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Facial expression is the best evidence of our emotions. Its automatic detection and recognition are key for robotics, medicine,
healthcare, education, psychology, sociology, marketing, security, entertainment, and many other areas. Experiments in the lab
environments achieve high performance. However, in real-world scenarios, it is challenging. Deep learning techniques based on
convolutional neural networks (CNNs) have shown great potential. Most of the research is exclusively model-centric, searching
for better algorithms to improve recognition. However, progress is insufcient. Despite being the main resource for automatic
learning, few works focus on improving the quality of datasets.We propose a novel data-centric method to tackle misclassifcation,
a problem commonly encountered in facial image datasets.Te strategy is to progressively refne the dataset by successive training
of a CNNmodel that is fxed. Each training uses the facial images corresponding to the correct predictions of the previous training,
allowing the model to capture more distinctive features of each class of facial expression. After the last training, the model
performs automatic reclassifcation of the whole dataset. Unlike other similar work, our method avoids modifying, deleting, or
augmenting facial images. Experimental results on three representative datasets proved the efectiveness of the proposed method,
improving the validation accuracy by 20.45%, 14.47%, and 39.66%, for FER2013, NHFI, and AfectNet, respectively. Te rec-
ognition rates on the reclassifed versions of these datasets are 86.71%, 70.44%, and 89.17% and become state-of-the-art
performance.

1. Introduction

Our facial gestures speak more than a thousand words.
Among the dynamic activities of the human body, the
muscular movements of the face have meaning and potential
interpretation. Facial expressions associated with the emo-
tional state of a person are considered universal and the
main signal to manifest and infer our feelings and sensations
[1, 2]. An important study [3] quantifed the degree of in-
fuence of the elements involved in the communication of
emotions, determining the nonverbal part (facial and body
gestures) as the most infuential with 55%, whereas the tone
of voice with 38%, and only 7% for verbal language. In
a conversational context, the exclusively verbal manifesta-
tion of anger or happiness must be accompanied by a facial

gesture to convey the credibility and conviction of the in-
terlocutor. Even the gesture would be enough to describe the
emotion we are experiencing, as we often pay more attention
to the face than to the words. Te recent pandemic has
shown that when a facial mask is present, the human ca-
pacity to infer emotions is reduced [4]. Terefore, facial
expressions that communicate emotions are essential in
daily life at the individual, interpersonal and social levels [5].
Apart from interacting with other people, we are in-
creasingly surrounded by machines trying to imitate human
behavior, so there is a need to interact. In near future, this
will be a common practice and it is intended to make such
interaction as natural as possible. In the same way that
people can infer the emotional state of others from facial
expressions, computers and robots may also be able to
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recognize expressions and interpret human emotions. In
recent years, automatic facial expression recognition (FER)
has become an important area of research and development
to improve human-machine interaction (HMI), leading
communication to a more emotional, afective, and in-
telligent level [6, 7]. Tis can be applied to many activities
and felds such as human behavior, healthcare, medicine,
psychology, psychiatry, marketing, digital advertisement,
customer feedback assessment, video games, video security,
video surveillance, mobile phone unlocking, crime in-
vestigation (lie detection), online learning, and automobile
safety [8–11].

1.1. Problem. Humans can easily recognize facial expressions,
however, it is still a challenge for machines [12]. Automatic
FER is one of the key tasks in the feld of computer vision.Tis
problem has motivated competitions such as the one orga-
nized on the Kaggle platform [13]. A popular approach is to
classify the facial expression in a static image of a human face
and associate it with one of the seven basic universal human
emotions: happiness, surprise, anger, sadness, fear, disgust,
and neutral [14, 15]. Some models measure emotions with
continuous values (e.g., valence and arousal). However, there
are very limited annotated facial databases [16]. In contrast,
for a discrete (categorical) model, a wider range of available
datasets can be found. Deep learning is preferred for this task
avoiding the high cost of time and efort of manually defning
multiple and complex features of facial expressions. In par-
ticular, convolutional neural networks (CNNs) have shown
promising results from diferent facial image datasets. Images
captured in a specifc and controlled environment (in the lab)
are taken of a few people, do not present variations in en-
vironmental conditions, and gestures have a high degree of
expressivity, so a good level of accuracy can be achieved.
Another way is collecting images in real-world situations
from the Internet, which is referred to as in the wild [17]. Te
heterogeneity of human faces, people less expressive than
others, subtle diferences between expressions, variations in
head pose, diferent body postures, lighting changes in the
environment, and occlusions, are some of the factors that
make FER outside the laboratory a difcult task even for
humans [9, 18–20].

1.2.Motivation. A deep learning solution consists of a model
and data. Te vast majority of work follows a model-centric
approach, whose purpose is fnding new algorithms to achieve
better performance on a certain facial image dataset. Several
CNN architectures have been proposed, both customized
(created from scratch) and pretrained using transfer learning
and fne tuning techniques. Each one tests diferent hyper-
parameters and includes regularization mechanisms such as
data augmentation, dropout, and batch normalization [9]. In
practice, this process is very time-consuming and has not
achieved the aim of ideal performance. On the other side,
there is research data-centric guided by the principle that data
is the most important resource and its quality directly in-
fuences the performance of learningmodels. Very few studies
have focused on improving FER datasets even though the

same creators admit the problems in the quality of the data
[8]. Te lack of remarkable results of the model-centric ap-
proach, the little work focused on the data, and the premise
that the data would be more important than the model,
motivate us to propose a novel data-centric method to im-
prove existing FER datasets to achieve better performance of
recognition models.

1.3. Hypothesis. Te quality of the dataset is a prerequisite
for improving the accuracy of FER models. If the inherent
drawbacks of the dataset are not reduced, it is very difcult to
improve the performance of a FER system. In other words,
better performance and higher accuracy are expected if the
dataset is improved.

1.4. Method. Improving the main resource of a FER model,
i.e., the dataset, implies improving the accuracy of the
recognition. To validate our proposal, we used some rep-
resentative datasets of this domain, which sufer from well-
known problems such as imbalance, irrelevant images, and
misclassifed images. Our interest is to deal with mis-
classifcation, since balancing or removing irrelevant images
would modify the size of the dataset. In contrast, a reclas-
sifcation would generate a new distribution of the available
images in a better-quality dataset. Te strategy is a pro-
gressive refnement of the dataset over several trainings of
the same CNN-based model. After each training, the pre-
diction of all facial images is performed, and only the correct
ones are selected to form the dataset for the next training.
Tis process is repeated until there are few incorrect pre-
dictions, usually single-digit numbers. As a result, the last
trained model achieves very high accuracy, so it is in charge
of relabeling all the images of the original dataset. Terefore,
a new distribution of the dataset is generated without al-
tering its size or modifying the images. In the fnal step, the
same CNNmodel is trained on the reclassifed version of the
dataset, and the accuracy is higher compared to the original
dataset. Te experiments performed in the present work
show an increase of 20.45%, 14.47%, and 39.66% for the
FER2013, NHFI, and AfectNet datasets, respectively. State-
of-the-art performance was also achieved for these datasets.

1.5. Contributions. Our research work provides: (1) a novel
data-centric method to reclassify the images of a dataset that
allows a higher precision of a FER model, (2) a methodology
applicable to other datasets from diferent domains and
supported by computer tools, especially Python and deep
learning libraries, and (3) a reclassifed version of each
dataset, which may be useful for further research, publicly
available for FER2013 and NHFI, whereas for AfectNet this
is not possible due to licensing restrictions.

Te content of this work is organized as follows: Section
2 reviews the data-centric works. Section 3 presents the FER
datasets. Section 4 describes in detail the methodology.
Section 5 explains the experimentation, and the results
obtained in Section 6. Finally, Section 7 includes the con-
clusions and mentions future work.
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2. Related Work

Our bibliographic search on improving the performance of
FER in the wild using deep learning reports supremacy of
model-centric research. Tis approach focuses on better
architectures, hyperparameter tuning, and regularization
techniques [21]. However, no signifcant progress can be
expected when the data used are not reliable. On the other
hand, data-centric eforts are scarce. Tere are few studies
that deal with the dataset to improve the performance of
a FER system. After analyzing the related literature, we can
say the techniques frequently used under this approach
include: image preprocessing, removing noise, deleting
images with errors, data augmentation, and reclassifcation.
For instance, Liu et al. [11] analyzed expression recognition
considering the importance of data preprocessing by im-
proving the image contrast. More discriminative facial
features are obtained using a hybrid method for extraction,
and a classifcation network combining EGG-16 and ResNet.
Experiments on three benchmark datasets: CK+, FER2013,
and AR achieved state-of-the-art recognition rates: 98.6%,
94.5%, and 97.2%, respectively. Kim et al. [22] designed an
image and video preprocessing system called FIT (facial
image threshing) machine capable of eliminating irrelevant
facial images, cropping, resizing, and reorganizing the
classifcation of facial images before training the Xception
algorithm, improving the validation accuracy by 16.95%
with the FER2013 dataset. Mazen et al. [8] applied the
following operations on the dataset: (1) nonface images, text
images, and profle images are deleted, (2) wrongly labeled
images are relabeled using a CNN, and (3) data augmen-
tation to overcome the class imbalance, generating new face
images for the minority classes with a cycle generative
adversarial network (CycleGAN). As a result, the average
test accuracy was increased from 64% for the original
FER2013 dataset to 91.76% for the modifed balanced ver-
sion. Te cited works address the preprocessing of the
dataset before the training of a model, however, the oper-
ations applied to change the total number of images either by
removing or augmenting. In addition, the images are
modifed by cropping, resizing, or retouching the contrast.
Our goal is to preserve the images and size of the dataset, so
we focus on misclassifcation, one of the most infuential
problems in the lower performance of the FER models. For
instance, Kim and Wallraven [23] presented a study of the
quality of the labeling on AfectNet. Due to the large size of
the dataset, a subset with a total of 800 difcult-to-recognize
images of the diferent categorical expressions was selected
to be relabeled by 13 human annotators. After the crowd
reannotation, 83.25% of the total number of votes did not
match the original dataset labels. In addition, the predictions
of several ResNets trained on the original AfectNet are
compared with the labels assigned by the human crowd,
fnding that there is no good coincidence for categorical
expression.Tis pilot test suggests the low labeling quality of
the original dataset for these difcult facial images, infu-
encing the poor performance of a deep learning model. It is
mentioned that more extensive reannotation work is in
progress to check more accurate performance, however,

manual annotation demands great efort and time. Our work
does not require any kind of preparation or modifcation of
the images, and avoids decreasing or increasing their
number. It aims to automatically reclassify images to reduce
intraclass variability and interclass overlapping of the
original dataset. As a consequence, improve recognition
performance.

3. Datasets

Tere are multiple image datasets created for automatic
emotion recognition based on facial expressions. We have
considered FER2013, AfectNet, and NHFI (natural human
face image), mainly due to availability, size, image format,
and categories of facial expressions.

3.1. Characteristics. Te FER2013 dataset (created by Pierre-
Luc Carrier and Aaron Courville) and AfectNet (Ali
Mollahosseini, Behzad Hasani, andMohammadH.Mahoor)
are standards taken as benchmarks for competitions [24],
whereas NHFI (Sudarshan Vaidya) is a novel dataset, created
for the purpose of providing more data with better manual
annotation, which we propose to analyze in the present
study. Table 1 summarizes the most relevant characteristics
of these datasets.

Te quality of the datasets is more afected as the size of
the dataset increases, so we selected a dataset at diferent
scales: small (thousands of images), mid (tens of thousands),
and large scale (hundreds of thousands). Te facial images
included are static, not video sequences, with a 2D or fat
appearance, in contrast to the 3D images that generate
a perception of depth [1]. Each image has a facial expression
category assigned to it, this is a task performed entirely by
humans, except for AfectNet, where one part was manually
annotated and the rest automatically annotated using
a neural network trained on all manually annotated training
set samples [16]. Te datasets are not balanced, i.e., they do
not have the same number of images for each category, or at
least a similar number. Tis drawback is discussed later. To
examine the infuence of image color and size on recognition
performance, we have images in grayscale and RGBmode, as
well as in small and medium sizes. JPG and PNG are
standard image formats and are easy to convert to each
other. Te datasets encompass difcult naturalistic condi-
tions (in the wild), with images far from a controlled en-
vironment, closer to reality, diferent lighting levels, ages,
poses, intensity of expression, and occlusions, making
recognition a challenging task [19].

3.2. Acquisition. Te FER2013 (https://www.kaggle.com/
datasets/deadskull7/fer2013) and NHFI (https://www.
kaggle.com/datasets/sudarshanvaidya/random-images-for-
face-emotion-recognition) datasets are publicly available in
Kaggle, whereas AfectNet requires permission for use via
a request form to the authors (request form:
mohammadmahoor.com/afectnet-request-form/).
FER2013 can be obtained in a comma-separable value (CSV)
format whose columns represent the following attributes:
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a value between 0 and 6 for each of the 7 possible emotions
(0: angry, 1: disgust, 2: fear, 3: happy, 4: neutral, 5: sad, and 6:
surprise), a list of 2304 integer values, each equivalent to one
pixel of the image of size 48× 48, and fnally the subset to
which it belongs: training or test. Since the images are not
directly visible, we used a Python script with the Pandas and
NumPy libraries to read the fle, store the integer values as
pixel arrays, and convert them to image fles. A total of 35886
images are obtained after transforming the pixel arrays to
image fles in JPG format, in grayscale and with a resolution
of 48× 48 pixels, divided into two subsets: training and test,
28708 and 7178 images, respectively. Each subset includes 7
folders, each one for a particular type of facial expression.
NHFI downloading is a compressed fle, which after de-
compression generates 8 folders, whose names are practi-
cally the same as the previous dataset, only the “contempt”
category is excluded for a fair comparison. Inside each folder
are images in PNG format. In the case of AfectNet, the link
provided in response to the request allows for the download
of two compressed archives for training and validation. After
the extraction of each archive, an “images” folder containing
the JPG fles and another one called “annotations” con-
taining the NPY fles of the corresponding labels are created.
We developed a Python script (github.com/cimejia/FER-
datasets/blob/main/createAfecnet.py) to read the facial
expression category from the NPY fle and move the JPG fle
to the corresponding folder. It is worth mentioning that
AfectNet has two versions of the dataset, we used the small
one containing only the manually annotated images with 8
labels (but contempt is omitted) released in March 2021.Te
full AfectNet dataset is huge (122GB) and a specifc request
is necessary [16].

3.3. Drawbacks. Automatic collection from the Internet and
label crowdsourcing are the main reasons for the quantity
and quality drawbacks of FER datasets. Regarding quantity,
the major disadvantage is the imbalance, even with cate-
gories that largely exceed the number of facial images in
other categories. On the other hand, the quality of the

content is highly afected by the presence of irrelevant
images and misclassifcation. Tese problems are widely
mentioned in the literature and increase as the size of the
dataset grows [8].

3.3.1. Imbalance. An imbalanced dataset could lead to
a recognition model biased in favor of the majority classes.
Having the same number of images per category is a difcult
task. Facial images are usually sourced from the Internet and
collected manually or automatically through browser plug-
ins or programming scripts. Tese images are posted by
people who tend to show smiling or happy faces, so this
category predominates, in contrast to categories such as
disgust, anger, or sadness, which users do not usually post.
Table 2 indicates the number of images per facial expression
category in each dataset.

All three datasets show a signifcant imbalance (Fig-
ure 1). In FER2013 (Figure 1(a)), the “happy” category
predominates, and the “disgust” category has few samples,
and it is approximately regular for the rest of the categories.
NHFI (Figure 1(b)) presents a similar behavior, but is less
irregular. In AfectNet (Figure 1(b)), the diference in the
number of images between all categories is much more
pronounced.

Comparing the distributions on the same scale
(Figure 1(d)), the imbalance is much more signifcant in
AfectNet. A common pattern is the higher number of
samples for the happy category and the lowest number for
the disgust category. As mentioned before, this is because
people tend to post images of happy faces and avoid showing
other types of expression.

3.3.2. Misclassifcation and Irrelevant Images. Here, we join
both problems related to the content of the datasets.
Misclassifcation or mislabeling refers to placing facial
images in the wrong directories. Among the factors that
lead to this problem are: (a) emotions are subjective, it is
common that two people to have diferent opinions on the

Table 1: Datasets considered and their main characteristics.

Characteristic FER2013 NHFI AFFECTNET
Number of images 35886 5558 287401
Expression model Discrete Discrete Discrete/continuous
Categories 7 8 8
Type 2D facial image 2D facial image 2D facial image
Labelers Humans Humans Automated and humans
Balanced No No No
Resolution (pixels) 48× 48 224× 224 224× 224
Color Grayscale Grayscale RGB color
Format JPG PNG JPG
Space 300MB 50MB 4GB
Availability Free Free Under request
Data source Internet Internet Internet
Size Mid Small Large
Environment In-the-wild In-the-wild In-the-wild
Year 2013 2020 2017
Structure CSV fle Folders and fles Image and NumPy fles
Subsets (%) Train/test (80/20) None Train/val (99/1)
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same facial image, (b) there are slight diferences between
certain facial expressions, e.g., fear and surprise, disgust
and anger, and contempt and sadness, (c) the degree of
expressiveness varies from person to person, so gestures
may appear exaggerated in one case and inhibited in others,
and (d) human beings can feel multiple emotions in a given
instant, something that is difcult to combine in a facial
expression and can be confusing, e.g., smiling carrying
tears is a combined emotion mistaken for sadness
[9, 25, 26]. As irrelevant images are those with watermarks,
occlusions, no faces, poorly visible or very dark, cartoons,
text or symbols, half-side, sleeping faces or closed eyes,
cropped, rotated, retouched, and duplicated images. It is
important to check for these drawbacks in each dataset,
however, an exhaustive manual and visual review of a large
number of images are impractical. We designed the fol-
lowing procedure to easily locate such errors.

Search for facial images with errors follows the fowchart
shown in Figure 2. We reused the CNN for facial expression
recognition designed by Akshit Bhalla [27]. During the
training on each dataset, we monitored the accuracy of the
validation set at each iteration (epoch) to save the best model
parameters. Tis model is used to perform the prediction on
all the images of the validation set. Te confusion matrix is
obtained from these predictions, where the of-diagonal
positions allow us to identify the failures and their corre-
sponding images. As a result, we have a smaller set of images
in each class that is stored in a separate folder. We then
visually reviewed to select examples of mislabeling and ir-
relevant images with their respective fle names
(Figures 3–5).

In this section, we examined the problems of the FER
datasets, which can be summarized as class imbalance, the
existence of a signifcant number of images that are

Table 2: Distribution of categories and number of images in FER datasets.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
FER2013 4953 547 5121 8988 6198 6077 4002 35886
NHFI 890 439 570 1406 524 746 775 5350
AfectNet 25382 4303 6878 134915 75374 25959 14590 287401
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Figure 1: Imbalance in (a) FER2013; (b) NHFI; and (c) AfectNet; (d) overall.
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irrelevant, or that do not correspond to the correct category.
Combined or separately, these problems cause the perfor-
mance of a FER model to degrade considerably, as well as
learning to be biased in favor of the dominant classes
[8, 9, 18, 22]. Terefore, the search for more convenient
architectures and confgurations for recognition models is
a waste of time when the data used are of low quality. Firstly,
it is necessary to address these problems to improve the
datasets. Dealing with both the imbalance and the irrelevant
images involves changing the size of the original dataset. Our
work focuses on the problem of misclassifcation by keeping
the number of available images of the dataset. To this end, we
propose a novel data-centric method based on deep learning
for the automatic relabeling of facial images.

4. Proposed Method

Our goal is to achieve increased accuracy in facial expression
recognition through deep learning by previously improving
the dataset used. We proposed a data-centric approach that
specifcally addresses the misclassifcation typically en-
countered in FER datasets. Tis drawback is likely the most

infuential in the lower performance of recognition models
in the wild scenarios. Since a visual inspection of every facial
image in a dataset would be an extremely time-consuming
and tedious task, we designed a method to automatically
reclassify images of a dataset and improve the performance
of a FER model.

4.1. Workfow. Te proposed method consists of a series of
steps represented by a workfow diagram in Figure 6.

(1) Te dataset is organized in a folder-based structure,
where each facial expression category is a folder
containing the corresponding facial image fles.

(2) Split the dataset into training and validation subsets,
with the same folder and fle structure. Te training
subset is larger and has the images to ft the model,
whereas the validation subset is used to evaluate the
model at training time.We omit a test subset because
as many images as possible are needed for the next
step. Tus, the input is ready for the deep
learning model.

Train CNN
on FER
dataset

Save model
with best
validation
accuracy

Make
prediction

for validation
subset

Generate
confusion

matrix

Save images
of incorrect
predictions

(of-diagonal)

Visual
selection of

error samples

Figure 2: Workfow for selecting and showing some error samples.

Category

Error Angry Disgust Fear Happy Neutral Sad Surprise

Mislabeled

PrivateTest_12766285.jpg PrivateTest_87187926.jpg PrivateTest_14225810.jpg PrivateTest_28973429.jpg PrivateTest_30521631.jpg PublicTest_36374107.jpg PublicTest_24449829.jpg

Watermark

PrivateTest_98865793.jpg PublicTest_97476336.jpg PublicTest_94855961.jpg PrivateTest_27068178.jpg PublicTest_87314736.jpg PublicTest_90965793.jpg PrivateTest_41450476.jpg

Occlusion

PrivateTest_93290935.jpg PrivateTest_4407805.jpg PrivateTest_95232250.jpg PrivateTest_37884040.jpg PrivateTest_19262460.jpg PrivateTest_21734160.jpg PrivateTest_39436840.jpg

Non-face, 
not visible, 
darkness 

PublicTest_5543497.jpg PrivateTest_53414692.jpg PrivateTest_26257014.jpg PublicTest_21832858.jpg PublicTest_69342366.jpg PrivateTest_94692871.jpg PrivateTest_23514058.jpg

Non-real 
(drawing) 

PrivateTest_48897228.jpg PublicTest_30164595.jpg PrivateTest_66836766.jpg PublicTest_454273.jpg PrivateTest_52362781.jpg PrivateTest_46864083.jpg PrivateTest_91967730.jpg

Text or 
symbols

PrivateTest_26784100.jpg PrivateTest_98799539.jpg PrivateTest_65872116.jpg PublicTest_97297069.jpg PrivateTest_1844176.jpg PrivateTest_82792706.jpg PublicTest_53795000.jpg

Sleeping

PrivateTest_91160429.jpg PrivateTest_26306320.jpg PublicTest_58756471.jpg PrivateTest_90198447.jpg PrivateTest_9952944.jpg PrivateTest_6060400.jpg PublicTest_17047937.jpg

Cropped

PrivateTest_62009733.jpg PrivateTest_11895083.jpg PrivateTest_24920316.jpg PrivateTest_46585222.jpg PrivateTest_71031944.jpg PrivateTest_37840020.jpg PublicTest_88046230.jpg

Figure 3: Some errors in the FER2013 dataset.
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(3) A CNN created from scratch or pretrained via the
transfer learning technique is trained on the FER
dataset. Both alternatives are shown in this work.
Training is an iterative optimization process in which
the model reduces an error as it learns to associate
images and category labels.

(4) Te training is monitored to save in a model fle the
parameters (weights and biases) corresponding to
the iteration (epoch) of the best validation accuracy.

(5) Te best model is used to perform the prediction of
all facial images in the dataset. Te results obtained
allow us to generate the confusion matrix.

Category
Error Angry Disgust Fear Happy Neutral Sad Surprise

Mislabeled

06T004143.206_face.png 06T000631.294_face.png 06T184259.817_face.png 06T192033.234_face.png 06T002032.621_face.png 06T200641.686_face.png 06T202547.679_face.png

Watermark

06T004044.155_face.png 06T001238.324_face.png 05T231353.346_face.png 06T193927.857_face.png 06T002837.319_face.png 06T195146.513_face.png 06T202534.234_face.png

Occlusion

06T004023.186_face.png 05T231351.955_face.png 06T190401.859_face.png 06T193605.586_face.png 06T003037.275_face.png 06T201634.437_face.png 06T203019.480_face.png

Not visible, 
darkness 

2971847861_5c6fe61308_
b_face.png

06T000351.467_face.png 06T185544.051_face.png 4798260287_5893de9068_n
_face.png

2Q__ (4)_face.png 6256737200_68c25fd0da_n
_face.png

images (89)_face.png

Non-real 
(drawing), 
pixeled 

06T004132.251_face.png 06T001003.097_face.png 06T190315.037_face.png 06T194437.614_face.png 06T002001.793_face.png 06T005838.928_face.png 06T203454.403_face.png

Text or symbols

06T004023.186_face.png images – 2020-11-
06T000258.682_face.png

06T001959.683_face.png 06T192012.714_face.png 34437285633_d66f32cb2b_
n_face.png

06T200646.019_face.png 06T203736.516_face.png

Sleeping, closed 
eyes 

06T004430.698_face.png 06T000133.149_face.png 06T184434.657_face.png 06T193907.786_face.png 06T002345.157_face.png 06T002800.372_face.png 06T203729.263_face.png

Cropped, 
rotated 

06T003426.416_face.png 06T001331.896_face.png 06T185658.127_face.png 06T194439.621_face.png 06T002449.634_face.png 06T195158.652_face.png 06T202859.293_face.png

Figure 4: Some errors in the NHFI dataset.
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Category

Error Angry Disgust Fear Happy Neutral Sad Surprise

Mislabeled

1366.jpg 748.jpg 2939.jpg 95.jpg 5180.jpg 402.jpg 226.jpg

Occlusion

1880.jpg 1215.jpg 991.jpg 840.jpg 3639.jpg 4407.jpg 5292.jpg

Not visible, 
darkness

304.jpg 2992.jpg 364.jpg 4220.jpg 1146.jpg 4774.jpg 3783.jpg

Non-real 
(drawing), 
pixeled, 
retouched 

4214.jpg 2602.jpg 1115.jpg 5353.jpg 4984.jpg 1788.jpg 3556.jpg

Text or 
symbols 

4067.jpg 2244.jpg 4307.jpg 2754.jpg 2143.jpg 4004.jpg 5427.jpg

Sleeping, 
closed eyes 

2334.jpg 2029.jpg 2835.jpg 4147.jpg 659.jpg 641.jpg 2547.jpg

Cropped,
rotated

2509.jpg 4492.jpg 682.jpg 1281.jpg 800.jpg 445.jpg 2579.jpg

Repeated, 
distorsioned, 
miscolored 

536.jpg 2501.jpg 1387.jpg 3472.jpg 4718.jpg 1036.jpg 1695.jpg

2516.jpg 2215.jpg 933.jpg 3472.jpg 2201.jpg 4330.jpg 1874.jpg

Figure 5: Some errors in the AfectNet dataset.
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(6) Te confusion matrix is evaluated considering
a good dataset when the precision of each category
exceeds 90% or the numbers outside the main di-
agonal are single digits. Several successive trainings
will be necessary to meet these criteria.

(7) Te correct predictions on the main diagonal of the
confusion matrix allow us to select the corre-
sponding facial images, which will form a smaller but
much more reliable version of the dataset.

(8) Te new version of the dataset is automatically di-
vided into training and validation subsets, and
training is performed with the same CNN. Te
process is repeated until the conditions established
for a good dataset are reached.

(9) Te last saved model performs the prediction of
facial expression for all images in the original dataset.
Te result is the automatic reclassifcation generating
a new distribution with all facial images.

In summary, we propose a process of iterative trainings
to create successively more refned versions of the dataset.
Each version is smaller, only the correct predictions of facial
expression are included, but maintains a signifcant number
of images. At the last training, a much more reliable dataset
is obtained, as well as a model that produces a low number of
incorrect predictions (single-digit values for each class). Te
convolutional network is fxed in terms of its architecture
and hyperparameters along this process.

Te key idea is that feature extraction is a crucial part of
a FER system, and the expression classifcation accuracy will
improve with an efective extraction of facial features
[10, 11]. Te progressive refnement of the dataset produces
a smaller number of images in each training, but with less
variability of the gestures of the faces. Terefore, the model
can capture more distinctive features of each class gradually.
As a consequence, it is possible to increase intraclass sim-
ilarity and enlarge interclass diferences within a dataset,
thereby improving the accuracy of facial expression rec-
ognition in real-world scenarios.

4.2. Models. We leverage CNNs, current state-of-the-art
tools in Computer Vision, for facial expression prediction in
images. Te design of CNNs imitates the human visual
system, where a convolutional part would be the eyes of the
network whereas a classifer part would be the brain, which
decides the class of the object. CNNs can be created from
scratch or pretrained using the transfer learning technique.
In this work, we demonstrate the use of both alternatives,
describing the architecture implemented for each of the
datasets selected.

4.2.1. FER2013. We reutilized the CNN presented on the
Kaggle site (https://www.kaggle.com/bhallaakshit/facial-
expression-recognition), whose performance has shown
good results in the task of facial expression recognition on
this dataset (Figure 7).

Te 48× 48 pixel grayscale input image is passed
through 4 convolutional layers, each layer applies a number
of flters (kernels) to generate feature maps that include
hierarchically detected patterns, from the simplest to the
most complex. Here, 64, 128, 512, and 512 flters of size
3 × 3, 5× 5, 3 × 3, and 3× 3 pixels, respectively, are applied.
A ReLU activation function then turns the negative values
to zero and maintains the positive values. Next, a max-
pooling operation reduces the image dimensions by half,
but preserves the found features. Batch normalization
stabilizes the result of a convolution whereas dropout
enables the active participation of all neurons in the
learning process. Both are recommended regularization
techniques to avoid possible overftting. Te fatten oper-
ation converts the feature maps into a vector of values
suitable as input for the classifer, which is a traditional
fully connected neural network with an input layer that
receives the features in vector shape, two hidden layers of
256 and 512 neurons, and an output layer with a Softmax
activation function for 7 probability values, one for each
facial expression class.

4.2.2. NHFI. We tested the same CNN model with this
dataset, however, the results after the frst fltering indicated
an insignifcant increase in accuracy (approx. 1.5%) as
shown in Table 3.

Train/val split FER dataset

CNN training

Save best model

Prediction of
all facial images

Confusion ma-
trix evaluation

Higher
accuracy?

Select images from
correct predictions

New FER dataset

Reclassification New FER dataset

no

yes

Figure 6: Workfow to automatically reclassify a FER dataset.
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Terefore, we searched for other architectures to achieve
higher accuracy. A model using the transfer learning
technique showed the best performance for this dataset. In
the frst fltering, the accuracy improved from 0.5597 to
0.8367 (27.7%) as opposed to 1.5% with the CNN from
scratch.Tus, we were able to demonstrate that the proposed
method works for both cases (pretrained and from scratch
models). With transfer learning, the training phase will be
much faster, since we only train the classifer parameters
while keeping fxed the convolutional base that would have
already learned features that are useful for most computer
vision problems. Te structure is presented in Figure 8.

Te model is based on the EfficientNet, a very popular
CNN pretrained on the ImageNet dataset [28]. We used
version B0, whose convolutional base is kept for feature ex-
traction. Te advantage is that the image with the original size
of 224× 224 pixels is accepted as input. Te classifer receives
the features in the form of a fattened vector to decide the class
to which the input image belongs bymeans of a fully connected
neural network with two dense layers of 256 and 512 neurons,
towhich the ReLU activation function is applied, plus the batch
normalization and dropout regularization techniques to reduce
possible overftting. Te Softmax function in the last dense
layer outputs a distribution of probabilities corresponding to
each of the 7 categories of facial expression.

4.2.3. AfectNet. We performed several tries with diferent
architectures to determine the most suitable CNN for this
dataset. Te best result was obtained with the CNN used for
the FER2013 dataset (Figure 7). It is only necessary to change
the size and color mode of the AfectNet images from
224× 224 pixels in RGB to 48× 48 pixels in grayscale. Tis
conversion is performed automatically using the image
generator of Python.

5. Experiments

Te core of the experimentation is the run of trainings of
each CNN-based model on the respective dataset. Te main
characteristics of the computational platform used are
a processor Intel(R) Core(TM) i9-7920X, 2.90 GHz, RAM
64GB, GPU NVIDIA GeForce RTX208 with RAM 12GB,
and the operating system Linux Ubuntu 18.04.5 LTS. Te
CNN architectures described in the previous section are
implemented using Python version 2.7.17, supported by
standard libraries such as OS, NumPy, and Matplotlib, to
manage directories and fles, numeric arrays, and visuali-
zation, respectively. For deep learning work, we used li-
braries such as TensorFlow, Keras, and scikit-learn, as well
as the Image Data Generator utility for image
preprocessing.

Te learning process is aimed at model learning to as-
sociate facial images and labels of expression categories. A
series of values known as hyperparameters must be explicitly
defned by the programmer before training. Tere are no
fxed rules for determining these values, they are the result of
several tests to fnd the most convenient ones. Table 4 shows
the hyperparameters for each model and dataset, which are
maintained for all experiments.

Conv1
BatchNorm
ReLU

Conv2
BatchNorm
ReLU

Input
48×48×1 MaxPool

Dropout

Conv3
BatchNorm
ReLU

MaxPool
Dropout

Conv4
BatchNorm
ReLU

MaxPool
Dropout

FC5
BatchNorm
ReLU
Dropout

FC6
BatchNorm
ReLU
Dropout

1×256
MaxPool
Dropout

3×3×5126×6×512
6×6×512

12×12×512

12×12×128
24×24×64

24×24×128
3×33×35×5

48×48×64
3×3 1×512

1×4608
Flatten

Softmax
1×7

Figure 7: Architecture of the CNN for the FER2013 dataset.

Table 3: Refnement of the NHFI dataset using the CNN from
scratch.

Training Images (train) Images (val) Total Accuracy
1 4278 1072 5350 0.5732
2 3211 616 3827 0.5885
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Our method of dataset refnement required fve suc-
cessive trainings for each dataset to meet the quality criteria.
At each training, the model is fed with the facial images from
the training subset of each dataset in batches of 64 images
(batch size). We used the Image Data Generator utility from
Keras to work with an image generator in batches, due to the
large number and size of the images would cause a storage
problem in memory. It also allows us to pass the images
directly to the training model from directories, as well as
automatically labeling the image with the respective cate-
gory, and performing data augmentation. For each batch,
predicted and actual labels are compared, obtaining a loss
and an accuracy using the categorical_cross entropy function.
Backpropagation and Adam (based on gradient descent)
algorithms are applied to update the model weights
according to the learning rate value. When all batches are
completed, one epoch is accomplished, i.e., one iteration of
all training images. Te accuracy and loss values are mea-
sured after each epoch using the images from validation the
subset. One hundred epochs have been run for FER2013,
whereas for NHFI and AfectNet ffty epochs were sufcient
to know the maximum level of accuracy since beyond this
value, the behavior of the model remains practically stable
and an improvement is not appreciable. Te callback utility
from Keras is leveraged to perform certain actions during
training such as setting a checkpoint and reducing the
learning rate. Te model will only be saved to disk if the
validation accuracy in the current epoch is greater than what

it was in the last epoch. On the other hand, the learning rate
tells us howmuch the weights will be updated each time, and
is often between 0 and 1. It will decrease from an initial value
to a minimum if the loss does not improve after a certain
number of epochs, which usually results in better training.

6. Results

Te results of the experimentation are presented graphically
by means of learning curves and confusion matrices,
whereas the numerical metric used for comparison is the
validation accuracy. Tese tools allow us to evaluate the
performance of the model and the improvement of the
dataset. During the training and validation of each model,
loss and accuracy values have been collected, respectively.
Tis generates the so-called learning curves, where the
horizontal axis represents the number of epochs and the
vertical axis represents either the accuracy or the error. Te
confusion matrix, also known as the error matrix, is a table
to visualize the model performance as presents information
about actual and predicted classifcations carried out by
a classifer model. Rows represent the instances of actual
classes, whereas columns represent the instances the clas-
sifer predicts [29]. From this matrix, several performance
metrics can be obtained, however, we focus on accuracy,
which compares the number of correct predictions (on
diagonal) divided by the total number. Te results obtained
for each one of the analyzed datasets are presented next.

Input
(224×224) Convolutional

base

EfficientNet B0
(pre-trained model)

Flatten
ReLU

Batch Normalization
Dropout (0.25)

Dense (256)

ReLU
Batch Normalization

Dropout (0.25)

Softmax
Angry
Disgust
Fear
Happy
Neutral
Sad
Surprise

Dense (7)

Output

Dense (512)

Figure 8: Architecture of the CNN with transfer learning for the NHFI dataset.

Table 4: Training hyperparameters set for our experiments.

Hyperparameter FER2013 NHFI AfectNet
Input shape 48, 48, 1 224, 224, 3 48, 48, 3
Train-val (%) 80–20 80–20 80–20
Batch size 64 64 64
Learning rate 0.01 to 0.00001 0.01 to 0.00001 0.001 to 0.00001
Optimizer Adam Adam Adam
Loss function categorical_cross entropy categorical_cross entropy categorical_cross entropy
Metrics Loss and accuracy Loss and accuracy Loss and accuracy
Number of classes 7 7 7
Epochs 100 50 50
Data augmentation Yes No No
Number of training 5 5 5
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6.1. FER2013. Te learning curves and confusion matrix for
each of the fve trainings required for the FER2013 dataset
are shown in Figure 9. For each training (including vali-
dation), the following are presented: the accuracy curves
(left), the loss curves (middle), and the corresponding
confusion matrix (right). As more trainings are performed,
the accuracy curves (training and validation) reach higher
values, whereas the loss curves are decreasing in height and
near to zero. In addition, the pairs of curves are very close to
each other in all the graphs. Terefore, the accuracy of the
model is higher, the error is lower, and there is no over-
ftting. Tis ideal behavior is the product of successive fl-
tering of the dataset. Te confusion matrices include the
predictions of facial expressions for all the images in the
dataset used for each training. Te progressive trainings
cause the desired efect in each matrix, that is, to reduce the
values outside the main diagonal and to increase the values
in this diagonal. Te model is each time more accurate
because wrong predictions are discarded in subsequent
training. As a result, more distinctive features of each class
are captured. In this way, the intraclass variability of the
facial images is decreased and the interclass variability is
increased.

Te process of the dataset refnement is summarized in
Table 5. Five trainings (four fltering operations) on the
FER2013 dataset were necessary to achieve the expected
performance metric (validation accuracy). Another training
was not necessary because there is no signifcant im-
provement in the accuracy. Te number of images gradually
decreases, but it is still considerable for each training. Te
model with the highest accuracy (97.7%) has captured the
most distinctive features of each facial expression category
and is convenient for reclassifying all images in the dataset.
Te predict() method is used to assign the category of every
facial image of the original dataset, generating a new dis-
tribution of the FER2013 dataset. Te comparison is pre-
sented in Table 6.

Figure 10 shows that the categories “disgust” and “sad”
have minimal variation, those of “angry,” “happy,” and
“surprise” vary moderately, and the most afected categories
are “fear” (decreasing) and “neutral” (increasing), indicating
that the original FER2013 dataset sufers from misclassifed
facial images, especially between these two categories.

Te decisive test of the efectiveness of our method is to
train the same CNN on the reclassifed FER2013 dataset.
Figure 11 shows that better learning curves are obtained, as
well as the confusion matrix indicates more correct and
fewer incorrect predictions. Higher accuracy and lower loss
are verifed in Table 7.

Te results confrm a more reliable dataset keeping the
number of images. Te reclassifed FER2013 enabled a very
signifcant increase in the validation accuracy of the model
by 20.45% and the loss is much lower (0.34). Te training
accuracy is acceptable (88.76%), very close to the validation
accuracy and the loss is lower. Tere is no overftting and no
signifcant diference between training loss and validation
loss. All the categories show improved accuracy, in partic-
ular, there is a remarkable improvement for “angry” (an
increase of 26%), “fear” (an increase of 38%), and “sad” (an

increase of 25%), i.e., those that showed the most over-
lapping or confusion. According to the experiments, only 40
epochs in each training would be sufcient, since the be-
havior remains practically stable beyond this number.

6.2.NHFI. Teaccuracy curves for theNHFI dataset (left side
in Figure 12) start quite separated from the other, evidencing
the presence of overftting, but as the trainings are performed,
the curves become closer and reach high accuracy, similar to
the loss curves, but in the opposite direction, becoming closer
and nearer to the horizontal axis. Te confusion matrices
show higher values on the main diagonal and lower values of
this diagonal, indicating the progressive improvement of the
model accuracy, as well as the quality of the dataset used in
each training. Despite successive discarding of incorrect
predictions, the number of images is signifcant with respect
to the original quantity. Table 8 shows the evolution of the
trainings on the NHFI dataset.

Te reclassifcation of the original NHFI dataset is
performed with the highest accuracy model (96.66%). A new
distribution of the dataset is generated, which is shown in
Table 9. In Figure 13, we can note that the “angry” and
“neutral” categories had the greatest changes, indicating that
these categories have the most intraclass variability in the
original dataset.

To demonstrate improved recognition, the same CNN is
trained on the reclassifed NHFI dataset and the result is
compared to the original dataset (Figure 14). Te overftting
was not reduced, but the accuracy is higher, both in the
training and validation subsets. Te loss is decreased for the
reclassifed NHFI dataset, as well as the values of-diagonal
from the confusion matrix.

Te performance results for the original and reclassifed
distributions of the NHFI dataset are presented in Table 10.
We have been able to signifcantly increase the accuracy in
both training and validation subsets, by 18.74 and 14.47%,
respectively. Except for the “angry” and “happy” categories,
the validation accuracy is highly increased in the rest of the
categories, particularly in the “sad” category from 49 to 85%.
Te methodology based on successive fltering with
a transfer learning model has been successfully applied on
a diferent dataset than FER2013.

6.3. AfectNet. Te version of the AfectNet dataset we se-
lected contains 287401 images with a large imbalance be-
tween the categories (Figure 1(c)). Training on this dataset
can lead to biases and erroneous assessment of model ac-
curacy. Terefore, we applied downsampling to balance all
categories by considering the one with the lowest number of
images. Te “disgust” category limited the other categories
with 4300 images, of which 3800 have been randomly se-
lected for training by using the split-folders (https://pypi.
org/project/split-folders/) library, whereas 500 images by
default come with the dataset for validation. Te balanced
version is shown in Table 11.

Te refnement process is performed on this balanced
version of the AfectNet dataset. Te accuracy curves for the
training and validation subsets (Figure 15) start with a small
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Figure 9: Learning curves and confusion matrices for fve successive trainings of the FER2013 dataset. (a) Training #1, (b) training #2, (c)
training #3, (d) training #4, and (e) training #5.

Computational Intelligence and Neuroscience 13



separation, which decreases as successive trainings are
performed, even the validation curve fnishes outperforming
the training curve in accuracy. Te same behavior, but in the
opposite direction, is presented for the loss curves. Te
values on the main diagonal of the confusionmatrix increase
with each training and decrease of this diagonal, indicating
a higher accuracy of the model due to a better dataset. Te
evolution of the successive training is summarized in
Table 12.

Te model in the last training reaches a higher validation
accuracy (95.9%), which allows us to reclassify the balanced
dataset. A new distribution of the AfectNet of 30100 images
is generated, whose number of images per category is
presented in Table 13.

After the reclassifcation of the balanced dataset, the new
distribution is imbalanced (Figure 16). Te categories of
happy and fear have increased signifcantly, whereas the
category of anger has increased slightly. In the remaining
cases, there is a decrease, mainly in the categories of disgust
and surprise.

Next, the CNN-based model is trained on the new
version of the AfectNet dataset to verify that our method
works. Figure 17 presents the learning curves of both
versions of the dataset, where the new AfectNet
(Figure 17(b)) allows to achieve better performance with
higher accuracy.

Tere is a notable improvement in accuracy compared to
the frst training of the balanced dataset (Table 14). Due to
downsampling, the split ratio is 88 and 12%, for the training
and validation subsets, respectively. For the new version of
the dataset, the proportion is 80 and 20% and having more
validation images, the accuracy percentage is almost du-
plicated (39.66%).

We successfully applied our method to a smaller and
more balanced version of the AfectNet dataset. Te purpose
is to improve the original AfectNet dataset, which is larger
and imbalanced. To this end, the last trained model is used to
reclassify the facial images in the full version of AfectNet.
Te new distribution is presented in Table 15.

Te bar plot in Figure 18 shows that the shape of the
distribution of the new reclassifed AfectNet is similar,
however, there is a clear increase of images in the categories
of fear, disgust, and surprise. Tis suggests that many facial
images of these categories were misclassifed as happy or
neutral.

Te following demonstrates the improved perfor-
mance in facial expression recognition. Te reclassifed
version of the AfectNet dataset is used to train the same
CNN-based model, resulting in the learning curves and
confusion matrix displayed in Figure 19. Te accuracy
curves of the training and validation subsets are increasing
from the frst epoch and reach a very high level, close to
90%. Also, both curves stay very near to each other. Te
error curves decrease together to levels near to zero, which
is desirable. By using the validation results as suggested by
the creators of the dataset, we calculated the accuracy with
the evaluate() method and generated the normalized
confusion matrix. Te accuracy on the reclassifed vali-
dation set is 89.17%, and for each facial expression, cat-
egory fuctuates between 86% and 96%, which
demonstrates a high rate of recognition and no bias for
any of the categories as opposed to the original dataset.
Tis behavior confrms better FER performance on the
reclassifed AfectNet dataset.

Finally, in Table 16, the results of the proposed method
are compared with the state-of-the-art performance on the
same datasets used in the present work. Tese are single
network models that did not use extra images to the existing
ones in the datasets. In all cases, our reclassifed versions of
the datasets allow us the highest accuracy values for both the

Table 5: Summary of experimental results for the FER2013 dataset.

Training Images (train) Images (val) Total Accuracy
1 28708 7178 35886 0.6702
2 25415 4810 30225 0.9089
3 24001 4379 28380 0.9582
4 23654 4179 27833 0.9761
5 23488 4079 27567 0.9770

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0
Angry Disgust

FER2013 (original)
FER2013 (reclassifed)

Fear Happy Neutral Sad Surprise

Figure 10: Graphical comparison of both distributions.

Table 6: Distribution of the original and reclassifed FER2013 dataset.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
FER2013 (original) 4953 547 5121 8988 6198 6077 4002 35886
FER2013 (reclassifed) 4817 532 3842 9202 7074 6090 4329 35886
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Figure 11: Comparison between the original and reclassifed FER2013 dataset. (a) FER2013 dataset (original) and (b) FER2013 dataset
(reclassifed).

Table 7: Comparison of the training results for the original and reclassifed FER2013 datasets.

Dataset Images (training) Images (validation) Total Accuracy
FER2013 (original) 28708 7178 35886 0.6626
FER2013 (reclassifed) 28708 7178 35886 0.8671
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Figure 12: Continued.
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model from scratch and transfer learning. For the novel
NHFI dataset, there is no formal report on classifcation
accuracy, so we set as a baseline the accuracy achieved by the
transfer learning model on the original dataset and contrast

it with the reclassifed version.Tese results demonstrate the
efectiveness of our data-centric method, as it improves the
performance of the FER models even achieving state-of-
the-art accuracy values.
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Figure 12: Learning curves and confusion matrices for fve successive trainings of the NHFI dataset. (a) Training #1, (b) training #2, (c)
training #3, (d) training #4, and (e) training #5.

Table 8: Summary of experimental results for the NHFI dataset.

Training Images (train) Images (val) Total Accuracy
1 4278 1072 5350 0.5597
2 3284 600 3884 0.8367
3 2936 502 3438 0.9382
4 2786 471 3257 0.9533
5 2713 449 3162 0.9666

Table 9: Distribution of the original and reclassifed NHFI dataset.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
NHFI (original) 890 439 570 1406 524 746 775 5350
NHFI (reclassifed) 336 514 383 1585 1042 962 528 5350
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Figure 14: Comparison between the original and reclassifed NHFI dataset. (a) NHFI dataset (original) and (b) NHFI dataset (reclassifed).

Table 10: Comparison between the original and reclassifed NHFI dataset.

Dataset Images (train) Images (val) Total Train_acc Val_acc
NHFI (original) 4278 1072 5350 0.7676 0.5597
NHFI (reclassifed) 4278 1072 5350 0.9550 0.7044

Table 11: Balanced distribution of the AfectNet dataset.

Subset Angry Disgust Fear Happy Neutral Sad Surprise Total
Train set 3800 3800 3800 3800 3800 3800 3800 26600
Val set 500 500 500 500 500 500 500 3500
Total 4300 4300 4300 4300 4300 4300 4300 30100
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Figure 15: Learning curves and confusion matrices for fve successive trainings of the AfectNet dataset. (a) Training #1, (b) training #2, (c)
training #3, (d) training #4, and (e) training #5.
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Table 12: Summary of results for the balanced AfectNet dataset.

Training Images (train) Images (val) Total Accuracy
1 26600 3500 30100 0.4686
2 17587 4393 21980 0.7612
3 16268 4064 20332 0.9016
4 15843 3956 19799 0.9401
5 15617 3902 19519 0.9590

Table 13: Distribution of the balanced and reclassifed AfectNet dataset.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
AfectNet (balanced) 4300 4300 4300 4300 4300 4300 4300 30100
AfectNet (reclassifed) 4394 3893 5004 4594 4224 4071 3920 30100
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Figure 16: Graphical comparison of both distributions.
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Figure 17: Comparison between the balanced and reclassifed AfectNet dataset. (a) AfectNet dataset (balanced), (b) AfectNet dataset
(reclassifed).
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7. Conclusions and Future Work

Facial expression recognition in the wild is a challenging
problem for computer systems. Promising results have been
achieved with deep learning methods, where the model and the
data share responsibility. Te vast majority of the research is

oriented towards designing better models, which is not suf-
cient when the data sufers from drawbacks. One of the most
infuential problems in FER datasets is misclassifcation. In this
work, we presented and implemented a method to reclassify all
the facial images of a dataset by generating a new distribution
that increases the accuracy of the FER models. Te proposed

Table 14: Comparison of the training results for the balanced and reclassifed AfectNet datasets.

Dataset Images (train) Images (val) Total Train_acc Val_acc
AfectNet (balanced) 26600 3500 30100 0.6763 0.4686
AfectNet (reclassifed) 24084 6016 30100 0.9013 0.8652

Table 15: Distribution of the original and new AfectNet datasets.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
AfectNet (original) 25382 4303 6878 134915 75374 25959 14590 287401
AfectNet (new) 30827 17475 19145 114275 52760 29160 23759 287401
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Figure 18: Graphical comparison of both distributions.
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Figure 19: Te learning curves and confusion matrix for the reclassifed AfectNet dataset.

Table 16: Comparison of state-of-the-art performance on the FER datasets considered.

Dataset Work Model Accuracy (%)
FER2013 [9] VGG fne tuning 73.28
FER2013 (reclassifed) Ours CNN from scratch 86.71
NHFI Ours EfcientNet-B0 transfer learning 55.97
NHFI (reclassifed) Ours EfcientNet-B0 transfer learning 70.44
AfectNet [30] CNN-attention mechanism 65.69
AfectNet (reclassifed) Ours CNN from scratch 89.17
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method keeps the convolutional network fxed and iteratively
improves the data over successive trainings. After each training,
the dataset is evaluated with the confusionmatrix, and the facial
images corresponding to the correct predictions (on-diagonal)
are selected to form the subsequent training data. Tis process
gradually generates amore accuratemodel andmore distinctive
features for each category of facial expression. Te model from
the last training is used to reclassify all the images creating a new
distribution of the dataset. We experimented with popular FER
datasets and CNNs created from scratch and Transfer Learning.
Te increase in validation accuracy by 20.45%, 14.47%, and
39.66%, for FER2013, NHFI, and AfectNet, respectively, cor-
roborates the efcacy of the proposed method. Te results
suggest that the quality and size of the dataset determine the
most appropriate type of model. NHFI is a small and better-
annotated dataset, so a pretrained model is convenient, unlike
larger and lower quality datasets, which need a model from
scratch, with longer training and more parameters. Te
reclassifed versions of these datasetsmaintain the same number
of images as the original dataset, but with less overlapping
between categories, and less variability within the same category
of facial expression.Tis allows us to achieve the state-of-the-art
performance of single network FER models with 86.71%,
70.44%, and 89.17%, for FER2013, NHFI, and AfectNet, re-
spectively.Te recognition rates improvedmost signifcantly for
the largest and lowest classifed datasets, i.e., the proposed
method works best for datasets with a high level of misclassifed
images. Te refnement process of the dataset would enable
several models to work well, not only diverse architectures of
CNN, but others such as the transformer. Our proposal, beyond
the application to the FER domain, is also useful for a variety of
computer vision problems when the data are images. Fur-
thermore, it can serve as a debugging tool in the automatic
collection of image datasets. We maintained the size of the
dataset, considering that quantity is important. However, there
are irrelevant images that should be removed and the imbalance
could be addressed with data augmentation or GANs. We
believe that these contributions would improve the quality of
the dataset and the accuracy of the models. Terefore,
a methodology for automatic learning should consider the
quality of the dataset as a prerequisite to the search for better
network architectures and model confgurations.
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It is very important for consumers to recognize their wrong shopping habits such as unplanned purchase behavior (UPB). Te
traditional methods used for measuring the UPB in qualitative and quantitative studies have some drawbacks because of human
perception and memory. We proposed a UPB identifcation methodology applied with the brain-computer interface technique
using a support vector machine (SVM) along with a functional near-infrared spectroscopy (fNIRS). Hemodynamic signals and
behavioral data were collected from 33 subjects by performing Task 1 which included the Buy-One-Get-One-Free (BOGOF) and
Task 2 which excluded the BOGOF condition. Te acquired data were calculated with 6 time-domain features and then classifed
them using SVM with 10-cross validations. Tereafter, we evaluated whether the results were reliable using the area under the
receiver operating characteristic curve (AUC). As a result, we achieved average accuracy greater than 94%, which is reliable
because of the AUC values above 0.97. We found that the UPB brain activity was more relevant to Task 1 with the BOGOF
condition than with Task 2 in the prefrontal cortex. UPBs were sufciently derived from self-reported measurement, indicating
that the subjects perceived increased impulsivity in the BOGOF condition. Terefore, this study improves the detection and
understanding of UPB as a path for a computer-aided detection perspective for rating the severity of UPBs.

1. Introduction

Consumers have experienced fnancial problems such as
excessive consumption, household debt, and monetary
losses because of unplanned purchases [1]. Many studies
have shown that reasonable consumption is difcult because
unplanned purchase behavior (UPB) occurs emotionally or
impulsively [2]. Many studies have reported that UPB can
occur under situations that encourage people’s impulsive-
ness such as price discounts and time pressures [3, 4]. UPBs
are defned as a purchase of any item that consumers had not
planned to purchase before entering the shops [5]. UPBs are
increased by promotion strategies [6] such as price dis-
counts, coupons, and money-back guarantee. Especially,
“Buy-One-Get-One-Free” (BOGOF) is one of the most
popular promotion strategies. A previous study found that

over 53.3% of 192 respondents preferred BOGOF over other
promotions [7]. Tis promotion strategy plays an important
role in eliciting consumer’s UPBs.

To assess whether consumers’ UPB is, there are tradi-
tional research methods such as interviews, surveys, and
questionnaires [8]. However, they rely on consumers’
subjective perceptions and memories [9]. Furthermore,
there is still a lack of tools and equipment for empirically
measuring UPBs. To solve this issue, there are recent studies
that have reported empirical evidence for unplanned pur-
chases through brain signal measuring equipment [10].
Tere are noninvasive equipment for brain measurements
such as electroencephalogram (EEG) [11, 12] and functional
magnetic resonance imaging (fMRI) [13]. Figure 1 describes
the noninvasive brain signal measurement equipment that is
harmless to the human body. EEG records voltage
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fuctuations caused by electrical currents fowing through
the brain cortex because of neural activity [14]. fMRI uses the
blood-oxygen-level-dependent (BOLD) contrast to detect
changes in blood oxygenation that occur in response to
neural activity, and it has become the most commonmethod
for imaging brain functions in vivo [15]. However, fMRI is
unsuitable for certain research applications and various
clinical applications because fMRI is physically prone to
mixing motion artifacts, exposes to loud noises, and is ex-
pensive. To compensate for the shortcomings of fMRI,
fNIRS has become a promising imaging modality for UPB
evaluation as well as for reducing the physical space con-
straint and costs of fMRIs [16, 17]. fNIRS is one of the state-
of-the-art brain signal measurement equipment, especially
with scalability, convenience in use, and portability [18, 19].
With the benefts of the fNIRS, we can provide valuable
insights into the consumers’ UPB by using the brain-
computer interface (BCI) technique [20]. We utilize the BCI
technique to explain customer behaviors in detail [21], and it
will beneft to neuromarketing industries using fNIRS
utilities [22].

A general scheme of BCI can be explained using fve
main steps, as illustrated in Figure 2. In Step 1, the people
should perform cognitive tasks with (or without) the
BOGOF condition. Te brain signal changes according to
the cognitive tasks and these brain signals are acquired by an
fNIRS device and then gets transmitted to the next step. In
Step 2, the fNIRS signals are digitized, amplifed, and fltered
to delete undesired signals called artifacts such as physio-
logical noise. Ten, the clean signals go to Step 3, where the

clean signals extract features to be used as a descriptor of the
fNIRS signals for classifying the UPB patterns. Te features
are classifed into UPB and non-UPB states in Step 4. Finally,
the message which indicates the UPB classifcation result is
presented on a computer screen in Step 5. Trough these
processes, this study shows that the UPB and non-UPB can
be distinguished because of brain signals that refect people’s
actual cognitive consequences.

Accordingly, we proposed a methodology to measure the
UPB by the BCI technique. For this purpose, we acquired
fNIRS signals during the cognitive tasks with and without
BOGOF at online shopping shops and then converted them
into preprocessed feature vectors by six time-domain feature
extraction methods. To classify UPBs and non-UPBs, we
adopted SVM, which is a widely used supervised learning
approach with 10-fold cross-validation. We also used the
“area under the receiver operating characteristic (AUC),” a
measurement method for determining whether the results of
SVM classifying UPB and non-UPB were reliable. As a
result, we achieved an average accuracy of above 94% for
classifying UPBs across all subjects, which also ensured the
reliability of the results by obtaining an AUC value above
0.97. We observed that low brain activities were exhibited
during Task 1 which included the BOGOF condition, and
high brain activities were exhibited during Task 2 which
excluded the BOGOF condition at the PFC. It is interpreted
that there is a clear diference in the fNIRS signals depending
on the BOGOF conditions. Furthermore, our experimental
tasks are well designed because self-reported results indicate
that these experimental tasks sufciently induced the con-
sumers’ impulsiveness. Terefore, we believe that this study
can be applied to a variety of applications by improving the
accuracy of detecting UPB patterns under BOGOF
conditions.

2. Materials and Methods

2.1. Subject. Te study was approved by the Korea Uni-
versity Institutional Review Board (KUIRB-2022-0126–01)
and then written informed consent was obtained from all
subjects. Considering possible dropouts, we recruited 38
healthy adults but 5 people were excluded because of in-
sufcient signal quality, and the remaining 33 subjects
(mean± standard deviation aged 24± 2.64 years) completed
the entire study. Tere were 12 males (aged 24±1.75 years)
and 21 females (aged 24± 3.03 years) with normal or cor-
rected to normal eyesight. All subjects were right-handed to
minimize variability in brain signals. Te subjects had no
previous history of physical, mental, or psychological dis-
abilities. All subjects were asked to minimize head move-
ments and actively take part in the experiment as much as
possible.

2.2. Experimental Procedures. To investigate brain activation
patterns, we designed two experimental tasks depending on
the presence or absence of BOGOF. Figure 3 illustrates the
overall experiment protocol. Each experimental task com-
prised 5 trials where the subjects were asked to decide on

Near-IR
spectrum

Electrical current

fMRI

EEGfNIRS BOLD signal
Voltage

Blood vessel
(hemodynamics)

Figure 1: Noninvasive mapping of brain function using neuro-
imaging technologies. EEG records voltage fuctuations caused by
electrical currents fowing through the brain because of active
neurons using an array of electrodes placed on the scalp. fMRI
measures hemodynamic responses associated with brain activity by
relying primarily on the local blood-oxygen-level-dependent
(BOLD) signal, which detects changes in blood oxygenation caused
by neural activity. fNIRS measures the changes in oxygenation and
deoxygenation hemoglobin concentrations in the brain using near-
infrared light.

2 Computational Intelligence and Neuroscience



purchasing displayed products under Task 1 (including
BOGOF condition) and Task 2 (excluding BOGOF condi-
tion). In each task, the participants are free to choose the
clothes they want [23]. Te selected clothes brand is ZARA
[24], known as the global specialty retailer of private label
apparel fashion brand, which was selected by a Google
survey in Koreapas [25], which is one of the major online
communities for Korean university students. Te clothing
lines are divided into 5 major categories, which were dis-
played on the screen in the following order: knitwear, coat,

vest, pants, and suit. Tere were 4 products in each group.
For example, the coat group has four products (i.e., wool
coat, classic long trench coat, wool mannish coat, and
checked coat). Te subjects can freely purchase up to 4
products they want in each group; in other words, they can
purchase products from 0 to 20 per task. Each product was
presented only once during the experiment. Each task lasted
for 5 minutes and included the following stages (trial
number display (1 s), task (25 s), rest (30 s)), and a brief
buzzer (58.4 dBA, sound level meter, YATO, China). Te

3. Feature
Extraction
Methods

4. Pattern
Classifcation
(Detection of
Unplanned
Purchase)

2. fNIRS
Acquisition
(Filtering,

Segmentation,
and Signal

preprocessing)

Message

1. Cognitive
Task

fN
IRS

5. Response
Monitoring (Screen)

Figure 2: Typical scheme of a BCI system consisting of fve main stages. Te process is as follows: (1) cognitive task; (2) fNIRS acquisition;
(3) feature extraction methods; (4) pattern classifcation; (5) response monitoring. We went through this whole process to detect UPB.

Self-Reported
Measurements
using QualtricsRest

Inter-trial interval

5 repeat

0 s
25 s

60 s

Trial 1Self-Reported
Measurements 
using Qualtrics

free

free

Task

–1 s

Figure 3: Overall procedures of performing Tasks 1 and 2. Participants are free to choose what clothes they want to buy from online
shopping malls, which are divided into Task 1 with BOGOF conditions and Task 2 without BOGOF conditions. Te whole experiment
consists of trial number mark, experimental task, and rest. Each task is conducted for 25 s followed by a rest for 30 s. A total of fve trials were
conducted. Te tasks are randomized and counterbalanced in sequence. Before and after the experiment, a self-reported measurement
related to UPB was conducted using the popular survey platform, Qualtrics.
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order of the tasks was randomized and counterbalanced. All
the subjects completed a self-reported measurement using
Qualtrics, which is a popular survey platform, before and
after the experiment.

2.3. fNIRS Equipment. To measure the brain’s hemody-
namic responses in the prefrontal cortex (PFC), we used an
fNIRS device (NIRSIT Lite, OBELAB Inc., Korea). To
provide detailed guidance on the specifcations of fNIRS,
Figure 4 illustrates the fNIRS channel confguration cov-
ering the forehead and an example of source-detector pairs
in detail. On the left panel, the fNIRS device has a total of 15
fNIRS channels composed of 5 sources (the grey circles)
and 7 detectors (the orange circles). Te probe sets are
symmetrically arranged at FPz between Chs. 7 and 10
according to the 10–20 international systems. Tey were
divided into 4 regions: the Dorsolateral prefrontal cortex
(DLPFC), Ventrolateral prefrontal cortex (VLPFC), Medial
prefrontal cortex (mPFC), and Orbitofrontal cortex (OFC).
In these four areas, brain activations are known to pri-
marily inhibit impulsivity [26]. Among them, VLPFC has
separate left and right functions, and the left VLPFC is
related to the reward system [27]. Tese results can help
interpret hemodynamic activation patterns in the PFC that
occur when performing our experimental tasks. On the
right panel, the detector measures the lights from a difuse
volume of tissue in accordance with the model of light
propagation. Tese lights can reach 8mm into the brain
cortex while maintaining a distance of 3 cm between the
source and detector. Te fNIRS device refects the ab-
sorption properties of living tissues to measure changes in
the local concentrations of oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) within the crescent-shaped near-
infrared region through the skull [28, 29]. Te crescent-
shaped paths represent the near-infrared light (NIR)
photons’ traveling area, while the blue dotted arrows
represent light scattering. Te red-colored arrows show the
distance traveled by photons, which is corrected by the
diferential path length factor. Consequently, fNIRS can
measure the hemodynamic changes quantitatively by ab-
sorbing near-infrared rays into the scalp and by measuring
the emitted light emitted.

Based on the aforementioned principles of fNIRS, we
recorded the optical density data at a frequency of 8.138Hz
and confgured it to detect hemodynamic activity at
wavelengths of 780 nm and 850 nm. Te optical density data
were bandpass fltered digitally in the range of 0.01–0.1Hz to
eliminate possible physiological signals such as respiration,
heart rate, and unwanted noise. Filtered signals were con-
verted to oxygenated and deoxygenated concentration
changes using the modifed Beer–Lambert law [30], and then
the data were segmented into epochs ranging from −1 to 60 s
relative to the task onset (0 s). Te epoch was subjected to a
baseline correction to subtract the mean value within a
reference interval from −1 to 0 s. Te temporal means of the
fNIRS data in each channel were calculated by averaging the
fNIRS data from the start to the end time (0–60 s) in each
epoch. In this study, we handle only HbO signals because

they have a higher signal-to-noise ratio [31, 32]. It means
that the signal strength is stronger than the noise intensity.
HbO is also regarded as a more reliable indicator for ana-
lyzing the PFC activation [33]. Te acquired fNIRS dataset,
as well as all related information, can be downloaded from
https://github.com/SujinBak/BOGOF.

2.4. Extractionof SixTime-DomainFeatures:Mean,Variance,
Kurtosis, Skewness, Slope, and Area. Feature extraction is an
important step in extracting and maximizing the information
that describes the unique property of the fNIRS signals. Tis
step forms the features extracted from the brain signals into
vectors. Tese feature vectors are recognized by the classifer,
which makes it easier to classify two or more classes. Te
widely used feature extraction methods were divided into
three main categories: time-domain analysis; frequency-do-
main analysis; and time-frequency domain analysis. We fo-
cused on time-domain analysis, which facilitates the
understanding of the transient characteristics of physiological
signals, including fNIRS signals [34]. It has been reported that
time-domain features can improve the classifcation accuracy
between diferent cognitive states [35]. Especially, the time-
domain features represent the property diference between
the measured signals, which is visually recognizable when an
unexpected abnormality appears in the signals [36]. Ac-
cordingly, we adopted the framework for feature extraction
used by Park and Dong. [37] and then calculated 6 time-
domain features (mean, variance, kurtosis, skewness, slop,
and area) to extract information across data [38]. We denote
mean, variance, kurtosis, skewness, slope, and area as SM, SV,
KR, SK, SS, and SA, respectively. Signal mean (SM) can be
calculated by the following equation:

SM �
1
N

􏽘

N−1

n�0
x[n], (1)

where x[n] is the input signal (∆HbO) at the time index of n,
and N is the total length of the signals. Signal variance (SV)
is calculated as follows:

SV �
1

N − 1
􏽘

N−1

n�0
(x[n] − μ)

2
, (2)

where μ(� SM) is the mean found from (1). For signal
kurtosis (KR), it is calculated by the following equation:

KR � E
x[n] − μ

σ
􏼠 􏼡

4
⎡⎣ ⎤⎦, (3)

where E is the expected value and σ(� SV) is the standard
deviation. Similarly, signal skewness (SK) is the asymmetry
of values relative to normal distribution around the mean,
hence calculated in the following equation:

SK � E
x[n] − μ

σ
􏼠 􏼡

3
⎡⎣ ⎤⎦. (4)

Signal slope (SS) is calculated by the following equation:
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SS �
x[n] − x[n − 1]

∆n
, (5)

where x[n] is the xvalue at the current time, and x[n-1] is the
x value at the previous time. ∆n is the sampling time interval.
Moreover, signal area (SA) is obtained by the following
integral function expression:

SA � 􏽘
N−1

n�0
x[n]∆n. (6)

All statistical features were rescaled between 0 and 1 to
normalize the size of the extracted feature vector using the
following equation:

Z′ �
Z − min(Z)

max(Z) − min (Z)
, (7)

where Z′ is the rescaled feature vector and Z refers to the
original feature vector.

2.5. SVM for Detecting UPB Patterns. Te most popular
supervised learning model, SVM, has already demonstrated
its excellent performance (i.e., classifcation accuracy)
compared to other classifer models in many studies [39–41].

SVM can explicitly control errors by maximizing margins
between two or more classes, known as support vectors
[42, 43], as illustrated in Figure 5. Te green squares and the
pink circles are support vectors. Tus, SVM estimates the
optimal hyperplane with the maximummargin (2l) between
two classes. Te optimal hyperplane is defned as follows:

d(x) � W
T
x + b � 0, (8)

where x represents the input values and becomes
x � (x[0], x[1], . . . , x[N − 1])T. W refers to the hyper-
plane’s direction as a normal vector of the hyperplane and
transposes it to WT. b is the position.Te optimal hyperplane
is determined through W and b. To calculate W and b, the
margin is defned as the distance between the nearest data
points of either class measured perpendicular to the hyper-
plane. Tis means maximizing margins while minimizing
generalized errors. To reduce errors, we calculated 2l by
substituting W vectors obtained from (8) into (9). Ultimately,
we can calculate an optimized hyperplane that maximizes
margins between support vectors, which is important to
determine the classifcation accuracy of SVM as follows:

Maximummargin(2l) � max
W,b

2
||W||2

, (9)
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Figure 4: fNIRS channel confguration (a) and source-detector pair (b). In the left panel, the grey circles indicate the sources, whereas the
orange circles represent the detectors, resulting in a total of 15 fNIRS channels in the prefrontal cortex (PFC). According to the 10–20
international system, the probe sets are symmetrically placed at FPz between Chs. 7 and 10. On the right panel, the source-detector pair
measures lights from a difuse volume of tissue beneath the pair as shown in the model of light propagation. Tese lights can reach
approximately 8mm into the brain cortex at a source-detector spacing of 3 cm. Lights at two wavelengths (780 nm and 850 nm) are used to
reconstruct changes in oxy- and deoxy-hemoglobin concentrations from the modifed Beer–Lambert law. A detector captures the lights
resulting from the interaction with HbO and HbR, following a crescent-shaped path back to the surface of the skin. Te crescent-shaped
paths depict the traveling area of the near-infrared light (NIR) photons, while the blue dotted arrows indicate the light scattering. Te red-
colored arrows show the extra distance traveled by photons, which is corrected by the diferential path length factor.
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where ‖W‖2 �

����������������������������

W[0]2 + W[1]2 + . . . + W[N − 1]2
􏽱

. Te
SVM model was assessed by 10-fold cross-validation to
avoid overftting known as learning biases caused by the
classifer’s excessive dependency on training data. Te
training dataset is split into 10-folds containing an equal
number of the training dataset. We divided them into the
ratio of 8 train sets and 2 test sets for the cross-validation and
then tested them 30 times to estimate the variability of the
classifcation accuracies. We subsequently calculated the
mean classifcation accuracy and a standard error of the
mean (SEM).

However, this model can lead to an imbalance problem
where one of the two classes has more data than the other
classes [44]. Tus, we evaluated the reliability of the clas-
sifcation results in the following section to determine
whether the classifer results were afected by the imbalance
problem.

2.6. Reliability of CalculatedClassifcationResultsUsingAUC.
AUC is primarily used to validate the reliability of the
results classifed by the SVM [45–47]. Figure 6 depicts the
typical receiver operating characteristic (ROC) curves and
their AUCs which include a true-positive rate (TPR) and
false-positive rate (FPR). Tese statistical indexes such as
TPR and FPR are essential for interpreting the reliability of
the calculated classifcation results. AUC estimates the
whole two-dimensional area underneath the whole ROC
curve (i.e., a kind of integral calculation) from (0,0) to (1,1).
Hence, AUC is the range from 0 to 1, and the classifcation
results are the most reliable with an AUC value of 1. Te
reliability of the results calculated by the classifers is better
as the FPR is lower and TPR is higher. In other words, the
closer the AUC is to 1, the better the reliability of the
results. If the AUC area is less than 0.5, the calculated
classifcation results are not reliable. After all, it is im-
portant to fnd the largest AUC (close to 1). To quantify the
AUC value, we frst calculated the TPR and FPR using
equations (10) and (11).

TPR �
TP

TP + FN
, (10)

where TP refers to the parameter in which the UPB is
correctly classifed as UPB, and FN indicates that the
classifer incorrectly classifed UPBs as non-UPBs. Tus, the
TPR is the ratio of correctly judging the UPBs evoked by
BOGOF as UPBs. In contrast, FPR is the ratio of incorrectly
judging the non-UPB as the UPB.

FPR �
FP

FP + TN
, (11)

where TN represents that the classifer correctly classifed
non-UPBs as non-UPBs. FP means that non-UPB is mis-
classifed as UPB.

2.7. Detection of UPB and Non-UPB. After completing the
SVM classifcation process, MATLAB® App Designer, a
fully integrated development environment, was used to
represent UPB classifcation results by SVM on the com-
puter screen. It is divided into two messages based on the
classifcation accuracy between UPBs and non-UPBs. If the
classifcation accuracy exceeds 80%, the message appears
that it is ready to detect UPB patterns; otherwise, the
message appears that it cannot detect UPB patterns.

2.8. Self-Reported Measurement. In this study, self-reported
measurement was used to determine whether impulsivity
increased in the BOGOF condition as perceived by the
subjects. Te subjects answered whether impulsivity was
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Figure 6: Typical ROC curves and their AUCs. Te ROC curves
show the relationship between true-positive rate (TPR) and false-
positive rate (FPR) to validate the reliability of results calculated by
the SVM classifer. TPR is the ratio of correctly judging the UPB
elicited by BOGOF as the UPB. In contrast, FPR is the ratio of
incorrectly judging the non-UPB as UPB. Trough these TPRs and
FPRs, the AUC can be calculated by quantifying the entire 2-D
region under the ROC curve. Te red dotted diagonal line
(AUC� 0.5) depicts a baseline. Te AUC of the purple line
(AUC� 1.0) is considered to be the best reliability in the tested
classifer results.
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Figure 5: Concept of support vector machine (SVM). Te green
squares and the pink circles are support vectors. SVM should fnd
the optimal hyperplane (solid black line) divided into Class 1 and
Class 2 with a maximum margin (2l). Hence, SVM estimates the
hyperplane in the two-dimensional space and classifes two classes.
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induced in each of the purchase situations of the two tasks.
Te subjects perceived that impulsivity was induced when
BOGOF was present (compared to the absence), suggesting
that the experiment was well designed.

2.9. Statistical Analyses. All statistical analyses were con-
ducted using the Statistical Package for the Social Sciences,
version 25.0. (SPSS Inc., Chicago, IL). Variables were cal-
culated such as normality, means (μ), standard deviation (σ),
and standard error of the mean (SEM) for each task. We
used an independent sample t-test [48] to compare the
diference in the number of clothes purchased by the subjects
between Task 1 and Task 2, statistically.

2.10. Behavioral Analyses. People who overspend are more
likely to make unplanned purchases [49]. Tus, we con-
centrated on the number of clothes that the subjects
intended to buy to investigate the subject’s UPB caused by
BOGOF condition. Te unplanned purchase ratio was cal-
culated using the average and the sum of the clothing
purchased by each subject. Tereafter, the independent
sample t-test is used to investigate a statistical diference in
the number of clothing purchased by the subjects.

3. Results

3.1. Self-Reported Results. A self-reported measurement
method was used to determine whether there was a dif-
ference in the subjects’ perceived impulsivity with and
without BOGOF. Many researchers use an alternative var-
iable, a compulsive desire to buy, to measure UPBs. Tree
items were used to measure the subjects’ compulsive desire
to buy [50], made on a 5-Likert scale.

Tere was a signifcant diference in the perceived im-
pulse purchase intention according to the presence or ab-
sence of BOGOF. Subjects perceived impulsivity in the
BOGOF condition (μ� 3.53; σ � 0.80; t(64)� 5.375;
∗∗∗p< 0.001) than in the non-BOGOF condition (μ� 2.40; σ
� 0.90; N.S.). It also suggests that our experiment tasks are
well designed to compare subjects’ impulsiveness and
nonimpulsiveness.

3.2. Behavioral Results. Te behavioral results were obtained
from solely the number of clothing purchased by the sub-
jects. Te average number of the purchased clothes in Task 1
(μ ± σ: 6.67 ± 2.27) was higher than that in Task 2
(3.36 ± 2.41). An independent sample t-test shows statisti-
cally signifcant diferences in the number of clothes pur-
chased between the two tasks (t � 5.649,∗∗∗p< .001),
indicating that there is a diference in the UPB pattern
between the two tasks. Specifcally, in Task 1, the purchased
clothes have the sum and standard deviation as follows:
knitwear (43 ± 0.60), coat (43 ± 0.70), vest (45 ± 0.66),
pants (51 ± 0.76), and suit (38 ± 0.52). Task 2 includes
knitwear (31 ± 0.57), coat (19 ± 0.66), vest (25 ± 0.65),
pants (24 ± 0.90), and suit (12 ± 0.49). Hence, the diference
in the total number of clothes purchased between the tasks

were knitwear (t � 2.472, ∗p< 0.05), coat (t � 4.386,∗∗∗

p< 0.001), vest (t � 3.742,∗∗∗p< 0.001), pants (t �

3.890,∗∗∗p< 0.001), and suit t � 6.425,∗∗∗p< 0.001). Tis
means that the total number in each clothing group can be
revealed between the two tasks.

3.3. Analyses of Brain HbO Activity in PFC. We investigated
the diferences in the presence or absence of UPBs in
connection to brain activity. Figure 7 depicts the topo-
graphical maps of averaged HbO activities across all subjects
in the PFC areas, and Figures 7(a) and 7(b) correspond to
Task 1 (including BOGOF) and Task 2 (excluding BOGOF),
respectively.

Except for the left VLPFC, brain activation hardly oc-
curred in Figure 7(a). In contrast, Figure 7(b) indicates the
signifcant brain activations in several regions such as OFC,
mPFC, and VLPFC regions, which showed particularly
strong activations in the OFC area. Although the DLPFC
showed little activation, signifcant brain activations oc-
curred in the OFC, mPFC, and VLPFC areas, which are
known to inhibit impulsivity. As a result, we revealed that
Task 2 allows for reasonable consumption as opposed to
Task 1.

3.4. Classifcation Results between UPB and Non-UPB Using
SVM. We used SVM to calculate the accuracies for binary
classifcation between Task 1, which elicits UPBs by BOGOF,
and Task 2, which serves as a control task. Figure 8 exhibits
the classifcation accuracies between UPB and non-UPB
using SVM for each subject during cognitive tasks in ac-
cordance with the BOGOF. Especially, “A” on the x-axis
represents the overall average classifcation accuracy of
94.23% for 33 subjects. Te error bars represent SEMs, and
the average error bar of “A” is 0.03. All subjects accounted
for higher than 86% classifcation accuracy, which ranged
from 86.42%± 0.02 (accuracy (%)± SEM) to (99.90%± 0.01).
Tese provide empirical evidence for diferentiating UPBs
from non-UPBs.

3.5. Reliability Verifcation of Classifed Results Using AUC.
AUC is used to determine the reliability of the classifcation
results, which gives us an intuitive view of the entire spectrum
of FPR (x-axis) and TPR (y-axis). Table 1 presents the AUC
values of all subjects who participated in this experiment. Te
averaged AUC value is 0.97 across all subjects. Moreover,
their AUCs lie between 0.85 and 1.00, indicating that the SVM
model is trained perfectly, and their results are highly reliable.
More specifcally, Figure 9 illustrated the ROCs and their
AUCs of two representative subjects with the lowest and
highest AUCs among all subjects. Figure 9(a) refers to the
subject’s ROC and AUC (0.85) with the lowest accuracy value
of 86.42%, and Figure 9(b) illustrated the subject’s ROC and
AUC (1.00) with the highest accuracy value of 99.90%. As a
result, the curves are located above the baseline in both
subjects, and their AUC values fully guarantee the reliability
of the UPB detection results. In simple words, the larger the
AUC value the higher is the reliability of the SVM results, in
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which both the UPBs and non-UPBs are trustworthily sep-
arable. Tus, our study denotes that the SVMmodel provides
high accuracies which are reliable.

3.6. Detection Results of UPB and Non-UPB Patterns.
Figure 10 illustrates the screenshots of the detection results
for UPB patterns. All subjects received a message that this
system can detect UPB patterns because each subject had
reached a classifcation accuracy of more than 86% in this
experiment.

4. Discussion

4.1. Proposed UPB Identifcation Methodology with BCI and
Self-ReportedMeasurement. Research related to promotion
strategies focuses on detecting and predicting people’s UPB
patterns [1]. However, it is difcult to measure the actual
UPB in the lap setting. Terefore, UPB has so far relied on
qualitative and quantitative research such as interviews and
surveys. In line with this trend, this study also confrmed
that a compulsive desire to buy increased during BOGOF
using self-report measurement. It also demonstrates that
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Figure 7: Topographical maps of averaged HbO activities under (a) Task 1 and (b) Task 2. Most areas show little activation except for the left
VLPFC in (a). On the other hand, extensive brain activations appear in mPFC, VLPFC, and OFC in (b). Tese regions have the function of
inhibiting UPB as an important predictor of impulsiveness. Tus, these fndings provide empirical evidence that the BOGOF condition
sufciently encourages UPB to diferentiate it from non-UPB.
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Figure 8: Classifcation results between UPB and non-UPB using SVM for each subject during cognitive tasks in accordance with the
BOGOF condition. Te red error bars refer to the standard error of mean (SEM). “A” in the x-axis indicates the average classifcation
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suggesting that the fNIRS data could be used as a biomarker to diferentiate between UPB and non-UPB.
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our experiments are well designed. Several studies, how-
ever, emphasize that these tools still must be used with
caution because they are infuenced by the subjects’ per-
ceptions and memories [8]. To supplement the short-
comings of traditional marketing research methods, we

present the UPB identifcation methodology to classify
between a UPB and a non-UPB as illustrated in Figures 7
and 8. Eventually, we can identify the UPBs through a
machine learning-based classifcation approach using
fNIRS-SVM along with the self-reported results.

Table 1: AUC results across 33 subjects.

Subjects AUC Subjects AUC Subjects AUC
Subject 1 0.99 Subject 13 0.95 Subject 25 0.98
Subject 2 0.96 Subject 14 0.99 Subject 26 0.97
Subject 3 0.92 Subject 15 0.99 Subject 27 0.98
Subject 4 0.95 Subject 16 0.95 Subject 28 0.97
Subject 5 1.00 Subject 17 0.85 Subject 29 1.00
Subject 6 0.93 Subject 18 0.99 Subject 30 1.00
Subject 7 0.96 Subject 19 1.00 Subject 31 1.00
Subject 8 0.94 Subject 20 0.97 Subject 32 0.99
Subject 9 0.96 Subject 21 0.97 Subject 33 1.00
Subject 10 0.99 Subject 22 1.00 Average 0.97
Subject 11 0.99 Subject 23 0.99 SD 0.03
Subject 12 0.97 Subject 24 1.00 SEM 0.01
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Figure 9: ROC curves and their AUCs of two representative subjects with (a) the lowest accuracy and (b) the highest accuracy. Te red
dotted diagonals represent the baseline. Te reliability of the classifcation results is not guaranteed if the SVM curves (blue lines) locate
below the baseline, but the classifcation results are reliable if the SVM curves locate above the baseline. Terefore, all SVM results are
trustworthy, and (b) is more reliable than (a).

You achieved 95% classifcation accuracy
Tis system can detect your

unplanned purchases pattern

(a)

You achieved 11% classifcation accuracy
Tis system can’t detect your
unplanned purchases pattern

(b)

Figure 10: Screenshots of the detection results for UPB patterns. If the classifcation accuracy is above 80%, a message indicates that you are
ready to detect unplanned purchase patterns (a); otherwise, indicates that you are not able to detect unplanned purchase patterns (b). In this
experiment, all subjects received a message stating that this system can detect UPB patterns because each subject achieved a classifcation
accuracy of higher than 86%.
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4.2.HighClassifcationAccuracy in the ProposedMethodology
Compared to the Existing Research Methodology. In our
study, we proposed the optimal measurement methodology
based on fNIRS-SVM, which would aid and improve the
correct identifcation of UPBs caused by BOGOF. Te pro-
posed method along with self-reported measurements can
serve as an optimal measurement tool to detect unplanned
and impulsive purchase patterns. Likewise, in previous
studies, measurement tools for impulsive detection have also
existed, including clinical and neuropsychiatric tests.
According to a previous study [51], psychometrical ques-
tionnaires such as Barrat’s impulsiveness scale version 11 and
the International Personality Disorder Evaluation Screening
Questionnaire were used to detect people’s impulsivity. Tese
results are consistent with the SVM results by obtaining the
impulsivity classifcation accuracy above 76%. Another study
has reported the potential of the fNIRS-SVM classifcation
approach between impulsive and nonimpulsive adolescents,
which achieves a classifcation accuracy greater than 90%.
Tis result was identical to the clinical assessment results by
showing a signifcant diference in scores between the two
adolescent groups [52]. Similarly, we achieved an average
accuracy of 94% by detecting UPBs across 33 people, which
was higher than the results of the previous study [52] as il-
lustrated in Figure 8. Our study shows the highest achieve-
ment among previous achievements for detecting UPBs.

4.3.Detection of LowBrainActivity in theUPB. Many studies
have reported that the more impulsive buying tendency
people have, the lower is the brain activity in their PFC. For
example, typical symptoms related to impulsiveness include
obesity and binge-eating disorder [53]. Tey found that the
obesity group had a lower fNIRS-based PFC response than
the normal-weight group, indicating a connection between
impulsiveness and a specifc obesity phenotype. Another
study found that the control group had higher prefrontal
activation than ADHD children with high impulsiveness
[54, 55]. Similarly, our study illustrates that Figure 7 depicts
low brain activation at the PFC as a result of BOGOF. We
have also confrmed that BOGOF elicits UPBs from the
subjects’ self-reported results. Tus, we revealed low brain
activity because of UPBs at the PFC for the frst time.

5. Conclusions

We proposed the optimal measurement methodology ap-
plied with fNIRS-SVM that can classify UBP patterns caused
by BOGOF tasks and non-UBPs caused by control tasks and
then validate their excellent classifcation results by AUC. As
a result, we achieved an average accuracy above 94% by
utilizing patterns of promotion strategy for UBPs. Te
classifcation result’s reliability is validated by satisfying the
AUC values above 0.97. We also found that the brain activity
for UPBs was lower during the BOGOF tasks than during the
control tasks at the PFC. Tis is consistent with the self-
reported results that the subjects perceived an increase in
impulsivity when they were exposed to BOGOF. Terefore,
this study raises awareness of consumers’ UPB and shows

the possibility of applying optimized UPB measurement
methodology to various applications such as mobile and PC
in terms of computer-aided detection.
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In recent days, research in human activity recognition (HAR) has played a signi�cant role in healthcare systems.  e accurate
activity classi�cation results from the HAR enhance the performance of the healthcare system with broad applications. HAR
results are useful in monitoring a person’s health, and the system predicts abnormal activities based on user movements. eHAR
system’s abnormal activity predictions provide better healthcare monitoring and reduce users’ health issues.  e conventional
HAR systems use wearable sensors, such as inertial measurement unit (IMU) and stretch sensors for activity recognition.  ese
approaches show remarkable performances to the user’s basic activities such as sitting, standing, and walking. However, when the
user performs complex activities, such as running, jumping, and lying, the sensor-based HAR systems have a higher degree of
misclassi�cation results due to the reading errors from sensors.  ese sensor errors reduce the overall performance of the HAR
system with the worst classi�cation results. Similarly, radiofrequency or vision-based HAR systems are not free from classi�cation
errors when used in real time. In this paper, we address some of the existing challenges of HAR systems by proposing a human
image threshing (HIT) machine-based HAR system that uses an image dataset from a smartphone camera for activity recognition.
 e HITmachine e�ectively uses a mask region-based convolutional neural network (R-CNN) for human body detection, a facial
image threshing machine (FIT) for image cropping and resizing, and a deep learning model for activity classi�cation. We
demonstrated the e�ectiveness of our proposed HITmachine-based HAR system through extensive experiments and results.  e
proposed HIT machine achieved 98.53% accuracy when the ResNet architecture was used as its deep learning model.

1. Introduction

 e human healthcare systems have a vital role in our daily
life. Due to the busy lifestyle, these days, the lack of exercise
causes serious health issues. Emerging technologies such as
human activity recognition (HAR) systems [1] can monitor
the users’ activities in the healthcare system. Recent research
trends in HAR show its wide variety of applications that
include health and �tness monitoring [2], assisted living [3],
context-enabled games and entertainment [4], social net-
working [5], and sports tracking [6]. In HAR, the system
tracks the user’s movements and classi�es the user’s activ-
ities based on the sensor reading.  e existing HAR system
includes vision-based [7], radiofrequency-based [8], or

wearable sensor-based approaches [9].  e most common
and low installation cost-based HAR technique is the
wearable sensor-based approach.  e sensor-based tech-
nique is location independent, and the user can easily hold
the sensor during their activities.  e sensor-based HAR
approaches achieved a remarkable classi�cation accuracy,
and smartphone or smartwatch-based HAR is the most
common system used for activity recognition. However, the
sensor errors, sensor type, sensor position in the human
body, and user’s complex activities make the system more
challenging for activity recognition.  e HAR system has
worst classi�cation results when the user is in complex
activity motion. On the other side, when the HAR system
uses radio frequency (RF) signals for activity recognition, the
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system takes advantage of the wireless communication
features to classify the user’s activities. Compared with the
sensor-based HAR approach, RF-based HAR is device-free,
and the system does not need any physical sensing module.
*e device-free characteristics of radio frequency-based
HAR provide reduction in energy consumption and privacy
protection compared with the sensor or vision-based HAR
systems. However, indoor channel conditions, non-line of
sight conditions, and signal interference affect the perfor-
mance of HAR, and the system faces difficulties in main-
taining high accuracy levels. Besides these HAR approaches,
the vision-based HAR system uses a camera that records the
user’s activities in a video sequence. *e vision-based ap-
proach uses computer vision algorithms for activity rec-
ognition. Based on the camera type used in the HAR system,
the video sequence from the vision approach is in the form of
RGB videos [10], depth videos [11], or RGB-D videos [12].
Compared with sensor-based or radio frequency-based HAR
approaches, the vision-based approach shows higher clas-
sification results for users’ complex activities. However, user
privacy, energy consumption, and deployment cost are the
main challenges for the vision-based HAR approaches. In
this paper, our research focuses on the vision-based HAR
approach, and we propose a human image threshing (HIT)
machine-based HAR system that addresses some of the
existing vision-based HAR challenges. Our HIT machine-
based HAR system uses a smartphone camera as an input
device to record the users’ activities. A mask region-based
convolutional neural network (R-CNN) further processes
the recorded activity videos for human body detection, a
facial image threshing machine (FIT) for image cropping
and resizing [13], and a deep learning model for activity
recognition. Our HIT machine can generate HAR images
from activity videos, human body detection from images,
data cleaning and removal of irrelevant data, and activity
classification using a deep learning model. We tested our
HITmachine with different HAR experiments based on deep
learning models, including visual geometry group (VGG)
[14], Inception [15], ResNet [16], and EfficientNet [17]
models. *e results from the HIT machine show that the
system always maintains the classification accuracy for ac-
tivity recognition. We analyzed our HIT machine results
with conventional HAR approaches that include inertial
measurement unit (IMU) and stretch sensor-based ap-
proaches. *e results show that the HIT machine outper-
forms the traditional sensor-based approaches with a higher
level of accuracy for activity recognition. We also tested our
pre-trained deep learning models with unseen HAR datasets
and analyzed the classification performance. *e key con-
tributions from our HIT machine are stated as follows:

(i) We created a HAR dataset using a smartphone
camera, IMU sensor, and stretch sensor. Our dataset
consists of nine activities: sitting, standing, lying,
walking, push up, dancing, sit-up, running, and
jumping. It has 36, 558 image samples from
smartphone cameras, 97,454 data samples from IMU
sensors, and 7,850 data samples from stretch sensors.
We used these datasets to validate our HITmachine,

and the deep learning models can use our HAR
datasets for training and testing without any com-
putational complexity. We also collected HAR
datasets for unseen datasets and tested them with
pre-trained deep learning models.

(ii) We proposed a HITmachine for activity recognition,
and our HIT machine shows accurate classification
results for basic (sitting, standing, and walking) and
complex (running, jumping, and lying) activities.
We tested our HIT machine with different deep
learning models and analyzed the classification
performance in terms of a confusion matrix, accu-
racy, loss, precision, recall, and F1 score. We also
tested the pre-trained models with unseen HAR
datasets and compared the performance of each
model. We validated our HIT machine results with
sensor-based HAR results and proved the impact of
the HIT machine for activity recognition.

*e rest of the paper is organized as follows: Section 2
discusses the existing HAR systems, recently proposed HAR
systems with their advantages, and current HAR challenges
for practical implementation. Section 3 presents our pro-
posed HIT machine-based HAR system, including mask
R-CNN, FIT machine, and deep learning models. Section 4
discusses our HAR experiments with the validation of our
HITmachine in terms of the impact of various deep learning
models, analysis of unseen datasets for pre-trained models,
and the result comparison with conventional HAR ap-
proaches. Finally, Section 5 concludes our HIT machine-
based HAR approach with future research directions.

2. Related Work

HAR has been studied for applications in healthcare
monitoring, smart homes, security, medical imaging, robot/
human interaction, personal assistants, and surveillance
[18–20]. Many researchers have discussed various HAR
approaches based on the technologies or algorithms used for
activity recognition [21–25]. In this paper, our literature
focuses on related work for HAR approaches that include
sensors [26, 27], Wi-Fi [28], Wi-Fi, and sensors [29], vision
[30, 31], and RFID [32]-based activity recognition.*e HAR
approaches from [26–32] provide significant performance
improvements for HAR applications. However, the diversity
of age, gender, and number of subjects, postural transitions,
number of sensors and type of sensors, different body lo-
cations of wearable sensors or smartphones, missing values
or labeling error, similar postures and datasets having
complex activities, lack of ground truths, selection of ap-
propriate datasets, and selection of sensors [33, 34] create
challenges to the HAR implementation. *is paper proposes
a HITmachine-based HAR system to address some of these
challenges with higher classification results.

*e sensors-based HAR approaches are the most
common and popular HAR systems. In sensor-based HAR,
the system uses wearable sensors, smartphones, or smart-
watches to collect data and identify the users’ activity based
on the sensor readings. Some of the recent HAR systems
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which take advantage of wearable sensors are discussed in
[35–39]. *ese systems achieved a remarkable recognition
accuracy in real time. However, mounting a wearable sensor
in the human body is challenging, and the wearable sensor’s
position determines the system’s performance. *e wearable
sensor-based HAR systems still need to optimize the loca-
tion of sensors in the human body for complex activity. An
alternative method for activity recognition is the smart-
phone-based HAR systems [40–43]. In smartphone-based
HAR, the user holds the smartphone and performs the
activities. Compared with wearable sensor-based ap-
proaches, the smartphone-based method is simple and easy
to implement in any place without any external sensors.
However, the position in which the smartphone is held and
the modes such as texting and calling affect the system’s
performance. *e smartphone or wearable sensors-based
HAR approach still needs to improve the classification
performance at a certain level, and current systems use deep
learning models for activity recognition [44–47]. *e deep
learning HAR-based systems include convolutional neural
network (CNN) [48], long short-termmemory (LSTM) [49],
LSTM-CNN [50], deep recurrent neural networks (DRNN)
[51], generative adversarial networks (GAN) [52], extreme
learning machine (ELM) [53], graph neural network (GNN)
[54], and semi-supervised deep learning models [55, 56].
*ese systems use raw sensor reading or extract the signal
features in the time/frequency domain for activity recog-
nition. When the system uses the signal in the time domain,
it extracts the variance, mean, maximum, minimum, and
range values and uses these features as model inputs. On the
other hand, If the signal is in the frequency domain, the
system extracts the amplitude, skewness, kurtosis, and en-
ergy information as to its features and uses this input to the
model. Compared with the raw input signal-based deep
learning HAR approach, the feature-based approaches show
better classification results [2]. However, the deep learning-
based HAR approaches are not free from challenges. A large
number of data samples for training, training time, the
complexity of feature extraction, and human resources re-
quired for data collection are some of the main challenges of
deep learning-based HAR approaches. *ese challenges
reduce systems performance and require further classifica-
tion improvements.

*e RF-based HAR approaches use physical sensors,
such as pressure, proximity, FM radio, microwave, or RFID
for activity recognition [57–61]. In a radio frequency-based
approach, the system takes advantage of the body attenu-
ation and the channel fading characteristics for activity
recognition. *e basic principle of RF-based HAR systems is
that the propagation of RF signals is affected by the human
body movement, resulting in attenuation, refraction, dif-
fraction, reflection, and multipath effects. *ese pattern
differences in the received RF signals are the key ideas for
activity recognition. Different activities lead to various
patterns inside RF signals, and the system can use these
features for classification. *e RF-based systems consist of
signal selection, model, signal processing, segmentation,
feature extraction, and activity classification. In signal se-
lection, the system uses Wi-Fi, ZigBee [63], RFID [64],

frequency-modulated continuous-wave radar (FMCW) or
acoustic devices. *e system uses phase, frequency, ampli-
tude, or raw signal for activity recognition depending on the
signal selection. *ese factors determine the model of the
HAR system. When the model is defined, the system uses
signal processing techniques, including noise reduction,
calibration, and redundant removal. After this, the system
uses signal segmentation in the time or frequency domain.
When segmentation performed, the time domain, frequency
domain, time-frequency domain, or spatial domain features
are extracted for classification.*e deep learning models use
extracted features for activity recognition. Compared with
the wearable sensor-based HAR approach, the RF-based
approach exploits the wireless communication features for
activity recognition. *ese systems do not use any physical
sensing module, thus reducing energy consumption and
user privacy concern. Some of the RF-based HAR ap-
proaches are discussed in [65–68]. *e RF-based systems
discussed here have enhanced the HAR classification per-
formance and opened many applications for detection,
recognition, estimation, and tracking. However, the wireless
channel conditions, signal interference, non-line-of-sight
(NLOS) conditions, multi-user activity sensing, and limited
sensing range make the systems more challenging. *ey
require new theoretical models and open datasets for ac-
curate classification.

*e system uses a video sequence for activity monitoring
when considering a vision-based HAR approach for activity
recognition [69, 70]. *e vision-based approach is best for
multi-user activity recognition when privacy is not a sig-
nificant concern. *ese systems use different computer vi-
sion algorithms on activity videos to predict the user’s
activities from videos or images. Some of the vision-based
HAR approaches are proposed in [71–77]. *ese vision-
based systems effectively use the video or image sequences
and classify the users’ activity by taking advantage of the
recent deep learning models. Several review papers on the
vision-based HAR systems are discussed in [78–80]. From
vision-based HAR review discussions, the authors from [81]
focus on the high level of visual processing, including human
body modeling, understanding of human actions, and ap-
proaches to human action recognition. In [82], the authors
presented the current state-of-the-art development of au-
tomated visual surveillance systems. *ey discussed the
necessity of intelligent visual surveillance in commercial, law
enforcement, and military applications. In [83], the paper
reviews the advances in human motion capture and analysis
from 2000 to 2006 and discusses the problems for future
research to achieve automatic visual analysis of human
movement. *e review paper [84] analyzes the approaches
taken to date within the computer vision, robotics, and
artificial intelligence communities to represent, recognize,
synthesize, and understand action. In [84], the authors pay
more attention to identifying actions at different levels of
complexity. Machine recognition of human activities is
reviewed in [85], and the authors present a comprehensive
survey of efforts to address the vision-based HAR systems.
*e paper [80] focuses on pedestrian detection, and [86]
introduces a HAR system that recognizes the human
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behaviors from transit scenes.*emost recent HAR systems
are presented in [87–89]. *ese systems tried to improve the
feature extraction techniques by introducing object detec-
tion, skeleton tracking, and human body poses. *e vision-
based HAR systems discussed here still have some chal-
lenges, such as processing high-quality videos or images, the
complexity of the vision algorithms, the requirement for a
higher graphics processing unit (GPU) processing power,
the installation cost of the camera, and challenges from
vision systems such as camera viewpoint, lighting, human
body appearance, occlusion, and background clutter. *ese
challenges make it more difficult for the vision-based ap-
proaches for real-time health monitoring.

So far, we have discussed different types of HAR ap-
proaches based on their technologies and algorithms used
for activity recognition. In this paper, our research mainly
focuses on the vision-based HAR approach, and we used our
smartphones for data collection. We also collected data
using IMU and stretch sensors, and the results from these
sensors are compared with our proposed HITmachine. *e
experiment results show that the HITmachine is a practical
HAR approach for healthcare applications and needs only a
basic smartphone model for activity recognition.

3. Proposed HIT Machine-Based HAR System

*e HIT machine consists of HAR dataset creation, data
preprocessing, human body detection using mask R-CNN,
image cropping and resizing, data cleaning and removal of
irrelevant data, deep feature extraction, model building, and
activity classification. Figure 1 shows the framework of our
proposed HIT machine-based HAR system.

We first started our data collection in the HITmachine by
using android and iOS smartphones that record activity videos.
Next, the HIT machine performs the data aggregation on the
activity video sequences. *e data aggregation gathers all ac-
tivity data and presents it in a summarized format. Followed by
the data aggregation process, our system uses a mask R-CNN
algorithm for human body detection. After this, the HIT
machine operates the FIT machine for image cropping and
resizing when the human body is identified from images. *e
cropped and resized activity images are ready for the model to
use for training and testing. Our HITmachine also used a data
cleaning process that removes the unnecessary images from the
HAR dataset. After the data cleaning process, the images are
ready to be used for model training and testing. We extracted
the features from the activity images and created a deep
learning model that classifies user activities into nine groups.
*e output of the HIT machine is the classification results of
user activities which include sitting, standing, lying, walking,
push up, dancing, sit-up, running, and jumping. *e flowchart
of the proposed HIT machine is presented in Figure 2.

In the flowchart, the system starts with HAR datasets.
*e datasets include HAR images from smartphones, ac-
celerometer and gyroscope readings from IMU sensors, and
stretch sensor readings. *e HAR image dataset is then
divided into training, testing, and unseen datasets. We used
our HITmachine in the image HAR dataset for human body
detection and activity recognition. *e HIT machine

includes human body detection, data preprocessing using a
FITmachine, and deep learning models for classification. A
mask R-CNN-based object detection algorithm is used for
human body detection. A FIT machine is used for data
preprocessing, including image cropping, resizing, data
cleaning, and data segregation. A deep learning model is
used for the training, and the model classifies the user ac-
tivities into different categories. *e system uses deep
learning models of VGG, Inception, ResNet, and Effi-
cientNet. On the other hand, conventional HAR approaches
use IMU and stretch sensor data for activity recognition with
a CNN model. *e CNN model also uses the HAR image
dataset for activity recognition, and we compared the effect
of our HIT machine (with and without HIT machine) for
activity recognition. Further discussions of mask R-CNN,
FIT machine operation, and the deep learning models are
added in the following subsections.

3.1. Mask R-CNN. In computer vision, mask R-CNN is
widely used for object detection tasks [90].*emask R-CNN
separates different objects from a video or an image. *e
algorithm provides the object bounding boxes, classes, and
mask information, and our HIT machine can effectively
utilize this information for human body detection.*emask
R-CNN from our HITmachine operates in two stages. First,
the algorithm generates proposals about the regions where
an object is located in the input image. Second, the algorithm
predicts the object class and refines the bounding box. *e
algorithm also adds a mask in the pixel level of the object
based on the first stage proposal. Compared with Fast/Faster
R-CNN-based object detection approaches, the mask
R-CNN-based approach has additional features such as a
binary mask for each region of interest (RoI). Our system
utilizes this binary mask feature for human body detection.
Figure 3 shows the structure of mask R-CNN.

*e mask R-CNN consists of a backbone, a region
proposal network (RPN), a region of interest alignment layer
(RoTAlign), an object detection head, and amask generation
head. *e backbone of mask R-CNN is the primary feature
extractor which uses residual networks (ResNets) with or
without feature pyramid networks [91]. When our HAR
images are fed into a ResNet backbone, the images go
through multiple residual bottleneck blocks and turn into a
feature map. *e feature map contains the abstract infor-
mation of input images, including different object instances,
classes, and spatial properties. *e feature map data are then
fed into the RPN layer. In this layer, the network scans the
feature map and RoI where the human body is located. *e
next step is to find each RoI from the feature map. *is
process is referred to as RoIAlign in Figure 3. *e RoIAlign
extracts the feature vectors from the feature map based on
the RoI suggested by the RPN layer. *e feature vectors are
then converted into a fix-sized tensor for further processes.
*e outputs from RoIAlign are then processed by two
parallel branches: object detection branch and mask gen-
eration branch. *e object detection branch is a fully-
connected layer that maps the feature vectors to the final
classes and bounding box coordinates. *e mask generation
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branch feeds the feature map into a transposed convolu-
tional layer and convolutional layer. *e output of mask
generation branch is one binary segmentation mask that is
generated for one class. *en the system picks the output
mask based on the class prediction from the object detection
branch. Figure 4 shows the human body detection using our
HIT machine for nine activities.

As shown in Figure 4, the mask R-CNN accurately detects
the human body for nine activities without any detection
error. *e mask R-CNN used here is straightforward and has

a small computational overhead that enables a fast system and
rapid experimentation. For more details on mask R-CNN and
its implementation, refer to [92–94].

3.2. FIT Machine. *e HIT machine effectively uses our
previously proposed FIT machine for image cropping and
resizing [13]. *e FIT machine is used to correct missing
HAR datasets, remove irrelevant data, merge datasets on a
massive scale, and crop and resize images. Our FITmachine
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HAR Datasets

Sensor HAR
Datasets

Data Pre-
processing

Convolutional
Neural Network

(CNN)

Image HAR
Datasets

HIT Machine

Human Body
Detection

FIT Machine

Deep Learning Models
VGG, Inception, ResNet,

Efficient net

Proposed HAR Approach

Conventinal HAR Approach

Cropping and Resizing
Data Cleaning & Removal
Data Segregation

Figure 2: Flowchart of the proposed HIT machine.
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Figure 1: Proposed HIT machine-based HAR system.
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converts input activity video sequences into the image
output samples that consist of cropped, resized, and cate-
gorized activity images. *e FIT machine contains a data
receiver, a multi-task cascaded convolutional network
(MTCNN), an image resizer [95], and a data segregator as
the pre-trained Xception algorithm model [96]. *e data
receiver converts activity video sequences into images, and
the MTCNN identifies the human faces from the activity
images. *e MTCNN used here consists of P-Net, R-Net,
and O-Net layers. When the architecture detects the human
faces, the input images enter the P-Net layer, which chooses
the possible face frames from the input images. *e R-Net
layer in the MTCNN uses P-Net outputs as its inputs. *e
R-Net layer inspects the given initial frames from P-Net,
then removes the face frames that do not reach a threshold
score. Followed by the R-Net, the O-Net uses the output
from the R-Net at the end. In the O-Net layer, it selects the
best face frames from the given output from R-Net. Next, the
images are passed through an image resizer, reducing the
image size to 224×224 pixels. *e last part of the FIT ma-
chine is a data segregator, which segregates the activity
images into adequately labeled directories. *e data

segregator contains a pre-trained Xception model made by a
depth-wise separable convolution layer. *e depth-wise
separable convolution layer used in the model splits each
channel of the input and filter separately. *e layer con-
volves them by each channel and later separates one element
of 3 channels to be convoluted until all aspects have been
convoluted. *e architecture also has some shortcut
structure that skips over the block of the depth-wise sepa-
rable convolution layers. *e model uses a categorical cross-
entropy loss function as the metric loss measurement. For
more details on the FIT machine, refer to [13].

3.3.DeepLearningModels. *e last stage of the HITmachine
is the deep learning models. Our HAR dataset is trained with
deep learning models and classifies user activities into sit-
ting, standing, lying, walking, push up, dancing, sitting,
running, and jumping. *e HAR dataset consists of image
samples, and our system considers four image classification
models VGG, ResNet, Inception, and EfficientNet, as the
deep learning models. Figure 5 shows the deep learning
models used by our HIT machine.

Class Box

Fully-connected
Layer

Object Detection Head Mask Generation
Head

(e)

Mask

Convolution Layer

Transposed
Convolution Layer

Mask Generation Head

Object Detection
Head

(f )

Figure 3: Mask R-CNN. (a) Structure. (b) Backbone. (c) RPN. (d) RoIAlign. (e) Object detection head. (f ) Mask generation head.
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Figure 4: Human body detection using our HIT machine.
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Figure 5: Deep learning models used in the HIT machine. (a) VGG. (b) Inception. (c) ResNet. (d) EfficientNet.
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*e most common image classification model is the
VGG model introduced by the visual graphics at University
of Oxford [14]. *e VGG model consists of 13 convolution
layers, five pooling layers, and three dense layers. *e VGG
model is sequential in nature and uses many filters one after
another.*e architecture uses a stack of convolutional layers
with different depths in different architectures followed by
three fully-connected (FC) layers. *e first two FC layers
have 4,096 channels each, and the third FC performs the
1,000-way classification. *e last layer is the soft-max layer
that is used to normalize the classification vector. All the
hidden layers in the VGG architecture use rectified linear
unit (ReLU) as the activation function. *e ReLU activation
function is computationally efficient, and its results are in
faster learning. *e ReLU function also reduces the likeli-
hood of vanishing gradient problems and improves the
classification performance. Figure 5(a) shows the architec-
ture of the VGG network.

Next, our HIT machine used a deep learning model,
which was developed by Google [16]. *e GoogLeNet or
Inception is a smaller network than the VGGmodel and uses
an Inception module. *e Inception module performs
convolutions with different filter sizes on the input images,
performs Max Pooling, and concatenates the result for the
next Inception module. *e architecture uses a 1×1 con-
volution operation which reduces the parameters drastically.
*is architecture is designed to solve the problem of
computational expense, overfitting, and other deep learning
model issues. *e Inception model takes advantage of the
multiple kernel filter sizes within the CNN, and rather than
stacking them sequentially, it orders them to operate on the
same level. Figure 5(b) shows the Inception architecture
used by our HIT machine. *e architecture has nine in-
ception modules stacked linearly and has 22 layers deep (27,
including the pooling layers). It uses global average pooling
at the end of the last inceptionmodule. Compared with VGG
networks, Inception networks are more computationally
efficient in terms of the number of parameters generated by
the network and the computational cost incurred. For more
details on the Inception model, refer to [16].

Our HITmachine also analyzed the impact of the ResNet
architecture for activity recognition. *e main idea of
ResNet architecture is to avoid poor accuracy when the
model uses deeper layers. *is model is mainly designed for
the gradient vanishing problem. Figure 5(c) shows the
ResNet architecture used by our HIT machine. *e ResNet
architecture is a 34-layer plain network inspired by VGG-19
networks, which adds shortcut connections. *ese shortcut
connections then convert the ResNet architecture into the
residual network. *e first two layers of the model are the
same as those of the Inception model. *e model uses a 7×7
convolution layer with 64 output channels and a stride of 2
followed by the 3×3 maximum pooling layer. *e major
difference with ResNet is the batch normalization layer
which is added after each convolutional layer. *e inception
model discussed previously uses four modules which are
made up of Inception blocks. However, the ResNet archi-
tecture uses four modules which are made up of residual
blocks. Each residual block uses several residual blocks with

the same number of output channels. *e first module from
the architecture uses the number of channels that are the
same as the input channel numbers. From the first residual
block of each subsequent module, the number of channels is
doubled compared with the previous module, and the height
and width are halved. Compared with Inception architec-
ture, the ResNet model is more straightforward, easy to
modify, easy to optimize, and achieves higher accuracy when
the depth of the network increases. For more details on
ResNet architecture and its implementation, refer to [15].

At last, our HIT machine used a model called Effi-
cientNet from Google for activity recognition [17]. In
EfficientNet, a new scaling method called compound scaling
is introduced. *e model ResNet discussed before follows a
conventional approach of scaling the dimensions arbitrarily
and adding more layers. However, if the model scales the
dimensions by a fixed amount simultaneously and does so
uniformly, the model achieves better performance. *e user
can decide the scaling coefficients. EfficientNet architecture
is a convolutional neural network architecture with different
scaling methods. In EfficientNet, the architecture uniformly
scales all depth/width/resolution dimensions using a com-
pound coefficient. Compared with conventional ways that
arbitrarily scale these factors, the scaling method in the
EfficientNet architecture uniformly scales network width,
depth, and resolution with a set of fixed-scaling coefficients.
Figure 5(d) shows the EffientNet architecture used by our
HIT machine. *e main building block of this architecture
consists of mobile inverted bottleneck Convolution
(MBConv), to which squeeze-and-excitation optimization is
added. *e MBConv layer is similar to the inverted residual
blocks used in MobileNet v2 [97]. *e MBConv creates a
shortcut connection between the beginning and end of a
convolutional block. *e input activation maps are first
expanded using 1×1 convolutions, increasing the depth of
the feature maps. 3×3 depth-wise convolutions and point-
wise convolutions follow this, and this structure reduces the
number of channels in the output feature map. *e shortcut
connections connect the narrow layers, while the wider
layers are present between the skip connections.*is form of
structure decreases the overall number of operations re-
quired as well as the model size. For more details on the
EfficientNet architecture and its implementation, refer to
[17].

4. Experiment Results and Analysis

We collected HAR datasets from different users to validate our
proposed HIT machine-based HAR approach. *ere were 10
volunteers for data collection, consisting of five members for
the training dataset and five for the unseen dataset. *e de-
mographic information of participants is given in Table 1.

We used Samsung galaxy note eight and iPhone 11 pro
smartphone models for video recording. *e smartphones
were kept stationary during the initial stage of the experi-
ment andmoved their positions based on the user’s motions.
*e users made their activities within the 15m experiment
area.We also used the IMU and stretch sensors and recorded
the sensor reading from the users’ activities during the
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experiment time. Our conventional HAR approaches use the
sensor reading for activity recognition, and we compared
these HAR results with our HITmachine approach. Figure 6
shows the smartphones, IMU and stretch sensors, and ex-
periment area involved in the HAR data collection. Table 2
summarizes our system configurations and hyperparameters
used for model training and testing.

We started the analysis of the HIT machine by imple-
menting deep learning models, such as VGG, Inception,
ResNet, and EfficientNet. We tested these models with our
HAR dataset, and Figure 7 shows the classification results
from each model. We used confusion matrices to analyze
each model, summarizing the classification performance.
*e color bars indicate the number of samples populated in a
specific area. When the data samples are higher, the color
becomes lighter and vice versa. *e results observed in
confusion matrices show that the ResNet architecture has
the highest classification performance compared with other
models and achieved a 98.53% model accuracy, 0.20 model

loss, 98.56% precision, 98.53% recall, and 98.54% F1 scores.
*e VGG model reached 96.38% model accuracy with 0.09
model loss, 96.58% precision, 96.38% recall, and 96.36% F1
score as shown in Figure 7(a). *e VGG model has a higher
classification accuracy for sitting, sit-up, standing, and
walking activities. *e model has the highest misclassifi-
cation error for running. Some of the running activity is
misclassified as walking. Figure 7(b) shows the classification
results from the Inception model. *is model achieved a
93.18% classification accuracy with 0.13 model loss, 93.18%
precision and recall, and 93.11% F1 scores, which are worse
performances than the results obtained by the VGG model.
Furthermore, Figure 7(c) shows the best classification results
from our HIT machine based on ResNet architecture. *e
ResNet architecture showed the best model accuracy with
the least classification errors. However, the model loss is
higher than other models and needs higher computation
time than VGG and Inception models.*is model maintains
the classification accuracy for basic and complex activities,

Table 1: Demographics of participants.

Subjects 1 2 3 4 5 6 7 8 9 10
Age 30 21 35 22 28 26 30 32 35 23
Height (cm) 175 180 172 160 174 162 176 165 168 159
Weight (kg) 80 84 87 60 70 58 78 62 85 57
Gender M M M F M F M F M F
Training dataset √ √ √ √ √
Unseen dataset √ √ √ √ √

(a) (b)

(c) (d)

Figure 6: Experiment setup. (a) Smartphones. (b) IMU sensor. (c) Stretch sensor. (d) Experiment area.
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and the model is the best choice for HIT machine-based
activity recognition. Figure 7(d) shows our last deep learning
model results from EfficientNet. *e EfficientNet reached
89.94% for classification accuracy with 0.21 model loss,
90.19% precision, and 89.94% recall and F1 score, which has
worse HAR performance than VGG, Inception, and ResNet
models. *e higher level of classification error from Effi-
cientNet shows that this model is unsuitable for our HIT
machine-based activity recognition. Figures 8 and 9 show
the deep learningmodels accuracy and loss plots, and Table 3
summarizes their performance.

In Table 3, we used the accuracy, loss, precision, recall,
and F1 score parameters for performance evaluation. *e
following equations from [98] define these parameters.

Accuracy �
TP + TN

TP + TN + FP + FN
,

Loss � − 􏽘

outputsize

i−1
yi. log 􏽢yi,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 �
2 × Recall × Precision
Recall + Precision

,

(1)

where the variables TP, TN, FP, and FN are defined as true
positive, true negative, false-positive and false-negative in a
given experiment. In the loss function, yi is the ith scalar
value in the model output, 􏽢yi is the corresponding target
value, and the output size is the number of scalar values in
the model output. From the results in Table 3, the ResNet
architecture outperforms the other deep learning models

with an average value of 98.53%. *ese results indicate that
the system trained with the ResNet model is the best choice
for activity recognition.

When we consider the training time results from Table 3,
it shows that the ResNet-based HAR approach has a higher
training time (600 s) than other models. *is is due to the
deep architecture of ResNet, and the system takes more time
to train the model. However, the activity recognition results
from ResNet compensate for the training time when con-
sidering the overall system performance (6.44% of classifi-
cation improvements than EfficientNet model-based HAR
system). In the case of VGG model-based HAR, the system
achieved the most down training time (240 s) compared with
other models and reached good classification results for
activity recognition. *e Inception model-based HAR sys-
tem has a 60 s time difference for model training compared
with the EfficientNet model. *e EfficientNet has a lower
training time (300 s) than the Inception model-based (360 s)
HAR system. However, the EfficientNet-based HAR ap-
proach shows worst classification results than other models.

To further validate our HIT machine performance, we
tested the pre-trained deep learning models with unseen
HAR datasets. We collected another set of HAR datasets and
tested them with our pre-trained models. Table 4 summa-
rizes the results for unseen datasets from pre-trainedmodels.
*e results in Table 4 show that the ResNet architecture
achieved 72.13% for classification accuracy with 72.25%
precision, 72.92% recall, and 72.95% F1 scores. *ese results
outperformance the other pre-trained models. However, the
computational complexity of this architecture makes it more
practically challenging for real-time HAR applications. *e
classification accuracy from the Inception model shows that
the model reached 65.17% for classification accuracy with
65.21% precision, 65.08% recall, and 65.59% F1 scores. *e
results from the Inception-based pre-trained model give
better results than VGG and EfficientNet pre-trained
models. In the case of VGG based pre-trained model, the
system shows 61.85% for classification accuracy with 61.73%
precision, 61.48% recall, and 61.47% F1 scores. *e Effi-
cientNet pre-trained model-based HAR system shows
57.42% for classification accuracy with 57.48% precision,
57.43% recall, and 57.72% F1 scores. *ese results show the
worst classification results compared with other pre-trained
models, and the approach is unsuitable for image-based
HAR systems.

Next, we validated our HITmachine results with sensor-
based HAR approaches and image-based HAR without HIT
machine. Figure 10 shows the classification results from our
HITmachine, HAR without HITmachine, and sensor-based
techniques. *is analysis uses a 2D CNN model for activity
recognition.*e CNNmodel is computationally lighter than
other deep learning models and easily fits IMU and stretch
sensor datasets. Figure 10(a) shows the classification results
from IMU sensor-based HAR approach. *e results show
that the IMU sensor approach reached 90.71% of classifi-
cation accuracy with 0.27 model loss, 90.47% precision,
90.71% recall, and 90.00% F1 scores. *e activities that
include running, sitting, sit-up, standing, and walking have
higher classification errors due to the similarities of IMU

Table 2: System configurations and hyperparameters used for
model training and testing.

System configuration Description
Processor Intel® coreTM i7-11700k
RAM 32GB
Graphics card GeForce RTXTM 3070 Ti
Python version 3.8
Tensorflow version tf-nightly� � 2.6.0
Keras version 2.6.0
cuDNN library cuDNN v8.1.0
CUDA version CUDA toolkit 11.2.0
Model parameter Value
Ratio of training data to overall data 0.70
Input image size 224 × 224
Number of channels 1
Optimizer Adam
Learning rate 0.02
Batch size 128
Loss Categorical cross-entropy
Number of classes 9
Epochs 25
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Figure 7: *e confusion matrix results. (a) VGG. (b) Inception. (c) ResNet. (d) EfficientNet.
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sensor data. *e model fails to classify these activities, in-
creasing the classification errors in the HAR system. When
the system uses a stretch sensor instead of an IMU sensor,
the classification performance has a 3% improvement. *e
stretch sensor-based HAR system achieved 93.80% of
classification accuracy with 0.27 model loss, 94.16% preci-
sion, 93.80% recall, and 93.20% F1 scores. Figure 10(b)
shows the classification results from stretch sensor-based
HAR approach. *e stretch sensor data are more stable than
the IMU sensor and have accurate HAR results. *e ac-
tivities that include sitting and walking have higher classi-
fication errors than the IMU sensor-based approach. *e
stretch sensor-based HAR approach is reasonable if the
system cost is not a primary concern. *e prohibitive cost of
the stretch sensor makes the system more challenging for
practical health care applications. Next, we analyzed a HAR
approach that uses image data without a HIT machine.
Figure 10(c) shows the results from a HAR without HIT
machine. *e HAR system without HIT machine reached
90.98% of classification accuracy with 0.20 model loss,

91.24% precision, 90.98% recall, and 90.90% F1 scores.*ese
results indicate the significance of the HIT machine.
Compared with the results from Figure 10(d), the system
without a HITmachine has a higher classification error and
shows the worst performance for both basic and complex
activities. *e results from Figure 10(d) show the classifi-
cation performance of the HITmachine, which has the best
performance compared with other HAR approaches. *e
system achieved a 6.01% accuracy improvement compared
with the IMU sensor-based approach and 2.4% accuracy
improvement compared with the stretch sensor-based ap-
proach. *e system also has a 5.3% accuracy improvement
compared with the HAR approach without HIT machine.
Our proposed HIT machine-based HAR system show
96.28% of classification accuracy with 0.09 model loss,
96.26% precision, 96.28% recall, and 96.27% F1 scores.
Table 5 summarizes the performance of each approach in
terms of accuracy, loss, precision, recall, and F1 score. From
Table 5 results, the HIT machine shows the highest classi-
fication results than the sensor-based and without HIT
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Figure 8: Deep learning models accuracy plots. (a) VGG. (b) Inception. (c) ResNet. (d) EfficientNet.
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machine-based HAR approaches. *e results indicate the
impact of the HIT machine-based activity recognition for
complex activities.

*e training time results from Table 5 indicate that the
stretch sensor-based HAR system shows the best training
time (120 s) than the other HAR systems. *is is due to the
small number of data samples from the stretch sensor
dataset. In the case of the IMU sensor-based HAR approach,
the system has a 300 s training time, which is 180 s higher
than the stretch sensor-based HAR approach. Also, the
classification accuracy from the IMU sensor-based HAR
approach is 3.09% lower than the stretch sensor-based

approach. *e proposed HITmachine-based HAR approach
shows 340 s training time, which is lower than HAR without
HIT machine-based approach (480 s). *e training time
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Figure 9: Deep learning models loss plots. (a) VGG. (b) Inception. (c) ResNet. (d) EfficientNet.

Table 3: Performance comparison of deep learning models used in the HIT machine.

Deep learning model Accuracy Loss Precision Recall F1 score Training time (secs)
VGG 96.38 0.09 96.58 96.38 96.36 240
Inception 93.18 0.13 93.18 93.18 93.11 360
ResNet 98.53 0.20 98.56 98.53 98.54 600
EfficientNet 89.94 0.21 90.19 89.94 89.94 300

Table 4: Performance comparison of pre-trained deep learning
models for unseen HAR datasets.

Pre-trained model Accuracy Precision Recall F1 score
VGG 61.85 61.73 61.48 61.47
Inception 65.17 65.21 65.08 65.59
ResNet 72.13 72.25 72.92 72.95
EfficientNet 57.42 57.48 57.43 57.72

Computational Intelligence and Neuroscience 15



Dancing

D
an

ci
ng

Jumping

Ju
m

pi
ng

Lying

Ly
in

g

Push-up

0.0%
1

0.0%
1

0.0%
1

13.9%
613

84.2%
117

15.1%
21

0.7%
1

5.0%
28

1.4%
8

24.7%
139

2.5%
14

9.6%
54

7.2%
317

0.6%
27

0.0%
0/139

56.8%
319/562

5.9%
19

19.9%
64

10.9%
35/322

9.3%
30

0.9%
3

0.6%
2

52.5%
169

4.2%
78

0.1%
2

0.1%
1

0.1%
1

1.0%
9

28.5%
525

0.0%
1

0.7%
39

0.2%
9

2.2%
113

0.8%
45

4.4%
239

0.2%
14

99.7%
5850/5865

99.0%
5466/5520

97.8%
5046/5159

94.9%
5131/5409

65.9%
1213/1840

78.3%
3460/4420

Pu
sh

-u
p

Runing
Predicted

A
ct

ua
l

Ru
ni

ng

Sitting

Si
tti

ng

Sit-up

Si
t-u

p

Standing

St
an

di
ng

Walking

W
al

ki
ng

5000

4000

3000

2000

1000

0

(a)

D
an

ci
ng

Ju
m

pi
ng

Ly
in

g
Pu

sh
-u

p
A

ct
ua

l
Ru

ni
ng

Si
tti

ng
Si

t-u
p

St
an

di
ng

W
al

ki
ng

400

300

200

100

0
Dancing Jumping Lying Push-up Runing

Predicted
Sitting Sit-up Standing Walking

66.0%
227/344

92.9%
26/28

14.8%
51

0.3%
1

7.1%
2

100.0%
52/52

18.9%
65

0.0%
0/26

0.8%
1

100.0%
26

99.2%
132/133

100.0%
467/467

100.0%
438/438

100.0%
415/415

100.0%
452/452

(b)

Figure 10: Continued.

16 Computational Intelligence and Neuroscience



D
an

ci
ng

Ju
m

pi
ng

Ly
in

g
Pu

sh
-u

p
A

ct
ua

l
Ru

ni
ng

Si
tti

ng
Si

t-u
p

St
an

di
ng

W
al

ki
ng

600

500

400

300

200

100

0
Dancing Jumping Lying Push-up Runing

Predicted
Sitting Sit-up Standing Walking

0.3%
2

0.3%
2

0.3%
2

2.3%
16

3.3%
21

3.3%
21

0.7%
5

0.1%
1

3.8%
26

1.1%
7

2.5%
17

0.1%
1

0.1%
1

2.8%
19

2.8%
19

1.2%
8

1.0%
7

1.0%
7

4.1%
9

1.4%
3

1.4%
3

0.9%
3

0.9%
6

1.8%
12

0.2%
1

18.3%
123

2.7%
6

2.1%
14

1.9%
13

0.1%
1

0.2%
1

0.2%
1

0.2%
1

1.0%
7

88.7%
196/221

70.9%
476/671

0.9%
2

92.4%
629/681

91.9%
580/631

91.1%
617/677

0.3%
2

0.9%
6

0.9%
6

0.3%
2

0.3%
2

0.2%
1

0.6%
4

0.8%
5

7.8%
50

1.2%
8

0.2%
1

3.0%
19

86.1%
551/640

98.8%
649/657

98.5%
655/665

99.5%
625/628

(c)

D
an

ci
ng

Ju
m

pi
ng

Ly
in

g
Pu

sh
-u

p
A

ct
ua

l
Ru

ni
ng

Si
tti

ng
Si

t-u
p

St
an

di
ng

W
al

ki
ng

600

500

400

300

200

100

0
Dancing Jumping Lying Push-up Runing

Predicted
Sitting Sit-up Standing Walking

0.3%
2

0.2%
1

0.2%
1

0.2%
1

0.2%
1

0.2%
1

0.2%
1

0.2%
1

0.2%
1

0.5%
3

0.3%
2

1.8%
12

1.3%
9

1.4%
3

0.3%
2

0.3%
2

6.7%
43

0.9%
6

92.0%
589/640

99.5%
654/657

99.4%
661/665

99.2%
623/628

88.8%
596/671

95.9%
212/221

99.7%
675/677

95.8%
605/631

95.9%
653/681

0.9%
2

0.4%
3

0.7%
5

1.4%
3

0.6%
4

6.0%
40

0.5%
1

0.1%
1

0.1%
1

0.5%
3

0.8%
5

0.1%
1

0.1%
1

0.1%
1

0.4%
3

2.9%
20

2.7%
17

(d)

Figure 10: *e confusion matrix results. (a) IMU sensor-based approach. (b) Stretch sensor-based approach. (c) HAR without HIT
machine. (d) Proposed HIT machine-based approach.
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results from our proposed HIT machine indicate that the
approach reduced 140 s of training time compared with
HAR without a HIT machine-based approach.

From the experiment and result analysis, it can be seen
that the HITmachine-based HAR approach has a significant
role in activity recognition. *e proposed HAR system
addresses the primary vision-based HAR system’s challenge,
such as processing high-quality images. We used image
cropping, resizing, and data cleaning to make the system can
perform the high-quality images without compromising the
classification results. Our system takes advantage of the
mask R-CNN algorithm, which is computationally lighter
than other vision algorithms. *e proposed method also
solves the camera viewpoint and background clutter issues
by considering the smartphone camera’s wide-angle feature.
*e classification results from the HIT machine show that
the proposed HAR approach is a valid method for healthcare
applications, including abnormal activity detection, elderly
care in homes, and disabled assistance. *e extended ver-
sions of HIT machines are helpful in other applications,
including intelligent environments, indoor navigation [99],
security and surveillance, and people monitoring [100].

5. Conclusion

*is paper proposed a HITmachine-based HAR system for
healthcare applications. *e proposed HIT machine ap-
proach effectively utilizes the advantages of the mask
R-CNN for human body estimation and enhances the
performance of the HAR. *e classification results from our
experiments indicate that the proposed HIT machine has
better classification results than conventional sensor-based
HAR approaches.*e traditional sensor-basedHAR systems
are not free from sensor errors, showing very poor classi-
fication results for complex activities. *e proposed HIT-
based HAR system is suitable for basic and complex user
movements and maintains its classification accuracy in all
user motions. Our HAR classification results and analysis
show the influence of the HIT machine for activity recog-
nition. *e proposed HIT machine-based HAR system is a
suitable healthcare option if HAR systems use a camera as
their input device. We validated our proposed HITmachine-
based HAR system for human activity recognition through
extensive experiments and analysis. To improve the classi-
fication performance, we intend to use a sensor fusion
technique that combines the image and sensor data for
activity recognition in our future work. Furthermore, we will
consider the most popular public datasets (UCI- human
activity recognition using smartphones dataset) for future
research and compare our HAR datasets’ performance with
public datasets.
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