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Coordinate-based meta-analysis (CB-meta) is playing an
important role in identifying spatially consistent findings
for targeted questions in the neuroimaging literature, by
quantitatively aggregating independent results reported in a
standard coordinate space [1]. CB-meta has been widely used
in voxel-based magnetic resonance imaging (MRI) studies,
including task functional MRI (fMRI), where either patterns
of within-group activation or patterns of between-group
activation differences can be aggregated across studies. Given
that variations in task design can introduce confounds into
such pursuits, researchers work to limit any effort to the
inclusion of studies using highly similar tasks. Task fMRI CB-
meta papers have been published in most brain disorders.

Resting-state fMRI (RS-fMRI) does not require cognitive
task probes, and its design is inherently similar across
studies. From this perspective, it is ideally suited for CB-
meta. However, while an array of analytic methods have
emerged to characterize different aspects of resting brain
activity, not all of them are suitable for CB-meta. This likely
explains the relatively small number of RS-fMRI based CB-
meta published to date [2–8].

The analytic methods for RS-fMRI can be divided into
two categories, one for depicting functional relationships
between remote brain regions and another for local activity

(for a systematic review, see [9]). The widely used methods
in the former category include seed-based functional con-
nectivity, spatial independent component analysis (sICA),
and graph theory. The latter has two widely used methods,
namely, regional homogeneity (ReHo) and amplitude of low
frequency fluctuation (ALFF)/fractional ALFF (fALFF).

Seed-based functional connectivity is one of the most
widely used analytic methods in RS-fMRI studies. Typically,
a region of interest (ROI) is predefined and then linear
correlation or linear regression analysis is performed between
the mean time series of this ROI and the time series of each
voxel in the brain. The results are of course dependent on
the location of seed ROIs and therefore are not suitable for
CB-meta. Most of the 8 CB-meta RS-fMRI papers aforemen-
tioned did not include seed-based functional connectivity
studies.

Spatial independent component analysis (sICA) decom-
poses the RS-fMRI data into multiple networks (compo-
nents), amongwhich only about 10 networks are psychophys-
iologically interpretable [10]. “Spatial independent” means
spatially nonoverlapping. Therefore, sICA papers should not
be taken into a CB-meta study, unless different papers have
focused on the same component (e.g., the default mode
network). A few CB-meta RS-fMRI studies have included
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sICA RS-fMRI papers [2, 4, 6, 8]. However, few explicitly
mentioned the limitation of sICA for CB-meta.

Graph theory has been widely used for exploring the
topological organization of complex brain networks in RS-
fMRI studies. Unlike seed-based functional connectivity and
sICA, which focus on a specific functional system(s), graph
theory usually explores the topological properties, such as
small-world, modular structure and highly connected hubs,
of the entire brain. From this point of view, RS-fMRI studies
using graph theory are also well suitable for meta-analysis.
However, due to the high computational cost, most graph-
basedRS-fMRI studies have chosen a limited number of brain
regions or ROIs, rather than brain voxels, as network nodes.
Such results do not provide the coordinate information
needed to support CB-meta. Degree centrality is one of
the simplest and least computation-demanding measures for
graph theory complex networks. Several RS-fMRI toolboxes
(e.g., DPARSF (http://www.restfmri.net/; http://rfmri.org/)
and Gretna (https://www.nitrc.org/projects/gretna/)) have
included voxel-based degree centrality measurement [11, 12].
Some studies have applied voxel-based centrality to brain dis-
orders including depression [13–15] and Alzheimer’s disease
[16]. In light of recent increases in computational capacity,
more complicated measurements of graph theory will be
implemented in a voxel-wise manner, thereby increasing the
suitability of graph theory for CB-meta.

ReHo and ALFF are two methods widely used for
characterizing local spontaneous activity of RS-fMRI data.
ReHo measures the local synchronization of the time series
of neighboring voxels [17] whereas ALFF/fALFF measures
the amplitude of time series fluctuations at each voxel [18,
19]. Although both ReHo and ALFF/fALFF measure the
local activity of each voxel, many studies used the two
measurements and suggested that the two methods reveal
different aspects of brain function and abnormalities arising
in clinical populations [20–23]. For nearly all of the existing
CB-meta RS-fMRI studies, researchers have combined across
these methods for characterizing local activity (ReHo and/or
ALFF), despite known differences in their properties. A CB-
meta RS-fMRI study of depression by Iwabuchi and col-
leagues for the first time included RS-fMRI papers using the
same analytic method (ReHo) [5]. This approach markedly
reduces discrepancies in analytic methods. However, only 10
of the 200+ RS-fMRI papers on depression to date met the
inclusion criteria of that CB-meta study.

Clinical studies always face the challenges of high
heterogeneity and limited sample size in patient groups.
Therefore, meta-analysis is critical for drawing congruent
conclusion across studies carried out with similar settings
and techniques. Few techniques for clinical studies enable the
application of the broad range of analytic methods that RS-
fMRI does in an effort to reveal the functional complexity
of the human brain from multiple aspects. Although some
analyticmethods are not suitable for CB-meta, the strength of
RS-fMRI is that its design is inherently similar across studies.
Therefore, each dataset could be reanalyzed by using analytic
methods being suitable to perform CB-meta. The current
special issue was launched to encourage RS-fMRI studies

on brain disorders by reanalyzing the published data with
methods supporting future CB-meta.

In the current issue, a paper from Dr. Chunshui Yu’s
group in Tianjin Medical University is of particular interest
(see Y. Xu et al., “Altered Spontaneous Brain Activity in
Schizophrenia: AMeta-Analysis and a Large-Sample Study”).
The authors not only performed two CB-meta RS-fMRI
studies, in which only RS-fMRI papers using methods for
local activity (ReHo and ALFF, resp.) were included, but
they also validated the CB-meta results in their own dataset
obtained from a relatively large sample of schizophrenia
patients. One of the congruent results was that ALFF was
reduced in the primary visual and primary sensorimotor
cortex (see details in Y. Xu et al. “Altered Spontaneous Brain
Activity in Schizophrenia: A Meta-Analysis and a Large-
Sample Study”). The limitation of this study, like other CB-
meta RS-fMRI studies, is the small number of eligible RS-
fMRI papers. Only 6 ALFF papers and 4 ReHo RS-fMRI
papers were included.

We hope this special issue will draw attention to the
need for and value of CB-meta in the RS-fMRI research
field. If your dataset has not been analyzed with a method
that facilitates future CB-meta, please try it. Future CB-meta
efforts need large numbers of studies for inclusion to enable
more definitive conclusions, upon which models for the
prediction or diagnosis of brain disorders can be developed.
Additionally, accurate localization of abnormal spontaneous
brain activity may help to guide intervention therapies (e.g.,
deep brain stimulation, transcranial magnetic stimulation, or
transcranial ultrasound stimulation).
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Background. Abnormalities in white matter integrity and specific functional network alterations have been increasingly reported
in patients with Parkinson’s disease (PD). However, little is known about the inter-hemispheric interaction in PD.Methods. Fifty-
one drug naive patients with PD and 51 age- and gender-matched healthy subjects underwent resting-state functional magnetic
resonance imaging (rs-fMRI) scans. We compared the inter-hemispheric resting-state functional connectivity between patients
with PD and healthy controls, using the voxel-mirrored homotopic connectivity (VMHC) approach.Then, we correlated the results
from VMHC and clinical features in PD patients. Results. Relative to healthy subject, patients exhibited significantly lower VMHC
in putamen and cortical regions associated with sensory processing and motor control (involving sensorimotor and supramarginal
cortex), which have been verified to play a critical role in PD. In addition, there were inverse relationships between the UPDRS
motor scores and VMHC in the sensorimotor, and between the illness duration and VMHC in the supramarginal gyrus in PD
patients. Conclusions. Our results suggest that the functional coordination between homotopic brain regions is impaired in PD
patients, extending previous notions about the disconnection of corticostriatal circuit by providing new evidence supporting a
disturbance in inter-hemispheric connections in PD.

1. Introduction

Parkinson’s disease (PD), the secondmost common neurode-
generative disease worldwide, is characterized by cardinal
motor symptoms including tremor, rigidity, bradykinesia,
and postural instability. It has been suggested that some
motor symptoms in PD might result from impaired senso-
rimotor integration, in which both deficient afferent external
information and high-order cognitive process might play an
important role [1, 2]. Some progressive impairment in PD
might be a reflection of alterations in integrity of distributed
brain networks with resultant reduced information integra-
tion capacity between brain regions.

Previous studies have demonstrated that human with
sectioned corpus callosum had deficits in the sensory, motor,

and cognitive processing [3–6], highlighting the importance
of inter-hemispheric coordination to humanbehaviors. Inter-
hemispheric coordination especially is needed for the execu-
tion of complex tasks [7, 8]. However, the inter-hemispheric
coordination in PD is still an unexplored field. PD is usually
of unilateral onset, providing evidence of inter-hemispheric
dissociations and an imbalance between activity of the
left and right hemisphere [9]. Abnormalities in the corpus
callosum and widely impaired white matter integrity in the
frontal, temporal, and parietal lobes have been reported in
PD patients, which may affect inter-hemispheric functional
coordination [10–12]. In addition, preliminary evidence from
electroencephalography (EEG) study has suggested impaired
inter-hemispheric coordination in patients with PD [13].
Given the importance of bihemispheric coordination for
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sensory, motor and cognitive processing, and the core motor
symptoms in PD, it is reasonable to expect that inter-
hemispheric interaction deficits played a key role in the
pathophysiology of PD.Therefore, it would be meaningful to
examine the inter-hemispheric coordination in PD.

Resting-state fMRI (rs-fMRI), which captures the pat-
terns of coherent spontaneous fluctuations of blood oxygen
level dependent (BOLD) signals [14] during rest, can be used
to measure the inter-hemispheric coordination. Functional
homotopy, defined as the high degree of synchrony in
spontaneous activity between geometrically corresponding
inter-hemispheric regions, has been suggested to be a key
characteristic of the brain’s intrinsic functional architecture
[15, 16]. Thus, homotopic resting-state functional connectiv-
ity (RSFC) may be a sensitive index for detecting the PD-
related inter-hemispheric coordination alterations. Here, we
examined homotopic RSFC in patients PD using a recently
validated approach named “voxel-mirrored homotopic con-
nectivity (VMHC) [17].” Different strengths of VMHC
between different symmetric regions could represent differ-
ent characteristics of hemispheric specialization in the infor-
mation processing, sensory integration, and motor coordi-
nation [16]. Using the VMHC method, abnormal homotopic
RSFC has been demonstrated in schizophrenia [18], autism
[19], depression [20, 21], and cocaine addiction [22].

In neurodegenerative diseases, as a diseases process
evokes a cascade of pathophysiologic changes, it is important
to examine an early stage of the disease that is minimally
affected by other confounding factors such as treatment. To
minimize the effect of such confounding factors, only drug
naive patients with PD were recruited in the present study.
Given the extensive evidence of functional disconnections
and asymmetry in PD, we hypothesized that an impair-
ment of inter-hemispheric functional coordination may be
involved in the pathogenesis of PD, which would be reflected
as reduced homotopic RSFC in PD patients. In addition, the
values of VMHCmight be correlated with the severity of PD
symptoms. The greater symptom severity will be associated
with lower VMHC values.

2. Methods

2.1. Participant. Patients with PD were recruited fromMove-
ment Disorders Outpatient Clinic of West China Hospital
of Sichuan University from January 2010 to February 2012.
All PD patients were diagnosed based on the UK PD
Society Brain BankClinical Diagnostic Criteria. Patients with
secondary Parkinsonism and Parkinson-plus syndrome were
excluded from this study. At the inclusion to the study, all the
patients should have never been treated with anti-Parkinson
medications at the initial visit. Patients were excluded if they
had (1) moderate-severe head tremor; (2) H-Y stage ≥ 3; (3)
disease duration ≥ 4 years; (4) a history of head injury, stroke,
or other neurological diseases; (5) dementia; (6) any disorder
that interfered with the assessment of the manifestation of
PD. In addition, patients with poor response to dopaminergic
medication or emergence of non-Parkinsonism symptoms
during follow-up period (rang from 12months to 36months)
will be excluded from the study. Finally, 51 PD patients were

Table 1: Demographic and clinical characteristics for Parkinson’s
disease.

PD (𝑁 = 51) Control (𝑁 = 51)
Age (years) 52.83 ± 8.68 52.24 ± 8.66
Handedness for writing (R : L) 51 : 0 51 : 0
Gender (female :male) 24 : 27 24 : 27
Disease duration (years) 1.68 ± 1.02 —
H & Y stage 1.82 ± 0.62 —
UPDRS scores
Part I—nM-EDL 2.28 ± 2.15 —
Part II—M-EDL 7.96 ± 4.45 —
Part III—motor examination 24.39 ± 11.62 —
Part IV—motor complications 0 —

Total UPDRS scores 34.43 ± 16.60 —
MMSE scores 27.67 ± 2.67 —
Data are presented as mean ± SD. H & Y = Hoehn & Yahr staging; MMSE =
Mini-Mental State Exam;UPDRS=UnifiedParkinson’sDisease Rating Scale;
nM-EDL: Nonmotor Aspects of Experiences of Daily Living; M-EDL:Motor
Aspects of Experiences of Daily Living.

included in the study. Most of those subjects are from the
same cohort that we used in another recently published work
[23]. Functional images were also acquired at initial visit of
these patients. The demographic features and clinical data,
including age, age of onset, gender, diagnostic delay, and
disease duration were collected using a standard question-
naire by a movement disorder specialist during face-to-face
interviews at the initial visit. The Unified PD Rating Scale
(UPDRS) part III was used to assess the motor disability, and
Hoehn and Yahr (H&Y) stage was used to evaluate disease
severity. Mini-Mental State Exam (MMSE) was used to
evaluate cognition.The ratingswere performed blinded to the
MRI dataset.

Additionally, 51 right-handed healthy control subjects
were recruited from local area by poster advertisements.
Control subjects will be excluded if they have (1) any neu-
rological illness, as assessed according to clinical evaluations
and medical records and (2) organic brain defects on T1 or
T2 images. All the controls were matched for age and sex to
patients with PD. The demographic and clinical character-
istics of the enrolled subjects are summarized in Table 1.
The local research ethics committee approved this study, and
written informed consent was obtained from all subjects.

2.2. MRI Acquisition. MRI was performed on a 3.0 Tesla (T)
MR imaging system (Excite; GE, Milwaukee, WI) by using
an eight-channel phased-array head coil. High-resolution
T1-weighted images were acquired via a volumetric three-
dimensional spoiled gradient recall sequence (TR = 8.5msec,
echo time = 3.4msec, flip angle = 12∘, slice thickness = 1mm).
Field of view (240 × 240mm2) was used with an acquisition
matrix comprising 256 readings of 128 phase encoding steps
that produced 156 contiguous coronal slices, with a slice
thickness of 1.0mm. The final matrix size of T1-weighted
images was automatically interpolated in-plane to 512 × 512,
which yielded an in-plane resolution of 0.47 × 0.47mm2.



BioMed Research International 3

MR images sensitive to changes in BOLD signal levels (TR =
2000msec, echo time = 30msec, flip angle = 90∘) were
obtained via a gradient-echo echo-planar imaging sequence
(EPI). The slice thickness was 5mm (no slice gap) with
a matrix size of 64 × 64 and a field of view of 240 ×
240mm2, resulting in a voxel size of 3.75× 3.75× 5mm3. Each
brain volume comprised 30 axial slices and one functional
run contained 200 image volumes. The fMRI scanning was
performed in darkness, and the participants were explicitly
instructed to relax and close their eyes and not to fall asleep
(confirmed by subjects immediately after the experiment)
during the resting-state MR acquisition. Earplugs were used
to reduce scanner noise, and head motion was minimized by
stabilizing the head with cushions.

2.3. Preprocessing of fMRI Data Analysis. R-fMRI data
preprocessingwas then conducted by SPM8 software package
(http://www.fil.ion.ucl.ac.uk/spm/), REST (http://restfmri
.net/forum/rest) and Data Processing Assistant for Resting-
State fMRI (DPARSF) [24]. Briefly, the preprocessing steps
included the following steps: (1) removal of first 10 time
points due to allowing for magnetization equilibrium and
the subjects’ adaptation to the environment; (2) correction
for differences in the image acquisition time between
slices; (3) six parameter rigid body spatial transformation
to correct for head motion during data acquisition; (4)
coregistration of the T1 image to the mean EPI scans; (5) grey
and white matter segmentation using “New Segment” and
spatial normalization of the structural image to a standard
template (Montreal Neurological Institute) by DARTEL
“normalization”; (6) spatial normalization of the EPI images
using the normalization parameters estimated in the previous
preprocessing step and resampling to 3 × 3 × 3mm3; (7)
spatial smoothing with a 6mm full width half maximum
Gaussian kernel; (8) temporally bandpass filtering (0.01–
0.08Hz) and linearly detrended removal; (9) regressing eight
nuisance covariates, including the white matter signal, the
cerebral spinal fluid signal, and six head motion parameters,
to remove the possible variances from time course of each
voxel.

According to the record of head motions within each
fMRI run, all participants had less than 1.5mm maximum
displacement in the 𝑥, 𝑦, or 𝑧 plane and less than 1.5∘ of
angular rotation about each axis. We also calculated the
mean head translation, mean head rotation, and framewise
displacement (FD) [25, 26] for each group. Analysis of those
head motion parameters did not reveal differences between
the control group and the patient group (𝑃 > 0.05).

2.4. Voxel-Mirrored Homotopic Connectivity Computation.
VMHC assumes symmetric morphology between hemi-
spheres. To account for differences in the geometric config-
uration of the cerebral hemispheres, we firstly averaged the
normalized T1 images of all subjects to create amean normal-
ized T1 image.This imagewas then averagedwith its left-right
mirrored version to generate a group-specific symmetrical T1
template. After that, the individual T1 images in MNI space
were nonlinearly registered to the symmetrical T1 tem-
plate and those transformations were applied to the above

processed functional data. The VMHC computation was
performed with software REST. For each participant, the
homotopic RSFC was computed as the Pearson correlation
coefficient between each voxel’s residual time series and that
of its symmetrical inter-hemispheric counterpart. Correla-
tion values were then Fisher 𝑧-transformed to improve the
normality.The resultant values were referred to as the VMHC
and were applied for the group comparisons.

2.5. Statistical Analysis. When appropriate, two-sample 𝑡-test
and Chi-square tests were performed to assess the differences
in demographic and clinical data between PD patients and
controls. A two-tailed𝑃 value of 0.05 was deemed significant.
To test for regional group differences in VMHC, individual-
level VHMC maps were entered into a group-level voxelwise
𝑡-test. Significant differences of VMHC between PD patients
and controls were set at the threshold of voxelwise 𝑃 < 0.001
and cluster level of cluster size >100 voxel and 𝑃 < 0.05
corrected by familywise error (FWE) correction.

Once significant group differences were observed in any
brain areas, we further assessed the relationships between
these VMHC values and clinical variables (disease duration
and UPDRS-III scores). Pearson correlation analyses were
performed, and the significance was set at 𝑃 < 0.05 (two-
tailed).

3. Results

3.1. Demographic and Clinical Characteristics. Age, sex, and
handedness were not significantly different between the
patients group and the healthy control group. Patients were
at early stage of PD with mean disease duration of 1.68 ± 1.02
years (defined as the time since symptom onset).The average
H&Y stage was 1.82 ± 0.62. The average motor score on the
UPDRS was 24.39 ± 11.62.The clinical data of PD patients are
shown in Table 1.

3.2. Regional Variation in Voxel-Mirrored Homotopic Con-
nectivity. Homotopic RSFC was a robust global brain phe-
nomenon, with regional differences in strength (Figure S1 in
the Supplementary Material available online at http://dx.doi
.org/10.1155/2015/692684), which is consistent with previ-
ous work [17]. Group comparisons revealed that patients
exhibited lower VMHC than healthy subjects in putamen,
sensorimotor cortex (involving precentral, postcentral gyrus
and paracentral lobe), and the supramarginal cortex. No
region showed greater VMHC in the patient group than in
the control group. Figure 1 and Table 2 showed the group
comparisons of VMHC values between patients and healthy
subjects.

3.3. Correlations between VMHC and Clinical Characteristics.
The mean VMHC values were extracted in the three regions
with significant group differences. Pearson correlations were
performed between VMHC and UPDRS motor scores and
duration in the patient group. Significantly negative corre-
lation was observed between VMHC in the primary senso-
rimotor cortex and the UPDRS motor scores (𝑃 < 0.01)
(Figure 2). A trend of negative correlation between VMHC
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Figure 1: Regions showing significant differences in VMHC between PD patients and healthy controls. Blue colors indicate reduced VMHC
in patients compared to the controls. The threshold was set at a corrected 𝑃 < 0.001. The color bar indicates the 𝑇 value from 𝑡-test between
groups. VMHC = voxel-mirrored homotopic connectivity.

Table 2: Regions showing significant differences in VMHC between PD patients and healthy controls.

Cluster location Peak MNI coordinates Cluster voxels Peak 𝑇
𝑋 𝑌 𝑍

Putamen ±27 −3 −3 141 5.8
Sensorimotor cortex ±18 −27 48 235 5.44
Supramarginal gyrus ±48 −45 33 104 4.77

in supramarginal cortex and the UPDRS motor scores was
also observed (𝑃 = 0.06). In addition, VMHC in the supra-
marginal cortex was also negatively correlated with disease
duration (𝑃 = 0.02) (Figure 2). No significant correlation
was found betweenVMHC in putamen and clinical variables.

4. Discussion

Homotopic RSFC is one of the most salient characteristics
of the brain’s intrinsic functional architecture, and many
R-fMRI studies have noted the striking degree of homo-
topic RSFC [15, 16, 27–29]. Stronger and weaker homotopic
RSFC are interpreted as indexing tendencies toward inter-
hemispheric coordinated or independent processing, respec-
tively [17]. Here, VMHC was applied for the first time to
investigate inter-hemispheric RSFC in PD. Relative to healthy
subject, patients exhibited lower VMHC in putamen and cor-
tical regions associated with sensory processing and motor
control, which have been verified to play a critical role in the
pathology of PD. In addition, there were inverse relationships
between the degree of motor disability and VMHC in the
sensorimotor regions and between the illness duration and
VMHC of the supramarginal gyrus in PD patients.

Parkinson’s disease (PD) is characterized by a degen-
eration of dopaminergic cells in the substantia nigra (SN)
pars compacta, which leads to dopamine depletion in the
striatum. Putamen is the striatal structure that suffers most
from nigro-striatal dopamine depletion. Consistent with its
important role in the pathology of PD, we demonstrate
lower VMHC value in putamen in patients with PD relative
to healthy controls. PD patient typically has a unilateral
motor onset, and although the disease becomes bilateral, the
initial side commonly remains more afflicted than the later-
involved side. This is associated with uneven degeneration of
dopaminergic neurons in the nigrostriatal pathway [30]. PD
patientswithmoderate to severe bilateralmotor disability still
show considerable asymmetry in the putamen and caudate,
with relatively reduced DA activity contralateral to the initial
motor symptom side [31]. The decreased homotopic RSFC in
putamen detected by our study is likely to be associated with
the asymmetrical dopamine depletion in putamen.

We also observed a decrease in inter-hemispheric RSFC
in some cortical regions, involving primary somatosensory,
motor, and supramarginal cortex. Primary sensorimotor
cortex is the key structure of sensorimotor circuits, the
dysfunction of which has been recognized as a crucial reason
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Figure 2: Correlations between the VMHC values and clinical measures in the patient group. VMHC = voxel-mirrored homotopic
connectivity; UPDRS = Unified Parkinson’s Disease Rating Scale.

for motor difficulties in PD [32]. Abnormal blood oxygena-
tion level dependent (BOLD) fMRI activation and base-
line metabolism/perfusion have been reported previously in
primary sensorimotor regions in patients with PD [33–37].
Inferior parietal cortex (including supramarginal cortex) is
known to be a high-order sensory association area [38, 39]
that receives multimdoal sensory afferents and contributes to
prception of body scheme and the sensorimtor integration
[40, 41]. Disturbed activity and connectivity in this area have
also been reported during rest and task-related processes in
PD patients [42, 43]. Besides, structural difference in senso-
rimotor and supramarginal cortex have also been reported in
PD [11, 44, 45]. Our results are consistent with the previous
finding.

In healthy subjects, the brain motor networks must
maintain a dynamic equilibrium during the resting state to
integrate bilateral sensory/motor information and be ready
to perform a future motor task [46], which requires rela-
tively stringent inter-hemispheric interaction. Accordingly,
sensory/motor regions have been demonstrated to exhibited
stronger homotopic RSFC than hemispherically specialized

frontal and parietal association cortex [16] and increased
homotopic RSFC with developmental maturation [17]. Gen-
erally, it can be more efficient for the two hemispheres
to interact than for one hemisphere to perform all of the
processing [47]. If the inter-hemispheric interaction between
sensorimotor cortex is disrupted in the resting state, it might
lead to deficient inter-hemispheric cooperation, lack of ability
to handle complex tasks, and disturbances of sensory pro-
cessing, and sensorimotor integration, thus contributing to
motor impairment. Supporting this, one rs-fMRI study [48]
demonstrates that loss and recovery of sensorimotor function
decline were paralleled by deterioration and subsequent
retrieval of inter-hemispheric functional connectivity within
the sensorimotor system in poststroke patients. Consistent
with the previous study, our study found a negative cor-
relation between UPDRS motor scores and VMHC in the
primary sensorimotor and supramarginal cortex, suggesting
deficient inter-hemispheric interaction as a potential mecha-
nism for motor impairment in PD.

A negative correlationwas also found between the disease
duration and VMHC in the supramarginal cortex, suggesting
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that this region may have a role in the chronicity of PD.
In accordance with our study, a previously published study
found an inverse correlation between the cortical thinning
of bilateral supramarginal gyrus and illness duration/UPDRS
motor score in PD patients [45]. Given that all patients in
this study were in early stage with relatively short disease
durations, this finding needs to be confirmed in patients with
longer illness duration.

It is of interest to speculate on the potential underlying
mechanisms of the VMHC deficits which we have demon-
strated. They could be related to widespread white matter
integrity abnormalities observed in PD. Particularly, deficits
in white matter integrity of corpus callosum, the major
white matter tract connecting homologous regions of the left
and right hemisphere, could disrupt the synchrony between
homotopically connected regions. Although the callosum is
the largest conduit for information transfer and coordination
between the hemispheres, alternative pathways (e.g., sub-
cortical) exist. Homotopic regions with few monosynaptic
callosal connections also demonstrated strong resting-state
FC [49, 50]. Even studies on split-brain patients have found
that a normal complement of resting-state networks and
intact functional coupling between hemispheres can emerge
in the absence of the corpus callosum [51].Thus, though with
few callosal connections, putamen exhibited decreased inter-
hemispheric RSFC in PD which is congruent with the above
findings. Anotherexplanation, not mutually exclusive, is that
asymmetrical dysregulation of the striatum may in turn lead
to further asymmetrical dysfunction of neural circuits that
include the basal ganglia and cortical areas. The neurochem-
ical alteration in the basal ganglia impairs neuronal process-
ing and could propagate, through the dense corticostriatal
connections, to altered activity in cortical regions. Therefore,
the VMHC deficits in sensorimotor regions and putamen
could both be related to asymmetrical dopamine depletion in
putamen. Further studies are needed to elucidate the mecha-
nism underlying the VMHC alterations in PD.

Several other limitations should be noted. First, there are
existing asymmetries in cortical structure. We attempted to
mitigate these issues by using a symmetric template. How-
ever, the effects of methodological symmetry could not be
completely eliminated. Also, the cross-sectional designmight
limit the interpretations of our results.Whether these regions
with abnormal VMHC change dynamically needs to be
explored in further longitudinal study. Finally, we recruited
only drug näıve patients to reduce effects of confounding
factors such as treatment. For the same reason, the present
findings might be compounded by a selection bias since drug
naive subjects are generally in their early stage.

In summary, we found reduced inter-hemispheric func-
tional connectivity in the key regions of corticostriatal circuit
in patients with PD during resting state. This finding extends
previous notions about the disconnection of corticostriatal
circuit in PD by providing new evidence supporting a distur-
bance in inter-hemispheric connections in PD. Furthermore,
the inverse relations between the motor ability and VMHC
of the sensorimotor regions observed in our patients suggest
potential clinical implication of VMHCmeasure for PD.
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Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive
neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known
disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In
the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated
the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural
mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched
never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive,
attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger
activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed
controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other
networks. Those depressed patients with lower executive function has greater synchronization between the salience network with
the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining
neural models for geriatric depression.

1. Introduction

It has long been postulated that major depression may be
a consequence of failed coordination between the central
executive system and affective processing system [1]. While
a great number of studies [2, 3] have identified abnormal
activation in the regions subserving executive function (e.g.,
dorsolateral prefrontal cortex (dlPFC) and dorsal anterior
cingulate (dACC)) and affective processing (e.g., ventrome-
dial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC),
and amygdala), only a few studies have examined coordina-
tion between the executive system and affective processing
system directly at a network level in major depression.

In addition to the executive and affective processing sys-
tems, the abnormalities in the default-mode network (DMN,
primarily including the anterior and posterior cingulate, and
bilateral lateral parietal cortex areas) and salience network

(including the dorsal anterior cingulate and insula cortices)
in major depression have also been identified [4]. A number
of studies have reported an increased activity of the DMN
in major depression during resting state [5, 6] and persistent
activity of the DMN during tasks [4, 7]. Northoff and Sibille
[8] have suggested hyperactivity of the DMN as one of
the endophenotypes of major depression, which could pre-
dispose individuals with this endophenotype to depression,
whereas Marchetti and colleagues [9] hypothesized that the
increased DMN activity could be a depressive scar resulting
from a dysfunctional switch between internally and exter-
nally oriented attention. Meanwhile, there are also reports
about decreased function in the executive system [2, 3, 10]
that some authors refer to as task-positive deficiency [9, 11].
Interestingly, Hamilton and colleagues [4] have reported
a task-negative (i.e., DMN) dominance over task-positive
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network dominance during resting state in major depression
using an index to quantify the number of time periods when
the DMN signal is stronger than the signal from the task-
positive network. They also proposed that the right anterior
insula might be a driver subserving the switch between
internal and external attentions. They found that while in
healthy controls the anterior insula activity was increased
when task-positive activity was at the peak, in patients with
major depression the anterior insula activity was increased
when the DMN activity was at the peak. The anterior insula
as a key node of the salience network (SN) has recently gained
lots of attention in the neuroimaging research field and has
been found also involved in major depression by many other
authors [12–14]. van Tol et al. [13] reported decreased func-
tional connectivity of the salience network with the medial
prefrontal cortex, ventrolateral prefrontal cortex, and ventral
striatum. Manoliu and colleagues [12] recently also found
decreased connectivity between the insula and dorsal ante-
rior cingulate (dACC) within the salience network, which
was associated with the severity of symptoms and aberrant
DMN/CEN interactions as well. Furthermore, Yuen and
colleagues [14] found the decreased right anterior insular-
dACC connectivity and increased insular-dorsolateral pre-
frontal cortex (dlPFC) connectivity in oldermajor depression
patients who had apathy symptoms.Therefore, it is necessary
to clarify the relationships among the affective, executive,
DMN, attention, and salient systems in major depression.

Major depression in individuals who had the first depres-
sion episode at their older ages (typically older than 50
years) is often referred as geriatric depression. Different from
major depression in younger adults, geriatric depression has
frequently been found in those with cerebrovascular disor-
ders [15, 16], such as white matter hyperintensities, which
are associated with disconnections/low blood supplies in
white matters and gray matters. Because of the disconnection
pathology, geriatric depression could serve as an interesting
model in studying the alteration of the interactions among
different neural networks. However, so far, there is only
one study in geriatric depression which has investigated the
interaction between regions from different neural networks.
That study was focused only on the differences of the insular
connectivity between those who had high (𝑛 = 7) versus low
(𝑛 = 9) apathy symptoms, which needs further confirmation
in a larger sample.Therefore,more studies in geriatric depres-
sion are very necessary.

In recent years, with the development of various analyzing
methods on task-related and task-free functional magnetic
resonance imaging (fMRI) data, analyzing fMRI data at a
neural network level becomes a reality.One of thewidely used
techniques to identify neural networks is the independent
component analysis (ICA). Unlike the seed-based functional
connectivity analysis which is dependent on the location
and size of a seed, the ICA approach is data driven. It
identifies independent components (ICs) based on the spatial
and temporal distribution patterns [17]. Since the regions
within an IC are temporally synchronized and are commonly
activated during a certain cognitive processing simultane-
ously, these regions within an IC are often considered to be

within the same neural network. A number of studies [18–
20] have identified intrinsically connected neural networks
by comparing ICs with task-activated brain regions through
meta-analysis. With the identified neural networks, we can
further investigate the properties of the neural networks and
the relationships among different neural networks.

The majority of previous studies in the literature have
examined the association of regional activity or connectivity
between two regions with depression severity [4, 6, 21, 22].
Although there are some reports on interactions among
regions from different neural networks [23], few studies have
examined the interactions among different neural networks
by evaluating the synchronization of an entire network. The
advantage of evaluating the synchronization of an entire
network over the region-to-region synchronization analysis
is that the former would allow us to compute/understand a
neural model for a mental disorder more easily. To exam-
ine the interactions between neural networks in geriatric
depression, we conducted an ICA and identified the default-
mode, executive, attention, affective, and salience networks
by comparing each component with the template of Laird and
colleagues [19] using the goodness of fit analysis. Then we
computed the significant differences between the depressed
and healthy control groups in the correlations among these
networks. Regression analyses between the network synchro-
nizations with depression severity were also conducted. Since
geriatric depression typically has executive dysfunction, we
conducted the study in geriatric depression to examine the
influence of network interactions on depressive symptoms
and executive function. We hypothesized that the correla-
tion/coordination between or among networks rather than
in a single network has a strong association to depressive
symptoms and executive dysfunction.

2. Materials and Methods

2.1. Participants. Thirty-two individuals who had been diag-
nosed withmajor depressive disorder (19 females, mean ± SD
age: 68 ± 6.5 years) and thirty-two healthy never-depressed
volunteers (18 females, mean ± SD age: 72 ± 8.2 years)
participated in this study. Participants were recruited from
the neurocognitive outcomes of depression in the elderly
study (NCODE). All depressed patients met DSM-IV criteria
for major depression. They were either in a remitted state
(𝑛 = 21) or in an actively depressed state (𝑛 = 11) with
the Montgomery-Åsberg Depression Rating Scale (MADRS)
mean ± SD score of 2.1 ± 1.8 for the remitted and 17.4 ± 9.2
for the actively depressed patients. The exclusion criteria for
depressed subjects included (1) another major psychiatric ill-
ness, including bipolar disorder, schizophrenia, or dementia;
(2) alcohol or drug abuse or dependence; (3) neurological
illness, including dementia, stroke, and epilepsy; (4) medical
illness, medication use, or disability that would prevent the
participant from completing neuropsychological testing; and
(5) contraindications to MRI. All never-depressed subjects
were cognitively intact and had no history or clinical evi-
dence of dementia, and they all scored 28 or more on
the minimental state examination. Among the 32 depressed
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participants, 9 were receiving antidepressant monotherapy (4
on selective serotonin reuptake inhibitors (SSRIs), 2 on sero-
tonin antagonist and reuptake inhibitors (SARIs), 1 on sero-
tonin-norepinephrine reuptake inhibitors (SNRIs), and 2 on
an tricyclic), 9 were receiving combination treatment (4 on
two SSRIs, 2 on SSRI combined with either SARI or nor-
epinephrine-dopamine reuptake inhibitors (NDRIs), 2 on
SARI and NDRI, and 1 on SNRI and NDRI), and 14 were not
on medication (Table 1).

Prior to the fMRI, all subjects completed the StroopColor
and Word Test to examine the executive function. The study
received approval by Duke School of Medicine Institutional
Review Board. All subjects gave verbal and written consent
after being explained the purpose and procedures to be used
in the study.

2.2. Neuroimaging Acquisition. All participants were scanned
using a research-dedicated 3.0 T GE EXCITE HD scanner
(GE Medical Systems, Milwaukee, Wisconsin). First, high-
resolution T1-weighted structural images in coronel view
were acquired with slice thickness of 1mm without a gap
(matrix = 256 × 256 × 216). We then obtained 5-minute
resting fMRI scans for each participant. Participants were
instructed to rest without moving, keep their eyes open,
and focus on a fixation cross-presented in the center of the
screen inside the scanner. Inward spiral sequence functional
images in the axial view were acquired using the following
parameters: TR = 2000ms, TE = 31ms, FOV = 24 cm, flip
angle = 90∘, and matrix = 64 × 64 × 34.

2.3. Data Analyses. Data were preprocessed using the
Duke BIAC resting state pipeline based on the tools
from the FSL analysis package (FMRIB Software Library,
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, Version 5.98) and locally
developedMATLAB code (MathWorks,Natick,MA), includ-
ing slice-timing alignment, motion correction, coregistra-
tion, nonbrain voxel extraction, and normalization. We also
regressed out six-parameter rigid body head motion, the
signal averaged over the white matter, and signal averaged
over the cerebrospinal fluid regions [24]. Frequencies less
than 0.08Hz were retained [25]. The group independent
component analysis (ICA) was conducted using melodic
and dual regression program following the instructions on
FslWiki (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression).
Briefly, we first concatenated all subjects’ data including both
the patient and control groups and calculated the group-
averaged independent components (IC) by limited the
ICs to twenty components to match the study of Laird and
colleagues [19]. Next, we identified the default-mode network
(DMN), central executive network (CEN), central attentional
network (CAN), salience network (SN), and affective network
(AN) by using the goodness of fit test (GOF) [5] to best
match the networks provided by Laird and colleagues [19].
In the case that the second largest GOF value was close to
the first largest GOF value, we kept the component as a
component of interest as well. Next, we regressed spatial ICs
into each subject’s 4D data to generate both subject-specific
component time courses and subject-specific spatial maps as

outputs [26]. Specifically, as described in the FSL webpage
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression), “for
each subject, the group-average set of spatial maps is
regressed (as spatial regressors in a multiple regression) into
the subject’s 4D space-time dataset. This results in a set of
subject-specific timeseries [sic], one per group-level spatial
map. Next, those timeseries [sic] are regressed (as temporal
regressors, again in a multiple regression) into the same 4D
dataset, resulting in a set of subject-specific spatial maps, one
per group-level spatial map.” The 𝑧-score for every voxel was
estimated by normalizing each voxel’s intensity with respect
to intensity of all the voxels in each individual IC. The IC
maps were then compared between groups on a voxelwise
basis for statistical tests using FSL’s randomize permutation-
testing tool. Finally, pairwise Pearson’s correlation coefficient
analyses were conducted to compute the interaction between
any two networks as listed above.

2.4. Statistical Analyses. To identify group difference between
the depression patients and controls in each component iden-
tified as DMN, CEN, CAN, SN, and AN and the inter-IC cor-
relations between any two networks, voxelwise two-sample 𝑡-
tests were computed. Two-sample 𝑡-tests were conducted to
test group differences in inter-IC correlations. Age was used
as a regressor to control the aging effect. To examine the inter-
actions between network activity strength and clinical status,
we also conducted regression analyses using MADRS score
(depression severity) and executive function as measured by
the color-word interference condition of the Stroop task.The
measures of the Stroop task were converted into standardized
score based on age, gender, and race. Significant level was
determined using threshold of 𝑍 > 2.3, 𝑃 < 0.05 with
cluster correction. For the interactions between networks, the
significance was determined using 𝑃 < 0.05 based on the
Monte-Carlo simulation. Specifically, similar to the network-
based statistics [27], ourmultiple comparisonswere corrected
based on nonrandomdata distribution patterns.The first step
was to identify a set of correlations that exhibited a 𝑃 value
less than 0.05. Second, among the set of correlations, we
determined whether a cluster of correlations was significant
based on the size of the cluster. The size of the cluster was
determined by 10,000 Monte-Carlo simulations.

3. Results

3.1. Clinical Profile of the Participants. We summarize the
demographic details, clinical profile, and performance of
participants on the Stroop task in Table 1. Given a non-
significant trend for age difference between the two groups,
with the control group relatively older than the depression
group, we included age as a covariate in subsequent group
comparison analyses. For executive function, the depression
group showed a relatively lower score than the control group
in performing the Stroop task; however, there was not a
significant difference between the two groups (Table 1).

3.2. Differences in Resting-State Activity within and between
Neural Networks between Depression and Control Groups.
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Table 1: The clinical profiles of the participants.

Depression (𝑛 = 32) Control (𝑛 = 32) 𝑃 value
Gender (F/M) 18/14 19/13 0.80+

Age 68.3 (6.5) 71.8 (8.2) 0.06
Years of education 14.9 (3.1) 16.0 (2.5) 0.11
MADRS 7.0 (9.2) 0.0 (0.9) <0.001∗

Number medicated for hypotension 11 8 0.40+

Number medicated for antidepressants 18 0
Monotherapy
SSRI 4
SARI 2
SNRI 1
Tricyclic 2

Combined treatment
Two SSRIs 4
SSRI with either SARI or NDRI 2
SARI & NDRI 2
SNRI & NDRI 1

Executive function (Stroop task) −0.10 (0.82) 0.24 (0.71) 0.08
+Chi-square test, and the rests were two-sample 𝑡-tests; ∗significant results with 𝑃 < 0.05. SSRI = selective serotonin reuptake inhibitor; SARIs = serotonin
antagonist and reuptake inhibitors; SNRIs = serotonin-norepinephrine reuptake inhibitors; NDRIs = norepinephrine-dopamine reuptake inhibitors.
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Figure 1: The ICA components which correspond to different neural networks according to the goodness-of-fit analysis using the templates
of Laird et al. AN = affective network; CAN = central attentional network; CEN = central executive network; DMN = default-mode network;
SN = salience network.

Our aim was to examine whether we can identify altered
interactions among networks that are related to depressive
symptoms and cognitive dysfunctions in geriatric depression.
To achieve this goal, using the results from Laird and col-
leagues [19] as templates, first we identified the components
that were best matched to the default-mode network (DMN,
IC1, corresponding to Laird et al.’s IC13), central executive
network (CEN, IC4, and IC6 corresponding to Laird et al.’s
IC15 and IC18, resp.), central attentional network (CAN,
IC7 corresponding to Larid et al.’s IC7), salience network
(SN, IC10, corresponding to Laird et al.’s IC4), and affective

work (AN, IC12, and IC18, corresponding to Laid et al.’s IC2;
the IC18 was also matched to Laird et al.’s IC1). Figure 1
shows thematched components between the ICs in our study
with Larid et al.’s. The detailed coverage for each component
is listed in Table 2 and Figure 2. More detailed coverage of
each component is shown in axial views in supplementary
sFigure 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/343720.

When comparing each individual network between pa-
tients and controls using two-sample 𝑡-tests, we found signif-
icantly increased IC12 (one of the affective networks, ANs)
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Table 2: The clusters of each IC component identified matches the CEN, CAN, DMN, AN, and SN, respectively.

Network IC Clusters Peak coordinate (MNI𝑋, 𝑌, 𝑍)

DMN IC1
Bilateral medial prefrontal cortex [4, 59, −2]

Bilateral posterior cingulate [−7, −55, 19]; [1, 59, −5]
Bilateral lateral parietal cortex [−42, −65, 36]; [45, −63, 32]

AN

IC12
Bilateral dorsomedial prefrontal cortex [−21, 35, 38]; [28, 42, 40]

Rostral anterior cingulate [6, 47, −4]
Bilateral subgenual cingulate [4, 41, −11]

IC18

Bilateral subgenual cingulate [13, 24, −18]
Bilateral rostral anterior cingulate [0, 61, 13]

Bilateral ventrolateral prefrontal cortex [−36, 37, 4]; [48, 32, 6]
Bilateral orbitofrontal cortex [−38, 34, −16]; [29, 36, −19]

Bilateral amygdala [−28, −1, −16]; [34, −3, −15]
Bilateral caudate [−6, 2, 8]; [10, 10, −2]

CEN

IC6

Left dorsolateral prefrontal cortex [−46, 27, 19];
Left dorsomedial prefrontal cortex [−2, 23, 48]
Bilateral superior parietal cortex [−33, −50, 44]; [30, −58, 46]
Right inferior temporal cortex [−58, −43, −13]

Left anterior part of posterior cingulate [−5, −38, 38]
Right cerebellum [31, −69, −47]

IC4

Right dorsolateral prefrontal cortex [42, 22, 44]
Right dorsomedial prefrontal cortex [6, 27, 41]
Bilateral superior parietal cortex [−46, −50, 46]; [42, −58, 47]
Right inferior temporal cortex [61, −28, −6]

Right anterior part of posterior cingulate [5, −47, 40]
Left cerebellum [−39, −68, −45]

CAN IC7

Bilateral frontal eye field [−21, 2, 53]; [26, 2, 49]
Bilateral precuneus [−11, −69, 56]; [11, −65, 56]

Bilateral parieto-occipital fissure [−28, −82, 29]; [38, −73, 23]
Bilateral lingual gyrus [−13, −58, 11]; [18, −58, 15]

SN IC10
Bilateral dorsal cingulate [3, 27, 20];

Bilateral insula [−38, −14, 6]; [41, −12, 8]
Bilateral parieto-occipital fissure [−13, −62, 15]; [19, −57, 11]

activity specifically in the cerebellar vermis in the depression
group relative to the control group. In fact, the cerebellar
vermis was not represented in the IC12 when we use the
threshold of 𝑍 > 2.3, 𝑃 < 0.05 with cluster correction.
However, the IC12 of the depressed group did have a cluster
in the cerebellar vermis when using the threshold of 𝑍 > 2.3,
𝑃 < 0.001 without cluster correction (Figure 3).

When comparing correlations among networks between
the two groups (pairwise correlations), it was the IC12 that
showed a significant group difference in the synchronizations
between this network with several other networks (Table 3).
Specifically, we found a positive correlation in the IC12 with
IC6 (one of the CENs) in the control group; however, the cor-
relation was significantly reduced (no significant correlation
existed) in the depression group.We also found a significantly
increased correlation (less negative) in the depression group
relative to the control group in the IC12 with IC7 (CAN,
mainly in the precuneus region) and the IC12 with IC10 (the
salience network, SN) (Figure 4).

3.3. Correlation with Depression Severity and Executive Func-
tion. We did not find any significant correlation of the
severity of depressive symptoms with any of the networks or
interactions between any twonetworks.However, as shown in
Figure 5, we found a negative correlation between the Stroop
task performance and the interactions between the IC10 (SN)
and IC6 (one of the CENs) and between IC10 (SN) and IC18
(one of the AN) in the depression group but not in the control
group. In otherwords, in the depression group, thosewhohad
higher synchronization between the salience network and the
central executive network and affective networks were the
ones who had poor task performance on the Stroop task.

3.4. Depression-State Related Alteration. Given the fact that
we had a fair number of patients in a remitted state, we
suspected that the reason that we did not find a significant
correlation between neural activity and depression severity
might be because their relationship is nonlinear; that is, it
might be a depression-state dependent rather than a linear
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Figure 2:The locations of each IC component which correspond to different neural networks according to the goodness-of-fit analysis using
the templates of Laird et al.The IC components were computed using dual regression analysis by combining the data from both the depression
and never-depressed control group (𝑍 > 2.3, 𝑃 < 0.05 with cluster correction).

Table 3: Mean (SD) inter-IC correlations that showed significant group differences and that correlated with performance of the Stroop task.

Control Depression 𝑃 value
IC12(AN)-IC6(CEN) correlation 0.30 (0.28) 0.15 (0.26) 0.03
IC12(AN)-IC7(CAN) correlation −0.39 (0.33) −0.22 (0.32) 0.04
IC12(AN)-IC10(SN) correlation −0.18 (0.29) −0.02 (0.32) 0.04
Stroop performance with IC10(SN)-IC6(CEN) correlation 𝑟 = −0.34 0.05
Stroop performance with IC10(SN)-IC18(AN) correlation 𝑟 = −0.51 0.003

relationship. Therefore, we subsequently examined the dif-
ferences in neural networks and interactions of networks
between the remitted versus the actively depressed groups
and between the remitted versus the control groups. As
shown in Figures 3(c) and 3(d), the increased cerebellar
vermis activity shown in the pooled depression group relative
to controls was mainly driven by the remitted group in
comparison with controls. The increased cerebellar vermis
activity was not found in the actively depressed group in
comparison with the control group. Instead, we found signif-
icantly increased resting activity of IC18 (another AN) in the
left orbitofrontal cortex and ventromedial prefrontal cortex in
the actively depressed group compared with both the control
group and the remitted patient group (Figure 6). Therefore,
we believe the increased orbitofrontal cortex of AN should
be a depression-state effect.

We also examined the group differences in network syn-
chronizations between the actively depressed versus control,
actively depressed versus remitted, and remitted versus con-
trol groups. The analyses confirmed the network interaction
results in the combined patient sample, in that the significant
positive correlation between IC10 (SN) and IC6 (CEN) and
the negative correlation between IC10 (SN) and IC7 (CAN)

in the control group were significantly less positive or less
negative in the actively depressed group. There were no sig-
nificant group differences between the actively depressed and
remitted groups or between the remitted and control groups
among the network interactions.

4. Discussion

We investigated the interactions among different intrin-
sic connectivity networks in patients with both acute and
remitted geriatric depression and found that depression
patients had significant alterations in the synchroniza-
tions/antisynchronizations between the affective network
with other networks including the central executive network,
attentional network, and the salience network. In addition,we
found depressive-state specific increase in the orbitofrontal
area of the affective network. Although these changes were
not correlated with depression severity, the significant dif-
ferences confirmed in the acutely depressed group indicate
an importance of the interactions between networks as the
neuropathology of major depression.

It is interesting that the depression group mainly had
altered correlations between the component of the affective
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Figure 3: (a) Component 12 (IC12), one of the affective networks,
in the control group; (b) IC12 in the depression group. To show
the voxels in the cerebellum, (a) and (b) were based on threshold
of 𝑍 > 2.3, 𝑃 < 0.001 without cluster correction. (c) Regions
within IC12 which showed significantly increased activity in the
depression group (all patients) related to the control group; (d)
regions within IC12 which showed significantly increased activity in
subjects remitted from depression (part of patients in the depression
group) related to the controls. (c) and (d) were based on threshold
of 𝑍 > 2.3, 𝑃 < 0.05 with cluster correction.

network (including the orbitofrontal, subgenual cingulate,
and the dorsomedial prefrontal cortex) with other neu-
ral networks. This component best matched component 2
(subgenual cingulate and orbitofrontal cortex) of Laird and
colleagues’ study and the authors indicated its role in
“olfaction, gustation, and emotion” [19]. Previous studies
in the literature using task-related fMRI have frequently
found activation in the orbitofrontal and the dorsomedial
prefrontal cortex during emotion related tasks, particularly in
tasks related to emotion expectation and emotional learning
[28–30]. It is hypothesized that medial prefrontal cortex
(mPFC) may use the inputs from the orbitofrontal cortex
(OFC) as signals of internal states to select appropriate
behaviors during automatic cognitive change paradigms [31].
In fact, in the model of Phillips and colleagues [31], the
OFC, mPFC, and subgenual cingulate, together with the
hippocampus and parahippocampus, could function as an
automatic emotion regulation system. They also proposed
the central executive system including dorsolateral prefrontal
cortex, dorsomedial prefrontal cortex, and dorsal anterior
cingulate as voluntary emotion regulation system. Phillips
and colleagues pointed that the voluntary emotion regulation
system function may be mediated by the OFC and subgenual
cingulate [31]. Consistently, we found a positive correlation
between the automatic emotion regulation system (IC12) and
the voluntary emotion regulation system (IC6) in the healthy

control group, the correlation did not exist in the depression
group, suggesting that emotion regulation requires good
coordination/synchronization between the automatic and
voluntary systems. That is, the synchronization between the
two systems was broken in depressed patients, which could
result in depressive symptoms.

We also found a negative correlation between the IC12
with IC7 and IC10 in the healthy control group and the
correlation become less negative in the depressed group. The
IC7 located at the frontal eye area and the precuneus areas
and best matched the IC7 of Laird’s study which should be
an attentional network, whereas IC10 matched the IC4 of
Laird’s study (the bilateral anterior insula/frontal opercula
and ACC) which should be the salience network. The
salience network recently has been hypothesized to play an
important role in facilitating attentional transition between
cognition and emotion/interoception [32, 33]. Negative
correlations between the automatic emotional regulation
system with the attentional system and the salient system
suggest that when the automatic emotional regulation system
was working, attention to affective stimuli and attentional
transition from cognition to emotion/interoception would
be suppressed, which could be a consequence of successful
automatic emotional regulation. However, the network
interactions disappeared in the depressed group. Together
with the discoordination of the automatic emotion regulation
system with the voluntary emotion regulation system, we
speculate that the major deficits in our depression group
were the discoordination between the affective (automatic
emotion regulation) system and the other neural systems
(central executive network, cognitive attention, and attention
transition between cognition and emotion/interoception).
Although we did not find a significantly linear correlation
between the network interactions with depression severity,
the subgroup analysis confirmed the results were more
significant in the currently depressed group than the
remitted group. Although our study sample was older adults,
our findings are largely in consistent with Mayberg [1] and
Philips’s neuroscience model of depression and emotion.

Since we mainly found a discoordination between the
affective networks with other networks, we speculate that
the primary deficits in depression could be in the automatic
emotion regulation system of the affective network which
have resulted in the interaction deficits between this network
and other networks. Indeed, we found increased activity in
the left orbitofrontal cortex area (although not IC12 but IC18
instead) in depression, especially in the actively depressed
group relative to both the remitted depression group and
healthy control group (suggesting a depressive state-related
alteration). As shown in the results, there are some spatial
overlaps in the ventromedial prefrontal and orbitofrontal
regions between the IC18 and IC12. Similar to IC12, the IC18
also matched the IC2 as well as IC1 of Lairds’ study, but the
IC18 also included the limbic and brainstem regions, all of
which should also be part of the automatic emotion regu-
lation network. The pathological deficit in the orbitofrontal
cortex in depression has long been well documented [28].
Rajkowska et al. [34] found a decrease in cortical thickness
of orbitofrontal cortex in depressed patients. In older adults,
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decreased volume of the orbitofrontal cortex has been
reported in many studies [35–37]. Increased metabolism
or regional cerebral blood flow (rCBF) of the orbitofrontal
cortex has been shown in unmedicated depressive patients
[38] although decreased orbitofrontal activation was found
associated with anxiety symptoms [39].Therefore, in consist-
ent with Drevets and colleagues’ theory [28], increased rest-
ing activity in the orbitofrontal area of the automatic emotion
regulation network could be a core deficit in depression.

In this study, we also found a negative correlation between
the Stroop task performance and the synchronization of the
salience network (IC10) with the central executive net-
work/voluntary emotion regulation network (IC6) as well as
the synchronization of the salience network with the auto-
matic emotion regulation network (IC18) in the depression

group but not in the control group. In other words, those
patients, who had poor performance in the Stroop task, had
stronger synchronization between the salience network and
the emotional regulation (both voluntary and automatic) net-
works. The results may implicate that, those whose salience
network and emotional regulation networks are positively
synchronized, may bemore easily to reallocate their attention
to emotional events, which then could distract them from
ongoing cognitive tasks and result in poor performance in
the executive tasks such as the Stroop task. Supportively,
in the control group, the salience network was negatively
correlated with the automatic emotion regulation network
(IC12 though). However, it is difficult to explain why those
who had poor performance during the Stroop task had a
positive correlation between the salience network and the
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voluntary emotional regulation network. While it might
be a compensatory effect, future studies to investigate the
synchronization between the salience network and the volun-
tary emotional regulation (central executive) network during
performing the Stroop task scan is necessary to explain the
phenomenon.

There are a couple of technical issues that need to be dis-
cussed here. First of all, we conductedmotion correction dur-
ing preprocessing which has not been frequently reported in
the literature in ICA analyses.We rationale that for themajor-
ity of functional connectivity analysis (e.g., seed-based con-
nectivity analysis), in addition to the slice-time correction,
motion correction, and normalization, filtering and regress-
ing out covariates (such as six motion parameters, white mat-
ter signal, and CSF signal) are also essential during data pre-
processing [40]. Regressing out estimatedmotion parameters
and physiological signals can largely increase the gray matter
temporal signal to noise [41]. We believe that it makes sense
to include these preprocessing steps before ICA. We expect
that performing ICAwithout these preprocessing stepswould
probably increase some independent components of noise.
Secondly, one may concern how our interested components
were influenced by the template which we used in the study.
It is worth to note that the template provided by Laird and
colleagues was based on a metadata set associated with 8637
functional brain imaging experiments across 31,724 subjects.
We believe the key elements of each network do not deviate
much from the template of other datasets [20], although the
naming of the components is relatively different (e.g., the
affective network that we named here was referred as “limbic”
by Yeo and colleague). The number of ICs should have some
influences on our results.How to describe/present neural net-
works and label their functions is one of the hot research areas
and an ideal solution for mapping brain function may arrive
in the very near future. In addition, the networks we are dis-
cussing in this study have covered several subnetworks. For
example, our salience network included the bilateral insula
and dorsal anterior cingulate. As indicated by Menon and
Uddin [33], the anterior insula has different roles from the
posterior insula. The anterior insula, not the posterior one,
should be part of the salience network. Similarly, the function
of subcomponents within DMN is also different [18], which
could be the reason why we did not find a significant change
in the DMN in depression patients compared with the con-
trols. Therefore, instead of 20 components in the ICA anal-
ysis, using a larger number of components to define neural
networks in a fine scale might leads to different conclusions.

In addition, we only studied the interactions between
any two neural networks at a time. Using more complicated
models that calculate the interactions among the networks
simultaneously is necessary to confirm our results. We stud-
ied the internetwork correlations in geriatric depression
because there have been known pathological disconnections
in geriatric depression. Thus, our results cannot be general-
ized to younger depression patients. Because different regions
might be involved in the pathology of geriatric depression due
to large variations of outcomes fromcerebrovascular diseases,
further studies should be conducted to examine whether
and how different cerebrovascular deficits affect our findings.

This study is also limited by the small sample size and
different medications of the depression patients. The small
number of actively depressed patients may impact on the
robustness of the significance of our results. This might
explain why we only found significant alterations in the
affective network but not in the executive network. Based
on the results from the small number of patients, perhaps
what we may conclude here is that at least deficits in the
affective networkweremore robust and obvious than those in
the executive network in the actively depressed group. Future
replication studies in unmedicated patients with geriatric
depression in a larger sample are warranted to confirm our
conclusions.

While deficits of resting activity in depression have been
reported in a number of studies in major depression, the
aberrant interactions among intrinsic neural networks have
not been demonstrated previously. Although our current
study cannot determine which was the primary deficit in
major depression firmly, the altered network activity, or
the interactions among networks, we were able to examine
the interactions between networks directly using the ICA
approach. Our results have demonstrated that hyperactivity
within the affective network (the automatic emotion regula-
tion system), in particular the orbitofrontal cortex, in con-
junction with sparse correlation among the central executive
network, attentional network, and the salience network, is the
core dysfunction of older depression patients during resting
state. The results are in consistent with several depression
models proposed in the literature and indicated that studying
the correlations among networks is an effective approach in
revealing neural mechanisms of depression.
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The triple network model (Menon, 2011) has been proposed, which helps with finding a common framework for understanding the
dysfunction in core neurocognitive network across multiple disorders.The alteration of the triple networks in the major depression
disorder (MDD) is not clear. In our study, the altered interaction of the triple networks, which include default model network
(DMN), central executive network (CEN), and salience network (SN), was examined in the MDD by graph theory method.
The results showed that the connectivity degree of right anterior insula (rAI) significantly increased in MDD compared with
healthy control (HC), and the connectivity degree between DMN and CEN significantly decreased in MDD.These results not only
supported the proposal of the triple network model, but also prompted us to understand the dysfunction of neural mechanism in
MDD.

1. Introduction

Human brain is a complex neural network; many psycho-
logical and neurological disorders are associated with the
dysfunction of multiple brain regions or networks [1–4].
Based on that,Menonproposed a triple networkmodelwhich
helps in finding a common framework for understanding
cognitive and affection disorders [4]. Major depression disor-
der (MDD), as one of the main kinds of affection disorders,
is characterized by stable, pervasive depressive mood, guilt,
disinterest, worthlessness, and even tendency of suicide [5].
It seriously impacts the daily lives of patients as well as
their family and also brings about significant economic
and professional functioning burdens to society [6]. It is
important to investigate the altered interaction of the triple
networks in MDD, which will help to understand the neural
mechanism of MDD.

Three networks, default model network (DMN), central
executive network (CEN), and the salience network (SN),
are included in the triple network model. DMN decreases
neural activity when performing task and increases activity
in the resting [1]; CEN is responsible for high-level cognitive
functions and external information procession [4] and the SN
keeps homeostatic interoception and external stimulus [7].
In particular, anterior insula (AI) within SN is a hub of the
large scale brain networks and is applied to accommodate the
dynamic interaction between the internal self-perception and
external orient stimulus [4, 8]. In recent years, dysfunction
of the three cognitive networks has remarkably occurred
in many mental and neurological disorders [2, 9–12]. For
instance, the intraintrinsic functional connectivity (intra-
iFC) was altered in patients’ DMN, CEN, and SN and the
interintrinsic functional connectivity (inter-iFC) between the
SN and CENwas increased in schizophrenia [12]. All of these
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studies suggested that the triple network model may offer a
new insight to understand the brain mechanism of MDD.

The study of Sheline et al. (2010, PNAS) in MDD was to
explore the altered connectivity between the dorsal medial
prefrontal cortex region and the three important networks:
the cognitive control networks, default mode network, and
affective network. They determined significant differences
using the three a priori seed regions by mean correlation
coefficients between the MDD and HC [10]. In Manoliu et
al.’s study the participants’ spatial maps were compared by
two-sample 𝑡-test among the interested networks (anterior
DMN, inferior posterior DMN, superior posterior DMN,
SN, left ventral CEN, right ventral CEN, and dorsal CEN);
patient with MDD showed decreased intra-iFC within SN
right AI. The decreased inter-iFC between the DMN and
CEN and increased inter-iFC between the SN and DMN
after the subjects’ specific time courses were used to analyze
the inter-iFC among these interested networks [13]. Fur-
thermore, many studies based on functional magnetic res-
onance imaging (fMRI) have reported that the abnormality
of the functional connectivity in the intrinsic brain neural
mechanism contributes to the MDD [14]. Yuen et al.’s study
showed that resting state functional connectivity between
the right anterior insula (rAI) and right posterior parietal
cortex (rPPC) increased in the apathy of late-life depression
[15]; the research of Lemogne et al. indicated that patients
in depression displayed an increasing functional connectivity
between the medial frontal gyrus (MFG), dorsal anterior cin-
gulate cortex (dACC), and the dorsolateral prefrontal cortex
(dlPFC) [16], and Strigo et al. reported that the depression
subjects showed lower rAI activity related to anticipatory shift
in stimulus intensity [17]. However, the interaction among
networks of the nodes in the triple networks of MDD is not
clear.

In this study, functional connectivity of the nodes and
the interaction between the triple networks (DMN, CEN,
and SN) in MDD and HC under the resting state fMRI were
examined by graph theory method, which has been applied
to the multiple brain regions functional connectivity in both
the resting state and the motor task [18].

2. Materials and Methods

2.1. Participants. Sixteen MDD (four males, mean age 33.13
years) and sixteen age-, sex-, and education-matched HC
participated in this study. The MDD were recruited from
the Anding Hospital, Capital Medical University, while the
participants in theHC groupwere recruited through newspa-
per advertisements. All the subjects in MDD met the Amer-
ican Psychiatric Association DSM-IV diagnostic criteria of
depression, and HC were interviewed using the Structured
Clinical Interview for DSM-IV, nonpatient edition. Before
experiment, all of the subjects wrote informed consent by
themselves.The clinical characteristics ofMDD andHCwere
shown in Table 1.

2.2. fMRI Data Acquisition. All the resting state functional
images scans were acquired on a 3.0-Tesla scanner (Siemens,

Erlangen, Germany) in the National Key Laboratory for
Cognitive Neuroscience and Learning, Beijing Normal Uni-
versity, using a single-shot T2∗ weighted gradient echo-
planar imaging (EPI) sequence, with the following parame-
ters: repetition time (TR) = 2000ms, echo time (TE) = 30ms,
flip angle (FA)= 90∘,matrix size = 64× 64, field of view (FOV)
= 220mm × 220mm, total 240 volumes, slice thickness =
3.5mm, skip = 0.6mm, and slices number 33. All participants
were kept in resting state, remained quiet, without moving,
eyes closed, no sleeping, and no system thinking activities
during functional MRI scanning.

2.3. Data Preprocessing. Firstly, the data preprocessing was
performed based on the software of SPM8 (statistical Para-
metric Mapping 8, http://www.fil.ion.ucl.ac.uk/spm). Each
fMRI scan contained a total of 240 times points; the first
10 volumes were discarded due to signal stabilization and
subjects’ adaptation to the scanner’s noise.

After that, slicing timing and realignment, spatially nor-
malized into standard stereotaxic space and smoothing image
volumes with an 8 × 8 × 8 full-width at half maximum
(FWHM) Gaussian kernel, were performed.

Finally, the images of all subjects were done with detrend
in order to remove linear trend, filtered in the bandwidth
of 0.01∼0.08Hz to reduce the high-frequency interference
with the Resting State fMRI Data Analysis Toolkit (REST,
http://resting-fmri.sourceforge.net).

2.4. Defining the Nodes. Independent component analysis
(ICA) has been reported as an appropriate method to explore
the fMRI data in functional connectivity analysis [19] and has
been well used in the resting state fMRI analysis [20]. In this
study we used the group ICA of fMRI toolbox (GroupICAT
v2.oc, http://icatb.sourceforge.net/) to obtain the brain spatial
pattern maps.

In order to make sure the same components were iden-
tified in each subject, group ICA treated all subjects as
one group [21]. In the current study, 22 components were
chosen according to theminimum description length (MDL)
method. Furthermore, the components of DMN, CEN, and
SN were selected according to the previous studies about the
triple networks through visual inspection [4]. After that, the
spatial patterns of DMN, CEN, and SNwere generated by one
sample 𝑡-test with the software of SPM8.

In our study, the nodes were defined based on the spatial
pattern maps. As reported in previous studies, the critical
brain regions for DMN are posterior cingulate cortex (PCC),
ventral medial prefrontal cortex (vmPFC), and angular gyrus
(Ang) [22]. CEN mainly includes the dorsolateral prefrontal
cortex (dlPFC) and posterior parietal cortex (PPC) [23]. SN
consists of dorsolateral anterior cingulate cortex (dACC) and
anterior insula (AI) [7]. The coordinates were determined
according to the highest 𝑇-value in the spatial pattern maps
shown in Table 2 in detail. After that, we defined spheres with
radius of 3mm for each node as the masks, centered on the
coordinates of each node determined. Then, the associated
average time series of each node was extracted for each
subject.
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Table 1: Demographic and clinical characteristics.

Variables (mean ± SD) MDD (𝑛 = 16) HC (𝑛 = 16) 𝑃 valuea

Gender (M : F) 4 : 12 4 : 12 1
Age (years) 33.13 ± 8.29 39.13 ± 10.22 0.10
Education level (years) 13.75 ± 3.01 12.93 ± 2.40 0.61
Age range 21–57 21–55
Duration of illness (years) 7.66 ± 8.29 —
Number of depressive episodes 2.63 ± 1.26 —
HAMD 21.44 ± 3.97 —
HAMA 16.00 ± 9.61 —
MDD: major depressions disorder; HC: healthy controls; SD: standard deviation; HAMD: Hamilton Depression Rating Scale.
a
𝑃 value for the two-sample 𝑡-test of MDD and HC.

Table 2: Spatial coordinates of the nodes among the triple networks.

Network Brain region BA Coordinates (MNI)
𝑇

𝑥 𝑦 𝑧

DMN

lAng 39 −48 −67 34 8.94
rAng 39 54 −61 30 5.58
PCC 30 0 −52 18 13.90

vmPFC 10 −1 56 10 5.05

CEN

lPPC 7 −33 −70 50 7.73
rPPC 7 42 −62 50 7.56
ldlPFC 6 −27 20 58 6.03
rdlPFC 6 27 20 62 3.60

SN
dACC 32 2 34 25 3.27
lAI 45 −34 23 4 4.46
rAI 45 34 23 5 3.50

BA: Brodmann areas; MNI: Montreal Neurological Institute spatial array coordinates; 𝑇: 𝑡-value.

2.5. Functional Connectivity Analyses. For the graph theory
method, the nodes are denoted by nodes in a graph and the
links between the nodes represent the functional connec-
tivity between them. The interregional connectivity degree
between nodes 𝑖 and 𝑗 was defined as

𝜂
𝑖𝑗
= 𝑒
−𝜉𝑑𝑖𝑗
, (1)

where 𝜉 is a positive real constant; here we set it equal to 2
and it indicates how the interregional connectivity changes
with the distance between the two nodes [18]. 𝑑

𝑖𝑗
denotes the

distance between nodes 𝑖 and 𝑗 calculated by Golay et al. 1998
[24], defined as

𝑑
𝑖𝑗
=

(1 − 𝑐
𝑖𝑗
)

(1 + 𝑐
𝑖𝑗
)

, (2)

where 𝑐
𝑖𝑗

represents the Pearson correlation coefficient
between the two time series of nodes 𝑖 and 𝑗:

𝑐
𝑖𝑗
=
cov(𝑖, 𝑗)
𝜎
𝑖
𝜎
𝑗

. (3)

The larger the value of 𝜂 means the closer the interaction
between the two brain regions.

In this study, in order to explore the dynamic interaction
between the three networks of the patients with depression in

rest we defined two formulas with the graph theory method.
One is for the intrinsic functional connectivity of all the
nodes included in the three networks (DMN, CEN, and SN).
The other is for the investigation of internetwork intrinsic
functional connectivity between the three cognitive networks
of DMN, CEN, and SN, which help to further understand
the relationship between the three networks. The specific
formulas are as follows.

2.5.1. The Degree of the Node. We define the sum of all the
functional interregional connectivities 𝜂 between 𝑖 and all
other nodes in the three networks

Γ
𝑖
=

𝑛

∑

𝑗=1

𝜂
𝑖𝑗 (4)

as the connectivity degree of the node 𝑖 in a graph. In this
study, during the graph theory calculation, we put all the
11 nodes in one graph to obtain the degree of each node.
This means that the larger the degree of node 𝑖 the more the
importance of node 𝑖 in the graph, which also means that the
greater the impact of node 𝑖 on other brain regions in the
network. Then we normalized the Γ

𝑖
:

Γ
𝑖
=
Γ
𝑖

∑
𝑛

𝑗=1
Γ
𝑗

; (5)
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Figure 1:The DMN, CEN, and SN spatial pattern maps of HC andMDD.The statistical maps displaying one sample 𝑡-test of the two groups,
with the color scale representing the ranges of 𝑡-values.

in this study the Γ
𝑖
presents the functional connectivity of the

node 𝑖 with the other nodes in the three networks. For each
node the alteration of Γ between the two groups was tested
using two-sample 𝑡-test.

Moreover, it is necessary to investigate the significantly
altered interregional connectivity that related to the node
𝑖. Thus, the nodes were significantly altered in Γ; further
exploration on the interregional connectivity 𝜂 between
two nodes was carried out. In particular, for each node 𝑖,
the interregional connectivity 𝜂

𝑖𝑗
= 𝑒
−𝜉𝑑𝑖𝑗 for each 𝑗 ̸=

𝑖 was analyzed statistically by two-sample 𝑡-test between
depression and HC.

2.5.2. Connectivity Degree of the Network. In order to further
explore the functional connectivity between the three net-
works, we defined a calculation for the network analysis as
follows:

Γ
𝑀𝑁
=

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜂
𝑖𝑗
, (6)

where Γ
𝑀𝑁

is the connectivity degree between the two
networks 𝑀 and N; m and 𝑛 denote the number of nodes
in the networks 𝑀 and 𝑁, respectively; 𝜂

𝑖𝑗
denotes the

interregional connectivity between nodes 𝑖 and 𝑗, defined as
𝜂
𝑖𝑗
= 𝑒
−𝜉𝑑𝑖𝑗 ; the 𝑖 represents the node of the network 𝑀;

and the 𝑗 is the node in the network 𝑁. The larger the value
of Γ
𝑀𝑁

, the closer the functional connectivity between the
two networks. The two-sample t-test was used to analyze the
alteration of Γ

𝑀𝑁
for each network between the two group

subjects.

3. Result
3.1. Spatial Pattern of the Triple Networks. In our study the
nodes of DMNwere PCC, vmPFC, right Ang (rAng), and left
Ang (lAng). CENmainly included the right dlPFC (rdlPFC),
left dlPFC (ldlPFC), right (rPPC), and left PPC (lPPC). SN
consisted of dACC, right AI (rAI), and left AI (lAI). The

group spatial pattern maps of the DMN, CEN, and SN were
shown in Figure 1. The coordinates determined according to
the highest 𝑇-value were shown in Table 2.

3.2. Alteration of Connectivity Degree of Nodes. After the
two-sample t-test for each node between MDD and HC,
significant increase in the connectivity degree of the rAI was
detected in MDD (𝑃 < 0.05). The alteration also existed
in other brain regions though not significant statistically.
For MDD, the mean connectivity degree of lAI and dACC
increased and the mean degree for vmPFC, PCC, bilateral
angular gyrus (rAng and lAng), bilateral dlPFC (rdlPFC
and rdlPFC), and bilateral PPC (rPPC and lPPC) decreased
compared with HC (Figure 2).

3.3. Alterations of Interregional Connectivity between Nodes.
The degree of rAI significantly increased in MDD compared
to the HC just as above shown (Figure 2). Therefore the
interregional connectivity (𝜂) between the rAI and other
nodes was measured in further analysis. For MDD, the 𝜂
between rAI and vmPFC, rdlPFC, ldlPFC, rPPC, lPPC, PCC,
rAng, and lAng was larger than HC although the alteration
was not significant after the statistical analysis by two-sample
𝑡-test. The result is shown in Figure 3.

3.4. Alterations of Connectivity Degree between Networks.
After the investigation of the connectivity degree between
networks with Γ

𝑀𝑁
= ∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝜂
𝑖𝑗
and two-sample 𝑡-test, the

result showed that the connectivity degree between the DMN
and CEN significantly decreased inMDD (two-sample 𝑡-test,
𝑃 < 0.05). The interaction degree of the networks DMN and
SN, CEN, and SN increased in MDD. The details are shown
in Table 3 and Figure 4.

4. Discussion

To investigate the relationship among the important cognitive
and affective related brain regions of the triple networks
(DMN, CEN, and SN) in MDD, the functional connectivity
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Figure 2:The region connectivity degree ofMDD andHC. In (a) the size of the node visualizes the value of the connectivity degree Γ of all the
11 nodes. Red dot indicates the nodes that significantly altered for the MDD compared to HC; the other colored dots mean “not significant.”
The blue dots are the nodes in DMN and dark green dots in CEN; bright green dots indicate the nodes in SN. (b) shows the Γ of all the 11
nodes (∗ represents significance with 𝑃 < 0.05).

Table 3: The connectivity degree between networks and the 𝑃 value by two-sample 𝑡-test.

Variables (mean ± SD) MDD HC 𝑃 value (MDD versus HC)
DMN-CEN 7.15 ± 2.72 9.27 ± 1.57 0.01∗

DMN-SN 1.63 ± 3.16 0.73 ± 2.72 0.40
CEN-SN 2.70 ± 2.87 2.19 ± 2.74 0.61
∗Significant by two-sample 𝑡-test.

of the nodes and the altered interaction of the triple networks
(DMN, CEN, and SN) were examined by using the graph
theory method in the resting state fMRI. The results demon-
strated the significantly increased degree of rAI in MDD and
the significantly decreased interaction degree between the
DMN and CEN in MDD.

4.1. Aberrance of Connectivity Degree in Nodes. Increased
degree of rAI is found inMDD, whichmeans the interactivity
between the rAI and the other brain regions increases in
MDD during resting state. This suggested that the aberrance
of rAI contributes to the cognitive impairment of depression
in rest. The deficit of rAI was found in the literature in
MDD [13].Meanwhile, some researches have proved that rAI,
which is an important brain region of SN [7], is associated
with neural cognition, interoception, affection process, and
subjective and autonomic function [25], which are all asso-
ciated with depression [5]. The aberrance of rAI contributes
to the dysfunction switch of the DMN and CEN in resting
state [13, 26]. The disorder of the connectivity degree of rAI
between other regions in the triple network model suggested

that more activity is needed to keep the normal regulation in
the MDD.

4.2. Aberrance of Interregional Connectivity. The alteration
of interregional connectivity between the rAI and the other
regions in the triple networks was detected.The interregional
connectivity 𝜂 increases occurred in the vmPFC, rdlPFC,
ldlPFC, rPPC, lPPC, PCC, rAng, and lAng brain regions. All
these increasing 𝜂 contributed to the significantly increased
connectivity degree of the rAI and further proved the impor-
tant role of the AI in MDD. The other brain regions are all
important for the neurocognition, such as the research show-
ing that the brain regions of PCC and Ang are related to the
episodic memory retrieval [27], autobiographical memory
[28], and semantic memory related to internal thought [29].
The vmPFC is associated with self-related and social cogni-
tive processes [30], value-based decision making [31], and
emotion regulation [32]. The decreased function of dlPFC
in MDD has been detected in resting [33], which matches
the result of our study shown in Figure 2. Though the CEN
is composed of portion of prefrontal lobe and parietal lobe,
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Figure 3: The interregional connection 𝜂 between rAI and other brain regions in MDD and HC. (a) The lines showed the visualization of 𝜂.
(b) shows the value 𝜂 between the rAI and all the other nodes.
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Figure 4: The connectivity degree Γ between the networks. Γ is the
functional connectivity degree between the networks for the two
groups (∗ represents significance by two-sample 𝑡-test).

a lot of investigations show the main abnormal functional
connection of several psychiatric disorders associated with
the aberrance of dlPFC, including the depression [4, 34, 35].

4.3. Aberrance of Networks. For MDD, the functional con-
nectivity degree between the DMN and CEN significantly
decreases compared with the HC in the current study. The
networkDMN is involved in self-referential oriented process,
which is active in the resting state [36] and is deactivated
during goal-directed tasks [9]. The CEN is responsible for
the high-level external cognitive tasks and modulation of

mood reaction [37] in both of resting state [34] and stimulus
task [35] in major depression. The investigations have found
dysfunction in both of the two cognitive networks in MDD
[38]. The results suggested the decreased functional interac-
tion between the DMN and CEN of the MDD in the resting
state. Our findings couple with the statement of the aberrant
network connectivity inmajor depression [10, 39].The results
might suggest that the patients with MDD cannot normally
regulate the switching between the internal self-reference,
working memory, autobiography, decision making and the
external stimulus, orientation tasks, and demand cognitive
action in rest.

According to the triple model proposed by Menon [4],
it is mentioned that SN has a core role in mediating the
conversion of the functional connectivity between the DMN,
which is related to the self-referential cognition [36], and
CEN, which is related to the external oriented task [37],
especially the region rAI which is part of SN [4, 26]. A lot of
researches demonstrate that the rAI occupies an important
position in the interaction between the DMN and CEN in
the HC [26] and MDD [8] and also in other psychogenic
disorders. Recently, Manoliu et al. found that the aberrance
of the rAI may be associated with the disorder interaction
between DMN and CEN in schizophrenia [2, 12] and major
depression [13]. In our study, patients with MDD could not
well modulate the dynamic interaction between the DMN
and CEN. All of these researches provided evidence for the
assumption of the triple network model, which might be a
common frame for understanding dysfunction in the three
core networks of variety in cognitive disorders and supported
the proposal of the triple network model. It showed the
contribution of the rAI to the depression and suggested a
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link between theMDD and the dysfunction interaction of the
DMN and CEN.

5. Conclusion

The results showed that increased connectivity degree
occurred in right anterior insula (rAI) in MDD compared
with HC and decreased connectivity degree between DMN
and CEN inMDD.These abnormalities may indicate that the
functional connectivity increased between the SN and CEN
for MDD and the dynamic interaction between the DMN
and CEN decreased for MDD. All the results provided new
insights into our understanding of depression.
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Conventional functional magnetic resonance imaging (fMRI) studies on motor feedback employ periodical blocked paradigm
which does not allow frequency analysis of brain activity. Here, we carried out an fMRI study by using a continuous paradigm,
that is, continuous (8min) feedback of finger force. Borrowing an analytic method widely used in resting-state fMRI studies,
that is, regional homogeneity (ReHo), we compared the local synchronization in some subfrequency bands between real and
sham feedback, and the subbands were defined as Slow-6 (0.0–0.01Hz), Slow-5 (0.01–0.027Hz), Slow-4 (0.027–0.073Hz), Slow-
3 (0.073–0.198Hz), and Slow-2 (0.198–0.25Hz). Our results revealed that the five subfrequency bands of brain activity contributed
to the changes of ReHo between real and sham feedback differently, and, more importantly, the changes in basal ganglia were only
manifested in Slow-6, implicating the fact that ReHo in ultraslow band may be associated with the functional significance of BG,
that is, motor control. These findings provide novel insights into the neural substrate underlying motor feedback, and properties of
the ultraslow band of local synchronization deserve more attention in future explorations.

1. Introduction

Themotor feedback is a technique that enables participants to
effectively regulate some kinetic parameters such as muscle
force [1], speed [2], and gestures [3]. It exhibits benefits in
improving some motor functions like the stand balance [4],
finger force [5], and bimanual coordination [6] and also sub-
serves the motor function rehabilitation for the patients with
brain disorders of Parkinson disease [7], brain damage [8],
chronic stroke [9], and so forth. These clinical values prompt
more andmore investigations on the neural substrates under-
lying the motor feedback.

Neuroimaging investigations intensively indicate that the
motor feedback involves intricate brain activity. Results from
functional magnetic resonance imagining mostly revealed

that the motor cortices (e.g., precentral gyrus and postcentral
gyrus) [10, 11], basal ganglia [12], and visual cortices [13, 14]
exhibit functional prominence for varied experimental con-
ditions of motor feedback, such as precision versus power
force grip [10, 13], force magnitude [15], duration of main-
tained force [16], feedback frequency [17], and maturation
of force control [18]. The involvement of these brain areas
mainly came from the investigations on a block paradigm
which is intermitted periodically (such as 30 s); however, the
motor feedback in practice, for example, when driving a car,
usually lasts for several minutes/hours. During such long-
lasting feedback, sustained attention also plays important
roles in motor control [19, 20].Thus, Dong and his colleagues
proposed a continuous performing paradigm for the fMRI
investigation of the motor feedback and revealed the altered
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brain activity in the visual cortex and the areas of the default
mode network, for example, posterior cingulate cortex, while
comparing real and sham feedback conditions [21].

Recently, frequency-dependent characteristics of brain
activity have been reported by more and more fMRI inves-
tigations [22–25]. Some separate frequency bands of brain
activity such as Slow-6 (0.0–0.01Hz) [22], Slow-5 (0.01–
0.027Hz), Slow-4 (0.027–0.073Hz), Slow-3 (0.073–0.198Hz)
[23, 24], and Slow-2 (0.198–0.25Hz) [23] are generated with
specific properties and physiological functions. The fre-
quency-dependent analysis of brain activity exhibits clinical
usefulness for quantification and detection of the functional
pathological changes in brain disorders such as Parkinson’s
disease [25]. Although these brain disorders could be treated
clinically with themotor feedback, the brain activity of motor
feedback remains to be understood in different subfrequency
bands.

Brain activity measured with the fMRI signal exhibits
the local synchronization of the time courses of neighboring
voxels, which could be assessed through the measurement of
regional homogeneity (ReHo). Therefore, the present study
aims to examine the local synchronization in the subfre-
quency bands of Slow-6, Slow-5, Slow-4, Slow-3, and Slow-
2 during motor feedback. Conventional block paradigm
involves the periodical intermission that does not allow fre-
quency-dependent analysis. Thus, we performed the fMRI
experiment by employing a continuous paradigm, that is,
continuous feedback of finger force. Then, the differences
in ReHo between real and sham feedback conditions were
investigated in the subfrequency bands.

2. Materials and Methods

2.1. Participants. Forty-three right-handed college students
participated in the study (22.7 ± 1.6 years, range 19–25; 23
females). No participant had the histories of brain injury,
neurological illness, or psychiatric disorders. Five subjects
were excluded due to themalfunction of experimental equip-
ment or excessive head motion (head motion was >2mm
translation or >2∘ rotation in any direction), and, at last, data
from 38 subjects (mean age, 22.3± 1.6 years; 19 females) were
involved in the further analysis. All experiments conducted in
this study were approved by the Institutional Review Board
of the National Key Laboratory of Cognitive Neuroscience,
Beijing Normal University. All of the subjects gave written
informed before scanning.

2.2. Experimental Design. The experimental procedure has
been reported in our recent study [21]. Each participant first
underwent a scanning of resting state for adapting to the
fMRI environment.Then, two scanning sessions, one for con-
tinuous real feedback and one for continuous sham feedback,
were performed. Each session lasted for 8min, and the order
of the two sessions was counterbalanced across all partici-
pants. In the session of real feedback, the participants gripped
a pressure sensor between the right index finger and thumb.
This sensor is one module of an MRI-compatible physiolog-
ical multichannel analyzer (model MP150, BIOPAC Systems,

Inc., Goleta, CA). The sampling frequency was 250Hz and
the pressure sensitivity was 0.01 cm H

2
O. The pressure was

recorded by a sensor via an airtight tube, and the force of
pressure was synchronously fed back to the participant via a
projector. At the same time, each participant was requested
to continuously maintain the pinch force at 20 cm H

2
O as

far as possible according to the visual feedback. This target
force was set in order to reduce the possibility of muscular
fatigue for each subject [26]. In the session of sham feedback,
participants were also asked to maintain the pinch force at
20 cm H

2
O as far as possible, and the visual feedback they

received came from the performance of another participant
in the session of real feedback.The aim of this procedure was
tominimize the difference in visual presentation between real
and sham feedback sessions. Because sham feedback of pinch
force could be easily detected by the subject, we informedpar-
ticipants of this fact in advance and requested them to watch
the feedback while keeping their own performance unaf-
fected. Before each session, the participants had a short
training period.

2.3. Image Acquisition. Brain scans were performed at the
MRI Center of Beijing Normal University using a 3.0-
T Siemens whole-body MRI scanner. A single-shot T2∗-
weighted, gradient-echo EPI sequence was used for func-
tional imaging acquisition with the following parameters:
TR/TE/flip angle = 2000ms/30ms/90∘, acquisition matrix =
64 × 64, field of view (FOV) = 200 × 200mm2, and thick-
ness/gap = 3.5/0.7mm.Thirty-three axial slices parallel to the
AC-PC linewere obtained in an interleaved order to cover the
entire cerebrum and cerebellum. Then a T1-weighted sagittal
three-dimensional magnetization-prepared rapid gradient-
echo (MPRAGE) sequence was acquired (128 sagittal slices,
thickness/gap = 1.33/0mm, in-plane resolution = 256 × 192,
TR = 2530ms, TE = 3.39ms, inversion time = 1100ms, flip
angle = 7∘, and FOV = 256 × 256mm2).

2.4. Data Analysis
2.4.1. Preprocessing. The preprocessing was carried out
using the Data Processing Assistant for Resting-State fMRI
(DPARSF) [27] which is based on the Statistical Parametric
Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/) and
Resting-State fMRIDataAnalysis Toolkit (REST) [28] (http://
www.restfmri.net/). For each subject, the first 10 time points
of the functional data of real/sham feedback were discarded
to allow for signal stabilization. These images were further
corrected for intravolume acquisition time delay between
slices and intervolume geometrical displacement due to head
movement.Then, all images were normalized to the standard
Montreal Neurological Institute (MNI) template (resampled
into 3 × 3 × 3mm3) via parameters of individual structural
image spatial normalization based on unified segmentation
[29]. Six head motion parameters (three rigid body transla-
tions and three rotations) were regressed out from the fMRI
data, and the linear trends were removed from the time
courses of the voxels in each image. According to previous
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Table 1: Clusters showing significant main effect for the feedback condition. The statistical threshold was set at 𝑃 < 0.005, cluster size >98.

Brain regions L/R BA Peak MNI coordinates
𝑥 𝑦 𝑧 𝐹(1, 370)

Inferior/middle occipital Gyrus/calcarine L/R 17/18 12 −90 0 78.86
PCC L/R 31 0 −45 33 28.31
mPFC L/R 9 −6 48 27 18.36
BG L −24 −12 12 13.39

investigations [22–25], we used band-pass filtering to subdi-
vide the whole detectable frequency range (0–0.25Hz) into
five subfrequency bands, namely, Slow-6 (0.0–0.01Hz), Slow-
5 (0.01–0.027Hz), Slow-4 (0.027–0.073Hz), Slow-3 (0.073–
0.198Hz), and Slow-2 (0.198–0.25Hz). Then, for each sub-
frequency band, the filtered functional data were further
assessed through a voxelwise measurement of the regional
homogeneity (ReHo).

2.4.2. Regional Homogeneity (ReHo) Analysis. ReHo is an
analytic method widely used in resting-state fMRI studies. It
is a voxelwise measure of the brain activity by examining the
synchronization of the time courses of a certain voxel and its
adjacent neighboring voxels [30].

The ReHo analysis employs Kendall’s coefficient of con-
cordance (KCC) to measure the local synchronization of the
time courses of neighboring voxels as follows [30]:

𝑊 =

∑(𝑅
𝑖
)
2

− 𝑛 (𝑅)
2

(1/12)𝐾
2
(𝑛
3
− 𝑛)
, (1)

where𝑊 is the KCC among given voxels, ranged from 0 to 1;
𝑅
𝑖
is the sum rank of the 𝑖th time point; 𝑅 = ((𝑛 + 1)𝐾/2) is

the mean of the 𝑅
𝑖
’s; 𝐾 is the number of time courses within

a measured cluster (here, 𝐾 = 27, one given voxel plus the
number of its neighbors); 𝑛 is the number of ranks. The KCC
was calculated for each 27 nearest neighboring voxels in a
voxelwise manner and the KCC value was assigned to the
central voxel of each 27-voxel cluster. For each subfrequency
band, the ReHo analysis was conducted using DPARSFA.
Individual ReHo image during real/sham feedback was
generated within a whole-brain mask and nonbrain areas are
excluded. The whole-brain mask was provided in REST [28].
The individual ReHo image for each frequency band during
real/sham feedback was then smoothed with a 6 × 6 × 6mm
full-width-at-half-maximum (FWHM) Gaussian kernel.
Then, a two-way repeated measures analysis of variance
(ANOVA) was performed with factors of the feedback
condition (2 levels, real and sham) and the frequency band (5
levels, i.e., Slow-6, Slow-5, Slow-4, Slow-3, and Slow-2).Then,
the resultant F-mapswere corrected formultiple comparisons
with the threshold of 𝑃 < 0.005 and cluster size >98 voxels,
corresponding to a corrected 𝑃 value of <0.05 as determined
by AlphaSim (http://afni.nimh.nih.gov/pub/dist/doc/man-
ual/AlphaSim.pdf). For clusters showing significance in the
main effect of the feedback condition factor, region of interest
(ROI) was defined with a sphere of 6mm radius which
was centered at the peak coordinate. Then, for each ROI, the
mean ReHo across all subfrequency bands and subjects was

calculated for real and sham feedback conditions, respec-
tively. For clusters showing significant interaction effect
between factors of the feedback condition and the frequency
band, we also defined ROIs with a sphere of 6mm radius
which was centered at the peak coordinate. ReHo of each ROI
was extracted based on the frequency band and the feedback
condition of every subject. Then, for each ROI, paired 𝑡-tests
were further performed to examine the difference of ReHo
between real and sham feedback in each subfrequency band.
The tested results were corrected for multiple comparisons to
a significant level of 𝑃 < 0.05 (Bonferroni correction across
the five frequency bands).

3. Result

According to themain effect of the feedback condition factor,
differences of ReHo between real and sham feedback were
distributed in four clusters, including bilateral visual cortex
(containing bilateral inferior occipital gyrus, bilateral middle
occipital gyrus, and bilateral calcarine), bilateral posterior
cingulate cortex (PCC), bilateral medial prefrontal cortex
(mPFC), and left BG (mainly located in putamen) (Table 1
and Figure 1(a)). For these clusters, the mean ReHo across
all investigated subfrequency bands and subjects were shown
in Figures 1(b)–1(e). Visual cortex showed lower ReHo while
comparing real feedback with sham feedback (Figure 1(b)).
As Figure 1(c) shows, ReHo for the mPFC was greater in
real feedback than it was in sham feedback. As to the PCC,
real feedback recruited greater ReHo than sham feedback
(Figure 1(d)), and, for the left BG, greater ReHowas observed
in real feedback as compared with that in sham feedback
(Figure 1(e)). The main effect of the frequency band factor
was similar to the findings of the previous study [23], and
it was not presented here because it is not the focus of the
current study.

The interaction effect between factors of the feedback
condition and the frequency band was observed in three
clusters, that is, the bilateral PCC and both of the left and right
basal ganglia (BG) (mainly containing putamen and caudate)
(Figure 2(a) and Table 2). For the PCC, real feedback exhib-
ited greater ReHo in the Slow-5 (𝑡(37) = 3.71, 𝑃 < 0.005)
and Slow-4 (𝑡(37) = 3.75, 𝑃 < 0.005) than sham feedback
(Figure 2(d)). As Figures 2(b) and 2(c) show, real feedback
recruited greater ReHo in the left and right BG than sham
feedback and these significant differences were only mani-
fested in Slow-6 (𝑡(37) = 4.38, 𝑃 < 0.005 for the left BG and
𝑡(37) = 4.29, 𝑃 < 0.005 for the right BG).
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Figure 1: Clusters showing significant main effect of the feedback condition and ReHo of each cluster in all subfrequency bands for
real/sham feedback. (a) Slice views of the spatial maps for the main effect of the feedback condition. (b) ReHo of the visual cortex in all
subfrequency bands for real/sham feedback; (c) ReHo of the mPFC in all subfrequency bands for real/sham feedback; (d) ReHo of the PCC
in all subfrequency bands for real/sham feedback; (e) ReHo of the left BG in all subfrequency bands for real/sham feedback. Red represents
real feedback and blue represents sham feedback.

Table 2: Clusters showing significant interaction effect between the feedback condition and the frequency band.The statistical threshold was
set at 𝑃 < 0.005, cluster size >98.

Brain regions L/R BA Peak MNI coordinates
𝑥 𝑦 𝑧 𝐹(4, 370)

PCC L/R 7/31 0 −66 33 10.08
BG L −30 3 0 7.32
BG R 33 3 6 7.79
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Figure 2: Clusters showing significant interaction effect between factors of the feedback condition and the frequency band and the relevant
comparison results of ReHo in different frequency bands between real and sham feedback conditions. (a) Coronal, sagittal, and axial views of
the spatial maps for the interaction effect between the feedback condition and the frequency band; (b) changes in ReHo of the left BG across
the frequency bands during real and sham feedback; (c) changes in ReHo of the right BG across the frequency bands during real and sham
feedback; (d) changes in ReHo of the PCC across the frequency bands during real and sham feedback. Red represents real feedback and blue
represents sham feedback. ∗ indicates the significant difference of ReHo between real and sham feedback. The statistical threshold was set at
𝑃 < 0.05, corrected for multiple comparisons.

4. Discussion

The present fMRI study investigated the neural substrate of
motor feedback using a frequency-dependent analysis. The
local synchronization of brain activity was assessed through
a voxelwise measurement of ReHo in five separate subfre-
quency bands ranged from Slow-6 (0.0–0.01Hz) to Slow-
2 (0.198–0.25Hz). Two intriguing results were observed: (1)
as compared with sham feedback, real feedback recruited
greater ReHo of the PCC, in Slow-5 and Slow-4; (2) ReHo
differences in the left and right BGweremainlymanifested in
the ultraslow frequency band of Slow-6 which is less con-
cerned in previous neuroimaging explorations.

Few previous investigations have performed fMRI inves-
tigations on the neural substrate of motor feedback in differ-
ent subfrequency bands.This is probably because these inves-
tigations mostly employ the periodically blocked paradigm
that is not suitable for the frequency-dependent analysis.The
present study showed the benefits of the continuous paradigm
and frequency-dependent ReHo analysis for examining the
frequency-dependent fMRI signal characteristics in the pro-
cess of task performing. The ReHo differences for the visual
cortex and the mPFC were manifested in all but not some
specific subfrequency bands. Real feedback recruited lower
ReHo in visual cortex than sham feedback. The involvement
of the visual cortex is mostly manifested in visually guided
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motor feedback [13, 14]. It is thought that visual cortexmainly
responds to update the visual information and further pro-
cess the information for the adjustment of the force [13, 21, 31].
In our experiment, participants were requested to maintain
their finger force according to real feedback, and, then, the
visual processing may be more involved in this condition.
Greater ReHo for the mPFC was observed while comparing
real feedback with sham feedback. The mPFC is known to
be highly sensitive to the sustained attention [32]. Thus, the
greater ReHo in real feedback may be linked with the atten-
tional processing of the visual stimuli [33].

The changes of ReHo in the PCC mainly came from
Slow-5 and Slow-4 when comparing real feedback with sham
feedback. The Slow-5 and Slow-4 cover the frequency range
of 0.01–0.073Hz which is roughly equivalent to the typical
low frequency band (0.01–0.08Hz) [34, 35]. Mostly recruited
in the default mode network in the typical low frequency
band, the PCC has been identified as the hubs of this network
chiefly responsible for attentional lapses andmindwandering
[36, 37]. In task state, these areas may play a role as a source
of internal interference or noise and were suppressed as
deactivation [37, 38], and the deactivationmay further induce
the elevation of ReHo. Thus, the greater ReHo in the PCC
suggested that real feedback requires more suppression of
internal interference than sham feedback, and, more impor-
tantly, our results indicated that the suppression was poten-
tially associated with the local synchronization of the PCC in
Slow-5 and Slow-4.

We observed that ReHo of the left and right BG in Slow-
6 is greater for real feedback than it is for sham feedback.
Slow-6, as an ultraslow frequency band, is less concerned in
previous neuroimaging explorations. In resting state, it was
thought that this ultraslow frequency band may reflect very
low frequency drift [39]. However, a recent study provides
new insights into this issue by showing that oscillations lower
than 0.02Hz contribute more to ReHo in putamen during
resting state [40]. Our results support this finding and further
indicate that, during motor feedback, the oscillation in the
ultraslow frequency band of Slow-6 is critical for ReHo in
BG (including bilateral putamen and caudate). The BG is an
important brain area for motor feedback. It is suggested that
the BG is involved in the planning and parameterizing of
motor control [41]. Thus, the ultraslow frequency band of
brain oscillation during motor feedback may be associated
with these functional roles of BG. Remarkably, the BG disor-
ders such as Parkinson’s diseasemostly result in the decreased
ReHo in the BG [42], and the motor feedback has been
employed in the treatment of these disorders exhibiting ther-
apeutic effectiveness [43].Thus, the ultraslow frequency band
of local synchronization during motor feedback may possess
the therapeutic value in these clinical practices.

Nevertheless, the current study has some limitations.The
sampling rate in the present study (2 s) prevents us from
performing the analysis in higher frequency band and we
believed that fast sampling should provide more novel find-
ings formotor feedback fMRI studies.Moreover, the results of
the present study are restricted to the visual feedback, and the
feedback presented in the auditory and sensory forms is

commonly employed in practice. Further experimentation
and investigation are still required to fully clarify these issues.

5. Conclusion

The present fMRI study shed light on the neural substrate of
motor feedback by studying the local synchronization in the
subfrequency bands ranged from Slow-6 to Slow-2. Using the
measurement of ReHo, we found that the five subfrequency
bands exhibit distinct contributions to the changes of ReHo
between real and sham feedback, which provided novel
insights into the neural substrate of motor feedback. The
result that changes in left and right BG mainly depended on
the ultraslow frequency band of Slow-6, which potentially
helps to understand properties of the ultraslow frequency
band of local synchronization.
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The neural correlates of associative memory in healthy older adults were investigated by examining the correlation of associative
memory performance with spontaneous brain oscillations. Eighty healthy older adults underwent a resting-state functional MRI
and took a paired-associative learning test (PALT). Correlations between the amplitude of low-frequency fluctuations (ALFF) aswell
as fractional ALFF (fALFF) in the whole brain and PALT scores were calculated. We found that spontaneous activity as indexed
by both ALFF and fALFF in the parahippocampal gyrus (PHG) was significantly positively correlated with associative memory
performance, suggesting that the PHG plays a critical role in associative memory in older people.

1. Introduction

Associative memory demonstrates a greater decline in older
adults compared with item memory [1, 2]. It has been well
evidenced that healthy aging is associated with cognitive
decline in various domains, especially in episodic memory.
A salient feature of age-related differences in episodic mem-
ory is the difficulty in creating and retrieving associations
between single units of information (associative memory),
while memory for individual items is less affected [3]. In
other words, associative memory declines earlier than item
memory as one gets older. It is important to figure out the
neural correlates of associativememory in the older adults for
comprehensively understanding the mechanism of cognitive
decline with aging. Associative memory is typically assessed
using paired-associative paradigms [4].

Many neuroimaging and lesion studies have explored
the neuroanatomical underpinnings of associative memory
and have suggested that the medial temporal lobe (MTL),
lateral parietal cortex, and prefrontal cortex (PFC) play
important roles in remembering associations. These regions

are involved in binding and retrieving item-item or item-
context associations or controlling and monitoring these
processes [5–8].

Accumulating evidence suggests that, in older adults,
several brain regions, particularly the MTL and PFC, show
structural volumetric decreases and functional activation
changes [9–11]. It has been demonstrated that aging dif-
ferentially affects the brain substrates of memory, with the
PFC being the most vulnerable, the hippocampus being
moderately vulnerable, and the entorhinal cortex being rela-
tively spared [12–14]. White matter connections of the frontal
and temporal cortex as well as the frontal-subcortical white
matter tracts also have been found to play critical roles in age-
related differences in associative memory performance [15].
The structural morphology and functional changes in these
regions may be the underlying reasons for the age-related
decline in associative memory.

Resting-state functional magnetic resonance imaging
(fMRI) is useful for exploring the spontaneous functional
architecture of the brain [16–18]. In addition, it provides
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a straightforward comparison of brain activity across dif-
ferent cognitive ability groups. Low-frequency fluctuations
observed on resting-state fMRI are physiologically meaning-
ful [16], which are thought to reflect spontaneous regional
neuronal activity [19] and different physiological states of
the brain [20]. The resting-state amplitude of low-frequency
fluctuations (ALFF) can predict task-evoked brain activation
[21, 22], as well as correlate with behavioral performance [23–
25].Therefore, theALFF has been used to examine synchrony
in healthy adults [26, 27] and disease-related changes in
brain activity [28]. To improve the sensitivity and specificity
in detecting spontaneous brain activities, fractional ALFF
(fALFF) that is calculated as the ratio of power spectrum of
low-frequency to that of the entire frequency range has also
been introduced in resting-state fMRI studies [29].

In the present study, we focused on the relationship
between the resting-state ALFF and associative memory in
healthy older adults. In addition, fALFFwas also employed to
comprehensively investigate the relationship between oscilla-
tions and associative memory. The verbal paired-associative
learning test (PALT) was used to assess associative memory
[30]. To be specific, the objective of this study was to identify
the neural correlates of associative memory in healthy older
adults by examining correlations between the resting-state
ALFF/fALFF and performance on PALT. Since the MTL and
PFC play important roles in associative memory processes
and are vulnerable to aging, we postulated that the oscilla-
tions in these two regions might be significantly correlated
with PALT performance.

2. Materials and Methods

2.1. Participants. The participants were recruited via adver-
tisements posted at communities near the Institute of Psy-
chology, Chinese Academy of Sciences in Beijing. After
baseline evaluation, we enrolled 80 healthy older volunteers
who met the following criteria: (1) age ⩾ 60 years; (2)
education ⩾ 6 years; (3) a score of ⩾22 on the Beijing Version
of the Montreal Cognitive Assessment (MoCA) [31]; and
(4) no neurological and psychiatric disorders and traumatic
brain injury. No participant was excluded and finally data
from 80 participants (43 female, mean age = 70.29 years,
range 60–80 years; mean years of education = 14.40 years,
range 6–20 years) were analyzed.

This study was approved by the Institutional Review
Board of the Institute of Psychology, Chinese Academy
of Science. Written informed consent was supplied to all
participants and they were paid for their participation. The
study was registered in the Chinese Clinical Trial Reg-
istry (ChiCTR) (http://www.chictr.org/): ChiCTR-PNRC-
13003813.

2.2. Memory Task. Associative memory performance was
examined using the PALT. For this test, the participants first
studied 12 word pairs of nouns, half of which consisted of six
semantically relatedword pairs (e.g., sun-moon), and thiswas
considered as easy condition. The other word pairs included
six semantically unrelated word pairs (e.g., teacher-railway),
which was considered as difficult condition. After the study

session, participants were asked to complete a cued recall task
in which the first word of the pair was provided and they
had to recall the other paired word. A correctly recalled word
was scored 0.5 in the easy condition and 1 in the difficult
condition, with the total score for the test equal to 9.

2.3. Data Acquisition. A 3.0-Tesla Siemens Trio scanner
(Erlangen, Germany) was used for image acquisition at
Beijing MRI Center for Brain Research. During the scan, the
participants were placed in a supine position with their heads
held snugly by a belt and foam pads. They were required
to keep their eyes closed, relax, and keep their heads still
but not to fall asleep during the scan. For each participant,
functional images were collected using an echo-planar imag-
ing sequence. The imaging parameters were repetition time
(TR) = 2000ms; echo time (TE) = 30ms; flip angle = 90∘;
field of view (FOV) = 200mm × 200 mm; slice thickness =
3.0mm; gap = 0.6mm; acquisitionmatrix = 64 × 64; in-plane
resolution = 3.125 × 3.125; 33 axial slices; and 200 volumes.

Additionally, a high-resolution structural T1-weighted
magnetization-prepared rapid gradient-echo image was also
collected for each subject with the parameters as follows: 176
slices; acquisition matrix = 256 × 256; voxel size = 1mm ×
1mm × 1mm; TR = 1900ms; TE = 2.2ms; and flip angle = 9∘.

2.4. Resting-State fMRI Data Processing and Statistics.
Resting-state fMRI data analyses were performed using the
Data Processing Assistant for Resting-State fMRI (DPARSF
V2.2) Basic Edition, Statistical Parametric Mapping program
(SPM8), and the Resting-State fMRI Data Analysis Toolkit
(REST V1.8).

Preprocessing.The first ten volumes were discarded for signal
equilibrium and participant’s adaptation to scanning noise.
The rest of the volumes were corrected for intravolume
acquisition time delay between slices and intervolume geo-
metrical displacement due to head movement. All functional
data were normalized to the Montreal Neurological Institute
(MNI) space with 3 × 3 × 3mm3 resampling. Spatial smooth-
ing with a 4-mm Gaussian kernel and linear detrending
were finally performed. No participant included in this study
exhibited head motion of more than 2.0mm in any direction
or 2.0∘ rotation throughout the resting-state scans.

ALFF/fALFF Calculation. The ALFF value of each voxel was
measured as the sum of amplitudes within the low-frequency
range [32]. For each voxel, the time series was first converted
to the frequency domain using a Fast Fourier Transform
(FFT) analysis to obtain the power spectrum. The power
spectrum was obtained by square-rooted FFT and averaged
across 0.01–0.08Hz at each voxel. The averaged square root
was taken as the ALFF. To reduce global effects of variability
across the participants, the ALFF value of each voxel was
divided by the global mean ALFF value. For fALFF, the
measurewas calculated as the ratio of power of low-frequency
fluctuations (0.01–0.08Hz) to that of all available frequencies.

ALFF/fALFF-PALT Correlation. To find the neural correlates
of associative memory indexed by resting-state ALFF/fALFF,
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Table 1: Demographic characteristics and neuropsychological
results of participants.

Participants (𝑁 = 80)
Age 70.29 ± 5.64
Education (y) 14.40 ± 3.11
Female/male 43/37
MoCA 26.76 ± 2.34
PALT 2.94 ± 1.47
Note: MoCA: Montreal Cognitive Assessment; PALT: paired-associative
learning test.

we performed correlation analyses between PALT scores and
ALFF/fALFF in the whole brain. At each voxel, the Pear-
son correlation coefficient between ALFF/fALFF and PALT
scores across participants was calculated, with age, gender,
and years of education as covariates. Clusters were considered
as significant at the combined voxel extent threshold of
uncorrected 𝑃 < 0.01 and cluster extent > 486mm3, as
determined based on AlphaSim correction by Monte Carlo
simulation to 𝑃 < 0.05 (single voxel 𝑃 < 0.01, and spatial
smoothness = 4mm).

3. Results

3.1. Demographic and Neuropsychological Results. Demo-
graphic information and neuropsychological scores are
shown in Table 1. MoCA scores ranged from 22 to 30, with
an average of 26.76 ± 2.34. PALT scores ranged from 0 to 7
with an average of 2.94 ± 1.47.

3.2. Correlations between PALT Scores and the ALFF/fALFF
in the Whole Brain. Voxelwise correlation analyses showed
that resting-state ALFF values correlated with PALT scores in
a number of brain regions (Figure 1(A), Table 2). Specifically,
the ALFF values positively correlated with PALT scores in the
bilateral parahippocampal gyri (PHG) and left insula, while
negative correlations were found between them in the right
inferior temporal gyrus (ITG) and right inferior frontal gyrus
(IFG).

In the correlation analyses between fALFF values and
PALT scores, fALFF in three regions showed significant
positive correlation with PALT performance including the
right PHG/superior temporal gyrus (STG), right inferior
parietal lobule (IPL), and right supplementary motor area
(SMA)/superior frontal gyrus (SFG) (Figure 1(B), Table 2).

As the results of the correlation analyses, spontaneous
activity in the right PHG was demonstrated to be robustly
correlated with associative memory performance assessed by
PALT. Scatter plots of PALT scores versus ALFF/fALFF values
were displayed to illustrate the relationship between sponta-
neous oscillations in the right PHG and PALT scores with
age, education, and gender taken as covariates (Figure 2).
ALFF/fALFF values under/over 3 standard deviations away
from the mean value of the sample were identified as outliers
and removed from the data set. Thus the ALFF value from
one participant was removed during analyses. The results
demonstrated that PALT scores were positively correlated

with ALFF (𝑟 = 0.258, 𝑃 = 0.023) and fALFF (𝑟 = 0.359,
𝑃 = 0.001) in the right PHG.

4. Discussion

The objective of this study was to investigate the neural
correlates of associativememory in healthy older adults using
resting-state fMRI. Results showed that spontaneous activity
indexed by both ALFF and fALFF in the right PHG was
significantly positively correlated with associative memory
performance, suggesting a critical role of the right PHG in
associative memory in older adults.

There is compelling evidence that the MTL, consisting of
the hippocampal region and the adjacent perirhinal, entorhi-
nal, and parahippocampal cortices, plays an important role
in associative memory [33]. It has been shown that age-
related shrinkage occurs in theMTL of healthy adults [13]. As
the principal neocortical input pathway to the hippocampal
region [34], the PHG is thought to function in memory
formation [35]. Düzel et al. reported that the PHG was
involved in the visual associative recognition memory for
spatial and nonspatial stimulus configurations [36]. Recently,
Bar and colleagues also found that the PHG was involved in
contextual associations processing [37].They found that PHG
responds more strongly to the rich associations condition
compared with the less associations condition. The present
findings of significant correlations between ALFF/fALFF
in the PHG and associative performance further provided
the evidence that the PHG plays an important role in
the memory of associations. It suggested that participants
with higher regional spontaneous activity in the right PHG
performed better in associative memory test, when age, years
of education, and gender were controlled. Previous studies
have found that both item-spatial context associations and
item-nonspatial context associations activated the parahip-
pocampal cortex more than noncontextual items, which
indicated that the PHG functions importantly in processing
of contextual associations [38]. The present finding further
suggested that the PHG may be a pivotal region underlying
association memory process.

The two measurements of ALFF and fALFF are highly
related but not entirely the same [39]. In the correlation
analyses between ALFF and PALT scores, positive corre-
lations were found in the bilateral PHG and left insula,
and negative correlations were found in the right ITG and
right IFG. Using fALFF as a measurement, only significant
positive correlations were found. In addition to a significant
correlation between performance on PALT and fALFF in the
right PHG, the significant correlations also appeared in the
right IPL and right SMA/SFG, suggesting that these regions
may also be involved in the network underlying memory
process.

Insula was demonstrated to be involved in processing
general cognition by the meta-analysis of neuroimaging
literatures [40]. Activation in the insula has been shown to
be associated with contextual binding of semantic relations
and successful encoding for relation load [41, 42].Theparietal
cortex also contributed importantly to episodic memory
retrieval [43]. Wanger et al. showed that multiple parietal
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Table 2: Peaks of regions showing significant ALFF/fALFF-PALT correlations.

Measurement Regions BA Number of voxels Peak MNI coordinates
𝑥 𝑦 𝑧

ALFF

PHG (L) 35/36 24 −24 −27 −18
PHG (R) 35/36 27 24 −27 −9
Insula (L) 13 28 −33 −15 15
ITG (R) 20 40 33 0 −42
IFG (R) 47 35 15 9 −18

fALFF
PHG/STG (R) 38 33 30 12 −30

IPL (R) 40 25 54 −54 48
SFG/SMA (R) 6 21 6 −9 78

Note: MNI coordinates of the center of gravity of each cluster. PHG: parahippocampal gyrus; ITG: inferior temporal gyrus; IFG: inferior frontal gyrus; STG:
superior temporal gyrus; IPL: inferior parietal lobule; SFG: superior frontal gyrus; SMA: supplementary motor area; L: left hemisphere; R: right hemisphere.
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Figure 1: Regional oscillations and associative memory correlation analyses. (A) Statistical map for the correlations between performance on
the PALT and ALFF in the bilateral PHG (a, b), left insula (c), right IFG (d), and right ITG (e). (B) Statistical map for the correlations between
performance on the PALT and fractional ALFF in the right PHG/STG (f), right IPL (g), and right SMA/SFG (h). The correlation values are
indicated using the color scales on the right.

regions were activated during episodic retrieval, including
regions within the intraparietal sulcus extending laterally
to the IPL. It is also interesting that ALFF in two regions
located in ITG and IFC negatively correlated with individual
PALT performance. Increased activity in the lateral temporal
and superior frontal regions has been previously found in
AD and MCI patients. Besides, AD patients also showed
increased activity in the ITG as compared with MCI patients
[28, 44]. Here the negative correlation between PALT scores
and the ALFF in the right ITG and right IFG indicated that
participants with lower performance in associative memory
test may have higher ALFF value in these regions, similar to
the results in the disease studies. Thus the result suggested

that, in addition to PHG playing a crucial role, the insula
and some cortical regions especially the frontal and parietal
regions may also be involved in associative memory in the
elderly. It would be interesting in future studies to investigate
how the PHG cooperates with other regions in the cortex to
function in associative memory in older adults.

Finally it is methodologically important to note that
as the ALFF is more prone to noise from physiological
sources than fALFF, we could not rule out the potential
effect of physiological noise on the ALFF results [32]. The
ALFF-PALT results need to be examined in independent
samples. In addition, the individual-level standardization in
the ALFF/fALFF analysis used in the present study might
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Figure 2: Scatter plots of the significant relationship between PALT scores and ALFF as well as fALFF values in the right PHG with age,
gender, and education as covariates. Each dot represents data from one participant.

lose the individual differences in the group analysis, and a
group-level standardized procedure is required to validate
these results in future studies [45].

5. Conclusion

In the present study, we explored the neural correlates of
associative memory by resting-state ALFF as well as fALFF.
Our results showed that the PHG may be critically involved
in associative memory in older adults, and participants
with higher regional spontaneous activity in the right PHG
performed better in associative memory test.
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Altered spontaneous brain activity as measured by ALFF, fALFF, and ReHo has been reported in schizophrenia, but no consensus
has been reached on alternations of these indexes in the disorder. We aimed to clarify the regional alterations in ALFF, fALFF, and
ReHo in schizophrenia using a meta-analysis and a large-sample validation. A meta-analysis of activation likelihood estimation
was conducted based on the abnormal foci of ten studies. A large sample of 86 schizophrenia patients and 89 healthy controls
was compared to verify the results of the meta-analysis. Meta-analysis demonstrated that the alternations in ALFF and ReHo
had similar distribution in schizophrenia patients. The foci with decreased ALFF/fALFF and ReHo in schizophrenia were mainly
located in the somatosensory cortex, posterior parietal cortex, and occipital cortex; however, foci with increased ALFF/fALFF and
ReHo were mainly located in the bilateral striatum, medial temporal cortex, and medial prefrontal cortex. The large-sample study
showed consistent findings with themeta-analysis.These findingsmay expound the pathophysiological hypothesis and guide future
research.

1. Introduction

Schizophrenia is a devastating anddisabling neuropsychiatric
disorder. The neural mechanisms of this disorder have been
attributed to structural and functional abnormalities of the
brain [1–5]. Schizophrenia patients have exhibited functional
changes in both task-evoked activation and spontaneous
brain activity [6, 7]. The spontaneous brain activity can be
quantitatively measured by the amplitude of low frequency
fluctuations (ALFF), fractional ALFF (fALFF), and regional
homogeneity (ReHo) of the blood-oxygen-level-dependent
(BOLD) signals derived from resting-state functional mag-
netic resonance imaging (rs-fMRI) [8, 9].

The ALFF measures the total power of the BOLD signal
fluctuations within a specific low frequency range (0.01–
0.08Hz) at the single-voxel level [10]. The fALFF is a
normalized index of ALFF, which measures the ratio of the
amplitude in a low-frequency band relative to the ampli-
tude in the total frequency bands [11]. The ReHo measures

the similarity of the time series of BOLD signals of a
given voxel to those of its nearest neighbors in a voxel-wise
way that provides important information about the regional
temporal synchronization in the brain [12]. Synthetically, the
ALFF/fALFF and ReHo provide complementary information
about the regional spontaneous brain activity.

The ALFF/fALFF and ReHo have been used to identify
functional abnormalities in schizophrenia patients. Never-
theless, studies ofALFF/fALFF andReHohave yielded incon-
sistent results [13–22]. For instance, some studies reported
that schizophrenia patients had increased ALFF [17, 18],
fALFF [13, 18], and ReHo [21, 22] in medial prefrontal cortex
(MPFC); however, some others revealed the opposite results
[14, 16, 20].

In this study, we combined a meta-analysis and a large-
sample study to clarify the two questions: first, regional
alterations in ALFF/fALFF and ReHo in schizophrenia;
second, the associations in alteration patterns between these
measures.
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2. Materials and Methods

2.1. Meta-Analysis

2.1.1. Data Sources and Inclusion Criteria. We reviewed all
papers published in PubMed investigating ALFF, fALFF, or
ReHo in patients with schizophrenia.The search strategy was
carried out with keywords of “schizophrenia” and (“ALFF”
or “fALFF” or “ReHo” or “amplitude of low-frequency
oscillations” or “amplitude of low frequency fluctuations” or
“regional homogeneity”) and (“fMRI” or “functional mag-
netic resonance imaging”). In order to qualify for inclusion
within the meta-analysis, papers were required (a) to report
comparisons between schizophrenia patients and matched
healthy controls; (b) to employ fMRI; (c) to report results
based on voxel-wise analysis; and (d) to detail either the
Talairach or Montreal Neurologic Institute (MNI) coordi-
nates of altered brain regions. Studies not fulfilling these
requirements were excluded.

Papers were searched independently by two investigators
until they made a consensus. After applying the search
strategy, we found 20 articles. After carefully reading these
articles, we excluded ten of them for the following reasons: (1)
three articles were not fMRI studies [23–25]; (2) one article
was not focused on schizophrenia patients [26]; (3) three
articles were lacking intergroup comparisons [27–29]; (4)
one article was focused on imaging and genetic association
[30]; and (5) two articles only focused on the ALFF or ReHo
changes in the independent components or network nodes
[31, 32]. In addition, none of the 10 qualified articles reported
negative results. The detailed demographic and clinical data
of the 10 qualified articles for meta-analysis are shown in
Tables 1 and 2.

2.1.2. Meta-Analysis Procedures. Coordinate-based meta-
analysis was performed using the revised version of Acti-
vation Likelihood Estimation (ALE) technique [33] imple-
mented inGingerALE 2.3.1 (http://www.brainmap.org/).This
algorithm identifies foci showing common activation across
different experiments (or studies) if the merged activation is
higher than that of the null-distribution reflecting a random
spatial association between experiments. Coordinates of the
foci reported in the original studies were transformed into
the MNI space using the Lancaster transform (icbm2tal tool)
in GingerALE. Activation coordinates extracted from each
study were weighted to yield estimates of activation likeli-
hood at each voxel, and then amodelled activation (MA)map
was computed.The spatial uncertainty of each focus was con-
sidered as an independent Gaussian probability distribution.
The Gaussian parameters (standard deviation and width)
are empirically determined based on between-template and
between-subject variances and weighted by the number of
subjects. So each voxel has an activation probability value
for a specific focus of a certain experiment. Then a MA map
for each experiment is computed by summing the probability
values for all the foci. After that, the ALE map was calculated
by merging all the MAmaps of included experiments, which
represent the spatial probabilistic distribution about the con-
vergent activation for each voxel. To enable spatial inference

on the ALE scores, a nonparametric permutation test was
used to generate empirical null-distribution, which reflects
the null-hypothesis of a random spatial association between
experiments. Finally, each “true” ALE score is then compared
to the null-distributed ALE scores to yield a nonparametric
𝑃 value. Because only a few experiments (6 ALFF/fALFF
studies and 4 ReHo studies) were enrolled in this meta-
analysis, we used an uncorrected intensity threshold of 𝑃 <
0.05 and an extent threshold of 540mm3. The same extent
threshold was also applied in the following large-sample
study.

2.2. Large-Sample Control Study

2.2.1. Participants. A total of 89 schizophrenia patients and
89 healthy controls were recruited in this study. Diagnoses
for patients were confirmed using the Structured Clinical
Interview for DSM-IV. Exclusion criteria were MRI con-
traindications, poor image quality, presence of a systemic
medical illness or CNS disorder, history of head trauma, and
substance abuse within the last 3months or lifetime history of
substance abuse or dependence. Additional exclusion criteria
for healthy controls were history of any Axis I or II disorders
and first-degree relative with a psychotic disorder. This study
was approved by the Medical Research Ethics Committee
at Tianjin Medical University General Hospital, and after
complete description of the study to the participants, written
informed consent was obtained.

2.2.2. Image Data Acquisition. MRI was performed using a
3.0-Tesla MR system (Discovery MR750, General Electric,
Milwaukee, WI, USA). Tight but comfortable foam padding
was used to minimize head motion, and earplugs were used
to reduce scanner noise. Sagittal 3D T1-weighted images were
acquired by a brain volume (BRAVO) sequence with the
following parameters: repetition time (TR) = 8.2ms; echo
time (TE) = 3.2ms; inversion time = 450ms; flip angle (FA) =
12∘; field of view (FOV) = 256mm × 256mm; matrix =
256 × 256; slice thickness = 1mm, no gap; and 188 sagittal
slices. Resting-state fMRI data were acquired using gradient-
echo SENSE-SPIRAL (spiral in) sequence with the following
parameters: TR/TE = 1400/30ms; FOV = 220mm × 220mm;
matrix = 64 × 64; FA = 60∘; slice thickness = 4mm; gap =
0.5mm; 32 interleaved transverse slices; 250 volumes. During
fMRI scans, all subjects were instructed to keep their eyes
closed, to relax and keep motionless, to think of nothing in
particular, and not to fall asleep.

2.2.3. ALFF/fALFF Calculation. The resting-state fMRI data
were preprocessed as the following steps.The first 10 volumes
from each subject were discarded to allow the signal to reach
equilibrium and to allow the participant to adapt to the
scanning noise. The remaining 240 volumes were corrected
for the acquisition time delay between slices. Rigid realign-
ment was then performed to estimate and correct the motion
displacement. Three schizophrenia patients were excluded
because of excessive head motion; the remaining subjects’
fMRI data were within the defined head motion thresholds
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Table 2: Detailed area of studies included in the meta-analysis.

Regions ALFF fALFF ReHo
Increase Decrease Increase Decrease Increase Decrease

L-MPFC [14, 16] [22] [20]
R-MPFC [17, 18] [13, 18] [21, 22] [20]
OFC [17] [16] [13] [15] [19]
R-PCL [17] [19]
L-post CG [19]
R-post CG [13, 17, 18] [19, 22]
L-preCG [18] [18] [22]
R-preCG [13, 17, 18] [18] [22]
L-STG [17] [19, 21]
R-STG [17] [19]
L-MTG [18] [19]
R-MTG [18] [17]
L-ITG [17] [19]
R-ITG [19]
L-HG [13] [22]
L-PH [13] [19]
R-PH [18] [13]
L-Fus [17] [18]
L-HP [17] [13]
L-aINS [17] [18] [22]
R-aINS [16] [18] [22]
L-pINS [17] [18] [13] [22]
L-MOG [13, 18] [13, 18] [19, 22]
R-MOG [16] [13] [13] [19]
L-IOG [16] [19]
R-IOG [18] [19]
L-Cun [13] [13]
R-Cun [13, 17] [13, 17, 18]
L-LG [13, 18]
R-LG [13, 18] [13, 18]
R-Cal [16]
L-Cau [13]
R-Cau [13]
L-Put [14, 16] [15]
R-Put [14, 16, 17] [15]
L-HTh [17]
L-Cla [13]
R-LN [13]
L-ACC [19]
R-PCC [17] [13, 17]
R-SPL [19]
L-IPL [16, 18] [18] [18]
R-IPL [16]
L-Pcu [13]
R-Pcu [13, 16–18] [13] [19, 22]
L, left; R, right; MPFC, medial prefrontal cortex; PCL, paracentral lobule; post CG, postcentral gyrus; preCG, precentral gyrus; STG, superior temporal gyrus;
MTG, middle temporal gyrus; ITG, inferior temporal gyrus; HG, Heschl gyrus; PH, parahippocampal; Fus, fusiform; HP, hippocampus; aINS, anterior insula;
pINS, posterior insula; MOG, middle occipital gyrus; IOG, inferior occipital gyrus; Cun, cuneus; LG, lingual gyrus; Cal, calcarine; Cau, caudate; Put, putamen;
HTh, hypothalamus; Cla, claustrum; LN, lentiform nucleus; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; SPL, superior parietal lobule; IPL,
inferior parietal lobule; Pcu, precuneus.
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(translational or rotational motion parameters lower than
2mm or 2∘). Then several nuisance covariates were regressed
out from the motion corrected fMRI data, including the
mean signals of whitematter and cerebrospinal fluid, six rigid
motion parameters and their first-level derivatives. We also
regressed out spike volumes that had framewise displacement
higher than 0.5 to further remove possible influence by head
motion [34]. This was realized by generating a nuisance
regressor for each time point with “1” for the bad time
point and “0” for the remaining time points. A two-step
coregistration method was used to transform the regressed
fMRI data into the MNI space. First, the mean realigned
fMRI images were affinely (12 parameters) coregistered with
individual structural images; then the structural images were
affinely (12 parameters) coregistered with the standard MNI
T1-weighted template. The generated parameters for these
two coregistration steps were concatenated and used to
normalization of the regressed fMRI data. The normalized
fMRI data were resampled into a voxel size of 3mm × 3mm ×
3mm. Finally, the normalized fMRI volumes were smoothed
with a Gaussian kernel of 6mm × 6mm × 6mm full-width at
half maximum (FWHM).

The ALFF was calculated using REST software (http://
www.restfmri.net/). The processing procedure was similar
to that used in an earlier research [18]. The preprocessed
time series were transformed to a frequency domain with a
fast Fourier transform (FFT) and the power spectrum was
then obtained. Because the power of a given frequency is
proportional to the square of the amplitude of this frequency
component of the original time series in the time domain,
the square root was calculated at each frequency of the power
spectrum, and the averaged square root was obtained across
0.01–0.08Hz at each voxel. This averaged square root was
taken as the ALFF. For standardization purposes, the ALFF
of each voxel was divided by the global mean ALFF value
of a certain subject. The fALFF was calculated based on
the method described by Zou et al. [11], which provides a
quantitative measure of spontaneous brain activity. In brief,
the fALFF was calculated as the ratio of the power spectrum
of low frequency (0.01–0.08Hz) to that of the entire frequency
range. For the purpose of standardization, the fALFF value of
each voxel was divided by the global mean fALFF value for
each subject.

2.2.4. ReHo Calculation. The preprocessing steps for ReHo
included slice timing, realignment, regression, band pass
filtering (0.01–0.08), and normalization using the same
parameters as theALFFpreprocessing.TheReHowas defined
as the Kendall correlation coefficient (KCC) of the time series
of a given voxel with those of its nearest neighbors (26 voxels)
on a voxelwise basis [12]. The KCC can be computed by the
following formula:

𝑊 =

∑(𝑅
𝑖
)
2

− 𝑛 (𝑅)
2

(1/12)𝐾
2
(𝑛
3
− 𝑛)
, (1)

where𝑊 is the KCC among given voxels, ranging from 0 to
1; 𝑅
𝑖
is the sum rank of the 𝑖th time point; 𝑅 = [(𝑛 + 1)𝐾]/2

is the mean of the 𝑅
𝑖
;𝐾 is the number of time series within a

measured cluster (𝐾 = 27; one given voxel plus its 26 neigh-
bors); and 𝑛 is the number of ranks (𝑛 = 240).

2.2.5. Group Statistical Analysis. To explore the ALFF and
ReHo differences between the two groups, a two-sample
𝑡-test was performed on the normalized ALFF/fALFF and
ReHo maps in a voxelwise manner. False discovery rate
(FDR) correction was applied with a corrected threshold of
𝑃 < 0.05 (two-tailed) and a cluster size of >540mm3. All
coordinates were reported in MNI space. Brain regions with
significant intergroup differences in ALFF/fALFF/ReHo in
the meta-analysis were defined as regions of interest (ROIs).
We extracted the ALFF/fALFF/ReHo values of these ROIs
from each subject of our own sample and compared them
between schizophrenia patients and healthy controls (𝑃 <
0.05, uncorrected).

3. Results

3.1. Meta-Analysis

3.1.1. ALFF/fALFF. A total of 6 experiments that involved
514 schizophrenia patients and 518 healthy subjects were
recruited for this meta-analysis. All the 6 experiments
showed both decreased and increased ALFF/fALFF in schiz-
ophrenia patients (Table 2). Compared to healthy controls,
schizophrenia patients exhibited decreased ALFF/fALFF
mainly in the bilateral occipital (OC), sensorimotor (SMC),
and posterior parietal cortices (PPC). These patients also
had decreased ALFF/fALFF in the bilateral superior tem-
poral gyrus (STG), insula, and medial orbitofrontal cor-
tex (MOFC) (𝑃 < 0.05, uncorrected). Schizophrenia
patients had increased ALFF/fALFF in the bilateral medial
(MPFC) and lateral prefrontal cortex (LPFC), medial tem-
poral cortex (MTL), and striatum, and there were scat-
tered foci in the bilateral OC, insula, and PPC (Figure 1
and Table S1 in Supplementary material available online at
http://dx.doi.org/10.1155/2014/204628).

3.1.2. ReHo. A total of 4 experiments with 141 schizophrenia
patients and 142 healthy subjects were recruited for thismeta-
analysis. All the 4 experiments showed decreased ReHo and
only 2 experiments showed increased ReHo in schizophrenia
patients (Table 2). Compared to healthy controls, schizophre-
nia patients showed decreased ReHo mainly in the bilateral
MOFC, STG, and OC, and there are scattered foci including
bilateral SMC, PPC, and MTL. Schizophrenia patients had
a higher ReHo in bilateral MPFC, LPFC, and right insula
(𝑃 < 0.05, uncorrected) (Figure 2 and Table S2).

3.2. Validation Study. A total of 86 schizophrenia patients
and 89 healthy controls were included in this study. The
demographic and clinical data of subjects are shown in
Table 3.

3.2.1. ALFF. In the voxel-based analysis, compared to healthy
controls, schizophrenia patients showed decreased ALFF



6 BioMed Research International

−47 −42 −37 −32 −27 −22

−17 −12 −7 −2 3 8

13 18 23 28 33 38

43 48 53 58 63 68

3 1.3 1.3 2.5
L R

(−log10 (P))

Figure 1: Brain regions with significant differences in ALFF/fALFF
in meta-analysis between schizophrenia and healthy controls (𝑃 <
0.05, uncorrected, cluster size >540mm3). The hot color represents
the higher ALFF/fALFF in schizophrenia patients. The cold color
represents the higher ALFF/fALFF in healthy controls. The over-
lapping area is marked in the pink color. Here, it represents the
contradictory results between studies.The (−log10 (P)) value means
the negative ten-logarithm transformation of P value. A larger value
of (−log10 (P))represents a smaller P value.

in the bilateral OC, PPC, and SMC and right STG and
increasedALFF in bilateral striatum,MTL,MPFC, and lateral
orbitofrontal cortex (LOFC) (𝑃 < 0.05, FDR corrected)
(Figure 3).

3.2.2. fALFF. In the voxel-based analysis, compared to
healthy controls, schizophrenia patients showed decreased
fALFFmainly in bilateral OC and right postcentral gyrus and
increased fALFF in bilateral striatum and MTL (𝑃 < 0.05,
FDR corrected) (Figure 4).

3.2.3. ReHo. In the voxel-based analysis, compared to healthy
controls, schizophrenia patients showed decreased ReHo
in bilateral OC, SMC, thalamus, frontal pole, and right
STG. Schizophrenia patients also showed increased ReHo in
bilateral striatum, MTL, LOFC, MPFC, and SMA (𝑃 < 0.05,
FDR corrected) (Figure 5).

3.2.4. ROI-Based Validation. The results of ROI-based inter-
group comparisons in ALFF/fALFF/ReHo are shown in
Tables S1 and S2.We found that more than a half of ROIs with
significant intergroup differences in ALFF/fALFF/ReHo in
the meta-analysis also had significant intergroup differences
in our sample (𝑃 < 0.05, uncorrected).

−47 −42 −37 −32 −27 −22

−17 −12 −7 −2 3 8

13 18 23 28 33 38

43 48 53 58 63 68

3 1.3 1.3 2.5L R (−log10 (P))

Figure 2: Brain regions with significant differences in ReHo in
meta-analysis between schizophrenia and healthy controls (𝑃 <
0.05, uncorrected, cluster size >540mm3). The hot color represents
the higher ReHo in schizophrenia patients.The cold color represents
the higher ReHo in healthy controls. The (−log10 (P)) value means
the negative ten-logarithm transformation of P value. A larger value
of (−log10 (P)) represents a smaller P value.

Table 3: Demographic and clinical data of participants in the large-
sample study.

Variables Patients
(𝑁 = 86)

Controls
(𝑁 = 89) 𝑃

Age (years) 33.4 ± 7.8 33.5 ± 10.6 0.957
Gender (males/females) 46/40 40/49 0.258
Illness duration (months) 16.3 ± 41.1 — —
PANSS total 70.5 ± 23.4 — —
PANSS positive 16.6 ± 8.1 — —
PANSS negative 20.2 ± 8.9 — —
Among the 86 schizophrenia patients, 6 patients were first-episode and 80
patients were chronic.

4. Discussion

After the first reports of ALFF [14] and ReHo [19] abnor-
malities in schizophrenia, several studies were conducted
to investigate the altered ALFF and ReHo in this disorder,
but the results were inconsistent. The reasons for these
inconsistent results were complicated, and it was necessary
to reconcile these conflicting results.Therefore, we combined
a meta-analysis and a large-sample study to clarify the
regional alterations of ALFF and ReHo in schizophrenia.
We demonstrated that both ALFF/fALFF and ReHo were
decreased in the bilateral OC, SMC, and PPC and increased
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Figure 3: Brain regions with significant differences in ALFF in
validation study between schizophrenia patients and healthy con-
trols (FDR < 0.05, two-tailed, cluster size >540mm3). The hot color
represents the higher ALFF in schizophrenia patients.The cold color
represents the higher ALFF in healthy controls.
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Figure 4: Brain regions with significant differences in fALFF
in validation study between schizophrenia patients and healthy
controls (FDR < 0.05, two-tailed, cluster size >540mm3). The hot
color represents the higher fALFF in schizophrenia patients. The
cold color represents the higher fALFF in healthy controls.
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Figure 5: Brain regions with significant differences in ReHo in
validation study between schizophrenia patients and healthy con-
trols (FDR < 0.05, two-tailed, cluster size >540mm3). The hot color
represents the higher ReHo in schizophrenia patients.The cold color
represents the higher ReHo in healthy controls.

in the bilateral striatum, MTL, and MPFC in schizophrenia
patients.

4.1. Foci with Consistently Decreased ALFF/ReHo in
Schizophrenia. The reduced ALFF and ReHo of the
occipital cortex in schizophrenia patients were observed
in most of studies, which are consistent with deficits in
low level visual processing in schizophrenia [35–38]. The
functional abnormality of the occipital cortex has also
been related to visual hallucinations and object-recognition
deficits in schizophrenia [39, 40]. Moreover, Schechter et al.
suggested that schizophrenia patients took 75% greater time
in processing magnocellular-aimed stimuli and 20% longer
duration in detecting parvocellular-aimed stimuli in the
visual backwards masking experiment than healthy controls
[41].

The PPC plays a key role in high-level cognitive process-
ing and the precuneus is an important node of the default-
mode network (DMN).The reduced ALFF/ReHo in the PPC
may be consistent with the notion that the lower ALFF and
ReHo of the PPC predict worse performance in working
memory [42], whose function has been found to be impaired
in schizophrenia [43]. The reduced ALFF/ReHo in the pre-
cuneus is also in agreementwith the structural and functional
deficits in this region in patients with schizophrenia [44–46].

We also observed decreased ALFF/fALFF and ReHo in
the sensorimotor cortex (SMC) in schizophrenia, which is
consistent with previous finding of the greymatter abnormal-
ities in this region in schizophrenia [47, 48]. The structural
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and functional impairment in the SMC in schizophrenia
may be related to the increased involuntary movements in
schizophrenia [49]. The SMC impairment may be also asso-
ciated with neurological soft signs, describing the neurolog-
ical abnormalities in sensory integration, motor regulation,
sequencing complex motor acts, and primitive reflexes that
occur in the majority of schizophrenia patients [50].

4.2. Foci with Consistently Increased ALFF/ReHo in
Schizophrenia. We observed increased ALFF and ReHo in
the striatum in schizophrenia, which are consistent with
increased cerebral blood flow (CBF) and glucose metabolism
in medicated patients with schizophrenia [51]. In drug-näıve
schizophrenia patients, the striatum exhibited decreased
volume and CBF compared to healthy controls [52, 53].
Thus, the increased spontaneous activity in the striatummay
reflect the effects of antipsychotic drugs. The involvement
of the striatum in schizophrenia is also supported by the
dopamine hypothesis of schizophrenia, which postulates
hyperdopaminergia in the striatum [54]. Indeed, increased
striatal dopamine transmission has been reported in
first-episode schizophrenia patients [55, 56].

We also found increased ALFF and ReHo in the hip-
pocampus in schizophrenia, which are well consistent with
increased cerebral blood flow (CBF) and glucose metabolism
in this region in patients with schizophrenia [57]. The hip-
pocampal disconnection has also been found in schizophre-
nia [58, 59], which may be associated with cognitive and
emotional dysfunction.

4.3. Foci with Inconsistent Reports in the Schizophrenia.
The OFC and MPFC are critical for social-emotional and
insight processing.The impairment of these regions has been
associated with emotionally instable, irritable, impulsive, and
loss of insight in schizophrenia and other disorders [60–
62]. Inconsistent alterations in ALFF and ReHo have been
reported in the MPFC and OFC in schizophrenia patients,
either decrease [14–16, 19, 20] or increase [13, 17, 18, 21, 22].
Our data only demonstrated increased ALFF and ReHo in
the MPFC and OFC. Although the age, sex, illness duration,
and medication may be related to the discrepancy, imaging
sequencemay also play a role. All previous studies onALFFor
ReHo used a single-shot echo planar imaging (EPI) sequence
to collect the data.This sequence can inevitably induce image
distortion and signal loss in the OFC due to phase error
accumulation and susceptibility. In contrast, we applied a
SENSE-SPIRAL sequence to reduce the above-mentioned
artifacts, which may help us to obtain more plausible results.

The insula has demonstrated structural atrophy in
schizophrenia [63–67]. Recent studies have revealed the
functional disconnection of the insula in this disorder
[65, 66, 68–72]. However, either increased [17, 18, 22] or
decreased [13, 16, 18, 22] ALFF/ReHo has been reported in
the insula in schizophrenia. Although our results did not
show ALFF/ReHo changes in the insula in schizophrenia,
the meta-analysis showed that the increased ALFF/ReHo was
mainly located in the anterior insula, whereas the decreased
ALFF/ReHo was mainly located in the posterior insula.

Recent studies have shown the different insula subregions
demonstrated diverse connectivity patterns and functions:
the anterior insula is closely connected with limbic system,
middle and inferior temporal cortex, and anterior cingulate
cortex, which plays a role in processing of emotion, atten-
tion, and salience; the posterior part is closely connected
with the premotor, sensorimotor, supplementary motor, and
middle-posterior cingulate cortices, which is related with
sensorimotor integration [73, 74]. So the different change
patterns in the anterior and posterior parts of the insula
may reflect different aspect symptoms in the schizophrenia.
Actually, the functional disconnection of the anterior insula
has been associated with cognitive deficit in patients with
schizophrenia [68].

Although the alternations of ALFF and ReHo showed
similar distribution in schizophrenia patients, they also have
some differences. On one hand, these two indices both reflect
the spontaneous neural activity. Strong positive correlation
has been shown between the two indices [75], and both ALFF
and ReHo were found to correlate with cerebral blood flow
[76]. The close association between ALFF and ReHo can
interpret the consistent findings in schizophrenia. On the
other hand, these two indices reflect different aspects of the
spontaneous neural activity. The ALFF measures the low-
frequency spontaneous fluctuation of neural activity for a
certain voxel, while ReHo measures the regional homogene-
ity of spontaneous neural activity among neighboring voxels,
which may interpret the differential findings in ALFF and
ReHo. Brain regions with both ALFF and ReHo changes may
enhance our confidence to conclude that these brain regions
have altered spontaneous brain activity in schizophrenia.
Some brain regions that only showed changes in ALFF or
in ReHo indicate that the ALFF and ReHo can provide
complementary information about the regional spontaneous
brain activity.

Several limitations should be noted when one interpret-
ing our findings. The reliability of an ALE analysis depends
on the number of studies included. Too few studies may
result in separate small foci (like in this study), which
could be improved only when a large number of studies
were included. A limitation of ALE is that the negative
results cannot be included in the analysis; however, none
of the qualified studies reported negative results which may
lower the effect.The demographic characteristics are different
across studies, particularly in symptoms, illness duration,
and medication. Thus our results may reflect the generalized
changes in spontaneous neural activity in a mixed sample of
schizophrenia patients. It has been suggested that eyes-states
(open or close) may affect the spontaneous brain activity
[77]; however, at least 8/10 studies (the remaining 2 studies
did not mention eyes-states) adopted an eye-closed scheme.
Thus our results are more likely a reflection of eye-closed
state. When normalization is done, it may also influence
our results. However, all the 10 studies included in the
meta-analysis performed normalization prior to obtaining
derived connectivity metrics. In order to keep pace with
the meta-analysis, we also performed normalization prior to
obtaining derived connectivity metrics in the large-sample
study. In our meta-analysis, a loose threshold (𝑃 < 0.05,
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uncorrected) was used, which may prevent us from drawing
a strong conclusion. However, we think our meta-analysis in
combination with a large-sample study may provide a more
comprehensive understanding of the change patterns of brain
spontaneous activity in schizophrenia.

5. Conclusions

We performed a meta-analysis and a large-sample study
on the alternations in ALFF and ReHo in schizophrenia.
Our findings suggest that schizophrenia patients demonstrate
an increased spontaneous brain activity in the striatum,
medial temporal cortex, and medial prefrontal cortex and
a decreased activity in the sensorimotor cortex, posterior
parietal cortex, and occipital cortex. These findings may help
to expound the pathophysiological hypothesis and to guide
future researches.
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Resting-state functional magnetic resonance imaging (RS FMRI) has been widely used to analyze functional alterations in amnestic
mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) patients. Although many clinical studies of aMCI and AD
patients using RS FMRI have been undertaken, conducting a meta-analysis has not been easy because of seed selection bias by
the investigators. The purpose of our study was to investigate the functional differences in aMCI and AD patients compared
with healthy subjects in a meta-analysis. Thus, a multimethod approach using regional homogeneity, amplitude of low-frequency
fluctuation (ALFF), fractional ALFF (fALFF), and global brain connectivitywas used to investigate differences between three groups
based on previously published data. According to the choice of RS FMRI approach used, the patterns of functional alteration
were slightly different. Nevertheless, patients with aMCI and AD displayed consistently decreased functional characteristics with
all approaches. All approaches showed that the functional characteristics in the left parahippocampal gyrus were decreased in
AD patients compared with healthy subjects. Although some regions were slightly different according to the different RS FMRI
approaches, patients with aMCI and AD showed a consistent pattern of decreased functional characteristics with all approaches.

1. Introduction

Resting-state functional magnetic resonance imaging (RS
FMRI) does not require subjects to perform a specific task
or stimuli to be applied; it simply requires the participants to
keep their mind clear. Not having to perform a task provides
a significant benefit, especially for patients who may have
difficulties performing such a task. As a result, RS FMRI
has been widely used to analyze the functional differences
in Alzheimer’s disease (AD) and amnestic mild cognitive
impairment (aMCI) patients compared with healthy sub-
jects. Although many clinical studies of aMCI and AD
patients using RS FMRI have been undertaken, conducting
a meta-analysis has not been easy. One limitation has been

the use of a seed-based approach. Typically, seeds are based
on an anatomical atlas, using either the location of activity
during the task or the standardized coordinates. The choice
of seed may include selection bias by the investigator, and
the patterns of functional connections may be quite different
depending on the seed location [1]. Therefore, studies that
used a seed-based approach are not suitable for inclusion
in a meta-analysis. Apart from the seed-based approach,
other approaches have been used to analyze the findings
from RS FMRI. To avoid selection bias, several methods
such as regional homogeneity (ReHo), amplitude of low-
frequency fluctuation (ALFF), fractional ALFF (fALFF), and
global brain connectivity (GBC) can be considered for meta-
analysis.
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ReHo is based on the similarity of a given voxel to its
neighbor voxels over a time series [2]. The similarity over
a number of time series can be measured using Kendall’s
coefficient concordance (KCC) [3]. This method is based
on the hypothesis that significant brain activities are more
likely to occur in clusters rather than in a single voxel
[4]. The patterns identified using ReHo were found to be
similar to those in regions deactivated during demanding
cognitive tasks in previous positron emission tomography
studies [5, 6]. This indicates that the ReHo method can be
used to investigate the complexity of human brain function.
In addition, previous studies have shown that the ReHo index
patterns in the resting state can be used as a potential clinical
marker for aMCI and AD [7, 8].

The ALFF and fALFF methods measure regional spon-
taneous brain activity. The ALFF technique measures the
amplitude of resting-state spontaneous brain activity by
calculating the square root of the power spectrum in the
low-frequency range [9]. However, the ALFF is weak because
of physiological noise near the large ventricles [10, 11]. To
overcome these problems, previous studies have suggested
use of the fALFF method [10]. The fALFF method measures
the ratio of the low-frequency power spectrum to that of the
entire frequency range and has been shown to have improved
sensitivity and specificity in the detection of spontaneous
brain activity compared with the ALFF approach [10, 11].
Previous studies have shown that the specific patterns of
ALFF and fALFF in aMCI and AD patients provide insights
into the biological mechanisms of the disease [12–15].

The technique of GBC identifies the brain’s most globally
connected regions. GBC uses the seed-based correlations of
each voxel with all other brain voxels [16]. These values are
then averaged together. The high-GBC regions occur mainly
in the cognitive control network (CCN) and the default mode
network (DMN) [17]. Therefore, the GBC patterns represent
the complex brain functions. A previous study showed that
the GBC patterns could explain the patterns of vulnerability
seen in AD patients [18]. However, the GBC patterns of aMCI
patients were clearly understood.

The purpose of our study was to investigate the regions
of functional differences in aMCI and AD patients compared
with healthy aging subjects using a meta-analysis. Thus, a
multimethod approach using ReHo, ALFF/fALFF, and GBC
was used to investigate differences between three groups. To
aid this meta-analysis, we analyzed existing data published
on resting-state FMRI [19]. In previous study using spatial
independent component analysis (sICA), we showed that
there were significant differences between healthy subjects
and patients with aMCI and AD. The results of several
approaches using the same data can considerably encourage
the further meta-analysis.

2. Materials and Methods

2.1. Subjects. This study reanalyzed previously published RS
FMRI data [19]. Sixty-two healthy subjects (male/female
ratio, 17/45; age, 68.5 ± 8.0), 34 patients with aMCI (18/16,
68.4 ± 7.9 years old), and 37 patients with AD (10/27,
72.8 ± 8.2 years old) participated in this study. We obtained

Table 1: Demographic and clinical findings of healthy subjects
and patients with amnestic mild cognitive impairment (aMCI) or
Alzheimer’s disease (AD).

Healthy
subjects aMCI AD 𝑃 value

Number of
subjects 62 34 37

MMSE score 28.6 ± 1.9 27.1 ± 2.1 16.8 ± 6.9 𝑃 < 0.0001
Age 68.5 ± 8.0 68.4 ± 7.9 72.8 ± 8.2 𝑃 < 0.03
Sex (M/F) 17/45 18/16 10/27 𝑃 < 0.03
Education 10.9 ± 5.2 11.5 ± 5.2 10.9 ± 5.3 𝑃 > 0.25
Data for age, education, and MMSE (mini-mental state examination) score:
mean ± SD; M, male; F, female. The 𝑃 value was obtained by one-way
ANOVA and chi-square test.

written informed consent, according to the Declaration of
Helsinki, from all subjects and the study was approved by the
Institutional Review Board of the Samsung Medical Center,
Seoul, South Korea.The demographic and clinical data of the
participants are presented in Table 1.

2.2. Data Acquisition. All imaging was carried out at the
Samsung Medical Center. The scanner was a Philips Intera
Achieva 3.0 Tesla scanner equipped with an 8-channel
SENSE head coil (Philips Healthcare, The Netherlands). A
high-resolution T1-weighted anatomical image was acquired
using a magnetization-prepared gradient echo (MPRAGE)
sequence (TR = 9.9ms; TE = 4.6ms; flip angle = 8∘; 0.5 × 0.5
× 0.5mm3 voxel resolution). And whole-brain echo-planar
imaging (EPI) time-series scans (TR = 3 s; TE = 35ms; flip
angle = 90∘; 1.7× 1.7× 4mm3 voxel resolution) were acquired.
RS FMRI data consisted of 100 volumes. During each scan,
participants were instructed to rest with their eyes open.

2.3. Preprocessing of RS FMRI Data. Preprocessing of the RS
FMRI data was performed using Analysis of Functional Neu-
roImage (AFNI) software (http://afni.nimh.nih.gov/) [20]. To
correct for physiological noise, we first identified cardiac
and respiratory noises of the RS FMRI data [21] using PES-
TICA software (Physiologic EStimation by Temporal ICA,
http://www.nitrc.org/projects/pestica/). PESTICA includes
IRF-RETROICOR, an improved correction method [22]
that calculates the impulse response function (IRF) of each
heartbeat or breath. For stabilization of the magnetic field
and signal equilibrium, the initial three volumes from each
functional image were removed. Slice timing and head
motion corrections at the RS echo-planer imaging (EPI) time
courses were then applied. Then, data were corrected using
the anatomy-based correlation corrections (ANATICOR)
method [23]. The data that were regressed included (1) six
parameters obtained from the correction of head motion,
(2) the signal from the eroded large ventricle mask, and (3)
the signal from a region of the local white matter erosion
mask (𝑟 = 15mm). To obtain the large ventricle masks
and white matter mask, T1 images registered and corrected
for intensity non-uniformities resulting from inhomogeneity
in the magnetic field were divided into white matter, gray
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matter (GM), cerebrospinal fluid, and background using an
advanced neural-net classifier [24]. Although there has been
debate about global signal, we did not perform the regression
analysis with global signal. Previous studies showed that
global signal regression may induce artificial negative cor-
relations and influence the long- and short-range functional
connections [25–27].The anatomical T1 image was registered
to the functional images using the local Pearson correlation
cost function [28], and all masks were converted to EPI space.
The large ventricle mask and the white matter mask were
eroded by one voxel to minimize partial volume effects.

2.4. Postprocessing for Several Methods

2.4.1. ALFF/fALFF Analysis. We used the AFNI software to
process the ALFF data, which have been depicted in previous
studies [9, 29]. The time series were first converted to the
frequency domain using a fast Fourier transform (FFT), and
the power spectrum was then acquired. As the transformed
frequency within the power spectrum is proportional to the
square of the amplitude of this frequency component in the
original time series, the power spectrumobtained by FFTwas
calculated and averaged across the frequency range 0.009–
0.08Hz at each voxel over the time courses. This averaged
square root was taken as the ALFF [9]. To improve the
ALFF approach, we also used the fALFF, the ratio of the
power of the low-frequency fluctuations to that of the entire
frequency range (0.009–0.25Hz), which has been reported
to be more sensitive than the original ALFF in detecting
spontaneous brain activity [10]. After the calculation of the
ALFF and fALFF maps, the GM mask was applied to reduce
the inclusion of unwanted blood oxygen level-dependent
signals or other physiological signals that occur because
of large draining vessels. The ALFF and fALFF maps then
underwent spatial smoothingwith a 6mm full-width-at-half-
maximum (FWHM)Gaussian kernel andwere normalized to
the MNI152 template.

2.4.2. RegionalHomogeneity Analysis. Regional homogeneity
was calculated by the KCC values using the AFNI software.
This method has been described as measuring the similarity
of the time series within a cluster defined by the nearest
neighbor voxels (27, 19, or 7, including a given voxel) in the
whole brain [2]. Before the calculation of regional homo-
geneity, band-pass filtering (0.009Hz < 𝑓 < 0.08Hz) was
performed and the GM mask was applied. And the images
underwent spatial smoothing with a 6mm FWHMGaussian
kernel and were normalized to the MNI152 template. Then,
the KCC was computed using

𝑊 =

∑(𝑅
𝑖
)
2

− 𝑛 (𝑅)
2

(1/12)𝐾
2
(𝑛
3
− 𝑛)
, (1)

where𝑊[0 1] is the value of KCC for a given set of voxels,
𝑅
𝑖
is the sum rank of the 𝑖th time point, 𝑅 = ((𝑛 + 1) × 𝐾)/2

is the mean of 𝑅
𝑖
, 𝐾 is the number of time courses within a

measured cluster, and 𝑛 is the number of ranks. We set the
number of neighboring voxels to 27. The individual ReHo
maps were obtained by computing KCC for each voxel.

2.4.3. Global Brain Connectivity (GBC) Analysis. GBC analy-
sis [17] was calculated by globally connected regions. Before
the calculation of the GBC maps, preprocessed functional
images were performed band-pass filtered (0.009Hz < 𝑓 <
0.08Hz), GM masked, spatial smoothed with 6mm FWHM
Gaussian kernel and normalized to the MNI152 template.
The GBC maps, which calculated the correlation coefficients
with all the other voxels within brain for each voxel, were
computed with AFNI software (3dTcorrMap). The corre-
lation values were converted to 𝑧 values using Fisher’s 𝑧
transformation. The transformed values were averaged and
the value was assigned to that voxel.The individual GBCmap
was then obtained.

2.5. Group Comparisons. All the results from the different
RS FMRI techniques were masked out, with the group mask
obtained by selecting a threshold of 0.3 on the mean GM
map of all subjects. To explore differences in the functional
characteristics between the three groups, an analysis of
covariance (ANCOVA) was performed using sex, age, and
education as covariates. The correction of Type I errors
(parameters: individual voxel𝑃 value = 0.01, simulated 10,000
times iteratively, 6mmFWHMGaussian filter width with the
group mask) was reckoned using Monte Carlo simulations
with AFNI’s AlphaSim software program. The AlphaSim
program provides an overall significance level achieved for
various combinations of cluster size thresholds and probabil-
ity thresholds for each voxel [30].This is performed byMonte
Carlo simulation of the process of image generation,masking,
spatial correlation of voxels, voxel intensity thresholding, and
cluster identification. The probability of the false positive
detection per image is determined from the frequency count
of cluster size [31].

The significance level was set at 𝑃
𝛼
< 0.05 (uncorrected

individual voxel height threshold of 𝑃 < 0.01, 𝐹 > 4.776) and
a cluster size of 864mm3. Post hoc two-sample 𝑡-tests were
employed between pairs of groups for voxelwise statistics at a
corrected significance level of 𝑃

𝛼
< 0.05.

3. Results

To allow visual inspection of the different approaches, mean
images were generated for each group. The majority of the
clusters were consistent across all groups and the patterns
were quite similar to the previous results for each approach
(Figure 1). These regions included the PCC/precuneus, mid-
dle frontal gyrus, anterior cingulate cortex (ACC), inferior
parietal lobule, and middle temporal gyrus.

The results of the ANCOVA using age, sex, and education
as covariates showed significant differences between the
patients with aMCI and AD and healthy subjects (see Figures
2(a), 3(a), 4(a), and 5(a) and Tables 2–5 for details). Then,
as shown in Figures 2(b)–2(d), 3(b)–3(d), 4(b)–4(d), and
5(b)–5(d) and Tables 6, 7, 8, and 9, we performed post
hoc two-sample 𝑡-tests between pairs of groups. The ReHo,
ALFF, fALFF, and GBC approaches showed that regions of
the brain had decreased indices in patients with aMCI and
AD compared with the healthy subjects. In particular, all RS
FMRI approaches showed that the functional characteristics
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Figure 1: The mean images of each resting-state FMRI analysis approach: (a) regional homogeneity (ReHo), (b) amplitude of low-frequency
fluctuation (ALFF), (c) fractional ALFF, and (d) global brain connectivity (GBC). The first row of each approach is the map for the healthy
subjects, the second row of each approach is the map for the patients with aMCI, and the third row of each approach is the map for the
patients with AD.The images are oriented with the anterior side placed at the top and the left side placed to the right.The red and blue colors
represent positive and negative functional connectivity, respectively.

in the left parahippocampal gyrus were decreased in AD
patients compared with healthy subjects. Therewith, signif-
icant group differences of the ReHo index were found in
the middle temporal gyrus, ACC, postcentral gyrus, insula,
precuneus, middle occipital gyrus, inferior parietal lobule,
PCC, cingulate gyrus, and inferior frontal gyrus (𝑃

𝛼
< 0.05;

AlphaSim corrected, uncorrected 𝑃 < 0.01 at a cluster size of
at least 108 voxels; see Figure 2(a) and Table 2 for a detailed
list of the regions). And significant group differences in the
ALFF were found in superior temporal gyrus, medial frontal
gyrus, parahippocampal gyrus, insula, superior frontal gyrus,
caudate, and superior temporal gyrus (see Figure 3(a) and
Table 3 for a detailed list of the regions). On the other hand,
significant group differences in the fALFF were found in
inferior parietal lobule, PCC, fusiform gyrus, middle frontal
gyrus, precuneus, precentral gyrus, inferior frontal gyrus,

middle temporal gyrus, parahippocampal gyrus, and cuneus
(see Figure 4(a) and Table 4 for a detailed list of the regions).
Significant group differences in the GBC index were found
in the ACC, superior temporal gyrus, postcentral gyrus,
parahippocampal gyrus, and cingulate gyrus (see Figure 5(a)
and Table 5 for a detailed list of the regions).

4. Discussion

Here, we showed the functional alterations of the patients
with aMCI and AD by applying several different RS FMRI
techniques (ReHo, ALFF, fALFF, and GBC) to the data
for healthy subjects and the data for patients with aMCI
and patients with AD. In addition, these data also showed
significant differences between healthy subjects and patients
with aMCI and AD using the sICA reported in previous
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Figure 2: Brain regions exhibiting significant differences in the regional homogeneity (ReHo) index. (a) Brain regions showed significant
differences in ReHo between healthy subjects and patients with aMCI and patients with AD (𝑃

𝛼
< 0.05 (uncorrected 𝑃 < 0.01, 𝐹 > 4.78,

864mm3, and AlphaSim corrected)).The results of the post hoc two-sample 𝑡-tests between pairs of the healthy subjects and patients with AD
and patients with aMCI were as follows: significant differences in brain regions were found (b) in patients with aMCI compared with healthy
subjects, (c) in patients with AD compared with patients with aMCI, and (d) in patients with AD compared with healthy subjects (𝑃

𝛼
< 0.05).

The images are oriented with the anterior side placed at the top and the left side placed to the right.

studies [19]. Although previous study showed differences
between normal control and patients with MCI and AD with
some similar method [32], this study was the first study of the
whole brain voxel-based analysis. In conclusion, we showed
that the results of using multiple approaches, excluding seed-
based approaches, in RS FMRI analysis were useful for meta-
analysis using the same data.

According to the various RS FMRI approaches, the
patterns of functional alteration in patients with aMCI and
AD were slightly different. Nevertheless, patients with aMCI
andADhad significantly decreased functional characteristics
compared with normal aging subjects for all approaches.
Our major findings were as follows: (1) patients with aMCI
and AD had decreased functional patterns compared with

healthy subjects for all approaches. The ReHo, ALFF, fALFF,
and GBC approaches showed that regions of the brain had
decreased indices in patients with aMCI and AD com-
pared with the healthy subjects. In particular, all RS FMRI
approaches showed that the functional characteristics in the
left parahippocampal gyrus were decreased in AD patients
compared with healthy subjects, and (2) the ALFF and fALFF
approaches showed that the indices in the posterior cingulate
cortex (PCC), parahippocampal gyrus, middle temporal
gyrus, and left inferior parietal lobule decreased significantly
in the patients with AD compared with the patients with
aMCI. The other methods did not show any differences
between the patients withAD and aMCI. Taken together with
the findings of our previous study, ALFF, fALFF, and sICA
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Figure 3: Brain regions exhibiting significant differences in the amplitude of low-frequency fluctuation (ALFF) index. (a) Brain regions
showed significant differences in ALFF between healthy subjects and patients with aMCI and patients with AD (𝑃

𝛼
< 0.05 (uncorrected

𝑃 < 0.01, 𝐹 > 4.78, 864mm3, and AlphaSim corrected)). The results of the post hoc two-sample 𝑡-tests between pairs of the healthy subjects
and patients with AD and patients with aMCI were as follows: significant differences in brain regions were found (b) in patients with aMCI
compared with healthy subjects, (c) in patients with AD compared with patients with aMCI, and (d) in patients with AD compared with
healthy subjects (𝑃

𝛼
< 0.05). The images are oriented with the anterior side placed at the top and the left side placed to the right.

were found to be more sensitive methods than the other RS
FMRI approaches in patientswith aMCI andAD.Thesemajor
findings strongly encourage meta-analysis in patients with
aMCI and AD with RS FMRI.

The mean images of ReHo, ALFF, fALFF, and GBC for
the three groups were very similar to those of the human
DMN reported in previous studies [6, 33]. A previous study
demonstrated that the ReHo maps showed the existence of
the DMN prominently and consistently during the resting
and conscious states [34]. The DMN also had significantly
higher ALFF and fALFF during the resting state than the
other brain areas [9–11, 29]. In addition, the GBC values
mainly occurred in the DMN and CCN. A previous study
showed that highGBCwas found in both the CCN andDMN

[17]. Therefore, the results of all four approaches were highly
related to the DMN.

The regions of significant group differences from some
of the different approaches were consistent with previous
studies in patients with aMCI and AD [4, 7, 8, 12, 13, 18].
Interestingly, the post hoc two-sample 𝑡-tests between pairs
of groups showed that the functional characteristics of all
RS FMRI approaches in the left parahippocampal gyrus were
decreased inADpatients comparedwith the healthy subjects.
A previous study showed that there were structural changes
in the left parahippocampal gyrus [35, 36] and reduced
functional connectivity in the left parahippocampal gyrus
[19]. The ReHo approach provides information about the
intraregional functional characteristics, and the ALFF/fALFF
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Figure 4: Brain regions exhibiting significant differences in the fractional ALFF (fALFF) index. (a) Brain regions showed significant
differences in fALFF between healthy subjects and patients with aMCI and patients with AD (𝑃

𝛼
< 0.05 (uncorrected 𝑃 < 0.01, 𝐹 > 4.78,

864mm3, and AlphaSim corrected)). The results of the post hoc two-sample 𝑡-tests between pairs of the healthy subjects and patients with
AD and aMCI were as follows: significant differences in brain regions was found (b) in patients with aMCI compared with healthy subjects,
(c) in patients with AD compared with patients with aMCI, and (d) in patients with AD compared with healthy subjects (𝑃

𝛼
< 0.05). The

images are oriented with the anterior side placed at the top and the left side placed to the right.

approaches provide information about the oscillating brain
activity. In addition, the GBC index provides information
about the synchronization among remote areas. Therefore,
from the perspective of both the intra- and interregional
functional features, the functional characteristics in the left
parahippocampal gyrus were decreased in patients with
AD. In conclusion, the changes identified in the functional
characteristics of the left parahippocampal gyrus provide a
potential diagnosis of AD, regardless of the approach used to
perform RS FMRI analysis.

Despite the consistency in the differences found between
three groups by the four different methods, some inconsis-
tency was exhibited because of the differences between these
methods. The group differences observed using the ALFF

approach were larger than those of the other approaches.
Previous studies have shown that the ALFF method is more
prone to noise from physiological sources, particularly near
the ventricles and large blood vessels [10, 11]. Therefore,
although we performed physiological noise removal with
PESTICA, the results of the ALFF approach might still have
been affected by noise. The fALFF approach was used to
overcome this disadvantage and suppressed the group differ-
ences. The patterns of group differences observed using the
fALFF approach were similar to those seen using the ReHo
method. However, the fALFF approach showed differences
between patients with AD and aMCI in the parahippocampal
gyrus, cuneus, andmiddle temporal gyrus, whereas the ReHo
approach did not show any difference between patients with
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Figure 5: Brain regions exhibiting significant differences in the global brain connectivity (GBC) index. (a) Brain regions showed significant
differences in the GBC index between healthy subjects and patients with aMCI and patients with AD (𝑃

𝛼
< 0.05 (uncorrected 𝑃 < 0.01,

𝐹 > 4.78, 864mm3, and AlphaSim corrected)). The results of the post hoc two-sample 𝑡-tests between pairs of the healthy subjects and
patients with AD and aMCI were as follows: significant differences in the brain regions were found (b) in patients with aMCI compared with
healthy subjects, (c) in patients with AD compared with patients with aMCI, and (d) in patients with AD compared with healthy subjects
(𝑃
𝛼
< 0.05). The images are oriented with the anterior side placed at the top and the left side placed to the right.

AD and aMCI.TheALFF and fALFF approaches showed that
the index in the PCC, parahippocampal gyrus, MTG, and
left IPL was significantly decreased in the patients with AD
compared with the patients with aMCI. The other methods
did not show these differences between the patients with AD
and aMCI.

Several additional issues need to be addressed. First, the
number of subjects in this study (𝑛 = 133) was greater
than those in previous studies. Therefore, this study might
have greater statistical power than previous studies, and this
might have caused different results to be obtained. However,
patients with aMCI and AD displayed significantly decreased
functional characteristics with every analysis approach, in
agreement with previous studies. Second, when we per-
formed analysis using the ALFF and fALFF approaches,

we restricted the frequency band (0.009–0.08Hz) to enable
comparison with the other methods. A previous study sug-
gested the patterns of ALFF and fALFF obtained patients
with aMCI were sensitive to the choice of frequency band
[15]. The ALFF and fALFF abnormalities were greater in the
slow-5 band (0.01–0.027Hz) than in the slow-4 band (0.027–
0.073Hz). Therefore, a study using various frequency bands
is required for further analysis of alterations to the functional
characteristics in patients with aMCI and AD. Third, our
results might relate to the possible confounding interference
of gray matter loss. Although the analyses of functional
differences with controlling gray matter losses are important,
there is a need to overcome some issues about notable
resolution differences between EPI and T1 image. With the
improved technical method, a further study is needed to



BioMed Research International 9

Table 2: Brain regions with significant differences in regional
homogeneity index between healthy subjects and patients with
aMCI or AD.

Brain regions R/L
Coordinates

(mm) Peak
𝐹 values Voxels

𝑥 𝑦 𝑧

Healthy subjects versus
aMCI versus AD

Middle temporal gyrus L −40 −60 8 19.59 3286
Middle temporal gyrus R 44 −58 4 16.07 848
ACC L −2 16 28 23.40 736
Middle temporal gyrus R 32 −68 30 15.98 690
Postcentral gyrus L −36 −30 42 16.36 469
Postcentral gyrus R 38 −32 56 15.62 301
Insula R 38 16 6 15.86 272
ACC R 14 28 28 16.29 224
Precuneus R 2 −78 28 11.92 212
Middle occipital gyrus R 34 −76 −6 12.02 186
IPL L −58 −26 28 14.60 171
Postcentral gyrus R 52 −18 32 12.40 167
PCC R 22 −58 18 16.72 162
Precuneus L −18 −68 16 13.20 160
Cingulate gyrus L −4 −34 30 11.61 160
Inferior frontal gyrus L −26 6 6 15.43 144

ACC: anterior cingulate cortex, IPL: inferior parietal gyrus, and PCC:
posterior cingulate cortex. Threshold: corrected 𝑃

𝛼
< 0.05 (uncorrected

individual voxel height threshold of 𝑃 < 0.01, 𝐹 > 4.776 with a minimum
cluster size of 864mm3).

Table 3: Brain regions with significant differences in amplitude of
low-frequency fluctuations (ALFF) index between healthy subjects
and patients with aMCI or AD.

Brain regions R/L
Coordinates

(mm) Peak
𝐹 values

Voxels
𝑥 𝑦 𝑧

Healthy subjects versus
aMCI versus AD

Superior temporal gyrus R 48 4 2 24.71 20320

Medial frontal gyrus L 0 54 8 21.73 1412

Cerebellum L −24 −76 −50 20.83 1019

Parahippocampal gyrus R 14 −6 −16 19.93 586

Cerebellum R 20 −86 −40 13.57 573

Parahippocampal gyrus R 16 −36 0 19.95 491

Middle frontal gyrus R 20 30 42 9.51 279

Parahippocampal gyrus R 36 −40 −4 14.35 270

Insula R 24 28 10 17.84 258

Superior frontal gyrus L −18 34 44 9.96 230

Caudate R 10 12 10 24.43 184

Superior frontal gyrus L −50 16 −32 12.75 166

Middle frontal gyrus L −24 −4 48 10.47 154
Threshold: corrected 𝑃

𝛼
< 0.05 (uncorrected individual voxel height

threshold of 𝑃 < 0.01, 𝐹 > 4.776 with a minimum cluster size of 864mm3).

Table 4: Brain regions with significant differences in fractional
ALFF (fALFF) index between healthy subjects and patients with
aMCI or AD.

Brain regions R/L
Coordinates

(mm) Peak
𝐹 values

Voxels
𝑥 𝑦 𝑧

Healthy subjects versus
aMCI versus AD
Inferior parietal lobule L −54 −56 48 15.82 1654

PCC L −8 −60 12 13.17 743

Fusiform gyrus R 38 −40 −8 16.58 461

Cerebellum L −24 −12 −36 12.98 422

Middle frontal gyrus L −40 38 18 13.38 416

Inferior parietal lobule R 50 −40 46 9.66 246

Precuneus R 14 −68 40 9.14 205

Middle frontal gyrus R 10 58 22 12.49 201

Precentral gyrus L −52 2 8 13.33 200

Postcentral gyrus L −48 −30 36 12.26 195

Inferior frontal gyrus R 48 22 16 12.23 167

Middle temporal gyrus R 58 6 −22 13.34 164

Superior temporal gyrus R 50 −42 16 8.70 163

Parahippocampal gyrus R 34 −12 −28 10.76 146

Cuneus R 14 −68 6 12.11 140

Medial frontal gyrus L −2 52 −4 9.09 134
PCC: posterior cingulate cortex. Threshold: corrected 𝑃

𝛼
< 0.05 (uncor-

rected individual voxel height threshold of 𝑃 < 0.01, 𝐹 > 4.776 with a
minimum cluster size of 864mm3).

Table 5: Brain regions with significant differences in global brain
connectivity (GBC) index between healthy subjects and patients
with aMCI or AD.

Brain regions R/L
Coordinates

(mm) Peak
𝐹 values

Voxels
𝑥 𝑦 𝑧

Healthy subjects versus
aMCI versus AD
ACC L −2 12 28 15.36 763

Superior temporal gyrus L −68 −24 6 11.24 282

Cerebellum L −28 −46 −48 10.10 253

Postcentral gyrus L −20 −52 66 8.41 208

Superior temporal gyrus L −38 −58 12 16.27 170

Superior temporal gyrus L −50 −42 14 9.37 159

Parahippocampal gyrus L −38 −26 −12 8.74 153

Cingulate gyrus L −12 −14 40 14.49 145

Transverse temporal L −50 −24 12 7.29 143gyrus

Superior temporal gyrus R 46 8 −16 12.21 127
ACC: anterior cingulate cortex.Threshold: corrected 𝑃

𝛼
< 0.05 (uncorrected

individual voxel height threshold of 𝑃 < 0.01, 𝐹 > 4.776 with a minimum
cluster size of 864mm3).
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Table 6: Results of post hoc two-sample 𝑡-tests between every pair
of the healthy subjects and patients with AD and aMCI groups in
ReHo approach.

Brain regions R/L
Coordinates

(mm) Peak
𝑡 value

Voxels

𝑥 𝑦 𝑧

Healthy subject versus
aMCI

Superior parietal lobule L −18 −76 56 4.27 531

Cingulate gyrus L −4 −4 48 5.12 381

Precuneus R 26 −62 50 5.59 284

Middle occipital gyrus L −38 −66 −12 5.39 279

Precentral gyrus L −40 −18 42 4.88 270

Superior temporal gyrus L −50 −2 2 5.25 266

Superior temporal gyrus L −54 −42 16 4.83 250

Precentral gyrus R 40 −24 60 4.98 235

Middle occipital gyrus L −52 −72 2 5.07 220

Cingulate gyrus R 8 24 38 5.19 184

Middle temporal gyrus R 34 −70 26 4.27 177

Postcentral gyrus R 52 −18 32 4.94 149

Insula R 38 16 6 4.63 146

aMCI versus AD

No result

Healthy subject versus AD

Middle temporal gyrus L −40 −60 8 6.22 1460

Middle temporal gyrus R 44 −58 4 5.44 735

ACC L −2 16 28 6.49 551

Middle temporal gyrus L −50 −20 −8 5.31 399

Middle temporal gyrus R 32 −68 30 5.21 329

Precentral gyrus R 36 −24 54 4.97 197

Superior parietal lobule L −34 −56 54 4.58 184

Insula R 30 22 12 4.49 178

Postcentral gyrus L −50 −20 40 4.89 175

Precuneus R 2 −78 28 4.76 165

Parahippocampal gyrus L −32 −10 −20 5.01 164

Cingulate gyrus L −4 −34 30 4.80 160

Precuneus L −18 −68 16 5.06 159

PCC R 22 −58 18 5.78 155

Middle occipital gyrus R 36 −86 −6 4.74 149

Cerebellum L −26 28 4 5.28 125
ACC: anterior cingulate cortex, PCC: posterior cingulate gyrus. Positive
values: healthy subjects > aMCI, aMCI > AD, and healthy subjects > AD.
Negative values: aMCI > healthy subjects, AD > aMCI, and AD > healthy
subjects. Threshold: corrected 𝑃

𝛼
< 0.05.

Table 7: Results of post hoc two-sample 𝑡-tests between each pair of
the healthy subjects and patients with AD and aMCI groups inALFF
approach.

Brain regions R/L
Coordinates

(mm) Peak
𝑡 value

Voxels

𝑥 𝑦 𝑧

Healthy subject versus
aMCI

Inferior parietal lobule R 56 −46 24 3.87 729

Supramarginal gyrus L −52 −50 24 3.98 585

Middle temporal gyrus L −30 −68 26 4.94 428

Middle occipital gyrus R 34 −80 8 4.15 413

Postcentral gyrus R 52 −8 16 3.46 353

Parahippocampal gyrus L −24 −40 −12 3.44 335

Superior temporal gyrus R 50 6 0 4.59 222

Precuneus R 2 −68 18 3.49 221

Middle temporal gyrus L −44 −62 4 3.78 217

Postcentral gyrus R 52 −18 32 3.73 217

Medial frontal gyrus R 4 46 42 3.60 202

Precuneus L 0 −50 32 3.69 188

Precuneus L −16 −76 42 3.43 128

aMCI versus AD

Precuneus L 0 −70 46 4.19 654

Cerebellum L −22 −84 −44 4.75 594

Cerebellum R 16 −84 −38 3.73 350

Parahippocampal gyrus L −26 −8 −18 4.34 345

Middle temporal gyrus L −48 −66 22 4.08 306

Superior temporal gyrus L −40 18 −28 4.30 185

Healthy subject versus AD

Superior temporal gyrus R 48 4 2 3.13 20151

Medial frontal gyrus L 0 54 8 6.54 1411

Cerebellum L −24 −76 −50 6.22 957

Parahippocampal gyrus R 14 −6 −16 6.30 575

Cerebellum R 20 −86 −40 5.12 564

Parahippocampal gyrus R 14 −36 2 6.15 490

Medial frontal gyrus R 20 30 42 4.17 278

Parahippocampal gyrus R 36 −40 −4 5.11 270

Lentiform Nucleus R 24 6 20 −5.82 258

Superior frontal gyrus L −18 3 44 4.36 230

Caudate R 10 12 10 6.78 184

Superior temporal gyrus L −50 16 −32 4.73 164

Medial frontal gyrus L −26 −6 48 4.41 153
Positive values: healthy subjects > aMCI, aMCI > AD, and healthy subjects
> AD; Negative values: aMCI > healthy subjects, AD > aMCI, and AD >
healthy subjects; Threshold: corrected 𝑃

𝛼
< 0.05.
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Table 8: Results of post hoc two-sample 𝑡-tests between every pair
of the healthy subjects and patients with AD and aMCI groups in
fALFF approach.

Brain regions R/L
Coordinates

(mm) Peak
𝑡 value Voxels

𝑥 𝑦 𝑧

Healthy subject versus
aMCI

Middle temporal gyrus L −30 −72 24 3.89 256
Superior temporal gyrus L −56 8 0 4.32 143
Inferior parietal lobule L −42 −58 38 4.14 136
Inferior parietal lobule L −50 −46 22 4.14 131

aMCI versus AD
Parahippocampal gyrus R 42 −30 −16 4.61 249
Cuneus R 0 −72 6 4.23 173
Cerebellum L −26 −12 −36 4.48 163
Parahippocampal gyrus R 34 −12 −28 4.60 135
Middle temporal gyrus R 60 4 −22 4.04 131

Healthy subject versus AD
Inferior parietal lobule R −48 −62 42 5.37 2324
PCC L −8 −62 12 4.92 832
Fusiform gyrus R 38 −40 −8 5.75 504
Middle frontal gyrus L −40 38 18 5.10 409
Middle temporal gyrus L −48 10 −32 4.79 399
Inferior parietal lobule R 50 −40 46 4.33 242
Precuneus R 26 −60 22 4.17 205
Medial frontal gyrus R 10 58 22 4.95 198
Postcentral gyrus L −58 −26 38 4.75 191
Inferior frontal gyrus R 48 22 16 4.85 167
Superior temporal gyrus R 60 −46 14 3.92 163
Middle frontal gyrus R 58 6 −22 4.97 147
Cuneus R 14 −68 6 4.84 140
Postcentral gyrus L −52 2 10 4.65 136
Medial frontal gyrus L −2 52 −5 4.04 125

PCC: posterior cingulated cortex. Positive values: healthy subjects > aMCI,
aMCI > AD, and healthy subjects > AD. Negative values: aMCI > healthy
subjects, AD > aMCI, and AD > healthy subjects. Threshold: corrected 𝑃

𝛼
<

0.05.

examine relationship between functional connectivity and
gray matter density.

5. Conclusions

Our study demonstrated differences in the functional char-
acteristics of patients with aMCI and AD compared with
healthy subjects using multimethod analysis. The patterns
of functional alteration in patients with aMCI and AD
were slightly different depending on the RS FMRI approach
used. Nevertheless, patients with aMCI and AD had con-
sistently decreased functional characteristics compared with
healthy subjects, regardless of the approach used. All RS
FMRI approaches showed that the functional characteristics
in the left parahippocampal gyrus were decreased in AD

Table 9: Results of post hoc two-sample 𝑡-tests between every pair of
the healthy subjects and patients with AD and aMCI groups in GBC
approach.

Brain regions R/L
Coordinates

(mm) Peak
𝑡 value Voxels

𝑥 𝑦 𝑧

Healthy subject versus
aMCI
Superior frontal gyrus R 2 2 58 4.26 525
Postcentral gyrus L −20 −52 66 4.04 207
Precentral gyrus L −48 −4 12 3.59 162
Middle temporal gyrus L −40 −58 10 5.88 158
Superior temporal gyrus L −50 −42 14 4.19 154
Transverse temporal L −50 −24 12 3.77 143gyrus

Cingulate gyrus L −12 −14 40 4.06 136
aMCI versus AD
Cerebellum L −28 −48 −52 3.65 141

Healthy subject versus AD
Superior temporal gyrus L −68 −24 6 4.36 258
Cerebellum L −28 −46 −48 4.48 246
ACC L −2 12 28 5.53 241
Cingulate gyrus R 16 −20 40 5.09 165
Parahippocampal gyrus, L −36 −28 −12 4.07 153
Superior temporal gyrus L −38 −58 12 130 130

ACC: anterior cingulate gyrus. Positive values: healthy subjects > aMCI,
aMCI > AD, and healthy subjects > AD. Negative values: aMCI > healthy
subjects, AD > aMCI, and AD > healthy subjects. Threshold: corrected 𝑃

𝛼
<

0.05.

patients compared with healthy subjects. The ALFF and
fALFF approaches both showed that the index decreased
significantly in the patients with AD compared with the
patients with aMCI, whereas the other methods did not
show such differences.Therefore, the ALFF, fALFF, and sICA
techniques provided more sensitive measurements than the
other RS FMRI approaches in patients with aMCI and AD.
These major findings strongly encourage meta-analysis in
patients with aMCI and AD with RS FMRI.
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Although decades of efforts have been spent studying the pathogenesis of social anxiety disorder (SAD), there are still no objective
biological markers that could be reliably used to identify individuals with SAD. Studies using multivariate pattern analysis have
shown the potential value in clinically diagnosing psychiatric disorders with neuroimaging data. We therefore examined the
diagnostic potential of regional homogeneity (ReHo) underlying neural correlates of SAD using support vector machine (SVM),
which has never been studied. Forty SAD patients and pairwise matched healthy controls were recruited and scanned by resting-
state fMRI. The ReHo was calculated as synchronization of fMRI signals of nearest neighboring 27 voxels. A linear SVM was then
adopted and allowed the classification of the two groups with diagnostic accuracy of ReHo that was 76.25% (sensitivity= 70%, and
specificity= 82.5%, 𝑃 ≤ 0.001). Regions showing different discriminating values between diagnostic groups were mainly located in
default mode network, dorsal attention network, self-referential network, and sensory networks, while the left medial prefrontal
cortex was identified with the highest weight. These results implicate that ReHo has good diagnostic potential in SAD, and thus
may provide an initial step towards the possible use of whole brain local connectivity to inform the clinical evaluation.

1. Introduction

Previously termed social phobia, social anxiety disorder
(SAD) was characterized by persistent fear of social or per-
formance situations in which there is judgment or scrutiny by
others [1]. As themost common anxiety disorder, SAD shows
a high lifetime prevalence of 12% and a 12-month prevalence
of 7.1% [2]. Early onset, delay, or avoidance in seeking treat-
ment leads to significant social and occupational disability
for individuals with SAD. Currently, according to the diag-
nostic criteria in DSM-IV (Diagnostic and Statistical Manual
ofMental Disorders, Fourth Edition), the diagnosis of SAD is
based on observed behaviors and examinations of psychiatric
signs and symptoms. However, the use of such a symptom-
based approach would sometimes cause uncorrected diagno-
sis due to high rates of comorbidity with depressive condi-
tions and substance abuse [3]. Therefore, it is necessary to

establish other objective and reliable approaches or biological
markers, which could be used to assist the diagnosis of SAD
and improve the accuracy.

As a more objective approach, neuroimaging holds great
promise for detecting abnormalities crucial to the pathophys-
iologic models of SAD. Resting-state functional magnetic
resonance imaging (fMRI) studies have revealed that, relative
to the healthy controls, SAD is associated with abnormal acti-
vation within amygdala and default model network (DMN)
mainly involved [4–6].The amygdala is thought to be impor-
tant in the acquisition and expression of conditioned fear
and also performs a protective role, allowing the organism
to detect and avoid danger [4], whilst role of DMN may be
relevant to social perception and self-referential processing
which are underlying psychological symptoms and patho-
physiological mechanisms in SAD [6, 7]. These findings are
valuable in helping us understand the functional changes
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Table 1: Demographic and clinical characteristics of SAD patients and healthy comparison subjects.

Demographic and clinical characteristics SAD (𝑛 = 40) HC (𝑛 = 40)
𝑃

Mean SD Mean SD
Age (years) 25.95 6.48 24.80 3.35 0.323
Duration of illness (years) 7.76 4.61
Age of onset (years) 18.15 6.70
LSAS

Total 65.42 21.23 33.80 22.01 0.000
Fear factor 32.45 10.39 15.70 11.90 0.000
Avoidance factor 32.47 11.91 17.85 11.34 0.000

𝑁 % 𝑁 % 𝑃

Gender
Female 14 35 14 35 1.000
Male 26 65 26 65

SAD, social anxiety disorder; HC, healthy controls; SD, standard deviation; LSAS, Liebowitz Social Anxiety Scale; 𝑛/𝑁, number.
Significance levels were set at 𝑃 < 0.05.

which underlie clinical symptoms associated with SAD; how-
ever, the extrapolation of any potential biomarkers and the
clinical translation of the results have been hindered by the
group level inference of the data. For the imaging findings to
be clinically useful, onemust be able tomake inferences at the
individual rather than the group level.

Relative to traditional univariate methods, multivariate
pattern analysis (MVPA) allows predictions individually and
it takes the patterns of information that might be presented
across multiple variables into account, therefore providing
results that have higher translational applicability in clinical
practice [8]. For fMRI data, MVPA involves whole brain
pattern classification aimed at decoding information in the
pattern of activation across all voxels that may distinguish
between two classes at the individual level. The most com-
monly used MVPA for pattern recognition in neuroimaging
literature is support vector machine (SVM) [9]: an algorithm
uses a well-defined dataset to create decision function or
“hyperplane” which can best distinguish between categories
(in current study, patients and controls), and then the
produced decision function or “hyperplane” will be used to
predict which predefined group a newobservation belongs to.
These two phases are systematically known as training and
testing [9]. The overall accuracy of the SVM depends on its
sensitivity (i.e., the proportion of patients identified as having
the disease) and specificity (i.e., the proportion of controls
identified as not having the disease). In recent years, SVM
algorithm has been successfully applied to classify various
neuropsychiatric disorders and achieved good diagnostic
accuracy [10].

To date, there have been only two studies using MVPA
in SAD but concentrating on task-based fMRI and regional
grey matter volume [11], or functional connectivity [7]. As
reflected by resting-state fMRI, functional connectivity can
reveal the synchronization of remote brain regions, while, by
contrast, regional homogeneity (ReHo) has been developed
to measure the local synchronization of spontaneous fMRI
signals by calculating similarity of dynamic fluctuations of

voxels within a given cluster, revealing important information
about local connectivity, and reflects the temporal synchrony
of the regional fMRIBOLDsignals [12, 13]. Abnormal ReHo is
assumed to be associatedwith aberrant changes in the tempo-
ral aspects of the spontaneous neural activity in the regional
brain [14] and may be a sign of disrupted local functionality
[15]. More importantly, ReHo can indicate some unexpected
hemodynamic responses thatmodel-drivenmethodsmay fail
to discover in resting-state fMRI [13]. Although being suc-
cessfully applied to various neuropsychiatric disorders [14,
16–20], the ReHo approach has been little investigated in
SAD.

Thus, we particularly used SVM to examine ReHo maps
in differentiating SAD patients from healthy controls, which
has never been investigated. The purposes were to find out
whether SVM would allow accurate discrimination between
diagnostic groups and, if so, which brain regions or intrinsic
brain networks would principally contribute to the discrimi-
nation.

2. Materials and Methods

2.1. Participants. Forty Structured Interview for the DSM-
IV (SCID) Patient Edition confirmed SAD patients and an
equal number of healthy controls were recruited at theMental
Health Centre of West China Hospital (Table 1). The Ethics
Committee of West China Hospital, Sichuan University, has
offered approval to our study and all participants gave written
informed consent to their participation. Diagnosis of SAD
was determined by consensus of two experienced psychia-
trists. Psychological ratings and clinical symptoms associated
with SAD were evaluated with the Liebowitz Social Anxiety
Scale (LSAS). Of the 40 patients, 12 had the antianxiety med-
ication but they underwent at least two-week washing-out
prior to the MR examination.

Healthy controls were recruited from the local area via
poster advertisements and were screened using the SCID-
Non-Patient Version to ascertain the lifetime absence of
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psychiatric and neurological illness. It was confirmed that
they had no history of psychiatric illness among their first-
degree relatives. All subjects’ demographic characteristics
and clinical variables were obtained by 2 experienced clinical
psychiatrists beforeMR examinations. Patients with SAD and
control subjects were pairwise matched in age, gender, and
handedness (Table 1).The following exclusion criteria applied
to both groups: (1) the existence of a neurological disorder
or other psychiatric disorders, (2) substance abuse, (3) preg-
nancy, or (4)major physical illness such as cardiovascular dis-
ease or hepatitis, as assessed by clinical evaluations and med-
ical records. T1-weighted and T2-weighted images of brain
were inspected by an experienced neuroradiologist, and no
scanning artifacts and gross abnormalities were observed in
any participants.

2.2. MRI Acquisition. The MRI examinations were per-
formed on a whole-body 3.0 T MR scanner (Siemens Trio,
Erlangen, Germany) with a 12-channel head coil. Earplugs
were employed to protect the hearing while foam pads upon
them were used to restrict head motion during the scanning.
The resting-state fMRI sensitized to changes in BOLD signal
levels was obtained with a gradient-echo planar imaging
sequence (TR/TE = 2000/30ms; flip angle = 90∘). A field of
view (FOV) of 240 × 240mm2 was used with an acquisition
matrix = 64 × 64, producing 30 continuous axial slices with
thickness = 5.0mmwith no gap and voxel size = 3.75 × 3.75 ×
5mm3 in-plane resolution in each brain volume. Each func-
tional run contained 205 volumes of which the first 5 were
discarded to ensure steady-state longitudinal magnetization
and subjects’ adaptation to the environment. All participants
were simply instructed to keep still with their eyes closed
and remain awake but not to think of anything in particular.
After the scanning, the volumes of all subjects were corrected
for the temporal difference and head motion by setting the
translational or rotational parameters at the threshold of
±1.5mm or ±1.5∘.

2.3. Imaging Preprocessing. The fMRI data was preprocessed
using Data Processing Assistant for Resting-State fMRI
(DPARSF, http://www.restfmri.net, version 2.1), implemented
within the MATLAB toolbox, to calculate the ReHo maps.
This software involves an integrated image process mainly
including slice timing, realignment, and normalization to the
Montreal Neurological Institute echo planar imaging tem-
plate (each voxel was resampled to 3 × 3 × 3mm3), removing
linear trend and the ReHo calculation. Given the fact that
ReHo shows the similarity or synchronization of fMRI signals
of nearest neighboring voxels and Kendall’s coefficient of
concordance (KCC) is used for the measurement based on
the regional homogeneity hypothesis [13], we defined 27
nearest neighboring voxels as a cluster and a KCC value was
given to the voxel at the center of this cluster. The individual
ReHo map was generated in a voxel-wise fashion, and all
ReHo maps were smoothed with a Gaussian filter of 4mm
full-width half maximum (FWHM) kernel to manage the
anatomical variability that was not compensated for by spatial
normalization.

2.4. Comparison of Demographic Characteristics and Vari-
ables. The Statistical Package for the Social Sciences (SPSS,
version 18.0) will be used for the comparison of demographic
variables. Differences in age and LSAS scores between groups
were analyzed using the two-sample 𝑡-tests, whereas gender
ratio was compared with Chi-square test, with significance
levels setting at 𝑃 < 0.05.

2.5. Multivariate Pattern Analysis and Support Vector
Machine. SVM as implemented in the PROBID software
package (http://www.brainmap.co.uk/probid.htm, version
1.04) was employed and a linear kernel SVM was adopted to
classify the diagnostic groups based on their ReHomaps.The
detailed description of the application of SVM in MRI data
has been given [8, 21]. In the context of supervised multi-
variate classification method as SVM [22], individual brain
scans were treated as points located at high-dimensional
space defined by the ReHo map in the preprocessed images.
In this high-dimensional space, a linear decision boundary
was defined by a “hyperplane” that separated the individual
brain scans according to a class label (i.e., patients versus
controls). The optimal hyperplane was computed based on
the whole multivariate pattern of ReHo map across each
image and could most accurately capture the relationship
between each example and its respective label. The algorithm
is initially trained on a subset of the data ⟨𝑥, 𝑐⟩ to find a
hyperplane that best separates the input space according to
the class labels 𝑐 (patients versus controls), where𝑥 represents
the input data (i.e., ReHo map). The linear kernel SVM
adopted could reduce the risk of overfitting the data and
allow direct extraction of the weight vector as an image (i.e.,
the SVMdiscriminationmap). Furthermore, the linear kernel
matrix implicated in PROBID could be precomputed and
supplied to the classifier, an approach which affords a
substantial increase in computational efficiency and permits
whole brain classification without requiring explicit dimen-
sionality reduction [23]. A parameter 𝐶, which controls the
tradeoff between having zero training errors and allowing
misclassifications in the linear model, was fixed at 𝐶 = 1
for all cases (default value). A grey matter mask of 3 × 3 ×
3mm was used to constrain the search of significant group
differences in voxels/features within grey matter in the
comparison of ReHo maps.

Consistent with previous studies using SVM on SAD
[7, 11], a “leave-one-out” cross validation was used, which
means a single subject of each group would be excluded from
the training and was later used to test the capability of the
classifier learned from the remaining subjects, to reliably dis-
tinguish between categories (in our study, SAD or controls).
Each subject pair would undergo this procedure to make the
accuracy of the SVM fully estimated [8]. Statistical signifi-
cance of the overall classification accuracy was determined by
permutation testing [24, 25], a nonparametric test that
involved repeating the classification procedure 1000 times
with a different random permutation of the training group
labels and counting the number of permutations achieving
higher sensitivity and specificity than the true labels. Finally,
to show the multivariate discriminating pattern of ReHo
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Figure 1: Classification plot (a) obtained from PROBID and receiver operating characteristic (ROC) curve and (b) obtained from SPSS for
the discrimination between SAD patients and healthy controls using ReHo maps, yielding an accuracy of 76.25% (sensitivity = 70.0% and
specificity = 82.5%, 𝑃 ≤ 0.001).

maps, a threshold would be set at 30% of the maximum
weight vector value of the discrimination and voxels with
greater value would be exhibited.

The test margin (the shortest distance from the optimal
hyperplane), which could show the capability of the SVM
with ReHo in classification of each subject, was calculated for
all participants. Based on the label and test margin of each
subject, the receiver operating characteristic (ROC) curve of
the classificationwith ReHomapswas obtainedwith SPSS. To
further explore whether the classification is driven by anxious
symptoms and the extent if so, correlation analysis has been
performed between the test margin and the level of symptom
severity as determined by LSAS scores for all participants.

3. Result

3.1. Demographic and Clinical Characteristics. Demographic
and clinical characteristics for all of participants are pre-
sented in Table 1. No significant differences were found in
gender ratio and age between patients and healthy controls
(𝑃 > 0.05). Compared to healthy control, SAD patients had
significantly higher scores on the anxiety symptoms mea-
sured with LSAS total score and subscales (𝑃 < 0.05). All
participants were right-handed. Twenty-eight patients were
drug-näıve while the remaining 12 had taken different medi-
cation (5 paroxetine, 3 paroxetine with intermittent risperi-
done, alprazolam, and buspirone, resp., 3 sertraline, and 1
amitriptyline and doxepin) for 1 week to 5 years. The medi-
cated patients had been drug-free for at least 2 weeks.

3.2. Multivariate Pattern Recognition. The classification of
the two groups with overall diagnostic accuracy of ReHo
maps was 76.25% (sensitivity = 70% and specificity = 82.5%,
𝑃 ≤ 0.001) achieved by SVM (Figure 1). The set of regions
showed different value between the diagnostic groups mainly
located in frontal, temporal, and occipital regions (Figure 2,
Table 2). In the discrimination map, a positive value means
a relative higher weight in SAD (red scale) and helps in the
identification of individuals with SAD, with regions mainly
located at right orbitofrontal gyrus (OFG), right middle
frontal gyrus, right pars triangularis, right superior tempo-
ral gyrus (STG), left middle temporal gyrus (MTG), right
postcentral gyrus (PCG), left inferior parietal lobe (IPL), and
right precuneus, while a negative value means a relative
higher weight in healthy controls and contributes to the
identification of healthy subjects, locating in left medial pre-
frontal cortex (mPFC), bilateral middle frontal gyrus (MFG),
right inferior occipital gyrus (IOG), and right cuneus
(Figure 2).

3.3. Relationship between Test Margin and Severity of Symp-
tom. Across all of the patients, the test margin was found not
correlated to total LSAS scores, scores for fear factor, or scores
for avoidance factor (𝑃 > 0.05).

4. Discussion

To the best of our knowledge, the current study is the first
to examine the capability of SVM with ReHo in distinguish-
ing patients with SAD from healthy subjects and involves
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Figure 2:The discrimination maps for ReHo. Regions displayed were identified by setting the threshold to ≥30% of the weight vector scores.
Warm color (positive value) indicated higher discriminated values in SAD than in healthy controls; cool color (negative weights) indicates
higher values in healthy controls than in SAD.

the largest sample of SAD patients in employing MVPA
approach. By identifying the intergroup differences in whole
brain ReHo pattern with an overall classification accuracy
of 76.25%, the present study suggests local connectivity
and synchronization extracted from fMRI BOLD signal
could be a potential biomarker to identify SAD patients
and demonstrates that multivariate analysis allows discrim-
ination between individuals with SAD and healthy controls
at relatively high level of accuracy. This pattern of results
provides preliminary support to the development of SVMas a
promising diagnostic tool in SAD to improve the diagnostic
accuracy and minimize errors in detecting malingering
where possible [26].

The discriminating pattern in the present study was
attributable to widespread ReHo alterations, mainly involv-
ing DMN, dorsal attention network (DAN), self-referential
network (SRN), and sensory networks. By contrast, the only
one study using ReHo in SAD before found significantly
decreased ReHo mainly in the DMN and central executive
network (CEN) while it found increased ReHo in occipital
regions and the right putamen in a relative small sample of
SADpatients viamass-univariate analysis [27]. Relatively, our
findings consistently revealed abnormalities withinDMNbut
identified more regions, and other distributed regions across
brain have also been showed with different local connectivity
between SAD and control subjects. One explicable fact is that
MVPA implicated in SVM takes the interregional correlation
into account [8]. This multivariate nature of SVM rendered
a high discriminative power for a given cluster deriving not
only from differences in ReHo in that region between groups,
but also from any intergroup differences in its functional
correlations with other regions. Thus, the findings of the
alteredReHo across brain should not be deemed as individual
regions but as a spatially distributed pattern. Taken collec-
tively, ReHo investigation gives insight into coherent local
connectivity of a functional cluster and is necessary for fur-
ther interpreting functional changes in SAD patients, whilst

the combination with SVM identifies more distributed and
subtle ReHo changes helpful in characterization at individual
level therefore yielding results with great potential in clinical
translation.

The consistent finding of altered local connectivity in
relation to DMN emphasizes its critical role underlying the
pathogenesis of SAD. The DMN is deemed as a higher-level
cognitive network and consists of brain regions that typically
activate during resting-state but deactivate during perfor-
mance of goal-directed tasks [28], within which a set of
regions connectively contributes to the social cognitive
aspects.The precuneus, along with posterior cingulate cortex
(PCC), is featured as the pivotal hub of DMN and related to
perception of social cognition and self-related mental rep-
resentations [28, 29]. Patients with SAD showed a lower
deactivation in regions comprising precuneus during task
conditions [30] and abnormal functional connectivity in
precuneus has also been suggested to be associated with the
pathophysiological mechanism underlying SAD [31]. The
mPFC is another hub in DMN and is identified with the
highest weight. Activity in mPFC may reflect an interaction
between cognitive processing and emotional state [32], espe-
cially for the anxiety-related emotion processing, in which
mPFC has been considered of ongoing importance [33].
These data, along with our findings, supported the notion
that DMN accounts for prominence in cognitive behavioral
models of SAD.

DAN [34, 35] and SRN [36] are another two important
networks withmany regions foundwith alterationwith ReHo
in SAD patients. DAN is considered to mediate goal-directed
(top-down) processing for stimuli selection and responses
and involved in many higher-order cognitive tasks [34].
Particularly emotion regulation, the regulating of anxious
feelings, has been emphasized in the cognitive models
underlying SAD [37], and failure in emotion regulation
has been considered another key feature of SAD [38]. In
this term of view, we speculate that there is an important
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role of brain regions within DAN in emotion regulation,
and abnormalities in these regions usually result in a high
level of self-awareness, typically in SAD patients. While
the SRN has exhibited peculiar physiological characteristics
with increased neural activity during resting [28], OFC is a
primary region observed with local coherence alteration. As
involved in the engagement of interpersonal relationships,
moral behavior, and social aggression [39–41], OFC with
inappropriate function might strengthen the response to
stressors or stimuli of fear conditions, resulting in severe
impairments in social behavior [5]. Reduced orbitofrontal
activation was observed in patients with SAD during public
speaking [42] and anxiety-provoking tasks [43], implying a
hypoactive OFC was associated with a failure of fear and
anxiety inhibition.

There are still main regions implicated in visual network
(VN), auditory network (AN), and somatomotor network
(SMN). However, sensory networks could be regarded as the
lower-order system of cognition. Within VN, abnormalities
in IOGmay be associated with the hypervigilance and hyper-
prosexia characteristic of social interaction in SAD [44].
Additionally, together with SMN, VN has been suggested to
show significantly greater BOLD responses in SAD for social
threat in previous emotional fMRI study [45]. As for AN,
regions within which have been found to related to dysfunc-
tion of cognitive reappraisal in SAD patients [46]. Consistent
with these findings, our results imply a role for sensory
networks in the perceptual and some other psychological
impairments in SAD to variable extents.

Although the discriminating pattern above successfully
allowed the identification of patients with SAD, the accuracy
was not that high to achieve the goal of MVPA of automated
MR image analysis in finding better sensitivity and specificity
of antemortem diagnosis than what is currently possible [47].
While the performance, generalizability, and significance
of the SVM findings would benefit from a large sample
size and better feature selection methods [48], future studies
incorporating large sample are needed to improve character-
ization of underlying features, as to establishment of a model
which could most accurately predict new subjects for better
classification. Furthermore, expanding feature selection to
include other imaging properties, behavioral data, and
genomic information may offer better discriminative infor-
mation for predicting SAD.

In the exploratory analysis, no significant association was
found between the test margin and clinical symptoms. In
other words, the distance away from the hyperplane may not
be driven or affected by the severity of symptoms as assessed
by LSAS scores for a given subject, suggesting the dis-
criminating pattern of ReHo obtained is relatively stable.
This may be because the discrimination pattern produced
derived mostly from the intergroup ReHo differences free
from clinical ratings, which is of great significance since the
identification of SAD will not be confounded by the psycho-
logical situations, reducing the rate of false negative findings
resulting from individuals with mild symptoms.

It is noteworthy that there are some limitations implicated
in the present study. First, although most of patients were
drug-näıve, a small proportion of the SAD sample had taken

medication before. However, we have prepared two weeks for
the washing-out before scanning to reduce the confounding
effect resulting from medication. Besides, given the effect of
antianxiety medication in attenuating abnormally activated
neural activity in social anxiety [49], we thus speculated
that the medication effect would probably not exaggerate
but instead tend to underestimate the capability of SVM
in identifying patients. That might also be the reason why
the present study did not find the abnormal alterations in
amygdala due to attenuated amygdala responsiveness [50].
Second, as we have added whole voxels in the grey matter in
the pattern analysis, the intrinsic structural differences may
act as confounding factors in the pattern recognition analysis.
However, ReHo and structural properties are different fea-
tures in the SVM analysis; since we used the functional
features implicated in ReHo, the confounding influence of
structural differences was assumed marginal, if there were
any. While we did not have sufficient structural images to
conduct the same analysis to rule out confounding factors,
future studies with different imaging modalities will be
needed as a synthesized biomarker to strengthen the classi-
fication and achieve more reliable clinical diagnosis of this
complex disorder. Finally, as a common psychiatric disorder,
social anxiety has a potential correlation but differs from a
personality trait known as shyness.While in current study, we
only compare the cohort of SAD patients with healthy sub-
jects, leaving an issue unresolved whether the application of
SVM to ReHo would also discriminate SAD patients from
mentally healthy people with shyness.The future studies may
help to address this question by including a third group of
subjects who have a level of shyness but without SAD.

5. Conclusion

This study used a MVPA method which is based on whole
brainReHopattern, to distinguish individualswith SAD from
healthy subjects. By presenting widespread differential map
of coherence abnormalities which could be used to identify
patients with SAD at the individual level, this study provides
evidence that the ReHo of brain has the diagnostic potential
and can possibly act as a supplementary approach to identify
SAD, especially regions with high weight. Future studies
with the integration of ReHo with other different imaging
modality measurements may give a better insight into the
imaging biomarkers of the condition.
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Primary monosymptomatic nocturnal enuresis (PMNE) is a common developmental disorder in children. Previous literature
has suggested that PMNE not only is a micturition disorder but also is characterized by cerebral structure abnormalities and
dysfunction. However, the biological mechanisms underlying the disease are not thoroughly understood. Graph theoretical analysis
has provided a unique tool to reveal the intrinsic attributes of the connectivity patterns of a complex network from a global
perspective. Resting-state fMRIwas performed in 20 childrenwith PMNEand 20 healthy controls. Brain networkswere constructed
by computing Pearson’s correlations for blood oxygenation level-dependent temporal fluctuations among the 2 groups, followed
by graph-based network analyses. The functional brain networks in the PMNE patients were characterized by a significantly lower
clustering coefficient, global and local efficiency, and higher characteristic path length compared with controls. PMNE patients
also showed a reduced nodal efficiency in the bilateral calcarine sulcus, bilateral cuneus, bilateral lingual gyri, and right superior
temporal gyrus. Our findings suggest that PMNE includes brain network alterations that may affect global communication and
integration.

1. Introduction

Nocturnal enuresis is a common developmental disorder that
affects 15–20% of 5-year-old children [1]. This disorder can
persist in adolescence and has important negative effects on
the self-image and performance of these children [2]. The
condition is defined as primarymonosymptomatic nocturnal
enuresis (PMNE) when a child has enuresis without addi-
tional lower urinary tract symptoms (excluding nocturia) or
a history of bladder dysfunction and has never had a period
of established urinary continence for more than six months
[3].

Several factors are associated with and contribute to
nocturnal enuresis, including heredity, polyuria, detrusor

overactivity, sleep, and central nervous system mechanisms
[4]. Recently, maturational delays of the central nervous
system have been indicators of PMNE pathogenesis. Toros
et al. reported an increased frequency of a high-level
hyperventilation response in recordings of a resting-state
electroencephalogram, suggesting the existence of delayed
cortical maturity in PMNE [5]. Event-related brain potentials
have also been used to study enuresis; results have shown
longer P300 latency in primary enuretics compared with
nonenuretics [6], and P300 amplitude is decreased in the
parietal recordings of enuretics when compared with the
controls [7], which is evidence of a maturational delay in
the central nervous system function [6, 7]. Freitag et al. also
reported the existence of increased I-III and I-V interpeak
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latencies of the brainstem auditory evoked potential, sug-
gesting maturational deficits in the brain stems of nocturnal
enuretic children [8]. Desamino-arginine vasopressin and
alarm therapy for nocturnal enuresis were shown to increase
the prepulse inhibition of startle reflexes, thus supporting
the hypothesis of a maturational delay of reflex inhibition in
nocturnal enuresis [9, 10].

In recent years, magnetic resonance imaging (MRI) tech-
niques, such as structuralMRI, functionalMRI, and diffusion
MRI, have provided an efficient, feasible, and noninvasive
method to investigate the biological mechanisms of incon-
tinence. Using functional MRI, a number of studies have
reported alterations in several brain functions in patients
with urgency and urge incontinence [11, 12]. One study
utilized event-related fMRI in PMNE subjects and revealed
that children with PMNE had deficits in working memory
[13]. Abnormal functional connectivity has also been found
in children with PMNE, including the cerebellum, frontal
lobe, and thalamus in the cerebello-thalamo-frontal circuit
[14]. We have performed a series of MRI experiments to
investigate the functional and structural abnormalities that
are associated with PMNE. We previously reported that
forebrain activation was altered during a response inhibition
task [15] and that the nature of the local intrinsic activ-
ity (i.e., amplitude low frequency fluctuation and regional
homogeneity) changed in the prefrontal cortex during the
resting state in children with PMNE [16]. We also identified
microstructural abnormalities in the thalamus, the medial
frontal gyrus, the anterior cingulated cortex, and the insular
cortex of children with PMNE using diffusion tensor imag-
ing [17] and neurochemical abnormalities in the prefrontal
cortex and the pons of children with PMNE using proton
magnetic resonance spectroscopy [18]. These studies showed
that children with PMNE have structural, functional, and
neurochemical abnormalities in the brain.

Prior studies mostly focused on several regions which
involved cerebral micturition control network. In fact, chil-
dren with PMNE probably have more serious problems
beyond the micturition control; they probably have poten-
tial cognitive problems, such as working memory [14] and
response inhibition [15]. Actually, the whole brain can be
modeled as a large-scale complex network; its function can
be fulfilled through both segregated and integrated specific
functional connections patterns with optimized efficiency
[19, 20]. The investigation of PMNE-related alterations in
whole brain functional networks, instead of specific brain
regions or local networks, may give further network-level
information about the children with PMNE. Up to now, little
is known about the PMNE-related alterations in topological
properties, especially the topological efficiency of the whole
brain functional networks during resting state.The advantage
of a graph theory-based network analysis is that it provides
measures for both global and local connectivity.

The topological organization of brain networks has
recently been studied with graph theory [19, 21, 22]. Graph
theory-based approaches model the brain as a complex
network, representing it graphically using a collection of
nodes and edges. Generally speaking, a network consists of𝑁
nodes that are linked by𝐾 edges. Networks can be described

by an adjacent matrix 𝐴(𝑛, 𝑛) in which 𝑛 is the number of
nodes and the value of 𝐴

𝑖𝑗
refers to the edge linking node

𝑖 and node 𝑗. There are many graph metrics that can be
used to describe the topological properties of a network,
including the clustering coefficient (𝐶

𝑝
), characteristic path

length (𝐿
𝑝
), normalized clustering coefficient (𝛾), normalized

characteristic path length (𝜆), small-worldness (𝜎), global
efficiency (𝐸glob), local efficiency (𝐸loc), nodal betweenness,
nodal degree, and nodal efficiency. After the network mod-
eling procedure, various graph theoretical metrics can be
used to investigate the organizational mechanism underlying
the relevant networks. The graph-based network analyses
enable us not only to visualize the overall connectivity pattern
among all brain regions but also to quantitatively characterize
the global organization. Graph-based techniques used to
study brain networks, including normal development, aging,
and various brain disorders, have increased [21–25]. Previous
studies showed that the brain’s intrinsic activity is organized
as a small-world, highly efficient network, with significant
modularity and highly connected hub regions [19], which
have also been found to change throughout normal devel-
opment and aging and in various pathological conditions
[21–25]. In the present paper, we propose a connectome-
scale assessment of functional connectivity for children with
PMNE via resting-state fMRI data.

2. Methods

2.1. Subjects. We studied 24 children with PMNE and 29
healthy children with the consent of the children and their
guardians. All children were right-handed with an IQ greater
than 75, and the presence of neurological and psychiatric
diseases was excluded based on both a clinical examination
(theDSM-IV criteria) and a structured interview.All children
with PMNE were outpatients of the Shanghai Children’s
Medical Center. This study was approved by the IRB of the
Shanghai Children’s Medical Center in affiliation with the
Shanghai Jiao Tong University School of Medicine (number
SCMC-201014).

The inclusion criteria for all participants were listed as fol-
lows: (1) a physical, psychiatric, and neurological evaluation
conducted by at least 3 members of a team of certified and
experienced developmental and behavioral pediatricians; (2)
age 7–15 years; (3) right-handedness; (4) children diagnosed
with PMNE based on the criteria: a child has enuresis
without additional lower urinary tract symptoms (excluding
nocturia) or history of bladder dysfunction and has never
had a period of established urinary continence for more
than six months; (5) the Wechsler Intelligence Scale for
Children-Revised (WISC-R) test employed to determine the
intelligence quotient (IQ) of all subjects; and (6) the number
and gender of each subgroup being matched.

The exclusion criteria for this study were listed as follows:
(1) attention deficit/hyperactivity disorder, autism, or any
psychiatric comorbid disorders; (2) previous head trauma,
neurologic disorders, psychosurgery, or substantial physical
illness; (3) fMRI data with obvious artifacts and distor-
tions; (4) left-handedness, as assessed with the Annett Hand
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Preference Questionnaire; and (5) a full-scale IQ less than 80
according to an age appropriate WISC-Chinese Revision.

Due to excessive head motion in some cases, functional
images of 20 PMNE patients and 20 healthy children were
available for further analysis.There were 2 groups of children:
the average age was 10.8 ± 2.0 years for the PMNE group
(14 males, 6 females) and 9.9 ± 2.0 years for the normal
control group (14 males, 6 females). Additional clinical data
regarding the patient groups are shown in Supplementary
Material 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/463708.

2.2. Data Acquisition. All subjects underwent a resting-state
functional MRI scan using a 3T magnetic resonance system
(Siemens, Magnetom Trio Tim) with a 12-channel phased
array head coil. The sequence parameters were as follows:
repetition time/echo time (𝑇

𝑅
/𝑇
𝐸
) = 2,000/30ms; flip angle

= 90∘; 32 axial slices per volume; 3 mm slice thickness (33%
dist. factor); matrix = 64 × 64; and FOV = 220 × 220mm2.
Each functional run contained 210 image volumes, resulting
in a total scanning time of 420 s for each participant. The
first ten scans were discarded before the preprocessing of the
data to remove the impact of magnetization stabilization. All
participants were instructed not to focus their thoughts on
anything in particular and to keep their eyes closed during
the acquisition.

2.3. Data Preprocessing. Image preprocessing was performed
using the SPM8 package (http://www.fil.ion.ucl.ac.uk/spm/;
WellcomeTrust Centre forNeuroimaging,UniversityCollege
London, United Kingdom) and Graph Theoretical Network
Analysis (GRETNA, http://www.nitrc.org/projects/gretna/).
First, for each participant, the first 10 time points were dis-
carded to avoid the instability of the initial MRI signal and to
familiarize the subjects with the fMRI scanning noise. Next,
the remaining fMRI data were corrected for the intravolume
acquisition time delay and head motion. The head motion
parameters of all participants were determined, and the
extendable inclusion criteria for translationalmovementwere
<3.0mm and <3.0∘ rotation. After these corrections, the
images were spatially normalized to the standard space of
the standardMontreal Neurological Institute (MNI) template
by applying the EPI template at a 3 × 3 × 3mm3 resolution.
Finally, the resulting data were further filtered through a
temporal band pass (0.0–0.08Hz) to reduce the effects of low-
frequency drift and high-frequency physiological noises.

2.4. Network Construction and Analysis. We used GRETNA
to construct the network. Todefine the brain nodes, an atlas of
AutomatedAnatomical Labeling [26] was employed to divide
the entire brain into 90 cortical and subcortical regions of
interest, each representing a node of the network. To define
the network edges, first, the representative mean time series
of each region was acquired by averaging the time series of
all voxels within that region, followed by a correction of head
motion effects by regressing out the head motion profiles
estimated in the image realignment from the mean time-
course. Then, the residuals of the regression analyses were

used to compute the partial correlation in this study, resulting
in a 90× 90 partial correlationmatrix for each subject. Finally,
individual partial correlation matrices were converted into
weighted matrices; this method has been used in previous
brain network studies [27–31].

We applied a wide range sparsity threshold 𝑆 to all
correlation matrices, which is determined in this procedure
to guarantee that the threshold networks were estimable for
small-worldness (scalar 𝜎 was larger than 1.1) and had sparse
properties with as few spurious edges as possible and the
average degree over all nodes of each threshold network was
larger than 2 × log(90) [29, 32]. Our generated threshold
range was 0.10 < 𝑆 < 0.34 with an interval of 0.01. For brain
networks at each sparsity threshold, we calculated both global
and node network metrics.

The global metrics included (1) small-world parame-
ters [32] (i.e., clustering coefficient 𝐶

𝑝
, characteristic path

length 𝐿
𝑝
, normalized clustering coefficient 𝛾, normalized

characteristic path length 𝜆, and small-worldness 𝜎) and
(2) network efficiency [33] (i.e., local efficiency 𝐸loc and
global efficiency𝐸glob).The nodemetrics induced three nodal
centrality metrics: the degree, efficiency, and betweenness.
Furthermore, we calculated the area under the curve (AUC)
for each network metric, which provides a summarized
scalar for the topological characterization of brain networks
independent of a single threshold selection. The AUC for
a network metric 𝑌, which was calculated over the sparsity
threshold range of 𝑆

1
to 𝑆
𝑛
with interval of Δ𝑆, was computed

as𝑌AUC = ∑𝑛−1
𝑘=1
[𝑌(𝑆
𝑘
)+𝑌(𝑆

𝑘+1
)]×Δ𝑆/2. In the current study,

𝑆
1
= 0.10, 𝑆

𝑛
= 0.34, andΔ𝑆 = 0.01 (supplementarymaterials

2). The AUCmetric has been used in previous brain network
studies and is sensitive in detecting topological alterations of
brain disorders [29, 34–36].

Moreover, to further localize the specific pairs of brain
regions in which functional connectivity was altered in
the PMNE patients, we identified region pairs that exhib-
ited between-group differences in nodal characteristics
and utilized the network based statistics (NBS) method
(http://www.nitrc.org/projects/nbs/) [37] to localize the con-
nected networks that exhibited significant changes in the
PMNE patients.

Specially, we firstly choose the nodes which exhibited
between-group differences in at least one of the three nodal
centralities (the node degree, efficiency, and betweenness).
Then a subset of connections matrix for each participant was
conducted according to these altered nodes. Subsequently,
the NBS approach was applied to define a set of suprathresh-
old links that included any connected components (thresh-
old, 𝑇 = 1.6, 𝑃 < 0.05). To estimate the significance for
each component, the nonparametric permutation approach
(10000 permutations) was also conducted. For a detailed
description, see [37].

2.5. Statistical Analysis. Weused nonparametric permutation
tests [29] for each network metric’s AUC. We compared
the overall topologies (i.e., small-world properties, weight
clustering coefficient, and weight characteristic shortest path
length) and the nodal characteristics (i.e., nodal degree, nodal
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Figure 1:The key small-world parameters of functional network as a function of sparsity threshold. Both PMNE group and non-PMNE group
showed normalized 𝐶

𝑝
larger than 1 and normalized 𝐿

𝑝
approximately equal to 1, indicating both groups exhibited a small-world topology.

PMNE: children with primary monosymptomatic nocturnal enuresis; HC: healthy children; 𝐶
𝑝
: clustering coefficient; 𝐿

𝑝
: characteristic path

length.

efficiency, and betweenness centrality) of the functional
connectivity network between the patients and controls.
Briefly, we first calculated the between-group difference in
the mean value of each network metric. To test the null
hypothesis that the observed group differences could occur
by chance, for each network metric we then randomly
reallocated all the values into two groups and recomputed the
mean differences between the two randomized groups. This
randomization procedure was repeated 10,000 times, and the
95th percentile points of each distribution were used as the
critical values for a two-tailed test of the null hypothesis with
a probability of type I error of 0.05. Additionally, to address
the problem of multiple comparisons, the nodal centralities
were tested on whether they survived a false discovery rate
(FDR) threshold of 𝑞 = 0.05.

3. Results

3.1. Global Topological Organization of the Functional Con-
nectome. The whole-brain connectome of both the PMNE
and control groups exhibited typical features of small-world
topology; that is, compared with matched random net-
works, the functional brain networks had higher clustering
coefficients (𝐶

𝑝
) but similar characteristic path length (𝐿

𝑝
)

(Figure 1).
The patient group showed significantly lower values for
𝐶
𝑝
(𝑃 = 0.007) and higher values for 𝐿

𝑝
(𝑃 = 0.0008). No

significant (𝑃 > 0.05) differences were found in the 𝜆, 𝛾, or
𝜎. In terms of network efficiency, the comparisons revealed
significant decreases in both 𝐸glob (𝑃 = 0.001) and 𝐸loc
(𝑃 = 0.001) in the functional brain networks of the patients
compared with the healthy controls (Figure 2).
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Figure 2: Differences in topological properties of functional brain
networks between pediatric PMNE patients and trauma exposed
non-PMNE controls. Significant differences were found in 𝐶

𝑝

(𝑃 = 0.0066), 𝜆 (𝑃 = 0.0147), 𝐸glob (𝑃 = 0.0013), and 𝐸loc
(𝑃 = 0.0011) between pediatric PMNE patients and non-PMNE
controls. : the black stars indicate the significantly statistical
difference between the two groups (𝑃 < 0.05, uncorrected). Error
bars denote standard deviations. PMNE: children with primary
monosymptomatic nocturnal enuresis; HC: healthy children; 𝐸glob:
global efficiency; 𝐸loc: local efficiency; 𝐶

𝑝
: clustering coefficient; 𝛾:

normalized clustering coefficient; 𝜆: normalized characteristic path
length; 𝐿

𝑝
: characteristic path length; 𝜎: small-worldness.

3.2. Regional Topological Organization of the Functional Con-
nectome. We identified the brain regions showing significant
between-group differences in at least one nodal metric
(𝑃 < 0.05, FDR corrected). Compared with normal control
subjects, the patients showed decreased nodal centralities in
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Table 1: Regions showing decreased nodal centralities in PMNE patients as compared with control subjects.

Brain regions 𝑃 values
Nodal betweenness Nodal degree Nodal efficiency

Left calcarine sulcus 0.460 0.016 0.001
Right calcarine sulcus 0.383 0.023 0.002
Left cuneus 0.124 0.022 0.001
Right cuneus 0.502 0.017 0.002
Left lingual gyrus 0.351 0.008 0.000
Right lingual gyrus 0.128 0.000 0.000
Right superior temporal gyrus 0.020 0.017 0.003
Regions were considered abnormal in PMNE patients if they exhibited significant between-group differences (FDR corrected 𝑃 < 0.05 shown in bold font) in
at least one of the three nodal centralities.

CUN.L CUN.R

STG.R

LING.RLING.L

CAL.L
CAL.R

Figure 3: The region pairs showing altered nodal centralities brain
regions and functional connections in the PMNE patients. These
connections formed a single connected network with 7 nodes and 10
connections, whichwas significantly (𝑃 < 0.05, corrected) abnormal
in the patients. Edge in cyan: increased functional connections
in the PMNE patients; edge in magenta: decreased functional
connections in the PMNE patients. CUN, cuneus; LING, lingual
gyrus; CAL, calcarine sulcus; STG, superior temporal gyrus; R, right
hemisphere; P, posterior. The nodes and connections were mapped
onto the cortical surfaces using the BrainNet Viewer package
(http://www.nitrc.org/projects/bnv).

several brain regions, including the bilateral calcarine sulcus,
the bilateral cuneus, the bilateral lingual gyri, and the right
superior temporal gyrus (Figure 3, Table 1). There were no
significantly increased nodal centralities.

3.3. Disrupted Functional Network Connectivity in the
Patients. Using NBS [37], we identified a connected network
with 7 nodes and 10 connections; this network was signif-
icantly altered in the PMNE group (𝑃 < 0.05, corrected)
(Figure 3, Table 2). Within this network, both decreased
and increased connections were detected in the patients
compared with the control subjects. The connections of the
left cuneus in the bilateral calcarine sulcus, the left cuneus in
the right cuneus, and the left cuneus in the right lingual gyrus

were decreased. Furthermore, the connections of the right
lingual gyrus in the left lingual gyrus and the right lingual
gyrus in bilateral calcarine sulcus were also decreased. On
the other side, the increased connections included the right
superior temporal gyrus in the bilateral calcarine sulcus and
the right superior temporal gyrus in the left cuneus.

4. Discussion

4.1. Global Topological Organization of the Functional Con-
nectome. In our study, we computed small-word metrics of
90 node networks based on the ALL template and found that
𝜆, 𝛾, and 𝜎 of the functional networks were not significantly
changed in the PMNE group; however, the patient group
showed significantly lower values for 𝐶

𝑝
and higher values

for 𝐿
𝑝
, and the network efficiency parameters 𝐸glob and 𝐸loc

were significantly decreased in the functional brain networks
of the patients.

According to graph theory, a high 𝐶
𝑝
indicates that the

nodes tend to form dense regional cliques, implying that the
efficiency in local information transfer and processing is high
[38]; a low 𝐿

𝑝
indicates a high transfer speed through the

overall network, implying that the network has a high global
efficiency [38]. Thus, the 𝐶

𝑝
and 𝐸loc were reduced in PMNE

group, which demonstrated that the efficiency in local infor-
mation transfer and processing is low in childrenwith PMNE.
The higher 𝐿

𝑝
and lower 𝐸glob in the PMNE group suggested

that the brain network has a low global efficiency and a low
ability of integrating information. Our present results are
correlated with the previous findings that the efficiency of
regional information processing and the efficiency of overall
information transfer across the entire network were reduced
in children with PMNE [38]. Therefore, our results suggest
that intrinsic brain functional organization was disrupted in
PMNE and that there was reduced efficiency in information
exchange and integration in both local and global regions.

4.2. Regional Topological Organization of the Functional Con-
nectome. Childrenwith PMNE showed significant decreased
nodal efficiency in the bilateral calcarine sulcus, bilateral
cuneus, bilateral lingual gyri, and right superior temporal
gyrus. The calcarine sulcus, cuneus, and lingual gyrus are in
the occipital lobe, which is part of visual network. The right
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Table 2: Altered functional connections in the PMNE patients group as compared to the control group.

Region 1 Region 2 𝑡-score Increase/decrease
Right superior temporal gyrus Left cuneus 3.95 Increase
Right superior temporal gyrus Left calcarine sulcus 2.29 Increase
Right superior temporal gyrus Right calcarine sulcus 2.21 Increase
Left cuneus Left calcarine sulcus 2.25 Decrease
Left cuneus Right cuneus 1.75 Decrease
Left cuneus Right calcarine sulcus 1.70 Decrease
Left cuneus Right lingual gyrus 1.65 Decrease
Right lingual gyrus Left lingual gyrus 3.36 Decrease
Right lingual gyrus Left calcarine sulcus 2.06 Decrease
Right lingual gyrus Right calcarine sulcus 1.72 Decrease
Connections are listed in descending order of statistical significance (𝑃 < 0.05). These connections formed a connected network that was identified using a
network-based statistical approach. See Figure 2 for a graphical representation of these connections.

superior temporal gyrus is an essential structure involved in
auditory processing and part of the auditory network.

Tomasi and Volkow reported that the cuneus is one
of 4 major cortical hubs, and the cuneus hub network
is both correlated with the somatosensory network and
anticorrelated with the default mode network activity of
other networks [39]. The calcarine cortex, lingual gyri,
fusiform, occipital gyri, and paracentral lobule were the
secondary hubs identified in this network, which suggests
that the visual processing performed by the secondary hubs
is integrated in the cuneus [39]. A previous study suggests
that the cuneus and lingual gyrus take part in stop-down
processes of visuospatial attention [40]. The cuneus is an
important node of the default mode network and is also
affected by attention-deficit/hyperactivity disorder [41, 42].
Decreased connectivity in the left cuneus has also been
found in individuals with borderline personality disorder
[43]. Additionally, gray matter volume in the cuneus has
been suggested to be associated with better inhibitory con-
trol in bipolar depression patients [44], and dysfunction
has been reported in the response inhibition in children
with PMNE [15]. Thus, reduced nodal efficiency in the
cuneus may point to insufficiencies in communications
between executive control regions and visual processing
regions.

In our results, the nodal efficiency was reduced in the
bilateral lingual gyri, and the degree was reduced in the
right lingual gyrus. Interestingly, the lingual gyrus has been
associated with psychopathology, such as major depression
[45], posttraumatic stress disorder [46, 47], and childhood
maltreatment [48]. A previous task related neuroimaging
study reported that the lingual gyrus was associated with
the identification of facial expressions of emotion [49].
Equit et al. reported that children with nocturnal enuresis
processed emotions differently from children with attention-
deficit/hyperactivity disorder and controls [50]. Thus, we
speculated that the abnormality in the lingual gyri would be
related to the burden of disease and negative psychological
factors.

4.3. Disrupted Functional Network Connectivity in the
Patients. The NBS method analysis showed increased con-
nections between auditory system (right superior temporal
gyrus) and visual system and decreased connections within
the visual network, including the bilateral calcarine sulcus,
the bilateral cuneus, and the bilateral lingual gyri. These
findings suggest that connectivity of the auditory and visual
networks is unbalanced in children with PMNE.

Visual information is the main source of information,
and the visual network is closely linked to other brain
networks. When the visual network functions abnormally,
a great potential for harm is induced, possibly resulting
in damage to cognitive function. Abnormal visual network
functionality can also result in reduced efficiency of the
global network and can affect global communication and
integration. The network efficiency of both 𝐸glob and 𝐸loc in
the functional brain networks of the patients was significantly
decreased. This observation suggests that the disruption
of brain communication and integration may also be an
important factor in PMNE disorders.

Several issues must be addressed further. First, the brain
networks were constructed by parcellating the entire brain
into 90 brain regions at a coarsely regional level. Future
studies should use a more precise parcellation strategy or
spatial scale to overcome this challenge. Second, the func-
tional brain networks constructed from the r-fMRI data were
largely constrained by anatomical pathways [51, 52]. Thus,
combining multimodal neuroimaging data could facilitate
the uncovering of the structure-function relationships in
PMNE patients. Finally, the results in this paper are different
from those of our previous resting-state fMRI study [16],
which focused on local intrinsic activity. We did not identify
a direct relationship between the results in this study and the
pathology of PMNE. However, this study sheds light on the
functional connectivity of children with PMNE and suggests
that there may be potential cognition dysfunction in children
with PMNE.

It is important to note some limitations in this study. First,
functional brain networkswere constructed at a regional level
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by parcellating the whole brain into 90 regions based on
a previously published atlas. Brain networks derived using
different parcellation schemes or at different spatial scales
exhibit distinct topological architectures [53, 54]. Further
studies are needed to determine which brain parcellation
strategy or spatial scale is more appropriate for the charac-
terization of network topology in PMNE. Second, we have
not found the direct relationship between our results and
the pathology of PMNE. The regions showing abnormality
nodal centralities in PMNE patients were not involved in
the micturition neural control network. However, our results
give direct evidence that the PMNE probably has cognitive
problem.

5. Conclusion

This is the first study to investigate the characteristics of
PMNE patients with network-based graph theory using
resting-state fMRI. In the PMNE group, there were reduced
local and global efficiency in the brain, as well as disturbances
in connectivity.The alterations in network topologies primar-
ily occurred in the right superior temporal gyrus (auditory
network), and decreased connectivity was observed in the
visual network, including the bilateral calcarine sulcus, the
bilateral cuneus, and the bilateral lingual gyri. Our findings
suggest that PMNE includes brain network alterations, which
may affect both local and global communication and integra-
tion.
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Increasing neuroimaging evidence suggests that autism patients exhibit abnormal brain structure and function. We used the
Autism Brain Imaging Data Exchange (ABIDE) sample to analyze locally focal (∼8mm) functional connectivity of 223 autism
patients and 285 normal controls from 15 international sites using a recently developed surface-based approach. We observed
enhanced local connectivity in the middle frontal cortex, left precuneus, and right superior temporal sulcus, and reduced local
connectivity in the right insular cortex. The local connectivity in the right middle frontal gyrus was positively correlated with the
total score of the autism diagnostic observation schedule whereas the local connectivity within the right superior temporal sulcus
was positively correlated with total subscores of both the communication and the stereotyped behaviors and restricted interests of
the schedule. Finally, significant interactions between age and clinical diagnosis were detected in the left precuneus.These findings
replicated previous observations that used a volume-based approach and suggested possible neuropathological impairments of
local information processing in the frontal, temporal, parietal, and insular cortices. Novel site-variability analysis demonstrated
high reproducibility of our findings across the 15 international sites. The age-disease interaction provides a potential target region
for future studies to further elucidate the neurodevelopmental mechanisms of autism.

1. Introduction

Autism spectrum disorder (ASD) is an increasingly rec-
ognized group of neurodevelopmental disorders with early
onset and lifelong persistence. ASD is reported to occur in
∼1% of children [1] and is characterized by abnormalities in
language, social interaction, and a range of stereotyped and
repetitive behaviors.

Neuroimaging studies of ASD have accumulated a wealth
of empirical data on the abnormal brain connectomics
associated with ASD [2–4]. Reduced long distance but
increased local connectivity in ASD has been proposed [5],
and a number of FMRI studies have consistently found
underconnectivity in ASD [2, 6–8]. However, a significant
number of other studies reportmixed or increased functional
connectivity in ASD [9–11]. Regarding these inconsistencies,

Muller and colleagues systematically illustrated that different
methodological choices could produce different results in
functional connectivity studies [4]. Althoughmethodological
choices may affect the statistical results of ASD studies, a
consistent and reliable demonstration of brain function using
a large sample would be a good step towards elucidating the
brain mechanisms of ASD.

Using a local connectivity index of functional homo-
geneity, ReHo, both increases and decreases of ReHo were
observed in resting-state FMRI studies of ASD [12, 13].
ReHo is a promising index of human brain function that
has been applied to multiple neuropsychiatric disorders
[2, 12–14]. It employs Kendall’s coefficient of concordance
(KCC) to measure the functional coherence between a given
area (e.g., a voxel) and its adjacent areas (e.g., neighboring
voxels) [15]. Previous studies on spontaneous brain activity
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in ASD used volume-based ReHo (3dReHo), ignoring the
two-dimensional nature of the laminar cerebral cortex [2, 14].
In volume space, voxel’s neighbors may not be close to the
voxel across the cortical mantle. Recently, our lab developed
a surface-based ReHo method (2dReHo) that demonstrated
moderate to high test-retest reliability and correlated with
neurobiological information processing hierarchies [16, 17].
The present study began by testing the consistency between
the previous 3dReHo and our new 2dReHo results across a
large-scale autism sample. Furthermore, as revealed by our
recent work [17], 2dReHo is a neurobiologically meaningful
metric of the functional organization of the human brain.We
thus aimed to examine the effects of ASD on brain functional
organization.

Abnormal cortical development and organization in chil-
dren with ASD has been characterized in terms of brain
cortical volume, surface area, and cortical thickness [18,
19]. Previous genetic findings, coupled with brain imaging
studies, suggested a potential unifying model of ASD in
which higher-order association areas of the brain that nor-
mally connect to the frontal lobe are partially disconnected
during development [20, 21]. In general, autism is conceived
as a heterogeneous childhood neurodevelopmental disorder
because of its early onset and lifelong persistence. Using
223 ASD and 285 healthy controls (HC) from the autism
brain imaging data exchange (ABIDE) lifetime sample [2,
22], we examined both group differences and diagnosis-age
interactions in local functional homogeneity measured by
2dReHo, as well as behavioral correlations in ASD.

2. Materials and Methods

2.1. Participants and MR Imaging. The ABIDE sample was
part of the 1000 FunctionalConnectomesProject (FCP: http://
fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html) and
the International Neuroimaging Data-Sharing Initiative
(INDI: http://fcon 1000.projects.nitrc.org/indi/pro/nki.html)
and included RFMRI images of 539 ASD (aged 17.01 ±
8.37) and 573 healthy controls (aged 17.08 ± 7.72) from 18
international sites [2]. Detailed phenotypic and scanning
information can be found at the ABIDE website: http://fcon
1000.projects.nitrc.org/indi/abide/. The overlap of phenotyp-
ic protocol across sites consisted of age at scan, sex, IQ, and
diagnostic information. All contributions were based on
studies approved by the local institutional review boards,
and written informed consent was obtained from the parents
of all the early onset patients and corresponding healthy
controls, as well as all the adult participants.

Similar to the ABIDE consortium paper [2], 794 subjects
from the original participant pool were selected for sub-
sequent imaging analyses. The criteria were (1) individuals
without other comorbidities; (2) male subjects, as they repre-
sent 90%of theABIDE sample; (3) siteswith fIQ estimated for
>75% and subjects with fIQ scores; (4) individuals with fIQ
within 2 s.d. of the overall ABIDE samplemean (i.e., 108 ± 15);
(5) sites with at least 9 participants per group after the above
exclusions.

2.2. Image Preprocessing. For each participant, all MRI
images were preprocessed with the Connectome Computa-
tion System (CCS: http://lfcd.psych.ac.cn/ccs.html) [16].This
system was developed based on FCP scripts for providing
a computational platform for multimodal brain connec-
tome analysis by integrating AFNI [23, 24], FSL [25], and
FreeSurfer [26] and has been used in our previous studies
[16, 17].

All structural MRI images were processed with the
CCS structural pipeline. Briefly, the structural images were
processed for cortical surface reconstruction [27–31], includ-
ing (1) noise removal with a spatially adaptive nonlocal
means filter [32, 33] operation and correction for intensity
inhomogeneity; (2) brain extraction with a hybrid water-
shed/surface deformation; (3) tissue segmentation of the
cerebrospinal fluid (CSF), white matter (WM), and deep
gray matter (GM); (4) cutting plane generation to disconnect
the two hemispheres and subcortical structures; (5) fixation
of the interior holes of the segmentation; (6) a triangular
mesh tessellation over the GM-WM boundary and mesh
deformation to produce a smooth GM-WM interface (white
surface) and GM-CSF interface (pial surface); (7) topological
defect correction on the surface; (8) individual surface mesh
inflated into a sphere; and (9) estimation of the deforma-
tion between the resulting spherical mesh and a common
spherical coordinate system that aligned the cortical folding
patterns across subjects.

All functional images were preprocessed with the CCS
functional pipeline, involving the following steps: (1) elimi-
nating the first 5 EPI volumes from each scan to allow for
signal equilibration; (2) despiking time series to detect and
reduce outliers (spikes) using an hyperbolic tangent function;
(3) slice timing using Fourier interpolation to temporally
correct the interleaved slice acquisition; (4) aligning each
volume to a “base” image (the mean EPI image) using
Fourier interpolation to correct between-head movements;
(5) normalizing the 4D global mean intensity to 10,000
to allow intersubject comparisons; (6) regressing out the
WM/CSF mean time series and the Friston-24 motion time
series to reduce the effects of these confounding factors [16,
34]; (7) filtering the residual time series with a passband
filter (0.01–0.1Hz) to extract low-frequency fluctuations; (8)
removing both linear and quadratic trends; and (9) aligning
individual motion corrected functional images to the indi-
vidual anatomical image using a GM-WM boundary-based
registration (BBR) algorithm [35]. Individual preprocessed
4D RFMRI time series were projected onto the fsaverage5
standard cortical surface with 10,242 vertices per hemisphere
and gaps of 4mm on average [36].

2.3. Quality Control Procedure. The CCS quality control
procedure provides an interactive environment for users
(http://lfcd.psych.ac.cn/ccs/QC.html) to examine the quality
of (1) brain extraction or skull stripping, (2) brain tissue
segmentation, (3) pial and white surface reconstruction, (4)
functional-structural image realignment with BBR registra-
tion, and (5) head motion during RFMRI, calculated using
several quantities: (1) the maximum distance of translational
head movement (maxTran), (2) the maximum degree of
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Table 1: ABIDE sample composition in the current study.

Site name ASD number HC number Age (years)
Caltech 4 6 29.5 ± 11.8
CMU 7 2 27.8 ± 6.0
KKI 3 11 10.0 ± 1.5
Leuven 14 12 22.8 ± 3.6
MaxMum 15 24 26.3 ± 11.0
NYU 30 69 15.7 ± 6.6
OHSU 9 13 10.5 ± 1.6
Olin 7 11 17.2 ± 3.0
Pitt 22 21 19.0 ± 6.9
Stanford 7 9 10.1 ± 1.7
Trinity 17 24 16.9 ± 3.4
UCLA 35 29 13.1 ± 2.4
UM 9 16 16.3 ± 3.8
USM 35 22 23.8 ± 8.2
Yale 9 16 12.1 ± 2.6

rotational headmovement (maxRot), (3) themean framewise
displacement (meanFD) [37, 38], and (4) the minimal cost of
the BBR coregistration (mcBBR). All subjects with bad brain
extraction, tissue segmentation, and surface reconstruction
were excluded from the subsequent computation. All datasets
filled the following criteria: (1) maxTran ≤ 2mm, (2) maxRot
≤ 2∘, (3) meanFD ≤ 0.4mm, and (4) mcBBR< 0.75. We were
left with a total of 508 subjects (223 ASD, 285 HC) from 15
different sites passing the above quality control procedure for
the final statistical analysis (see Table 1 for the composition of
the final sample).

2.4. 2dReHo and Statistics. We applied surface-based
2dReHo to characterize local functional homogeneity
in both ASD and HC subjects due to its high test-retest
reliability [16] neurobiological significance [17]. Specifically,
for a given vertex V

0
on the surface grid fsaverage5, we

identified its 𝐾 nearest neighbors V
𝑖=1,2,...,𝐾

and denoted by
V
𝑖
(𝑡) their RFMRI time series. The 2dReHo measure of this

vertex was computed as Kendall’s coefficient of concordance
(KCC) using these time series. The mathematical formula
is shown as (1), where 𝑅

𝑖=1,...,𝑛
represents the ranks of V

𝑖
(𝑡),

𝑛 is the number of time points, 𝑅
𝑖
is the mean rank across

its neighbors at the 𝑖th time point, and 𝑅 is the overall
mean rank across all neighbors and across all the time
points. A vertexwise 2dReHo surface map was produced by
repeating this computation procedure for every vertex on the
surface of both hemispheres. Both length-one (6 neighbors)
and length-two (19 neighbors) 2dReHo maps, denoted by
2dReHo1 and 2dReHo2, respectively, were generated for
subsequent analyses:

KCC =
∑
𝑛

𝑖=1
𝑅
2

𝑖
− 𝑛 (𝑅)

2

(1/12)𝐾
2
(𝑛
3
− 𝑛)
= 12

∑
𝑛

𝑖=1
(𝑅
𝑖
)
2

(𝑛
3
− 𝑛)
− 3
(𝑛 + 1)

(𝑛 − 1)
. (1)

A general linear model was constructed by modeling
diagnosis (ASD versus HC), site, age, and fIQ as covariates
of interests (see details in (2)). Notably, before the group level

analysis of 2dReHo, we first removed the effects of meanFD,
mcBBR, Jacobian values of white surface, and global mean
(gm) 2dReHo (see details in (3)). We have found that this
computation is equivalent to directly including all these fac-
tors in the final group analysis for the purpose of examining
the effects of the variables of interest. Here, the mean FD
indicates the mean framewise displacement [37] and mcBBR
indicates the warp distortion for BBR-based function-to-
structure realignment. The vertexwise significance values for
groupdifference and age by group interactionswere corrected
formultiple comparisons with a clusterwisemethod based on
random field theory (cluster-defining 𝑃 = 0.01, cluster-level
corrected 𝑃 = 0.05):

𝑌 = 𝛽
1
× age + 𝛽

2
× site + 𝛽

3
× fIQ

+ 𝛽
4
× Group + 𝛽

5
× Group × age + 𝑒,

(2)

𝑌
adj
= 𝑌 − (𝛽gm × gm + 𝛽fd ×meanFD

+𝛽bbr ×mcBBR + 𝛽jac × JAC) .
(3)

2.5. Behavioral Correlations. Autism diagnostic observation
schedule (ADOS) [39], autism diagnostic interview (ADI),
and the Gotham algorithm of the ADOS (ADOS GOTHAM)
were selected for the final behavioral correlation analyses, as
each of these subscale scores represented >40% of the whole
patient group. Within each cluster showing a significant
group difference in 2dReHo, we calculated the Pearson
correlation coefficient between the average 2dReHo values of
the cluster and the behavioralmeasurements. ADOS includes
the total score (ADOS TOTAL), the communication total
subscore (ADOS COMM), the social total subscore
(ADOS SOCIAL), and the stereotyped behaviors and
restricted interests total subscore (ADOS STEREO BEHAV).
ADI includes the reciprocal social interaction subscore
(A) total for the autism diagnostic interview-revised
(ADI R SOCIAL TOTAL A), the abnormality in communi-
cation subscore (B) total for the autism diagnostic inter-
view-revised (ADI R VERBAL TOTAL BV), the restricted,
repetitive, and stereotyped patterns of behavior subscore
(C) total for the autism diagnostic interview-revised
(ADI R RRB TOTAL C), and the abnormality of devel-
opment evidence at or before 36-month subscore
(D) total for the autism diagnostic interview-revised
(ADI R ONSET TOTAL D). ADOS GOTHAM includes
the social affect total subscore for the Gotham algorithm of
the ADOS (ADOS GOTHAM SOC AFFECT), restricted
and repetitive behaviors total subscore for the Gotham
algorithm of the ADOS (ADOS GOTHAM RRB), the
sum of the social affect total and restricted and repetitive
behaviors total (ADOS GOTHAM TOTAL), and the
individual calibrated severity score for the Gotham algorithm
of the ADOS (ADOS GOTHAM SEVERITY).

3. Results

3.1. Sample Composition. The final analysis was conducted
on 508 participants from 15 sites. The details of the sample
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Table 2: Cortical clusters demonstrating significant differences in 2dReHo between ASD and HC.

Cluster Vertex number MNI coordination − sign(𝑡)log
10
(𝑃)

Middle frontal sulcus 52 30, −41, −18 2.86
Superior frontal sulcus 39 20, −7, −60 3.35
Precuneus gyrus 34 6, 71, −47 2.95
Middle frontal gyrus 32 33, −32, −32 3.05
Middle frontal sulcus 78 −24, −41, −32 3.27
Superior temporal sulcus 38 −45, 37, 3 4.96
Middle frontal gyrus 35 −39, −46, −20 3.28
Insular cortex 39 −38, 10, −19 −3.45
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Figure 1: Sample characteristics of the ABIDE sites included in the
final analyses.

composition are presented in Table 1. The number of partic-
ipants per site ranged from 3 to 35 ASD patients and from 2
to 69 HC subjects. The age distribution is shown in Figure 1.
The red and blue bars represent the ASD and HC numbers
for a particular age bin, respectively. There is no significant
difference in age between the ASD andHC subjects (𝑡 = 1.40;
𝑃 = 0.16). Results derived with 2dReHo1 and 2dReHo2 were
almost identical and we thus presented the findings based
upon 2dReHo1, which were detailed in below.

3.2. Group Differences in 2dReHo. There was no difference in
the global 2dReHo between ASD andHC subjects (𝑡 = −0.33,
𝑃 = 0.75). Figure 2 depicts the brain areas that significantly
differed betweenASD andHC subjects.The anatomical labels
and locations are summarized in Table 2. The middle frontal
cortex, the left precuneus gyrus, and right superior temporal
sulcus exhibited increased local functional homogeneity
(warm colors) in ASD compared with HC. The right insular
cortex had decreased local functional homogeneity (cool
colors) in ASD compared to HC subjects.

3.3. Age by Diagnosis Interactions. The age-diagnosis inter-
action was examined for differences in correlations between
age and local functional homogeneity (i.e., the developmental
effect) between ASD and HC subjects. Significant group by
age interaction effects were detected in the left precuneus
gyrus (Figure 3(a)), where ASD patients demonstrated lower
2dReHo than HC subjects (Figure 2). To look into the details
of 2dReHo changes across this large age span, we also
visualized the age dependence of 2dReHo as scatter plots for
ASD and HC subjects (Figure 3(b)). Clearly, the scatter plot
shows that ASD subjects had increased 2dReHo with age,
whereas HC subjects had decreased 2dReHo, the opposite
pattern, with age.

3.4. Site Effects and Reproducibility. Because this was a
multisite study, we included site as one covariate of interest.
Site effects revealed by the statistical model are illustrated
in Figure 4. Multiple regions showed significant site effects,
implying a remarkable variability of 2dReHo across the 15
international sites. Specifically, the left pre/postcentral gyrus,
the middle/inferior frontal gyrus, the left medial prefrontal
cortex, the left superior parietal gyrus, and cingulate gyrus
exhibited significant site variability in 2dReHo. In contrast,
the superior temporal gyrus, the right postcentral gyrus, the
inferior part of the precentral sulcus, the inferior frontal
sulcus, the right insular cortex, the right precuneus, the
left calcarine sulcus, the occipital-temporal gyrus, and right
medial prefrontal cortex exhibited an inverse pattern of site
variability.

To further investigate the impacts of site variability on the
findings presented, we applied a leave-one-site-out validation
(LOSOV) approach. Specifically, we left one of the 15 sites out
from the ASD-HC comparisons and repeated the group level
analyses using the datasets from the other 14 sites. The site
reproducibility of the current findings was measured as the
number of replications of the voxelwise ASD-HC significance
maps. Figure 5 illustrates the reproducibility of the findings,
which were highly replicated for the middle frontal cortex,
the right superior temporal sulcus, and left precuneus.

3.5. Behavioral Correlations. The mean 2dReHo values
within the right middle frontal gyrus were positively cor-
related with the ADOS TOTAL scores (𝑟 = 0.1728; 𝑃 =
0.0171), whereas the mean 2dReHo values within the right
superior temporal sulcus were positively correlated with
both the ADOS COMM (𝑟 = 0.1542; 𝑃 = 0.0428) and
ADOS STEREO BEHAV (𝑟 = 0.1620; 𝑃 = 0.0477) scores.
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Figure 2: Group differences in local functional homogeneity between autism spectrum disorder (ASD) patients and healthy controls (HC).
The vertexwise significance of group comparisons is measured with signed log
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transformed 𝑃 values and is rendered onto the cortical

surfaces of the left hemisphere (LH) and right hemisphere (RH). These inflated surfaces are defined by FreeSurfer as the fsaverage5 surface
model and visualized from six different (lateral, medial, posterior, anterior, dorsal, and ventral) views. Light gray colors indicate a cortical
gyrus whereas dark gray colors show a cortical sulcus.

4. Discussion

Based upon an aggregated large sample with a wide age range,
the ABIDE consortium paper [2] examined different aspects
of the functional architecture of autism brains using various
derivatives but did not explore age or site effects. The current
study quantitatively examined the local functional homo-
geneity of ASD and age/site effects. Using the ABIDE resting-
state FMRI samples of 223 ASD patients and 285 normal
controls from 15 different sites, we observed increased local
functional homogeneity measured by 2dReHo in the middle
frontal cortex, the left precuneus, and the right superior
temporal sulcus and decreased 2dReHo in the right insular
cortex. Within the left precuneus, ASD patients exhibited
decreased 2dReHo with age, but normal controls showed
increased 2dReHo with age. Notably, 2dReHo demonstrated
a widely distributed spatial pattern of variability across
sites. Across-site reproducibility of the observation was thus
conducted to show the dependency of our findings, which
revealed a novel contribution to assessment to both the
variability and reproducibility of the findings across sites in a
multicenter design. These findings indicate alterations in the
complexity of functional information processing across the

associative cortex and further correlate with multiple behav-
ioral outcomes in ASD. The age-disease interaction offers a
target region, the left precuneus, for future developmental
studies on ASD.

Consistent with the volume-based 3dReHo method used
by Di Martino et al. [2], the middle frontal cortex exhibited
increased ReHo in ASD patients. The reduction of ReHo in
the right insular cortex in ASD is consistent with a previous
study of adults with autism [13]. A study on children with
autism [12] reported that the right temporal region exhibited
greater ReHo in autism compared with typical develop-
ing controls. These consistencies and replications validate
our computation and analyses and suggest a possible neu-
ropathology in the frontal, temporal, precuneus (parietal),
and insular cortices. A widely distributed spatial pattern of
local functional organization across the association cortex is
disrupted inASD.Therewere also some inconsistencies in the
group differences in local functional connectivity between
ASDpatients andhealthy controls across the previous studies.
The reason may lie in the heterogeneity of the disorder and
the different age distribution of the participants, as well as dif-
ferent methodological choices [4]. More importantly, if ASD
was indeed characterized by an atypical neurodevelopmental
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pattern, even a moderate difference in the age range could
have a substantial influence on the results [40]. Beyond these
inconsistencies, the implication of the spatial patterns of local
functional organization will be discussed in the following
sections.

We observed increased local functional homogeneity in
ASD patients compared to normal controls in the middle
frontal cortex, part of the prefrontal cortex. In addition to the
above evidence for frontal alterations in ASD with 2dReHo,
both the fractional amplitude of low-frequency fluctuations
and the degree centrality of human brain function exhibited
impaired patterns in the frontal cortex in ASD [2]. During
brain development, in ASD, higher-order association areas
that normally connect to the frontal lobe are partially dis-
connected [20], and local connectivity is strengthened while
long-distance connectivity is impaired in the frontal cortex
[5]. Structural abnormalities, such as a thicker left frontal
cortex, have also been reported [19]. Based upon our recent
study on the neurobiological significance of ReHo in [17],
increased ReHo in the middle frontal cortex may indicate
reduced functional segregation or a reduced complexity of
local information processing. The frontal cortex is responsi-
ble for executive function, which may involve coordination
of multiple human brain networks [17]. ASD may involve
disrupted functional segregation in this area, which may
induce abnormal behaviors in patients.

The superior temporal sulcus showed increased ReHo in
ASD compared to normal controls. Similar abnormalities in
the superior temporal sulcus have been characterized using
cerebral blood flow (CBF), brainmorphology, and functional
metrics in previous studies. In greater detail, metabolism
was reduced, as indicated by decreased rCBF, in autistic
patients at the superior temporal regions [41]. A decreased
concentration of grey matter in the superior temporal sulcus
was observed in autistic children [42]. Directly related to
the current report, Shukla and colleagues observed that the
right temporal regions exhibited greater ReHo in autism
compared with typically developing controls [12]. Using the
ABIDE datasets, Anderson and colleagues recently reported
the best accuracy of whole brain classification between ASD
and HC using intrinsic functional connectivity of Wernicke’s
area, which is located in the temporal lobe [22]. Increases of
2dReHo in the superior temporal sulcus implied decreases
of local functional separation or differentiation [17] and a
decreased complexity of information processing [17, 43].
Taking this explanation a step further because this area is a
part of the language network [44] and ASD patients exhibit
abnormal functional architecture of the superior temporal
sulcus, these results may explain impaired language function
and social interactions in ASD.

The right insula was the only region with decreased ReHo
in ASD patients. Abnormality of the insula is one of the most
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consistent findings of fMRI studies on ASD. In addition to
abnormal ReHo in the insular areas of ASD [13], alterations
of VMHC (voxel-mirrored homotopic connectivity) and DC
in the insular were observed in ASD [2]. The classification
accuracy betweenASD andHCusing functional connectivity
was best in the insular cortex using the same ABIDE data as
the current study [22]. Meanwhile, decreased left posterior
insular activity during auditory language in autism was
reported previously [45]. A longitudinal study on children
aged 5–11 years showed decreases in left posterior insular
activity with age [46]. Given the neurobiological significance
of ReHo [17], decreased ReHo in the insular cortex may
indicate decreased functional integration. Considering the
roles of the insular region in emotion and decision-making
[47] and as a hub in supporting the brain connectome [48,
49], alterations of local functional homogeneity in the insular
area may correlate with impaired emotion processing and
other high-level cognitive processings in autism.

ASD patients and normal controls displayed different
trends of age dependencies. This finding may help to explain
the neurodevelopmental mechanisms of ASD. Other studies
reported abnormalities in the left precuneus in ASD com-
pared with normal controls. Functional alterations of VMHC
[22] and a thicker cortex in the left precuneus gyrus [19]
were found in two separate studies. Mak-Fan and colleagues
confirmed a similar age by group interaction pattern of
overall brain volume, overall grey matter volume, overall
surface area, andmean thickness of the brain in ASD andHC
[19]. Another study also explored the age by group interaction
in ASD focusing on brain morphology [18]. Importantly,
the current study found consistent group differences and
age by group interactions in the left precuneus gyrus. The
left precuneus may therefore be a target region for future
developmental studies of ASD.

The increases of local functional homogeneity in the right
middle frontal gyrus and right superior temporal sulcus in
ASD are associated with the severity of ASD symptoms.
Considering both the high test-retest reliability [16] and
the emerging neurobiological significance of 2dReHo, we
propose that 2dReHo may serve as a neuroimaging marker
for the diagnosis, treatment, and prevention of ASD in the
future [50]. As illustrated in the group difference subsection
of the Discussion, the frontal cortex and superior temporal
sulcus are two major areas of autism studies for both brain
structure and function [20, 51]. The current findings were
also mostly reproducible across different sites for these two
regions (Figure 5). The correlations of average ReHo with
ADOS symptoms indicate that these regions may be targets
for further explorations of the neuropathology of ASD [51].

4.1. Limitations and Future Directions. The ABIDE consor-
tium paper [2] reported less commonly explored regions
such as the thalamus. In the current study, the subcortical
regions and cerebellum were excluded due to the limitation
of the surface-based ReHo method. These regions may be a
direction of future studies by developing surface-based ReHo
approaches for these noncerebral structures.The second lim-
itation of ReHo is its nature of local short-range connectivity
and being not suitable for characterizing global long-range

connectivity. A sample limitation is that the sample was
composed of mainly males with ASD (>90%). Therefore,
sex differences may be crucial in ASD progression during
brain development, and future studies with a comparable
number of male and female ASD patients could improve our
understanding of the neuropathology of the disorder.Thirdly,
the subgroup of ASD generally included autism, Asperger’s
syndrome, or PDD-NOS. There is an ongoing debate about
clinical standards for the classification of the four subgroups.
However, enough samples for each subgroup would give
more insight into the classification in terms of neuroimaging-
based data mining approaches (see a pilot demonstration
in early onset schizophrenia in [52]). Finally, all age-related
findings observed in the present study are derived from
a cross-sectional dataset and should be interpreted with
caution that these age-related changes can be interpreted
as developmental effects only with a longitudinal sample in
future.

5. Conclusions

In the current study, using the ABIDE sample with 223 ASD
and 285 healthy controls with wide age span, we observed
increased local functional homogeneity ReHo in the middle
frontal sulcus and gyrus, the left precuneus gyrus, and
right superior temporal sulcus, together with decreased local
functional homogeneity ReHo in the right insular. Significant
group by age interactions in the left precuneus gyrus were
also found, and the group difference (increased 2dReHo in
ASD) decreased with age. At the same time, the average
2dReHo values within the right middle frontal gyrus were
significantly positively correlatedwithADOS TOTAL scores,
and the average 2dReHo values within the right superior
temporal sulcus were significantly positively correlated with
ADOS COMM and ADOS STEREO BEHAV scores. All of
these findings, especially the consistent group differences,
the interaction effects in the precuneus gyrus, and the
behavioral correlations, contribute to our understanding of
the neurodevelopmental pathological mechanisms of ASD.
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[11] P. Shih, M. Shen, B. Öttl, B. Keehn, M. S. Gaffrey, and R.-A.
Müller, “Atypical network connectivity for imitation in autism
spectrum disorder,” Neuropsychologia, vol. 48, no. 10, pp. 2931–
2939, 2010.

[12] D. K. Shukla, B. Keehn, and R. A. Müller, “Regional homo-
geneity of fMRI time series in autism spectrum disorders,”
Neuroscience Letters, vol. 476, no. 1, pp. 46–51, 2010.

[13] J.-J. Paakki, J. Rahko, X. Long et al., “Alterations in regional
homogeneity of resting-state brain activity in autism spectrum
disorders,” Brain Research, vol. 1321, pp. 169–179, 2010.

[14] D. H. Peng, K. D. Jiang, Y. R. Fang et al., “Decreased regional
homogeneity in major depression as revealed by resting-state
functional magnetic resonance imaging,” Chinese Medical Jour-
nal, vol. 124, no. 3, pp. 369–373, 2011.

[15] Y. Zang, T. Jiang, Y. Lu, Y.He, and L. Tian, “Regional homogene-
ity approach to fMRI data analysis,” NeuroImage, vol. 22, no. 1,
pp. 394–400, 2004.

[16] X.-N. Zuo, T. Xu, L. Jiang et al., “Toward reliable characteri-
zation of functional homogeneity in the human brain: prepro-
cessing, scan duration, imaging resolution and computational
space,” NeuroImage, vol. 65, pp. 374–386, 2013.

[17] L. Jiang, T. Xu, Y. He et al., “Toward neurobiological characteri-
zation of functional homogeneity in the human cortex: regional
variation, morphological association and functional covariance
network organization,” Brain Structure and Function, 2014.

[18] A. Raznahan, R. Toro, E.Daly et al., “Cortical anatomy in autism
spectrum disorder: an in vivo MRI study on the effect of age,”
Cerebral Cortex, vol. 20, no. 6, pp. 1332–1340, 2010.

[19] K. M. Mak-Fan, M. J. Taylor, W. Roberts, and J. P. Lerch,
“Measures of cortical grey matter structure and development in
children with autism spectrum disorder,” Journal of Autism and
Developmental Disorders, vol. 42, no. 3, pp. 419–427, 2012.

[20] D. H. Geschwind and P. Levitt, “Autism spectrum disorders:
developmental disconnection syndromes,” Current Opinion in
Neurobiology, vol. 17, no. 1, pp. 103–111, 2007.

[21] E. Courchesne and K. Pierce, “Why the frontal cortex in autism
might be talking only to itself: local over-connectivity but long-
distance disconnection,” Current Opinion in Neurobiology, vol.
15, no. 2, pp. 225–230, 2005.

[22] J. A. Nielsen, B. A. Zielinski, P. T. Fletcher et al., “Multisite
functional connectivity MRI classification of autism: ABIDE
results,” Frontiers in Human Neuroscience, vol. 7, article 599,
2013.

[23] R. W. Cox, “AFNI: software for analysis and visualization of
functional magnetic resonance neuroimages,” Computers and
Biomedical Research, vol. 29, no. 3, pp. 162–173, 1996.

[24] R. W. Cox, “AFNI: what a long strange trip it’s been,” NeuroIm-
age, vol. 62, no. 2, pp. 743–747, 2012.

[25] M. Jenkinson, C. F. Beckmann, T. E. J. Behrens,M.W.Woolrich,
and S. M. Smith, “FSL,”NeuroImage, vol. 62, no. 2, pp. 782–790,
2012.

[26] B. Fischl, “FreeSurfer,” NeuroImage, vol. 62, no. 2, pp. 774–781,
2012.

[27] A. M. Dale, B. Fischl, and M. I. Sereno, “Cortical surface-
based analysis: I. Segmentation and surface reconstruction,”
NeuroImage, vol. 9, no. 2, pp. 179–194, 1999.

[28] B. Fischl, M. I. Sereno, and A. M. Dale, “Cortical surface-based
analysis: II. Inflation, flattening, and a surface-based coordinate
system,” NeuroImage, vol. 9, no. 2, pp. 195–207, 1999.

[29] B. Fischl, A. Liu, and A.M. Dale, “Automatedmanifold surgery:
constructing geometrically accurate and topologically correct
models of the human cerebral cortex,” IEEE Transactions on
Medical Imaging, vol. 20, no. 1, pp. 70–80, 2001.

[30] F. Segonne, A. M. Dale, E. Busa et al., “A hybrid approach to the
skull stripping problem in MRI,” NeuroImage, vol. 22, no. 3, pp.
1060–1075, 2004.

[31] F. Ségonne, J. Pacheco, and B. Fischl, “Geometrically accurate
topology-correction of cortical surfaces using nonseparating
loops,” IEEE Transactions onMedical Imaging, vol. 26, no. 4, pp.
518–529, 2007.

[32] X.-X. Xing, Y.-L. Zhou, J. S. Adelstein, and X.-N. Zuo, “PDE-
based spatial smoothing: a practical demonstration of impacts
onMRI brain extraction, tissue segmentation and registration,”
Magnetic Resonance Imaging, vol. 29, no. 5, pp. 731–738, 2011.

[33] X.-N. Zuo and X.-X. Xing, “Effects of non-local diffusion on
structural MRI preprocessing and default network mapping:
statistical comparisons with isotropic/anisotropic diffusion,”
PLoS ONE, vol. 6, no. 10, Article ID e26703, 2011.

[34] C.-G. Yan, B. Cheung, C. Kelly et al., “A comprehensive
assessment of regional variation in the impact of head micro-
movements on functional connectomics,” NeuroImage, vol. 76,
pp. 183–201, 2013.



10 BioMed Research International

[35] D. N. Greve and B. Fischl, “Accurate and robust brain image
alignment using boundary-based registration,” NeuroImage,
vol. 48, no. 1, pp. 63–72, 2009.

[36] B. T. T. Yeo, F. M. Krienen, J. Sepulcre et al., “The organization
of the human cerebral cortex estimated by intrinsic functional
connectivity,” Journal of Neurophysiology, vol. 106, no. 3, pp.
1125–1165, 2011.

[37] J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S.
E. Petersen, “Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion,” Neu-
roImage, vol. 59, no. 3, pp. 2142–2154, 2012.

[38] R. Patriat, E. K. Molloy, T. B. Meier et al., “The effect of resting
condition on resting-state fMRI reliability and consistency:
a comparison between resting with eyes open, closed, and
fixated,” NeuroImage, vol. 78, pp. 463–473, 2013.

[39] C. Lord, S. Risi, L. Lambrecht et al., “The Autism Diagnostic
Observation Schedule-Generic: a standard measure of social
and communication deficits associated with the spectrum of
autism,” Journal of Autism andDevelopmental Disorders, vol. 30,
no. 3, pp. 205–223, 2000.

[40] K. Mevel, P. Fransson, and S. Bolte, “Multimodal brain imaging
in autism spectrum disorder and the promise of twin research,”
Autism, vol. 18, no. 5, pp. 1–15, 2014.

[41] T.Ohnishi,H.Matsuda, T.Hashimoto et al., “Abnormal regional
cerebral blood flow in childhood autism,” Brain, vol. 123, no. 9,
pp. 1838–1844, 2000.

[42] N. Boddaert, N. Chabane, H. Gervais et al., “Superior temporal
sulcus anatomical abnormalities in childhood autism: a voxel-
based morphometry MRI study,” NeuroImage, vol. 23, no. 1, pp.
364–369, 2004.

[43] J. S. Anderson, B. A. Zielinski, J. A. Nielsen, andM.A. Ferguson,
“Complexity of low-frequency blood oxygen level-dependent
fluctuations covaries with local connectivity,” Human Brain
Mapping, vol. 35, no. 4, pp. 1273–1283, 2014.

[44] A. D. Friederici and S. M. Gierhan, “The language network,”
Current Opinion in Neurobiology, vol. 23, no. 2, pp. 250–254,
2013.

[45] J. S. Anderson, N. Lange, A. Froehlich et al., “Decreased left
posterior insular activity during auditory language in autism,”
American Journal of Neuroradiology, vol. 31, no. 1, pp. 131–139,
2010.

[46] J. P. Szaflarski, V. J. Schmithorst, M. Altaye et al., “A longitudinal
functional magnetic resonance imaging study of language
development in children 5 to 11 years old,” Annals of Neurology,
vol. 59, no. 5, pp. 796–807, 2006.

[47] T. R. Scott, “Insular cortex as a mediator of emotion: commen-
tary on emotion and decision-making explained, by Edmund T.
Rolls,” Cortex, 2014.

[48] X.-N. Zuo, R. Ehmke, M. Mennes et al., “Network centrality in
the human functional connectome,”Cerebral Cortex, vol. 22, no.
8, pp. 1862–1875, 2012.

[49] M. P. van den Heuvel and O. Sporns, “Rich-club organization
of the human connectome,”The Journal of Neuroscience, vol. 31,
no. 44, pp. 15775–15786, 2011.

[50] M. Zilbovicius, I. Meresse, N. Chabane, F. Brunelle, Y. Samson,
and N. Boddaert, “Autism, the superior temporal sulcus and
social perception,” Trends in Neurosciences, vol. 29, no. 7, pp.
359–366, 2006.

[51] X. N. Zuo and X. X. Xing, “Test-retest reliabilities of resting-
state FMRI measurements in human brain functional con-
necomics: a systems neuroscience perspective,” Neuroscience &
Biobehavioral Reviews, vol. 45, pp. 100–118, 2014.

[52] Z. Yang, Y. Xu, T. Xu et al., “Brain network informed subject
community detection in early-onset schizophrenia,” Scientific
Reports, vol. 4, article 5549, 2014.



Research Article
Aberrant Functional Connectivity Architecture
in Alzheimer’s Disease and Mild Cognitive Impairment:
A Whole-Brain, Data-Driven Analysis

Bo Zhou,1 Hongxiang Yao,2 Pan Wang,1 Zengqiang Zhang,1,3 Yafeng Zhan,4,5 Jianhua Ma,5

Kaibin Xu,4,6 Luning Wang,1 Ningyu An,2 Yong Liu,4,6 and Xi Zhang1

1Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
2Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
3Hainan Branch of Chinese PLA General Hospital, Sanya 572014, China
4Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
5School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
6National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Yong Liu; yliu@nlpr.ia.ac.cn and Xi Zhang; zhangxi@301hospital.com.cn

Received 28 October 2014; Accepted 31 March 2015

Academic Editor: Michael Milham

Copyright © 2015 Bo Zhou et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thepurpose of our studywas to investigatewhether thewhole-brain functional connectivity pattern exhibits disease severity-related
alterations in patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Resting-state functional magnetic
resonance imaging data were acquired in 27 MCI subjects, 35 AD patients, and 27 age- and gender-matched subjects with normal
cognition (NC). Interregional functional connectivity was assessed based on a predefined template which parcellated the brain into
90 regions. Altered whole-brain functional connectivity patterns were identified via connectivity comparisons between the AD and
NC subjects. Finally, the relationship between functional connectivity strength and cognitive ability according to the mini-mental
state examination (MMSE) was evaluated in the MCI and AD groups. Compared with the NC group, the AD group exhibited
decreased functional connectivities throughout the brain.Themost significantly affected regions included several important nodes
of the default mode network and the temporal lobe. Moreover, changes in functional connectivity strength exhibited significant
associations with disease severity-related alterations in the AD and MCI groups. The present study provides novel evidence and
will facilitate meta-analysis of whole-brain analyses in AD and MCI, which will be critical to better understand the neural basis of
AD.

1. Introduction

It has been estimated that more than 81.1 million individuals
will suffer from dementia by 2040, and Alzheimer’s disease
(AD) will account for the underlying pathology in the
majority of these cases [1]. Mild cognitive impairment (MCI)
is a stage involving greater cognitive decline than expected
based on an individual’s age and educational level. MCI is
thought to be the prodromal stage of dementia; in particular,
the amnestic subtype of MCI carries a very high risk of pro-
gression to AD [2]. Nevertheless, the definitive relationship
between AD and MCI requires further investigation.

The past decade has witnessed great progress in resting-
state functional magnetic resonance imaging (rs-fMRI),
which is based on the measurement of spontaneous low-
frequency fluctuations of blood oxygen level-dependent
(BOLD) signals [3]. The correlations/similarities of these
types of fluctuations among various brain regions have been
thought to represent the interregional functional connectivity
[4]. Convergent evidence identified via rs-fMRI has sug-
gested that alterations in functional connectivity/networks
are prevalent in AD and MCI [5–14]. Thus, the previous
literature has suggested that AD/MCI is a disconnection
syndrome [15–17].
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Figure 1: Schematic map of the experimental design of the present study.

Despite previous elegant studies that identified alterations
in the connections between specific brain regions or net-
works [8, 10, 18–23], the patterns of whole-brain resting-state
functional connectivity in AD and MCI have not been well
studied, which may limit our understanding of the patho-
physiological substrate of the disease from an integrative
perspective. In the first whole-brain connectivity study in
AD, Wang and colleagues demonstrated that AD patients
exhibited an anterior-posterior disconnection phenomenon,
especially between the prefrontal and parietal lobes, as well as
compensatory increases in intralobe connections [11]. InMCI
subjects, Bai and colleagues also found diffuse abnormalities
in functional connections, especially between the subcortical
regions and the frontal cortices. These disturbances were
related to cognitive variables and became more evident over
time [5]. Almost at the same time, Chen and colleagues
demonstrated that impairments in the functional connectiv-
ity strength were significantly correlated with cognitive abili-
ties inAD/MCI subjects, and the large-scale interconnectivity
patterns among brain regions can be used to differentiate
cognitively normal subjects from patients with AD or MCI
[7]; these findings are consistent with other independent clas-
sification studies [24–26]. Using detailed parcellated brain
regions, Liu and colleagues demonstrated that the disease
severity was related to the loss of long-distance connectivity
in AD and MCI [9]. Despite the diversity of the results, these
studies support the hypothesis that AD is a disconnection
syndrome [16, 17]. Moreover, an additional independent
whole-brain functional connectivity study based on a larger
sample will further strengthen our understanding of the
impaired functional connectivity patterns and provide novel
evidence for a future meta-analysis of AD/MCI.

Based on the previous literature, we hypothesized that
the changes in functional connectivity would represent the
distribution of decreased long-distance interregions in AD.

We also expected that the altered brain functional connectiv-
ity in AD patients would be decreased in subjects with MCI.
Furthermore, the abnormal brain functional connectivity
would be correlated with variations between patients in the
severity of cognitive impairment according to the mini-
mental state examination (MMSE). To test these hypotheses
in the current study, we explored functional connectivity
throughout the brain to investigate whether alterations exist
in 35 patients with severe AD and 27 age-matched volunteers
with normal cognition (NC). First, we investigated interre-
gional functional connectivity by dividing each individual’s
brain into 90 regions using an automated anatomical label-
ing (AAL) template [27]. Second, we identified significant
differences in functional connectivities via comparisons of
the correlation coefficients of each pair of brain regions
between the AD and NC samples. To determine whether the
identified altered functional connectivity varied with disease
progression, Pearson’s correlation analyses were performed
between the functional connectivity strengths and the clinical
variables (MMSE) in the MCI and AD patients (Figure 1).

2. Materials and Methods

The samples used in the present study have been exam-
ined in our previous studies of regional homogeneity [13],
amygdalar connectivity [12, 28], thalamic connectivity [14],
and marginal division connectivity [29] during resting states.
All subjects met identical methodological stringency criteria,
and the comprehensive clinical details have been described
in our previous work [12–14, 29]. This study is orthogonal
to any previously published studies, which ensures the inde-
pendence of the reported effects. However, we have provided
a brief introduction regarding the data inclusion/exclusion
criteria, acquisition, and processing to maintain the scientific
integrity of the present study.
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2.1. Standard Protocol Approvals, Registration, and Patient
Consent. This study was approved by the Medical Ethics
Committee of PLA General Hospital. Written informed
consent was obtained from each enrolled subject or his/her
authorized guardian. The participants underwent general
physical, psychological, and laboratory examinations prior to
enrollment in the formal study. The participants did not take
medications that might have influenced cognition during the
scans, and all patients received professional suggestions for
further treatment.

2.2. Subjects. The participants were recruited from two
sources: outpatients from the Chinese PLA General Hospital
or recruitment through a website advertisement (http://www
.301ad.com.cn/, Chinese version). Each subject was right-
handed and underwent a battery of neuropsychological
tests, including the MMSE, Montreal Cognitive Assessment,
Trail Making Test, Clock Drawing Test, Similarities Test,
Complex Figure Replication, Verbal Fluency Test, Audi-
tory Verbal Learning Test (AVLT), Geriatric Depression
Scale, Clinical Dementia Rating (CDR), and Activities of
Daily Living (ADL) scale. The detailed diagnostic criteria
for AD, amnestic MCI, and normal healthy aging can be
found in our previous studies [12–14]. Briefly, following the
exclusion of subjects with substantial head motion (see the
criteria for data preprocessing), 89 subjects, including 27
MCI subjects, 35 AD patients, and 27 age- and gender-
matched normal cognitive (NC) subjects, were included in
the subsequent analyses.The demographic and neuropsycho-
logical details regarding the subjects are shown in Table S1
(see Table S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/495375).

2.3. DataAcquisition. A3.0TGEMRsystem (GEHealthcare,
USA) with a standard head coil was used to acquire the
MR images. Resting-state fMRI scans were performed using
an echo planar imaging (EPI) sequence with the following
parameters: repetition time = 2,000ms, echo time = 30ms,
flip angle = 90∘, matrix = 64 × 64, field of view = 220 ×
220mm2, slice thickness = 3mm, and slice gap = 1mm. Each
volume comprised 30 axial slices, and each functional run
lasted for 6 minutes and 40 seconds. During the scanning,
the subjects were instructed to keep their eyes closed and
to relax; comfortable foam padding was used to minimize
head motion, and ear plugs were used to reduce the scanner
noise. For each subject, T2-weighted images were collected
and evaluated by two senior radiologists during the scan.

2.4. Connectivity Analysis Pipeline. The analysis consisted of
the following steps: (1) data preprocessing; (2) defining brain
nodes with whole-brain parcellation; (3) calculating connec-
tivity matrices for each subject; (4) comparing matrices to
identify significant differences between groups in terms of
correlation strength; and (5) investigating the relationships
between altered functional connectivity and cognitive vari-
ables (see Figure 1 for a schematic of this analysis).

2.5. Data Preprocessing. The data were preprocessed in steps
consistent with the protocols of our previously published
studies using in-house Brainnetome fMRI toolkit (Brat, http://
www.brainnetome.org/en/brat) based on statistical para-
metric mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm/).
These steps included (1) slice-timing for time correction,
(2) realignment to reduce head motion, (3) normalization
to a standard EPI template and reslicing to 2 × 2 × 2mm
cubic voxels, (4) denoising by regressing out several effects,
for example, six motion parameters, linear drift, and the
mean time series of all voxels within the white matter and
cerebrospinal fluid, and (5) temporal filtering (0.01–0.08Hz)
to reduce noise [9, 12–14].

2.6. Defining the Connectivity Nodes. The registered nor-
malized fMRI time series were segmented into 90 regions
(45 regions per hemisphere, Table S2) using an automated
anatomical labeling template [27] that has been used in
several previous studies [30–36]. For each sample, a repre-
sentative time series of each brain region was obtained by
averaging the fMRI time series over all voxels in the region.

2.7. Estimation of Interregional Functional Connectivity. The
regional mean time series were estimated by averaging the
time series of all voxels in the region [31, 37, 38]. Pearson’s
correlation coefficients were computed between each pair
of brain regions for each subject. For subsequent statisti-
cal analysis, Fisher’s 𝑟-to-𝑧 transformation was applied to
improve the normality of the correlation coefficients [32,
33]. To determine whether disease severity-related alterations
existed, we also evaluated altered whole-brain connectivity
patterns between the NC and MCI, MCI and AD, and NC
and AD groups.

Individual 𝑧-scores were compared using a one-sample
two-tailed 𝑡-test to determine whether the two brain regions
exhibited significant functional connectivity within each
group.They were also analyzed by a two-sample two-tailed 𝑡-
test to determine whether the functional connectivities were
significantly different between theADandNCgroups. A two-
sample two-tailed 𝑡-test was performed for all 4005 (90 ×
89/2) functional connectivities; thus, a correction formultiple
comparisons was strictly necessary. The false discovery rate
(FDR) approach was applied to identify a threshold that
would restrict the expected proportion of type I errors [38,
39]. In this study, we identified significant differences in the
functional connectivities between the normal healthy andAD
subjects according to the following two criteria: (a) the 𝑧
values were significantly different from zero in at least one
group at 𝑃 < 0.05 (one-sample two-tailed 𝑡-test; Bonferroni
corrected) and (b) the 𝑧-scores were significantly different
between the two groups at 𝑃 < 0.05 (two-sample two-tailed
𝑡-test; FDR-corrected).

2.8. Relationship between Altered Functional Connectivity and
Cognitive Ability. To investigate the relationship between
functional connectivity strength and cognitive ability, we also
evaluated Pearson’s correlation between theMMSE scores (as
a measure of cognitive function) and functional connectivity
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Figure 2: Mean absolute 𝑧-score matrices for normal control (a), MCI (b), and AD (c). Each figure shows a 90 × 90 square matrix, in which
each entry indicates the mean functional connectivity strength between the corresponding pair of brain regions. The diagonal running from
the lower right to the upper left is intentionally set in black. The 𝑧-score of the functional connectivity is indicated with a colored bar. The
lower row indicates the regions that exhibit visual differences between the normal control andMCI (d), MCI and AD (e), and normal control
and AD groups (f), which were calculated using the functional connectivity strengths of the former minus the latter.

strength among the identified functional connectivities in
the MCI, AD, and MCI plus AD groups. Because these
relationships were exploratory in nature, we used a statistical
significance level of 𝑃 < 0.05 (uncorrected).

3. Results

3.1. Direct Comparisons between Groups. For each group,
the mean functional connectivity matrix was calculated by
averaging the𝑁×𝑁 (𝑁 = 90 in the present study) connection
matrix of all subjects. In the NC group, most of the strong
functional connectivities (large 𝑧-scores) were between
interhemispheric homogeneous regions, within a lobe, and
between anatomically adjacent brain areas (Figure 2(a)),
which is consistent with many previous studies of whole-
brain functional connectivity during the resting state [9, 11,
30–32, 36, 40]. The AD and MCI groups exhibited similar
functional connectivity patterns compared with that of the
NC group (main effect of group, 𝐹

2,86
= 2.55, 𝑃 = 0.084)

(Figures 2(b) and 2(c)). Post hoc analysis demonstrated that
the mean correlation strength was slightly lower in the AD
group compared with the normal cognitive subjects (main
effect of group, 𝐹

1,52
= 3.4, 𝑃 = 0.070). The mean correlation

strength in the MCI group was located between those of the
normal cognitive and AD groups (Figures 2(d)–2(f)).

Specifically, comparedwith the normal cognitive subjects,
the AD group exhibited decreased functional connectivities

at the threshold of 𝑃 < 0.05 (FDR-corrected) (Figure 3(a)).
The most significantly affected regions included several
important nodes of the default mode network (DMN), such
as the posterior cingulate gyrus (PCC), the medial superior
frontal gyrus (SFGmed), the precuneus (PCUN), and the
parahippocampal gyrus (PHIP), as well as the median- and
paracingulate gyrus (MCC), the superior occipital gyrus
(SOG), and the paracentral lobule (PCL) (Figure 3(a), for
details, please refer to Table S3 and Figure S1). We also noted
that the most affected type of functional connectivity was
the interlobe connections, such as the temporal lobe to the
frontal and parietal lobes, and that the most affected brain
lobe was the temporal lobe (Figure 3(b), for details, please
refer to Table S3 and Figure S1).

3.2. Clinical Cognitive Variables and Functional Connectivity
Strength. The results showed that approximately half (35
of 76 altered connectivities) of the decreased functional
connectivities exhibited significantly positive correlations
with the MMSE scores in the MCI and AD patients (𝑃 <
0.05). Namely, increased illness severity was correlated with
reduced functional connectivity strength (Figure 4(c), Table
S3). For the identified altered brain regions, we determined
that only a subset of functional connectivities between the
various regions were significantly correlated with the MMSE
scores in the AD or MCI groups (Figures 4(a) and 4(b) and
Table S3). For example, the functional connectivity between
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Figure 3: Altered whole-brain connectivity patterns in the AD group compared with the normal control group. (a) Three-dimensional
representation of the connectivities andmost of the affected nodes (𝑃 < 0.05, FDR-corrected) in AD.The blue and red lines denote decreased
and increased functional connectivities, respectively. (b) Distribution of the altered functional connectivities.The colored ring represents the
various brain lobes. The blue and black colors represent the interlobe and intralobe functional connectivities, respectively. For details, please
see Tables S2-S3 and Figure S1.

the right medial superior frontal gyrus (SFGmed) and the
posterior cingulate gyrus (PCC) exhibited the strongest cor-
relation in the patients (Figure 4(f) and Table S3); there was
also a strong correlation in the AD group (Figure 4(e)) and a
tendency toward correlation in the MCI group (Figure 4(d)).

4. Discussion

Consistent with previous studies, the present study identified
widespread impaired functional connectivity patterns in AD
patients, including anterior-posterior and interlobe discon-
nections [5, 7, 9, 11, 25]. These findings indicate that the
pattern of decreased long-distance connection is a consistent
functional manifestation in AD patients and supports the
notion that AD is a disconnection syndrome [16, 17]. More
importantly, the present results demonstrated that the iden-
tified impaired connectivity strengths in the MCI patients
were located between those of the normal cognitive subjects
and AD patients (Figures 2(d)–2(f)) and that most of the
identified functional connectivity strengthswere significantly
correlated with cognitive variables in the patient groups
(Figure 4). Thus, these findings provide additional evidence
that MCI is a prodromal stage of AD [41].

Consistent with the findings of previous whole-brain
studies [11, 26], the present study demonstrated that the
connectivities of several important nodes of the default mode
network, such as the PCC, the precuneus, the parahippocam-
pal gyrus, and the medial superior frontal gyrus, are affected
in AD/MCI subjects (Figures 4 and S1 and Table S2). The
default mode network plays a key role in various cognitive

processes, such as remembering past events, envisioning the
future [3, 42–44], and episodic memory [6, 43]. These cogni-
tive functions are particularly vulnerable in AD/MCI [45, 46]
and have been thoroughly studied using multiple imaging
techniques, including positron emission tomography, dif-
fusion MRI, structural MRI, and functional MRI. Imaging
findings have consistently identified abnormal changes in the
default mode network and its relationship to the cognitive
degradation observed in AD/MCI patients (for a review, see
[6, 8, 47–49]). It should be highlighted that the present study
demonstrated that decreased functional connectivity is posi-
tively correlated with impaired cognitive ability according to
MMSE scores (Figure 4 and Table S3).This finding illustrates
that the default mode network is the most affected network,
and an abnormal change in this network may represent a
potential biomarker for the early identification of MCI and
AD.

The temporal lobe, especially the parahippocampal gyrus,
exhibited most changes in interlobe functional connectivity
(Figures 3 and S1). The temporal lobe is associated with com-
plex functions that range from primary auditory sensation
to advanced cognitive roles, such as social cognition and
memory [50–52], and most of these functions are impaired
in AD/MCI. The anterior parahippocampal region was iden-
tified as the first site of neurofibrillary tangles in AD via
neuropathological studies [53, 54]. Previous studies have
also indicated that volume loss of parahippocampal white
matter contributes to the memory impairments observed in
mild AD and can be considered a predictor of MCI and
AD [55, 56]. Studies have also indicated that certain regions
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Figure 4: The correlation between the MMSE scores and the functional connectivity strengths. The upper line denotes the functional
connectivities significantly correlated with the MMSE scores in the MCI (a), AD (b), and combined MCI and AD (c) groups. The blue
color represents the functional connectivity that is positively correlated with the MMSE scores, and the red color represents the functional
connectivity that is negatively correlated with the MMSE scores. The lower line denotes the correlation between the MMSE scores and the
functional connectivity strength (e.g., between the right medial superior frontal gyrus (SFGmed) and the posterior cingulate gyrus (PCC))
in the MCI (d), AD (e), and combined AD and MCI (f) groups. For details, please refer to Table S3.

in the temporal lobe, especially the parahippocampus and
hippocampus, are key regions of the episodic memory net-
work [57–59]. Episodic memory impairment is typically the
earliest symptom and a core clinical symptom of AD and
MCI [45, 46]. Therefore, the impaired interlobe functional
connectivity of the temporal lobe and its correlation with
reduced cognitive ability may be indirectly associated with
broad cognitive functional degradation, such as the episodic
memory impairment in AD/MCI subjects.

We also found abnormal functional connectivities to the
MCC in the AD subjects in the present study (Figures 3 and
S1 and Table S3), in agreement with the results of previous
studies [5, 11]. The MCC is involved in rather complex
cognitive and emotional functions (e.g., cognitive control and
negative affect) [60–63] and has been identified as one of the
most affected regions by the impaired glucose metabolism
that occurs in AD/MCI [64]. Interestingly, the connectivity
strengths between the MCC and several regions, including
the precuneus and superior temporal lobe, were significantly
correlated with the MMSE scores in the AD andMCI groups

(Figure 4(c), Table S3). Considering this phenotype and the
fact that emotional dysfunction is also a key component of
clinical manifestations of AD/MCI [65], we speculate that
the altered functional connections between the MCC and
other regions may be related to cognitive and emotional
impairments in AD/MCI.

It should be noted that we assessed whole-brain func-
tional connectivity to evaluate disease severity-related altered
functional connectivity patterns in AD subjects. We then
investigated the patterns of the identified connectivities in
MCI, which may have missed some information, such as
the connectivities that exhibited a compensatory increase
in the AD/MCI subjects. The identified altered functional
connectivities in AD did not exhibit strong correlations with
those of the MCI group regarding the relationship between
functional connectivity strength and cognitive ability; only
the combined patient groups exhibited significant disease
severity-related correlations. One potential reason may be
because of the limited sample size of each subgroup; thus,
these findings should be carefully interpreted because not all
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MCI subjects will convert to AD.We should also note that the
atlas used in the present study is still not awell-definedparcel-
lated template for regions with inhomogeneous functions; for
example, the thalamus can be further parcellated into finely
defined subregions [66, 67]. Thus, the development of a new,
well-defined connectivity atlas combinedwith the assessment
of neuropsychiatric symptoms is needed to better elucidate
the precise neural mechanism of AD/MCI.

5. Conclusion

The present data-driven whole-brain functional connectivity
study demonstrated that brain functional connectivity pat-
terns are significantly impaired in AD/MCI patients. Distri-
butions of abnormal functional connectivity were identified
in several important nodes of the default mode network, but
they were not confined to this network. More importantly,
decreased functional connectivity strength was significantly
and positively correlated with the MMSE scores in the MCI
and AD patients, suggesting that altered connectivities are
related to disease severity and clinical manifestations. These
results increase the current understanding of the specific
alterations in whole-brain functional connectivity patterns
in these patients and contribute novel data for future meta-
analysis to examine the impaired connectivity patterns in
AD/MCI.
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Children with rolandic epilepsy (RE) are often associated with cognitive deficits and behavioral problems. Findings from
neurophysiological and neuroimaging studies in RE have now demonstrated dysfunction not only in rolandic focus, but also in
distant neuronal circuits. Little is known, however, about whether there is distributed abnormal spontaneous brain activity in RE.
Using resting-state functional magnetic resonance imaging (RS-fMRI), the present study aimed to determine whether children
with RE show abnormal local synchronization during resting state and, if so, whether these changes could be associated with the
behavioral/clinical characteristics of RE. Regional homogeneity (ReHo) in children with RE (𝑛 = 30) and healthy children (𝑛 = 20)
was computed on resting-state functionalMRI data. In comparisonwith healthy children, childrenwith RE showed increased ReHo
in the central, premotor, and prefrontal regions, while they showed decreased ReHo in bilateral orbitofrontal cortex and temporal
pole. In addition, the ReHo value in the left orbitofrontal cortex negatively was corrected with performance intelligence quotient in
the children with RE.The aberrant local synchronization, not strictly related to primary site of the typical rolandic focus, indicates
the neuropathophysiological mechanism of RE. The study findings may shed new light on the understanding of neural correlation
of neuropsychological deficiencies in the children with RE.

1. Introduction

Rolandic epilepsy (RE) is an idiopathic focal epilepsy syn-
drome, which occurs in childhood [1], and results in clinical
manifestations of biphasic sharp wave discharges around the
rolandic fissure [2, 3]. Since nearly 90% of these children with
or without an antiepileptic drug spontaneously remits from
seizures before puberty [4], RE is also known as a benign
childhood epilepsy. However, children with RE are usually
associated with a variety of cognitive disturbances [5, 6],
and the underlying pathophysiological mechanisms remain
largely unknown.

Although it is a focal epilepsy, findings from neuroimag-
ing studies demonstrate dysfunction not only in rolandic

focus but also in distant neuronal circuits. Recent studies
using quantitative structural magnetic resonance imaging
have shown widespread morphological changes in RE [7–
11]. In addition, diffusion tensor imaging examinations have
revealed alterations of white matter tracts’ integrity [12–15].
Taken together, these structural aberrances associated with
their cognitive abnormalitiesmay reflect the progress of long-
term impairment. Functional magnetic resonance imaging
(fMRI) studies with simultaneously recorded electroen-
cephalogram (EEG), on the other hand, have found concor-
dant focal spike-associated blood-oxygen-level-dependent
(BOLD) activation in perisylvian, central, premotor, and pre-
frontal regions, and all these findings are well corresponding
to a typical seizure semiology [16–20]. However, a few studies
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found the findings of spike-related BOLD deactivation [21,
22], while others did not.

Recently, resting-state fMRI (rs-fMRI) techniques have
been applied to demonstrate intrinsic abnormalities in vari-
ous types of epilepsy [23–31]. Regional homogeneity (ReHo),
as one of the rs-fMRI methods, could measure the functional
coherence or synchronization of a given voxel with its nearest
voxels, reflecting the local synchronization of the sponta-
neous BOLD fluctuations [32]. This local synchronization
has neurobiological relevance that is likely determined by
anatomical, developmental, and neurocognitive factors [33].
Thus, ReHo would serve as a neuroimaging marker to
investigate the intact and/or abnormal brain function [34].
It may be speculated that an abnormal ReHomay be a clue to
disrupted local functionality andmay provide insight into the
pathophysiology of brain disorder [35].Thus, thismethod has
been suggested to investigate the functional modulations and
to characterize the neuropsychological changes in the resting
state in patients with various clinical populations [36–42]. In
particular, abnormal ReHo has mostly been used to depict
aberrant spontaneous brain temporal synchrony in epilepsy
[43–47]. Little is known, however, about the changes of local
synchronization of spontaneous BOLD fluctuations in RE.

Based on previous EEG-fMRI findings regarding spike-
related brain functional alterations in RE, we expect to
find disrupted local synchronization of spontaneous BOLD
fluctuations. We hypothesized that abnormal local synchro-
nization persisted in RE during the interictal period and
might be associated with neuropsychological deficiencies.
Thus, the aim of the current study was to determine whether
children with RE show abnormal local synchronization
during resting state and, if so, whether these changes were
correlated with the behavioral/clinical characteristics of RE.
The purpose of this work was to delineate the neurophysio-
logically significant abnormal synchronous neuronal activity
and neural correlation with neuropsychological deficiencies
in the children with RE.

2. Materials and Methods

2.1. Participants. Thirty children whose conditions were
diagnosed as RE (18 girls and 12 boys; all right-handed;, age
[mean± SD]: 9.60±2.11 years) at the SecondAffiliatedHospi-
tal of Zhejiang University School of Medicine were included
prospectively in this study. Written informed consent was
obtained from all parents. The study protocol was reviewed
and approved by the LocalMedical Ethics Committee of Cen-
ter for Cognition and Brain Disorders, Hangzhou Normal
University. The inclusion criteria for patients were as follows:
(i) clinical and EEG findings evident of RE; (ii) aged between
6 and 13 years; (iii) attending regular schools; (iv) without
developmental disabilities; (v) full-scale intelligence quotient
(IQ) more than 70; and (vi) without history of addictions or
neurologic diseases other than epilepsy. The patients’ condi-
tions were diagnosed on the basis of all available clinical and
EEG data with the following criteria: (i) recommendations
set by the International League against Epilepsy classification
[48] and recent literature [2]; (ii) having simple partial,

often facial, motor, or tonic-clonic seizures during sleep; and
(iii) having spike-wave in centrotemporal regions, especially
nocturnal interictal epileptiform discharges (IEDs) on EEG.
Exclusion criteria were (i) focal abnormality in routine
structural MRI examinations, (ii) falling asleep during rs-
fMRI, and (iii) head motion parameters exceeding 3mm in
translation or 3 degrees in rotation.

Twenty sex- and age-matched healthy children controls
(10 girls and 10 boys; all right-handed; age [mean ± SD]:
9.55 ± 2.14 years) were also included in the study. They had
no history of neurologic disorders or psychiatric illnesses
and no gross abnormalities on brain MR examinations. No
significant difference in age (𝑇 = 0.08, 𝑃 = 0.94) or
gender (𝜒2 = 0.70, 𝑃 = 0.49) was found between groups.
Demographic and clinical information is detailed in Table 1.

2.2. Simultaneous EEG-fMRI Acquisition. All patients under-
went one or two simultaneous EEG-fMRI sessions to
archive more IED as far as possible. Simultaneous EEG
was not recorded in healthy controls. During fMRI acqui-
sition, EEG data was continuously recorded with an MR-
compatible EEG recording system (Brain Products, Ger-
many). The 32Ag/AgCl electrodes (through a 10/20 system)
were attached to the scalp with conductive cream.Three elec-
trooculogram/electrocardiogram channels were simultane-
ously recorded. Twenty-nine EEG electrodes were connected
to a BrainAmp amplifier, with a sampling rate of 5 kHz. The
amplifier was connected to the recording computer outside
the scanner room through a fiber optic cable.

The EEG data was processed offline to filter out MR arti-
facts and to remove ballistocardiogramartifacts (BrainVision
Analyzer 2.0, Germany). IEDs were marked independently
by two experienced electroencephalographers, according to
both spatial distribution and morphology. Disagreements
about the markers were resolved and consensuses were
reached after discussion.

2.3. Neuropsychological Assessment. To test cognitive perfor-
mance, a neuropsychological evaluation was administered.
General intelligence was assessed using the Chinese version
of Wechsler Intelligence Scale for Children (WISC-III),
which included verbal IQ, performance IQ, and full-scale IQ.
In addition, three factorial subscales of WISC-III were used
to assess language comprehension, perceptual organization,
and memory/attention. All scores were standardized for age
and gender.

2.4. fMRI Data Acquisition. Functional and structural imag-
ing data were acquired on a 3.0-Tesla MRI scanner (GE
Discovery 750 MRI, General Electric, Milwaukee, WI, USA)
at the Center for Cognition and Brain Disorders, Hangzhou
Normal University. Foam padding was used to minimize
headmotion for all subjects. Functional imageswere acquired
using an echoplanar imaging sequence (repetition time =
2000ms, echo time = 30ms, and flip angle = 90∘). Thirty
transverse slices (field of view = 220 × 220mm2, in-plane
matrix = 64 × 64, slice thickness = 3.2mm, no interslice
gap, and voxel size = 3.44 × 3.44 × 3.2mm3) aligned along
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Table 1: Demographic and clinical characteristics of participants.

Characteristic Patients (𝑛 = 30) Controls (𝑛 = 20) 𝑃 value
Age (years) 9.60 ± 2.11 9.55 ± 2.14 0.935a

Sex (female/male) 18/12 10/10 0.485b

IQ
Full-scale IQ 110.0 ± 14.95 116.2 ± 16.51 0.210a

Verbal IQ 103.5 ± 14.75 118.9 ± 16.94 0.003a

Performance IQ 115.2 ± 16.45 110.8 ± 15.75 0.378a

Education (years) 3.4 ± 1.96 4.2 ± 2.22 0.186a

Onset age (years) 7.53 ± 2.11 N.A. —
Duration (months) 26.43 ± 35.66 N.A. —
FD (mm) 0.18 ± 0.11 0.14 ± 0.08 0.210c

The intelligence quotient (IQ) scores in patients and controls were based on
the results of 29 and 16 participants, respectively. FDdenotesmean framewise
displacement. The other values are illustrated as mean ± SD.
aTwo-sample 𝑡-test.
bChi-square test.
cMann Whitney𝑈-test.

the anterior commissure-posterior commissure line were
acquired. In each session, a total of 240 volumes were
collected, resulting in a total scan time of 480 s. For each
patient, one or two sessions were acquired. Subjects were
instructed simply to rest with their eyes closed, not to think of
anything in particular, and not to fall asleep. Subsequently, 3D
T1-weighted anatomical images were acquired in the sagittal
orientation using a magnetization prepared rapid acquisition
gradient-echo sequence (repetition time = 8.06ms, echo time
= 3.136ms, flip angle = 8∘, field of view = 256 × 256mm2,
matrix size = 256 × 256, slice thickness = 1mm, no interslice
gap, voxel size = 1×1×1mm3, and 176 slices) on each subject.

2.5. fMRI Data Preprocessing. Considering that the healthy
controls underwent one session, the first session of RE was
selected for further comparison. Preprocessing of functional
images was carried out using DPARSF (http://www.rest-
fmri.net) [49] and SPM8 (http://www.fil.ion.ucl.ac.uk/spm)
toolkits. Functional images, after exclusion of the first 10
images, were initially corrected by slice-timing and realign-
ment. No translation or rotation parameters in any given data
set exceeded ±3mm or ±3∘. Moreover, the mean framewise
displacement (FD) was computed by averaging FDi from
every time point for each subject [50]. There were no differ-
ences for the mean FD between groups (𝑃 = 0.21) (Table 1).
Individual 3D T1-weighted anatomical image was coregis-
tered to functional images. The 3D T1-weighted anatomical
images were segmented (grey matter, white matter, and
cerebrospinal fluid). A nonlinear spatial deformation was
then calculated from the grey matter images to a grey matter
template in Montreal Neurological Institute space using 12
parameters affine linear transformation. This transformation
was then applied to the functional images, which were
resliced at a resolution of 3 × 3 × 3mm3. Several sources of
spurious variances (six head motion parameters, mean FD,
global brain signal, and averaged signal from white matter
signal and cerebrospinal fluid) were regressed out using a

multiple linear regression analysis. Finally, data with linear
trend were removed, and temporal band-pass was filtered
(0.01–0.08Hz).

2.6. ReHo Analysis. The similarity of the time series within
a cluster was measured based on the regional homogeneity
method [32]. The ReHo of the voxel at the center of the 27
nearest neighboring voxels cluster was calculated by Kendall’s
coefficient of concordance algorithm by REST software
(http://www.restfmri.net) [51]. For standardization purposes,
the individual ReHo map was divided by its whole brain
mean ReHo value. Finally, the standardized ReHomaps were
spatially smoothed with 4mm of full width at half maximum
isotropic Gaussian kernel.

2.7. Statistical Analysis. Differences in demographic and
clinical data between RE children and healthy children were
analyzed using a two-sample t-test and 𝜒2-test.

To investigate the differences in local synchronization
between two groups, a two-sample t-test was performed on
the individual standardized ReHo maps. Significant thresh-
old was set at a corrected 𝑃 < 0.05 (combined height
threshold 𝑃 < 0.01 and a minimum cluster size of 20 voxels)
using the AlphaSim program in the REST software, which
applied Monte Carlo simulation to calculate the probability
of false positive detection by taking into consideration both
the individual voxel probability thresholding and cluster size.

To explore the relationship between local synchronization
and clinical behavior in children with RE, the averaged
ReHo value of each sphere region of interests (centered at
the peak voxel of each abnormal area, radius = 3mm) was
correlated with the clinical factor (epilepsy duration) and
neuropsychological variables (including full-scale IQ, verbal
IQ, and performance IQ) using Pearson correlation analysis
on the patients group. The statistical threshold was set at
𝑃 < 0.05.

3. Results

3.1. Neuropsychological Results. Demographic characteristics
and neuropsychological scores are shown in Table 1. Children
with RE had a significantly lower score of verbal IQ (𝑇 =
3.179, 𝑃 = 0.003). There was no significant difference in
full-scale IQ and performance IQ between the two groups
(Table 1). There was also no significant correlation between
IQ (full-scale IQ, verbal IQ, and performance IQ) and clinical
characteristics (age of onset and duration of disease).

3.2. Between-Group ReHo Differences. The results obtained
from the two-sample t-test showed significant differences in
ReHo between two groups (𝑃 < 0.05, AlphaSim corrected;
Figure 1, Table 2). Compared with healthy children, children
with RE showed significantly increased ReHo in the bilateral
precentral gyrus, right postcentral gyrus, right supramarginal
gyrus, left inferior and superior frontal gyrus, and superior
parietal lobule, while decreased ReHo was observed mainly
in the bilateral temporal pole, bilateral orbitofrontal area, and
putamen.
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Table 2: Brain regions showing abnormal regional homogeneity in patients with rolandic epilepsy.

Brain region
MNI

coordinates
(𝑋 𝑌 𝑍)

BA 𝑡 value Voxel number

Patients > controls
Precentral gyrus R. 48 3 30 4 4.73 44
Precentral gyrus L. −51 3 24 4 3.96 31
Postcentral gyrus R. 58 −12 24 4/3 4.56 97
Inferior frontal gyrus L. −51 18 24 45/46 3.35 31
Superior frontal gyrus L. −18 12 72 6 3.70 22
Superior parietal lobule L. 12 −78 51 7 4.41 316
Superior parietal lobule R. 30 −63 63 7 5.59 87
Supramarginal gyrus R. 69 −39 33 40 4.47 44
Angular gyrus R. 45 −78 36 39 3.91 93

Patients < controls
Temporal pole L. −51 12 −33 38 −3.76 64
Temporal pole R. 54 0 −33 38/21 −4.10 162
Obitofrontal area L. 30 45 −12 11 −4.28 308
Obitofrontal area R. −15 33 −18 11 −4.96 340
Angular gyrus L. −42−51 24 39 −4.26 20
Cerebellum −12 −69 −33 — −3.82 39
Cerebellum −15 −63 −51 — −5.17 430
Putamen R. 30 6 −6 — −3.69 44

MNI: Montreal Neurological Institute; BA: Brodmann area; L: left; R: right.

3.3. Correlation between ReHo of Affected Areas with Clini-
cal Features. Significant positive correlations were observed
between the epilepsy duration and local synchronization in
the left superior frontal gyrus (𝑟 = 0.42, 𝑃 = 0.020).
The performance IQ was negatively corrected with local
synchronization in the left orbitofrontal area (𝑟 = 0.4569,𝑃 =
0.010) (Figure 1). Note that these two ROI’s correlations have
not survivedmultiple comparisons.There were no significant
correlations between ReHo in the other abnormal areas and
clinical and/or neuropsychological variables.

4. Discussion

To the best of our knowledge, this is the first study to examine
local BOLD coherence in children with RE during resting
state. Compared with healthy children, children with RE
showed increased ReHo at the lower part of sensorimotor
cortex and cortices around rolandic fissure, and they showed
decreased ReHo in the limbic system. In addition, aberrant
ReHo of several brain regions was associated with clinical
or neuropsychological variables. The current findings extend
understanding to the neuropathophysiological mechanisms
of RE.

Epilepsy documents the altered neural substrates with
hyperexcitable seizure networks [52]. Electrophysiological
findings from both animal models and human brains have
suggested an increased synchronization in the epileptogenic
zone during ictal and interictal states [53, 54]. There-
fore, it is worthwhile to investigate local synchronization

of spontaneous fMRI BOLD signals in children with RE.
Recently, ReHo was developed to characterize the coherence
of spontaneous neuronal activity and was utilized to detect
spontaneous brain dysfunction in various epileptic brains
[43, 45, 46]. This study, using this method, aimed to test
a hypothesis that the abnormal regional synchronization
persists in children with RE in the interictal period.

Previous simultaneous EEG and fMRI studies found that
interictal discharge could result in facial sensorimotor area
involvement in RE seizures [17–22]. As expected, it was
found that children with RE showed increased ReHo in the
lower part of sensorimotor area and cortices around rolandic
fissure. This is in line with the typical seizure semiology
of RE that manifests paresthesia and jerking of the mouth,
face, and hand [55]. Moreover, the study finding suggests
that the abnormal function not only occurs during interictal
discharges, but also exists throughout the interical period.

In children with RE, increased local BOLD synchro-
nization was also observed in the left premotor cortex
(Brodmann area 6) (Figure 1 and Table 2). The premotor
cortex not only was involved in the planning of complex
and coordinated movements, but also was associated with
spatial attention and executive control [56]. Functionally,
premotor cortex was connected with attention- and control-
related networks in healthy juveniles and young adults. A
previous study found that IEDs could cause hemodynamic
changes in premotor regions in children with RE, indicating
the motor and cognitive dysfunctions [21]. In the current
study, deficits of BOLD coherence along with a positive
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Figure 1: Brain regions showing abnormal regional homogeneity in children with rolandic epilepsy. Two-line graph indicated the local
synchronization in left superior gyrus and left orbitofrontal area showing significant correlation with disease duration and performance
IQ, respectively. The warm and cool colors indicate brain regions with increased and decreased regional homogeneity in children with RE,
respectively.

correlationwith disease severity provide evidence for a neural
correlation of RE. In addition to the motor and premotor
area, the cerebellum and striatum also play important roles in
motor control. The decreased ReHo of these regions revealed
their dysfunction in RE patients. It also suggested that the
abnormal cortico-striato-cerebellar circuit might be related
to the clinical syndrome of these patients.

We also observed increased ReHo in superior parietal
lobule (SPL), which related to the posterior part of attention
system [57]. Since SPL is posterior to the central area, we
speculated that the increase might be a result of the prop-
agation of the epileptic discharges [58]. Behavior study has
revealed the impairment of spatial attention in RE patients
[59]. Our findings complementally implicated the brain
functional mechanism of this cognitive impairment. Future
studies correlating with neurophysiologymeasurements with
ReHo, the local neural synchronization, are warranted to
validate such behavior-neuroimaging association.

Themost remarkable finding in this study was the signifi-
cant decrease in local synchronization in the limbic system
(including bilateral orbitofrontal area and temporal pole)
in the children with RE (Figure 1 and Table 2). A previous
structural MRI study found subtle cortical abnormality in

orbitofrontal region, suggesting the pathomorphology in the
active phase of brain development in patients with RE [9].
However, this EEG-fMRI study did not find IED-related
BOLD hemodynamic changes in this brain region, which
could be attributed to a possibility that this might be a form
of RE epilepsy with signs of cortical hyperexcitability that
vary with time in terms of rate and side [19, 20]. The study
results first provide the evidence of BOLD synchronization
that the children with RE have disturbed orbitofrontal area
functions. The human orbitofrontal cortex receives infor-
mation from motor, limbic, and sensory cortices, reflecting
sensory integration for executive motor control [60]. It could
be speculated that sensory integration dysfunction in RE
might be attributed to any harmful causes, for example,
ictal epileptic activity, in addition to the neuronal inhibition
induced by the IED activity. Moreover, this dysfunction
was associated with performance IQ (Figure 1), which could
imply an underlying neural correlation of neuropsychological
deficiencies in children with RE.

The present work involved several limitations. First,
the antiepileptic medication taken by some patients might
confound the results; in future studies, homogeneous patients
should be grouped more appropriately and the medication
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dose should be detailed. Second, the sample size used was
modest; larger sample size may provide further insights.
Third, we observed the IDE in only several patients. In this
case, we did not analyze the IED-related BOLD hemody-
namic changes in this group. Finally, the local synchroniza-
tion was measured at a low sampling rate, which impeded
investigating high rhythm alternation in RE. Future study
should use advanced data acquisition sequences to enable
whole brain fMRI scanning at subsecond temporal resolution
[61].

5. Conclusions

The present study examined the local synchronization of
BOLD fluctuation, providing a description of the pathology
mechanism of RE. Children with RE showed increased
regional homogeneity in central, premotor, and prefrontal
regions, and the findings were consistent with the location of
typical epileptic focus of RE. Children with RE also showed
decreased regional homogeneity in the limbic system, not
strictly related to primary site of the typical focus, suggesting
impaired sensory integration in RE. The present results may
shed new light on the understanding of neural correlation of
neuropsychological deficiencies in children with RE.
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