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Oxidative stress can be regarded as an imbalance between
prooxidant/free radical production and opposing antioxi-
dant defenses. There is growing evidence that oxidative stress
(OS) significantly impairs organic function and plays a major
role in the aetiology and pathogenesis of several metabolic
diseases in veterinary medicine. In many of these cases, it is
unclear if oxidants trigger the disease or if they are produced
as a secondary consequence of the disease and from general
tissue damage.

In this special issue on oxidative stress in veterinary
medicine, we have invited a few papers that address novel
approaches about this matter, taking into account not only
the pathogenic mechanisms of diseases but also new specific
laboratorial tools helping in the OS measurement.

The first paper on this special issue addresses the advan-
tages of measuring hepatic oxidative status in liver biopsy,
helping in diagnosis of hepatic dysfunction and reflecting the
degree of deterioration in the liver tissues. Thus, liver biopsy
aids in recommending antioxidant’s therapy in patients
that had a hepatic disease with derangement in hepatic
antioxidant constituents.

On the other hand, an increasing body of evidence sug-
gests that OS is involved in the pathogenesis of a wide range
of cardiovascular diseases. Nevertheless, it is still a matter of
debate whether this increased OS has a primary causative
role in cardiovascular disease pathogenesis or rather is a
vascular sequel of disease progression. The establishment of
the specific role of OS in cardiovascular diseases will help
to choose the antioxidant therapy that will prove beneficial
in combating these problems. The second paper performs
a wide revision regarding the pathogenesis of OS and

cardiac diseases in dog, and how supplementation can play
a protective role, avoiding cell disorganisation and cellular
damages. The authors describe there the effect of proper
antioxidant supplementation (coenzyme-Q10, polyphenols,
or omega-3 fatty acids) increasing the concentration of
antioxidants in heart cells and making them less sensitive to
free radicals.

Finally, a number of vitamins and trace minerals are
involved in the antioxidant defense system and a deficiency of
any of these nutrients may depress immunity. Some vitamins
(such as E or C) are important antioxidants that have been
shown to play an important role in immunoresponsiveness
and health. A number of trace minerals are required for
functioning of enzymes involved in the antioxidant defense
system, and certain trace minerals may also affect immune
cells via mechanisms distinct from antioxidant properties.
Two reports analyze the protective effects of Zn or vitamin C
in different species (chickens and mice) in different diseases
(parasitic infections and haematological disturbances).

Finally, OS has been implicated in the pathogenic
mechanism of some heavy metals (such as lead or cadmium),
causing many disease conditions and toxicities in animals.
Several ameliorative measures to counteract the oxidative
damage to the body system aftermath or during exposure
to these toxicants have been assessed with the use of
antioxidants. The last report focuses on this aspect.

This is a novel field of research and it is expected an
increased number of studies in the future.

Cristina Castillo Rodriguez
Fernando Wittwer Menge
José Joaquin Ceron
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The goal of the current paper is to explore the role of liver biopsy as a tool in detection of hepatic oxidative stress, with brief notes
on different types of free radicals, antioxidants, hepatic and blood oxidative stress, and lipid peroxidation. Hepatic oxidative stress
was investigated for many years in human and animals, but most of the studies performed in animals were concerned with studying
oxidative status in the liver tissues after slaughtering or euthanasia. However, in human medicine, a large number of studies were
implemented to investigate the status of antioxidants in liver biopsy specimens. Similar studies are required in animals, as the
changes in hepatic antioxidants and formation of lipid peroxide give a good idea about the condition of the liver. On the other
hand, hepatic disease may present without significant effect on blood oxidative status, and, consequently, the best way to detect
the status of hepatic oxidants and antioxidants is through measuring in liver biopsy. Measuring antioxidants status directly in the
liver tissues gives an accurate estimation about the condition of the liver, permits the diagnosis of hepatic dysfunction, and helps
to determine the degree of deterioration in the hepatic cells.

1. Introduction

Free radicals are highly reactive substances produced contin-
uously during metabolic processes. They participate mainly
in physiological events such as the immune response,
metabolism of unsaturated fatty acids, and inflammatory
reaction. The balance between free radicals and antioxidants
is disrupted in many diseases. This disruption may be
attributed to a number of factors such as the inability of
the cells to produce sufficient amounts of antioxidants, the
nutritional deficiency of minerals or vitamins, and the excess
production of reactive oxygen species [1]. Free radical excess
results in impairment of DNA, enzymes, and membranes
and induces changes in the activity of the immune system
and in the structure of basic biopolymers which, in turn, may
be related to mutagenesis and aging processes [2].

The involvement of oxidative stress in the pathogenesis
of hepatic dysfunction in human [2-15] and animals [1, 16—
25] has been investigated for many years. Some of the liver
diseases were associated with an increase [21, 24, 26] or
decrease [17, 22, 27-29] in antioxidant’s contents. Usually
hepatic antioxidants increase at the beginning of hepatic

disease and decrease in severe hepatic injury. The advantages
of measuring hepatic oxidative status in liver biopsy are
that it helps in diagnosis of hepatic dysfunction, reflects
the degree of deterioration in the liver tissues, and helps to
determine the severity of hepatic injury, and, also, it aids
in recommending antioxidant’s therapy in patients that had
a hepatic disease with derangement in hepatic antioxidant
constituents. The main purpose of the current paper is to
explore the value of liver biopsy as a tool for detection of
hepatic oxidative stress. A focus was done on different types
of free radicals, antioxidants, lipid peroxidation, and hepatic
and blood oxidative status in hepatic dysfunction.

2. Free Radicals

2.1. Types of Free Radicals. Free radicals can be defined as
molecules containing a single unpaired electron in atomic
or molecular orbits. These molecules have an important
role in the pathogenesis of tissue damage in various dis-
orders [30], such as hepatic dysfunction, mastitis, kidney
damage, inflammation, immune injury, and carcinogenesis



[1]. The most important free radicals include superoxide
anion (O,""), hydroxyl radical (*OH), and hypochlorous
acid (HOCL) [31]. HOCL is produced by the reaction of
hydrogen peroxide (H,0O;) with chloride ions and plays an
important role in the leukocyte respiratory burst, which
is involved in the host defense system [32]. Nitric oxide
(NO°®) acts as a free radical and as a biological mediator in
biochemical reactions. Physiologically it is synthesized from
L-arginine by NO synthase employing cofactor NADPH. In
the host, NO* arises in some pathological situations, such
as sepsis, stroke, myocardial depression, and inflammatory
responses [33].

Superoxide anion induces important reducing reactions
in biological materials via Fenton-like reactions, which
are catalyzed by redox cycling metal ions, including iron,
copper, chromium, and vanadium [34]. These metal ions
have the ability to accept and donate single electrons,
making them important catalysts of free radical reactions;
the most widely distributed and most commonly studied
transition metal ions are the cations iron and copper [31].
Superoxide anion reduces Fe** in metalloproteins such
as ferritin. The reduction of protein bound iron is an
important reaction in biological material, because if there is
sufficient H,O, available, a reaction between the resultant
Fe?* and H,0; occurs and gives rise to the highly reactive
*OH [32], and H,0, traverses biological membranes and
intracellularly targets phospholipids, carbohydrates, metallo-
proteins, and DNA and causes damage via Fenton’s reaction
[35].

2.2. Sources of Free Radicals. Free radicals may be released in
the liver as a subsequence to hepatic detoxification of drugs,
chemicals, and toxic materials [36, 37]. The formation of
oxygen free radicals may be physiological as in phagocytosis
(superoxide and H,O, are used by phagocytic cells to kill
bacteria), a side effect of metabolic pathways, or may occur
in pathological conditions due to toxic agents as in the case
of ischemia, inflammation, and disease, or due to decreased
antioxidant defenses [38].

Mitochondria are considered a major source for the pro-
duction of O," " and H,O»; about 2-3% of consumed oxygen
is constantly converted into reactive oxygen/reactive nitrogen
species (ROS/RNS) in the mitochondria; hepatocytes contain
many mitochondria and therefore generate excess ROS/RNS
[31].

In many liver diseases, including the wide range of
neonatal hepatitis, the tissue inflammatory infiltrates are
likely to be responsible for the formation of O,"", H,O,,
*OH, HOCL, and the highly cytotoxic monochloramine
[39, 40]. In turn, the superoxide anion attracts further neu-
trophils to the inflammatory site by a chemotactic activity,
causing an increase in tissue injury [41]. In addition, acti-
vated macrophages, Kupffer cells, and vascular endothelium
can generate nitric oxide, which may react with superoxide
generating peroxynitrite. The latter is responsible for the
inhibition of mitochondrial respiration and DNA synthesis
[42].
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Liver damage due to iron (hemochromatosis) and copper
overload is believed, at least partially, to derive from the
catalytic activity of these metals in the Fenton reaction
leading to the generation of ROS and increased lipid perox-
idation with consequent abnormal mitochondrial function
[43-45].

3. Antioxidants and Free Radicals

The cells contain a variety of antioxidant mechanisms
that play a central role in the protection against reactive
oxygen species [46, 47]. The antioxidant system consists
of antioxidant enzymes (superoxide dismutase (SOD),
catalase and glutathione peroxidase (GSH-Px)), glutathi-
one, ancillary enzymes (glutathione reductase (GR), glu-
tathione S-transferase, and glucose 6-phosphate dehydroge-
nase (G6PD)), metal-binding proteins (transferrin, cerulo-
plasmin, and albumin), vitamins (alpha-tocopherol, ascor-
bate, and beta-carotene), flavonoids, and urate [48].

Pathological free radical reactions do not necessarily
cause cell and tissue damage, as antioxidants of cells and
tissues are able to prevent free radical injury [36]. On the
intracellular level, ROS formation and metabolism can be
summarized as shown in Figure 1.

4. Hepatic Oxidative Stress
and Lipid Peroxidation

Oxidative stress results when reactive forms of oxygen are
produced faster than they can be safely neutralized by
antioxidant mechanisms [49] and/or from a decrease in
antioxidant defense, which may lead to damage of biological
macromolecules and disruption of normal metabolism and
physiology [50]. This condition can contribute and/or lead
to the onset of health disorders [38] and play a damaging
role in a number of liver disorders, for example, in anoxic
and reoxygenation injury during transplantation, activated
phagocytes and xanthine oxidase formed during ischemia,
catalyzing the formation of superoxide during reperfusion
[39, 51-53].

Lipid peroxidation is implicated in the pathogenesis of
several hepatic disorders in human [2, 26] and animals [18,
22]. Hepatic failure in cattle was associated with decreased
antioxidant mechanisms inside the cells, which led to the
increase in the reactive oxygen species, especially H,O,. The
decrease in hepatic GSH-Px activity in severe fatty degen-
eration, for example, results in the increase of H,O, [22],
which can initiate free radical formation through Fenton’s
reaction. In addition, the decrease in hepatic vitamin E
level, which is an important chain-breaking antioxidant,
results in lipid peroxidation and failure to regenerate the
ascorbic acid [17, 18]. Increased hepatic oxidative stress was
also reported in cows suffering from glycogen degeneration
[22], sawdust liver, and liver abscesses [19, 21]. The authors
contended that the antioxidant defense was high in the case
of sawdust liver, glycogen degeneration, and liver abscess,
which indicated that the body can combat the increased free
radical stress.
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FiGure 1: Shown are different types of reactive oxygen species (ROS). Abbreviations: GSH-Px: Glutathione peroxidase; HOCI: Hypochlorous
acid; H,O,: Hydrogen peroxide; MPO: Myeloperoxidase; NO*: Nitric oxide; NOS: NO synthase; O, : Superoxide anion; *OH: Hydroxyl
radical; ONOO?*: Peroxynitrite anion; SOD: Superoxide dismutase; NADPH: Nicotinamide adenine diphosphate; GSH: Reduced glutathione;
GR: Glutathione reductase; G6PD: Glucose-6-phosphate dehydrogenase.

Liver abscesses in fattening steers occur mainly due to
intensive feeding of highly concentrated rations. Consump-
tion of a carbohydrate-rich diet stimulates G6PD expression
in endothelial and parenchymal cells [16, 19]. Since G6PD
supports reactive oxygen metabolism, the response may rep-
resent an antioxidant pathway in the hepatic cell populations
that targets sinusoid born reactive oxygen species during
infections [19, 21].

Underfeeding in cattle was reported to induce changes
in the antioxidant systems in liver manifested by lowering
hepatic G6PD and SOD activities. This results in depletion of
antioxidant defense mechanisms and renders the hepatocytes
more susceptible to the lethal effects of endogenous or
exogenous peroxides, and it indicates that the generation
of lipid peroxides in cattle in poor nutritional condition
exceeds the antioxidant capacity of the liver cells, generating
a situation of oxidative stress and peroxidation [20].

The leading mechanism of free radical toxicity is the
peroxidation of membrane phospholipids, which is initiated
by the formation of lipid peroxide or hydroperoxides, and
peroxy radicals are formed in the presence of oxygen to start a
chain reaction (propagation) [2, 54, 55]. Various pathogenic
effects occur as the result of degradation of membrane lipids
[31]. Chiefly, the hydroxyl radical and to a lesser extent the
superoxide anion leads to peroxidation of membrane lipids
thereby causing production of malondialdehyde (MDA)
and 4-hydroxyalkenals (4HNE). These substances directly
induce hepatocytes damage with generation of proinflam-
matory cytokines, activation of spindle cells, and fibrogenesis

[56, 57] and may bind to various molecules, impairing their
functions [5] and therefore lead to membrane damage,
protein damage, enzyme dysfunction, and DNA or RNA
damage [58]. It is well known that persistent oxidant
stress causes mutative effects on cell DNA and increases
fibroblastic activity, leading to cirrhosis and carcinoma.
Many studies have shown that oxidative stress takes part in
the pathogenesis of cholestasis by way of cytokines [8, 11-13]
and lipid peroxidation [6].

The role of lipid peroxidation in liver fibrosis was
assessed. Lipid peroxidation products in the form of MDA
adduct were detected in areas of active fibrogenesis. It has
been shown that lipid peroxidation products can stimulate
fibrogenesis by inducing collagen gene expression, and
detection and prevention of lipid peroxidation could be of
major interest in preventing fibrosis and cirrhosis in this
disease [9].

Increased lipid peroxidation may be caused by inflam-
mation related to viral infection and decreased antioxidant
levels. The lipid peroxides formed may be chemotactic for the
neutrophils causing increased inflammation, which further
drives oxidant-mediated injury in the liver [59]. Previous
studies have demonstrated an increase in MDA levels and
decrease of the antioxidant capacity in acute and chronic
hepatitis [3, 4, 55]. Mitochondrial lipid peroxidation takes
place at varying levels in liver disorders independent of etiol-
ogy [44, 60]. Increased lipid, protein, and nucleic acid perox-
idation in the blood and liver biopsy specimens from patients
with chronic hepatitis has been demonstrated [7, 15, 26].



TaBLE 1: Methods for preparation of liver biopsy implemented in different studies.
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Oxidative
Tissue preparation  Buffer used Homogenization stress Reference
marker
The liver biopsy was homogenized in 20 volumes of SOD. CAT
Tris-HCL (50 mM) pH 7.5 cold buffer, and then the supernatant was harvested and ’GSH [24, 25]
after centrifugation at 5000 g for 30 min at 4°C.
Liver biopsy was homogenized in chilled buffer. The
Chilled potassium chloride h:)mogenates were centrifuged at 800 g for 5.m1n at SOD, CAT
(1.17%) 4°C to separate the nuclear debris. The obtained and MDA [68]
’ supernatant was recentrifuged at 10,500 g for 20 min
at 4°C to get the postmitochondrial supernatant.
i‘:l;fr 12 lsovl?r?r’e Ice-cold PBS buffer (20mM),  The tissue was homogenized in 290 ml ice-cold LPO and
P L. pH 7.3 with 10 ml of 5mM buffer. Following this, the suspension was centrifuged [69]
washed twice in cold butylated hydroxyl toluene and supernatant was fractioned for analysis AOP
0.9% salt solution 4 yaroxy P YSIS-
s it som 75, e e s bomoseedin S ld bt
5mM EDTA, 1 nM : &l 18 . GSH-Px [70]
o . minutes at 4°C. The supernatant was removed for
dithiothreitol
assay.
Potassium phosphate The tissue was homogenized in 200 yL buffer and
(0.05M) and 0.1 mM EDTA,  centrifuged at 15,000 g for 30 minutes at 4°C. The SOD [70]

pH 7.8

supernatant was used for analysis.

5. Oxidative Stress and Hepatic Dysfunction:
Role of Liver Biopsy

5.1. Blood and Hepatic Oxidative Stress. Antioxidant status of
blood does not reflect hepatic oxidative stress only, but their
levels change in response to diseases in other organs. Study-
ing the effect of hepatic dysfunction on blood oxidative status
in cows revealed that hepatic glycogen degeneration, fatty
degeneration, or liver abscesses had no effect on erythrocytic
oxidative status, as indicated by the insignificant changes in
erythrocytes GSH-Px and G6PD activities [21, 22]. Many
studies had been performed on humans to determine the
effect of hepatic dysfunction on erythrocytic oxidative status;
some of these studies had reported no significant changes
in erythrocytes GSH-Px activity in patients suffered from
liver cirrhosis and alcoholic liver disease [61-63]. Other
studies had demonstrated that a red cell GSH-Px activity
significantly decreased in patients with chronic liver disease
[64-66]. In addition, lower activities of erythrocytes GSH-
Px and SOD activities have been reported in patients with
acute hepatitis B [67]. The cause of such contradictory results
may be related to the degree of hepatic dysfunction or
the presence or absence of selenium deficiency. Significant
decreases in plasma selenium level and erythrocytes GSH-Px
had been reported in patients with chronic liver disease [64].

Increased oxidative stress had been reported in the liver
of cattle with naturally occurring fatty liver [18, 22], with
liver abscessation [21], and in animals on restricted feed
intake [20], without significant changes in blood oxidative
status; this means that hepatic disease may present without
effect on blood oxidative status and also that detection
of hepatic oxidative stress is best done through measuring

oxidative stress markers in the hepatic tissues by means of
liver biopsy.

5.2. Preparation of Liver Biopsy for Antioxidants Measure-
ments. The principles for preparation of liver biopsy are
that liver biopsy must be prepared directly after collection,
otherwise stored at —80°C, liver biopsy must be washed twice
in a cold saline or cold buffer before homogenization, blot
dry, and then homogenized in a cold buffer at certain pH.
After centrifugation, the supernatant is harvested and used
to measure hepatic antioxidant enzyme activities, which can
be performed using commercial test kits (Table 1).

5.3. Liver Biopsy and Oxidative Stress. Oxygen free radicals
might play a role in the pathogenesis of tissue damage in
many pathological conditions and have been implicated in
a variety of liver diseases. It, therefore, may participate in the
pathogenesis of toxic liver diseases and other hepatic alter-
ations [10]. Oxidative stress is a major pathogenetic event
occurring in several liver disorders ranging from metabolic
to proliferated ones and is a main cause of liver damage in
ischemia/reperfusion during liver transplantation [14].

The involvement of oxidative stress in the pathogenesis
of liver injury has been investigated for many years [2—4].
Some of these studies were conducted using liver biopsy
in human [70, 71] and animals [24, 25]. But most of the
studies in animals measured hepatic oxidative stress after
slaughtering or euthanasia. Examples include measuring
hepatic G6PD activity in chemically induced hepatocellu-
lar carcinoma in rat liver [72] and in liver of rat with
macronodular cirrhosis induced by long-term thioacetamide
administration [73]. In cattle, hepatic GSH-Px activity [22]
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and vitamin E [17, 18] were measured in cows suffering
from severe fatty degeneration. In addition, hepatic GSH-Px
and G6PD activities were determined in cows suffering from
glycogen degeneration [22], sawdust liver, and liver abscesses
[16, 19, 21]. Furthermore, hepatic G6PD and SOD activities
were measured in cows with restricted feed intake [20].

Recently, liver biopsy was applied as a tool for detecting
hepatic oxidative stress in cattle from the viewpoint of
the status of hepatic antioxidant enzymes after injection
of a potent hepatotoxic (DL-ethionine), data published in
[24, 25]; the supernatant of liver homogenate was used to
measure hepatic SOD, catalase [25], total glutathione level
and glutathione reductase activity [24].

Many studies were performed to establish the importance
of liver biopsy from the viewpoint of oxidative stress in a
variety of liver disorders in human. Examples in human
include the following oxidative stress-related parameters
were investigated in liver biopsy from NAFLD patients and
used to assay activities of CAT and GSH-Px [28]. Oxidative
stress status in children with glycogen storage disease [74]
and with cholestatic chronic liver disease [70] was investi-
gated by measuring GSH-Px, SOD, and CAT activities in
liver biopsy samples. Activities of SOD, CAT, and GSH-Px
were measured in liver biopsy specimens from patients with
various liver diseases, including chronic persistent hepatitis,
chronic active hepatitis, nonalcoholic cirrhosis, alcoholic
cirrhosis, and acute hepatitis [71].

Increased hepatic oxidative stress had also been detected
in liver biopsy from patients with cirrhosis and hepatocel-
lular carcinoma, shown by the decrease of GSH-Px activity,
hepatic and blood glutathione (GSH) levels, along with
an increase in the oxidized glutathione/glutathione ratio in
cirrhotic [26, 27] and liver cancer tissues [29], which reflects
a decrease in both the synthesize capacity of liver and the
antioxidant defense.

It is clear from the above review of the literature that liver
biopsy can be used for measuring oxidative status of the liver
tissues and that significant changes were detected in different
hepatic dysfunctions. Antioxidant activities in liver biopsy
can be used to diagnose liver disease and as a prognostic
factor for the liver disease under investigation.

6. Conclusion

Most of the studies done in animals were concerned with
studying the hepatic oxidative stress after slaughtering or
euthanasia. Studying the hepatic oxidative status in liver
biopsy is lacking in animals. In human medicine, a large
number of studies were implemented to achieve this goal.
Hepatic disease may present without significant effect on
blood oxidative status. Consequently, the best way is to
measure hepatic oxidants and antioxidants in liver biopsy,
which reflects the actual status of the liver.

Abbreviations

4HNE: 4-hydroxyalkenals
AOP:  Antioxidant potential
CAT: Catalase

5
EDTA: Ethylenediaminetetraacetic acid
G6PD: Glucose-6-phosphate dehydrogenase
GSH-Px:  Glutathione peroxidase
GR: Glutathione reductase
H,0;: Hydrogen peroxide
*OH: Hydroxyl radical
HOCIL: Hypochlorous acid
MDA: Malondialdehyde
MPO: Myeloperoxidase
NADPH: Nicotinamide adenine diphosphate
NO*: Nitric oxide
NOS: NO synthase
NAFLD: Nonalcoholic fatty liver disease
ONOO?*: Peroxynitrite anion

ROS/RNS: Reactive oxygen/reactive nitrogen species

GSH: Reduced glutathione
0, Superoxide anion
SOD: Superoxide dismutase
LPO: Total lipid peroxide.
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In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large
amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress.
However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential
fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against
the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells

to neutralize these free radicals.

1. Introduction

Life expectancy of domestic carnivores has been increasing
a lot these last years, probably due to veterinary medicine
progresses, leading to an increase of the old-age diseases.
Nowadays, heart failure is one of the main causes of death in
domestic carnivores: approximately 10% of dogs have heart
troubles, which can evolve to a cardiac insufficiency and,
in the end, to the animal death [1]. Although treatments
can slow down this evolution, a well-adapted nutrition
constitutes a major asset to improve the well-being and life
expectancy of these animals.

Besides the energetic protein or salt requirements com-
monly expressed by the literature, a suitable food intake
of fatty acids and antioxidants can play an important role
in maintaining cardiac cells homeostasis and especially in
managing oxidative stress.

2. Oxidative Stress and Heart Failure

In the organism, free radicals (O,°, OH°, H,0O,...) are
produced permanently via cellular metabolism. In physio-
logical conditions, antioxidant enzymes (super oxide dismu-
tase, glutathione peroxidase...) regulate this phenomenon.

However, when a large amount of free radicals is produced,
these enzymes are overloaded, and free radicals induce major
cellular damages: this is oxidative stress.

2.1. Free-Radical Production during Heart Failure. In dogs
with heart failure, oxygenation cells do not occur properly
[2], which leads to cellular metabolism dysfunction: the main
free-radical sources in heart failure are mitochondria, where
an uncoupling of the respiratory chain leads to the increase in
free-radical production [3], Xanthine oxidases and NADPH
oxidases [4]. This cellular metabolism dysfunction occurs
at two levels. In a chronic way, the heart work of a dog
with heart failure is insufficient to provide the normal
oxygenation of all cells, which implies a dioxygen cellular
chronic deficit and thus a regular production of free radicals.
In an acute way, during the phenomenon of ischemia
reperfusion, the cell ischemia induces a massive production
of free radicals that are released in the organism when
reperfusion occurs.

2.2. Cellular Consequences of Oxidative Stress in Heart Cells.
Free radicals are molecules very unstable and toxic for cells.
The fatty acids of cell membranes are the first molecules
damaged by free radicals: indeed, free radicals induce



a membrane lipid peroxidation and alter the stability and
the permeability of these membranes. They also induce DNA
damages and protein denaturation with oxidation and frag-
mentation of polypeptidic chains [5]. These cellular lesions
are so important that they can lead to the apoptosis of cells
[6]. As well as these effects on cellular components, free
radicals also act as intracellular messenger leading to cardiac
hypertrophy and myocardium remodelling, worsening car-
diac insufficiency [4].

So, cardiac insufficiency is at the origin of a noxious
state of cellular oxidative stress, which increases the cardiac
cell dysfunctions and thus amplifies the phenomenon of
oxidative stress.

3. Role of Omega 3 Essential Fatty Acids in
the Management of Oxidative Stress

Fatty acids are carboxylic acids with long carbon chain with
an even number of carbon atoms. They can be saturated
or not according to the presence or absence of double
bounds between the carbon atoms. Three fatty acid groups
could be distinguished with the saturated fatty acids (not
any double bound), the monounsaturated fatty acids (one
double bound), or the polyunsaturated fatty acids (several
double bounds). Some fatty acids are called “essentials” as
mammals do not synthesize them, and they must then be
present in the food to satisfy the organism needs. This is the
case of long omega 3 and omega 6 fatty acids that possess
their first double bound between the 3rd and the 4th carbon
and between the 6th and the 7th carbon of the carbon chain,
respectively.

3.1. Role of Essential Fatty Acids in the Management of Oxida-
tive Stress. The unsaturated fatty acids of cell membranes
are the first damaged by the free radicals produced during
cardiac insufficiency, this results in cell disorganization and
cellular dysfunction. The presence of essential fatty acids in
the composition of cell membranes decreases their sensitivity
to free radicals and constitutes a first protection against the
oxidative stress [7].

Essential fatty acids also play a role in scavenging
free radicals produced within cells, which participate to
protection of cell constituents. Indeed, in rats, a 7% daily
supplementation in omega 3 essential fatty acids increases
the cellular concentration of super oxide dismutase in heart,
making it more available to neutralize the free radicals
produced by cellular metabolism [8]. Another study led in
rats shows as well that a 60 mg/kg a-lipoic injection decreases
significantly the amount of free radicals produced during
an oxidative stress phenomenon and is associated with an
increase of the level of gluthatione peroxidase in cells [9].
However, all essential fatty acids are not equivalent: the
omega 6 fatty acids, which are commonly known to be
inflammation activators, do not induce the same benefits for
the cardiac cells [1].

3.2. Source of Essential Fatty Acids. Omega 3 fatty acids
can be found mainly in fat fishes, soya, colza, or linen
oils (Table 1) [10]. Although the optimal dose of omega 3
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essential fatty acids still remains to be determined, it would
seem that the ratio omega 6:omega 3 is very important.
Indeed, if the quantity of fatty acids omega 3 brought is too
important, there is a risk of lipid peroxidation. Then, the
most adapted ratio seems to be 5: 1 ratio [11].

Concerning cardiac insufficiency, essential fatty acids in
cell membranes play a protective role against free radicals
produced by cardiac cells also against free radicals released by
other cells, especially when ischemia reperfusion phenomena
occurs. However, antioxidants are also playing an important
role to neutralize the free radicals upstream before cell
membranes infringement.

4. Role of Antioxidants in the Management
of Oxidative Stress

4.1. Coenzyme Q10

4.1.1. Roles of Coenzyme Q10 in the Management of Oxidative
Stress. It is now well known that heart function is improved
by a supplementation of coenzyme Q10 [12]. Indeed, the
coenzyme Q10, which is a part of the respiratory chains of
mitochondria, plays a role in the cell energy production.
However, oxidative stress results from a dioxygen misuse by
cells. So, we understand why the coenzyme Q10, which enters
in the composition of respiratory chains of mitochondria,
improves the cell energy production [2].

Nevertheless, the heart functioning improvement is also
due to antioxidant properties of coenzyme Q10, particularly
if an ischemia phenomenon occurs in the myocardium. The
coenzyme Q10, with its antioxidant properties [13], helps to
fight against the free radicals released later during reperfu-
sion, thanks to two mechanisms: directly, by scavenging free
radicals produced [14], and indirectly, by regenerating the
active form of other antioxidant molecules [15]. Moreover,
the coenzyme Q10 also intervenes in the energy production
resumption after an ischemia phenomenon, improving the
myocytes functioning [16].

4.1.2. Sources of Coenzyme QI0. Coenzyme Q10 can be
synthesized from phenylalanine, acetyl Coenzyme A, tyro-
sine and by seven vitamins (B,, Bs, Bs, Bs, Bo, Bz, and
C). However, food can also supply coenzyme Q10: meat is
particularly rich in coenzyme Q10 (Table2) [17, 18]. An
intake from 30 to 90 mg by oral route, twice a day, is the dose
most frequently recommended [1].

4.2. Vitamine E and Selenium

4.2.1. Antioxidant Properties of Vitamin E and Selenium.
All the eight vitamin E isomers are fat-soluble vitamins
with antioxidant properties, but the most active form is a-
tocopherol. By its antioxidant properties, vitamin E plays
a cellular barrier role for the oxidant molecules produced
by oxidative stress. In a study led in rats, a vitamin E
supplementation allows an increase of its incorporation in
the cell membranes and a decrease of the quantity of proteins
oxidized in cells [19]. When the vitamin E is exceeded,
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glutathione peroxidase relieves vitamin E to neutralize the
oxidant molecules. The main cofactor of this enzyme is
selenium, and it is easily understandable which impact could
have a deficit in selenium on its activity. On the other hand,
an increase of the selenium intake seems to have no effect on
the activity of glutathione peroxidase [20].

4.2.2. Sources of Vitamin E. Vitamin E is a molecule
synthesized by plants. The minimum food contribution
recommended by AAFCO is 50 Ul/kg DM. Nevertheless,
its intestinal absorption is widely influenced by the ration
composition: the presence of polyunsaturated fatty acids
oxidant agents implies an increase of vitamin E need; on the
contrary, a ration containing monounsaturated fatty acids
or selenium leads to a decrease of vitamin E necessary. So,
there is no vitamin E recommended intake to obtain an
antioxidant effect. However, in dog food, a maximum of
1000 Ul/kg was fixed by the AAFCO. Indeed, vitamin E is
a little toxic, and we can imagine an interesting antioxidant
effect with such concentrations [21].

4.3. Polyphenols

4.3.1. Role of Polyphenols in the Management of Oxidative
Stress. Polyphenols have recently attracted many scientists’
attention. Indeed, for a long time, these molecules were
considered as uninteresting for the organism, concerning
nutritional level or health, but the progress of the analysis
techniques allowed to understand better the role of these
organic compounds. These molecules are synthesized by
plants to respond to an environmental stress. They compose
a wide family of chemical compounds, which contains more
than 8000 different organic molecules. All the polyphenols
are characterised by one or more benzene nuclei, where are
fixed one or more alcohol groups (-OH) [22].

Polyphenols have antioxidant properties which allow
them to catch the free radicals produced during oxidative
stress [23]. In a study led in rat, a contribution of 35 mL
of a 90% pure polyphenols extract, once a day during 14
days, allows an increase of the quantity of polyphenols in
the cardiomyocyte membranes and decreases significantly
the noxious effects of the ischemia-reperfusion phenomena:
improvement of the myocardium contractibility, decrease of
cellular edema, and limit the dysfunctions in heart cells [24,
25]. In another study in rat, 50 mg/kg of quercetin neutralize
the free radicals produced during ischemia reperfusion,
enabling a decrease of cellular damages due to oxidative
stress and an increase in the concentrations of glutathione
peroxidase and glutathione reductase, which confirms the
antioxidant properties of polyphenols [26].

4.3.2. Sources of Polyphenols. The available data concerning
the polyphenol place in the food and their beneficial effects
on health are at least vague. In food, polyphenols are mainly
found in vegetables (Table 3). However, the determination
of the food polyphenols composition is difficult because
of the important variety of molecules. There is a big
difference between the quantity of polyphenols contained

TABLE 1: Main omega 3 fatty acid sources in food [10].

Source Omega 3 fatty acids (g/100 g)
Salmon 3,2

Linen oil 20,3

Colza oil 9

Soya oil 5

TasBLE 2: Coenzyme Q10 content in food [17, 18].

Coenzyme Q10 Coenzyme Q10
Food (pg/100 g wet weight) (ug/100 g wet weight)
[17] (18]
Meat Beef 3100 3030—4010
Chicken 1700 1710-2500
Fish Herring 430-2700 180-1300
Vegetables Broccoli 660 701
Potato 52 105
Milk — 31
Egg 150 73
TasLE 3: Polyphenol food availability in food [22].
Food Polyphenols (mg/kg)
Tea 100-800
Black grape 300-7500
Potato 100-190
Soya 200-900
Soya flour 800-1800
Corn flour 310
Wheat flour 70-90
Apple 50-600
Beans 350-550
Tomato 2-15

in the food and the quantity effectively absorbed and used
by the body: cooking, peeling fruits and vegetables, and
preservation are so many factors which decrease the effective
contribution of polyphenols in the body [22]. Moreover,
the digestibility of polyphenols depends on their structure:
the highly polymerized polyphenols cross with difficulty the
intestinal wall. The small polymers are more easily absorbed
and have a better systemic action, which implies a better
nutritional value [22-27].

There is no study on the effect of polyphenols in domestic
carnivores, but it is likely that the quantity of polyphenols
ingested by dogs and cats via industrial or domestic food is
very low. On the other hand, in a study led in rat, 50 mg/kg
of weight of quercetin allow to neutralize the free radicals
produced during ischemia reperfusion and so enables an
antioxidant effect [26].

5. Conclusion

Although food has been recognized for several years to be
an asset for the management of heart failure in animals,



the place of antioxidants and essential fatty acids remains
very limited. However, a suitable supplementation can play
a major role against oxidative stress occurring during heart
failure, avoiding cell disorganisation and cellular damages:
on the one hand, thanks to a proper supplementation of
antioxidants like Coenzyme Q10, vitamins, and polyphenols
that neutralize free radicals produced by oxidative stress,
and on the other hand, through omega 3 fatty acids that
take part in the composition of cell membranes increasing
the concentration of antioxidants in heart cells and making
them less sensitive to free radicals. Although the studies led
until now seem very promising, they were mainly led in vitro
and/or in rats, and unfortunately, few studies have been led
in dog and even less in the cardiac insufficient dog. Other
studies should be led in domestic carnivores to confirm these
first data.

In practice, dietary feed for cardiac insufficient animals
are only supplemented with essential fatty acids with an
omega 6/omega 3 report which can vary from 2 to 10.
Regarding the antioxidant molecule supplementations, they
are often absent or below the contributions needed to
have benefit for the heart. This is probably due to the
difficulty to preserve a sufficient amount of antioxidants
during the manufacturing process. In these conditions,
the establishment of a home-made ration could be the
best means to have a proper antioxidant supplementation
although more complicated for the owner.
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This study was undertaken to determine the dietary supplements of Zn containing diet on the antioxidant status in chickens
experimentally infected with Eimeria acervulina. The antioxidant status was monitored via determination of MDA concentrations
and erythrocyte SOD and CAT activities, as well as vitamin E, vitamin C, Cu, and Zn in liver, muscle, and serum. The results
showed increased MDA (P < .05), CAT (P < .001), and decreased SOD (P < .001) in the infected birds. Significant changes in Cu
and Zn concentrations and dramatically reduction of vitamin C and E concentrations in the infected chickens were found. The
observed deviations in the studied enzymes and nonenzymatic parameters evidence the occurrence of oxidative stress following
the infection and impaired antioxidant status of chickens, infected with Eimeria acervulina. Our results proved the ameliorating
role of CuZn(OH)3Cl (0.170 g per kg food) against Eimeria acervulina-induced oxidative damage in infected chickens.

1. Introduction

It is widely accepted that the balance between the reactive
oxygen species (ROS) in cells, tissues, and physiological fluids
determines their red/ox status. Under usual conditions, the
production of ROS and their elimination are in a dynamic
equilibrium. This balance could be disturbed when the
generation of ROS becomes higher than the protection
capacity of systemic antioxidant defense. The impaired
equilibrium in favour of oxidants is named oxidative stress
and it is involved in the pathogenesis of numerous diseases,
including parasitic infections [1-4]. Prime targets of ROS
are the polyunsaturated fatty acids (PUFA) in the membrane
lipids. This attack causes lipid peroxidation. Further, the
decomposition of peroxidized lipids yields a wide variety
of end-products, including malondialdehyde (MDA) that
is widely used in practice as an indicator of free radical

damages [5-7]. Antioxidant system comprising vitamins A,
C, and E, and metal enzymes CuZn-superoxide dismutase
(SOD) and catalase (CAT) have a cellular protective action
against oxidative stress. Reduction of vitamin E, C, and
A levels was established during eimeriosis [8—11]. Dietary
trace elements/antioxidants can help maintain appropriate
antioxidant balance in a lot of infections [12, 13]. Zinc has
been shown to play a significant role as an antioxidant [14].
Burke and Fenton [15] have established that Zn deficiency
causes increased lipid peroxidation in liver. The reduction of
the trace elements/antioxidants such as Zn leads to a decrease
in activity of antioxidant enzyme [16]. The mechanism of
Zn action as an antioxidant manifests into acute and chronic
effects [17]. Chronic effects involve exposure of an organism
to Zn on a long-term basis, resulting in induction of some
other substance that is the ultimate antioxidant, such as
the metallothioneins. Acute effects involve two mechanisms:



(1) protection of protein sulphydryl groups or (2) reduction
of *OH formation from H,O, due to Zn antagonism to
redoxactive transition metals, such as iron and copper [18].
Administration of pharmacological doses of Zn in vivo
has shown to have a protective effect against general and
liver-specific prooxidants. Hence Zn gained an increasing
attention to be applied in diseases accompanied with ROS
generation [14, 15, 19, 20].

In our previous studies, we observed an impaired blood
antioxidant status in broiler chickens infected with Ascaridia
galli [21], Eimeria tenella [22], Eimeria acervulina [23],
and beneficial effect of 2Gly-ZnCl,-2H,O compound upon
blood antioxidant status in broiler chickens experimentally
infected with Eimeria acervulina [24].

Therefore, the activity of our investigation was oriented
toward finding new sources of trace elements/antioxidants
with regards to antioxidant requirements of the infected host
and their possible use in the control of the parasitoses.

The aim of the present study was to determine the
effect of Zn-Cu hydroxichloride-mixed crystals, (Cug7s/
7Zno.2)2(OH);Cl, on antioxidant status in broiler chickens
experimentally infected with Eimeria acervulina. For this
purpose, we investigated blood MDA concentrations and
erythrocyte SOD and CAT activities and vitamins E and C,
copper and zinc in liver, muscles and serum from all experi-
mental groups of chickens at the end of the experiment.

2. Materials and Methods

2.1. Compounds Tested. Zn-Cu hydroxichloride-mixed crys-
tals, (Cug.78/Zno22)2(OH);Cl, were synthesized by method
of continuous coprecipitation under standard conditions
with pH = 7 [25]. Diluted solutions of zinc and copper
chloride and sodium hydroxide were used. Crystals were
highly soluble in mineral acids but not in water.

2.2. Animal Studies and Treatment Schedules. The study was
performed on 60 clinically healthy 20-day-old broiler chick-
ens, Cobb 500 hybrids, weighing 288.0-411.0 g. Up to the age
of 11 days, they were housed in cages on slat floors under
conditions excluding an additional Eimeria infection and
received a standard diet without antibiotics or coccidiostat-
ics. At the age of 12 days, three groups of 20 birds each were
formed. The first experimental group was healthy untreated
and uninfected (negative controls). The second and the third
experimental groups were infected three times with 3 x 10°
sporulated Eimeria acervulina oocysts, at 2-day intervals (at
12th, 14th, 16th day), using an ingluvial tube [26]. The
third experimental group was treated with double basic salt
CuZn(OH)sCl- 0.170 g per kg food. It was given starting
lasting 10 days (2 days before infection and 8 after infection).

The experiment was approved by the Committee on
Animal Experimentation at Trakia University, Stara Zagora,
Bulgaria and was performed according to the recommenda-
tions of Directive 86/609/EC of November 24, 1986.

2.2.1. Infectious Material. Eimeria acervulina oocysts were
obtained from naturally infected chickens, passed through
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2-week-old broiler chickens, and stored in 2.5% potassium
bichromate solution in refrigerator (4°C).

2.3. Analyses of MDA, SOD, and CAT in Blood. Blood for
biochemical analyses (2mL) for MDA, SOD, and CAT assays
was sampled from v. subcutanea ulnaris or v. brachialis at
postinfection day 8 (of every chicken from the experimental
groups). Ethylenediaminetetraacetic acid (EDTA) was used
as anticoagulant.

Peripheral Blood Processing. Collected blood was centrifuged
at 3000 g for 15min and plasma was separated. Then, the
plasma was deproteinized with 25% trichloroacetic acid by
continuous mixing for 5min and centrifugation at 2000 g
for 15min. The deproteinized plasma was used for lipid
peroxidation products determination.

2.3.1. Determination of Products of Lipid Peroxidation. The
total amount of lipid peroxidation products in plasma
was assayed using the thiobarbituric acid (TBA) method,
measuring spectrophotometrically malondialdehyde (MDA)
reactive products at 532 nm [27].

Erythrocyte Processing. The erythrocyte pellet was washed
three times with saline and lysed. The hemoglobin was sepa-
rated by precipitation with ethanol/chloroform mixture. The
mixture was continuously shaken for 5 min and centrifuged
at 2500 g for 20 min. The obtained supernatants were used
for determination of enzyme activity.

2.3.2. Determination of Superoxide Dismutase (SOD) Activ-
ities. CuZn-SOD activity was determined as described by
Sun et al. [28] with minor modifications. Briefly, the
xanthine/xanthine oxidase system was used to generate
the superoxide anion-radical (O,°7),. This anion reduces
nitroblue tetrazolium (NBT) to formazan, which is moni-
tored at 560 nm. SOD in the sample sremoves the O, and
inhibits the reduction. The level of this reduction is used as
a measure of SOD activity. One unit of enzymatic activity
is defined as the amount of enzyme causing 50% inhibition
of the reduction of NBT to formazan observed. Results were
expressed as units per g haemoglobin (U/gHb).

2.3.3. Determination of Catalase (CAT) Activities. CAT activ-
ity was assessed in the erythrocyte lysats by the method
described by Beers and Sizer [29]. Briefly, hydrogen peroxide
(30 Mm) was used as a substrate, and the decrease in H,O»
concentration at 22°C in phosphate buffer (50 mM, pH 7.0)
was followed spectroscopically at 240 nm for 1 min. Results
are presented as units per g haemoglobin (U/gHb). One unit
of CAT activity is defined as the amount of enzyme that
degrades 1 ymol H,O, per minute.

2.4. Determination of the Levels of Cu, Zn, and Vitamins E and
C. The levels of Cu and Zn and these of vitamins E and C
were detected in the livers, serum, and breast musculature
at the end of the experiment (8 days after the infection).
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FIGUureg 1: Blood MDA concentrations and erythrocyte SOD and
CAT activities in chickens.

The content of Cu and Zn was determined using an
atomic absorption spectrophotometry, Varian Spectr. AA
220, Madrid [30]. Vitamin E concentration was detected
fluorometrically [31] and vitamin C concentration spectro-
photometrically [32].

2.5. Haemoglobin Concentrations. Haemoglobin concentra-
tions of lysates were determined spectrophotometrically at
546nm by the cyanmethemoglobin method of Mahoney
et al. [33].

2.6. Statistical Analysis. The results are reported as means +
SD for the experimental groups of chickens. Statistical
analysis was performed with Student’s t-test and multiple
regression analysis. P < .05 was considered statistically
significant.

3. Results

The blood MDA concentrations and the activities of antiox-
idant enzymes SOD and CAT in studied birds are presented
in Figure 1.

The data showed a statistically significant increase of
MDA concentrations—a marker of radical-induced damage,
in chickens infected with E. acervulina versus the healthy
birds (2.76 ymol/L versus 2.55umol/L, P < .05, Figure 1).
The results of lipid peroxidation products measured by the
formation of MDA in plasma in groups of chickens infected
with E. acervulina and treated with double basic salt were
found to be not significantly different in comparison to the
healthy controls (2.65 ymol/L versus 2.55 ymol/L, P > .05,
Figure 1) and were significantly reduced, compared to MDA
of positive control group (2.65umol/L versus 2.76 ymol/L,
P < .05, Figure 1). SOD activities were significantly lower
in infected chickens than in negative controls (2759.4 U/gHb
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versus 3486.5U/gHb, P < .001, Figure 1). The erythrocyte
SOD activity in chickens infected with E. acervulina and
treated with double basic salt was found to be increased,
as compared to the infected chickens (2900 U/gHb versus
2759 U/gHb, P < .001, Figure 1) and lower to the healthy
birds (3486 U/gHb, Figure 1). A significant increase of CAT
activity was observed in infected, compared to healthy birds
(2092.0 U/gHb versus 1218.4U/gHb, P < .001, Figure 1).
The supplementation of the basic salt restored the levels
of CAT in lysate of infected with E. acervulina and treated
with CuZn(OH);Cl broiler chickens (1515 U/gHb versus
1218 U/gHb, P > .05, Figure 1).

The results showed that E. acervulina infection increased
the liver Cu level (Figure 2).

The levels of Cu and Zn in the musculature were slightly
reduced as well as in the serum (Figures 2 and 3) and reduced
the liver Zn level (Figure 3).

The contents of vitamin C (10.05 mg% versus 19.45 mg%,
P < .05, Figure4) and vitamin E (2.40mg% versus
4.20mg%, P < .001, Figure 5) were decreased in the liver
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TaBLE 1: SD, %, values for the parameters MDA, SOD, CAT, Cu, Zn, and Vitamins E and C.
Cu Zn Vitamin E Vitamin C

Groups . . . .

MDA  SOD CAT liver muscle serum liver muscle serum liver muscle serum liver muscle serum
Healthy controls 0.07 63.60 117.60 7.100 0.800 0.350 55.600 7.600 0.990 0.330 0.250 0.300 3.330 0.055 0.099
InfeCtquIthE 0.04' 106.20° 115.20° 8.140 0.990 0.330 90.450 4.100 0.990 0.750 0.140 0.040 3.300 0.042 0.092
acervulina
E. acervulina & o5: 511 0% 152.00+** 5.000 1450 0.100 81.000 1200 1.100 1120 0.210 0.090 2.900 0.080 0.073

Cu-Zn salt

'P <.05;2P < .01;3P < .001 versus healthy (negative) controls
*P <.05; **P <.01; ***P < .001 versus infected (positive) controls.
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FiGURE 4: Content of vitamin C in broiler chickens.

but they did not change in the musculature in the infected
chickens, as compared to the healthy broiler chickens (P >
.05, Figure 5 and P > .01, Figure 4).

There was a significant decrease in the concentration of
vitamin E (0.80 mg% versus 1.10 mg%, Figure 5, P < .01,
Figure 5) and no significant change in the vitamin C (P >
.05, Figure 4) levels in the serum in the infected chickens,
compared to the healthy controls.

The supplementation of the basic salt restored the levels
of both vitamins to the controls, increased significantly the
Cu level under the control (P < .05, Figure 2), and restored
the Zn level (P > .05, Figure 3) in the infected and treated
chicks. The vitamin C (P < .05, Figure 4) and vitamin E
(P < .05, Figure 5) levels as well as those of Cu (P < .05,
Figure2) and Zn (P < .05, Figure 3) in serum from the
infected and uninfected chickens were significantly increased
after the treatment.

SD, %, values for the parameters Cu, Zn, Vitamin E, and
Vitamin C are present in Table 1.

4. Discussion

The production of ROS as by-products of metabolism that
have the potential to damage or destroy cellular structures is
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in a dynamic equilibrium under normal conditions in living
organisms. It has been demonstrated that concentrations
of ROS are increased in many parasitoses [1, 22, 23,
34-36]. The observed deviations in the studied enzymes
and nonenzymatic parameters evidence the occurrence of
oxidative stress following the infection and impaired the
ecological oxidative balance (EOB) between antioxidants
and pro-oxidants of chickens, infected with E. acervulina.
In a state of impaired EOB and oxidative stress, biological
systems are not protected against the oxidative radical
challenge that could result in toxic damage or death of the
aerobic organisms [37]. The deviations in the antioxidant
status of Eimeria acervulina-infected birds, compared to
healthy controls, allowed us to extend the studies upon the
mechanism of avian eimeriosis, and how oxidative stress
in broiler chickens could be reduced using a substances
with proved antioxidant properties. Superoxide dismutase is
involved in the antioxidant defense system in a first attempt
(or approach) to control and eliminate the toxic ROS [38].
According to Amstad et al. [39], the decrease in the activities
of antioxidant enzymes could have a negative impact on
cellular resistance against the oxidant-induced damage of
cell genome and cell killing. On the other hand Speranza,
et al. [40] and Popova and Popov [41] reported that the
antioxidant enzyme CAT was important for adaptation of
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cells to oxidative stress and preserved cells via degradation
of the reactive hydrogen peroxide. In the present study, the
increases of plasma MDA concentrations and the marked
reduction of the blood SOD activity in E. acervulina infected
birds evidenced the occurrence of an oxidative stress due
to infection and the impairment of antioxidant/pro-oxidant
equilibrium in favour of pro-oxidants. The number of
facts evidencing the existence of a changed expression of
the principal antioxidant enzymes in various diseases is
increasing, but the reports are rather conflicting [12, 42—
44]. The concomitant increase of CAT activity (Figure 1)
would be compensatory mechanism in infected birds against
E. acervulina-induced oxidative damage. Similar increased
CAT activity was found in birds infected with E. tenella
[22]. The application of Cu-Zn basic salt restored the CAT
enzyme antioxidant defense system in chickens infected with
E. acervulina, but SOD activities were significantly different
compared to negative controls. Probably Cu-Zn basic salt
produced ROS and this finding was compromised by reduc-
tion of the SOD activity in chickens of this group compared
to healthy birds (P < .05, Figure 1). The impaired enzyme
antioxidant system may favour accumulation of ROS, which
probably induced E. acervulina infection, too. Free radicals
including ROS are known to be toxic to some parasites [45].
A more logical interpretation of increased both CAT activity
and ROS production, after the salt application, is difficult to
be done now. It is envisaged that ROS may also be useful in
combating other kinds of skin infections and Cu-Zn basic
salt to minimize the possible negative effects of E. acervulina.
This would agree with our observation of decreased levels
of MDA—marker of oxidative stress, in plasma of chickens
treated with CuZn(OH);Cl.

Vitamin E is one of the antioxidants widely used in
poultry diets and has been proposed as a major antioxidant
in plasma membranes of all cells and subcellular organs,
functioning as a chain-breaker and free radical scavenger.
Poultry cannot synthesize vitamin E and its concentration
is reduced under stress conditions. Vitamin C and E con-
centrations were dramatically reduced in infected chickens
(liver-P < .05, serum-P < .01, and muscle-P < .05,
Figure 4 and liver-P < .001, serum-P < .01 and muscle-
P < .05, resp. Figure 5). Higher vitamin E reduction and
that of vitamin C are comparable with that established
in chickens infected with Eimeria sp. [24]. Antioxidant
imbalance, increase CAT and decrease SOD, vitamins C and
E levels in blood of chickens due to the eimeriosis were
based on the liver hypovitaminoses C and E and reduced Zn
level (Figures 3, 4, 5). The antioxidant imbalance, comprising
decreased levels only of vitamins/antioxidants (vitamin E,
C, retinal, and carotene), has been found in parasitize
goats (34). Significant changes in activity/concentrations of
antioxidant parameters in acute phase of fascioliasis in rats
were observed by Kolodziejczyk et al. [46]. The authors
established decreased activity of liver enzymes SOD, GSH-
Px and GSSG-R, as well as a reduction of vitamin C, E, A
and glutathatione levels. Vitamin E plays the most important
role in the antioxidant system because it is an excellent
biological chain-breaking antioxidant that protects cells and
tissue from lipoperoxidative damage induced by free radicals.

Vitamin C enhances antioxidant activity of vitamin E by
reducing the tocopheroxyl radicals back to their active form
of vitamin E or by sparing available vitamin E [9, 13].
Regarding antioxidant property there is a synergistic effect
of vitamins C and E on the antioxidant defense system in
infected with E. acervulina chickens. Vitamins A, C, and
E, Zn, and Cu act as a coordinated and balanced system
to protect tissues from damage by reactive oxygen species
and each relies on the action of the others [13]. There
was a little information about the effect of trace elements
supplementation on the antioxidant status in parasitoses.
Recently, a positive effect of Zn-Cu mixed basic salt on
the antioxidant imbalance in chicks infected with Ascaridia
galli [21] and in rabbits infected with Fasciola hepatica
[47] was established. The authors investigated the levels
of vitamins C and E, the levels of Zn and Cu, as well
as SOD-activity in liver of hosts (chickens and rabbits).
Developed hypovitaminoses C and E and reduced Zn and
Cu levels in infected chickens were restored by Zn-Cu salt
supplementation. The differences in the rates of depletion of
Zn, as well as vitamins C and E, depended on the parasite
and host species, the parasite localization, their life cycle,
the biological role, and the possible store of the elements
in the host organism. The Cu level in infected with Eimeria
acervulina and treated chickens was higher, than that in the
healthy controls (P < .001 for liver, P < .01 for muscle and
P < .05 for serum, Figure 2), but without any toxic signs.
Additional studies are required to establish the optimum
Cu:Zn ratio for mixed Zn-Cu crystals for an application in
eimeriosis without any copper accumulation.

5. Conclusion

The observed deviations in the studied enzymes and nonen-
zymatic parameters evidence the occurrence of oxidative
stress following the infection and impaired the EOB between
antioxidants and pro-oxidants of chickens, infected with
Eimeria acervulina. Our results proved the ameliorating
role of CuZn(OH);Cl (0.170 g per kg food) against Eimeria
acervulina-induced oxidative damage in infected chickens.
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The study evaluated the ameliorative effect of vitamin C on chronic chlorpyrifos-induced hematological alterations in Wistar
rats. Twenty adult male rats divided into 4 groups of 5 animals each were exposed to the following regimens: group I (S/oil) was
administered soya oil (2 mL/kgb.w.), while group II (VC) was given vitamin C (100 mg/kg b.w.); group III was dosed with CPF
(10.6 mg/kgb.w.); group IV was pretreated with vitamin C (100 mg/kg) and then exposed to CPF (10.6 mg/kgb.w.), 30 minutes
later. The regimens were administered by oral gavage once daily for a period of 17 weeks. Blood samples collected at the end of
the study revealed reduction in the levels of pack cell volume, hemoglobin, red blood cells, leukocytes (attributed to neutropenia,
lymphopenia, and monocytopenia), and platelets in the CPF group, which were ameliorated in the vitamin C- pretreated group.
The elevated values of malonaldehyde, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin
concentration, and neutrophil/lymphocyte ratio in the CPF group were restored in those pretreated with vitamin C. The study
has shown that chronic CPF-induced adversity on hematological parameters of Wistar rats was mitigated by pretreatment with

vitamin C.

1. Introduction

Organophosphate (OP) insecticides are used in the agricul-
tural and domestic pest control [1], accounting for 50%
of the global insecticidal use [2]. Their use is, however,
accompanied by widespread toxicity in nontarget organisms,
including man. Chlorpyrifos (CPF) is one of the most widely
used OP insecticides until 2000 when the United States Envi-
ronmental Protection Agency restricted some of its domestic
uses due to its toxicity. Despite this, CPF remains one of
the most widely used OP insecticides. Anemia and alteration
in other hematological parameters have been recorded
following repeated CPF exposure [3, 4]. Although the mech-
anism of acute CPF toxicity involves acetylcholinesterase
(AChE) inhibition, other mechanisms unrelated to AChE
inhibition, including the induction of oxidative stress, have
been implicated [4-8]. As a lipophilic molecule, CPF easily
passes through the cells into the cytoplasm [9]. Once inside
the cell, CPF induces damage to the cellular molecules [10].

Oxidative damage primarily occurs through production of
reactive oxygen species (ROS) which causes damage to
macromolecules such as lipids, proteins, and DNA. Under
normal circumstances, the body copes with oxidative assault
through the repair of the damage or the invocation of
the indigenous antioxidant enzymatic and nonenzymatic
systems to reduce the pro-oxidation states. However, in
situation of increased and accelerated oxidative challenge by
CPF as previously reported [4-8], the natural antioxidant
mechanisms are overwhelmed thereby resulting in dam-
age. Therefore, supplementation with exogenous source of
antioxidant is likely to reduce the oxidative burden, hence
tissue damage. Vitamin C is one of the most widely available
and affordable nonenzymatic antioxidant molecules that
have been used to mitigate oxidative damage. It is an impor-
tant water-soluble antioxidant in biological fluids [11, 12].
It readily scavenges physiological ROS such as superoxide,
hydroxyl, and aqueous peroxyl radicals, as well as nonradical
species such as singlet oxygen and ozone, as well as reactive



nitrogen species (RNS) such as peroxynitrite, nitrosating
species (N,03/N;0y4), nitroxide radicals, and nitrogen diox-
ide [13, 14]. The reduction in CPF-induced toxicity following
vitamin C supplementation has been reported previously
[6, 7]. The aim of the present study is therefore to evaluate
the mitigating effect of vitamin C on hematological changes
induced by chronic CPF exposure in Wistar rats.

2. Materials and Methods

2.1. Animals and Housing. Twenty young adult male Wistar
rats weighing 95-110 g were obtained from the Laboratory
Animal Unit of the Department of Veterinary Physiology
and Pharmacology, Ahmadu Bello University, Zaria, Nigeria.
They were housed in metal cages and fed on standard rat
chow, and water was provided ad libitum. The animals were
allowed to acclimatize for at least one week. The housing and
management of the animals and the experimental protocols
were conducted as stipulated in the Guide for Care and Use
of Laboratory Animals [15].

2.2. Chemicals. Commercial grade CPF (Termicot, 20% EC,
Sabero Organics, Gujarat, India) was dissolved in soya oil
(Grand Cereal, Jos, Nigeria), while each tablet of vitamin C,
Med Vit C (100 mg/tablet; Dol-Med Laboratories Limited,
Lagos, Nigeria), was dissolved in ImL of distilled water
to obtain 100 mg/mL suspension, just prior to its daily
administration.

2.3. Experimental Protocol. The rats were weighed using
digital weighing balance and then assigned randomly into
4 groups of 5 rats in each group. Rats in group I served
as the control group (S/oil) and were given only soya oil
(2 mL/kgb.w.), while those in group II (VC) were dosed with
vitamin C (100 mg/kgb.w.). Rats in group III (CPF) were
administered with CPF only (10.6 mg/kg b.w. ~1/8th LDs5
of 85 mg/kg) [16], while those in group IV (VC+CPF) were
pretreated with vitamin C (100 mg/kg) and then dosed with
CPF (10.6 mg/kg b.w), 30 min later. The different regimens
were administered once daily by oral gavage for a period of 17
weeks. At the end of the study period, the rats were sacrificed
by severing the jugular vein after light ether anesthesia.

2.4. Hematological Evaluation. Two milliliters of blood col-
lected into heparinized sample bottles were analyzed for
hematological parameters such as pack cell volume (PCV),
hemoglobin (Hb), total red blood cells (RBCs), mean cell
volume (MCV), mean corpuscular hemoglobin (MCH),
mean corpuscular hemoglobin concentration (MCHC), total
white blood cell (WBC), and total platelets count using an
automatic hematological assay analyzer, Advia 60 Hematol-
ogy system (Bayer Diagnostics Europe Ltd, Ireland). Blood
smears were also stained with Giemsa for absolute differential
WBC count [17], while the neutrophil-lymphocyte ratio was
calculated.

2.5. Evaluation of Erythrocytes Malonaldehyde Concentration.
The erythrocyte malonaldehyde (MDA) concentration, as
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a marker of lipid peroxidation, was determined by the
double heating method of Draper and Hadley [18], as we
described previously [4, 6]. The principle of the method was
spectrophotometric measurement of the colour produced
during the reaction of thiobarbituric acid (TBA) with
MDA. One milliliter of heparinized blood samples obtained
from each animal was centrifuged at 600 g and the plasma
discarded. Erythrocyte packets were prepared by washing
erythrocytes three times in cold isotonic saline (0.9% w/v).
The washed erythrocytes were used to analyze for MDA
concentrations. Briefly, 2.5 mL of 100 g/L trichloroacetic acid
was added to 0.5 mL of erythrocytes in a centrifuge tube and
placed in a boiling water bath for 15 min. After cooling in tap
water, the mixture was centrifuged at 1000 X g for 10 min,
and 2mL of the supernatant was added to 1 mL of 6.7 g/L
TBA solution in a test tube and placed in a boiling water
bath for 15 min. The solution was then cooled in tap water,
and its absorbance measured using a UV spectrophotometer
(Jenway, 6405 model, Japan) at 532 nm. The concentration
of MDA was calculated by the absorbance coefficient of
MDA-TBA complex, 1.56 X 10°cm™' M~!, and expressed
in nanomoles per gram of hemoglobin. The hemoglobin
concentration was determined using the method of Dacie
and Lewis [19].

2.6. Statistical Analysis. Values obtained as mean + SEM
were subjected to one-way analysis of variance (ANOVA)
followed by Tukey test using GraphPad Prism version 4.0
for windows from GraphPad Software, San Diego, California,
USA). Values of P < .05 were considered significant.

3. Results

3.1. Effects of Treatments on Pack Cell Volume. The PCV
recorded for rats in the CPF group was significantly lower
compared to either the S/oil (P < .05) or the VC (P < .01)
group. There was no significant change in the PCV of rats
in the VC+CPF group compared to any of the other groups
(Table 1).

3.2. Effect of Treatments on Hemoglobin Concentration. The
Hb concentration was significantly lower in the CPF group
compared to either the S/oil (P < .05) or the VC (P < .01)
group. There was no significant difference (P > .05) in the
Hb of VC+CPF group compared to either the S/oil, VC, or
CPF group (Table 1).

3.3. Effect of Treatments on Total Red Blood Cell Concentra-
tion. A significantly lower RBC concentration was recorded
in the CPF group compared to either the S/oil (P < .01),
VC (P < .01), or VC+CPF (P < .05) group. The RBC
concentration in VC+CPF group was significantly lower (P <
.05) compared to those recorded in the VC group, but was
marginally higher than in the CPF group (Table 1).

3.4. Effect of Treatments on Red Blood Cell Indices. The
effect of treatments on MCV, MCH, and MCHC is shown
in Table 1. The MCV and MCH in the CPF group were
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TaBLE 1: Effect of chronic exposure to soya oil (S/oil), vitamin
C (VC), and/or chlorpyrifos (CPF) on pack cell volume (PCV),
red blood cell (RBC) and hemoglobin (Hb) concentrations, and
erythrocyte indices in Wistar rats.

Parameters S/oil VC CPF VC+CPF
PCV (%) 42+1.6 44+13 35+12%  40+0.95
Hb (g/dL) 14+0.53 15+0.64 12+037® 13 +0.31
?flc()ff/‘ﬁ;‘t 58=049 6.8+03 3.7+015% 51+ 0.07
MCV (fL/cell) 79 +11 63+£6.0 93x31> 79+3.0
MCH (pg/cell) 25+2.7 24+22 33+21° 26+0.84
MCHC (g/dL) 33+15 33+22  34+20 33+ 0.8

2P < .01 versus soya oil group; PP < .01 versus vitamin C group; °P < .05
versus vitamin C-+chlorpyrifos group; 4P < .01 versus vitamin C group.
Values are mean + SEM of 5 animals per group. NB-MCV: mean cell
volume; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular
hemoglobin concentration.

significantly elevated (P < .05) compared to those recorded
in the VC group. There was no significant change (P > .05)
in MCHC in between the groups. Anisocytosis was also
observed in the CPF group compared to normocytosis in the
other groups.

3.5. Effect of Treatments on Total and Absolute Differential
White Blood Cell Counts. There was a significant decrease
(P < .01) in the WBC counts of CPF group compared to
either S/oil or VC group. The WBC concentration in the
VC+CPF group was significantly lower (P < .05) compared
to those recorded in the VC group (Table 2).

The neutrophil count in the CPF group was significantly
lower compared to the S/oil (P < .01), VC (P < .01) and
VC+CPFE (P < .05) groups, respectively. The neutrophil
count in the VC+CPF group was significantly lower (P < .01)
compared to either the S/oil or VC group. The lymphocyte
count in the CPF group was significantly lower (P < .01)
compared to either the S/oil, VC, or VC+CPF group. The
lymphocyte count of VC+CPF group was significantly lower
compared to either S/oil (P < .05) or VC (P < .01) group.
The monocyte count in the CPF group was significantly
lower in the CPF group compared to either S/oil (P < .05)
or VC (P < .01) group. The monocyte count in the VC+CPF
group was significantly lower (P < .05) compared to the VC
group (Table 2).

3.6. Effect of Treatments on Neutrophil/Lymphocyte Ratio.
The neutrophil/lymphocyte ratio in the CPF group was
significantly higher compared to either the S/oil (P <
.05), VC (P < .05), or VC+CPF (P < .01) group. The
neutrophil/lymphocyte ratio of VC+CPF group was not
significantly different (P >.05) from those obtained in either
the S/oil or VC group (Table 2).

3.7. Effect of Treatments on Platelet Count. The platelet count
in the CPF group was significantly lower compared to either
the S/oil (P < .01), VC (P < .01), or VC+CPF (P < .05)

3
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FiGure 1: Effect of chronic exposure to soya oil (S/oil), vitamin C
(VC), and/or chlorpyrifos (CPF) on platelet counts in Wistar rats.
2P < .01 versus soya oil group; "P < .01 versus vitamin C group;
¢P < .05 versus vitamin C+chlorpyrifos group; 4P < .05 versus soya
oil group; ¢P < .05 versus vitamin C group. Values are mean + SEM
of 5 animals per group.

nh

S/oil VC+CPF
Treatments

180

(nmol/g hemoglobin)
- = = =
O N = S =Y
S 5 & & 3 & & &

Erythrocyte malonaldehyde concentration

(=}

FiGure 2: Effect of chronic exposure to soya oil (S/oil), vitamin C
(VC), and/or chlorpyrifos (CPF) on erythrocytes malonaldehyde
concentration. P < .01 versus soya oil, vitamin C, and vitamin
C+chlorpyrifos groups, respectively.

group. The platelet count recorded in the VC+CPF group was
significantly lower (P < .05) relative to either the S/oil or VC
group (Figure 1).

3.8. Effect of Treatments on Erythrocyte Malonaldehyde Con-
centration. The erythrocyte MDA concentration in the CPF
group was significantly higher (P < .01) compared to
those obtained in the soya oil, VC, and VC+CPF groups,
respectively. The MDA concentration in VC+CPF group was
not significantly different from those recorded in either the
VC or the S/oil group (Figure 2).

4. Discussion

The low hematological parameters of PCV, Hb, and RBC
show that chronic CPF administration causes anemia. This
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TasLE 2: Effect of chronic exposure to soya oil (S/oil), vitamin C (VC), and/or chlorpyrifos (CPF) on absolute total and differential leukocyte

count in Wistar rats.

Parameters (x10°/L) S/oil vC CPF VC+CPF

Total leukocyte count (x10°/L) 9.9 +0.812 9.9 +0.89 5.4 + 0.37% 8.4 + 0.5

Neutrophils count (x10°/L) 4.4 +0.12 49 +0.19 2.7 +0.15%¢ 3.4 = 0.16%
Lymphocytes count (x10°/L) 5.3 +0.18 59 +0.16 3.0 = 0.13®f 4.5 +0.19%
Monocytes count (x10°/L) 0.07 + 0.01 0.09 + 0.02 0.0 + 0,0 0.03 + 0.01
Band cells count (x10°/L) 0.0 £ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.01 = 0.003
Neutrophil : Lymphocyte ratio 0.84 + 0.05 0.82 + 0.09 1.0 + 0.0%¢ 0.76 + 0.04

2P < .01 versus soya oil group; °P < .01 versus vitamin C group; <P < .05 versus vitamin C+chlorpyrifos group; 4P < .01 versus Soya oil group; °P < .01 versus
Vitamin C group; fP < .01 versus vitamin C+chlorpyrifos group; £P < .05 versus Soya oil group; "P < .05 versus soya oil group; IP < .05 versus vitamin C

group. Values are mean + SEM of 5 animals per group.

agreed with earlier findings [3, 4, 20, 21]. Goel et al. [3]
attributed the anemia to the ability of CPF to reduce serum
iron concentration, thereby compromising the synthesis of
Hb. The anemia may also be related to interference with
Hb synthesis and shortening of RBC lifespan [22]. We have
earlier shown that chronic CPF exposure causes increased
erythrocyte fragility, partly due to increased lipoperoxidation
of the erythrocyte membranes [4, 7, 8]. The increased
lipoperoxidation in the CPF group, reflected by significant
MDA concentration, may have caused increased vulnerabil-
ity of the RBC to destruction, but may directly destroy the
erythrocytes thereby leading to anemia. MDA is a major
oxidation product of peroxidized polyunsaturated fatty acids
(PUFAs), and increased MDA content is an important
indicator of lipid peroxidation [23].

The RBC is susceptible to lipoperoxidative changes
because of its direct association with molecular oxygen, high
content of metal ions catalyzing oxidative reactions, and
availability of high amount of PUFAs, which are susceptible
to lipid peroxidation. Inability to repair membrane damage
and regenerate due to lack of nucleus and poor antioxidant
enzymes composition of the plasma medium in which they
are bathed [24, 25] are some of the other factors responsible
for the increased vulnerability of RBC to lipoperoxidation.
Therefore, CPF-induced oxidative damage to the erythrocyte
membrane may have contributed to the anemia recorded
in the CPF group. This is because the process of lipid
peroxidation impairs the functions and homeostasis of the
erythrocyte membranes through decrease in hydrophobic
characteristics of bilayer membrane, and altering the affinity
and interaction of proteins and lipids [26]. ROS can equally
affect the proteins resulting in modification of enzymes
activity, and damage to the membrane transport proteins
may produce disturbed cellular ionic homeostasis, leading
to alterations in intracellular calcium and potassium that
triggers a series of changes in the cell [27]. ROS can directly
affect the conformation and/or activities of all sulthydryl-
containing molecules, by oxidation of their thiol moiety
[28, 29]. The combined effect of these ROS-triggered cellular
changes may eventually lead to cellular dysfunction and
ultimate destruction.

Anisocytosis observed in the CPF group in the present
study had also been recorded in earlier studies [3, 4].

The increased MCV may reflect the presence of immature
RBCs in the peripheral blood, perhaps arising from the
body compensatory mechanism to cater for the CPF-induced
deficit in RBC concentration. The increased presence of
immature RBCs may be similarly responsible for the anisocy-
tosis observed in the CPF group. The significant increase in
MCH in the CPF group shows that the amount of Hb in this
group is high, while the apparently normal MCHC indicates
normal Hb concentration. Therefore, the OP insecticide can
be said to induce macrocytic anemia.

The lack of significant increase in PCV and concentra-
tions of RBCs and Hb recorded in group pretreated with
vitamin C when compared to the S/oil or VC group was
an indication of the attenuation of CPF-evoked anemia by
the antioxidant vitamin. In its reduced form, vitamin C has
been shown to improve the absorption of iron from the
gut [30, 31], thereby increasing its serum concentration of
iron essential for heme synthesis. This is by facilitating the
reduction of ferric iron to the ferrous form [32]. Besides,
vitamin C has also been shown to be beneficial in the
management of anemia [33]. Furthermore, the amelioration
of the anemia in the group pretreated with vitamin C
may be due to reduction in lipoperoxidative damage to
the erythrocyte membrane as demonstrated by its low
MDA concentration in the present study. Similarly, the low
erythrocyte fragility observed in our earlier study following
vitamin C supplementation of rats chronically exposed to
CPF [7] may have contributed to the mitigation of anemia
in the present study.

The present study also revealed leucopenia apparently
due to lymphopenia, neutropenia, and monocytopenia in
the CPF group. Previous studies have attributed CPF-
induced leucopenia to neutropenia [6] and lymphopenia
[3, 4]. Ambali et al. [4] reported neutrophilia following CPF
exposure, in contrary to neutropenia recorded in the present
study. Levine et al. [34] attributed monocytopenia recorded
in workers exposed to OP to inhibition of a monocyte
esterase, [alpha]-naphthyl butyrate esterase. Many pesticides
have been shown to induce immunotoxicity either via the
induction of apoptosis or necrosis [35, 36]. CPF exposure has
been shown to induce immunotoxicity via the induction of
apoptosis partly mediated through the activation of caspase
3 [37]. Chronic CPF exposure has been associated with
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abnormality of the immune system including depression
of T-lymphocytes [38]. Immunotoxicity in OPs has been
associated with either inhibition of serine hydrolases or
esterases in components of the immune system, through
oxidative damage to immune organs, or by modulation of
signal transduction pathways controlling immune functions
[39]. Free radical-induced oxidative damage that has been
widely implicated in the molecular mechanism of CPF
cytotoxicity is an initiator of apoptosis [35, 40], which may
have been involved in the depletion of the components of the
WBC in the group exposed to the OP in the present study.

Vitamin C pretreatment was able to mitigate the CPF-
induced immunotoxicity by restoring the concentration of
leukocytes and its components. The ability of vitamin C
to restore subchronic CPF-induced leucopenia has been
demonstrated in our earlier study [6]. Vitamin C has
been shown to enhance immune response via numerous
mechanisms, including lymphocytes proliferation [41, 42].
Besides, the antioxidant function of the vitamin has been
shown to inhibit apoptosis [43, 44].

The increase in the neutrophil/lymphocyte ratio (NLR)
in the CPF group recorded in the present study has been
reported previously in our laboratory following subchronic
CPF exposure [7]. NLR provides an indication of inflamma-
tory status in patients [45] and has been used as a prognostic
factor in predicting clinical outcomes of a disease process
and in the situation of increased stress or inflammation
[45-47]. NLR correlates well with the magnitude of total
leukocyte response and may provide a parameter that is
more sensitive than the total leukocyte count in a disease
process [48]. The elevated NLR in the CPF group in this
study is a demonstration of ongoing stress and inflammatory
process in rats from this group, predicating bad clinical
outcomes. The NLR in the group pretreated with vitamin
C was not significantly different from those observed in the
group administered either soya oil or vitamin C only, indi-
cating amelioration of CPF-induced stress and inflammatory
process in the group, partly due to protection from oxidative
damage by the antioxidant vitamin.

The significant decrease in platelet count in the CPF
group shows that chronic exposure to the insecticide
caused thrombocytopenia. This finding contradicted what
we reported earlier [4] that recorded thrombocytosis follow-
ing subchronic CPF exposure. The reason for the discrepancy
is not clear but may be related to the duration of expo-
sure. Thrombocytopenia may be related to CPF-induced
oxidative damage to the platelet membranes. A direct
relationship between oxidative stress and thrombocytopenia
has been demonstrated in patients infected with malaria
parasites [49]. The significant improvement in the level of
thrombocytes in group pretreated with the vitamin further
underscored the role of oxidative stress in CPF-induced
thrombocytopenia.

In conclusion, the present study has shown that vita-
min C pretreatment ameliorated the chronic CPF-induced
hemotoxicity in Wistar rats. This may be partly due to free
radical scavenging properties of the antioxidant vitamin,
which attenuated CPF-evoked lipoperoxidation to the blood
cellular constituents. However, the other nonantioxidant role

of vitamin C may have also complemented this antioxidant
mechanism of cytoprotection. Therefore, the results of this
study give an indication that vitamin C supplementation
may mitigate hemotoxicity in individuals who are at risk of
prolonged CPF exposure.
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Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in
animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following
xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are
the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthropogenic sources
including mining, smelting, and other industrial processes are responsible for human and animal exposure. These pollutants,
many a times, are copollutants leading to concurrent exposure to living beings and resultant synergistic deleterious health effects.
Several mechanisms have been explained for the damaging effects on the body system. Of late, oxidative stress has been implicated
in the pathogenesis of the lead- and cadmium-induced pathotoxicity. Several ameliorative measures to counteract the oxidative
damage to the body system aftermath or during exposure to these toxicants have been assessed with the use of antioxidants. The
present review focuses on mechanism of lead- and cadmium-induced oxidate damages and the ameliorative measures to counteract

the oxidative damage and pathotoxicity with the use of supplemented antioxidants for their beneficial effects.

1. Introduction

The diverse deleterious health effect upon exposure to
toxic heavy metals in the environment is a matter of
serious concern and a global issue. Much emphasis has
been given to elucidate the mechanism of toxicity due to
common environmental toxicants and to develop a safer
chemotherapeutic approach to mitigate the toxic effects.
Lead and cadmium are the two most abundant toxic metals
in the environment. The coexposure to these two toxic
metals has synergistic cytotoxicity that may, at times, turn
to antagonistic effects, because exposure to higher mixture
concentrations may enhance cellular defense mechanisms [1,
2], including induction of metallothioneins synthesis upon
exposure to cadmium. The concurrent higher levels of lead
and cadmium have been recorded in several field situations.
The common sources of lead and cadmium are diverse in
nature including natural and anthropogenic processes such

as combustion of coal and mineral oil, smelters, mining and
alloy processing units, paint industries, and so forth. [2-5].
The quantity of lead used in the present decade far exceeds
the total amount consumed in all previous eras [2]. The
anthropogenic activities and vehicular emissions contribute
to the entry of toxic metals to humans and other animals
food chains [6].

Cadmium is an important environmental pollutant
present in soil, water, air and food. Anthropogenic sources
add 3-10 times more cadmium to the atmosphere than
natural sources [7]. Major occupational exposure occurs
from nonferrous smelters during production and processing
of cadmium, its alloys, and compounds, and the exposure is
increasingly common during recycling of electronic waste.

Lead and cadmium do not have any detectable beneficial
biological roles. On the contrary, their detrimental effects
on physiological, biochemical, and behavioral dysfunctions
have been documented in animals and humans by several



investigators [8, 9]. The higher levels affect the central and
peripheral nervous systems [10], haemopoietic system [11],
cardiovascular system [12], kidneys [13], liver [14], and
reproductive systems [15, 16]. Cadmium is more toxic than
lead and causes renal and hepatic damage in exposed animals
(13, 14].

Of late, lead- and cadmium-induced tissue damages
have been attributed, at least in part, to toxicant-induced
oxidative stress [17, 18]. Cadmium stimulates the formation
of metallothioneins and reactive oxygen species (ROS), thus
causing oxidative damage to erythrocytes and various tissues
resulting in loss of membrane functions [19]. Long-term
exposure to Cd increases lipid peroxidation and causes
inhibition of SOD activity indicating oxidative damage in
liver, kidney and testes [20]. The various toxic effects induced
by Cd in biological systems have been linked to increased
lipid peroxidation, an as early and sensitive consequence
of Cd exposure. The increase in lipid peroxidation due
to Cd toxicity have been attributed to alterations in the
antioxidant defense system which includes enzymes such
as glutathione peroxidase (GPx), glutathione-S-transferase,
superoxide dismutase (SOD), and catalase (CAT), and
nonenzymatic molecule like glutathione, which normally
protect against free radical toxicity.

2. Lead-Induced Oxidative Stress

The mechanism of lead-induced oxidative stress involves an
imbalance between generation and removal of ROS (reactive
oxygen species) in tissues and cellular components causing
damage to membranes, DNA and proteins. The presence of
double bonds in the fatty acid on cell membrane weakens
the C—H bonds on the carbon atom adjacent to the double
bonds and makes H removal easier. Therefore, fatty acids
containing zero to two double bonds are more resistant
to oxidative stress than polyunsaturated fatty acids with
more than two double bonds [21]. The above fact was
substantiated after incubation of linoleic, linolenic, and
arachidonic acid with lead in which the concentration of a
final product of oxidative stress, malondialdehyde (MDA)
was increased with the number of double bonds of fatty acid
[22].

The intrinsic mechanism underlying lead-induced oxida-
tive damage to membranes is associated with changes
in its fatty acid composition [23]. The fatty acid chain
length and unsaturation are the determinant for membrane
susceptibility to peroxidation, and lead induced arachidonic
acid elongation might be responsible for the enhanced
lipid peroxidation of the membrane [24]. Thus, lead affects
membrane-related processes such as the activity of mem-
brane enzymes, endo- and exocytosis, transport of solutes
across the bilayer, and signal transduction processes by
causing lateral phase separation [25].

Lead accumulation in tissues causes oxidative DNA
damages including strand break, although the evidence of
lead-induced oxidative damage to DNA is less conclusive
[18]. The §-aminolevulinic acid dehydrase (ALAD) is highly
sensitive to the toxic effects of lead [26]. The accumulation
of §-aminolevulinic acid (ALA) upon exposure to lead
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induces generation of ROS [27, 28] and resultant oxidative
stress [29]. The final oxidation product of ALA, 4,5-
dioxovaleric acid is an effective alkylating agent of the qui-
nine moieties within both nucleoside and isolated DNA [30].
Increased level of 8-oxo-7, 8-dihydro-2-deoxyguanosine
and 5-hydroxyl-2-deoxycytidine following chronic treatment
with ALA in rats has been attributed for ALA-induced DNA
damage [31]. There are recent data suggesting lead-induced
alteration in gene expression [32] and it appears to interact
with zinc-binding sites on an important DNA-associated
protein, human protamine [33].

The effect on the antioxidant defense systems of cells
is the second mechanism for lead-induced oxidative stress.
Lead and other metals such as Hg and Cd have a high affinity
for sulthydryl (SH) groups. Mercaptides are formed with the
SH group of cysteine, that are less stable complexes [34]. Lead
is shown to alter antioxidant activities by inhibiting func-
tional SH groups in several enzymes such as ALAD, superox-
ide dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), and glucose-6-phosphate dehydrogenase (G6PD)
[35-38]. G6PD contains many SH group and supplies cells
with most of the extramitochondrial NADPH through the
oxidation of glucose-6-phosphate to 6-phosphogluconate.
G6PD is inhibited by lead [39]. However, there are more
complex effects of lead on G6PD, as evidenced by in vivo
studies. G6PD activity increases in RBCs of lead-treated rats
[40] and lead-exposed workers [41]. The most important
regulation of the pentose phosphate pathway is the NADP-
/NADPH ratio, which is known to change in favor of the
oxidized form under oxidative stress conditions. Therefore,
lead exposure results in an increase or decrease in G6PD
activity depending on the concentration and duration of lead
exposure, and magnitude of oxidative stress inside the cell
[42].

GPx, CAT, and SOD are potential targets for lead toxicity
because these antioxidant enzymes depend on various
essential trace elements for proper molecular structure and
activity [43]. Since lead-associated reduction in selenium
uptake may increase the susceptibility of the cell to oxidative
stress, an antagonistic effect between selenium and lead was
found to affect GPx activity that requires selenium as a
cofactor [44]. On the other hand, administration of selenium
before lead exposure produces significant prophylactic action
against lead-induced oxidative stress by means of increasing
SOD, glutathione reductase (GR) activity, and glutathione
(GSH) content in male rats [45]. In summary, impaired
antioxidant defenses can be a result of the inhibitory effects
of lead on various enzymes, which in turn causes the cells to
be more susceptible to oxidative insult.

3. Cadmium and Oxidative Stress

Cadmium is a well-recognized environmental pollutant with
numerous adverse health effects. It principally affects lung,
liver, kidney, and testes following acute intoxication, and
nephrotoxicity, immunotoxicity, osteotoxicity and tumors
on prolong exposures. Reactive oxygen species (ROS) are
often implicated in Cd-induced deleterious health effects.
There are direct evidence of the generation of free radicals
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in animals following acute Cd overload, and indirect evi-
dence of involvement of ROS in chronic Cd toxicity and
carcinogenesis. Cd-generated superoxide anion, hydrogen
peroxide, and hydroxyl radicals in vivo have been detected
by the electron spin resonance spectra, which are often
accompanied by activation of redox sensitive transcription
factors (e.g., NF-xB, AP-1 and Nrf2) and alteration of ROS-
related gene expression. It is generally agreed upon that
oxidative stress plays important roles in acute Cd poisoning.

However, direct evidence for oxidative stress is often
obscure following long-term and environmentally-relevant
low levels of Cd exposure. Alterations in ROS-related gene
expression during chronic exposures are also less significant
compared to acute Cd poisoning. This is probably due
to induced adaptation mechanisms such as overexpression
of metallothionein and glutathione following chronic Cd
exposures, which in turn diminish Cd-induced oxidative
stress. In chronic Cd-transformed cells, less ROS signals
are detected with fluorescence probes. Acquired apoptotic
tolerance renders damaged cells to proliferate with inherent
oxidative DNA lesions, potentially leading to tumorogenesis.
Thus, ROS are generated following acute Cd overload that
play an important roles in tissue damage. Adaptation to
chronic Cd exposure reduces ROS production, but acquired
Cd tolerance with aberrant gene expression plays important
roles in chronic Cd toxicity and carcinogenesis.

The basic mechanisms involved in cadmium carcinogen-
esis are gene regulation of proto-oncogenes [46], oxidative
stress [47-51], disruption of cadherins, inhibition of DNA
repair and interference with apoptosis [52]. Cadmium
is a potent cell poison, and known to cause oxidative
stress by increasing lipid peroxidation and/or by changing
intracellular glutathione levels. It affects the ubiquitin/ATP-
dependent proteolytic pathway. However, the cellular mech-
anisms involved in cadmium toxicity are still not well
understood, especially in neuronal cells. The treatment of
neuronal cells culture with different concentrations of the
metal ion to examine the relationship between cadmium-
induced oxidative stress and the ubiquitin/ATP-dependent
pathway revealed decreased glutathione levels, and marked
increases in protein-mixed disulfides (Pr-SSGs) [53]. The
increases in intracellular levels of Pr-SSGs were concurrent
with increases in the levels of ubiquitinated proteins (Ub
proteins) when the HT4 cells were subjected to lower
(25 ym or less) concentrations of cadmium. However, higher
concentrations of cadmium (50um) led to increases in
Pr-SSGs but inhibited ubiquitination, probably reflecting
inhibition of ubiquitinating enzymes.

The cadmium-induced changes in Pr-SSGs and Ub pro-
teins are not affected when more than 85% of intracellular
glutathione is removed from the cells by the glutathione
synthetase inhibitor l-buthionine-(S, R)-sulfoximine. How-
ever, the reducing agent dithiothreitol, that prevents build-
up of Pr-SSGs in the cell also blocks the accumulation of
Ub proteins induced by cadmium. In addition, dithiothreitol
blocks the effects of higher (50 um) concentrations of cad-
mium on cytotoxicity and on glutathione, Pr-SSGs, and Ub
proteins. Together, these results strongly suggest that changes
in the levels of intracellular Pr-SSGs and ubiquitin-protein

conjugates in neuronal cells are the responses closely
associated with the disruption of intracellular sulthydryl
homeostasis caused by cadmium-mediated oxidative stress.

The testis is the important target organ of Cd toxicity.
Many studies indicate that Cd induces testicular damage in
many species of animals including mice, hamsters, rabbits,
guinea pigs and dogs [54, 55]. Cadmium has profound
effect on sex organ weight, a primary indicator of possible
alteration in androgen status [56, 57]. Several mechanisms of
Cd-induced testicular toxicity have been proposed. Lafuente
et al. [58] reported increased Cd accumulation in the
hypothalamus, pituitary, and testis and decreased plasma
levels of follicle stimulating hormone in rats, suggesting a
possible effect of Cd on the hypothalamic-pituitary-testicular
axis.

Several studies also suggest participation of reactive
oxygen species (ROS) in Cd-induced testicular damage [59].
Both acute and chronic Cd exposure is associated with
elevated lipid peroxidation in the lung, brain, kidney, liver,
erythrocytes, and testis [60—64]. The reactive oxygen species
(ROS) play both beneficial and harmful roles in living
organisms [65]. ROS can be generated by both exogenous
and endogenous sources. Cadmium is one of the exogenous
sources shown to indirectly produce ROS in various cell
lines [66—68]. The production and accumulation of ROS
inhibit the electron transfer chain in mitochondria [69]. In
general, the accumulated ROS consists of various amounts of
hydrogen peroxide, hydroxyl ions, singlet oxygen, superoxide
anions, lipid hydroperoxides, phospholipid hydroperoxides,
and so forth. Excessive production of ROS disturbs the
balance between the ROS and antioxidant agents (enzymes
and antioxidant substances) in the cells. Hydrogen peroxide
is the common substrate for catalase and GPx enzymes
in the cells. While catalase decomposes H,O, into water
and oxygen, GPx oxidizes GSH to GSSG by utilizing H,05.
Glutathione reductase (GR) is another enzyme required for
the antioxidant defense mechanism in cells. It reduces GSSG
into GSH. Both GPx and GR work in tandem in the cells in
order to maintain the GSH/GSSG ratio at a steady state level.
When the cells are under oxidative stress, catalase, GR and
GPx respond by altering their activities.

4. Amelioration of Lead- and
Cadmium-Induced Oxidative Stress

Abetment of lead and cadmium toxicity with rebalancing the
impaired prooxidant/antioxidant ratio through supplemen-
tation of antioxidant nutrients are still not completely clear.
However, evidences suggest significant protective effects
of antioxidant nutrients such as vitamin-C, carotenoids,
selenium, vitamin-E, and so forth.

Vitamin C is a major antioxidant that scavenges the
aqueous ROS by very rapid electron transfer that inhibits
lipid peroxidation [21]. Administration of vitamin C sig-
nificantly inhibits the lipid peroxidation levels of liver and
brain, and increased the CAT levels of kidney in lead-exposed
rats [17]. Lead-induced ROS production as examined by
rat sperm chemiluminescence generation reduced by 40%
with supplementation of 500 mg vitamin C/1 drinking water



[70]. Vitamin C supplementation in lead-exposed animals
significantly reduces blood, liver, and renal lead levels,
and associated biochemical changes indicating a significant
protective action of vitamin C against toxic effects of lead on
heme synthesis and drug metabolism [71]. The combination
of vitamin C and thiamine have been proved effective in
reducing lead levels in blood, liver, and kidney along with
reduction in lead-induced inhibition in the activity of blood
d-ALAD and blood zinc protoporphyrin [72].

There has been considerable debate concerning the
relationship between vitamin C nutritional status and lead-
induced toxic effects. Early reports suggest vitamin C as a
possible chelator of lead, with similar potency to that of
EDTA [8]. Vitamin and/mineral supplementation in African
American women was found to reduce blood lead level (BLL)
from 5.1 to 1.1 mg/dl, which was negatively correlated with
serum levels of vitamin E and C [73]. Ascorbic acid increases
urinary elimination of lead and reduces the hepatic and renal
lead burden in rats [74].

A cross-sectional study analyzed 4213 young and 15365
adult Americans with mean BLL of 2.5-3.5 mg/dl, respec-
tively. The BLL had inverse relationship with serum vita-
min C [75]. Vitamin C supplementation resulted in small
reductions in lead retention in 85 human volunteers who
consumed a lead-containing drink [76]. However, workers
occupationally exposed to lead, and with BLL ranged from
289 to 76.4mg/dl, supplementation of vitamin C and
zinc did not significantly reduce BLL [77]. The vitamin C
supplementation did not alter the blood and sperm lead
levels in lead-treated rats with BLL of 36 mg/dl [70]. A recent
report stated that rats treated with ascorbic acid did not
reduce lead burden in the liver, kidney, brain, and blood
[17]. Although it is biologically plausible that vitamin C
may affect lead absorption and excretion, the effect is more
obvious in low-exposed subjects with higher vitamin C
supplementation. In humans and animals exposed to high
levels of lead, the reduction of BLL by vitamin C is less
significant.

Vitamin E is the generic term used to describe at least
eight natural-occurring compounds that possess the bio-
logical activity of a-tocopherol. The group is comprised of
a-, -, y- and §-tocopherol and a-, -, y- and §-tocotrienol.
RRR-a-tocopherol has the highest biological activity [78],
the other tocopherols and tocotrienols are less biologically
active but they are at least as abundant as a-tocopherol
in certain foods [79]. Vitamin E is nature’s major lipid
soluble chain-breaking antioxidant that is known to protect
biological membranes and lipoproteins from oxidative stress
[80]. The main biological function of vitamin E is its
direct influence on cellular responses to oxidative stress
through modulation of signal transduction pathways [81].
One of the protective roles of vitamin E on lead-induced
damage is prevention of lipid peroxidation and inhibition
of SOD and CAT activities in liver [82]. In lead-exposed
rats, supplementation of vitamin E and/or C reduced sperm
ROS generation, prevented loss of sperm motility and oocyte
penetration capacity [70]. The interaction between vitamin E
and other antioxidants might have a more efficient protective
action against lead toxicity. Vitamin E and C jointly protect
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lipid structures against peroxidation [83]. Although vitamin
E is located in membranes and vitamin C in aqueous phases,
vitamin C is able to recycle oxidized vitamin E [84]. Vitamin
C repairs the tocopherol radical, thus recovering the chain-
breaking antioxidant capacity of vitamin E [83]. Vitamin
E alone or in combination with conventional chelator,
CaNa,EDTA has been reported to decrease the lead-induced
lipid peroxide levels in liver and brain in rats [17].

Carotenoids play a significant role in reduction of lead-
induced stress in all species. The reaction of carotenoids
with radicals is partly due to its roles in photosynthesis,
thus electron transfer from S-carotene to P680, with the
B-carotene being oxidized to its radical cation CAR [85].
Dietary f-carotene mediates prevention of lipid peroxida-
tion, and reduces the incidence of many diseases including
cancer, atherosclerosis, age-related macular degeneration,
and multiple sclerosis [86, 87]. However, the generally
accepted beneficial roles of carotenoids as antioxidants have
been seriously challenged by the results from clinical trials
that suggest deleterious effects of administered f-carotene
in heavy smokers [88]. There have been considerable recent
investigations in the interaction of f-carotene and other
antioxidants [89].

The antioxidant effects of Spirulina fusiformis, bluegreen
algae rich in f-carotene and SOD, against lead toxicity
have been examined in the testes of Swiss mice. The
antioxidant nutrients scavenged the free radicals after lead
administration and ROS generation in mice testes [90]. Sup-
plementation with multiple antioxidants including vitamin
C, vitamin E, B-carotene, selenium, and zinc resulted in
significant increase of SOD and GPx in 36 workers exposed
to lead [91]. The interaction of carotenoids and carotenoid
radicals with other antioxidants is of importance with respect
to anti- and, possibly, pro-oxidative reactions of carotenoids.
The nature of the reaction between the tocopherol (TOH)
and various carotenoids shows a marked variation depending
on the specific tocopherol homologue, of which a-TOH is
the most active. -carotene radical interacts with vitamin C
in the aqueous phase, and carotenoid radical are efficiently
reconverted to the parent carotenoid by vitamin C [89, 92].

Interactions between zinc and lead have been investigated
at absorptive and enzymatic sites [93]. Zinc and lead
compete for similar binding sites on the metallothionein-
like transport protein in the gastrointestinal tract [94].
The competition between zinc and lead might decrease
the absorption of lead, thus reducing lead toxicity. Dietary
supplementation with zinc and in combination with ascorbic
acid [95] and thiamine [96] reduces lead toxicity in humans.
Zinc has an important role in spermatogenesis in the male
reproductive system, and the most probable site of action is
the primary spermatocyte. Zinc supplementation competes
for and effectively reduces the availability of binding sites
for lead uptake. In another study, zinc was administrated to
lead-exposed rats along with chelating agents CaNa,EDTA,
succimer, and D-penicillamine. Zinc enhanced the efficacy
of lead chelation by reducing the blood, hepatic and renal
lead level, and overturning the inhibited activity on blood
ALAD [97]. A recent study has shown prevention of J-
ALAD inhibition and increased cellular SOD in the testis of
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lead-exposed rats following zinc supplementation [98]. The
protective effects of zinc against testicular damage caused by
lead might be due to competition between lead and zinc.
There is still no strong and direct evidence to conclude that
the beneficial effects of zinc are mediated by antioxidation.

Zinc is a trace element essential for living organisms.
More than 300 enzymes require Zn for their activity. It plays
an important role in the DNA replication, transcription, and
protein synthesis, influencing cell division and differentia-
tion [99]. Zn has a relationship with many enzymes in the
body and can prevent cell damage through activation of the
antioxidant system [100-102]. It is an essential component
of the oxidant defense system and functions at many levels
[103]. Zn deficiency increases lipid peroxidation in various
rat tissues, whereas Zn supplementation corrects the impair-
ment [102]. Cotreatment with Cd and Zn prevents damage
to the testes from Cd exposure [104]. This suggests Cd inter-
ference in Zn-related metabolic functions. The competitive
mechanism of interaction and Zn-induced metallothionein
induction are the plausible mechanism behind protective
effects of Zn against Cd toxicity. This is substantiated by
the findings that Cd treatment decreases the testicular Zn
concentration and elevates the levels of hepatic and renal
metallothioneins [105]. Zn pretreatment can prevent of
cadmium-induced testicular tumors which may be attributed
to the ability of Zn to reduce the cytotoxicity of Cd in
interstitial cells by enhancing efflux of Cd and decreasing
accumulation of Cd in the nuclei of this target cell population
in the rat testis [106]. So, Cd altered testicular function
mediated through induction of oxidative stress could be
reversed by administration of Zn.

Selenium is a cofactor of GPx, a cyto-antioxidant
enzyme. Selenium enhances the availability of GSH, which is
one of the most abundant intrinsic antioxidants that helps in
preventing lipid peroxidation and resultant cell damage. Lead
exposure decreases the activity of GPx due to the interaction
of lead with the essential selenocysteine moiety of the
enzyme [107]. Protection against liver and kidney damage
by selenium is attributed to enhanced antioxidant capacity
of cells, as evidenced by increased SOD and GR activities and
elevated GSH content following selenium supplementation
[45]. The combination of selenium and other antioxidants
has been shown to reduce oxidative stress in animals. DNA
damage in the liver and spleen induced by fumonisin B1 was
protected by the mixture of antioxidants coenzyme Q10, L-
carnitine, vitamin E and selenium in rats [108]. Combined
administration of antioxidants containing selenium, vitamin
C, vitamin E, f-carotene, and N-acetyl cysteine has been
reported to prevent both the diabetes- and galactosemia-
induced elevation of oxidative stress in rats [109]. Despite the
above findings, the beneficial role of selenium alone on lead-
induced oxidative stress is still unclear in human studies.

5. Conclusion

Generation of highly reactive oxygen species aftermath
of lead and cadmium exposure may result in systematic
mobilization and depletion of the cell intrinsic antioxi-
dant defenses. Formation of reactive oxygen intermediates

beyond the scavenging capacity of these antioxidant defense
mechanisms results in accumulation of harmful free radicals
and likelihood of oxidative damage to critical biomolecules,
such as enzymes, proteins, DNA, and membrane lipids.
Several mechanisms have been proposed to mediate the
oxidative stress caused by lead and cadmium, including
disrupted pro-oxidant/antioxidant balance. Although many
investigators have shown lead-induced oxidative damage,
and some antioxidants were found to reduce lead toxicity,
the mechanisms of dietary supplementation of antioxidants
remain to be further clarified in lead-exposed humans or
animals.

Evidences suggest that in presence of varying concen-
trations of cadmium, the mitochondrial enzymes are more
effective in reducing various ROS than their cytoplasmic
counterparts. This observation reveals that most oxido-
reduction reactions take place in the mitochondria, leading
to the formation of several ROS. As less ROS are produced
in the cytoplasm, the activities of antioxidant enzymes in the
cytoplasm are not as high as the mitochondrial enzymes with
cadmium treatments. Thus, more oxidative stress is observed
in the mitochondria than in the cytoplasm. Each antioxidant
enzyme shows its own pattern of activation or inhibition
upon exposure of cells to different concentrations of lead and
cadmium.
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Oxygen-derived free radicals are normally generated in many pathways. These radicals can interact with various cellular
components and induce cell injury. When free radicals exceed the antioxidant capacity, cell injury causes diverse pathologic changes
in the organs. The imbalance between the generation of free radicals and antioxidant defence is known as oxidative stress. The eye
can suffer the effect of oxidative damage due to the etiopathogenesis of some pathological changes related to oxidative stress. This
paper reviews the role of oxidative stress in the onset and progression of damage in different eye structures, the involvement of
the antioxidant network in protecting and maintaining the homeostasis of this organ, and the potential assessment methodologies

used in research and in some cases in clinical practice.

1. Introduction

The eye is an organ that captures light stimuli of the
environment and transforms these light signals into nerve
impulses that travel through the optic nerve to be processed
in images by the brain. Today, there has been an increase
in visits for eye diseases in both human medicine and
veterinary medicine. The main causes of this increase can be
attributed to xenobiotics derived of environmental pollution
[1], increasing of the ultraviolet radiation intensity [2], and
feeding based on fats and carbohydrates associated with
physical inactivity and increasing of degenerative diseases
such as diabetes and cardiovascular problems [3, 4].

All the above factors can generate harmful chemicals
to ocular tissues and are called oxidants agents or free
radicals (FRs). To protect against external agents, the eye has
several nonspecific defence mechanisms, such as eyelids, tear
film, cornea, and lens. When harmful agents have overcome
these barriers, other specific mechanisms operate based on
molecules called antioxidants [5].

This paper reviews the role of oxidative stress in the
onset and progression of damage in different eye structures,
the involvement of the antioxidant network in protecting
and maintaining the homeostasis of this organ, and the

assessment methodologies used in research and in some cases
in clinical practice.

1.1. Free Radicals. An FRs represents any chemical species
that has one or more unpaired electrons rotating in its
external atomic orbits [6]. Several authors have classified FRs
according to the functional group in their molecule. The
most frequent one is an oxygen FRs, in which oxygen is
the functional centre. This species is called reactive oxygen
species (ROS) and is the most relevant in eye damage. ROS is
a generic name that includes FRs and those chemical species
that act like oxidants but that are not FRs. The first group
includes superoxide anion (O,°™), hydroxyl radical (OH*"),
peroxyl radical (LOO*®), and alkoxyl (LO*) [3, 7].

Nonradical species behave as oxidants or are easily
converted into FRs. Within this group are hydrogen peroxide
(H,0,), hypochlorous acid (HCIO), singlet oxygen (1O,),
and ozone (O3) [8].

ROS are generally formed from normal metabolic reac-
tions and exogenous factors can increase them [3, 9].
The first ones are mainly those formed in the mitochon-
dria during ATP synthesis, in the peroxisomes during f3-
oxidation of fatty acids and D-amino acids, as consequence
of activation of P-450 enzyme system or by macrophages



and neutrophils as part of the immune response [10-12].
The exogenous factors can include an excessive intake of
some transition metals such as iron (Fe) and copper (Cu),
ultraviolet radiation, drugs, and pollution [12, 13].

1.2. Oxidative Stress. This alteration is produced when there
is an imbalance in FRs generation and the antioxidant
defence mechanism. Normal metabolic processes generate
large amounts of ROS. However, when FRs generation
exceeds the capacity of adaptation and cellular defence, a
condition known as oxidative stress is produced. This does
not define if the alteration is due to an increase in FRs or to
a decrease in a homeostatic response in tissues. Given that
oxidative injury can be related to a deficiency of protective
substances and several protective substances are nutrients,
a close relationship between oxidative stress and nutritional
state can be established. Oxidative stress affects the cell
integrity, because biomolecules such as DNA, proteins, and
lipids are damaged consequence of this process. Almost every
biological macromolecules can be oxidized by ROS; however,
lipids and proteins are the most labile biomolecules presents
in the eyeball [3, 9].

1.2.1. Lipid Peroxidation. The action of ROS on lipids is
known as lipoperoxidation or lipid peroxidation (LPO), and
the mechanism, measurement, and interpretation have been
widely reviewed. The LPO is particularly destructive, for it
develops as a self-perpetrating chain reaction. This process
is initiated when ROS removes a hydrogen atom from the
methylene group of a polyunsaturated fatty acid (PUFA)
and form a lipid FRs. Quickly, it adds oxygen molecule
and becomes a fatty acid peroxyl FRs and oxidized to other
PUFA initiating new reactions. This mechanism is facilitated
by the presence of transition metal ions (Cu and Fe) and
the double bonds contained in the chain of PUFA (7, 8].
The end products of LPO are degraded and originate new
cytotoxic compounds such as 4-hydroxynonenal (4-HNE)
and malondialdehyde (MDA). The consequences of oxidative
damage to PUFA are more evident when they are part
of cellular or subcellular membranes, because it alters its
cohesion, fluidity, permeability, and metabolic function [6,
9, 14].

1.2.2. Protein Oxidation. While proteins, peptides, and
amino acids are also targets for ROS, its modification is
less harmful than lipids, because the progress of reaction
is slow. However, the ocular tissue has a high percentage
of proteins, and then, any alteration on the proteins is
very important [15, 16]. It has been observed that the
presence of significant amounts of aromatic and sulfur
amino acids in a protein structure makes it more vulnerable
to the FRs [6]. This condition is observed in the lens,
whose protein composition contains high proportions of
tryptophan, tyrosine, phenylalanine, histidine, methionine,
and cysteine amino acids that can be modified by ROS,
producing adducts and aggregation and altered enzyme
function. Peptide bonds are also susceptible to be attacked
by FRs. These bonds can be modified after the oxidation of
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proline residues. In addition, end products could amplify the
initial damage [13].

2. Antioxidant Protection Mechanisms
Associated to the Eye

The ocular tissue has a protection system against oxidative
damage that can be classified into enzymatic and nonenzy-
matic antioxidants [17].

2.1. Enzymatic Antioxidants. Enzymatic antioxidants cat-
alyze electron transference from a substrate toward ROS.
Later, the substrates or reducing agents used in these
reactions are regenerated to be used again, and they achieve
this by using the NADPH produced in different metabolic
pathways [6]. The main antioxidant enzymes protecting the
eye against ROS are superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx). Each of these
enzymes catalyzes the reduction of a particular type of ROS
[18].

2.1.1. Superoxide Dismutase (EC 1.15.1.1, SOD). Superoxide
dismutase catalyzes the dismutation of O,"” into H,0O, and
O,. This enzyme is a metalloprotein and has three isoforms,
which have different cellular locations and employ different
cofactors. The isoforms Cu-SOD and Zn-SOD are located
in the cytosol and extracellular fluid, whereas the isoform
Mn-SOD is located in the mitochondrial matrix [9, 19].
All isoforms have been identified in the cornea (epithelium
and endothelium) [18, 20-22], lens epithelium [23], aqueous
humor [24], iris, ciliary body [25], and retina (inner segment
layer of photoreceptor cells and pigment epithelium) [26,
27].

2.1.2. Glutathione Peroxidase (EC 1.11.1.9, GPx). This selen-
oprotein can reduce H,O, and organic hydroperoxides into
water and alcohol, respectively, using reduced glutathione
(GSH) as electron donor. Four GPx isoforms have been
described, and they are all found in different locations:
cellular GPx, extracellular or plasmatic GPx, phospholipid
hydroperoxide GPx, and gastrointestinal GPx. All GPx are
an important defence against ROS-mediated damage to lipid
membranes and other molecules susceptible to oxidation
[6]. GPx has been detected in cornea (epithelium and
endothelium) [18, 28], lens epithelium, aqueous humor [24],
ciliary body, choroid, and retina (inner segment layer of
photoreceptors and retinal pigment epithelium) [21, 27, 29].

2.1.3. Catalase (EC 1.11.1.6, CAT). This hemoprotein con-
tains four heme groups. The enzyme is present in per-
oxisomes mitochondria and cytoplasm and catalyzes the
conversion of H,O, into H,O and O,. This function is
shared with GPx, but CAT has higher affinity when H,O, is
found in high concentrations [14]. CAT has been detected
in the cornea (epithelium and endothelium) [18, 28], lens
epithelium, aqueous humor [24], ciliary body, iris [25], and
retina [26, 27] of rabbits and rats [30].
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2.2. Nonenzymatic Antioxidants. These antioxidants consti-
tute a heterogeneous group, and they act by donating an
electron to an FRs in order to stabilize it and create chemical
species that are less noxious to cell integrity [6]. The main
nonenzymatic antioxidants present in the globe are ascorbic
acid, vitamin E, vitamin A, and GSH [5].

2.2.1. Ascorbic Acid. Tt is an antioxidant that is soluble at
physiological pH in most tissues as ascorbate anion. Its
antioxidant role is to reduce O,*~, OH*~ and lipid hydroper-
oxide into more stable forms [14]. Another function of
ascorbate is related with the recycling of a-tocopheryl radical
to a-tocopherol. However, this process transforms ascorbate
anion into dehydroascorbate anion radical, which can be
reduced by dehydroascorbate reductase and GSH returning it
to native state. Also, ascorbate can act as a pro-oxidant in the
presence of excessive concentrations of ions Fe™ and Cu*?
[6, 7, 14]. Ascorbate was detected in cornea [31], aqueous
humor [32, 33], lens [34], vitreous humor [35], and retina
[29].

2.2.2. Vitamin E. The term vitamin E is a generic name for
a family of eight compounds, four tocopherols, and four
tocotrienols, of which the a-tocopherol is the most active
antioxidant and the primary defence liposoluble antioxidant
in membranes. The a-tocopherol converts O,°~, OH*~ and
LOO* into less reactive molecules. The phenolic hydroxyl
on the chroman ring is responsible for the antioxidant
function [9]. In parallel, a-tocopherol can stop the chain
reaction of ROS during the attack on cell membranes
[36]. To stabilize ROS, the a-tocopherol is converted into
the a-tocopheryl radical, whose shape is stable and does
not react with biomolecules. a-tocopheryl radical can be
regenerated to its original through reactions mediated by
vitamin C, GSH, and lipoic acid [6]. The antioxidant ability
of a-tocopherol depends on the concentrations of those
compounds, which keep a-tocopherol in its reduced state
in instances of oxidative stress [36]. It is possible that an
overproduction of ROS can cause a significant drop of active
vitamin E tissue concentration. The a-tocopherol has been
detected in lens [37], aqueous humor, and retina [29].

2.2.3. Vitamin A. This generic term includes those com-
pounds from animals that show vitamin A biological activity.
The major precursor of vitamin A is ff-carotene, which is the
most efficient neutralizer of !O,. The antioxidant properties
of vitamin A derive from its chemical structure, which
consists of long chains of conjugated double bonds, this
allows to convert O,"~ y LOO* into less reactive substances
[14]. Carotenoids are effective antioxidants but differ in their
concentrations in ocular tissues. Other carotenoids, with
the exception of lutein/zeaxanthin, are found only in trace
quantities in the ocular tissues except in the ciliary body,
where aqueous humor is produced. In contrast, lutein and
zeaxanthin are found in high concentrations in some ocular
tissues, such as the macula, retina, and lens [37, 38].

2.2.4. Glutathione (GSH). Its reduced form corresponds
to a tripeptide (gamma glutamyl-cysteinyl-glycine) with a
sulthydryl group (-SH) in the active site. GSH transfers

electrons to oxidized specie such as hydroxyl radicals and
carbonyls, becoming in turn an oxidized product (GSSG)
[9, 14]. During this reaction, GSH donates a pair of H so
that two GSH molecules are oxidized to produce GSSG. Also,
GSH acts as cosubstrate of GPx in the removal of H,0,
and organic peroxides, and it can reduce tocopheryl FRs and
dehydroascorbate returning them to original form [6, 36].

GSH is important for the maintenance of lenticular
proteins in a reduced state [30]. This has been found in
lens [39, 40], cornea, and retina [41], being next to ascorbic
acid one of the main mechanism of defence against photo-
oxidation [15].

3. Oxidative Stress and Globe

The eye is affected by oxidative stress due to its physical and
metabolic characteristics. The eye is a metabolically active
organ, consuming large amount of ATP. In addition, the
transparency of the cornea, aqueous humor, lens, vitreous
and retina allows a constant photochemical ROS generation
[17, 32]. All ocular tissues and fluids are susceptible to
damage by oxidative stress; however, those described below
affect severely the function of the eye due to the physical
changes they undergo [18].

3.1. Cornea. The main ROS generation occurs in the cornea
due to high exposure to ultraviolet radiation [18]. The cornea
is the main barrier which stops ultraviolet radiation (UVA-
UVB). It absorbs 92% of UV-B and 60% of UV-A, and the
highest degree of absorption occurs in the surface layers [42,
43].

UV radiation produces changes in the cornea, such as
blocking epithelial cells proliferation and reduced epithelial
thickness [44], decrease in corneal antioxidant such CAT,
GPx, and SOD [18], decreased Na*/K"™ ATPase in the corneal
epithelium and endothelium, causing significant increase in
corneal hydration and changes in the transparency of the
cornea and release of proinflammatory cytokines [2, 20, 45,
46]. UV radiation also causes alteration of the physiological
properties of glycosaminoglycans in the stroma, becoming
more susceptible to degradation by tissue enzymes from
stimulated phagocytic cells [18, 47].

It has been determined that the primary antioxidant
defence is ascorbic acid (highly concentrated in the corneal
centre, right in the pupil area) and SOD activity. CAT and
GPx enzymes have a secondary role [33]. However, when an
episode of oxidative stress is triggered, the enzymatic activity
begins to reduce, first CAT activity, then GPx activity, and
finally SOD activity begin to reduce, thereby increasing the
amount of H,O, further damaging the cornea [18, 20].

3.2. Aqueous Humor. ROS generation in the aqueous humor
is due primarily to UV radiation [18] and inflammatory
processes that occur in adjacent structures [48]. Aqueous
humor contains ascorbic acid, proteins, and some amino
acids (tyrosine, phenylalanine, cysteine, and tryptophan),
involved in UV-B absorption by allowing only a small
fraction of these radiation reach the posterior segment of
globe [18]. The UV radiation absorption in the aqueous



humor causes an increase in H,O, concentration, which,
in turn, decreases the metabolism of GSH. It has been
determined that ascorbic acid plays a fundamental role as
UV filters in mammals, having a greater concentration in
the aqueous humor from diurnal animals than nocturnal
animals [17]. Also, ascorbic acid concentration in aqueous
humor is higher than blood plasma [32, 48, 49].

Another source of formation of large amounts of ROS
was observed after surgery, paracentesis, or uveitis due
to an increase in the amount of proteins and cells in
aqueous humor [32, 48]. There is evidence that after
lenticular surgery, the total antioxidant capacity of aqueous
humor decreased up to 40%, mainly due to the decreased
concentration of ascorbic acid [32, 48]. This fact was also
observed in human patients with idiopathic acute anterior
uveitis [50].

The increase in the H,O, concentration in the aqueous
humor may cause damage to corneal endothelium, lens, and
ciliary body, especially trabecular network. In vitro studies
have shown that a decrease in the facility of aqueous humor
outflow occurs when an increased of H>O, concentration
is present, and this may be grounds for diseases such as
glaucoma [51].

3.3. Lens. The lens is most affected by oxidative damage,
because it is an avascular structure and has a constant
and spare production of lenticular proteins. It is highly
exposed to UV radiation and shows a marked reduction
of antioxidants levels in the lenticular nucleus. In addition,
changes on the aqueous humor composition can affect
the (inflammation of adjacent structures and metabolic
disorders such as diabetes) [5, 51].

Lenticular metabolism is related to energy production for
protein synthesis and maintenance of osmotic balance. The
pentose phosphate pathway, via glucose-6-phosphate dehy-
drogenase (G-6-PD) activity, provides reducing equivalents
(NADPH) for keeping the lens in a reduced state [40].

The mechanism proposed to explain the lenticular
opacity is the oxidation of the crystalline (@, 3, and y-
crystalline), mainly lens proteins [51, 52]. The photo-
oxidation of thiol groups on lens crystallins produce disulfide
adducts and molecules that lead to protein aggregation
and hence the cataract development [5]. Besides protein
aggregation, there are also alterations in the Na*/K* ATPase
[51]. It has been determined that damage at the protein level
by oxidative processes is increases with age in human lens and
is significantly greater in those with cataracts than normally
transparent crystalline [16]. An increase of cystine levels
(disulfide groups) and a decrease in cysteine concentration
(sulfhydryl groups) during the cataract genesis have been
demonstrated. Also an increase in disulfide-sulthydryl ratio
from soluble and insoluble proteins of human cataractous
lenses is higher when the lenticular opacification increases
[53].

Ascorbic acid and GSH are major defence mechanisms
against photo-oxidation in the lens and aqueous humor [15].
The concentration of GSH in the lenticular epithelium is
as high as that in the liver and its concentration decreases
by exposure to UV radiation [54] and cataracts cases [40].
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No differences were found between erythrocyte antioxi-
dant enzymes from animals with and without cataracts,
but MDA plasma levels are increased and ascorbic acid
concentrations decreased from animals with cataracts [49].
Others antioxidants present in lens, like lutein-zeaxanthin,
retinoid, and tocopherol contents, do not show differences in
concentration between normal and cataractous lenses [37],
also, one study shows that concentration of a-tocopherol was
significantly higher in cataract lenses than clear lenses [55].

3.4. Retina. The retina is the neurosensorial tissue of the
eye, and it is extremely rich in polyunsaturated lipids. This
characteristic makes it particularly sensitive to ROS [56]. The
main generation of ROS in the retina is due to the presence
of cells with high oxygen consumption rate [57], exposure to
UV radiation, and the presence of diseases that directly affect
the vascular irrigation such as glaucoma [27].

In the retina, the light is focused directly on cells group
located in a richly oxygenated place. The presence of a variety
of pigments (melanin, lipofuscin, and lutein) provides an
optimum condition for photosensitizing reactions, generat-
ing ROS. The outer segment photoreceptor membrane is rich
in polyunsaturated lipids and is where most damage occurs
[51].

The final common pathway of a group of diseases associ-
ated to decreased sensitivity and function of retinal ganglion
cells, cells death, enlargement of the optic nerve head, visual
field reduction, and blindness is glaucoma. Oxidative stress
may contribute to the etiology and progression of glaucoma
[58], the ischemia, and reperfusion process affects the retina
increasing the nitric oxide production and other FRs in
vitreous and aqueous humor [59]. The LPO is triggered,
and it is considered the cause of injury and death of retinal
ganglion cells and subsequent optic nerve damage [60].
Antioxidant protection exists in the retina, and this is mainly
due to C and E vitamin, carotenoids, GPx, SOD and CAT
enzymes, and GSH compound [29, 51, 61].

4. Evaluation of Oxidative Stress

The measurement of biomarkers of oxidative stress varies
depending on the structure to be evaluated in the globe.
Oxidant and antioxidant agents vary in the different ocular
tissues and fluids. It is possible evaluate the protection and/or
existing damage [32].

4.1. Protection Assessment. The antioxidant protection can
be estimated by measurements of antioxidant compound
concentrations (proteins, peptides, or vitamins), antioxidant
enzyme activities, or the antioxidant capacity as a whole in
each tissue or fluid of globe [32, 68].

The presence of SOD, GPx, and CAT in the globe can be
evaluated in vitro using biochemical and immunohistochem-
ical methods [18, 29, 30]. Also, it is possible to determine
the SOD activity in situ [18]. Ascorbic acid, carotenoids,
and tocopherols can be determined by high-pressure liquid
chromatography (HPLC) [29, 32, 37, 48]. The activity of
fat-soluble antioxidants can be estimated by quantifying the
resistance to oxidation of low density lipoprotein [6].
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TaBLE 1: Incidence of eye disease compared with antioxidant intake and/or plasma levels of antioxidants molecules in humans.

Authors

Objective

Antioxidants

Conclusion

Berendschot et al.
(2002) [62]

Delcourt et al.
(1999) [63]

Delcourt et al.
(2003) [64]

Gale et al.
(2001) [65]

Jacques et al.
(2001) [66]

Lyle et al.
(1999) [67]

376 subjects of 18 to 75 years. To investi-
gate whether serum levels of antioxidants
influence the lens optical density.

2584 subjects, >60 years. To determine
plasma levels of antioxidant enzymes
related with cataract and age-related mac-
ular degeneration.

1947 subjects, >60 years. To determine the
association between antioxidant enzymes
activity and incidence of cataract.

372 subjects of 66 to 75 years. To deter-
mine plasma levels of some vitamins
and carotenoids related with cataract risk
incidence.

478 women of 53 to 73 years. To assess
the relation between usual nutrient intake,
plasma vitamins concentration and sub-
sequently diagnosed age-related nuclear
lens opacities.

400 subjects of 50 to 86 years, 7 years
followup. To assess the relation of serum
carotenoids and tocopherols levels to the
incidence of cataract.

Lutein, zeaxanthin, Vit.
C, and a-tocopherol.

Enzymes: GPx and SOD.

Enzymes: SOD and GPx.

Vit. C, Vit. E, a and
B-carotene, lycopene,
lutein, zeaxanthin, and
B-cryptoxanthin.

Vit. C, Vit. E, riboflavin,
p-carotene, lutein, and
zeaxanthin.

Carotenoids,
a-tocopherol, and
y-tocopherol.

High serum levels of lutein and zeax-
anthin may retard aging of the lens.

High levels of plasma GPx were
associated with age-related macular
degeneration and cataract prevalence.
High levels of plasma SOD were asso-
ciated with high cataract prevalence.
High levels of plasma GPx and SOD
were associated with high cataract
incidence.

High levels of a-carotene, f-carotene,
lycopene and lutein were associated
with low risk of cataract.

High Vit. C intake is associated with
low risk of cataract incidence. High
Vit. C and Vit. E plasma concentra-
tions are associated with low lenticu-
lar opacity.

High serum levels of tocopherols are
associated with low risk of cataract.

Vit. C: vitamin C; Vit. E: vitamin E; GPx: glutathione peroxidase; SOD: superoxide dismutase; CAT: catalase.

TABLE 2: Animal research comparing antioxidants and/or plasma levels of antioxidants molecules with degenerative changes in dogs.

Authors Objective Antioxidants Conclusion
To determine the erythrocytic
enzymatic antioxidants, plasma Enzymes: SOD, CAT, .
Barros et al. (1999) [49] Vit. C and MDA in normal GPx, and G6PD. Decrease levels of plasma Vit. C are

Barros et al. (2003) [32]

Barros et al. (2004) [69]

De Biaggi et al. (2006) [48]

and cataractous English Cocker
Spaniel dogs.

To determined the antioxidant
status of the aqueous humor after
extracapsular lens extraction.

To determined levels of enzy-
matic and nonenzymatic antiox-
idants in blood and aqueous
humor of cataractous and non-
cataractous poodles.

To determined the antioxidant
status of the aqueous humor after
phacoemulsification.

Vit. C.

Total antioxidant status
and Vit C.

Enzymes: SOD, CAT,
GPx, and G6PD.
Vit. C.

Total antioxidant status
and Vit. C.

related with cataract.

Lens surgical procedures reduced
total antioxidant status and Vit. C
levels.

Activity of SOD, G6PD, and CAT was
significantly higher in noncataractous
poodles than in cataractous poodles.
There was no difference in mean
plasma Vit. C concentration between
cataractous and noncataractous dogs.
Lens surgical procedures reduced
total antioxidant status and Vit. C
levels.

Vit. C: vitamin C; GPx: glutathione peroxidase; SOD: superoxide dismutase; CAT: catalase; MDA: malondialdehyde; G6PD: glucose-6-phosphate dehydroge-

nase.

To evaluate the total antioxidant capacity is accepted to
determine the capacity of the tissue or fluid to inhibit a
specific free radical [32, 48, 68] or determine the GSH/GSSG
ratio and ascorbic acid/dehydroascorbate ratio [6].

4.2. Damage Assessment. To assess the damage, we can
use the identification and quantification of proteins, lipids,

and other substances from damaged cell. The biomarkers
frequently used are carbonyl and sulthydryl levels [16]. In
the course of an oxidative process, carbonyl groups are
formed into the amino acid chain mainly in the lysine,
arginine, proline, and histidine residues. These carbonyl
can be detected by spectrophotometric methods, high-
pressure liquid chromatography (HPLC), or enzyme-linked



immunosorbent assay (ELISA) technique. To assess the
integrity of lipids, the measurement of membrane lipid
peroxidation is a key indicator [70]. The most common
method for assessing LPO, due to its simplicity and low cost,
is the measurement of MDA as thiobarbituric acid reactive
substance (TBARS) [6, 70].

5. Conclusions

As mentioned, the eye is exposed to oxidizing conditions that
lead to an alteration of ocular tissue, impaired vision, and,
in turn, the animal’s relationship with the surrounding envi-
ronment. The importance of assessing oxidative stress in the
globe lies in identifying the magnitude and extent of damage
that occurs in this condition. It is necessary to establish
treatment regimens to prevent and repair damage by ROS.
This last point is being addressed by some research groups
inducing or determining the incidence of ocular diseases and
comparing the intake of antioxidants and/or blood levels of
these (Table 1). It is established that it is important to have an
optimal level of antioxidants to maintain ocular tissues safe,
but it is not clear if consumption of those antioxidant could
help to achieve this gold. Veterinary literature in this topic
seems to be limited (Table 2).

Models to study oxidative stress have yielded promising
results in relation with the use of antioxidants in diet. How-
ever, the results cannot be completely confirmed because of
the inability to measure accurately the intake of antioxidants
in humans, and also it is unlikely to extrapolate results
from studies made in laboratory animals. There are other
drawbacks to recommend antioxidant intake due to the fact
that it is possible that an excessive consumption can lead to
other diseases such as formation of bladder stones by eating
high concentrations of vitamin C. Negligent administration
of supplements without having more knowledge of dosages
and good employment conditions may actually speed up
rather than suppress oxidative damage.

It would be desirable to know the normal antioxidant
status of the eye in each animal species and have better
or less invasive ways to evaluate it, such as measure blood
antioxidant profile and determine how it relates to the
antioxidant profile or damage of a specific ocular tissue. It is
also an important goal find different ways to strengthening
antioxidant defences and stop oxidative damage. There is
an open door to start new research in this area with many
questions to resolve.
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