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The axial deployment force is an indispensable parameter of a lanyard-deployed coilable mast, which reflects its load capacity in
practical applications. However, research on the axial deployment force in the literature is very limited, and there are no mature
numerical methods to determine this parameter in the design stage of coilable masts. In this paper, a numerical method for
determining the axial deployment force of a lanyard-deployed coilable mast in the local coil mode is presented. Through this
method, the designer can quickly obtain the estimated value of the axial deployment force in the design stage, which is
convenient for the quantitative design of parameters. To verify the correctness of the proposed method, a dynamic simulation
of the coilable mast is carried out, and a microgravity test is performed. The comparison results show that the error between
the numerical method and the simulation and experimental results is less than 5%, which proves the correctness of the
proposed method. In addition, the coilable mast studied in this paper has been verified by an actual microsatellite deployment
in orbit.

1. Introduction

Compared with traditional large satellites, microsatellite
technology has been rapidly developed in recent years
because of its advantages of light weight, small size, and
low cost. However, the small size limits the application of
microsatellites. A feasible way to solve this problem is to
change the structure of the microsatellites. Then, high-
precision space exploration is achieved by removing the pay-
load away from the microsatellite platform [1–3]. A deploy-
able mechanism [4–6], such as a coilable mast, is usually
used. A coilable mast is a one-dimensional deployable mech-
anism consisting of three consecutive longerons and a series
of transverse battens and diagonal cables. It possesses the
merits of a high packing factor, light weight, and simple
structure.

The coilable mast can be deployed in three ways, includ-
ing free deployment, lanyard deployment, and nut deploy-
ment. Lanyard deployment is a passive deployment mode
in which a lanyard is used to control the deployment speed

and stability. At the same time, lanyard deployment consists
of two methods: the helix mode and local coil mode. In most
cases, the local coil mode is preferable because the coilable
mast has a higher stiffness against lateral forces during
deployment. Therefore, the lanyard-deployed coilable mast
in the local coil mode is the most suitable for microsatellite
applications.

The axial deployment force is an indispensable parame-
ter of a lanyard-deployed coilable mast, which reflects the
load capacity of the coilable mast and has guiding signifi-
cance for the design of dampers or motors controlling the
deployment process. At present, it is inevitable to determine
the axial deployment force through complex simulations
and prototype tests. Therefore, establishing a numerical
method that can accurately estimate this parameter is conve-
nient for developing designs. However, research on the
determination of the axial deployment force is limited.
Natori et al. listed three types of simplex masts and observed
and compared the longeron deformation under different
axial deployment forces [7]; however, they only performed
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a qualitative analysis and did not quantitatively determine
the value of the axial development force. Kitamura et al.
studied a Y-section hingeless mast and determined an
empirical formula for the axial deployment force of the coil-
able mast in local coil mode [8]. Although they found that
the axial deployment force was affected by the stiffness and
structure of the coilable mast, it is difficult to obtain the stiff-
ness of the coilable mast through complex simulations and
tests at the design stage due to the strong nonlinearity and
rigid-flexible coupling characteristics.

In this paper, a numerical method for determining the
axial deployment force of a lanyard-deployed coilable mast
in the local mode is presented. With this method, the axial
deployment force can be quantified without knowing the
stiffness of the coilable mast in advance, thus avoiding com-
plicated simulation and testing. The aim of the numerical
calculation method proposed in this paper is to determine
the axial deployment force of a coilable mast through the
longeron deformation of the transition zone. The “standard
shape” of the longeron deformation in the transition zone is
defined. The three continuous longerons are simplified into
thin elastic rods that satisfy the cylindrical constraint
hypothesis [9, 10]. Then, the force and deformation of the
thin elastic rods are analysed by using Kirchhoff dynamic
analogy theory [11]. The axial deployment force of the coil-
able mast conforming to the “standard shape” of the longe-
ron deformation of the transition zone can be obtained.

In Section 2, the numerical method to determine the
axial deployment force of a lanyard-deployed coilable mast
in the local coil mode is described in detail. In Section 3,
dynamic simulations of the deployment and microgravity
deployment test are carried out. In Section 4, the correctness
of the proposed method is verified, and the results are veri-
fied and discussed.

It is worth emphasizing that the research object of this
paper has been applied in practice. On October 14, 2021,
the SSS-1 satellite (30 kg) developed by Beihang University
was successfully launched into space. The coilable mast stud-
ied in this paper was installed and deployed on October 16,
2021. A space camera is installed at the bottom to record the
deployment process, as shown in Figure 1. The length of the
coilable mast is approximately 2 metres, and its weight is

0.8 kg. In addition, the packing factor can reach 20/1.
Undoubtedly, it lays a solid foundation for the subsequent
in-orbit application of coilable masts.

2. Numerical Determination Method of the
Axial Deployment Force

Under lanyard control, the deployment speed of a lanyard-
deployed coilable mast is approximately constant. In this
way, the axial deployment force and the lanyard tension
can be considered balanced. The method proposed in this
paper can be used to obtain the axial deployment force by
solving the lanyard tension of the coilable mast. By analysing
the deformation of the longeron in the transition zone, the
lanyard tension can be determined.

As shown in Figure 2, in the local coil mode, the transi-
tion zone is located between the deployed zone and the
coiled zone of the lanyard-deployed coilable mast. During
deployment, the shape in the transition zone changes peri-
odically within a small range, which results in small periodic
fluctuations in the lanyard tension. To obtain the estimated
value of the lanyard tension, the “standard shape” in the
transition zone is defined in this paper according to the
experiment, and the lanyard tension corresponding to this
shape is what we need to solve. The actual lanyard tension
and axial deployment force will fluctuate in a small range
around this value.

2.1. Definition of the “Standard Shape” in the Transition
Zone. According to previous research and development tests
of coilable masts, the number of segments in the transition
zone is approximately 4. As shown in Figure 3, the segments
are defined as segments 1 to 4, the corresponding longerons
are defined as rods 1 to 4, and the battens are defined as bat-
tens 1 to 5.

To quantitatively define the “standard shape” in the
transition zone, the helical angle θ of the longeron, which
is defined as the angle between the normal direction of the
longeron cross section and the deployment direction of the
coilable mast, is introduced as shown in Figure 4. In the
deployed zone, the longeron is in a state of full deployment,
and the helical angle is θdeploy = 0°. In the coiled zone, the

(a) (b)

Figure 1: Images of coilable mast in space: (a) during deployment; (b) after deployment.
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longeron is in a uniform helical state, satisfying the cylindri-
cal constraint, as shown in Figure 5, and points A and B rep-
resent two adjacent hinges in one longeron. In cylindrical
triangle ABC, the helical angle is θcoil = acrcos h1/t , where
t and h1 are the pitch length and the height between two
adjacent hinges, respectively. Combined with the definition
of the helical angle, the “standard shape” in the transition
zone can be quantitatively defined such that the helical angle

of the longeron increases from θdeploy to θcoil in 4 segments.
The selection of the helical angle θ to describe longeron
deformation is based on three considerations. The first is
that the helical angle θ is an intuitive physical parameter that
visualizes the deformation shape. The second is that this
parameter can be solved quantitatively by the deformation
equation extended from Kirchhoff’s kinetic analogy theory,
which will be introduced in detail in the following sections.
The third is that when the helical angle θ is determined,
the remaining geometric parameters are properly known
based on geometric constraints, so as to completely describe
longeron deformation.

It should be noted that in the transition zone of the coil-
able mast, the battens buckle under pressure, resulting in a
slight reduction in the coiled radius of the longerons in the
transition zone. However, this reduction can be ignored
because it is small relative to the coiled radius. Therefore,
it can be assumed that the longeron of the coilable mast
deforms along the cylinder in the transition zone, and the
cylindrical radius is the coiled radius [12].

2.2. Equations of the Longeron Deformation. In this section,
based on Kirchhoff dynamic analogy theory, a deformation
equation is introduced to describe the relationship between
the deformation of a longeron and the external load. This
equation is the basis of the deformation analysis of longe-
rons in the transition zone.

Transition zone

Coiled zone

Deployed zone

Figure 2: Coilable mast in local coil mode.

Segment 4

Segment 3

Segment 2

Segment 1

Batten 5

Batten 4

Batten 3

Batten 2

Batten 1

Rod 4

Rod 3

Rod 2

Rod 1

Figure 3: “Standard shape” of transition zone.

�

Figure 4: Definition of helical angle θ.

One longeron

�
coil

A

B

C
t h1

Figure 5: Helical angle in coiled zone θcoil.
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First, we need to establish a series of coordinate systems.
As shown in Figure 6, in the rectangular coordinate system,
Oζ is the central axis of the cylinder, and Oξ is randomly
defined along the cross section of the cylinder. The coordinate
system Oξηζ is rotated about the Oζ axis by ψ to obtain the
coordinate system OXYZ. Then, OXYZ is translated from
O to the center point of the rod cross section O′. Finally, the
coordinate system O′XYZ around O′X is rotated by π/2
− θ to obtain the coordinate system O′X ′Y ′Z ′.

φ is taken as the angle around the axis O′Y ′, represent-
ing the rotation between two adjacent cross sections of the
rod. The angles ψ, θ, and φ are selected to describe the posi-
tion and orientation of the rod cross section. All are func-
tions of the arc length s. dψ/ds, dθ/ds, and dφ/ds along the
arc length describe the deformation of the rod. dψ/ds and
dθ/ds define the changes in the rotating angles around the
O′Z and O′X axes, respectively, between the adjacent cross
sections, and dφ/ds describes the change in the torsion angle
between the adjacent cross sections. Under the cylindrical
constraint assumption, ψ s and θ s satisfy

dψ =
ds ⋅ sin θ

R
1

Then, according to Kirchhoff’s kinetic analogy theory,
the longeron with an external load on both ends satisfies
the following deformation equation when the dynamic effect
of the mass deployment and the reduction of the coiling
diameter in the transition zone are ignored.

d2θ

ds2
= −

1
R

l0 cos θ −m cos 2θ +
p
2
+
2 cos θ sin2θ

R2 sin θ

2

In Equation (2), R is the coiling radius, s is the arc length
of the thin elastic rod, and θ is the helical angle of the thin
elastic rod at the current cross section. p, l0, and m are inte-
gral constants. Here, p is proportional to the force acting axi-
ally on the rod cross section along the O′Z axis. l0 is
proportional to the torque on the Oζ axis; and m is related
to the torsional deformation. The specific equations are as
follows:

l0 =
M0
A

=
FYR +MZ

A
=

R
A

FY +m cos θ +
sin3θ
R

,

m =
C
A
ω,

ω =
dψ
ds

cos θ +
dφ
ds

,

p =
2FZ

A
3

In Equation (3), A and C are the bending and torsional
stiffness of the cross section, respectively, which are related
to the material properties of the longeron. M0 and MZ are
the external torques of the cross section along the Oζ axis
and the O′Z axis, respectively. FY and FZ are the external
forces of the cross section along the O′Y axis and the O′Z
axis, respectively. ω is the torsional curvature of the longe-
ron, which remains constant along the arc length, while
the rod is constrained only at both ends [11]. Then, Equa-
tion (4) can be obtained as follows:

t

0
ωds =

t

0

dψ
ds

cos θ +
dφ
ds

ds = ωt 4

According to the actual assembly conditions of the lon-
geron of the coilable mast, the torsion of the longeron
between the adjacent hinges is limited. Thus, in the interval
[0, t], dφ/ds is equal to 0. Combined with Equation (1), the
relationship between the helical angle and torsion ratio can
be obtained as follows:

ωt =
t

0

dψ
ds

cos θ +
dφ
ds

ds =
t

0

dψ
ds

cos θ ds +
t

0

dφ
ds

ds

=
t

0

sin θ cos θ
R

ds

5

2.3. Deformation Analysis of the Longeron in the Transition
Zone. In this section, the method of solving the deformation
equation in Section 2.2 will be introduced in detail, and the
deformation analysis of the longeron in the transition zone
will be carried out. Due to the internal load caused by trans-
verse battens and diagonals, the equation established in the
above section cannot be directly used to solve the entire

R

Z′
Z

Y′

X (X′)

Y

Y

�

�

�

O

O′

�

X

�
�

Figure 6: Definition of coordinate systems.
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deformation in the transition zone. One feasible approach is
to discretize the transition zone into several parts, as shown
in Figure 4. In this way, each discrete rod satisfies the condi-
tions of the previous deformation equation, and the defor-
mation in the transition zone can be obtained by solving
the deformation from rod 4 to rod 1 in turn. The upper
end of each rod is where the arc length is s = 0, and the lower
end is where s = t.

To solve Equation (2) for each rod, it is necessary to
determine the integral initial values θi 0 and dθi 0 /ds
and the integral constants pi, l0i, and mi (i = 1,2,3,4), which
are related to the boundary conditions and external forces
of each rod.

First, we need to determine the initial value of the inte-
gral. According to the definition of the “standard shape”,
the initial value of θ4 0 is equal to θcoil. To simplify the cal-
culation, a reasonable assumption is made on the longeron
deformation in transition zone based on the results of simu-
lations and tests. It is considered that the helical angle of the
longeron in segment 1 is maintained as θdeploy = 0°, and the
helical angle of the longeron in segments 2-4 presents a lin-
ear change relationship, which is expressed by Equation (6)
[13]. The purpose of this assumption is only to estimate
the initial integral values θ4 0 and dθ4/dss=0 of segment 4
to make the deformation equation solvable, and it will not
affect the solution of the nonlinear state regions of the helical
angle.

θ4 0 = θcoil,

dθ4
ds s=0

=
θdeploy − θcoil

3t
6

Since the deformation of the longeron in the transition
zone is continuous, in segment 3 to segment 1, according
to Liu’s research [11], the helical angle and its rate satisfy
Equation (7). Combined with Equations (6) and (7), the ini-
tial integral value required for each rod can be obtained.

θi 0 = θi+1 t ,

dθi
ds s=0

mi −
3
2R

sin 2θi 0 =
dθi+1
ds s=t

mi+1 −
3
2R

sin 2θi+1 t

7

The second step is to determine the integral constant of
each rod. According to Equation (3), to determine the inte-
gral constants pi, l0i, and mi, we need to identify FZi, M0i,
and FYi. These forces and torques can be determined by
boundary force analysis. As shown in Figure 6, considering
the segments and the coiled zone on rod i as a whole T , T
is in an equilibrium state with the lanyard tension FL, the
rod reaction force and torque, and the diagonal cable ten-
sion. Fri, Fvi, and Fhi are three components of the diagonal
cable tension. Thus, the forces and torques are balanced
along the Oζ axis to satisfy Equation (8). It should be noted
that the coilable mast is a spatially axisymmetric structure,
so the force analysis of only one longeron is shown in

Figure 7, and the forces and torques of the other two longe-
rons on T are the same.

FL + 3FZi 0 + 3Fvi = 0,

3 FYi 0 R +MZi 0 + FhiR = 0
8

The infinitesimal at the connection point between the
adjacent rods is considered the object of analysis, as shown
in Figure 8. Ignoring dynamic effects, the force is balanced

M
Yi

 (0)
F
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along the O′Y and O′Z axes, satisfying Equation (9).
FZ i+1 t and FY i+1 t can be solved by pi+1 and l0i+1.

FYi 0 + Fhi = FY i+1 t + Fh i+1 ,

FZi 0 + Fvi = FZ i+1 t + Fv i+1
9

In the experiment, it was observed that the diagonal
cables of segments 4 and 3 in the transition zone of the coil-
able mast were not tensioned. Equations (8) and (9) can be

simplified because Fhi and Fvi are equal to 0. FZi, M0i, and
FYi can be calculated easily. However, for segments 2 and
1, the function of the diagonal cable tension must be consid-
ered. Therefore, more equations need to be added to calcu-
late the diagonal cable tension. According to the segment
deformation analysis shown in Figure 9, the tension compo-
nent of the diagonal cable can be obtained. Assuming the
length of the diagonal cable is l, the three components in
O′XYZ are lri, lhi, and lvi. Since diagonal cables only with-
stand tension, the diagonal cable tension components Fri,

Preload of diagonal cableSliderLanyard tension

Figure 12: Lanyard tension and diagonal cables in the simulated model.

Figure 13: Virtual prototype model of coilable mast.
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Fhi, and Fvi have the same geometric relationship to the
diagonal cable length. Therefore, the diagonal cable tension
can be calculated from Equation (10).

Fli

l
=

Fhi

lhi
=
Fvi

lvi
=
Fri

lri
,

lvi =
t
cos θids,

αi =
t

sin θi
R

ds,

lhi = 2R cos
π

3
+
αi
2

sin
π

3
+
αi
2

,

lri = 2R sin2
π

3
+
αi
2

,

l = l2vi + l2hi + l2ri

10

Combined with Equations (6)–(10), all the initial values
of the integral and the integral constants pi, l0i, and mi for
any rod i can be determined. When the characteristics of
the coilable mast, including geometric dimensions and
material properties, are given, the only unknown parameter
in the deformation equation (Equation (2)) is the lanyard
tension FL. Therefore, as long as the lanyard tension FL is
given, the deformation equation from rod 4 to rod 1 can
be solved in turn, and the deformation in the transition zone
corresponding to the lanyard tension can be obtained.

Due to the strong nonlinearity of the deformation equa-
tion, the equation cannot be solved directly by the analytical
solution, so the iterative calculation approach is a simple and
effective method. The iterative solving process is shown in
Figure 10. In the iterative solution process, the input param-
eters of the solution process mainly include two types: one is
the characteristics of the coilable mast, including geometric
dimensions and material properties, and the other is the

parameters of the “standard shape” in the transition zone,
θdeploy to θcoil. Then, the initial value of the lanyard tension
FL0 is given, and the deformation in the transition zone is
solved according to the deformation equation in Section
2.2. Then, the helical angle at the bottom of the transition
zone θ1 t is compared with θdeploy . If they are equal, it indi-
cates that the transition zone has formed a “standard shape”
and that the current lanyard tension is what we need. Then,
the axial deployment force is obtained. If they are not equal,
the deformation analysis will be repeated after adjusting the
lanyard tension value until the transition zone forms a “stan-
dard shape.”

Moreover, according to formula analysis and accumu-
lated rich data of deployment simulations and tests of coil-
able masts with different configurations and dimensions,
the relationship between the helical angle in the bottom of
transition zone θ1 t and the lanyard tension is deeply
explored, and they are found to be monotonic over a wide
range. In other words, the system has strong stability to
the initial value. More than that, the rich data of deployment
simulations and tests can guide the selection of the initial
value of the lanyard tension closer to the real value, which is
conducive to improve the convergence speed of the system.

Remark 1. It should be noted that there are many kinds of
uncertainties in application, including internal or external,
parametric or nonparametric, constant, characteristic, or
random. In a coilable mast, the uncertainties relate to geo-
metric dimensions and material properties. For geometric
dimensions, the uncertainties of the coiling radius and the
batten pitch length are mainly caused by the assembly error
of the coilable mast. For material properties, the uncertainties
are mainly caused by material defects and degradation under
large deformation. A comparison between the tests and sim-
ulations shows that the uncertainties do not cause large devi-
ations in real-time applications.

Coilable
mast

Linear track
Balance
weight

Suspended
rope

MEMS
Gyroscope

Truss base

Linear
bearing

Stepper
motor

Lanyard
bobbin

Lanyard tension
dynamometer

Figure 14: Microgravity deployment test system.
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Remark 2. It should be noted that in real engineering prob-
lems, there are complex systems whose structures, uncertain
properties, and all the parameters are unknown. In this case,
advanced system identification and signal processing
approaches can be developed and optimized with sophisti-
cated approaches [14]. This should be the focus of further
research in this paper.

3. Deployment Dynamic Simulation and
Microgravity Deployment Test

Through dynamic simulation and microgravity testing of the
deployment process, the correctness of the numerical
method is verified in Section 2.

3.1. Deployment Dynamic Simulation. The deployment sim-
ulation was carried out using MSC.ADAMS and based on
the finite element method (FEM). The FEM is a general
numerical method for solving partial differential equations
in two or three space variables, which is a well-known and
widely applied approach in almost every part of such engi-
neering problems. To solve a problem, the FEM subdivides
a large system into smaller, simpler finite elements which
is achieved by a particular discretization in the space dimen-
sion. The simple equations that model these finite elements
are then assembled into a larger system of equations that
models the entire problem. The FEM approximates the
unknown analytical equations over the domain and
improves the approximation accuracy by minimizing an
associated error function via the calculus of variations. As
a complex rigid-flexible hybrid mechanism, the coilable mast
is composed of components with different characteristics
which will be introduced in the following paragraph, and
the deployment process of the mast is strongly nonlinear
due to the existence of mechanism clearance and large
deformation of flexible components. So it is almost impos-
sible to establish analytical equations of the problem and

solve it accurately. Therefore, the FEM is an effective
and necessary method for deployment simulation of the
coilable mast [5, 15].

Lanyard tension
dynamometer 

Figure 16: Lanyard tension dynamometer.

Table 1: Technical parameters of the coilable mast.

Parameter Value

Coiling radius (R) 75mm

Radius of longeron 1mm

Radius of batten 0.65mm

Batten pitch length (t) 95mm

Height between hinges
(coiled zone) (h1)

3mm

Material of hinge
Aluminum alloy

Young’s modulus: 70.6GPa;
Poisson’s ratio: 0.33

Material of longeron and batten
Ti-Ni alloy

Young’s modulus: 83GPa;
Poisson’s ratio: 0.31

(a) (b)

Figure 15: Test platform: (a) front view; (b) side view.
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As described in the previous paragraph, different com-
ponents of the coilable mast exhibit different physical char-
acteristics under applied loads. In this case, four modelling
methods are used to reflect its deployment motion charac-
teristics: (1) rigid body: the hinge and top plate of the coil-
able mast have little deformation during the process and
can be simplified into rigid units; (2) flexible body: for longe-
rons and battens, because they are thin rods with elasticity,
they will undergo large deformation during the deployment
process and are considered flexible bodies. In particular, the
longerons and battens are discretized into a series of rigid
modules, and discrete flexible link elements are used to con-
nect the adjacent rigid modules to simulate their deforma-
tion characteristics; (3) force: since the diagonal cable can
only be tensioned but not compressed, a pair of actions
and reactions is used to complete the modelling work. The
direction of the force is along the central axis of the diagonal
cable, and its value is related to the distance between the two
ends; and (4) kinematic pair: the components in the simula-
tion model are connected to each other, and the motion rela-
tionship is limited by several kinematic pairs, such as the
rotating pair between the longeron and the top plate and
the fixed pair between the hinge and the longeron. The
modelling relationships of the different components are
shown in Figure 11. In addition, a slider is set to control
the deployment speed of the coilable mast, and the force
between the top plate and the slider is the lanyard tension,
as shown in Figure 12.

The simulation model of the coilable mast during the
deployment process is shown in Figure 13. The deployment
process takes place at a constant speed of 30mm/s. The
deformation in the transition zone is basically unchanged,
consistent with the defined “standard shape.”

3.2. Microgravity Deployment Test. To simulate the weight-
less environment in space, a microgravity deployment test
system for a coilable mast was developed, as shown in

Figure 14. The truss base is fixed to the ground to provide
mounting space for the coilable mast and support for all
other equipment. The coilable mast is placed horizontally,
and the top plate is connected to a sliding linear bearing
by suspension rope. The linear bearing is located directly
above the top plate, so the tension of the rope counteracts
the gravity of the coilable mast, creating a microgravity envi-
ronment. During the development process, as the top plate
moves forward, the linear bearing must move synchronously
along the linear trajectory to confirm that the suspension
rope is in the direction of the plumb line. The lanyard bob-
bin and balancing weight are especially introduced. When
the coilable mast is released by the stepper motor, the pres-
ence of the lanyard bobbin ensures that the deployment
length of the coilable mast is equal to the movement length
of the linear bearing, and in this process, the friction can
be overcome by a balancing weight. The physical test plat-
form is shown in Figure 15.

During the coilable mast deployment test, a tension
dynamometer mounted on the bottom plate was used to
measure the lanyard force with a sampling frequency of
5Hz, as shown in Figure 16. In addition, the stepped motor
is started to release the coilable mast at a speed of 30mm/s,
maintaining consistency with the dynamic simulation.

4. Result Validation and Discussion

4.1. Numerical Calculation Result of Axial Deployment Force.
The coilable mast verified on the SSS-1 satellite is taken as
the object. The characteristics of the coilable mast are shown
in Table 1. According to the numerical method presented in
Section 2, the axial deployment force of the coilable mast is
calculated as 11.808N. The helical angle change and longe-
ron deformation in the transition zone are shown in
Figure 17. The red-dotted line in Figure 17(a) is the assump-
tion we made of helical angle to obtain the initial integral
values, which is described in Section 2.3. This assumption
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Figure 17: Longeron deformation in the transition zone: (a) helical angle; (b) longeron deformation.
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can be considered to be a linear simplification of the actual
helical angle. And the assumption does not affect the solu-
tion of the actual nonlinear regions of helical angle of the
longeron.

In the transition zone, from bottom to top, the helical
angle of the longeron changes from 0 to θcoil. The change
rate of the longeron helical angle of segment 3 and segment
4 along the arc length s is greater than that of segment 1 and
segment 2. Due to the limitation of the diagonal cable, the
torsional stiffness of segment 1 and segment 2 is greater than
that of segment 3 and segment 4. Therefore, the longeron
bearings of segment 1 and segment 2 are subjected to greater
torsional stress, and the helical angle changes more slowly.

4.2. Validation of the Longeron Deformation. The longeron
deformation can be used to determine the mechanical prop-
erties of the coilable mast, so it has been verified for the first
time. The longeron deformation in the simulation has simi-
lar characteristics to the mathematical results, as shown in
Figure 18. It is worth noting that the coiling radius near
the bottom of the transition zone is slightly reduced in the
simulation. This phenomenon is reasonable because the bat-
tens bend under the action of diagonal forces during the
development process. Furthermore, the transition zone of
the simulation model and the actual test model was com-
pared, as shown in Figure 19. The simulation model can well
reflect the actual deployment state of the coilable mast.
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Figure 18: Deformation comparison between mathematical results and simulated data.
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Figure 19: Longeron deformation comparison between tested results and simulated data.
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From the above comparison, it can be seen that the
deformation analysis of the numerical method accords with
the actual situation of the coilable mast.

4.3. Validation of Axial Deployment Force. According to the
above numerical calculation method, the axial deployment
force is 11.808N. The corresponding microgravity test and
dynamic simulation results are given. The comparison of
the axial deployment force of the three methods is shown
in Figure 20.

The development process of the coilable mast is divided
into three phases. Phases A and C represent the beginning
and end of the development, respectively, where the axial
development force changes irregularly because the transition
zone of the coilable mast has not yet fully formed or gradu-
ally disappeared. Phase B is the stable development phase,
and the axial development force presents periodic fluctua-
tions. By comparing the three results in phase B, it can be
found that the numerical result is a constant value because
it is obtained while ignoring the mast deployment dynamic
effects, and both simulation and test results fluctuate period-
ically near the numerical results. The main reason for the
periodic fluctuation of the axial development force is the
reflection of energy conversion when a section is unrolled
in the local coil mode, which can be called “snap through”
[16]. At this moment, the deformation energy of longerons
and battens is quickly transformed into the kinetic energy
of the top plate, resulting in a sudden increase in the axial
development force. Compared with the simulation results,
the fluctuation of the test results is relatively irregular, which
is mainly due to the influence of measurement noise and
actual friction between the hinges of the coilable mast.

The quantitative comparison results of the axial deploy-
ment force in phase B are shown in Table 2. Because the
axial deployment force in the simulation and test results
fluctuates periodically in a small range, the average value is
solved to compare with the numerical results. The average

value of the simulation result and test results is slightly
smaller than that of the numerical results. The reason is that
the mathematical result is based on an idealized model, and
many factors that affect the axial deployment force have
been ignored, such as the friction between hinges and the
assembly error of the actual coilable mast. Even so, the
results are still close, with absolute values of relative errors
less than 5%, as shown in Equation (11).

Simulatation result
11 280 − 11 808

11 808
× 100% = −4 5%,

Test result
11 336 − 11 808

11 808
× 100% = −4 0%

11

5. Conclusion

In this paper, a numerical method for determining the axial
deployment force of a coilable mast in practice is presented.
According to the “standard shape” in the transition zone of
the coilable mast in the local coil mode, the calculation pro-
cess of the complex axial deployment force is transformed
into the solution of the lanyard tension, which is obtained
by analysing the deformation of the longeron in the transi-
tion zone. To verify the correctness and applicability of the
proposed numerical method, dynamic simulation and
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Figure 20: Axial deployment force variation during deployment process.

Table 2: Axial deployment force results in phase B.

Method Value range (N) Average value (N)

Numerical — 11.808

Simulation 9.606~12.554 11.28

Test 9.592~14.351 11.336
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microgravity deployment tests are carried out. The results
show that the maximum relative error is less than 5%. The
verified method can be used to easily obtain the estimated
axial deployment force of the coilable mast in the local coil
mode without complicated simulations and testing, which
provides convenience for the design of the coilable mast.
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During the design and manufacturing process of the truss antenna, the surface accuracy of the truss antenna is inherently affected
by tolerance. An appropriate optimal design of the truss antenna structure is important to improve surface accuracy. In order to
receive the optimal design of the truss structure, this paper adopts the multiobjective optimization algorithm based on an
approximate model to optimize the tolerance model with random error. Firstly, considering the influence of the processing and
assembly errors of the members on the surface accuracy of the structure, the equilibrium state equation of the truss is
established by the principle of minimum potential energy. Then, the relationship between the tolerance and the surface
accuracy is obtained by the Monte Carlo method. For improving the computing efficiency of the Monte Carlo method, an
approximate model of the truss antenna unit is established, where the rod length tolerance is set as the design variable, and the
truss surface accuracy and processing cost are set as the objective functions. Finally, tolerance optimization is carried out by
using the multiobjective genetic algorithm. The results indicate that the Pareto solution is obtained with an error less than
10%. Moreover, a set of solutions of the tolerance are obtained which can meet different antenna design requirements. And the
results show that the influence of the web rod is significantly greater than that of the bottom rod on the surface accuracy of
the structure.

1. Introduction

With the development of aerospace technology, the truss
antenna has been successfully used in many aerospace mis-
sions due to its high storage ratio, high stiffness, and good
deployment stability [1–3], for example, the “Mir” space sta-
tion, the HJ-1-C satellite, and the Beidou navigation satellite.
The truss antenna is composed of several essential truss ele-
ments, such as tetrahedron [4], quadrangular pyramid [5],
hexagonal prism [6], and hexagonal pyramid [7]. Since the
truss element is directly connected to the reflective surface,
the surface accuracy is closely related to the truss accuracy.
Due to the large number of truss rods, the cumulative error
caused by the processing and assembly error has a significant
impact on the accuracy. Many scholars have conducted in-
depth research on the influence of processing and assembly
error, especially random errors, on the surface accuracy of
the truss based on the traditional empirical method and

analogy method [8–11]. And the Monte Carlo method is
also widely used for random error analysis on the surface
accuracy analysis [12–16].

Sun et al. [17] analyzed the influence of the cable net
manufacturing error and other factors on surface accuracy
and used the Monte Carlo method to calculate the variable
range of surface accuracy. Forouraghi [18] introduced a
new method based on GAs, which addresses both the
worst-case tolerance analysis of mechanical assemblies and
robust design. Yang et al. [19] established the precision
analysis model of the planar four-closed-loop deployment
mechanism, which reflects the relationship between the
deformation of the mechanism and the deviation of the sin-
gle rod. Lin et al. [20] employed the Monte Carlo method to
simulate the machining error and the multi-closed-loop
mechanism clearance and analyzed the deployment error
of the antenna module, without optimizing tolerances fur-
ther. Deng et al. [21] employed the back propagation neural
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network algorithm to establish the prediction model of the
truss antenna which can analyze the truss surface accuracy,
repeatability, and critical node error. Wu et al. [16] derived
the sensitivity relationship between node coordinate devia-
tion, cable force deviation, and cable length error for
Astro-Mesh reflectors, which is utilized to carry out the
Monte Carlo simulations quickly. The method can predict
the worst surface accuracy as precisely as the traditional
method but with less time consumption. Singh et al. [22]
optimized the cost-tolerance design of mechanical compo-
nents based on the genetic algorithm and verified two exam-
ple problems with interrelated dimensional chains. Sanz
et al. [23] proposed a kind of Lagrange multiplier method
to optimize the total manufacturing cost bearing in mind
the cost functions based on the process and summarized sev-
eral cost-tolerance relation models to get comparable results.
Koziel and Ogurtsov [24] and Easum et al. [25] applied the
multiobjective optimization method to antenna design,
which improved the efficiency of the overall optimization
analysis and opened up new ideas. Li et al. [26] built a
flatness-oriented model for the Highly Stowed Deployable
Antenna (HSDA), and Monte Carlo simulations are imple-
mented to obtain the sensitivity for the parameters. Yuan
et al. [27–30] put forward the concept of direct root mean
square (DRMS) to describe the performance of antenna
reflectors and carried out the related analysis on the large
deployable mesh reflectors.

The Monte Carlo method is widely used for the analysis
and calculation of tolerances in the above studies. However,
due to the high time consumption and low efficiency of the
Monte Carlo method, it is difficult to build an efficient opti-
mization model, making it challenging to optimize further
and analyze the tolerance design. To improve the accuracy
of the reflective surface of the truss antenna, it is necessary
to carry out an overall optimization design for the tolerance
of the truss rods to reduce the influence of random errors on
the accuracy.

This paper calculates the equilibrium position based on
the minimum potential energy principle for a tetrahedral
truss antenna class, considering the customarily distributed
errors. The surface accuracy distribution probability of the
structure within the tolerance range is obtained by the Monte
Carlo method, and an explicit model based on the radial basis
function (RBF) approximation model is constructed to
replace the calculation process of the Monte Carlo method.
Finally, combined with the genetic algorithm to optimize its
objective value, the Pareto solution set is obtained.

2. Truss Antenna Analysis

As shown in Figure 1, a type of truss antenna structure is
composed of a plurality of tetrahedral elements, and each
element contains four disc chucks, three base rods, and three
web rods.

The truss rod deforms slightly due to tolerance-induced
strains under ideal size assembly. Since the disc chuck size
is small, it can be approximated as a rigid body. Due to the
rods connected by the disc chuck and the included angle
between the rods being fixed by the disc chuck, it is consid-

ered that the included angle remains unchanged. In the anal-
ysis, rod bending and compression deformation in the
balance state should be fully considered.

2.1. Rod Model. Figure 2 shows the diagram of the deforma-
tion of the connection between the truss antenna rod and the
disc chuck. As the disc chuck is connected with 6 bottom
rods and 3 web rods, the geometric center of the disc chuck
is the stitching point with the metal mesh surface. Connect
the points to get a simple model of the disc chuck, which
is a rigid body with 9 connection points and 1 center point.

In the local coordinate system, the rod has compression
deformation and bending deformation, without considering
torsional deformation. Due to the force on both ends of the
rod, the bending deformation of the rod can be approxi-
mated as a bending model with one end fixed and the other
free. At the same time, in order to meet the assembly
requirements, it is assumed that the rod is suitable for the
ideal rod length, resulting in axial deformations, and the
deformation is the tolerance value. Under this initial defor-
mation, the rod has the initial axial strain energy. When
the member system is in equilibrium, the strain energy of
the rod is expressed as

U =Ut +Ub: ð1Þ

The tensile and compressive strain energy is given by

Ut =
1
2 FΔl =

FΔx
2 = EAΔx2

2l : ð2Þ

And the bending strain energy can be computed by

Ub =
1
2Mθ = EI

2l y
2 = EI

2l

ðl
0

πΔz
2l sin πx

2l
� �� �2

dx = πΔzð Þ2EI
16l2

,

ð3Þ

whereE is the elasticmodulus andA is the cross-sectional area
of the rod. I is themoment of inertia of the cross-section while
l is the length of the rod. F andM are the force and the bending
moment of the rod, respectively, while y is the bending curve
derivative of the rod, that is, the end bend angle.Δx, Δz are the
deformation of the rod end in the X and Z directions in the
local coordinate system, respectively. Therefore, the matrix
representation of strain energy is as follows:

U = EA
2

π2EI
16

� �
⋅

Δx2

l

Δz2

l2

2
6664

3
7775: ð4Þ

2.2. Overall Model of the Truss. For the truss structure shown
in Figure 3, a constraint equation needs to be established.

There are two types of geometric constraints, one is the
angle constraint between the end of the rod and the disc
chuck, and the other is the distance constraint of the connec-
tion point. In order to ensure the geometric constraints
between the rod and the connecting feet of the disc chuck,
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there is a vector perpendicular relationship between the end
normal of the bending rod and the direct line of the connect-
ing feet of the disc chuck. The constraints are as follows:

g1 = i ⋅ f x,
g2 = N − Lk k,

ð5Þ

where i is the direction vector of the disc chuck connecting
foot pointing to the geometric center of the disc chuck, f x
is the normal vector of the end of the rod, kN − Lk is the dis-
tance between the disc chuck connecting foot and the end
point of the member, N is the coordinate of the disc chuck
connecting foot, and L is the end coordinate of the member.

Hence, the construction of the mechanical model of the truss
has been completed, and the equilibrium state can be
obtained by solving the minimum value of the energy
expression of the truss system.

2.3. Surface Accuracy Solution. According to the mechanical
model of the truss antenna established above, we can solve
the equilibrium position of the disc chuck. Since the reflec-
tion net is directly connected to the disc chuck, the position
change of the disc chuck is used to measure the accuracy of
the reflector, and the root mean square (RMS) of the disc
chuck displacement in the normal direction of the reflector
is used as the surface accuracy. Therefore, the expression is
as follows:

RMS =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
Δi

2

s
, ð6Þ

where Δ is the radial deviation between the actual position of
the disc chuck node and the ideal position and n is the num-
ber of disc chucks that constitute the reflective surface. By
solving Equation (4), the obtained result is substituted into
Equation (6) to solve the accuracy. Thus, the calculation of
the surface accuracy of any tolerance value is completed.
Considering the uncertainty of the actual length of the rod,
the surface accuracy distribution model of the antenna
under the tolerance is further constructed by the Monte
Carlo method.

(a)

X

Y

Z

A

D(O) 

C
B

Web rod

Disc chuck

Bottom rod 

(b)

Figure 1: Antenna truss diagram: (a) truss antenna; (b) tetrahedral element.

Figure 2: Rod deformation and disc chuck.

Figure 3: Rod deformation diagram.
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3. Optimization Model

The multiobjective optimization problem (MOP) consists of
multiple objective functions that have constraints and con-
tradict each other. Because there is no unified measurement
standard between those objectives, it is challenging to assign
weights. In recent years, intelligent algorithms have been
commonly used to solve such problems. This paper employs
a multiobjective genetic algorithm to solve the problem.

3.1. Design Variable. As shown in Figure 1, the members of
the truss include two types of web rods and bottom rods.
Tolerance ranges are set for two types, assuming that their
tolerance ranges are symmetrically distributed. Referring to
the actual processing experience, in general, the tolerances
are symmetrically distributed in both directions and do
not exceed 0.4mm. The bottom rod tolerance value and
the web rod tolerance value need to be set as design vari-
able 1 and design variable 2, respectively, as shown in the
following formula:

x1 ∈ 0, 0:4½ �x2 ∈ 0, 0:4½ �: ð7Þ

These variables are in millimeters.

3.2. Objective Function. The surface accuracy and cost are set
as the optimization objective. Since the surface accuracy is
affected by random errors, which lead to the floated accu-
racy, the average accuracy value is taken as objective 1. This

value is calculated by the Monte Carlo method. The smaller
the average value, the higher the antenna accuracy. Consid-
ering that the size of the rods obeys the normal distribution
within the tolerance range, the standard deviation is set to
one-third of the tolerance value, and the mean value is 0.
The normal distribution parameter is (0, x/3), where x is
the tolerance value. Objective 1 is expressed as follows:

f1 = 100 × ave RMSð Þ, ð8Þ

where aveðRMSÞ means to calculate the average value of the
RMS from the Monte Carlo result.

The cost of the product is affected by different processing
personnel and different processing techniques. In order to
obtain a more accurate cost-tolerance model, it is necessary
to obtain the relevant parameters to fit the actual statistical
sample data. Scholars [31, 32] have proposed a variety of
fitting methods based on different elementary functions. Cur-
rently, the commonly used fitting model curves include the
exponential model and negative square model. In this paper,
the relationship between processing cost and tolerance is fitted
with a negative square model. Considering the confidentiality
and uncertainty of the specific cost value, and to simplify the
calculation, the relevant parameters in the model are set to 1.
The total processing cost cb is expressed as follows:

cb = a Xið Þ−2 + b
À Á

, ð9Þ

Initial N = 10

Building sample 
space

Objective 2: cost 
parameter

Solution of
equilibrium

Building RBF

Multi-objective 
optimization 

Output the pareto

Start

End

Set i = 1

Objective 1: average 
accuracy

Monte-Carlo sampling

Output accuracy

i >10?

i = i + 1 

Y

N

Figure 4: Calculation flow chart of the optimal design.
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Figure 5: Continued.
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where b is the fixed cost during machining, which is not affected
by changes in business volume during a certain period of time. a
is the cost variation coefficient caused by the tolerance change of
the machined part, and X is the rod tolerance. In order to
improve the computational efficiency of the objective, an
approximate model is constructed for the above objectives. The
approximate model is a method to complete the construction
of an explicit function model based on the mapping relationship
of the implicit function. The radial basis function approximation
model is selected, and its expression is as follows:

f
~
Xð Þ = 〠

N

i=1
hi X − Xik kð Þwi, ð10Þ

where N is the number of overall sample points, i = 1, 2,⋯,N,
Xi is the sample point matrix, f ~ðXÞ is the approximation value
corresponding to X, hiðkX − XikÞ is the kernel function, and wi
is the linear weighting coefficient.

3.3. Optimization Model. Considering the above factors, the
optimization model of the truss structure can be described as

Minimize f
~
1 X1,X2ð Þ, f

~
2 X1,X2ð Þ

� �

subjected to 0 ≤X1 ≤ 0:4, 0 ≤X2 ≤ 0:4
ð11Þ

f 1
~ðX1,X2Þ , f 2~ðX1,X2Þ is an approximation of the real

function. X1,X2 is the design variable. The process of the
optimization algorithm is shown in Figure 4.

4. Optimization Results

4.1. Initial Settings. To simplify the calculation of the
antenna truss, the length of the rod is set as 500mm, and
the total samples of the approximate model are set to 20.
First, in the feasible domain of the design variables, the sam-
ple is obtained by the optimal Latin hypercube sampling
method. Then, the calculation of the objective value is com-

pleted by the Monte Carlo method for each sample point.
Finally, the initial construction of the optimization model
is completed.

4.2. Analysis of Optimization Results. The multiobjective
optimization genetic algorithm is set 600 times, and the
model accuracy is further improved through the interpola-
tion method. The results obtained by each generation of
interpolation are shown in Figures 5(a), 5(c), 5(e), and
5(g). At the same time, the approximate value of the Pareto
solution is compared with the real value. The error is shown
in Figures 5(b), 5(d), 5(f), and 5(h). The interpolation
method is used to update each generation, and the interpo-
lation is four times in total.

Figures 5(a), 5(c), 5(e), and 5(g) are the distribution dia-
grams of the Pareto, and the horizontal axis is objective 1.
Its value indicates the size of the average error, that is, the
antenna surface accuracy. The vertical axis is objective 2,
and its value indicates the level of the tolerance of the rod, that
is, the cost of processing. Figures 5(b), 5(d), 5(f), and 5(h) are
the percentage error between the approximate value and the
real value, where the horizontal axis is the error of objective
1, and the vertical axis is the error of objective 2. Finally, we
calculated the relationship between objective and tolerance,
with accuracy and cost as the objective. In the overall truss
antenna, the surface accuracy is usually between 1mm and
3mm. Since only one antenna unit is analyzed in this paper,
the accuracy is relatively high. The above results are updated
between generations by interpolation, and the points inserted
in each generation are listed in Table 1.

Table 1 and Figure 5 show that the accuracy of the opti-
mization results is improved by 2 interpolations effectively,
and the final error is within 10%, of which the error of objec-
tive 2 is within 1%, which meets the initial design require-
ments. Figure 5(g) shows that the approximate point fits
well with the real point, which can reflect the mathematical
relationship between the variable and the objective. There-
fore, it can obtain several sets of design points. Due to the
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Figure 5: Pareto result.
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large number of obtained solutions, some points are selected
and listed in Table 2.

Table 2 shows that if attention is paid to the high precision
of the antenna regardless of the cost, the second set of design
data can be selected, which has a high average accuracy of
0.01448mm. If more emphasis is placed on cost, the first
and third sets of design data can be selected, on the basis of
sacrificing certain accuracy. If the accuracy and cost are con-
sidered comprehensively, there are several other sets of design
data for selection, which can be further discussed according to
other design requirements to meet different needs.

From the relationship between design variables and
accuracy, one can conclude that the value of the web rod
tolerance is often smaller than the bottom rod tolerance. In
other words, the web rod tolerance has a more critical
impact on the surface accuracy, so it is necessary to pay
more attention to the web rod during manufacturing.

5. Conclusion

This paper analyzes the influence of uncertainty on the
surface accuracy caused by the processing and assembly
error in the space deployable antenna structure. First, the
mechanical model is established based on the principle of
minimum potential energy, and the precision distribution
of its equilibrium state is solved by the Monte Carlo method.
Then, a mathematical model between tolerance and accu-
racy is constructed by the radial basis function approxima-
tion model, which effectively saves the computational cost.
Finally, a multiobjective optimization model is established,
and the multiobjective genetic optimization algorithm is
adopted to optimize and solve multiple sets of Pareto solu-

tions that meet different production requirements. The
conclusion is as follows:

(1) Under the premise of the processing and assembly
error set in this paper, when the tolerances of the
bottom rod and the web rod are designed as
(±0.3558mm, ±0.3097mm), they have the best aver-
age accuracy value of 0.01253mm, which can be
considered the minimum accuracy of the structure

(2) From the relationship between design variables and
accuracy, it can be concluded that the value of the
web rod tolerance is often smaller than the bottom
rod tolerance. That is, the influence of the web rod
tolerance on the accuracy is more critical. Hence,
more attention needs to be paid to the web rod accu-
racy during designing

(3) The calculation process of the accuracy probability
distribution based on the Monte Carlo method is
simplified by the radial basis function approximation
model. As a result, through the multiobjective
genetic optimization method and the local interpola-
tion method, a solution set with an average error of
less than 10% is obtained, which provides a more
efficient and comprehensive design scheme for the
antenna tolerance design
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Continuous fiber reinforced thermoplastic composites have been widely used in modern aerospace and other high-end
manufacturing fields because of their light weight, high strength, fatigue resistance, and corrosion resistance properties. Due to
the reinforcement of carbon fiber strands, continuous fiber reinforced thermoplastic composites have good conductivity which
makes it a potential material for the preparation of space-borne antennas reflecting surfaces. The reflecting surfaces of common
mesh antennas are usually prepared by gold-plated molybdenum wire which is expensive and hard to produce. In this study, the
continuous fiber reinforced thermoplastic composites mesh reflecting surfaces are prepared by 3D printing technology. The
effect of different mesh shape and mesh size on the electrical properties are investigated systematically. The electrical property of
the reflecting surface were tested by waveguide method at the S band with the frequency of 1.9~ 2.3GHz. The results show that
the reflection loss of the 3D printed continuous fiber reinforced thermoplastic composite mesh reflecting surfaces are lower than
0.25 dB, which can well meet the requirement of space-borne antennas in the S waveband. The reflection loss of the 3D printed
continuous fiber reinforced thermoplastic composite mesh reflecting surfaces increases with the increase of mesh size
accordingly for both the quadrangular and the triangular mesh reflecting surface. The reflecting property of the mesh reflecting
surface tends to be better with a higher surface mass density. The results foresee that the continuous fiber reinforced
thermoplastic composites can be used to develop the reflector of large mesh antenna in the future work.

1. Introduction

Space-borne antennas are one of the most important
payloads on the satellite used for communication, deep
space exploration, remote sensing, navigation radio astron-
omy, and earth observation. In order to meet the demand
of increased resolution or sensitivity for multiple functions,
the size of space-borne antennas tends to be larger and larger
during the past decades [1–5]. Considering the constraints
of the current launch vehicle, traditional space-borne anten-
nas are designed as deployable structures which folded in the
fairing during launch stage and unfolded independently in
space. The size of deployable space-borne antenna is always

restrained by the fairing size and weight requirements of the
launch vehicle with a limit of one hundred meter level [6–8].

In order to construct super large space antennas in the
kilometer scale, the deployable antenna cannot meet the
requirements. The focus now on in-space construction tech-
nology is becoming very noticeable due to the capacity of
constructing large space structure on the orbit, the moon,
the mars, and another planet [9–11]. Nowadays, agencies
like National Aeronautics and Space Administration
(NASA) and European Space Agency (ESA) have been
conducting research in how to use additive manufacturing
in a variety of space-related applications, from using it to
print CubeSat propulsion systems, to printing ceramics,
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and to printing large spacecraft in space [12]. NASA released
a national initiative in 2020 to accelerate “in-orbit space
assembly and maintenance”. The Defense Advanced Research
Projects Agency (DARPA) also listed “in-orbit manufacturing
of large antennas” in its top 10 aerospace frontier technologies.
The European Union released the “Space Factory” project in
2021, which aims at building a manufacturing platform for
spacecraft such as satellites and large antennas in space orbit.
In the 2020 China Space Conference, “on-orbit additive
manufacturing technology for space ultra-large antenna
structure” was listed as the “top ten scientific and technical
problems” in the field of aerospace.

As the most vital part of space-borne antenna, the reflect-
ing surface is the most likely component to be constructed in
space by additive manufacturing technology. The perfor-
mance of deployable space-borne antennas depends primar-
ily on the properties of reflecting surfaces which is always
made of knitted wire mesh with different kind waves to
reduce weight and volume [13–15]. However, considering
the complexity technology of wire mesh, it is hard to produce
the wire mesh surface in space. An alternative is to consider
continuous fiber reinforced thermoplastic composites as the
raw material of reflecting surface to printing the reflecting
surface in space by additive manufacturing technology.

Benefit from the superior conductivity of carbon fiber,
continuous fiber reinforced thermoplastic composites tends
to be a good electrical conductor which makes it a potential
candidate material for the reflecting surface of space-borne
antenna [16, 17]. Fused deposition modeling (FDM) is one
of the most commonly used additive manufacturing technol-
ogies (also known as 3D printing) [18, 19]. Tian et al.
proposed a novel FDM process to print continuous fiber
reinforced thermoplastic composites using fiber and plastic
filament as the raw materials [20]. The FDM process is used
to print the reflecting surface in this study. In a typical pro-
cess, a filament of material is fed into a machine via a pinch
roller mechanism. The feedstock is melted in a heated lique-
fier with the solid portion of the filament acting as a piston
to push the melt through a print nozzle. A gantry moves
the print nozzle in the horizontal x–y plane as the material
is deposited on a build surface that can be moved in the
vertical z direction. The extruded material rapidly solidifies
and adheres with the surrounding material to accumulate
the required complex plastic parts. The 3D printed continu-
ous fiber reinforced thermoplastic composites with a fiber
content of 27% achieve the maximum flexural strength of
335MPa and flexural modulus of 30GPa. The technology
has been tested in space by Chinese Changzheng-5B rocket,
which has shown high application value in in-space
manufacturing field. Markforged Company also developed
a 3D printer for continuous fiber reinforced thermoplastic
composites process using pre-preg filament with continuous
fiber and thermal plastic matrix.

For the continuous fiber reinforced thermoplastic
composites, most of the researches focus on the material prep-
aration process and properties [21]. There are few researches
have been done for the continuous fiber reinforced thermo-
plastic composites as a reflecting mesh surface of antenna.
The performance of space-borne antenna mainly depends on

the electrical property of the reflecting surface at designated
frequency. Li and Su developed amethod to predict the electri-
cal performances of the mesh reflector structures with
complex weave patterns [22]. However, the electrical property
of continuous fiber reinforced thermoplastic composites
reflecting surface has not been studied yet, which will restrict
the application of continuous fiber reinforced thermoplastic
composites in the field of space-borne antenna.

In this research, the continuous fiber reinforced thermo-
plastic composites reflecting surfaces with different shape
and mesh were prepared by the FDM process. The electrical
property of 3D printed continuous fiber reinforced thermo-
plastic composites reflecting surfaces were systematically
studied. Electrical property of the reflecting surface was
tested by waveguide method. The effect of mesh shape, mesh
size, and surface mass density on the electrical property was
discussed in this paper. The structure of this paper is orga-
nized as below. In Section 2, the experimental platform,
specimens and electrical property test method are presented.
In Section 3, the effect of different parameters on the electri-
cal property of the continuous fiber reinforced thermoplastic
composites reflecting surfaces are discussed. Finally, the
conclusions are given in Section 4.

2. Experimental Procedures

2.1. Experimental Platform. In this work, the FDM based 3D
printing method was utilized to print the continuous fiber
reinforced thermoplastic composites reflecting surfaces.
The 3D printer was developed by Xi’an Jiaotong University,
which was consisted of extrusion head, control system,
building platform, X-Y motion mechanism etc., as shown
in Figure 1. Detailed parameters and components of the
3D printer were introduced in the reference [20]. The print-
ing process is called continuous fiber reinforced thermoplas-
tic composite 3D printing technology. The scheme of
printing head and process parameters are shown in
Figure 2. During the 3D printing process, thermoplastic
polymers filaments and continuous fibers were fed into the
heated printer head simultaneously. As the action of high
temperature, polymers filaments melted and formed a
melting pool. Continuous carbon fibers were impregnated
with molten polymers while passed through the printer
head. Under the pressure in the printer head, impregnated
continuous fibers were extruded. The carbon fibers and
polymers solidified and bonded on the workbench with the
preplanned print routes. The continuous fiber reinforced
thermoplastic composite components were fabricated with
layer by layers upon the deposited components.

2.2. Material and Specimens. The thermoplastic matrix
material was polyamides wire produced by Flashforge Corp
in China. 1K carbon fiber tows from TENAX-J Corp in
Japan was used as the reinforcement. In order to investigate
the effect of mesh shape and mesh size on the electric
property of the continuous fiber reinforced thermoplastic
composite mesh reflecting surface, two kinds of mesh shape
with four kinds of fiber interval were prepared in this exper-
iment as shown in Table 1. The mesh shape included
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triangle and quadrangle mesh. The dimension of specimens
was all 200mm×200mm. The fiber interval of different
mesh size was set as 2mm, 3mm 4mm, and 5mm, respec-
tively. All of the specimens were prepared by the aforemen-
tioned FDM 3D printer with the same printing parameters.
The specimens are shown in Figure 3.

2.3. Electrical Property Test. Waveguide method was utilized
to test the electrical property of the continuous fiber rein-
forced thermoplastic composites mesh reflecting surface.
The electrical property test schematic is shown in Figure 4.
The electromagnetic wave energy was measured by the
vector network analyzer which was produced by Agilent
Technologies Inc. The recycling mesh was placed at one
end of the waveguide and fixed by four bolts as shown in
Figure 5. Before each test, a 5mm aluminum plate was
utilized for zero setting.

3. Results and Discussion

It is well known that the performance of mesh reflector
antennas depended on how well the reflecting surface
performs at the designed frequencies. The reflection loss is
one of the main factors of reflecting surfaces due to the
microwave leakage loss through the mesh gap. The mesh
material, mesh structure, mesh shape and mesh size, and
wire diameter are related to the reflection loss. In order to

test the reflecting properties of 3D printed continuous fiber
reinforced thermoplastic composite reflecting surfaces, the
reflection losses of the reflecting surfaces with different mesh
size and shape are get by the vector network analyzer at the S
waveband with the frequency of 1.9~ 2.3GHz.

3.1. Effect of Mesh Shape on the Electrical Property. Triangle
and quadrangle mesh surface are the most widely used
reflecting surface of space-borne antennas, which can be well
produced by the 3D printing technology layer by layers. In
this experiment, the reflecting properties of different mesh
shape surfaces are tested. Figure 6 shows the effect of triangle
and quadrangle mesh surfaces on the reflection loss. In
general, the reflection loss of the 3D printed continuous fiber
reinforced thermoplastic composite reflecting surface is
lower than 0.25 dB. It seems that the continuous fiber rein-
forced thermoplastic composite reflecting surface can well
meet the requirement of space-borne antennas in the S
waveband. When the mesh size is 3~ 5mm, the reflection
loss of triangle mesh reflecting surface is lower than the
quadrangle mesh surface. It seems that the reflecting prop-
erty of triangle mesh reflecting surface performs better than
the quadrangle mesh reflecting surface at a larger mesh size.
When the mesh size is 2mm, the reflection loss of triangle
mesh reflecting surface is larger than the quadrangle mesh
reflecting surface with the reflecting loss of 0.06 dB and
0.10 dB, respectively. This is due to the reason that the sur-
face mass density increases with the decrease of mesh size.
For the smaller size mesh, the surface mass density is higher.
The higher mass density means higher resin matrix content,
which may have a significant effect on the reflection loss due
to the poor reflection properties of resin matrix.

3.2. Effect of Mesh Size on the Electrical Property. The effect
of mesh size on the electrical property of the continuous
fiber reinforced thermoplastic composites reflecting surfaces
with different shape is shown in Figure 7. It can be seen that
the reflection loss increases with the increase of mesh size
accordingly no matter for the quadrangular or triangular
mesh reflecting surface. For the quadrangular mesh reflect-
ing surface in Figure 7(a), the reflection loss almost linear
increases with the mesh size smaller than 4mm. When the
quadrangular mesh is larger than 4mm, the effect of mesh
size on the electrical property tend to decrease. For the trian-
gular mesh reflecting surface in Figure 7(b), when the
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Figure 1: 3D printer used to prepare the continuous fiber reinforced thermoplastic composites.
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Figure 2: Scheme of 3D printing for the continuous fiber
reinforced thermoplastic composites.
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triangular mesh size is smaller than 4mm, the effect of mesh
size on the reflection loss in not significant when the trian-
gular mesh size is larger than 4mm, a larger mesh size
results in a higher reflection loss.

In order to express the electrical properties of reflecting
surface clearly, the mean reflection coefficient Γ is calculated
by the Equation (1), where L is reflection loss.

Γ = 10−L/20 × 100%: ð1Þ

The reflection wave, transmission wave, and loss are
formed while the incident electromagnetic wave is reflected
through the continuous fiber reinforced thermoplastic
composites reflecting surfaces. Higher reflection coefficient
corresponds to more reflection wave which means better
reflection properties of the reflection mesh surface. The
reflection coefficient of continuous fiber reinforced thermo-
plastic composites is generally greater than 97% which
shows a perfect reflecting performance. Compared with the
knitted wire mesh reflecting surface, the nonuniform mesh
size and the imperfect electrical contact between the wires
will cause unwanted clutter and power loss due to passive
intermodulation. Passive intermodulation, also known as
intermodulation distortion, represents the intermodulation

products generated when two or more signals are transmit-
ted through a passive device with nonlinear characteristics.
Passive intermodulation may affect the transceiver charac-
teristics of antennas and must be minimized for the antenna
during the development stage. The continuous fiber rein-
forced thermoplastic composites reflecting surfaces produced
by 3D printing technology layer by layer continuously results
in a better interlayer bonding performance which may reduce
the passive intermodulation properties. The excellent reflecting
performance of the continuous fiber reinforced thermoplastic
composites also makes it potential candidate materials for the
in-orbit constructed larger antenna reflecting surface.

3.3. Effect of Surface Mass Density on the Electrical Property.
For the mesh reflector antenna, the surface mass density is
always related with the reflection performance of the mesh
reflecting surface. In order to investigate the relationship
between the surfaces mass density and reflecting properties
of the continuous fiber reinforced thermoplastic composites.
The mass and area of every specimen are measured by the
electronic balance and ruler. The surface mass density D is
calculated as follows:

D = m
S
, ð2Þ

where m and S are the mass and area of the continuous fiber
reinforced thermoplastic composites reflecting surface
specimen, respectively.

In Figure 8, the reflection coefficient of the continuous
fiber reinforced thermoplastic composites reflecting surfaces
is plotted versus the increase of surface mass density. The
short dash lines in the figure, which is the linear fitting
curves for the experimental results, have no exact physical
meaning and just show the approximate changing trends
of the data. The surface mass density seems to play an
important role in the reflecting properties. For the quadran-
gular mesh reflecting surface, the reflection coefficient
increases with the increase of surface mass density. On the
other hand, the relationship between reflection coefficients

Table 1: The continuous fiber reinforced thermoplastic composites reflecting surface with different mesh shape and mesh size.

Mesh shape of reflecting surface Dimension of specimen (mm) Mesh size L (mm) Scheme

Quadrangle

200 × 200 2, 3, 4, 5
L = 2,3,4,5 mm

Carbon fiber

Triangle

200 × 200 2, 3, 4, 5 L = 2,3,4,5 mm

L
L

Carbon fiber

Figure 3: Continuousfiber reinforced thermoplastic compositemesh
reflector specimen based on additive manufacturing technology.
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and surface mass density is not monotonic for the triangular
mesh reflecting surface. The reflection coefficient tends to
increase with a larger surface mass density of the triangular
mesh reflecting surface while the surface mass density is
lower than 0.03 g/cm2. However, the reflection coefficient
of the triangular mesh reflecting surface is not significant
while the surface mass density is larger than 0.03 g/cm2.

The shape of mesh surface has an important effect on the
surface reflecting properties. For the mesh reflecting surface
with the same mesh size and different mesh shape, the

surface mass density is different. The surface mass density
of triangular mesh reflecting surface is higher than the qua-
drangular mesh reflecting surface with the same mesh size.
For this reason, the triangular mesh reflecting surface seems
to have better electrical properties with smaller mesh size. As
the surface mass density increases further, the quadrangular
mesh reflecting surface shows a greater reflecting perfor-
mance than the triangular mesh reflecting surface. The
larger surface mass density means more raw material and
higher cost. The quadrangular mesh reflecting surface with
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Attenuator IsolatorIsolator Coupler Coupler Mesh
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Figure 4: Electrical property test scheme by waveguide method.
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Figure 5: Electrical property test experiment.
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smaller mesh size is preferred for the antenna desired greater
reflecting performance.

4. Conclusions

The electrical properties of 3D printed continuous fiber rein-
forced thermoplastic composite mesh reflecting surfaces
with different mesh shape and mesh size have been investi-
gated experimentally in this study. The reflecting properties
of the mesh surface were obtained using waveguide method
at the S waveband with the frequency of 1.9~ 2.3GHz. The
main conclusions can be drawn as follows:

(1) The reflection loss of the 3D printed continuous fiber
reinforced thermoplastic composite mesh reflecting
surfaces are lower than 0.25 dB, which can well meet
the requirement of space-borne antennas in the S
waveband

(2) The electrical property of the 3D printed continuous
fiber reinforced thermoplastic composite mesh
reflecting surfaces is related with the surface mesh
shape. The triangular mesh reflecting surface per-
forms a better electrical property when the mesh size
is larger than 3mm

(3) The reflection loss of the 3D printed continuous fiber
reinforced thermoplastic composite mesh reflecting
surfaces increases with the increase of mesh size
accordingly for both the quadrangular and the trian-
gular mesh reflecting surface

(4) The surface mass density of the 3D printed continu-
ous fiber reinforced thermoplastic composite mesh
reflecting surfaces with 2~ 5mm mesh size is found
around 0.01~0.06 g/cm2. The reflecting property of
the mesh reflecting surface tends to be better with a
higher surface mass density
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Modular space structure has become a research hotspot in the aerospace field. In the microgravity and weak damping space
environment, modular space structures may continuously vibrate due to the transient excitation caused by satellite attitude
adjustment or space debris impact, which will make the structure unstable. Therefore, a passive vibration control method
based on band gap design is proposed for the modular space structures. Firstly, a modular spectral element model based on the
super element is established, and the modular spectral element model is expanded into modular space structures. Then, band
gap characteristics of the modular space structure are analyzed and optimized to improve the wave isolation ability. The
numerical simulation shows that the elastic wave in the band gap can be effectively isolated and the band gap is significantly
improved by optimizing structural parameters.

1. Introduction

Deployable space structures have been widely used in aero-
space due to the advantages of lightweight and large ratio
of deployed and folded volumes. With the development
toward large-scale, high-precision, and on-orbit assembling
[1], the modularization structure has become a popular
structural form for deployable space structures. Modular
space structures belong to a class of dynamical systems with
weak damping and large flexibility. It is well known that this
type of system will continuously vibrate under complex
space environments, such as the transient excitation caused
by satellite attitude adjustment or space debris impact.
Therefore, control methods [2–5] must be considered to
eliminate the vibration.

For space structures, the vibration control method can
be divided into two categories: active and passive control.
Active control [6–8] introduces an automatic control system
with an additional power supply to dampen the vibration
amplitude. It can provide optimal vibration control effect
under some specific conditions, but the control system is
complex, and it is hard to obtain enough power in space.
Passive control, in contrast, needs no additional power sup-

ply, and it has the advantages of low cost, high reliability,
broadband vibration reduction, and so on.

So far, some scholars have investigated the passive con-
trol methods for space structures. Bishop and Striz [9] stud-
ied an optimal configuration method of viscous dampers for
a modular frame structure based on the genetic algorithm.
Xu et al. [10] proposed a hybrid optimization model com-
bining the evolutionary algorithm with the simulated
annealing algorithm to solve the configuration problem of
viscoelastic dampers. Kim et al. [11] investigated a magne-
torheological (MR) damper-based intelligent passive control
system for mitigating the vibration of stay cables. It was
found that the vibration reduction effect was slightly better
than conventional MR dampers. Tong and Zhao [12] inves-
tigated the optimization of multiple tuned mass dampers
(TMDs) to reduce vibrations of flexible structures. Preu-
mont et al. [13] studied the vibration reduction analysis of
the modular frame structure based on the piezoelectric
vibration absorber. It can be found that the damping vibra-
tion reduction with surface damping layers [14], discrete
dampers, and vibration absorbers [15] has been widely used
in space structures. However, the damping vibration reduc-
tion needs to be equipped with many dampers to achieve a
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better control effect, which will increase the additional mass
of the system.

It is noted that modular space structures have the prop-
erty of periodic arrays, that is, band gaps. That is to say, we
can optimize the structure material and geometric parame-
ters to tune the position and width of the band gaps so that
the self-vibration-suppression capability can be improved
[16]. Inspired by this, we take the basic unit of modular
space structures as a super element composed of various
materials so that we can improve the elastic wave isolation
ability by artificially optimizing the band gap.

At present, the band gap of periodic structures can be
analyzed by the finite element method (FEM) [17, 18], the
finite difference method [19], the plane wave expansion
method [20], the traveling wave method [21], the transfer
matrix method [22], the spectral element method (SEM)
[23–26], etc. Thereinto, SEM is proposed and applied to
truss-type space structures by U. Lee and J. Lee [27]. Dut-
kiewicz and Machado [28] analyzed vibrations of an over-
head transmission line in a damping environment. Jeong
et al. [29] investigated the vibration analysis of a multi-
span beam subjected to a moving point force by SEM.
The SEM has the advantages of low computational cost
and accurate calculation results. So, the SEM is used to
build the dynamic model for the gap band analysis of
modular space structures.

However, in the optimization iteration process, a large
number of frequencies need to be calculated over and over
again, which results in a huge amount of computation. What
is worse, there are too many structural parameters to opti-
mize the gap band effectively. Therefore, a super element
model is first established and grouped for modular struc-
tures to obtain a fast and accurate calculation. Then, sensi-
tivity analysis is carried out to select sensitive parameters
and eliminate invalid design variables for the band gap opti-
mization model. Compared with traditional damping vibra-
tion reduction methods, the proposed method realizes the
vibration control without additional mass and cost. This
paper provides a new idea for the vibration control of the
modular space structure.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the basic unit of modular space structures.
In Section 3, the basic unit is taken as a super element, and
its dynamic spectral element model is established. Section
4 reveals band gap characteristics of modular space struc-

tures. In Section 5, the band gap is optimized to improve
the wave isolation ability of modular space structures. Some
conclusions are summarized in Section 6.

2. Problem Statement

As shown in Figure 1, the basic unit structure of modular
space structures is mainly composed of upper beams, lower
beams, outer and central beams, diagonal beams, joints,
and the cable net structure. The modular space structure is
formed by a basic module structure through the periodic
array, which is a form of the periodic structure. Periodic
structures have band gap characteristics [26], and the prop-
agation of elastic waves is prohibited within a certain fre-
quency band. The band gap characteristic of the periodic
structure is related to the structure’s material and geometry
properties and the number of periods. So, the modular space
structure can exhibit different characteristics of band gaps of
elastic wave propagation, by adjusting the magnitude of
cross-section, structure dimension, and pretensions of the
element. To effectively reveal the characteristics of elastic
wave propagation of this complex structure, we derive the
spectral element matrixes of the 3D cable and beam ele-
ments and the dynamic spectral element model of the basic
unit based on SEM. The basic unit structure is the smallest
repeating unit in the modular space structure, as shown in
Figure 1. Then, to reduce the calculation, the super element
of the basic unit structure can be obtained by the dimension
reduction process. Finally, the spectral element model of the
modular space structure can be obtained by periodically
expanding the super element according to the topological
connection relationship.

3. Spectral Element Method

3.1. Spectral Element Matrix for 3D Beams. In this paper, the
spectral element matrix of the beam element is derived
based on the Euler-Bernoulli beam assumptions. The
assumption is that the additional deflection changes caused
by shear deformation are not considered. According to the
theoretical analysis of the Euler-Bernoulli beam and the
force-displacement relationship [20], the spectral finite ele-
ment equation for the flexural motion of the beam can be

Upper and lower
beams 

Diagonal
beams

Outer and
central beams

Cable net structure
Joints

o
y

z

x

Figure 1: Basic unit structure of modular space structures.
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obtained as

Qi
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Qj

Mj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

=
EIy
L3

SB11 SB12 SB13 SB14
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SB41 SB42 SB43 SB44

2
6666664

3
7777775

Wi

Φi
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Φ j

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

=
EIy
L3

SB kF , Lð ÞTd = SB ωð Þd,

ð1Þ

where fQi Mi Qj MjgT is the generalized force vector, Qi

and Qj are cross forces of nodes, and Mi and Mj are

moments of the beam element. fWi Φi W j ΦjgT is the dis-
placement vector,Wi and Wj are spectral node displace-
ments, and Φi and Φj are cross-section corner of the
beam element. E is the elastic modulus, Iy is the sectional
area moment of inertia about the neutral axis, L is the
length of the beam element, and SBðωÞ is the spectral ele-
ment stiffness matrix of the flexural wave of 3D beams,
which characterizes the relationship of the flexural wave
between displacement and force in the frequency domain.
The subitems of SBðωÞT are

SB11 = SB33 = ΔB
�L3 cos �L∙sinh �L + sin �L∙cosh �L
� �

,

SB22 = SB44 = ΔB
�L3k−2F sin �L∙cosh �L − cos �L∙sinh �L

� �
,

SB12 = −SB34 = ΔB
�L3k−1F sin �L∙sinh �L,

SB13 = −ΔB
�L3 sin �L + sinh �L
� �

,

SB14 = −SB23 = ΔB
�L3k−1F −cos �L + cosh �L

� �
,

SB24 = ΔB
�L3k−2F −sin �L + sinh �L

� �
,

ΔB =
1

1 − cos �L∙cosh �L
� � ,

�L = kFL,
ð2Þ

where kF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρA/EIz4

p
is the wave number of the flexural

motion of the beam.
The longitudinal motion can be obtained as

Ni

N j

8<
:

9=
; = EA

L

kLL cot kLLð Þ −kLL csc kLLð Þ
−kLL csc kLLð Þ kLL cot kLLð Þ

" #
Ui

U j

2
4

3
5

= EA
L

SR kL, Lð ÞTd = SR ωð Þd,
ð3Þ

where Ni and Nj are the nodal longitudinal forces. Ui and

U j are the nodal longitudinal displacements. kL =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρA/EA

p
is the wave number for the longitudinal motion,

ρ is the mass density, A is the sectional area, and SRðωÞ is the
spectral element stiffness matrix of the longitudinal wave of
3D beams, which characterizes the relationship of the longi-
tudinal wave between displacement and force in the fre-
quency domain.

The torsional motion can be obtained as

Ti

T j

8<
:

9=
; = GIP

L

kTL cot kTLð Þ −kTL csc kTLð Þ
−kTL csc kTLð Þ kTL cot kTLð Þ

" #
Φi

Φ j

2
4

3
5

= GIP
L

ST kT , Lð ÞTd = ST ωð Þd,
ð4Þ

where Ti and T j are the nodal torsional moments. Φi and Φj

are the nodal torsional angles, and G = E/ð2ð1 + μÞÞ is the
shear modulus, μ is the Poisson’s ratio, IP is the polar
moment of inertia, and kT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρIP/GIP

p
is the wave num-

ber for the torsional motion, and STðωÞ is the spectral ele-
ment stiffness matrix of the torsional wave of 3D beams,
which characterizes the relationship of the torsional wave
between displacement and force in the frequency domain.

The spectral element matrix of 3D beam elements can be
obtained by assembling longitudinal, torsional, and flexural
spectral element matrixes of the Euler-Bernoulli beam as

SLB ωð ÞdLB = FL
B, ð5Þ

where SLBðωÞ is the spectral element stiffness matrix of the
3D beams in the element coordinate system, and it can also
be written as

SLB ωð Þ = SLB11 SLB12

sym SLB22

" #
, ð6Þ

where SLB11, S
L
B12, and SLB22 can be expressed as

SLB11 =

SR11 0 0 0 0 0
0 SB11 0 0 0 SB12

0 0 SB11 0 −SB12 0
0 0 0 ST11 0 0
0 0 −SB12 0 SB22 0
0 SB21 0 0 0 SB22

2
666666666664

3
777777777775
, ð7Þ
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SLB12 =

SR12 0 0 0 0 0
0 SB13 0 0 0 SB14

0 0 SB13 0 −SB14 0
0 0 0 ST12 0 0
0 0 −SB23 0 SB24 0
0 SB23 0 0 0 SB24

2
666666666664

3
777777777775
, ð8Þ

SLB22 =

SR22 0 0 0 0 0
0 SB33 0 0 0 SB34

0 0 SB33 0 −SB34 0
0 0 0 ST22 0 0
0 0 −SB43 0 SB44 0
0 SB43 0 0 0 SB44

2
666666666664

3
777777777775
, ð9Þ

where SRij and STijði, j = 1, 2Þ are the subitems of the spec-
tral element stiffness matrixes of longitudinal and torsional
motion of the Euler-Bernoulli beam, respectively, and SBij
ði, j = 1, 2, 3, 4Þ is the subitems of the spectral element stiff-
ness matrix of flexural motion of the Euler-Bernoulli
beam.

The spectral element matrix of the 3D beams in the
global coordinate system can be obtained by transformation
of coordinates as

SGB ωð Þ = TT
r S

L
B ωð ÞTr , ð10Þ

where Tr is the coordinate transformation matrix and SGB ðωÞ
is the total spectral element stiffness matrix of 3D beams in
global coordinate system.

3.2. Spectral Element Matrix for 3D Cables. Cables involved
in the cable net structure are simulated by strings of which
the longitudinal vibration equation of the tension cable is
consistent with the Bernoulli-Euler beam. The spectral ele-
ment equation of the transverse vibration of the tension
cable can be given as follows.

Hi

Hj

8<
:

9=
; = T

L

kCTL cot kCTLð Þ −kCTL csc kCTLð Þ
−kCTL csc kCTLð Þ kLL cot kCTLð Þ

" #
Wi

Wj

2
4

3
5

= T
L
SCT kCT , Lð ÞTd = SCT ωð Þd,

ð11Þ

where Hi and Hj are the nodal transverse forces.Wi andWj

are the nodal transverse displacements. kCT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρA/T

p
is

the wave number of the transverse motion. T is the preten-
sion, which provides the transverse stiffness of the tension
cable. SCTðωÞ is the spectral element stiffness matrix of the
transverse wave of 3D cables, which characterizes the trans-

verse motion relationship of 3D cables between displace-
ment and force in the frequency domain. The subitems of
SCTðωÞT are

SCT11 = SCT22 = kCTLð Þ cot kCTLð Þ,
SCT12 = SCT21 = − kCTLð Þ csc kCTLð Þ:

ð12Þ

The spectral element stiffness matrix of 3D cables can be
obtained by assembling the transverse and longitudinal
spectral element matrixes as

SLC ωð ÞdLC = FL
C , ð13Þ

where SLCðωÞ is the spectral element stiffness matrix of the
3D cables, and it can also be written as

SLC ωð Þ = SLC11 SLC12

sym SLC22

" #
, ð14Þ

where SLC11, S
L
C12, and SLC22 can be expressed as

SLC11 =
SR11 0 0
0 SCT11 0
0 0 SCT11

2
664

3
775,

SLC12 =
SR12 0 0
0 SCT12 0
0 0 SCT12

2
664

3
775,

SLC22 =
SR22 0 0
0 SCT22 0
0 0 SCT22

2
664

3
775,

ð15Þ

where SRij and SCTijði, j = 1, 2Þ are the subitems of the spec-
tral element matrixes of longitudinal and transverse motion
of the tension cable, respectively.

The spectral element matrix of the 3D cables in the
global coordinate system can be obtained by transformation
of coordinates as

SGC ωð Þ = TT
r S

L
C ωð ÞTr , ð16Þ

where TT
r is the coordinate transformation matrix and SGCðωÞ

is the total spectral element stiffness matrix of 3D cables in
global coordinate system.
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Figure 2: Equivalent super element.

Table 1: Material parameters.

Properties Frame Joints Cable net

Material type Carbon fiber Aluminum alloy Aramid fiber

Section type Hollow circle section Solid circle section Solid circle section

Radius (m)
Outer diameter 0.015
Inside diameter 0.0135

0.03 0.001

Elastic modulus (GPa) 370 72 20

Poisson’s ratio 0.3 0.33 0.3

Density (kg/m3) 1800 2730 1450

Pretension (N) 0 0 1
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Figure 3: Frequency response comparison between FEM and SEM.
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3.3. Spectral Element Matrix of the Super Element. In order
to improve computational efficiency, a degree reduction
method is used to reduce the dimensionality of the spec-
tral element matrix. As shown in Figure 2, the internal
nodes of original composite beams ② can be presented
by two end nodes. The spectral element equation of orig-
inal composite beams ② in the global coordinate system
can be written as

�SB2ii �SB2ij

�SB2ji �SB2jj

" # �di
�dj

( )
=

�f i

0

( )
, ð17Þ

where �di and �dj are the boundary and internal nodal dis-
placements of original composite beams ②, respectively,
and �f i is the boundary force vector.

According to the principle of condensation, the equiva-
lent beam ② can be deduced as

�SGB2 ωð Þ�d = �f , ð18Þ

where the spectral element matrix of equivalent beam ② is

�SGB2 ωð Þ = �SB2ii − �SB2ij �SB2jj
� �−1�SB2ji: ð19Þ

The spectral element matrixes of equivalent beams ①

and ③ are similar to that of the equivalent beam ② and
can be shown as

�SGBn ωð Þ = �SBnii − �SBnij �SBnjj
� �−1�SBnji n = 1, 3ð Þ: ð20Þ

Specifying material parameters of the super element
shown in Table 1 and applying the displacement excitation
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Figure 4: Modular space structure.
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Figure 5: Vibration transmission rate of node R of the modular space structure.
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d = 0:001eiωt m at node P, we can obtain the frequency
response at node R by solving the spectral element model.
The comparisons of the results obtained by the finite ele-
ment simulation with our numerical results are shown in
Figure 3.

It is found that the results of FEM are almost consistent
with SEM from 0 to 100Hz, while they gradually deviate
from 100Hz to 200Hz. The reason for this difference is that
FEM has truncation errors if the refined mesh number is
insufficient, while SEM uses the precise wave solution in
the frequency domain. Compared with FEM, SEM has
no truncation error, so it can obtain accurate calculation
results with a smaller number of elements, thereby reduc-
ing the amount of calculation and improving the calcula-
tion efficiency.

4. Band Gap Analysis of Modular
Space Structure

The super element can be used as the basic element to
expand into a periodic structure. The vibration transmis-
sion rate is defined as Equation (21) and used to
evaluate the attenuation characteristics of the periodic
structure.

T = lg w0
wi

� �
, ð21Þ

where w0 and wi are the output and input displace-
ments, respectively.
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Figure 7: Structural details of the modular space structure.
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Figure 6: Vibration distributions of the modular space structure: (a) f = 400Hz; (b) f = 500Hz.
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The structure formed by extending the super element
along one dimension is shown in Figure 4. The displacement
excitation is applied at node P along the positive y-axis. The
y-axis vibration transmission rate of node R is solved and
shown in Figure 5.

It can be seen that the vibration transmission rate of
node R is attenuated sharply from 455Hz to 564Hz, and this
frequency range is called as a band gap. The depth of band
gap is the value at which the vibration transmission rate
within the band gap is the largest, as shown in Figure 5. As

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

–20

–15

–10

–5

0

5

V
ib

ra
tio

n 
tr

an
sm

iss
io

n 
ra

te
 (d

B)

Ar1 = 0.015 m
Ar2 = 0.02 m

Ar3 = 0.025 m
Ar4 = 0.03 m

455 848

(a)

0.015 0.02 0.025 0.03

Aluminum alloy joint radius (m)

450

500

550

600

650

700

750

800

850

Fr
eq

ue
nc

y 
(H

z)

First band gap

Band gap upper limit

Surface localization

(b)

Figure 8: Corresponding to the change of the aluminum alloy section radius: (a) vibration transmission rate of node R; (b) the first band
gap.
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the number of super elements is increased from 3 to 6 and
10, the depth is increased by 36.69% and 72.9%, respectively,
but the position and width of the band gap are basically the
same.

The vibration distributions of the modular space struc-
ture at 400Hz and 500Hz are shown in Figure 6. It can be
seen that the whole structure vibrates at 400Hz, which
means that the elastic wave can move to the far end. How-
ever, the vibration at 500Hz is limited near the excitation
source that means the elastic wave can be effectively isolated
at the band gap.

5. Optimal Design of the Band Gap of Modular
Space Structure

5.1. Sensitivity Analysis. The band gap of the structure may
be affected by structural parameters such as element cross-
sections, structure size, and cable forces, as shown in
Figure 7. The material parameters of the structures in this
section are the same as those in Table 1.

At first, the influence of aluminum alloy section radius
on the band gap is studied. It can be seen from Figure 8 that
when increasing the aluminum alloy section radius Ar by
33.3%, 66.7%, and 100%, the lower limit frequency of the
first band gap is decreased by 24.55%, 35.71%, and
40.91%, and the width of the band gap is increased by
69.23%, 97.44%, and 39.74%, respectively. It can be found
that with the increase of the aluminum alloy section
radius, the band gap shifts towards low frequency, the
width of the band gap first increases and then decreases,
but the depth is almost not changed. Changes in structural
parameters may cause little vibration attenuation between
specific frequencies in the band gap, which is called sur-
face localization as shown Figure 8(b). It means the vibra-
tion is transmitted with a low attenuation rate in the
frequencies.

Then, the aluminum alloy joints are embedded in the
carbon fiber beams to form a terminal laminated beam
structure. As shown in Figure 9, when the thickness h of
the embedded part is set as 0mm, 3mm, 7mm, and
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Figure 9: Vibration transmission rate of node R corresponding to the changes in the thickness of the embedded part.
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10.5mm, respectively, the band gap will slightly shift
towards low frequency, but the width and the depth of the
band gap are not changed. The phenomenon may be that
the equivalent stiffness of the embedded part is much more
minor than the stiffness of the aluminum alloy joint, which
has little effect on the band gap.

As shown in Figure 10, the carbon fiber tube is designed
as two different section elements. As shown in Figure 11,
when the mean value of the outer diameters is set as
0.015m, 0.0156m, and 0.0169m, the difference ΔCr is set
as 0mm, 1.25mm, 2.5mm, and 3.75mm, respectively. The
lower limit frequency of the first band gap is increased by
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Figure 11: Corresponding to the change of the section outer diameter difference: (a) vibration transmission rate of node R; (b) the first band
gap.
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13.19%, 17.14%, and 20.00%, and the width of the band gap
is increased by 3.67%, 9.17%, and 11.01%, respectively. It can
be found that with the increase of the difference ΔCr , the
band gap will gradually shift towards high frequency, the
first band gap width increases, and the depth steadily
decreases.

As shown in Figure 12, when the length of the upper
beams and the lower beams is synchronously increased by
10%, 20%, and 30%, respectively, the lower limit frequency
of the first band gap is decreased by 2.20%, 7.69%, and
9.01%, respectively, and the width of the band gap is
increased by 2.75%, -19.43%, and -38.53%, respectively. It
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Figure 12: Corresponding to the change of the length of upper and lower chord beams: (a) vibration transmission rate of node R; (b) the
first band gap.
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can be found that with the increase of the length of the
upper beams and the lower beams, the band gap will shift
towards low frequency, the first band gap width first
increases and then decreases, and the depth is gradually
decreased.

As shown in Figure 13, when the lengths of the outer
beams and center beams are synchronously increased by
10%, 20%, and 30%, respectively, the lower limit frequency
of the first band gap is decreased by 1.76%, -0.66%, and
-4.40%, respectively, and the width of the band gap is
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Figure 13: Corresponding to the change of the length of outer beams and center beams: (a) vibration transmission rate of node R; (b) the
first band gap.
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increased by 31.19%, 33.94%, and 14.68%, respectively. It
can be found that with the increase of the lengths of the
outer beams and center beams, the band gap does not move
substantially, the width of the band gap has a significant
change, and its value first increases and then decreases,
and the depth is gradually increased.

As shown in Figure 14, when the cable pretensions Ts
are set as 1N, 3N, and 5N, respectively, the vibration
amplitudes of the modular space structure at low frequen-
cies are changed slightly. However, the position, the width,
and the depth of the band gap are not changed. The rea-
son is as follows. According to Bloch’s theorem, the band
gap of the structure is mainly related to the wave number
k (i.e., the material parameter of the structure) and the
effective length. The cable pretension can affect the struc-
tural parameters to a certain extent, thus affecting the
wave number k. So, it was considered a factor in the sen-
sitivity analysis. However, it has little effect on the band
gap due to the low pretension of the cable in the deploy-
able space structure.

5.2. Optimization Design. The above analysis illustrates that
we can optimize the aluminum alloy section radius, the
lengths of the upper and lower beams, and the lengths
of the central and outer beams to change the position
and the width of the band gap. In order to improve the
wave isolation characteristics of the modular space struc-
ture, we comprehensively consider the influence of these
parameters and establish the following band gap optimiza-

tion model with the ratio of the lower limit of the band
gap to the width as the objective function. In addition,
to ensure that the change of component size has little
effect on the structure’s overall size change, the beam
length’s value range is selected to be between 1 and 1.1
of the original length. The value range of the joint radius
is between 1 and 1.5 of the original size.

Find L = 1 + að ÞL1 1 + bð ÞL2 rf g,

min  RB = f1
f2 − f1

s:t:

a ∈ 0,0:1½ �
b ∈ 0,0:1½ �
L1 = 0:126m
L2 = 1:114m
r ∈ 0:03,0:045½ �:

8>>>>>>>><
>>>>>>>>:

ð22Þ

where L1 represents the length of the upper and lower
chord beams, L2 represents the length of the outer and
central beams, r is the section radius of the aluminum
alloy joints, f1 is the lower limit of the band gap, and f2
is the upper limit of the band gap.

The calculation process of the optimization algorithm
is shown in Figure 15. Firstly, the optimization variables

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

–20

–15

–10

–5

0

5
V

ib
ra

tio
n 

tr
an

sm
iss

io
n 

ra
te

 (d
B)

Ts = 1N
Ts = 3N
Ts = 5N

455 564

Figure 14: The vibration transmission rate of node R corresponding to the change of cable pretension.
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are brought into the spectral element model in Section 3, and
the frequency-domain response curve of the model is calcu-
lated. Then, the first band gap information of the structure is
obtained through the frequency domain response curve,
including the bandwidth and the lower limit frequency of

the band gap. Next, the objective function is calculated by
Equation (22) and returned to the SA algorithm to obtain a
new set of optimization variable values. Repeat the above pro-
cess until it satisfies the optimization termination condition
and outputs the result.
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Figure 16: Relative bandwidth optimization iterative process.
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For the optimization model of Equation (22), obtain-
ing the optimal global solution is considered at first. In
addition, the computational efficiency of the algorithm is
considered. The simulated annealing algorithm can obtain
the optimal global solution of the optimization model
without falling into the optimal local solution. The method
also has high computational efficiency. Therefore, the
optimization model is solved by the simulated annealing

algorithm. The initial parameters are set as [0,0,0.03].
Figure 16 shows that the optimal result can be obtained
after 30 iterations. At this time, the optimal length of the
upper and lower beams and the central and outer beams
and the optimal radius of the aluminum alloy joint are
1.087L1, 1.009L2, and 0.0442m, respectively. In this case,
the band gap is shifted to the low frequency as shown in
Figure 17. It is illustrated that optimization of the
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structural parameters can significantly change the position
of the band gap.

6. Conclusions

This paper studies a passive vibration control analysis of the
modular space structure based on band gap design. Through
the band-gap sensitivity analysis of the modular space struc-
ture, some key influence factors on the band gap are firstly
illustrated. And then, a band gap optimization model is
established to improve the wave isolation characteristics of
the modular space structure. According to the simulation
results, some conclusions can be summarized as follows:

(a) The band gap exists in modular space structures. As
the number of basic units increases, the vibration
transmission rate of the modular space structure will
be decreased

(b) The position and the width of the band gap are
greatly influenced by structural parameters, includ-
ing the aluminum alloy section radius, the length
of the upper and lower beams, and the length of
the central and outer beams

(c) The elastic wave in the band gap can be effectively
isolated, and manual optimization of the structural
parameters can significantly change the position of
the band gap. That is to say, wave isolation charac-
teristics of the modular space structure can be
improved by optimizing the structural parameters
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The deployment strategy and dynamic analysis of the AM-2 AstroMesh ring truss antenna reflector are studied in this paper. The
rigid multibody dynamic models of the truss structures with alterable and fixed diagonal length are established, respectively, by
using the natural coordinate formulation (NCF). The driving scheme and the synchronous constraint scheme are proposed for
two types of truss structure, respectively. The degree of freedom (DOF) analysis of the truss structure is carried out according
to the redundant constraint processing method. The deployment strategies of the two different types of truss structures are
discussed. The dynamic simulation of the deployment of a 30-side AM-2 AstroMesh reflector truss structure with fixed
diagonal length without gravity is carried out. The deployment characteristics of the truss structure are obtained. The driving
forces are predicted according to the dynamic simulation.

1. Introduction

With the rapid development of the aerospace technology,
many kinds of large-scale space structures are widely used,
such as deployable solar panels, deployable satellite anten-
nas, and the large-scale deployable solar sails [1–4]. Due to
the limits of space and weight of the vehicles, these large
space structures must be folded up during the launch stage,
and the structures deploy to the work state by the driving
system after the spacecraft is in orbit. To meet the increasing
space telecommunication requirements, more and more
large deployable mesh antennas have been developed and
applied for the aerospace missions in recent decades [5, 6].

Compared to the other structure types, the ring truss
antenna has the advantage of light weight and high stor-
age ratio. The mass of the ring truss antenna does not
increase proportionally with the increase of the aperture,
as shown in Figure 1. Therefore, the ring truss deployable
antenna has been widely concerned by various research
institutions [1, 2, 7–11].

The AstroMesh reflector, developed by the Northrop
Grumman Corporation, is one of the most famous ring truss
deployable antenna reflectors and has gained wide accep-

tance in the world of commercial satellites [8, 9]. In order
to meet the requirements of the smaller fold size and the
lower weight, several classes of AstroMesh reflectors such
as AM-1, AM-Lite, and AM-2 have been designed and
developed by Northrop Grumman Corporation based on
the first generation of the AstroMesh reflector AM [12].
The AM-1 class has a reduced stowed diameter versus the
first-generation AM. The AM-Lite class is also developed
by optimized mass design with 50% reduction in mass from
AM-1. In order to reduce the storage volume, the Northrop
Grumman Corporation developed an improved mesh reflec-
tor, called AM-2, which can reduce the stowed height of the
ring truss by 40% from AM-1, as shown in Figure 2 [12].

The success of deployment in orbit plays a critical role
in the success of the entire space mission. Therefore,
researchers have paid enough attention to the dynamic char-
acteristics of deployment process of the ring truss antenna.
Base on the second kind of Lagrange equations, Li [13] stud-
ied the deployment dynamics of a rigid ring truss structure. A
five-order polynomial was used to describe the angular veloc-
ity of the deployment of the truss structure. Zhang et al. [14]
studied the deployment dynamics of a simplified ring truss
structure of the AstroMesh reflector by using the assumption
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of small deformations and without considering the coupling
effects between the rigid motion and the elastic deformation.
Li et al. [15] proposed an effective form-finding methodology
that combines the iterative force density method and the
minimum norm method. The form-finding analysis of the
reflector with the standard configuration, the central hub
configuration, and the circular configuration is performed
to validate the proposed methodology. Based on the initial
configuration, the deployment dynamics of a complex Astro-
Mesh reflector was studied by using the parallel computation
[16]. Peng et al. [17] proposed a new cable element of ALE

formulation to simulate the cable pulley system with friction
and carried out the deployment simulation of a full-scale
flexible multibody model of the AstroMesh. The variations
of the kinetics of the structure, the bending moments of the
truss members, and the motor driving forces in the deploy-
ment process are discussed.

However, most scholars focused on the AM class of
AstroMesh reflectors in the dynamic characteristics research
of the ring truss deployable reflector; the dynamic analysis of
the AM-2 class has seldom been investigated. In this paper, the
natural coordinate formulation (NCF) [16] is applied tomodel

(a) Thuraya satellite (b) INMARSAT 4

(c) MBSAT (d) SMAP spacecraft

Figure 1: Satellite with ring truss antenna.

AM
1st generation thuraya

configuration mounted
to spacecra� top
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2.49
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Redesigned truss

articulation reduces
stowed height

18 to 50-m class

Figure 2: AstroMesh reflectors with 12-meter deployed aperture.
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the ring truss deployable antenna structure. Combining the
analysis of degrees of freedom (DOFs) and the dynamic simu-
lation, the deployment strategy and dynamic analysis of the
AM-2 class of AstroMesh reflectors are analyzed.

2. AstroMesh Truss Structure

The AstroMesh reflector is mainly composed of a deployable
ring truss, the front net, the rear net, and tension ties. The
metal mesh is attached to the front net for the reflective
surface. When the deployment of the reflector is completed,
the front net, the near net, and ties are all in tension. The
AstroMesh reflector truss is comprised of longeron, diago-
nal, and batten rods, as shown in Figure 3 [15].

The AM-class of the AstroMesh truss is composed of
several parallelogram elements. The diagonal in the parallel-
ogram element is extensible mechanism. The length of the
diagonal is maximum when the structure is in the folded
state, and that is minimum when the structure is in the
deployment state. The ring truss structure is deployed by
driving the cable embedded in the diagonals of each parallel-
ogram of the structure, as shown in Figure 4.

The AM-2 of the AstroMesh ring truss reflector is also
composed of several parallelogram elements as AM. How-
ever, unlike AM, the hinge connecting the batten rod and
the other rods is not fixed that can slide freely on the batten
rod. The hinge slides from the bottom of the batten rod to
the top during the deploying process of ring truss structure,
and the hinge slides from the top of the batten rod to the
bottom during the stowing process of the ring truss struc-
ture, as shown in Figure 5.

3. Modeling of Truss Structure

3.1. Natural Coordinate Formulation. In the natural coordi-
nate formulation (NCF), the Cartesian coordinates in the
global inertial coordinate system are applied to define the
motion of the rigid body [18]. The mass matrices in the
dynamic formulations are constant. Therefore, it can greatly
improve the computational efficiency in the dynamic simu-
lation by using NCF. In this paper, two fixed points and
two non-coplanar unit vectors are used as the generalized
coordinates, as shown in Figure 6.

The rigid body has 12 generalized coordinates in the
global coordinate system

q = rTi rTj uT vT
h iT

, ð1Þ

where ri and rj are the position vectors of the node i and j,
respectively. The vectors u and v are two non-coplanar unit

Batten

Longeron

Diagonal

Rear mesh

Front mesh

Metallic mesh

Tension ties

Deployable
ring truss

Figure 3: Components of AstroMesh reflector truss.

Figure 4: Parallelogram element of AM ring truss structure.

Figure 5: Parallelogram element of AM-2 ring truss structure.
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Figure 6: Rigid body described by NCF.
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vectors. The vectors rj − ri, u, and v are perpendicular to
each other. The global position of an arbitrary point P in
the rigid body can be described as

r = 1 − c1ð ÞI3 c1I3 c2I3 c3I3½ �

ri
rj
u
v

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

=Cq, ð2Þ

(a) Space free case (b) One batten fixed case

Figure 7: Two different cases of the ring truss structure.

Table 1: DOFs of truss structure in two cases.

Case of structure Space free One batten fixed

Degrees of freedom 61 55

Synchronous
cable J

H

Synchronous
gear

B

A

C D

GF

E

Synchronous
cable

Figure 8: Truss element with synchronous constraints.

Table 2: DOFs of truss structure in different cases.

Case of
structure

Synchronous
cables

Synchronous
gears

Synchronous
cables and

synchronous gears

Space free 34 33 8

One batten
fixed

28 27 2

Table 3: DOFs of truss structure with fixed length of diagonal.

Case of structure
Without synchronous

constraint
Synchronous

cables

Space free 32 7

One batten fixed 26 1

Synchronous
cable

Synchronous
cable

Figure 9: Truss element with synchronous cables constraints.
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where C is the shape function matrix which depends on the
local coordinate of point P. I3 is the 3 × 3 identity matrix.

It is known that the rigid body has 6 degrees of freedom
(DOFs) in the space. The rigid body described by NCF has
12 generalized coordinates. There are 6 inherent constraints
for one rigid body, and the constraint functions can be
written as

ri − rj
�� �� = L,  uj j = 1,  vj j = 1,

ri − rj
� �

⊥u,  ri − rj
� �

⊥v, u⊥v:

(
ð3Þ

3.2. Dynamic Equation of the Truss Structure. Based on the
first Lagrange equation, considering the constraints, the
governing equation of motion for a multibody system can
be expressed in a compact form as a set of differential and
algebraic equations (DAEs) with constant mass matrix

M€q +ΦT
qλ =Q q, tð Þ,

Φ q, tð Þ = 0,

(
ð4Þ

where M represents a system constant mass matrix of the
system, q represents the generalized coordinates of the
whole multibody system, and Φðq, tÞ represents the con-
straint vector of the system. The Jacobian matrix Φq is the
derivative matrix of the constraint vector with respect to
the generalized coordinates q, λ is the Lagrange multiplier
vector, and Qðq, tÞ is the generalized external forces vector
of the system.

It should be pointed out that redundant constraints are
usually generated inevitably when describing the constraint
equations for the complex multibody system, especially the
closed-loop deployable structure. Therefore, the redundant
constraints should be removed by eliminating the dependent
constraint equations in the degree of freedom analysis and
the dynamic analysis of the system.

The total constraint equations of a multibody system are
usually composed of the inherent constraint equations such
as Equation (3) and the constraint equations for the con-
nections between the components of the structure. The

Gaussian elimination method is adopted to eliminate the
principal elements in the Jacobian matrix Φq, and then,
the independent constraint equations would be obtained
after removing the corresponding redundant constraint
equations. The degrees of freedom of the system can be
obtained by subtracting the number of the independent
constraint equations from the number of generalized
coordinates.

4. DOF Analysis and Constraint Scheme

Based on this configuration with sliding hinges on the batten
rods, the deployment strategy of the ring truss structure with
alterable diagonal length and with fixed diagonal length is
discussed, respectively, in this section.

4.1. Truss with Alterable Diagonal Length. The AM-2 type of
ring truss structure with variable length of the diagonal is
considered in this section. The rigid dynamic model of the
ring truss structure with 30 sides in two different cases are
established by using NCF introduced in Section 3.1, respec-
tively. The rigid parts in the dynamic model include 60 lon-
geron rods, 30 batten rods, 60 diagonal rods, and 30 sliding
hinges on the batten rods. The constraint equations include
the rotation joints between the longeron and the batten rods,
the rotation joints between the diagonal and the batten rods,
the sliding joints between the hinges and the batten rods,
and the sliding joints between the diagonal rods in the same
parallelogram elements.

The first case is that the truss structure is completely free
in the space without any external constraint, and the second
case is that one batten rod of the truss structure is fixed in
the space, as shown in Figure 7. The degree of freedom of
the ring truss structure is analyzed by the rigid dynamic
model.

The DOFs of the truss structure are shown in Table 1. As
shown in this table, the DOFs of the structure in space free
case are 6 more than the DOFs of the structure in one batten
fixed case as expected. It is obvious that the structure is not
reliable with such numbers of DOFs as shown in the table.

Torsion
Spring

(a) Torsion spring

Driving
Cable

Driving
Cable

(b) Driving cable

Figure 10: Driving scheme for the deployment of the ring truss structure.
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In order to reduce the DOFs of the structure and
improve the deployment reliability of the truss structure,
the synchronous constraints are needed for the structure
which can be achieved by using the synchronous cables
and the synchronous gears, as shown in Figure 8.

The synchronous cable has a constant length which
is the sum of the length of the batten and the longeron
rod. It can be used to control the sliding motions of
two hinges in the same truss unit, and the truss units
remain parallelograms in the deployment progress due
to the synchronous cables. The constraint equations for

the synchronous cables in Figure 8 can be described as
follows:

rA − rBj j − rD − rEj j = 0,

rD − rEj j − rG − rHj j = 0,

(
ð5Þ

where rA, rB, rD, rE, rG, and rH represent the position
vectors of points A, B, D, E, G, and H in the global
coordinate, respectively.
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Figure 11: Simulation results of the truss deployment in the first stage.
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Figure 12: Deployment configurations in the first stage.
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The synchronous gear is installed in the sliding hinge
connecting one batten and two longeron rods, as shown in
Figure 8. It can be used to control the motion of the adjacent
truss units. The rotation angles of two adjacent longeron
rods connecting the sliding hinge with respect to the batten
rod keep consistent due to the synchronous gears. The con-
straint equations for the synchronous gears in Figure 8 can
be described as follows:

rD − rEð Þ ⋅ rC − rEð Þ
rD − rEj j rC − rEj j −

rD − rEð Þ ⋅ rJ − rE
� �

rD − rEj j rJ − rE
�� �� = 0, ð6Þ

where rC and rJ represent the position vectors of points C
and J in the global coordinate, respectively.

The rigid dynamic model of the 30-side ring truss
structure with synchronous cables and synchronous gears
is established by using NCF. DOF analysis of the truss
structure in different cases is performed, as shown in
Table 2.

It is shown from the table that the DOFs of the ring truss
structure can be reduced significantly by using the synchro-
nous constraints. If the synchronous cables and synchronous
gears are applied simultaneously, the DOFs of the structure
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Figure 13: Simulation results of the truss deployment in the second stage.
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are reduced to 2 which means that the deployment reliability
of the truss structure is significantly improved.

4.2. Truss with Fixed Diagonal Length. The AM-2 type of
ring truss structure with fixed length of the diagonal is con-
sidered in this section. The rigid dynamic model of the ring
truss structure with 30 sides in the case of space free and in
the case of one batten fixed is established by using NCF,
respectively. Compared with the rigid dynamic model of
the truss with alterable diagonal length, this kind of rigid
dynamic model has 30 fewer diagonal rods, and the con-
straint equations do not contain the sliding joints between
the diagonal rods in the same parallelogram elements.

The degrees of freedom of the ring truss structure are
analyzed by using the rigid dynamic model.

It can be seen that the DOFs of the structure with the
fixed diagonal length are much less than the structure with
the alterable diagonal length by comparing Tables 2 and 3.
Since the length of the diagonal rods keep constant, it elim-
inates some of the DOFs from the truss structure. The DOFs
of the truss structure with the fixed diagonal length reduce to
1 when the synchronous cables constraints are applied, as
shown in Figure 9. It is obvious that this type of AM-2 truss
structure has higher stability and reliability.

5. Dynamic Simulation of AM-2 Truss Structure

The dynamic simulation of the deployment of a 30-side AM-
2 AstroMesh reflector truss with the fixed diagonal length
without gravity is carried out in this section by using the
rigid dynamic model established before. As with the AM
class of AstroMesh reflectors, the deployment of the AM-2
AstroMesh reflector truss can be divided into two stages.
In the first stage, the truss deploys to a semi-unfolding con-
figuration under the action of the moments between the
longeron rod and the batten rod which can be achieved by
torsion springs. In the second stage, the truss deploys to
the final unfolding configuration under the action of the
driving forces between the hinge and the batten rod which
can be achieved by the driving cables, as shown in Figure 10.

The aperture of the truss structure is 50m. The length of
the longeron and the batten rods are 5.1m and 7.8m,
respectively. The outer diameter of the rods is 30mm, and
the thickness is 1.2mm. The density of the material is
1600 kg/m3. The initial rotational torque of the torsion

spring is set as 3.0Nm, and it would reduce to zero when
the rotation angle reaches to 33 degrees.

As shown in Figure 11, in the first deployment stage, the
deployment speed of the truss decreases to zero when the
angle between the longeron and the batten rods is 56.8
degrees and the angle between the diagonal and the batten
rods is 27.3 degrees. The deployment time is 79.8 s. The
deployment configurations of the truss structure at different
times in the first stage are shown in Figure 12.

In the second stage, in order to ensure the stability of the
deployment process, the dynamic simulation of the deploy-
ment is carried out according to the constraint planning
method [19]. The total time for the deployment process is
set as 1000 s. The displacement and the velocity of the
sliding joint on the batten rod are planned as shown in
Figures 13(a) and 13(b). As shown in Figures 13(c)–13(e),
the truss is gradually deployed to the final state configuration
under the action of driving force. It can also be seen from the
constraint reaction curves in Figure 13(f) that the maximum
driving force required for truss deployment is about 60N.
The deployment configurations of the truss structure at
different times in the second stage are shown in Figure 14.

6. Conclusion

According to the concept of AM-2 AstroMesh reflector truss
structure, the rigid multibody system of two different types
of AM-2 ring truss structure is established in this work.
The system is described by using the natural coordinate for-
mulation (NCF). The synchronous constraint schemes are
proposed for the two types of truss structure, respectively.
The deployment strategy of the truss structures is studied
by using the degree of freedom (DOF) analysis. The results
show that the DOFs of the truss structure can be reduced
effectively by applying the synchronous constraints. It also
can be shown from the results that the truss structure with
fixed diagonal length has higher stability and reliability than
the truss structure with alterable diagonal length. The
dynamic simulation of the deployment of a 30-side AM-2
AstroMesh reflector truss structure with fixed diagonal
length without gravity is carried out. The truss is deployed
by the torsion springs and the driving cables in the first
and second deployment stage, respectively. The driving
forces are predicted according to the dynamic simulation.
The dynamic characteristics of the deployment of the truss
structure are obtained. Based on this work, the flexible

0 s 200 s

600 s 800 s 1000 s

400 s

Figure 14: Deployment configurations in the second stage.
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multibody dynamic model of the reflector truss would be
developed for the truss structure. The mesh and tension ties
can also be considered in the deployment simulation in the
future work. The dynamic characteristics of the deployment
of the reflector would be simulated more accurately.
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In the design of a large deployable mesh reflector, high surface accuracy is one of ultimate goals since it directly determines overall
performance of the reflector. Therefore, evaluation of surface accuracy is needed in many cases of design and analysis of large
deployable mesh reflectors. The surface accuracy is usually specified as root-mean-square error, which measures deviation of a
mesh geometry from a desired working surface. In this paper, methods of root-mean-square error calculation for large
deployable mesh reflectors are reviewed. Concept of reflector gain, which describes reflector performance, and its relationship
with the root-mean-square error is presented. Approaches to prediction or estimation of root-mean-square error in
preliminary design of a large deployable mesh reflector are shown. Three methods of root-mean-square error calculation for
large deployable mesh reflectors, namely, the nodal deviation root-mean-square error, the best-fit surface root-mean-square
error, and the direct root-mean-square error, are presented. Concept of effective region is introduced. An adjusted calculation
of root-mean-square error is suggested when the concept of effective region is involved. Finally, these reviewed methods of
root-mean-square error calculation are applied to surface accuracy evaluation of a two-facet mesh geometry, a center-feed
mesh reflector, and an offset-feed mesh reflector for demonstration and comparison.

1. Introduction

Large deployable mesh reflectors (DMRs), due to their impor-
tant space applications, have experienced continued research
and development interest in the past several decades [1–4].
A deployable mesh reflector uses a spherical or parabolic sur-
face as a working shape (a required radiofrequency surface),
which is formed by a network or mesh of tensioned facets.

A DMR in consideration is illustrated in Figure 1, which,
after full deployment, is supported by a stiff and stable flat
frame. Although there are some variations, a typical DMR
is composed of a front cable net, a rear cable net, tension ties,
and a supporting structure. The front net (working surface)
in the figure, as well as the rear net, is constructed by a mesh
of flat triangular facets. Edges of the facets are elastic cable
elements interconnected at facet nodes. The nodes of the
front and rear nets are also connected by tension ties of
adjustable lengths. In setting up the DMR, folded nets are

deployed into highly stretched elastic meshes, with lengths
of the tension ties being properly adjusted such that the
facets of the front net eventually form a working surface that
is approximate to the desired radiofrequency surface.

In the design of a large DMR, high surface accuracy is
one of the ultimate goals since it directly determines overall
performance of the reflector. Therefore, evaluation of surface
accuracy is needed in many cases of design and analysis of
large DMRs. For example, surface accuracy can be either
roughly estimated in preliminary design of a DMR to deter-
mine topology, member materials, and facet sizes [1, 5] or
accurately evaluated for analysis of generated mesh geome-
try [1, 6]. The surface accuracy is usually specified as root-
mean-square (RMS) error, which measures deviation of the
mesh geometry from the desired working surface.

In this paper, commonly used state-of-the-art methods
of RMS error calculation for large DMRs shall be reviewed.
Methods to be reviewed include approaches to both rough
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estimation of RMS error for preliminary design and accurate
calculation of RMS error for performance evaluation of large
DMRs. Concepts of reflector gain and effective region, and
their relationship with RMS error calculation shall also be
reviewed. A comprehensive mathematical description shall
be given for each method introduced. The reviewed methods
shall be implemented both in a simple example for illustra-
tive purpose and in practical examples for validation of engi-
neering applicability.

The remainder of this paper is organized as follows: con-
cept of reflector gain, which is a factor that describes reflec-
tor performance, and its relationship with RMS error
calculation will be presented in Section 2. Methods of RMS
error prediction in preliminary DMR design will be intro-
duced in Section 3. Method of RMS error calculation for
generated mesh geometries of DMRs will be described in
Section 4. Concept of effective region and the corresponding
incorporation in RMS error calculation will be shown in Sec-
tion 5. Reviewed methods of RMS error calculation will be
applied to evaluate surface accuracies of several mesh geom-
etries for demonstration and comparison in Section 6. Con-
clusions of the reviewed methods of RMS error calculation
will be given in Section 7.

2. Reflector Gain and RMS Effective
Surface Error

Gain of a reflector is a factor that describes reflector perfor-
mance. It is essential to obtain a reflector with high gain
since loss of gain will seriously reduce efficiency in signal
transmission. An axial gain of a circular aperture may be
written as [7]

G = G0e
−�δ2 , �δ = 4πε

λ
: ð1Þ

where G0 is the gain of no-error reflecting surface with the
value being ηeff ðπD/λÞ2. ηeff is the aperture efficiency. D is

the aperture diameter. λ is the wavelength. �δ is the illumina-
tion weighted mean phase error. ε is called half-path-length
error [8] or effective surface error [7] of a reflecting point on
the reflecting surface with coordinate (xε, yε, zε) (see
Figure 2). In Equation (1), it is assumed that random reflec-
tor surface deformation is much smaller than the
wavelength.

A relationship between reflector gain and half-path-
length error is described in Equation (1), which indicates
that large surface error significantly deteriorates gain of a
reflector, which was first found out by Spencer [9]. Accord-
ing to Ruze [7], ε may be obtained by Equations (2a) and
(2b) with a measurement of a surface deviation Δz in the z
-direction or a surface deviation Δn in the direction normal
to the reflecting surface (see Figure 2).

ε = Δz

1 + rε/2Fð Þ2 , ð2aÞ

Flat truss
Mesh

Front net

Rear net
Tension tie

Figure 1: A typical DMR with deployed working surface.

Incident ray

Reflected
ray

x, y

z
Desired working surface

Deformed surface

r𝜀

Focal point
(Boresight)

𝛥z
𝛥n Reflecting point with

coordinate (x𝜀, y𝜀, z𝜀)

Figure 2: Geometric information of surface deviations in the z
-direction and in the direction normal to the reflecting surface.
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ε = Δnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + rε/2Fð Þ2

q , ð2bÞ

where F is the focal length of a reflector and rε =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ε + y2ε

p
is

the distance from this given reflecting point to the center of a
reflector in the xy-plane.

According to Tanaka [8], ε may also be obtained by
Equation (3)

ε = 1 + cos θð ÞΔz
2 : ð3Þ

Figure 3 shows the geometric information of ε. In this
figure, θ is the angle between focal point direction and direc-
tion from a reflecting point on the reflector to the focal
point.

Note that in Equations (2a), (2b), and (3), ε is defined
as surface error of a specific reflecting point within a
reflector aperture. To evaluate surface error of the whole
reflector, a root-mean-square effective surface error is
defined in [10, 11]

εrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∬

S′ε x, yð Þ2ψdS′
∬

S′ψdS′

vuut , ð4Þ

where ψ is an “illumination function” which sometimes is
assumed uniform with ψ = 1 [11]. S′ is aperture area of
the reflector.

3. RMS Error Prediction in Preliminary
Design of DMRs

For a large DMR whose reflecting surface is formed by
facets, it is essential to predict surface accuracy of the
DMR before a mesh geometry is fully generated. Facet sizes
need to be known in preliminary design, such that numbers
of nodes and facets can be determined. Different from the
root-mean-square half-path-length error εrms, which mea-
sures deviation of a deformed reflecting surface from a

desired working surface of general reflectors, the root-
mean-square flat facets error δrms is used to evaluate devia-
tion of a mesh geometry from a desired working surface.
δrms is defined to have the same unit of wavelength λ.
Depending on applications, different budgets for surface
accuracy related to the facet geometry are suggested as
follows [6, 12]:

δrms ≤
λ

N
, ð5Þ

whereN = 50, 75, 100, 150, or 200. Surface deviation of a
DMR may be caused by geometric difference between flat
facets and desired working surface (say, a parabolic or
spherical surface), variation of tension tie load, member
length imperfection, ring structure distortion, and/or ther-
mal strain.

A link between δrms and gain/loss estimation can be
obtained by an approach similar to Equation (1) [13]:

ηrms = exp −
4πδrms

λ

� �2
" #

, ð6Þ

where ηrms is the efficiency factor of reflector gain due to the
RMS error. The reflector gain estimation due to the RMS
error can be obtained as

G = ηrmsG0: ð7Þ

Although Ruze’s derivation in Equation (1) assumes ran-
dom surface errors, it was proved that the approach in Equa-
tion (6) is also useful for estimating gain/loss from
systematic error sources [14].

Agrawal et al. [1] proposed a technique to predict RMS
error for a mesh reflector. RMS error δrms−pre in preliminary
design is estimated in Equation (8) as

δrms‐pre =
1

8
ffiffiffiffiffi
15

p L2

R
: ð8Þ

𝛥z
𝛥z cos𝜃

Focal point
(Boresight) Aperture plane

𝜃

𝜃 𝜃

Path length error
2𝛥𝜀 = 𝛥z cos𝜃 + Dz

Incident ray

Reflected ray
Deformed surface

Desired working surface

Figure 3: Geometric relation between path length error and antenna surface deformation from Ref. [8].
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Note that this approximation is obtained under two
assumptions: first, the desired working surface is a sphere
with radius being R; second, all facets are equilateral trian-
gles with the lengths of three sides being L. Then, the allow-
able length of facet edge is calculated as

L
D

= 4
ffiffiffiffiffi
154

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δrms‐pre

D
F
D

r
: ð9Þ

Reference [1] also introduced an RMS error prediction
method for equilateral square and hexagonal facets as

L
D

= K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δrms‐pre

D
F
D

r
, ð10Þ

where K in Equation (10) is 6.160 for square facets and 4.046
for hexagonal facets. Equations (8) and (9) are widely used
in stage of preliminary design of large DMRs to determine
the maximum allowable facet size [14–16].

Meyer [17] introduced differential geometry of a mesh
surface and used membrane theory to calculate RMS error
for a mesh reflector. Fichter [18] extended theory in Equa-
tions (8)–(10) by considering stress of membrane within
the facets. Similar with the work in Ref. [1], RMS error of
a shallow reflector with equilateral triangular facets is pre-
dicted as

δrms‐pre
D

=
ffiffiffiffiffi
15

p

560
L/Dð Þ2
F/D : ð11Þ

For equilateral rectangular facets of length 2h and width
2k = 2ρh, with 0 < ρ ≤ 1, RMS error was estimated as

δrms‐pre
D

=
ffiffiffi
5

p

120
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + ρ4

p 2h/Dð Þ2
F/D : ð12Þ

Hedgepeth [19, 20] considered mesh saddling in RMS
error prediction by introducing stress of membrane within
the facets, which was also pointed out in Refs. [13, 21].
When effect of membrane tension is considered, mesh of a
reflector is often pulled into a dish shape by auxiliary chords
attached to several interior points. The lateral loading tends
to curve the supporting members inward. Thus, nodal posi-
tions of the mesh were suggested to be adjusted, so as to
compensate this effect. According to Refs. [13, 19], RMS
error of a mesh of equilateral triangular facets is estimated as

δrms‐pre
D

= 0:01614 L/Dð Þ2
F/D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:660 pL

t
+ 0:133 pL

t

� �2
s

,

ð13Þ

where p and t are mesh tension and force in supporting
elements.

Influences of member lengths imperfection and thermal
strain on the surface accuracy of large DMRs were studied
by many researchers in the past decades [5, 22–24]. RMS
error prediction for various types of structures including tet-

rahedral truss, geodesic dome, radial ribs, and pretensioned
truss were investigated by Hedgepeth [5]. For a geodesic
dome, RMS error under member lengths imperfection is
estimated as

δrms‐pre
D

= 2F
D

σε, ð14Þ

where σε is the standard deviation of member errors.
Hedgepeth [20] and Mobrem [25] used natural frequency

results from available closed form solutions to estimate surface
error under member length imperfection in preliminary
design of a large DMR. In this inverse frequency squared
method, weighted lump masses were assigned on nodes of a
mesh in the direction normal to the reflecting surface. With
computed natural frequencies wi, RMS error is estimated by

δrms‐pre =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EALσ2

ε

� �
ref

�m
〠
n

i=1

1
w2

i

s
, ð15Þ

where n is the number of modes, E and A are Young’s modu-
lus and the cross-sectional area of members, and �m is the total
weighted masses. ðEALσ2εÞref is the reference values of these
variables under the assumption of

EAjLjσ
2
ε,j = EALσ2ε

� �
ref , ð16Þ

where Aj, Lj, and σ2
ε,j are the cross-sectional area, length, and

standard deviation of error of the j-th member.
RMS error prediction for mesh reflectors considering

deformation caused by thermal loads during in-orbit missions
was investigated in Ref. [5]. Due to a significant temperature
change when entering or leaving the Earth’s shadow, the cor-
responding thermal strain may result in large surface distor-
tion of a mesh reflector. The work in Ref. [5] also studied
temperature difference at nodes of a reflecting surface due to
their different angles to solar radiation. RMS error was pre-
dicted in Equations (17) and (18) by the average strain εave
and the maximum shear strain γmax, if the strains are
expressed in terms of equivalent biaxial membrane strains.

δrms‐pre
D

= 0:0180 εave
F/D , ð17Þ

δrms‐pre
D

= 0:0128 γmax
F/D : ð18Þ

Τhe calculations of εave and γmax are given in Figure 13 of
Ref. [5]

4. RMS Error Calculation for a Generated
Mesh Geometry

Geometric surface error of a DMR can be obtained by either
rough estimation (prediction) or analytical calculation. For a
large DMR, rough surface error estimation (prediction), as
introduced in Section 3, is only used for a preliminary
design. When a mesh geometry is fully generated, evaluation
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of surface accuracy for a given topology and nodal positions
are needed in complete DMR design, especially in compar-
ing different structural design techniques [26] or form-
finding methods [27, 28]. Methods of RMS error calculation
for evaluating surface accuracy of a generated mesh geome-
try shall be introduced and compared in this section.

Surface accuracy of a generated mesh geometry in gen-
eral can be evaluated by three methods: the nodal deviation
RMS error, the best-fit surface RMS error, and the direct
RMS error. Note that the nodal deviation RMS error and
the best-fit surface RMS error do not measure a real devia-
tion of the mesh geometry from the desired working surface.
If stringent requirement on high surface accuracy in DMR
design is implemented, or if nodes of a mesh geometry are
placed off the desired working surface [29], the direct RMS
error is necessary for a more accurate evaluation.

4.1. Nodal Deviation RMS Error. One commonly used eval-
uation of surface accuracy of a DMR is to calculate an
RMS error due to deviation of the nodes of a mesh geometry
from a desired working surface. For instance, such an RMS
error δrms−n can be expressed by [30, 31]

δrms‐n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
Δx2i + Δy2i + Δz2i
� �s

, ð19Þ

where Δxi, Δyi and Δzi are the normal distances between the i
-th node and the desired working surface in the x-, y- and z
-directions and n is the total number of nodes. This method
is developed under an assumption that the nodes of a reflector
are moved off the desired working surface by certain predict-
able or unpredictable influences, such as thermal loads and

fabrication errors. While being simple and easy to use, the for-
mula in Equation (19) is not accurate enough because it fails to
consider geometric difference between facet planes and curved
working surface. For instance, the surface deviation of a trian-
gular facet from the desired working surface in Figure 4(a)
should be smaller than that in Figure 4(b), but the δrms−n in
Equation (19) gives an opposite result simply because the facet
nodes in Figure 4(a) are off the desired working surface. Fur-
thermore, Equation (19) concludes zero surface error if all
nodes of a mesh are on the desired working surface, regardless
of the number of nodes, which is misleading.

Another type of nodal deviation RMS error, used in Ref.
[32], is to compare values of two parameters: Z′gi and Z′i,
where Z′gi is the z-coordinate of the gravity center (centroid
[1]) of the i-th computed triangular facet on the z-axis and
Z′i is the z-coordinate of the gravity center of the i-th com-
puted triangular facet when projected vertically onto the
desired working surface, shown in Figure 5. The RMS error
δrms−gc is then given by

δrms‐gc =
∑n

i=1S′i Z′i − Z′gi
� �2
∑n

i=1S′i

0
B@

1
CA

1/2

, ð20Þ

with S′i being the projected area of the i-th triangular facet
on the xy-plane. This calculation generally provides an eval-
uation of surface error with relatively low accuracy because
only one point (gravity center) is used for each facet. This
method is developed under an assumption that nodes of a
triangular facet are placed on the desired working surface
of a reflector. To achieve a more accurate evaluation of

Desired working surface

Triangular facet
(a) (b)

Figure 4: Triangular facet and desired working surface: (a) nodes are placed off the desired working surface and (b) nodes are placed on the
desired working surface.

y

z Z'g

Z'
Desired working surface

Triangular facet

Gravity center (Centroid)

Figure 5: Geometric illustration of facet gravity center deviation RMS error.
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surface error, geometric difference between facet planes and
desired working surface must be considered.

4.2. Best-Fit Surface RMS Error. After a mesh geometry of a
DMR is generated, it is natural to find out what surface
(spherical or parabolic) the mesh geometry best represents.
A concept of best-fit surface is thus introduced. The best-
fit surface of a DMR mesh geometry is a sphere or parab-
oloid, which, among all possible spherical or parabolic sur-
faces, has the least deviation from the mesh geometry [22,
33]. Such best-fit surface and the corresponding best-fit
surface RMS error are obtained through a try and error
process. To avoid confusion, the candidate of best-fit sur-
face in each iteration is named effective surface [1]. For
illustration, a schematic of a mesh geometry of a DMR,
its best-fit surface, and the desired working surface is
shown Figure 6.

The best-fit surface RMS error of a center-feed reflector
is defined as follows. As shown in Figure 7, for a given tri-
angular facet of the generated mesh, a plane P is defined
by containing the z-axis and the centroid of the triangular
facet. A local coordinate system (ξ, η) is generated by having
a triangular facet node with the largest z-coordinate being

the origin. The ξ-axis is parallel to the intersection between
plane P and plane of the triangular facet. The η-axis is in
plane of the triangular facet, perpendicular to the ξ-axis.
Let ðξ1, η1Þ, ðξ2, η2Þ, and ðξ3, η3Þ be positions of the three
nodes of the triangular facet in the local coordinate system.
Denote the normal distance between a point on the facet
plane and the effective surface by ω ðξ, ηÞ. The calculation
of ω ðξ, ηÞ was given in Ref. [1] with the mistakes corrected
by Ref. [6] (see Equation (24)). By assuming a shallow
desired working surface, an equation of ω is given as

ω ξ, ηð Þ = a + bξ + cη + ξ2

2Rξ

+ η2

2Rη

, ð21Þ

where a is the normal distance from the three nodes of the
triangular facet to the effective surface. Since the DMR is
assumed to be shallow, the normal distances from the three
nodes to the effective surface are the same in Equation (21).

In Equation (21), b and c are constants which shall be
calculated later. Rξ and Rη are radius of curvatures. For a
spherical effective surface, Rξ = Rη = R, where R is the radius
of the sphere. For a parabolic effective surface,

xy

z

Best-fit surface

Mesh reflector

Desired working surface

Figure 6: Schematic of the best-fit surface and desired working surface of a DMR.

𝜉

𝜂

x

y

z

Plane P

Triangular facet

Figure 7: Local coordinate system (ξ, η) of a triangular facet in Ref. [1].
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Rξ = 2F ′ 1 + rc
2F ′

� �2
" #3/2

,

Rη = rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2F ′

rc

 !2
vuut ,

ð22Þ

with rc =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c + y2c

p
. xc and yc are the global coordinates of

the centroid (gravity center) of the triangular facet. F ′ is
the focal length of the effective surface. Assume the three
nodes of the triangular facet are all on the effective surface
(As shall be seen later in this section, it is almost impossible.
This assumption is only for illustrative purpose.) and the
origin of the local coordinate system (ξ, η) is at the first node
of the facet, then obviously a = 0 and ðξ1, η1Þ = ð0, 0Þ and ω
at the three nodes is

ω ξ1, η1ð Þ = ω 0, 0ð Þ = 0,
ω ξ2, η2ð Þ = 0,
ω ξ3, η3ð Þ = 0:

ð23Þ

Combining Equation (21) and Equation (23), the
remaining constants are then obtained as

b = − η3d2 − η2d3ð Þ
4S ,

c = ξ2d3 − ξ3d2ð Þ
4S ,

S = 1
2 ξ2η3 − ξ3η2ð Þ,

di =
ξ2i
Rξ

+ η2i
Rη

:

ð24Þ

S is the area of the triangular facet. It should be noticed
that Equation (24) is different from (A. 5) in Ref. [1], which
mistakenly calculated b as b = ðη3d2 − η2d3Þ/4S.

With Equation (21), squared deviation of the facet plane
from the effective surface is calculated by integrating ω2 over
the facet area S:

ϕ =∬
S
ω2dξdη = S a2 −

af
6 + f 2

120 −
S2

90RξRη

$ %
, ð25Þ

where

f =
ξ22 − ξ2ξ3 + ξ23

� �
Rξ

+ η22 − η2η3 + η23
� �

Rη

: ð26Þ

The effective surface RMS error δrms−eff of the entire
mesh then is defined by adding up ϕ of facets of the whole
reflector and divided by the summation of facet areas, given

as follows:

δrms‐eff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

ϕi

s
, ð27Þ

where Smesh =∑iSi is the total area of all facets of the mesh
geometry.

The best-fit surface of a generated mesh geometry can
then be found by properly determining its focal length Fbf
and the vertex height Hbf through a try and error process,
such that δrms−eff in Equation (27) is minimized. Therefore,
the value of a in each iteration is different. The calculation
of a was given in Ref. [1] and the mistake which was cor-
rected in Ref. [6].

Geometries of a general triangular mesh facet, a desired
working surface, and an effective surface are given in
Figure 8. The equations of the desired working surface and
the effective surface are

x2 + y2 = 4F H − xð Þ, ð28Þ

x2 + y2 = 4F ′ H − h − zð Þ, ð29Þ

where h is distance in the vertical direction between the ver-
tices of the desired working surface and the effective surface.
H is height of the desired working surface. The facet plane is
defined by an equation z = A + Bx + Cy.

There are two assumptions in the calculation of the best-
fit RMS error: first, reflector is shallow; second, the nodes are
all placed on the desired working surface. Thus, under the
two assumptions, a is also the normal distance between the
effective surface and the desired working surface for a given
mesh facet.

A line PQ is created by passing through the centroid C of
the facet normal to its plane. The equation of the line in its
plane created by r and z is given in (A. 10) of Ref. [1] which
is represented here:

r2 = x2 + y2,

z = zc +
r − rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + C2

p ,
ð30Þ

where zc and rc are coordinates of the centroid of the facet.
The rc is given as

r2c = x2c + y2c : ð31Þ

rp, rq, zp, and zq are shown in Figure 8, and their formu-
las of calculation are obtained by substituting Equation (30)
into Equations (28) and (29):

rq =
−2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + C2

p + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2

B2 + C2 + F H − zc +
rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 + C2
p

� �s
,

ð32Þ
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rp =
−2F ′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + C2

p + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F′2

B2 + C2 + F ′ H − h − zc +
rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 + C2
p

� �s
,

ð33Þ

zq =H −
r2q
4F ,

ð34Þ

zp =H − h −
r2p
4F ′

, ð35Þ

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zp − zq
� �2 + rp − rq

� �2q
, ð36Þ

where Equation (35) is different from the incorrect form in
(A. 12) of Ref. [1] shown in

zp =H −
r2q
4F ′

: ð37Þ

With the value of a, the best-fit parabolic or sphere sur-
face is then found by adjusting F ′ and h to minimize the
RMS error in Equation (27). The optimal result is the best-
fit surface RMS error δrms−bf . This can be done by a numer-
ical optimization algorithm [34].

min δrms F ′, h
� �h i

, ð38Þ

Fbf = F′min,
Hbf =H − hmin:

ð39Þ

The evaluation of the best-fit surface of an offset-feed
parabolic mesh geometry is different from that of a
center-feed one and can be found in Ref. [6]. As shown
in Figure 9, the parent paraboloid and its best-fit surface
are in the global coordinates. Here, Dca,bf is the diameter
of the circular aperture of the reflector’s best-fit working
surface which is the portion of the parent best-fit surface

within the offset aperture; Fp,bf and ΔHg,bf are the parent
best-fit focal length and the vertical deviation; and φ is
the slope of the best-fit parabola at the point intersecting
with the parent aperture in the xgzg-plane. From
Figure 9,

Dp,bf = 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fp,bf Hg − ΔHg,bf

� �q
, ð40Þ

φ = sin−1
Dp,bf
2Rs,bf

 !
, ð41Þ

φof f = tan−1
Hg − ez
2Rc

� �
: ð42Þ

If ΔHg,bf is always sufficiently small, it can be
assumed that

Rs = Rs,bf ,

φ = φ′:
ð43Þ

From the geometry in Figure 9,

AC
BC

= 1 − tan φoffð Þ
tan φð Þ , ð44Þ

where

AC = 1
2 Dca −Dca,bf
� �

,

BC = 1
2 Dp −Dp,bf
� �

:

ð45Þ

Hence,

Dca,bf =Dca −
tan φð Þ

tan φð Þ − tan φoffð Þ Dp −Dp,bf
� �

: ð46Þ

Desired working surface

Effective surface

z

xy

a

zq zp

Triangular facet

rp

rq

P

Q

CH

h

Figure 8: Geometries of desired working surface, effective surface, and a facet.
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4.3. Direct RMS Error. The best-fit surface RMS error
described in Section 4.2 is not a true evaluation of geo-
metric deviation of a DMR mesh geometry from its
desired working surface. For design of a DMR with high
surface accuracy, the direct RMS error that truly mea-
sures geometric deviation of a DMR mesh geometry from
its desired working surface was proposed in Refs. [35,
36]. A comparison of these two types of RMS errors is
shown in Figure 10.

Consider a typical triangular facet in Figure 11, where
the desired working surface is also shown. To calculate the
direct RMS error, a local coordinate system (τ, υ) is estab-

lished on the facet plane; see Figure 12, where the origin
can be any one of nodes of the facet. Let μ ðτ, υÞ be normal
distance between a point on the facet plane and the desired
working surface. Squared deviation of the triangular facet
from the desired working surface is

φ =∬
S
μ2dτdυ: ð47Þ

By summing the deviations of all facets, the direct RMS
error δrms−d of a DMR mesh geometry is defined as follows:

zg

xg

Hg

𝛥Hg, bf

Parent paraboloid

Best-fit parent paraboloid Offset aperture

Dca

Dca,bf

Dp, bf

Dp
Rs, bf

Rs

Fp
Fp,bf

C

B

A
D

𝜑

A

D

B C
𝜑off

𝜑

𝜑'

Figure 9: The best-fit surface for an offset-feed parabolic reflector in the xgzg-plane.

xy

z
Desired working surface

Mesh Reflector

Best-fit surface

xy

z

(a) (b)

Best-fit surface
RMS error Direct rms error

Figure 10: Comparison of two types of RMS errors: (a) the best-fit surface RMS error and (b) the direct RMS error.
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δrms‐d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

φi

s
: ð48Þ

Note that the distance ω ðξ, ηÞ and the distance μ ðτ, υÞ are
not the same. In calculation of ω ðξ, ηÞ, many assumptions,
including shallow reflecting surface and nodes being placed
on the desired working surface, have been made. Because of
this, formulas for computing the best-fit surface RMS error
are not applicable in calculation of the direct RMS error.
For example, normal distances from the three nodes of
the triangular facets to the best-fit surface are assumed
the same. This is not true in general case if stringent sur-
face accuracy evaluation is required. For design of a DMR
with high surface accuracy, exact analytical formulas for
computing the direct RMS error are needed.

Equation (48) can be directly used to calculate the
direct RMS error if μ is obtained. To obtain μ for a typ-
ical triangular facet, a local coordinate system ðτ, υ, μÞ is
defined in Figure 12, where the origin is at one of the
facet nodes; the τ-axis is in the direction from ðτ1, υ1Þ
to ðτ2, υ2Þ; the υ-axis is normal to the τ-axis, lying within
the facet plane; and the μ-axis is normal to the facet
plane. The equation of the facet plane in the global coor-
dinate system ðx, y, zÞ is

apx + bpy + cpz + dp = 0, ð49Þ

which can be obtained from coordinates of the three nodes,
namely, ðx1, y1, z1Þ, ðx2, y2, z2Þ, and ðx3, y3, z3Þ. Here for
convenience, it is assumed that the node ðx1, y1, z1Þ is the
origin of the local coordinate system ðτ, υ, μÞ. In the global
coordinate system, let the unit vectors of the τ-, υ-, and
μ-axes be e1, e2, and e3, respectively. These unit vectors
are given by

e1 =
x2 − x1 y2 − y1 z2 − z1½ �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x1ð Þ2 + y2 − y1ð Þ2 + z2 − z1ð Þ2
q ,

e3 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2p + b2p + c2p
q ap bp cp

	 
T ,
e2 =

e1 × e3
e1 × e3j j :

ð50Þ

Denote the unit vectors of the global coordinate sys-
tem xyz as e1 ′, e2 ′, and e3 ′, which are expressed by

e1 ′ =
1
0
0

8>><
>>:

9>>=
>>;,

e2 ′ =
0
1
0

8>><
>>:

9>>=
>>;,

e3 ′ =
0
0
1

8>><
>>:

9>>=
>>;:

ð51Þ

The coordinate transformation matrix E from the
local coordinate system ðτ, υ, μÞ to the global coordinated
system ðx, y, zÞ is given as

E =
E11 E12 E13

E21 E22 E23

E31 E32 E33

2
664

3
775 =

eT1 e1 ′ eT1 e2 ′ eT1 e3 ′

eT2 e1 ′ eT2 e2 ′ eT2 e3 ′

eT3 e1 ′ eT3 e2 ′ eT3 e3 ′

2
664

3
775:

ð52Þ

The global and local coordinates are related by

τ

υ

μ

8>><
>>:

9>>=
>>; = E

x − x1

y − y1

z − z1

8>><
>>:

9>>=
>>;: ð53Þ

Because E is an orthogonal matrix,

x

y

z

8>><
>>:

9>>=
>>; = E−1

τ

υ

μ

8>><
>>:

9>>=
>>; +

x1

y1

z1

8>><
>>:

9>>=
>>; = ET

τ

υ

μ

8>><
>>:

9>>=
>>; +

x1

y1

z1

8>><
>>:

9>>=
>>;:

ð54Þ

It follows that the global coordinates can be expressed by

x = E11τ + E21υ + E31μ + x1,
y = E12τ + E22υ + E32μ + y1,
z = E13τ + E23υ + E33μ + z1:

ð55Þ

Recall that the equation of the desired parabolic working
surface is

z −H = −
1
4F x2 + y2
� �

: ð56Þ

Substitute Equation (55) into Equation (56) and rearrange
the resulting equation with respect to μ to obtain

a1μ
2 + a2μ + a3 = 0, ð57Þ

(𝜏, 𝜐)
𝜇 (𝜏, 𝜐)

Working surface Triangular facet

Figure 11: The desired working surface and a triangular facet for
calculation of direct RMS error.
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with

a1 = E2
31 + E2

32
� � 1

4F ,

a2 = E33 + E31 x1 + E11τ + E21υð Þ 1
2F + E32 y1 + E12τ + E22υð Þ 1

2F ,

a3 = −H + z1 + E13τ + E23υ + x1 + E11τ + E21υð Þ2 1
4F + y1 + E12τ + E22υð Þ2 1

4F :

ð58Þ

According to Equation (57), μ is a function of τ and υ,
namely, μ = μ ðτ, υÞ. For a point ðτ∗, υ∗Þ on the facet, μ
ðτ∗, υ∗Þ is the normal distance from the point on the
facet to the parabola as described by Equation (56). Solu-
tion of Equation (57) gives

μ τ, υð Þ = −a2 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 − 4a1a3

p
2a1

: ð59Þ

As shown in Figure 13, for a line that is normal to
the facet plane and passes through one point on the
facet, there are two intersections between the line and
the parabola. For calculation of the direct RMS error,
only the intersection with smaller distance from the point
on the facet represents the deviation of the point from
the desired working surface. Thus, out of the two roots
given by Equation (59), only the one with smaller abso-

lute value is the true solution. With such selected μ,
the direct RMS error can be computed by Equations
(47) and (48).

Note that the double integral in Equation (47) can also
be computed numerically by applying the coordinate trans-
formation technique introduced in Equations (49)–(59).
This calculation is efficient especially when number of facets
of a reflecting surface is large.

In this section, the nodal deviation RMS error, the best-
fit surface RMS error, and the direct RMS error for surface
accuracy evaluation of a generated mesh geometry are
reviewed. The reviewed RMS calculation methods are com-
pared in Table 1 in terms of computational efficiency and
working requirements.

5. Effective Region RMS Error

During in-orbit mission of a large DMR, only central por-
tion of the reflecting surface is being used for signal trans-
mission since accuracy of boundary layers of the reflector
is usually low. This portion of a DMR is called effective
region. It is desired in design of a DMR to obtain a large
effective region area. However, many DMR designs can only
deliver a reflecting surface either with high surface accuracy
and small effective region area, or with low surface accuracy
and large effective region area. Therefore, calculation of RMS
error also calls for consideration of the effective region area.

(𝜏3, 𝜐3)

(𝜏2, 𝜐2)

(𝜏1, 𝜐1)

𝜐

𝜏

Figure 12: Local coordinate of a triangular facet for calculation of direct RMS error.

Triangular facet

Desired parabolic working surface

Line normal to the facet plane

Two intersections between the line
and the parabolic working surface

Figure 13: Two intersections between the line normal to the facet plane and the desired parabolic working surface.
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For convenience of analysis and design, working sur-
face of a DMR can be viewed as a cluster of cocentered
facet layers, as shown Figure 14, where each layer is a
ring of facets. The layers are assigned index numbers
starting from the center of the working surface, with
the first layer consisting of the center of the reflector
and the last layer being the one connected to the bound-
ary. Accordingly, a layer of a smaller index number is
closer to the center of the working surface than a layer
of a larger index number.

A definition of effective region of a DMR was carried out
by Yuan et al. [37]. In this definition, the effective region was
considered as a portion of its working surface that meets the
surface accuracy requirement for signal transmission. For a
smooth working surface (either parabolic or spherical), due
to the vertical directions of tension tie forces, the slope of a
point on the surface that is near the boundary is larger than
that of a point which is relatively away from the boundary.
Because of this, for an almost uniform distribution of cable
member tensions, a layer of a smaller index number has
shorter member lengths than a layer of a larger index num-
ber [6]. This yields smaller RMS errors for the inner layers of
a reflector. Thus, the layers of a working surface can be
divided into two types: (i) the inner layers, which are closer
to the center of the working surface and meet the surface
accuracy requirement, and (ii) the outer layers, which are
near the boundary of the working surface and do not satisfy
the surface accuracy requirement. Obviously, the effective
region of a DMR is formed by all the inner layers.

Assume that the working surface of a designed DMR has
nr facet layers. Let the RMS error of the k-th layer be δrms,k ,
k = 1, 2,⋯, nr , which can be easily computed [38]. Assume
that the reflector working surface has ker inner layers.
According to the above discussion, the effective region of
the DMR is formed by the first ker layers of the working sur-
face. In other words, δrms,k ≤ δrms for 1 ≤ k ≤ ker and δrms,k
> δrms for ker + 1 ≤ k ≤ nr , where δrms is the required surface
error upper bound given in Equation (5).

One objective in design of a DMR is to assure enough
effective region area for operation. For a reflector, which
can be either a center-feed parabolic reflector or an offset-
feed parabolic reflector, its effective region can be calculated

by Se =∑ker
k=1Sk where Sk is the surface area of the k-th layer.

The RMS error δrms−er of the effective region can be evalu-
ated either by the outmost inner layer:

δrms‐er =
δrms,ker
β

, ð60Þ

or by a mean value:

δrms‐er =
1
Seβ

〠
ker

k=1
Skδrms,k, ð61Þ

where

β = Se
S
, ð62Þ

with S being the area of the whole aperture of the reflector. Note
that for a reflector without a clear aperture rim, for example,
some reflectors are hexagonal with only six nodes being
attached to a supporting structure [15], S in Equation (62) is
the area of all mesh facets that are used for reflecting signals.

6. Numerical Examples

In this work, several methods of RMS error calculation for
large DMRs have been reviewed. For a clearly comparison,
the nodal deviation RMS errors, the best-fit surface RMS
errors, and the direct RMS errors of three mesh geometries
(a two-facet mesh geometry, a center-feed parabolic DMR,
and an offset-feed parabolic DMR) are calculated, respec-
tively. Advantages and limitations of the reviewed methods
of RMS error calculation shall be presented by examples in
this section.

Table 1: Comparison of RMS error calculation methods for surface accuracy evaluation of a mesh geometry.

Nodal deviation
RMS error δrms−n

Facet gravity center deviation
RMS error δrms−gc

Best-fit surface
RMS error δrms−bf

Direct RMS
error δrms−d

Computational efficiency High High Low Low

Nodes placed on the working surface Not allowed Required Required Not required

Nodes placed off the working surface Required Not allowed Not allowed Not required

Shallow working surface Not required Not required Required Not required

Layer 2

Layer 3

Layer 1

6

6

4

4

2

2

0

0

x

y

–2

–2

–4

–4

–6

–6

Layer 4

Figure 14: Layers of a mesh geometry of a DMR.
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6.1. A Two-Facet Mesh Geometry

6.1.1. Calculation of the Nodal Deviation RMS Error. A two-
facet mesh geometry and a desired working surface are
shown in Figure 15. Recall the two assumptions (shallow
desired working surface and placement of nodes on the
desired working surface) made in the best-fit RMS error cal-
culation; the desired working surface in this example is a
shallow center feed parabola with focal length F being 10
meters and aperture diameter D being 4 meters. Equation
of the desired working surface is

z − 0:1 = −
1
40 x2 + y2
� �

: ð63Þ

The four nodes that form the two triangular facets are
placed on the desired working surface, with coordinates
given as

x1, y1, z1ð Þ = 0,−2, 0ð Þ,
x2, y2, z2ð Þ = 1, 0, 0:075ð Þ,
x3, y3, z3ð Þ = −1, 0, 0:075ð Þ,
x4, y4, z4ð Þ = 0, 2, 0ð Þ:

ð64Þ

Thus, the gravity center of the two facets are

xc,1, yc,1, zc,1
� �

= 0,−0:6667, 0:05ð Þ,
xc,2, yc,2, zc,2
� �

= 0, 0:6667, 0:05ð Þ:
ð65Þ

For the nodal deviation RMS error calculated in Equa-
tion (19), calculation is trivial with δrms−n = 0, because all
nodes of the mesh geometry are on the desired working sur-
face. Calculation in Equation (20) is given as

δrms‐gc =
∑n

t=1S′t Z′t − Z′gt
� �2
∑n

t=1S′t

0
B@

1
CA

1/2

= 0:0389, ð66Þ

with

S′1 = 2,
S′2 = 2,
Z′1 = 0:0889,
Z′2 = 0:0889,
Z′g1 = 0:05,

Z′g2 = 0:05:

ð67Þ

6.1.2. Calculation of the Best-Fit Surface RMS Error. The
best-fit surface RMS error is obtained by properly determin-
ing a best-fit surface of a mesh geometry through an iterative
process that is usually solved by a numerical optimization
algorithm [34]. To show application of the technique, calcu-
lation of the best-fit surface RMS error in one iteration is
given in details. In this iteration, focal length F ′ of the effec-
tive surface and the vertices distance h between the effective
surface and the desired working surface are assumed as 9.9
meters and 0.01 meter, respectively.

The first step is to define two local coordinate systems (ξ,
η) for the two triangular facets and obtain local coordinates
for nodes of the two facets as

ξ1,1 = 0,
ξ1,2 = 2:0014,
ξ1,3 = 0,
ξ2,1 = 0,
ξ2,2 = 0,
ξ2,3 = 2:0014,
η1,1 = 0,
η1,2 = −1,
η1,3 = −2,
η2,1 = 0,
η2,2 = 2,
η2,3 = 1:

ð68Þ

x

y

z

1

23

4
Desired working surface

Two triangular facets

Figure 15: Two triangular facets with nodes being placed on the desired working surface.
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Areas S of the two facets are

S1 = S2 = 2:0014: ð69Þ

ϕ1 and ϕ2 are calculated as

ϕ1 = ϕ2 =∬
S
ω2dξdη = 8:6921 × 10−4: ð70Þ

The RMS error of this effective surface is

δrms‐eff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

ϕi

s
= 0:0208: ð71Þ

According to the definition of the best-fit surface RMS
error, in a numerical optimization algorithm, δrms−eff is cal-
culated in each iteration with F ′ and h being adjusted until
the smallest value of δrms−eff is found. This value is the
best-fit RMS error δrms−bf . After minimized by the numerical
optimization algorithm, the best-fit RMS error is obtained as

δrms‐bf = 0:0077, ð72Þ

with the corresponding Fbf and hbf being 10 meters and
0.0292 meter. Thus, equation of the best-fit surface is

z − 0:0708 = −
1
40 x2 + y2
� �

: ð73Þ

6.1.3. Calculation of the Direct RMS Error. For direct RMS
error calculation, nodal coordinates of the two facets under
local coordinate system ðτ, υÞ are

τ1,1 = 0
τ1,2 = 2:2373
τ1,3 = 0
τ2,1 = 0,
τ2,2 = 2,
τ2,3 = 1,
υ1,1 = 0,
υ1,2 = 1:3434,
υ1,3 = 1:7891,
υ2,1 = 0,
υ2,2 = 0,
υ2,3 = −2:0014:

ð74Þ

Due the simplicity of this example, φ for the two facets

can be directly obtained as

φ1 = φ2 =∬
S1
μ21dτdυ = 1:8193 × 10−3: ð75Þ

The direct RMS error is then calculated as

δrms‐d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

φi

s
= 0:0302: ð76Þ

For comparison, the RMS errors calculated by the three
methods reviewed are listed in Table 2.

6.2. A Center-Feed Mesh Reflector and an Offset-Feed Mesh
Reflector. In this section, the reviewed methods of RMS error
calculation shall be applied to a parabolic center-feed mesh
reflector and a parabolic offset-feed mesh reflector both with
127 nodes. The aperture diameter D of the center-feed
reflector is 12 meters, with the focal ratio (F/D) being 0.5.
F is the focal length of the center-feed reflector. The aperture
diameter Dp of the parent parabola of the offset-feed reflec-
tor is 12 meters, with the focal ratio (Fp/Dp) being 0.33. Fp

is the focal length of the parent parabola of the offset-feed
reflector. The offset distance is 1 meter. Technique of bound-
ary nodes reduction introduced in Ref. [6] is applied to
topology design of both reflectors. Form findings of these
reflectors are done by the fixed nodal position method intro-
duced in Ref. [28]. For simplicity, all nodes are placed on the
desired working surfaces. Top views of these two reflectors
that show topology designs and effective region areas are
given in Figure 16.

The nodal deviation RMS error δrms−n, the facet gravity
center deviation RMS error δrms−gc, the best-fit surface
RMS error δrms−bf , the direct RMS error δrms−d, and the
effective region RMS error δrms−d of this mesh reflector are
listed in Table 3. From observation of Table 3, RMS errors
vary significantly in different calculation methods. Methods
that only consider nodal deviation have limitation for strin-
gent surface accuracy analysis because it fails to consider
geometric difference between the facet planes and the curved
desired working surface. The best-fit surface RMS error,
while being used in many cases, measures deviation of a
mesh geometry from its best-fit surface, not the desired
working surface. This is an accurate evaluation only for shal-
low reflectors with nodes all being placed on the desired
working surface. When a reflector is deep or nodes are
placed off the desired working surface, the best-fit surface
RMS error is not an appropriate measurement. Since the
best-fit surface so generated is different from the desired
working surface, the location of focal point of the reflector
also changes. So the best-fit surface RMS error does not
applied to a DMR with fixed feed source. The direct RMS

Table 2: Comparison of different RMS error calculation methods (mm).

Nodal deviation
RMS error δrms−n

Facet gravity center deviation
RMS error δrms−gc

Best-fit surface
RMS error δrms−bf

Direct RMS
error δrms−d

Mesh geometry with two facets 0 38.9 7.7 30.2
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error evaluates deviation of a mesh geometry directly from
the desired working surface. It is extremely useful in evaluat-
ing a reflector with high surface accuracy requirement. It is

applicable to both shallow and deep reflectors, while allow-
ing nodes being placed both on and off the desired working
surface. It can also be observed from Table 3 that the δrms−er
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Figure 16: Top view of the two mesh reflectors with 127 nodes: (a) the center-feed mesh reflector and (b) the offset-feed mesh reflector.

Table 3: Comparison of different RMS error calculation methods (mm).

Nodal deviation
RMS error δrms−n

Facet gravity center
deviation RMS error δrms−gc

Best-fit surface
RMS error δrms−bf

Direct RMS
error δrms−d

Effective region
RMS error δrms−er

Center-feed mesh reflector 0 7.08 1.40 4.24 10.22

Offset-feed mesh reflector 0 2.41 0.44 1.26 3.50
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Figure 17: Comparison of RMS errors as the focal ratio increases for (a) the center-feed mesh reflector and (b) the offset-feed mesh reflector.
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is not always consistent with other definitions of RMS errors,
since the effective region area is also included in the surface
accuracy evaluation. For a reflector with smaller effective
region area, δrms−er can still be large even when the RMS
error of facets within the effective region is small.

In addition, the simulation results show that that the
RMS errors of the offset-feed mesh reflector are much
smaller than those of the center-feed mesh reflector. This is
because an offset-feed mesh reflector is cut from a parent
sphere or parabola. Thus, it is usually shallower than a
center-feed reflector with a similar aperture diameter. As
seen in many reflector designs, a shallow DMR can achieve
a much higher surface accuracy than a deep one.

The comparison of the three RMS error calculation
methods, δrms−gc, δrms−bf , and δrms−d, under different focal
ratio are presented in Figure 17. As seen in the simulation
results, all the three RMS errors decrease as the focal ration
of the reflector increases, because a shallow DMR with high
focal ratio can achieve a much higher surface accuracy than
a deep one with low focal ratio. This property is successfully
captured by all the three methods in comparison.

The comparison of the reflector gain efficiency factor
ηrms in Equation (6) under the three RMS error calculation
methods, δrms−gc, δrms−bf , and δrms−d within a wavelength
range of 7.5-300mm are plotted in Figure 18. As seen in
Figure 18, differences among the reflector gain/loss estima-
tions by the three methods of RMS error calculation are
significant. Meanwhile, the reflector gain efficiency factor
ηrms varies for different wavelengths. Note that Equation
(6) is only for rough estimation of RMS error impact on
the reflector gain. Accurate reflector gain evaluation
requires a detailed radiofrequency analysis, which can be
performed by a software for radiofrequency pattern
calculation.

7. Conclusions

Methods of root-mean-square error calculation for large
deployable mesh reflectors are reviewed. The main results
from this investigation are summarized as follows.

(i) Concept of reflector gain and effective surface error
(half path length error) are given. The reflector gain
is a factor to measure the reflector performance

(ii) Approaches to RMS error prediction or estimation
in preliminary design of large deployable mesh
reflectors are shown. The predicted RMS error can
be used as a guidance in reflector design, mainly to
determine the maximum allowable member length.
Influences of mesh saddling, thermal loads, and
member length imperfection are considered in these
estimations

(iii) Methods of RMS error calculation for generated
mesh geometry of large deployable mesh reflectors
are presented. The nodal deviation RMS error is
easy to implement but fails to include geometric dif-
ference between facet planes and the desired work-
ing surface. The best-fit surface RMS error
evaluates deviation of a mesh geometry from its
best-fit surface. This method requires shallow reflec-
tor and nodes being placed on the desired working
surface. Therefore, the best-fit surface RMS error is
not applicable to mesh reflectors with stringent sur-
face accuracy requirement. In addition, the best-fit
surface RMS error cannot be used to evaluate sur-
face accuracy for a mesh geometry with nodes being
placed off the desired working surface. The direct
RMS error calculates deviation of a mesh geometry
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Figure 18: Comparison of reflector gain efficiency factor ηrms obtained by the three RMS error calculation methods, δrms−gc, δrms−bf , and
δrms−d for (a) the center-feed mesh reflector and (b) the offset-feed mesh reflector.
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directly from the desired working surface. It is
applicable to both shallow and deep reflecting sur-
faces. It also allows reflector nodes to be placed off
the desired working surface. For complicated mesh
geometry with many facets, numerical methods
may be required in calculating the double integral
of normal distance between the facets to the desired
working surface over the facet area

(iv) Concept of effective region is introduced. An
adjusted measurement of surface accuracy is sug-
gested when the concept of effective region is
involved. This measurement has two evaluation fac-
tors, the effective region area and the RMS error of
facets within the effective region

(v) RMS errors of a mesh geometry with two triangular
facets, a center-feed mesh reflector, and an offset-
feed mesh reflector are calculated by the RMS error
calculation methods reviewed. Results in these
demonstrative examples show that RMS errors
may vary significantly if calculated by different
methods

(vi) The effective region RMS error is also used in mea-
suring surface accuracy for a center-feed mesh
reflector and an offset-feed mesh reflector. Numeri-
cal results show importance and necessity of consid-
ering the area of effective region in surface accuracy
evaluation of large deployable mesh reflectors
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This paper is aimed at studying the effective mechanical property of shape memory polymer composites (SMPC) reinforced with
natural short fibers. To this end, a novel modeling scheme was presented. The SMPC was firstly equivalent to the composite
laminates, and the natural short fibers are also subtly equivalent to the ellipsoidal inclusions distributed in the matrix materials
periodically. Moreover, a represented volume element along laminate thickness can be easily chosen, and its elastic constants
are accurately acquired by employing a proper microscopic mechanical model. Herein, the high-fidelity generalized method of
cells, which represents a good ability in predicting the effective mechanical behaviors of composites, was used. On this basis,
the classic laminate theory was improved to suitable for describing the elastic constants and failure strength the SMPC with
respect to ambient temperature. Numerical results show a good consistency to the experimental data. Moreover, a higher
ambient temperature tends to sharply decrease their final failure strength. It is also revealed that the presented modeling
method shows a great potential in calculating the effectively mechanical property of the natural short fiber-reinforced composites.

1. Introduction

Due to its unique molecular structure and good perfor-
mances, including light weight, low cost, and high strain
recovery rate, shape memory polymer (SMP) exhibits a
widespread prospect in medical, energy, and electronic com-
munications [1, 2]. It is reported by Leng et al. [3] that the
maximum strain of the SMP reach to 600%. However, its
low stiffness and recovery stress seriously limited its applica-
tion in some extent. To overcome the flaws mentioned
above, some reinforced phases, such as carbon fibers, carbon
nanotubes, and nanoparticle, were presented to be mixed
with the SMP to form the shape memory polymer compos-
ites (SMPC) [4]. Due to its intrinsic characteristic of the slow
unfolding, the SMPC have been widely prepared as some
deployable components in the satellite equipment, such as
hinge and truss structure [5]. According to a statistical result
by Castet and Saleh [6], the failure of solar wing during the
deployment procedure is accounting for 17% of the total fail-

ure events, which results in a final failure of the satellite. To
maximum guarantee the safe operation of the satellite equip-
ment, it is critical to grasp the effective mechanical property
of the SMPC with respect to the ambient temperature.

A large number of experimental tests have been executed
on the standard specimen or structure of the SMPC to
acquire its mechanical [7–9], electrical [10, 11], and shape
memory performances [12]. The recovery capable of the
SMPC under various loads was investigated by Basit et al.
[13], and it exhibits a good potential in diverse applications.
Le and Goo [14] executed on a folding and deployment test
of the SMPC hinge at -10°C to investigate its shape recover-
ability and revealed that its deployment performance is
closely dependent on ambient temperature. To reveal the
temperature influences, an infrared camera and thermocou-
ples were employed to observe the temperature distribution.
By using a series of experimental methods, Wang et al. [15]
studied the thermodynamic and shape memory properties of
the SMPC. Moreover, its fracture interface was investigated
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by scanning electron microscopy. It is indicated that a good
mechanical property can be acquired when fiber mass frac-
tion is equal to 8%. Dao et al. [16, 17] measured the moment
and blocking force of the SMPC hinge by employing a
pulley-mass system. The test method provides a guideline
for evaluating its mechanical performances. Annin et al.
[18] investigated the deformation and damage of the SMPC
during the bending and torsion. Moreover, the fiber off-axis
angle influences on the formation process was also revealed.
Lelieveld et al. [19] executed on the thermomechanical tests
to investigate the actuation characteristics of the SMPC. Kim
et al. [20] explored the recovery and physical properties by
using the experimental tests on the strength and thermal
conductivity.

In recent years, a large number of theoretical methods
[21] have been presented to investigate elastic constants,
nonlinear deformation, and failure characteristic of the
SMPC. With an analogy way with thermomechanical
responses at macroscale, Wang et al. [22] presented a chain
model to optimize the chain system of the SMPC. It is
revealed that the shape memory property is improved by
increasing the cross link density. Arvanitakis [23] presented
a constitutive level-set model to capture its mechanical
behaviors under the thermomechanical cycle loading. Sun
et al. and Gu et al. [24, 25] presented a multiscale strategy
and established the thermoviscoelastic constitutive equation
to investigate the buckling critical stress under the finite
deformation, and the numerical results lay a solid founda-
tion for its application and design. Bergman and Yang [26]
proposed a macroscopic model combining a nonlinear geo-
metric model with a temperature-dependent constitutive
equation to investigate the shape fixation process. Li et al.
[27] established a three dimension model by employing the
ABAQUS to study the vibration mode and natural frequency
of the large spatial deployable structure. The modal test
results show a good consistency with the simulation results.
Based on the homogenization scheme, Song et al. [28] pre-
sented a constitutive model for the SMPC subjected to the
thermomechanical load. The experimental tests were exe-
cuted on the standard specimens for a comparison.

For the SMPC, the mechanical property is closely depen-
dent on its microscopic feature, including inclusion arrange-
ment, interfacial bonding, and inclusion morphology. It is
hardly for a macroscopic model to reveal the microscopic
characteristic influences. A comprehensive investigation
with full consideration of the microscopic factors influence
has been executed by some researchers. By choosing a cylin-
drical representative volume element (RVE), Khalili et al.
[29] evaluated the interface property influences on mechan-
ical behaviors of the SMPC. Liu and Jiang [30] presented a
novel hierarchical micromechanic method to study the
microstructural feature influences on the thermal con-
ducting behavior of the SMPC. However, few studies refer
to random inclusions in the matrix materials. The main
objective of this paper is to focus on investigating the effec-
tive mechanical property of the SMP reinforced with natural
short fibers. To this end, an effective modeling scheme based
on the microscopic constitutive equation was presented. The
outline was summarized as follows: Section 2 presented the

modeling scheme and microscopic modeling process of the
SMP reinforced with natural short fibers. To validate the
effectiveness of the presented method, experimental data
and numerical results were both introduced for a compari-
son in Section 3. On this basis, a series of simulation analysis
were executed to fully study the failure strength of the SMPC
with respect to ambient temperature in Section 4. Conclu-
sions are shown in Section 5.

2. Modeling Process of the SMPC

2.1. The Equivalent Procedure of the SMPC. For the shape
memory polymer composites, short fibers always present
obvious random characteristic due to the limitation of the
preparation technology as shown in Figure 1(a). In the coor-
dinate system x1‐x2‐x3, the short fiber direction can be accu-
rately determined with respect to the fiber angles of θ and γ
as shown in Figure 1(b).

It is reported by Cai et al. [31, 32] that the random short
fibers exhibit an obvious directionality and closely depen-
dent on resin flow direction. To simplify the microscopic
modeling procedure, the random short fibers are always
considered to be periodically distributed in matrix materials
according to the homogenization theory as shown in
Figure 2(a). According to the statistical results derived from
the microscopic morphology, the random short fibers are
equivalently represented by the ellipsoidal model. In addi-
tion, the fiber direction and density along thickness direction
represent obvious differences. In details, few fibers can be
found in the upper and lower edges, and the short fiber den-
sity in the center location is much higher. Therefore, the
equivalent structure of the SMPC can be considered as the
composite laminate (Figure 2(b)), whose upper and lower
edges consist of pure polymer, while other regions can be
treated as serials of unidirectional (UD) laminas. To sum
up, the SMPC are accurately discretized as ten UD laminas,
and eight of them are reinforced with ellipsoidal fibers. It
should be noted that the elastic modulus of the natural fiber
composites along x1‐direciton is identical to the equivalent
composites.

2.2. Numerical Modeling Process. It is assumed that the
SMPC is equivalent to the composite laminates, which con-
sist of serials of the UD laminas mentioned above. The
equivalent ellipsoidal inclusions are assumed to be periodi-
cally distributed in the SMP. The simplified numerical pro-
cedure for the SMPC can be summarized as follows: (1) a
proper RVE in each lamina can be easily selected along the
thickness direction as shown in Figure 2(c). On this basis,
the effective modulus of each lamina can be obtained by
employing an effective microscopic mechanical model. (2)
The SMPC consists of a series of unidirectional laminas.
Therefore, the effective elastic modulus and mechanical
property of the SMPC can be acquired by employing the
classic laminate theory. (3) The numerical results by the pre-
sented method and experimental data are both employed for
a comparison. On this basis, the failure strength of the
SMPC with respect to ambient temperature is investigated
by implanted the failure criterion.
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2.2.1. Microscopic Constitutive Relation. By employing a
microscopic mechanical theory, such as Eshelby equivalent
inclusion theory [33], Mori-Tanaka method [34], self-
consistent model, and generalized self-consistent model
[35], the elastic constants of the composites can be acquired.
However, they limit to analyze some inclusions with special
geometric shape. It is hardly for the microscopic theories
mentioned above to reveal the relation between geometric

shape and inclusion distribution influences on the effective
modulus. In recent years, the high-fidelity generalized
method of cells (HFGMC) represented a good ability to
investigate nonlinear deformation [36] and failure modes
[37] of the composites under a coupled multifield environ-
ment. Ye et al. [38] presented a multiscale modeling frame-
work by combining with the finite element method (FEM)
to reveal the failure mechanism of the composites from

x2
x1

x3

(a) (b)

Figure 1: Three-dimension image of the SMPC. (a) SMPC reinforced with short fibers. (b) Short fiber direction.

x2 x1

x3

(a) (b)

y1 y2

y3

(c)

Figure 2: Simplified modeling procedure of the SMPC reinforced with natural short fibers. (a) The effective 3D equivalent structure. (b)
SMPC treated as the composite laminated reinforced with the periodic ellipsoidal inclusion. (c) The RVE discretized by serials of
hexahedral subcells.
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microscopic damage to macroscopic fracture. Herein, the
HFGMC is employed to calculate the effective modulus of
the RVE reinforced with a spheroidal inclusion. During the
numerical modeling process, the RVE as shown in
Figure 2(c) is discretized as Nα ×Nβ ×Nγ subcells. It should
be noted that the parameters Nα, Nβ, and Nγ indicate the
discretized subcell number along y1‐, y2‐, and y3‐direction,
respectively. The subscripts α = 1, 2,⋯,Nα, β = 1, 2,⋯,Nβ,
and γ = 1, 2,⋯,Nγ indicate the numbered subcell. The

second-order subcell displacement component uðαβγÞi in the
RVE is expressed as the function of the fluctuating average

displacements WðαβγÞ
ið000Þ and the higher-order displacement

components WðαβγÞ
iðlmnÞ, that is,

u αβγð Þ
i = �εijxj +W αβγð Þ

i 000ð Þ + �y αð Þ
1 W αβγð Þ

i 000ð Þ + �y βð Þ
2 W αβγð Þ

i 010ð Þ
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i 001ð Þ +
1
2 3�y αð Þ

1
2
−
d2α
4

" #
W αβγð Þ
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+ 1
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2
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i 020ð Þ +
1
2 3�y γð Þ

3
2
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4

" #
W αβγð Þ

i 002ð Þ,

ð1Þ

where dα, hβ, and lγ denote the subcell dimension along y1‐,
y2‐, and y3‐direction (Figure 2(c)), respectively.

With full consideration of the displacement continuity
condition between the adjacent subcells, the relation

between the subcell strain components ε
ðαβγÞ
ij and average

strains �εij can be expressed as follows [36, 39]:

〠
Nα

α=1
dαε

αβγð Þ
11 = d�ε11  β = 1,⋯,Nβ, γ = 1,⋯,Nγ

� �
, ð2Þ

〠
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β=1
hβε
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� �
, ð3Þ
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lγε
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β=1
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〠
Nα

α=1
〠
Nγ
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dαlγε
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� �
, ð7Þ

where the symbols d, h, and l denote the dimension of the
RVE.

Similarly, the normal stress continuity between the adja-
cent subcells are written as:

σ
1βγð Þ
11 = σ

2βγð Þ
11 =⋯ = σ

Nαβγð Þ
11 = T βγð Þ

11   β = 1,⋯,Nβ, γ = 1,⋯,Nγ

� �
,

ð8Þ

σ
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22 = σ
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22 =⋯ = σ

αNβγð Þ
22 = T αγð Þ

22   β = 1,⋯,Nβ, γ = 1,⋯,Nγ

� �
,

ð9Þ

σ
αβ1ð Þ
33 = σ

αβ2ð Þ
33 =⋯ = σ

αβNγð Þ
33 = T αβð Þ

33   α = 1,⋯,Nα, β = 1,⋯,Nβ

� �
,

ð10Þ
where σðαβγÞii ði = 1, 2, 3Þ indicates subcell stress components,

which can be simplified as the function of Tð∗∗Þ
ii .

With respect to the axial symmetry characteristic, that is,

σðαβγÞ
ij = σðαβγÞji ði, j = 1, 2, 3 and i ≠ jÞ, the sub-cell shear stress

components in the αth row are expressed:

σ
α1γð Þ
23 = σ

α2γð Þ
23 =⋯ = σ

αNβγð Þ
23   α = 1,⋯,Nαð Þ, ð11Þ

σ
αβ1ð Þ
32 = σ

αβ2ð Þ
32 =⋯ = σ

αβNγð Þ
32   α = 1,⋯,Nαð Þ: ð12Þ

In the αth row, the shear stresses σðαβγÞ23 can be simplified
as follows:

σ
αβγð Þ
23 = σ

αβγð Þ
23 =⋯ = T αð Þ

23   α = 1,⋯,Nαð Þ: ð13Þ

Similarly, the shear stress components σðαβγÞ13 and σ
ðαβγÞ
13

can be simplified as follows:

σ
αβγð Þ
13 = σ

αβγð Þ
13 =⋯ = T βð Þ

13 β = 1,⋯,Nβ

� �
, ð14Þ

σ
αβγð Þ
12 = σ

αβγð Þ
12 =⋯ = T γð Þ

12 γ = 1,⋯,Nγ

� �
: ð15Þ

It is revealed that the matrix materials always repre-
sented inelastic deformation. Moreover, the thermal residual
stress can be easily discerned due to the mismatch of thermal
expansion coefficients between the inclusion and matrix
materials. Therefore, the average subcell strain components
�εðαβγÞ in the RVE are written as the function of the subcell
stress �σðαβγÞ, that is,

�ε αβγð Þ = S αβγð Þ�σ αβγð Þ + �εp αβγð Þ + α αβγð ÞΔT , ð16Þ

where �εðαβγÞ and SðαβγÞ represent the subcell strain and flex-
ibility matrix, respectively. �εpðαβγÞ and αðαβγÞ are the subcell
inelastic strain and thermal expansion coefficient. ΔT is the
ambient temperature variation.

In Equation (16), the subcell thermal residual stress is
determined by the temperature variation and thermal
expansion coefficients of the constituent materials. Inelastic
subcell strain �εpðαβγÞ can be calculated according to the load-
ing step size. It is indicated that the subcell average strain
�εðαβγÞ can be effectively calculated once the subcell averaged
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stress �σðαβγÞ is determined. From Equations (8)–(10) and
Equations (13)–(15), the subcell normal stress and shear
stress components are solved.

Substituting Equations (8)–(10) and Equations (13)–(15)
into Equation (16), the subcell average strain components
�εðαβγÞ are obtained. Combining with the displacement conti-
nuity condition in Equations (2)–(7), the subcell stresses

Tð∗Þ
ij can be written as matrix form, that is,

T βγð Þ
11

T αγð Þ
22

T αβð Þ
33

T αð Þ
23

T βð Þ
13

T γð Þ
12

2
66666666666664

3
77777777777775
=C

�ε11

�ε22

�ε33

�ε23

�ε13

�ε12

2
666666666664

3
777777777775
+

Θ
βγð Þ
11

Θ
αγð Þ
22

Θ
αβð Þ
33

Θ
αð Þ
23

Θ
βð Þ
13

Θ
γð Þ
12

2
66666666666664

3
77777777777775
+

Γ
βγð Þ
11

Γ
αγð Þ
22

Γ
αβð Þ
33

Γ
αð Þ
23

Γ
βð Þ
13

Γ
γð Þ
12

2
66666666666664

3
77777777777775
ΔT , ð17Þ

where �εij and Θð∗∗Þ
ij indicate the macroscopic average strain

and inelastic stress components. Γð∗∗Þ
ij denotes the thermal

expansion coefficients of the constituent materials. The sym-
bol C is the stiffness matrix, which consists of subcell
dimension.

Once subcell stress components in Equation (17) is
obtained, the macroscopic average stress �σ can be easily
solved according to the homogenization theory, given by,

�σ = 1
dhl

〠
Nα

α=1
〠
Nβ

β=1
〠
Nγ

γ=1
dαhβlγσ αβγð Þ: ð18Þ

Substituting Equation (17) into Equation (18), the
macroscopic average stress is written as the function of
macroscopic average strain �ε and inelastic strain �εI , that is,

�σ =C∗ �ε − �εI − α∗ΔT
� �

, ð19Þ

where C∗ is the stiffness matrix of the composites.

2.2.2. Microscopic Constitutive Relation. Herein, the SMPC is
considered to be composed of some UD laminas. Once the
elastic modulus and mechanical behavior of each UD lamina
are determined, the overall property of the SMPC can be
obtained by employing the classic laminate theory [40, 41].
For each UD lamina, the stress-strain relation in the global
coordinate system x1 − x2 with respect to inelastic strain �εIi
and thermal strain is improved as follows:
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where σx, σy, and τxy indicate the stress components in the
global coordinate system. ε0x, ε

0
y , and γ0xy are the midplane

strain components in the composite laminates. z and �Qk
ij

are the thickness and stiffness matrix of the laminate. kx,
ky, and kxy are related to the partial differentiation of dis-
placement to the global coordinate.

The total thickness of composite laminates is consider as
the sum of each UD lamina, that is,

H = 〠
N

k=1
zk − zk−1ð Þ, ð21Þ

where the symbol N is the laminate number.
The internal force components Nx, Ny, and Nxy as well

as the internal force momentsMx,My, andMxy in each lam-
ina can be acquired by executing on an integral operation
along the thickness, that is,
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where kx and ky are the bend deflection rates. kxy is the dis-
torting rate in the midplane.

It can be found that the internal strain, midplane bend
deflection, and distorting rates are unrelated to the laminate

5International Journal of Aerospace Engineering



thickness. Equations (22) and (23) can be further simplified.
The constitutive relation of the composite laminates with
respect to inelastic strain and thermal strain components
can be written as:
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where the symbol A indicates the in-plane stiffness matrix. B
and D are the coupling stiffness and bending stiffness matri-
ces. The superscripts I and T are related to the inelastic and
thermal components.

3. Model Validation

The studied SMPC is prepared with T-700SC short carbon
fibers and trans-1, 4-polyisoprene (TPI) matrix. The average
length and diameter of the carbon fiber are 2mm and 7μm,
respectively. To verify the proposed method, the next two
procedures are executed: (1) the ellipsoid fibers are assumed
to be periodically distributed in the cubic matrix to equiva-
lently replace the SMPC reinforced with natural short fibers.
On this basis, a RVE with the ellipsoid inclusion can be eas-
ily selected, which can be easily discretized by the hexahedral
subcells as shown in Figure 2(c). Moreover, its elastic mod-
ulus is calculated by the HFGMC and the FEM for a com-
parison. (2) A novel modeling procedure is proposed to
acquire effective property of the SMPC with respect to ambi-
ent temperature, and the numerical results are compared
with the experimental data. The constituent material param-
eters of the T700SC inclusion and TPI matrix at room tem-
perature, including elastic modulus and Poisson’s ratio, are
shown in Table 1.

3.1. A Comparison between Numerical Methods. To validate
effectiveness of the microscopic mechanical theory, a sphere
inclusion whose center coincides with the cubic RVE is con-
sidered. Figure 3 indicates the elastic modulus of the com-
posites with respect to fiber volume fraction (FVF). For a
comparison, numerical results by the FEM are also indicated
in the figure when the FVFs are 0.2 and 0.3. It should be
pointed out that the identical subcell number 30 × 30 × 30
are used to discretize the RVE during the numerical model-
ing. It can be easily found that the numerical results by the
3D HFGMC exhibit a good consistency with the FEM. In
addition, it can be easily discerned that the elastic modulus
exhibit an exponential growth with the variation of the
FVF. In details, elastic modulus is 87.7MPa when the FVF
= 0:2 is considered, while the elastic modulus approximate
to 478.8MPa and 793.2MPa when the FVF are 0.48 and
0.5, respectively.

To further investigate the inclusion shape influences on
the elastic modulus, axial length of the ellipsoid inclusion
is investigated. Herein, the RVE dimension of d : h : l = 2
: 1 : 1 and the FVF = 0:2 are considered in the example.
The parameters d, h, and l denote the dimension of the
RVE along y1‐, y2‐, and y3‐direction as shown in
Figure 2(c), respectively. It can be easily found from
Figure 4 that longitudinal and transverse modulus repre-
sented a nonlinear variation with respect to axial length ratio
of the ellipsoid inclusion. Moreover, transverse modulus
exhibits a sharp decrease with an increase of the axial length
ratio. In details, the transverse modulus is approximate to
105.1MPa when the ellipsoid inclusion dimension ds : hs
: ls = 1:2 : 1 : 1 is determined. It should be pointed out that
the parameters ds, hs, and ls denote the ellipsoid fiber dimen-
sion. However, the transverse modulus is equal to 85.1MPa
when the ellipsoid inclusion dimension ds : hs : ls = 2:6 : 1
: 1 is considered. However, the longitudinal modulus is
81.3MPa when the ellipsoid inclusion dimension ds : hs : ls
= 1:2 : 1 : 1 is considered.

3.2. A Comparison with the Experimental Data. It is reported
by Cai et al. [31, 32] (2021, 2022) that the FVF long thick-
ness exhibits an obvious difference. In other words, the fiber
distributed in the UD lamina close to the laminate surface is
relative fewer. Therefore, it is critical to determine the FVF
in each UD lamina, which can be found in Table 2. Herein,
the FVF of the SMPC from 5% to 9% are considered in the
example. The SMPC is further divided into 10 UD laminas,
and the FVF in the surface UD laminas is different. Herein,
the symbol “#” indicates the lamina number along thickness
direction as shown in Figure 2(b). In addition, the ellipsoid
fiber content should also be determined. According to the
experimental data at room temperature, the ellipsoid fiber
dimension in the 5% SMPC is determined by ds : hs : ls =
2:6 : 1 : 1. Elastic modulus at an elevated temperature is also
considered in the example. Herein, it should be noted that
the elastic modulus of matrix materials is temperature-
dependent, whose material parameters are provided by Zeng
et al. [42, 43]. It should be noted that Poisson’s ratio of the
constituent materials is considered to be temperature-
independent. In other words, this parameter of the constitu-
ent materials is a constant without respect to the ambient
temperature influence during the numerical calculation.
With respect to the raised ambient temperature, a sharp
decrease of the elastic modulus for the SMPC is easily dis-
cerned as shown in Figure 5. This is attributed to the
decreased modulus of matrix materials. Moreover, numeri-
cal results represent a good consistency to the experimental
data. Overall, numerical results by the presented method
exhibit a higher accuracy than the method proposed by Zeng
et al. [42]. In details, an approximate results between the

Table 1: Constituent material parameters.

Constituent materials Elastic modulus (MPa) Poisson’s ratio

T-700SC 230 × 103 0.307

TPI 54.2 0.35
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present method and the Zeng’s method can be found at
301K. The maximum error can be found when the ambient
temperature is equal to 334K, and the present method
exhibits a much higher accuracy than the method proposed
by Zeng et al.

Similarly, procedures are also executed on the 7% and
9% SMPC to determine the ellipsoid fiber dimension at
room temperature, and elastic modulus with respect to
ambient temperature is also investigated as shown in
Figures 6–7. The ellipsoid inclusion dimension are ds : hs

FVF
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Figure 3: A comparison of elastic modulus E11 between the HFGMC and the FEM.
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Figure 4: Elastic modulus investigation with respect to axial length ratio of the ellipsoid inclusion.

Table 2: FVF in each lamina.

FVF of the composites 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

5% 1% 6% 6% 6% 6% 6% 6% 6% 6% 1%

7% 3% 8% 8% 8% 8% 8% 8% 8% 8% 3%

9% 5% 10% 10% 10% 10% 10% 10% 10% 10% 5%
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: ls = 2:4 : 1 : 1 and ds : hs : ls = 2:1 : 1 : 1, respectively.
Combing with the FVF = 5%, an obvious difference of the
inclusion dimension can be found. A sharp decrease of elas-
tic modulus can be found when a higher ambient tempera-
ture is considered. Compared with experimental data, it is
revealed that numerical results provided by the present
method exhibit a higher accuracy than the theoretical
method provided by Zeng et al. [42]. Combined with the
numerical results as shown in Figures 4–6, it can be con-
cluded that the FVF will contribute to an increase of the elas-
tic modulus. In details, the elastic modulus is approximate to
86.99MPa at the room temperature when the FVF = 5%.

While the elastic moduli increase to 91.12MPa and
93.32MPa when the FVF is 7% and 9%, respectively.

4. Failure Strength Investigations

It is critical for researchers to grasp the failure property of
the SMPC in service to maximum their usage life. However,
the failure characteristic are closely dependent on many fac-
tors, including the FVF, fiber arrangement, and constituent
material property. In addition, the service environment also
plays an important role in the mechanical property. For
instance, the SMPC are exposed to a high temperature
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Figure 5: A comparison of elastic modulus with respect to ambient temperature when the FVF = 5%.
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Figure 6: A comparison of elastic modulus with respect to ambient temperature when the FVF = 7%.
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condition, which may seriously reduce the failure strength.
To fully grasp ambient variation influences, the failure
strength at the room temperature and the elevated tempera-
tures 321K and 341K are considered. To further valuate the
failure strength of the SMPC with respect to the FVF varia-
tions, the SMP mixed with 5% and 7% natural short fibers
are also investigated. It should be noted that the discretize
mode of the composite laminate and inclusion shape in the
matrix materials are identical with the study in Section 3.
Moreover, the inelastic deformation derived from the matrix
materials and thermal residual stress derived from the prep-
aration process are both ignored.

Figure 8 indicates the failure strength of the SMPC with
respect to the FVF variations at three ambient temperatures,
that is, 301K, 321K, and 341K. Herein, the failure property
of the constituent materials at different ambient tempera-
tures are derived from the study by Guo et al. [43]. The fiber
longitudinal and transversal failure strengths are 4900MPa
and 80MPa, respectively. During the prediction of the final
failure strength, the maximum stress criterion [44] is
employed. It should be pointed out that the failure strength
of matrix is temperature-dependent, while the fiber strength
always equal to a constant in evaluating the final failure
strength at different ambient temperatures. For a further
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validation, experimental data and numerical results of the
failure strength are both indicated. In general, a good consis-
tency between numerical results and experimental data can
be found in the figure, and the increased short fibers tend
to improve the failure strength of the SMPC in some extent.
This is attributed to a higher failure strength of the natural
fibers. The maximum error 6.34% can be found under the
301K when the FVF = 0:07 is considered. In addition, an
elevated temperature tends to sharply decrease the final
failure strength of the SMPC. In details, the failure strength
is approximate to 16.39MPa when the ambient temperature
301K is considered. However, the failure strengths
decreased to 6.61MPa and 3.59MPa when the ambient tem-
peratures 321K and 341K are considered. This is attribute to
a huge reduction of the elastic modulus with an increase of
the ambient temperature. In other words, the lower elastic
modulus of the constituent materials sharply decrease the
stiffness behavior of the SMPC. Naturally, their failure
strength is reduced to some extent.

5. Conclusions

In this study, mechanical behaviors of the SMPC reinforced
with natural short fibers were investigated by the presented
constitutive model. The SMPC represents a huge deforma-
tion in service, and the improved laminate theory is suitable
to describing its deformation and inclusion fraction influ-
ences on the SMPC. Numerical results of the elastic con-
stants show a good consistency with the experimental data,
which demonstrated the improved constitutive model. The
conclusions are summarized as follows:

(1) The SMPC reinforced with natural short fibers can
be considered as the composite laminates, which
are composed of the UD laminas with ellipsoid
inclusion, whose inclusion dimension can be easily
determined according to the experimental data at
room temperature

(2) The present method exhibits a good accuracy in
investigating elastic modulus, which represents a
sharp decrease with respect to an elevate tempera-
ture. For the 5% SMPC, the ellipsoid fiber dimension
ds : hs : ls = 2:6 : 1 : 1 represents a good consistency
with experimental data. When the SMPC with 7%
and 9% short fibers are considered, the ellipsoid
inclusion dimensions are ds : hs : ls = 2:4 : 1 : 1 and
ds : hs : ls = 2:1 : 1 : 1, respectively

(3) The final failure strength of the SMPC can be effec-
tively acquired by the proposed ellipsoidal inclusion
model, and a higher ambient temperature results in
a sharp decrease of their failure strength

The investigations in this article provide a new rapid
evaluation method in predicting the mechanical property
of natural short fiber composites, while the proposed
method limits to a small FVF. A higher FVF gives rise to a
negative influence on the failure strength, which may be
attributed to the variation of interfacial property.
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The deployment of a modular truss antenna reflector is relied on the driven energy of the springs between the components of the
structure. The deployment process is characterized by fast speed and large impact. In order to study the impact characteristics of
antenna deployment on the boundary, the deployment dynamic analysis of a modular truss antenna reflector is carried out. The
deployment impact experiment is performed to obtain the impact forces of the reflector on the boundary. The dynamic model of
the modular truss reflector is modified according to the experiment results. The dynamic analysis of a satellite with an arm and a
modular truss reflector is conducted by using the modified reflector model. The dynamic behavior of the satellite in orbit during
the modular truss antenna reflector deployment is predicted.

1. Introduction

In recent years, in order to meet the increasing demands
of satellite communication, navigation, and earth observa-
tion, more and more large deployable antenna reflectors
have been developed and applied in satellite engineering.
When the satellite is in the launch stage, this kind of
antenna is placed in the rocket fairing in a folded state.
After the satellite being launched into space, it is gradually
expanded to the working state through the deployment
function of the antenna itself. Large deployable antennas
usually include solid surface deployable antenna, cable-
net deployable antenna, and inflatable deployable antenna
[1]. Among them, the cable-net deployable antenna com-
posed of a support structure, and a metal mesh is the
most widely used one. Common cable-net deployable
antennas include umbrella-type antenna [2], modular truss
antenna [3], wrap-rib antenna [4], and hoop modular
truss antenna [5–7]. Among them, the modular truss
deployable antenna is widely used in various satellites
due to its high storage ratio, large structural stiffness,
and good stability.

The modular truss deployable antenna reflector structure
was first proposed by National Aeronautics and Space Admin-
istration (NASA) in 1968 [8]. By changing the size and number
of modules, it can adapt to the needs of different calibers. The
basic unit that makes up the modular truss deployable antenna
includes tetrahedron, quadrangular pyramid, hexagonal col-
umn, and hexagonal platform. So far, the modular truss deploy-
able antenna with tetrahedron as the basic unit is the most
widely used. For example, the 5.2m diameter PETA truss
antenna is developed by General Dynamics Corporation
(GDC) [9]. The 7m diameter truss deployable antenna reflector
developed by Johnson Space Center (JSC) was successfully
applied to the “Kondor” spacecraft [10]. And Jet Propulsion
Laboratory (JPL) in the United States has studied a modular
truss deployable antenna based on shape memory composite
deployment hinge for large aperture and high surface accuracy
antenna [11]. Among foreign researches, Russia has the most
extensive research and application of modular truss deployable
antennas. The tetrahedral modular truss deployable antenna
developed by Russian Space Agency has been successfully
applied to spacecraft such as “Nature,” “Soyuz” spacecraft,
and “Mir” space station since 1985. The application of truss
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antenna in various countries is shown in Figure 1. The SAR
antenna of the “Mir” space station adopts a 6m × 2:8mmodu-
lar truss antenna, as shown in Figure 1(a). The Pion satellite
launched by Russia in June 2021 uses a modular truss antenna
with a diameter of 12m × 4m, as shown in Figure 1(b). At the
same time, domestic research on modular truss deployable
antenna has also been carried out; meanwhile, offset feed and
normal feed modular truss antennas have been developed one
after another, which have been applied to BeiDou navigation,
environmental disaster reduction, satellite communication,
and other fields. The antenna diameter ranges from 6m to
9m, and the working frequency band covers the UHF~S fre-
quency band, as shown in Figures 1(c) and 1(d).

Usually in the design process of the tetrahedral modular
truss antenna, the designer is concerned about the structural
rigidity and structural strength, and the shape distortion
error of the reflecting surface is concerned by designers
[12–15]. There are relatively few related literatures on
deployment dynamics of truss antenna. Wang et al. [16,
17] created a dynamics model of tetrahedral element by
using commercial software ADAMS and carried out simula-
tion and experimental research on its deployment process.
At the same time, they analyzed the deployment process of
a tetrahedral modular truss antenna reflector under zero

gravity and no boundary conditions and studied the force
of the rod during the deployment process of the reflector.
Guan and Liu [18] tested the deployment process of a kind
of tetrahedral modular truss antenna and proposed a control
method to reduce the impact load but did not conduct the
on-orbit impact analysis. Huang et al. [19] analyzed the
impact force of a kind of offset-fed modular truss antenna
but did not study the satellite motion law during the deploy-
ment of the reflector. However, the above research did not
consider the influence of reflector deployment on the
boundary.

Considering that tetrahedral truss antenna has the char-
acteristics of fast deployment and large impact, the deploy-
ment of the antenna reflector will inevitably have a
significant impact on the satellite attitude. Therefore, in this
paper, the dynamic characteristics of a class of normal feed
tetrahedral modular truss deployable antennas are studied,
and the dynamic simulation and experimental verification
of the impact characteristics of the reflector expansion on
the boundary are carried out, respectively. The reflector
dynamics model was modified by the experimental data,
and the on-orbit dynamics behavior of the reflector-
deployment arm-satellite combination during the reflector
deployment was predicted by dynamic simulation.

(a) (b)

(c) (d)

Figure 1: Applications of modular truss antenna. (a) “Mir” space station. (b) Pion satellite. (c) Environmental disaster reduction satellite. (d)
BeiDou navigation satellite.
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2. Tetrahedral Modular Truss
Antenna Reflector

The tetrahedral modular truss antenna is assembled by a
series of tetrahedral elements, as shown in Figure 2. Each tet-
rahedral element contains six rods and four nodes. The three
rods AB, AC, and BC on the bottom edge constitute the
upper and lower chords of antenna truss, and the three edges
OA, OB, and OC are the web members connecting the upper
and lower chords. The nodes in the middle of the three
chords are designed with folding/deploying function, so that
the chord has deployable characteristics.

Figure 3 shows the composition structure of the tetrahe-
dral truss element. The tetrahedral element can be conve-
niently expanded to form a larger scale truss structure.

According to the above theory, the required reflector
truss structures of different diameters can be obtained by
means of topology expansion using this principle. Figure 4
shows a normal feed tetrahedral modular truss antenna
reflector.

As shown Figure 4, the drive nodes in the middle of the
reflector’s chords store energy during the folding process.
When the reflector is unlocked, the drive node releases
energy, which drives both the upper and lower chords to

O

BA

C

D

E F

(a)

O

A B
C

E D F

(b)

Figure 2: The principle of tetrahedral element expansion. (a) Folded state. (b) Expanded state.

Disk chuck

Web member

Synchronous rod

Spring driven hinge

Spring driven hinge

Figure 3: Tetrahedral element and its geometric extension structure.

(a) (b)

Figure 4: A tetrahedral truss antenna reflector. (a) Folded state. (b) Expanded state.
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expand outwards, and the web members rotates outwards
around the designated rotation pair. Finally, the antenna
reflector is expanded to form a certain surface under the
action of the elastic strain energy from the torsion spring.
This kind of instantaneous expanding antenna drove by tor-
sion spring will inevitably produce strong impact collision
during the deployment process. In order to accurately pre-
dict the impact of reflector deployment on other satellite
components, the dynamic analysis of antenna reflector
deployment is needed.

The dynamic model is established by using the commer-
cial software ADAMS. The components of the reflector are
considered as rigid bodies. The Revolute Joint is used to
model the connection between the synchronous rod and
the synchronous hinge. Synchronous hinge products and
models are shown in Figure 5. In order to simulate the syn-
chronous motions of the adjacent folding rods, the Coupler
Joint is added for two adjacent Revolute Joints between the
folding rods and the hinge housing, so that the rotations
between the two folding rods and hinge can be synchronous.

(a)

(b)

Figure 5: Synchronous hinge products and models. (a) Synchronous hinge products. (b) Synchronous hinge models.

Figure 6: Connection between disk and web.
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The contact between the folding rod and the hinge is also
created, and then the deployment state can be maintained
when the reflector is unfolded completely.

In order to avoid the overconstraints of the dynamic
model of the reflector, the busing force is used as the flexible
connection to model the connection between the disk and
the synchronous rod. The stiffness coefficient of the bushing
force in the rotational direction between the disk and the
folding rod is set to zero, and the stiffness coefficients the
other directions are set as large numbers.

As shown in Figure 6, there is a clearance between the
disk and the web. In order to model the clearance accurately,
the combination of the Inline Primitive Joint and the
BISTOP force function in the ADAMS are used to model
the connection of the disk and the web, as shown in Figure 7.

3. Ground Deployment Simulation
and Experiment

In this paper, the deployment process of a normal feed tetra-
hedral modular truss antenna reflector under gravity
unloading environment is studied as shown in Figure 8.
The ground deployable experiment device of antenna reflec-
tor is designed, and the unloading plate is fixed on the
unloading truss. In order to eliminate the influence of grav-
ity, the unloading system including the cables, and the
spring balances is used to connect the reflector unloading
point and unloading plate lifting point, respectively. The
unloading system can not only realize the gravity unloading
of the reflector but also resist the external vibrations in the
experiment.

Using the Kistler 9119AA2 compact multicomponent
dynamometer as shown in Figure 9 as the force sensor, the
compact six components can be measured. The Dewesoft
data acquisition system is used for the data acquisition.
The force sensor is installed at the connection between the
reflector component and the external component to measure
the impact force of the reflector deployment on the bound-
ary. The force sensor experiment status is shown in Figure 8.

The method described in the previous section is used to
establish the reflector dynamics model and carry out the
dynamics simulation of the reflector deployment process.
The reflector deployment process obtained from the dynam-
ics simulation calculation is shown in Figure 10.

Considering that the reflector is symmetrical about XZ
plane and YZ plane, the impact of its deployable process
on the outside is mainly reflected in the Z direction. The

(a) (b)

Figure 7: Modeling of connection between disk and web. (a) Inline Primitive Joint. (b) BISTOP force function.

X

Z

Data acquisition
equipment

Force-measuring
sensor

Figure 8: The impact test of reflector deployment.

Figure 9: Kistler 9119AA2 force sensor.
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(a) (b)

Figure 10: Continued.
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parameters of the dynamic model are modified according to
the impact force Fz measured by the force sensor.

The modified parameters of the dynamic model include
the clearance of web and disk, damping coefficient, static
friction coefficient, and dynamic friction coefficient. Taking
the difference between the impact force measured by exper-
iment and the impact force of dynamic simulation as the
objective function J , the following optimization model is
established:

find Δx = x1x2x3x4½ �,
min J = Fm − Fs x1, x2, x3, x4ð Þ,
s:t: ximin<xi < ximax,i = 1, 2, 3, 4,

ð1Þ

in which x1 is the clearance between web and disk, x2 is the
damping coefficient, x3 is the static friction coefficient, x4 is
the dynamic friction coefficient, Fs is the impact force
obtained by dynamic simulation, and Fm is the impact force

measured by experiment. First, input a set of parameters to
be corrected for dynamic simulation and make the differ-
ence between the impact force measured by the experi-
ment and the impact force obtained by the dynamic
simulation to obtain the function value of the objective
function J . Then, the value of the objective function is
minimized by adjusting the parameter xiði = 1, 2, 3, 4Þ to
be corrected, and the model parameters should be con-
trolled within a reasonable range when modifying the
model parameters. The group of correction parameters
that minimizes the objective function value is the cor-
rected model parameters.

The modified model parameters are as follows: the clear-
ance between web and disk is 1mm, the damping coefficient
of the flexible connection between the disk and the bar is 5.0,
the dynamic friction coefficient is 0.2, and the static friction
coefficient is 0.4. After model modification, the impact force
comparison between the simulation results and the ground
test results is shown in Table 1.

(c) (d)

(e)

Figure 10: The simulation of reflector deployment process. (a) Deployed process 1. (b) Deployed process 2. (c) Deployed process 3. (d)
Deployed process 4. (e) Deployed process 5.
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Both simulation and test results show that the impact
force in the Z direction is significantly greater than that in
the other two directions, which is consistent with expecta-
tions. Moreover, the maximum impact force calculated by
the simulation is basically equal to the maximum impact
force Fz measured by the ground test, and the error is about
ð513:8 − 491:2Þ/491:2 = 4:6%. The reflector is symmetrical
with respect to the Plane YOZ, so that the simulation result
Fx is close to 0. And the reflector is quasisymmetrical with
respect to the plane XOZ, so that the Fy is larger than Fx,
but much smaller than Fz. But to the assembly errors of
the unloading system in the experiment, the test results of
Fx and Fy are larger than the simulation results. Since the
size of the reflector in the X direction is significantly larger
than the size in the Y direction, Fx is more significantly
affected by the assembly errors.

4. Impact Dynamics Analysis on Orbit

In order to analyze the impact characteristics of reflector
deployable on orbit, a rigid-flexible coupling dynamic model
is established for a small satellite of CAST2000 platform as
shown in Figure 11, which includes reflector, deployment
arm, and satellite platform. The solar wing and satellite are
merged into a satellite platform. The weight of the satellite
platform is 750 kg, and the moments of inertia around the
center of mass X, Y , and Z axes are 2:2 × 103Nm2, 1:4 ×
103Nm2, and 2:5 × 103Nm2, respectively. The weight of
antenna reflector, feed, and deployment arm is 75 kg, 65 kg,
and 43 kg, respectively.

The reflector is modeled by the modified dynamic
model. The feed and the satellite are considered as rigid bod-

ies, and the arms connecting the satellite, the feed, and the
reflector are considered as flexible bodies by using the modal
synthesis method, which is treated by importing the modal
neutral files generated by the finite element analysis software
in the ADAMS model in this paper.

For the above dynamics model, the deployment dynam-
ics simulation of the reflector under gravity-free condition is
studied. And the displacement curve of the satellite centroid
is shown in Figure 12(a).

It can be seen from Figure 12(a) that with the deploy-
ment of the antenna reflector, the centroid position of the
satellite moves in a small range. Because the reflector deploy-
ment is basically symmetric with respect to the YZ plane,
there is almost no position change of the satellite centroid
along the X direction. So, the deployment has little influence
on the displacement change of the centroid in the X direc-
tion. The curves of velocity and acceleration are shown in
Figure 12(b) and (c).

Figures 12(d)–12(f) , respectively, show the curve of sat-
ellite attitude angle, attitude angular velocity, and attitude
angular acceleration changing with time. It can be seen from
Figure 12(d) that the on-orbit deployment of antenna reflec-
tor has a great influence on rolling angle and a small influ-
ence on attitude angles in the other two directions. In the
early stage of reflector deployment, the rolling angle
increases to 1.1°. With the rapid deployment of antenna
reflector, the rolling angle decreases rapidly. The change of
rolling angle reaches a stable stage during a period of
oscillation.

The attitude angular velocity of the satellite shows that
the deployment of antenna reflector has the greatest influ-
ence on the rolling angle. The attitude angular velocity

Table 1: The comparison between the simulation and test results.

No. Parameters Test results Simulation results

1

Peak impact force during deployment (amplitude)

Fx Nj 55.2 2.43

2 Fy Nj 79.1 53

3 Fz Nj 491.2 513.8

Z

X

Y

Figure 11: The schematic diagram of normal feed truss antenna satellite.
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Figure 12: Simulation results of the system on orbit. (a) The displacement curve of the satellite centroid. (b) The velocity curve of the
satellite centroid. (c) The acceleration curve of the satellite centroid. (d) The attitude angle of the satellite. (e) The attitude angular
velocity of the satellite. (f) The attitude angular acceleration of the satellite.
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shows a trend of oscillation attenuation and gradually
decayed to close to zero over time. When the satellite is
completely stable, the satellite-antenna reflector will keep
uniform rotation without the external disturbance. The
deployment process of normal feed truss antenna satellite
obtained from the dynamics simulation calculation is shown
in Figure 13.

5. Conclusion

In this paper, a multibody dynamic model of a tetrahedral
framed deployable antenna reflector is established. In order
to optimize the accuracy of the dynamic model, dynamic
simulation and experimental research were carried out for
the ground deployment test of the frame antenna reflector,

(a) (b)

(c) (d)

(e)

Figure 13: The deployment process of normal feed truss antenna satellite. (a) Deployed process 1. (b) Deployed process 2. (c) Deployed
process 3. (d) Deployed process 4. (e) Deployed process 5.
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and the impact force on the boundary of the reflector
deployment under ground conditions was obtained. The
reflector dynamics simulation model is modified by mini-
mizing the objective function. With the revised reflector
dynamics simulation model, we can predict the impact of
the antenna deployment on the satellite platform in the
on-orbit state. In order to predict the impact of the antenna
deployment on the satellite platform, the dynamic analysis
of the spacecraft on-orbit deployment including the satellite
platform, deployment arm, feed, and reflector was carried
out. In the change law of angular velocity and angular accel-
eration, the results show the following:

(1) By comparing the impact force of the experiment
and the simulation experiment, the correction
parameters of the dynamic simulation are
determined

(2) Since the reflector expansion is basically symmetrical
with respect to the YZ plane, the expansion has little
effect on the displacement change of the centroid in
the X direction

(3) The deployment of the antenna reflector has the
greatest influence on the roll angle. As time goes
by, the attitude angular velocity exhibits a trend of
oscillation attenuation and gradually attenuates to
close to zero

Based on the research results of this paper, it can provide
a reference for the attitude adjustment of the frame antenna
reflector in the deployment process. Make the satellite atti-
tude adjustment process smoother and more stable. The
model can be further modified and optimized according to
the expansion of the on-orbit antenna.

Data Availability

Data is available on request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] G. Tibert,Deployable tensegrity structure for space applications,
Royal Institute of Technology Department of Mechanics, Swe-
den, 2002, Doctoral Thesis.

[2] J. A. Moses, “FLTSATCOM thermal test and flight experi-
ence,” in AIAA 26th Thermophysics conference, vol. 24-26,
Honolulu, 1991.

[3] W. A. Imbriale, G. Steven, and B. Luigi, Space Antenna Hand-
book, John Wiley & Sons, 2012.

[4] A. G. Roederer and Y. Rahmat-Samii, “Unfurlable satellite
antennas: a review,” Annales des Telecommunications,
vol. 44, no. 9-10, pp. 475–488, 1989.

[5] M. D. Stegman, “SMAP antenna feed radome: design, develop-
ment and test,” in 2011 Aerospace Conference, pp. 1–14, Big
Sky, MT, USA, 2011.

[6] K. J. Fu, Z. H. Zhao, G. Ren et al., “From multiscale modeling
to design of synchronization mechanisms in mesh antennas,”
Acta Astronautica, vol. 159, pp. 156–165, 2019.

[7] F. Angeletti, P. Iannelli, P. Gasbarri, and M. Sabatini, “End-to-
end design of a robust attitude control and vibration suppres-
sion system for large space smart structures,” Acta Astronau-
tica, vol. 187, pp. 416–428, 2021.

[8] J. A. Fager and E. C. Hamilton, “Large erectable antenna for
space application final report,” 1969, Report, No. GDC-
DCL69-003.

[9] NASA Center for Aerospace Information, Requirements,
Design and Development of Large Space Antenna Structures,
Nasa STI/Recon Technical Report N, Virginia, 1980.

[10] A. S. Chebotarev, V. A. Panteleev, N. M. Feyzulla, E. M. Mitro-
fanov, and A. N. Plastikov, “Truss-type deployable reflector
antenna systems for synthetic aperture radar mounted on a
small spacecraft,” in 2014 24th International Crimean Confer-
ence Microwave & Telecommunication Technology, pp. 521-
522, Sevastopol, Ukraine, 2014.

[11] H. Fang, L. Shook, J. Lin, J. Pearson, and J. Moore, “A large and
high radio frequency deployable reflector,” in AIAA 3rd AIAA/
ASME/ASCE/AHS/ASC structures, Structural Dynamics and
Materials Conference, Honolulu, Hawaiia, 2012.

[12] J. M. Hedgepeth, “Influence of fabrication tolerances on the
surface accuracy of largeantenna structures,” AIAA Journal,
vol. 20, no. 5, pp. 680–686, 1982.

[13] S. L. Padula, H. M. Adelman, M. C. Bailey, and R. T. Haftka,
“Integrated structural electromagnetic shape control of large
space anatenna reflectors,” AIAA Journal, vol. 27, no. 6,
pp. 814–819, 1989.

[14] R. A. Burdisso and R. T. Haftka, “Statistical analysis of static
shape control in space structures,” AIAA Journal, vol. 28,
no. 8, pp. 1504–1508, 1990.

[15] W. H. Greene and R. T. Haftka, “Reducing distortion and
internal forces in truss structures by member exchanges,”
AIAA Journal, vol. 28, no. 9, pp. 1655–1662, 1990.

[16] X. K. Wang, B. Cai, H. F. Fang, and X. F. Ma, “Deployment
analysis of a deployable truss structure,” in International Con-
ference on Computer Information Systems and Industrial
Applications (CISIA 2015), Atlantis Press, 2015.

[17] X. Wang, Y. Wang, H. Fang, P. Huang, and Z. Chen, “Deploy-
ment dynamic analysis of a tetrahedral truss reflector,” in 2nd
AIAA Spacecraft Structures Conference, pp. 5–9, Kissimmee,
Florida, 2015.

[18] F. L. Guan and L. Liu, “Deployment control and test of deploy-
able tetrahedral truss antenna,” Journal of Engineering Design,
vol. 17, no. 5, pp. 381–387, 2010, (in Chinese).

[19] Z. Huang, Y. Song, S. Zheng, J. Zhu, and X. Wang, “Deploy-
ment impact analysis of the offset-fed truss reflector,” Journal
of Xidian University, vol. 43, no. 1, pp. 110–115, 2016, (in
Chinese).

11International Journal of Aerospace Engineering



Research Article
Application of Stewart Platform in the Low-Frequency Vibration
Characteristic Test of Space Truss Deployable Antenna
on Satellite

Hui Wang , Jiang Zhao , Yonggang Xue , Zhirong Huang , Shikun Zheng ,
and Xiaofei Ma

China Academy of Space Technology (Xi’an), Xi’an, China

Correspondence should be addressed to Hui Wang; wangh23@cast504.com

Received 13 April 2022; Revised 20 May 2022; Accepted 17 June 2022; Published 4 July 2022

Academic Editor: Adel Ghenaiet

Copyright © 2022 Hui Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The space truss deployable antenna has low natural frequency, multi-closed-loop, and multiredundant structure characteristics,
which is a kind of flexible antenna. It is hard to obtain the vibration characteristics under low frequency by finite element
analysis or conventional shaking table test. To verify the structure characteristics of the antenna in the folded state below 2Hz,
a low-frequency vibration system is established based on the 6-DOF Stewart platform. Rotation matrix analysis method was
adopted to obtain the platform’s velocity and acceleration characteristics. Then, a low-frequency vibration test was carried out
on the platform. The results show that the natural frequency of the antenna is 1.51Hz and the maximum dynamic
displacement is 140.6mm, which provides a certain foundation for the further development of the space truss antenna.

1. Introduction

The space truss deployable antenna is a large-scale mesh
deployable truss structure with high storage ratio and large
deployment stiffness. The main structure is composed of
multiple tetrahedral frame elements with energy storage
springs. These basic tetrahedral retraction and deployment
elements share nodes, and the retraction movement is asso-
ciated to form a multi-closed-loop and multiredundant
space structure [1–3]. The antenna is folded and fixed before
launch, and the expansion is realized by a spring driving on
the orbit to form a paraboloid. The antenna has good
strength, stiffness, and high deployment reliability [4, 5]. It
can flexibly construct the truss system by changing the num-
ber of basic truss elements or adopting different connection
methods. Due to the stiffness characteristics of the structure
and the freedom of the configurable truss structure, many
research institutions have carried out relevant technical
research at present [6–9].

Due to the limitation of rocket payload space, the large
aperture antenna needs to be folded. The antenna must be

able to withstand the vibration from the rocket or itself
without damage during launch. The general method is to
use the finite element analysis method or shaking table test
to simulate the real vibration environment during transpor-
tation [10].

The truss antenna contains a large number of rods,
ropes, and hinges, and its dynamic model is complex, which
brings great challenges to the finite element solution [11]. At
the same time, to reduce the weight of the antenna, the light-
weight carbon fiber composite is usually used as the rod
material, which will inevitably reduce the strength of the
rod and make the flexibility of the antenna more obvious.
The fundamental frequency of the antenna in the folded
state is usually below 2Hz. Therefore, the vibration test of
the truss antenna puts forward higher requirements for the
working frequency and output load of the shaking table.

Limited by the current low-frequency shaking table tech-
nology, the frequency range of the small shaking table is
2~ 10 kHz and that of the large shaking table is 5~ 2 kHz.
Therefore, it is difficult to realize the low-frequency vibra-
tion assessment [12]. The Stewart platform is a spatial 6-
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DOF parallel mechanism. By controlling the independent
movement of six telescopic cylinders, it can simulate various
attitude responses of the spacecraft during space flight, espe-
cially the low-frequency vibration during launch. It has
become an important simulation test device for dynamic
reliability research of aerospace equipment [13, 14].

In this paper, a low-frequency vibration characteristic
test platform suitable for the space truss antenna is built
based on Stewart platform, and relevant low-frequency tests
are carried out to obtain the fundamental frequency and
dynamic displacement in the stowed state, which provide a
certain foundation for the further development of the space
truss antenna.

2. Antenna’s Structure Characteristics

The antenna is composed of reflector, truss, and a metal
mesh. The reflector truss is composed of several frame units.
Each unit adopts a tetrahedral element, which is composed
of web members, folding rods, connection nodes, and tor-
sion springs, as shown in Figure 1.

The three folding rods can be folded symmetrically
around the middle, and the middle of each folding rod is
provided with a hinge, which contains a spring. When the
tetrahedron is folded, the spring element of the folding rod
stores energy and acts as the driving force of the tetrahedron
unit when it is deployed. The deployable state and fold state
of the antenna are illustrated in Figure 2.

3. Kinematics Analysis of Stewart Platform

3.1. 6-DOF Stewart Platform. The 6-DOF Stewart parallel
platform is mainly composed of the load platform, base plat-
form, and six driving cylinders. Each driving cylinder is con-
nected to the load platform and base platform, respectively,

by a hinge. According to different hinge modes, it can be
divided into ball joint S-P-S (sphere joint-prismatic joint-
sphere joint) type and universal joint U-P-S (universal
joint-prismatic joint-sphere joint) type.

The working platform includes an upper platform, lower
platform, load mounting plate, upper and lower connecting
hinges, servo actuator, auxiliary cylinder, and base, as shown
in Figure 3. The servo actuator is composed of an electric
cylinder and motor. The servo actuator receives the control
signal and works on the platform to make the upper plat-
form realize longitudinal, heel, yaw, lifting, transverse, and

Connection
node

Ventral
rod

Synchronous rod

Synchronous
hinge

Figure 1: Frame units with tetrahedral element.

Ventral rodSynchronous hinge

Synchronous rod

Figure 2: Fold state of the antenna.

Load platform

Driving cylinders

Base platform

Figure 3: 6-DOF Stewart parallel platform.
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Figure 4: Cardan angle coordinate system schematic diagram.
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lateral movement and drive the load to realize the simulated
motion.

3.2. Rotation Matrix Method. The attitude description of
Stewart platform generally adopts the multirigid body rota-
tion coordinate method [15]. In this paper, the Cardan
angular coordinate is adopted based on the Cartesian coor-
dinate system, and three coordinate axes are selected in a
certain order for three consecutive rotations.

The Cardan angular coordinates are shown in Figure 4.
The coordinate system o − xyz first rotates the angle α
around the x-axis counterclockwise to o − xy′z′, then rotates
the angle β around the y′ axis to o − x′y′Z, and finally
rotates the angle γ around the Z-axis to the position of the
coordinate system o − XYZ. Each rotation relationship can
be described by a matrix. From the coordinate system o − x
yz to the coordinate system o − xy′z′, the point P can be
expressed as ðy, zÞ in the coordinate system o − XYZ and
ðy′, z′Þ in the coordinate system o − xy′z′. The relationship
is expressed by the following equation.

y′ = Y cos γ − Z sin γ, ð1Þ

z′ = Y sin γ + Z cos γ: ð2Þ

In matrix form,

x

y

z

2
664
3
775 =

1 0 0
0 cos α −sin α

0 sin β cos α

2
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x
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2
664

3
775: ð3Þ
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where c represents cos () and s represents sin ().
Therefore, the vector between the coordinate system o

− XYZ and the coordinate system o − xyz can be converted
by the direction cosine matrix R, which can be expressed as

R =
cβcγ −cβsγ sβ

cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαdβdγ cαcβ

2
664

3
775: ð7Þ

3.3. Inverse Kinematics of Stewart Platform. To accurately
control the position and attitude of Stewart platform, the
six cylinders’ length needs to be solved according to the pre-
determined position and attitude of the upper load platform,
namely, three linear coordinate parameters (x, y, z) and
three rotational coordinate parameters (α, β, γ).

Two reference points Op and Ob, which are associated
with the load platform and base platform, are selected to
establish the Cartesian coordinate systems fPg and fBg,
respectively. The coordinate system fBg is considered fixed,
in which other coordinates can be represented expediently.

The vector from the origin point Ob of the coordinate
system fBg to the origin point Op of the coordinate system
fPg can be represented as t, where t = ðx, y, zÞ. The Cardan
angle between fPg and fBg is θ, where θ = ðα, β, γÞ.

It is assumed that the vector from Op to the connection
point between the load platform and each electric cylinder
is Pi, the vector from Ob to the connection point between
the base platform and each cylinder is bi, and the vector of
the connection points at both ends of the six cylinders is Si,

Table 1: Input conditions for low-frequency vibration test.

Direction Frequency (Hz) Magnitude

Z
0.4~ 1.8 0.04~0.45 g
1.8~ 6 0.45 g

6~ 8 0.45~0.65 g

X
0.4~ 2.1 0.1~ 0.33 g
2.1~ 8Hz 0.33 g

Y 0.8~ 5 0.2 g

Scanning rate 0.05Hz/s
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Figure 8: Motion curves of the six cylinders during the test in the X
-direction.
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and the relation between the vectors above can be illustrated
in Figure 5.

Then, the following formula can be obtained:

Si = Rpi + t − bi, ð8Þ

where R is the rotating cosine matrix (i = 1, 2, 3, 4, 5, 6).
The length of electric cylinder is

Li = Sik k = Rpi + t − bið Þ
Rpi + t − bik k Li = Sik k: ð9Þ

And the unit vector of Si is

si =
Si
Sik k : ð10Þ

The formula above establishes the relationship between
the pose of the load platform and the cylinder, that is, the
inverse kinematics of Stewart platform.
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The Jacobian matrix is related to the cylinder extension
velocity Si and the velocity vector _χ, and the attitude of the
load platform is a function of ðx, y, z, α, β, γÞ, then,

ω = _θ,
v = _t,

_χ = vTωT� �T ,
qi = Rpi:

ð11Þ

The sliding speed of each cylinder is

_Si = si v + ω × qið Þ = sTi qi × sið ÞT
� � v

ω

 !
= J _χ: ð12Þ

Then, the Jacobian matrix is

J = sTi qi × sið ÞT
� �

: ð13Þ

4. Low-Frequency Vibration Test

A low-frequency vibration test system based on 6-DOF
Stewart platform is established as shown in Figure 6. In the
system, the main function of the electrical control part is
to receive the command data output by the control system
and transmit it to the servo driver. The signal is amplified
to control the motor movement, which will drive the electric
cylinder to realize various postures of the platform.

In the test, the truss antenna is installed on the platform,
and the vibration load acts on the platform along three
mutually orthogonal directions, respectively. The measuring
points on the structure are showed in Figure 7.

Table 2: Test result of each measuring point in X-direction.

Measuring point
X-direction Time (s)

Initial frequency (Hz) Fundamental frequency (Hz)
Amplitude (με) Initial time First peak time

S1 -50 42.9

12.6

91

0.4 4.02

S2 -79.8 29.7 92.7

S3 -104.1 54.6 74.8

S4 -89 51 82

S5 -82.3 86 80.3

S6 -276 40 90

S7 -134 87 86

S8 -75 137 100

S9 -22 41 91.9

S10 -157 344 85

S11 -27 85 91.9

S12 -29 46 92.6

Dynamic displacement dx: -8.2~ 8.75mm; dy: -4.1~ 4.3mm; dz: -61.8~ 64.3mm

Table 3: Test result of each measuring point in Y-direction.

Measuring point
Y-direction Time (s)

Initial frequency (Hz)
Fundamental
frequency (Hz)Amplitude (με) Initial time First peak time

S1 -68.4 119

9.8

22.2

0.8 1.51

S2 -46 20 22.9

S3 -120 16 22.2

S4 -110 22 22.9

S5 -64 123 20.1

S6 -179 102 21.3

S7 -439 38 24.0

S8 -374 195 24.0

S9 -9.6 148 23.3

S10 -12 268 22.9

S11 -9.6 40 22.2

S12 -33.5 59 22.2

Dynamic displacement dx: -1.73~12.37mm; dy: -140.6~ 117.1mm; dz: -6.76~3.67mm
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The test conditions are determined as shown in Table 1.
Moreover, a constant frequency vibration test was carried
out at 1.5Hz with 0.2 g load according to the actual needs.

Figures 8–10 show the motion curves of the six cylinders
during the vibration test.

The following figures (Figures 11–13) show the response
curve in each direction during the vibration, and the tables
(Tables 2–4) give the maximum strain and dynamic dis-
placement response and fundamental frequency information
of the above main measuring points. The fundamental fre-
quency information is obtained by time conversion, and
the dynamic displacement is obtained by high-speed photo-
grammetry system, and the measurement accuracy is better
than 0.1mm.

According to the test results, the response in X-direction
and Z-direction of the truss antenna is coupled, and the fun-
damental frequency is 4.02Hz, while the fundamental fre-
quency in Y-direction is the lowest, which is 1.51Hz as
shown in Figure 3 and Table 4. The maximum dynamic dis-
placement of the antenna is 140.6mm. Figure 14 shows the
gap between the antenna and the fairing in a certain applica-
tion, which is much greater than the dynamic displacement.

5. Conclusion

The truss deployable antenna has the remarkable character-
istics of low fundamental frequency and flexible nonlinear-
ity, which makes it difficult to use the conventional
shaking table to investigate the vibration characteristics in
the low frequency band. In this paper, a low-frequency test
system based on 6-DOF Stewart parallel platform is estab-
lished, and the structural characteristics of the antenna in
the stowed state below 2Hz are analyzed. It shows that the
lowest fundamental frequency is 1.51Hz in Y-direction
and the dynamic displacement is 140.6mm. The results are
of great value to the further engineering application of the
antenna.
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A modular space deployable antenna has the advantages of extensibility, adaptability, and versatility, which is an ideal structure to
meet the development trend of large aperture, high precision, and light weight for the deployable antenna in the future. To date,
there are few reports on the temperature response of a modular deployable antenna in the thermal alternating environment in
orbit. The aim of this study is at investigating the influence of a modular deployable antenna support structure on the surface
accuracy and stability under the space thermal alternating environment. For this purpose, the thermal-structure analysis of the
deployable antenna support structure was carried out by ANSYS APDL finite-element software. Using the transient
temperature field obtained by thermal analysis as the boundary condition, the coupling law of stress development and thermal
deformation of the support chord and cable caused by the antenna structure constraint position and other parameters is
analyzed. In a uniform thermal field, the thermal stress of cables in the central module of the structure is the highest and that
of the chord components in the same-circle modules is essentially the same. The thermally stress of the upper chords increases
progressively toward the outer module, whereas that of cables decreases in the same direction. The thermal deformation at the
upper-layer centroid of the structure can reach about 15mm, so the influence on the accuracy of the antenna cannot be
ignored. When the splicing vertical rod of adjacent modules in the outermost of the support structure is taken as the
constraint connecting with the extension arm, the thermal deformation of the structure is minimum. The heat-insulating
composite coating should be adopted on the surface of the antenna structure to reduce the thermal deformation and improve
the adaptability. The thermal-structural analysis model proposed in this study could accurately estimate the behaviour of
thermal deformation for the modular space deployable antenna, but the further coupling condition of the nonuniform
temperature field could still be conducted. The results can provide a reference for the basic theory and engineering application
of thermal-structural analysis for extralarge-aperture modular deployable antennas in the future.

1. Introduction

The deployable antenna plays an important role in the trans-
mission and acquisition of information in the aerospace and
defence fields. This new type of space deployable structure is
the product of the rapid development of aerospace science
and technology over the past two to three decades [1, 2].
Deployable antennas have already been widely applied in var-
ious fields, including space communications, military recon-
naissance, earth observation, and satellite navigation [3–6].
Given the increasing demand for a precise satellite service in
deep space exploration, the thermal response of the deployable

antenna support structure to the harsh space environment has
become important considerably. As a satellite moves in an
orbit, the support structure of a deployable antenna is subject
to thermodynamic issues induced by solar radiation, such as
vibration and the resulting stress and deformation [7–9].
Especially for large-aperture modular deployable antenna,
these problems occur most commonly when the antenna
passes through the Earth’s shadow.

Thermally induced vibrations were first theoretically pre-
dicted by Boley [10], who also established a basis for vibration
parameter determination. In the decades that followed, the
subject of thermally induced structural response attracted
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attention from scholars and researchers worldwide. For exam-
ple, by analyzing bending vibrations of the Hubble Space Tele-
scope solar arrays, Thornton and Kim [11] determined the
coupling between the dynamic response of the structure and
transient temperature field and the basis is established for
determining the stability of bending vibrations. Namburu
and Tamma [12] reported that there are significant differences
between the dynamic response of deployable members under
the action of general linear thermal effects and those under
nonlinear thermal effects. Johnston and Thornton [13] exam-
ined spacecraft attitude disturbances resulting from thermally
induced deformations of flexible appendages and determined
that the attitude response of the system is related to the ratio
of the thermal and structural response times of flexible
appendages. Zhang [14] conducted temperature field analysis,
thermal stress analysis, and structural deformation simulation
analysis for a deployable parabolic antenna with a 5m diame-
ter. Ding and Xue [15] used the Fourier-finite-element
method to simulate the thermal response of aerospace struc-
tures with thin-walled tubular components in the transient

temperature field and thereby provided an effective method
for analyzing the transient temperature field and thermal
deformation of the complex aerospace structure. Rodriguez
et al. [16] developed the thermocryogenic technology for the
thermocryogenic system of the tropospheric emission spec-
trometer, and this in turn maximised the overall performance
of the instrument. Fan et al. [17] studied the thermal-dynamic
coupling of the in-orbit structure with flexible appendages
using a modified Lagrange-finite-element method. Liu et al.
[18] conducted a study on thermally induced vibrations of a
deployable rib antenna using the finite-element method and
showed that thermal vibrations affect the surface accuracy of
the antenna structure. Abbas et al. [19] developed a three-
dimensional rectangular plate element with variable thick-
nesses for panels of re-entry vehicles, which is exposed to a
severe thermal environment under a supersonic flow condi-
tion. Sun [20] simulated and analyzed the structural strength
and dynamic properties of a deployable spiral antenna in the
extreme thermal environment of space and thereby provided
a guiding reference for the antenna structure design. Yun
and Yuan [21] conducted thermal-structural analysis of a
deployable hoop antenna, and it is demonstrated that when
passing through the Earth’s shadow in orbit, the antenna
structure is subjected to significant overall structural deforma-
tion in a nonuniform temperature field. Wu et al. [22] con-
ducted thermal-structural analysis of a deployable hoop
antenna and determined that the temperature field signifi-
cantly impacts an antenna’s surface tension and shape accu-
racy. In summary, the thermal-structural coupling response
of large-aperture space deployable antenna structures cannot
be neglected because it considerably impacts the vibration
and deformation of the antenna surface [23, 24].

Furthermore, large aperture, high precision, and light
weight have become the trend of antenna development. The
modular space deployable antenna studied in this paper is a
new kind of space structure with great development potential
and value, which meets the development trend of large aper-
ture and high precision of the antenna. Based on the topolog-
ical theory, the modular element can meet the development
trend and requirements of 100-meter aperture of the antenna
in the future. For the extralarge-aperture antenna, dense rods
and shadow occlusion of extralarge-aperture mesh are
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Figure 1: A single module. (a) The three-dimensional prototype. (b) The single-module prototype.
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obvious. The thermal-induced deformation and thermal-
induced vibration pose more significant threat to the perfor-
mance of the antenna in orbit. It will also restrict its future
application. However, there is a paucity of analytical studies
in this area and only fewer cases have been applied in orbit.

In this study, thermal-structural analysis of a modular
space deployable antenna in the transient thermal field is
analyzed, whose basic configuration is composed of 19
hexagonal modules with a diameter of 5 meters. Further-
more, the thermally induced stress of different rod and
cable elements of the support structure and the deforma-
tion of the key points include the centroid point and the
farthest point away from structural constraint is consid-
ered. The trends of thermally induced overall deformation
are compared for different constraint positions of the
antenna structure to provide a basis for selecting the safest
and most optimal design for the support structure for the
modular space deployable antenna. In addition, the
research results can provide a reference for the basic the-
ory and engineering application of thermal-structural anal-
ysis for extralarge-aperture modular deployable antennas
in the future.

2. Finite-Element Model and Validation

2.1. Structure of the Modular Deployable Antenna. The
antenna structure is a support back frame after the deploy-
ment and locking of the space deployable antenna, which
is composed of a plurality of hexagonal modules arranged
topologically according to the accuracy of the antenna net-
work [25, 26]. Firstly, a rib unit is composed of upper chord
and lower chord rods, a diagonal web rod, and a vertical rod
and the length of the upper and lower chord rods is 600mm,
the length of the diagonal web rod is 618mm, and the length
of the vertical rod is 150mm; then, a single-hexagon module
with a side length of 600mm is composed of six rib units
and a cable (Figure 1). Figure 1(a) is the three-dimensional
prototype of a single module, and Figure 1(b) is the single-
module prototype.

The single-module topology forms a 3-circle 19-module
antenna structure with a size of 4800mm × 5196mm
(Figure 2). The topological positions, number of circles,
and marking points of each module are shown in Figure 2.

Deploying Deploying

Deploying

Stowed

Figure 3: The deployment process of 3-circle 19-module antenna
support structure (without cables).

BB’ constraint

Figure 4: FEM of the modular deployable antenna.

Table 1: Thermophysical parameters of antenna materials.

Material property
Aluminum

alloy
Steel
cable

Elastic modulus: E (GPa) 70 150

Poisson ratio: μ 0.31 0.3

Density: ρ (kg/m3) 2840 7850

Thermal conductivity: k (W/m/K) 195 49.8

Specific heat capacity: c (J/kg) 924 465

Thermal expansion coefficient: α
(K−1)

2:2 × 10−5 1:2 × 10−5

Emissivity: ε 0.6 0.26

Radiation absorptivity: ε1 0.9 0.9
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As shown in Figure 2, there is 1 module in the first circle and
there are 6 and 12 modules in the second and third circles,
respectively. AA′, BB′, CC′, DD′, and EE′ represent the
position of splicing vertical rods, S1 represents the no. 1
upper chord, X1 represents the no. 1 lower chord, L1 repre-
sents the no. 1 cable, and D1-S and D1-X represent the no. 1
point of the upper layer and lower layer, respectively.

Figure 3 shows the expansion process of a 3-circle 19-
module support structure from a folded state to a deployed
state. After expansion, its total size is 4800mm × 5196mm,
in which the upper chord forms an inner concave surface
and the lower chord forms an outer convex surface. The
model is based on the principle prototype in the previous
work. The geometry size of the antenna structure is 1 : 1
restored, and the appearance design of the deployable
antenna is basically consistent with the actual structure.
The main structure of the principle prototype is made of alu-
minum alloy, and the theoretical and experimental research
on the unfolding function, unfolding characteristics, unfold-
ing accuracy, and dynamics characteristics has been com-
pleted. In the model of Figure 3, all rod members of the
structure are 2A12 aluminum alloy hollow round rods, the
vertical rod outer diameter is 12mm, and the inner diameter
is 10mm. The outer diameter of the upper and lower chords
and inclined rods is 10mm and the inner diameter is 8mm.
The cable is a steel wire cable whose diameter is 1mm.

2.2. Model Establishment. APDL was used to build the finite-
element model of the modular deployable antenna as shown
in Figure 4. In the thermal stress analysis, the displacement
and rotation angles of the vertical rod BB′ connecting two
outermost modules are constrained because this component
is connected to the deployment arm of the satellite antenna.
After deployment, the overall stability of the support struc-
ture is maintained via tension cables and rigidly connected
rods; the cable applied 200N preload. The thermophysical
parameters of the antenna materials are shown in Table 1.

3. Transient Thermal Analysis

3.1. Theoretical Basis of Temperature Field Analysis. The
temperature field is closely related to the geometry of the
structure. Based on the principle of heat transfer theory,
the governing differential equation of heat conduction of
the three-dimensional object can be written as [27]

∂
∂x

kx
∂T
∂x

� �
+ ∂
∂y

ky
∂T
∂y

� �
+ ∂
∂z

kz
∂T
∂z

� �
= ρc

∂T
∂t

, ð1Þ

where kx, ky, and kz are the coefficients of thermal conduc-
tivity of rod elements in x, y, and z directions in space; ρ
denotes the density of the material; c denotes the specific
heat capacity of the material.

Table 2: Statistical analysis of thermal stress and deformations.

Time
(s)

Maximum
deformation (mm)

Deformation at the upper
centroid (mm)

Maximum stress of chord
rod (MPa)

Maximum stress of
cable (MPa)

Maximum stress of
constraint (MPa)

1 32.05 13.15 50.67 47.94 3.94

180 32.00 13.12 50.56 47.83 3.93

360 31.75 13.02 50.17 47.46 3.9

540 30.90 12.66 48.81 46.18 3.8

720 28.54 11.71 45.12 42.7 3.51

900 23.25 9.53 36.76 34.79 2.85

1080 13.37 5.48 21.13 20.01 1.63

1260 −1.51 −0.62 −2.38 −2.26 −0.18
1440 −18.97 −7.74 −29.94 −28.42 −2.30
1620 −33.02 −13.45 −52.90 −50.30 −4.05
1710 −37.44 −15.26 −59.53 −56.54 −4.56
1800 −39.02 −15.91 −61.92 −58.84 −4.72
1915 −37.44 −14.77 −59.53 −56.54 −4.56
1980 −33.02 −13.45 −52.90 −50.30 −4.05
2160 −18.97 −7.74 −29.94 −28.42 −2.30
2340 −1.51 −0.62 −2.38 −226 −0.18
2520 13.37 5.48 21.13 20.01 1.63

2700 23.25 9.53 36.76 34.79 2.85

2880 28.54 11.71 45.12 42.7 3.51

3060 30.90 12.66 48.81 46.18 3.8

3240 31.75 13.02 50.17 47.46 3.9

3420 32.00 13.12 50.56 47.83 3.93

3600 32.05 13.15 50.67 47.94 3.94
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The radiation boundary condition is assumed as follows:

− kx
∂T
∂x

nx + ky
∂T
∂y

ny + kz
∂T
∂z

nz

� �
= aXT4 − Tqr:: ð2Þ

The initial condition is as follows:

T x, y, zð Þt=0 = T0, ð3Þ

where nx, ny, and nz are the direction cosines of the outer
normal of rod elements in three directions, a denotes the
Stefan Boltzmann constant (5:67 × 10−8W/m2/K4), X
denotes the coefficient of blackness, T denotes the structure
of temperature, qr denotes the radiant heat flow density per
unit area, and T0 denotes the initial temperature of
structure.

According to the Galerkin method, it can be deduced in
formulas (1)–(3) as follows:

C½ �e ∂∂t T tð Þf ge + Kk½ �e + Kr½ �eð Þ T tð Þf ge = Frf ge, ð4Þ

where ½C�e denotes the heat capacity matrix of the structural
element, ½Kk�e denotes the heat transfer matrix of the struc-
tural element, ½Kr�e denotes the thermal radiation matrix of
the structural element, and fFrge denotes the thermal load
vector of the structural element.

Then, the temperature field calculation equation of the
structure at t moment can be obtained:

C½ �
Δt

+ Kk + Kr½ �
� �

T tð Þf gt = Frf g + C½ �
Δt

T tð Þf gt−Δt , ð5Þ

where Δt denotes the time step.
Basing on the abovementioned temperature field solu-

tion and the working environment in orbit, the calculation
of the thermal analysis model of the antenna structure is
simplified and assumed, so that the thermal analysis and
the thermal-structural coupling analysis are more suitable
for the practical engineering application of the antenna in
orbit.

To simplify the thermal-structural analysis, the following
basic assumptions are adopted:

(a) The antenna enters and leaves the Earth’s shadow
area for 1 h, i.e., 3600 s

(b) The temperature change of the antenna structure in
the radiant during 3600 s is within the range
73.15K~473.15K

(c) The effect of shadow occlusion is not considered so
that each element of the antenna support structure
receives the same amount of radiation in each period

The fit curve of the temperature change during the time
when the antenna moves in and out the Earth’s shadow is
used to obtain the temperature change function as follows:

T tð Þ = T0 − TS × e−0:5× t−tcð Þ/τð Þ2 , ð6Þ

where TS denotes the magnitude of temperature change, tc
denotes the experience time of entering the shadow area
fully, tc = 1800 s, τ denotes the characteristic time for ther-
mal response, and τ = 440:2 s [28].

3.2. Thermal Analysis. Based on the aforementioned
assumptions, in the thermal analysis of the antenna struc-
ture using APDL, LINK33 is used to simulate the tempera-
ture element of chord rods and cables and MASS71 is used
to simulate concentrated mass components. Figure 5 shows
the temperature distribution curve of the deployable antenna
obtained using the FEM simulation in the transient temper-
ature field. When the metal mesh surface of the antenna is
not considered, the shadow occlusion effect is not obvious.
Therefore, the shadow occlusion is not considered in the
thermal analysis for the support structure in this paper and
the temperature field distribution of the whole antenna
structure is uniform at each moment and the temperature
of each rod of the whole antenna structure is the same. For
example, at t1 = 900 s and t2 = 1800, the overall temperatures
of the structure are 423.517K and 73.168K, respectively.

It can be seen in Figure 5 that the temperature decreases
slowly when the antenna begins to pass through the Earth’s

ANSYS Release 19.0
Build 19.0
PLOT No. 1
NODAL SOLUTION
STEP = 1
SUB = 17
TIME = 1
SEQV
RSYS = 0
DMX = 0.023255
SMN = 0.285E+07
SMX = 0.368E+08

(AVG)

(a)

ANSYS Release 19.0
Build 19.0
PLOT No. 1
NODAL SOLUTION
STEP = 1
SUB = 17
TIME = 1
SEQV
RSYS = 0
DMX = 0.039021
SMN = 0.472E+07
SMX = 0.619E+08

(AVG)

(b)

Figure 6: Thermal stress distribution. (a) t1 = 900 s. (b) t2 = 1800 s.
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shadow at 0~900 s. After the antenna has entered the
shadow area completely, the temperature decreases rapidly.
At 1800 s, the antenna structure begins to come out of the
shadow area, the temperature of each chord changed con-
trary to the process of entering the shadow area. Finally,
the antenna structure returns to its original temperature at
3600 s. The thermal analysis results are used as the basis
for the thermal-structural analysis.

4. Thermal-Structural Analysis of the
Antenna Structure

4.1. Model Overview. The ANASY finite-element analysis
software is used to analyze the thermal-structural model of
the modular support structure including the stress develop-
ment and development-time history in the transient temper-
ature field. The transient temperature field obtained in
Section 3.2 is used as the temperature boundary conditions

for the thermal-structural analysis of the antenna, and the
temperature elements (LINK33) are converted into struc-
tural elements (LINK180). When the antenna is deployed
in the orbit, one vertical rod is attached to the deployment
boom of the satellite antenna. In Figure 4, the vertical rod
BB′ is used as the fulcrum of the expansion where the mod-
ular structure begins to unfold. Hence, its rotational angle
and displacement in the x, y, and z directions are con-
strained. It is assumed that the thermal expansion coefficient
of the structural elements does not change with the change
in the temperature field, i.e., the stress and displacement of
the antenna structure at 273.15K are equivalent to 0. The
thermophysical properties of the structural elements are
listed in Table 1.

4.2. Thermal Stress Analysis. Indirect thermal stress analysis
was carried out, and the obtained transient temperature field
was applied to the structural stress analysis as the basic load.
The maximum thermal stress variation of the components
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Figure 7: The thermal stress distribution of different rods in the same module. (a) Module 1. (b) Module 6. (c) Module 16.
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and the deformation trend of the centroid and edge of struc-
ture were obtained, and the statistics were shown in Table 2.
It can be seen in Table 2 that the maximum normal stress of
the chord at each time occurs at the 12th module and the
minimum stress occurs at the vertical rod BB′. The maxi-
mum stress of the cable occurs at the first module of the
structure. The maximum cumulative deformation of the
antenna occurs at the point D4-X where it is the farthest
point away from the constraint BB′, and the deformation
is within the range of 32.05mm~−39.02mm. The deforma-
tion at the upper centroid point D1-S is within the range
of 13.15mm~−15.91mm. So, it is gained that the effect of
thermal deformation of the structural centroid on the
antenna surface accuracy cannot be ignored.

The deformation and stress changes of the structure are
consistent with the transient temperature field curve. At both
1 s and 3600 s moment, the maximum normal stress of the

chord is 50.67MPa and that of the cable is 47.94MPa. In the
meantime, the maximum deformation at D4-X is 32.05mm.
The deformation and stress of the antenna structure are very
small at 1260 s and 2340 s, and the temperature is 293.15K.
At 1800 s, the maximum negative stress of the chord rod in
the 12th module is −61.92MPa and that of cable L1 in the cen-
tral module is −58.84MPa and the cold shrinkage deformation
is −39.02mm at this moment. However, compared to other
rods, the thermal stress of the vertical rod at constraint BB′ is
negligible. At each time, the maximum stress of the chord in
the 12th module is about 5.23% greater than the average stress
of the cable in the central module, indicating that the chord is
subjected to greater stress than the cable in the transient tem-
perature field.

Next, the transient temperature field at t1 = 900 s and t2
= 1800 s is used to analyze the thermally induced stress in dif-
ferent modules and the deformation of the antenna structure.
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Figure 8: Thermal stress distribution of the rods in different modules. (a) Upper chord. (b) Lower chord. (c) Cable.
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Figure 6 shows the thermal stress distribution of each module
of the antenna structure. It can be seen in Figure 6 that the
stress distribution trend of the support structure is basically
the same at each moment. In the central module, the cable
stress is the largest, followed by the lower chord stress, and
the upper chord stress is the least. In the second-circle module,
the 6th module is taken as an example, the cable stress is the
largest, followed by the upper chord stress, and the lower
chord stress is the least. In the 16th module of the third circle,
the stress of the upper chord is the largest, that of the lower
chord is smaller, and the cable stress is the least. In addition,
with the increase of circle, the stress of chord rod increases
and the cable stress decreases gradually.

In order to further explain the stress development of
structural component rods, the upper chord, lower chord,
and cable stress of the 1st, 6th, and 16th modules were
extracted and compared. Figure 7 shows the thermal stress
distribution of the different component rods in the same
module, and that of the same component in the different
modules is shown in Figure 8.

In Figure 7, the thermal stress of upper chord S1 in the
first module is 8.87% smaller than that of lower chord X1.
In the 6th module that belongs to the second circle, the stress
of upper chord S2 exceeds that of lower chord X2 by 17.3%.
The cable thermal stress is the biggest in the 1st and 6th
modules, the thermal stress of chord S1 is smaller than that
of lower chord X1, and upper chord S2 in the 6th module is
bigger than lower chord X2. In the 16th module, the thermal
stress of cable L3 is the smallest and the maximum stress of
upper chord S3 is bigger than that of L3 about 52.27%.

Figure 8 shows the comparison of the same component’s
thermal stress in the 1st, 6thm and 16th modules of the
antenna structure, and the thermal stress of upper chord
S1 decreases by 7.72% and 33.22% compared with that of
upper chord S2 and S3, while the thermal stress of lower
chord X1 increases by 22.43% and 24.97% compared with
that of X2 and X3, respectively. The thermal stress of cable
L3 is 46.58% and 51.42% lower than that of cable L2 and
L1. Additionally, it was determined that the stress of the

upper chord components increases gradually with each cir-
cle modules, whereas the stress of the cables gradually
decreases.

The time history of the maximum thermal stress in the
different components is shown in Figure 9. It is evident that
the lowest of stress occurs in the constrained vertical rod at
any moment. Moreover, the maximum stress trends for dif-
ferent components are consistent with the transient temper-
ature field. Specifically, when the antenna structure begins to
pass through the Earth’s shadow at about t1 = 900 s, its ther-
mal stress decreases by approximately 27.45%. The maxi-
mum negative stress occurs at t2 = 1800 s; at this moment,
the antenna is passing through the Earth’s shadow. After
1800 s, the thermal stress begins to increase again and mir-
rors the decreasing temperature trend before t2 = 1800 s
until the antenna has passed the shadow area completely.

The deformation curves of the key positions such as the
vertical rod BB′, the centroid point D1-S(X), and the far-
thest point D4-S(X) from the constraint are shown in
Figure 10. It can be seen that during the time from 0 s to
1260 s and 2360 s to 3600 s, the structure is in the thermal
expansion and elongation stage, and in the middle period
from 1260 s to 2360 s, the structure has cold contraction
deformations. There is almost no deformation at the
restraint vertical rod BB′. The deformation trend at the posi-
tions D4-S(X) and D1-S(X) is consistent with the time. The
deformations of the upper and lower key points are not dif-
ferent significantly, and the accumulated deformation at D4-
X is the largest. The deformation at the upper centroid point
D1-S varies in the range 13.15mm~−15.91mm, where it is
the most important factor affecting the accuracy of the
antenna surface. Therefore, the influence of centroid point
deformation on the accuracy of the antenna surface should
be further studied.

The overall deformation of the structure at typical
moment t1 = 900 s and t2 = 1800 s is shown in Figure 11. It
is obvious that the further point away from the constraint,
the greater the total cumulative deformation of the structure
at this point and the maximum deformation of the antenna
structure occurs at point D4-S(X) which is farthest from the
constraint.

The aforementioned analysis shows that the antenna
structure undergoes thermal expansion and contraction in
the transient temperature field. In the first module, the stress
in the upper chord and lower chord rods does not signifi-
cantly change because of the action of the tension cables.
However, in the second-circle and third-circle modules, the
upper chord components expand and contract more than
the lower chord because the cables inside the parabolic sup-
port structure undergo higher tension due to temperature
variations in the transient temperature field. Consequently,
the thermal stress in the upper chord components is higher.
The highest thermal stress occurs in the third-circle mod-
ules. Therefore, the deformations of the farthest point from
the constraint and the centroid point of structure cannot
be ignored.

4.3. Thermal Analysis of Structures with Different
Constraints. This section elucidates the effect of the
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Figure 10: Time history deformation curve at key points of antenna structure. (a) The upper rods. (b) The lower rods. (c) The upper and
lower rods.
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Figure 11: Overall deformation of the antenna structure. (a) t1 = 900 s. (b) t2 = 1800 s.
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constraint position on the centroid D1-S(X) deformation of
the antenna in the transient alternating temperature field.
The vertical rods AA′, BB′, CC′, DD′, and EE′ of the struc-
ture are assumed to be the fulcrums of antenna expansion,
separately. When the constraint is set at the abovementioned
five vertical rods separately, the overall deformation of the
antenna support structure at t1 = 900 s is shown in Figure 12.

According to the application status of the antenna struc-
ture, the outermost vertical rod is the preferred position of
the expansion fulcrum. When the constraint position of
the antenna structure is required to be at AA′, BB′, and

CC′ separately, the overall deformation of the structure con-
strained at the vertical rod CC′ is the largest and that of
structure constrained at BB′ is slightly smaller and the struc-
ture constrained at AA′ deformation is minimum. Although
the deformation in the case constrained at AA′ is smaller
than that of the case at BB′ slightly and the vertical rod at
BB′ has stronger stiffness because it is located at the splicing
of two adjacent modules, so, the vertical rod BB′ is more
conducive to being the fulcrum of antenna structure expan-
sion, as shown in Figure 12(b).
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Figure 12: Overall deformation of structures with different constraints. (a) The constraint at AA′. (b) The constraint at BB′. (c) The
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If it is possible that the middle vertical rod, such as DD′
and EE′, inside the antenna is used to be the expansion ful-
crum, the overall deformation of the structure constrained at
DD′ is smaller than that at EE′. Moreover, because there is a
large torsion ratio for the structure constrained at the EE′
vertical rod, so, it is better to choose the DD′ vertical rod
as the middle expansion fulcrum of the antenna structure;
see Figure 12(d).

The deformation development of the centroid D1-S(X) at
different constraints with the temperature history is shown in
Figure 13. Comparing between Figure 13(a) and Figure 13(b),
the deformation trends of upper centroid D1-S and lower cen-
troid D1-X are consistent with changes in temperature under
working conditions at different constraints. The maximum
difference of deformation between D1-S and D1-X is 3.33%
under condition at constraint BB′, and the total average differ-
ence is 2.04%, indicating that there is little difference between
D1-S and D1-X at each constraint.

The deformation amplitude of centroid D1-S of the
upper layer structure constrained at AA′ is 12.47mm~
−15.20mm, and at any moment, the deformation is the
smallest in the case of the edge constraint. Compared with
the constraint at the CC′ vertical rod, its deformation is
reduced by 17.42% and the total average deformation is
reduced by 16.3%. Compared with the constraint BB′ case,
the deformation decreases by about 3.44% and the average
deformation decreases by about 3.02%. The D1-S deforma-
tion is within the range of 5.15mm~−6.27mm in the case
constrained at DD′, and the deformation is the smallest
under all working conditions. Compared with the constraint
EE′ case, the maximum deformation of D1-S is reduced by
43.95% and the average reduction is about 43.66%. Com-
pared with the constraint AA′ case, the deformation of
D1-S is reduced by 56.71% and the total average reduction
is 56.94%.

Based on the aforementioned results, when the expansion
fulcrum of the antenna is set at the outermost vertical rod of
the structure, it is suggested that the structure constraint
should be applied at the splicing vertical rod of two outermost
adjacent modules; the comprehensive performance of the
structure is optimal in this case, such as BB′ as shown in
Figure 2. When the fulcrum can also be located in the middle
of the antenna, it is suggested that the constraint of the support
structure should be selected at the splicing vertical rod of the
adjacent modules in the second circle, such as DD′ in
Figure 2. The constrained vertical rod serves as the connection
between the antenna structure and the satellite boom. Nomat-
ter where is the constraint, the range of thermal deformation
due to the transient temperature field should be limited. It
can reduce the adverse effect of thermal deformation on the
surface accuracy of the modular deployable antenna.

5. Conclusions

In this study, the thermal analysis and thermal-structural
analysis of the modular space-deployable antenna support
structure under the action of the alternating temperature
field are carried out and the thermal stress and deformation
development law of each component in the antenna are
obtained. The influence trend of the constraint position on
the structure central and overall deformations is studied.
Finally, the optimal constraint position of the antenna is
suggested. The main conclusions of this study are as follows.

(1) During the thermal analysis of the antenna structure,
the temperature of each component element is
assumed as in accordance with the transient temper-
ature field and the overall temperature changes
slowly when the antenna enters and exits the Earth’s
shadow area. Furthermore, the temperature drops
significantly in the shadow area completely
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Figure 13: Thermal deformation curves of the centroid at different constraints. (a) Deformation of centroid D1-S. (b) Deformation of
centroid D1-X.
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(2) The transient temperature field obtained via struc-
tural thermal analysis can provide boundary condi-
tions for the thermal-structural analysis. The
thermal stress and deformation time history of the
antenna structure are essentially consistent with the
trend of the transient temperature field

(3) In same circle module, the thermal stress in upper
chord rods is higher than that in lower chord rods
and it progressively increases toward the outer edge
of the antenna structure. When the thermal
exchange amplitude of the deployable antenna struc-
ture is large, the accumulated deformation at the
centroid of the upper structure can reach up to
15mm and the influence on the mesh accuracy of
the antenna structure cannot be ignored

(4) It is recommended to select the splicing vertical rod
of adjacent modules in the outermost or the second
circle as the constraint position of the antenna struc-
ture. The constrained vertical rod connects the
antenna to the satellite boom, where it is also the
expansion fulcrum of the antenna, and both the
overall and central deformations of the structure will
be limited to the allowable values in any case

(5) It is suggested that the thermal protection measures
such as ZS-1 high-temperature-resistant thermal
insulation coating should be adopted on the surface
of the antenna support structure to increase the
adaptability of the antenna in the extreme space
environment. Using the abovementioned measures,
the adverse influence of temperature alternation on
the antenna deformation and the mesh surface accu-
racy can be reduced

This study presented preliminary work on thermal-
structural analysis of the support structure for the modular
space-deployable antenna under a uniform temperature
field, and more complicated models considering rigid-
flexible coupling and shadow occlusion could be used in
the future to achieve more conclusions.
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Because of manufacturing errors, measuring errors, and unpredictable service environment, the cable net structure to be further
adjusted is in an uncertainty state. In this paper, the uncertain factors including elastic deformation, thermal deformation, and
measurement uncertainties are considered as fuzzy variables, which are equivalent into fuzzy tensions to simplify calculation. A
fuzzy force density method is developed for accuracy analysis of the cable net structures under multi-uncertainties, and an
optimization model is developed for surface adjustment. The above method is applied to numerical model adjustment of
circular truss cable net structure. The results show that the adjusted surface accuracy is significantly enhanced and its fuzziness
is concentrated compared with the initial surface accuracy, which verify the validity of the proposed method.

1. Introduction

Cable net structures have been widely applied to space
deployable reflector antennas such as the AstroMesh
antenna, the TerreStar antenna, the antenna of JAXA Engi-
neering Test Satellite, and the SkyTerra antenna [1–5].
High-accuracy surface is a prerequisite for ensuring the elec-
trical performance of the antennas. However, limited by
manufacturing and assembling technology, artificial surface
adjustment is an essential and tiresome step to improve the
surface accuracy, which has been revealed very sensitive to
manufacturing errors and environmental changes [6–8].

There have been many researchers that have done a lot
to improve the efficiency of adjustment strategies. Hiroaki
and Natori [9] proposed a shape control method based on
the concept of self-equilibrated stresses to improve the con-
trol efficient. Du et al. [10] presented a shape adjustment
procedure based on optimization and then converted the
procedure into a sequential quadratic programming prob-
lem to make it more easily. Niu et al. [11] established an
optimal adjustment model that an influence coefficient
matrix was treated as one target. The above adjustment
methods regarding the current configuration of the cable

net structure can be accurately obtained. Actually, because
of the limitation of measurement accuracy and changeable
environment, there must be some uncertain factors such as
nodal positions, cable pretensions, material parameters,
and environmental temperature [12, 13]. Under the influ-
ence of these uncertain factors, how does the surface accu-
racy of the cable net structure change and how to ensure
the surface accuracy in a reliable range becomes particularly
important.

Nowadays, the methods for dealing with uncertainty can
be divided into three categories including the probability
theory [14–16], the fuzzy algorithm [17], and the interval
method [18]. The probability theory is a helpful tool in
modeling situations where the primary source of uncertainty
is randomness [19, 20]. But sometimes, we argue that uncer-
tainty takes other forms; instead of asking whether some-
thing is true, we ask how much of it is true and how much
a certain property is exhibited in a particular instance. In
our previous work [21], an interval force density was pro-
posed and an optimization adjustment model was estab-
lished for the surface adjustment of cable net structures.
However, it is found that only mean and marginal cases
can be obtained by the interval method and probability
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distribution functions need to be further studied. Probabil-
ity method needs to study the probability distribution of
uncertain variables based on a large number of statistical
data, while fuzzy algorithm can study uncertainty model
by membership function which can be estimated by expe-
rience. In order to improve the efficiency of cable net
structure adjustment considering uncertainty in engineer-
ing, it is necessary to study how to apply fuzzy algorithm
to adjustment. Thus, this paper proposes a fuzzy force
density method to deal with the surface adjustment prob-
lem of the cable net structures under multi-uncertainties.
The paper has a guiding significance for the adjustment
of cable net structure considering uncertainty in the case
of few samples in engineering.

2. Brief Summary of the Fuzzy Set Theory

Define a fuzzy subset of U as function A: U ⟶ ½0, 1�, that is,
a characteristic function from U into interval ½0, 1�. The
value AðuÞ is called the membership of point u in the fuzzy
set U or the degree to which point u belongs to set A.

λA = ujA uð Þ ≥ λ, u ∈Uf g, ð1Þ

where λA is called the λ-cut of the fuzzy set A, λ ∈ ½0, 1�.
If the lower bound ulðλÞ and upper bound uuðλÞ are

given, the fuzzy number A can be obtained by summing all
λ-cut sets as

λA = ul λð Þ, uu λð Þ
h i

, λ ∈ 0, 1½ �
n o

: ð2Þ

Defining ~x as a fuzzy variable and its fuzzy number as
AðλÞ, ~x can be described by

~x = ~x λ, δð Þ = xc λð Þ + xr λð Þδ, ð3Þ

where xcðλÞ and xrðλÞ are the midvalue and the amplitude of
~x, respectively, and where

xc λð Þ = xu λð Þ + xl λð Þ
2

,

xr λð Þ = xu λð Þ − xl λð Þ
2

:

ð4Þ

Then, the fuzzy variable ~x can be described by the inter-
val variables λ and δ, where λ ∈ ½0, 1� and δ ∈ ½−1, 1�. When
the cut level λ is given, the fuzzy variable ~x becomes an inter-
val variable. Therefore, the operation of the fuzzy variable
~xðλ, δÞ can be discretized into the operation of interval
variables.

3. Mathematical Models for Fuzzy Cable
Net Structures

Cable net structures inevitably suffer from multiple sources
of uncertainty in the process of manufacture, assembly,
and on-orbit service. Limited by our ability to get informa-

tion, parameters of the structures like nodal positions, cable
pretensions, material parameters, and environmental tem-
peratures must be uncertain. Thus, we use some fuzzy vari-
ables to describe these uncertainties. In order to reveal the
influence of these uncertainties on the surface accuracy of
the cable net structures, the mathematic models are firstly
established based on the force density method and the fuzzy
theory in this section.

3.1. Equivalent Fuzzy Cable Tensions for a Cable Net
Structure under Multi-Uncertainties. For the cable net struc-
ture whose geometric forms are given, the sources of uncer-
tainty can be divided into three categories: elastic
deformation uncertainty, thermal deformation uncertainty,
and measurement uncertainty [21], among which the uncer-
tainties which would cause cable tension changes can be
equivalent into a total fuzzy tension to simplify calculation.

According to Hooke’s Law, elastic property of a cable
can be expressed by the following equation.

ε = F
EA

=
L − L0
L0

, ð5Þ

where ε is the cable strain, F is the cable tension, E is the
elastic modulus, A is the cross-sectional area, L is the
stretched length, and L0 is the unstretched length.

3.1.1. Uncertainty of Elastic Deformation. Because of multi-
uncertainties, the axial tension, the elastic modulus, and
the cross-sectional area are fuzzy variables. Thus, the above
equation can be rewritten as

~ε =
F + Δ~FE λ, δð Þ
~E λ, δð Þ~A λ, δð Þ

=
L − ~L0 λ, δð Þ
~L0 λ, δð Þ

, ð6Þ

where ~ε is the fuzzy strain; ~E is the fuzzy elastic modulus; ~A
is the fuzzy cross-sectional area; ~L0 is the fuzzy unstretched
length; Δ~FEðλ, δÞ is the fuzziness of the cable tension caused
by uncertainty of elastic deformation; see below.

Δ~FE λ, δð Þ = L − ~L0 λ, δð Þ
~L0 λ, δð Þ

~E λ, δð Þ~A λ, δð Þ − F: ð7Þ

According to the fuzzy set theory, the above equation
can be rewritten as

Δ~FE λ, δð Þ = L − lc0 λð Þ + lr0 λð Þδ½ �
lc0 λð Þ + lr0 λð Þδ Ec λð Þ + Er λð Þδ½ �

� Ac λð Þ + Ar λð Þδð Þ½ � − F,
ð8Þ

where lc0 and lr0 are the midvalue and the amplitude of the
unstretched length; Ec and Er are the midvalue and the
amplitude of the elastic modulus; Ac and Ar are the midvalue
and the amplitude of the cross-sectional area.

3.1.2. Uncertainty of Thermal Deformation. According to the
thermoelasticity theory, the thermal strain εT of a cable is
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directly proportional to the temperature difference ΔT , spe-
cifically as follows.

εT = αΔT , ð9Þ

where α is the coefficient of thermal expansion.
The tension uncertainty caused by thermal deformation

can be equivalent to

Δ~FT = EAαΔT: ð10Þ

Considering the uncertainties of the temperature differ-
ence, the coefficient of thermal expansion, the elastic modu-
lus, and the cross-sectional area, the uncertainty of the
tension caused by the thermal deformation can be obtained
as

Δ~FΔT λ, δð Þ = ~E λ, δð Þ~A λ, δð Þ~α λ, δð ÞΔ~T λ, δð Þ, ð11Þ

where Δ~FΔT is the fuzziness of the cable tension caused by
the uncertainty of the temperature difference; ~α is the fuzzy
coefficient of thermal expansion; Δ~T is the fuzzy tempera-
ture difference.

According to the fuzzy set theory, the above equation
can be rewritten as

Δ~FΔT λ, δð Þ = Ec λð Þ + Er λð Þδ½ � Ac λð Þ + Ar λð Þδ½ �
� αc λð Þ + αr λð Þδ½ � ΔTc λð Þ + ΔTr λð Þδ½ �,

ð12Þ

where αc and αr are the midvalue and the amplitude of the
coefficient of thermal expansion, respectively; ΔTc and ΔTr

are the midvalue and the amplitude of the temperature
difference.

3.1.3. Uncertainty of Tension Measurement. There will be
some uncertainties when applying and measuring cable ten-
sions. Defining the fuzzy tension caused by manufacture and
measure as Δ~FM , the following equation can be obtained.

Δ~FM λ, δð Þ = ΔFc
M λð Þ + ΔFr

M λð Þδ, ð13Þ

where ΔFc
M and ΔFr

M are the midvalue and the amplitude of
the fuzzy tension caused by manufacture and measure.

3.1.4. Equivalent Fuzzy Tension. Combining Equations (8),
(12), and (13), the equivalent fuzzy tension can be obtained
as

~Ftotal λ, δð Þ = F + Δ~FE λ, δð Þ + Δ~FT λ, δð Þ + Δ~FM λ, δð Þ, ð14Þ

where F~total is the equivalent fuzzy tension.

3.2. Surface Accuracy Analysis for a Fuzzy Cable Net
Structure. For an arbitrary node j connected by some cables,
the force balance equations can be obtained as

〠
Sj

j∈Sj

~Fij

~xj − ~xi
~Lij

= 0,

〠
Sj

j∈Sj

~Fij

~yj − ~yi
~Lij

= 0,

〠
Sj

j∈Sj

~Fij

~zj − ~zi
~Lij

= 0,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð15Þ

where ~Fij denotes the fuzzy tension of the cable connected to
nodes i and j; ð~xi, ~yi, ~ziÞ is the fuzzy coordinates of node i; Sj

5

94
(258)

(a)

Front cable net

Tension ties

Back cable net

(b)

Figure 1: Circular truss cable net structure: (a) top view; (b) side view.

Table 1: Geometric parameters of the cable net structure.

Items Value

Diameter of aperture 7m

Focal lengths of front and back cable net 4m

Piecewise number 5

Cable radius 1mm

Elastic modulus of cables 20GPa

Coefficient of thermal expansion 2 × 10−7
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is the set of all cables connected to node j; ~Lij is the fuzzy
length of the cable connected to nodes i and j.

According to Section 3.1, the fuzzy tension ~Fij can be
obtained by Equation (14).

~Fij λ, δð Þ = Fij + Δ~Fij,E λ, δð Þ + Δ~Fij,T λ, δð Þ + Δ~Fij,M λ, δð Þ:
ð16Þ

In order to consider the effects of geometric and tension
uncertainties simultaneously, a fuzzy force density is intro-
duced as follows.

~qij λ, δð Þ =
~Fij λ, δð Þ
~Lij λ, δð Þ

: ð17Þ

Referring to the force density method [8], the static equi-
librium equations can be obtained as follows.

CT
s
~QCs~x λ, δð Þ = 0,

CT
s
~QCs~y λ, δð Þ = 0,

CT
s
~QCs~z λ, δð Þ = 0,

8>><
>>: ð18Þ

where ~Q is a diagonal matrix containing fuzzy force densities;
Cs is the incidencematrix of the cable net structure; ~xðλ, δÞ is a
column vector of x-coordinates; ~yðλ, δÞ is a column vector of y
-coordinates; ~zðλ, δÞ is a column vector of z-coordinates. If

some nodal coordinates are given, e.g., these nodes are
attached to a foundation, Cs can be partitioned as

Cs = Cu Cf

� �
, ð19Þ

where the restrained nodes have been put at the end of the
numbering sequence. Equation (18) can be rewritten as

~xu λxu , δ
� �

= − CT
u
~QCu

� �−1
CT
u
~QCf ~x f λ, δð Þ,

~yu λyu , δ
� �

= − CT
u
~QCu

� �−1
CT
u
~QCf ~y f λ, δð Þ,

~zu λzu , δ
� �

= − CT
u
~QCu

� �−1
CT
u
~QCf ~z f λ, δð Þ,

ð20Þ

where ~xu, ~yu, and ~zu are the column vectors of unknown x-, y-,
and z-coordinates; ~x f , ~y f , and ~z f are the column vectors of the
given x-, y-, and z-coordinates, respectively.

Taking the ideal coordinates fx0, y0, z0g as a reference, the
fuzzy root-mean-square error (RMS), which can be used to
evaluate the structure accuracy, can be obtained as follows.

~wrms λ, δð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xu − x0k k22 + ~yu − y0k k22 + ~zu − z0k k22

� �
Nu

,

s
ð21Þ

where Nu is the number of the nodes with unknown
coordinates.

Table 2: Fuzzy parameters of the cable net structure.

Item
L0 mmð Þ T °Cð Þ E Pað Þ A mm2� �

F Nð Þ α 10−7/°C
� �

aL σL aT σT aE σE aA σA aF σF aα σα

Value L0 0.1% 0 10 2 × 1010 1% π 0.01 F 0.1 2 0.01
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Figure 2: The distribution of the membership functions for three equivalent fuzzy tensions.
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4. Optimization Model for Adjustment of a
Cable Net Structure under Multi-
Uncertainties

The force density of an adjustable cable connected to nodes i
and j can be modified as

~qij =
~Fij

~Lij − aij
, ð22Þ

where aij is the adjustment amount of the cable.
Substituting Equation (22) into Equation (20), the cable

net structure after adjustment can be obtained and the sur-
face accuracy can be then calculated by Equation (21). Base

on this, we establish the following optimization model,
which can be solved by the advance and retreat algorithm
[21], for the adjustment of the cable net structure under
multi-uncertainties:

Find  aij
	 


min  mean ~wrmsð Þ
s:t: Equation 20ð Þ
 gij1 = a0 − aij

�� �� ≤ 0

 gij
2 =

~Fij

~Lij − aij
> 0

ð23Þ
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Figure 3: The distribution of the membership functions for the total equivalent fuzzy tension.

M
em

be
rs

hi
p 

fu
nc

tio
n 

va
lu

e

Uncertainty of RMS

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMS (mm)

(26.2857, 0.8)

(60.3079, 0.6)

Figure 4: Distribution of the membership function for RMS.

5International Journal of Aerospace Engineering



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of iteration

15

20

25

30

35

40

45

16.0695

1041.8

RM
S 

(m
m

)

𝜆=0.01

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of iteration

0

10

20

30

40

50

60

70

RM
S 

(m
m

)

𝜆= 0.60

3.8975

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of iteration

0

5

10

15

20

25

30

RM
S 

(m
m

)

2.9868

𝜆= 0.80

(c)

Figure 5: Continued.
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where faijg is the set of adjustment amount containing all
adjustable cables; meanð~wrmsÞ is the mean value of the
fuzzy RMS; a0 is the minimum adjustment length; gij

1
denotes an inequality constraint that the aij cannot be
smaller than the minimum adjustment amount a0 which
is dependent on the engineering practice; and gij2 denotes
an inequality constraint that the force density of the cables
must be positive due to the fact that the cable has no
compressive rigidity.

The adjustment progress of the cable net structure under
multi-uncertainties is as follows.

Step 1. Uniformly discrete the horizontal cut set λ into λi

(i = 1, 2, 3,⋯). When k = 0 and horizontal cut set is equal
to λi, solve initial node coordinates and initial cable tensions
by membership function of fuzzy variables.

Step 2. Calculate adjustment amount faijgðkÞ by Equation
(23).

Step 3. Update fuzzy force density matrix ~QðkÞ
by Equation

(22). Update node coordinates and cable tensions by Equa-
tion (20). Calculate ~wðkÞ

rms by Equation (21).

Step 4.When ~wðkÞ
rms ≤ εideal (εideal is a given ideal RMS), turn to

Step 5; else, let k = k + 1 and turn to Step 2.

Step 5. Record the optimal objective function value and
design variable value under level cut set λi. When λi = 1,
turn to Step 6; else, let i = i + 1; turn to Step 1.

Step 6. The distribution of membership function of the
adjusted RMS is obtained by curve fitting.

5. Numerical Example

Take a cable net structure which has been applied to the
hoop truss reflectors as an example to illustrate the proposed
method. As shown in Figure 1, the cable net structure is

composed of a front cable net, a back cable net, and tension
ties, among which the front cable net is usually used to sup-
port the wire mesh to reflect electromagnetic wave and ten-
sion ties are adjustable cables. The geometrical parameters
and the material parameters of the cable net structure are
shown in Table 1, and the uncertain parameters are shown
in Table 2. In this example, the membership functions of
the fuzzy variables obey a normal distribution of which the
function can be written as

μ xð Þ = exp −
x − a
σ

� �2
� 


σ > 0, x ∈ R, ð24Þ

where a and σ are the mean and the standard deviation of
the fuzzy variable, respectively.

5.1. Equivalent Fuzzy Cable Tensions. When the λ-level cut
value is specified as 0.01, 0.02 ... 0.99, and 1.0, respectively,
for the fuzzy variables, the interval value of the equivalent
fuzzy cable tension ~Fijðλ, δÞ corresponding to the λ-level
cut set can be obtained by Equation (16). Then, the discrete
intervals can be connected and fitted to obtain the member-
ship distribution curve of the equivalent fuzzy cable tension
~Fij. Taking cable 258 which is connected to nodes 49 and 5
as shown Figure 1 as an example, the cores of the cable
length and the cable tension are 0.6132m and 9.4495N,
respectively. The distributions of the membership functions
for the cable tensions caused by elastic deformation uncer-
tainty (k = 1), thermal deformation uncertainty (k = 2), and
tension measurement uncertainty (k = 3) can be obtained
by Equations (13), (18), and (19) and drawn in Figure 2.

It can be seen from the figure that the fuzziness of the

three equivalent tensions ~F
k
ij ∈ ½−0:01, 0:01�N (i = 49, j = 5,

k = 1, 2, 3) when the cut level λ > = 0:6, that is to say the
membership degrees of the equivalent fuzzy tensions are

greater than 0.6 when j~Fk
ijj < = 0:01 (i = 49, j = 5, k = 1, 2, 3).

By Equation (23), the distribution of the membership func-
tion for the total equivalent fuzzy tension can be obtained
and shown as Figure 3, from which it can be seen that ~Fij ∈
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Figure 5: RMS iterative process under different cut levels: (a) λ = 0:01; (b) λ = 0:60; (c) λ = 0:80; (d) λ = 1:00.
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½9:44, 9:46� when the cut level is greater than 0.6 and the
curve obeys the normal distribution with 9.4495N mean
and 0.0131N standard deviation.

5.2. Surface Accuracy Analysis.Due to the measurement error,
the nodal positions are also of uncertainty. It is assumed that
the membership function for the nodal coordinates obeys
the normal distribution with zero mean and 1mm standard
deviation. According to Equation (23), the membership func-
tion for RMS can be obtained as shown in Figure 4. The curve
is an addition of multiple Gauss curves but not a single normal
distribution curve. It can be seen from the figure that RMS
< 60:3079mm when the degree of the membership is greater
than 0.6 and RMS < 26:2857mm when the degree of the
membership is greater than 0.8. The fuzziness of the surface
accuracy is dispersed, and further adjustment should be car-
ried out to increase the surface accuracy.

5.3. Adjusting the Cable Net Structure. To calculate the
adjustment amount of the tension ties, the advance and
retreat algorithm is used to solve the optimization model
introduced in Section 4, and the RMS value changes in the
interactive process are drawn in Figure 5 with the level cut
set specified as 0.01, 0.6, 0.8, and 1.0, respectively, for exam-
ple. From the iterative curves, it can be seen that the conver-
gence speeds are fast in the first 10 steps and the RMS are
rapidly decreased, but after that the convergence speed slows
down; repetitive adjustment work is needed. What is more, it
can be seen from Figure 5, the closer the λ-level cut value is
to 1, the smaller the deviation of the RMS is. When λ = 1:00
with a small initial RMS, the coupling effect of front nodes is
significant. It may occur that adjusting the tension tie can
make the front nodes directly connected to it closer to the
ideal position, but the nodes around tensioning tie are
affected to deviate from the ideal position, thus making the
adjusted RMS larger. This phenomenon makes the adjust-
ment efficiency of advance and retreat algorithm reduced
when RMS is small.

The results after 20 iterations are chosen to be the adjust-
ment amount. After adjusting, the RMSs at different cut

levels are drawn in Figure 6. It can be seen that RMS <
3:8975mm when the degree of the membership is greater
than 0.6, and RMS < 2:9868mm when the degree of the
membership is greater than 0.8. Compared with the initial
surface accuracy, the fuzziness of the surface accuracy is
concentrated and the surface accuracy is increased.

6. Conclusion

We have developed a surface adjustment method for the
cable net structures under multi-uncertainties including
elastic deformation uncertainty, thermal deformation uncer-
tainty, and measurement uncertainty.

The main contributions of this paper are presented as
follows. (1) The uncertain variables are considered as the
fuzzy values, membership functions, and λ-level cut sets
are introduced to describe the fuzzy values. (2) The elastic
deformation uncertainty, thermal deformation uncertainty,
and tension measurement uncertainty are equivalent into a
total equivalent fuzzy tension to simplify calculation. (3)
The force density method is applied to modeling static equi-
librium equations for cable net structures with fuzzy param-
eters. (4) An optimization model for the adjustment of cable
net structures under multi-uncertainties is established.

According to the numerical example, the following con-
clusions can be summarized. (1) Using the advance and
retreat algorithm to solve the optimization model can
achieve fast convergence. (2) The adjustment efficiency of
advance and retreat algorithm will be reduced when the ini-
tial RMS is small. (3) This method can be used to obtain the
uncertainty distribution of the surface accuracy of cable net
structure without sample only by engineering experience.
(4) The fuzziness of the surface accuracy can be concen-
trated effectively by the proposed method.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Limited by the effective launch capacity of a rocket, the deployable antenna is very important in the design of spaceborne antenna
array. Compared to traditional deployable antenna, flexible coilable antenna array has higher surface precision and better
vibration control and therefore is more suitable for high frequency communication. In order to minimize the weight of satellite
and reduce cost of its launch, a design guideline to the geometry parameters of flexible coilable antenna array is crucial.
Existing models cannot be directly applied to interaction and large deformation between coilable membrane and conical spiral
antenna in the flexible coilable antenna array. Hence, the geometry parameters of the conical spiral structure and the thickness
of the coilable membrane in the flexible coilable antenna array have not been optimized yet. In this paper, the interaction
between the coilable membrane and the concial spiral antenna is analyzed in the antenna array. A concise formula is derived
to predict the critical force that flattens the conical spiral antenna by a coiling scroll. Combined with a theoretical model to
predict the deformation of the membrane, the model provides an important theoretical support for the lightweight design and
mechanical design of flexible coilable antenna array, such as the thickness of the coilable membrane. The proposed design is
validated by experiments. The above findings have potential applications in the effective reduction of antenna array weight and
satellite launch costs.

1. Introduction

Antenna is an important terminal in information trans-
mission system [1–4]. Limited by the effective launching
capacity of the rocket, the existing large-scale spaceborne
antenna array is usually folded to reduce the space occu-
pied at the launching stage [5–8] and then deployed in
orbit and responsible for communication transmission.
For example, tensegrity-membrane and umbrella antenna
have been put into use on the satellite [9–11]. Due to fold-
ing traces on the antenna surface, these folded antennas
have problems such as large overall weight and poor shape

accuracy [12–15]. Hence, it is difficult to apply in high-
frequency communication which requires strict control of
membrane deformation and vibration [16–18]. Inspired
by serpentine design with low strain in two-dimensional
(2D) flexible electronics [19–22], flexible coilable antenna
array with 2D patch antennas can overcome the above
problems [23]. However, the 2D patch antenna behaving
linear polarization cannot handle the ionosphere of the
atmosphere compared with 3D spiral antennas behaving
circular polarization [24]. Hence, we propose a new con-
cept of a spaceborne antenna array, i.e., a flexible coilable
array with resilient spiral antennas which behave linear
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polarization and has a low strain under the compression,
as shown in Figure 1. This coilable array has advantages
such as high shape accuracy and deployment and small
impact and vibration, which has not been used on satel-
lites at present.

When the flexible coilable antenna array is coiling, the
conical spiral antenna would be compressed and combined
with coilable membrane. There may be two extremely unfa-
vorable deformation conditions at this time. When the
thickness of the coilable membrane is too large, the mem-
brane is too rigid to roll and also overweight. On the other
hand, when the thickness of the membrane is too small,
the membrane is too compliable to compress conical spiral
antennas on the surface of the scroll. Therefore, a theoretical
model is essential to determine the minimum thickness
required for the coilable membrane to fully compress the
conical spiral antenna and to achieve lightweight design of
membrane to optimize the launching cost. However, during
the coiling process, the conical spiral antenna from the outer
ring to the inner ring gradually contacts the bottom surface
of membrane. The conical spiral antenna has a complex,
large deformation and displacement, exhibiting significant
nonlinearity [25–28]. It remains challenging to model the
mechanics design of conical spiral antenna for flexible coil-
able antenna array. The widely used close-coiled spring the-
ory and sparse-coiled spring theory are only suitable for
small deformation in the linear elastic regime [29–33]. In
addition, there are some nonlinear theories in consideration
of the change of the helix angle [34–37]. However, the con-
straint of the underlying membrane on the deformation of
the spring structure is not considered, such that these
models cannot be applied to the coiling process. Finite ele-
ment models were adopted to obtain the deformation pro-
cess of a general conical spiral antenna [38–41] but could
not lead to any analytical solution or scaling law [42–44].
It is of great significance to the lightweight design and
mechanical design of the flexible coilable antenna array.

This paper is arranged as follows: the coiling behavior of
the flexible coilable antenna array with conical spiral anten-
nas is studied. The deformation between the coilable mem-
brane and the spiral antenna is deduced during the coiling
process. The finite element method and the phototype are
used to verify the accuracy of the theoretical derivation. This
provides modeling and numerical support and theoretical
guidance for the design of conical spiral antenna and the
selection of membrane thickness.

2. Structural Model of the Flexible Coilable
Antenna Array

Figure 1 shows a schematic diagram of flexible coilable
antenna array with three-dimensional (3D) conical spiral
antennas during the coiling process. The coilable antenna
array is mainly composed of a feed, a flexible coilable mem-
brane, and several conical spiral antennas. A large number of
conical spiral antennas are uniformly distributed on the coil-
able membrane. One end of the conical spiral antenna is
fixedly connected with the coilable membrane, and the other
end is traction-free. The membrane is rolled up by a drive

motor to compress the coilable antenna array and press it
on the scroll, as shown in Figure 1(b). After the coilable
antenna array enters its orbit, the coilable membrane rotates
in the opposite direction and unfolds such that the antennae
return to the original 3D state due to elasticity, as shown in
Figure 1(d).

For ease of analyzing the mechanical behavior of the
coilable antenna array, this antenna model would be simpli-
fied as coilable membrane with conical spiral antenna. Dur-
ing the coiling process, the straight portion of the coilable
membrane (see Figure 1(d)) has rigid-body displacement
in the horizontal direction without deformation. The coiled
portion presses and deforms the spiral antenna. The conical
spiral antenna is a tubular structure fabricated by highly
elastic material. The inner cavity of the conical spiral tube
(typical diameter is greater than 1mm) is arranged with a
metal wire as a radiating element (typical diameter is less
than 0.2mm). The mechanical behavior of the spiral tube
is considered at this time since the metal wire is thin.

At the moment of contact, the height H of the antenna
and the radius Rr of the scroll are related geometrically via
(see Figure 2(a))

2 sin2 α2 = H
Rr

: ð1Þ

To ensure that the conical spiral antenna can be flattened
rather than tipped during the coiling process, the contract
angle α between the antenna and the membrane should be
close to zero for a vertical pressing. Given the height of the
conical spiral antenna, this requires the radius of the scroll
to be sufficiently large, so that the height of the conical spiral
antenna is much smaller than the radius of the scroll. There-
fore, the interaction between the coilable membrane and one
conical spiral antenna can be regarded as the vertical force
applied by two planar membranes.

Figures 2(b) and 2(c) show the cross section of the con-
ical spiral antenna, which define geometric parameters of the
flexible coilable antenna array. Thickness of the coilable
membrane is defined as bm. Rr represents the radius of the
scroll. Pitch of the conical spiral antenna is defined as t. Rn
and R1 are the upper and lower radius of the conical spiral
antenna. From the biggest layer to the smallest layer for
the radius of the conical spiral antenna, it numbers as 1, 2,
i, and n, successively. d is the diameter of the conical spiral
antenna. b is the ratio of the inner and outer diameter of
the conical spiral antenna. L is the total length of the conical
spiral antenna, which is equal to nπðR1 + RnÞ. The radius of
the ith layer is Ri = R1 − i/nðR1 − RnÞ.

3. Mechanical Behavior of Conical
Spiral Antenna

For the spiral antenna to be fully flattened in the coiling pro-
cess, the membrane rigidity needs to be much larger than the
antenna rigidity, such that the membrane deformation is
much smaller than the antenna deformation. Therefore,
the mechanical behaviors of the conical spiral antenna can
be analyzed without consideration of the membrane
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deformation. The bottom end of the conical spiral antenna is
fixedly connected to the bottom of coilable membrane, and
the contact force F from the top membrane is applied verti-
cally on the top end. During the compressive process, the
bottom of the spiral antenna would be in contact with the
coilable membrane of the antenna and no longer separate.

Because the conical spiral antenna has a small helix
angle, the deformation is dominated by torsion. It is differ-
ent for the force required to flatten each layer of the conical
spiral antenna. Initially, for a small deformation, the dis-
placement of the antenna at the contact position, induced

by the contact force, can be obtained analytically as

δ =
ðL
0

F ⋅ R2

GIp
ds =

ðR1

Rn

2πFR3n
GIp R1 − Rnð Þ dR = nπF R1

4 − Rn
4� �

2GIp R1 − Rnð Þ ,

ð2Þ

where a polar angle θ of the conical spiral antenna goes
downward from the smallest to the biggest for the radius.
ds = Rdθ = ð2πnR/R1 − RnÞdR is the derivative of the conical
spiral antenna. G is the shear modulus. Ip = πd4ð1 − λ4Þ/32
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Figure 2: (a) Geometric relationship between scroll and conical spiral antenna. (b) Cross section of conical spiral antenna at the initial state.
(c) Cross section of conical spiral antenna under partial compression.
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Figure 1: Schematic illustration of flexible coilable antenna array with conical spiral antenna.
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is the polar moment of inertia of the hollow circular sec-
tion with respect to center of circle for the conical spiral
antenna. λ =D/d is the ratio of inside and outside diame-
ters of the tube.

The stiffness in the ith layer for the conical spiral
antenna can be expressed as ki =GIp/πR3

i based on the tor-
sional theory with small deformation. When the force
exceeds a critical value,

F1 =
tGIp
2πR3

1
: ð3Þ

The first layer before all others of the spiral antenna is
fully flattened on the membrane and no longer has displace-
ment. At this moment, the displacement at the contact posi-
tion with the membrane is t. When the pressing force
further increases, the model can be regarded as a spring with
outer radius R2 replacing R1 in the previous analysis. In gen-
eral, the displacement can be obtained similarly as

δ = i ⋅ t + nπF R4
i − R4

n

� �
2GIp R1 − Rnð Þ = n

R1 − Rn

πF
2GIp

R4
i − R4

n

� �
+ t R1 − Rið Þ

" #
:

ð4Þ

The maximum force required to flatten all layers of the
conical spiral antenna is

F0 =
tGIp
2πR3

n

: ð5Þ

Based on Equation (6), the normalized displacement nt
− δ/nt can be expressed in terms of normalized force F/F0 as

nt − δ

nt

� �
R1
Rn

− 1
� �

= 3
4

F0
F

� �1/3
+ F
4F0

− 1: ð6Þ

Equation (6) illustrates that the maximum compressive
force is closely related to the third power of the minimum
radius of the conical spiral antenna. Equation (7) gives the
quantitative relationship between normalized force and dis-
placement during compression. At the initial stage of com-
pression, the force on the conical spiral antenna is linearly
proportional to its displacement. When F approaches F0, the
normalized force increases rapidly with the normalized dis-
placement. The stiffness of the conical spiral antenna increases
during the entire compressive process.

Numerical simulation is performed to validate the above
analytical model. Several 3D geometric models of the conical
spiral antenna are established in different geometric param-
eters (G, t, d, R1, Rn, etc.) by using a modeling software UG.
The finite element model of the conical spiral antenna is
established by using the commercial software ABAQUS.
The upper and lower membranes are defined by analytical
rigid body, as shown in Figures 2(b) and 2(c). And there is
a friction between the top of the antenna and the upper
membrane. The beam element is applied to the coilable
antenna model. Hence, there is a complex nonlinear contact

between the conical spiral antenna and the membrane in the
numerical model, making it difficult to predict the maxi-
mum force. When the conical spiral is fully flattened, it has
a great effect on the convergence and accuracy of the numer-
ical results. Therefore, the corresponding force extracted as a
comparison, when the normalized displacement is 60-90%.
As shown in Figure 3, the force and displacement in the the-
oretical solution are validated by finite element analysis
(FEA) without any parameter fitting, for the conical spiral
antenna with polypropylene (PP) material. The baseline for
the geometrical and material parameters of conical spiral
antenna are E = 890MPa, d = 1mm, λ = 0:2, R1 = 2:5mm,
Rn = 14mm, t = 4mm, and n = 5. The parameter ð1 − δ/ntÞ
ðR1/Rn − 1Þ has a large of range.

It can be seen that there is a high nonlinearity between
the normalized force and displacement in the conical spiral
antenna. It is shown that, through the numerical analysis,
the changes of geometric parameters for the conical spiral
antenna have no effect on the nonlinear relationship. It is
proved that numerical results are highly consistent with
the theoretical results. Therefore, this derived theory can
be used to estimate the compressive force and displacement.
In turn, it can be used for the design of conical spiral
antenna structure yet.

4. Thickness of Coilable Membrane

The foregoing studies have investigated the deformation
behavior of the conical spiral antenna under the force
applied by two parallel membranes. Dozens of conical spiral
antennas are periodically arrayed on the coilable membrane
in both the circumferential and the axial directions, where
the spacing between adjacent antennas is defined as w1
and w2, respectively. As the spacing is much smaller than
the membrane size, the period force F applied by the conical
spiral antenna on the rolled membrane is equivalent to a
uniform pressure P = F/w1 ⋅w2 in both circumferential and
axial directions. The larger the diameter of the scroll, the
greater the thickness (bm) of the membrane can be wound.
The increasing thickness magnifies the rigidity of the mem-
brane itself, and the total weight of the antenna increases at
the same time. To optimize the flight cost of the spacecraft, it
is necessary to determine the minimum thickness required
by the coilable membrane to fully compress the antenna.

For the pressure P applied by the conical spiral antenna
much smaller than the elastic modulus (Em) of membrane,
i.e., P≪ Em, the induced membrane deformation (ΔRr) is
small and linearly elastic, as shown in Figure 4. The Pois-
son’s ratio of the membrane is defined as νm. The stress in
circumferential direction of the membrane can be obtained
from force balance as

σφ =
P ⋅ 2πRrWm

2 ⋅ bmWm
= P ⋅ πRr

bm
: ð7Þ

Noticing that the strain in radial direction is negligible
for a membrane with small thickness, the membrane defor-
mation is
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ΔR
Rr

= εφ =
πRrP 1 − νm − 2νm2� �
Em ⋅ bm ⋅ 1 − νmð Þ : ð8Þ

When the conical spiral antennas are fully flattened, the
membrane deformation is equal to the cross-sectional diam-
eter of the conical spiral structure, i.e., ΔR = d, and a pres-
sure applied by the membrane with thickness bm is
Emdbmð1 − νmÞ/πR2

r ð1 − νm − 2νm2Þ. According to Equation
(6), the pressure needs to be larger than tGIp/2πw1 ⋅w2R

3
n

for the membrane to fully flatten the antenna, i.e.,

Emdbm 1 − νmð Þ
πR2

r 1 − νm − 2νm2ð Þ ≥
tGIp

2πw1 ⋅w2R
3
n

: ð9Þ

Hence, with the other parameters given, the required
thickness of the membrane is

bm > bmin =
tGIpR

2
r 1 − νm − 2νm2� �

2w1w2dEmR
3
1 1 − νmð Þ : ð10Þ

The minimum thickness bmin of the membrane can be
calculated, which is related to the geometrical and material
parameters and the arrangement density of the conical spiral
antenna. Taking the C-band conical spiral antenna with
polymer as an example, the geometrical and material param-
eters of conical spiral antenna and membrane and the calcu-
lated minimum thickness bmin are shown in Table 1. Finally,
one prototype for flexible coilable antenna array with conical
spiral antennas is fabricated as shown in Figure 5. The
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Figure 4: Schematic illustration of the membrane deformation after coiling.
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thickness of the coilable membrane fabricated by polyethyl-
ene terephthalate (PET) is 0.1mm, and the diameter of con-
ical spiral antenna fabricated by polypropylene (PP) is 1mm.
Twelve conical spiral antennas are periodically arrayed on
the coilable membrane in both the circumferential direction
with 50mm and the axial direction with 50mm. The radius
of scroll is 75mm. Under the action of the membrane, the
conical spiral antennas can be fully flattened and resiled dur-
ing the coiling and outspreading processes, separately, as
shown in Figure 5.

5. Conclusion

The flexible coilable antenna array with conical spiral
antenna is a brand new spaceborne array. This paper inves-
tigates mechanical behavior of the flexible coilable antenna
array during the coiling process. A theoretical relationship
of the conical spiral antenna is given between normalized
force and displacement, which exhibits a high nonlinear
behavior. FEA is performed to validate the above theoretical
model. Furthermore, the thickness of the coilable membrane
to fully flatten the antenna can be predicted by an analytical
solution about the geometrical and material parameters
between the coilable membrane and the conical spiral
antenna. This research provides important theoretical sup-
port for the design and fabrication of the flexible coilable
antenna array with conical spiral antennas.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors gratefully acknowledge the financial supports of
NSFC (Grant Nos. U20A6001, 11625207, 11921002, and
12102223) and State Key Laboratory for Strength and Vibra-
tion of Mechanical Structures (SV2021-KF-09).

References

[1] Z. Xie, R. Avila, Y. Huang, and J. A. Rogers, “Flexible and
stretchable antennas for biointegrated electronics,” Advanced
Materials, vol. 32, no. 15, p. 1902767, 2020.

[2] Y. Zhang, D. C. Castro, Y. Han et al., “Battery-free, lightweight,
injectable microsystem for in vivo wireless pharmacology and
optogenetics,” Proceedings of the National Academy of Sci-
ences, vol. 116, no. 43, pp. 21427–21437, 2019.

[3] Z. Xie, B. Ji, and Q. Huo, “Mechanics design of stretchable near
field communication antenna with serpentine wires,” Journal
of Applied Mechanics -Transactions of the ASME, vol. 85,
no. 4, 2018.

[4] S. Kanaparthi, V. R. Sekhar, and S. Badhulika, “Flexible, eco-
friendly and highly sensitive paper antenna based electrome-
chanical sensor for wireless human motion detection and
structural health monitoring,” Extreme Mechanics Letters,
vol. 9, pp. 324–330, 2016.

[5] C. Wang, Y. Wang, P. Lian et al., “Space phased array antenna
developments: a perspective on structural design,” IEEE Aero-
space and Electronic Systems Magazine, vol. 35, no. 7, pp. 44–63,
2020.

[6] H. Fang, M. Lou, J. Huang, L. Hsia, and G. Kerdanyan, “Design
and development of an inflatable reflectarray antenna,” IPN
Progress Report, vol. 149, pp. 1–18, 2002.

[7] H. Wang, D. Zhao, Y. Jin, M. Wang, T. Mukhopadhyay, and
Z. You, “Modulation of multi-directional auxeticity in hybrid
origami metamaterials,” Applied Materials Today, vol. 20,
p. 100715, 2020.

[8] H. Yang, H. Guo, Y. Wang, J. Feng, and D. Tian, “Analytical
solution of the peak bending moment of an M boom for mem-
brane deployable structures,” International Journal of Solids
and Structures, vol. 206, pp. 236–246, 2020.

(a) (b)

Figure 5: Prototype of the fabricated flexible coilable antenna array.

Table 1: Parameters of membrane and conical spiral antenna.

Antenna, membrane ν, νm t (mm) E, Em (MPa) d (mm) Rr (mm) w1, w2 (mm) R1 (mm) bm (mm)

PP, PET 0.42, 0.32 4 890, 4000 1 100 40, 40 2 0.018

PI, PI 0.34, 0.34 4 4000, 4000 1 100 40, 40 2 0.087

6 International Journal of Aerospace Engineering



[9] S. Zhang, J. Du, B. Duan, G. Yang, and Y. Ma, “Integrated
structural–electromagnetic shape control of cable mesh reflec-
tor antennas,” AIAA Journal, vol. 53, no. 5, pp. 1395–1399,
2015.

[10] P. K. C. Wang and J. C. Sarina, “Control of reflector vibrations
in large spaceborne antennas by means of movable dampers,”
Journal of Applied Mechanics-Transactions of the Asme,
vol. 50, no. 3, pp. 669–673, 1983.

[11] Y. Liu, F. Pan, B. Ding, Y. Zhu, K. Yang, and Y. Chen, “Multi-
stable shape-reconfigurable metawire in 3D space,” Extreme
Mechanics Letters, vol. 50, article 101535, 2022.

[12] Y. Rahmat-Samii and R. Haupt, “Reflector antenna develop-
ments: a perspective on the past, present and future,” IEEE
Antennas and Propagation Magazine, vol. 57, no. 2, pp. 85–
95, 2015.

[13] Z. M. Xia, C. G. Wang, and H. F. Tan, “Quasi-static unfolding
mechanics of a creased membrane based on a finite deforma-
tion crease–beam model,” International Journal of Solids and
Structures, vol. 207, pp. 104–112, 2020.

[14] S. Yang and C. Sultan, “Deployment of foldable tensegrity-
membrane systems via transition between tensegrity configura-
tions and tensegrity-membrane configurations,” International
Journal of Solids and Structures, vol. 160, pp. 103–119, 2019.

[15] X. Wu, R. Cheng, T. H. T. Chan, G. Liu, and J. Xia, “Algorithm
for rapidly predicting the worst surface accuracy of deployable
mesh reflectors,” Applied Mathematical Modelling, vol. 98,
pp. 229–244, 2021.

[16] S. H. Eedala, S. Elakiyaa, R. Nethra, R. Asha, and
M. Jayakumar, “Design of helical array antenna based ground
terminal for satellite communication on the move,” in 4th
International Conference on Electronics, Communication and
Aerospace Technology, Coimbatore, India, Nov. 2020.

[17] J. Jiang, L. Zhang, N. Luo et al., “An ultra-wideband stacked
spiral-helix composite antenna,” in 14th European Conference
on Antennas and Propagation, Copenhagen, Denmark, March
2020.

[18] M. A. Elmansouri, J. B. Bargeron, and D. S. Filipovic, “Ultra-
wideband spiral-helix antenna array,” in Antennas and Propa-
gation Society International Symposium, Memphis, TN, USA,
July 2014.

[19] X. Meng, B. Liu, Y. Wang, T. Zhang, and J. Xiao, “Third-order
polynomials model for analyzing multilayer hard/soft mate-
rials in flexible electronics,” Journal of Applied Mechanics-
Transactions of the Asme, vol. 83, no. 8, 2016.

[20] K. Sim, S. Chen, Z. Li et al., “Three-dimensional curvy elec-
tronics created using conformal additive stamp printing,
Nature,” Electronics, vol. 2, no. 10, pp. 471–479, 2019.

[21] C. Wang, S. Zhang, S. Nie, Y. Su, W. Chen, and J. Song, “Buck-
ling of a stiff thin film on a bi-layer compliant substrate of
finite thickness,” International Journal of Solids and Structures,
vol. 188-189, pp. 133–140, 2020.

[22] T. Li and Z. Suo, “Deformability of thin metal films on elasto-
mer substrates,” International Journal of Solids and Structures,
vol. 43, no. 7-8, pp. 2351–2363, 2006.

[23] M. R. M. Hashemi, A. C. Fikes, M. Gal-Katziri et al., “A flexible
phased array system with low areal mass density, Nature,”
Electronics, vol. 2, no. 5, pp. 195–205, 2019.

[24] Y. Han, K. Hu, R. Zhao et al., “Design of combined printed
helical spiral antenna and helical inverted-f antenna for
unmanned aerial vehicle application,” IEEE Access, vol. 8,
pp. 54115–54124, 2020.

[25] M.Wu andW. Hsu, “Modelling the static and dynamic behav-
ior of a conical spring by considering the coil close and damp-
ing effects,” Journal of Sound and Vibration, vol. 214, no. 1,
pp. 17–28, 1998.

[26] V. Yildirim, “A parametric study on the free vibration of non-
cylindrical helical springs,” Journal of Applied Mechanics-
Transactions of the Asme, vol. 65, no. 1, pp. 157–163, 1998.

[27] Y. Luxenburg and S. Givli, “The static response of axisymmet-
ric conical shells exhibiting bistable behavior,” Journal of
Applied Mechanics-Transactions of the Asme, vol. 88, no. 11,
2021.

[28] R. Mirzaeifar, R. DesRoches, and A. Yavari, “A combined ana-
lytical, numerical, and experimental study of shape-memory-
alloy helical springs,” International Journal of Solids and Struc-
tures, vol. 48, no. 3-4, pp. 611–624, 2011.

[29] T. Iritani, A. Shozaki, B. Sheng, M. Sugimoto, T. Okazaki, and
M. Aketa, “70 Prediction of the dynamic characteristics in
valve train design of a diesel engine,” SAE Transactions,
vol. 111, pp. 1–7, 2002.

[30] F. C. Grant, “Energy analysis of the conical-spring oscillator,”
American Journal of Physics, vol. 54, no. 3, pp. 227–233, 1986.

[31] M. Paredes and E. Rodriguez, “Optimal design of conical
springs,” Engineering with Computers, vol. 25, no. 2, pp. 147–
154, 2009.

[32] B. Zhou, Z. Wang, and S. Xue, “Mechanical model for super-
elastic helical spring of shape memory alloy, Journal of,”
Mechanical Engineering, vol. 55, no. 8, pp. 56–64, 2019.

[33] E. Rodriguez, M. Paredes, and M. Sartor, “Analytical behavior
law for a constant pitch conical compression spring,” Journal
of Mechanical Design-Transactions of the ASME, vol. 128,
no. 6, pp. 1352–1356, 2006.

[34] Y. He, G. Zou, X. Pan, F. Zhang, andW. He, “Nonlinear theory
and experimental study of helical spring,” Engineering
Mechanics, vol. 14, pp. 56–61, 1994.

[35] L. Hong, H. Yunzeng, and Y. Lihong, “Nonlinear theory of
conical helical spring,” Journal of Harbin Engineering Univer-
sity, vol. 26, pp. 628–632, 2005.

[36] J.-S. Chen and I. S. Chen, “Deformation and vibration of a spi-
ral spring,” International Journal of Solids and Structures,
vol. 64-65, pp. 166–175, 2015.

[37] N. V. Viet, W. Zaki, R. Umer, and Y. Xu, “Mathematical model
for superelastic shape memory alloy springs with large spring
index,” International Journal of Solids and Structures,
vol. 185-186, pp. 159–169, 2020.

[38] Z. Sen, C. Shaofeng, W. Huanding, and Q. Ting, “Finite ele-
ment analysis of spatial curved beam in large deformation,”
Journal of Southeast University, vol. 26, pp. 591–596, 2010.

[39] T. Meilan, W. Xinwei, and Z. Yong, “An efficient finite element
of spatial curved beams, Chinese Journal of,” Computational
Mechanics, vol. 1, pp. 78–82, 2005.

[40] D. F. Lalo, M. Greco, and M. Meroniuc, “Numerical modeling
and experimental characterization of elastomeric pads bonded
in a conical spring under multiaxial loads and pre-compres-
sion,” Mathematical Problems in Engineering, vol. 2019, 14
pages, 2019.

[41] J. Zhang, Z. Qi, Y. Zhuo, and S. Guo, “Stiffness analysis of helix
spring using exact geometric beam element,” Engineering
Mechanics, vol. 37, p. 16, 2020.

[42] K. Zhou and F. Xiao, “Contact simulation of cylindrical helical
spring based on Ansys,” Mechanical Engineering & Automa-
tion, vol. 212, pp. 60–64, 2019.

7International Journal of Aerospace Engineering



[43] X. Yuan, S. M.Won, M. Han et al., “Mechanics of encapsulated
three-dimensional structures for simultaneous sensing of pres-
sure and shear stress,” Journal of the Mechanics and Physics of
Solids, vol. 151, article 104400, 2021.

[44] S. Li, M. Han, J. A. Rogers, Y. Zhang, Y. Huang, and H. Wang,
“Mechanics of buckled serpentine structures formed via
mechanics-guided, deterministic three-dimensional assembly,”
Journal of the Mechanics and Physics of Solids, vol. 125,
pp. 736–748, 2019.

8 International Journal of Aerospace Engineering



Research Article
Pretension Design and Analysis of Deployable Mesh Antenna
considering the Effect of Gravity

Guanlong Su, Xiaofei Ma , Yang Li, Yesen Fan, and Hui Wang

Xi’an Institute of Space Radio Technology, Xi’an 710100, China

Correspondence should be addressed to Xiaofei Ma; maxf041600@sina.com

Received 17 March 2022; Revised 13 April 2022; Accepted 13 April 2022; Published 9 May 2022

Academic Editor: Tuanjie Li

Copyright © 2022 Guanlong Su et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The difference between the space and the earth environment has significantly influenced the shape accuracy of the antenna
reflector surface. With the increasing demand for the aperture of the antenna reflector, gravity has become one of the main
factors that restrict the accuracy. In this paper, a new method for pretension design considering the effect of gravity is
proposed. The design surface can be well restored to the ideal surface in orbit. Meanwhile, this method can avoid flipping
antenna reflectors or extensive experiments for modification during ground adjustment. Then, the feasibility and effectiveness
of the design method are validated by several numerical simulations. Moreover, the results are compared with the previous
method and the differences have been discussed in detail. Finally, the effects of cable radius, cable length, and elastic modulus
of the mesh reflector have been researched, respectively.

1. Introduction

The deployable mesh antennas are widely used in spatial
applications due to the good stowed/deployed ratio [1], such
as TerreStar antenna, Skyterra antenna, AstroMesh hoop
truss antenna, and the antenna of JAXA Engineering Test
Satellite. With the vigorous development of aerospace tech-
nology, the demand for large-scale space deployable anten-
nas is becoming urgent. At the same time, more
requirements emerge in the aspects such as tiny signal trans-
mission on the ground, great capacity of information trans-
mission, and the realization of the high resolution of remote
sensing. All of these lead to the necessity of a large aperture
deployable antenna with high accuracy [2]. As an indispens-
able component that highly affects accuracy, the cable net
structure is always one of the research hot pots. The cable
net structure is a family of flexible tension structures charac-
terized by geometric solid nonlinearities. The initial stiffness
and shape can be achieved by pretension design. The pur-
pose is to find a surface close to the desired surface under
specific tension loads. Therefore, the pretension distribution
plays a vital role in the surface accuracy of deployable mesh
reflectors.

To form a parabolic surface, the rigidity of deployable
mesh reflectors is supplied by applying pretension to the
cables. This process of pretension design is called form-
finding [3]. Several traditional form-finding methods have
been developed, such as force density, dynamic relaxation,
inverse iteration, and genetic. The force density method
was the most widely used and was introduced by Schek [4].

It first transforms the nonlinear equilibrium equations
into linear ones with the concept of “force density.” Then,
the equilibrium equations are solved by numerical method
to obtain the equilibrium pretension. Then, several methods
have been carried out that only consider the cable net struc-
ture as in [5, 6]. Deng et al. improved the pretension design
method and considered the multiple uncertainties [7–9]. Shi
et al. proposed methodologies to automatically generate
pseudogeodesic mesh geometries of spherical and parabolic
reflector surfaces [10, 11]. The truss is treated as rigid in
[12–17] when considering the rim truss. Yang et al. [18,
19] considered the elastic rim trusses and proposed an opti-
mal method. Nie et al. also considered the flexible frames
and proposed an integrated form-finding method [20–23].
Thermal effects have also been discussed. Shi et al. proposed
a new methodology of mesh geometry design [24]. Tabata
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and Natori had explored shape control concepts for mesh
reflectors [25–29].

However, these existing methods are only suitable in an
ideal environment. That means no gravity effect is taken into
consideration. An accurate antenna reflector should be
adjusted on the ground where gravity cannot be ignored.

Moreover, the influence of surface accuracy resulted by gravity
increases as the size of the antenna increases. Twomethods are
widely used in engineering to estimate the effect of gravity.
The first is to flip the antenna reflector to get cup-up and
cup-down surfaces by adding the two together to counteract
the effect of gravity [30, 31]. This method requires a sizeable
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experimental site and adjusting work is extremely difficult. As
the antenna diameter increases, it has a significant risk to flip
the antenna. Considering that the mesh antenna is a large flex-
ible structure, flipping may cause other assembly errors or
damage the antenna. The second one is based on finite ele-
ment software. This method needs to combine the experimen-
tal results with the error correction method [32–34]. The
critical factor is to give static loads in the form of distributed
weights to the nodes of the cable net and measure the surface
deformation caused by the static loads. Then, adjust the stiff-
ness parameters to make the deformation characteristics of
the mathematical model exactly match the test results. How-
ever, there are thousands of positions where static loads
should be applied when the antenna aperture is large, which
makes this method extremely difficult to apply in practice.

Not only is there a large number of experiments, but the
matching of mathematical models and experimental results
is also difficult to achieve at this magnitude.

Specifically, the mesh surface is first designed according
to the ideal one. Then, the deformed surface under gravity
is obtained by finite element simulation. Introducing gravity
into the finite element model to get the reference surface in
the stage of ground adjustment is acceptable in a certain
aperture range. This can be seen in Figure 1. However, when
the aperture further increases, there is an obvious deviation
as discussed in 4.3. Generally, model modification is neces-
sary when considering manufacture based on the methods
mentioned above. There both have insurmountable prob-
lems in the stage of ground adjustment when the aperture
increases. To solve this problem, the gravity factor should
be introduced in the pretension design process first. At the
same time, the change of cable stiffness should also be con-
sidered in the design. There are two critical problems in this
issue. The first is that the target shape of the design is no lon-
ger an ideal shape but an unknown gravitational surface. The
second is whether the surface can meet the surface accuracy
requirements after the gravity is removed.

The primary purpose of this paper is to propose a new
method to design the pretension in the cable net structure.
A new model considering gravity can be achieved to supply
guidance in antenna adjustment. Generally, the pretension
design considering gravity is shown in Figure 2(a), and the
method in this paper is shown in Figure 2(b). The compari-
son of the two design methods has been discussed in detail
in 3.3. The biggest difference is that the method in this paper
is designed with changes in gravity and stiffness. Further-
more, the advantage of the method in this paper is that it
does not require flipping the antenna or extensive experi-
mental corrections. It should be noted that although the
designed surface considering gravity can effectively guide
the ground adjustment, the surface must be restored to meet
the accuracy requirements after entering the orbit. This
point is the most critical condition for design convergence,
consistent with previous studies.

2. Composition of a Mesh Reflector

A deployed mesh reflector antenna is conceived with the
concept of a tension truss, which is a light and inherently
stiff structure that can be precisely and repeatedly deployed
regardless of the environment. As illustrated in Figures 3
and 4, it is divided into three parts, a supporting truss, a

(a) (b) (c) (d)

Figure 3: Composition of a mesh reflector. (a) Mesh reflector. (b) Truss. (c) Boundary cable. (d) Cable net.
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Figure 4: Schematic of a cable net structure. (a) Front cable net. (b)
Boundary cables. (c) Tension tie cables. (d) Back cable net.
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Figure 5: A cable net unit. (a) Front cable net. (b) Tension tie cable.
(c) Back cable net.
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boundary cable, and a cable net reflector, including surface
cables, tension tie cables, and RF reflective mesh which are
sewn on the net surface. The cable net reflector and the
boundary cables are named the deployable cable net
structure.

3. Pretension Design Method

3.1. Mechanical Analysis of Cable. The space environment is
known as a microgravity environment. Therefore, the
straight-rod elements can achieve calculation accuracy that
meets high efficiency in engineering requirements. Accord-
ing to the principle of virtual displacement, the overall stiff-
ness matrix considering the pretensioned cable element can
be divided into two parts when omitting the second-order
term. They are kE and kG that represent the elastic stiffness
matrix and geometric stiffness matrix, respectively. For a
cable element in the local coordinate system, the coordinates
of both ends are ð0, 0, 0Þ and ðxj, 0, 0Þ. Then, the relation-
ship between nodal displacement and nodal force can be
shown in

kE + kG½ �d = f − r,
r = AclcA

Tσ − f ,
kE = AclcEc ATA

� �
,

kG = Aclc σBTB
� �

,

ð1Þ

where

A = b1 0 0 b2 0 0ð Þ,

B =
b1 0 0 b2 0 0
0 b1 0 0 b2 0
0 0 b1 0 0 b2

0
BB@

1
CCA,

b1 = −b2 = −
1
xj
:

ð2Þ

And Ec, lc, Ac, σ, f , and d indicate the elastic modulus,
cable length, cross-sectional area, cable stress, external force,
and nodal displacement. Then, in the overall coordinate
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system, the above equation can be transformed by the trans-
formation matrix to obtain the stiffness equation of the cable
element.

KE + KG½ �D = F − R: ð3Þ

By assembling the stiffness matrix equations of each
cable element in the global coordinate system, the overall
stiffness equation of the entire cable net structure can be
obtained. When the pretensions have been designed and
the external force is specific, the overall deformation of the
cable net can be obtained through the stiffness equation.

3.2. Effect of Gravity. The pretension design of a cable net
structure aims to determine the cable tension distribution
to obtain the required reflector surface accuracy. The unit
of a cable net structure is shown in Figure 5, where node i
is connected to node j by a cable. The equilibrium equation

of node i can be derived as follows.

〠
j

Fij

xi − xj
lij

= 0,

〠
j

Fij

yi − yj
lij

= 0,

〠
j

Fij

zi − zj
lij

=〠
j

Gij,

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where Fij, Gij, and lij, respectively, represent the tension
force, the gravity, and the length of the cable between two
adjacent nodes i and j of coordinates ðxi, yi, ziÞ and ðxj, yj,
zjÞ. It can be rewritten in the form of a matrix as follows:

Q3k×r F = C, ð5Þ

where C =
02k×1
Gk×1

 !
.

Q is a coefficient matrix; F = F1 F2 ⋯ Frð ÞT is the
tension force vector of cables; k is the total number of free
nodes; r is the total number of cables.

Since the assumption of nodes located in the required
parabolic surface, the nodal locations and topology of the
cable net structure can be determined. Then, the pretension
design of the cable net structure can be expressed by the fol-
lowing optimization model:

Find F = F1 F2 ⋯ Frð ÞT ,

Min RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j=1ΔS
2
j

n
,

s

s:t: Q3k×r F = C,

8>>>>><
>>>>>:

Fi > 0 1 ≤ i ≤ r,

ð6Þ

where ΔSj is the displacement of the jth free node in the
cable net reflector, n is the total number of free nodes in
the cable net reflector, and RMS is an abbreviation of the
root mean square.

It should be noticed that the length of the cable changes
in each iteration step after being pretensioned. In such cases,
the gravity matrix also changes in each step. However, the
original lengths of all cables before being pretensioned are
considered unchanged.

3.3. Optimization Design Method. For a given antenna sur-
face, the pretension can be designed through Equation (6)
considering the effect of gravity. Nevertheless, the target
position of the antenna reflector is unknown. Specifically,
when gravity is not taken into consideration, the design sur-
face is simply the ideal surface P0 in orbit. However, the
design surface under gravity would be deformed to Pg

2 ,
which means that the target surface is unknown during the
optimization. The difference can be illustrated in Figure 2.
As gravity only works in z direction, the influences of the

0

2

4

6

8

10

12

0 5000 10000

RM
S 

(1
0–3

 m
)

Iteration step
All
One sixth

One third
Half

Figure 8: Iteration process of RMS error of the front cable net
(interior point algorithm).

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000
Iteration step

RM
S 

(1
0–3

 m
)

All
One sixth

One third
Half

Figure 9: Iteration process of RMS error of the front cable net
(quasi-Newton algorithm).

5International Journal of Aerospace Engineering



coordinates in the x and y directions are ignored. There is a
deviation Δz, which is unknown, between the target surface
under gravity and the ideal surface. But for every certain
value of Δzi, pretension can be designed for the ith target
surface. Moreover, this undergravity surface should have
the ability to restore to an ideal position on orbit as required.
Gravity is removed through Equation (3) after the design so
that the surface would deform to a new position P2 as shown
in Figure 2. The smaller the gap between P0 and P2, the bet-
ter it is. Obviously, all values of Δz for free nodes are nega-
tive and for boundary nodes the values are 0. The solution
is to find a certain Δz with which pretension design can be
solved. Then, the surface is able to recover to the ideal sur-
face after removing the gravity. The overall algorithm is pre-
sented in the flowchart of Figure 6.

The selection of the initial values of the iteration is a crit-
ical factor in the optimization. An improper selection of the
initial value will cause the result to be a local optimum
instead of a global optimum. And the iteration may not con-
verge in worst cases. To solve this problem, the values are
selected by the combination of the engineering experience
and the calculation results.

3.4. Improvement of Optimization. According to the above
discussion, in the mathematical model of the cable net struc-
ture, each value of Δzi is an optimization variable. In this
case, even if we optimize the mathematical model to the
maximum, the number of variables is still large. Taking an
antenna with a diameter of 10m as an example, the node
number is 182, within the allowable range of the geometric
size of the cable network. The optimization problem of this
dimension not only requires a lot of computing time but also
is prone to nonconvergence. Here, we need a more efficient
method to reduce the number of optimization variables
while ensuring the accuracy.

Fortunately, the cable net structure is a highly symmetric
structure, which allows us to simplify it in different ways.

According to the symmetrical form, half, one-third, and
one-sixth of the cable net can be taken as a characteristic
structure, as shown in Figure 7. However, the boundary of
the characteristic structure is different from the original
cable net. If we only use the characteristic structure for opti-
mization, the cable stress of the nodes at the position of the
red line in Figure 7 will change. When the calculation result
of the characteristic structure is substituted into the cable
net, there will be inevitable deformation. Although this
deformation can be estimated, it will affect the stability of
the optimization. The calculation time will be longer and
even fail to converge, which is contrary to our original inten-
tion. In this case, we should still optimize with variables of
the same dimension, but the total number of variables is
reduced. That is to say, half, one-third, and one-sixth of
the number of variables are used, respectively, and then,
other nodes are valued according to the symmetrical rela-
tionship. Taking an antenna with a diameter of 10m as an
example, we now only set 102, 78, and 42 variables in the
case of half, one-third, and one-sixth, respectively. Then,
other values of Δzi can be settled, and the dimension of Δz
will still be 182. By this method, we can reduce the number
of variables and do not change the boundary conditions of
the cable network.

4. Results and Discussion

4.1. Pretension Design of a 10m Mesh Reflector. A parabolic
antenna with a spatial mesh reflector is shown in Figure 4.
The antenna specifications are as follows:

Diameter of aperture: 10m
Focal length of front cable net: 7.5m
Focal length of back cable net: 7.5m
Number of surface cables: 312 (= 156 × 2)
Number of boundary cables: 108 (= 54 × 2)
Number of tension tie cables: 61
Number of free nodes: 122 (= 61 × 2)
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Figure 10: Surface error of front cable net considering the effect of gravity. (a) Optimization results. (b) Finite element calculation results.
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Height: 2m
Type of facets: triangular
Elastic modulus of cables: 20GPa
Radius of cables: 0:5 × 10−3m
Density of cables: 1450 kg/m3

First, it is important to set the initial value of Δz, which
can be expressed as

Δz = Δz1, Δz2,⋯,Δznf
, 0, 0,⋯0|fflfflfflfflffl{zfflfflfflfflffl}

nb

2
4

3
5, ð7Þ

where nf and nb represent the number of free nodes and
boundary nodes, respectively. This model is simulated in dif-
ferent ways. Corresponding to 3.4, all free nodes, half of the
free nodes, one-third of the free nodes, and one-sixth of the
free nodes are used as optimization variables, respectively.
All values of Δz is constrained to be negative. The tension
forces of all cables are set to 40N initially. Constrained non-
linear minimization is used to solve the problem. The itera-
tion results of interior point algorithm and quasi-Newton
algorithm are shown in Figures 8 and 9, respectively.

When using interior point algorithm, the RMS error
between P0 and P2 of front cable net is lowered from 11:07
× 10−3m to 0:66 × 10−3m. When all free nodes are used as
optimization variables, the integration step is 10711. When
the characteristic structure is used to reduce the optimiza-
tion variables, the integration steps are significantly reduced
and the optimization results remain consistent. The results
show that this method is scientific and necessary when the
aperture increases.

Meanwhile, when the quasi-Newton algorithm is used,
the RMS error between and of the front cable net is lowered
from 12:49 × 10−3m to 0:14 × 10−3m. The integration step is
3936 which is much smaller than the first algorithm. The
optimization result is better at the same time. Likewise, with
the introduction of characteristic structures, the efficiency of
optimization computations continues to increase. It can be
seen from the comparison that although there are many
optimization variables, the optimization results are
completely acceptable in engineering. This is due to the
highly symmetrical feature of the cable net structure. On
the other hand, the choice of algorithm and the initial value
is critical, affecting the optimization efficiency and effectively
avoiding nonconvergence when the antenna aperture is con-
tinuously increased.

The surface of the front cable net considering the effect
of gravity is shown in Figure 10. Only one-sixth of the model
is shown in this figure. All values are negative and are taken
as absolute values in the figure. The maximum nodal dis-
placement of Δz is −0:34 × 10−3m. Compared with the finite
element calculation results, each value of Δz in the optimiza-
tion results has a degree of discrimination, and the finite ele-
ment calculation results are close to the same. However, the
difference between the overall results is small, which shows
that there is little difference between the two methods when
the diameter is 10m. The pretension distribution of the cable
net structure is shown in Table 1. The design surface is basi-
cally in line with the prediction, which confirms the validity
of pretension optimization. On the other hand, the forces in
Table 1 show excellent uniformity that indicates a good sta-
bility in the design results. The maximum and minimum
stress ratios of the front cable net and the back cable net
are 1.062 and 1.096, respectively. More importantly, the sur-
face we find has the ability to restore to the ideal surface
when removing gravity. The minimum RMS between two
surfaces is only 0:14 × 10−3m which is acceptable in
engineering.

In order to verify the accuracy of the calculation, a sub-
divided finite element model is established and distributed

Table 1: Pretension distribution of the cable net.

Item
Pretension values in cables (N)

Maximum Minimum Mean

Front cable net 48.61 44.56 45.76

Back cable net 48.72 44.48 45.77

Tension tie cables 10.61 8.92 9.48

Table 2: Pretension distribution of the cable net with different
aperture diameters.

Diameter of
aperture (m)

Item
Pretension values in cables

(N)
Maximum Minimum Mean

10

Front cable
net

84.20 50.52 69.12

Back cable
net

47.56 28.04 33.52

Tension tie
cables

10.48 7.52 9.40

12

Front cable
net

85.36 48.67 70.12

Back cable
net

47.12 27.44 32.48

Tension tie
cables

10.34 7.36 9.25

16

Front cable
net

86.88 47.64 68.84

Back cable
net

46.88 25.44 31.92

Tension tie
cables

10.28 7.28 9.16

20

Front cable
net

88.94 48.36 70.34

Back cable
net

45.24 21.68 28.48

Tension tie
cables

12.36 6.28 8.83

24

Front cable
net

92.34 53.08 72.56

Back cable
net

42.76 21.56 27.44

Tension tie
cables

11.24 5.84 8.72
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gravity is applied on the model. In the subdivision model,
multisegment elements are used to simulate the catenary
cable. The subdivided model is verified by ANSYS as shown
in Figure 1 in the manuscript. The maximum nodal devia-
tion caused by gravity between the subdivided model and
theoretical method in this paper is 0:37 × 10−3 − 0:28 ×
10−3 = 0:09 × 10−3m, which meets the requirement (less
than 0:1 × 10−3m at least).

4.2. Pretension Design with Reflective Mesh. Taking into
account the needs of large-aperture antennas in engineering
applications, the algorithm is used to simulate antennas of
different apertures with the influence of RF reflective mesh
(5 × 10 − 2 kg/m3), and the results are shown in Table 2.

This method can still effectively carry out the preten-
sioning design when considering the reflective metal mesh.
The optimization method has specific stability when the
antenna aperture is continuously increased. There is no fail-
ure to converge. When only considering the cable mesh
structure, the pretension values of the front and back cable
meshes are the same. However, after considering the RF
reflective mesh, the stress on the front mesh surface
increases significantly, resulting from the gravity of the RF
reflective mesh directly acting on the front mesh surface.
At the same time, the uniformity of pretension decreases

clearly, which is closely related to the boundary of the cable
net structure. On the other hand, although the pretension
values of the tension cable and the back net do not change
much, they also become nonuniform.

4.3. Deviation between Pg
1 and Pg

2 . Generally, the ideal shape
P0 is taken as the target shape during the pretension design
of the antenna reflection surface. And some methods are
used to iteratively calculate it to accomplish the pretension
design and form-finding work. The shape obtained at this
time can be called P1, and the validity of the design is veri-
fied by comparing the RMS value of P1 and P0. When con-
sidering the effect of gravity, a gravity load is applied to P1
surface to obtain Pg

1 . In fact, this method is not accurate
enough due to simplification. Here, the designed surface in
ideal condition under gravity Pg

1 and the designed surface
considering gravity Pg

2 are compared. It can be seen in
Figure 11 that when the antenna diameter is between 10m
and 16m, the RMS deviation of the two surfaces is minimal,
only increasing from 0:402 × 10−3m to 0:697 × 10−3m.
However, when the aperture is further increased, the devia-
tion of the two surfaces increases sharply, and the deviation
has reached 18:2 × 10−3m when the diameter is 24m. This
also confirms that it is impossible to obtain an accurate
ground surface only by loading the gravity on the design sur-
face that does not consider gravity. This is also why the sur-
face cannot be directly used to complete the ground
adjustment in engineering. At the same time, the deviation
of the two surfaces is in the form of the exponential distribu-
tion, which is related to the structure and stiffness of the
cable net. When the diameter of the antenna is small, gravity
is not a significant factor, but when the diameter of the
antenna increases continuously, the gravity has a significant
influence on the precision of the pretension and the surface.

4.4. Effect of Cable Radius. From the previous discussion, it
can be concluded that when the antenna aperture is large,
there is a big difference between whether gravity is consid-
ered in the pretension design stage. A natural question as
whether this is caused by other factors arises. The antenna
reflector mainly comprises cables, so the cable length, cable
radius, and elastic modulus are all critical parameters.
Firstly, the research is carried out with the radius of the cable
as a variable, as shown in Figure 12.

It can be seen from the figure that when the cable radius
changes, the overall RMS value shows a downward trend.
When the cable radius increases, the gravity of the cable net
structure increases, but the gravity of the RF reflective mesh
does not change. It can be concluded that when the stiffness
of the cable net structure increases, the effect of coupling with
the RF reflective mesh will be weakened. However, this weak-
ening does not make the two surfaces Pg

1 and Pg
2 consistent.

That is to say, when the diameter of the antenna is large,
changing the radius of the cable slightly impacts the surface
accuracy. This may be because the gravity of the RF reflective
mesh far exceeds that of the cable mesh.

4.5. Effect of Cable Length. The cable length in the cable net
structure directly determines the fineness of the
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mathematical model. The smaller the cable length, the more
triangle segments along the radial direction. To make anten-
nas of different diameters comparable, the number of seg-
ments in the radius triangle is used as an independent
variable, and the number of segments is inversely propor-
tional to the length of the cable. The results are shown in
Figure 13. The RMS value decreases with the decrease of
the cable length. Thanks to the refinement of the model,
which leads to the smaller calculation error. However, gener-
ally the values tend to be stable within a certain range. This
shows that the deviation between the surfaces Pg

1 and Pg
2 is

not due to geometric errors. It also shows that when the
diameter of the antenna is large, gravity greatly influences
the surface accuracy.

4.6. Effect of Elastic Modulus. The elastic modulus of the
cable directly affects the stiffness. When the elastic modulus
increases, the effect of gravity becomes smaller and smaller.
The data in Figure 14 illustrate the same conclusion. How-
ever, as the elastic modulus increases to a specific value,
the value of RMS no longer decreases but tends to remain

unchanged. This also shows that the two surfaces Pg
1 and

Pg
2 are different. That implies the necessity to consider grav-

ity in the pretension design.

5. Conclusions

A novel pretension design method considering the effect of
gravity is proposed. Compared with previous methods, it
can avoid flipping the antenna or excessive experiments in
the stage of ground adjustment in engineering. At the same
time, the method can ensure that the antenna can restore
to the surface that meets the accuracy requirements after
entering the orbit. Furthermore, with the increase of the
antenna aperture, the method shows specific stability and
does not fail to converge.

Considering that there are too many optimization vari-
ables in this optimization method, the characteristic struc-
ture is selected according to the symmetry of the cable net
structure. Although the dimensions of the variables in the
iterations remain unchanged, reducing the variables still
effectively reduces the number of iterations. Two algorithms
are used for the calculation, and the results show that the ini-
tial values according to engineering experience and calcula-
tion results are valid in the optimization.

Numerical simulations of cable net antennas with diameters
ranging from 10m to 24m are carried out. After introducing
the gravity of the RF reflective mesh, an excellent pretension
distribution can still be obtained. Two surfaces are compared.
When the antenna diameter is not large, the difference between
the two is minimal. As the antenna aperture increases, the RMS
values of the two increase exponentially. Then, the effects of
cable radius, length, and elastic modulus are analysed. When
the cable radius increases, the deviation of the two surfaces will
decrease slightly. The same phenomenon occurs when the elas-
tic modulus increases. However, the deviation tends to remain
unchanged when the elastic modulus increases to a certain
extent. When the length of the cable is changed, which will
refine the model, the deviation of the two surfaces will decrease
but always remain within a specific range.

In general, when the diameter of the antenna increases,
the influence of gravity becomes increasingly significant.
Therefore, the method proposed here can effectively esti-
mate the ground surface of the antenna. At the same time,
the flipping and experimental correction of the antenna are
avoided. This is of great significance to surface adjustment
in engineering. In future work, the comparison of experi-
mental data is needed to verify the proposed method’s effec-
tiveness better.
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