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Efficiency, security, and reliability of industrial and domestic processes essentially depend on

the deep understanding of their actual processes of fluid flow and heat transfer. Actual pro-

cesses of fluid flow control and measurements need the development of effect-cause inverse

modeling. Extensive investigations on the effect-cause inverse modeling could effectively

enhance the efficiency, security, and reliability of these industrial and domestic fluid flow

processes.

This special issue on the inverse fluid flow compiles 10 papers, merging from different

academic disciplines and engineering application backgrounds. Three branches of inverse

modeling and application have been discussed. These include inverse identification of pol-

lutant sources, inverse determination of boundary conditions, and inverse measurement of

heating devices.

Inverse identification of pollutant source location was addressed in the paper by

S. Abe et al., who extended the quasi-reversibility methodology into the situation of airborne

pollutant dispersions in the urban street canyons. Timely identification of these pollutant

sources could facilitate occupants to evacuate from the dangerous areas.

Unknown boundary conditions always pose the classic modeling of inverse heat trans-

fer and fluid flow. J. Wu et al. employed the hybrid immersed boundary lattice Boltzmann

method to determine the unknown heat source term in the immersed boundary, such that the

interpolated temperatures accurately satisfy the thermal boundary conditions.

Comparing with the aforementioned theoretical identifications of unknown boundary

condition or source information, monitoring and measurement on the transport processes
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could involve the noise data and many uncertainties. C. Solisio et al. applied Tikhonov reg-

ularization rules to successfully reconstruct the temperature profiles in the landfills of bio-

reactor with heat recovery fluids measurements.

In addition to the research papers on the inverse modeling and applications, a few

papers concerning the direct modeling of industrial multiphase flows, hydrogen-air detona-

tion, square cylinder flows, and convergent channel flows have also been included in this

issue. Outlook optimization and process control on these complicated flows will be investi-

gated in the future.

By compiling these papers, we expect that this special issue on inverse flow problems

in the industrial and domestic processes could enrich our readers and researchers.

Fu-Yun Zhao
Di Liu

Steve H. L. Yim
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Numerical manifold method was applied to directly solve Navier-Stokes (N-S) equations for
incompressible viscous flow in this paper, and numerical manifold schemes for N-S equations
coupled velocity and pressure were derived based on Galerkin weighted residuals method as
well. Mixed cover with linear polynomial function for velocity and constant function for pressure
was employed in finite element cover system. As an application, mixed cover 4-node rectangular
manifold element has been used to simulate the incompressible viscous flow around a square
cylinder in a channel. Numerical tests illustrate that NMM is an effective and high-order accurate
numerical method for incompressible viscous flow N-S equations.

1. Introduction

In computational fluid dynamics (CFD), Navier-Stokes (N-S) equations for incompressible

viscous flow can be solved by several numerical methods generally, such as finite difference

method (FDM), finite element method (FEM), and finite volume method (FVM) [1]. The

applications of FDM are affected for unsuitability to complicated structure flow field

and inconservation of field variables [2]. The FEM schemes for N-S equations are very

complicated, and the computational efficiency of nonstandard FEMs is low [3]. FVM is an

effective numerical method for solutions of fluid flow, but exact treatments of the moving

boundary are difficult and complicated [4]. Furthermore, fractional step algorithms are used

to solve velocity and pressure variables unintegratedly in all these numerical methods, and

the continuity equation and momentums equations are satisfied, respectively [5]. All the

defects of these numerical methods will affect the computational efficiency and accuracy.
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Numerical manifold method (NMM) also known as manifold method or finite cover

method (FCM) is a generalized numerical method proposed by Shi in the early 1990s [6, 7].
The method performs numerical computation with finite element cover system, which is

composed of two independent cover grids: mathematical cover grid and physical cover

grid. Mathematical covers define the accuracy of approximate solution, and physical covers

determine the solution domain. High accurate numerical manifold schemes for mathematical

physics equations can be constructed by adopting different cover functions and cover-

weighted functions for physical variables in finite element cover system [8]. The method

has been successfully applied in some complicated engineering problems, such as numerical

simulation of crack initiation and propagation, damage evolvement of fractured rock masses,

coupling vibration, and potential flow problem, and the advantages have been demonstrated

in these fields [9–12]. As to fluid flow problems, direct-numerical-solution coupled velocity

and pressure variables can be implemented by adopting manifold schemes with mixed cover

for N-S equations. The authors have applied numerical manifold method into analyses of

unsteady incompressible viscous flow, and the results have illustrated the validity of NMM

[13].
Flow around a square cylinder is a typical model to validate the performance of

numerical methods for solution of incompressible viscous N-S equations. The flow structure

has been investigated experimentally and numerically. Experimental investigations have

shown that the flow characteristic is different at different Reynolds numbers [14]. FVM,

FDM, and others numerical methods have been applied to simulate the flow around a square

cylinder, the detail results have been obtained and met the experimental results [15–17]. The

experimental and numerical results have been employed to validate the numerical methods

in CFD as benchmarks.

In this paper, numerical manifold schemes of direct solutions coupled velocity and

pressure for N-S equations were constructed and applied to analyze incompressible viscous

flow around a square cylinder in a parallel channel. The validations of numerical schemes to

steady and unsteady flow were completed.

2. Numerical Manifold Schemes for N-S Equations of
Incompressible Viscous Flow

2.1. Galerkin Integration Expressions of N-S Equations

For numerical solution of incompressible viscous flow, the integration expressions for the

continuity equation and N-S equations can be obtained by Galerkin weighted residual

method, and the weak solution form can be stated as

∫
Ω
vj

∂

∂xj

(
δp
)
dΩ =

∫
Γ1

vnδpdΓ, (2.1a)

∫
Ω

[
ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
δvi +

[
−pδij + μ

(
∂vi
∂xj

+
∂vj

∂xi

)]
∂

∂xj
(δvi)

]
dΩ

=
∫
Γ2

piδvidΓ +
∫
Ω
ρfiδvidΩ,

(2.1b)
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where t denotes the time variable; ρ is the fluid density; μ is the dynamic viscosity; vj is the

velocity in xj direction; p is the pressure; fi is the body force per unit volume in xi direction;

δp is referred to the weight function for continuity equation and δvi for momentum equation;

Ω is the domain of solution; vn is the known normal velocity on boundary Γ1; pi is the known

pressure components in xi direction on boundary Γ2.

2.2. Numerical Manifold Schemes for N-S Equations

2.2.1. Element Velocity and Pressure Cover Functions

When NMM is applied into solution of N-S equations, suggested that there are M manifold

elements in finite element cover system and each element (e) has n physical covers, and the

cover weight functions are Nj(x, y) (j = 1, 2, . . . , n), which meet the requirement of partition

of unity
∑n

j=1 Nj(x, y) = 1 (x, y ∈ e), then the element global velocity and pressure cover

functions vj(x, y) and p(x, y) can be given by weighted summation of the cover functions of

every physical cover as the follows:

vi
(
x, y

)
=Nj

(
x, y

)
vij
(
x, y

)
,

p
(
x, y

)
=Nj

(
x, y

)
pj
(
x, y

)
,

(2.2)

where i = 1, 2 for two-dimensional (2D) flow problem; vij(x, y) are the velocity component

cover functions for physical cover Uj of element (e) and pj(x, y) is the pressure cover

function. If polynomial functions are taken as the cover functions of every physical cover,

the cover functions can be stated in the form as

vij
(
x, y

)
= fvk ·Dv

ijk,

pj
(
x, y

)
= fp

l
·Dp

jl
,

(2.3)

where fv
k

, f
p

l
denote the basic series for velocity and pressure cover functions of physical

coverUj ;D
v
ijk

,D
p

jl
are the cover DOF variables, and the DOF numbers aremv (k = 1, 2, . . . , mv)

and mp (l = 1, 2, . . . , mp).
By substituting (2.3) into (2.2), the global cover functions for velocity and pressure in

element (e) can be written as

vi
(
x, y

)
=Nj

(
x, y

)
vij
(
x, y

)
=Nj

(
x, y

)
fvkD

v
ijk = TvjkD

v
ijk, (2.4a)

p
(
x, y

)
=Nj

(
x, y

)
pj
(
x, y

)
=Nj

(
x, y

)
f
p

l
D
p

jl
= Tp

jl
D
p

jl
, (2.4b)

where Tv
jk

is the element velocity cover basic function; T
p

jl
is the element pressure cover basic

function. The element cover basic functions consist of the basic series of cover functions and

cover weight functions, and the element DOF variables are composed of all the cover DOF

variables.
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In Galerkin integration equations (2.1a) and (2.1b), the weight functions for continuity

equation and N-S equations can adopt the element basic functions of velocity components

and pressure accordingly, that is,

δvi = Tvjk; δp = Tp
jl
. (2.5)

The partial derivatives of element cover functions can be obtained from (2.4a) and

(2.4b) as the follows:

vi,α = Tvjk,αD
v
ijk; p,α = T

p

jl,α
D
p

jl
; vi,t = TvjkD

v
ijk,t = T

v
jkḊ

v
ijk, (2.6)

where α = 1, 2 for 2D problem; Tv
jk,α

, T
p

jl,α
are the partial derivatives of element velocity and

pressure cover basic functions with respect to xα, respectively; Ḋv
ijk

are the partial derivatives

of element velocity DOF variables with respect to t.

2.2.2. Element Manifold Schemes

For each element (e) in finite element cover system, element manifold equations can be

derived by introducing (2.4a), (2.4b), (2.5), and (2.6) into (2.2), and the equations can be

stated as ∫
Ωe

TvβID
v
αβIT

p

jl,α
dΩ =

∫
Γe

1

vnT
p

jl
dΓ,∫

Ωe

[
ρTvβIḊ

v
iβIT

v
jk + ρT

v
βID

v
αβIT

v
γJ,αD

v
iγJT

v
jk − T

p

βK
D
p

βK
δiαT

v
jk,α + μ

(
TvγJ,αD

v
iγJ + T

v
γJ,iD

v
αγJ

)
Tvjk,α

]
dΩ

=
∫
Γe2

piT
v
jkdΓ +

∫
Ωe

ρfiT
v
jkdΩ,

(2.7)

that is,

Ge
jlαβID

v
αβI = H

e
jl, (2.8a)

Ae
jkγJḊ

v
iγJ + B

e
jkαβγIJD

v
αβID

v
iγJ + C

e
ijkβKD

p

βK
+ EejkiαγJD

v
αγJ = F

e
ijk, (2.8b)

where β, γ = 1, 2, . . . , n; I, J = 1, 2, . . . , mv, K = 1, 2, . . . , mp; and the coefficients for element

manifold equations are

Ae
jkγJ =

∫
Ωe

ρTvγJT
v
jkdΩ, BejkαβγIJ =

∫
Ωe

ρTvβIT
v
γJ,αT

v
jkdΩ,

Ce
ijkβK = −

∫
Ωe

T
p

βK
δiαT

v
jk,αdΩ, EejkiαγJ =

∫
Ωe

μTvjk,s

(
δiαT

v
γJ,s + δsαT

v
γJ,i

)
dΩ,

Feijk =
∫
Γe2

piT
v
jkdΓ +

∫
Ωe

ρfiT
v
jkdΩ, Ge

jlαβI =
∫
Ωe

TvβIT
p

jl,α
dΩ, He

jl =
∫
Γe

1

vnT
p

jl
dΓ.

(2.9)
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Equations (2.8a) and (2.8b) are the nonlinear algebra equations with respect to coupled

velocity and pressure DOF variables and first-order linear ordinary differential equations

with respect to time.

3. Some Key Techniques

3.1. Mixed Cover Functions for Velocity and Pressure

In FEM, when velocity and pressure field are discretized in the same way, the discrete

element can not be ensured to satisfy the Ladyzanskya Babuska Brezzi stability condition

(LBB condition), and these kinds of element cannot be applied to directly solve N-S equations

coupled velocity and pressure for the spatial oscillation of pressure field. Mixed elements can

be built to meet the LBB condition by increasing velocity interpolation node [18], but the

elements are inconvenient to apply in practice for the complicated calculation process and

difficult element discretization.

In finite element cover system of NMM, the element cover functions are composed

of the weight functions and the cover functions of physical covers. Generally, the weight

functions will adopt the element shape functions as in FEM, which are usually defined by the

element shape and nodes. The cover functions of every physical cover for different physical

variables can employ different order functions according to the solving physical equations.

When NMM is applied to solve N-S equations for incompressible viscous flow, the velocity

and pressure field can be discretized in the same way and the weight functions will employ

the same interpolation functions for element velocity and pressure variables. But, the cover

functions of every element physical cover can apply different order functions for velocity and

pressure variables, so it will form a manifold element with mixed cover functions for velocity

and pressure variables, which can meet the requirements of different order approximate

functions for velocity and pressure in Galerkin integration expressions (2.1a) and (2.1b) and

satisfy the LBB condition for increasing the DOF numbers of velocity variables. The mixed

cover manifold elements can be applied in direct solution of incompressible viscous N-S-

equations-coupled velocity and pressure variables.

In theory, velocity components and pressure covers can employ very high-order

functions, but it will cause a very complicated calculation process, so low-order polynomial

functions are favorable. If pressure cover function of every physical cover is defined as

constant function, velocity cover functions can adopt linear polynomial functions, and then

the basic series in (2.3) can be given by the following localized series for 2D problem:

[
fvk
]
=
[
1 η1(x − xc) η2

(
y − yc

)]
;

[
f
p

l

]
= [1], (3.1)

where (x, y) is the coordinate variables; (xc, yc) is the center coordinates of physical cover;

η1, η2 are the coefficients of cover functions.

3.2. Solution of Manifold Equations for Steady N-S Equations

As to 2D steady N-S equations, element manifold equations (2.8a) and (2.8b) can be refor-

matted as

BejkαβγIJD
v
αβID

v
1γJ + C

e
1jkβKD

p

βK
+ Eejk1αγJD

v
αγJ = F

e
1jk,
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BejkαβγIJD
v
αβID

v
2γJ + C

e
2jkβKD

p

βK
+ Eejk2αγJD

v
αγJ = F

e
2jk,

Ge
jlαβID

v
αβI = H

e
jl,

(3.2)

where j, k, l, α, β, γ, I, J are similar to (2.8a) and (2.8b); D1γJ , D2γJ , and DβK are the unknown

variables. The equations can be written in the matrix form as

⎡⎢⎣B
e
jk1βγIJ

Dv
1βI

+ Ee
jk11γJ

Be
jk2βγIJ

Dv
1βI

+ Ee
jk12γJ

Ce
1jkβK

Be
jk1βγIJ

Dv
2βI

+ Ee
jk21γJ

Be
jk2βγIJ

Dv
2βI

+ Ee
jk22γJ

Ce
2jkβK

Ge
jl1γJ

Ge
jl2γJ

0

⎤⎥⎦
⎧⎪⎨⎪⎩

Dv
1γJ

Dv
2γJ

D
p

βK

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
Fe

1jk

Fe
2jk

He
jl

⎫⎪⎬⎪⎭, (3.3a)

that is,

[Ke]{De} = {Fe}, (3.3b)

where [Ke] is the element flow matrix with respect to unknown velocity DOF variables; {De}
is the element DOF variables; {Fe} is the element generalized loads.

The manifold equations (3.3a) and (3.3b) are nonlinear algebra equations and can

be solved by two methods of directly linearizing alternate iteration and Newton-Raphson

iterative in general.

3.3. Solution of Manifold Equations for Steady N-S Equations

As to 2D unsteady N-S equations, the first-order linear ordinary differential equation (2.8b)
with respect to time need be translated into linear algebra equations by time difference

replacing the derivative. At any discrete time step ti, the nonlinear manifold equations can

be solved by implicit iterative methods or explicit methods. If implicit iterative methods are

used, the derivative of velocity DOF variables for every physical cover with respect to time

in (2.8b) will be discretized by time difference as

Ḋv
ijk =

(
D
v(i+1)
ijk

−Dv(i)
ijk

)
Δt

, (3.4)

where Δt is time step; D
v(i)
ijk

and D
v(i+1)
ijk

are the velocity DOF variables at time step ti and ti+1,

respectively. Then as to every manifold element (e), the element manifold equations (2.8b)
can be reformulated as the follows:

Ae
jkγJD

v(i+1)
iγJ + ΔtBejkαβγIJD

v(i+1)
αβI

D
v(i+1)
iγJ + ΔtCe

ijkβKD
p(i+1)
βK

+ ΔtEejkiαγJD
v(i+1)
αγJ

= ΔtFeijk +A
e
jkβID

v(i)
ijk

.

(3.5)
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Equations (3.5) uniting (2.8a) can be stated in matrix form as

⎡⎢⎢⎣
Ae
jkγJ

+ Δt
(
Be
jk1βγIJ

D
v(i+1)
1βI

+ Ee
jk11γJ

)
Δt
(
Be
jk2βγIJ

D
v(i+1)
1βI

+ Ee
jk12γJ

)
ΔtCe

1jkβK

Δt
(
Be
jk1βγIJ

D
v(i+1)
2βI

+ Ee
jk21γJ

)
Ae
jkγJ

+ Δt
(
Be
jk2βγIJ

D
v(i+1)
2βI

+ Ee
jk22γJ

)
ΔtCe

2jkβK

Ge
jl1γJ

Ge
jl2γJ

0

⎤⎥⎥⎦

·

⎧⎪⎪⎨⎪⎪⎩
D
v(i+1)
1γJ

D
v(i+1)
2γJ

D
p(i+1)
βK

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
ΔtFe

1jk
+Ae

jkγJ
D
v(i)
1γJ

ΔtFe
2jk

+Ae
jkγJ

D
v(i)
2γJ

He
jl

⎫⎪⎪⎬⎪⎪⎭,

(3.6)

that is,

[ke]
{
De(i+1)

}
= {Fe}, (3.7)

where {Dp(i+1)
βK

} is the pressure cover DOF variables at time step ti+1; {De(i+1)} is the element

unknown cover DOF variables at time step ti+1; [ke] is the element flow matrix with respect

to the unknown velocity DOF variables at time step ti+1; {Fe} is the element generalized loads

with respect to the boundary conditions and the known velocity DOF variables at time step

ti.

The manifold equations (3.7) for unsteady flow can be solved by iterative methods. In

this paper, Newton-Raphson iterative method is also used here for solution of unsteady flow

manifold equations.

4. Numerical Example of Flow around a Square Cylinder in a Channel

To illustrate the validity of the present numerical manifold method, low-Re incompressible

viscous flow around a square cylinder in a channel and flow past a step are investigated

in details through direct solution of N-S equations in dimensionless form in this paper as

two numerical examples. In numerical manifold analysis, standard rectangular finite element

cover system with 4-node manifold element as show in Figure 1 is used, the mixed cover

functions of physical covers with the basic series equations (3.1) are adopted, and the shape

functions of rectangular element are employed as the cover weight functions in (2.2), that is,

N1

(
x, y

)
=

1

4

(
1 − x − x0

a

)(
1 − y − y0

b

)
, N2

(
x, y

)
=

1

4

(
1 +

x − x0

a

)(
1 − y − y0

b

)
,

N3

(
x, y

)
=

1

4

(
1 +

x − x0

a

)(
1 +

y − y0

b

)
, N4

(
x, y

)
=

1

4

(
1 − x − x0

a

)(
1 +

y − y0

b

)
,

(4.1)

where (x0, y0) are the coordinates of element (e) center point; 2a × 2b are the side lengths.
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Figure 1: 4-node rectangular manifold element.

4.1. Analysis for Steady Flow past a Step

In numerical analysis of flow past a step, finite element cover system and boundary

conditions are shown in Figure 2(a), the characteristic velocity of the flow field inlet is u = 1

and v = 0, the fluid density is ρ = 1, and three dynamic viscosities of fluid are μ =0.01, 0.005,

0.0025, and so Re numbers are known as Re =100, 200, 400, respectively. All the flow field is

meshed into 196 elements and 229 nodes by 0.1 × 0.1 rectangular grids.

The streamline and pressure distribution in flow field past a step at Re = 200 are

shown in Figure 2(b). The streamline patterns obtained from direct numerical solutions have

revealed the vortex structure at the step of flow field, and high accurate pressure distributions

have been obtained as well. The numerical solutions from FVM are shown in Figures 2(c)
and 2(d) comparatively, which obtained from 0.1 × 0.1 and 0.05 × 0.05 rectangular grids,

respectively. The NMM results from 0.1 × 0.1 grids are nearly coincident with the FVM

results from 0.05 × 0.05 grids. The comparative analyses illustrate that numerical manifold

schemes with mixed cover are stable numerical schemes for incompressible viscous flow,

can implement direct numerical solution of N-S equations coupled velocity and pressure

variables and can improve the solution accuracy at the same grids compared with FVM.

4.2. Analysis for Steady Flow around a Square Cylinder in a Channel

The flow field configuration and boundary conditions of flow around a square cylinder in

a channel are shown in Figure 3. The length of the channel is L = 4, the width is W = 1.

The size of square cylinder is d × d = 0.25 × 0.25, its horizontal axis coincides with the

channel’s centerline, and its vertical axis is perpendicular to the channel’s centreline. The

velocity condition of the inlet AD is u/uav = 1.5 [1− (1−y/ym)2] (uav = 1 is the average flow

velocity in the channel, ym = 0.5 is the channel centerline) and v = 0, the pressure condition

of outlet BC is p = 0, and the nonslip boundary conditions are set on other fixed walls, that is,

u = v = 0.

The flow field is meshed by three mixed grids, one is that 32×16 uniform element grid

is used for the domain from x = 0 to x = 2 and 20× 16 element grid for the domain from x = 2
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Figure 2: The streamline patterns and pressure distributions for flow field past a step.

to x = 4, the entire flow field is meshed by 52×16 = 832 elements and 53×17 = 901 nodes; the

second one is that 64 × 32 uniform element grid is used for x = 0 ∼ 2 and 40 × 32 element grid

for x = 2 ∼ 4, the flow field is meshed by 104 × 32 = 3328 elements and 105 × 33 = 3465 nodes;

the third one is that 96 × 48 uniform element grid is used for x = 0 ∼ 2 and 64 × 48 element

grid for x = 2 ∼ 4, the flow field is meshed by 160 × 48 = 7680 elements and 161 × 49 = 7889

nodes.

The numerical analyses of steady flow at different Re numbers (Re = 25, 50, 75, 100,

150) are performed by the NMM solutions of steady N-S equations. The streamline patterns

and variables distributions of flow field at Re = 100 from three different element grids are

compared. The results from the first element grid are different to these from two other grids,

but the results from the second grid are closely similar to these from the third one, and the

average difference of velocity and pressure on the channel centreline is less than 5%, so the

second element grid is enough for flow at Re < 100, and the third element grid or finer

element grid is more reasonable for flow at Re = 100 and 150.
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Figure 3: Flow field configuration and boundary conditions of flow around a square cylinder.
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Figure 4: Streamline pattern and pressure distribution for flow field at different Re numbers.

The streamline patterns and pressure distributions at different Re numbers are shown

in Figure 4. At Re = 25 and 50, there are two stable symmetrical vortexes behind the square

cylinder, and the flow patterns are similar to the numerical solutions of Mukhopadhyay

et al. [15]. As Re number increases to Re ≈ [50, 200], Cherry’s results show that two

vortexes become unsymmetrical and Karman vortex street is formed behind the square

cylinder gradually [14], but the stable convergent results are obtained from NMM solutions

of steady N-S equations at Re = 75, 100, and 150, and there are also two stable symmetrical

vortexes behind the square cylinder. The distances from back flow point of the vortexes to

square cylinder at Re = 25, 50, 75, 100, 150 are 1.0, 1.2, 1.4, 1.6, 1.8, respectively, which

are approximately linear with Re numbers. These results illustrate that numerical manifold

schemes for steady N-S equations have the strong-stability-preserving property.

In NMM analysis unlike FVM and FEM analysis, the pressure distributions of flow

field are obtained from direct numerical solutions of N-S equations and continuity equation,
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so it can improve the solution accuracy of pressure field. The pressure distributions of

flow field show that high-pressure area is formed in frontage of the square cylinder for

flow blockage, low pressure areas are formed near behind two front corner points for flow

separating, and large pressure gradient is produced near the corner points. The pressure

distributions are symmetrical, and the pressure of flow field will decrease as Re number

increasing.

The velocity u distributions along horizontal lines through geometric center of flow

field are shown in Figure 5. The velocity u drops rapidly from inlet to the square cylinder for

flow blockage. Negative velocity appears behind the cylinder for back flow, and the velocity

will rise gradually with away from the cylinder, and the velocity restoring becomes slow

as Re number increases. The pressure distributions along horizontal lines through geometric

center of flow field are shown in Figure 6. The pressure rises gradually from inlet to the square

cylinder. Positive pressure appears behind the cylinder at low Re number, negative pressure

appears at comparatively high Re number, and the pressure will drops or rises to zero at

outlet of flow field.
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Figure 7: The streamline patterns for flow field from 48×160 element grid and Δt = 0.01 s time step at Re =
150.

4.3. Analysis for Unsteady Flow around a Square Cylinder in a Channel

The flow field configuration and boundary conditions of unsteady flow around a square

cylinder in a channel are the same as these of steady flow, and the flow field is meshed by the

third mixed grids. The unsteady flows at different Re numbers (Re = 50, 75, 100, 150) are also

analyzed through NMM solutions of N-S equations in this paper, where numerical solutions

for steady flow at Re = 50 are adopted as the initial conditions, the total computational time

is 10 s, and the time step is 0.01 s.

When Re ≤ 50, numerical solutions from unsteady flow analyses are closely similar

to the results from steady flow analyses, and there are two steady symmetrical vortexes

behind the square cylinder. As Re number increasing, two vortexes become unsymmetrical,

and Karman Vortex Street is formed behind the square cylinder gradually. The streamline

patterns for flow field at Re = 150 are shown in Figure 7, and the periodical change process

of appearing, developing, moving, separating of the vortexes are clearly displayed in the

streamline patterns. The Strouhal number is 0.2438, the difference is 2.2% and 6.5% to [15, 16].
The flow patterns are similar to Mukhopadhyay’s and Yutaka’s results, which is obtained

from very fine element grid [15, 17].
The pressure contours for flow field at Re = 150 are show in Figure 8. The pressure

distributions beside and in frontage of the square cylinder are almost identical to the results

from steady flow analyses and are different behind the cylinder, which will change with the

moving of vortexes.
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Figure 8: The pressure contours for flow field from 48 × 160 element grid and Δt = 0.01 s time step at
Re = 150.

5. Summary

Numerical manifold method for direct coupled solution of incompressible viscous flow

N-S equations has been developed in this paper. Numerical manifold schemes integrated

velocity and pressure were derived based on Galerkin-weighted residuals method as well.

Mixed cover with linear polynomial function for velocity and constant function for pressure

was adopted in finite element cover system. Compared with FVM and FEM, in NMM

for incompressible viscous flow, the accuracy of velocity variables approximation can be

improved by adopting high-order cover function, direct numerical solution of N-S equations,

and continuity equation coupled velocity and pressure variables can be implemented by

adopting finite cover system with mixed cover manifold element, so it can improve the

solution accuracy of velocity and pressure variables.

As an application, mixed cover 4-node rectangular manifold element has been used to

simulate flow around a square cylinder in a channel and past a step at low Re numbers.

As to flow around a square cylinder in a channel, accurate numerical results have been

presented for steady flow at Re = 25, 50, 75, 100, 150 and for unsteady flow at Re = 100,

150. The rules on streamline patterns and pressure distributions were analyzed in details.

Numerical solutions were in very good agreement with the published data from very fine

element meshes. Numerical tests indicate that manifold method is an effective and high-order

accurate numerical method for incompressible viscous flow Navier-Stokes equations.
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The main goal of this paper is to analyze the exergy losses during the shock and rarefaction
wave of hydrogen-air mixture. First, detonation parameters (pressure, temperature, density,
and species mass fraction) are calculated for three cases where the hydrogen mass fraction in
air is 1.5%, 2.5%, and 5%. Then, exergy efficiency is used as objective criteria of performance
evaluation. A two-dimensional computational fluid dynamic code is developed using Finite
volume discretization method coupled with implicit scheme for the time discretization (Euler
system equations). A seven-species and five-step global reactions mechanism is used. Implicit total
variation diminishing (TVD) algorithm, based on Riemann solver, is solved. The typical diagrams
of exergy balances of hydrogen detonation in air are calculated for each case. The energy balance
shows a successive conversion of kinetic energy, and total enthalpy, however, does not indicate
consequent losses. On the other hand, exergy losses increase with the augment of hydrogen
concentration in air. It obtained an exergetic efficiency of 77.2%, 73.4% and 69.7% for the hydrogen
concentrations of 1.5%, 2.5%, and 5%, respectively.

1. Introduction

The Ramjet propulsion principle was invented at the beginning of the 20th century by Rene

Lorin [1, 2], who published it in the technical review “Aérophile” in 1913. A Ramjet is an

air-breathing jet engine which uses the engine’s forward motion to compress incoming air,

without a rotary compressor. The development of this propulsion method was slow and

was practically started only from the 1950s. Some years later appeared the pulsed detonation

engine (PDE), which is a type of propulsion system that uses detonation waves to combust

the fuel and oxidizer mixture [3, 4].
The excitement about pulse detonation engines (PDEs) stems from the fact that,

theoretically at least, they can operate at thermal efficiencies about 30% higher than



2 Journal of Applied Mathematics

conventional combustion processes. This is due to the high detonation velocities between

1500 m·s−1 and 2200 m·s−1 in a hydrocarbon fuel/air mixture; for example, its thermodynamic

cycle is effectively a constant volume or Humphrey cycle [5–7]. The Humphrey cycle can be

considered a modification of the Brayton cycle in which the constant-pressure heat addition

process of the Brayton cycle is replaced by a constant-volume heat addition process [8].
Due to this thermodynamic efficiency and mechanical simplicity, the PDE technology

is more efficient when compared with current engine types. Additionally, the PDE can also

provide static thrust for a ramjet or scramjet engine or operate in combination with turbofan

systems showing an enormous potential to be applied in many sectors of the aerospace,

aeronautic, and military industries. However, there are still engineering challenges that must

be overcome, such as to improve methods for initiating the detonation process and develop

materials able to withstand with extreme conditions of heat and pressure.

In the PDE technology the combustion takes place in an open-ended tube in which

fuel is mixed with air and detonated. As the detonation wave travels down the tube at

supersonic speed, a refraction wave propagates into the combustor, and exhaust products

leave the chamber. Pressure within the chamber jumps down to charging conditions, which

draws in fresh fuel and air, and the cycle is repeated. Each pulse lasts only milliseconds [9, 10].
Detonation is initiated by a predetonator, containing a more readily detonable mixture of fuel

air, or by DDT (deflagration detonation transition), a process by which a flame, initiated at

the closed end of a duct by a weak spark, accelerates to speeds on the order of 1000 m·s−1 at

which point a detonation wave is initiated within the flame-shock complex [11–13].
The existence of flames for problems with complex chemistry in the combustion

approximation has been considered by many authors; see, for example, [14–18]. It has

been pointed out in [19], that reaction mechanisms including chain branching can lead to

significant qualitative differences in the initiation of detonations in comparison to single step

reactions. The use of the exergy concept can be used with advantage to best understand the

detonation problem [20]. The exergy gives a quantitative and illustrative description of the

convertibility of different energy forms and is a function of the system and environment,

whereas entropy is a function only of the system. Total exergy, thermomechanical and

chemical, has been defined as the work which can be obtained by taking the system, by

means of reversible processes, from its initial state to a state of total equilibrium (dead state),
thermal, mechanical, and chemical (“unrestricted equilibrium”), with the environment. This

definition entails that the system is in a state of internal equilibrium (uniformity of all

intensive properties) and that the environment is in a state which is in internal equilibrium

and does not change during time. The exergy of a fluid stream depends upon the choice

of the reference environment. This choice, which seems obvious according to some authors

[20–22], is, on the contrary, problematic, since every usual environment is a chemical state of

nonequilibrium.

A simplified model of adiabatic detonation process in gases was considered by Petela

[20] using the concept of exergy. The exergy loss for high pressure shock is larger than that for

reactions of combustion. On the other hand, the total exergy loss for deflagration is also larger

than that for detonation. Huntchins and Metghalchi [21] analyzing the thermal efficiency

show that the Humphrey cycle reveals good advantage compared with Brayton cycle using

the same fuel. They also compare the effectiveness of both cycles and conclude that the results

using the Humphrey cycle have significant advantage comparing with a Brayton cycle based

on the same fuel (methane). Also, the research work of Wintenberger and Shepherd [22] finds

that this efficiency cannot be precisely translated into propulsive efficiency. Indeed, the results

are only useful in comparing detonations with other combustion modes. They also find that
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the efficiency of cycles based on detonation and constant-volume combustion is very similar

and superior to a constant-pressure combustion (Brayton) cycle when compared on the basis

of pressure at the start of the combustion process.

This paper reports an exergy analysis on the detonation wave between the pulse

shock wave to the end of the rarefaction wave for various concentrations of the hydrogen

in air. Numerical simulation of a two-dimensional detonation of the hydrogen-air mixture is

considered. The coupled hydrodynamical model and chemical model integrating the Euler

system equations are combined with a detailed chemical reaction model.

2. Numerical Method

Supersonic combustion, called detonation, occurs coupled to a shock wave traveling at

supersonic speed. If premixed gases inside a tube closed at both ends are ignited at one end,

a laminar flame first develops, traveling pushed by the expanding hot products behind. The

inverted small pressure jump across the flame generates local pressure pulses that wrinkle

the flame, create turbulence, extend the burning area, and increase the burning rate, with a

positive feedback that, if positively combined with pressure pulses reflected from the other

end, might compress the fresh mixture to the autoignition temperature.

2.1. Chemical Model

Consider the reaction of hydrogen with oxygen to yield water that is usually written as

H2 +
1

2
O2 −→ H2O. (2.1)

The detonation of hydrogen in air must start by dissociation of a hydrogen molecule

(it requires less energy than oxygen dissociation):

H2 + M −→ H + H + M, (2.2)

where M stands for an unspecified molecule (hydrogen, oxygen, a hot wire). The following

basic reactions take place:

H2 + M −→ H + H + M,

H + O2 −→ OH + O,

O + H2 −→ OH + H,

OH + H2 −→ H2O + H,

H + OH + M −→ H2O + M.

(2.3)

The chemical kinetic scheme involves seven species, H2, O2, H2O, OH, O, H, and

N2 and the above-described 5 elementary reversible reactions. The mechanism is the one

proposed by Balakrishnan and Williams [23], and the empirical parameters from each one
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Table 1: Empirical values for reactions in the combustion of hydrogen with air [24].

Reaction A (cm3·gmol)·s−1 b EA (MJ·mol−1) Temperature range

H + H + M → H2 + M 6.4·017 −1.00 0.0 300–2500 K

H + O2 → OH + O 1.2·1017 −0.91 69.1 300–2500 K

O + H2 → OH + H 1.5·107 2.00 31.6 300–2500 K

H + OH + H2O → 2H2O 1.4·1023 −2.00 0.0 1000–3000 K

H2O + M → H + OH + M 1.6·1017 0.00 478.0 2000–5000 K

of the reactions [24] are depicted in Table 1. k(T, p) is the “rate coefficient,” which generally

depends on temperature (T), and activation energy and can be defined as follows:

k(T) = ATbe−(Ea/RT), (2.4)

where A is the preexponential factor as in Arrhenius law and Ea is the activation energy. The

three parameters A, b, and Ea are determined in practice experimentally.

The chemical production rates are computed using the methodology suggested by

Warnatz [25]. In general, for the reaction A + B → products not just to species A, it can be

defined:

dcA
dt

=
dcB
dt

= −cAcBATb exp

(−EA
RT

)
. (2.5)

2.2. Euler System Equations

The contributions of pressure-driven diffusion, bulk viscosity, and radiative heat transport

can be neglected; then the balance equations of mass, momentum, and energy for the two-

dimensional unsteady flow for a multicomponent chemically reacting gas mixture are written

in the integral form as

∂

∂t

�
Ω
ρdV +

�
∂Ω
ρ
(
	V · 	n

)
dS = 0,

∂

∂t

�
Ω
ρ 	VdV +

�
∂Ω

(
ρ 	V
(
	V · 	n

)
+ p	n

)
dS = 	0,

∂

∂t

�
Ω
ρEdV +

�
∂Ω

(
ρE + p

)(
	V · 	n

)
dS = 0.

(2.6)

The state equation can be defined as follows:

p =
(
γ − 1

) · [ρE − 1

2
ρ 	V 2

]
. (2.7)
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In these system equations the density ρ(M, t) is the total density of the whole gas in the

position M, and at time t. ρ(M, t) is calculated as sum of mass fraction (Yi) and density (ρi)
of each species:

ρ =
k∑
i=1

Yiρi. (2.8)

The above equation system is rewritten in a control volume as follows:

∂ 	U

∂t
+
∂F
(
	U
)

∂x
+
∂G
(
	U
)

∂y
= 	W, (2.9)

where

	U ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρE

ρY1

ρY2

...

ρYk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

−−−−−→
F(U) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + P
ρuv

u
(
ρE + P

)
ρY1u

ρY2u
...

ρYk−1u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

−−−−−→
G(U) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρuv

ρv2 + P
v
(
ρE + P

)
ρY1v

ρY2v
...

ρYk−1v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

−→
W ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

ẇ1

ẇ2

...

ẇk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.10)

In these equations u and v are the velocity vector components in the directions x and

y, T the mixture temperature, ρ the mixture density, p the pressure, e and E are the internal

and total energies, respectively. For each of the k chemical species, Yk is the mass fraction,Mk

is the molecular, and hi is the specific enthalpy. Then, the following equations of state can be

also defined:

Yk = 1 −
k−1∑
i=1

Yi,

P = ρRT
k∑
i=1

Yi
Mk

,

hi = h0 +
∫T
T0

cpidT = ei +
P

ρ
,

E = e +
1

2

(
u2 + v2

)
=

k∑
i=1

Yiei +
1

2

(
u2 + v2

)
.

(2.11)

2.3. The Solution Procedure

The numerical methods that have been developed in this code for hydrogen and combustion

are detailed in [26, 27]. These include lumped parameters, CFD-type codes, and also the
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Figure 1: Structured mesh.

CAST3M code [28] developed at the French Atomic Centre Energy (CEA). CAST3M is

a general finite-element/finite-volume code for structural and fluid mechanics and heat

transfer.

The CAST3M code is used to model both hydrogen dispersion and combustion phe-

nomena over a very wide range of flow regimes, from nearly incompressible flow to

compressible flow with shock waves. This could be done by developing a most suitable

(i.e., accurate and efficient) numerical method for each type of flow or developing a single

method suitable for all flow regimes. We are not aware of any single numerical method able

to treat accurately and efficiently flow regimes which range from slowly evolving nearly

incompressible buoyant flow to fast transient supersonic flow. However, in practice, for

detonation simulation, the use of shock-capturing methods is preferred. In the hydrogen risk

analysis tools CEA is developing; the choice was made to develop in the same computational

platform CAST3M code for distribution calculations, an efficient pressure-based solver using

a semi-implicit incremental projection algorithm which allows the use of “large” time steps,

for combustion calculations, a robust and accurate density-based solver using a shock-

capturing conservative method.

A brief description of the method we used here, typical for such hyperbolic system

equations, follows. Consider the system of hyperbolic conservation laws, (2.10), with the

initial conditions:

u
(
x, y, 0

)
= u0

(
x, y

)
. (2.12)

Given a uniform grid with time step Δt and spatial mesh size (Δx,Δy), we define an

approximation of U at the point xi = iΔx, yj = jΔy, tn = nΔt by the finite volume formula:

Un+1
i,j = Un+1

i,j − Δt
Δx

[
Fni+1/2,j − Fni−1/2,j

]
− Δt
Δy

[
Gn
i,j+1/2 −Gn

i,j−1/2

]
+Wn. (2.13)

Figure 1 shows the structured mesh used in this problem. Finding the exact solution

to the Riemann problem for the equation system (2.9) is complex. Even if we would find it,

it would be too complex to use it at each cell boundary, as it needed in (2.13). Therefore, we

have to look for some approximate Riemann solver. Here, we adopt the approach described
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in [29], which we have already considered in case of conservation laws. Let us rewrite the

homogeneous hyperbolic system (2.9) in primitive variables for one direction:

∂U

∂t
+
∂F(U)
∂x

=
∂U

∂t
+A(U)

∂U

∂x
= 0. (2.14)

Consider the Riemann problem for (2.14) at each cell boundary j + 1/2, that is, with the

following initial data:

U(x, 0) =

{
Uj, x ≤ xj+1/2

Uj+1, x ≥ xj+1/2.
(2.15)

Following [10, 11], we calculate the Jacobian matrix A(U) in the average state:

vj+1/2 =
vj + vj+1

2
. (2.16)

The intermediate state in the solution of the Riemann problem is

v∗
j+1/2 = vj +

∑
λi≺0

airi, (2.17)

where the eigenvalues λi and the eigenvectors ri of the Jacobian matrix A(vj +1/2) and ai are

the coefficients of eigenvector decomposition of (vj + 1 − vj):

vj+1/2 − vj =
6∑
i=0

airi. (2.18)

With the choice of the primitive variables, they are given by the following expressions:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

a3

a4

a5

a6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1

r01[−Δ3ρaca + Δ4 + a0

(
r03ρaca − r04

)]
2ρac

2
a

Δ2 − a0r02 − ρa(a1 + a2)[
Δ3ρaca + Δ4 − a0

(
r03ρaca + r04

)]
2ρac

2
a[−Δ6ρbcb + Δ7 + a0

(
r06ρbcb − r07

)]
2ρbc

2
b

Δ5 − a0r05 − ρb(a4 + a6)[
Δ6ρbcb + Δ7 − a0

(
r06ρbcb + r07

)]
2ρbc

2
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.19)

where r0k are the components of r0 and Δk is the k th component of (vj +1−vj). Recalculating

vj + 1/2 into the conservative vector uj + 1/2, we fully determine the Godunov-type scheme

(2.17) for the homogeneous system (2.14).
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3. Exergy Calculation

A practical definition of exergy (E) for a closed system is the maximal work that can

be obtained when a thermodynamic system is allowed to attain equilibrium with an

environment defined as the “dead state,” typically defined as the system ambient. If that

ambient is at temperature T0 and pressure, p0, the exergy is

E = (U −U0) + p0(V − V0) − T0(S − S0), (3.1)

where U, V , and S denote, respectively, the internal energy, volume, and entropy of the

system, and U0, V0 and S0 are the values of the same properties in the system which were

called dead state.

The exergy expression can be generalized considering Q as a heat transfer across a

system boundary where the temperature is constant at Tb and taking in account the mass

flow across the boundary of a control. The exergy rate balance for a control can be derived

using these described approaches, where the control volume forms of mass and energy rate

balances are obtained by transforming the closed system forms. The exergy accompanying

mass flow and heat transfer can be written as

dE

dt
=
∑
j

(
1 − T0

T

)
·Qj +

∑
exit

ṁeεe −
∑
inlet

ṁiεi, (3.2)

where εe e and εi are the exit and inlet specific exergy and Qj is the heat transport rate. The

sum of the thermomechanical and chemical exergies is the total exergy associated with a

given system at a specified state, relative to a specified exergy reference environment. The

chemical exergy is defined as

εch =

(∑
i

nr · hr −
∑
i

np · hp
)

(T0,P0)

− T0

(∑
i

nr · Sr −
∑
i

np · Sp
)

(T0,P1)

(3.3)

or in the following form, when the entropy at (T0, P1) is calculated:

εch =

(∑
i

nr · hr −
∑
i

np · hp
)

(T0,P0)

− T0

(∑
i

nr · Sr −
∑
i

np · Sp
)

(T0,P0)

+ RT0 ln

(∏nr
i Yi∏np
i Yi

)
,

(3.4)

where Yr , Yp, are the mass fraction of reactants and products of involved reactions and hr ,

Sr , hp, and Sp are the specific enthalpy and specific entropy for the reactants and products,

respectively. The specific enthalpy terms are determined using the enthalpy of formation

for respective substances. The specific entropy appearing in the above equation is absolute

entropy. Even if the logarithmic term normally contributes a few percent, it will not be
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Table 2: Standard chemical exergies [30].

Species Standard chemical exergy (kJ·mol−1)

O2 3.900

N2 0.640

H2O 8.635

H2 235.250

neglected in the present paper. The Gibbs function for each one of the components could

be expressed as follows:

εch =

(∑
i

nr · gr −
∑
i

np · gp
)

+ RT0 ln

(∏nr
i Yi∏np
i Yi

)
. (3.5)

The energy associated with a specific state of a system is the sum of two contributions:

the thermomechanical contribution and the chemical contribution. On unit mass, the total

exergy is:

ε = (U −U0) + p0(V − V0) − T0(S − S0)︸ ︷︷ ︸
(1)

+ εch︸︷︷︸
(2)

, (3.6)

where (2.1) is the thermo mechanical contribution and (2.2) is the chemical contribution.

The molar exergy of each reactant and product, at temperature T1, is given by

ε1 = εO + (ΔhO→ 1 − TOΔsO→ 1). (3.7)

The standard chemical exergies of the reactants and products are given in Table 2.

The specific chemical exergy of a material stream is that part of the exergy that results

from the sum of the chemical potential differences between the pure reference substances and

the pure material stream components at T0 and P0. The specific mixing exergy of a material

stream is that part of the exergy resulting from the sum of two contributions.

(i) The differences in potential between the exergies of the environmental components

in environmental concentrations and pure environmental components at T0 and P0.

(ii) The difference in potential of the exergy due to mixing of the pure components into

a mixed material stream at T0 and P0.

The different exergy components are listed in Table 3.

Finally, it can be defined as a “performance factor” the ratio of outlet exergy to inlet

exergy:

φeff =
εout

εinl
. (3.8)
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Table 3: Subdivision of the exergy.

Environment

Change in concentrations of the environment components at To and Po (Mixture exergy)
Exergy of the pure environment components at To and Po

Chemical reaction of the pure environment components at To and Po (Chemical exergy)
Exergy of the pure components at To and Po

Mixing of the pure components at To and Po (Mixture exergy)
Change in temperature and pressure at constant composition

Exergy of the mixed components at To and Po (Thermo mechanical exergy)
Exergy of the mixed components at To and Po

4. Results and Discussion

The structure of the pulse detonation and the shock tube is depicted in Figures 2 and 3,

respectively.

The detonation field parameters in this work were computed by using the Euler

multispecies equations of detonation of H2-air mixture. They were solved using the first

author’s solution procedure [26, 27]. Analyses were carried out for different hydrogen con-

centrations in air optimum pressure with corresponding temperatures; species concentrations

were determined and given first case in figures as function of time. As an example, for first

case where the mass fraction of H2 is equal to 1.5%, peak detonation and end rarefaction

density of the selected location were taken at 1.4 kg·m−3 and 1.1 kg·m−3, respectively. As a

result, optimum shock and rarefaction temperatures were found to be 1930 K and 700 K,

respectively. At the same time, the optimum pressures were found to be 18 bar and 6 bar,

respectively for the same concentration of hydrogen in air.

As seen in Figure 4 representing the pressure distribution along the tube at 0.003 ms,

the optimum pressure at the peak of detonation was found to be 18 bar, 22 bar, and 36 bar

for 1.5%, 2.5%, and 5% of hydrogen mass fractions, respectively. Figure 5 shows the result of

the temperature at 0.003 ms corresponding to the end of reactions for the case of hydrogen

concentration equal to 1.5%. Optimum values vary from 1930 K for the peak of detonation to

700 K for the end of rarefaction. These results show that the structure of the detonation wave

is dependent on hydrogen concentration.

Figure 6 shows the shock pressure variation with time for the three different

concentrations of hydrogen in air.

The first case considers a hydrogen-air mixture at an initial pressure P0 = 1 bar and

initial temperature T0 = 298 K. On the left side of the tube (Figure 3) a pressure pulse (10 bars)
is considered to initialize the shock wave. At t = 0 s, the shock wave moves from the left to the

right side of the tube and initiates the reactions. Shock waves generated due to the formation

of a new reaction front are called “reaction shocks” [20]. The reaction shock overtakes the

shock front at around 27μs, strengthening it and sharply increasing its propagation speed;

that is, a detonation wave is formed. Subsequently, the detonation wave speed decreases

gradually and a high-frequency, low-amplitude propagation mode is established. In this

study no reaction delay is considered, so when the shock wave is initialized, the reactions

produced energy. Generally, chemical reactions behind the shock front start generating weak

shock waves after approximately 20μs [31]. The plots show the variation in shock front

speed with time. Initially the shock wave travels at a constant speed (determined by the
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initial conditions) slightly greater than 1500 m·s−1, 1800 m·s−1, and 2200 m·s−1 for respective

hydrogen concentrations of 1.5%, 2.5%, and 5%.

Figures 6 and 7 show the variation with time of pressure and density as function of

time and for mass fraction of hydrogen in air: 1.5%, 2.5%, and 5%. As can be seen from

these figures, the peak of detonation is characterized by the high-pressure values followed

by the rarefaction wave. During the rarefaction wave, the pressure, temperature, and density

decrease; this decrease is stopped by the reflected wave from the end of the tube. The most

detonation energy is absorbed by the shock when the wave is reflected. This is because by

assuming that the detonation is instantaneous and all hydrogen is consumed in the first way

of the shock wave, then the energy is completely kinetic, and, as a result, the density and

pressure decrease.

Figure 8 shows the mass fraction of H2O, calculated as function of time for the three

studied cases: 1.5%, 2.5%, and 5% of hydrogen concentration. This figure gives us a good

idea about mass fraction of H2O during the detonation for each of hydrogen concentration

in air. In fact, the contribution of H2O in exergy calculation is not negligible since the
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Figure 5: Temperature distribution along the tube length for case 1.

standard chemical exergy of H2O, O2, and N2 are, respectively, 8.63 kJ·mol−1, 3.90 kJ·mol−1,

and 0.60 kJ·mol−1.

Mass fraction for the H2, OH, and H2O system is plotted in Figure 9. Here, the energy

levels were chosen to be consistent with those realized in the detonation calculation. As seen

in this figure the hydrogen, radical OH, and product H2O as function of time for the referent

element shown on Figure 3, optimum values at the end of reactions, were found to be 0.04%,

0.7%, and 1.2% carried out for species H2, OH, and H2O. These results are presented for the

case when the initial mass fraction of hydrogen in air is assumed to be equal to 2.5%.

It is possible to consider the shock and rarefaction processes as the separate successive

steps. Therefore, the exergy loss due to the irreversible detonation and the end of rarefaction

can be calculated as the product of the initial temperature and the difference between

entropies in the start of the shock wave and the end of rarefaction wave. The typical

diagrams of exergy balances of hydrogen detonation in air are shown in Figure 10 as function

of hydrogen concentration (1.5%, 2.5%, and 5%). Data were calculated for the point of
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steady detonation. It was shown that exergy losses increase with the augment of hydrogen

concentration in air; consequently low hydrogen concentrations in air achieve slight higher

efficiencies. It was also verified that the exergy efficiency decreases for all the hydrogen

concentrations as a function of the time. It was obtained an exergetic efficiency of 77.2%,

73.4%, and 69.7% for the hydrogen concentrations of 1.5%, 2.5% and 5%, respectively.

On the other hand, the energy balance shows a successive conversion of kinetic energy

and total enthalpy, however, does not indicate consequent losses.

5. Conclusions

The CFD code was developed using finite volume discretization method coupled with

implicit scheme for the time discretization. The code solves the Euler system equations
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including a chemistry model, with 5 reactions and 7 species, using an implicit total variation

diminishing (TVD) algorithm based on Riemann solver.

There exists a large literature about the numerical discretization of the detonation

of hydrogen-air mixture problems: Eulerian schemes, Lagrangian schemes, front tracking

techniques, and level set methods, among others. Our main goal, in the present work, is

to use detonation parameters, from the beginning to the end of detonation of hydrogen-air

mixture to calculate and analyze the exergy loss and the efficiency. The main steps of H2-air

mixture detonation calculation were explained. The developed program is able to calculate

the pressure, temperature, density, and mass fraction, for each species from the chemical

model. The exergy efficiency was used as objective criteria of performance evaluation.

We conclude in this work that the exergy losses increase with the augment of hydrogen

concentration in air, and the efficiency of hydrogen detonation, with low concentration in air,

is slightly elevated than the detonation using high hydrogen concentration.
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For better discussing and understanding the physical phenomena and body-fluid interaction
of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other) of
water-entry model for free falling wedge is studied by numerical method based on free surface
capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for
a variable density fluid are numerically calculated by the finite volume method. Then artificial
compressibility method, dual-time stepping technique, and Roe’s approximate Riemann solver
are applied in the numerical scheme. Furthermore, the projection method of momentum equations
and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this
basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of
overall body-fluid system and microscopic energy transformation in fluid field are analyzed and
discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport
for water entry problem are made and presented.

1. Introduction

Water-entry phenomena are very common and important in many practical projects, so it is

clear that researches on various water-entry models are always the focus in the field of ship

and ocean engineering. For better discussing and understanding the physical phenomena and

body-fluid interaction during water-entry phase, this paper mainly discusses and studies the

mechanical energy transport from two aspects, which are macroscopic energy conversion of

overall wedge-fluid system and microscopic energy transformation in fluid field, respectively.

However, it is a hard task for water-entry problem to deal with moving free surface

and solid boundary simultaneously. Furthermore, the body-fluid interaction during water
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impact should increase the difficulty and complexity of accuracy calculation as discussed by

Bunnik and Buchner [3]. Thus here an effective and available numerical method based on

free surface capturing method and Cartesian cut cell mesh as studied by W. H. Wang and

Y. Y. Wang [4] can be used to well handle the difficulty of moving free surface and solid

boundary.

In this numerical method, by using free surface capturing method as discussed in [4–

7], the incompressible Euler equations for a variable density fluid are taken as governing

equations, and free surface should be captured as a contact discontinuity in the density field.

On the other hand, Owing to its advantage of conveniently updating a few cells locally near

solid boundary rather than remeshing the whole flow domain, Cartesian cut cell mesh system

as shown [8–10] is applied to treat the moving body. Then, finite volume method is used

to numerically discretize governing equations. In the numerical method, Roe’s approximate

Riemann solver as discussed by Roe [11] is introduced for flux evaluation at each edge of

fluid cell, and the exact Riemann discontinuous solution as studied by W. H. Wang and Y.

Y. Wang [4] is taken to achieve the flux on the solid boundary. Besides, dual-time stepping

technique with artificial compressibility method as discussed by Soh and Goodrich [12] is

applied in time advancing. Furthermore, the body-fluid interaction is calculated by means of

a fully body-fluid coupled method as described by Kelecy and Pletcher [13].
On this basis, the theory of energy transport as demonstrated by Bird et al. [14] is

introduced in the water-entry model to analyze and discuss the regularity about macroscopic

energy conversion of overall wedge-fluid system and microscopic energy transformation

in fluid field during water-entry phase. Finally, by taking water-entry model of free-falling

wedge as test cases, many useful conclusions about mechanical energy transport for water-

entry problem are made and presented.

2. Numerical Computational Method for Water-Entry Model

2.1. Governing Equations and Boundary Condition

Here, free surface capturing method is applied to treat water surface. For the 2D

incompressible, unsteady, inviscid fluid system with a variable density field, the fixed x-

and y-coordinate axes are along and vertical to free surface, respectively, so the governing

equations can be written in the conservation form as follows.

The mass conservation equation:

∂ρ

∂t
+
∂
(
ρu
)

∂x
+
∂
(
ρv
)

∂y
= 0, (2.1)

the x-direction momentum equation:

∂
(
ρu
)

∂t
+
∂
(
ρuu + p

)
∂x

+
∂
(
ρuv

)
∂y

= ρBx, (2.2)
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the y-direction momentum equation:

∂
(
ρv
)

∂t
+
∂
(
ρvu

)
∂x

+
∂
(
ρvv + p

)
∂y

= ρBy, (2.3)

and the incompressibility constraint equation:

∂u

∂x
+
∂v

∂y
= 0, (2.4)

where ρ is the fluid density, u, v represent the x- and y-directional fluid velocities, p is

the fluid pressure, and Bx and By are the x and y-directional accelerations of body force,

respectively.

In the current method, two kinds of boundary conditions should be used and

described as

(1) outlet or open boundary: a zero gradient condition is applied to the velocity and

density, and the pressure at this boundary is fixed to be static pressure, which allows

fluid to enter or leave the computational domain freely according to the local flow

velocity and direction;

(2) solid body boundary: the density is assumed to have a zero normal gradient, and

the no-penetration condition can be applied to the velocity. For the case that a free

rigid body moves with one degree (up or down) by referring to W. H. Wang and

Y. Y. Wang [4], the projection method for momentum (2.2)-(2.3) is used to define

the pressure boundary condition ∇p = [0, −ρ∂vS/∂t − ρg], here vnS is the vertical

velocity of free-falling wedge with positive direction upwards.

2.2. Cartesian Cut Cell Mesh System

In the present study, Cartesian cut cell mesh is applied in spatial discretization of

computational domain, which can be generated by cutting solid bodies out of a background

Cartesian mesh. As a result, three kinds of cells (solid, fluid, and cut cell) are formed, in which

geometric and fluid information can be stored. Moreover, the further detail about the mesh

generation can be referred to the studies of Yang et al. [8, 9] and Causon et al. [10].

2.3. Numerical Discretization Scheme

Based on the Cartesian cut cell mesh, here a cell-central finite volume method is applied in

numerical discretization. Therein, Roe’s approximate Riemann solver is adopted to calculate

the numerical flux on each edge of fluid cell, where fluid variables are reconstructed by

using a piecewise linear upwind scheme, and then a least-square method as discussed by

W. H. Wang and Y. Y. Wang [4] and Superbee limiter as shown by Qian et al. [5] are used

to achieve variable gradients and control spurious oscillations, respectively. Besides, the

flux on solid boundary can be achieved by means of exact Riemann discontinuous solution

by referring to W. H. Wang and Y. Y. Wang [4]. Then dual-time stepping technique with

artificial compressibility method is taken for time advancing. Finally, here an approximate
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LU factorization (ALU) scheme as mentioned by Pan and Lomax [15] is applied to solve

linear equations. The more details about the above numerical scheme can be further found

from the study of W. H. Wang and Y. Y. Wang [4].

2.4. Interactive Fluid-Body Motion

Here for the water-entry model of free-falling wedge, a fully body-fluid coupled velocity

method as discussed elsewhere [4, 13] is used to calculate the fluid-body motion.

Firstly, the new body velocity can be obtained by

(
vn+1
S

)k+1
= ω

⎛⎝vnS +
ΔtFk

body

m

⎞⎠ + (1 −ω)
(
vn+1
S

)k
, (2.5)

where Δt is the physical time interval,m is the mass of wedge, vnS is the vertical body velocity

at the physical time n, and ω is a relaxation parameter to control the stability of subiteration.

The larger the ω is, the faster the convergence rate of subiteration is.

As shown in (2.5), a subiterative process should be carried out at each physical

moment, and the convergence standard is (vn+1
S )

k+1−(vn+1
S )

k
< 10−3. Then the final convergent

(vn+1
S )

k+1
can be taken as the new velocity boundary condition vn+1

S for the next physical time

step n + 1.

Subsequently, by using the calculated vn+1
S , the new vertical displacement of solid body

can be achieved by

yn+1
S =

Δt
(
vnS + v

n+1
S

)
2

, (2.6)

where yn+1
S is the new displacement condition of solid body for the next physical time step

n + 1.

3. Theory of Mechanical Energy Transport in Fluid Field

3.1. The Equation of Mechanical Energy

In order to be convenient for describing the equation of mechanical energy, here (2.2) and

(2.3) should be rewritten in vector form firstly:

∂
(
ρv
)

∂t
= −[∇ · ρvv] − ∇p + ρB, (3.1)

where v = ui+vj is the fluid velocity, B = Bxi+Byj is the fluid acceleration of body force, and

∇p = ∂p/∂xi + ∂p/∂yj is the gradient of fluid pressure.
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Then by taking the dot product of fluid velocity vector v with (3.1), the final result is

the equation of change for kinetic energy as discussed by Bird et al. [14]:

∂

∂t

(
1

2
ρv2

)
= −
(
∇ ·
(

1

2
ρv2

)
v
)
− (∇p · v) + ρ(v · B). (3.2)

In this equation, ∂(ρv2/2)/∂t is increase rate of kinetic energy per unit volume, −(∇p · v) is

rate of work done by pressure of surroundings on the fluid, −(∇ · (ρv2/2)v) is the rate of

kinetic energy addition by convective transport, and ρ(v · B) is rate of work done by body-

fluid force.

With the introduction of the potential energy, (3.2) assumes the following form, and

the equations of change for mechanical and potential energy can be written as

∂

∂t

(
1

2
ρv2 + ρgy

)
= −
(
∇ ·
(

1

2
ρv2 + ρgy

)
v
)
− (∇p · v), (3.3)

∂

∂t

(
ρgy

)
= −(∇ · (ρgy)v) − ρ(v · B), (3.4)

where ∂(ρgy)/∂t is the increase rate of potential energy per unit volume, and −(∇ · (ρgy)v)
is the rate of potential energy addition per unit volume by convective transport.

3.2. The Macroscopic Balance of Mechanical Energy in Fluid Field

The most important use of microscopic kinetic plus potential energy (3.3) is for the

development of the macroscopic mechanical energy balance, which can be integrated in

whole fluid field:∫
V (t)

∂

∂t

(
1

2
ρv2 + ρgy

)
dV = −

∫
V (t)

[
∇ ·
(

1

2
ρv2 + ρgy

)
v
]
dV −

∫
V (t)

(∇p · v)dV. (3.5)

Next based on the Leibniz equation and Gauss law as shown by Bird et al. [14], (3.5)
can be rewritten as

d

dt

∫
V (t)

(
1

2
ρv2 + ρgy

)
dV = −

∫
S(t)

[
n ·
(

1

2
ρv2 + ρgy

)
(v − vB)

]
dS −

∫
S(t)

(
n · pv)dS, (3.6)

where vB represents the boundary velocity of fluid field.

4. Results of Test Case and Discussions

4.1. Verification of the Present Numerical Method

In this section, two kinds of water-entry models of 2D free-falling wedge are created and

numerically simulated to validate the present method by comparing the calculated results

with experimental data of Zhao and Faltinsen [1] and Sun et al. [2].
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Figure 1: Global mesh of test model 1 (a) and test model 2 (b) in fluid field.

The first test model was created on a square domain of 3 m×3 m half occupied by water

and half by air, and the wedge with 30◦ was 0.5 m wide, 0.29 m high, and 241 kg weight. The

zero time (t = 0) of this case was selected as the moment that the apex of wedge contacts

the initial calm free surface. Here for the comparison with experimental data as described

by Zhao and Faltinsen [1], the initial velocity of wedge was prescribed as −6.15 m/s. On the

other hand, for the second test model, the computational domain was a square of 0.8 m ×
1.45 m, and the water depth was 1.1 m. Furthermore, the wedge with 45◦ was 0.6 m long,

0.2 m wide, and 7.787 kg weight. The zero physical time (t = 0) was the moment that the apex

of wedge is 0.1 m up from the initial free surface, and then the wedge begun to fall freely.

In numerical calculation, the physical time Δt was 0.0001 s, the fictitious time Δτ was

0.01 s, the artificial compressibility coefficient β was 500, ω was taken as 0.8, and the gravity

acceleration was 9.81 m/s2.

Furthermore near solid boundary, the local meshes with equal spacing Δx = Δy =
0.01 m were refined and regular, and then the mesh size gradually enlarged away from

boundary. Thus, the inhomogeneous meshes (180 × 190 for model 1 and 66 × 90 for model

2) were generated in fluid field as shown in Figure 1.

In Figure 2, the time histories of hydrodynamic and acceleration versus numerical

results and experiment are described and compared, Fh is the hydrodynamic on wedge, a

is the acceleration of wedge, and t is the physical time. From the figure, it can be found that

the numerical results of the present method are in good agreement with the experimental

data of Zhao and Faltinsen [1] and Sun et al. [2]. Furthermore, it should be noted that there is

a little difference about peak value in acceleration curve of Figure 2(b), which may be caused

by the decrease of wedge velocity on the initial water-entry moment due to the resistance of

experimental equipment.

Thus, the present method in this paper can be verified to be available and feasible for

the study of free-falling wedge during water-entry phase. Furthermore, in order to make

a long-time analysis on the energy transport and control the reflection of left and right
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Figure 2: Comparison between numerical solutions of hydrodynamic (a); wedge acceleration (b) and
experiment data of Zhao and Faltinsen [1] and Sun et al. [2].

boundaries, based on the test model 2, the width of computational domain is broaden from

0.8 m to 1.65 m in the following numerical simulation.

4.2. Macroscopic Energy Conversion of Overall Wedge-Fluid System

4.2.1. Change of Mechanical Energy for Free-Falling Wedge

At the initial moment, the wedge is 0.1 m up from the calm free surface and then begins to fall

freely. During the whole motion process, the total mechanical energy (kinetic and potential

energy) of wedge continuously changes as follows:

d

dt

(
1

2
mvS

2 +mgyS
)

= Fh · vS,
d

dt

(
1

2
mvS

2

)
= mg · vS + Fh · vS,

d

dt

(
mgyS

)
= −mg · vS,

(4.1)

where yS is the vertical coordinate of wedge center, vS = vSj is the velocity vector of wedge,

Fh is the hydrodynamic on wedge, g = gj is the vector of gravity acceleration, mvS
2/2 is the

kinetic energy of wedge, and mgyS is the potential energy of wedge (here y = 0 is selected as

zero position of potential energy).
In Figure 3, the time histories of variation rate for total mechanical energy, hydrody-

namic and velocity of free-falling wedge are shown, dE/dt is the variation rate of total energy,

and vS is the body velocity. From the figure, it can be found that based on the movement

characteristic of wedge at various time intervals, the whole motion process can be classified

into three phases. Firstly, before the wedge impacts water surface, the hydrodynamic on
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Figure 3: Time histories of variation rate for total energy (a), hydrodynamic (b), and velocity (c) of free-
falling wedge.

wedge is very small and can be neglected. Thus, wedge keeps accelerating downward in air.

Meanwhile, the total mechanical energy of wedge basically remains unchanged. Secondly,

wedge affects free surface and then enters water. On this time interval, the hydrodynamic on

solid boundary suddenly and rapidly heightens, which cause the wedge to reduce the speed.

Hence, the mechanical energy of wedge gradually decrease and transfer to fluid field. As

the wedge further travels in water, by hydrodynamic on wedge, the body velocity becomes

less and less. Thirdly, until time advances to about 0.43 s, the velocity of wedge reduces to

zero and will become opposite direction. From then on, the wedge moves up and down with

small amplitude, which causes the mechanical energy of overall system to alternately convert

between wedge and fluid field.

Here time histories of accumulative variation of energy and its ratio for free-falling

wedge are shown in the Figure 4, dE is the accumulative variation of energy, work done by

fluid is the accumulative energy transport from wedge to fluid field. The energy conversion

of wedge during the whole motion process can be well described in this figure. For the first

phase of wedge moving in air, the potential energy of wedge becomes basically kinetic energy

of body. Then in the second stage of initial water-entry, the decrease of potential is equal to

the sum of kinetic energy addition of wedge and increase of fluid energy. Finally, in the third

time interval the wedge moves up and down. From the figure, it can be found that the kinetic

energy of wedge tends to zero, and the potential energy of wedge and fluid energy can change

each other. Therefore, it can be concluded that during the water-entry phase the variation of

potential energy of free-falling wedge is the essential source of energy transport of overall

system.

4.2.2. Macroscopic Energy Transport for Whole Fluid Field

In order to study the macroscopic energy transport of fluid field, here based on (3.6) the

various boundaries of fluid field for water-entry model should be discussed firstly.
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Figure 4: Time histories of accumulative variation of energy (a) and its ratio (b) for free-falling wedge.

For the computation domain, up edge is open and outlet boundary, solid edges of

wedge are moving wall boundary, and left, down, and right edges are fixed wall boundary.

Thus, on the up boundary vB = 0, on the solid boundaries of wedge n · v = n · vS /= 0, and on

the fixed boundary (left, down, and right edges) n · v = n · vB = 0 should be used. On this

basis, (3.6) related to water-entry model can be simplified as

d

dt

∫
V (t)

(
1

2
ρv2 + ρgy

)
dV = −

∫
up

[
n ·
(

1

2
ρv2 + ρgy

)
v
]
dS −

∫
up

(
n · pv)dS

−
∫

rigid

(
n · pvS

)
dS.

(4.2)

In this equation, d[
∫
V (t)(ρv

2/2 + ρgy)dV ]/dt is the increase rate of kinetic plus

potential energy in fluid field, − ∫
up
[n · (ρv2/2 + ρgy)v]dS is the rate of kinetic and potential

energy addition of fluid field from up boundary by convection, − ∫
up
(n · pv)dS is the rate of

work done by pressure on up boundary, and − ∫
rigid

(n · pvS)dS is the rate of work done by

pressure on solid boundary of wedge.

Based on the Helmholtz velocity decomposing theorem, the fluid velocity can be

written as

Vx = VxO + εxdx + γdy −ωdy, (4.3)

Vy = VyO + εydy + γdx +ωdx, (4.4)

where VxO and VyO are the x- and y-translational fluid velocities versus pointO, εx = ∂Vx/∂x
and εy = ∂Vy/∂y are x and y-linear deforming velocities of fluid, γ = (∂Vx/∂y+∂Vy/∂x)/2 is

the shearing deformation velocity of fluid, ω = (∂Vy/∂x − ∂Vx/∂y)/2 is the rotation angular

velocity around point O, and r = dxi + dyj is the position vector to point O.
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Figure 5: Information of fluid motion at the moment of 0.21 s. (a) free surface; (b) velocity vector; (c) x-
and (d) y-linear-deforming velocities; (e) shearing deformation velocity; (f) rotation angular velocity.

In order to accurately and reasonably calculate the d[
∫
V (t)(ρv

2/2 + ρgy)dV ]/dt, here

the fluid motion for water-entry model of free-falling wedge should be discussed.

In Figure 5, the free surface, velocity vector, x- and y-linear deforming, shearing

deformation, and rotation angular velocity at the moment of 0.21 s are demonstrated. From
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Figure 6: Time histories of numerical solutions for rate of work done and convection addition to fluid
field and increase of fluid energy without or with consideration of ε, γ and ω during the whole and initial
water-entry phase.

this figure, it can be found that for the water-entry model with air and water, the fluid is not

only rotational motion, but also includes linear and shearing deformation.

Besides, Figure 6 shows the time histories of numerical solutions for rate of work

done and convection in addition to fluid field and increase of fluid energy without or with

consideration of ε, γ and ω during the whole and initial water-entry phase, εx and εy are x

and y-linear deforming, γ is the shearing deformation, and ω is rotation angular velocity. As

shown in this figure, the results shows that in the calculation of fluid energy by finite volume

method for the water-entry model with both water and air, neglecting the influence of ε, γ ,

and ω may produce numerical error. Thus in order to more accurately predict the energy

variation of entire fluid filed, fluid rotational motion and deformation should be taken into

account in the numerical FVM method.

In Figure 7, time histories of accumulative variation of energy and its ratio in fluid

field are demonstrated, and the increase of total energy in fluid field comes from the work

done and convection on boundaries. Here the accumulative variation of energy and its ratio

are also analyzed in three time intervals. In the first stage, the wedge has not yet entered

water. It can be found that the potential energy in fluid field still remain unchanged from the

figure. Next for the second phase, the wedge moves through water surface. Increase of total

energy all become kinetic and potential energy in fluid field. Finally, in the third time interval,

with the time advancing the wedge moves up and down, which cause the ratio of kinetic and

potential to total energy to have a little oscillation around 25% and 75%, respectively.

Moreover, it should be noted that in the third phase the variation of fluid energy is

repeated plus-minus oscillation, so in order to clearly and definitely discuss and analyze

the transport phenomena of fluid energy for water-entry model of free-falling wedge, in the

following study the calculation time range is selected from 0–0.4 s, which is the time interval

of fluid energy monotonously increasing.

Figure 8 demonstrates time histories versus ratio (a) and rate (b) of energy variation

in fluid field during the initial water-entry moment. From Figure 8(a), it can be obtained that

the ratio of work done by wedge to increase fluid energy is approximately equal to 1.0, which
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Figure 7: Time histories of accumulative variation of energy (a) and its ratio (b) in fluid field.
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Figure 8: Time histories versus ratio (a) and rate (b) of energy variation in fluid field during the initial
water-entry moment.

shows that work done by wedge is the main origin and reason for the change and transport

of fluid energy.

Furthermore, the variation rates versus kinetic, potential and total energy are drawn in

Figure 8(b), which can describe the transport phenomena of fluid energy by combining with

fluid motion. During the time interval of wedge moving in air, the hydrodynamic on wedge

is very small, so the rates of kinetic, potential, and total energy in fluid field are minute and

approximate to zero. In the initial phase of water-entry, impulse hydrodynamic with high-

pressure peaks on wedge causes fluid particle near solid boundary to accelerate and free

surface to rise up, which will result in the rapid increase of kinetic and steadily enhancement

of potential energy. As the wedge pieces through free surface, the pressuring effect of wedge

on fluid reduces, and the rate of kinetic energy in fluid field gradually decreases. With
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Figure 9: Comparison of value and its rate versus increase of fluid energy and decrease of wedge energy
during the initial water-entry phase.

physical time advancing, due to the further reduction of fluid pressure and decelerating effect

of gravity, the rate of kinetic energy becomes negative. However, at this moment the global

direction of fluid velocity near free surface is still upward, which cause the potential energy

to continuously heighten. As the wedge further travels into water, for the sake of gravity, the

fluid near free surface ultimately will fall down, the rate of potential energy in fluid field will

be negative, and meanwhile the kinetic energy will accordingly improve.

4.2.3. Validity of Energy Conservation of Overall Body-Fluid System

The increase and its rate of fluid energy and decrease of wedge energy are compared in

Figure 9. From the figure, it is obvious that both variations of fluid and wedge energy are

almost the same, and a very little difference may be caused by the minute work done or

convection on up boundary. Therefore, it can be concluded that energy conservation of overall

system can be satisfied in current numerical method.

4.3. Microscopic Energy Transformation in Fluid Field

In this section, for further and better studying how fluid energy changes and transports, some

microscopic details in fluid field (such as velocity vector, pressure gradient, and distribution

of transient variation for kinetic and potential energy) are discussed at three classic moments

(t = 0.06, 0.18, and 0.27 s), which are chosen from Figure 8.

At t = 0.06 s, the wedge has not contacted and affected free surface yet, and the

information about the change of fluid energy in air can be described and studied as in

Figure 10 .

In Figure 10, microscopic details of fluid energy at t = 0.06 s are described. Firstly

based on (3.2) and (3.4), various influential factors on the change of fluid energy are shown

in Figures 10(c)–10(j), respectively, which are successively the convective transport of kinetic

energy −(∇ · (ρv2/2)v), convective vector of kinetic energy (from high to low) −∇ · (ρv2/2),
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Figure 10: Continued.
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Figure 10: Microscopic details of fluid energy at t = 0.06 s. (a) free surface profile; (b) velocity vector;
(c) convection of kinetic energy; (d) convective vector of kinetic energy (high to low); (e) work done by
pressure; (f) convective vector of pressure; (g) work done by gravity; (h) gravity vector; (i) convection
of potential energy; (j) convective vector of potential energy; (k) transient change of kinetic energy; (l)
transient change of potential energy.

work done by pressure −(∇p · v), convective vector of pressure −∇p, work done by gravity

ρ(v ·B), gravity vector B, convection of potential energy −(∇ · (ρgy)v), and convective vector

of potential energy −∇ · (ρgy). From the figure, it can be found that the effect of these above-

mentioned factors on change of fluid energy is related to the direction and value of fluid

velocity. Now take Figures 10(e) and 10(f) for example, and Figure 10(f) shows the convective

direction of fluid pressure (from high to low). By comparing convective vector of pressure

with the velocity vector of Figure 10(b), it is obvious that the directions versus the above

two kinds of vectors are the same in most areas, except a small local zone near both straight

edges of wedge, which results in the regional distribution about the increase or decrease of

fluid energy in Figure 10(e). Besides as shown in Figure 10(b), the fluid velocities are up to

maximum on the both corners of wedge. Thus in Figure 10(e), there are two deep red zones

with highest rate of energy addition by work done by pressure on the corners of wedge

according to fluid velocity. By synthetically analyzing all influential factors, the transient

changes of kinetic energy ∂(ρv2/2)/∂t and potential energy ∂(ρgy)/∂t can be described in

Figures 10(k) and 10(l). From the figure, because the convection of potential energy and work

done by gravity is almost the same, the potential energy will remain unchanged as shown
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Figure 11: Continued.
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Figure 11: Microscopic details of fluid energy at t = 0.18 s. (a) free surface profile; (b) velocity vector;
(c) convection of kinetic energy; (d) convective vector of kinetic energy (high to low); (e) work done by
pressure; (f) convective vector of pressure; (g) work done by gravity; (h) gravity vector; (i) convection
of potential energy; (j) convective vector of potential energy; (k) transient change of kinetic energy; (l)
transient change of potential energy.

in Figure 10(l). On the other hand, due to the influence of convective transport and work

done by pressure and gravity, the kinetic energy will vary just near the solid boundary of

wedge. Furthermore, only in very minute area on the both straight edges of wedge, the color

of Figure 10(k) is deep blue, where the kinetic energy of fluid field will most quickly reduce.

But in other zones near wedge the kinetic energy will more or less increase.

Figure 11 demonstrates microscopic information of fluid energy at t = 0.18 s. From

Figures 11(a) and 11(b), it can be found that on this moment the wedge is piercing the

free surface, and water rises up along the slope edges, and the displacement waves are

formed. Meanwhile, the air between the body and free surface escapes and separates at the

corner of wedge to form a pair of symmetric vortices. All influential effects on the change

of fluid energy are shown in Figures 11(c)–11(j), respectively and then studied to achieve

the distribution of transient changes of kinetic and potential energy as shown in Figures

11(k) and 11(l). At t = 0.18 s, the wedge has entered water and forces free surface to rise

upward, which results in the increase of potential energy along both slope edges of wedge in

Figure 11(l). Furthermore, according to the convection and work done in Figures 11(c), 11(e),
and 11(g), it can be obtained that the work done of pressure is main reason of energy variation
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Figure 12: Continued.
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Figure 12: Microscopic details of fluid energy at t = 0.27 s. (a) free surface profile; (b) velocity vector;
(c) convection of kinetic energy; (d) convective vector of kinetic energy (high to low); (e) work done by
pressure; (f) convective vector of pressure; (g) work done by gravity; (h) gravity vector; (i) convection
of potential energy; (j) convective vector of potential energy; (k) transient change of kinetic energy; (l)
transient change of potential energy.

for kinetic energy. In Figure 11(f), due to the motion characteristic of free-falling wedge at

t = 0.18 s, there are two prominent low-pressure zones at both corners of wedge, which cause

remarkable increase on both slope edges and great decrease on both straight edges for the

work done by pressure and kinetic energy versus Figures 11(e) and 11(k), respectively.

The fluid details about kinetic and potential energy at t = 0.27 s are drawn in Figure 12.

At this time, the two intersections between wedge and free surface have been to the highest

point of both straight sides, and the two air vortices are far away from wedge. In the same

way, various influential effects on the variation of fluid energy can be achieved in Figures

12(c)–12(j), and on this basis the distribution of transient transformation of kinetic and

potential energy are demonstrated in Figures 12(k) and 12(l). As shown in these figures,

the present location and movement trend of free surface determine the color distribution of

transient change for kinetic and potential energy, that is, the zone with yellow-green color in

Figure 12(k) or blue color of Figure 12(l) represents the present location of free surface which

will move toward the area with red color in Figure 12(k) or red-yellow color of Figure 12(l).
Furthermore, by analyzing the difference of value among various contours, it can be found

that at this moment the free surface will move up and outwards with less and less velocity,

which causes the increase of potential energy and decrease of kinetic energy.
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Finally by synthetically analyzing Figures 10–12, it can be concluded that in fluid field

the variation of kinetic and potential energy just locally takes place near wedge and free

surface. Furthermore, by comparing Figures 10–12 with each other, the rate of variation for

kinetic and potential energy at t = 0.06 s is relatively minute. Next, at t = 0.18 s, the kinetic and

potential energy present a fast growth tendency, and the rate of variation for kinetic energy

is relatively maximum. Finally, on the moment of t = 0.27 s, the rate of potential energy is

positive and relatively maximum, but the kinetic energy in fluid field globally appears to

be a downward trend. Thus, the microscopic information of fluid energy in Figures 10, 11,

and 12 can well verify and support the macroscopic variation trend of kinetic and potential

energy of fluid field in Figure 8.

5. Conclusions

In this paper, a free surface capturing method and Cartesian cut cell mesh are used to

numerically simulate the water-entry model of free-falling wedge. By means of the calculated

results, the physical phenomena and mechanical energy transports of body-fluid interactive

system are studied from macroscopic energy conversion of overall body-fluid system and

microscopic energy transformation in fluid field. Finally some useful conclusions can be made

as follows:

(1) by the present method of this paper, energy conservation is always satisfied in the

whole phase of numerical calculation;

(2) for water-entry model of free-falling wedge with both air and water, the fluid

motion includes not only rotation angular velocity but also linear and shearing

deformation, which will have an influence on the numerical calculation of fluid

energy by finite volume method and should be taken into account;

(3) during the initial phase of water-entry, for the overall system the variation of

potential energy of free-falling wedge is the essential source of energy transport,

which should change the kinetic energy of wedge, kinetic energy, and potential

energy of fluid;

(4) during the initial phase of water-entry of free-falling wedge, compared with the

work done by wedge, the energy transport from open boundary can be neglected

for the variation of fluid energy. Furthermore, the gradient of fluid pressure caused

by wedge is the basic and original cause of fluid motion and energy transport in

fluid field;

(5) during the initial phase of water-entry of free-falling wedge, the change regularities

of kinetic and potential energy in fluid field are studied and successfully associated

with the fluid motion.

Furthermore, in the future research other water-entry problems (such as water-entry

with constant velocity and water-entry of elastic body) should be studied and analyzed.
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In addition to leachate and gas emission analysis, temperature variations in municipal solid waste
landfills are routinely monitored for safety and health reasons, such as the increased production
of biogas or the danger of spontaneous combustion phenomena if the temperature exceeds 70–
75◦C. The increasing constraints on greenhouse gas emissions and the convenience of fuel and heat
recovery have helped develop a global approach to landfills’ operation and maintenance, generally
referred to as bioreactor landfill management. The heat recovery piping we are presently designing
can be a significant part of this approach. The heat gained by a fluid circulated in a closed network
through the landfill is transferred to an external heat exchanger or used directly as warm water.
Additionally, it can help reduce landfill temperature levels and control biogas generation. Since
the pipes diameter is large enough to allow for a radial temperature gradient, this information can
be used for an inverse estimation of the temperature profile in the landfill which constitutes the
boundary conditions of the resulting heat transfer problem. In this paper, we describe an algorithm
for regularising the resulting ill-posed free boundary estimation problem using sampled data of
the heat recovery fluid on exiting the landfill.

1. Introduction

A new approach to landfills’ operation and maintenance, generally referred to as “bioreactor

landfill management,” is expected to reduce the amount of leachate and to increase the

production of biogas, while reducing the amount of necessary land.

For the achievement of this result, leachate and gas emissions of municipal solid waste

landfills are accurately analysed, whereas temperature variations are routinely monitored

for safety and health reasons, such as the increased production of biogas or the danger of

spontaneous combustion phenomena if the temperature exceeds 70–75◦C [1].
Significant amounts of heat are produced in municipal landfills due to decomposition

of organic solid wastes. While leachate and gas emissions have been the object of several
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studies [2–4], less information is available on heat recovery technologies. However, they

could be a significant part in the general bioreactor landfill management, as the heat gained

by a fluid circulated in a closed network through the landfill can be transferred to an external

heat exchanger or used directly as warm water adding to the overall energy saving strategy.

Additionally, the heat removed can contribute to a reduction of temperature levels inside the

landfill and to an alleviation of spontaneous combustion risks.

Since the diameter of the pipes carrying the heat recovery fluid is large enough to allow

for a radial temperature gradient, this information can be used for an inverse estimation of the

temperature profile in the landfill which constitutes the boundary conditions of the resulting

heat transfer problem. This information can be combined with the measurements provided

by in situ sensors (including thermocouples, thermistors, and vibrating wire piezometers)
which have to withstand a corrosive aggressive environment and strong mechanical stresses.

The simultaneous use of direct measurements provided by sensors and of estimates resulting

from inverse temperature profile reconstructions can improve the overall thermal control in

landfills.

The inverse estimation of the boundary conditions of a partial differential equations is

known to be an ill-posed problem which requires suitable regularisation techniques to obtain

stable and physically acceptable solutions.

In this paper, we employ a piecewise linear approximation to the unknown profile

combined with a traditional Tikhonov regularisation technique [5]. The piecewise linear

approximation of a boundary condition was first employed by the authors in the estimation

of diffusivities in solids [6], where it was used in conjunction with separable least squares.

In this paper, the method is extended to the thermal energy transfer of a fluid in stationary

motion.

Exact simulated data are generated from an assumed smooth temperature profile with

a spike to indicate the presence of a hot spot which might turn into a landfill fire. A Gaussian

distributed error with zero mean and a standard deviation equal to the measurement

precision is added to the exact data.

The reconstructions obtained by using different values for the number of intervals

of the piecewise linear approximation and Tikhonov’s regularisation parameter show the

usefulness and the limitations of the method developed.

2. Theoretical Development

The temperature profile inside the pipes is determined by the transfer of heat from the soil to

the fluid flowing in the pipes.

Assuming radial symmetry about the axis of the pipe and a flat velocity distribution

across the section of pipe (which is a reasonable assumption due to the turbulent motion of

the fluid), the energy balance can be written as [7]

ρcpu
∂T

∂x
= K

1

r

∂

∂r

(
r
∂T

∂r

)
, (2.1)(

∂T

∂r

)
r=0

= 0, (2.2)

T(0, r) = T0, (2.3)

−K
(
∂T

∂r

)
r=R

= H
[
T(x,R) − ϕ(x)], (2.4)
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where ρ is the density, cP is the specific heat at constant pressure, u is the speed, and K is the

conductivity of the fluid. R is the radius of the pipe, and x indicates the direction of motion.

H is the heat transfer coefficient from the soil to the fluid (including wall resistance), and

ϕ(x) is the unknown temperature profile of the soil.

Setting k = K/(ρ cP u), (2.1) becomes

∂T

∂x
= k

1

r

∂

∂r

(
r
∂T

∂r

)
.

(2.5)

This equation is formally equal to the transient heat conduction in an infinite circular cylinder

[8].
The general analytical solution of (2.1)–(2.4) can be determined by applying

Duhamel’s principle [9] to the particular solution obtained assuming a constant temperature

profile along the x direction.

Indeed, if the soil temperature profile is constant along x (ϕ(x) = T ∗), the analytical

solution is provided by the infinite series [8]

(T − T0)
(T ∗ − T0)

= 1 − 2A
∞∑
n=1

e−(β
2
n/R

2)kx J0

(
(r/R)βn

)(
β2
n +A2

)
J0

(
βn
) ,

(2.6)

where A = RH, J0 is the Bessel function of order zero, and βn are the roots of

βJ1

(
β
)
= AJ0

(
β
)
. (2.7)

Combining this equation with Duhamel’s principle, we obtain the general solution

T(r, x) − T0 =
2Ak

R2

∞∑
n=1

βne
−(β2

n/R
2)kx J0

(
(r/R)βn

)(
β2
n +A2

)
J0

(
βn
) ∫x

0

e(β
2
n/R

2)kλϕ(λ)dλ. (2.8)

Thus, if the temperature of the fluid T(r, x) is measured at the exit of the landfill (x = L), the

unknown soil temperature profile ϕ(x) can be estimated.

Following the method developed in [6], let us approximate the profile by a continuous

piecewise function ψ(x) in the range [0, L] divided intoM equal intervals of width h = L/M,

ψ(x) = T0 + h
k−1∑
i=1

ci + ck(x − xk−1), xk−1 ≤ x ≤ xk, (2.9)

where ck is the angular coefficient of the linear approximation in the interval xk−1 ≤ x ≤ xk.
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The integrals in the infinite series can now be approximated by

∫x
0

e(β
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∫x1
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which can be rewritten as
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Thus,
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where Pn and Rin can be evaluated by comparison.

We can now rewrite (2.8) as
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In order to estimate the value of N such that
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to any predefined accuracy, let us analyse first the infinite series
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where
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Let us consider the first series in (2.16).
Since βn > β1 + 3(n − 1),
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Setting x = 0 in (2.8), we can verify that for all r/R,
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Consequently,
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Thus, for any N, we can verify whether
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where ε is any predetermined accuracy.

The same truncation index N can be used to estimate a sufficient number of terms in

the second series.

Indeed, let us rewrite
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and let N be the index such that ∑∞
n=N+1 an∑N
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consequently N is a conservative estimate also for the second series.

It can be shown that using a similar procedure, the same truncation index can be used

also for the series
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All the previous algebraic expressions can be combined to provide the final relationship

between the radial distribution of temperatures in a section of the pipe at a distance L from

the point where heat transfer with the soil starts
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For each r, the value of N is determined by the condition
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where ε is typically 10−6.
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For any data set,

yj = T
(
rj , L

) − T0 −ω
(
rj
)
, (2.27)

we can estimate the slopes of the piecewise linear temperature distribution of the soil from

the system of linear equations

yj =
M∑
i=1

ξijci. (2.28)

The usual least-squares estimation procedure provides the well-known relationship

ĉ = (Γ∗Γ)−1Γ∗y, (2.29)

where ĉ is the vector of the estimated slopes and Γ = ‖ξij‖.

Since this estimation problem is an ill-posed problem, the accuracy of the estimates ĉ

does not depend continuously on the experimental errors on the data.

The results obtained applying Tikhonov’s regularisation method to this problem will

be discussed in the next sections using simulated data generated by a smooth temperature

profile with a spike representing a hot spot in the landfill.

3. Regularisation Technique

Reducing the unknown soil temperature function to a finite-dimensional vector ĉ changes

the theoretically ill-posed problem into a numerically ill-conditioned one, reflected by near

singularity of the matrix Γ∗Γ.
Thus, the most frequently used regularisation method consists in the modification

and/or elimination of the eigenvalues of Γ∗Γ that are too small.

A possible way to do this is reducing the dimension of the matrix (which in our

case implies reducing the number of intervals over which the temperature of the soil is

approximately linear). For this approach to be effective, the dimension of the vector ĉ has

frequently to be reduced so severely as to result in an unacceptably poor reconstruction.

A more efficient technique is the one proposed by Tikhonov and Arsenine [5] and

based on the statistical properties of the experimental errors on the set of measured variables

y.

To illustrate it, let us suppose that measured y
′

and exact (unknown) values y of the

experimental data are related by the relationship

∥∥y − y′
∥∥2 ≤ δ, (3.1)

where δ is determined by the variance of the statistical distribution of the experimental error.

Tikhonov’s regularisation method consists in replacing the original minimisation

problem

∥∥Γĉ − y′
∥∥2 = min, (3.2)
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Table 1

Parameter Value Symbol

Fluid speed 1 m/s u
Pipe diameter 0.4 m 2R
Fluid density 1000 Kg/m3 ρ

Fluid conductivity 0.6397 W/(s m ◦K) K
Heat transfer coefficient∗ 90.36 J/(s m2 ◦K) H

∗
Data taken from [11] (“Ground Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional

Buildings”), ASHRAE (2008).

with the minimisation problem

∥∥∥Γĉ − y
′
∥∥∥2

+ α‖ĉ‖2 = min, (3.3)

where the positive constant α is chosen so that

∥∥∥Γĉ − y
′
∥∥∥2

= δ. (3.4)

Combining (3.3) and (3.4) provides the reconstructed vector ĉ,

ĉ = (Γ∗Γ + αI)−1Γ∗y
′
, (3.5)

with α being determined by Morozov’s discrepancy method [10], that is, iteratively

increasing the value of α until (3.4) is satisfied.

Clearly the eigenvalues of Γ∗Γ are now increased by an amount α, which being positive

regularises the solution vector ĉ at the price of smoothing it. The compromise between

regularisation and accuracy is given by (3.4), which being rooted in statistics provides a

theoretical framework for an optimal offset.

However, caution is warranted when considering automatic acceptance of the solution

obtained. Indeed, the value of δ (related to the statistical distribution of the experimental

error) might be only approximately known. Additionally, the variance of the sample can

differ substantially from the theoretical one, thus leading to a biased value of δ.

Therefore, solution vectors ĉ obtained by letting α vary around the optimal Tikhonov’s

value (typically an order of magnitude above and below) should be examined for the

detection of possible over- or undersmoothing effects.

4. A Numerical Example

Exact simulated data have been generated using a smooth parabolic temperature profile with

a spike to indicate the presence of a hot spot which might turn into a landfill fire. The profile of

the physical model is plotted in Figure 1. The geometrical and physical-chemical parameters

used are reported in Table 1.

Since the fluid used is water, both fluid density and fluid conductivity can be estimated

with a very high degree of accuracy. Consequently the first four parameters can be assumed to
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be accurately known. On the other hand, the heat transfer coefficient depends on the nature

of soil. Since the goal of this paper is to show the reliability of the general procedure, the

literature value (recommended by the American Society of Heating and Air-Conditioning

for ordinary soil) has been used.

More accurate values (based on an experimental campaign) should be employed when

real life cases are considered. Additionally, the uncertainties resulting from the standard

deviation of the estimate of the heat transfer coefficient should be taken into account. To this

purpose, a preliminary parameter sensitivity analysis is carried out in this paper by letting

the parameter H vary by 10% about the value recommended by the ASHRAE.

The computation of data was carried out using (2.8). The truncation index was

evaluated using the procedure described previously, whereas the integrals were computed

analytically.

A Gaussian distributed error with zero mean and a standard deviation equal to the

measurement precision (10−3◦C) was added to the exact simulated data.

The soil temperature profile was reconstructed using 10, 12, 15, and 20 equally spaced

intervals in each of which the temperature profile was assumed linear. The regularisation

parameter was estimated using Tikhonov’s stabilisation method based on the statistical

assumptions.

The corresponding graphs are plotted in Figures 2, 3, 4, and 5, respectively.

In all reconstructions, there is no clear identification of a peak, rather a smooth “bump”

appears in all reconstructions at approximately the right place. Thus, the number of intervals

does not seem to significantly affect the reconstruction of the temperature profile.

On the other hand, if Tikhonov’s parameter is reduced by a factor 2, the presence of

a temperature peak at the right position is more clearly visible. The value of the peak is also

estimated with good accuracy as shown in the 15-interval reconstruction plotted in Figure 6.

The increased accuracy in position and intensity of the peak value is offset by more

marked oscillations, as could be expected owing to the reduction of the smoothing factor.

As expected, increasing Tikhonov’s parameter by a factor 2 smooths the temperature

profile further and blurs the shape of the peak, as shown in Figure 7.

In all reconstructions, there is a hint that a hot spot with a larger-than-expected

temperature is present in the landfill. The position is also predicted with reasonable accuracy.

Reducing the value of Tikhonov’s parameter below its theoretically optimal value provides

an excellent estimation of position and intensity of the temperature peak. Thus, combining
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Figure 2: Ten intervals—Tikhonov’s regularisation factor.
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Figure 3: Twelve intervals—Tikhonov’s regularisation factor.
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Figure 4: Fifteen intervals—Tikhonov’s regularisation factor.
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Figure 5: Twenty intervals—Tikhonov’s regularisation factor.
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Figure 6: Fifteen intervals—Half Tikhonov’s regularisation factor.
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Figure 7: Fifteen intervals—double Tikhonov’s regularisation factor.
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Figure 8: Fifteen intervals—Tikhonov’s regularisation factor-assumed heat transfer coefficient equal to 90%
of the value used to generate the simulated data.
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Figure 9: Fifteen intervals—Tikhonov’s regularisation factor-assumed heat transfer coefficient equal to
110% of the value used to generate the simulated data.

Tikhonov’s regularisation method with a strategy of exploring additional reconstructions

by letting the regularisation parameter vary around its theoretical value provides valuable

information for the overall monitoring process.

As mentioned before, the only parameter subject to a certain degree of uncertainty is

the heat transfer coefficient. Even if good estimates can be obtained through a limited number

of measurements in a well-designed experimental campaign, it is important to verify the

consequences of the use of an incorrect heat transfer coefficient on the reconstruction of the

temperature profile.

To this purpose, a simple sensitivity analysis has been performed by examining

reconstructed profiles when the heat transfer coefficient employed in the regression analysis

differs by 10% from the corresponding value used in the generation of the simulated data.

The heat transfer coefficient H is directly proportional to the variable A. Furthermore,

it follows from the relation βJ1(β) = AJ0(β) that the variables βn are increasing functions ofA.
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Thus, bothω and ξ (and consequently the vector y’ and the matrix Γ) are decreasing functions

of the heat transfer coefficient used in the reconstruction. Therefore a higher value of H is

equivalent to an increased weight of the regularisation term in the minimisation problem

(3.3) and consequently to a more marked smoothing effect.

This is confirmed by the two further reconstructions obtained using 15 equally spaced

intervals, the theoretical Tikhonov’s regularisation factor, and values of the heat transfer

coefficient equal to 90% and 110% of the original value, respectively. As shown in Figures 8

and 9, even a 10% deviation from the true value (which can be regarded as an upper estimate

error) does not affect to any significant degree the analysis made.

Furthermore, it can prove difficult to distinguish between over- (under)smoothing due

to larger- (smaller-) than-optimal value of Tikhonov’s factor and a wrong estimate of the heat

transfer coefficient. This can be regarded as an added reason for considering a reasonably

wide range of values of this factor.

5. Conclusions

If and when the heat generated in a landfill is extracted by the circulation of a heat recovery

fluid, some additional information on temperature distribution inside the landfill will be

available as an added benefit.

The reconstruction technique described in this paper is not intended to replace

the traditional monitoring, but rather to complement it, making it possible to reduce the

number of sensors and/or to detect potential combustion phenomena at places where

no sensor is installed. Furthermore, mobile temperature monitoring equipment can be

more efficiently allocated following the indications provided by the implementation of the

algorithm developed in this paper.

Notation

Symbols

ci: Slope of temperature in the interval i (◦C/m)
cp: Specific heat of heat recovery fluid

h: Interval of linear dependance of temperature on distance (m)
H: Soil heat transfer coefficient (J/(s·m2 · ◦K))
J0: Bessel function of order zero

J1: Bessel function of order one

K: Heat conduction coefficient of heat recovery fluid (W/(s ·m ·◦C))
L: Distance travelled by the fluid in the landfill (m)
M: Number of equally spaced intervals in L
N: Number of terms in the infinite series necessary to achieve a relative accuracy ε

u: Speed of heat recovery fluid (m/s)
r: Radial variable in the pipe cross section (m)
R: Pipe radius (m)
T: Temperature (◦C)
T0: Ambient temperature (◦C)
x: Variable in the direction of fluid motion (m)
y: Experimental data set
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α: Tikhonov’s regularisation parameter

ε: Relative accuracy in the evaluation of series

λ: Dummy integration variable

ρ: Density of heat recovery fluid (Kg/m3)
ϕ: Unknown exact soil temperature profile (◦C).

Symbols Defined by Equations

A: R ·H
k: K/(ρ · cp · u)
Pn, Rin: Defined by the equation

∫L
0
e(β

2
n/R

2)kλϕ(λ)dλ = Pn +
∑M

i=1 ciRin

βn: nth root of the equation βJ1(β) = AJ0(β)
Γ: Matrix whose elements are ξij
δ: Parameter determined by the variance of the statistical distribution of the

experimental error

ξ, ω: Defined by the equation T(r, L) = T0 +ω(r) +
∑M

i=1 ciξi(r).

Superscripts

,: Experimental value

:̂ Estimated value.
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When a hazardous substance is diffused, it is necessary to identify the pollutant source and
respond immediately. However, there are many cases in which damage is caused without a clear
understanding of where the pollutant source is located. There are three groups of identifying
pollutant source information (Liu and Zhai, 2007): the probability method, forward method, and
backward method. In our previous study, we proposed reverse simulation, which is categorized as
a backward method (Abe and Kato, 2011). Numerical instability by negative diffusion is a principal
problem in the backward method. In order to improve the problem, we applied a low-pass filter
operation to the concentration flux in the RANS analysis. The simulation secured the numerical
stability. However, reverse simulation accuracy is expected to depend on the grid resolution and
filter width. In this paper, we introduce reverse simulation results in cavity flow. In particular,
we survey the dependence of reverse simulation accuracy on the grid resolution and filter width.
Moreover, we discuss the dependence of reverse simulation on the grid resolution and filter width
with a one-dimensional diffusion equation. As a result, we found that the simulated negative
diffusion varies greatly among the grid resolution and filter width.

1. Introduction

When a hazardous substance is diffused, it is necessary to identify the source of the pollutant

and respond immediately, for example, by cleaning up and evacuating people from the area.

However, there are many cases in which damage is caused without a clear understanding

of where the pollutant source is located. Many lives have been lost as a result of accidental

pollution from power stations and factories (e.g., Chernobyl in 1986, Bopal in 1984).
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In recent years, some researchers have studied techniques of identifying pollutant

sources either in the groundwater or air. The techniques are separated into three groups:

probability method, forward method, and backward method [1].
Probability methods determine the pollutant source information with probability

objective functions. Wagner developed nonlinear maximum likelihood estimation for

simultaneous model parameter estimation and source characterization [2]. The method

combines groundwater flow and contaminant transport simulation. Woodbury et al. applied

minimum relative entropy theory in order to recover the release history in groundwater flow

[3]. Neupauer et al. developed an adjoint method as a formal framework for predicting

groundwater contaminant source location and travel-time probabilities [4]. Sohn et al.

worked on rapidly locating and characterizing air pollutant releases and presented an

approach for estimating the source locations, the amounts released, and the dispersion

characteristics of indoor airborne pollutants [5]. They proposed a two-stage Bayesian data

interpretation approach.

The forward method identifies the pollutant source by trial-and-error algorithm. The

processes describe the match degree of measured and simulated results and can be used to

estimate the pollutant sources. Gorelick et al. applied minimizing normalized residual for

identifying the source and magnitude of groundwater pollutants in some two-dimensional

cases [6]. Alapati and Kabala applied the least squares function to predict the source release

history in a one-dimensional underground water problem [7]. In the forward method, there

are ways of applying the Tikhonov regularization method [8], which is the most commonly

employed method for an ill-posed problem. Skaggs and Kabala applied the regularization

method to recover the release history in one-dimensional simulation [9]. In atmospheric

gaseous dispersion, Seibert et al. used the Tikhonov regularization method [10], which is

the most useful method for an ill-posed problem to derive the source history from ambient

concentration measurement. These forward methods are good tools for identifying source

information. However, every forward method requires many calculations.

The backward method is the solution to the transport equation in negative time with

the end status as the input condition. The most important problem in the backward method

is the numerical instability from negative diffusion. Generically, CFD needs to define the

location with a finite grid resolution, and there are high wave numbers that cannot be

resolved in CFD. Here, wave number is expressed as “k = 2π/λ,” where λ is the wave

length. The high wave number region has rounding error. Meanwhile, the numerical solution

converges on a large space gradient when analyzing negative diffusion on CFD. This means

that the high wave number component amplifies more quickly than that of the resolved low

wave number region. Therefore, the numerical simulation breaks down due to the rounding

errors in the high wave number region [11].
The most useful method for improving numerical instability in backward method is

the quasi-reversible (QR) solution, which is developed by Skaggs and Kabala [12]. The QR

method adds a term to the diffusion term to improve the numerical stability. Equation (1.1)
shows the one-dimensional government equation in the QR method

∂C

∂t
= Γ

∂2C

∂x2
+ ε

∂4C

∂x4
, (1.1)

Γ represents the diffusion coefficient, and ε represents the stabilization coefficient. This

equation can solve with a negative time step. In Skaggs and Kabala’s research, the method
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was used to recover the time history and spatial distribution of a groundwater contaminant

plume.

In our previous study, we introduced reverse simulation [13, 14], which was

categorized as a backward method. The method applies a lowpass filter operation to improve

the numerical stability (1.2)

F(x) =
∫∞

−∞
G(r)F(x − r)dr,

G(r) =

√
6

πΔ2
exp

−6r2

Δ2
,

(1.2)

F is a physical quantity that is applied in the filter operation. The filtered physical quantity is

shown with an overbar, and Δ is the filter width.

The most important problem when carrying out a transport equation with negative

time advancing in CFD is the numerical instability by analyzing negative diffusion. We made

a pass at applying the filter operation to a concentration field (1.3) in Reynolds averaged

numerical simulation (RANS) analysis [13]

F(x) = C(x), (1.3)

C means the concentration. This method improved the numerical stability, but there was a

big problem with the analysis results. The concentration distribution spread diffusely in an

analytical domain. This means that it is difficult to identify a pollutant source with reverse

simulation applying a filter operation to a concentration field. Therefore, we developed a

reverse simulation. We made a pass at applying the filter operation to a concentration flux

(1.5) to improve the numerical stability and solve the above problem [14]

Fi(x) = −〈u′ic′〉 = νt
σ3

∂C(x)
∂xi

, (1.4)

Fi(x) =
∂C(x)
∂xi

. (1.5)

In (1.3), −〈u′ic′〉 is turbulent concentration flux. Equation (1.4) means gradient diffusion

approximation, νt is the coefficient of turbulent diffusion, and σ3 is the turbulent Schmidt

number. In RANS analysis, it was necessary to apply the filter operation to (1.4) strictly.

However, νt is dependent on the position. This makes the filter operation cumbersome and

complicated. Therefore, we applied the filter operation to the differential part of only (1.5)
approximately. The simulation secured the numerical stability and solved the problem of

concentration spreading diffusely. However, the reverse simulation accuracy is expected to

depend on the grid resolution and filter width.

In this paper, we survey the dependence of reverse simulation accuracy on the grid

resolution and filter width in cavity flow, which forms a greatly bent and circulating flow.

The analysis can be carried out with three different grid resolutions. Each grid resolution

has three different filter widths. A total of 9 cases were analyzed in this study. In addition,

we discuss the dependence of reverse simulation on gird resolution and filter width with a

one-dimensional diffusion equation.
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2. Analysis Method

2.1. RANS Government Equation

In the present study, the equations formed to govern incompressible flow in RANS analysis

were mass conservation flow equation (2.1), the Navier-Stokes equation (2.2), turbulent

kinetic energy (K) equation (2.3), turbulent dissipation (ε) equation (2.4), and concentration

(C) transport equation (2.5). The concentration is passive scalar, assuming that the flow field

has no influence. The turbulence model in this paper is a two-equation Kato-Launder-type

model [15]

∂Ui

∂xi
= 0, (2.1)

∂Ui

∂t
+Uj

∂Ui

∂xj
= −1

ρ

∂

∂xi

(
P +

2

3
K

)
+

∂

∂xj

{
νt

(
∂Ui

∂xj
+
∂Uj

∂xi

)}
, (2.2)

∂K

∂t
+Ui

∂K

∂xi
=

∂

∂xi

(
νt
σ1

∂K

∂xi

)
+ PK − ε, (2.3)

∂ε

∂t
+Ui

∂ε

∂xi
=

∂

∂xi

(
νt
σ2

∂ε

∂xi

)
+
ε

K
C1Pk − C2

ε2

K
, (2.4)

∂C

∂t
+Ui

∂C

∂xi
=

∂

∂xi

(
νt
σ3

∂C

∂xi

)
, (2.5)

νt = Cμ
K2

ε
,

Pk = νtSΩ,

S =

√√√√1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)2

,

Ω =

√√√√1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)2

,

σ1 = 1.0, σ2 = 1.3, σ3 = 1.0, Cμ = 0.09, C1 = 1.44, C2 = 1.92.

(2.6)

The process of negative time advancing in the transport equation is equivalent to that of

positive time advancing with negative time convection and diffusion (2.7)

∂C

∂t
−Ui

∂C

∂xi
= − ∂

∂xi

(
νt
σ3

∂C

∂xi

)
. (2.7)

But the equation is unstable with time advancing. Overall, in forward analysis, the diffusion

term has the effect of improving the numerical stability because the diffusion coefficients

(νt) are a positive value. However, in the backward method, the coefficients are a negative

value. A diffusion term that has a negative coefficient increases the intensity of the high wave
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number region and destabilizes the numerical simulation. For this, we apply lowpass filter

operation to (1.2) the concentration flux (1.5). Equation (2.7) is converted to (2.8) by the filter

operation

∂C

∂t
−Ui

∂C

∂xi
= − ∂

∂xi

(
νt
σ3

∂C

∂xi

)
. (2.8)

The idea is to simulate the negative diffusion played by the low wave number region and cut

that by the high wave number region. The lowpass filter operation to the concentration flux

is clearly beneficial in [14].
In the present stage, flow fluctuations are not considered. Essentially, it is good

to consider the flow fluctuation because the air flow characteristics are unsteady due to

fluctuation in both speed and direction. However, it is necessary for treating the unsteady

flow to solve the Navier-Stokes equation (2.2) in negative time (inverse analysis) or keep

full-time and space-series data. The former is impossible, because it is necessary to couple

the Navier-Stokes equation to the mass conservation equation (2.1). The latter requires huge

memory to store the time-series data. In addition, our purpose in this paper is to survey

and discuss the dependence of reverse simulation on the grid resolution and filter width. In

consideration of these circumstances, we treat the steady flow in the forward and reverse

analyses.

2.2. The Numerical Discretization, Simulation Method, and Analysis Model

Regarding a lowpass filter operation for reverse numerical calculations, the Gaussian filter is

given the Taylor expansion and discretization

F(x) = F(x) +
F ′′(x)

2

∫∞

−∞
r2G(r)dr +

F(4)(x)
24

∫∞

−∞
r4G(r)dr + · · ·, (2.9)

Fm = Fm +
Δ2

24

Fm−1 − 2Fm + Fm+1

Δx2
. (2.10)

Equation (2.8) is expressed as (2.11) when using (2.10)

∂C

∂t
−Ui

∂C

∂xi
= − ∂

∂xi

νt
σ3

{
∂C

∂xi
+
Δ2

24

∂2

∂x2
i

(
∂C

∂xi

)}
. (2.11)

The second term of the right-hand side of (2.11) is able to improve the numerical stability

in backward analysis. Table 1 shows a summary of the parameters used in the numerical

simulation. For spatial discretization in all governing equations, a second-order accurate

central difference scheme is used for the convection terms and diffusion terms. In addition,

when the concentration is below 0, it is replaced as 0 (clipping method). For time integration,

the convection and diffusion terms in the flow field are discretized using the Adams-

Bashforth schemes. Also, the convection and diffusion in the scalar fields (concentration,
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Table 1: Numerical simulation parameters.

Turbulent model Kato-Launder k-åmodel

Navier-Stokes equation
Convection term: 2nd-order central difference scheme
Diffusion term: 2nd-order central difference scheme

Scalar transport equation (K, ε, C) Convection term: 2nd-order central difference scheme
Diffusion term: 2nd-order central difference scheme

Time advancing
Convection term: Adams-Bashforth method
Diffusion term: Adams-Bashforth method

Algorithm ABMAC type

Table 2: Numerical grids and filter width in each case.

Analysis case Analysis condition (numerical grid resolution and filter width)

Case 1
Case 1-1
Case 1-2
Case 1-3

Δx/Hb = 0.2, Δy/Hb = 0.2, Δz/Hb = 0.1, Δ = 10.0Äxi
Δx/Hb = 0.2, Δy/Hb = 0.2, Δz/Hb = 0.1, Δ = 15.0Äxi
Δx/Hb = 0.2, Δy/Hb = 0.2, Δz/Hb = 0.1, Δ = 20.0Äxi

Case 2
Case 2-1
Case 2-2
Case 2-3

Δx/Hb = 0.1, Δy/Hb = 0.1, Δz/Hb = 0.05, Δ = 10.0Äxi
Δx/Hb = 0.1, Δy/Hb = 0.1, Δz/Hb = 0.05, Δ = 15.0Äxi
Δx/Hb = 0.1, Δy/Hb = 0.1, Δz/Hb = 0.05, Δ = 20.0Äxi

Case 3
Case 3-1
Case 3-2
Case 3-3

Δx/Hb = 0.05, Δy/Hb = 0.05, Δz/Hb = 0.05, Δ = 10.0Äxi
Δx/Hb = 0.05, Δy/Hb = 0.05, Δz/Hb = 0.05, Δ = 15.0Äxi
Δx/Hb = 0.05, Δy/Hb = 0.05, Δz/Hb = 0.05, Δ = 20.0Äxi

turbulent kinetic energy and turbulent dissipation fields) are discretized using the Adams-

Bashforth schemes. In terms of the Navier-Stokes equation and mass conservation equation,

the coupling algorithm of the velocity and pressure is based on the ABMAC type [16].
Regarding the grid number and filter width, Table 2 shows the analysis grid

resolutions and filter width in each case. Case 1 is the coarsest grid resolution, and case 3

is the finest grid resolution in all cases. Furthermore, we set three different filter widths in

each grid resolution.

The domain size is 2.0 Hb, 2.0 Hb, and 5.0 Hb (streamwise, spanwise, and vertical,

resp.). Here, Hb is the cavity height. The cavity size is 1.0 Hb, 2.0 Hb, and 1.0 Hb (Figure 1).
The streamwise, spanwise, and vertical directions are x(x1), y(x2), and z(x3), respectively.

Regarding the boundary conditions, in these analyses, the periodic boundary condition is

imposed on the streamwise direction for velocity field, turbulent kinetic energy, and turbulent

dissipation. The Neumann condition is imposed on the top boundary for all physical

quantities. The boundary conditions for bottom and walls are given by the generalized log-

law for the velocity field and the Neumann conditions for turbulent kinetic energy, turbulent

dissipation, and concentration field. In addition, the Neumann conditions are applied to all

boundary conditions for the filter operation.

Figure 2 shows the normalized analysis time and the normalized emission time of

concentration (tUb/Hb). The forward and reverse analysis times are, respectively, from 0

to 100 and from 100 to 200, which are normalized by Hb and Ub. Ub is the velocity at Hb.

As we developed a method of identifying the pollutant source, it is necessary to identify the

elapsed time since emission in addition to the source location. But this time, we assume that

the elapsed time is known. The emission time is from 0 to 20. The source point is 0.2 Hb,

below the head of the cavity and 0.2 Hb downstream of the upper part of the cavity.
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Figure 1: Analysis domain: the domain size of streamwise, span, and vertical directions is 2.0 Hb, 2.0 Hb,
and 5.5 Hb, respectively. Hb refers to the cavity height.
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Figure 2: Emission time and analysis time, forward analysis time: 0∼100, reverse analysis time: 100∼200.
Ub refers to the velocity at Hb.

3. Analysis Results

3.1. Forward Analysis Results

Figure 3 shows the vector of the velocity fields in the cavity. In each analysis case, the velocity

fields form circulatory flows, and all cases are similar for the stagnation point. All analysis

cases have almost the same velocity field.

Figure 4 shows the results of forward analysis (tUb/Hb = 100). The results are to

show the input conditions for reverse simulation. These contours are normalized by the peak

concentration in each case. In Case 1, the location of peak concentration slightly shifts to

the center of the bottom due to a difference of grid resolution. However, the concentration

distributions of all cases are similar overall. With the forward analysis results, reverse

simulations are carried out.
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(a) (b) (c)

Figure 3: Side view of velocity vector: (a) Case 1, (b) Case 2, and (c) Case 3.
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Figure 4: Input conditions for reverse simulation (tUb/Hb = 100): (a) Case 1, (b) Case 2, and (c) Case 3.

3.2. Reverse Analysis Results

3.2.1. The Influence of Grid Resolution

Figure 5 shows the results of reverse simulations for three different grid resolutions

(tUb/Hb = 200). These distributions are normalized by the peak concentrations of each case

at tUb/Hb = 100. In each case, numerical instabilities are improved by the filter operation.

However, regarding Case 1-1, which has the coarsest grid resolution (Case 1-1),
the concentration distribution spreads widely over the whole cavity. In addition, the high

concentration location is very far from the source point as the initial condition of forward

analysis because the lowpass filter effect is too strong. In other words, the numerical grid

resolution of Case 1 is too rough to carry out reverse simulation and it is difficult to identify

a pollutant source when using the grid resolution. Meanwhile, high concentration parts of

Case 2-1 and Case 3-1 are clearer than that of Case 1-1. In particular, that of Case 3-1 is the

clearest in these analyses.

To identify the pollutant source, we consider the high concentration distributions.

Figure 6 shows distributions of over 80 percent of peak concentration in Case 1-1, Case 2-

1, and Case 3-1, respectively. These figures are normalized by the peak concentrations in each

case at tUb/Hb = 100. The location of Case 1-1 is not appropriate, because the filter effect

is too strong. The peak locations of Case 2-1 and Case 3-1 are very near to the source point

as the initial condition of the forward analysis, especially the result of Case 3-1. Moreover,

the grid resolution is concerned with the peak values. The values of Case 1-1 and Case 2-1

are lower than those at tUb/Hb = 100, and the peak value of Case 3-1 is higher than that

at tUb/Hb = 100. These results suggest that reverse simulation can create negative diffusion

played by a certain level of wave number region.
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Figure 5: Reverse analysis results (tUb/Hb = 200): (a) Case 1-1, (b) Case 2-1, and (c) Case 3-1.
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Figure 6: Peak concentration (tUb/Hb = 200): (a) Case 1-1, (b) Case 2-1, and (c) Case 3-1.

3.2.2. The Influence of Filter Width

Figure 7 shows the results of Case 3-2 and Case 3-3, respectively. Comparing Case 3-1 with

Case 3-2 and Case 3-3 reveals that the high concentration parts wash out as the filter widths

are larger. This is because the high wave number region cut by a lowpass filter operation

expands and negative diffusion played by the wave number region cannot be simulated. The

results suggest that it is important for reverse simulation to decide on the filter width.

3.2.3. The Time Series of Concentration Center and Dispersion Width

The next figures concern the concentration center (Xic) and dispersion width (σi). The

concentration center and dispersion width are defined by (3.1) and (3.2), respectively.

Equation (3.1) explains the average location of the concentration distribution. Equation (3.2)
explains the average distance from the concentration center

Xic =

∫∫∫
xiC(x1, x2, x3)dx1dx2dx3∫∫∫
C(x1, x2, x3)dx1dx2dx3

, (3.1)

σ2
i =

∫∫∫
(xi −Xic)2C(x1, x2, x3)dx1dx2dx3∫∫∫

C(x1, x2, x3)dx1dx2dx3

. (3.2)

Figure 8 shows the time-lines of the concentration centers of the streamwise direction.

It shows the forward analysis from 0 to 100 and the reverse analysis from 100 to 200.
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Figure 7: Reverse analysis results (tUb/Hb = 200): (a) Case 3-2 and (b) Case 3-3.
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Figure 8: Time lines of concentration center of streamwise direction. (a) Case 1, (b) Case 2, and (c) Case 3.

The horizontal axes explain time that is normalized by Ub and Hb. The vertical axes explain

the concentration center that is normalized by Hx s, which is the emission point of the

streamwise direction. At tUb/Hb � 50, the concentration centers change greatly in all cases.

This is because the streamlines change greatly. When using the coarsest grid resolution (Case

1) in reverse simulation, the distribution cannot be caught. However, as the grid resolution is

finer, the distribution can be perceived. In addition, we can confirm that the time-line curves

become hardened with increase in filter width. In particular, the dependence on the grid

resolution and filter width has a greater impact at tUb/Hb � 150 (corresponding to tUb/Hb �
50 in forward analysis), at which the concentration centers change greatly. The great time-

variation at tUb/Hb � 150 cannot be simulated with Case 1-3, which has the coarsest grid

resolution and the broadest filter width. However, the variation can be simulated perceptively

with Case 3-1, which has the finest grid resolution and the narrowest filter width.

Figure 9 shows the time lines of the concentration centers of the vertical direction.

The vertical axes explain the concentration center that is normalized by Hz s, which is the

emission point of the vertical direction. At tUb/Hb � 30, the concentration centers change

greatly in all cases. This is because the streamlines change greatly as with those of the
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Figure 9: Time lines of concentration center of vertical direction. (a) Case 1, (b) Case 2, and (c) Case 3.
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Figure 10: Time lines of concentration dispersion width of streamwise direction (a) Case 1, (b) Case 2, and
(c) Case 3.

streamwise direction. The distributions can be caught in reverse simulation, as the grid

resolution is higher and the filter width is narrower. This suggests that the dependence of

the reverse simulation accuracy on the grid resolution and filter width have a greater impact

at tUb/Hb � 170 (corresponding to tUb/Hb � 30 in forward analysis).
Figure 10 shows the time lines of the concentration dispersion widths of the

streamwise direction. We can see that the dispersion widths have maximum value at

tUb/Hb � 30 in all cases. The distributions cannot be caught adequately by reverse analysis

with Case 1 and Case 2. The analysis with Case 2-1, which has middle grid resolution, and

the narrowest filter width in Case 2, can only slightly catch the distribution. Meanwhile,

reverse analysis with Case 3, which has the highest grid resolution can catch the distribution

exactly, especially Case 3-1. In addition, no analysis case makes the dispersion width zero at

tUb/Hb = 200 because negative diffusion played by the high wave number is cut by the

lowpass filter operation. Figure 11 shows the time lines of the concentration dispersion

widths of the vertical direction. In forward analysis, the dispersion widths in all cases

monotonically increase until tUb/Hb � 50 and remain virtually constant until tUb/Hb = 100.
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Figure 11: Time lines of concentration dispersion width of vertical direction (a) Case 1, (b) Case 2, and (c)
Case 3.

Reverse simulation with Case 1 cannot catch the time series variation. Reverse simulation

with Case 2 also cannot catch the negative diffusion adequately. Regarding Case 3, reverse

simulation with Case 3-2 and Case 3-3 overestimate the time series variation at tUb/Hb � 150

(corresponding to tUb/Hb � 50 in forward analysis). On the other hand, the simulation with

Case 3-3, which has the highest grid resolution, can precisely catch the time series variation.

In addition, no analysis cases make the dispersion width zero at tUb/Hb = 200 as with that of

the streamwise direction because negative diffusion played by the high wave number is cut

by the lowpass filter operation.

Figure 12 shows the relationship between coefficients of filter operation and the

distance (L) between the concentration center and the real source point as the initial condition

normalized by Hb. The horizontal axis explains the coefficient of filter operation normalized

by Hb. The vertical axis explains the normalized distance. As the filter effect gets smaller,

the distance shrinks. This means that the reverse simulation accuracy is more sensitive with

the smaller filter effect. We can expect that reverse simulation accuracy can do better if the

simulation is carried out with finer grid resolution.

As shown above, the dependence of reverse simulation on the grid resolution is

stronger than that of forward analysis. In addition, the reverse simulation which uses high

grid resolution is a useful method for identifying a pollutant source.

4. Discussion

The dependence of reverse simulation on the grid resolution and filter width is higher than

that of forward analysis, as described above. The reason for this dependence is as follows.

Equation (4.1) shows a one-dimensional diffusion equation. For the sake of shorthand,

the diffusion coefficient (Γ) is a constant and positive value

∂C

∂t
= Γ

∂2C

∂x2
. (4.1)
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center and the real source point in each case.

Equation (4.1) is converted into (4.3) by (4.2) (Fourier transform). k shows the wave number,

and i shows the imaginary unit. C̃ shows the concentration intensity in each wave number

C(x, t) =
∫∞

−∞
C̃(k, t) exp(ikx)dki, (4.2)

∂C̃

∂t
= −Γk2C̃. (4.3)

Equation (4.3) explains that C̃ decays over time. Moreover, the decay effect grows strong with

progressing high wave number, because the coefficient of the right-hand side of (4.3) has −k2.

In reverse simulation, (4.3) is converted to (4.4). The sign of the right hand side of (3.2)
is opposite to that of (3.2) (−k2 → k2)

∂C̃

∂t
= Γk2C̃. (4.4)

This equation explains that C̃ increases over time and the increase effect in the high wave

number region is stronger than that in the low wave number region. However, when

analyzing the diffusion equation with CFD, there are rounding errors in the unresolved high

wave number region. For this reason, C̃ in the high wave number region grows excessively

and the numerical simulation breaks down.

Next, (4.5) shows the lowpass-filtered diffusion equation by (2.8)

∂C

∂t
= −Γ

(
∂2C

∂x2
+
Δ2

24

∂4C

∂x4

)
. (4.5)



14 Journal of Applied Mathematics

30

20

10

0

−10

−20

−30

0 5 10

No-filter (reverse)
Case 1-1

Case 2-1

Case 3-1

No-filter (forward)

(k
2
−(

∆
/

2
4
)k

4
)

k·Hb

H
b

2

Figure 13: Coefficients of right-hand side of (4.1), (4.2), and (4.4) in each wave number (Case 1-1, Case 2-1,
Case 3-1).

Equation (4.5) is converted into (4.6) by (4.2)

∂C̃

∂t
= Γ

(
k2 − Δ2

24
k4

)
C̃. (4.6)

The second term of the right-hand side added by filter operation can be seen.

Figure 13 shows coefficients of the right-hand side of (4.3), (4.4), and (4.6). The

horizontal axis explains the wave number normalized by Hb, and the vertical axis explains

the coefficient of the right side of the equations normalized by Hb in each analysis case

(Case 1-1, Case 2-1, Case 3-1). This figure shows the dependence of reverse simulation on

the grid resolution. The figure suggests that the negative diffusion played by the low wave

number can be simulated even in case of filtered equations. However, coefficients of filtered

equations in the high wave number region decline. In particular, above a certain weave

number, the coefficients become of negative value. This suggests that C̃ in the wave number

region decays over time. For this, the lowpass filter operation can suppress the increase of

rounding errors and the numerical stability improves in reverse simulation. In addition, the

wave number regions that negative diffusion can simulate are different in each grid resolution

(see Table 2). The wave number becomes very low when using the lowest grid resolution

(Case 1). Meanwhile, when using the highest grid resolution (Case 3), the simulated wave

number is extended to the high wave number region.

Figure 14 shows coefficients of the right-hand side of (4.3), (4.4), and (4.6). The

vertical axis explains the coefficients normalized by Hb in each case (Case 3-1, Case 3-2,

Case 3-3). This figure shows the dependence on filter width. This suggests that the wave

number regions that can be simulated by negative diffusion are different in each filter width

(see Table 2). When using the largest filter width (Case 3-3), the simulated wave number

region becomes very low. Meanwhile, when using the narrowest filter width (Case 3-1), the

simulated wave number is extended to the high wave number region.

That is the reason for the dependence of reverse simulation on the grid resolution and

filter width.
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Figure 14: Coefficients of right-hand side of (4.1), (4.2), and (4.4) in each wave number (Case 3-1, Case 3-2,
Case 3-3).

5. Conclusion

Reverse simulation is a method of identifying the source of a pollutant and is categorized

as a backward method. This paper introduces the result of reverse simulation using RANS

analysis in a cavity flow. With a low grid resolution or an excessively large filter width,

the concentration distribution of the simulation result spreads widely. This means that the

reverse simulation is less accurate and cannot be applied for identifying the pollutant source.

Nevertheless, with a fine grid resolution and appropriate filter width, reverse simulation is

applicable for identifying the source location.

Furthermore, this paper discusses the dependence of reverse simulation on the

grid resolution and filter width with a one-dimensional diffusion equation. The simulated

negative diffusion varies greatly according to the grid resolution and filter width. This is

important knowledge for applying reverse simulation to practical problems.

In future, reverse simulation should be tried in various comprehensive flows and the

applicability surveyed.
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A volume of fluid multiphase flow model was used to investigate the effective area and the created
liquid film in the structured packings. The computational results revealed that the gas and liquid
flow rates play significant roles in the effective interfacial area of the packing. In particular, the
effective area increases as the flow rates of both phases increase. Numerical results were compared
with the Brunazzi and SRP models, and a good agreement between them was found. Attention was
given to the process of liquid film formation in both two-dimensional (2D) and three-dimensional
(3D) models. The current study revealed that computational fluid dynamics (CFD) can be used as
an effective tool to provide information on the details of gas and liquid flows in complex packing
geometries.

1. Introduction

Corrugated sheet structured packing has been widely used in gas-liquid contacting devices

of industrial application for improving performance [1]. Several parameters cause the struc-

tured packings to be popular: attaining the minimal pressure drop per theoretical stage while

achieving high separation efficiency, allowing reduction in energy dissipation, increasing

loading capacity, and increasing the flooding capacity to its higher values [2].
Structured packings are made of corrugating metal or plastic sheets that are arranged

side by side with opposing channel orientations. Channels are oriented with the angle of ±β
from the horizontal direction. This angle usually varies from 45◦ to 60◦. To create the elements,

corrugated sheets are alternately arranged parallel to one another. Structured packing
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performance depends on the characteristic of the corrugation geometry. The 45◦-corrugation-

angle structured packings are prevalent in the gas-liquid separation industry. The 60◦-

corrugation angle is designed for high capacity processes.

The rate of mass transfer for a structured packed column strongly depends on the

effective interfacial area of the bed. In most cases, the effective surface for mass transfer

is different from the geometrical surface area of the sheets due to the effects of hydraulic

conditions and physical interactions that influence the spreading of liquid on the sheets.

A number of theoretical, semiempirical, and empirical correlations for predicting

the effective interfacial area in structured packings have been reported in the literature.

These models are developed for different packings and various process conditions using

physical measurement methods such as electroresistivity and light transmission. Only a few

researchers have reported actual interfacial areas for limited kinds of structured packings

[3]. Most of the distillation data used in the correlations reported in the literature have been

extracted under total reflux conditions. Thus, the liquid and gas velocities effects could not be

studied separately from the available data. In some reported models, there is no explicit effect

of the gas velocity, and only the liquid phase effects are considered to include the effect of

surface wetting. Only a very few works consider the consequence of gas loading [4, 5]. Some

researchers have suggested that the interfacial area can be larger than the packing geometry

area; however, there are some disagreements on this issue. A brief review of the parameters

that influence the interfacial area has been presented in the previous work [6].
The wetting process of the packing surface is quite complex and is not fully

understood. In the recent years, computational fluid dynamics (CFD) has become a useful

tool for analyzing multiphase flows in various industrial applications. In particular, CFD

provides the capability to reduce a number of required experiments for describing the flow

pattern inside complex geometries such as structured packings; as a result, it reduces the cost

of design for the required equipment.

There have been a number of computer modeling flows in structured packings. For

simulating the hydrodynamics of liquid phase flow in structured packing filled with catalyst

pellets, Van Gulijk [7] used the Toblerone model, simplified the multiphase flow for a single

phase in the channels, and evaluated the transversal dispersion in the structured packed

bed. Van Baten et al. [8, 9] investigated the liquid dispersion and gas and liquid phase

mass transfer between two sheets of KATAPAK-S structured packing using CFD tool. They

considered mass transfer of the gas phase in an empty channel, as well as liquid phase

mass transfer within the catalyst-packed channels. Petre et al. [10] and Larachi et al. [11]
proposed the structured packing as a combination of four representative elementary 3D units

(REU) and evaluated the dry pressure drop of the bed. Szulczewska et al. [12] employed a

2D model, and assumed countercurrent gas-liquid flows, to investigate the mechanisms of

droplet formation and liquid film breakup over both flat and corrugated vertical plates. They

evaluated the gas-liquid interfacial area using film thickness in a 2D model. Based on Petre

and Larachi’s work [10, 11], Raynal et al. [13] predicted the dry pressure drop of structured

packing. They estimated the thickness of the liquid film and consequently the liquid hold-up

in a structured packing under cocurrent flow using the VOF approach. Ataki and Bart [14]
applied the flat packing element of Rombopak 4 M in their CFD models and described the

degree of wetting and the effective area. They also investigated the effect of liquid properties

on the degree of wetting. Haghshenas Fard et al. [15] presented a CFD model to predict both

dry and wet pressure drops for the entire packing module. They also determined the mass

transfer efficiency of the packing in two packing sheets. Mahr and Mewes [16] proposed a

model for two-phase flows in columns with structured packing. They calculated the pressure
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drop in the packing at different angles and directions. Using this model, the macroscopic

flow field of countercurrent two-phase flow could be evaluated in strong anisotropic porous

structures. Khosravi Nikou and Ehsani [17] implemented different turbulence models to

study the flow through structured packings and investigated heat and mass transfers in

the packing. Fernandes et al. [18, 19] assumed uniform wetting of the packing surface and

presented a pseudo single-phase CFD model for determination of wet pressure drops of a

Sulze BX packing element in supercritical fluid extraction process.

In summary, a few studies have been reported in the existing literature that use CFD

techniques for evaluating the effective areas in structured packings while most of the studies

are restricted to prediction of the pressure drop and the use of 2D models for the two-

phase flow simulations. In addition, liquid film thickness in 2D and 3D frameworks was

investigated rarely in the past. In this study, a 3D computational framework was used by

considering multiphase flow for the domain within two layers of the largest element of

the structured packings. The evaluation of the effective area was based on the liquid film

thickness using the VOF method in the 3D simulation. Countercurrent motions of air and

water as gas and liquid phases, respectively, were analyzed, and the effective areas, liquid

hold-up, liquid and gas velocities as well as liquid film thickness were evaluated. 2D model

was evaluated to study liquid film thickness besides the 3D computational domain.

2. Numerical Simulations

2.1. Governing Equations

The simulations are carried out using the volume of fluid (VOF) model. The VOF approach

is well suited for tracking the interface between the two immiscible phases, namely, the gas-

liquid interface. VOF solves a single set of momentum equations throughout the domain,

while keeping track of the volume of phases in each computational cell. The resulting velocity

in each cell is the mass averaged values of the phases present in the cell. The corresponding

momentum balance equation for the two-phase flow is given as

∂

∂t

(
ρ	ν
)
+∇ · (ρ	ν	ν) = −∇ · P +∇ ·

[
μ
(
∇	ν + 	νT

)]
+ ρ	g + 	F, (2.1)

where ρ is the fluid density and 	ν the velocity vector. In addition, P , ρ	g, and 	F are the static

pressure, the gravitational body force, and the external body forces, respectively. Equation

(2.1) involves the volume fractions of both phases that enter through the physical properties

of the phases such as density and viscosity. Accordingly, the phase-averaged properties are

given as

ρ = α1ρ1 + α2ρ2,

μ = α1μ1 + α2μ2,
(2.2)

where ρ and α are density and volume fractions and the subscripts correspond to the phases.

In each control volume, summation of all the phase volume fractions is equal to unity. That

is,
n∑
i=1

αi = 1. (2.3)
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The tracking of the interface is done in the cells where the volume fraction is different

from 0 or 1. If a cell is completely filled with one phase, the volume fractional of that phase

in the cell is equal to unity (α = 1), and the cell is considered to be in the main flow region of

that phase. A cell is considered to be on the (interface) free surface when the value of volume

fraction is between 0 and 1 (0 < α < 1). The tracking of the interface(s) between the phases

is accomplished by the solution of a continuity equation for the volume fraction of one (or

more) of the phases. For the ith phase this equation is written as

∂

∂t

(
αiρi

)
+∇ · (αiρi	νi) = 0. (2.4)

In the present study, mass transfer terms between the immiscible water and air phases

are neglected [18, 19]. The VOF model, however, accounts for the effect of surface tension

along the interface between the phases. The surface tension model used in these simulations is

the continuum surface force (CSF) model that was proposed by Brackbill [20]. The CSF model

can be augmented by the additional prescription of the contact angles between the phases and

the walls. The wall may absorb the liquid (wetting wall) or repel the liquid (nonwetting wall),
and the contact angle varies depending on the hydrophobicity of the wall. The equilibrium

contact angle depends also on the smoothness of the wall [20].
One important part of a CFD simulation is the use of an appropriate turbulence model.

In the present study, based on previous work [21] and the CFD model of Khosravi Nikou and

Ehsani [17] for simulation of a structured packing, the BSL model (the baseline k-ω model)
is used for the present simulations. The main problem with the k-ω model is its well-known

strong sensitivity to free stream conditions. This is undesirable, and, in order to solve the

problem, the BSL model that is a blending between the k-ω model near the surface and the

k-ε model in the outer region is developed.

Typically, the relative error between two successive iterations is specified using a con-

vergence criterion of 10−4 for each scaled residual component. It might be worth mentioning

the computational time required for each 3D simulation run, which is about 6-7 days while

this time duration is about 20–25 hours for each 2D simulation run on a Pentium 4 CPU

running on a quad-core 3.2 GHz with 4 GB of RAM.

For the current simulations, the phases are air and water. The fluids are assumed to

be Newtonian, isothermal, and incompressible; therefore, their properties are kept constant.

The computations are conducted under the unsteady state condition, with a time step of

0.002 sec until a pseudosteady state is reached. Pseudosteady conditions are established when

the mass flow rates at the outlets do not change. The physical properties of the phases and

the geometrical characteristics used in the simulations are listed in Tables 1 and 2.

2.2. Domain and Grid Arrangements

To investigate the effective area, the experimental setup of Rocha et al. [22] is utilized for

validation and verification of the 3D CFD model. The computational space for the CFD model

consists of 34 triangular channels, with a total number of 137 crossovers, which is shown in

Figure 1. Since the thickness of the liquid film on the packing surface is very small, a refined

structural grid is used for achieving better convergence and for decreasing the number of grid

elements in the domain. The grids are dense near the wall for more accurate determination

of the liquid film thickness, and they become coarser away from the wall.
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Table 1: Physical properties of the system for simulations.

Physical properties Air Water

Density ρ (kg m−3) 1.185 997

Kinematic viscosity υ (m2 s−1) 1.545 10−5 8.926 10−7

Surface tension σ (N m−1) — 0.0728

Static contact angle with air steel — 70–80◦

Table 2: Geometrical characteristics for the simulated structured packing.

Packing type Sulzer BX Gempak 2A

Specific surface area (m2/m3) 500 223

Height of element (m) 0.185 0.2477

Void fraction (%) 90 95

θ (deg) 55 45

ap (m−1) — 223

Channel dimensions (m)
Height of triangle (h) 0.006 0.0122

Base of triangle (b) 0.012 0.0267

Corrugation spacing (s) 0.009 0.018

Grid independence of the solution was tested through using several different grid

sizes. Table 3 shows the predicted liquid film thickness using various mesh sizes. This table

shows that when finer grids are used the predicted liquid film thickness is reduced. Against

the coarse grids, the predicted liquid film thicknesses for both fine and medium grids

are roughly close. The simulation running time on the fine grid takes considerable CPU

time. Consequently, simulations are conducted on the medium grid with a total number of

computational hexahedral cells of 1315200, 22100, and 17280 for 3D and 2D frameworks of

Gempak 2A as well as 2D modeling of Sulzer BX, respectively.

To investigate liquid film formation on the packing in a 2D computational framework,

the experimental setups of Rocha et al. [22] and Cho et al. [23] at Gempak 2A and Sulzer

BX packings, respectively, are used. In a 2D domain, a cross-section of the packing channel is

obtained when the duct between two corrugated plates is cut vertically.

2.3. Initial and Boundary Conditions

For the 3D model (Rocha et al. [22] setup) on the lower side of the packing sheets, the

uniform inlet velocity boundary conditions are prescribed for both air and water phases.

In this section of the packing, the velocity inlets are identified where gas and liquid velocities

in that region have, respectively, positive and negative values to hold countercurrent flows in

the simulation process. The outlet is defined on the upper side of the packing sheets using the

pressure outlet boundary condition. At this boundary, the outlet static pressure is prescribed.

A no-slip boundary condition is used for the gas and liquid phases on the lateral walls of the

packing. The computational domain is assumed to be initially filled with air, and the initial

volume fraction of the water is set to zero. In addition, the initial values of gas and liquid

velocities are set to zero through the packing element.
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Figure 1: Computational domain for simulation and schematic overview of meshing of a triangular face.

Table 3: Liquid film thickness at different mesh sizes.

Fine Medium Coarse

Rocha et al. [22] (for 3D modeling)

Number of computational cells 1657700 1315200 771584

Liquid film thickness (mm) 0.26 0.269 0.372

Rocha et al. [22] (for 2D modeling)

Number of computational cells 25000 22100 15500

Liquid film thickness (mm) 0.275 0.28 0.31

Cho et al. [23] (for 2D modeling)

Number of computational cells 20000 17280 10500

Liquid film thickness (mm) 0.265 0.27 0.30

For the 2D two-phase flow simulations (Rocha et al. [22] and Cho et al. [23]), the

liquid and gas inlet zones are defined with uniform inlet velocity boundary conditions. The

outlets for liquid and gas are defined with an outflow boundary condition. The computational

domain is assumed to be initially filled with air, and the initial volume fraction of the water

is set to zero. At the walls, a no-slip boundary condition for gas and liquid phases is imposed

according to the previous works. The static contact angle of γ = 70◦ is also assumed.
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3. Results and Discussion

3.1. Pressure Drop

Pressure drop is an important measured parameter that can be used to validate hydrody-

namic models of multiphase systems. Here the predicted pressure drops are compared with

the experimental data. A commonly used model for determining mass transfer and pressure

drop in structured packings was developed several years ago at the separations research

program (SRP) of the University of Texas at Austin. Rocha et al. [22] treated structured

packing as a network of wetted wall columns and theorized that the effective area, pressure

drop, and hold-up should be all related. They proposed following correlation for dry pressure

drop of the packings,

ΔPdry

Z
=

0.177ρG

Sε2(sin θ)2
U2
gS +

88.774μG

S2ε sin θ
, (3.1)

where UgS and ε, respectively, are superficial gas velocity and void fraction of packing and S

stands for side dimension of corrugation.

The irrigated pressure drop was also proposed by Rocha et al. [22], based on a generic

channel model, as

ΔPdry

Z
− ΔP

Z
[1 − (0.614 + 71.35S)hL]

5 = 0. (3.2)

The CFD results are compared with the corresponding experimental data and SRP

model results. Figure 2 shows the predicted dry pressure drops of CFD tool and SRP model

against the F-factor, uG(ρG)0.5, in the structured packing. The experimental data of Rocha

et al. [22] are reproduced in this figure to compare with the CFD results and SRP model

predictions. The mean absolute relative error of the CFD dry pressure drop is about 13.4%.

A major reason for the under-prediction of the pressure drop in Figure 2 is that the junction

effect between two consecutive packing layers is not considered in the simulations. More

details regarding this effect are found in Petre et al.’s [10] work. Therefore, under-prediction

of the pressure drop results of the present model is anticipated. However, the SRP model

slightly overpredicts the pressure drop in comparison with the experimental data.

Figure 3 depicts the predicted irrigated pressure drops of CFD tool and SRP model

against the F-factor in the structured packing. The experimental data of Rocha et al. [22] are

again reproduced in this figure to compare with SRP model predictions and CFD results.

As can be seen in this figure, the SRP model overestimates the wet pressure drop in the F-

factor higher than 3.5 m/s(kg/m3)0.5 and predicts the best results in lower range of the F-

factor. However, the CFD results show the same trend with the experimental data especially

in higher F-factors. By reaching the flooding region, CFD predicts the better results in

comparison with the SRP model. Generally, pressure drop in two-phase flow containing gas-

liquid interaction is increasing due to the change in flow direction and gas-gas interactions.

Therefore, the model predicts acceptable results in terms of dry and irrigated pressure

drops. Consequently, the current model can be used to examine the behavior of the other

hydrodynamic parameters in the structured packings.
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Figure 2: Comparison between predicted dry pressure drops of CFD tool and SRP model and experimental
data [22] for different F-factors in the structured packing.
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Figure 3: Comparison between predicted wet pressure drops of CFD tool and SRP model and experimental
data [22] for different F-factors in the structured packing.

3.2. Effective Area

The effective area for mass transfer is defined as the absolute effective area divided by

the packing volume (m2/m3). Knowledge of the value of this parameter and the effective

factors upon it can be useful for the design of packings in separation columns. In this study,

the effective area is evaluated from the values of liquid hold-up per estimated liquid film

thickness based on the earlier work of Iliuta and Larachi [24]:

ae =
hL
δCFD

, (3.3)
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Figure 4: Comparison between the CFD results and the Brunazzi model by increasing gas velocity.

where ae and δCFD represent the effective area of packing and average liquid film thickness.

Simulations are carried out for a water superficial velocity of 0.007 m/s and different gas

capacity factors (Fs = uG
√
ρG). Based on the evaluated average thickness of the rivulets, the

surface area of liquid rivulets is determined.

Figure 4 compares the CFD results for the ratio of the predicted effective interfacial

area to the packing surface area (ae/ap) with the Brunazzi et al. [25] correlation. The use of

the correlation suggested by Brunazzi et al. [25] requires only a simple experimental estimate

of the liquid hold-up. The correlation is as follows:

ae
ap

=
deq

4

(
hL
ε

)1.5
[
ρLgε(sin θ)2

3μLuL

]0.5

. (3.4)

The simulation results show that, in the preloading zone, the effective area is a weak

function of the gas flow rate. This is due to the weak interactions between gas and liquid

phases. It is observed that with increasing the superficial gas velocity, the effective area of

the packing is increasing, resulting in the corresponding mass transfer rate increase. At gas

flow factor of 3.68 m/s (kg/m3), the effective area is equal to the packing surface area. On the

other hand, a higher gas rate increases the instability in liquid flow and leads to a higher

effective interfacial area. The Brunazzi et al. [25] correlation predicts the rise of effective

area and shows a good agreement with the CFD results. As can be seen in Figure 4, at the

capacity higher than 3.25, the Brunazzi et al. [25] correlation overpredicts the effective area

in comparison with the CFD results. It is also seen that the slope of the calculated curve by

the Brunazzi et al. [25] correlation increases suddenly because experimental hold-up in this

correlation reflects indirectly the gas velocity effect.

As it is shown in Figure 4, the computed fractional area, ae/ap, is approximately

constant in the range of gas velocity (Fs) from 2.4 to 680 m/s (kg/m3) but it increases with
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Figure 5: Typical liquid flow on surface of corrugation sheet.

increasing the gas velocity (Fs > 2.41 m/s (kg/m3)). It is therefore concluded that, in addition

to the liquid flow rate, the structured packing interfacial areas are moderately influenced by

the gas flow rate.

The distribution of liquid on the surface of packing is a complex phenomenon. Figure 5

illustrates the liquid distribution on the corrugation sheet area. The presence of both dry and

wet patches on the packing surface is clearly seen from this figure. This figure shows that

liquid not only flows in the channel in which it has been supplied but also flows into the

other channels. That is, the liquid is mixed with adjacent streams and the packing surface is

covered by a thin liquid layer.

In this step, the laminar flow condition with the assumption that the gas phase does

not flow in the packings is made. Thus, the gas phase is considered stagnant with zero

velocity and does not affect the liquid flow. This assumption may be a reasonable starting

approximation due to the fact that the gas flow has small effect on the liquid flow in the

packing.

The efficiency of the packed columns strongly depends on the flow behavior of the

liquid inside the packing. Figure 6 indicates a comparison between the CFD results with the

Brunazzi et al. [25] correlation against the liquid load. This figure shows that, by increasing

the liquid load, the effective area increases for the Brunazzi et al. [25] correlation as well

as for the simulation results. When the entire surface area is covered by the liquid film, the

effective area (ae) remains roughly unchanged. For the area ratio, both the CFD results and

the Brunazzi et al. [25] correlation lead to values that do not exceed one.

The possibility of ae/ap ratios in excess of unity is not explicitly discussed in the

literature. It should be noted here that ae/ap ratios higher than one are possible in various

gas-liquid mixing devices. An example is the spray towers, where this ratio becomes very
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Figure 6: Comparison between the CFD results and the Brunazzi model by increasing the liquid load.

large [26]. Recently, several researchers have estimated the effective interfacial area of struc-

tured packings, ae/ap, with ratios higher than unity for the flooding regime [26, 27].
The Brunazzi et al. [25] model predicts an increase in the effective area by increasing

the liquid loading. It can be seen that the model is in a good agreement with the CFD results

especially in the intermediate range of liquid loadings.

Since the gas velocity is assumed zero, the liquid phase forms a film flow downward

on the packing surface. Thus, the effective area becomes equal to the packing surface area. The

results of the simulations shown in Figure 6 also show that at the flow rate of 109.8 m3/m2h,

when ae = ap, the total packing surface is covered by water completely.

As an important result, the Brunazzi et al. [25] model, which has been derived based

on several parameters, such as liquid hold-up value, geometric parameters, and physical

properties of gas and liquid phases, predicts the interfacial area accurately without intro-

ducing any adjustable parameter. As noted before, it can be emphasized that the Brunazzi

et al. [25] model is independent from the packing type.

Several researchers have studied the effective interfacial area for the different struc-

tured packings by experiments and using some published empirical models [28–30]. They

have found a similar trend (qualitative agreement) with the results of this study (Figures 4

and 6) and different values of this term quantitatively. The difference in performance of vari-

ous packings may be attributed to undesirable liquid pooling and bridging for the packings.

3.3. Liquid Flow Pattern

To verify the liquid flow pattern through the structured packing using CFD analysis, X-ray

projection of the experimental work of Mahr and Mewes [16] is used for a simple comparison.

In the Mahr and Mewes [16] study, the holes in the packing have been sealed in order to

keep the liquid between both sheets. Predicted results by the CFD model for the liquid phase

behavior confirm the Mahr and Mewes [16] findings. They did not consider gas flow in their

measurements similarly to the current study. They found that the liquid film is created in
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Figure 7: Computed liquid film flow on plane between two sheets of Gempak 2A structured packing using
CFD.

both inner sides of the packing surface. Their finding is consistent with the current numerical

results (Figure 7). Mahr and Mewes [16] observed that at a low liquid flow rate the majority

of the liquid is conducted mainly along the flow path with an angle of ±19◦ with respect to

the axial direction. Only a small amount of liquid is kept in the grooves of the corrugation

due to surface tension, and the bulk of the liquid phase flows along the corrugation angle

of ±42◦ toward both sides. A local minimum value of liquid hold-up is found straight below

the injection point. The experimental results also show that the liquid phase spreads more

toward the sides compared to the straight downward flow from the injection point.

Figure 7 shows the predicted liquid film flow on a plane throughout a packing element

of Gempak 2A structured packing. The liquid, which flows down the side length of the

corrugated sheet channels, mixes and redistributes at the contact points of two sheets. At

the mixing point, the film thickness increases and decreases roughly periodically, due to the

abrupt change in liquid flow direction and mixing liquid with adjacent streams. In addition,

the distribution of liquid in Figure 7 and that in Mahr and Mewes [16] are symmetric with

respect to the axial direction at the injection points.

3.4. Liquid Film Thickness

Two sets of 2D simulations for two-phase flows are performed. For the first case, the

experimental condition of Cho et al. [23] for Sulzer BX packing is evaluated by the model.

Computed size distribution of liquid film thickness along the Sulzer BX packing surface is

shown in Figure 8 for a liquid velocity of 0.0101 m/s and F-factor of 0.8 m/s (kg/m3)0.5. It can

be seen from the figure that the liquid film thickness is not uniform. Through a comparison

between the Nusselt film thickness, which has been obtained based on the uniform liquid film

thickness, and the averaged computed film thickness in the region lower than the loading,
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Figure 8: Predicted liquid film thickness along the packing for Sulzer BX at a liquid velocity of 0.0101 m/s
and F-factor of 0.8 m/s (kg/m3)0.5.

it is found that the deviation is about 35%. The average computed liquid film thickness is

0.00027 m.

For the second set of study, the experimental condition of Rocha et al. [22] for Gempak

2A packing is simulated. The computed liquid volume fraction counters in the 2D model of

Gempak 2A and Sulzer BX are shown in Figure 9. Here the liquid velocity and F-factor are,

respectively, 0.007 m/s and 2.2 m/s (kg/m3)0.5. From this figure the presence of liquid films

on the packing surfaces can be clearly seen, which vary in thickness. Nonuniformity of the

film thickness can also be observed in the 3D model results (Figure 7). Figure 9, however,

shows that the liquid film thickness in the Gempak 2A packing is more uniform compared to

the Sulzer BX. It is also seen that the liquid film is thicker at the intersection of the plates and

decreases with distance. Moreover, the liquid film thickness in Gempak 2A packing is thinner

than that in Sulzer BX. That is particularly the case at the cornets. When the dimensions of

the packing become larger, Gempak 2A, liquid thickness decreases for a constant liquid load

due to covering wide surface of the packing by the liquid phase. This behavior is logical; as a

result the dimensions of the packing can influence the liquid film thickness.

4. Conclusions

The CFD model for countercurrent two-phase flows in a structured packing was validated by

comparison with the experimental data and well-known empirical models of Brunazzi et al.

[25] and SRP [22]. The CFD model described the influences of hydrodynamics parameters

such as gas velocity and liquid load on the effective mass transfer area. The simulation results

indicated that the gas flow rate is an important factor for the mass transfer performance.
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Figure 9: Contours of liquid volume fraction for 2D modeling of Gempak 2A and Sulzer BX (UL =
0.007 m/s; F-factor = 2.2 m/s (kg/m3)0.5.

Increasing kinetic energy of gas flow to increase the liquid hold-up generates instabilities

in liquid film, formation of surface ripples, and creation of droplets that result in higher

interfacial area and thus increases the efficiency. An increase of the liquid wetting caused an

increase in the packing surface until the liquid covered the entire surface. Beyond that, the

rate of increase is small. In addition, the simulations showed that the CFD model is capable

for determining the minimum flow rates for an entire surface of structured packing covered

with the liquid. CFD tool emphasized the general applicability of the Brunazzi et al. [25]
model for the various types of structured packings at different gas and liquid flow rates.

Studying the liquid film flow over the packing surfaces by CFD simulation can lead to

a better understanding of the role of the effective parameters on the gas-liquid mass transfer.

The process of liquid film formation on the packing surface was studied in details and the

parameters that influence the liquid film thickness were discussed. It was shown that, inside

the two sheets of structured packing, the maximum thickness of the liquid film was near the

contact points of the sheets where liquid was redistributed over the corrugated surface. Such

behaviour was observed in both 2D and 3D modelings. CFD showed that the dimensions of

the packing could influence the liquid film thickness. In addition, considering uniform liquid

film thickness, Nusselt assumption on the structured packings is unacceptable. This matter

was observed in both 2D and 3D modelings.

Nomenclature
A: Packing type and size-dependent constants

ae: Effective mass transfer area, m2/m3
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aL: Effective liquid flow angle

ap: Specific area of packing, m2/m3

b: Corrugation base dimension, m

B: The packing type and size-dependent constants

deq: Equivalent diameter of flow channel

dh: Hydraulic diameter of packing defined by 4ε/ap
	F: Additional forces in the Navier-Stokes equations, N

Fs: Gas capacity factor, uG(ρG)0.5, m/s(kg/m3)0.5

g: Gravitational acceleration, m/s2

h: Corrugation crimp height, m

hL: Liquid hold-up, —

P: Pressure

S: Corrugation side length, m

t: Time, s

u: Velocity, m/s

UgS: Superficial gas velocity, m/s

	υ: velocity vector

Z: Packed height, m.

Dimensionless Numbers

Fr = u2/gdh: Froude number

Re = udh/υ: Reynolds number

We = u2ρdh/σ: Weber number

Greek Letters

α: Volume fraction, —

γ : Static contact angle, degree

δ: Liquid film thickness, mm

ε: Void fraction of packing, —

θ: Corrugation angle (with respect to the horizontal), degree

μ: Viscosity, Pa .s

νL: Liquid kinematic viscosity, m2/s

ρL: Liquid density, kg/m3

σ: Surface tension, N/m

Ω: Packing surface void fraction.

Subscripts

G: Gas phase

i: Index

L: Liquid phase

n: Number of phases.
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This study deals with the numerical solution of a 2D unsteady flow of a compressible viscous
fluid in a channel for low inlet airflow velocity. The unsteadiness of the flow is caused by a
prescribed periodic motion of a part of the channel wall with large amplitudes, nearly closing
the channel during oscillations. The flow is described by the system of Navier-Stokes equations
for laminar flows. The numerical solution is implemented using the finite volume method (FVM)
and the predictor-corrector Mac-Cormack scheme with Jameson artificial viscosity using a grid
of quadrilateral cells. Due to the motion of the grid, the basic system of conservation laws is
considered in the arbitrary Lagrangian-Eulerian (ALE) form. The numerical results of unsteady
flows in the channel are presented for inlet Mach number M∞ = 0.012, Reynolds number
Re∞ = 4481, and the wall motion frequency 100 Hz.

1. Introduction

A current challenging question is a mathematical and physical description of the mechanism

for transforming the airflow energy in human vocal tract (convergent channel) into the

acoustic energy representing the voice source in humans. The voice source signal travels from

the glottis to the mouth, exciting the acoustic supraglottal spaces, and becomes modified by

acoustic resonance properties of the vocal tract [1]. The airflow coming from the lungs causes

self-oscillations of the vocal folds, and the glottis completely closes in normal phonation

regimes, generating acoustic pressure fluctuations. In this study, the movement of the

boundary channel is known, harmonically opening and nearly closing in the narrowest cross-

section of the channel, making the investigation of the airflow field in the glottal region

possible.
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Acoustic wave propagation in the vocal tract is usually modeled from incompressible

flow models separately using linear acoustic perturbation theory, the wave equation for the

potential flow [2], or the Lighthill approach on sound generated aerodynamically [3].
Goal of this work is numerical simulation of compressible viscous flow in 2D

convergent channel which involves attributes of real flow causing acoustic perturbations as

is “Coandă phenomenon” (the tendency of a fluid jet to be attracted to a nearby surface),
vortex convection and diffusion, jet flapping, and so forth along with lower call on computer

time, due to later extension in 3D channel flow. Particular attention is paid to the analysis of

acoustic pressure signal from the channel.

2. Mathematical Model

To describe the unsteady laminar flow of a compressible viscous fluid in a channel, the 2D

system of Navier-Stokes equations was considered as a mathematical model. The system of

Navier-Stokes equations is expressed in nondimensional conservative form [4]

∂W
∂t

+
∂F
∂x

+
∂G
∂y

=
1

Re

(
∂R
∂x

+
∂S
∂y

)
, (2.1)

where W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F and G are the vectors of

inviscid fluxes, and R and S are the vectors of viscous fluxes. The static pressure p is expressed

by the state equation in the form

p = (κ − 1)
[
e − 1

2
ρ
(
u2 + v2

)]
. (2.2)

The transformation to the nondimensional form uses inflow parameters (marked with the

infinity subscript) as reference variables (dimensional variables are marked with the hat):
the speed of sound ĉ∞ = 343 ms−1, density ρ̂∞ = 1.225 kg m−3, reference length L̂r = 0.02 m,

and dynamic viscosity η̂∞ = 18 · 10−6 Pa · s. Inflow temperature T̂∞ [K] depends on relation

for speed of sound ĉ2
∞ = κR̂T̂∞ where κ = 1.4 is the ratio of the specific heats. Inflow pressure

satisfies equation of state for ideal gas p̂∞ = ρ̂∞R̂T̂∞.

General Reynolds number in (2.1) is computed from reference variables Re =
ρ̂∞ĉ∞L̂r/η̂∞. The nondimensional dynamic viscosity in the dissipative terms is a function

of temperature in the form η = (T/T∞)
3/4. The heat transfer coefficient is expressed as

k = ηκ/[Pr(κ − 1)], where Pr = 0.7 is the Prandtl number.

3. Computational Domain and Boundary Conditions

For phonation of vowels, the frequencies of the vocal folds oscillations are in the region from

cc 82 Hz for bass up to cc 1170 Hz for soprano in singing voice, and the airflow velocity in the

trachea is approximately in the range of 0.3–5.2 ms−1 taking into account the tracheal diameter

in humans in the range 14.5–17.6 mm [2].
The bounded computational domain D1, used for the numerical solution of flow field

in the channel, is shown in Figure 1. The domain is a symmetric channel, the shape of which is
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Figure 1: Computational domain D1. L = 8 (160 mm), H = 0.8 (16 mm), and g = 0.08 (1.6 mm)—middle
position.

inspired by the shape [5] of the trachea (inlet part of the channel), vocal folds, false vocal folds

and supraglottal spaces (outlet part). The upper and the lower boundaries are the channel

walls. A part of the wall changes its shape between the points A and B according to a given

harmonic function of time and axial coordinate (see, e.g., [6]). The gap g(t) is the narrowest

part of the channel (in point C). The gap width was oscillating with frequency 100 Hz (typical

for normal male voice) between the minimum gmin = 0.4 mm and maximum gmax = 2.8 mm,

not closing the channel completely.

The boundary conditions are considered in the following formulation:

(1) upstream conditions: u∞ = û∞/ĉ∞ = M∞, v∞ = 0, ρ∞ = 1, and p∞ is extrapolated

from domain D1;

(2) downstream conditions: p2 = 1/κ and (ρ, ρu, ρv) are extrapolated from D1;

(3) flow on the wall: (u, v) = (uwall, vwall) where (uwall, vwall) is velocity vector of the

wall and ∂T/∂	n = 0 where T = κp/ρ is the temperature.

The general Reynolds number in (2.1) multiplied with nondimensional value M∞H
represents kinematic viscosity scale, and for computation of the real problem, inlet Reynolds

number Re∞ = ρ̂∞ĉ∞M∞HL̂r/η̂∞ is used.

4. Numerical Solution

The numerical solution uses FVM in conservative cell-centered form on the grid of

quadrilateral cells, see, for example, [4].
The bounded domain is divided into mutually disjoint subdomains Di,j (i.e.,

quadrilateral cells). The system of (2.1) is integrated over the subdomains Di,j using the

Green formula and the mean value theorem. In the time-changing domain, the integral form

of FVM is derived using the ALE formulation. The ALE method defines homeomorphic

mapping of the reference domain Dt=0 at initial time t = 0 to a domain Dt at t > 0 [7].
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The explicit predictor-corrector MacCormack (MC) scheme in the domain with a

moving grid of quadrilateral cells is used. The scheme is 2nd order accurate in time and

space using orthogonal regular grid [4]

Wn+1/2
i,j =

μni,j

μn+1
i,j

Wn
i,j −

Δt
μn+1
i,j

4∑
k=1

[(
F̃nk − s1kWn

k −
1

Re
R̃n
k

)
Δyk −

(
G̃n
k − s2kWn

k −
1

Re
S̃nk

)
Δxk

]
,

W
n+1

i,j =
μni,j

μn+1
i,j

1

2

(
Wn

i,j +Wn+1/2
i,j

)
− Δt

2μn+1
i,j

4∑
k=1

[(
F̃n+1/2
k

− s1kW
n+1/2
k

− 1

Re
R̃n+1/2
k

)
Δyk

−
(
G̃n+1/2
k

− s2kW
n+1/2
k

− 1

Re
S̃n+1/2
k

)
Δxk

]
,

(4.1)

where Δt = tn+1 − tn is the time step, μi,j =
∫ ∫

Di,j
dx dy is the volume of cell Di,j , Δx and Δy

are the steps of the grid in directions x and y, and vector sk = (s1, s2)k represents the speed of

edge k (see Figure 2). The physical fluxes F, G, R, S on the edge k of the cellDi,j are replaced

by numerical fluxes (marked with tilde) F̃, G̃, R̃, S̃ as approximations of the physical fluxes.

The approximations of the convective terms sWk and the numerical viscous fluxes

R̃k, S̃k on the edge k are central. The higher partial derivatives of velocity and temperature

in R̃k, S̃k are approximated using dual volumes V ′
k
(see [4]) shown in Figure 2. The inviscid

numerical fluxes are approximated by the physical fluxes from the cell on the left side of the

current edge in the predictor step and from the cell on the right side of the current edge in

the corrector step.

The last term used in the MC scheme is the Jameson artificial dissipation AD(Wi,j)
n

[8]. Artificial dissipation is used to stabilize computation and also due to velocity gradients

in the narrowest width of the channel, where M∞ ≈ 0.5. The vector of conservative variables

is computed at a new time level tn+1: Wn+1
i,j = W

n+1

i,j + AD(Wi,j)
n.
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Figure 3: Grid of quadrilateral cells in the narrowest part of domain D1 at the middle position of the gap
width g = 0.08 (1.6 mm). Detail: Δymin

.= 5 · 10−4 (0.01 mm).

The stability condition of the scheme (on the regular orthogonal grid) limits the time

step

Δt ≤ CFL

(
|umax| + c
Δxmin

+
|vmax| + c
Δymin

+
2

Re

(
1

Δx2
min

+
1

Δy2
min

))−1

, (4.2)

where c denotes the local speed of sound, umax and vmax are the maximum velocities in the

domain, and CFL < 1 for nonlinear equations [9]. Time discretization of the scheme satisfies

discrete geometric conservation law (DGCL), see [10].
The grid used in the channel has successive refinement cells near the wall. The

minimum cell size in y-direction is Δymin ≈ 1/
√

Re∞ to capture the boundary layer effects.

Figure 3 shows the detail of the grid in domain D1 in the narrowest channel cross-section at

the middle position of the gap.

5. Numerical Results

The numerical results were obtained (using a specifically developed program) for the

following input data: Mach number M∞ = 0.012 (û∞ = 4.116 ms−1), Reynolds number

Re∞ = 4481, atmospheric pressure p2 = 1/κ (p̂2 = 102942Pa) at the outlet, and wall oscillation

frequency f̂ = 100 Hz. The computational domain contained 450 × 100 cells in D1.

The computation has been carried out in two stages. First, a steady numerical solution

is obtained, when the channel between points A and B has a rigid wall fixed in the middle

position of the gap width. Then this solution is used as the initial condition for the unsteady

simulation.

Figure 4 shows the initial condition for unsteady computation of the flow field in

domain D1 and the convergence to the steady-state solution computed using the L2 norm

of momentum residuals (ρu). The maximum Mach number computed in the flow field

Figure 4(a) was Mmax = 0.177 (corresponding to the dimension velocity ûmax = 60.7 ms−1).
The picture displays nonsymmetric flow developed behind the narrowest channel cross-

section. The graph in Figure 4(b) indicates the nonstationary solution of initial condition
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Figure 4: The initial condition computed in D1—M∞ = 0.012, Re∞ = 4481, p2 = 1/κ, 450 × 100 cells, and
Mmax = 0.177 (ûmax = 60.7 ms−1).

which is caused probably by eddies separated in the unmovable glottal orifice and floating

away.

The numerical simulation of the airflow computed in domain D1 over the fourth cycle

of the wall oscillation is presented in Figure 5 showing the unsteady flow field in five time

instants during one vibration period. Large eddies are developing in supraglottal spaces and

a “Coandă” effect is apparent in the flow field pattern. The absolute maximum of Mach

number Mmax = 0.535 (ûmax = 183.5 ms−1) in the flow field during fourth cycle was achieved

at time t = 34.2 ms (g = 1.002 mm, opening phase) behind the narrowest channel cross-

section. The flow becomes practically periodic after the first period of oscillations.

Figure 6 shows three vibration periods of the gap width oscillation (a) and the acoustic

pressures signals computed in the gap (b) and at the outlet (c) on the axis of the channel. The

acoustic pressure was calculated by subtracting the average values of the pressure signals

pac = p − p2. The acoustic pressure time dependent data are transformed to frequency-

dependent data (acoustic pressure spectrum) using discrete fourier transformation (DFT)
of the signals. The spectrum of the pressure in the glottis, Figure 6(b)-right, shows the

dominant fundamental frequency of vocal folds model oscillations f̂0 = 100 Hz and the

generated higher harmonics as a consequence of the throttling and nearly closing the glottal

gap g(t). Two different regimes are apparent in the acoustic pressure signal at the channel

outlet during one vibration period of the glottis in Figure 6(c)-left. Relatively smooth signal

containing low frequencies is dominant in the time interval corresponding to the phase of

maximum glottal opening, and a very noisy signal containing high frequencies is associated

with the phase of minimum glottal opening. Four acoustic resonances of the channel cavity

at about f̂0 = 100, f̂1 = 550, f̂2 = 1150, and f̂3 = 1950 Hz can be identified in the spectrum

envelope of the pressure at the channel outlet in Figure 6(c)-right. The first acoustic resonance

f̂1 = 550 Hz (see spectrum peak at cc 500 Hz) corresponds to the first eigenfrequency F̂1

of a simple tube of the length of the complete channel closed at the inlet and open at the

outlet (F̂1 = ĉ∞/(4L · L̂r) = 343 ms−1/(4 · 0.16 m) = 536 Hz). The acoustic resonances are

more damped with increasing frequency, which can be caused by the fluid viscosity as well

as by a numerical viscosity implemented in the numerical method (constants magnitude in

AD(Wi,j)
n).

Remark 5.1. We used several tests on fine and coarse grids in the computational domain. Also

the domain has been prolonged in upstream and also in downstream part. Achieved results

were approximately the same on fine grid.
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(d) t = 37.5 ms, g = 2.8 mm, Mmax = 0.097 (33.3 ms−1)
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(e) t = 40 ms, g = 1.6 mm, Mmax = 0.162 (55.6 ms−1)

Figure 5: The unsteady numerical solution of the airflow in D1— f̂ = 100 Hz, M∞ = 0.012, Re∞ = 4481,
p2 = 1/κ, and 450 × 100 cells. Data computed during the fourth oscillation cycle. Results are mapped by
isolines of velocity ratio and by streamlines.

Remark 5.2. The mathematical model (2.1) of laminar flow used in this case is debatable. For

the first approximation, we supposed unformed turbulent flow at the inlet part of the channel.

Remark 5.3. The validation of computations for this case is not complete because of

experiments absence. Semivalidation of the computations is comparison with particle image

velocimetry method (PIV) experiment, but we can compare only qualitative behavior of the

flow. Full validation of the code for subsonic and transonic flow through a turbine cascade

computed in periodic domain is showed, for example, in [10].
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Figure 6: Three vibration periods of the gap width oscillations and the acoustic pressure signals pac

computed in the gap and at the outlet on the axis of the channel.

6. Discussion and Conclusions

The numerical solution in the channel showed large vortex structures developed in the

supraglottal space moving slowly downstream and decaying gradually. It was possible to

detect a “Coandă phenomenon” in the computed flow field patterns. A similar generation of

large-scale vortices, vortex convection and diffusion, jet flapping, and general flow patterns
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were experimentally obtained in physical models of the vocal folds by using PIV method in

[5, 11, 12].
The results show that some numerical results of viscous flow in a symmetric channel

using a symmetric grid and scheme can be nonsymmetrical, depending on the geometry and

the Reynolds number. This effect was observed also for laminar transonic flow computation

[13]. The assumption of the axisymmetry solution for the axisymmetry channels (see [6])
excludes modeling the “Coandă” effect and large vortex structures of the size comparable

with the cross-section of the channel.

The analysis of the computed pressure revealed basic acoustic characteristics of the

channel. This is promising result for future studies for a direct modeling of human voice

generated by the flow in vibrating glottis taken into account a real shape of the human vocal

tract for phonation and throttling the glottal gap width up to zero.
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11/0207 and 201/08/0012.

References

[1] I. R. Titze, Principles of Voice Production, National Centre for Voice and Speech, Iowa City, IA, Iowa,
USA, 2000.

[2] I. R. Titze, The Myoelastic Aerodynamic Theory of Phonation, National Centre for Voice and Speech, Iowa
City, IA, Iowa, USA, 2006.

[3] S. Zorner, M. Kalteenbacher, W. Mattheus, and C. Brucker, “Human phonation analysis by 3d aero-
acoustic computation,” in Proceedings of the International Conference on Acoustic NAG/DAGA 2009, pp.
1730–1732, Rotterdam, The Netherlands, 2009.

[4] J. Fürst, M. Janda, and K. Kozel, “Finite volume solution of 2D and 3D Euler and Navier-Stokes
equations,” in Mathematical Fluid Mechanics, pp. 173–194, Birkhäuser, Basel, Switzerland, 2001.
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This paper presents the comparative performance of several surrogate-assisted multiobjective
evolutionary algorithms (MOEAs) for geometrical design of a pin-fin heat sink (PFHS).
The surrogate-assisted MOEAs are achieved by integrating multiobjective population-based
incremental learning (PBIL) with a quadratic response surface model (QRS), a radial-basis
function (RBF) interpolation technique, and a Kriging (KRG) or Gaussian process model. The
mixed integer/continuous multiobjective design problem of PFHS with the objective to minimise
junction temperature and fan pumping power simultaneously is posed. The optimum results
obtained from using the original multiobjective PBIL and the three versions of hybrid PBIL are
compared. It is shown that the hybrid PBIL using KRG is the best performer. The hybrid PBILs
require less number of function evaluations to surpass the original PBIL.

1. Introduction

An air-cooled heat sink is one of the most effective and popular cooling devices for electronic

packages due to its high reliability, simplicity, safety, and low cost. It is operated in such a

way that the heat sink is attached to a device that needs to be cooled down such as a central

processing unit (CPU) chip. Then, heat dissipation is achieved by using a fan to generate

air flow through the heat sink. As a result, design of such a cooling device needs to find

an optimum geometry such that cooling performance is optimised. The minimisation of the

temperature between the heat sink base and the electronic device, which is called junction

temperature, is one of the most used design objectives for maximising thermal performance
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[1–5]. Nevertheless, in heat transfer design, increasing thermal performance usually results

in an increase of pressure drop across the cooling device. This requires high pumping power

and consequently high operating cost. Therefore, a design process of a heat sink usually has

two design objectives that are junction temperature and fan pumping power for this study.

The use of multiobjective optimisers for geometrical and sizing design of heat sinks

has been investigated in recent years. Our previous work shows that using MOEAs for

multiobjective design of pin-fin and plate-fin heat sinks is superior to a classical design

approach [1–5]. Other work related to numerical simulation and optimum design of some

types of pin-fin heat sinks can be found in [6–12]. Nevertheless, it is also found that

the optimisation process is time-consuming due to expensive function evaluations from

performing finite volume analysis (FVA); therefore, the performance enhancement of the

MOEA design process is always required. The use of a radial-basis function response surface

model (RSM) in combination with a strength Pareto evolutionary algorithm for plate-fin heat

sink design has been studied [1]. It was found that, with the inclusion of the RBF surrogate

model in the evolutionary design process, the performance of SPEA is greatly increased. In

cases of pin-fin heat sink design, investigation on the use of integrated Kriging model and

PBIL for solving a heat sink design problem has been made [5]. It is found that the hybrid

optimiser performance is acceptable.

This work is aimed at performance enhancement of a multiobjective evolutionary

optimiser by incorporating evolutionary search with a number of surrogate models.

Although it is well known in the past that using a surrogate model can improve search

performance of MOEAs, the performance test of several surrogate models for a particular

design case still needs to be studied since the nature of design problems can affect surrogate

model prediction performance. The design problem is posed to find geometrical parameters

of a PFHS to minimise its junction temperature and fan pumping power. The population-

based incremental learning is chosen as the optimiser since it gives the best results as shown

in [2, 4]. The design process has been refined from the work presented in [5]. Surrogate

models employed with PBIL are a Kriging method or Gaussian process model [13], a radial-

basis function [1], and a quadratic response surface model. The comparative results show that

the performance of a surrogate-assisted PBIL is superior to the nonsurrogate PBIL although

the former uses lower number of function evaluations. The best surrogate model for this type

of design problem is KRG.

2. Surrogate-Assisted PBIL

A particular multiobjective optimisation problem can be expressed as follows.

Minimise f =
{
f1(x), . . . , fk(x)

}
subject to gi(x) ≤ 0,

(2.1)

where x ∈ [xl, xu] is a vector of n design variables and gi(x) are design inequality constraints.

k ≥ 2 objective functions fi(x) are intended to be minimised simultaneously. Figure 1

shows an arbitrary biobjective minimisation problem. The set of feasible design solutions

are plotted in the objective domain (f1 and f2 coordinates). The optimum points are located

on the front as shown. This is called a nondominated or Pareto front of the design problem

where the members of the Pareto front are said to be equally good in optimisation point of

view.



Journal of Applied Mathematics 3

Nondominated
solutions

f1

f2

Pareto front

Feasible
region

Figure 1: Pareto optimal set.

PBIL is an evolutionary optimiser based upon binary search space proposed by Baluja

[14] in 1994, whereas it is extended for multiobjective cases by Bureerat and Sriworamas [15].
For single objective case, the PBIL search procedure starts with an initial probability vector

(Pi) in which each element in the vector determines the probability of having “1” on each

column of a binary population given that each row in the population is one design solution.

The samples of a probability vector are shown in Table 2. It is shown that one probability

vector can result in a variety of populations, and this feature of PBIL leads to impressive

population diversity reproduction in a multiobjective optimisation design process [15].
Having obtained a probability vector from the binary population, the best binary

design solution is then used to modify the probability vector using the following relation:

Pnew
i = Pold

i (1 − LR) + biLR, (2.2)

where bi is the element of the best binary solution and LR is learning rate which, in this work,

is defined as

LR = 0.5 + rand · (+0.1 or − 0.1), (2.3)

where rand ∈ [0, 1] is a uniform random number.

For the multiobjective version of PBIL, a set of probability vectors, in which they are

called a probability matrix, are used instead of only one vector so as to produce a more diverse

binary population. The search procedure starts with an initial probability matrix, and a Pareto

archive for collecting nondominated solutions. A binary population can then be obtained

from the union set of sub-populations created from each row of the probability matrix.

The nondominated solutions are obtained by sorting the combination of the nondominated

solutions from the previous generation and the members in the current population. In case

that the number of nondominated solutions exceeds the predefined archive size, a normal

line method [2] is employed to remove some solutions from the Pareto archive. The process

is repeated until a stopping criterion is fulfilled. More details of multiobjective PBIL can be

seen in [2, 15].
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In this work, the hybridisation of PBIL and a surrogate model is carried out in such

a way that training design points and their corresponding objective values are generated

using a Latin hypercube sampling (LHS) technique. Then, a surrogate model (KRG, QRS, or

RBF) is built. The PBIL is used to find the nondominated front of the design problem where

function evaluations are based upon a surrogate model predictor. Afterwards, a few design

solutions in the nondominated front are selected by means of a clustering technique [16],
whereas their actual function evaluations are performed. The selected binary solutions are

set as an initial population, and they are used to generate the PBIL probability matrix. Then,

the usual PBIL procedure is activated for a few iterations to improve the nondominated front.

From the hybrid strategy, it is expected that the number of function evaluations is lower than

that used by a nonsurrogate PBIL. The computational procedure can be separated into three

phases and detailed as follows.

Phase I: Initialisation

(1) Generate training points using a Latin hypercube technique.

(2) Perform actual function evaluation.

(3) Construct a surrogate model (KRG, QRS, or RBF).

Phase II: Optimisation using a surrogate model

(1) Generate an initial probability matrix Pij = 0.5 and a Pareto archive A = {}.

(2) If a termination condition is satisfied, stop. Otherwise, go to step 3.

(3) Generate a binary population B according to Pij .

(4) Function evaluation based on surrogate prediction.

(5) Find nondominated solutions of A ∪ B, and replace A with those solutions.

(6) If A is too large, remove some of its members using a normal line technique.

(7) Use members in A to update Pij using (2.2) where LR is computed using (2.3).

(8) Go to 2.

Phase III: Optimisation by actual function evaluations

(1) Select some members from A in the previous phase using a clustering technique,

and find their actual function values.

(2) Generate an initial probability matrix Pij = 0.5 and a Pareto archive A from sorting

the design solution in step 1 of phase III.

(3) Update Pij using members in A.

(4) If a termination condition is satisfied, stop. Otherwise, go to step 5.

(5) Generate a binary population B according to Pij .

(6) Actual function evaluation based on finite volume analysis.

(7) Find nondominated solutions of A ∪ B, and replace A with those solutions.

(8) If A is too large, remove some of its members using a normal line technique.

(9) Use members in A to update Pij using (2.2) where LR is computed using (2.3).

(10) Go to 4.



Journal of Applied Mathematics 5

3. Surrogate Models

Let y = f(x) be a function of a design vector x sized n × 1. Given a set of design solutions (or

sampling points) X = [x1, . . . , xN] generated by using the Latin hypercute technique and

their corresponding function values Y = [y1, . . . , yN], a surrogate or approximation model

is constructed by means of curve fitting or interpolation. Approximation models used in this

study are as follows.

3.1. Quadratic Response Surface Model

The most commonly used polynomial surrogate model or a response surface model is of the

second-order polynomial or quadratic model, which can be expressed as

y = β0 +
∑

βixi +
∑

βixixj , (3.1)

where βi for i = 0, . . . , (n + 1)(n + 2)/2 are the polynomial coefficients to be determined. The

coefficients can be found by using a regression or least square technique.

3.2. Kriging Model

A Kriging model (also known as a Gaussian process model) used in this paper is the famous

MATLAB toolbox named design and analysis of computer experiments (DACEs) [13]. The

estimation of function can be thought of as the combination of global and local approximation

models that is

y(x) = f(x) + Z(x), (3.2)

where f(x) is a global regression model while Z(x) is a stochastic Gaussian process with

zero mean and nonzero covariance representing a localised deviation. In this work, a linear

function is used for a global model, which can be expressed as

f = β0 +
n∑
i=1

βixi = βT f, (3.3)

where β = [β0, . . . , βn]
T , f = f(x) = [1, x1, x2, . . . , xn]

T . The covariance of Z(x) is expressed

as

Coν(Z(xp), Z(xq)) = σ2R[R(xp, xq)] (3.4)

for p, q = 1, . . . , N, where R is the correlation function between any two of the N design

points and R is the symmetric correlation matrix size N × N with the unity diagonal [17].
The correlation function used herein is

R(xp, xq) = exp
(
−(xp − xq)Tθ(xp − xq)

)
, (3.5)
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Figure 2: Physical model of pin-fin heat sink.

where θi are the unknown correlation parameters to be determined by means of the max-

imum likelihood method. Having found β and θ, the Kriging predictor can be achieved as

y(x) = f(x)Tβ + rT (x)R−1(y − Fβ), (3.6)

where F = [f(x1), f(x2), . . . , f(xn)]T and rT (x) = [R(x, x1), R(x, x2), . . . , R(x, xN)]. For more

details, see [13].

3.3. Redial-Basis Function Interpolation

The redial-basis function interpolation has been used in a wide range of applications such as

integration between aerodynamic and finite element grids in aeroelastic analysis [18]. The use

of such a model for surrogate-assisted evolutionary optimisation is said to be commonplace

[1, 19, 20]. The approximate function can be written as

y(x) =
N∑
i=1

αiK
(∥∥∥x − xi

∥∥∥), (3.7)

where αi are the coefficients to be determined and K is a radial-basis kernel (here it is set to

be linear splines). The coefficients can be found from the N sampling points as detailed in

[1].
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4. PFHS Design

A pin-fin heat sink herein is an air-cooled heat sink with square heat sink base and square

pin fins as shown in Figure 2. Heat dissipation is accomplished by using a fan to generate air

flow at the top of the heat sink. A PFHS physical model with square base (whs) is given in

Figure 2. Parameters defining a heat sink geometry include base length (whs), base thickness

tb, fin width (wfin), and number of fins nf . The fins heights are varied based on the 16 input

parameters (H1–H16). Figure 3 displays 7 × 7 control points on the fin base where the 16 fin

height parameters are distributed symmetrically. The fin height can be determined by using

radial-basis function interpolation. Figure 4 displays a sample of fin height distribution by

using a RBF interpolation [3]. A fin-to-fin space or fin stitch (sfin) is equispaced. The heat

sink is cooled by a fan of Vf air velocity (m/s) which is installed on the top of a heat sink. A

uniform heat load (Q) generated at the junction of heat sink, and an electronic device is set to

be 120 watt. Materials and air properties and the assumptions of heat-flow in this simulation

are detailed in [1, 2].
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In the design process, an automated procedure is achieved by interfacing the CFD

software into MATLAB. The design variables include those parameters for creating PFHS

geometry and the inlet air velocity. For more details of the encoding/decoding process of the

design variables, see [3].
The design problem is proposed to minimise biobjective functions as fan pumping

power and junction temperature of a pin-fin heat sink. The fan pumping power is used to

measure the consumption of electronic power, while the junction temperature determines

heat sink thermal performance. Heat sink aspect ratio and space limit of the device are set to

be design constraints. The multiobjective design problem of PFHS can be written as follows.

Objective functions:

min
x

{
Tj , Pfan

}
,

Tj = Ta +QRhs,

Pfan =
ṁaΔP
ρa

.

(4.1)

Design variable vector:

x = [nf ,wfin, whs, Vf ,H1−16, tb]
T . (4.2)

Constraints:

Tj − 355◦K ≤ 0,

0.0025 ≤ wfin ≤ 0.005,

4 ≤Nf ≤ 14,

0.0025 ≤ tb ≤ 0.005,

0.0 ≤ Hfin ≤ 0.05,

0.5 ≤ Vf ≤ 1.0,

0.03 ≤ whs ≤ 0.06,

0.0025 < sfin < 0.004,

(4.3)

where Tj is junction temperature, Pfan is fan pumping power, Q is heat load, Rhs is heat sink

thermal resistant, ΔP is pressure drop across the heat sink, ρa is air density, and ṁa is air

mass flow rate.

The continuity, momentum, and energy equations for steady-state forced convection

in a Newtonian, constant properties fluid without heat generation can be written as

∇· ⇀

V= 0,

⇀

V ·∇ ⇀

V= − 1

ρa
∇P + ν∇2

⇀

V ,

⇀

V ·∇T = α∇2T,

(4.4)
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Figure 5: Pareto fronts from surrogate-assisted PBILs.

where
⇀

V is fluid velocity, T is temperature, α is thermal conductivity, and ν is kinematic

viscosity.

These are the governing equations for thermofluid analysis of the forced convection

in the pin-fin heat sink. During the optimisation process, the three equations are handled by

means of finite volume analysis, which is one of the most powerful numerical methods for

computational fluid dynamics. The assumptions for the analysis are as follows.

(i) Fluid flow being laminar and steady.

(ii) Constant material thermophysical properties of both air and solid material.

(iii) Uniform inlet air velocity.

(iv) Uniform heat flux throughout the entire base plate bottom surface.

The heat sink body is made of aluminium. The physical properties of the solid and

fluid are given in [1, 2]. The ambient temperature is set to be 298 K.

The vector of design variables x has 21 elements. SI units are used in the design

objectives and constraints unless otherwise specified. In this work, 30 sampling points are

created using a LHS technique, while PBIL with 100 population size and 200 generations

is performed with surrogate-based function evaluations. Then, 25 design solutions from the

surrogate optimisation are taken as initial solutions for a common PBIL, which is used for

further exploring the nondominated front with 25 population size and 19 generations. This

means that the proposed surrogate-assisted PBIL takes 30 + 25 × 20 = 530 actual function

evaluations. For the original PBIL without using a surrogate model, the population size is set

to be 25 while the number of generations is set to be 35. This implies that the nonsurrogate

PBIL uses 25 × 35 = 875 actual function evaluations.



10 Journal of Applied Mathematics

298.5 299 299.5 300 300.5 301 301.5 302
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 Junction temperature (K)

 F
a
n

 p
u

m
p

in
g

 p
o

w
er

 (
W

a
tt

)

PBIL-KRG20

PBIL-35

Model 17R (Hfin = 0.0424 m)
Model 11M (Hfin = 0.0269 m)
Model 14M (Hfin = 0.048 m)

Pareto fronts of PBIL-SM

Figure 6: PBIL-KRG20 versus PBIL35.

5. Results and Discussion

Figure 5 displays nondominated fronts obtained from the various surrogate-assisted PBILs,

which are defined as PBIL-QRS, PBIL-RBF, and PBIL-KRG for hybrid PBILs using a quadratic

response surface model, a radial-basis function interpolation technique, and a Kriging model

respectively. It can be clearly seen that the front obtained by using PBIL-KRG is superior to

the others while the second best is PBIL-RBF.

The best front from the hybrid approach is then compared with that obtained from

using the nonsurrogate PBIL (termed as PBIL-35) as shown in Figure 6. Apart from the two

nondominated fronts, real heat sinks currently used in the real world are modelled where

there junction temperature and fan pumping power values are calculated. The real heat sinks

which have cylindrical pin fins include the following.

(i) Model 17R with 0.0635 m heat sink width, constant 0.0424 m fin height, 0.0033 m fin

diameter, 0.0127 m heat sink base thickness, and 14 × 14 fins.

(ii) Model 11M with 0.0508 m heat sink width, constant 0.0269 m fin height, 0.0033 m

fin diameter, 0.0048 m heat sink base thickness, and 61 fins.

(iii) Model 14M with 0.0508 m heat sink width, constant 0.0480 m fin height, 0.0033 m

fin diameter, 0.0048 m heat sink base thickness, and 61 fins.

The first model is termed a dense pin fin heat sink, while the others are called a sparse

pin fin heat sink. The models are simulated with an inlet air velocity 0.5 m/s and constant

heat load 120 watts being applied at the bottom of the heat sink base. Based on the dominance

theory, the design solutions obtained from PBIL-KRG and nonsurrogate PBIL are far superior

to those real heat sinks.

The zoom-in of Figure 6 is given in Figure 7 so as to compare PBIL-KRG and PBIL-35.

It can be seen that the results obtained from using the hybrid PBIL is overall superior to its
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Figure 7: PBIL-KRG20 versus PBIL35 zoom-in of Figure 6.

Table 1: Hypervolume comparison (reference point is [303, 0.1]).

Optimiser Hypervolume

PBIL-KRG20 0.42131

PBIL-RBF20 0.41935

PBIL-QRS20 0.39659

PBIL35 0.41183

Table 2: Probability vectors and their corresponding populations.

Population 1 Population 2 Population 3

0 0 1 0, 0 1 0 1, 1 1 0 1

1 0 0 1, 1 1 1 0, 0 0 0 1

1 1 1 0, 0 0 0 1, 1 1 0 1

0 1 0 1, 0 0 0 0, 0 1 1 0

Probability vectors [0.5, 0.5, 0.5, 0.5] [0.25, 0.5, 0.25, 0.5] [0.5, 0.75, 0.25, 0.75].

nonsurrogate counterpart. This is confirmed by the quantitative assessment in Table 1. From

the table, the hypervolume values of the Pareto fronts plotted in Figures 5 and 7 are computed

where the reference point is set to be [303 K, 0.1 Watt]. Based on its definition, the larger

hypervolume means the better Pareto or nondominated front. Two hybrid approaches PBIL-

KRG and PBIL-RBF can surpass the original PBIL although the later uses 345 more actual

function evaluations. Some selected design solutions from the PBIL-KRG front are plotted in

Figure 8. It is shown that the hybrid optimiser results in a variety of PFHS geometries.

Further investigation is made to examine the accuracy of the employed surrogate

models. The 30 sampling points in the previous section is used to build three surrogate
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Figure 8: Selected PFHSs from the front of PBIL-KRG20.

models (QRS, RBF, and KRG). The second set of sampling points with 30 design solutions

is generated, while its function values evaluated based on the surrogate models and finite

volume analysis (actual function values) are determined. The boxplot in Figure 9 shows the

error as an absolute value of the difference between actual function value and one from

surrogate approximation. It can be seen that the most accurate surrogate model for both

junction temperature and fan pumping power is KRG while the second best is RBF. This

is coincident with the optimum results obtained from the hybrid PBILs.
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Figure 9: Accuracy assessment of the surrogate models.

6. Conclusions

This paper proposes hybrid PBIL using three well-known surrogate models as a quadratic

response surface model, a radial-basis function interpolation technique, and a Kriging model.

The hybridisation is carried out in such a way that a Latin hypercube sampling technique is

employed to generate training points for constructing a surrogate model. Then, PBIL is used

to tackle the design problem based upon the surrogate model prediction. Having obtained

Pareto solutions from this phase, the Pareto front is then further improved by running PBIL

with actual function evaluations for a few generations.

The hybrid PBILs along with the nonsurrogate PBIL are implemented on the

multiobjective geometrical design of pin-fin heat sinks. The design problem is posed to find

PFHS geometries while minimising its junction temperature and fan pumping power. The

computational results reveal that the best performer is a surrogate-assisted PBIL using KRG.

This is coincident with the accuracy investigation on predicting junction temperature and

fan pumping power of the surrogate models. Design solutions obtained from performing the

proposed design process are superior to those real heat sinks currently used in the real world.

The proposed hybrid strategy is said to be efficient. Our future work is to study alternative

hybrid strategy so that MOEA search performance for solving PFHS design is improved.
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A hybrid immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this work to
simulate the thermal flow problems. In current approach, the flow field is resolved by using
our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009)). The nonslip
boundary condition on the solid boundary is enforced in simulation. At the same time, to capture
the temperature development, the conventional energy equation is resolved. To model the effect
of immersed boundary on temperature field, the heat source term is introduced. Different from
previous studies, the heat source term is set as unknown rather than predetermined. Inspired by
the idea in (Wu and Shu, (2009)), the unknown is calculated in such a way that the temperature
at the boundary interpolated from the corrected temperature field accurately satisfies the thermal
boundary condition. In addition, based on the resolved temperature correction, an efficient way to
compute the local and average Nusselt numbers is also proposed in this work. As compared with
traditional implementation, no approximation for temperature gradients is required. To validate
the present method, the numerical simulations of forced convection are carried out. The obtained
results show good agreement with data in the literature.

1. Introduction

As a long-standing challenge in the computational fluid mechanics, the flow problems

with complex geometry have been widely studied. In terms of grid applied, the numerical

methods can be generally classified into two categories. In the traditional approach, the body-

fitted mesh is employed to discretize the governing equation [1]. Thereafter, the boundary

condition could be implemented directly. As a result, the solution of problems strongly
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depends on the quality of generated mesh. Moreover, the mesh regeneration procedure is

usually unavoidable when the object is not fixed. To relieve this cumbersome requirement,

the alternative choice is to decouple the governing equation from the computational mesh. In

this category, the most famous algorithm is the immersed boundary method (IBM) proposed

by Peskin [2].
In IBM, the discretization of governing equation is performed on the Cartesian

(Eulerian) mesh, and the boundary of object is represented through a set of Lagrangian

points. Different from the body-fitted solver, the boundary condition in this method is

depicted by introducing a body force (restoring force) into the governing equation, which

replaces the effect of boundary on the surrounding flow field. Since the governing equation

is independent of the boundary, IBM is extremely suitable for handling various flow problems

with complex geometry.

To acquire accurate solution via IBM, the appropriate calculation of force density

is of great importance. Up till now, there are several ways to fulfill this task. By treating

the boundary as deformable with high stiffness, Peskin [2] firstly applied the Hook’s law,

associated with the use of free parameter, to compute the restoring force (named penalty

method). Fadlun et al. [3] viewed the momentum equations as to be satisfied at boundary

points and hence the force density could be subsequently computed (named direct forcing

method). This approach has been widely used in current IBM application. Different from two

methods introduced above, which are based on the Navier-Stokes (N-S) solver, another force

calculation technique was proposed by Niu et al. [4] in the framework of lattice Boltzmann

method (LBM) [5]. The concept of momentum exchange at the boundary is utilized in this

approach (named momentum exchange method). Nonetheless, it should be stressed that the

force density is calculated explicitly in the conventional methods. Consequently, the nonslip

boundary condition cannot be guaranteed. Recently, we presented a boundary condition-

enforced IB-LBM [6], in which the force density is raised from the velocity correction and is

computed implicitly by enforcing the boundary condition. As compared to the conventional

IBM, the nonslip boundary condition can be guaranteed in this method.

The idea of IBM has been extensively introduced into numerous isothermal flow

problems. On the other hand, its application in thermal flow problems is limited and is

still in progress. A few attempts have been made in this aspect [7–9]. Similar to the use

of force density in isothermal flow problems, a heat source term is employed to meet the

influence of boundary in thermal flow problems. However, same as the force calculation

in conventional methods, the heat source term is computed explicitly in recent studies

[7–9]. In this way, the thermal boundary condition cannot be accurately satisfied, which

may affect the accuracy of solution. To address this problem, in this work, we develop

a hybrid IB-LBM for simulation of thermal flow problems following the idea of velocity

correction in [6]. In this method, the flow field is solved based on the IB-LBM in [6]. In the

meanwhile, the temperature field is obtained by solving the conventional energy equation

with additional heat source term, which is equivalent to temperature correction. With the

temperature correction evaluated implicitly, the thermal boundary condition can be satisfied

strictly. In addition, the Nusselt number is a crucial parameter in thermal flow problems.

Based on the established temperature correction, in this paper, both the local and average

Nusselt numbers can be efficiently computed. In this manner, the troublesome temperature

gradient calculation at the boundary points could be eliminated. To validate the proposed

algorithm, the forced convection from a stationary isothermal circular cylinder is simulated.

The numerical results show good agreement with available data in the literature.
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2. Methodology

2.1. Boundary Condition-Enforced Immersed Boundary-Lattice Boltzmann
Method

For viscous incompressible flow problems with an immersed boundary, the governing

equations in the framework of lattice Boltzmann equation (LBE) can be written as

fα(x + eαδt, t + δt) − fα(x, t) = − 1

τ

(
fα(x, t) − feq

α (x, t)
)
+ Fαδt, (2.1)

Fα =
(

1 − 1

2τ

)
wα

(
eα − u
c2
s

+
eα · u
c4
s

eα
)
· f, (2.2)

ρu =
∑
α

eαfα +
1

2
fδt, (2.3)

where fα is the distribution function, f
eq
α is its corresponding equilibrium state, τ is the

single relaxation parameter, eα is the lattice velocity, wα are coefficients which depend on

the selected lattice velocity model, and f is the force density which is distributed from the

boundary force density. Here, the D2Q9 lattice velocity model is used, which is

eα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 0), α = 0,

(±1, 0), (0,±1), α = 1∼4,

(±1,±1), α = 5∼8,

(2.4)

and the corresponding equilibrium distribution function is

f
eq
α (x, t) = ρwα

[
1 +

eα · u
c2
s

+
(eα · u)2 − (cs|u|)2

2c4
s

]
(2.5)

with w0 = 4/9, wα = 1/9, (α = 1∼4), and wα = 1/36, (α = 5∼8). cs = 1/
√

3 is the sound

speed of this model. The relationship between the relaxation time and the kinematic viscosity

of fluid is υ = (τ − 0.5)c2
sδt.

In order to satisfy the nonslip boundary condition, the force density f in (2.2) and

(2.3) should be set as unknown [6]. It can be calculated from the fluid velocity correction

δu. Furthermore, δu can be obtained from the boundary velocity correction δuB. The final

expression for δuB is
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AX = B, (2.6)

where

X =
{
δu1

B, δu
2
B, . . . , δu

m
B

}T
, (2.7)

A =

⎛⎜⎜⎜⎜⎜⎜⎝
δ11 δ12 · · · δ1n

δ21 δ22 · · · δ2n

...
...

. . .
...

δm1 δm2 · · · δmn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δB11 δB12 · · · δB1m
δB21 δB22 · · · δB2m

...
...

. . .
...

δBn1 δBn2 · · · δBnm

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U1
B

U2
B

...

Um
B

⎞⎟⎟⎟⎟⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎜⎜⎝
δ11 δ12 · · · δ1n

δ21 δ22 · · · δ2n

...
...

. . .
...

δm1 δm2 · · · δmn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
u∗

1

u∗
2

...

u∗
n

⎞⎟⎟⎟⎟⎟⎟⎠.

(2.8)

Here, m is the number of Lagrangian (boundary) points, and n is the number of surrounding

Eulerian points. δulB (l = 1, 2, . . . , m) is the unknown velocity correction vector at the

boundary points. δij = Dij(xij − XlB)ΔxΔy and δBij = Dij(xij − XlB)Δsl. Dij(xij − XlB) is the

delta function, which is expressed as

Dij

(
xij − XlB

)
= δ
(
xij −Xl

B

)
δ
(
yij − Y l

B

)
,

δ(r) =

⎧⎪⎨⎪⎩
1

4h

(
1 + cos

(
π |r|
2h

))
, |r| ≤ 2h,

0, |r| > 2h,

(2.9)

and Δsl is the arc length of boundary element. Ul
B is the boundary velocity. The intermediate

fluid velocity u∗ is calculated by

u∗ =
1

ρ

∑
α

eαfα. (2.10)

By solving equation system (2.6), the unknown variables δulB can be obtained. After that, the

fluid velocity correction δu can be calculated by

δu =
∑
l

δulBDij

(
xij − XlB

)
Δsl. (2.11)
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As shown in (2.3), the relationship between the force density f and the fluid velocity

correction δu can be written as

f =
2ρδu
δt

. (2.12)

In the LBM, the macroscopic variables such as density and pressure are calculated by

ρ =
∑
α

fα, P = c2
sρ. (2.13)

2.2. Implicit Temperature Correction for Energy Equation

After the flow field is accurately solved through the boundary condition-enforced IB-LBM

[6], the temperature field can be obtained by using the conventional energy equation with

additional heat source term, which can be written as

ρcp

(
∂T

∂t
+ (u · ∇)T

)
= k∇2T + q, (2.14)

where T is the temperature, cp is the specific heat of the fluid, k is the thermal conductivity of

the fluid, and q is the heat source density distributed from the boundary heat flux.

To solve (2.14), the fractional step technique is used. First, the energy equation without

heat source density is solved, which is called Predictor step:

ρcp

(
∂T

∂t
+ (u · ∇)T

)
= k∇2T. (2.15)

The solution of (2.15) is regarded as intermediate temperature T ∗. In the second step, or

named Corrector step, the following equation is solved:

ρcp
∂T

∂t
= q. (2.16)

Here, (2.16) means the effect of heat source on temperature field. Using the Euler explicit

scheme, ∂T/∂t can be rewritten as Tn+1 − T ∗/δt = δT/δt, where Tn+1 is the required

temperature at next time step. Therefore, (2.16) becomes

q = ρcp
δT

δt
, (2.17)

where δT is the temperature correction which determines the unknown variable q. It means

that to calculate heat source term is equivalent to correcting the temperature field near the

boundary. Similar to the implementation of velocity correction in IB-LBM [6], δT can further
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be calculated from the boundary temperature correction δTB. By enforcing the constant

temperature boundary condition, δTB can computed from the following equation system:

CY = D, (2.18)

where

Y =
{
δT1

B, δT
2
B, . . . , δT

m
B

}T
, (2.19)

C =

⎛⎜⎜⎜⎜⎜⎜⎝
δ11 δ12 · · · δ1n

δ21 δ22 · · · δ2n

...
...

. . .
...

δm1 δm2 · · · δmn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δB11 δB12 · · · δB1m
δB21 δB22 · · · δB2m

...
...

. . .
...

δBn1 δBn2 · · · δBnm

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

T1
B

T2
B

...

TmB

⎞⎟⎟⎟⎟⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎜⎜⎝
δ11 δ12 · · · δ1n

δ21 δ22 · · · δ2n

...
...

. . .
...

δm1 δm2 · · · δmn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
T ∗

1

T ∗
2

...

T ∗
n

⎞⎟⎟⎟⎟⎟⎟⎠.

(2.20)

Here, TlB is the specified boundary temperature. The parameters m, n, δij , and δBij have the

same meaning as those in equation system (2.6). After δTB is obtained from equation system

(2.18), the temperature correction δT can be calculated through

δT =
∑
l

δT lBDij

(
xij − XlB

)
Δsl. (2.21)

Consequently, the corrected temperature can be computed by

T = T ∗ + δT. (2.22)

2.3. Local and Average Nusselt Number Evaluation

In thermal flow problems, the Nusselt number is an important measurement parameter. The

local Nusselt number Nu on the surface of boundary is defined as

Nu(XB, t) =
h(XB, t)Lc

k
, (2.23)
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where h is the local convective heat transfer coefficient and Lc is the characteristic length.

According to Newton’s cooling law and Fourier’s law, the heat conducted away from the

boundary should be equal to the heat convection from the boundary, that is,

−k∂T
∂n

(XB, t) = h(XB, t)(TB − T∞), (2.24)

where T∞ is the free stream temperature. Substituting (2.24) into (2.23) gives

Nu(XB, t) = − Lc
TB − T∞

∂T

∂n
(XB, t). (2.25)

Further averaging over the entire boundary, we can have the surface overall mean Nusselt

number Nu

Nu =
1

L

∫
Nuds = − Lc

(TB − T∞)L
∫
∂T

∂n
(XB, t)ds, (2.26)

where L is the total length of boundary. Usually, the average Nusselt number can be used to

estimate the rate of heat transfer from the heated surface.

As shown in (2.25) and (2.26), to evaluate the local and average Nusselt numbers, the

calculation of temperature gradient at the boundary point is required. Since the temperature

is located at the Eulerian mesh which is not coincided with boundary, we cannot calculate

the boundary temperature derivatives directly. On the other hand, according to the Fourier’s

law, we can have the following expression for heat flux on the boundary Q:

Q(XB, t) = −k∂T
∂n

(XB, t). (2.27)

At the same time, similar to (2.17), the boundary heat flux can be calculated using the

boundary temperature correction

Q = ρcp
δTB
δt

. (2.28)

Substituting (2.27) and (2.28) into (2.25) and (2.26), the expressions for the local and average

Nusselt numbers can be rewritten as

Nu =
ρcpLc

kδt(TB − T∞)δTB,
(2.29)

Nu =
ρcpLc

kδt(TB − T∞)L
∑
l

δT lBΔsl. (2.30)

As can be seen from (2.29) and (2.30), the local and average Nusselt numbers can be

easily calculated by using the solved boundary temperature correction, which avoids the

temperature gradient computation on the boundary.
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Figure 1: Temperature contours for steady forced convection from a stationary circular cylinder.

3. Results and Discussion

As a benchmark case, the forced convection from a stationary circular cylinder has been

extensively simulated to validate the numerical methods. Both the experimental and

numerical results are available in the literature [10–12]. To characterize this thermal flow

problem, two nondimensional parameters are used: the Reynolds number Re = ρU∞D/μ
and Prandtl number Pr = μcp/k. Here, U∞ is the free stream velocity, D is the cylinder

diameter, and μ is the dynamic viscosity. In current simulation, the Prandtl number is fixed

at Pr = 0.7. Meanwhile, several low Reynolds numbers are selected: Re = 20, 40 (steady

flow), and 80, 150 (unsteady flow). Since this is a one-way interaction problem, the velocity

field can influence the temperature field while cannot be affected by the temperature field.

As the developed IB-LBM can accurately simulate velocity field [6], we only focus on the

temperature field in this case.

For the steady flow simulation, the computational domain is 60D × 40D with the

nonuniform mesh size of 321 × 241. The cylinder is located at (20D, 20D). The region around

the cylinder is 1.2D × 1.2D with a finest and uniform mesh size of 49 × 49. To apply the IB-

LBM on nonuniform mesh, the Taylor series expansion and least-squares-based LBM [13]
are utilized. Figure 1 shows the temperature contours at Re = 20 and 40. It can be seen from

the figure that the isotherms cluster heavily in the front part of cylinder. When the Reynolds

number is increased, the behavior of isotherm clustering is strengthened. The clustering of

isotherm indicates that the temperature gradient is large there. As a result, the heat transfer

rate near the front of cylinder is much larger than other regions. This phenomenon can

be further verified via the local Nusselt number distribution on the surface of cylinder, as

shown in Figure 2 for the case of Re = 20. Without evaluation of temperature gradient on the

boundary point, the local Nusselt number can be easily computed from the solved boundary

temperature correction, as shown in (2.29). To make comparison, the result of Bharti et al.

[12] is also involved. In this figure, θ = 0◦ means the front stagnation point of cylinder. From

Figure 2, it can be found that the value of local Nusselt number located at θ = 0◦ is maximum

and it decreases monotonously with respect to θ. Also can be seen from the figure is that the

result of current simulation shows good agreement with that of Bharti et al. [12].
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Figure 2: Local Nusselt number distribution on the surface of cylinder at Re = 20.
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Figure 3: Instantaneous isotherms (colorful) and vorticity contours (gray) for unsteady forced convection
from a stationary cylinder.

For the unsteady flow simulation, the computational domain is 50D × 40D with the

mesh size of 401 × 301. The region around the cylinder keeps 1.2D × 1.2D with a uniform

mesh size of 97 × 97. The cylinder is still located at (20D, 20D). Figure 3 plots the isotherms as

well as vorticity contours at Re = 80 and 150. The regular vortex shedding occurs at these two

Reynolds numbers. Concurrently, the isotherms lose symmetry and start to display shedding

behavior, which synchronously moves downstream with vortex.

To illustrate the performance of average Nusselt number calculation by using (2.30),
the obtained numerical results for all Reynolds numbers considered here are shown in
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Table 1: Nusselt number comparison at different Reynolds numbers.

References Cases Nu

Lange et al. [11]

Re = 20 2.409

Re = 40 3.281

Re = 80 4.571

Re = 150 6.396

Bharti et al. [12]

Re = 20 2.465

Re = 40 3.283

Re = 80 —

Re = 150 —

Present

Re = 20 2.472

Re = 40 3.281

Re = 80 4.611

Re = 150 6.432

Table 1. To compare with available results in the literature, the numerical results of Lange

et al. [11] and Bharti et al. [12] are also listed in the table. It is clear that the results from

current method basically agree well with the reference data. Besides, the value of average

Nusselt number increases with Reynolds number as expected.

4. Conclusion

In this paper, a hybrid immersed boundary-lattice Boltzmann method is developed to

simulate the heat transfer problems. Employing the newly proposed IB-LBM [6], the nonslip

boundary condition is enforced in simulation, and thus the velocity field can be accurately

simulated. In the meanwhile, the temperature field is resolved by using the conventional

energy equation with additional heat source term which mimics the influence of boundary

on temperature field. Similar to the idea of velocity correction in [6], the heat source term

is equivalent to the temperature correction and is set as unknown. By enforcing the thermal

boundary condition, this unknown variable can be determined. Furthermore, utilizing the

relationship between the temperature correction and heat flux, a simple approach for local

and average Nusselt number evaluation is proposed. Different from the conventional way,

there is no requirement for temperature gradient calculation.

The efficiency and capability of developed method as well as way to calculate the local

and average Nusselt numbers are illustrated by the simulation of forced convection problems.

The obtained numerical results show good agreement with available data in the literature. It

is demonstrated that the present method has a promising potential for solving thermal flow

problems with complex geometry.
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