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The last few years have witnessed a rapid development in algebraic geometry, computer

algebra, and string and field theory, as well as fruitful cross-fertilization amongst them. The

dialogue between geometry and gauge theory is, of course, an old and rich one, leading to

tools crucial to both. The introduction of algorithmic and computational algebraic geometry,

however, is relatively new and is tremendously facilitated by the rapid progress in hardware,

software as well as theory. Applications of once specialized mathematical topics such as

Gröbner bases, sheaf cohomology, scheme theory, and Hilbert series are quickly becoming

indispensible tools in theoretical physics, from topics ranging from AdS/CFT to string

phenomenology, from supersymmetric gauge theory to Calabi-Yau compactifications, and

so forth. In this special issue, we have invited many international experts, culminating in 17

papers on related subjects, which we order below alphabetically according to title.

The paper “A simple Introduction to Gröbner basis methods in string phenomenology” by J.

Gray is a review on the most important subject in computational and algorithmic algebraic

geometry: the Gröbner basis. It illustrates how this can be used in string phenomenology and

gives some concrete examples ranging from flux parameter to vacuum spaces.
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The paper “Baryonic symmetries in AdS4/CFT3: an overview” by D. Rodriguez-Gomez

is an overview of global baryon-like symmetries in the AdS/CFT context. On the gravity

side, these are vector fields in AdS arising from Kaluza-Klein reductions of supergravity p-

form potentials. The paper focuses on the AdS4/CFT3 case and uses the computation of a

noncompact Calabi-Yau fourfold, namely, the cone over the Q111, as an explicit example.

The paper “Bell’s inequalities, superquantum correlations and string theory” by L. N. Chang

et al. is on a more fundamental and philosophical issue in quantum mechanics. It argues

that string theory, viewed as a quantum theory with two deformation parameters, the string

tension and the string coupling constant, is a superquantum theory which transgresses the

usual quantum violations of Bell’s inequalities. The norms in the theory generalize from the

�2 norm in functional analysis to an �p norm, in application to quantum correlators.

The paper “BPS states, crystals, and matrices” by P. Sułkowski is a review on certain

representations of wall-crossing phenomena for toric Calabi-Yau spaces, in relation to free

fermions, melting crystal, and matrix models. These have been crucial to the understanding of

the BPS spectrum of D-brane theories, in particular D2- and D0-branes bound to a D6-brane.

The partition functions which do the counting are intimately related to Donaldson-Thomas

invariants and to topological string amplitudes.

The paper “Calabi-Yau threefolds in weighted flag varieties” by M. I. Qureshi and B.

Szendrői is on the pure mathematical problem of constructing a large class of Calabi-Yau

threefolds as projective varieties. In particular, it considers them as quasilinear sections in

weighted flag varieties, generalizing the more familiar cases of the ambient spaces being

weighted P4. Certain vector bundles, called tautological orbibundles, on these manifolds are

also constructed; these may be of interest to model building in heterotic string theory, when

using “general embedding” with such stable bundles.

The paper “Chern-Simons: Fano and Calabi-Yau” by A. Hanany and Y.-H. He returns

to the subject of noncompact, toric, Calabi-Yau fourfolds in the context of AdS4/CFT3. It

presents the complete classification of smooth toric Fano threefolds, known to the algebraic

geometry literature, and performs some preliminary analyses in the context of brane tilings

and Chern-Simons theory on M2-branes probing Calabi-Yau fourfold singularities as cones

over these Fano threefolds. Emphasis is placed on the fact that these 18 spaces should be as

intensely studied as their well-known two complex dimensional counterparts: the del Pezzo

surfaces.

The paper “Combinatorics in N = 1 heterotic vacua” by S.-J. Lee is on constructing

bundles over large sets of Calabi-Yau threefolds. It briefly reviews an algorithmic and

systematic strategy to explore the landscape of heterotic E8 × E8 vacua, in the context of

compactifying smooth Calabi-Yau threefolds with vector bundles. The Calabi-Yau three-

folds are algebraically realized as hypersurfaces in toric varieties, and a large class of vector

bundles is constructed thereon as so-called monad bundles. In the spirit of searching for

standard-like heterotic vacua, the focus is on the integer combinatorics of the model-building

programme.

The paper “Computational tools for cohomology of toric varieties” by R. Blumenhagen et

al. is closely related to the seventh. It addresses a novel computational algorithm for the

determination of the dimension of line-bundle-valued cohomology groups on toric varieties.

This is clearly useful and can also serve as a first step toward the enormous database of vector

bundles on Calabi-Yau hypersurfaces in toric fourfolds. Applications to the computation of

chiral massless matter spectra in string compactifications are discussed and the software

package “cohomCalg” is advertized.
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The paper “Del Pezzo singularities and SUSY breaking” by D. Malyshev is on del Pezzo

singularities in Calabi-Yau threefolds. Singularities of such a type can facilitate dynamical

supersymmetry breaking using the Intriligator-Seiberg-Shih technique. An illustrative

example is given for the famous quintic manifolds, with its explicit del Pezzo 6 and conifold

singularities pointed out. The more general case of complete intersection manifolds is

investigated, particularly on the complex deformation of the singularities.

The paper “DiscreteWilson lines in F-theory” by V. Braun is on elliptically fibered Calabi-

Yau fourfolds to F-theory constructions. Recent works by Heckmann, Vafa et al. have realized

the GUT group from sevenbranes wrapping contractible del Pezzo surfaces in the fourfold.

However, this makes breaking to the Standard Model group difficult since the del Pezzo

surfaces have trivial fundamental group. The paper shows how one may use non-trivial

cycles, such as the Enriquez surface, and use Wilson lines to break the GUT gauge group.

The paper “Non-supersymmetric CS-matter theories with known AdS duals” by D. Forcella

and A. Zaffaroni is related to the second and sixth and studies M2-branes probing Calabi-

Yau fourfold cones. The dual supergravity solutions of Freund-Rubin type are found while

the world-volume field theories are stable and non-supersymmetric. Careful analyses for the

theory associated to the cone over the quotient S7/Zk are carried out, giving the Kaluza-Klein

spectrum and candidate dual gauge theory.

The paper “Numerical polynomial homotopy continuation method and string vacua” by

D. Mehta forms a nice contrast with the first and focuses on algebraic geometry without

using the Gröbner basis which is known to be quite expensive computationally. Instead, it

shows how one may sometimes obtain relevant information, exemplified by various models

taken from string and M-theory as well as lattice gauge theory, by using numerical algebraic

geometry. Emphasis is paid on the so-called homotopy continuation method.

The paper “On R4 terms and MHV amplitudes in N = 5, 6 supergravity vacua of type II
superstrings” by M. Bianchi is on N = 5 and 6 supergravity vacua of type II superstring theory.

It computes the one-loop threshold corrections to the 4th power of curvature terms as well as

nonperturbative corrections of D-brane instantons. The generating functions for maximally

helicity violating amplitudes at tree level are also derived.

The paper “On the minimal length uncertainty relation and the foundations of string theory”

by L. N. Chang et al. echoes the third and reviews the work on minimal length uncertainty

as suggested by string theory, in particular what happens to quantum mechanics when a

fundamental length scale such as the string length is introduced. The implications of this to

the vacuum energy and to a dynamical energy-momentum space are discussed.

The paper “Polynomial roots and Calabi-Yau geometries” by Y.-H. He is a numerical and

algorithmic experiment, inspired by the fractal nature of the roots of large sets of polynomials

with certain constrained coefficients. It looks at the space of Poincaré polynomials (a
generalization of Euler number) of all known compact Calabi-Yau threefolds and fourfolds

and studies the structure exhibited by their conglomerate roots.

The paper “The expanding zoo of Calabi-Yau threefolds” by R. Davies is on the

algorithmic search for new Calabi-Yau threefolds with special properties. It reviews the recent

constructions of the manifolds of small Hodge number and/or nontrivial fundamental group,

which are useful to heterotic model building. The techniques used are topological transitions

and quotienting from known manifold by discrete group actions. A first example of a Calabi-

Yau threefold with the fundamental group S3 is given.
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The paper “Toric methods in F-theory model building” by J. Knapp and M. Kreuzer

is related to the seventh, eighth, and the tenth. It reviews how the construction of F-

theory models calls for large databases of Calabi-Yau fourfolds which are elliptically fibered.

Furthermore, one needs to look for a divisor which is a nonnegatively curved threefold

serving as the base and, further still, a divior inside the base which is a del Pezzo surface.

The paper shows how one may do this search algorithmically and explicitly demonstrates

this with the powerful computer package “PALP.”

Yang-Hui He
Philip Candelas
Amihay Hanany

Andre Lukas
Burt Ovrut
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We review the construction of families of projective varieties, in particular Calabi-Yau threefolds,
as quasilinear sections in weighted flag varieties. We also describe a construction of tautological
orbibundles on these varieties, which may be of interest in heterotic model building.

1. Introduction

The classical flag varieties Σ = G/P are projective varieties which are homogeneous spaces

under complex reductive Lie groups G; the stabilizer P of a point in Σ is a parabolic subgroup

P of G. The simplest example is projective space Pn itself, which is a homogeneous space

under the complex Lie group GL(n+ 1). Weighted flag varieties wΣ, which are the analogues

of weighted projective space in this more general context, were defined by Corti and Reid [1]
following unpublished work of Grojnowski. They admit a Plücker-style embedding

wΣ ⊂ P[w0, . . . , wn] (1.1)

into a weighted projective space. In this paper, we review the construction of Calabi-

Yau threefolds X that arise as complete intersections within wΣ of some hypersurfaces of

weighted projective space [1–3]:

X ⊂ wΣ ⊂ P[w0, . . . , wn]. (1.2)

To be more precise, our examples are going to be quasilinear sections in wΣ, where the

degree of each equation agrees with one of the wi. The varieties X will have standard
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threefold singularities similar to complete intersections in weighted projective spaces; they

have crepant desingularizations Y → X by standard theory.

We start by computing the Hilbert series of a weighted flag variety wΣ of a given type.

By numerical considerations, we get candidate degrees for possible Calabi-Yau complete

intersection families. To prove the existence of a particular family, in particular to check that

general members of the family only have mild quotient singularities, we need equations

for the Plücker style embedding. It turns out that the equations of wΣ in the weighted

projective space, which are the same as the equations of the straight flag variety Σ in its

natural embedding, can be computed relatively easily using computer algebra [2].
The smooth Calabi-Yau models Y that arise from this method may be new, though

it is probably difficult to tell. One problem we do not treat in general is the determination

of topological invariants such as Betti and Hodge numbers of Y . Some Hodge number

calculations for varieties constructed using a related method are performed in [4], via explicit

birational maps to complete intersections in weighted projective spaces; the Hodge numbers

of such varieties can be computed by standard methods. Such maps are hard to construct in

general. A better route would be to first compute the Hodge structure of wΣ then deduce the

invariants of their quasilinear sections X and finally their resolutions Y . See, for example, [5]
for analogous work for hypersurfaces in toric varieties. We leave the development of such an

approach for future work.

We conclude our paper with the outline of a possible application of our construction:

by its definition, the weighted flag variety wΣ and thus its quasilinear section X carry natural

orbibundles; these are the analogues of O(1) on (weighted) projective space. It is possible that

these can be used to construct interesting bundles on the resolution Y which may be relevant

in heterotic compactifications. Again, we have no conclusive results.

2. Weighted Flag Varieties

2.1. The Main Definition

We start by recalling the notion of weighted flag variety due to Corti and Reid [1]. Fix a

reductive Lie group G and a highest weight λ ∈ ΛW in the weight lattice of G, the lattice of

characters of the maximal torus T of G. Then we have a corresponding parabolic subgroup

Pλ, well defined up to conjugation. The quotient Σ = G/Pλ is a homogeneous variety

called a (generalized) flag variety, a projective subvariety of PVλ, where Vλ is the irreducible

representation of G with highest weight λ.

Let Λ∗
W denote the lattice of one-parameter subgroups of T , dual to the weight lattice

ΛW . Choose μ ∈ Λ∗
W and an integer u ∈ Z such that

〈
wλ, μ

〉
+ u > 0 (2.1)

for all elementsw of the Weyl group of the Lie group G, where 〈, 〉 denotes the perfect pairing

between ΛW and Λ∗
W .

Consider the affine cone
∑̃ ⊂ Vλ of the embedding Σ ↪→ PVλ. There is a C∗-action on

Vλ \ {0} given by

(ε ∈ C∗) �−→
(
v �−→ εu

(
μ(ε) ◦ v

))
(2.2)
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which induces an action on Σ̃. Inequality (2.1) ensures that all the C∗-weights on Vλ are

positive, leading to a well-defined quotient

wPVλ = Vλ \ {0}/C∗. (2.3)

This weighted projective space has weights

{〈
α, μ
〉
+ u | α ∈ ∇(Vλ)

}
, (2.4)

where ∇(Vλ) denotes the set of weights (understood with multiplicities) appearing in the

weight space decomposition of the representation Vλ. Inside this weighted projective space,

we consider the projective quotient

wΣ = Σ̃ \ {0}/C∗ ⊂ wPVλ. (2.5)

We call wΣ a weighted flag variety. By definition, wΣ quasismooth, that is, its affine cone Σ̃ is

nonsingular outside its vertex 0. Hence it only has finite quotient singularities.

The weighted flag variety wΣ is called well formed [6], if no (n − 1) of weights wi have

a common factor, and moreover wΣ does not contain any codimension c + 1 singular stratum

of wPVλ, where c is the codimension of wΣ.

2.2. The Hilbert Series of a Weighted Flag Variety

Consider the embedding wΣ ⊂ wPVλ. The restriction of the line (orbi)bundle of degree one

Weil divisors OwPVλ(1) gives a polarization OwΣ(1) on wΣ, a Q-ample line orbibundle some

tensor power of which is a very ample line bundle. Powers of OwΣ(1) have well-defined

spaces of sections H0(wΣ,OwΣ(m)). The Hilbert series of the pair (wΣ,OwΣ(1)) is the power

series given by

PwΣ(t) =
∑
m≥ 0

dimH0(wΣ,OwΣ(m))tm. (2.6)

Theorem 2.1 (see [2, Theorem 3.1]). The Hilbert series PwΣ(t) has the closed form

PwΣ(t) =
∑

w∈W(−1)w
(
t〈wρ,μ〉/

(
1 − t〈wλ,μ〉+u

))∑
w∈W(−1)wt〈wρ,μ〉

. (2.7)

Here ρ is the Weyl vector, half the sum of the positive roots of G, and (−1)w = 1 or − 1 depending
on whether w consists of an even or odd number of simple reflections in the Weyl groupW .

The right hand side of (2.7) can be converted into a form

PwΣ(t) =
N(t)∏

α∈∇(Vλ)
(
1 − t〈α,μ〉+u

) , (2.8)
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where, as before, ∇(Vλ) denotes the set of weights of the representation Vλ. The numerator is

a polynomial N(t), the Hilbert numerator. Since (2.7) involves summing over the Weyl group,

it is best to use a computer algebra system for explicit computations.

A well-formed weighted flag variety is projectively Gorenstein, which means that

(i) Hi(wΣ,OwΣ(m)) = 0 for all m and 0 < i < dim(wΣ);

(ii) the Hilbert numerator N(t) is a palindromic symmetric polynomial of degree q,

called the adjunction number of wΣ;

(iii) the canonical divisor of wΣ is given by

KwΣ ∼ OwΣ

(
q −
∑

wi

)
, (2.9)

where, as above, the wi are the weights of the projective space wPVλ; the integer

k = q −∑wi is called the canonical weight.

2.3. Equations of Flag Varieties

The flag variety Σ = G/P ↪→ PVλ is defined by an ideal I = 〈Q〉 of quadratic equations

generating a linear subspace Q ⊂ Z = S2V ∗
λ

of the second symmetric power of the

contragradient representation V ∗
λ

. The G-representation Z has a decomposition

Z = V2ν ⊕ V1 ⊕ · · · ⊕ Vn (2.10)

into irreducible direct summands, with ν being the highest weight of the representation V ∗
λ

.

As discussed in [7, 2.1], the subspace Q in fact consists of all the summands except V2ν. The

equations of wΣ can be readily computed from this information using computer algebra [2].

2.4. Constructing Calabi-Yau Threefolds

We recall the different steps in the construction of Calabi-Yau threefolds as quasilinear

sections of weighted flag varieties.

(1) Choose Embedding

We choose a reductive Lie group G and a G-representation Vλ of dimension n with highest

weight λ. We get a straight flag variety Σ = G/Pλ ↪→ PVλ of computable dimension d and

codimension c = n − 1 − d. We choose μ ∈ Λ∗
W and u ∈ Z to get an embedding wΣ ↪→ wPVλ =

Pn−1[〈αi, μ〉 + u], with αi ∈ ∇(Vλ) being the weights of the representation Vλ. The equations,

the Hilbert series, and the canonical class of wΣ ⊂ wP can be found as described above.

(2) Take Threefold Calabi-Yau Section of wΣ

We take a quasilinear complete intersection

X = wΣ ∩ (wi1) ∩ · · · ∩ (wil) (2.11)
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of l generic hypersurfaces of degrees equal to some of the weights wi. We choose values so

that dim(X) = d − l = 3 and k +
∑l

j=1wij = 0, thus KX ∼ OX . After relabelling the weights,

this gives an embedding X ↪→ Ps[w0, . . . , ws], with s = n − l − 1, of codimension c, polarized

by the ample Q-Cartier divisor D with OX(D) = OwΣ(1)|X . More generally, as in [1], we can

take complete intersections inside projective cones over wΣ, adding weight one variables to

the coordinate ring which are not involved in any relation.

(3) Check Singularities

We are interested in quasismooth Calabi-Yau threefolds, subvarieties of wΣ all of whose

singularities are induced by the weights of Ps[wi]. Singular strata S of Ps[wi] correspond

to sets of weights wi0 , . . . , wip with

gcd
(
wi0 , . . . , wip

)
= r (2.12)

nontrivial. If the intersection X ∩S is nonempty, it has to be a singular point P ∈ X or a curve

C ⊂ X of quotient singularities, and we need to find local coordinates in a neighbourhood of

the point of P , respectively of points of C, to check the local transversal structure. Since we

are interested in Calabi-Yau varieties which admit crepant resolutions, singular points P have

to be quotient singularities of the form (1/r)(a, b, c) with a + b + c divisible by r, whereas the

transversal singularity along a singular curve C has to be of the form (1/r)(a, r − a) of type

Ar−1.

(4) Find Projective Invariants and Check Consistency

The orbifold Riemann-Roch formula of [4, Section 3] determines the Hilbert series of a

polarized Calabi-Yau threefold (X,D) with quotient singularities in terms of the projective

invariants D3 and D · c2(X), as well as for each curve, the degree degD|C of the polarization,

and an extra invariant γC related to the normal bundle of C in X. Using the Riemann-Roch

formula, we can determine the invariants of a given family from the first few values of h0(nD)
and verify that the same Hilbert series can be recovered.

2.5. Explicit Examples

In the next two sections, we find families of Calabi-Yau threefolds admitting crepant

resolutions using this programme. We illustrate the method using two embeddings,

corresponding to the Lie groups of type G2 and A5, leading to Calabi-Yau families of

codimension 8, 6, respectively. Further examples for the Lie groups of type C3 and A3, in

codimensions 7 and 9, are discussed in [3].

3. The Codimension Eight Weighted Flag Variety

3.1. Generalities

Consider the simple Lie group of type G2. Denote by α1, α2 ∈ ΛW a pair of simple roots

of the root system ∇ of G2, taking α1 to be the short simple root and α2 the long one.
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The fundamental weights are ω1 = 2α1 + α2 and ω2 = 3α1 + 2α2. The sum of the fundamental

weights, which is equal to half the sum of the positive roots, is ρ = 5α1 + 3α2. We partition

the set of roots into long and short roots as ∇ = ∇l ∪ ∇s ⊂ ΛW . Let {β1, β2} be the basis of the

lattice Λ∗
W dual to {α1, α2}.

We consider the G2-representation with highest weight λ = ω2 = 3α1 + 2α2. The

dimension of Vλ is 14 [8, Chapter 22]. The homogeneous variety Σ ⊂ PVλ is five-dimensional,

so we have an embedding Σ5 ↪→ P13 of codimension 8. To work out the weighted version in

this case, take μ = aβ1 + bβ2 ∈ Λ∗
W and u ∈ Z.

Proposition 3.1. The Hilbert series of the codimension eight weighted G2 flag variety is given by

PwΣ(t) =
1 −
(
4 + 2
∑

α∈∇s
t〈α,μ〉 +

∑
α∈∇s

t2〈α,μ〉 +
∑

α∈∇l
t〈α,μ〉
)
t2u + · · · + t11u

(1 − tu)2∏
α∈∇
(
1 − t〈α,μ〉+u

) . (3.1)

Moreover, if wΣ is well-formed, then the canonical bundle is KwΣ ∼ OwΣ(−3u).

The Hilbert series of the straight flag variety Σ ↪→ P13 can be computed to be

PΣ(t) =
1 − 28t2 + 105t3 − · · · + 105t8 − 28t9 − t11

(1 − t)14
. (3.2)

The image is defined by 28 quadratic equations, listed in the appendix of [2].

3.2. Examples

Example 3.2. Consider the following initial data.

(i) Input: μ = (−1, 1), u = 3.

(ii) Plücker embedding: wΣ ⊂ P13[1, 24, 34, 44, 5].

(iii) Hilbert numerator: 1 − 3t4 − 6t5 − 8t6 + 6t7 + 21t8 + · · · + 6t26 − 8t27 − 6t28 − 3t29 + t33.

(iv) Canonical divisor: KwΣ ∼ OwΣ(33 −∑iwi) = O(−9), as wΣ is well formed.

(v) Variables on weighted projective space together with their weights xi:

Variables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

Weights 2 4 3 2 1 2 4 2 3 4 5 4 3 3

(3.3)

The reason for the curious ordering of the variables is that these variables are

exactly those appearing in the defining equations of this weighted flag variety given

in [2, Appendix].

Consider the threefold quasilinear section

X = wΣ ∩
{
f4(xi) = 0

}
∩
{
g5(xi) = 0

}
⊂ P11

[
1, 24, 34, 43

]
, (3.4)
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where the intersection is taken with general forms f4, g5 of degrees four and five, respectively.

The canonical divisor class of X is

KX ∼ OX(−9 + (5 + 4)) = OX. (3.5)

To determine the singularities of the general threefoldX, we need to consider sets of variables

whose weights have a greatest common divisor greater than one.

(i) 1/4 singularities: this singular stratum is defined by setting those variables to zero

whose degrees are not divisible by 4. We also have the equations of [2, Appendix];
only (A5), (A23), and (A24) from that list survive to give

S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

9
x7x10 + x2x12 = 0

−1

3
x2

10 + x7x12 = 0

1

3
x2

7 + x2x10 = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
⊂ P3

x2,x7,x10,x12
. (3.6)

In this case, it is easy to see by hand (or certainly using Macaulay) that S ⊂ P3 is

in fact a twisted cubic curve isomorphic to P1. We then need to intersect this with

the general X; the quintic equation will not give anything new, since x2, x7, x10, x12

are degree 4 variables, but the quartic equation will give a linear relation between

them. Thus S ∩ X consists of three points, the three points of 1/4 singularities. A

little further work gives that they are all of type (1/4)(3, 3, 2).

(ii) 1/3 singularities: the general X does not intersect this singular stratum; the

equations from [2, Appendix] in the degree three variables give the empty locus;

this is easiest to check by Macaulay.

(iii) 1/2 singularities: the intersection of X with this singular stratum is a rational

curve C ⊂ X containing the 1/4 singular points; again, Macaulay computes this

without difficulty. At each other point of the curve we can check that the transverse

singularity is (1/2)(1, 1).

Thus (X,D) is a Calabi-Yau threefold with three singular points of type (1/4)(3, 3, 2) and

a rational curve C of singularities of type (1/2)(1, 1) containing them. Comparing with the

orbifold Riemann-Roch formula of [4, Section 3], feeding in the first few known values of

h0(X, nD) from the Hilbert series gives that the projective invariants of this family are

D3 =
9

8
, D · c2(X) = 21, degD|C =

9

4
, γC = 1. (3.7)

Example 3.3. In this example, we consider the same initial data as in Example 3.2. To construct

a new family of Calabi-Yau threefolds, we take a projective cone over wΣ. Therefore we get

the embedding

CwΣ ⊂ P14
[
12, 24, 34, 44, 5

]
. (3.8)
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The canonical divisor class of CwΣ is KCwΣ ∼ OCwΣ(−10). Consider the threefold quasilinear

section

X = CwΣ ∩ (5) ∩ (3) ∩ (2) ⊂ P11
[
12, 23, 33, 44, 5

]
(3.9)

with KX ∼ OX ; brackets (wi) denote a general hypersurface of degree wi.

(i) 1/4 singularities: since there is no quartic equation this time, the whole twisted

cubic curve C ⊂ P3[x2, x7, x10, x12], found above, is contained in the general X and

is a rational curve of singularities of type (1/4)(1, 3).

(ii) 1/3 singularities: the general X does not intersect this singular stratum.

(iii) 1/2 singularities: the intersection of X with this singular strata defines a further

rational curve E of singularities. On each point of the curve we check that local

transverse parameters have odd weight. Therefore E is a curve of type (1/2)(1, 1).

Thus (X,D) is a Calabi-Yau threefold with two disjoint rational curves of singularities C and

E of type (1/4)(1, 3) and (1/2)(1, 1), respectively. The rest of the invariants of this family are

D3 =
27

16
, D · c2(X) = 21, degD|C =

3

4
, γC = 2, degD|E =

3

4
, γE = 1.

(3.10)

Example 3.4. The next example is obtained by a slight generalization of the method described

so far. The computation of the canonical class KwΣ, as the basic line bundle OwΣ(1) raised

to the power equal to the difference of the adjunction number and the sum of the weights

on wPn, only works if wΣ is well formed. In this example, we will make our ambient

weighted homogeneous variety not well formed. We then turn it into a well formed variety by

taking projective cones over it. We finally take a quasilinear section to construct a Calabi-Yau

threefold (X,D).

(i) Input: μ = (0, 0), u = 2.

(ii) Plücker embedding: wΣ ⊂ P13[214], not well formed.

(iii) Hilbert numerator: 1− 28t4 + 105t6 − 162t8 + 84t10 + 84t12 − 162t14 + 105t16 − 28t18 + t22.

We take a double projective cone over wΣ, by introducing two new variables x15 and x16 of

weight one, which are not involved in any of the defining equations of wΣ. We get a seven-

dimensional well-formed and quasismooth variety

CCwΣ ⊂ P15
[
12, 214

]
(3.11)

with canonical class KCCwΣ ∼ OCCwΣ(−8).
Consider the threefold quasilinear section

X = CCwΣ ∩ (2)4 ⊂ P11
[
12, 210

]
. (3.12)



Advances in High Energy Physics 9

The canonical class KX becomes trivial. Since wΣ is a five-dimensional variety and we

are taking a complete intersection with four generic hypersurfaces of degree two inside

P15[12, 214], the singular locus defined by weight two variables defines a curve in P11[12, 210].
Thus (X,D) is a Calabi-Yau threefold with a curve of singularities of type (1/2)(1, 1). The rest

of the invariants of (X,D) are given as follows:

D3 =
9

2
, D · c2(X) = 42, degD|C = 9, γC = 1. (3.13)

Example 3.5. Our final initial data in this section consists of the following.

(i) Input: μ = (−1, 1), u = 5.

(ii) Plücker embedding: wΣ ⊂ P13[3, 44, 54, 64, 7].

(iii) Hilbert numerator: 1 − 3t8 − 6t9 − 10t10 − 6t11 − t12 + 12t13 + · · · + t55.

(iv) Canonical class: KwΣ ∼ OwΣ(−15), as wΣ is well formed.

We take a projective cone over wΣ to get the embedding

CwΣ ⊂ P14
[
1, 3, 44, 54, 64, 7

]
(3.14)

with KCwΣ ∼ OCwΣ(−16). We take a complete intersection inside CwΣ, with three general

forms of degree seven, five, and four in wP14. Therefore we get a threefold

X = CwΣ ∩ (7) ∩ (5) ∩ (4) ↪→ P11
[
1, 3, 43, 53, 64

]
, (3.15)

with trivial canonical divisor class. To work out the singularities, we work through the

singular strata to find that (X,D) is a polarised Calabi-Yau threefold containing three

dissident singular points of type (1/4)(1, 1, 2), a rational curve of singularities C of type

(1/6)(1, 5) containing them, and a further isolated singular point of type (1/3)(1, 1, 1). The

rest of the invariants are

D3 =
5

24
, D · c2(X) = 17, degD|C =

5

4
, γC = 9. (3.16)

4. The Codimension 6 Weighted Grassmannian Variety

4.1. The Weighted Flag Variety

We take G to be the reductive Lie group of type GL(6,C). The five simple roots are αi =
ei − ei+1 ∈ ΛW , the weight lattice with basis e1, . . . , e6. The Weyl vector can be taken to be

ρ = 5e1 + 4e2 + 3e3 + 2e4 + e5. (4.1)

Consider the irreducible G-representation Vλ, with λ = e1 + e2. Then Vλ is 15-dimensional,

and all of the weights appear with multiplicity one. The highest weight orbit space
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Σ = G/Pλ ⊂ PVλ = P14 is eight-dimensional. This flag variety can be identified with the

Grassmannian of 2-planes in a 6-dimensional vector space, a codimension 6 variety

Σ8 = Gr(2, 6) ↪→ PVλ = P14. (4.2)

Let {fi, 1 ≤ i ≤ 6} be the dual basis of the dual lattice Λ∗
W . We choose

μ =
6∑
i=1

aifi ∈ Λ∗
W, (4.3)

u ∈ Z, to get the weighted version of Gr(2, 6),

wΣ
(
μ, u
)
= wGr(2, 6)(μ,u) ↪→ wP14. (4.4)

The set of weights on our projective space is {〈λi, μ〉 + u}, where λi are weights appearing

in the G-representation Vλ. As a convention we will write an element of dual lattice as row

vector, that is, μ = (a1, a2, . . . , a6).
We expand formula (2.7) for the given values of λ, μ to get the following formula for

the Hilbert series of wGr(2, 6) :

PwGr(2,6)(t) =
1 −Q1(t)t2u +Q2(t)t3u −Q3(t)t4u −Q4(t)t5u +Q5(t)t6u −Q6(t)t7u + t3s+9u∏

1≤i<j≤6(1 − tai+aj+u)
.

(4.5)

Here

Q1(t) =
∑

1≤i<j≤6

ts−(ai+aj ),

Q2(t) =
∑

1≤(i,j)≤6

ts+(ai−aj ) − ts,

Q3(t) =
∑

1≤i≤j≤6

ts+(ai+aj ),

Q4(t) =
∑

1≤i≤j≤6

t2s−(ai+aj ),

Q5(t) =
∑

1≤(i,j)≤6

t2s+(ai−aj ) − t2s,

Q6(t) =
∑

1≤i≤j≤6

t2s+(ai+aj ).

(4.6)

In particular, if wGr(2, 6) ↪→ P14[〈wi, μ〉 + u] is well formed, then its canonical bundle is

KwGr(2,6) ∼ OwGr(2,6)(−2s − 6u), with s =
∑6

i=1ai.
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The defining equations for Gr(2, 6) ⊂ P14 are well known to be the 4 × 4 Pfaffians

obtained by deleting two rows and the corresponding columns of the 6 × 6 skew symmetric

matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x1 x2 x3 x4 x5

0 x6 x7 x8 x9

0 x10 x11 x12

0 x13 x14

0 x15

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.7)

4.2. Examples

Example 4.1. Consider the following data.

(i) Input: μ = (2, 1, 0, 0,−1,−2), u = 4.

(ii) Plücker embedding: wGr(2, 6) ⊂ P14[1, 22, 33, 43, 53, 62, 7].

(iii) Hilbert numerator: 1 − t5 − 2t6 − 3t7 − 2t8 − t9 + · · · + t36.

(iv) Canonical class: KwGr(2,6) ∼ OwGr(2,6)(−24).

Consider the threefold quasilinear section

X = wGr(2, 6) ∩ (7) ∩ (6) ∩ (5) ∩ (4) ∩ (2) ⊂ P9
[
1, 2, 33, 42, 52, 6

]
. (4.8)

Then KX is trivial, and X is a Calabi-Yau 3-fold with a singular point of type (1/6)(5, 4, 3),
lying on the intersection of two curves, C of type (1/3)(1, 2) and E of type (1/2)(1, 1). There

is an additional isolated singular point of type (1/5)(4, 3, 3). The rest of the invariants of this

variety are

D3 =
11

30
, D · c2(X) =

68

5
, degD|C =

1

3
, γC =

−15

2
, degD|E =

1

2
, γE = 1.

(4.9)

Example 4.2. We take the following.

(i) Input: μ = (2, 1, 1, 1, 1, 0), u = 0.

(ii) Plücker embedding: wGr(2, 6) ⊂ P14[14, 27, 34].

(iii) Hilbert numerator: 1 − 4t3 − 6t4 + 4t5 + · · · + t18.

(iv) Canonical class: KwGr(2,6) ∼ OwGr(2,6)(−12), as wΣ is well formed.

Consider the quasilinear section

X = wGr(2, 6) ∩ (3)2 ∩ (2)3 ⊂ P9
[
14, 24, 32

]
, (4.10)
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then

KX = OX(−12 + (2 × 3 + 3 × 2)) = OX. (4.11)

The variety (X,D) is a well-formed and quasismooth Calabi-Yau 3-fold. Its singularities

consist of two rational curves C and E of singularities of type (1/3)(1, 2) and (1/2)(1, 1),
respectively. The rest of the invariants are

D3 =
97

18
, D · c2(X) = 42, degD|C =

1

3
, γC = 2, degD|E = 1, γE = 1.

(4.12)

5. Tautological (Orbi)bundles

5.1. The Classical Story

Let Σ = G/P be a flag variety. A representation V of the parabolic subgroup P gives rise to a

vector bundle E on Σ as follows:

E = G× PV

↓
Σ = G/P.

(5.1)

In other words, the total space of E consists of pairs (g, e) ∈ G × V modulo the equivalence

(
gp, e
)
∼
(
g, pe
)
, for p ∈ P. (5.2)

The fiber of E over each point Σ is isomorphic to the vector space underlying V .

Example 5.1. The simplest example is Σ = Pn−1, a homogeneous variety G/P with G = GL(n)
and P the parabolic subgroup consisting of matrices of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎝
α ∗ · · · ∗
0

... B

0

⎞⎟⎟⎟⎟⎟⎟⎠. (5.3)

We obtain a one-dimensional representation of P by mapping A to α. The associated line

bundle is just the tautological line bundle on Pn−1, the dual of the hyperplane bundle OPn−1(1).



Advances in High Energy Physics 13

Example 5.2. More generally, consider Σ = Gr(k, n), the Grassmannian of k-planes in Cn. Then

G = GL(n) and the corresponding parabolic is the subgroup of matrices of the form

A =

(
B1 ∗
0 B2

)
, (5.4)

with B1, B2 of size k × k and (n − k) × (n − k), respectively. The representations of P defined

by A �→ B1, A �→ B2, respectively, give the standard tautological sub- and quotient bundles S
and Q on the Grassmannian Gr(k, n), fitting into the exact sequence

0 −→ S −→ O⊕n
Gr(k,n) −→ Q −→ 0. (5.5)

Example 5.3. Finally consider the G2-variety Σ = G/P studied in Section 3. The smallest

representations of the corresponding P have dimensions 2 and 5. The corresponding

tautological bundles are easiest to describe using an embedding Σ ↪→ Gr(2, 7), mapping

the G2 flag variety into the Grassmannian of 2-planes in a 7-dimensional vector space, the

space Im O of imaginary octonions. Then the tautological bundles on the G2-variety Σ are

the restrictions of the tautological sub- and quotient bundle from Gr(2, 7).

5.2. Orbibundles on Calabi-Yau Sections

Recall that weighted flag varieties are constructed by first considering the C∗-covering

Σ̃ \ {0} → Σ and then dividing Σ̃ \ {0} by a different C∗-action given by the weights. A

tautological vector bundle E on Σ pulls back to a vector bundle Ẽ on Σ̃ \ {0}. This can then

be pushed forward to a weighted flag variety wΣ along the quotient map Σ̃ \ {0} → wΣ.

Because of the finite stabilizers that exist under this second action, the resulting object wE
is not a vector bundle, but an orbibundle [9, Section 4.2], which trivializes on local orbifold

covers with compatible transition maps. IfX is a Calabi-Yau threefold insidewΣ, then we can

define an orbi-bundle on X by restricting wE to X.

In the constructions of Sections 3 and 4, the Calabi-Yau sections therefore carry

possibly interesting orbibundles of ranks 2 and 5, respectively 4. We have not investigated

the question whether these orbibundles can be pulled back to vector bundles on a resolution

Y → X, but this seems to be of some interest. If so, stability properties of the resulting vector

bundles may deserve some investigation, in view of their possible use in heterotic model

building [10, 11].
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We offer an interpretation of superquantum correlations in terms of a “doubly” quantum theory.
We argue that string theory, viewed as a quantum theory with two deformation parameters,
the string tension α′, and the string coupling constant gs, is such a superquantum theory that
transgresses the usual quantum violations of Bell’s inequalities. We also discuss the � → ∞ limit
of quantum mechanics in this context. As a superquantum theory, string theory should display
distinct experimentally observable supercorrelations of entangled stringy states.

1. Introduction

In this paper, we present an observation relating two fields of physics which are ostensibly

quite remote, namely, the study of the foundations of quantum mechanics (QM) centered

around the violation of the celebrated Bell inequalities [1–3] and string theory (ST) [4–6].
As is well known, the Bell inequalities, based on the assumption of classical local realism,

are violated by the correlations of canonical QM [7–11]. This remarkable feature of QM is

often called “quantum nonlocality,” though perhaps a misnomer. However, even quantum

correlations, with their apparent “nonlocality,” are bounded and satisfy another inequality

discovered by Cirel’son (Also spelled Tsirelson) [12]; see also [13]. The natural question

that arises is as follows: do “super” quantum theories exist which predict correlations that

transcend those of QM and thereby violate the Cirel’son bound? Popescu and Rohrlich have

demonstrated that such “super” correlations can be consistent with relativistic causality (aka

the no-signaling principle) [14]. But what theory would predict them? In the following, we

give heuristic arguments which suggest that nonperturbative ST may precisely be such a “su-

perquantum” theory.
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2. Bell’s Inequality, the Cirel’son Bound, and Beyond

Consider two classical variables A and B, which represent the outcomes of measurements

performed on some isolated physical system by detectors 1 and 2 placed at two causally

disconnected spacetime locations. Assume that the only possible values of both A and B are

±1. Denote the state of detector 1 by a and that of detector 2 by b. “Local realism” demands

that A depend only on a and B depend only on b. They can also depend on some hidden, but

shared, information, λ. The correlation between A(a, λ) and B(b, λ) is then

P(a, b) =
∫
dλρ(λ)A(a, λ)B(b, λ),

∫
dλρ(λ) = 1, (2.1)

where ρ(λ) is the probability density of the hidden information λ. This classical correlation

is bounded by the following form of Bell’s inequality [1, 2] as formulated by Clauser, Horne,

Shimony, and Holt (CHSH) [3]:

∣∣P(a, b) + P(a, b′) + P(a′, b) − P(a′, b′)∣∣ ≤ X, where X = XBell = 2. (2.2)

The quantum versions of these correlations violate this bound but are themselves bounded by

a similar inequality obtained by replacing the value of X on the right-hand side with XQM =
2
√

2. This is the famous Cirel’son bound [12, 13], the extra factor of
√

2 being determined by

the Hilbert space structure of QM. The same Cirel’son bound has been shown to apply for

quantum field theoretic (QFT) correlations also [15, 16].
Let us briefly review the simplest routes to these bounds. Following [12, 13, 17],

consider 4 classical stochastic variables A, A′, B, and B′, each of which takes values of +1

or −1. Obviously, the quantity

C ≡ AB +AB′ +A′B −A′B′ = A
(
B + B′) +A′(B − B′) (2.3)

can be only +2 or −2, and thus, the absolute value of its expectation value is bounded by 2

|〈C〉| =
∣∣〈AB +AB′ +A′B −A′B′〉∣∣ ≤ 2. (2.4)

This is the classical Bell bound. For the quantum case, we replace the classical stochastic var-

iables with hermitian operators acting on a Hilbert space. Following [12, 13], we find that if

Â
2
= Â

′2 = B̂2 = B̂
′2 = 1 and [Â, B̂] = [Â, B̂′] = [Â′, B̂] = [Â′, B̂′] = 0, then C is replaced by

Ĉ = ÂB̂ + ÂB̂′ + Â′B̂ − Â′B̂′, (2.5)

from which we find

Ĉ2 = 4 −
[
Â, Â′

]
·
[
B̂, B̂′
]
. (2.6)
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When the commutators are zero, we recover the classical bound of 2. If they are not, we can

use the uncertainty relations |〈i[Â, Â′]〉| ≤ 2‖Â‖ · ‖Â′‖ and |〈i[B̂, B̂′]〉| ≤ 2‖B̂‖ · ‖B̂′‖ to obtain

〈
Ĉ2
〉
≤ 4 + 4

∥∥∥Â∥∥∥ · ∥∥∥Â′
∥∥∥ · ∥∥∥B̂∥∥∥ · ∥∥∥B̂′

∥∥∥ = 8 −→
∣∣∣〈Ĉ〉∣∣∣ ≤√〈Ĉ2

〉
≤ 2

√
2, (2.7)

which is the Cirel’son bound. Alternatively, we can follow [17] and let Â|ψ〉 = |A〉, B̂|ψ〉 =
|B〉, Â′|ψ〉 = |A′〉, and B̂′|ψ〉 = |B′〉. These 4 vectors all have unit norms and

∣∣∣〈Ĉ〉∣∣∣ = ∣∣∣〈ψ∣∣∣Ĉ∣∣∣ψ〉∣∣∣ = ∣∣〈A | B + B′〉 + 〈A′ | B − B′〉∣∣ ≤ ∥∥|B〉 + ∣∣B′〉∥∥ + ∥∥|B〉 − ∣∣B′〉∥∥, (2.8)

which implies

∣∣∣〈Ĉ〉∣∣∣ ≤√2(1 + Re〈B | B′〉) +
√

2(1 − Re〈B | B′〉) ≤ 2
√

2. (2.9)

This second proof suggests that the Cirel’son bound is actually independent of the require-

ment of relativistic causality. If relativistic causality is broken, then the Â’s and B̂’s will not

commute. Then, Ĉ must be symmetrized as

Ĉ =
1

2

[(
ÂB̂ + B̂Â

)
+
(
ÂB̂′ + B̂′Â

)
+
(
Â′B̂ + B̂Â′

)
−
(
Â′B̂′ + B̂′Â′

)]
, (2.10)

to make it hermitian, and its expectation value will be

〈
Ĉ
〉
= Re
[〈
A | B + B′〉 + 〈A′ | B − B′〉], (2.11)

which is clearly subject to the same bound as before. So, it is the Hilbert space structure of

QM alone which determines this bound.

Indeed, Popescu and Rohrlich have demonstrated that one can concoct super-

quantum correlations which violate the Cirel’son bound, while still maintaining consistency

with relativistic causality [14]. However, such superquantum correlations are also bounded,

the value of X in (2.2) being replaced not by XQM = 2
√

2 but by X = 4

∣∣P(a, b) + P(a, b′) + P(a′, b) − P(a′, b′)∣∣ ≤ 4. (2.12)

Note, though, that this is not a “bound” per se, the value of 4 being the absolute maximum

that the left-hand side can possibly be, since each of the 4 terms has its absolute value

bounded by one. If the four correlations represented by these 4 terms were completely

independent, then, in principle, there seems to be no reason why this bound cannot be

saturated.

But what type of theory would predict such correlations? It has been speculated that

a specific superquantum theory could essentially be derived from the two requirements

of relativistic causality and the saturation of the X = 4 bound, in effect elevating these
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requirements to the status of “axioms” which define the theory [14]. On the other hand, it

has also been proposed that relativistic causality and locality would demand the Cirel’son

bound, and thus QM would be uniquely derived [18, 19]. This would imply the necessity of

nonlocality to achieve X = 4. However, to our knowledge, no concrete realization of either of

these programs has thus far emerged.

A related development has been the proof by van Dam that superquantum correlations

which saturate the X = 4 bound can be used to render all communication complexity

problems trivial [20, 21]. Subsequently, Brassard et al. discovered a protocol utilizing

correlations with X > Xcc = 4
√

2/3, which solves communication complexity problems

trivially in a probabilistic manner [22]. Due to this, it has been speculated that nature some-

how disfavors superquantum theories and that superquantum correlations, especially those

with X > Xcc, should not exist [23–26]. However, the argument obviously does not preclude

the existence of superquantum theories itself.

One proposal for a superquantum theory discussed in the literature uses a formal

mathematical redefinition of the norms of vectors from the usual �2 norm to the more general

�p norm [27]. In a 2D vector space with basis vectors {e1, e2}, the �p norm is

∥∥αe1 + βe2

∥∥
p
= p

√
αp + βp. (2.13)

If one identifies |B〉 = e1 and |B′〉 = e2, then

∥∥|B〉 ± ∣∣B′〉∥∥
p
= 21/p. (2.14)

Equation (2.12) would then be saturated for the p = 1 case. (The �1 norm and �∞ norm are

equivalent in 2D, requiring a mere 45◦ rotation of the coordinate axes to get from one to the

other.) Unfortunately, it is unclear how one can construct a physical theory based on this

proposal in which dynamical variables evolve in time while preserving total probability.

At this point, we make the very simple observation that it is the procedure of

“quantization,” which takes us from classical mechanics to QM, that increases the bound from

the Bell/CHSH value of 2 to the Cirel’son value of 2
√

2. That is, “quantization” increases the

bound by a factor of
√

2. Thus, if one could perform another step of “quantization” onto QM,

would it not lead to the increase of the bound by another factor of
√

2, thereby take us from

the Cirel’son value of 2
√

2 to the ultimate 4? This is the main conjecture of this paper, that is,

a “doubly” quantized theory would lead to the violation of the Cirel’son bound.

In the following, we will clarify which “quantization” procedure we have in mind, and

how it can be applied for a second time onto QM, leading to a “doubly quantized” theory.

We then argue that a physical realization of such a theory may be offered by nonperturbative

open string field theory (OSFT).

3. “Double” Quantization and Open String Field Theory

Before going into the “double quantization” procedure, let us first observe that from the

point of view of general mathematical deformation theory [28, 29], QM is a theory with one

deformation parameter �, while ST is a theory with two: the first deformation parameter of ST

is the world-sheet coupling constant α′, which measures the essential nonlocality of the string,

and is responsible for the organization of perturbative ST. The second deformation parameter
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of ST is the string coupling constant gs, which controls the nonperturbative aspects of ST, such

as D-branes and related membrane-like solitonic excitations and the general nonperturbative

string field theory (SFT) [4–6]. Therefore, ST can be expected to be more “quantum” in some

sense than canonical QM, given the presence of the second deformation parameter.

Second, superquantum correlations point to a nonlocality, which is more nonlocal, so

to speak, than the aforementioned “quantum nonlocality” of QM and QFT. However, QFT’s

are actually local theories, and true nonlocality is expected only in theories of quantum grav-

ity. That quantum gravity must be nonlocal stems from the requirement of diffeomorphism

invariance, as has been known from the pioneering days of that field [30, 31]. Thus, quantum

gravity, for which ST is a concrete example, can naturally be expected to lead to correlations

more nonlocal than those in QM/QFT.

Third, the web of dualities discovered in ST [4–6], which points to the unification of

QFTs in various dimensions, can themselves be considered a type of “correlation” which tran-

scends the barriers of QFT Lagrangians and spacetime dimensions. Again, the evidence sug-

gests “super” correlations, perhaps much more “super” than envisioned above, in the con-

text of ST.

What follows is a heuristic attempt to make these expectations physically concrete.

Our essential observation is as follows: the “quantization” procedure responsible for turning

the classical Bell bound of 2 into the quantum Cirel’son bound of 2
√

2 is given by the path

integral over the classical dynamical variables, which we collectively denote as x. That is,

given a classical action S(x), functions of x are replaced by their expectation values defined

via the path integral

f(x) −→
〈
f(x̂)
〉
=
∫
Dxf(x) exp

[
i

�
S(x)
]
, (3.1)

up to a normalization constant. In particular, the correlation between two observables Â(a)
and B̂(b) will be given by

〈
Â(a)B̂(b)

〉
=
∫
DxA(a, x)B(b, x) exp

[
i

�
S(x)
]
≡ A(a)  B(b) (3.2)

(cf. (2.1)). In a similar fashion, we can envision taking a collection of quantum operators,

which we will collectively denote by φ̂, for which a “quantum” action S̃(φ̂) is given and

define another path integral over the quantum operators φ̂

F
(
φ̂
)
−→
〈〈

F

(̂̂
φ

)〉〉
=
∫
Dφ̂ F

(
φ̂
)

exp

[
i

�̃
S̃
(
φ̂
)]
, (3.3)

and the correlation between two “super” observables will be

〈〈 ̂̂
A(a) ̂̂B(b)〉〉 =

∫
Dφ̂ Â

(
a, φ̂
)
B̂
(
b, φ̂
)

exp

[
i

�̃
S̃
(
φ̂
)]
. (3.4)
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Note that the expectation values here, denoted 〈〈∗〉〉, are not numbers but operators them-

selves. To further reduce it to a number, we must calculate its expectation value in the usual

way

〈〈 ̂̂
A(a) ̂̂B(b)〉〉 −→

〈〈〈 ̂̂
A(a) ̂̂B(b)〉〉〉 =

〈∫
Dφ̂ Â

(
a, φ̂
)
B̂
(
b, φ̂
)

exp

[
i

�̃
S̃
(
φ̂
)]〉

, (3.5)

which would amount to replacing all the products of operators on the right-hand side with

their first-quantized expectation values, or equivalently, replacing the operators with “classi-

cal” variables except with their products defined via (3.2).
This defines our “double quantization” procedure, through which two deformation

parameters, � and �̃, are introduced. We would like to emphasize that the φ̂ in the above

expressions is already a quantum entity, depending on the first deformation parameter �.

Thus, the “double quantization” procedure proposed here is quite distinct from the “second

quantization” procedure used in QFT, which, being a single quantization procedure of a

classical field, is a misnomer to begin with. The caveats to our definition are, of course, the

difficulty in precisely defining the path integral over the quantum operator φ̂, and thus doing

any actual calculations with it, and imposing a physical interpretation on what is meant by

the quantum operators themselves being probabilistically determined.

At this point, we make the observation that a “doubly quantized” theory may already

be available in the form of Witten’s open string field theory (OSFT) [32]. Our “double”

quantization procedure can be mapped onto ST as follows: in the first step, the classical

action S(x) can be identified with the world-sheet Polyakov action and the first deformation

parameter � with the world-sheet coupling α′ [4–6]. In the second step, the quantum action

S̃(φ̂) can be identified with Witten’s OSFT action [32] and the second deformation parameter

�̃ with the string coupling gs.

The doubly deformed nature of the theory is explicit in the Witten action for the

“classical” open string field Φ, an action of an abstract Chern-Simons type

SW(Φ) =
∫
Φ  QBRST Φ +Φ Φ Φ, (3.6)

where QBRST is the open string theory BRST cohomology operator (Q2
BRST

= 0) and the star

product is determined via the world-sheet Polyakov action

SP (X) =
1

2

∫
d2σ
√
g gab∂aX

i∂bX
jGij + · · ·, (3.7)

and the corresponding world-sheet path integral

F  G =
∫
DXF(X)G(X) exp

[
i

α′
SP (X)

]
. (3.8)
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The fully quantum OSFT is then in principle defined by yet another path integral in the infi-

nite dimensional space of the open string field Φ; that is,

∫
DΦ exp

[
i

gs
SW(Φ)

]
, (3.9)

with all products defined via the star-product.

In addition to its manifestly “doubly” quantized path integral, OSFT has as massless

modes the ordinary photons, which are used in the experimental verification of the violation

of Bell’s inequalities [7–11], and it also contains gravity (closed strings) as demanded by

unitarity. (The open/closed string theory duality is nicely illustrated by the AdS/CFT duality

[4–6]. It is interesting to contemplate the Bell bound and its violations, both quantum

and super-quantum, in this well-defined context. Similarly, it would be interesting, even

though experimentally prohibitive, to contemplate the superquantum correlations for the

QCD string, perhaps in the studies of the quark-gluon plasma.) Thus, our heuristic reasoning

suggests that OSFT may precisely be an example of a super-quantum theory, which violates

the Cirel’son bound.

We close this section with a caveat and a speculation. In the above reasoning, the two

quantizations were taken to be independent with two independent deformation parameters.

In the case of OSFT, they were α′ and gs. However, from the point of view of M-theory, we

would generically expect that α′ and gs are both of order one (in natural units) and that both

are dynamically generated [33]. Thus, the two parameters are not completely independent,

and it may not be correct to view OSFT as a fully “doubly quantized” theory. Would this

mean that OSFT/M-theory correlations would not saturate the ultimate X = 4 bound? Would

its CHSH bound be situated somewhere between XQM = 2
√

2 and X = 4, perhaps below

the communication complexity bound of Xcc = 4
√

2/3? If M-theory is indeed unique, it may

be natural to expect that its correlations would also be unique from the point of view of

communication complexity, and that they would saturate this communication complexity

bound. Of course, this conjecture would be testable only in a very precise proposal for M-

theory (perhaps along the lines of [34–38]).

4. The � → ∞ Limit

Given that a superquantum theory is supposedly more “quantum” than QM, let us now con-

sider the the extreme quantum limit of QM, � → ∞. Though QM is not “doubly quantized,”

could it still exhibit certain superquantum behavior in that limit? Taking a deformation

parameter to infinity can be naturally performed in ST, either α′ → ∞ or gs → ∞, and

one can still retain sensible physics. Therefore, the � → ∞ limit of QM may also be a sensible

theory but at the same time quite different from QM. After all, if the � → 0 limit is to recover

classical mechanics, with the Bell bound of XBell = 2, and apparently quite different from QM,

it may not be too farfetched to conjecture that the � → ∞ limit would flow to a superquantum

theory, with the superquantum bound of X = 4. If this were indeed the case, it may provide

us with an opportunity to explore superquantum behavior in the absence of a solution to

OSFT/M-theory.

What would the � → ∞ limit mean from the point of view of the path integral? Given

that the path-integral measure is eiS/�, in the � → ∞ limit this measure will be unity for any

S, and all histories in the path integral contribute with equal unit weight. Similarly all phases,
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measured by eiS/�, will be washed out (this immediately raises other issues, such as the mean-

ing of quantum statistics). Because the phases are washed out, we cannot distinguish between

|B〉+ |B′〉 and |B〉− |B′〉 (note that −1 = eiπ and that sign can be absorbed into a phase of |B′〉).
This suggests that

∥∥|B〉 ± ∣∣B′〉∥∥ = ‖|B〉‖ +
∥∥∣∣B′〉∥∥, (4.1)

which, if applied to the proof of the Cirel’son bound given earlier, leads to the superquantum

bound of 4. This property is similar to what was obtain by replacing the �2 norm with an �1 (or

�∞) norm, cf. (2.14), but presumably, unlike the change of norm, this relation is independent

of the choice of basis. This argument seems to suggest that the � → ∞ limit is indeed

superquantum.

However, this observation is perhaps a bit naı̈ve, since the proof of the Cirel’son bound

itself may no longer be valid under the wash-out of all phases. Let us invoke here an optical-

mechanical analogy: geometric optics is the zero wavelength limit of electromagnetism,

which would correspond to the � → 0 limit of QM. The � → ∞ limit of QM would,

therefore, correspond the extreme near field limit of electromagnetism, and in that case, the

superposition of waves is washed out (we thank Jean Heremans for discussions of this point).
Note also that from a geometric point of view, the holomorphic sectional curvature 2/� of the

projective Hilbert space CPN of canonical QM goes to zero as � → ∞, and CPN becomes

just CN . (For a general discussion of the geometry of quantum theory and its relevance for

quantum gravity and string theory, see [34–38].) From these observations, it is clear that the

usual Born rule to obtain probabilities will no longer apply.

But before we ask what rule should replace that of Born, let us confront the obvious

problem that in the limit � → ∞, only the ground state of the Hamiltonian will remain in

the physical spectrum and the theory will be rendered trivial (if the system has a non-trivial

topology, it could allow for degeneracies in the ground state, and thus lead to a non-trivial

theory even in the � → ∞ limit). This can also be argued via the general Feynman-Schwinger

formulation of QM [39]

δSψ = i� δψ. (4.2)

By taking the � → ∞ limit, we eliminate the classical part δS so that we are left only with

δψ = 0, and thus, ψ must be a constant ψ ≡ |ψ|, a trivial result.

Could the � → ∞ limit of QM be made less than trivial? Consider the corresponding

α′ → ∞ and gs → ∞ limits in ST. In the α′ → ∞ of ST, as opposed to the usual α′ → 0

field theory limit, one seemingly ends up with an infinite number of fields and a nontrivial

higher spin theory [40, 41]. Recently, such a theory was considered from a holographically

dual point of view, and the dual of such a higher spin theory in AdS space was identified to

be a free field theory [42]. The gs → ∞ limit of ST appears in the context of M-theory, one of

whose avatars arises in the gs → ∞ limit of type-IIA ST [4–6]. Neither the high spin theory,

nor the avatars of M-theory are trivial, as the presence of the tunable second deformation

parameter saves them from triviality. Thus, the introduction of a second tunable parameter

into QM, for example, Newton’s gravitational constant GN , may be necessary for the limit

� → ∞ to be nontrivial.
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Another issue here is that of interpretation: in the classical (� → 0) case, we have one

trajectory, and one event (position, for example) at one point in time. One could speculate that

the superquantum (� → ∞) limit would correspond to the complement of all other virtual

trajectories. A general linear map relating virtual and classical trajectories is presumably non-

symmetric (there are in principle more possibilities than actual events). Very naÏvely, one

would then expect that if we impose the condition that all possible events can be “mapped”

to actual events, we could end up with a symmetric linear map corresponding to quantum

theory (� ∼ 1), with a natural “map” between the actual events and possibilities, presumably

realized by the Born probability rule. Note that according to this scenario, the superquantum

theory would correspond essentially to a theory of possibilities and without actual events,

which would be an interesting lesson for the foundations of ST.

5. Possible Experimental Signatures

Finally we offer some comments on possible experimental observations of such superquan-

tum violations of Bell’s inequalities. The usual setup involves entangled photons [7–11]. In

open ST, photons are the lowest lying massless states, but there is also an entire Regge

trajectory associated with them. So, the obvious experimental suggestion would be to observe

entangled Reggeized photons. Such an experiment is, of course, forbidding at present, given

its Planckian nature.
Superquantum correlations could also be observable in cosmology. The current under-

standing of the large-scale structure of the universe, that is, the distribution of galaxies and

galaxy clusters, is that they are seeded by quantum fluctuations. In standard calculations, it

is assumed that the quantum correlations of these fluctuations are Gaussian (non-Gaussian

correlations have also been considered). If the correlations were, in fact, superquantum,

however, their signature could appear as characteristic deviations from the predicted large-

scale structure based on Gaussian correlations. Such superquantum correlations would pre-

sumably be generated in the quantum gravity phase, and thus should be enhanced by the

expansion of the universe at the largest possible scales. It would be interesting to look for

evidence of such large-scale superquantum correlations in the existing WMAP [43] or the

upcoming Planck [44, 45] data.
We conclude with a few words regarding a new experimental “knob” needed to test

our doubly quantized approach to superquantum correlations. In the classic experimental

tests of the violation of Bell’s inequalities [7–11], such a “knob” is represented by the relative

angle between polarization vectors of entangled photos. If we have another quantization,

there should be, in principle, another angle-like “knob.” Thus, the usual one-dimensional

data plot [7–11] should be replaced by a two dimensional surface. By cutting this surface at

various values of the new, second angle, we should be able to obtain one dimensional cuts

for which the value of the CHSH bound varies depending on the cut, exceeding 2
√

2 in some

cases, and perhaps not exceeding 2 in others. Thus, the second “knob” may very well allow

us to interpolate between the classical, quantum, and superquantum cases. The physical

meaning of such an extra “knob” is not clear at the moment. It would be natural to associate

this second “knob” with the extended nature of entangled Reggeized photons. However, we

must admit that the measure of such nonlocality is not as obvious as the canonical measure

of polarization of entangled photons in the standard setup [7–11].
In this paper, we have obviously only scratched the surface of a possible superquan-

tum theory, and many probing questions remain to be answered and understood. We hope to

address some of them in future works.
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We review our work on the minimal length uncertainty relation as suggested by perturbative
string theory. We discuss simple phenomenological implications of the minimal length uncertainty
relation and then argue that the combination of the principles of quantum theory and general
relativity allow for a dynamical energy-momentum space. We discuss the implication of this for
the problem of vacuum energy and the foundations of nonperturbative string theory.

1. Introduction

One of the unequivocal characteristics of string theory [1–3] is its possession of a fundamental

length scale which determines the typical spacetime extension of a fundamental string. This is

�s =
√
α′, where �c/α′ is the string tension. Such a feature is to be expected of any candidate

theory of quantum gravity, since gravity itself is characterized by the Planck length �P =√
�GN/c3. Moreover, �P ∼ �s is understood to be the minimal length below which spacetime

distances cannot be resolved [4–7]

δs � �P ∼ �s. (1.1)

Quantum theory, on the other hand, is completely oblivious to the presence of such a scale,

despite its being the putative infrared limit of string theory. A natural question to ask is,

therefore, whether the formalism of quantum theory can be deformed or extended in such

a way as to consistently incorporate the minimal length. If it is at all possible, the precise

manner in which quantum theory must be modified may point to solutions of yet unresolved
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mysteries such as the cosmological constant problem [8–12], which is quantum gravitational

in its origin. It should also illuminate the nature of string theory [13], whence quantum theory

must emerge [14].
The idea of introducing a minimal length into quantum theory has a fascinating and

long history. It was used by Heisenberg in 1930 [15, 16] to address the infinities of the newly

formulated theory of quantum electrodynamics [17]. Over the years, the idea has been picked

up by many authors in a plethora of contexts, for example, [18–42] to list just a few. Various

ways to deform or extend quantum theory have also been suggested [43–47]. In this paper,

we focus our attention on how a minimal length can be introduced into quantum mechanics

by modifying its algebraic structure [48–50].
The starting point of our analysis is the minimal length uncertainty relation (MLUR)

[51, 52],

δx ∼
(

�

δp
+ α′

δp

�

)
, (1.2)

which is suggested by a resummed perturbation expansion of the string-string scattering

amplitude in a flat spacetime background [53–56]. This is essentially a Heisenberg micro-

scope argument [57] in the S-matrix language [58–61] with fundamental strings used to

probe fundamental strings. The first term inside the parentheses on the right-hand side is the

usual Heisenberg term coming from the shortening of the probe wavelength as momentum

is increased, while the second term can be understood as due to the lengthening of the probe

string as more energy is pumped into it

δp =
δE

c
∼ �

α′
δx. (1.3)

Equation (1.2) implies that the uncertainty in position, δx, is bounded from below by the

string length scale,

δx �
√
α′ = �s, (1.4)

where the minimum occurs at

δp ∼ �√
α′

=
�

�s
≡ μs. (1.5)

Thus, �s is the minimal length below which spatial distances cannot be resolved, consistent

with (1.1). In fact, the MLUR can be motivated by fairly elementary general relativistic con-

siderations independent of string theory, which suggests that it is a universal feature of quan-

tum gravity [4–7].
Note that in the trans-Planckian momentum region δp � μs, the MLUR is dominated

by the behavior of (1.3), which implies that large δp (UV) corresponds to large δx (IR), and

that there exists a correspondence between UV and IR physics. Such UV/IR relations have

been observed in various string dualities [1–3], and in the context of AdS/CFT correspond-

ence [62, 63] (albeit between the bulk and boundary theories). Thus, the MLUR captures

another distinguishing feature of string theory.
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In addition to the MLUR, another uncertainty relation has been pointed out by Yoneya

as characteristic of string theory. This is the so-called spacetime uncertainty relation (STUR)

δxδt ∼ �2
s

c
, (1.6)

which can be motivated in a somewhat hand-waving manner by combining the usual energy-

time uncertainty relation δEδt ∼ � [64–66] with (1.3). However, it can also be supported via

an analysis of D0-brane scattering in certain backgrounds in which δx can be made arbitrary

small at the expense of making the duration of the interaction δt arbitrary large [67–73]. While

the MLUR pertains to dynamics of a particle in a nondynamic spacetime, the STUR can be

interpreted to pertain to the dynamics of spacetime itself in which the size of a quantized

spacetime cell is preserved.

In the following, we discuss how the MLUR and STUR may be incorporated into

quantum mechanics via a deformation and/or extension of its algebraic structure. In

Section 2, we introduce a deformation of the canonical commutation relation between x̂ and

p̂ which leads to the MLUR and discuss its phenomenological consequences. In Section 3, we

take the classical limit by replacing commutation relations with Poisson brackets and derive

the analogue of Liouville’s theorem in the deformed mechanics. We then discuss the effect

this has on the density of states in phase space. In Section 4, we discuss the implications of

the MLUR on the cosmological constant problem. We conclude in Section 5 with some spec-

ulations on how the STUR may be incorporated via a Nambu triple bracket and comment on

the lessons for the foundations of string theory and on the question “What is string theory?”

2. Quantum Mechanical Model of the Minimal Length

2.1. Deformed Commutation Relations

To place the MLUR, (1.2), on firmer ground, we begin by rewriting it as

δxδp ≥ �

2

(
1 + βδp2

)
, (2.1)

where we have introduced the parameter β = α′/�2. The minimum value of δx as a function

of δp is plotted in Figure 1. This uncertainty relation can be reproduced by deforming the

canonical commutation relation between x̂ and p̂ to

1

i�

[
x̂, p̂
]
= 1 −→ 1

i�

[
x̂, p̂
]
= A
(
p̂2
)
, (2.2)

with A(p2) = 1 + βp2. Indeed, we find

δxδp ≥ 1

2

∣∣〈[x̂, p̂]〉∣∣ = �

2

(
1 + β
〈
p̂2
〉)

≥ �

2

(
1 + βδp2

)
, (2.3)

since δp2 = 〈p̂2〉 − 〈p̂〉2. The function A(p2) can actually be more generic, with βp2 being the

linear term in its expansion in p2.
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1

1

x
/
l s

p/μs

Figure 1: The δp-dependence of the lower bound of δx under the minimal length uncertainty relation (2.1)
(red curve). The bound for the usual Heisenberg relation δx ≥ �/(2δp) is shown in blue, and the linear
bound δx ≥ (�β/2)δp is shown in green.

When we have more than one spatial dimension, the above commutation relation can

be generalized to

1

i�

[
x̂i, p̂j
]
= A
(
p̂2
)
δij + B

(
p̂2
)
p̂ip̂j , (2.4)

where p̂2 =
∑

i p̂
2
i . The right-hand side is the most general form that depends only on the

momentum and respects rotational symmetry. Assuming that the components of the mo-

mentum commute among themselves,

[
p̂i, p̂j
]
= 0, (2.5)

the Jacobi identity demands that

1

i�

[
x̂i, x̂j

]
= −
{

2
(
Â + B̂p̂2

)
Â′ − ÂB̂

}
L̂ij , (2.6)

where we have used the shorthand Â = A(p̂2), Â′ = (dA/dp2)(p̂2), B̂ = B(p̂2), and L̂ij =
(x̂ip̂j − x̂j p̂i)/Â. That L̂ij generates rotations can be seen from the following:

1

i�

[
L̂ij x̂k

]
= δikx̂j − δjkx̂i,

1

i�

[
L̂ij p̂k

]
= δikp̂j − δjkp̂i,

1

i�

[
L̂ij L̂k�

]
= δikL̂j� − δi�L̂jk + δj�L̂ik − δjkL̂i� .

(2.7)

Note that the noncommutativity of the components of position can be interpreted as a

reflection of the dynamic nature of space itself, as would be expected in quantum gravity.
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Various choices for the functions A(p2) and B(p2) have been considered in the litera-

ture. Maggiore [48, 49] proposed that

A
(
p2
)
=
√

1 + 2βp2, B
(
p2
)
= 0,

1

i�

[
x̂i, x̂j

]
= −2βL̂ij , (2.8)

while Kempf et al. [50] assumed that

A
(
p2
)
= 1 + βp2, B

(
p2
)
= β′ = constant, (2.9)

in which case

1

i�

[
x̂i, x̂j

]
= −
{(

2β − β′
)
+ β
(
2β + β′

)
p̂2
}
L̂ij . (2.10)

Kempf’s choice encompasses the algebra of Snyder [19, 20]

A
(
p2
)
= 1, B

(
p2
)
= β′,

1

i�

[
x̂i, x̂j

]
= β′L̂ij , (2.11)

and that of Brau and Buisseret [74, 75]

A
(
p2
)
= 1 + βp2, B

(
p2
)
= 2β,

1

i�

[
x̂i, x̂j

]
= O
(
β2
)
, (2.12)

for which the components of the position approximately commute. In our treatment, we

follow Kempf and use (2.9).

2.2. Shifts in the Energy Levels

Let us see whether the above deformed commutation relations led to a reasonable quantum

mechanics, with well-defined energy eigenvalues and eigenstates. Given a Hamiltonian in

terms of the deformed position and momentum operators, H(x̂, p̂), we would like to solve

the time-independent Schrödinger equation

H(x̂, p̂)|E〉 = E|E〉. (2.13)

The operators which satisfy (2.4), (2.5), and (2.6), subject to the choice (2.9), can be

represented using operators which obey the canonical commutation relation [q̂i, p̂j] = i�δij as

[50, 76]

x̂i = q̂i + β
p̂2q̂i + q̂ip̂2

2
+ β′

p̂i
(
p̂ · q̂
)
+
(
q̂ · p̂
)
p̂i

2
,

p̂i = p̂i.

(2.14)
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The β and β′ terms are symmetrized to ensure the hermiticity of x̂i. Note that this representa-

tion allows us to write the Hamiltonian in terms of canonical q̂i’s and p̂i’s

H ′(q̂, p̂) ≡ H(x̂(q̂, p̂), p̂). (2.15)

Thus, our deformation of the canonical commutation relations is mathematically equivalent

to a deformation of the Hamiltonian. (In this work, we do not address the question of whether

the dependence of the Hamiltonian on the position and momentum operators also need be

modified in the presence of a minimal length. Lacking in any guideline to do so, we simply

keep them fixed to their standard forms.)
By the standard replacements

q̂i = qi, p̂i =
�

i

∂

∂qi
, or q̂i = i�

∂

∂pi
, p̂i = pi, (2.16)

x̂i and p̂j can be represented as differential operators acting on a Hilbert space of L2 functions

in either the qi’s or the pi’s, and one can write down a Schrödinger equation for a given

Hamiltonian in either q-space or p-space to solve for the energy eigenvalues. Note, however,

that while the pi’s are the eigenvalues of the momentum operators p̂i, the qi’s are not

the eigenvalues of the position operator x̂i. In fact, the existence of the minimal length

implies that x̂i cannot have any eigenfunctions within either Hilbert spaces. Therefore, the

meaning of the wave function in q-space is somewhat ambiguous. Nevertheless, the q-space

representation is particularly useful when the Schrödinger equation cannot be solved exactly,

since one can treat

ΔH(q̂, p̂) = H ′(q̂, p̂) −H(q̂, p̂) (2.17)

as a perturbation and calculate the shifts in the energies via perturbation theory in q-space.

In the following, we look at the energy shifts induced by nonzero β and β′ in the har-

monic oscillator [77, 78], the Hydrogen atom [74, 79], and a particle in a uniform gravitational

well [75, 76]. Since detailed derivations can be found in the respective references, we only

provide an outline of the results in each case.

2.2.1. Harmonic Oscillator

Consider a D-dimensional isotropic harmonic oscillator. The Hamiltonian is of course

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (2.18)

The p-space representation of the operators is

x̂i = i�

[(
1 + βp2

) ∂

∂pi
+ β′pipj

∂

∂pj
+
{
β + β′

(
D + 1

2

)
− δ
(
β + β′

)}
pi

]
,

p̂i = pi.

(2.19)
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Here, δ is an arbitrary real parameter which can be used to simplify the representation of

the operator x̂i at the expense of modifying the definition of the inner product in p-space

to

〈
f | g
〉
δ
=
∫

dDp[
1 +
(
β + β′

)
p2
]δ f∗(p)g(p). (2.20)

The introduction of δ is a canonical transformation which does not affect the energy eigen-

values [76]. The choice

δ =
β + β′((D + 1)/2)

β + β′
(2.21)

eliminates the third term in the expression for x̂i.

The rotational symmetry of the Hamiltonian, (2.18), allows us to write the wave

function in p-space as a product of a radial wave-function and a D-dimensional spherical

harmonic:

ΨD(p) = R
(
p
)
Y�mD−2mD−3···m2m1

(Ω), p ≡ |p|. (2.22)

The radial Schrödinger equation is then

−m�ω

[{
[1 + (β + β′)p2]

∂

∂p

}2

+
(D − 1)

(
1 + βp2

)[
1 +
(
β + β′

)
p2
]

p

∂

∂p

−
L2
(
1 + βp2

)2
p2

]
R
(
p
)
+

1

m�ω
p2R
(
p
)
=

2E

�ω
R
(
p
)
,

(2.23)

where

L2 = �(� +D − 2), � = 0, 1, 2, . . . (2.24)

is the eigenvalue of the angular momentum operator in D dimensions. The solution to (2.23)
has been worked out in detail in [78], and the energy eigenvalues are

En� = �ω

⎡⎢⎣(n +
D

2

)√√√√1 +

{
β2L2 +

(
Dβ + β′

)2
4

}
m2�2ω2

+

{(
β + β′

)(
n +

D

2

)2

+
(
β − β′

)(
L2 +

D2

4

)
+ β′

D

2

}
m�ω

2

⎤⎥⎦,
(2.25)
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with eigenfunctions given by

Rn�

(
p
)
=
(
β + β′

)D/4

√
2(2k + a + b + 1)k!Γ(k + a + b + 1)

Γ(k + a + 1)Γ(k + b + 1)

(
1 − z

2

)λ/2(1 + z
2

)�/2

P
(a,b)
k

(z).

(2.26)

Here, P
(a,b)
k

(z) is the Jacobi polynomial of order k = (n − �)/2 with argument

z =

(
β + β′

)
p2 − 1(

β + β′
)
p2 + 1

,

a =
1

m�ω
(
β + β′

)
√√√√1 +

{
β2L2 +

(
Dβ + β′

)2
4

}
m2�2ω2, b =

D

2
+ � − 1,

λ =
Dβ + β′

2
(
β + β′

) + a.

(2.27)

Note that due to the (n + D/2)2-dependent term in (2.25), the energy levels are no longer

uniformly spaced. Note also that, due to the explicit L2 dependence, the original

(D + n − 1)!
(D − 1)!n!

(2.28)

fold degeneracy of the nth energy level, which was due to states with different k and � sharing

the same n = 2k + �, is resolved, leaving only the

(D + � − 1)!
(D − 1)!�!

− (D + � − 3)!
(D − 1)!(� − 2)!

(2.29)

fold degeneracy for each value of � due to rotational symmetry alone [80–82]. For example,

in D = 2 dimensions, the (n + 1)-fold degeneracy of the nth level breaks down to the 2-fold

degeneracies between the pairs of m = ±� states. This is illustrated in Figure 2.

2.2.2. Hydrogen Atom

The introduction of a minimal length to the coulomb potential problem was first discussed by

Born in 1933 [18]. There, it was argued that the singularity at r = 0 will be blurred out. Here,

we find a similar effect. We consider the usual Hydrogen atom Hamiltonian inD dimensions:

Ĥ =
p̂2

2m
− e2

r̂
, (2.30)
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Figure 2: The energy levels of the 2D isotropic harmonic oscillator for the cases β′ = 0 (left) and β = 0
(right). The purple solid lines indicate s-wave states which are singlets. The dashed lines are doublets
with the color indicating that � = 1 (blue), � = 2 (green), � = 3 (yellow), � = 4 (orange), and � = 5 (red).√
βm�ω is the ratio of the minimal length �

√
β to the characteristic length scale

√
�/mω of the system.

where the operator 1/r̂ is defined as the inverse of the square root of the operator

r̂2 =
D∑
i=1

x̂2
i . (2.31)

1/r̂ will be best represented in the basis in which r̂2 is diagonal. The eigenvalues of r̂2 can be

obtained from those of the harmonic oscillator, (2.25), by taking the limit m → ∞:

r2
k� = lim

m→∞

2En�

mω2

= �2
(
β + β′

)⎡⎢⎣
⎧⎨⎩
(

2k + � +
D

2

)
+

1

β + β′

√
β2L2 +

(
Dβ + β′

)2
4

⎫⎬⎭
2

− β′

β + β′

{
L2 +

(D − 1)2

4

}⎤⎥⎦.
(2.32)

The corresponding eigenfunctions are given by the same expression as (2.26) except with a

replaced with

a =
1

β + β′

√
β2L2 +

(
Dβ + β′

)2
4

. (2.33)

Denoting these eigenfunctions as Rk�(p), we can define

1

r̂
Rk�

(
p
)
=

1

rk�
Rk�

(
p
)
. (2.34)
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Figure 3: Energy shifts of the n = 1, 2, and 3 states of the Hydrogen atom for the β′ = 0 (left) and β = 0
(right) cases. a0 = �2/me2 is the Bohr radius, and the energy is in units of the Rydberg constant e2/2a0.
The color of the lines indicates the orbital angular momentum: s (red), p (green), and d (blue). The s-
wave states are affected nonperturbatively even for very small β or β′, indicating their sensitivity to the
singularity of the Coulomb potential at the origin.

As in the harmonic oscillator case, the rotational symmetry of the Hamiltonian allows us

to write an energy eigenstate wave function as a product of a radial wave function and a

spherical harmonic. The radial wave function can then be expressed as a superposition of the

r̂2 eigenfunctions with fixed �:

R�

(
p
)
=

∞∑
k=0

fkRk�

(
p
)
. (2.35)

The radial Schrödinger equation will impose a recursion relation on the coefficients fn, which

can be solved numerically on a computer. The condition that the resulting function be square

integrable determines the eigenvalues E. The detailed procedure can be found in [76, 79].
Here, we only display the results for theD = 3 case in Figure 3. As can be seen, the degeneracy

between difference angular momentum states is lifted, just as in the harmonic oscillator

case.

It is also possible to calculate the energy shifts perturbatively using the q-space repre-

sentation for the cases D ≥ 4 or � /= 0. The unperturbed energy eigenfunctions in D dimen-

sions are

Rn�

(
q
)
=

√√√√ 22D

aD0 (2n +D − 3)D+1

(n − � − 1)!
(n + � +D − 3)!

e−ρ/2ρ�L
(2�+D−2)
n−�−1

(
ρ
)
, (2.36)
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where a0 = �2/me2 is the Bohr radius, L
(λ)
k

(ρ) the order k Laguerre polynomial, and

ρ =
2q

a0(n + ((D − 3)/2))
. (2.37)

The eigenvalues are

En = − e2

2a0(n + ((D − 3)/2))2
, n = 1, 2, 3, . . . . (2.38)

The operator 1/r̂ can be expanded in powers of β and β′ as [76]

1

r̂
=

1

q
+ �2β

(
1

q

∂2

∂q2
+
D − 2

q2

∂

∂q
− L2 +D − 2

q3

)
+ �2β′

(
1

q

∂2

∂q2
+
D − 2

q2

∂

∂q
+
D2 − 5D + 8

4q3

)

+ · · · ,
(2.39)

and the expectation value of the extra terms converges for � /= 0 or D ≥ 4, yielding

ΔEn� =
e2

a0(n + ((D − 3)/2))3

�2

a2
0

[
(D − 1)

(
2β − β′

)
4(� + ((D − 3)/2))(� + ((D − 2)/2))(� + ((D − 1)/2))

+

(
2β + β′

)
(� + ((D − 2)/2))

−
(
β + β′

)
(n + ((D − 3)/2))

]
,

(2.40)

which agrees very well with the numerical results for all cases to which it is applicable. For

D = 3, this formula reduces to

ΔEn� =
e2

a0n3

�2

a2
0

[ (
2β − β′

)
2�(� + (1/2))(� + 1)

+

(
2β + β′

)
(� + (1/2))

−
(
β + β′

)
n

]
, (2.41)

which is clearly problematic for � = 0. This is due to the breakdown of the expansion

equation (2.39) near q = 0 for D ≤ 3. Physically, this can be interpreted to mean that the

s-wave in 3D and lower dimensions is sensitive to the nonperturbative resolution of the

singularity at the origin due to the minimal length. Interestingly, in 4D and higher, there

are enough spatial dimensions for the wavefunction to spread out around the origin so that

even the s-wave is insensitive to the singularity, and the effect of the minimal length becomes

perturbative.
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2.2.3. Uniform Gravitational Potential

This subsection is based on unpublished material by Benczik in [76]. Consider the 1D motion

of a particle in a linear potential

V (x) =

⎧⎨⎩mgx x > 0,

∞ x ≤ 0.
(2.42)

The Hamiltonian is

Ĥ =
p̂2

2m
+mgx̂. (2.43)

Since x̂ does not have any eigenstates within the Hilbert space, the condition x > 0 is replaced

with 〈x̂〉 > 0. In the q-space representation, the operators are given by

x̂ = q

(
1 − �2β

d2

dq2

)
,

p̂ =
�

i

d

dq
,

(2.44)

and the Schrödinger equation becomes

Ĥψ = − �2

2m

d2ψ

dq2
+mgq

(
1 − �2β

d2

dq2

)
ψ = Eψ. (2.45)

The condition 〈x̂〉 > 0 can be imposed by restricting the domain of q to q > 0 and demanding

that the wave function vanish at q = 0. The solution to the β = 0 case is given by the Airy

function

ψn
(
q
)
=

1∣∣Ai′(αn)
∣∣Ai
(q
a
+ αn
)
, a =

[
�2

2m2g

]1/3

, (2.46)

with eigenvalues

En
mga

= −αn, (2.47)

where

· · · < α3 < α2 < α1 < 0 (2.48)
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Figure 4: The b dependence of the lowest energy levels of a particle of mass m in a linear gravitaional

potential V (x) = mgx with x > 0. a = [�2/2m2g]1/3 is the characteristic length scale of the system, and
b = �

√
β is the minimal length.

are the zeroes of Ai(z). The solution to the β /= 0 case is given in terms of the confluent hyper-

geometric function of the second kind [83–85]

ψ
(
q
)
∝ e−q/bU

(
−1

2

[
E

mgb
+
a3

b3

]
; 0; 2

[
a3

b3
+
q

b

] )
, a =

[
�2

2m2g

]1/3

, b = �
√
β. (2.49)

The energy eigenvalues are determined by the condition

U

(
−1

2

[
E

mgb
+
a3

b3

]
; 0;

2a3

b3

)
= 0, (2.50)

which can be solved numerically using Mathematica. In Figure 4, we plot the b dependence

of the energies of the lowest lying states. The energies of higher-dimensional cases, in which

there are one or more spatial dimensions orthogonal to the potential direction, are discussed

in [75, 76].

2.3. Experimental Constraints

As these three examples show, the main effect of the introduction of the minimal length into

quantum mechanical systems is the shifts in energy levels which also leads to the breaking

of well-known degeneracies. The natural question arises whether these shifts can be used to

constrain the minimal length experimentally. Of course, if the minimal length is at the Planck

scale, detecting its actual effect would be impossible. However, the exercise is of interest to

models of large extra dimensions which possess a much lower effective Planck scale than the

4D value [86–89].
In the case of the harmonic oscillator, actual physical systems are never completely har-

monic, so it is difficult to distinguish the shift in energy due to an harmonicity with that due

to a possible minimal length. Reference [78] considers using the energy levels of an electron
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in a Penning trap to constrain β and finds that even under highly optimistic and unrealistic

assumptions, the best bound that can be hoped for is

1√
β
� 1 GeV/c. (2.51)

References [76, 79] consider placing a bound on β using the 1S Lamb shift of the

hydrogen atom. The current best experimental value is that given by Schwob et al. in

[90]

L
exp

1s = 8172.837(22)MHz. (2.52)

This is to be compared with the theoretical value, for which we use that given in [91, 92]

Lth
1s = 8172.731(40)MHz. (2.53)

The calculation requires the experimentally determined proton rms charge radius rp as an

input, and the error on Lth
1s is dominated by the experimental error on rp. Here, the value of

rp = 0.862(12) fm [93] was used. Attributing the entire discrepancy to β (β′ = 0), [76, 79]
cite

1√
β
� 7 GeV/c, (2.54)

which is only slightly better than (2.51). There is no bound on β′ (β = 0) since the shift is in

the wrong direction as can be seen in Figure 3.

The energy levels of neutrons in a linear gravitational potential have been measured

by Nesvizhevsky et al. [94–96]. However, as analyzed by Brau and Buisseret [75], the exper-

imental precision is still very many orders of magnitude above what is necessary to place a

meaningful bound on β. The current lower bound on 1/
√
β is on the order of 100 eV/c.

3. Classical Limit: The Liouville Theorem and the Density of States

Note that rewriting our 1D-deformed commutator as

[
x̂, p̂
]
= i�A

(
p̂2
)

(3.1)

suggests that �A(p2) takes on the role of a momentum-dependent Planck constant. Given

that-� determines the size of a quantum mechanical state in phase space, a momentum-

dependent � would imply that the size of this state must scale according toA(p2) as it evolves.

To see whether this interpretation makes sense, we formally take the naive classical limit by

replacing commutators with Poisson brackets,

1

i�

[
x̂, p̂
]
= A
(
p̂2
)
−→
{
x, p
}
= A
(
p2
)
, (3.2)
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and proceed to derive the analogue of Liouville’s theorem [97]. The Poisson brackets among

the xi’s and pi’s for the multidimensional case are

{
xi, pj
}
= Aδij + Bpipj ,{
pi, pj
}
= 0,

{
xi, xj

}
= −
[

2
(
A + Bp2

)
A

dA

dp2
− B
](
xipj − xjpi

)
.

(3.3)

The generic Poisson bracket of arbitrary functions of the coordinates and momenta can then

be defined as

{F,G} =
(
∂F

∂xi

∂G

∂pj
− ∂F

∂pi

∂G

∂xj

){
xi, pj
}
+
∂F

∂xi

∂G

∂xj

{
xi, xj

}
. (3.4)

Here, we use the convention that repeated indices are summed. Assuming that the equations

of motion of xi and pi are given formally by

ẋi = {xi,H} =
{
xi, pj
}∂H
∂pj

+
{
xi, xj

}∂H
∂xj

,

ṗi =
{
pi,H

}
= −
{
xj , pi
}∂H
∂xj

,

(3.5)

the evolution of xi and pi during an infinitesimal time interval δt is found to be

x′i = xi + ẋiδt = xi +

[{
xi, pj
}∂H
∂pj

+
{
xi, xj

}∂H
∂xj

]
δt,

p′i = pi + ṗiδt = pi −
{
xj , pi

}∂H
∂xj

δt.

(3.6)

To find the change in phase-space volume associated with this evolution, we calculate

the Jacobian of the transformation from (x1, x2, . . . , xD; p1, p2, . . . , pD) to (x′1, x
′
2, . . . , x

′
D;

p′1, p
′
2, . . . , p

′
D)

dDx′dDp′ =

∣∣∣∣∣∂
(
x′1, x

′
2, . . . , x

′
D; p′1, p

′
2, . . . , p

′
D

)
∂
(
x1, x2, . . . , xD; p1, p2, . . . , pD

)∣∣∣∣∣dDxdDp. (3.7)

Since

∂x′i
∂xj

= δij +
∂ẋi
∂xj

δt,
∂x′i
∂pj

=
∂ẋi
∂pj

δt,

∂p′i
∂xj

=
∂ṗi

∂xj
δt,

∂p′i
∂pj

= δij +
∂ṗi

∂pj
δt,

(3.8)
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we find that ∣∣∣∣∣∂
(
x′1, x

′
2, . . . , x

′
D; p′1, p

′
2, . . . , p

′
D

)
∂
(
x1, x2, . . . , xD; p1, p2, . . . , pD

)∣∣∣∣∣ = 1 +
(
∂ẋi
∂xi

+
∂ṗi

∂pi

)
δt +O

(
δt2
)
, (3.9)

where

∂ẋi
∂xi

+
∂ṗi

∂pi
=

∂

∂xi

[{
xi, pj

}∂H
∂pj

+
{
xi, xj

}∂H
∂xj

]
+

∂

∂pi

[
−
{
xj , pi
}∂H
∂xj

]

=
∂

∂xi

[{
xi, xj

}]∂H
∂xj

− ∂

∂pi

[{
xj , pi
}]∂H
∂xj

= −(D − 1)

[
2
(
A + Bp2

)
A

dA

dp2
− B
]
pj
∂H

∂xj
−
[

2
dA

dp2
+ 2

dB

dp2
p2 + (D + 1)B

]
pj
∂H

∂xj

= −
[
(D − 1)

(
2
(
A + Bp2

)
A

dA

dp2

)
+ 2

(
dA

dp2
+
dB

dp2
p2 + B

)]
pj
∂H

∂xj
.

(3.10)

On the other hand, using

δp2 = 2piδpi = 2piṗiδt = −2
(
A + Bp2

)
pj
∂H

∂xj
δt, (3.11)

we have

A′ = A +
dA

dp2
δp2

= A

[
1 −
(

2
(
A + Bp2

)
A

dA

dp2

)
pj
∂H

∂xj
δt

]
,

A′ + B′p′2 =
(
A + Bp2

)
+
(
dA

dp2
+
dB

dp2
p2 + B

)
δp2

=
(
A + Bp2

)[
1 − 2

(
dA

dp2
+
dB

dp2
p2 + B

)
pj
∂H

∂xj
δt

]
,

(3.12)

where we have used the shorthand A′ = A(p′2) and B′ = B(p′2). Thus,

(A′)D−1(A′ + B′p′2)
AD−1(A + Bp2)

=

[
1 −
{
(D − 1)

(
2
(
A + Bp2

)
A

dA

dp2

)
+ 2

(
dA

dp2
+
dB

dp2
p2 + B

)}
pj
∂H

∂xj
δt

]
.

(3.13)
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Comparing (3.10) and (3.13), it is clear that the ratio

dDxdDp
AD−1(A + Bp2)

(3.14)

is invariant under time evolution.

This behavior of the phase space volume can be demonstrated using simple

Hamiltonians. In [98], we solve the harmonic oscillator and coulomb potential problems for

the case A = 1 + βp2 and B = β′. There, in addition to the behavior of the phase space, it

is found that the orbits of particles in these potentials no longer close on themselves. This

is consistent with the breaking of degeneracies observed in the quantum cases which are

associated with the conservation of the Runge-Lenz vector.

For the case B = 0, (3.14) reduces to dDxdDp/AD, and our interpretation of �A(p2) as

the momentum dependent Planck constant which determines the size of a unit quantum cell

becomes apparent. Integrating (3.14) over space,

1

V

∫
dDxdDp

AD−1(A + Bp2)
=

dDp
AD−1(A + Bp2)

, (3.15)

we can identify

ρ
(
p2
)
=

1

AD−1(A + Bp2)
(3.16)

as the density of states in momentum space. At high momentum where A and Bp2 become

large, ρ(p2) will be suppressed. We look at the impact of this suppression on the cosmological

constant problem next.

4. Vacuum Energy and the Minimal Length

4.1. The Cosmological Constant and the Density of States

The origin of the cosmological constant Λ = 3H2
0ΩΛ remains a mystery, and its understanding

presents a major challenge to theoretical physics [8–12]. It is a contentious issue for string

theory, notwithstanding its being the leading candidate for quantum gravity, though various

hints exist that may point towards its resolution [99, 100]. Furthermore, the problem has

recently assumed added urgency due to observations that the cosmological constant is small,

positive, and clearly nonzero [101, 102]. In terms of the parameter ΩΛ, the most-up-to date

value is ΩΛ ∼ 0.73. With the Hubble parameter h ∼ 0.7 (the parameter h is defined as h =
H0/(100 km/s/Mpc)), we obtain as the vacuum energy density

c2Λ
8πGN

= c2ρcritΩΛ =

(
3H2

0c
2

8πGN

)
ΩΛ

=
(

8.096 × 10−47 GeV4/�3c3
)(

ΩΛh
2
)
∼ 10−47 GeV4/�3c3.

(4.1)
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The order of magnitude of this result is set by the dimensionful prefactor in the parentheses

which can be expressed in terms of the Planck length �P = �/μP =
√

�GN/c3 ∼ 10−35 m, and

the scale of the visible universe �0 = �/μ0 ≡ c/H0 ∼ 1026 m as

H2
0c

2

GN
=
c

�3
μ2
Pμ

2
0 =

�c

�2
P�

2
0

. (4.2)

In quantum field theory (QFT), the cosmological constant is calculated as the sum of

the vacuum fluctuation energies of all momentum states. This is clearly infinite, so the integral

is usually cut off at the Planck scale μP = �/�P beyond which spacetime itself is expected to

become foamy [4], and the calculation untrustworthy. For a massless particle, we find that

1

(2π�)3

∫μP

d3p
[

1

2
�ωp

]
=

c

4π2�3

∫μP

0

dpp3 =
c

16π2�3
μ4
P

=
�c

16π2

1

�4
P

∼ 1074 GeV4/�3c3,

(4.3)

which is about 120 orders of magnitude above the measured value. Note that this difference

is essentially a factor of (�0/�P )
2, the scale of the visible universe in Planck units squared. The

change in the density of states suggested by the MLUR would change this calculation to

1

(2π�)3

∫∞
d3pρ

(
p2
)[1

2
�ωp

]
=

c

4π2�3

∫∞
0

dp
p3

A
(
p2
)2[

A
(
p2
)
+ p2B

(
p2
)] . (4.4)

For the case A(p2) = 1 + βp2, B(p2) = 0, we find [97] that

c

4π2�3

∫∞
0

dp
p3(

1 + βp2
)3 =

c

16π2�3β2
=

c

16π2�3
μ4
s =

�c

16π2

1

�4
s

, �s =
�

μs
= �
√
β. (4.5)

The integral is finite, without a UV cutoff, due to the suppression of the contribution of high

momentum states. (There is an intriguing similarity here with Planck’s resolution of the UV

catastrophe of the black body radiation.) However, if we make the identification �s = �P , then

this result is identical to (4.3), and nothing is gained. Of course, this is not surprising given

that �s is the only scale in the calculation and effectively plays the role of the UV cutoff. To

obtain the correct value of the cosmological constant from the above expression, we must

choose �s ∼
√
�P�0 ∼ 10−5 m, which is too large to be the minimal length, or equivalently,

μs = �/�s ∼
√
μPμ0 ∼ 10−3 eV/c, which is too small to be the UV cutoff. However, we mention

in passing that
√
�P�0 can be considered the uncertainty in measuring �0 due to the foaminess

of spacetime [4, 103, 104] and has been argued as the possible size of a spacetime quantum

cell when quantum gravity is properly taken into account [105–114]. At the moment, this

point of view seems difficult to reconcile with phenomenological considerations.
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We could introduce a second scale into the problem by letting B(p2) = β′ /= 0. This leads

to

c

4π2�3

∫∞
0

dp
p3(

1 + βp2
)2[

1 +
(
β + β′

)
p2
] = c

8π2�3

1

ββ′

[
1 − β

β′
ln

(
1 +

β′

β

)]

β′�β−−−−→ c

8π2�3

1

ββ′
=

c

8π2�3
μ2
sμ

′2
s =

�c

8π2

1

�2
s�

′2
s

,

(4.6)

where �′s = �/μ′s = �
√
β′. If we identify �s = �P , then we must have �′s ∼ �0, which is even

more problematic than
√
�P�0.

As these considerations show, our simple choice for A(p2) and B(p2) succeeds in

rendering the cosmological constant finite but does not provide an adequate suppression.

Would some other choice of A(p2) and B(p2) do better? To this end, let us try to see whether

we can reverse engineer these functions so that the correct order of magnitude is obtained.

Let us write

ε4 =
∫∞

0

dpρ
(
p2
)
p3. (4.7)

To generate the correct value for the cosmological constant, we must have ε ∼ √
μPμ0 =

10−3 eV/c, as we have seen. At this point, we invoke some numerology and note that if the

SUSY breaking scale μSUSY is on the order of a few TeV/c, then the seesaw formula,

ε ∼
μ2

SUSY

μP
∼ 10−3 eV/c, (4.8)

would give the correct size for ε as observed by Banks [115]. This expression is reminiscent

of the well-known seesaw mechanism used to explain the smallness of neutrino masses [116–

119]. One way to obtain this result is to have the density of states scale as ρ(p2) ∼ p4/μ4
P and

place the UV cutoff at μSUSY, beyond which the bosonic and fermionic contributions cancel.

This would yield ε4 ∼ μ8
SUSY

/μ4
P . Unfortunately, this density of states is problematic since

p4/μ4
P � 1 for the entire integration region, so we are effectively suppressing everything.

Furthermore, to obtain this suppression, we must have A(p2) ∼ (μP/p)
4/3 � 1, making the

effective value of �, and thus the size of the quantum cell, huge at low energies in clear con-

tradiction to reality.

In retrospect, this result is not surprising since raising the UV cutoff from
√
μPμ0 ∼

10−3 eV/c to much higher values naturally requires the drastic suppression of contributions

from below the cutoff. Thus, it is clear that the modification to the density of states, as sug-

gested by the MLUR, by itself cannot solve the cosmological constant problem.

4.2. Need for a UV/IR Relation and a Dynamical Energy-Momentum Space

In the above discussion of summing over momentum states, the unstated assumption was

that states at different momentum scales were independent, and that their total effect on

the vacuum energy was the simple sum of their individual contributions. Of course, this
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assumption is the basis of the decoupling between small (IR) and large (UV) momentum

scales which underlies our use of effective field theories. However, there are hints that this

assumption is what needs to be reevaluated in order to solve the cosmological constant

problem.

First and foremost, the expression for the vacuum energy density itself, H2
0c

2/GN =
�c/�2

P�
2
0 , is dependent upon an IR scale �0 and a UV scale �P , suggesting that whatever theory

that explains its value must be aware of both scales and have some type of dynamical connec-

tion between them. Note that effective QFT’s are not of this type but string theory is, given

the UV/IR mixing relations discovered in several contexts as mentioned in the introduction.

Second, the contributions of the sub-Planckian modes (p < μP ) independently by

themselves are clearly too large, and there is a limit to the tweaking that can be done to

the density of states in the IR since those modes undeniably exist. The only way out of the

dilemma would be to cancel the contribution of the IR sub-Planckian modes against those of

something else, say that coming from the UV trans-Planckian modes (p > μP ) by introducing

a dynamical connection between the two regimes [115].
That the sub-Planckian (p < μP ) and trans-Planckian (p > μP ) modes should cancel

against each other is also suggested by the following argument: consider how the MLUR,

(2.1), would be realized in field theory. The usual Heisenberg relation δxδp = �/2 is a simple

consequence of the fact that coordinate and momentum spaces are Fourier transforms of each

other. The more one wishes to localize a wave packet in coordinate space (smaller δx), the

more momentum states one must superimpose (larger δp). In the usual case, there is no lower

bound to δx one may localize the wave packet as much as one likes by simply superimposing

states with ever larger momentum, and thus ever shorter wavelength, to cancel out the tails of

the coordinate space distributions. On the other hand, the MLUR implies that if one keeps on

superimposing states with momenta beyond μP = 1/
√
β, then δx ceases to decrease and starts

increasing instead. (See Figure 1.) The natural interpretation of such a phenomenon would

be that the trans-Planckian modes (p > μP ) when superimposed with the sub-Planckian ones

(p < μP ) would “jam” the sub-Planckian modes and prevent them from canceling out the

tails of the wave-packets effectively. The mechanism we envision here is analogous to the

“jamming” behavior seen in nonequilibrium statistical physics, in which systems are found

to freeze with increasing temperature [120–123]. In fact, it has been argued that such “freezing

by heating” could be characteristic of a background-independent quantum theory of gravity

[124–128].
We should also note, that in our calculation presented above, the phase space over

which the integration was performed was fixed and flat. Quantum gravity will naturally

change the situation, leading to a fluctuating dynamical spacetime background. Furthermore,

the MLUR implies that energy-momentum space will be a fluctuating dynamical entity

as well [129–134]. First, the necessity of “jamming” between the sub-Planckian and trans-

Planckian modes to implement the MLUR in field theory clearly illustrates that momentum

space cannot be the simple Fourier transform of coordinate space but must rather be an

independent entity. (Introducing a momentum space independent from coordinate space

in field theory would make the wave-particle duality more complete in a sense, since for

particles, momenta and coordinates are independent until the equation of motion, is imposed

[135].) Second, the quantum properties of spacetime geometry may be understood in terms

of effective expressions that involve the spacetime uncertainties:

gab(x)dx
adxb −→ gab(x)δxaδxb. (4.9)
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The UV/IR relation δx ∼ �βδp in the trans-Planckian region implies that this geometry of

spacetime uncertainties can be transferred directly to the space of energy-momentum uncer-

tainties, endowing it with a geometry as well:

gab(x)δxaδxb −→ Gab

(
p
)
δpaδpb. (4.10)

The usual intuition that local properties in spacetime correspond to non-local features of

energy-momentum space (as implied by the canonical uncertainty relations) is obviated by

the linear relation between the uncertainties in coordinate space and momentum space.

What would a dynamical energy-momentum space entail? Let us speculate. It has been

argued that a dynamical spacetime, with its foamy UV structure [4], would manifest itself in

the IR via the uncertainties in the measurements of global spacetime distances as [103–114]

δ� ∼
√
��P , (4.11)

a relation which is reminiscent of the famous result for Brownian motion derived by Einstein

[136] and is also covariant in 3 + 1 dimensions. Let us assume that a similar “Brownian”

relation holds in energy-momentum space due to its “foaminess” [134]

δμ ∼√μμP . (4.12)

If the energy-momentum space has a finite size, a natural UV cutoff, at μ+ � μP, (a max-

imum energy/momentum is introduced in deformed special relativity [137–140]), then its

fluctuation δμ+ will be given by δμ+ = √
μ+μP � μP. The MLUR implies that the mode at

this scale must cancel, or “jam,” against another which shares the same δx, namely, the mode

with an uncertainty given by δμ− = μ2
P/δμ+ = μP

√
μP/μ+ = √

μ−μP � μP , that is,

μ− =
μ2
P

μ+
=
δμ2

−
μP

� μP . (4.13)

All modes between μ− and μ+ will “jam.” Therefore, μ− will be the effective UV cutoff of the

momentum integral and not μ+, which would yield

ε4 ∼ μ4
− ∼

δμ8
−

μ4
P

∼
μ8
P

μ4
+
. (4.14)

This reproduces the seesaw formula, (4.8), and if δμ− ∼ few TeV/c, we obtain the correct

cosmological constant.

5. Outlook: What Is String Theory?

In the concluding section, we wish to discuss a few implications of our work for non-

perturbative string theory and the question: what is string theory [13]? Our discussion of

this difficult question, being limited by the scope of our work on the minimal length, will

neccesarily be a bit speculative.
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Our toy model for the MLUR was essentially algebraic. As such, it raises the possibility

that more general algebraic structures may play a key role in nonperturbative string theory.

In the introductory section, we mentioned that the MLUR is motivated by the scattering of

string-like excitations in first quantized string theory. If one takes into account other objects

in nonperturbative string theory, such as D-branes, one is led to the STUR, (1.6), proposed

by Yoneya. The STUR generalizes the MLUR, and can be further generalized to a cubic form

(motivated by M-theory) [67–73]

δxδyδt ∼ �3
P/c. (5.1)

Given the usual interpretation of the canonical Heisenberg uncertainty relations in terms of

fundamental commutators, one might look for the associated cubic algebraic structures in

string theory.

Another hint of cubic algebraic structure appears in the nonperturbative formulation

of open string field theory by Witten et al. [141, 142]. The Witten action for the classical open

string field, Φ, is of an abstract Chern-Simons type

So(Φ) =
∫
Φ Φ Φ. (5.2)

Here, the star product is defined by the world-sheet path integral,

F  G =
∫
DXF(X)G(X) exp

[
i

α′
SP (X)

]
, (5.3)

which is in turn determined by the world-sheet Polyakov action

SP (X) =
1

2

∫
d2σ
√
−ggab∂aXi∂bX

jGij + · · · . (5.4)

The fully quantum open string field theory is then, in principle, defined by yet another path

integral in the infinite dimensional space of Φ, that is,∫
DΦ exp

[
i

gc
So(Φ)

]
. (5.5)

A more general, and in principle nonassociative structure, appears in Strominger’s formu-

lation of closed string field theory, which is also cubic [143]. Strominger’s paper mentions

the relevance of the 3-cocycle structure for this formulation of closed string field theory. Very

schematically

Sc(Ψ) =
∫
Ψ × (Ψ ×Ψ), (5.6)

where × is a nonassociative product defined in [143]. (For the role of nonassociativity in

the theories of gravity, and a relation between Einstein’s gravity and nonassociative Chern-

Simons theory, see [144]).
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Is there an underlying algebraic structure that could give rise to these cubic structures?

In our toy model, the 2-bracket appears quite naturally. Such structures can be naturally

generalized into 3-bracket. For example, the usual Lie algebra structure known from gauge

theories, [TA, TB] = fABCTC, where the structure constants fABC satisfy the usual Jacobi

identity, seems to be naturally generalized to a triple algebraic structure

[TA, TB, TC] = fABCDTD, (5.7)

where

[
Ai,Aj ,Ak

]
≡ εabcAaAbAc, (5.8)

with the structure constants fABCD satisfying a quartic fundamental identity [145–149]. These

structures occur in the context of the theory of N-membranes [150]. They are also present in

more elementary examples. Consider a charged particle e of mass m in the external magnetic

field B. As is well known, the velocities v̂a satisfy the commutation relation

[
v̂i, v̂j

]
= i

e�

m2
εijkBk, (5.9)

as well as the triple commutation relation, the associator, given by [151]

[v̂1, [v̂2, v̂3]] + [v̂2, [v̂3, v̂1]] + [v̂3, [v̂1, v̂2]] =
e�2

m3
∂iBi. (5.10)

This associator is zero, and thus trivial, in the absence of magnetic monopoles: ∂iBi = 0. Note

that the triple bracket defined in (5.8) is “one-half” of the associator since

[
A, B̂, C

]
≡ εabcAa(AbAc) = A[B,C] + B[C,A] + C[A,B],[

Â, B, C
]
≡ εabc(AaAb)Ac = [B,C]A + [C,A]B + [A,B]C.

(5.11)

The presence of monopoles is an indicator of a 3-cocycle [151]. The triple commutator has

also been encountered in the study of closed string dynamics [156].
What would be the role of such a general algebraic structure for the foundations of

string theory? Given the general open-closed string relation (the closed strings being in some

sense the bounds states of open strings) the noncommutative and nonassociative algebraic

structures might be related as in some very general and abstract form of the celebrated

AdS/CFT duality [152–155]. We recall that in the AdS/CFT correspondence, one computes

the on-shell bulk action Sbulk and relates it to the appropriate boundary correlators. The

conjecture is that the generating functional of the vacuum correlators of the operator Ô for a

d-dimensional conformal field theory (CFT) is given by the partition function Z(φ) in (Anti-

de-Sitter) AdSd+1 space

〈
exp

(∫
JÔ

)〉
= Z
(
φ
)
−→ exp

[
−Sbulk

(
g, φ, . . .

)]
, (5.12)
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where, in the semiclassical limit, the partition function becomes Z = exp(−Sbulk). Here g

denotes the metric of the AdSd+1 space, and the boundary values of the bulk field, φ, are

given by the sources, J , of the boundary CFT. Essentially, one reinterprets the RG flow of

the boundary nongravitational theory in terms of bulk gravitational equations of motion and

then rewrites the generating functional of vacuum correlators of the boundary theory in terms

of a semiclassical wave function of the bulk “universe” with specific boundary conditions.

In view of our comments on the general algebraic structures in string theory, it is

tempting to propose an extension of this duality in a more abstract sense of open and closed

string field theory, and the relationship between the non-commutative and nonassociative

structures 〈
exp

(∫
JÔ(Φ)

)〉
o

= Z(Ψ) −→ exp[−Sc(Ψ)]. (5.13)

The “boundary” in this abstract case has to be defined algebraically, as a region of the closed

string Hilbert space on which the 3-cocycle anomaly vanishes. Inside the region, the 3-cocycle

would be nonzero. In this way, we would have more abstract definitions of the “boundary”

and “bulk.” In some sense, this relation would look like a generalized Laplace transform of

an exponential of a cubic expression giving another exponential of a cubic expression, as with

the asymptotics of the Airy function
∫
dx exp(tx − x3) ∼ exp(−t3/2).

Finally, following our discussion of the vacuum energy problem in the previous

section, it seems natural that any more fundamental formulation of string theory would have

to work on a curved momentum space. This would mesh nicely with the ideas presented in

[124–133]. If curved energy-momentum space is crucial in quantum gravity (and thus string

theory) for the solution of the vacuum energy problem, then we are naturally led to question

the usual formulation of string theory as a canonical quantum theory. Also, if the vacuum

energy can be made small, what physical principle selects such a vacuum? This leads to

the question of background independence and vacuum selection. The issue of background

independence in string theory is that the fundamental equations should not select a quantum

theory the same way Einstein’s gravitational equations do not select any geometry; only

asymptotic or symmetry conditions select a geometry. Again, we are back to the questions

regarding the role of general quantum theory in the most fundamental formulation of string

theory. Note that such discussion of general quantum theory also sheds light on the question

of time evolution and the problem of time in string theory [124–128].
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Finding vacua for the four-dimensional effective theories for supergravity which descend from flux
compactifications and analyzing them according to their stability is one of the central problems in
string phenomenology. Except for some simple toy models, it is, however, difficult to find all the
vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra
can be of great help in the more realistic models. However, they suffer from serious algorithmic
complexities and are limited to small system sizes. In this paper, we review a numerical method
called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas
of lattice field theories, which by construction finds all of the vacua of a given potential that is
known to have only isolated solutions. The NPHC method is known to suffer from no major
algorithmic complexities and is embarrassingly parallelizable, and hence its applicability goes way
beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example
to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated
model of a compactified M theory model, which has an SU(3) structure, can be obtained by using
a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult
by the existing symbolic methods. Finally, we compare the various technicalities between the two
methods.

1. Introduction

A lot of current research in string phenomenology is focused on developing methods to

find and analyze vacua of four-dimensional effective theories for supergravity descended

from flux compactifications. Stated in explicit terms, one is interested in finding all the vacua

(usually, isolated stationary points) of the scalar potential V of such a theory. In particular,

given a Kähler potential K and a superpotential W , for uncharged moduli fields, the scalar

potential is given by

V = eK
[
KABDAWDBW − 3|W |2

]
, (1.1)
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whereDA is the Kähler derivative ∂A+∂AK andKAB is the inverse ofKAB = ∂A∂BK. Once the

vacua are found, one can then classify them by either using the eigenvalues of the Hessian

matrix of V or by introducing further constraints such as W = 0.

Finding all the stationary points of a given potential V , amounts to solving the

stationary equations, that is, solving the system of equations consisting of the first derivatives

of V , with respect to all the fields, equated to zero. The stationary equations for V arising

in the string phenomenological models are usually nonlinear. In the perturbative limit, W

usually has a polynomial form. This is an important observation since we can then use the

algebraic geometry concepts and methods to extract a lot of information about V . Solving

systems of nonlinear equations is usually a highly nontrivial task. However, if the system of

stationary equations has polynomial-like nonlinearity, then the symbolic methods based on

the Gröbner basis technique can be used to solve the system [1]. These symbolic methods

ensure that all the stationary points are obtained when the computation finishes. Roughly

speaking, for a given system of multivariate polynomial equations, a set of which is called

an ideal, the so-called Buchberger Algorithm (BA) or its refined variants can compute a new

system of equations, called a Gröbner basis [2]. For the systems known to have only isolated

solutions, called 0-dimensional ideals, a Gröbner basis always has at least one univariate

equation and the subsequent equations consist of increasing number of variables, that is, it is

in a triangular form (Note that this is only true for a few specific types of monomial orderings.

For other monomial ordering, the new system of equations may not have a triangular form.)
The solutions of a Gröbner basis are always the same as the original system, but the former

is easier to solve due to its triangular form as the univariate equation can be solved either

analytically or numerically quite straightforwardly. Then by back-substituting the solutions

in the subsequent equations and continually solving them we can find all the solutions of the

system. (Using the Gröbner basis methods, one can also deal with systems which have at least

one free variable, called positive dimensional ideals. However, in this paper we only focus

on the 0-dimensional ideals.) It should be noted that the BA reduces to Gaussian elimination

in the case of linear equations, that is, it is a generalization of the latter. Similarly it is also

a generalization of the Euclidean algorithm for the computation of the Greatest Common

Divisors of a univariate polynomial. Recently, more efficient variants of the BA have been

developed to obtain a Gröbner basis, for example, F4 [3], F5 [4], and Involution Algorithms

[5]. Symbolic computation packages such as Mathematica, Maple, and Reduce, have built-in

commands to calculate a Gröbner basis. Singular [6], COCOA [7], and MacCaulay2 [8] are

specialized packages for Gröbner basis and Computational Algebraic Geometry, available as

freeware. MAGMA [9] is also such a specialized package available commercially.

In [10–12], it was shown that one does not need to solve the system using the Gröbner

basis techniques, in the usual sense, in order to extract some of the important information

such as the dimensionality of the ideal and the number of real roots in the system. But one

can indirectly obtain this information by computing the so-called primary decomposition of

the ideal (still using the Gröbner basis technique internally). This was a remarkable success

as it allowed one to work on nontrivial models and extract a lot of information using a regular

desktop machine only. The authors of these papers also made a very helpful computational

package, called Stringvacua [11], publicly available. Stringvacua is a Mathematica interface

to Singular and has string phenomenology-specific utilities which makes the package quite

useful to the users.

However, even with such tricks, there are a few problems with the symbolic methods:

the BA is known to suffer from exponential space complexity, that is, the memory (Random

Access Memory) required by the machine blows up exponentially with the number of
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variables, equations, terms in each polynomial, and so forth. So even for small sized

systems, one may not be able to compute a Gröbner basis, nor the related objects such as

primary decomposition of the ideal. It is also usually less efficient for systems with irrational

coefficients. Another drawback is that the BA is highly sequential, that is, very difficult to

efficiently parallelize.

Below we explain a novel numerical method, called the numerical polynomial

homotopy continuation (NPHC) method, which overcomes all the shortcomings of the

Gröbner basis methods. The method was first introduced in particle physics and condensed

matter theory areas in [13–15], where all the stationary points of a multivariate function called

the lattice Landau gauge fixing functional [16–19] were found using the NPHC method.

Below, we begin by describing the NPHC method for the univariate case before generalizing

it to the multivariate case. We then consider a toy model that is used in the Stringvacua

manual and also a compactified M theory model. Finding all the vacua using the symbolic

methods for both these models is already known to be prohibitively difficult. We briefly

describe the models and explain how the corresponding stationary equations can be viewed

as having polynomial form. With the help of the NPHC method, we find all the isolated vacua

for the model and give a technical comparison between both the symbolic and numerical

methods. After mentioning a few other important aspects of the NPHC method in the

Frequently Asked Questions section, we conclude the paper.

2. The Numerical Polynomial Homotopy Continuation Method

Here, we explain the numerical polynomial homotopy continuation method. Let us begin by

exemplifying the method for the univariate case.

Firstly, we know that for a single-variable equation, f(x) =
∑k

i=0 aix
i, with coefficients

ai and the variable x both defined over C, the number of solutions is exactly k if ak /= 0,

counting multiplicities. This powerful result comes from the Fundamental Theorem of

Algebra. To get all roots of such single-variable polynomials, there exist many numerical

methods such as the companion matrix trick for low-degree polynomials and the divide-and-

conquer techniques for high-degree polynomials. Here we present the Numerical Polynomial

Homotopy Continuation (NPHC) by first describing it for the univariate case which can

then be extended to the multivariate case in a straightforward manner. We follow [20, 21]
throughout this section unless specified otherwise.

The strategy behind the NPHC method is as follows: first write down the equation

or system of equations to be solved in a more general parametric form, solve this system at

a point in parameter space where its solutions can be easily found, and finally track these

solutions from this point in parameter space to the point in parameter space corresponding

to the original system/problem. This approach can be applied to many types of equations

(e.g., nonalgebraic equations) which exhibit a continuous dependence of the solutions on

the parameters, but there exist many difficulties in making this method a primary candidate

method to solve a set of nonalgebraic equations. However, for reasons that will be clear below,

this method works exceptionally well for polynomial equations.

To clarify how the method works, we first take a univariate polynomial, say z2 − 5 = 0,

pretending that we do not know its solutions (i.e., z = ±
√

5). We then begin by defining the

more general parametric family

H(z, t) = (1 − t)
(
z2 − 1

)
+ t
(
z2 − 5

)
= z2 − (1 + 4t) = 0, (2.1)
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where t ∈ [0, 1] is a parameter. For t = 0, we have z2 − 1 = 0 and at t = 1 we recover our

original problem. The problem of getting all solutions of the original problem now reduces

to tracking solutions of H(z, t) = 0 from t = 0 where we know the solutions, that is, z = ±1, to

t = 1. The choice of z2 − 1 in (2.1), called the start system, should be clear now: this system has

the same number of solutions as the original problem and is easy to solve. For multivariate

systems, a clever choice of a start system is essential in reducing the computation, and the

discussion about this issue will follow soon. Here, we briefly mention the numerical methods

used in path-tracking from t = 0 to t = 1. One of the ways to track the paths is to solve the

differential equation that is satisfied along all solution paths, say z∗i (t) for the ith solution

path,

dH
(
z∗i (t), t

)
dt

=
∂H
(
z∗i (t), t

)
∂z

dz∗i (t)
dt

+
∂H
(
z∗i (t), t

)
∂t

= 0. (2.2)

This equation is called the Davidenko differential equation. Inserting (2.1) in this equation,

we have

dz∗i (t)
dt

= − 2

z∗i (t)
. (2.3)

We can solve this initial value problem numerically (again, pretending that an exact solution

is hitherto unknown) with the initial conditions as z∗1(0) = 1 and z∗2(0) = −1. The other

approach is to use Euler’s predictor and Newton’s corrector methods. This approach works

well too. We do not intend to discuss the actual path tracker algorithm used in practice, but it

is important to mention that in these path tracker algorithms, almost all apparent difficulties

have been resolved, such as tracking singular solutions, multiple roots, solutions at infinity,

and so forth. It is also important to mention here that in the actual path tracker algorithms

the homotopy is randomly complexified to avoid singularities, that is, taking

H(z, t) = γ(1 − t)
(
z2 − 1

)
+ t
(
z2 − 5

)
= 0, (2.4)

where γ = eiθ with θ ∈ R chosen randomly.

It is shown that for a generic value of the complex γ the paths are well behaved for

t ∈ [0, 1), that is, for the whole path except the endpoint. This makes sure that there is no

singularity or bifurcation along the paths. This is a remarkable trick, called the γ-trick, since

this is the reason why we can claim that the NPHC method is guaranteed to find all solutions.

Note that γ = 1, for example, is not a generic value.

There are several sophisticated numerical packages well equipped with path trackers

such as Bertini [22], PHCpack [23], PHoM [24], HOMPACK [25], and HOM4PS2 [26, 27].
They all are available freely from their respective research groups.

In the above example, the PHCpack with its default settings gives the solutions

z = ±2.23606797749979 ± i 0.00000000000000. (2.5)

Thus, it gives the expected two solutions of the system with a very high numerical precision.
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2.1. Multivariate Polynomial Homotopy Continuation

We can now generalize the NPHC method to find all the solutions of a system of multivariate

polynomial equations, say P(x) = 0, where P(x) = (p1(x), . . . , pm(x)) and x = (x1, . . . , xm),
that is known to have isolated solutions (i.e., a 0-dimensional ideal). To do so, we first need

to have some knowledge about the expected number of solutions of the system. There is

a classical result, called the Classical Bèzout Theorem, that asserts that for a system of m

polynomial equations in m variables the maximum number of solutions in Cm is
∏m

i=1di,

where di is the degree of the ith polynomial. This bound, called the Classical Bèzout

Bound (CBB), is exact for generic values (i.e., roughly speaking, nonzero random values)
of coefficients. The genericity is well defined, and the interested reader is referred to [21] for

details.

Based on the CBB, we can construct a homotopy, or a set of problems, similar to the

aforementioned one-dimensional case, as

H(x, t) = γ(1 − t)Q(x) + tP(x) = 0, (2.6)

whereQ(x) is a system of polynomial equations,Q(x) = (q1(x), . . . , qm(x)) with the following

properties

(1) The solutions of Q(x) = H(x, 0) = 0 are known or can be easily obtained. Q(x) is

called the start system, and the solutions are called the start solutions.

(2) The number of solutions of Q(x) = H(x, 0) = 0 is equal to the CBB for P(x) = 0.

(3) The solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists of a finite number of smooth

paths, called homotopy paths, each parametrized by t ∈ [0, 1).

(4) Every isolated solution of H(x, 1) = P(x) = 0 can be reached by some path

originating at a solution of H(x, 0) = Q(x) = 0.

We can then track all of the paths corresponding to each solution of Q(x) = 0 from t = 0 to

t = 1 and reach P(x) = 0 = H(x, 1). By implementing an efficient path tracker algorithm,

we can get all the isolated solutions of a system of multivariate polynomials just as in the

univariate case.

The homotopy constructed using the CBB is called the Total Degree Homotopy. The start

system Q(x) = 0 can be taken, for example, as

Q(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

xd1

1 − 1

xd2

2 − 1

...

x
dm
m − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 0, (2.7)

where di is the degree of the ith polynomial of the original system P(x) = 0. Equation (2.7)
can be easily solved and its total number of solutions (the start solutions) is

∏m
i=1di, all of

which are nonsingular. The Total Degree Homotopy is a very effective and popular homotopy

whose variants are used in the actual path trackers.
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For the multivariate case, a solution is a set of numerical values of the variables which

satisfies each of the equations within a given tolerance, Δsol (∼10−10 in our set up). Since the

variables are allowed to take complex values, all the solutions come with real and imaginary

parts. A solution is a real solution if the imaginary part of each of the variables is less than or

equal to a given tolerance, ΔR (∼10−7 is a suitable choice for the equations we will be dealing

with in the next section, below which the number of real solutions does not change). All of

these solutions can be further refined to an arbitrary precision limited by the machine precision.

The obvious question at this stage would be if the number of real solutions depends on

ΔR. To resolve this issue, we use a recently developed algorithm called alphaCertified which

is based on the so-called Smale’s α-theory [28]. This algorithm certifies the real nonsingular

solutions of polynomial systems using both exact rational arithmetic and arbitrary precision

floating point arithmetic. This is a remarkable step, because using alphaCertified we can

prove that a solution classified as a real solution is actually a real solution independent of

ΔR, and hence these solutions are as good as the exact solutions.

3. A Toy Model

Here, we apply the NPHC method to a toy model from the examples given in the Stringvacua

package. The Kähler potential for this model is given as

K = −3 log
(
T + T

)
, (3.1)

and the superpotential is given as

W = a + bT8. (3.2)

Here, a and b are parameters. Note that the field T comes along with its complex conjugate.

So even though they can be treated as different variables by merely relabeling them, they are

not actually independent variables. To avoid this problem, we can write them in terms of real

and imaginary parts, that is, T = t + iτ with τ , and t are real. Finally, we get the potential as

V =
1

3t

(
4b

(
5b
(
t2 + τ2

)7
− 3a
(
t6 − 21t4τ2 + 35t2τ4 − 7τ6

)))
, (3.3)

which has 2 variables. To find the stationary points of V , we need to solve the system of

equations consisting of the first-order derivatives of V , with respect to both variables t and τ ,

equated to zero, that is,

∂V

∂t
=

1

3t2

(
4b

(
5b
(

13t2 − τ2
)(
t2 + τ2

)6
− 3a
(

5t6 − 63t4τ2 + 35t2τ4 + 7τ6
)))

= 0,

∂V

∂τ
=

1

3t

(
56bτ

(
5b
(
t2 + τ2

)6
+ a
(

9t4 − 30t2τ2 + 9τ4
)))

= 0.

(3.4)
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We also note that the stationary equations in this example involve denominators. Since

we are not interested in the solutions for which the denominators are zero, we clear them out

by multiplying them with the numerators appropriately.

Using the symbolic methods, this task is known to be difficult for general numerical

(i.e., floating points) values of parameters a and b, with the computation continuing

indefinitely [1, 12].
Firstly, we used the Stringvacua package to compute the dimension of the ideal which

turned out to be 0 for generic values of a and b, that is, the system of equations has only

isolated solutions. Note that to actually find the solutions of the system, we have to put some

numerical values for a and b. The Gröbner basis techniques, as mentioned above, work much

better for the cases where parameters are rational. We first use the same values, a = 1 and

b = 1, as used in the Stringvacua manual. Then, we use the command “NumRoots” which

computes the number of real roots of the system, that is, 7 in this case, in less than a minute

on a desktop machine.

Let us now turn our attention to solving this system using the NPHC method. Firstly,

the CBB for this system is 182. We used both Bertini and HOM4PS2 to track all these paths.

Both took around one minute to solve this system: there are 86 complex (including real)
finite solutions, out of which 36 solutions are real. Out of the 36 real solutions, six of them

are distinct solutions (multiplicity one) and the only other distinct solution (t, τ) = (0, 0)
which comes with multiplicity 30. Thus, there are 7 distinct solutions as expected from the

Stringvacua’s “NumRoots” command. However, we should mention that the Stringvacua

package does not give any information about the multiplicity of the solutions, as seen in this

example, whereas the NPHC method gives all the solutions with its multiplicities making the

method already useful for this simple example. Not only that, but the NPHC also gives the

infinite solutions (which are the solutions on the projective space but not on the affine space):
the running example has 2 infinite solutions both coming with multiplicity 48. Thus, the total

number of solutions in this case, 50 + 6 + (1 × 30) + (2 × 48), is indeed the same as the CBB.

Note that in these equations all the denominators were multiples of t. The condition

that none of the denominators is zero can be imposed algebraically by adding a constraint

equation as 1 − zt = 0 with z being an additional variable. Thus there are now 3 equations

in 3 variables. Note that in the Stringvacua package the denominators are thrown away by

multiplying each equation appropriately, but the additional equation is not included in the

final ideal. In the package, one can of course use the “Saturation” command in order to ensure

that this equation is properly taken into account.

We can again solve the above system 3 equations in 3 variables using the Bertini and

HOM4PS2. The CBB of this new system is 364. In the end, there are 56 finite complex solutions

out of which there are six real solutions, all with multiplicity 1. There are no infinite solutions

in this case. This should be expected since the only multiple real solution in the previous

system was when the denominator was zero. After adding the constraint equation, we have

got rid of this solution and hence left with the rest of the six distinct solutions. Finally, the real

solutions (throwing the very small imaginary parts out) are

{t, τ} = {{−0.5204819146691344, 0.7148265478403096},

{0.5204819146691421,−0.7148265478403003},
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{−0.5204819146691322,−0.7148265478403191},

{0.520481914669129, 0.7148265478403104},

{0.8325249117100803, 0}, {−0.8325249117100793, 0}}.
(3.5)

Since we have all the real solutions, we can now compute the Hessian of V at these

solutions and separate out the physically interesting vacua. Since the purpose of this paper

is to introduce the NPHC method only, we refrain from discussing the interesting physics of

these solutions here. A detailed analysis of these solutions and the solutions of other systems

will be published elsewhere. For now we discuss how the two methods, the symbolic algebra

methods and the NPHC, compare with each other.

4. A Model of Compactified M Theory

Here, we take an example of M theory compactified on the coset (SU(3)×U(1))/(U(1)×U(1))
from [29] which is also considered in [12]. The coset has SU(3) structure. The corresponding

Kähler and superpotential are

K = −4 log
(
−i
(
U −U

))
− log

(
−i
(
T1 − T1

)(
T2 − T2

)(
T3 − T3

))
,

W =
1√
8
(4U(T1 + T2 + T3) + 2T2T3 − T1T3 − T1T2 + 200).

(4.1)

Here, we use Ti = −iti + τi, for i = 1, 2, 3, and U = −ix + y. Then the potential is

V =
1

256t1t2t3x4

(
40000 + t23τ

2
1 − 400τ1τ2 − 4t23τ1τ2 + 4t23τ

2
2 + τ2

1 τ
2
2 − 400τ1τ3

+ 800τ2τ3 + 2τ2
1 τ2τ3 − 4τ1τ

2
2 τ3 + τ2

1 τ
2
3 − 4τ1τ2τ

2
3 + 4τ2

2 τ
2
3 − 24t2t3x

2

+ 4t23x
2 − 24t1(t2 + t3)x2 + 4τ2

1x
2 + 8τ1τ2x

2 + 4τ2
2x

2 + 8τ1τ3x
2 + 8τ2τ3x

2

+ 4τ2
3x

2 + 1600τ1y − 8t23τ1y + 1600τ2y + 16t23τ2y − 8τ2
1 τ2y − 8τ1τ

2
2y

+ 1600τ3y − 8τ2
1 τ3y + 16τ2

2 τ3y − 8τ1τ
2
3y + 16τ2τ

2
3y + 16t23y

2 + 16τ2
1y

2

+ 32τ1τ2y
2 + 16τ2

2y
2 + 32τ1τ3y

2 + 32τ2τ3y
2 + 16τ2

3y
2

+ t21
(
t22 + t

2
3 + τ

2
2 + 2τ2τ3 + τ2

3 + 4x2 − 8τ2y − 8τ3y + 16y2
)

+ t22
(

4t23 + τ
2
1 − 4τ1

(
τ3 + 2y

)
+ 4
(
τ2

3 + x2 + 4τ3y + 4y2
))
.

(4.2)

We need to solve the stationary equations, that is, the derivatives of V with respect

to t1, t2, t3, τ1, τ2, τ3, x, and y equated to zero. We also need to add an additional equation

1−z(t1t2t3x) = 0 to ensure that none of the denominators of the stationary equations are zero.
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Thus, in total there are 9 equations in 9 variables. This system only has isolated solutions, (In
[12], this system is reported to have positive dimensional components in its solution space.

However, the denominator equation was not included in the analysis there. Once we include

the denominator equation in the system, the combined system has no positive dimensional

components. Hence, there is no discrepancy here.) The equations are quite complicated, and

we avoid writing all of them down here. This system of equations is not only prohibitively
difficult to be solved completely but also not tractable even using the primary decomposition

techniques (except that some information about the solutions may be obtained if one further

restricts the system such as taking y = 0) [1, 12]. In short, it is not possible to handle this

system in its full glory using the available symbolic methods.

Now, let us move to the NPHC method. Firstly, since there are four equations of degree

3, another four equations of degree 4, and one equation of degree 5, the CBB is 103680. This

system is actually quite straightforward to solve using the NPHC method. The HOM4PS2

package, for example, solves the full system in around 1 hour on a regular desktop machine:

there are 516 total solutions for this system, out of which there are only 12 real solutions. The

solutions in the order {y, τ1, τ2, τ3, t2, t3, x, t1} are

{{−3.3333333333335, 1.3333333333308, 3.333333333331, 3.333333333336,

−6.6666666666666705,−6.666666666666667,−6.66666666666667,−2.6666666666603},

{−3.333333333334, 1.3333333333288, 3.333333333337, 3.3333333333335 ,

6.66666666667, 6.666666666671,−6.666666666669, 2.6666666666594},

{−3.3333333333344, 1.3333333333324, 3.33333333333, 3.3333333333375,

−6.666666666668,−6.666666666666, 6.666666666667,−2.6666666666634},

{−3.3333333333264, 1.3333333333488, 3.3333333333286, 3.333333333322 ,

6.666666666659, 6.66666666666, 6.666666666663, 2.6666666666807},

{3.333333333338,−1.3333333333228,−3.333333333334,−3.333333333342,

6.666666666674, 6.666666666669, 6.6666666666705, 2.6666666666554},

{3.3333333333286,−1.3333333333406,−3.333333333338,−3.3333333333215 ,

6.666666666663, 6.666666666668,−6.666666666665, 2.6666666666714},

{3.3333333333313,−1.3333333333337,−3.3333333333366,−3.3333333333277,

−6.666666666667,−6.6666666666705, 6.666666666668,−2.666666666663},

{3.3333333333313,−1.3333333333341,−3.3333333333326,−3.333333333335,

−6.6666666666705,−6.666666666671,−6.666666666666,−2.6666666666634},

{0., 0., 0., 0., 7.453559924993, 7.4535599249993,−7.453559925, 2.9814239699997},

{0., 0., 0., 0., 7.453559924999, 7.4535599249993, 7.453559925, 2.9814239699997},
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{0., 0., 0., 0.,−7.4535599249992,−7.453559925,−7.4535599249992,−2.9814239699997},

{0., 0., 0., 0.,−7.4535599249993,−7.4535599249992, 7.4535599249,−2.9814239699}}.

(4.3)

It is easy to recognize that some of the numbers in the above list of solutions are

rational numbers, for example, 3.33333 � 10/3. We can now easily compute the eigenvalues

of the Hessian of the potential and other related quantities of all these solutions and hence

classify the vacua in terms of physics. However, again we refrain from discussing the

interesting physics of these solutions here. The full analysis will be published elsewhere.

5. Comparison between Gröbner Basis Techniques and
the NPHC Method

Here, we compare the two different methods. Firstly, the Gröbner basis techniques solve the

system symbolically. This is immensely significant since one then has a proof for the results

and/or the results in closed form. There is caveat here however: if the univariate equation

in a Gröbner basis is of degree 5 or higher, then the Abel-Ruffini theorem prevents us from

solving it exactly, in general, at least in terms of the radicals of its coefficients (this does not

mean that the univariate equation cannot be solved exactly at all). In such a situation, one

may end up solving this equation numerically, and hence the above-mentioned feature of the

symbolic method no longer applies. The NPHC method is a numerical method. That said, the

method by construction gives all of the isolated solutions for the system known to have only

isolated solutions, up to a numerical precision. The solutions then can be refined to within

an arbitrary precision up to the machine precision by the Newton’s corrector method or

otherwise. Moreover, using the alphaCertified method, we can certify if the real nonsingular

solutions obtained by the above packages are actually the real nonsingular solutions of the

system independent of the numerical precision used during the computation. Hence, though

the solutions cannot be obtained in a closed form using the NPHC method, the solutions are

as good as exact solutions for all the practical purposes.

We should emphasize here that using the methods presented in [10–12] one can learn

quite a lot about a system without having to necessarily obtain its solutions. In particular, one

can use the so-called primary decomposition of the ideal (though making use of the Gröbner

basis technique only) to obtain information such as the dimensionality of the solution

space and number of isolated real roots. This is indeed a clever way to resolve the above-

mentioned issue up to a certain level. However, here, the next difficulty comes in the form of

algorithmic complexity. The BA is known to suffer from exponential space complexity, which

roughly means that the memory (Random Access Memory) required by the machine blows

up exponentially with increasing number of polynomials, variables, monomials, and/or

degree of the polynomials involved in the system. Hence, even the computation for the

primary decomposition may not finish for large sized systems, whereas the NPHC method

is strikingly different from the Gröbner basis techniques in that the algorithm for the former

suffers from no known major complexities. Hence one can in principle find all solutions of

bigger systems.

The BA is a highly sequential algorithm, that is, each step in the algorithm requires

knowledge of the previous one. Thus, although recently there are certain parts of the BA

which have been parallelized, in general, it is extremely difficult to parallelize the algorithm.
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On the other hand, in the NPHC method, the path tracking is embarrassingly parallelizable,
because each start solution can be tracked completely independently of the others. This

feature along with the rapid progress towards the improvements of the algorithms makes

the NPHC well suited for a large class of physical problems arising not only in string

phenomenology but in condensed matter theory, lattice QCD, and so forth.

The BA is mainly defined for systems with rational coefficients, while in real-life

applications, the systems may have real coefficients. The NPHC method being a purely

numerical method by default incorporates floating point coefficients as well.

In conclusion, both the Gröbner basis techniques and the NPHC have advantages and

disadvantages. However, for practical purposes, the NPHC method is a far more efficient and

promising method for realistic systems.

6. Frequently Asked Questions

In this section, we collect the frequently asked questions and their answers.

(1) What does the NPHC method tell us about systems which do not have any

solutions?

As mentioned above, the NPHC method by construction (in conjunction with the

γ-trick) gives all real and complex solutions of a system of multivariate polynomial

equations that is known to have only isolated solutions. Hence, we are always sure

that we have got all the solutions numerically. This statement is true for all cases

such as when the system has no complex solutions and/or no real solutions or no

solution at all. One possible issue, as mentioned above, regards the classification of

the real solutions independent of the tolerance used. This can be resolved by using,

for example, the alphaCertified algorithm which certifies when a solution is a real.

(2) For many practical problems, only real solutions are required. Thus, when

implementing the NPHC, a huge amount of computational effort is wasted in

getting the other types of solutions. Would it not be helpful to track only the real

solutions?

It would be much more useful if there was a way of getting only real solutions.

However, for a number of technical reasons nicely discussed in [21], a path tracker

does not know in advance if a given start solution will end up being a real solution

of the original system. Moreover, one can wonder if a root count exists only for

the real solutions of a system. This would involve obtaining a corresponding

fundamental theorem of algebra on the real space for the multivariate case. This,

however, has yet to be achieved. Hence, the best way for now is to track all complex

(including real paths) solutions and then filter out the real solutions.

(3) Can the NPHC method be used as a global or local minimization method?

Absolutely, most of the conventional methods used to minimize a function are

based on the Newton-Raphson method, where a start solution is guessed and is

then refined by successive iterations in the direction of the minima. By performing

this algorithm several times on the functions, one can obtain many minima of the

given potential. Recently, more efficient methods such as the basin-hopping method

are available for local minimization [30]. However, we are never sure if we have got

all the minima from any of these methods. For the global minimization, we may
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use more efficient methods such as Simulated Annealing and Genetic Algorithm.

However, these methods are known to fail for larger systems since it can easily

get trapped at a local minimum when trying to find the global minimum. Thus,

in addition to the usual error from the numerical precision of the machine, there

can be an error of an unknown order (i.e., we do not know if the found one is the

global minimum!). But if the function has a polynomial-like nonlinearity, in theory

the NPHC method can give all the minima since it obtains all the stationary points.

So it solves the local minimization problem. Moreover, it is then easy to identify the
global minimum out of the minima, and hence we are sure that the found one is

actually the global minimum.

(4) As in the example system in this paper, for many systems the number of actual

solutions may be well below the CBB. Is there any remedy for this issue?

The main reason why the number of actual solutions is less than the CBB for many

systems is that the CBB does not take the sparsity (i.e., very few monomials in

each polynomial in the system) of the system into account. There is indeed a tighter

upper bound on the number of complex solutions, called the Bernstein-Khovanskii-

Kushnirenko (BKK) count [20, 21], which takes this sparsity into account and thus

in most cases is much lower than the CBB. In many cases, it is in fact equal to the

number of solutions. The BKK bound can thus save a lot of computation time since

the number of paths to be tracked is less than the CBB. The details on the BKK count

relating to string phenomenology problems will be published elsewhere.

(5) Are there any alternative/supplementary numerical methods?

There are not many methods to find the stationary points of a multivariate function

around, compared to the number of methods to find minima. One of the methods

that can find stationary points is the Gradient-minimization method which finds

all the minima of an auxiliary function E = |∇V |2 whose minima are the stationary

points of V provided we further restrict E to be zero [31]. One can find many

minima of E using some conventional minimization method such as the Conjugate

Gradient method or the Simulated Annealing method. However, it is known that as

the system size increases, the number of minima of E that are not the minima of V ,

that is,E > 0, increases rapidly, making the method inefficient [32]. Another method

is the Newton-Raphson method (and its sophisticated variants) [30, 32–34]. There,

an initial guess is refined iteratively to a given precision. It should be emphasized,

however, that no matter how many different random initial guesses are fed into the

algorithm, we can never be sure to get all the solutions in the end, unlike the NPHC

method. However, these two methods can be supplementary methods for bigger

systems to get an idea on what to expect there.

(6) This paper mainly deals with the potentials having polynomial-like nonlinearity

which may be usual in the perturbation limit. What about the fully nonperturbative

potentials?

The most interesting application for this method would be in the nonperturbative

regime, certainly. This question can be stated in different words: is it possible

to translate the stationary equations for the nonperturbative potential (i.e., the

potentials which have logarithm and exponential terms), and if so, how? Once we

can translate the equations in the polynomial form, we can again use the NPHC

method as before. The answer is already available in [10]. In this work, Gray et al.
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have already prescribed how to translate the corresponding equations arising in

the nonperturbative regime which usually involve logarithms and/or exponentials,

by using dummy variables. After that, we can solve the system using algebraic

geometry methods, such as the Gröbner basis, or for more complicated cases, the

NPHC method presented in this paper. Once we have all the solutions, we can

extract the solutions in terms of the original variables which were logarithms

and/or exponentials of the fields. This trick makes all the algebraic geometry

methods, not only the NPHC method, applicable to finding the vacua of the

potentials in the nonperturbative regime.

(7) This method assumes that one knows that the system under consideration has only

isolated solutions. But, in general, one may not know if a given system has only

isolated solutions or it contains some positive dimensional components. In that

case, do not we need to rely on the Gröbner basis techniques only, at least to check

the dimension of the system?

Firstly, in many systems, once we add the constraint equation (i.e., the denomina-

tors are never zero), they usually turn out to have only isolated solutions. Thus,

there are way too many interesting systems in string phenomenology which only

have isolated solutions. Of course, there may be many more systems which would

have positive dimensional solution components. To solve such systems, there

is a recently developed generalization of the numerical homotopy continuation

method, called the Numerical Algebraic Geometry method. This method finds out

each of the positive dimensional solution components with its dimensionality. This

method is also embarrassingly parallelizable and hence goes far beyond the reach of

the Gröbner basis methods. The details of this method are much more involved and

beyond the scope of the present paper. But, in short, to find out the dimensionality

of the system we do not necessarily need to rely on the Gröbner basis methods. The

details of this method with applications will be published elsewhere.

7. Summary

In this paper, we have reviewed a novel method, called the numerical polynomial homotopy

continuation (NPHC) method, which can find all the string vacua of a given potential. It does

not suffer from any major algorithmic complexities compared to the existing symbolic algebra

methods based on the Gröbner basis techniques, which are known to suffer from exponential

space complexity. Moreover, the NPHC method is embarrassingly parallelizable, making it a

very efficient alternative to the existing symbolic algebra methods. As an example, we studied

a toy model and, using the NPHC method, found all the vacua within less than a minute using

a regular desktop machine. Note that this system with the irrational coefficients is already a

difficult task using the Gröbner basis techniques. In addition to that, using the NPHC method,

with just about an hour of computation on a regular desktop machine, we found all vacua of

an M theory model compactified on the coset (SU(3) × U(1))/(U(1) × U(1)), which has an

SU(3) structure. This system was reported to be a prohibitively difficult problem using the

symbolic method. Thus, we have already shown how efficiently the NPHC method can solve

the problems that are yet far beyond the reach of the traditional symbolic methods. We also

emphasize that using the procedure prescribed in [10] to translate the stationary equations

arising in the nonperturbative regime, by replacing logarithm and exponential terms of the

field variables by dummy variables, into the polynomial form, we can use the NPHC method
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to find the vacua for the nonperturbative potentials as well. It is this application of the method

which makes it quite promising. With the help of the NPHC method it is thus hoped that we

can go far beyond the reach of the existing methods and study realistic models very efficiently.
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We consider three-dimensional conformal field theories living on a stack of N anti-M2 branes
at the tip of eight-dimensional supersymmetric cones. The corresponding supergravity solution
is obtained by changing sign to the four-form in the Freund-Rubin solution representing M2
branes (“skew-whiffing” transformation) and it is known to be stable. The existence of these non-
supersymmetric, stable field theories, at least in the largeN limit, is a peculiarity of the AdS4/CFT3

correspondence with respect to the usual AdS5/CFT4, and it is worthwhile to study it. We analyze
in detail the KK spectrum of the skew-whiffed solution associated with S7/Zk and we speculate
on the natural field content for a candidate non-supersymmetric dual field theory.

1. Introduction

There has been some progress in understanding the conformal field theories living on a

stack of N M2 branes at the tip of noncompact eight-dimensional cones. These theories are

holographically dual to Freund-Rubin compactifications of M theory of the form AdS4 ×H7,

where H7 is the Einstein manifold at the base of the cone. In the case of large supersymmetry,

N ≥ 3, the conformal field theory has been identified with a Chern-Simons theory in [1–10].
The case where the cone is a Calabi-Yau fourfold corresponds to N = 2 supersymmetry, and a

general construction of the dual Chern-Simons theories has been discussed in [11, 12]; a large

number of models have been subsequently constructed [13–23]. For the smallest amount of

supersymmetry, N = 1, the cone is a Spin(7) manifold and a generic construction of the

dual field theories for orbifolds has been given in [24]. In this paper we are interested in

the three-dimensional conformal field theories living on a stack of N anti-M2 branes at the
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tip of eight-dimensional cones with at least Spin(7) holonomy. The existence of these non-

supersymmetric, stable field theories, at least in the large N limit, is a peculiarity of the

AdS4/CFT3 correspondence with respect to the usual AdS5/CFT4, and it is worthwhile to

study it (Previous studies of three-dimensional non-supersymmetric field theories in similar

setups can be found in [25, 26].)
The supergravity solutions of N anti-M2 branes at the tip of supersymmetric cones is

obtained by changing sign to the four-form in the familiar solutions representing M2 branes.

This operation is called “skew-whiffing” in the supergravity literature and it is proven to

produce a stable non-supersymmetric background [27]. The KK spectrum of the final theory

is obtained from the original spectrum by a reshuffling of states. We will mostly focus on

the simple case H7 = S7 in this paper. In this particular case the skew-whiffing procedure is

equivalent to a triality transformation in the isometry group SO(8) and it leaves the theory

invariant. However, following the recent results on AdS4 × CFT3, we are really interested in

H7 = S7/Zk. For k ≥ 2 the skew-whiffing produces a stable non-supersymmetric background.

It is interesting then to find a plausible dual field theory. (In [28] there is a discussion of the

effect of the skew-whiffing on the dual field theory for k = 1.) In this paper we analyze in

detail the KK spectrum of the skew-whiffed theory and we speculate on a candidate for the

underlying field theory. Without supersymmetry, it is difficult to make explicit checks of the

proposal. We are guided in our search by the attempt of implementing the skew-whiffing

procedure to the ABJM theory [6].
The paper is organized as follows. In Section 2 we discuss the skew-whiffing construc-

tion. In Section 3 we discuss a natural field content for the skew-whiffing of the ABJM theory.

In Section 4 we make some checks of the proposal and in particular we see that the relevant

features of the KK spectrum in supergravity are compatible with the operator content of the

field theory. In Section 5 we discuss possible generalizations.

2. The Skew-Whiffed Solutions

M-theory has a very natural compactification to four dimensions. (For a comprehensive

review see [29].) It comes from the Freud-Rubin ansatz for the 3-form field,

Fμνρσ = 3mεμνρσ, Fmnpq = 0, (2.1)

where m is a real constant, the greek letters label the four space-time directions, while the

latin letters label the internal seven-dimensional space. As a consequence the metric satisfies

the equations

Rμν = −12m2gμν, Rmn = 6m2gmn (2.2)

and M theory spontaneously compactifies to AdS4 ×H7, where H7 is an Einstein space. If the

Einstein manifold H7 has at least weak G2 holonomy, then the solution is supersymmetric

and hence stable. This solution can indeed be interpreted as the near horizon solution for M2

branes at the tip of the real cone C(H7). There is another very natural solution that can be

obtained sending m to −m: the four-form changes sign, while the metric is invariant. This

solution can be interpreted as the near horizon solution for anti-M2 branes at the tip of the

real cone C(H7) and it is called the “skew-whiffed” solution.
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It is interesting to observe that the skew-whiffed transformation changes the sign of

the Page charge P = 1/π4
∫
H7

∗F and can indeed be equivalently interpreted as a change of

orientation for H7.

The number of preserved supersymmetries of a solution is the number of independent

Killing spinors η solving the equation

(
∇n −

1

2
mΓn
)
η = 0. (2.3)

This supersymmetric condition explicitly depends on m. Indeed it is possible to prove

that, with exception of the round sphere S7, where both orientations give the maximum

supersymmetry N = 8, at most one orientation can have N > 0 [29]. Moreover it is possible

to prove that the skew-whiffing of a supersymmetric Freud-Rubin solution is perturbatively

stable [27]. Hence, given a supersymmetric Freud-Rubin solution, we can find another non-

supersymmetric stable solution, obtained by applying the skew-whiffing transformation.

(See [30, 31] for some recent applications of the skew-whiffed solutions.)
These theories are expected to have a well-defined dual non-supersymmetric three-

dimensional conformal field theory. In this paper we will discuss a natural field content for

these theories.

It is important to observe that the skew-whiffing procedure is somehow peculiar of M

theory. Indeed the same transformation could be applied to the five-form in the Freud-Rubin

ansatz for type IIB supergravity. However, in this case, the resulting theory would still be

supersymmetric.

3. The Skew-Whiffing of the ABJM Theory

When the seven-dimensional Einstein space is a Zk quotient of the round sphere, S7/Zk, the

dual field theory is the well-known ABJM model [6]. This is an N = 6 three-dimensional

U(N) × U(N) Chern-Simons theory with levels k and −k, coupled to four complex bosons

XA and four complex fermions ψA transforming in the bifundamental of the gauge group.

The global symmetry is SU(4)R × U(1), the non-abelian part being the R symmetry group,

while the abelian part being the baryonic symmetry. The bifundamental bosonsXA transform

in the representation 41 of the global symmetry group and the bifundamental fermions ψA
transform in the 4−1. All fields have canonical dimension: 1/2 for the bosons and 1 for the

fermions.

This specific field content can be understood as the decomposition of the degrees of

freedom of the N = 8 conformal theory dual to S7 under the breaking of the R symmetry

group SO(8) → SU(4) × U(1) induced by Zk. The natural field content of the theory

describing S7 consists in a scalar Φa transforming in the 8v vectorial representation of SO(8),
and a fermion Yα transforming in the 8s spinorial representation of SO(8) (this is the singleton
representation of the superconformal group); the eight supercharges transform in the 8c
conjugate spinor representation. These are the degrees of freedom that we expect to live

on a supersymmetric M2 brane in flat space. The existing N = 8 Chern-Simons theory

describing membranes, the BLG model [1–5], have indeed this field content. The N = 8

multiplet decomposes as 8v → 41 + 4−1, 8s → 41 + 4−1 under SO(8) → SU(4) ×U(1) and we

recover the ABJM matter content describing S7/Zk. The ABJM model has enhanced N = 8
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supersymmetry for k = 1 but this enhancement is not manifest and it is conjectured to be

realized through light monopole operators which become relevant for k = 1.

We would like to identify a candidate for the skew-whiffing solution on S7/Zk. As

we explained in the previous section, the skew-whiffing procedure can be understood as the

change of orientation of S7, and hence as a parity transformation on R8. The scalar fields

living on the M2 can be seen as the coordinates of the transverse space, and, under parity,

an odd number of them change sign, while the associated eight-dimensional spinor changes

chirality.

The skew-whiffing procedure can be seen as a map,

SW : (8v, 8s) −→ (8v, 8c). (3.1)

An explicit realization of this map on an N = 8 multiplet is

SW :
(
Φi,Φ8, Y a

)
−→
(
Φi,−Φ8,

(
Γ8
)
ȧa
Ya
)
. (3.2)

For k = 1, this transformation should be an invariance of the dual-field theory, since

S7 is skew-whiffing invariant. We can test this transformation in the BLG theory [1–5],
which is an explicit N = 8 lagrangian theory invariant under the SO(8)R symmetry and

describes a pair of membranes. It is an easy exercise to see that the BLG Lagrangian is indeed

invariant under the transformation (3.2), as required by the supergravity skew-whiffing

transformation. In the ABJM theory with k = 1, this transformation is, on the other hand,

nonlocally realized.

For generic k, the SO(8) symmetry is broken to SU(4) ×U(1). Under skew whiffing,

the 8s fermions are replaced by 8c and the fields decompose as 8v → 41 + 4−1, 8c → 12 +
60 + 1−2. The original supersymmetry charges would now transform in the 8s → 41 + 4−1.

None is invariant under the U(1) symmetry and hence the theory naturally breaks all the

supersymmetries.

It is natural to expect that the dual of the skew-whiffed S7/Zk is a non-supersymmetric

three-dimensional Chern-Simons theory with matter. Let us try to understand what is the

natural field content. We still expect a gauge group U(N) × U(N) and a global symmetry

SU(4). Comparing with the geometric action of the SW transformation, we introduce

complex scalars XA transforming in the bifundamental of the gauge groups and in the

fundamental of the global symmetry SU(4); real fermions ΨI transforming in the adjoint of

the first gauge group and in the antisymmetric of SU(4); complex fermions ξ transforming in

the bifundamental of the SU(N) × SU(N) gauge group, with charge 2 under the difference

of the two U(1) gauge factors and as singlets under the global symmetry SU(4). The matter

content of such a theory is summarized in Table 1 below.

As we will see in Section 4, the supergravity KK spectrum predicts the existence of

operators with integer dimensions in the dual-field theory. A peculiarity of the skew-whiffing

transformation indeed is the fact that it just reshuffles the KK states without changing their

dimensions. To match the KK spectrum with the above field content we need to assume that

all the fields have canonical dimensions: 1/2 for the scalars and 1 for the fermions. It is then
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Table 1: Matter content and charges.

Fields SU(N)1 SU(N)2 U(1)1 −U(1)2 U(1)1 +U(1)2 SU(4)
XA N N 1 0 4
ΨI Adj 0 0 0 6
ξ N N 2 0 1

tempting to write a classically conformal invariant Lagrangian for the fields XA,ΨI , ξ. The

most general Lagrangian we can write is

L = LCS +Lkin + Vbos + Vfer, (3.3)

where

LCS =
k

4π
Tr

[
εμνλ
(
Aμ∂νAλ +

2i

3
AμAνAλ

)
− εμνλ

(
Ãμ∂νÃλ +

2i

3
ÃμÃνÃλ

)]
,

Skin = Tr

(
−DμXADμX

†
A + iΨ

I
γμDμΨI + iξ

†
γμDμξ

)
,

Vbos =
π2

12k2
Tr
(
XAX

†
AX

BX
†
BX

CX
†
C +X†

AX
AX

†
BX

BX
†
CX

C + 4XAX
†
BX

CX
†
AX

BX
†
C

− 6XAX
†
BX

BX
†
AX

CX
†
C

)
,

Vfer =
iπ

2k
Tr

(
c1

(
ΓIJ
)B
A
XAX

†
BΨ

IΨJ + c2

(
XAX

†
Aξξ

† −X†
AX

Aξ†ξ
))

,

(3.4)

where the covariant derivatives act according to Table 1. We keep the same bosonic potential

of the ABJM theory, and we introduce two real couplings ci to parametrize the fermionic

potential. The same potential of the ABJM theory guarantees that a probe see R8/Zk as

a moduli space; in the skew-whiffed supergravity background an anti-M2 brane feels no

potential, exactly as a M2 brane in the original background. The Lagrangian is scale invariant

at classical level. Obviously, without supersymmetry, there is no guarantee that the theory

remains conformal invariant at the quantum level and, in general, we expect that the

fields acquire anomalous dimensions. It is tempting to speculate that, in the limit where

supergravity is valid (large N limit and strong coupling N/k � 1 in type IIA), the theory

becomes conformal with canonical dimensions for the fields.

One could try to impose a relation between the ci in the fermionic potential by

requiring that the scalar BPS operators of the ABJM theory do not acquire anomalous

dimensions at weak coupling in the SW ABJM theory. This constraint is suggested by the

dimensions of the scalar part of the KK spectrum in supergravity, and the strong assumption

that we can extrapolate from strong to weak coupling. The argument goes as follows. Starting

from the lagrangian (3.4) it is possible to compute the quantum part of the two loop dilatation

operator (mixing matrix) for small values of N/k. The mixing matrix acting on the gauge

invariant operators of the field theory gives their anomalous dimensions. The mixing matrix

acting on the gauge invariant operators done by contracting only the scalar fields XA and X
†
A

was computed in [32] for the ABJM theory. The computation can be easily repeated for the SW
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ABJM theory: the only difference is the contribution coming from the fermions running into

the loops, and in particular their contribution to the identity and the trace part of the mixing

matrix. By imposing that the scalar mixing matrix of the SW ABJM theory is annihilate by the

scalar symmetric traceless operators (4.12) we find a constraint on the ci. It would be much

harder to perform a similar computation with operators with fermionic insertions to see if

some of them remain with canonical dimensions with such a choice of ci.

4. The KK Spectrum

In this section, we discuss in details the KK spectrum of the skew-whiffed M theory solution

on S7/Zk and of its reduction to type IIA. The KK states should correspond to the single trace

operators of the dual field theory with finite dimensions in the large N and strong coupling

limit. It obviously difficult to predict the spectrum of operators with finite dimensions in

a non-supersymmetric theory. However, the distinctive features of the KK spectrum put

constraints on the dual field content.

4.1. The Spectrum on S7

The KK spectrum of the M-theory Freud-Rubin solution on S7 is well known [33, 34] and

reported for completeness in Table 2. The states are classified by the dimension and the

representation under SO(8) and are organized in superconformal multiplets specified by

an integer number m ≥ 2. The lowest state in each multiplet is scalar field of dimension

m/2 transforming in the [m, 0, 0, 0] representation of SO(8). The other states are obtained by

acting on the lowest state with the N = 8 supersymmetries transforming as 8c = [0, 0, 0, 1]
under SO(8). The multiplet is short and has spin range equal to two, compared with the spin

range of four of a long multiplet. The multiplets m = 2, 3 sustain further shortenings; m = 2

corresponds to the massless multiplet of the N = 8 gauged supergravity. Partition functions

encoding the spectrum of S7 (and of its quotient) in a related context can be found in [35–38].
We can understand the structure of the multiplets by considering a very simple theory

of eight free bosons Φi and eight free fermions Ya. These are the expected degrees of freedom

living on a membrane in flat space. The lowest state of the m-th KK supermultiplet can be

represented by Φm, which is a schematic expression for the product of m fields completely

symmetrized in their SO(8) indices and with all the traces removed:

Φm ≡ Φ{i1 · · ·Φim} − traces. (4.1)

The other states are obtained by applying the supersymmetry transformations that schemat-

ically read [
Qȧ
α,Φ

i
]
= i
(
Γ̃i
)ȧa

Ya
α ,{

Qȧ
α, Y

a
β

}
=
(
γμ
)
αβ
DμΦi

(
Γi
)aȧ

.

(4.2)

The first spinorial state (1/2)(1) with dimension (m + 1)/2 reads

Ya
αΦ

m−1, (4.3)
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Table 2: The spectrum on S7.

Spin SO(8) Δ

2+ [m − 2, 0, 0, 0]
m + 4

2

3

2

(1)

[m − 2, 0, 0, 1]
m + 3

2

3

2

(2)

[m − 3, 0, 1, 0]
m + 5

2

1−(1) [m − 2, 1, 0, 0]
m + 2

2

1+(2) [m − 3, 0, 1, 1]
m + 4

2

1−(2) [m − 4, 1, 0, 0]
m + 6

2

1

2

(1)

[m − 1, 0, 1, 0]
m + 1

2

1

2

(2)

[m − 3, 1, 1, 0]
m + 3

2

1

2

(3)

[m − 4, 1, 0, 1]
m + 5

2

1

2

(4)

[m − 4, 0, 0, 1]
m + 7

2

0+(1) [m, 0, 0, 0]
m

2

0−(1) [m − 2, 0, 2, 0]
m + 2

2

0+(2) [m − 4, 2, 0, 0]
m + 4

2

0−(2) [m − 4, 0, 0, 2]
m + 6

2

0+(3) [m − 4, 0, 0, 0]
m + 8

2

where, again, Φm will represent a fully symmetrized and traceless string of fields Φik . The

indices are contracted in such a way that the operator transforms as [m − 1, 0, 1, 0]. The states

with dimension (m+ 2)/2 are obtained by applying two supercharges whose Lorentz indices

can be antisymmetrized or symmetrized giving a scalar 0−(1) and a vector 1−(1) of schematic

form

Y
{a
[α Y

b}
β] Φ

m−2,
(
Y

[a
{αY

b]
β} + γ

μ

αβ
Φ[i1DμΦi2]

)
Φm−2. (4.4)

The fermionic bilinears transform in the [0, 0, 2, 0] and [0, 1, 0, 0] representation of SO(8),
respectively, which can be contracted with [m− 2, 0, 0, 0] to give the expected representations
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[m − 2, 0, 2, 0] and [m − 2, 1, 0, 0] given in Table 2. The states with dimension (m + 3)/2 read

schematically

(
Ya
α Y

b
β Y

c
γ + · · ·

)
Φm−3. (4.5)

The Lorentz indices can be completely symmetric or with mixed symmetry; we obtain a

state (3/2)(1) with three SO(8) indices transforming in the [1, 0, 0, 1] and a state (1/2)(2)

with three indices [0, 1, 1, 0], respectively. Combining with the bosonic part we easily recover

the representations [m − 2, 0, 0, 1] and [m − 3, 1, 1, 0] reported in Table 2. The states with

dimension (m + 4)/2 have four fermions whose Lorentz indices can be contracted in order to

give a scalar 0+(2), a vector 1+(2), and a spin two 2+. We can write, for example, the schematic

form of the spin two operator in the [m − 2, 0, 0, 0] representation of SO(8),

DμΦiDνΦi Φm−2 + Y [a1

{α1
· · ·Ya4]

α4}Φ
m−4 + · · · . (4.6)

The scalar and vector are obtained with different contraction of the Lorentz indices; it is easy

to check that the SO(8) indices then transform as reported in Table 2. The rest of the spectrum

can be similarly reconstructed.

The KK spectrum on S7 should reproduce the full spectrum of short operators with

finite dimensions in the large N limit of the field theory dual to AdS4 × S7. It is however

difficult to write explicit expressions for these multiplets in terms of local operators. The

ABJM theory with k = 1 is an explicitly scale invariant local Lagrangian dual to AdS4×S7 and

its spectrum of single trace chiral operators should match the KK spectrum on S7. However,

the explicit correspondence is somehow obscured by the fact that the N = 8 supersymmetry

of ABJM is not manifest and monopole operators are required to match the spectrum. In the

particular case N = 2, the ABJM theory with group SU(2) × SU(2) has manifest N = 8

supersymmetry and SO(8) global symmetry; in fact it coincides with the BLG theory [1–5].
However, even in this case we can only give an explicit representation for the multiplets with

even m. Let us discuss briefly how. We use the formulation as a Chern-Simons theory with

gauge group SU(2) × SU(2). The matter content consist of bosonic and fermionic fields Φi

and Ya transforming in the bifundamental representation of the gauge group and in the 8v in

the 8s representation of SO(8), respectively. The fields can be written as two-by-two matrices

satisfying the reality condition

Φi
AȦ

= εABεȦḂ
(
Φi†
)ḂB

, (Ya)AȦ = εABεȦḂ
(
Ya†
)ḂB

. (4.7)

The reality conditions ensures that the basic degrees of freedom of an N = 8 multiplet

consist in eight real bosons and fermions. Compared with the free theory discussed above,

the supersymmetry transformations are modified as

[
Qȧ
α,Φ

i
]
= i
(
Γ̃i
)ȧa

Ya
α ,{

Qȧ
α, Y

a
β

}
=
(
γμ
)
αβ
DμΦi

(
Γi
)aȧ

+ εαβΦiΦj†Φk
(
Γijk
)aȧ

.

(4.8)
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The lowest state of the mth KK supermultiplet is given by Tr Φm which is schematic

expression for a product ofm fields Φik or Φik† completely symmetrized in their SO(8) indices

and with all the traces removed

Φ{i1Φi2†Φi3Φi4† · · ·Φim}† − traces. (4.9)

In order to have a gauge invariant expression m must be even and Φ and Φ† should

be alternated. The other states are obtained, similarly to the free case, by applying the

supersymmetry transformations. Let us quote, for example, the schematic form of the scalar

0−(1) and the vector 1−(1) with dimension (m + 2)/2

Tr
(
Y
{a
[α Y

b}†
β] + Φ[i1Φi2†Φi3Φi4]†

)
Φm−2 , Tr

(
Y

[a
{αY

b]†
β} + γμ

αβ
Φ[i1DμΦi2]†

)
Φm−2. (4.10)

4.2. The SW Spectrum

The KK spectrum of S7/Zk is also known [39]. Zk acts by reducing the length of a circle in S7

and, for large k, the orbifold quotient is equivalent to a type IIA reduction of the theory along

this circle. As a result, for large k, the KK spectrum of M theory on S7/Zk is the same as the

KK spectrum of type IIA on CP3. To obtain the type IIA spectrum we just need to decompose

the SO(8) representations under the residual SU(4) × U(1) group and project out all the

states that are not invariant under the U(1) action. This decomposition was exhaustively

studied in [39]: the levels with m odd are completely projected out, while the levels labelled

by even values of m organize themselves into N = 6 susy multiplets. The resulting spectrum

exactly reproduces the set of chiral multiplets of the ABJM theory [6]. (This is strictly correct

in the k → ∞ limit. For finite k, some Fourier modes along the M theory circle survive the

projection. These states are D0 branes in type IIA and are realized in the ABJM model with

monopole operators. We will not discuss explicitly such states in the paper.)
Consider now the skew-whiffed theory. The skew-whiffing transformation corre-

sponds to a change of chirality for the eight-dimensional fermion: 8s → 8c. This trans-

formation can be easily implemented on the KK spectrum of S7 given in Table 2. We

maintain the dimension Δ invariant while we exchange the spinorial indices in the SO(8)
representations: [a, b, c, d] → [a, b, d, c]. After this transformation, we decompose again

the SO(8) representations under the residual SU(4) × U(1) group and project out all the

states that are not invariant under the U(1) action. For odd m we obtain “multiplets” with

only fermionic degrees of freedom: all the bosons are projected out; for even m we obtain

“multiplets” with only bosonic degrees of freedom: all the fermions are projected out. The

result is reported in Tables 3 and 4.

Let us consider now the non-supersymmetric field theory discussed in the previous

section. It obviously difficult to predict the spectrum of operators with finite dimensions

in a non-supersymmetric theory. However, we should at least be able to construct a gauge

invariant operator with the right quantum numbers for each of KK state. We will see now that

the proposed field content is compatible with the distinctive features of the KK spectrum.

The dimensions Δ of the KK states are all integers. This is compatible with our

assumption that the elementary fields have classical dimensions (1/2 for the bosons and 1

for the fermions) since, with this assumption, all the gauge invariant operators have integer

dimensions. Let us see this in detail. Consider a gauge invariant product of m elementary

fields. Consider first the case with m even. The bosonic operators have integer dimensions:
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Table 3: Bosonic KK spectrum of the SW theory at level m = 2n, with n ≥ 1. The states with negative
Dynkin labels should be excluded. In the case n = 1 some of the fields are absent, reflecting the fact that
the original S7 multiplet is shorter.

Spin SU(4) Δ

2+ [n − 1, 0, n − 1] n + 2

1−(1) [n − 1, 0, n − 1] + [n, 0, n] + [n, 1, n − 2] + [n − 2, 1, n] n + 1

1+
[n − 1, 0, n − 1] + [n − 1, 0, n − 1] + [n + 1, 0, n − 3] + [n − 3, 0, n + 1] + [n, 1, n − 2] + [n −
2, 1, n] + [n − 1, 1, n − 3] + [n − 3, 1, n − 1] + [n − 2, 2, n − 2] n + 2

1−(2) [n − 1, 0, n − 1] + [n − 2, 0, n − 2] + [n − 1, 1, n − 3] + [n − 3, 1, n − 1] n + 3

0+(1) [n, 0, n] n

0−(1) [n−1, 0, n−1]+[n+1, 0, n−3]+[n−3, 0, n+1]+[n, 1, n−2]+[n−2, 1, n]+[n−1, 2, n−1] n + 1

0+(2) [n − 1, 0, n − 1] + [n, 0, n] + [n − 2, 0, n − 2] + [n, 1, n − 2] + [n − 2, 1, n] + [n − 1, 1, n −
3] + [n − 3, 1, n − 1] + [n − 2, 2, n − 2] + [n, 2, n − 4] + [n − 4, 2, n] n + 2

0−(2) [n−1, 0, n−1]+[n+1, 0, n−3]+[n−3, 0, n+1]+[n−1, 1, n−3]+[n−3, 1, n−1]+[n−3, 2, n−3] n + 3

0+(3) [n − 2, 0, n − 2] n + 4

Table 4: Fermionic KK spectrum of the SW theory at level m = 2n + 1, with n ≥ 1. The states with negative
Dynkin labels should be excluded. In the case n = 1 some of the fields are absent, reflecting the fact that
the original S7 multiplet is shorter.

Spin SU(4) Δ

3

2

(1)
[n + 1, 0, n − 1] + [n − 1, 0, n + 1] + [n − 1, 1, n − 1]

n + 2

3

2

(2)
[n, 0, n − 2] + [n − 2, 0, n] + [n − 1, 1, n − 1]

n + 3

1

2

(1)
[n + 1, 0, n − 1] + [n − 1, 0, n + 1] + [n, 1, n]

n + 1

1

2

(2) [n + 1, 0, n − 1] + [n − 1, 0, n + 1] + [n, 0, n − 2] + [n − 2, 0, n] + [n, 1, n] + [n − 1, 1, n −
1] + [n − 1, 1, n − 1] + [n + 1, 1, n − 3] + [n − 3, 1, n + 1] + [n, 2, n − 2] + [n − 2, 2, n]

n + 2

1

2

(3) [n, 0, n−2]+ [n−2, 0, n]+ [n+1, 0, n−1]+ [n−1, 0, n+1]+ [n−1, 1, n−1]+ [n−1, 1, n−
1] + [n − 2, 1, n − 2] + [n + 1, 1, n − 3] + [n − 3, 1, n + 1] + [n − 1, 2, n − 3] + [n − 3, 2, n − 1]

n + 3

1

2

(4)

[n, 0, n − 2] + [n − 2, 0, n] + [n − 2, 1, n − 2] n + 4

the dual field theory operators are obtained with an even number of bosonic fields and an

even number of fermionic fields; gauge invariant operators of this type are obtained using

XA and ΨI , or ξ fields. The fermionic operators would have half-integer dimensions: in

fact they would contain an odd number of bosonic fields and odd number of fermionic

fields. However, in the proposed field theory it is not possible to build up a gauge invariant

operator with such field content. We conclude that for even m there are only bosons in the

KK spectrum. Consider now the case with m odd. The fermionic operators have integer

dimensions: the dual field theory operators are obtained with an even number of bosonic

fields and an odd number of fermionic fields; gauge invariant operators of this type are

obtained using XA and ΨI , or ξ fields. The bosonic operators instead would have half-

integer dimensions, in fact they would contain an odd number of bosonic fields and an even

number of fermionic fields. Such bosonic operators are still forbidden by gauge invariance.

We conclude that for odd m there are only fermions in the spectrum.
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Let us now check that we can construct at least one field theory operator with the right

dimension, Lorentz and SU(4) representation for each KK mode in supergravity. The gauge

invariant field theory operators are obtained by contracting the following operators:

{
XA,X

†
A, ξα, ξ

†
α,ΨI

α,Dμ

}
. (4.11)

Let us start looking at the generic form of the operators of low dimension for a given n. The

first scalar KK modes is 0+(1) and the corresponding field theory operator has the schematic

form

Tr
(
X{A1X

†
{B1

· · · · · ·XAn}X†
Bn}

)
, (4.12)

where suitable trace subtractions are understood. The first KK spinor mode is (1/2)(1) and

the dual operator is

Tr
(
X{A1X

†
{B1

· · · · · ·XAn}X†
Bn}Ψ

I
α

)
. (4.13)

The first KK vector mode is 1(−1) and the dual operator is

Tr
(
X{A1X

†
{B1

· · · · · ·XAn−1}X†
Bn−1}Ψ

[I
{αΨ

J]
β}

)
+ Tr
(
X{A1X

†
{B1

· · · · · ·XAn−1}X†
Bn−1}ξ{αξ

†
β}

)
+ Tr
(
X{A1X

†
{B1

· · · · · ·XAn−1}X†
Bn−1}X

AnDμX
†
Bn

)
.

(4.14)

The first pseudoscalar in the KK spectrum is 0(−1) and the dual field operator is schematically

Tr
(
X{A1X

†
{B1

· · · · · ·XAn}X†
Bn}Ψ

{I
[αΨ

J}
β]

)
+ Tr
(
X{A1X

†
{B1

· · · · · ·XAn−1}X†
Bn−1}ξ[αξ

†
β]

)
+ Tr
(
X{A1X

†
{B1

· · · · · ·XAn}X†
Bn}X

[AX
†
[BX

C]X
†
D]

)
.

(4.15)

Another interesting operator of lower dimension in the KK towers is (3/2)(1) and its dual

field operator has the form

Tr
(
X{A1X

†
{B1

· · · · · ·XAn−1}X†
Bn−1}Ψ

[I
{αΨ

J

β
ΨK]
γ}

)
+ Tr
(
X{A1X

†
{B1

· · · · · ·XAn−1}X†
Bn−1}Ψ

I
{αξβξ

†
γ}

)
+ Tr
(
X{A1X

†
{B1

· · · · · ·XAn}X†
Bn}DμΨI

α

)
.

(4.16)
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It is easy to verify that the above operators can reproduce the SU(4) representations

reported in Tables 3 and 4. The first bosonic level has m = 2 and the corresponding operators

have the schematic form

0+(1) : Tr
(
XAX

†
B

)
,

0−(1) : Tr
(
Ψ{I

[αΨ
J}
β]

)
+ Tr
(
ξ
†
[αξβ]
)
+ Tr
(
X[AX

†
[BX

C]X
†
D]

)
,

1−(1) : Tr
(
XADμX

†
B

)
+ Tr
(
ξ
†
{αξβ}
)
+ Tr
(
Ψ[I

{αΨ
J]
β}

)
,

2+ : Tr
(
DμX

ADνX
†
A

)
+ · · · ,

(4.17)

where suitable trace subtractions are understood. In the first bosonic level there are two

important operators: the part of the 1−(1) operator in the [1, 0, 1] representation is the field

theory SU(4) global current symmetry J
[IJ]
μ dual to the gauge field A

[IJ]
μ in the adjoint

representation of SU(4) propagating in AdS4, and the singlet 2+ operator is the stress-energy

tensor dual to the graviton gμν in AdS4. Of course, since the proposed skew-whiffed theory is

not supersymmetric, the supercurrent operator dual to the would be (3/2)(1) gravitino is not

present in the operator spectrum.

The first fermionic level has m = 3 and the corresponding operators are

1

2

(1)

: Tr
(
XAX

†
BΨ

I
α

)
,

1

2

(2)

: Tr
(
Ψ[I

{αΨ
{J]
[β}Ψ

K}
γ]

)
+ Tr
(
ΨI

{αξ[β}ξ
†
γ]

)
+ Tr
(
X[AX

†
[BX

C]X
†
D]Ψ

I
α

)
,

3

2

(1)

: Tr
(
Ψ[I

{αΨ
J

β
ΨK]
γ}

)
+ Tr
(
ΨI

{αξβξ
†
γ}

)
+ Tr
(
XAX

†
BDμΨI

)
,

3

2

(2)

: Tr
(
ξ[αξ

†
β]DμΨI

γ

)
+ · · · .

(4.18)

(The operators corresponding (1/2)(2) have a mixed symmetry in the spin and SU(4) indices

which is indicated in a somehow imprecise way in the following formula.)
The operators dual to a specific KK modes are, in general, linear combinations of all

the gauge invariant operators with the right dimension, Lorentz and SU(4) representation

that we can construct. The expectation is that exactly one of these operators will remain with

finite dimensions in the large N and strongly coupled regime, while the others will acquire

infinite dimension, as standard in the AdS/CFT correspondence.

5. Conclusions

In this paper we discussed general properties of the field theory living on a stack of N anti-

M2 branes at the tip of an eight-dimensional real cone with at least one Killing spinor. In

particular we focus on the skew-whiffed AdS4 × S7/Zk supergravity solution in M theory

(and its reduction to type IIA), which is not supersymmetric but stable. The AdS/CFT
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correspondence predicts the existence of a dual non-supersymmetric three-dimensional

theory, which should be a unitary conformal field theory at least at large N and strong

coupling. Based on an analysis of the KK spectrum of the supergravity theory and on the

geometrical action of the skew-whiffing transformation, we speculate on the field content of

the dual theory, a skew-whiffed version of the ABJM theory. Due to the fact that the theory

is non-supersymmetric, direct checks of any proposal are nontrivial. We identified a field

content which is at least compatible with the KK spectrum found in the dual supergravity

solution. It is interesting to observe that there is some ambiguity in writing a candidate

theory. In particular the SW map and the compatibility with the KK spectrum do not fix

unambiguously the representation of the fields under the gauge group; for example, the

complex spinor ξ could be either in the bifundamental representation, as we considered in this

paper, or in the adjoint representation of one of the gauge group. It would be interesting to see

if these various theories are somehow duals. Another observation is that the proposed theory

is not really a quiver gauge theory, because the fermions transform in the bifundamental of

just the SU(N) part of the full U(N) gauge group. This seems to imply that the theory is

a good candidate only in the large N limit, that is exactly, the regime for which the dual

supergravity solution is demonstrated to be stable. Further investigations are needed.

We mainly concentrated on the S7/Zk supergravity solution. However, as explained

at the very beginning of the paper, there is a SW supergravity solution for any Freud-

Rubin solution with at least one Killing spinor and we should be able to find a dual non-

supersymmetric Chern-Simons matter theory. There is an infinite set of AdS4/CFT3 pairs in

the literature and it would be interesting to have a systematic procedure to obtain the SW

field theory once the supersymmetric field theory is known. One way to proceed would be

to start with orbifolds of the SW ABJM theory. By giving vevs to scalar fields we can flow

to other non-supersymmetric Chern-Simons matter field theories. A more efficient way to

proceed would be to find the field theory operation dual to the change of orientation of H7.

We leave this topic for future research.
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AdS4/CFT3 correspondence,” Journal of High Energy Physics, no. 9, article 072, 2008.

[8] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, “N = 5, 6 superconformal Chern-Simons theories
and M2-branes on orbifolds,” Journal of High Energy Physics, no. 9, article 002, 24 pages, 2008.

[9] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” Journal of High Energy Physics,
vol. 2008, no. 11, article 043, 2008.

[10] D. L. Jafferis and A. Tomasiello, “A simple class ofN = 3 gauge/gravity duals,” Journal of High Energy
Physics, vol. 2008, no. 10, article 101, 2008.

[11] D. Martelli and J. Sparks, “Moduli spaces of Chern-Simons quiver gauge theories and
AdS(4)/CFT(3),” Physical Review D, vol. 78, no. 12, Article ID 126005, 11 pages, 2008.

[12] A. Hanany and A. Zaffaroni, “Tilings, Chern-Simons theories and M2 branes,” Journal of High Energy
Physics, vol. 2008, no. 10, article 111, 2008.

[13] A. Hanany, D. Vegh, and A. Zaffaroni, “Brane tilings and M2 branes,” Journal of High Energy Physics,
vol. 2009, no. 3, article 012, 2009.

[14] K. Ueda and M. Yamazaki, “Toric Calabi-Yau four-folds dual to Chern-Simons-matter theories,”
Journal of High Energy Physics, vol. 2008, no. 12, article 045, 2008.

[15] Y. Imamura and K. Kimura, “Quiver Chern-Simons theories and crystals,” Journal of High Energy
Physics, vol. 2008, no. 10, article 114, 2008.

[16] S. Franco, A. Hanany, J. Park, and D. Rodriguez-Gomez, “Towards M2-brane theories for generic toric
singularities,” Journal of High Energy Physics, vol. 2008, no. 12, article 110, 2008.

[17] A. Hanany and Y. H. He, “M2-branes and quiver chern-simons: a taxonomic study,” http://arxiv
.org/abs/0811.4044/.

[18] A. Amariti, D. Forcella, L. Girardello, and A. Mariotti, “3D Seiberg-like dualities and M2 branes,”
Journal of High Energy Physics, vol. 2010, no. 5, article 25, 2010.

[19] J. Davey, A. Hanany, N. Mekareeya, and G. Torri, “Phases of M2-brane theories,” Journal of High Energy
Physics, vol. 2009, no. 6. article 025, 2009.
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We compute one-loop threshold corrections to R4 terms in N = 5, 6 supergravity vacua of Type II
superstrings. We then discuss nonperturbative corrections generated by asymmetric D-brane
instantons. Finally we derive generating functions for MHV amplitudes at tree level in N = 5, 6
supergravities.

1. Introduction

N = 5, 6 supergravities in D = 4 enjoy many of the remarkable properties of N = 8 super-

gravity. Their massless spectra are unique and consist solely of the supergravity multiplets.

Their R-symmetries are not anomalous [1]. Regular BH solutions can be found whereby the

scalars are stabilized at the horizon by the attractor mechanism (for a recent review see, e.g.,

[2]). It is thus tempting to conjecture that if pure N = 8 supergravity turned out to be UV

finite [3–7] then N = 5, 6 supergravities should be so, too.

As shown in [8–10], Type II superstrings or M-theory accommodate N = 8 super-

gravity in such a way as to include nonperturbative states that correspond to singular BH

solutions in D = 4. The same is true for N = 5, 6 supergravities. While the embedding

of N = 8 supergravity corresponds to simple toroidal compactifications, the embedding of

N = 5, 6 supergravities, pioneered by Ferrara and Kounnas in [11] and recently reviewed in

[12], requires asymmetric orbifolds [13, 14] or free fermion constructions [15–20].
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The inclusion of BPS states, whose possible singular behavior from a strict 4D

viewpoint is resolved from a higher-dimensional perspective, generates higher derivative

corrections to the low-energy effective action. In particular a celebrated R4 term appears that

spoils the continuous noncompact symmetry of “classical” supergravity. Absence of such a

term has been recently shown for pure N = 8 supergravity in [21]. In superstring theory,

the R4 term receives contribution at tree level, one loop, and from nonperturbative effects

associated to D-instantons [22] and other wrapped branes [23]. Proposals for the relevant

modular form of the E7(7)(Z) U-duality group have been recently put forward in [24–26]
that seem to satisfy all the checks.

In this paper we consider one-loop threshold corrections to the same kind of terms

in superstring models with N = 5, 6 supersymmetry in D = 4 and N = 6 in D = 5. After

excluding R2 terms (R3 terms cannot be supersymmetrized on shell when all particles are

in the supergravity multiplet [21]), we will derive formulae for the “perturbative” threshold

corrections. In D = 4 we will also discuss other MHV amplitudes (for a recent review see,

e.g., [27]) that can be obtained by orbifold techniques from the generating function of N = 8

supergravity amplitudes [28].
Aim of the analysis is threefold. First, we would like to show that N = 5, 6

supersymmetric models in D = 4 behave very much as their common N = 8 supersymmetric

parent. The threshold corrections that we find may be taken as evidence that, as in the N = 8

case, superstring calculations do not reproduce field theory results, where such R4 corrections

are absent as a result of the unbroken (anomaly free) continuous U-duality symmetry as in

the N = 8 case [1]. This is in line with the nondecoupling in Type II superstrings of BPS states

that are singular from the strict 4-dimensional supergravity perspective [8–10].
Second, (gauged) N = 5, 6 supergravities have played a crucial role in the recent

understanding of M2-brane dynamics [29–32], and nonperturbative tests may be refined by

considering the effects of world-sheet instantons in CP 3 [33–36] along the lines of our present

(ungauged) analysis. Finally, in addition to world-sheet instantons, D-brane instantons

corresponding to Euclidean bound states of “exotic” D-branes should contribute to generalize

“standard” D-brane instanton calculus to Left-Right asymmetric backgrounds.

Plan of the paper is as follows. In Section 1, we briefly review N = 5, 6 supergravities

in D = 4, 5 and their embedding in Type II superstrings. We then pass to consider in Section 2

a 4-graviton amplitude at one loop which allows to derive the “perturbative” threshold

corrections to R4 terms, thus excluding R2 terms. For simplicity, we only give the explicit

result for N = 6 in D = 5 in Section 3 and sketch how to complete the nonperturbative

analysis by including asymmetric D-brane instantons [12] in Section 4. Finally, in Section 5

we consider MHV amplitudes in N = 5, 6 supergravities in D = 4 and show how they

can be obtained at tree level by orbifold techniques from the generating function for MHV

amplitudes in N = 8 supergravity [28]. Section 6 contains a summary of our results and

directions for further investigation.

2. Type II Superstring Models with N = 5, 6 in D = 4, 5

Let us briefly recall how N = 5, 6 supergravities can be embedded in String Theory. The

highest dimension where classical N = 6 supergravity with 24 supercharges can be defined

is D = 6. However the resulting N = (2, 1) theory is anomalous and thus inconsistent at

the quantum level [37]. So we are led to consider D = 5 and then reduce to D = 4. N = 5

supergravity with 20 supercharges can only be defined as D = 4 and lower. Although we will
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only focus on R4 terms in D = 4 the parent D = 5 theory is instrumental to the identification

of the relevant BPS instantons.

2.1. N = 6 = 2L + 4R Supergravity in D = 5

The simplest way to embed N = 6 in Type II superstrings is to quotient a toroidal compactifi-

cation T5 = T4 ×S1 by a chiral Z2 twist of the L-movers (T-duality) on four internal directions

Xi
L −→ −Xi

L, Ψi
L −→ −Ψi

L, i = 6, 7, 8, 9 (2.1)

accompanied by an order-two shift that makes twisted states massive. As a result half of the

supersymmetries in the L-moving sector are broken. The perturbative spectrum is coded in

the one-loop torus partition function.

In the untwisted sector, one finds

Tu =
1

2

{
(Qo +Qv)QΛ5,5

[
0

0

]
+ (Qo −Qv)(Xo −Xv)QΛ1,5

[
0

1

]}
, (2.2)

where Xo − Xv = 4η2/θ2
2 (with η denoting Dedekind’s function and θ1,...4 denoting Jacobi’s

elliptic functions) describes the effect of the Z2 projection on four internal L-moving bosons,

while

Λl,r

[
a

b

]
=
∑
pL,pR

eiπ[aLpL−aRpR]q(1/2)(pL+(1/2)bL)
2

q(1/2)(pR+(1/2)bR)
2

(2.3)

are (shifted) Lorentzian lattice sums of signature (l, r) and Q = V8 − S8, Qo = V4O4 − S4S4,

Qv = O4V4 − C4C4, with On, Vn, Sn, Cn the characters of SO(n) at level κ = 1 (for n odd Sn
coincides with Cn and will be denoted by Σn).

At the massless level, in D = 5 notation with SO(3) little group, one finds

(V3 +O3 − 2Σ3) ×
(
V 3 + 5O3 − 4Σ3

)
−→
(
g + b2 + φ

)
NS-NS

+ 6ANS-NS + 5φNS-NS + 8AR-R + 8φR-R − Fermi

(2.4)

that form the N = 6 supergravity multiplet in D = 5

SGD=5
N=6 =

{
gμν, 6ψμ, 15Aμ, 20χ, 14ϕ

}
. (2.5)

The R-symmetry is Sp(6) while the “hidden” noncompact symmetry is SU∗(6), of dimension

35 and rank 3 generated by 6 × 6 matrices of the form Z = (Z1, Z2;−Z2, Z1) with Tr(Z1+Z1) =
0.
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For later purposes, let us observe that the 128 massless states of N = 6 supergravity

in D = 5 are given by the tensor product of the 8 massless states of N = 2 SYM (for the

Left-movers) and the 16 massless states of N = 4 SYM (for the Right-movers), namely,

SGD=5
N=6 = SYMD=5

N=2 ⊗ SYMD=5
N=4 =

{
Aμ, 2λ, φ

}
L
⊗
{
Ãν, 4λ̃, 5φ̃

}
R
. (2.6)

After dualizing all massless 2 forms into vectors, the 15 = 7NS-NS + 8R-R vectors trans-

form according to the antisymmetric tensor of SU∗(6). The 14 = 1NS-NS + 5NS-NS + 8R-R scalars

parameterize the moduli space

MD=5
N=6 =

SU∗(6)
Sp(6)

. (2.7)

By world-sheet modular transformations (first S and then T) one finds the contribu-

tion of the twisted sector

Tt =
1

2

{
(Qs +Qc)(Xs +Xc)QΛ1,5

[
1

0

]
+ (Qs −Qc)(Xs −Xc)QΛ1,5

[
1

1

]}
, (2.8)

where Xs + Xc = 4η2/θ2
4, Xs − Xc = 4η2/θ2

3, Qs = O4S4 − C4O4 (massless), Qc = V4C4 −
S4V4 (massive). Due to the (L-R symmetric) Z2 shift, the massless spectrum receives no

contribution from the twisted sector. Nonperturbative states associated to L-R asymmetric

bound states of D-branes were studied in [12]. There are several other ways to embed N = 6

supergravity in Type II superstrings, reviewed in [12].

2.2. N = 6 Supergravities in D = 4

Reducing on another circle with or without further shifts yields N = 6 supergravity in D = 4

[11].
The massless spectrum is given by

(V2 + 2O2 − 2S2 − 2C2) ×
(
V 2 + 6O2 − 4S2 − 4C2

)
−→
(
g + b + φ

)
NS-NS

+ 8ANS-NS + 12φNS-NS + 8AR-R + 16φR-R − Fermi

(2.9)

and gives rise to the N = 6 supergravity multiplet in D = 4

SGD=4
N=6 =

{
gμν, 6ψμ, 16Aμ, 26χ, 30ϕ

}
. (2.10)

For later purposes, let us observe that the 128 massless states of N = 6 supergravity

in D = 4 are given by the tensor product of the 8 massless states of N = 2 SYM (for the

Left-movers) and the 16 massless states of N = 4 SYM (for the Right-movers), namely,

SGD=4
N=6 = SYMD=4

N=2 ⊗ SYMD=4
N=4 =

{
Aμ, 2λ, 2φ

}
L
⊗
{
Ãν, 4λ̃, 6φ̃

}
R
. (2.11)
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The hidden noncompact symmetry is SO∗(12), of dimension 66 and rank 3 generated

by 12 × 12 matrices of the form Z = (Z1, Z2;−Z2, Z1) with Z1 = −Zt
1 and Z2 hermitean. They

satisfy L†JL = J with J = −Jt = −J† the symplectic metric in 12D. After dualizing all

masseless 2 forms into axions, the 30 = 2NS-NS+12NS-NS+16R-R scalar parameterize the moduli

space

MD=4
N=6 =

SO∗(12)
U(6)

. (2.12)

The 16 = 8NS-NS + 8R-R vectors together with their magnetic duals transform according to the

32-dimensional chiral spinor representation of SO∗(12).
Due to the (L-R symmetric) Z2 shift, the massless spectrum receives no contribution

from the twisted sector. Nonperturbative states associated to L-R asymmetric bound states of

D-branes were studied in [12].

2.3. N = 5 = 1L + 4R Supergravity in D = 4

The highest dimension where N = 5 supergravity exists is D = 4. In D = 5 because one

cannot impose a symplectic Majorana condition on an odd number of spinors. A simple way

to realize N = 5 = 1L + 4R supergravity in D = 4 is to combine ZL
2 × ZL

2 twists, acting by

T-duality along T4
6789 and T4

4589, with order two shifts, that eliminate massless twisted states.

In [11], “minimal” N = 5 superstring solutions of this kind have been classified into four

classes which correspond to different choices of the basis sets of free fermions or inequivalent

choices of shifts in the orbifold language.

Due to the uniqueness of N = 5 supergravity in D = 4, all models display the same

massless spectrum

SGD=4
N=5 =

{
gμν, 5ψμ, 10Aμ, 11χ, 10φ

}
. (2.13)

For later purposes, let us observe that the 64 massless states of N = 5 supergravity

in D = 4 are given by the tensor product of the 4 massless states of N = 1 SYM (for the

Left-movers) and the 16 massless states of N = 4 SYM (for the Right-movers), namely,

SGD=4
N=5 = SYMD=4

N=1 ⊗ SYMD=4
N=4 =

{
Aμ, λ

}
L
⊗
{
Ãν, 4λ̃, 6φ̃

}
R
. (2.14)

The massless scalars parameterize the moduli space

MD=4
N=5 =

SU(5, 1)
U(5)

. (2.15)

The graviphotons together with their magnetic duals transform according to the 20 complex

(3-index totally antisymmetric tensor) representation of SU(5, 1).
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3. Four-Graviton One-Loop Amplitude

Since N = 5, 6 supergravities can be obtained as asymmetric orbifolds of tori, tree-level

scattering amplitudes of untwisted states such as gravitons are identical to the corresponding

amplitudes in the parent N = 8 theory. In particular, denoting by fN=5,6

R4 (ϕ) the moduli

dependent coefficient function of the R4 term, one has

fN=5,6

R4 =
2

n
ζ(3)

V
(
Td
)

g2
s �

2
s

+
IN=8
d,d

n�2
s

+ · · · , (3.1)

where n is the order of the orbifold group, that reduces the volume of Td with d = 5, 6 to

the volume of the orbifold, �2
s = α′ and · · · stands for nonperturbative terms. The one-loop

threshold integral is given by

IN=8
d,d

= (2π)d
∫
F

d2τ

τ2
2

[
τd/2

2 Γd,d(G,B; τ) − τd/2
2

]
= 2π2−d/2Γ

(
d

2
− 1

)
ESO(d,d|Z)
v=2d,s=d/2−1

, (3.2)

where

ESO(d,d|Z)
v=2d,s=d/2−1

=
∑

�m,�n: �m·�n=0

[
( �m + B�n)tG−1( �m + B�n) + �ntG�n

]−d+2
(3.3)

is a constrained Epstein series that encodes the contribution of perturbative 1/2 BPS, states

that is, those satisfying �m · �n = 0. The subtraction eliminates IR divergences, that is the terms

with �m = �n = 0. For N = 5, 6 the contribution of the (r, s) = (0, 0) “untwisted” sector is up to

a factor 1/n the same as in toroidal Type II compactifications with restricted metric Gij and

antisymmetric tensor Bij .

In the following we will focus on the contribution of the “twisted” sectors (we write

“twisted” in quotes, since the terminology includes projections of the untwisted sector, i.e.,

amplitudes with r = 0 and s = 1, . . . , n − 1) with (r, s)/= (0, 0).
Recall that the partition function reads

Z = Q 1

n

0,n−1∑
r,s

∑
α

θα(0)
η3

3∏
I=1

θα
(
uIrs
)

θ1

(
uIrs
)Γ[r

s

]
, (3.4)

where uIrs encode the effect of the Left-moving twist on the three complex internal directions,

while Γ[rs] denote the twisted and shifted lattice sums.

Following the analysis in [38] for one-loop scattering of vector bosons in unoriented

D-brane worlds and exploiting the “factorization” of world-sheet correlation functions one

has

A4h =
1

n

0,n−1∑
r,s

∫
d2τ

τ2
2

Γ

[
r

s

]
CL4vCR4v. (3.5)
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Since in both N = 5, 6 cases the orbifold projection only acts by a shift of the lattice on

the Left-movers, that is, preserves all four space-time supersymmetries, their contribution is

simply

CL4v = const (3.6)

after summing over spin structures. In the terminology of [38] only terms with 4 fermion

pairs contribute. Recall that the graviton vertex in the q = 0 superghost picture reads

Vh = hμν
(
∂Xμ + ikψψμ

)(
∂X̃ν + ikψ̃ψ̃ν

)
eikX, (3.7)

and, for fixed graviton helicity (henceforth we use D = 4 notation but the analysis is valid in

D = 5 too), one can exploit “factorization” of the physical polarization tensor

h
(2σ)
μν = a(σ)μ a

(σ)
ν (3.8)

in terms of photon polarization vectors.

In the R-moving sector however, the orbifold projection breaks 1/2 (N = 6) or 3/4

(N = 5) of the original four space-time supersymmetries. Correlation functions of two and

three fermion bilinears will be nonvanishing, too.

For two fermion bilinears one has [38]

〈
∂Xμ1∂Xμ2k3ψψ

μ3k4ψψ
μ4
〉⎡⎣ημ1μ2∂1∂2G12 −

∑
i /= 1

k
μ1

i ∂1G1i

∑
j /= 2

k
μ2

j ∂2G1j

⎤⎦ =
[
k3k4η

μ3μ4 − kμ4

3 k
μ3

4

]
,

(3.9)

where Gij denotes the scalar propagator on the torus (with α′ = 2)

Gz,w = − log
|θ1(z −w)|∣∣θ′1(0)∣∣ − π Im (z −w)2

Im τ
. (3.10)

Similarly, for three fermion bilinears, one finds [38]

〈
∂Xμ1k2ψψ

μ2k3ψψ
μ3k4ψψ

μ4
〉
=
∑
i /= 1

k
μ1

i ∂1G1i

[
k2k3k

μ2

4 η
μ3μ4 − · · ·

]
ω234 (3.11)

with ω234 = ∂ log θ1(z23) + ∂ log θ1(z34) + ∂ log θ1(z42).
For four fermion bilinears, disconnected contractions yield [38]

〈
k1ψψ

μ1k2ψψ
μ2k3ψψ

μ3k4ψψ
μ4
〉

disc
=
{[
k1k2η

μ1μ2 − kμ2

1 k
μ1

2

][
k3k4η

μ3μ4 − kμ4

3 k
μ3

4

]
×
(
℘12 + ℘34 −Δrs

)
+ · · ·
}
,

(3.12)
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where ℘ is Weierstrass function

℘(z) =
1

z2
+
∑
m,n

′ 1

(z + n +mτ)2
− 1

(n +mτ)2

= −∂2
z log θ1(z) − 2η1 = −2∂2

zG(z, z) −
π2

3
Ê2

(3.13)

with η1 = −θ′′′1 /6θ′1 and Ê2 the nonholomorphic modular form of weight 2 (Eisenstein series).
Weierstrass function satisfies ℘(1/2) = e1, ℘(τ/2) = e2, ℘(1/2 + τ/2) = e3 with e1 + e2 + e3 =
0.

Finally, connected contractions of four fermion bilinears yield [38]

〈
k1ψψ

μ1k2ψψ
μ2k3ψψ

μ3k4ψψ
μ4
〉

conn
=
[
k
μ4

1 k
μ1

2 k
μ2

3 k
μ3

4 ± · · ·
](
℘13 −ω123ω143 + Δrs

)
, (3.14)

where, for N = 6,

Δrs = ℘(urs) (3.15)

while, for N = 5,

Δrs = 3η1 +
1

6

H′′′(urs)
H′(urs)

(3.16)

with H′/H =
∑

I ∂ log θ1(uIrs), which is clearly moduli independent, since no NS-NS moduli

survive except for the axio-dilaton. Dependence on R-R moduli and the axio-dilaton is

expected to be generated by L-R asymmetric bound states of Euclidean D-branes and NS5-

branes.

3.1. World-Sheet Integrations

Worldsheet integrations can be performed with the help of
∫
d2z∂zGzw = 0 =

∫
d2z∂2

zGzw as

well as of

∫
d2zd2w(∂zGzw)

2 = −τ2Ê2
π2

3
,

∫
d2zd2w

⎡⎣ημ1μ2∂1∂2G12k1k2G12 −
∑
i /= 1

k
μ1

i ∂1G1i

∑
j /= 2

k
μ2

j ∂2G1j

⎤⎦ = −τ2Ê2
π2

3

[
ημ1μ2k1k2 − kμ2

1 k
μ1

2

]
.

(3.17)
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For N = 6 = 4L + 2R, setting fL/Rμν = kμa
L/R
ν − kνaL/Rμ , one has

Ltwist
eff =

1

n

∑
r,s

′
∫
d2τΓ

[
r

s

]〈
f1f2f3f4

〉MHV

L

×
{

4
[(
f1f2

)(
f3f4

)
+ · · ·
]
R

π2

3
Ê2

+
[(
f1f2

)(
f3f4

)
+ · · ·
]
R

(
−2
π2

3
Ê2 + ℘(urs)

)

+
[
(f1f2f3f4) + · · ·

]
R

(
−2
π2

3
Ê2 − ℘(urs)

)}
,

(3.18)

where, including all permutations,

〈
f1f2f3f4

〉MHV =
(
f1f2f3f4

)
+
(
f1f3f4f2

)
+
(
f1f4f2f3

)
− 2
(
f1f2

)(
f3f4

)
− 2
(
f1f3

)(
f4f2

)
− 2
(
f1f4

)(
f2f3

) (3.19)

is the structure that appears in 4-pt vector boson amplitudes, that are necessarily MHV

(Maximally Helicity Violating) in D = 4 (in D = 5 there is more than one “helicity,” but

the tensor structure has the same form [39, 40]).
Combining the R-moving contributions one eventually finds

Ltwist
eff = 〈R1R2R3R4〉MHV 1

n

∑
r,s

′
∫
d2τΓ

[
r

s

](
+2
π2

3
Ê2 − ℘(urs)

)
, (3.20)

where Ri denote the linearized Riemann tensors of the four gravitons and

〈R1R2R3R4〉MHV =
〈
f1f2f3f4

〉MHV

L

〈
f1f2f3f4

〉MHV

R
(3.21)

reproduces the expected R4 structure, which is MHV in D = 4, and no lower derivative R2

and/or R3 terms [21].
For N = 5 = 4L + 1R in D = 4 one gets similar results with EN=2R = Γ[rs] replaced by

EN=1R = IabH′/H(α′τ2)
−2 which is moduli independent.

Henceforth we will focus on the N = 6 = 4L + 2R case and explore NS-NS moduli

dependence of the one-loop threshold in D = 5.

4. One-Loop Threshold Integrals

One-loop threshold integrals for toroidal compactifications have been briefly reviewed above

and shown to represent the contribution of the (r, s)/= (0, 0) untwisted sector. For (r, s)/= (0, 0)
the threshold integrals involve shifted lattice sums as in heterotic strings with Wilson lines

[41–45].
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For simplicity let us discuss here the case of N = 6 in D = 5. For definiteness we

consider n = 2 (Z2 shift orbifold) and start at the special point in the moduli space where

T5 = T4
SO(8) × S1. Later on we will include off-diagonal moduli that effectively behave as

Wilson lines.

In the “twisted” [0
1] sector, the relevant threshold integral is of the form

IN=6
1,5

[
0

1

]
= (2π)5

∫
F

d2τ

τ2
τ5/2

2 Γ1,1

[
0

1

]
(R)O8

[
2π2

3
Ê2 + ℘

(
1

2

)]

= (2π)5

∫
F

d2τ

τ2
τ2

2

R√
α′

∑
m,n

e−|2m+(2n+1)τ |2πR2/4α′τ2O8

[
2π2

3
Ê2 + ℘

(
1

2

)]
.

(4.1)

Setting (2m, 2n+ 1) = (2� + 1)(2m′, 2n′ + 1) and using invariance of O8 under τ → τ + 2 allow

to unfold the integral to the double strip

(2π)5 R√
α′

∫+1

−1

dτ1

∫∞
0

dτ2

∑
�

e−(2�+1)2πR2/4α′τ2
∑
N,N

dNq
NcNq

N, (4.2)

where O8 =
∑

N=|r|2/2 dNq
N and (2π2/3)Ê2 + ℘(1/2) =

∑
N cNq

N . Performing the trivial inte-

gral over τ1 (level matching N =N) and the less trivial integral over τ2 by means of

∫∞
0

dyyν−1e−cy−b/y =
(
b

c

)ν/2

Kν

(√
bc
)
, (4.3)

where Kν(z) is a Bessel function of second kind, finally yields

IN=6
1,5

[
0

1

]
(R,Ai = 0) = (2π)5

(
R√
α′

)3/2 ∞∑
�=0

∞∑
N=1

(2� + 1)
√
NdNσ1(N)K1

(
4π(2� + 1)

√
NR√
α′

)
,

(4.4)

where

σ1(N) =
∑
d|N

= ψ(N) − ψ(1) = cN
N

(4.5)

from the expansion of Ê2 in powers of q.

The result can be easily generalized to the other sectors of the Z2 orbifold under

consideration as well as to different (orbifold) constructions that give rise to different shifted

lattice sums. Manifest SO(1, 5 | Z) symmetry can be achieved turning on off-diagonal
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components of B and G (subject to restrictions). Denoting by 2Ai = Gi5 + Bi5 and observing

that Gi5 − Bi5 = 0 by construction, one finds

IN=6
1,5

[
r

s

]
(R,Ai) = (2π)5 R

2
√
α′

∞∑
�=0

∑
�w∈Γ[rs]

c �w2

2

∫∞
0

dy(2� + 1)e−(2�+1)2πR2/4α′y−2π �w· �w+2πi �w· �A

= (2π)5

(
R√
α′

)3/2 ∞∑
�=0

∑
�w∈Γ[rs]

σ1

(
�w2

2

)
(2� + 1)

×

√
�w2

2
e2πi�r· �AK1

⎛⎝4π(2� + 1)

√
�w2R

2
√
α′

⎞⎠.

(4.6)

Summing up the contributions of the various sectors, that is, various shifted lattice

sums, yields the complete one-loop threshold correction to the R4 terms for N = 6 superstring

vacua in D = 5. Clearly only NS-NS moduli (except the dilaton) appear that expose SO(1, 5)
T-duality symmetry.

The analysis is rather more involved in D = 4 where one-loop threshold integrals

receive contribution from trivial, degenerate, and nondegenerate orbits [46, 47]. Alternative

methods for unfolding the integrals over the fundamental domain have been proposed [48,

49].
Explicit computation is beyond the scope of the present investigation. It proceeds

along the lines above and presents close analogy with threshold computations in N = 2

heterotic strings sectors in the present of Wilson lines [41, 42, 44] or, equivalently, N = 4

heterotic strings in D = 8 [50]. Rather than focussing on this interesting but rather technical

aspect of the problem, let us turn our attention onto the nonperturbative dependence on the

other R-R moduli as well as dilaton. This is brought about by the inclusion of asymmetric

D-brane instantons.

5. Low-Energy Action and U-Duality

In [12] the conserved charges coupling to the surviving R-R and NS-NS graviphotons

were identified as combinations of those appearing in toroidal compactifications. In the

case of maximal N = 8 supergravity, the 12 NS-NS graviphotons couple to windings and

KK momenta. Their magnetic duals couple to wrapped NS5-branes (H-monoples) and KK

monopoles. The 32 R-R graviphotons (including magnetic duals) couple to 6 D1-, 6 D5-, and

20 D3-branes in Type IIB and to 1 D0-, 15 D2-, 15 D4-, and 1 D6-branes in Type IIA.

An analogous statement applies to Euclidean branes inducing instanton effects. In

toroidal compactifications with N = 8 supersymmetry, one has 15 kinds of worldsheet

instantons (EF1), 1 D(−1), 15 ED1, 15 ED3 and one each of EN5, ED5, EKK5 for Type IIB.

For Type IIA superstrings one finds 6 ED0, 20 ED2, 6 ED4 and one each of EN5 and EKK5.

In a series of paper [24, 25], a natural proposal has been made for the nonperturbative

completion of the modular form of Ed+1(Z) that represent the scalar dependence of the R4
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and higher derivative terms in N = 8 superstring vacua. The explicit formulae are rather

simple and elegant. In particular

fN=8
R4 (Φ) = EE(d+1|Z)

[10d],3/2
(Φ), (5.1)

where EE(d+1|Z)
[10d],3/2

(Φ) is an Einstein series of the relevant U-duality group. The above proposal

satisfies a number of consistency checks including perturbative string limit that is small string

coupling in whichE(d+1 | Z) → SO(d, d | Z) and [10 · · · 0] → 2d, large radius limit in which

E(d + 1 | Z) → E(d | Z) and [10 · · · 0] → [10 · · · 0], and M-theory limit in which E(d + 1 |
Z) → SL(d+ 1 | Z) and [10 · · · 0] → [10 · · · 0]′. Moreover fR4 only receives contribution from

1/2 BPS states as expected for a supersymmetric invariant that can be written as an integral

over half of (on-shell) superspace.

An independent but not necessarily inequivalent proposal has been made in [26].
We expect similar results for R4 terms in N = 5, 6 superstring vacua with the following

caveats. First, in N = 5, 6 superspace R4 terms are 1/5 and 1/3 BPS, respectively, since they

require integrations over 16 Grassman variables. Indeed we have explicitly seen that one-loop

threshold correction involves the left-moving sector, in which supersymmetry is partially

broken, in an essential way. Second, the U-duality group is not of maximal rank, and the

same applies to the T-duality subgroup, present in the N = 6 case. Third, N = 5, 6 only exist

in D ≤ 5 or D ≤ 4. Some decompactification limits should produce N = 8 vacua in D = 10.

Let us try and identify the relevant 1/3 or 1/5 BPS Euclidean D-brane bound states.

5.1. N = 6 ED-Branes

In the Type IIB description, the chiral Z2 projection (T-duality) from N = 8 to N = 6 yields

the Euclidean D-brane bound states of the form

D(−1) + ED3T̂4 , ED1T2 + ED5T2×T̂4 , ED1S1×Ŝ1 + ED3S1×T̂3
⊥
,

ED1T̂2 + ED1T̂2
⊥
, ED3T2×T̂2 + ED3T2×T̂2

⊥
.

(5.2)

The above bound states of Euclidean D-branes are 1/3 BPS since they preserve 8

supercharges out of the 24 supercharges present in the background.

A similar analysis applies to world-sheet and ENS5 instantons.

There are several other superstring realizations of N = 6 supergravity in D = 4. Given

the uniqueness of the low-energy theory, they all share the same massless spectrum but the

massive spectrum and the relevant (Euclidean) D-brane bound-states depend on the choice

of model.

5.2. Nonperturbative Threshold Corrections

By analogy with N = 8 one would expect fR4 = ΘG, that is, an automorphic form of the U-

duality group G, that is, G = SO∗(12) (SU∗(6)) for N = 6 in D = 4 (D = 5) and G = SU(5, 1)
for N = 5 in D = 4. The relevant “instantons” should be associated to BPS particles in one

higher dimension (when possible).
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For N = 6, in the decompactification limit the relevant decomposition under

SO∗(12) → SU(5, 1) × R+ is

66 −→ 350 + 10 + 15+2 + 15′−2 (5.3)

so that the 15 particle charges in D = 6 satisfy 15 1/3 BPS “purity” conditions in D = 5

∂I3

∂Q[ij]
= 0, (5.4)

where IN=6,D=5
3 = εijklmnQ[ij]Q[kl]Q[mn]. The moduli space decomposes according to

SO∗(12)
U(6)

⊃ SU(5, 1)
Sp(6)

× R15 × R+. (5.5)

More precisely the 15 charges decompose under SO(1, 5) into a 15-dim irrep. The “purity”

conditions include detQ = 0, viewed as a 6 × 6 antisymmetric matrix.

For N = 6, in the string theory limit the relevant decomposition under SO∗(12) →
SO(2, 6) × SL(2)S is

32 −→ (8v, 2)NS-NS + (8s, 1)R-R + (8c, 1)R-R (5.6)

that yields

66 −→ (28, 1) + (1, 3) + (8s, 2) + (8c, 2) + 3(1, 1). (5.7)

The moduli space decomposes according to

SO∗(12)
U(6)

⊃ SO(6, 2)
SO(6) × SO(2)

× SL(2)
U(1)

× R16. (5.8)

Further decomposition under SL(2)T × SL(2)U × SL(2)S should allow to get the “non-

Abelian” part of the automorphic from from the “Abelian” one by means of SL(2)U=τ ≡
SL(2)B. In particular the action for a (T-duality invariant) bound state of ED5 and three ED1’s

into the action of EN5 and EF1’s, while the action of (T-duality invariant) bound state of

ED(−1) and three ED3’s is invariant (singlet). Clearly further detailed analysis is necessary.
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5.3. N = 5 ED-Branes

In the Type IIB description, the two chiral Z2 projections (“T-duality” on T4
1234 and T4

3456) from

N = 8 to N = 5 yield Euclidean D-brane bound states of the form

D(−1) + ED3T̂4
1234

+ ED3T̂4
3456

+ ED3T̂4
1256
,

ED(−1)12 + ED5123456 + ED134 + ED156,

ED1i1i2 + ED3i1j2k3l3 + ED3j1i2k3l3 + ED1j1j2 ,

ED1i1i3 + ED3i1j2k2l3 + ED3j1j2k2k3
+ ED1j1k3

,

ED1i2i3 + ED1j2j3 + ED3i1j1j2i3 + ED3i1j1i2j3 .

(5.9)

Bound states of Euclidean D-branes carrying the above charges are 1/5 BPS since they

preserve 4 supercharges out of the 20 supercharges present in the background.

As in the N = 6 case, a different analysis applies to BPS states carrying KK momenta

or windings or their magnetic duals. However, at variant with the N = 6, the three massive

gravitini cannot form a single complex 2/5 BPS multiplet. One of them, together with its

superpartners, should combine with string states which are degenerate in mass at the special

rational point in the moduli space where the chiral Z2 × Z2 projection is allowed.

6. Generating MHV Amplitudes in N = 5, 6 SG’s

Very much like, tree-level amplitudes in N = 8 supergravity in D = 4 can be identified

with “squares” of tree-level amplitudes in N = 4 SYM theory [3, 4], tree-level amplitudes in

N = 5, 6 supergravity in D = 4 can be identified with “products” of tree-level amplitudes in

N = 4 and N = 1, 2 SYM theory.

As previously observed, a first step in this direction is to show that the spectra of

N = 5, 6 supergravity are simply the tensor products of the spectra of N = 4 and N = 1, 2

SYM theory.

The second step is to work in the helicity basis and focus on MHV amplitudes (for

a recent review see, e.g., [27]). In N = 4 SYM the generating function for (colour-ordered)
n-point MHV amplitudes is given by [51]

FN=4 SYM
MHV

(
ηai , u

α
i

)
=

δ8
(∑

i η
a
i u

α
i

)
〈u1u2〉〈u2u3〉 · · · 〈unu1〉

, (6.1)

where ηai with i = 1, . . . n and a = 1, . . . 4 are auxiliary Grassmann variables and ui are com-

muting left-handed spinors, such that pi = uiui.
Individual amplitudes are obtained by taking derivatives with respect to the Grassman

variables η’s according to the rules

A+ −→ 1, λ+a −→
∂

∂ηa
, . . . , A− −→ 1

4!
εabcd

∂4

∂ηa · · · ∂ηd
. (6.2)
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The intermediate derivatives representing scalars (ϕ ∼ ∂2/∂η2) and right-handed gaugini

(λ− ∼ ∂3/∂η3).
One can reconstruct all tree-level amplitudes, be they MHV or not, from MHV ampli-

tudes using factorization, recursion relation or otherwise, see for example [27].
One can easily derive (super)gravity MHV amplitudes by simply taking the product

of the generating functions for SYM amplitudes

GN=8 SG
MHV

(
ηAi , u

α
i

)
=

C(ui)δ16
(∑

i η
A
i u

α
i

)
〈u1u2〉2〈u2u3〉2 · · · 〈unu1〉2

= C(ui)FN=4 SYM
MHV,L

(
ηaLi , u

α
i

)
FN=4 SYM

MHV,R

(
ηaRi , u

α
i

)
,

(6.3)

where ηA = (ηaLi , η
aR
i ) with A = 1, . . . 8 and the correction factor C(ui) is only a function of the

spinors ui, actually of the massless momenta pi = uiui [28].
The relevant dictionary would read

h+ −→ 1, ψ+
A −→ ∂

∂ηA
, . . . , h− −→ 1

N!

∂8

∂η8
. (6.4)

In principle one can reconstruct all tree-level amplitudes, be they MHV or not, from

MHV amplitudes using factorization, recursion relations, or otherwise, see for example [27].
Unitary methods allow to extend the analysis beyond tree level. If all N = 8 supergravity

amplitudes were expressible in terms of squares of N = 4 SYM amplitudes, UV finiteness of

the latter would imply UV finiteness of the former. Although support to this conjecture at the

level of 4-graviton amplitudes, which are necessarily MHV, seems to exclude the presence of

R4 corrections, which are 1/2 BPS saturated, it would be crucial to explicitly test the absence

of D8R4
corrections, the first that are not BPS saturated.

Going back to the problem of expressing MHV amplitudes in N = 5, 6 supergravities

in terms of SYM amplitudes, one has to resort to “orbifold” techniques.

In the N = 6 case, half of the 4 η’s (say η3
L and η4

L) of the “left” N = 4 SYM factor are

to be projected out, that is, “odd” under a Z2 involution. As a result the generating function

is the same as in N = 8 supergravity but the dictionary gets reduced to

h+ −→ 1, ψ+
A′ −→

∂

∂ηA
′ , A+

0 =
∂2

∂η3
L∂η

4
L

, A+
A′B′ =

∂2

∂ηA
′
∂ηB

′ , . . . ,

h− =
1

6!
εA

′
1···A′

6
∂2+6

∂η3
L∂η

4
L∂η

A′
1 · · · ∂ηA′

6

,

(6.5)

where A′ = 1, . . . 6.

Further reduction is necessary for N = 5 case; 3 of the 4 η’s of the “left” N = 4 SYM

factor are to be projected out. For instance, they may acquire a phase ω = exp(i2π/3) under

a Z3 projection.

The same projections should be implemented on the intermediate states flowing

around the loops. Although tree-level amplitudes inN = 5, 6 supergravity are simply a subset

of the ones in N = 8 supergravity, naive extension of the argument at loop order does not

immediately work [52–54]. Several cancellations are not expected to take place despite the

residual supersymmetry of the left SYM factor. However, in view of the recent observations
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on the factorization of N = 4 SYM into a kinematical part and a group theory part, where the

latter satisfies identities similar to the former [55–57] and can thus be consistently replaced

with the former giving rise to consistent and UV finite N = 8 SG amplitudes, it may well be

the case that a similar decomposition can be used to produce, possibly UV finite, N = 5, 6 SG

amplitudes. Our results on R4 lend some support to this viewpoint.

7. Conclusions

Let us summarize our results. We have shown that the first higher derivative corrections to

the low-energy effective action around superstring vacua with N = 5, 6 supersymmetry are

R4 terms as in N = 8. Contrary to N ≤ 4, no R2 terms appear. In this respect N = 5, 6

supersymmetric models in D = 4, having no massless matter multiplets to add, behave

similarly to their common N = 8 supersymmetric parent. It is worth stressing again that

such nonvanishing threshold corrections confirm that, as in the N = 8 case, superstring

calculations do not reproduce field theory results. As in N = 8 supergravity, it is known

that R4 corrections are absent in N = 5, 6 supergravity due to the anomaly free continuous

duality symmetry [1].
Relying on previous results on vector boson scattering at one loop in unoriented D-

brane worlds [38], we have studied four graviton scattering amplitudes and derived explicit

formulae for the one-loop threshold corrections in asymmetric orbifolds that realize the above

vacua. In addition to a term 1/n × fN=8 × cR4, coming from the (0, 0) sector, contributions

from nontrivial sectors of the orbifold to fN=5,6 × cR4 display a close similarity with heterotic

threshold corrections in the presence of Wilson lines [41, 42, 44]. For illustrative purposes,

we have computed the relevant integrals for N = 6 in D = 5 exposing the expected

SO(1, 5) T-duality symmetry. The analysis in D = 4 is technically more involved and will

be performed elsewhere. We have also identified the relevant 1/3 or 1/5 BPS bound states

of Euclidean D-branes that contribute to the nonperturbative dependence of the thresholds

on R-R scalars and on the axio-dilaton. By analogy with N = 8 it is natural to conjecture the

possible structure of the automorphic form of the relevant U-duality group. A more detailed

analysis of this issue is however necessary. Finally, in view of the potential UV finiteness of

N = 5, 6 supergravities, we have discussed how to compute tree-level MHV amplitudes using

generating function and orbifolds techniques [28]. All other tree-level amplitudes should

follow from factorization and in fact should coincide with N = 8 amplitudes involving only

N = 5 or N = 6 supergravity states in the external legs. Loop amplitudes require a separate

investigation. In particular no generalization of the KLT relations is known beyond tree level

[58].
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F-theory models are constructed where the 7-brane has a nontrivial fundamental group. The base
manifolds used are a toric Fano variety and a smooth toric threefold coming from a reflexive
polyhedron. The discriminant locus of the elliptically fibered Calabi-Yau fourfold can be chosen
such that one irreducible component is not simply connected (namely, an Enriques surface) and
supports a non-Abelian gauge theory.

1. Introduction

F-theory [1] is a way to use geometry as a tool to understand certain compactifications of

string theory that are otherwise not entirely geometric [2]. It uses an auxiliary elliptically

fibered Calabi-Yau fourfold, not to be confused with the space-time manifold to study string

theory in a regime away from any known weakly coupled perturbative description. Recently

[3, 4] a particular model building Ansatz has been suggested where the GUT gauge group

arises from a 7-brane wrapped on a contractible del Pezzo surface. Various models [5–10] and

more have been constructed along these lines.

One key feature of this Ansatz is that the scales of gravity and gauge physics can be

decoupled as one can decompactify the Calabi-Yau manifold without changing the del Pezzo

surface. However, the price one has to pay for this is that the usual way of GUT symmetry

breaking in string theory, namely, the Hosotani mechanism [11, 12] using discrete Wilson

lines, no longer works: all del Pezzo surfaces are simply connected. Alternatives have been

developed [3, 4, 13], but require one to give a vacuum expectation value to fields locally

and not just make global nontrivial identifications. Turning on fields locally then affects the

running of the coupling constants and, potentially, defocuses the gauge coupling unification

[14, 15].
In this paper I will advocate for a different Ansatz for GUT model building and

symmetry breaking in F-theory, namely, by wrapping the GUT 7-brane on a nonsimply
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connected divisor in the base of the elliptic fibration. This allows one to choose a globally

nontrivial identification of the gauge bundle while keeping it locally trivial, breaking the

GUT gauge group by the usual Hosotani mechanism. For what it is worth, this setup also

implies that there is no gravity/gauge theory decoupling limit.

Of course this raises the question of whether there are any such divisors in threefolds

that are suitable as bases for elliptically fibered Calabi-Yau manifolds. In this paper I will

answer this question and work out a rather simple example of an Enriques surface embedded

into a toric threefold associated to a reflexive 3-dimensional polytope. There is nothing

particularly unique about this example. It just combines the most simple surface with Z2

fundamental group and the class of threefolds we are most used to work with. All toric

geometry computations used in this paper were done using [16–18].

2. Base Threefold

2.1. Foreword

An Enriques surface is a free quotient of a K3 surface by a freely acting holomorphic

involution and is probably the best-known example of a complex surface Swith fundamental

group π1(S) = Z2. Its first Chern class c1(S) is the torsion element in H2(S,Z) � Z10 ⊕Z2, so it

admits a Ricci-flat metric but has no covariantly constant spinor (equivalently, no covariantly

constant (2, 0)-form). Some, but not all, K3 surfaces can be realized [19] as quartics in P3.

Somewhat unfortunately, the locus of quartic K3s and the locus of K3 surfaces with an

Enriques involution do not intersect in the moduli space of smooth K3 surfaces. In other

words, no smooth quartic in P3 carries an Enriques involution. Therefore, out of necessity

one is forced to look at singular (birational) models and then resolve these singularities. This

will be the central theme in the following.

To explicitly construct and resolve the singularities, I will make extensive use of toric

geometry. However, before delving into these technical details let me first give an overview.

The basic idea is to look at the following Z4 action on P3:

g : P3 → P3, [x0 : x1 : x2 : x3]
[
x0 : ix1 : i2x2 : i3x3

]
. (2.1)

The fixed point set of g2 are the two disjoint rational curves

P1 ∪ P1 = {x0 = x2 = 0} ∪ {x1 = x3 = 0}, (2.2)

and the fixed points of g are the north and south poles on these (4 points altogether). A

sufficiently generic Z4 invariant quartic q(x0, x1, x2, x3) is then a (singular) Enriques surface

on the quotient (this construction is rather similar to the way to construct nonsimply

connected Calabi-Yau threefolds [20–24], except that I will not be looking at sections of the

anticanonical bundle (which would be Calabi-Yau)). The fastest way to see this is to note that

the would-be (2, 0)-form

Ω(2,0) =
∮
εijk�xidxj ∧ dxk ∧ dx�

q(x0, x1, x2, x3)
(2.3)

is projected out by g.
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Here is where this paper essentially begins, because so far we only have a singular

Enriques surface in an even more singular ambient space. Clearly, one wants to resolve the

singularities. The first step is to resolve the curves of Z2 singularities, for which there is a

unique crepant resolution. Then one has to deal with the remaining 4 Z4 singularities. By a

happy coincidence, the above Z4 quotient of P3 is itself a toric variety. Hence, the methods

of toric geometry can be applied and allow us to construct partial and complete resolutions

explicitly as toric varieties.

2.2. Toric Geometry

As a warm-up, I will first review some basic notions of toric geometry. The defining data is a

rational polyhedral fan in a lattice N � Zd, where d is the complex dimension of the variety.

A fan Σ is a finite set of cones σ ∈ Σ, closed under taking faces. Often, the fan will be the

cones over the faces of a polytope. This is called the face fan of the polytope.

Amongst the different, but equivalent, ways to define the corresponding complex

algebraic variety from the fan data, I will use the Cox homogeneous coordinate [25]
description in the following. The basic idea is to associate one complex-valued homogeneous

coordinate to each ray (one-dimensional cone) of the fan. Then one has to remove a

codimension-2 or higher algebraic subset and mod out generalized homogeneous rescalings.

This construction will be reviewed and applied in much more detail in Section 2.4. For now,

let us just consider P3 as an example. Its fan consists of the cones

ΣP3 =
{
〈0〉, 〈e1〉, 〈e2〉, 〈e3〉,

〈
−
∑

ei
〉
, 〈e1, e2〉, 〈e1, e3〉,

〈
e1,−
∑

ei
〉
,

〈e2, e3〉,
〈
e2,−
∑

ei
〉
,
〈
e3,−
∑

ei
〉
, 〈e1, e2, e3〉,

〈
e1, e2,−

∑
ei
〉
,〈

e1, e3,−
∑

ei
〉
,
〈
e2, e3,−

∑
ei
〉
,
}
,

(2.4)

where e1, e2, e3 are a basis for N � Z3. There are 4 one-dimensional rays satisfying a unique

linear relation, which translates into 4 homogeneous coordinates with the usual identification

[x0 : x1 : x2 : x3] = [λx0 : λx1 : λx2 : λx3], λ ∈ C×. (2.5)

A map of fans is a map of ambient lattices such that every cone of the domain maps into

a cone of the range fan. Any such fan morphism defines a morphism of toric varieties in

a covariantly functorial way. For the purposes of this paper (except for A), we will only

consider the case where the lattice map is the identity. In this case the domain fan is simply a

subdivision of the range fan. The toric map corresponding to a subdivision of a cone σ is the

blow-up along a toric subvariety of dimension equal to codim(σ).
A toric divisor (all divisors in this paper will be Cartier divisors, even though we will

be working with auxiliary singular varieties where not all divisors are Cartier) is a formal

linear combination D =
∑
aiV (xi) of the codimension-one subvarieties

V (xi) = {xi = 0} (2.6)
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corresponding to the one-dimensional cones of the fan. There are two basic constructions

associated to such a toric divisor that will be important in the following.

(i) Every coefficient ai can be thought of as the value of a function f : N → Z on the

generating lattice point ρi of the i-th one-cone. If every cone is simplicial, then there

is a uniquely defined continuous function on the fan with the above property. The

pull-back of the function on the fan corresponds to the pull-back of the divisor by

the toric map.

(ii) The divisor also defines a polytope

PD =
{
m ∈MR

∣∣〈m, ρi〉 ≥ −ai
}
, (2.7)

where M = N∨ is the dual lattice. The global sections ΓO(D) are in one-to-one

correspondence with the integral lattice points M ∩ PD and can easily be counted

for any given divisor.

A particularly relevant divisor is the anticanonical divisor −K =
∑
V (xi). Given a lattice

polytope ∇ ∈ N, we can construct its face fan and the polytope Δ = P−K ⊂ M. If Δ is again a

lattice polytope, then ∇ is called reflexive.

Finally, note that H2(P3) = Z. Hence, the line bundles on P3 are classified by a single

integer, their first Chern class. The toric divisors, on the other hand, are defined by 4 integers.

Clearly, there is no one-to-one correspondence between divisorsD and the isomorphism class

of the associated line bundle O(D). To make this into a bijection, one must mod out linear
equivalence of divisors. That is, one has to identify the piecewise linear functions modulo

linear functions. In particular, one can easily see that

D =
3∑
i=0

aiV (xi) ∼ (a0 + a1 + a2 + a3)V (x0) (2.8)

on P3.

2.3. Three Birational Models

We now begin with the core of this paper and define the base threefold of the elliptically

fibered Calabi-Yau fourfold. In fact, I will choose a smooth toric variety B̂ as the base

manifold, containing a nonsimply connected divisor D̂. However, directly analyzing B̂ will

be overly complicated. In particular, B̂ contains exceptional divisors that do not intersect the

divisor D̂ we are interested in. Therefore, to better understand D̂ ⊂ B̂, I will blow down

these additional exceptional divisors. This will produce a singular variety B containing the

same divisor D = D̂. Finally, I will blow down two more curves in B to obtain a (even more

singular) three-dimensional variety B. The blown-down divisor D ⊂ B is the most suitable

one to compute the fundamental groups. To summarize, I am going to define successive blow-

ups

B̂
π̂−→ B

π−→ B (2.9)
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of three-dimensional toric varieties. Both of the maps π̂, π are toric morphisms defined in the

obvious way by combining cones of the fan into bigger cones, discarding all rays that are no

longer part of the more coarse (blown-down) fan.

I now define the fans Σ corresponding to the toric varieties. Let me start by the rays

Σ(1). The most singular variety has

(1)∑
B

= {(−3,−2, 4), (0, 1, 0), (1, 0, 0), (2, 1,−4)}, (2.10)

see Figure 1. The convex hull of these four points is a tetrahedron, but not a minimal lattice

simplex. In addition to the origin (which is an interior point), it contains the two points

(−1,−1, 2) and (1, 1,−2) along two different edges. The variety B will be the maximal crepant

partial resolution of B, that is, the (in this case unique) maximal triangulation of the convex

hull conv(Σ(1)
B ). Hence, one must add the additional integral points to the ray generators,

(1)∑
B

= Σ(1)
B ∪ {(−1,−1, 2), (1, 1,−2)}. (2.11)

Neither the variety B nor its maximal crepant partial resolution B is smooth, related to

the fact that the polytope conv(Σ(1)
B ) = conv(Σ(1)

B ) is not reflexive. One again needs to add

rays to resolve all singularities; however these time the generators are necessarily outside of

conv(Σ(1)
B ). One particular choice I am going to make is the rays generated by the 18 points

listed in Table 1.

The 8 facets of the convex hull conv(Σ(1)
B̂
) are given by the inequalities

(
nx, ny, nz

)
·

⎛⎜⎜⎝
−1 −1 −1 −1 0 1 1 2

−1 0 1 2 −1 −1 1 −1

−1 −1 0 0 0 0 1 1

⎞⎟⎟⎠ ≥ (1, 1, 1, 1, 1, 1, 1, 1), (2.12)

which is, therefore, a reflexive polytope.

Finally, to completely specify the toric varieties B, B, and B̂, let me define the

generating cones of the respective fans:

(i) ΣB is the face fan of the polytope conv(Σ(1)
B ), see Figure 1;

(ii) ΣB is the unique maximal subdivision of ΣB;

(iii) ΣB̂ is a maximal subdivision of the face fan of the polytope conv(Σ(1)
B̂
), see Figure 2.

As there are many different maximal subdivisions of the face fan, this alone does not uniquely

specify the fan ΣB̂. For concreteness, I will fix the one listed in Table 3. Note that not all

combinatorial symmetries of the graph in 3 are actually symmetries of the fan.
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X

−3
−2

−1
0

1
2

Y

−2

−1

0

1

Z

−4

−3

−2

−1

0

1

2

3

4(−3, −2, 4)

(2, 1, −4)

(0, 1, 0)

(1, 0, 0)

(−1, −1, 2) (1, 1, −2)0

Figure 1: The rays Σ(1)
B (red dots) and Σ(1)

B (red and blue dots).

Table 1: Ray generators and the associated Cox homogeneous variables.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i-th ray

−3 0 1 2 −1 1 −2 −2 −1 −1 −1 0 0 1 1 1 2 2

−2 1 0 1 −1 1 −1 −1 −1 0 0 0 0 0 0 1 1 1

4 0 0 −4 2 −2 2 3 1 1 2 −1 1 −2 −1 −1 −3 −2

B z0 z1 z2 z3

B z0 z1 z2 z3 z4 z5

B̂ ẑ0 ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ6 ẑ7 ẑ8 ẑ9 ẑ10 ẑ11 ẑ12 ẑ13 ẑ14 ẑ15 ẑ16 ẑ17

2.4. Homogeneous Coordinates

For future reference, let me list the toric Chow groups [26]:

Ak

(
B̂
)
=

⎧⎪⎪⎨⎪⎪⎩
1

Z15

Z15

1

, Ak(B) =

⎧⎪⎪⎨⎪⎪⎩
1

Z3 × Z2

Z3 × Z4
2

1

, Ak

(
B
)
=

⎧⎪⎪⎨⎪⎪⎩
1 k = 3

Z × Z4 k = 2

Z × Z2
2 k = 1

1 k = 0

. (2.13)

Since all three toric varieties have at most orbifold singularities, the Hodge numbers are hp,p =
rankAp and hp,q = 0 if p /= q.

The appearance of torsion in the Chow group slightly complicates the Cox

homogeneous coordinate [25] construction of the toric varieties, so let me spell out the

details. In general, a simplicial (that is, with at most orbifold singularities) d-dimensional

toric variety X can be written as a geometric quotient

X =
CΣ(1)

X − Z
Hom(Ad−1(X),C×)

� Cr − Z
(C∗)d−r ×Ad−1(X)tors

, (2.14)

where r is the number of rays in the fan ΣX . The exceptional set Z is the variety defined by

the irrelevant ideal. A more catchy way of remembering Z is that it forbids homogeneous
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X

−3
−2

−1
0

1
2

Y

−2

−1

0

1

Z

−4

−3

−2

−1

0

1

2

3

4

Figure 2: The rays Σ(1)
B̂

.

coordinates from vanishing simultaneously if and only if their product is a monomial in the

Stanley-Reisner ideal. The latter is

SR
(
ΣB

)
=
〈
z0z1z2z3

〉
,

SR(ΣB) = 〈z0z2, z1z3, z4z5〉,

SR
(
ΣB̂

)
=
〈
· · · 105 quadric monomials · · ·

〉
.

(2.15)

It remains to describe the groups in the denominator of (2.14). For the most singular variety

B, one finds

[
z0 : z1 : z2 : z3

]
=
[
λz0 : λz1 : λz2 : λz3

]
∀λ ∈ C×,[

z0 : z1 : z2 : z3

]
=
[
z0 : μz1 : μ2z2 : μ3z3

]
∀μ ∈

{
1, i, i2, i3

}
� Z4

(2.16)

and for the intermediate blow-up B

[z0 : z1 : z2 : z3 : z4 : z5] = [λz0 : λz1 : λz2 : λz3 : z4 : z5] ∀λ ∈ C×,

[z0 : z1 : z2 : z3 : z4 : z5] =
[
λz0 : z1 : λz2 : z3 : λ−2z4 : z5

]
∀λ ∈ C×,

[z0 : z1 : z2 : z3 : z4 : z5] = [z0 : z1 : z2 : z3 : λz4 : λz5] ∀λ ∈ C×,

[z0 : z1 : z2 : z3 : z4 : z5] =
[
μz0 : μz1 : z2 : z3 : μz4 : z5

]
∀μ ∈ {1,−1} � Z2.

(2.17)
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2.5. A Nonsimply Connected Divisor

I am now going to define a divisor D ⊂ B in the same linear system as the toric divisor (V (zi)
denotes the toric divisor {zi = 0} associated to the i-th ray)

D ∼ 4V
(
z0

)
, (2.18)

that is, as the zero set of a sufficiently generic section of the line bundle O(D) = O(V (z0))
4.

(By ∼, we will always denote rational equivalence of divisors. That is, D1 ∼ D2 means that

there is a one-parameter family of divisors interpolating between D1 and D2. Equivalently,

the Chow cycle defined by D1 and D2 is the same.) A basis for the sections is

H0
(
B,O
(
D
))

=
〈
z4

0, z
4
2, z

4
1, z

4
3, z1z

2
2z3, z

2
1z

2
3, z0z2z

2
3, z0z

2
1z2, z

2
0z

2
2, z

2
0z1z3

〉
, (2.19)

corresponding to the points of the polytope

PD = conv{(0, 0, 0), (4, 0, 2), (0, 4, 1), (0, 0,−1)} ⊂M. (2.20)

Note that the fan ΣB is precisely the normal fan of the Newton polytope PD. In this sense, B

is the “natural” ambient toric variety for the surface D.

For explicitness, let me fix once and for all a linear combination of the monomials as

the defining equation of the divisor D. I will select the vertices of the Newton polytope and

define

D =
{
z4

0 + z
4
1 + z

4
2 + z

4
3 = 0
}
⊂ B. (2.21)

This surface is known to be an Enriques surface since it projects out the potential (2, 0)-form

as mentioned in Section 2.1. In fact, this example has been known for some time, see Remark

3.6 in [27].

2.6. Kähler Cone and Canonical Divisors

The content of this subsection is not necessary for the understanding of the paper, but I would

like to pause for a moment and mention how the “Fermat quartic” in (2.21) fails to define a

K3 surface. In other words, how does the divisor D = 4V (z0) differ from the anticanonical

divisor

−KB = V
(
z0

)
+ V
(
z1

)
+ V
(
z2

)
+ V
(
z3

)
(2.22)

of B? Comparing with P3, see (2.8), one might have thought that they were linearly

equivalent.

Similarly to the quartic K3 ⊂ P3, one can also define a Calabi-Yau variety in B as

the zero locus of a section of the anticanonical bundle (after resolution of singularities,
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the anticanonical divisor will be a smooth 2-dimensional Calabi-Yau manifold, that is, again

a K3 surface). The available sections are

H0
(
B,O
(
−KB

))
=
〈
z2

0z
2
3, z

3
0z2, z

2
2z

2
3, z0z

3
2, z1z

3
3, z0z1z2z3, z

2
0z

2
1, z

2
1z

2
2, z

3
1z3

〉
. (2.23)

Note that this differs from the sections of D, see (2.19). Therefore, the two divisors are not
linearly equivalent. Nevertheless, −KB and D are very close to being linearly equivalent.

In fact, it is easy to see that they are in the same rational divisor class since the rational

divisor class group is one-dimensional, dim(A2(B)⊗ZR) = 1. (The toric divisor class group

of a variety X is often written as Cl(X). I will not use this notation in the following, but opt

for Adim(X)−1(X) instead.) However, their difference is a 2-torsion element in the (integral)
divisor class

KB +D/= 0, 2
(
KB +D

)
= 0 ∈ A2

(
B
)
� Z ⊕ Z4. (2.24)

The same is true on the crepant partial resolution, where KB +D is again a 2-torsion element

in A2(B).
On the final smooth resolution B̂ the divisor class group A2(B̂) = Z15 is torsion-free.

However, the last blow-up π̂ : B̂ → B is not crepant, so

π̂∗(KB)/=KB̂. (2.25)

Therefore, the divisors −KB̂ and D̂ = π̂∗(D) are no longer in the same rational equivalence

class.

Finally, let me describe the Kähler cones of these varieties. First, let me remind the

reader that the Kähler cone of a toric variety is an open rational polyhedral cone in the rational

divisor class group corresponding to the cone of convex piecewise linear support functions

on the fan. For the two singular varieties, one obtains

K
(
B
)
=
〈
V
(
z0

)〉
⊂ A2

(
B
)
⊗Z R � R

K(B) = 〈V (z0), V (z1), 2V (z0) + V (z4)〉 ⊂ A2(B)⊗Z R � R3.
(2.26)

As the anticanonical class −KB is rationally equivalent to 4V (z0), we see the following.

(i) B is a (singular) Fano variety.

(ii) B is not Fano, but the anticanonical class is on the boundary of the Kähler cone. In

other words, −KB is nef but not ample.

On the smooth blow-up B̂, the Kähler cone

K
(
B̂
)
⊂ A2

(
B̂
)
⊗Z R � R15 (2.27)

is rather complicated, and we will refrain from listing it explicitly. It is spanned by the origin

and 169 rays and has 20 facets (that is, 14-dimensional faces). The anticanonical divisor −KB̂
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as well as D̂ sits on the boundary of the Kähler cone, that is, is nef but not ample. However,

each satisfies a different subset of 16 out of the 20 facet equations, so they lie on different faces

of the Kähler cone.

2.7. Pull-Back Divisors

By the usual dictionary of toric geometry, the toric divisor 4V (z0) ∼ D corresponds to a con-

tinuous piecewise linear function on NR � R3. Explicitly, the function is

f
(
nx, ny, nz

)
=

⎧⎪⎪⎨⎪⎪⎩
nz if �n ∈ 〈0, 1, 2〉,
−4nx − 2nz if �n ∈ 〈0, 1, 3〉,
−4ny − nz if �n ∈ 〈0, 2, 3〉,
0 if �n ∈ 〈1, 2, 3〉.

(2.28)

The pull-back of this toric divisor by the toric morphisms π and π ◦ π̂ is simply given by the

pull-back of the piecewise linear function. Therefore,

D ∼ 4V
(
z0

)
,

D ∼ 4V (z0) + 2V (z4),

D̂ ∼ 4V (ẑ0) + 2V (ẑ4) + 4V (ẑ6) + 3V (ẑ7) + 3V (ẑ8) + 2V (ẑ9)

+2V (ẑ10) + 2V (ẑ11) + V (ẑ12) + 2V (ẑ13) + V (ẑ14).

(2.29)

What is the exceptional set of the first blow-up π? Recall that it corresponds to the subdivi-

sions along the 2-cones

〈0, 4〉 ∪ 〈2, 4〉 −→ 〈0, 2〉, 〈1, 5〉 ∪ 〈3, 5〉 −→ 〈1, 3〉, (2.30)

see Figure 1. Therefore, π is the blow-up along two disjoint rational curves of Z2-singularities

in B. A standard intersection computation in the Chow group [26] yields that each curve

intersects the divisor D in two points. Therefore, the proper transform of D ⊂ B is D blown

up in four points. The final blow-up π̂ : B̂ → B does not further subdivide the 2-skeleton Σ(2)
B

and, therefore, corresponds to the blow-up of points in B. Any sufficiently generic divisor

D misses these blow-up points, and, therefore, the surfaces D and D̂ are isomorphic. To

summarize,

(i) D is a singular Enriques surface with four Z2-orbifold points;

(ii) D̂ andD are the same smooth Enriques surface after blowing up the orbifold points;

(iii) Since the blow-up at a point does not change the fundamental group, we find that

π1

(
D
)
= π1(D) = π1

(
D̂
)
= Z2. (2.31)

It is important to remember that the actual divisor is a fixed subvariety defined as the

zero locus of an equation. To relate this defining equation before and after the blow-up, it is
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instructional to write the first blow-up map π : B → B explicitly in terms of its action on

homogeneous coordinates. One finds

π([z0 : z1 : z2 : z3 : z4 : z5]) =
[
z0

√
z4 : z1

√
z5 : z2

√
z4 : z3

√
z5

]
. (2.32)

Note that this map is well defined on the equivalence classes (2.17) thanks to the

identifications (2.16). One sees that, for example, the section z4
0 corresponds to the section

z4
0z

2
4 under the π∗ pull-back. I leave the analogous expression for π̂ as an exercise to the

reader.

To summarize, the equation for the divisor D determines the equation satisfied by the

proper transforms D and D̂ on the blow-ups. They are

D =
{
z4

0 + z
4
1 + z

4
2 + z

4
3 = 0
}
,

D =
{
z4

0z
2
4 + z

4
1z

2
5 + z

4
2z

2
4 + z

4
3z

2
5 = 0
}
,

D̂ =
{
ẑ4

0ẑ
2
4ẑ

4
6ẑ

3
7ẑ

3
8ẑ

2
9ẑ

2
10ẑ

2
11ẑ12ẑ

2
13ẑ14 + ẑ4

1ẑ
2
5ẑ

2
6ẑ

2
7ẑ

3
9ẑ

4
10ẑ11ẑ

2
12ẑ

3
15ẑ16ẑ

2
17

+ẑ4
2ẑ

2
4ẑ7ẑ8ẑ

2
10ẑ

3
12ẑ

2
13ẑ

3
14ẑ

2
15ẑ

2
16ẑ

4
17 + ẑ

4
3ẑ

2
5ẑ

2
6ẑ

2
8ẑ9ẑ

3
11ẑ

4
13ẑ

2
14ẑ15ẑ

3
16ẑ

2
17 = 0

}
.

(2.33)

3. Elliptic Fibration

So far, I have constructed

(i) a three-dimensional (singular) Fano variety B,

(ii) a quasismooth divisor D in B with π1(D) = Z2,

(iii) a smooth three-dimensional toric variety B̂, corresponding to a maximal subdivi-

sion of a reflexive polytope,

(iv) a smooth divisor D̂ in B̂ with π1(D̂) = Z2. This divisor is a smooth Enriques surface.

I will now proceed and construct four-dimensional elliptically fibered Calabi-Yau varieties Y ,

Ŷ over B and B̂ whose discriminant contains D and D̂, respectively.

3.1. Weierstrass Models

Ideally, one would like to classify all elliptic fibrations over the base manifold. Unfortunately

it is not known how to do so in this generality. It is known, however, that there exists a

Weierstrass model (not necessarily over the same base) which is a (in general) different

elliptic fibration [28, 29], at least assuming that the base is smooth and the discriminant

is a normal crossing divisor. The Weierstrass model and the original elliptic fibration are

birational to each other, but apart from that their relationship is arduous at best.

Having said this, let us define the elliptically fibered variety Y in the most

unimaginative way possible as a (global) Calabi-Yau Weierstrass model

Y =
{
y2z = x3 + f

(
�ζ
)
xz2 + g

(
�ζ
)
z3
}
⊂ P(O ⊕ O(−2KZ) ⊕ O(−3KZ)), (3.1)
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on a base variety Z with coordinates ζ. The remaining coordinates, z, x, and y, are sections

z ∈ ΓO, x ∈ ΓO(−2KZ), y ∈ ΓO(−3KZ). (3.2)

The defining data of the Weierstrass model is the choice of coefficients in the Weierstrass

equation, that is, the choice of sections

f ∈ ΓO(−4KZ), g ∈ ΓO(−6KZ). (3.3)

To engineer gauge theories on 7-branes wrapped on a divisor {ζ = 0} ⊂ Z, one

needs suitable singularities. In addition, the singularity must be of the correct split or

nonsplit type as in Tate’s algorithm [30]. For this purpose it is convenient to parametrize the

Weierstrass (technically, the singularity appears after blowing down all fiber components of

the Weierstrass model not intersecting the zero section, but we will not dwell on this) model

by polynomials (that is, sections of suitable line bundles) a1, a2, a3, a4, a6 as

f = − 1

48
a4

1 −
1

6
a2

1a2 +
1

2
a1a3 −

1

3
a2

2 + a4

g =
1

864
a6

1 +
1

72
a4

1a2 −
1

24
a3

1a3 +
1

18
a2

1a
2
2 −

1

12
a2

1a4

−1

6
a1a2a3 +

2

27
a3

2 −
1

3
a2a4 +

1

4
a2

3 + a6.

(3.4)

The degree of vanishing of the a�(ζ) then determines (except for a few special cases that will

be of no relevance for us) the low-energy effective gauge theory, see [31, 32]. For everything

to be globally defined, the a� need to be sections of

a� ∈ ΓO(−�KZ). (3.5)

3.2. Weierstrass Model on the Singular Base

To engineer a SU(5) gauge theory coming from a 7-brane wrapped on the divisor D, one

needs a split A4 singularity [31]. This translates into a� vanishing to degree � − 1 on D. In

other words, a� must be divisible by d�−1 = 0, where d is the defining equation for the divisor

D as given in (2.33). Put yet differently,

a�

d�−1
∈ ΓO

(
−�KB − (� − 1)D

)
. (3.6)

The number of sections is tabulated in Table 2. Note how the rows repeat with periodicity 2.

This again follows from the fact that KB and D differ by 2-torsion in the divisor class group,

see (2.24). Hence, there are plenty sections available for a1, . . . , a6, and one can easily find an

elliptic fibration with a split A4 over D.
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Table 2: Number of sections of O(−κKB − δD).

dimΓO(−κKB − δD) κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

δ = 0 9 43 115 245 445 735

δ = 1 0 10 42 116 244 446

δ = 2 0 1 9 43 115 245

δ = 3 0 0 0 10 42 116

δ = 4 0 0 0 1 9 43

δ = 5 0 0 0 0 0 10

δ = 6 0 0 0 0 0 1

δ ≥ 7 0 0 0 0 0 0

Table 3: Number of sections of O(−κKB̂ − δD̂), see also Figure 2.

dimΓO(−κKB̂ − δD̂) κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

δ = 0 9 35 91 189 341 559

δ = 1 0 2 18 60 140 270

δ = 2 0 0 0 3 27 85

δ = 3 0 0 0 0 0 4

δ ≥ 4 0 0 0 0 0 0

3.3. Weierstrass Model on the Smooth Base

Let me now turn to the smooth threefold B̂ and construct a suitable singularity over the

smooth divisor D̂. The main difference is that now, after resolving the singularity, the

anticanonical divisor is “smaller” than D̂, by which I mean that there are strictly less sections

available for the Weierstrass model. See Figure 3 for details. Note that, if one always imposes

the maximal degree of vanishing such that there are still nonzero sections, one can at most

implement a split A2 singularity leading to a low-energy SU(3) gauge theory.

Having being dealt this lemon, let me try to make some lemonade. As in the previous

subsection, I will write D̂ = {d̂ = 0} for the defining equation, see (2.33). The split A2

singularity corresponds to a factorized form

a1 = α1 α1 ∈ ΓO
(
−KB̂

)
,

a2 = d̂α2 α2 ∈ ΓO
(
−2KB̂ − D̂

)
,

a3 = d̂α3 α3 ∈ ΓO
(
−3KB̂ − D̂

)
,

a4 = d̂2α4 α4 ∈ ΓO
(
−4KB̂ − 2D̂

)
,

a6 = d̂3α6 α6 ∈ ΓO
(
−6KB̂ − 3D̂

)
.

(3.7)

A basis for all sections can, of course, be written as in terms of homogeneous monomials in the

18 homogeneous coordinates ẑ0, . . . , ẑ17. To save a tree I will now switch to inhomogeneous
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Figure 3: The generating cones of the fan ΣB̂ (yellow, outer circle), ΣB (blue), and ΣB (red, inner circle). By
〈i, j, k〉 we denote the cone spanned by the rays number i, j, and k in 1, and arrows mean “contained in.”
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Figure 4: The fan defining the toric variety S = (P1 × P1)/Z2 (a) and its crepant smooth resolution Ŝ (b).
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coordinates (ξ0, ξ1, ξ2) ∈ C3 for the coordinate patch, say, corresponding to the cone 〈0, 4, 7〉.

This amounts to replacing the homogeneous coordinates with

[ẑ0 : ẑ1 : · · · : ẑ17] = [ξ0 : 1 : 1 : 1 : ξ1 : 1 : 1 : ξ2 : 1 : · · · : 1]. (3.8)

In this patch,

d̂ = ξ4
0ξ

2
1ξ

3
2 + ξ

2
1ξ2 + ξ2

2 + 1, (3.9)

and the sections of the relevant line bundles are

ΓO
(
−KB̂

)
=
〈

1, ξ1, ξ2, ξ0ξ
2
1ξ2, ξ1ξ2, ξ

2
0ξ1ξ2, ξ

2
0ξ1ξ

2
2 , ξ

3
0ξ

2
1ξ

2
2 , ξ0ξ1ξ2

〉
,

ΓO
(
−2KB̂ − D̂

)
=
〈

1, ξ2
0ξ

2
1ξ2

〉
,

ΓO
(
−3KB̂ − D̂

)
=
〈

1, ξ1, ξ2, ξ1ξ2, ξ
2
0ξ

3
1ξ2, ξ

3
0ξ

4
1ξ

2
2 , ξ

2
0ξ

3
1ξ

2
2 , ξ

2
0ξ1ξ2, ξ

2
0ξ1ξ

2
2 , ξ

4
0ξ

3
1ξ

2
2 ,

ξ4
0ξ

3
1ξ

3
2 , ξ

5
0ξ

4
1ξ

3
2 , ξ0ξ

2
1ξ2, ξ

2
0ξ

2
1ξ

2
2 , ξ

3
0ξ

3
1ξ

2
2 , ξ0ξ1ξ2, ξ

2
0ξ

2
1ξ2, ξ

3
0ξ

2
1ξ

2
2

〉
,

ΓO
(
−4KB̂ − 2D̂

)
=
〈

1, ξ4
0ξ

4
1ξ

2
2 , ξ

2
0ξ

2
1ξ2

〉
,

ΓO
(
−6KB̂ − 3D̂

)
=
〈

1, ξ6
0ξ

6
1ξ

3
2 , ξ

2
0ξ

2
1ξ2, ξ

4
0ξ

4
1ξ

2
2

〉
.

(3.10)

For simplicity I will choose α� to be the sum of the monomials corresponding to the vertices

of the Newton polyhedron, that is,

α1 = ξ3
0ξ

2
1ξ

2
2 + ξ

2
0ξ1ξ

2
2 + ξ

2
0ξ1ξ2 + ξ0ξ

2
1ξ2 + ξ1ξ2 + ξ1 + ξ2 + 1,

α2 = ξ2
0ξ

2
1ξ2 + 1,

α3 = ξ5
0ξ

4
1ξ

3
2 + ξ

4
0ξ

3
1ξ

3
2 + ξ

4
0ξ

3
1ξ

2
2 + ξ

3
0ξ

4
1ξ

2
2 + ξ

2
0ξ

3
1ξ

2
2

+ ξ2
0ξ

3
1ξ2 + ξ2

0ξ1ξ
2
2 + ξ

2
0ξ1ξ2 + ξ1ξ2 + ξ1 + ξ2 + 1,

α4 = ξ4
0ξ

4
1ξ

2
2 + 1,

α6 = ξ6
0ξ

6
1ξ

3
2 + 1.

(3.11)

For all purposes in the following, this choice is generic. By construction, the discriminant then

factorizes as

Δ = 4f3 + 27g2 = d̂3r̂, (3.12)
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where the remainder (in fact, r̂ is a polynomial consisting of 1083 monomials in ξ0, ξ1, and ξ2)

defines a new divisor R̂
def= {r̂ = 0} ∼ −12KB̂ − 3D̂. In particular, the homology class splits as

[Δ] = 3
[
D̂
]
+
[
R̂
]
. (3.13)

Using the explicit equations, one can check [18] that

(i) R̂ is an irreducible divisor;

(ii) Neither f nor g vanishes at a generic point of R̂. Hence it supports I0 Kodaira fibers

in the Weierstrass model;

(iii) D̂ is smooth;

(iv) R̂ is not smooth, for example, (ξ0, ξ1, ξ2) = (1, 1,−1) is a singular point;

(v) The curve D̂ ∩ R̂ is not a complete intersection.

Let me further investigate the intersection curve D̂∩ R̂. One component (in the 〈0, 4, 7〉
patch) is given by the surprisingly simple expression

c : C −→ D̂ ∩ R̂, t �−→ (t, 0, i). (3.14)

Therefore, (ξ1, ξ2) are good normal coordinates. Taylor expanding along the normal directions

for a generic point c(t), we see that D̂ and R̂ share the same tangent plane but do not osculate

to any higher degree. Therefore, the degree of vanishing of the discriminant jumps from 5 to

7 along the intersection locus D̂ ∩ R̂, corresponding to worsening of the A2 singularity to an

A4 singularity.

4. Conclusions

In this paper I have constructed F-theory models with, a priori, SU(5) gauge theory on a

singular Fano threefold and a SU(3) gauge theory on the blown-up smooth threefold. In both

cases the non-Abelian gauge theory comes from a 7-brane wrapped on an Enriques surface,

which has fundamental group Z2. Therefore, in both cases one can switch on a discrete Wilson

line and break the gauge group below the compactification scale in the usual manner.

The fact that the only partially resolved base B allows for a higher rank gauge group

on the 7-brane than its smooth blow-up is curious: one might be tempted to interpret the

Kähler deformation as the usual Higgs mechanism; however the singular points are disjoint

from the 7-brane. In any case, there must be further physical degrees of freedom associated to

the singularities in the base, and it would be nice to have a more concise F-theory dictionary

for them.
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Appendix

A. Fibrations of the Base

The base manifolds B, B, and B̂ are fibered in an interesting manner which I will describe in

this appendix. The map to the 2-dimensional base is given by the N-lattice projection

φ : N(3) −→N(2), �n �−→
(

1 1 1

−1 1 0

)
�n. (A.1)

This defines a toric morphism of toric varieties if and only if every cone of the domain fan is

mapped into a cone of the range fan. It is easy to see that the rays Σ(1)
B and Σ(1)

B map to the rays

of the fan of S = (P1 × P1)/Z2, and the rays Σ(1)
B̂

map to the crepant resolution Ŝ. See Figure 4

for a graphical representation of the fans of S and Ŝ.

However, consistently mapping the rays of the fans is not enough to define a toric

morphism. Checking all higher-dimensional cones with respect to the lattice homomorphism

φ, one finds that

(i) the variety B is not fibered;

(ii) the variety B is a P1-fibrations over S;

(iii) the smooth threefold B̂ is a P1-fibration over S, but not over the crepant resolution

Ŝ.

It is, perhaps, vexing that the resolved threefold B̂ is not a fibration over the resolved base Ŝ.

However, a closer investigation reveals that one can flop 4 offending curves, corresponding

to the 4 bistellar flips

{〈1, 2, 15〉, 〈1, 2, 12〉} �−→ {〈1, 12, 15〉, 〈2, 12, 15〉}

{〈0, 1, 9〉, 〈0, 1, 7〉} �−→ {〈0, 7, 9〉, 〈1, 7, 9〉}

{〈0, 3, 11〉, 〈0, 3, 8〉} �−→ {〈0, 8, 11〉, 〈3, 8, 11〉}

{〈2, 3, 16〉, 〈2, 3, 14〉} �−→ {〈2, 14, 16〉, 〈3, 14, 16〉}

(A.2)

of the fan ΣB̂. The flopped threefold is then a P1 fibration over the resolved base Ŝ. Of course

the flopped threefold is then only birational to B, B and no longer a direct blow-up. However,

it supports essentially the same elliptic fibration as B̂ as constructed in 3.
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We review free fermion, melting crystal, and matrix model representations of wall-crossing
phenomena on local, toric Calabi-Yau manifolds. We consider both unrefined and refined BPS
counting of closed BPS states involving D2- and D0-branes bound to a D6-brane, as well as open
BPS states involving open D2-branes ending on an additional D4-brane. Appropriate limit of these
constructions provides, among the others, matrix model representation of refined and unrefined
topological string amplitudes.

1. Introduction

This paper is devoted to some aspects of counting of BPS states in a system of Dp-branes,

with even p, in type IIA string compactifications. The problems of BPS counting span a vast

area of research in supersymmetric gauge and string theories. Their important feature is a

special, nonconstant character of BPS multiplicities: their values depend on various moduli

and jump discontinuously along some special loci in the corresponding moduli space, so

called walls of marginal stability. The pattern of these jumps follows wall-crossing formulas,
found from physical perspective by Denef and Moore [1] and, in more general context,

formulated mathematically by Kontsevich and Soibelman [2]. The regions of the moduli

space in between walls of marginal stability, in which BPS multiplicities are (locally) constant,

are called chambers.
The BPS states we are interested in, and which we will refer to as closed BPS states,

arise as bound states of a single D6-brane with arbitrary number of D0 and D2-branes

wrapping cycles of a toric Calabi-Yau space. More generally, we will also consider open BPS
states, which arise when an additional D4-brane spans a Lagrangian submanifold inside

the Calabi-Yau space and supports open D2-branes attached to it. The closed and open

BPS states give rise, respectively, to single-particle states in the effective four-dimensional

and two-dimensional theory (in remaining, space-time filling directions of, resp., D6 and

D4-branes). In this context, the character of BPS multiplicities can be understood in much
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detail, and it relates to other interesting exactly solvable models: free fermions, crystal, and

matrix models. In brief, these connections arise as follows. Firstly, BPS states we consider

turn out to be in one-to-one correspondence with configurations of certain statistical models

of melting crystals. The structure of these crystals depends on geometry of the underlying

Calabi-Yau space, as well as on the chamber one is considering. In consequence, BPS counting

functions, upon appropriate identification of parameters, coincide with generating functions

of melting crystals. It turns out that the structure of these crystals can be given a free fermion

representation. Furthermore, once such free fermion formulation is known, it can also be

represented in terms of matrix models. Connection with vast theory of matrix models has

many interesting mathematical and physical consequences and allows to shed new light on

wall-crossing phenomena. The aim of this paper is to explain these connections.

The BPS generating functions which we consider are intimately related to topological

string amplitudes on corresponding Calabi-Yau spaces. This relation is most transparent in

the physical derivation discussed in Section 2, which relies on lifting the D-brane system

to M-theory. The M-theory viewpoint makes contact with original formulation of closed

topological strings by Gopakumar and Vafa [3, 4], and open topological strings by Ooguri

and Vafa [5]. In particular, in one specific, so-called noncommutative chamber, the BPS-

generating function is given as the modulus square of the topological string partition

function. In all other chambers, BPS generating functions can be uniquely determined from

that noncommutative result. There is also another special, so-called commutative chamber, in

which BPS generating function coincides (up to the factor of MacMahon function) with the

topological string partition function. For toric manifolds which we consider, such topological

string amplitudes can be constructed, among the other, by means of the powerful topological

vertex formalism [6]. Relation to crystal models was in fact first understood in this topological

string chamber [7–9]. One advantage of the formalism presented in this paper is the fact that

it allows to construct matrix model representation of all these generating functions (so, in

particular, matrix model representation of topological string amplitudes).
In more detail, we will consider generating functions of D2 and D0-branes bound to a

single D6-brane of the following form:

ZBPS

(
qs,Q
)
=
∑
α,β

Ω
(
α, β
)
qαsQ

β, (1.1)

where α ∈ Z is D0-brane charge and β ∈ H2(X,Z) is D2-brane charge. Multiplicities Ω(α, β)
jump when central charges (which itself are functions of Kähler moduli) of building blocks

of a bound state align, and therefore these generating functions are locally constant functions

of Kähler moduli. Along the walls of marginal stability, the degeneracies Ω(α, β) change and

indeed obey wall-crossing formulas of [1, 2] mentioned above.

If there is an additional D4-brane which spans a Lagrangian submanifold inside the

Calabi-Yau space, in addition to the above closed BPS states, one can consider also open BPS

states of D2-branes with boundaries ending on a one-cycle γ on this D4-brane. In this case,

the BPS states arise on the remaining two-dimensional world-volume of the D4-brane. The

holonomy of the gauge field along γ provides another generating parameter z, so that open

BPS-generating functions take form

Zopen

BPS

(
qs,Q
)
=
∑
α,β,γ

Ω
(
α, β
)
qαsQ

βzγ . (1.2)

As we will show, generating functions of such open BPS states can be identified with

integrands of matrix models mentioned bove.
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One more important aspect of BPS counting is referred to as refinement, and amounts

to refining BPS counting by introducing one more parameter, customarily denoted β. The

refinement can be introduced from several perspectives which give rise to identical results;

however, their fundamental common origin is still not fully understood. We will introduce

refinement by distinct counting of states with different SU(2) spins inside spacetime SO(4)
rotation group in the generating function (1.1). In [10], it was argued that this physical

viewpoint should agree with the mathematical counterpart of motivic deformation [2], and

also a refined version of a crystal model was constructed. Another notion of refinement

arises in Nekrasov partition functions, which are defined in a nontrivial gravitational (so-

called Ω-) background parametrized by two parameters ε1 and ε2 [11]. Nekrasov partition

functions can also be defined for five-dimensional gauge theories and then they agree with

topological string amplitudes. In particular, the formalism of the topological vertex [6] has

also been extended to the refined context in [12], and shown to reproduce relevant Nekrasov

partition functions. Also BPS generating functions, in the limit of commutative chamber, are

known to reproduce refined topological string amplitudes with β = −ε1/ε2 [13]. However,

the worldsheet definition of refined topological string amplitudes is not fully understood.

As an exemplary and, hopefully, inspiring application of the entire formalism

presented in this paper, in the final Section 6 we derive matrix model representation of

the refined topological string partition function for the conifold. The refined matrix model

which we find has a standard measure; however, its potential is deformed by β-dependent

terms. It is obtained by constructing appropriate refined crystal model and free fermion

representation, and subsequently reformulating this representation in matrix model form.

Finally, taking the limit of the commutative chamber, we obtain matrix model representation

of the refined topological string amplitude. Even though we demonstrate this result in

the conifold case, with some technical effort it can be generalized to other toric manifolds

which we consider (As we recall in Section 6, refined topological string amplitudes were

also postulated to be reproduced by another type of matrix models, so-called β-deformed

ones (whose Vandermonde measure is deformed by raising it to power β); however,

explicit computations showed that this cannot be the correct representation of refined

amplitudes.).

1.1. Short Literature Guide

The literature on the topics presented in this paper is extensive and still growing, and

we unavoidably mention just a fraction of important developments. The relation between

Donaldson-Thomas invariants for the noncommutative chamber of the conifold was first

found by Szendrői [14]. It was generalized to orbifolds of C3, and related to free fermion

formalism, by Bryan and Young [15]. The relation to free fermions and crystals was extended

to a large class of toric manifolds without compact four-cycles [16, 17]. These developments

were accompanied by other mathematical works [18, 19].
In parallel to the above-mentioned mathematical activity, wall-crossing phenomena

for local Calabi-Yau manifolds were analyzed from physical viewpoint. The analysis of

nontrivial BPS counting for the conifold was described by Jafferis and Moore in [20]. This

and more general cases were related to quivers and crystal models in [21, 22]. Derivation of

BPS degeneracies from M-theory viewpoint and relation to closed topological strings were

discussed in [23], and generalized to open BPS counting in [24–27]. Relations to matrix

models, discussed for plane partitions with some other motivation in [28], were extended

to other crystal models relevant for BPS counting in [29], and also in [30]. Subsequently, it
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was related to open BPS counting in [27]. Refined BPS counting was related to crystal models

in [10, 13], and corresponding matrix models were constructed in [31].
Let us also mention some other, related works devoted to crystals and free fermions.

The fermionic construction of MacMahon function for C3 was originally presented in [7],
and its relation to open topological strings and more complicated Calabi-Yau manifolds

were discussed in [32–34]. Newer ideas, analyzing more complicated systems involving

D4-branes, were presented in [35, 36]. More expository presentations of various aspects

described here can be found in [37, 38]. A general introduction to mathematical and physical

aspects of mirror symmetry can be found in [39].

1.2. Plan

The plan of this paper is as follows. In Section 2, we introduce BPS generating functions and

present one possible derivation of their form, which relies on the M-theory interpretation

of a D-brane system, following [23–25, 27]. In Section 3, we provide a little mathematical

background and introduce notation pertaining to toric Calabi-Yau manifolds, free fermion

formalism, and matrix models. In Section 4, we introduce fermionic formalism for BPS

generating functions and present corresponding crystal models, building on earlier ideas of

[7, 15] and following [16]. In Section 5, we reformulate the problem of closed BPS counting

in terms of matrix models and relate it to open BPS counting [27, 29]. In Section 6, we

refine our analysis, present refined BPS generating functions and crystals [10], and construct

corresponding refined matrix models [31].

2. BPS Generating Functions

In this section, we introduce generating functions of BPS states of D-branes in toric Calabi-Yau

manifolds. Our task in the rest of this paper is to provide interpretation of these generating

functions in terms of free fermions, melting crystals, and matrix models. These generating

functions can be derived using wall-crossing formulas, as was done first in the unrefined [20]
and refined [10] conifold case, and later generalized to arbitrary geometry without compact

four-cycles in [18, 19]. On the other hand, we will focus on a simpler physical derivation of

BPS generating functions which uses the lift of the D-brane system to M-theory [23]. This

also makes contact with M-theory interpretation of topological string theory and allows to

express BPS counting functions in terms of topological string amplitudes. Moreover, this M-

theory derivation can be extended to the counting of open BPS states,that is, open D2-branes

attached to additional D4-brane, which we are also interested in [24, 25, 27].
We start this section by reviewing the M-theory derivation of (unrefined) closed and

open BPS generating functions. Then, to get acquainted with a crystal interpretation of

these generating functions, we discuss their crystal interpretation in simple cases of C3 and

conifold. Later, using fermionic interpretation, we will generalize this crystal representation

to a large class of toric manifolds without compact four cycles.

2.1. M-Theory Derivation

We start by considering a system of D2 and D0-branes bound to a single D6-brane in type

IIA string theory. It can be reinterpreted in M-theory as follows [23]. When additional S1

is introduced as the eleventh dimension transversely to the D6-brane, then this D6-brane

transforms into a geometric background of a Taub-NUT space with unit charge [40]. The
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Taub-NUT space is a circle fibration over R3, with a circle S1
TN attaining a fixed radius R at

infinity, and shrinking to a point in the location of the original D6-brane. From M-theory

perspective, bound states involving D2 and D0-branes are interpreted as M2-branes with

momentum on a circle. Therefore, the counting of original bound states to the D6-brane is

reinterpreted as the counting of BPS states of M2-branes in the Taub-NUT space. While in

general this is still a nontrivial problem, for the purpose of counting BPS degeneracies we can

take advantage of their invariance under continuous deformations of the Taub-NUT space, in

particular under deformations of the radius R. We can therefore consider taking this radius

to infinity, whereupon BPS counting is reinterpreted in terms of a gas of particles in R5. To

make the problem fully tractable, we have to ensure that the particles are noninteracting,

which would be the case if moduli of the Calabi-Yau would be tuned so that M2-branes

wrapped in various ways would have aligned central charges. This can be achieved when

Kähler parameters of the Calabi-Yau space are tuned to zero. However, to avoid generation

of massless states, at the same time one has to include nontrivial fluxes of the M-theory three-

form field through the two cycles of the Calabi-Yau and S1
TN. In type IIA, this results in the

B-field flux B through two cycles of Calabi-Yau. Finally, to avoid creation of the string states

arising from M5-branes wrapping four cycles in Calabi-Yau, we simply restrict considerations

to manifolds without compact four cycles. For a state arising from D2-brane wrapping a class

β, the central charge then reads

Z
(
l, β
)
=

1

R

(
l + B · β

)
, (2.1)

where l counts the D0-brane charge, which is taken positive to preserve the same

supersymmetry.

Under the above conditions, the counting of D6-D2-D0 bound states is reinterpreted

in terms of a gas of particles arising from M2-branes wrapped on cycles β. The excitations of

these particles in R4, parametrized by two complex variables z1, z2, are accounted for by the

modes of the holomorphic field

Φ(z1, z2) =
∑
l1,l2

αl1,l2z
l1
1 z

l2
2 . (2.2)

Decomposing the isometry group of R4 as SO(4) = SU(2) × SU(2)′, there are Nm,m′

β
five-

dimensional BPS states of intrinsic spin (m,m′). We are interested in their net number arising

from tracing over SU(2)′ spins

Nm
β =
∑
m′

(−1)m
′
Nm,m′

β
. (2.3)

The total angular momentum of a given state contributing to the index is l = l1+l2+m. Finally,

in a chamber specified by the moduli R and B, the invariant degeneracies can be expressed

as the trace over the corresponding Fock space

ZBPS =
(

TrFockq
Q0
s QQ2

)∣∣∣
chamber

=
∏
β,m

∏
l1+l2=l

(
1 − ql1+l2+ms Qβ

)Nm
β

∣∣∣∣
chamber

=
∏
β,m

∞∏
l=1

(
1 − ql+ms Qβ

)lNm
β

∣∣∣∣
chamber

,

(2.4)
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where the subscript chamber denotes restriction to those factors in the above product, which

represent states which are mutually BPS

Z
(
l, β
)
> 0 ⇐⇒ ql+ms Qβ < 1. (2.5)

As usual, Q = e−T and qs = e−gs above encode, respectively, the Kähler class T and the

string coupling gs (we wish to distinguish carefully qs which encodes string coupling, from

a counting parameter q which will arise in what follows in crystal interpretation). The above

condition on central charges is crucial in determining a particular form of the BPS generating

functions. If we would restrict products in the formula (2.4) to factors with only positive

β, we would get (up to possibly some factor of MacMahon function) the Gopakumar-Vafa

representation of the topological string amplitude. With all negative and positive values of

β, we would get modulus square of the topological string partition function. Therefore, the

upshot of [23] is that in general the above BPS generating function can be expressed in terms

of the closed topological string partition function

ZBPS = Ztop(Q)Ztop

(
Q−1
)∣∣∣

chamber
, (2.6)

where chamber restriction is to be understood as picking up only those factors in Gopakumar-

Vafa product representation of Ztop for which (2.5) is satisfied. In this context, we will often

refer to the choice of a chamber as a closed BPS chamber. The (instanton part of the) closed

topological string partition function entering the above expression is given by [3, 4]

Ztop(Q) =M
(
qs
)χ/2

∞∏
l=1

∏
β>0,m

(
1 −Qβqm+l

s

)lNm
β
, (2.7)

where M(qs) =
∏

l(1 − qls)−l is the MacMahon function and χ is the Euler characteristic of the

Calabi-Yau manifold.

To be more precise, an identification as a topological string partition function or

its square arises if R > 0 in (2.1). Because R arises just as a multiplicative factor in

(2.1), degeneracies depend only on its sign. Therefore, another extreme case corresponds to

negative R and B sufficiently small, when only a single D6-brane contributes to the partition

function

Z̃(R < 0, 0 < B � 1) = 1. (2.8)

More generally, for R < 0, BPS generating functions often (but not always) take finite form.

In what follows we denote BPS generating functions in chambers with positiveR by Z,

and in chambers with negative R by Z̃ (and often omit the subscript BPS). Topological string

partition functions will be denoted by Ztop, while generating functions of melting crystals by

ordinary Z.

The above structure can be generalized by including in the initial D6-D2-D0

configuration additional D4-branes wrapping Lagrangian cycles in the internal Calabi-Yau

manifold and extending in two space-time dimensions [24, 25, 27]. For simplicity, we consider

a system with a single D4-brane wrapping a Lagrangian cycle. There are now additional BPS
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states in two remaining spacetime dimensions arising from open D2-branes ending on these

D4-branes. Their net degeneracies Ns,β,γ are characterized, firstly, by the SO(2) spin s whose

origin is most clearly seen from the M-theory perspective [5, 41]. Secondly, they depend on

two-cycles β wrapped by open M2-branes, as well as one-cycles γ on which these M2-branes

can end (In case of N D4-branes wrapping the same Lagrangian cycle, these states would

additionally arise in representations R of U(N) [5]. In case of a single brane, this reduces to

U(1), and such a dependence can be reabsorbed into a parameter specifying a choice of γ .).
Lifting this system to M-theory, we obtain a background of the form Taub-NUT ×

Calabi-Yau × S1, with the additional D4-brane promoted to M5-brane. This M5-brane wraps

the Lagrangian submanifold L inside Calabi-Yau, the time circle S1, and R+ × S1
TN inside the

Taub-NUT space. A part of this Lagrangian L is a torus T2 = S1
TN×S1, which will lead to some

modular properties of the BPS counting functions: this modularity will be manifest in one

chamber, where the open topological string amplitude will be completed to the product of θ

functions. This M5-brane also breaks the SO(4) spatial symmetry down to SO(2) × SO(2)′.
We denote the spins associated to both SO(2) factors, respectively, by σ and σ ′, and the

degeneracies of particles with such spins by Nσ,σ′
β,γ

. In addition to closed Kähler parameters

Q = e−T , let us also introduce open ones related to discs wrapped by M2-branes z = e−d. The

real and imaginary parts of T encode, respectively, the sizes of two-cycles β and the value of

the B-field through them. The real and imaginary parts of d encode, respectively, sizes of the

discs and holonomies of the gauge fields around them. Similarly as in the closed string case,

to get nontrivial ensemble of mutually supersymmetric states, we set the real parts of T and

d to zero, and consider nontrivial imaginary parts.

From the M-theory perspective, we are interested in counting the net degeneracies of

M2-branes ending on this M5-brane

Nσ,β,γ =
∑
σ ′

(−1)σ
′
Nσ,σ ′

β,γ
. (2.9)

In the remaining three-dimensional space, in the R → ∞ limit, the M2-branes ending on

the M5-brane are represented by a gas of free particles. These particles have excitations in

R2 which we identify with the z1-plane. To each such BPS particle, similarly as in the closed

string case discussed above and in [23, 40], we can associate a holomorphic field

Φ(z1) =
∑
l

αlz
l
1. (2.10)

The modes of this field create states with the intrinsic spin s and the orbital momentum l in

the R2 plane. The derivation of the BPS degeneracies relies on the identification of this total

momentum σ+ l in the R → ∞ limit, with the Kaluza-Klein modes associated to the rotations

along S1
TN for the finite R, following the five-dimensional discussion in [40, 42].

The BPS generating functions we are after are given by a trace over the Fock space

built by the oscillators of the second quantized field Φ(z1) and restricted to the states which

are mutually supersymmetric. In such a trace, each oscillator from (2.10) gives rise to one

factor of the form (1 − qσ+l−1/2
s Qβzγ)±1, where the exponent ±1 corresponds to the bosonic or

fermionic character of the top component of the BPS state,

Zopen

BPS
=
∏
σ,β,γ

∞∏
l=1

(
1 − qσ+l−1/2

s Qβzγ
)Nσ,β,γ

∣∣∣∣
chamber

, (2.11)
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where the product is over either both positive or both negative (β, γ). The parameters q,Q

and z specify the chamber structure: the restriction to a given chamber is implemented by

imposing the condition on a central charge, analogous to (2.5),

qσ+l−1/2
s Qβzγ < 1. (2.12)

This condition in fact specifies a choice of both closed and open chambers. The walls of

marginal stability between chambers correspond to subspaces where, for some oscillator, the

above product becomes 1, and then the contribution from such an oscillator drops out from

the BPS generating function.

Similarly as in the closed string case, the above degeneracies can be related to open

topological string amplitudes, rewritten in [5] in the form

Zopen

top = exp

⎛⎜⎝ ∞∑
n=1

∑
σ

∑
β,γ>0

Nσ,β,γ

qnσs Qnβznγ

n
(
qn/2
s − q−n/2

s

)
⎞⎟⎠, (2.13)

with integer Ooguri-Vafa invariants Nσ,β,γ (In case of N D4-branes wrapping a Lagrangian

cycle, this structure is again more complicated, because the states in R3 arise in representa-

tions of U(N) [5]. This requires replacing the factor znγ by the sum
∑

R TrRV
n of traces in all

possible representations R of this U(N) of the matrix V encoding holonomies of the gauge

fields. For simplicity we restrict here to the simplest case.). This formula represents in fact a

series of quantum dilogarithms

L
(
z, qs
)
= exp

⎛⎜⎝∑
n>0

zn

n
(
qn/2
s − q−n/2

s

)
⎞⎟⎠ =

∞∏
n=1

(
1 − zqn−1/2

s

)
(2.14)

and can be written in the product form

Zopen

top (Q, z) =
∏
σ

∏
β,γ>0

∞∏
n=1

(
1 −Qβzγqσ+n−1/2

s

)Nσ,β,γ

. (2.15)

Comparing with (2.11) we conclude that the BPS counting functions take form of the modulus

square of the open topological string amplitude

Zopen

BPS
= Zopen

top (Q, z)Zopen

top

(
Q−1, z−1

)∣∣∣
chamber

. (2.16)

Similarly as in the closed string case, there are also a few particularly interesting

chambers to consider. For example, in the extreme chamber corresponding to Im T , Im d → 0,

the trace is performed over the full Fock space and yields the modulus square of the open

topological string partition function. In this case, the quantum dilogarithms arise in pairs,

which (using the Jacobi triple product identity) combine to the modular function θ3/η; in

consequence, the total BPS generating function is modular and expressed as a product of

such functions.
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Figure 1: Plane partitions represent melting crystal configurations of C3.

2.2. Crystal Interpretation

Closed BPS generating functions (2.4) turn out to be generating functions of statistical

models of crystals, when parameters relevant for both interpretations are appropriately

matched. Physical reasons for such relations have been given in [8, 21, 22], and mathematical

interpretation arose from works [9, 14, 15]. Such crystal interpretation arises also from the

fermionic formulation [16, 17], as we will review below. These crystals, in a more intricate

way [27], encode also open BPS generating functions (2.11). However, before discussing

details of all these constructions, in this introductory section we present crystal models for

two simplest toric Calabi-Yau manifolds, that is, C3 and conifold.

C3 is the simplest Calabi-Yau manifold. It has no compact two-cycles, so relevant BPS

states are bound states of arbitrary number of D0-branes with a single D6-brane wrapping

entire C3. Their generating function is therefore expressed in terms of a single parameter

qs = e−gs . There is just a single nonzero Gopakumar-Vafa invariant N0
β=0

= −1, and as follows

from (2.4) this generating function coincides with the so-called MacMahon function

ZBPS =
∞∏
l=1

1(
1 − qls

)l =M(qs). (2.17)

On the other hand, the MacMahon function is a generating function of plane partitions,

that is, three-dimensional generalization of Young diagrams. These plane partitions represent

the simplest three-dimensional crystal model, namely, they can be identified with stacks of

unit cubes filling the positive octant of R3 space, as shown in Figure 1. A unit cube located

in position (I, J,K) can evaporate from this crystal only if all other cubes with coordinates

(i ≤ I, j ≤ J, k ≤ K) are already missing. A plane partition π is weighted by the number of

boxes it consists of |π |, with a weight q associated to a single box, so indeed

Z =
∑
π

q|π | =
∞∑
l=0

p(l)ql = 1 + q + 3q2 + 6q3 + 13q4 + · · · =M
(
q
)
, (2.18)
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(a) (b)

Figure 2: Infinite pyramids with one and four balls in the top row, with generating functions given,

respectively, by Z
pyramid

0 and Z
pyramid

3 .

where p(l) is the number of plane partitions which consist of l cubes. Therefore, plane

partition generating function coincides with the BPS counting function Z = ZBPS when a

simple identification

qs = q (2.19)

is made. From (2.6), it follows that the topological string partition function for C3 is given by

the square root of the MacMahon function

Ztop =M
(
qs
)1/2

, (2.20)

which is indeed true. The relevance of the MacMahon function for C3 geometry was noticed

for the first time in [3], and a statistical model interpretation of this result was proposed in

[7].
The conifold provides another simple, yet nontrivial example of toric Calabi-Yau

manifold. It consists of two C3 patches glued int O(−1) ⊕ O(−1) → P1, and it has one

Kähler class representing P1, parametrized by Q = e−T . This class can be wrapped by D2-

branes, which bind with D0-branes to an underlying D6-brane and give rise to BPS states

in low energy theory. In this case, there is already a nontrivial structure of chambers and

walls, which was analyzed in [14, 18, 20, 21]. This structure is consistent with M-theory

derivation discussed in Section 2.1. The generating functions of D6-D2-D0 bound states are

parametrized byQ and qs, and therefore corresponding crystal models consist of two-colored

three-dimensional partitions. The Kähler moduli space consists of several infinite countable

sets of chambers, and in each chamber relevant crystal configurations take form of so-called

pyramid partitions. These partitions are infinite or finite (resp. for positive and negative R in

(2.1)) and their size depends on the value of the B-field. This size changes discretely and the

pyramid is enlarged when the value of the B-field crosses integer numbers, which changes the

chamber in the moduli space, as explained in Section 2.1. Examples of such infinite pyramid

partitions are given in Figure 2, and finite ones in Figure 3.

To write down explicitly BPS generating functions for the conifold in various

chambers, we can take advantage of their relation to the topological string amplitude (2.6).
The topological string partition function in this case reads

Zconifold
top (Q) =M

(
qs
)∏
k≥1

(
1 −Qqks

)k
, (2.21)
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(a) (b) (c)

Figure 3: Finite pyramids with m = 1, 2, 3 stones in the top row (resp., (a), (b), and (c)), whose generating

functions are given by Z̃
pyramid

m+1 (note that Z̃
pyramid

1 = 1 corresponds to an empty pyramid corresponding to
the pure D6-brane).

with the MacMahon function defined in (2.17). From this topological string partition function

we can read off Gopakumar-Vafa invariants [3, 4]

N0
β=0 = −2, N0

β=±1 = 1. (2.22)

Using the relation (2.6), we can now present conifold closed BPS generating functions

in several sets of chambers. In the first set of chambers, we consider R > 0 and positive

B ∈ ]n, n + 1[ (for n ≥ 0). Firstly, for small B, there is so-called noncommutative chamber

discussed first by Szendrői [14], which corresponds to n = 0. In this case, the pyramid crystal

has just a single ball in the top row, as in Figure 2(a), and the BPS generating function is given

by the square of the topological amplitude. On the other hand, for large B, that is n → ∞,

we reach commutative chamber in which the length of the top row extends to infinity. In this

case, the BPS generating function agrees, up to a single factor of MacMahon function, with

the topological string amplitude. In between, there are chambers with n + 1 balls in the top

row, for which

Zconifold
n =M

(
qs
)2∏

k≥1

(
1 −Qqks

)k∏
k≥n+1

(
1 −Q−1qks

)k
. (2.23)

These BPS generating functions are related to pyramid generating functions with two colors

q0 and q1 upon the identification (which generalizes (2.19) in C3 case)

Zconifold
n chambers : qs = q0q1, Q = −qns q1. (2.24)

Indeed, with this identification, the above counting functions agree with those of two-colored

pyramid crystals with n + 1 yellow balls in its top row

Z
pyramid
n

(
q0, q1

)
=M
(
q0q1

)2 ∏
k≥n+1

(
1 + qk0q

k+1
1

)k−n∏
k≥1

(
1 + qk0q

k−1
1

)k+n
. (2.25)

In the second set of chambers, we have R < 0 and positive B ∈ ]n − 1, n[ (for n ≥ 1). It

extends between the core region with a single D6-brane (2.8) and the chamber characterized

by so-called Pandharipande-Thomas invariants (for the flopped geometry, or equivalently



12 Advances in High Energy Physics

for anti-M2-branes). The BPS generating functions read

Z̃conifold
n =

n−1∏
j=1

(
1 − q

j
s

Q

)j

. (2.26)

The corresponding statistical models were shown in [16, 18, 21] to correspond to finite

pyramids with n − 1 stones in the top row, as shown in Figure 3. In this case, the generating

functions of such partitions are equal to

Z̃
pyramid
n

(
q0, q1

)
=

n−1∏
j=1

(
1 + qn−j0 q

n−j−1

1

)j
. (2.27)

The equality Z̃conifold
n ≡ Z̃pyramid

n arises upon an identification

Z̃conifold
n chambers : q−1

s = q0q1, Q = −qns q1. (2.28)

There are two other sets of chambers characterized by the negative value of the B-field, for

which BPS generating functions are completely analogous to those given above.

Above, we presented just the simplest examples of crystal models. Using fermionic

formulation presented below, one can find other crystal models for arbitrary toric geometry

without compact four cycles. Let us also mention that those models can be equivalently

expressed in terms dimers. In particular, the operation of enlarging the crystal, as in the

conifold pyramids, corresponds to so-called dimer shuffling [15]. Dimers are also closely

related to a formulation using quivers and associated potentials, which underlies physical

derivations in [21, 22].

3. A Little Background—Free Fermions and Matrix Models

In this section, we introduce some mathematical background on which the main results

presented in this paper rely. In Section 3.1, we start with a brief presentation of toric Calabi-

Yau manifolds and introduce the notation which we use in what follows. In Section 3.2,

we introduce free fermion formalism. In Section 3.3, we introduce basics of matrix model

formalism. Our presentation is necessarily brief, and for more detailed introduction we

recommend many excellent reviews on each of those topics.

3.1. Toric Calabi-Yau Threefolds

Some introductory material on toric Calabi-Yau manifolds, from the perspective relevant for

mirror symmetry and topological string thoery, can be found, for example, in [39]. In this

section, our presentation is brief and mainly sets up the notation. Toric Calabi-Yau threefolds

arise as the quotient of Cκ+3, possibly with a discrete set of points deleted, by the action of

(C∗)κ with certain weights. The simplest toric threefold is C3, which corresponds to the trivial

choice κ = 0. The resolved conifold, which we already discussed in Section 2.2, corresponds

to κ = 1 and a choice of weights (1, 1,−1,−1), which represent a local bundle O(−1)⊕O(−1) →
P1. The structure of each toric three-fold can be encoded in a two-dimensional diagram
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+
+ + +

−

Γ±
Γ±

Γ±

Γ±

Γ±

Q

Q

Figure 4: Toric graphs for C3, conifold and resolution of C3/Z2.

built from trivalent vertices. Finite intervals joining two adjacent vertices represent local P1

neighborhood inside the manifold. Equivalently, one can consider dual graphs. Examples of

toric diagrams and their duals for C3, conifold and resolution of C3/Z2 singularity are given

in Figure 4 (the notation Γ± at each vertex will be explained in what follows).
A closed loop in a toric diagram represents a compact four cycles in the geometry.

As follows from the reasoning in Section 2.1, in the context of BPS counting, we are forced

to restrict considerations to manifolds which do not have such four cycles. Apart from a

few special cases, there is an infinite class of such geometries whose dual diagrams arise

from a triangulation, into triangles of area 1/2, of a long rectangle or a strip of height 1. A

toric diagram arises as a dual graph to such a triangulation. From each vertex in such a toric

diagram, one vertical line extends to infinity and crosses either the upper or the lower edge

of the strip. Two such consecutive lines can emanate either in the same or in the opposite

direction, respectively, when they are the endpoints of an interval representing P1 with local

O(−2) ⊕ O or O(−1) ⊕ O(−1) neighborhood. An example of a generic diagram of this kind is

shown in Figure 8.

Let us denote independent P1’s, starting from the left end of the strip, from 1 to N, and

introduce corresponding Kähler parameters Qi = e−Ti , i = 1, . . . ,N. Moreover, to each toric

vertex we associate a type ti = ±1, so that ti+1 = ti if the local neighborhood of P1 (represented

by an interval between vertices i and i+1) isO(−2)⊕O; if this neighborhood is ofO(−1)⊕O(−1)
type, then ti+1 = −ti. The type of the first vertex we fix as t1 = +1. In Figures 4 and 8, these

types are denoted by ⊕ and #. The types ti will be used much in the construction of fermionic

states in Section 4.2.

As explained in Section 2.1, the BPS generating functions can be expressed in terms

(the instanton part) of topological string amplitudes. For the above class of geometries,

arising from a triangulation of a strip, these amplitudes read

Ztop(Qi) =M
(
qs
)(N+1)/2

∞∏
l=1

∏
1≤i<j≤N+1

(
1 − qls

(
QiQi+1 · · ·Qj−1

))−(titj )l
. (3.1)

3.2. Free Fermion Formalism

Formalism of free fermions in two dimensions is well known [43, 44] and ubiquitous in

literature on topological strings and crystal melting [7, 15, 15, 37, 45]. The main purpose
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Figure 5: Relation between Young diagrams and states in the Fermi sea.

of this section is therefore to set up the notation which we will follow in the remaining parts

of this paper.

The states in the free fermion Fock space are created by the (anticommuting) modes

of the fermion field

ψ(z) =
∑
k∈Z

ψk+1/2z
−k−1, ψ∗(z) =

∑
k∈Z

ψ∗
k+1/2z

−k−1,
{
ψk+(1/2), ψ

∗
−l−1/2

}
= δk,l (3.2)

on the vacuum state |0〉. There is one-to-one map between such fermionic states

∣∣μ〉 = d∏
i=1

ψ∗
−ai−1/2ψ−bi−1/2|0〉, with ai = μi − i, bi = μti − i, (3.3)

and two-dimensional partitions μ = (μ1, μ2, . . . , μl), as shown in Figure 5. The modes αm of

the bosonized field ∂φ =: ψ(z)ψ∗(z) : satisfy the Heisenberg algebra [αm, α−n] = nδm,n.

We introduce vertex operators

Γ±(x) = e
∑

n>0(x
n/n)α±n , Γ′±(x) = e

∑
n>0((−1)n−1xn/n)α±n , (3.4)

which act on fermionic states |μ〉 corresponding to partitions μ as [15, 43, 44]

Γ−(x)
∣∣μ〉 =∑

λ$μ
x|λ|−|μ||λ〉, Γ+(x)

∣∣μ〉 =∑
λ≺μ

x|μ|−|λ||λ〉, (3.5)

Γ′−(x)
∣∣μ〉 = ∑

λt$μt
x|λ|−|μ||λ〉, Γ′+(x)

∣∣μ〉 = ∑
λt≺μt

x|μ|−|λ||λ〉. (3.6)

The interlacing relation ≺ between partitions is defined as

λ $ μ⇐⇒ λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ λ3 ≥ . . . . (3.7)
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The operator Γ′ is the inverse of Γ with negative argument. These operators satisfy

commutation relations

Γ+(x)Γ−
(
y
)
=

1

1 − xyΓ−
(
y
)
Γ+(x), (3.8)

Γ′+(x)Γ′−
(
y
)
=

1

1 − xyΓ
′
−
(
y
)
Γ′+(x), (3.9)

Γ′+(x)Γ−
(
y
)
=
(
1 + xy

)
Γ−
(
y
)
Γ′+(x), (3.10)

Γ+(x)Γ′−
(
y
)
=
(
1 + xy

)
Γ′−
(
y
)
Γ+(x). (3.11)

We also introduce various colors qg and the corresponding operators Q̂g (a hat is to

distinguish them from Kähler parameters Qi)

Q̂g |λ〉 = q|λ|g |λ〉. (3.12)

These operators commute with vertex operators up to rescaling of their arguments

Γ+(x)Q̂g = Q̂gΓ+
(
xqg
)
, Γ′+(x)Q̂g = Q̂gΓ′+

(
xqg
)
, (3.13)

Q̂gΓ−(x) = Γ−
(
xqg
)
Q̂g, Q̂gΓ′−(x) = Γ′−

(
xqg
)
Q̂g. (3.14)

3.3. Matrix Models

In matrix model theory, or theory of random matrices, one is interested in properties of

various ensembles of matrices. Excellent reviews of random matrix theory can be found for

example in [46] or, in particular in the context of topological string theory, in [47]. In matrix

model theory, one typically considers partition functions of the form

Z =
∫
DU
∏
α

e−(1/gs)TrV (U), (3.15)

where V = V (U) is a matrix potential and DU is a measure over a set of matrices of interest

U of size N. Typically it is not possible to perform the above integral; however, special

techniques allow to determine its formal 1/N expansion. These techniques culminated with

the formalism of the topological expansion of Eynard and Orantin [48] which, in principle,

allows to determine entire 1/N expansion of the partition function recursively. This solution

is determined by the behavior of matrix eigenvalues, whose distribution among the minima

of the potential, in the continuum limit, determines one-dimensional complex curve, so-called

spectral curve. The spectral curve is also encoded in the leading 1/N expansion of the so-

called resolvent, which is defined as the expectation value ω(x) = 〈Tr(1/(x −U))〉 computed

with respect to the measure (3.15).
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In the context of BPS counting and topological strings, unitary ensembles of matrices

of infinite size arise. In this case, the matrix model simplifies to the integral over eigenvalues

uα, with a measure which takes form of the unitary Vandermonde determinant

DU =
∏
α

duα
∏
α<β

∣∣zα − zβ∣∣2, zα = eiuα . (3.16)

The issue of infinite matrices is a little subtle; however, it can be taken care of by considering

matrices of large but finite size N, and subsequently taking N → ∞ limit. For finite N, one

can find the resolvent, and in consequence the spectral curve, using a standard technique

of so-called Migdal integral. This requires redefining V to the standard Vandermonde form

[29, 47], as well as introducing ’t Hooft coupling T

V −→ V + T log z, T =Ngs. (3.17)

The form of the Migdal integral depends on the number of cuts into which eigenvalues

condense in large N limit, and this number of cuts determines the genus of the spectral

curve. In our context, only single-cut situations will arise, for which the spectral curve has

genus zero. In this case, the Migdal integral determines the resolvent as

ω
(
p
)
=

1

2T

∮
dz

2πi

∂zV (z)
p − z

√(
p − a

)(
p − b
)

√
(z − a)(z − b)

, (3.18)

so that the integration contour encircles counter-clockwise the endpoints of the cut a and b.

A proper asymptotic behavior of the resolvent is imposed by the condition

lim
p→∞

ω
(
p
)
=

1

p
. (3.19)

Then the spectral curve is determined as a surface on which the resolvent is unambiguously

defined, that is, it is given by an (exponential) rational equation automatically satisfied by p

and ω(p). There is also an important consistency condition for the resolvent: when computed

on the opposite sides of the cut ω(p)±, it is related to the potential as

ω+
(
p
)
+ω−
(
p
)
=
∂pV
(
p
)

T
. (3.20)

On the other hand, a difference of these values of the resolvent on both sides of the cut

provides eigenvalue density

ρ
(
p
)
= ω+
(
p
)
−ω−
(
p
)
. (3.21)

It has been observed in several contexts that topological strings on toric manifolds can

be related to matrix models, whose spectral curves take form of the so-called mirror curves.
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Figure 6: Toric diagrams for C3 and conifold and corresponding mirror curves.

Mirror curves arise for manifolds which are mirror to toric Calabi-Yau manifolds [39, 45]. For

toric manifolds, their mirror manifolds are determined by the following equation embedded

in four-dimensional complex space:

z1z2 = H
(
x, y
)
. (3.22)

The mirror curve is the zero locus of H(x, y), that is, it is given as H(x, y) = 0. More precisely,

x, y are C∗ variables, and it is often convenient to represent them in the exponential form

x = uu, y = ev, with u, v ∈ C. For example, for C3 and the conifold they take the following

form:

HC3

(
x, y
)
= x + y + xy = 0, Hconifold

(
x, y
)
= x + y + xy +Qx2 = 0, (3.23)

where Q encodes the Kähler parameter of the conifold. Schematically mirror curves arise

from thickening edges of the toric graphs, as shown in Figure 6.

One of the first relations between topological strings for toric manifolds and matrix

models was encountered in [49, 50], where it was shown that the spectral curve of a unitary

matrix model with a Gaussian (i.e., quadratic) potential agrees with the above mirror curve

Hconifold(x, y) = 0 in (3.23), with ’t Hooft coupling T = gsN encoded in Q = e−T . At the same

time, it was shown that the matrix model partition function reproduces the topological string

partition function. More recently these ideas became important in view of the remodeling
conjecture [51], which states that the solution to loop equations in the form found by

Eynard and Orantin [48], applied to the mirror curve, reproduces topological string partition

functions. The method of [48] works for arbitrary curves, not necessarily originating from

matrix models. Nonetheless, it is indeed possible to construct matrix models whose partition

functions do reproduce topological string amplitudes, and whose spectral curves coincide

with appropriate mirror curves [29, 30, 52–56].
One of our aims is to provide matrix model interpretation of BPS counting. It is

natural to expect such an interpretation in view of an intimate relation between BPS counting

and topological string theory discussed in Section 2.1, and the above-mentioned relations

between topological strings and matrix models. As we will see in what follows, there are

indeed unitary matrix models which naturally arise in the context of BPS counting and its
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fermionic formulation. Among the others, our task will be to analyze them using the above-

mentioned Migdal method.

4. Fermionic Formulation of BPS Counting Functions

Having introduced all the ingredients above, we are now ready to present fermionic

formulation of BPS counting. To start with, in Section 4.1 we present the idea of such a

formulation in the simplest example of C3. In Section 4.2, we introduce a general fermionic

formalism, and in Section 4.3 we provide its crystal interpretation. We illustrate the use of

our formalism in Section 4.4 revisiting C3 example, as well as in explicit case of C3/ZN , and

conifold geometry.

4.1. The Idea and C3 Example

As explained in Section 2.2, the generating function of bound states of D0-branes to a single

D6-brane is given by the MacMahon function, and the corresponding crystal model takes

form of the counting of plane partitions [7]. Let us slice each such plane partition by a

set of parallel planes, as shown in Figure 7. In this way on each slice, we obtain a two-

dimensional partition μ, and it is not hard to see that each two neighboring partitions

satisfy the interlacing condition (3.7). Recalling that such a condition arises if we apply Γ±(1)
operators (3.5) to partition states, we conclude that a set of all plane partitions can be built,

slice by slice, by acting with infinite sequence of Γ±(1) on the vacuum. To count each slice

μ with appropriate weight q|μ| we also need to apply weight operator Q̂ defined in (3.12).
Therefore, the generating function of plane partitions can be represented as follows

Z = 〈Ω+ | Ω−〉 ≡ 〈0| · · · Q̂Γ+(1)Q̂Γ+(1)Q̂Γ+(1) | Q̂Γ−(1)Q̂Γ−(1)Q̂Γ−(1)Q̂ · · · |0〉

= 〈0| · · ·Γ+
(
q2
)
Γ+
(
q
)
Γ+(1)Γ−

(
q
)
Γ−
(
q2
)
Γ−
(
q3
)
· · · |0〉

=
∞∏

l1,l2=1

1

1 − ql1+l2−1
=M
(
q
)
.

(4.1)

In the first line, we implicitly introduced two states 〈Ω+| and |Ω−〉, defined by an infinite

sequence of Γ+ (resp. Γ−) operators, interlaced with weight operators Q̂ and acting on the

vacuum. To confirm that this correlator indeed reproduces the MacMahon function, the

second line can be reduced to the final infinite product using commutation relations (3.8)
and (3.14). We can also represent insertions of Γ±(1) operators graphically by arrows, so that

the above computation can be represented as in Figure 7(b).
In what follows, we present a formalism which allows to generalize this computation

to a large class of chambers, for arbitrary toric geometry without compact four cycles.

4.2. Toric Geometry and Quantization

We wish to reformulate BPS counting in the fermionic language in a way in which we

associate to each toric manifold a fermionic state, such that the BPS generating function can

be expressed as an overlap of two such states, generalizing C3 case (4.1). At the same time, the

construction of such a fermionic state is supposed to encode the structure of the underlying
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(a) (b)

Figure 7: Slicing of a plane partition (a) into a sequence of interlacing two-dimensional partitions (b). A
sequence of Γ± operators in (4.1) which create two-dimensional partitions is represented by arrows inserted
along two axes. Directions of arrows → represent interlacing condition $ on partitions. We reconsider this
example from a new viewpoint in Figure 10.

+

+

+ −

−−

Γ±

Γ±

Γ±

Γ±Γ±

Γ±

Q N

Q 1

Q 2

Figure 8: Toric Calabi-Yau manifolds represented by a triangulation of a strip. There are N independent
P1’s with Kähler parameters Qi = e−Ti , and N + 1 vertices to which we associate Γ and Γ′ operators
represented respectively by ⊕ and # signs. Yellow intervals, which connect vertices with opposite signs,
represent O(−1) ⊕ O(−1) → P1 local neighborhoods. Red intervals, which connect vertices with the same
signs, represent O(−2) ⊕ O → P1 local neighborhoods. The first vertex on the left is chosen to be ⊕.

crystal model (generalizing plane partitions in Figure 7). An important difference between

C3 and other geometries is the existence of many Kähler moduli and correspondingly many

chambers, for which BPS generating functions change according to wall-crossing formulas.

To take care of these changes in the fermionic formalism, we need to introduce special wall-
crossing operators.

4.2.1. Toric Geometry and Fermionic Operators

In what follows we use the notation introduced in Section 3.1; in particular to each vertex of

the toric diagram we associate its type ti = ±1, see also Figure 8. We start with a construction

of fermionic states associated to a given toric Calabi-Yau manifold (without compact four-

cycles). First we need to introduce several operators which are building blocks of such states.

The structure of these operators is encoded in the toric diagram of a given manifold. Namely,
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these operators are given by a string of N + 1 vertex operators Γti±(x) (defined in (3.4)) which

are associated to the vertices of the toric diagram; the type ti determines the type of a vertex

operator as

Γti=+1
± (x) = Γ±(x), Γti=−1

± (x) = Γ′±(x). (4.2)

In addition the string of operators Γti±(x) is interlaced with N + 1 operators Q̂i representing

colors qi, for i = 0, 1, . . . ,N. Operators Q̂1, . . . , Q̂N are associated to P1 in the toric diagram,

and there is an additional Q̂0. We also define

Q̂ = Q̂0Q̂1 · · · Q̂N, q = q0q1 · · · qN. (4.3)

Therefore, the upper indices of Γti±(x) and a choice of colors of the operators which we

introduce below are specified by the data of a given toric manifold. As we will see, a sequence

of lower indices ± is determined by the chamber we are going to consider.

Now we can associate several operators to a given toric manifold. Firstly, we define

A±(x) = Γt1± (x)Q̂1Γ
t2
± (x)Q̂2 · · ·ΓtN± (x)Q̂NΓtN+1

± (x)Q̂0. (4.4)

Commuting all Q̂i’s using (3.14), we also define the following operators:

A+(x) = Q̂−1 A+(x) = Γt1+
(
xq
)
Γt2+

(
xq

q1

)
Γt3+

(
xq

q1q2

)
· · · ΓtN+1

+

(
xq

q1q2 · · · qN

)
,

A−(x) = A−(x)Q̂−1 = Γt1− (x)Γ
t2
−
(
xq1

)
Γt3−
(
xq1q2

)
· · · ΓtN+1

−
(
xq1q2qN

)
.

(4.5)

In addition, we define the above-mentioned wall-crossing operators

Wp(x) =
(
Γt1− (x)Q̂1Γ

t2
− (x)Q̂2 · · · Γ

tp
− (x)Q̂p

)(
Γ
tp+1

+ (x)Q̂p+1 · · · ΓtN+ (x)Q̂NΓtN+1
+ (x)Q̂0

)
,

W
′
p(x) =

(
Γt1+ (x)Q̂1Γ

t2
+ (x)Q̂2 · · · Γ

tp
+ (x)Q̂p

)(
Γ
tp+1

− (x)Q̂p+1 · · · ΓtN− (x)Q̂NΓtN+1

− (x)Q̂0

)
.

(4.6)

Here the order of Γ and Γ′ is the same as for A± operators, and the difference is that now there

are subscripts ∓ on first p operators and ± on the remaining ones.

We often use a simplified notation when the argument of the above operators is x = 1

A± ≡ A±(1), A± ≡ A±(1), Wp ≡Wp(1), W
′
p ≡W

′
p(1). (4.7)

4.2.2. Fermionic Formulation and Quantization

Above we associated operators A± to each toric geometry with a strip-like toric diagram.

From these operators, we can build the following states in the Hilbert space of a free fermion

H:

|Ω±〉 ∈ H, (4.8)
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which we define as follows:

〈Ω+| = 〈0| · · ·A+(1)A+(1)A+(1) = 〈0| · · ·A+

(
q2
)
A+
(
q
)
A+(1),

|Ω−〉 = A−(1)A−(1)A−(1) · · · |0〉 = A−(1)A−
(
q
)
A−
(
q2
)
· · · |0〉.

(4.9)

These states encode the full instanton part of the topological string amplitudes. Namely, as

shown in [16],

Z = 〈Ω+ | Ω−〉 (4.10)

is equal to the BPS partition function Z in the noncommutative chamber

Z = Z ≡
∣∣Ztop

∣∣2 ≡ Ztop(Qi)Ztop

(
Q−1
i

)
, (4.11)

where Ztop(Qi) is given in (3.1). The above equality holds under the following identification

between qi parameters (which enter the definition of |Ω±〉) and physical parameters Qi = e−Ti
and qs = e−gs :

qi = (titi+1)Qi, qs = q ≡ q0q1 · · · qN. (4.12)

We will provide a proof of (4.10) in Section 6.1.1 in a more general setting of refined

invariants.

The states |Ω±〉 have nontrivial structure and encode the information about the

noncommutative chamber. It turns out that the fermionic vacuum |0〉 itself also encodes

some interesting information. We recall that there is another extreme chamber representing

just a single BPS state represented by the D6-brane with no other branes bound to it. This

multiplicity 1 can be understood as

Z̃ = Z̃ = 〈0 | 0〉 = 1, (4.13)

and as we will see below, starting from this expression we can use wall-crossing operators to

construct BPS generating functions in an infinite family of other chambers.

4.2.3. Other Chambers and Wall-Crossing Operators

In the previous, section we associated to toric manifolds the states |Ω±〉, whose overlap

reproduces the BPS generating function in the noncommutative chamber (4.10). Now we

wish to extend this formalism to other chambers. As discussed in Section 2.1, in a given

chamber, the allowed bound states we wish to count must have positive central charge (2.1)

Z(R,B) =
1

R

(
n + β · B

)
> 0. (4.14)
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Firstly, the information about R and B must be encoded in the fermionic states which we wish

to construct. It turns out that the choice of positive or negative R is encoded in the choice of

the ground state

R > 0 −→ |Ω±〉, R < 0 −→ |0〉, (4.15)

which generalizes the extreme cases (4.10) and (4.13).
On the other hand, the value of the field B is encoded in the insertion of additional

wall-crossing operators, such as those defined in (4.6). In particular, these two types of

operators are sufficient if we wish to consider only these chambers, which correspond to a

flux of the B-field through only one, but arbitrary P1 in the manifold. For simplicity below,

we consider only this set of chambers. Denoting this P1 as p, it can be shown that insertion of

n copies of operators Wp or W
′
p creates, respectively, n positive or negative quanta of the flux

through p’th P1.

Therefore, schematically, the generating functions in chambers with R > 0 read

Zn = 〈Ω+|
(
W
)n
|Ω−〉, (4.16)

and those with R < 0 read

Z̃n = 〈0|
(
W
)n
|0〉, (4.17)

with appropriate form of wall-crossing operators. More precisely, depending on the signs of

R and B, we need to consider four possible situations, which we present below. The proofs of

all statements below, corresponding to these four situations, can be found in [16].

(i) Chambers with R < 0, B > 0

Consider a chamber characterized by positive R and positive B-field through p’th two-cycle

R < 0, B ∈ ]n − 1, n[, for 1 ≤ n ∈ Z. (4.18)

The BPS partition function in this chamber contains only those factors which include Qp and

it reads

Z̃n|p =
n−1∏
i=1

p∏
s=1

N+1∏
r=p+1

(
1 − qis

QsQs+1 · · ·Qr−1

)−tr tsi

. (4.19)

This can be expressed as the expectation value of n wall-crossing operators Wp

Z̃n|p = 〈0|
(
Wp

)n
|0〉 = Z̃n|p, (4.20)
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under the following identification of variables:

Qp =
(
tptp+1

)
qpq

n
s , Qi = (titi+1)qi for i /= p, qs =

1

q
. (4.21)

A special case of this result is the trivial generating function (4.13) representing a single D6-

brane.

(ii) Chambers with R > 0, B > 0

In the second case, we consider the positive value of R and the positive flux through p’th P1

R > 0, B ∈ ]n, n + 1[, for 0 ≤ n ∈ Z. (4.22)

Denote the BPS partition function in this chamber by Zn|p. We find that the expectation value

of n wall-crossing operators Wp in the background of |Ω〉 has the form

Zn|p = 〈Ω+|
(
Wp

)n
|Ω−〉 =M

(
1, q
)N+1

Z
(0)
n|p Z

(1)
n|p Z

(2)
n|p, (4.23)

where Z
(0)
n|p does not contain any factors (qs · · · qr−1)

±1 which would include qp, while Z
(1)
n|p

contains all factors qs · · · qr−1 which do include qp, and Z
(2)
n|p contains all factors (qs · · · qr−1)

−1

which also include qp:

Z
(0)
n|p =

∞∏
l=1

∏
p/∈s,r+1⊂1,N+1

(
1 − (trts)

ql

qsqs+1 · · · qr−1

)−tr tsl(
1 − (trts)qlqsqs+1 · · · qr−1

)−tr tsl
,

Z
(1)
n|p =

∞∏
l=1

∏
p∈s,r+1⊂1,N+1

(
1 − (trts)ql+nqsqs+1 · · · qr−1

)−tr tsl
,

Z
(2)
n|p =

∞∏
l=n+1

∏
p∈s,r+1⊂1,N+1

(
1 − (trts)

ql−n

qsqs+1 · · · qr−1

)−tr tsl

.

(4.24)

We see that the identification of variables

Qp =
(
tptp+1

)
qpq

n
s , Qi = (titi+1)qi for i /= p, qs = q (4.25)

reproduces the BPS partition function

Zn|p = Zn|p. (4.26)

When no wall-crossing operator is inserted the change of variables reduces to (4.12) and we

get the noncommutative Donaldson-Thomas partition function (4.11), Z0|p = Z.
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(iii) Chambers with R < 0, B < 0

Now we consider negative R and negative B-field

R < 0, B ∈ ]−n − 1,−n[ for 0 ≤ n ∈ Z. (4.27)

For such a chamber the BPS partition function reads

Z̃′
n|p =

n∏
i=1

p∏
s=1

N+1∏
r=p+1

(
1 − qisQsQs+1 · · ·Qr−1

)−tr tsi
. (4.28)

Now we find the expectation value of n wall-crossing operators W
′
p is equal to

Z̃′
n|p = 〈0|

(
W

′
p

)n
|0〉 = Z̃′

n|p, (4.29)

under the change of variables

Qp =
(
tptp+1

)
qpq

−n
s , Qi = (titi+1)qi for i /= p, qs =

1

q
. (4.30)

Now an insertion of Wp has an interpretation of turning on a negative quantum of B-field,

and the redefinition of Qp can be interpreted as effectively reducing tp by one unit of gs. As

already discussed,

Z̃′
0|p = 〈0 | 0〉 = 1 (4.31)

represents a chamber with a single D6-brane and no other branes bound to it.

(iv) Chambers with R > 0, B < 0

In the last case, we consider positive R and negative B

R > 0, 0 > B ∈ ]−n,−n + 1[, for 1 ≤ n ∈ Z. (4.32)

We denote the BPS partition function in this chamber by Z′
n|p. We find that the expectation

value of n operators W
′
p in the background of |Ω±〉 has the form

Z′
n|p = 〈Ω+|

(
W

′
p

)n
|Ω−〉 =M

(
1, q
)N+1

Z
′(0)
n|p Z

′(1)
n|p Z

′(2)
n|p , (4.33)
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where Z
′(0)
n|p does not contain any factors (qs · · · qr−1)

±1 which would include qp, Z
′(1)
n|p contains

all factors qs · · · qr−1 which do include qp, andZ
′(2)
n|p contains all factors (qs · · · qr−1)

−1 which also

include qp:

Z
′(0)
n|p =

∞∏
l=1

∏
p/∈s,r+1⊂1,N+1

(
1 − (trts)

ql

qsqs+1 · · · qr−1

)−tr tsl(
1 − (trts)qlqsqs+1 · · · qr−1

)−tr tsl
,

Z
′(1)
n|p =

∞∏
l=n

∏
p∈s,r+1⊂1,N+1

(
1 − (trts)ql−nqsqs+1 · · · qr−1

)−tr tsl
,

Z
′(2)
n|p =

∞∏
l=1

∏
p∈s,r+1⊂1,N+1

(
1 − (trts)

ql+n

qsqs+1 · · · qr−1

)−tr tsl

.

(4.34)

Under the change of variables,

Qp =
(
tptp+1

)
qpq

−n−1
s , Qi = (titi+1)qi, for i /= p, qs = q. (4.35)

This reproduces the BPS partition function

Z′
n|p = Z

′
n|p. (4.36)

We note that both Z′
1|p with the above change of variables, as well as Z0|p given in (4.23) with

a different change of variables in (4.25), lead to the same BPS generating function Z which

corresponds to the noncommutative Donaldson-Thomas invariants.

4.3. Crystal Melting Interpretation

In the previous section, we found a free fermion representation of D6-D2-D0 generating

functions. The fermionic correlators which reproduce BPS generating functions automatically

provide melting crystal interpretation of these functions [16], generalizing models of plane

partitions (for C3) or pyramid partitions (for the conifold), presented in Section 2.2. These

crystals are also equivalent to those found in [17, 22].
The crystal interpretation is a consequence of the fact that all operators used in the

construction of states |Ω±〉, as well as the wall-crossing operators, are built just from vertex

operators Γ± and Γ± with argument 1, and color operators Q̂i. As follows from (3.5) and

(3.6), insertion of these vertex operators is equivalent to the insertion of two-dimensional

partitions satisfying interlacing, or transposed interlacing conditions. An infinite sequence

of such interlacing partitions effectively builds up a three-dimensional crystal. A relative

position of two adjacent slices is determined by a type of two corresponding vertex operators.

On the other hand, insertions of color operators have an interpretation of coloring the crystal.

The colors Q̂i appear in the same order in each composite operator, so these colors are always

repeated periodically in the full correlators. Therefore, three-dimensional crystals are built of

interlacing, periodically colored slices.
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Γ− Γ−Γ+ Γ+

Figure 9: Assignment of arrows.

(a) (b)

+
Γ±

A + = A − =

Figure 10: Toric diagram for C3 (a) consists of one ⊕ vertex. Operators A± involve a single Γ± and have a
simple arrow (lower part of (a)), as follows from Figure 9. The correlator (4.1) is translated into a sequence
of arrows, with rotated dashed lines representing insertions of interlacing two-dimensional partitions. The
resulting figure (b) represents plane partitions crystal model, the same as in Figure 7, but now seen from
the bottom.

To get more insight about a geometric structure of a crystal, it is convenient to

introduce the following graphical representation. We associate various arrows to the vertex

operators, as shown in Figure 9. These arrows follow the order of the vertex operators in

the fermionic correlators and are drawn from left to right, or up to down (either of these

directions is independent of the orientation of the arrow). Following the order of the vertex

operators in a given correlator, and drawing a new arrow at the end of the previous one,

produces a zig-zag path which represents a shape of the crystal. The coloring of the crystal is

taken care of by keeping track of the order of Q̂i operators, and by drawing at the endpoint

of each arrow a (dashed) line, rotated by 45◦, colored according to Q̂i which we come across.

These lines represent two-dimensional slices in appropriate colors. In this way, the corners of

two-dimensional partitions arising from slicing of the crystal are located at the end-points

of the arrows. The orientation of arrows represents the interlacing condition (i.e., arrows

point from a larger to smaller partition). The interlacing pattern between two consecutive

slices corresponds to the types of two consecutive arrows. Finally, the points from which

two arrows point outwards represent those stones in the crystal, which can be removed from

the initial, full crystal configuration. In fermionic correlators, these points correspond to Γti+
followed by Γ

tj
− operators. We illustrate this graphical construction in a few examples in the

next section.
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+ +
Γ±Γ±

A + = W 1 =

Q 1

(a) (b) (c)

Figure 11: Toric diagram for the resolution of C3/ZN+1 geometry has N + 1 vertices of the same type ⊕.

(a): toric diagram for N = 1 and arrow representation of A+ and W1. In the noncommutative chamber, this
leads to the same plane partition crystal as in Figure 10, however colored now in yellow and red. (b): for
the chamber with positive R and 2 < B < 3, the crystal develops two additional corners and its generating

function reads Z2|1 = 〈Ω+|(W1)
2|Ω−〉. (c): for negative R and positive n − 1 < B < n the crystal is finite

along two axes and develops n − 1 yellow corners; its generating function for the case of n = 5 shown in

the picture reads Z̃5|1 = 〈0|(W1)
5|0〉 (two external arrows, corresponding to Γ− acting on 〈0| and Γ+ acting

on |0〉, are suppressed.).

4.4. Examples

4.4.1. Revisiting C3

Let us reconsider C3 geometry which motivated our discussion in Section 4.1. In this case, the

dual toric diagram consists just of one triangle, see Figure 10(a), so there is just one vertex

and only one color Q̂0 ≡ Q̂, and the operators (4.4) take form

A± = Γ±(1)Q̂. (4.37)

In consequence, the BPS partition function (4.10) takes exactly the form (4.1).
The crystal structure can be read off from a sequence of arrows associated to Â±

operators, following the rules in Figure 9. This gives rise to the crystal shown in Figure 10(b).
This is the same crystal as in Figure 7, which represents plane partitions, however, now seen

from the opposite side.

4.4.2. Orbifolds C3/ZN+1

Now we consider the resolution of C3/ZN+1 orbifold. In this case, the toric diagram takes

form of a triangle of area (N+1)/2, see Figure 11(a). There are N independent P1’s and N+1

vertices of the same ti = +1, and operators in (4.4) take the form

A± = Γ±(1)Q̂1Γ±(1)Q̂2 · · · Γ±(1)Q̂NΓ±(1)Q̂0. (4.38)

In the noncommutative chamber, the corresponding crystal consists of plane partitions,

however, with slices colored periodically in N + 1 colors. The partition function in the

noncommutative chamber is given by (4.10).
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+

−

Γ±

A + = W 1 =

Q 1
Γ±

(a) (b)

Figure 12: (a): toric diagram for the conifold and arrow representation of A+ and W1. (b): for chambers
with negative R and positive n − 1 < B < n the crystals are given by finite pyramid partitions with n − 1
additional corners, represented by n − 1 stones in the top row (the figure shows the case n = 4). The

generating function is given by Z̃n|1 = 〈0|(W1)
n|0〉 which reproduces the result (2.27).

If we turn on an arbitrary B-field through a fixed P1, the structure of wall-crossing

operators gives rise to modified containers, see for example Figure 11(b). In particular,

enlarging the B-field by one unit adds one more yellow corner to the crystal.

The crystals corresponding to R < 0 are also easy to find. In the extreme chamber,

we get a trivial (empty) crystal, representing a single D6-brane (4.13). Adding wall-crossing

operators results in a crystal with several corners, finite along two axis (and extending

infinitely along the third axis), as shown in Figure 11(c).

4.4.3. Resolved Conifold

We already presented pyramid crystals for the conifold in Section 2.2. They arise from our

formalism as follows. The dual toric diagram for the conifold, see Figure 12(a), consists of

two triangles and encodes a single (N = 1) P1. Two vertices of the toric diagram correspond

to two colors Q̂1 and Q̂0, so that

Q̂ = Q̂1Q̂0, q = q1q0. (4.39)

The operators (4.4) in this case read

A±(x) = Γ±(x)Q1Γ′±(x)Q0, (4.40)

while (4.5) is

A+(x) = Γ+
(
xq
)
Γ′+

(
xq

q1

)
, A−(x) = Γ−(x)Γ′−

(
xq1

)
, (4.41)
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Figure 13: Conifold crystal in the chamber with positive R and 2 < B < 3 takes form of pyramid partitions

with 3 stones in the top row. Its generating function is given by Z2|1 = 〈Ω+|(W1)
2|Ω−〉.

and they satisfy

A+(x)A−
(
y
)
=

(
1 + xyq/q1

)(
1 + xyqq1

)(
1 − xyq

)2 A−
(
y
)
A+(x). (4.42)

The quantum states (4.9) take form

|Ω−〉 = A−(1)A−
(
q
)
A−
(
q2
)
· · · |0〉,

〈Ω+| = 〈0| · · ·A+

(
q2
)
A+
(
q
)
A+(1),

(4.43)

and the wall-insertion operators (4.6) are

W1(x) = Γ−(x)Q1Γ′+(x)Q0, W ′
1(x) = Γ+(x)Q1Γ′−(x)Q0. (4.44)

Therefore, the fermionic correlators take form

Zn|1 = 〈Ω+|
(
W1

)n
|Ω−〉,

Z̃n|1 = 〈0|
(
W1

)n
|0〉.

(4.45)

and encode generating functions (2.25) and (2.27) introduced in Section 2.2. In the noncom-

mutative chamber, we get the result found first in [14], Z0|1 = 〈Ω+ | Ω−〉, while a single

D6-brane is encoded in Z̃ = 〈0 | 0〉 = 1. These crystals are shown in Figures 12(b) and 13.

5. Matrix Models and Open BPS Generating Functions

In this section, we explain how matrix model formalism can be applied to analyze BPS

counting functions. In the first part, Section 5.1, we explain how to relate fermionic formalism,
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derived in the previous section, to matrix model representation. In Section 5.2, we illustrate

how to construct matrix models for the closed noncommutative chamber. In Section 5.3, we

analyze in detail BPS generating functions for the conifold for all chambers with R > 0, and

derive corresponding spectral curves. We discuss how these curves relate to (and generalize)
mirror curves, which we find (as we should) in the commutative chamber. In Section 5.4, we

reveal that matrix model representation in fact encodes open BPS generating functions, which

can be identified with matrix model integrands.

5.1. Matrix Models from Free Fermions

Let us explain how to relate fermionic representation of BPS amplitudes, introduced

in Section 4.2, to matrix models. This relies on introducing into fermionic correlators

representing BPS generating functions, such as (4.10) or (4.23), a special representation

of the identity operator I. The representation we are interested in also consists of infinite

product of vertex operators and arises as follows [29]. Firstly, we can use the representation

as a complete set of states I = |R〉〈R|, which represent two-dimensional partitions. Using

orthogonality relations of U(∞) characters χR, and the fact that these characters are given in

terms of Schur functions χR = sR(
−→z) for −→z = (z1, z2, z3, . . .), we can write

I =
∑
R

|R〉〈R| =
∑
P,R

δPtRt |P〉〈R|

=
∫
DU
∑
P,R

sPt
(−→z)sRt(−→z)|P〉〈R|

=
∫
DU
(∏

α

Γ′−(zα)|0〉
)(

〈0|
∏
α

Γ′+
(
z−1
α

))
.

(5.1)

When such a representation of the identity operator is introduced into (4.10) or (4.23) (or

any other correlator of similar structure), we can commute away Γti± operators and get rid of

operator expressions. For example, inserting the above identity operator in the string of A+

operators in (4.16) leads to a matrix model with the unitary measure

Zn = 〈0|
∞∏
i=k

A+(1)|I|
k−1∏
j=0

A+(1) |W
n| Ω−〉

=
∫
DU〈0|

∞∏
i=k+1

A+(1) |
∏
α

Γ′−(zα)|0〉〈0|
∏
α

Γ′+
(
z−1
α

)
|

k∏
j=0

A+(1) |W
n|Ω−〉

= fkn
(
q,Qi

) ∫
DU
∏
α

e−(1/gs)V
k
n (zα) .

(5.2)

The product over α represents distinct eigenvalues zα. Note that we have inserted I at

the position k in the string of A+(1) operators. In particular, this affects the form of the

resulting potential V k
n (z). Moreover, apart from matrix integral, we find some overall factors

fkn (q,Qi) which take form of various infinite products. They arise, in a generic chamber, from
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Q

z

Figure 14: Brane associated to the external leg of a toric diagram (of a conifold in this particular case).
Closed string parameter is denoted by Q and open string parameter by z.

commutations between Γ± ingredients of wall-crossing operators, and Γ∓ ingredients of |Ω∓〉
states. In the closed noncommutative chamber n = 0, these factors are trivial, fn=0(q,Qi) = 1,

and they largely simplify in the commutative chamber n → ∞.

There is a large freedom in choosing the value of k, and it is natural to ask if this

choice has some physical interpretation. It was argued in [27] that this is indeed the case, and

the choice of k is equivalent to the choice of open BPS chamber (open BPS chambers were

introduced in Section 2.1). In particular, it turns out that the open generating parameter can

be identified with matrix eigenvalues zα, and the open BPS generating function (2.16) in the

open chamber labeled by k can be identified with matrix integrand

Zopen

BPS
= e−(1/gs)V

k
n (z). (5.3)

Even though the overall factors fkn in (5.1) may involve closed moduli Qi, they do not involve

open moduli z. In this sense, the matrix integrand is well defined, and up to some simple

identification can be identified with open BPS generating function. This identification of

parameters amounts to the shift z → −zq1/2 (to match earlier M-theory convention with

half-integer powers of q, to integer powers of q in the fermionic formalism), as well as

identification of Kähler parameters considered in M-theory derivation with parameters μi
introduced below. We also note that the BPS generating function in (2.16) is determined by the

open topological string partition function associated to the external axis of the toric diagram,

as in Figure 14. As we will also see, the value of the above integral (5.1) can be related to some

more general Calabi-Yau geometry Y .

5.2. Matrix Models for the Noncommutative Chamber

In this section, we illustrate the relation between BPS counting and matrix models in case

of the noncommutative chamber n = 0, and the choice of open chamber also k = 0. This

corresponds to the insertion of the identity representation (75) exactly in between |Ω±〉 states

in (4.10). In this n = 0 case no factor fkn in (5.1) arises, and we obtain matrix models with

potentials which can be expressed in terms of the following version of the theta function:

Θ
(
z; q
)
=

∞∏
j=0

(
1 + zqj

)(
1 +

qj+1

z

)
. (5.4)
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For a general geometry of the form shown in Figure 8, with types of vertices given by ti,

corresponding matrix models take form

Z =
∫
dU
∏
α

e−(1/gs)V (zα) =
∫
dU
∏
α

N∏
l=0

Θ
(
tl+1zα

(
q1 · · · ql

)
; q
)tl+1 , (5.5)

where integral is over unitary matrices of infinite size, N = ∞. Special cases of this result

include

(i) for C3, the result (5.5) provides a matrix model representation of MacMahon

function Z = M(1) =
∏∞

k=1(1 − qk)−k in terms of a matrix model of the form (5.5)
with the integrand

e−(1/gs)V (z) =
∞∏
j=0

(
1 + zqj

)(
1 +

qj+1

z

)
= Θ
(
z; q
)
; (5.6)

(ii) for the conifold, we obtain a representation of the pyramid partition generating

function (2.23) (with n = 0) in terms of a matrix model with the integrand

e−(1/gs)V (z) =
∞∏
j=0

(
1 + zqj

)(
1 + qj+1/z

)(
1 +Qzqj

)(
1 +
(
qj+1/Qz

)) = Θ
(
z; q
)

Θ
(
Qz; q

) ; (5.7)

(iii) for C3/ZN+1, we have tp = +1 for all p and we find matrix model representation of

the BPS generating function in terms of a matrix model with the integrand

e−(1/gs)V (z) =
∞∏
j=0

(
1 + zqj

)(
1 +

qj+1

z

)
· · ·
(

1 +
(
q1 · · · qN

)
zqj
)(

1 +
qj+1(

q1 · · · qN
)
z

)

=
N∏
l=0

Θ
((
q1 · · · ql

)
z; q
)
.

(5.8)

5.3. Matrix Model for the Conifold Analysis

In this section, we illustrate how matrix model techniques can be used in the context of

models which arise for BPS counting. We focus on the conifold matrix model in arbitrary

closed BPS chamber n, and fixed k = 0. In this case, the result (5.2) takes form (after the

redefinition Q = −q1q
n)

Zn =M
(
q
)2 ∞∏

j=1

(
1 −Qqj

)j(
1 −Q−1qj+n

)j+n

= fn
(
q,Q
) ∫

dU
∏
α

∞∏
j=0

(
1 + zαqj+1

)(
1 + qj/zα

)(
1 + zαqj+n+1/Q

)(
1 + qjQ/zα

) = fn(q,Q)Zmatrix,

(5.9)
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with

fn
(
q,Q
)
=M
(
q
)∏∞

j=1

(
1 − qn+j/Q

)n
M
(
qn, q
) , (5.10)

with MacMahon function M(q) defined in (2.17), and with the following generalized

MacMahon function

M
(
z, q
)
=

∞∏
i=1

1(
1 − zqi

)i . (5.11)

In particular, in the noncommutative chamber f conifold
0 = 1, and in the commutative chamber

f conifold
n→∞ = M(q) which represents topological string degree zero contributions. The result

(5.9) implies that the value of the matrix model integral (without the prefactor fn) is equal to

Zmatrix =
Zn

fn
(
q,Q
) =M(q) ∞∏

j=1

(
1 −Qqj

)j(
1 − μqj

)j(
1 − μQqj

)j
=
∫
dU
∏
α

∞∏
j=0

(
1 + zαqj+1

)(
1 + qj/zα

)(
1 + zαqj+n+1/Q

)(
1 + qjQ/zα

) ,
(5.12)

where μ = qn/Q.

Now we wish to analyze the matrix model Zmatrix. We parametrize the ’t Hooft

coupling and the chamber dependence, respectively, by

T = gsN, τ = ngs. (5.13)

As our models correspond to U(∞) matrices, ultimately we are interested in the limit

T → ∞, gs = const, Q = const, (5.14)

for each fixed chamber (i.e., fixed n and therefore τ). The noncommutative chamber corres-

ponds to τ = 0, while τ → ∞ represents the topological string chamber.

Using the expansion of the quantum dilogarithm

log
∞∏
i=1

(
1 − zqi

)
= − 1

gs

∞∑
m=0

Li2−m(z)
Bmg

m
s

m!
, (5.15)

and the redefinition of the unitary measure (3.17) we find, to the leading order in gs, the

following matrix model potential:

Vτ = T log(z) + Li2(−z) + Li2

(
−1

z

)
− Li2

(
−Q
z

)
− Li2

(
− z

Qeτ

)
, (5.16)
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so that

∂zVτ =
T − log(z +Q) + log(1 + (z/Qeτ))

z
. (5.17)

Now we wish to solve the model (5.9) in the small gs limit. Firstly, we need to find the

resolvent ω(p), which can be done using the Migdal integral (3.18), and careful derivation is

presented in [29]. As we expect one-cut solution of our model, from the Migdal integral we

get an expression in terms of the end-points of this cut a and b. The normalization condition

(3.19) imposes two constraints, for terms of order p0 and p−1 in the resolvent, which take form

√
a +Q −

√
b +Q√

a +Qeτ −
√
b +Qeτ

= Q1/2e(τ+T)/2,

√
(a +Q)b −

√
(b +Q)a√

(a +Qeτ)b −
√
(b +Qeτ)a

= Q1/2e−(τ+T)/2.

(5.18)

These constraints can be solved in the exact form, with result

a = −1 + ε2

(
1 − μ

)(
1 − με2

)
+ (1 −Q)

(
1 + με2 − 2μ

)(
1 − με2

)2

+ 2iε

√
(1 −Q)(1 − ε2)

(
1 − μ

)(
1 −Qμε2

)
(
1 − με2

)2 ,

b = −1 + ε2

(
1 − μ

)(
1 − με2

)
+ (1 −Q)

(
1 + με2 − 2μ

)(
1 − με2

)2

− 2iε

√
(1 −Q)(1 − ε2)

(
1 − μ

)(
1 −Qμε2

)
(
1 − με2

)2 ,

(5.19)

where we introduced

ε = e−T/2, μ =
1

Qeτ
. (5.20)

Substituting these end-points back to the formula for the resolvent, we find

ω±
(
p
)
=

1

pT
log

⎛⎜⎝
(
1 + με2

)
p +
(
1 +Qε2

)
∓
(
1 − με2

)√(
p − a

)(
p − b
)

2e−T
(
p +Q

)
⎞⎟⎠. (5.21)
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As a check, this result indeed satisfies the consistency condition (3.20)

ω+
(
p
)
+ω−
(
p
)
=
∂pVτ
(
p
)

T
, (5.22)

with Vτ given in (5.16). From the knowledge of the resolvent, we can also determine eigen-

value density along the cut (3.21)

ρ
(
p
)
=

1

pT
log

⎛⎜⎝
(
1 + με2

)
p + 1 +Qε2 −

(
1 − με2

)√(
p − a

)(
p − b
)

(
1 + με2

)
p + 1 +Qε2 +

(
1 − με2

)√(
p − a

)(
p − b
)
⎞⎟⎠, (5.23)

as well as the spectral curve. Writing x = pTω(p) and p = ey, and after a few simple rescalings,

we find that the spectral curve takes form

ex+y + ex + ey +Q1e
2x +Q2e

2y +Q3 = 0, (5.24)

where

Q1 = ε2 1 + μQ(
1 + με2

)
(1 +Qε2)

,

Q2 = μ
1 +Qε2(

1 + μQ
)(

1 + με2
) ,

Q3 = Q
1 + με2

(1 + ε2Q)
(
1 + μQ

) .
(5.25)

The above curve is given by a symmetric function of Q, μ = Q−1qn and ε2 = e−T .

Apparently this is a mirror curve of the so-called closed topological vertex geometry, which is a

Calabi-Yau manifold arising from a symmetric resolution of C3/Z2×Z2 orbifold, see Figure 15.

This geometry has three moduli, that is, the original Kähler moduliQ of the resolved conifold,

the chamber parameter n (encoded in μ), and the ’t Hooft parameter T , which are all unified

in a geometric way in our matrix model. Moreover, the fractional coefficients in the curve

equation (5.24) encode the correct mirror map for the closed topological vertex geometry

(and to the linear order, these coefficients are just Q, μ, and e−T).
In the BPS counting problem we are interested in, as follows from the form of the

identity operator (5.1), ultimately we need to consider matrices of infinite size. We also need

to keep fixed gs, so we should consider the limit of T → ∞, or equivalently ε → 0. Up to a

linear shift of x and y, the (5.24) in this limit becomes

μe2y + ex+y + ex +
(
1 +Qμ

)
ey +Q = 0. (5.26)

The manifold corresponding to this curve is the suspended pinch point (SPP) geometry, with

Q and μ encoding flat coordinates representing sizes of its two P1’s. Having found the SPP

mirror curve, let us also make the following remarks.
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Q

μ

e−T

Figure 15: The spectral curve for the conifold matrix model (5.9) in arbitrary closed BPS chamber coincides
with the mirror curve of the closed topological vertex geometry, whose toric diagram is shown above. This
geometry has three P1 moduli, which encode conifold size Q, the closed BPS chamber via μ, and finite ’t
Hooft coupling via e−T .

Firstly, we see that not only the spectral and mirror curves agree, but moreover the

matrix integral (5.9) reproduces (after the identification q = qs) the full topological string

partition function of the SPP geometry at finite gs, which is known to take form

ZSPP
top

(
qs,Q, μ

)
=

∞∏
k=1

(
1 −Qqks

)k(
1 − μqks

)k(
1 − qks

)3k/2(
1 − μQqks

)k , (5.27)

for Kähler parameters Q and μ. This confirms that our result makes sense, although this also

means that the terms in lowest order in gs in the potential reproduce the full gs dependence

of the partition function. It would be nice to prove rigorously that higher gs corrections to the

potential indeed do not affect the total partition function. This appears to be a very special

feature of matrix models integrands which can be expressed—as is the case for (5.12)—in

terms of infinite products of the form
∏

k(1 − xqk). One proof of such statement in a related

situation (although in addition taking advantage of a special phenomenon of the arctic circle)
can be found in [52].

Secondly, it is natural to conjecture that the total partition function of the matrix model,

for finite T , should reproduce (at least up to some MacMahon factor) the topological string

partition function for the closed topological vertex which reads

Ztotal
matrix

(
q,Q, μ, ε2

)
=

∞∏
k=1

(
1 − qk

)k
·

∞∏
k=1

(
1 −Qqk

)k(
1 − μqk

)k(
1 − ε2qk

)k(
1 −Qμε2qk

)k(
1 −Qμqk

)k(
1 − με2qk

)k(
1 −Qε2qk

)k .

(5.28)

Finally, we also note that in the limitQ,μ → 0 our model reduces to the Chern-Simons

matrix model discussed in [47, 50]. Indeed, in this limit the potential (5.16) reproduces
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Gaussian potential [50]

VQ→ 0,n→∞ = −1

2

(
log z
)2 = −1

2
u2, (5.29)

and the partition function (5.9) correctly reduces to the appropriate Chern-Simons partition

function. In this case, the resolvent (5.21) reduces to

ωconifold
±

(
p
)
μ=Q=0

=
1

pT
log

⎛⎜⎝p + 1 ∓
√(

p + 1
)2 − 4pe−T

2pe−T

⎞⎟⎠, (5.30)

and agrees with the resolvent of the old Chern-Simons matrix model found in [47, 50]. In this

case, also the spectral curve reproduces the conifold mirror curve (3.23) of the size given by

the ’t Hooft coupling

x + p + xp + x2e−T = 0. (5.31)

(Instead of introducing T log z term to the potential to get the standard Vandermonde

determinant, the solution in [47] involves completing the square, which leads to a redefinition

phere = p[47]e
T . Due to a different sign of gs we also need to identify ’t Hooft couplings as

There = −t[47]. Taking this rescaling into account, our cut endpoints (5.19) with Q = μ = 0 also

coincide with those in [47].)

5.4. Matrix Models and Open BPS Generating Functions

In this section, we finally consider arbitrary closed and open BPS chamber, so that

matrix models take most general form. Analyzing the case of C3, conifold and C3/Z2,

we illustrate the claim (5.3) that open BPS generating functions can be identified with

integrand of matrix models. Also for this reason our analysis is only on the level of these

integrands; however, it would also be interesting to understand the corresponding spectral

curves.

5.4.1. C3

We recall that the open topological string amplitude for a brane in C3 is given by the quantum

dilogarithm (2.14). The condition for the central charge (2.12) and the general formula (2.16)
imply that in the open chamber labeled by k the open BPS generating function reads

Zopen

k
=

∞∏
i=1

(
1 − zqi−1/2

s

) ∞∏
j>k

(
1 − z−1q

j−1/2
s

)
. (5.32)

In one extreme chamber k = 0, the generating function is equal (up to the overall q1/24) to a

theta function, and so it is a modular form, as explained in Section 2.1. On the other hand,

for k → ∞, the generating function Zk→∞ reduces to the open topological string amplitude

(2.15).
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k

Figure 16: Factorization of C3 crystal which leads to open BPS generating functions. The size k encodes the
open BPS chamber.

Now we present how the result (5.32) arises from the matrix model viewpoint. To

start with, we again consider fermionic representation. Following results of Section 4.4.1, in

this case A+(1) = Γ+(1)Q̂ and to the geometry of C3, we associate a state

|Ω−〉 =
∞∏
i=1

Γ−
(
qi
)
|0〉, (5.33)

and similarly for 〈Ω+|.There is a single closed string chamber in which the generating

function Z = 〈Ω+ | Ω−〉 = M(q) is given by the MacMahon function. Following the

prescription (5.2), we insert the operator I at the location k (see Figure 16). This gives

Z =M
(
q
)
= 〈0|

∞∏
i=k

A+(1)|I|
k−1∏
j=0

A+(1)|Ω−〉

= fk
(
q
)
Zmatrix,

(5.34)

where the matrix integral is given by

Zmatrix =
∫
DU
∏
α

∞∏
j=1

(
1 + zαqj

) ∞∏
i=k

(
1 + z−1

α q
j
)
,

fk
(
q
)
=

k∏
i=1

∞∏
j=0

1

1 − qi+j
=

M(1)
M
(
qk, q
) ,

(5.35)

with the generalized MacMahon function M(qk, q) defined in (5.11). Matrix model integrand

in Zmatrix indeed reproduces open BPS generating function (5.32) (up to a redefinition z →
−zq1/2 and identifying q = qs) in a chamber labeled by k.

5.4.2. Conifold

Here we illustrate a relation between matrix models and open BPS generating functions for

the conifold, related to a brane associated to the external leg of a toric diagram, as in Figure 14.
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k n

Figure 17: Factorization of the conifold pyramid which leads to open BPS generating functions. The size
of the pyramid n represents the closed BPS chamber, while the size k encodes the open BPS chamber.

With appropriate choice of framing, its amplitude reads

Zopen

top =
L
(
z, qs
)

L
(
zQ, qs

) . (5.36)

This also reduces to the modular generating function in the noncommutative chamber n =
k = 0. More generally, let us consider open BPS counting corresponding to the closed chamber

labeled by n, and open chamber labeled by k. From the condition (2.12), after the shift z →
−zq1/2, we get a general generating function of open BPS states

Zopen,k
n =

∣∣∣Zopen

top

∣∣∣2
chamber

=
∞∏
l=1

(
1 + zqls

)(
1 + z−1qk+l−1

s

)(
1 + zQqls

)(
1 + z−1Q−1qn+k+l−1

s

) . (5.37)

This result arises from matrix model viewpoint as follows. We take advantage of

the results of Section 4.4.3, where we determined A±(x) = Γ±(x)Q̂1Γ′±(x)Q̂0 and W =
Γ−(1)Q̂1Γ′+(1)Q̂0. Inserting the identity operator I at position k, as represented in Figure 17,

leads to

Zn = 〈0|
∞∏
i=k

A+(1)|I|
k−1∏
j=0

A+(1) |W
n|Ω−〉 = fknZmatrix. (5.38)

In terms of μ = −1/q1 = Q−1qn, the matrix integral takes form

Zmatrix =
∫
DU
∏
α

∞∏
j=1

(
1 + zαqj

)(
1 + z−1

α q
k+j−1
)(

1 + zαμqj
)(

1 + z−1
α μ−1qj+n+k−1

) . (5.39)

The integrand of this matrix model indeed agrees with (5.37) M-theory (again identifying μ

with Kähler parameter used in M-theory derivation, and setting q = qs). In the limit n → ∞
followed by μ → 0, we get the result for C3 given in (5.34). On the other hand, for both

n, k → ∞, the integrand reduces to the open topological string amplitude given by a ratio of
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two quantum dilogarithms. The prefactor above is found as

fkn =M
(
q
)2 M

(
μqk, q

)
M
(
Qqk, q

)
M
(
μ, q
)
M
(
qk, q
)
M
(
Q, q
)
M
(
μQqk, q

) ∞∏
j=1

(
1 − μqj

)n
. (5.40)

5.4.3. C3/Z2

As another example, we consider open BPS counting functions for resolved C3/Z2 singularity.

In this case, the topological string partition function for a brane on the external leg is

Zext
top = L

(
z, qs
)
L
(
zQ, qs

)
. (5.41)

This implies the following BPS generating functions in a closed chamber n and open chamber

k (after z → −zq1/2 shift)

Zopen,k
n =

∣∣∣Zopen

top

∣∣∣2
chamber

=
∞∏
l=1

(
1 + zqls

)(
1 + zQqls

)(
1 + z−1qk+l−1

s

)(
1 + z−1Q−1qn+k+l−1

s

)
.

(5.42)

On the other hand, using results of Section 4.4.2, that is, A±(x) = Γ±(x)Q1Γ±(x)Q0 and

W = Γ−(1)Q̂1Γ+(1)Q̂0, and redefining μ = 1/q1 = Q−1qn, we obtain

Zn
k = 〈0|

∞∏
i=k

A+(1)|I|
k−1∏
j=0

A+(1) |W
n|Ω−〉 = fknZmatrix

= fkn

∫
DU
∏
α

∞∏
j=1

(
1 + zαqj

)(
1 + zαμqj

)(
1 +

qk+j−1

zα

)(
1 +

qn+k+j−1

zαμ

)
.

(5.43)

The matrix integrand indeed agrees with the M-theory result (when written in terms of the

argument μ) above. The prefactor above reads

fkn =M
(
q
)2 M

(
μ, q
)
M
(
Q, q
)

M
(
μqk, q

)
M
(
qk, q
)
M
(
μQqk, q

)
M
(
Qqk, q

) ∞∏
j=1

(
1 − μqj

)−n
. (5.44)

6. Refined Crystals and Matrix Models

In the last section, we turn our attention to so-called refined BPS amplitudes, and explain how

to incorporate the effect of such refinement in the fermionic formalism and matrix models,

following [31]. To start with, we recall that there are various definitions of refinements, which

arise in the context of BPS counting or topological string theory. Here we focus on closed BPS

states and consider the following characterization. We introduce an additional parameter y
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on which multiplicities of D6-D2-D0 states Ω in the original definition of the generating

function (1.1) may depend on

Zref
n

(
qs,Q
)
=
∑
α,γ

Ωref
α,γ

(
n;y
)
qαsQ

γ . (6.1)

For fixed D0-brane and D2-brane charges α and γ , and a choice of closed BPS chamber n,

refined degeneracies are defined as

Ωref
α,γ

(
n;y
)
= TrHα,γ (n)

(
−y
)2J3 , (6.2)

where Hα,γ(n) denotes a space of BPS states with given charges α, γ and asymptotic values

of moduli corresponding to a chamber n and J3 represents a generator of the spatial rotation

group. For y = 1, these degeneracies reduce to those in (1.1). These refined degeneracies are

interesting invariants if the underlying Calabi-Yau space does not posses complex structure

deformations—and this is indeed the case for noncompact, toric manifolds we are interested

in. In [10], it was argued that these invariants agree with motivic Donaldson-Thomas

invariants of [2], and in the case of the resolved conifold the corresponding BPS generating

functions were derived using the refined wall-crossing formula, and encoded in a refined

crystal model. From mathematical viewpoint, this setup was generalized to the whole class

of toric manifolds without compact four cycles in [13], and shown therein to agree, in the

commutative chamber, with refined topological vertex computations. The refined topological

vertex was introduced in [12], see also [57–59]. For other formulations of refinement, see

[11, 60, 61].
Our aim in this section is to construct refined crystal and matrix models, which

would encode refined BPS generating functions, and in particular (in the commutative

chamber) refined topological string amplitudes. We note that an additional motivation to

find such models arises from the AGT conjecture [62] and the results of [63], which state

that partition functions of Seiberg-Witten theories in the Ω-background (which are related

to topological strings by geometric engineering) are reproduced by matrix models with β-

deformed measure (i.e., with Vandermonde determinant raised to the power β). Explicit

construction of one class of such β-deformed models, however, only to the leading order,

was given in [55]; some other works analyzing five-dimensional beta-deformed models

include [64, 65]. On the other hand, explicit computations for simpler β-deformed model

with Gaussian potential [66, 67] revealed that it does not reproduce refined topological string

amplitude for the conifold (even though the unrefined topological string partition function

is properly reproduced when β = 1, see [47, 50]). Nonetheless, the question whether there

exist matrix models which reproduce such refined amplitudes remained valid. As we show

below (following [31]), such models can indeed be constructed by appropriate deformation

of the matrix model potential (rather than the measure). We note that recently another class

of matrix models (with different than above deformation of the measure) was proposed [68],
which also reproduce refined generating functions.

Let us also note that in this section we consider the same set of walls as in the unrefined

case. More general walls, along which only refined BPS states decay, may also exist [10]. They

are called invisible walls and they do not arise in our analysis.

In this section, we use the following refined notation. The string coupling gs, related

to the D0-brane charge as qs = e−gs in the unrefined case, is replaced by two parameters

ε1 =
√
βgs, ε2 = − gs√

β
, (6.3)
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or equivalently β = −ε1/ε2, ε1ε2 = −g2
s . We also often use the exponentiated parameters

t1 = e−ε1 , t2 = eε2 , (6.4)

and introduce

gsB = ε1 + ε2 = gs

(√
β − 1√

β

)
. (6.5)

The variable y in (6.2) is related to t1 and t2 as y = t1/qs = qs/t2, so that y2 = t1/t2 = qBs . In

this notation the unrefined situation y = 1 corresponds to β = 1, for which ε1 = −ε2 = gs and

t1 = t2 = qs and B = 0.

Let us present now refined BPS generating functions for some Calabi-Yau spaces.

(i) For C3 we get the refined MacMahon function [12]

ZC
3

=Mref(t1, t2) =
∞∏

k,l=0

1

1 − tk+1
1 tl2

. (6.6)

In this case, there is no Kähler parameter, and therefore there are no interesting wall-crossing

phenomena (In fact, one can consider more general family of refinements parametrized by δ,

such that Mδ(t1, t2) =
∏∞

k,l=0(1 − t
k+1+((δ−1)/2)
1 t

l−((δ−1)/2)
2 )−1. In this paper, we fix the value δ = 1

(note that in [10] another choice δ = 0 was made).).

(ii) For the resolved conifold, refined generating functions were computed in [10] using

refined wall-crossing formulas. In the closed BPS chamber labeled by n − 1, these

generating functions read

Zconifold
n−1 =Mref(t1, t2)2

( ∞∏
k,l=0

(
1 −Qtk+1

1 tl2

))( ∏
k≥1,l≥0,k+l≥n

(
1 −Q−1tk1 t

l
2

))
. (6.7)

In the commutative chamber n → ∞, the terms in the last bracket decouple and the BPS

generating function agrees (up to the refined MacMahon factor) with the refined topological

string amplitude

Zconifold
∞ =Mref(t1, t2)Zref

top =Mref(t1, t2)
∞∏

k,l=0

(
1 −Qtk+1

1 tl2

)
. (6.8)

On the other hand, in the noncommutative chamber n = 0 the refined generating function is

given by the modulus square of the refined topological string amplitude.

(iii) For a resolution of C3/Z2 singularity, there is also a discrete set of chambers para-

metrized by an integer n. The corresponding BPS generating functions read

ZC
3/Z2

n−1 =Mref(t1, t2)2

( ∞∏
k,l=0

(
1 −Qtk+1

1 tl2

)−1
)( ∏

k≥1,l≥0,k+l≥n

(
1 −Q−1tk1 t

l
2

)−1
)
. (6.9)
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t1

t2

Figure 18: Refined plane partitions which count D6-D0 bound states in C3. In each slice balls, which
intersect a dashed or solid line, have, respectively, weight t1 or t2. The resulting generating function is
the refined MacMahon function Mref(t1, t2).

(iv) Generating functions for an arbitrary toric geometry, in for the noncommutative

chamber, are given (as in the unrefined case) by the modulus square of the

(instanton part of the) refined topological string amplitude

Zref
0 =
∣∣∣Zref

top

∣∣∣2 ≡ Zref
top(Qi)Zref

top

(
Q−1
i

)
. (6.10)

The (instanton part of the) refined topological string amplitude is given by [12, 57]

Zref
top(Qi) =Mref(t1, t2)(N+1)/2

∞∏
k,l=0

∏
1≤i<j≤N+1

(
1 −
(
QiQi+1 · · ·Qj−1

)
tk+1
1 tl2

)−τiτj
. (6.11)

6.1. Refining Free Fermion Representation

In the nonrefined case to a geometry consisting of N P1’s, we associated in Section 4 a

crystal which can be sliced into layers in N + 1 colors, denoted q0, q1, q2, . . . , qN . In that

case, parameters q1, . . . , qN encode Kähler parameters of the geometry Q1, . . . , QN , while

the product
∏N

i=0qi is mapped to (possibly inverse of) qs = e−gs . In the refined case, the

assignment of colors must take into account a refinement of a single parameter qs into t1 and

t2 introduced in (6.4). In particular, in the noncommutative chamber qi/= 0 are mapped (up to

a sign, as in the nonrefined case) to Qi; however, we will have to replace q0 by two refined

colors q
(1)
0 or q

(2)
0 , so that ti = q

(i)
0 q1 · · · qN , for i = 1, 2. The simplest case of C3 refined plane

partitions (discussed also in [12]) is shown in Figure 18. In what follows, we will discuss

assignment of colors for other manifolds.

Now we wish to follow the idea of Section 4. Firstly, we wish to construct refined states

|Ωref
± 〉 whose correlators would reproduce refined BPS amplitudes in the noncommutative

chamber

Zref
0 =
〈
Ωref

+ | Ωref
−

〉
. (6.12)
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Secondly, we wish to construct refined wall-crossing operators W
ref

n , such that the BPS

generating function in n’th chamber can be written as

Zref
n =
〈
Ωref

+

∣∣∣W ref

n

∣∣∣Ωref
−

〉
. (6.13)

In Section 6.1.1 below, we construct states |Ωref
± 〉 for arbitrary manifold in a class of our

interest. In Section 6.1.2, we construct states |Ωref
± 〉 and wall-crossing operators W

ref

n for all

chambers of the resolved conifold and a resolution of C3/Z2 singularity.

6.1.1. Arbitrary Geometry—Noncommutative Chamber

Here we construct fermionic states |Ωref
± 〉, which allow to write the BPS generating functions

in the noncommutative chamber as in (6.12). As in the nonrefined case, the states |Ωref
± 〉

are constructed from an interlacing series of vertex operators Γτi± and weight operators.

The refinement does not modify the three-dimensional shape of the corresponding crystal;

therefore, the assignment of vertex operators is the same as in the nonrefined case (4.2),
as explained in Section 4.2.1. However, this is assignment of colors, encoded in the weight

operators, which is modified in the refined case. Let us introduceN operators Q̂i representing

colors qi, for i = 1, . . . ,N, and in addition two other colors q
(1)
0 and q

(2)
0 , which are eigenvalues

of Q̂
(1)
0 and Q̂

(2)
0 . Operators Q̂1, . . . , Q̂N , similarly as in Section 4.2.1, are assigned to P1’s in the

toric diagram, and we introduce

Q̂(i) = Q̂(i)
0 Q̂1 · · · Q̂N, ti = q

(i)
0 q1 · · · qN, for i = 1, 2. (6.14)

Now we define refined version of A± operators

A+(x) = Γτ1
+ (x)Q̂1Γ

τ2
+ (x)Q̂2 · · ·ΓτN+ (x)Q̂NΓτN+1

+ (x)Q̂(1)
0 ,

A−(x) = Γτ1
− (x)Q̂1Γ

τ2
− (x)Q̂2 · · ·ΓτN− (x)Q̂NΓτN+1

− (x)Q̂(2)
0 .

(6.15)

Commuting all Q̂i’s to the left or right, it is convenient to use

A+(x) =
(
Q̂(1)
)−1

A+(x) = Γτ1
+ (xt1)Γ

τ2
+

(
xt1
q1

)
Γτ3
+

(
xt1
q1q2

)
· · · ΓτN+1

+

(
xt1

q1q2 · · · qN

)
,

A−(x) = A−(x)
(
Q̂(2)
)−1

= Γτ1
− (x)Γ

τ2
−
(
xq1

)
Γτ3

−
(
xq1q2

)
· · · ΓτN+1

−
(
xq1q2 . . . qN

)
,

(6.16)

and when the argument of these operators is x = 1, we often use a simplified notation

A± ≡ A±(1), A± ≡ A±(1). (6.17)
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Finally we associate to a given toric manifold two (refined) states〈
Ωref

+

∣∣∣ = 〈0| · · ·A+(1)A+(1)A+(1) = 〈0| · · ·A+

(
t21

)
A+(t1)A+(1),

∣∣∣Ωref
−

〉
= A−(1)A−(1)A−(1) · · · |0〉 = A−(1)A−(t2)A−

(
t22

)
· · · |0〉,

(6.18)

where |0〉 is the fermionic Fock vacuum.

Our claim now is that the refined BPS generating function can be written as

Zref
0 =
〈
Ωref

+ | Ωref
−

〉
≡ Ztop(Qi)Ztop

(
Q−1
i

)
, (6.19)

with Ztop(Qi) given in (3.1), and if one identifies qi parameters which enter a definition of

|Ωref
± 〉 and string parameters Qi = e−Ti (for i = 1, . . . ,N) as follows:

qi = (τiτi+1)Qi, (6.20)

and with refined parameters t1,2 identified as in (6.14).
To prove (6.19) for general geometry, we first note that commuting operators A+(x)

with A−(y)

A+(x)A−
(
y
)
= A−

(
y
)
A+(x)C

(
x, y
)

(6.21)

gives rise to a factor

C
(
x, y
)
=

1(
1 − t1xy

)N+1

∏
1≤i<j≤N+1

((
1 −
(
τiτj
)
xyt1
(
qiqi+1 . . . qj−1

))(
1 −
(
τiτj
)
xyt1

qiqi+1 . . . qj−1

))−τiτj

.

(6.22)

Now we write the states |Ωref
± 〉 in terms of A± operators, and commute Γ± within each pair of

A+ and A− separately

Zref
0 =
〈
Ωref

+ | Ωref
−

〉
= 〈0|
( ∞∏

i=0

A+

(
ti1

))⎛⎝ ∞∏
j=0

A−
(
t
j

2

)⎞⎠|0〉 =
∞∏
i,j=0

C
(
ti1, t

j

2

)
. (6.23)

This last product reproduces modulus square (6.19) of the refined topological string partition

function (6.11) and therefore proves the claim (6.12). Moreover, for the special β = 1, we

automatically obtain the proof of the analogous statement (4.10) in the nonrefined case from

Section 4.2.2.

6.1.2. Refined Conifold and C3/Z2

We can now extend the fermionic representation to nontrivial chambers, for simplicity

restricting our considerations to the case of a conifold and a resolution of C3/Z2 singularity,

which both involve just one Kähler parameter Q1 ≡ Q. Our task amounts to determining
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q1 q0 q1 q1q0 q1qB(n−1)

q1qB(n−1)

q0q−Bn

q0q−Bn

q0q−B
q1qB

Figure 19: Refined pyramid crystal for the conifold, in the chamber corresponding to n stones in the top
row. Along each slice (as indicated by broken or solid lines), all stones have the same color, assigned as
follows. On the left side (along broken lines), each light (yellow) and dark (red) slice has color denoted q0

and q1, respectively. Moving to the right, in the intermediate region (along solid lines), a color of each new
light or dark slice is modified by, respectively, q∓B factor (with respect to the previous light or dark slice).
On the right side (again along broken lines), each light or dark slice has again the same color, respectively,
q0q

−Bn or q1q
B(n−1). The assignment of colors in the intermediate region (along solid lines) interpolates

between constant assignments on the left and right sides of the pyramid.

appropriate wall-crossing operators, denoted W
ref

n−1, so that in the chamber labeled by n − 1

the BPS generating function can be written as

Zref
n−1 =

〈
Ωref

+

∣∣∣W ref

n−1

∣∣∣Ωref
−

〉
. (6.24)

In these both cases, the toric diagram has two vertices, the first one of type τ1 = 1 and the

second one denoted now τ ≡ τ2 and τ = ∓1, respectively, for the conifold and C3/Z2. A

crystal associated to the expression (6.24) has n stones in the top row and can be sliced into

interlacing single-colored layers. The assignment of colors is analogous as in the pyramid

model discussed in [10, 13]. The pyramid crystal for the conifold and C3/Z2 are shown in

Figures 19 and 20.

The assignment of colors is determined as follows. All stones on one side of the crystal

are encoded in 〈
Ωref

+

∣∣∣ = 〈0| · · ·
(
Γ+(1)Q̂1Γτ+(1)Q̂0

)(
Γ+(1)Q̂1Γτ+(1)Q̂0

)
. (6.25)

The Kähler parameter Q, as well as the parameter t1, arises as

q1 = τQt1−n1 , q0 = τ
tn1
Q
, so that q0q1 = t1. (6.26)

Now the crystal with n − 1 additional stones in the top row arises from an insertion of

the operator

W
ref

n−1 =
(
Γ−(1)Q̂1Γτ+(1)Q̂0q̂−B

)(
Γ−(1)Q̂1q̂BΓτ+(1)Q̂0q̂−2B

)
· · ·
(
Γ−(1)Q̂1q̂(n−2)BΓτ+(1)Q̂0q̂(1−n)B

)
.

(6.27)
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q1 q1q0 q0

q1qB(n−1)

q0q−Bn

q0q−B
q1qB

Figure 20: Refined pyramid crystal for the resolution of C3/Z2 singularity, in the chamber corresponding
to n stones in the top row, as seen from the bottom (i.e., a negative direction of z-axis). Even though the
three-dimensional shape of the crystal is different than in the conifold case, the assignment of colors is the
same, see Figure 19.

This operator is made of n − 1 terms of the form (Γ−(1)Q̂1q̂iBΓτ+(1)Q̂0q̂−(i+1)B) for i = 0, . . . , n −
2, where in each subsequent dark or light slice we insert one additional operator q̂±B. This

additional operator changes the weight of each stone in this slice by q±B = (t1/t2)
±1 (with

respect to the previous slice of the same light or dark color).
Finally, all stones on the right side of the crystal have again the same light or dark

color, so that the corresponding state is

∣∣∣Ωref
−

〉
=
(
Γ−(1)Q̂1q̂(n−1)BΓτ−(1)Q̂0q̂−nB

)(
Γ−(1)Q̂1q̂(n−1)BΓτ−(1)Q̂0q̂−nB

)
· · · |0〉. (6.28)

We see that varying weights in the middle range (along solid lines in Figures 19 and 20)
interpolate between fixed weights of light and dark stones on two external sides of a crystal.

We can now commute away all weight operators in the above expressions, using

commutation relations from Section 3.2. This results in

Zref
n−1 = 〈0|

( ∞∏
k=1

Γ+
(
tk1

)
Γτ+

(
tk1
q1

))(
n−2∏
i=0

Γ−
(
ti2

)
Γτ+
(
q−1

1 t−i1

))( ∞∏
k=0

Γ−
(
tn−1+k
2

)
Γτ−
(
tQtk2

))
|0〉.

(6.29)

To check that this is a correct representation, we commute all vertex operators, and find

Zref
n−1 =Mref(t1, t2)2

∞∏
k=1,l=0

(
1 −Qtk1 tl2

)−τ ∞∏
k≥1,l≥0,k+l≥n

(
1 −Q−1tk1 t

l
2

)−τ
, (6.30)

where τ = ∓1, respectively, for the conifold and C3/Z2. This result reproduces (6.7) and (6.9),
which confirms that the fermionic representation we started with is correct.
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6.2. Refined Matrix Models

In the refined case, one can associate matrix models to refined generating functions in the

same way as described in Section 5.1, that is, by inserting the representation (5.1) of the

identity operator into fermionic representation (6.19) or (6.24). This does not change a unitary

character of the matrix model, which is a consequence of the representation (5.1). However,

due to more subtle weight assignments, this is matrix potential which gets deformed by β-

dependent factors. In general, we will therefore obtain matrix models of the following form:

Zref
n = fn

∫
DU
∏
k

e−(
√
β/gs)V (zk ;β), (6.31)

where for convenience we introduced a factor
√
β in front of the potential V (z; β). We will

consider a few examples below.

6.2.1. Noncommutative Chamber

For arbitrary geometry, in the noncommutative chamber, refined matrix model integrand can

be expressed in terms of the refined theta function

Θ(z; t1, t2) =
∞∏
j=0

(
1 + ztj+1

1

)(
1 +

t
j

2

z

)
. (6.32)

Repeating the computation described in Section 5.1, however, starting with the refined

representation (6.19), in the noncommutative chamber for general geometry, we find the

matrix model

Zref
0 =
∫
DU
∏
k

N∏
l=0

Θ
(
τl+1zk
q1 · · · ql

; t1, t2

)τl+1

, (6.33)

that is, we identify e−(
√
β/gs)V (z;β) ≡ ∏N

l=0Θ(τl+1z(q1 · · · ql)−1; t1, t2)
τl+1 . The product over l runs

over all vertices and we identify Kähler parameters Qp with weights qp via qp = (τpτp+1)Qp.

6.2.2. Refined C3 Matrix Model

We obtain a refined matrix model for C3 as the special case of (6.33). For the refined C3, the

BPS generating function is a refined MacMahon function Zref = Mref(t1, t2) introduced in

(6.6), and the corresponding matrix integrand takes form of a refined theta function

e−(
√
β/gs)V (z;β) =

∞∏
j=0

(
1 + ztj+1

1

)(
1 +

t
j

2

z

)
= Θ(z; t1, t2). (6.34)

Using the asymptotics (5.15), we find the leading order expansion of the potential

e−(
√
β/gs)V (z;β) = e−(

√
β/gs)[−(1/2)(log z)2−(1−β−1)Li2(−z)+O(gs,β)]. (6.35)
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The quadratic term in the potential is the same as in the nonrefined case. The term involving

Li2(−z), as well as all higher-order terms O(gs, β), arises as deformations which vanish for

β = 1. Therefore, for β = 1, we obtain a Chern-Simons matrix model which indeed gives rise

to MacMahon function in N → ∞ limit, as we explained in Section 5.3. For arbitrary β, the

resolvent ω(p) can also be found using the Migdal integral (3.18). In principle, one could

repeat the computation described in Section 5.3; however, this is technically more involved.

Nonetheless, this would lead to β-deformed end-points of the cut (91), and in consequence

to the β-deformed spectral curve. This curve would be some β-deformation of the mirror

curve given in (3.23). It is still an interesting question to find this curve in the exact form and

analyze its properties.

6.2.3. Refined Conifold Matrix Model

Finally we find matrix models for the refined conifold. Starting with the representation (6.29),
inserting the identity representation (5.1) and following standard by now computations, we

find the following matrix model for the conifold in the n’th chamber (corresponding to a

pyramid with (n + 1) stones on top)

Zref
n =Mref(t1, t2)2

∞∏
k=1,l=0

(
1 −Qtk1 tl2

) ∞∏
k≥1,l≥0,k+l≥n+1

(
1 −Q−1tk1 t

l
2

)

= fn
(
q,Q
) ∫

DU
∏
k

∞∏
j=0

(
1 + zkt

j+1

1

)(
1 + tj2/zk

)
(

1 + zkt
j+n+1

1 /Q
)(

1 + tj2Q/zk
) ,

(6.36)

with the prefactor given by

fn
(
q,Q
)
=

(
n∏
i=1

∞∏
k=0

1

1 − ti1tk2

)⎛⎝ n∏
i=1

∞∏
j=n+1−i

⎛⎝1 −
ti1t

j

2

Q

⎞⎠⎞⎠. (6.37)

In the limit of the commutative chamber, n → ∞, we get f∞ = Mref(t1, t2). Therefore, in the

commutative chamber, we get a matrix model representation of the refined topological string

conifold amplitude

Zref
top =Mref(t1, t2)

∞∏
k,l=0

(
1 −Qtk+1

1 tl2

)

=
∫
DU
∏
k

∞∏
j=0

(
1 + zkt

j+1

1

)(
1 + tj2/zk

)
(

1 + tj2Q/zk
) .

(6.38)

In this case, the lowest order potential is a modification of the C3 potential (6.35) by a Q-

dependent dilogarithm term

V
(
z; β
)
= −1

2

(
log z
)2 −
(

1 − β−1
)
Li2(−z) − Li2

(
−Q
z

)
+O
(
gs, β
)
. (6.39)
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This is quite an interesting result—as we already explained above, it has been postulated for

some time that the refined topological string amplitude for the conifold should have matrix

model representation; however, it was not clear how to derive it. Here we find an explicit

matrix model representation of this amplitude. The corresponding spectral curve would

again be a β-deformation of the conifold mirror curve (3.23). It would be interesting to com-

pare it with other notions of deformed, or quantum mirror curves in the literature. We also

note that in the limit Q → 0 the above topological string partition function becomes just the

refined MacMahon function, and the matrix integral consistently reproduces C3 result (6.34).
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We briefly review an algorithmic strategy to explore the landscape of heterotic E8 × E8 vacua, in
the context of compactifying smooth Calabi-Yau threefolds with vector bundles. The Calabi-Yau
threefolds are algebraically realised as hypersurfaces in toric varieties, and a large class of vector
bundles are constructed thereon as monads. In the spirit of searching for standard-like heterotic
vacua, emphasis is placed on the integer combinatorics of the model-building programme.

1. Introduction

Compactifications of E8 × E8 heterotic theory [1, 2] and heterotic M-theory [3–7] on smooth

Calabi-Yau threefolds provide a simple and compelling way to reach N = 1 supersymmetry

at four dimensions. A Calabi-Yau threefold necessarily admits a Ricci-flat metric gαβ, where

α, β = 1, 2, 3 are, respectively, the holomorphic and antiholomorphic indices. One also turns

on an internal gauge field, in a subalgebra G of the full E8, resulting in the reduction of

the four-dimensional gauge group down to the commutant H of G ⊂ E8. To preserve

supersymmetry, the gauge field should satisfy the Hermitian Yang-Mills equations:

Fαβ = Fαβ = 0, gαβFαβ = 0, (1.1)

where F is the associated field strength. Although these equations cannot be solved

analytically, the Donaldson-Uhlenbeck-Yau theorem [8, 9] states that, on a holomorphic

(poly) stable bundle, there exists a unique connection that solves (1.1).
So each of the heterotic vacua comes in two pieces: a Calabi-Yau threefold X and a

holomorphic stable vector bundle V thereon. Studying the detailed geometry, however, is

not an easy task. To begin with, we do not even know the Ricci-flat metrics on Calabi-Yau

threefolds. Fortunately, as will be seen shortly, it turns out that the topology of a vacuum

already determines many interesting features of the four-dimensional effective theory.
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Table 1: A vector bundle V with structure group G = SU(4) or SU(5), respectively, breaks the E8 group
of the heterotic string into the Grand Unifying group H = SO(10) or SU(5). The four-dimensional low-
energy representation contents of H arise from the branching of the 248 adjoint of E8 under G × H ⊂ E8.
The particle spectrum is obtained as various bundle-valued cohomology groups.

G H Branching of 248 under G ×H ⊂ E8 Particle spectrum

SU(4) SO(10) (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)

n16 = h1(X,V )

n16 = h1(X,V ) = h2(V )

n10 = h1(X,∧2V )

n1 = h1(X,V ⊗ V )

SU(5) SU(5) (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5) ⊕ (24, 1)

n10 = h1(X,V )

n10 = h1(X,V ) = h2(V )

n5 = h1(X,∧2V )

n5 = h1(X,∧2V )

n1 = h1(X,V ⊗ V )

In order for the heterotic models to be “Standard-like,” they must give rise to the

correct gauge group, SU(3)C × SU(2)L × U(1)Y , possibly with an extra U(1)B−L factor, as

well as a correct spectrum for light particles coming in three generations. Firstly, the choices

G = SU(4) and SU(5) for the structure group of V reduce the E8 to the four-dimensional

gauge groups H = SO(10) and SU(5), respectively, which are desirable in the viewpoint of

Grand Unification1. The light particles then arise from the branching of the adjoint 248 of E8

into G ×H, and the spectrum is determined by various bundle-valued cohomologies on the

Calabi-Yau threefold [2], as summarised in Table 1. Of course, the gauge group H should be

further broken down to a standard-like one and discrete Wilson-lines are made use of, if there

ever exists any, for this second breaking.

In this paper, we will make it clear how the construction of standard-like heterotic

vacua turns into the integer combinatorics for a discrete system. Specifically, the Calabi-Yau

threefolds will be torically constructed and described by the combinatorics of reflexive lattice

polytopes [10].2 Next, monad vector bundles [11] will be constructed thereon, equivalent of

turning on internal gauge fluxes over the Calabi-Yau threefolds.

The remainder of this paper is structured as follows. In the ensuing two sections,

we lay down the foundation by explaining the basic mathematical toolkit for describing

N = 1 heterotic vacua. Next, in Section 4, further constraints will be imposed on the internal

geometry so that the resulting N = 1 four-dimensional effective theory may mimic the

standard model. We will conclude in Section 5 with a summary and outlook.

2. Toric Construction of Calabi-Yau Threefolds

Soon after the famous 7890 Calabi-Yau threefolds were realised as complete intersections

of hypersurfaces in multiprojective spaces [12–16], Kreuzer and Skarke have classified

the Calabi-Yau threefolds that arise as codimension-one hypersurfaces in toric fourfolds,

comprising a much bigger dataset [17–19]. This construction, first proposed by Batyrev [10],
involves an extensive usage of toric geometry. Here, we do not intend by any means to give

a pedagogical introduction to toric geometry. The readers interested in the details of this

subject are referred either to the maths texts [20–23] or to the excellent, introductory reviews

for physicists [24, 25].
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2.1. Ambient Toric Fourfolds

The Calabi-Yau threefolds X are embedded in toric fourfolds A as hypersurfaces and,

therefore, we will start with the description of these ambient toric varieties. A toric fourfold

is described by the combinatorial data called a fan in R4, which is a collection of convex

cones in R4 with their common apex at the origin O = (0, 0, 0, 0). For the sake of Calabi-Yau

subvarieties, however, every fan is not appropriate. We first define a certain class of convex

polytopes in R4, of which fans of a special kind are made.

The polytopes considered here must contain the origin O as the unique interior lattice

point and all the vertices must lie in the lattice Z4 ⊂ R4. Such polytopes are called reflexive. It

can be shown that, for a given reflexive polytope Δ in R4, the dual polytope Δ◦ defined by

Δ◦ =
{
v ∈ R4 | 〈m,v〉 ≥ −1 ∀m ∈ Δ

}
(2.1)

also has all its vertices on the lattice Z4, like the original polytope Δ does. To this dual

polytope Δ◦, we can associate a collection of the convex cones over all its faces, forming

the fan for our toric fourfold A.

Now, as for the construction of toric fourfold from a given fan in R4, several equivalent

methods are known. What best suits our purpose amongst them is Cox’s homogenous-

coordinate approach [26], where a complex homogeneous coordinate xρ is associated to each

one-dimensional cone ρ in the fan. Thus, if the fan has k edges, then there are k homogeneous

coordinates (x1, . . . , xk) for Ck. The next task is to identify a certain measure zero subset Z of

Ck which should be removed. Let S be a set of edges that do not span any cone in the fan and

let Z(S) ⊂ Ck be the linear subspace defined by setting xρ = 0, for all ρ ∈ S. Now, let Z ⊂ Ck

be the union of the subspaces Z(S) for all such S. Then, the toric fourfold is constructed as a

quotient of Ck − Z by the following (C∗)k−4action:

(x1, . . . , xk) ∼
(
λ
βr 1
r x1, . . . , λ

βrk
r xk
)
, λr ∈ C∗ for r = 1, . . . , k − 4, (2.2)

where the coefficients βrρ are defined by the linear relations
∑k

ρ=1 β
r
ρvρ = 0 amongst the edges.

Hence, βrρ form a (k − 4) × k matrix which is often referred to as a charge matrix [27]. The

identification rule in (2.2) can be schematically written as

A =

(
Ck − Z

)
(C∗)k−4

. (2.3)

Note that the construction of toric fourfolds in (2.3) naturally generalises that of projective

space P4, the simplest toric fourfold, in which case Z = {O} and k = 5; that is,

P4 =

(
C5 − {O}

)
C∗ . (2.4)

2.2. Calabi-Yau Threefolds

A Calabi-Yau hypersurface X to the toric fourfold A is constructed in a straightforward

manner without requiring any further data: as long as the polytope Δ is reflexive, it also

defines X ⊂ A. Note that, in this case, Δ◦ is also a reflexive polytope since (Δ◦)◦ = Δ. To a

reflexive polytope Δ in R4, we can associate a family of Calabi-Yau threefolds X defined as
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the vanishing loci of the polynomials of the form

P{Cm}(x1, . . . , xk) =
∑
m∈Δ

Cm

k∏
ρ=1

x
〈m,vρ〉+1
ρ , (2.5)

where xρ=1,...,k are the k homogeneous coordinates of A associated to the lattice vertices

vρ=1,...,k of Δ◦ and Cm are numerical coefficients parameterising the complex structure of X.

Heterotic compactifications ask for compact Calabi-Yau threefolds that are smooth.

However, a toric fourfold A constructed by (2.3) usually bears singularities and they in

general descend to the hypersurfaces X too. In order to make X nonsingular, we partially

desingularise A so that the hypersurfaces may avoid the singularities of the ambient space

[10]. This process corresponds to triangulating the (dual) polytope in a special way and is

called an MPCP-triangulation.3

As for the statistics, a total of 473, 800, 776 reflexive polytopes in R4 have been classified

[17–19], each of which gives rise to a toric fourfold A as well as a family of Calabi-Yau

threefolds X. It turns out that only 124 out of them describe smooth manifolds, for which

no MPCP-triangulations are required.

3. Monad Construction of Vector Bundles
In the physics literature, especially in the context of heterotic string phenomenology,

construction of vector bundles has been attempted in several ways. They include spectral
cover construction [28–34], bundle extension [35–37], and the mixture thereof [38]. In many

of them, it was essential for the base threefolds to have a torus-fibration structure. On the

other hand, monad construction [11] does not assume any extra structure and has proved

particularly useful for algorithmically scanning a vast number of vector bundles [39–43].
A monad vector bundle is essentially the quotient of two Whitney sums of line bundles.

More precisely, a monad bundle V over a Calabi-Yau threefold X is defined by the short exact

sequence of the form

0 −→ V −→
rb⊕
i=1

OX(bi)
f−→

rc⊕
j=1

OX

(
cj
)
−→ 0, (3.1)

where bi and cj are integer vectors of length h1,1(X), representing the first Chern classes of

the summand line bundles OX(bi) and OX(cj). The bundle V is a holomorphic U(n)-bundle,

where

n = rb − rc (3.2)

is the rank of V .

From (3.1), one can readily read off the Chern class of V :

c1(V ) =

⎛⎝ rb∑
i=1

bri −
rc∑
j=1

crj

⎞⎠Jr,

c2(V ) =
1

2
drst

⎛⎝ rc∑
j=1

csj c
t
j −

rb∑
i=1

bsi b
t
i

⎞⎠νr,

c3(V ) =
1

3
drst

⎛⎝ rb∑
i=1

bri b
s
i b

t
i −

rc∑
j=1

crj c
s
j c

t
j

⎞⎠,

(3.3)



Advances in High Energy Physics 5

where Jr ∈ H1,1(X,R) represent the harmonic (1, 1)-forms c1(OX(er)), the drst are the triple

intersection numbers defined by

drst =
∫
X

Jr ∧ Js ∧ Jt, (3.4)

and the νr are the 4-forms furnishing the dual basis to the Kähler generators Jr , subject to the

duality relation ∫
X

Jr ∧ νs = δsr . (3.5)

As can be seen from (3.3), the Chern class of V only depends on the integer parameters bi
and cj , as well as the topology of the base manifold X. Choosing an appropriate morphism f

in the defining sequence (3.1) corresponds to the tuning of more refined invariants of V .

4. Towards the Standard Model

Sections 2 and 3 have shown that the vacuum topology is essentially described by lattice

vertices and integer parameters, both of which are discrete and combinatorial in nature. One

can therefore attempt to construct N = 1 heterotic vacua in an algorithmic way. Torically

constructed Calabi-Yau threefolds form a dataset of reflexive polytopes represented by the

lattice vertices, and monad bundles are explored on each of the base manifolds by varying

the integer parameters.

4.1. Phenomenological Constraints on the Vacua

With the geometric constraints so far explained, one would only be able to guarantee the

right number of supersymmetry at low energy, that is, N = 1 at D = 4. Since the goal of string

phenomenology is to obtain (supersymmetric versions of) the standard model, more criteria

should further be imposed on the N = 1 vacua. To make things clear, let us emphasize that in

this paper the terminology “standard-like” model will imply the following:

(i) Gauge invariance under SU(3)C × SU(2)L ×U(1)Y , possibly with an extra U(1)B−L
factor;

(ii) three generations of quarks and leptons, and no exotics;

(iii) cancellation of heterotic anomaly.

Here, we translate the above three phenomenological constraints into the conditions on the

vacuum topology.

4.1.1. Gauge Group

As explained in Section 1, the structure group G of the visible sector bundle sits in E8 and

its commutant H becomes the low-energy gauge group. In order to obtain H = SO(10) and

SU(5), one must choose G = SU(4) and SU(5), respectively. In particular, the rank of the

bundle should be either 4 or 5 and, hence, by (3.2),

rb − rc = 4 or 5, (4.1)
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where rb and rc are the ranks of the two vector bundles in the defining sequence (3.1) of

V . What is more, since the structure group should be “special” unitary, the first Chern class

c1(V ) of V is to vanish. By (3.4), this corresponds to

rb∑
i=1

bi =
rc∑
j=1

cj , (4.2)

where bi = (b1
i , . . . , b

h1,1

i ) and cj = (c1
j , . . . , c

h1,1

j ) are the h1,1-tuples of integers labelling the

summand line bundles and, hence, parameterising the monad V .

We still have to break the GUT group further down to a standard-like one, and this

second breaking will require π1(X)-Wilson-lines. However, given the observation that most

of the torically constructed Calabi-Yau threefolds have a trivial first fundamental group [44],
they must be quotiented out by freely-acting discrete symmetries so that we may turn on

appropriate Wilson lines. Therefore, we will eventually have to look for a discrete symmetry

group G that acts freely on X and make a quotient space X̂ = X/G, which will then have a

nontrivial first fundamental group π1(X̂) � G.

4.1.2. Cancellation of Heterotic Anomaly

Heterotic models need to satisfy a well-known anomaly condition. So far, we have only

mentioned one holomorphic vector bundle V for the visible sector but the theory has another

bundle Ṽ for the hidden sector. Heterotic vacua can also have five-branes whose strong-

coupling origin is M5-branes. In order to keep the four-dimensional Lorentz symmetry,

their world volumes must stretch along the external Minkowski M4. The remaining two

dimensions should then wrap holomorphic two cycles in X for unbroken supersymmetry.

Thus, the homology classes associated with these two cycles must be effective and, hence,

belong to the Mori cone in H2(X,Z). In other words, the corresponding four-forms must

belong to the corresponding cone in H4(X,Z).
In this most general setup, heterotic anomaly cancellation imposes a topological

constraint relating the Calabi-Yau threefold, the two vector bundles, and the five-brane

classes. When c1(TX) = c1(V ) = c1(Ṽ ) = 0, the anomaly condition can be expressed, at

the level of cohomology, as

c2(TX) − c2(V ) − c2

(
Ṽ
)
=W, (4.3)

where W =
∑

i Wi is the sum of the five-brane classes. Note that W itself should also belong

to the Mori cone of X as all the summands Wi do. In our discussion, however, without

mentioning the second bundle Ṽ , we presume a trivial bundle for the hidden sector. Thus,

the anomaly constraint in (4.3) says that c2(TX) − c2(V ) is effective.

4.1.3. Particle Spectra

Table 1 shows how the low-energy particle spectra are determined from various bundle-

valued cohomology groups. Assuming that V is a stable bundle4 implies that h0(X,V ) =
0 = h3(X,V ), and, hence, to obtain three net generations of quarks and leptons, we must have

−1

2

∫
X

c3(V ) = h1(X,V ) − h2(X,V ) = 3|G|, (4.4)



Advances in High Energy Physics 7

Table 2: The list of standard-like constraints on the N = 1 heterotic vacua, each described by a Calabi-
Yau threefolds X and a G-bundle V thereon; the integers bri and crj parameterise the bundle V as in (3.1),
where i = 1, . . . , rb, j = 1, . . . , rc, and r = 1, . . . , h1,1(X). The second column states the constraints on the
background geometry, and the third column expresses the corresponding algebraic equations that the
parameters bri and crj must obey, where drst =

∫
X
Jr ∧ Js ∧ Jt are the intersection numbers for a given

basis {Jr}1≤r≤h1,1(X) for H1,1(X,R).

Physics
origin

Background geometry Algebraic constraints on bi and cj

Gauge
group

(a) G = SU(n), for n = 4, 5

(b) X has a discrete free action G

(a1) rb − rc = 4 or 5

(a2)
∑rb

i=1 b
r
i =
∑rc

j=1 c
r
j , for all r

Anomaly c2(TX) − c2(V ) is effective c2(TX)r − (1/2)drst(
∑rc

j=1 c
s
j c

t
j −
∑rb

i=1 b
s
i b

t
i) > 0, for all r

Particle
spectra

(1/2)
∫
X
c3(V ) = −3|G| drst(

∑rb
i=1 b

r
i b

s
i b

t
i −
∑rc

j=1 c
r
j c

s
j c

t
j) = −18|G|

where the Aiyah-Singer index theorem [45] has been applied to the differential operator �∂V
on X and |G| is the order of the discrete symmetry group G, with which we will have to

quotient the “upstairs” threefolds X.

4.2. Discrete System for Standard-Like Vacua

In this subsection, we briefly summarise the model-building requirements that have so far

been discussed.

(i) Calabi-Yau threefold: a reflexive polytope Δ ⊂ R4 describes a Calabi-Yau threefold

X. In the computer package PALP [46], by inserting the list of lattice vertices of

Δ or, equivalently, the corresponding “weight system” [18], one can obtain all the

topological invariants of X relevant to the heterotic compactification.

(ii) Monad vector bundle: the rb + rc integer vectors bi and cj of length h1,1(X), each

labelling a line bundle summand, parameterise our monad bundle V .

(iii) Standard-like constraints: the internal backgrounds are also constrained by the

standard-like phenomenology. It turns out that given a Calabi-Yau threefold X,

that is, for a fixed topology of X, the monad parameters bi and cj must obey the

algebraic equations of degree 0, 1, 2, and 3 shown in Table 2.

Note that the integer combinatorics under the algebraic constraints of small degrees

has formed a simple discrete system for standard-like heterotic vacua. However, this system

of vacua is far from being finite yet. To begin with, there are no upper bounds on rb and rc that

count the number of monad parameters. Before initiating an exploration of the landscape, one

first needs to add more constraints to make the system finite and those extra constraints had

better be related to preferred phenomenology. Now, if the line bundle summands in (3.1) are

ample or, equivalently, if all the monad parameters bri and crj are positive,5 then, by Kodaira’s

vanishing theorem [45, 47], the cohomology group H2(X,V ) vanishes and, hence, the low-

energy effective theory acquires no antigenerations. Of course this is a phenomenologically

preferred feature, although not necessary. We call a monad positive if it is only parameterised

by positive integers and semipositive if all its parameters are either positive or zero. Secondly,

one can also constrain the relative size of these monad parameters so that each entry of the

vector bi − cj may be nonnegative, for all i and j. In this case, we will call the monad generic
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since the monad map f in (3.1), thought of as an rc×rb matrix of polynomials, may generically

have all the entries nonzero.

4.3. Exploring a Region of the Landscape

As for the first step, one can think of exploring generic, positive monads over a “small”

class of Calabi-Yau threefolds. As was mentioned in Section 2.2, the total dataset of torically

constructed Calabi-Yau threefolds are way too large to grasp altogether. Therefore, at the

initial stage, those in “smooth” ambient spaces have first been considered amongst the total

of 500 million [40]. It turns out that over theseO(100) manifolds, the generic, positive monads

are finite in number under the constraints in Table 2 and the standard-like vacua have indeed

been classified, resulting in 61 candidate models.

Based on this experience, one can become more ambitious and extend the vacuum

search, both bundle-wise and Calabi-Yau-wise. Firstly, with the positivity condition a bit

relaxed, the generic, semipositive monads have been explored over the same O(100) Calabi-

Yau threefolds [40]. The standard-like vacua with the monads of this type turn out to form

an infinite class, and, hence, they have been explored under an artificial upper bound on

the monad parameters, resulting in 85 models. Secondly, the programme has also been

extended to include singular ambient manifolds with small h1,1 [41]. A total of O(300)
torically constructed Calabi-Yau threefolds have the Hodge number h1,1 ≤ 3, and the generic,

positive monads have been classified thereon, giving rise to new candidate models.

5. Summary and Outlook

In this paper, we have discussed a systematic approach towards standard-like heterotic

vacua. The proposed algorithms have indeed been implemented in a computer package [48].
Simplicity of the integer combinatorics for the N = 1 heterotic vacua was the essential feature

that made this approach a tractable programme. It was motivated by the general observation

that any carefully chosen single model is likely to fail the detailed structure of the standard

model. Thus, the spirit of the programme is to obtain a large number of standard-like models,

on which further constraints should be imposed later on to refine the set of candidates,

eventually reaching the “genuine” standard model(s).
The combinatorics of toric geometry has been invaluable for constructing toric ambient

fourfolds, to which Calabi-Yau threefolds have been embedded as hypersurfaces, and for

computing their topological invariants relevant to the four-dimensional phenomenology.

Smooth ambient fourfolds have been considered as a starter [40], and general ambient

fourfolds have also been dealt with [41] by partially resolving the singularities, if they bear

any, so that the smoothness of the hypersurface Calabi-Yau threefolds is guaranteed. In both

cases, the generic, positive monads (and some semipositive ones, too, in the former case)
have been probed under the standard-like criteria. We have thus obtained a set of candidate

models, that are anomaly free and that have a chance to produce three generations of quarks

and leptons without any antigenerations.

To guarantee the three-generation property of these candidates, further study of

discrete symmetries of the manifolds is essential. Braun has recently classified the free group

actions on complete intersection Calabi-Yau threefolds in multiprojective spaces [49], and

his algorithm can in principle be generalised to toric cases. The line-bundle cohomologies

on the torically constructed Calabi-Yau threefolds are also an essential part of the model

building. The starting point would be to work out the cohomologies on the ambient toric
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varieties, which have already been investigated in the mathematics and physics literatures

[23, 50–52]. Practical conversion of this information into the line-bundle cohomologies on the

hypersurfaces is a rewarding work along the line of monad bundles and heterotic strings.

As for the completion of the detailed particle spectra, the cohomologies of the monads in

different representations are also to be revealed.
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Endnotes

1. The choice G = SU(3) also gives rise to E6 GUT models. However, they have an inherent

trouble in doublet-triplet splitting of Higgs multiplet (see, for a recent example, [39])
and, hence, we will not address the models of this type here.

2. In algebraic geometry, Calabi-Yau threefolds are, in general, realised as complete

intersections of hypersurfaces in toric varieties of dimension greater than or equal to

four but this paper will only be dealing with single-hypersurface cases.

3. MPCP is a short for maximal, projective, crepant and partial. A triangulation is said to be

maximal if all lattice points of the polytope are involved, projective if the Kähler cone of the

resolved manifold has a nonempty interior, and crepant if no points outside the polytope

are taken. In practice, all possible MPCP-triangulations of a given reflexive polytope are

searched by the computer package PALP [46].

4. Testing the bundle stability is indeed one of the crucial steps for our model construction.

However, it is not at all an easy task to check if a given bundle is stable. So, our strategy

is first to make use of some consequences of stability and then to check the validity at the

very end of the story. In this paper, focusing on the discrete combinatorics for the vacua,

we will not say more about the issue of stability.

5. To be precise, the Kodaira vanishing assumes that the vectors bi and cj lie in the Kähler

cone of X. In case the Kähler cone does not coincide with the positive region, one may

redefine the standard basis vectors of H1,1(X,R) to be the Kähler cone generators. For

this to work, however, the cone generators should form a linearly independent basis and

hence, we implicitly restrict ourselves to the Calabi-Yau threefolds of this type.
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[14] P. S. Green, T. Hübsch, and C. A. Lütken, “All hodge numbers of all complete intersection Calabi-Yau
manifolds,” Classical and Quantum Gravity, vol. 6, no. 2, pp. 105–124, 1989.

[15] A. He and P. Candelas, “On the number of complete intersection Calabi-Yau manifolds,”
Communications in Mathematical Physics, vol. 135, no. 1, pp. 193–199, 1990.

[16] M. Gagnon and Q. Ho-Kim, “An exhaustive list of complete intersection Calabi-Yau manifolds,”
Modern Physics Letters A, vol. 9, no. 24, pp. 2235–2243, 1994.

[17] M. Kreuzer and H. Skarke, “On the classification of reflexive polyhedra,” Communications in
Mathematical Physics, vol. 185, no. 2, pp. 495–508, 1997.

[18] M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four dimensions,”
Advances in Theoretical and Mathematical Physics, vol. 4, p. 1209, 2002.

[19] M. Kreuzer, “Toric geometry and Calabi-Yau compactifications,” Ukrainian Journal of Physics, vol. 55,
no. 5, pp. 613–625, 2010.

[20] W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.

[21] T. Oda, Convex Bodies and Algebraic Geometry, Springer, 1988.

[22] D. Cox, “Recent developments in toricgeometry,” In press, http://arxiv.org/abs/alg-geom/9606016.

[23] D. Cox, J. Little, and H. Schenck, Toric Varieties, American Mathematical Society, 2011.

[24] B. R. Greene, “String theory on Calabi-Yau manifolds,” In press, http://arxiv.org/abs/hep-th/
9702155.

[25] V. Bouchard, “Lectures on complex geometry, Calabi-Yau manifolds and toric geometry,” In press,
http://arxiv.org/abs/hep-th/0702063.

[26] D. Cox, “The homogeneous coordinate ring of a toric variety, revised version,” In press, http://
arxiv.org/abs/alg-geom/9210008.

[27] K. Hori et al., Mirror Symmetry, American Mathematical Society, 2003.

[28] R. Friedman, J. W. Morgan, and E. Witten, “Vector bundles over elliptic fibrations,” Journal of Algebraic
Geometry, vol. 8, no. 2, pp. 279–401, 1999.

[29] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, “Non-perturbative vacua and particle physics in
M-theory,” Journal of High Energy Physics, vol. 3, no. 5, article 018, 1999.

[30] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, “Holomorphic vector bundles and non-
perturbative vacua in M-theory,” Journal of High Energy Physics, vol. 3, no. 6, article 034, 1999.

[31] D. E. Diaconescu and G. Ionesei, “Spectral covers, charged matter and bundle cohomology,” Journal
of High Energy Physics, vol. 2, no. 12, article 001, 1998.

[32] B. Andreas, G. Curio, and A. Klemm, “Towards the standard model spectrum from elliptic Calabi-Yau
manifolds,” International Journal of Modern Physics A, vol. 19, no. 12, pp. 1987–2014, 2004.

[33] B. Andreas and D. Hernandez-Ruiperez, “Comments on N = 1 heterotic string vacua,” Advances in
Theoretical and Mathematical Physics, vol. 7, pp. 751–786, 2004.

[34] G. Curio, “Standard model bundles of the heterotic string,” International Journal of Modern Physics A,
vol. 21, no. 6, pp. 1261–1282, 2006.

[35] V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev, “A heterotic standard model,” Physics Letters B, vol.
618, no. 1–4, pp. 252–258, 2005.



Advances in High Energy Physics 11

[36] V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev, “A standard model from the E8 × E8 heterotic
superstring,” Journal of High Energy Physics, no. 6, article 039, pp. 897–914, 2005.

[37] V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev, “Vector bundle extensions, sheaf cohomology, and the
heterotic standard model,” Advances in Theoretical and Mathematical Physics, vol. 10, no. 4, pp. 525–589,
2006.

[38] R. Donagi, Y. H. He, B. A. Ovrut, and R. Reinbacher, “The spectra of heterotic standard model vacua,”
Journal of High Energy Physics, no. 6, article 070, pp. 1601–1634, 2005.

[39] L. B. Anderson, J. Gray, Y. H. He, and A. Lukas, “Exploring positive monad bundles and a new
heterotic standard model,” Journal of High Energy Physics, vol. 2010, no. 2, article 054, 2010.

[40] Y. H. He, S. J. Lee, and A. Lukas, “Heterotic models from vector bundles on toric Calabi-Yau
manifolds,” Journal of High Energy Physics, vol. 2010, no. 5, article 071, 2010.

[41] Y. H. He, M. Kreuzer, S. J. Lee, and A. Lukas, “Heterotic bundles on Calabi-Yau manifolds with small
Picard number,” In preparation.

[42] L. B. Anderson, Y. H. He, and A. Lukas, “Heterotic compactification, an algorithmic approach,”
Journal of High Energy Physics, vol. 2007, no. 7, article 049, 2007.

[43] L. Anderson, Y. H. He, and A. Lukas, “Monad bundles in heterotic string compactifications,” Journal
of High Energy Physics, vol. 2008, no. 7, article 104, 2008.

[44] V. Batyrev and M. Kreuzer, “Integral cohomology and mirror symmetry for Calabi-Yau 3-folds,” In
press, http://arxiv.org/abs/math/0505432.

[45] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, 1978.

[46] M. Kreuzer and H. Skarke, “Palp: a package for analysing lattice polytopes with applications to toric
geometry,” Computer Physics Communications, vol. 157, no. 1, pp. 87–106, 2004.

[47] R. Hartshorne, Algebraic Geometry (Graduate Texts in Mathematics), Springer, 1977.

[48] A. Lukas,, L. Anderson, J. Gray, Y. H. He, and S. J. Lee, CICY package, based on methods described
in Refs. [15, 47-49].

[49] V. Braun, “Discrete wilson lines in F-theory,” . In press, http://arxiv.org/abs/1010.2520.

[50] R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy, “Cohomology of line bundles: a computational
algorithm,” Journal of Mathematical Physics, vol. 51, no. 10, article 103525, 2010.

[51] H. Roschy and T. Rahn, “Cohomology of line bundles: proof of the algorithm,” Journal of Mathematical
Physics, vol. 51, no. 10, article 103520, 2010.

[52] R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy, “Cohomology of line bundles: applications,” In
press, http://arxiv.org/abs/1010.3717.



Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2011, Article ID 152749, 15 pages
doi:10.1155/2011/152749

Review Article
Computational Tools for Cohomology of
Toric Varieties

Ralph Blumenhagen, Benjamin Jurke, and Thorsten Rahn
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Novel nonstandard techniques for the computation of cohomology classes on toric varieties are
summarized. After an introduction of the basic definitions and properties of toric geometry,
we discuss a specific computational algorithm for the determination of the dimension of line-
bundle-valued cohomology groups on toric varieties. Applications to the computation of chiral
massless matter spectra in string compactifications are discussed, and using the software package
cohomCalg, its utility is highlighted on a new target space dual pair of (0, 2) heterotic string models.

1. Introduction

The computation of certain cohomology groups is a critical technical step in string model

building, relevant, for example, in determining the (chiral) zero-mode spectrum or parts of

the effective four-dimensional theory, like the Yukawa coupling. Common methods often try

to relate the computation at hand via a chain of isomorphisms back to known results in order

to avoid most of the cumbersome computations from the ground up. Spectral sequences

are the established technique to deal with such problems, but often end up to become

laborious rather quickly. Having reasonable efficient algorithms to one’s avail is therefore

a vital requirement to make progress.

Supersymmetry in four dimensions puts strong restrictions on the geometries

admissible for string compactifications. In the absence of additional background fluxes

(besides a gauge flux), this leads to the class of Calabi-Yau manifolds, where of particular

interest for N = 1 supersymmetry are the Calabi-Yau threefolds and fourfolds. Due to the

Atiyah-Singer index theorem, chirality is realized by also turning on a nontrivial gauge

background, which can be understood as the curvature of a nontrivial holomorphic vector

bundle on the manifold. The majority of known Calabi-Yau manifolds are based on toric
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geometry. In particular, they are constructed as complete intersections of hypersurfaces in

toric varieties. The vector bundle can then be described by different methods, where the three

mostly used ones are

(1) the monad construction, which naturally arises in the (0, 2) gauged linear sigma

model,

(2) the spectral cover construction, which gives stable holomorphic vector bundles

with structure group SU(n) on elliptically fibered Calabi-Yau threefolds,

(3) the construction via extensions, which is the natural counterpart of brane

recombinations.

All these three constructions have in common that they involve line bundles in one

way or the other. For instance, the monad is defined via sequences of the Whitney sums of

line bundles, whereas the n-fold spectral cover is equipped in addition with a nontrivial line

bundle on it, which via the Fourier-Mukai transform gives an SU(n) vector bundle on the

Calabi-Yau manifold. The basis starting point of every cohomology computation is therefore

the knowledge of line-bundle-valued cohomology classes on the ambient toric variety.

Using a simple yet powerful algorithm, we can compute the line-bundle-valued

cohomology dimensions hi(X;LX) = dimHi(X;LX) for any toric variety based on the

information contained in the Stanley-Reisner ideal. The Koszul complex then allows to

relate the cohomology on the toric variety to the cohomology of a hypersurface or complete

intersection. The particular form of the algorithm also allows to easily deal with finite group

actions on such geometries, that is, to consider orbifold spaces and twisted string states.

This paper is organized as follows. In Section 2 some basics of toric geometry are

introduced, including the Stanley-Reisner ideal and toric fans. Section 3 introduces the

computational algorithm for cohomology group dimensions of toric varieties that will be

used throughout this paper. Section 4 shows how a finite group action and the resulting

quotient space can be handled. In Section 5 the Koszul sequence is introduced, which

allows to relate the ambient variety’s cohomology to the cohomology of hypersurfaces and

complete intersections. Monad bundle constructions and the Euler sequence are introduced

in Section 6. In Section 7 we show an example of how to compute the data for a (2, 2) model

that is dual to a (0, 2) model. The paper closes in Section 8 with a brief outlook on potential

further applications and developments.

2. Toric Varieties

One of the most important aspects of toric geometry is the ability to understand it in purely

combinatorial terms, which is ideally suited to be handled by computers (see [1–4] for

introductions into the subject). Toric geometry is also directly related to gauged linear σ-

models (GLSMs) in physics [5]. On a more basic notion, a toric variety is a generalization of

a projective space, which consists of a set of homogeneous coordinates x1, . . . , xn as well as R

projective relations

(x1, . . . , xn) ∼
(
λ
Q

(r)
1

r x1, . . . , λ
Q

(r)
n

r xn

)
for λr ∈ C×. (2.1)

The Q
(r)
i for r = 1, . . . , R and i = 1, . . . , n are GLSM charges, that is, the Abelian U(1) charges

in the associated GLSM, and corresponding to the projective weights. In direct comparison to
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projective spaces, toric varieties can be characterized as arising due to the usage of multiple

projective relations instead of just a single one. The special case of a projective space therefore

corresponds to R = 1 in the above notation.

The homogeneous coordinates xi become N= (2, 2) chiral superfields in the GLSM

picture, and the Fayet-Iliopoulos parameters ξr of the Abelian symmetries can be interpreted

as the Kähler parameters of the geometric space. This parameter space of �ξ = (ξ1, . . . , ξR) is

then split into R-dimensional cones due to the vanishing of the D-terms associated to the

GLSM. Within each cone the D-flatness condition can be solved and the cones correspond to

the geometrical Kähler cones. Each such cone is often referred to as a geometric phase and

can be fully characterized by a set of collections of coordinates

Sρ =
{
xρ1

, xρ2
, . . . , xρ|Sρ |

}
for ρ = 1, . . . ,N (2.2)

which are not allowed to vanish simultaneously. Note that such a collection is often written

in product form; that is, the square-free monomial xρ1
xρ2

· · ·xρ|Sρ | refers exactly to the same

set. All those sets form the Stanley-Reisner ideal

SR(X) = 〈S1, . . . ,SN〉, (2.3)

which can be equivalently used to uniquely specify a geometric phase. Note that the Stanley-

Reisner ideal is Alexander dual to the irrelevant ideal BΣ used in the mathematical literature.

Given the GLSM charges and the Stanley-Reisner ideal to identify the geometric phase,

the toric variety X of dimension d = n − R can be described as the coset space

X =
(Cn − Z)
(C×)R

, (2.4)

where Z is the set of removed points specified by SR(X) via

Z =
N⋃
ρ=1

{
xρ1

= xρ2
= · · · = xρ|Sρ | = 0

}
. (2.5)

This set Z can be understood as the toric generalization of the removed origin in a projective

space CPn = (Cn+1 − {0})/C×, as the Stanley-Reisner ideal for CPn is just the collection of all

coordinates.

The combinatorial perspective on toric geometry mentioned at the start is formulated

in terms of toric fans, cones, and triangulations. In this language a geometric phase

corresponds to a triangulation of a certain set of lattice vectors νi that span the fan ΣX . The

GLSM charges Q
(r)
i reappear in the form of R linear relations

n∑
i=1

Q
(r)
i νi = 0 for r = 1, . . . , R. (2.6)

By associating the lattice vectors νi to the homogeneous coordinates xi, it becomes obvious

that the linear relations (2.6) between the lattice vectors encode the projective equivalences
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(2.1) between the homogeneous coordinates. In the language of fans the Stanley-Reisner ideal

consists of all square-free monomials whose coordinates are not contained in any cone of the

toric fan ΣX .

3. Dimensions of Line-Bundle-Valued Cohomology Groups

Given a toric variety X and a line bundle LX , a frequent issue is to compute the LX-valued

cohomology group dimensions hi(X;LX) for i = 0, . . . ,dimX. After a couple of preliminary

observations in [6, 7], in [8] a complete novel algorithm for the determination of hi(X;LX)
was presented. This was subsequently proven in [9] and independently in [10].

The geometric input data for the computational algorithm presented below are the

GLSM charges Q
(r)
i and the Stanley-Reisner ideal generators S1, . . . ,SN . The basic idea of the

algorithm is to count the number of monomials, where the total GLSM charge is equal to the

divisor class of D, which is the divisor that specifies the line bundle LX = OX(D). The form

of those monomials is highly restricted by the Stanley-Reisner ideal, that is, the simpler the

structure of SR(X), the easier the computation.

More precisely, negative integer exponents are only admissible for those coordinates

that are contained in subsets of the Stanley-Reisner ideal generators. The most economic

way is therefore to determine in a first step the set of square-free monomials Q that arise

from unions of the coordinates in any subset of SR(X). Each Q gives a set of coordinates

with negative exponents, and to each Q there is an associated weighting factor hi(Q) that

specifies to which cohomology group’s dimension hi(X;OX(D)) the number of monomials

ND(Q) with GLSM charge D contributes. The cohomology group dimension formula can be

summarized as

dimHi(X;OX(D)) =
∑
Q

multiplicity factor︷︸︸︷
hi(Q) · ND(Q)︸ ︷︷ ︸

number of monomials

, (3.1)

where the sum ranges over all square-free monomials that can be obtained from unions of

Stanley-Reisner ideal generators. In the remainder of this section, both hi(Q) and ND(Q) will

be properly defined.

3.1. Computation of Multiplicity Factors

The multiplicity factors are defined by the dimensions of an intermediate relative homology.

Let [N] := {1, . . . ,N} be a set of indices for the N square-free monomials that generate the

Stanley-Reisner ideal. Then let, for each subset

Sρ :=
{
Sρ1

, . . . ,Sρk

}
⊂ {S1, . . . ,SN} (3.2)

of generators, Q(Sρ) be the square-free monomial that arises from the union of all coordinates

in each generator Sρi of the subset.

The construction of the relative complex ΓQ, from which hi(Q) is defined, goes as

follows. From the full simplex on [N] = {1, . . . ,N}, extract only those subsets ρ ⊂ [N]
with Q(Sρ) = Q; that is, one considers all possible combinations of the Stanley-Reisner ideal
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generators whose coordinates unify to the same square-free monomial Q. For some fixed

|ρ| = k, this then defines the set of (k − 1)-dimensional faces Fk−1(Q) of the complex ΓQ, that

is,

Fk(Q) :=
{
ρ ⊂ [N] :

∣∣ρ∣∣ = k + 1

Q
(
Sρ
)
= Q

}
. (3.3)

Furthermore, let CFk(Q) be the complex vector space with basis vectors eρ for ρ ∈ Fk(Q). The

relative complex

ΓQ : 0 −→ FN−1(Q)
φN−1−→ · · · φ1−→ F0(Q)

φ0−→ F−1(Q) −→ 0, (3.4)

where F−1(Q) := {∅} is a face of dimension −1, is then specified by the chain mappings

φk :Fk(Q) −→ Fk−1(Q),

eρ �−→
∑
s∈ρ

sign
(
s, ρ
)
eρ−{s}.

(3.5)

A basis vector eρ−{s} vanishes if ρ with the element s removed is not contained in ΓQ.

Furthermore, the signum is defined by sign(s, ρ) := (−1)�−1 when s is the �th element of

ρ ⊂ [N] = {1, . . . ,N} when written in increasing order.

The homology group dimensions

hi(Q) := dimH|Q|−i−1

(
ΓQ
)

(3.6)

of the relabeled complex then provide the multiplicity factors that determine to which

cohomology group Hi(X;OX(D)) the monomials associated to Q contribute. It should be

emphasized that the hi(Q) depend only on the geometry (the Stanley-Reisner ideal) of the

toric variety X and not on the line bundle OX(D), that is, the multiplicity factors only have to

be computed once for each geometry.

3.2. Counting Monomials

After computing the multiplicity factors hi(Q), it remains to count the number of relevant

monomials. This second part of the algorithm depends on the GLSM charges of the

homogeneous coordinates xi and the specific line bundle OX(D). Let Q again be a square-free

monomial. In order to simplify the notation, let I = (i1, . . . , ik, . . . , in) be an index relabeling

such that the product of the first k coordinates gives Q = xi1 · · ·xik . Then one considers

monomials of the form

RQ(x1, . . . , xn) : = (xi1)
−1−a(xi2)

−1−b · · · (xik)−1−c(xik+1
)d · · · (xin)e

=
T(xik+1

, . . . , xin)
xi1 · · ·xik ·W(xi1 , . . . , xik)

,
(3.7)
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Table 1: Toric data for the del Pezzo-1 surface.

Vertices of the polyhedron/fan Coords.
GLSM charges

Divisor class
Q1 Q2

ν1 = (−1,−1) x1 1 0 H

ν2 = (1, 0) x2 1 0 H

ν3 = (0, 1) x3 1 1 H +X
ν4 = (0,−1) x4 0 1 X

Intersection form: HX −X2.
SR(dP1) = 〈x1x2, x3x4〉 = 〈S1,S2〉.

where T andW are monomials (not necessarily square-free) as well as exponents a, b, c, d, e ∈
N ∪ {0}. One obviously finds the coordinates of the square-free monomial Q in the

denominator, whereas their complements are in the numerator. Based on the particular form

of the relevant monomials define

ND(Q) := dim
{
RQ : degGLSM

(
RQ
)
= D
}
, (3.8)

which counts the number of relevant monomials that have the same GLSM degree as the

divisor D that specified the line bundle LX = OX(D).

3.3. A Step by Step Example: del Pezzo-1 Surface

In order to show the working algorithm in detail, we consider the del Pezzo-1 surface. Its

toric data is summarized in Table 1 for the reader’s convenience. The two Stanley-Reisner

ideal generators yield four possible combinations that become relevant in the computation,

namely,

Q = 1, x1x2, x3x4, x1x2x3x4. (3.9)

The computation of the multiplicity factors for those square-free monomials leads to

C0(1) = {{∅}}, C1(x1x2) = {{S1}}, C1(x3x4) = {{S2}},

C2(x1x2x3x4) = {{S1,S2}},
(3.10)

and all other spaces Ci(Q) vanishing. After computing the homology, this leads to the

following contributions of the monomials (3.7) to the cohomology groups:

H0(dP1;O(m,n)) : T(x1, x2, x3, x4),

H1(dP1;O(m,n)) :
T(x3, x4)

x1x2 ·W(x1, x2)
,

T(x1, x2)
x3x4 ·W(x3, x4)

,

H2(dP1;O(m,n)) :
1

x1x2x3x4 ·W(x1, x2, x3, x4)
.

(3.11)



Advances in High Energy Physics 7

Consider computing h•(dP1;O(−1,−2)). Since all GLSM charges are positive, there is no

contribution to h0. Likewise, the denominator monomial of the h2 contribution already has

the GLSM charge (3, 2), which “overshoots” the target values and therefore also gives no

contribution. degGLSM(1/x1x2) = (−2, 0) is no good either, but degGLSM(1/x3x4) = (−1,−2)
fits perfectly, such that there is a sole contribution

1

x3x4
� h•(dP1;O(−1,−2)) = (0, 1, 0). (3.12)

All the aforementioned steps involved in the computation of the cohomology

have been conveniently implemented in a high-performance cross-platform package called

cohomCalg [11].

4. Equivariant Cohomology for Finite Group Actions

Due to the explicit form of the relevant monomials that are counted by the algorithm, one

can consider a rather simple generalization that also takes the action of finite groups into

account [12, 13]. In orientifold and orbifold settings, the internal part of the space-time is

usually specified by a discrete symmetry acting on the “upstairs” geometry. This then induces

a corresponding splitting of the cohomology groups

Hi(X) = Hi
inv(X)

⊕
Hi

non-inv(X) (4.1)

as the generating p-cycles can be either invariant or noninvariant under the symmetry. It is

also necessary to specify the induced action on the bundle defined on the upstairs geometry.

The so-called equivariant structure uplifts the action on the base geometry to the

bundle and preserves the group structure. In fact, for a generic group G, each group element

g induces an involution mapping g : X → X on the base geometry and has a corresponding

uplift φg : V → V that has to be compatible with the bundle structure. This makes the

diagram

V
g

V

g g

X
g

X

(4.2)

commutative, and the G-structure V is called an equivariant structure if it preserves the

group structure, that is, if φg ◦ φh = φgh holds such that the mapping g �→ φg is a group

homomorphism.

The choice of an equivariant structure provides the means of how the finite group acts

on the relevant monomials (3.7) counted by the algorithm. For a given line bundle OX(D),
one then has to check for all monomials whether or not they are invariant under the induced

action. Consider, for example, the bundle O(−6) on CP2 and the Z3 action

g1 : (x1, x2, x3) �−→
(
αx1, α

2x2, x3

)
for α := 3

√
1 = e2πi/3 (4.3)
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on the base coordinates. The same action is used for the monomials, and thus it defines the

equivariant structure. The relevant monomials for the algorithm then pick up the following

values from the involution:

1

u4
1u2u3︸ ︷︷ ︸
g1 → 1

,
1

u1u
4
2u3︸ ︷︷ ︸

g1 → 1

,
1

u1u2u
4
3︸ ︷︷ ︸

g1 → 1

,
1

u3
1u

2
2u3︸ ︷︷ ︸

g1 →α

,
1

u3
1u2u

2
3︸ ︷︷ ︸

g1 →α2

,

1

u2
1u

3
2u3︸ ︷︷ ︸

g1 →α2

,
1

u1u
3
2u

2
3︸ ︷︷ ︸

g1 →α

,
1

u2
1u2u

3
3︸ ︷︷ ︸

g1 →α

,
1

u1u
2
2u

3
3︸ ︷︷ ︸

g1 →α2

,
1

u2
1u

2
2u

2
3︸ ︷︷ ︸

g1 → 1

,

︸ ︷︷ ︸
h2(CP2; O(−6))=(4inv, 3α, 3α2 )

, (4.4)

such that h•inv(CP2;O(−6)) = (0, 0, 4) follows. This gives the cohomology of the quotient space

CP2/Z3 as defined by the action in (4.3).
This powerful generalization of the algorithm allows for instance to compute the

untwisted matter spectrum in heterotic orbifold models or (parts of) the instanton zero mode

spectrum for the Euclidean D-brane instantons in Type II orientifold models (see [14] for

concrete applications).

5. The Koszul Complex

In most string theory applications, the geometries of interest are not toric varieties

by themselves, but rather defined as subspaces thereof. These are defined as complete

intersections of hypersurfaces of certain degrees. In order to relate the cohomology of the

toric variety X to the cohomology of a subspace, the Koszul sequence is used.

To make this paper self-contained and because it has been implemented in the

cohomCalg Koszul extension package, let us briefly describe how this works. Let D ⊂ X be an

irreducible hypersurface, and let 0/=σ ∈ H0(X;O(D)) be a global nonzero section of OX(D),
such that Z(σ) ∼= D. This induces a mapping OX → OX(D) and its dual OX(−D) ↪→ OX , the

latter of which can be shown to be injective. Given an effective divisor

D :=
∑
i

aiHi ⊂ X, (5.1)

where all ai ≥ 0, there is a short exact sequence

0 −→ OX(−D) ↪→ OX � OD −→ 0, (5.2)

called the Koszul sequence. Here OD is the quotient of the sheaf OX of holomorphic functions

on X by all holomorphic functions vanishing at least to order ai along the irreducible

hypersurface Hi ⊂ X. This allows to treat OD as the structure sheaf on the divisor D, which

effectively identifies the sheaf cohomology Hi(X;OD) with Hi(D;OD). A proper definition
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of the involved mappings, which become quite laborious to work out explicitly, can be found

in [15]. In addition of the plain Koszul sequence (5.2), there is also a twisted variant

0 −→ OX(T −D) ↪→ OX(T)� OD(T) −→ 0 (5.3)

that is obtained by tensoring (5.2) with the line bundle OX(T). The induced long exact

cohomology sequence

0 −→ H0(X;OX(T −D)) −→ H0(X;OX(T)) −→ H0(D;OD(T))

−→ H1(X;OX(T −D)) −→ H1(X;OX(T)) −→ H1(D;OD(T))

−→ H2(X;OX(T −D)) −→ H2(X;OX(T)) −→ H2(D;OD(T)) −→ · · ·

(5.4)

then allows to relate the cohomology of the toric variety X directly to the cohomology

of the hypersurface.

Given a more generic case of several (mutually transverse) hypersurfaces {S1, . . . , Sl},

one can compute the cohomology on the complete intersection via the generalized Koszul

sequence

0 −→ OX

⎛⎝−
l∑
j=1

Sj +D

⎞⎠ −→ · · · −→
⊕
i1<i2

OX(−Si1 − Si2 +D)

−→
⊕
i1

OX(−Si1 +D) −→ OX(D) −→ OS(D) −→ 0.

(5.5)

In contrast to the hypersurface sequence, this is no longer a short exact sequence and hence

does not give rise to a long exact sequence in cohomology. One way to proceed is via

the technique of spectral sequences, which inductively allows one to compute the wanted

cohomology classes on the complete intersection. However, for our implementation, we

decided to take a different approach. We break down this long sequence (5.5) into several

short exact sequences using several auxiliary sheaves Ik:

0 −→ OX

⎛⎝−
l∑
j=1

Sj +D

⎞⎠ −→
⊕

i1<···<il−1

OX

⎛⎝−
l−1∑
j=1

Sij +D

⎞⎠� I1 −→ 0,

0 −→ I1 ↪→
⊕

i1<···<il−2

OX

⎛⎝−
l−2∑
j=1

Sij +D

⎞⎠� I2 −→ 0,

...

0 −→ Il−2 ↪→
⊕
i1

OX(−Si1 +D)� Il−1 −→ 0,

0 −→ Il−1 ↪→ OX(D)� OS(D) −→ 0.

(5.6)
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The individually induced long exact sequences of cohomology can then be used for the step-

wise computation of H•(S;OS(D)), which is the cohomology on the complete intersection

S =
⋂l
i=1 Si.

6. Monad Construction of Vector Bundles

Before we come to a concrete application in heterotic string model building, let us present

the construction of holomorphic vector bundles via the so-called monad. Such a structure

directly arises in the (0, 2) GLSM description and can be regarded as a generalization of the

tangent bundle of a complete intersection in a toric variety.

Given the GLSM charges defined in (2.1), the tangent bundle can be defined as the

quotient TS = Ker(f)/ Im(g) of the sequence

0 −→

one Os for each
Picard generator︷︸︸︷

O⊕R
S

g
↪→

n⊕
i=1

OS(Qi)︸ ︷︷ ︸
one bundle with the GLSM
charges for each coordinate

f
�

one bundle with the degree
for each hypersurface︷ ︸︸ ︷

l⊕
j=1

OS(Sj) −→ 0, (6.1)

where the individual line bundles are restricted to the complete intersection S =
⋂l
i=1 Si.

The rank of the resulting vector bundle is given by rk(T) = n − l − R. Using the methods

presented so far, it is clear that they allow to compute the dimensions of the cohomology

classes hi(S; TS), where the initial input data for the set of long exact sequences are the line-

bundle-valued cohomology classes on the ambient toric variety.

The (0, 2) GLSM generalizes this in the sense that the bundle the left-moving world-

sheet fermions couple to is not any longer the tangent bundle of the Calabi-Yau, but a more

general holomorphic (stable) vector bundle V , which is analogously defined via a sequence

of the Whitney sums of line bundles

0 −→ O⊕RV
S

g
↪→

δ⊕
a=1

OS(Na)
g
�

λ⊕
l=1

OS(Ml) −→ 0. (6.2)

The rank is rk(V ) = δ−λ−RV . The chargesNa andMl have to satisfy the anomaly cancellation

conditions ∑
a

N
(α)
a =

∑
l

M
(α)
l
, ∀α,

∑
l

M
(α)
l
M

(β)
l

−
∑
a

N
(α)
a N

(β)
a =

∑
j

S
(α)
j S

(β)
j −
∑
i

Q
(α)
i Q

(β)
i , ∀α, β,

(6.3)

where 1 ≤ α, β ≤ R denote the components corresponding to the U(1) actions in the

GLSM. The most delicate issue for such constructions is the proof of μ-stability. However,

it should be clear that besides that the monad construction provides a large set of heterotic

(0, 2) backgrounds and that the methods described so far are indeed taylor-made for the
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Table 2: Correlation between zero modes in representations of the GUT group H.

Number of zero modes in reps. of H 1 h1
S(V ) h1

S(V
∗) h1

S(Λ
2V ) h1

S(Λ
2V ∗) h1

S(V ⊗V ∗)

E8 248

↓ ↓
SU(3) × E6 (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)
SU(4) × SO(10) (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)
SU(5) × SU(5) (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5) ⊕ (24, 1)

determination of the zero-mode spectrum, which is given by the dimensions of vector bundle

valued cohomology classes hi(S;ΛkV ).

7. A (2, 2) Model Dual to a (0, 2) Model

Now let us show all this for concrete heterotic (0, 2) models, for which we first recall a

couple of issues. The theory is naturally equipped with an E8 × E8 gauge theory. One of

these E8’s may be taken to be invisible to the real world, and hence only one E8 remains. The

holomorphic vector bundle now is endowed with a certain structure group G which breaks

this E8 down to some GUT group. The remaining GUT group is then simply the commutant

of G in E8. Depending on what kind of GUT group we are interested in, we may choose the

structure group G to be either SU(3), SU(4), or SU(5) breaking E8 down to E6, SO(10) or

SU(5), respectively.

In order to obtain the number of zero modes in different representations of the GUT

group, we have to calculate the cohomology classes of bundles involving the holomorphic

vector bundle [16]. The precise correlation of vector bundle cohomology and zero modes

for all three GUT groups are given in Table 2 (for a nice review on the particle spectrum of

heterotic theories, see, i.e., [17]).
The moduli appearing in such a framework are given by possible deformations of the

Calabi-Yau manifold, which are counted by the Hodge numbers

h2,1(S), h1,1(S) (7.1)

and by possible deformations of the bundle, that is, the bundle moduli, which are counted by

the dimension of the cohomology of the endomorphism bundle End(V ) of V . Furthermore

one can show that

H1(S; End(V )) ∼= H1
(
S;V ∗⊗V

)
, (7.2)

which simplifies its determination. In case of the standard embedding, the vector bundle

is simply the tangent bundle and hence has SU(3) structure and gauge group E6. Many

vector bundles can be constructed using monads, by defining the vector bundle to be

the cohomology of the complex (6.2). Using only this complex, it is possible to construct

bundles with the structure groups shown in Table 2, and hence computing all these

cohomologies simply boils down to the computation of line bundle cohomology on the

complete intersection. This on the other hand can be related, using the Koszul sequence (5.5),
to the cohomology of line bundles on the ambient toric variety.
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In the following we give an example of a pair of heterotic models which are related by

the so-called target space duality [7, 18, 19] and were derived in [20]. The first of those will

be a (2, 2) model (Ma,Va) = (Ma, TMa
) while the second one, referred to as (Mb,Vb), is of

type (0, 2) equipped with an SU(3)-bundle which is assumed to be stable.

Let us start with an example in which we can already see most of the structure but

which is not too involved. Consider

V1,1,1,1,2,2,2[3, 4, 3]� P6
1,1,1,1,2,2,2[3, 4, 3]. (7.3)

Since this configuration is singular we have to resolve it by introducing a new coordinate.

This yields the smooth configuration shown in Table 3, leading to the following monad for

the tangent bundle:

0 − O 2
M a

O M a 0,1 4 O M a 1,2 3 O M a 1,0

O M a 1,3 2 O M a 2,4 − 0,

(7.4)

where the Koszul sequence (5.3) has to be applied as well. Using cohomCalg Koszul extension,

we can obtain the number of zero modes of the chiral spectrum in this model as well as the

dimension of the moduli space:

h•Ma
(Va) = (0, 68, 2, 0),

h1,1
Ma

+ h2,1
Ma

+ h1
Ma

(End(Va)) = 2 + 68 + 140 = 210,
(7.5)

where the reader should keep in mind that in this case Va = TMa
is just the tangent bundle.

The dual (0, 2) model geometry can then be determined to be the data in Table 4, and its

monad is specified by the sequence

0 − O 2
M b

O M b 0,0,1 4 O M b 0,1,2 O M b 1,0,0 O M b 0,2,4 O M b 0,1,0

O M b 0,1,3 2 O M b 1,2,4 − 0.

(7.6)

This configuration satisfies conditions (6.3), and we obtain the following topological data:

h•Mb
(Vb) = (0, 68, 2, 0),

h1,1
Mb

+ h2,1
Mb

+ h1
Mb

(End(Vb)) = 3 + 51 + 156 = 210.
(7.7)
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Table 3: Toric data for the smooth (2, 2) model 3-fold geometry Ma.

Coordinate GLSM charges Hypers. degrees

0 0 0 0 1 1 1 1 1 1 2

1 1 1 1 2 2 2 0 3 3 4

Table 4: Toric data for the dual (0, 2) model 3-fold geometry Mb.

Coordinate GLSM charges Hypersurf. degrees

0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 1 1 1 1

1 1 1 1 2 2 2 0 0 0 3 3 2 2

Comparing to the data (7.5) we can see that the number of zero modes in the chiral spectrum

does not change, and even though the individual Hodge numbers as well as their sum are

both different, the dimension of the full moduli space stays the same.

This is a manifestation of a so far only very poorly understood perturbative (in gs)
target space duality in the configuration space of heterotic string compactifications with N =
1 supersymmetry in four dimensions.

8. Outlook

So far most implementations of computational methods in string model building have been

based on toric geometry [21] and in particular on the combinatorial formulas of Batyrev and

Borisov [22–24]. Of course there are also general software tools for algebraic geometry like

[25–27]. Clearly, these are very powerful but also have their limitations. First, they only apply

in the (2, 2) case, where the vector bundle is identified with the tangent bundle. Second, for

complete intersections the combinatorial formulas hold only for the so-called nef-partitions

which ensure that the corresponding polytopes representing the space are reflexive.

The computational tool reviewed in this paper can also be applied to situations where

other packages fail. As explained, the powerful algorithm for the determination of the

dimensions of line-bundle-valued cohomology classes is taylor made for dealing also with

general complete intersection and for (0, 2) models, where the vector bundle is defined via

line bundles, for example, the monad construction or the spectral cover construction.

Of course, also the algorithm implementation cohomCalg has its limitations. First, in

situations where the number of the Picard generators (projective relations, reflected by h1,1)
becomes large (about the order of ten), the computations become too involved and the

program too time consuming. A second drawback is the exponential growth of the computing

time with the number of the Stanley-Reisner ideal generators, which at the moment takes

several hours for about 40 generators. Third, if there are not enough zeros in the many

intermediate long exact sequences, the result is not unique and consequently one has to

determine the kernel image of maps by hand.

Note that there is also the Macaulay 2 package [3] which can be used as an alternative

to the algorithm presented herein. Preliminary testing indicates that it seems to be able

to handle geometries of a high Picard rank and huge numbers of Stanley-Reisner ideal

generators, but for simple geometries, cohomCalg appears to be faster. Further study is

necessary to fully evaluate strengths and weaknesses for the two algorithms implemented

in [28] and the algorithm described in Section 3. Also see [29, prop. 4.1].
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This is a short review of recent constructions of new Calabi-Yau threefolds with small Hodge
numbers and/or nontrivial fundamental group, which are of particular interest for model building
in the context of heterotic string theory. The two main tools are topological transitions and taking
quotients by actions of discrete groups. Both of these techniques can produce new manifolds from
existing ones, and they have been used to bring many new specimens to the previously sparse
corner of the Calabi-Yau zoo, where both Hodge numbers are small. Two new manifolds are also
obtained here from hyperconifold transitions, including the first example with fundamental group
S3 , the smallest non-Abelian group.

1. Introduction

This paper is a short review of recent work on constructing smooth Calabi-Yau threefolds

with interesting topological properties, such as small cohomology groups and nontrivial

fundamental group. In practice, these two properties often go hand-in-hand, as emphasised

in [1, 2].
The majority of known three-dimensional Calabi-Yau manifolds are constructed as

complete intersections in higher-dimensional toric varieties [3–8]. Most of the new examples

found in recent years are in fact obtained from these via one of two techniques. The first is to

take the quotient by a holomorphic action of some finite group. As explained in Section 2,

when the group action is fixed-point-free, this is guaranteed to yield another Calabi-Yau

manifold, and many Calabi-Yau threefolds with nontrivial fundamental group have been

constructed in this way. Several early examples can be found in [9–14], but recent efforts

have brought to light many more [2, 15–26], some of which will be discussed later. In the

case that the group action has fixed points, it is often possible to resolve the resulting orbifold

singularities in such a way as to again obtain a Calabi-Yau manifold. Examples can be found

in [27–29]. The second technique is to vary either the complex structure or Kähler moduli

of a known space until it becomes singular and then desingularise it by varying the other
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type of moduli. Topologically, such a process is a surgery and yields a Calabi-Yau manifold

topologically distinct from the original. Two classes of such topological transitions, the

conifold and hyperconifold transitions, are discussed in Section 3, and explicit examples of

each are given. Conifold transitions have been known for some time to connect many Calabi-

Yau threefolds [30–33] and have been used to construct new manifolds in [2, 24, 34, 35].
Hyperconifold transitions were described in [36], and the first examples of new manifolds

discovered this way were given in [37]. The examples of Section 3.2 yield two more new

manifolds, one of which is the first known with fundamental group S3, the smallest non-

Abelian group.

The fruit of these labours is that there are now many more known Calabi-Yau

threefolds with small Hodge numbers (defined arbitrarily in this paper by h1,1 + h2,1 ≤ 24)
than were known to the authors of [1]. The number with nontrivial fundamental group has

also increased dramatically, thanks largely to Braun’s classification of free group actions on

complete intersections in products of projective spaces [23]. (The Hodge numbers of many of

these quotients are yet to be calculated, but some are likely to be “small” as defined above.)
The physical motivation for studying such manifolds comes predominantly from

heterotic string theory. In this context, a nontrivial fundamental group is necessary to be able

to turn on discrete Wilson lines and thus obtain a realistic four-dimensional gauge group.

The requirement of small Hodge numbers is not so clear-cut, but it seems advantageous if

one wants to appeal to the methods of [38, 39] to stabilise the moduli, and this is currently

the only known way to stabilise all (geometric) moduli in heterotic Calabi-Yau backgrounds.

Although heterotic model building is not the theme of this review, other recent developments

will be mentioned sporadically.

Throughout the paper, an arbitrary Calabi-Yau and its universal cover will be denoted

by X and X̃, respectively, while a particular Calabi-Yau threefold with Hodge numbers

(h1,1, h2,1) will be denoted by Xh1,1,h2,1

. X# will denote a singular member of the family X,

and X̂# a resolution of such a singular variety.

2. Quotients by Group Actions

2.1. The Calabi-Yau Condition

It is an elementary fact of topology that every manifold X has a simply connected universal

covering space X̃, from which it can be obtained as a quotient by the free action of a group

G ∼= π1(X). We will write this relationship as X = X̃/G. Although our interest is in (complex)
threefolds, we will allow the dimension n of X to be arbitrary through much of this section.

If X is a Calabi-Yau manifold, it is easy to see that its universal cover X̃ is too, by

pulling back the complex structure, Kähler form ω, and holomorphic (n, 0)-form Ω under the

covering map (for this reason, we will often abuse notation by using the same symbols for

these objects on X and X̃). Only a little more difficult is the converse: under what conditions

is X = X̃/G a Calabi-Yau manifold, given that X̃ is? There are several points to consider (we

assume always that G is a finite group).

(i) X will be a manifold as long as the action of G is fixed-point free. Otherwise, it will

have orbifold singularities.

(ii) It will furthermore be a complex manifold if and only if G acts by biholomorphic

maps. In this case, X simply inherits the complex structure of X̃.



Advances in High Energy Physics 3

(iii) To see that X is Kähler, pick any Kähler form ω on X̃. Now, note that for any

element g ∈ G, g∗ω is also a Kähler form, since d(g∗ω) = g∗(dω) = 0, and for

any k-dimensional complex submanifold Mk,∫
Mk

g∗ωk =
∫
g(Mk)

ωk > 0. (2.1)

We can use this to construct a Kähler form which is invariant under G and,

therefore, descends to a Kähler form on X.

ωG :=
1

|G|
∑
g∈G

g∗ω. (2.2)

(iv) Finally, we must check whether X supports a nowhere-vanishing holomorphic

(n, 0)-form. This can only descend from the one on X̃, so we need to check whether

Ω is G-invariant. Note that Ω is the unique (up to scale) element of Hn,0(X̃), so

since G acts freely, the Atiyah-Bott fixed point formula [40, 41] for any g ∈ G \ e
reduces to

0 =
n∑
q=0

(−1)q Tr
(
Hn,q
(
g
))

= Tr
(
Hn,0
(
g
))

+ (−1)n Tr
(
Hn,n
(
g
))
, (2.3)

where H∗(g) denotes the induced action of g on the cohomology H∗. The

group Hn,n(X̃) is generated by (ωG)n, which is invariant, so we conclude that

Tr(Hn,0(g)) = (−1)n+1, and therefore,

g∗Ω = (−1)n+1Ω ∀g ∈ G \ e. (2.4)

In odd dimensions, therefore, Ω is automatically invariant under free group actions.

In even dimensions, on the other hand, this simple calculation shows that there are

no multiply-connected Calabi-Yau manifolds.

In summary, if X̃ is a smooth Calabi-Yau threefold, then X = X̃/G is a Calabi-Yau manifold if

and only if G acts freely and holomorphically.

2.1.1. Smoothness

Above, we have simply assumed that the covering space X̃ is smooth. In practice, X̃ usually

belongs to a family of spaces of which only a subfamily admits a free G action. It may be

the case that although a generic member of X̃ is smooth, members of the symmetric sub-

family are all singular, so we never get a smooth quotient. Although this seems to be rare,

it does occur for Z8 × Z8-symmetric complete intersections of four quadrics in P7 [11, 18],
Z5 × Z5-symmetric complete intersections of five bilinears in P4 × P4 [2], and a number of

other examples, including some found in [23]. The extra condition, that a generic symmetric
member is smooth, must, therefore, be checked on a case-by-case basis.

Let us start with the special case of complete intersection Calabi-Yau manifolds

in smooth ambient spaces. This includes what have traditionally been called the “CICY”

manifolds, where the ambient space is a product of projective spaces [3–5] and certain of the
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toric hypersurfaces [7, 8]. The complete intersection condition means that if the ambient space

has dimension n + k, then the Calabi-Yau X̃ is given by the intersection of k hypersurfaces,

each given by a single polynomial equation fa = 0. In other words, the number of equations

needed to specify X̃ is equal to its codimension. When the ambient space is smooth, it can be

covered in affine patches each isomorphic to Cn+k, and the condition for X̃ to be smooth is

that df1∧· · ·∧dfk is nonzero at every point on X̃. This is a very intuitive condition—if it holds,

then at any point of X̃ we can choose local coordinates x1, . . . , xn+k such that fa = xa +O(x2).
Locally, then, X̃ projects biholomorphically onto the linear subspace x1 = x2 = · · · = xk = 0,

and is, therefore, smooth. On any affine coordinate patch, the components of the differential

form df1 ∧ · · · ∧ dfk are just the k × k minors of the Jacobian matrix J = (∂fa/∂xi), so the

condition is that this matrix has rank k everywhere on X̃. It is, therefore, necessary to check

that there is no simultaneous solution to the equations fa = 0 along with the vanishing of

all k × k minors of J , which is equivalent to the algebraic statement that the ideal generated

by the polynomials and the minors is the entire ring C[x1, . . . , xk+n]. This is checked by

calculating a Gröbner basis for the ideal, algorithms for which are implemented in a variety

of computer algebra packages [42–44]; a Gröbner basis for the entire ring is just a constant

(usually given as 1 or −1 by software).
The more general case of singular ambient spaces or noncomplete intersections is not

much harder than the above. Suppose X̃ is not a complete intersection so that it is given by

l equations in an n + k-dimensional ambient space, where now we allow l > k. (A typical

example is the Veronese embedding of P2 in P5. If we take homogeneous coordinates zi for

P2, and wij for P5, where j ≥ i, then the embedding is given by wij = zizj . The equations

needed to specify the image of this map are wijwkl − wilwkj = 0, which amount to six

independent equations, whereas the codimension of the embedded surface is only three.)
Then, the condition for X̃ to be smooth is still that the rank of the Jacobian be equal to k (the

codimension) everywhere on X̃ [45]. The reasoning is the same as before—if this is true, k

of the polynomials will provide good local coordinates on the ambient space, allowing us to

define a smooth coordinate patch on X̃.

If some affine patch on the ambient space is singular, it can still be embedded in CN

for some N, by polynomial equations F1 = · · · = FK = 0. The Calabi-Yau is then given by

F1 = · · · = FK = f1 = · · · = fl = 0, and the condition for smoothness is once again that the

Jacobian has rank equal to the codimension, N − n, at all points.

For examples of interest, Gröbner basis calculations are often very computationally

intensive, since at intermediate stages the number of polynomials, as well as their coefficients,

can become extremely large. It is, therefore, convenient to choose integer coefficients for

all polynomials and perform the calculation over a finite field Fp. As explained in [2], if a

collection of polynomial equations are inconsistent over Fp, then they are also inconsistent

over C, so the corresponding variety is smooth.

Note that there does exist a slight variation on the above procedure which still leads to

smooth quotient manifolds. It may be the case that although the symmetric manifolds admit

a free group action, they are all singular. If, however, these singularities can be resolved in

a group-invariant way, the resolved space still admits a free group action, with a smooth

quotient. Examples can be found in [15, 18, 21].
The final possibility is that the symmetric manifolds are smooth, but the group action

always has fixed points, in which case the quotient space has orbifold singularities. It is

frequently possible to resolve these in such a way as to again obtain a Calabi-Yau manifold,

but this will not be discussed in detail here.
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2.2. Notable Examples

2.2.1. New Three-Generation Manifolds

Calabi-Yau threefolds with Euler number χ = ±6 were of particular interest in the early

days of string phenomenology, since these give physical models with three generations of

fermions via the “standard embedding” compactification of the heterotic string [9]. This

typically gives an E6 grand unified theory, and although the gauge symmetry can be partially

broken by Wilson lines, it is impossible to obtain exactly the standard model gauge group

in this way [46]. Nevertheless, it was argued by Witten that deformations of the standard

embedding, combined with Wilson lines, can give realistic models [47], and this was put on

firmer mathematical foundations by Li and Yau [48].
The archetypal example of a three-generation manifold is Yau’s manifold, with

fundamental group Z3 [10], but recently two new promising three-generation manifolds were

constructed in [22]. These are quotients of a manifold X8,44 by groups of order twelve, which

are the cyclic group Z12 and the non-Abelian group Dic3
∼= Z3 � Z4 (this is generated by

two elements, one of order three and one of order four, satisfying g4g3g
−1
4 = g2

3), and each

has Hodge numbers (h1,1, h2,1) = (1, 4). Unfortunately, it was shown in [49] that the physical

model on the non-Abelian quotient does not admit a deformation which yields exactly the

field content of the minimal supersymmetric standard model (MSSM) in four dimensions.

However, the Z12 quotient allows many more distinct deformations, and the analysis of the

corresponding physical models has not been completed.

The covering space X8,44 is an anticanonical hypersurface in dP6 × dP6, where dP6 is

the del Pezzo surface of degree six, which is P2 blown up in three generic points. This surface

is rigid and toric, and its fan is shown in Figure 1.

As well as the action of the torus (C∗)2, dP6 also admits an action by the dihedral group

D6, as suggested by its fan. This can be realised as a group of lattice morphisms preserving

the fan, generated by an order-six rotation ρ and a reflection σ, with matrix representations

ρ =

(
1 −1

1 0

)
, σ =

(
0 1

1 0

)
. (2.5)

The product dP6×dP6 therefore has symmetry group (D6×D6)�Z2, where the extra Z2 factor

swaps the two copies of the surface. The quotient groups Dic3 and Z12 are both order-twelve

subgroups of this which act transitively on the vertices of the fan. Many more details can be

found in [22].

2.2.2. Quotients of the (19, 19) Manifold

The Euler number of a three-dimensional Calabi-Yau manifold is given by the simple formula

χ = 2(h1,1 − h2,1). If a group G acts freely, then χ(X̃/G) = χ(X̃)/G, so this gives a simple

necessary condition for the existence of such an action: the order of the group must divide

χ/2. This usually gives a fairly strong restriction on the groups which can act freely on any

given manifold. The only time it gives no restriction is when χ = 0. In this section, we will look

at a particular manifold, X19,19, which admits free actions by a number of disparate groups,

including groups of order five, eight, and nine. For a Calabi-Yau threefold with χ/= 0, this

would imply |χ| ≥ 720.



6 Advances in High Energy Physics

Figure 1: The fan for the toric surface dP6. Removing the dashed rays corresponds to the projection to P2.
All graphics were produced using [43].

The manifold X19,19 can be represented in a number of different ways. Abstractly, it

is the fibre product of two rational surfaces, each elliptically fibred over P1 [16, 19]. Such a

surface is given by blowing up P2 at the nine points given by the intersection of two cubic

curves; if we take homogeneous coordinates t0, t1 on P1 and z0, z1, z2 on P2, the corresponding

equation is

f(z)t0 + g(z)t1 = 0, (2.6)

where f and g are homogeneous cubic polynomials. We can easily see that this corresponds

to P2 blown up at the nine points given by f = g = 0. Indeed, for any point of P2, where f /= 0

or g /= 0, we get a unique solution for [t0 : t1], whereas for f = g = 0, the equation is satisfied

identically, giving a whole copy of P1. To see that it is also an elliptic fibration over P1, note

that for any fixed value of [t0 : t1] ∈ P1, we get a cubic equation in P2, which defines an elliptic

curve.

To get the fibre product of two such surfaces, we introduce another P2, with

homogeneous coordinates w0, w1, w2, and another equation of the form (2.6) over the same

P1. The resulting threefold is Calabi-Yau, and has a projection to P1, with typical fibre which

is a product of two elliptic curves. In [19], Bouchard and Donagi studied group actions which

preserve the elliptic fibration, and found free actions by the groups Z3×Z3, Z4×Z2, Z6
∼= Z3×Z2

and Z5 (as well as all subgroups of these, of course).
Certain of these quotient manifolds have, in fact, played crucial roles in the heterotic

string literature. A model with the spectrum of the U(1)B−L-extended supersymmetric

standard model was constructed on a quotient by Z3 × Z3 and studied in [50, 51] (a similar

model on the Z3 ×Z3 quotient of the “bicubic”, which is related to this manifold by a conifold

transition, was found in [52]), while a model with the exact MSSM spectrum exists on a Z2

quotient and was described in [53, 54]. In [55, 56], the quotient by a different Z3 × Z3 action

was used as a test case for calculating instanton corrections on manifolds with torsion curves.
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Table 1: The Hodge numbers for known quotients of X19,19.

h1,1 = h2,1 Fundamental Group Reference

11 Z2 [2, 19]
7 Z3,Z2 × Z2 [2, 19]
5 Z4 [19]
3 Z5,Z6,Z4 × Z2, Q8,Z3 × Z3 [2, 19]
2 Z12, Dic3 [22, 49]

There are, in fact, further (relatively large) groups which act freely onX19,19, which can

be easily described using its representation(s) as a CICY. First, we note that the fibre product

construction above is equivalent to the rather more prosaic statement that the manifold is a

complete intersection of two hypersurfaces in P1×P2×P2, of multi-degrees (1, 3, 0) and (1, 0, 3).
In the notation of [3, 4], X19,19 can, therefore, be specified by the “configuration matrix”

P1

P2

P2

⎛⎝ 1

3

0

1

0

3

⎞⎠ (2.7)

By utilising various splittings and contractions (see, e.g., [2, 4, 30, 31]), and checking that the

Euler number remains constant, it is easy to show that X19,19 can also be specified by the

configuration matrices

P1

P1

P1

P1

P1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

2 0

2 0

0 2

0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P1

P2

P2

P2

P2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0

1 0 1 1 0 0

1 0 1 1 0 0

0 1 0 0 1 1

0 1 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.8)

It was shown in [2] that in the first form, X19,19 admits a free action of the order-eight

quaternion group (denoted in [2] by H, but more conventionally by Q8), with elements

{±1,±i,±j,±k}, induced by a linear action of this group on the ambient space.

In the second form, X19,19 admits free actions by two groups of order twelve. One

is the cyclic group Z12, and the other is the dicyclic group Dic3
∼= Z3 � Z4 (introduced

in Section 2.2.1) [49]. These were in fact discovered via conifold transitions from the

corresponding quotients of X8,44, an idea reviewed in Section 3.

In summary, X19,19 is rather exceptional in that it admits free actions by the groups

Z12, Dic3, Z3 × Z3, Z4 × Z2, Q8, Z6, and Z5. The Hodge numbers for the quotients by all

these groups and their subgroups are collected in Table 1.

2.2.3. Manifolds with Hodge Numbers (1,1)

For a long time, the smallest known Hodge numbers of a Calabi-Yau threefold satisfied

h1,1 + h2,1 = 4. This record has now been overtaken by Braun’s examples of manifolds with
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(h1,1, h2,1) = (1, 1) [25] (as well as Freitag and Salvati Manni’s manifold with (h1,1, h2,1) =
(2, 0) [29]).

The covering space of Braun’s (1, 1) manifolds is a self-mirror manifold X20,20. This is

realised as an anticanonical hypersurface in the toric fourfold determined by the face fan over

the 24-cell, which is a self-dual regular four-dimensional polytope.

There are three different groups of order 24 which act freely on particular smooth one-

parameter subfamilies of X20,20; these are Z3 � Z8,Z3 × Q8, and SL(2, 3). The first two are

self-explanatory, while the third is the group of two-by-two matrices of determinant one over

the field with three elements. All the groups act via linear transformations on the lattice in

which the polytope lives, and act transitively on its vertices. Full details can be found in [25].

2.2.4. Complete Intersections of Four Quadrics in P7

A particularly fertile starting point for finding new Calabi-Yau manifolds has been the

complete intersection of four quadrics in P7. A smooth member of this family is a Calabi-

Yau manifold with Hodge numbers (h1,1, h2,1) = (1, 65). Hua classified free group actions on

smooth subfamilies in [18], finding groups of order 2, 4, 8, 16, and 32. The quotients all have

h1,1 = 1, and h2,1 = 33, 17, 9, 5, and 3, respectively.

Certain nodal families allow free actions of groups of order 64 and, furthermore, have

equivariant small resolutions [15, 18]. The resolutions have Hodge numbers (h1,1, h2,1) =
(2, 2) and inherit the free group actions. Remarkably, in this case, all the quotients have the

same Hodge numbers as the covering space. The quotient by Z8 × Z8 was investigated as a

background for heterotic string theory in [57], but unfortunately, no realistic models were

found.

Freitag and Salvati Manni have also constructed a large number of new manifolds

by starting with a particular complete intersection X# of four quadrics which has 96 nodes

and a very large symmetry group [28, 29]. They show that the quotients by many subgroups

admit crepant projective resolutions, thereby giving rise to a large number of new Calabi-Yau

manifolds. Some of the subgroups of order 2, 4, 8, and 16 act freely on a small resolution

of X#, and the corresponding quotient manifolds are connected to some of Hua’s examples

by conifold transitions. The manifolds from [29] with small Hodge numbers are listed in

the appendix 4, including one with (h1,1, h2,1) = (2, 0), which is, therefore, equal with

Braun’s manifolds for smallest known Hodge numbers. Note that the theoretical minimum

is (h1,1, h2,1) = (1, 0).

3. New Manifolds From Topological Transitions

One fascinating feature of Calabi-Yau threefolds is the interconnectedness of moduli spaces

of topologically distinct manifolds. Generally speaking, there are two ways to pass from one

smooth Calabi-Yau to another. We may deform the complex structure until a singularity

develops and then “resolve” this singularity using the techniques of algebraic geometry,

which involves replacing the singular set with new embedded holomorphic curves or

surfaces. Alternatively, we may allow certain embedded curves or surfaces to collapse to

zero size and then “smooth” the resulting singular space by varying its complex structure.

Obviously these two processes are inverses of each other.

Our main interest here is in constructing new smooth Calabi-Yau threefolds via such

topological transitions, but first we will indulge in a few comments about the connectedness

of the space of all Calabi-Yau threefolds.
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The suggestion that all Calabi-Yau threefolds might be connected by topological

transitions goes back to [58]. Early work showed that this was true for nearly all examples

known at the time [30, 31]. These papers considered conifold transitions, in which the

intermediate variety has only nodal singularities; the smoothing process replaces these

singular points by three-spheres, while the “small” resolution replaces them by two-spheres

(holomorphically embedded). Such singularities were shown to be at finite distance in

moduli space [32, 33], and conifold transitions were later shown to be smooth processes in

type II string theory [59, 60].
If we wish to connect all Calabi-Yau threefolds, conifold transitions are not sufficient,

because they cannot change the fundamental group. To see this, we note that topologically,

a conifold transition consists of removing neighbourhoods of some number of copies of S3,

each with boundary S3 ×S2, and replacing them with similar neighbourhoods of S2. Since all

these spaces are simply connected, a simple application of van Kampen’s theorem (see, e.g.,

[61]) shows that the fundamental group does not change.

There do exist relatively mild topological transitions which can change the fundamen-

tal group; these are known as hyperconifold transitions and were described by the author in

[36, 37]. Here, the singularities of the intermediate variety are finite quotients of a node, and

their resolutions are no longer “small”. It is an interesting question whether all Calabi-Yau

threefolds can be connected by conifold and hyperconifold transitions.

In the following sections, we will consider these two types of transition separately,

mostly through examples. The examples in Section 3.2 actually yield previously unknown

manifolds, with Hodge numbers (h1,1, h2,1) = (2, 5) and (2, 3) and fundamental groups Z5

and S3, respectively.

3.1. Conifold Transitions

In [2, 24], free group actions were followed through conifold transitions, leading to webs of

conifold transitions between smooth quotients with the same fundamental group (conifold

transitions were also used in [34, 35] to construct new simply connected manifolds). Here,

we will just consider a simple example (taken from [2]) which exemplifies the idea.

Consider the well-known family of quintic hypersurfaces in P4, with Hodge numbers

(h1,1, h2,1) = (1, 101) and hence Euler number χ = −200. If we take homogeneous coordinates

z0, . . . , z4 on P4, then an action of Z5 can be defined by the generator

g5 : zi −→ zi+1. (3.1)

Then, there is a smooth family of invariant quintics, given by

f =
∑
ijklm

Aj−i,k−i,l−i,m−izizjzkzlzm = 0. (3.2)

For generic coefficients, Z5 acts freely, so we get a family of smooth quotients with Hodge

numbers (h1,1, h2,1) = (1, 21).
Now, let us consider a nongeneric choice for the coefficients in (3.2) such that f is the

determinant of some 5 × 5 matrix M which is linear in the homogeneous coordinates. If we

take the entries of M to be

Mik =
∑
j

aj−i,k−i zj , (3.3)



10 Advances in High Energy Physics

then the induced Z5 action is Mik → Mi+1,k+1, so the determinant does indeed correspond to

an invariant quintic. The action of Z5 is still generically fixed-point-free on the family given

by det M = 0, but the hypersurfaces are no longer smooth. Indeed, using a computer algebra

package, it can be checked that the rank of M drops to three at exactly fifty points on a typical

such hypersurface, and that these points are nodes. Furthermore, they fall into ten orbits of

five nodes under the Z5 action.

We now ask whether these nodes can be resolved in a group-invariant way; if so, the

group will still act freely on the resolved manifolds, and we will have constructed a conifold

transition between the quotient manifolds. In fact this is easy to do. Introduce a second P4,

with homogeneous coordinates w0, . . . , w4, and consider the equations

fi :=
∑
k

Mikwk =
∑
j,k

aj−i,k−izjwk = 0. (3.4)

These are five bilinears in P4 ×P4, and it can be checked that they generically define a smooth

Calabi-Yau threefold X2,52. Since we cannot have wi = 0 for all i, there are only simultaneous

solutions to these equations when det M = 0, so this gives a projection from X2,52 to nodal

members of X1,101. At most points, this is one-to-one, but at the fifty points where the rank of

M drops to three, we get a whole copy of P1 ⊂ P4 projecting to a (nodal) point of X1,101. In

this way we see that we have constructed a conifold transition X1,101 � X2,52.

To see that the free Z5 action is preserved by the conifold transition above, it suffices

to note that if we extend the action by defining g5 : wi → wi+1, then this induces fi → fi+1,

implying that the manifolds defined by (3.4) are Z5-invariant. The absence of fixed points

follows from the absence of fixed points on the nodal members of X1,101 although this can

also be checked directly.

Since the conifold transition from X1,101 to X2,52 can be made Z5-equivariant, it desce-

nds to a conifold transition between their quotients, X1,21 � X2,12, where the intermediate

variety has ten nodes.

3.2. Hyperconifold Transitions

The conifold transition in the last section illustrates two completely general features of such

transitions: the fundamental group does not change, for reasons explained previously, and

the intermediate singular variety has multiple nodes [62]. We now turn our attention to a

class of transitions for which neither of these statements hold—the so-called hyperconifold

transitions introduced in [36]. Here, the intermediate space typically has only one singular

point, which is a quotient of a node by some finite cyclic group ZN . (Quotients by non-

Abelian groups can also occur, but these do not admit a toric description, and their resolutions

have not been studied.) These arise naturally when a generically free group action is

allowed to develop a fixed point. A ZN-hyperconifold transition changes the Hodge numbers

according to

δ
(
h1,1, h2,1

)
= (N − 1,−1). (3.5)

The resolution of a hyperconifold singularity replaces the singular point with a simply

connected space, and in this way, we see that the transitions can change the fundamental

group. It is worth pausing here to consider this in more detail than has been done in previous

papers.
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Suppose that we have a smooth quotient X = X̃/G and deform the complex structure

until some order-N element gN , which generates a subgroup 〈gN〉 ∼= ZN < G, develops a

fixed point p ∈ X̃. Then, as described in [36], this point will be singular, and generically

a node. In some cases, the group structure implies that other elements will simultaneously

develop fixed points, which we can see by taking a group element g ′ ∈ G \ 〈gN〉 and

performing an elementary calculation

g ′gN g ′
−1 ·
(
g ′ · p
)
= g ′ ·

(
gN · p

)
= g ′ · p. (3.6)

So, the point g ′ · p ∈ X̃ is fixed by g ′gNg
′−1. We see that every subgroup conjugate to 〈gN〉

also develops a fixed point. All such points are identified by G, so the singular quotient X#

has only one ZN-hyperconifold singularity.

What is the fundamental group of the resolution X̂#? To calculate this, excise a small

ball around each fixed point of X̃# to obtain a smooth space X̃′ on which the whole group G

acts freely. We can then quotient by G to obtain X′, with fundamental group G. Finally, we

glue in a neighbourhood Σ of the exceptional set of the resolution of the hyperconifold. Σ is

simply connected. We now have X̂# = X′ ∪Σ, and can use van Kampen’s theorem to calculate

π1(X̂#). Note that the intersection of the two subspaces X′ and Σ is homotopy equivalent to

S3×S2/ZN , since the stabiliser of each point on the covering space was isomorphic to ZN . So,

we have the data

X̂# = X′ ∪ Σ, X′ ∩ Σ
hom.� S3 × S2/ZN, π1(Σ) ∼= 1, π1

(
X′) ∼= G, (3.7)

which by van Kampen’s theorem immediately implies that π1(X̂#) ∼= G/〈gN〉G, where 〈gN〉G
is the smallest normal subgroup of G which contains 〈gN〉, usually called the normal closure.

Trivial examples arise whenG = ZN×H or ZN�H, and the generator of ZN develops a

fixed point. In this case, the corresponding hyperconifold transition changes the fundamental

group from G to H.

3.2.1. Example 1: X1,6 � X2,5

We will first consider an example related to that in Section 3.1. If we demand that the matrix

appearing in (3.4) is symmetric, ajk = akj , then the resulting family of threefolds are invariant

under a further order-two symmetry, generated by g2 : zi ↔ wi. As shown in [2], this family

is still generically smooth, and the entire group Z5 × Z2
∼= Z10 acts freely, so we get a smooth

quotient family X1,6.

Suppose now that we ask for g2 to develop a fixed point. In the ambient space, it fixes

an entire copy of P4, given by wi = zi for all i. Choose a single point on this locus (as long as

it is not also a fixed point of g5), say wi = zi = δi0. The evaluation of the defining polynomials

at this point is fi = c−i,−i, so it lies on the hypersurface if ci,i = 0 for all i. One can check that

for arbitrary choices of the other coefficients; this point is a node on the covering space, and

there are no other singularities. This, therefore, corresponds to a sub-family of X1,6 with an

isolated Z2-hyperconifold singularity. Such a singularity has a crepant projective resolution,

as described in [36], obtained by a simple blowup of the singular point. This introduces an

irreducible exceptional divisor, thus increasing h1,1 by one, and since we imposed a single

constraint on the complex structure of X1,6, (naı̈vely, it seems that we have imposed five

constraints, ci,i = 0. However, we had the freedom to choose a generic point on the fixed P4,
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corresponding to a four-parameter choice of possible conditions, so the number of complex

structure parameters is actually only reduced by one.) the resolved space has Hodge numbers

(h1,1, h2,1) = (2, 5), and its fundamental group is Z5. (Note that this is, in fact, a new “three-

generation” manifold, with χ = −6. Unfortunately, Z5-valued Wilson lines cannot perform

the symmetry breaking required for a realistic model.)

So we have constructed a Z2-hyperconifold transition X1,6 Z2� X2,5, where the

fundamental group of the first space is Z10 and that of the second space is Z5.

3.2.2. Example 2: X1,4 � X2,3

For a second example, which will also yield an interesting new manifold, consider the Dic3

quotient of X8,44, described in Section 2.2.1. As shown in [22], there is a codimension-one

locus in moduli space, where the unique order-two element of the group develops a fixed

point. It is easy to check that on the covering space, this is the only singular point, and is a

node. As such, the quotient space X1,4 develops a Z2-hyperconifold singularity. Blowing up

this point yields a new Calabi-Yau manifold, with Hodge numbers (h1,1, h2,1) = (2, 3), as per

the general formula (3.5).
The Z2 subgroup of Dic3 is actually the centre, so it is trivially normal, and the

fundamental group of the new manifold X2,3 is Dic3/Z2, which is isomorphic to S3, the

symmetric group on three letters. To see this, recall that Dic3 is generated by two elements, g3

and g4, of orders three and four, respectively, subject to the relation g4g3g
−1
4 = g2

3 . So, the Z2

subgroup is generated by g2
4 , meaning that in Dic3/Z2, g2

4 ∼ e. To reflect this, we rename g4 to

g2 and obtain

Dic3/Z2
∼=
〈
g2, g3 | g2

2 = g3
3 = e, g2g3g2 = g2

3

〉
, (3.8)

which is the standard presentation of S3.

So, in summary, we have constructed a Z2-hyperconifold transition X1,4 Z2� X2,3, where

the fundamental group of the first space is Dic3 and that of the second space is S3. This is the

first known Calabi-Yau threefold with fundamental group S3 [23].

Appendix
The New-Look Zoo

The techniques reviewed in Sections 2 and 3, along with a few exceptional constructions,

have led in recent years to the construction of a relatively large number of new Calabi-

Yau threefolds with small Hodge numbers and/or nontrivial fundamental group. A table

appeared in [2] of all manifolds known at the time with h1,1 + h2,1 ≤ 24. Instead of

repeating that list here, only new manifolds discovered since the appearance of [2] are

listed in Table 2 and Table 3. Since they are of most relevance for string theory, those with

nontrivial fundamental group are listed separately in Table 2, while Table 3 contains new

simply connected manifolds and those with fundamental group yet to be calculated. Figure 2

displays the tip of the distribution of manifolds catalogued by their Hodge numbers, showing

which values of (h1,1, h2,1) satisfying h1,1+h2,1 ≤ 24 are realised by known examples (and their

mirrors, which are assumed to exist).
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Table 2: Manifolds with small Hodge numbers and π1 /= 1.

(χ, y) (h1,1, h2,1) Manifold π1 Reference

(0,24) (12,12) X20,20/Z2 Z2 [25]

(−16,18) (5,13) (Hypersurface in P1 × P1 × dP4)/Z2 × Z2 Z2 × Z2 [26]

(−20,16) (3,13)

P
1

P
1

P
1

P
2

P
2

P
2

⎛⎝ 1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1

⎞⎠
/Z3

Z3 [23, 24]

(−12,16) (5,11)
P

1

P
1

P
1

P
3

P
2

( 1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 1 1 1 1
0 0 1 1 1

)
/Z3

Z3 [23, 24]

(0,16) (8,8) X20,20/Z3 Z3 [25]

(0,16) (8,8) (Toric hypersurface Y 20,20)/Z3 Z3 [37]

(32,16) (16,0) ̂(P7[ 2 2 2 2 ]#/Z2) Z2 [29]

(−14,15) (4,11)

P
1

P
1

P
1

P
2

P
2

P
2

P
2

⎛⎜⎜⎝
1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 1
0 0 0 0 1 1 0 0

⎞⎟⎟⎠
/Z3

Z3 [23, 24]

(−10,15) (5,10)

P
1

P
1

P
1

P
1

P
1

P
1

P
2

P
2

P
2

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎠
/Z3

Z3 [23, 24]

(−12,14) (4,10) (Toric hypersurface X8,26)/Z3 Z3 [37]

(−8,14) (5,9)

P
1

P
1

P
1

P
2

P
2

P
2

P
2

P
2

⎛⎜⎜⎜⎝
1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0

⎞⎟⎟⎟⎠
/Z3

Z3 [23, 24]

(−4,14) (6,8)

P
1

P
1

P
1

P
1

P
1

P
1

P
2

P
2

P
2

P
2

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎠
/Z3

Z3 [23, 24]

(0,12) (6,6) X20,20/Z4 Z4 [25]

(−10,9) (2,7) (Hypersurface in dP5 × dP5)/Z5 Z5 [26]

(2,9) (5,4) (Toric hypersurface X21,16)/Z5 Z5 [37]

(−4,8) (3,5) (Hypersurface in dP4 × dP4)/Z4 × Z2 Z4 × Z2 [26]

(0,8) (4,4) X20,20/Z6 Z6 [25]
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Table 2: Continued.

(χ, y) (h1,1, h2,1) Manifold π1 Reference

(16,8) (8,0) ̂(P7[ 2 2 2 2 ]#/{Z2 × Z2,Z4}) Z2 × Z2, Z4 [29]

(−6,7) (2,5) ̂(X2,52/Z10)
# Z5 Section 3.2.1

(−8,6) (1,5) (Hypersurface in (P1)4)/Z8 × Z2 Z8 × Z2 [26]

(0,6) (3,3) X20,20/{Z8, Q8} Z8, Q8 [25]

(−6,5) (1,4) X8,44/{Dic3,Z12} Dic3,Z12 [22]

(−2,5) (2,3) ̂(X8,44/Dic3)
#

S3 Section 3.2.2

(0,4) (2,2) X19,19/{Dic3,Z12} Dic3,Z12 [22, 49]

(0,4) (2,2) X20,20/Z12 Z12 [25]

(8,4) (4,0) ̂(P7[ 2 2 2 2 ]#/G), |G| = 8 G [29]

(0,2) (1,1) X20,20/{SL(2, 3),Z3 � Z8,Z3 ×Q8} SL(2, 3), Z3 � Z8, Z3 ×Q8 [25]

(4,2) (2,0) ̂(P7[ 2 2 2 2 ]#/G), |G| = 16 G [29]
This table complements the one in [2], and briefly describes the manifolds which have y = h1,1 + h2,1 ≤ 24 and nontrivial
fundamental group discovered since that paper appeared in 2008. There should still be a number of other manifolds in
this region, including quotients from [23] whose Hodge numbers have not yet been calculated, and manifolds obtained
from known quotients by hyperconifold transitions [37], of which only a few have so far been written down explicitly. In
the “Manifold” column, X20,20 denotes the Calabi-Yau toric hypersurface associated to the 24-cell, discussed in [25] and
Section 2.2.3, while X19,19 refers to the manifold discussed in Section 2.2.2, and X8,44 to that in Section 2.2.1. dPn is the del
Pezzo surface of degree n. Multiple quotient groups indicate different quotients with the same Hodge numbers. X# denotes

a singular member of a generically smooth family, while X̂ denotes a resolution of a singular variety X. The column labelled
by π1 gives the fundamental group. For each manifold listed here there should also be a mirror, which is not listed.

40200−20−40

40200−20−40

0

5

10

15

20

25

0

5

10

15

20

25

Figure 2: The tip of the distribution of Calabi-Yau threefolds. Grey dots denote manifolds included in [2],
while red dots denote newer examples. Split dots indicate multiple occupation of a site. Note that some
red and grey dots are also multiply occupied.
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Table 3: Other manifolds with small Hodge numbers.

(χ, y) (h1,1, h2,1) Manifold Reference

(16,24) (16,8) — [29]

(32,24) (20,4) — [29]

(40,24) (22,2) — [29]

(−32, 22) (3,19) ̂(P4[5]/D5) [27]

(36,22) (20,2)
Smoothing of variety obtained by
blowing down 18 rational curves on the
rigid “Z” manifold.

[35]

(44,22) (22,0) — [29]

(18,21) (15,6)
Smoothing of variety obtained by
blowing down 27 rational curves on the
rigid “Z” manifold.

[35]

(−20, 20) (5,15) ̂(P4[5]/A5) [27]

(8,20) (12,8) — [29]

(16,20) (14,6) — [29]

(32,20) (18,2) — [29]

(40,20) (20,0) — [29]

(38,19) (19,0) — [29]

(20,18) (14,4) — [29]

(28,18) (16,2) — [29]

(26,17) (15,2) — [29]

(16,16) (12,4) — [29]

(28,16) (15,1) — [29]

(32,16) (16,0) — [29]

(26,15) (14,1) — [29]

(20,14) (12,2) — [29]

(28,14) (14,0) — [29]

(26,13) (13,0) — [29]

(16,12) (10,2) — [29]

(14,11) (9,2) — [29]

(8,10) (7,3) — [29]

(12,10) (8,2) — [29]

(20,10) (10,0) — [29]

(8,8) (6,2) — [29]

(16,8) (8,0) — [29]

(8,4) (4,0) — [29]

This table is the same as that above, except all the manifolds listed either have trivial fundamental group, or a fundamental
group which has not been calculated (which is the case for several examples from [29]). The notation is the same as above,
and the manifolds with no description are all desingularisations of quotients by various groups of a singular complete
intersection of four quadrics in P

7 [29].
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We present the complete classification of smooth toric Fano threefolds, known to the algebraic
geometry literature, and perform some preliminary analyses in the context of brane tilings and
Chern-Simons theory on M2-branes probing Calabi-Yau fourfold singularities. We emphasise that
these 18 spaces should be as intensely studied as their well-known counterparts: the del Pezzo
surfaces.

1. Introduction

A flurry of activity has, since the initial work of Bagger and Lambert [1–3] and Gustavsson

[4], rather excited the community for the past two years upon the subject of supersymmetric

Chern-Simons theories. It is by now widely believed that the world-volume theory of M2-

branes on various backgrounds is given by a (2+1)-dimensional quiver Chern-Simons (QCS)
theory [5–26], most conveniently described by a brane tiling.

Even though analogies with the case of D3-branes in Type IIB, whose world-

volume theory is a (3 + 1)-dimensional supersymmetric quiver gauge theory, are very

reassuring, the story is much less understood for the M2 case. Much work has been

devoted to the understanding of issues such as orbifolding, phases of duality, brane

tilings, and dimer/crystal models and so forth. Nevertheless, the role played by the

correspondence between the world-volume theory and the underlying Calabi-Yau geometry

is of indubitable importance. Indeed, there is a bijection: the vacuum moduli space of the

former is, tautologically, the latter, while the geometrical engineering on the latter gives,

by construction, the former. This bijection, called, respectively, the “forward” and “inverse”

algorithms [27, 28], persists in any dimension and can be succinctly summarised in Table 1.
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Table 1: Brane probes and associated world-volume physics in various backgrounds.

Brane probe Theory Background World-volume theory Vacuum moduli space

D5 Type IIB R1,5 × CY2 (5+1)-d N = 1 gauge theory CY2

D3 Type IIB R1,3 × CY3 (3+1)-d N = 1 gauge theory CY3

M2 M-theory R1,2 × CY4 (2+1)-d N = 2 Chern-Simons CY4

A crucial feature for all the brane embeddings in Table 1 is that in the toric case they

are all described by brane tilings. The first case, with CY2, is described by one-dimensional

tilings, that is, brane intervals and thus brane constructions following the work in [29]. The

second case is the well-established two-dimensional brane tilings which use dimer techniques

to study supersymmetric gauge theories [30–32]. The third case is the newly proposed

construction [13] of Chern-Simon theories.

It is perhaps naı̈vely natural to propose three-dimensional tilings for the case of M2-

branes probing CY4, but in fact, it turns out not to be as useful as it may initially seem. These

three-dimensional tilings have been nicely advocated in the crystal model [33, 34]. The main

issue perhaps is the current shortcoming of this model to identify the gauge groups with a

simplex as it is done for the tilings in dimensions one and two. In the one-dimensional case

for toric CY2, the gauge group is identified with an edge of the tiling, and the matter content

with nodes. For the two-dimensional case for toric CY3, the gauge fields, matter fields, and

interactions are, respectively, identified with faces, edges, and nodes of the tiling. But for the

proposed crystal model, there is no such simple interpretation yet known.

We are thus led, for now, to keep on the path of two-dimensional tilings, while bearing

in mind that the data needed to specify a QCS theory is given by gauge groups, matter fields,

and interactions, as well as the additional data of the CS levels for the gauge groups. These

nicely map, respectively, to tiles, edges, and nodes, while the corresponding CS levels are

given by fluxes on the tiles. It would be interesting to check if this correspondence between

tilings in one and two dimensions, that is, for toric Calabi-Yau n-folds with n = 2, 3, 4, can be

extended to possibly higher-dimensional tilings and perhaps higher-dimensional Calabi-Yau

spaces.

The cases for Calabi-Yau two- and threefolds are well established over the past decade.

These are affine complex cones over base complex curves and surfaces, or real cones over real,

compact, Sasaki-Einstein three and five manifolds. Perhaps the most extensively studied are,

inspired by phenomenological concerns, D3-branes and Calabi-Yau threefolds and the widest

class studied therein is toric Calabi-Yau cones. A rather complete picture for both the forward

and inverse algorithms, as well as the unifying perspective of brane tilings and dimer models,

has emerged over the last decade. Ricci-flat metrics have even been found for infinite families

within the class of these noncompact spaces.

Another crucial family of Calabi-Yau threefold cones affords a clear construction,

and the world-volume physics has been intensely investigated (cf., e.g., [35–37]). The base

surfaces here are so-called del Pezzo surfaces which afford positive curvature, so that the

appropriate cones over them have just the right behaviour to make the affine threefold have

zero Ricci curvature. More precisely, these surfaces are dPn, which is P2 blowup at n equal

to zero up to eight generic points, or the zeroth Hirzebruch surface F0 := P1 × P1. In fact,

the cones over F0 and dPn=0,1,2,3 are toric, whereby making these five del Pezzo members of

particular interest. The (3 + 1)-dimensional gauge theories for these were first constructed in

[27, 28], giving rise to such interesting phenomena as toric duality and tilings.
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Indeed, all toric gauge theories in (3 + 1) dimensions obey a remarkable topological

formula: take the number of nodes in the quiver, the number of fields, and the number of

terms in the superpotential; their alternating sum vanishes. This is a key for the powerful

brane tiling (dimer model) description (cf. review in [32]) of these theories. Interestingly,

this relation is still obeyed for the myriad of all known (2 + 1)-dimensional QCS theories

to date and suggests that a planar brane tiling may still be the underlying principle behind

theories living on M2-branes probing affine Calabi-Yau fourfolds. The richness of the (3 + 1)-
dimensional theories beckons for their analogous and extensions to the (2 + 1)-dimensional

case.

It is therefore a natural and important question to ask what are the corresponding

geometries for Calabi-Yau fourfolds and physically what are the associated (2 + 1)-
dimensional QCS theories on the M2-brane world volume, that is, what are the (smooth) toric

complex threefolds which admit positive curvature? Based on the ample experience with and

the wealth of physics engendered by the aforementioned five del Pezzo cases for threefolds,

these fourfolds could hold a key toward understanding QCS and M2 theories.

It is the purpose of the current short note, a prologue to [38], to present the dramatis
personae onto the stage and to introduce some rudiments of their properties as well as

to initiate the first constructions of the QCS physics associated thereto. Indeed, complex

manifolds admitting positive curvature are in general called Fano varieties of which the

del Pezzo surfaces are merely the two-dimensional examples. We will see that a complete

and convenient classification exists for the smooth toric Fano threefolds over which Calabi-

Yau four-fold cones can be established; we will take advantage of the existing data and use

the forward algorithm to explicitly construct the quivers, superpotentials, and Chern-Simons

levels for some cases. A companion paper, of substantially more length and in-depth analysis

[38], will ensue in the near future. It is our hope that the 18 characters to which we draw your

attention will, in due course, become as familiar as the del Pezzo family to the community.

2. Fano Varieties

Fano varieties are of obvious importance; these are varieties which admit an ample

anticanonical sheaf; thus, whereas Calabi-Yau varieties are of zero curvature, they are of

positive curvature. (Recently, lower bounds on the Ricci curvature of Fano manifolds have

been found [39].) Therefore, not only could Fano varieties constitute cycles of positive

volume that can shrink inside a Calabi-Yau, but also, could they provide local models of

Calabi-Yau of a higher dimension. This second case is perhaps of more interest in the brane-

probe scenario where the transverse directions to the branes are affine, noncompact Calabi-

Yau spaces. In particular, one could construct an affine complex cone over a Fano n-fold, so

as to construct a Calabi-Yau (n+1)-fold, and the branes then reside at the tip of the cone. This

situation has become well known to the AdS/CFT correspondence.

What are explicit examples of Fano varieties? In complex dimension one, there is only

P1, the sphere, which obviously has positive curvature. In dimension two, they are called del

Pezzo surfaces. In particular, they are P2, as well its blowup dPn at n = 1 up to n = 8 generic

points thereon, and the zeroth Hirzebruch surface F0 := P1×P1. Of these 10, P2, F0, and dPn for

n = 1, 2, 3 admit a toric description. These have been used extensively in constructing gauge

theories on the D3-brane world volume [27–40], and the moduli spaces of these theories are

correspondingly local Calabi-Yau threefolds.
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We point out that, of course, the aforementioned are smooth Fano varieties. Indeed,

we can readily construct affine Calabi-Yau spaces which are singular cones. For example, for

complex dimension one, we indeed have the smooth P1, leading to the affine Calabi-Yau 2-

fold C2/Z2, with the corresponding quiver gauge theory in (5 + 1) dimensions, but we also

have any of the famous ADE singularities given by C2 quotient by a discrete subgroup of

SU(2) which give rise to well-known gauge theories. In complex dimension 2, we have P2,

corresponding to the affine Calabi-Yau 3-fold dP0 = C3/Z3; however, any C3/Zn is just as

good with a singular base Fano 2-fold in a weighted projected space.

Our chief interest lies in the situation of dimension three. These Fano threefolds can

give rise to Calabi-Yau fourfolds which can then be probed by M2-branes in order to arrive

at quiver Chern-Simons (QCS) theories on their world volume. A classification of the Fano

vareities was achieved in the 80s [41–43]; there is a wealth thereof. Our particular interest will

once more be on the toric Fano threefolds where such techniques as tilings and dimers will

be conducive. Toric Fano threefolds have been studied in [44, 45]. In dimension n, an obvious

general class of toric Fano k-folds is
∏

jP
kj where {kj} is a partition of n, that is, n =

∑
j kj .

With the rapid advance of computer algebra and algorithmic algebraic geometry,

especially in applications to physics (cf. [46–48]), even non-smooth Fano varieties can be

classified [50]. (Indeed, in any dimension d, it is known that there are a finite number

of smooth Fano varieties [49].) A convenient database has been established whereby one

could readily search within an online depository [51]. (We are grateful to Richard Thomas

for revealing this treasure trove to us.)

2.1. Smooth Toric Fano Threefolds

Given the enormity of the number, we were to allow singularities—against which, physically,

there need be no prejudice—and being inspired by the 2-fold case of the del Pezzo surfaces

all being smooth, we will henceforth restrict our attention to the smooth toric Fano threefolds.

In the parlance of toric geometry, the corresponding cone is called regular. There is a total of

18 such threefolds, a reasonable set indeed. We will adhere to the standard notation of [45]
wherein the family is tabulated and also to the identifier with the database [51] for the sake

of canonical reference. This is presented in Table 2.

2.1.1. Toric Data

Some detailed explanation of the nomenclature in Table 2 is in order. The toric data is such

that the columns are vectors which generate the cone of the variety; in the D-brane context,

this has become known as the Gt matrix. Note that each is a 3-vector, signifying that we are

dealing with threefolds. Moreover, the point (0, 0, 0) is always an internal point. This property

is equivalent to the Fano condition. Indeed, as we recall from [27, 28], the del Pezzo surfaces

all have a single internal point. The explicit topology of each space is also given, following

[45].
Indeed, our interest in (compact) Fano threefolds is that the complex cone thereupon

is an (noncompact) affine Calabi-Yau fourfold which M2-branes may probe. Going form

the data in the table to the fourfold is simple; we only need to add one more dimension,

say, a row of 1s to each of the matrices. In such cases, the geometry will be cones over what

is reported in the third column. In the physics literature, there have been several cases which
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Table 2: The 18 smooth toric Fano threefolds. For full explanation of notation, see the second paragraph of
Section 2.1 and those that follow.

Id of [51] Gt: toric data Geometry (b2, g, Sym)

P3 4
(

1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0

)
P3 (1, 33, U(4))

B1 35
(

1 0 1 −1 1 0
0 1 1 −1 1 0
0 0 2 −1 1 0

)
P(OP2 ⊕ OP2(2)) (2, 32, [3, 12])

B2 36
(

1 0 0 −1 −1 0
0 1 0 −1 0 0
0 0 1 −1 0 0

)
P(OP2 ⊕ OP2(1)) (2, 29, [3, 12])

B3 37
(

1 0 0 −1 −1 0
0 1 0 −1 −1 0
0 0 1 −1 0 0

)
P(OP1 ⊕ OP1 ⊕ OP1(1)) (2, 28, [22, 12])

B4 24

(
1 0 0 −1 0 0

0 1 0 −1 0 0
0 0 1 0 −1 0

)
P2 × P1 (2, 28, [3, 2, 1])

C1 105

(
1 0 1 −1 0 1 0

0 1 1 −1 0 1 0
0 0 1 0 −1 0 0

)
P(OP1×P1 ⊕ OP1×P1(1, 1)) (3, 27, [22, 12])

C2 136

(
1 0 0 −1 −1 −2 0

0 1 0 −1 0 −1 0
0 0 1 −1 0 −1 0

)
P(OdP1

⊕ OdP1
(�)), �2|dP1

= 1 (3, 26, [2, 13])

C3 62

(
1 0 0 −1 0 0 0

0 1 0 0 −1 0 0
0 0 1 0 0 −1 0

)
P1 × P1 × P1 (3, 25, [23, 1])

C4 123

(
1 0 0 −1 0 −1 0

0 1 0 −1 0 0 0
0 0 1 0 −1 0 0

)
dP1 × P1 (3, 25, [22, 12])

C5 68
(

1 0 0 −1 −1 1 0
0 1 0 −1 −1 1 0
0 0 1 −1 0 0 0

)
P(OP1×P1 ⊕ OP1×P1(1,−1)) (3, 23, [22, 12])

D1 131
(

1 0 0 −1 −1 −1 0
0 1 0 −1 0 −1 0
0 0 1 −1 0 0 0

)
P1-blowup of B2 (3, 26, [2, 13])

D2 139
(

1 0 0 −1 −1 0 0
0 1 0 −1 0 −1 0
0 0 1 −1 0 −1 0

)
P1-blowup of B4 (3, 24, [2, 13])

E1 218
(

1 0 0 −1 −1 0 −1 0
0 1 0 −1 0 −1 −1 0
0 0 1 −1 0 0 0 0

)
dP2 bundle over P1 (4, 24, [2, 13])

E2 275
(

1 0 0 −1 0 −1 −1 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 −1 0

)
dP2 bundle over P1 (4, 23, [2, 13])

E3 266
(

1 0 0 −1 0 −1 0 0
0 1 0 −1 0 0 −1 0
0 0 1 0 −1 0 0 0

)
dP2 × P1 (4, 22, [2, 13])

E4 271
(

1 0 0 −1 −1 −1 1 0
0 1 0 −1 0 −1 1 0
0 0 1 −1 0 0 0 0

)
dP2 bundle over P1 (4, 21, [2, 13])

F1 324
(

1 0 0 −1 0 −1 0 1 0
0 1 0 −1 0 0 −1 1 0
0 0 1 0 −1 0 0 0 0

)
dP3 × P1 (5, 19, [2, 13])

F2 369
(

1 0 0 −1 −1 0 −1 1 0
0 1 0 −1 0 −1 −1 1 0
0 0 1 −1 0 0 0 0 0

)
dP3 bundle over P1 (5, 19, [2, 13])
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have been studied in considerable depth and detail: the cone over P3 is the orbifold C4/Z4,

the Sasaki-Einstein 7-fold (a homogeneous space which is a circle fibration over the P1 × P2),
which is a real cone over B4, is dubbed M1,1,1 (see [13]), and the real Sasaki-Einstein cone

over C3 is called Q1,1,1/Z2 (cf., e.g., [19, 24, 25]).

2.1.2. Fibrations and Bundles

We, of course, recognise P3 (succeeding the sequence of P1 in dimension 1 and P2 = dP0

in dimension 2) and the natural generalisation P1 × P1 × P1 of F0. Indeed, in k complex

dimensions, Pk and (P1)×k are always smooth, toric, and Fano. The toric del Pezzo surfaces

dP0,1,2,3 also appear in Table 2, either in direct product or as various fibers. The notation

P() means projectivisation so as to manufacture a compact project threefold. Indeed, we are

primarily interested in the affine Calabi-Yau four-fold cone over these Fano threefolds, so the

spaces in which we have interest do not need this projectivisation; we have included them

for consistency of notation in that we are discussing the Fano threefolds in this section.

Therefore, the cone in a sense undoes the said projectivisation, and the fourfold is

simply the total space of the fibration. For example, B1 is P(OP2 ⊕ OP2(2)); here, OP2(d) is a

line bundle of degree d over P2, hence the fiber of OP2 ⊕ OP2(2) is of dimension 1 + 1 = 2,

which together with the base P2 dictates the total space as being of dimension 2 + 2 = 4. (Of

course, in line with standard notation O is the structure sheaf, or the line bundle of degree

0.) Subsequently, the projectivisation is of dimension 4 − 1 = 3, as required. The actual affine

Calabi-Yau fourfold is simply the total space OP2 ⊕ OP2(2).

2.1.3. Symmetries

One piece of information, obviously of great importance, is the symmetry of the variety,

which is encoded in the world-volume physics, either manifestly or as hidden global

symmetries [52–55]. Inspecting the toric diagrams, we readily see that our list of Fano

threefolds affords the following symmetries. The most symmetric case is, of course, P3,

the cone over it has a full U(4), acting as unitary transformations on the four coordinates.

Next, both B1 and B2 have SU(3) × U(1)2, with SU(3) acting on the base P2 and U(1) for

each fiber. Similarly, B3 has symmetry SU(2)2 × U(1)2, with SU(2) for the base P1, another

U(2) for the 2 identical line bundles OP1 , and one more U(1) for O(1)P1 . Likewise, B4 has

SU(3) × SU(2) × U(1), with the SU(3) and SU(2) for the P2 and P1, respectively, and U(1)
for the cone which gives the affine Calabi-Yau 4-fold. Proceeding along the same vein, C1, C4,

and C5 share the symmetry SU(2)2 ×U(1)2, C2 has SU(2)×U(1)3, and C3 has SU(2)3 ×U(1).
All remaining cases, namely, the D’s, E’s, and F’s, are of symmetry SU(2) ×U(1)3.

Note that the rank of the group of symmetries must total to 4 because we are dealing

with a toric (affine) Calabi-Yau 4-fold. Indeed, one U(1) factor of the symmetry is the R-

symmetry and the remaining rank 3 symmetry, a global mesonic symmetry (cf. [52, 53]), and

there could be possible additional U(1)-baryonic symmetries. We have summarised these

mesonic symmetries in the last column of Table 2, under the entry Sym. Unless explicitly

written, we have used the short-hand notation that

[
3k3 , 2k2 , 1k1

]
:= SU(3)k3 × SU(2)k2 ×U(1)k1 . (2.1)
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We note that the three cases of there being only a singleU(1) symmetry, namely, P3 (for

which U(4) contains the U(1)), B4, and C3, are products of projective spaces corresponding

to the three partitions of 3. The corresponding QCS theories for these have been already

constructed in the literature. This is perhaps unsurprising given the high degree of symmetry

for these spaces.

2.1.4. Some Geometrical Data

We have also listed, to the rightmost of the table, some geometrical data, such as topological

invariants. In particular, we tabulate the second Betti number b2 and the genus g. Indeed,

b2 = E − 3, where E is the number of external points in the toric diagram, or since there is

always a single internal point as discussed above, E is the number of columns of Gt minus

1. Now, recall that in the D3-brane probes on Calabi-Yau threefold case, the external vertices

count the conserved anomaly-free global charges of the (3 + 1)-dimensional gauge theory.

Each external vertex in the toric diagram is a divisor, and its corresponding charge gives rise

to a basis for the set of mesonic, and baryonic charges: one of which is the R-symmetry, three

of which are mesonic and the remaining E − 4 charges are baryonic.

However, in our present case of M2-branes probing the Calabi-Yau fourfold, the world-

volume Chern-Simons theory in (2+1) dimensions has no notion of anomaly, and hence there

is no distinction between anomalous and anomaly-free baryonic charges. (An exception to

this is the parity anomaly where one starts with a theory that has no CS terms, and one-

loop perturbation theory generates a nonzero CS term. Since the CS term is odd under parity,

one says that parity is conserved in the classical level but broken by a one-loop effect, hence

anomalous. This is the only instance in which one can have anomalies in (2 + 1) dimensions.

Nevertheless, all the theories we deal with are protected by supersymmetry and, as long as

the ranks are equal, the CS levels do not get quantum corrections (cf. [56]).) Thus, b2 seems

to be counting the number of baryonic charges if we extend the analogy from the (3 + 1)-
dimensional situation.

On the other hand, a conserved baryonic charge corresponds to a gauge field in AdS.

This is counted by the number of 2-cycles in the Sasaki-Einstein 7-fold (SE7), given by the 3-

form on each 2-cycle. The number of 2-cycles in the SE7 is equal to the number of 5-cycles by

Poincaré duality, which is in turn equal to the number E of external points in the toric diagram

subtracted by 4. That is, the baryonic symmetries also afford a nice geometrical interpretation

here: the number of columns of Gt is E + 1, then the number of baryonic symmetries is E − 4,

signifying U(1)E−4 (cf. of [25, Section 2] and also [23]). Then, since the second Betti number

is E − 3, we have the number of baryonic symmetries as the topological quantity b2 − 1.

Next, let us discuss the genus g. Note that a polarisation can be chosen as the ample

anticanonical sheaf A = K−1
X , which, due to its ampleness, can be used to embed into a

projective space. It turns out that this embedding is of degree d = c1(X)3 into Pg+1 such

that d = 2g − 2. Of physical importance is that the g + 2 homogeneous coordinates of

the ambient Pg+1 constitute g + 2 gauge invariant chiral operators which parameterise the

supersymmetric vacuum moduli space, with the relations satisfied amongst them providing

the explicit equation thereof. In short, the number of generators of the moduli space is g + 2.

2.1.5. Hilbert Series

Now, it was first pointed out in [57, 58] that the Hilbert series of an algebraic variety is

central toward understanding the gauge invariant operators of the gauge theory living on
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the branes probing the variety. For our purposes, this is a rational function which is the

generating function for counting the spectrum of operators; it could be multivariate, having a

number of “chemical potentials,” which we call the refined Hilbert series, or it could depend

on a single grading, which we call the unrefined Hilbert series. In particular, cones over the

Fano twofolds, that is, the del Pezzo surfaces, have an elegant expression for their unrefined

Hilbert series. We recall, [57, Section 3.3.1], that for the nth del Pezzo, of degree 9 − n, it is

f(t;dPn) = 1+((7−n)t+ t2/(1 − t)3)(n = 0, . . . , 8); Note that F0 has the same unrefined Hilbert

series as that of dP1 though the refined, multi-variate Hilbert series does differentiate the two.

The unrefined Hilbert series, computed for the canonical embedding stated above,

is also presented in [51], though perhaps not of immediate use since they are given as

series expansions. We have recomputed these as rational functions. By inspection, a succinct

equation, similar to the del Pezzo case, exists

f(t;X) =
1 +
(
g − 2

)
t +
(
g − 2

)
t2 + t3

(1 − t)4
=

∞∑
n=0

tn

6
(2n + 1)

((
g − 1

)
n2 +
(
g − 1

)
n + 6
)
, (2.2)

where g is the genus of X.

In the special cases where the Fano threefold X is the product of dPn with P1, the

genus turns out to be 28 − 3n. Whence, the number of generators of the moduli space is

30 − 3n = 3(10 − n); the 3 corresponds to the P1 factor, and the 10 − n refers to the dPn factor.

3. Reconstructing the Vacuum Moduli Space

With a current want of an inverse algorithm, with or without the aid of dimer technology, it

is difficult to systematically find the requisite quiver Chern-Simons theories whose moduli

spaces are Calabi-Yau cones over the Fano threefolds listed above, a question certainly of

considerable interest. Nevertheless, because the forward algorithm is now well established

[20], one could explicitly check whether a certain ansatz theory indeed gives the correct

moduli space. Therefore, with a combination of inspired guesses and systematic computer

scans, one could hope to find some theories.

Nomenclature

In accordance with the notation of [14, 19], and emphasising the intimate relation between

the (3 + 1)-dimensional gauge theory and the (2 + 1)-dimensional QCS, we denote the latter

as follows: let the superpotential and matter content be that of the D3-brane world-volume

theory for the Calabi-Yau threefold X, then we keep the same superpotential and quiver,
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but impose Chern-Simons levels �k, ordered according to a fixed choice for the nodes, while

obeying the constraint [19, 20]

∑
i

ki = 0, GCD(ki) = 1. (3.1)

We subsequently run the forward algorithm, the resulting vacuum moduli space is now a

Calabi-Yau fourfold and the QCS theory we will denote as X̃�k. Note, of course, that the actual

4-fold may be seemingly quite unrelated to X.

Furthermore, as always, we let Xa
ij denote the ath bifundamental field between nodes

i and j, and let φai signify the ath adjoint field for the ith node.

3.1. Various Candidates

d̃P0(1,−2,1) and B4

The quiver and superpotential can be readily recalled from, for example, [27, 28] (cf. also this

theory as a QCS from [13]); next, we can assign the Chern-Simons levels as (1,−2, 1), which

indeed satisfies the constraint (3.1)

W = εαβγX
(α)
12 X

(β)
23 X

(γ)
31 ,

CS-levels = (1,−2, 1).

23

1

(3.2)

Running through the forward algorithm gives us the following charge matrix Qt and toric

diagram Gt:

Qt =

(
−1 −1 −1 1 1 1

0 0 0 −2 1 1

)
, Gt =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 0 0 −1 1

1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠ . (3.3)

Now, take B4, or number 24, of the Fano list from Table 2, and consider the affine

CY4 cone thereupon, by adding a row of 1s. One can readily check that upto reordering the

columns, the twoGt matrices are explicitly related by a PSL(4; Z) transformation. This means

that the moduli spaces, as affine toric varieties, are isomorphic.
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Phases of F0

Next, we recall the well-known two phases of the (3 + 1)-dimensional theories for the CY3

over the zeroth Hirzebruch surface

W(F0)I = εijεpqX12
iX23

pX34
jX41

q,

W(F0)II = εijεmnX
i
12X

m
23X

jn

31 − εijεmnXi
14X

m
43X

jn

31 .

Phase II
34

1 2 1 2

34
Phase I 

(3.4)

There are two toric phases, the first having 8 fields, and the second 12.

From these progenitors, we can obtain quite a few Calabi-Yau fourfold cones with

judicious choices of CS levels. We list these in Table 3, running, in each case, the forward

algorithm to the theory. The input is the superpotential and quiver of the indicated phase of

F0, together with the chosen Chern-Simons levels, and the output, the charge matrix Qt and

toric diagram Gt.

In this table, we have used the notation ∼ Cone(X) to mean that it is isomorphic, by

an explicit SL(4; Z) transformation of the toric diagrams (upto repetition and permutation

of the vertices) Gt to the Calabi-Yau fourfold cone over the Fano threefold X. Note that the

last row of Gt is always 1, this is a consequence of the Calabi-Yau condition. Furthermore,

note that the second 2 rows for phase I, corresponding to the F-terms, decouple into diagonal

form; this reflects the fact that the master space [52, 53] is the direct product of two conifolds.

Moreover, the first row of the table, for the theory corresponding to (P1)×3, has been obtained

in [25].

d̃P1 and D1

The theory for the cone over the dP1 surface is again well known. We present it below (note

that only two of the three bifundamental fields X34 group into an SU(2) multiplet and the

third is a singlet). Now, if we took the Chern-Simons levels as (−1,−1, 0, 2), and combining

with the standard theory

W = εabX13X
a
34X

b
41 + εabX42X

a
23X

b
34 + εabX

3
34X

a
41X12X

b
23,

CS-levels = (−1,−1, 0, 2),

34

1 2

(3.5)
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Table 3: The two phases of the (3 + 1)-dimensional gauge theory for the cone over the zeroth Hirzebruch
surface F0 beget 4 new QCS theories in (2 + 1) dimensions, the moduli spaces for which are cones over 4
different Fano threefolds.

F0 CS Levels �k Qt Gt ∼ Cone(X)

I (1, 1,−1,−1)
( 1 1 −1 1 −1 −1 0 0

1 1 1 −1 0 0 −1 −1
0 0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0 0

) ( 0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 0
−1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)
C3

I (−2, 0, 1, 1)
( 0 0 0 2 −1 −1 0 0

0 0 −1 0 0 0 1 0
0 0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0 0

) ( 0 −1 −1 0 0 0 −1 1
0 0 0 0 −1 1 0 0
−1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)
C4

I (−2, 1, 0, 1)
( 0 0 1 −1 0 0 −1 1

0 0 −1 0 0 0 0 1
0 0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0 0

) ( −1 0 0 −1 1 0 1 0
0 0 0 0 −1 1 0 0
−1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)
C5

II (−2, 0, 1, 1)

( 0 −2 0 0 1 1 2 −2 0
1 −1 0 0 0 0 0 1 −1
0 0 0 0 1 1 −1 0 −1
0 0 1 1 0 0 0 −1 −1
1 1 0 0 0 0 −1 −1 0

) ( 0 −1 1 0 0 0 −1 0 1
0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0
1 1 1 1 1 1 1 1 1

)
C4

II (−2, 1, 0, 1)

( 0 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1
0 1 0 0 0 −1 −1 0 1
0 0 0 0 1 −1 −1 1 0
1 −1 −1 1 0 0 0 0 0

) ( −1 0 0 1 1 0 1 0 1
0 0 0 0 −1 0 0 1 0
1 0 0 −1 0 −1 0 −1 −1
1 1 1 1 1 1 1 1 1

)
C1

then we find the charge and toric matrices to be

Qt =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 1 0 0 0 −2

0 0 0 1 0 0 −1 0

−1 −1 1 1 1 0 0 −1

0 0 0 0 −1 −1 1 1

⎞⎟⎟⎟⎟⎟⎠, Gt =

⎛⎜⎜⎜⎜⎜⎝
0 0 −1 1 0 1 1 0

−1 0 0 0 −1 1 0 0

−1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠, (3.6)

and resulting moduli space to be D1.

4. Outlook

In this short note, a prelude to [38], we have initiated the study of Fano threefolds in the

context of M2-branes. In particular, we have presented the classification of all smooth toric

Fano threefolds, the cones over which are Calabi-Yau fourfold singularities which the M2-

branes could probe. We have computed some preliminary geometrical data, including such

quantities as Hilbert series and global symmetries which have recently turned out to be

important for the physics of these models.

These 18 spaces are direct analogues of the toric del Pezzo surfaces, which have been

the subject of much investigation in the past decade in association with the construction

of (3 + 1)-dimensional world-volume quiver gauge theories for D3-branes. It is self-evident

that these spaces should be central to the study of (2 + 1)-dimensional quiver Chern-Simons

theories.

For some of these we have identified, using the forward algorithm, the quiver theories

whose mesonic moduli spaces are precisely as desired. Such a prima facie scan has produced

6 as moduli spaces of vacua, and they, as with all theories so far produced in the toric

M2-brane scenario, obey the planar brane tiling/dimer model condition. It is our hope that
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systematically all gauge theories for the 18 spaces can be soon geometrically engineered and

the corresponding tiling descriptions prescribed. These and many further details will appear

in the companion work of [38].
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The examination of roots of constrained polynomials dates back at least to Waring and to
Littlewood. However, such delicate structures as fractals and holes have only recently been found.
We study the space of roots to certain integer polynomials arising naturally in the context of Calabi-
Yau spaces, notably Poincaré and Newton polynomials, and observe various salient features and
geometrical patterns.

1. Introduction and Summary

The subject of roots of monovariate polynomials is, without doubt, an antiquate one and has

germinated an abundance of fruitful research over the ages. It is, therefore, perhaps surprising

that any new statements could at all be made regarding such roots. The advent of computer

algebra, chaotic phenomena, and random ensembles has, however, indeed shed new light

upon so ancient a metier.

Polynomials with constrained coefficients and form, though permitted to vary

randomly, have constituted a vast field itself. As far back as 1782, Edward Waring, in relation

to his famous problem on power summands, had shown that for cubic polynomials with

random real coefficients, the ratio of the probability of finding nonreal zeros versus that of not

finding non-real zeros is less than or equal to 2. Constraining the coefficients to be integers

within a fixed range has, too, its own history. It was realised in [1] that a degree n random

polynomial P(z) = 1+
∑n

k=1 akz
k with ak = −1, 0, 1 distributed evenly, the expected number νn

of real roots is of order O(n1/2) asymptotically in n. This was furthered by [2] to be essentially

independent of the statistics, in that νn has the same asymptotics (cf. also [3, 4]), as much for

ak being evenly distributed real numbers, in [−1, 1], or as Gaussian distributed in (−∞,∞).
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Figure 1: The position, on the complex plane, of the zeros of 50000 random integer polynomials with
coefficients −1, 0, or 1, for degrees up to 4 in part (a), 6 in part (b), and 10 in part (c).

Continual development ensued (q.v. also [5]), notably by Littlewood [6], Erdös and

Turán [7], Hammersley [8], and Kac [9]. Indeed, a polynomial with coefficients only taking

values as ±1 has come to be known as a Littlewood polynomial, and the Littlewood Problem
asks for the the precise asymptotics, in the degree, of such polynomials taking values, with

complex arguments, on the unit circle. The classic work of Montgomery [10] and Odlyzko

[11], constituting one of the most famous computer experiments in mathematics (q. v.

Section 3.1 of [12] for some recent remarks on the distributions), empirically showed that

the distribution of the (normalized) spacings between successive critical zeros of the Riemann

zeta function is the same as that of a Gaussian unitary ensemble of random matrices, whereby

infusing our subject with issues of uttermost importance.

Subsequently, combining the investigation of zeros and of random polynomials,

Odlyzko and Poonen [13] studied the zeros of Littlewood-type polynomials by setting the

coefficients to 0 and 1; they provided certain bounds as well as found interesting fractal

structures. Thus, inspired and with the rapid advance of computational power, Borwein et al.

constructed various plots of zeros of constrained random polynomials and many remarkable

features were instantly visible [14, 15]. We can readily demonstrate this with Mathematica

[16], as is shown in Figure 1. In the figure, we take a sample of 50000 random polynomials

with coefficients −1, 0, or 1 up to various degrees, and plot, on the complex plane, their

zeros. Not only do we see fractal behaviour (cf. discussions in [3, 17] on chaotic dualities

in field theories) near the boundaries, the nature of the holes are intimately related [18] to the

Lehmer-Mahler Conjecture: that the Mahler measure M(P) := exp((1/2π)
∫2π

0
log |P(eiθ)|dθ)

of any integral polynomial P(z) (which is not a multiple of cyclotomic polynomials) should

be bounded below by that of z10 − z9 + z7 − z6 + z5 − z4 + z3 − z + 1, which is approximately

1.17.

High resolution variants of Figure 1 have been considered recently by Christensen

[19], Jörgenson [20] and Derbyshire and Matson [21], inter alia, and many beautiful pictures

can be found (cf. also a nice account in [22]). Particular striking are the coloured density plots

in [21].
An interesting query, in somewhat reverse direction to the above line of thought, was

posed in [23]: recalling that the Lee-Yang Circle Theorem placed severe constraints on the

generating function of the partition function of the Ising Model, the author asked if one could

statistically test whether a given Laurent polynomial could, in fact, be the Jones polynomial

of a knot. Using a landscape of knots generated by the programme “knotscape” [24], the said

work investigated many distribution properties of the zeros of known Jones polynomials.
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Enchanted by this motif which has threaded varying developments over the decades

while persistently generating new perspectives, a question immediately springs to mind. One

of the central topics of both modern mathematics and theoretical physics is undoubtedly

that of Calabi-Yau geometries. A key feature is the superabundance thereof. In complex

dimension one, there is only the torus; in dimension two, there are the 4-torus and

the K3-surface; however, for dimension three and above, no classification is known,

and already a plethora has been constructed. The first database was that of the so-

called CICYs, or, complete intersection Calabi-Yau threefolds in products of projective

spaces [25] as well as hypersurfaces in weighted CP4 [26], by Candelas et al. Then,

over more than a decade, Kreuzer and Skarke formulated and compiled an impressive

list of on the order of 1010 threefolds as hypersurfaces in toric varieties [27]. Finding

new patterns in this vast distribution of manifolds has seen some recent activity [28–

30]. Indeed, the multitude of these geometries is at the core of the so-called vacuum

degeneracy problem of superstring theory and constitutes a part of the landscape issue

[31].
Along a parallel vein, the space of noncompact (singular) Calabi-Yau spaces (as

affine varieties) has also been extensively explored, notably by Hanany et al. over the past

decade [32–39], especially those which admit a toric description [33]; the discovery of their

intimate relation to dimer models and brane tilings [34, 35, 38] has also generated some

excitement. These supplant yet another corner in the landscape of geometries and associated

supersymmetric vacua.

Thus motivated, many tasks lend themselves to automatic investigation; we here give

a precis of some key points. In Section 2, we begin with the compact, smooth Calabi-Yau

manifolds. As mentioned above, there had been much effort in classifying and constructing

these, especially in complex dimensions three and four. An immediate polynomial, of

constrained form and integer coefficients, and yet succinctly encoding some topological

information, is the Poincaré polynomial, which can be readily written in terms of the Hodge

numbers. We take the “experimental data” of all the known Hodge numbers of the threefolds

and fourfolds spanning two decades of work and plot the complex roots of the associated

Poincaré polynomials in Figures 4 and 8, respectively.

Much intricate structures are clearly visible. These are then contrasted with a

“standard background sample”, namely, the roots of random integer sextic and octic

polynomials, with unit leading coefficient and vanishing linear term, drawn in Figures 2

and 7. From such collections are extracted the subclass of those which admit −1 as roots,

which, by a theorem from differential geometry, correspond to spaces which have more than

one isometry. Interestingly, they correspond to self-mirror threefolds and “quasi-”self-mirror

fourfolds. We plot the roots for these in Figures 5 and 10, and see that they furnish certain

substrata of the conglomerate plots mentioned above.

Thenceforth, we move on to noncompact Calabi-Yau geometries in Section 3. There,

too, is a plenitude of examples, most notably those which are toric. We focus on toric

threefolds because these have planar toric diagrams as lattice points in Z2 due to the Calabi-

Yau condition. Once more, a natural polynomial invites itself: the Newton polynomial. The

Riemann surface corresponding to this bivariate polynomial has been a central subject to

the gauge and brane theories in the context of string theory. Moreover, the two important

projections thereof, namely, the amoeba and alga projections, have provided many beautiful

Monte Carlo plots, illustrating deep algebraic geometry as well as gauge theory. Because we

are confronted with two complex variables, we need to slightly deviate from our theme of

complex roots; instead, we find it expedience to regard the variables as real and consider
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the real projection of the Riemann surface. Subsequently, we can study the ensemble of real

turning (critical) points of these planar curves.

Again, we resort to “actual data” and focus on the most well-known affine

toric threefold geometries—as shown in Figure 11—corresponding to local Calabi-Yau

singularities, including, of course, the famous conifold. To each space, we find the collective

of critical points in R2 as we vary the integer coefficients—commonly known as multiplicities

in the dimer model interpretation—of the Newton polynomial, and plot them in Figure 13.

We see a sensitive dependence of the emergent subtle structures upon the choice of toric data.

In many respects, we have taken a very pragmatic and empirical approach toward the

data accumulated over many years of theoretical research, of quantity large enough to justify

experimentation. To this philosophy of “experimental mathematics” we adhere throughout,

observe wherever we should, and infer wherever we may. Without much to do, therefore, let

us delve into the details of the issues summarized above.

2. Compact Calabi-Yau Manifolds, Poincaré Polynomials,
and Complex Roots

An important quantifying polynomial for a smooth compact manifold X is the Poincaré

polynomial, which is a generating function for topological invariants of X (say of dimension

n):

P(t;X) =
n∑
i=0

bit
i, (2.1)

with the bi being the ith Betti number. Indeed, this seems a more natural candidate for our

present studies than some because other famous polynomials such as the Hilbert polynomial

or the numerator of the Hilbert series (which of late have been instrumental in counting

BPS operators [40–42]) are not topological invariants and depend on the specific projective

embedding. Furthermore, by definition, at t = −1, the polynomial evaluates to the Euler

characteristic; this will be of significance shortly.

The zeros of the Poincaré polynomial have rather remarkable properties. It was

conjectured that [43] that if the rank of the manifoldX is greater than 1, where rank is defined

to the the maximal number of everywhere independent, mutually commuting, vector fields

on X, that is, the number of isometries, then −1 is a multiple root of the Poincaré polynomial

of X. Unfortunately, this conjecture was shown to be false [44]. Nevertheless, it still holds

that the rank of X exceeds unity if and only if −1 is a multiple root of P(t;X).
Moreover, of number theoretic and arithmo-geometric significance is the fact that

certain Poincaré polynomials exhibit Riemann Hypothesis behaviour [45, 46], in analogy

to the the Hasse-Weil zeta local zeta functions. Recently, alignment of zeros of Hilbert

polynomials have been studied by [47], in relation to zeta functions.

2.1. Calabi-Yau Threefolds

Our focus will be on (2.1). First, let us study the case of Calabi-Yau threefolds, which

have been of the greatest interest, at least historically. Because we are dealing with

complex (Kähler) manifolds, Hodge decomposition implies that bi(X) =
∑

p,q h
p,q(X), with

hp,q(X) = dimH
p,q

∂
(X) the dimensions of the Dolbeault cohomology groups. Indeed, for
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Figure 2: (a) The position, on the complex plane, of the zeros of 50000 random integer degree six
polynomials with coefficients between 0 and 1000. (b) The same, but with monic palindromic sextics. (c)
Monic palindromic sextics, and with linear term vanishing.

(compact, smooth, connected) Calabi-Yau threefolds, the Hodge diamond, and subsequently

the Betti numbers and the Poincaré polynomial, can be written as

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(b0 = b6, b1 = b5, b2 = b4, b3) =
(
1, 0, h1,1, 2 + 2h2,1

)
,

P(t;X) = 1 + h1,1t2 +
(
2 + 2h2,1

)
t3 + h1,1t4 + t6.

(2.2)

That the Poincaré polynomial is palindromic is obvious and follows from Poincaré duality.

Therefore, our first constraint is palindromicity to which we will presently restrict. We

recall the roots of a completely random sample of integer polynomials with coefficients in

[−1, 1] up to the sextic in part (b) of Figure 1. In Figure 2, we plot, in part (a), a sample of

50000 random integer sextic polynomials with coefficients in [0, 1000] (making sure that the

highest coefficient at degree 6 is not 0) as a comparative norm. Next, in part (b), we plot the

same, but for monic palindromic sextics, that is, P(t) = 1 + b1t + b2t
2 + b3t

3 + b2t
4 + b1t

5 + t6.

Then, in (c), we restrict once more, with some foresight, so that the linear term vanishes, that

is, P(t) = 1 + b2t
2 + b3t

3 + b2t
4 + t6. We see that upon the condition of palindromicity, there is a

marked emergence of roots on the unit circle; this of course arises from the symmetric terms

of the form eit combining to give (co)sines whose reality then facilitates the addition to zero.

The symmetry about the x-axis is simply that all roots appear in conjugate pairs because our

polynomials have real coefficients.

For our amusement, seeing the form of the semiunit-circular shape being prominent,

we are reminded of the conformal map z → (z/(z − 1)) which takes the unit circle to the

critical strip of the Riemann Hypothesis, as shown in detail by part (a) of Figure 3. We take

the space of roots of monic palindromic sextics with vanishing linear/quintic terms from part

(c) of Figure 2, apply the inverse map z → (z/(z+1)) to map to the critical strip, and redo the

plot in part (b) of Figure 3. We see that the plot resembles the zero-free region of the Riemann

zeta function inside the critical strip.

Founded upon these above discussions, we are ready to approach “actual data.”

We now collect all known Calabi-Yau threefolds, which come from three major databases,
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Figure 3: (a) The conformal map z → (z/(z − 1)) takes the left half of the critical strip to the inside of the
unit disk, with the boundaries mapped as shown by the arrows. It takes the mirror image, in the right half
of the critical strip, to the complement of the unit disk. The inverse map is given by z → (z/(z+1)). (b) The
position of 50000 randomly integer monic palindromic sextic polynomials with vanishing linear/quintic
terms and with coefficients ranging in [0, 1000], applying the map z → (z/(z + 1)).

namely, the aforementioned CICYs, the hypersurfaces in toric varieties, as well as the

collection of individually tailored ones of small Hodge numbers (cf. [28, 29]). These total,

respectively, 30108, 266 and 54 distinct pairs of Hodge numbers (h1,1(X), h2,1(X)). In all, there

are 30237 distinct pairs (of course, each with much degeneracy) of Hodge numbers; to our

present knowledge, these are all the ones circulated in the literature.

We plot (Traditionally, the now-famous plot, first appearing in [26], is done with χ =
2(h1,1 − h2,1) as abscissa and h1,1 + h2,1 as ordinate.) these, with h1,1 as the abscissa and h2,1,

ordinate, in part (a) of Figure 4, the largest amongst these is (491, 11). Note that because of

mirror symmetry, there is a symmetry interchanging the two coordinates. It is still an open

question whether there exists any Calabi-Yau threefold whose either Hodge number exceeds

491, a bound which has defied constructions so far. This is why in our random standard

background sample in Figure 2, we have conveniently selected the largest integer coefficient

to be 1000 ∼ 2 · (491 + 1). In part (b) of the said Figure, we plot, on the complex plane, the

roots of the Poincaré polynomials of all these known threefolds. Because we are dealing with

polynomials of nonnegative coefficients, there should be many generic roots with negative

real parts. Comparing with the random sample in part (c) of Figure 2, we see a beautiful

clustering of points in the first quadrant (and, by complex conjugation, the fourth).
Next, let us test for how many Poincaré polynomials −1 is a root; these, as mentioned

above, would correspond to manifolds which have more than one isometries. Interestingly,

of the some 30000, only 148 pass the test. These turn out to be only the 148 known self-mirror

manifolds; we plot their Hodge numbers in Part (a) of Figure 5 (the values of Hodge numbers

range from (1, 1) to (251, 251), skipping many high values, as well as the number 13). Indeed,

this is a simple consequence of palindromicity as one sees that, upon substituting t = −1 into

P(t;X) in (2.2), we obtain P(−1;X) = 2(h1,1−h2,1) = χ(X), the Euler characteristic. In Part (b),
we plot all the other roots as well, and see that these constitute a portion of the small crescent

around the origin.

2.2. Calabi-Yau Fourfolds

Having explored the space of Calabi-Yau threefolds, it is automatic to proceed onto the space

of fourfolds, a relative terra incognita. We again resort to the wonderful database compiled by
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Figure 4: (a) The Hodge numbers, with h1,1 as the abscissa and h2,1, the ordinate, of all the known Calabi-
Yau threefolds. (b) The position, on the complex plane, of the zeros of their Poincaré polynomials.

Kreuzer-Skarke [27, 48]. Now, there are, totaling the hypersurfaces in toric fivefolds, 14598161

manifolds, with 3015056 distinct triplet of Hodge numbers. To explain this triplet notation,

we remind the reader of the Hodge diamond of compact, connected, smooth Calabi-Yau

fourfolds, adhering to the nomenclature and explanation of [49]

1

0 0

0 h1,1 0

0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1

0 h2,1 h2,1 0

0 h1,1 0

0 0

1

h2,2 = 44 + 4h1,1 − 2h2,1 + 4h3,1,

(b0 = b8, b1 = b7, b2 = b6, b3 = b5, b4)

=
(
1, 0, ;h1,1, 2h2,1, 2 + 2h3,1 + h2,2

)
=
(
1, 0, h1,1, 2h2,1, 46 + 4h1,1 − 2h2,1 + 6h3,1

)
.

(2.3)

We note that though seemingly there are four degrees of freedom, owing to topological

constraints in complex dimension four or higher, as exhibited by the above relation of h2,2

with the others, there are really only three independent Hodge numbers, which we choose

as (h1,1, h2,1, h3,1); in terms of this triplet, we express the Betti numbers, as shown above.

Consequently, we can write the Poincaré polynomial of the fourfold, from the Betti numbers

in (2.3), as

P(t;X) = 1 + h1,1t2 + 2h2,1t3 +
(

46 + 4h1,1 − 2h2,1 + 6h3,1
)
t4 + 2h2,1t5 + h1,1t6 + t8. (2.4)
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Figure 5: (a) The Hodge number of self-mirror Calabi-Yau threefolds; these have −1 as a root of the
Poincaré polynomial. (b) All of the roots of the Poincaré polynomial of these self-mirrors.
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Figure 6: (a) The Hodge numbers, with h1,1−h3,1 as the abscissa and h1,1+h3,1, the ordinate, of the fourfolds
from Kreuzer-Skarke’s database. (b) The same, but with h1,1 − h2,1, as the abscissa and h1,1 + h2,1 as the
ordinate.

Following [49], we plot h1,1 + h3,1 as ordinate versus h1,1 − h3,1 as abscissa, which

demonstrates mirror-like behaviour. (Though in cit. ibid., only the hypersurfaces in weighted

CP5 were considered, whereas here we plot the entirety of the known fourfolds.) We also plot

h1,1 + h2,1 versus h1,1 − h2,1, showing that the behaviour in the application direction is rather

trivial. These are shown in Figure 6.

We now repeat the experiment undertaken for threefolds. First, we plot the space

of generic roots, and present them in Figure 7. In part (a), a sample of 50000 random

integer octic polynomials with coefficients in [0, 2500000] (making sure that the highest

coefficient at degree 8 is not 0) as a comparative basis: octic, since we will be contrasting

with degree 8 Poincaré polynomials, upper bound of 2500000, since we can see from Figure 6

and (2.3), that the Min and Max of the Hodge numbers are, respectively, (h1,1, h2,1, h3,1) ∈
([1, 303148], [0, 2010], [1, 3030148]), so that the upper bound to the b4 term is 2425228. Next,

in part (b), we plot the same, but for monic palindromic octics, that is, P(t) = 1 + b1t + b2t
2 +

b3t
3 + b4t

4 + b3t
5 + b2t

6 + b1t
7 + t8. Finally, in (c), we restrict once more, so that the linear term

vanishes, that is, P(t) = 1 + b2t
2 + b3t

3 + b4t
4 + b3t

5 + b2t
6 + t8.

In contradistinction to these generic results, we can now find all the complex roots of

the Poincaré polynomials of all known Calabi-Yau fourfolds. The three million or so distinct

Hodge data now presents a heavy computational challenge, on which a Quadra-core MacPro
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Figure 7: (a) The position, on the complex plane, of the zeros of 50000 random integer polynomials with
coeffcients between 0 and 2500000. (b) The same, but with monic palindromic octics. (c) Monic palindromic
octics, and with linear term vanishing.
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Figure 8: (a) The position, on the complex plane, of the some 23 million zeros of the Poincaré polynomials
of the approximately 1 million smooth Calabi-Yau fourfolds arising as hypersurfaces in toric fivefolds. (b)
A slightly magnified area emphasizing the ordinate in the range [−1, 1].

with 40 Gb of memory laboured for a week, to produce some 23 million complex roots. We

present a scatter plot of these roots in part (a) of Figure 8. In part (b) of the same figure, we

magnify it slightly to emphasize the same range as the random plots in Figure 7.

The theorem that −1 being a root of the Poincaré polynomial of X implies X has rank

exceeding unity is generally applicable. Hence, we can continue with this analysis. Now,

(2.4) implies that (of course, the last equality follows directly for the definition of the the

Euler characteristic χ(X))

P(−1, X) = 48 + 6
(
h1,1 − h2,1 + h3,1

)
= χ(X). (2.5)

However, the relation between χ and being self-mirror, or even the concept of the latter, is

obviously not as clear in complex dimension greater than three. Be that as it may, we can

still examine (2.5) in the the space of fourfolds. Of the some 3 million distinct triplets, there

are only 61 with vanishing Euler number, which we demonstrate in Figure 9: in part (a),
h1,1 + h3,1 against h1,1 − h3,1, and in part (b), h1,1 + h2,1 against h1,1 − h2,1. We see that these are

all of relatively small Hodge numbers, and in part (b), we see that in spite of the general

linear behaviour seen in part (b) of Figure 6, there is some substructure. In part (c), we

plot the interesting shape of the roots of the Poincaré polynomials for these 61 members. In

retrospect to Figure 6, we see that perhaps the closest notion to mirror symmetry in complex

dimension four is the interchange of h1,1 and h3,1. Of the circa 3 million, we find 5009 which
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Figure 9: (a) The Hodge numbers, with h1,1−h3,1 as the abscissa and h1,1+h3,1, the ordinate, of the fourfolds
which have vanishing Euler number, and hence rank exceeding unity. (b) The same, but with h1,1 − h2,1,
as the abscissa and h1,1 + h2,1 as the ordinate. (c) The position of the roots, on the complex plane, of the
Poincaré polynomial of these 61 spaces out of the some 3 million.
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Figure 10: (a) The Hodge numbers, with h1,1 = h3,1 as the abscissa and h2,1, the ordinate, of the “self-mirror”
Calabi-Yau fourfolds. (b) The position of the roots of the Poincaré polynomials of these 5009 spaces.

have the property that h1,1 = h3,1. We plot the pairs (h1,1 = h3,1, h2,1) in part (a) of Figure 10

and the roots of their Poincaré polynomials in part (b).

3. Noncompact Calabi-Yau Geometries, Toric Diagrams,
and Newton Polynomials

Having indulged in an excursion into the space of compact smooth Calabi-Yau threefolds

and fourfolds, as well as their Poincaré polynomials, proceeding to the space of noncompact

Calabi-Yau geometries is almost a perfunctory next step. These are affine varieties such as

flat space Cd and singularities which locally admit Gorenstein resolutions, and are central to

McKay Correspondence and generalizations in mathematics as well as AdS/CFT and branes

in string theory. A rich tapestry on this subject has been woven over the past few decades,

whereby augmenting the relevance of our present investigation.

The most important family of non-compact Calabi-Yau geometries is indubitably those

which afford toric description, as mentioned in the introduction. In complex dimension

three, the Calabi-Yau condition compels the toric diagram to be coplanar, whence each is

characterized by a (convex) lattice polygon D = {vi}, with each vi ∈ Z2. Therefore, a

polynomial which instantly springs to mind is the Newton polynomial

D =
{(
xi, yi
)}

=⇒ P(z,w;X) =
∑
i

aiz
xiwyi ∈ C[z,w], (3.1)
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Figure 11: The most popular affine Calabi-Yau threefold toric diagrams, corresponding, respectively, to (a)
C3, (b) conifold, (c) SPP, (d) F0, and (e, f, g, h) dP0,1,2,3. The end points are at the standard lattice points in
Z2.

where we have inserted potential coefficients ai for generality. This is not a frivolous act;

indeed, when ai ∈ Z≥0, they are the so-called “multiplicities” first defined in [33] and play

a vital rôle in comprehending the dimer model/brane tiling interpretation of toric gauge

theories [34, 35, 50].
The most famous toric diagrams for affine Calabi-Yau threefolds are depicted in

Figure 11, with the endpoints at the self-explanatory lattice points in Z2; these include the

reflexive polytopes in dimension two, and are commonly known as (a) C3, (b) the conifold,

(c) the suspended pinched point (SPP), (d) affine cone over the zeroth Hirzebruch surface

F0 = P1×P1, (e) dP0 = C3/Z3, the affine cone over P2, and (f, g, h) dPn, cones over, respectively,

the first, second, and third del Pezzo surfaces which are P2 blown up at n = 1, 2, and 3 generic

points.

An immediate difficulty with (3.1) is, of course, that the polynomial is bi-variate,

whereby describing, algebraically, Riemann surfaces. Even though such surfaces are crucial

in the understanding of the gauge theory constructed on branes probing these affine toric

Calabi-Yau spaces (cf. [50] for discussion on a web of inter-relations and various projections

and spines of these Riemann surfaces), the notion of zeros is not obvious. We could, for

example, set one of the coördinates to a fixed value, and consider the roots of the resulting

univariate projection. This, however, does not seem particularly natural. Nevertheless, for

illustrative purposes, we include a few examples in Figure 12, wherein we have set z to

1, varied the coefficients ai randomly and integrally in [−5, 5], and plotted the roots of the

resulting polynomial in w for 5000 samples.

A much more natural and, as it turns out, interesting direction to take is to consider

(3.1) not as a complex, but as a real curve. For comparative purposes, we should be

mindful of the “amoebae” and the so-dubbed “algae” projections proposed in [50], which

are, respectively the (natural log of the) real and imaginary projections of the Newton

polynomials of the associated toric Calabi-Yau threefold.
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Figure 12: The roots of the Newton polynomials P(z,w) at z = 1, for (a) the conifold, (b) F0, (c) dP1, and
(d) dP3.
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Figure 13: In reference to the toric diagrams in Figure 11, for each Calabi-Yau threefold geometry, we
find the corresponding Newton polynomial as a real algebraic curve. We sample over 50000 random
integer coefficients in the range [−10, 10], and isolate the real critical points in R2, which are then plotted
collectively for (b) conifold, (c) SPP, (d) F0, and (e, f, g, h) dP0,1,2,3.

In this regard, perhaps the most significant quantity for our complex Newton

polynomials is the set of turning points in R2, namely, the set of real critical points of

P(z,w) ∈ R[z,w]. In other words, we find the simultaneous real solutions to

∂zP(z,w) =
∑
i

aixiz
xi−1wyi = 0, ∂wP(z,w) =

∑
i

aiyiz
xiwyi−1 = 0, (3.2)

with ai randomly sampled and discard the imaginary solutions. This, indeed, brings us back

to Waring’s original considerations on nonreal roots.

In Figure 13, we take a fixed toric diagram corresponding to a given Calabi-Yau

geometry, and consider the Newton Polynomial in (3.1). Then, we sample 50000 random

integer coefficients ai in an appropriate range, here taken to be [−10, 10]. For each, we find the

real critical points, and collectively plot them. We note that C3 does not that any real critical

points and is thus left out. This is because the Newton polynomial is simply a + bz + cw

for a, b, c ∈ Z. Thus, (3.2) gives b = c = 0, independent of (z,w) coödinates. Similarly, the

case of (b), the conifold, can be considered a reference point. The Newton polynomial is

a+bz+cw+dzw, whence, the critical points are given by the solutions of b+dw = c+dz = 0,

or, w0 = −b/d, z0 = −c/d. Hence, given that each of b, c, d is independently randomly evenly

distributed, the turning points (z0, w0) are then distributed as quotients of even random

samples, and whence the clustering nearer to the lower values as seen in the darker region in

the figure.
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We discuss recent constructions of global F-theory GUT models and explain how to make use of
toric geometry to do calculations within this framework. After introducing the basic properties
of global F-theory GUTs, we give a self-contained review of toric geometry and introduce all the
tools that are necessary to construct and analyze global F-theory models. We will explain how to
systematically obtain a large class of compact Calabi-Yau fourfolds which can support F-theory
GUTs by using the software package PALP.

1. Introduction

Even though it has been around for quite a while [1], F-theory has recently received a lot of

new attention as a setup where grand unified theories (GUTs) can be conceived from string

theory. Starting with [2–4] the phenomenology of F-theory GUTs has become an active field

of research. The basic idea is that the GUT theory is localized on a (p, q) seven-brane S inside

a three-dimensional base manifold B of an F-theory compactification on an elliptically fibered

Calabi-Yau fourfold. The location of the GUT brane and the gauge group are determined by

the degeneration of the elliptic fibration. Chiral matter localizes on curves inside the GUT

brane S, where gauge enhancement occurs, and Yukawa couplings sit at points. For many

phenomenological applications, it is sufficient to consider the field theory living on the GUT

brane without specifying the details of the global F-theory compactification. However, fluxes,

monodromies, or consistency constraints such as tadpole cancellation cannot be addressed in

a purely local setup. These issues have recently received a lot of attention in the literature

[5–25]. Therefore, it is interesting to see whether it is possible to embed the local F-theory

GUT into a compactification on a Calabi-Yau fourfold. Most known examples of compact

Calabi-Yau manifolds are hypersurfaces or complete intersections in a toric ambient space.
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It is thus natural to look for Calabi-Yau fourfolds within this class of examples. A prescription

for constructing elliptically fibered Calabi-Yau fourfolds as complete intersections in a six-

dimensional toric ambient space has been given in [6, 8]. Before that, complete intersection

Calabi-Yau fourfolds in F-theory had already been used in the context of F-theory uplifts of

type IIB string theory [26–28]. A similar construction has also been discussed in [10]. It has

been shown in examples that it is indeed possible to construct viable F-theory GUTs within

this framework.

The construction of [6] is very well-suited for a systematic search of a large class of

models. This is interesting for several reasons: one goal is to find particularly nice examples of

F-theory compactifications. Even though the known examples have been able to incorporate

F-theory models, one usually gets much more than just that. In minimal F-theory GUTs, one

typically needs only very few Yukawa points and a small number of moduli on the matter

curves. This is not satisfied in most known global models. A related question deals with the

genericity of F-theory GUTs. The geometric configurations used for constructing such models

are usually quite special, and one may wonder how often they can be realized in elliptically

fibered fourfolds. From the point of view of model building, it is useful to have some easy-

to-check geometric conditions which makes it possible to select suitable models from a large

class of geometries. This will be discussed in more details in the text. From a mathematical

point of view it might be interesting to obtain a partial classification of Calabi-Yau fourfolds.

This paper discusses selected topics in toric geometry and F-theory GUTs. The paper

is organized as follows: in Section 2, we recall the construction of global F-theory models

and discuss the basic requirements we would like to impose. In Section 3, we review several

notions in toric geometry which are required in order to perform the F-theory calculations.

The geometries one has to deal with are usually quite complicated, and very often, one has to

rely on computer support in order to be able to do explicit calculations. Therefore, we discuss

how such calculations can be implemented using existing software such as PALP [29]. We will

mainly focus on the application of toric geometry in the context of F-theory model building.

For a more complete picture on this vast subject of F-theory phenomenology, we refer to

other review articles such as [30–32]. For more extensive discussions of toric geometry, we

recommend [33–35].

2. Global F-Theory Models

2.1. Setup

In this section, we introduce the basic concepts and notions used in global F-theory models.

In the remainder of this paper we will explain the techniques which are necessary to do

calculations within this framework. For more details on how the quantities introduced below

come about, we refer to the original papers or the recent review article [32].
In [6], it has been proposed to construct Calabi-Yau fourfolds, which are suitable for

F-theory model building, as complete intersections of two hypersurfaces in a six-dimensional

toric ambient space. The hypersurface equations have the following structure:

PB
(
yi,w
)
= 0, PW

(
x, y, z, yi, w

)
= 0. (2.1)

The first equation only depends on the homogeneous coordinates (yi,w) of the three-

dimensional base B of the elliptically fibered Calabi-Yau fourfold X4. Here, we have singled
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out one coordinate w, indicating that the divisor given by w = 0 defines a seven-brane

S which supports a GUT theory of the type introduced in [2–4]. The second equation in

(2.1) defines a Weierstrass model, where (x, y, z) are those coordinates of the six-dimensional

ambient space that describe the torus fiber. For this type of elliptic fibrations, PW is of Tate

form which is defined as follows:

PW = x3 − y2 + xyza1 + x2z2a2 + yz3a3 + xz4a4 + z6a6. (2.2)

The an(yi,w) are sections of K−n
B , where KB is the canonical bundle of the base manifold.

Furthermore, x and y can be viewed as sections of K−2
B and K−3

B , respectively.

The information about the F-theory model is encoded in the Tate equation (2.2).
In order to have a nontrivial gauge group on the GUT brane the elliptic fibration must

degenerate above S. The gauge group is determined by the structure of the singularity.

The elliptic fibration becomes singular at the zero locus of the discriminant Δ. Defining the

polynomials β2 = a2
1 + 4a2, β4 = a1a3 + 2a4 and β6 = a2

3 + 4a6, the discriminant is given by the

following expression:

Δ = −1

4
β2

2

(
β2β6 − β2

4

)
− 8β3

4 − 27β2
6 + 9β2β4β6. (2.3)

According to Kodaira’s classification [36] and Tate’s algorithm [37], the gauge group can be

inferred from the factorization properties of the an(yi,w) with respect to w. Considering, for

instance, SU(5)- and SO(10)-models, the factorization looks like this

SU(5) : a1 = b5w
0 a2 = b4w

1 a3 = b3w
2 a4 = b2w

3 a6 = b0w
5,

SO(10) : a1 = b5w
1 a2 = b4w

1 a3 = b3w
2 a4 = b2w

3 a6 = b0w
5.

(2.4)

The bis are sections of some appropriate line bundle over B that have at least one term

independent of w.

In F-theory GUT models, chiral matter localizes on curves on S, where a rank 1

enhancement of the gauge group appears. In SU(5) models, the matter curves are at the

following loci inside S:

b2
3b4 − b2b3b5 + b0b

2
5 = 0 5 matter, b5 = 0 10 matter. (2.5)

The matter curves for the SO(10) models are at

b3 = 0 10 matter, b4 = 0 16 matter. (2.6)

Yukawa coupling arise at points inside S, where the GUT singularity has an rank 2 enhance-

ment. In SU(5) models, the Yukawa points sit at

b4 = 0 ∩ b5 = 0 10 10 5 Yukawas E6 enhancement,

b5 = 0 ∩ b3 = 0 10 5 5 Yukawas SO(12) enhancement.
(2.7)
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In the SO(10)-case, we have the following Yukawa couplings:

b3 = 0 ∩ b4 = 0 16 16 10 Yukawas E7 enhancement,

b2
2 − 4b0b4 = 0 ∩ b3 = 0 16 10 10 Yukawas SO(14) enhancement.

(2.8)

Given a complete intersection Calabi-Yau fourfold of the form (2.1), the expressions for

matter curves and Yukawa points are globally defined and can be calculated explicitly.

Having a global F-theory compactification, we can furthermore calculate the Hodge numbers

and the Euler number χ4 of the Calabi-Yau fourfold X4. The latter enters the D3-tadpole

cancellation condition,

χ4

24
=ND3 +

1

2

∫
X4

G4 ∧G4, (2.9)

where G4 denotes the fourform flux on X4 and ND3 is the number of D3-branes.

2.2. Geometric Data in F-Theory Models

So far, we have summarized the basic structure of a global F-theory GUT. In the present

section, we will discuss which properties of the GUT model are encoded in the geometries

of the base manifold B and the Calabi-Yau fourfold X4. We will not go deeply into the

phenomenology of F-theory GUTs but rather focus on the basic geometric properties which

should be satisfied in order to obtain a viable GUT model.

2.2.1. Base Manifold

Since the GUT brane S is a divisor in a three-dimensional base manifold B, a large amount of

information about the model can be extracted from the geometry of B. The base B is a non-

negatively curved manifold of complex dimension three. In our setup, it will be given by a

hypersurface in a toric ambient space. Note that Fano threefolds are not a good choice for B

due to the lack of a decoupling limit [38]. In Section 3, we discuss a systematic construction

of such base manifolds using toric geometry. In order to have a well-defined model, we have

to make sure that B is nonsingular. In contrast to Calabi-Yau threefolds, the base manifolds

for F-theory GUTs may inherit the singularities of the ambient space. Therefore, checks for

the regularity of B have to be implemented.

Having found a suitable base manifold, the next step is to identify divisors inside B

that can support GUT models. The most promising candidates for F-theory model building

are del Pezzo surfaces. These are Fano twofolds (see, e.g., [39]). Note, however, that del

Pezzos are not the only possibility for the construction of GUT models in F-theory. See [40]
for a recent discussion. There are several motivations to focus on del Pezzo divisors. In local

F-theory GUTs, the del Pezzo property ensures the existence of a decoupling limit [3, 4]. For

SU(5) GUT models, the fact that del Pezzos have h0,1 = h2,0 = 0 implies some powerful

vanishing theorems which forbid exotic matter after breaking SU(5) to the standard model

gauge group [4].
We can identify candidates for del Pezzo divisors inside B by their topological data.

Suppose that the base manifold B is embedded in a toric ambient space which has toric



Advances in High Energy Physics 5

divisorsDi. TheDi give a homology basis of the ambient space. In this setup, the hypersurface

is specified by a divisor, which we will by abuse of notation also call B, that is given in terms

of a linear combination of the Di. The total Chern class of a particular divisor S in the ambient

space is, after restriction to B (for more details, see Section 3.3)

c(S) =
∏

i(1 +Di)
(1 + B)(1 + S)

. (2.10)

In order to apply this formula, we have to know the intersection ring of B. As we will discuss

in Section 3.3, this can be obtained from the intersection ring of the ambient space.

A necessary condition for a divisor S to be dPn is that it must have the following

topological data:

∫
S

c1(S)2 = 9 − n,
∫
S

c2(S) = n + 3 =⇒ χh =
∫
S

Td(S) = 1, (2.11)

where χh =
∑

i(−1)ih0,i is the holomorphic Euler characteristic and Td denotes the Todd

class. In the equations above the integration over the four-cycle (representing the divisor)
S is equivalent to computing the intersection with S. Since del Pezzos are Fano twofolds, we

have a further necessary condition: the intersections of c1(S) with curves on S have to be

positive. In the toric setup, we can only check this for curves which are induced from the

divisors on the ambient space. In that case, the condition is

Di · S · c1(S) > 0 Di /=S ∀Di · S/= ∅. (2.12)

In order to make these calculations, we need to know the homology basis of toric divisors

and their intersection numbers.

In local F-theory GUTs, the del Pezzo property is sufficient to ensure the existence of a

decoupling limit. For global models, further checks are in order. Gravity decouples from the

gauge degrees of freedom if the mass ratio MGUT/Mpl becomes parametrically small. The

Planck mass Mpl and the mass scale MGUT of the GUT theory are related to the geometry of

B and S in the following way:

M2
pl ∼

M8
s

g2
s

Vol(B) MGUT ∼ Vol(S)−1/4 1

g2
YM

∼ M4
s

gs
Vol(S). (2.13)

Therefore, one has

MGUT

Mpl
∼ g2

YM

Vol(S)3/4

Vol(B)1/2
. (2.14)

There are two ways to achieve a small value for MGUT/Mpl, now commonly referred to as the

physical and the mathematical decoupling limit. In the physical decoupling limit, the volume

of the GUT brane S is kept finite, while Vol(B) → ∞. The mathematical decoupling limit

takes Vol(S) → 0 for finite volume of B. The two limits may not be equivalent in the sense
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that they may be implemented by tuning different Kähler parameters. The volumes of B and

S can be determined in terms of the Kähler form J of the ambient toric variety restricted to B

Vol(B) = J3 Vol(S) = S · J2. (2.15)

In order for the volumes to be positive, we must find a basis of the Kähler cone Ki, where,

by definition, J can be written as J =
∑

i riKi with ri > 0. The existence of mathematical and

physical decoupling limits can be deduced from the moduli dependence of these volumes.

Having found a suitable base manifold, we can also study matter curves and Yukawa

couplings. The curve classes M of the matter curves can be expressed in terms of the toric

divisors of the ambient space. The genus of the matter curves can be computed using the first

Chern class of the matter curve and the triple intersection numbers

c(M) =
∏

i(1 +Di)
(1 + B)(1 + S)(1 +M)

. (2.16)

Here, we have assumed that M is irreducible. After expanding this expression to get c1(M),
the Euler number is obtained by the following intersection product:

χ(M) = 2 − 2g(M) = c1(M) ·M · S. (2.17)

The genus of a matter curve gives us information about the number of moduli the curve

has. Since these moduli have to be stabilized, matter curves of low genus are desirable from

a phenomenological point of view. In the generic situation, the equations specifying the

Yukawa points can be expressed as classes Y1, Y2 in terms of the toric divisors. The number of

Yukawa points is then given by the following intersection product:

nYukawa = S · Y1 · Y2. (2.18)

In order to account for the standard model Yukawa couplings, only a small number of

Yukawa points is needed.

2.2.2. Fourfold

Given a base manifold B, one can construct a Calabi-Yau fourfold X4 which is an elliptic

fibration over B. As described in the next section, this can be done systematically using toric

geometry. However, not all of the desirable features of global F-theory models are automatic

in this construction. The main requirement on X4 is that it is a complete intersection of two

hypersurfaces. Furthermore, these hypersurfaces must have a specific structure (2.1). In order

to be able to use powerful mathematical tools, we, furthermore, have to require that there

exists a nef-partition (cf. Section 3.2) which is compatible with the elliptic fibration. When

this elementary requirement is satisfied, we can engineer a GUT model. This is done in two

steps: first, we have to identify the GUT divisor S, given by the equationw = 0 in B within the

Calabi-Yau fourfold. The second step is to impose the GUT group. This amounts to explicitly

imposing the factorization conditions such as (2.4) on the Tate model. This means that we
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have to remove all those monomials in (2.2) which do not satisfy the factorization constraints.

This amounts to fixing a number of complex structure moduli of X4.

Recently, there has been active discussion in the literature how to globally define fluxes

in F-theory models [6–8, 11, 15, 16, 20, 21, 25]. In F-theory, model building fluxes enter at

several crucial points. Gauge flux along the matter curve is needed in order to generate chiral

matter. Breaking of the GUT group to the standard model gauge group can be achieved by

turning on U(1)-flux. Furthermore, in SU(5) F-theory GUTs, we need global U(1)s in order

to forbid dimension 4 proton decay operators. In SO(10) F-theory GUTs they are needed in

order to obtain chiral matter [13, 41]. A general global description of the fourform flux G4

is still missing. In [42], an auxiliary construction involving spectral covers that factorize was

used to describe fluxes locally in the vicinity of the GUT brane. It has been shown in [14–

16] that under certain circumstances, the information captured by the spectral cover can be

encoded in the Tate model and is, therefore, global. However, this need not be the case [11]. In

[14], it has been shown that a spectral cover which factorizes is generically globally defined

for “U(1)-restricted Tate models”. This is achieved by imposing a global U(1)X symmetry in

the elliptic fibration. In terms of the Tate model, this is achieved by setting a6 = 0.

3. Ingredients and Techniques from Toric Geometry

In the previous section, we have introduced quantities which encode important information

about F-theory GUT models in the geometry of the base manifold and the Calabi-Yau

fourfold. In this section, we will provide the tools to calculate them. The input data needed for

these calculations can be obtained by using toric geometry. After giving the basic definitions,

we will discuss how to describe hypersurfaces and complete intersections of hypersurfaces

in toric ambient spaces. Then, we explain how to obtain the intersection ring and the Kähler

cone, or dually, the Mori cone. Finally, we will discuss how to use the computer program

PALP [29] for calculations in toric geometry. This discussion of toric geometry has been

compiled with a view towards the applications in F-theory model building. It is by no means

an exhaustive description of this vast subject which brings together algebraic geometry and

combinatorics.

3.1. Toric Varieties

We start by defining a toric variety X of dimension n as the following quotient:

X =
( r −Z)(

( ∗ )r−n ×G
) , (3.1)

where G is a finite abelian group, ( ∗ )r−n describes the action of an algebraic (r − n)-torus,

and Z ⊂ r is an exceptional set which tells us which combinations of coordinates are not

allowed to vanish simultaneously. The simplest example is 2 , where the ∗ -action is given

by (z1, z2, z3) ∼ (λz1, λz2, λz3), λ ∈ ∗ , the exceptional set is Z = {z1 = z2 = z3 = 0}, and G

is trivial. Thus, as is well known: 2 = ( 3 − {z1 = z2 = z3 = 0})/((z1, z2, z3) ∼ (λz1, λz2,

λz3)).
The crucial fact about toric geometry is that the geometric data of the toric variety can

be described in terms of combinatorics of cones and polytopes in dual pairs of integer lattices.
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The information about the toric variety is encoded in a fan Σ, which is a collection of strongly

convex rational polyhedral cones, where all the faces and intersections of pairs of cones also

belong to the fan. “Strongly convex” means that all the cones of the fan have an apex at the

origin, and “rational” means that the rays that span the cone go through points of the lattice.

We denote by Σ(n) the set of all n-dimensional cones. In order to define the fan, we use the

fact that a toric variety X contains an n-torus T = ( ∗ )n as a dense open subset whose action

extends to X. Parametrizing T by coordinates (t1, . . . , tn), one defines the character group

M = {χ : T → ∗} and the one-parameter subgroups N = {λ : ∗ → T}. M and N can be

identified with integer lattices that are isomorphic to n. Given a point m ∈ M, the character

is given by χm(t) = tm1

1 · · · tmn
n ≡ tm. This is a holomorphic function on T and descends to a

rational function on the toric variety X. For every u ∈N, λ is defined as λu(τ) = (τu1 , . . . , τun)
for τ ∈ ∗ . The fan Σ and its cones σ are defined on the real extension N of N. The lattices

M,N are dual due to the composition (χ ◦ λ)(τ) = χ(λ(τ)) = τ〈χ,λ〉, where 〈χm, λu〉 = m · u is

the scalar product.

The M-lattice encodes the data about regular monomials in X, the N-lattice captures

the information about the divisors. The divisors defined by χm = 0 can be decomposed in

terms of irreducible divisors Dj : div(χm) =
∑r

j=1 ajDj . These divisors are principal divisors,

that is, divisors of meromorphic function, where Dj correspond to poles or zeros and the aj
are orders of the pole/zero. The coefficients aj(m) ∈ are unique, and there exists a map

m → aj(m) = 〈m, vj〉 with vj ∈ N. Thus, there is a vector vj for every irreducible divisor Dj .

The vj are the primitive generators of the one-dimensional cones ρj (i.e., rays) in the fan Σ.

The convex hull of the vj defines a polytope Δ∗ = conv{vj}. Locally, we can write the divisors

as Dj = {zj = 0}, where zj is regarded as a local section of a line bundle. Dj are called toric

divisors. There are linear relations among the vj ∈ Δ∗ which translate into linear relations

among the toric divisors.

In order to make contact with the definition (3.1) of X, we view the {zj} as global

homogeneous coordinates (z1 : · · · : zr). If all zj are nonzero the coordinates (λq1z1 : · · · :

λqr zr) ∼ (z1 : · · · : zr) with λ ∈ ∗ describe the same point on the torus T if
∑
qjvj = 0

for vj ∈ N as above. Since the vj live in an n-dimensional lattice, they satisfy r − n linear

relations. If the vj do not span the N-lattice, there is a finite abelian group G such that G

N/(span{v1, . . . , vr}). Identifications coming from the action of G have to be added to the

identifications between the homogeneous coordinates coming from the torus action. Having

introduced the fan Σ, we are also able to specify the exceptional set Z that tells us where the

homogeneous coordinates are not allowed to vanish simultaneously: a subset of coordinates

zj is allowed to vanish simultaneously if and only if there is a cone σ ∈ Σ containing all the

corresponding rays ρj . To be more precise, the exceptional set is the union of sets ZI with

minimal index sets I of rays for which there is no cone that contains them: Z = ∪IZI . This

is equivalent to the statement that the corresponding divisors Dj intersect in X. Putting the

pieces together, we arrive at the definition (3.1).
There are two important properties of the fan Σ which translate into crucial properties

of the toric variety X. Firstly, X is compact if and only if the fan is complete, that is, if the

support of the fan covers the N-lattice: |Σ| = ⋃Σ σ = N . Secondly, X is non-singular if and

only if all cones are simplicial and basic, which means that all cones σ ∈ Σ are generated

by a subset of a lattice basis of N. Singularities can be removed by blowups, where singular

points are replaced by n−1s. All the singularities of a toric variety can be resolved by a series

of blowups. These correspond to subdivisions of the fan. In order to completely resolve all

singularities, one must find a maximal triangulation of the fan. In many cases, it is sufficient

to find a maximal triangulation of the polytope Δ∗.
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Finally, let us emphasize the significance of the homogeneous weights qi. In general,

there will be a full (r − n) × r matrix Qij , called weight matrix, whose (r − n) lines encode the
∗ -actions. Since each of the zj corresponds to an irreducible divisor in X, the columns of the

weight matrix define a homology basis of the divisors Dj . In physics language the weights qi
are the U(1)-charges in the gauged linear sigma model that defines the toric variety X. Note

that the weights contain all the information to recover the M- and N-lattice. With the weight

matrix as input, this can be done using PALP.

3.2. Hypersurfaces and Complete Intersections

Having defined a toric variety, we go on to discuss hypersurfaces and complete intersections

of hypersurfaces in toric varieties. The hypersurface equations are sections of non-trivial line

bundles. The information of these bundles can be recovered from their transition functions. In

this context, we introduce the notions of Cartier divisors and Weil divisors. A Cartier divisor

is given, by definition, by rational equations fα = 0 and regular transition functions fα/fβ
on the overlap of two coordinate patches Uα,Uβ. Cartier divisor classes determine the Picard

group Pic(X) of holomorphic line bundles. Weil divisors are finite formal sums of irreducible

varieties of codimension 1. On a toric variety, the Chow group An−1(X) modulo linear

equivalence is generated by the T-invariant irreducible divisors Dj modulo the principal

divisors div(χm), m ∈ M. A Weil divisor of the form D =
∑
ajDj is Cartier if there exists

an mσ ∈ M for each maximal cone σ ∈ Σ(n) such that 〈mσ, vj〉 = −aj for all rays ρj ∈ σ. If

X is smooth, then all Weil divisors are Cartier. If X is compact and D is Cartier, then O(D)
is generated by global sections if and only if 〈mσ, vj〉 > −aj for σ ∈ Σ(n) and ρj /⊂ σ. If this

is the case for v ∈ σ, ψD(v) = 〈mσ, v〉 is a strongly convex support function. With that, we

can define a polytope ΔD = {m ∈ M : 〈mσ, vj〉 ≥ −aj}. This is a convex lattice polytope

in M whose lattice points provide global sections of the line bundle O(D) corresponding

to the divisor D. D is generated by global sections if and only if ΔD is the convex hull

of {mσ}. Furthermore, D is ample if and only if ΔD is n-dimensional with vertices mσ for

σ ∈ Σ(n) and with mσ /=mτ for σ /= τ ∈ Σ(n). Finally, D is called base point free if and only

if mσ ∈ ΔD for all σ ∈ Σ(n). Base point freedom is a sufficient condition for a hypersurface

defined by D to be regular: Bertini’s theorem states that the singular points of D are the

base locus and the singular points inherited from the ambient space. The absence of base

points implies thatD can be deformed transversally in every point and, therefore, generically

avoids the singularities of the ambient space. Thus, a base point free D is regular. We

emphasize, however, that base point freedom is not a necessary condition for the regularity of

D.

Equations for hypersurfaces or complete intersections are sections of line bundles

O(D) given by the following Laurent polynomial:

f =
∑

m∈ΔD∩M
cmχ

m =
∑

m∈ΔD∩M
cm
∏
j

z
〈m,vj〉
j . (3.2)

In an affine patch Uσ , the local section fσ = f/χmσ is a regular function. Given a polytope

ΔD ∈ M, we can define the polar polytope Δ◦
D by Δ◦

D = {y ∈ N : 〈x, y〉 ≥ −1 ∀x ∈ ΔD}. It

can be shown [43] that the Calabi-Yau condition for hypersurfaces requires that ΔD ⊆ M is

polar to Δ∗ = Δ◦
D ⊆ N , where Δ∗ is the convex hull of the vj ∈ N as defined in Section 3.1.

A lattice polytope whose polar polytope is again a lattice polytope is called reflexive. For
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reflexive polytopes (Δ,Δ◦), there exists a combinatorial formula for the Hodge numbers

[43]

h1,1(XΔ) = hdimΔ−2,1(XΔ◦) = l(Δ◦) − 1 − dimΔ −
∑

codim(θ◦)=1

l∗(θ◦) +
∑

codim(θ◦)=2

l∗(θ◦)l∗(θ),

(3.3)

where θ and θ◦ is a dual pair of faces of Δ and Δ◦. Furthermore, l(θ) is the number of lattice

points of a face θ, and l∗(θ) is the number of its interior lattice points.

In our discussion of F-theory model building, we also encounter complete intersection

Calabi-Yaus. The concept of polar pairs of reflexive lattice polytopes can be generalized as

follows:

Δ = Δ1 + · · · + Δr Δ◦ = 〈∇1, . . . ,∇r〉conv,

∇◦ = 〈Δ1, . . . ,Δr〉conv ∇ = ∇1 + · · · +∇r .
(∇n,Δm) ≥ −δnm, (3.4)

Here, r is the codimension of the Calabi-Yau and the defining equations fi = 0 are sections

of O(Δi). The decomposition of the M-lattice polytope Δ ⊂ M into a Minkowski sum (the

Minkowski sum A + B of two sets A,B is defined as follows: A + B = {a + b | a ∈ A, b ∈ B})
Δ = Δ1 + · · · +Δr is dual to a nef (numerically effective) partition of the vertices of a reflexive

polytope ∇ ⊂ N such that the convex hulls 〈∇i〉conv of the respective vertices and 0 ∈ N

only intersect at the origin. The nef-property means that the restriction of the line bundles

associated to the divisors specified by the N-lattice points to any algebraic curve of the variety

are nonnegative. There exists a combinatorial formula for the Hodge numbers [44] which has

been implemented in PALP.

In many string theory applications, and in particular also in F-theory, the fibration

structure of a Calabi-Yau manifold is of great interest. For Calabi-Yaus which can be described

in terms of toric geometry, the fibration structure can be deduced from the geometry of the

lattice polytopes. If we are looking for toric fibrations where the fibers are Calabi-Yaus of

lower dimensions, we have to search for reflexive subpolytopes of Δ◦ which have appropriate

dimension. Given a base b and a fiber f , the fibrations descend from toric morphisms of

the ambient spaces corresponding to a map φ : Σ → Σb of fans in N and Nb, where φ :

N → Nb is a lattice homomorphism such that for each cone σ ∈ Σ, there is a cone σb ∈ Σb

that contains the image of σ. The lattice Nf for the fiber is the kernel of φ in N. The fiber

polytope is then defined as follows: Δ◦
f
= Δ◦ ∩Nf . In order to guarantee the existence of a

projection, one must find a triangulation of Δ◦
f

and extend it to a triangulation of Δ◦. For each

choice of triangulation, the homogeneous coordinates corresponding to the rays in Δ◦
f

can be

interpreted as coordinates of the fiber.

3.3. Intersection Ring and Mori Cone

Two further pieces of data that are necessary in many string theory calculations are the

intersection numbers of the toric divisors and the Mori cone, which is the dual of the Kähler

cone. Inside the Kähler cone, the volumes such as (2.15) are positive. Thus, in the context

of F-theory model, building the Kähler cone is needed in order to make statements about a

decoupling limit.
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Let us start with discussing the intersection ring. For a compact toric variety XΣ the

intersection ring is of the form [D1, . . . , Dr]/〈Ilin + Inon-lin〉. The two ideals to be divided

out take into account linear and nonlinear relations between the divisors. The linear relations

have the form
∑

j〈m, vj〉Dj , where m ∈ M form a set of basis vectors in the M-lattice. The

non-linear relations are denoted byR = ∪RI , where the RI are of the form RI = Dj1 ·. . .·Djk = 0.

They come from the exceptional set Z = ∪ZI defined in Section 3.1, which determines which

homogeneous coordinates are not allowed to vanish at the same time. As mentioned before,

this is the case when a collection of rays ρj1 , . . . , ρjk ∈N is not contained in a single cone. The

non-linear relations R generate the ideal Inon-lin which is called Stanley-Reisner ideal. Thus,

the intersection ring A∗(Σ) of a non-singular toric variety has the following form:

A∗(XΣ) =
[D1, . . . , Dr]〈

R,
∑

j

〈
m, vj

〉
Dj

〉 . (3.5)

The definition of the intersection ring holds for non-singular toric varieties but may be

generalized to the case where XΣ is simplicial projective. This means that the toric variety

may be singular, but still, all the cones of the fan Σ are simplicial. Such a situation may

occu,r for example, if we choose a nonmaximal triangulation of the polytope Δ∗. In this case,

the intersection numbers take values in . To compute the Stanley-Reisner ideal in the non-

singular case, one must find a maximal triangulation of the fan Σ or the polytope Δ∗. In order

to get intersection numbers, we still have to fix a normalization: for a maximal simplicial cone

σ ∈ Σ(n) spanned by vj1 , . . . , vjn , we fix the intersection numbers of the corresponding divisors

to be Dj1 · . . . · Djn = 1/Vol(σ), where Vol(σ) is the lattice volume of σ (i.e., the geometric

volume divided by the volume 1/n! of a basic simplex). If X is non-singular, the volume is 1.

Using the intersection ring, one can compute the total Chern class of the tangent bundle TX
of X which is given by the following formula: c(TX) =

∏r
j=1(1 +Dj).

So far, we have only discussed the intersection ring of the toric variety X. However in

many applications, we rather need the intersection numbers for divisors on a hypersurface

given by a divisor D in X. Here, we can make use of the restriction formula that relates the

intersection form on the hypersurface divisor to the intersection form on X

Dj1 · . . . ·Djn−1
|D = Dj1 · . . . ·Djn−1

·D|X. (3.6)

This allows us to compute the intersection ring of D from the intersection ring of X. In (3.5)
restriction to D amounts to computing the ideal quotients of Ilin and Inon-lin with the ideal

generated by D. By adjunction, the Chern class for the hypersurface specified by D is c(D) =∏r
j=1(1 +Dj)/(1 +D).

In order to be able to calculate all the quantities defined in Section 2.2, we miss one

more ingredient: the Mori cone. By definition, the Mori cone is the dual of the Kähler cone.

We need the information about the Kähler cone in order to be able to compute the volumes

of divisors. By definition, the volumes will be positive inside the Kähler cone. The Mori cone

is generated by l(1), . . . , l(k), where k = r − n if the fan Σ is simplicial. Otherwise, the number

of Mori generators can be larger. The Mori cone L is then defined as follows: L = ≥0 l
(1) +

· · · + ≥0 l
(k). For the calculation of the Mori cone, we also require a maximal triangulation

of Δ∗. Given such a triangulation, the Mori generators can be determined as follows [45]:
take every pair of n-dimensional simplices (Sk, Sl) which have a common n − 1-dimensional
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simplex skl = Sk ∩ Sl. Then, find the unique linear relation
∑

i l
k,l
i vi = 0 with vi ∈ Sk ∪ Sl,

where the lk,li are minimal integers and the coefficients of the points in (Sk ∪ Sl) \ (Sk ∩ Sl)
are non-negative. The Mori generators are then the minimal integers l(a) by which every lk,l

can be expressed as positive integer linear combinations. There is an equivalent algorithm to

determine the Mori generators due to Oda and Park [46] which has been implemented in an

unreleased version of PALP [47]. Note that the relations
∑r

i=1 l
(a)
i Di = 0 define the ideal Ilin

in (3.5). Assembling the Mori vectors into a k × r-matrix, the columns of the matrix encode

inequalities for the values of the Kähler parameters. Solving these inequalities yields a basis

Ki of the Kähler cone such that the Kähler form of X can be written as J =
∑

i riKi with

ri > 0. Note that this prescription computes the Kähler cone of the toric variety X. It is often

assumed that this is a good approximation for the Kähler cone of a hypersurface in X.

3.4. Toric Calculations Using PALP and Other Software

In string theory and F-theory, we deal with compactifications on Calabi-Yau threefolds

and fourfolds. In F-theory model building, the base manifold B is a hypersurface in a

four-dimensional toric ambient space. The fourfolds are complete intersections in a six-

dimensional toric space. The associated lattice polytopes live in four- and six-dimensional

integer lattices and typically have a large number of points. It is in general not possible

to do calculations without computer support. There exist several software packages which

are useful for particular aspects in toric geometry. In this section, we will mostly focus on

the program PALP [29]. Before that, let us mention some other useful programs: Schubert

by Katz and Strømme is a Maple package for calculations in intersection theory. TOPCOM

[48] computes triangulations of point configurations. Singular [49] is a powerful computer

algebra program which is optimized for calculations with polynomial rings such as the

intersection ring. A recent addition is cohomCalg [50], which can compute line bundle-

valued cohomology classes over toric varieties.

Let us now discuss some features and applications of PALP [29], which stands for

“package for analyzing lattice polytopes”. It consists of several programs.

(i) computes the data of a lattice polytope and its dual if the polytope is

reflexive. The input can be either a weight matrix or the points of a polytope

in the M-lattice or the N-lattice. Apart from the polytope data, computes

Hodge numbers of the associated Calabi-Yau hypersurfaces, information about

fibrations, and other data. has been extended with several features that

include information about the facets of the polytope, data of Fano varieties and

conifold Calabi-Yaus. In [51, 52], this extension of PALP has been used to find new

Calabi-Yau manifolds with small h1,1 which are obtained from known Calabi-Yau

threefolds via conifold transitions. The full set of options in PALP can be obtained

with and for extended options.

(ii) The program can be used for complete intersection Calabi-Yaus. It takes

the same input as and computes the polytope data, nef partitions, and

Hodge numbers as well as information about fibrations. There are several extended

options which include most notably the data of the Gorenstein cones (cf. [53] for

the definition and construction in toric geometry) in the M/N-lattice.

(iii) creates weight systems and combined weight systems of polytopes of

dimension to be specified in the input.
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(iv) classifies reflexive polytopes by searching for subpolytopes of a Newton

polytope associated to a combined weight system.

Apart from recent applications in F-theory model building, which we will discuss in the next

section, PALP has been used in many other contexts. A data base of Calabi-Yau threefolds has

been generated by listing all 473 800 776 reflexive polyhedra in four dimensions [54]. In view

of the landscape problem in string theory, the statistics of the polytope data is also of interest

[55]. Some of the most recent extensions of PALP which we will mention below have already

been used in [13, 24, 56].

3.5. Application to F-Theory GUTs

In this section, we make the connection to F-theory model building and discuss how the

calculations discussed in Section 2.2 can be carried out explicitly. The approach discussed

here is used in [13, 24]. Our aim is a systematic construction of a large class of examples

of global F-theory models. The first step is the construction of the base manifold B. In

[13], we have obtained a set of geometries by systematically constructing weight matrices

associated to point and curve blowups on Fano hypersurfaces in 4. In [24], we have

considerably extended this class of models by defining hypersurfaces in a subset of the toric

ambient spaces described by the 473 800 776 reflexive polyhedra in four dimensions [54].
Concretely, we have restricted ourselves to configurations, where the N-lattice polytopes

have at most nine points. As one can check, for example, at [57], there are 1088 such

polytopes. We used PALP to recover the toric data of the ambient space and considered

all nonnegatively curved hypersurfaces in these ambient spaces. In order to be able to

perform the calculations outlined in Section 2.2 we must compute the intersection ring

and the Mori cone. We have achieved this by using an extended version of [47].
The following additional features have been implemented: processing of non-Calabi-Yau

hypersurfaces by specifying the hypersurface degrees as input parameters, a calculation of

the maximal triangulations of the N-lattice polytope, calculation of the Mori cone and the

Stanley-Reisner ideal, and calculation of the intersection ring with the help of Singular. Using

this data, we can identify del Pezzo divisors, check the existence of a decoupling limit, and

compute the topological properties of matter curves and Yukawa points. In [24], we have

analyzed a total number of 569 674 base manifolds. The resulting geometries are available at

[58].
The next step in the calculation is to construct the Calabi-Yau fourfold X4 which is an

elliptic fibration over the base B. The toric data of X4 is obtained by extending the weight

matrix of B. Schematically, this looks as follows:

3 2 1 0 · · · 0

∗ ∗ 0 w11 · · · w1n

∗ ∗ 0 · · · · · · · · ·
∗ ∗ 0 wm1 · · · wmn.

(3.7)

Here, the wij denote the entries of the weight matrix associated to B. The ∗-entries in the

extended weight matrix have to be chosen in such a way that the fiber coordinates x, y are

sections of K−2
B and K−3

B , respectively. These entries of the fourfold weight matrix contain



14 Advances in High Energy Physics

the information about the hypersurface degrees of the base. Not every extended weight

system will lead to a Calabi-Yau fourfold of the form (2.1). The calculations can be done

using Several problems can appear: first, there may be no nef partition, and, therefore,

our methods do not work. A second conceptual problem is that the polytope corresponding

to the extended weight system is not always reflexive. Many of the combinatorial tools

used in PALP are only valid for reflexive polytopes. Even though one might have a

perfectly fine Calabi-Yau fourfold, we cannot apply our technology to them. The third

issue is of a technical nature: due to the complexity of the fourfold polytopes one may

reach the software bounds of PALP which results in numerical overflows. For the 569 674

extended weight systems discussed in [24], we find only 27 345 reflexive fourfold polytopes

which have at least one nef partition. Furthermore, there are 18 632 reflexive polytopes

without a nef partition, 381 232 nonreflexive polytopes, and 142 470 cases with numerical

overflow.

Having found a reflexive fourfold polytope with at least one nef partition is not

enough to have a good global F-theory model. If we further demand that the base B has

at least one del Pezzo divisor with a mathematical or physical decoupling limit, the number

of fourfolds decreases significantly. In addition, we should also impose some constraints on

the regularity of the base. Demanding that B is Cartier leaves us with 16 011 good models.

Imposing the stronger criterion of base point freedom, we are down to 7386 models. Focusing

on these 7 386 good geometries, we apply the constraint that the nef partition should be

compatible with the elliptic fibration. This information can be extracted from the output of

This further reduces the number of geometries to 3978.

Having found a good Calabi-Yau fourfold, we can construct a GUT model on every

(del Pezzo) divisor. A toric description on how to impose a specific GUT group on a Tate

model has been given in [6]. The Tate form (2.2) implies that the an appear in the monomials

which contain zn. We can isolate these monomials by identifying the vertex νz in (∇1,∇2) that

corresponds to the z-coordinate in the Tate model. All the monomials that contain zr are then

in the following set:

Ar = {wk ∈ Δm : 〈νz,wk〉 + 1 = r}, νz ∈ ∇m, (26)where Δm is the dual of ∇m, which

denotes the polytope containing the z-vertex. The polynomials ar are then given by the

following expressions:

ar =
∑

wk∈Ar

cmk

2∏
n=1

∏
νi∈∇n

y
〈νi,wk〉+δmn
i |x=y=z=1. (3.8)

Now, we can remove all the monomials in ar which do not satisfy the factorization constraints

(2.4) of the Tate algorithm. In order to perform this calculation, we have to identify the fiber

coordinates (x, y, z) and the GUT coordinate w within the weight matrix of the fourfold.

We have applied this procedure to every del Pezzo divisor in the 3978 “good” fourfold

geometries. Note that the procedure described above can destroy the reflexivity of the

polytope, which happens in about 30% of the examples. For SU(5)-models, we found 11

275 distinct models (since the procedure has been applied to all del Pezzo divisors in a given

base geometry not all these models may have a decoupling limit) with reflexive polyhedra,

for SO(10) GUTs, there are 10 832. U(1)-restricted GUT models [14] can be engineered along

the same lines. It turns out that U(1)-restriction does not put any further constraints on the

reflexivity of the polytope.
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4. Outlook

In this paper we have discussed how toric geometry can be used to construct a large number

of geometries that can support global F-theory GUTs. Using this technology, we could

show that elementary consistency constraints greatly reduce the number of possible models.

However, due to computational constraints, we did not quite succeed in systematically listing

all possible F-theory models within a class of geometries. Such an endeavor would require

substantial changes in the computer programs we are using. It is actually quite remarkable

that we could make use of PALP for Calabi-Yau fourfolds and non-Calabi-Yau threefolds,

since this goes beyond what it was originally designed for.

Let us present a list of suggestions to extend PALP in order to improve the applicability

to the current problems in mathematics and physics and to make it more accessible for users.

The original purpose of PALP was to solve a classification problem for polytopes. Over the

years, it has been adjusted and extended in order to be applied to specific problems. Many of

the basic routines that were implemented to tackle some special questions could be used in

much more general contexts but cannot be easily accessed. Therefore, a better modularization

of the software is necessary in order to have flexible access to these basic routines. Another

problem of PALP is that one has to specify several parameters and bounds such as the number

of points in a polytope in a given dimension at the compilation of the program. It would be

practical to have fully dynamical dimensions in order to work with a precision tailored to the

problem at hand without recompiling.

A fundamental change would be to step away from the description of polytopes and

instead use the ray representation which has the full data of the cones. This is necessary if

one wants to deal with non-reflexive polytopes. A further extension which has already been

partially implemented is to include triangulations, intersection rings, and even the calculation

of Picard-Fuchs operators needed for mirror symmetry calculations into PALP. The ultimate

goal is to have an efficient and versatile program which can be used for toric calculations of

all kinds without having to rely on commercial software. Finally, a detailed documentation

of all the features of PALP would be helpful [59].
As for the search for F-theory models, an extended version of PALP would hopefully

help to overcome the problems of nonreflexivity and overflows we have encountered in [24].
Apart from finding new examples for physics applications, one might also attempt a partial

classification of Calabi-Yau fourfolds. Enumerating all toric Calabi-Yau fourfolds may be out

of reach or even impossible, but for finding all models of type (2.1), one can at least give

a prescription for the construction: take each of the 473 800 776 reflexive polyhedra in four

dimensions and put in all nonnegatively curved hypersurfaces that are not Calabi-Yau. Then,

construct fourfolds which are elliptic fibrations over these base manifolds. A rough estimate

shows that this procedure would yield O(1011) fourfold geometries.
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Global symmetries play an important role in classifying the spectrum of a gauge theory. In
the context of the AdS/CFT duality, global baryon-like symmetries are specially interesting.
In the gravity side, they correspond to vector fields in AdS arising from KK reduction
of the SUGRA p-form potentials. We concentrate on the AdS4/CFT3 case, which presents
very interesting characteristic features. Following arXiv:1004.2045, we review aspects of such
symmetries, clarifying along the way some arguments in that reference. As a byproduct, and in
a slightly unrelated context, we also study Z minimization, focusing on the HVZ theory.

1. Introduction

Over the last few years there has been considerable progress towards understanding the

AdS4/CFT3 duality [1]. The maximally supersymmetric example of this duality corresponds

to theAdS4×S7 space. This space arises as the near-horizon region of the background sourced

by a stack of M2 branes moving in 4 . Conversely, standard decoupling limit arguments show

that a dual description is given by the CFT3 on the world volume of the M2 branes. Following

on the seminal work in [2, 3], Aharony, Bergman et al. (henceforth ABJM) constructed in [4]
what it is by now agreed to be the field theory dual to N M2 branes probing the 4/ k

singularity, of which the maximally SUSY example is the k = 1 case.

Since then, much activity has been devoted to further understand this duality in less

supersymmetric cases. While there are purely theoretical reasons for that—as constructing

and understanding dual pairs shedding information on both field theoretic and gravitational

aspects-, a number of potential applications, in particular in what it has been dubbed the

AdS/CMT duality, have been recently considered.
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These less supersymmetric examples arise from M2 branes probing more involved

singularities, which generically have a rich topological structure. In particular, supergravity

p-form potentials can be KK reduced on these topologically nontrivial cycles giving rise to

vector fields in AdS. In turn, these are related to global symmetries of the dual CFT3. On

general grounds, global symmetries play an important role in classifying the spectrum of a

theory. Furthermore, they are also expected to be relevant from the point of view of potential

applications of AdS/CFT . It is thus important to understand them in the context of the

AdS4/CFT3 duality.

Of particular interest are the global baryonic symmetries. These are abelian symme-

tries whose charged states have dimensions O(N). As such, they cannot correspond to KK

states (Δ ∼ O(1)), and must be dual to wrapped branes. Thus, they must be associated to

the nontrivial topology of the cone where the M2 move. Indeed, as mentioned, nontrivial

topology allows for the supergravity p-forms to wrap on cycles leading to gauge fields

in AdS4 as potential duals to these baryonic symmetries. However, as we will discuss

below, following [5] (see also [6]) the fate of these bulk fields and their boundary duals, is

remarkably different than the AdS5 case (see, e.g., [7] and references therein for an account of

this case). In this short review we discuss several aspects of these symmetries by extracting

as much information as possible from the gravity side of the correspondence. We start in

Section 2 with a lightning overview of some relevant facts about the AdS4/CFT3 duality.

We then turn in Section 3 to the baryonic symmetries of interest. In Section 4 we suggest an

application to a particularly interesting geometry, in particular slightly clarifying arguments

presented in [5]. As a by-product, in the appendix we apply Z-minimization to the HVZ

theory.

2. M2 Branes Probing CY4: General Aspects

As discussed in the introduction, the AdS4/CFT3 duality arises as the near horizon limit of a

stack of M2 branes probing a conical geometry. In fact, the low energy limit of the M2 brane

worldvolume theory must supply the CFT side of the correspondence, according to the usual

decoupling limit arguments [1].
The best understood case is that of M2 branes in flat space, when the near horizon

region is the maximally supersymmetric AdS4 × S7 space. In turn, the dual field theory is

the U(N) × U(N) Chern-Simons theory with levels (1, −1) and particular matter content

constructed in [4]. This theory arises as a member of a whole family of N = 6 SCFT’s

with levels (k, −k) [4, 8]. For generic k the moduli space is the orbifold 4/ k|(1, 1, −1, −1).

It is only for k = 1, 2 that there is a quantum-mechanical enhancement to N = 8 due

to special properties of monopole operators. Conversely, the gravity side of the duality is

provided by the near horizon region of the background sourced by a stack of M2 branes

proving this orbifold, namely, AdS4 × S7/ k. The k orbifold acts by quotienting the U(1)
fiber of the fibration S7 ∼ S1 ↪→ 3. In fact, in the large k limit, the fiber shrinks and

the geometry is better understood as the IIA AdS4 × 3 background with suitable fluxes to

preserve 24 supersymmetries. From this perspective, the vector of CS levels in gauge group

space specifies the U(1) dual to the M-theory circle. Indeed, diagonal monopole operators,

charged under this U(1), become the KK states of the reduction, that is, the D0 branes [4].
It is clearly greatly desirable to understand the AdS4/CFT3 duality in the generic case,

where the M2 branes probe less symmetric spaces X. On general grounds, the radius/energy

relation of AdS/CFT requires the manifold X to be a cone over a 7-dimensional base Y ,
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that is, ds2(X) = dr2 + r2 ds(Y)2. Then the appropriate 11-dimensional supergravity solution

corresponding to N M2 branes located at the tip of X is

ds2
11 = h−2/3 ds2

(
1, 2
)
+ h1/3 ds2(X), G = d3x ∧ dh−1, h = 1 +

R6

r6
. (2.1)

In the near horizon limit, and upon defining z = R2/r2, the space becomes a Freund-Rubin

product space between AdS4, whose metric in Poincare coordinates is

ds2(AdS4) =
dz2 + dx

(
1,2
)2

z2
, (2.2)

and the base Y

ds2
11 = R2

(
1

4
ds2(AdS4) + ds2(Y)

)
, G =

3

8
R3Vol(AdS4). (2.3)

Furthermore, the flux quantization condition leads to the relation

R = 2π�P

(
N

6Vol(Y)

)1/6

. (2.4)

On the other hand, constructing the corresponding dual field theories has proved

remarkably difficult. Only in the last few years we have seen big progress along these lines.

From the CFT point of view, general field theory arguments, discussed for the 3d case at

hand in [9], show that theories with N ≥ 2 are of special interest due to the existence of

a U(1)R symmetry. This symmetry endows the moduli space of a graded structure which

allows to classify chiral operators according to their R-charge; which equals, in virtue of the

superconformal algebra, their scaling dimension. At the same time, it automatically implies

that the moduli space has a cone-like structure. We will thus demand N ≥ 2, which in

turn requires, on general grounds [10], the M2 branes to move in spaces of at most SU(4)
holonomy. Following the ABJM example, it is natural to consider Chern-Simons-matter

theories as potential SCFT duals. As shown in [11], N ≥ 3 fixes the superpotential couplings

to be proportional to the CS levels, thus almost ensuring conformal invariance. However, for

our purposes we will be mostly interested in the less restrictive but yet tractable (due to the

existence of U(1)R) N = 2 case, where the dual geometry is strictly CY4 (i.e., Y is Sasaki-

Einstein), which we will further assume toric. While we refer the reader to the standard

literature for a thorough introduction to toric geometry (for a physics related discussion, see,

e.g., [12]), let us briefly highlight, for completeness, the basic ideas. The cone C(Y) is toric if

it can be seen as a U(1)4 fibration over a polyhedral cone in 4 . This polyhedral cone defined

as the convex set of the form ∩{x · vα ≥ 0} ⊂ 4 , where vα ∈ 4 are integer vectors. The

Calabi-Yau condition implies that, with a suitable choice of basis, we can write vα = (1,wα),
with wα ∈ 3. If we plot these latter points in 3 and take their convex hull, we obtain the

toric diagram. In fact, the toric diagram contains all the relevant information about the CY4

geometry.

As shown in [13–15] and briefly reviewed in Section 4, toric manifolds naturally arise

as moduli space of N = 2 CS-matter quiver gauge theories with toric superpotentials whose
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Figure 1: The toric diagram for C(Q111).

levels add up to zero. (By toric W we mean a W where each field appears exactly twice,

one time in a monomial with + sign, another time in a monomial with sign −.) Furthermore,

very much like in ABJM, the CS level vector in gauge space selects the M-theory circle, which

at generic level is quotiented. Thus, the actual moduli space of these N = 2 Chern-Simons-

matter theories is a certain k quotient of the toric CY4. In Section 4 we will study in more

detail one such example, conjectured to be dual to the cone over Q111, whose toric diagram

we show in Figure 1.

We should note that, as opposed to the ABJM case, in the N = 2 cases this circle

generically collapses as one moves on the base of the cone. This motivates the recently

appeared proposals [16, 17] involving fundamental matter as well as bifundamental fields,

as, on general grounds, associated to these collapsing loci there can be extra flavor branes in

the IIA reduction.

Yet one more warning note is in order. While the construction [13–15] yields to

toric CY4 classical abelian moduli spaces, it yet remains to be understood whether at the

nonabelian quantum level these theories are indeed SCFT’s. Only very recently a manageable

criterion to determine whether a 3d theory flows to an IR fixed point, which amounts to

the minimization of the partition function Z, has been proposed in [18] (see also [19]). One

particular example where to put this at practice is the HVZ theory [20]. While at the classical

abelian level the moduli space is 2/ k× 2 , a more careful analysis [21] shows that the chiral

ring (studied at large k to avoid subtleties with monopole operators) contains completely

unexpected nonabelian branches while there is no trace of the necsessary SO(4)R symmetry

of the generically N = 4 orbifold. In fact, as shown in [22], the superconformal index fails

to meet the gravity expectations. Indeed, as briefly discussed in the appendix, when the Z-

minimization is applied to the HVZ theory it suggests that for no k it can be dual to the

ABJM model. In [23] a variant of the theory with explicit N = 3 SUSY and no extra branches

in the chiral ring was considered, finding however, that the index computation was still in

disagreement with the expectations.

3. Global Symmetries in AdS4/CFT3 and Their Spontaneous Breaking

We have so far discussed generic aspects of the AdS4/CFT3 duality. As described, the

cases of interest are those where a stack of M2 branes probes a CY4 cone. In turn, these
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cones generically have a nontrivial topology, in particular containing b2(Y)/= 0 2 cycles. This

allows the fluctuations of the supergravity potentials to wrap on them yielding to vector

fields on AdS4. In fact, due to Poincare duality dim H5(Y) = dim H2(Y) = b2(Y). We can

then introduce a set of dual harmonic five-form α1, . . . αb2(Y) and consider 6-form potential

fluctuations of the form

δC6 =
2π

T5

b2(Y)∑
I=1

AI ∧ αI. (3.1)

Upon KK reduction, this gives rise to b2(Y) massless gauge fields AI in AdS4. These fields sit

in certain multiplets, known from the supergravity point of view as Betti multiplets (see, e.g.,

[24]).
In the context of the AdS5/CFT4, these Betti symmetries correspond to global

baryonic symmetries on the field theory side. In fact, these arise from the U(1) factors

inside the
∏
U(N) total gauge group, which in 4d are IR free. It is possible to show that

indeed the b2 nonanomalous suchU(1)’s—which appear as global baryonic symmetries—are

identified with these Betti multiplets (see, e.g., [7] and references therein for a comprehensive

discussion).
In turn, in the AdS4/CFT3 case the role of this symmetries must be different. This can

be inferred from general field theory arguments, as they clearly cannot arise from decoupled

U(1) factors, which are not IR free in 3 dimensions. Nevertheless, due to their origin, similar

to the AdS5 case, we will still refer to them as baryonic symmetries. (When referring to

the ABJM theory the difference U(1) gauge field is sometimes also called baryonic U(1),
mirroring the Klebanov-Witten terminology—recall that ABJM is described by the same

quiver an superpotential as the Klebanov-Witten theory, only in one dimension less and

adding CS for the gauge groups. We stress that our baryonic symmetries are very different

from this one, which is basically the M-theory circle.) Since on general grounds global

symmetries are of much help in classifying the spectrum of a gauge theory, the study of such

baryonic-like U(1)’s is indeed of much interest. Let us now turn to the supergravity side to

extract as much information as possible about these symmetries and their implication in the

dual field theory.

Let us note that while the CY4 might have other types of cycles, only 2 cycles (and the

Poincare-dual 5 cycles) are relevant for our discussion. As discussed in [5], the toric CY4 of

interest can typically have additional 6 cycles, which manifest themselves as internal points

in the toric diagram. Nevertheless, it is clear that these will not lead to vector fields in AdS4

upon KK reduction of SUGRA p-forms on them, and so their role must be different than that

of 2 and 5 cycles. In fact, as briefly discussed in [5], it appears that these 6 cycles can yield

to nonperturbative corrections to superpotentials, as euclidean 5-branes can be wrapped on

them. Since we will be mostly concerned with global baryon-like symmetries, we will not

touch upon these 6 cycles and focus for the rest of the contribution on 2 and 5 cycles.

Finally, making use of results in [5, 25] it was argued that the number of such two cyles

is given by b2(Y) = d − 4, with d being the number of external points in the toric diagram.

While this result is strictly valid only for isolated singularities, we note that it coincides with

the conjecture in [26, 27]. We note that, as discussed above, internal points, being related to

6 cycles over which no SUGRA p-form yields an AdS4 vector upon KK reduction, are not

related to baryonic symmetries. Conversely, the d − 4 number of such symmetries does not

depend on the number of internal points.
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3.1. Gauge Fields in AdS4

The b2(Y) vector fields satisfy, at the linearized level, Maxwell equations in AdS4. (The

vector fields arising from KK reduction correspond to abelian bulk gauge fields, and thus

will correspond to global/gauged U(1) boundary symmetries. In fact, as discussed in the

main text, wrapped branes behave as sources of this abelian theory. Thus, we do not expect

any nonabelian enhancement.) Note that this argument is strictly applicable to isolated

singularities. Furthermore, these b2(Y) copies of 4d E & M generically contain both electric

and magnetic point like sources in AdS4. From the 11-dimensional point of view, these point

like electrons and monopoles will become wrapped branes, and their role will be crucial in

the following.

Let us analyze more in detail E and M in AdS4. In fact, we will keep the discussion

generic and consider a vector field in AdSd+1. We can set Az = 0 away from the sources.

Then, using the straightforward generalization to AdSd+1 of the coordinates in (2.2), the bulk

equations of motion set

Aμ = aμ + jμzd−2, (3.2)

where the aμ, jμ satisfy the free Maxwell equation in the boundary directions. Furthermore,

Lorentz gauge for these is automatically imposed. In fact, this can be naturally interpreted as

fixing bulk Coulomb gauge upon regarding z as the time coordinate. The condition Az = 0

away from the source is then the standard radiation gauge in that context.

The AdS/CFT duality requires specifying the boundary conditions for the fluctuating

fields in AdS. In particular, and crucially different to AdS5, vector fields in AdS4 admit

different sets of boundary conditions [28–30] leading to different boundary CFT’s. Coming

back to (3.2), it turns out that in d < 4 both behaviors have finite action, and thus can

be used to define a consistent AdS/CFT duality. Furthermore, the fluctuations aμ, jμ are

naturally identified, according to the AdS/CFT rules, with a dynamical gauge field and a

global current in the boundary, respectively. In accordance with this identification, (3.2) and

the usual AdS/CFT prescription shows each field to have the correct scaling dimension for

this interpretation: for a gauge field Δ(aμ) = 1, while for a global current Δ(jμ) = 2.

Let us now concentrate on the case of interest d = 3, where both quantizations are

allowed. In order to have a well-defined variational problem for the gauge field in AdS4 we

should be careful with the boundary terms when varying the action. In general, we have

δS =
∫{

∂
√

detgL
∂AM

− ∂N
∂
√

detgL
∂∂NAM

}
δAM + ∂N

{
∂
√

det gL
∂∂NAM

δAM

}
. (3.3)

The bulk term gives the equations of motion whose solution behaves as (3.2). In turn, the

boundary term can be seen to reduce to

δSB = −1

2

∫
Boundary

jμδa
μ. (3.4)

Therefore, in order to have a well-posed variational problem, we need to demand δaμ = 0;

that is, we need to impose boundary conditions where aμ is fixed in the boundary.
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On the other hand, since in d = 3 both behaviours for the gauge field have finite action,

we can consider adding suitable boundary terms such that the action becomes [30]

S =
1

4

∫ √
det gFABF

AB +
1

2

∫
Boundary

√
detgAμFzμ |Boundary. (3.5)

The boundary term is now

δSB =
1

2

∫
Boundary

aμδj
μ, (3.6)

so that we need to impose the boundary condition δjμ = 0; that is, fix the boundary value of

jμ.

The radiation-like gauge Az = 0 suggests to interpret z as the time direction. Defining

then the usual electric and magnetic fields �B = (1/2)εμνρFνρ and �E = Fμz, we have

Bμ = εμνρ∂νaρ + εμνρ∂νjρz, Eμ = jμz2. (3.7)

In terms of these, the two sets of boundary conditions correspond, on the boundary, to either

setting Eμ = 0 while leaving aμ unrestricted, or setting Bμ = 0 while leaving jμ unrestricted.

To be more explicit, recalling the AdS/CFT interpretation of aμ, jμ, the quantization Eμ = 0

is dual to a boundary CFT where the U(1) gauge field is dynamical, while the quantization

Bμ = 0 is dual to a boundary CFT where theU(1) is ungauged and is instead a global symmetry.

Furthermore, as discussed in [31] for the scalar counterpart, once the improved action is taken

into account the two quantizations are Legendre transformations of one another [6], as can

be seen by for example, computing the free energy in each case.

In turn, this has an important consequence for the spectrum of electrons and

monopoles in this 4d E & M—which of course come wrapped branes from an 11-dimensional

point of view-. Let us consider an M5 brane wrapped in one of the b2(Y) 5 manifolds

Σ5 ⊂ Y . From the AdS4 point of view, this brane looks like a pointlike electric charge for

the corresponding vector field. On the other hand, the linearized C6 fluctuation which such

brane sources must be of the form δC6 ∼ f(z)dt ∧ Vol(Σ5). Upon reduction this precisely

yields to E0 /= 0 while Bμ = 0. Thus, it follows that wrapped M5 branes are only allowed upon

choosing the quantization condition which fixes aμ. Conversely, dual wrapped M2 branes,

though nonSUSY, would only be allowed upon choosing the boundary conditions which fix

jμ. In turn, these boundary conditions do forbid the wrapped M5.

One can consider electric-magnetic duality in the bulk theory, which exchanges Eμ ↔
Bμ thus exchanging the two boundary conditions for the AdS4 gauge field quantization.

This action translates in the boundary theory into the so-called S operation [28]. This is an

operation on three-dimensional CFTs with a global U(1) symmetry, taking one such CFT to

another. In addition, it is possible to construct a T operation, which amounts, from the bulk

perspective, to a shift of the bulk θ-angle by 2π . In fact, these two operations generate an

SL(2, )algebra transforming among the possible generalized boundary conditions [28, 29].
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3.1.1. Wrapped Branes in AdS4 and Baryonic Operators

As the gauge symmetries in AdS4 of interest arise from reduction of the SUGRA potentials, it

is clear that no usual KK-state will be charged under them—the converse holds for the dual

operators in the CFT side. In turn, as described above, the relevant objects charged under

them are M5 branes, which act as electric sources once the appropriate boundary conditions

have been selected. Let us discuss these branes in more detail for the toric CY4’s at hand.

In these cases, an M5 brane wrapped on a five-manifold Σ5 ⊂ Y , such that the cone C(Σ5),
is a complex divisor in the Kähler cone C(Y), is supersymmetric and leads to a BPS particle

propagating inAdS4. As we argued in the previous subsection, since the M5 brane is a source

for C6, this particle is electrically charged under the b2(Y) massless U(1) gauge fields AI .

One might also consider M2 branes wrapped on two cycles in Y . However, such wrapped

M2 branes are not supersymmetric, as there are no calibrating 3 forms for the cone over the

Σ2 submanifold which they would wrap.

For toric manifolds there is a canonical set of wrapped M5 brane states, where C(Σ5)
are taken to be the toric divisors. In fact, the set of vectors defining the toric diagram

introduced above is precisely the set of charge vectors specifying the U(1) subgroups of

U(1)4 that have complex codimension one fixed point sets, and thus must correspond to

the 5 manifolds where to wrap the M5 branes. To make this precise, in the Q111 example the

toric divisors correspond to the 6 external points in the toric diagram in Figure 1.

The standard rules of the AdS/CFT prescription allow to identify these wrapped M5

branes, whenever the boundary conditions allow for them, with chiral operators in the dual

field theory. In fact, as they correspond to nonperturbative states in supergravity, we should

expect their scaling dimension to be of order N. In order to check this, we can consider

changing to global coordinates for AdS, such that the energy of a particle in AdS in units

of 1/R is directly the scaling dimension in the field theory. For the wrapped branes under

consideration it is straightforward to show that the action reduces to

S = T5Vol(Σ5)R5

∫
dt
√
ĝĝtt, (3.8)

where ĝ stands for the AdS4 metric in global coordinates. Thus, this indeed describes a mass

m = T5R
5 Vol(Σ5) particle in global AdS4. Thus, through AdS/CFT , the dimension of the

dual operator is

Δ(Σ5) = mR = T5R
6Vol(Σ5) =N

π

6

Vol(Σ5)
Vol(Y)

. (3.9)

As the ratio of the volume of the 5 manifold to the ratio of Y is an O(1) number, it follows

that in fact these wrapped M5 branes must correspond to O(N) operators.

3.2. Field Theory Perspective of Betti Symmetries

In the previous sections we have seen that the KK reduction of supergravity potentials must

lead, on the boundary, to either a gauge or a global symmetry, depending on the choice

of boundary conditions. This arises as, crucially, both boundary behaviors for gauge fields

in AdS4 are allowed; and it is the choice of boundary conditions that selects wether these
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bulk gauge fields correspond to a boundary gauge or global symmetry. Consistently, the

choice of boundary conditions also determines which wrapped objects are allowed. Through

AdS/CFT , as discussed in the previous subsection, these objects correspond to operators of

dimension O(N).
On general grounds, the suitable CFT’s dual to the toric geometries of interest will

be
∏
U(N) gauge theories. These theories will contain a chiral ring consisting on a set

of chiral operators with protected dimensions such that in the large N limit they remain

O(1). As their dimensions remain small, these operators must correspond to KK states in the

gravity side. On the other hand, if a global baryonic symmetry is present in the theory, we

expect baryon-like operators with dimensions O(N). The natural form of these operators is

B = detX, with X being a certain field charged under the corresponding baryonic symmetry.

Conversely, these O(N) dimension operators must correspond to wrapped branes in the

gravity dual, that is, the M5 branes wrapped on toric divisors we have just discussed.

In turn, from the gravity analysis above, we learn that these branes are allowed once the

suitable boundary conditions have been chosen, namely, those fixing aμ on the boundary

and leaving a dynamical jμ, which has the correct properties for a global symmetry current.

On the other hand, the set of boundary conditions which do not allow for the wrapped M5

branes must correspond to a theory where the baryonic symmetry is gauged (instead of

global). Consistently, the boundary aμ is dynamical, which in fact has the correct features

to be identified with a gauge field. In turn, being the U(1)B a gauged symmetry, the baryon-

like operators would be forbidden because of gauge noninvariance; thus reflecting the lack

of wrapped M5’s. Therefore, for each baryonic symmetry we should expect two different
dual CFTs, each associated to a choice of boundary conditions, where the baryonic U(1)
symmetries are either gauged or global. We stress that these theories are different CFTs,

related though by the gauging/ungauging of the U(1)B’s. In fact, the gravity dual allows

us to be more precise. As reviewed above, the exchange of the boundary conditions stands

for the electric-magnetic duality of the AdS4 E & M. It is possible to enhance this action

with yet another transformation so that we have an SL(2, ) action. Following [28] (see

also [29]), these bulk actions translate in a precise way to the boundary CFT. Starting with

a three-dimensional CFT with a global U(1) current jμ, one can couple this global current

to a background gauge field A resulting in the action S[A]. The S operation then adds a BF

coupling of A to a new background field B and at the same time promotes A to a dynamical

gauge field by introducing the functional integral over it, while the T operation instead adds

a CS term for the background gauge field A:

S : S[A] −→ S[A] +
1

2π

∫
B ∧ dA, T : S[A] −→ S[A] +

1

4π

∫
A ∧ dA. (3.10)

As shown in [28], these two operations generate the group SL(2, ). (Even though we are

explicitly discussing the effect of SL(2, ) on the vector fields, since these are part of a whole

Betti multiplet we expect a similar action on the other fields of the multiplet. We leave this

investigation for future work.) In turn, as discussed above, the S and T operations have the

bulk interpretation of exchanging Eμ ↔ Bμ and shifting the bulk θ-angle by 2π , respectively.

It is important to stress that these actions on the bulk theory change the boundary conditions.

Because of this, the dual CFTs living on the boundary are different.
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3.3. Spontaneous Symmetry Breaking

We have seen that the choice of boundary conditions where we fix the boundary value of

the bulk vectors arising from KK reduction of the supergravity potentials lead, on the CFT

side, to global symmetries. On general grounds, we might then consider their spontaneous

breaking to further test the consistency of the picture. In turn, generically, we should expect

spontaneous symmetry breaking to correspond, in the gravity side, to Calabi-Yau resolutions

of the cone [31] where an S2—of radius b—is blown up.

Upon resolution, theCY4 will only be asymptotically conical. In fact, the first correction

to the asymptotic cone-like metric generically goes like r−2, which leads to the following

behavior for the warp factor

h ∼ R6

r6

(
1 +

b

r2
+ · · ·
)
. (3.11)

Recalling the relation between the cone radial coordinate and the appropriate AdS4 radial

coordinate, according to the standard AdS/CFT rules the subleading correction O(z−1) must

be dual to a dimension 1 operator which acquires a VEV proportional to b. In fact, the natural

candidate is the scalar component U in the global current multiplet, whose dimension is

protected by supersymmetry to be 1. This operator is roughly the moment map of the U(1)B
action and is of the form

U =
1

N

∑
charged fields

Tr qXi
XiX

†
i . (3.12)

It is then clear that spontaneous symmetry breaking, triggered by a VEV of a scalar with

charge qXi
under the U(1)B , will give a VEV to U. Furthermore, this VEV must trigger an

RG flow to a different fixed point. In turn, in the gravity side, much like in [32], upon using

the appropriate radial coordinate, close to the branes the space develops an AdS4 throat

which stands for the IR fixed point.

3.3.1. The Order Parameter for SSB

The baryonic U(1)B symmetry is broken whenever a field X charged under it takes a VEV. In

particular, theU operator discussed above signals such breaking. However, a natural operator

to consider is the associated baryon B = detX, which, as discussed above, corresponds to a

BPS particle in AdS4 arising from a wrapped M5 brane on Σ5. From the gravity perspective

we can compute its VEV by considering the action SE of an euclidean brane which wraps the

cone over Σ5—the so-called baryonic condensate. Indeed, the AdS/CFT dictionary allows to

identify

〈B〉 = e−SE . (3.13)

Let us concentrate on the modulus of the VEV, which comes from the exponential of the DBI

action of the euclidean brane. Quite remarkably, as shown in [5], this contribution, which

amounts to the warped volume of the cone over Σ5, can be computed generically for the
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toric CY4 of interest. Such warped volume is divergent, and it is then necessary to regulate it

cutting off the integral at some large rc. We refer to [5] for the details of the computation. For

the time being, let us quote the most relevant aspect of the result, namely, that the modulus

of the VEV is proportional to

〈B〉 ∼ z−Δ(Σ5). (3.14)

This result from supergravity can be seen as a prediction for the field theory dual. Indeed, if

the expected dual operator is 〈detX〉, we would expect its scaling dimension to be NΔ(X),
so that Δ(X) =N−1Δ(Σ5), in agreement with (3.9).

3.3.2. The Emergence of the Goldstone Particle and the Global String

In the preceding section we concentrated on the modulus of the VEV of the baryonic operator

obtaining nontrivial expectations for the dual field theory. However, a complete picture of

spontaneous symmetry breaking must involve the identification of the associated Goldstone

boson. On general grounds, field theoretic spontaneous symmetry breaking can lead to

cosmic strings around which such Goldstone boson would have a nontrivial monodromy. In

fact, following theAdS5 example [33], in the gravity dual these strings can be easily identified

as M2 branes wrapping the blown-up 2 cycles. Remarkably, these branes remain of finite

tension at the bottom of the cone in the warped geometry (2.1) where ds2(X) is replaced by

the resolved cone metric.

The finite tension M2 branes wrapped on the blown-up cycle appear as a pointlike

object in the Minkowski directions. In fact, in 3-dimensions they correspond to cosmic

“strings”. In order to complete this picture, we must find the Goldstone boson winding

around them. To that matter, we consider a 3-form linearized fluctuation [5]

δC3 = A ∧ β, (3.15)

where β is a 2 forms which, in the bottom of the cone, becomes the volume of the blown-up 2

cycles. Furthermore, 11-dimensional supergravity demands it to obey

dβ = 0, d
(
h8β
)
= 0; (3.16)

where the 8 is the Hodge-dual with respect to the 8-dimensional resolved cone metric.

Following [33] it is possible to argue for the existence of such β. First, in the unwarped case

β is just a harmonic two forms. Furthermore, in the warped case the equations above can be

seen to arise from an action, thus satisfying a minimum principle.

On the other hand, the 1-form A can be conveniently dualized into a scalar in the 3-

dimensional field theory directions. In fact, the Hodge dual of the above 3-form potential

involves

δG7 = 3dA ∧ h8β. (3.17)
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Defining 3 dA = dp, we can write the above field strength fluctuation as

δG7 = dp ∧ h8β. (3.18)

Thus, making use of the equations of motion above, we see that we can take δC6 = ph8β.

As β is proportional, in the bottom of the cone, to the volume form of the blown-up cycle, its

dual precisely goes through the Σ5 cycle. Thus, this supergravity fluctuation couples to the

baryonic condensate described above through the Wess-Zumino part of the euclidean brane

action. In fact, this provides the phase of the B VEV, so that schematically

〈B〉 ∼ z−Δ(Σ5)eip (3.19)

which shows that p must be identified with the Goldstone boson of symmetry breaking.

Indeed, we could use a different gauge for the δG7 field strength such that assymptotically

δC6 ∼ zdp ∧ Vol(Σ5) (3.20)

which implies 〈JBμ 〉 ∼ ∂μp for the boundary theory.

4. An Example: The Cone Over Q111

We have so far kept the discussion generic. Let us put the previous machinery at work in a

particularly interesting example: the cone over Q111. This is a toric CY4 manifold, whose toric

diagram we anticipated in (2.1). Its isometry group is SU(2)3×U(1)R, and in local coordinates

the explicit metric is

ds2
(
Q111
)
=

1

16

(
dψ +

3∑
i=1

cos θi dφi

)2

+
1

8

3∑
i=1

(
dθ2

i + sin2θi dφ
2
i

)
. (4.1)

Here (θi, φi) are standard coordinates on three copies of S2 = 1 , i = 1, 2, 3, and ψ has period

4π . The two Killing spinors are charged under ∂ψ , which is dual to the U(1)R symmetry. The

metric (4.1) shows very explicitly the regular structure of a U(1) bundle over the standard

Kähler-Einstein metric on 1 × 1 × 1 , where ψ is the fibre coordinate and the Chern

numbers are (1, 1, 1).
We now consider a stack of N M2 brane at the tip of this cone. The near horizon

geometry is the standard Freund-Rubin type AdS4 × Q111. Since b2(Q111) = 2, according to

the general discussion above, we should expect two vector fields in AdS4 arising from KK

reduction on the dual 5 cycles of C6 fluctuations.
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Figure 2: The toric diagram for C(Q111).

4.1. Two Versions for the Same Theory

From the toric diagram in Figure 1 we can immediately read the minimal gauged linear

σ-model (GLSM) realizing the variety. It contains 6 fields whose charges under the U(1)I ×
U(1)II gauge symmetries are

a1 a2 b1 b2 c1 c2

U(1)I −1 −1 1 1 0 0

U(1)II −1 −1 0 0 1 1

(4.2)

Following the ABJM example, we look for a Chern-Simons matter theory where to

embed this minimal GLSM. As shown in [34], we can succinctly encode such theory in the

quiver shown in Figure 2.

We assume all the nodes to come with an N = 2U(N) Chern-Simons action with the

level indicated in Figure 2. Furthermore, the superpotential reads

W = Tr
(
C2B1AiB2C1Ajε

ij
)
. (4.3)

It can be shown [34] that this theory indeed contains, at k = 1, the desired GLSM,

where ai ↔ Ai, bi ↔ Bi, ci ↔ Ci. Let us give a flavor on the proof by describing the generic

construction associated to N = 2 toric Chern-Simons-matter quiver theories (see [13–15] for

more details). For a start, we note that N = 2 SUSY in 3 dimensions can be thought as the

dimensional reduction along, say, x3 of 4-dimensionalN = 1. In particular, upon gauge fixing,

the 3-dimensional vector supermultiplet contains two scalars D, σ arising, respectively, from

the 4-dimensional D scalar and A3 component of the gauge field. Crucially, it turns out that

both scalars are auxiliary fields for Chern-Simons matter theories (see, e.g., [11]) and thus

must be integrated out. The resulting F and (generalized) D flatness conditions turn out to

be

∂Xab
W = 0 , −

G∑
b=1

Xba
†Xba +

G∑
c=1

XacXac
† =

kaσa
2π

, σaXab −Xabσb = 0, (4.4)

where latin indices run to the G gauge groups (in the case at hand four) and Xab is a

(U(N)a, U(N)b) bifundamental.
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The last equation in (4.4) is automatically satisfied upon diagonalizing our fields and

taking σa = σIN∀a. Thus, the theory breaks into N copies of the U(1) version. Furthermore,

assuming
∑
ka = 0 it is easy to see that the equations setting μa = 0 reduce to G − 2

independent equations. On the other hand, it is a standard result that for toric W the set

of F-flat configurations the so-called master space, see, for example, [35] is of dimension G+ 2.

Thus, out of this G + 2-dimensional master space and after imposing the G − 2 generalized D

terms, we finally have a 4-dimensional toric manifold as moduli space. One can verify that

for the case at hand, at k = 1, this manifold is indeed the cone over Q111. Let us stress that

this computation merely focuses on the abelian moduli space. In fact, at the abelian level the

W vanishes. A more detailed analysis requires the study of the chiral ring at the nonabelian

level, which on general grounds must match the coordinate ring of the variety. Generically,

this is a very difficult task, as we a priori expect crucial nonperturbative effects associated to

monopole operators. In order to simplify the problem, we can consider the large k limit, as

the dimension of such monopole operators should scale with k thus decoupling. In that limit,

the chiral ring is composed out of standard gauge invariant operators, that is, closed loops

in the quiver modulo F-terms. Conversely, the k /= 1 moduli space is indeed an orbifold of

the k = 1 variety. As shown in [36], it is possible to exactly match the coordinate ring of this

orbifolded variety to the nonabelian chiral ring of the theory above, in particular explicitly

checking the W structure. We refer to [36] for a complete discussion.

Let us note that the orbifold action breaks the original SU(2)3 down to the single SU(2)
present in the superpotential. This action in fact has fixed points away from the tip of the cone.

This motivated the authors [16, 17] to propose alternative theories containing fundamental

matter associated to the flavor branes, from a IIA perspective, to which these singularities

lead. We refer to these works, as well as to [37], for further details.

Being the gauge group of the theory we have just discussed U(N)4, it cannot

accommodate for gauge invariant baryon-like operators. It must then correspond to a choice

of boundary conditions in the gravity dual where the 2 vector fields in AdS4 arising from KK

reduction on the b2(Q111) = 2 2 cycles have jμ = 0; that is, they are dual to boundary gauge

symmetries. As discussed above, the field theory dual to changing these boundary conditions

can be found by acting with the {T, S}SL(2, )generators, as these correspond to swapping

boundary conditions. In order to further proceed, let us strip off the abelian part of the gauge

symmetry and denote the corresponding generators Ai. We define

Bk = A1 +A2 − A3 − A4, Bd = A1 +A2 +A3 +A4,

A+ = A1 −A2, A− = A3 −A4.
(4.5)

It is not hard to show that the full action at k = 1 can be written as (we focus on the bosonic

content)

S =
1

4π

∫
A+ ∧ dA+ −

1

4π

∫
A− ∧ dA− + SSU, SSU =

1

4π

∫
Bk ∧ dBd + SR, (4.6)

where SR collects the remaining terms from the original Lagrangian and in particular contains

A± through the covariant derivatives of the fields. In fact, let us consider the theory defined

by this action per se. We note that this is an SU(N)4 ×U(1)k ×U(1)d theory, where the abelian

factors are given by the Bk, Bd fields above.
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Starting from SSU alone, we can think of the A± as background nondynamical gauge

fields. Thus, we are in the situation described in [28], where we can act with the generators

{S, T}. (We will follow a slightly different path as in [5]. We thank C. Closset and S.

Cremonesi for discussions on this topic.) Let us now act with the S generator by adding

new background gauge fields C±

SSU[A+,A−] −→ SSU[A+,A−] +
1

2π

∫
C+ ∧ dA+ +

1

2π

∫
C− ∧ dA−. (4.7)

While we will not write it explicitly, the S operation also introduced a functional integral

over A±. We can act again with the S generator on the newly generated background gauge

symmetries C±, so that we find, grouping terms

SSU[A+,A−] +
1

2π

∫
C+ ∧ d(A+ +D+) +

1

2π

∫
C− ∧ d(A− +D−). (4.8)

Again, we stress that a functional integration, this time over C± has been introduced. Acting

now with the T generator on the new background gauge symmetries D± we find

SSU[A+, A−] +
1

2π

∫
C+ ∧ d(A+ +D+) +

1

2π

∫
C− ∧ d(A− +D−)

+
1

4π

∫
D+ ∧ dD+ −

1

4π

∫
D− ∧ dD−.

(4.9)

The functional integration over C± leads to a functional δ setting D± = −A±, thus recovering

exactly SU. Thus, from this perspective, we can consider the theory defined by SSU as the

dual to the background with boundary conditions fixing aμ in the boundary. In turn, these

boundary conditions allow for wrapped M5 branes and must be dual to a theory with global

baryonic symmetries. Conversely, upon considering the SSU theory, we no longer need to

demand gauge invariance with respect to the A± gauge symmetries. Thus, operators such as,

for example, detAi become gauge-invariant and are the natural candidates for duals to the

wrapped M5 branes.

We can understand the previous procedure in yet a different manner. The M5 branes

corresponding to baryonic operators are in one-to-one correspondence with the divisors,

encoded in the toric diagram arising from the GLSM charge matrix (4.2). Thus, that

particular combination ofU(1)’s naturally encodes the baryonic charges necessary to describe

all baryonic operators. In turn, the Chern-Simon-matter theory described above contains

precisely this GLSM. In fact, the sequence of {T,S} operations above amount to ungauge

precisely these two U(1)’s (which are nothing but A+ ± A−).

4.2. Spontaneous Symmetry Breaking

As discussed, spontaneous symmetry breaking amounts to resolution in the gravity dual. In

[5] a comprehensive algebraic analysis of the cone overQ111 was performed, paying attention

in particular to the space of Kahler parameters which account for the resolutions. From the

point of view of the GLSM above, by turning on Fayet-Ilopoulos parameters we can achieve
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every possible resolution of the geometry. In turn, for each of the resolutions of C(Q111), there

is a corresponding Ricci-flat Kähler metric that is asymptotic to the cone metric over Q111.

More precisely, there is a unique such metric for each choice of Kähler class, or equivalently

FI parameter ζ1, ζ2 ∈ . Roughly speaking, these parameters correspond to the volumes of

the 2 cycles which can be blown up. Denoting the radii of these blown-up S2’s by (a, b), the

resolved Calabi-Yau metric is given by

ds2(X) = κ(r)−1dr2 + κ(r)
r2

16

(
dψ +

3∑
i=1

cos θidφi

)2

+

(
2a + r2

)
8

(
dθ2

2 + sin2θ2dφ
2
2

)

+

(
2b + r2

)
8

(
dθ2

3 + sin2θ3dφ
2
3

)
+
r2

8

(
dθ2

1 + sin2θ1dφ
2
1

)
,

(4.10)

where

κ(r) =

(
2A− + r2

)(
2A+ + r2

)
(2a + r2)(2b + r2)

, (4.11)

a and b are arbitrary constants determining the sizes of the blown-up S2’s; and we have also

defined

A± =
1

3

(
2a + 2b ±

√
4a2 − 10ab + 4b2

)
. (4.12)

We are interested in studying supergravity backgrounds corresponding to M2 branes

localized on one of these resolutions of C(Q111). If we place N spacetime-filling M2 branes at

a point y ∈ X, we must then solve the following equation for the warp factor:

Δxh
[
y
]
=

(
2π�p

)6
N√

detgX
δ8
(
x − y

)
, (4.13)

where Δ is the scalar Laplacian on the resolved cone. In order to simplify the problem, let us

analyse the case in which we partially resolve the cone, setting a = 0 and b > 0. With no loss

of generality, we put the N M2 branes at the north pole of the blown-up S2 parametrized by

(θ3, φ3). We then find

h(r, θ3) =
∞∑
l=0

Hl(r)Pl(cos θ3),

Hl(r) = Cl
(

8b

3r2

)3(1+β)/2

2F1

(
−1

2
+

3

2
β,

3

2
+

3

2
β, 1 + 3β,− 8b

3r2

)
,

(4.14)

where Pl denotes the lth Legendre polynomial,

β = β(l) =

√
1 +

8

9
l(l + 1), (4.15)
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and the normalization factor Cl is given by

Cl =
3Γ
(
(3/2) + (3/2)β

)2

2Γ
(
1 + 3β

) (
3

8b

)3

(2l + 1)R6,

R6 =

(
2π�p

)6
N

6vol
(
Q111
) = 256

3
π2N�6

p.

(4.16)

In the field theory this solution corresponds to breaking one combination of the two global

U(1) baryonic symmetries, rather than both of them. As discussed in general above, the

resolution of the cone can be interpreted in terms of giving an expectation value to a certain

operator U in the field theory. This operator is contained in the same multiplet as the current

that generates the broken baryonic symmetry and couples to the corresponding U(1) gauge

field in AdS4. Since a conserved current has no anomalous dimension, the dimension of U
is uncorrected in going from the classical description to supergravity [31]. According to the

general AdS/CFT prescription [31], the VEV of the operator U is dual to the subleading

correction to the warp factor. For large r one can show

h(r, θ3) ∼
R6

r6

(
1 +

18b cos θ3

5r2
+ · · ·
)
. (4.17)

In terms of the AdS4 coordinate z = r−2 we have that the leading correction is of order

z, which indicates that the dual operator U is dimension 1. This is precisely the expected

result, since this operator sits in the same supermultiplet as the broken baryonic current, and

thus has a protected dimension of 1. Furthermore, its VEV is proportional to b, the metric

resolution parameter, which reflects the fact that in the conical (AdS) limit in which b = 0 this

baryonic current is not broken, and as such 〈U〉 = 0.

Furthermore, we can compute, following the steps described for the general case, the

VEV of the baryonic condensate as the volume of an euclidean brane wrapping the cone over

Σ5. While the details of the computation can be seen in [5], here we content ourselves with

quoting the result

e−S(rc) = e7N/18

(
8b

3r2
c

)N/3(
sin

θ3

2

)N
, (4.18)

where rc is the radial cutoff. From (4.18) we can read off the dimension of the associated

baryonic operator Δ(B) = N/3, which suggests that if B = detX, then Δ(X) = 1/3. In fact, in

accordance with the results in [38], a similar computation shows that all baryonic operators

must have the same scaling dimension. In turn, in the context of the Chern-Simons-matter

quiver gauge theory described in the previous subsection, this implies that all fields have

the same Δ = 1/3 scaling dimension, and hence R = 1/3. This is in fact consistent with the

sextic superpotential, as this assignation of R charges ensures it to be marginal at the putative

fixed point. In fact, in view of these results it would be very interesting to apply the recently

discovered techniques of [18] along the lines of the appendix for the Q111 theory to confirm

or disprove its potential agreement. We leave this as an open question for future work.
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5. Conclusions

Global symmetries are important tools in studying the spectrum of a gauge theory. In the

context of the AdS/CFT duality a particularly important set of such symmetries are those

which arise from KK reduction of the supergravity p-forms in nontrivial cycles yielding

to AdS vectors. Following the terminology of the AdS5 case, we dubbed such symmetries

as baryonic. These symmetries appear as particularly interesting and important in the

AdS4/CFT3 case, as they behave much differently from the AdS5 case. In particular, on

the gravity side, the two possible fall-offs are admissible, thus leading to two possible

AdS4/CFT3 dualities depending on the chosen boundary conditions. In turn, in the field

theory side, these correspond to a choice of gauged versus global baryonic symmetry.

As briefly mentioned, the CY4’s of interest can also potentially contain 6 cycles. While

they are not directly related to the baryonic symmetries we discussed—as they do not yield

to vectors in AdS4 upon KK reduction of p-forms, it would be very interesting to clarify their

role as they might lead to nonperturbative, instantonic, corrections to the superpotentials. We

refer to [5] for a first study along these lines.

While a lot has been learned recently about the AdS4 × CFT3 duality, much remains

yet to be clarified, specially from the field theory perspective in the N = 2 case. In particular,

the gravity analysis briefly reviewed above following [5] must yield to important consistency

checks. As we described, in the particular C(Q111) case described, the gravity predictions are

in fact consistent with the expectations for the theory proposed in [34]. Nevertheless, it still

remains to perform a conclusive Z minimization analysis in the spirit of that in the appendix.

Very recently a series of very refined checks involving the superconformal index have been

performed in [39, 40]. While flavored theories appear better behaved, the full picture yet

remains to clarified. We leave such analysis as an open problem for the future.

Appendix

Z-Minimization for HVZ

Following [18], the properties of the putative fixed point of a 3d theory are encoded in the

minimization of the modulus squared of the partition function regarded as a function of the

trial R-charges (which in 3d are equal, at the SCFT point, to the scaling dimensions). As the

theories which we consider do not break the parity symmetry, the partition function itself is

real, and thus it is enough to minimize it. Following the localization procedure in [18, 19],
one can check that for a generic quiver theory with gauge group U(N)G and a number of

bifundamental fields X in the ( αX , βX) under the αX, βX factors and with trial scaling

dimension ΔX, the partition function on the S3 can be written as

Z =
(−1)NG

N!G

∫ G∏
g=1

∏
αg

du
g
αg e

iπkg(u
g
αg )

2 ∏
αg<βg

sinh2
(
π
(
u
g
αg − u

g

βg

))∏
X

N∏
αX, βX

e
�(1−ΔX+i (uiαX−u

f

βX
))
.

(A.1)

Let us now compare the HVZ and the ABJM theories. In order to simplify the computations,

let us just focus on the U(2) × U(2) case. After some algebra, the ABJM partition function
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reads (we refer to [18, 19] as well to the pioneering papers on 3d localization [41, 42] for the

definition of the special function �)

ZU(2)
ABJM =

1

4k

∫
dx dyei2πk(x

2−y2)sinh2(2πx)sinh2(2πy)ef(x,y), (A.2)

with

f
(
x, y
)
= 2

∑
s1=±, s2=±

�
(
Δ + s1

(
x + s2y

))
+ �
(
1 −Δ + s1

(
x + s2y

))
. (A.3)

In order to obtain these expressions we made use of the constraints imposed by the

superpotential, which allows to express all dimensions as a function of a single one Δ. As

expected, the partition function is minimized at Δ = 1/2, which leads to

ZU(2)
ABJM =

1

210k

∫
dxdyei2πk(x

2−y2) sinh2(2πx)sinh2(2πy)
cosh4(π(x + y

))
cosh4(π(x − y)) . (A.4)

On the other hand, for HVZ, we obtain

ZU(2)
HVZ =

1

4k

∫
dx dyei2πk(x

2−y2)sinh2(2πx)sinh2(2πy)ef(x,y), (A.5)

with

f
(
x, y
)
= 2
∑
s1=±

∑
s2=±

�
(
1 −Δ + is1

(
x + s2y

))
+ 4�(Δ) + 2

∑
s=±
�(Δ + i2sx). (A.6)

While this expression is very similar to the ABJM expression, it is not quite the same.

In fact, while it is minimized at Δ = 1/2, leading to the R-charge assignation guessed in [21],
the final expression becomes

ZU(2)
HVZ =

1

210k

∫
dx dyei2πk(x

2−y2) sinh2(2πx) sinh2(2πy)
cosh2(π(x + y

))
cosh2(π(x − y))cosh2(πx)

, (A.7)

which is just different from the ABJM result (A.4) for all k. We note, however, that the same

computation for U(1) ×U(1) indeed gives the same answer for the two theories.
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[38] D. Fabbri, P. Fré, L. Gualtieri et al., “3D superconformal theories from Sasakian seven-manifolds: new
non-trivial evidences for AdS4/CFT3,” Nuclear Physics B, vol. 577, no. 3, pp. 547–608, 2000.

[39] Y. Imamura, D. Yokoyama, and S. Yokoyama, “Superconformal index for large N quiver Chern-
Simons theories,” http://arxiv.org/abs/1102.0621.

[40] S. Cheon, D. Gang, S. Kim, and J. Park, “Refined test of AdS4/CFT3 correspondence for N = 2,3
theories,” http://arxiv.org/abs/1102.4273.

[41] A. Kapustin, B. Willett, and I. Yaakov, “Exact results for Wilson loops in superconformal Chern-
Simons theories with matter,” Journal of High Energy Physics, vol. 2010, no. 03, 089, 2010.

[42] A. Kapustin, B. Willett, and I. Yaakov, “Nonperturbative tests of three-dimensional dualities,” Journal
of High Energy Physics, vol. 2010, no. 10, 013, 1010.



Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2011, Article ID 217035, 12 pages
doi:10.1155/2011/217035

Review Article
A Simple Introduction to Gröbner Basis Methods
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I give an elementary introduction to the key algorithm used in recent applications of computational
algebraic geometry to the subject of string phenomenology. I begin with a simple description of
the algorithm itself and then give 3 examples of its use in physics. I describe how it can be used
to obtain constraints on flux parameters, how it can simplify the equations describing vacua in
4D string models, and lastly how it can be used to compute the vacuum space of the electroweak
sector of the MSSM.

1. Introduction

There is currently a great deal of interest in applying the methods of computational algebraic

geometry to string phenomenology and closely related subfields of theoretical physics. For

some examples of recent work see [1–23, 14] and references therein. These papers utilise

advances in algorithmic techniques in commutative algebra to study a wide range of subjects

including various aspects of globally supersymmetric gauge theory [1–9, 6], finding flux

vacua in string phenomenology [10–16], studying heterotic model building on smooth

Calabi-Yau in non-standard embeddings [17, 18], and more besides [19–23].
Despite the wide range of physical problems which have been addressed within this

context, the computational tools which are being used are all based, finally, on the same

algorithm. The Buchberger algorithm [24, 25] is at once what lends these methods their

power and also the rate limiting step-placing bounds on the size of problem that can be

dealt with. The recent burst of activity in this field has been fueled, in part, by the advent of

freely available, efficient implementations of this algorithm [26, 27]. There are also interfaces

available between the commutative algebra program [27] and Mathematica [11–14, 28], with
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[11–14] being particularly geared towards physicist’s needs. The aim of this paper is to give

an elementary introduction to the Buchberger algorithm and some of its recent applications.

In order to give an idea of how one simple algorithm can make so much possible, I

will present the Buchberger algorithm and then show how it may be applied to physics in 3

elementary examples. Firstly, I will describe how it can be used to obtain constraints on the

flux parameters in four-dimensional descriptions of string phenomenological models which

are necessary and sufficient for the existence of certain types of vacuum [11–14]. Secondly, I

will describe how the Buchberger algorithm can be used to simplify the equations describing

the vacua of such systems making problems of finding minima much more tractable [11–

14]. Finally, I will describe how the same simple algorithm can be used to calculate the

supersymmetric vacuum space geometry of the electroweak sector of the MSSM [1, 2].
The remainder of this paper is structured as follows. In Section 2, I take a few pages

to explain the algorithm and the few mathematical concepts that we will require. In the

three sections following that, I then describe the three examples mentioned above. I will

conclude by making a few final comments about the versatility and scaling of the Buchberger

algorithm.

2. A Tiny Bit of Commutative Algebra

Two pages of simple mathematics will suffice to achieve all of the physical goals mentioned

in the introduction. First of all we define the notion of a polynomial ring. In this paper we

will call the fields of the physical systems we study φi and any parameters present, such as

flux parameters, aα. The polynomial rings [φi , aα] and [aα ] are then simply the infinite set

of all polynomials in the fields and parameters and the infinite set of all polynomials in the

parameters, respectively.

Another mathematical concept we will require is that of a monomial ordering. This is

simply an unambiguous way of stating whether any given monomial is formally bigger than

any other given monomial. We may denote this in a particular case by saying m1 > m2, where

m1, m2 ∈ [φi , aα] are monomials in the fields and parameters. It is important to say what is

not meant by this. We are not saying that we are taking values of the variables such that the

monomial m1 is numerically larger than the monomial m2. We are rather saying that, in our

formal ordering, m1 is considered to come before m2.

For our purposes we will require a special type of monomial ordering called an

elimination ordering. This means that our formal ordering of monomials has the following

property:

P ∈
[
φi, aα

]
, LM(P) ∈ [aα] =⇒ P ∈ [aα]. (2.1)

In words this just says that if the largest monomial in P according to our ordering, LM(P),
does not depend on φi, then P does not depend on the fields at all. The monomial ordering

classes all monomials with fields in them as being bigger than all of those without such

constituents.

Given this notion of monomial orderings, we can now present the one algorithm we

will need to use—the Buchberger algorithm [24, 25]. The Buchberger algorithm takes as its

input a set of polynomials. These may be thought of as a system of polynomial equations by

the simple expedient of setting all of the polynomials to zero. The algorithm returns a new
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set of polynomials which, when thought of as a system of equations in the same way, has

the same solution set as the input. The output system, however, has several additional useful

properties as we will see.

The Buchberger Algorithm

(1) Start with a set of polynomials call this set G.

(2) Choose a monomial ordering with the elimination property described above.

(3) For any pair of polynomials Pi, Pj ∈ G, multiply by monomials, and form

a difference so as to cancel the leading monomials with respect to the monomial

ordering:

S = p1PI − p2PJ s.t. p1LM(PI), p2LM
(
PJ
)

cancel. (2.2)

(4) Perform polynomial long division of S with respect to G; that is, form h̃ = S−m3Pk,

where m3 is a monomial and Pk ∈ G such that m3LM(Pk) cancels a monomial in S.

Repeat until no further reduction is possible. Call the result h.

(5) If h = 0, then consider the next pair. If h/= 0, then add h to G and return to step (3).

The algorithm terminates when all S-polynomials which may be formed reduce to 0. The final

set of polynomials is called a Gröbner basis.

As mentioned above, the resulting set of polynomials has several nice properties. The

feature which is often taken as defining is that polynomial long division with respect to this

new set of polynomials always gives the same answer—it does not matter in which order we

divide the polynomials out by.

For us, however, the important point about our Gröbner basis G is that it has what

is called the elimination property. The set of all polynomials in G which depend only upon

the parameters, G ∩ [aα ], gives a complete set of equations on the aα which are necessary

and sufficient for the existence of a solution to the set of equations we started with. The

reason why this is so is actually very straightforward. Our elimination ordering says that

any monomial with a field in it is greater than any monomial only made up of parameters.

Looking back at step (3) of the Buchberger algorithm we see that we are repeatedly canceling

off the leading terms of our polynomials—those containing the fields—as much as we can.

Thus, if it is possible to rearrange our initial equations to get expressions which do not

depend upon the fields φi, then the Buchberger algorithm will do this for us. Clearly, while

we have interpreted the aα as parameters and the φi as fields in the above, as this is what we

will require for Section 3, this was not necessary. The Buchberger algorithm can be used to

eliminate any unwanted set of variables from a problem, in the manner we have described.

This completes all of the mathematics that we will need for our entire discussion, and

we may now move on to apply what we have learnt.

3. Constraints

The first physical question we wish to answer is the following. Given a four-dimensional

N = 1 supergravity describing a flux compactification, what are the constraints on the flux
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parameters which are necessary and sufficient for the existence of a particular kind of

vacuum? This question can be asked, and answered [11–14], for any kind of vacuum, but

in the interests of concreteness and brevity let us restrict ourselves to the simple case of

supersymmetric Minkowski vacua.

Here is the superpotential of a typical system, taken from [29]. It describes a

nongeometric compactification of type IIB string theory

W = a0 − 3a1τ + 3a2τ
2 − a3τ

3 + S
(
−b0 + 3b1τ − 3b2τ

2 + b3τ
3
)

+ 3U
(
c0 + (ĉ1 + č1 + c̃1)τ − (ĉ2 + č2 + c̃2)τ2 − c3τ

3
)
.

(3.1)

This system has some known constraints on its parameters which are necessary for the

existence of a permissible vacuum. These come from, for example, tadpole cancellation

conditions:

a0b3 − 3a1b2 + 3a2b1 − a3b0 = 16,

a0c3 + a1(č2 + ĉ2 − c̃2) − a2(č1 + ĉ1 − c̃1) − a3c0 = 0,

c0b2 − c̃1b1 + ĉ1b1 − č2b0 = 0, c0c̃2 − č2
1 + c̃1ĉ1 − ĉ2c0 = 0,

č1b3 − ĉ2b2 + c̃2b2 − c3b1 = 0, c3c̃1 − č2
2 + c̃2ĉ2 − ĉ1c3 = 0,

c0b3 − c̃1b2 + ĉ1b2 − č2b1 = 0, c3c0 − č2ĉ1 + c̃2c̆1 − ĉ1c̃2 = 0,

č1b2 − ĉ2b1 + c̃2b1 − c3b0 = 0, ĉ2c̃1 − c̃1č2 + č1ĉ2 − c0c3 = 0.

(3.2)

We also have the same constraints with the hats and checks switched around. In this example

the fields, which we have been calling φi, are S, τ , and U, and everything else is a “flux”

parameter, or an aα in our notation.

In total, the equations which must be satisfied if a supersymmetric Minkowski vacuum

is to exist are W = 0, ∂SW = 0, ∂τW = 0, ∂UW = 0, and the constraints on the flux

parameters given above. To extract a set of constraints solely involving the parameters which

are necessary and sufficient for the existence of a solution to these equations, we simply

follow the procedure outlined in the previous section.

We can carry out this calculation trivially in Stringvacua [11–14] and, in fact, this

example is provided for the user in the help system. The result is as follows:

0 = c̃1 = c̃2 = ĉ1 = ĉ2 = č1 = č2 = c0 = c3,

0 = 16 + a3b0 − 3a2b1 + 3a1b2 − a0b3,

0 = 16a2
3b

2
0 − 96a2a3b0b1 − 288a2

2b
2
1 + 432a1a3b

2
1 + 54a3

2b
3
1 − 81a1a2a3b

3
1 + 27a0a

2
3b

3
1

+ 432a1a3b0b2 − 27a2
2a3b

2
0b2 + 48a1a

2
3b

2
0b2 − 288a0a3b1b2 − 18a1a2a3b0b1b2 − 45a0a

2
3b0b1b2

− 54a1a
2
2b

2
1b2 + 81a2

1a3b
2
1b2 − 27a0a2a3b

2
1b2 + 54a0a2a3b0b

2
2 + 27a0a1a3b1b

2
2 − 27a2

0a3b
3
2



Advances in High Energy Physics 5

− 288a1a2b0b3 − 32a0a3b0b3 + 27a3
2b

2
0b3 − 45a1a2a3b

2
0b3 + 432a0a2b1b3 − 27a1a

2
2b0b1b3

+ 54a2
1a3b0b1b3 + 48a0a2a3b0b1b3 + 18a0a

2
2b

2
1b3 − 81a0a1a3b

2
1b3 − 144a0a1b2b3

+ 27a2
1a2b0b2b3 − 54a0a

2
2b0b2b3 − 51a0a1a3b0b2b3 + 27a0a1a2b1b2b3 + 45a2

0a3b1b2b3

− 27a0a
2
1b

2
2b3 + 27a2

0a2b
2
2b3 + 16a2

0b
2
3 − 27a3

1b0b
2
3 + 45a0a1a2b0b

2
3 + 27a0a

2
1b1b

2
3

− 48a2
0a2b1b

2
3 + 3a2

0a1b2b
2
3.

(3.3)

The reader will note that the result is a somewhat lengthy set of equations. In

principle one has to find quantized solutions to these expressions, an obviously intractable

Diophantine problem, and therefore it might be asked why this result is of any use. In fact,

knowledge of such constraints on the flux parameters is hugely useful for a number of

reasons.

(i) Firstly, we note that, while the full result of this process is often complex, some

of the constraints can give us simple information about the system. In the current

case, for example, it can be seen that c̃2 = 0 is required for the existence of a

supersymmetric Minkowski vacuum.

(ii) Secondly, if one is scanning over a range of flux parameters and trying to

numerically solve the equations to find vacua, one can speed up one’s analysis

by first substituting any given set of flux parameters into the constraints we have

obtained. If the constraints are not satisfied, then vacua do not exist and there is

no point in searching numerically for a solution. This turns what would be a time-

consuming numerical process giving inconclusive results (no solution was found)
into a quick analytic conclusion (no solution exists).

(iii) Lastly, knowledge of such constraints can greatly speed up algebraic approaches to

finding vacua such as those outlined in [11–14].

4. Simplifying Equations for Vacua

Another use for the mathematics we learnt in Section 2 is the so-called “splitting tools”

used in work such as [11–14]. The physical idea here is simple. Consider trying to

solve the equations ∂V/∂φi = 0 to find the vacua, including those which spontaneously

break supersymmetry, of some supergravity theory. These equations are often extremely

complicated. One way of viewing why this is so is that the equations for the turning points

of the potential contain a lot of information. They describe not only the isolated minima of

the potential which are of interest but also lines of maxima, saddle points of various sorts,

and so forth. A useful tool to have, therefore, would be an algorithm that takes such a

system as an input and returns a whole series of separate sets of equations, each individually

describing fewer turning points. Since each separate equation system would then contain less

information, one might expect them to be easier to solve. It would be beneficial to choose

a division of these equations which has physical interest. The choice we will make here,

and which programs like Stringvacua implement [11–14], is to split up the equations for

the turning points according to how they break supersymmetry—that is, according to which

F-terms vanish when evaluated on those loci.
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The ability that packages such as Stringvacua have to split up equations in this manner

is based upon the following splitting tool (see [30] for a nice set of more detailed notes on

this kind of mathematical technique). Say that one of the F-terms of our theory is called F.

Then we can split the equations describing turning points of the potential into two pieces:

∂V

∂φi
= 0, F = 0, (4.1)

∂V

∂φi
= 0, F /= 0. (4.2)

The first of these expressions is a set of equations which is easier to solve, in general,

than ∂V/∂φi = 0 alone. We can use the F-term to simplify the equations for the turning points

of the potential. On the other hand, expression (4.2) is not even a set of equations—it contains

an inequality. We can convert (4.2) into a system purely involving equalities by making use

of the mathematics we learned in Section 2.

Consider the following set of equations, including a dummy variable t:

∂V

∂φi
= 0, Ft − 1 = 0. (4.3)

The second equation in (4.3) has a solution if and only if F /= 0, simply t = 1/F. If F = 0,

then the equation reduces to −1 = 0 which clearly has no solutions. Equations (4.3), then, have

a solution whenever the set of equalities and inequalities (4.2) do. Unfortunately they also

depend upon one extra, and unwanted, variable—t. This is not a problem as we already know

how to remove unwanted variables from our equations. We can simply eliminate them, as we

did the fields in Section 2. This will leave us with a necessary and sufficient set of equations

in φi and aα for a solution to (4.3) and thus to (4.2).
So we can split the equations for the turning points of our potential into two simpler

systems. One describes the turning points of V for which F = 0 and the other, those for which

F /= 0. We can of course perform such a splitting many times—once for each F-term! In fact,

using additional techniques from algorithmic algebraic geometry [11–14, 31–33], which are

essentially based upon the same trick, one can go much further. One can split the equations

for the turning points up into component parts gaining one set of equations for every separate

locus. Because we know which F-terms are nonzero on each of them, these are classified

according to how they break supersymmetry. The researcher interested in a certain type

of breaking can therefore select the equations describing the vacua of interest and throw

everything else away.

The above process of splitting up the equations for the vacua of a system can be very

simply carried out in Stringvacua. Numerous examples can be found in the Mathematica help

files which come with the package [11–14]. Here, let us consider the example of M-theory
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compactified on the coset (SU(3) ×U(1))/(U(1) ×U(1)). The Kähler and superpotential for

this coset, which has SU(3) structure, has been presented in [34]

K = −4 log
(
−i
(
U −U

))
− log

(
−i
(
T1 − T1

)(
T2 − T2

)(
T3 − T3

))
,

W =
1√
8
[4U(T1 + T2 + T3) + 2T2T3 − T1T3 − T1T2 + 200].

(4.4)

Even this, relatively simple, model results in a potential of considerable size. Defining Ti =
−iti + τi and U = −ix + y, we find

V =
1

256t1t2t3x4

(
40000 + t23τ

2
1 − 400τ1τ2 − 4t23τ1τ2 + 4t23τ

2
2 + τ2

1 τ
2
2 − 400τ1τ3 + 800τ2τ3

)
+ 2τ2

1τ2τ3 − 4τ1τ
2
2 τ3 + τ2

1 τ
2
3 − 4τ1τ2τ

2
3 + 4τ2

2τ
2
3 − 24t2t3x

2 + 4t23x
2 − 24t1(t2 + t3)x2

+ 4τ2
1x

2 + 8τ1τ2x
2 + 4τ2

2x
2 + 8τ1τ3x

2 + 8τ2τ3x
2 + 4τ2

3x
2 + 1600τ1y − 8t23τ1y

+ 1600τ2y + 16t23τ2y − 8τ2
1τ2y − 8τ1τ

2
2y + 1600τ3y − 8τ2

1 τ3y + 16τ2
2τ3y − 8τ1τ

2
3y

+ 16τ2τ
2
3y + 16t23y

2 + 16τ2
1y

2 + 32τ1τ2y
2 + 16τ2

2y
2 + 32τ1τ3y

2 + 32τ2τ3y
2 + 16τ2

3y
2

+ t21
(
t22 + t

2
3 + τ

2
2 + 2τ2τ3 + τ2

3 + 4x2 − 8τ2y − 8τ3y + 16y2
)

+ t22
(

4t23 + τ
2
1 − 4τ1

(
τ3 + 2y

)
+ 4
(
τ2

3 + x2 + 4τ3y + 4y2
))
.

(4.5)

To find the turning points of this potential we naively need to take eight different

derivatives of (4.5) and solve the resulting set of intercoupled equations in eight variables.

This is clearly prohibitively difficult. Using the techniques described in this section, however,

Stringvacua can separate off parts of the vacuum space for us with ease. Consider, for

example, the vacua which are isolated in field space and for which the real parts of all of

the F-terms are nonzero, with the imaginary parts vanishing. To find these, the package tells

us, we need only to solve the equations

9x2 − 500 = 0, 5t1 − 2x = 0, t2 − x = 0, t3 − x = 0, τ1 = τ2 = τ3 = y = 0.

(4.6)

Because they only describe a small subset of all of the turning points of the full

potential, these equations are extremely simple in form and may be trivially solved. For

this particular example the physically acceptable turning point that results is a saddle—

something which can be readily ascertained once its location has been discovered.

5. Geometry of Vacuum Spaces

As a final example of what we can do with the simple techniques introduced in Section 2, we

will show how to calculate the vacuum space of a globally supersymmetric gauge theory. It is

a well-known result (see [35] and references therein) that the supersymmetric vacuum space
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Table 1: The set of elementary gauge invariant operators for the electroweak sector of the MSSM.

Type Explicit sum Index Number

LH LiαHβε
αβ i = 1, 2, 3 3

HH HαHβε
αβ 1

LLe LiαL
j

β
ekεαβ i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LHe LiαHβε
αβej i, j = 1, 2, 3 9

ν νi i = 1, 2, 3 1

of such a theory, with gauge group G, can be described as the space of holomorphic gauge

invariant operators (GIOs) built out of F-flat field configurations. What does this space look

like? Consider a space, the coordinates of which are identified with the GIOs of the theory. If

there were no relations amongst the gauge invariant operators, then this space would be the

vacuum space. However, there frequently are relations because of the way in which the GIOs

are built out of the fields. For example, if we have three gauge invariant operators S1, S2, and

S3 which are built out of the fields as S1 = (φ1)2, S2 = (φ2)2, S3 = φ1φ2, then we have the

relation S1S2 = (S3)2. If we take these GIOs to be built out of the F-flat field configurations,

then there will be still further relations among them. The vacuum space of the theory is the

subspace defined by the solutions of these equations describing relations amongst the gauge

invariant operators, once F-flatness has been taken into account.

How can we calculate such a thing? The holomorphic gauge invariant operators of a

globally supersymmetric gauge theory are given in terms of the fields

SI = fI
(
φi
)
. (5.1)

Here SI are our GIOs, and the fI are the functions of the fields that define them. Let us write

the F-terms of the theory as Fi. Consider the following set of equations:

Fi = 0, SI − fI
(
φi
)
= 0. (5.2)

These equations have solutions whenever the SI are given by functions of the fields in the

correct way and when those field configurations which are being used are F-flat. However,

according to the proceeding discussion, we wish to simply have equations in terms of the

GIOs to describe our vacuum space. As in previous sections, we can eliminate the unwanted

variables in our problem, in this case, the fields φi, using the algorithm of Section 2 to obtain

the equations describing the vacuum space.

As a simple example, let us take the electroweak sector of the MSSM [1, 2] (with right-

handed neutrinos). Given the field content of the left-handed leptons, Liα, the right-handed

leptons, ei and νi, and the two Higgs, H and H, one can build the elementary GIOs given in

Table 1. The indices i, j run over the 3 flavours, and the indices α, β label the fundamental of

SU(2).
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To compute the F-terms we require the superpotential. Let us take the most general

renormalizable form which is compatible with the symmetries of the theory and R-parity

Wminimal = C0
∑
α,β

HαH
β
εαβ +

∑
i,j

C3
ije

i
∑
α,β

L
j
αHβε

αβ +
∑
i,j

C4
ijν

iνj +
∑
i

C5
ijν

i
∑
α,β

L
j
αHβε

αβ. (5.3)

Here ε is the invariant tensor of SU(2) and C0, C3
ij , C

4
ij , and C5

ij are constant coefficients.

We now just follow the procedure outlined at the begining of this section. We

calculate the F-terms by taking derivatives of the superpotential, we label the gauge invariant

operators S1 to S23, we form (5.2), and then we simply run the elimination algorithm given

in Section 2.

The result is, upon simplification, given by six quadratic equations in 6 variables. It is

a simple description of an affine version of a famous algebraic variety—the Veronese surface

[1, 2]. What can be done with such a result? The first observation we can make is that this

vacuum space is not a Calabi-Yau. This means, for example, that one can say definitively that

it is not possible to engineer this theory by placing a single D3 brane on a singularity in a

Calabi-Yau manifold, without having to get into any details of model building.

Secondly one can study such vacuum spaces in the hope of finding hints at the

structure of the theory’s higher energy origins. In the case we have studied in this section, for

example, we can “projectivize” (pretend the GIOs are homogeneous coordinates on projective

space rather than flat space coordinates) and study the Hodge diamond of the result. The

structure of supersymmetric field theory tells us that this Hodge diamond should depend

on 4 arbitrary integers, but there is nothing at low energies which prevents us from building

theories with any such integers we like. Interestingly, in the case of electroweak theory, these

integers are all zero or one:

hp,q =

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

=

1

0 0

0 1 0

0 0

1

. (5.4)

Whether this structure is indeed a hint of some high energy antecedent or just

a reflection of the simplicity of the theory is debatable. This example does, however,

demonstrate the idea of searching for such evidence of new physics in vacuum space

structure. We should also add here that similar techniques can be used to show that the

vacuum space of SQCD is a Calabi-Yau [6–8].

6. Final Comments

To conclude we will make several points—one of which is a note of caution, with the rest

being more optimistic. The first point which we will make is that we should be careful lest the

above discussion makes the algorithm we have been describing sound like an all-powerful

tool. There is, as ever, a catch. In this case it is the way the algorithm scales with the complexity

of the problem. A “worst case” upper bound for the degree of the polynomials in a reduced
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Gröbner basis can be found in [36]. If d is the largest degree found in your original set of

equations, then this bound is

2

(
d2

2
+ d

)2n−1

, (6.1)

where n is the number of variables. This worst case bound is therefore scaling doubly

exponentially in the number of degrees of freedom. These very high-degree polynomials

are an indication that the problem is becoming very complex and thus computationally

intensive. Despite this, physically useful cases can be analysed using this algorithm quickly,

as demonstrated in this paper and in the references. This scaling does mean that one is not

likely to gain much by putting one’s problem on a much faster computer. One good point

about (6.1) is that if you can find a way, using physical insight, to simplify the problem under

study, then what you can achieve may improve doubly exponentially. Such a piece of physical

insight was one of the keystones of the application of these methods to finding flux vacua

[11–14].
We finish by commenting that the methods of computational commutative algebra

which we have discussed here are extremely versatile. We have been able to perform three

very different tasks simply utilizing one algorithm in a very simple manner. These methods

are of great utility in problems taken from the literature, and their implementation in a user

friendly way in Stringvacua means that they may be tried out on any given problem with

very little expenditure of time and effort by the researcher. Many more techniques from the

field of algorithmic commutative algebra could be applied to physical systems than those

described here or indeed in the physics literature. We can therefore expect that this subject

will only increase in importance in the future.
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An analytic construction of compact Calabi-Yau manifolds with del Pezzo singularities is found.
We present complete intersection CY manifolds for all del Pezzo singularities and study the
complex deformations of these singularities. An example of the quintic CY manifold with del
Pezzo 6 singularity and some number of conifold singularities is studied in detail. The possibilities
for the “geometric” and ISS mechanisms of dynamical SUSY breaking are discussed. As an
example, we construct the ISS vacuum for the del Pezzo 6 singularity.

1. Motivation

Recently, there has been a substantial progress in Model building involving the D-branes

at the singularities of noncompact Calabi-Yau manifolds. On the one hand, the singularities

provide enough flexibility to find phenomenologically acceptable extensions of the Standard

Model [1, 2] and solve some problems such as finding metastable susy breaking vacua [3, 4].
On the other hand, the presence of the singularity eliminates certain massless moduli, such

as the adjoint fields on the branes wrapping rigid cycles [1, 5].
The main purpose of this paper is to study the del Pezzo and conifold singularities

on compact CY manifolds that may be useful for the compactifications of dynamical SUSY

breaking mechanisms. The stringy reallizations of metastable SUSY breaking vacua have been

known for some time [6, 7]. We will focus on the two recent approaches to the dynamical

SUSY breaking: on the “geometrical” approach of [8, 9] and on the ISS construction [10]. One

of the main goals will be to study the topological conditions for the compactification of the

above constructions.

An important topological property of “geometrical” mechanism is the presence of

several homologous rigid two-cycles. This is not difficult to achieve in the case of conifold

singularities. For example, in the geometric transitions on compact CY manifolds [11, 12],
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several conifolds may be resolved by a single Kahler modulus, that is, the two-cycles at the

tip of these conifolds are homologous to each other. However, this is not always true for the

del Pezzo singularities, that is, the two-cycles in the resolution of del Pezzo singularity may

have no homologous rigid two-cycles on the compact CY. In the paper, we explicitly construct

a compact CY manifold with del Pezzo 6 singularity and a number of conifolds such that

some two-cycles on the del Pezzo are homologous to the two-cycles of the conifolds. This

construction opens up the road for the generalization of geometrical SUSY breaking in the

case of del Pezzo singularities, where one may hope to use the richness of deformations of

these singularity for phenomenological applications.

A more direct way towards phenomenology is provided by the ISS mechanism. The

realization of ISS construction for del Pezzo 5 and 8 singularities was considered in [4]. As

an example, we find an ISS vacuum for the del Pezzo 6 singularity. The del Pezzo 6 surface

can be embedded in 3 by a degree 3 polynomial. This is one of the most simple analytical

representations of del Pezzo surfaces, which enables us to find an analytical embedding of

the corresponding del Pezzo 6 singularity in a compact Calabi Yau manifold, the quintic CY

embedded in 4 by a degree 5 polynomial.

A nice feature of the del Pezzo singularities is that they are isolated. Thus, the fractional

branes, that one typically introduces in these models, are naturally stabilized against moving

away from the singularity. But, for example, in the models involving quotients of conifolds

[3, 13], the singularities are not isolated and one needs to pay special attention to stabilize the

fractional branes against moving along the singular curves.

Apart from the application to SUSY breaking, the construction of compact CY man-

ifolds with del Pezzo singularities may be useful for the study of deformations of these

singularities. In particular, we will be interested in the D-brane interpretation of defor-

mations.

In general, a singularity can be smoothed out in two different ways, it can be either

deformed or resolved (blown up). The former corresponds to the deformations of the

complex structure, described by the elements of H2,1; the latter corresponds to Kähler

deformations given by the elements of H1,1 [14–16]. In terms of the cycles, the resolution

corresponds to blowing up some two-cycles (four-cycles), while the complex deformations

correspond to the deformations of the three-cycles. For example, the conifold can be either

deformed by placing an S3 at the tip of the conifold or resolved by placing an S2 [17]. The

process where some three-cycles shrink to form a singularity and after that the singularity is

blown up is called the geometric transition [11, 12]. For the conifold, the geometric transition

has a nice interpretation in terms of the branes. The deformation of the conifold is induced

by wrapping the D5-branes around the vanishing S2 at the tip [18]. The resolution of the

conifold corresponds to giving a vev to a baryonic operator, that can be interpreted in terms

of the D3-branes wrapping the vanishing S3 at the tip of the conifold [19].
The example of the conifold encourages to conjecture that any geometric transition

can be interpreted in terms of the branes. The nonanomalous (fractional) branes produce the

fluxes that deform the three-cycles. The massless/tensionless branes correspond to baryonic

operators whose vevs are interpreted as the blow-up modes.

However, there are a few puzzles with the above interpretation. In some cases, there

are less deformations than nonanomalous fractional branes; in the other cases there are

deformations but no fractional branes, The quiver gauge theory on the del Pezzo 1 singularity

has a nonanomalous fractional brane; moreover, it has a cascading behavior [20] similar to

the conifold cascade. But it is known that there are no complex deformations of the cone over
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dP1 [21–23]. The relevant observation [24] is that there are no geometric transitions for the

cone over dP1. From the point of view of gauge theory, there is a runaway behavior at the

bottom of the cascade and no finite vacuum [25].
On the other side of the puzzle, there are more complex deformations of higher del

Pezzo singularities, than there are possible fractional branes. It is known that the cone over del

Pezzo n surface has c∨(En) − 1 complex deformations [24], where c∨(En) is the dual Coxeter

number of the corresponding Lie group. For instance, the cone over dP8 has 29 deformations.

But there are only 8 nonanomalous combinations of fractional branes [1].
We believe that these puzzles can be managed more effectively if there were more

examples of compact CY manifolds with local del Pezzo singularities. The advantage of

working with compact manifolds is that they have finite a number of deformations and well-

defined cohomology (there are no noncompact cycles).
The organization of the paper is as follows. In Section 2, we study the singularities

on compact CY manifolds using the quintic CY manifold as an example. We restrict our

attention to isolated singularities that admit crepant resolution, that is, their resolution does

not affect the CY condition. There are two types of primitive isolated singularities on CY 3-

folds: small contractions or conifold singularities, and del Pezzo singularities [26, 27]. We

will study the example of del Pezzo 6 singularity and some number of conifolds on the

quintic. The presence of conifold singularities is important if we want to put fractional branes

at the del Pezzo singularity. Without conifolds, the nonanomalous two-cycles on del Pezzo

(i.e., the ones that do not intersect the canonical class) are trivial within the CY manifold.

It is impossible to put the fractional branes on such “cycles”, because the corresponding RR

fluxes have “nowhere to go.” In the presence of conifolds, some of the two-cycles on del

Pezzo may become homologous to the two-cycles of the conifolds (this will be the case in

our example). Then we can put some number of D5-branes on the two-cycles of del Pezzo

and some number of anti-D5-branes on the two-cycles of the conifolds. Such configuration

of branes and antibranes is a first step in the geometrical SUSY breaking [8, 28]. Also the

possibility to introduce the fractional branes will be crucial for the D-brane realizations of ISS

construction.

In Section 3, we discuss the compactification of the geometrical SUSY breaking and

the ISS model and find an ISS SUSY breaking vacuum in a quiver gauge theory for the dP6

singularity.

In Section 4, we formulate the general construction of compact CY manifolds with del

Pezzo singularities and discuss the complex deformations of these singularities. We observe

that the number of deformations depends on the global properties of the two-cycles on

del Pezzo that do not intersect the canonical class and have self-intersection (−2). Suppose

all such cycles are trivial within the CY, then the singularity has the maximal number of

deformations. This will be the case for our embeddings of del Pezzo 5, 6, 7, and 8 singularities

and for the cone over 1× 1. In the case of dP0 = 2 and dP1 singularities, we do not expect to

find any deformations. In the case of del Pezzo 2, 3, and 4, our embedding leaves some of the

(−2) two-cycles nontrivial within the CY; accordingly, we find less complex deformations.

This result can be expected, since it is known that the del Pezzo singularities for n ≤ 4

in general cannot be represented as complete intersections [27, 29]. In our case, the del

Pezzo singularities are complete intersections but they are not generic. Specific equations

for embedding of del Pezzo singularities and their deformations are provided in the

appendix.

Section 5 contains discussion and conclusions.
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2. Del Pezzo 6 and Conifold Singularities on the Quintic CY

The CY manifolds can have two types of primitive isolated singularities: conifold singu-

larities and del Pezzo singularities [26, 27]. Correspondingly, we will have two types of

geometric transitions.

(1) Type I, or conifold transitions: several 1’s shrink to form conifold singularities and

then these singularities are deformed.

(2) Type II, or del Pezzo transition: a del Pezzo shrinks to a point and the corresponding

singularity is deformed.

In order to illustrate the geometric transitions, we will study a particular example of

transitions on the quintic CY. The example is summarized in the diagram in Figure 1. The type

I transitions are horizontal, whereas the type II transitions are vertical. It is known [24] that

the maximal number of deformations of a cone over dP6 is c∨(E6) − 1 = 11, where c∨(E6) = 12

is the dual Coxeter number of E6. Going along the left vertical arrow we recover all complex

deformations of the cone over dP6. In this case, all the two-cycles that do not intersect the

canonical class on dP6 are trivial within the CY.

For the CY with both del Pezzo and conifold singularities, the deformation of the del

Pezzo singularity has only 7 parameters (right vertical arrow). The del Pezzo surface is not

generic in this case. It has a two-cycle that is nontrivial within the full CY and does not

intersect the canonical class inside del Pezzo. As a general rule, the existence of nontrivial

two-cycles reduces the number of possible complex deformations.

The horizontal arrows represent the conifold transitions. In our example, we have 36

conifold singularities on the quintic CY. These singularities have 35 complex deformations.

In the presence of dP6 singularity, there will be only 32 conifolds that have, respectively,

31 complex deformations. (It may seem puzzling that we need exactly 36 or 32 conifolds.

One can easily find the examples of quintic CY with fewer conifold singularities. But it is

impossible to blow up these singularities unless we have a specific number of them at specific

locations. In the example considered in [11, 12], the quintic CY has 16 conifolds placed at a
2 inside the CY.)

In general, the del Pezzo singularity and the conifold singularities are away from

each other but they still affect the number of complex deformations, that is, the presence

of conifolds reduces the number of deformations of del Pezzo singularity and vice versa. The

diagram in Figure 1 is commutative, and the total number of complex deformations of the

CY with the del Pezzo singularity and 32 conifold singularities is 42. But the interpretation

of these deformations changes whether we first deform the del Pezzo singularity or we first

deform the conifold singularities.

Before we go to the calculations, let us clarify what we mean by the deformations of

the del Pezzo singularity. We will distinguish three kinds of deformations. The deformations

of the shape of the cone, the deformations of the blown up del Pezzo with fixed canonical

class and deformations that smooth out the singularity.

The first kind of deformations corresponds to the general deformations of del Pezzo

surface at the base of the cone. Recall that the dPn surface for n > 4 has 2n − 8 deformations

that parameterize the superpotential of the corresponding quiver gauge theory [5].
The second kind of deformations is obtained by blowing up the singularity and fixing

the canonical class on the del Pezzo. In this case, the deformations of del Pezzo n surface can

be described as the deformations of En singularity on the del Pezzo [30]. The deformations

of this singularity have n parameters, corresponding to the n two-cycles that do not intersect
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Smooth quintic CY Y3 (1, 101)

Y3 (2, 90) with dP6 singularity

∆h2,1 = 11 ∆h2,1 = 7

∆h2,1 = 31

∆h2,1 = 35
Y3 (2,66) with 36 conifolds

Y3 (3,59) with dP6 singularity

and 32 conifolds

Figure 1: Possible geometric transitions of quintic CY. The numbers in parentheses denote the dimensions
(h1,1, h2,1).

the canonical class. Note that the intersection matrix of these two-cycles is (minus) the Cartan

matrix of En. The En singularity on the del Pezzo is an example of du Val surface singularity

[31] (also known as an ADE singularity or a Kleinian singularity). A three-dimensional

singularity that has a du Val singularity in a hyperplane section is called compound du Val

(cDV) [26, 31]. The conifold is an example of cDV singularity since it has the A1 singularity

in a hyperplane section. The generalized conifolds [32, 33] also have an ADE singularity

in a hyperplane section, that is, from the 3-dimensional point of view they correspond to

some cDV singularities. In terms of the large N gauge/string duality, the deformation of the

En generalized conifold singularity corresponds to putting some combination of fractional

branes on the zero size two-cycles at the singularity. Hence, the deformtion of cDV singularity

that restricts to En singularity on the del Pezzo can be considered as a generalized type I

transition.

We will be mainly interested in the the third type of deformations that correspond

to smoothing of del Pezzo singularities. These deformations make the canonical class of del

Pezzo surface trivial within the CY. If we put some number of nonanomalous fractional D-

branes at the singularity, then the corresponding geometric transition smooths the singularity

[24]. But not all the deformations can be described in this way.

In order to get some intuition about possible interpretations of these deformations,

we will consider the del Pezzo 6 singularity. It is known that the dP6 singularity has 11

complex deformations [21, 34] but there are only 6 nonanomalous fractional branes in the

corresponding quiver gauge theory and there are only 6 two-cycles that do not intersect the

canonical class [24]. It will prove helpful to start with a quintic CY that has 36 conifold

singularities. The del Pezzo 6 singularity can be obtained by merging four conifolds at

one point. There are 7 deformations of del Pezzo 6 singularity that separate these four

conifolds (right vertical arrow). The remaining 4 deformations of dP6 cone correspond to

4 deformations of the four “hidden” conifolds at the singularity. Note that the total number

of deformations is 11 (left vertical arrow).

2.1. Quintic CY

The description of the quintic CY is well known [16]. Here, we repeat it in order to recall the

methods [16] of finding the topology and deformations that we use later in more difficult

situations.
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The quintic CY manifold Y3 is given by a degree five equation in 4

Q5(zi) = 0, (2.1)

where (z0, z1, z2, z3, z4) ∈ 4. The total Chern class of this manifold is

c(Y3) =
(1 +H)5

1 + 5H
= 1 + 10H2 − 40H3 (2.2)

and the first Chern class c1(Y3) = 0.

Let us calculate the number of complex deformations. The complex structures are

parameterized by the coefficients in (2.1) up to the change of coordinates in 4. The number

of coefficients in a homogeneous polynomial of degree n in k variables is

(
n + k − 1

n

)
=

(n + k − 1)!
n!(k − 1)!

. (2.3)

In the case of the quintic in 4, the number of coefficients is

(
9

5

)
=

9!

5!4!
= 126. (2.4)

The number of reparametrizations of 4 is equal to dimGl(5) = 25. Thus, the dimension of

the space of complex deformations is 101.

The number of complex deformations of CY threefolds is equal to the dimension of

H2,1 cohomology group

h2,1 = h1,1 − χ

2
, (2.5)

where h1,1 can be found via the Lefschetz hyperplane theorem [16, 35]

h1,1(Y3) = h1,1
(

4
)
= 1 (2.6)

and the Euler characteristic is given by the integral of the highest Chern class over Y3

χ =
∫
Y3

c3 =
∫

4

−40H3 ∧ 5H = −200, (2.7)

here, we have used that 5H is the Poincare dual class to Y3 inside 4. Consequently, h2,1 = 101

which is consistent with the number of complex deformations found before.
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2.2. Quintic CY with dP6 Singularity

Suppose that the quintic equation is not generic but has a degree three zero at the point

(w0, w1, w2, w3, w4) = (0, 0, 0, 0, 1),

P3(w0, . . . , w3)w2
4 + P4(w0, . . . , w3)w4 + P5(w0, . . . , w3) = 0, (2.8)

where Pn’s denote degree n polynomials. The shape of the singularity is determined by

P3(w0, . . . , w3) (we will see that this polynomial defines the del Pezzo at the tip of the cone).
The deformations that smooth out the singularity correspond to adding less singular terms

to (2.8), that is, the terms that have bigger powers of w4.

The resolution of the singularity in (2.8) can be obtained by blowing up the point

(0, 0, 0, 0, 1) ∈ 4. Away from the blowup, we can use the following coordinates on 4:

(w0, . . . , w3, w4) = (tz0, . . . , tz3, s), (2.9)

where (s, t) ∈ 1 and (z0, . . . , z3) ∈ 3. The blowup of the point at t = 0 corresponds to

inserting the 3 instead of this point. Hence, the points on the blown up 4 can be

parameterized globally by (z0, . . . , z3) ∈ 3 and (s, t) ∈ 1. The projective invariance (s, t) ∼
(λs, λt) corresponds to the projective invariance in the original 4. In order to compensate for

the projective invariance of 3, we need to assume that locally the coordinates on 1 belong

to the following line bundles over 3, s ∈ O and t ∈ O(−H). Thus, the blowup of 4 at a point

is a 1 bundle over 3 obtained by projectivization of the direct sum of O 3 and O 3(−H)
bundles, ˜4 = P(O 3 ⊕O 3(−H)) (for more details on projective bundles see, e.g., [36, 37]). In

working with projective bundles, we will use the technics similar to [37].
Using parametrization (2.9), we can write the equation on the blown up 4 as

P3(z0, . . . , z3)s2 + P4(z0, . . . , z3)st + P5(z0, . . . , z3)t2 = 0. (2.10)

This equation is homogeneous of degree two in the coordinates on 1 and degree three in the

zi’s. Note that t ∈ O(−H), that is, it has degree (−1) in the zi’s and s ∈ O has degree zero.

Let us prove that the manifold defined by (2.10) has vanishing first Chern class, that

is, it is a CY manifold. Let H be the hyperplane class in 3 and G the hyperplane class on the
1 fibers. Let M = P(O 3 ⊕ O 3(−H)) denote the 1 bundle over 3. The total Chern class of

M is

c(M) = (1 +H)4(1 +G)(1 +G −H), (2.11)

where (1 +H)4 is the total Chern class of 3, (1 +G) corresponds to s ∈ O 3, and (1 +G −H)
corresponds to t ∈ O 3(−H). Note that G(G −H) = 0 on this 1 bundle and, as usual, H4 = 0

on the 3.

Let Y3 denote the surface embedded in M by (2.10). Since the equation has degree 3 in

zi and degree two in (s, t), the class Poincare dual to Y3 ⊂ M is 3H + 2G and the total Chern

class is

c(Y3) =
(1 +H)4(1 +G)(1 +G −H)

1 + 3H + 2G
. (2.12)

Expanding c(Y3), it is easy to check that c1(Y3) = 0.
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The intersection of Y3 with the blown up 3 at t = 0 is given by the degree three

equation P3(z0, . . . , z3) = 0 in 3. The surface B defined by this equation is the del Pezzo 6

surface [16, 35]. The total Chern class and the Euler character of B

c(B) =
(1 +H)4

1 + 3H
= 1 +H + 3H2, (2.13)

χ(B) =
∫
B

c2(B) =
∫

3

3H2 ∧ 3H = 9. (2.14)

In the calculation of χ(B), we have used that 3H is the Poincare dual class to B inside 3.

It is known that the normal bundle to contractable del Pezzo in a CY manifold is

the canonical bundle on del Pezzo [38]. Let us check this statement in our example. The

canonical class is minus the first Chern class that can be found from (2.13) (Slightly abusing

the notations, we denote by H both the class of 3 and the restriction of this class to B ∈ 3.)

K(B) = −H. (2.15)

The coordinate t describes the normal direction to B inside Y3. Since t ∈ O 3(−H), restricting

to B we find that t belongs to the canonical bundle over B. Hence locally, near t = 0, the CY

threefold Y3 has the structure of the CY cone over the del Pezzo 6 surface.

The smoothing of the singularity corresponds to adding less singular terms in (2.8).
These terms have 15 parameters, but also we get back 4 reparametrizations (now, we can

add w4 to the other coordinates). Hence, smoothing of the singularity corresponds to 11

complex structure deformations that is the maximal expected number of deformations of dP6

singularity.

In view of applications in Section 4, let us describe the geometric transition between

the CY with the resolved dP6 singularity and a smooth quintic CY in more details. As we have

shown above, the CY with the blown up dP6 singularity can be described by the following

equation in the 1 bundle over 3:

P3(z0, . . . , z3)s2 + P4(z0, . . . , z3)st + P5(z0, . . . , z3)t2 = 0. (2.16)

This equation can be rewritten as

P3(tz0, . . . , tz3)s2 + P4(tz0, . . . , tz3)s + P5(tz0, . . . , tz3) = 0. (2.17)

Next, we note that, being a projective bundle, M is equivalent [35, 36] to P(O 3(H) ⊕ O 3),
where locally s and t are sections of O 3(H) and O 3, respectively. We further observe that

tzi, i = 0 · · ·3 are also sections of O 3(H) and the equivalence (t, s) ∼ (λt, λs) induces the

equivalence (tz0, . . . , tzi, s) ∼ (λtz0, . . . , λtzi, λs). Consequently, if we blow down the section

t = 0 of M, then (tz0, . . . , tzi, s) ∈ 4. Now, we define (w0, . . . , w3, w4) = (tz0, . . . , tz3, s) and

rewrite (2.17) as

P3(w0, . . . , w3)w2
4 + P4(w0, . . . , w3)w4 + P5(w0, . . . , w3) = 0. (2.18)

Not surprisingly, we get back (2.8).



Advances in High Energy Physics 9

Above we have found that there are 11 complex deformations of the dP6 singularity

embedded in the quintic CY manifold. In the view of further applications, let us rederive the

number of complex deformations by calculating the dimension of H2,1.

Expanding (2.12), we get the third Chern class

c3(Y3) = −2G3 − 13HG2 − 17H2G − 8H3. (2.19)

The Poincare dual class to Y3 ∈M is 3H + 2G and

χ(Y3) =
∫
Y3

c3(Y3) =
∫
M

c3(Y3) ∧ (3H + 2G). (2.20)

In calculating this integral, one needs to take into account that G(G −H) = 0 on M. Finally,

we get

χ(Y3) = −176,

h2,1 = h1,1 − χ

2
= 90.

(2.21)

The number of complex deformations of the del Pezzo singularity is 101 − 90 = 11, which is

consistent with the number found above.

2.3. Quintic CY with 36 Conifold Singularities

In this subsection, we use the methods of geometric transitions [11, 12, 16] to find the quintic

CY with conifold singularities, that is, we describe the upper horizontal arrow in Figure 1.

Consider the system of two equations in 4 × 1

P3u + R3v = 0,

P2u + R2v = 0,
(2.22)

where (u, v) ∈ 1 and Pn, Rn denote polynomials of degree n in 4.

Suppose that at least one of the polynomials P3, R3, P2, and R2 is nonzero, then we can

solve for u, v and substitute in the second equation, where we get

P3R2 − R3P2 = 0, (2.23)

a nongeneric quintic in 4. The points where P3 = R3 = P2 = R2 = 0 (but otherwise generic)
have conifold singularities. There are 3·3·2·2 = 36 such points. The system (2.22) describes the

blowup of the singularities, since every singular point is replaced by the 1 and the resulting

manifold is non singular.
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Let H be the hyperplane class of 4 and G by the hyperplane class of 1, then the total

Chern class of Y3 is

c =
(1 +H)5(1 +G)2

(1 + 3H +G)(1 + 2H +G)
, (2.24)

since c1 = 0, Y3 is a CY.

By Lefschetz hyperplane theorem h1,1(Y3) = h1,1( 4 × 1) = 2, there are only two

independent Kahler deformations in Y3. One of them is the overall size of Y3 and the other is

the size of the blown up 1’s. Thus, the 36 1’s are not independent but homologous to each

other and represent only one class in H2(Y3). If we shrink the size of blown up 1’s to zero,

then we can deform the singularities of (2.23) to get a generic quintic CY. In this case, the 35

three chains that where connecting the 36 1’s become independent three cycles. Thus, we

expect the general quintic CY to have 35 more complex deformations than the quintic with

36 conifold singularities.

Calculating the Euler character similarly to the previous subsections, we find

h2,1 = 66. (2.25)

Recall that the smooth quintic has 101 complex deformations. Thus, the quintic with 36

conifold singularities has 101 − 66 = 35 less complex deformations than the generic one.

2.4. Quintic CY with dP6 Singularity and 32 Conifold Singularities

The equation for the quintic CY manifold with the blown up dP6 singularity was found in

(2.10). Here, we reproduce it for convenience

P3(zi)s2 + P4(zi)st + P5(zi)t2 = 0. (2.26)

This equation describes an embedding of the CY manifold in the 1 bundle M = P(O 3 ⊕
O 3(−H)). As before, (z0, . . . , z3) ∈ 3 and (s, t) are the coordinates on the 1 fibers over 3.

In order to have more Kahler deformations, we need to embed (2.26) in a space with

more independent two-cycles. For example, we can consider a system of two equations in the

product ( 1 bundle over 3) × 1

(P1s + P2t)u + (Q1s +Q2t)v = 0,

(R2s + R3t)u + (S2s + S3t)v = 0,
(2.27)

where (u, v) are the coordinates on the additional 1. Let G, H , and K be the hyperplane

classes on the 1 fibers, on the 3, and on the additional 1, respectively. Then, the total Chern

class of Y3 is

c =
(1 +H)4(1 +G)(1 +G −H)(1 +K)2

(1 +H +G +K)(1 + 2H +G +K)
, (2.28)

and it is easy to see that the first Chern class is zero.
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For generic points on the 1 bundle over 3, at least one of the functions in front of u or

v is nonzero. Thus, we can find a point (u, v) and substitute it in the second equation, which

becomes a nongeneric equation similar to (2.26)

(P1S2 −Q1R2)s2 + (P1S3 + P2S2 −Q1R3 −Q2R2)st + (P2S3 −Q2R3)t2 = 0. (2.29)

The CY manifold defined in (2.27) has the following characteristics:

χ =
∫
Y3

c3 = −112,

h1,1 = 3,

h2,1 = h1,1 − χ

2
= 59.

(2.30)

Recall that the number of complex deformations on the quintic with the del Pezzo 6

singularity is 90. Since we lose 31 complex deformations, we expect that the corresponding

three-cycles become the three chains that connect 32 1’s at the blowups of the singularities

in (2.29). These singularities occur when all four equations in (2.27) vanish

R2s + R3t = 0,

S2s + S3t = 0,

P1s + P2t = 0,

Q1s +Q2t = 0.

(2.31)

The number of solutions equals the number of intersections of the corresponding classes∫
M
(2H +G)2(H +G) = 32, where M is the 1 bundle over 3 and G(G −H) = 0.

The right vertical arrow corresponds to smoothing of del Pezzo singularity in the

presence of conifold singularities. Before the transition, the CY has h2,1 = 59 deformations and

after the transition it has h2,1 = 66 deformations. Hence, the number of complex deformations

of dP6 singularity is 66 − 59 = 7 which is less than c∨(E6) − 1 = 11. This is related to the fact

that the del Pezzo at the tip of the cone is not generic. The equation of the del Pezzo can be

found by restricting (2.27) to t = 0, s = 1 section

P1u +Q1v = 0,

R2u + S2v = 0.
(2.32)

This del Pezzo contains a two-cycle α that is nontrivial within the full CY and does not

intersect the canonical class inside dP6.

In the rest of this subsection, we will argue that α is homologous to four 1’s at the tip

of the conifolds. The heuristic argument is the following. The formation of dP6 singularity on

the CY manifold with 36 conifolds reduces the number of conifolds to 32. Let us show that the

deformation of the del Pezzo singularity that preserves the conifold singularities corresponds
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to separating 4 conifolds hidden in the del Pezzo singularity. The CY that has a dP6 singularity

and 32 resolved conifolds can be found from (2.27) by the following coordinate redefinition

(w0, . . . , w3, w4) = (tz0, . . . , tz3, s) (compare to the discussion after (2.17)):

(P1w4 + P2)u + (Q1w4 +Q2)v = 0,

(R2w4 + R3)u + (S2w4 + S3)v = 0.
(2.33)

If we blow down the 1, then we get the quintic CY with 32 conifold singularities and a dP6

singularity. For a finite size 1, the conifold singularities and one of the two-cycles in the dP6

are blown up. The deformations of dP6 singularity correspond to adding terms with higher

power of w4. After the deformation, the degree two zeros of R2 and S2 will split into four

degree one zeros that correspond to the four conifolds “hidden” in the dP6 singularity. The

blown up two-cycle of dP6 is homologous to the two-cycles on the four conifolds. (Formally,

we can prove this by calculating the corresponding Poincaré dual classes. The Poincaré dual

of 1 on the blown up conifold is H3G—this is the 1 parameterized by (u, v). The Poincaré

dual of the canonical class on dP6 is (G−H)(H +K)(2H +K)(−H), where (G−H) restricts to

t = 0 section of the 1 bundle, (H +K)(2H +K) restricts to dP6 in (2.32), while the restriction

of (−H) is the canonical class on dP6 (see (2.15)). The class that does not intersect (−H) inside

dP6 is dual to (G −H)(H +K)(2H +K)(2H − 3G) = 4H3G, q.e.d.)

3. SUSY Breaking

In this paper, we compare two mechanisms for dynamical SUSY breaking: the “geometrical”

approach of Aganagic et al. [8] and a more “physical” approach of ISS [10].
In both approaches, there is a confinement in the microscopic gauge theory leading to

the SUSY breaking in the effective theory. But the particular mechanisms and the effective

theories are quite different. In the “geometrical” approach the effective theory is a non-SUSY

analog of Veneziano-Yankielowicz superpotential [39] for the gaugino bilinear field S. This

potential has an interpretation as the GVW superpotential [40] for the complex structure

moduli of the CY manifold. The original Veneziano-Yankielowicz potential [39] is derived for

the pure YM theory without any flavors. It has a number of isolated vacua and no massless

fields. This is a nice feature for the (meta) stability of the vacuum but, since all the fields are

massive, the applications of this potential in the low-energy effective theories are limited (see,

e.g., the discussion in [41]).
In the ISS construction, the number of flavors is bigger than the number of colors

Nc < Nf < 3/2Nc (and probably Nf = Nc). After the confinement, the low-energy effective

theory contains classically massless fields that get some masses only at 1 loop. Hence, this

theory is a more genuine effective theory but the geometric interpretation is harder to achieve

[3]. Moreover, the geometric constructions similar to [3] generally have D5-branes wrapping

vanishing cycles. In any compactification of these models, one has to put the O-planes or anti

D5-branes somewhere else in the geometry, that is, the analysis of [8, 9] becomes inevitable.

In summary, it seems that the ISS construction is more useful for immediate applica-

tions to SUSY breaking in the low-energy effective theories, whereas more global geometric

analysis of [8, 9] becomes inevitable in the compactifications.

In the previous section, we constructed the compact CY with del Pezzo 6 singularity

and some number of conifold singularities. We have shown that it is possible to make some
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two-cycles on del Pezzo homologous to the two-cycles on the conifolds. This is the first step

in the geometric analysis of [8]. In the next subsection, we show how the ISS story can be

represented in the del Pezzo 6 quiver gauge theories.

3.1. ISS Vacuum for the dP6 Singularity

Consider the quiver gauge theory for the cone over dP6 represented in Figure 2. This quiver

can be found by the standard methods [1] from the three-block exceptional collection of

sheaves [42]. But, in order to prove the existence of this quiver, it is easier to do the Seiberg

dualities on the nodes 4, 5, 6, and 1 and reduce it to the known dP6 quiver [2].

In the compact CY manifold, one can put the D5-branes only on cycles that are

nontrivial globally. A deformation of the dP6 singularity in (2.33) leaves four conifold

singularities. We will assume that after joining the 4 conifolds to form a dP6 singularity the

two-cycles remain nontrivial. We also expect that these two-cycles are represented by the four

two-cycles on del Pezzo that have self-intersection (−2) and do not intersect with each other.

Note that the total number of nonanomalous fractional branes and the number of (−2) two-

cycles is 6, but there are only 4 two-cycles that do not intersect with each other and with the

canonical class. (It is interesting to note the similarity between the branes wrapping the non

intersecting cycles on dP6 and the deformation D-branes in [3, 23].)
Let Ai denote the two-cycle corresponding to the D5-brane charge [1] of the bound

state of branes at the ith node in Figure 2. Then, the four non intersecting (−2) two-cycles

can be chosen as A2-A3, A4-A5, A6-A7, and A8-A9. Now, we would like to add K fractional

branes to A4-A5 and N fractional branes to A6-A7 and to A8-A9. The corresponding quiver is

depicted in Figure 3.

The gauge groups at the nodes 6 and 8 have Nf = Nc. Consider the Seiberg duality

in the strong coupling limit of these gauge groups. The moduli space consists of the mesonic

and the baryonic branches [43, 44]. Suppose we are on the baryonic branch. For the generic

Yukawa couplings, the two mesons Φ = BC couple linearly to the fields A and become

massive together with two of the A fields.

An important question is whether the baryons for the gauge groups in nodes 6 and

8 remain massless. The baryons are charged under the baryonic U(1)B symmetries. In the

noncompact setting, these U(1)B symmetries are global [45]. If the baryons get vevs, then the

symmetries are broken spontaneously and there are massless goldston bosons. But for the

compact CY manifold the U(1)B symmetries are gauged and the goldstone bosons become

massive [13, 45] through the Higgs mechanism. Integrating out the massive fields, we get the

quiver in Figure 4.

Next, we assume that the strong coupling scale for the gauge group SU(N + K) at

node 4 is bigger than the scale for the SU(2N). This assumption does not include a lot of

tuning especially if K N. The number of flavors for the gauge group SU(N + K) is Nf =
2N > Nc = N + K. Consequently, we can assume that the mesons do not get VEVs after

the confinement of SU(N +K) and remain massless. The corresponding quiver is shown in

Figure 5. The subscripts of the bifundamental fields denote the gauge groups at the ends of

the corresponding link. The subscript k = 2, 3 labels the two U(N) gauge groups on the left.

For example, Ak1 denotes both the field A21 going from the node 2 to the node 1 and A31

going from 3 to 1.
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Figure 5: Quiver gauge theory for the cone over dP6 after Seiberg duality on node 4.

The superpotential of the quiver gauge theory in Figure 5 has the form

W = Tr(mA21M12 +mA31M13)

+ Tr
(
λM12C̃24B̃41 + λA21B15C52 + λM13C̃34B̃41 + λA31B15C53

)
.

(3.1)

In order to make the notations shorter, we do not write the subscripts of the couplings. (The

couplings are different but have the same order of magnitude.)
If Λ1 for the SU(2N) gauge group at node 1 is close to Λ4 for SU(N + K) at node

4 in Figure 4, then it is natural to assume that for small values of corresponding Yukawa

couplings the mass parameters m satisfy m � Λ1. Now, we note that the SU(2N) gauge

group has Nc = 2N and Nf = 3N − K, that is, Nc + 1 ≤ Nf < 3/2Nc. This group is a

good candidate for the the microscopic gauge group in the ISS construction. After the Seiberg

duality, the magnetic gauge group has Ñc =N −K. The superpotential of the dual theory is

W̃ = Tr(mM22 +mM33)

+ Tr
(
λM22M̃21Ã12 + λM33M̃31Ã13

)
+ Tr
(
mM42C̃24 +mM25C52 +mM43C̃34 +mM35C53

)
+ Tr

(
λM42M̃21

˜̃
B14 + λM25B̃51Ã12 + λM43M̃31

˜̃
B14 + λM35B̃51Ã13

)
.

(3.2)

The indices of the meson fields correspond to the two gauge groups under which they

transform. In our case, this leads to unambiguous identifications, for example,M22 = A21M12,
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M33 = A31M13, M42 = B̃41M12, and so forth. The mesons M22 and M33 are in adjoint

representation of SU(N)2 and SU(N)3, and their F-term equations read

m · 1 + λM̃21Ã12 = 0,

m · 1 + λM̃31Ã13 = 0,
(3.3)

where 1 is the N ×N identity matrix. The Seiberg dual gauge group at node 1 is SU(N −K);
hence the rank of the matrices M̃21 and so forth, is at most N −K and the SUSY is broken by

the rank condition of [10]. Classically, there are massless excitations around the vacua in (3.3).
In order to prove that the vacuum is metastable, one has to check that these fields acquire a

positive mass at 1 loop. Similarly to [10], we expect this to be true, but a more detailed study

is necessary.

As a summary, in this section we have found an example of dymanical SUSY breaking

in the quiver gauge theory on del Pezzo singularity. An interesting property of this example

is that there are massless chiral fields after the SUSY breaking. This behavoir seems to be

quite generic, and we expect that similar constructions are possible for other del Pezzo

singularities.

4. Compact CY Manifolds with Del Pezzo Singularities

Noncompact CY singularities are useful in constructing local geometries that enable

SUSY breaking configurations of D-branes. However, for a consistent embedding of these

constructions in string theory, one needs to find compact CY manifolds that posses the

corresponding singularities.

The noncompact CY manifolds with del Pezzo singularities are known [27, 29]. The

dPn singularities for 5 ≤ n ≤ 8 and for the cone over 1 × 1 can be represented as complete

intersections. (Note that in the mathematics literature, the del Pezzo surfaces are classified by

their degree k = 9−n, where n is the number of blown up points in 2.) The CY cones over 2

and dPn for 1 ≤ n ≤ 4 are not complete intersections. The compact CY manifolds for complete

intersection singularities where presented in [34].
Our construction is different from [34]. It enables one to construct the complete

intersection compact CY manifolds for all del Pezzo singularities. This construction does

not contradict the statement that for n ≤ 4 the del Pezzo singularities are not complete

intersections. The price we have to pay is that these singularities will not be generic, that

is, they will not have the maximal number of complex deformations. Whereas for the del

Pezzo singularities with n ≥ 5 and for 1 × 1 we will represent all complex deformations in

our construction.

4.1. General Construction

At first, we present the construction in the case of dP6 singularity and, then, give a more

general formulation.

The input data is the embedding of dP6 surface in 3 via a degree three equation. The

problem is to find a CY threefold such that it has a local dP6 singularity. The solution has

several steps.
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(1) Find the canonical class on B = dP6 in terms of a restriction of a class on 3. Let us

denote this class as K ∈ H1,1( 3). K can be found from expanding the total Chern

class of B

c(B) =
(1 +H)4

1 + 3H
= 1 +H + · · · . (4.1)

Thus, K = −c1(B) = −H .

(2) Construct the 1 fiber bundle over 3 as the projectivisation M = P(O 3 ⊕ O 3(K)).

(3) The Calabi-Yau Y3 is given by an equation of degree 3 in 3 and degree 2 in the

coordinates on the fiber. The total Chern class of Y3 is

c(Y3) =
(1 +H)4(1 +G −H)(1 +G)

1 + 3H + 2G
. (4.2)

This has a vanishing first Chern class. By construction, this Calabi-Yau has a del

Pezzo singularity at t = 0.

This construction has a generalization for the other del Pezzo surfaces. Let B denote

a del Pezzo surface embedded in X as a complete intersection of a system of equations [16].
Assume, for concreteness, that the system contains two equations and denote by L1 and L2 the

classes corresponding to the divisors for these two equations in X. The case of other number

of equations can be obtained as a straightforward generalization.

(1) First, we find the canonical class of surface B ⊂ X, defined in terms of two equations

with the corresponding classes L1, L2 ∈ H1,1(X),

c(B) =
c(X)

(1 + L1)(1 + L2)
= 1 + c1(X) − L1 − L2 + · · · . (4.3)

Thus, the canonical class of X is obtained by the restriction of K = L1 + L2 − c1(X).

(2) Second, we construct the 1 fiber bundle overX as the projectivisation M = P(OX ⊕
OX(K)).

(3) In the case of two equations, the Calabi-Yau manifold Y3 ⊂ M is not unique. Let G

be the hyperplane class in the fibers, then we can write three different systems of

equations that define a CY manifold: the classes for the equations in the first system

are L1+2G and L2, the second one has L1+G and L2+G, and the third one has L1 and

L2 + 2G (here L1, L2 ∈ H1,1(M) are defined via the pull back of the corresponding

classes in H1,1(X) with respect to the projection of 1 the fibers π : M → X).

As an example, let us describe the first system. The first equation in this system is

given by L1 in X and has degree 2 in the coordinates on the fibers. The second equation is L2

in X. The total Chern class is

c(Y3) =
c(X)(1 +G +K)(1 +G)
(1 + L1 + 2G)(1 + L2)

. (4.4)
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Since K = L1 + L2 − c1(X), it is straightforward to check that the first Chern class is

trivial.

Let us show how this program works in an example of a CY cone over B = 1× 1. The
1 × 1 surface can be embedded in 3 by a generic degree two polynomial equation [16, 35]

P2(zi) = 0, (4.5)

where (z0, . . . , z3) ∈ 3. (By coordinate redefinition in 3 one can represent the equation as

z0z3 = z1z2. The solutions of this equation can be parameterized by the points (x1, y1) ×
(x2, y2) ∈ 1 × 1 as (z0, z1, z2, z3) = (x1x2, x1y2, y1x2, y1y2). This is the Segre embedding

1 × 1 ⊂ 3.)
The first step of the program is to find the canonical class of B in terms of a class in 3.

Let H be the hyperplane class of 3. Then, the total Chern class of B is

c(B) =
(1 +H)4

1 + 2H
= 1 + 2H + 2H2. (4.6)

The canonical class is

K(B) = −c1(B) = −2H. (4.7)

Next, we construct the 1 bundle M = P(O 3 ⊕ O 3(K)) with the coordinates (s, t)
along the fibers, where locally s ∈ O 3 and t ∈ O 3(−2H). The equation that describes the

embedding of the CY manifold Y3 in M is

P2(zi)s2 + P4(zi)st + P6(zi)t2 = 0. (4.8)

This equation is homogeneous in zi of degree two, since t has degree −2.

The section of M at t = 0 is contractable, and the intersection with the Y3 is P2(zi) = 0,

that is, Y3 is the CY cone over 1 × 1 near t = 0.

The total Chern class of Y3 is

c(Y3) =
(1 +H)4(1 +G)(1 +G − 2H)

1 + 2H + 2G
. (4.9)

It is easy to check that c1(Y3) = 0.

4.2. A Discussion of Deformations

In this subsection, we will discuss the deformations of the del Pezzo singularities in the

compact CY spaces. The explicit description of the singularities and their deformations can

be found in the appendix.

The procedure is similar to the deformation of the dP6 singularity described in

Section 2. As before, let Y3 ⊂ M be an embedding of the CY threefold Y3 in M, a 1 bundle

over products of (weighted) projective spaces. If we blowdown the section of the 1 bundle
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that contains the del Pezzo, then M becomes a toric variety that we denote by V . After the

blowdown, equation for the CY in M becomes a singular equation for a CY embedded in

V . The last step is to deform the equation in V to get a generic CY. (In the example of dP6

singularity on the quintic, the projective bundle is M = P(O 3 ⊕ O 3(−H)), the manifold V ,

obtained by blowing down the exceptional 3 in M, is 4, and the singular equation is the

singular quintic in 4.)
Let n denote the number of two-cycles on del Pezzo with self-intersection (−2). The

intersection matrix of these cycles is minus the Cartan matrix of the corresponding Lie algebra

En.

The maximal number of complex deformations of del Pezzo singularity is c∨(En) − 1,

where c∨(En) is the dual Coxeter number of En. These deformations can be performed only if

the del Pezzo has a zero size. As a result of these deformations, the canonical class on the del

Pezzo becomes trivial within the CY and the del Pezzo singularity is partially or completely

smoothed out. In the generic situation, we expect that all (−2) two-cycles on del Pezzo are

trivial within the CY, then the number of complex deformations is maximal (this will be the

case for 1 × 1, dP5, dP6, dP7, dP8). If some of the (−2) two-cycles become nontrivial within

the CY, then the number of complex deformations of the corresponding cone is smaller. We

will observe this for our embedding of dP2, dP3, and dP4. This reduction of the number of

complex deformations depends on the particular embedding of del Pezzo cone. In [8], the

generic deformations of the cones over dP2 and dP3 were constructed (Tables 1 and 2).

5. Conclusions and Outlook

In this paper, we have constructed a class of compact Calabi-Yau manifolds that have del

Pezzo singularities. The construction is analytic, that is, the CY manifolds are described by a

system of equations in the 1 bundles over the projective spaces.

We argue that this construction can be used for the geometrical SUSY breaking [8] as

well as for the compactification of ISS [10]. As an example, we find a compact CY manifold

with del Pezzo 6 singularity and some conifolds such that some 2-cycles on del Pezzo are

homologous to the 2-cycles on the conifolds, that is, this manifold can be used for the

geometrical SUSY breaking. Also we find an ISS vacuum in the quiver gauge theory for dP6

singularity.

In order to have a consistent string theory representation of the SUSY breaking vacua,

one needs to find compact CY manifolds that have the necessary local singularities. In the

last section, we present embedding of del Pezzo singularities in complete intersection CY

manifolds and study the complex deformations of the singularities. The del Pezzo n surface

corresponds to the Lie group En. The expected number of complex deformations for the cone

over del Pezzo is c∨(En) − 1, where c∨ is the dual Coxeter number for the Lie group En. In

the studied examples, the cones over 1 × 1 and over dP5, dP6, dP7, and dP8 have generic

deformations. But the cones over dP2, dP3, and dP4 have less deformations, that is, these cones

do not describe the most generic embedding of the corresponding del Pezzo singularities.

(It is known that the generic embeddings of del Pezzo n singularities for n ≤ 4 (or rank

k = 9 − n ≥ 5) cannot be represented as complete intersections [27, 29], in our construction

the del Pezzo singularities are nongeneric complete intersections.)
We propose that for the generic embedding the two-cycles on del Pezzo with self-

intersection (−2) are trivial within the full Calabi-Yau geometry. The nontrivial two cycles

with self-intersection (−2) impose restrictions on the complex deformations. This proposal



20 Advances in High Energy Physics

Table 1: Some characteristics of del Pezzo surfaces.

Del Pezzo No. two-cycles No. (−2) two-cycles Dynkin’s diagram c∨ − 1
2 1 0 0 0
1 × 1 2 1 A1 1

dP1 2 0 0 0

dP2 3 1 A1 1

dP3 4 3 A2 ×A1 3

dP4 5 4 A4 4

dP5 6 5 D5 7

dP6 7 6 E6 11

dP7 8 7 E7 17

dP8 9 8 E8 29

Table 2: Complex deformations of del Pezzo singularities studied in the paper.

Del Pezzo No. (−2) two-cycles No. trivial (−2) two-cycles c∨ − 1 No. complex deforms
2 0 0 0 0
1 × 1 1 1 1 1

dP1 0 0 0 0

dP2 1 0 1 0

dP3 3 1 3 1

dP4 4 3 4 3

dP5 5 5 7 7

dP6 6 6 11 11

dP7 7 7 17 17

dP8 8 8 29 29

agrees with the above examples of the embeddings of del Pezzo singularities. Also we get a

similar conclusion when the CY has some number of conifolds in addition to the del Pezzo

singularity. Although the conifolds are away from the del Pezzo and the del Pezzo itself is

not singular, it acquires a nontrivial two-cycle and the number of deformations is reduced.

Sometimes the F-theory/orientifolds point of view has advantages compared to

the type IIB theory. Our construction of CY threefolds can be generalized to find the 3-

dimensional base spaces of elliptic fibrations in F-theory with the necessary del Pezzo

singularities. Also we expect this construction to be useful as a first step in finding the warped

deformations of the del Pezzo singularities and in the studies of the Landscape of string

compactifications.

Appendix

A List of Compact CY with Del Pezzo Singularities

In the appendix, we construct the embeddings of all del Pezzo singularities in compact CY

manifolds and describe the complex deformations of these embeddings. This description

follows the general construction in Section 4.

In the following, B denotes the two-dimensional del Pezzo surface and X denotes the

space where we embed B. The space X will be either a product of projective spaces or a
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weighted projective space. For example, if B ⊂ X = n × m × k, then the coordinates on

the three projective spaces will be denoted as (z0, . . . , zn), (u0, . . . , um), and (v0, . . . , vk),
respectively. The hyperplane classes of the three projective spaces will be denoted by H , K,

R, respectively.

A polynomial of degree q in zi, degree r in uj , and degree s in vl will be denoted by

Pq,r,s(zi;uj ;vl).
If there are only two or one projective space, then we will use the first two or the first

one projective spaces in the above definitions.

For the weighted projective spaces, we will use the notations of [30]. For example,

consider the space W 3
11pq, where p, q ∈ . The dimension of this space is 3, the subscripts

(1, 1, p, q) denote the weights of the coordinates with respect to the projective identifications

(z0, z1, z2, z3) ∼ (λz0, λz1, λ
pz2, λ

qz3).
The 1 bundles over X will be denoted as M = P(OX ⊕ OX(K)), where K is the class

on X that restricts to the canonical class on B. The coordinates on the fibers will be (s, t) so

that locally s ∈ OX and t ∈ OX(K). The hyperplane class of the fibers will be denoted by G,

it satisfies the property G(G + K) = 0 for M = P(OX ⊕ OX(K)). In the construction of the 1

bundles, we will use the fact that K(B) = −c1(B) and will not calculate K(B) separately.

The deformations of some del Pezzo singularities will be described via embedding in

particular toric varieties. We will call them generalized weighted projective spaces. Consider,

for example, the following notation:

GW 5

11100002

00011001

00000111

(A.1)

The number 5 is the dimension of the space. This space is obtained from 8 ∗ by taking the

classes of equivalence with respect to three identifications. The numbers in the three rows

correspond to the charges under these identifications

(z1, z2, z3, z4, z5, z6, z7, z8) ∼
(
λ1z1, λ1z2, λ1z3, z4, z5, z6, z7, λ

2
1z8

)
,

(z1, z2, z3, z4, z5, z6, z7, z8) ∼ (z1, z2, z3, λ2z4, λ2z5, z6, z7, λ2z8),

(z1, z2, z3, z4, z5, z6, z7, z8) ∼ (z1, z2, z3, z4, z5, λ3z6, λ3z7, λ3z8).

(A.2)

(1) B = 2 ⊂ X = 3.

The equation for B

P1(zi) = 0. (A.3)

The total Chern class of B

c(B) = (1 +H)3 = 1 + 3H + 3H2. (A.4)
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The 1 bundle is M = P(OX ⊕ OX(−3H)). The equation for the Calabi-Yau threefold Y3

P1(zi)s2 + P4(zi)st + P7(zi)t2 = 0. (A.5)

The embedding space V =W 4
11113 has the coordinates (z0, . . . , z3; w) and the singular CY is

P1(z0, . . . , z3)w2 + P4(z0, . . . , z3)w + P7(z0, . . . , z3) = 0. (A.6)

This is already the most general equation, that is, there are no additional complex deforma-

tions.

(2) B = 1 × 1 ⊂ X = 3.

The equation for B

P2(zi) = 0. (A.7)

The total Chern class of B

c(B) =
(1 +H)4

1 + 2H
= 1 + 2H + 2H2. (A.8)

The 1 bundle is M = P(OX ⊕ OX(−2H)). The equation for the Calabi-Yau threefold Y3

P2(zi)s2 + P4(zi)st + P6(zi)t2 = 0. (A.9)

The embedding space V =W 4
11112 has the coordinates (z0, . . . , z3; w) and the singular CY is

P2(zi)w2 + P4(zi)w + P6(zi) = 0. (A.10)

This equation has one deformation kw3, and the spaces M and V have the same number of

coordinate redefinitions. Thus, the space of complex deformations is one dimensional.

(3) B = dP1 ⊂ X = 2 × 1.

The equation defining B has degree one in zi and degree one in uj

P1(zi)u0 +Q1(zi)u1 = 0. (A.11)

The total Chern class of B

c(B) =
(1 +H)3(1 +K)2

1 +H +K
= 1 + 2H +K +H2 + 3HK. (A.12)
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The 1 bundle is M = P(OX ⊕OX(−2H −K)). The equation for the Calabi-Yau threefold Y3 is

P1,1

(
zi;uj

)
s2 + P3,2

(
zi;uj

)
st + P5,3

(
zi;uj

)
t2 = 0. (A.13)

The embedding space V = GW 4
111002
000111

has the coordinates (z0, z1, z2; u0, u1; w) and the

singular CY is

P1,1

(
zi;uj

)
w2 + P3,2

(
zi;uj

)
w + P5,3

(
zi;uj

)
= 0. (A.14)

There are no complex deformations of this equation.

(4) B = dP2 ⊂ X = 2 × 1 × 1.

The del Pezzo surface is defined by a system of two equations. The first equation has degree

one in zi and degree one in uk. The second equation has degree one in zi and degree one in

vk

P1(zi)u0 +Q1(zi)u1 = 0,

R1(zi)v0 + S1(zi)v1 = 0.
(A.15)

The total Chern class of B

c(B) =
(1 +H)3(1 +K)2(1 + R)2

(1 +H +K)(1 +H + R)
= 1 + 2H +K + R + 2H(K + R) +KR. (A.16)

The 1 bundle is M = P(OX ⊕OX(−2H −K −R)). The system of equations for the Calabi-Yau

threefold Y3 can be written as

P1,1,0(zi;uk;vk)s2 + P3,2,1(zi;uk;vk)st + P5,3,2(zi;uk;vk)t2 = 0,

Q1,0,1(zi;uk;vk) = 0.
(A.17)

The space V = GW 5
11100002
00011001
00000111

has the coordinates (z0, z1, z2; u0, u1; v0, v1; w), and the singular

CY is

P1,1,0(zi;uk;vk)w2 + P3,2,1(zi;uk;vk)w + P5,3,2(zi;uk;vk) = 0,

Q1,0,1(zi;uk;vk) = 0.
(A.18)

There are no complex deformations of this equation. This is in contradiction with the general

expectation of one complex deformation, that is, the embedding is not the most general. This

is connected to the fact that all the two-cycles on the del Pezzo are nontrivial within the CY.
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(5) B = dP3 ⊂ X = 1 × 1 × 1.

The del Pezzo surface is defined by an equation of degree one in zi, degree one in uj and

degree one in vk

P1,1,1

(
zi;uj ;vk

)
= 0. (A.19)

The total Chern class of B

c(B) =
(1 +H)2(1 +K)2(1 + R)2

(1 +H +K + R)
= 1 + (H +K + R) + 2(HK +HR +KR),

(A.20)

where H , K, and R are the hyperplane classes on the three 1’s. The 1 bundle is M = P(OX ⊕
OX(−H −K − R)). The equation for the Calabi-Yau threefold Y3 is

P1,1,1

(
zi;uj ;vk

)
s2 + P2,2,2

(
zi;uj ;vk

)
st + P3,3,3

(
zi;uj ;vk

)
t2 = 0. (A.21)

The embedding space V = GW 4
1100001
0011001
0000111

has the coordinates (z0, z1; u0, u1; v0, v1; w), and the

singular CY is

P1,1,1

(
zi;uj ;vk

)
w2 + P2,2,2

(
zi;uj ;vk

)
w + P3,3,3

(
zi;uj ;vk

)
= 0. (A.22)

This equation has one deformation kw3, and the spaces M and V have the same number

of reparameterizations. Consequently, there is one complex deformation of the cone. This is

related to the fact that 3 out of 4 two-cycles on dP3 are independent within the CY and there

is only one (−2) two-cycle on dP3 that is trivial within the CY.

(6) B = dP4 ⊂ X = 2 × 1.

Equation defining B has degree two in zi and degree one in uj

P2(zi)u0 +Q2(zi)u1 = 0. (A.23)

The total Chern class of B

c(B) =
(1 +H)3(1 +K)2

1 + 2H +K
= 1 +H +K +H2 + 3HK,

(A.24)

where H and K are the hyperplane classes on 2 and 1, respectively. The 1 bundle is M =
P(OX ⊕ OX(−H −K)). The equation for the Calabi-Yau threefold Y3 is

P2,1

(
zi;uj

)
s2 + P3,2

(
zi;uj

)
st + P4,3

(
zi;uj

)
t2 = 0. (A.25)
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The embedding space V = GW 4
111001
000111

has the coordinates (z0, z1, z3; u0, u1; w), and the

singular CY is

P2,1

(
zi;uj

)
w2 + P3,2

(
zi;uj

)
w + P4,3

(
zi;uj

)
= 0. (A.26)

The deformations of the singularity have the form of degree one polynomial in z0, z1, z2 times

w3. Consequently, there are three deformation parameters and the spaces V and M have the

same reparameterizations. In this case, we have three complex deformations and three (−2)
two-cycles on dP4 that are trivial within CY.

(7) B = dP5 ⊂ X = 4.

The del Pezzo surface is defined by a system of two equations. Both equation have degree 2

in zi

P2(zi) = 0,

R2(zi) = 0.
(A.27)

The total Chern class of B

c(B) =
(1 +H)5

(1 + 2H)2
= 1 +H + 2H2.

(A.28)

The 1 bundle is M = P(OX ⊕OX(−H)). The system of equations for the first possible Calabi-

Yau threefold Y3 is

P2(zi)s2 + P3(zi)st + P4(zi)t2 = 0,

R2(zi) = 0.
(A.29)

It has the following characteristics:

χ(Y3) = −160,

h1,1(Y3) = 2,

h2,1 = 82.

(A.30)
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Now we find the deformations of this cone over dP5. The 1 bundleM is, in fact, the 5 blown

up at one point. By blowing down the t = 0 section of M, we get 5. The CY three-fold with

the dP5 singularity is embedded in 5 by the system of two equations

P2(zi)w2 + P3(zi)w + P4(zi) = 0,

R2(zi) = 0.
(A.31)

The deformations of the singularity correspond to taking a general degree four polynomial

in the first equation. This general CY has

χ = −176,

h1,1(Y3) = 1,

h2,1 = 89.

(A.32)

Since the system (A.31) has only the dP5 singularity and the general CY manifold has 89−82 =
7 more complex deformations, we interpret these extra 7 deformations as the deformations of

the cone over dP5. This number is consistent with the general expectation, since c∨(D5)−1 = 7,

where c∨(D5) = 8 is the dual Coxeter number for D5.

The second CY with the dP5 singularity is described by

P2(zi)s + P3(zi)t = 0,

R2(zi)s + R3(zi)t = 0.
(A.33)

Using the same methods as for the first CY, one can show that this singularity also has 7

complex deformations.

(8) B = dP6 ⊂ X = 3.

The case of dP6 was described in details in Section 2; here we just repeat the general results.

The equation defining dP6 ⊂ 3

P3(zi) = 0. (A.34)

The 1 bundle is M = P(OX ⊕ OX(−H)).
The equation for the Calabi-Yau threefold Y3

P3(zi)s2 + P4(zi)st + P5(zi)t2 = 0. (A.35)

The total Chern class of Y3

c(Y3) =
(1 +H)4(1 +G)(1 +G −H)

1 + 3H + 2G
. (A.36)
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The Euler number and the cohomologies for the CY with the dP6 singularity are

χ = −176,

h1,1 = 2,

h2,1 = 90.

(A.37)

The deformation of this singularity is a quintic in 4, that has

h2,1 = 101 (A.38)

complex deformations. The difference between the number of complex deformations is 101−
90 = 11, which is consistent with c∨(E6) − 1 = 11.

(9) B = dP7 ⊂ X = W 3
1112.

The equation defining B is homogeneous of degree four in zi’s

P4(zi) = 0. (A.39)

The 1 bundle is M = P(OX ⊕ OX(−H)). The equation for the Calabi-Yau threefold Y3

P4(zi)s2 + P5(zi)st + P6(zi)t2 = 0. (A.40)

The total Chern class of Y3

c(Y3) =
(1 +H)3(1 + 2H)(1 +G)(1 +G −H)

1 + 4H + 2G
. (A.41)

The Euler number and the cohomologies for the CY with the dP6 singularity are

χ = −168,

h1,1 = 2,

h2,1 = 86.

(A.42)

Blowing down the t = 0 section of M, we get V = W 4
11112. The general CY is given by the

degree six equation in V . The total Chern class of this CY is

c =
(1 +H)4(1 + 2H)

(1 + 6H)
. (A.43)
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And the number of complex deformations

h2,1 = 103. (A.44)

The difference 103− 86 = 17 is equal to c∨(E7) − 1 = 17, where c∨(E7) = 18 is the dual Coxeter

number of E7. Consequently, we can represent all complex deformations of dP7 singularity

in this embedding.

(10) B = dP8 ⊂ X = W 3
1123.

The equation defining B has degree six

P6(zi) = 0. (A.45)

The 1 bundle is M = P(OX ⊕ OX(−H)). The equation for the Calabi-Yau threefold Y3

P6(zi)s2 + P7(zi)st + P8(zi)t2 = 0. (A.46)

The total Chern class of Y3

c(Y3) =
(1 +H)2(1 + 2H)(1 + 3H)(1 +G)(1 +G −H)

1 + 6H + 2G
. (A.47)

The problem with this CY is that for any polynomials P6, P7, and P8, it has a singularity at

s = z0 = z1 = z2 = z3 = 0 and z4 = 1. As a consequence, the naive calculation of the Euler

number gives a fractional number

χ = −150
2

3
. (A.48)

The good feature of this singularity is that it is away from the del Pezzo; thus one can argue

that, this singularity should not affect the deformation of the dP8 cone. In order to justify

that we will calculate the number of complex deformations of the CY manifold with dP8

singulariy by calculating the number of coefficients in the equation minus the number of

reparamterizations of M. The result is

h2,1 = 77. (A.49)

Blowing down the t = 0 section of M, we get V = W 4
11123. The general CY is given by the

degree eight equation in V . The number of coefficients minus the number of reparamteriza-

tions of V = W 4
11123 is

h2,1 = 106. (A.50)
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The difference 106 − 77 = 29 is equal to c∨(E8) − 1 = 29, where c∨(E8) = 30 is the dual

Coxeter number of E8. Thus, all complex deformations of dP8 singularity can be realized in

this embedding.
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