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Jessé C. Costa, Débora Mondini, Jörg Schleicher, and Amélia Novais
Volume 2011, Article ID 714781, 12 pages

Higher-Resolution Determination of Zero-Offset Common-Reflection-Surface Stack Parameters,
Endrias G. Asgedom, Leiv J. Gelius, and Martin Tygel
Volume 2011, Article ID 819831, 10 pages

Migration Using a Transversely Isotropic Medium with Symmetry Normal to the Reflector Dip,
Tariq Alkhalifah and Paul Sava
Volume 2011, Article ID 530106, 5 pages

Seismic Waveform Inversion by Stochastic Optimization, Tristan van Leeuwen, Aleksandr Y. Aravkin,
and Felix J. Herrmann
Volume 2011, Article ID 689041, 18 pages

Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault
Zone, Haiou Li, Xiwei Xu, Wentao Ma, Ronghua Xie, Jingli Yuan, and Changpeng Xu
Volume 2011, Article ID 407673, 6 pages

Deghosting, Demultiple, and Deblurring in Controlled-Source Seismic Interferometry,
Joost van der Neut, Maria Tatanova, Jan Thorbecke, Evert Slob, and Kees Wapenaar
Volume 2011, Article ID 870819, 28 pages

Measuring and Modeling of P- and S-Wave Velocities on Crustal Rocks: A Key for the Interpretation of
Seismic Reflection and Refraction Data, Hartmut Kern
Volume 2011, Article ID 530728, 9 pages

Azimuthally Anisotropic 3D Velocity Continuation, William Burnett and Sergey Fomel
Volume 2011, Article ID 484653, 8 pages



Advantages of Shear Wave Seismic in Morrow Sandstone Detection, Paritosh Singh and Thomas Davis
Volume 2011, Article ID 958483, 16 pages

Dynamically Focused Gaussian Beams for Seismic Imaging, Robert L. Nowack
Volume 2011, Article ID 316581, 8 pages



Hindawi Publishing Corporation
International Journal of Geophysics
Volume 2011, Article ID 815357, 2 pages
doi:10.1155/2011/815357

Editorial

Seismic Imaging

Martin Tygel,1 Norm Bleistein,2 Yu Zhang,3 and Sergey Fomel4

1 Department of Applied Mathematics, State University of Campinas (UNICAMP), R. Sérgio Buarque de Holanda 651,
13083-859 Campinas, SP, Brazil

2 Center for Wave Phenomena (CWP), Colorado School of Mines, Golden, CO 80401, USA
3 Processing Imaging & Reservoir, CGGVeritas, Crompton Way, Manor Royal Estate, Crawley, West Sussex RH10 9QN, UK
4 Bureau of Economic Geology, The University of Texas at Austin, University Station, Box X, Austin, TX 78759, USA

Correspondence should be addressed to Martin Tygel, tygel@ime.unicamp.br

Received 7 December 2011; Accepted 7 December 2011

Copyright © 2011 Martin Tygel et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As organized and intelligible displays of data, seismic images
constitute invaluable tools for gaining and conveying infor-
mation on structural and material properties of the Earth.
The present special issue on “Seismic imaging” aims to ex-
plore basic and/or applied aspects of seismic data that are
relevant to meet today’s challenges in subsurface imaging. It
comprises 13 articles, covering a wide variety of state-of-the-
art topics on seismology and seismics, on both theoretical,
and practical issues.

H. Kern examines, in the form of a review, the interde-
pendence of elastic wave propagation and physical and litho-
logical parameters. For that aim, compressional (Vp), shear
wave velocities (Vs) and velocity anisotropy of crustal rocks
measured at conditions of greater depth are used to evaluate
how elastic properties of rock materials are controlled by
lithology at in situ pressures and temperatures. Laboratory
seismic measurements and theoretical calculations are used
to interpret a shallow seismic reflection line and a deep-crust
refraction profile.

P. Singh and T. Davis investigate the detection of Morrow
sandstones in connection to the exploration of new oil
fields and the characterization of existing ones. Such sand-
stones are often very thin and laterally discontinuous. Full
waveform modeling is performed to understand the Mor-
row sandstone signatures on compressional wave (P-wave),
converted-wave (PS-wave), and pure shear wave (S-wave)
gathers. Modeling tied with the field data demonstrates that
S-waves are more robust than P-waves in detecting the Mor-
row sandstone reservoirs.

By means of a detailed study of P-wave arrival times of
a significant number of local earthquakes, H. Li et al. obtain
three-dimensional, high-resolution, P-wave velocity models

under the Zipingpu reservoir in Longmenshan fault. The 3D
velocity images at shallow depth show that the low-velocity
regions have strong correlation with the surface trace of the
reservoir. From the study, the infiltration depths directly
from the Zipingpu reservoir, and also downwards along the
Beichuan-Yingxiu, are quantitatively estimated.

In a review article, M. Kanao et al. analyze broadband
seismic deployments carried out in the Lützow-Holm Bay
region, East Antarctica. Recorded teleseismic and local events
enable imaging the structure and dynamics of the crust and
mantle of the terrain. By combining the active and passive
source studies of the mantle structure, an evolution model
for constructing the present mantle structure in the region is
proposed.

X. Yu et al. present a new tomographic method that uses
P arrival times to determine 3D crustal velocity structures,
as well as hypocenter parameters of seismic events under the
Beijing-Tianjin-Tangshan region. In the North China Basin,
the depression and uplift areas are imaged as slow and fast
velocities, respectively. A broad low-velocity anomaly exists
in Tangshan and surrounding area from 20 km down to
30 km depth. The results suggest that the top boundary of
low-velocity anomalies is at about 25.4 km depth. The event
relocations inverted from double-difference tomography are
clustered tightly along the Tangshan-Dacheng Fault and
form three clusters on the vertical slice. The maximum focal
depth after relocation is about 25 km in the Tangshan area.

Nowack assesses the potential of dynamically focused
Gaussian beams for seismic imaging. Focused Gaussian
beams away from the source and receiver plane allow the nar-
rowest and planar portions of the beams to occur at the depth
of a specific target structure. To provide additional control of
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the imaging process, dynamic focusing is investigated where
all subsurface points are specified to have the same planar
beam fronts. The approach is tested with a simple model of
5-point scatterers which are then imaged with the data, and
then to the imaging of a single dynamically focused beam for
one shot gather computed from the Sigsbee2A model.

W. Burnett and S. Fomel extend time-domain velocity
continuation to the zero-offset 3D azimuthally anisotropic
case. Velocity continuation describes how a seismic image
changes given a change in migration velocity. This descrip-
tion turns out to be of a wave propagation process, in which
images change along a velocity axis. In the anisotropic case,
the velocity model is multiparameter, so that anisotropic
image propagation is multidimensional. A three-parameter
slowness model is considered which is related to azimuthal
variations in velocity, as well as their principal directions.
This information is useful for fracture and reservoir char-
acterization from seismic data. Synthetic diffraction imaging
examples are provided to illustrate the concept and potential
applications of azimuthal velocity continuation and to
analyze the impulse response of the 3D velocity continuation
operator.

J. van der Neut et al. employ controlled-source seismic
interferometry to redatum sources to downhole receiver lo-
cations without requiring a velocity model. Interferometry
is generally based on a source integral over cross-correlation
pairs of full, perturbed (time-gated), or decomposed wave-
fields. An overview is provided on the effects of ghosts, mul-
tiples, and spatial blurring that can occur for different types
of interferometry. It is shown that replacing crosscorrelation
by multidimensional deconvolution (MDD) can deghost,
demultiple, and deblur retrieved data, but it leaves particular
multiples in place. To remove all overburden-related effects,
MDD of decomposed fields should be applied.

T. van Leeuwen et al. explore the use of stochastic optimi-
zation methods for seismic waveform inversion. The concept
of stochasticity is introduced in waveform inversion problem
in a rigorous way via a technique called randomized trace
estimation. Theoretical results are reviewed that underlie
the use of stochastic methods for waveform inversion. By
means of illustrative numerical examples, it is found that it is
possible to reproduce results that are qualitatively similar to
the solution of the full problem with modest batch sizes. This
may lead to an order of magnitude speedup for waveform
inversion in practice.

T. Alkahlifah and P. Sava consider transversely isotropic
(TI) models in which the tilt is constrained to be normal
to the dip. Such consideration allows for simplifications
in the imaging and velocity model building efforts as
compared to a general transversely isotropic TI (TTI) model.
Although this model cannot be represented physically in all
situations, it handles arbitrary reflector orientations under
the assumption of symmetry axis normal to the dip. Utilizing
the reflection features of such a model, efficient downward
continuation algorithms, as compared to the general TTI
ones, can be constructed. These features enable a process
in which one can extract velocity information by including
tools that expose inaccuracies in the velocity model in the
downward continuation process. The model is tested on

synthetic data corresponding to a general TTI medium show-
ing good results.

E. G. Asgedom et al. develop a higher-resolution method
for the estimation of the three travel-time parameters that
are used in the 2D zero-offset, Common-Reflection-Surface
stack method. The underlying principle in this method is
to replace the coherency measure performed using sem-
blance with that of MUSIC (multiple signal classification)
pseudospectrum that utilizes the eigenstructure of the data
covariance matrix. The performance of the two parameter
estimation techniques (i.e., semblance and MUSIC) is inves-
tigated using both synthetic seismic diffraction and reflection
data corrupted with white Gaussian noise, as well as a
multioffset ground penetrating radar (GPR) field data set.
The estimated parameters employing MUSIC were shown to
be superior of those from semblance.

Three-dimensional wave-equation migration techniques
are still quite expensive because of the huge matrices that
need to be inverted. J. C. Costa et al. compare the per-
formance of splitting techniques for stable 3D Fourier finite-
difference (FFD) migration techniques in terms of image
quality and computational cost. The FFD methods are
complex Padé FFD and FFD plus interpolation, and the
compared splitting techniques are two- and four-way split-
ting. From numerical examples in homogeneous and inho-
mogeneous media, we conclude that, though theoretically
less accurate, alternate four-way splitting yields results of
comparable quality as full four-way splitting at the cost of
two-way splitting.

Linearized multiparameter inversion is a model-driven
variant of amplitude-versus-offset analysis, which seeks to
separately account for the influences of several model
parameters on the seismic response. R. Nammour and W.
W. Symes suggest an approach based on the mathematical
nature of the normal operator of linearized inversion, which
is a scaling operator in phase space, and on a very old idea
from linear algebra, namely, Cramer’s rule for computing
the inverse of a matrix. The approximate solution of the
linearized multiparameter problem so produced involves no
ray theory computations. It may be sufficiently accurate for
some purposes; for others, it can serve as a preconditioner to
enhance the convergence of standard iterative methods.

Martin Tygel
Norm Bleistein

Yu Zhang
Sergey Fomel
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In this study a new tomographic method is applied to over 43,400 high-quality absolute direct P arrival times and 200,660 relative
P arrival times to determine detailed 3D crustal velocity structures as well as the absolute and relative hypocenter parameters of
2809 seismic events under the Beijing-Tianjin-Tangshan region. The inferred velocity model of the upper crust correlates well
with the surface geological and topographic features in the BTT region. In the North China Basin, the depression and uplift areas
are imaged as slow and fast velocities, respectively. After relocation, the double-difference tomography method provides a sharp
picture of the seismicity in the BTT region, which is concentrated along with the major faults. A broad low-velocity anomaly exists
in Tangshan and surrounding area from 20 km down to 30 km depth. Our results suggest that the top boundary of low-velocity
anomalies is at about 25.4 km depth. The event relocations inverted from double-difference tomography are clusted tightly along
the Tangshan-Dacheng Fault and form three clusters on the vertical slice. The maximum focal depth after relocation is about 25 km
depth in the Tangshan area.

1. Introduction

Beijing-Tianjin-Tangshan (BTT) region (114◦E∼120◦E,
37.5◦N∼41.5◦N) is situated in the northern part of North
China. Figure 1 shows the major geological structure in the
BTT region. This study region is under complex tectonic
process with the Taihangshan uplift in the west, the Yanshan
uplift in the northeast, and the North China Basin in the
middle portion, which is a large continental basin and is
characterized as an alternate uplift and depression zone
[7, 8]. As shown in Figure 1, in the North China Basin
and Taihangshan uplift, there are several active Cenozoic
faults, such as Weixian-Yanqing Fault, Tongxian-Nanyuan
Fault, Xiadian-Fengheying-Caojiawu Fault, and Tangshan-
Dacheng Fault, that are oriented in NE-SW direction. There
are also some active faults in NW-SE direction in the BTT
region, such as Western Luanxian Fault, Laishui Fault,
Ninghe Fault, and Nankou-Sanhe Fault.

The BTT region is a very active area with high seis-
micity. In this region, earthquakes are concentrated in four
seismic zones: Zhangjiakou-Bohai seismic zone, Tangshan-
Hejian-Cixian seismic zone, Sanhe-Linshou seismic zone,

and Huailai-Weixian seismic zone. The Zhangjiakou-Bohai
seismic zone in NW-SE direction is most active with a
majority of large earthquakes in the BTT region. The
other three seismic zones are parallel to each other in the
NE-SW direction. Historically, strong earthquakes occurred
frequently in this region. So far, more than 100 earthquakes
with magnitude equal to and larger than 5.0 have occurred
there since 780 BC. Thirty-four of them are with magnitudes
larger than 6.0 and seven with magnitudes larger than 7.0.
The great Tangshan earthquake (MS = 7.8) in 1976 is one
of the most destructive earthquakes in history, which totally
destroyed Tangshan city and caused a casualty of ∼240,000.
Therefore, a detailed investigation of the crustal structure
and seismicity of the BTT region is very important not only
for the understanding of physics of continental earthquakes
but also for the assessment and mitigation of seismic hazard.

A lot of studies have been performed in the past three
decades to invert for the three-dimensional (3D) seismic
velocity structure of the crust and upper mantle beneath
this region using arrival times from local and/or teleseismic
events [2, 9–15] as well as the seismicity in this region [16–
24]. However, the spatial resolution and the accuracy of event
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Figure 1: Geological setting and historical earthquakes in the BTT
region. Colorful circles show the earthquakes with magnitudes
(M) equal to or greater than 5.0 that occurred in the BTT
region since 780 BC. Black squares denote major cities. Red star
shows the capital of China. Thick curved lines show major active
faults: (1) Tongxian-Nanyuan Fault; (2) Weixian-Yanqing Fault;
(3) Laishui Fault; (4) Changli-Ninghe Fault; (5) Nankou-Sanhe
Fault; (6) Xiadian-Fengheying-Caojiawu Fault; (7) Ninghe Fault;
(8) Tangshan-Dacheng Fault; (9) Western Luanxian Fault.

location are limited by using only the absolute arrival times.
To improve the resolution of regional tomography, some
seismic tomographic techniques have been developed, such
as double-difference tomography (tomoDD) [6], which uses
both absolute and relative arrival time data to determine a
3D velocity structure jointly with the absolute and relative
event location. Furthermore, most of the previous efforts
have focused on the crustal and mantle structure [2, 9–
15] whereas little effort has been devoted to the study of
relationship between seismicity of small earthquakes and
velocity anomaly. Where is the location of top boundary of
low velocity beneath Tangshan area? What is the deepest focal
depth of the relocated earthquakes inverted by tomography?
What is the main dynamic source for the great Tangshan
earthquake? The detailed structure of hypocentral area is
still unclear beneath the Tangshan area. Determining a high-
resolution 3D velocity model of the crust and upper mantle
beneath this region is the key for answering these questions.
The tomoDD imaging has the potential to bring substantial
insight into them by using both absolute and relative arrival
time data.

In this study, we apply the tomoDD method to combine
absolute and relative arrival time data to invert for the
detailed 3D crustal P wave velocity structure jointly with
absolute and relative event locations in the BTT region.
Our results will shed new light on the relationship between
relocated seismicity and the 3D velocity structure.

2. Data and Method

Both absolute and relative arrival times are used in this
study. We carefully select the data such that each event has
at least 6 recordings (8 in the Tangshan area). The resulting
data include over 43,400 high-quality absolute direct P
arrival times and 200,660 relative P arrival times from 3,983
earthquakes recorded by one or more of the 112 stations
of the North China Telemetry Seismic Network (NCTSN)
and the Capital Digital Seismic Network (CDSN) from 1993
to 2004 in the BTT region (Figure 2). The accuracy of the
first P arrival time picking is estimated to be 0.2∼0.3 s. The
focal depth varies from ground surface down to about 30 km
depth. The ray path coverage is generally good except Bohai
Bay where no seismic station is present (Figure 3).

The tomoDD, developed by Zhang and Thurber [6],
is used in this study to determine a 3D velocity structure
jointly with the absolute and relative event location, which
is based on the hypoDD of Waldhauser and Ellsworth [5]
and also uses both absolute and relative arrival time data.
With standard tomography, event locations will be somewhat
scattered due to imprecise picks and origin-time errors. The
tomoDD method uses the differential arrival times which
are free from origin-time errors, and thus it removes some
fuzziness from the velocity model.

Our starting 1D model is inferred from a minimum 1D
velocity model [2] for the crust (0∼25 km depth) and from
deep seismic soundings [25, 26] for the deeper crust and
upper mantle (25∼40 km depth) (Figure 4). A 3D regular
grid is used in this study [27]. The velocity values are
interpolated by using a trilinear interpolation method. The
model has been parameterized into an optimal grid spacing
of 50 km laterally and 5 km vertically after a number of
resolution tests for different grid spacing. Distance weighting
is used in this study to control the maximum separation
between event pairs. For closer event pairs a larger weight
is applied. Considering the trade-off between the roughness
and the stabilization of the model, we choose the model
using smoothing weight of 5 as the preferred model.
Velocity structure and hypocentral parameters of the local
earthquakes are all taken to be unknown parameters in the
inversion. A detailed description of the method is given by
Zhang and Thurber [6].

3. Seismic Tomography

Local (regional) earthquake tomography (LET) plays an
important role in studying the velocity structure of the
Earth’s interior, which has become a relatively routine
application for use in seismically active regions covered by
one or more dense seismic network.

We conduct many inversions using different values of
damping parameter for the variance of the velocity pertur-
bations and root-mean-square (rms) travel time residuals.
We find that the best value of the damping parameter is 150.
In order to confirm the main features of our tomographic
image, we conduct a resolution test to assess the adequacy of
the ray coverage and to evaluate the resolution [28, 29]. An
initial checkerboard velocity model is created by assigning
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view.

alternately positive and negative velocity anomalies (3%)
to the 3D grid nodes in the model space. Synthetic travel
times are calculated for the checkerboard model using the
real event and receiver locations. A random noise with zero

mean and standard deviation of 0.1 s is added to the synthetic
data. The resolution is considered to be good for regions
where the checkerboard image is well recovered. Figure 5
shows the result. The checkerboard pattern is recovered for
almost the entire study region except for Bohai Bay and
the edge of the BTT region (Figures 5(a)–5(f)). Areas with
low resolution are excluded from the resulting tomographic
images (Figure 6). The best resolution is in the depth range
of 5–20 km (Figures 5(a)–5(d)), where the amplitude of
velocity anomalies is well recovered across the whole region.
The resolution is reduced below 30 km depth. But the
checkerboard positive and negative patterns are basically
recovered.

In order to show more clearly the continuous variations
of velocity anomalies in the depth direction, our resulting
tomographic images are presented in Figure 6. In general,
the results reveal strong lateral heterogeneities in both of
the crust and uppermost mantle. It is noted that the media
beneath the Tangshan area are very different from adjacent
areas throughout the crust and upper mantle. In the shallow
depth (Figures 6(a) and 6(b)), the inversion results are
consistent with the local geological settings and follow the
trend of active faults in the BTT region. The tomographic
images illustrate that the low P velocity (low-V) anomalies
exist beneath depressions and basins (such as the North
China Basin) and high P velocity (high-V) anomalies exist
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beneath mountains and uplifts (such as Yanshan uplift and
Taihangshan uplift), which is consistent with the previous
standard tomographic studies [2, 9–15]. But our model has
sharper velocity contrasts near the boundary between low-
V and high-V anomalies than previous tomography models
do. Although the Tangshan area is located in the North
China Basin, it is an uplifted block beside the Zhangjiakou-
Bohai seismic zone [21]; hence, it shows up as high-V
anomaly. At the 35 km depth, our present result has revealed
that a broad and prominent low-V anomaly exists beneath
the Taihangshan uplift area and the Tangshan area, and
high-V anomaly exists beneath the Yanshan uplift and the
North China Basin. These results are consistent with the Pn
tomographic results [15, 30, 31].

Several cross-sections along the different longitudes
(115.5◦E, 116.5◦E, 117.5◦E, and 118.5◦E) and latitudes
(40.5◦N, 39.8◦N, and 39.0◦N) are presented in Figure 7. At
shallow depth (5∼10 km), the boundary between the low-
V anomaly and high-V anomaly is well consistent with the
boundary between mountain/uplift and plain/basin, such
as the 39.5◦N area at the 115.5◦E profile (Figure 5(a))
and 118.0◦E area at the 39.8◦N profile (Figure 7(b)). Our
tomoDD model shows a high-V anomaly of ∼90 km length
at 10∼20 km depth under the Beijing, Tianjin, and the
Tangshan area at the profile of 116.5◦E, 117.5◦E, and
118.5◦E (Figure 5(a)). A prominent broad low-V anomaly
is discovered from 20 km to 30 km both beneath Yanshan
uplift, the North China Basin area at the profile of 115.5◦E
(Figure 5(a)), and beneath the Tangshan area at the profile of
118.5◦E (Figure 5(a)). At the profile of 39.8◦N (Figure 5(b)),
the P velocity is high beneath the east of the Tangshan
area, where there is uplift block near the Zhangjiakou-Bohai
seismic zone. Moreover, it can also be found that a broad
high-V anomaly beneath the Taihangshan uplift extends

toward the east and down to ∼20 km depth beneath the
Beijing area.

4. Relationship between Seismicity and
Tomography Image in the BTT Region

An advantage of the tomoDD is that it determines the 3D
velocity model as well as the absolute and relative event
location compared with standard tomography. We analyzed
3,983 earthquakes with magnitudes from M 1.0 to 6.2
recorded by 112 stations. An event will be excluded from
the inversion if it cannot be connected to any other events,
and as a result only 2,809 hypocentral parameters of both
absolute and relative locations are given by the tomoDD.
The weighted rms travel-time residuals decrease from 1.2 s
to 0.3 s. Figure 2 shows the catalog locations, which are
scattered along major active fault zone both in horizontal
direction and depth direction due to imprecise picks, origin-
time errors, and simple 1D velocity model. After relocation,
the tomoDD method provides a sharp picture of the
seismicity in the BTT region, which is concentrated along
with the major faults in a shape of alignment (Figure 8).

To illuminate the relationship between seismicity and
velocity anomaly, we present our tomographic images
together with hypocentral locations of both relocated earth-
quakes within 5 km off each layer depth and historic earth-
quakes (M ≥ 6.0) that occurred in the BTT region (Figure 9).
Although we do not know the accurate focal depths of the
historic earthquakes, the statistic analysis of focal depth after
the tomoDD relocation [32] suggests that most of earth-
quakes that occurred in the middle and lower crust under
the BTT region and the North China are mainly clustered
at 1∼24 km depth. In the tomographic image of 10 km and
15 km depth (Figure 9), both the relocated earthquakes and
historic earthquakes have a similar feature, that is, most of
the earthquakes are located in the conjunctional areas of
low-V and high-V anomalies. They are slightly closer to
the high-V anomaly areas. The epicentral location of the
1976 Tangshan earthquake, the 1976 Luanxian earthquake,
and the 1679 Sanhe earthquake is in the transitional area
closer to the high-V anomalies. It is notable that the
distribution of relocated small earthquakes is consistent with
the trend of high-V anomalies under the Beijing-Tangshan
area. Maybe it suggests that the conjunctional zones of low-
V and high-V anomalies represent weak sections of the
seismogenic crust. The tectonic stresses are prone to being
accumulated in the “brittle” high-V anomalies area, and
hence the earthquake ruptures happened closer to the high-
V anomalies zones. The locations of earthquakes, especially
destructive earthquakes, are not random and are related
closely to their deep structure of crust and upper mantle.

Figure 10(a) shows a cross-section along profile AA′

(Figure 10(c)) passing through the Tangshan-Hejian-Cixian
seismic zone. A prominent high-V anomaly zone about
100 km in length is visible from 10 km down to 20 km
depth along the Tangshan-Tianjin area, while a broad low-V
anomaly exists in Tangshan and the north of the Tangshan
area from 20 km down to 30 km, which is in agreement
with the tomographic results of Huang and Zhao [15] using
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Figure 5: Results of checkerboard resolution test. The depth of the layer is shown on the right bottom of each map. The velocity perturbation
scale (in %) is shown at the bottom.

local crustal earthquakes, controlled seismic explosions, and
quarry blasts. Due to the differential arrival time data used
to improve the precision of event location in the tomoDD,
we obtained similar tomographic image only with local
earthquakes. In the upper crust, the cross-sectional images
show that discontinuous low-V anomalies exist under the
Tangshan-Hejian-Cixian seismic zone, while, in the middle

and lower crust, the low-V anomalies change to high-V
anomalies. Under the Tangshan area, the maximum focal
depth locates at the boundary of low-V anomaly in the
middle and lower crust.

Figure 10(b) shows a cross-section along profile BB′

passing through the Zhangiakou-Bohai seismic zone. Under
the Tangshan area, our result displays a transitional zone of
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Figure 6: P wave velocity perturbation (in %) from the 1D velocity model as shown in Figure 4 at each depth slice. Red and blue colors
denote slow and fast velocity anomalies, respectively. The velocity perturbation scale is shown at the bottom.

low-V anomaly in the northwest and high-V anomaly in
the southeast in the upper crust, while a very prominent
low-V anomaly exists in the middle and lower crust (20∼
30 km depth). The focal depth of relocated earthquakes
that occurred in the Tangshan area is distributed in the
transitional zones of low-V anomaly and high-V anomaly.
In the Zhangjiakou area, the northwest of profile BB′, the
deepest focal depth of relocated earthquakes with magnitude
ML ≥ 4.0 is about 15 km, which occurred on the margin of
high-V anomalies.

The Tangshan area, in the about 160 km southeast of
Beijing, has the highest level of seismicity in BTT region.
In this area numerous small earthquakes have occurred

frequently since the great Tangshan earthquake in 1976.
During 1993∼2004, 118 earthquakes withML ≥ 3.0 occurred
in the area, 17 of them were larger than ML4.0, such as the
earthquake with ML5.9 on 6 October 1995 and ML5.0 on 20
January 2004 in the northeast of Tangshan.

Figure 11 shows the epicenters of earthquakes before
(open circles) and after relocation (solid circles) using the
tomoDD in the Tangshan area. Compared with the catalog
locations, which are scattered along the fault zone, relocated
hypocenters appear more clustered in the NE-SW direction
along Tangshan-Dacheng fault. Figure 11 shows three clus-
ters in different colors: the Tangshan cluster oriented in the
NE-SW direction (grey solid circles), the Luanxian cluster
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Figure 7: Vertical cross-sections of P wave velocity perturbation at each longitude (115.5◦E, 116.5◦E, 117.5◦E, and 118.5◦E) (a) and
each latitude (40.5◦N, 39.8◦N, and 39.0◦N) (b). Red and blue colors denote slow and fast-velocity anomalies, respectively. The velocity
perturbation scale (in %) is shown at the bottom. BJ: Beijing; TJ: Tianjin; TS: Tangshan; ZJK: Zhangjiakou; SJZ: Shijiazhuang.

oriented nearly in the E-W direction (green solid circles), and
the Qian’an cluster oriented in the NE-SW direction (blue
solid circles).

In the cross-section along profile TT′ (Figure 12), the
distribution of hypocenters displays a big difference between
the catalog location, which is layered and scattered without
clear cluster characteristic (Figure 12(a)), and the relocated
location with the tomoDD, which is clustered clearly as
cluster A, cluster B, and cluster C (Figure 12(b)). The
Tangshan cluster (Figures 11 and 12(b), grey solid circles)
becomes two clusters in depth: cluster A and cluster B. In
addition, an earthquake (ML5.9) without depth parameter
before relocation is relocated in cluster A with focal depth
6.3 km.

In the cross-section along profile MN, perpendicular to
TT′, the distribution of hypocenters before and after relo-
cation using the tomoDD is also very different (Figure 13).
Most of the tomoDD locations are centralized on a narrow
zone within 10 km off the profile TT′ (Figure 13(b)). The
earthquake relocation with ML ≥ 4.0 (Figure 13(b), stars)
shows a near-vertical plane between 5 km and 15 km and
a slight west dip between 15 km and 25 km, which is in
agreement with the results of deep seismic soundings (DSSs)
[33]. This indicates that the Tangshan fault is near-vertical in
the shallow depth and west dip in the depth of about 22 km.

For comparison, we also relocate the events by using the
DD location method, and extract the hypocenter parameters
of earthquakes that occurred in the Tangshan area from pre-
vious results of the two standard tomography methods [2, 4].

The same minimum 1D velocity model [2] is used for both
standard tomography and tomoDD as the initial model,
which is also used for DD event location.

Figure 14 shows the event locations along profile TT′

in the Tangshan area inferred from different methods.
Figure 14(a) shows the catalog locations by NCTSN.
Figures 14(b) and 11(c) show the event relocations [2, 4] by
the two standard tomography methods by Thurber [1] and
Zhao et al. [3], respectively, where only the absolute arrival
times were used for the inversion. The event locations are still
scattered, similar to the catalog locations (Figure 14(a)).

Figures 14(d) and 11(e) show the event relocations by
the DD location method [5] and the tomoDD method [6],
respectively. In the DD location method, the weighted rms
residuals decrease from 1.0 s to 0.6 s, while, in the tomoDD
method, the weighted rms residuals decrease from 1.2 s to
0.3 s. After the relocation, both the DD methods provide
similar features, three typical clusters under the Tangshan
area. Although most of the relative event locations from the
two DD methods are quite similar, there are some differences
between them in detail. First, it can be noted that the absolute
event locations with ML ≥ 4.0 are different between the
two methods. The focal depth of earthquakes with ML ≥
4.0 varies from 0 km to 20 km in the DD location method.
In the tomoDD method, however, it varies from 5 km to
20 km. Second, in the tomoDD, earthquake relocations with
ML ≥ 4.0 show a near-vertical plane between 5 km and
15 km and a slight west dip between 15 km and 25 km, which
is in agreement with the results of deep seismic soundings
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Figure 8: Earthquake hypocenters relocated in this study. (a) shows distribution of relocated earthquake epicenters (circles); squares show
the major cities. Thick lines denote active faults; (b) and (c) show the cross-sectional view of focal depth along latitude and longitude profiles,
respectively; (d) denotes histogram of P wave absolute travel-time residuals after relocation using tomoDD method.
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(DSS) [33], while no such dipping is observed in the DD
location method.

Figure 15 shows the velocity perturbations, resulting
from the tomoDD, along the vertical cross-section of profile
TT′ passing through the Tangshan area and the seismicity
in this area. Only earthquakes that occurred within 0.25◦ off
profile TT′ are chosen to project on the vertical slice. It can
be clearly seen that all of the three clusters (Figure 12(b))
are relocated in the conjunctional area of low-V and high-
V anomalies, slightly closer to the high-V anomaly zones.
Only a few earthquakes have ever occurred within the low-
V anomalies. The maximum focal depth (about 25.4 km)
locates in the uppermost boundary of low-V anomaly from
20 km to 30 km under the Tangshan area. Our results suggest
that the top boundary of low-V anomalies is at about
25.4 km depth in the Tangshan area, which is different
from results obtained by previous standard tomography
studies [15]. This indicates that the top boundary of low-V
anomalies is at 20 km depth in the Tangshan area, which is
consistent with the maximum of focal depth of relocation by
the tomoDD.

Our tomographic results show an evident low-velocity
anomaly in the lower crust beneath the BTT region (Figures
6, 7, 10(a), and 10(b)), specially beneath the Tangshan
area. The results of S structure by using receiver function
method [34] showed that there exist obvious heterogeneous
low-V media in the upper mantle and middle crust and
the crust-mantle boundary had an obvious uplift beneath
the Tangshan area. Thus the existence of prominent low-
V anomalies in the lower crust may suggest that there is
probably massive intrusion derived from the upper mantle

beneath the Tangshan area. Our tomographic results of the
crust and upper mantle support such a conclusion. The main
dynamic source for the Tangshan earthquake is the vertical
movement of the upper mantle, which leads to material and
energy exchange between the crust and upper mantle [34].
The long-term influence of the upwelling of mantle materials
on the seismogenic layer would change the stress distribution
and compositional evolution of fault zones, and the stresses
are easier to concentrate on the high-V media, which would
lead to the mechanical failure and the earthquake occurrence.

5. Conclusions

The tomoDD method is efficient in relocating a large number
of earthquakes accurately and in characterizing the local
velocity structure with high resolution. With this approach
a high-resolution tomography model of crust and upper
mantle under the BTT region has been obtained by using
both absolute and relative arrival times of local earthquakes
recorded by NCTSN or DCSN. Simultaneously, our results
provide accurate hypocentral parameters of both absolute
and relative event locations in the BTT region. The velocity
images of the upper crust correlate well with the surface
geological and topographic features. In the North China
Basin, the depression and uplift areas are imaged as slow and
fast velocities, respectively. A broad low-V anomaly exists in
Tangshan and the north of the Tangshan area from 20 km
down to 30 km depth, which suggests that there is probably
massive intrusion derived from the upper mantle beneath the
Tangshan area. Our results suggest that the top boundary of
low-V anomalies is at about 25.4 km depth in the Tangshan
area.
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Figure 10: (a) and (b) show the vertical cross-sections of P wave tomographic image along the profiles. White stars and circles denote the
earthquakes of ML ≥ 4.0 and ML < 4.0, respectively, which occurred within 0.25◦ off the profile. Red and blue colors denote slow- and
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After relocation, the tomoDD method provides a sharp
picture of the seismicity in the BTT region, which is concen-
trated along with the major faults in a shape of alignment.
The seismicity of both the relocated earthquake hypocenters
and the historic earthquakes shows that majority of the
hypocenters are located in the conjunctional areas of low
and high P wave velocity anomalies. And they are slightly
closer to the high P wave velocity abnormal areas. Only a
few earthquakes have epicenters in either high or low P wave
velocity areas. It might suggest that the conjunctional zones
of low-V and high-V anomalies represent weak sections of
the seismogenic crust. The tectonic stresses are prone to
being accumulated in the “brittle” high-V anomalies area
and hence the earthquake ruptures happened closer to the
high-V anomalies zones.

The surface event relocations in the Tangshan area are
centered along the Tangshan-Dacheng fault. In the vertical
slice along profile TT′, all the earthquakes are clustered
in three clusters as shown in Figure 9(b), two clusters lie
beneath the Tangshan-Ninghe fault, and another one lies
beneath the Luanxian area. The maximum of focal depth
of relocated earthquakes is 25 km, where there is the top
boundary of low-V anomalies beneath the Tangshan area.
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Broadband seismic deployments have been carried out in the Lützow-Holm Bay region (LHB), Dronning Maud Land, East
Antarctica. The recorded teleseismic and local events are of sufficient quality to image the structure and dynamics of the crust and
mantle of the terrain. Passive seismic studies by receiver functions and shear wave splitting suggest a heterogeneous upper mantle.
Depth variations in topography for upper mantle discontinuities were derived from long period receiver function, indicating a
shallow depth discontinuity at 660 km beneath the continental area of LHB. These results provide evidence of paleo upwelling of
the mantle plume associated with Gondwana break-up. SKS splitting analysis anticipated a relationship between “fossil” anisotropy
in lithospheric mantle and past tectonics. Moreover, active source surveys (DSSs) imaged lithospheric mantle reflections involving
regional tectonic stress during Pan-African and succeeding extension regime at the break-up. By combining the active and passive
source studies of the mantle structure, we propose an evolution model of LHB for constructing the present mantle structure.

1. Introduction

Deployments of broadband seismic arrays on the Antarctic
continent have often been the ambitious dreams of dedicated
Earth scientists. Existing seismic stations belonging to the
Federation Digital Seismographic Network (FDSN) allow
resolution of the structure beneath the Antarctic continent
at a horizontal scale of 1000 km, which is sufficient to
detect fundamental differences in the lithosphere beneath
East and West Antarctica, but not to clearly define the
structure within each sector. In addition, seismicity around
the Antarctic region is limited by sparse station distribution,
and the detection level for earthquakes remains inadequate
for full evaluation of tectonic activity [2]. A strategy of
attaining a sufficient density of seismic stations on the
Antarctic continent will allow for optimal ray path coverage
across Antarctica and improvement of seismic tomography
resolution [3–5].

Polar field deployments have been carried out in the
past decades around several regions withinin the continental
margins of Antarctica [6–9] including the “TransAntarc-
tic Mountain SEISmic experiment (TAMSEIS; [10, 11]).”

Discussions at the working group of the Antarctic Neo-
tectonics program (ANTEC) under the Science Committee
on Antarctic Research (SCAR) (Siena, Italy, 2001) and
the workshop on the “Structure and Evolution of the
Antarctic Plate (SEAP)” (Boulder, Colorado, 2003) have led
to Antarctic seismic array deployments. The principle ideas
of the Antarctic arrays were derived from components of
the “Regional Leapfrogging Arrays (RLA)” and the “Program
Oriented Experiments (POE)”.

The resultant seismic stations in Antarctica were installed
as a part of several international programs initiated during
the International Polar Year (IPY 2007-2008; http://classic
.ipy.org/; Figure 1). Followed by the successful TAMSEIS
deployment held in 2000–2002, several big geoscience
projects were contacted regarding a collaborative effort to
reach the interior of the Antarctic continent and surrounding
region. The “Antarctica’s GAmburtsev Province (AGAP;
http://www.ldeo.columbia.edu/∼mstuding/AGAP/)”, the
“GAmburtsev Mountain SEISmic experiment (GAMSEIS;
http://epsc.wustl.edu/seismology/GAMSEIS/, [12, 13])”
under AGAP, as well as the “Polar Earth Observing Network
(POLENET; http://www.polenet.org/)” were major contrib-
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utors in establishing a geophysical network inside the
Antarctic continent during the IPY.

Similar to other regions in Antarctica, monitoring obser-
vations have been conducted in the last decade by the
Japanese Antarctic Research Expedition (JARE) around the
Lützow-Holm Bay region (hereafter LHB), Dronning Maud
Land (Figure 1). The obtained seismic data are utilized to
clarify the heterogeneous structure of the Earth, particularly
around the Antarctic region. Seismic deployments can effi-
ciently study the crust and upper mantle, as well as the Earth’s
deep interior, including features such as the Core-Mantle-
Boundary (CMB) and the lowermost mantle layer (D′′ zone)
[14, 15]. The broadband arrays in LHB make a significant
contribution not only to the permanent global network of
FDSN, but also to such projects as the Global Alliance of
Regional Networks (GARNET), RLA, POE, POLENET, and
IPY.

In this paper, data from broadband seismological studies
are reviewed in order to provide clear images of the upper
mantle structure and dynamics beneath LHB. By combining
the passive and active source results, a regional evolution
model of LHB is presented to explain the formation of the
present mantle structure. Regional tectonic history such as
the Pan-African orogenic event, together with the break-up
process of Gondwana supercontinent in mid-Mesozoic age,
could be the plausible cause of present upper mantle struc-
ture. The multidisciplinary seismic investigations reviewed in

this paper supply fruitful information for understanding the
regional tectonic evolution of this area.

2. Broadband Deployments in LHB

Broadband seismic deployments in LHB have been carried
out since 1996 until present, including deployment dur-
ing IPY 2007-2008 as one of the major contributions to
GARNET. The stations were established on the outcrops
and ice sheet around the continental margins of LHB
(Figure 2). Seismic array response functions were calculated
in dominant frequency of 0.03 Hz and 0.1 Hz for receiver
space distribution of all the GARNET stations (Figure 3).
It is expected that both the short period body waves and
long period surface waves are detected and space resolution
from the analyses by using the detected waveform data
could evaluate the area. Except for power supply failure of
some stations during winter seasons, observations have been
conducted fairly well and a significant number of events were
recorded of global earthquakes, local earthquakes, as well
as ice-related events within close proximity to the stations
(Figure 4). During the IPY period, a total number of seven
stations (TOT, LNG, SKV, SKL, S16, RDV, and BTN) were
continuously operated. The last three stations (S16, RDV,
and BTN) were started simultaneously at the beginning of
the IPY.
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The observation systems consisted of a portable broad-
band seismometer and a data-recorder (type LS8000-WD,
-XT by Hakusan Co.), combined with lead-acid and solar
batteries. The CMG-40T portable seismometers (Guralp
System LTD.) were used with a three-component velocity-
response (flat frequency response for velocity in 0.05–10 Hz).
The velocity signal was digitized at a sampling frequency
of 10–100 Hz with a dynamic range of 90 dB (16 bits), and
stored in a hard-disk (2 GB) or compact flash (CF) card
(10 GB). Total solar panel power was 250–270 W with 12 V
DC output, and the capacity of the lead batteries was more
than 500 Ah for each station. The systems operated continu-
ously except in very dark and cold periods during Antarctic
winters. Details of the observation systems in the first few
years were described in [19, 20]. More detailed information
for the GARNET stations in LHB and operational details are
available from the website of the National Institute of Polar
Research (NIPR) (http://polaris.nipr.ac.jp/∼pseis/garnet/).

The GARNET data are initially stored and accessible to
cooperative researchers through the data library server of
NIPR (POLARIS; http://polaris.nipr.ac.jp/∼pseis/garnet/).
After a defined period, the data are made available to
world data centers of seismology, such as Incorporated
Research Institute of Seismology/Data Management System
(IRIS/DMS). The global data centers provide data to seismol-
ogists studying the polar regions, the Standing Committee on
Antarctic Data Management (SCADM) under the Scientific

Committee on Antarctic Research (SCAR), as well as the
Antarctic Master Directory (AMD) in the Global Change
Master Directory (GCMD) of NASA.

During the IPY, broadband seismic deployments in
LHB were conducted under the endorsed JARE project.
By combining with the other big IPY projects such as the
AGAP/GAMSEIS [13], moreover, the deployments in LHB
could provide constraints on the origin of the Gamburtsev
Subglacial Mountains in terms of understanding the broader
structure of Antarctic Pre-Cambrian craton and the sub-
glacial environment. Detection of seismic signals from basal
sliding of the ice sheet and ice streams [10, 21] would be
expected from the future study, as well as the detection of
outburst floods from subglacial lakes.

3. Seismic Velocity Discontinuities

Interesting seismic evidence related to the structure and
dynamics of LHB was obtained in the last decade by JARE
geoscientific activities. The recorded teleseismic data in LHB
are of sufficient quality for usage of various analyses to clarify
the heterogeneous features of the Antarctic lithosphere-
asthenosphere system, as well as deep interiors [5, 14, 15,
22–24]. In recent years, moreover, glacial-related seismic
events were detected by the LHB array stations [25, 26].
Seismic signals involving ice-related phenomena, also known
as “ice-quakes (ice-shocks)”, have been associated with
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Figure 3: Simulated seismic array response functions in dominant frequency of 0.03 Hz and 0.1 Hz for receiver distribution for all GARNET
stations as shown in Figure 2.

glacially related mass movements of ice-sheets, sea-ice, tide-
cracks and icebergs in the polar areas [10, 25]. Despite the
development of local networks in the last two decades, we can
hardly distinguish a difference between waveforms by local
tectonic earthquakes and those of ice-related phenomena
(e.g., the unknown X-phases reported by [26]). The ice-
related signals can provide unique information for local
impact on Antarctic region involving global climate change.

The recorded waveforms are of sufficient quality to
analyze the crust-upper mantle structure and tectonic
evolution of the region. Passive seismic source studies of
receiver functions, shear wave splitting, and surface wave
tomography were carried out by using the data recorded
from systems located on outcrops in LHB. Shear wave

velocity models were inverted by fitting synthetic receiver
functions to the observed data in short-period ranges. The
obtained model investigated from azimuthal variations of
the receiver functions represents a slightly dipping crust-
mantle boundary toward the coast [27]. Moreover, a gradual
thickened structure of the crust in LHB was identified
from the north toward the south [28]. Variations in crustal
thickness along the coast may reflect the tectonic history,
with increasing metamorphic grade in crystalline crust
towards the south in LHB [29].

The long period receiver functions reveal depth vari-
ations in seismic discontinuities of the upper mantle
(for 410 km and 660 km) beneath the LHB [1]. Long
period receiver functions (after 0.2 Hz low-pass filter) were
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generated using 62 teleseismic events recorded by the local
broadband arrays (Figure 5, left). Variations in depth distri-
bution of P-S conversion points were identified particularly
about the 660 km discontinuity (Figure 5, right). Shallow
depths in topography for the 660 km discontinuity were
found beneath the continental ice sheet area, that is, SE part
from the GARNET stations along the coast. The evidence
might reflect the paleo upwelling of the mantle plume
associated with supercontinent break-up in Mid-Mesozoic
age.

Back azimuth distribution for depth-converted receiver
functions was compiled for all the GARNET stations
(Figure 6). The back azimuths were defined as directions
of depth conversion points calculated for all the hypo-
center-station pairs from Syowa Station (SYO) as a cen-
ter. Back azimuth distribution for the depth variations

in the upper mantle discontinuities was compiled for all
stations (Figure 7). The color contours in Figure 6 indicate
the smoothed amplitudes of the receiver functions. The
heterogeneities were observed in both 410 and 660 km
discontinuities in both azimuth ranges of 20–50◦ and 200–
260◦. The two back azimuth groups are almost parallel with
the coast and may indicate the relationship with the break-up
process of Gondwana. The evidence of break-up supported
by other studies from teleseismic shear wave anisotropy
and reflection imaging by active sources is shown in the
succeeding chapter.

4. Upper Mantle Anisotropy

Seismic wave anisotropy provides information on recent
and/or fossil mantle flows reflecting tectonic evolution of the
study region. The seismic anisotropy in the upper mantle of
LHB was derived from SKS splitting analysis for teleseismic
events recorded on the GARNET stations (Figure 8; [16]).
Averaged delay times of SKS wave splitting for all analyzed
stations were obtained as 1.3 s, which were almost equal to
the global average. A two-layer model was assumed to model
the upper mantle anisotropy; the upper layer is generally
considered to correspond to the “lithosphere” and the lower
layer to the “asthenosphere”. For six stations in LHB, we can
recognize the azimuthal variation of the splitting parameters
(Figure 9).

The fast polarization directions of SKS waves were com-
pared with the directions of Absolute Plate Motion (APM),
which reflects recent mantle flow [30]. The directions of
APM around LHB are about N145◦E, and the velocity is
about 1.1 cm/yr based on the HS3-NUVEL1 model [31]
(Figure 10). Since the fast polarization directions of the
lower layer were generally parallel to the directions of APM,
it was considered that the lower layer anisotropy reflected
asthenospheric anomalies due to the horizontal mantle flow
along the APM.

In contrast, the fast polarization directions of the upper
layers never coincide with the APM direction (the difference
is up to 100◦). We offer an idea that the anisotropic structure
could be involved with past tectonic events and the origin
of anisotropy is “frozen” in the lithosphere. Gondwana
assembly in Early Paleozoic was one of the major events
in LHB [32]. The LHB experienced regional high-grade
metamorphism during the Pan-African orogeny [33]. The
metamorphic grade increases progressively from north to
south along the coast and the maximum thermal axis lies in
the southernmost part of LHB [34].

A “fossil” anisotropy in the lithospheric mantle can be
estimated as caused by the past regional tectonics. The
majority of the fast polarization directions in the upper
layer, corresponding to the “lithosphere”, were orientated
in an NE-SW direction (Figure 10). This is consistent with
the direction of the paleo compression stress during the
Pan-African age and the conversion stage between East and
West Gondwana supraterrains. We proposed that the mantle
anisotropy was created by lithological orientation of mantle
minerals during the amalgamation process of Gondwana,
rather than in current asthenospheric flow parallel to APM.
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Lützow-Holm Bay

(b)

Figure 8: (upper) The global distribution of teleseismic events (solid circles) and used stations in LHB for SKS analysis (triangles). Gray
lines are the ray paths from the sources. (lower) Map of the study area in LHB showing the seismic stations (triangles). Gray lines indicate
SKS wave paths, and black lines indicate wave paths above 410 km depth. All the figures are after Usui et al. [16].



8 International Journal of Geophysics

0 60 120 180 240 300 3600 60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360

0 60 120 180 240 300 360

0 60 120 180 240 300 3600 60 120 180 240 300 360

0 60 120 180 240 300 360

0 60 120 180 240 300 360 0 60 120 180 240 300 3600 60 120 180 240 300 360

0 60 120 180 240 300 360

0 60 120 180 240 300 3600 60 120 180 240 300 360

0 60 120 180 240 300 360

0 60 120 180 240 300 360

3
2.5

2
1.5

1
0.5

0

3
2.5

2
1.5

1
0.5

0

3
2.5

2
1.5

1
0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

3
2.5

2
1.5

1
0.5

0

3
2.5

2
1.5

1
0.5

0

3
2.5

2
1.5

1
0.5

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

180
150
120

90
60
30

0

AKR SKV

LNG SYO

SKL TOT

PAD STR

δ
t

(s
)

δ
t

(s
)

δ
t

(s
)

δ
t

(s
)

δ
t

(s
)

δ
t

(s
)

δ
t

(s
)

δ
t

(s
)

φ
(d

eg
)

φ
(d

eg
)

φ
(d

eg
)

φ
(d

eg
)

φ
(d

eg
)

φ
(d

eg
)

φ
(d

eg
)

φ
(d

eg
)

Back azimuth (deg )

Back azimuth (deg )

Back azimuth (deg )

Back azimuth (deg )Back azimuth (deg )Back azimuth (deg )Back azimuth (deg )

Back azimuth (deg )Back azimuth (deg )Back azimuth (deg )

Back azimuth (deg )Back azimuth (deg )Back azimuth (deg )

Back azimuth (deg )Back azimuth (deg )Back azimuth (deg )

(φ1, δt1) = (144◦, 0.6 s), (φ2, δt2) = (56◦, 0.6 s) (φ1, δt1) = (48◦, 0.3 s), (φ2, δt2) = (40◦, 0.7 s)

(φ1, δt1) = (118◦, 0.2 s), (φ2, δt2) = (46◦, 0.8 s) (φ1, δt1) = (145◦, 0.4 s), (φ2, δt2) = (57◦, 1.3 s)

(φ1, δt1) = (146◦, 0.3 s), (φ2, δt2) = (32◦, 0.9 s) (φ1, δt1) = (120◦, 0.2 s), (φ2, δt2) = (48◦, 1 s)

Figure 9: Splitting parameters of φ and δt plotted as a function of back azimuth. Vertical dashed lines are the direction of null measurements.
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5. Seismic Reflection Imaging

Besides the broadband passive studies, deep crust and upper
mantle in LHB were investigated by active source studies (the
Deep Seismic Surveys; DSS) by JARE [35–37] (Figure 11).
DSS was conducted on the continental ice sheet of LHB in
austral summers in 2000 and 2002 as one of the “Structure
and Evolution of the East Antarctic Lithosphere (SEAL)”
program. The deployments required significant logistical
efforts, including the explosion of large dynamite shots along
the seismic profiles on the ice sheet plateau in LHB.

Sophisticated DSS processing demonstrated pronounced
reflection images of the crust-upper mantle boundary

(Moho discontinuity) and of the lithospheric mantle struc-
ture [17, 38]. A laminated layering around the crust-mantle
boundary was well imaged using coherency enhancement
processing after the Normal Move Out (NMO) corrections
applied to far-offset data of the SEAL-2000, -2002 profiles.
For the SEAL-2000 profile, the single coverage CDP section
with only far offset shots was shown in the upper part of
Figure 12(a) and the single coverage CDP only with nearer
traces could be identified in the lower part. Figure 12(b)
shows a single-fold CDP section using only far offset shots
for the SEAL-2002 profile (upper), and the CDP stack section
with offsets less than 120 km is depicted for the same profile
(lower), respectively.
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Laminated layers of the lower crust in LHB, moreover,
were numerically modeled by comparing synthetic receiver
functions with those of observed waveforms in short period
bands (0.1–1.0 Hz) [39]. The repetitive crust-mantle tran-
sition zone imaged by the SEAL-2002 profile suggests the
presence of compression stress in an NE-SW orientation
during the Pan-African age, in the last formation stage of
a broad mobile belt between East and West Gondwana
terrains. Successive break-up processes of Gondwana in
the mid-Mesozoic could account for the formation of the
stretched reflection structure around the Moho discontinuity
as imaged on the SEAL-2000 profile (Figure 12(a)).

These seismic reflections were considered to represent
multigenetic origins, including igneous intrusions, lithologic
and metamorphic layering, mylonite zones, shear zones,
seismic anisotropy, or fluid layers [40, 41]. Though the cause

of reflectivity may have a multigenetic origin, we suggest that
metamorphic layering could be the principal cause in the
case of LHB. A strong reflectivity in the deeper crust-upper
mantle can be expected to result from layered sequences of
mafic and felsic rocks [42]. In addition, such a reflectivity
can be created where mafic rocks are interlayered with
upper amphibolite and lower granulite facies metapelites
[43].

In any continental terrains on Earth, the primary causes
for reflectivity might be enhanced by ductile stretching dur-
ing a late tectonic extensional process [44]. In particular, the
reflecting layers near the Moho were predominantly found in
crustally thinned tectonic areas. Accordingly, the reflectivity
in the lower crust and lithospheric mantle beneath LHB
might have been enhanced under extensional conditions
caused by the last breakup of the Gondwana supercontinent.
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6. Discussion

In this section, a regional evolution model of LHB is
presented to explain the formation process of the present
structure as reviewed in the previous sections. A summary
of evolution history, including major tectonic events in LHB,
is demonstrated in Figure 14.

Geological studies by JARE revealed the regional meta-
morphism of LHB during the Pan-African orogeny [33].
Metamorphic grade increases progressively from amphibo-
lite facies in the NE to granulite facies in the SW of LHB.
The maximum thermal axis runs through the southern LHB
with an NNW-SSE striking direction [29]. From geolog-
ical evidence, the LHB terrain experienced deformation r
compression stress-oriented perpendicular to the thermal
axis, almost parallel to the coast, during the last stage of
the deformation process of a mobile belt located between
the East- and West-Gondwana [32]. The high-amplitude
magnetic anomalies occurring in LHB compared to those in
the surrounding terrains ([45]; Figure 13) indicate the LHB
may be located in one of the major suture zones of the Pan-
African mobile belt. This has been pointed out in recent
studies in East Africa and in East Antarctica. These major
suture zones appear to continue from LHB to the Shackleton
Range of West Antarctica [32, 46].

The lower crust and upper mantle beneath LHB were
characterized to have lateral and vertical variations as
shown in seismological studies reviewed in this paper.
The gently inland dipping Moho discontinuity (38–42 km)
beneath the SEAL-2000 profile was inverted by travel-time
analysis from refraction and wide-angle reflection surveys
[18]. The present structure is attributed to hold the past
regional tectonics, particularly metamorphic and orogenic
activities in Pan-African age. Inferred thrust duplicated
(similar to the wedge shaped) lower crust-upper mantle
transition structures interpreted on the SEAL-2002 profile
(Figure 12(b), [17]) also imply a compressive stress regime
along the profile oriented in an NE-SW direction during
the Pan-African. Through consideration with geophysical
and lithologic information, LHB is considered to be formed
under convergence, perpendicular to the thermal axis, during
the collision between supraterrains of Gondwana during
the last stage of supercontinent formation [39, 47]. If LHB
underwent NE-SW compression, related paleo-mantle flow
along this direction could produce the seismic anisotropy
associated with the thermal axis of progressive metamor-
phism. Since the direction of paleo-compression is consistent
with the resultant fast polarization by SKS splitting [16],
anisotropy in the upper layer in Figure 9 can be explained
by “lithospheric” deformation during the formation of LHB
at Pan-African.

During the break-up between Antarctica and Australia-
India at ∼150 Ma [48], the LHB experienced extensional
stress, which caused thinning at the continental margins
of East Antarctica. The flat lying reflectors above the
crust-mantle boundary recognized in the SEAL-2000 profile
(Figure 12(a)) suggest the presence of an extensional stress
regime in the NW-SE direction resulting from break-up. The
seismic reflective layers at the crust-mantle boundary and

lithospheric mantle may have been enhanced by extensional
conditions during the final stages of break-up. The Lattice
Preferred Orientation (LPO) induced mechanical anisotropy
developed along the direction of preexisting lithospheric
structure during continental rifting [49]. The origin of
anisotropy beneath Western Dronning Maud Land was
pointed out as the ancient lithospheric structure modified
by rifting processes during break-up [50]. As the spreading
direction off the Enderby Land was NW-SE initial stage
of break-up [51], a strike of the rift was generally parallel
to the continental margin of LHB. The fast polarization
directions of the upper layer (“lithosphere”) in SKS analysis
were roughly parallel to the continental margin. Therefore,
it is plausible that break-up affected the formation of
anisotropy in the lithosphere. The preexisting lithospheric
structure might also influence the formation of anisotropy
in succeeding break-up processes.

Finally, besides the studies for the crust and upper
mantle, the recorded teleseismic waveforms have advantages
to investigate the deep Earth’s interiors such as the lower
mantle, D′′ zones [15], Core-Mantle-Boundary (CMB), and
the Inner Core [14, 52]. The GARNET data in LHB can
be utilized to study the deep Earth interior of the southern
high latitudes. Further, these data can be combined with data
from other projects in the region, such as AGAP/GAMSEIS
and projects from collaborating nations in Antarctica. The
broadband deployments in LHB offer effective contributions
to GARNET, international Antarctic Array program, FDSN,
POLENET, and the broader goals of the IPY and beyond.

7. Conclusions

Broadband seismic deployments around the Pan-African
terrain of LHB, East Antarctica, provided clear images of
characteristic structure of the upper mantle. Passive source
studies using teleseismic events such as receiver functions
and shear wave splitting demonstrated heterogeneous struc-
ture along the coast in the region. Depth variations of the
upper mantle discontinuities (410 km and 660 km) were
derived from long-period receiver functions recorded at LHB
array stations. Shallow depths in topography of the upper
mantle discontinuity particularly about 660 km depths were
cleared beneath the continental ice sheet area where SE apart
from the stations. These results may reflect paleo upwelling
of the mantle plume associated with Gondwana break-up.

Lithospheric mantle anisotropy derived by SKS splitting
anticipated relationship between “fossil” anisotropy and past
tectonics. Fast polarization directions, mainly in NE-SW,
were consistent with paleo compression during the Pan-
African. The origin of mantle anisotropy might be caused
chiefly by LPO involving supercontinent assembly, rather
than present asthenospheric flow parallel with Absolute Plate
Motion. In addition, multidisciplinary lithospheric mantle
images were combined by both active and passive sources
conducted at LHB. DSS was carried out on the continental
ice-sheet in 2000 and 2002 and provided clear information
on the crust-mantle boundary, together with inner crustal
and lithospheric mantle reflections. After processing of NMO
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corrections and CDP stacking, the DSS extracted lithospheric
images imply tectonic influence of compressive stress during
the Pan-African.

The broadband deployments in LHB, accordingly, could
give rise to an effective contribution to regional and global
seismic networks, international Antarctic Array programs,
together with POLENET during IPY.
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Linearized multiparameter inversion is a model-driven variant of amplitude-versus-offset analysis, which seeks to separately
account for the influences of several model parameters on the seismic response. Previous approaches to this class of problems
have included geometric optics-based (Kirchhoff, GRT) inversion and iterative methods suitable for large linear systems. In this
paper, we suggest an approach based on the mathematical nature of the normal operator of linearized inversion—it is a scaling
operator in phase space—and on a very old idea from linear algebra, namely, Cramer’s rule for computing the inverse of a matrix.
The approximate solution of the linearized multiparameter problem so produced involves no ray theory computations. It may be
sufficiently accurate for some purposes; for others, it can serve as a preconditioner to enhance the convergence of standard iterative
methods.

1. Introduction

The linearized inverse problem in reflection seismology aims
at recovering model perturbations from data perturbations,
assuming known reference or background model. Both
reference model and model perturbations consist of material
parameter fields (functions of position x) that characterize
wave propagation. As the background model is considered
known, we will suppress it from the notation and use the
word “model” and the symbolm and similar symbols to refer
to model perturbations. The linearized scattering operator
F maps a model perturbation m to the corresponding
perturbation Fm of the predicted data.

With these conventions, the inverse problem may be
stated as follows: given observed data d, find a model per-
turbation m so that

Fm ≈ d. (1)

Interpreting (1) in a least squares sense yields the normal
equations

F∗Fm = F∗d. (2)

F∗ is the adjoint (transpose) of F: it is a migration operator
(to be precise, the result of reverse time migration, properly
construed). The migration operator maps the data space to
model space. We will refer to the migration output mmig =
F∗d as the migrated image, acknowledging its typical role
in seismic processing. N := F∗F is the normal operator, or
Hessian (we will use these terms interchangeably).

An example of this setup is linear acoustics; we will
treat this example explicitly in this paper. The model m
consists of the velocity and density (or impedance and
density, or any other equivalent combination) perturbation
fields m = (δv, δρ), for instance. The forward map samples
the solution of the linearized (Born approximation) acoustic
wave equation for a source (right-hand side) indexed by
source position, at receiver positions, possibly with addi-
tional filtering to emulate antenna patterns induced by
source and receiver arrays.

In simulating seismic data generation with models such
as linear acoustics, waves typically propagate over hundreds
of wavelengths, and model fields must resolve features on
the wavelength scale. The normal equations thus represent
millions, or billions, of equations in the same number
of unknowns, ruling out the possibility of solving them
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by means of direct matrix methods such as Gaussian
elimination. This paper presumes that the computations
implementing the application of the normal operator are
carried out by “wave equation” methods, that is, finite dif-
ference or finite element simulation. Thus each application
is an expensive, large-scale computational procedure, a fact
which places practical limits on the number of steps taken in
an iterative scheme to solve the normal equations (2). For
example, Krylov subspace methods (such as the conjugate
gradient method) require at least one application of the
normal operator per iteration.

We present an efficient method to approximate the solu-
tion of the normal equations that requires a few applications
of the normal operator (one for one-parameter inversion,
two for two-parameter inversion, and six for three-parameter
inversion). This method leverages the properties of the nor-
mal operator: under some conditions (background model
parameter fields slowly varying on the wavelength scale,
diving wave energy eliminated from data, data polarized by
propagating phases), it is a special type of matrix-valued
spatially varying filter [1–9]. This particular type of spatially
varying filter, called a pseudodifferential operator in the
mathematical literature [10], preserves the discontinuities
(events) in the model m to which it is applied while effecting
a dip- and frequency-dependent scaling of the amplitudes. Its
application also mixes events when several model parameters
(density, p- and s-wave velocities, etc.) are present: thus a
density event will show up in the velocity component of
acoustic migration output, and viceversa, for example.

In this work, we shall show how to separate the events
corresponding to various model parameters by means of
several applications of the normal operator to permuted
image vectors, so that the result differs from an inversion
of the data by an overall spatially dependent filter, common
to all components. We have previously solved the problem
of estimating and correcting for such a filter [11, 12]: it
is the same problem as occurs in the solution of a single-
parameter linearized inverse problem. Combining the two
techniques, we recover an accurate approximate inversion for
all parameters, within constraints which we shall illustrate.

We review our approach to single-parameter inversion
(based on constant density acoustic modeling, for instance)
in Appendix B. It belongs to the genre of scaling methods
[13–16], which approximate the Hessian or its inverse by
estimating a filter of some sort from a single application
of the normal operator to a migrated image or some other
test image. In previous work on single-parameter inversion,
the second author pointed out that the pseudodifferential
nature of the Hessian makes possible, a very simple, and
accurate approximation, provided that the reflectivity dip
is unique at every imaging location [16]. Our approach to
single-parameter inversion without assuming uniqueness of
dip (Appendix B) carries this idea further; it is similar to
that described by Guilton [15], but with different constraints
on filter structure motivated by the theory of the pseudod-
ifferential normal operator cited above. The core of our
method is the Pseudodifferential Operator Algorithm [17],
an efficient algorithm for application of filters of the required
type, which we review in Appendix A. Several other authors

have explored similar pseudodifferential scaling methods
based on other fast application algorithms [18, 19].

Note that data-adaptive scaling methods such as those
cited in the previous paragraph differ in an essential way
from scaling by an approximate diagonal of the Hessian
[20, 21]. As noted by Rickett [14], a dip-independent scaling
cannot well approximate an inverse Hessian in general, as the
appropriate amplitude correction (from migrated image to
inversion) depends on dip. On the other hand, these methods
also differ from the so-called Kirchhoff or Generalized Radon
Transform or Ray-Born inversion (e.g., [22–25]): both are
asymptotic and approximate (either implicitly or explicitly)
the normal operator as a pseudodifferential operator, but
Generalized Radon Transform inversion involves explicit
geometric optics computations, while scaling methods do
not. Migration deconvolution methods [26] also approx-
imate the Hessian, or its inverse, but differ from scaling
methods in a similar way: migration deconvolution filters
are constructed from approximate (layered) Green’s function
computations, rather than by data-adaptive fitting of an
a priori limited filter class. Several authors have explored
construction of localized filter representation of the Hessian
or inverse Hessian using a more general class of Green’s
functions [27, 28]; again, scaling methods do not require
precomputation of a Green’s function database.

It has long been recognized that the offset (or scattering
angle) dependence of a reflection event encodes material
parameter changes across a reflector. Approximations to
this relation motivated by the analysis of reflection and
transmission in layered media (the Zoeppritz equations and
linearization thereof, [29, 30]) lead to amplitude-versus-
offset (“AVO”) analysis techniques [31]. Linearized inversion
for one or more material parameters might be viewed
as a quantitative counterpart, that is, as AVO inversion,
and attacked via iterative linear system solvers [32–34].
Herrmann [18] uses a single-parameter inversion approach
resembling ours to precondition iterative inversion for faster
convergence; we envision a similar use of our techniques.
Note that migration deconvolution has also been used as
an aid to quantitative AVO [35]. As already mentioned,
migration deconvolution relies on layered modeling to
obtain approximate Green’s functions. Pseudodifferential
scaling is limited in other ways but does not require modeled
wave dynamics used to construct the approximate Hessian to
be close to those of layered media (and does not require the
construction of Green’s functions).

Several studies have analyzed the conditioning, or error
propagation properties, of multiparameter inversion [34, 36–
38]. We will not discuss this important issue except in that
characteristic conditioning behavior will be evident in our
examples: for linearized acoustic inversion from surface data,
velocity or impedance perturbations are considerably better
resolved than are density perturbations.

We have used only synthetic data in the work reported
here and rather simple synthetic data at that. In fact, the very
few published examples of inversion (in the sense of noise-
level data fit) of exploration-scale data [39–41], strongly sug-
gest that the success of linearized multiparameter inversion is
sensitive to other aspects of the inverse problem: source pulse
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and radiation pattern estimation, background field approxi-
mation, modeling the physics accurately (including elasticity,
attenuation, etc.), and to very careful data preprocessing. In
this work, we chose to avoid these issues and focus only
on the mathematical/computational issue of multiparameter
inversion, given model-consistent data.

2. Theory and Methods

Recall that the aim of this paper is to solve the normal
equations

Nm = mmig = F∗d (3)

for a model vector m = (m1, . . . ,mn) consisting of n
component material parameter perturbation fields mi. The
migration output mmig is a vector of the same type as the
model, that is, an n-vector of components, which we shall call
images, as they typically contain visual evidence of reflectors.

Since both input and output of the normal operator
consist of n-vectors of material parameter fields, it is natural
to represent N as an n × n block matrix of operators Nij

mapping material parameter fields of type i to those of type
j. Since material parameter fields are positive, it is possible
to use relative perturbations to parametrize the model (thus,
δρ/ρ for instance), in which, case N and its blocks Nij

are nondimensional. We chose not to nondimensionalize
the problem as the techniques to be described below
automatically produce results with appropriate units.

The Hessian may be treated as a matrix of spatially
varying filters. The filter coefficient Aij defining the (i, j)
component filter Nij depends on both the spatial position x
and the wavevector k,

Nijmj(x) =
∫
Aij(x, k)m̂j(k)eix·k dk, (4)

in which m̂j denotes the spatial Fourier transform of the jth
model component mj . Denote by N = op(A) the operator
defined by the matrix A = (Aij) of filter coefficients via (4).

Under certain conditions, the normal operator is a
matrix of spatially varying filters of a special type, known
as pseudodifferential, to be described below. By Beylkin [1]
and Rakesh [2] established the first results of this type, which
were systematically extended by Nolan and Symes [4], Ten
Kroode et al. [6], De Hoop and Bleistein [5], Stolk [42],
Stolk and De Hoop [43] and others. We summarize the
theory as follows: the Hessian is well approximated by a
pseudodifferential operator provided

(i) the material parameters in the background model
vary smoothly on the scale of a wavelength (since
the theory is asymptotic in frequency, the technical
assumption is that they are smooth, that is, infinitely
differentiable, but the practical meaning is as stated
here);

(ii) diving wave energy is not present in the data or has
been muted or dip-filtered out;

(iii) the data has been polarized into propagating phase
components.

These conditions are likely to be essential: either major reflec-
tors in the background model or nonpolarized multiphase
data lead to Hessians which produce nonphysical reflector
images at some distance from their sources, hence cannot
be well-approximated by their near-diagonal behavior. Since
pseudodifferential operators are nearly local, in a sense to
be made precise below, Hessians producing major reflector
shifts cannot be approximated by them. For that matter,
no near-diagonal approximation to the Hessian could be
accurate in such cases, so these same limitations would seem
to apply to all scaling methods.

Pseudodifferential operators are distinguished from
other types of spatially varying filters by strong constraints
on the filter coefficients Aij , which must exhibit polynomial-
like growth in the wavenumber k = √k · k, as k → ∞. more
precisely, require that a real μ exist so that the mixed partial
derivative of order α = α1 +α2 +α3 grows like kμ−α as k → ∞:∣∣∣∣∣ ∂α

∂kα1
1 ∂k

α2
2 ∂k

α3
3
Aij(x, k)

∣∣∣∣∣ ≤ const.× kμ−α. (5)

That is, Aij grows like kμ for large k, and every mixed partial
derivative in k decreases the order of growth by the order
of the derivative. It is also required that spatial derivatives
do not increase the order of growth of the coefficient—we
will not write down precisely how this additional constraint
is imposed, referring the interested reader to Taylor [10] for
a more complete account.

Condition (5) also describes the growth behavior of
polynomials in k, which are the filter coefficients of differ-
ential operators. Other functions of k, for instance k itself,
also satisfy these conditions, so the type of filter described
by (5) is more general than differential operators. These
considerations led to the name “pseudodifferential operator”
being applied to this type of filter. In fact, it is possible
to approximate any pseudodifferential operator arbitrarily
well by the composition of a differential operator and a
power of the Laplacian (i.e., a filter of the form kμ). In this
sense, pseudodifferential operators are nearly local, that is,
diagonal.

By convention, filter coefficients obeying the growth
rules described here are called symbols, and we shall use
this terminology as well to distinguish these special filter
coefficients from the Fourier representation of general filters.
The number μ figuring in the constraint (5) is the order of
the operator; it determines the extent to which application of
the operator changes the growth (or decay) rate for in the
Fourier domain, for large wavenumber. Note that order is
inclusive, rather than precise: if an operator is of order μ, it is
of order ν for any ν ≥ μ. However, order does differentiate
pseudodifferential operators by the size of their effect on
oscillatory data, just as is the case for differential operators.
The work cited at the beginning of this section shows how the
order of the Hessian depends on the dimension of the model
and the source-receiver geometry. For example, for constant
density acoustics in 2D, the order is 1; for 3D and a full range
(i.e., π) of azimuths, the order is 2.

Equation (5) is a very strict constraint on the structure
of the pseudodifferential class of spatially varying filters, so
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it should not be a surprise that the behavior of such filters
is also highly constrained. Very important in the sequel
are the composition properties: if A is a (n × n matrix)
pseudodifferential operator of order μ, B is another of order
ν, then

(1) the product (in other words, composition) AB is
again a pseudodifferential operator of order μ + ν,
and the symbol of the product differs from the prod-
uct of the symbols by a symbol of order μ + ν− 1;

(2) consequently, if n = 1 (scalar operators), then the
commutator AB − BA is of order μ + ν− 1.

That is, to leading order in wavenumber, the product of
pseudodifferential operators is simply obtained by multiplying
their symbols, and scalar operators commute. These properties
single out pseudodifferential operators amongst general
spatially varying filters. Proofs of these and other facts about
pseudodifferential operators may be found in Taylor [10], for
example.

The theory cited above also showed that the normal
operator is “partly invertible”, that is, at each point in the
subsurface, the Hessian scales spatial Fourier components
with a certain range of dips by a positive multiple of kμ. It
follows from point (2) above that an operator whose symbol
is the reciprocal of that of the normal operator for this range
of dips, and simply set to zero with suitable tapering outside
this range will function as an approximate inverse Hessian.
This construction gives an approximate inversion for the
single-parameter inverse Hessian (e.g., for constant-density
acoustics), illustrates the utility of these very special filters,
and is explained briefly in Appendix B, and in more detail in
[11, 12].

Multiparameter scattering results in a matrix Hessian,
mixing influences between various parameters. In some
cases, the Hessian is a matrix of pseudodifferential operators.
For example, the Hessian for acoustic scattering or for
polarized elastic scattering (P-P, S-S) has this property.
Acoustic scattering has only one (p-wave) phase, so it has
this property [44], as does elastic scattering with suitably
polarized data [43]. The close relation between the matrix
A = (Aij) of symbols and the normal operator N which it
defines again allows us to calculate an approximate inverse
via symbol computations.

To this end, recall the definition of the adjugate, or
classical adjoint, of an n × n matrix A, denoted by Adj(A):
it is the transpose of the matrix of cofactors of A. Explicitly,

Adj(A)i j = (−1)i+ j detMji (6)

in which the (n − 1) × (n − 1) minor Mij is obtained from
A by dropping the ith row and jth column. The ji cofactor
is the number on the right-hand side of (6). In our case,
the transpose of the cofactor matrix may be ignored, as the
matrix A and thus its adjugate are symmetric (since the
Hessian N is symmetric).

The significance of the adjugate is this: when the matrixA
is invertible, then the adjugate is proportional to the inverse,

A−1 := 1
det(A)

Adj(A). (7)

This relation is Cramer’s rule and is the critical observation
leading to our approximation method. Note that

Adj(A)A = AAdj(A) = det(A)I , (8)

where I is the identity matrix. If we define the adjugate of
N to be Adj(N) = op(Adj(A)) (i.e., the matrix pseudodif-
ferential operator with symbol matrix Adj(A)), with slight
abuse of notation, then the multiplicative order properties of
pseudodifferential operators described above imply that

Adj(N)N ≈ NAdj(N) ≈ det(N)I. (9)

The equation above features another abuse of notation, with
det(N) := op(det(A)). The power of (8) is revealed when
applied to (3)

Adj(N)mmig = Adj(N)Nm ≈ det(N)m. (10)

Equation (10) reduces the inversion of N to two steps: (i)
application of Adj(N), followed by (ii) inversion of the scalar
operator det(N), after the application of the adjugate.

Note also that while mmig may be dimensionally hetero-
geneous, Adj(N)mmig has redimensionalized all components
so that their units all bear the same relation to the units of the
components ofm. Inversion of det(N) removes this common
unit factor and correctly dimensionalizes the model estimate.

For inversion of det(N), we resort to a method similar
to the one we previously developed for n = 1 (reviewed in
Appendix B). First apply the normal operator again to the
left-hand side of (10), to form

NAdj(N)mmig = N det(N)m ≈ det(N)Nm

= det(N)mmig.
(11)

Here, we have used the fact that scalar pseudodifferential
operators approximately commute with matrices of pseu-
dodifferential operators to commute N and det(N).

Equation (11) shows how to find a pseudodifferential
approximate inverse c to detN , by minimizing an objective
function, all parts of which are readily computable∥∥∥mmig − cNAdj(N)mmig

∥∥∥2
, (12)

over a suitable class of pseudodifferential operators c. From
(9), a solution c will approximately invert det(N) and is
scalar, since det(N) is. Since c removes from the left-hand
side of (10) a scalar filter, it plays a similar role to the
scaling factors encountered in the various scaling methods
mentioned in the introduction, so we will also refer to c as a
scaling factor, although it is a pseudodifferential operator.

The reader will recall that N is only partially invertible
for a range of model wavevectors k, the symbol determinant
det(A) is asymptotic to a positive multiple of knμ and
to a lower power outside of this “illuminated” cone of
model wavenumbers. The method explained in Appendix B
constructs c as an approximation to the reciprocal of the
symbol of det(N) in the illuminated wavenumber cone,
tapered to zero outside of this cone.
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The algorithm explained in Appendix B is iterative and
requires at least one application of the trial scaling factor c at
each iteration. An efficient method for numerical application
of pseudodifferential operators is therefore required; we use
an algorithm introduced by Bao and Symes [17], which we
review in Appendix A.

Having constructed c, we approximate the solution of
normal equations by

minv = cAdj(N)mmig. (13)

Equations (12) and (13) show that computation of the
adjugate action is key to this approach, so we examine it more
carefully. We will address the two parameter cases (n = 2)
explicitly, both for inspiration and because it is this case for
which we present examples in the next section. Writing

N =
⎛⎝N11 N12

N12 N22

⎞⎠, (14)

Adj(N) is

Adj(N) =
⎛⎝ N22 −N12

−N12 N11

⎞⎠,

Adj(N)m =
⎛⎝ N22m1 −N12m2

−N12m1 +N11m2

⎞⎠.
(15)

It appears to be necessary to compute the various compo-
nents of N separately: for example, if the underlying theory
is acoustic scattering, then N22 might represent input and
output density perturbations, and so on, so that each Nij

would appear to require a complete modeling/migration
cycle.

In fact, it is possible to compute Adj(N)m using only
applications of N , thus both reducing the cost of the appli-
cation and eliminating the need to write special component-
to-component migration codes. In the 2 × 2 case, only one
application of N is required! In fact,

Adj(N) = JTNJ , (16)

here, J is the so-called symplectic matrix,

J =
⎛⎝0 −I
I 0

⎞⎠, so J

⎛⎝m1

m2

⎞⎠ =
⎛⎝−m2

m1

⎞⎠. (17)

Note that units are implicitly changed (as they are in the
application of the adjugate operator) and that in practice
it is presumed that the discrete representations of the two
parameters are the same, so that, for example, density can
be swapped for velocity and vice versa.

Equation (16) implies that the application of the adjugate
on the migrated image requires one application of N , rather
than the four that a naive implementation would suggest.
Thus, approximating the inverse for n = 2 requires two
applications of the normal operator, plus a small amount of
additional data manipulation.

The situation is more complicated for n = 3, but a
similar result holds: it is possible to compute the application
of the adjugate using five applications of the normal operator,
a considerable improvement over the twenty-four that the
naive algorithm based on the definition (6) would appear to
require; note that separate application of every component
Nij by wave-equation methods is just as expensive as
application of the entire operator N . See Nammour [38]
for details. We conjecture that a similar drastic reduction is
possible for general n.

As a final note, we can show explicitly for n = 2 the sense
in which equation (9) is an approximation, while equation
(8) is exact. Denoting the commutator of two operators by
[a, b] = ab − ba,

Adj(N)N = (
N22N11 −N2

12

)⎛⎝1 0

0 1

⎞⎠

+

⎛⎝ 0 [N22,N12]

[N11,N12] [N11,N22]

⎞⎠

= det(N)I +

⎛⎝ 0 [N22,N12]

[N11,N12] [N11,N22]

⎞⎠.
(18)

The theory of pseudodifferential operators shows that the
commutator of two pseudodifferential operators is of lower
order than their composition, that is, relatively negligible for
highly oscillatory input fields. Using ≈ to mean “differs by a
lower order error”,

Adj(N)N ≈ NAdj(N) ≈ det(N). (19)

3. Numerical Examples: Layered Variable
Density Acoustics

As a first application to the two parameter inversion, we
construct a variable density acoustics model perturbation
consisting of a thin oscillatory velocity layer and a thin
oscillatory density layer in a different place (see Figures 1
and 2). The background model is homogeneous with vp =
2 km/s and dn = 2000 kg/m3. The two thin layers are treated
as perturbations.

We simulated reflection data for this model using the
IWAVE software developed by The Rice Inversion project in
linearized (Born) modeling mode [45]. The model extends
around 1.7 km in depth and 6.5 km horizontally. One source
is put in the middle, and receivers are laid out to created
an offset ranging [−2.7 km, 2.7 km], spaced 20 m apart and
40 m below the (absorbing) surface. The isotropic point
source wavelet was a 2.5–5–15–20 Hz trapezoidal zero-phase
bandpass filter. 3 seconds of data were recorded at 151
receiver positions. The boundary conditions were absorbing
on all sides of the domain, in particular, free surface effects
were not modeled. Since the model is layered, only a single
source gather need be modeled.

All (reverse-time) migrations were also carried out with
IWAVE [46]. The output is a layered model (i.e., two depth
traces, one for each velocity and density perturbations),
which we shall display as layered fields.
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Figure 1: vp, velocity perturbation.

Migrating the Born data shows how migration mixes
the effects of the two models in the two components of the
migrated images (Figure 3). We shall refer to the migrated
images as mmig1 and mmig2 to remain consistent with our
notation where the vector of migrated images is mmig.
This example, albeit simple, stresses a new challenge of
multiparameter inversion. For one parameter inversion, the
events in the migrated image corresponded to events in
the true model. In multiparameter inversion, events in the
migrated images may correspond to an event in one or more
of the components of the model. It is virtually impossible to
tell that these migrated images correspond to a model with
separate events for velocity and density without successful
inversion.

Applying the scheme outlined above, we form

JTNJmmig ≈ det(N) m. (20)

The result is shown in Figure 4 and shows how one
application of the normal operator effectively separated the
contributions of the velocity and density events. It remains
to effect an amplitude correction by approximating an
inverse to det(N). For this end, we are required to form
N det(N)m ≈ det(N)mmig, shown in Figure 5.

The final step corrects the amplitudes of det(N)m by
undoing the effect of det(N), which yields an approximate
inverse. This final step complements the separation we
obtained earlier with an amplitude correction Figure 6 shows
that the approximate inverse compares favorably with true
model. An interesting observation on this result is the fact
that the velocity model is better recovered than the density
model: traces of the velocity event in the density model
are more apparent than those of the density event in the
velocity model. This observation is in accordance with the
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Figure 2: dn, density perturbation.

theoretical fact that the recovery of velocity in variable
density acoustics is better conditioned than the recovery of
density. The inversion is successful in that the inverted model
succeeds in fitting 70% of the target data (see Figure 7).

4. Discussion and Conclusion

We have presented a method to approximate the solution of
the multiparameter linearized inverse problem an extension
of Cramer’s rule for matrices of pseudodifferential operators.
The method consists of two steps:

(1) reducing the multiparameter problem to a one
parameter problem, which yields an amplitude scal-
ing of the solution;

(2) correcting the amplitudes of the result from the
previous step to approximate the solution.

The application of the work flow to a layered variable
density acoustics example shows how the effects of differ-
ent material parameters, indistinguishable in the migrated
images, are separated in the first step. The amplitude
correction step successfully yields an approximate solution
to the linearized inverse problem.

The work flow presented above applies without mod-
ification to any model. Results of application to models
more complex than the layered model described above will
be presented elsewhere. We point out that other aspects
of the physics of seismic data generation will need to be
accommodated if this (or any other) algorithm is to extract
accurate results from field data. For example, as shown
already by Minkoff and Symes [39], even when the Born
approximation is adequate, the radiation pattern of the
source has a first-order effect on the variation of amplitude
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Figure 3: Migrated images mixing the contributions from density and velocity, and effecting a phase space scaling.
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Figure 6: The approximate inverse. The contributions from velocity and density are separated, and the amplitudes are corrected.

with angle and must therefore be included in the parameters
to be estimated.

We have extended the Pseudodifferential Operator Algo-
rithm (Appendix A) to three spatial dimensions (3D) which
allows approximate inversion of 3D models. The symbol is

represented by a truncated spherical harmonics expansion.
The formulation of the method in this case remains intact,
though the cost of modeling and migration increases. This
extension of the method is described in detail, and examples
are given in Nammour [38].
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Figure 7: Data misfit versus target data. The inverted model fits 70% of the data.

The explicit derivation analogous to n = 2 for more
parameters (namely n = 3) is similar to the one presented
here but requires tedious algebraic manipulations. The case
n = 3 becomes relevant in the linearized inverse problem for
linear elasticity, for example. Six applications of the normal
operator are required to approximate the solution of the
linearized inverse problem. See Nammour [38] for a detailed
discussion.

We end by reminding the reader that the approach to
approximate inversion pursued here relies on the validity
of the pseudodifferential characterization of the Hessian.
As mentioned in the theory section, two of the three
conditions (background model smooth on the wavelength
scale, polarized data) are essential for any near-diagonal
Hessian approximation, adaptive or not, to be effective.
These limitations seem likely to be acceptable in some
exploration settings, for example, inversion of marine data
for supersalt sediment properties with soft sea floor, but
may seriously obstruct this type of technique in other
settings.

Appendices

A. The Pseudodifferential Operator Algorithm

Bao and Symes [17] presents an algorithm to numerically
apply pseudodifferential operators, which we use to represent
the scaling factor c in (12). We will discuss this algorithm in

this section as it is central to the feasibility of the method
presented here.

This discussion is restricted to 2D, so we may write
x = (x, z). Recall that a pseudodifferential operator is
characterized by its symbol and defined by

Qmu(x, z) =
∫∫

qm(x, z, kx, kz)û(kx, kz)ei(xkx+zkz)dkx dkz,

(A.1)

where qm(x, z, kx, kz) is the principal symbol, homogeneous
of degree m, and û = F [u] is the Fourier transform of u.

Thus, writing kx = ω cos θ, kz = ω sin θ and using the
homogeneity of qm, we have

qm(x, z, kx, kz) = ωmq̃m(x, z, θ). (A.2)

Notice that q̃m(x, z, θ) = qm(x, z, cos θ, sin θ) is periodic
and smooth in θ, and hence it admits a rapidly converging
Fourier expansion. We thus truncate the Fourier series,
approximating the symbol by its first K + 1 Fourier modes,

q̃m(x, z, θ) ≈
l=K/2∑
l=−K/2

cl(x, z)eilθ =
l=K/2∑
l=−K/2

ω−lcl(x, z)(kx + ikz)
l .

(A.3)

Plugging (A.3) into (A.1), we obtain

Qmu(x, z) ≈
l=K/2∑
l=−K/2

cl(x, z)F −1
[
ωm−l(kx + ikz)

l û(kx, kz)
]
.

(A.4)
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Fourier transform theory identifies ωm−l as the symbol
of (−∇)(m−l)/2, and kx and kz are, respectively, the symbols of
Dx = −i∂x and Dz = −i∂z.

Sampling the field u(x, z) and the symbol q̃m(x, z, θ),

Uij = u
(
x0 + (i− 1)Δx, z0 +

(
j − 1

)
Δz
)
,

Qijk = q̃m
(
x0 + (i− 1)Δx, z0 +

(
j − 1

)
Δz, kΔθ

)
,

i = 1, . . . ,M, j = 1, . . . ,N , k = −K
2

, . . . ,
K

2
.

(A.5)

Choosing Δkx = 1/(M − 1)Δx and Δkz = 1/(N − 1)Δz
yields the unaliased discretizations of the symbols of the
square root of the negative Laplacian, Dx and Dz

Ωpr = 2π
√(
pΔkx

)2 + (rΔkz)
2,

Xpr = 2πpΔkx,

Zpr = 2πrΔkz,

p = −M
2

, . . . ,
M

2
, r = −N

2
, . . . ,

N

2
.

(A.6)

Equation (A.4) suggests the following algorithm to
estimate Qmu [17]. All Fourier transforms refer to a discrete
Fourier transform.

(1) Compute Ûpr = F [Uij].

(2) For each i ∈ [1,M] and j ∈ [1,N], compute Q̂i j =
{Q̂i jl}K/2l=−K/2 the discrete Fourier transform of Qij =
{Qi jk}K/2k=−K/2.

(3) Initialize (QU)i j = 0, for i ∈ [1,M], j ∈ [1,N], For
l = −K/2 : K/2

(a) compute {Rli j}
M,N

i=1, j=1
= F −1[Ωm−l

pr (Xpr + iZpr)
l

Ûpr] for p = −M/2 , . . . ,M/2 and r = −N/2,
. . . ,N/2,

(b) accumulate(QU)i j = (QU)i j + Q̂i jlR
l
i j

End

A straightforward discretization of (A.1) has a computa-
tional complexity of O(N4 log(N)). The algorithm described
above uses FFT (Fast Fourier Transform) and thus exhibits a
complexity of O(KN2(log(N) + log(K))). The appeal of this
approach is that K is independent of N . In fact, applications
to reflection seismology require that the symbol be smooth
and slowly varying in θ, thus, may be captured accurately by a
modest number of Fourier modes or, more explicitly, a small
K .

The dependence on dip is captured in the angle variable
θ, and the method allows us to capture multiple dip events
by increasing K > 1.

B. The One-Parameter Case

In this appendix, we review the method developed in [11,
12] to construct an approximate inverse Hessian in the one-
parameter case. The aim is to solve

Nm = mmig, (B.1)

where mmig = F∗d ∈ Range(N). We seek a pseudo
differential scaling factor and formulate its recovery as an
optimization problem. Given the migrated image mmig and
the remigrated image Nmmig,

c = argmin
c∈ΨDO

∥∥∥mmig − cNmmig

∥∥∥2
. (B.2)

The scaling factor c is chosen from a class of pseudodiffer-
ential operators represented numerically using the PsiDO
algorithm (Appendix A). In this setting, the scaling factor
approximates the action of the inverse of the normal operator
on the migrated image mmig. More specifically,

m = N−1mmig ≈ N−1c Nmmig ≈ cN−1Nmmig

= c mmig := minv.
(B.3)

The first of these equations expresses the true solution m,
the second approximate equality follows from because pseu-
dodifferential operators approximately commute. Defining
minv := cmmig thus yields an approximation to the true
model m. Equation (B.3) shows that the scaling factor
approximates the action of the inverse on the normal
operator on the migrated image, and it is only in that sense
that c approximates N−1.

The scaling factor c is represented explicitly by the PsiDO
algorithm,

cNmmig(x, z)

≈
l=K/2∑
l=−K/2

cl(x, z)F −1
[
ωm−l(kx + ikz)

l
̂Nmmig(kx, kz)

]
.

(B.4)

We enforce the continuity of cl(x, z) using a parsimo-
nious basis technique. Let {ψj(x, z)}J

j=1be a set of smooth

shape functions (cubic b-splines, for example). Write

cl(x, z) =
J∑
j=1

c
j
l ψj(x, z), (B.5)

and plug into the objective function,

J =
∥∥∥mmig − cNmmig

∥∥∥2

=
∑
xi,zk

∣∣∣mmig(xi, zk)−
(
cNmmig

)
(xi, zk)

∣∣∣2
.

(B.6)

We have denoted by J the objective function in (B.2), and
used the fact that the images mmig and Nmmig are discretized
on a grid {xi}Ni=1, {zk}Mk=1 to write out the norm explicitly.
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We use limited memory BFGS (lBFGS) to minimize the
objective function (B.2), which requires the gradient to be
supplied by the user. The gradient is easily derived as

∂J

∂clj
= 2

∑
xi,zk

{(
mmig(xi, zk)−

(
cNmmig

)
(xi, zk)

)
ψj(xi, zk)

×
(
F −1

[
ωm−l(kx + ikz)

l
̂Nmmig(kx, kz)

])
× (xi, zk)

}
.

(B.7)

We have also explored enforcing the positivity of the scaling
factor explicitly and other symmetries of the problem, which
yields to slightly different representations of the scaling factor
c and in turn different objective function gradient. For more
details on this point and a discussion about the ability of the
method to resolve multiple dip events please consult [12].
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Three-dimensional wave-equation migration techniques are still quite expensive because of the huge matrices that need to be
inverted. Several techniques have been proposed to reduce this cost by splitting the full 3D problem into a sequence of 2D
problems. We compare the performance of splitting techniques for stable 3D Fourier finite-difference (FFD) migration techniques
in terms of image quality and computational cost. The FFD methods are complex Padé FFD and FFD plus interpolation, and the
compared splitting techniques are two- and four-way splitting as well as alternating four-way splitting, that is, splitting into the
coordinate directions at one depth and the diagonal directions at the next depth level. From numerical examples in homogeneous
and inhomogeneous media, we conclude that, though theoretically less accurate, alternate four-way splitting yields results of
comparable quality as full four-way splitting at the cost of two-way splitting.

1. Introduction

Because of its superiority in areas of complex geology, wave-
equation migration is substituting Kirchhoff migration in
practice. However, while Kirchhoff migration counts on
more than 30 years of technological development, wave-
equation migration methods still need to be improved in
various aspects. One of these aspects is the efficient imple-
mentation of three-dimensional wave-equation migration.

The application of a three-dimensional wave-equation
migration technique adds the problem of computational
cost to those of stability and precision of the chosen
migration algorithm. To speed up migration techniques like
finite-difference (FD) [1] or Fourier finite-difference (FFD)
migration [2], a technique known as splitting is frequently
used. In this context, splitting means the separation of a
single-step 3D migration into two 2D passes within planes
parallel to the horizontal coordinate axes, usually the inline
and crossline directions [3].

When the splitting is applied to the implicit FD migration
operator in such a way that the resulting equations are
solved alternatingly in the inline and crossline directions, the

resulting FD scheme is known as an alternating-direction-
implicit (ADI) scheme. This procedure has the drawback
of being incorrect for strongly dipping reflectors, resulting
in large positioning errors for this type of reflectors when
the dip direction is away from the coordinate directions and
thus outside the migration planes. This imprecision leads to
numerical anisotropy, that is, a migration operator that acts
quite differently in different directions.

To improve this behaviour while retaining the advantages
of a rather low computation cost, different procedures have
been proposed over the years. Ristow ([4], see also [5])
proposed to perform, in addition to the 2D migration in
the coordinate planes, also 2D migrations in the diagonal
directions between the coordinate axes. Kitchenside [6] used
phase-shift migration plus an additional FD propagation step
of the residual field to reduce the splitting error. Graves
and Clayton [7] proposed the implementation of a phase-
correction operator using FD and incorporating a damping
function to guarantee the stability of the 3D FD migration
scheme.

Inverting the idea of Kitchenside [6], who propagated
the field using phase shift and the residual using FD, Li [8]
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proposed to use conventional FD migration plus a residual
field correction by phase shift to improve the migrated image
quality. Without any need to modify the conventional 3D FD
migration, the Li correction adds a phase-shift filter at certain
steps of the downward extrapolation. This technique corrects
not only for the splitting error but also for the positioning
error of steeply dipping reflectors.

Collino and Joly [9] solved a family of new 3D one-
way wave equations by the ADI method. These equa-
tions significantly reduce the numerical anisotropy, but are
approximately four times as expensive as conventional two-
way splitting. Wang [10] developed an alternative method
to improve the precision of the FD solution of the one-way
wave equation. To guarantee stability and efficiency, he keeps
the implicit FD scheme and the alternation of directions,
but interpolates between the ADI solution and the wavefield
before each step of extrapolation. He calls the resulting
method ADI plus interpolation (ADIPI). As a drawback, this
ADIPI can produce instabilities in the presence of strong
lateral velocity variations.

Zhou and McMechan [11] proposed a 45◦ one-way wave
equation that can be expressed as a system of differential
equations of first and second order [12] and factored into
a product of two one-dimensional terms corresponding to
the lateral directions [7, 13]. A big asset of the method is
that the conventional FD extrapolation can be used with very
little modification. In this way, the efficiency of conventional
splitting is preserved, without adding the necessity of any
error compensation. However, the method is also instable
for strong lateral velocity contrasts and needs rather heavy
model smoothing.

Biondi [14] showed that FFD migration is more precise
than other methods that use implicit finite differences
like pseudoscreen propagators [15] and high-angle screen
propagators [16]. Given that the computational complexity
of all three methods is approximately the same, FFD
migration is more attractive than the others. Unfortunately,
when conventional FFD migration is applied in the presence
of strong velocity contrasts, it can generate numerical
instabilities, too.

To overcome the problem of instabilities in models with
strong lateral velocity contrasts, Biondi [14] presented a
correction to the FFD method that avoids stability problems.
To derive it, he adapted a theory of Godfrey et al. [17] and
Brown [18], which improves the stability of the 45◦ equation.
The corrected FFD method is unconditionally stable for
arbitrary velocity variations, as much in the velocity model
as in the reference velocity. Particularly, and differently from
conventional FFD migration, it is unconditionally stable
even if the reference velocity is smaller than the model
velocity. This new property allows for the application of
the interpolation technique, conventionally used to improve
phase-shift and split-step migration [19] but impossible in
FFD migration, because it needs propagation with a larger
and a smaller reference velocity. The resulting migration
technique is called FFD plus interpolation, or shortly FFDPI.

Another computationally less expensive method to stabi-
lize FFD migration in the presence of strong lateral velocity
contrasts was proposed by Amazonas et al. [20]. It substitutes

the real Padé approximation [21] used in the derivation
of FFD migration [2] by its complex version [22]. In
this way, the incorrect treatment of near horizontal and
slightly evanescent waves of the real Páde approximation is
improved, leading to a more stable FFD algorithm, shortly
referred to as complex Padé FFD (CPFFD) migration.

In this work, we study possibilities of efficiently imple-
menting these stable FFD migration techniques in 3D.
We implemented and compared splitting techniques for
FFDPI [14] and CPFFD [20] migration. Our numerical tests
indicate that a very robust, highly efficient, and satisfactorily
accurate method is alternate four-way splitting, that is,
splitting into the coordinate directions at one extrapolation
step and into the diagonal directions at the next step.

2. Theoretical Background

2.1. The One-Way Wave Equation. The one-way wave equa-
tion [23] can be derived starting from the scalar wave
equation, which for a homogeneous medium is given by

∂2p(x, t)
∂z2

+
∂2p(x, t)
∂x2

+
∂2p(x, t)
∂y2

− 1
c2

∂2p(x, t)
∂t2

= 0, (1)

where p(x, t) is the scalar wavefield and c = c(x) is
the spatially varying wave velocity. For moderately varying
media, where velocity derivatives can be neglected, Fourier
transform in time and horizontal coordinates x and y allows
to represent (1) as

∂2P
(
kx, ky , z,ω

)
∂z2

− (−iω)2

c2

(
1− c2

ω2

(
k2
x + k2

y

))

× P
(
kx, ky , z,ω

)
= 0.

(2)

Equation (2) can be factorized into⎡⎣ ∂

∂z
− (−iω)

c

√
1− c2

ω2

(
k2
x + k2

y

)⎤⎦

×
⎡⎣ ∂

∂z
+

(−iω)
c

√
1− c2

ω2

(
k2
x + k2

y

)⎤⎦
× P

(
kx, ky , z,ω

)
= 0.

(3)

The two differential operators in (3) represent, when taken
alone, one-way wave equations that describe up- and down-
going waves. For migration, the one-way wave equation of
interest is the one describing downgoing waves, that is,

∂P
(
kx, ky , z,ω

)
∂z

= (−iω)
c

√
1− c2

ω2

(
k2
x + k2

y

)
P
(
kx, ky , z, ,ω

)
.

(4)

Inverse Fourier transform in the horizontal wavenumbers kx
and ky yields then formally

∂P(x,ω)
∂z

= (−iω)
c(x)

√√√√1 +
c2(x)
ω2

(
∂2

∂x2
+

∂2

∂y2

)
P(x,ω). (5)
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The actual restrictions that apply to (5) in inhomogeneous
media are much less severe than the above derivation
indicates. Of course, for the formal representation (5) to
make practical sense, the square root of the differential
operator needs to be approximated in terms of numerically
executable operations.

2.2. Expansion of the Square Root. A well-used possibility for
the approximation of the square root in the one-way wave
equation (5) in terms of numerically executable operations is
an expansion into a Padé series [21]:

√
1 + Z ≈ 1 +

N∑
n=1

anZ

1 + bnZ
, (6)

where the Padé coefficients are

an = 2
2N + 1

sin2
(

nπ

2N + 1

)
, bn = cos2

(
nπ

2N + 1

)
. (7)

This approximation is used in most practical FD migra-
tion schemes. Depending on the number N of terms used in
the expansion, it gives rise to the so-called 15◦, 45◦, or 60◦
migrations.

However, when the interest is on accurate imaging up
to very high propagation angles, approximation (6) has a
drawback, because its validity is limited to Z > −1. For
Z < −1, the approximation breaks down abruptly, because
the left side of (6) is imaginary, while its right side remains
real. Thus, for propagation angles close to 90◦, where the
argument Z of (6) becomes close to−1, (6) becomes invalid,
which causes instabilities when using the real approximation
(6) for migration in models with strong lateral velocity
contrasts.

To overcome this problem, Milinazzo et al. [22] proposed
to rotate the branch cut of the complex plane before applica-
tion of the Padé approximation. Denoting the rotation angle
by α, the representation of the square root is
√

1 + Z = eiα/2
√

(1 + Z)e−iα = eiα/2
√

1 + [(1 + Z)e−iα − 1],
(8)

which, after expansion into a Padé series according to (6),
yields

√
1 + Z = C0 +

N∑
n=1

AnZ

1 + BnZ
, (9)

where the complex Padé coefficients are given by

An ≡ ane−iα/2

[1 + bn(e−iα − 1)]2 , Bn ≡ bne−iα

1 + bn(e−iα − 1)
, (10)

C0 ≡ eiα/2

⎧⎨⎩1 +
N∑
n=1

an
(
e−iα − 1

)
[1 + bn(e−iα − 1)]

⎫⎬⎭. (11)

Note that, in (11), C0 is an approximation to one. This
approximation gets better the more terms N are used in
the sum. However, for a finite number of terms N , this
approximation is always imperfect. Therefore, it is more
practical to directly use C0 = 1. We will use this value for
C0 in the following derivations.

2.3. Fourier Finite Difference Migration. The complex Padé
approximation (9) allows more stable implementations of
not only FD but also FFD migration [20]. The derivation
of 3D complex Padé FFD (CPFFD) migration is very similar
to the original derivation of Ristow and Rühl [2]. It starts
from the difference between the square root of (5) and a
corresponding one where the velocity has been replaced by
a constant reference velocity cr , namely,

iω

c(x)

√√√√1 +
(
c(x)
ω

)2
(
∂2

∂x2
+

∂2

∂y2

)

− iω

cr

√√√√1 +
(
cr
ω

)2
(
∂2

∂x2
+

∂2

∂y2

)
.

(12)

Expanding both square roots in (12) in complex Padé series
according to (9), we find

ik0

{
p
√

1 + X2 −
√

1 + p2X2
}

≈ ik0

⎧⎨⎩p
⎡⎣1 +

N∑
n=1

AnX2

1 + BnX2

⎤⎦−
⎡⎣1 +

N∑
n=1

Anp2X2

1 + Bnp2X2

⎤⎦⎫⎬⎭,

(13)

where we have used the notations

k0 ≡ ω

cr
, p ≡ cr

c(x)
, X2 ≡

(
c(x)
ω

)2
(
∂2

∂x2
+

∂2

∂y2

)
.

(14)

Joining the two series into one, expanding the fractions
into Taylor series, and grouping the terms of equal power
leads to

ik0

{
p
√

1 + X2 −
√

1 + p2X2
}

≈ ik0

⎧⎨⎩p − 1 +

⎡⎣ N∑
n=1

Anp
(
1− p

)
X2

(
1− Bn

(
1− p3

)
1− p

X2

+B2
n

(
1− p5

)
1− p

X4 − B3
n

(
1− p7

)
1− p

X6 + · · ·
)⎤⎦⎫⎬⎭.

(15)

Since

1− pn+1

1− p
= 1 + p + p2 + · · · + pn, (16)

this expression is, up to second order, equivalent to a Taylor
series expansion of a Padé expression of the form

ik0

{
p
√

1 + X2 −
√

1 + p2X2
}

≈ ik0

⎧⎨⎩(p − 1
)

+
N∑
n=1

Anp
(
1− p

)
X2

1 + σBnX2

⎫⎬⎭,
(17)

where σ = 1 + p + p2.
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Using this approximation, the one-way wave equation (5)
can be represented as

dP

dz
=
⎧⎨⎩− ik0

√
1 + p2X2

−ik0

⎡⎣(p − 1
)

+
N∑
n=1

Anp
(
1− p

)
X2

1 + BnσX2

⎤⎦⎫⎬⎭P,

(18)

which is the complex Padé equivalent to standard FFD
migration [2].

As seen above, the theoretical value of σ obtained from
this expansion is σ = 1 + p + p2. However, 2D numerical
experiments of Amazonas et al. [20] indicate that other
expressions for σ can produce better results. For small
contrasts, they suggest σ = 3p and, for high fidelity up to
high propagation angles, they propose σ = 1 + p3.

2.4. Implementation. To solve (18), we separate it into a set
of differential equations. The first two terms provide the
equations

dP

dz
= −ik0

√
1 + p2X2P,

dP

dz
= −ik0

(
p − 1

)
P,

(19)

the analytic solutions of which are

P(x, z + Δz,ω) = e−ik0

√
1+p2X2ΔzP(x, z,ω),

P(x, z + Δz,ω) = e−ik0Δz(p−1)P(x, z,ω).
(20)

The remaining terms of (18) from the Padé series are
represented by differential equations:

dP

dz
= −ik0

Anp
(
1− p

)
X2

1 + BnσX2
P, (n = 1, . . . ,N). (21)

Discretizing these differential equations using a Crank-
Nicolson FD scheme, we obtain

P j+1 − P j

Δz
= −ik0

Anp
(
1− p

)
X2

1 + BnσX2

P j+1 + P j

2
, (22)

where P j = P(r, zj ,ω). Equation (22) means that the
following implicit equation needs to be solved:{

1 +
[
Bnσ + i

k0Δz

2
Anp

(
1− p

)]
X2
}
P j+1

=
{

1 +
[
Bnσ − i k0Δz

2
Anp

(
1− p

)]
X2
}
P j .

(23)

We still need to discretize of the derivatives in the horizontal
coordinates, that is, replace the differential operator X2 by its
difference operator

X2 ≈ X2 =
c2
(
xk, yl, zj

)
ω2

(
D2
x

Δx2
+

D2
y

Δy2

)
, (24)

where the matrices D2
x and D2

y represent difference operators
for the second derivatives in x and y. For simplicity, we
choose second-order difference operators, that is,

D2
xP

j
k,l = P

j
k+1,l − 2P

j
k,l + P

j
k−1,l,

D2
yP

j
k,l = P

j
k,l+1 − 2P

j
k,l + P

j
k,l−1,

(25)

for k = 1, . . . ,nx and l = 1, . . . ,ny with nx and ny
denoting the number of grid points in the x and y directions.
The resulting difference equation equivalent to differential
equation (21) reads[

I + Cn

(
D2
x

Δx2
+

D2
y

Δy2

)]
P j+1 =

[
I + C∗n

(
D2
x

Δx2
+

D2
y

Δy2

)]
P j ,

(26)

where I is the identity matrix and P j is the matrix formed by

the elements P
j
k,l at a fixed depth level zj . Moreover, Cn is the

complex matrix with elements

(Cn)k,l = c2

ω2

[
Bnσ + i

k0Δz

2
Anp

(
1− p

)]
, (27)

with c = c(xk, yl, zj), σ = σ(xk, yl, zj), and p = p(xk, yl, zj),
and C∗n denotes the matrix obtained when replacing i by −i
in (27).

2.5. Two-Way Splitting. In the technique called two-
way splitting, also known as alternating-directions-implicit
(ADI) method [13, 24, 25], one substitutes (26) by its
approximate factorized form(

I + Cn
D2
x

Δx2

)(
I + Cn

D2
y

Δy2

)
P j+1

=
(

I + C∗n
D2
x

Δx2

)(
I + C∗n

D2
y

Δy2

)
P j .

(28)

This equation has the advantage of being solvable in two
2D steps. Under the assumption that the inverse operator
in y, (I + CnD2

y/Δy
2)−1, commutes with both operators in x,

equation (28) can be rewritten as(
I + Cn

D2
x

Δx2

)
P j+1 =

(
I + C∗n

D2
x

Δx2

)
P̃ j , (29)

where the intermediate value P̃ j , defined as

P̃ j =
(

I + Cn

D2
y

Δy2

)−1(
I + C∗n

D2
y

Δy2

)
P j , (30)

can be found solving the system(
I + Cn

D2
y

Δy2

)
P̃ j =

(
I + C∗n

D2
y

Δy2

)
P j . (31)

The advantage of splitting is in the computational cost. While
the numerical solution of (26) requires the solution of a
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Figure 1: Migration impulse responses. (a)–(d): reference result by phase-shift migration using the true medium velocity. (e)–(h): FFD
migration using conventional two-way splitting; p = 0.75. (i)–(l): FFD migration using conventional four-way splitting; p = 0.75. From left
to right: central vertical cut in the x-z plane and horizontal cuts at 150 m, 750 m, and 1250 m depth.

system of size nx × ny , the cascaded solution of (31) and
(29) demands only the solution of nx systems of size ny ,
followed by ny systems of size nx. Since all these systems are
tridiagonal, there are very efficient ways to solve them, which
makes the splitting technique orders of magnitude faster than
the solution of the original 3D system.

On the other hand, this procedure also has disadvantages.
The biggest one is the introduction of numerical anisotropy
into the propagation of the wavefield, because the numerical
error increases with the azimuth between the propagation
direction and the coordinate directions. This degrades the
migrated image, introducing errors in the positioning of
steeply dipping reflectors.

2.6. Splitting in More Directions. To overcome the problems
with numerical anisotropy, Ristow and Rühl [5] proposed
to generalize the technique to splitting into more than

two directions. The idea is to approximate the 3D square-
root operator by a sequence of 2D operators in different
directions. In practice, most uses rely on three, four, or
six directions to avoid symmetry problems. The unknown
coefficients of these 2D operators are obtained from Taylor
series expansions or by optimization techniques.

The multiway splitting form of the 2D Padé operators
is given by the complex Padé expansion of the square-root
operator in (5) for multiple directions:√√√√1 +

c2(x)
ω2

(
∂2

∂x2
+

∂2

∂y2

)
≈ 1 +

2
K

K∑
j=1

N∑
n=1

αnw
2
j

1 + βnw
2
j

, (32)

where K is the number of directions. Moreover, wj are the
derivative operators in the splitting directions, that is, wj =
cosφ ju + sinφ jv, with φ j = ( j − 1)Δφ (for j = 1, 2, . . . ,K ,
and Δφ = 2π/K) being the azimuth of the rotated direction.
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Figure 2: Migration impulse responses. (a)–(d): FFD migration using alternating four-way splitting; p = 0.75. (e)–(h): FFDPI migration
using conventional two-way splitting, with interpolation between p = 0.9 and p = 1.1. (i)–(l): FFDPI migration using alternating four-way
splitting, with interpolation between p = 0.9 and p = 1.1. From left to right: central vertical cut in the x-z plane and horizontal cuts at
150 m, 750 m, and 1250 m depth.

There are two ways of obtaining the unknown coefficients
αn and βn in (32). One way is, as detailed above for the
full 3D case, by Taylor series expansion of the fractions
and comparison of the result with the direct Taylor series
expansion of the square root. Alternatively, in practice, most
often optimization techniques are employed to find opti-
mum coefficients that minimize the numerical anisotropy for
a certain range of medium velocities and a given reference
velocity within the range of interest of propagation angles.

In conventional implementations of multiway splitting,
operators (32) are applied in sequence at one single depth
level before proceeding to the next one. In this paper, we
apply the differential operators w1 and w3 for φ1 = 0◦ and
φ3 = 90◦, that is, the derivatives in the x and y directions, at
one depth level, and leave the application of the operators w2

and w4 for φ2 = 45◦ and φ4 = 135◦, that is, the derivatives in
the diagonal directions, to the next depth level. In this way,

we simulate four-way splitting, but with practically the same
cost as conventional two-way splitting.

2.7. Stable FFD Migration and FFDPI Migration. We com-
pare our results of CPFFD migration to another stable FFD
migration technique, FFDPI migration [14]. It is based on a
correction to the FFD method that avoids stability problems.
To derive it, Biondi [14] starts from the real version of (18).
In our notation, he rewrites the last part of the operator
inside the summation as

anp
(
1− p

)
X2

1 + bnσX2
= anp

(
1− p

)
bnσ

bnσX2

1 + bnσX2
. (33)

This representation of the operator corresponds to the
differential equations

dP

dz
= −ik0

anp
(
1− p

)
bnσ

bnσX2

1 + bnσX2
P, (n = 1, . . . ,N). (34)
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Figure 3: EAGE/SEG salt model. Representation by 4 vertical cuts at x = 4.14 km (a), x = 6.80 km (b), y = 4.14 km (c), and y = 10.22 km
(d).

0

2

4

6

8

10

12

0 2 4 6 8 10 12

D
is

ta
n

ce
(k

m
)

Distance (km)

(a)

0

2

4

6

8

10

12

D
is

ta
n

ce
(k

m
)

0 2 4 6 8 10 12

Distance (km)

(b)

0

2

4

6

8

10

12

D
is

ta
n

ce
(k

m
)

0 2 4 6 8 10 12

Distance (km)

(c)

0

2

4

6

8

10

12

D
is

ta
n

ce
(k

m
)

0 2 4 6 8 10 12

Distance (km)

(d)

Figure 4: EAGE/SEG salt model. Representation by 4 horizontal cuts at z = 1.7 km, z = 2.9 km, z = 3.5 km, and z = 4.1 km (from (a) to
(d)).

This form of the differential equation can be implemented
in a stable way by the realization of the product σX2 as a
symmetrical matrix product ΣTX2Σ, where Σ is a diagonal
matrix containing the values of the square root of σ . The
remaining factor anp(1− p)/bnσ can also be represented as a
product with a diagonal matrix.

In 3D, after two-way splitting, the resulting difference
equation is approximated by the system[

I + CxΣ
T
x D2

xΣx
]

P j+1 =
[

I + C∗x Σ
T
x D2

xΣx
]

P̃ j ,[
I + CyΣ

T
y D2

yΣy

]
P̃ j =

[
I + C∗y Σ

T
y D2

yΣy

]
P j ,

(35)

where Σx and Σy are diagonal matrices with elements

(Σx)km =
c
(
xk, yl, zj

)
ωΔx

√
bnσ

(
xk, yl, zj

)
δkm,

(
Σy

)
lm
=
c
(
xk, yl, zj

)
ωΔy

√
bnσ

(
xk, yl, zj

)
δlm.

(36)

Moreover, matrices Cx and Cy are given by

Cx = I + i
k0Δz

2
εΔx, Cy = I + i

k0Δz

2
εΔy , (37)

where Δx and Δy are diagonal matrices with elements

(Δx)km = an
bn

p
(
xk, yl, zj

)∣∣∣1− p
(
xk, yl, zj

)∣∣∣
σ
(
xk, yl, zj

) δkm,

(
Δy

)
lm
= an
bn

p
(
xk, yl, zj

)∣∣∣1− p
(
xk, yl, zj

)∣∣∣
σ
(
xk, yl, zj

) δlm

(38)

and ε is given by

ε = sgn
(
1− p

) =
⎧⎨⎩1, if cr < c(x),

−1, if cr > c(x).
(39)

According to Biondi [14], for the equivalence between the
original differential equation and its stable discretization
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to be guaranteed, it is essential that ε is constant on the
depth level zj under consideration, that is, that the reference
velocity is larger or smaller than all model velocities at the
current depth level.

Biondi [14] proves that this implementational correction
stabilizes FFD migration, even in the presence of strong
lateral velocity contrasts and for reference velocities larger
than the medium velocity. In this way, this version of
the FFD method possesses the necessary characteristics to
be utilized as the main part of a precise and efficient
high-angle wave-equation migration method. To attain a
desired precision, one can interpolate between wavefields
obtained for a sufficiently dense set of reference velocities.
Theoretically, this allows to obtain arbitrary precision by
increasing the number of reference velocities. The structure
of this FFDPI method is similar to PSPI [19] and to the
extended split-step method [26].

3. Numerical Experiments

3.1. Tests in a Homogeneous Medium. To study the numerical
anisotropy of FFD migration operators after splitting, we
calculated impulse responses for zero-offset migration in a
homogeneous medium with velocity 2.5 km/s. The source
pulse was a Ricker wavelet with central frequency 25 Hz,
with its center positioned at an arrival time of 1.12 s. The
migration grid was Δx = Δy = 12.5 m, and Δz = 10 m. All
our examples used a complex Padé implementation of FFD
migration with 3 terms in the series.

The top part of Figures 1(a)–1(d) show one vertical and
three horizontal cuts through the reference impulse response,
obtained with phase-shift migration using the true medium
velocity. The amplitude decay at high propagation angles is
caused by the source implementation, which did not use
the amplitude correction of Wapenaar [27]. The red line
in Figure 1(a) indicates the true theoretical position of the

event, given by the half circle z =
√

(cte)
2 − (x − xs)2, where

te is the observation time of the event in the data, here 0.56 s,
and xs is the source position, here the centre of the image,
that is, xs = 1850 m. The noncircular appearance of this
line is due to the overstretched vertical axis. For a better
comparison, we will present all other impulse responses
below in the same way.

Figures 1(e)–1(h) show the corresponding four cuts
of the impulse response of complex Padé FFD migration
using conventional two-way splitting. Here, the value of the
reference velocity was chosen as cr = 1875 m/s, that is,
p = cr/c(x) = 0.75. We observe the well-preserved circular
shape of the impulse response in the deepest horizontal cut
(Figure 1(i)), that is, for propagation directions close to the
vertical axis. However, the shallow and, principally, medium
horizontal cuts reveal a visible deformation, indicating the
loss of quality for higher propagation angles. Also note
the amplitude loss in the directions of the coordinate axes
that are visible in the shallow and medium horizontal cuts.
In the vertical cut (1(a)), only a slight deformation from
circular shape is visible, which is due to the cut being within

the coordinate plane, where the errors are the smallest.
The amplitude loss for high propagation angles reflects the
quality of the three-term Padé approximation. Note that the
observed behaviour will be emphasized in media with strong
lateral variations, where much smaller values of p will occur.

Figures 1(i)–1(l) show the impulse response of FFD
migration using conventional four-way splitting. The circu-
lar shape of the impulse response has been nicely recovered
by the application of the two additional differential operators
in the diagonal directions. Also, the amplitude loss in the
coordinate directions is no longer visible. Note that this
image has about twice the computational cost of the one in
the center.

Figures 2(a)–2(d) show the impulse response of CPFFD
migration using alternating four-way splitting, that is, two-
way splitting in the coordinate directions at one depth level
and in the diagonal directions at the next depth level. It is
hard to spot any difference to the result of complete four-
way splitting (Figures 1(i)–1(l)). The circular format of the
operator is almost perfect, and even the slight amplitude loss
along the coordinate axes is as well recovered as by complete
four-way splitting. Note that this image has about the same
computational cost as the one obtained with conventional
two-way splitting (Figures 1(e)–1(h)).

Figures 2(e)–2(h) shows the impulse response of FFDPI
migration using conventional two-way splitting, with inter-
polation between wavefields obtained for p = 0.9 and p =
1.1. We chose these values to reflect the fact that, for FFDPI,
generally reference velocities closer to the medium velocity
are available for interpolation. We observe a good preser-
vation of the circular shape, particularly in the horizontal
cuts. In the vertical cut, we note that the wavefront lags
slightly behind the true position, starting already at rather
low propagation angles of about 35◦. The amplitude decay
for high propagation angles is reduced as compared to FFD,
probably because the reference velocities are closer to the
medium velocity than in the previous examples. Finally, the
shallowest cut exhibits some numerical dispersion, causing a
distorted pulse shape.

Figures 2(i)–2(l) show the impulse response of FFDPI
migration using alternating four-way splitting, with inter-
polation between wavefields obtained for p = 0.9 and p =
1.1. Almost no improvement over the conventional two-way
splitting result (center) is visible.

3.2. Tests in an Inhomogeneous Medium. For a more realistic
test of the different splitting techniques for FFD migra-
tion, we calculated zero-offset impulse responses for the
EAGE/SEG salt model. Here, we used a seismic pulse in
the centre of the model, described by a Ricker wavelet with
central frequency of 15 Hz, dislocated by te = 2.2 s, and a
migration grid with Δx = Δy = Δz = 20 m. To avoid
spurious events from the spike reflectors, we regularized the
model using a 7 × 7 median filter. This is necessary because
the EAGE/SEG salt model uses artificially high velocity values
to define the reflectors.

We represent the results by vertical cuts parallel to the
y-z plane at x = 4.14 km and x = 6.80 km and parallel to
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Figure 5: Impulse response of FFD migration with two-way splitting. Vertical cuts as in Figure 3.

0 2 4 6 8 10 12

Distance (km)

0

2

4

6

8

10

12

D
is

ta
n

ce
(k

m
)

(a)

0 2 4 6 8 10 12

Distance (km)

0

2

4

6

8

10

12

D
is

ta
n

ce
(k

m
)

(b)

0

2

4

6

8

10

12

Distance (km)

0 2 4 6 8 10 12

D
is

ta
n

ce
(k

m
)

(c)

0 2 4 6 8 10 12

Distance (km)

0

2

4

6

8

10

12
D

is
ta

n
ce

(k
m

)

(d)

Figure 6: Impulse response of FFD migration with two-way splitting. Horizontal cuts as in Figure 4.
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Figure 7: Impulse response of FFD migration with alternating four-way splitting. Vertical cuts as in Figure 3.
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Figure 8: Impulse response of FFD migration with alternating four-way splitting. Horizontal cuts as in Figure 4.
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Figure 9: Impulse response of FFDPI migration with two-way splitting using 10 reference velocities. Vertical cuts as in Figure 3.

the x-z plane at y = 4.14 km and y = 10.22 km, as well as
horizontal cuts at depths z = 1.7 m, z = 2.9 km, z = 3.5 km,
and z = 4.1 km. Figures 3 and 4 show these cuts through the
EAGE/SEG salt model after filtering.

Figures 5 and 6 show the corresponding cuts through the
impulse response of FFD migration with two-way splitting
and Figures 7 and 8 those of FFD migration with alternating
four-way splitting. The differences between these sets of
figures are due to numerical anisotropy, which is not always
easy to see at this scale. The most visible difference is the one
between Figures 6(a) and 8(a). The circular shape of three
quarters of the wavefront is well preserved in Figure 8, while
visibly distorted in Figure 6. Similar distortions are present
in the other figure parts. Some events, particularly in the
diagonal directions, are slightly more advanced in Figures
7 and 8 than in Figures 5 and 6. Also, some amplitude
differences are visible. We refrain from presenting the results
of complete four-way splitting, because they look virtually
identical to those in Figures 7 and 8.

For comparison, Figures 9 and 10 show the impulse
response of FFDPI migration with two-way splitting. Since
the theory of Biondi [14] is only formulated for a single

term of the Padé series, so is our implementation. Because
of the strong dependence of FFDPI on reference velocities
not too far from the true model velocity, this numerical
experiment needed 10 reference velocities. For being a very
robust method, the impulse response is not subject to any
instabilities, even with the reference velocities being still
a bit far from the medium velocities. This remains true
even for less reference velocities, though the image quality
degrades considerably. Because of the need for a rather large
number of reference velocities, FFDPI is a rather expensive
method. In our implementation, it used about three times
the computational time of alternating four-way FFD.

Even for this experiment with 10 reference velocities, we
still see some effects of numerical dispersion in Figures 9 and
10. Also, the results still exhibit quite visible differences to
Figures 7 and 8. Since we have at this time no 3D reverse-time
migration available, it is hard to tell which results are better
positioned. Visual inspection and comparison to results of
FD migration (not shown here) make us believe that the
FFD results are more reliable than the FFDPI results with 10
reference velocities. More accurate results can be obtained by
further increasing the number of reference velocities.
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Figure 10: Impulse response of FFDPI migration with two-way splitting using 10 reference velocities. Horizontal cuts as in Figure 4.

4. Conclusions

In this paper, we have implemented 3D versions of complex
Padé FFD (CPFFD) and FFD plus interpolation (FFDPI),
which have proven to be more stable in the presence of
strong lateral velocity contrasts than other FFD migration
implementations. For CPFFD migration, we have compared
the effects of different ways of directional splitting and com-
pared its results to those of FFDPI migration. Alternating
four-way splitting, that is, applying the differential operators
in the coordinate directions at one depth level and in the
diagonal directions at the next depth level, proved to be an
improvement over conventional two-way splitting at almost
no extra cost. Although this procedure is theoretically less
accurate than complete four-way splitting, that is, all four
directions applied at all depth levels, our numerical results
were of comparable quality. Extensions of the alternating
splitting technique can be thought of like eight-way splitting
where the remaining directions are covered two by two in the
next two depth steps.

From our numerical tests with splitting the CPFFD
and FFDPI migration operators, we conclude that FFDPI
migration is the most robust of the tested methods. Even
implemented only using two-way splitting, it did show
only a fair amount of numerical dispersion, but no visible
numerical anisotropy. However, for practical use, FFDPI is
a rather expensive method because it needs a large number
of reference velocities to function with acceptable precision.
Thus, for a more economic migration with acceptable image
quality, alternating four-way splitting in FFD migration is an
interesting alternative.

One minor problem of multiway splitting should be
mentioned. The differential operator in the diagonal direc-
tions can cause aliasing effects because of the fact that the
grid spacing in this direction is by a factor of

√
2 larger than

in the coordinate directions. Off-diagonal directions may
complicate things further, because they require resampling.
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We developed a higher resolution method for the estimation of the three travel-time parameters that are used in the 2D zero-
offset, Common-Reflection-Surface stack method. The underlying principle in this method is to replace the coherency measure
performed using semblance with that of MUSIC (multiple signal classification) pseudospectrum that utilizes the eigenstructure
of the data covariance matrix. The performance of the two parameter estimation techniques (i.e., semblance and MUSIC)
was investigated using both synthetic seismic diffraction and reflection data corrupted with white Gaussian noise, as well as a
multioffset ground penetrating radar (GPR) field data set. The estimated parameters employing MUSIC were shown to be superior
of those from semblance.

1. Introduction

Many important tasks in seismic processing and imaging
require the estimation of travel-time parameters. Such
parameters include, among others, velocities (e.g., for stack-
ing and time-migration purposes), travel-time slopes and
curvatures (e.g., for slant, common-reflection-surface (CRS),
multifocus (MF) stacks) and event picking for tomographical
methods. As shared with many other areas of activity, a
basic feature of seismic signals (referred to as events) is that
they exhibit some sort of coherent or aligned energy. More
specifically, seismic events (e.g., reflections or diffractions)
align themselves along curves or surfaces (referred to as
moveouts) within the data. The basic strategy for signal
detection and information extraction is to express these
moveouts as a function of a few, meaningful parameters and
to estimate such parameters so as the moveout optimally
approximates the events. In general, the search for param-
eters, sometimes referred to as wavefront shaping parameters,
carry key information about the geological structure under
investigation.

To assess how well a moveout, defined by some trial
parameters, approximates a target signal, a number of quan-
tifiers (or coherence measures) has been proposed. General
discussions on coherency measures applied to seismic data
can be found in the pioneering papers of [1–3] with a
clear emphasis on the second-order coherence measure
semblance. Semblance quantifies the likelihood between the
trial moveout and the target event by stacking the data along
that moveout and measuring the energy of the output.

Adopting the notation as in [4], for a given sample, k, at
a given (reference) trace, the so-called semblance coefficient,
or simply semblance, Sc, can be mathematically written in the
form

Sc =
∑ j=k+N/2

j=k−N/2
∣∣∣∑M

i=1 x
(
j, i
)∣∣∣2

M
∑ j=k+N/2

j=k−N/2
∑M

i=1

∣∣x( j, i)∣∣2
. (1)

Here, the semblance coefficient is computed for N samples
taken from M traces in a window centered about the
trajectory defined by the moveout equation generated by the
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trial travel-time parameters (cf. Figure 1). In the following,
the given sample, k, and reference trace, as well as the
number of samples, N , and number of traces, M, will be
fixed throughout. As a consequence, we do not need to
incorporate them into the semblance notation, which will be
simply written as Sc. To construct the window in Figure 1,
proper interpolation is performed to select the appropriate
samples. In the language of electrical engineers, the above-
described windowing process steers the stacking along the
trial moveout.

Semblance can be described in terms of the covariance
matrix of the data. Following, for example, [5], within
the selected time window along the chosen trial moveout,
semblance can be written in the form

Sc = uTRu
M tr(R)

, (2)

where u is a column vector of ones, which can be referred to
as the unitary steering vector, and R is the covariance of the
data. Assuming that the different sources can be described by
a zero-mean stochastic process, the data covariance matrix is
given as

R = E
{

DDH
}

, (3)

where D = (di j) is the data matrix, in which di j is the
recorded data at the ith trace and jth sample. As in usual
notation, E{} and tr() represent the expected value and
matrix trace, respectively. Moreover, superscripts T and H
represent transpose and conjugate transpose, respectively. As
pointed out by [2], Equation (2) provides the interpretation
that semblance can be regarded, within the selected time
window, as a normalized output/input energy ratio. The
denominator, tr(R), is the normalization used by semblance
in order to generate a maximum peak of unity at the
“correct” moveout parameters (namely, the ones for which
we have the optimal stack).

Even though semblance is a good measure of coherency,
it can in many times provide insufficient resolution for the
parameter estimation. That is the case, in particular, for
interfering events. There is, thus, a motivation to look for
alternatives to overcome these difficulties. Attempts have
been made to further improve semblance by using only those
parts of the data with higher resolving power [6] and also by
introducing weights in the standard semblance formulation
[7]. Statistical approaches have also been introduced to
increase the resolution of the velocity analysis [8]. In this
paper, an alternative to semblance-like techniques will be
investigated.

As recognized in sonar and radar applications, methods
exploiting the properties of the eigenstructure (namely,
eigenvalues and eigenvectors) of the data covariance matrix
can lead to far better resolution results than semblance
[4, 9, 10]. The basic idea of the eigenstructure approach is to
decompose the data covariance matrix into two orthogonal
subspaces. The first is the signal subspace, which is generated
by the eigenvectors associated to high eigenvalues. The
second is the noise subspace, generated by the small or
zero eigenvalues. In this paper, we use the eigenstructure

method called multiple signal classification (MUSIC), intro-
duced by [9]. MUSIC exploits the fact that the “correct”
moveout, represented as a steering vector, must lie in the
signal subspace and, therefore, is orthogonal to the noise
subspace eigenvectors. As a consequence, the projection of
the steering vector onto the noise subspace provides a nearly
vanishing value. The inverse of such a projection (namely,
the sum of the dot products of the steering vector with the
noise eigenvectors) should peak when the steering vector
represents a correct moveout.

This work can be seen as a followup of [10], in which
the application of MUSIC to single-parameter velocity
analysis and slant stacks is described. Here, we extend
the application of MUSIC to common-reflection-surface
(CRS) multi-parameter estimation. Besides the theoretical
exposition of the technique, applications to first synthetic
examples, consisting of dipping planar reflectors and point
diffractors, are provided. Comparisons of the obtained
results and conventional semblance confirm, at least for these
initial examples, the expected far better resolution of MUSIC.
To further support this conclusion a real multioffset GPR
data set was also analysed. It was demonstrated that MUSIC,
unlike semblance, was able to better resolve interfering
events.

2. Classical Music: Narrowband and
Uncorrelated Signals

In its original or classical form [9], MUSIC considers an
array of Nr receivers recording W incoming reflected or
diffracted signals, in an arbitrary background medium. In
time domain, the data recorded by the ith receiver can be
modeled as

di(t) =
W∑
w=1

sw
(
t − τθi,w

)
+ ni(t), (i = 1, 2, . . . , Nr), (4)

where sw(t) is the source pulse associated with event w, and
ni(t) is the additive random noise at the ith receiver. Finally,
τθi,w is the travel-time (or time delay) of the wth incoming
signal (or event) arriving at the ith receiver. The superscript,
θ, indicates that the moveouts depend on a set of one or
more parameters, here denoted, by a so-called parameter
vector, θ. The most popular trial-moveout example is the
normal-moveout (NMO), applied for velocity analysis in
the common-midpoint (CMP) configuration. In the 2D
situation, the single parameter to be estimated is the NMO-
velocity. An example of multiparameter moveout is the
general hyperbolic moveout used by the common-reflection-
surface (CRS) stacking method. As previously indicated,
application of MUSIC to velocity analysis has been described
by [10]. Here, we extend the analysis to CRS parameter
estimation in 2D data. In this situation, three parameters are
to be estimated. In order not to disturb the main flow, the
description of the generalized hyperbolic or, more simply, the
CRS travel-times, τi,w, is postponed to the appendix.

2.1. Narrowband Signals. For narrowband signals sw(t), the
travel-times can be expressed as exponential phase shifts
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around the center angular frequencyω. For notation simplic-
ity, that fixed frequency will be omitted. As a consequence,
the data model in (4) can be recast as

di(t) =
W∑
w=1

sw(t) exp
(
−iωτθi,w

)
+ ni(t). (5)

After time discretization, the above equation can be recast in
matrix form as

D = A(θ)S + N, (6)

where D = (di j) = (di(t j)) and N = (ni j) = (ni(t j)) are,
respectively, theNr×Nt data and additive noise matrices, and
S = (sw j) = (sw(t j)) is the W ×Nt source matrix. Finally,

A(θ) = (a1(θ), . . . , aw(θ), . . . , aW (θ)) (7)

is the Nr ×Warray response matrix containing all the steering
vectors

aw(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp
(
−iωτθ1,w

)
exp

(
−iωτθ2,w

)
...

exp
(
−iωτθNr ,w

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

Half offset (m)

T
im

e
(s

)

Figure 3: Synthetic CMP data used for comparison of MUSIC with
semblance. A point diffractor and a dipping reflector (β = 200) with
the same τ0 = 2 sec is used to generate the data. Note that the two
events are very close to each other and it is difficult to distinguish
them.
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Figure 4: Synthetic ZO section used for comparison of MUSIC with
semblance. A point diffractor and a dipping reflector (β = 200) is
used to generate the data. The red dot (x0 = 540 m and τ0 = 2 sec)
shows the location where we performed the parameter search.

MUSIC utilizes the eigenstructure of the data covariance
matrix defined by (3). Substituting (6) into (3) and assuming
uncorrelated noise with variance of σ2

n , the covariance matrix
can be recast as

R = A(θ)
[
E
{

SSH
}]

A(θ)H + E
{

NNH
}

= A(θ)RsA(θ)H + σ2
nI,

(9)

where Rs and I are, respectively, the source covariance and
identity matrices. The MUSIC algorithm performs an eigen-
decomposition of this covariance matrix

RU = ΛU, (10)

where Λ = diag(λ1, λ2, . . . , λNr ) contains the eigenvalues
satisfying λ1 ≥ λ2 ≥ · · · ≥ λNr , and U = [u1, u2, . . . , uNr ]
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Figure 6: Uncorrelated sources: Determination of parameters A
and B based on MUSIC for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.

is the matrix that consists of the corresponding (column)
orthonormal eigenvectors of R. The unitary matrix of eigen-
vectors U can be decomposed further as U = [Us Un], where
the columns of Us comprise the eigenvectors corresponding
to the largest eigenvalues of R (the signal subspace), and with
Un containing the remaining (noise) eigenvectors.

2.2. Uncorrelated Signals. For MUSIC to be applicable in
our parameter search problem, the different source pulses,
sw(t), should be uncorrelated resulting in a covariance matrix
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Figure 7: Uncorrelated sources: Determination of parameters A
and B based on semblance for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.
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Figure 8: Parameter C determined using both MUSIC and
semblance (point diffractor and a dipping reflector β = 200). The
black dotted lines show the correct parameter locations.

Rs having full rank equal to the number of events W
recorded at the receivers. If the M source vectors are linearly
independent, then the matrix Rs is positive definite which
results in A(θ)RsA(θ)H to be a positive semidefinite matrix
with its rank spanning the steering vectors corresponding to
the appropriate parameters we are searching. With the above
condition satisfied and since the noise subspace is orthogonal
to the signal subspace, the MUSIC pseudospectrum, PMU(θ),
is given by

PMU(θ) = a(θ)a(θ)H

a(θ)Pna(θ)H
, (11)
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Figure 9: Correlated sources: Determination of parameters A and
B based on MUSIC for a diffractor and a dipping reflector β = 200.
The black stars show the correct parameter locations.

−3 −2 −1 0 1 2 3

×10−4

−4

−3

−2

−1

0

1

2

3

4

×10−6
Parameter B

Pa
ra

m
et

er
A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 10: Correlated sources: Determination of parameters A and
B based on semblance for a diffractor and a dipping reflector β =
200. The black stars show the correct parameter locations.

where a(θ) is the test steering vector and Pn is the noise
subspace projection matrix given by Pn= UnUH

n . Since the
steering vectors a(θ) are orthogonal to the eigenvectors
spanning the noise subspace un, it follows that the parameter
estimates will occur at those parameter values for which we
have

a(θ)Pna(θ)H ≈ 0. (12)

This corresponds to large peaks in the MUSIC pseudospec-
trum as given by (11).

2.3. Wideband Uncorrelated Signals. As indicated above, the
MUSIC algorithm was originally developed for narrowband
and uncorrelated signal applications. If the condition of
uncorrelated signals is maintained, an alternative to this
situation is to decompose a wideband data into narrowband
data components and then treat each narrowband separately
[10]. The MUSIC pseudospectrum at the center angular
frequency ωi of the ith narrowband now takes the form

PMU(θ;ωi) = a(θ;ωi)a(θ;ωi)
H

a(θ;ωi)Pn(ωi)a(θ;ωi)
H , (13)

where a(θ;ωi) and Pn(ωi) are respectively the test steering
vector and the noise subspace projection matrix at the ith
center angular frequency ωi. The strategy followed in this
work is to Fourier transform the test data and select a
narrowband close to the center frequency of the source pulse
as input to MUSIC.

3. Seismic Music: Wideband and Correlated
Signals

Seismic signals are highly correlated and require a special
modification to be used by the original MUSIC algorithm.
The consequence of having correlated sources is that there
will be a rank deficiency in the source covariance matrix Rs

that will result in a mix of signal and noise subspaces. As a
result, the MUSIC algorithm will loose its power to peak at
the “right” parameters.

In order to handle correlated sources, spatial smoothing
over the covariance matrix, can be employed [10]. The idea
is to subdivide the array of Nr sensors into K identical
overlapping subarrays of Nr − K + 1 receivers (cf. Figure 2)
and then compute the covariance for all the subarrays and
average the result. If the covariance matrix for subarray k is
Rk, the spatially smoothed covariance is given by

RK = 1
K

K∑
k=1

Rk. (14)

To be able to implement spatial smoothing within
seismics, one has to taper the data within a window following
the event(s) (cf. Figure 1). The purpose of this tapering is to
make the delay times of the event linear (which is the basic
requirement behind spatial smoothing) [10].

The other advantage of performing the analysis in a
given window is to make the steering vectors, required for
generating the MUSIC pseudospectrum, to be frequency
independent. This allows us to handle wideband seismic
data. This process of windowing the event can also be
interpreted as steering of the correlation matrix before
eigendecomposition and using unity steering vectors for
generating the MUSIC pseudospectrum [4].

Ideally, when the window is “perfectly” matching the
event, which will be the case of an optimal choice of the
moveout parameters, the signal would be flattened and all
traces will nearly have the same moveout. As a consequence,
the steering vectors used in (11) will be simply replaced by
a vector of ones making them frequency independent. In
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Figure 11: Velocity spectra obtained employing, respectively, semblance (a) and SB-MUSIC (b). The white arrows indicate the apparent
single event associated with semblance and the corresponding two events computed from SB-MUSIC.
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Figure 12: CMP gather superimposed the hyperbolic moveouts (red curves) for the interfering events based on semblance (a) and SB-
MUSIC (b).

this situation, the MUSIC pseudospectrum generates a peak
resulting in the identification of the optimal estimates of the
parameters.

In practice, the windows are constructed by moveouts,
defined by trial parameters. Peaking of the corresponding

MUSIC pseudospectra identifies, thus, the “correct” parame-
ters. Following this approach, [4] has shown that MUSIC can
be applied for the single-parameter case of velocity analysis.
The objective was, thus, to obtain a high-resolution velocity
spectrum. In this work, we extend that strategy to the CRS
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multi-parameter estimating problem. In other words, our
objective is to obtain high-resolution estimates of the CRS
parameters, which are three in the present 2D situation.

4. Numerical Examples

In this section, we compare MUSIC and semblance for
travel-time parameter estimation in the situations of clas-
sical MUSIC (narrowband uncorrelated signals) and seis-
mic MUSIC (wideband correlated signals). For a simple
model of a point diffractor and a dipping reflector with
a homogeneous overburden, we analyzed the cases: (a)
CMP configuration, which requires the determination of
a single parameter, C of CRS travel-time (cf. (A.1)) and
(b) ZO configuration, which requires the determination
of two parameters, namely, parameters A and B of the
CRS travel-time (cf. (A.1)). The two events (diffraction and
reflection) were chosen to be almost undistinguishable. All
the test parameter points with RMS velocities within [1000 :
4000] m/s (step size 7.5 m/s) were tested for parameter C and
points within [−4× 10−4 : 4× 10−4] (step size 1× 10−5) for
parameter A and points within [−3 × 10−6 : 3 × 10−6] (step
size 1×10−7) for parameter B. As seen below, in all situations,
MUSIC performed much better then semblance.

4.1. Classical Music. To illustrate the application of MUSIC
for narrowband uncorrelated signals, we considered a point
diffractor and a dipping reflector illuminated under a CMP
configuration. For a given CMP gather, the data consists of
(compare with (5))

di(t) = sdiff(t) exp(−iωτdiff)+sdip(t) exp
(
−iωτdip

)
+ ni(t),

(15)

where sdiff and sdip are the sources and τdiff and τdip are the
travel-times for the diffractor and dipping reflector events,

respectively. Moreover, ni(t) is the additive noise. The travel-
times for these two events are described by the ordinary
NMO equations

τ2
diff(h) = τ2

0 + Cdiffh
2, τ2

dip(h) = τ2
0 + Cdiph

2, (16)

where the velocity coefficients for the diffractor, Cdiff, and
dipping reflector, Cdip, are given by

Cdiff = 4
v2

RMS
, Cdip = 4cos2β

v2
RMS

. (17)

Here, vRMS and β represent the root mean square (RMS)
velocity and the dip angle, respectively.

The sources, sdiff(t) and sdip(t) are produced by a single
narrowband source, s(t), modified by two realizations of
a random phase perturbation, φdiff(ω) and φdip(ω), so as
to produce uncorrelated sources. In frequency domain, this
process is generally described as

sdiff(ω) = s(ω) exp
[
iφdiff(ω)

]
,

sdip(ω) = s(ω) exp
[
iφdip(ω)

]
.

(18)

A synthetic CMP gather was generated employing (15), (16),
and (18) together with a Ricker zero-phase wavelet with a
center frequency of 20 Hz (cf. Figure 3). The fold was 40
representing a half-offset range from 40 m to 820 m. The
data was sampled with 2 ms and white Gaussian noise with a
variance of 10% of the maximum trace amplitude was added.
The parameter estimation process was benchmarked using
the classical semblance analysis of [2].

The output from MUSIC (cf. (13)) is shown in Figure 5
together with the result obtained using semblance. For both
cases we used, a window size of 11 samples and in addition
for MUSIC we considered two signal subspaces and the rest
as noise subspaces. As a result, MUSIC is seen to outperform
semblance and resolve the two parameters well. It is well
known that the values output from MUSIC are arbitrary.
To avoid this phenomenon, we have introduced a semblance
balancing. This technique is discussed in detail in connection
with the real-data example presented below.

To perform a two-parameter test, we have now simulated
a zero-offset (ZO) section for the same previous point
diffractor and dipping reflector (cf. Figure 4). The corre-
sponding two ZO travel-times for diffraction and reflection
are now given by

[τdiff(xm)]2 = τ2
0 + Bdiff(xm − x0)2,[

τdip(xm)
]2 = τ0 + Adip[(xm − x0)]2,

(19)

with Bdiff = Cdiff and Adip = 1.71 × 10−4 (corresponding
to a dip of 200 and a homogeneous medium with constant
velocity 2000 m/s). As seen from the Appendix, the above
equations represent the generalized hyperbolic (CRS) travel-
time of equation (A.1), in which the conditions

Bdiff = Cdiff, Bdip = 0, (20)
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have been implemented. As indicated in the Appendix, the
far-left equation above represents the diffraction condition.
The far-right equation is due to the fact that in this
considered experiment, the N-wave is planar.

Based on (19), using the previous uncorrelated sources
(18), synthetic ZO data were computed for midpoints
between 40 m and 1040 m. The results from the two-
parameter search (A and B) are shown for, respectively,
MUSIC (cf. Figure 6) and semblance (cf. Figure 7). MUSIC
gives well-resolved results, as opposed to the semblance,
where the estimated parameters are more inaccurate.

4.2. Seismic Music. To examine the performance of MUSIC
compared to semblance in case of wideband correlated
signals, we generated synthetic data based on the travel-
time (16) for a CMP gather and (19) for a ZO section.
The parameter search was performed within a time window
of 25 time samples with the ZO travel-time being the
middle sample and following a hyperbolic delay trajectory
defined by the travel-times. For the computation of the
MUSIC pseudospectrum, the samples within the hyperbolic
window were used to form the data covariance matrix and
the associated eigendecomposition. In order to reduce the
correlated source effect we performed spatial smoothing of
the covariance matrix using 31 subarrays each consisting
of 10 receivers for the CMP data and 37 subarrays each
consisting of 15 receivers for the ZO data.

The results of the parameter search is shown in Figure 8
for the CMP data (i.e., determination of parameter C) and
Figures 9 and 10 for the ZO section (i.e., determination of
parameters A and B). It is apparent that both semblance and
MUSIC can resolve parameters A and B, but MUSIC shows a
higher resolution in general. Moreover, for parameter C only
MUSIC is able to resolve the two events.

4.3. Real Data Example Using GPR Data. The first step of the
CRS analysis determining the C parameter can be regarded
as a CMP-based velocity analysis. As indicated by our
previous synthetic data example, MUSIC was seen to have
a better potential than semblance for resolving interfering
events (cf. Figures 5 and 8). We will now investigate
whether that feature is confirmed in real data. Prior to our
analysis, however, the following normalization issue has to
be considered. As opposed to semblance, which produces
normalized values between 0 and 1, MUSIC, despite its high-
resolution capability, yields arbitrary amplitude values. Such
behavior makes the simple replacement of semblance with
MUSIC as a coherency measure, for example, in standard
velocity analysis, not adequate.

In order to condition MUSIC to be a normalized
quantity, we introduce a scaled version of it, denoted by
semblance-balanced MUSIC or, more simply, SB-MUSIC. In
the framework of velocity analysis, SB-MUSIC is defined as
follows: for a given CMP location, as well as a selection of
N zero-offset time samples, ti and M trial stacking velocities,
Vj , we letmij and si j represent the coherency values obtained
from MUSIC and semblance, respectively. In other words,
(mij) and (si j) represent N × M velocity spectra associated

with MUSIC and semblance coherency measures. Denoted
by m̂i j , SB-MUSIC is given by

m̂i j = As,i
Am,i

mi j , (21)

where

As,i =
√√√√√ M∑
k=1

s2ik, Am,i =
√√√√√ M∑
k=1

m2
ik. (22)

Application of the above conditioning makes sure that
those amplitude anomalies inherent to the original MUSIC
velocity spectrum are balanced according to the energy level
of semblance.

A real multioffset GPR data set was used to test out the
feasibility of this approach. For an in depth description and
discussion of these data, the readers are referred to [11].
Figure 11 shows an example of a typical velocity spectrum
obtained from the GPR data using both semblance and SB-
MUSIC. In these computations, we used a window size of
eleven samples for both semblance and MUSIC. In addition,
we performed spatial smoothing of subarray size 15 from
a fold of 28 to ensure that MUSIC handles the correlated
GPR signals properly. Figure 11 clearly demonstrates that
interfering events are much better resolved in the SB-
MUSIC spectrum (Figure 11(b)) than in its corresponding
semblance spectrum (Figure 11(a)). In particular, as indi-
cated by white arrows, it can be seen how two interfering
events are unresolved by semblance (Figure 11(a)) and well
resolved by SB-MUSIC (Figure 11(b)). To further validate
the previous observation, the hyperbolic moveout curves
corresponding to those two events were superimposed to
the corresponding CMP-gather (cf. Figure 12(b)). These
curves seem to correlate well with two interfering events.
As a reference, the result obtained using semblance is also
included (cf. Figure 12(a)). It can be regarded as a fit based
on a mix between the two interfering events.

5. Conclusions

In this paper, we discussed the CRS travel-time parame-
ters estimation problem in seismic signal processing. The
conventional semblance algorithm was found to generate
lower-resolution estimates of the parameters. For the pur-
pose of obtaining higher-resolution parameter estimates, we
replaced semblance with MUSIC algorithm. Such procedure
allowed us to estimate the parameters within a resolution
limit that is significantly better. This work can be seen as
a followup of previous applications of MUSIC to single-
parameter velocity analysis and slant stacks. Now, MUSIC
has been extended to Common-Reflection-Surface (CRS)
multiparameter estimation. Applications of the technique to
first synthetic examples, consisting of dipping planar reflec-
tors and point diffractors, and comparison to semblance,
confirm, at least for these initial situations, the expected far
better resolution of MUSIC. To further support this analysis,
CMP velocity analysis has been applied to a real multioffset
GPR data set. In this situation, better results were obtained
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upon the introduction of a scaled version of MUSIC, denoted
semblance-balanced MUSIC. The new algorithm was seen to
outperform semblance in resolving interfering events.

Appendix

General Hyperbolic Moveout

The CRS method uses the so-called generalized hyperbolic
(normal) moveout, which is the natural generalization of
the NMO, valid for CMP gathers, to CRS supergathers, in
which source-receiver pairs are arbitrarily located around
the (reference) central point, usually taken as a CMP.
In 2D, the generalized hyperbolic moveout depends on
three parameters, as opposed to conventional NMO, which
depends on a single parameter (NMO velocity).

Mathematically, the generalized hyperbolic moveout,
τi,w, associated with the event, w, measured at receiver i,
is specified by the zero-offset (ZO) travel-time, τ0w , and
(reference) trace location, x0w , and given by (see Figure 13)[

τθi,w
(
xmi ,hi

)]2 = [
τ0w + Aw

(
xmi − x0w

)]2

+ Bw
(
xmi − x0w

)2 + Cwh2
i ,

(A.1)

where xmi is the midpoint coordinate and hi is the half-offset
coordinate for the ith receiver. Here,

θ = {Aw, Bw, Cw} (A.2)

is the CRS parameter vector, with three parameters, Aw,
Bw and Cw, to be estimated from the data. It is instructive
to recall that these parameters are related to the angle and
curvature quantities as follows [12]:

Aw = 2 sinβ0w

v0w
,

Bw =
2τ0wcos2β0w

v0w
KNw ,

Cw = 2τ0wcos2β0w

v0w
KNIPw ,

(A.3)

where KNw and KNIPw are the curvatures of respectively the
normal (N) and normal-incident-point (NIP) wavefronts,
β0w is the emergence angle and v0w is the medium velocity.
All these quantities are evaluated at the central point, x0w .
Still considering the CRS parameters, we make the following
observations

(a) In the CMP configuration of source-receiver pairs
symmetrically located with respect to the central
point, namely, xmi = x0w , we have[

τθi,w(hi)
]2 = τ2

0w + Cwh
2
i , (A.4)

with the CMP, single parameter vector θ = {Cw}.
Moreover, we have the relation

Cw = 4
v2

NMO
, (A.5)

with Cw given by the lower-most (A.3).

(b) In case the recorded data stems from a diffraction,
the condition Bw = Cw holds. This is because as the
reflector shrinks to a point, the N-wave turns out to
be identical to the NIP-wave [13]. As a consequence,
the hyperbolic moveout of diffraction (or diffraction
travel-time), reduces to

[
τθi,w

(
xmi ,hi

)]2 = [
τ0w + Aw

(
xmi − x0w

)]2

+ Bw
[(
xmi − x0w

)2 + h2
i

]
,

(A.6)

with the diffraction, two-parameter vector θ =
{Aw,Bw}.
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A transversely isotropic (TI) model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications
in the imaging and velocity model building efforts as compared to a general TI (TTI) model. Although this model cannot be
represented physically in all situations, for example, in the case of conflicting dips, it handles arbitrary reflector orientations under
the assumption of symmetry axis normal to the dip. Using this assumption, we obtain efficient downward continuation algorithms
compared to the general TTI ones, by utilizing the reflection features of such a model. Phase-shift migration can be easily extended
to approximately handle lateral inhomogeneity using, for example, the split-step approach. This is possible because, unlike the
general TTI case, the DTI model reduces to VTI for zero dip. These features enable a process in which we can extract velocity
information by including tools that expose inaccuracies in the velocity model in the downward continuation process. We test this
model on synthetic data corresponding to a general TTI medium and show its resilience.

1. Introduction

Migration velocity analysis (MVA), despite the many devel-
opments in recent years, is still a challenging process espe-
cially in complex media. MVA is even more of a challenge
in anisotropic media in which the medium is described by
several parameters, all of which can change as a function of
position. Anisotropy introduces flexibility to the model to
better simulate the Earth subsurface, but it also introduces
a null space to the parameter estimation process or MVA.
As a result, we need to use anisotropy to allow for more
freedom up to the point where data seize to influence the
model, or even part of it. This anisotropy null-space tradeoff
has recently guided us to using a transversely isotropic (TI)
medium with a tilted axis of symmetry (TTI). To avoid
the null space, such tilt is assumed to be in the direction
of the dip [1, 2]. In fact, Audebert et al. [2] referred to
this medium as structurally conformed transversely isotropic
(STI), in which parameter description becomes simpler by
fixing the symmetry axis to be normal to the structure. In
their formulation, the symmetry axis field is measured from

the image (a representation of the structure) and used along
with regular TTI equations to implement migration and
velocity analysis.

In transversely isotropic with vertical symmetry axis
(VTI) media, the acoustic problem can be described by three
parameters [3]: the velocity in the symmetry direction, the
normal-moveout (NMO) velocity measured with respect to
the symmetry direction (related to the second derivative
of the phase velocity with respect to phase angle at the
symmetry direction), and an anisotropy parameter that
relates the NMO velocity to the velocity in the direction
normal to the symmetry axis, usually labeled η. For TI media
with a tilt in the axis of symmetry, two angles, that describe
the tilt in 3D, are also needed to fully characterize acoustic
wave propagation.

Alkhalifah and Sava [4] introduce the concept of using
the assumption that symmetry axis is normal to the reflec-
tor dip as a constrain to develop simplified and explicit
representations for moveout in extended images, for angle
gather mapping, and for migration. They refer to the model
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as dip-constrained TI (DTI). In this paper, we use the
explicit formulations provided by the DTI model to perform
downward continuation and discuss its potential for TTI
parameter estimation. In this context, many of the familiar
tools developed for the isotropic case apply with little or
no modifications. We utilize this to build a framework for
imaging and velocity model building for DTI models and
illustrate the method with synthetic data.

2. Downward Continuation

Downward continuation, with the double-square equation
in the DTI framework, utilizes the equal incidence and
reflection angles imposed by the constraint. As shown by
Alkhalifah and Sava [4], the downward continuation process
includes two steps: determining the offset wavenumber
corresponding to a particular reflection angle and then using
the offset wavenumber to determine the required phase shift
based on the double-square-root (DSR) equation. The two
steps are given by explicit equations that can be implemented
using the algorithm suggested by Alkhalifah and Sava [4].

Considering that angle gather extraction is a localized
process relying on the plane wave behavior around the
scattering point, it is applicable, within the limits of high
frequencies compared to medium variations, to complex
media. To allow the DSR-based downward continuation to
honor lateral inhomogeneity at least approximately, we can
utilize the phase-shift-plus-interpolation concept [5]. In this
case, we downward continue multiple times for various
symmetry-direction anisotropy parameters and then inter-
polate the wavefields using the lateral velocity information
in space. However, the split-step approach of Stoffa et al. [6]
lends itself better to this approach as we maintain reflection
angle information in the space domain needed for a good
zero-dip velocity, v(x, y, z), correction.

Wavefield reconstruction for multioffset migration based
on the one-way wave equation under the survey-sinking
framework [7] is implemented by recursive phase shift of
prestack wavefields

uz+Δz(m, h) = e−ikzΔzuz(m, h), (1)

followed by extraction of the image at time t = 0. Here, m
and h represent the midpoint and half offset coordinates.
In (1), uz(m, h) represents the acoustic wavefield for a given
frequency ω at all midpoint positions m and half offsets h
at depth z, and uz+Δz(m, h) represents the same wavefield
extrapolated to depth z + Δz. The phase shift in laterally
homogeneous media is given by the depth wavenumber kz
which is defined by the DSR formula. In the case of the 2D
DTI model, the dispersion relation is given by the following
formula [4]:

kz = kzs + kzr

=
√√√√ ω2

v2
p(θ)

− (km − kh)2 +

√√√√ ω2

v2
p(θ)

− (km + kh)2,
(2)

where ω is the angular frequency, km is the midpoint
wavenumber, vp is the phase velocity as a function of

the reflection angle (half of the scattering angle for DTI),
θ, and kzs and kzr are the source and receiver vertical
wavenumbers, respectively. The offset wavenumber, kh, is
evaluated using the following formula:

k2
h(θ) =

(
2ω sin θ
vp(θ)

)2

− k2
mtan2θ. (3)

To implement such a phase shift downward continuation, we
loop, per depth step, over ω, km, and most importantly θ.
The phase velocity used in (2) can be regarded as a reference
velocity in laterally inhomogeneous media corresponding to
anisotropy parameters, for example, from the center of the
model. For a split-step implementation, we apply a space
domain correction corresponding to zero dip. Thus, the
phase correction in the space domain has the following form:

kzc = 2

√√√√ ω2

v2
p(x, θ)

− k2
h − 2

√√√√ ω2

v2
p(θ)

− k2
h, (4)

where vp(x, θ) is the laterally varying phase velocity corre-
sponding to anisotropic parameters at their space location.
The offset wave number is given now by a simpler equation

kh(x, θ) = 2ω sin θ
vp(x, θ)

. (5)

For completeness, the laterally varying phase velocity for TI
media is given as

v2
p(x, θ) = 1

2

(
a sin2θ + b cos2θ

)
+

1
4

√
4a2sin4θ + 2ab sin2(2θ) + 4b2cos4θ,

(6)

where a = v2(x)(1+2η(x)), b = v2
T(x), vT is the velocity in the

symmetry direction, v is the NMO velocity with respect to
the symmetry axis, and η is the anisotropy parameter relating
the NMO velocity to the velocity normal to the symmetry
axis. The angle θ in (6) is measured from the symmetry axis.
Here, we are relying on the zero dip for the lateral correction,
though the model is DTI, which implies a VTI model for this
dip.

3. Velocity Analysis

Having an analytical representation for the migration opera-
tor allows us to develop migration analysis tools. The depen-
dency of the migration operator on medium parameters is
at the heart of such developments. Using the Sava and Vlad
[8] approach to develop the velocity analysis operator in 3D,
we can assume the separation of the extrapolation slowness
s(m) = 1/v2

p(θ) into a background component s0(m) and
an unknown perturbation component Δs(m). Then, we can
construct a wavefield perturbation Δu(m, h) at depth z and
frequency ω related linearly to the slowness perturbation
Δs(m). Linearizing the depth wavenumber given by the DSR
equation (2) relative to the background slowness s0(m), we
obtain

kz ≈ kz0 +
dkzs
ds

∣∣∣∣
s0
Δs(m− h) +

dkzr
ds

∣∣∣∣
s0
Δs(m + h), (7)
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where the depth wavenumber in the background medium is

kz0 =
√

[ωs0(m− h)]2 −
∣∣∣∣kx − kh

2

∣∣∣∣2

+

√
[ωs0(m + h)]2 −

∣∣∣∣kx + kh

2

∣∣∣∣2

,

(8)

and kx and kh are the wavenumber vectors for the midpoint
and half offset, respectively, in 3D. Here, s0(x, θ) represents
the spatially variable background slowness at depth level z.
Using the wavenumber linearization given by (7), we can
reconstruct the acoustic wavefields in the background model
using a phase-shift operation

uz+Δz(m, h) = e−ikz0Δzuz(m, h). (9)

We can represent wavefield extrapolation using a generic
solution to the one-way wave equation. This indicates
that the wavefield uz+Δz(m, h) is reconstructed from the
wavefield uz(m, h) using the background slowness s0(m).
This operation is repeated independently for all frequencies
ω.

However, our desire is to relate the wavefield perturba-
tion directly to medium perturbation, not just the phase
velocity. For the DTI model, s(m) is dependent on the TI
model parameters, which for the acoustic case are vT , v, and
η. Thus, (7) becomes

kz ≈ kz0 +
dkzs
ds

∂s

∂vT

∣∣∣∣
s0

ΔvT(m− h)

+
dkzs
ds

∂s

∂v

∣∣∣∣
s0
Δv(m− h)

+
dkzs
ds

∂s

∂η

∣∣∣∣∣
s0

Δη(m− h)

+
dkzr
ds

∂s

∂vT

∣∣∣∣
s0

ΔvT(m + h)

+
dkzr
ds

∂s

∂v

∣∣∣∣
s0
Δv(m + h)

+
dkzr
ds

∂s

∂η

∣∣∣∣∣
s0

Δη(m + h),

(10)

where s(m) = 1/v2
p(θ) is given by (6), and thus, the partial

derivatives in (10) can be obtained analytically. We can focus
on perturbation in one parameter (i.e, η) and thus end up
with a one-to-one linearized relation between the image field
and that parameter. For a detailed implementation of such
an approach, we refer to [8].

4. Dip-Constrained TTI: Not a Physical Model

One question that arises is how does the DTI constraint be
imposed on a model? Specifically, what happens when we
have conflicting dips? For the equations developed here and
especially those of Alkhalifah and Sava [4], based on a plane

Figure 1: Part of BP anisotropic velocity model that contains a salt
body. The abrupt change in velocity magnitude can be interpreted
as reflections, and the arrows point to examples of the possible
directions of TI symmetry tilt to accommodate a DTI model.

wave representation, the DTI constraint is explicitly handled
in the formulations. This implies that even for conflicting
dips at some position in space, the symmetry axis is always
normal to the reflector dip, as if the dips were handled in
separate planes. This can not be represented in the physical
space, and thus, it is a process. If conflicting dips exist,
then the dip that physically adheres to the constraint is
handled properly. Figure 1 shows the BP anisotropic model
with arrows pointing to conflicting dips. However, the axis of
symmetry is single valued, and thus, the DTI model handles
the reflections that adhere to this assumption. Nevertheless,
conflicting dips are truly conflicting (cross at a point) if the
true velocity is used in imaging. Otherwise, their conflict is
in an inaccurate position and thus do not reflect the physical
behavior of the reflectors.

Thus, in the BP model shown in Figure 1, we typically
use the reflections that underlay the sediments, especially
those near the salt flanks, to constrain the velocity model.
These sediments are assumed to be TI with the symmetry
axis normal to the layering. In this case, the simplified DTI
model can accurately image those sediments at a reduced
effort and cost. The effort is typically spent in generating
velocity models that include an additional file containing the
symmetry axis direction, which is not required in the DTI
model. In addition, the cost of using DTI equations is far less
than TTI ones, even less than using VTI equations.

5. The Impulse Response

The response of imaging to a dataset that includes pulses
reveals some of the features of the operator involved in
the imaging process. Here, our input data to the migration
includes five pulses at times 0.6, 1.2, 1.8, 2.4, and 3 seconds
at zero offset under the common midpoint (CMP) location
of 4 km. The medium is vertically inhomogeneous with
velocity increasing linearly with depth and η = 0.2. Figure 2
shows the migration (response) in the prestack domain with
coordinates of distance, depth, and angle gather. The three
sections here and throughout represent slices in the prestack
cube with the black lines representing the location of these
slices relative to each other. As a result, the section on the
right is simply the angle gather at location 4 km.
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Figure 2: The impulse response for the prestack DTI phase-shift
migration of 5 pulses at zero offset in a vertically inhomogeneous
DTI model with v(z) = 1.5 + 0.6 z km/s and η = 0.2 and δ = 0. The
three sections represent slices in the prestack cube with the black
lines representing the location of these slices relative to each other.
As a result, the section on the right is simply the angle gather at
distance 4 km.
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Figure 3: A reflector model depicting a salt flank with three parallel
reflectors laying alongside the flank. The angle of symmetry is
normal to the three reflectors at 30 degrees from the vertical.

As expected, the response is symmetric despite the DTI
nature of the medium. Unlike the TTI case, where the
symmetry axis is set to a direction, the symmetry axis here
is set to be normal to the reflector, and since the response
includes all dips, it will also includes all possible symmetry
directions. The angle gather behavior of the impulse response
completes the saddle shape of the 3D operator.

6. Synthetic Example

In the following example, we use for simplicity a vertically
inhomogeneous model, although nothing in the develop-
ment of processes for DTI requires that. We consider the
reflector model in Figure 3, which is made up of a salt-
flank-like reflector in addition to three parallel reflectors
depicting sediments laid over the salt flank. The TTI in this
model has a symmetry axis normal to the three reflectors
at 30◦ angle from vertical. This model allows us to test the
DTI concept for these three reflectors by analyzing the angle
gather at 2.5 km location. It also allows us to observe the
errors for reflectors that do not adhere to the constraint,
like the salt flank and semihorizontal reflector. For a velocity

5

4

3

2

1

1

0

1086

6

4

4

2
2

0 0

Midpoint (km)

T
im

e 
(s

)

Offs
et 

(k
m

)

2.6497

2.5

Figure 4: Prestack synthetic data generated using Kirchhoff mod-
eling for the TTI model in Figure 3 with velocity (NMO and along
the tilt) equals 2 km/s and η = 0.2.
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Figure 5: Migrated section after an isotropic migration with
velocity of 2 km/s of the TTI syntheticdata in Figure 4. The angle
gathers obtained using an isotropic mapping at 2.5 km location are
displayed on the right, and the top section shows a depth slice as a
function of angle gather at depth 2 km.

of 1.5 km/s at the surface and increasing at a gradient of
0.6 s−1, and η = 0.2, we generate the prestack synthetic
dataset shown in Figure 4. We use Kirchhoff modeling to
obtain the synthetic data [9], and despite that the bottom
reflector is semihorizontal, the clear influence of the tilt in
the symmetry axis resulted in a dipping appearance on the
synthetic section.

Conventional phase shift downward continuation
requires that no lateral velocity variation be present. Since
the synthetic model has no lateral velocity variation, we use
the phase-shift approach to migrate the data. However, prior
to applying the zero-lag imaging condition, we map the
offset wavenumbers to angle and, thus, obtain angle gathers.
Figure 5 shows the isotropically migrated section at near zero
angle. It also shows on the right hand side the angle gather
for isotropic angle decomposition. Clearly, the angle gather
includes residuals resulting from ignoring anisotropy. They
include predominantly nonhyperbolic errors associated



International Journal of Geophysics 5

0

0
15

1

1

2

2

2.8

3

3

4

2.5

4
5 6 7 8 20

20

40

40

A
n

gl
e

(◦
)

D
ep

th
 (

km
)

Angle (◦)Distance (km)

Figure 6: Migrated section after a VTI migration with velocity of
2 km/s and η = 0.2 of the TTI synthetic data in Figure 4. Again, the
angle gathers obtained using an isotropic mapping at 8 km location
are displayed on the right, and the top section shows a depth slice as
a function of angle gather at depth 2 km.
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Figure 7: Migrated section after DTI-based migration with velocity
of 2 km/s and η = 0.2 of the TTI synthetic data in Figure 4. The
angle gathers obtained, now, using the VTI mapping at 2.5 km
location are displayed on the right. The top section shows a depth
slice as a function of angle gather at depth 2 km.

with anisotropy with some second-order errors associated
with the dip [3]. The top plot in Figure 5 is a 2 km depth
slice section and includes some residual error information
spanning other angle gathers.

If we downward continue using a VTI phase-shift
migration followed by an anisotropic angle gather mapping
[10], we obtain the image shown in Figure 6. Both the image
and the angle gathers reflect the inaccuracy of the VTI
imaging for this TTI model. However, the residual moveout
in the angle gathers is less than those for the isotropic
case. On the other hand, the phase shift migration under
the DTI assumption results in the image and angle gather
shown in Figure 7. While the reflections and diffractions
associated with angle not normal to the axis of symmetry
show clear errors, the three parallel reflections show accurate
placement and no residuals in the angle gather. This implies

that the parameters used (velocity and η) are accurate within
the DTI model that was appropriate to these reflections.

This synthetic test shows an example of the usefulness
of the DTI model for analysis of key reflections. Usually, for
migration velocity analysis purposes, the symmetry axis is set
to be normal to the reflector dip for the reflections used in the
analysis, and this is the case even for isotropic layers, which
is a special case of DTI where η and δ equal zero.

7. Conclusions

Constraining the symmetry axis of a transversely isotropic
medium to be normal to the reflector dip (DTI) allows for
explicit formulation of plane waves around the scattering
point. These formulations form the basis for angle decom-
position and simplified downward continuation. As a result,
DTI is a convenient model for anisotropy parameter esti-
mation in media in which such models are applicable. This
model also allows us to use the general TTI assumption in a
simplified form that better fits the information embedded in
the recorded data. A simple synthetic example demonstrated
the potential features of this model.
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We explore the use of stochastic optimization methods for seismic waveform inversion. The basic principle of such methods
is to randomly draw a batch of realizations of a given misfit function and goes back to the 1950s. The ultimate goal of such
an approach is to dramatically reduce the computational cost involved in evaluating the misfit. Following earlier work, we
introduce the stochasticity in waveform inversion problem in a rigorous way via a technique called randomized trace estimation.
We then review theoretical results that underlie recent developments in the use of stochastic methods for waveform inversion. We
present numerical experiments to illustrate the behavior of different types of stochastic optimization methods and investigate the
sensitivity to the batch size and the noise level in the data. We find that it is possible to reproduce results that are qualitatively similar
to the solution of the full problem with modest batch sizes, even on noisy data. Each iteration of the corresponding stochastic
methods requires an order of magnitude fewer PDE solves than a comparable deterministic method applied to the full problem,
which may lead to an order of magnitude speedup for waveform inversion in practice.

1. Introduction

The use of simultaneous source data in seismic imaging has a
long history. So far, simultaneous sources have been used to
increase the efficiency of data acquisition [1, 2], migration [3,
4], and simulation [5–7]. Recently, the use of simultaneous
source encoding has found its way into waveform inversion.
Two key factors play a role in this development: (i) in
3D, one is forced to use modeling engines whose cost is
proportional to the number of shots (as opposed to 2D
frequency-domain methods where one can reuse the LU
factorization to cheaply model any number of shots) and
(ii) the curse of dimensionality: the number of shots and the
number of gridpoints grows by an order of magnitude.

The basic idea of replacing single-shot data by randomly
combined “super shots” is intuitively pleasing and has lead
to several algorithms [8–11]. All of these aim at reducing the
computational costs of full waveform inversion by reducing
the number of PDE solves (i.e., the number of simulations).
This reduction comes at the cost of introducing random
crosstalk between the shots into the problem. It was observed
by Krebs et al. [8] that it is beneficial to recombine the
shots at every iteration to suppress the random crosstalk
and that the approach might be more sensitive to noise in

the data. In this paper, we follow Haber et al. [12] and
introduce randomized source encoding through a technique
called randomized trace estimation [13, 14]. The goal of this
technique is to estimate the trace of a matrix efficiently
by sampling its action on a small number of randomly
chosen vectors. The traditional least-squares optimization
problem can now be recast as a stochastic optimization
problem. Theoretical developments in this area go back to
1950s, and we review them in this paper. In particular, we
discuss two distinct approaches to stochastic optimization.
The stochastic approximation (SA) approach consists of a
family of algorithms that use a different randomization in
each iteration. This idea justifies a key part of the approach
described in Krebs et al. [8]. Notably, the idea of averaging
the updates over the past is important in this context to
suppress the random crosstalk; lack of averaging over the
past likely explains the noise sensitivity reported by Krebs
et al. [8]. The theory we treat here concerns only first-order
optimization methods, though there has been a recent effort
to extend similar ideas to methods that exploit curvature
information [15].

Another approach, called the sample average approxi-
mation (SAA), replaces the stochastic optimization problem
by an ensemble average over a set of randomizations. The
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ensemble size should be big enough to suppress the crosstalk.
The resulting problem may be treated as a deterministic
optimization problem; in particular, one may use any
optimization method to solve it.

Most theoretical results in SA and SAA assume that the
objective function is convex, which is not the case for seismic
waveform inversion. However, in practice one starts from a
“reasonable” initial model, and we may be able to converge
to the closest local minimum. One would expect SA and SAA
to be applicable in the same framework. Understanding the
theory behind SA and SAA is then very useful in algorithm
design, even though the theoretical guarantees derived under
the convexity assumption need not apply.

As mentioned before, the gain in computational effi-
ciency comes at the cost of introducing random crosstalk
between the shots into the problem. Also, the influence of
noise in the data may be amplified by randomly combining
shots. We can reduce the influence of these two types of noise
by increasing the batch size, recombining the shots at every
iteration, and averaging over past iterations. We present a
detailed numerical study to investigate how these different
techniques affect the recovery.

The paper is organized as follows. First, we introduce
randomized trace estimation in order to cast the canonical
waveform inversion problem as a stochastic optimization
problem. We describe briefly how SA and SAA can be applied
to solve the waveform inversion problem. In Section 3, we
review relevant theory for these approaches from the field
of stochastic optimization. The corresponding algorithms
are presented in Section 4. Numerical results on a subset of
the Marmousi model are presented in Section 5 to illustrate
the characteristics of the different stochastic optimization
approaches. Finally, we discuss the results and present the
conclusions.

2. Waveform Inversion and Trace Estimation

The canonical waveform inversion problem is to find the
medium parameters for which the modeled data matches the
recorded data in a least-squares sense [16]. We consider the
simplest case of constant-density acoustics and model the
data in the frequency domain by solving

H[m]u = q, (1)

where H[m] is the discretized Helmholtz operator [ω2m +
∇2] for the squared slowness m (with appropriate boundary
conditions), u is the discretized wavefield, and q is the
discretized source function; both are column vectors. The
data are then given by sampling the wavefield at the
receiver locations: d = Pu. Note that all the quantities are
monochromatic. We hide the dependence on frequency for
notational simplicity.

We denote the corresponding optimization problem as

min
m

φ(m,Q,D) =
∑
ω

∥∥∥PH[m]−1Q−D
∥∥∥2

F
, (2)

whereD = [d1,d2, . . . ,dN ] is a frequency slice of the recorded
data, and Q = [q1, q2, . . . , qN ] are the corresponding source

functions. Note that the dependence of H on ω has been
suppressed. ‖ · ‖F denotes the Frobenius norm, which is
defined as ‖A‖F = √

trace(ATA) (here ·T denotes the
complex-conjugate transpose. We will use the same notation
for the transpose in case the quantity is real). Note that we
assume a fixed-spread acquisition where each receiver sees all
the sources.

In practice,H−1 is never computed explicitly but involves
either an LU decomposition (cf., [17–19]) or an iterative
solution strategy (cf., [20, 21]). In the worst case, the matrix
has to be inverted separately for each frequency and source
position. For 3D full waveform inversion, both the costs for
inverting the matrix and the number of sources increase
by an order of magnitude. Recently, several authors have
proposed to reduce the computational cost by randomly
combining sources [8–12].

We follow Haber et al. [12] and introduce this encoding
in a rigorous manner by using a technique called randomized
trace estimation. This technique was introduced by Hutchin-
son [13] as a technique to efficiently estimate the trace of
an implicit matrix. Some recent developments and error
estimates can be found in Avron and Toledo [14].

This technique is based on the identity

trace
(
ATA

)
= Ew

(
wTATAw

)
= lim

K→∞
1
K

K∑
k=1

wT
k A

TAwk, (3)

where Ew denotes the expectation over w. The random vec-
tors w are chosen such that Ew(wwT) = I (the identity
matrix). The identity can be derived easily by using the
cyclic permutation rule for the trace (i.e., trace(ABC) =
trace(CAB)), the linearity of the expectation, and the
aforementioned property of w. At the end of the section,
we discuss different choices of the random vectors w. First,
we discuss how randomized trace estimation affects the
waveform inversion problem.

Using the definition of ‖A‖F , we have

φ(m,Q,D) = Ewφ(m,Qw,Dw). (4)

This reformulation of (2) is a stochastic optimization
problem. We now briefly outline approaches to solve such
optimization problems.

2.1. Sample Average Approximation. A natural approach to
take is to replace the expectation over w by an ensemble
average

φK(m) = 1
K

K∑
k=1

φ(m,Qwk ,Dwk). (5)

This is often referred to in the literature as the sample
average approximation (SAA). The random crosstalk can be
controlled by picking a “large enough” batch size. As long as
the required batch size is smaller than the actual number of
sources, we reduce the computational complexity.

For a fixed m, it is known that the error |φ − φK | is of
order 1/

√
K (cf., [14]). However, it is not the value of the

misfit that we are trying to approximate, but the minimizer.
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.

Unfortunately, the difference between the minimizers of φ
and φK is not readily analyzed. Instead, we perform a small
numerical experiment to get some idea of the performance
of the SAA approach for waveform inversion.

We investigate the misfit along the direction of the
negative gradient gk (defined below)

fK (α) = φK
(
m− αgK

)
. (6)

The data are generated for the model depicted in Figure 1(a),
for 61 colocated, equidistributed sources and receivers along
a straight line at 10 m depth and 7 randomly chosen
frequencies between 5 and 30 Hz. The source signature is
a Ricker wavelet with a peak frequency of 10 Hz. We use
a 9-point discretization of the Helmholtz operator with
absorbing boundary conditions and solve the system via an
(sparse) LU decomposition (cf., [22]). We note that this setup
is quite efficient already since the LU decomposition can be
reused for each source. Reduction of the number of sources

becomes of paramount importance in 3D where one is forced
to use iterative methods whose costs grow linearly with the
number of sources. The search direction gK is the gradient of
φK evaluated at the initial model m0, depicted in Figure 1(b).
The gradient is computed in the usual way via the adjoint-
state method (cf., [23]). The full gradient as well as the
gradients for K = 1, 5, 10 are depicted in Figure 2. The
error between the full and approximated gradient, caused by
the crosstalk, is depicted in Figure 3. As expected, the error
decays as 1/

√
K . The misfit as a function of α for various K ,

as well as the full misfit (no randomization), is depicted in
Figure 4. This shows that the minimizer of φK is reasonably
close to the minimizer of the full misfit φ, even for a relatively
small batch size K .

2.2. Stochastic Approximation. A second alternative is to
apply specialized stochastic optimization methods to prob-
lem (4) directly. This is often referred to as the stochastic
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Figure 2: The full gradient is depicted in (a). The approximate gradients for various K are depicted in (b) K = 1, (c) K = 5, and (d) K = 10.
For a relatively small batch size, the approximate gradients already show the main features.

approximation (SA). The main idea of such algorithms is
to pick a new random realization in each iteration and
possibly average over past iterations to suppress the resulting
stochasticity. In the context of the full waveform inversion
problem, this gives an iterative algorithm of the form

mν+1 = mν − γν∇φK ,ν(mν), (7)

where batch size K can be as small as 1, {γν} represent
step sizes taken by the algorithm, and the notation φK ,ν

emphasizes that a new randomization is used at every
iteration ν (in contrast with the SAA approach).

We discuss theoretical performance results and describe
SAA and SA in more detail in the next section.

2.3. Accuracy and Efficiency of Randomized Trace Estimation.
Efficient calculation of the trace of a positive semidefinite
matrix lies at the heart of our approach. Factors that
determine the performance of this estimation include the

random process for the i.i.d. w’s, the size of the source
ensemble K , and the properties of the matrix. Hutchinson’s
approximation [13], which is based on w’s drawn from
a Rademacher distribution (i.e., random ±1), attains the
smallest variance for the estimate of the trace. The variance
can be used to bound the error via confidence intervals.
However, the variance is not the only measure of the error.
In particular, Avron and Toledo [14] derive bounds on
the batch size in terms of ε and δ, defined as follows. A
randomized-trace estimator TK = K−1

∑
wT
i Bwi is an (ε, δ)-

approximation of T = trace(B) if

Pr
( |TK − T|

|T| ≤ ε
)
≥ 1− δ. (8)

The expressions for the minimum batch size K for which the
relative error is smaller than ε with probability δ are listed
in Table 1 (adapted from Avron and Toledo [14]). Smaller ε’s
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Table 1: Summary of bounds, adapted from Avron and Toledo [14].

Estimator Distribution of w Variance of one sample Bound on K for (ε, δ) bound

Hutchinson

HK = (1/K)
∑K

j=1 w
�
j Awj Pr(wj = ±1) = 1/2 2(‖A‖2

F −
∑N

i=1 A
2
ii) 6ε−2 ln(2 rank(A)/δ)

Gaussian

GK = (1/K)
∑K

j=1 w
�
j Awj wj ∈ N(0, 1) 2‖A‖2

F 20ε−2 ln(2/δ)

Phase encoded

LK = (N/K)
∑K

j=1 w
T
j F AF Twj wj drawn uniformly from {e1, . . . , eN} n/a 2ε−2 ln(4n2/δ) ln(4/δ)

100

108

107

|g K
−
g
|

100 101 102

K

Figure 3: Error in the gradient as a function of the batch size K . As
expected, the error goes down as 1/

√
K (dashed line).

Table 2: This table shows the theoretical lower bounds (see Table 1)
on the batch size K for δ = 10−1 for the matrix shown in Figure 5.

ε = 10−1 ε = 10−2 ε = 10−3

Gauss 6 · 103 6 · 105 6 · 107

Hutchinson 4 · 103 4 · 105 4 · 107

Phase 9 · 103 9 · 105 9 · 107

and δ’s lead to larger K , which in turn leads to more accurate
trace estimates with increased probability.

Of course, these bounds depend on the choice of the
probability distribution of the i.i.d. w’s and the matrix B.
Aside from obtaining the lowest value for K , simplicity of
computational implementation is also a consideration. In
Table 1, we summarize the performance of four different
choices for the w’s, namely,

(1) the Rademacher distribution, that is, Pr(w[i] =
±1) = 1/2, (w[i] denotes the ith element in the vector w)
yielding E{w[i]} = 0 and E{w[i]2} = 1 for i = 1 · · ·N .
Aside from the fact that this estimator HK (see Table 1) leads
to minimum variance, the advantage of this choice is that it
leads to a fast implementation with a small memory imprint.
The disadvantage of this method is that the lower bound
depends on the rank of A and requires larger K compared
to w’s defined by the Gaussian (see Table 1);

(2) the standard normal distribution, that is, w[i] ∈
N(0, 1) for i = 1 · · ·N . While the variance for this estimator
GK (see Table 1) is larger than the variance for Hk, the lower
bound for K does not depend on the size or the rank of A
and is the smallest of all four methods. This suggests that
we can use a fixed value of K for arbitrarily large matrices.
However, this method is known to converge slower than
Hutchinson’s for matrices A that have significant energy in
the off-diagonals. This choice also requires a more complex
implementation with a larger memory imprint;

(3) the fast phase-encoded method where w’s selected
uniformly from the canonical basis, that is, from {e1, . . . , eN}.
this estimator

LK = N

K

K∑
j=1

wT
j F AF Twj , (9)

where F is a unitary (i.e, F T = F −1) random mixing
matrix. The idea is to mix the matrix B such that its diagonal
entries are evenly distributed. This is important since the
unit vectors only sample the diagonal of the matrix. The
flatter the distribution of the diagonal elements, the faster the
convergence (if all the diagonal elements were to be the same,
we need only one sample to compute the trace exactly).

The lower bounds summarized in Table 1 tell us that
Gaussian w’s theoretically require the smallest K and hence
the fewest PDE solves. However, this result comes at the
expense of more complex arithmetic, which can be a
practical consideration [8]. Aside from the lowest bound, the
estimator based on Gaussian w’s has the additional advantage
that the bound on K does not depend on the size or rank
of the matrix B. Hutchinson’s method, on the other hand,
depends logarithmically on the rank of B but has the reported
advantage that it performs well for near diagonal matrices
[14]. This has important implications for our application
because our matrix B is typically full rank and can be
considered nearly diagonal only when our optimization
procedure is close to convergence. At the beginning of the
optimization, we can expect the residual to be large and a B
that is not necessarily diagonal dominant.

We conduct the following stylized experiment to illus-
trate the quality of the different trace estimators. We solve
the discretized Helmholtz equation at 5 Hz for a realistic
acoustic model with 301 colocated sources and receivers
located at 10 m depth. We compute matrix B = ATA for a
residue A given by the difference between simulation results
for the hard and smooth models shown in Figure 1. As
expected, the resulting matrix B, shown in Figure 5, contains
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Figure 4: Behavior of misfit for various K . Shown are five different stochastic realizations and the true misfit (dashed line) for (a) K = 1,
(b) K = 5, and (c) K = 10. The stochastic misfits approximate the true misfit fairly well for relatively small batch sizes.

significant off-diagonal energy. For the phase-encoded part
of the experiment, we use a random mixing matrix based
on the DFT, as suggested by Romberg [24]. Such mixing
matrices are also commonly found in compressive sensing
applications [7, 24–26].

We evaluated the different trace estimators 1000 times for
batch sizes ranging from K = 1 · · · 1000. The probability
for the error level ε is estimated by counting the number
of times we were able to achieve that error level for each K .
The results for the different trace estimators and error levels
are summarized in Figure 6. For this particular example, we
see little difference in performance between the different
estimators. The corresponding theoretical bounds on the
batch size, as given by Table 1, are listed in Table 2. Clearly,
these bounds are overly pessimistic in this case. In our
experiments, we observed that we get similar reconstruction

behavior if we use a finer source/receiver sampling. This
suggests that the gain in efficiency will increase with the
data size, since we can use larger batch sizes for a fixed
downsampling ratio. We also noticed, in this particular
example, little or no change in behavior if we change the
frequency.

3. Optimization

3.1. Sample Average Approximation. The sample average
approximation (SAA) is used to solve the following class of
stochastic optimization problems:

min
x∈X

{
f (x) = Ew{F(x,w)}}, (10)
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Figure 5: Residual matrix A = STS, where S is the data residual
corresponding to the smooth model depicted in Figure 1(a) at 5 Hz.

where X ⊂ Rn is the set of admissible models (assumed to
be a compact convex set, for example, box constraints xmin ≤
x ≤ xmax), w is a random vector with distribution supported
on W ⊂ Rd , F : X × W → R, and the function f (x)
is convex [27]. The last important assumption is the law of

large numbers (LLN), that is, f̂K (x) → f (x) with probability
1 as K → ∞. These assumptions are required for most
of the known theoretical results about convergence of SAA
methods. The convexity assumption and LLN assumption
can be relaxed in the case when F(·,w) is continuous on X
for almost every w ∈ W and F(x,w) is dominated by an
integrable function G(w), so that | f (x)| ≤ Ew{G(w)} for
every x ∈ X [28]. Given an optimization problem of type
(10), the SAA approach [27] is to generate a random sample
w1, . . . ,wK and solve the approximate (or sample average)
problem

min
x∈X

⎧⎨⎩ f̂K (x) = 1
K

K∑
j=1

F
(
x,wj

)⎫⎬⎭. (11)

When these assumptions are satisfied, the optimal value of
(11) converges to the optimal value of the full problem
(10) with probability 1. Moreover, under more technical
assumptions on the distribution of the random variable
w, conservative bounds have been derived on the batch
size K necessary to obtain a particular accuracy level ε
[29, equation (22)]. These bounds do not require the
convexity assumptions but instead require assumptions on
local behavior of F(·,w). It is worth underscoring that
“accuracy” here of solution x with respect to the optimal
solution x∗ is defined with respect to the function value
difference f (x) − f (x∗), rather than in terms of ‖x − x∗‖
or other measure in the space of model parameters. From
a practical point of view, the SAA approach is appealing
because it allows flexibility in the choice of algorithm for the
solution of (11). This works on two levels. First, if a faster
algorithm becomes available for the solution of (11), it can
immediately impact (10). Second, having fixed a large K and

f̂K to obtain reasonable accuracy in the solution of (10), one

is free to approximately solve a sequence of smaller problems

(Ki � K) with warm starts on the way to solving f̂K [12]. In
other words, SAA theory guarantees the existence of aK large
enough for which the approximate problem is close to the full
problem; however, the algorithm for solving the approximate
problem (11) is left completely to the practitioner and in
particular may require the evaluation of very few samples at
early iterations.

3.2. Stochastic Approximation. Stochastic approximation
(SA) methods go back to Robbins and Monro [30], who
considered the root-finding problem

g(x) = g0, (12)

in the case where g(x) cannot be evaluated directly. Rather,
one has access to a function G(x,w) for which Ew{G(x,w)} =
g(x). The approach can be translated to optimization
problems of the form

min f (x) (13)

by considering g to be the gradient of f and setting g0 = 0.
Again, we cannot evaluate f (x) directly, but we have access
to F(x,w) for which Ew{F(x,w)} = f (x). More generally,
for problems of type (10), Bertsekas and Tsitsiklis [31] and
Bertsekas and Tsitsiklis [32] consider iterative algorithms of
the form

xν+1 = xν − γνs
ν, (14)

where γν are a sequence of step sizes determined a priori that
satisfy certain properties, and sν can be thought of as noisy
unbiased estimates of the gradient (i.e., Ewsν = ∇ f (xν)).
Note that right away we are forced into an algorithmic
framework, which never appears in the SAA discussion. The
positive step sizes γν are chosen to satisfy

∞∑
ν=0

γν = ∞,
∞∑

ν=0

γ2
ν <∞. (15)

The main idea is that the step sizes go to zero, but not too
fast. A commonly used example of such a sequence of step
sizes is

γν ∝ 1
ν
. (16)

The main result of Bertsekas and Tsitsiklis [31] is that if ∇ f
satisfies the Lipshitz condition with constant L∥∥∇ f (x)−∇ f

(
y
)‖≤ L‖x− y

∥∥, (17)

that is, the changes in the gradient are bounded in norm by
changes in the parameter space, and if the directions sν on
average point “close to” the gradient and are not too noisy,
then the sequence f (xν) converges, and every limit point x
of {xν} is a stationary point of f (i.e., ∇ f (x) = 0). Under
stronger assumptions that the level sets of f are bounded and
the minimum is unique, this guarantees that the algorithms
described above will find it. A similar family of algorithms
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Figure 6: Reconstruction as a function of K for various methods and error levels: (a) ε = 10−1, (b) ε = 10−2, and (c) ε = 10−3.

was studied by Polyak and Juditsky [33], who considered
larger step sizes γν but included averaging model estimates
into their algorithm. In the context discussed above, the step
size rule 10 is replaced by

γν − γν+1

γν
= o

(
γν

)
. (18)

A particular example of such a sequence cited by the paper is

γν ∝ ν−β, 0 < β < 1. (19)

The iterative scheme is then given by

xν+1 = xν − γνs
ν,

xν = 1
ν

ν−1∑
i=0

xi.
(20)

Under assumptions similar in spirit to the ones in Bertsekas
and Tsitsiklis [31], there is a result for the convergence of the
iterates xν to the true estimate x∗, namely, xν → x∗ almost
surely and

√
ν(xν − x∗)−→DN(0,V), (21)

where the convergence is in distribution, and the matrix V
is in some sense optimal and is related to the Hessian of f
at the solution x∗. A more recent report [34] also considers
averaging of model iterates in the context of optimizing (not
necessarily smooth) convex functions of the form

f (x) = Ew{F(x,w)} (22)

over a convex set X. When f is smooth, this situation reduces
to the previous discussion. Nesterov and Vial [34] choose
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Figure 7: Inversion result for the SAA approach with various batch sizes and noise levels. The rows represent different batch sizes K =
1, 5, 10, 20, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. The reconstruction with K = 20
for noiseless data (j) is qualitatively comparable to the full reconstruction. The quality deteriorates quickly for small batch sizes and noisy
data.



10 International Journal of Geophysics

10−1

100 101 102

Iteration

|Δ
m
|

(a)

10−1

100 101 102

|Δ
m
|

Iteration

(b)

10−1

100 101 102

|Δ
m
|

K = 1
K = 5
K = 10

K = 20
Full

Iteration

(c)

Figure 8: Error between the inverted and true model for the SAA approach with various batch sizes and the full problem, (a) without noise,
(b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). On noiseless data, we achieve a qualitatively comparable result with K = 20,
as can be seen from (a). For noisy data, however, the largest batch size is not enough to prevent overfitting.

a finite sequence ofN step sizes a prior and consider the error
in the expected value function

Exν

{
f (xν)

}− f (x∗) (23)

after N iterations. This is similar to the SAA analysis but is
much easier to interpret, because now the desired accuracy
in the objective value directly translates to the number of
iterations of a particular algorithm

xν+1 = πX
(
xν − γνsν

)
,

x =
∑N−1

ν=0 γνxν∑N−1
ν=0 γν

,
(24)

where πX is projection onto the convex set of admissible
models X. Unfortunately, the error is O(L2(

∑
γ2

ν /
∑
γν) +

R2(1/
∑
γν)), where R is the diameter of the set X (related

to the bounds on x from our earlier example) and L is a
uniform bound on ‖∇ f ‖, and so the estimate may be overly
conservative. If all the γν are chosen to be uniform, the
optimal size is γ = R/L

√
N , and then the result is simply

Exν

{
f (xν)

}− f (x∗) ≤ LR√
N
. (25)

For a recent survey of stochastic optimization and new robust
SA methods, please see Nemirovski et al. [27].

Note that the error rate in the objective values is O(1/√
N), where the constant depends in a straightforward way



International Journal of Geophysics 11

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(a)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(b)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(c)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(d)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(e)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(f)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(g)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(h)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(i)

Figure 9: Inversion result for the SA approach without averaging for various batch sizes and noise levels. The rows represent different batch
sizes K = 1, 5, 10, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. We obtain good results with
K = 1, and the quality does not improve dramatically for larger batch sizes, except for the highest noise level.

on the size of the set X and the behavior of ‖∇ f ‖. Compare
this to the O(1/

√
K) error bound for the SAA approach. In

contrast to the SAA, the SA approach translates directly into
a particular algorithm. This makes it easier to implement
for full waveform inversion, but also leaves less freedom for
algorithm design than in SAA, where any algorithm can be
used to solve the deterministic ensemble average problem.

4. Algorithms

To test the performance of the SAA approach, we chose to
use a steepest descent method with an Armijo line search
(cf., [35]). Although one could in principle use a second-
order method (such as L-BFGS), we chose to use a first-order

method to allow for better comparison to the SA results. The
pseudocode is presented in Algorithm 1.

The SA methods are closely related to the steepest descent
method. The main difference is that for each iteration a new
random realization is drawn from a prescribed distribution
and that the result is averaged over past iterations. We
chose to implement a few modifications to the standard
SA algorithms. First, we use an Armijo line search to
determine the step size instead of using a prescribed sequence
such as that discussed in the previous section. This assures
some descent at each iteration with respect to the current
realization of φK , and we found that this greatly improved
the convergence. Second, we allow for averaging over the
past n iterations instead of the full history. This prevents
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Figure 10: Error between the inverted and true model for the SA approach without averaging for various batch sizes and the full problem,
(a) without noise, (b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). We get qualitatively similar results, compared to the full
inversion, with K = 1 for noiseless data and data with 10 dB of noise. For very noisy data (20 dB), we need a larger batch size. Although the
SA approach requires roughly the same number of iterations as the full inversion, the iterations are much cheaper. For K = 1, we model the
data for only one simultaneous source per iteration, compared to 61 for the full inversion.

the method from stalling. The pseudo-code is presented in
Algorithm 2.

5. Results

For the numerical experiments, we use the true and initial
squared-slowness models depicted in Figure 1. The data are
generated for 61 equispaced, colocated sources and receivers
at 10 m depth and 7 randomly chosen (but fixed) frequencies
between 5 and 30 Hz. The latter strategy is inspired by results
from compressive sensing (cf., [7, 36, 37]). The basic idea is
to turn aliases that are introduced by sub-Nyquist sampling
into random noise.

The Helmholtz operator is discretized on a grid with
10 m spacing, using a 9-point finite difference stencil and
absorbing boundary conditions. The point sources are rep-
resented as narrow Gaussians. As a source signature, we use
a Ricker wavelet with a peak frequency of 10 Hz. The noise is
Gaussian with a prescribed SNR.

We run each of the optimization methods for 500 iter-
ations and compare the performance for various batch sizes
and noise levels to the result of steepest descent on the full
problem. Remember that by using small batch sizes, the
iterations are very cheap, so we can afford to do more. The
random vectors are drawn from a Gaussian distribution with
zero mean and unit variance. We chose to use the Gaussian
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Figure 11: Inversion result for the SA approach with limited averaging (n = 10) for various batch sizes and noise levels. The rows represent
different batch sizes K = 1, 5, 10, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. We obtain
good results with K = 1, and the quality does not improve dramatically for larger batch sizes, except for the highest noise level.

because the theoretical bounds on K do not depend on
properties of the residual matrix. Although the matrix will
change constantly during the optimization, we can at least
expect a uniform quality of the approximation.

In a realistic application, one might want to add a
regularization term. In particular, this would prevent the
overfitting that we observe in the noisy case. Note that
limiting the amount of iterations also serves as a form of
regularization [38].

5.1. Sample Average Approximation. We choose a set of K
Gaussian random vectors with zero mean and unit variance
and run the steepest descent algorithm presented previously

on the resulting deterministic optimization problem. The
results after 500 iterations on data without noise are shown in
the first column of Figure 7. The error between the recovered
and true model is shown in Figure 8(a). As reference, the
error between the true and recovered model for the inversion
with all the sequential sources is also shown. As expected,
the recovery is better for larger batch sizes. The recovered
models for data with noise are shown in the second column
(SNR = 20 dB) and third (SNR = 10 dB) columns of Figure 7.
The corresponding recovery error is shown in Figures 8(b)
and 8(c), respectively. It shows that the SAA approach starts
overfitting in an earlier stage than the full inversion. Also,
we are not able to reach the same model error as the full
inversion.
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Figure 12: Error between the inverted and true model for the SA approach with limited averaging for various batch sizes and the full
problem, (a) without noise, (b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). The convergence is smoother than that of SA
without averaging, especially when the data is very noisy (10 dB). The averaging seems to slow down the convergence slightly, however, and
we need a batch size K = 5 for the best results.

5.2. Stochastic Approximation. We run the stochastic descent
algorithm for varying batch sizes (K = 1, 5, 10) and history
sizes (n = 0, 10, 500).

The results obtained without averaging are shown in
Figure 9. The columns represent different batch sizes, while
the rows represent different noise levels. The recovery errors
for the different batch sizes and noise levels are shown in
Figure 10. In the noiseless case, we are able to achieve the
same recovery error as the full inversion with only one
simultaneous source. When noise is present in the data, one
simultaneous source is not enough, however. Still, we can
achieve the same recovery error as the full problem with only
10 simultaneous sources. This yields an order of magnitude
improvement in our computation, since the total number

of iterations needed by the stochastic method to achieve a
given level of accuracy is roughly the same as required by a
deterministic first-order method used on the full system, but
each stochastic iteration requires ten times fewer PDE solves
than a deterministic iteration on the full system.

Results obtained with averaging over the past 10 itera-
tions are shown in Figure 11. The rows represent different
batch sizes, while the columns represent different noise
levels. The corresponding recovery errors are shown in
Figure 12. It shows that averaging helps to overcome some
of the noise sensitivity, and we are now able to achieve
a good reconstruction with only 5 simultaneous sources.
Also, the averaging damps the irregularity of the convergence
somewhat.
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Figure 13: Inversion result for the SA approach with full averaging (n = 500) for various batch sizes and noise levels. The rows represent
different batch sizes K = 1, 5, 10, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. Averaging
over the full past dramatically deteriorates the reconstruction.

While not converged do
s← −∇φ[mi]/‖∇φ[mi]‖2

find λ s.t. φ[mi + λs] ≤ φ[mi] + cλ∇φ[mi]
Ts

mi+1 ← mi + λs
i← i + 1

end while

Algorithm 1: Steepest descent.

Finally, we show the result obtained by averaging over the
full history in Figure 13. The corresponding recovery error is

While not converged do
draw w from a pre-scribed distribution
s← −∇φ[mi,w]/‖∇φ[mi,w]‖2

find λ s.t. φ[mi + λs,w] ≤ φ[mi,w] + cλ∇φ[mi,w]Ts
mi+1 ← (1/(n + 1))(

∑i
i−n mi + λs)

i ← i + 1
end while

Algorithm 2: Stochastic descent.

shown in Figure 14. It shows that too much averaging slows
down the convergence.
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Figure 14: Error between the inverted and true model for the SA approach with full averaging for various batch sizes and the full problem,
(a) without noise, (b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). Averaging over the full past slows down the convergence
dramatically.

6. Conclusions and Discussion

Following Haber et al. [39], we reduce the dimensionality
of full waveform inversion via randomized trace estimation.
This reduction comes at the cost of introducing random
crosstalk between the sources into the updates. The resulting
optimization problem can be treated as a stochastic optimiza-
tion problem. Theory for such methods goes back to the
1950s and justifies the approach presented by Krebs et al.
[8]. In particular, we use theoretical results by Avron and
Toledo [14] on randomized trace estimation to get bounds
for the batch size needed to approximate the misfit to a
given accuracy level with a given probability. Numerical tests

show, however, that these bounds may be overly pessimistic
and that we get reasonable approximations for modest batch
sizes.

Theory from the field of stochastic optimization suggests
several approaches to tackle the optimization problem
and reduce the influence of the crosstalk introduced by
the randomization. The first approach, the sample average
approximation, dictates the use of a fixed set of random
sources and relies solely on increasing the batch size to get
rid of the crosstalk. The stochastic approximation, on the
other hand, dictates that we redraw the randomization each
iteration and average over the past in order to suppress the
stochasticity of the gradients.
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We note that, as opposed to randomized dimensionality
reduction, several authors have proposed methods for deter-
ministic dimensionality reduction [39, 40]. These techniques
are related to optimal experimental design and try to
determine the source combination that somehow optimally
illuminates the target. It is not quite clear how such methods
compare to the randomized approach discussed here. It is
clear, however, that by using random superpositions we have
access to powerful results from the field of compressive
sensing to further improve the reconstruction. Li and
Herrmann [11] use sparse recovery techniques instead of
Monte Carlo sampling to get rid of the crosstalk.

In our experiments, we were able to obtain results that
are comparable to the full optimization with a small fraction
of the number of sources. In the noiseless case, we needed
only one simultaneous source for the SA approach. Even
with noisy data, five simultaneous sources proved sufficient.
This is a very promising result, since using five simultaneous
sources for the SA method means that every iteration
requires 20 times fewer PDE solves, which directly translates
to a 20x computational speedup compared to a first-order
deterministic method. The key point is that both SA and the
full deterministic approach require roughly the same number
of iterations to achieve the same accuracy.

Averaging over a limited number of past iterations
improved the results for a fixed batch size and allows for
the use of fewer simultaneous sources. However, too much
averaging slows down the convergence.

The results of the SA approach, where a new realization of
the random vectors is drawn at every iteration, are superior
to the SAA results, where the random vectors are fixed.
However, one could use a more sophisticated (possibly black
box) optimization method for the SAA approach to get a
similar result with fewer iterations. The tradeoff between
using a smaller batch size and first-order methods (i.e., more
iterations) versus using a larger batch size and second-order
methods (i.e., less iterations) needs to be investigated further.
Random superposition of shots only makes sense if those
shots are sampled by the same receivers. In particular, this
hampers straightforward application to marine seismic data.
One way to get around this is to partition the data into blocks
that are fully sampled. However, this would not give the same
amount of reduction in the number of shots because only
shots that are relatively close to each other can be combined
without losing too much data.

The type of encoding used will most likely affect the
behavior of both SA and SAA methods. It remains to be
investigated which encoding is most suitable for waveform
inversion.
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Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution
of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes
recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow
depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the
extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth,
while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the
low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault
is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan
basin in the east.

1. Introduction

The 12 May Wenchuan earthquake occurred beneath the
Longmenshan thrust belt and was the most destructive
earthquake in China in the last 30 years. Due to the 10 km
distance of the Wenchuan epicenter to the Zipingpu reservoir
and abnormal seismicity increases around the Zipingpu
reservoir, the possibility that the Wenchuan earthquake was
a reservoir-induced earthquake is obviously an important
issue and has become a debating issue [1–3]. Most recent
publications [4–8] give possible scenarios obtained from the
calculation of the Coulomb stress change under a set of
assumptions. However, those results are critically dependent
on assumptions such as diffusivity and the fault plane
orientation. Ge et al. presented that the Zipingpu reser-
voir potentially hastened the occurrence of the Wenchuan
earthquake by tens to hundreds of years [4]. Zhou et al.
[7] repeated Ge et al.’s work and found that an improper
dip angle parameter might lead to a wrong conclusion.
Their modeling results based on the 2-D model and 3-
D model with proper fault parameters show the Coulomb
stress changes alone neither were large enough nor had the

correct orientation to affect the occurrence of the Wenchuan
earthquake.

During recent years, different seismic studies have been
performed to explore the relationship between the crustal
velocity structure and the occurrence of the Wenchuan earth-
quake [9, 10] or aftershocks of the Wenchuan earthquake
[11, 12]. However, the large distance between stations in
Zipingpu reservoir has hindered the achievement of enough
resolution of the seismic images to correlate the velocity
anomalies with geological structures and possible connec-
tions between velocity structure and abnormal seismicity
increases since the filling of the Zipingpu reservoir. In this
paper, the results of a seismic tomography study are shown
based on local earthquakes near the Zipingpu reservoir. The
resolution obtained is higher than in previous studies. The
seismic images are compared with the geological setting and
the submerged region of the Zipingpu reservoir.

2. Geological Setting

The Zipingpu reservoir lies in the Longmenshan fault zone
which is characterized by a NE strike and composed of
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Figure 1: Geological sketch map of the study area. The areas filled
with plus symbols are igneous rocks of the Pengguan massif, and the
other areas are sedimentary rocks. Black open triangles are seismic
stations of the Zipingpu reservoir network. Black closed triangles
are the temporary seismic stations. Bold lines denote the faults.
Fine lines denote the river. Gray region represents the Zipingpu
reservoir. Squares represent the county. LYS represents the name of
the station.

three major faults: the Wenchuan-Maoxian fault in the
northwest, the Beichuan-Yingxiu fault in the central, and
the Guanxian-Anxian fault in the southeast (Figure 1).
Analyses of field measurements of surface ruptures and
coseismic deformations suggest that the Beichuan-Yingxiu
part of the Longmenshan fault zone close to the Zipingpu
reservoir is a northeast-striking northwest-dipping thrust
with small right-lateral strike-slip component [13, 14]. The
outcrops between the Wenchuan-Maoxian and Beichuan-
Yingxiu faults in the study area are Proterozoic igneous
Pengguan massif composed of diorites and granites and the
other areas are mainly covered by Proterozoic sedimentary
rocks which are older towards the Pengguan massif.

3. Data and Methods

3.1. Aftershock Observations. To investigate the seismic struc-
tures around the submerged region of the Zipingpu reservoir,
we refined the reservoir monitoring network which includes
seven stations around the Zipingpu reservoir (1 destroyed by
the Wenchuan earthquake) with 6 temporary seismic stations
at the beginning of the year of 2009. The seismicity in the
studied area is characterized by abnormal increases since the
filling of Zipingpu reservoir, especially after the occurrence
of the Wenchuan earthquake. Most of earthquakes recorded
by above 12 stations have low magnitude (M < 3). An et
al. [10], using digital data recorded by 26 seismic stations,
show the results of P-velocity model around the main shock
epicenter region. They did not emphasize their focus on the
Zipingpu reservoir during their study or previous studies.
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Figure 2: Travel time variations of the station LYS with change
of the event-station distances before (a) and after (b) removal of
abnormal travel times.

In this paper, we have more appropriate station distribution
around the Zipingpu reservoir.

3.2. Data Selection. We have used P wave arrival times
from digital data recorded in 2009 by our temporary 6
seismic stations and the Zipingpu reservoir seismic network
which belongs to reservoir institute of Sichuan Earthquake
Administration. Figure 1 shows the distribution of seismic
stations used in this study. We have selected the local
earthquakes which have been recorded at least five stations
and whose standard errors of epicenters are not further
than 8 km. This procedure helps in the relocating of local
earthquakes. Figure 2 shows the P wave and S wave travel
time with epicentral distance at station LYS, before and
after removal of outliers. After removal of any arrival time
that is far away from the distribution trend with the event-
station distances, the local earthquakes were relocated using
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Figure 3: Distribution of the local earthquakes used in the present
study. Ellipses denote earthquake epicenters given by the double-
difference relocation. Solid triangles are all stations (temporary +
permanent) used in the relocation and tomography inversion. The
plus symbols present the area of the tomography grids and that of
velocity inversion as shown in Figure 5. The others are the same as
in Figure 1.

Zhang and Thurber’s [15] program which can produce not
only the relative relocations but also absolute relocations.
We treat all the events as one cluster. Because travel time
tomography was done in this method, relocations are more
reliable than those obtained just from relative relocation
algorithm. The tomography grids were arranged at intervals
of 10 km and 3 km in horizontal and vertical directions
separately. Careful tomography results were obtained by Hole
and Zelt’s tomography method [16]. Finally, we selected a
total of 1014 from 1085 local earthquakes, with 8589 P wave
travel time observations. The average differences between
initial and relocated hypocenters are 100 m, 91 m, and 198 m
in horizontal and vertical directions. Due to topography
and station elevations, the parameter of air depth is set as
−1 km. So, the depth of the selected earthquakes ranges from
−0.8 km to 10.5 km. The distribution of the relocation in
horizontal profile is shown in Figure 3, where the ellipses
denote the hypocenter of earthquakes given by double-
difference tomography program.

3.3. Methodology and Resolution. The tomography method
of Hole and Zelt [16] was used to determine the 3-D P wave
velocity structure. This method introduces special headwave
operators to better deal with the presence of strong velocity
contrast and permits placing the shots at free location of the
velocity model. Twelve seismic stations were set as the shots
and local earthquakes as the receivers in order to simplify the
input files.

The area selected for the tomographic study is located
between 30◦55′ N and 31◦10′N and from 103◦20′ E to
103◦38′ E, comprising 36 km (latitude)× 32 km (longitude).

We set up a 3-D grid in this study with a grid spacing of
1 km in the horizontal and vertical directions. Lateral and
vertical model smoothing as regularization was introduced
to result in a more physically reasonable structure model.
After removal of outliers, the average RMS of travel time
residuals is 0.67 s for the reference 1-D model, and it
is reduced to 0.25 s for the tomography model after the
fourth iteration. We applied a checkerboard resolution test
to examine the resolution scale of the present data set. We
assigned positive and negative velocity anomalies of 3% to
the reference model. The synthetic data was calculated by
3-D finite-difference forward modeling. Random noise was
not added to the synthetic data. The inverted model of the
checkerboard tests retrieved checkers with a size of 2 km
in lateral directions beneath the submerged region of the
Zipingpu reservoir (Figure 4).

4. Results and Discussion

The P wave velocities from the seismic tomography are
displayed at different depths (Figure 5). The most robust
features imaged at shallow depths are the several pronounced
low-velocity regions at the background of the velocity larger
than 6 km/s. We can see that low-velocity regions in the
central of the study area were placed close to the surface trace
of the Zipingpu reservoir, and those low-velocity regions
extend downwards and vanish at 3.5 km depth. The obvious
features at the depth of 3.5 km are two low-velocity regions
trending NE-SW which correspond to the Beichuan-Yingxiu
strike-slip thrust fault and the Guanxian-Anxian fault.

It is widely recognized that low-velocity regions are a
feature of some old or active strike-slip zones [17]. Especially
for the place where there is a significant fracturing with
contained fluids, the fault zone will exhibit low velocity [18,
19]. Hence, these features of the low-velocity distribution
can be related with the infiltration water of the Zipingpu
reservoir. From 5.5 km depth downwards, the low-velocity
region indicating the range of infiltration water along the
Beichuan-Yingxiu strike-slip thrust fault vanished. It is worth
noting that the zone of high pore pressure is not the same as
the zone of water infiltration. Due to probable existence of
high pore pressure deeper, caused by the reservoir loading,
we are not sure whether the impoundment of the Zipingpu
reservoir triggers the main shock of 2008 or not. If the
Zipingpu reservoir triggered the 2008 main shock, the
epicenter of it should be located on the Beichuan-Yingxiu
fault which is the main passage of leakage or pressure
transmission deduced from the low-velocity regions.

As shown in Figure 5, with increasing depth, the range
of the high velocity part indicating the Pengguan massif [10]
gradually diminishes, and the range of the relative low veloc-
ity in the east of the study area broadens westwards. Those
results support the recognitions that the Longmenshan fault
thrusts eastwards to the Sichuan basin. The distribution
of the low velocity means that the Guanxian-Anxian fault
marks the border between the Tibetan Plateau in the west
and the Sichuan basin in the east even though the surface
rupture of this fault lies in the Sichuan basin.



4 International Journal of Geophysics

5 15 25 35 45
10

20

30

40

Depth = 0.5 km

(a)

5 15 25 35 45
10

20

30

40

Depth = 1.5 km

(b)

5 15 25 35 45
10

20

30

40

Depth = 2.5 km

(c)

5 15 25 35 45
10

20

30

40

Depth = 3.5 km

(d)

5 15 25 35 45
10

20

30

40

Depth = 4.5 km

(e)

5 15 25 35 45
10

20

30

40

Depth = 5.5 km

(f)

5 15 25 35 45
10

20

30

40

Depth = 6.5 km

3% 0% −3%

(g)

5 15 25 35 45
10

20

30

40

Depth = 7.5 km

3% 0% −3%

(h)

Figure 4: Results of checkerboard resolution test. Open and closed circles denote slow and fast velocities, respectively. The depth of each
layer is shown at the upper part of the map. The grid spacing is 2 km in the horizontal direction and 1 km in depth. The perturbation scale
is shown on the right. The coordinates are in km.

5. Summary and Conclusions

Through the use of digital data from more appropriate
station distribution around the Zipingpu reservoir, seismic
images are obtained with high resolution. Results not only

confirmed previous sharp velocity changes at both sides
of the fault and higher velocity of the Pengguan massif,
but also found the correlation between low velocity and
possible infiltration zone of the Zipingpu water reservoir.
Velocity distribution provided a sign of water diffusion, but
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Figure 5: P wave velocity models at different depth. The depth of each layer is shown at the upper part of the map. Red triangles represent
the stations. The P wave velocity scale is shown on the bottom. Color scale is absolute P wave velocity (km/s). Background velocity near the
edges denotes the initial 1-D velocity model. The coordinates are in km.

the conclusions from the results may need to be examined
thoroughly in the future by other observable geophysical
properties, such as electric and magnetic properties.

The principal findings of this study are as follows.

(1) The low-velocity regions placed close to the surface
trace of the Zipingpu reservoir are correlated with the
submerged region of the Zipingpu reservoir. Those

low-velocity regions under the Zipingpu reservoir
extend downwards and vanish at 3.5 km depth, which
means that water possibly infiltrates downwards to
this depth.

(2) At 3.5 km depth, two pronounced NE-SW trending
low-velocity regions can be associated with the
Beichuan-Yingxiu fault and the Guanxian-Anxian
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fault. The low-velocity region along the Beichuan-
Yingxiu fault can be traced up to 2.5 km depth,
where it is connected with the other low-velocity
regions below the western branch of the Zipingpu
reservoir. At 5.5 km depth, the low-velocity region
along the Beichuan-Yingxiu fault fades. So, possible
downwards infiltration depth along the Beichuan-
Yingxiu fault in the study area is deduced at about
5.5 km depth.

(3) The Guanxian-Anxian fault is well delineated by
obvious velocity contrast. The distribution of the low
velocity in the east of the study area indicates that the
Guanxian-Anxian fault marks the border between the
Tibetan Plateau in the west and the Sichuan basin in
the east.
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With controlled-source seismic interferometry we aim to redatum sources to downhole receiver locations without requiring a
velocity model. Interferometry is generally based on a source integral over cross-correlation (CC) pairs of full, perturbed (time-
gated), or decomposed wavefields. We provide an overview of ghosts, multiples, and spatial blurring effects that can occur
for different types of interferometry. We show that replacing cross-correlation by multidimensional deconvolution (MDD) can
deghost, demultiple, and deblur retrieved data. We derive and analyze MDD for perturbed and decomposed wavefields. An
interferometric point spread function (PSF) is introduced that can be obtained directly from downhole data. Ghosts, multiples,
and blurring effects that may populate the retrieved gathers can be locally diagnosed with the PSF. MDD of perturbed fields can
remove ghosts and deblur retrieved data, but it leaves particular multiples in place. To remove all overburden-related effects, MDD
of decomposed fields should be applied.

1. Introduction

Seismic interferometry is an effective tool to redatum sources
to receiver locations, without the need of a velocity model.
Recently, we have seen an increase of various applications;
see Curtis et al. [1] and Wapenaar et al. [2]. In this paper
we restrict ourselves to controlled-source interferometry for
data-driven redatuming. In a recent publication of Schuster
[3], numerous applications in this field can be found. Among
them is the well-known virtual-source method of Bakulin
and Calvert [4].

Traditionally, the theory of interferometry has been
derived from a reciprocity theorem of the correlation type
or from time-reversal arguments [5, 6]. A few special
applications are based on wavefield convolutions [7, 8].
For controlled-source applications, the theory is generally
applied with one-sided illumination, meaning that sources
are located at the earth’s surface only and are not—as
often assumed in theory—enclosing a volume. Moreover,
interactions with the free surface and intrinsic losses are

generally not taken into account. Because of these factors,
spurious events can enter the retrieved gathers [9] and true
amplitudes are generally not preserved [10].

To mitigate some of these artifacts, several methods have
been proposed. In perturbation-based interferometry [11],
incident and scattered wavefields are separated prior to cross-
correlation. In the virtual source method [4, 12], a similar
separation is achieved by time-gating the direct arrival prior
to cross-correlation. Mehta et al. [13] showed that separation
of up- and downgoing waves with multicomponent sensors
can yield even further improvements. Vasconcelos et al. [14]
demonstrate a variety of these methods in complex synthetic
subsalt environments.

A different group of methods is based on deconvo-
lution instead of cross-correlation (CC). Replacing cross-
correlation by deconvolution can remove undesired multi-
ples from the overburden [15], a concept that has also been
referred to as Noah deconvolution [16] or Einstein deconvo-
lution [17, 18]. An additional advantage of deconvolution is
that the source wavelet is deconvolved before stacking, which
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can be beneficial if the source has a complicated signature
[19, 20]. Various authors have suggested to redatum data by
summing over single-station deconvolution traces [4, 21].
However, to retrieve an exact Green’s function by deconvo-
lution in 3D heterogeneous media, single-station deconvolu-
tion should be replaced by multidimensional deconvolution
(MDD), as shown by Wapenaar et al. [22]. MDD is based on
the inversion of a forward problem that is generally derived
for decomposed wavefields. The method has a lot in common
with Betti deconvolution, as implemented by Amundsen et
al. [23] and Holvik and Amundsen [24] to remove free-
surface multiples from ocean bottom cable (OBC) data.
For various applications of MDD, see Wapenaar et al. [22].
Van der Neut et al. [25] showed that MDD can correct
for attenuation and improve interferometric imaging below
complex overburden. Minato et al. [26] applied MDD to
virtual cross-well data. MDD can also be applied to ground
penetrating radar [27], controlled-source electromagnetic
exploration [28, 29], and lithospheric-scale imaging [30].

A typical application of controlled-source seismic inter-
ferometry is to redatum sources to a downhole receiver array
below a complex overburden. Bakulin and Calvert [4] were
pioneering in this field using the so-called virtual source
method. A typical configuration is shown in Figure 1(a).
Sources are situated at the earth’s surface locations xS.
Receivers are located at xA and xB in a well that can be
horizontal, deviated, or vertical. The aim is to transform the
data obtained with the configuration shown in Figure 1(a)
into virtual data as if there was a source at xA and a
receiver at xB (Figure 1(b)). Like Bakulin and Calvert [4],
we will do so without requiring a velocity model, thus
bypassing all complexities of the overburden. Schuster’s
group considered a range of other configurations [3], one
of them being shown in Figure 1(c). Here the aim is to
create a virtual source at location xA by exploiting scattered
or dived waves that illuminate the target (e.g., a salt flank)
under angles that are unseen in conventional processing
(Figure 1(d)); see Xiao et al. [31], Hornby and Yu [32], Lu
et al. [33] and Ferrandis et al. [34] for applications. Another
application is virtual cross-well acquisition, where xA and xB
are located in separate wells that can be vertical [26, 35, 36],
horizontal [37], or deviated; see Figures 1(e) and 1(f). Many
of the formulations that appear in this paper require spatial
integrals not only over source locations but also over receiver
locations. For a 3D heterogeneous medium, this means that
2D arrays of both sources and receivers should be deployed.
Since we assume the presence of downhole receivers, this
is generally not feasible. That is why we restrict ourselves
to wave propagation in a 2D plane, ignoring out-of-plane
reflections.

In this paper we distinguish between ghosts and multi-
ples. With ghosts we refer to spurious events that populate
our retrieved gathers, because initial assumptions were not
properly fulfilled. With multiples we refer to physical events
stemming from multiple reflections. Blurring effects can
occur if illumination conditions are imperfect. We analyze
the ghosts and multiples that can occur in interferometry
by CC of full, perturbed, and decomposed fields. Next
we introduce MDD of perturbed and decomposed fields,

which can be applied with single-component sensors. We
analyze to what extent these methods can be used to remove
ghosts, multiples, and blurring artifacts on single- and
multicomponent data.

2. Cross-Correlation of Full Fields

Various authors have shown that cross-correlation of wave-
fields at two receivers followed by summation over a closed
boundary of sources can provide a Green’s function as if there
was a virtual source at one of the receiver locations and a
receiver at the other. In Figure 2 we give a more schematic
illustration of the problem formulated in Figure 1(a). The
aim is to redatum the source locations xS to a receiver
location xA “below” the overburden but “above” the target of
imaging, without requiring a velocity model of the medium.
Note that the terminology of “below” and “above” can be
interchanged with “left” and “right” for the situation of
salt flank imaging (Figure 1(c)) or the virtual cross-well
(Figure 1(e)).

To retrieve an exact Green’s function, both monopole
and dipole sources are required along the closed boundary
spanned by ∂S and ∂O. The medium should be free
of intrinsic losses inside V. Under these conditions, the
following representation can be derived for Green’s function
retrieval [38]:∣∣∣Ŝ(ω)

∣∣∣2[
Ĝ(xB, xA,ω) + Ĝ∗(xA, xB,ω)

]
= Î S(xB, xA,ω) + ÎO(xB, xA,ω).

(1)

On the left hand side we find the Green’s function
Ĝ(xB, xA,ω) as if there was an injection rate point source at
xA and a receiver for acoustic pressure at xB. It is given in
the frequency domain, indicated by the hat and angular fre-
quency ω. We also find its acausal counterpart Ĝ∗(xA, xB,ω),
where superscript ∗ denotes complex conjugation. Note

that the retrieved response is bandlimited by |Ŝ(ω)|2, where
Ŝ(ω) is the spectrum of the source wavelet. On the right-
hand side, we find two integrals: Î S and ÎO. Î S is referred
to as the “known integral,” obtained by cross-correlations
of wavefields from existing source locations xS at ∂S. ÎO

is the “missing integral,” obtained by cross-correlation of
wavefields from nonexisting source locations xO at ∂O. Even
though the source locations xO are not present in a realistic
survey, we keep ÎO in the representation, allowing us to
quantify its contribution.

First, let us consider the known integral Î S, as derived by
Wapenaar and Fokkema [38]:

Î S(xB, xA,ω)

= −
∫
∂S

1
jωρ(xS)

×
[{

nS · ∇S p̂(xB, xS,ω)
}{
p̂(xA, xS,ω)

}∗
−{ p̂(xB, xS,ω)

}{
nS · ∇S p̂(xA, xS,ω)

}∗]
dxS.

(2)
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Figure 1: Typical redatuming problems: (a) input data for redatuming through complex overburden; (b) output data after redatuming
through complex overburden (with some types of interferometry, the overburden is replaced by a homogeneous halfspace); (c) input data
for flank imaging; (d) output data for flank imaging after redatuming; (e) input data for virtual cross-well; (f) output data after virtual
cross-well; xS denote the source locations, xA denote the receiver locations that are turned into virtual sources, and xB denote other receiver
locations.

Here p̂(xA, xS,ω) represents the pressure recording at xA
due to a monopole source at xS. These recordings are
assumed to be Green’s functions (or impulse responses)
Ĝ(xA, xS,ω) convolved with source wavelet Ŝ(ω). Normal
vector nS points perpendicular (outward) to the source
array ∂S. Further, ∇S = (∂/∂x1,S, ∂/∂x2,S, ∂/∂x3,S)

T , where

xS = (x1,S, x2,S, x3,S)
T and superscript T denotes the

transposed. Hence, nS · ∇S p̂(xA, xS,ω) is interpreted as the
response at xA due to a dipole source at xS. ρ(xS) is the mass
density at the source array.

The representation of missing integral ÎO is very similar.
In this case responses of nonexisting source locations xO
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∂S xS nS r →∞

xA xB
V

nO ∂O

xO

Overburden

Target

Figure 2: Configuration for controlled-source interferometry by
cross-correlation of full fields; volume V is enclosed by the source
array ∂S and an additional half sphere ∂O whose radius r → ∞; xS
denotes a source location at ∂S and nS is the unit normal vector of
this surface; xO denotes a source at ∂O and nO is the unit normal
vector of this surface; heterogeneities between sources and receivers
are referred to as “overburden,” whereas heterogeneities below the
receivers are referred to as “target.”

needs to be cross-correlated and nS needs to be replaced by
the normal vector nO along ∂O, yielding

ÎO(xB, xA,ω)

= −
∫
∂O

1
jωρ(xO)

×
[{

nO · ∇O p̂(xB, xO,ω)
}{
p̂(xA, xO,ω)

}∗
−{ p̂(xB, xO,ω)

}{
nO · ∇O p̂(xA, xO,ω)

}∗]
dxO,

(3)

where ∇O is the spatial gradient at source location xO.
Before addressing the implications of not evaluating integral
ÎO, we focus our attention on Î S. Evaluation in its present
form would require both monopole and dipole sources at
∂S. In practice, interferometry is generally applied with
monopole sources only. To overcome this limitation, one
often introduces a so-called far-field approximation [3, 38].
This approximation can only be made if the direction of
wave propagation with respect to the source array is known.
Therefore, we separate ingoing and outgoing wavefields with
respect to the volume V. We introduce p̂in(xA, xS,ω) and
p̂out(xA, xS,ω), where superscripts in and out denote ingoing
and outgoing fields at xS. We substitute p̂ = p̂out + p̂in into
(2). It can be shown that the cross-correlations of ingoing
and outgoing waves cancel and that the remaining terms can
be merged [38], such that

Î S(xB, xA,ω)

=
∫
∂S

2
jωρ(xS)

×
[{
p̂in(xB, xS,ω)

}{
ns · ∇S p̂

in(xA, xS,ω)
}∗

+
{
p̂out(xB, xS,ω)

}{
ns · ∇S p̂

out(xA, xS,ω)
}∗]

dxS.

(4)

Next, the far-field high-frequency approximation can be
introduced. It is assumed that the medium is smooth in a

small region around ∂S. We find for ingoing constituents
that nS · ∇S p̂in ≈ −( jω/c(xS)) cos(φ) p̂in, where c(xS) is the
acoustic wave velocity along the source array and φ is the
incidence angle of the dominant wavefield with respect to
nS [38]. Similarly, we find for outgoing constituents that
nS · ∇S p̂out ≈ +( jω/c(xS)) cos(φ) p̂out. We assume that φ
is close to zero such that cos(φ) ≈ 1. Substituting these
approximations into (4) yields

Î S(xB, xA,ω)

≈
∫
∂S

2
ρ(xS)c(xS)

[{
p̂in(xB, xS,ω)

}{
p̂in(xA, xS,ω)

}∗
−{ p̂out(xB, xS,ω)

}{
p̂out(xA, xS,ω)

}∗]
dxS.

(5)

Before proceeding, it is helpful to provide a similar analysis
for the missing integral ÎO. We assume that both density and
wave velocity are constant at r → ∞, such that all wavefields
that would be recorded at receivers due to missing source
locations xO are ingoing at ∂O (such that p̂ = p̂in and
p̂out = 0). Given these considerations, it can be shown that
both terms in the integrand of (3) give equal contributions
to the stationary points, and therefore this equation can be
rewritten as

ÎO(xB, xA,ω)

=
∫
∂O

2
jωρ(xO)

{
p̂(xB, xO,ω)

}{
nO · ∇O p̂(xA, xO,ω)

}∗
dxO.

(6)

We can further simplify this equation by substituting the
far-field approximation for ingoing fields nO · ∇O p̂ ≈
−( jω/c(xO)) p̂, yielding

ÎO(xB, xA,ω)

≈
∫
∂O

2
ρ(xO)c(xO)

{
p̂(xB, xO,ω)

}{
p̂(xA, xO,ω)

}∗
dxO.

(7)

So far we have shown that a Green’s function can be
retrieved by evaluation of integrals Î S and ÎO. In practice,
we are generally not that fortunate. First, we miss the source
locations xO to compute ÎO. Second, we cannot discriminate
between ingoing and outgoing wavefields to evaluate Î S.
Instead, we cross-correlate the full fields as emitted by the
sources and integrate over ∂S. We refer to the obtained
function as the correlation function Ĉ:

Ĉ(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

{
p̂(xB, xS,ω)

}{
p̂(xA, xS,ω)

}∗
dxS.

(8)

We assume that the density and wave velocity are known
at the source array. In most applications of interferometry,
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however, they are assumed constant and not evaluated
inside the integrand. We have introduced an additional
weighting factor W(xS) that can be used to rebalance the
sources before integration or to taper the edges of a finite
source array in practical applications [39]. We can also
define a weighting function that takes the wave propagation
angle into account, reducing the artifacts introduced by the
far-field approximation, where we neglected a cosφ-term.
Sometimes we can approximate the incidence angle φ(xA, xS)
of the dominant contribution of the incident wavefield
p̂(xA, xS,ω), for instance by ray tracing. In such cases, it
can be beneficial to replace weighting factor W(xS) with
W(xA, xS) = cosφ(xA, xS) to improve the retrieved ampli-
tude variations with angle; see Schuster [3] for examples.

The fields in (8) consist of both ingoing and outgoing
constituents at ∂S. We substitute p̂ = p̂out + p̂in into (8) and
rewrite the result as

Ĉ(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂in(xB, xS,ω)

}{
p̂in(xA, xS,ω)

}∗
−{ p̂out(xB, xS,ω)

}{
p̂out(xA, xS,ω)

}∗]
dxS

+
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂(xB, xS,ω)

}{
p̂out(xA, xS,ω)

}∗
+
{
p̂out(xB, xS,ω)

}{
p̂(xA, xS,ω)

}∗]
dxS.

(9)

Note that the first integral at the right-hand side is identical
to the desired integral in (5). The second integral is undesired
and referred to as ghost ĝS:

ĝS(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂(xB, xS,ω)

}{
p̂out(xA, xS,ω)

}∗
+
{
p̂out(xB, xS,ω)

}{
p̂(xA, xS,ω)

}∗]
dxS.

(10)

In a similar fashion we identify a second ghost, due to the
missing source locations xO. This is done by redefining the
integral ÎO in (7) as

ĝO(xB, xA,ω)

= −
∫
∂O

2
ρ(xO)c(xO)

{
p̂(xB, xO,ω)

}{
p̂(xA, xO,ω)

}∗
dxO.

(11)

Next, we substitute (11), (7), (5), (1) and (10) into (9) and
rewrite the result as

Ĉ(xB, xA,ω) ≈
∣∣∣Ŝ(ω)

∣∣∣2[
Ĝ(xB, xA,ω) + Ĝ∗(xA, xB,ω)

]
+ ĝS(xB, xA,ω) + ĝO(xB, xA,ω).

(12)

Equation (12) is useful for identifying ghosts in interferome-
try by CC of full fields. We have shown that implementation
of the correlation function (8) yields a bandlimited version
of the desired Green’s function Ĝ(xB, xA,ω) and its acausal
counterpart Ĝ∗(xA, xB,ω) plus two additional ghost terms.
The first ghost ĝS is described by (10), which is due to the
presence of any undesired reflectors above the source array
∂S. Note that in typical controlled source applications, the
free surface acts as such a reflector, scattering waves back into
the volume V, such that p̂out /= 0. Consequently, spurious
events can be expected to populate retrieved gathers due to
free surface interactions if free surface ghosts and multiples
are not eliminated prior to applying interferometry.
Similar artifacts have also been found in passive seismic
interferometry; see Draganov et al. [40]. The second ghost
ĝO, described by (11), stems from the missing integral at
∂O. For convolution-based reciprocity theorems, one often
applies Sommerfeld’s radiation condition [41] to show
that boundary integrals over convolution products vanish
when r → ∞. However: these conditions do not apply for
integrals of cross-correlation products like the one in (11).
The integrand in (11) decays with order O(r−2), whereas
the integration surface ∂O grows with order O(r2), which is
insufficient to cancel the integral. However, Wapenaar [42]
showed that if sufficient scattering takes place in the volume
V, the decay of the integrand is stronger than O(r−2) and the
integral can indeed be neglected. This condition has been
referred to as the antiradiation condition [3]. Not obeying
this condition can lead not only to incorrect amplitudes but
also to the emergence of spurious events in the retrieved data
[9].

To illustrate the ghosts in interferometry by CC of full
fields, we define four synthetic 1D models in Figure 3. For
simplicity, the velocity is kept constant at 2000 m/s with
density contrasts introduced. In each model the aim is to
generate a (zero-offset) response as if there was a virtual
source at receiver location xA (green star) and a receiver at
the same location xB = xA. The real source is always located
at the earth’s surface location xS and additional sources xO
are introduced to evaluate ghost gO. Location xE will play a
role only later in this paper.

In the previous example, the ghost terms gS + gO did
not give a significant contribution outside t = 0 s. This is
not the case for model B (Figure 3(b)), which is the same as
model A, except for two additional contrasts at 500 m and
700 m depth. The reference response reveals not only the
desired reflection at t = 0.4 s but also the reflections of the
overburden at t = 0.1 s and t = 0.3 s and their multiples; see
Figure 5(a). The ghosts gS + gO and the correlation function
C are shown in Figures 5(b) and 5(c), respectively. Since no
reflectors are present above the source, gS = 0. However,
the second ghost gO does give a significant contribution.
The events at t = 0.1 s and t = 0.3 s appear with opposite
polarity (Figure 5(b)) compared to the reference response
(Figure 5(a)). Therefore, these events have incorrect
amplitudes in the correlation function and are hardly visible
(Figure 5(c)). More importantly, there is a ghost at t = 0.2 s
(Figure 5(c)) that is not visible in the reference response
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Figure 3: Impedance (in kg ·m−2 · s−1) versus depth (in m) for synthetic models A–D. The red star corresponds to source location xS, the
green star to receiver/virtual source location xA = xB , the blue star to nonexisting source location xO, and the magenta star to nonexisting
source location xE; models A–C have no free surface incorporated; model D has a free surface at 0 m depth.

(Figure 5(a)). This ghost originates from an internal multiple
between the contrasts at 500 m and 700 m. Finally we note
that the multiples at t = 0.5 s and t = 0.7 s also appear
as ghost terms, with different amplitudes and polarities
than the reference response. Therefore these responses
are retrieved with incorrect amplitudes (Figure 5(c)). For
practical applications this can be seen as advantageous, since
these multiple reflections are generally not desired for further
processing.

It has been demonstrated by Wapenaar [42] that ghost
gO vanishes if sufficient scattering occurs below the receiver
array. To demonstrate this effect, we introduce model C,
being similar to model B except for a series of additional
random contrasts deeper in the subsurface superimposed
by a trend of acoustic impedance increases with depth, see
Figure 3(c) (note the differently scaled axes in Figures 3(b)
and 3(c)). All contrasts lay sufficiently deep, such that the

reference response is no different from that of model B
within the display window. The ghosts gS + gO and the
correlation function C are shown in Figures 6(b) and 6(c),
respectively. Indeed, the contributions of ghost gO are minor
and randomly distributed (Figure 6(b)). It can be shown
analytically that placing infinitely many contrasts even
completely eliminates gO. Note that the reference response
(Figure 6(a)) and the correlation function (Figure 6(c)) agree
relatively well. The so-called antiradiation condition has
thus been successful in eliminating the effects of one-sided
illumination. Reflections of the target (t = 0.4 s) and
overburden (t = 0.1 s and t = 0.3 s), including their
multiples (t = 0.5 s and t = 0.7 s), have all been retrieved
with true amplitudes. Note that recording times need to be
sufficiently long for the antiradiation condition to hold [42].
In this example, the total recording time is 32 s. Moreover,
it should be mentioned that the antiradiation condition can
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Figure 4: Cross-correlation of full fields for model A: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

not eliminate the effects of reflectors placed outside the
volume V, as gS /= 0 for such scenario.

In model D we demonstrate the effect of free surface
interactions, by placing a free surface at 0 m and two
contrasts at 100 m and 200 m depth, see Figure 3(d). As
a result, the reference response does not only contain the
desired reflection at t = 0.4 s but also the primaries of the
overburden contrasts at t = 0.6 s and t = 0.7 s, the free
surface reflection at t = 0.8 s; and free-surface multiples at
t = 0.9 s and t = 1.0 s; see Figure 7(a). Ghosts gS + gO and
correlation function C are shown in Figures 7(b) and 7(c),
respectively. We see strong spurious events at t = 0.1 s and
t = 0.2 s in the retrieved response (and a weaker event at
t = 0.3 s), stemming from interactions of the first reflectors
with the free surface. We also observe that the reflections at
t = 0.6 s and t = 0.7 s, their multiples, and the free surface
reflection at t = 0.8 s are hardly retrieved due to the missing
source at xO.

3. Cross-Correlation of Perturbed Fields

In many cases our aim is not to retrieve a full Green’s
function but to retrieve only a part of it. For controlled-
source applications, for instance, a full Green’s function
would contain not only reflections from the target area but
also reflections from the overburden. In practice we often
wish to eliminate the latter by restricting a virtual source
to radiate downwards only. In the virtual source method
[4, 12], this is effectively achieved by time-gating the first
arrival prior to cross-correlation. In perturbation-based
methodology [11, 14], a similar discrimination is made
between the incident field and the scattered field. These
fields are usually obtained by time-gating the full fields.

In Figure 8 we show a typical configuration for interfer-
ometry by CC of perturbed wavefields. Note the similarities
with Figure 2. The only difference is that boundary ∂O has
been replaced with a boundary ∂E, located between the
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Figure 5: Cross-correlation of full fields for model B: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

overburden and the target area. Volume V is now enclosed
by ∂S and ∂E. We define a reference state by density ρ0(x)
and velocity c0(x). In this reference state all heterogeneities
outside volume V (namely the target) have been removed.
These heterogeneities are referred to as the perturbations in
density Δρ(x) and velocity Δc(x), where ρ(x) = ρ0(x)+Δρ(x)
and c(x) = c0(x) + Δc(x) represent the density and velocity
of the true physical medium. Fields that propagate in the
reference state are referred to as incident fields p̂inc. Fields
that propagate in the physical medium can now be expressed
as a superposition of the incident field and the so-called
scattered field p̂sc, that is p̂ = p̂inc + p̂sc. Vasconcelos et al. [11]
have derived a representation for Green’s function retrieval
of the scattered field between virtual source xA and receiver
xB from cross-correlations of the scattered field at xB and the
incident field at xA:∣∣∣Ŝ(ω)

∣∣∣2
Ĝsc(xB, xA,ω) = Î Sptb(xB, xA,ω) + ÎEptb(xB, xA,ω),

(13)

where subscript ptb stands for “perturbed.” On the left-hand
side we find the desired scattered Green’s function, imprinted
by the squared amplitude spectrum of the source wavelet.
Note that no acausal Green’s function is retrieved. On the
right-hand side we find integral Î Sptb, stemming from the
cross-correlations of incident and scattered fields from the
actual sources at ∂S:

Î Sptb(xB, xA,ω)

= −
∫
∂S

1
jωρ(xS)

×
[{

nS · ∇S p̂sc(xB, xS,ω)
}{
p̂inc(xA, xS,ω)

}∗
−{ p̂sc(xB, xS,ω)

}{
nS · ∇S p̂inc(xA, xS,ω)

}∗]
dxS.

(14)
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Figure 6: Cross-correlation of full fields for model C: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

The second integral, ÎEptb, stems from similar cross-corre-
lations of nonexisting sources xE at ∂E:

ÎEptb(xB, xA,ω)

= −
∫
∂E

1
jωρ(xE)

×
[{

nE · ∇E p̂sc(xB, xE,ω)
}{
p̂inc(xA, xE,ω)

}∗
−{ p̂sc(xB, xE,ω)

}{
nE · ∇E p̂inc(xA, xE,ω)

}∗]
dxE,

(15)

where ∇E is the spatial gradient at xE, nE is the outward-
pointing unit normal vector to ∂E, and ρE is the density
along this surface. We write the wavefields in (14) in terms

of ingoing and outgoing constituents at ∂S. It can be shown
that the cross-correlations between ingoing and outgoing
wavefields cancel each other and the remaining terms can be
merged [11], such that

Î Sptb(xB, xA,ω)

=
∫
∂S

2
jωρ(xS)

×
[{
p̂in

sc(xB, xS,ω)
}{

nS · ∇S p̂
in
inc(xA, xS,ω)

}∗
+
{
p̂out

sc (xB, xS,ω)
}{

nS · ∇S p̂
out
inc (xA, xS,ω)

}∗]
dxS.

(16)
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Figure 7: Cross-correlation of full fields for model D: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

Assuming that the relevant wavefields propagate near normal
incidence, we can substitute far-field approximations nS ·
∇S p̂

out
inc ≈ +( jω/c(xS)) p̂out

inc and nS ·∇S p̂
in
inc ≈ −( jω/c(xS)) p̂in

inc
into (16), yielding

Î Sptb(xB, xA,ω)

≈
∫
∂S

2
ρ(xS)c(xS)

[{
p̂in

sc(xB, xS,ω)
}{
p̂in

inc(xA, xS,ω)
}∗

−{ p̂out
sc (xB, xS,ω)

}{
p̂out

inc (xA, xS,ω)
}∗]

dxS.

(17)

For integral ÎEptb the situation is slightly different. Since we
have chosen the reference state to have no heterogeneities
below ∂E, all wavefields arriving at the receivers are ingoing
at ∂E (such that p̂inc = p̂in

inc and p̂out
inc = 0). Cross-correlations

between ingoing and outgoing fields cancel and the remain-
ing terms can be merged [11], such that

ÎEptb(xB, xA,ω)

=
∫
∂E

2
jωρ(xE)

×
[{
p̂in

sc(xB, xE,ω)
}{

nE · ∇E p̂inc(xA, xE,ω)
}∗]

dxE.

(18)

The spatial derivative can be approximated with far-field
approximation nE · ∇E p̂inc ≈ −( jω/c(xE)) p̂inc, such that

ÎEptb(xB, xA,ω)

≈
∫
∂E

2
ρ(xE)c(xE)

[{
p̂in

sc(xB, xE,ω)
}{
p̂inc(xA, xE,ω)

}∗]
dxE.

(19)
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Note that evaluation of (17) still requires separation of
ingoing and outgoing waves. In practice, we generally
cross-correlate complete scattered and incident fields at the
receivers to obtain the correlation function of perturbed
wave fields Ĉptb:

Ĉptb(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

{
p̂sc(xB, xS,ω)

}{
p̂inc(xA, xS,ω)

}∗
dxS.

(20)

To evaluate the consequence of this choice, we separate the
scattered and incident wavefields in up- and downgoing
constituents according to p̂inc = p̂in

inc + p̂out
inc and p̂sc = p̂in

sc +
p̂out

sc and substitute these representations into (20). The result
can be written as

Ĉptb(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂in

sc(xB, xS,ω)
}{
p̂in

inc(xA, xS,ω)
}∗

−{ p̂out
sc (xB, xS,ω)

}{
p̂out

inc (xA, xS,ω)
}∗]

dxS

+
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂sc(xB, xS,ω)

}{
p̂out

inc (xA, xS,ω)
}∗

+
{
p̂out

sc (xB, xS,ω)
}{
p̂inc(xA, xS,ω)

}∗]
dxS.

(21)

The first integral in (21) can be identified as the desired
integral Î Sptb (see (17)). The second integral is a ghost term
that we redefine as

ĝSptb(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂sc(xB, xS,ω)

}{
p̂out

inc (xA, xS,ω)
}∗

+
{
p̂out

sc (xB, xS,ω)
}{
p̂inc(xA, xS,ω)

}∗]
dxS.

(22)

The missing sources at xE make up for a second ghost
term that we define by rewriting the integral in (19) in the
following way:

ĝEptb(xB, xA,ω)

= −
∫
∂E

2
ρ(xE)c(xE)

[{
p̂in

sc(xB, xE,ω)
}{
p̂inc(xA, xE,ω)

}∗]
dxE.

(23)

Now, by substituting (23), (19), (17), (13), and (20) into (21)
we arrive at

Ĉptb(xB, xA,ω) ≈
∣∣∣Ŝ(ω)

∣∣∣2
Ĝsc(xB, xA,ω)

+ ĝSptb(xB, xA,ω) + ĝEptb(xB, xA,ω).
(24)

∂S xS nS r →∞

xA xB

V

nE

∂E
xE

Overburden

Target

Figure 8: Configuration for controlled-source interferometry by
cross-correlation of perturbed fields; volume V is enclosed by
the source boundary ∂S and an additional boundary ∂E between
overburden and target; xS denotes a source location at ∂S and nS

is the unit normal vector of this surface; xE denotes an additional
source location at ∂E and nE is the unit normal vector of this
surface; heterogeneities between sources and receivers are referred
to as “overburden,” whereas heterogeneities below the receivers are
referred to as “target.”

Equation (24) is useful for identifying ghosts in interferome-
try by CC of perturbed fields. Computation of Cptb (see (20))
yields a scaled bandlimited version of the desired scattered
Green’s function plus two ghost terms gSptb and gEptb. The

first ghost gSptb stems from reflectors outside the integration
volume and behaves very similar to the ghost gS that we
found for CC of full fields. The second ghost gEptb is relatively
small. It consists of ingoing waves at xE that have scattered
in the target area before arriving at the receivers. However, to
reach the target area, these waves should have also scattered
in the overburden. This means that such fields have at least
scattered twice. It is reasoned by Vasconcelos et al. [11] that
such contributions can generally be neglected.

To illustrate the effectiveness of cross-correlation of
perturbed fields we apply this methodology to model B
(Figure 3(b)), with the additional source xE located at
1000 m depth (instead of the source at xO). Incident fields
are computed in a reference medium with all heterogeneities
below xE removed. Scattered fields are computed by sub-
traction of these incident fields from full fields. We generate
the reference response by placing an active source at xA and
computing the scattered response at the same receiver; see
Figure 9(a). We can clearly see not only the desired reflector
at t = 0.4 s but also the multiple reflections from the
overburden at t = 0.5 s and t = 0.7 s as well as higher-
order multiples. In Figures 9(b) and 9(c) we show the ghosts
gSptb + gEptb and the correlation function Cptb. Note which the
spurious event at t = 0.2 s, that was visible in Figure 5(c),
is significantly weakened and hardly visible. The multiples
at t = 0.5 s and t = 0.7 s have smaller amplitudes in
the correlation function (Figure 9(c)) than in the reference
response (Figure 9(a)). This is a consequence of not having
the source at xE.

In Figure 4(a) we computed the desired reference

response with wavelet |Ŝ(ω)|2 for model A (Figure 3(a)) by
placing an actual source at the virtual source location xA. We
can clearly see the direct arrival at t = 0 s and an event at
t = 0.4 s. The latter event is our target reflection, relating
to the impedance contrast at 1200 m depth. Since no free
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Figure 9: Cross-correlation of perturbed fields for model B: (a) reference response by placing an active source at the virtual source location
xA; (b) computed ghost terms gSptb + gEptb; (c) correlation function Cptb (black) and the sum of reference response + ghosts (dashed green).

surface is incorporated, no heterogeneities exist above the
true source location xS, and hence all wavefields that arrive
at xA are ingoing at xS, such that gS = 0 (10). We computed
the second ghost gO, using the additional source xO below all
medium heterogeneities. Since no reflection from this source
is registered at xA, the only contribution to gO stems from
correlations of the direct field, mapping at t = 0 s in this zero-
offset case. In Figure 4(b) we show the ghosts gS + gO. Note
that indeed no other contribution is found outside t = 0 s.
Therefore the correlation function C (8) is very similar to the
true reflection response, except around t = 0 s. In Figure 4(c)
we show C (black) and the sum of reference response and
ghosts (dashed green), matching well.

To show that CC of perturbed fields does not offer a
solution for reflectors above the source array, we apply
the methodology to model D (Figure 3(d)) as well. In
Figure 10(a) we show the reference response. We observe the
target event at t = 0.4 s and a multiple at t = 1.0 s. Ghosts
gSptb + gEptb and Cptb are shown in Figures 10(b) and 10(c),

respectively. Note that we can still observe several spurious
events and the undesired overburden reflections.

4. Cross-Correlation of Decomposed Fields

Another way to eliminate ghosts in interferometry is to sep-
arate up- and downgoing waves prior to cross-correlation,
as proposed by Mehta et al. [13]. If receivers are installed
in horizontal wells, decomposition can be implemented by
combining pressure and particle velocity recordings along
the receiver array [43, 44]. If wave propagation is close to
normal incidence, these methods can be approximated by
a weighted summation of pressure and particle velocity at a
single receiver [13, 36, 45]. If receivers are installed in vertical
wells, decomposition can be implemented by FK-filtering or
taking vertical derivatives along the borehole [46]. Note that
similar decomposition schemes can be applied for salt flank
imaging in vertical wells (Figures 1(c) and 1(d)), where up-
and downgoing have to be replaced by left and right going.
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Figure 10: Cross-correlation of perturbed fields for model D: (a) reference response by placing an active source at the virtual source location
xA; (b) computed ghost terms gSptb + gEptb; (c) correlation function Cptb (black) and the sum of reference response + ghosts (dashed green).

We use the same configuration as in Figure 2. We
define p̂+(xA, xS,ω) and p̂−(xB, xS,ω) as the downgoing and
upgoing fields at receivers xA and xB, respectively. Instead of
evaluating the correlation function of full fields (see (8)), we
define Ĉdcp as the correlation function between p̂+ and p̂−;
that is

Ĉdcp(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

p̂−(xB, xS,ω)
{
p̂+(xA, xS,ω)

}∗
dxS,

(25)

where subscript dcp denotes “decomposed.” As a conse-
quence of this choice, we will reconstruct a Green’s function
Ĝ−,+(xB, xA,ω) as if there was a downgoing field emitted at xA

and an upgoing field registered at xB plus an acausal Green’s

function {Ĝ+,−(xA, xB,ω)}∗ as if there was an upgoing field
emitted at xB and a downgoing field registered at xA [25].
We can find a representation for this case by rewriting (12)
in terms of up- and downgoing constituents and removing
all but those that are downgoing at xA and upgoing at xB;
that is

Ĉdcp(xB, xA,ω)

≈
∣∣∣Ŝ(ω)

∣∣∣2
[
Ĝ−,+(xB, xA,ω) +

{
Ĝ+,−(xA, xB,ω)

}∗]
+ ĝSdcp(xB, xA,ω) + ĝOdcp(xB, xA,ω),

(26)
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Figure 11: Cross-correlation of decomposed fields for model B: (a) reference response by placing an active source at the virtual source
location xA; (b) computed ghost terms gSdcp + gOdcp; (c) correlation function Cdcp (black) and the sum of reference response + ghosts (dashed
green).

where the decomposed ghosts are given by

ĝSdcp(xB, xA,ω)

=
∫
∂S

2W(xS)
ρ(xS)c(xS)

[{
p̂−(xB, xS,ω)

}{
p̂+,out(xA, xS,ω)

}∗
+
{
p̂−,out(xB, xS,ω)

}{
p̂+(xA, xS,ω)

}∗]
dxS,

ĝOdcp(xB, xA,ω)

= −
∫
∂O

2
ρ(xO)c(xO)

{
p̂−(xB, xO,ω)

}{
p̂+(xA, xO,ω)

}∗
dxO.

(27)

Here p̂+,out(xA, xS,ω) refers to the field that is outgoing at
source xS and downgoing at receiver xA. p̂−,out(xB, xS,ω)
refers to the field that is outgoing at source xS and upgoing at
receiver xB.

Equation (26) is useful for identifying ghosts in inter-
ferometry by CC of decomposed fields. It shows that cross-
correlation of up- and downgoing constituents (25) yields

as a causal part the desired Green’s function G−,+(xB, xA, t)
plus two additional ghost terms gSdcp and gOdcp. Note that the
acausal part can be used to generate virtual sources that
radiate upwards, as demonstrated by van der Neut et al. [25].

To illustrate the consequence of decomposition, we
demonstrate (25) on model B (Figure 3(b)). The reference
response consists of a single reflection at t = 0.4 s and a
weak multiple at t = 0.9 s; see Figure 11(a). The ghosts
gSdcp +gOdcp and correlation function Cdcp are shown in Figures
11(b) and 11(c), respectively. Note that the ghosts are close to
zero, meaning that the reflection response is almost perfectly
reconstructed, apart from two weak spurious events at t =
0.2 s and t = 0.6 s. Compared to interferometry by cross-
correlation of perturbed fields (Figure 9(c)), the multiples at
t = 0.5 s and t = 0.7 s have been effectively removed.

Wavefield decomposition does still not offer a solution
for free-surface-related artifacts. To illustrate this, we apply
the method to model D (Figure 3(d)). In Figure 12(a)
we show the reference response, containing only the



International Journal of Geophysics 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
×1013

R
ef

er
en

ce

Time (s)

Target

(a)

−5

0

5
×1013

G
h

os
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Target Overburden

SpuriousSpurious

Spurious

(b)

−5

0

5
×1013

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

C
or

re
la

ti
on

Target Overburden

Spurious

Spurious

Spurious

(c)

Figure 12: Cross-correlation of decomposed fields for model D: (a) reference response by placing an active source at the virtual source
location xA; (b) computed ghost terms gSdcp + gOdcp; (c) correlation function Cdcp (black) and the sum of reference response + ghosts (dashed
green).

desired reflection at t = 0.4 s. Ghosts gSdcp + gOdcp and
the retrieved correlation function Cdcp are shown in Fig-
ures 12(b) and 12(c), respectively. Note that artifacts are
almost similar to those of perturbation-based interferometry
(Figure 10(c)).

5. Multidimensional Deconvolution of
Perturbed Fields

Another strategy to eliminate ghosts in interferometry is to
replace cross-correlation by deconvolution or, more exact,
multidimensional deconvolution (MDD) [22]. In MDD, a
Green’s function is retrieved by solving an inverse problem.
This inverse problem is generally derived for decomposed
wavefields and requires the installation of multicomponent
receivers or two parallel receiver arrays close to each other.
Before addressing MDD of decomposed fields, we present

an alternative approach for perturbed fields, which can be
applied with single-component sensors and time-gating.

To derive MDD for perturbed fields, we define a new
volume V, bounded by free surface ∂F and receiver array ∂A,
see Figure 13. We define a reference medium, which is similar
to the physical medium within the integration volume, but
homogeneous below ∂A. All heterogeneities in the physical
medium outsideV are referred to as perturbations. Subscript
inc indicates those fields that propagate in the reference
medium. Subscript sc is used for scattered fields, where
p̂ = p̂inc + p̂sc denotes the full field in the physical
medium. Vasconcelos et al. [11] derived a convolution-based
representation for the scattered field with a source at xS and
a receiver at xB, where xS is inside volumeV and xB is outside
this volume, that is

p̂sc(xB, xS,ω) = ĴAptb(xB, xS,ω) + Ĵ Fptb(xB, xS,ω). (28)
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On the right-hand side we find two integrals. ĴAptb involves
integration over the receiver array ∂A:

ĴAptb(xB, xS,ω)

=
∫
∂A

1
jωρ(xA)

×
[{

nA · ∇AĜsc(xB, xA,ω)
}{
p̂inc(xA, xS,ω)

}
−
{
Ĝsc(xB, xA,ω)

}{
nA · ∇A p̂inc(xA, xS,ω)

}]
dxA.

(29)

∇A is the spatial gradient at receiver location xA and nA is
the outward-pointing unit normal vector of ∂A. Integral Ĵ Fptb
is a similar integral over ∂F, which vanishes since all pressure
recordings are zero at this interface. We rewrite the wavefield
p̂ at ∂A in terms of ingoing components p̂in and outgoing
components p̂out. Similarly, Ĝsc = Ĝout

sc + Ĝin
sc. Since the

reference medium is homogeneous outside V, p̂inc is purely
outgoing at xA (so p̂inc = p̂out

inc and p̂in
inc = 0). It can be shown

that the convolutions between ingoing fields at the virtual
source xA and outgoing fields p̂inc(xA, xS,ω) cancel and that
the remaining terms can be merged [22]. Consequently, (28)
and (29) can be rewritten as

p̂sc(xB, xS,ω) =
∫
∂A

Ĝptb(xB, xA,ω) p̂inc(xA, xS,ω)dxA,

(30)

where we have introduced

Ĝptb(xB, xA,ω) = 2
jωρ(xA)

nA · ∇AĜ
out
sc (xB, xA,ω). (31)

Equation (31) represents the exact scaled dipole Green’s
function that can be solved by inversion of (30). Since an
exact solution of (30) is generally not feasible, we apply
least-squares inversion. We show in Appendix A that finding
a least-squares solution of this problem is equivalent to
solving the so-called normal equation, which is obtained
by correlating both sides of (30) with Ĝinc(x′A, xS,ω) and
summing over xS (where x′A is at ∂A). Hence

Ĉptb
(

xB, x′A,ω
) = ∫

∂A
Ĝptb(xB, xA,ω)Γ̂ptb

(
xA, x′A,ω

)
dxA.

(32)

On the left-hand side of (32) we have the correlation
function of the incident field at x′A and the scattered field at
xB:

Ĉptb
(

xB, x′A,ω
)

=
∑
i

W(xS) p̂sc

(
xB, x(i)

S ,ω
){
p̂inc

(
x′A, x(i)

S ,ω
)}∗

,
(33)

Note that (33) is identical to a discrete scaled representation
of (20), if the medium parameters are constant at ∂S and x′A
is replaced by xA. On the right-hand side of (32) we have the

∂F

xS

nF r →∞

xA xB

V

nA
∂A

Overburden

Target

Figure 13: Configuration for controlled-source interferometry by
multidimensional deconvolution of perturbed fields; integration
volume V is enclosed by the free surface ∂F and receiver array ∂A;
xS denotes a source location; xA and xB denote receiver locations
at ∂A and nA is the unit normal vector of the receiver array; nF is
the unit normal vector of the free surface; heterogeneities between
sources and receivers are referred to as “overburden,” whereas
heterogeneities below the receivers are referred to as “target.”

so-called point-spread-function (PSF) for perturbed fields,
defined as

Γ̂ptb
(

xA, x′A,ω
)

=
∑
i

W
(

x(i)
S

)
p̂inc

(
xA, x(i)

S ,ω
){
p̂inc

(
x′A, x(i)

S ,ω
)}∗

.

(34)

In both expressions, W(xS) is an optional source-dependent
weighting function. If sufficient source and receiver locations
are present, a multidimensional inverse Γ̂inv

ptb of the PSF can be
introduced, according to∫

∂A
Γ̂ptb

(
xA, x′A,ω

)
Γ̂inv

ptb

(
x′A, x′′A ,ω

)
dx′A = δ

(
xA − x′′A

)
. (35)

where x′′A is at ∂A. The desired dipole response can now
be found by filtering the correlation function with Γ̂inv,
according to

Ĝptb
(

xB, x′′A ,ω
) = ∫

∂A
Ĉptb

(
xB, x′A,ω

)
Γ̂inv

ptb

(
x′A, x′′A ,ω

)
dx′A,

(36)

Implementation of (36) is referred to as MDD of perturbed
fields. This method allows us to deghost and deblur the
correlation function of perturbed fields. We retrieve a Green’s
function of an outward-radiating virtual source. However,
this retrieved Green’s function lives in the physical medium
and multiples from the overburden can still populate the
retrieved gathers.

We apply MDD of perturbed fields to model B
(Figure 3(b)). The result is shown in Figure 14(a) (black)
and compared with the reference response Gptb (dashed
green). Note that the MDD response is similar to the
correlation function Cptb (Figure 9(c)), apart from a very
weak spurious event at t = 0.2 s, a scaling factor and
subtle amplitude variations. We discussed that Cptb can be
interpreted as the desired response Gptb, convolved with
the PSF (see (32)). In Figure 14(b) we show that the PSF
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Figure 14: Deconvolution of perturbed fields for model B: (a) retrieved Green’s function (black) and the reference response (dashed green);
(b) point spread function Γptb; (c) convolution of the reflection response with the PSF (black) and correlation function Cptb (dashed green).

is close to a scaled band-limited delta function, with two
additional weak events observed at t = ±0.2 s. If we
convolve the reference response with the PSF, we find indeed
the correlation function, see Figure 14(c). From the simple
structure of the PSF, it could have been directly concluded
that Gptb andCptb are indeed very similar apart from a scaling
factor.

This is not the case for model D (Figure 3(d)).
The response of MDD of perturbed fields (black) is
compared with the reference response Gptb (dashed green)
in Figure 15(a). Compared to the correlation function Cptb

(Figure 10(c)), the MDD response is very simple, containing
only the target reflection at t = 0.4 s and a multiple at
t = 1.0 s. The strong disagreement of the MDD result and the
correlation function is reflected by the PSF; see Figure 15(b).
In Figure 15(c) we show that convolution of the PSF and
reference response yields indeed the correlation function
Cptb.

6. Multidimensional Deconvolution of
Decomposed Fields

The response retrieved by MDD of perturbed fields can
still contain undesired reflections from the overburden. If
ingoing and outgoing waves are separated at the receiver
level prior to MDD, also these multiples can be removed
[22]. For this purpose we redefine our volume once more,
see Figure 16. Instead of enclosing the volume above the
receivers, we now define V as the volume enclosed by
receiver array ∂A and a halfsphere ∂O below the receivers
with radius r → ∞. We define a reference state, in which all
heterogeneities above ∂A are removed. Fields that propagate

in this reference state are indicated with a bar; that is Ĝ. We
formulate a convolution based representation for the field of
source xS at receiver xB, where xS is outside volume V and
xB is inside this volume, reading

p̂(xB, xS,ω) = ĴAdcp(xB, xS,ω) + ĴOdcp(xB, xS,ω). (37)
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Figure 15: Deconvolution of perturbed fields for model D: (a) retrieved Green’s function (black) and the reference response (dashed green);
(b) point spread function Γptb; (c) convolution of the reflection response with the PSF (black) and the correlation function Cptb (dashed
green).

On the right-hand side we find two integrals. ĴAdcp involves
integration over the receiver array ∂A:

ĴAdcp(xB, xS,ω)

= −
∫
∂A

1
jωρ(xA)

×
[{

nA · ∇AĜ(xB, xA,ω)
}{
p̂(xA, xS,ω)

}
−
{
Ĝ(xB, xA,ω)

}{
nA · ∇A p̂(xA, xS,ω)

}]
dxA.

(38)

Integral ĴOdcp is a similar integral over the interface ∂O. Since
this integral contains convolutions and its radius r → ∞,
it will vanish due to Sommerfeld’s radiation conditions
[41]. Since the reference state is homogeneous outside V,

Ĝ(xB, xA,ω) is purely ingoing at virtual source xA (Ĝ = Ĝ
in

and Ĝ
out
= 0). We substitute p̂ = p̂in + p̂out. It can be shown

that the convolutions of ingoing fields at the virtual source

xA with outgoing fields p̂out(xA, xS,ω) cancel and that the
remaining terms can be merged, yielding

p̂(xB, xS,ω) =
∫
∂A

Ĝdcp(xB, xA,ω) p̂in(xA, xS,ω)dxA, (39)

where we have introduced

Ĝdcp(xB, xA,ω) = − 2
jωρ(xA)

nA · ∇AĜ(xB, xA,ω). (40)

In a similar way as for MDD of perturbed fields, a normal
equation can be derived:

Ĉdcp
(

xB, x′A,ω
) = ∫

∂A
Ĝdcp(xB, xA,ω)Γ̂dcp

(
xA, x′A,ω

)
dxA,

(41)
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Figure 16: Configuration for controlled-source interferometry by
multidimensional deconvolution of decomposed fields; integration
volume V is enclosed by receiver array ∂A and an additional
halfsphere ∂O; xS denotes a source location; xA and xB denote
receiver locations at ∂A and nA is the unit normal vector of the
receiver array; nO is the unit normal vector of ∂O; heterogeneities
between sources and receivers are referred to as “overburden,”
whereas heterogeneities below the receivers are referred to as
“target.”

where x′A is at ∂A. On the left-hand side we have the
correlation function of the ingoing field at x′A and the
outgoing field at xB:

Ĉdcp
(

xB, x′A,ω
)

=
∑
i

W(xS) p̂out
(

xB, x(i)
S ,ω

){
p̂in
(

x′A, x(i)
S ,ω

)}∗
.

(42)

Note that (42) is similar to a discrete scaled version of
(25), if “ingoing” and “outgoing” are interchanged with
“downgoing” and “upgoing,” medium parameters are
constant at the source array and x′A is replaced by xA. On the
right-hand side we have the Point-Spread-Function (PSF)
for decomposed fields, given by

Γ̂dcp
(

xA, x′A,ω
)

=
∑
i

W(xS) p̂in
(

xA, x(i)
S ,ω

){
p̂in
(

x′A, x(i)
S ,ω

)}∗
.

(43)

If acquisition conditions allow, we can take a
multidimensional inverse of the PSF Γ̂inv

dcp and convolve
it with the correlation function according to

Ĝdcp
(

xB, x′′A ,ω
) = ∫

∂A
Ĉdcp

(
xB, x′A,ω

)
Γ̂inv

dcp

(
x′A, x′′A ,ω

)
dx′A,

(44)

where x′′A is at ∂A and∫
∂A

Γ̂dcp
(

xA, x′A,ω
)
Γ̂inv

dcp

(
x′A, x′′A ,ω

)
dx′A = δ

(
xA − x′′A

)
. (45)

Implementation of (44) is referred to as MDD of decom-
posed fields. This method allows us to deghost and deblur
the correlation function of decomposed fields. Moreover, we
retrieve a response that lives in the reference medium, where
all multiples from the overburden have been removed.

We return to model B (Figure 3(b)). In Figure 17(a) we
show the result of MDD of decomposed fields (black) and
the reference response (dashed green). The response does

not contain any of the multiples that have been retrieved by
MDD of perturbed fields (Figure 14(a)). Note that indeed
the weak ghosts and multiples that we observed in the
correlation function (Figure 11(c)) have been eliminated, as
predicted by theory. The weakness of these events is reflected
in the PSF, showing a scaled band-limited delta function with
weak events at t = ±0.2 s and t = ±0.5 s. We convolve
the reference response with the PSF to show that indeed the
correlation function emerges, see Figure 17(c).

The effects of MDD of decomposed fields are more dra-
matically exposed by model D (Figure 3(d)). In Figure 18(a)
we show that also for this model we can retrieve a response
that is free of ghosts and multiples. Compared to MDD of
perturbed fields (Figure 15(a)), we observe that the multiple
at t = 1.0 s has been eliminated. The complex character of
the PSF (Figure 18(b)) exposes the difference between the
MDD response and the correlation function (Figure 12(c)).
In Figure 18(c) we show that the correlation function can
indeed be found by convolving the reference response with
the PSF.

7. Spatial Aspects

So far we have mostly concentrated on temporal aspects
(ghosts and multiples) of interferometry. There are spatial
aspects as well. In the representations (32) and (41) we
have shown that the correlation functions of perturbed and
decomposed fields can be interpreted as the desired reflection
response, blurred in time and space with the PSF. This means
that we can only retrieve an accurate response by cross-
correlation if the PSF is focused at the virtual source location.
However, due to unbalanced source distributions, intrinsic
losses, or heterogeneities in the overburden, the PSF can be
spatially defocused. As a result, the retrieved data by cross-
correlation will be blurred. We illustrate this with a salt flank
example.

In Figure 19 we show a salt flank model, defined as
a function of coordinates x1 (horizontal distance) and
x3 (depth). Note the velocity gradient in the medium,
producing diving waves that are useful for salt flank imaging.
We place 201 receivers in a vertical well with 20 m vertical
spacing along the interval x3 ∈ [1000 m, 5000 m] at x1 =
15000 m. We place 401 sources at the surface with 30 m
spacing along the interval x1 ∈ [0 m, 12000 m] at x3 = 0 m.
No free surface is incorporated. In the following we generate
a virtual shot record as if there was a source at receiver
xA = (15000 m, 4000 m) in the well using CC of perturbed
fields. We generate a reference response by placing an active
source at xA and modeling the wavefield. In Figure 20 we
show three snapshots of the emitted wavefield that was used
for the reference response. We indicate three reflections by
numbers 1, 2, and 3. These are the reflections we aim to
retrieve.

We time-gate the incident fields of the observed data
at the receiver array and subtract it from the full fields to
extract the scattered fields. Next, we obtain the correlation
function at virtual source xA by stacking cross-correlations of
incident and scattered fields over all 401 sources (see (33)). A
Hanning taper is applied to the first 20 and last 20 sources.
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Figure 17: Deconvolution of decomposed fields for model B: (a) retrieved Green’s function (black) and the reference response (dashed
green); (b) point spread function Γdcp; (c) convolution of the reflection response with the PSF (black) and the correlation function Cdcp

(dashed green).

In Figure 21 we show the retrieved response (red) and the
reference response (black). For display purposes, only every
20th trace is shown. Note that the match is perfect and the
reflections 1, 2, and 3 that were indicated in Figure 20 can
easily be recognized.

In seismic interferometry, the retrieval of a reflection
response is often explained by summations over correlation
gathers. To briefly illustrate this concept, we cross-correlated
the incident field at xA = (15000 m, 4000 m) with the
scattered field at xB = (15000 m, 2000 m) for different source
locations xS, see Figure 22. For display purposes, only every
20th trace is shown. To retrieve the trace at 2000 m of the
virtual shot record (Figure 21), a stack over all traces in
Figure 22 is required. It can be shown that constructive
interference takes place at the stationary points, being the
maxima in time of each reflector in Figure 22, obeying
Fermat’s principle. Destructive interference takes place
outside these stationary points.

Alternatively, we could interpret interferometry as the
process of focusing a virtual source, meaning that the

PSF in (34) is converging towards a spatial and temporal
delta function, indicating that the correlation function does
indeed represent the desired reflection response, free of
blurring. In Figure 23 we show the PSF for a virtual source
at xA = (15000 m, 4000 m). As for a virtual shot gather, the
traces of the PSF can be interpreted as summations over
correlation gathers. In the so-called PSF correlation gathers,
the incident field at xA is correlated with the incident field
at x′A (“integrand” of (34)). If xA = x′A, this corresponds
to auto-correlation, providing a significant contribution at
t = 0, see Figure 24. These contributions will interfere
constructively, to generate the desired spike in the PSF. If
xA /= x′A, cross-correlations of different source locations will
map at different times; see Figure 25. If the virtual source
is uniformly illuminated in each spatial direction, all such
contributions will interfere destructively and the PSF will
converge to the desired delta function. If this is the case, the
virtual source will be perfectly focused, as in Figure 23. The
two “legs” that can be observed in the PSF are caused by the
finite source aperture. Finite source-aperture artifacts can be
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Figure 18: Deconvolution of decomposed fields for model D: (a) retrieved Green’s function (black) and the reference response (dashed
green); (b) point spread function Γdcp; (c) convolution of the reflection response with the PSF (black) and the correlation function Cdcp

(dashed green).

reduced by tapering the edges of the source array [39], as has
already been done in this example. It was shown by van der
Neut and Thorbecke [47] that the legs of the PSF can be used
to diagnose the need for and the effects of such tapering.

If illumination conditions vary with incidence angle,
spatial blurring can occur. Illumination variations can
be introduced at the source side, for instance if sources
are nonuniformly distributed or source characteristics are
spatially varying due to source coupling conditions. We
mimic such a situation by assigning location- and frequency-
dependent spectra to the sources, see Figure 26. In this
particular example, the peak frequency and source strength
vary randomly with the source location, superimposed by an
additional trend in source strength along the array. Note that
the low source numbers (corresponding to the left side of the
array in Figure 19) are overilluminated with respect to the
high source numbers (corresponding to the right side of the
array in Figure 19). As a consequence of these variations, the
PSF of the virtual source is no longer optimally focused, as
shown in Figure 27. The events in the PSF that intersect the

focus point (x = xA and t = 0) (apart from the legs), as seen
in Figure 27, stem from incomplete destructive interference
and are typical for spatial defocusing of the virtual source,
leading to a distorted virtual source radiation pattern [10].

Virtual source defocusing can also be a consequence of
velocity or density variations in the overburden. We illustrate
this by introducing a gas cloud in the model, see Figure 28.
In Figure 29 we show the PSF in the medium with gas cloud,
where the variations in source spectra of Figure 26 have also
been incorporated. Note that besides spatial defocusing, we
also observe temporal defocusing stemming from gas cloud
scattering. Events in the PSF that do not intersect the focus
point (x = xA and t = 0), as seen in Figure 29, are typical
indicators of temporal defocusing, which can be related to
the ghosts and multiples that we discussed earlier in this
paper.

In Figure 30 we show the correlation function for
the model with varying source spectra and a gas cloud.
Note that the correlation function is no longer perfectly
matching the reference response, especially not in terms of



22 International Journal of Geophysics

amplitudes. This mismatch can be effectively removed from
the retrieved data by MDD, meaning that the correlation
function is filtered with the inverse of the PSF (see (36)).
The retrieved gather after MDD is shown in Figure 31. Note
that the match between retrieved and reference response
has improved considerably. We do point out, however, that
inversion artifacts can be created due to limited illumination
conditions, as highlighted in the top of Figure 31.

In Figure 32 we show an image of the salt flank in the
model with source spectra variations and a gas cloud. The
image is obtained by one-way shot profile migration of the
correlation functions at all possible virtual source locations.
In dashed red we show the location of the salt flank, as
taken from the velocity model. Note that interferometry has
enabled us to image the top of the flank “from below” by
smart utilization of the diving waves. Also note that artifacts
can be observed, which might be interpreted as additional
ghost reflectors or diffractors. As MDD allows us to refocus
the virtual sources before migration, several of these artifacts
can be removed by migrating data after MDD, as shown in
Figure 33. We observe that several potential “ghost reflectors”
have been eliminated throughout the gather. The continuity
of the salt flank amplitude marked by “A” is improved. The
strong artifact marked by “B” as well as various other artifacts
in this part of the gather have been suppressed. Artifacts such
as indicated by “C” have been eliminated, but new artifacts
such as “D” have emerged. We point with special attention to
events “E” and “F” that might well be mistakenly interpreted
as the continuation of the lower part of the salt flank. Note
that MDD has completely eliminated these spurious arrivals.
Finally, we note that inversion artifacts have hardened the
interpretation of the lowest part of the salt flank in “G.”
We conclude that MDD can indeed improve the image and
remove defocusing effects, but care should be taken for
potential inversion artifacts that can deteriorate parts of the
image and mislead interpretation.

8. Discussion

An overview has been given of the ghosts that appear in cor-
relation interferometry of full, perturbed and decomposed
fields. Equations (12), (24), and (26) describe these ghosts
in an additive way. Alternatively, the correlation functions
of perturbed or decomposed fields can be interpreted as
the desired reflection responses, convolved in space and
time with the PSF, see (32) and (41). Analysis of the PSF’s
allows us to diagnose the quality of virtual source focusing
in time and space. Along the temporal axis, the PSF gives
information on possible ghosts and undesired multiples that
may hamper the retrieved data. Along the spatial axis, the
PSF gives information on focusing, that can be blurred due to
unbalanced acquisition, intrinsic losses or complexities in the
velocity model. The correlation function can be deblurred
by filtering with the inverse of the PSF. This process is
multidimensional deconvolution, allowing us to deghost,
demultiple, and deblur the retrieved data.

The PSF can also provide insight in the effects of time-
gating, which is often applied for separation of incident and
scattered wavefields. In the Virtual Source method of Bakulin
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Figure 19: Velocity model for the salt flank imaging example.
Sources are located at boundary ∂S, covering x1 ∈ [0 m, 12000 m]
at x3 = 0 m; receivers are located at boundary ∂A, covering x3 ∈
[1000 m, 5000 m] at x1 = 15000 m; a reference virtual source is
located at xA = (15000 m, 4000 m).

and Calvert [4], it is advocated to cross-correlate only the
direct field instead of the full incident field. In Appendix B
we use the PSF to show that narrow time-gates can improve
the quality of virtual source focusing.

To compute the PSF for perturbed fields we require
separation of the incident and scattered fields for each source.
However, such time-gating can sometimes be problematic.
Instead, an approximation of the PSF could also be obtained
by time-gating the contributions around t = 0 in the
correlation function of full fields. This PSF can provide
valuable insights in spatial virtual source focusing in various
types of applications. Wapenaar et al. [22], for instance,
showed how an estimate of the PSF could be obtained from
cross-correlations of ambient seismic noise records. These
PSFs could then be used to correct Green’s functions as
retrieved by seismic interferometry for nonuniform passive
source distributions.

Similarities exist between the derived methodology and
model-driven redatuming [48]. Correlation-based interfer-
ometry can be related to correlation-based redatuming
schemes such as those derived by Berryhill [49]. Multidimen-
sional deconvolution of perturbed fields can be compared
with rigorous redatuming [50]. Parallels can also be found
with seismic migration and inversion [51]). The PSF that
we defined for perturbed wavefields has close similarities
with the resolution function in seismic inversion [52–54].
Similarly, inversion of the PSF can be compared with
migration deconvolution [55] or refocusing migrated images
[56]. However, in all these cases it is important to realize
that having actual subsurface receivers allows us to redatum
wavefields, including multiple scattered events, much more
effectively than with any model-driven method.
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Figure 20: Snapshots at 2.0 s, 2.7 s and 3.4 s of the wavefield emitted by a source at xA = (15000 m, 4000 m); reflections 1, 2, and 3 are
indicated.
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Figure 21: Reference response (black) and the correlation function
(red) for a virtual source at xA = (15000 m, 4000 m); reflections 1,
2, and 3 are indicated.

9. Conclusion

Controlled-source seismic interferometry is generally
explained from cross-correlation based theory. Although
this theory is exact, the required assumptions are often
not fulfilled in practice. Because of one-sided illumination,
complex subsurface structures, intrinsic losses, usage of
single source types and free surface interactions, virtual
sources can defocus and unphysical ghosts can enter the
retrieved gathers. Even if all assumptions are fulfilled,
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Figure 22: Correlation gather for a virtual source at xA =
(15000 m, 4000 m) and a receiver at xB = (15000 m, 2000 m);
reflections 1, 2, and 3 are indicated.

particular undesired reflections from the overburden
can still be retrieved by cross-correlation. Separation of
incident and scattered fields or wavefield decomposition
prior to cross-correlation can remove particular ghosts and
multiples. Multidimensional deconvolution of perturbed
(time-gated) fields allows us to refocus defocused virtual
sources and remove additional ghosts and multiples.
However, the method leaves particular multiples in place.
To remove all multiples, multidimensional deconvolution
should be applied to decomposed fields. It can be hard to
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Figure 23: PSF for a virtual source at xA = (15000 m, 4000 m);
the red-blue plot is clipped at 20% of the maximum amplitude;
the black and green traces represent true-amplitude temporal and
spatial traces, respectively.

stabilize the required inversion and artifacts can easily be
introduced, especially if illumination conditions are limited.
Through the interferometric Point Spread Function, we can
diagnose illumination variations, ghosts and multiples. As
this function can be obtained directly from the data, it can
be a useful tool for analyzing virtual source focusing and,
consequently, the quality of the retrieved data.

Appendices

A. Least-Squares Inversion

Since (30) does generally not have a unique solution, we aim
to minimize a cost function instead. In least squares theory,
this cost function is generally defined as [57]

Ê(xB,ω) =
∑
i

W
(

x(i)
S

)
ê
(

xB, x(i)
S ,ω

)
ê∗
(

xB, x(i)
S ,ω

)
, (A.1)

where W is introduced as an additional weighting factor and
ê is the misfit between the left- and right-hand side of (30),
that is

ê(xB, xS,ω) = p̂sc(xB, xS,ω)

−
∫
∂A

Ĝptb(xB, xA,ω) p̂inc(xA, xS,ω)dxA.

(A.2)

In least-squares inversion, our goal is to minimize the cost
function Ê at each receiver xB and frequency-component ω.
However, as such inversion is generally unstable, we pose an
additional constraint on minimizing the solution length L̂:

L̂(xB,ω) =
∫
∂A

Ĝptb(xB, xA,ω)
{
Ĝptb(xB, xA,ω)

}∗
dxA. (A.3)

Instead of minimizing Ê, we minimize Ê + ε2L̂, where ε
determines the balance between minimizing the misfit and
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Figure 24: PSF correlation gather for receivers at xA =
(15000 m, 4000 m) and x′A = xA = (15000 m, 4000 m).

minimizing the solution length. Next we start to search for
the solution Ĝptb, obeying

∂
{
Ê(xB,ω) + ε2L̂(xB,ω)

}
∂Ĝptb(xB, xA,ω)

= 0. (A.4)

After some algebra, (A.4) can be rewritten as [57]

Ĉptb
(

xB, x′A,ω
)

=
∫
∂A

Ĝptb(xA, xB,ω)
[
Γ̂ptb

(
xA, x′A,ω

)
+ ε2δ

(
xA − x′A

)]
dxA,

(A.5)

where x′A is at ∂A. Quantities Ĉptb and Γ̂ptb are defined in
(33) and (34). Inversion of (A.5) is equal to finding its least-
squares inverse. By setting ε = 0, (A.5) is similar to (32). This
result is often referred to as the normal equation. For more
details, see Menke [57].

B. Time Gating

To separate incident and scattered fields, we generally rely
on time-gating. Incident fields generally contain not only
primaries but also multiples from the overburden. In the
virtual source method of Bakulin and Calvert [4] it is
advocated to cross-correlate only the direct field (instead of
the full incident field) at the virtual source location with the
scattered fields at the other receivers. In this appendix we
study the advantage of such strategy, using the point spread
function.

First, let us introduce the virtual source correlation
function Ĉvsm of the direct field at receiver xA with the
scattered field at receiver xB:

Ĉvsm(xB, xA,ω)

=
∑
i

W
(

x(i)
S

)
p̂sc

(
xB, x(i)

S ,ω
){
p̂dir

(
xA, x(i)

S ,ω
)}∗

,
(B.1)
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Figure 25: PSF correlation gather for receivers at xA =
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where subscripts vsm and dir stand for “virtual source
method” and “direct field,” respectively. Obviously, the direct
field does not contain the full incident field p̂inc. A particular
section Δ p̂inc is not captured by the time-gate. We may
substitute p̂inc = p̂dir + Δ p̂inc into (30), to show that

p̂sc(xB, xS,ω)− Δ p̂sc(xB, xS,ω)

=
∫
∂A

Ĝptb(xB, xA,ω) p̂dir(xA, xS,ω)dxA,
(B.2)

with

Δ p̂sc(xB, xS,ω) =
∫
∂A

Ĝptb(xB, xA,ω)Δ p̂inc(xA, xS,ω)dxA.

(B.3)
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Equation (B.2) may be solved by MDD. With similar
reasoning as expressed in Appendix A we can show that this
yields the following normal equation:

Ĉvsm
(

xB, x′A,ω
)

=
∫
∂A

Ĝptb(xB, xA,ω)Γ̂vsm
(

xA, x′A,ω
)
dxA + ĝvsm

(
xB, x′A,ω

)
,

(B.4)
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Figure 32: Migrated section of the salt flank from the CC data in a
model with varying source spectra and a gas cloud; the location of
the salt flank as taken from the velocity model is given by the red
dashed line; markers A–G are discussed in the main text.
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Figure 33: Migrated section of the salt flank from the MDD data in
a model with varying source spectra and a gas cloud; the location
of the salt flank as taken from the velocity model is given by the red
dashed line; markers A–G are discussed in the main text.

where Ĉvsm is the correlation function of the virtual source
method (B.1) evaluated at receiver x′A instead of xA. Γ̂vsm is
the PSF of the virtual source method:

Γ̂vsm
(

x′A, xA,ω
)

=
∫
∂A
W(xS) p̂dir

(
x′A, xS,ω

){
p̂dir(xA, xS,ω)

}∗
dxS.

(B.5)
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ĝvsm is a ghost term associated with this strategy:

ĝvsm(xB, xA,ω)

= −
∫
∂A
W(xS)Δ p̂sc(xB, xS,ω)

{
p̂dir(xA, xS,ω)

}∗
dxS.

(B.6)

With (B.4) we have shown that the response as retrieved by
the virtual source method can be interpreted as the desired
Green’s function Ĝptb blurred by Γ̂vsm plus an additional
ghost ĝvsm. In (32) we derived that cross-correlation of
the full incident field instead of the direct field yields the
same Green’s function blurred by Γ̂ptb without a ghost
term. By setting the time-gate, we have thus introduced an
additional ghost. However, since Γ̂vsm does only contain the
cross-correlations of the direct field, this function behaves
generally much more like the desired delta function than Γ̂ptb.
In other words: time-gating the direct field tends to focus the
virtual source, which can also eliminate ghosts, multiples and
blurring. A more detailed discussion on the aspects of time-
gating is beyond the scope of this paper, but we refer to van
der Neut and Bakulin [10] for an analysis in layered media.
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Lithologic interpretations of the earth crust from seismic wave velocities are non-unique so that inferences about composition
can not be drawn. In order to evaluate how elastic properties of rock materials are controlled by lithology at in situ pressures and
temperatures, compressional (Vp), shear wave velocities (Vs) and velocity anisotropy of crustal rocks were measured at conditions
of greater depth. The first part deals with the interdependence of elastic wave propagation and the physical and lithological
parameters. In the second part data from laboratory seismic measurements and theoretical calculations are used to interpret (1)
a shallow seismic reflection line (SE Finland) and (2) a refraction profile of a deep crust (Central China). The comparison of the
calculated velocities with the experimentally-derived in situ velocities of the Finnish crustal rocks give hints that microcracks have
an important bearing on the in situ seismic velocities, velocity anisotropy and the reflectivity observed at relative shallow depth. The
coupling of the experimentally-derived in situ velocities of P- and S-wave and corresponding Poisson’s ratios of relevant exhumed
high-grade metamorphic crustal rocks from Central China with respective data from seismic refraction profiling provided a key
for the lithologic interpretation of a deep seismic crustal structure.

1. Introduction

Investigation of the structure and composition of the earth’s
crust and upper mantle is a big challenge in Earth Sciences.
Direct information about the structure and composition of
the deep crust can be obtained either from crustal terrains
exposed at the surface (e.g., [1, 2]) or from xenoliths
brought to the surface by magmas (e.g., [3]). Deeply eroded
Precambrian terrains (e.g., Srilanka), and upthrust tectonic
slices in orogenic belts (e.g., Ivrea Zone, N. Italy; Serre
Mountains, S. Calabria; Kapuskasing Zone, Canada) provide
perhaps the best geologic guides to structural style and
composition at depth. Such rocks are important in providing
direct data although they contain a mixed message as they are
no longer the in situ deep crust.

Indirect information about the structure and composi-
tion of the inaccessible deep crust (and upper mantle) is
obtained by geophysical surveys. Most important is seismic
reflection and refraction profiling, and both techniques have
been successfully used (independently or in combination

with data from electrical, gravity, and magnetic investiga-
tions) to probe the deep crust and upper mantle. Seismic
reflection patterns provide a structural image of the crust,
and seismic refraction profiles give us information about
the velocity distribution within the crust. The measured
seismic velocity structures are very helpful in providing
a rough characterization of the earth’s crust in different
tectonic environments, but they are nonunique so that
inferences about composition cannot be drawn from wave
velocities (at least P-wave velocities). Even in case that we
can directly correlate various lithologies with, for example,
sonic log or VSP data (Kola superdeep borehole, Russia;
KTB, Germany), a basic question to be answered remains:
why are the in situ properties as they are, and which factors
control the in situ rock properties? The basic reason for
this ambiguity is that crustal and mantle rocks are very
complex materials and that their seismic properties at depth
are affected in a very complex manner by a number of
lithologic and physical factors. P- and S-wave velocities are
controlled by the matrix (intrinsic) properties of the rocks
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Figure 1: Commonly used sample geometries for laboratory seismic measurements (a) and the piston-sample-transducer arrangement in a
multianvil pressure apparatus (b).

(mineral mode, chemical composition, metamorphic grade,
and crystallographic preferred orientation of constituent
minerals) and by the physical environment of the crust
(temperature, pressure, porosity, fluid content, etc.).

A unique ability to correlate the seismic data with the
structure and composition of the in situ deep crust can be
provided by coupling experimentally determined or calcu-
lated P- and S-wave velocities for relevant crustal rocks
collected from surface outcrops or from xenoliths, simulating
in situ conditions: (1) by laboratory seismic measurements
at actual PT conditions (e.g., [4, 5]) and (2) by calculations
from modal analyses and elastic properties of the rock-
forming minerals and their pressure and temperature deriva-
tives (e.g., [6]).

In the first part of this paper, we will show, as an example,
how the seismic properties of a crustal rock are affected
by pressure and temperature and analyze the relationship
between velocities and structural and textural characteristics
of the rock. We will focus on the directional dependence
(anisotropy) of P- and S-wave velocities at PT conditions.
In the second part, we will interpret seismic field data
on the basis of measured and calculated velocities derived
from relevant crustal rocks for two case studies: Firstly,
we will investigate the nature of seismic reflections within
the 2500 m crustal section penetrated by the Outokumpu
scientific drill hole (SE Finland), and secondly, we will give a
lithologic interpretation for a seismic refraction profile cross-
ing the ultrahigh pressure (UHP) metamorphic belt of the
Dabie mountains (China). (for details, see [7] and [5], resp.).

2. Laboratory Measurements of
P- and S-Wave Velocities

Two sample geometries are commonly used for the exper-
imental determination of elastic wave velocities and their
directional dependence (anisotropy): (1) jacketed cylindrical
samples in an internally heated fluid or gas apparatus

(Figure 1(a), left) and (2) unjacketed cube-shaped specimens
in an externally heated multianvil apparatus (Figure 1(a),
right). On cylindrical samples, Vp and Vs measurements
can be done only in one direction so that experiments on
three sample cylinders taken in the three structural-related
orthogonal directions are needed for the determination of
velocity anisotropy. On cube-shaped samples, measurements
of Vp and Vs can be done simultaneously in three orthogonal
directions. In general, measurements are carried out in the
X, Y, and Z directions of the foliation-related structural
frame (XY is foliation, X is lineation and Z is foliation
normal).

In our lab, measurements of P- and S-wave velocities are
made on sample cubes (43 mm on edges) in a multianvil
apparatus using the pulse transmission technique with
transducers operating at 2 and 1 MHz for P- and S-waves,
respectively. As illustrated in Figure 1(b), the piston-sample-
transducer arrangement allows simultaneous measurements
of Vp and Vs and their directional dependence (velocity
anisotropy) in the X, Y, and Z directions of the sample cube
as a function of pressure (up to 600 MPa) and temperature
(up to 700◦C) and direct determination of length changes
(volume change) from the piston displacement. Shear wave
splitting (Vs1-Vs2) is measured by two sets of orthogonally
polarized transducers with perpendicular polarization direc-
tions. A complete set of measured data comprises three P-
wave velocities and six S-wave velocities along with the length
changes (volume change) of the sample. A full description of
the apparatus is given in [8].

To illustrate the effect of pressure and temperature on
elastic wave velocities, Figure 2 presents experimental data
for a biotite gneiss (OKU 578) from the Outokumpu scien-
tific deep drill hole (see Section 3). The biotite gneiss sample
is recovered from 578 m depth and made up by 34.1 vol-%
quartz, 19.9 vol.-% plagioclase, 28.4 vol.-% biotite and
16.7 vol.-% muscovite. The modal compositions of all rock
samples were calculated from bulk rock (X-ray fluorescence
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Figure 2: P- and S-wave velocities as a function of pressure up to 600 MPa (room temperature) (Figure (a), (c)–(e), resp.) of a biotite gneiss
(OKU 578) from Outokumpu, along with the temperature dependence of P-wave velocities measured at 600 MPa confining pressure (b). (f)
illustrates the measuring directions of P- and S-wave velocities and shear wave polarization according the foliation-related structural frame
X, Y, and Z (XY is foliation, X is lineation, and Z is foliation normal).
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analysis, XRF) and mineral chemistry (microprobe), using
least square fitting [7, 9].

Compressional and shear wave velocities measured in
X, Y, and Z as a function of pressure (up to 600 MPa) at
room temperature, along with the corresponding velocity
anisotropy of P-waves (A-Vp) are plotted in Figure 2(a) and
Figures 2(c)–2(e). P- and S-wave velocities are denoted by
Vpi and Vsi j , respectively. The first subscript i of Vp and Vs
indicates the propagation direction, and the second subscript
j of Vsi indicates the polarization direction of the shear
wave (Figure 2(f)). Anisotropy is defined by the percent
differences between maximum and minimum velocity with
respect to mean velocity [10].

At increasing confining pressure, P- and S-wave velocities
show a nonlinear increase approaching linear behaviour
above about 200 MPa. The nonlinear rise on the curves is due
to progressive closure of microcracks, typically illustrating
the pressure sensitivity of P- and S-wave velocities. The
velocities defining the nonlinear parts of the velocity versus.
pressure curves (Figure 2(a)) can be used to interpret seismic
data at shallow crustal depth (see Section 3). The linear
lopes of the curves reflect the intrinsic rock properties. They
are basically controlled by the volume percentage of major
minerals, their single crystal elastic properties and their
crystallographic preferred orientation (CPO). Increase of
temperature at the high confining pressure of 600 MPa that
prevents thermal cracking results in slight linear decrease
in wave velocities (Figure 2(b)). From the regression of the
linear parts of the pressure (200–600 MPa) and temperature
curves (20◦C–600◦C) one can derive the intrinsic pressure
and temperature derivatives of velocities and the reference
velocity V0,which is the projected velocity of a nonporous or
crack-free compacted rock at zero pressure. These data allow
one to extrapolate seismic velocities to greater depth (where
cracks are closed) for any P/T condition within the stability
field of the constituent assemblage of rock-forming minerals
(see Section 4).

The significant differences of P-wave velocities measured
in the three structural directions X, Y, and Z of the
Outokumpu biotite gneiss (OKU 578) indicate strong
velocity anisotropy (Figure 2(a)). Anisotropy is typical
for most of the rocks constituting the earth’s crust (e.g.,
[11–13]). Highest velocities are generally measured parallel
to foliation (XY-plane) and lineation [X] and lowest normal
to foliation. Anisotropy (A-Vp) is almost highest at low pres-
sure (Figure 2(a)) due to the effects resulting from oriented
microcracks and crystallographic preferred orientation of the
rock-forming minerals. Increasing pressure reduces the effect
of cracks and the residual (intrinsic) anisotropy is mainly
due to CPO (e.g., [14, 15]). Splitting of the two orthogonally
polarized shear waves (S1 and S2) is an important diagnostic
phenomenon for seismic anisotropy [16]. It is closely related
to the structural frame (Figures 2(c)–2(e). Pronounced
shear wave splitting is generally observed parallel to X and Y
within the foliation plane with the fast split shear wave being
polarized parallel to foliation. Normal to foliation, shear
wave splitting is generally low. Note that in the Outokumpu
biotite gneiss (OKU 578), there is practically no shear wave
splitting observed normal to foliation (Figure 2(c)). This

direction marks a singularity [16]; that is, S-waves propagate
in this direction like in an isotropic medium.

Anisotropy of P- and S-wave velocities as well as shear
wave splitting of the biotite gneiss (OKU 578) is mainly due
to the high volume proportions of biotite and muscovite
(about 28 vol.-% and 17 vol.-% resp.), their strong CPO
and the very high anisotropy of both minerals (>40%). It
should be noted that shape preferred orientation (SPO) of
biotite and muscovite as well as oriented microcracks may
also contribute to bulk anisotropy [17–19].

The experimentally derived relations between P- and
S-wave wave propagation and shear wave polarization to
the structural frame (foliation, lineation) are confirmed by
3D velocity calculations based on the preferred orientation
(CPO) of the constituent minerals, their volume fraction, the
crystal densities and their elastic stiffness coefficients [7, 17].

3. The Nature of Seismic Reflections Observed
within a Crustal Section at Shallow Depth

Here, we use calculated and experimental velocity data of
crustal rocks sampled by the Outokumpu deep drill hole (SE,
Finland) for an interpretation of sonic log data and of crustal
reflections observed on a high resolution reflection profile
(OKU-1) close to the bore hole (Figures 3(a) and 3(b)).

The high-resolution seismic line (OKU-1) in SE, Finland,
(Figure 3(c)) has revealed a high reflectivity zone between
about 1300 m–1500 m depth [20]. The line is close to the
Outokumpu scientific drill hole which has sampled a 2500 m
crustal section within Paleoproterozoic metasedimentary
and ophiolitic sequences [21]. The drilled Precambrian
crustal section comprises a 1300 m thick biotite gneiss series
at top, followed by a 200 m thick metaophiolite sequence,
underlain again by a 500 m thick biotite gneiss sequence with
intercalations of amphibolite and pegmatitic granite. From
2000 m downward the dominant rock types are pegmatitic
granites (see Figure 4, left).

We selected 29 core samples covering the depth range
198 m–2491 m for petrophysical studies [7, 17], in order to
interpret sonic log data and to provide constraints on the
nature of the reflectivity zone revealed by the high resolution
reflection line. For all samples, we calculated the average
(isotropic) intrinsic P- and S-wave velocities by combining
the modal composition of the rocks with the respective
velocities of the isotropic monomineralic aggregates (VRH
averages) of the constituent minerals [22]. On 13 oven-dried
(80◦C) cube-shaped samples representing main lithologies,
we measured P- and S-wave velocities in 3 orthogonal
directions at pressures up to 600 MPa in order to determine
their cracks sensitivity and directional dependence. Velocity
measurements as well as 3D velocity calculations, based on
neutron diffraction CPO measurements [7, 17], show that
velocity anisotropy and shear wave splitting are important
properties of the biotite gneisses that dominate about 70%
of the drilled crustal section. In Figure 4 (left), we compare
the calculated velocities and the experimentally derived in
situ velocities with sonic log data. It is clear from the
diagram that the calculated intrinsic velocities (red symbols)
are generally higher than those determined by the sonic
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log, whereas the experimentally derived in situ data (green
symbols) fit markedly better. Therefore, we conclude that
microcracks that are not completely closed at the relatively
shallow depth have an important bearing on the in situ
velocities in addition to the lithologic control. Importantly,
the experimentally derived velocities propagating in the Z
direction (black symbols), that is, normal to subnormal to
foliation (parallel to the bore hole), are closest to the sonic
log data. It should be noted, however, that the possible effect
of pore fluids has not been taken into account.

For assessing the potential importance of the various
lithologic interfaces as seismic reflectors and the role of
anisotropy, we calculated from the acoustic impedances I
(velocity multiplied with density) the corresponding normal
incidence reflection coefficients [Rc = (I1 − I2)/(I1 +
I2)]. Figure 4 (right) compares the reflection coefficients
derived from modal mineralogy and the isotropic aggregate

velocities of the constituent minerals (left vertical line)
with those derived from the average velocities obtained
by the laboratory seismic measurements for the in situ
pressure conditions (middle vertical line). Also included is a
calculation based on velocities measured normal to foliation
(parallel to Z), taking into account that the foliation of the
rocks constituting the 2500 m crustal section is normal to
subnormal to the borhole (right vertical line). The data refer
to an average density of 2.57 g/cm3. According to Warner
[23], reflection coefficients close to +/− 0.1 are required for
strong seismic reflections. From the reflection coefficients
Rc derived from modeled as well as from experimental in
situ velocities, we conclude that the multiple reflections
within the metaophiolite series (Figure 4, right) are caused
by the variation in lithology. This holds, in particular, for
the contacts of the diopside skarn to serpentinites and
serpentinites to pyr-hbl-gneiss and phlogopite-graph-gneiss.
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From the strong directional dependence of wave propagation
(slowest velocities normal to foliation; parallel to Z), we infer
that reflectivity at the contacts of the upper and lower gneiss
series with the metaophiolite series is significantly enhanced
by effects from oriented microcracks that are not completely
closed, in addition to the strong crystallographic preferred
orientation (CPO) of the constituent phyllosilicates (biotite
and muscovite) in the upper and lower gneiss series. From
the experimental results, we infer that variations in lithology
within the ophiolite-related assemblage are also responsible
for the strong seismic reflections revealed by the high-
resolution seismic reflection line (OKU-1) close to the
borehole at the depth of 1300 m–1500 m (Figure 3(c)).

4. Lithologic Interpretation of
a Crustal Seismic Velocity Structure
Based on In Situ P- and S-Wave Velocities
Derived from Experimental Data

We selected a seismic refraction profile crossing the Dabie
Mountain (Central China) in order to document the poten-
tial of laboratory seismic measurements simulating in situ
conditions for the lithologic interpretation of a seismic
crustal velocity structure.

The Dabie-Sulu ultrahigh-pressure metamorphic belt
(Figure 5(a)) represents a zone in which upper and lower
continental crust has been subducted and then rapidly
exhumed from the mantle back into the crust [24]. Seismic
refraction profiles [25] reveal a four layer structure (upper,
middle, upper-lower, and lowermost crust) with an average
thickness of 34 km (Figure 5(b)). Experimental petrophysical
investigations on about 30 UHP rock samples collected form
surfaces exposures [5] provide the basis for a lithologic

interpretation of the seismic velocity structure. The rock
samples span compositions from felsic through intermediate
to mafic, and metamorphic grades up to granulite and
eclogite facies. They comprise tonalitic and trondhjemitic
gneisses, metapelites, metagabbros, amphibolites, interme-
diate and mafic granulites, and eclogites. The experimental
data include compressional (Vp) and shear wave velocities
(Vs), velocity anisotropy, density, and intrinsic pressure
and temperature derivatives of Vp and Vs derived from
regression of the linear segments of the pressure (300–
600 MPa) and temperature curves (20◦C–500◦C). Using a
regional geotherm, velocity depth profiles were calculated
for the different lithologies [5]. Because most of the cracks
and fractures are closed at greater depth and the effects
of cracks are thus largely eliminated, we used the intrinsic
P-wave velocities together with the Poisson’s ratios for a
lithologic interpretation of the seismic model (Figure 5(b))
evaluated from seismic refraction data. The interpretation
is based on the averages of velocities measured in the three
directions X, Y, and Z, because no indications of seismic
anisotropy are reflected by the seismic data. The combined
measurements of P- and S-wave velocities on UHP rocks
and the availability of seismic data on the P-wave velocity
and the Poisson’s ratio structure along a profile crossing
the Dabie Mountains [25] provides valuable constraints
on the composition of the crust. Figure 6 compares the
ranges of experimentally derived in situ velocities and
Poisson’s ratios with the respective seismic refraction data
(red circles). From the comparison, we infer that the seismic
properties of the middle crust are in accordance with those
measured on amphibolite-facies tonalitic-trondhjemitic and
granitic gneisses. The upper-lower and lowermost crust may
be interpreted by intermediate (or mixtures of felsic and
mafic granulite) and mafic granulites, respectively. From the
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combined Vp and Poisson’s ratio data, we conclude that
eclogite which is exposed in many outcrops is not a volumet-
rically important constituent of the deep crust in the Dabie
mountains. The coupling of the laboratory-derived in situ
seismic data (Vp and Poisson’s ratio’s) with refraction seismic
data, along with evidence from geological and geochemical
investigations [26], suggests that lower crustal delamination
of high-density eclogitic rocks played an important role in
the modification of the East China crust [5].

5. Summary

Coupling laboratory seismic measurements on crustal rocks
from Outokumpu (SE, Finland) and the Dabie mountains
(Central China) along with model calculations provided the
basis for the following conclusions.

(1) Measured and calculated velocities of relevant rocks
sampled by the Outokumpu scientific drill hole (SE
Finland) show that variations of lithology within the
ophiolite-related assemblage have the potential to
generate the strong seismic reflections revealed by the
nearby high-resolution seismic reflection line (OKU-
1) at the depth of 1300 m–1500 m. Marked CPO- and
crack-related seismic anisotropy of the biotite gneiss
series hosting the ophiolite sequence may enhance
the seismic reflections at their contacts.

(2) Correlation of in situ velocities and Poisson’s ratios
derived from P- and S-wave velocities measured
on UHP metamorphic rocks collected from surface
exposures in the Dabie mountains (Central China)
with respective data of a refraction profile crossing
the Dabie metamorphic belt allowed a lithologic
interpretation of the velocity structure for the 34 km
thick continental crust. Importantly, the comparison
gives clear evidence that eclogite which is exposed
in many outcrops is not a main constituent of the
lowermost crust in the Dabie mountains.
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We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes
how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process,
in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic
image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in
velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic
data. We provide synthetic diffraction imaging examples to illustrate the concept and potential applications of azimuthal velocity
continuation and to analyze the impulse response of the 3D velocity continuation operator.

1. Introduction

Velocity continuation [1, 2] provides a framework for
describing how a seismic image changes given a change
in the migration velocity model. Similar in concept to
residual migration [3], and cascaded migrations [4], velocity
continuation is a continuous formulation of the same
process. Velocity continuation has found applications in
migration velocity analysis [5, 6] and diffraction imaging
[7, 8].

Fomel [1] and Hubral et al. [9] point out that veloc-
ity continuation is a wave propagation process. Instead
of wavefronts propagating as a function of time, images
propagate as a function of migration velocity. Recent work
has extended the concept to heterogeneous and anisotropic
velocity models [10–15]. To account for anisotropy, the
seismic velocity model must become multiparameter. Con-
sequentially, velocity continuation generalizes to a process of
implementing image transformations caused by changes in
multiple parameters rather than the single isotropic velocity
alone.

Accounting for azimuthal variations in seismic velocity
results in better event focusing and improved imaging in
such media [16]. Azimuthal variation in velocity has been
shown to be an indicator of preferentially aligned vertical

fractures [17], lateral heterogeneity [18], regional stress [19],
or a combination of these factors. However, velocity analysis
is commonly first performed on prestack common midpoint
(CMP) gathers, where the geologic cause of any observed
azimuthal velocity variation is ambiguous. Without the help
of additional diagnostic gathers such as hybrid or cross-
spread gathers [20], or an interpretive comparison between
picked root mean square (RMS) and interval velocities [21],
the cause of azimuthal variations in velocity can be identified
only after migration.

Azimuthal seismic imaging commonly requires iterations
between velocity analysis and imaging. Residual azimuthal
variations in traveltime after migration can be measured by
using migration binning schemes which preserve both offset
and azimuth information [22, 23]. After the first pass of
(isotropic) migration, azimuthal variations in velocity are
detected from residual moveout, which then provides the
velocity model for anisotropic migration. Iterative processing
flows that use these strategies are popular not only because
they are fairly efficient and intuitive, but also because they
can be implemented with minimal modification to existing
software. However, iterative imaging flows cannot guarantee
convergence to the correct or optimal velocity model [24].
Velocity continuation has the underlying strategy of per-
forming velocity analysis and imaging simultaneously and
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can thus be used to directly find an optimal velocity model
without iteration. Sicking et al. [19] have demonstrated the
success of a similar strategy of using imaging as a velocity
analysis tool for 3D multiazimuth reflection seismic data.
Azimuthal velocity continuation can provide a theoretical
framework for this approach. With these benefits as moti-
vation, we extend time-domain velocity continuation to 3D,
accounting for the case of azimuthally variable migration
velocity.

2. Theory

The theory of velocity continuation formulates the connec-
tion between the seismic velocity model and the seismic
image as a wavefield evolution process. In doing so, the
process can be implemented in the same variety of ways as
seismic migration. Seismic migration in its many forms is
commonly derived starting at the wave equation, which is
approximated by its time and amplitude components by the
eikonal and transport equations, and if necessary, a system of
ray tracing equations. Velocity continuation is derived in the
opposite order [2]. Starting with a geometrical description
of the image, a corresponding kinematic equation for travel-
time is derived to describe how the image moves according to
changes in imaging parameters. Subsequently, the kinematic
equation is used to derive a corresponding wave equation,
which describes the dynamic behavior of the image as
an evolution through imaging parameter coordinates. This
section outlines the key steps of this derivation, starting with
a traveltime equation that permits azimuthal variations in
velocity.

Grechka and Tsvankin [25] truncate a two-dimensional
Taylor series expansion for a generally inhomogeneous
anisotropic media to derive the “NMO ellipse” move-
out equation. Geometrically, the NMO ellipse model still
assumes that events have hyperbolic moveout with offset, but
it allows the velocity to change with azimuth. We start here
by using the same truncated 2D Taylor series expansion to
describe an azimuth-dependent traveltime equation for the
summation surface of zero-offset time migration,

T2(x, y, W
) = 4

(
τ2 +

(
x− y

)TW
(

x− y
))

, (1)

where τ is the one-way vertical traveltime after migration,
x is the (x1, x2) surface position of the zero-offset receiver
in survey coordinates, y is the surface position of the point
source image, and superscript T denotes transpose. The three
independent elements of the symmetric slowness matrix,

W =
⎛⎝W11 W12

W12 W22

⎞⎠, (2)

have units of slowness squared, and the eigenvalues and
eigenvectors of W determine the symmetry axes of the
effective anisotropic medium [25]. In most common geo-
logic situations, the eigenvalues of W are positive [26], and
(1) describes an elliptical-hyperbolic traveltime surface in
3D—hyperbolic in cross-section view and elliptical in map
view. The fast and slow moveout velocities are aligned with

the major and minor axes of this ellipse. W11 and W22 are
the squared moveout slownesses along their respective survey
coordinates, x1 and x2. The third parameter,W12, arises from
observing the ellipse in the x1-x2 survey coordinates, which
are generally rotated relative to its major and minor axes.

The three-parameter moveout model of (1) is analyti-
cally convenient and practical, but the parameters themselves
are not intuitive to interpret in terms of more common
geophysical or geological parameters. However, some simple
geometric observations can help convert the three elements
of W into more intuitive measurements. If the ellipse
happens to be aligned with the survey coordinates, W12 =
0. Finding the rotation angle which properly diagonalizes
W therefore allows one to predict the orientation of the
symmetry axes. This amounts to an eigenvalue problem,
where the fast and slow velocities can be found as the
eigenvalues and eigenvectors of W. The eigenvalues, Wfast

and Wslow, of the slowness matrix can be found following
[25],

Wslow, fast = 1
2

[
W11 +W22 ±

√
(W11 −W22)2 + 4W2

12

]
.

(3)

Since the eigenvalues have units of slowness squared, the
smaller eigenvalue is Wfast = 1/v2

fast. One can solve for
the angle β between the acquisition coordinates and the
symmetry axes by using the formula found by [25],

β = tan−1

⎡⎣W22 −W11 +
√

(W22 −W11)2 + 4W2
12

2W12

⎤⎦. (4)

The eigenvalues can then be used together with β to solve for
the zero-offset migration slowness S as a function of source-
receiver azimuth θ:

S2(θ) =Wslow cos2(θ − β) +Wfast sin2(θ − β). (5)

Equations (3)–(5) allow one to convert the mathe-
matically convenient parameters of W to more intuitive
parameters, such as the fastest and slowest propagation
velocities (Vfast,Vslow), the azimuth of the slowest velocity (β),
and the percent anisotropy (σ = 100 × (1 − Vslow/Vfast)).
Alternatively, W can be converted into other common
geophysical parameterizations. For example, Grechka and
Tsvankin [25] show that once the effective parameters W
have been converted to slowness as a function of azimuth by
(5), they can be expressed in terms of horizontal transverse
isotropy parameters as

S2(θ) = 1
V 2
P0

1 + 2δ(v)sin2(θ)
1 + 2δ(v)

, (6)

where δ(v) is the Thomsen-style parameter [27], introduced
by Tsvankin [28], and VP0 is the vertical P-wave velocity.

Conventionally, one assumes that (1) characterizes a
particular event defined in image coordinates (x, τ), but one
can also describe how that event would transform given a
change in the image parameters W. Regardless of the velocity
model, the traveltime T must remain unchanged between
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different images. From this observation, we arrive at the
following set of conditions:

∇xT
2 =

⎛⎜⎜⎝
∂T2

∂x1
∂T2

∂x2

⎞⎟⎟⎠ = 8τ∇xτ + 8W
(

x− y
) = 0,

∇WT
2 =

⎛⎜⎜⎝
∂T2

∂W11

∂T2

∂W12
∂T2

∂W12

∂T2

∂W22

⎞⎟⎟⎠ = 8τ∇Wτ + 4
(

x− y
)(

x− y
)T

= 0.
(7)

Combining and reducing these conditions yields a system
of equations that are defined only in the image parameter
coordinates:

2
∂τ

∂W11
+
τ(W22(∂τ/∂x1)−W12(∂τ/∂x2))2(

W2
12 −W11W22

)2 = 0,

2
∂τ

∂W22
+
τ(W12(∂τ/∂x1)−W11(∂τ/∂x2))2(

W2
12 −W11W22

)2 = 0,

(8)

2
∂τ

∂W12
− 2τ(W12(∂τ/∂x1)−W11(∂τ/∂x2))(W22(∂τ/∂x1)−W12(∂τ/∂x2))(

W2
12 −W11W22

)2 = 0. (9)

The system of kinematic equations describing azimuthally
anisotropic velocity continuation is then found by combin-
ing (8)–(9). In a vector notation, this becomes

∇Wτ +
τ

2
W−1∇xτ(∇xτ)TW−1 = 0, (10)

where ∇x and∇W are in the form given by (7).
The method of characteristics [29] provides a link

between a kinematic equation (such as (10)) and its cor-
responding wave-type equation. Fomel [2] demonstrates
specifically how the method can be used to derive a velocity
continuation wave equation from its kinematic counterpart.
By first setting the characteristic surface condition,

ψ = t − τ(x, W) = 0, (11)

and replacing τ with ψ and t, we obtain an alternative form
of (10):

ψt∇Wψ +
t

2
W−1∇xψ

(∇xψ
)TW−1 = 0. (12)

Equation (11) guarantees that the wavefronts of time-
domain image wavefield P exist only where the arrival time
τ is equal to the recorded time t at a given location. Now
take both ξi and ξ j to represent each of t, W11, W12, W22, x1,
and x2. According to the method of characteristics, if Λi j is
the coefficient in front of (∂ψ/∂ξi)(∂ψ/∂ξj) from kinematic
equation (12), then the corresponding wave equation will
have the same coefficients Λi j in front of each ∂2P/∂ξi∂ξ j
derivative. The time derivative ψt is equal to 1 given (11),
and is included in the first term of (12) to facilitate the use
of the method of characteristics. Then, by introducing Pxx as
the spatial Hessian matrix of the wavefield,

Pxx =

⎛⎜⎜⎜⎜⎜⎝
∂2P

∂x2
1

∂2P

∂x1∂x2

∂2P

∂x2∂x1

∂2P

∂x2
2

⎞⎟⎟⎟⎟⎟⎠, (13)

we arrive at the azimuthally anisotropic post-stack velocity
continuation wave equation,

∇WPt = − t

2
W−1PxxW−1. (14)

In the isotropic case, W is diagonal andW11 =W22. Equation
(14) then reduces to the isotropic velocity continuation
equation first derived by Claerbout [30].

3. Method

Since velocity continuation is described by a wave equation,
it can be implemented in analogous ways to seismic migra-
tion. Here, we demonstrate a spectral implementation of
(14). By first stretching the time coordinate of an input image
from t to t̃ = t2/2, and then taking its 3D Fourier transform,
(14) becomes the reduced partial differential equation:

iΩ∇WP̂ = 1
2

W−1kkTW−1P̂, (15)

where Ω is the Fourier dual of t̃ and k is the wavenumber
vector (Fourier dual of x). Equation (15) has the analytical
solution,

P̂(Ω, k1, k2, W) = P̂(Ω, k1, k2, W0)e−i/2ΩkT (W−1−W−1
0 )k,

(16)

which shows that continuation of an image from an arbitrary
W0 to W can be achieved by multiplication with a shifting
exponential in the Fourier domain. One can also directly
migrate an unmigrated image by using the 2 × 2 matrix
W−1

0 = 0 for the initial velocity. In practice, the coordinate
stretch from t to t̃ should be carefully applied as data will be
compressed along the time axis for early samples.

With a range of slowness matrices W, equation (16)
can be used to quickly generate the corresponding range of
anisotropically migrated images. When the correct velocity
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Figure 1: (a) A single azimuthally anisotropic diffraction. (b) The diffraction migrated by velocity continuation using correct parameters
except σ = 10, resulting in overmigration along x2. (c) Migration using the correct W11, but assuming isotropy. The result is now
undermigrated along x2. (d) Migration using correct parameters. The image is well focused in both directions.

model is used, diffractions collapse to points, which we
recognize as the image coming into focus. Although constant
velocity models are used for each image, this type of spectral
implementation can still be useful in the heterogeneous case,
as different parts of the image will come into focus locally as
the appropriate velocity is used [31, 32]. Once the range of
images is generated, we search for the best focused image at
each output location. We use the image attribute of kurtosis,
defined as,

φ(W) =
∫∫
P4(x, t, W)dxdt[∫∫
P2(x, t, W)dx dt

]2 , (17)

to quantify how well a location is focused in a particular
image [8, 33]. Including integration limits specifies a window
size for locally measuring kurtosis in the image. In applica-
tion, either the integration limits control the size of a “sliding
window,” or when viewing kurtosis as a local attribute,

[34], they can be used to control the smoothness enforced
by shaping regularization. In either case, the integration
limits control a trade-off between the robustness of the
focusing measurement and the resolution. From experience,
typical limits for field data correspond to window sizes
on the order of 101 samples in each dimension. It should
be noted that the traveltime approximation of (1) loses
accuracy in the presence of strong lateral heterogeneity, but
is commonly used to estimate smooth effective parameter
models. Following the maximum values through the result-
ing six-dimensional kurtosis hypercube, φ(t, x, W), and then
slicing corresponding pieces from the output images volume,
P(t, x, W), reveals an effective medium-based heterogeneous
velocity model and a well focused image. This spectral
implementation and slicing procedure is similar to searching
through a set of constant-velocity f –k migrations and can
be completed without any prior knowledge of the velocity
model [32, 35].
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4. Examples

Two simple synthetic examples are provided below to
illustrate 3D velocity continuation over a range of velocity
models. In the first example, we apply velocity continuation
to a point diffractor. In the second example, we apply the
method to a synthetic post-stack image of a set of faults.
The second example illustrates fracture characterization
through diffraction imaging as a potential application for 3D
azimuthal velocity continuation. The data in both examples
are modeled using (1), which geometrically approximates a
diffraction surface as an elliptical-hyperbolic surface. Field
data and more accurately modeled data will generally also
exhibit nonhyperbolic moveout, for which (1) does not
account. The physical validity and limitations of (1) are
thoroughly discussed by Grechka and Tsvankin [25], but we
focus here on how well diffractions can be collapsed, and how
well the velocity parameters can be measured, if the data are
ideally described by (1).

Figure 1(a) shows a single diffraction event, modeled
using (1). The fastest direction of propagation is at β = 105◦

counterclockwise from the x1 axis, with Vfast = 3.50 km/s.
The data in Figure 1(a) were modeled with σ = 7%
anisotropy, which may be quite high for most field cases, but
it was chosen to allow the azimuthal variations in diffraction
moveout to be visibly pronounced. As described above, we
first stretch the time axis from t to t̃ and take the 3D
Fourier transform of the data. Then we apply the phase-
shift prescribed by (16) for a range of W. We found it more
intuitive to specify the parameter ranges in terms of Vx1 , β,
and σ , and then convert them at each step into the three
parameters of W for use in (16). The inverse of the in-line
velocity squared 1/V 2

x1
is equivalent to W11, which, along

with a given fast azimuth β and percent anisotropy σ , can be
used to calculate W12 and W22 using (3)–(5). Last, we apply
the 3D inverse Fourier transform and unstretch from t̃ to t
to obtain the 6D image volume. Examples from the image
volume using incorrect parameters are shown in Figures 1(b)
and 1(c). The correct parameters are used in Figure 1(d),
where the image is well focused.

Since only a single diffraction is present in this example,
we can measure kurtosis over a window spanning the entirety
of each 3D image, reducing the kurtosis volume from 6D
to 3D. Figure 2 is a 2D slice of the kurtosis volume at the
correct W11 = 1/V 2

x1
value of 0.0935 = 1/(3.27 km/s)2. The

peak of the kurtosis map is near the correct values of σ =
7 and β = 105◦. Once the peak of the kurtosis map is
identified, one could refine the increments around the peak
to yield more accurate estimates. The physical limitations of
resolving azimuthal velocity parameters are discussed by Al-
Dajani and Alkhalifah [37].

In practice, a conventional in-line 2D velocity analysis
directly yields W11 from 1/V 2

x1
, so Figure 2 could illustrate

a realistic scenario for using 3D velocity continuation to
improve upon a previous isotropic velocity model. In such
a case, one would use previous Vx1 picks to hold W11

constant and then effectively test a variety of W12 and W22

values. Since W11 and W22 are measured with respect to
the survey coordinates, either (or both) can be measured
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Figure 2: Kurtosis values for the velocity continuation of the
diffraction in Figure 1(a). The map covers a range of anisotropy and
angle values with an increment in β of 5◦ and an increment in σ of
0.5%. The correct values at 105◦ and 7% anisotropy (indicated by
crosshairs) coincide with the peak of the kurtosis map.

independently via a single-azimuth semblance scan, along
x1 or x2, respectively. The best isotropic velocity based
on a fully multiazimuth semblance scan will generally not
represent either W11 or W22, but it can help limit the range
of test parameters. Note that our method does not require
prior knowledge of the velocity model, but without prior
knowledge, the kurtosis measure remains a 6D volume.
Although more difficult to visualize, the 6D kurtosis volume
is computationally just as easily scanned for optimal imaging
parameters as the 2D map in Figure 2.

In the next example, we illustrate the concept of applying
3D anisotropic velocity continuation to diffraction imag-
ing and fracture characterization. Figure 3(a) shows a 3D
synthetic post-stack diffraction data set, equivalent to the
ideal separation of diffractions from specular reflections in
post-stack data following Fomel et al. [8]. A fault map
from Hargrove [36] (shown in Figure 3(a)) was digitized
and used to create a 3D fracture model. Each fault location
was used to generate a point diffraction in a homogeneous
anisotropic background via (1). A timeslice of the modeled
diffraction data is shown in Figure 3(b). The faults in the
model typically have a strike of 112◦, and in cases where
faults and nearby fractures (which more likely influence the
seismic velocity) are similarly aligned, the fast direction of
seismic wave propagation tends to align with their strike.
By assuming a typical tight sandstone velocity of Vfast =
4.0 km/s with 3% anisotropy, we choose the modeling W
to be comprised of W11 = 0.0659, W22 = 0.0631, and
W12 = 0.0014 (all in s2/km2). This results in a fast velocity
direction along the strike of the faults. In Figure 3(d), we see
that 3D velocity continuation using the correct parameters
(again found by maximum kurtosis) allows the faults to be
clearly imaged. If an intermediate isotropic velocity model is
used, as in Figure 3(c), the diffractions are still imaged, but
they are not as well focused compared to the anisotropically
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Figure 3: (a) Fault map from Northwest Scotland [36] used to model diffraction data. (b) Synthetic post-stack diffraction data modeled using
(1) and a 3D model based on the fault map in (a). (c) Diffractions from (b) migrated using an isotropic velocity model. (d) Diffractions
from (b) migrated by anisotropic 3D velocity continuation.

migrated diffractions in Figure 3(d). Conventionally, diffrac-
tion arrivals such as those in Figure 3(a) may be viewed as
noise, but by separating them and treating them as signal,
we can see here that imaging of steep and detailed features
while simultaneously extracting anisotropy information may
be possible.

5. Discussion and Conclusions

By extending time-domain velocity continuation to the
azimuthally anisotropic 3D case, we have combined the
concepts of azimuthal imaging and diffraction imaging. We
assume a three-parameter migration slowness model that
allows velocity to vary elliptically with azimuth. We have
provided simple examples to illustrate the potential appli-
cation of our method to fracture characterization through
diffraction imaging. By treating diffractions as signal, our
method performs azimuthal analysis on post-stack data,

without the requirement for common-offset-vector or offset-
vector-tile binning schemes. This is possible because, unlike
reflections, diffractions can preserve azimuthal information
post-stack. Post-stack data volumes have obvious advantages
over prestack or vector-binned data for analysis, including
smaller memory size and improved signal-to-noise ratio.

Allowing azimuthal variation in the migration velocity
will result in improved imaging, which is clearly a benefit
of 3D velocity continuation. However, the potential for
fracture characterization may be even more useful. Our
method has many of the same ideas as the azimuthal
imaging and fracture characterization flow proposed by
Sicking et al. [19] for reflection data. Under the velocity
continuation framework, we can extend the azimuthal
imaging idea to 3D diffraction imaging. Since diffraction-
generating fractures and faults are often nearly vertical and
preferentially aligned, they can be associated with azimuthal
anisotropy. Fomel et al. [8] demonstrate that it is possible
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to separate diffractions from specular reflections and then
image their associated discontinuities through the use of
velocity continuation. Their method operates on post-stack
data, as they show that diffractions are highly sensitive to
migration velocity, even in the zero-offset case. Al-Dajani
and Fomel [38] have successfully demonstrated zero-offset
diffraction image focusing as a fracture detection attribute
on azimuth-sectored 3D field data. Our proposed method
uses multiazimuth image focusing primarily as a velocity
analysis criterion, but kurtosis could also be used as an image
attribute. In cases where subsurface fractures cause azimuthal
anisotropy, kurtosis as an attribute may be indicative of
fracture intensity [38]. By applying velocity continuation to
3D diffraction imaging, one may be able to estimate both the
orientation and the intensity of fractures from the resulting
anisotropic velocity model and maximum kurtosis volumes,
respectively. This information can be useful in reservoir
development, as it can provide insight to subsurface fluid
flow behavior.

Although the spectral implementation of our method
allows a range of possible images to be computed efficiently,
it demands large amounts of memory to store a suite of
images as well as the kurtosis volume. Modern computa-
tional hardware makes our approach feasible as is, especially
for target-oriented imaging and analysis strategies. Future
studies may lead to better optimization-based approaches to
finding local kurtosis maxima, in which case, our method
could be practical for dense parameter estimation through-
out full 3D volumes.

The underlying strategy of velocity continuation is to
simultaneously estimate the velocity model as the data
are imaged. This is beneficial in the case of azimuthal
anisotropy discussed here, as the ambiguity between struc-
tural heterogeneity and anisotropy is handled without the
need for iteration. Other multiparameter seismic imaging
problems, such as converted-wave imaging, which are also
conventionally handled by iterative flows, could also benefit
from prestack versions of the 3D velocity continuation
strategy.
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The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades.
Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields
because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource
for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic
impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform
modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave), converted-wave (PS-wave) and
pure shear wave (S-wave) gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong
seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers
as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples
(due to shallow high velocity anhydrite layers) and side lobe interference effects at the Morrow level. Modeling tied with the field
data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.

1. Introduction

The Anadarko Basin is one of the major hydrocarbon pro-
ducing provinces in the USA. According to Sorenson [1],
Panhandle-Hugoton field in Western Anadarko Basin is a
giant oil field (estimated ultimate recovery (EUR) 1400
million bbl of oil) and the largest conventional gas field in
North America (EUR > 75 tcf). Hydrocarbon production in
the Anadarko basin is mainly from three geologic zones—
the Upper Mississippian and Pennsylvanian sandstones, Per-
mian carbonates, and Mississippian carbonates [2]. Permian
Council Grove and Chase Group carbonate rock gas fields
are by far the largest hydrocarbon producers in the basin.
The Pennsylvanian Upper Morrow sandstone reservoir in
western Anadarko Basin is a major oil-producing reservoir.
It consists of multiple-stacked lenticular sandstone bodies
formed within valley-fill complexes. These sandstones have
confounded operators and investigators alike because of their
irregular distribution. Compressional wave studies have been
mostly done for characterizing the Morrow sandstones [3, 4].

It is difficult to detect these thin and discontinuous reservoir
sandstones using P-wave datasets because of insufficient
acoustic impedance contrast between Morrow sandstone and
surrounding shales. The P-wave study is further limited since
the interference effects due to side lobe of Morrow shale
dominate the subtle P-wave AVO (amplitude versus offset)
response [5]. Thus, P-wave seismic methods have not been
successful in imaging Morrow sandstone accumulations
within this valley-fill system.

Shear wave data can help improve structural imaging
where P-impedance contrast is low, imaging through gas
clouds, lithology and fluid estimation, fracture detection,
and reservoir monitoring, which reduces risk and creates
new exploration opportunities [6, 7]. Engelmark [8] showed
modeling results where converted-wave imaging can be
valuable when the acoustic-impedance contrast between seal
and reservoir is weak. Alba Field is one of the field examples
where converted-wave data has been successfully used to
image low P-impedance reservoirs [9]. Margrave et al. [10]
reported success interpreting channel sands with 3C data
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Figure 1: Location of Postle Field in Texas County, Oklahoma.

in Blackfoot Field by using Vp/Vs measurement. Knapp
et al. [11] presented a case study in Gulf of Mexico to
show the significance of converted-wave data in imaging
through gas clouds. The importance of 4C data for lithology
and fluid estimation has been showed by Engelmark [12].
Fractured reservoirs cause shear-wave birefringence as they
propagate through them [13, 14]. The fast shear wave
(S1) is polarized parallel to the fracture strike direction
and the slow shear wave (S2) is polarized perpendicular
to the dominant fracture strike direction in the symmetry
axis plane. Crampin [15–18] stresses the importance of
shear wave splitting phenomenon to exploration geophysics.
Lynn and Thomsen [19] published one of the first field
examples which demonstrate use of S-wave anisotropy in
an exploration context. Mueller [20] has showed the use of
S-wave splitting for Austin chalk fracture detection. Time
lapse S-wave data has been used as a production-monitoring
tool in unconventional reservoirs such as tight gas sandstone
reservoir in Rulison Field [21] and carbonate reservoir in
Weyburn Field [22].

Most of the above-mentioned studies have been done
using converted-wave data. Importance of shear waves has
been mostly demonstrated using PS-waves (Stewart et al.
[23]) as compared to S-waves. The present study shows the
value of S-wave data in imaging of Morrow sandstone reser-
voirs using full waveform modeling and real-data results.
Study by Wilson [24] in Eva South field demonstrated that

PS-waves can be successfully used for Morrow sandstone
detection in an area where P-wave fails. He showed that
Vp/Vs and PS1 amplitude maps improve the mapping of
Morrow sandstone distribution. Blott [25] demonstrated
the importance of 9C dataset in detecting the Morrow
sandstones in Sorrento field by using Vp/Vs and S1 and S2
amplitude maps. Rampton [26] showed the usefulness of PS-
and S-wave VSP (vertical seismic profile) data for detecting
the reservoir sandstones, while verifying that compressional
energy corresponds primarily to nonreservoir rock at the
Morrow level. Wiley [5] indicates the presence of faults
in such fields and there can be fractures associated with
them in all the hydrocarbon producing geologic zones. Shear
wave splitting can help in understanding these fractures and
improve production.

This study is focused on Postle Field which was discov-
ered in 1958. The production phases began with primary
production, followed by water flooding in 1965 and CO2

enhanced oil recovery from 1995. The field has produced
nearly 120 million barrels or 40% of an estimated 300 million
barrels of OOIP (original oil in-place) [27]. Thus, under-
standing the dynamics of the reservoir is very important in
the design and success of the flood management in such
mature fields. Multicomponent data can help in detecting
the sandstone distribution and movement of CO2 injection,
since shear waves are sensitive to pressure changes and do not
depend significantly on saturating fluids [28, 29].
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The main producing reservoir in the study area is the
Morrow A sandstone. It is observed that the acoustic
impedance percentage difference between Morrow shales
and sandstones is ∼10%, whereas the shear impedance
percentage difference is ∼40%. We perform full waveform
modeling to understand the Morrow A sandstone AVO
signatures on P-wave, PS-wave and S-wave [30]. Model-
ing demonstrates that Morrow sandstones can be better
mapped using S-wave data, whereas P-wave and PS-wave
data are insufficient in imaging these sandstones. Due to
low acoustic impedance contrast and interference effects,
P-wave AVO has not been used until now to characterize
the Morrow sandstones. But elastic modeling suggests that
S-wave AVO can be of great help in characterizing these
sandstones. The modeling results in combination with the
field data results show that pure S-wave data can help
in finding new prospects and guide in future drilling
locations. This is the first study to do full waveform mod-
eling for understanding the Morrow A sandstone response
on P-, PS- and S-waves and help in multicomponent
data processing and interpretation. Modeling also helps
in understanding the effect of shallow anhydrite layers on
data quality and this study has never been done before
for Morrow sandstone reservoirs. The importance of this
study is the accumulation of strong evidence demonstrating
the direct detection of reservoir sandstone using S-waves.
This study encourages having more S-wave seismic studies
in characterizing the Morrow sandstones in such mature
fields.
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Figure 3: Well logs used for modeling show Morrow A sandstone
at 1875 m and shallow anhydrite layers. Close-up of the Morrow
interval (b) shows the strong S-wave velocity (blue curve) contrast
as compared to P-wave velocity (red curve) contrast between
Morrow shale and A sandstone.

2. Geologic Background

The study area is located in Postle Field, Anadarko Basin,
Oklahoma (Figure 1). The area is flanked in the west by the
Keys dome, in the south by the Amarillo uplift and in the
north by the Hugoton embayment [31]. Figure 2 provides
the generalized stratigraphic column of the Postle Field and
the stratigraphy of this basin has been discussed in detail
by Bowen and Weimer [32] and Henry and Hester [33].
Mississippian and older rocks are mainly carbonates, whereas
Pennsylvanian and younger rocks are mainly shales with
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Figure 4: Amplitude versus angle (AVA) response for P-wave, S-wave, and PS-wave for the velocity contrast between Morrow shale and A
sandstone shown in Figure 3.
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Figure 5: The three different 1D models used to understand the Morrow A sandstone response on synthetic gathers. Model 1—only Morrow
A sandstone interval, Model 2—Morrow A sandstone with one limestone layer below, and Model 3—Morrow A sandstone with Atoka
limestone above and one limestone layer below.

some sandstones. The Morrow formation lies uncoformably
on top of Mississipian strata and conformably below the
Thirteen Fingers limestone [34]. The Upper Morrow consists
of multiple stacked lenticular sandstone bodies formed
within valley fill complexes. The Morrow sandstones are

major hydrocarbon producers in this basin along with the
shallow Permian Council Grove and Chase Group carbonate
rock gas reservoirs. The main reservoir in our study area is
the Morrow A sandstone which are at a depth of around
1875 m and have an average thickness of 10 m (0–30 m).
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The average porosity of this sand is 17% and the permeability
is around 50 md.

3. Elastic Modeling

Seismic modeling is done to compute synthetic seismograms
for a given geologic model. There are different methods
for simulating seismic wave propagation including ray
tracing, reflectivity, integral-equation, finite difference, finite
element, and so forth, [36–38]. There are also hybrid
approaches which combine two or more of the above
methods [39]. In this study, we have used the finite dif-
ference technique for computing the elastic wave equation
and generating the synthetic seismograms [40, 41]. It is
necessary to compute synthetic gathers for horizontal and
vertical source-receiver combinations in order to compare
the seismic signatures of different wave modes (P-, PS-, and
S-waves). Finite difference modeling simulates the full wave-
field while preserving the amplitudes and phases. It helped in
understanding the strong effect of multiples due to shallow
high velocity anhydrite layers. Finite difference modeling
is considered to be expensive in terms of computing time
and memory, but since we are using a 1D model, this was
not a problem. 2D multicomponent gathers are generated
using this 1D model. The grid size is 4.572 m × 4.572 m
and the model size is kept large enough to avoid interference
between side reflections from the boundary and the main
events. Finite difference modeling also allows us to look at
the propagated wave field at certain time by taking snapshots.

4. Model Building

Well logs from a well with dipole sonic logging have been
used for elastic parameters. Figure 3 shows the P-velocity
(Vp), S-velocity (Vs), and density (ρ) logs from that well.
There are three anhydrite layers between the surface and
550 m, and the reservoir Morrow A sandstone is at a depth
of 1875 m. The close-up of Morrow level in Figure 3 shows
the strong S-wave velocity contrast between Morrow shale
and A sandstone as compared to P-wave velocity contrast.
This leads to good amplitude versus angle (AVA) response
for S-wave at the top of Morrow A sandstone as compared
to P-wave and PS-wave (Figure 4). The well logs shown in
Figure 3 are blocked, smoothed, and modified to have a
detailed understanding of seismic response at the Morrow
level. The three models (Figure 5) built to understand the
Morrow A sandstone AVO response and interference effects
are the following.

Model 1: only Morrow A sandstone interval,

Model 2: Morrow A sandstone with one limestone
layer below,

Model 3: Morrow A sandstone with Atoka limestone
above and one limestone layer below.

The presence of shallow high velocity anhydrite layers
limits the incident angle and offset at the top of Morrow A
sandstone. The rays are critically refracted at small angles
of incidence at the top of the high velocity anhydrite layers,
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Figure 7: Wave propagation snapshots for (a) P-wave, (b) S-wave
and (c) PS-wave using Model 1a. We observe that S-wave shows a
stronger Morrow A sandstone response as compared to P- and PS-
wave.

and hence, we do not get large angles and offsets for the
target reservoir. The reverberations due to these high velocity
anhydrite layers create strong multiples which have an
adverse effect on data and are discussed in next section. These
shallow layers vary in thickness and lithology laterally. To
have a better understanding of the effect of these shallow
anhydrite layers, Models 1, 2, and 3 are further divided into
following three models (Figure 6).

Model a: No anhydrite layer,

Model b: One anhydrite layer,

Model c: Three anhydrite layers.

5. Morrow A Seismic Signature

Gathers are calculated for horizontal and vertical sources,
and both the horizontal and vertical components are re-
corded. To have a close match with the field data, in this full
waveform modeling study, all receiver components record
different types of waves and none of the source-receiver
combinations produce a pure P-, PS-, or S-wave records.
But for simplicity, in this paper, we will refer to vertical
source-vertical receiver recording as P-wave, vertical source-
horizontal receiver recording as PS-wave, and horizontal
source-horizontal receiver recording as S-wave recording,
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Figure 8: Wave propagation snapshots for (a) P-wave, (b) S-wave
and (c) PS-wave using Model 1c. We observe that amplitude of
multiples due to shallow anhydrite layers is stronger than the
reflection from the top of Morrow A sandstone in P- and PS-wave
snapshot. Whereas the Morrow A sandstone response is stronger
than the amplitude of multiples in S-wave snapshot.

because these are the dominant waves in these source-
receiver combinations. An 18 Hz Ricker wavelet is used for P-
wave modeling and a 13 Hz Ricker wavelet is used for S- and
PS- wave modeling. These wavelets are chosen based on the
dominant frequency observed at Morrow level in real data.

5.1. Wave Propagation Snapshot. We know from well logs
that the acoustic impedance contrast between Morrow
sandstone and encasing shale is weak as compared to the
shear impedance contrast. The wave propagation snapshots
for P-wave, PS-wave, and S-wave confirm these observations.
Figures 7(a) and 7(c) show the weak P-wave and PS-wave
response at the top of Morrow A sandstone respectively, as
compared to the strong S-wave response (Figure 7(b)), which
is similar to the observation in Figure 5. This is for the case
of Model 1a, that is, just the Morrow A sandstone with no
anhydrite layer. Figures 8(a), 8(b), and 8(c) show the P-wave,
S-wave and PS-wave propagation snapshot for Model 1c, that
is, just the Morrow A sandstone with three anhydrite layers.
The amplitude of multiples due to anhydrite layers is stronger
than the reflection from the top of Morrow A sandstone in
case of P- and PS-wave (Figures 8(a) and 8(c)), whereas for
S-wave, the Morrow A sandstone response is stronger than
the amplitude of multiples (Figure 8(b)).
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Figure 9: P-wave gather for the case of (a) Model 1a, (b) Model 1b, and (c) Model 1c, shows that the amplitude of multiples due to shallow
anhydrite layers is comparable to the amplitude of primary reflections.
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Figure 10: S-wave gather for the case of (a) Model 1a, (b) Model 1b, and (c) Model 1c, shows that the primary reflection amplitude is stronger
than the amplitude of multiples.
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Figure 11: PS-wave gather for the case of (a) Model 1a, (b) Model 1b, and (c) Model 1c, shows that the amplitude of multiples due to shallow
anhydrite layers is comparable to the amplitude of primary reflections.
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Figure 12: (a) P-wave gather for Model 1a shows a Class II AVO anomaly at the top of Morrow A sandstone where a small peak changes into
trough with offset. (b) The P-wave gather for Model 3a shows that the peak at the top of Morrow A sandstone is interfered with the side lobe
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Figure 13: (a) S-wave gather for Model 1a shows a strong peak response at the top of Morrow A sandstone which changes to trough with
offset. (b) The S-wave gather for Model 3a shows that even in the presence of overlying shale and bottom limestone layer the Morrow A
sandstone shows a distinct high amplitude AVO response.

5.2. Effect of Multiples. Internal multiples ringing in the
shallow anhydrite layers have a significant effect on P-wave,
PS-wave, and S-wave gathers. To have a better understanding
of the effect of multiples on the three wave modes (Figures 9,
10, and 11), synthetic gathers are generated using Models 1a,
1b, and 1c. Since the acoustic impedance contrast between
Morrow sandstone and shale is weak, the reverberations due
to the anhydrite layers overshadow the Morrow A sandstone
response in P-wave (Figure 9(c)). Melvin [42] describes the
adverse effects of multiples in P-wave data at Postle Field
and suggests ways to correct them. These multiples do not
affect the S-wave gather significantly, since the Morrow
A sandstones have a distinct high amplitude response
compared to the weak reflectivity of multiples (Figure 10(c)).

The PS-wave reflection from the Morrow A sandstone is
also weak. Thus, the reverberations due to anhydrite layers
overshadow the Morrow A sandstone response in PS-wave
gather (Figure 11(c)). The data gets badly affected with
increasing anhydrite layers.

5.3. Interference Effect. Figures 12, 13, and 14 show the
zoomed sections from the P-wave, S-wave, and PS-wave
gathers respectively. Models 1a and 3a with 19.5 m sandstone
thickness have been used for understanding Morrow A
sandstone AVO response and interference effects. For Model
1a, the P-wave gather shows a weak class II AVO response
at the top of Morrow A sandstone (Figure 12(a)), where
the peak changes to trough with offset. This is similar to
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Figure 14: (a) PS-wave gather for Model 1a shows increasing peak amplitude with offset at the top of Morrow A sandstone. (b) The PS-wave
gather for Model 3a shows that the peak response at the top of Morrow A sandstone is weakened due to the interference with Morrow shale
and bottom limestone layer.

the P-wave AVA response shown in Figure 4. Figure 12(b)
shows the interference effect of the Morrow shale and the
underlying limestone layer on the Morrow A sandstone AVO
response. It leads to a peak doublet with side lobe of Morrow
shale showing stronger amplitude. With increasing offset the
peak doublet changes into a single peak which makes P-wave
AVO analysis difficult. Stacking will also give a peak doublet
for Morrow A sandstone, having inseparable peaks (observed
in real P-wave stack, Figure 18(a)). This makes horizon
picking difficult and P-wave interpretation challenging.

The change in rigidity between the reservoir sandstone
and surrounding shale causes a strong seismic expression on
the S-wave data. For Model 1a, the response of Morrow A
sandstone is a peak which turns to trough with increasing off-
sets (Figure 13(a)) and is similar to the S-wave AVA response
shown in Figure 4. Even for Model 3a which has overlying
shale and an underlying limestone layer, the S-wave gather
shows a distinct high amplitude AVO response for Morrow
A sandstone (Figure 13(b)). The synthetic gather shows that
S-wave AVO can be very useful in characterizing the A
sandstones. The real data S-wave stack (Figure 18(b)) shows
a distinct high amplitude peak for Morrow A sandstone
which makes interpretation simpler. For Model 1a, the PS-
wave shows a weak peak response at the top of A sandstone
and the amplitude increases with offset (Figure 14(a)). This
is similar to the PS-wave AVA response shown in Figure 4.
The peak response due to Morrow A sandstone is weakened
due to the interference effect of Morrow shale and bottom
limestone layer (Figure 14(b)).

The reservoir sandstone thickness varies from 0–30 m in
the study area. Wedge modeling is done to understand the
effect of changing sand thickness on different wave com-
ponents. The sandstone thickness in the model is changed
from 0 to 32.5 m at an increment of 6.5 m to understand
the interference effect. P-wave, S-wave, and PS-wave gathers
are displayed side by side in Figure 15 to compare the AVO

responses for changing sand thicknesses. When the Morrow
A sandstone is absent, the P-wave gather shows a weak peak
response from the side lobe of Morrow shale. As the sand
thickness increases, we observe a peak doublet after 13 m
of sandstone thickness. The peak amplitude of this doublet
increases with increasing sand thickness.

S-wave gather shows separate peak response even till
6.5 m of A sandstone. The peak amplitude for the S-
wave event increases with increasing sandstone thickness.
In the PS-gather, the peak at the top of A sandstone starts
interfering with the peak of bottom limestone layer as the
thickness drops down to 13 m sandstone, making interpreta-
tion difficult. For PS-waves also, the peak amplitude increases
with increasing sandstone thickness. So, it is observed that
with P-waves and PS-waves, it is difficult to detect A
sandstones less than 13 m thick, whereas the S-wave gather
shows a distinct high amplitude response even for 6.5 m
sandstone thickness, which is very useful since the average
thickness of A sandstone in the study is approximately 10 m.

6. Field Data Results

The Reservoir Characterization Project in Colorado School
of Mines acquired and processed a 3D-9C survey in Postle
field for reservoir characterization of Morrow A sandstones
and for monitoring a CO2 flood. The study area is nearly
16.2 sq· km with 16 shot and receiver lines (Figure 16). The
shot lines are in E-W direction with 268.2 m spacing and the
receiver lines are in N-S direction with 268.2 m spacing. The
shot point and receiver point interval is 33.5 m and the bin
size is 33.5 m× 33.5 m. Data acquisition was done by keeping
all the receivers active for each shot. While processing, the
pre-stack shear wave data is rotated using Alford rotation
[43], with fast shear (S1) in the direction of N105E. This fast
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shear wave direction or the direction of maximum horizontal
stress has been obtained from well log information.

The P-wave gather in Figure 17(a) shows the AVO re-
sponse similar to the synthetic gather (Figure 12(b)) around
1.07 s, where a peak doublet at near offset changes to
single peak with increasing offset. The S1-wave gather in
Figure 17(b) also shows an AVO response similar to the
synthetic gather (Figure 13(b)) around 2.08 s, where a strong
peak changes to trough with increasing offset. Figures 18(a)
and 18(b) shows the P- and S1-wave stacks, respectively,
along an inline passing through the well used for elastic
modeling. Gamma Ray log from that well is shown by red
curve in the stacks. The dip of the reflectors in P-wave
stack and S1-wave stack is different, because the statics for
each stack was computed independently. In the P-wave stack
(Figure 18(a)), the horizon picked in blue is the Morrow
shale, and the strong peak reflector above is Atoka limestone.
Due to the interference with the side lobe of Morrow shale,
Morrow A sandstone shows a peak doublet below Morrow
shale trough. There are other Morrow sandstone layers
below, but these cannot be seen clearly in the P-wave stack
because of the weak acoustic impedance contrast. In the S1-
wave stack (Figure 18(b)) the horizon picked in blue is the
Morrow shale and the reflector above is Atoka limestone.
In the S1-wave stack, the Morrow A sandstone has a strong
peak amplitude below the Morrow shale trough. Due to the
addition of static correction, the Morrow sandstone reflector

in S1-wave stack appears around 2.25 s as compared to 2.08 s
in gather. Owing to the good shear impedance contrast
between Morrow sandstone and shale we can observe strong
reflectors below Morrow A sandstone as well, indicating
presence of other sandstone bodies below. This can help in
future investigation of deeper reservoir possibilities.

P- and S1-amplitude maps were extracted along the
Morrow A peak and are shown in Figures 19(a) and 19(b),
respectively. Due to the adverse effect of multiples in the
converted-wave data, PS-amplitude map has not been shown
here. Those data need further processing to remove that
noise. For the P-wave amplitude map, the sum of positive
samples is computed in a 0.035 s window centered on
Morrow A peak. For S1-wave the window is 0.05 sec. The
window size for both P and S1-wave is chosen so that the
complete Morrow A sandstone peak amplitude is considered.
The well pattern is overlaid on top of the amplitude maps,
since these are the places were A sandstone have been
encountered. The wells drilled outside this pattern have
not encountered Morrow A sandstone, hence we expect to
see high amplitudes mainly in this well pattern area. The
high amplitudes in S1-wave map lie mostly within the well
pattern as compared to P-wave map. Thus, the well pattern
matches better with the sandstone distribution map obtained
from S1-wave stack as compared to P-wave stack. Figure 20
shows the gross sandstone thickness map constructed by
picking the top and base of A and A1 sandstone in well
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logs and interpolating the calculated thickness between well
locations (courtesy Whiting Petroleum). S1-amplitude map
shows a trend similar to the gross A sandstone thickness map
(Figure 20(a)), except for the high amplitude anomalies in
the west (shown in black oval). The high amplitudes in the
west may be due to Morrow A1 sandstone (Figure 20(b)), but

further investigation is needed to confirm this. The Morrow
A1 sandstone is another sandstone layer lying 3–15 meters
below A sandstone and is prominent in western part of the
study area. So, in the western part, where there is no Morrow
A sandstone, we may get high amplitudes due to the presence
of Morrow A1 sandstone.
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Figure 19: (a) P-wave amplitude map and (b) S1-wave amplitude map are shown with well pattern overlaid on them (green dots represent
producer wells; red dots represent injector wells). The amplitude map is obtained by computing sum of positive samples in a 0.035 s window
centered around peak doublet for P-wave and 0.05 s window centered around peak for S1-wave. The S1-wave amplitude shows better match
with the well pattern, except in the western part of the study area (shown by black oval) where there is presence of Morrow A1 sandstone
(Figure 20(b)).
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Figure 20: Gross sandstone thickness maps for (a) Morrow A sandstone and (b) Morrow A1 sandstone (courtesy Whiting Petroleum). The
star in the map is the well used for elastic modeling.

The P- and S1-amplitude values are computed in a 4 ×
4 (inline × xline) radius around the well locations in high
fold area and compared with the gross A sandstone thickness
value at each well location (Figure 21). Elastic modeling
showed that for both P- and S-waves the peak amplitude

increases with increasing A sandstone thickness. Figure 21
proves that the P- and S1-ampitude values increase with
increasing A sandstone thickness. It also shows that S1-
amplitude map has better correlation (correlation coeffi-
cient 0.60) with gross A sandstone thickness as compared
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Figure 21: S1-wave amplitude map has a better correlation to gross A sandstone thickness than the P-wave amplitude map. For the S1-wave
amplitude map, the correlation is not good when the sandstone thickness is less than 6.5 m, whereas the P-wave amplitude map does not
show good correlation even for thicker sandstones.
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Figure 22: (a) P-wave impedance map and (b) S1-wave impedance map (right) are shown with well pattern overlaid on them (green dots
represent producer wells; red dots represent injector wells). For P-waves, the impedance map is obtained by computing rms amplitude in a
0.009 s window centered on Morrow A sandstone. For S1-waves, the impedance map is obtained by computing rms amplitude in a 0.01 s
window centered on Morrow A sandstone [35]. The S1-wave impedance shows better match with the well pattern. The high impedance in
the west part of the study area (shown by black oval) ties with the presence of A1 sandstone (Figure 20(b)).

to P-amplitude map (correlation coefficient 0.476). The P-
wave amplitude map does not show good correlation even
for thicker sandstones and the correlation is almost same for
all sandstone thicknesses. The S1-amplitudes map has good
correlation for thicker sandstones and the correlation drops
down mainly below 6.5 m of sandstone as predicted by the
modeling. Thus, S1-amplitude map is a good indicator of
Morrow A sandstone distribution and thickness.

Pinto [35] performed post stack impedance inversion on
P- and S1-wave stacks and the results are shown in Figure 22.

Comparing the P-impedance map (Figure 22(a)) with well
pattern and gross A sandstone thickness map suggests that
it is unable to map Morrow A noticeably. The failure of P-
impedance map to detect the A sandstones is due to weak
impedance contrast between Morrow shale and A sandstone,
and also due to the interference between the A sandstone
peak with the side lobe of Morrow shale and underlying
limestone layer. Excluding the high impedance anomaly in
the west, the S1-impedance map (Figure 22(b)) shows good
sandstone distribution and ties well with the overlaid well
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pattern and the gross A sandstone distribution shown in
Figure 20(a). The high impedance in the west part of the
study area matches with the gross A1 sandstone distribution
shown in Figure 20(b).

CO2 flooding in the study area has proceeded towards the
north part of the block and it is very important to find the
sandstone distribution in the north. The S1-impedance map
helps us in mapping sands in the north part of the block,
where P-impedance map completely fails. This can be very
useful in future well planning and increased production.

7. Conclusions

There are many examples like Postle Field in the world which
have been producing for many decades but still have lot
of reserves left to be exploited. These prolific reservoirs are
important exploration plays, yet the reservoirs are difficult to
detect using conventional P-wave seismic. New technologies
and methods can help in exploiting these reserves. Shear
wave data has the potential to revive and extend the life of
mature fields like Postle. It helps in imaging the sandstones
and also monitoring the enhanced oil recovery. This is
because S-waves are more sensitive to pressure changes than
are P-waves.

To date, mostly compressional wave studies have been
done to characterize Morrow sandstones, with limited
modeling studies. The full waveform modeling shows that S-
waves are better than P- or PS-waves for Morrow sandstone
detection. This study helped in understanding the Morrow
A sandstone AVO response for different wave modes. The
modeled gathers for P-, S-, and PS-wave show that stronger
amplitudes correspond to thicker A sandstone accumula-
tions. Modeling helped in understanding the interference
effect due to the overlying shale and a limestone layer below.
It also helped in understanding multiples caused by shallow
anhydrite layers. S-wave data are commonly used for fracture
mapping but this study shows their use in detecting thin
reservoir sandstones. The present modeling study is tied to
the results from field data showing how shear wave data have
important implications for oil exploration and development
in areas where P-wave data is unsatisfactory. The shear wave
rotation analysis and data processing is still going on, and
we hope to get better results from P-, PS-, and S-wave data
interpretation in future.
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An initial study is performed in which dynamically focused Gaussian beams are investigated for seismic imaging. Focused Gaussian
beams away from the source and receiver plane allow the narrowest and planar portions of the beams to occur at the depth of
a specific target structure. To match the seismic data, quadratic phase corrections are required for the local slant stacks of the
surface data. To provide additional control of the imaging process, dynamic focusing is investigated where all subsurface points are
specified to have the same planar beam fronts. This gives the effect of using nondiffracting beams, but actually results from the use
of multiple focusing depths for each Gaussian beam. However, now different local slant stacks must be performed depending on
the position of the subsurface scattering point. To speed up the process, slant stacking of the local data windows is varied to match
the focusing depths along individual beams when tracked back into the medium. The approach is tested with a simple model of
5-point scatterers which are then imaged with the data, and then to the imaging of a single dynamically focused beam for one shot
gather computed from the Sigsbee2A model.

1. Introduction

Dynamically focused Gaussian beams are investigated for
the seismic imaging of common-shot reflection data. This
extends the work of Nowack [1] in which focusing of
Gaussian beams propagated from the source, and receiver
surface is used to allow the narrowest portions of the beams
to occur at the depth of a specific target structure. The
beam fronts at the beam waists are also planar leading to
more stable beam summations for imaging. To match with
the surface data, quadratic phase corrections are required
for the local slant-stacks of the surface data. However, in
the earlier approach only a single focusing depth can be
specified. To provide additional control on the imaging
process using focused Gaussian beams, a dynamic process
is investigated where all subsurface points are specified to
have planar beams of the same width. This gives the effect
of using nondiffracting beams at the scatterers, but actually
results from the use of multiple imaging depths for each
Gaussian beam. As a result, there is a tradeoff in speed where
now different slant stacks of the data are required for each
subsurface point. In order to speed up the imaging process,
the slant stacking of the data window is varied to match
the focusing depths along individual beams when tracked

back into the medium. These focused slant stacks are then
matched to Gaussian beams with beam waists located at
different subsurface locations. The approach is first tested
using 5-point scatterers which are then imaged with the data,
and then using a single dynamically focused beam for one
shot gather computed from the Sigsbee2A model.

Summations of Gaussian beams have been applied for
the computation of high-frequency seismic wavefields in
smoothly varying inhomogeneous media (see e.g., Popov [2];
Cerveny et al. [3]; Nowack and Aki [4]). Reviews of Gaussian
beam summation have been given by Cerveny [5, 6], Babich
and Popov [7], and more recently by Popov [8], Nowack
[9], Cerveny et al. [10], and Bleistein [11]. An advantage
of summations using Gaussian beams to construct more
general wavefields is that the individual Gaussian beams have
no singularities along their paths, no two-point ray tracing is
required, and triplicated arrivals are naturally incorporated
into either forward or inverse modeling. More recently
overcomplete frame-based Gaussian beam summations have
been developed based on window and wavelet transforms
to address some of the issues related to completeness of
beam summations [12]. In an overcomplete frame-based
approach, the wavefield is decomposed into beam fields that
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are localized both in position and direction. Although an
orthonormal basis cannot be formed using a Gabor frame, an
overcomplete frame expansion can be constructed which has
the added benefit of providing redundancy in the expansion
[13–17]. Here curved initial beams are used to decompose
the data and these are then propagated into the subsurface
using dynamically focused Gaussian beams. An alternative is
to shoot beams from the scattering locations upwards to the
source and receiver plane as was done by Popov et al. [18],
but this will be computationally slower than shooting beams
from the surface.

In order to test the dynamically focused Gaussian beam
approach, a model is constructed with 5 small scatterers
with depth in a vertically varying medium resulting in
five diffracted arrivals each with different move-outs with
distance. The partial image is then given for a single beam
with different focusing depths such that the planar beam
waists at the subsurface points are the same. However, when
summed over all angles and data windows, the scatterers
are properly imaged. This is then tested for a single dynam-
ically focused beam for one-shot gather computed from
the Sigsbee2a model. The advantage of using dynamically
focused beams is the consistency of having the same focused
beams for all subsurface points. A disadvantage is that now
multiple slant stacks are required for different points of
the subsurface which increases the computational burden
compared to a standard Gaussian beam algorithm or a beam
algorithm with a single focus depth. This can in part be offset
by precomputing the beam stacks at a set number of focusing
depths and then interpolating the results required at different
subsurface points.

2. Gaussian Beam Imaging with
Dynamically Focused Beams

In common-shot migration, each shot gather is migrated
separately and the results are summed to give the final image
δm(x). Thus,

δm(x) ∼
∫
dxsIs(x), (1)

where the adjoint image for each shot point can be written as

Is(x) =
∫
dω

2π
B(ω)

∫
dxgg(x, xs,ω)g(x, xg ,ω)us(xg , xs,ω)

B(ω) = ω2S(ω),
(2)

where ω is the radial frequency, S(ω) is the source time
function, xg is the geophone location, xs is the source
location, and us(xg , xs,ω) is the scattered field recorded at
the geophones. g(x, xg ,ω) and g(x, xs,ω) are the Green’s
functions, from the geophones and source to the subsurface
scattering points x. From reciprocity of the Green’s function
g(x, x′,ω) = g(x′, x,ω) and g indicates the complex
conjugate of g .

In the 2D case, the Green’s function can be written in
terms of a summation of Gaussian beams as

g(x, x′,ω) = −i
4π

(
ε

v0

)1/2 ∫
dγ ugb(x, x′,ω)

= −i
4π

(
ε

v0

)1/2 ∫ dpr1
pr3

ugb
(
x, x′, pr ,ω

)
,

(3)

where ε is the complex beam parameter [3] and

ugb(x, x′,ω) =
[
v(s)
q(s)

]1/2

exp
{
iωτ(s) +

iω

2
M(s)n2

}
. (4)

The coordinates (s,n) correspond to the subsurface
position x in ray-centered coordinates, τ(s) is the travel time
along the central ray, v(s) is the velocity along the central ray,
and the horizontal component of the ray parameter vector at
the initial point is pr1 = sin γ/v0, where γ is the take-off angle
from the vertical.

The complex second derivative of the travel time field
with respect to the transverse coordinate n can be written as

M(s) =MR(s) + iMI(s) = p(s)
q(s)

, (5)

where MR(s) is related to the wavefront curvature K(s) of the
beam by MR(s) = K(s)/v(s). To form a bounded Gaussian
beam, then MI(s) > 0. The variables p(s) and q(s) are
solutions to the dynamic ray equations and for a beam
solution are also complex [19]. The dynamic ray equations in
2D have two real fundamental solutions which can be written
as

π(s, s0) =
⎡⎣q1(s) q2(s)

p1(s) p2(s)

⎤⎦, (6)

where π(s0, s0) = I . q1(s), p1(s) are solutions for an initial
plane wave and q2(s), and p2(s) are for an initial line source.
The inverse of π(s, s0) is

π−1(s, s0) = π(s0, s) =
⎡⎣ p2(s) −q2(s)

−p1(s) q1(s)

⎤⎦. (7)

The two real solutions of the dynamic ray equations must
then be combined to form a Gaussian beam. There are a
number of ways to combine the solutions, but one way is [3]

q(s) = εq1(s) + q2(s),

p(s) = εp1(s) + p2(s),
(8)

where ε is the beam parameter. The variable q(s) is related
to the complex geometrical spreading along the beam. Since
for the fundamental solution matrix Det(π(s, s0)) = 1 for all
points along the ray, the complex geometric spreading can
never be zero at any point along the beam if it is nonzero at
any one point. Since the Gaussian beam amplitude is related
to the inverse square root of the geometric spreading, the
beam amplitudes are always finite, even at caustics for the ray
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solution. This is one of the useful features of Gaussian beam
solutions, in contrast to ray solutions.

The second derivative of the time field with respect to n
can be written as

M(s) =MR(s) + iMI(s) = εp1(s) + p2(s)
εq1(s) + q2(s)

. (9)

Since at the source point π(s0, s0) = I and ε = εR − iεI ,
then

M(s0) =MR(s0) + iMI(s0) = 1
ε
= εR
ε∗ε

+
iεI
ε∗ε

, (10)

where ε∗ε is the magnitude squared of ε. Alternatively, ε can
be written in terms of M(s0) as

ε = MR(s0)
M∗(s0)M(s0)

− iMI(s0)
M∗(s0)M(s0)

, (11)

where M∗(s0)M(s0) is the magnitude squared of M(s0).
Thus, the complex beam parameter can be specified either
directly in terms of ε or in terms of M(s0).

The complex beam parameter can also be written

ε = εr − iεi = v0S0 − iv0L
2
0, (12)

where v0 is an initial velocity. In a homogeneous medium,
S0 is the distance of the beam waist from the initial point of
beam.

An alternate, and in some sense simpler way, to blend the
solutions to the dynamic ray equations is

q(s) = q1(s) +M(s0)q2(s),

p(s) = p1(s) +M(s0)p2(s),
(13)

where

M(s0) =MR(s0) + iMI(s0) = 1
ε
. (14)

In either case, we can obtain M(s) at the scattering point,
from the initial value of M(s0) along the source and receiver
array by solving the dynamic ray equations for p(s) and
q(s), and then forming M(s) = p(s)/q(s). Alternatively, we
can specify M(s) at the scattering point and then use the
solution matrix for the dynamic ray equation π(s0, s) from
s to s0 to obtain p(s0) and q(s0) at the initial point of the ray.
From these, one can obtain the corresponding value of beam
curvature M(s0) at the beginning point of the ray. At a point
along the beam, M(s) can be written as

M(s) =MR(s) + iMI(s) = K(s)
v(s)

+ iMI(s), (15)

where K(s) is the wavefront curvature in ray coordinates,
v(s) is the velocity along the ray, and MI(s) is related to
the transverse beam width, and these can be specified at the
scattering point along the ray and used to determine the
value at the beginning point of the ray.

The exponential term away from the central ray can be
written as

exp
{ −ω

2
MI(s)n2

}
= exp

{
−n2

2L2(s)

}
, (16)

where L(s) = (ωMI( s ))−1/2 is the beam half-width
transverse to the ray. At the initial point of the beam, L(s0) =
(ωMI(s0))−1/2 = (ε∗ε/ωεI)

1/2. For the case of the beam waist
at the initial point of the beam MR(s0) = 0, and L(s0) =
(v0/ω)1/2L0 is the beam half-width at the beam waist. In a
homogeneous medium, this is the narrowest point along the
beam and is also the only point where the beam front is
planar. For the case when MR(s0) = 0 where s /= s0, the beam
front is planar at some point s along the ray and generally
curved at the initial position s = s0. Also, the beam waist
is shifted along the beam away from the initial point of the
beam.

Although the planar beam waist is often placed at the
initial source point for forward modeling, it is also common
to put the beam waist at the receiver location [5, 6]. This
reduces the number of beams required for the summation at
the receiver, and also planar beam fronts at the receiver pro-
vide more stable beam summations. Recent true amplitude
migration formulations using Gaussian beams have used
beams launched directly from the scattering points up to the
surface with the beam waists specified at the scattering points
[18, 20, 21]). However, it is more economical to launch
beams from the source and receiver positions down into the
subsurface since there are fewer source and receiver locations
than subsurface scattering points, and this minimizes the
amount of beam tracing required. In order to locate the beam
waists in the subsurface when the beams are launched from
the source and receiver aperture, then generally curved beam
fronts are required along the source and receiver aperture.

For dynamic beam focusing in Gaussian beam imag-
ing, the beams are launched from the initial source and
receiver plane, but then are dynamically focused for each
of the individual scattering points. Although the beams
are generally nonplanar along the receiver plane, the initial
beam parameters can be determined from the specified beam
parameters at depth. However, now these curved beams on
the initial surface must be matched to the local slant stacks
of the data for beam parameters specified at each of the
subsurface scattering points.

Assuming that the initial beam parameters have been
determined from dynamic ray tracing for beam parameters
specified at the scattering points, then the algorithm for
imaging-focused Gaussian beams from Nowack [1] can
be extended to dynamic focusing. For generally nonplanar
initial beams at the source or receiver locations launched at
some angle to the aperture plane, the quadratic part of the
initial beam with respect to the horizontal x coordinate can
be written as

exp
{
iω

2
Kx(s0)
v0

(x − xL)2
}

exp

{
−(x − xL)2

2L2
x−ref(s)

}
, (17)

where Kx(s0) is the initial real-valued horizontal beam
curvature and Lx−ref(s0) is the initial horizontal beam half-
width at the reference frequency ωref. To match this with the
initial parameters of the beam propagated into the medium,
then the transverse coordinate of the beam n = cos γ(x− xL)
where γ is the angle of the beam with respect to the vertical.
Given the initial values Kx(s0) and Lx−ref(s0) along the source
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and receiver aperture, then the initial values for MR(s0) and
MI(s0) for the beams are

MR(s0) = Kx(s0)
v0cos2

(
γ
) ,

MI(s0) = (
ωrefcos2(γ)L2

x−ref(s0)
)−1

,

(18)

and then the initial beam parameter ε = εr − iεi can
be obtained and used to construct the beam solution
propagated into the medium.

The 2D resolution of unity by Gaussian functions in the
aperture plane is

1 ∼ 1√
2π

ΔL

σ

∞∑
m=−∞

e−(x−mΔL)2/2σ2
, (19)

where

ΔL� 2σ. (20)

Assuming a regularly spaced set of beam centers xL =
mΔL along the receiver array, the initial locations of the
Green’s functions at the receivers can be phase shifted to these
beam center locations with a phase adjustment of p

g
1(x

g
1 −

mΔL) + Kx(s0)(x
g
1 −mΔL)2/2v0. Then,

g(x, xg ,ω)

∼ Cg

∫
dp

g
1

p
g
3
ugb

(
x, xL, pg ,ω

)
eiω(p

g
1 (x

g
1−mΔL)+Kx(s0)(x

g
1−mΔL)

2
/2v0),

(21)

where Cg represents the terms in front of the last integral in
(3) for the receiver Green’s functions and p

g
1 is the horizontal

component of the ray parameter vector along the receiver
aperture. The imaging formula can then be written as

Is(x) =
∞∑

m=−∞

∫
dω

2π
A1(ω)

∫
dxg

×
∫

dp
g
1

p
g
3
ugb

(
x, xL, pg ,ω

)
×e−iω(p

g
1 (x

g
1−mΔL)+Kx(s0)(x

g
1−mΔL)

2
/2v0)

×g(x, xs,ω)us(xr , xs,ω)e−(x
g
1−mΔL)

2
/2σ2

,

(22)

where

A1(ω) =
(

+i
2π

)(
ε

v
g
0

)1/2

ω2S(ω)
1√
2π

ΔL

σ
. (23)

The source Green’s function now needs to be decom-
posed into Gaussian beams, but for simplicity here will be
just referred to as g(x, xs,ω), where the over-bar signifies the
complex conjugate

The common-shot imaging formula for nonplanar,
focused beams along the aperture plane can then be written
as

Is(x) =
∞∑

m=−∞

∫
dω

2π

∫
dp

g
1

p
g
3
A1(ω)g(x, xs,ω)

× ugb
(
x, xL, pg ,ω

)
Dp

(
xL, xs, pg ,ω

)
,

(24)

where

Dp

(
xL, xs, pg ,ω

)
=
∫

dx
g
1us(x

g , xs,ω)e−(x
g
1−mΔL)

2
/2σ2

× e−iω(p
g
1 (x

g
1−mΔL)+Kx(s0)(x

g
1−mΔL)

2
/2v0).

(25)

This is a local slant-stack of the data with a quadratic
phase correction term to match the data with the beams
launched into the medium. The standard Gaussian beam
migration formulas with the planar beam waists along the
aperture plane do not include this quadratic phase correction
term [14–17]. The beam centers are spaced along the receiver
aperture plane at

xL1 = mΔL, ΔL� 2σ , (26)

and the initial horizontal beam widths are

σ = Lx−ref(s0)
(
ωr
ω

)1/2

, (27)

where Lx−ref(s0) is the horizontal half-width of an initial
Gaussian function at the reference frequency ωref. The
spacing of the beams in horizontal position and launch angle
can then be determined based either on physical reasoning
[14–17] or by arguments based on frames [13]. However, for
curved beams along the initial plane, the data windows need
to be broader to account for the wider beams at the surface.

3. Applications of Dynamically Focused
Gaussian Beam Migration

In order to test the dynamically focused beam migration
formulation, two examples are given. The first application
has 5 compact sources located at depths of 8,000, 12,000,
16,000, 20,000, and 24,0000 ft at a distance of 40,000 ft from
the left side of the model. The background velocity model
has two layers. The first layer has a thickness of 6000 ft with
a constant velocity of 5000 ft/sec. The second layer goes from
6000 ft to 30,000 ft in depth with a vertical velocity gradient
of v(z) = v0 + k(z − zb), where v0 = 5000 ft/sec and
k = .15. The shot position is located along the surface at
a horizontal position of 40,000 ft from the left side of the
model. The receiver array is from 25,000 ft to 55,000 ft on
the surface. Figure 1 shows the computed wavefield from the
5 compact scatterers. The sampling rate is .008 sec, and the
peak frequency of the data is 5 Hz.

Figure 2 shows the partial image of the data from a
single vertically propagated Gaussian beam with the planar
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Figure 1: Computed common-shot data is shown for a shot point
on the surface at a position of 40,000 ft. The receiver array is from
25,000 ft to 55,000 ft. Diffractions from 5 compact scatterers are
shown each with a horizontal position of 40,000 ft and depths of
8,000, 12,000, 16,000, 20,000, and 24,000 ft.
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Figure 2: The partial image of the common shot data in Figure 1
using a single vertical Gaussian beam at a receiver position at
40,000 ft using a beam with a planar beam waist at the surface.

wavefront at the surface. For simplicity, the source side
Green’s function is constructed separately using Gaussian
beams that are planar at the source location for all the
examples given. Note on the figure that the images of the
diffractors are curved and increase in width with depth.
Figure 3 shows the partial image of the common shot data in
Figure 1 using a single vertical Gaussian beam at a receiver
position at 40,000 ft using a focused beam with the beam
waist at a depth of 12,000 ft. Now the diffractor at a depth
of 12,000 ft is the most focused using a single beam with the
images of the other diffractors being broader and generally
curved.

Figure 4 shows the partial image of the common shot data
in Figure 1 using a single vertical Gaussian beam at a receiver
position at 40,000 ft using dynamic focusing with the beam
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Figure 3: The partial image of the common-shot data in Figure 1
using a single vertical Gaussian beam at a receiver position at
40,000 ft using a focused beam with a beam waist at a depth of about
12,000 ft.
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Figure 4: The partial image of the common shot data in Figure 1
using a vertical dynamically focused beam.

waist now specified at all depths. Now the partial image of
the scatterers all have similar images with plane beam waists
of the same beam widths for all scatterers. It would look as if
we had been able to perform Gaussian beam migration with
nondiffracting Gaussian beams. However, actually the image
is formed with a number of different Gaussian beams for
all scattering points in the medium such that in a dynamic
fashion the beams have the same planar beam waists and
beam widths at each scatterer.

Figure 5 shows the complete dynamically focused
Gaussian beam image for the single-shot gather from Fig-
ure 1 using beams from all beam center locations launched
at a range of angles. This results in focused images of all 5
scatterers and indicates that the imaging is being properly
applied even with the shifted beam waists of the individual
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Figure 5: The Gaussian beam image is shown using the single-shot
gather in Figure 1 with beams from all beam positions launched at a
range of angles, each with dynamically focused beams. This results
in focused images of all 5 scatterers and indicates that the imaging
is being properly applied even with dynamically focused individual
beam components.

beam components for all imaging points of the medium.
The small tails result from the limited angle range for the
summation of the beams for the one-shot gather.

The dynamically-focusing beam approach is now applied
to a single-shot gather from the Sigsbee2A data set distrib-
uted by SMAART (Subsalt Multiples Attenuation and Reduc-
tion Team) and available at http://www.delphi.tudelft.nl/
SMAART/. In order to test the focused beam approach, a
single-shot gather with a shot location at 6,325 ft from the
left edge of the model is used. The receiver array starts at
the shot location and has a maximum offset of 26,025 ft
with a spacing of 75 ft. The background velocity model has
the first layer from the surface down to the seafloor with a
velocity of 5000 ft/sec. The second layer goes from seafloor
to 30,000 ft in depth with a background velocity of v(z) =
v0 + k(z− zseafloor), where v0 = 5000 ft/sec and k = .30. A salt
dome exists with a velocity of 14,800 ft/sec in the middle and
right parts of the model, but for the simple application here
only one-shot gather away from the salt dome is used.

In Figure 6, the partial imaging for a single Gaussian
beam is shown with the planar beam waist at the surface
receiver depth. As in the earlier examples, the source side
Green’s function is constructed separately using Gaussian
beams that are planar at the source location. The receiver
Gaussian beam has an initial location near the source and
the partial image for a beam with a slight angle from the
vertical is shown. As in the earlier example, when the beam
waist is at the surface receiver depth, then curved beam fronts
result which broaden with depth over the depth range of the
model shown between 15,000 and 30,000 ft. This is typical
of standard implementations of Gaussian beam migration.
However, in regions of a complicated background medium,
the medium itself can cause additional focusing of the beams.

D
ep

th
(f

t)

Distance (ft)

Single-beam image focusing depth 0 K

0 K

(ft)

30 K

10 K 20 K 30 K
15 K

20 K

25 K

Figure 6: This shows the partial imaging result for a single Gaussian
beam with the beam waist at the surface along the receiver array for
one-shot gather from the Sigsbee2A dataset.

D
ep

th
(f

t)

Distance (ft)

30 K

10 K 20 K 30 K
15 K

20 K

25 K

0 K

Single-beam image focusing depth 20 K (ft)

Figure 7: This shows the partial imaging result for a single Gaussian
beam with the beam waist shifted to about 20,000 ft in depth for a
single-shot gather from the Sigsbee2A dataset.

Figure 7 shows the partial imaging results for a single
Gaussian beam with the beam waist shifted to about 20,000 ft
in depth. At this depth, the narrowest part of the beam image
occurs. If the target structure were located at this depth, then
fewer beams would be required to form a complete image.
Also, the beam images would have planar beam fronts at this
depth leading to more stable images. However, as shown in
Figure 7 at other depths, the partial image results in curved
and broader beam fronts.

Figure 8 shows the imaging results using dynamic
focusing where all subsurface points have planar beams with
the same beam width. This has the appearance of an image
from a single nondiffracting beam, but since Gaussian beams
generally diffract this is really a composite image for Gaussian
beams with multiple imaging depths for a single central
beam. Nonetheless, this type of imaging can be important
with certain true amplitude formulations where planar and
localized beams are required at the imaging points in the
subsurface [20, 21]. These formulations originally involved
launching beams directly from the scattering points in the
subsurface up to the surface [18]. In the faster alternative
proposed here, dynamically focused Gaussian beams are
launched from the surface down to the imaging points at
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Figure 8: This shows the partial imaging result for a single
dynamically focused beam for one-shot gather from the Sigsbee2A
dataset.

depth instead. However, the use of dynamically focused
Gaussian beams is still slower than traditional Gaussian
beam imaging or imaging using focused Gaussian beams
with a single focusing depth. Precomputing dynamically
focused slant stacks of the data can be implemented to
improve the speed of the algorithm, although this would shift
some of the computational burden into precomputing and
storage of the slant stacks.

An additional area of concern when specifying the beam-
widths at the imaging points is that if narrow beam-widths
are specified then, a finer ray sampling would be required for
adequate subsurface coverage of the beams. This strategy was
used by Albertin et al. [22] when using windowed, planar
Maslov propagators. However, in contrast to windowed
Maslov propagators, Gaussian beams asymptotically satisfy
the wave equation without further windowing. For dynamic
focusing with narrow beam-widths at the imaging points,
a finer ray sampling would be feasible when imaging more
localized subsurface targets. Planar beams with larger beam-
widths could also be specified in the dynamic focusing
approach, and this would still provide for stable imaging
results.

4. Conclusions

The application of dynamically focused Gaussian beams
has been initially investigated for seismic imaging and is
an extension of the focused beam approach of Nowack
[1]. The shifting of the beam waists away from the source
and receiver aperture adds flexibility to Gaussian beam
algorithms allowing for the narrowest portions of the beams
to occur at the depth of a specific target structure. This
minimizes the number of beams required to form an image
at the target depth. Also, at the beam waists the beam
fronts are planar leading to more stable beam summations
for imaging. To match with the surface data, quadratic
phase corrections are required for the local slant-stacks of
the data. Using dynamically focused Gaussian beams allows
for beams to have planar wavefronts and the same beam
widths at all scattering points in the subsurface. It has the

appearance of using non-diffracting Gaussian beams at the
scatterers, but since all Gaussian beams diffract, this is really
the result of using beams with multiple focusing depths.
The use of planar and localized Gaussian beams at all the
subsurface scattering points also has advantages with regard
to certain true amplitude imaging formulations. However,
using dynamically focused Gaussian beams from the surface
down to the scattering points avoids having to launch
beams from every scattering point in the medium up to the
surface. Nonetheless, dynamically focused Gaussian beam
imaging is still slower than using either traditional Gaussian
beam imaging or using a single focusing depth for imaging.
Dynamically focused imaging was initially tested using a
single-shot gather for a model with 5 scatterers at different
depths, and then for a dynamically focused Gaussian beam
for one-shot gather computed from the Sigsbee2A model.
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