quickly producing solutions of a good quality. Experiments
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Table 4: Experimental results—instances with optimal.

Instance Optimum Best value found ABC Avg. GA Avg. SA Avg. ANT-LS Avg. RPD (%)
4.1 429 430 430.5 429.7 — 429 0.35
4.2 512 512 512 512 — 512 0
4.3 516 516 516 516 — 516 0
4.4 494 494 494 494.8 — 494 0
4.5 512 512 512 512 — 512 0
4.6 560 561 561.7 560 — 560 0.30
4.7 430 430 430 430.2 — 430 0
4.8 492 493 494 492.1 — 492 0.41
4.9 641 643 645.5 643.1 — 641 0.70
4.10 514 514 514 514 — 514 0
5.1 253 254 255 253 — 253 0.79
5.2 302 309 310.2 303.5 — 302 2.72
5.3 226 228 228.5 228 — 226 1.11
5.4 242 242 242 242.1 — 242 0
5.5 211 211 211 211 — 211 0
5.6 213 213 213 213 — 213 0
5.7 293 296 296 293 — 293 1.02
5.8 288 288 288 288.8 — 288 0
5.9 279 280 280 279 — 279 0.36
5.10 265 266 267 265 — 265 0.75
6.1 138 140 140.5 138 — 138 1.81
6.2 146 146 146 146.2 — 146 0
6.3 145 145 145 145 — 145 0
6.4 131 131 131 131 — 131 0
6.5 161 161 161 161.3 — 161 0
A.1 253 254 254 253.2 — 253 0.40
A.2 252 254 254 253 — 252 0.79
A.3 232 234 234 232.5 — 232.8 0.86
A.4 234 234 234 234 — 234 1.10
A.5 236 237 238.6 236 — 236 0
B.1 69 69 69 69 — 69 0
B.2 76 76 76 76 — 76 0
B.3 80 80 80 80 — 80 0
B.4 79 79 79 79 — 79 0
B.5 72 72 72 72 — 72 0
C.1 227 230 231 227.2 — 227 1.76
C.2 219 219 219 220 — 219 0
C.3 243 244 244.5 246.4 — 243 0.62
C.4 219 220 224 219.1 — 219 2.28
C.5 215 215 215 215.1 — 215 0
D.1 60 60 60 60 — 60 0
D.2 66 67 67 66 — 66 1.52
D.3 72 73 73 72.2 — 72 1.39
D.4 62 63 63 62 — 62 1.61
D.5 61 62 62 61 — 61 1.64
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Table 5: Experimental results—instances with best known solution.

Instance Optimum Best value found ABC Avg. GA Avg. SA Avg. ANT-LS Avg. RPD (%)
NRE.1 29 29 29 29 29 29 0
NRE.2 30 30 30 30.6 30 30 0
NRE.3 27 27 27 27.7 27 27 0
NRE.4 28 28 28 28 28 28 0
NRE.5 28 28 28 28 28 28 0
NRF.1 14 14 14 14 14 14 0
NRF.2 15 15 15 15 15 15 0
NRF.3 14 14 14 14 14 14 0
NRF.4 14 14 14 14 14 14 0
NRF.5 13 13 13 13.7 13.7 13.5 0
NRG.1 176 176 176 177.7 176.6 176 0
NRG.2 154 154 154 156.3 155.3 155.1 0
NRG.3 166 166 166 167.9 167.6 167.3 0
NRG.4 168 168 168 170.3 170.7 168.9 0
NRG.5 168 168 168 169.4 168.4 168.1 0
NRH.1 63 63 63 64 64 64 0
NRH.2 63 63 63 64 63.7 67.9 0
NRH.3 59 59 59 59.1 59.4 59.4 0
NRH.4 58 58 58 58.9 58.9 58.7 0
NRH.5 55 55 55 55.1 55 55 0

showed interesting results in terms of robustness, where using
the same parameters for different instances gave good results.

The promising results of the experiments open up oppor-
tunities for further research. We visualize different directions
for future work as follows.

(i) The fact that the presented algorithm is easy to
implement clearly implies that ABC could also be
effectively applied to other combinatorial optimiza-
tion problems.

(ii) An interesting proposal by Teodor Crainic et al. at
[30] involves parallelizing strategies for metaheuris-
tics.The author sets a basis on the idea that the central
goal of parallel computing is to speed up computation
by dividing the work load among several threads of
simultaneous execution; then a type of metaheuris-
tic parallelism could come from the decomposition
of the decision variables into disjoint subsets. The
particular heuristic is applied to each subset and the
variables outside the subset are considered fixed.

(iii) An interesting extension of this work would be
related to hybridization with other metaheuristics or
applying a hyperheuristic approach [31].

(iv) The use of autonomous search (AS) represents a
new research field, and it provides practitioners with
systems that are able to autonomously self-tune their
performance while effectively solving problems. Its
major strength and originality consist in the fact that
problem solvers can now perform self-improvement
operations based on analysis of the performances of
the solving process [32–34].

(v) Furthermore, we are considering to use different
preprocessing steps from the OR literature, which
allow to reduce the problem size [35].
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For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state
network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is
proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia
moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation
froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-
dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear
principal components in order to reduce the ESN dimension and network complex.The ESN soft-sensor model of flotation process
is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and
prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process.

1. Introduction

Based on the differences of the surface property of solid
materials, flotation process is to separate useful minerals with
gangue [1], in which the economic and technical indexes
(concentrate grade and flotation recovery rate) are the key
controlled indicators in the production process.Their control
in the flotation process is mainly according to the flotation
operators’ experiences by observing the states (such as the
color, the size, the flow rate, texture features, etc.) of the flota-
tion froth on the flotation cell surface to adjust the flotation
tank level and change the pharmacy addition. This method
of artificial observation on flotation froth has limitations of
the space, time, and subjectivity, and it cannot be organically
combinedwith computer control system to achieve high-level
control [2, 3]. Inferential estimation (soft-sensor) technology
can effectively solve the problem that the flotation process
is difficult to online estimate the economic and technical
indicators.

Domestic and foreign scholars apply digital image pro-
cessing techniques to the froth feature extraction and the
soft-sensor modeling of the key technical indicators in the
flotation process and make a lot of achievements [4–11]. Har-
grave and Hall study the diagnosis and analysis methods of
the metal grade and quality and flow rate in flotation process
by using the color and surface tissue. Then the statistical
methods and mathematical models are utilized to find the
relationship between parameters. The research results show
that the color parameters of flotation froth can be used to
forecast the concentrate grade in the beneficiation production
process [5]. Bartolacci et al. use multivariate image analysis
(MIA) and partial least squares (PLS) methods to establish
the experience prediction model of flotation grade. On the
other hand, the GLCM and wavelet transform analysis
(WTA) methods are utilized to get the flotation froth char-
acteristics [6]. Morar et al. utilize the machine vision method
to predict the performance of the flotation process, such as
concentrate grade and tailings recovery rate [7].
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Figure 1: Technique flowchart of flotation process.

At home, Yang et al. aim at the question that bubble
image quality is not ideal and the bubbles’ size, shape, and
gray scale are uneven in mineral flotation process and put
forward a bubble image segmentation method based on the
clustering presplit and the accuracy distance reconstruction.
The size of the bubbles and other physical characteristics
provide the basis for flotation control [8]. In that the multiple
models additive can improve the overall prediction accuracy
and the idea of robustness, Wang et al. present a multi-T-S
fuzzy neural network soft-sensor model of flotation process
based on the FCM clustering algorithm [9]. Yang et al. use
the flotation froth video image features as auxiliary variables,
establish a soft-sensor model of the flotation pulp pH value
based on the sparse polynuclear least squares support vector
machine (SVM), which combines the weighted local kernel
function and global kernel function, and use Schmidt orthog-
onalization theory to reduce the multinuclear matrix [10]. Li
et al. set up a soft-sensor mode by combining the principal
component analysis (PCA) and extreme learning machine
(ELM) methods [11].

The above established soft-sensor models of the flotation
process only make use of the part of multisource heteroge-
neous information (real-time process datum, image feature
information, and laboratory datum), not realizing informa-
tion integration, coordination, and optimization of flota-
tion process. The paper proposes ESN fusion soft-sensor
method based on process datum and flotation froth image
visual characteristic parameters (color features and texture
features). Simulation results demonstrate the effectiveness of
the proposed method.

The paper is organized as follows. In Section 2, the tech-
nique flowchart of flotation process is introduced. The ESN
fusion soft sensing model of flotation process based on
improved glowworm swarm optimization algorithm is pre-
sented in Section 3. In Section 4, experiment and simulation

results are introduced in details. Finally, the conclusion illus-
trates the last part.

2. Technique Flowchart of Flotation Process

Flotation process is used to separate useful minerals and
gangue based on the differences of the surface property of
solid materials. Figure 1 is a typical iron ore flotation process
consisting of the roughing, concentration, and scavenging
[11]. The system input is the fine concentrate pulp which
is early output of beneficiation process in the forepart. The
pulp density is about 38% and concentrate grade is about
64%. Inlet pulp is fed into the high-stirred tank through the
pulp pipeline by feed pump. At the same time, the flotation
reagent according to a certain concentration ratio is also fed
into high-stirred tank through dosing pump. On the other
hand, the pulp temperature must reach a suitable flotation
temperature by heating. If the dosage is appropriate, the
flotation cells can output a grade of 68.5%–69.5% concentrate.

The control objective of flotation process is to ensure the
concentrate grade and the tailings recovery rate are within
a certain target range. In common, based on the off-line
artificial laboratory to get grade values, the operators adjust
the flotation cell level and the amount of flotation reagent
addition. Due to the artificial laboratory for two hours at a
time, when the process variables and boundary conditions
change in the flotation process, they cannot timely adjust
the flotation operation variables, which results in such phe-
nomena that the flotation concentrate grade and the tailings
recovery rate are too high or too low [11]. By analyzing the
flotation technique, the process variables and boundary con-
ditions mainly include feed grade 𝑥

1
, feed flow rate 𝑥

2
, feed

concentration 𝑥
3
, feed granularity 𝑥

4
, and medicament flow

rate 𝑥
5
.
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Figure 2: Soft-sensor model structure of flotation process.

3. Soft-Sensor Modeling of Flotation Process

3.1. Structure of Soft-Sensor Model. The structure of the pro-
posed ESN soft-sensor model optimized by the glowworm
swarm optimization algorithm is shown in Figure 2 [12].

The auxiliary variables of the proposed soft-sensor model
are process variables, color features, and texture features (14
texture parameters based on the calculated gray-level co-
occurrence matrix by flotation froth images, such as angular
secondmoment, contrast, correlation, sumof squares, inverse
difference moment, etc.). Then KPCA method is used to
realize the dimension reduction of the high-dimensional
input vector composed by the normalized auxiliary variables
datum in order to reduce the ESN complex. Finally, the ESN
network structure parameters are optimized by the improved
GSO algorithm to realize the accurate prediction of the
concentrate grade and tailings recovery rate in the flotation
process.

Considering a multiinput multioutput (MIMO) system,
the training sample set can be expressed as 𝐷 = {𝑌,𝑋

𝑖
|

𝑖 = 1, 2 . . . , 𝑚}. 𝑌 is the output variable. 𝑋
𝑖
represents the 𝑖th

input vector and can be expressed as 𝑋
𝑖
= [𝑥
1𝑖
, 𝑥
2𝑖
, . . . , 𝑥

𝑛𝑖
]


(𝑛 is the number of samples in the training set and 𝑚 is the
number of input variables). Soft-sensing modeling requires
a datum set from the normal conditions as the modeling
data. Assume that the system has 𝑚 process variable and
𝑛 data vectors composing the test sample datum matrix
𝑋 ∈ 𝑅

𝑛×𝑚. In order to avoid the different dimension of
the process variables affecting the results and obtain the
easy mathematical treatment, it is necessary to normalize the
datum. Set 𝜇 is the mean vector of 𝑋 and 𝜎 is the standard
deviation vector of 𝑋. So the normalized process variable is
expressed as follows:

𝑋 =

𝑋 − 𝜇

𝜎

. (1)

The input vector 𝑋 of the training samples is fed into the
ESN to obtain the predicted output �̂�. Then the root mean

square error (RMSE) is selected as the fitness of the soft-
sensor model:

RMSE =
√

∑
𝑛

𝑘=1
(�̂�
𝑘
− 𝑌
∗

𝑘
)

2

𝑛

,

(2)

where 𝑌
∗ is the actual output of training samples.

3.2. Extraction of Flotation Froth Color Features. Flotation
froth images are obtained by the CCD camera above the flota-
tion tank, and the computer image acquisition card converts
continuous analog signal into discrete digital signals, which
is conveyed into the computer for the extraction of visual
characteristics of flotation froth.

Typical flotation froth image is shown inFigure 3 [13].The
froth images can be divided into three categories according to
the flotation process and expert experience. (1) Bubble size is
bigger, that is to say the big bubbles are mixed in the froth,
the texture is shallow, texture is coarse, image complexity is
small, color is pale, and SiO

2
of froth is less. In this case, the

refined iron ore grade is low. (2) Bubble size is appropriate,
more uniform, and stable, color is gray, the texture is fine, and
the image is more complex. At this time, the flotation process
is stable and the refined iron ore slurry grade meets the
requirements. (3) Froth color becomes darker, even partial
black, froth is finer, and even some bubbles are difficult to
distinguish, and texture is very complicated. At this case, the
SiO
2
content of froth is higher, although the iron concentrate

grade is higher and the pharmaceutical is added excessively,
which does not meet the economic requirements.

Flotation operators are mainly based on the color and
gray closeness of the flotation froth, the luminance informa-
tion of the froth surface, and the measured process variables
to realize the real-time optimal control of the flotation
process. Therefore, the froth color (or light intensity) reflects
the information of the minerals concentration in the surface
froth.The collected images are 𝑅𝐺𝐵 true color images, which
adopt the red, green, and blue three components. But they
are often closely related. In addition, the color information of
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Figure 3: Typical iron ore flotation froth images.

hue, saturation, and intensity (𝐻𝐼𝑆 model) is relatively close
to the people color visual perception. In𝐻𝐼𝑆model,𝐻 is hue
representing the different colors such as red, green, and blue;
𝑆 is saturation representing the color, such as magenta, red; 𝐼
is the brightness indicating the brightness level of the color. In
industrial applications, the range of 𝑆 is [0, 1] corresponding
from unsaturated to fully saturated state (without any white).
The range of 𝐼 is [0, 1] corresponding from dark to light color.
The conversion equations from 𝑅𝐺𝐵 to 𝐻𝐼𝑆 are expressed as
follows:

𝐼 =

𝑅 + 𝐺 + 𝐵

3

,

𝑆 = 1 −

3

𝑅 + 𝐺 + 𝐵

[min (𝑅, 𝐺, 𝐵)] .

(3)

Thus, the saturation (𝑆) and brightness (𝐼) of the flotation
froth images have got to be applied in representing the rela-
tionship between the concentrate grade, the tailings recovery
rate, and the color characteristics of flotation froth images.

3.3. Extraction of Flotation Froth Texture Features Based on
GLCM. The texture statistical characteristics of the flotation
froth image can reflect the working conditions of the flotation
process. Image texture is formed by different gray values
distributed in the space position and repeated alternate
changes; thus two pixels will exist in a certain gradation
relationship, which is known as the correlation characteristics
of the gray space. Gray-level co-occurrence matrix (GLCM)
is an important method used to analyze the image texture
features, which is based on the second combination condition
probability density function of estimated image [14]. Figure 4
is a GLCM schematic diagram, wherein 𝑖 and 𝑗 denote the
gray scale value of the corresponding pixel.

The GLCM means a kind of statistical form of the joint
distribution of two pixels, that is to say, the simultaneous
occurrence probability 𝑃(𝑖, 𝑗, 𝛿, 𝜃) of two pixels. They are the
pixel with gray scale 𝑖 from the image𝑓(𝑥, 𝑦) and the pixel
(𝑥+Δ𝑥, 𝑦+Δ𝑦)with gray scale 𝑗 at declination 𝜃 and distance
𝛿. The mathematical formula is expressed as follows:

𝑃 (𝑖, 𝑗, 𝛿, 𝜃) = { [(𝑥, 𝑦) , (𝑥 + Δ𝑥, 𝑦 + Δ𝑦)] | 𝑓 (𝑥, 𝑦) = 𝑖,

𝑓 (𝑥+Δ𝑥, 𝑦+Δ𝑦) = 𝑗; 𝑥 = 0, 1, . . . , 𝑁
𝑥
−1;

𝑦 = 0, 1, . . . , 𝑁
𝑦
− 1} ,

(4)

x

y

Δx

Δy

𝜃

𝛿

f(x, y) = i

f(x + Δ, y + Δy) = j

Figure 4: Grey-level co-occurrence matrix.

where 𝑖, 𝑗 = 0, 1, . . . , 𝐿 − 1, 𝑥 and 𝑦 are the coordinates of the
image pixel, and 𝐿 is the image gray level.

According to the above definitions, the element in 𝑖th
row and 𝑗th column of the constituted GLCM represents the
appearance frequency of all pixels with the 𝑖 and 𝑗 gray level
in the 𝜃 direction and 𝛿 length. GLCMhas rich characteristics
parameters describing the image textures with different
angles. Haralick et al. [15] once proposed 14GLCMbased tex-
ture parameters, whose calculation formulas are shown in
Table 1.

3.4. KPCA Based Dimension Reduction of Soft-Sensor Model.
The visual characteristic parameters (2 color features and 14
texture features) of the flotation froth images and 5 process
variables are served as the input variables of the ESN fusion
soft-sensor model to predict the concentrate grade and flota-
tion recovery rate. A batch of flotation froth images and the
measured values of the process variables in corresponding
period are collected to establish the soft-sensor model. The
input-output samples are shown in Table 2.

The flotation froth image characteristics and process vari-
ables and boundary conditions are selected as the auxiliary
variables of the proposed soft-sensor model to realize the
integration of multisource heterogeneous information in the
flotation process. But there are the problems of the jumbled
information and repeated expression. If the input vector
dimension of the ESN model is too long, the network topol-
ogy will be complex and training will become very complex.
Therefore, the kernel principal component analysis (KPCA)
method [16] is adopted to reduce the model dimension of the
ESN soft-sensor model.
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Table 1: Grey-level co-occurrence matrix.

Texture features Calculation equations

ASM: angular second moment 𝑓
1
=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

{𝑃(𝑖, 𝑗)}
2

Contrast 𝑓
2
=

𝐿−1

∑

𝑛=0

𝑛
2

{
{
{
{

{
{
{
{

{

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

|𝑖−𝑗|=𝑛

𝑃 (𝑖, 𝑗)

}
}
}
}

}
}
}
}

}

Correlation 𝑓
3
=

∑
𝐿

𝑖=1
∑
𝐿

𝑗=1
(𝑖𝑗)𝑃(𝑖, 𝑗) − 𝜇

𝑥
𝜇
𝑦

𝜎
𝑥
𝜎
𝑦

SS: sum of squares 𝑓
4
=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

(𝑖 − 𝜇)
2
𝑃(𝑖, 𝑗)

IDM: inverse difference moment 𝑓
5
=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

1

1 + (𝑖 − 𝑗)
2
𝑃(𝑖, 𝑗)

SA: sum average 𝑓
6
=

2𝐿

∑

𝑖=2

𝑖𝑃
𝑥+𝑦

(𝑖)

SV: sum variance 𝑓
7
=

2𝐿

∑

𝑖=2

(𝑖 − 𝑓
8
)
2
𝑃
𝑥+𝑦

(𝑖)

SE: sum entropy 𝑓
8
= −

2𝐿

∑

𝑖=2

𝑃
𝑥+𝑦

(𝑖) log {𝑃
𝑥+𝑦

(𝑖)}

Entropy 𝑓
9
= −

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑃 (𝑖, 𝑗) log {𝑃 (𝑖, 𝑗)}

DV: difference variance 𝑓
10

= variance of 𝑃
𝑥−𝑦

DE: difference entropy 𝑓
11

= 0

𝐿−1

∑

𝑖=0

𝑃
𝑥−𝑦

(𝑖) log {𝑃
𝑥−𝑦

(𝑖)}

IOC: information measures of correlation

𝑓
12

=

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max{𝐻𝑋,𝐻𝑌}

𝑓
13

= (1 − exp[−2.0(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])
1/2

𝐻𝑋𝑌 = −∑

𝑖

∑

𝑗

𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗))

Where 𝐻𝑋 and 𝐻𝑌 are the entropy of 𝑃
𝑥
and 𝑃

𝑦
.

𝐻𝑋𝑌1 = −∑

𝑖

∑

𝑗

𝑃(𝑖, 𝑗) log(𝑃
𝑥
(𝑖)𝑃
𝑦
(𝑗))

𝐻𝑋𝑌2 = −∑

𝑖

∑

𝑗

𝑃
𝑥
(𝑖)𝑃
𝑦
(𝑗) log{𝑃

𝑥
(𝑖)𝑃
𝑦
(𝑗)}

MCC: Maximal Correlation Coefficient
𝑓
14

= (second largest eigenvalue of 𝑄)
1/2

𝑄(𝑖, 𝑗) = ∑

𝑘

𝑃(𝑖, 𝑘)𝑃(𝑗, 𝑘)

𝑃
𝑥
(𝑖)𝑃
𝑦
(𝑘)

KPCA is a nonlinear promotion of introducing the con-
cept of the kernel function into the principal component
analysis (PCA) method, which has better ability to handle
nonlinear problems than PCA. Its basic principle is described
as follows [17].

Given sample set 𝑥
𝑖
(𝑖 = 1, 2, . . . ,𝑀) and 𝑥

𝑖
∈ 𝑅
𝑁, the

nonlinear mapping relation is given as follows:

𝜙 : 𝑅
𝑁

→ 𝐹, 𝑥 → 𝜙 (𝑥) . (5)

So the sample 𝑥
𝑖
is mapped as 𝜙(𝑥

𝑖
). Then the covariance

matrix of new sample space is calculated according to the
following equation:

𝑅 =

1

𝑀

𝑀

∑

𝑖=1

𝜙 (𝑥
𝑖
) (𝑥
𝑖
)
𝑇

. (6)

The eigenvalue decomposition is carried out according to
the following equation:

𝜆𝑄 = 𝑅𝑄, (7)
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Table 2: Predictive data set of the soft-sensor model.

Serial
number

Color features Texture features Process variables and boundary conditions Predicted variables

Saturation Brightness 𝑓
1

𝑓
2

⋅ ⋅ ⋅ 𝑓
14

Feed
grade
(%)

Feed
flow
rate

(m3/h)

Feed
concentration

(%)

Feed
granularity

(%)

Pharmacy
flow rate
(L/min)

Concentrate
grade (%)

Tailings
recovery
rate (%)

1 0.077 0.633 0.107 1.154 ⋅ ⋅ ⋅ 0.268 62.76 329 35 90 15.5 70.51 97.7
2 0.061 0.602 0.131 1.168 ⋅ ⋅ ⋅ 0.472 63.67 297 35 90 11.5 69.74 97.2
3 0.059 0.591 0.147 1.359 ⋅ ⋅ ⋅ 0.502 65.07 285 37 92 11.3 69.69 97.0
4 0.038 0.464 0.103 2.786 ⋅ ⋅ ⋅ 0.618 65.48 214 36 95 7.5 68.98 93.5
...

...
...

...
...

...
... ...

...
...

...
...

...
...

300 0.034 0.415 0.076 2.125 ⋅ ⋅ ⋅ 0.584 65.9 310 36 96 5.5 67.29 90.2

where 𝜆 (𝜆 > 0) is the eigenvalue of 𝑅 and 𝑄 is the corre-
sponding eigenvector. By multiplying 𝜙(𝑥

𝑖
) on both sides of

(7), we obtain the following:

𝜆 (𝜙 (𝑥
𝑖
) ⋅ 𝑄) = (𝜙 (𝑥

𝑖
) ⋅ 𝑅𝑄) , 𝑖 = 1, 2, . . . ,𝑀. (8)

And coefficient 𝛼
𝑖
(𝑖 = 1, 2, . . . ,𝑀) exists to make the

following equation:

𝑄 =

𝑀

∑

𝑖=1

𝛼
𝑖
𝜙 (𝑥
𝑖
) . (9)

By combining the above two equations, matrix𝐾(𝑀×𝑀)

is defined as follows:

𝜆

𝑀

∑

𝑖=1

𝛼
𝑖
(𝜙 (𝑥
𝑘
) , 𝜙 (𝑥

𝑖
))

=

1

𝑀

𝑀

∑

𝑖=1

𝛼
𝑖
(𝜙 (𝑥

𝑘
) ,

𝑀

∑

𝑗=1

𝜙 (𝑥
𝑗
)) (𝜙 (𝑥

𝑗
) , 𝜙 (𝑥

𝑖
)) ,

𝐾
𝑖,𝑗

= (𝜙 (𝑥
𝑖
) 𝜙 (𝑥

𝑗
)) = 𝐾 (𝑥

𝑖
, 𝑥
𝑗
) .

(10)

Set 𝛼 is the corresponding eigenvector of the kernel
matrix 𝐾. Then, consider the following:

𝐾𝛼 = 𝑀𝜆𝛼, (11)

where 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑀
)
𝑇.

Assume that the solution of (11) is 𝜆
1

≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥

𝜆
𝑃

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑀
. 𝜆
𝑃
is the last nonzero eigenvalue, whose cor-

responding eigenvector is 𝛼
𝑘

1
, . . . , 𝛼

𝑘

𝑝
, . . . 𝛼
𝑘

𝑀
. Then the eigen-

vector of𝐹 is normalized according to the following equation:

(𝑄
𝑘
⋅ 𝑄
𝑘
) = 𝐼, 𝑘 = 1, 2, . . . , 𝑝. (12)

Put 𝑄 = ∑
𝑀

𝑖=1
𝛼𝜙(𝑥
𝑖
) and 𝐾

𝑖𝑗
= (𝜙(𝑥

𝑖
)𝜙(𝑥
𝑗
)) into (12) to

obtain the following:

𝐼 =

𝑀

∑

𝑖,𝑗=1

𝛼
𝑘

𝑖
𝛼
𝑘

𝑗
(𝜙 (𝑥
𝑖
) 𝜙 (𝑥

𝑗
)) =

𝑀

∑

𝑖.𝑗=1

𝛼
𝑘

𝑖
𝛼
𝑘

𝑗
𝐾
𝑖𝑗

= 𝛼
𝑘
𝐾𝛼
𝑘
= 𝜆
𝑘
(𝛼
𝑘
⋅ 𝛼
𝑘
) , 𝑘 = 1, 2, . . . , 𝑝.

(13)

The principal component of a new sample 𝑥
𝑖
is obtained

by projecting mapping sample 𝜙(𝑥) of 𝐹 into 𝑄
𝑘, which is

described in the following equation:

(𝑄
𝑘
⋅ 𝜙 (𝑥)) =

𝑀

∑

𝑗=1

𝛼
𝑘

𝑗
(𝜙 (𝑥
𝑖
) 𝜙 (𝑥)) =

𝑀

∑

𝑗=1

𝛼
𝑘

𝑗
𝐾(𝑥
𝑗
, 𝑥) .

(14)

For the sake of simplicity, �̂� = 𝐾 − 𝐼
𝑀
𝐾 − 𝐾𝐼

𝑀
+ 𝐼
𝑀
𝐾𝐼
𝑀

is used to substitute kernel matrix of all mapping samples,
among which (𝐼

𝑀
)
𝑖𝑗

= 1/𝑀. The paper adopts the Gaussian
function as the KPCA kernel function, which is described as
follows:

𝐾(𝑥
𝑗
, 𝑥) = exp

{

{

{

−






𝑥
𝑗
− 𝑥







2

𝜎
2

}

}

}

. (15)

Based on the above mentioned principles, the procedure
of KPCA algorithm is described as follows.

Calculate kernel matrix �̂�;
calculate eigenvalues and eigenvectors of kernel
matrix �̂�;
sort eigenvalues with the descend order. Assume that
𝜆
1

≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑀
. Calculate the contribution

ratio by (16) to decide the number of the extracted
character information (𝑝). Consider the following:

𝜑 (𝑝) =

∑
𝑝

𝑖=1
𝜆
𝑖

∑
𝑀

𝑖=1
𝜆
𝑖

. (16)

(1) The eigenvectors in accordance with the previous 𝑝

(1 ≤ 𝑝 ≤ 𝑀) biggest eigenvalues are normalized
according to (13).

(2) Calculate a new principal component according to
(14).

The historical datum of input variables in the soft-sensor
model is carried out by kernel principal component analysis,
whose results are described in the Table 3. It can be seen that
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Table 3: Contribution rate of principle component.

Number of principal
components

Percentage of
variance (%)

Cumulative percentage
of variance (%)

1 45.72 45.72
2 21.82 67.52
3 13.42 80.94
4 7.14 88.08
5 2.15 90.23
...

...
...

21 0.07 100.00

the contribution ratio of the previous 5 principal components
has already exceeded 90%. Thus, the principal components
obtained by the KPCA on the original variables datum are the
input of the ESN, which not only reserved the character infor-
mation of original variables but also simplified the structure
of ESN.

3.5. Echo State Network. Echo state network (ESN) is a new
type of recurrent neural network proposed by Jaeger [18–20].
Its internal dynamic reserve (Dynamic Reservoir, DR) pool
has a large number of sparse connected neural units, which
contain the operational status of the system and have the
short-termmemory function (the ESN echo effect).The echo
effect makes the network realize the approximation effect on
the learning system. A typical ESN structure is shown in
Figure 5. Its basic equations can be represented as follows:

𝑥 (𝑘 + 1) = 𝑓 (𝑊
in
𝑢 (𝑘 + 1) + 𝑊𝑥 (𝑘) + 𝑊

fb
𝑦 (𝑘)) ,

𝑦 (𝑘 + 1) = 𝑓
out

(𝑊
out

(𝑢 (𝑘 + 1) , 𝑥 (𝑘 + 1) , 𝑦 (𝑘))) ,

(17)

where 𝑓 is the DR internal activation function, usually using
the Sigmoid type function to make the ESN have good non-
linear characteristic; 𝑥(𝑘) is the DR state variable on 𝑘 time;
𝑢(𝑘) is the system input vector on 𝑘 time; 𝑦(𝑘) is the network
output; 𝑊in

(𝑁 × 𝐾) is the input weight matrix; 𝑊(𝑁 × 𝑁)

is the connection matrix among the DR internal neurons,
which usually keeps the sparse connection of 1%∼5% and
the spectral radius less than 1 in order to make the DR have
dynamic memory ability; 𝑊fb

(𝑁 × 𝐿) is the feedback matrix
between the output neurons and DR; 𝑓out is the activation
function of the input and output units, usually using a linear
function;𝑊out (𝐿×(𝐾+𝑁+𝐿)) is the output weights matrix.
𝑊

in,𝑊, and𝑊
fb are constructed before the network learning,

but 𝑊out is calculated after learning period.

3.6. ESN Soft-Sensor Model Optimized by
Improved GSO Algorithm

3.6.1. Glowworm Swarm Optimization Algorithm. The glow-
worm swarm optimization (GSO) algorithm is a new swarm
intelligent optimization algorithm proposed by Krishnanand
et al. in 2005, which intimates the firefly’s phenomena, such as
self-luminous, communication, courtship and foraging, and
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Figure 5: Diagram of an echo state network.

so on. GSO has been successfully used onmany fields, such as
multimodal function optimization and multisource tracking
and location [21, 22]. Suppose the number of fireflies is 𝑛,
which is randomly distributed in the search space of objective
function.𝑥

𝑖
(𝑡) represents the location of the 𝑖th firefly, 𝐽(𝑥

𝑖
(𝑡))

is the fitness function, and 𝑙
𝑖
(𝑡) is the fluorescein concentra-

tion of the 𝑖th firefly at the moment 𝑡. The movements of
fireflies are updated according to the following equation:

𝑙
𝑖
(𝑡) = (1 − 𝜌) 𝑙

𝑖
(𝑡 − 1) + 𝛾𝐽 (𝑥

𝑖
(𝑡)) , (18)

where 𝜌 ∈ (0, 1) is the volatilization coefficient of fluores-
cein and 𝛾 is the enhancement factor of the volatilization
coefficient. Suppose 𝑟

𝑠
is the perception scope of fireflies and

𝑟
𝑖

𝑑
(𝑡) is the dynamic decision range (namely, decision radius)

belonging to the 𝑖th firefly at the moment 𝑡, whose upper
bound of the perception scope is 𝑟

𝑠
(0 < 𝑟

𝑖

𝑑
(𝑡) < 𝑟

𝑠
). So the

updating formula of decision domain range is represented as

𝑟
𝑖

𝑑
(𝑡 + 1) = min {𝑟

𝑠
,max {0, 𝑟

𝑖

𝑑
(𝑡) + 𝛽 (𝑛

𝑡
−





𝑁
𝑖
(𝑡)





)}} ,

(19)

where 𝛽 is the changeable rate of field, 𝑛
𝑡
is the neighborhood

threshold controlling the neighbor number of fireflies, and
𝑁
𝑡
(𝑡) is neighbors set of the 𝑖th firefly at the moment 𝑡. Then

the formula determining the number of fireflies within the
decision domain is

𝑁
𝑡
(𝑡) = {𝑗 :






𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)






< 𝑟
𝑖

𝑑
(𝑡) ; 𝑙
𝑖
(𝑡) < 𝑙

𝑗
(𝑡)} ,

(20)

where ‖ ⃗𝑥‖ is the norm of ⇀𝑥 .
During the movement of fireflies, the fluorescein concen-

tration of each firefly in its neighbor set determines the mov-
ing direction. Suppose that 𝑝

𝑖𝑗(𝑡)
is the moving probability of

the 𝑖th firefly moving to the 𝑗th firefly in the neighbor set at
the moment 𝑡, which is calculated by the following equation:

𝑝
𝑖𝑗
(𝑡) =

𝑙
𝑗
(𝑡) − 𝑙

𝑖
(𝑡)

∑
𝑘∈𝑁𝑖(𝑡)

𝑙
𝑘
(𝑡) − 𝑙

𝑖
(𝑡)

. (21)

Based on the moving probability 𝑝
𝑖𝑗(𝑡)

, the roulette
method is adopted to decide the moving direction of the 𝑖th
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Figure 6: Attraction behavior description among glowworms.

firefly. 𝑙
0
is the initial fluorescein value. Suppose the moving

step 𝑠. Thus the following formula determines the location of
the 𝑖th firefly at the moment 𝑡 + 1:

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝑠(

𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)






𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)







) . (22)

3.6.2. Crowded Degree Factor. The crowded degree factor
𝛿 is introduced to avoid the local optimum phenomena
caused by the overcrowding fireflies, which can make fire-
flies located near the optimum point reject each other. Its
principle is shown in Figure 6. For maximum optimization
problem, consider the following:

𝛿 =

1

𝑎𝑛max
, 𝑎 ∈ (0, 1] , (23)

where 𝑎 is the close level to the optimum value and 𝑛max is
the maximum number of fireflies belonging to its neighbor
field. Suppose 𝑌

𝑖
is the states of fireflies themselves, 𝑌

𝑐
is the

preceptor state value, and 𝑛
𝑓
is the number of partners in fire-

flies’ neighborhood. If𝑌
𝑐
/(𝑌
𝑖
𝑛
𝑓
) < 𝛿,𝑌

𝑐
is the overcongestion

state. When it comes to the minimum optimization problem,
𝛿 = 𝑎𝑛max, 𝑎 ∈ (0, 1]. When 𝑌

𝑐
𝑛
𝑓
/(𝑌
𝑖
) > 𝛿, 𝑌

𝑐
is at the state of

over congestion.
Unifying the crowded degree factor and the number of

fireflies in their neighborhood, the behavior of the fireflies
attracting each other determines its influence on the opti-
mization results. In Figure, the firefly𝑓

0
is the best one among

the fireflies𝑓
1
,𝑓
2
,𝑓
3
,𝑓
4
, and𝑓

5
, whose attracting degree is𝑌

𝑗
.

𝐶
1
and𝐶

2
are rounds having the same center 𝑓

0
and different

radiuses. The closer to the round center the much greater
attraction to the fireflies.

If 𝛿𝑛
𝑓

≤ 1, all fireflies are attracted to𝑓
0
. If 𝛿𝑛
𝑓

> 1 and𝐶
2

(attracting degree is 𝑌
𝑗
/𝛿𝑛
𝑓
) is the attracting degrees circle,

the fireflies between 𝐶
1
and 𝐶

2
are attracted to 𝑓

0
. At this

moment, the larger 𝛿𝑛
𝑓
is, the less the fireflies are attracted.

If 𝑛
𝑓
/𝛿 ≤ 1, all fireflies in the vision are attracted to 𝑓

0
. If

𝑛
𝑓
/𝛿 > 1, the fireflies, whose degree is greater than 𝑌

𝑗
𝑛
𝑓
/𝛿,

are attracted to move to 𝑓
0
. The larger 𝑛

𝑓
/𝛿 is, the less the

fireflies are attracted.

3.6.3. Algorithm Procedure. The main parameters of ESN
soft-sensor model are the input weight matrix 𝑊

in, the DR

pool weight matrix 𝑊, the output feedback weight matrix
𝑊

fb, and the output weight matrix𝑊
out. There are two kinds

of cases to optimize the ESN: one is to optimize 𝑊
in, 𝑊, and

𝑊
fb; the other is to optimize𝑊

out.The paper adopts the loca-
tions of the fireflies in the improved GSO algorithm to
correspond with the output connection weights matrix 𝑊

out

of ESN during the ESN training stage.Through the optimized
search, the output weight matrix 𝑊

out of ESN is trained in
less samples and time. Its algorithm procedure is shown as
follows.

Step 1 (initialize the algorithm parameters). Initialize the
parameters 𝑊

in, 𝑊, and 𝑊
fb of ESN, the parameters 𝑛, 𝜌, 𝛾,

𝛽, 𝑠, 𝑛
𝑡
, 𝑙
0
, and 𝑎 of GSO, and the maximum iteration time

max 𝑡.

Step 2 (initialize population). Aiming at the output weight
matrix 𝑊

out of ESN, randomly generate 𝑛 fireflies to consist
of the initial population 𝑃 = {𝑥

1
(𝑡), . . . , 𝑥

𝑖
(𝑡), . . . , 𝑥

𝑛
(𝑡)} (𝑖 =

1, . . . , 𝑛). Set the iteration count value 𝑡 = 0.

Step 3 (calculate fitness). Each firefly 𝑥
𝑖
(𝑡) is set as the output

weight matrix of ESN, and then the training samples are fed
into the ESN soft-sensor model. The predict output is calcu-
lated by (17), and the fitness value 𝐽(𝑥

𝑖
(𝑡)) is calculated by

(2). In the end, (18) is used to convert the objective function
values 𝐽(𝑥

𝑖
(𝑡)) of firefly 𝑥

𝑖
(𝑡) into the fluorescein value 𝑙

𝑖
(𝑡).

Step 4 (update of the individual firefly position). Each firefly
within 𝑟

𝑖

𝑑
(𝑡)makes up its neighborhood set𝑁

𝑡
(𝑡) (0 < 𝑟

𝑖

𝑑
(𝑡) <

𝑟
𝑠
) according to (20) by selecting those fireflies whose fluo-

rescein values are higher to itself, and𝑁
𝑡
(𝑡) is regulated based

on the crowded degree factor. The probability 𝑝
𝑖𝑗
(𝑡) that the

𝑖th firefly moves to the 𝑗th firefly in its neighborhood at the
moment 𝑡 is calculated by (21). The roulette wheel method
is used to select individuals to move. Then the location is
updated according to (22). In the end, the dynamic decision
domain radius is updated according to (19).

Step 5 (judge the termination conditions of the proposed algo-
rithm). If it meets the termination conditions (e.g., it reaches
the maximum iteration number max 𝑡), the best firefly is
recorded. Otherwise, 𝑡 = 𝑡 + 1 and go to the Step 3.

4. Simulation Results

With a typical flotation process as the research object, an
ESN fusion soft-sensor model is established for predicting
the concentrate grade and the flotation recovery rate. Firstly,
the 300 input-output datum sets are determined as shown
in Table 2 for training and testing the ESN soft-sensor
model.Then the five nonlinear component variables obtained
through KPCA dimension reduction processing process are
selected as the input variables of the soft-sensor model. The
former 240 samples are the training datum and the rest
of the samples are used to verify the soft-sensor model’s
performances. The paper selects the normalized root mean
square error (NRMSE), the mean square error (MSE), and
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Table 4: Predictive error comparison of soft-sensor model.

Predicted variables Predictive
method NRMSE MSE MAPE

Concentrate grade (%)

ESN 0.0122 0.6828 1.0310
GA-ESN 0.0093 0.2379 0.6020
PSO-ESN 0.0089 0.1918 0.5435
GSO-ESN 0.0102 0.3562 0.7205
IGSO-ESN 0.0069 0.0681 0.3306

Flotation recovery rate (%)

ESN 0.0096 1.0195 0.8807
GA-ESN 0.0075 0.3593 0.5468
PSO-ESN 0.0078 0.4158 0.5929
GSO-ESN 0.0088 0.6626 0.7482
IGSO-ESN 0.0060 0.1467 0.3530

the mean absolute percentage error (MAPE) as the judgment
on prediction effects [17], which are defined as follows:

NRMSE = √
1

𝑇




𝑦
𝑑






2

𝑇

∑

𝑡=1

(𝑦 (𝑡) − 𝑦
𝑑
(𝑡))
2

,

MSE =

1

𝑇

𝑇

∑

𝑡=1

(𝑦 (𝑡) − 𝑦
𝑑
(𝑡))
2

,

MAPE =

100

𝑇

𝑇

∑

𝑡=1





𝑦 (𝑡) − 𝑦

𝑑
(𝑡)






𝑦
𝑑
(𝑡)

,

(24)

where 𝑇 is the number of the predictive samples, 𝑦(𝑡) is the
predicted number, and 𝑦

𝑑
(𝑡) is the actual sample values.

The input dimension of ESN is 5 and the output dimen-
sion is 2. Moreover, the size of the DR pool is 100, the
sparse connection rate of weight matrix of DR pool is 5%,
the activation function of DR pool is tanh(), and the output
unit uses the linear activation function. The initial values of
parameters of ESN are selected as follows: 𝑊in

= 0.3, 𝑊 =

0.2, and 𝑊
fb

= 0.03. The initial values of parameters of GSO
are selected as follows: 𝑛 = 100, 𝜌 = 0.4, 𝛾 = 0.6, 𝛽 = 0.08,
𝑠 = 0.03, 𝑛

𝑡
= 5, 𝑙
0
= 5, and 𝑎 = 0.2. The maximum iteration

time max 𝑡 = 500.
To illustrate the effectiveness of the proposed soft-sensor

model, the improved glowworm swarm optimization (IGSO)
based ESN soft-sensor model is compared with the original
ESNmethod and the glowworm swarm optimization (IGSO)
based ESN soft-sensor model. The predictive outputs and
actual outputs under three methods are shown in Figure 7.
Thepredictive error curves are shown in Figure 8.Thepredic-
tion accuracies of three methods are shown in Table 4. Seen
from Figures 7 and 8 and Table 4, the proposed IGSO-ESN
soft-sensor model has higher predictive precision and gen-
eralization ability for the key technique index (concentrate
grade and flotation recovery rate) of the flotation process than
ESN soft-sensormodel andGSO-ESN soft-sensormodel.The
proposed GSO algorithm with the crowded degree factor
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Figure 7: Predictive results of soft-sensor models (ESN, GSO-ESN,
and IGSO-ESN).

can adjust the structure parameters of the soft-sensor model
effectively.

In order to highlight the superiority of the proposed
method, the comparisons have beenmade among IGSO-ESN
soft-sensor models with two swarm intelligence based ESN
soft-sensor models (GA-ESN and PSO-ESN). The predictive
outputs and errors curves under three methods are shown in
Figures 9 and 10. The predictive simulation has been carried
out 10 times. Then the statistics analysis results of the model
performances with 10 runs are listed in Table 4 based on the
definition of predictive performance index.
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Figure 8: Predictive errors of soft-sensor models (ESN, GSO-ESN,
and IGSO-ESN).

Seen from the simulation results, the proposed IGSO-
ESN predictive model has higher accuracy than the GA-ESN
and PSO-ESN soft-sensor model. The successful adoption of
the predictive model in the flotation process for obtaining
the real-time concentrate grade and flotation recovery rate
has important significance in the field of improving the
production capacity and reducing production costs.

5. Conclusions

(1) For predicting the key technical index of the flota-
tion process (concentrate grade and tailings recovery
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Figure 9: Predictive results of soft-sensor models (GA-ESN, PSO-
ESN, and IGSO-ESN).

rate), an ESN fusion soft-sensor model based on the
improved GSO algorithm is proposed.

(2) The fusion, coordination, and optimization of mul-
tisource heterogeneous information of flotation pro-
cess are realized based on the process datum and the
visual characteristic parameters of the flotation froth
images (color features and texture features).

(3) KPCA method is used to reduce dimension of the
high dimension input variables of the soft-sensor
model to extract the nonlinear principal element.
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Figure 10: Predictive errors of soft-sensor models (GA-ESN, PSO-
ESN, and IGSO-ESN).

Then the GSO algorithm with the crowded degree
factor is used to optimize the ESN soft-sensor model.

(4) The simulation results show the effectiveness of the
proposed soft-sensormodel formeeting the real-time
monitoring requirements of the flotation process.
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Robot execution failures prediction (classification) in the robot tasks is a difficult learning problem due to partially corrupted or
incomplete measurements of data and unsuitable prediction techniques for this prediction problem with little learning samples.
Therefore, how to predict the robot execution failures problem with little (incomplete) or erroneous data deserves more attention
in the robot field. For improving the prediction accuracy of robot execution failures, this paper proposes a novel KELM learning
algorithm using the particle swarm optimization approach to optimize the parameters of kernel functions of neural networks,
which is called the AKELM learning algorithm. The simulation results with the robot execution failures datasets show that, by
optimizing the kernel parameters, the proposed algorithm has good generalization performance and outperforms KELM and the
other approaches in terms of classification accuracy. Other benchmark problems simulation results also show the efficiency and
effectiveness of the proposed algorithm.

1. Introduction

The reliability of robot is very important for improving
the interactive ability between robot and the changing con-
ditions. In the complex environments in which execution
failures can have disastrous consequences for robots and the
objects in the surroundings, the prediction ability of robot
execution failures is equally important in the robotic field.

However, the prediction of robot execution failures is a
difficult learning problem. The first reason is the partially
corrupted or incomplete measurements of data. And the
second reason is that some prediction techniques are not
suitable for predicting the robot execution failures with little
samples.

For improving the prediction accuracy of the robot execu-
tion failures, in 2009, Twala formulated the robot execution
failures problem as a classification task that works with the
probabilistic approach-decision tree for handling incomplete
data [1]. In 2011, the performance of base-level and meta-
level classifiers is compared by Koohi et al. and the Bagged
Näıve Bayes is found to perform consistently well across
different settings [2]. However, the learning techniques were

not incorporated in the aforementioned studies in order to
improve the prediction accuracy of robot execution failures.
In 2013, Diryag et al. presented a novel method for prediction
of robot execution failures based on BP neural networks [3].
The results show that the method can successfully be applied
for the robot execution failures with prediction accuracy of
95.4545%. However, it is clear that the learning speed of
BP neural networks is generally very slow and may easily
converge to local minima. Therefore, some algorithms of
machine learning field with better learning performance
should be used for the robot execution failures.

The applications of neural networks are very diverse,
and, in robotics, many artificial intelligence approaches are
applied. Among the approaches of neural networks, extreme
learning machine (ELM) proposed by Huang et al. in 2006
has fast learning speed and good generalization performance
and has been used in many fields except for the robot
execution failures.

The ELM is a learning algorithm for single hidden layer
feed-forward neural networks (SLFNs), which determines
the initial parameters of input weights and hidden biases
randomly with simple kernel function. However, the stability
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and the generalization performance are influenced by the
above learning technique [4]. And some improvements to the
ELM learning algorithm have been presented [5].

Among the influence factors of the learning performance
of the ELM algorithm, the hidden neurons of the ELM
learning algorithm are very important for improving gen-
eralization performance and stability of the SLFNs. In [6],
we proposed an extreme learning machine with tunable
activation function learning algorithm for solving the data
dependent on hidden neurons. However, how to choose the
suitable combination of activation functions of hidden neu-
rons is still unresolved. In addition, when the featuremapping
function of hidden neurons is unknown, kernel function can
be used for improving the stability of algorithm [7], which is
called the kernel based extreme learning machine (KELM).
However, the kernel parameter should be chosen properly
for improving the generalization performance of the KELM
learning algorithm.

In order to improve the classification accuracy (general-
ization performance) of robot execution failures, we propose
a novel kernel based extreme learning machine in this paper.
The kernel parameters of kernel functions of the proposed
algorithm are optimized based on the particle swarm opti-
mization approach, which can improve the generalization
performance with stable learning process of the proposed
algorithm.The simulation results in terms of robot execution
failures and some other benchmark problems show the
efficiency and effectiveness of the proposed algorithm and
are suitable for the robot execution failures problem of little
(incomplete) or erroneous data.

The remainder of this paper is organized as follows.
The kernel based extreme learning machine (KELM) is
introduced in Section 2. Section 3 describes the particle
swarm optimization for KELM learning algorithm. Then,
the performance analysis of the proposed algorithm and
simulation results of robot execution failures are analyzed
in Section 4. Section 5 gives the performance analysis of the
algorithms by two regression and two classification problems.
The last section is the conclusions of this paper.

2. Kernel Based Extreme Learning Machine

Recently, the ELM learning algorithm with fast learning
speed and good generalization performance has been attract-
ingmuch attention from an increasing number of researchers
[4, 7]. In ELM, the initial parameters of hidden layer need
not be tuned and almost all nonlinear piecewise continuous
functions can be used as the hidden neurons. Therefore, for
𝑁 arbitrary distinct samples {(𝑥

𝑖
, 𝑡
𝑖
) | 𝑥
𝑖
∈ 𝑅
𝑛
, 𝑡
𝑖
∈ 𝑅
𝑚
, 𝑖 =

1, . . . , 𝑁}, the output function in ELMwith 𝐿 hidden neurons
is

𝑓
𝐿
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𝐿

∑

𝑖=1

𝛽
𝑖
ℎ
𝑖
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where 𝛽 = [𝛽
1
, 𝛽
2
, . . . , 𝛽

𝐿
] is the vector of the output weights

between the hidden layer of 𝐿 neurons and the output neuron
and ℎ(𝑥) = [ℎ

1
(𝑥), ℎ
2
(𝑥), . . . , ℎ

𝐿
(𝑥)] is the output vector of

the hidden layer with respect to the input 𝑥, which maps the
data from input space to the ELM feature space [7].

For decreasing the training error and improving the
generalization performance of neural networks, the training
error and the outputweights should beminimized at the same
time, that is,

Minimize: 

𝐻𝛽 − 𝑇





,




𝛽




. (2)

The least squares solution of (2) based onKKT conditions
can be written as

𝛽 = 𝐻
𝑇
(

1

𝐶

+ 𝐻𝐻
𝑇
)

−1

𝑇, (3)

where𝐻 is the hidden layer outputmatrix,𝐶 is the regulation
coefficient, and 𝑇 is the expected output matrix of samples.

Then, the output function of the ELM learning algorithm
is

𝑓 (𝑥) = ℎ (𝑥)𝐻
𝑇
(

1

𝐶

+ 𝐻𝐻
𝑇
)

−1

𝑇. (4)

If the feature mapping ℎ(𝑥) is unknown and the kernel
matrix of ELM based on Mercer’s conditions can be defined
as follows:

𝑀 = 𝐻𝐻
𝑇
: 𝑚
𝑖𝑗
= ℎ (𝑥

𝑖
) ℎ (𝑥
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thus, the output function 𝑓(𝑥) of the kernel based extreme
learning machine (KELM) can be written compactly as

𝑓 (𝑥) = [𝑘 (𝑥, 𝑥
1
) , . . . , 𝑘 (𝑥, 𝑥

𝑁
)] (

1

𝐶

+𝑀)

−1

𝑇, (6)

where𝑀 = 𝐻𝐻
𝑇 and 𝑘(𝑥, 𝑦) is the kernel function of hidden

neurons of single hidden layer feed-forward neural networks.
There are many kernel functions satisfying the Mercer

condition available from the existing literature, such as linear
kernel, polynomial kernel, Gaussian kernel, and exponential
kernel. In this paper, we use three typical kernel functions for
simulation and performance analysis and the chosen kernel
functions are as follows.

(1) Gaussian kernel:

𝑘 (𝑥, 𝑦) = exp (−𝑎 

𝑥 − 𝑦





) ; (7)

(2) hyperbolic tangent (sigmoid) kernel:

𝑘 (𝑥, 𝑦) = tanh (𝑏𝑥𝑇𝑦 + 𝑐) ; (8)

(3) wavelet kernel:

𝑘 (𝑥, 𝑦) = cos(𝑑




𝑥 − 𝑦






𝑒

) exp(−




𝑥 − 𝑦






2

𝑓

) , (9)

where Gaussian kernel function is a typical local kernel func-
tion and tangent kernel function is a typical global nuclear
function, respectively [8]. Furthermore, the complex wavelet
kernel function is also used for testing the performance of
algorithms.
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In the above three kernel functions, the adjustable param-
eters 𝑎, 𝑏, 𝑐, 𝑒, and 𝑓 play a major role in the performance of
neural networks and should be tuned carefully based on the
solved problem.

Compared with the ELM learning algorithm, the hidden
layer feature mapping need not be known and the number of
hidden neurons need not be chosen in the KELM. Moreover,
the KELM learning algorithm achieves similar or better
generalization performance and is more stable compared to
traditional ELM and it is faster than support vector machine
(SVM) [7, 9].

3. Particle Swarm Optimization for KELM

In KELM learning algorithm, the regulation coefficient 𝐶
and kernel parameters should be chosen appropriately for
improving the generalization performance of neural net-
works. In [7], the parameters are tried in a wide range and
are time consuming. And in [10], a hybrid kernel function
is proposed for improving the generalization performance
of KELM. However, how to choose the optimal value of the
parameters of kernel function has not been resolved.

In this paper, an optimization approach is introduced
to the KELM for choosing the optimal parameters of ker-
nel function. There are many optimization approaches in
machine learning field and, compared with other methods,
the particle swarm optimization (PSO) is a biologically
inspired computational stochastic optimization technique
developed by Eberhart and Kennedy [11]. The PSO approach
is becoming popular because of its little memory requiring,
simplicity of implementation, and ability to converge to a
reasonably optimal solution quickly [12].

Similar to other population based optimization ap-
proaches, the PSO algorithm works by initialing the pop-
ulation of individuals randomly in the search space. Each
particle of PSO can fly around to find the best solution in
the search space; meanwhile, the particles all look at the best
solution (best particle) in their path.

Suppose that the dimension of search space of PSO is 𝐷
and the population size is �̂�. Then, 𝑥𝑑

𝑖
and V𝑘
𝑖
are denoted by

the current position and the current velocity of 𝑖th particle at
iteration 𝑡, respectively. Then, the new velocity and position
of the particles for the next iteration time are calculated as
follows:

V𝑘
𝑖
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(𝑡) + 𝑐
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𝑖
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2
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𝑖
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𝑘

𝑖
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(10)
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(𝑡) + V𝑘
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(𝑡 + 1) ,

1 ≤ 𝑖 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐷,

(11)

where 𝑝𝑘
𝑖
denotes the best position of the 𝑖th particle during

the search process until now, 𝑔𝑘
𝑖
represents the global best

position, which constitutes the best position found by the
entire swarm until now, 𝑤 is the inertia weight, 𝑐

1
and 𝑐
2
are

the acceleration constants, and rand() is a random number
between 0 and 1.

In PSO algorithm, the inertia weight 𝑤 maintains the
expansion ability of exploring new areas in the search space.
Therefore, in order to ensure higher exploring ability in
the early iteration and fast convergence speed in the last
part iteration, the parameter 𝑤 can reduce gradually at the
generation increases and is calculated as [13]

𝑤 (𝑡) = 𝑤max − iter ×
(𝑤max − 𝑤min)

max iter
, (12)

where 𝑤max and 𝑤min are the initial inertial weight and the
final inertial weight, respectively. The parameter max iter
is the maximum searching iteration number and iter is the
iteration number at the present, respectively.

In addition, in order to enhance the global search in the
early part iteration, to encourage the particles to converge to
the global optimal solution, and to improve the convergence
speed in the final iteration period [12, 14], the acceleration
parameters 𝑐

1
and 𝑐
2
are described as

𝑐
1
= (𝑐
1 min − 𝑐1 max)

iter
max iter

+ 𝑐
1 max, (13)

𝑐
2
= (𝑐
2 max − 𝑐2 min)

iter
max iter

+ 𝑐
2 min, (14)

where 𝑐
1 max and 𝑐

1 min are the initial acceleration constant
and the final acceleration constant of 𝑐

1
and 𝑐
2 min and 𝑐2 max

are the initial acceleration constant and the final accelera-
tion constant of 𝑐

2
, respectively. Therefore, by changing the

acceleration coefficients with time, the cognitive component
is reduced and the social component is increased in (10),
respectively.

Based on the optimization technology of PSO with self-
adaptive parameters 𝑤 and 𝑐, the parameters of kernel
functions of KELM are optimized for improving the gener-
alization performance. Since the number of parameters of
kernel functions is different, the dimension of the particle of
the proposed algorithm in this paper also changes with the
different kernel functions.Therefore, the particle (individual)
𝜃 of search space in the proposed algorithm can be defined as

𝜃 ∈ [𝑎] for Gaussian kernel,

𝜃 ∈ [𝑏, 𝑐] for tangent kernel,

𝜃 ∈ [𝑑, 𝑒, 𝑓] for wavelet kernel, respectively.

(15)

Thus, the kernel parameter optimization strategy of
KELM based on the PSO (which is called the AKELM
(adaptive kernel based extreme learning machine) learning
algorithm) is summarized as follows.

Given the type of the kernel function, the training set
{(𝑥
𝑖
, 𝑡
𝑖
) | 𝑥
𝑖
∈ 𝑅
𝑛
, 𝑡
𝑖
∈ 𝑅
𝑚
, 𝑖 = 1, . . . , 𝑁}, and the initial value

of regulation coefficient 𝐶, consider the following steps.

Step 1. Initiate the population (particle) based on the kernel
function and the velocity and position of each particle.

Step 2. Evaluate the fitness function of each particle (the
root means standard error for regression problems and the
classification accuracy for classification problems).
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Table 1: Feature information and class distribution of the robot execution failures.

Datasets Instances Classes
LP1 88 4 (1 = 24%; 2 = 19%; 3 = 18%; 4 = 39%)
LP2 47 5 (1 = 43%; 2 = 13%; 3 = 15%; 4 = 11%; 5 = 19%)
LP3 47 4 (1 = 43%; 2 = 19%; 3 = 32%; 4 = 6%)
LP4 117 3 (1 = 21%; 2 = 62%; 3 = 18%)
LP5 164 5 (1 = 27%; 2 = 16%; 3 = 13%; 4 = 29%; 5 = 16%)

Step 3. According to formulas (10)–(14), the velocity and
position of the particle are modified.

Step 4. Step 2 and Step 3 are iterated repetitively until the
maximal iteration time is satisfied.

Step 5. The optimal parameters of kernel function can be
determined. Then, based on the optimized parameters, the
hidden layer kernel matrix is computed.

Step 6. Determine the final output weights 𝛽 in terms of the
following equation: 𝛽 = 𝐻𝑇((1/𝐶) + 𝐻𝐻𝑇)−1𝑇.

4. Robot Execution Failures Based on AKELM

In this paper, the AKELM learning algorithm and the KELM
algorithm for robot execution failures prediction and the
other benchmark problems in machine learning field are
conducted in the MATLAB 7.0 with 3.2 GHzCPU and 2G
RAM.The number of populations of the PSO for optimizing
the kernel parameters is 200 and the maximum iteration
number is 100. The initial inertial weights 𝑤max and 𝑤min are
0.9 and 0.4, respectively. And the initial acceleration constant
values 𝑐max and 𝑐min are 2.5 and 0.5, respectively, whichmeans
that 𝑐
1
changes from 2.5 to 0.5 and 𝑐

2
changes from 0.5 to 2.5

over the full range of the search. The regulation coefficient
𝐶 is 100 and the kernel parameters of the KELM learning
algorithm are set to 1.

4.1. Data Processing. The original robot execution failures
data has 90 features, which includes the evolution of forces
Fx (15 samples; the following is the same), Fy, and Fz and the
evolution of torques Tx, Ty, and Tz measurements on a robot
after failure of detection [15].

The robot execution failures problem includes 5 datasets,
each of them defining a different learning problem:

(i) LP1: failures in approach to grasp position,
(ii) LP2: failures in transfer of a part,
(iii) LP3: position of part after a transfer failure,
(iv) LP4: failures in approach to ungrasp position,
(v) LP5: failures in motion with part.

The feature information and class distribution of the
robot execution failures datasets is denoted in Table 1.

As shown from Table 1, the dataset of robot execution
failure has small size with 90 features and many classes with
4 for LP1, 5 for LP2, 4 for LP3, 3 for LP4, and 5 for LP5,

respectively, which increases the classification difficulty of
algorithms.

In [16], a set of five feature transformation strategies
was defined for improving the classification accuracy. In the
learning of the AKELM and KELM algorithms in neural
networks, in order to ensure that different units of data have
the same influence on the algorithm, the original data need
to be normalized. In this paper, the data is normalized to
the interval [−1, +1] and can be described by the following
equation:

𝑥 = 2

𝑥 − 𝑥min
𝑥max − 𝑥min

− 1, (16)

where 𝑥max and 𝑥min represent the maximum and minimum
values in the original datasets, 𝑥 on the left of the above
equation is the original data, and 𝑥 on the right of the above
equation is the normalized output data.

For improving the generalization of the robot execution
failures data, the positions of samples in each dataset are
changed randomly. Then, 90% of samples of the dataset are
used for training the neural networks, and the other 10% are
testing samples.

4.2. Simulation and Performance Analysis. In this study, the
performance of the proposed AKELM learning algorithm is
compared with the KELM using the robot execution failures
data. In the KELM learning algorithm, the learning ability
and the generalization performance are influenced mainly by
the kernel parameters of different kernel functions. In this
paper, the Gaussian kernel function, tangent kernel function,
and wavelet kernel function are used to construct different
classifier for predicting the robot execution failures.

Firstly, in order to reduce the search space and accelerate
the convergence speed of the PSO algorithm, this paper gives
the relationship between the classification accuracy and the
number of some parameters of kernel function on robot
execution failures using the LP1 dataset. As shown in Figure 1,
the classification accuracy in the interval (0, 4] has good
performance with the difference of the parameters 1 (the
values are 𝑎, 𝑏, and 𝑑 for Gaussian kernel, tangent kernel,
and wavelet kernel, resp.), the parameters 2 (the values are
𝑐 and 𝑒 for tangent kernel and wavelet kernel, resp.), and the
parameters 3 (the value is 𝑓 for wavelet kernel). Therefore,
the search space of the PSO algorithm is set in the interval
between 0 and 4.

Since the simulation results are the same for different
running times of the AKELM algorithm and the KELM
algorithm, Table 2 shows the comparison of classification
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Table 2: Classification accuracy of robot execution failures based on KELM and AKELM algorithms.

Kernel data Gaussian Tangent Wavelet
KELM AKELM KELM AKELM KELM AKELM

LP1 100% 100% 62.50% 87.50% 100% 100%
LP2 57.14% 57.14% 57.14% 85.71% 57.14% 85.71%
LP3 57.14% 71.43% 57.14% 85.71% 57.14% 100%
LP4 75% 100% 75% 83.33% 83.33% 100%
LP5 57.14% 64.29% 0% 78.57% 50% 71.43%

Table 3: Specification of benchmarks of regression and classification problems.

Datasets Names Attributes Classes Training data Testing data

Regression Box and Jenkins gas furnace data 10 1 200 90
Auto-Mpg 7 1 320 78

Classification Wine 13 3 150 28
Diabetes 8 2 576 192

Table 4: Comparison of performance by AKELM and KELM learning algorithms for the regression problems.

Algorithms with different kernel
functions

Box and Jenkins gas furnace data Auto-Mpg

Training error Testing error Training time
(seconds) Training error Testing

error
Training time
(seconds)

KELM (parameters = 1,
Gaussian) 0.0120 0.0188 0.0394 0.0529 0.0599 0.1213

KELM (parameters = 1, tangent) 0.0627 0.0655 0.0116 0.6680 0.7756 0.0346
KELM (parameters = 1, wavelet) 0.0121 0.0206 0.0177 0.0509 0.0597 0.0415
KELM (parameters = 10,
Gaussian) 0.0183 0.0213 0.0149 0.0685 0.0732 0.0286

KELM (parameters = 10, tangent) 0.2245 0.1986 0.0044 0.2071 0.2085 0.0261
KELM (parameters = 10, wavelet) 0.0306 0.0382 0.0101 0.0662 0.0712 0.0360
AKELM (Gaussian) 0.0133 0.0183 26.1250 0.0503 0.0597 74.7656
AKELM (tangent) 0.0223 0.0242 25.2500 0.0735 0.0735 73.8906
AKELM (wavelet) 0.0133 0.0183 28.3906 0.0502 0.0597 84.9688

results of robot execution failures datasets with three different
kernel functions in one running time. As can be seen from
the table, the proposed AKELM learning algorithm shows
better classification accuracy than the KELM with different
kernel functions in most cases and the best classification
accuracies are given in boldface. Especially in the LP1 dataset,
the proposed algorithm has 100% classification accuracy
with Gaussian and wavelet kernel functions, and the gen-
eralization performance is better than the best classification
approach, BaggedNäıve Bayes in [2], until now to the authors’
best knowledge.

5. Performance Analysis of AKELM Using
Other Benchmark Problems

In this section, the performance of AKELM learning algo-
rithm is compared with the KELM in terms of two regression
benchmarks and two classification benchmarks. Specification
of the benchmark problems is shown in Table 3. The perfor-
mance of classification benchmark problems is measured by

the classification accuracy and the root mean squares error
is used to measure the error of the regression benchmark
problems.

Tables 4 and 5 show the performance comparison of
AKELM and KELM with Gaussian kernel, tangent kernel,
and wavelet kernel neurons; apparently, better test results
are given in boldface. The parameters = 1 and parameters =
10 represent the total kernel parameters of different kernel
functions set to 1 and 10, respectively.

It can be seen that the proposed AKELM algorithm
can always achieve similar or better generalization per-
formance than KELM with different kernel functions and
kernel parameters. Moreover, seen from Tables 4 and 5, the
KELM learning algorithmwith different kernel functions has
obviously different generalization performance. However, the
proposed AKELM learning algorithm has similar generaliza-
tion performance to different kernel functions, which means
that the proposed algorithm has stable performance with
kernel parameters optimized bymeans of the PSO algorithm,
although searching the optimal parameters needs some time
as the training time shown in Tables 4 and 5.
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Figure 1: Relationship between the classification accuracy and the number of some parameters of kernel function on LP1 dataset.

6. Conclusions

In this study, a novel learning algorithm AKELM has been
developed based on the KELM learning algorithm and the
PSO approach with self-adaptive parameters. In the pro-
posed AKELM learning algorithm, the parameters of kernel
functions of neural networks are adjusted for searching the
optimal values by the PSO algorithm.

As shown from the simulation results, the generalization
performance of the proposed algorithm in terms of the
robot execution failures datasets was found to be significantly
improved compared to the KELM learning algorithm. And
the other benchmark of regression and classification prob-
lems also shows that the proposed algorithm can achieve

better generalization performance and hasmore stable ability
than KELM algorithm.
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Table 5: Comparison of performance by AKELM and KELM learning algorithms for the classification problems.

Algorithms with different kernel
functions

Wine Diabetes

Training accuracy Testing accuracy Training time
(seconds) Training accuracy Testing accuracy Training time

(seconds)
KELM (parameters = 1,
Gaussian) 100% 100% 0.0277 84.38% 77.08% 0.1394

KELM (parameters = 1, tangent) 51.33% 50% 0.0067 73.78% 73.44% 0.1326
KELM (parameters = 1, wavelet) 100% 100% 0.0070 86.81% 76.56% 0.1347
KELM (parameters = 10,
Gaussian) 100% 100% 0.0083 78.99% 79.17% 0.0919

KELM (parameters = 10, tangent) 39.33% 42.86% 0.0023 65.80% 65.63% 0.0904
KELM (parameters = 10, wavelet) 100% 96.43% 0.0061 80.03% 77.08% 0.1361
AKELM (Gaussian) 100% 100% 17.8594 90.45% 80.21% 260.7031
AKELM (tangent) 97.33% 100% 13.9375 73.26% 79.17% 313.8750
AKELM (wavelet) 100% 100% 16 89.06% 79.69% 335.5469

and ZR2013EEM027), and China Postdoctoral Science Foun-
dation (2013M541912).
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