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Functional differential equations arise in many areas of sci-
ence and technology: whenever a deterministic relationship
involving some varying quantities and their rates of change in
space and/or time (expressed as derivatives or differences) is
knownor postulated.This is illustrated in classicalmechanics,
where the motion of a body is described by its position and
velocity as the time varies. In some cases, this differential
equation (called an equation of motion) may be solved
explicitly. In fact, differential equations play an important
role in modelling virtually every physical, technical, biolog-
ical, ecological, and epidemiological process, from celestial
motion, to bridge design, to interactions between neurons,
to interaction between species, to spread of diseases with a
population, and so forth. Also many fundamental laws of
chemistry can be formulated as differential equations and in
economy differential equations are used to model the beha-
vior of complex systems. However, the mathematical models
can also take different forms depending on the time scale and
space structure of the problem; it can be modeled by delay
differential equations, difference equations, partial delay dif-
ferential equations, partial delay difference equations, or the
combination of these equations.

When necessary, random effects and sudden effects can
also be considered in modelling problems.Themathematical
theory of differential equations first developed, together with
the sciences, where the equations had originated and where
the results found applications. Differential and difference

equations such as those used to solve real-life problems may
not necessarily be directly solvable, that is, do not have closed
form solutions. Only the simplest equations admit solutions
given by explicit formulas; however, some properties of
solutions of a given differential equation may be determined
without finding their exact form. If a self-contained formula
for the solution is not available, the solution may be numeri-
cally approximated using computers. In this case a recurrence
relation is needed which is an equation that recursively
defines a sequence: each term of the sequence is defined as
a function of the preceding terms. A difference equation is
a specific type of recurrence relations. Solving a recurrence
relation means obtaining a closed form solution: a nonrecur-
sive function.

However, diverse problems, sometimes originating in
quite distinct scientific fields, may give rise to identical differ-
ential and difference equations.Whenever this happens, mat-
hematical theory behind the equations can be viewed as a uni-
fying principle behind diverse phenomena; see, for example,
the books by Brauer and Castillo Chavize [1], Diekmann et
al. [2], Gopalsamy [3], Gyori and Ladas [4], Kocic and Ladas
[5], Kolmonovskii and Myshkis [6], Lakshmikantham et al.
[7],May andAnderson [8],Murray [9], Sharkovsky et al. [10],
and Wu [11].

A delay differential equation (DDE) is an equation for a
function of a single variable, usually called time, in which the
derivative of the function at a certain time is given in terms
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2 Abstract and Applied Analysis

of the values of the function at earlier times. A functional
equation (FE) is an equation involving an unknown function
for different argument values.The equations 𝑥(2𝑡) + 2𝑥(3𝑡) =
1, 𝑥(𝑡) = 2𝑥(𝑡 + 1) − [𝑥(𝑡 − 2)]2, and so forth are examples
of this type. The differences between the argument values
of an unknown function and 𝑡 in a FE are called argument
deviations. If all argument deviations are constants, then FE
is called a difference equation. Combining the notions of
differential and functional equations, we obtain the notion
of functional differential equation (FDE) or equivalently dif-
ferential equations with deviating argument. Thus, this is an
equation concerning the unknown function and some of its
derivatives for, in general, different argument values (present,
past, or future).The order of a FDE is the order of the highest
derivative of the unknown function entering in the equation.
So, a FE may be regarded as FDE of order zero. Hence,
the notion of FDE generalizes all equations of mathematical
analysis for functions of a continuous argument.

The qualitative study of functional differential equations
and difference equations is a wide field in pure and applied
mathematics, physics, meteorology, engineering, and popu-
lation dynamics. All of these disciplines are concerned with
the properties of these equations of various types. Puremath-
ematics focuses on the existence and uniqueness of solutions;
for global existence and uniqueness theorems for differential
equations, we refer to the books [6, 7, 12] and for basic theory
of difference equations, we refer to the books [13]. On the
other hand, applied mathematics emphasizes the rigorous
justification of the qualitative behavior of solutions (oscilla-
tion, periodic orbits, persistence, permanence, stability, glo-
bal attractivity, Hopf bifurcation, Floquet theory, control,
synchronization, etc.) [2, 14, 15]. On the other hand the study
of integral inequalities has received a lot of attention in the
literature and has become a major field in pure and applied
mathematics; we refer to the recent book [16].

The oscillation theory, stability theory, bifurcation theory,
existence of periodic solutions and convergence of solutions
as parts of the qualitative theory of differential and difference
equations have been developed rapidly in the past thirty
years and some interesting books have been written in these
subjects. We refer the reader to the books [17–21]. In this
special issue we will consider some papers in all the above
different areas and hope that the readerwill find in this special
issue some important results.

Cemil Tunç
Mouffak Benchohra

Bingwen Liu
Muhammad N. Islam

Samir H. Saker
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This paper deals with stability and Hopf bifurcation analyses of a mathematical model of HIV infection of CD4+ T-cells.Themodel
is based on a system of delay differential equations with logistic growth term and antiretroviral treatment with a discrete time delay,
which plays a main role in changing the stability of each steady state. By fixing the time delay as a bifurcation parameter, we get a
limit cycle bifurcation about the infected steady state.We study the effect of the time delay on the stability of the endemically infected
equilibrium.We derive explicit formulae to determine the stability and direction of the limit cycles by using center manifold theory
and normal form method. Numerical simulations are presented to illustrate the results.

1. Introduction

Since 1980, the human immunodeficiency virus (HIV) or
the associated syndrome of opportunistic infections that
causes acquired immunodeficiency syndrome (AIDS) has
been considered as one of the most serious global public
health menaces. When HIV enters the body, its main target
is the CD4 lymphocytes, also called CD4 T-cells (including
CD4+ T-cells). When a CD4 cell is infected with HIV, the
virus goes through multiple steps to reproduce itself and
create many more virus particles. The AIDS term, which
is known as the late stage of HIV, covers the range of
infections and illnesses which can result from a weakened
immune system caused by HIV. Based on the clinical studies,
it is known that, for a normal person, the CD4+ T-cells
count is around 1000mm−3 and for HIV infected patient it
gradually decreases to 200mm−3 or below, which leads to
AIDS. However, this may take several years for the number
of CD4 T-cells to reduce to a level where the immune system
is weakened [1–6].

Mathematical models, usingdelay differential equations
(DDEs), have provided insights in understanding the dynam-
ics of HIV infection. Discrete or continuous time delays

have been introduced to the models to describe the time
between infection of a CD4+ T-cell and the emission of
viral particles on a cellular level [7–13]. In general, DDEs
exhibit much more complicated dynamics than ODEs since
the time delay could cause a stable equilibrium to become
unstable and cause the populations to fluctuate [14–16]. In
studying the viral clearance rates, Perelson et al. [17] assumed
that there are two types of delays that occur between the
administration of drug and the observed decline in viral load:
a pharmacological delay that occurs between the ingestion of
drug and its appearancewithin cells and an intracellular delay
that is between initial infection of a cell byHIVand the release
of new virion. In this paper, we incorporate an intracellular
delay to the model to describe the time between infection of
a CD4+ T-cell and the emission of viral particles on a cellular
level [18]. We study the impact of the presence of such time
delay on the dynamics of the model.

The outline of the present paper is as follows. In Section 2,
we describe the model. In Section 3, we study the qualitative
behavior of the model via stability of the steady states
and Hopf bifurcation when time delay is considered as a
bifurcation parameter. In Section 4, we provide an explicit
formula to determine the direction of bifurcating periodic
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solution by applying center manifold theory and normal
form method. We provide some numerical simulations to
demonstrate the effectiveness of the analysis in Section 5 and
we conclude in Section 6.

2. Description of the Model

Let us start the analysis with some basic models of the
dynamics of target (uninfected) cells and infected CD4+ T-
cells by HIV. As a first approximation, the dynamics between
HIV and the macrophage population was described by the
simplest model of infection dynamics presented in [19–21].
Denoting uninfected cells by 𝑥(𝑡) and infected cells by 𝑦(𝑡)
and assuming that viruses are transmitted mainly by cell to
cell contact, the model is given by

̇𝑥 (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛿
2
𝑦 (𝑡) .

(1)

The target (uninfected) CD4+ T-cells are produced at a rate
Λ, die at a rate 𝛿

1
, and become infected by virus at a rate 𝛽.

The infected host cells die at a rate 𝛿
2
. The basic reproductive

ratio of the virus is then given by R
0
= Λ𝛽/𝛿

1
𝛿
2
. If there is

no infection or if R
0
< 1, there is only trivial equilibrium

(E
0
= (Λ/𝛿

1
, 0)) with no virus-producing cells. Whereas if

R
0
> 1, the virus can establish an infection and the system

converges to the equilibrium with both uninfected cells and
infected cells, E

1
= (𝛿
2
/𝛽, Λ/𝛿

2
− 𝛿
1
/𝛽).

However, inmost viral infections, the CTL response plays
a crucial part in antiviral defence by attacking viral infected
cells [22, 23]. As the the cytotoxic T-lymphocyte (CTL)
immune response is necessary to eliminate or control the
viral infection, we incorporated the antiviral CTL immune
response into the basic model (1). Therefore, if we add CTL
response, which is denoted by 𝑧(𝑡), into model (1) (see [19]),
then the extended model is

̇𝑥 (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛿
2
𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

̇𝑧 (𝑡) = 𝑐𝑞𝑦 (𝑡) 𝑧 (𝑡) − ℎ𝑧 (𝑡) .

(2)

Thus, CTLs proliferate in response to antigen at a rate 𝑐, die
at a rate ℎ, and lyse infected cells at a rate 𝑝. We assume that
the CTL pool consists of two populations: the precursors𝑤(𝑡)
and the effectors 𝑧(𝑡). In otherwords, we assume that there are
primary and secondary responses to viral infections. Then,
the model (2) becomes

̇𝑥 (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛿
2
𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

̇𝑤 (𝑡) = 𝑐 (1 − 𝑞) 𝑦 (𝑡) 𝑤 (𝑡) − 𝑏𝑤 (𝑡) ,

̇𝑧 (𝑡) = 𝑐𝑞𝑦 (𝑡) 𝑤 (𝑡) − ℎ𝑧 (𝑡) .

(3)

The infected cells are killed by CTL effector cells at a rate
𝑝𝑦𝑧. Upon contact with antigen, CTLp proliferate at a rate
𝑐𝑦(𝑡)𝑤(𝑡) and differentiate into effector cells CTLe at a rate

Uninfected cell (x)

+

Infected cell (y)

Contact with antigen

Naive
CTL

DifferentiationActivated
CTLp (w)

CTLp proliferate to generate
the memory population

cyw

b

cqwy

Effector CTL (z)
h

CTL-mediated
lysis (p)

Free virus

Λ

𝛽

𝛿1 𝛿2

Figure 1: A simplified model of virus-CTL interaction. The virus
dynamics is described by the basic model of Nowak and Bangham
[19]. The uninfected target cells are produced at a rate Λ and die
at a rate 𝛿

1
𝑥. They become infected by the virus at a rate 𝛽𝑥𝑦.

The infected cells produce new virus particle and die at a rate 𝛿
2
𝑦.

When CTL
𝑝
recognize antigen on the surface of infected cells, they

become activated and expand at a rate 𝑐𝑦𝑤, decay at a rate 𝑏𝑤, and
differentaite into efector cells at a rate 𝑐𝑞𝑤𝑦. The effector cells lyse
the infected cells at a rate 𝑝𝑦𝑧.

𝑐𝑞𝑦(𝑡)𝑤(𝑡). CTL precursors die at a rate 𝑏𝑤, and effectors die
at a rate ℎ𝑧(𝑡); see Figure 1.

Since the proliferation of CD4+ T-cells is density depen-
dent, that is, the rate of proliferation decreases as T-cells
increase and reach the carrying capacity, we then extend
the above basic viral infection model to include the density
dependent growth of the CD4+ T-cell population (see [24–
26]). It is also known that HIV infection leads to low levels of
CD4+ T-cells via three main mechanisms: direct viral killing
of infected cells, increased rates of apoptosis in infected
cells, and killing of infected CD4+ T-cells by cytotoxic T-
lymphocytes [26]. Hence, it is reasonable to include apoptosis
of infected cells. An average of 1010 viral particles is produced
by infected cells per day. The treatment with single antiviral
drug is considered to be failed, so that the combination
of antiviral drugs is needed for the better treatment [25].
Therefore, in the below revised model, we combine the
antiretroviral drugs, namely, reverse transcriptase inhibitor
(RTI) and protease inhibitor (PI) to make the model realistic
(see [27–29]). RTIs can block the infection of target T-cells
by infectious virus, and PIs cause infected cells to produce
noninfectious virus particles. The modified model takes the
form

̇𝑥 (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) + 𝑟 (1 −

𝑥 (𝑡) + 𝑦 (𝑡)

𝑇max
)𝑥 (𝑡)

− (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡)

− 𝛿
2
𝑦 (𝑡) − 𝑒

1
𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,
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Table 1: Parameter definitions and estimations used in the underlying model.

Parameter Notes Estimated Value Range Source
Λ Source of uninfected CD4+ T-cells 10 0–10 [26]
𝛽 Rate of infection 0.1 0.00001–0.5 [26]
𝑇max Total carrying capacity 1500 1500 [26]
𝑟 Logistic growth term 0.03 0.03–3 [26]
𝛿
1

Mortality rate of CD4+ T-cells 0.06 0.007–0.1 [26]
𝜖 Antiretroviral (RTI) therapy 0.9 0-1 see text
𝛿
2

Infected cells died out naturally 0.3 0.2–1.4 [26]
𝑒
1

Apoptosis rate of infected cells 0.2 0.2 [26]
𝑝 Clearance rate of infected cells 1 0.001–1 [26]
𝜂 Protease inhibitor therapy 0.9 [0, 1] see text
𝑞 Rate of differentiation of CTLs 0.02 Assumed —
𝑏 Death rate of CTL precursors 0.02 0.005–0.15 [26]
𝑐 Proliferation of CTLs responsiveness 0.1 0.001–1 [26]
ℎ Mortality rate or CTL effectors 0.1 0.005–0.15 [26]

̇𝑤(𝑡) = 𝑐𝑦 (𝑡) 𝑤 (𝑡) − 𝑐𝑞𝑦 (𝑡) 𝑤 (𝑡) − 𝑏𝑤 (𝑡) ,

̇𝑧 (𝑡) = 𝑐𝑞𝑦 (𝑡) 𝑤 (𝑡) − ℎ𝑧 (𝑡) .

(4)

Thefirst equation ofmodel (4) represents the rate of change in
the count of healthy CD4+ T-cells that produced at rateΛ and
become infected at rate 𝛽, with the mortality 𝛿

1
. We assume

that the uninfected CD4+ T-cells proliferate logistically, thus
the growth rate 𝑟 is multiplied by the term (1 − (𝑥 + 𝑦)/𝑇max)
and this term approaches zero when the total number of T-
cells approaches the carrying capacity 𝑇max. The effects of
combination of RTI and PI antiviral drugs are represented
by the term (1 − 𝜖)(1 − 𝜂)𝛽𝑥𝑦, where (1 − 𝜖), 0 < 𝜖 < 1,
represents the effects of RTI and (1−𝜂), 0 < 𝜂 < 1, represents
the effects of PI. The second equation of model (4) denotes
the rate of change in the count of infected CD4+ T-cells.
The infected CD4+ T-cells decay at a rate 𝛿

2
and 𝑒
1
denotes

apoptosis rate of infected cell; infected cells are killed by CTL
effectors at a rate 𝑝. The third equation of the model denotes
the rate of change in the CTLp population; proliferation
rate of the CTLp is given by 𝑐 and is proportional to the
infected cells𝑦; CTLp die at a rate 𝑏 and differentiate intoCTL
effectors at a rate 𝑐𝑞.The last equation of themodel represents
the concentration of CTL effectors, which die at a rate ℎ.
In reality, the specific immune system is not immediately
effective following invasion by a novel pathogen. There may
be an explicit time delay between infection and immune
initiation and there may be a gradual build-up in immune
efficacy during which the immune response develops, before
reaching maximal specificity to the pathogen ([8, 30, 31]). In
order to make model (4) more realistic, time delay in the
immune response should be included in the followingmodel:

̇𝑥 (𝑡) = Λ − (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡)

+ 𝑟 (1 −

𝑥 (𝑡) + 𝑦 (𝑡)

𝑇max
)𝑥 (𝑡) − 𝛿

1
𝑥 (𝑡) ,

̇𝑦 (𝑡) = (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡)

− (𝛿
2
+ 𝑒
1
) 𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

̇𝑤 (𝑡) = 𝑐 (1 − 𝑞) 𝑦 (𝑡 − 𝜏)𝑤 (𝑡 − 𝜏) − 𝑏𝑤 (𝑡)

̇𝑧 (𝑡) = 𝑐𝑞𝑦 (𝑡 − 𝜏)𝑤 (𝑡 − 𝜏) − ℎ𝑧 (𝑡) .

(5)

The range of parameter values of the model are given in
Table 1.

We start our analysis by presenting some notations that
will be used in the sequel. Let 𝐶 = 𝐶([−𝜏, 0],R4

+
) be the

Banach space of continuous functions mapping the interval
[−𝜏, 0] intoR4

+
, whereR4

+
= (𝑥, 𝑦, 𝑤, 𝑧); the initial conditions

are given by

𝑥 (𝜃) = 𝜑
1
(𝜃) ≥ 0, 𝑦 (𝜃) = 𝜑

2
(𝜃) ≥ 0,

𝑤 (𝜃) = 𝜑
3
(𝜃) ≥ 0, 𝑧 (𝜃) = 𝜑

4
(𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] ,

(6)

where 𝜑
𝑖
(𝜃) ∈ C1 are smooth functions, for all 𝑖 =

1, 2, 3, 4. From the fundamental theory of functional dif-
ferential equations (see [32, 33]), it is easy to see that the
solutions (𝑥(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) of system (5) with the initial
conditions as stated above exist for all 𝑡 ≥ 0 and are unique. It
can be shown that these solutions exist for all 𝑡 > 0 and stay
nonnegative. In fact, if 𝑥(0) > 0, then 𝑥(𝑡) > 0 for all 𝑡 > 0.
The same argument is true for the 𝑦, 𝑤, and 𝑧 components.
Hence, the interior R4

+
is invariant for system (5).

3. Steady States

We can obtain the steady state values by setting ̇𝑥 = ̇𝑦 =

̇𝑤 = ̇𝑧 = 0. The steady state value of the infection-free
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steady sate E
0
is given by E

0
= ((𝑇max/2𝑟)(𝑟 − 𝛿1 +

√(𝑟 − 𝛿
1
)
2
+ 4𝑟Λ/𝑇max), 0, 0, 0), while the infected steady

state E
+
= (𝑥
∗
, 𝑦
∗
, 𝑤
∗
, 𝑧
∗
) is given by

𝑦
∗
=

𝑏

𝑐 (1 − 𝑞)

, 𝑤
∗
=

ℎ (1 − 𝑞) 𝑧
∗

𝑞𝑏

,

𝑧
∗
=

(1 − 𝜖) (1 − 𝜂) 𝛽𝑥
∗
− (𝛿
2
+ 𝑒
1
)

𝑝

,

(7)

and 𝑥∗ is given by the following quadratic equation:

𝑐
1
𝑥
2
+ 𝑐
2
𝑥 − 𝑐
3
= 0, (8)

where 𝑐
1
= 𝑐(1 − 𝑞)𝑟, 𝑐

2
= 𝑇max𝑏𝛽(1 − 𝜖)(1 − 𝜂) + 𝑏𝑟 − 𝑐(1 −

𝑞)𝑇max(𝑟 − 𝛿1), 𝑐3 = 𝑐(1 − 𝑞)Λ𝑇max.

3.1. Stability and Hopf Bifurcation Analysis of Infected Steady
State E

+
. In order to study full dynamics of model (4) by

using time delay as a bifurcation parameter, we need to
linearize themodel around the steady stateE

+
and determine

the characteristic equation of the Jacobian matrix. The roots
of the characteristic equation determine the asymptotic
stability and existence of Hopf bifurcation for the model. The
characteristic equation of the linearized system is given by

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝐴
1
𝑦
∗
+ 𝑟 −

2𝑟

𝑇max
𝑥
∗
−

𝑟

𝑇max
𝑦
∗
− 𝛿
1
− 𝜆 −𝐴

1
𝑥
∗
−

𝑟

𝑇max
𝑥
∗

0 0

𝐴
1
𝑦
∗

𝐴
1
𝑥
∗
− (𝛿
2
+ 𝑒
1
) − 𝑝𝑧

∗
− 𝜆 0 −𝑝𝑦

∗

0 𝑐 (1 − 𝑞) 𝑒
−𝜆𝜏
𝑤
∗

𝑐 (1 − 𝑞) 𝑒
−𝜆𝜏
𝑦
∗
− 𝑏 − 𝜆 0

0 𝑐𝑞𝑒
−𝜆𝜏
𝑤
∗

𝑐𝑞𝑒
−𝜆𝜏
𝑦
∗

−ℎ − 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, (9)

which is equivalent to the equation

𝜆
4
+ 𝑝
1
𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
3
𝜆 + 𝑝
4

+ 𝑒
−𝜆𝜏
(𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
) = 0,

(10)

where 𝐴
1
= (1 − 𝜖)(1 − 𝜂)𝛽 and

𝑝
1
= − 𝑎

1
− 𝑎
4
− 𝑎
8
− 𝑎
11
,

𝑝
2
= 𝑎
1
𝑎
8
+ 𝑎
8
𝑎
11
+ 𝑎
1
𝑎
11
+ 𝑎
4
𝑎
8
+ 𝑎
4
𝑎
11
+ 𝑎
1
𝑎
4
− 𝑎
2
𝑎
3
,

𝑝
3
= 𝑎
2
𝑎
3
𝑎
8
+ 𝑎
2
𝑎
3
𝑎
11
− 𝑎
1
𝑎
8
𝑎
11

− 𝑎
4
𝑎
8
𝑎
11
− 𝑎
1
𝑎
4
𝑎
8
− 𝑎
1
𝑎
4
𝑎
11
,

𝑝
4
= 𝑎
1
𝑎
4
𝑎
8
𝑎
11
− 𝑎
2
𝑎
3
𝑎
8
𝑎
11
,

𝑞
1
= − 𝑎

7
,

𝑞
2
= 𝑎
1
𝑎
7
+ 𝑎
7
𝑎
11
+ 𝑎
4
𝑎
7
− 𝑎
5
𝑎
9
,

𝑞
3
= 𝑎
5
𝑎
8
𝑎
9
+ 𝑎
1
𝑎
5
𝑎
9
+ 𝑎
2
𝑎
3
𝑎
7
− 𝑎
1
𝑎
7
𝑎
11

− 𝑎
4
𝑎
7
𝑎
11
− 𝑎
1
𝑎
4
𝑎
7
,

𝑞
4
= 𝑎
1
𝑎
4
𝑎
7
𝑎
11
− 𝑎
1
𝑎
5
𝑎
8
𝑎
9
− 𝑎
2
𝑎
3
𝑎
7
𝑎
11
,

𝑎
1
= − (1 − 𝜖) (1 − 𝜂) 𝛽𝑦

∗
+ 𝑟 −

2𝑟𝑥
∗

𝑇max
−

𝑟𝑦
∗

𝑇max
− 𝛿
1
,

𝑎
2
= − (1 − 𝜖) (1 − 𝜂) 𝛽𝑥

∗
−

𝑟𝑥
∗

𝑇max
,

𝑎
3
= (1 − 𝜖) (1 − 𝜂) 𝛽𝑦

∗
,

𝑎
4
= (1 − 𝜖) (1 − 𝜂) 𝛽𝑥

∗
− (𝛿
2
+ 𝑒
1
) − 𝑝𝑧

∗
,

𝑎
5
= − 𝑝𝑦

∗
,

𝑎
6
= 𝑐 (1 − 𝑞)𝑤

∗
,

𝑎
7
= 𝑐 (1 − 𝑞) 𝑦

∗
,

𝑎
8
= − 𝑏,

𝑎
9
= 𝑐𝑞𝑤

∗
,

𝑎
10
= 𝑐𝑞𝑦

∗
,

𝑎
11
= − ℎ.

(11)

Let us consider the following equation:

𝜑 (𝜆, 𝜏) = 𝜆
4
+ 𝑝
1
𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
3
𝜆 + 𝑝
4

+ (𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
) 𝑒
−𝜆𝜏
.

(12)

For the nondelayed model (say 𝜏 = 0), from (10), we have

𝜆
4
+ 𝐷
1
𝜆
3
+ 𝐷
2
𝜆
2
+ 𝐷
3
𝜆 + 𝐷

4
= 0, (13)

where

𝐷
1
= 𝑝
1
+ 𝑞
1
, 𝐷

2
= 𝑝
2
+ 𝑞
2
,

𝐷
3
= 𝑝
3
+ 𝑞
3
, 𝐷

4
= 𝑝
4
+ 𝑞
4
.

(14)

Lemma 1. For 𝜏 = 0, the unique nontrivial equilibrium is
locally asymptotically stable if the real parts of all the roots of
(13) are negative.

Proof. The proof of the above lemma is based on holding
the following conditions: 𝐷

1
> 0, 𝐷

3
> 0, 𝐷

4
> 0, and

𝐷
1
𝐷
2
𝐷
3
> 𝐷
2

1
𝐷
4
+ 𝐷
2

3
, as proposed by Routh-Hurwitz

criterion. We conclude that equilibriumE
+
is locally asymp-

totically stable if and only if all the roots of the characteristic
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equation (13) have negative real parts which depends on
the numerical values of parameters that are shown in the
numerical exploration.

3.2. Existence of Hopf Bifurcation. We here study the impact
of the time-delay parameter on the stability of HIV infection
of CD4+ T-cells. We deduce criteria that ensure the asymp-
totic stability of infected steady state E

+
, for all 𝜏 > 0. We

arrive at the following theorem.

Theorem 2. Necessary and sufficient conditions for the
infected equilibriumE

+
to be asymptotically stable for all delay

𝜏 ≥ 0 are as follows

(i) the real parts of all the roots of 𝜑(𝜆, 𝜏) = 0 are negative;

(ii) for all 𝜔 and 𝜏 ≥ 0, 𝜑(𝑖𝜔, 𝜏) ̸= 0, where 𝑖 = √−1.

Proof. Assume that Lemma 1 is true. Now, for 𝜔 = 0, we have

𝜑 (0, 𝜏) = 𝐷
4
= 𝑝
4
+ 𝑞
4
̸= 0. (15)

Substituting 𝜆 = 𝑖𝜔 (𝜔 > 0) into (5) and separating the real
and imaginary parts of the equations yields

(𝜔
4
− 𝑝
2
𝜔
2
+ 𝑝
4
) + (−𝑞

2
𝜔
2
+ 𝑞
4
) cos (𝜔𝜏)

+ (−𝑞
1
𝜔
3
+ 𝑞
3
𝜔) sin (𝜔𝜏) = 0,

(−𝑝
1
𝜔
3
+ 𝑝
3
𝜔) + (−𝑞

1
𝜔
3
+ 𝑞
3
𝜔) cos (𝜔𝜏)

− (−𝑞
2
𝜔
2
+ 𝑞
4
) sin (𝜔𝜏) = 0.

(16)

After some mathematical manipulations, we obtain the fol-
lowing equations

cos (𝜔𝜏)

= ((𝑞
2
− 𝑝
1
𝑞
1
) 𝜔
6
+ (𝑝
3
𝑞
1
− 𝑞
4
− 𝑝
2
𝑞
2
+ 𝑝
1
𝑞
3
) 𝜔
4

+ (𝑝
2
𝑞
4
+ 𝑝
4
𝑞
2
− 𝑝
3
𝑞
3
) 𝜔
2
− 𝑝
4
𝑞
4
)

× (𝑞
2

1
𝜔
6
+ (𝑞
2

2
− 2𝑞
1
𝑞
3
) 𝜔
4
+ (𝑞
2

3
− 2𝑞
2
𝑞
4
) 𝜔
2
+ 𝑞
2

4
)

−1

,

sin (𝜔𝜏)

= (𝑞
1
𝜔
7
+ (𝑝
1
𝑞
2
− 𝑞
3
− 𝑝
2
𝑞
1
) 𝜔
5

+ (𝑝
2
𝑞
3
+ 𝑝
4
𝑞
1
− 𝑝
3
𝑞
2
− 𝑝
1
𝑞
4
) 𝜔
3

+ (𝑝
3
𝑞
4
− 𝑝
4
𝑞
3
) 𝜔)

× (𝑞
2

1
𝜔
6
+ (𝑞
2

2
− 2𝑞
1
𝑞
3
) 𝜔
4
+ (𝑞
2

3
− 2𝑞
2
𝑞
4
) 𝜔
2
+ 𝑞
2

4
)

−1

.

(17)

Let

𝑏
1
= 𝑞
2
− 𝑝
1
𝑞
1
, 𝑏

2
= 𝑝
3
𝑞
1
− 𝑞
4
− 𝑝
2
𝑞
2
+ 𝑝
1
𝑞
3
,

𝑏
3
= 𝑝
2
𝑞
4
+ 𝑝
4
𝑞
2
− 𝑝
3
𝑞
3
, 𝑏

4
= −𝑝
4
𝑞
4
,

𝑏
5
= 𝑞
2

1
, 𝑏

6
= 𝑞
2

2
− 2𝑞
1
𝑞
3
,

𝑏
7
= 𝑞
2

3
− 2𝑞
2
𝑞
4
, 𝑏

8
= 𝑞
2

4
,

𝑏
9
= 𝑞
1
, 𝑏

10
= 𝑝
1
𝑞
2
− 𝑞
3
− 𝑝
2
𝑞
1
,

𝑏
11
= 𝑝
2
𝑞
3
+ 𝑝
4
𝑞
1
− 𝑝
3
𝑞
2
− 𝑝
1
𝑞
4
, 𝑏

12
= 𝑝
3
𝑞
4
− 𝑝
4
𝑞
3
.

(18)

From (16), we have

𝜔
8
+ 𝑐
1
𝜔
6
+ 𝑐
2
𝜔
4
+ 𝑐
3
𝜔
2
+ 𝑐
4
= 0, (19)

where

𝑐
1
= 𝑝
2

1
− 2𝑝
2
− 𝑞
2

1
, 𝑐

2
= 𝑝
2

2
− 2𝑝
1
𝑝
3
+ 2𝑞
1
𝑞
3
+ 2𝑝
4
−𝑞
2

2
,

𝑐
3
= 𝑝
2

3
− 2𝑝
2
𝑝
4
+ 2𝑞
2
𝑞
4
− 𝑞
2

3
, 𝑐

4
= 𝑝
2

4
− 𝑞
2

4
.

(20)

The conditions (i) and (ii) of Theorem 2 hold if and only if
(19) has no real positive root.

Let𝑚 = 𝜔2; then (19) takes the form

𝑚
4
+ 𝑐
1
𝑚
3
+ 𝑐
2
𝑚
2
+ 𝑐
3
𝑚 + 𝑐
4
= 0. (21)

If 𝑐
4
< 0, then (19) has at least one positive root. In the case

when (19) has four positive roots, we have

𝜔
1
= √𝑚1

, 𝜔
2
= √𝑚2

,

𝜔
3
= √𝑚3

, 𝜔
4
= √𝑚4

.

(22)

From (16), we have

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

{arcsin
𝑏
9
𝜔
7

𝑘
+ 𝑏
10
𝜔
5

𝑘
+ 𝑏
11
𝜔
3

𝑘
+ 𝑏
12
𝜔
𝑘

𝑏
5
𝜔
6

𝑘
+ 𝑏
6
𝜔
4

𝑘
+ 𝑏
7
𝜔
2

𝑘
+ 𝑏
8

+ 2𝑗𝜋} ,

(23)

where 𝑘 = 1, 2, 3, 4 and 𝑗 = 0, 1, 2, . . .; we choose 𝜏
0
=

min(𝜏(𝑗)
𝑘
).

To establish Hopf bifurcation at 𝜏 = 𝜏
0
, we need to show

that

R(
𝑑𝜆

𝑑𝜏

)

𝜏=𝜏0

̸= 0. (24)

By differentiating (10) with respect to 𝜏, we can get

𝑑𝜆

𝑑𝜏

= 𝜆𝑒
−𝜆𝜏
(𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
)

× ( (4𝜆
3
+ 3𝑝
1
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
3
) + 𝑒
−𝜆𝜏

× [(3𝑞
1
𝜆
2
+ 2𝑞
2
𝜆 + 𝑞
3
)

− 𝜏 (𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
)] )

−1

.

(25)
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It follows that

(

𝑑𝜆

𝑑𝜏

)

−1

= ((4𝜆
3
+ 3𝑝
1
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
3
) + 𝑒
−𝜆𝜏

× [(3𝑞
1
𝜆
2
+ 2𝑞
2
𝜆 + 𝑞
3
)

−𝜏 (𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
)])

× (𝜆𝑒
−𝜆𝜏
(𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
))

−1

.

(26)

Then, by combining (10), we get

(

𝑑𝜆

𝑑𝜏

)

−1

= ((4𝜆
3
+ 3𝑝
1
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
3
)

+ 𝑒
−𝜆𝜏
(3𝑞
1
𝜆
2
+ 2𝑞
2
𝜆 + 𝑞
3
))

× (𝜆𝑒
−𝜆𝜏
(𝑞
1
𝜆
3
+ 𝑞
2
𝜆
2
+ 𝑞
3
𝜆 + 𝑞
4
))

−1

−

𝜏

𝜆

.

(27)

Substituting 𝜆 = 𝑖𝜔
0
in (27) (where 𝜔

0
> 0 and 𝑖 = √−1)

yields

(

𝑑𝜆

𝑑𝜏

)

−1󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

=

𝑑
1
+ 𝑖𝑑
2

𝑑
3
+ 𝑖𝑑
4

−

𝜏

𝜆

, (28)

where

𝑑
1
= (𝑝
3
− 3𝑝
1
𝜔
2

0
) + (𝑞

3
− 3𝑞
1
𝜔
2

0
) cos (𝜔

0
𝜏
0
)

+ 2𝑞
2
𝜔
0
sin (𝜔

0
𝜏
0
) ,

𝑑
2
= (2𝑝

2
𝜔
0
− 4𝜔
3
) + 2𝑞

2
𝜔
0
cos (𝜔

0
𝜏
0
)

− (𝑞
3
− 3𝑞
1
𝜔
2

0
) sin (𝜔

0
𝜏
0
) ,

𝑑
3
=(𝑞
1
𝜔
4

0
− 𝑞
3
𝜔
2

0
) cos (𝜔

0
𝜏
0
) + (𝑞

4
𝜔
0
− 𝑞
2
𝜔
3

0
) sin (𝜔

0
𝜏
0
) ,

𝑑
4
=(𝑞
4
𝜔
0
− 𝑞
2
𝜔
3

0
) cos (𝜔

0
𝜏
0
) − (𝑞

1
𝜔
4

0
− 𝑞
3
𝜔
2

0
) sin (𝜔

0
𝜏
0
) .

(29)

Thus,

R(
𝑑𝜆

𝑑𝜏

)

−1󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

=

𝑑
1
𝑑
3
+ 𝑑
2
𝑑
4

𝑑
2

3
+ 𝑑
2

4

. (30)

Notice that

sign(R𝑑𝜆(𝑡)
𝑑𝜏

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

= sign(R(𝑑𝜆
𝑑𝜏

)

−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

. (31)

By summarizing the above analysis, we arrive at the following
theorem.

Theorem 3. The infected equilibrium E
+
of the system (5) is

asymptotically stable for 𝜏 ∈ [0, 𝜏
0
) and it undergoes Hopf

bifurcation at 𝜏 = 𝜏
0
.

4. Direction and Stability of Bifurcating
Periodic Solutions

In the previous section, we obtained conditions for Hopf
bifurcation to occur when 𝜏

0
= 𝜏
(𝑗)

𝑘
, 𝑗 = 0, 1, 2, . . .. It is

also important to derive explicit formulae from which we
can determine the direction, stability, and period of periodic
solutions bifurcating around the infected equilibrium E

+
at

the critical value 𝜏
0
. We use the cafeteria of normal forms

and center manifold proposed by Hassard [34]. We assume
that the model (5) undergoes Hopf bifurcation at the infected
equilibrium E

+
when 𝜏

0
= 𝜏
(𝑗)

𝑘
, 𝑗 = 0, 1, 2, . . ., and

then ±𝑖𝜔
0
are the corresponding purely imaginary roots of

the characteristic equation at the infected equilibrium E
+
.

Assume also that

(𝑋
1
(𝑡) , 𝑋

2
(𝑡) , 𝑋

3
(𝑡) , 𝑋

4
(𝑡))
𝑇

= (𝑥 (𝑡) − 𝑥
∗
, 𝑦 (𝑡) − 𝑦

∗
(𝑡) ,

𝑤 (𝑡) −𝑤
∗
(𝑡) , 𝑧 (𝑡) − 𝑧

∗
(𝑡))
𝑇

;

(32)

then usingTaylors expansion for system (3) at the equilibrium
point yields

𝑋
1
= 𝑘
11
𝑋
1
(𝑡) + 𝑘

12
𝑋
2
(𝑡)

+ 𝑘
13
𝑋
1
(𝑡) 𝑋
1
(𝑡) + 𝑘

14
𝑋
1
(𝑡) 𝑋
2
(𝑡) ,

𝑋
2
= 𝑘
21
𝑋
1
(𝑡) + 𝑘

22
𝑋
2
(𝑡) + 𝑘

23
𝑋
4
(𝑡)

+ 𝑘
24
𝑋
1
(𝑡) 𝑋
2
(𝑡) + 𝑘

25
𝑋
2
(𝑡) 𝑋
4
(𝑡) ,

𝑋
3
= 𝑘
31
𝑋
3
(𝑡) + 𝑘

32
𝑋
2
(𝑡 − 𝜏)

+ 𝑘
33
𝑋
3
(𝑡 − 𝜏) + 𝑘

34
𝑋
2
(𝑡 − 𝜏)𝑋

3
(𝑡 − 𝜏) ,

𝑋
4
= 𝑘
41
𝑋
4
(𝑡) + 𝑘

42
𝑋
2
(𝑡 − 𝜏)

+ 𝑘
43
𝑋
3
(𝑡 − 𝜏) + 𝑘

44
𝑋
2
(𝑡 − 𝜏)𝑋

3
(𝑡 − 𝜏) .

(33)

Here,

𝑘
11
= − 𝐴

1
𝑦
∗
+ 𝑟 −

2𝑟𝑥
∗

𝑇max
−

𝑟𝑦
∗

𝑇max
− 𝛿
1
,

𝑘
12
= − 𝐴

1
𝑥
∗
−

𝑟𝑥
∗

𝑇max
,

𝑘
13
= −

2𝑟

𝑇max
,

𝑘
14
= −

𝑟

𝑇max
− 𝐴
1
,

𝑘
21
= 𝐴
1
𝑦
∗
,

𝑘
22
= 𝐴
1
𝑥
∗
− 𝐴
2
− 𝑝𝑧
∗
,

𝑘
23
= − 𝑝𝑦

∗
,

𝑘
24
= 𝐴
1
,

𝑘
25
= − 𝑝,
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𝑘
31
= − 𝑏,

𝑘
32
= 𝑐 (1 − 𝑞)𝑤

∗
,

𝑘
33
= 𝑐 (1 − 𝑞) 𝑦

∗
,

𝑘
34
= 𝑐 (1 − 𝑞) ,

𝑘
41
= − ℎ,

𝑘
42
= 𝑐𝑞𝑤

∗
,

𝑘
43
= 𝑐𝑞𝑦

∗
,

𝑘
44
= 𝑐𝑞.

(34)

For convenience, let 𝜏 = 𝜏
0
+ 𝜇 and 𝑢

𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for

𝜃 ∈ [−𝜏, 0]. Denote𝐶𝑘([−𝜏, 0],R4) = {𝜙 | 𝜙 : [−𝜏, 0] → R4};
𝜙 has 𝑘-order continuous derivative. For initial conditions
𝜙(𝜃) = (𝜙

1
(𝜃), 𝜙
2
(𝜃), 𝜙
3
(𝜃), 𝜙
4
(𝜃))
𝑇
∈ 𝐶([−𝜏, 0],R4), (33) can

be rewritten as

̇𝑢 (𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝐹 (𝑢

𝑡
, 𝜇) , (35)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), 𝑢
3
(𝑡), 𝑢
4
(𝑡))
𝑇
∈ 𝐶, 𝐿

𝜇
: 𝐶 → R4,

and 𝐹 : 𝐶 → R4 are given, respectively, by

𝐿
𝜇
𝜙 = (𝜏

0
+ 𝜇)𝐺

1
𝜙 (0) + (𝜏

0
+ 𝜇)𝐺

2
𝜙 (−𝜏) ,

𝐹 (𝜙, 𝜇) = (𝜏
0
+ 𝜇) (𝐹

1
, 𝐹
2
, 𝐹
3
, 𝐹
4
)
𝑇

.

(36)

𝐿
𝜇
is one parameter family of bounded linear operators in 𝐶

and

𝐺
1
= (

𝑘
11
𝑘
12

0 0

𝑘
21
𝑘
22

0 𝑘
24

0 0 𝑘
31

0

0 0 0 𝑘
41

),

𝐺
2
= (

0 0 0 0

0 0 0 0

0 𝑘
32
𝑘
33
0

0 𝑘
42
𝑘
43
0

),

𝐹 =
(

(

(

𝑘
13
𝜙
1
(0) 𝜙
1
(0) + 𝑘

14
𝜙
1
(0) 𝜙
2
(0)

𝑘
24
𝜙
1
(0) 𝜙
2
(0) + 𝑘

25
𝜙
2
(0) 𝜙
4
(0)

𝑘
34
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

𝑘
44
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

)

)

)

.

(37)

From the discussion in the above section, we know that if
𝜇 = 0, then model (5) undergoes a Hopf bifurcation at the
infected equilibrium E

+
, and the associated characteristic

equation of model (5) has a pair of purely imaginary roots

±𝑖𝜏
0
𝜔
0
. By Reisz representation, there exists a function 𝜂(𝜃, 𝜇)

of bounded variation for 𝜃 ∈ [−𝜏, 0] such that

𝐿
𝜇
𝜙 = ∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) . (38)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏
0
+ 𝜇)𝐺

1
𝛿 (𝜃) + (𝜏

0
+ 𝜇)𝐺

2
𝛿 (𝜃 + 𝜏) , (39)

where 𝛿(𝜃) is Dirac delta function. Next, for 𝜙 ∈ 𝐶
1
([−𝜏,

0],R4), define

𝐴 (𝜇) 𝜙 =

{
{
{
{

{
{
{
{

{

𝑑𝜙

𝑑𝜃

, 𝜃 ∈ [−𝜏, 0)

∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

(40)

𝑅 (𝜇) 𝜙 =

{

{

{

0, 𝜃 = [−𝜏, 0)

𝐹 (𝜙, 𝜇) , 𝜃 = 0.

(41)

Since ̇𝑢(𝑡) = ̇𝑢
𝑡
(𝜃), (35) can be written as

̇𝑢
𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (42)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0]. For 𝜓 ∈ 𝐶1([0, 𝜏],R4), the

adjoint operator 𝐴∗ of 𝐴 can be defined as

𝐴
∗
𝜓 (𝑠) 𝜙 =

{
{
{
{

{
{
{
{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (−𝜏, 0]

∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝑠 = 0.

(43)

For 𝜙 ∈ 𝐶1([−𝜏, 0],R4) and 𝜓 ∈ 𝐶1([0, 𝜏],R4), in order to
normalize the eigenvalues of operator𝐴 and adjoint operator
𝐴
∗, the following bilinear form is defined by

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

𝜃=−𝜏

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) [𝑑𝜂 (𝜃)] 𝜙 (𝜉) 𝑑𝜉,

(44)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and 𝜓 is complex conjugate of 𝜓. It can
verify that 𝐴∗ and 𝐴(0) are adjoint operators with respect to
this bilinear form.

We assume that±𝑖𝜔
0
are eigenvalues of𝐴(0) and the other

eigenvalues have strictly negative real parts. Thus, they are
also eigenvalues of 𝐴∗. Now we compute the eigenvector 𝑞
of𝐴 corresponding to the eigenvalue 𝑖𝜔

0
and the eigenvector

𝑞
∗ of 𝐴∗ corresponding to the eigenvalue −𝑖𝜔

0
. Suppose that

𝑞(𝜃) = (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇
𝑒
𝑖𝜔0𝜃 is eigenvector of 𝐴(0) associated

with 𝑖𝜔
0
; then, 𝐴(0)𝑞(𝜃) = 𝑖𝜔

0
𝑞(𝜃). It follows from the

definition of 𝐴(0) and (36), (38), and (40) that
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(

𝑘
11
− 𝑖𝜔
0

𝑘
12

0 0

𝑘
21

𝑘
22
− 𝑖𝜔
0

0 𝑘
23

0 𝑘
32
𝑒
−𝑖𝜔0𝜏0

𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0

− 𝑖𝜔
0

0

0 𝑘
42
𝑒
−𝑖𝜔0𝜏0

𝑘
43
𝑒
−𝑖𝜔0𝜏0

𝑘
41
− 𝑖𝜔
0

)𝑞(0) = (

0

0

0

0

). (45)

Solving (45), we can easily obtain 𝑞(0) = (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇,

where

𝑝
1
=

𝑖𝜔
0
− 𝑘
11

𝑘
12

,

𝑝
2
=

𝑘
32
(𝑘
11
− 𝑖𝜔
0
) 𝑒
−𝑖𝜔0𝜏0

𝑘
12
(𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0 − 𝑖𝜔

0
)

,

𝑝
3
=

(𝑘
11
− 𝑖𝜔
0
) (𝑘
22
− 𝑖𝜔
0
) − 𝑘
12
𝑘
21

𝑘
12
𝑘
23

.

(46)

Similarly, suppose that the eigenvector 𝑞∗ of 𝐴∗ correspond-
ing to −𝑖𝜔

0
is 𝑞∗(𝑠) = (1/𝐷)(1, 𝑝∗

1
, 𝑝
∗

2
, 𝑝
∗

3
)
𝑇
𝑒
𝑖𝜔0𝑠, 𝑠 ∈ [0, 𝜏]. By

the definition of 𝐴∗ and (36), (38), and (40), one gets

(

𝑘
11
+ 𝑖𝜔
0

𝑘
21

0 0

𝑘
12

𝑘
22
+ 𝑖𝜔
0

𝑘
32
𝑒
−𝑖𝜔0𝜏0

𝑘
42
𝑒
−𝑖𝜔0𝜏0

0 0 𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0

+ 𝑖𝜔
0
𝑘
43
𝑒
−𝑖𝜔0𝜏0

0 𝑘
23

0 𝑘
41
+ 𝑖𝜔
0

)𝑞
∗
(0) = (

0

0

0

0

). (47)

Solving (47), we easily obtain 𝑞∗(0) = (1/𝐷)(1, 𝑝∗
1
, 𝑝
∗

2
, 𝑝
∗

3
)
𝑇,

where

𝑝
∗

1
= −

𝑘
11
+ 𝑖𝜔
0

𝑘
21

,

𝑝
∗

2
= −

𝑘
23
𝑘
43
(𝑘
11
+ 𝑖𝜔
0
) 𝑒
−𝑖𝜔0𝜏0

𝑘
21
(𝑘
41
+ 𝑖𝜔
0
) (𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0 + 𝑖𝜔

0
)

,

𝑝
∗

3
=

𝑘
23
(𝑘
11
+ 𝑖𝜔
0
)

𝑘
21
(𝑘
41
+ 𝑖𝜔
0
)

.

(48)

In order to assure that ⟨𝑞∗, 𝑞⟩ = 1, we need to determine the
value of𝐷. From (44), one gets

⟨𝑞
∗
, 𝑞⟩ = 𝑞

∗
𝑇

(0) 𝑞 (0)

− ∫

0

𝜃=−𝜏0

∫

𝜃

𝜉=0

𝑞
∗
𝑇

(𝜉 − 𝜃) [𝑑𝜂 (𝜃)] 𝑞 (𝜉) 𝑑 (𝜉)

=

1

𝐷

(1 + 𝑝
1
𝑝
1

∗
+ 𝑝
2
𝑝
2

∗
+ 𝑝
3
𝑝
3

∗
)

− ∫

0

−𝜏0

∫

𝜃

𝜉=0

1

𝐷

(1, 𝑝
1

∗
, 𝑝
2

∗
𝑝
3

∗
) 𝑒
−𝑖𝜔0(𝜉−𝜃)

× [𝑑𝜂 (𝜃)] (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

𝑒
𝑖𝜔0𝜉
𝑑𝜉

=

1

𝐷

(1 + 𝑝
1
𝑝
1

∗
+ 𝑝
2
𝑝
2

∗
+ 𝑝
3
𝑝
3

∗
)

− ∫

0

−𝜏0

1

𝐷

(1, 𝑝
1

∗
, 𝑝
2

∗
, 𝑝
3

∗
) 𝜃𝑒
𝑖𝜔0𝜃

× [𝑑𝜂 (𝜃)] (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

=

1

𝐷

( (1 + 𝑝
1
𝑝
1

∗
+ 𝑝
2
𝑝
2

∗
+ 𝑝
3
𝑝
3

∗
)

+ 𝜏
0
𝑒
−𝑖𝜔0𝜏0

(1, 𝑝
1

∗
, 𝑝
2

∗
, 𝑝
3

∗
)

× 𝐺
2
(1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

)

=

1

𝐷

( (1 + 𝑝
1
𝑝
1

∗
+ 𝑝
2
𝑝
2

∗
+ 𝑝
3
𝑝
3

∗
) + 𝜏
0
𝑒
−𝑖𝜔0𝜏0

× ((𝑘
32
𝑝
2

∗
+ 𝑘
42
𝑝
3

∗
) 𝑝
1

+ (𝑘
33
𝑝
2

∗
+ 𝑘
43
𝑝
3

∗
) 𝑝
2
) ) ;

𝐷 = (1 + 𝑝
1
𝑝
1

∗
+ 𝑝
2
𝑝
2

∗
+ 𝑝
3
𝑝
3

∗
)

+ 𝜏
0
𝑒
−𝑖𝜔0𝜏0

((𝑘
32
𝑝
2

∗
+ 𝑘
42
𝑝
3

∗
) 𝑝
1

+ (𝑘
33
𝑝
2

∗
+ 𝑘
43
𝑝
3

∗
) 𝑝
2
) .

(49)

Let
V (𝑡) = ⟨𝑞∗, 𝑢

𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢
𝑡
− V𝑞 − V𝑞 = 𝑢

𝑡
− 2Re (V (𝑡) 𝑞 (𝜃)) .

(50)

On the center manifoldΩ
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (V (𝑡) , V (𝑡) , 𝜃) , (51)
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where

𝑊(V, V, 𝜃) = 𝑊
20
(𝜃)

V2

2

+𝑊
11
(𝜃) VV +𝑊

02
(𝜃)

VV2

2

+ ⋅ ⋅ ⋅ .

(52)

V and V are local coordinates of the center manifoldΩ
0
in the

direction of 𝑞∗ and 𝑞∗, respectively. Note that𝑊 is real if 𝑢
𝑡
is

real. So we only consider real solutions. From (50), we obtain

⟨𝑞
∗
,𝑊⟩ = ⟨𝑞

∗
, 𝑢
𝑡
− V𝑞 − V𝑞⟩

= ⟨𝑞
∗
, 𝑢
𝑡
⟩ − V (𝑡) ⟨𝑞∗, 𝑞⟩ − V (𝑡) ⟨𝑞∗, 𝑞⟩ .

(53)

For the solution 𝑢
𝑡
∈ Ω
0
of (35), from (41) and (44), since

𝜇 = 0, we have

̇V (𝑡) = ⟨𝑞∗, ̇𝑢
𝑡
⟩

= ⟨𝑞
∗
, 𝐴 (0) 𝑢

𝑡
+ 𝑅 (0) 𝑢

𝑡
⟩

= ⟨𝑞
∗
, 𝐴 (0) 𝑢

𝑡
⟩ + ⟨𝑞

∗
, 𝑅 (0) 𝑢

𝑡
⟩

= ⟨𝐴
∗
𝑞
∗
, 𝑢
𝑡
⟩ + 𝑞
∗
𝑇

(0) 𝐹 (𝑢
𝑡
, 0)

= 𝑖𝜔
0
V (𝑡) + 𝑞∗

𝑇

(0) 𝑓
0
(V, V) .

(54)

Rewrite (54) as

̇V (𝑡) = 𝑖𝜔
0
V (𝑡) + 𝑔 (V, V) , (55)

where

𝑔 (V, V) = 𝑞∗
𝑇

(0) 𝑓
0
(V, V)

= 𝑞
∗
𝑇

(0) 𝐹 (𝑊 (V, V, 𝜃) + 2Re {V (𝑡) 𝑞 (𝜃) , 0})

= 𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅ .

(56)

Substituting (42) and (54) into (50) yields

𝑊 = ̇𝑢 (𝑡) − ̇V𝑞 − ̇V 𝑞

= 𝐴𝑢
𝑡
+ 𝑅𝑢
𝑡
− (𝑖𝜔
0
V + 𝑞∗

𝑇

(0) 𝑓
0
(V, V)) 𝑞

− (𝑖𝜔
0
V + 𝑞∗

𝑇

(0) 𝑓
0
(V, V)) 𝑞

= 𝐴𝑢
𝑡
+ 𝑅𝑢
𝑡
− 𝐴V𝑞 − 𝐴V 𝑞

− 2Re (𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞) ,

(57)

𝑊=

{
{

{
{

{

𝐴𝑊−2Re (𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞) , 𝜃∈[−𝜏, 0)

𝐴𝑊−2Re (𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞)+𝑓

0
(V, V) , 𝜃=0,

(58)

which can be written as

𝑊 = 𝐴𝑊 +𝐻(V, V, 𝜃) , (59)

where

𝐻(V, V, 𝜃) = 𝐻
20
(𝜃)

V2

2

+ 𝐻
11
(𝜃) VV + 𝐻

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅ .

(60)

On the center manifoldΩ
0
, we have

𝑊 = 𝑊V ̇V +𝑊V
̇V. (61)

Substituting (52) and (55) into (61), one obtains

𝑊 = (𝑊
20
V +𝑊

11
V + ⋅ ⋅ ⋅ ) (𝑖𝜔

0
V + 𝑔)

+ (𝑊
11
V +𝑊

02
V + ⋅ ⋅ ⋅ ) (−𝑖𝜔

0
V + 𝑔) .

(62)

Substituting (52) and (60) into (59) yields

𝑊 = (𝐴𝑊
20
+ 𝐻
20
)

V2

2

+ (𝐴𝑊
11
+ 𝐻
11
) VV

+ (𝐴𝑊
02
+ 𝐻
02
)

V2

2

+ ⋅ ⋅ ⋅ .

(63)

Comparing the coefficients of (62) and (63), one gets

(𝐴 − 𝑖2𝜔
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) ,

(𝐴 + 𝑖2𝜔
0
)𝑊
02
(𝜃) = −𝐻

02
(𝜃) .

(64)

Since 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) = 𝑊(V, V, 𝜃) + V𝑞 + V𝑞, then we have

𝑢
𝑡
=(

𝑢
1
(𝑡 + 𝜃)

𝑢
2
(𝑡 + 𝜃)

𝑢
3
(𝑡 + 𝜃)

𝑢
4
(𝑡 + 𝜃)

)

=(

𝑊
(1)
(V, V, 𝜃)

𝑊
(2)
(V, V, 𝜃)

𝑊
(3)
(V, V, 𝜃)

𝑊
(4)
(V, V, 𝜃)

) + V(

1

𝑝
1

𝑝
2

𝑝
3

)𝑒
𝑖𝜔0𝜃

+ V(

1

𝑝
1

𝑝
2

𝑝
3

)𝑒
−𝑖𝜔0𝜃

.

(65)

Thus, we obtain

𝑢
1
(𝑡 + 𝜃) = 𝑊

(1)
(V, V, 𝜃) + V𝑒𝑖𝜔0𝜃 + V𝑒−𝑖𝜔0𝜃

= (𝑊
(1)

20
(𝜃)

V2

2

+𝑊
(1)

11
(𝜃) VV+𝑊(1)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑒𝑖𝜔0𝜃 + V𝑒−𝑖𝜔0𝜃,
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𝑢
2
(𝑡 + 𝜃) = 𝑊

(2)
(V, V, 𝜃) + V𝑝

1
𝑒
𝑖𝜔0𝜃

+ V𝑝
1
𝑒
−𝑖𝜔0𝜃

= (𝑊
(2)

20
(𝜃)

V2

2

+𝑊
(2)

11
(𝜃) VV +𝑊(2)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑝
1
𝑒
𝑖𝜔0𝜃

+ V𝑝
1
𝑒
−𝑖𝜔0𝜃

,

𝑢
3
(𝑡 + 𝜃) = 𝑊

(3)
(V, V, 𝜃) + V𝑝

2
𝑒
𝑖𝜔0𝜃

+ V𝑝
2
𝑒
−𝑖𝜔0𝜃

= (𝑊
(3)

20
(𝜃)

V2

2

+𝑊
(3)

11
(𝜃) VV +𝑊(3)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑝
2
𝑒
𝑖𝜔0𝜃

+ V𝑝
2
𝑒
−𝑖𝜔0𝜃

,

𝑢
4
(𝑡 + 𝜃) = 𝑊

(4)
(V, V, 𝜃) + V𝑝

3
𝑒
𝑖𝜔0𝜃

+ V𝑝
3
𝑒
−𝑖𝜔0𝜃

= (𝑊
(4)

20
(𝜃)

V2

2

+𝑊
(4)

11
(𝜃) VV +𝑊(4)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑝
3
𝑒
𝑖𝜔0𝜃

+ V𝑝
3
𝑒
−𝑖𝜔0𝜃

.

(66)

It is obvious that

𝜙
1
(0) = V + V +𝑊(1)

20
(0)

V2

2

+𝑊
(1)

11
(0) VV

+𝑊
(1)

02
(0)

V2

2

+ ⋅ ⋅ ⋅ ,

𝜙
2
(0) = V𝑝

1
+ V𝑝
1
+𝑊
(2)

20
(0)

V2

2

+𝑊
(2)

11
(0) VV

+𝑊
(2)

02
(0)

V2

2

+ ⋅ ⋅ ⋅ ,

𝜙
4
(0) = V𝑝

3
+ V𝑝
3
+𝑊
(4)

20
(0)

V2

2

+𝑊
(4)

11
(0) VV

+𝑊
(4)

02
(0)

V2

2

+ ⋅ ⋅ ⋅ .

(67)

So

𝜙
1
(0) 𝜙
1
(0) = V2 + V2 + 2VV

+

1

2

(4𝑊
(1)

11
(0) + 2𝑊

(1)

20
(0)) V2V + ⋅ ⋅ ⋅ ,

𝜙
1
(0) 𝜙
2
(0) = 𝑝

1
V2 + 𝑝

1
V2 + (𝑝

1
+ 𝑝
1
) VV

+

1

2

(2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0) + 𝑊

(1)

20
(0) 𝑝
1

+2𝑊
(1)

11
(0) 𝑝
1
) V2V + ⋅ ⋅ ⋅ ,

𝜙
2
(0) 𝜙
4
(0) = 𝑝

1
𝑝
3
V2 + 𝑝

1
𝑝
3
V2

+ [𝑝
1
𝑝
3
+ 𝑝
1
𝑝
3
] VV

+

1

2

(2𝑊
(4)

11
(0) 𝑝
1
+𝑊
(4)

20
(0) 𝑝
1

+𝑊
(0)

20
(0) 𝑝
3
+ 2𝑊

(2)

11
(0) 𝑝
3
) V2V ⋅ ⋅ ⋅ ;

(68)

also

𝜙
2
(−𝜏) = V𝑝

1
𝑒
−𝑖𝜔0𝜏

+ V𝑝
1
𝑒
𝑖𝜔0𝜏

+𝑊
(2)

20
(−𝜏)

V2

2

+𝑊
(2)

11
(−𝜏) VV +𝑊(2)

02
(−𝜏)

V2

2

+⋅ ⋅ ⋅ ,

𝜙
3
(−𝜏) = V𝑝

2
𝑒
−𝑖𝜔0𝜏

+ V𝑝
2
𝑒
𝑖𝜔0𝜏

+𝑊
(3)

20
(−𝜏)

V2

2

+𝑊
(3)

11
(−𝜏) VV +𝑊(3)

02
(−𝜏)

V2

2

+ ⋅ ⋅ ⋅

(69)

and hence

𝜙
2
(−𝜏) 𝜙

3
(−𝜏) = 𝑝

1
𝑝
2
𝑒
−2𝑖𝜔0𝜏0V2

+ 𝑝
1
𝑝
2
𝑒
2𝑖𝜔0𝜏0V2 + (𝑝

1
𝑝
2
+ 𝑝
1
𝑝
2
) VV

+

1

2

(2𝑝
1
𝑒
−𝑖𝜔0𝜏0

𝑊
(3)

11
(−𝜏)+𝑝

1
𝑒
𝑖𝜔0𝜏
𝑊
(3)

20
(−𝜏)

+ 2𝑝
2
𝑒
−𝑖𝜔0𝜏0

𝑊
(2)

11
(−𝜏)) V2V + ⋅ ⋅ ⋅ .

(70)

It follows from (54) that

𝑓
0
(V, V) =((

(

𝑘
13
𝜙
1
(0) 𝜙
1
(0) + 𝑘

14
𝜙
1
(0) 𝜙
2
(0)

𝑘
24
𝜙
1
(0) 𝜙
2
(0) + 𝑘

25
𝜙
2
(0) 𝜙
4
(0)

𝑘
34
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

𝑘
44
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

)

)

)

=
(

(

(

𝐹
11
V2 + 𝐹

12
V2 + 𝐹

13
VV + 𝐹

14
V2V

𝐹
21
V2 + 𝐹

22
V2 + 𝐹

23
VV + 𝐹

24
V2V

𝐹
31
V2 + 𝐹

32
V2 + 𝐹

33
VV + 𝐹

34
V2V

𝐹
41
V2 + 𝐹

42
V2 + 𝐹

43
VV + 𝐹

44
V2V

)

)

)

,

(71)

where

𝐹
11
= 𝑘
13
+ 𝑘
14
𝑝
1
,

𝐹
12
= 𝑘
13
+ 𝑘
14
𝑝
1
,

𝐹
13
= 2𝑘
13
+ 𝑘
14
(𝑝
1
+ 𝑝
1
) ,

𝐹
14
= 𝑘
13
(2𝑊
(1)

11
(0) + 𝑊

(1)

20
(0))

+

1

2

𝑘
14
(2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0)

+𝑊
(1)

20
(0) 𝑝
1
+ 2𝑊

(1)

11
(0) 𝑝
1
) ,

𝐹
21
= 𝑘
24
𝑝
1
+ 𝑘
25
𝑝
1
𝑝
3
,

𝐹
22
= 𝑘
24
𝑝
1
+ 𝑘
25
𝑝
1
𝑝
3
,

𝐹
23
= 𝑘
24
(𝑝
1
+ 𝑝
1
) + 𝑘
25
(𝑝
1
𝑝
3
+ 𝑝
1
𝑝
3
) ,
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𝐹
24
=

1

2

𝑘
24
(2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0) + 𝑊

(1)

20
(0) 𝑝
1

+ 2𝑊
(2)

11
(0) 𝑝
1
)

+

1

2

𝑘
25
(2𝑊
(4)

11
(0) 𝑝
1
+𝑊
(4)

20
(0) 𝑝
1
+𝑊
(2)

20
(0) 𝑝
3

+ 2𝑊
(2)

11
(0) 𝑝
3
) ,

𝐹
31
= 𝑘
34
(𝑝
1
𝑝
2
𝑒
−2𝑖𝜔0𝜏0

) ,

𝐹
32
= 𝑘
34
(𝑝
1
𝑝
2
𝑒
2𝑖𝜔0𝜏0

) ,

𝐹
33
= 𝑘
34
(𝑝
1
𝑝
2
+ 𝑝
1
𝑝
2
) ,

𝐹
34
=

1

2

𝑘
34
(2𝑝
1
𝑒
−𝑖𝜔0𝜏0

𝑊
(3)

11
(−𝜏) + 𝑝

1
𝑒
𝑖𝜔0𝜏0

𝑊
(3)

20
(−𝜏)

+ 2𝑝
2
𝑒
−𝑖𝜔0𝜏0

𝑊
(2)

11
(−𝜏)) ,

𝐹
41
= 𝑘
44
(𝑝
1
𝑝
2
𝑒
−2𝑖𝜔0𝜏0

) ,

𝐹
42
= 𝑘
44
(𝑝
1
𝑝
2
𝑒
2𝑖𝜔0𝜏0

) ,

𝐹
43
= 𝑘
44
(𝑝
1
𝑝
2
+ 𝑝
1
𝑝
2
) ,

𝐹
44
=

1

2

𝑘
44
(2𝑝
1
𝑒
−𝑖𝜔0𝜏0

𝑊
(3)

11
(−𝜏) + 𝑝

1
𝑒
𝑖𝜔0𝜏0

𝑊
(3)

20
(−𝜏)

+ 2𝑝
2
𝑒
−𝑖𝜔0𝜏0

𝑊
(2)

11
(−𝜏)) .

(72)

Since 𝑞∗(0) = (1/𝐷)(1, 𝑝∗
1
, 𝑝
∗

2
, 𝑝
∗

3
)

𝑇, we have

𝑔 (V, V) = 𝑞∗(0)𝑇𝑓
0
(V, V)

=

1

𝐷

(1, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
)

×
(

(

(

𝐹
11
V2 + 𝐹

12
V2 + 𝐹

13
VV + 𝐹

14
V2V

𝐹
21
V2 + 𝐹

22
V2 + 𝐹

23
VV + 𝐹

24
V2V

𝐹
31
V2 + 𝐹

32
V2 + 𝐹

33
VV + 𝐹

34
V2V

𝐹
41
V2 + 𝐹

42
V2 + 𝐹

43
VV + 𝐹

44
V2V

)

)

)

=

1

𝐷

( (𝐹
11
+ 𝐹
21
𝑝
∗

1
+ 𝐹
31
𝑝
∗

2
+ 𝐹
41
𝑝
∗

3
) V2

+ (𝐹
12
+ 𝐹
22
𝑝
∗

1
+ 𝐹
32
𝑝
∗

2
+ 𝐹
42
𝑝
∗

3
) V2

+ (𝐹
13
+ 𝐹
23
𝑝
∗

1
+ 𝐹
33
𝑝
∗

2
+ 𝐹
43
𝑝
∗

3
) VV

+ (𝐹
14
+ 𝐹
24
𝑝
∗

1
+ 𝐹
34
𝑝
∗

2
+ 𝐹
44
𝑝
∗

3
) V2V) .

(73)

Comparing the coefficients of the above equation with those
in (61), we have

𝑔
20
=

2

𝐷

(𝐹
11
+ 𝐹
21
𝑝
∗

1
+ 𝐹
31
𝑝
∗

2
+ 𝐹
41
𝑝
∗

3
) ,

𝑔
11
=

1

𝐷

(𝐹
13
+ 𝐹
23
𝑝
∗

1
+ 𝐹
33
𝑝
∗

2
+ 𝐹
43
𝑝
∗

3
) ,

𝑔
02
=

2

𝐷

(𝐹
12
+ 𝐹
22
𝑝
∗

1
+ 𝐹
32
𝑝
∗

2
+ 𝐹
42
𝑝
∗

3
) ,

𝑔
21
=

2

𝐷

(𝐹
14
+ 𝐹
24
𝑝
∗

1
+ 𝐹
34
𝑝
∗

2
+ 𝐹
44
𝑝
∗

3
) .

(74)

We need to compute 𝑊
20
(𝜃) and 𝑊

11
(𝜃) for 𝜃 ∈ [−𝜏, 0).

Equations (62) and (63) imply that

𝐻(V, V, 𝜃) = −2Re {𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞 (𝜃)}

= −2Re {𝑔 (V, V) 𝑞 (𝜃)}

= −𝑔 (V, V) 𝑞 (𝜃) − 𝑔 (V, V) 𝑞 (𝜃) ,

𝐻 (V, V, 𝜃) = −(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅ ) 𝑞 (𝜃)

−(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅) 𝑞 (𝜃) .

(75)

Comparing the coefficients of the above equation with (60),
we have

𝐻
20
(𝜃) = − 𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = − 𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) ,

𝐻
02
(𝜃) = − 𝑔

02
𝑞 (𝜃) − 𝑔

20
𝑞 (𝜃) .

(76)

It follows from (40) and (64) that

𝑊(𝜃) = 𝐴𝑊
20
= 2𝑖𝜔
0
𝑊
20
(𝜃) − 𝐻

20
(𝜃)

= 2𝑖𝜔
0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (0) 𝑒

𝑖𝜔0𝜃
+ 𝑔
02
𝑞 (0) 𝑒

−𝑖𝜔0𝜃
.

(77)

By solving the above equation for𝑊
20
(𝜃) and for𝑊

11
(𝜃), one

obtains

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔0𝜃

+

𝑖𝑔
02

3𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔0𝜃

+ 𝐸
1
𝑒
2𝑖𝜔0𝜃

,

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔0𝜃

+

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔0𝜃

+ 𝐸
2
,

(78)

where 𝐸
1
and 𝐸

2
can be determined by setting 𝜃 = 0 in

𝐻(V, V, 𝜃).
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In fact, we have

𝐻(V, V, 0) = −2Re {𝑞∗𝑇 (0) 𝑓
0
(V, V𝑞)} + 𝑓

0
(V, V)

= −(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅ ) 𝑞 (0)

−(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
20

V2V
2

+ ⋅ ⋅ ⋅)𝑞 (0)

+
(

(

(

𝐹
11
V2 + 𝐹

12
V2 + 𝐹

13
VV + 𝐹

14
V2V

𝐹
21
V2 + 𝐹

22
V2 + 𝐹

23
VV + 𝐹

24
V2V

𝐹
31
V2 + 𝐹

32
V2 + 𝐹

33
VV + 𝐹

34
V2V

𝐹
41
V2 + 𝐹

42
V2 + 𝐹

43
VV + 𝐹

44
V2V

)

)

)

;

(79)

comparing the coefficients of the above equations with those
in (61), it follows that

𝐻
20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) + (𝐹

11
, 𝐹
21
, 𝐹
31
, 𝐹
41
)
𝑇

,

𝐻
11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + (𝐹

13
, 𝐹
23
, 𝐹
33
, 𝐹
43
)
𝑇

.

(80)

By the definition of 𝐴 and (40) and (64), we get

∫

0

−𝜏0

𝑑𝜂 (𝜃)𝑊
20
(𝜃) = 𝐴𝑊

20
(0) = 2𝑖𝜔

0
𝑊
20
(0) − 𝐻

20
(0) ,

∫

0

−𝜏0

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = 𝐴𝑊

11
(0) = −𝐻

11
(0) .

(81)

One can notice that

(𝑖𝜔
0
𝐼 − ∫

0

−𝜏0

𝑒
𝑖𝜔0𝜃
𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔
0
𝐼 − ∫

0

−𝜏0

𝑒
−𝑖𝜔0𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0.

(82)

Thus, we obtain

(2𝑖𝜔
0
𝐼 − ∫

0

−𝜏0

𝑒
2𝑖𝑤0𝜃

𝑑𝜂 (𝜃))𝐸
1
= (𝐹
11
, 𝐹
21
, 𝐹
31
, 𝐹
41
)
𝑇

(∫

0

−𝜏0

𝑑𝜂 (𝜃))𝐸
2
= −(𝐹

13
, 𝐹
23
, 𝐹
33
, 𝐹
43
)
𝑇

,

(83)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸
(2)

1
, 𝐸
(3)

1
, 𝐸
(4)

1
)
𝑇, 𝐸
2
= (𝐸

(1)

2
, 𝐸
(2)

2
, 𝐸
(3)

2
,

𝐸
(4)

2
)
𝑇; the above equation can be written as

(

2𝑖𝜔
0
− 𝑘
11

−𝑘
12

0 0

−𝑘
21

2𝑖𝜔
0
− 𝑘
22

0 −𝑘
23

0 −𝑘
32
𝑒
−𝑖𝑤0𝜏0

2𝑖𝜔
0
− 𝑘
31
− 𝑘
33
𝑒
−𝑖𝜔0𝜏0

0

0 −𝑘
42
𝑒
−𝑖𝜔0𝜏0

−𝑘
43
𝑒
−𝑖𝜔0𝜏0

2𝑖𝜔
0
− 𝑘
41

)𝐸
1
=(

𝐹
11

𝐹
21

𝐹
31

𝐹
41

),

(

𝑘
11
𝑘
12

0 0

𝑘
21
𝑘
22

0 𝑘
23

0 𝑘
32
𝑘
31

0

0 𝑘
42
𝑘
43
𝑘
41

)𝐸
2
=(

𝐹
13

𝐹
23

𝐹
33

𝐹
43

).

(84)

From (78), (84), we can calculate 𝑔
21
, and we can derive the

following parameters:

𝐶
1
(0) =

𝑖

2𝜔
0

(𝑔
20
𝑔
11
− 2
󵄨
󵄨
󵄨
󵄨
𝑔
11

󵄨
󵄨
󵄨
󵄨

2

−

1

3

󵄨
󵄨
󵄨
󵄨
𝑔
02

󵄨
󵄨
󵄨
󵄨

2

) +

𝑔
21

2

,

𝜇
2
= −

Re (𝐶
1
(0))

Re (𝜆󸀠 (𝜏
0
))

,

𝛽
2
= 2Re𝐶

1
(0) ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im 𝜆 (𝜏

0
)

𝜔
0

.

(85)

We arrive at the following theorem.

Theorem 4. The periodic solution is supercritical (subcritical)
if 𝜇
2
> 0 (𝜇

2
< 0); the bifurcating periodic solutions are

orbitally asymptotically stable with asymptotical phase (unsta-
ble) if 𝛽

2
< 0 (𝛽

2
> 0); the period of the bifurcating periodic

solution increases (decreases) if 𝑇
2
> 0 (𝑇

2
< 0).

5. Numerical Simulations

In this section, we provide some simulations of model (4)
to exhibit the impact of discrete time delay in the model.
We consider the parameters values: Λ = 10, 𝛿

1
= 0.06,

𝛿
2
= 0.3, 𝑒

1
= 0.2, 𝛽 = 0.1, 𝑝 = 1, 𝑐 = 0.1, 𝑏 = 0.02,

𝑞 = 0.02, 𝜂 ∈ [0, 1], ℎ = 0.1, 𝑟 = 0.03, 𝜖 ∈ [0, 1], and
𝑇max = 1500. According to the given parameters’ values, the
threshold critical value 𝜏

0
= 0.4957 from the formula (21)

exists. The steady state E
+
exists and is asymptotically stable

(see Figure 1). We may notice that the solution converges to
the equilibriumE

+
with damping oscillations as the value of 𝜏
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Figure 2: Each panel (from (a) to (h)) shows the time evolution and trajectory of model (4) when 𝜏(= 0.4) < 𝜏
0
(critical value) and the effect

of therapies is considered to be 𝜖 = 0.9 and 𝜂 = 0.2. It shows that the endemic steady state E
+
of model is asymptotically stable.

increases. Once the delay 𝜏 crosses the critical value 𝜏
0
, then

the model shows the existence of Hopf bifurcation which is
depicted in the Figure 2. In Figure 3, we consider the efficacy
of antiretroviral value is 0.9, which may be responsible for
the loss of stability. The asymptotic behavior to the infection-
free steady state, when we consider antiviral treatment (with

𝜖 = 0.9, 𝜂 = 0.9, and time delay 𝜏 = 15), is shown
in Figure 4. According to Theorem 4, the parameters 𝐶

1
=

−2.1108𝑒+004+1.1224𝑒+005𝑖, 𝜆󸀠 = −12.1371−0.6438𝑖, 𝜇
2
=

−1.7391𝑒+003, 𝛽
2
= −4.2215𝑒+004, and𝑇

2
= −2.8052𝑒+005

are estimated. Based on these values one can conclude that
bifurcating periodic solutions are unstable and decreases in
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Figure 3: It shows the numerical simulations of model (4), when the time delay of immune activation exceeds the critical value, 𝜏 = 0.5 > 𝜏
0
.

The endemic steady state E
+
of the model undergoes Hopf bifurcation; stability switch and periodic solutions appear.

the period of bifurcating periodic solutions. The existence of
periodic solution is subcritical. For numerical treatment of
DDEs and related issues; we refer the readers to [35, 36].

Several packages and types of software are available for
the numerical integration and/or the study of bifurcations in

delay differential equations (see, e.g., [37, 38]. In this paper
we utilize MIDDE code [39]) which is suitable to simulate
stiff and nonstiff delay differential equations and Volterra
delay integrodifferential equations, using monoimplicit RK
methods.
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Figure 4: It shows the numerical simulations of model (4), when the efficacy rate of antiretroviral treatments is considered to be low; that is,
𝜖 = 0.2 and 𝜂 = 0.2. It shows that the equilibrium E

+
of the model undergoes Hopf bifurcation with oscillatory behavior in solutions even

though the delay value is less than the critical value (𝜏 = 0.4 < 𝜏
0
).
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Figure 5: It shows the numerical simulations model (4) when the efficacy rate of antiretroviral treatment is at expected level, 𝜖 = 0.9 and
𝜂 = 0.9, and the delay value exceeds the critical value 𝜏 = 15 > 𝜏

0
. The solution always lies within the feasible region and the infection-free

steady state E
0
is asymptotically stable.

6. Concluding Remarks

In this manuscript, we provided a conceptual CD4+ T-cell
infection model which includes the logistic growth term
alongwith two different types of antiretroviral drug therapies.
The model includes a discrete time delay in the immune
activation response, which plays an important role in the
dynamics of the model. The infection-free and endemic
steady states of the model are determined (Figure 5). The
stability of steady states is analyzed. We deduced a formula
that determines the critical value (branch value) 𝜏

0
. Necessary

and sufficient conditions for the equilibrium to be asymp-
totically stable for all positive delay values are proved. We
have seen that if the time delay exceeds the critical value
𝜏
0
, model (4) undergoes a Hopf bifurcation. The direction

and stability of bifurcating periodic solutions are deduced
in explicit formulae, using center manifold and normal
forms. We also presented some numerical simulations to
the underlying model to investigate the obtained results and
theory. We have seen also that the antiretroviral treatments
help to increase the level of uninfected CD4+ T-cells. The
theoretical results that were confirmed by the numerical
simulations show that the delayed CTL response can lead
to complex bifurcations, and, in particular, the coexistence
of multiple stable periodic solutions. When the time delay
exceeds the critical (threshold) value, we may get subcritical
behaviour that leads to a loss of uninfected CD4+ T-cells.
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This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations
which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is
assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in
general nonperiodic, sampling points 𝑡

𝑖
∈ [𝑡
0
, 𝑡
𝐽
] for 𝑖 = 0, 1, . . . , 𝐽 of the solution. Two examples are provided.

1. Introduction

This paper investigates the errors of the solutions of nonlinear
differential equations ̇𝑦(𝑡) = 𝑓(𝑦(𝑡), 𝑡), where𝑓 ∈ 𝐶

(𝑛+1)
(R𝑛×

(𝑡
0
, 𝑡
𝐽
);R𝑛), provided they exist and are unique for each given

admissible initial condition 𝑦(𝑡
0
) = 𝑦

0
, with respect to the

solutions of its approximate differential equations ̇𝑥(𝑡) =

∑
ℓ

𝑘=0
(𝑓
(𝑘)
(𝑥(𝑡
𝑖
), 𝑡
𝑖
)/𝑘!)(𝑥(𝑡) − 𝑥(𝑡

𝑖
))
𝑘; 𝑥(𝑡

0
) = 𝑥

0
, for any

given nonnegative integer ℓ ≤ 𝑛, obtained from truncated
Taylor expansions of the solutions about certain sampling
points 𝑡

𝑖
∈ [𝑡
0
, 𝑡
𝐽
] for 𝑖 = 0, 1, . . . , 𝐽. It is assumed that if a

unique solution exists on some interval [𝑡
0
, 𝑡
𝐽
] and that the

choice of the sampling points is such that the intersample
intervals [1–4] are subject to a certain maximum allowable
upper-bound then the error of the solution in the whole
interval [𝑡

0
, 𝑡
𝐽
] satisfies a prescribed norm bound. Using the

obtained results, the shadowing property [5–10] of the true
solution with respect to the approximate one is investigated
in the sense that “shadowing” initial conditions of the true
solution exist, for each initial condition of the approximate
differential equation, such that any approximated solution
trajectory on the interval of interest is arbitrarily close to
the true one under prescribed allowable maximum norms of

the error between both the true solution and the approximate
solutions. The problem is extended to the case when the
approximated solution is perturbed either by a sequence
of a certain allowable size at the sampling points or with
perturbation functions of a certain size in norm about the
whole considered interval. The main tool involved in the
analysis is an “ad hoc” use of a known preparatory theorem
to the celebrated Bernstein’s theorem, [11], which gives an
upper-bound for the maximum norm of the error in between
both the true and the approximate solutions. The results
are potentially extendable to functional equations involving
nonlinearities and the presence of delays subject to mixed
types of uncertainties [12–18]. On the other hand, different
characterizations of oscillatory solutions and limit oscillatory
solutions (limit cycles) have received important interest in the
literature concerning different types of nonlinear dynamic
continuous-time, discrete and hybrid systems, and differen-
tial equations [19–28]. The shadowing property is naturally
relevant for the characterization of limit oscillations. There-
fore, the formulation is applied in the second example to the
characterization of limit cycles generated as solutions to Van
der Pol’s equation.
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2. Calculation of the Exact Solution from
Taylor Series Expansion

Lemma 1. Assume that 𝑓 ∈ 𝐶
(𝑛+1)

((𝑎, 𝑏);R𝑛) and divide the
real interval (𝑎, 𝑏) into 𝐽 subintervals with points 𝑦

𝑛
∈ [𝑎, 𝑏]

such that

𝑎 ≡ 𝑦
0
< 𝑦
1
< 𝑦
2
< ⋅ ⋅ ⋅ < 𝑦

𝐽−1
< 𝑦
𝐽
≡ 𝑏. (1)

Then

𝑓 (𝑦
𝑖+1
)

= 𝑓 (𝑦
0
) + ∫

ℎ𝑖

0

𝑓 (𝑦 + 𝑦
0
) 𝑑𝑦

= 𝑓 (𝑦
0
) +

𝑖

∑

𝑗=−1

∫

ℎ𝑗+1

ℎ𝑗

𝑓 (𝑦 + 𝑦
0
) 𝑑𝑦

= 𝑓 (𝑦
0
) +

𝑖

∑

𝑗=−1

∫

ℎ𝑗

0

𝑓 (𝑦 + 𝑦
0
+ ℎ
𝑗
) 𝑑𝑦

= 𝑓 (𝑦
0
)

+

𝑖

∑

𝑗=−1

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑗
)

𝑘!

∫

ℎ𝑗

0

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑐
𝑗+1
)

𝑘

𝑑𝑦

+

1

𝑛!

𝑖

∑

𝑗=−1

∫

ℎ𝑗

0

∫

𝑦𝑗+1

𝑐𝑗+1

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑡)

𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 𝑑𝑦,

(2)

where ℎ
𝑛
= 𝑦
𝑛+1

− 𝑦
𝑛
, ℎ
𝑛
= 𝑦
𝑛+1

− 𝑦
0
= ∑
𝑛

𝑖=0
ℎ
𝑖
for 𝑛 =

0, 1, . . . , 𝐽 − 1 with ℎ
−1
= 0, and

𝑓 [𝑦
𝑖+1

(
̃
ℎ
𝑖+1
)]

= 𝑓 (𝑦
0
)

+

𝑖

∑

𝑗=−1

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑗
)

𝑘!

∫

ℎ𝑗

0

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑐
𝑗+1
)

𝑘

𝑑𝑦

+

1

𝑛!

𝑖

∑

𝑗=−1

∫

ℎ𝑗

0

∫

𝑦𝑗+1

𝑐𝑗+1

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑡)

𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 𝑑𝑦

+

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑖+1
)

𝑘!

∫

ℎ̃𝑖+1

0

(𝑦 + 𝑦
0
+ ℎ
𝑖
+
̃
ℎ
𝑖+1

− 𝑐
𝑖+2
)

𝑘

𝑑𝑦

+

1

𝑛!

∫

ℎ̃𝑖+1

0

∫

𝑦𝑗+1

𝑐𝑗+1

(𝑦 + 𝑦
0
+ ℎ
𝑖
+
̃
ℎ
𝑖+1

− 𝑡)

𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 𝑑𝑦;

(3)

∀𝑦 ∈ [𝑦
𝑖
, 𝑦
𝑖+1
] and any real 𝑐

𝑖
∈ [𝑦
𝑖
, 𝑦
𝑖+1
] for 𝑖 = 0, 1, . . . , 𝐽−1;

∀
̃
ℎ
𝑖
∈ [0, ℎ

𝑖
] for 𝑖 = 0, 1, . . . , 𝐽 − 2.

Proof. It follows from a well-known preparatory theorem to
Bernstein’s theorem [5] that

𝑓 (𝑦) =

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑖
)

𝑘!

(𝑦 − 𝑐
𝑖
)
𝑘

+

1

𝑛!

∫

𝑦

𝑐𝑖

(𝑦 − 𝑡)
𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡.

(4)

Now, consider the nonlinear ordinary differential equa-
tion

̇𝑦 (𝑡) = 𝑓 (𝑦 (𝑡) , 𝑡) ; 𝑦 (𝑡
0
) = 𝑦
0 (5)

in the real interval R𝑛 × [𝑡
0
, 𝑡
𝐽
] such that 𝑓 ∈ 𝐶

(𝑛+1)
(R𝑛 ×

(𝑡
0
, 𝑡
𝐽
);R𝑛) is Lipschitz-continuous in [𝑦(𝑡

0
)−𝜃
0
, 𝑦(𝑡
0
)+𝜃
0
]×

[𝑡
0
, 𝑡
𝐽
]. The following result follows from Lemma 1.

Theorem 2. The unique solution of (5) in [𝑡
0
, 𝑡
𝐽
] is given by

𝑦 (𝑡) = 𝑦 (𝑡
0
)

+

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

[

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

𝑘

+

1

ℓ!

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

ℓ

×𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎]𝑑𝜏

+ ∫

𝑡

𝑡𝑖−1

[

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑘

+

1

ℓ!

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑖−1
) , 𝜎+𝑡

𝑖−1
) 𝑑𝜎]𝑑𝜏;

(6)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽} and ∀ℓ(∈ Z

0+
) ≤ 𝑛,

where 𝑡
𝑖
∈ [𝑡
0
, 𝑡
𝐽
] are any arbitrary strictly ordered points such

that 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝐽−1
< 𝑡
𝐽
with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1.

Proof. Note that 𝑓 ∈ 𝐶
(𝑛+1)

(R𝑛 × (𝑡
0
, 𝑡
𝐽
);R𝑛) is Lipschitz-

continuous in [𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
] × [𝑡

0
, 𝑡
𝐽
] so that the

solution 𝑦(𝑡) on [𝑡
0
, 𝑡
𝐽
] is unique, provided that 𝑡

𝐽
= 𝑡
𝐽
(𝜃
0
, 𝑡
0
)

for the given 𝑡
0
∈ R and some 𝜃

0
∈ R𝑛 is such that 𝑦(𝑡) ∈

[𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
]; ∀𝑡 ∈ [𝑡

0
, 𝑡
𝐽
] and 𝑡

𝐽
∈ (𝑡
0
, 𝑡
𝐽
] since

𝑓 : [𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
] × [𝑡
0
, 𝑡
𝐽
] → R𝑛 is local Lipschitz-

continuous as a result. Such a unique solution is given by

𝑦 (𝑡) = 𝑦
𝑎
+ ∫

𝑡

𝑎

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏; ∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
] . (7)



Abstract and Applied Analysis 3

Take any set of 𝐽 strictly ordered points 𝑡
𝑛
∈ [𝑡
0
, 𝑡
𝐽
] satisfying

𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝐽−1
< 𝑡
𝐽
with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for 𝑖 =

0, 1, . . . , 𝐽 − 1, so that

𝑦 (𝑡) = 𝑦 (𝑡
𝑖−1
) + ∫

𝑡

𝑡𝑖−1

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏

= 𝑦 (𝑡
0
) +

𝑖−2

∑

𝑗=0

∫

𝑡𝑗+1

𝑡𝑗

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏 + ∫

𝑡

𝑡𝑖−1

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏;

(8)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽}, with 𝑦(𝑡

0
), so that, by

choosing the real 𝑐
𝑖
∈ [𝑡
𝑖−1
, 𝑡
𝑖
] as 𝑐
𝑖
= 𝑡
𝑖
for 𝑖 = 0, 1, . . . , 𝐽 − 1,

one gets from (3) in the proof of Lemma 1 into (4):

𝑦 (𝑡) = 𝑦 (𝑡
0
)

+

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

[

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

𝑘

+

1

𝑛!

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

𝑛

×𝑓
(𝑛+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎]𝑑𝜏

+ ∫

𝑡−𝑡𝑖−1

0

[

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

× (𝑦 (𝜏 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑘

+

1

𝑛!

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑛

×𝑓
(𝑛+1)

(𝑦 (𝜎+𝑡
𝑖−1
) , 𝜎+𝑡

𝑖−1
) 𝑑𝜎]𝑑𝜏;

(9)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽}. Note that, since 𝑓 ∈

𝐶
(𝑛+1)

(R𝑛 × (𝑡
0
, 𝑡
𝐽
);R𝑛), then 𝑓 ∈ 𝐶

(ℓ+1)
(R𝑛 × (𝑡

0
, 𝑡
𝐽
);R𝑛) for

any nonnegative integer ℓ ≤ 𝑛. Thus, we obtain the result
from a similar expression of (9) by replacing 𝑛 by ℓ(≤ 𝑛)

while truncating the Taylor series expansion by its (ℓ + 1)th
term.

A consequence ofTheorem 2 by using the same technique
of the solution construction is as follows.

Corollary 3. Consider the nonlinear ordinary differential
equation (5) with initial condition 𝑦(𝑡

0
) on the real interval

R𝑛 ×R
0+
, with initial conditions 𝑦(𝑗)(𝑡

0
) for 𝑗 = 0, 1, . . . , 𝑛 − 1,

such that𝑓 ∈ 𝐶
(𝑛+1)

(R𝑛×(𝑡
0
, 𝑡
𝐽
);R𝑛) is Lipschitz-continuous in

[𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
] × [𝑡
0
, 𝑡
𝐽
] for some 𝜃

0
∈ R𝑛, and consider

also its ℓth order truncation

̇𝑥 (𝑡) =

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑥 (𝑡) − 𝑥 (𝑡
𝑖
))
𝑘

;

𝑥 (𝑡
0
) = 𝑥
0

(10)

such that 𝑓(𝑘)(𝑦(𝑡), 𝑡) are bounded in [𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] ×

[𝑡
0
, 𝑡
𝐽
] for 𝑘 = 0, 1, . . . , ℓ + 1 for some nonnegative integer ℓ ≤

𝑛 and some 𝜃 ∈ 𝐵(𝜃
0
, 𝑅), where 𝐵(𝜃, 𝑅) = {𝑧 ∈ R𝑛 : ‖𝑧 −

𝜃
0
‖ ≤ 𝑅} for some positive real 𝑅 with 𝑥(𝑗)(𝑡

0
) = 𝑦

(𝑗)
(𝑡
0
) for

𝑗 = 0, 1, . . . , ℓ + 1.

Since 𝑓(𝑘)(𝑦(𝑡), 𝑡) are bounded in [𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] ×

[𝑡
0
, 𝑡
𝐽
] for 𝑘 = 0, 1, . . . , ℓ − 1, then the right-hand-side of (10)

is Lipschitz-continuous in [𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] × [𝑡

0
, 𝑡
𝐽
] ⊆

[𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] × [𝑡

0
, 𝑡
𝐽
]. Therefore, the unique solution

of the truncated differential equation (10) in [𝑎, 𝑏] is

𝑥 (𝑡) = 𝑥 (𝑡
0
)

+

ℓ

∑

𝑘=0

{

{

{

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

[

𝑓
(𝑘)
(𝑥 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

(𝑥 (𝜏+𝑡
𝑗
)−𝑥 (𝑡

𝑗
))

𝑘

]𝑑𝜏

+ ∫

𝑡−𝑡𝑖−1

0

[

𝑓
(𝑘)
(𝑥 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

×(𝑥 (𝜎+𝑡
𝑖−1
)−𝑥 (𝑡

𝑖−1
))
𝑘

]𝑑𝜏

}

}

}

;

(11)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽}, ∀ℓ(∈ Z

0+
) ≤ 𝑛, where

𝑡
𝑖
∈ [𝑡
0
, 𝑡
𝐽
] are arbitrary strictly ordered points such that 𝑡

0
<

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝐽−1
< 𝑡
𝐽
with ℎ

𝑖
= 𝑡
𝑖+1
−𝑡
𝑖
for 𝑖 = 0, 1, . . . , 𝐽−1.

The error in between the exact solution of (10) and that of its
truncated form (5) is

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑥 (𝑡)

=

𝑖−2

∑

𝑗=0

ℓ

∑

𝑘=0

∫

ℎ𝑗

0

(

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

𝑘

−

𝑓
(𝑘)
(𝑥 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

×(𝑥 (𝜏 + 𝑡
𝑗
) − 𝑥 (𝑡

𝑗
))

𝑘

)𝑑𝜏

+

1

ℓ!

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖−1

0

(

𝑓
(𝑘)
(𝑦 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

× (𝑦 (𝜏 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑘

−

𝑓
(𝑘)
(𝑥 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

×(𝑥 (𝜏 + 𝑡
𝑖−1
) − 𝑥 (𝑡

𝑖−1
))
𝑘

)𝑑𝜏
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+

1

ℓ!

∫

𝑡−𝑡𝑖−1

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑖−1
) , 𝜎 + 𝑡

𝑖−1
) 𝑑𝜎 𝑑𝜏;

(12)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽} and ∀ℓ(∈ Z

0+
) ≤ 𝑛.

Proof. Property (i) follows directly Theorem 2 applied to the
truncated differential equation (10) leading to the solution (11)
in [𝑡
0
, 𝑡
𝐽
]. Property (ii) follows from (6) and (11).

Now, a preparatory result follows to be then used to
guarantee sufficiency-type errors results in between the true
and the approximate solutions in the interval [𝑎, 𝑏].

Lemma 4. Assume that the following hypothesis holds.
(A1) 𝑓(𝑦(𝑡), 𝑡) and its first (ℓ+1) derivatives are uniformly

bounded from above on a bounded subset of their existence
domain with the specific boundedness constraint:

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩

≤ 𝐾 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
+ 𝐾
1
,

(13a)

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑗)
(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐾 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑗−1)

(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝐾
1
,

(13b)

for 𝑗 = 0, 1, . . . , ℓ + 1 and some 𝐾,𝐾
1
∈ R
0+

with 𝐾 < 1 if
𝐾
1
∈ R
+
. Then, the following properties hold.

(i) Assume that the intersample intervals ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1 fulfill the constraint

ℎ
𝑖
≤ ℎ

≤ min(𝑎
𝑖
,

1 − 𝜌
𝑥
/2

Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ
,

𝜌
𝑥

2Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ+1

(𝐽−1+𝜌
𝑥
/2)

)

(14)

for 𝑖 = 0, 1, . . . , 𝐽 − 1 and any given real constant 𝜌
𝑥
∈ (0, 2),

where

Λ
𝑥
=

ℓ

∑

𝑘=0

𝐾
𝑘

𝑘!

( sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
)

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

(15)

𝑎
𝑖
:= min arg(𝑡 (∈ R

+
) > 𝑡
𝑖
:
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌
𝑥

2

) ;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝐽 − 1.

(16)

Then, the approximated solution fulfills sup
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑥(𝑡) −

𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2 provided that

𝑡
1
= min arg(𝑡 (∈ R

+
) > 𝑡
0
:
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌
𝑥

2

) .

(17)

(ii) Assume that the intersample intervals ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1 fulfill the constraint

ℎ
𝑖
≤ ℎ

≤ min(𝑏
𝑖
,

1 − 𝜌/2

Λ(1 − 𝜌/2)
ℓ
,

𝜌

2Λ(1 − 𝜌/2)
ℓ+1

(𝐽 − 1 + 𝜌/2)

)

(18)

for 𝑖 = 0, 1, . . . , 𝐽 − 1 and any given real constant 𝜌 ∈ (0, 1),
where

Λ =

ℓ+1

∑

𝑘=0

𝐾
𝑘

𝑘!

[

[

( sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
)

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

]

]

(19)

𝑏
𝑖
:= min arg(𝑡 > 𝑡

𝑖
:
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌

2

) ;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝐽 − 1.

(20)

Then, the true solution fulfills sup
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑦(𝑡) − 𝑦(𝑡
0
)‖ ≤ 𝜌/2

provided that

𝑡
1
= min arg(𝑡 (∈ R

+
) > 𝑡
0
:
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌

2

) .

(21)

(iii) If 𝜌
𝑥
= 𝜌 ∈ (0, 1) and, furthermore,

ℎ
𝑖
≤ ℎ

≤ min(𝑐
𝑖
,

1 − 𝜌/2

Λ(1 − 𝜌/2)
ℓ
,

𝜌

2Λ(1 − 𝜌/2)
ℓ+1

(𝐽 − 1 + 𝜌/2)

) ;

𝑖 = 0, 1, . . . , 𝐽 − 1,

(22)

𝑐
𝑖
:= min arg(𝑡 > 𝑡

𝑖
: max (󵄩󵄩󵄩

󵄩
𝑦 (𝑡) − 𝑦 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
)

≤

𝜌

2

) ; ∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝐽 − 1,

(23)

𝑡
1
= min arg(𝑡 (∈ R

+
)

> 𝑡
0
: max (󵄩󵄩󵄩

󵄩
𝑦 (𝑡) − 𝑦 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
)

≤

𝜌

2

)

(24)
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then the true, the approximated and the error solution fulfill

sup
𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑦 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌

2

,

sup
𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌

2

,

(25)

and the error in between them, 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡), fulfills

sup
𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
≤ 𝜌. (26)

Proof. Proceeding recursively, one gets from Assumption A1
that

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑗)
(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐾 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑗−1)

(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝐾
1

≤ 𝐾
2 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑗−1)

(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝐾
1
(1 + 𝐾)

≤ 𝐾
𝑘
𝐹
0
+ 𝐾
1
(

𝑘−1

∑

𝑖=0

𝐾
𝑖
) ≤ 𝐾

𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

≤ 𝐹
0
+

𝐾
1

1 − 𝐾

(27)

if 𝐾 < 1 and𝐾
1
̸=0, and

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑘)
(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝐾
𝑘
𝐹
0
, (28)

if 𝐾
1
= 0, where

𝐹
0
= sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(0)
(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

= sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
< +∞.

(29)

Case (a). If 𝐾 < 1 and 𝐾
1
̸=0 proceed by complete induction

by assuming that sup
𝑡∈[𝑡0,𝑡𝑖]

‖𝑥(𝑡) − 𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2 since the

condition (𝑡(∈ R
+
) > 𝑡
𝑖
: ‖𝑥(𝑡) − 𝑥(𝑡

𝑖
)‖ ≤ 𝜌

𝑥
/2) guarantees

that sup
𝑡∈[𝑡0 ,𝑡1]

‖𝑥(𝑡) − 𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2. Thus, one gets from (11)

that
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤

ℓ

∑

𝑘=0

𝑖

∑

𝑗=0

ℎ
𝑗

𝑘!

(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

)(

𝜌
𝑥

2

)

𝑘 (30)

=

ℓ

∑

𝑘=0

𝑖−1

∑

𝑗=0

ℎ
𝑗

𝑘!

(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

)(

𝜌
𝑥

2

)

𝑘

+

ℓ

∑

𝑘=0

ℎ
𝑖

𝑘!

(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

)
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘

≤

ℓ

∑

𝑘=0

𝑖−1

∑

𝑗=0

ℎ
𝑗

𝑘!

(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

)(

𝜌
𝑥

2

)

𝑘

+

ℓ

∑

𝑘=0

ℎ
𝑖

𝑘!

(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

)
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘

= Λ
𝑥
(

ℓ

∑

𝑘=0

(

𝜌
𝑥

2

)

𝑘

)(

𝑖−1

∑

𝑗=0

ℎ
𝑗
)

+ ℎ
𝑖
Λ[

ℓ

∑

𝑘=0

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘

)]

≤ 𝑖ℎΛ
𝑥
(

ℓ

∑

𝑘=0

(

𝜌
𝑥

2

)

𝑘

)

+ ℎ
𝑖
Λ
𝑥
(

ℓ

∑

𝑘=0

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘−1

))
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) ,

(31)

where Λ
𝑥
= ∑
ℓ

𝑘=0
(1/𝑘!)(𝐾

𝑘
𝐹
0
+ (𝐾
1
(1 − 𝐾

𝑘
)/(1 − 𝐾))) and

ℎ ≥ max
0≤𝑖≤𝐽−1

ℎ
𝑖
, with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
, for 𝑖 = 0, 1, . . . , 𝐽 − 1, so

that

[1 − ℎ
𝑖
Λ
𝑥
(

ℓ

∑

𝑘=0

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘−1

))]

×
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑖ℎΛ

𝑥
(

ℓ

∑

𝑘=0

(

𝜌
𝑥

2

)

𝑘

)

=

𝑖ℎΛ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ+1

)

1 − 𝜌
𝑥
/2

,

(32)

or
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤

𝑖ℎΛ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ+1

)

[1 − ℎ
𝑖
Λ
𝑥
(∑
ℓ

𝑘=0
(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘−1

))] (1 − 𝜌
𝑥
/2)

≤

𝑖ℎΛ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ+1

)

[1 − ((ℎ
𝑖
Λ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ

)) / (1 − 𝜌
𝑥
/2))] (1 − 𝜌

𝑥
/2)

≤

𝜌
𝑥

2

(33)
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provided that 0 < 𝜌
𝑥

< 2, and 1 > ℎ
𝑖
Λ
𝑥
(∑
ℓ

𝑘=0
(‖𝑥(𝑡) −

𝑥(𝑡
𝑖
)‖
𝑘−1

)) which is guaranteed if ℎ
𝑖

< min(𝑎
𝑖
, (1 −

𝜌
𝑥
/2)/(Λ

𝑥
(1 − 𝜌

𝑥
/2)
ℓ
)) holds with 𝑎

𝑖
for 𝑖 = 0, 1, . . . , 𝐽 − 1,

defined in (16), provided that ‖𝑥(𝑡) − 𝑥(𝑡
𝑗
)‖ ≤ 𝜌

𝑥
/2; ∀𝑡 ∈

[𝑡
𝑗
, 𝑡
𝑗+1
) for 𝑗(≤ 𝑖) = 0, 1, . . . , 𝑖 − 1, and then (33) and ℎ

𝑗
<

((1 − 𝜌
𝑥
/2)/(Λ

𝑥
(1 − 𝜌

𝑥
/2)
ℓ
)) for 𝑗 = 0, 1, . . . , 𝑖 − 1 are jointly

guaranteed for the given 𝑖 = 0, 1, . . . , 𝐽 − 1 if

ℎ
𝑖

< min(
1 − 𝜌
𝑥
/2

Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ
,

𝜌
𝑥

2Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ+1

(𝐽−1+𝜌
𝑥
/2)

)

(34)

provided that ‖𝑥(𝑡) − 𝑥(𝑡
𝑗
)‖ ≤ 𝜌

𝑥
/2 for 𝑡 ∈ [𝑡

𝑗
, 𝑡
𝑗+1
) for 𝑗 =

0, 1, . . . , 𝑖 − 1, the last condition being identical to

𝑡
𝑖+1

≤ 𝑎
𝑖
:= min arg(𝑡 > 𝑡

𝑖
:
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
≤

𝜌
𝑥

2

) . (35)

The above two conditions (34)-(35) reduce to (14). Then, one
gets from complete induction from (31), if (14) holds, the
following.

sup
𝑡∈[𝑡0,𝑡𝑖]

‖𝑥(𝑡) − 𝑥(𝑡
𝑖
)‖ ≤ 𝜌

𝑥
/2 ⇒ sup

𝑡∈[𝑡0 ,𝑡𝑖+1)
‖𝑥(𝑡) −

𝑥(𝑡
𝑖
)‖ ≤ 𝜌

𝑥
/2 and one gets also by continuity extension,

sup
𝑡∈[𝑡0,𝑡]

‖𝑥(𝑡)−𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2; ∀𝑡 ∈ [𝑡

0
, 𝑡
𝐽
]. Hence, we got

the result for Case (a).

Case (b). If 𝐾
1
= 0 then

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤ 𝑖ℎΛ
𝑥0
(

ℓ

∑

𝑘=0

(

𝜌
𝑥

2

)

𝑘

)

+ ℎ
𝑖
Λ
𝑥0
(

ℓ

∑

𝑘=0

(
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

𝑘−1

))
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 𝑥 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
;

(36)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
), where Λ

𝑥0
= ∑
ℓ

𝑘=0
((𝐾
𝑘
𝐹
0
)/(𝑘!)) ≤ Λ

𝑥
, so that

(1−ℎΛ
𝑥0
)‖𝑥(𝑡)−𝑥(𝑡

𝑖
)‖ ≤ 𝑖ℎΛ

𝑥0
𝐸 for 𝑖 = 0, 1, . . . , 𝐽 and, thus,

one gets the following.
‖𝑥(𝑡) − 𝑥(𝑡

𝑖
)‖ ≤ ((𝑖ℎΛ

𝑥0
𝐸)/(1 − ℎΛ

𝑥0
)) ≤ 𝜌

𝑥
/2; ∀𝑡 ∈

[𝑡
𝑖
, 𝑡
𝑖+1
) for 𝑖 = 0, 1, . . . , 𝐽 and one gets from complete

induction the same conclusion sup
𝑡∈[𝑡0 ,𝑡]

‖𝑥(𝑡)−𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2;

∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
) as in Case (a) provided that (14) holds. Then,

(14) guarantees Property (i) for both Cases (a) and (b). Then,
Property (i) has been proven.

Property (ii) is proven “mutatis-mutandis” by noting that
Λ ≥ Λ

𝑥
from (15) and (19) and noting also that 𝑎

𝑖
in (16)

is replaced with 𝑏
𝑖
in (20) so that the admissible intersample

interval satisfying the constraint (14) is replaced by such an
interval satisfying the constraint (18). Finally, Property (iii)
follows from Properties (i)-(ii) by equalizing 𝜌

𝑥
and 𝜌 to take

a maximum value less than 1/2.

The following comments address the fact that it is not
necessary to deal with the solution of the true differential
equation (5) to calculate upper-bounds of the solution and
error in Lemma 4.

Remark 5. Note that one gets by direct integration from (5)
that

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

≤ sup
𝑡0≤𝜏≤𝑡𝐽

󵄩
󵄩
󵄩
󵄩
𝑦 (𝜏)

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
+ (𝑡
𝐽
− 𝑡
0
)𝐾 sup
𝑡0≤𝜏≤𝑡𝐽

󵄩
󵄩
󵄩
󵄩
𝑦 (𝜏)

󵄩
󵄩
󵄩
󵄩

(37)

leading to

sup
𝑡0≤𝑡≤𝑡𝐽

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤

𝐾 (𝑡
𝐽
− 𝑡
0
)

1 − 𝐾 (𝑡
𝐽
− 𝑡
0
)

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

if
𝐽−1

∑

𝑖=0

ℎ
𝑖
<

1

𝐾

.

(38)

Thus, (25)-(26) might be guaranteed with sup
𝑡0≤𝑡≤𝑡𝐽

‖𝑦(𝑡) −

𝑦(𝑡
0
)‖ ≤ (1/(1 − 𝐾(𝑡

𝐽
− 𝑡
0
)))‖𝑦(𝑡

0
)‖ ≤ (𝜌/2) if ‖𝑦(𝑡

0
)‖ ≤

(𝜌/2)(1 − 𝐾(𝑡
𝐽
− 𝑡
0
)) < (𝜌/2). Thus, there is no need to

compute the solution of the true differential equation (5) and
sup
𝑡𝑖≤𝑡<𝑡𝑖+1

‖𝑦(𝑡) − 𝑦(𝑡
0
)‖ ≤ (𝜌/2) for 𝑖 = 0, 1, . . . , 𝐽 − 1 in (20)

and (23) if ‖𝑦(𝑡
0
)‖ ≤ (𝜌/2)(1 − 𝐾(𝑡

𝐽
− 𝑡
0
)).

One gets directly from Lemma 4 the subsequent result.

Theorem 6. Assume the conditions (13a) and (13b) and (22)–
(24) of Lemma 4(iii). Then

max( max
0≤𝑖≤𝐽−1

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖+1
) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
) ≤ 𝜌 < 1;

max
𝑡∈[𝑡0,𝑡𝐽]

‖𝑒 (𝑡)‖ ≤
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
+ 𝜌;

(39)

∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
], and

max
0≤𝑖≤𝐽−1

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
≤ 𝜌;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
] for 𝑖 = 0, 1, . . . , 𝐽 − 1

(40)

for 𝑖 = 0, 1, . . . , 𝐽 − 1.

3. Orbits of the Exact Solution,
Pseudo-Orbits of the Approximated
Solution, and the Shadowing Property

Now, consider a perturbed solution (11) of the approximated
differential equation (10) associated with a perturbation
𝑥(𝑡
𝑖
) = 𝑥(𝑡

−

𝑖
) + 𝑔(𝑡

𝑖
) with {𝑔(𝑡

𝑖
)} ⊂ R𝑛 at 𝑡 = 𝑡

𝑖
fulfilling

‖𝑔(𝑡
𝑖
)‖ ≤ 𝑔

𝑖
≤ 𝑔 for some given 𝑔 ∈ R, ∀𝑖 ∈ 𝐽. Note

that a perturbation at the initial 𝑡 = 𝑡
0
is considered by

choosing 𝑥(𝑡
0
) = 𝑦(𝑡

0
) + 𝑔
0
for some nonzero 𝑔

0
= 𝑔(𝑡
0
) ∈

R. The perturbed solution can be generated, in particular,
from impulsive controls of amplitudes 𝑔(𝑡

𝑖
) at the sequence
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{𝑡
𝑖
: 𝑖 ∈ 𝐽}. The exact and approximate solutions (6) and (11)

in [𝑡
0
, 𝑡
𝐽
], provided that they exist, are

𝑦 (𝑡) = 𝑦 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

𝑑𝜏

+

1

ℓ!

∫

𝑡−𝑡𝑖

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
] , 𝑖 = 0, 1, . . . , 𝐽 − 1,

(41)

𝑥 (𝑡) = 𝑥 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑥 (𝜏 + 𝑡
𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘

𝑑𝜏

+ 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔 (𝑡
𝑖+1
) ;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
] , 𝑖 = 0, 1, . . . , 𝐽 − 1,

(42)

where 𝑈(𝑡) is the Heaviside function. The error between the
exact and perturbed approximated solutions becomes

𝑒 (𝑡) = 𝑒 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

(

𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

−

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

× (𝑥 (𝜏 + 𝑡
𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘

)𝑑𝜏

+

1

ℓ!

∫

𝑡−𝑡𝑖

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏

− 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔 (𝑡
𝑖+1
) ;

(43)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
]; 𝑖 = 0, 1, . . . , 𝐽 − 1. Now, one gets from (25)-(26)

of Lemma 4:
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

(𝑡 − 𝑡
𝑖
)𝑀
𝑖𝑘
(

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑖
)
2

2
ℓ
𝑀
𝑖,ℓ+1

(

𝜌

2

)

ℓ

+ 𝑔
𝑖
; ∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
] ,

(44)

where

𝑀
𝑖𝑘
= sup
𝑦(𝑡)∈[𝑦(𝑡𝑖)−𝜃,𝑦(𝑡𝑖)+𝜃],𝑡∈[𝑡𝑖 ,𝑡𝑖+1]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(𝑗)
(𝑦 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

≤

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

≤

𝜌

2

+

𝐾
1

1 − 𝐾

(45)

from (27) and one gets after using the triangle inequality,

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤

𝑚

∑

𝑗=𝑖

(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

(𝑡 − 𝑡
𝑗
) [

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑗
)

2

2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

+ 𝑔
𝑗
) ;

(46)

∀𝑡 ∈ [𝑡
𝑖+𝑚

, 𝑡
𝑖+𝑚+1

] for𝑚 = 0, 1, . . . , 𝐽 − 𝑖 − 1; 𝑖 = 0, 1, . . . , 𝐽 − 1.
One obtains easily from (46), either by complete induction or
via recursive calculation, that

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤

𝐽−1

∑

𝑗=0

(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

(𝑡 − 𝑡
𝑗
)[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑗
)

2

2
ℓ

× [

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

+𝑔
𝑗
)

(47a)

≤ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

𝐽ℎ

ℓ!

2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

) + 𝐽𝑔,

(47b)
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‖𝑒 (𝑡)‖ ≤
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

+

𝐽−1

∑

𝑗=0

(𝑡−𝑡
𝑗
)(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1−𝐾

𝑘
)

1−𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑗
) 2
ℓ

× [

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

]

× (

𝜌

2

)

ℓ

+ 𝑔
𝑗
)

(47c)

≤
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

+ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

𝐽ℎ

ℓ!

2
ℓ
[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

)

+ 𝐽𝑔;

(47d)

∀𝑡 ∈ [𝑡
0
, 𝑡
0
+ ∑
𝐽−1

𝑖=0
ℎ
𝑖
](⊆ [𝑡

0
, 𝑡
0
+ 𝐽ℎ]) with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1 and any given nonnegative integer ℓ ≤ 𝑛.
The following result follows directly from the above equations
andTheorem 6.

Theorem 7. Consider an approximated perturbed solution
(42) under a forcing perturbation sequence {𝑔(𝑡

𝑖
)} ⊂ R𝑛 at

𝑡 = 𝑡
𝑖
fulfilling ‖𝑔(𝑡

𝑖
)‖ ≤ 𝑔

𝑖
≤ 𝑔 ≥ ‖𝑒(𝑡

0
)‖ for 𝑖 = 1, 2, . . . and

some 𝑔 ∈ R
+
. Then, there are numbers ℎ ∈ R

+
, 𝐽 = 𝐽(ℎ) ∈ Z

+
,

𝜀
1
= 𝜀
1
(ℎ, 𝑔) ∈ R

+
, and 𝜀 = 𝜀(𝜀

1
, ‖𝑒(𝑡
0
)‖) such that

max( max
0≤𝑖≤𝐽−1

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖+1
) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
,max
𝑡∈R0+

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
) ≤ 𝜀
1
;

max
𝑡∈R0+

‖𝑒 (𝑡)‖ ≤ 𝜀

(48)

on [𝑡
0
, 𝑡
𝐽
] for any strictly ordered sequence of (𝐽+1)nonnegative

real numbers {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽}, subject to the constraints

𝑡
𝐽
= 𝑡
0
+

𝐽−1

∑

𝑖=0

ℎ
𝑖
,

ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ,

𝑖 = 0, 1, . . . , 𝐽 − 1

(49)

satisfying the constraints (22)–(24) of Lemma 4 subject to (18).

Proof. Note that fixing ∑𝐽−1
𝑖=0

ℎ
𝑖
= 𝑡
𝐽
− 𝑡
0
≤ 𝐽ℎ, with ℎ =

max
0≤𝑖≤𝐽−1

(𝑡
𝑖+1
−𝑡
𝑖
), and the use of (46), (47a), and (47b) leads

to
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤

𝐽−1

∑

𝑖=0

(ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

) + 𝑔
𝑖
)

≤ 𝜀
1
= 𝜌 +

𝐽−1

∑

𝑖=0

𝑔
𝑖
,

(50a)
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩

≤ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ2
ℓ
[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

)

+ 𝐽𝑔 ≤ 𝜀
1
= 𝜌 + 𝐽𝑔;

(50b)

∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
]; 𝑖 = 0, 1, . . . , 𝐽 − 1 by using Lemma 4 and

Theorem 6 for any given prefixed 𝜌 ∈ R
+
. The result then

follows since 𝑔
0
= ‖𝑒(𝑡

0
)‖ ≤ 𝑔 and either

𝜀 = 𝜀
1
+
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
, 𝜀

1
= 𝜌 +

𝐽−1

∑

𝑖=0

𝑔
𝑖
,

𝐽−1

∑

𝑖=0

ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

ℎ

ℓ!

2
ℓ
[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

) ≤ 𝜌

(51)

or

𝜀 = 𝜀
1
+
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
, 𝜀

1
= 𝜌 + 𝐽𝑔,

ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ2
ℓ
[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

) ≤ 𝜌;

(52)

and the result has been proven.
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The following result extends Theorem 7 with results of
Theorem 6 for the case when both the exact and approx-
imated differential equations are subject to a piecewise-
continuous bounded disturbance which might be dependent
on the solution and also can have finite step discontinuities in
the sequence {𝑡

𝑖
: 𝑖 = 0, 1, . . . , 𝐽}.

Theorem 8. Consider the forced versions of the differential
equations (5) and (10):

̇𝑦 (𝑡) = 𝑓 (𝑦 (𝑡) , 𝑡) + 𝑔 (𝜏, 𝑦 (𝜏)) , 𝑦 (𝑡
0
) = 𝑦
0
, (53)

̇𝑥 (𝑡) =

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑥 (𝑡) − 𝑥 (𝑡
𝑖
))
𝑘

+ 𝑔 (𝜏, 𝑥 (𝜏)) ,

𝑥 (𝑡
0
) = 𝑥
0

(54)

under the additive forcing perturbation 𝑔 ∈ 𝐶
(𝑛+1)

(R𝑛 ×
(𝑡
0
, 𝑡
𝐽
);R𝑛) satisfying Assumption (A2) of Lemma 4 fulfilling

𝑔(𝑦(𝑡), 𝑡) = 𝜆(𝑡)𝑦(𝑡) and 𝑔(𝑥(𝑡), 𝑡) = 𝜆(𝑡)𝑥(𝑡)+𝑈(𝑡−𝑡
𝑖+1
)𝑔
𝑖+1

;
∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
] with ‖𝑔

𝑖+1
‖ ≤ 𝑔 for 𝑖 = 0, 1, . . . , 𝐽 − 1 and some

𝑔 ∈ R
+
and 𝜆 : [𝑡

0
, 𝑡
𝐽
] → R𝑛 being a bounded piecewise-

continuous function. Then, there are numbers ℎ ∈ R
+
, 𝐽 =

𝐽(ℎ) ∈ Z
+
, 𝜀
1
= 𝜀
1
(ℎ, 𝑔) ∈ R

+
and 𝜀 = 𝜀(𝜀

1
, ‖𝑒(𝑡
0
)‖) such

that

max( max
0≤𝑖≤𝐽−1

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖+1
) − 𝑒 (𝑡

𝑖
)
󵄩
󵄩
󵄩
󵄩
,max
𝑡∈R0+

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡) − 𝑒 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩
) ≤ 𝜀
1
,

max
𝑡∈R0+

‖𝑒 (𝑡)‖ ≤ 𝜌

(55)

on [𝑡
0
, 𝑡
𝐽
] for a strictly ordered finite set of (𝐽 + 1) nonnegative

real numbers {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽}, subject to the constraints

𝑡
𝐽
= 𝑡
0
+ ∑
𝐽−1

𝑖=0
ℎ
𝑖
, ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ; 𝑖 = 0, 1, . . . , 𝐽 − 1, the

constraints (22)–(24) subject to (18), and either

𝐽−1

∑

𝑖=0

ℎ
𝑖
𝜆
𝑖
< 1, (56a)

𝐽−1

∑

𝑖=0

𝑔
𝑖
< ∞, 𝑔 ≥

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
, (56b)

or

𝐽ℎ𝜆 < 1, (57a)

𝐽𝑔 < ∞, 𝑔 ≥

𝐽ℎ𝜆

1 − 𝐽ℎ𝜆

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
. (57b)

Proof. Fix∑𝐽−1
𝑖=0

ℎ
𝑖
= 𝑡
𝐽
−𝑡
0
≤ 𝐽ℎ, with ℎ = max

0≤𝑖≤𝐽−1
(𝑡
𝑖+1
−𝑡
𝑖
).

Equations (53)-(54) have the following solutions:

𝑦 (𝑡) = 𝑦 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

(

𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

+

1

ℓ!

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎

+𝑔 (𝑦 (𝜏) , 𝜏) ) 𝑑𝜏,

(58)

𝑥 (𝑡) = 𝑥 (𝑡
𝑖
)

+ ∫

𝑡−𝑡𝑖

0

(

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑥 (𝜏 + 𝑡
𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘

+𝑔 (𝑥 (𝜏) , 𝜏) ) 𝑑𝜏

+ 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔
𝑖+1
;

(59)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, . . . , 𝐽 − 1. Note that

𝑔 (𝑦 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡) = 𝜆 (𝑡) (𝑦 (𝑡) − 𝑥 (𝑡)) = 𝜆 (𝑡) 𝑒 (𝑡) .

(60)

Thus, the error between both of them becomes

𝑒 (𝑡) = 𝑒 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

(

𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑦 (𝜏 + 𝑡
𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

−

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

(𝑥 (𝜏 + 𝑡
𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘

+𝑔 (𝑒 (𝜏) , 𝜏) ) 𝑑𝜏

+

1

ℓ!

∫

𝑡−𝑡𝑖

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))

ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏

− 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔 (𝑥 (𝑡

𝑖+1
) , 𝑡
𝑖+1
) ;

(61)
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∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
]. Then, (45) leads to

‖𝑒 (𝑡)‖

≤
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖
)
󵄩
󵄩
󵄩
󵄩
+ (𝑡 − 𝑡

𝑖
)

× (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑖
) 2
ℓ

× [

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

+ 𝑔
𝑖+1
) ;

(62)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, . . . , 𝐽 − 1. Then

sup
𝑡𝑖≤𝑡≤𝑡𝑖+1

(‖𝑒 (𝑡)‖)

≤
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖
)
󵄩
󵄩
󵄩
󵄩
+ (𝑡 − 𝑡

𝑖
)

× (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑖
) 2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

+ 𝑔
𝑖+1
)

+ ℎ
𝑖
𝜆
𝑖
sup
𝑡𝑖≤𝜏≤𝑡𝑖+1

(‖𝑒 (𝜏)‖) + 𝑔

(63)

so that, since 1 > ℎ
𝑖
𝜆
𝑖
, where 𝜆

𝑖
= max

𝑡𝑖≤𝜏≤𝑡𝑖+1
|𝜆(𝜏)| for 𝑖 =

0, 1, . . . , 𝐽 − 1, one gets

sup
𝑡𝑖≤𝑡≤𝑡𝑖+1

(‖𝑒 (𝑡)‖)

≤

1

1 − ℎ
𝑖
𝜆
𝑖

× (
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖
)
󵄩
󵄩
󵄩
󵄩

+ (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

ℎ
𝑖
[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

(𝑡 − 𝑡
𝑖
) 2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1−𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

+𝑔
𝑖+1
))

(64)

which implies
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑡𝑖≤𝑡≤𝑡𝑖+1

(‖𝑒 (𝑡)‖ −
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖
)
󵄩
󵄩
󵄩
󵄩
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

ℎ
𝑖
𝜆
𝑖

1 − ℎ
𝑖
𝜆
𝑖

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
𝑖
)
󵄩
󵄩
󵄩
󵄩
+

1

1 − ℎ
𝑖
𝜆
𝑖

× (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

ℎ
𝑖
[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ
2

𝑖
2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

+ 𝑔
𝑖+1
) .

(65)

If∑𝐽−1
𝑖=0

ℎ
𝑖
𝜆
𝑖
< 1, we also get (66)-(67) below from (65) as well

as (68)-(69) if, in addition, 𝐽ℎ𝜆 < 1:
sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖)

≤

1

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

× (
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

+

𝐽−1

∑

𝑖=0

ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ
𝑖
2
ℓ

× [

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

)

+

𝐽−1

∑

𝑖=0

𝑔
𝑖
) ,

(66)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖ −
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

× (
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

+

𝐽−1

∑

𝑖=0

ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ
𝑖
2
ℓ

× [

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

)

+

𝐽−1

∑

𝑖=0

𝑔
𝑖
)

(67)
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sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖)

≤

1

1 − 𝐽ℎ𝜆

× (
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

+ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ2
ℓ

×[

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

)

+𝐽𝑔) ,

(68)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖ −
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝐽ℎ𝜆

1 − 𝐽ℎ𝜆

× 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!

[

𝐾
𝑘+1

𝜌

2

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

](

𝜌

2

)

𝑘

+

1

ℓ!

ℎ2
ℓ

× [

𝐾
ℓ+2
𝜌

2

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

](

𝜌

2

)

ℓ

)

+ 𝐽𝑔,

(69)

where 𝜆 = max
0≤𝑡≤𝑡𝐽

|𝜆(𝑡)| = max
0≤𝑖≤𝐽−1

max
𝑡𝑖≤𝜏≤𝑡𝑖+1

|𝜆(𝜏)| =

max
0≤𝑖≤𝐽−1

𝜆
𝑖
. Property (i) follows from (65)-(66)

by defining 𝜀
0
, 𝜀
1
, and 𝜀 as in (51) since 𝑔 ≥

max(max
0≤𝑖≤𝐽−1

‖𝑔
𝑖+1
‖, ((∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
)/(1 − ∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
))‖𝑒(𝑡
0
)‖)

and Property (ii) follows from (67)-(68) by defining 𝜌, 𝜀
1
,

and 𝜀 as in (52) since 𝑔 ≥ max(max
0≤𝑖≤𝐽−1

‖𝑔
𝑖+1
‖, ((𝐽ℎ𝜆)/(1 −

𝐽ℎ𝜆))‖𝑒(𝑡
0
)‖). Thus, the result has been proven.

Now, three definitions are given concerning the so-called
pseudo-orbits, as a counterpart to the true sampled trajectory
solution, or orbit, of finite size 𝐽 of the approximate solutions
and their perturbed versionwithin the given classes of pertur-
bations.The related concepts are relevant for then quantifying
the maximum errors among the real and approximated
solutions and parallel issues concerning their counterparts
under perturbations of the studied types. More specifically
refer to the following.

Definition 9. A sampling sequence 𝑡̂
𝐽
= {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽}

of strictly ordered sampling points with ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ;

𝑖 = 0, 1, . . . , 𝐽 − 1 is said to be in the class 𝐶
𝐽ℎ

= {𝑡
𝑖
∈ 𝑡̂
𝐽
:

𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ; 𝑖 = 0, 1, . . . , 𝐽 − 1}.

Note from Definition 9 that ℎ ≤ ℎ
󸀠
⇒ 𝐶
𝐽ℎ

⊆ 𝐶
𝐽ℎ
󸀠 and

that 𝑡̂
𝐽
≡ {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽 − 1} ⊂ 𝐶

𝐽ℎ
⇒ 𝑡
𝐽
− 𝑡
0
≤ 𝐽ℎ.

Definition 10. A sequence 𝑥
𝐽
= {𝑥(𝑡

𝑖
) : 𝑖 = 0, 1, . . . , 𝐽 − 1}

of 𝐽 samples of the solution of an approximate differential
equation (10) is a 𝛿-pseudo 𝐽-orbit of sampling sequence
𝑡̂
𝐽
for some 𝛿 ∈ R

+
and is denoted by 𝑂(𝑥

𝐽
, Γ, 𝛿) if

max
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑒(𝑡)‖ ≤ 𝛿.

If the integer 𝐽 and the real 𝑡
𝐽
are infinite, the correspond-

ing trajectory solutions are referred to as complete pseudo-
orbits and orbits.The solution of the true differential equation
(5) is a 𝐽-orbit of sampling sequence 𝑡̂

𝐽
. The continuous

approximate (resp., true) solution for [𝑡
0
, 𝑡
𝐽
] is the 𝛿-pseudo

𝐽-orbit (resp., 𝐽-orbit) of sampling sequence 𝑡̂
𝐽
.The perturbed

solutions under the forcing perturbations of Theorems 7 and
8 are denoted in a similar way leading to the corresponding
perturbed pseudo-orbits.

Definition 11. The set of all the 𝛿-pseudo 𝐽-orbits 𝑂(𝑥
𝐽
, Γ, 𝛿)

with max
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑒(𝑡)‖ ≤ 𝛿, for some 𝛿 ∈ R
+
, obtained for any

sampling sequence 𝑡̂
𝐽
∈ 𝐶
𝐽ℎ
, is said to be the class 𝐶𝑂(𝐶

𝐽ℎ
, 𝛿)

of 𝛿-pseudo 𝐽-orbits of sampling sequence 𝑡̂
𝐽
.

The mapping which generates the true solution
sequences, for given initial conditions and sampling
sequence, has the shadowing property if there is an arbitrarily
close orbit for any given 𝛿-pseudo-orbit 𝑂(𝑥

𝐽
, Γ, 𝛿) in the

following precise sense.

Definition 12. The set 𝑌̂
𝐽
of true solution sequences 𝑦

𝐽
=

{𝑦(𝑡
𝑖
) : 𝑡
𝑖
∈ 𝑡̂
𝐽
, 𝑖 = 0, 1, . . . , 𝐽 − 1} of sampling sequence 𝑡̂

𝐽

possesses the shadowing property on the corresponding set
of approximate solutions if, for each given 𝛿 ∈ R

+
, there is

some 𝑦
0
= 𝑦
0
(𝛿) for which a 𝑂(𝑥

𝐽
, Γ, 𝛿) exists. It is said that

𝑦
0
= 𝑦
0
(𝛿) shadows 𝑂(𝑥

𝐽
, Γ, 𝛿).

The subsequent result establishes that if the set of true
solution sequences has the shadowing property then the class
𝐶𝑂(𝐶

𝐽ℎ
, 𝛿) of 𝛿-pseudo 𝐽-orbits of sampling sequence 𝑡̂

𝐽
is

nonempty for any 𝛿 ∈ R
+
.

Proposition 13. If the set 𝑌̂
𝐽
of true solution sequences of

sampling sequence 𝑡̂
𝐽
possesses the shadowing property then

𝐶𝑂(𝐶
𝐽ℎ
, 𝛿) is nonempty for any 𝛿 ∈ R

+
.

Note that 𝐶𝑂(𝐶
𝐽ℎ
, 𝜌) = ⋃

Γ∈𝐶𝐽ℎ
𝑂(𝑥
𝐽
, Γ, 𝜌) and note also

that𝐶𝑂(𝐶
𝐽ℎ
, 𝜌) ⊆ 𝐶𝑂(𝐶

𝐽ℎ
󸀠 , 𝜌) for any ℎ󸀠 ≥ ℎ.The subsequent

result relies on Theorem 7 and Definition 11 for a class of
pseudo-orbits 𝐶𝑂(𝐶

𝐽ℎ
, 𝜌) defined by a sampling sequence

class 𝐶
𝐽ℎ
. In fact, the characterization becomes global for

all approximated solutions on a finite interval [𝑡
0
, 𝑡
𝐽
] for

sampling intervals ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ; 𝑖 = 0, 1, . . . , 𝐽 −

1 and initial conditions subject to a maximum allowable
deviation with respect to the initial condition of the true
solution provided that the approximate solution exists in a
global (rather than local) definition domain.
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The so-called shadowing properties, [5–9], of the true
solutions with respect to the approximated ones rely on the
physical meaning that for sets of appropriate initial condi-
tions, the true solution is arbitrarily close to its approximate
version on a certain interval [𝑡

0
, 𝑡
𝐽
]where both solutions exist

and are unique. Based onTheorems 6, 7, and 8, the shadowing
properties of the true solution to the approximated solution,
those ones being the nominal one or the perturbed ones
under the class of perturbations of Theorems 7 and 8, are
now discussed. It is seen that the shadowing properties at
sampling points under Theorems 6, 7, and 8 guarantee the
corresponding properties in [𝑡

0
, 𝑡
𝐽
].

The shadowing properties of true solutions of pseudo-
orbits for constrained sampling sequences according to the
constraints of Theorem 6 are addressed in the subsequent
result.

Proposition 14. Consider the true and approximated solu-
tions associated with the differential equations (5) and (10)
satisfying the hypotheses and conditions of Theorem 6. Then,
such a set of solutions lies in the class 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) of 𝜀-pseudo

𝐽-orbits of sampling sequence 𝑡̂
𝐽
= 𝑡̂
𝐽
(𝜌) for 𝜌 ≤ 𝜀, subject

to one of the constraints (13a), (13b), (22)–(24) (Lemma 4,
Theorem 6), belonging to a sampling sequence class 𝐶

𝐽ℎ
for any

𝜌, 𝜀 ∈ R
+
with arbitrary 𝜌 ≤ 𝜀 and any given 𝜀. Also, there is

a 𝑦
0
= 𝑦
0
(𝜀) which shadows each 𝑂(𝑥

𝐽
, Γ, 𝜀) ∈ 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) for

each given 𝜀 ∈ R
+
and 𝜌 ≤ 𝜀.

Proof. One gets fromTheorem 6 that

max
𝑡∈[𝑡0,𝑡𝐽]

‖𝑒 (𝑡)‖ ≤ 𝜀 =
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
+ 𝜌 (70)

for an initial condition 𝑦(𝑡
0
) of the true differential equation

fulfilling |‖𝑦(𝑡
0
)‖ − ‖𝑥(𝑡

0
)‖| ≤ ‖𝑒(𝑡

0
)‖ and any given real

constants 𝜀 ≥ 𝜌 > 0. This defines families of initial conditions
𝑦
0
= 𝑦
0
(𝜀) of the true differential equation which shadow

each𝑂(𝑥
𝐽
, Γ, 𝜀) ∈ 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) for each given 𝜀 ∈ R

+
and 𝜌 ≤ 𝜀.

For any given 𝜀 ∈ R
+
, it suffices to take 0 < 𝜌 ≤ 𝜀 to zero in

(22)–(24) of Lemma 4 and (39)-(40) in Theorem 6 to fix an
admissible sampling sequence 𝑡̂

𝐽
= 𝑡̂
𝐽
(𝜀) and then to get the

result.

The perturbed approximated differential equations
referred to in Theorems 8 and 7, which is a particular case
of Theorem 8 for 𝑔(𝑥(𝑡), 𝑡) being zero for 𝑡 ∉ 𝑡̂

𝐽
, that is for

nonsampling points, are analyzed in the subsequent result
which generalizes Proposition 14.

Theorem 15. Consider the true and approximated solutions
(58) and (59) associated with the differential equations sat-
isfying the hypotheses and conditions of Theorem 8. Then,
such a set of solutions lies in the class 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) of 𝜀-

pseudo 𝐽-orbits of sampling sequence 𝑡̂
𝐽

= 𝑡̂
𝐽
(𝜌), for

some 𝜌 > 0, subject to one of the constraints (13a),
(13b), (22)–(24), and (39)-(40) (Lemma 4, Theorem 6) and
to either (56a) or (56b) (Theorem 8) with 𝜌 ≤ 𝜀 −

∑
𝐽−1

𝑖=0
𝑔
𝑖
and any arbitrary 𝜀 ∈ R

+
, belonging to a sampling

sequence class 𝐶
𝐽ℎ
. Also, there is an initial condition 𝑦

0
=

𝑦
0
(𝜀) which shadows each 𝑂(𝑥

𝐽
, Γ, 𝜀) ∈ 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) for

each given 𝜌, 𝜀 ∈ R
+
with the perturbation fulfilling ∑𝐽−1

𝑖=0
𝑔
𝑖
<

𝜀.

Proof. One gets from (55) in Theorem 8 together with either
(51) or (52) that

max
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑒 (𝑡)‖ ≤ 𝜀 =
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
+ 𝜌 +

𝐽−1

∑

𝑖=0

𝑔
𝑖

(71)

with any arbitrary real constant 0 < 𝜌 ≤ 𝜀 − ∑
𝐽−1

𝑖=0
𝑔
𝑖
,

provided that ∑𝐽−1
𝑖=0

𝑔
𝑖
< 𝜀, and any given real constant 𝜀 for

an (shadowing) initial condition 𝑦(𝑡
0
) of the true differential

equation fulfilling
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
−
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

≤ min(𝜀 − 𝜌 −
𝐽−1

∑

𝑖=0

𝑔
𝑖
,

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

𝑔) .

(72)

Note that a sufficient condition guaranteeing (69) is

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
≤ min(𝜀 − 𝜀

0
− 𝐽𝑔,

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

𝑔) (73)

since 𝑔 ≥ ((∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
)/(1 − ∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
))‖𝑒(𝑡
0
)‖ from (56b) in

Theorem 8. Thus, it suffices to take 0 < 𝜌 ≤ 𝜀 to zero in
either (39) or (40) inTheorem 6 to fix an admissible sampling
sequence 𝑡̂

𝐽
= 𝑡̂
𝐽
(𝜀) so as to get the result.

Remark 16. A particular case ofTheorem 15 for the perturba-
tions (42) which are defined only at sampling instants, which
has been discussed inTheorem 7, is obtained by the particular
constraint below obtained from (72) and (73):

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩
≤ 𝜀 − 𝜌 − 𝐽𝑔 ≤ 𝜀 − 𝜌 −

𝐽−1

∑

𝑖=0

𝑔
𝑖
. (74)

Remark 17. Note that the condition ∑
∞

𝑖=0
ℎ
𝑖
𝜆
𝑖
≤ 𝜒 < 1

of applicability in Theorems 8 and 15 when 𝐽 is infinity
can be considered in certain cases when the perturbation
vanishes asymptotically as, for instance, when it vanishes as
an exponential rate.

4. Simulation Examples

This section contains two numerical examples regarding the
theoretical results obtained in Sections 2 and 3.

Example 1. Thefirst example is concerned with the nonlinear
model describing the human heart rate during treadmill
exercise [29], whose equations are given by

̇𝑦
1
= −𝑎
1
𝑦
1
+ 𝑎
2
𝑦
2
,

̇𝑦
2
= −𝑎
3
𝑦
2
+ 𝑎
4

𝑦
1

1 + 𝑒
−(𝑐𝑦1−𝑎5)

(75)
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with 𝑐 = 1, 𝑎
1
= 2.2, 𝑎

2
= 19.96, 𝑎

3
= 0.0831, 𝑎

4
= 0.002526,

and 𝑎
5
= 8.32. This model, with an external control input,

has been used to design training protocols for patients with
cardiovascular problems [29]. Figure 1 shows the evolution of
this system with initial conditions 𝑦

1
(0) = 𝑦

2
(0) = 1 on the

time interval [0, 50] seconds.

For the system (75), the nonlinear function 𝑓(𝑦) is given
by

𝑓 (𝑦) = 𝑓 (𝑦
1
, 𝑦
2
) = [

−𝑎
1
𝑦
1
+ 𝑎
2
𝑦
2

−𝑎
3
𝑦
2
+ 𝑎
4

𝑦
1

1 + 𝑒
−(𝑐𝑦1−𝑎5)

] . (76)

The first step to apply the results stated in Section 2 and
obtain a truncated approximate model for (75) is to verify
that conditions (13a) and (13b) hold. One way to check
this fact is to depict the norms of the state vector of the
function 𝑓(𝑦) and of its derivative 𝑓󸀠(𝑦) and observe their
behavior. Thus, the following Figures 2 and 3 show the time
evolution of these norms. In particular, Figure 2 shows the
values of the 2-norm of the state, ‖𝑦‖

2
, and the function,

‖𝑓(𝑦)‖
2
. The supremum of these norms on this interval are

sup
𝑡∈[0,50]

‖𝑦‖
2
= 8.94 and sup

𝑡∈[0,50]
‖𝑓(𝑦)‖

2
= 17.84. On

the other hand, Figure 3 shows the difference between the
norm of the function, ‖𝑓(𝑦)‖

2
, and the norm of its derivative

‖𝑓
󸀠
(𝑦)‖
2
. As it can be appreciated, this difference is positive

implying that the linear approximation of the function is
always bounded by the function itself.The supremumof these
two norms on this interval is sup

𝑡∈[0,50]
‖𝑓(𝑦)‖

2
= 17.84 and

sup
𝑡∈[0,50]

‖𝑓
󸀠
(𝑦)‖
2
= 17.76. In this way, if we choose 𝐾 =

0.997 and𝐾
1
= 9, we have

17.84 = sup
𝑡∈[0,50]

󵄩
󵄩
󵄩
󵄩
𝑓(𝑦)

󵄩
󵄩
󵄩
󵄩2
< 0.997 sup

𝑡∈[0,50]

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩2
+ 9 = 17.91,

17.76 = sup
𝑡∈[0,50]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
󸀠
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩2
< 0.997 sup

𝑡∈[0,50]

󵄩
󵄩
󵄩
󵄩
𝑓(𝑦)

󵄩
󵄩
󵄩
󵄩2
= 17.78.

(77)

Hence, it is corroborated that both (13a) and (13b) hold.
Notice that from a practical point of view, the analytical
determination of the constants 𝐾 and 𝐾

1
used in (13a) and

(13b) is not necessary since a simple numerical experiment
allows us to verify these upper-bounds. In consequence,
the results stated in Section 2 can be applied in practical
situations easily.

Once the basic conditions have been checked, a truncated
approximate model (10) is generated for this problem by
considering ℓ = 1 < 2 = 𝑛. Thus, we have

̇𝑥 = 𝑓 (𝑥
𝑖
) + 𝐽 (𝑥

𝑖
) (𝑥 (𝑡) − 𝑥

𝑖
) , (78)

where

𝑓
󸀠
(𝑥
𝑖
) = 𝐽 (𝑥

𝑖
) = (

−𝑎
1

𝑎
2

𝐽
21

−𝑎
3

) ,

𝐽
21
=

𝑎
4
(1 + 𝑒

−(𝑐𝑥𝑖1−𝑎5)
) + 𝑎
4
𝑐𝑥
𝑖1
𝑒
−(𝑐𝑥𝑖1−𝑎5)

(1 + 𝑒
−(𝑐𝑥𝑖1−𝑎5))

2

(79)
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Figure 1: State evolution for the system (75).
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Figure 2: Relation between the 2-norms of the state, 𝑦, and the
function, 𝑓(𝑦).
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Figure 3: Relation between the 2-norms of the function, 𝑓(𝑦), and
its derivative, 𝑓󸀠(𝑦).
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Figure 4: Error between the actual system and the approximate
model.
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Figure 5: Effect of the variation of the sampling time, ℎ, in the error
of the first state variable, 𝑥

1
(𝑡).

with initial conditions 𝑦
1
(0) = 𝑦

2
(0) = 𝑥

1
(0) = 𝑥

2
(0) = 1.

The sampling instants {𝑡
𝑖
} have been chosen uniformly in

time as 𝑡
𝑖
− 𝑡
𝑖−1

= ℎ = 1.5 s. The error between the actual and
the approximate model with this sampling time is depicted in
Figure 4.

As it can be deduced from Figure 4, the error is very low
and, therefore, the exact solution is shadowed by the solution
of the approximate model. An important feature appears
at this point which is how we should select the sampling
time. Lemma 4 and Theorem 6 contain the analytical results
providing the formal background on how to select it. How-
ever, from a practical point of view a trial-error procedure
can be employed to obtain an appropriate sampling time.
Thus, Figures 5 and 6 show how a variation in the sampling
time impacts the error between the complete system and the
approximate model. Figure 5 displays the impact on the first

0 5 10 15 20 25 30 35 40 45 50
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3.5 s

0.5 s

h increases

−0.02

Figure 6: Effect of the variation of the sampling time, ℎ, in the error
of the second state variable, 𝑥

2
(𝑡).

state variable while Figure 6 depicts the influence in the sec-
ond one. As it is displayed in Figures 5 and 6, the larger the
sampling time is, the larger the error between both systems
is, as well. Hence, if we fix an upper-bound for the desired
error, we may start with a tentative value for the sampling
time and increase it if the maximum of the error is below that
threshold or decrease it if the error exceeds the desired bound.
This procedure allows us to tune an appropriate sampling
time by just conducting a series of numerical experiments.
Therefore, the mathematical results presented in Section 2
can be applied in a practical way with little effort since the
computation of the bounds is not explicitly necessary to
construct the approximate truncated model. Afterwards, this
approximate model could be used for simulation or control
design purposes. For instance, the obtained affine model
could simplify the design of the controller with respect to the
case when the original nonlinear model is used.

Example 2. The second example is related to the Van der Pol
equation which exhibits a limit cycle as it is widely known.
The equations are given by

̇𝑦
1
= 𝑦
2
,

̇𝑦
2
= 𝜇 (1 − 𝑦

2

1
) 𝑦
2
− 𝑦
1

(80)

with 𝜇 = 1, output 𝑧(𝑡) = 𝑦
1
(𝑡), initial conditions 𝑦

1
(0) = 4

and 𝑦
2
(0) = −0.5, and

𝑓 (𝑦) = 𝑓 (𝑦
1
, 𝑦
2
) = [

𝑦
2

𝜇 (1 − 𝑦
2

1
) 𝑦
2
− 𝑦
1

] . (81)

The phase portrait of the Van der Pol equation is depicted in
Figure 7.

In this case, the results introduced in Section 3 regarding
the error between the actual and the approximate model
in the presence of bounded perturbations will be used as
a tool to analyze the stability of the limit cycle. Thus,
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Figure 7: Phase portrait of the Van der Pol equation.
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Figure 8: Phase portrait of the actual and approximate systems.

the approximate truncated model is given with ℓ = 1 < 2 = 𝑛

by

̇𝑥 = 𝑓 (𝑥
𝑖
) + 𝐽 (𝑥

𝑖
) (𝑥 (𝑡) − 𝑥

𝑖
) , (82)

where

𝑓
󸀠
(𝑥
𝑖
) = 𝐽 (𝑥

𝑖
) = (

0 1

𝐽
21

𝐽
22

) ,

𝐽
21
= −2𝜇𝑥

𝑖1
𝑥
𝑖2
− 1,

𝐽
21
= 𝜇 − 𝜇𝑥

2

𝑖1
.

(83)

In this example, the sampling points 𝑥
𝑖
will be generated by

using the constant amplitude difference sampling criterion
(CADSC) introduced in [4] as amethod to generate sampling
points in discretization procedures. This method is proposed
as a way to generate the sequence of sampling points in a
practical way, which shows that the application of the pre-
sented theories to real problems is feasible.Thus, the CADSC
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Figure 9: Zoom on the phase portrait of the actual and approximate
systems.
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Figure 10: Effect of the variation of the sampling threshold 𝛿 in the
approximate model.

method proposes to generate a new sampling point when the
continuous-time output differs from the previous sampled
one a certain threshold. Mathematically,

𝑡
𝑖+1

= arg min (𝑅
0
+϶𝑡 > 𝑡

𝑖
:
󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

1
(𝑡
𝑖
)
󵄨
󵄨
󵄨
󵄨
= 𝛿
𝑖
∈ 𝑅
+
) ,

(84)

where 𝛿
𝑖
denotes the variation threshold. For this example,

consider a constant threshold with a value of 𝛿
𝑖
= 𝛿 = 0.15.

Figures 8 and 9 display the solution of the actual and the
approximate systems.

It can be appreciated in Figures 8 and 9 that the solution
of the actual system is shadowed by one of the approximate
models, confirming the results stated in Proposition 14. As
the threshold 𝛿 on the sampling criterion enlarges, the
sampling takes place in a more separate way, a fact that
degrades the quality of the approximate solution as Figure 10
reveals.
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Figure 11: Stability of the limit cycle under increasing perturbations.
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Figure 12: Error between 𝑦
1
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(𝑡) for different values for 𝜇.

Figure 10 shows that the larger the threshold is, the
smaller the approximation capabilities of the truncatedmodel
is. This feature is due to the fact that a larger threshold
implies a greater separation between the sampling points. In
Figure 10, 𝛿 is modified from 0.15 to 0.4. Thus, as Lemma 4
states, a large intersampling period might lead to higher
errors in the approximated model. At this point we can
introduce a bounded perturbation 𝑔(𝑡

𝑖
) at sampling points

to analyze the stability of the limit cycle. For this, we can
firstly select a value for the threshold 𝛿 in such a way that
the solution of the approximate model shadows the one
of the actual system. Afterwards, we can apply different
perturbations to the system in an increasing way. If the
limit cycle preserves its shape under this scheme, this would
indicate that it is stable. This procedure has been applied in
Figure 11.

Since the shape of the limit cycle is maintained, the
stability of the original system is deduced from one of the
approximate truncated models. Moreover, the shadowing
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Figure 13: Error between 𝑦
2
(𝑡) and 𝑥

2
(𝑡) for different values for 𝜇.

property can be interpreted in terms of stability of the limit
cycle in the following way. If the error between the solutions
of the actual system and the approximate one under the same
perturbation is less in a system 𝐴 than in another system 𝐵,
this means that 𝐴 is more stable than 𝐵. Thus, the shadowing
property can be viewed as a concept to measure the relative
stability of systems by using its Taylor series expansion and
construction of approximate models. For instance, consider
the van del Pol equation with three different values of 𝜇 ∈

{0.1, 1, 2}. The behavior of the van der Pol equation depends
on the value of 𝜇 as it is widely recognized. Thus, the
approximate perturbed model can be used to compute the
error between the actual and reduced models in each case
and determine for which value of 𝜇 the Van der Pol equation
is “more stable,” that is, has a greater relative stability. Thus,
we fix the perturbation amplitude to 𝑔(𝑡

𝑖
) = 0.35 and carry

out some numerical experiments with the different values for
𝜇. In this way, Figure 12 displays the error in the first state
variable between the actual and approximate models while
Figure 13 shows the error in the second state variable for each
value of 𝜇.

Figures 12 and 13 show that the larger 𝜇 is, the larger the
peak error is. Therefore, in this case, systems with smaller
𝜇 have a greater relative stability. Finally, this approximate
affine model could be used, as in the previous example, to
design a control system based on a reduced model, rather
than using the complete nonlinear one. In conclusion, the
results presented in the previous sections have been applied
in some case studies with little effort, a fact that backs up its
potential practical applications.
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This paper establishes variation of parameters formula for impulsive differential equations with initial time difference. As an
application, one of the results is used to investigate stability properties of solutions.

1. Introduction

It is nowwell recognized that impulsive differential equations
are suitable mathematical models for many processes and
phenomena in biology, physics, technology, and so forth.
That is why in recent years the mathematical theory of such
systems has gained increasing significance. We notice that
most of the studies about initial value problems of impulsive
differential equations are investigated only for perturbation
or change of dependent variable keeping the initial time
unchanged. However, in dealing with real world phenomena,
it is impossible not to make errors in the starting time. When
we consider such a change of initial time for each solution, we
need to deal with the problem of comparing between any two
solutions which start at different times.

At present, the investigation of differential systems with
initial time difference has attracted a lot of attention. There
are two methods of comparing the differences of the two
solutions. One is the differential inequalities technique and
comparison principle; the other is variation of parameters.
For the pioneering works in this area we can refer to the
papers [1, 2]. Ever since then, many results for various
differential and difference systems have been obtained. The
results obtained by the former method can be seen in [3–10];
and those done by the latter can be found in [11–15]. However,

up till now, to the best of our knowledge, there are few
results for impulsive differential equations with initial time
difference. To be specific, there are no results on variation
of parameters formula for impulsive differential equations
relative to initial time difference. The method of variation
of parameters is an important and fruitful technique since
it is a practical tool in the investigation of the properties of
solutions. It has been applied to the study of the relations
of unperturbed and perturbed systems with different initial
conditions.

In this paper, we will develop variation of parameters
formula for impulsive differential equations with initial time
changed and investigate Lipschitz stability by using one of
the results obtained.The remainder of this paper is organized
in the following manner. Some preliminaries are presented
in Section 2, and various types of nonlinear variation of
parameters formulae are established in Section 3. Finally, as
an application, one of the results is applied to impulsive dif-
ferential equations and the stability properties are obtained.

2. Preliminaries

Let 𝑅+ = [0, +∞) and let 𝑅𝑛 denote the 𝑛-dimensional
Euclidean space with appropriate norm ‖ ⋅ ‖.
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Consider the following unperturbed impulsive differen-
tial equations

𝑥
󸀠
= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
+

0
) = 𝑥
0
,

𝑥 (𝑡
+

𝑘
) = 𝑥 (𝑡

𝑘
) + 𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
)) ,

(1)

𝑥
󸀠
= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝜏
+

0
) = 𝑦
0
,

𝑥 (𝑡
+

𝑘
) = 𝑥 (𝑡

𝑘
) + 𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
)) , whenever 𝑡

𝑘
≥ 𝜏
0
,

(2)

together with the perturbed ones of (2)

𝑦
󸀠
= 𝐹 (𝑡, 𝑦) , 𝑡 ̸= 𝑡

𝑘
,

𝑦 (𝜏
+

0
) = 𝑦
0
,

𝑦 (𝑡
+

𝑘
) = 𝑦 (𝑡

𝑘
) + 𝐼
𝑡𝑘
(𝑦 (𝑡
𝑘
)) , whenever 𝑡

𝑘
≥ 𝜏
0
,

(3)

where

(1) 0 ≤ 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , and lim

𝑘→∞
𝑡
𝑘
=

∞, 𝑘 = 1, 2, . . .;
(2) 𝜏
0
> 𝑡
0
, 𝜂 = 𝜏

0
− 𝑡
0
;

(3) 𝑡
𝑘
= 𝑡
𝑘
− 𝜂 ≥ 0;

(4) 𝑆
1
= {𝑡
𝑘
}, 𝑆
2
= {𝑡
𝑘
}, 𝑆 = 𝑆

1
∪ 𝑆
2
;

(5) 𝑡 ∈ 𝑅+, 𝑥 ∈ Ω ⊂ 𝑅
𝑛
, Ω − open;

(6) 𝑓, 𝐹 : 𝑅
+
× Ω → 𝑅

𝑛;
(7) 𝐼
𝑡𝑘
: Ω → 𝑅

𝑛;
(8) 𝑓(𝑡, 0) = 0, 𝐼

𝑡𝑘
(0) = 0, for all 𝑡

𝑘
.

We are concerned in this paper with the variation of
parameters formula for impulsive differential equations rel-
ative to initial time difference. Before we can proceed, we will
introduce the following lemmas [12], which are necessary for
completing our main results.

Lemma 1. Let the following conditions be fulfilled:

(𝐴
1
) the function 𝑓 : 𝑅

+
× Ω → 𝑅

𝑛 is continuous in
(𝑡
𝑘−1

, 𝑡
𝑘
] ×Ω, 𝑘 = 1, 2, . . . and for every 𝑘 and 𝑥

0
∈ 𝑅
𝑛,

there exists a finite limit of 𝑓(𝑡, 𝑥) as (𝑡, 𝑥) → (𝑡
𝑘
, 𝑥
0
),

𝑡 > 𝑡
𝑘
;

(𝐴
2
) the function 𝑓 is locally Lipschitzian in 𝑥 on 𝑅+ × Ω;

(𝐴
3
) for 𝑘 = 1, 2, . . . the mapping 𝜓

𝑘
: Ω → Ω, 𝑥 → 𝑧,

𝑧 = 𝜓
𝑘
(𝑥) ≡ 𝑥 + 𝐼

𝑘
(𝑥) is a homeomorphism;

(𝐴
4
) the system (1) had a solution 𝜙(𝑡) defined in [𝛼, 𝛽],
(𝛼, 𝛽 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . .).

Then there exist a number 𝜖 > 0 and a set

𝑉 = {(𝑡, 𝑥) ∈ 𝑅
+
× Ω, 𝛼 ≤ 𝑡 ≤ 𝛽,

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝜙 (𝑡

+
)
󵄨
󵄨
󵄨
󵄨
< 𝜖} , (4)

such that,

(i) for every (𝑡
0
, 𝑥
0
) ∈ 𝑉, there exists a unique solution

𝑥(𝑡, 𝑡
0
, 𝑥
0
) of the system (1) which is defined on [𝛼, 𝛽];

(ii) the function 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is continuous for

𝑡 ∈ [𝛼, 𝛽] , (𝑡
0
, 𝑥
0
) ∈ 𝑉, 𝑡, 𝑡

0
∉ 𝑆
1
; (5)

(iii) for 𝑘 = 1, 2, . . . , 𝑥
0
∈ Ω, 𝑡, 𝑡

0
belonging to the interval

of existence of solution 𝑥(𝑡, 𝑡
0
, 𝑥
0
) of (1), 𝑡 ∉ 𝑆

1
,

lim
𝜉→ 𝑡0
𝜌→𝑥0

𝑥 (𝑡, 𝜉, 𝜌) = 𝑥 (𝑡, 𝑡
0
, 𝑥
0
) . (6)

Lemma 2. Let the following conditions be fulfilled:

(𝐴
5
) the function 𝑓 : 𝑅

+
× Ω → 𝑅

𝑛 is continuous in
(𝑡
𝑘−1

, 𝑡
𝑘
] × Ω, 𝑘 = 1, 2, . . ., and 𝑓

𝑥
(𝑡, 𝑥) is continuous

in (𝑡
𝑘−1

, 𝑡
𝑘
) × Ω, 𝑘 = 1, 2, . . .;

(𝐴
6
) for every 𝑥

0
∈ Ω, 𝑘 = 1, 2, . . ., there exist finite limits of

functions 𝑓 and 𝑓
𝑥
as (𝑡, 𝑥) → (𝑡

𝑘
, 𝑥
0
), 𝑡 > 𝑡

𝑘
;

(𝐴
7
) for 𝑘 = 1, 2, . . . the mapping 𝜓

𝑘
: Ω → Ω, 𝑥 →

𝑧, 𝑧 = 𝜓
𝑘
(𝑥) ≡ 𝑥 + 𝐼

𝑘
(𝑥) is a diffeomorphism and for

𝑥 ∈ Ω

det(𝐼 +
𝜕𝐼
𝑘

𝜕𝑥

(𝑥)) ̸= 0, 𝑘 = 1, 2, . . . . (7)

Then,

(i) there exists 𝛿 > 0 such that the solution 𝑥(𝑡, 𝑡
0
, 𝑥
0
) of

(1) has continuous derivatives 𝜕𝑥/𝜕𝑡, 𝜕𝑥/𝜕𝑡
0
, 𝜕𝑥/𝜕𝑥

0
,

in the domain

𝑉 : 𝛼 < 𝑡 < 𝛽, 𝛼 < 𝑡
0
< 𝛽, 𝑡, 𝑡

0
̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . .

󵄨
󵄨
󵄨
󵄨
𝑥
0
− 𝜙 (𝑡

+

0
)
󵄨
󵄨
󵄨
󵄨
< 𝛿;

(8)

(ii) the derivative Φ(𝑡, 𝑡
0
, 𝑥
0
) = (𝜕𝑥/𝜕𝑥

0
)(𝑡, 𝑡
0
, 𝑥
0
) is a

solution of the initial value problem

𝑢
󸀠
= 𝑓
𝑥
(𝑡, 𝜙 (𝑡)) 𝑢, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑢 =

𝜕𝐼
𝑘

𝜕𝑥

(𝜙 (𝑡
𝑘
)) 𝑢, 𝑡 = 𝑡

𝑘
,

𝑢 (𝑡
+

0
) = 𝐼,

(9)

where 𝜙(𝑡) is the solution of (1) in [𝛼, 𝛽] 𝛼, 𝛽 ̸= 𝑡
𝑘
, 𝑘 =

1, 2, . . .;

(iii) the derivative 𝜕𝑥/𝜕𝑡
0
satisfies the relation

𝜕𝑥

𝜕𝑡
0

(𝑡, 𝑡
0
, 𝑥
0
) = −

𝜕𝑥

𝜕𝑥
0

(𝑡, 𝑡
0
, 𝑥
0
) 𝑓 (𝑡
0
, 𝑥
0
)

= −Φ (𝑡, 𝑡
0
, 𝑥
0
) 𝑓 (𝑡
0
, 𝑥
0
) .

(10)
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3. Nonlinear Variation of Parameters Formula

We will present, in this section, the nonlinear variation of
parameters formula for impulsive differential equations rela-
tive to initial time difference. It is very useful for investigating
the stability properties of solutions.

Theorem 3. Let the system (1) satisfy the conditions of
Lemma 2 and let 𝑥(𝑡, 𝑡

0
, 𝑥
0
) be a solution of (1). Then for any

solution 𝑦(𝑡) = 𝑦(𝑡, 𝜏
0
, 𝑦
0
) of the system (3). The following

formula is valid:

𝑦 (𝑡 + 𝜂, 𝜏
0
, 𝑦
0
)

= 𝑥 (𝑡, 𝑡
0
, 𝑥
0
) + ∫

1

0

Φ(𝑡, 𝑡
0
, 𝜎 (𝑠)) (𝑦

0
− 𝑥
0
) 𝑑𝑠

+ ∫

𝑡

𝑡0

̃
𝑓 (𝑠, 𝑦 (𝑠) , 𝜂) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
)) .

(11)

Proof. Set 𝑝(𝑠) = 𝑥(𝑡, 𝑠, 𝑦(𝑠)), where 𝑦(𝑠) = 𝑦(𝑠 + 𝜂, 𝜏
0
, 𝑦
0
),

𝑡
0
< 𝑠 < 𝑡. Then for 𝑠 ∉ 𝑆, we have

𝑝
󸀠
(𝑠) =

𝜕𝑥

𝜕𝑠

(𝑡, 𝑠, 𝑦 (𝑠))

+

𝜕𝑥

𝜕𝑦

(𝑡, 𝑠, 𝑦 (𝑠)) 𝐹 (𝑠 + 𝜂, 𝑦 (𝑠)) ≡
̃
𝑓 (𝑠, 𝑦 (𝑠) , 𝜂) .

(12)

When 𝑠 ∈ 𝑆, we have two cases.

Case 1. Consider
Δ𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨𝑠=𝑡𝑘

= 𝑥 (𝑡, 𝑡

+

𝑘
, 𝑦 (𝑡

+

𝑘
)) − 𝑥 (𝑡, 𝑡

−

𝑘
, 𝑦 (𝑡

−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) − 𝑥 (𝑡, 𝑡

𝑘
, 𝑦 (𝑡
𝑘
))

= ∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) 𝑑𝑠 ⋅ 𝐼

𝑡𝑘+𝜂
(𝑦 (𝑡
𝑘
)) .

(13)

Case 2. Consider
Δ𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨𝑠=𝑡𝑘∈𝑆1−𝑆2

= 𝑥 (𝑡, 𝑡
+

𝑘
, 𝑦 (𝑡
+

𝑘
)) − 𝑥 (𝑡, 𝑡

−

𝑘
, 𝑦 (𝑡
−

𝑘
)) = 0.

(14)

Integrating (12) from 𝑡
0
to 𝑡 and using (13) and (14), we have

𝑦 (𝑡) = 𝑥 (𝑡, 𝑡
0
, 𝑦
0
) + ∫

𝑡

𝑡0

̃
𝑓 (𝑠, 𝑦 (𝑠) , 𝜂) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
)) .

(15)

Now let 𝑞(𝑠) = 𝑥(𝑡, 𝑡
0
, 𝜎(𝑠)), where 𝜎(𝑠) = 𝑦

0
𝑠 + (1 − 𝑠)𝑥

0
,

0 ≤ 𝑠 ≤ 1. Then we have

𝑑𝑞 (𝑠)

𝑑𝑠

=

𝜕𝑥

𝜕𝜎

(𝑡, 𝑡
0
, 𝜎 (𝑠)) (𝑦

0
− 𝑥
0
) . (16)

Integrating (16) from 0 to 1, we arrive at

𝑥 (𝑡, 𝑡
0
, 𝑦
0
) = 𝑥 (𝑡, 𝑡

0
, 𝑥
0
) + ∫

1

0

𝜕𝑥

𝜕𝜎

(𝑡, 𝑡
0
, 𝜎 (𝑠)) (𝑦

0
− 𝑥
0
) 𝑑𝑠.

(17)

Combining (15) and (17) yields

𝑦 (𝑡 + 𝜂, 𝜏
0
, 𝑦
0
)

= 𝑥 (𝑡, 𝑡
0
, 𝑥
0
) + ∫

1

0

Φ(𝑡, 𝑡
0
, 𝜎 (𝑠)) (𝑦

0
− 𝑥
0
) 𝑑𝑠

+ ∫

𝑡

𝑡0

̃
𝑓 (𝑠, 𝑦 (𝑠) , 𝜂) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
)) .

(18)

The proof is complete.

Corollary 4. Suppose that the assumptions of Theorem 3 hold
except that 𝐹(𝑡 + 𝜂, 𝑦) being replaced with 𝑓(𝑡, 𝑦) +𝑅(𝑡 + 𝜂, 𝑦);
then the following formula is valid:

𝑦 (𝑡 + 𝜂, 𝜏
0
, 𝑦
0
)

= 𝑥 (𝑡, 𝑡
0
, 𝑥
0
) + ∫

1

0

Φ(𝑡, 𝑡
0
, 𝜎 (𝑠)) (𝑦

0
− 𝑥
0
) 𝑑𝑠

+ ∫

𝑡

𝑡0

Φ(𝑡, 𝑠, 𝑦 (𝑠)) 𝑅 (𝑠 + 𝜂, 𝑦 (𝑠)) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
)) .

(19)

Theorem 5. Suppose that the assumptions of Theorem 3 hold;
then the following formula is valid:

𝑦 (𝑡 + 𝜂, 𝜏
0
, 𝑦
0
) − 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)

= 𝑥 (𝑡, 𝑡
0
, 𝜂) + ∫

𝑡

𝑡0

𝐻̃ (𝑠, 𝑤 (𝑠) , 𝜂) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

𝑡𝑘∈𝑆2−𝑆1

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
)

+ 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂))
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− ∑

𝑡0<𝑡𝑘<𝑡

𝑡𝑘∈𝑆1−𝑆2

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
)

− 𝑠𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
))) 𝑑𝑠 ⋅ 𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))

+ ∑

𝑡0<𝑡𝑘<𝑡

𝑡𝑘∈𝑆1∩𝑆2

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+𝜂)−𝑥 (𝑡

𝑘
) +𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+𝜂))

− 𝑠𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
))) 𝑑𝑠

⋅ (𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))) .

(20)

Proof. Set 𝑝(𝑠) = 𝑥(𝑡, 𝑠, 𝑤(𝑠)), where 𝑤(𝑠) = 𝑦(𝑠 + 𝜂, 𝜏
0
, 𝑦
0
) −

𝑥(𝑠, 𝑡
0
, 𝑥
0
), 𝑡
0
< 𝑠 < 𝑡. Then for 𝑠 ∉ 𝑆, we have

𝑝
󸀠
(𝑠) =

𝜕𝑥

𝜕𝑠

(𝑡, 𝑠, 𝑤 (𝑠))

+

𝜕𝑥

𝜕𝑤

(𝑡, 𝑠, 𝑤 (𝑠))𝐻 (𝑠, 𝑤 (𝑠) , 𝜂) ≡ 𝐻̃ (𝑠, 𝑤 (𝑠) , 𝜂) ,

(21)

where𝐻(𝑠, 𝑤(𝑠), 𝜂) = 𝐹(𝑠 + 𝜂, 𝑤(𝑠) + 𝑥(𝑠)) − 𝑓(𝑠, 𝑥(𝑠)).
If 𝑠 ∈ 𝑆, we have three cases.

Case 1. Consider
Δ𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨𝑠=𝑡𝑘∈𝑆2−𝑆1

= 𝑥 (𝑡, 𝑡

+

𝑘
, 𝑤 (𝑡

+

𝑘
)) − 𝑥 (𝑡, 𝑡

−

𝑘
, 𝑤 (𝑡

−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡

+

𝑘
+ 𝜂) − 𝑥 (𝑡

+

𝑘
)) − 𝑥 (𝑡, 𝑡

−

𝑘
, 𝑦 (𝑡

−

𝑘
+ 𝜂)

−𝑥 (𝑡

−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) + 𝐼

𝑡𝑘+𝜂
(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝑥 (𝑡

𝑘
))

− 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
))

= ∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂)) .

(22)

Case 2. Consider
Δ𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨𝑠=𝑡𝑘∈𝑆1−𝑆2

= 𝑥 (𝑡, 𝑡
+

𝑘
, 𝑤 (𝑡
+

𝑘
)) − 𝑥 (𝑡, 𝑡

−

𝑘
, 𝑤 (𝑡
−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
+

𝑘
+ 𝜂)−𝑥 (𝑡

+

𝑘
))−𝑥 (𝑡, 𝑡

𝑘
, 𝑦 (𝑡
−

𝑘
+ 𝜂)−𝑥 (𝑡

−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
)) − 𝑥 (𝑡

𝑘
))

− 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
))

= −∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
) − 𝑠𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
)) .

(23)

Case 3. Consider
Δ𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨𝑠=𝑡𝑘∈𝑆1∩𝑆2

= 𝑥 (𝑡, 𝑡
+

𝑘
, 𝑤 (𝑡
+

𝑘
)) − 𝑥 (𝑡, 𝑡

−

𝑘
, 𝑤 (𝑡
−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
+

𝑘
+ 𝜂) − 𝑥 (𝑡

+

𝑘
)) − 𝑥 (𝑡, 𝑡

𝑘
, 𝑦 (𝑡
−

𝑘
+ 𝜂)

−𝑥 (𝑡
−

𝑘
))

= 𝑥 (𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) + 𝐼

𝑡𝑘+𝜂
(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))

−𝑥 (𝑡
𝑘
)) − 𝑥 (𝑡, 𝑡

𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
))

= ∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
)

+𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝑠𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))) 𝑑𝑠

⋅ (𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))) .

(24)

Integrating (21) from 𝑡
0
to 𝑡 and using (22) and (24), we have

𝑦 (𝑡 + 𝜂, 𝜏
0
, 𝑦
0
) − 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)

= 𝑥 (𝑡, 𝑡
0
, 𝜂) + ∫

𝑡

𝑡0

𝐻̃ (𝑠, 𝑤 (𝑠) , 𝜂) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

𝑡𝑘∈𝑆2−𝑆1

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
)

+𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+𝜂))) 𝑑𝑠 ⋅ 𝐼

𝑡𝑘+𝜂
(𝑦 (𝑡
𝑘
+𝜂))

− ∑

𝑡0<𝑡𝑘<𝑡

𝑡𝑘∈𝑆1−𝑆2

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂)−𝑥 (𝑡

𝑘
)−𝑠𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘
(𝑥 (𝑡
𝑘
))

+ ∑

𝑡0<𝑡𝑘<𝑡

𝑡𝑘∈𝑆1∩𝑆2

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
+ 𝜂) − 𝑥 (𝑡

𝑘
)

+𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝑠𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))) 𝑑𝑠

⋅ (𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
+ 𝜂)) − 𝐼

𝑡𝑘
(𝑥 (𝑡
𝑘
))) .

(25)

The proof is complete.

4. Application

In this section, we turn to the Lipschitz stability of system (3):

𝑦
󸀠
= 𝐹 (𝑡, 𝑦) , 𝑡 ̸= 𝑡

𝑘
,

𝑦 (𝜏
+

0
) = 𝑦
0
,

𝑦 (𝑡
+

𝑘
) = 𝑦 (𝑡

𝑘
) + 𝐼
𝑡𝑘
(𝑦 (𝑡
𝑘
)) , whenever 𝑡

𝑘
≥ 𝜏
0
,

(26)

where 𝐹(𝑡 + 𝜂, 𝑦) = 𝑓(𝑡, 𝑦) + 𝑅(𝑡 + 𝜂, 𝑦).
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Definition 6. The solution 𝑦(𝑡 + 𝜂, 𝜏
0
, 𝑦
0
) of the system (3) is

said to be initial time difference Lipschitz stable (ITDLS)with
respect to the solution 𝑥(𝑡, 𝑡

0
, 𝑥
0
) for 𝑡 ≥ 𝑡

0
, where 𝑥(𝑡, 𝑡

0
, 𝑥
0
)

is any solution of the system (1), if and only if there exists an
𝑀 = 𝑀(𝜏

0
) such that

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡 + 𝜂, 𝜏

0
, 𝑦
0
) − 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑀(

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜏
0
− 𝑡
0
) .

(27)

Theorem 7. Let the following conditions be fulfilled:

(𝐵
1
) the assumptions of Corollary 4 hold;

(𝐵
2
) the zero solution of (1) is Lipschitz stable;

(𝐵
3
) ‖Φ(𝑡, 𝑠, 𝑦(𝑠))𝑅(𝑠+𝜂, 𝑦(𝑠))‖ ≤ 𝛾(𝑠)‖𝑦(𝑠)‖ for 𝑡

0
< 𝑠 ≤ 𝑡;

(𝐵
4
) ‖Φ(𝑡, 𝑡

0
, 𝜎(𝑠))‖ ≤ 𝑀

1
(‖𝑦
0
−𝑥
0
‖+𝜂)/‖𝑦

0
−𝑥
0
‖ and𝑀

1

is a constant;

(𝐵
5
) ‖𝐼
𝑡𝑘+𝜂

(𝑦(𝑡
𝑘
))‖ ≤ 𝛽

𝑘
‖𝑦(𝑡
𝑘
)‖ and 𝛽

𝑘
≥ 0 are constants;

(𝐵
6
) ‖Φ(𝑡, 𝑡

𝑘
, 𝑦(𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦(𝑡
𝑘
)))‖ ≤ 𝛼

𝑘
and 𝛼

𝑘
≥ 0 are

constants;

(𝐵
7
) ∫

∞

𝑡0

𝛾(𝑠)𝑑𝑠 < ∞, 𝛾(𝑠) ∈ 𝐶[𝑅
+
, 𝑅
+
] and ∏

𝑡0<𝑡𝑘<𝑡
(1 +

𝛼
𝑘
𝛽
𝑘
) < ∞.

Then the solution 𝑦(𝑡+𝜂, 𝜏
0
, 𝑦
0
) of the system (3) is ITDLS with

respect to the solution 𝑥(𝑡, 𝑡
0
, 𝑥
0
).

Proof. From Corollary 4, it follows that

𝑦 (𝑡) − 𝑥 (𝑡, 𝑡
0
, 𝑥
0
)

= ∫

1

0

Φ(𝑡, 𝑡
0
, 𝜎 (𝑠)) (𝑦

0
− 𝑥
0
) 𝑑𝑠

+ ∫

𝑡

𝑡0

Φ(𝑡, 𝑠, 𝑦 (𝑠)) 𝑅 (𝑠 + 𝜂, 𝑦 (𝑠)) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

∫

1

0

Φ(𝑡, 𝑡
𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))) 𝑑𝑠

⋅ 𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
)) .

(28)

Taking the norm and using the triangle inequality on both
sides, we have

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩

≤ ∫

1

0

󵄩
󵄩
󵄩
󵄩
Φ (𝑡, 𝑡

0
, 𝜎 (𝑠))

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
(𝑦
0
− 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
𝑑𝑠

+ ∫

𝑡

𝑡0

󵄩
󵄩
󵄩
󵄩
Φ (𝑡, 𝑠, 𝑦 (𝑠)) 𝑅 (𝑠 + 𝜂, 𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩
𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

∫

1

0

󵄩
󵄩
󵄩
󵄩
󵄩
Φ (𝑡, 𝑡

𝑘
, 𝑦 (𝑡
𝑘
) + 𝑠𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
)))

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑠

⋅

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
𝑡𝑘+𝜂

(𝑦 (𝑡
𝑘
))

󵄩
󵄩
󵄩
󵄩
󵄩
.

(29)

From conditions (𝐵
2
)–(𝐵
5
), we obtain

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡) − 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩

≤ 𝑀
1
(
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜂) + ∫

𝑡

𝑡0

𝛾 (𝑠)
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩
𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡
𝑘
)
󵄩
󵄩
󵄩
󵄩
.

(30)

Setting𝑀∗(𝑡) = ‖𝑦(𝑡) − 𝑥(𝑡, 𝑡
0
, 𝑥
0
)‖, we have

𝑀
∗
(𝑡) ≤ 𝑀

1
(
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜂) + ∫

𝑡

𝑡0

𝛾 (𝑠)𝑀
∗
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝛾 (𝑠)
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠, 𝑡
0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
𝑑𝑠

+ ∑

𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘
𝑀
∗
(𝑡
𝑘
) + ∑

𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡
𝑘
)
󵄩
󵄩
󵄩
󵄩
.

(31)

Since ‖𝑥(𝑡, 𝑡
0
, 𝑥
0
)‖ ≤ 𝑀

2
‖𝑥
0
‖, as long as ‖𝑥

0
‖ < 𝜀, then we

have
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡, 𝑡
0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑀
2
𝜀,

𝑀
∗
(𝑡) ≤ 𝑀

1
(
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜂) + ∫

𝑡

𝑡0

𝛾 (𝑠)𝑀
∗
(𝑠) 𝑑𝑠

+𝑀
2
𝜀 ∫

𝑡

𝑡0

𝛾 (𝑠) 𝑑𝑠 + ∑

𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘
𝑀
∗
(𝑡
𝑘
)

+ 𝑀
2
𝜀 ∑

𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘
.

(32)

Applying Gronwall’s inequality to (32), we get

𝑀
∗
(𝑡)

≤

{

{

{

𝑀
1
(
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜂)

+𝑀
2
𝜀 ∫

𝑡

𝑡0

𝛾 (𝑠) 𝑑𝑠 +𝑀
2
𝜀 ∑

𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘

}

}

}

⋅ ∏

𝑡0<𝑡𝑘<𝑡

(1 + 𝛼
𝑘
𝛽
𝑘
) exp{∫

𝑡

𝑡0

𝛾 (𝑠) 𝑑𝑠} .

(33)

Setting 𝑀
3
= {𝑀

1
+ (𝑀
2
𝜀 ∫

𝑡

𝑡0

𝛾(𝑠)𝑑𝑠/‖𝑦
0
− 𝑥
0
‖ + 𝜂) + (𝑀

2

𝜀∑
𝑡0<𝑡𝑘<𝑡

𝛼
𝑘
𝛽
𝑘
/‖𝑦
0
−𝑥
0
‖+𝜂)}∏

𝑡0<𝑡𝑘<𝑡
(1+𝛼
𝑘
𝛽
𝑘
) exp{∫𝑡

𝑡0

𝛾(𝑠)𝑑𝑠},
we have

𝑀
∗
(𝑡) ≤ 𝑀

3
(
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜂) . (34)

From condition (𝐵
7
), it follows that the solution𝑦(𝑡+𝜂, 𝜏

0
, 𝑦
0
)

of the system (3) is ITDLS with respect to the solution
𝑥(𝑡, 𝑡
0
, 𝑥
0
).

The proof is complete.
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We obtain two existence results about multiple positive periodic solutions for a class of functional difference system. Two examples
are given to illustrate our results.

1. Introduction and Preliminaries

Throughout this paper, we denote by Z the set of all integers,
byR the set of all real numbers, and by𝑋 a real Banach space.
Moreover, let

R
𝑛

+
= {(𝑥
1
, . . . , 𝑥

𝑛
) : 𝑥
1
, . . . , 𝑥

𝑛
≥ 0} (1)

and let 𝑙∞
𝑇
(Z,R𝑛) (𝑙∞

𝑇
(Z,R𝑛
+
)) be the space of all 𝑇-periodic

functions 𝑓 : Z → R𝑛 (𝑓 : Z → R𝑛
+
), where 𝑇 > 1 is fixed

positive integer. It is well known that 𝑙∞
𝑇
(Z,R𝑛) is a Banach

space under the norm

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
= max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨
, (2)

where 𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
)
𝑇.

The aimof this paper is to investigate the existence ofmul-
tiple positive periodic solutions to the following functional
difference system:

𝑥 (𝑘 + 1) − 𝑥 (𝑘) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝑓 (𝑘, 𝑥
𝑘
) , 𝑘 ∈ Z, (3)

where 𝑥 : Z → R𝑛 is an 𝑛-dimensional vector function

𝐴 (𝑘) = diag [𝑎
1
(𝑘) , 𝑎
2
(𝑘) , . . . , 𝑎

𝑛
(𝑘)] , (4)

𝑎
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, are 𝑇-periodic functions from Z to R, 𝑓

is a function from Z × 𝑙
∞

𝑇
(Z,R𝑛) to R𝑛, and 𝑥

𝑘
is defined by

𝑥
𝑘
(𝑚) = 𝑥(𝑘 + 𝑚) for all𝑚 ∈ Z.

The existence of periodic solutions has been an important
topic in the qualitative theory of functional differential
equations and functional difference equations. There is a
large body of literature on this interesting topic. We refer
the reader to [1–17] and references therein for some recent
contributions. Especially, the existence of periodic solutions
for system (3) and its variants has been of great interest for
many authors (see, e.g., [5, 6, 8, 9, 17] and references therein).

It is needed to note that Raffoul [8] and Raffoul and
Tisdell [9] have made an important contribution to this
topic. In fact, Raffoul constructed Green function for system
(3) and transformed system (3) into an equivalent system.
This enables us to use some suitable fixed point theorems to
investigate the existence of periodic solutions for system (3).
In addition,wewould like to draw the reader’s attention to [6],
where Dix et al. initiated the study on the multiple periodic
solutions for a variant of system (3) in a 1-dimensional case.

Stimulated by [6, 8, 9], in this paper, we will make further
study on this topic for an 𝑛-dimensional case. Next, we recall
two fixed point theorems, which will be used in the proof
of our main results. We first recall some definitions and
notations.

A closed convex set𝐾 in𝑋 is called a cone if the following
conditions are satisfied:

(i) if 𝑥 ∈ 𝐾, then 𝜆𝑥 ∈ 𝐾 for any 𝜆 ≥ 0,

(ii) if 𝑥 ∈ 𝐾 and −𝑥 ∈ 𝐾, then 𝑥 = 0.
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A nonnegative continuous functional𝜓 is said to be a concave
on𝐾 if 𝜓 is continuous and

𝜓 (𝜇𝑥 + (1 − 𝜇) 𝑦) ≥ 𝜇𝜓 (𝑥) + (1 − 𝜇)𝜓 (𝑦) ,

𝑥, 𝑦 ∈ 𝐾, 𝜇 ∈ [0, 1] .

(5)

Letting 𝑐
1
, 𝑐
2
, 𝑐
3
be three positive constants and letting 𝜙 be a

nonnegative continuous functional on𝐾, we denote

𝐾
𝑐1
= {𝑦 ∈ 𝐾 :

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
< 𝑐
1
} ,

𝐾 (𝜙, 𝑐
1
) := {𝑥 ∈ 𝐾 : 𝜙 (𝑥) < 𝑐

1
} ,

𝐾 (𝜙, 𝑐
1
) := {𝑥 ∈ 𝐾 : 𝜙 (𝑥) ≤ 𝑐

1
} ,

𝜕𝐾 (𝜙, 𝑐
1
) := {𝑥 ∈ 𝐾 : 𝜙 (𝑥) = 𝑐

1
} ,

𝐾 (𝜙, 𝑐
2
, 𝑐
3
) = {𝑦 ∈ 𝐾 : 𝑐

2
≤ 𝜙 (𝑦) ,

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
< 𝑐
3
} .

(6)

In addition, we call that 𝜙 is increasing on 𝐾 if 𝜙(𝑥) ≥ 𝜙(𝑦)

for all 𝑥, 𝑦 ∈ 𝐾 with 𝑥 − 𝑦 ∈ 𝐾.

Lemma 1 (see [18]). Let 𝐾 be a cone in 𝑋, let 𝛼 and 𝜑 be
increasing, nonnegative, continuous functionals on 𝐾, and let
𝜌 be a nonnegative continuous functional on 𝐾 with 𝜌(0) = 0

such that, for some 𝑐 > 0 and𝑀 > 0,

𝜑 (𝑢) ≤ 𝜌 (𝑢) ≤ 𝛼 (𝑢) , ‖𝑢‖ ≤ 𝑀𝜑 (𝑢) (7)

for all 𝑢 ∈ 𝐾(𝜑, 𝑐). Suppose that there exists a completely
continuous operator Φ : 𝐾(𝜑, 𝑐) → 𝐾 and 0 < 𝑎 < 𝑏 < 𝑐

such that

𝜌 (𝜆𝑢) ≤ 𝜆𝜌 (𝑢) , for 0 ≤ 𝜆 ≤ 1, 𝑢 ∈ 𝜕𝐾 (𝜌, 𝑏) , (8)

and

(i) 𝜑(Φ𝑢) > 𝑐, for all 𝑢 ∈ 𝜕𝐾(𝜑, 𝑐);
(ii) 𝜌(Φ𝑢) < 𝑏, for all 𝑢 ∈ 𝜕𝐾(𝜌, 𝑏);
(iii) 𝐾(𝛼, 𝑎) ̸= 0 and 𝛼(Φ𝑥) > 𝑎, for all 𝑢 ∈ 𝜕𝐾(𝛼, 𝑎).

Then Φ has at least two fixed points 𝑢
1
and 𝑢

2
belonging to

𝐾(𝜑, 𝑐) such that

𝑎 < 𝛼 (𝑢
1
) , with 𝜌 (𝑢

1
) < 𝑏,

𝑏 < 𝜌 (𝑢
2
) , with 𝜑 (𝑢

2
) < 𝑐.

(9)

Lemma 2 (see [19]). Let 𝐾 be a cone in 𝑋, let 𝑐
4
be a positive

constant, let Φ : 𝐾
𝑐4

→ 𝐾
𝑐4
be a completely continuous

mapping, and let 𝜓 be a concave nonnegative continuous
functional on 𝐾 with 𝜓(𝑢) ≤ ‖𝑢‖ for all 𝑢 ∈ 𝐾

𝑐4
. Suppose that

there exist three constants 𝑐
1
, 𝑐
2
, 𝑐
3
with 0 < 𝑐

1
< 𝑐
2
< 𝑐
3
≤ 𝑐
4

such that

(i) {𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
) : 𝜓(𝑢) > 𝑐

2
} ̸= 0 and 𝜓(Φ𝑢) > 𝑐

2
for

all 𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
);

(ii) ‖Φ𝑢‖ < 𝑐
1
for all 𝑢 ∈ 𝐾

𝑐1
;

(iii) 𝜓(Φ𝑢) > 𝑐
2
for all 𝑢 ∈ 𝐾(𝜓, 𝑐

2
, 𝑐
4
) with ‖Φ𝑢‖ > 𝑐

3
.

Then Φ has at least three fixed points 𝑢
1
, 𝑢
2
, 𝑢
3
in 𝐾
𝑐4
.

Furthermore, ‖𝑢
1
‖ ≤ 𝑐
1
< ‖𝑢
2
‖ and 𝜓(𝑢

2
) < 𝑐
2
< 𝜓(𝑢

3
).

2. Main Results

Throughout the rest of this paper, we assume that the
following assumptions for system (3) hold.

(H0) For every 𝑗 ∈ {1, 2, . . . , 𝑛}, 0 < 1 + 𝑎
𝑗
(𝑘) ≤ 1 for all

𝑘 ∈ Z and

𝑇

∏

𝑘=1

[1 + 𝑎
𝑗
(𝑘)] ̸= 1. (10)

(H1) 𝑘 → 𝑓(𝑘, 𝑥
𝑘
) belongs to 𝑙

∞

𝑇
(Z,R𝑛
+
) whenever 𝑥 ∈

𝑙
∞

𝑇
(Z,R𝑛
+
).

(H2) For every 𝐿 > 0 and 𝜀 > 0, there exists a 𝛿 > 0 such
that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑘, 𝜙

𝑘
) − 𝑓 (𝑘, 𝜓

𝑘
)
󵄩
󵄩
󵄩
󵄩
< 𝜀, 𝑘 = 1, 2, . . . , 𝑇, (11)

for all 𝜙, 𝜓 ∈ 𝑙
∞

𝑇
(Z,R𝑛
+
) with ‖𝜙‖ ≤ 𝐿, ‖𝜓‖ ≤ 𝐿, and

‖𝜙 − 𝜓‖ < 𝛿.

Now, we define

𝐺
𝑗
(𝑘, 𝑠) =

∏
𝑘−1

𝑚=𝑠−𝑇+1
[1 + 𝑎

𝑗
(𝑚)]

1 − ∏
𝑇

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

, 𝑗 = 1, 2, . . . , 𝑛, (12)

for (𝑘, 𝑠) ∈ Z × Z with 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑇 − 1.
Then, by a proof similar to [8], we can transform (3) into

the following equivalent equation:

𝑥 (𝑘) =

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) , 𝑘 ∈ Z, (13)

where

𝐺 (𝑘, 𝑠) = diag [𝐺
1
(𝑘, 𝑠) , 𝐺

2
(𝑘, 𝑠) , . . . , 𝐺

𝑛
(𝑘, 𝑠)] . (14)

It is easy to see that

𝐺 (𝑘, 𝑠) = 𝐺 (𝑘 + 𝑇, 𝑠 + 𝑇) (15)

for all (𝑘, 𝑠) ∈ Z × Z with 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑇 − 1. In
addition, it follows from (H0)–(H2) that, for every 𝑗 ∈

{1, 2, . . . , 𝑛}, 𝐺
𝑗
(⋅, ⋅) has a positive denominator, while the

numerator is a positive and increasing function of 𝑠 ∈ [𝑘, 𝑘 +

𝑇−1]. Thus, for (𝑘, 𝑠) ∈ Z×Zwith 𝑘 ≤ 𝑠 ≤ 𝑘+𝑇−1, we have

∏
𝑘−1

𝑚=𝑘−𝑇+1
[1 + 𝑎

𝑗
(𝑚)]

1 − ∏
𝑇

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

= 𝐺
𝑗
(𝑘, 𝑘) ≤ 𝐺

𝑗
(𝑘, 𝑠) ,

𝐺
𝑗
(𝑘, 𝑠) ≤ 𝐺

𝑗
(𝑘, 𝑘 + 𝑇 − 1) =

1

1 − ∏
𝑇

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

.

(16)
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Letting

𝑝 = min
1≤𝑘≤𝑇

min
1≤𝑗≤𝑛

𝐺
𝑗
(𝑘, 𝑘) ,

𝑞 = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝐺
𝑗
(𝑘, 𝑘 + 𝑇 − 1) ,

(17)

we have

𝑝 ≤ 𝐺
𝑗
(𝑘, 𝑠) ≤ 𝑞, (𝑘, 𝑠) ∈ Z × Z, 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑇 − 1,

𝑗 = 1, 2, . . . , 𝑛.

(18)

Next, we introduce a set

𝐾 = {𝑥 ∈ 𝑙
∞

𝑇
(Z,R

𝑛
) : min
1≤𝑘≤𝑇

𝑥
𝑗
(𝑘) ≥ 𝜎

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
, 𝑗 = 1, 2, . . . , 𝑛} ,

(19)

where 𝜎 = 𝑝/𝑞. It is not difficult to verify that 𝐾 is a cone in
𝑙
∞

𝑇
(Z,R𝑛). Finally, we define an operator Φ on𝐾 by

(Φ𝑥) (𝑘) =

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) , 𝑥 ∈ 𝐾, 𝑘 ∈ Z. (20)

Lemma 3. Φ is an operator from 𝐾 to 𝐾.

Proof. Let 𝑥 ∈ 𝐾. By (H1) and 𝐺(𝑘, 𝑠) = 𝐺(𝑘 + 𝑇, 𝑠 + 𝑇), we
get

(Φ𝑥) (𝑘 + 𝑇) =

𝑘+2𝑇−1

∑

𝑠=𝑘+𝑇

𝐺 (𝑘 + 𝑇, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
)

=

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘 + 𝑇, 𝑠 + 𝑇) 𝑓 (𝑠 + 𝑇, 𝑥
𝑠+𝑇

)

=

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) = (Φ𝑥) (𝑘) ,

(21)

for all 𝑘 ∈ Z. So Φ𝑥 ∈ 𝑙
∞

𝑇
(Z,R𝑛).

In addition, for 𝑗 = 1, 2, . . . , 𝑛, we have

󵄩
󵄩
󵄩
󵄩
󵄩
(Φ𝑥)
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
= max
1≤𝑘≤𝑇

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
) ≤ 𝑞

𝑇

∑

𝑠=1

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ,

(22)

where 𝑓
𝑗
is the 𝑗th component of 𝑓. Then, we obtain

(Φ𝑥)
𝑗
(𝑘) =

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≥ 𝑝

𝑇

∑

𝑠=1

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≥

𝑝

𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
(Φ𝑥)
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

(23)

for all 𝑘 ∈ Z. Thus, Φ𝑥 ∈ 𝐾. This completes the proof.

2.1. Existence of Two Positive Periodic Solutions of System (3).
In this section, we apply Lemma 1 to establish an existence
result about two positive periodic solutions of system (3). For
convenience, we list some assumptions.

(H3) There exists a constant 𝑐 > 0 such that

𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐 for 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑐. (24)

(H4) There exists a constant 𝑏 > 0 such that

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑏 for 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑏. (25)

(H5) There exists a constant 𝑎 > 0 such that

𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑎 for 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑎. (26)

Theorem4. Assume that there exist three constants 𝑎, 𝑏, 𝑐with
0 < 𝑎 < 𝑏 < 𝑐 such that (H0)–(H5) hold. Then system (3) has
at least two positive 𝑇-periodic solutions.

Proof. Firstly, by Lemma 3, Φ is an operator from 𝐾 to 𝐾.
Secondly, by a proof similar to [9, Lemma 2.5], one can show
thatΦ : 𝐾 → 𝐾 is completely continuous.

Now, we begin to verify that all the assumptions of
Lemma 1 hold. Let

𝜑 (𝑥) = 𝜌 (𝑥) = 𝛼 (𝑥) = ‖𝑥‖ , 𝑥 ∈ 𝐾. (27)

It is clear that 𝛼, 𝜌, and 𝜑 are increasing, nonnegative,
continuous functionals on 𝐾 with 𝜌(0) = 0. Moreover, we
have

‖𝑥‖ ≤ 𝜎
−1
𝜑 (𝑥) , 𝜌 (𝜆𝑥) = 𝜆𝜌 (𝑥) , (28)

for all 𝑥 ∈ 𝐾 and 0 ≤ 𝜆 ≤ 1.
Next, we proceed to show that conditions (i)–(iii) of

Lemma 1 are also satisfied. For every 𝑥 ∈ 𝜕𝐾(𝜑, 𝑐), noting
that ‖𝑥‖ = 𝜑(𝑥) = 𝑐, by (H3), we conclude that

𝜑 (Φ𝑥) = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≥ 𝑝 ⋅ max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

= 𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐;

(29)
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that is, condition (i) of Lemma 1 holds. For every 𝑥 ∈

𝜕𝐾(𝜌, 𝑏), since ‖𝑥‖ = 𝜌(𝑥) = 𝑏, by (H4), we get

𝜌 (Φ𝑥) = max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≤ 𝑞 ⋅ max
1≤𝑘≤𝑇

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

= 𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑏;

(30)

that is, condition (ii) of Lemma 1 holds. Finally, it is easy to
see that

𝐾 (𝛼, 𝑎) = {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑎} ̸= 0, (31)

and for every 𝑥 ∈ 𝐾(𝛼, 𝑎), it follows from (H5) that

𝛼 (Φ𝑥) ≥ 𝑝 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑎. (32)

Thus, condition (iii) of Lemma 1 holds.
Now, by applying Lemma 1, there exist two fixed points

𝑢
1
, 𝑢
2
∈ 𝐾(𝜑, 𝑐), which are just two 𝑇-periodic solutions to

system (3). This completes the proof.

Remark 5. InTheorem 4, the two 𝑇-periodic solutions 𝑢
1
, 𝑢
2

do not equal zero. In fact, according to Lemma 1, we have

𝑎 <
󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩
< 𝑏 <

󵄩
󵄩
󵄩
󵄩
𝑢
2

󵄩
󵄩
󵄩
󵄩
< 𝑐. (33)

Corollary 6. Assume that (H0)–(H2) and (H4) hold. More-
over,

lim sup
‖𝑥‖→+∞,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

>

1

𝑝

, (34)

lim sup
‖𝑥‖→0

+
,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

>

1

𝑝

. (35)

Then system (3) has at least two positive 𝑇-periodic solutions.

Proof. By (34), there exists a constant 𝑐 > 𝑏 such that (H3)
holds. By (35), there exists a constant 𝑎 ∈ (0, 𝑏) such that (H5)
holds. Then, by applying Theorem 4, we complete the proof.

Next, we present a simple example, which does not aim at
generality but illustrates how to use our existence theorem.

Example 7. Consider the following system:

𝑥
1
(𝑘 + 1) − 𝑥

1
(𝑘) = −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜋𝑘

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
1
(𝑘) + 𝑓

1
(𝑘, 𝑥
𝑘
) ,

𝑥
2
(𝑘 + 1) − 𝑥

2
(𝑘) = −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos 𝜋𝑘
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
2
(𝑘) + 𝑓

2
(𝑘, 𝑥
𝑘
) ,

(36)

where

𝑓
1
(𝑘, 𝑥
𝑘
)

= 𝑓
2
(𝑘, 𝑥
𝑘
)

=

4 [𝑥
1
(𝑘) + 𝑥

2
(𝑘)] exp ((1/384) [𝑥

1
(𝑘) + 𝑥

2
(𝑘)])

1 + 𝑥
1
(𝑘) + 𝑥

2
(𝑘)

.

(37)

We have 𝑛 = 𝑇 = 2,

𝑎
1
(𝑘) = −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜋𝑘

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝑎
2
(𝑘) = −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos 𝜋𝑘
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝐺
1
(𝑘, 𝑠) =

∏
𝑘−1

𝑚=𝑠−1
[1 + 𝑎

1
(𝑚)]

1 − ∏
2

𝑚=1
[1 + 𝑎

1
(𝑚)]

= 2

𝑘−1

∏

𝑚=𝑠−1

[1 −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜋𝑚

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] ,

𝐺
2
(𝑘, 𝑠) =

∏
𝑘−1

𝑚=𝑠−1
[1 + 𝑎

2
(𝑚)]

1 − ∏
2

𝑚=1
[1 + 𝑎

2
(𝑚)]

= 2

𝑘−1

∏

𝑚=𝑠−1

[1 −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos 𝜋𝑚
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] ,

𝑝 = min
𝑘∈Z

min
1≤𝑗≤2

1 + 𝑎
𝑗
(𝑘 − 1)

1 − ∏
2

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

= 1,

𝑞 = max
𝑘∈Z

max
1≤𝑗≤2

1

1 − ∏
2

𝑚=1
[1 + 𝑎

𝑗
(𝑚)]

= 2,

𝜎 =

𝑝

𝑞

=

1

2

,

𝐾 = {𝑥 ∈ 𝑙
∞

2
(Z,R

2

+
) : min
𝑘∈Z

𝑥
𝑗
(𝑘) ≥

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
, 𝑗 = 1, 2} .

(38)

It is easy to verify that conditions (H0)–(H2) hold. Since, for
𝑥 ∈ 𝐾,

max
1≤𝑗≤2

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

=

4 [𝑥
1
(0) + 𝑥

2
(0)] exp ((1/384) [𝑥

1
(0) + 𝑥

2
(0)])

‖𝑥‖ [1 + 𝑥
1
(0) + 𝑥

2
(0)]

+

4 [𝑥
1
(1) + 𝑥

2
(1)] exp ((1/384) [𝑥

1
(1) + 𝑥

2
(1)])

‖𝑥‖ [1 + 𝑥
1
(1) + 𝑥

2
(1)]

≥

4 exp ((1/384) ‖𝑥‖)
1 + 2 ‖𝑥‖

,
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lim
‖𝑥‖→+∞

4 exp ((1/384) ‖𝑥‖)
1 + 2 ‖𝑥‖

= +∞,

lim
‖𝑥‖→0

+

4 exp ((1/384) ‖𝑥‖)
1 + 2 ‖𝑥‖

= 4 > 1,

(39)

we conclude that (34) and (35) are satisfied. It remains to
verify (H4). Letting 𝑏 = 192, for all 𝑥 ∈ 𝐾 with ‖𝑥‖ = 192, we
have

2max
1≤𝑗≤2

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

=

8 [𝑥
1
(0) + 𝑥

2
(0)] exp ((1/384) [𝑥

1
(0) + 𝑥

2
(0)])

1 + 𝑥
1
(0) + 𝑥

2
(0)

+

8 [𝑥
1
(1) + 𝑥

2
(1)] exp ((1/384) [𝑥

1
(1) + 𝑥

2
(1)])

1 + 𝑥
1
(1) + 𝑥

2
(1)

≤ 16 exp ( 1

192

‖𝑥‖) = 16𝑒 < 𝑏,

(40)

which means that (H4) holds. Therefore, by Corollary 6, we
know that system (36) has at least two positive 2-periodic
solutions.

Remark 8. In the above example, 0 is obviously a trivial
periodic solution for system (36). But by Remark 5, we know
that the two positive 2-periodic solutions do not equal zero.

2.2. Existence of Three Nonnegative Periodic Solutions of
System (3). In [6], Dix et al. investigated the existence of
multiple nonnegative periodic solutions for a first order func-
tional difference equation by the Leggett-Williams fixed point
theorem. In this section, we will investigate the existence of
multiple nonnegative periodic solutions for system (3) by
using an idea similar to that of [6]. For convenience, we also
list some assumptions.

(H6) There exists a constant 𝑐
1
> 0 such that

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑐
1

for 𝑥 ∈ 𝐾 with ‖𝑥‖ ≤ 𝑐
1
. (41)

(H7) There exists a constant 𝑐
2
> 𝑐
1
> 0 such that

𝑝

𝑛

⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2

for 𝑥 ∈ 𝐾 with 𝑐
2
≤ ‖𝑥‖ <

𝑛𝑐
2

𝜎

.

(42)

(H8) There exists a constant 𝑐
4
> 𝑛𝑐
2
/𝜎 := 𝑐

3
such that

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≤ 𝑐
4

for 𝑥 ∈ 𝐾 with ‖𝑥‖ ≤ 𝑐
4
. (43)

Theorem 9. Assume that (H0)–(H2) and (H6)–(H8) hold.
Then system (3) has at least three nonnegative 𝑇-periodic
solutions.

Proof. By the proof of Theorem 4, we know that Φ is an
operator from𝐾 to 𝐾 and completely continuous. Let

𝜓 (𝑥) = min
1≤𝑘≤𝑇

∑
𝑛

𝑗=1
𝑥
𝑗
(𝑘)

𝑛

, 𝑥 ∈ 𝐾. (44)

It is easy to see that 𝜓 is a concave nonnegative continuous
functional on𝐾 and 𝜓(𝑥) ≤ ‖𝑥‖.

Firstly, we show that Φ maps 𝐾
𝑐4
into 𝐾

𝑐4
. For every 𝑥 ∈

𝐾
𝑐4
, we have ‖𝑥‖ ≤ 𝑐

4
. Combining this with (H8), we get

‖Φ𝑥‖ = max
𝑘∈Z

max
1≤𝑗≤𝑛

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≤ 𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≤ 𝑐
4
.

(45)

Secondly, let us verify condition (i) of Lemma 2. Since𝜎 <

1, 𝑐
3
> 𝑐
2
, then, it is easy to see that the set

{𝑥 ∈ 𝐾 (𝜓, 𝑐
2
, 𝑐
3
) : 𝜓 (𝑥) > 𝑐

2
} ̸= 0. (46)

In addition, for every 𝑥 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
), we have 𝑐

2
≤ 𝜓(𝑥) ≤

‖𝑥‖ < 𝑐
3
= 𝑛𝑐
2
/𝜎. Then, by (H7), we have

𝜓 (Φ𝑥) =

1

𝑛

⋅ min
1≤𝑘≤𝑇

𝑛

∑

𝑗=1

𝑘+𝑇−1

∑

𝑠=𝑘

𝐺
𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥
𝑠
)

≥

𝑝

𝑛

⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2

(47)

which means that condition (i) of Lemma 2 holds.
Thirdly, for every 𝑥 ∈ 𝐾

𝑐1
, since ‖𝑥‖ ≤ 𝑐

1
, it follows from

(H6) that

‖Φ𝑥‖ ≤ 𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) < 𝑐
1
; (48)

that is, condition (ii) of Lemma 2 holds.
Finally, for every 𝑥 ∈ 𝐾(𝜓, 𝑐

2
, 𝑐
4
) with ‖Φ𝑥‖ > 𝑐

3
, we have

𝑐
2
≤ ‖𝑥‖ < 𝑐

4
and

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

s=0
𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≥ ‖Φ𝑥‖ > 𝑐

3
, (49)

which yields that
𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) ≥ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) >

𝑐
3

𝑞

=

𝑛𝑐
2

𝑝

. (50)

Then, we have

𝜓 (Φ𝑥) ≥

𝑝

𝑛

⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2
; (51)

that is, condition (iii) of Lemma 2 holds.
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Now, by Lemma 2, we know that Φ has at least three
fixed points in 𝐾

𝑐4
, and thus system (3) has at least three

nonnegative 𝑇-periodic solutions.

Corollary 10. Assume that (H0)–(H2) hold and there exists a
constant 𝑐

2
> 0 such that

𝑝

𝑛

⋅

𝑛

∑

𝑗=1

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) > 𝑐
2

for 𝑐
2
≤ ‖𝑥‖ <

𝑛𝑐
2

𝜎

. (52)

Moreover, there hold

lim sup
‖𝑥‖→+∞,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

<

1

𝑞

,

lim sup
‖𝑥‖→0

+
,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

<

1

𝑞

.

(53)

Then system (3) has at least three nonnegative 𝑇-periodic
solutions.

Proof. We only need to verify that (H6) and (H8) hold. Let

𝛼 = 𝑞 ⋅ lim sup
‖𝑥‖→0

+
,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

,

𝛽 = 𝑞 ⋅ lim sup
‖𝑥‖→+∞,𝑥∈𝐾

max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

.

(54)

Then𝛼, 𝛽 ∈ [0, 1).There exists a constant 𝛿 ∈ (0, 𝑐
2
) such that,

for all 𝑥 ∈ 𝐾 with ‖𝑥‖ ≤ 𝛿, there holds

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) <

𝛼 + 1

2

‖𝑥‖ . (55)

Taking 𝑐
1
= 𝛿, (H6) holds. In addition, there exists a constant

𝑀 > 𝑛𝑐
2
/𝜎 such that, for all 𝑥 ∈ 𝐾 with ‖𝑥‖ ≥ 𝑀, there holds

𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
) <

𝛽 + 1

2

‖𝑥‖ . (56)

Taking

𝑐
4
= 𝑀 + sup

𝑥∈𝐾,‖𝑥‖≤𝑀

[𝑞 ⋅ max
1≤𝑗≤𝑛

𝑇−1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)] , (57)

(H8) holds.

Next, we also provide a simple example to illustrate our
existence theorem.

Example 11. Let 𝑛 = 𝑇 = 2, 𝑎
1
, 𝑎
2
be the same as in Example 7,

and

𝑓
1
(𝑘, 𝑥
𝑘
) = 𝑓
2
(𝑘, 𝑥
𝑘
)

=

64[𝑥
1
(𝑘) + 𝑥

2
(𝑘)]
2

1 + [𝑥
1
(𝑘) + 𝑥

2
(𝑘) + 𝑥

1
(𝑘 + 1) + 𝑥

2
(𝑘 + 1)]

4
.

(58)

By Example 7, we have 𝑝 = 1, 𝑞 = 2, and 𝜎 = 1/2, and (H0)–
(H2) hold.

By a direct calculation, we get

max
1≤𝑗≤2

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

‖𝑥‖

=

64[𝑥
1
(0) + 𝑥

2
(0)]
2

+ 64[𝑥
1
(1) + 𝑥

2
(1)]
2

‖𝑥‖ ⋅ [1 + (𝑥
1
(0) + 𝑥

2
(0) + 𝑥

1
(1) + 𝑥

2
(1))
4

]

≤

512 ‖𝑥‖

1 + ‖𝑥‖
4
.

(59)

Then, it is easy to see that (53) holds.
Let 𝑐
2
= 1/16. Then, for all

1

16

≤ ‖𝑥‖ ≤

1

4

=

𝑛𝑐
2

𝜎

, (60)

we have

𝑝

𝑛

⋅

2

∑

𝑗=1

1

∑

𝑠=0

𝑓
𝑗
(𝑠, 𝑥
𝑠
)

=

64[𝑥
1
(0) + 𝑥

2
(0)]
2

+ 64[𝑥
1
(1) + 𝑥

2
(1)]
2

1 + [𝑥
1
(0) + 𝑥

2
(0) + 𝑥

1
(1) + 𝑥

2
(1)]
4

≥

64‖𝑥‖
2

2

= 32‖𝑥‖
2
≥

1

8

> 𝑐
2
.

(61)

Thus, all the assumptions ofCorollary 10 hold.Then,we know
that the considered functional difference system has at least
three nonnegative 2-periodic solutions.
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The paper is devoted mainly to the study of the existence of solutions depending on two variables of a nonlinear integral equation
of Volterra-Stieltjes type. The basic tool used in investigations is the technique of measures of noncompactness and Darbo’s fixed
point theorem. The results obtained in the paper are applicable, in a particular case, to the nonlinear partial integral equations of
fractional orders.

1. Introduction

The theory of differential and integral equations of fractional
order creates nowadays a large subject of mathematics which
found in the last three decades numerous applications in
physics, mechanics, engineering, bioengineering, viscoelas-
ticity, electrochemistry, control theory, porous media, and
other fields connected with real world problems [1–5]. Let us
mention that recently there have appeared a few important
and expository monographs covering both the theory and
applications of differential and integral equations of frac-
tional order (cf. [1, 4, 6–8]).

It turns out that a lot of results of the theory of differential
and integral equations of fractional order can be considered
from a unified point of view with help of the theory of
the so-called Volterra-Stieltjes integral equations (cf. [9, 10]).
The approach applied in those papers allows us not only to
consider the mentioned theories of differential and integral
equations of fractional order from one point of view but also
to obtain deeper results with help of less complicated tools of
nonlinear analysis.

Such an approach can be also applied to investigations
associated with the theory of differential and integral equa-
tions of fractional orders in two variables.That subject of non-
linear analysis was recently studied in a few papers [11–16]. It
seems that results obtained in those papers are not sufficiently

general. The tools and methods associated with the theory
of nonlinear Volterra-Stieltjes integral equations which will
be applied in this paper are more convenient and allow us to
obtain more applicable results. Indeed, further on we obtain,
as particular cases, the existence theorems concerning both
nonlinear integral equations of fractional orders, nonlin-
ear integral equations of Volterra-Chandrasekhar type, and
nonlinear equations of mixed type. Moreover, we indicate
possible generalizations of our results to the situation of
nonlinear Volterra-Stieltjes integral equations in 𝑛 variables.
Additionally, we indicate also a few open problems appearing
in our theory.

2. Notation, Definitions, and Auxiliary Results

This section is devoted to provide the notation, definitions,
and other auxiliary facts which will be needed in our further
study.

At the beginning let us assume that 𝑓 is a real function
defined on the interval [𝑎, 𝑏]. Then the symbol ⋁

𝑏

𝑎
𝑓 will

denote the variation of the function𝑓 on the interval [𝑎, 𝑏]. In
the case when⋁

𝑏

𝑎
𝑓 < ∞we say that𝑓 is of bounded variation

on [𝑎, 𝑏]. If we have a function 𝑢(𝑡, 𝑥) = 𝑢 : [𝑎, 𝑏] × [𝑐, 𝑑] →

R, then we denote by⋁𝑞
𝑡=𝑝

𝑢(𝑡, 𝑥) the variation of the function
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𝑡 → 𝑢(𝑡, 𝑥) on the interval [𝑝, 𝑞] ⊂ [𝑎, 𝑏]. Similarly we define
the quantity⋁

𝑞

𝑥=𝑝
𝑢(𝑡, 𝑥).

For the properties of functions of bounded variation we
refer to [17].

If 𝑓 and 𝜑 are two real functions defined on the interval
[𝑎, 𝑏], then under some additional conditions [17, 18] we can
define the Stieltjes integral (in the Riemann-Stieltjes sense)

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝜑 (𝑡) (1)

of the function 𝑓 with respect to the function 𝜑. In this case
we say that 𝑓 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to 𝜑.

It is worthwhile mentioning that several conditions
ensuring Stieltjes integrability may be found in [17]. One of
the most frequently used requires 𝑓 to be continuous and 𝜑

to be of bounded variation on [𝑎, 𝑏].
In the sequel wewill utilize a few properties of the Stieltjes

integral contained in the below quoted lemmas (cf. [17]).

Lemma 1. If 𝑓 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to a function 𝜑 of bounded variation, then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝜑 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑 (

𝑡

⋁

𝑎

𝜑) . (2)

Lemma 2. Let 𝑓
1
, 𝑓
2
be Stieltjes integrable functions on the

interval [𝑎, 𝑏] with respect to a nondecreasing function 𝜑 such
that 𝑓

1
(𝑡) ≤ 𝑓

2
(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. Then

∫

𝑏

𝑎

𝑓
1
(𝑡) 𝑑𝜑 (𝑡) ≤ ∫

𝑏

𝑎

𝑓
2
(𝑡) 𝑑𝜑 (𝑡) . (3)

In what follows we will also consider Stieltjes integrals
having the form

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (4)

where 𝑔 : [𝑎, 𝑏] × [𝑎, 𝑏] → R and the symbol 𝑑
𝑠
indicates

the integration with respect to the variable 𝑠. The details
concerning the integral of this type will be given later.

Even more, in our considerations we will use the double
Stieltjes integrals of the form

∫

𝑑

𝑐

∫

𝑑

𝑐

𝑓 (𝑡, 𝑥) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦) 𝑑

𝑠
𝑔
1
(𝑡, 𝑠) , (5)

where 𝑔
𝑖
: [𝑎, 𝑏] × [𝑐, 𝑑] → R (𝑖 = 1, 2). Obviously, the

double Stieltjes integral (5) is understood as the following
double iterated Stieltjes integral:

∫

𝑑

𝑐

(∫

𝑑

𝑐

𝑓 (𝑡, 𝑥) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦)) 𝑑

𝑠
𝑔
1
(𝑡, 𝑠) . (6)

Now, let us assume that 𝑢 = 𝑢(𝑡, 𝑥) is a real function
defined on the Cartesian product [𝑎, 𝑏] × [𝑐, 𝑑]. Denote by
𝜔(𝑢, 𝜀) the modulus of continuity of the function 𝑢; that is,

𝜔 (𝑢, 𝜀) = sup {
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡, 𝑥) − 𝑢 (𝑠, 𝑦)

󵄨
󵄨
󵄨
󵄨
: 𝑡, 𝑠 ∈ [𝑎, 𝑏] , 𝑥, 𝑦 ∈ [𝑐, 𝑑] ,

|𝑡 − 𝑠| ≤ 𝜀,
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
≤ 𝜀} .

(7)

Obviously, we can also consider the modulus of continuity of
the function 𝑢(𝑡, 𝑥) with respect to each variable separately.
For example,

𝜔 (𝑢 (𝑡, ⋅) , 𝜀) = sup {
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
: 𝑥, 𝑦 ∈ [𝑐, 𝑑] ,

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
≤ 𝜀} ,

(8)

where 𝑡 is a fixed number in the interval [𝑎, 𝑏].
Further on, in order to simplify our investigations, wewill

always assume that [𝑎, 𝑏] = [𝑐, 𝑑] = [0, 1] and we will denote
by 𝐼 the unit interval [0, 1]; that is, 𝐼 = [0, 1].

Now, we recall some facts concerning measures of non-
compactness, which will be applied in the sequel. To this end
assume that 𝐸 is an infinite dimensional Banach space with
the norm ‖⋅‖ and zero element 𝜃. Denote by𝐵(𝑥, 𝑟) the closed
ball centered at 𝑥 and radius 𝑟. The symbol 𝐵

𝑟
stands for the

ball 𝐵(𝜃, 𝑟).
Next, for a given nonempty bounded subset 𝑋 of 𝐸,

we denote by 𝜒(𝑋) the so-called Hausdorff measure of
noncompactness of the set𝑋 [19]. This quantity is defined by
the formula

𝜒 (𝑋) = inf {𝜀 > 0 : 𝑋 has a finite 𝜀 − net in 𝐸} . (9)

Let us mention that the function 𝜒 has several useful
properties and is often applied in nonlinear analysis, operator
theory, and the theories of differential and integral equations
[19, 20].

Notice that the concept of a measure of noncompactness
may be defined in a more general way [19, 21], but for our
purposes the Hausdorff measure of noncompactness defined
by (9) will be thoroughly sufficient.

In fact, in our further considerations, we will work in the
space 𝐶(𝐼

2
) consisting of all functions 𝑢 = 𝑢(𝑡, 𝑥) defined

and continuous on the Cartesian product 𝐼
2

= 𝐼 × 𝐼 with
real values. The space 𝐶 = 𝐶(𝐼

2
) will be furnished with the

standard maximum norm

‖𝑢‖𝐶
= max {|𝑢 (𝑡, 𝑥)| : (𝑡, 𝑥) ∈ 𝐼

2
} . (10)

It can be shown [19] that if𝑈 is a nonempty and bounded sub-
set of 𝐶(𝐼

2
), then the Hausdorff measure of noncompactness

of 𝑈 can be expressed by the following formula:

𝜒 (𝑈) =

1

2

𝜔
0
(𝑈) , (11)

where

𝜔
0
(𝑈) = lim

𝜀→0

𝜔 (𝑈, 𝜀) . (12)

The symbol 𝜔(𝑈, 𝜀) used above denotes the modulus of
continuity of the set 𝑈 and is defined as follows:

𝜔 (𝑈, 𝜀) = sup {𝜔 (𝑢, 𝜀) : 𝑢 ∈ 𝑈} , (13)

while 𝜔(𝑢, 𝜀) stands for the modulus of continuity of the
function 𝑢 defined by (7).

Now we recall a fixed point theorem of Darbo type which
will be utilized in our investigations (cf. [19]).



Abstract and Applied Analysis 3

Theorem3. LetΩ be a nonempty, bounded, closed, and convex
subset of the Banach space 𝐸 and let 𝑄 : Ω → Ω be a contin-
uous operator such that there exists a constant 𝑘 ∈ [0, 1) for
which 𝜒(𝑄𝑈) ≤ 𝑘𝜒(𝑈) provided 𝑈 is an arbitrary nonempty
subset ofΩ. Then 𝑄 has at least one fixed point in the set Ω.

Next we recall a few facts concerning the so-called
superposition operator [19]. To this end assume that 𝐷 = 𝐼

2,
where 𝐼 = [0, 1]. Let 𝑓 : 𝐷 × R → R be a given function.
Then, to every function 𝑢 acting from 𝐼

2 intoRwemay assign
the function 𝐹𝑢 defined by the formula

(𝐹𝑢) (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) , (14)

for (𝑡, 𝑥) ∈ 𝐼
2. The operator 𝐹 defined in such a way is

called the superposition operator generated by the function
𝑓 = 𝑓(𝑡, 𝑥, 𝑢).

The properties of the superposition operator may be
found in [22]. For our further purposes we will only need
the below quoted result concerning the behaviour of the
superposition operator 𝐹 in the space 𝐶(𝐼

2
).

Lemma 4. The superposition operator 𝐹 generated by the
function 𝑓 : 𝐼

2
×R → R transforms the space 𝐶(𝐼

2
) into itself

and is continuous if and only if the function 𝑓 is continuous on
the set 𝐼2 ×R.

Remark 5. Let us notice that in our considerations concern-
ing the superposition operator 𝐹 generated by the function
𝑓 we may replace the set 𝐷 = 𝐼

2 by an arbitrary Cartesian
product 𝐷 = 𝐼

2 with 𝐼 = [𝑎, 𝑏] or even by 𝐷 = [𝑎, 𝑏] × [𝑐, 𝑑]

(cf. [22] for further possible generalizations).

Finally, we recall some fundamental facts associated
with fractional calculus (cf. [7, 8, 23]). To this end denote
by 𝐿
1
(𝑎, 𝑏) the space of all real functions defined and

Lebesgue integrable on the interval (𝑎, 𝑏). The space 𝐿
1
(𝑎, 𝑏)

is equipped with the standard norm. Further, fix a number
𝛼 > 0 and take an arbitrary function 𝑢 ∈ 𝐿

1
(𝑎, 𝑏).

The Riemann-Liouville fractional integral of order 𝛼 of the
function 𝑢 = 𝑢(𝑡) is defined by the formula

𝐼
−𝛼

𝑢 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

𝑢 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 ∈ (𝑎, 𝑏) , (15)

where Γ(𝛼) denotes the gamma function.
It may be shown that the fractional integral operator

𝐼
−𝛼 transforms the space 𝐿

1
(𝑎, 𝑏) into itself and has some

additional properties [7, 8, 23].

3. Main Result

Investigations of this paper are connected mainly with the
solvability of the following nonlinear quadratic integral
equation of Volterra-Stieltjes type having the form

𝑢 (𝑡, 𝑥) = ℎ (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

× ∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦) 𝑑

𝑠
𝑔
1
(𝑡, 𝑠) ,

(16)

for (𝑡, 𝑥) ∈ 𝐼
2, where 𝐼 = [0, 1].

Let us recall that details concerning the notation used in
(16) were presented in the previous section.

In order to formulate the assumptions under which (16)
will be investigated, let us denote by Δ

𝑖
(𝑖 = 1, 2) the

following triangles:

Δ
1
= {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1} ,

Δ
2
= {(𝑥, 𝑦) : 0 ≤ 𝑦 ≤ 𝑥 ≤ 1} .

(17)

We will study (16) assuming the following hypotheses:

(i) ℎ ∈ 𝐶(𝐼
2
);

(ii) the function 𝑓(𝑡, 𝑥, 𝑢) = 𝑓 : 𝐼
2
× R → R is

continuous and satisfies the Lipschitz condition with
respect to the variable 𝑢; that is, there exists a constant
𝑘 > 0 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑢) − 𝑓 (𝑡, 𝑥, 𝑤)

󵄨
󵄨
󵄨
󵄨
≤ 𝑘 |𝑢 − 𝑤| (18)

for all 𝑡, 𝑥 ∈ 𝐼 and 𝑢, 𝑤 ∈ R;
(iii) the function 𝑔

𝑖
(𝑤, 𝑧) = 𝑔

𝑖
: Δ
𝑖
→ R is continuous

on the triangle Δ
𝑖
for 𝑖 = 1, 2;

(iv) the function 𝑧 → 𝑔
𝑖
(𝑤, 𝑧) is of bounded variation on

the interval [0, 𝑤] for each fixed 𝑤 ∈ 𝐼 (𝑖 = 1, 2);
(v) for any 𝜀 > 0 there exists 𝛿 > 0 such that, for all

𝑤
1
, 𝑤
2
∈ 𝐼, 𝑤

1
< 𝑤
2
, and 𝑤

2
− 𝑤
1
≤ 𝛿, the following

inequality is satisfied:
𝑤1

⋁

𝑧=0

[𝑔
𝑖
(𝑤
2
, 𝑧) − 𝑔

𝑖
(𝑤
1
, 𝑧)] ≤ 𝜀 (19)

for 𝑖 = 1, 2;
(vi) 𝑔

𝑖
(𝑤, 0) = 0 for each 𝑤 ∈ 𝐼 (𝑖 = 1, 2);

(vii) V : Δ
1
× Δ
2
× R → R is a continuous function such

that
󵄨
󵄨
󵄨
󵄨
V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢)󵄨󵄨󵄨

󵄨
≤ 𝜙 (|𝑢|) (20)

for all (𝑡, 𝑠) ∈ Δ
1
, (𝑥, 𝑦) ∈ Δ

2
and for each 𝑢 ∈ R,

where 𝜙 : R
+

→ R
+
is a nondecreasing function.

Before formulating further assumptions concerning (16)
we provide a few lemmas proved in [9] which will be utilized
in our investigations.

Lemma 6. The function

𝑝 󳨀→

𝑝

⋁

𝑧=0

𝑔
𝑖
(𝑤, 𝑧) (21)

is continuous on the interval [0, 𝑤] for any 𝑤 ∈ 𝐼 (𝑖 = 1, 2).
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Lemma 7. Let assumptions (iii)–(v) be satisfied. Then, for
arbitrarily fixed number 𝑤

2
∈ 𝐼 (𝑤

2
> 0) and for any 𝜀 > 0

there exists 𝛿 > 0 such that if𝑤
1
∈ 𝐼,𝑤

1
< 𝑤
2
, and𝑤

2
−𝑤
1
≤ 𝛿,

then
𝑤2

⋁

𝑧=𝑤1

𝑔
𝑖
(𝑤
2
, 𝑧) ≤ 𝜀 (22)

(𝑖 = 1, 2).

Lemma 8. Under assumptions (iii)–(v) the function

𝑤 󳨀→

𝑤

⋁

𝑧=0

𝑔
𝑖
(𝑤, 𝑧) (23)

is continuous on the interval 𝐼 (𝑖 = 1, 2).

As an immediate consequence of the above lemma we
derive the following corollary.

Corollary 9. There exists a finite positive constant𝐾
𝑖
such that

𝐾
𝑖
= sup{

𝑤

⋁

𝑧=0

𝑔
𝑖
(𝑤, 𝑧) : 𝑤 ∈ 𝐼} (24)

(𝑖 = 1, 2).

In what follows let us denote by 𝐹
1
the constant defined

by the formula

𝐹
1
= max {

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 0)

󵄨
󵄨
󵄨
󵄨
: 𝑡, 𝑥 ∈ 𝐼} . (25)

Obviously, in view of assumption (ii) we have that 𝐹
1
< ∞.

Now, we can formulate the last assumption used further
on.

(viii) There exists a positive solution 𝑟
0
of the inequality

‖ℎ‖
𝐶
+ (𝑘𝑟 + 𝐹

1
)𝐾
1
𝐾
2
𝜙 (𝑟) ≤ 𝑟 (26)

such that

𝑘𝐾
1
𝐾
2
𝜙 (𝑟
0
) < 1. (27)

Our main result is contained in the following theo-
rem.

Theorem 10. Under assumptions (i)–(viii) there exists at least
one solution 𝑢 = 𝑢(𝑡, 𝑥) of (16) in the space 𝐶 = 𝐶(𝐼

2
).

Proof. We start with the following notation:

𝑀
𝑖
(𝜀) = sup{

𝑤1

⋁

𝑧=0

[𝑔
𝑖
(𝑤
2
, 𝑧) − 𝑔

𝑖
(𝑤
1
, 𝑧)] :

𝑤
1
, 𝑤
2
∈ 𝐼, 𝑤

1
< 𝑤
2
, 𝑤
2
− 𝑤
1
≤ 𝜀}

(28)

for 𝑖 = 1, 2. Notice that in view of assumption (v) we infer that
𝑀
𝑖
(𝜀) → 0 as 𝜀 → 0 for 𝑖 = 1, 2.

Moreover, for further purposes let us define the function
𝑁
𝑖
= 𝑁
𝑖
(𝜀) (𝑖 = 1, 2) by putting

𝑁
𝑖
(𝜀) = sup{

𝑤2

⋁

𝑧=𝑤1

𝑔
𝑖
(𝑤
2
, 𝑧) : 𝑤

1
, 𝑤
2
∈ 𝐼, 𝑤

1
< 𝑤
2
,

𝑤
2
− 𝑤
1
≤ 𝜀} .

(29)

Observe that in virtue of Lemma 7 we have that 𝑁
𝑖
(𝜀) → 0

as 𝜀 → 0 (𝑖 = 1, 2).
Further, for a fixed function 𝑢 ∈ 𝐶 and 𝑡, 𝑥 ∈ 𝐼, let us

denote

(𝐹𝑢) (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) ,

(𝑉𝑢) (𝑡, 𝑥)

= ∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦) 𝑑

𝑠
𝑔
1
(𝑡, 𝑠) ,

(𝑄𝑢) (𝑡, 𝑥) = ℎ (𝑡, 𝑥) + (𝐹𝑢) (𝑡, 𝑥) (𝑉𝑢) (𝑡, 𝑥) .

(30)

Next, fix arbitrarily 𝜀 > 0 and choose 𝑡
1
, 𝑡
2
, 𝑥
1
, 𝑥
2

∈ 𝐼 such
that 𝑡
1
≤ 𝑡
2
, 𝑥
1
≤ 𝑥
2
, 𝑡
2
− 𝑡
1
≤ 𝜀, 𝑥

2
− 𝑥
1
≤ 𝜀. Then, keeping

in mind our assumptions, for a fixed function 𝑢 ∈ 𝐶(𝐼
2
), we

get

󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡2

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡2

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑔)

−∫

𝑡1

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥2

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥2

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)
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−∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(31)

Further, estimating step by step the terms occurring on the
right-hand side of inequality (31), on the basis of Lemmas 1
and 2, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡2

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡2

𝑡1

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡2

𝑡1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑
𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ ∫

𝑡2

𝑡1

∫

𝑥2

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
2
, 𝑞)) 𝑑

𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ ∫

𝑡2

𝑡1

∫

𝑥2

0

𝜙 (‖𝑢‖𝐶
) 𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
2
, 𝑞)) 𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

= 𝜙 (‖𝑢‖𝐶
)(

𝑥2

⋁

𝑦=0

𝑔
2
(𝑥
2
, 𝑦))(

𝑡2

⋁

𝑠=𝑡1

𝑔
1
(𝑡
2
, 𝑠))

≤ 𝐾
2
𝜙 (‖𝑢‖𝐶

)

𝑡2

⋁

𝑠=𝑡1

𝑔
1
(𝑡
2
, 𝑠) ≤ 𝐾

2
𝜙 (‖𝑢‖𝐶

)𝑁
1
(𝜀) ,

(32)

where the function𝑁
1
(𝜀) is defined by (29).

Next, evaluating similarly as above, in view of Lemmas 1
and 2, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥2

0

V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

− ∫

𝑡1

0

∫

𝑥2

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥2

0

[V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦))

−V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦))]

× 𝑑
𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡1

0

∫

𝑥2

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢 (𝑠, 𝑦))

−V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦

× (

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
2
, 𝑞)) 𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ ∫

𝑡1

0

∫

𝑥2

0

𝜔
1,3

(V, 𝜀) 𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
2
, 𝑞)) 𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ 𝜔
1,3

(V, 𝜀) (
𝑥2

⋁

𝑦=0

𝑔
2
(𝑥
2
, 𝑦))(

𝑡1

⋁

𝑠=0

𝑔
1
(𝑡
2
, 𝑝))

≤ 𝐾
1
𝐾
2
𝜔
1,3

(V, 𝜀) ,
(33)

where we denoted

𝜔
1,3

(V, 𝜀) = sup {
󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥
2
, 𝑦, 𝑢) − V (𝑡

1
, 𝑠, 𝑥
1
, 𝑦, 𝑢)

󵄨
󵄨
󵄨
󵄨
:

𝑡
1
, 𝑡
2
, 𝑥
1
, 𝑥
2
, 𝑠, 𝑦 ∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀,

󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑥
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑢 ∈ [−‖𝑢‖

𝐶
, ‖𝑢‖𝐶

]} .

(34)

Moreover, the constants𝐾
1
, 𝐾
2
are defined by (24).

Observe that taking into account the fact that the function
V = V(𝑡, 𝑠, 𝑥, 𝑦, 𝑢) is uniformly continuous on the set 𝐼

4
×

[−‖𝑢‖
𝐶
, ‖𝑢‖
𝐶
] we deduce that 𝜔

1,3
(V, 𝜀) → 0 as 𝜀 → 0.

Further, using the imposed hypotheses, in light of Lem-
mas 1 and 2, we derive the following estimate:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥2

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡1

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥2

𝑥1

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑
𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ ∫

𝑡1

0

∫

𝑥2

𝑥1

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
2
, 𝑞)) 𝑑

𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))
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≤ 𝜙 (‖𝑢‖𝐶
) ∫

𝑡1

0

∫

𝑥2

𝑥1

𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
2
, 𝑞)) 𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ 𝜙 (‖𝑢‖𝐶
)(

𝑡1

⋁

𝑠=0

𝑔
1
(𝑡
2
, 𝑠))(

𝑥2

⋁

𝑦=𝑥1

𝑔
2
(𝑥
2
, 𝑦))

≤ 𝐾
1
𝜙 (‖𝑢‖𝐶

)𝑁
2
(𝜀) ,

(35)

where the constant 𝐾
1
is defined by (24) and the function

𝑁
2
(𝜀) is defined by (29).
Next, using similar reasonings, we arrive at the following

estimate:
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
2
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

−∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦

× [𝑔
2
(𝑥
2
, 𝑦) − 𝑔

2
(𝑥
1
, 𝑦)] 𝑑

𝑠
𝑔
1
(𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡1

0

∫

𝑥1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦

× (

𝑦

⋁

𝑞=0

[𝑔
2
(𝑥
2
, 𝑞) − 𝑔

2
(𝑥
1
, 𝑞)]) 𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

≤ 𝜙 (‖𝑢‖𝐶
) ∫

𝑡1

0

∫

𝑥1

0

𝑑
𝑦
(

𝑦

⋁

𝑞=0

[𝑔
2
(𝑥
2
, 𝑞) − 𝑔

2
(𝑥
1
, 𝑞)]) 𝑑

𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
2
, 𝑝))

= 𝜙 (‖𝑢‖𝐶
)(

𝑥1

⋁

𝑦=0

[𝑔
2
(𝑥
2
, 𝑦) − 𝑔

2
(𝑥
1
, 𝑦)])

𝑡1

⋁

𝑠=0

𝑔
1
(𝑡
2
, 𝑠)

≤ 𝐾
1
𝜙 (‖𝑢‖𝐶

)

𝑥1

⋁

𝑦=0

[𝑔
2
(𝑥
2
, 𝑦) − 𝑔

2
(𝑥
1
, 𝑦)]

≤ 𝐾
1
𝜙 (‖𝑢‖𝐶

)𝑀
2
(𝜀) ,

(36)

where the function𝑀
2
(𝜀) was defined in (28).

Now, we estimate the last term appearing on the right-
hand side of inequality (31). Arguing similarly as above, we
get
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
2
, 𝑠)

− ∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠
𝑔
1
(𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

∫

𝑥1

0

V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑

𝑦
𝑔
2
(𝑥
1
, 𝑦) 𝑑
𝑠

× [𝑔
1
(𝑡
2
, 𝑠) − 𝑔

1
(𝑡
1
, 𝑠)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡1

0

∫

𝑥1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
1
, 𝑞)) 𝑑

𝑠

× (

𝑠

⋁

𝑝=0

[𝑔
1
(𝑡
2
, 𝑝) − 𝑔

1
(𝑡
1
, 𝑝)])

≤ 𝜙 (‖𝑢‖𝐶
) ∫

𝑡1

0

∫

𝑥1

0

𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
1
, 𝑞)) 𝑑

𝑠

× (

𝑠

⋁

𝑝=0

[𝑔
1
(𝑡
2
, 𝑝) − 𝑔

1
(𝑡
1
, 𝑝)])

= 𝜙 (‖𝑢‖
𝐶
)(

𝑥1

⋁

𝑦=0

𝑔
2
(𝑥
1
, 𝑦))(

𝑡1

⋁

𝑠=0

[𝑔
1
(𝑡
2
, 𝑝) − 𝑔

1
(𝑡
1
, 𝑠)])

≤ 𝐾
2
𝜙 (‖𝑢‖𝐶

)𝑀
1
(𝜀) ,

(37)

where the constant 𝐾
2
and the function 𝑀

1
(𝜀) were defined

in (24) and (28), respectively.
Now, linking estimates (31)–(33) and (34)–(37) as well

as taking into account the properties of the functions 𝑀
𝑖
=

𝑀
𝑖
(𝜀) and 𝑁

𝑖
= 𝑁
𝑖
(𝜀) (𝑖 = 1, 2) and the comment given after

estimate (33), we conclude that the operator𝑉 transforms the
space 𝐶(𝐼

2
) into itself.

On the other hand, keeping in mind Lemma 4 we infer
that the operator 𝐹 defined in (30) transforms also the space
𝐶(𝐼
2
) into itself. Consequently we obtain that the operator 𝑄

defined in (30) is a self-mapping of the space 𝐶(𝐼
2
).

In the sequel we show that the operator 𝑄 is continuous
on the space𝐶(𝐼

2
). To this end let us first observe that in view

of the properties of the superposition operator 𝐹 expressed in
Lemma4 it is sufficient to show that the operator𝑉 defined by
(30) is continuous on 𝐶(𝐼

2
). To prove this fact fix arbitrarily

𝜀 > 0 and 𝑢 ∈ 𝐶(𝐼
2
). Further, take an arbitrary function

𝑤 ∈ 𝐶(𝐼
2
) with ‖𝑢 − 𝑤‖

𝐶
≤ 𝜀. Then, keeping in mind

Lemma 1, for arbitrarily fixed 𝑡, 𝑥 ∈ 𝐼, we obtain

|(𝑉𝑢) (𝑡, 𝑥) − (𝑉𝑤) (𝑡, 𝑥)|

≤ ∫

𝑡

0

∫

𝑥

0

󵄨
󵄨
󵄨
󵄨
V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) − V (𝑡, 𝑠, 𝑥, 𝑦, 𝑤 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦

× (

𝑦

⋁

𝑞=0

𝑔
2
(𝑥, 𝑞))𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡, 𝑝)) .

(38)

Next, let us denote

𝑃 = ‖𝑢‖𝐶
+ 𝜀 (39)
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and let us define

𝜔
𝑃
(V, 𝜀) = sup {

󵄨
󵄨
󵄨
󵄨
V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢

1
) − V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢

2
)
󵄨
󵄨
󵄨
󵄨
:

(𝑡, 𝑠) ∈ Δ
1
, (𝑥, 𝑦) ∈ Δ

2
,

𝑢
1
𝑢
2
∈ [−𝑃, 𝑃] ,

󵄨
󵄨
󵄨
󵄨
𝑢
1
− 𝑢
2

󵄨
󵄨
󵄨
󵄨
≤ 𝜀} .

(40)

Then, from (38) we derive the following estimates:

|(𝑉𝑢) (𝑡, 𝑥) − (𝑉𝑤) (𝑡, 𝑥)|

≤ ∫

𝑡

0

∫

𝑥

0

𝜔
𝑃
(V, 𝜀) 𝑑

𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥, 𝑞))𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡, 𝑝))

≤ 𝜔
𝑃
(V, 𝜀) (

𝑥

⋁

𝑦=0

𝑔
2
(𝑥, 𝑦))(

𝑡

⋁

𝑠=0

𝑔
1
(𝑡, 𝑠))

≤ 𝐾
1
𝐾
2
𝜔
𝑃
(V, 𝜀) .

(41)

Hence, in view of the uniform continuity of the function V
on the set Δ

1
× Δ
2
× [−𝑃, 𝑃], we infer that the operator 𝑉

is continuous on the space 𝐶(𝐼
2
). According to the above

remark this implies that the operator 𝑄 is continuous on the
space 𝐶(𝐼

2
).

In what follows let us fix an arbitrary function 𝑢 ∈ 𝐶(𝐼
2
).

Utilizing the imposed assumptions and Lemmas 1 and 2, for
fixed 𝑡, 𝑥 ∈ 𝐼, we obtain

|(𝑄𝑢) (𝑡, 𝑥)|

≤ |ℎ (𝑡, 𝑥)| +
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

󵄨
󵄨
󵄨
󵄨

× ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑
𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡, 𝑝))

≤ ‖ℎ‖𝐶
+ [

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) − 𝑓 (𝑡, 𝑥, 0)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 0)

󵄨
󵄨
󵄨
󵄨
]

× ∫

𝑡

0

∫

𝑥

0

󵄨
󵄨
󵄨
󵄨
V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥, 𝑞))𝑑

𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡, 𝑝))

≤ ‖ℎ‖𝐶
+ [𝑘 |𝑢 (𝑡, 𝑥)| +

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 0)

󵄨
󵄨
󵄨
󵄨
]

× ∫

𝑡

0

∫

𝑥

0

𝜙 (
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑠, 𝑦)

󵄨
󵄨
󵄨
󵄨
) 𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥, 𝑞))𝑑

𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡, 𝑝))

≤ ‖ℎ‖𝐶
+ (𝑘‖𝑢‖𝐶

+ 𝐹
1
) 𝜙 (‖𝑢‖𝐶

)

× ∫

𝑡

0

∫

𝑥

0

𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥, 𝑞))𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡, 𝑝))

= ‖ℎ‖𝐶
+ (𝑘‖𝑢‖𝐶

+ 𝐹
1
) 𝜙 (‖𝑢‖𝐶

)(

𝑥

⋁

𝑦=0

𝑔
2
(𝑥, 𝑦))

× (

𝑡

⋁

𝑠=0

𝑔
1
(𝑡, 𝑠)) .

(42)

Hence, in light of Corollary 9, we obtain the following
estimate:

|(𝑄𝑢) (𝑡, 𝑥)| ≤ ‖ℎ‖𝐶
+ (𝑘‖𝑢‖𝐶

+ 𝐹
1
)𝐾
1
𝐾
2
𝜙 (‖𝑢‖𝐶

) . (43)

Consequently, we get

‖𝑄𝑢‖
𝐶
≤ ‖ℎ‖𝐶

+ (𝑘‖𝑢‖𝐶
+ 𝐹
1
)𝐾
1
𝐾
2
𝜙 (‖𝑢‖𝐶

) . (44)

Now, taking into account assumption (viii), from estimate
(44), we derive that there exists a number 𝑟

0
> 0 such that

𝑄 transforms the ball 𝐵
𝑟0
into itself and 𝑘𝐾

1
𝐾
2
𝜙(𝑟
0
) < 1.

Next, let us take a nonempty subset 𝑋 of the ball 𝐵
𝑟0
and

choose arbitrarily a function 𝑢 ∈ 𝑋. Then, for a fixed 𝜀 > 0

and for arbitrary (𝑡
1
, 𝑥
1
), (𝑡
2
, 𝑥
2
) ∈ 𝐼

2 such that 𝑡
1

≤ 𝑡
2
, 𝑥
1

≤ 𝑥
2
(cf. Remark 11) and 𝑡

2
− 𝑡
1
≤ 𝜀, 𝑥

2
− 𝑥
1
≤ 𝜀, using the

standard tools, we get
󵄨
󵄨
󵄨
󵄨
(𝑄𝑢) (𝑡

2
, 𝑥
2
) − (𝑄𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
ℎ (𝑡
2
, 𝑥
2
) − ℎ (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑢) (𝑡

2
, 𝑥
2
) (𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝐹𝑢) (𝑡

2
, 𝑥
2
) (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑢) (𝑡

2
, 𝑥
2
) (𝑉𝑢) (𝑡

1
, 𝑥
1
) − (𝐹𝑢) (𝑡

1
, 𝑥
1
) (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (ℎ, 𝜀) +
󵄨
󵄨
󵄨
󵄨
(𝐹𝑢) (𝑡

2
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝐹𝑢) (𝑡

2
, 𝑥
2
) − (𝐹𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (ℎ, 𝜀) + [
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥
2
, 𝑢 (𝑡
2
, 𝑥
2
)) − 𝑓 (𝑡

2
, 𝑥
2
, 0)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥
2
, 0)

󵄨
󵄨
󵄨
󵄨
]

× {
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
} +

󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

× {
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥
2
, 𝑢 (𝑡
2
, 𝑥
2
)) − 𝑓 (𝑡

2
, 𝑥
2
, 𝑢 (𝑡
1
, 𝑥
1
))
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥
2
, 𝑢 (𝑡
1
, 𝑥
1
)) − 𝑓 (𝑡

1
, 𝑥
1
, 𝑢 (𝑡
1
, 𝑥
1
))
󵄨
󵄨
󵄨
󵄨
}

≤ 𝜔 (ℎ, 𝜀) + [𝑘
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡
2
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥
2
, 0)

󵄨
󵄨
󵄨
󵄨
]

× {
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
}

+
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
{𝑘

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡
2
, 𝑥
2
) − 𝑢 (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+ 𝜔 (𝑓, 𝜀)}

≤ 𝜔 (ℎ, 𝜀) + (𝑘‖𝑢‖𝐶
+ 𝐹
1
) {

󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
}

+
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
(𝑘𝜔 (𝑢, 𝜀) + 𝜔 (𝑓, 𝜀)) ,

(45)
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where we denoted
𝜔 (𝑓, 𝜀) = sup {

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥
2
, 𝑢) − 𝑓 (𝑡

1
, 𝑥
1
, 𝑢)

󵄨
󵄨
󵄨
󵄨
:

𝑡
1
, 𝑡
2
, 𝑥
1
, 𝑥
2
∈ 𝐼, 𝑢 ∈ [−𝑟, 𝑟] ,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀,

󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑥
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀} .

(46)

Further, based on estimates (31)–(33) and (35)–(37) we obtain
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

2
, 𝑥
2
) − (𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝐾
2
𝜙 (‖𝑢‖𝐶

)

𝑡2

⋁

𝑠=𝑡1

𝑔
1
(𝑡
2
, 𝑠)

+ 𝐾
1
𝐾
2
𝜔
1,3

(V, 𝜀) + 𝐾
1
𝜙 (‖𝑢‖𝐶

)

𝑥2

⋁

𝑦=𝑥1

𝑔
2
(𝑥
2
, 𝑦)

+ 𝐾
1
𝜙 (‖𝑢‖𝐶

)𝑀
2
(𝜀) + 𝐾

2
𝜙 (‖𝑢‖𝐶

)𝑀
1
(𝜀) .

(47)

Now, from (47) and (29) we derive the following estimate:

𝜔 (𝑉𝑢, 𝜀) ≤ 𝐾
2
𝜙 (𝑟
0
)𝑁
1
(𝜀) + 𝐾

1
𝜙 (𝑟
0
)𝑁
2
(𝜀)

+ 𝐾
1
𝜙 (𝑟
0
)𝑀
2
(𝜀) + 𝐾

2
𝜙 (𝑟
0
)𝑀
1
(𝜀) .

(48)

The above estimate yields the following one:

𝜔 (𝑉𝑋, 𝜀) ≤ 𝐾
2
𝜙 (𝑟
0
)𝑁
1
(𝜀) + 𝐾

1
𝜙 (𝑟
0
)𝑁
2
(𝜀)

+ 𝐾
1
𝐾
2
𝜔
1,3

(V, 𝜀) + 𝐾
1
𝜙 (𝑟
0
)𝑀
2
(𝜀)

+ 𝐾
2
𝜙 (𝑟
0
)𝑀
1
(𝜀) .

(49)

On the other hand, using our assumptions and applying
Lemmas 1 and 2, we get
󵄨
󵄨
󵄨
󵄨
(𝑉𝑢) (𝑡

1
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡1

0

∫

𝑥1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥
1
, 𝑦, 𝑢 (𝑠, 𝑦))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
1
, 𝑞)) 𝑑

𝑠

× (

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
1
, 𝑝))

≤ 𝜙 (‖𝑢‖𝐶
) ∫

𝑡1

0

∫

𝑥1

0

𝑑
𝑦
(

𝑦

⋁

𝑞=0

𝑔
2
(𝑥
1
, 𝑞)) 𝑑

𝑠
(

𝑠

⋁

𝑝=0

𝑔
1
(𝑡
1
, 𝑝))

≤ 𝜙 (𝑟
0
)(

𝑥1

⋁

𝑦=0

𝑔
2
(𝑥
1
, 𝑦))(

𝑡1

⋁

𝑠=0

𝑔
1
(𝑡
1
, 𝑝)) ≤ 𝐾

1
𝐾
2
𝜙 (𝑟
0
) .

(50)

Finally, combining estimates (45), (49), and (50), we get

𝜔 (𝑄𝑋, 𝜀) ≤ 𝜔 (ℎ, 𝜀)

+ (𝑘𝑟
0
+ 𝐹
1
) {𝐾
2
𝜙 (𝑟
0
)𝑁
1
(𝜀) + 𝐾

1
𝜙 (𝑟
0
)𝑁
2
(𝜀)

+ 𝐾
1
𝐾
2
𝜔
1,3

(V, 𝜀) + 𝐾
1
𝜙 (𝑟
0
)𝑀
2
(𝜀)

+𝐾
2
𝜙 (𝑟
0
)𝑀
1
(𝜀)}

+ 𝐾
1
𝐾
2
𝜙 (𝑟
0
) {𝑘𝜔 (𝑋, 𝜀) + 𝜔 (𝑓, 𝜀)} .

(51)

Hence, taking into account the properties of the functions
𝑀
𝑖
, 𝑁
𝑖
(𝑖 = 1, 2) and the functions 𝜀 → 𝜔(ℎ, 𝜀), 𝜀 →

𝜔
1,3

(V, 𝜀), and 𝜀 → 𝜔(𝑓, 𝜀), we obtain

𝜔
0
(𝑄𝑋) ≤ 𝑘𝐾

1
𝐾
2
𝜙 (𝑟
0
) 𝜔
0
(𝑋) . (52)

Keeping inmind assumption (viii) andTheorem 3 and taking
into account formula (11), from (52) we deduce that there
exists at least one function 𝑢 = 𝑢(𝑡, 𝑥) belonging to the ball
𝐵
𝑟0
which is a solution of (16).
The proof is complete.

Remark 11. In considerations conducted in the above proof,
taking two points (𝑡

1
, 𝑥
1
), (𝑡
2
, 𝑥
2
) ∈ 𝐼
2, we assumed that 𝑡

1
≤

𝑡
2
and 𝑥

1
≤ 𝑥
2
.

Observe that all possible cases can be always converted to
that indicated above. For example, if we assume that 𝑡

1
≤ 𝑡
2

and 𝑥
1
> 𝑥
2
, then, taking an arbitrary function𝑤 = 𝑤(𝑡, 𝑥, 𝑧)

with real variables (𝑧 denotes an arbitrary real number), we
get

󵄨
󵄨
󵄨
󵄨
𝑤 (𝑡
2
, 𝑥
2
, 𝑧) − 𝑤 (𝑡

1
, 𝑥
1
, 𝑧)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑤 (𝑡
2
, 𝑥
2
, 𝑧) − 𝑤 (𝑡

1
, 𝑥
2
, 𝑧)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑤 (𝑡
1
, 𝑥
2
, 𝑧) − 𝑤 (𝑡

1
, 𝑥
1
, 𝑧)

󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑤 (𝑡
2
, 𝑥
2
, 𝑧) − 𝑤 (𝑡

1
, 𝑥
2
, 𝑧)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑤 (𝑡
1
, 𝑥
1
, 𝑧) − 𝑤 (𝑡

1
, 𝑥
2
, 𝑧)

󵄨
󵄨
󵄨
󵄨
.

(53)

Now, we can repeat all estimates of the above proof under
requirements concerning the choice of the points (𝑡

1
, 𝑥
1
),

(𝑡
2
, 𝑥
2
).

4. Applications to Functional Integral
Equations of Fractional Order and to Other
Types of Functional Integral Equations

We start with providing some facts concerning assumption
(v) imposed in investigations conducted in the preceding
section (cf. also [9]). At the beginning we formulate a
condition which is handy and convenient in applications and
which guarantees that the functions 𝑔

1
, 𝑔
2
appearing in (16)

satisfy assumption (v).
In order to formulate the announced condition assume

(as we have done previously) that 𝑔
𝑖
(𝑤, 𝑧) = 𝑔

𝑖
: Δ
𝑖
→ R is a

given function (𝑖 = 1, 2). Further we assume that the function
𝑔
𝑖
(𝑤, 𝑧) (𝑖 = 1, 2) satisfies the following condition:

(v󸀠) for arbitrary 𝑤
1
, 𝑤
2

∈ 𝐼, 𝑤
1

< 𝑤
2
, the function

𝑧 → 𝑔
𝑖
(𝑤
2
, 𝑧)−𝑔

𝑖
(𝑤
1
, 𝑧) is monotone on the interval

[0, 𝑤
1
] (𝑖 = 1, 2).

From results proved in [9] the following lemma immediately
follows.

Lemma 12. Suppose the function 𝑔
𝑖

= 𝑔
𝑖
(𝑤, 𝑧) satisfies

assumptions (iii), (v󸀠), and (vi) for 𝑖 = 1, 2. Then 𝑔
𝑖
satisfies

assumption (v) (𝑖 = 1, 2).
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Indeed, in the case when 𝑔
𝑖
is nonincreasing, this result

was proved as Theorem 3 in [9], while the case when 𝑔
𝑖
is

nondecreasing is covered byTheorem 5 in [9] (𝑖 = 1, 2).
Further, based on results obtained in [9] we provide two

examples of functions𝑔
𝑖
= 𝑔
𝑖
(𝑤, 𝑧) satisfying assumption (v󸀠)

and being essential in our considerations.

Example 13. Let us fix 𝑖 (𝑖 = 1, 2) and take the function
𝑔
𝑖
(𝑤, 𝑧) = 𝑔

𝑖
: Δ
𝑖
→ R defined by the formula

𝑔
𝑖
(𝑤, 𝑧) =

1

𝛼

[𝑤
𝛼
− (𝑤 − 𝑧)

𝛼
] , (54)

where 𝛼 is a fixed number from the interval (0, 1). If we fix
arbitrary numbers 𝑤

1
, 𝑤
2

∈ 𝐼 such that 𝑤
1

< 𝑤
2
, then it

is easily seen that the function 𝑧 → 𝑔
𝑖
(𝑤
2
, 𝑧) − 𝑔

𝑖
(𝑤
1
, 𝑧)

is nonincreasing on the interval [0, 𝑤
1
]. This means that 𝑔

𝑖

satisfies assumption (v󸀠). Moreover, we can verify that the
function 𝑔

𝑖
(𝑤, 𝑧) satisfies also assumptions (iii), (iv), and (vi).

Example 14. Similarly as above fix 𝑖 ∈ {1, 2}. Consider the
function 𝑔

𝑖
(𝑤, 𝑧) = 𝑔

𝑖
: Δ
𝑖
→ R defined by the formula

𝑔
𝑖
(𝑤, 𝑧) =

{
{

{
{

{

𝑤 ln 𝑤 + 𝑧

𝑤

for 0 < 𝑧 ≤ 𝑤 ≤ 1

0 for 𝑤 = 0.

(55)

Using the standardmethods ofmathematical analysis (cf. [9])
it can be easily shown that the function 𝑧 → 𝑔

𝑖
(𝑤
2
, 𝑧) −

𝑔
𝑖
(𝑤
1
, 𝑧) is nondecreasing on the interval [0, 𝑤

1
] for𝑤

1
< 𝑤
2

and satisfies assumptions (iii), (iv), and (vi) formulated in the
preceding section.

In what follows we will consider the fractional integral
equationwith functions involved depending on two variables,
which has the form

𝑢 (𝑡, 𝑥) = ℎ (𝑡, 𝑥)

+

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

Γ (𝛼) Γ (𝛽)

∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

(𝑡 − 𝑠)
1−𝛼

(𝑥 − 𝑦)
1−𝛽

𝑑𝑠 𝑑𝑦,

(56)

where 𝑡, 𝑥 ∈ 𝐼 and 𝛼, 𝛽 are fixed numbers from the interval
(0, 1). Moreover, the symbol Γ(𝛾) indicates the gamma func-
tion.

Let us mention that (56) represents the so-called partial
singular integral equation of Volterra type in two variables.
Recently, equations of such a type were intensively investi-
gated in some papers [11–16].

Obviously, (56) creates a generalization of the classical
Volterra integral equation of fractional order in one variable
which is studied in several papers and monographs and
finds numerous applications (cf. [1–10, 23–27] and references
therein).

Now, we show that the functional integral equation of
fractional orders (56) can be treated as a particular case of the
Volterra-Stieltjes functional integral equation (16) studied in
Section 3.

In fact, take the functions 𝑔
𝑖
(𝑤, 𝑧) considered in Exam-

ple 13, which have the form

𝑔
1
(𝑡, 𝑠) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝑠)

𝛼
] ,

𝑔
2
(𝑥, 𝑦) =

1

𝛽

[𝑥
𝛽
− (𝑥 − 𝑦)

𝛽

] ,

(57)

for (𝑡, 𝑠) ∈ Δ
1
and (𝑥, 𝑦) ∈ Δ

2
.

Then, it can be easily seen that (56) can be written in the
formof (16).Thus,we can applyTheorem 10 in order to obtain
an existence result concerning (56).

To formulate such a result let us first calculate the
constants𝐾

1
, 𝐾
2
from Corollary 9. Indeed, we have (cf. [9])

𝐾
1
= sup{

𝑤

⋁

𝑧=0

𝑔
1
(𝑤, 𝑧) : 𝑤 ∈ 𝐼} =

1

𝛼

,

𝐾
2
= sup{

𝑤

⋁

𝑧=0

𝑔
2
(𝑤, 𝑧) : 𝑤 ∈ 𝐼} =

1

𝛽

.

(58)

Now, we present the above announced result.

Theorem 15. Assume that the function ℎ involved in (56)
satisfies assumption (i) and the function V = V(𝑡, 𝑠, 𝑥, 𝑦, 𝑢)
satisfies assumption (vii) ofTheorem 10.Moreover, one assumes
that the following condition is satisfied.

(viii󸀠) There exists a positive solution 𝑟
0
of the inequality

‖ℎ‖𝐶
+

𝑘𝑟 + 𝐹
1

Γ (𝛼 + 1) Γ (𝛽 + 1)

𝜙 (𝑟) ≤ 𝑟 (59)

such that 𝑘𝜙(𝑟
0
) < Γ(𝛼 + 1)Γ(𝛽 + 1).

Then there exists at least one solution 𝑢 = 𝑢(𝑡, 𝑥) of (56) in the
space 𝐶(𝐼

2
), belonging to the ball 𝐵

𝑟0
.

Remark 16. In the above conducted calculations we used the
well-known formula 𝛿Γ(𝛿) = Γ(𝛿 + 1) (cf. [28]).

In what follows we consider the functional integral
equation of the so-calledVolterra-Chandrasekhar type in two
variables having the form

𝑢 (𝑡, 𝑥) = ℎ (𝑡, 𝑥)

+ 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) ∫

𝑡

0

∫

𝑥

0

𝑡𝑥

(𝑡 + 𝑠) (𝑥 + 𝑦)

× V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑠 𝑑𝑦

(60)

for 𝑡, 𝑥 ∈ 𝐼. We refer to [4, 9, 29, 30] for the case of
the Chandrasekhar and Volterra-Chandrasekhar equations
in one variable.
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Observe that taking the function 𝑔 = 𝑔
𝑖
= 𝑔
𝑖
(𝑦, 𝑧) (𝑖 =

1, 2) appearing in Example 14 we can represent (60) in the
form (16). Obviously, in this case we take

𝑔
1
(𝑡, 𝑠) =

{
{

{
{

{

𝑡 ln 𝑡 + 𝑠

𝑡

for 0 < 𝑠 ≤ 𝑡 ≤ 1

0 for 𝑡 = 0,

𝑔
2
(𝑥, 𝑦) =

{
{

{
{

{

𝑥 ln
𝑥 + 𝑦

𝑥

for 0 < 𝑦 ≤ 𝑥 ≤ 1

0 for 𝑥 = 0.

(61)

Further, using the fact that the function𝑔 satisfies assumption
(v󸀠), we get

sup{

𝑤

⋁

𝑧=0

𝑔 (𝑤, 𝑧) : 𝑤 ∈ 𝐼} = sup {𝑔 (𝑤, 𝑤) : 𝑤 ∈ 𝐼} = ln 2.

(62)

Now,we can formulate an existence theoremconcerning (60).

Theorem 17. Assume that the function ℎ appearing in (60)
satisfies assumption (i), the function 𝑓 = 𝑓(𝑡, 𝑥, 𝑢) satisfies
assumption (ii), and the function V = V(𝑡, 𝑠, 𝑥, 𝑦, 𝑢) satisfies
assumption (vii) of Theorem 10. Apart from this one assumes
that the following condition is satisfied.

(viii󸀠󸀠) There exists a positive solution 𝑟
0
of the inequality

‖ℎ‖𝐶
+ (𝑘𝑟 + 𝐹

1
) 𝜙 (𝑟) ln22 ≤ 𝑟 (63)

such that 𝑘𝜙(𝑟
0
) ln22 < 1.

Then there exists at least one solution 𝑢 = 𝑢(𝑡, 𝑥) of (60) in the
space 𝐶(𝐼

2
), belonging to the ball 𝐵

𝑟0
.

Finally, we consider the functional integral equation having
the form linking equations (56) and (60), that is, the following
integral equation:

𝑢 (𝑡, 𝑥) = ℎ (𝑡, 𝑥) +

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

Γ (𝛼)

× ∫

𝑡

0

∫

𝑥

0

𝑥V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

(𝑥 + 𝑦) (𝑡 − 𝑠)
1−𝛼

𝑑𝑠 𝑑𝑦,

(64)

where, as above, 𝛼 is a fixed number in the interval (0, 1) and
Γ(𝛼) denotes the gamma function.

An existence theorem concerning (64) can be formulated
almost in the same way asTheorems 15 and 17. We need only
to replace assumptions (viii󸀠) and (viii󸀠󸀠) by the following one.

(viii) There exists a positive solution 𝑟
0
of the following

inequality:

‖ℎ‖𝐶
+

(𝑘𝑟 + 𝐹
1
) ln 2

Γ (𝛼 + 1)

𝜙 (𝑟) ≤ 𝑟 (65)

such that 𝑘𝜙(𝑟
0
) ln 2 < Γ(𝛼 + 1).

We omit other details.

5. Final Remarks concerning Possible
Generalizations

In this section we focus briefly on possible generalizations of
results presented in previous sections.

First of all let us notice that instead of the functional
integral equation of Volterra-Stieltjes type in two variables
(16)we can consider the general case of the functional integral
equation of Volterra-Stieltjes type in 𝑛 variables which has the
form

𝑢 (𝑡) = ℎ (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) (𝑉𝑢) (𝑡) , (66)

where we denoted

𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ,

(𝑉𝑢) (𝑡)

= ∫

𝑡1

0

∫

𝑡2

0

⋅ ⋅ ⋅ ∫

𝑡𝑛

0

V (𝑡
1
, 𝑠
1
, 𝑡
2
, 𝑠
2
, . . . , 𝑡

𝑛
, 𝑠
𝑛
, 𝑢 (𝑠
1
, 𝑠
2
, . . . 𝑠
𝑛
))

× 𝑑
𝑠1
𝑔
1
(𝑡
1
, 𝑠
1
) 𝑑
𝑠2
𝑔
2
(𝑡
2
, 𝑠
2
)

⋅ ⋅ ⋅ 𝑑
𝑠𝑛
𝑔
𝑛
(𝑡
𝑛
, 𝑠
𝑛
) .

(67)

We assume here that 𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ 𝐼

𝑛 and the
functions involved in (66) satisfy assumptions similar to
those formulated in Theorem 10. For example, 𝑔

𝑖
: Δ
𝑖
→ R

is a continuous function on the triangle Δ
𝑖
= {(𝑡
𝑖
, 𝑠
𝑖
) : 0 ≤

𝑠
𝑖
≤ 𝑡
𝑖
≤ 1} for 𝑖 = 1, 2, . . . , 𝑛. Apart from this the function 𝑔

𝑖

satisfies assumptions (iv)–(vi) ofTheorem 10 (𝑖 = 1, 2, . . . , 𝑛).
Regarding the function V = V(𝑡

1
, 𝑠
1
, 𝑡
2
, 𝑠
2
, . . . , 𝑡

𝑛
, 𝑠
𝑛
, 𝑢) we

assume that V : Δ
1
× Δ
2
× ⋅ ⋅ ⋅ × Δ

𝑛
× R → R is continuous

and such that
󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠
1
, 𝑡
2
, 𝑠
2
, . . . , 𝑡

𝑛
, 𝑠
𝑛
, 𝑢)

󵄨
󵄨
󵄨
󵄨
≤ 𝜙 (𝑢) (68)

for all (𝑡
𝑖
, 𝑠
𝑖
) ∈ Δ

𝑖
(𝑖 = 1, 2, . . . , 𝑛) and for each 𝑢 ∈ R,

where (similarly as in assumption (vii)) 𝜙 : R
+

→ R
+
is a

nondecreasing function.
Other assumptions concerning (66), that is, assumptions

(i), (ii), and (viii), can be easily adapted to our case.
Let us mention that we can also investigate equations

considered precedingly, that is, (16), (56), (60), and (64),
in the case when we replace the bounded interval 𝐼 by an
unbounded interval, for example, byR

+
. Such a situation was

considered in [10] in the case of the functional integral equa-
tion of Volterra-Stieltjes type in one variable. Obviously, even
in the case of one variable considered in [10], investigations
are very extensive and complicated. On the other hand,
those investigations allow us to study some qualitative aspects
concerning solutions of the equation in question, such as
asymptotic behaviour, stability, and asymptotic stability.

One can expect that in the case of (16), (56), and so forth,
we can also investigate qualitative aspects of solutions of those
equations. Investigations of such a type will appear elsewhere.



Abstract and Applied Analysis 11

Conflict of Interests

The authors declare that there is no conflict of interests in the
submitted paper.

Acknowledgment

This work was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under Grant no.
(363-001-D1434). The authors, therefore, acknowledge with
thanks DSR technical and financial support.

References

[1] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional
Calculus:Models andNumericalMethods,World Scientific,New
York, NY, USA, 2012.

[2] K. Diethelm, The Analysis of Fractional Differential Equations,
Lecture Notes inMathematics, Springer, Berlin, Germany, 2010.

[3] R. Hilfer, Applications of Fractional Calculus in Physics, World
Scientific, River Edge, NJ, USA, 2000.

[4] V. E. Tarasov, Fractional Dynamics: Applications of Fractional
Calculus to Dynamics of Particles, Fields and Media, Nonlinear
Physical Science, Springer, Heidelberg, Germany; Higher Edu-
cation Press, Beijing, China, 2010.

[5] N. T. Dung, “Fractional stochastic differential equations with
applications to finance,” Journal of Mathematical Analysis and
Applications, vol. 397, no. 1, pp. 334–348, 2013.

[6] S. Abbas, M. Benchohra, and G. M. N’Guérékata, Topic in
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We study the second-order neutral delay differential equation [𝑟(𝑡)Φ
𝛾
(𝑧
󸀠
(𝑡))]

󸀠

+ 𝑞(𝑡)Φ
𝛽
(𝑥(𝜎(𝑡))) = 0, where Φ

𝛼
(𝑡) = |𝑡|

𝛼−1
𝑡, 𝛼 ≥ 1

and 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)). Based on the conversion into a certain first-order delay differential equation we provide sufficient
conditions for nonexistence of eventually positive solutions of two different types. We cover both cases of convergent and divergent
integral ∫∞ 𝑟

−1/𝛾

(𝑡)d𝑡. A suitable combination of our results yields new oscillation criteria for this equation. Examples are shown
to exhibit that our results improve related results published recently by several authors. The results are new even in the linear case.

1. Introduction

In the paper we study the equation

[𝑟 (𝑡) Φ
𝛾
(𝑧
󸀠
(𝑡))]

󸀠

+ 𝑞 (𝑡)Φ
𝛽
(𝑥 (𝜎 (𝑡))) = 0,

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) ,

(1)

where Φ
𝛼
(𝑡) = |𝑡|

𝛼−1
𝑡, 𝛼 ≥ 1, is the power type nonlinearity.

The coefficients 𝑟 and 𝑝 are subject to the usual conditions
𝑟 ∈ 𝐶

1
([𝑡
0
,∞),R+), 𝑝 ∈ 𝐶

1
([𝑡
0
,∞),R+

0
) and the coefficient

𝑞 is positive, 𝑞 ∈ 𝐶([𝑡
0
,∞),R+).

We assume that lim
𝑡→∞

𝜏(𝑡) = ∞ = lim
𝑡→∞

𝜎(𝑡),

𝜎 (𝜏 (𝑡)) = 𝜏 (𝜎 (𝑡)) , (2)

and there exist numbers𝑝
0
≥ 0 and 𝜏

0
> 0 such that𝑝(𝑡) ≤ 𝑝

0

and 𝜏
󸀠
(𝑡) ≥ 𝜏

0
.

Under the solution of (1) we understand any differentiable
function 𝑥(𝑡) which does not identically equal zero eventu-
ally, such that 𝑟(𝑡)Φ

𝛾
(𝑧
󸀠
(𝑡)) is differentiable and (1) holds for

large 𝑡.
Following the widely accepted terminology, the solution

of (1) is said to be oscillatory if it has infinitely many zeros
tending to infinity. Equation (1) is said to be oscillatory if all its
solutions are oscillatory. In the opposite case, that is, if there

exists an eventually positive solution of (1), (1) is said to be
nonoscillatory.

In the paper we study nonoscillatory solutions of (1).
Since 𝑥(𝑡) is a solution of (1) if and only if −𝑥(𝑡) is a solution
of (1), we can focus our attention on positive solutions.

The paper is organized as follows. In the remaining part
of the current section we summarize selected important facts
related to (1) and trends in the oscillation theory of this
equation. In Section 2 we summarize tools like inequalities
and oscillation criteria used in the proofs of main results.The
main results are presented in the next three sections. Results
on eventually positive solutions are separated into Sections 3
and 4 according to different asymptotic behavior: 𝑧󸀠(𝑡) > 0

in Section 3 and 𝑧
󸀠
(𝑡) < 0 in Section 4. In both cases we

provide an efficient condition which ensures that solutions
of this type do not exist. Note that under some additional
conditions (namely, divergence of integral (3) below) the
results from Section 3 immediately yield also oscillation
criteria. If (3) fails, we can formulate oscillation criteria
using a suitable combination of results from Sections 3 and
4, as shown in Section 5. The results of the paper improve
several recently published results even in the linear case.
We discuss these improvements in detail in remarks and
examples accompanying the main theorems.
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Neutral differential equation (1) as well as other related
equations have been studied frequently in the literature.There
are two main methods in the oscillation theory of (1). One
of them is based on a modification of the classical Riccati
substitution which is known to be a powerful tool in theory
of second-order linear differential equations. Following this
method, neutral equation (1) is in some sense considered
as a perturbation of some second-order ordinary differential
equation. An alternative approach, used for example, in a
series of papers by Bacuĺıková et al. [1–4] and Li [5] is based
on the fact that it is possible to derive neutral first-order
differential inequality for quasiderivative from (1) and the
resulting inequality can be studied in the scope of theory
elaborated for first-order delay differential inequalities. In
this paper we use the later approach. The resulting theorems
are sometimes referred to as comparison theorems for neutral
differential equations.

Two main approaches are used to put the shift 𝜏(𝑡) in the
differential term under the control. If𝑝(𝑡) < 1, then (1) can be
“majorized” (in the sense of the classical Sturm comparison
theory, which however has no extension to delay equations)
by a delay equation of the form (1) with 𝑝(𝑡) = 0. Oscillation
criteria for second-order delay differential equations can be
then used to conclude results for neutral equation (1) (see,
e.g., [6–8]). An alternative approach deals with a suitable
combination of (1) and the same equation with independent
variable shifted from 𝑡 to 𝜏(𝑡). This approach, which is used
also in our paper, does not require 𝑝(𝑡) < 1 but yields other
restrictions, such as commutativity of the composition of
delays (2).

Neglecting which method is used to study the oscillation
of (1), it turns out that it is necessary to distinguish two cases:
either

∫

∞
1

𝑟
1/𝛾

(𝑡)

d𝑡 = ∞ (3)

or

∫

∞
1

𝑟
1/𝛾

(𝑡)

d𝑡 < ∞. (4)

The absolute majority of oscillation results in the literature
concerns case (3), since in this case the positive solutions of
(1) exhibit simpler behavior than in case (4); see Lemma 5
below. Case (4) has been studied, for example, in [9–16]. Note
that for this case it is typical that the oscillation criterion
consists of two relatively independent conditions. One of
them is used to eliminate positive solutionswith 𝑧󸀠(𝑡) < 0; the
other one to eliminate positive solutions with 𝑧󸀠(𝑡) > 0.There
are also results which treat both cases 𝑧󸀠(𝑡) > 0 and 𝑧

󸀠
(𝑡) < 0

in one unified approach. However, following this approach
a typical conclusion is weaker: the equation is proved to be
almost oscillatory (all nonoscillatory solutions, if exist any,
tend to zero). Note also that the paper [16] does not satisfy
these rules (makes use of unified approach to both cases but
concludes oscillation), but there are several inaccuracies in
this paper; see [10, 17] for corrected version of [16].

In this paper we essentially use the method from [1, 2]
with a modification for case (4) presented in [12]. However,
to keep the influence of each condition as transparent as
possible we used different organization of the paper, as we
explained above.Themain improvementwith respect to these
papers is that we replace inequalities and estimates used in
these papers by suitable parametrized versions depending
on parameters 𝑙 and 𝜑 (see below). This yields criteria with
some degree of freedom and optimization with respect to
the parameters which yields sharper results, as we carefully
explain on examples of equations with proportional delay. A
similar method where we use parameters 𝑙 and 𝜑 to refine the
widely used inequalities has been used in the recent paper
[18].

Finally, note that [12] in fact deals with linear equations
and the extension to nonlinear equations is suggested in
Remark 11 at the end of the paper [12]. However here we use
an advanced technique rather than the method suggested in
[12].

2. Preliminary Results

In the paper we derive results related to the existence or
nonexistence of certain equations and inequalities in terms of
several parameters. The following two lemmas allow to find
the values of the parameters, which yield sharpest results.

The function ℎ introduced in the following lemma plays a
role in a formulation of oscillation criteria in the case 𝛽 ≥ 1.

Lemma 1. Let 𝛽 ≥ 1. The function

ℎ (𝑥, 𝑦) = 𝑥
𝛽−1

+ 𝑦(

𝑥

𝑥 − 1

)

𝛽−1

(5)

satisfies

ℎ (𝑥, 𝑦) ≥ ℎ (1 + 𝑦
1/𝛽

, 𝑦) = (1 + 𝑦
1/𝛽

)

𝛽

, (6)

for every 𝑥 > 1 and 𝑦 > 0.

Proof. It follows from the fact that

𝜕

𝜕𝑥

ℎ (𝑥, 𝑦) = (𝛽 − 1) 𝑥
𝛽−2

[1 −

𝑦

(𝑥 − 1)
𝛽
] (7)

and ℎ as the function of 𝑥 on (1,∞) attains its minimal value
at the point 𝑥 = 1 + 𝑦

1/𝛽 and

ℎ (1 + 𝑦
1/𝛽

, 𝑦) = (1 + 𝑦
1/𝛽

)

𝛽−1

+ 𝑦
1/𝛽

(1 + 𝑦
1/𝛽

)

𝛽−1

= (1 + 𝑦
1/𝛽

)

𝛽

.

(8)

The following functions appear in the examples and allow
to find the optimal values of the parameters which yield the
sharpest result.
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Lemma 2. Let 𝑐
1
, 𝑐
2
be positive numbers.

(i) The function 𝑓(𝑥) = 𝑥
𝑐1 ln(𝑐
2
/𝑥) is increasing on (0,

𝑐
2
𝑒
−1/𝑐1

), decreasing on (𝑐
2
𝑒
−1/𝑐1

,∞), and satisfies

𝑓 (𝑥) ≤

1

𝑐
1
𝑒

𝑐
𝑐1

2 (9)

on (0,∞) with the equality, if and only if 𝑥 = 𝑐
2
𝑒
−1/𝑐1 .

(ii) The function 𝑔(𝑥) = 𝑥
−𝑐1 ln(𝑥/𝑐

2
) is increasing on (0,

𝑐
2
𝑒
1/𝑐1

), decreasing on (𝑐
2
𝑒
1/𝑐1

,∞), and satisfies

𝑔 (𝑥) ≤

1

𝑐
1
𝑒

𝑐
−𝑐1

2 (10)

on (0,∞) with the equality, if and only if 𝑥 = 𝑐
2
𝑒
1/𝑐1 .

Proof. By a direct computation

𝑓
󸀠
(𝑥) = 𝑥

𝑐1−1
(𝑐
1
ln 𝑐
2

𝑥

− 1) . (11)

Hence 𝑓(𝑥) has a local maximum at the point 𝑥
0
= 𝑐
2
𝑒
−1/𝑐1

and the value of this local maximum is 𝑐𝑐1
2
/𝑐
1
𝑒. Similarly,

𝑔
󸀠
(𝑥) = 𝑥

−1−𝑐1
(1 − 𝑐

1
ln 𝑥

𝑐
2

) , (12)

and hence 𝑔(𝑥) has a local maximum at the point 𝑥
1
= 𝑐
2
𝑒
1/𝑐1

and the maximal value is (1/𝑐
1
𝑒)𝑐
−𝑐1

2
.

Lemma 3. Let 𝐴 ≥ 0, 𝐵 ≥ 0, 𝛽 ≥ 1, 𝑙 > 1, 𝑙∗ = 𝑙/(𝑙 − 1). Then

(𝐴 + 𝐵)
𝛽
≤ 𝑙
𝛽−1

𝐴
𝛽
+ (𝑙
∗
)
𝛽−1

𝐵
𝛽
. (13)

Proof. From the fact that the function 𝑥𝛽 is a convex function
for 𝛽 ≥ 1 we have

(

1

𝑙

𝑎 +

1

𝑙
∗
𝑏)

𝛽

≤

1

𝑙

𝑎
𝛽
+

1

𝑙
∗
𝑏
𝛽 (14)

for nonnegative 𝑎 and 𝑏. From here we obtain the desired
inequality for 𝐴 = 𝑎/𝑙 and 𝐵 = 𝑏/𝑙

∗.

Lemma 4. Let 𝛽 ≥ 1. The inequality

𝑙
𝛽−1

𝑥
𝛽
(𝜎 (𝑡)) + (𝑙

∗
)
𝛽−1

𝑝
𝛽
(𝜎 (𝑡)) 𝑥

𝛽
(𝜎 (𝜏 (𝑡))) ≥ 𝑧

𝛽
(𝜎 (𝑡))

(15)

holds for positive mutually conjugate numbers 𝑙, 𝑙∗ and every 𝑡
which satisfies 𝑥(𝜎(𝑡)) ≥ 0 and 𝑥(𝜎(𝜏(𝑡))) ≥ 0.

Proof. It follows from Lemma 3, from the definition of 𝑧(𝑡)
and from condition (2).

The following lemma is well known in theory of neutral
differential equations. It states (among others) that if 𝑥 is an
eventually positive solution, then 𝑧

󸀠 is eventually of one sign
and the negative sign of 𝑧󸀠 is excluded if (3) holds.

Lemma 5. Let 𝑥(𝑡) be an eventually positive solution of (1).
The corresponding function 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)) satisfies

𝑧 (𝑡) > 0, 𝑧
󸀠
(𝑡) > 0, (𝑟 (𝑡) Φ

𝛾
(𝑧
󸀠
(𝑡)))

󸀠

< 0 (16)

eventually if (3) holds and either (16) or

𝑧 (𝑡) > 0, 𝑧
󸀠
(𝑡) < 0, (𝑟 (𝑡) Φ

𝛾
(𝑧
󸀠
(𝑡)))

󸀠

< 0 (17)

eventually if (4) holds.

Proof. It follows from [7, Lemma 10] and from the proof of
that lemma.

In the following lemma we summarize effective oscil-
lation criteria for delay and advanced first-order equation
which appear in the analysis of (1). Note that (iii) is sharper
version of the related condition from [2, Lemma 4].

Lemma 6. Let 𝑞(𝑡) ≥ 0.
(i) If 𝜎(𝑡) < 𝑡 and

lim inf
𝑡→∞

∫

𝑡

𝜎(𝑡)

𝑞 (𝑠) 𝑑𝑠 >

1

𝑒

, (18)

then

𝑦
󸀠
(𝑡) + 𝑞 (𝑡) 𝑦 (𝜎 (𝑡)) ≤ 0 (19)

has no eventually positive solution.
(ii) If 𝜎(𝑡) > 𝑡 and

lim inf
𝑡→∞

∫

𝜎(𝑡)

𝑡

𝑞 (𝑠) 𝑑𝑠 >

1

𝑒

, (20)

then

𝑦
󸀠
(𝑡) − 𝑞 (𝑡) 𝑦 (𝜎 (𝑡)) ≥ 0 (21)

has no eventually positive solution.
(iii) Let 𝜎(𝑡) < 𝑡, 𝛼 ∈ (0, 1). If

∫

∞

𝑡0

𝑞 (𝑠) 𝑑𝑠 = ∞, (22)

then

𝑦
󸀠
(𝑡) + 𝑞 (𝑡) 𝑦

𝛼
(𝜎 (𝑡)) ≤ 0 (23)

has no eventually positive solution.
(iv) Let 𝜎(𝑡) > 𝑡, 𝛼 ∈ (1,∞). If

∫

∞

𝑡0

𝑞 (𝑠) 𝑑𝑠 = ∞, (24)

then

𝑦
󸀠
(𝑡) − 𝑞 (𝑡) 𝑦

𝛼
(𝜎 (𝑡)) ≥ 0 (25)

has no eventually positive solution.

Proof. See [9, Lemmas 2.1–2.4] and [19, Lemma 2.2.9]. Note
that the original proof of condition (i) is due to [20] and the
proofs of conditions (iii) and (iv) for equations are due to [21].



4 Abstract and Applied Analysis

3. Positive Solutions with 𝑧
󸀠
(𝑡) > 0 Eventually

In this sectionwe give sufficient conditions which exclude the
possibility that the equation possesses an eventually positive
solution 𝑥(𝑡) such that the corresponding function 𝑧(𝑡) is
eventually increasing. Note that Lemma 5 excludes other
types of eventually positive solutions if (3) holds. Hence if
(3) holds as well, then the criteria from this section guarantee
oscillation of (1).

Denote

𝑄 (𝑡; 𝜑) = min {𝑞 (𝑡) , 𝜑𝑞 (𝜏 (𝑡))} , (26)

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) = 𝑄 (𝑡; 𝜑) [∫

𝜂(𝑡)

𝑡1

𝑟
−1/𝛾

(𝑠) d𝑠]
𝛽

. (27)

The following theorem allows us to relate positive solu-
tions of (1) with a certain first-order neutral equation. This
neutral equation can be further compared with a certain
nonneutral differential equation.The form of this nonneutral
differential equation depends on the fact whether the deviat-
ing argument 𝜏(𝑡) in the differential term is delay or advanced
argument. If 𝜑 = 1, 𝜂 ≡ 𝜎, and 𝑙 = 2, thenTheorem 7 reduces
to [2, Theorems 4, 5 and 6].

Theorem 7. Let 𝛽 ≥ 1, 𝜑 > 0, 𝑙 > 1 and 𝜂(𝑡) a function which
satisfies 𝜂(𝑡) ≤ 𝜎(𝑡) and lim

𝑡→∞
𝜂(𝑡) = ∞. Suppose that there

exists a number 𝑇 > 𝑡
0
and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (28)

Let 𝑡
1
> 𝑇 be such that

min {𝜂 (𝜏 (𝑡)) , 𝜂 (𝑡)} > 𝑇 (29)

for every 𝑡 ≥ 𝑡
1
and let 𝑡

2
≥ 𝑡
1
be such that 𝜂(𝑡) ≥ 𝑡

1
for 𝑡 ≥ 𝑡

2
.

Then the following statements are true.

(i) The inequality

[𝑙
𝛽−1

𝑤 (𝑡) +

𝑝
𝛽

0
𝜑

𝜏
0

(𝑙
∗
)
𝛽−1

𝑤 (𝜏 (𝑡))]

󸀠

+𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) 𝑤
𝛽/𝛾

(𝜂 (𝑡)) ≤ 0

(30)

has a positive decreasing solution on (𝑡
2
,∞).

(ii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦
󸀠
+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) ℎ
−𝛽/𝛾

(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜂 (𝑡)) ≤ 0 (31)

has a positive solution on (𝑡
2
,∞).

(iii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦
󸀠
+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) ℎ
−𝛽/𝛾

(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜏
−1
(𝜂 (𝑡))) ≤ 0

(32)

has a positive solution on (𝑡
2
,∞).

Proof. Let 𝑥(𝑡) be a solution of (1) which satisfies 𝑥(𝑡) > 0

and 𝑧
󸀠
(𝑡) > 0 for 𝑡 ≥ 𝑇. Inequalities (15), 𝑝(𝑡) ≤ 𝑝

0
, and

𝜂(𝑡) ≤ 𝜎(𝑡) imply

𝑙
𝛽−1

𝑥
𝛽
(𝜎 (𝑡)) + (𝑙

∗
)
𝛽−1

𝑝
𝛽

0
𝑥
𝛽
(𝜎 (𝜏 (𝑡))) ≥ 𝑧

𝛽
(𝜂 (𝑡)) (33)

for 𝑡 ≥ 𝑡
1
.

We shift (1) from 𝑡 to 𝜏(𝑡) and get

0 =

1

𝜏
󸀠
(𝑡)

[𝑟 (𝜏 (𝑡)) Φ
𝛾
(𝑧
󸀠
(𝜏 (𝑡)))]

󸀠

+ 𝑞 (𝜏 (𝑡)) Φ
𝛽
(𝑥 (𝜎 (𝜏 (𝑡))))

≥

1

𝜏
0

[𝑟 (𝜏 (𝑡)) Φ
𝛾
(𝑧
󸀠
(𝜏 (𝑡)))]

󸀠

+ 𝑞 (𝜏 (𝑡)) Φ
𝛽
(𝑥 (𝜎 (𝜏 (𝑡)))) .

(34)

Substituting Φ
𝛽
(𝑥(𝜎(𝜏(𝑡)))) from this inequality and

Φ
𝛽
(𝑥(𝜎(𝑡))) from (1) to (33) and using (26) we obtain

0 ≥ 𝑙
𝛽−1

[𝑟 (𝑡) Φ
𝛾
(𝑧
󸀠
(𝑡))]

󸀠

+

(𝑙
∗
)
𝛽−1

𝑝
𝛽

0
𝜑

𝜏
0

× [𝑟 (𝜏 (𝑡)) Φ
𝛾
(𝑧
󸀠
(𝜏 (𝑡)))]

󸀠

+ 𝑄 (𝑡; 𝜑) 𝑧
𝛽
(𝜂 (𝑡)) ,

(35)

for 𝑡 ≥ 𝑡
1
. Denoting 𝑤(𝑡) = 𝑟(𝑡)Φ

𝛾
(𝑧
󸀠
(𝑡)) and using the

obvious fact that 𝑤 is positive and decreasing on (𝑡
1
,∞) we

have

𝑧 (𝑡) = ∫

𝑡

𝑡1

𝑤
1/𝛾

(𝑠) 𝑟
−1/𝛾

(𝑠) d𝑠 ≥ 𝑤
1/𝛾

(𝑡) ∫

𝑡

𝑡1

𝑟
−1/𝛾

(𝑠) d𝑠

(36)

for 𝑡 ≥ 𝑡
1
. Thus 𝑤 is an eventually positive and eventually

decreasing solution of (30) and claim (i) is proved.
Denote

𝑦 (𝑡) = 𝑙
𝛽−1

𝑤 (𝑡) +

𝑝
𝛽

0
𝜑

𝜏
0

(𝑙
∗
)
𝛽−1

𝑤 (𝜏 (𝑡)) . (37)

Since 𝑤 is a positive decreasing function, we have 𝑤(𝑡) ≥

𝑤(𝜏(𝑡)) for 𝑡 ≤ 𝜏(𝑡) and 𝑤(𝑡) ≤ 𝑤(𝜏(𝑡)) for 𝑡 ≥ 𝜏(𝑡). Hence if
𝑡 ≤ 𝜏(𝑡) we have

𝑦 (𝑡) ≤ 𝑤 (𝑡) (𝑙
𝛽−1

+

𝑝
𝛽

0
𝜑

𝜏
0

(𝑙
∗
)
𝛽−1

) = 𝑤 (𝑡) ℎ(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

) ,

(38)

where the function ℎ is defined by (5), and, if 𝑡 ≥ 𝜏(𝑡), then
similarly

𝑦 (𝑡) ≤ 𝑤 (𝜏 (𝑡)) ℎ(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

) . (39)

Hence we have

𝑤
𝛽/𝛾

(𝜂 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜂 (𝑡)) , (40)
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if 𝑡 ≤ 𝜏(𝑡), and

𝑤
𝛽/𝛾

(𝜂 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜏
−1
(𝜂 (𝑡))) (41)

if 𝑡 ≥ 𝜏(𝑡). This and claim (i) prove claims (ii) and (iii) since
in each case we have found an eventually positive solution 𝑦

of the corresponding inequality.

Remark 8. Note that in the proof of Theorem 7 we con-
structed the solutions of the inequalities (30), (31), and (32).

In the following corollary we give an efficient condition
for nonexistence of the solutions mentioned in the points (ii)
and (iii) ofTheorem 7. According to Lemma 6 we distinguish
the cases 𝛾 = 𝛽 and 𝛾 ̸=𝛽.

Corollary 9. Let 𝛾 ≥ 𝛽 ≥ 1. Equation (1) has no solution 𝑥(𝑡)

which satisfies

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) > 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (42)

if there exists number 𝜑 > 0 and a function 𝜂(𝑡) satisfying
𝜂(𝑡) ≤ 𝜎(𝑡) and lim

𝑡→∞
𝜂(𝑡) = ∞ such that one of the fol-

lowing conditions holds.

(i) 𝜂(𝑡) < 𝑡 ≤ 𝜏(𝑡) and for every 𝑇 there exists 𝑡
1
> 𝑇 such

that

lim inf
𝑡→∞

∫

𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) 𝑑𝑠 >

1

𝑒

(1 + (

𝜑

𝜏
0

)

1/𝛽

𝑝
0
)

𝛽
2
/𝛾

(43)

if 𝛽 = 𝛾, and

∫

∞

𝑡0

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) 𝑑𝑡 = ∞ (44)

if 𝛽 < 𝛾.
(ii) 𝜂(𝑡) < 𝜏(𝑡) ≤ 𝑡 and for every 𝑇 there exists 𝑡

1
> 𝑇 such

that

lim inf
𝑡→∞

∫

𝑡

𝜏
−1
(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) 𝑑𝑠 >

1

𝑒

(1 + (

𝜑

𝜏
0

)

1/𝛽

𝑝
0
)

𝛽
2
/𝛾

(45)

if 𝛽 = 𝛾, and (44) holds if 𝛽 < 𝛾.

Proof. It follows fromTheorem 7 and Lemmas 6 and 1.

In the following example we compare our results with the
results of [1]. Note that in this example (3) holds and hence
the results of this section ensure oscillation of the equation.

Example 10 (linear equation). Bacuĺıková and Džurina stud-
ied in [1] differential equation

(√𝑡[𝑥 (𝑡) + 𝑝
0
𝑥 (𝛼𝑡)]

󸀠

)

󸀠

+

𝑎

𝑡
3/2

𝑥 (𝜇𝑡) = 0, (46)

where 0 < 𝜇 < 1, 𝛼 > 0, 𝑎 > 0, and obtained that the equation
is oscillatory if either

𝛼 ≥ 1, 2𝑎√𝜇 ln 1

𝜇

>

1

𝑒

(𝛼
3/2

+ 𝑝
0
√𝛼) (47)

or

0 < 𝜇 < 𝛼 ≤ 1, 2𝑎√𝜇 ln 𝛼

𝜇

>

𝛼 + 𝑝
0

𝛼𝑒

. (48)

We have 𝛾 = 𝛽 = 1, 𝜏(𝑡) = 𝛼𝑡, 𝜎(𝑡) = 𝜇𝑡, 𝑟(𝑡) = √𝑡, 𝑞(𝑡) =
𝑎𝑡
−3/2, 𝑞(𝜏(𝑡)) = 𝑎(𝛼𝑡)

−3/2, and

∫ 𝑟
−1/𝛾

(𝑡) d𝑡 = ∫ 𝑡
−1/2d𝑡 = 2√𝑡, (49)

and hence (3) holds. Using Corollary 9 with 𝜂(𝑡) = 𝜆𝑡, 𝜆 ≤ 𝜇

and 𝜑 = 𝛼
3/2 we have 𝑄(𝑡) = 𝑞(𝑡) and consequently,

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) =

𝑎

𝑡
3/2

[2√𝜆√𝑡 − 2√𝑡
1
] ,

lim inf
𝑡→∞

∫

𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) d𝑠 = 2𝑎√𝜆 ln 1

𝜆

,

lim inf
𝑡→∞

∫

𝑡

𝜏
−1
(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) d𝑠 = 2𝑎√𝜆 ln 𝛼

𝜆

.

(50)

Hence, (46) is oscillatory if either

𝛼 ≥ 1, 2𝑎√𝜆 ln 1

𝜆

>

1

𝑒

(1 + √𝛼𝑝
0
) (51)

or

0 < 𝜆 < 𝛼 ≤ 1, 2𝑎√𝜆 ln 𝛼

𝜆

>

1

𝑒

(1 + √𝛼𝑝
0
) . (52)

Even in case 𝜇 = 𝜆, if we view the right hand sides as linear
functions of𝑝

0
, we easily see from the slope and𝑦-intercept of

these lines that these conditions are sharper than those from
[1]. Note that the fact that the equation is linear causes that
the parameter 𝑙 does not have any influence on the sharpenes
of these conditions, since the function ℎ from Lemma 1 is a
constant function with respect to the first variable for 𝛽 = 1.
Hence, the improvement with respect to the results from [1]
is purely in the presence of the parameter 𝜑 in the definition
of the function 𝑄. Figure 1 reveals also different asymptotic
behavior of the right hand sides of (51) and (52) with respect
to the corresponding constants from (47) and (48). Based on
this fact we see that the improvement is significant especially
if 𝛼 is sufficiently far from 1.

When looking for optimal conditions for oscillation of
(46) it is easy to ensure that the case 𝜆 = 𝜇 is not optimal
for every 𝜇. Really, if we replace inequality signs in (51) and
(52) by equality signs and view the resulting equality as a
formula which defines 𝑎 as a function of 𝜆, we get U-shaped
function with one local minimum (see Figure 2). Since 𝜆 can
be any positive number smaller than 𝜇, it turns out that the
optimal choice for 𝜆 is 𝜆 = 𝜇 on the decreasing part and 𝜆 =

𝜆max on the increasing part, where 𝜆max is the point where
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𝛼
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Figure 1: The graph of right hand sides (RHS) of (47) and (48) for
𝑝
0
= 0.8 compared to (51) and (52) as functions of 𝛼.

the function √𝜆 ln(𝛼/𝜆) attains its global maximum. Using
Lemma 2, we have 𝜆max = 𝛼/𝑒

2 and √𝜆 ln(𝛼/𝜆) ≤ (2√𝛼/𝑒).
Hence we get that the equation is oscillatory if

𝑎 > 𝑎crit.

:=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

4

(1 + √𝛼𝑝
0
) for 𝛼 ≥ 1, 𝜇 ≥

1

𝑒
2
,

1

4√𝛼

(1 + √𝛼𝑝
0
) for 𝛼 ≤ 1, 𝜇 ≥

𝛼

𝑒
2
,

1

2𝑒√𝜇 ln (1/𝜇)
(1 + √𝛼𝑝

0
) for 𝛼 ≥ 1, 𝜇 ≤

1

𝑒
2
,

1

2𝑒√𝜇 ln (𝛼/𝜇)
(1 + √𝛼𝑝

0
) for 𝛼 ≤ 1, 𝜇 ≤

𝛼

𝑒
2
.

(53)

From the graphical point of view these conditions arise from
(51) and (52) by isolating 𝑎 and replacing the increasing part
of the resulting curve by a constant function; see Figure 2 for
more details and for comparison with the oscillation constant
resulting from (48).

Example 11 (half-linear equation). Consider the differential
equation

(𝑡
2
[(𝑥 (𝑡) + (3 + sin 𝑡) 𝑥 (𝛼𝑡))󸀠]

3

)

󸀠

+

𝑏

𝑡
2
𝑥
3
(𝜇𝑡) = 0,

𝜇 < 1, 𝑎 > 0.

(54)

We have 𝛽 = 𝛾 = 3, 𝜏(𝑡) = 𝛼𝑡, 𝜎(𝑡) = 𝜇𝑡, 𝑝
0
= 4, 𝜏

0
= 𝛼,

𝑟(𝑡) = 𝑡
2, 𝑞(𝑡) = 𝑏/𝑡

2, 𝑞(𝜏(𝑡)) = 𝑏/(𝛼𝑡)
2 and,

∫ 𝑟
−1/𝛾

(𝑡) d𝑡 = ∫ 𝑡
−2/3d𝑡 = 3𝑡

1/3
, (55)

a

0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1

U-shaped function:

Corollary 9 with optimal 𝜂,

Example 1 of  [1]:

𝜇

2a√𝜇 ln
𝛼

𝜇
=

1

e

𝛼 + p0

𝛼

2a√𝜇 ln
𝛼

𝜇
=

1

e
(1 + √𝛼)

i.e., a = acrit . , acrit . defined by (53)

Figure 2: A comparison of the lower bounds for the coefficient
𝑎 which guarantee oscillation of (46) for different values of 𝜇.
Parameters used for the graphs are 𝛼 = 0.6 and 𝑝

0
= 0.8.

and hence condition (3) holds. Using results of Bacuĺıková
and Džurina [2, Corollaries 3 and 4] we obtain that (54) is
oscillatory if

𝛼 ≥ 1, 27𝑒𝑏𝜇 ln 1

𝜇

> 4𝛼
2
(1 +

4
3

𝛼

) (56)

or

0 < 𝜇 < 𝛼 ≤ 1, 27𝑒𝑏𝜇 ln 𝛼

𝜇

> 4(1 +

4
3

𝛼

) . (57)

Using Corollary 9 with 𝜂(𝑡) = 𝜆𝑡, 𝜆 ≤ 𝜇 and 𝜑 = 𝛼
2 we have

𝑄(𝑡; 𝜑) = 𝑞(𝑡) and consequently,

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) =

27𝑏

𝑡
2
[𝜆
1/3

𝑡
1/3

− 𝑡
1/3

1
]

3

. (58)

Hence,

lim inf
𝑡→∞

∫

𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) d𝑠 = 27𝑏𝜆 ln 1

𝜆

,

lim inf
𝑡→∞

∫

𝑡

𝜏
−1
(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) d𝑠 = 27𝑏𝜆 ln 𝛼

𝜆

(59)

and (54) is oscillatory if

𝛼 ≥ 1, 27𝑒𝑏𝜆 ln 1

𝜆

> (1 + 4𝛼
1/3

)

3

(60)

or

0 < 𝜆 < 𝛼 ≤ 1, 27𝑒𝑏𝜆 ln 𝛼

𝜆

> (1 + 4𝛼
1/3

)

3

. (61)

If 𝜆 = 𝜇, the comparison of our lower bound (1 + 4𝛼
1/3

)
3 and

the upper bound 4(1 + 4
3
/𝛼) if 𝛼 < 1 and 4𝛼

2
(1 + 4

3
/𝛼) if

𝛼 > 1 is on Figure 3. Note that in contrast to the linear case,
both curves do not intersect at 𝛼 = 1.
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Figure 3: The graph of right hand sides (RHS) of (56) and (57) for
𝑝
0
= 4 compared to (60) and (61) as functions of 𝛼.

The function 𝑓(𝜆) = 𝜆 ln(𝛼/𝜆) is positive on the interval
(0, 𝛼) and it follows from Lemma 1 that the maximal value of
𝑓(𝜆) is 𝛼/𝑒 at the point 𝜆 = 𝛼/𝑒. Hence, (54) is oscillatory if

𝑏 > 𝑏crit.

:=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

27

(1 + 4𝛼
1/3

)

3

for𝛼 ≥ 1, 𝜇 ≥

1

𝑒

,

1

27𝛼

(1 + 4𝛼
1/3

)

3

for𝛼 ≤ 1, 𝜇 ≥

𝛼

𝑒

,

1

27𝑒𝜇 ln (1/𝜇)
(1 + 4𝛼

1/3
)

3

for𝛼 ≥ 1, 𝜇 ≤

1

𝑒

,

1

27𝑒𝜇 ln (𝛼/𝜇)
(1 + 4𝛼

1/3
)

3

for𝛼 ≤ 1, 𝜇 ≤

𝛼

𝑒

.

(62)

Figure 4 shows how the critical constant which ensures
oscillation of (54) is improved with respect to the results of
[2] (dashed line) for various values of the delay 𝜇. For readers
convenience we graphed also a dotted curve which is only
partial improvement of [2]: the values of 𝑙 and 𝜂 are chosen as
in [2] and the value of 𝜑 (which plays role in𝑄) is choosen to
equal to 𝑞(𝑡)/𝑞(𝜏(𝑡)).

The following theorem and corollary are variants of
Theorem 7 and Corollary 9 for sublinear case 𝛽 ≤ 1.

Theorem 12. Let 𝛽 ≤ 1, 𝜑 > 0, and 𝜂(𝑡) a function which
satisfies 𝜂(𝑡) ≤ 𝜎(𝑡) and lim

𝑡→∞
𝜂(𝑡) = ∞. Suppose that there

exists a number 𝑇 > 𝑡
0
and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (63)

Let 𝑡
1
> 𝑇 be such that

min {𝜂 (𝜏 (𝑡)) , 𝜂 (𝑡)} > 𝑇 (64)

for every 𝑡 ≥ 𝑡
1
and let 𝑡

2
≥ 𝑡
1
be such that 𝜂(𝑡) ≥ 𝑡

1
for 𝑡 ≥ 𝑡

2
.

Then the following statements are true.

b

𝜇

0.1 0.2 0.3 0.4

20

40

60

80

100

Oscillation condition for (32)

Corollaries 3 and 4 of  [2]:

Corollary 9 with optimal 𝜂,
i.e., b = bcrit . , bcrit . given by (62)

with l = 2 and 𝜂 ≡ 𝜎:

27eb𝜇 ln
𝛼

𝜇
= 4(1 + 43/𝛼)

27eb𝜇 ln
𝛼

𝜇
= 4(1 + 43𝛼)

Figure 4: A comparison of the lower bounds for the coefficient
𝑏 which guarantee oscillation of (54) for different values of 𝜇.
Parameters are 𝛼 = 0.4 and 𝑝

0
= 4.

(i) The inequality

[𝑤 (𝑡) +

𝑝
𝛽

0
𝜑

𝜏
0

𝑤 (𝜏 (𝑡))]

󸀠

+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) 𝑤
𝛽/𝛾

(𝜂 (𝑡)) ≤ 0

(65)

has a positive decreasing solution on (𝑡
2
,∞).

(ii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦
󸀠
+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
)(

𝜏
0

𝜏
0
+ 𝑝
𝛽

0
𝜑

)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜂 (𝑡)) ≤ 0 (66)

has a positive solution on (𝑡
2
,∞).

(iii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦
󸀠
+ 𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
)(

𝜏
0

𝜏
0
+ 𝑝
𝛽

0
𝜑

)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜏
−1
(𝜂 (𝑡))) ≤ 0

(67)

has a positive solution on (𝑡
2
,∞).

Proof. The proof is the same as the proof ofTheorem 7 where
we formally put 𝑙 = 𝑙

∗
= 1 and use

(𝐴 + 𝐵)
𝛽
≤ 𝐴
𝛽
+ 𝐵
𝛽 (68)

instead of Lemma 3.

Corollary 13. Let 𝛽 ≤ 1, 𝛾 ≥ 𝛽. Equation (1) has no solution
𝑥(𝑡) which satisfies

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) > 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (69)

if there exists 𝜑 > 0 and a function 𝜂(𝑡) satisfying 𝜂(𝑡) ≤ 𝜎(𝑡)

and lim
𝑡→∞

𝜂(𝑡) = ∞ such that one of the following conditions
holds.
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(i) 𝜂(𝑡) < 𝑡 ≤ 𝜏(𝑡) and for every 𝑇 there exists 𝑡
1
> 𝑇 such

that

lim inf
𝑡→∞

∫

𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) 𝑑𝑠 >

1

𝑒

(

𝜏
0
+ 𝑝
𝛽

0
𝜑

𝜏
0

)

𝛽/𝛾

(70)

if 𝛽 = 𝛾, and (44) holds if 𝛽 < 𝛾.
(ii) 𝜂(𝑡) < 𝜏(𝑡) ≤ 𝑡 and for every 𝑇 there exists 𝑡

1
> 𝑇 such

that

lim inf
𝑡→∞

∫

𝑡

𝜏
−1
(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) 𝑑𝑠 >

1

𝑒

(

𝜏
0
+ 𝑝
𝛽

0
𝜑

𝜏
0

)

𝛽/𝛾

(71)

if 𝛽 = 𝛾, and (44) holds if 𝛽 < 𝛾.

Proof. It follows fromTheorem 12 and Lemmas 6 and 1.

Remark 14. If𝜑 = 1 and 𝜂(𝑡) = 𝜎(𝑡), thenTheorem 12 reduces
to [2, Theorems 1, 2, and 3] and Corollary 13 reduces to [2,
Corollaries 1 and 2].

4. Positive Solutions with 𝑧
󸀠
(𝑡) < 0 Eventually

In this section we modify the methods from previous section
for positive solutions 𝑥(𝑡) which satisfy 𝑧󸀠(𝑡) < 0 eventually.
Troughout this section we will suppose that (4) holds, since
if it fails, then evetually positive solutions with 𝑧

󸀠
(𝑡) < 0

eventually do not exist.
The function 𝑄

⋆

𝜁
defined by the relation

𝑄
⋆

𝜁
(𝑡; 𝜑) = 𝑄 (𝑡; 𝜑) [∫

∞

𝜁(𝑡)

𝑟
−1/𝛾

(𝑠) d𝑠]
𝛽

(72)

and the following Theorem 15 are the corresponding modifi-
cations of the function 𝑄

∗

𝜂
andTheorem 7.

Theorem 15. Let 𝛽 ≥ 1, 𝜑 > 0, 𝑙 > 1, and let 𝜁(𝑡) be a function
which satisfies 𝜁(𝑡) ≥ 𝜎(𝑡). Suppose that there exists a number
𝑇 > 𝑡
0
and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) < 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (73)

Let 𝑡
1
> 𝑇 be such that

min {𝜎 (𝑡) , 𝜎 (𝜏 (𝑡))} > 𝑇 (74)

for every 𝑡 ≥ 𝑡
1
. Then the following statements are true.

(i) The inequality

[𝑙
𝛽−1

𝑢 (𝑡) +

𝑝
𝛽

0
𝜑

𝜏
0

(𝑙
∗
)
𝛽−1

𝑢 (𝜏 (𝑡))]

󸀠

− 𝑄
⋆

𝜁
(𝑡; 𝜑) 𝑢

𝛽/𝛾
(𝜁 (𝑡)) ≥ 0

(75)

has a positive increasing solution on (𝑡
1
,∞).

(ii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦
󸀠
− 𝑄
⋆

𝜁
(𝑡; 𝜑) ℎ

−𝛽/𝛾
(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜁 (𝑡)) ≥ 0 (76)

has a positive solution on (𝑡
1
,∞).

(iii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦
󸀠
− 𝑄
⋆

𝜁
(𝑡; 𝜑) ℎ

−𝛽/𝛾
(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜏
−1
(𝜁 (𝑡))) ≥ 0 (77)

has a positive solution on (𝑡
1
,∞).

Proof. Let 𝑥 be a solution of (1) which satisfies 𝑥(𝑡) > 0 and
𝑧
󸀠
(𝑡) < 0 for 𝑡 > 𝑇. Inequalities (15),𝑝(𝑡) ≤ 𝑝

0
, and 𝜁(𝑡) ≥ 𝜎(𝑡)

imply

𝑙
𝛽−1

𝑥
𝛽
(𝜎 (𝑡)) + (𝑙

∗
)
𝛽−1

𝑝
𝛽

0
𝑥
𝛽
(𝜎 (𝜏 (𝑡))) ≥ 𝑧

𝛽
(𝜁 (𝑡)) . (78)

Combining this inequality with (1) and (1) shifted from 𝑡 to
𝜏(𝑡), similarly as in the proof of Theorem 7, we obtain

0 ≥ 𝑙
𝛽−1

[𝑟 (𝑡) Φ
𝛾
(𝑧
󸀠
(𝑡))]

󸀠

+

(𝑙
∗
)
𝛽−1

𝑝
𝛽

0
𝜑

𝜏
0

× [𝑟 (𝜏 (𝑡)) Φ
𝛾
(𝑧
󸀠
(𝜏 (𝑡)))]

󸀠

+ 𝑄 (𝑡; 𝜑) 𝑧
𝛽
(𝜁 (𝑡))

(79)

for 𝑡 ≥ 𝑡
1
. The function 𝑤 defined by 𝑤(𝑡) = 𝑟(𝑡)Φ

𝛾
(𝑧
󸀠
(𝑡)) is

negative and decreasing. Hence for 𝑠 ≥ 𝑡 we have

𝑟 (𝑠)Φ
𝛾
(𝑧
󸀠
(𝑠)) ≤ 𝑟 (𝑡) Φ

𝛾
(𝑧
󸀠
(𝑡)) ,

𝑧
󸀠
(𝑠) ≤ 𝑧

󸀠
(𝑡) Φ
−1

𝛾
(

𝑟 (𝑡)

𝑟 (𝑠)

)

(80)

and hence

𝑧 (𝑙) − 𝑧 (𝑡) ≤ Φ
−1

𝛾
(𝑟 (𝑡)) 𝑧

󸀠
(𝑡) ∫

𝑙

𝑡

𝑟
−1/𝛾

(𝑠) d𝑠. (81)

Since lim
𝑙→∞

𝑧(𝑙) ≥ 0 we have

−𝑧 (𝑡) ≤ Φ
−1

𝛾
(𝑟 (𝑡)) 𝑧

󸀠
(𝑡) ∫

∞

𝑡

𝑟
−1/𝛾

(𝑠) d𝑠, (82)

which implies

𝑧
𝛽
(𝜁 (𝑡)) ≥ (−𝑤 (𝜁 (𝑡)))

𝛽/𝛾
[∫

∞

𝜁(𝑡)

𝑟
−1/𝛾

(𝑠) d𝑠]
𝛽

. (83)

Combining this inequality with (79) and multiplying by −1

we find that 𝑢(𝑡) = −𝑤(𝑡) is a positive and increasing solution
of (75). Claim (i) is proved. Denote

𝑦 (𝑡) = 𝑙
𝛽−1

𝑤 (𝑡) +

𝑝
𝛽

0
𝜑

𝜏
0

(𝑙
∗
)
𝛽−1

𝑤 (𝜏 (𝑡)) . (84)

Since 𝑢(𝑡) is positive and increasing, we have 𝑢(𝜏(𝑡)) ≤ 𝑢(𝑡)

for 𝜏(𝑡) ≤ 𝑡 and 𝑢(𝜏(𝑡)) ≥ 𝑢(𝑡) for 𝜏(𝑡) ≥ 𝑡. Hence, if 𝜏(𝑡) ≤ 𝑡,
we have

𝑦 (𝑡) ≤ 𝑢 (𝑡) ℎ(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

) , (85)

which implies

𝑢
𝛽/𝛾

(𝜁 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜁 (𝑡)) . (86)
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Analogously, if 𝜏(𝑡) ≥ 𝑡,

𝑦 (𝑡) ≤ 𝑢 (𝜏 (𝑡)) ℎ(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

) , (87)

which implies

𝑢
𝛽/𝛾

(𝜁 (𝑡)) ≥ ℎ
−𝛽/𝛾

(𝑙,

𝑝
𝛽

0
𝜑

𝜏
0

)𝑦
𝛽/𝛾

(𝜏
−1
(𝜁 (𝑡))) . (88)

Claims (ii) and (iii) then follow from (i) and positivity of 𝑦.

Corollary 16. Let 𝛽 ≥ 1 and 𝛽 ≥ 𝛾. Equation (1) has no
solution 𝑥(𝑡) which satisfies

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) < 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (89)

if there exists 𝜑 > 0 and a function 𝜁(𝑡) satisfying 𝜁(𝑡) ≥ 𝜎(𝑡)

such that one of the following conditions holds.

(i) 𝜏(𝑡) ≤ 𝑡 < 𝜁(𝑡) and

lim inf
𝑡→∞

∫

𝜁(𝑡)

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒

(1 + (

𝜑

𝜏
0

)

1/𝛽

𝑝
0
)

𝛽
2
/𝛾

(90)

if 𝛽 = 𝛾, and

∫

∞

𝑡0

𝑄
⋆

𝜁
(𝑡; 𝜑) 𝑑𝑡 = ∞ (91)

if 𝛽 > 𝛾.
(ii) 𝑡 ≤ 𝜏(𝑡) < 𝜁(𝑡) and

lim inf
𝑡→∞

∫

𝜏
−1
(𝜁(𝑡))

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒

(1 + (

𝜑

𝜏
0

)

1/𝛽

𝑝
0
)

𝛽
2
/𝛾

(92)

if 𝛽 = 𝛾, and (91) holds if 𝛽 > 𝛾.

Proof. It follows fromTheorem 15 and Lemmas 6 and 1.

In a similar way as in Theorem 12 and Corollary 13, if
we suppose 𝛽 ≤ 1 in Theorem 15 and Corollary 16 and use
inequality (68) instead of inequality from Lemma 3, we get
the following statements.

Theorem 17. Let 𝛽 ≤ 1, 𝜑 > 0, and 𝜁(𝑡) a function which
satisfies 𝜁(𝑡) ≥ 𝜎(𝑡). Suppose that there exists a number 𝑇 > 𝑡

0

and a solution 𝑥(𝑡) of (1) which satisfy

𝑥 (𝑡) > 0, 𝑧
󸀠
(𝑡) < 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (93)

Let 𝑡
1
> 𝑇 be such that

min {𝜎 (𝑡) , 𝜎 (𝜏 (𝑡))} > 𝑇 (94)

for every 𝑡 ≥ 𝑡
1
. Then the following statements are true.

(i) The inequality

[𝑢 (𝑡) +

𝑝
𝛽

0
𝜑

𝜏
0

𝑢 (𝜏 (𝑡))]

󸀠

− 𝑄
⋆

𝜁
(𝑡; 𝜑) 𝑢

𝛽/𝛾
(𝜁 (𝑡)) ≥ 0 (95)

has a positive increasing solution on (𝑡
1
,∞).

(ii) If 𝜏(𝑡) ≤ 𝑡, then

𝑦
󸀠
− 𝑄
⋆

𝜁
(𝑡; 𝜑)(

𝜏
0

𝜏
0
+ 𝑝
𝛽

0
𝜑

)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜁 (𝑡)) ≥ 0 (96)

has a positive solution on (𝑡
1
,∞).

(iii) If 𝜏(𝑡) ≥ 𝑡, then

𝑦
󸀠
− 𝑄
⋆

𝜁
(𝑡; 𝜑)(

𝜏
0

𝜏
0
+ 𝑝
𝛽

0
𝜑

)

𝛽/𝛾

𝑦
𝛽/𝛾

(𝜏
−1
(𝜁 (𝑡))) ≥ 0 (97)

has a positive solution on (𝑡
1
,∞).

Corollary 18. Let 𝛽 ≤ 1, 𝛾 ≤ 𝛽. Equation (1) has no solution
𝑥(𝑡) which satisfies

𝑥 (𝑡) > 0 𝑧
󸀠
(𝑡) < 0 𝑒V𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 (98)

if there exists 𝜑 > 0 and a function 𝜁(𝑡) satisfying 𝜂(𝑡) ≥ 𝜎(𝑡)

such that one of the following conditions holds.

(i) 𝜏(𝑡) ≤ 𝑡 < 𝜁(𝑡) and

lim inf
𝑡→∞

∫

𝜁(𝑡)

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒

(

𝜏
0
+ 𝑝
𝛽

0
𝜑

𝜏
0

)

𝛽/𝛾

(99)

if 𝛽 = 𝛾, and (91) holds if 𝛽 > 𝛾.
(ii) 𝑡 ≤ 𝜏(𝑡) < 𝜁(𝑡) and

lim inf
𝑡→∞

∫

𝜏
−1
(𝜁(𝑡))

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) 𝑑𝑠 >

1

𝑒

(

𝜏
0
+ 𝑝
𝛽

0
𝜑

𝜏
0

)

𝛽/𝛾

(100)

if 𝛽 = 𝛾, and (91) holds if 𝛽 > 𝛾.

5. Oscillation Criteria If (4) Holds

As we explained before, it follows from Lemma 5 that if (3)
holds, then the criteria from Section 3 are in fact oscillation
criteria. If (3) fails and (4) holds, then the set of all possible
eventually positive solutions is more comprehensive andmay
contain also solution which satisfy 𝑧

󸀠
(𝑡) < 0 eventually.

Hence to ensure oscillation of (1) in the case (4) we have
to eliminate both cases; criteria from both Sections 3 and
4 apply. For example, in the half-linear case 𝛽 = 𝛾, (1) is
oscillatory if either conditions

(4) , (43) , and (92) hold if 𝜏 (𝑡) ≥ 𝑡, (101)

or

(4) , (45) and (90) hold if 𝜏 (𝑡) ≤ 𝑡; (102)

see the example below.
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Example 19. Consider the equation

(𝑡
3/2

(𝑥 (𝑡) + 𝑝
0
𝑥 (𝛼𝑡))

󸀠

)

󸀠

+

𝑎

√𝑡

𝑥 (𝜇𝑡) = 0, 𝑎 > 0. (103)

We have 𝛾 = 𝛽 = 1, 𝜏(𝑡) = 𝛼𝑡, 𝜎(𝑡) = 𝜇𝑡, 𝑟(𝑡) = 𝑡
3/2, 𝑞(𝑡) =

𝑎𝑡
−1/2, 𝑞(𝜏(𝑡)) = 𝑎(𝛼𝑡)

−1/2. We will apply Corollaries 9 and 16
with 𝜂(𝑡) = 𝜆

1
𝑡, 𝜁(𝑡) = 𝜆

2
𝑡, 𝜆
1
≤ 𝜇 ≤ 𝜆

2
and 𝜑 = 𝛼

1/2. We
have 𝑄(𝑡) = 𝑞(𝑡). Since

∫ 𝑟
−1/𝛾

(𝑡) d𝑡 = ∫ 𝑡
−3/2d𝑡 = −2𝑡

−1/2
, (104)

condition (4) holds. Next we have

𝑄
∗

𝜂
(𝑡; 𝜑, 𝑡

1
) = −2𝑎 (√𝜆

1
𝑡
−1

− √𝑡
1
𝑡
−1/2

) ,

𝑄
⋆

𝜁
(𝑡; 𝜑) = −2𝑎𝑡

−1/2
( lim
𝑡→∞

𝑡
−1/2

− (𝜆
2
𝑡)
−1/2

)

= 2𝑎𝜆
−1/2

𝑡
−1
.

(105)

Consequently, if 𝜆
1
< 1 ≤ 𝛼 < 𝜆

2
, then (43) and (92) give

lim inf
𝑡→∞

∫

𝑡

𝜂(𝑡)

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) d𝑠

= −2𝑎√𝜆
1
ln 1

𝜆
1

+ 2𝑎√𝑡
1
(1 − √𝜆

1
) lim
𝑡→∞

√𝑡

= ∞,

lim inf
𝑡→∞

∫

𝜏
−1
(𝜁(𝑡))

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) d𝑠 = 2𝑎

√𝜆
2

ln 𝜆
2

𝛼

.

(106)

If 𝜆
1
< 𝛼 ≤ 1 < 𝜆

2
, then (45) and (90) give

lim inf
𝑡→∞

∫

𝑡

𝜏
−1
(𝜂(𝑡))

𝑄
∗

𝜂
(𝑠; 𝜑, 𝑡

1
) d𝑠

= −2𝑎√𝜆
1
ln 𝛼

𝜆
1

+ 2𝑎√𝑡
1
(1 − √

𝜆
1

𝛼

) lim
𝑡→∞

√𝑡

= ∞,

lim inf
𝑡→∞

∫

𝜁(𝑡)

𝑡

𝑄
⋆

𝜁
(𝑠; 𝜑) d𝑠 = 2𝑎

√𝜆
2

ln 𝜆
2
.

(107)

Hence, (103) is oscillatory if

𝜆
1
< 1 ≤ 𝛼 < 𝜆

2
,

2𝑎

√𝜆
2

ln 𝜆
2

𝛼

>

1

𝑒

(1 +

𝑝
0

√𝛼

) (108)

or

𝜆
1
< 𝛼 ≤ 1 < 𝜆

2
,

2𝑎

√𝜆
2

ln 𝜆
2
>

1

𝑒

(1 +

𝑝
0

√𝛼

) . (109)

The function 𝑔(𝜆
2
) = 𝜆

−1/2

2
ln(𝜆
2
/𝛼) is positive on the

interval (𝛼,∞) and it follows fromLemma 1 that themaximal

value of 𝑔(𝜆
2
) is 2/(𝑒√𝛼) at the point 𝛼𝑒2. Hence, (103) is

oscillatory if

𝑎 > 𝑎crit.

:=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

√𝛼

4

(1 +

𝑝
0

√𝛼

) for 𝛼 ≥ 1, 𝜇 ≤ 𝛼𝑒
2
,

1

4

(1 +

𝑝
0

√𝛼

) for 𝛼 ≤ 1, 𝜇 ≤ 𝑒
2
,

√𝜇

2𝑒 ln(
𝜇

𝛼

)

(1 +

𝑝
0

√𝛼

) for 𝛼 ≥ 1, 𝜇 ≥ 𝛼𝑒
2
,

√𝜇

2𝑒 ln 𝜇
(1 +

𝑝
0

√𝛼

) for 𝛼 ≤ 1, 𝜇 ≥ 𝑒
2
.

(110)

6. Conclusion

In the paper we derived asymptotic results for neutral quasi-
linear equation (1). Note that this equation covers several
types of second-order differential equations studied in the
literature, namely, the linear and half-linear second-order
differential equations.

Using the comparison method we derived sufficient con-
ditions for nonexistence of eventually positive solutions with
various asymptotic behaviors. Additional assumptions (such
as (3)) or suitable combinations of the results yield oscillation
criteria for this equation. The novelty of the presented
results is in the fact that we used parametrized versions of
inequalities used typically in comparison theory of neutral
differential equations. Despite the fact that we introduced
three parameters (𝑙, 𝜑, and 𝜂), the results remain simple and
effective. We have shown on several examples that effective
oscillation criteria can be formulated for particular equations
by establishing the optimal values for these parameters.
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We consider system of integral equations related to the weighted Hardy-Littlewood-Sobolev (HLS) inequality in a half space. By
the Pohozaev type identity in integral form, we present a Liouville type theorem when the system is in both supercritical and
subcritical cases under some integrability conditions. Ruling out these nonexistence results, we also discuss the positive solutions
of the integral system in critical case. By the method of moving planes, we show that a pair of positive solutions to such system is
rotationally symmetric about 𝑥

𝑛
-axis, which is much more general than the main result of Zhuo and Li, 2011.

1. Introduction

In [1], Jin and Li studied the weighted HLS system of nonlin-
ear equations in 𝑅𝑛:

𝑢 (𝑥) =

1

|𝑥|
𝛼
∫

𝑅
𝑛

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝜆

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦,

V (𝑥) =
1

|𝑥|
𝛽
∫

𝑅
𝑛

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝜆

𝑢
𝑝
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦,

(1)

where 0 < 𝜆 < 𝑛 and 1/(𝑝 + 1) + 1/(𝑞 + 1) = (𝜆 + 𝛼 + 𝛽)/𝑛.
By the method of moving planes in integral forms they

derived symmetry and monotonicity of positive solutions of
(1) under some integrability conditions.

Theorem 1 (see [1]). Let the pair (𝑢, V) be a positive solution
of system (1) with 𝑢 ∈ 𝐿

𝑝+1
(𝑅
𝑛
), V ∈ 𝐿

𝑞+1
(𝑅
𝑛
) and 𝑝, 𝑞 ≥ 1,

𝑝𝑞 ̸= 1, and 𝛼, 𝛽 ≥ 0. Then 𝑢 and V are radially symmetric and
decreasing about some point 𝑥

0
.

Jin and Li [2] and Chen et al. [3] also discussed the regu-
larity of solutions to (1).

Let 𝑅𝑛
+
be the upper half Euclidean space

𝑅
𝑛

+
= {𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛
| 𝑥
𝑛
> 0} . (2)

In this paper, we want to consider the similar integral system
in the half space 𝑅𝑛

+
as (1). More precisely, we discuss the fol-

lowing weighted HLS type system of nonlinear equations in
𝑅
𝑛

+
:

𝑢 (𝑥) =

1

|𝑥|
𝛼
∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦,

V (𝑥) =
1

|𝑥|
𝛽
∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)

𝑢
𝑝
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦,

(3)

where 𝑢, V ≥ 0, 0 < 𝑝, 𝑞 < ∞, 0 < 𝛾 < 𝑛, 𝛼 + 𝛽 ≥ 0,
𝛼/𝑛 < 1/(𝑝 + 1) < (𝑛 − 𝛾 + 𝛼)/𝑛, and

𝐺 (𝑥, 𝑦, 𝛾) =

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
−

1

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
; (4)

here 𝑥∗ is the reflection point of 𝑥 about the plane 𝜕𝑅𝑛
+
.

Similar to some integral systems or PDEs systems, the
integral system (3) is usually divided into three cases accord-
ing to the value of exponents (𝑝, 𝑞). We say that system (3) is
in critical case when the pair (𝑝, 𝑞) satisfies the relation

1

𝑝 + 1

+

1

𝑞 + 1

=

𝑛 − 𝛾 + 𝛼 + 𝛽

𝑛

. (5)
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It is in supercritical case when “<” holds; and in subcritical
case when “>” holds; that is

1

𝑝 + 1

+

1

𝑞 + 1

>

𝑛 − 𝛾 + 𝛼 + 𝛽

𝑛

. (6)

In the special case, where 𝛼 = 0 and 𝛽 = 0, system (3) reduces
to

𝑢 (𝑥) = ∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾) V𝑞 (𝑦) 𝑑𝑦,

V (𝑥) = ∫
𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾) 𝑢
𝑝
(𝑦) 𝑑𝑦,

(7)

and system (7) is closely related to the following system of
PDEs with Navier boundary conditions:

(−Δ)
𝛾/2
𝑢 = V𝑞, in 𝑅𝑛

+
;

(−Δ)
𝛾/2V = 𝑢𝑝, in 𝑅𝑛

+
;

(−Δ)
𝑘
𝑢 = 0 on 𝜕𝑅

𝑛

+
;

(−Δ)
𝑘V = 0, on 𝜕𝑅

𝑛

+
;

𝑘 = 0, 1, . . . ,

𝛾

2

− 1.

(8)

In particular, when 𝛾 is an even number, the authors ([4])
proved the equivalence between the two systems (7) and (8)
under some mild growth condition.

Symmetry of solutions to integral system (8) was estab-
lished by Zhuo and Li [5]. They proved that in critical case
1/(𝑝 + 1) + 1/(𝑞 + 1) = (𝑛 − 𝛼)/𝑛, any pair of positive
solutions of (7) with 𝑢 ∈ 𝐿

𝑝+1
(𝑅
𝑛

+
) and V ∈ 𝐿

𝑞+1
(𝑅
𝑛

+
) is

rotationally symmetric about some line parallel to 𝑥
𝑛
-axis.

Under the same integrability conditions, in [6], we obtained
the nonexistence of positive solutions of (7).

The general case is that, for𝛼 ̸= 0 and𝛽 ̸= 0 in (3), there are
few results concerning symmetry and nonexistence for this
doubled weighted system. In this paper, by the Pohozaev type
identity in integral form, we present a Liouville type theorem
when the system (3) is in both supercritical and subcritical
cases under some integrability conditions. Based on these
nonexistence results, we discuss the positive solutions of (3)
in critical case. By themethod ofmoving planes, we show that
a pair of positive solutions to such system is rotationally sym-
metric about 𝑥

𝑛
-axis. To carry on the moving of planes, we

explore global features of the integral equations and estimate
certain integral norms. This is the essence of the method of
moving planes in integral forms. The readers who are inter-
ested in the integral system and the applications of this
method may consult [7–10] and the references therein.

The paper is organized as follows.
In Section 2, by the Pohozaev type identity in integral

forms, we prove the following nonexistence results.

Theorem 2. Suppose that (𝑢(𝑥), V(𝑥)) ∈ 𝐶1(𝑅𝑛) are nonnega-
tive solutions of (3) with 𝑢 ∈ 𝐿𝑝+1(𝑅𝑛

+
), V ∈ 𝐿𝑞+1(𝑅𝑛

+
).

(i) If 𝑝 and 𝑞 are both supercritical, that is,

1

𝑝 + 1

<

𝑛 − 𝛾

2𝑛

+

𝛼

𝑛

,

1

𝑞 + 1

<

𝑛 − 𝛾

2𝑛

+

𝛽

𝑛

, (9)

or

(ii) if 𝑝 and 𝑞 are both subcritical, that is,

1

𝑝 + 1

∈ (

𝑛 − 𝛾

2𝑛

+

𝛼

𝑛

,

𝑛 − 𝛾 + 𝛼

𝑛

) ,

1

𝑞 + 1

∈ (

𝑛 − 𝛾

2𝑛

+

𝛽

𝑛

,

𝑛 − 𝛾 + 𝛽

𝑛

) ,

(10)

then 𝑢 ≡ 0 and V ≡ 0.

Based on these results and ruling out caseswhere there are
no solutions, we are only interested in critical case (5). In Sec-
tion 3, bymeans ofmethod ofmoving planes in integral form,
we establish rotational symmetry of solutions of (3) in critical
case (5) as follows.

Theorem 3. Assume that 𝑢 ∈ 𝐿𝑝+1(𝑅𝑛
+
), V ∈ 𝐿𝑞+1(𝑅𝑛

+
) and 𝑝, 𝑞

satisfy (5). If (𝑢, V) is a pair of positive solutions of (3), then
(𝑢, V) is rotationally symmetric about 𝑥

𝑛
-axis.

Remark 4. When 𝛼 = 𝛽 = 0, Theorem 3 is coincident with
the result in [5].

2. Proof of Theorem 2

In this section we will prove the nonexistence of positive
solutions to the weighted HLS type system (3). These nonex-
istence results, known as Liouville type theorems, are useful
in deriving existence, a priori estimate, regularity, and asymp-
totic analysis of solutions.

A celebrated result of S. I. Pohozaev is known as the
Pohozaev identity. This classical result has many conse-
quences, the most immediate one being the nonexistence of
nontrivial bounded solutions to PDE. Here we apply the
Pohozaev type identity in integral forms to the integral system
(3) (see in [9, 11]).

For any 𝜌 ̸= 0, there holds

𝑢 (𝜌𝑥) =

1

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

𝛼
∫

𝑅
𝑛

+

(

1

󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
−

1

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦.

(11)

By an elementary calculation,

𝑑 (
󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

−𝛼

)

𝑑𝜌

= −

𝛼

2

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

−𝛼−2

⋅ (2𝜌𝑥 ⋅ 𝑥)

= (−𝛼𝜌)
󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

−𝛼−2

|𝑥|
2
.
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𝑑 (
󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛

)

𝑑𝜌

=

𝛾 − 𝑛

2

󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

×

𝑑

𝑑𝜌

[(𝜌𝑥
1
− 𝑦
1
)
2

+ ⋅ ⋅ ⋅ + (𝜌𝑥
𝑛
− 𝑦
𝑛
)
2

]

= (𝛾 − 𝑛)
󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

𝑥 ⋅ (𝜌𝑥 − 𝑦) ,

𝑑 (
󵄨
󵄨
󵄨
󵄨
𝜌𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛

)

𝑑𝜌

=

𝛾 − 𝑛

2

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

×

𝑑

𝑑𝜌

[(𝜌𝑥
1
− 𝑦
1
)
2

+ ⋅ ⋅ ⋅ + (𝜌𝑥
𝑛−1

− 𝑦
𝑛−1
)
2

+(−𝜌𝑥
𝑛
− 𝑦
𝑛
)
2

]

= (𝛾 − 𝑛)
󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

𝑥
∗
⋅ (𝜌𝑥
∗
− 𝑦) .

(12)

Noting 𝑢 ∈ 𝐶1(𝑅𝑛), differentiating both sides of (11) with
respect to 𝜌 and letting 𝜌 = 1, we have

𝑥 ⋅ ∇𝑢 (𝑥) = (−𝛼) 𝑢 (𝑥)

+ (𝛾 − 𝑛)

1

|𝑥|
𝛼
∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2

−

𝑥
∗
⋅ (𝑥
∗
− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦.

(13)

Let 𝐵+
𝑟
(0) = 𝐵

𝑟
(0)∩𝑅

𝑛

+
be the upper half ball in the half space

in 𝑅𝑛
+
. Multiplying left side of (13) by 𝑢𝑝(𝑥) and integrating

on 𝐵+
𝑟
yields

∫

𝐵
+

𝑟

𝑢
𝑝
(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥

=

1

𝑝 + 1

∫

𝐵
+

𝑟

𝑥 ⋅ ∇ (𝑢
𝑝+1

(𝑥)) 𝑑𝑥

=

1

𝑝 + 1

∫

𝜕𝐵
+

𝑟

𝑟𝑢
𝑝+1

(𝑥) 𝑑𝜎 −

𝑛

𝑝 + 1

∫

𝐵
+

𝑟

𝑢
𝑝+1

(𝑥) 𝑑𝑥.

(14)

Similarly, we also have

∫

𝐵
+

𝑟

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

=

1

𝑞 + 1

∫

𝜕𝐵
+

𝑟

𝑟V𝑞+1 (𝑥) 𝑑𝜎 −
𝑛

𝑞 + 1

∫

𝐵
+

𝑟

V𝑞+1 (𝑥) 𝑑𝑥.
(15)

Since

∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥 < ∞, ∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥 < ∞. (16)

Thus, there exists a sequence {𝑟
𝑚
} such that

𝑟
𝑚
∫

𝜕𝐵
+

𝑟𝑚

𝑢
𝑝+1

(𝑥) 𝑑𝜎 󳨀→ 0,

∫

𝜕𝐵
+

𝑟𝑚

𝑟
𝑚
V𝑞+1 (𝑥) 𝑑𝜎 󳨀→ 0,

𝑟
𝑚
󳨀→ ∞.

(17)

Let 𝑟
𝑚
→ ∞; by (14), (15), and (17), we have

∫

𝑅
𝑛

+

𝑢
𝑝
(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥 + ∫

𝑅
𝑛

+

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

= −

𝑛

𝑝 + 1

∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥 −

𝑛

𝑞 + 1

∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥 < ∞.

(18)

On the other hand,

∫

𝑅
𝑛

+

𝑢
𝑝
(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥

= (𝛾 − 𝑛)∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗
⋅ (𝑥
∗
− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝
(𝑥) V𝑞 (𝑦)

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑥 𝑑𝑦

+ (−𝛼)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥

=

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗
⋅ (𝑥
∗
− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝
(𝑥) V𝑞 (𝑦)

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑥 𝑑𝑦

+

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑦 ⋅ (𝑦 − 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑦
∗
⋅ (𝑦
∗
− 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑦
∗
− 𝑥

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝
(𝑦) V𝑞 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼

|𝑥|
𝛽

𝑑𝑥 𝑑𝑦

+ (−𝛼)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥.

(19)

There also holds

∫

𝑅
𝑛

+

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

= (𝛾 − 𝑛)∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗
⋅ (𝑥
∗
− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝
(𝑦) V𝑞 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼

|𝑥|
𝛽

𝑑𝑥 𝑑𝑦

+ (−𝛽)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥
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=

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗
⋅ (𝑥
∗
− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝
(𝑦) V𝑞 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼

|𝑥|
𝛽

+

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑦 ⋅ (𝑦 − 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑦
∗
⋅ (𝑦
∗
− 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑦
∗
− 𝑥

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝
(𝑥) V𝑞 (𝑦)

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑥 𝑑𝑦

+ (−𝛽)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥.

(20)
Using

𝑥 ⋅ (𝑥 − 𝑦) + 𝑦 ⋅ (𝑦 − 𝑥) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2

,

𝑥
∗
⋅ (𝑥
∗
− 𝑦) + 𝑦

∗
⋅ (𝑦
∗
− 𝑥) =

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

2

.

(21)

Combining the fact |𝑥∗−𝑦| = |𝑦∗−𝑥|, (19), and (20), we have

∫

𝑅
𝑛

+

𝑢
𝑝
(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥 + ∫

𝑅
𝑛

+

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

= (

𝛾 − 𝑛

2

− 𝛼)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥

+ (

𝛾 − 𝑛

2

− 𝛽)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥.

(22)

By (18) and (22), we have

(

𝛾 − 𝑛

2

− 𝛼 +

𝑛

𝑝 + 1

)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥

+ (

𝛾 − 𝑛

2

− 𝛽 +

𝑛

𝑞 + 1

)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥 = 0.
(23)

Hence, if
𝛾 − 𝑛

2

− 𝛼 +

𝑛

𝑝 + 1

> 0,

𝛾 − 𝑛

2

− 𝛽 +

𝑛

𝑞 + 1

> 0 (24)

or
𝛾 − 𝑛

2

− 𝛼 +

𝑛

𝑝 + 1

< 0,

𝛾 − 𝑛

2

− 𝛽 +

𝑛

𝑞 + 1

< 0, (25)

hold, it follows that 𝑢 ≡ 0 and V ≡ 0.
This completes the proof of Theorem 2.

Remark 5. In [11], the authors consider anotherweightedHLS
type integral system

𝑢 (𝑥) = ∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

−𝑠V𝑞 (𝑦) 𝑑𝑦,

V (𝑥) = ∫
𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

−𝑡

𝑢
𝑝
(𝑦) 𝑑𝑦,

∀𝑥 ∈ 𝑅
𝑛

+

(26)

and showed the Liouville type theorem as follows.

Theorem 6 (see [11]). Suppose that 𝑢(𝑥), V(𝑥) ∈ 𝐶
1
(𝑅
𝑛
) are

positive solutions of (26)when𝑝 and 𝑞 are both subcritical; that
is 1/(𝑝+1) > (𝑛−𝛾)/2(𝑛− 𝑡) and 1/(𝑞+ 1) > (𝑛−𝛾)/2(𝑛− 𝑠).
If ∫
𝑅
𝑛

+

(𝑢
𝑝+1
/|𝑥|
𝑡
)𝑑𝑥 < ∞, ∫

𝑅
𝑛

+

(V𝑞+1/|𝑥|𝑠)𝑑𝑥 < ∞ and 𝛾−𝑠 > 1,
𝛾 − 𝑡 > 1, then 𝑢 ≡ 0 and V ≡ 0.

When 𝑠 = 𝑡 = 0 in system (26) or 𝛼 = 𝛽 = 0 in system
(3), the two systems reduce to the simple integral system (7).
In this special case, we can find that Theorem 6 is coincident
with case (ii) in Theorem 2.

3. Proof of Theorem 3

In this section, we will consider rotational symmetry of
weighted HLS type system (3) in critical case (5).

Firstly, we need the following weighted HLS inequality.

Lemma 7 (see [12]). Let 1 < 𝑙, 𝑚 < ∞, 0 < 𝛾 < 𝑛, 𝜏 + 𝛽 ≥ 0,
1/𝑙+1/𝑚+(𝛾+𝜏+𝛽)/𝑛 = 2, and 1−1/𝑚−𝛾/𝑛 < 𝜏/𝑛 < 1−1/𝑚.
Then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫∫

𝑅
𝑛

𝑓 (𝑥) 𝑔 (𝑦)

|𝑥|
𝜏󵄨󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑥 𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑚

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝑙
. (27)

One can also write the weighted HLS inequality in another
form. Let

𝑇𝑔 (𝑥) = ∫

𝑅
𝑛

𝑔 (𝑦)

|𝑥|
𝜏󵄨󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦. (28)

Then

󵄩
󵄩
󵄩
󵄩
𝑇𝑔 (𝑥)

󵄩
󵄩
󵄩
󵄩𝐿
𝜇 = Sup

‖𝑓‖
𝑚
=1

< 𝑇𝑔 (𝑥) , 𝑓 (𝑥) >≤
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿
𝑙 , (29)

where 1/𝑙 + (𝛾 + 𝜏 + 𝛽)/𝑛 = 1 + 1/𝜇, 1/𝜇 + 1/𝑚 = 1.

For a given real number 𝜆, define

Σ
𝜆
= {𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛

+
| 𝑥
1
< 𝜆} ,

𝑇
𝜆
= {𝑥 ∈ 𝑅

𝑛

+
| 𝑥
1
= 𝜆} .

(30)

Let 𝑥𝜆 = (2𝜆 − 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑛
) be the reflection of the

point 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) about the plane 𝑇

𝜆
. Set

𝑢
𝜆
(𝑥) = 𝑢 (𝑥

𝜆
) , V

𝜆
(𝑥) = V (𝑥𝜆) . (31)

Lemma 8 (see [8, 13]). For 𝑥, 𝑦 ∈ Σ
𝜆
, 𝑥 ̸=𝑦, one has

𝐺 (𝑥, 𝑦, 𝛾) ≥ 𝐺 (𝑥
𝜆
, 𝑦, 𝛾) . (32)
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Lemma 9. Let (𝑢, V) be any pair of positive solutions of (3) in
critical case (5); for any 𝑥 ∈ Σ

𝜆
and |𝑥| > |𝑥𝜆|, one has

𝑢 (𝑥) − 𝑢
𝜆
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦,

V (𝑥) − V
𝜆
(𝑥)

≤

1

|𝑥|
𝛽
∫

Σ𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
, 𝑦, 𝛾)]

𝑢
𝑝
(𝑦) − 𝑢

𝑝

𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦.

(33)

Proof. Through the calculation, we have

𝑢 (𝑥) =

1

|𝑥|
𝛼
∫

Σ𝜆

𝐺 (𝑥, 𝑦, 𝛾)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦

+

1

|𝑥|
𝛼
∫

Σ𝜆

𝐺(𝑥
𝜆
, 𝑦, 𝛾)

V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆󵄨󵄨
󵄨
󵄨

𝛽
𝑑𝑦,

𝑢
𝜆
(𝑥) =

1

󵄨
󵄨
󵄨
󵄨
𝑥
𝜆󵄨󵄨
󵄨
󵄨

𝛼
∫

Σ𝜆

𝐺(𝑥
𝜆
, 𝑦, 𝛾)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦

+

1

󵄨
󵄨
󵄨
󵄨
𝑥
𝜆󵄨󵄨
󵄨
󵄨

𝛼
∫

Σ𝜆

𝐺 (𝑥, 𝑦, 𝛾)

𝑢
𝑝

𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆󵄨󵄨
󵄨
󵄨

𝛽
𝑑𝑦.

(34)

By the assumption |𝑥| > |𝑥𝜆|, we have

𝑢 (𝑥) − 𝑢
𝜆
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
, 𝑦, 𝛾)]

× (

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
−

V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆󵄨󵄨
󵄨
󵄨

𝛽
)𝑑𝑦

≤

1

|𝑥|
𝛼
∫

Σ𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦.

(35)

Similarly, we have

V (𝑥) − V
𝜆
(𝑥)

≤

1

|𝑥|
𝛽
∫

Σ𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
, 𝑦, 𝛾)]

×

𝑢
𝑝
(𝑦) − 𝑢

𝑝

𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦.

(36)

Proof of Theorem 3. Step 1. We will show that for sufficiently
negative 𝜆,

𝑢
𝜆
(𝑥) ≥ 𝑢 (𝑥) , V

𝜆
(𝑥) ≥ V (𝑥) , a.e. ∀𝑥 ∈ Σ

𝜆
. (37)

Define

Σ
𝑢

𝜆
= {𝑥 ∈ Σ

𝜆
, 𝑢 (𝑥) > 𝑢

𝜆
(𝑥)} ,

Σ
V
𝜆
= {𝑥 ∈ Σ

𝜆
, V (𝑥) > V

𝜆
(𝑥)} .

(38)

Weprove that, for sufficiently negative𝜆, bothΣ𝑢
𝜆
andΣV

𝜆
must

be empty and thus (37) holds.
In fact, by Lemma9 and themean value theorem,we have,

for 𝑥 ∈ Σ𝑢
𝜆
,

0 < 𝑢 (𝑥) − 𝑢
𝜆
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦

≤ ∫

Σ
V
𝜆

1

|𝑥|
𝛼
[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥

𝜆
, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦

≤

1

|𝑥|
𝛼
∫

Σ
V
𝜆

𝐺 (𝑥, 𝑦, 𝛾)

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦

≤

𝑞

|𝑥|
𝛼
∫

Σ
V
𝜆

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
𝜓
𝑞−1

𝜆
(𝑦)

V (𝑦) − V
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
𝑑𝑦

≤ 𝑞∫

Σ
V
𝜆

1

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
V𝑞−1 (𝑦) [V (𝑦) − V

𝜆
(𝑦)] 𝑑𝑦,

(39)

where 𝜓
𝜆
(𝑦) is valued between V(𝑦) and V

𝜆
(𝑦); therefore, on

Σ
V
𝜆
, we have

0 ≤ V
𝜆
(𝑦) ≤ 𝜓

𝜆
(𝑦) ≤ V (𝑦) . (40)

By Lemma 7 and the Hölder inequality, we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
V𝑞−1 (V

𝜆
− V)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑇1 (Σ

V
𝜆
)

≤ 𝐶‖V‖𝑞−1
𝐿
𝑞+1
(Σ

V
𝜆
)

󵄩
󵄩
󵄩
󵄩
V
𝜆
− V󵄩󵄩󵄩

󵄩𝐿
𝑞+1
(Σ

V
𝜆
)
,

(41)

󵄩
󵄩
󵄩
󵄩
V
𝜆
− V󵄩󵄩󵄩

󵄩𝐿
𝑞+1
(Σ

V
𝜆
)
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑝−1

(𝑢
𝜆
− 𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑇2 (Σ
𝑢

𝜆
)

≤ 𝐶‖𝑢‖
𝑝−1

𝐿
𝑝+1
(Σ
𝑢

𝜆
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
,

(42)

where 𝑇
1
= 𝑛(𝑝 + 1)/(𝑛 + (𝛾 − 𝛼 − 𝛽)(𝑝 + 1)) and 𝑇

2
= 𝑛(𝑞 +

1)/(𝑛 + (𝛾 − 𝛼 − 𝛽)(𝑞 + 1)). It easy to show that 𝑇
1
, 𝑇
2
> 1.

Combining (41) and (42), we arrive

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)

≤ 𝐶‖V‖𝑞−1
𝐿
𝑞+1
(Σ

V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1
(Σ
𝑢

𝜆
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
.

(43)

The conditions 𝑢 ∈ 𝐿𝑝+1(𝑅𝑛
+
) and V ∈ 𝐿𝑞+1(𝑅𝑛

+
) make us able

to choose sufficiently negative 𝜆, so that

𝐶‖V‖𝑞−1
𝐿
𝑞+1
(Σ

V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1
(Σ
𝑢

𝜆
)
≤

1

2

. (44)
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Now inequality (43) implies
󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
= 0, (45)

and therefore Σ𝑢
𝜆
must be measure zero. Similarly, one can

show that ΣV
𝜆
is measure zero. Therefore (37) holds.

Step 2. Inequality (37) provides a starting point to move the
plane 𝑇

𝜆
= {𝑥 ∈ 𝑅

𝑛

+
| 𝑥
1
= 𝜆}. Now we start from the

neighborhood of 𝑥
1
= −∞ and move the plane to the right

as long as (37) holds to the limiting position. More precisely,
define

𝜆
0
= sup {𝜆 | 𝑢 (𝑥) ≤ 𝑢

𝜇
(𝑥) ,

V (𝑥) ≤ V
𝜇
(𝑥) , 𝜇 ≤ 𝜆, ∀𝑥 ∈ Σ

𝜇
} .

(46)

We will prove that 𝜆
0
= 0. On the contrary, we suppose 𝜆

0
<

0. We show that 𝑢(𝑥) and V(𝑥) are symmetric about the plane
𝑇
𝜆0
; that is

𝑢
𝜆0
(𝑥) ≡ 𝑢 (𝑥) , V

𝜆0
(𝑥) ≡ V (𝑥) , a.e. ∀𝑥 ∈ Σ

𝜆0
. (47)

Otherwise, on Σ
𝜆0
,

𝑢 (𝑥) ≤ 𝑢
𝜆0
(𝑥) , V (𝑥) ≤ V

𝜆0
(𝑥) ,

but 𝑢 (𝑥) ̸≡ 𝑢
𝜆0
(𝑥) or V (𝑥) ̸≡ V

𝜆0
(𝑥) .

(48)

We show that the plane can be moved further to the right.
More precisely, there exists an 𝜖 > 0 such that, for ∀𝜆 ∈

[𝜆
𝑜
, 𝜆
𝑜
+ 𝜖),

𝑢 (𝑥) ≤ 𝑢
𝜆
(𝑥) , V (𝑥) ≤ V

𝜆
(𝑥) , a.e. ∀ 𝑥 ∈ Σ

𝜆
. (49)

Without loss of generality, we assume

V (𝑥) ̸≡ V
𝜆0
(𝑥) , on Σ

𝜆0
. (50)

by Lemma 9, we have in fact 𝑢(𝑥) < 𝑢
𝜆0
(𝑥) in the interior of

Σ
𝜆0
. Let

Σ
𝑢

𝜆0
= {𝑥 ∈ Σ

𝜆0
| 𝑢 (𝑥) ≥ 𝑢

𝜆0
(𝑥)} ,

Σ
V
𝜆0
= {𝑥 ∈ Σ

𝜆0
| V (𝑥) ≥ V

𝜆0
(𝑥)} .

(51)

Then obviously Σ𝑢
𝜆0

has measure zero and lim
𝜆→𝜆0

Σ
𝑢

𝜆
⊂ Σ
𝑢

𝜆0
.

The same argument above is also true for the other solution V
of (3). From (41) and (42), we deduce

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)

≤ 𝐶‖V‖𝑞−1
𝐿
𝑞+1
(Σ

V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1
(Σ
𝑢

𝜆
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
.

(52)

Again the conditions that 𝑢 ∈ 𝐿
𝑝+1

(𝑅
𝑛

+
) and V ∈ 𝐿

𝑞+1
(𝑅
𝑛

+
)

ensure that one can choose 𝜖 sufficiently small, so that, for all
𝜆 in [𝜆

𝑜
, 𝜆
𝑜
+ 𝜖),

𝐶‖V‖𝑞−1
𝐿
𝑞+1
(Σ

V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1
(Σ
𝑢

𝜆
)
≤

1

2

. (53)

The method to verify this inequality is standard and the
proofs of the rest are similar to the proof in paper [6, 11, 14].

Now by (52) and (53), we have ‖𝑢
𝜆
− 𝑢‖
𝐿
𝑝
(Σ
𝑢

𝜆
)
= 0, and

therefore Σ𝑢
𝜆
must be measure zero. Similarly, ΣV

𝜆
must also be

measure zero. Hence, for these values of 𝜆 > 𝜆
𝑜
, we have

𝑢
𝜆
(𝑥) ≥ 𝑢 (𝑥) , V

𝜆
(𝑥) ≥ V (𝑥) , a.e. ∀𝑥 ∈ Σ

𝜆0
.

(54)

This (47) must hold and therefore both 𝑢(𝑥) and V(𝑥) are
symmetric about the plane 𝑇

𝜆0
.

Nowwe show that the plane cannot stop before hitting the
origin. Otherwise, assume that the plane stops at 𝑥

1
= 𝜆
0
< 0.

By the fact that |𝑦| > |𝑦𝜆0 |, we have

𝑢 (𝑥) − 𝑢
𝜆0
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ𝜆0

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆0
, 𝑦, 𝛾)]

× [

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
−

V𝑞
𝜆0
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆0
󵄨
󵄨
󵄨
󵄨

𝛽
]𝑑𝑦

<

1

|𝑥|
𝛼
∫

Σ𝜆0

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆0
, 𝑦, 𝛾)]

× [

V𝑞 (𝑦) − V𝑞
𝜆0
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽
]𝑑𝑦 = 0.

(55)

This contradicts with (47).
As the direction of 𝑥

1
can be chosen arbitrarily, we derive

that (𝑢(𝑥), V(𝑥)) is rotationally symmetric about 𝑥
𝑛
-axis.This

completes the proof of Theorem 3.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Professor Wenxiong Chen
and the referees for their valuable suggestions and comments.
This work is supported by Grant (nos. U1304101 and 11171091)
of NSFC and NSF of Henan Province (no. 132300410141).

References

[1] C. Jin and C. Li, “Symmetry of solutions to some systems of
integral equations,” Proceedings of the American Mathematical
Society, vol. 134, no. 6, pp. 1661–1670, 2006.

[2] C. Jin and C. Li, “Quantitative analysis of some system of inte-
gral equations,” Calculus of Variations and Partial Differential
Equations, vol. 26, no. 4, pp. 447–457, 2006.

[3] W. Chen, C. Jin, C. Li, and J. Lim, “WeightedHardy-Littlewood-
Sobolev inequalities and systems of integral equations,”Discrete
and Continuous Dynamical Systems A, vol. 2005, supplement,
pp. 164–172, 2005.



Abstract and Applied Analysis 7

[4] W. Zhao, J. Yang, and S. Zheng, “Liouville type theorem for
higher-orderelliptic system with Navier boundary condition,”
2013.

[5] R. Zhuo andD. Li, “A systemof integral equations on half space,”
Journal of Mathematical Analysis and Applications, vol. 381, no.
1, pp. 392–401, 2011.

[6] L. Cao and Z. Dai, “A Liouville-type theorem for an integral sys-
tem on a half-space𝑅𝑛

+
,” Journal of Inequalities and Applications,

vol. 2013, article 37, 2013.
[7] Y. Fang and J. Zhang, “Nonexistence of positive solution for an

integral equation on a half-space 𝑅𝑛
+
,” Communications on Pure

and Applied Analysis, vol. 12, no. 2, pp. 663–678, 2013.
[8] L. Cao and W. Chen, “Liouville type theorems for poly-har-

monic Navier problems,” Discrete and Continuous Dynamical
Systems A, vol. 33, no. 9, pp. 3937–3955, 2013.

[9] C. Li and Y. Lei, “Sharp criteria of Liouville thpe for somenon-
linear systems,” http://arxiv.org/abs/1301.6235.

[10] Y. Zhao, “Regularity and symmetry for solutions to a system of
weighted integral equations,” Journal of Mathematical Analysis
and Applications, vol. 391, no. 1, pp. 209–222, 2012.

[11] D. Li, P. Niu, andR. Zhuo, “Symmetry and non-existence of pos-
itive solutions for PDE systemwithNavier boundary conditions
on a half space,” Complex Variables and Elliptic Equations.

[12] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on
Euclidean Spaces, Princeton University Press, Princeton, NJ,
USA, 1971.

[13] D. Li and R. Zhuo, “An integral equation on half space,” Pro-
ceedings of the American Mathematical Society, vol. 138, no. 8,
pp. 2779–2791, 2010.

[14] L. Cao andZ.Dai, “ALiouville-type theorem for an integral equ-
ation on a half-space 𝑅𝑛

+
,” Journal of Mathematical Analysis and

Applications, vol. 389, no. 2, pp. 1365–1373, 2012.



Research Article
Almost Periodic Solution of a Modified Leslie-Gower
Predator-Prey Model with Beddington-DeAngelis Functional
Response and Feedback Controls

Kerong Zhang,1 Jianli Li,1 and Aiwen Yu2

1 Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China
2Department of Mathematics, Beiya Middle School, Changsha, Hunan 410008, China

Correspondence should be addressed to Jianli Li; ljianli@sina.com

Received 30 January 2014; Revised 19 February 2014; Accepted 26 February 2014; Published 22 April 2014

Academic Editor: Bingwen Liu

Copyright © 2014 Kerong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a modified Leslie-Gower predator-prey model with the Beddington-DeAngelis functional response and feedback
controls as follows: ̇𝑥 (𝑡) = 𝑥 (𝑡) (𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑥 (𝑡) − 𝑐 (𝑡) 𝑦 (𝑡) / (𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)) − 𝑒

1
(𝑡) 𝑢 (𝑡)), ̇𝑢 (𝑡) = −𝑑

1
(𝑡) 𝑢 (𝑡) +

𝑝
1
(𝑡) 𝑥 (𝑡 − 𝜏), ̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑎

2
(𝑡) − 𝑟 (𝑡) 𝑦 (𝑡) / (𝑥 (𝑡) + 𝑘 (𝑡)) − 𝑒

2
(𝑡) ] (𝑡)), and ̇](𝑡) = −𝑑

2
(𝑡)](𝑡)+𝑝

2
(𝑡)𝑦(𝑡−𝜏). Sufficient conditions

which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are
obtained.

1. Introduction

In recent years, themodified predator-prey systemswith peri-
odic or almost periodic coefficients have been studied exten-
sively.

Leslie [1] proposed the famous Leslie predator-prey sys-
tem as follows:

̇𝑥 (𝑡) = 𝑥 (𝑎 − 𝑏𝑥) − 𝑝 (𝑥) 𝑦,

̇𝑦 = 𝑦(𝑒 − 𝑓

𝑦

𝑥

) ,

(1)

where 𝑥 and 𝑦 stand for the population of the prey and
the predator at time 𝑡, respectively, and 𝑝(𝑥) is the so-called
predator functional response to the prey. The term 𝑦/𝑥 is the
Leslie-Gower term which measures the loss in the predator
population due to rarity of its favorite food.

Global stability of the positive locally asymptotically
stable equilibrium in a class of predator-prey systems has
been introduced by Hsu and Huang [2], and the system is as
follows:

𝑑𝑥

𝑑𝑡

= 𝑟𝑥 (1 −

𝑥

𝑘

− 𝑦𝑝 (𝑥)) ,

𝑑𝑦

𝑑𝑥

= 𝑦 [𝑠 (1 −

ℎ𝑦

𝑠

)] ,

𝑥 (0) > 0, 𝑦 (0) > 0, 𝑟, 𝑠, 𝑘, ℎ > 0.

(2)

When the functional response 𝑝(𝑥) equals𝑚𝑥, then (2) turns
into a Leslie-Gower system [3].

On the other hand, the periodic solution (almost peri-
odic solution) and some other properties of Leslie-Gower
predator-prey models were studied (see [4–9]). In particular,
Zhang [10] discussed the almost periodic solution of a modi-
fied Leslie-Gower predator-preymodel with the Beddington-
DeAngelis function response as follows:

̇𝑥 (𝑡) = 𝑥 (𝑡) (𝑟
1
(𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−

𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟
2
(𝑡) −

𝑑 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)

) ,

(3)

where 𝑥(𝑡) is the size of prey population and 𝑦(𝑡) is the size
of predator population.
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Stimulated by the above reasons, in this paper, we incor-
porate the feedback control into model (3) and consider the
following model:

̇𝑥 (𝑡) = 𝑥 (𝑡) (𝑎
1
(𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−

𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

− 𝑒
1
(𝑡) 𝑢 (𝑡)) ,

̇𝑢 (𝑡) = −𝑑
1
(𝑡) 𝑢 (𝑡) + 𝑝

1
(𝑡) 𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑎
2
(𝑡) −

𝑟 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)

− 𝑒
2
(𝑡) ] (𝑡)) ,

̇] (𝑡) = −𝑑
2
(𝑡) ] (𝑡) + 𝑝

2
(𝑡) 𝑦 (𝑡 − 𝜏) ,

(4)

where 𝜏 > 0 and all the coefficients 𝑏(𝑡), 𝑐(𝑡), 𝑟(𝑡), 𝑘(𝑡),
𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝑎

𝑖
(𝑡), 𝑑
𝑖
(𝑡), 𝑝
𝑖
(𝑡), and 𝑒

𝑖
(𝑡) (𝑖 = 1, 2) are all

continuous, almost periodic functions on 𝑅.
Associated with (4), we consider a group of initial

conditions with the following form (we assume, without loss
of generality, that the initial time 𝑡

0
= 0):

𝑥 (𝑠) = 𝜙 (𝑠) ≥ 0, 𝑠 ∈ [−𝜏, 0] , 𝜙 (0) > 0,

𝑦 (𝑠) = 𝜑 (𝑠) ≥ 0, 𝑠 ∈ [−𝜏, 0] , 𝜑 (0) > 0,

𝑢 (0) > 0, ] (0) > 0.

(5)

Let 𝑓 be a continuous bounded function on 𝑅 and we set

𝑓
𝑙
= inf
𝑡∈𝑅

𝑓 (𝑡) , 𝑓
𝑢
= sup
𝑡∈𝑅

𝑓 (𝑡) . (6)

Throughout this paper, we assume that the coefficients of the
almost periodic system (4) satisfy

min
𝑖=1,2

{𝑏
𝑙
, 𝑐
𝑙
, 𝛼
𝑙
, 𝛽
𝑙
, 𝛾
𝑙
, 𝑟
𝑙
, 𝑘
𝑙
, 𝑎
𝑙

𝑖
, 𝑑
𝑙

𝑖
, 𝑝
𝑙

𝑖
, 𝑒
𝑙

𝑖
} > 0,

max
𝑖=1,2

{𝑏
𝑢
, 𝑐
𝑢
, 𝛼
𝑢
, 𝛽
𝑢
, 𝛾
𝑢
, 𝑟
𝑢
, 𝑘
𝑢
, 𝑎
𝑢

𝑖
, 𝑑
𝑢

𝑖
, 𝑝
𝑢

𝑖
, 𝑒
𝑢

𝑖
} < +∞.

(7)

By constructing a suitable Lyapunov functional, we obtain
some sufficient conditions for the existence of a globally
attractive positive almost periodic solution of system (4) with
initial conditions (5).

2. Permanence

In this section, we give some definitions and results that we
will use in the rest of the paper.

Lemma 1 (see [11]). If 𝑎 > 0, 𝑏 > 0, and ̇𝑥 ≥ (≤) 𝑥(𝑏 − 𝑎𝑥),
when 𝑡 ≥ 0 and 𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑏

𝑎

, (lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑏

𝑎

) . (8)

Lemma 2 (see [11]). If 𝑎 > 0, 𝑏 > 0, and ̇𝑥 ≥ (≤) 𝑏 − 𝑎𝑥, when
𝑡 ≥ 0 and 𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑏

𝑎

, (lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑏

𝑎

) . (9)

Set the following:

𝑀
1
=

𝑎
𝑢

1

𝑏
𝑙
, 𝐿

1
=

𝑝
𝑢

1
𝑀
1

𝑑
𝑙

1

,

𝑀
2
=

𝑎
𝑢

2
(𝑀
1
+ 𝑘
𝑢
)

𝑟
𝑙

, 𝐿
2
=

𝑝
𝑢

2
𝑀
2

𝑑
𝑙

2

,

𝑚
1
=

𝑎
𝑙

1
− 𝑐
𝑢
/𝑟
𝑙
− 𝑒
𝑢

1
𝐿
1

𝑏
𝑢

, 𝑙
1
=

𝑝
𝑙

1
𝑚
1

𝑑
𝑢

1

,

𝑚
2
=

1

𝑟
𝑢
(𝑎
𝑙

2
− 𝑒
𝑢

2
𝐿
2
) (𝑚
1
+ 𝑘
𝑙
) , 𝑙

2
=

𝑝
𝑙

2
𝑚
2

𝑑
𝑢

2

.

(10)

Theorem 3. Suppose that system (4) with initial condition (5)
satisfies the following condition:

𝑎
𝑙

1
−

𝑐
𝑢

𝑟
𝑙
− 𝑒
𝑢

1
𝐿
1
> 0, 𝑎

𝑙

2
− 𝑒
𝑢

2
𝐿
2
> 0. (11)

Then system (4) is permanent; that is, any positive solution
(𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡), ](𝑡))𝑇 of the system (4) satisfies

0 < 𝑚
1
≤ lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀
1
,

0 < 𝑙
1
≤ lim inf
𝑡→+∞

𝑢 (𝑡) ≤ lim sup
𝑡→+∞

𝑢 (𝑡) ≤ 𝐿
1
,

0 < 𝑚
2
≤ lim inf
𝑡→+∞

𝑦 (𝑡) ≤ lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑀
2
,

0 < 𝑙
2
≤ lim inf
𝑡→+∞

] (𝑡) ≤ lim sup
𝑡→+∞

] (𝑡) ≤ 𝐿
2
.

(12)

Proof. From the first equation of (4), we have the following:

̇𝑥 (𝑡) ≤ 𝑥 (𝑡) (𝑎
𝑢

1
− 𝑏
𝑙
𝑥 (𝑡)) . (13)

Applying Lemma 1 to (13) leads to

lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑎
𝑢

1

𝑏
𝑙
= 𝑀
1
. (14)

From (14), we know that there exists an enough large 𝑇
1
> 0

such that

𝑥 (𝑡) ≤ 𝑀
1
, 𝑡 ≥ 𝑇

1
> 0, (15)

so there exists an enough large 𝑇
2
= 𝑇
1
+ 𝜏 such that

𝑥 (𝑡 − 𝜏) ≤ 𝑀
1
, 𝑡 ≥ 𝑇

2
> 0. (16)

It follows from (16) and the second equation of system (4)
that, for 𝑡 ≥ 𝑇

2
,

̇𝑢 (𝑡) ≤ −𝑑
𝑙
𝑢 (𝑡) + 𝑝

𝑢

1
𝑀
1
. (17)

Applying Lemma 2 to (17) leads to

lim sup
𝑡→+∞

𝑢 (𝑡) ≤

𝑝
𝑢

1
𝑀
1

𝑑
𝑙

1

= 𝐿
1
. (18)
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By using a similar argument as that in the proof of (14) and
(18), we can get the following:

lim sup
𝑡→+∞

𝑦 (𝑡) ≤

𝑎
𝑢

2
(𝑀
1
+ 𝑘
𝑢
)

𝑟
𝑙

= 𝑀
2
,

lim sup
𝑡→+∞

] (𝑡) ≤
𝑝
𝑢

2
𝑀
2

𝑑
𝑙

2

= 𝐿
2
.

(19)

From (18) and the first equation of system (4) we know

̇𝑥 (𝑡) ≥ 𝑥 (𝑡) (𝑎
𝑙

1
−

𝑐
𝑢

𝛾
𝑙
− 𝑒
𝑢

1
𝐿
1
− 𝑏
𝑢
𝑥 (𝑡)) . (20)

Applying Lemma 1 and (11) to the above leads to

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑎
𝑙

1
− 𝑐
𝑢
/𝑟
𝑙
− 𝑒
𝑢

1
𝐿
1

𝑏
𝑢

= 𝑚
1
. (21)

Therefore, we know that there exists an enough large 𝑇
3
such

that

𝑥 (𝑡) ≥ 𝑚
1
, 𝑡 ≥ 𝑇

3
> 0. (22)

From the second equation of system (4) we have the follow-
ing:

̇𝑢 (𝑡) ≥ −𝑑
𝑢

1
𝑢 (𝑡) + 𝑝

𝑙

1
𝑚
1
. (23)

Applying Lemma 2 to the above, we obtain the following:

lim inf
𝑡→+∞

𝑢 (𝑡) ≥

𝑝
𝑙

1
𝑚
1

𝑑
𝑢

1

= 𝑙
1
. (24)

By using a similarmethod as that in the proof of (21) and (24),
it follows that

lim inf
𝑡→+∞

𝑦 (𝑡) ≥

1

𝑟
𝑢
(𝑎
𝑙

2
− 𝑒
𝑢

2
𝐿
2
) (𝑚
1
+ 𝑘
𝑙
) = 𝑚

2

lim inf
𝑡→+∞

] (𝑡) ≥
𝑝
𝑙

2
𝑚
2

𝑑
𝑢

2

= 𝑙
2
.

(25)

This completes the proof.

We denote by Ω the set of all solutions 𝑧(𝑡) = (𝑥(𝑡), 𝑢(𝑡),
𝑦(𝑡), ](𝑡))𝑇 of system (4) satisfying 𝑚

1
≤ 𝑥(𝑡) ≤ 𝑀

1
, 𝑙
1
≤

𝑢(𝑡) ≤ 𝐿
1
,𝑚
2
≤ 𝑦(𝑡) ≤ 𝑀

2
, and 𝑙

2
≤ ](𝑡) ≤ 𝐿

2
for all 𝑡 > 0.

Theorem 4. Consider the following: Ω ̸=0.

Proof. From the properties of almost periodic function there
exists a sequence {𝑡

𝑛
} with 𝑡

𝑛
→ +∞ as 𝑛 → +∞ such that

𝑎
𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑎

𝑖
(𝑡) , 𝑑

𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑑

𝑖
(𝑡) ,

𝑒
𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑒

𝑖
(𝑡) , 𝑝

𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑝

𝑖
(𝑡) ,

(𝑖 = 1, 2) ,

𝑏 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝑏 (𝑡) , 𝑐 (𝑡 + 𝑡

𝑛
) 󳨀→ 𝑐 (𝑡) ,

𝑟 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝑟 (𝑡) , 𝑘 (𝑡 + 𝑡

𝑛
) 󳨀→ 𝑘 (𝑡) ,

𝛼 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝛼 (𝑡) , 𝛽 (𝑡 + 𝑡

𝑛
) 󳨀→ 𝛽 (𝑡) ,

𝛾 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝛾 (𝑡) ,

(26)

as 𝑛 → ∞ uniformly on 𝑅. Let 𝑧(𝑡) = (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡), ](𝑡))𝑇
be a solution of system (4) satisfying 𝑚

1
≤ 𝑥(𝑡) ≤ 𝑀

1
,

𝑙
1
≤ 𝑢(𝑡) ≤ 𝐿

1
, 𝑚
2
≤ 𝑦(𝑡) ≤ 𝑀

2
, and 𝑙

2
≤ ](𝑡) ≤ 𝐿

2
for

𝑡 > 𝑇. Clearly, the sequence 𝑧(𝑡 + 𝑡
𝑛
) is uniformly bounded

and equicontinuous on each bounded subset of 𝑅. Therefore,
by the Arzelà-Ascoli theorem, there exists a subsequence
𝑧(𝑡 + 𝑡

𝑘
) which converges to a continuous function 𝑧∗(𝑡) =

(𝑥
∗
(𝑡), 𝑢
∗
(𝑡), 𝑦
∗
(𝑡), ]∗(𝑡))𝑇 as 𝑘 → +∞ uniformly on each

bounded subset of 𝑅. Let 𝑇
0
∈ 𝑅 be given. We may assume

that 𝑡
𝑘
+ 𝑇
0
≥ 𝑇 for all 𝑘. For 𝑡 ≥ 0, we have the following:

𝑥 (𝑡 + 𝑡
𝑘
+ 𝑇
0
)

= 𝑥 (𝑡
𝑘
+ 𝑇
0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑥 (𝑠 + 𝑡
𝑘
) (𝑎
1
(𝑠 + 𝑡
𝑘
) − 𝑏 (𝑠 + 𝑡

𝑘
) 𝑥 (𝑠 + 𝑡

𝑘
)

− (𝑐 (𝑠 + 𝑡
𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
))

× (𝛼 (𝑠 + 𝑡
𝑘
) + 𝛽 (𝑠 + 𝑡

𝑘
) 𝑥 (𝑠 + 𝑡

𝑘
)

+ 𝛾 (𝑠 + 𝑡
𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
))
−1

− 𝑒
1
(𝑠 + 𝑡
𝑘
) 𝑢 (𝑠 + 𝑡

𝑘
)) 𝑑𝑠,

𝑢 (𝑡 + 𝑡
𝑘
+ 𝑇
0
)

= 𝑢 (𝑡
𝑘
+ 𝑇
0
)

− ∫

𝑡+𝑇0

𝑇0

𝑑
1
(𝑠 + 𝑡
𝑘
) 𝑢 (𝑠 + 𝑡

𝑘
) + 𝑝
1
(𝑠 + 𝑡
𝑘
) 𝑥 (𝑠 + 𝑡

𝑘
− 𝜏) 𝑑𝑠,

𝑦 (𝑡 + 𝑡
𝑘
+ 𝑇
0
)

= 𝑦 (𝑡
𝑘
+ 𝑇
0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑦 (𝑠 + 𝑡
𝑘
) (𝑎
2
(𝑠 + 𝑡
𝑘
) −

𝑟 (𝑠 + 𝑡
𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
)

𝑥 (𝑠 + 𝑡
𝑘
) + 𝑘 (𝑠 + 𝑡

𝑘
)

− 𝑒
2
(𝑠 + 𝑡
𝑘
) ] (𝑠 + 𝑡

𝑘
) ) 𝑑𝑠,

̇] (𝑡 + 𝑡
𝑘
+ 𝑇
0
)

= ] (𝑡
𝑘
+ 𝑇
0
)

+ ∫

𝑡+𝑇0

𝑇0

−𝑑
2
(𝑠 + 𝑡
𝑘
) ] (𝑠 + 𝑡

𝑘
) + 𝑝
2
(𝑠 + 𝑡
𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
− 𝜏) 𝑑𝑠.

(27)
Applying Lebesgue’s dominated convergence theorem and
letting 𝑘 → +∞ in (27), we obtain the following:
𝑥
∗
(𝑡 + 𝑇

0
)

= 𝑥
∗
(𝑇
0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑥
∗
(𝑠) (𝑎
1
(𝑠) − 𝑏 (𝑠) 𝑥

∗
(𝑠)

−

𝑐 (𝑠) 𝑦
∗
(𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥
∗
(𝑠) + 𝛾 (𝑠) 𝑦

∗
(𝑠)

− 𝑒
1
(𝑠) 𝑢
∗
(𝑠)) 𝑑𝑠,
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𝑢
∗
(𝑡 + 𝑇

0
) = 𝑢
∗
(𝑇
0
)

− ∫

𝑡+𝑇0

𝑇0

𝑑
1
(𝑠) 𝑢
∗
(𝑠) + 𝑝

1
(𝑠) 𝑥
∗
(𝑠 − 𝜏) 𝑑𝑠,

𝑦
∗
(𝑡 + 𝑇

0
) = 𝑦
∗
(𝑇
0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑦
∗
(𝑠) (𝑎

2
(𝑠) −

𝑟 (𝑠) 𝑦
∗
(𝑠)

𝑥
∗
(𝑠) + 𝑘 (𝑠)

− 𝑒
2
(𝑠) ]∗ (𝑠)) 𝑑𝑠,

]∗ (𝑡 + 𝑇
0
) = ]∗ (𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

−𝑑
2
(𝑠) ]∗ (𝑠) + 𝑝

2
(𝑠) 𝑦
∗
(𝑠 − 𝜏) 𝑑𝑠.

(28)

Since 𝑇
0
∈ 𝑅 is arbitrarily given, 𝑧∗(𝑡) = (𝑥∗(𝑡), 𝑢∗(𝑡), 𝑦∗(𝑡),

]∗(𝑡))𝑇 is a solution of system (4) on 𝑅. It is clear that 𝑚
1
≤

𝑥
∗
(𝑡) ≤ 𝑀

1
, 𝑙
1
≤ 𝑢
∗
(𝑡) ≤ 𝐿

1
, 𝑚
2
≤ 𝑦
∗
(𝑡) ≤ 𝑀

2
, 𝑙
2
≤ ]∗(𝑡) ≤

𝐿
2
for 𝑡 ∈ 𝑅. Thus 𝑧∗(𝑡) ∈ Ω. This completes the proof.

3. Existence of a Unique Almost
Periodic Solution

Now let us state several definitions and lemmas which will be
useful in the proving of the main result of this section.

Definition 5 (see [12]). A function 𝑓(𝑡, 𝑥), where 𝑓 is an
𝑚-vector, 𝑡 is a real scalar, and 𝑥 is an 𝑛-vector, is said to be
almost periodic in 𝑡 uniformly with respect to 𝑥 ∈ 𝑆 ⊂ 𝑅𝑛, if
𝑓(𝑡, 𝑥) is continuous in 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑆 and if, for any 𝜀 > 0,
there is a constant 𝑙(𝜀) > 0 such that in any interval of length
𝑙(𝜀) there exists a 𝜍 such that the inequality

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡 + 𝜍, 𝑥) − 𝑓 (𝑡, 𝑥)

󵄨
󵄨
󵄨
󵄨
< 𝜀 (29)

is satisfied for all 𝑡 ∈ (−∞, +∞), 𝑥 ∈ 𝑆.The number 𝜍 is called
an 𝜀-𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 number of 𝑓(𝑡, 𝑥).

Definition 6 (see [12]). A function 𝑓 : 𝑅 → 𝑅 is said to
be asymptotically almost periodic function, if there exists an
almost periodic function 𝑞(𝑡) and a continuous function 𝑟(𝑡)
such that 𝑓(𝑡) = 𝑞(𝑡) + 𝑟(𝑡), 𝑡 ∈ 𝑅 and 𝑟(𝑡) → 0 as 𝑡 → ∞.

Lemma 7 (see [13]). Let 𝑓 be a nonnegative, integral, and
uniformly continuous function defined on [0, +∞); then
lim
𝑡→+∞

𝑓(𝑡) = 0.

Theorem 8. Suppose that all conditions of Theorem 3 hold;
furthermore assume that

(H) Θ > 0, where Θ = min{Θ
1
, Θ
2
, Θ
3
, Θ
4
},

Θ
1
= 𝑏
𝑙
𝑚
1
− 𝑝
𝑢

1
𝑀
1
−

𝑐
𝑢
𝛽
𝑢
𝑀
1
𝑀
2

(𝛼
𝑙
+ 𝛽
𝑙
𝑚
1
+ 𝛾
𝑙
𝑚
2
)
2

−

𝑟
𝑢
𝑀
1
𝑀
2

(𝑚
1
+ 𝑘
𝑙
)
2
> 0,

Θ
2
=

𝛾
𝑙

𝑀
1
+ 𝑘
𝑢
−

𝑐
𝑙
𝑚
2

𝛼
𝑢
+ 𝛽
𝑢
𝑀
1
+ 𝛾
𝑢
𝑀
2

−

𝑐
𝑢
𝛾
𝑢
𝑀
2

2

(𝛼
𝑙
+ 𝛽
𝑙
𝑚
1
+ 𝛾
𝑙
𝑚
2
)
2
− 𝑝
𝑢

2
𝑀
2
> 0,

Θ
3
= 𝑑
𝑙

1
− 𝑒
𝑢

1
, Θ

4
= 𝑑
𝑙

2
− 𝑒
𝑢

2
.

(30)

Then system (4)with initial conditions (5) is globally attractive.

Proof. Let 𝑥(𝑡) = 𝑒
𝑥1(𝑡), 𝑦(𝑡) = 𝑒

𝑦1(𝑡), and then system (4) is
transformed into

̇𝑥
1
(𝑡) = 𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑒

𝑥1(𝑡)

−

𝑐 (𝑡) 𝑒
𝑦1(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥1(𝑡) + 𝛾 (𝑡) 𝑒

𝑦1(𝑡)
− 𝑒
1
(𝑡) 𝑢 (𝑡) ,

̇𝑢 (𝑡) = −𝑑
1
(𝑡) 𝑢 (𝑡) + 𝑝

1
(𝑡) 𝑒
𝑥1(𝑡−𝜏)

,

̇𝑦
1
(𝑡) = 𝑎

2
(𝑡) −

𝑟 (𝑡) 𝑒
𝑦1(𝑡)

𝑒
𝑥1(𝑡) + 𝑘 (𝑡)

− 𝑒
2
(𝑡) ] (𝑡) ,

̇] (𝑡) = −𝑑
2
(𝑡) ] (𝑡) + 𝑝

2
(𝑡) 𝑒
𝑦1(𝑡−𝜏)

.

(31)

Suppose that 𝑧
1
(𝑡) = (𝑥

1
(𝑡), 𝑢(𝑡), 𝑦

1
(𝑡), ](𝑡))𝑇 and 𝑧∗

1
(𝑡) =

(𝑥
∗

1
(𝑡), 𝑢
∗
(𝑡), 𝑦
∗

1
(𝑡), ]∗(𝑡))𝑇 are any two positive solutions of

(31).
Let 𝑉(𝑡) = 𝑉

1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡), where

𝑉
1
(𝑡) =

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
,

𝑉
2
(𝑡) =

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
+ 𝑝
𝑢

1
∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑥1(𝑡)

− 𝑒
𝑥
∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠,

𝑉
3
(𝑡) =

󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
,

𝑉
4
(𝑡) =

󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
+ 𝑝
𝑢

2
∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑦1(𝑡)

− 𝑒
𝑦
∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠.

(32)

Calculating the right derivative 𝐷+𝑉
1
(𝑡) of 𝑉

1
(𝑡) along the

solution of (31), we have the following:

𝐷
+
𝑉
1
(𝑡) = sgn (𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡))

× [−𝑏 (𝑡) (𝑒
𝑥1(𝑡)

− 𝑒
𝑥
∗

1
(𝑡)
)

−

𝑐 (𝑡) 𝑒
𝑦1(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥1(𝑡) + 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

+

𝑐 (𝑡) 𝑒
𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

− 𝑒
1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡)) ]
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= sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

× [−𝑏 (𝑡) 𝑒
𝜉(𝑡)

(𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

−

𝑐 (𝑡) 𝑒
𝑦1(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥1(𝑡) + 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

+

𝑐 (𝑡) 𝑒
𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥1(𝑡) + 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

−

𝑐 (𝑡) 𝑒
𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥1(𝑡) + 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

+

𝑐 (𝑡) 𝑒
𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

− 𝑒
1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡)) ]

≤ sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

× [−𝑏
𝑙
𝑚
1
(𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))]

−

𝑐 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥1(𝑡) + 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

⋅ 𝑒
𝜂(𝑡)

(𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡))

+ (𝑐 (𝑡) 𝑒
𝑦
∗

1
(𝑡)
[𝛽 (𝑡) (𝑒

𝑥1(𝑡)
− 𝑒
𝑥
∗

1
(𝑡)
)

+ 𝛾 (𝑡) (𝑒
𝑦1(𝑡)

− 𝑒
𝑦
∗

1
(𝑡)
)])

× ((𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)
)

× (𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)
))

−1

− 𝑒
1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡))

≤ (

𝑐
𝑢
𝛽
𝑢
𝑀
1
𝑀
2

(𝛼
𝑙
+ 𝛽
𝑙
𝑚
1
+ 𝛾
𝑙
𝑚
2
)
2
− 𝑏
𝑙
𝑚
1
)

×
󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+ (

𝑐
𝑢
𝛾
𝑢
𝑀
2

2

(𝛼
𝑙
+ 𝛽
𝑙
𝑚
1
+ 𝛾
𝑙
𝑚
2
)
2

+

𝑐
𝑙
𝑚
2

𝛼
𝑢
+ 𝛽
𝑢
𝑀
1
+ 𝛾
𝑢
𝑀
2

)

×
󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+ 𝑒
𝑢

1

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
.

(33)

Further, it follows that

𝐷
+
𝑉
2
(𝑡) = sgn (𝑢 (𝑡) − 𝑢∗ (𝑡))

× ( − 𝑑
1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡))

+ 𝑝
1
(𝑡) (𝑒
𝑥1(𝑡−𝜏)

− 𝑒
𝑥
∗

1
(𝑡−𝜏)

)

+ 𝑝
𝑢

1
(𝑒
𝑥1(𝑡)

− 𝑒
𝑥
∗

1
(𝑡)
)

− 𝑝
1
(𝑡) (𝑒
𝑥1(𝑡−𝜏)

− 𝑒
𝑥
∗

1
(𝑡−𝜏)

))

≤ −𝑑
𝑙

1

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
+ 𝑝
𝑢

1
𝑀
1

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
,

𝐷
+
𝑉
3
(𝑡) = sgn (𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡))

× [−

𝑟 (𝑡) 𝑒
𝑦1(𝑡)

𝑒
𝑥1(𝑡) + 𝑘 (𝑡)

+

𝑟 (𝑡) 𝑒
𝑦
∗

1
(𝑡)

𝑒
𝑥
∗

1
(𝑡)
+ 𝑘 (𝑡)

−𝑒
2
(𝑡) (] (𝑡) − ]∗ (𝑡)) ]

≤ −

𝑟
𝑙
𝑚
2

𝑀
1
+ 𝑘
𝑢

󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑟
𝑢
𝑀
1
𝑀
1

(𝑚
1
+ 𝑘
𝑙
)
2

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+ 𝑒
𝑢

2

󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
,

𝐷
+
𝑉
4
(𝑡) ≤ − 𝑑

𝑙

2

󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
+ 𝑝
𝑢

2
𝑀
2

󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
.

(34)

Therefore, we have the following:

𝐷
+
𝑉 (𝑡)

= 𝐷
+
𝑉
1
(𝑇) + 𝐷

+
𝑉
2
(𝑇) + 𝐷

+
𝑉
3
(𝑇) + 𝐷

+
𝑉
4
(𝑇)

≤ −(𝑏
𝑙
𝑚
1
− 𝑝
𝑢

1
𝑀
1
−

𝑐
𝑢
𝛽
𝑢
𝑀
1
𝑀
2

(𝛼
𝑙
+ 𝛽
𝑙
𝑚
1
+ 𝛾
𝑙
𝑚
2
)
2
−

𝑟
𝑢
𝑀
1
𝑀
1

(𝑚
1
+ 𝑘
𝑙
)
2
)

×
󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

− (

𝑟
𝑙
𝑚
2

𝑀
1
+ 𝑘
𝑢
−

𝑐
𝑙
𝑚
2

𝛼
𝑢
+ 𝛽
𝑢
𝑀
1
+ 𝛾
𝑢
𝑀
2

−

𝑐
𝑢
𝛾
𝑢
𝑀
2

2

(𝛼
𝑙
+ 𝛽
𝑙
𝑚
1
+ 𝛾
𝑙
𝑚
2
)
2
− 𝑝
𝑢

2
𝑀
2
)
󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

− (𝑑
𝑙

1
− 𝑒
𝑢

1
)
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
− (𝑑
𝑙

2
− 𝑒
𝑢

2
)
󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨

≤ −Θ (
󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
) .

(35)

Integrating the above inequality on internal [0, 𝑡], it follows
that, for 𝑡 ≥ 0,

𝑉 (𝑡) + Θ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
𝑑𝑠

≤ 𝑉 (0) < +∞.

(36)
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Then, for 𝑡 > 0, we obtain that

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
𝑑𝑠 ≤

𝑉 (0)

Θ

< +∞.

(37)

By Lemma 7, we obtain

lim
𝑡→+∞

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
= 0, lim

𝑡→+∞

󵄨
󵄨
󵄨
󵄨
𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
= 0,

lim
𝑡→+∞

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡) − 𝑢

∗
(𝑡)
󵄨
󵄨
󵄨
󵄨
= 0, lim

𝑡→+∞

󵄨
󵄨
󵄨
󵄨
] (𝑡) − ]∗ (𝑡)󵄨󵄨󵄨

󵄨
= 0.

(38)

Then the solution of systems (4) and (5) is globally attractive.

Theorem 9. Suppose that all conditions of Theorem 8 hold;
then there exists a unique almost periodic solution of systems
(4) and (5).

Proof. According to Theorem 4, there exists a bounded pos-
itive solution𝑊(𝑡) = (𝑤

1
(𝑡), 𝑤
2
(𝑡), 𝑤
3
(𝑡), 𝑤
4
(𝑡))
𝑇 of (4) and

(5). Then there exists a sequence {𝑡󸀠
𝑘
}, 𝑡󸀠
𝑘
→ ∞ as 𝑘 → ∞,

such that (𝑤
1
(𝑡 + 𝑡
󸀠

𝑘
), 𝑤
2
(𝑡 + 𝑡
󸀠

𝑘
), 𝑤
3
(𝑡 + 𝑡
󸀠

𝑘
), 𝑤
4
(𝑡 + 𝑡
󸀠

𝑘
))
𝑇 is a

solution of the following system:

̇𝑥 (𝑡) = 𝑥 (𝑡) (𝑎
1
(𝑡 + 𝑡
󸀠

𝑘
) − 𝑏 (𝑡 + 𝑡

󸀠

𝑘
) 𝑥 (𝑡)

−

𝑐 (𝑡 + 𝑡
󸀠

𝑘
) 𝑦 (𝑡)

𝛼 (𝑡 + 𝑡
󸀠

𝑘
) + 𝛽 (𝑡 + 𝑡

󸀠

𝑘
) 𝑥 (𝑡) + 𝛾 (𝑡 + 𝑡

󸀠

𝑘
) 𝑦 (𝑡)

− 𝑒
1
(𝑡 + 𝑡
󸀠

𝑘
) 𝑢 (𝑡)) ,

̇𝑢 (𝑡) = − 𝑑
1
(𝑡 + 𝑡
󸀠

𝑘
) 𝑢 (𝑡) + 𝑝

1
(𝑡 + 𝑡
󸀠

𝑘
) 𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑎
2
(𝑡 + 𝑡
󸀠

𝑘
) −

𝑟 (𝑡 + 𝑡
󸀠

𝑘
) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡 + 𝑡
󸀠

𝑘
)

− 𝑒
2
(𝑡 + 𝑡
󸀠

𝑘
) ] (𝑡) ) ,

̇] (𝑡) = − 𝑑
2
(𝑡 + 𝑡
󸀠

𝑘
) ] (𝑡) + 𝑝

2
(𝑡 + 𝑡
󸀠

𝑘
) 𝑦 (𝑡 − 𝜏) .

(39)

According to Theorem 3, we get that not only {(𝑤
1
(𝑡 +

𝑡
󸀠

𝑘
), 𝑤
2
(𝑡+𝑡
󸀠

𝑘
), 𝑤
3
(𝑡+𝑡
󸀠

𝑘
), 𝑤
4
(𝑡+𝑡
󸀠

𝑘
))
𝑇
} but also {( ̇𝑤

1
(𝑡+𝑡
󸀠

𝑘
), ̇𝑤
2
(𝑡+

𝑡
󸀠

𝑘
), ̇𝑤
3
(𝑡 + 𝑡

󸀠

𝑘
), ̇𝑤
4
(𝑡 + 𝑡

󸀠

𝑘
))
𝑇
} are uniformly bounded and

equicontinuous. By Ascoli’s theorem there exists a uniformly
convergent subsequence 𝑤

𝑖
(𝑡 + 𝑡
𝑘
) ⊆ 𝑤

𝑖
(𝑡 + 𝑡
󸀠

𝑘
)(𝑖 = 1, 2, 3, 4)

such that, for any 𝜀 > 0, there exists a 𝐾(𝜀) > 0 with the
property that if𝑚, 𝑘 ≥ 𝐾(𝜀), then

󵄨
󵄨
󵄨
󵄨
𝑤
𝑖
(𝑡 + 𝑡
𝑚
) − 𝑤
𝑖
(𝑡 + 𝑡
𝑘
)
󵄨
󵄨
󵄨
󵄨
< 𝜀, (𝑖 = 1, 2, 3, 4) . (40)

This is to say,𝑤
𝑖
(𝑡+𝑡
𝑘
) (𝑖 = 1, 2, 3, 4) are asymptotically almost

periodic functions; hence there exist four almost periodic

functions 𝑃
𝑖
(𝑡 + 𝑡

𝑘
) (𝑖 = 1, 2, 3, 4) and four continuous

functions 𝐹
𝑖
(𝑡 + 𝑡
𝑘
) (𝑖 = 1, 2, 3, 4) such that

𝑤
𝑖
(𝑡 + 𝑡
𝑘
) = 𝑃
𝑖
(𝑡 + 𝑡
𝑘
) + 𝐹
𝑖
(𝑡 + 𝑡
𝑘
) , 𝑡 ∈ 𝑅, 𝑖 = 1, 2, 3, 4,

(41)

where

lim
𝑘→+∞

𝑃
𝑖
(𝑡 + 𝑡
𝑘
) = 𝑃
𝑖
(𝑡) , lim

𝑘→+∞

𝐹
𝑖
(𝑡 + 𝑡
𝑘
) = 0,

𝑖 = 1, 2, 3, 4,

(42)

𝑃
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) are an almost periodic function.
Therefore,

lim
𝑘→+∞

𝑤
𝑖
(𝑡 + 𝑡
𝑘
) = 𝑃
𝑖
(𝑡) , (𝑖 = 1, 2, 3, 4) . (43)

On the other hand,

lim
𝑘→+∞

̇𝑤
𝑖
(𝑡 + 𝑡
𝑘
) = lim
𝑘→+∞

lim
ℎ→0

𝑤
𝑖
(𝑡 + 𝑡
𝑘
+ ℎ) − 𝑤

𝑖
(𝑡 + 𝑡
𝑘
)

ℎ

= lim
ℎ→+∞

lim
𝑘→0

𝑤
𝑖
(𝑡 + 𝑡
𝑘
+ ℎ) − 𝑤

𝑖
(𝑡 + 𝑡
𝑘
)

ℎ

= lim
ℎ→0

𝑃
𝑖
(𝑡 + ℎ) − 𝑃

𝑖
(𝑡)

ℎ

, (𝑖 = 1, 2, 3, 4) .

(44)

So ̇𝑃
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) exist. Now we will prove that

(𝑃
1
(𝑡), 𝑃
2
(𝑡), 𝑃
3
(𝑡), 𝑃
4
(𝑡))
𝑇 is an almost periodic solution of

system (4).
From properties of almost periodic function, there exits a

sequence {𝑡
𝑛
}, {𝑡
𝑛
} → ∞ as 𝑛 → ∞, such that

𝑎
𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑎

𝑖
(𝑡) , 𝑑

𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑑

𝑖
(𝑡) ,

𝑒
𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑒

𝑖
(𝑡) , 𝑝

𝑖
(𝑡 + 𝑡
𝑛
) 󳨀→ 𝑝

𝑖
(𝑡) ,

(𝑖 = 1, 2) ,

𝑏 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝑏 (𝑡) , 𝑐 (𝑡 + 𝑡

𝑛
) 󳨀→ 𝑐 (𝑡) ,

𝑟 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝑟 (𝑡) , 𝑘 (𝑡 + 𝑡

𝑛
) 󳨀→ 𝑘 (𝑡) ,

𝛼 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝛼 (𝑡) , 𝛽 (𝑡 + 𝑡

𝑛
) 󳨀→ 𝛽 (𝑡) ,

𝛾 (𝑡 + 𝑡
𝑛
) 󳨀→ 𝛾 (𝑡) ,

(45)

as 𝑛 → ∞ uniformly on 𝑅.
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It is easy to know that 𝑤
𝑖
(𝑡 + 𝑡
𝑛
) → 𝑃

𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) as

𝑛 → ∞, and then we have the following:

̇𝑃
1
(𝑡)

= lim
𝑛→+∞

̇𝑤
1
(𝑡 + 𝑡
𝑛
)

= lim
𝑛→+∞

[𝑤
1
(𝑡 + 𝑡
𝑛
) (𝑎
1
(𝑡 + 𝑡
𝑛
) − 𝑏 (𝑡 + 𝑡

𝑛
) 𝑤
1
(𝑡 + 𝑡
𝑛
)

− (𝑐 (𝑡 + 𝑡
𝑛
) 𝑤
3
(𝑡 + 𝑡
𝑛
))

× (𝛼 (𝑡 + 𝑡
𝑛
) + 𝛽 (𝑡 + 𝑡

𝑛
) 𝑤
1
(𝑡 + 𝑡
𝑛
)

+𝛾(𝑡 + 𝑡
𝑛
)𝑤
3
(𝑡 + 𝑡
𝑛
))
−1

−𝑒
1
(𝑡 + 𝑡
𝑛
) 𝑤
2
(𝑡 + 𝑡
𝑛
)) ]

= 𝑃
1
(𝑡) (𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑃

1
(𝑡)

−

𝑐 (𝑡) 𝑃
3
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑃
1
(𝑡) + 𝛾 (𝑡) 𝑃

3
(𝑡)

− 𝑒
1
(𝑡) 𝑃
2
(𝑡)) .

(46)

By using a similar argument as that in the above, we have the
following:

̇𝑃
2
(𝑡) = −𝑑

1
(𝑡) 𝑃
2
(𝑡) + 𝑝

1
(𝑡) 𝑃
1
(𝑡 − 𝜏) ,

̇𝑃
3
(𝑡) = 𝑃

3
(𝑡) (𝑎

2
(𝑡) −

𝑟 (𝑡) 𝑃
3
(𝑡)

𝑃
1
(𝑡) + 𝑘 (𝑡)

− 𝑒
2
(𝑡) 𝑃
4
(𝑡)) ,

̇𝑃
4
(𝑡) = −𝑑

2
(𝑡) 𝑃
4
(𝑡) + 𝑝

2
(𝑡) 𝑃
3
(𝑡 − 𝜏) .

(47)

This proves that 𝑃
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) is a nonnegative

almost periodic solution of systems (4) and (5); byTheorem 8,
it follows that there exists a globally asymptotically stable
nonnegative almost periodic solution of system (4).Theproof
is complete.

4. An Example

Consider the following system:

̇𝑥 (𝑡) = 𝑥 (𝑡) (4 − 2𝑥 (𝑡) −

10𝑦 (𝑡)

2 + 20𝑥 (𝑡) + 20𝑦 (𝑡)

− 2𝑢 (𝑡)) ,

̇𝑢 (𝑡) = −3𝑢 (𝑡) +

1

5

𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (

1

10

−

20𝑦 (𝑡)

𝑥 (𝑡) + 23

−

2

5

] (𝑡)) ,

̇] (𝑡) = −2] (𝑡) + 2𝑦 (𝑡 − 𝜏) .
(48)

By a simple calculation, we check that all conditions in
Theorems 8 and 9 are fulfilled. Therefore, byTheorems 8 and
9, system (48) has a unique globally asymptotically stable
nonnegative almost periodic solution (see Figure 1).
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Figure 1: Dynamic behavior of system (48) with the initial
(𝑥(0), 𝑦(0), 𝑢(0), V(0))𝑇 = (0.7, 1.5, 1.0, 1.1)

𝑇, for 𝜏 = 0, 𝑡 ∈ [0, 5].
From the figure, we could easily see that the solution (𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡),
V(𝑡))𝑇 is asymptotic to the unique almost periodic solution of the
system (48).
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We discuss the stability of solutions to a kind of scalar Liénard type equations with multiple variable delays by means of the fixed
point technique under an exponentially weighted metric. By this work, we improve some related results from one delay to multiple
variable delays.

1. Introduction

Formore than one hundred years, Lyapunov’s direct (second)
method has been very effectively used to investigate the
stability problems in ordinary and functional differential
equations.This method is one of the highly effective methods
to determine the stability properties of solutions of ordinary
and functional differential equations of higher order in the lit-
erature. However, till now, constructing or defining Lyapunov
functions or functionals which give a meaningful discussion
remains a general problem in the literature. In recent years,
many researchers discussed that the fixed point theory has
an important advantage over Lyapunov’s direct method.
While Lyapunov’s direct method usually requires pointwise
conditions, fixed point theory needs average conditions; see
Burton [1].

In 2001, Burton and Furumochi [2] observed some diffi-
culties that occur in studying the stability theory of ordinary
and functional differential equations by Lyapunov’s second
(direct) method. Rather than inventing new modifications of
the standard Lyapunov function(al) method to overcome the
difficulties, the authors demonstrate by various examples that
the contraction mapping principle can do the magic in many
circumstances.

Later, in 2005, by using contractionmappings, Burton [3]
investigated the scalar Liénard type equation with constant
delay, 𝐿(> 0):

̈𝑥 + 𝑓 (𝑡, 𝑥, ̇𝑥) ̇𝑥 + 𝑏 (𝑡) 𝑔 (𝑥 (𝑡 − 𝐿)) = 0. (1)

Burton [3] obtained conditions for each solution 𝑥(𝑡) to
satisfy (𝑥(𝑡), 𝑥󸀠(𝑡)) → (0, 0) as 𝑡 → ∞.

Later, in 2011, Pi [4] studied stability properties of
solutions to a scalar functional Liénard type equation with
variable delay, 𝜏(𝑡) (> 0):

̈𝑥 + 𝑓 (𝑡, 𝑥, ̇𝑥) ̇𝑥 + 𝑏 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) = 0. (2)

By using fixed point theory under an exponentially weighted
metric, Pi [4] obtained some interesting sufficient conditions
ensuring that the zero solution of this equation is stable and
asymptotically stable.

On the other hand, some recent relative results proceeded
on the qualitative behaviors of delay differential equations,
neutral differential equations, neutral Volterra integrodiffer-
ential equations, and certain nonlinear differential equations
of second order with and without delay can be summarized
as follows.

In [5], Fan et al. studied delay differential equations of the
form

̇𝑥 = − 𝑎 (𝑡, 𝑥
𝑡
) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥

𝑡
) ,

̇𝑥 = − 𝑔 (𝑡, 𝑥 (𝑡)) + 𝑓 (𝑡, 𝑥
𝑡
) ,

(3)

and the authors established sufficient and necessary criteria
for the asymptotic stability by using two different approaches,
the contractionmapping principle and Schauder’s fixed point
theorem.
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Raffoul [6] dealt with the stability of the zero solution of
a scalar neutral differential equation. The author established
sufficient conditions for the stability of the zero solution on
the base of the contraction mapping principle.

In [7], Jin and Luo aimed to study the asymptotic stability
for some scalar differential equations of retarded and neutral
type by using a fixed point approach. The authors did not
use Lyapunov’s method; they got interesting results for the
stability even when the delay is unbounded. The authors
also obtained necessary and sufficient conditions for the
asymptotic stability.

Zhang and Liu [8] considered a nonlinear neutral differ-
ential equation. By using fixed point theory, they gave some
conditions to ensure that the zero solution to the equation
is asymptotically stable. Hence, some existing results were
improved and generalized by this work.

Ardjouni and Djoudi [9] used the contraction mapping
theorem to obtain an asymptotic stability result of the zero
solution of a nonlinear neutral Volterra integrodifferential
equation with variable delays. The asymptotic stability the-
orem with a necessary and sufficient condition was proved,
which improves and extends the results in the literature.

In 2010, Tunç [10] considered the following Liénard type
equation with multiple variable deviating arguments, 𝜏

𝑗
(𝑡):

̈𝑥 (𝑡) + 𝑓
1
(𝑥 (𝑡) , ̇𝑥 (𝑡)) ̇𝑥 (𝑡) + 𝑓

2
(𝑥 (𝑡)) ̇𝑥 (𝑡)

+ 𝑔
0
(𝑥 (𝑡)) +

𝑚

∑

𝑗=1

𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡)))

= 𝑝 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡)) , . . . ,

𝑥 (𝑡 − 𝜏
𝑚
(𝑡)) , . . . , ̇𝑥 (𝑡 − 𝜏

𝑚
(𝑡))) .

(4)

The author studied the problems of stability and boundedness
of the solutions of this equation by using the Lyapunov second
method and made a comparison with some earlier works in
the literature.

In [11], the author considered the nonlinear differential
equation of second order with a constant delay, 𝑟:

̈𝑥 (𝑡) + {𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟) , ̇𝑥 (𝑡) , ̇𝑥 (𝑡 − 𝑟))

+𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟) , ̇𝑥 (𝑡) , ̇𝑥 (𝑡 − 𝑟)) ̇𝑥 (𝑡)} ̇𝑥 (𝑡)

+𝑏 (𝑡) ℎ (𝑥 (𝑡−𝑟)) = 𝑒 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟) , ̇𝑥 (𝑡) , ̇𝑥 (𝑡 − 𝑟)) .

(5)

The author discussed the stability of the zero solution of
this equation, when 𝑒(⋅) = 0, and established two new
results on the boundedness and uniform-boundedness of the
solutions of the same equation, when 𝑒(⋅) ̸= 0. By this work,
Tunç [11] improved the existing results on the stability and
boundedness of the solutions of the differential equations of
second order without a delay by imposing a few new criteria
to the second order nonlinear and nonautonomous delay
differential equations of the above form.

Further, Tunç [12] took into consideration the vector
Liénard equation with the multiple constant deviating argu-
ments, 𝜏

𝑖
> 0:

𝑋 (𝑡) + 𝐹 (𝑋 (𝑡) , 𝑋 (𝑡))𝑋 (𝑡) + 𝐺 (𝑋 (𝑡))

+

𝑛

∑

𝑖=1

𝐻
𝑖
(𝑋 (𝑡 − 𝜏

𝑖
)) = 𝑃 (𝑡) .

(6)

Based on the Lyapunov-Krasovskii functional approach, the
asymptotic stability of the zero solution and the boundedness
of all solutions of this equation, when 𝑃(𝑡) = 0 and 𝑃(𝑡) ̸= 0,
respectively, are discussed.

More recently, by using Lyapunov’s function and func-
tional approach, Tunç [13, 14] and Tunç and Yazgan [15]
discussed some problems on stability, the boundedness, and
the existence of periodic solutions of a certain second order
vector and scalar nonlinear differential equationswithout and
with delay. In [16], Tunç also gave certain sufficient conditions
for the existence of periodic solutions to a Rayleigh-type
equation with state-dependent delay.

By the mentioned papers, the authors contributed to the
subject for a class of ordinary and functional differential
equations.

In this paper, instead of the mentioned equations, we
consider the scalar Liénard type equation with multiple
variable delays:

̈𝑥 + 𝑓 (𝑡, 𝑥, ̇𝑥) ̇𝑥 +

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) = 0, (7)

where 𝑡 ∈ R+,R+ = [0,∞), 𝑏
𝑗
: R+ → R+ are bounded and

continuous functions, 𝑔
𝑗
: R → R,𝑔

𝑗
(0) = 0, 𝑓 : R+ ×R ×

R → R+, and 𝜏
𝑗
: R+ → R+ are all continuous functions

such that 𝑡 − 𝜏
𝑗
(𝑡) ≥ 0.

We can write (7) as follows:

̇𝑥 = 𝑦,

̇𝑦 = −𝑓 (𝑡, 𝑥, 𝑦) 𝑦 −

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) .

(8)

For each 𝑡
0
≥ 0, we define 𝑚(𝑡

0
) = inf{𝑠 − 𝜏

1
(𝑠), . . . , 𝑠 −

𝜏
𝑛
(𝑠) : 𝑠 ≥ 𝑡

0
} and 𝐶(𝑡

0
) = 𝐶([𝑚(𝑡

0
), 𝑡
0
], 𝑅) with the

continuous function norm ‖ ⋅ ‖, where
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩
= sup {󵄨󵄨󵄨

󵄨
𝜓 (𝑠)

󵄨
󵄨
󵄨
󵄨
: 𝑚 (𝑡
0
) ≤ 𝑠 ≤ 𝑡

0
} . (9)

It will cause no confusion even if we use ‖𝜙‖ as the
supremum on [𝑚(𝑡

0
),∞). It can be seen from [9] that, for

a given continuous function 𝜙 and a number 𝑦
0
, there exists

a solution of system (8) on an interval [𝑡
0
, 𝑇); if the solution

remains bounded, then 𝑇 = ∞. Let (𝑥(𝑡), 𝑦(𝑡)) denote the
solution (𝑥(𝑡, 𝜙, 𝑦

0
), 𝑦(𝑡, 𝜙, 𝑦

0
)).

Definition 1. The zero solution of system (8) is stable if for
each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀, 𝑡

0
) > 0 such that [𝜙 ∈

𝐶(𝑡
0
), 𝑦
0
∈ 𝑅, ‖𝜙‖ + |𝑦

0
| < 𝛿] implies that |𝑥(𝑡, 𝜙, 𝑦

0
)| +

|𝑦(𝑡, 𝜙, 𝑦
0
)| < 𝜀 for 𝑡 ≥ 𝑡

0
.
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We make the following basic assumptions on the delay
functions 𝜏

𝑗
(𝑡) : (𝐴

1
). Let 𝑡 − 𝜏

𝑗
(𝑡) be strictly increasing

and lim
𝑡→∞

(𝑡 − 𝜏
𝑗
(𝑡)) = ∞. The inverses of 𝑡 − 𝜏

𝑗
(𝑡) exist,

denoted by 𝑃
𝑗
(𝑡) and 0 ≤ 𝑏

𝑗
(𝑡) ≤ 𝑀

𝑗
, 𝑗 = 1, 2, . . . , 𝑛. Let

𝑀 = max{𝑀
1
, . . . ,𝑀

𝑛
}. Hence, 0 ≤ 𝑏

𝑗
(𝑡) ≤ 𝑀.

It is also worth mentioning that throughout the papers
[10–15] the authors discussed the qualitative behavior of
solutions of certain scalar and vector ordinary and functional
differential equations of second order by means of the Lya-
punov function or functional approach. In this paper, instead
of the mentioned methods, we use the fixed point technique
under an exponentially weighted metric to discuss stability
of solutions to a kind of scalar Liénard type equations with
multiple variable delays. This approach has a contribution to
the topic in the literature, and it may be useful for researchers
to work on the qualitative behaviors of solutions.

2. Main Result

In this section, sufficient conditions for stability are presented
by the fixed point theory. We give some results on stability
of the zero solution of (7). Before giving our main result, we
introduce some auxiliary results.

Lemma 2. Let 𝜓:[𝑚(𝑡
0
),𝑡
0
] → 𝑅 be a given continuous

function. If (𝑥(𝑡), 𝑦(𝑡)) is the solution of system (8) on [𝑡
0
, 𝑇
1
)

satisfying (𝑡) = 𝜓(𝑡), 𝑡 ∈ [𝑚(𝑡
0
), 𝑡
0
], and 𝑦(𝑡

0
) = 𝑥
󸀠
(𝑡
0
), then

𝑥(𝑡) is the solution of the following integral equation:

𝑥 (𝑡)

= 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
+ ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠)

× 𝑔
𝑗
(𝑥 (𝑠−𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(10)

Conversely, if the continuous function 𝑥(𝑡) = 𝜓(𝑡), 𝑡 ∈

[𝑚(𝑡
0
), 𝑡
0
] is the solution of (10) on [𝑡

0
, 𝑇
2
], then (𝑥(𝑡), 𝑦(𝑡))

is the solution of system (8) on [𝑡
0
, 𝑇
2
].

Proof. Let 𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡)) = 𝐴(𝑡). Then, (8) can be written as
the following system:

̇𝑥 = 𝑦,

̇𝑦 = −𝐴 (𝑡) 𝑦 −

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡)))

(11)

so that

̇𝑦 + 𝐴 (𝑡) 𝑦 +

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) = 0. (12)

Multiplying both sides of (12) by 𝑒∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠 and then integrat-
ing from 𝑡

0
to 𝑡, we obtain

𝑦 (𝑡) = 𝑦 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠

− ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑢) 𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢))) 𝑑𝑢,

(13)

and hence

̇𝑥 (𝑡) = ̇𝑥 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠

− ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑢) 𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢))) 𝑑𝑢.

(14)

If we choose ̇𝑥(𝑡
0
)𝑒
−∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠
= 𝐵(𝑡), then it follows that

̇𝑥 (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑏
𝑗
(𝑢) 𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢))) 𝑑𝑢.

(15)

Let
𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑏
𝑗
(𝑢) =

𝑛

∑

𝑗=1

𝐶
𝑗
(𝑡, 𝑢) ,

𝑛

∑

𝑗=1

∫

∞

𝑡0

𝐶
𝑗
(𝑢 + 𝑡 − 𝑡

0
, 𝑡) 𝑑𝑢 =

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) ,

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡)

1 − 𝜏
󸀠

𝑗
(𝑡)

=

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) ,

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑝
𝑗
(𝑡)) =

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) ,

𝑛

∑

𝑗=1

∫

∞

𝑡0+𝑡−𝑠

𝐶
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢 =

𝑛

∑

𝑗=1

𝐸
𝑗
(𝑡, 𝑠) .

(16)
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Then, (15) can be written in the form of

̇𝑥 (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) ∫

∞

𝑡0

𝐶
𝑗
(𝑢 + 𝑡 − 𝑡

0
, 𝑡) 𝑑𝑢

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(17)

Hence

̇𝑥 (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡)))𝐷

𝑗
(𝑡)

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

(18)

so that

̇𝑥 (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑝
𝑗
(𝑡)) 𝑔
𝑗
(𝑥 (𝑡))

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑝
𝑗
(𝑠)) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(19)

Thus, it can be written that

̇𝑥 (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) 𝑥 (𝑡)

+

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) [𝑥 (𝑡) − 𝑔

𝑗
(𝑥 (𝑡))]

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(20)

Let ∑𝑛
𝑗=1

𝐷
𝑗
(𝑡) = 𝐾(𝑡). Then,

̇𝑥 (𝑡) + 𝐾 (𝑡) 𝑥 (𝑡) = 𝐵 (𝑡) +

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) [𝑥 (𝑡) − 𝑔

𝑗
(𝑥 (𝑡))]

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(21)

Multiplying both sides of (21) by 𝑒∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠 and then integrat-
ing from 𝑡

0
to 𝑡, then

∫

𝑡

𝑡0

[𝑥(𝑢)𝑒
∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
]

󸀠

𝑑𝑢

= ∫

𝑡

𝑡0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠
𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠
𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠 𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠 𝑑

𝑑𝑡

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠 𝑑𝑢

(22)

so that

𝑥 (𝑡)

= 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
+ ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

[

𝑑

𝑑𝑢

∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

× [

𝑑

𝑑𝑢

∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑑𝑢.

(23)

Applying the integration by parts formula for the last two
terms, we have

𝑥 (𝑡)

= 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
+ ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠
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−

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠)

× 𝑔
𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(24)

Conversely, we assume that a continuous function 𝑥(𝑡) =
𝜓(𝑡) for 𝑡 ∈ [𝑚(𝑡

0
), 𝑡
0
] and satisfies the integral equation on

𝑡 ∈ [𝑡
0
, 𝑇
2
]. Then, it is differentiable on [𝑡

0
, 𝑇
2
]. Hence, it

is only needed to differentiate the integral equation. When
we differentiate the integral equation, we can conclude the
desired result.

Let (𝐶, ‖ ⋅ ‖) be the Banach space of bounded continuous
functions on [𝑚(𝑡

0
),∞) with the supremum norm ‖𝜙‖ =

sup{|𝜙(𝑡)| : 𝑡 ∈ [𝑚(𝑡
0
),∞)} for 𝜙 ∈ 𝐶. Let 𝜌 denote the

supremummetric and𝜌(𝜙
1
, 𝜙
2
) = ‖𝜙

1
−𝜙
2
‖, where𝜙

1
, 𝜙
2
∈ 𝐶.

Next, let 𝜓 : [𝑚(𝑡
0
), 𝑡
0
] → 𝑅 be a given continuous initial

function.
Define the set 𝑆 ⊂ 𝐶 by

𝑆 = {𝜙 : [𝑚 (𝑡
0
) ,∞) 󳨀→ 𝑅 | 𝜙 ∈ 𝐶,

𝜙 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [𝑚 (𝑡
0
) , 𝑡
0
]}

(25)

and its subset

𝑆
󸀠
= {𝜙 : [𝑚 (𝑡

0
) ,∞) 󳨀→ 𝑅 | 𝜙 ∈ 𝐶, 𝜙 (𝑡)

= 𝜓 (𝑡) , 𝑡 ∈ [𝑚 (𝑡
0
) , 𝑡
0
] ,
󵄨
󵄨
󵄨
󵄨
𝜙 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑙, 𝑡 ≥ 𝑚 (𝑡

0
)} ,

(26)

where 𝜓 : [𝑚(𝑡
0
), 𝑡
0
] → [−𝑙, 𝑙] is a given initial function and

𝑙 is a positive constant. Define the mapping 𝑃 : 𝑆
󸀠
→ 𝑆
󸀠 by

(𝑃𝜙) (𝑡) = 𝜓 (𝑡) , if 𝑡 ∈ [𝑚 (𝑡
0
) , 𝑡
0
] , (27)

and if 𝑡 > 𝑡
0
, then

(𝑃𝜙) (𝑡) = 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

+ ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝜙 (𝑢)−𝑔

𝑗
(𝜙 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝜙 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝜓 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝜙 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠)

× 𝑔
𝑗
(𝜙 (𝑠)) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠)

×𝑔
𝑗
(𝜙 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

× 𝐾 (𝑢) 𝑑𝑢.

(28)

Since 𝑔
𝑗
(𝑥) satisfy the Lipschitz condition, let 𝐿

1
, . . . , 𝐿

𝑛

denote the common Lipschitz constants for 𝑔
𝑗
(𝑥) and 𝑥 −

𝑔
𝑗
(𝑥).
It is also clear that

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢 = 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡

𝑡0

= 1 − 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠
≈ 1, for large 𝑡.

(29)

But since 𝑔
𝑗
(𝑥) are nonlinear, then 𝐿

𝑗
may not be small

enough. Hence, 𝑃may not be a contracting mapping. We can
solve this problem by giving an exponentially weight metric
via the next lemma.

Lemma 3. We suppose that there exists a constant 𝑙 > 0 such
that 𝑔

𝑗
(𝑥) satisfy the Lipschitz condition on [−𝑙, 𝑙]. Then there

exists a metric on 𝑆󸀠 such that

(i) the metric space (𝑆󸀠, 𝑑) is complete,
(ii) 𝑃 is a contraction mapping on (𝑆󸀠, 𝑑) if 𝑃 maps 𝑆󸀠 into

itself.

Proof. (i)We change the supremumnorm to an exponentially
weighted norm |𝜙|

ℎ
, which is defined on 𝑆󸀠. Let𝑋 be the space

of all continuous functions 𝜙 : [𝑚(𝑡
0
),∞) → 𝑅 such that

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨ℎ
= sup
𝑛

{
󵄨
󵄨
󵄨
󵄨
𝜙 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

: 𝑡 ∈ [𝑚 (𝑡
0
) ,∞)} < ∞, (30)

where ℎ(𝑡) = 𝑘∑
𝑛

𝑗=1
𝐿
𝑗
∫

𝑡

𝑡0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)]𝑑𝑠, 𝑘 is a constant,

and 𝐿
𝑗
are the common Lipschitz constants for 𝑥 − 𝑔

𝑗
(𝑥)

and 𝑔
𝑗
(𝑥). Then (𝑋, | ⋅ |

ℎ
) is a Banach space. Thus (𝑋, 𝑑) is a



6 Abstract and Applied Analysis

complete metric space with 𝑑(𝜙, 𝜑) = |𝜙 − 𝜑|
ℎ
, where 𝜙, 𝜑 ∈

𝑆. Under this metric, the space 𝑆󸀠 is a closed subset of𝑋.Thus
the metric space (𝑆󸀠, 𝑑) is complete.

(ii) Let 𝑃 : 𝑆
󸀠
→ 𝑆
󸀠. It is clear that ∑𝑛

𝑗=1
𝐷
𝑗
(𝑡) ≥ 0 and

∑
𝑛

𝑗=1
𝐸
𝑗
(𝑡, 𝑠) ≥ 0. Then, for 𝜙, 𝜑 ∈ 𝑆

󸀠, we can get

󵄨
󵄨
󵄨
󵄨
(𝑃𝜙) (𝑡) − (𝑃𝜑) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

≤

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
[𝜙 (𝑢) − 𝑔

𝑗
(𝜙 (𝑢))]

− [𝜑 (𝑢) − 𝑔
𝑗
(𝜑 (𝑢))]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝜙 (𝑠)) − 𝑔

𝑗
(𝜑 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝜙 (𝑠)) − 𝑔

𝑗
(𝜑 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝜙 (𝑠))

−𝑔
𝑗
(𝜑 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝜙 (𝑠 − 𝜏

𝑗
(𝑠)))

−𝑔
𝑗
(𝜑 (𝑠 − 𝜏

𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(31)

For 𝑢 ≤ 𝑡, since𝐷
𝑗
(𝑡) ≥ 0, we have

ℎ (𝑢) − ℎ (𝑡) =

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑢

𝑡0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑡

𝑡0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

=

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑢

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

≤

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑢

𝐷
𝑗
(𝑠) 𝑑𝑠.

(32)

Further for 𝑠 ≤ 𝑡, it follows that

ℎ (𝑠 − 𝜏
𝑗
(𝑠)) − ℎ (𝑡)

=

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑠−𝜏𝑗(𝑠)

𝑡0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑡

𝑡0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

=

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑠−𝜏𝑗(𝑠)

[𝐷
𝑗
(𝑢) + 𝐷

𝑗
(𝑢)] 𝑑𝑢

≤

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑠

𝐷
𝑗
(𝑢) 𝑑𝑢.

(33)

Since 𝐸(𝑡, 𝑠) ≥ 0, then we have

𝑛

∑

𝑗=1

𝐸
𝑗
(𝑡, 𝑠) =

𝑛

∑

𝑗=1

∫

∞

𝑡0+𝑡−𝑠

𝑐
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢

≤

𝑛

∑

𝑗=1

∫

∞

𝑡0

𝑐
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢 =

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑠) .

(34)

Hence

󵄨
󵄨
󵄨
󵄨
(𝑃𝜙) (𝑡) − (𝑃𝜑) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

≤
󵄨
󵄨
󵄨
󵄨
𝜙 − 𝜑

󵄨
󵄨
󵄨
󵄨ℎ

×

{

{

{

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑒
ℎ(𝑢)−ℎ(𝑡)

𝑑𝑢

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑒

ℎ(𝑠)−ℎ(𝑡)
𝑑𝑠

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑒
ℎ(𝑠)−ℎ(𝑡)

𝑑𝑠

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑒
ℎ(𝑠)−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠) 𝑒

ℎ(𝑠−𝜏𝑗(𝑠))−ℎ(𝑡)
𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

}

}

}

.

(35)
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Therefore,
𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑒
ℎ(𝑢)−ℎ(𝑡)

𝑑𝑢

=

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝑒
−∑
𝑛

𝑗=1
∫
𝑡

𝑢
𝐷̂𝑗(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑒
ℎ(𝑢)−ℎ(𝑡)

𝑑𝑢

≤

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝑒
−∑
𝑛

𝑗=1
∫
𝑡

𝑢
𝐷̂𝑗(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢)

𝑒
∑
𝑛

𝑗=1
𝑘𝐿𝑗 ∫

𝑡

𝑢
𝐷̂𝑗(𝑠)𝑑𝑠

𝑑𝑢

=

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝑒
−∑
𝑛

𝑗=1
(𝑘𝐿𝑗+1) ∫

𝑡

𝑢
𝐷̂𝑗(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑑𝑢

≤

𝑛

∑

𝑗=1

𝐿
𝑗

1

∑
𝑛

𝑗=1
(𝑘𝐿
𝑗
+ 1)

𝑒
−∑
𝑛

𝑗=1
(𝑘𝐿𝑗+1) ∫

𝑡

𝑢
𝐷̂𝑗(𝑠)𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡

𝑡0

≤

𝑛

∑

𝑗=1

𝐿
𝑗

1

∑
𝑛

𝑗=1
𝑘𝐿
𝑗

≤

1

𝑘

,

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑒

ℎ(𝑠)−ℎ(𝑡)
𝑑𝑠

≤

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡0

𝐷
𝑗
(𝑠) 𝑒
∑
𝑛

𝑗=1
(−𝑘)𝐿𝑗 ∫

𝑡

𝑠
𝐷𝑗(𝑠)𝑑𝑠

𝑑𝑠

≤

𝑛

∑

𝑗=1

𝐿
𝑗

1

∑
𝑛

𝑗=1
𝑘𝐿
𝑗

𝑒
−∑
𝑛

𝑗=1
𝑘𝐿𝑗 ∫

𝑡

𝑢
𝐷𝑗(𝑠)𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡

𝑡0

≤

1

𝑘

.

(36)

Thus, we have

󵄨
󵄨
󵄨
󵄨
(𝑃𝜙) (𝑡) − (𝑃𝜑) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑒
−ℎ(𝑡)

≤

5

𝑘

󵄨
󵄨
󵄨
󵄨
𝜙 − 𝜑

󵄨
󵄨
󵄨
󵄨ℎ
, 𝑡 > 𝑡

0
. (37)

For 𝑡 ∈ [𝑚(𝑡
0
), 𝑡
0
], (𝑃𝜙)(𝑡) = (𝑃𝜑)(𝑡) = 𝜃(𝑡). Thus,

𝑑 (𝑃𝜙, 𝑃𝜑) ≤

5

𝑘

𝑑 (𝜙 − 𝜑) , (𝑘 > 5) . (38)

Therefore, 𝑃 is contraction mapping on (𝑆󸀠, 𝑑).

Theorem 4. We suppose that the assumption (𝐴
1
) holds.

Moreover, we assume the following.

(i) There exists a positive constant 𝑙 such that 𝑔
𝑗
satisfy

the Lipschitz condition on [−𝑙, 𝑙] and 𝑔
𝑗
are odd and

they are strictly increasing on [−𝑙, 𝑙], and 𝑥 − 𝑔
𝑗
(𝑥) are

nondecreasing on [−𝑙, 𝑙].
(ii) There exist an 𝛼

𝑗
∈ (0, 1) and a continuous function

𝑎(𝑡) : [0,∞) → [0,∞) such that 𝑓(𝑡, 𝑥, 𝑦) ≥ 𝑎(𝑡) for
𝑡 ≥ 0, 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅,

2sup
𝑡≥0

∫

𝑃𝑗(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑤𝑑𝑠

+ 2sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑤𝑑𝑠 ≤ 𝛼

𝑗
.

(39)

(iii) There exist constants 𝑎
0
> 0 and 𝑄 > 0 such that, for

each 𝑡 ≥ 0, if 𝐽 ≥ 𝑄, then

∫

𝑡+𝐽

𝑡

𝑎 (V) 𝑑V ≥ 𝑎
0
𝐽. (40)

Then there exists 𝛿 ∈ (0, 𝑙) such that, for each initial function
𝜓 : [𝑚(𝑡

0
), 𝑡
0
] → 𝑅 and ̇𝑥(𝑡

0
) satisfying | ̇𝑥(𝑡

0
)| + ‖𝜓‖ ≤ 𝛿,

there is a unique continuous function 𝑥 : [𝑚(𝑡
0
),∞) → 𝑅

satisfying 𝑥(𝑡) = 𝜓(𝑡), which is a solution of (7) on [𝑡
0
,∞).

Moreover, the zero solution of (7) is stable.

Proof. Choose 𝜓 : [𝑚(𝑡
0
), 𝑡
0
] → 𝑅 and ̇𝑥(𝑡

0
) such that

(𝑄 +

𝑒
−𝑎0 ⋅𝑄

𝑎
0

)
󵄨
󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨
+ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑑𝑠

≤ [1 − (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)]

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) .

(41)

In view of the assumptions and 𝑔
𝑗
(0) = 0, it follows that

𝑔
𝑗
(𝑙) ≤ 𝑙. Since 𝑔

𝑗
(𝑥) satisfies Lipschitz condition on [−𝑙, 𝑙],

thus 𝑔
𝑗
(𝑥) is continuous function on [−𝑙, 𝑙].Then, there exists

a constant 𝛿 such that 𝛿 < 𝑙.
Thus, we can get

󵄨
󵄨
󵄨
󵄨
(𝑃𝜙) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝛿 + ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠 󵄨

󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨
𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠
𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) (𝑙 − 𝑔

𝑗
(𝑙)) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝛿) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(42)
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It also follows that

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑑𝑠 =

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

∫

∞

𝑡0+𝑡−𝑠

𝐶
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

∫

∞

𝑡0+𝑡−𝑠

𝑒
−∫
𝑢+𝑠−𝑡0

𝑠
𝐴(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑢 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝐴(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑢 𝑑𝑠

≤ sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑢 𝑑𝑠

+ ⋅ ⋅ ⋅ + sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑢 𝑑𝑠,

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑑𝑠 =

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑃
𝑗
(𝑠)) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑃
𝑗
(𝑠))

1 − 𝜏
󸀠

𝑗
(𝑠)

𝑑𝑠 =

𝑛

∑

𝑗=1

∫

𝑃𝑗(𝑡)

𝑡

𝐷
𝑗
(𝑠) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑃𝑗(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

⋅ 𝑏
𝑗
(𝑠) 𝑑𝑤𝑑𝑠

≤ sup
𝑡≥0

∫

𝑃1(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑤𝑑𝑠

+ ⋅ ⋅ ⋅ + sup
𝑡≥0

∫

𝑃𝑛(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑤𝑑𝑠.

(43)

From assumption (ii), we have

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑢−𝜏𝑗(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

[∫

𝑢

𝑡0

𝐸
𝑗
(𝑢, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

≤

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) {2sup

𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑢 𝑑𝑠

+ ⋅ ⋅ ⋅ + 2sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑢 𝑑𝑠

+ 2sup
𝑡≥0

∫

𝑃1(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑤𝑑𝑠

+⋅ ⋅ ⋅+2sup
𝑡≥0

∫

𝑃𝑛(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑤𝑑𝑠}

≤ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) .

(44)

Hence

󵄨
󵄨
󵄨
󵄨
(𝑃𝜙) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

(𝑙 − 𝑔
𝑗
(𝑙))

+ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙)

+ ∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠 󵄨

󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨
𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠
𝑑𝑢

≤ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

(𝑙 − 𝑔
𝑗
(𝑙))

+ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙)

+ ∫

𝑡

𝑡0

󵄨
󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨
𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠
𝑑𝑢.

(45)

Using condition (iii) of the theorem, we get

∫

𝑡

𝑡0

𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠
𝑑𝑢 = ∫

𝑡0+𝑄

𝑡0

𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠
𝑑𝑢 + ∫

𝑡

𝑡0+𝑄

𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠
𝑑𝑢

≤ 𝑄 +

𝑒
−𝑎0 ⋅𝑄

𝑎
0

.

(46)

Thus,
󵄨
󵄨
󵄨
󵄨
(𝑃𝜙) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡0

𝑡0−𝜏𝑗(𝑡0)

𝐷
𝑗
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

(𝑙 − 𝑔
𝑗
(𝑙))

+ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) +

󵄨
󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨
(𝑄 +

𝑒
−𝑎0 ⋅𝑄

𝑎
0

)

(47)

and so

󵄨
󵄨
󵄨
󵄨
(𝑃
2
𝜙) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑗=1

𝑙. (48)

It is obvious that if 𝑡 ∈ [𝑚(𝑡
0
), 𝑡
0
], then (𝑃

2
𝜙)(𝑡) = 𝜓(𝑡).

Moreover, for 𝑡 ∈ [𝑚(𝑡
0
),∞), we get |(𝑃

2
𝜙)(𝑡)| ≤ ∑

𝑛

𝑗=1
𝑙.
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Therefore, 𝑃𝜙 : 𝑆
󸀠
→ 𝑆
󸀠. Since 𝑃 is a contraction mapping,

then 𝑃 has unique fixed point 𝑥(𝑡) such that |𝑥(𝑡)| ≤ ∑
𝑛

𝑗=1
𝑙.

From (14), we have

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑏
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢.

(49)

Since, for 𝑡 ∈ [0,∞), 0 ≤ 𝑏
𝑗
(𝑡) ≤ 𝑀

𝑗
, then

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
̇𝑥 (𝑡
0
)
󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑗=1

𝑀
𝑗
∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠 󵄨󵄨

󵄨
󵄨
󵄨
𝑥 (𝑢 − 𝜏

𝑗
(𝑢))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

≤

𝑛

∑

𝑗=1

𝑙 (1 +𝑀
𝑗
∫

𝑡

𝑡0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑑𝑢)

<

𝑛

∑

𝑗=1

𝑙 [1 +𝑀
𝑗
(𝑄 +

𝑒
−𝑎0𝑄

𝑎
0

)] .

(50)

Hence

|𝑥 (𝑡)| +
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
<

𝑛

∑

𝑗=1

𝑙 [2 +𝑀
𝑗
(𝑄 +

𝑒
−𝑎0𝑄

𝑎
0

)] . (51)

If we replace 𝜀 by 𝑙, then we show that the zero solution of (7)
is stable. This result completes the proof of the theorem.

3. Conclusion

Akind of scalar Liénard type equationswithmultiple variable
delays is considered. The stability of the zero solution of this
equation is investigated. In proving our main result, we use
the fixed points theory by giving an exponentially weight
metric. Our result extends and improves some recent results
in the literature.
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Copyright © 2014 Habib Mâagli et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We establish the existence and uniqueness of a positive solution 𝑢 for the following fractional boundary value problem: 𝐷
𝛼
𝑢(𝑥) =

−𝑎(𝑥)𝑢
𝜎
(𝑥), 𝑥 ∈ (0, 1) with the conditions lim

𝑥→0
+𝑥
2−𝛼

𝑢(𝑥) = 0, 𝑢(1) = 0, where 1 < 𝛼 ≤ 2, 𝜎 ∈ (−1, 1), and 𝑎 is a nonnegative
continuous function on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1. We also give the global behavior of such a solution.

1. Introduction

Recently, the theory of fractional differential equations has
been developed very quickly and the investigation for the
existence of solutions of these differential equations has
attracted considerable attention of researchers in the last few
years (see [1–11] and the references therein).

Fractional differential equations arise in various fields
of science and engineering such as control, porous media,
electrochemistry, viscoelasticity, and electromagnetism.They
also serve as an excellent tool for the description of hereditary
properties of variousmaterials and processes (see [12–14]). In
consequence, the subject of fractional differential equations
is gaining much importance. Motivated by the surge in
the development of this subject, we consider the following
singular Dirichlet problem:

𝐷
𝛼
𝑢 (𝑥) = −𝑎 (𝑥) 𝑢

𝜎
(𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

+

𝑥
2−𝛼

𝑢 (𝑥) = 0, 𝑢 (1) = 0,

(1)

where 1 < 𝛼 ≤ 2, −1 < 𝜎 < 1, and 𝑎 is a nonnegative
continuous function on (0, 1) that may be singular at 𝑥 = 0

or 𝑥 = 1. Then we study the existence and exact asymptotic
behavior of positive solutions for this problem.

We recall that, for a measurable function V, the Riemann-
Liouville fractional integral 𝐼

𝛽
V and the Riemann-Liouville

derivative 𝐷
𝛽V of order 𝛽 > 0 are, respectively, defined by

𝐼
𝛽
V (𝑥) =

1

Γ (𝛽)

∫

𝑥

0

(𝑥 − 𝑡)
𝛽−1V (𝑡) 𝑑𝑡,

𝐷
𝛽V (𝑥) =

1

Γ (𝑛 − 𝛽)

(

𝑑

𝑑𝑥

)

𝑛

∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛽−1V (𝑡) 𝑑𝑡

= (

𝑑

𝑑𝑥

)

𝑛

𝐼
𝑛−𝛽

V (𝑥) ,

(2)

provided that the right hand sides are pointwise defined on
(0, 1]. Here 𝑛 = [𝛽] + 1 and [𝛽] means the integer part of the
number 𝛽 and Γ is the Euler Gamma function.

Moreover, we have the following well-known properties
(see [3, 13, 15]):

(i) 𝐼
𝛽
𝐼
𝛾
V(𝑥) = 𝐼

𝛽+𝛾
V(𝑥) for 𝑥 ∈ [0, 1], V ∈ 𝐿

1
((0, 1]), 𝛽 +

𝛾 ≥ 1;

(ii) 𝐷
𝛽
𝐼
𝛽
V(𝑥) = V(𝑥) for a.e. 𝑥 ∈ [0, 1], where V ∈

𝐿
1
((0, 1]), 𝛽 > 0;
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(iii) if V ∈ 𝐶((0, 1)) ∩ 𝐿
1
((0, 1)) and 𝐷

𝛽V(𝑥) = 0, then
V(𝑥) = ∑

𝑛

𝑗=1
𝑐
𝑗
𝑡
𝛽−𝑗, where (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) ∈ R𝑛 and 𝑛

is the smallest integer greater than or equal to 𝛽.

Several results are obtained for fractional differential
equations with different boundary conditions, but none of
them deal with the existence of a positive solution to problem
(1).

Our aim in this paper is to establish the existence and
uniqueness of a positive solution 𝑢 ∈ 𝐶

2−𝛼
([0, 1]) for problem

(1) with a precise asymptotic behavior, where 𝐶
2−𝛼

([0, 1])

is the set of all functions 𝑓 such that 𝑡 → 𝑡
2−𝛼

𝑓(𝑡) is
continuous on [0, 1].

To state our result, we need some notations. We will use
K to denote the set of Karamata functions 𝐿 defined on (0, 𝜂]

by

𝐿 (𝑡) := 𝑐 exp(∫

𝜂

𝑡

𝑧 (𝑠)

𝑠

𝑑𝑠) , (3)

for some 𝜂 > 1, where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) such that
𝑧(0) = 0. It is clear that a function 𝐿 is inK if and only if 𝐿 is
a positive function in 𝐶

1
((0, 𝜂]) such that

lim
𝑡→0
+

𝑡𝐿
󸀠
(𝑡)

𝐿 (𝑡)

= 0. (4)

For two nonnegative functions𝑓 and 𝑔 defined on a set 𝑆, the
notation 𝑓(𝑥) ≈ 𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0

such that (1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥) for all 𝑥 ∈ 𝑆. We denote
by 𝑥
+

= max(𝑥, 0) for 𝑥 ∈ R and by 𝐵
+
((0, 1)) the set of all

nonnegative measurable functions on (0, 1).
Throughout this paper, we assume that 𝑎 is nonnegative

on (0, 1) and satisfies the following condition:
(𝐻
0
) 𝑎 ∈ 𝐶((0, 1)) such that for 𝑡 ∈ (0, 1)

𝑎 (𝑡) ≈ 𝑡
−𝜆

𝐿
1
(𝑡) (1 − 𝑡)

−𝜇
𝐿
2
(1 − 𝑡) , (5)

where 𝜆 ≤ 𝛼 + (2 − 𝛼)(1 − 𝜎), 𝜇 ≤ 𝛼, 𝐿
1
, 𝐿
2
∈ K satisfying

∫

𝜂

0

𝐿
1
(𝑡)

𝑡
𝜆+(2−𝛼)𝜎−1

𝑑𝑡 < ∞, ∫

𝜂

0

𝐿
2
(𝑡)

𝑡
𝜇−𝛼+1

𝑑𝑡 < ∞. (6)

In the sequel, we introduce the function 𝜃 defined on (0, 1) by

𝜃 (𝑥) = 𝑥
min(1,(2−𝜆+(𝛼−2)𝜎)/(1−𝜎))

(𝐿̃
1
(𝑥))

1/(1−𝜎)

× (1 − 𝑥)
min(1,(𝛼−𝜇)/(1−𝜎))

(𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

,

(7)

where

𝐿̃
1
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1,

if 𝜆 < 𝛼 − (𝛼 − 1)

× (1 − 𝜎) ,

∫

𝜂

𝑥

𝐿
1
(𝑠)

𝑠

𝑑𝑠,

if 𝜆 = 𝛼 − (𝛼 − 1)

× (1 − 𝜎) ,

𝐿
1
(𝑥) ,

if 𝛼 − (𝛼 − 1) (1 − 𝜎)

< 𝜆 < 𝛼 + (2 − 𝛼) (1 − 𝜎) ,

∫

𝑥

0

𝐿
1
(𝑠)

𝑠

𝑑𝑠,

if 𝜆 = 𝛼 + (2 − 𝛼)

× (1 − 𝜎) ,

𝐿̃
2
(𝑥) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

1, if 𝜇 < 𝛼 + 𝜎 − 1,

∫

𝜂

𝑥

𝐿
2
(𝑠)

𝑠

𝑑𝑠, if 𝜇 = 𝛼 + 𝜎 − 1,

𝐿
2
(𝑥) , if 𝛼 + 𝜎 − 1 < 𝜇 < 𝛼,

∫

𝑥

0

𝐿
2
(𝑠)

𝑠

𝑑𝑠, if 𝜇 = 𝛼.

(8)

Our main result is the following.

Theorem 1. Let 𝜎 ∈ (−1, 1) and assume that 𝑎 satisfies
(𝐻
0
). Then problem (1) has a unique positive solution 𝑢 ∈

𝐶
2−𝛼

([0, 1]) satisfying for 𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

𝜃 (𝑥) . (9)

Remark 2. Note that, for 𝑥 ∈ (0, 1), we have

𝑥
𝛼−2

𝜃 (𝑥) ≈ 𝑥
min(𝛼−1,(𝛼−𝜆)/(1−𝜎))

× (𝐿̃
1
(𝑥))

1/(1−𝜎)

(1 − 𝑥)
min(1,(𝛼−𝜇)/(1−𝜎))

× (𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

.

(10)

This implies in particular that, for 1 < 𝛼 < 2 and 𝛼 < 𝜆 ≤

𝛼 + (2 − 𝛼)(1 − 𝜎), the solution 𝑢 blows up at 𝑥 = 0 and for
𝜆 < 𝛼, lim

𝑥→0
+𝑢(𝑥) = 0.

This paper is organized as follows. Some preliminary
lemmas are stated and proved in the next section, involving
some already known results on Karamata functions. In
Section 3, we give the proof of Theorem 1.

2. Technical Lemmas

To let the paper be self-contained, we begin this section by
recapitulating some properties of Karamata regular variation
theory. The following is due to [16, 17].

Lemma 3. The following hold.

(i) Letting 𝐿 ∈ K and 𝜀 > 0, then one has

lim
𝑡→0
+

𝑡
𝜀
𝐿 (𝑡) = 0. (11)

(ii) Let 𝐿
1
, 𝐿
2
∈ K and 𝑝 ∈ R.Then one has 𝐿

1
+𝐿
2
∈ K,

𝐿
1
𝐿
2
∈ K, and 𝐿

𝑝

1
∈ K.
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Example 4. Let 𝑚 be a positive integer. Let 𝑐 > 0,
(𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚
) ∈ R𝑚, and 𝑑 be a sufficiently large positive

real number such that the function

𝐿 (𝑡) = 𝑐

𝑚

∏

𝑘=1

(log
𝑘
(

𝑑

𝑡

))

−𝜇𝑘

(12)

is defined and positive on (0, 𝜂], for some 𝜂 > 1, where
log
𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ ∘ log𝑥 (𝑘 times). Then 𝐿 ∈ K.

Applying Karamata’s theorem (see [16, 17]), we get the
following.

Lemma 5. Let 𝜇 ∈ R and 𝐿 be a function in K defined on
(0, 𝜂]. One has the following:

(i) if 𝜇 < −1, then ∫

𝜂

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 diverges and ∫

𝜂

𝑡
𝑠
𝜇

𝐿(𝑠)𝑑𝑠∼
𝑡→0
+ − 𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1);

(ii) if 𝜇 > −1, then ∫

𝜂

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 converges and ∫

𝑡

0
𝑠
𝜇

𝐿(𝑠)𝑑𝑠∼
𝑡→0
+𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1).

Lemma 6. Let 𝐿 ∈ K be defined on (0, 𝜂]. Then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝜂

𝑡
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (13)

If further ∫

𝜂

0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝑡

0
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (14)

Proof. We distinguish two cases.

Case 1. We suppose that ∫

𝜂

0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges. Since the

function 𝑡 → 𝐿(𝑡)/𝑡 is nonincreasing in (0, 𝜔], for some
𝜔 < 𝜂, it follows that, for each 𝑡 ≤ 𝜔, we have

𝐿 (𝑡) ≤ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠. (15)

It follows that lim
𝑡→0
+𝐿(𝑡) = 0. So we deduce (13).

Now put

𝜑 (𝑡) =

𝐿 (𝑡)

𝑡

, for 𝑡 ∈ (0, 𝜂) . (16)

Using that lim
𝑡→0
+(𝑡𝜑
󸀠
(𝑡)/𝜑(𝑡)) = −1, we obtain

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠∼
𝑡→0
+ − ∫

𝑡

0

𝑠𝜑
󸀠
(𝑠) 𝑑𝑠 = −𝑡𝜑 (𝑡) + ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠.

(17)

This implies that

∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠∼
𝑡→0
+ − 𝐿 (𝑡) + ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠. (18)

So (14) holds.

Case 2. We suppose that ∫𝜂
0
(𝐿(𝑠)/𝑠)𝑑𝑠 diverges. We have, for

some 𝜔 < 𝜂,

∫

𝜔

𝑡

𝜑 (𝑠) 𝑑𝑠∼
𝑡→0
+𝑡𝜑 (𝑡) − 𝜔𝜑 (𝜔) + ∫

𝜔

𝑡

𝜑 (𝑠) 𝑑𝑠. (19)

This implies that

∫

𝜔

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠∼
𝑡→0
+𝐿 (𝑡) − 𝜔𝜑 (𝜔) + ∫

𝜔

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠. (20)

This proves (13) and completes the proof.

Remark 7. Let 𝐿 ∈ K be defined on (0, 𝜂]; then using (4) and
(13), we deduce that

𝑡 󳨀→ ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (21)

If further ∫

𝜂

0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges, we have by (13) that

𝑡 󳨀→ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (22)

Lemma8. Given 1 < 𝛼 ≤ 2 and𝜑 ∈ 𝐶([0, 1]), then the unique
continuous solution of

𝐷
𝛼
𝑢 (𝑥) = −𝜑 (𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

𝑥
2−𝛼

𝑢 (𝑥) = 0, 𝑢 (1) = 0

(23)

is given by

𝑢 (𝑥) = 𝐺
𝛼
𝜑 (𝑥) := ∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡, (24)

where

𝐺
𝛼
(𝑥, 𝑡) =

1

Γ (𝛼)

[𝑥
𝛼−1

(1 − 𝑡)
𝛼−1

− ((𝑥 − 𝑡)
+
)

𝛼−1

] (25)

is Green’s function for the boundary value problem (23).

Proof. Since 𝜑 ∈ 𝐶([0, 1]), then 𝑢
0
= −𝐼
𝛼
𝜑 is a solution of the

equation 𝐷
𝛼
𝑢 = −𝜑. Hence 𝐷

𝛼
(𝑢 + 𝐼

𝛼
𝜑) = 0. Consequently

there exist two constants 𝑐
1
, 𝑐
2
∈ R such that 𝑢(𝑥) + 𝐼

𝛼
𝜑(𝑥) =

𝑐
1
𝑥
𝛼−1

+ 𝑐
2
𝑥
𝛼−2. Using the fact that lim

𝑥→0
𝑥
2−𝛼

𝑢(𝑥) = 0 and
𝑢(1) = 0, we obtain 𝑐

2
= 0 and 𝑐

1
= 𝐼
𝛼
𝜑(1). So

𝑢 (𝑥) =

1

Γ (𝛼)

𝑥
𝛼−1

∫

1

0

(1 − 𝑡)
𝛼−1

𝜑 (𝑡) 𝑑𝑡

−

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝜑 (𝑡) 𝑑𝑡

= ∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡.

(26)

In the following, we give some estimates on the Green
function 𝐺

𝛼
(𝑥, 𝑦). So, we need the following lemma.
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Lemma 9. For 𝜆, 𝜇 ∈ (0,∞) and 𝑡 ∈ [0, 1] one has

min(1,

𝜇

𝜆

) (1 − 𝑡
𝜆
) ≤ 1 − 𝑡

𝜇
≤ max(1,

𝜇

𝜆

) (1 − 𝑡
𝜆
) . (27)

Proposition 10. On (0, 1) × (0, 1), one has

(i) 𝐺
𝛼
(𝑥, 𝑡) ≈ 𝑥

𝛼−2
(1 − 𝑡)

𝛼−2 min(𝑥, 𝑡) (1 − max(𝑥, 𝑡));
(ii) there exist two constants 𝑐

1
, 𝑐
2
> 0 such that

𝑐
1
𝑥
𝛼−1

𝑡(1 − 𝑡)
𝛼−1

(1 − 𝑥) ≤ 𝐺
𝛼
(𝑥, 𝑡) ≤ 𝑐

2
𝑥
𝛼−2

𝑡(1 − 𝑡)
𝛼−1

.

(28)

Proof. (i) For 𝑥, 𝑡 ∈ (0, 1) × (0, 1) we have

𝐺
𝛼
(𝑥, 𝑡) =

(1 − 𝑡)
𝛼−1

𝑥
𝛼−1

Γ (𝛼)

[1 − (

(𝑥 − 𝑡)
+

𝑥 (1 − 𝑡)

)

𝛼−1

] . (29)

Since (𝑥−𝑡)
+
/𝑥(1−𝑡) ∈ (0, 1) for𝑥, 𝑡 ∈ (0, 1), then by applying

Lemma 9 with 𝜇 = 𝛼 − 1 and 𝜆 = 1, we obtain

𝐺
𝛼
(𝑥, 𝑡) ≈ 𝑥

𝛼−1
(1 − 𝑡)

𝛼−1
(1 −

(𝑥 − 𝑡)
+

𝑥 (1 − 𝑡)

)

= 𝑥
𝛼−2

(1 − 𝑡)
𝛼−2min (𝑥, 𝑡) (1 − max (𝑥, 𝑡)) .

(30)

(ii) Using the following inequalities for 𝑥, 𝑡 ∈ [0, 1],

𝑥 (1 − 𝑥) 𝑡 (1 − 𝑡) ≤ min (𝑥, 𝑡) (1 − max (𝑥, 𝑡)) ≤ 𝑡 (1 − 𝑡) ,

(31)

we deduce the result from (i).

As a consequence of Proposition 10, we obtain the follow-
ing.

Corollary 11. Let 𝑓 ∈ 𝐵
+
((0, 1)) and put 𝐺

𝛼
𝑓(𝑥) :=

∫

1

0
𝐺
𝛼
(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡 for 𝑥 ∈ (0, 1]. Then

𝐺
𝛼
𝑓 (𝑥) < ∞ for 𝑥 ∈ (0, 1)

𝑖𝑓𝑓∫

1

0

𝑡(1 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡 < ∞.

(32)

Proposition 12. Given 1 < 𝛼 < 2 and𝑓 such that the function
𝑡 → 𝑡(1 − 𝑡)

𝛼−1
𝑓(𝑡) is continuous and integrable on (0, 1),

then𝐺
𝛼
𝑓 is the unique solution in 𝐶

2−𝛼
([0, 1]) of the following

boundary value problem:

𝐷
𝛼
𝑢 (𝑥) = −𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

+

𝑥
2−𝛼

𝑢 (𝑥) = 0, 𝑢 (1) = 0.

(33)

Proof. From Corollary 11, the function 𝐺
𝛼
𝑓 is defined on

(0, 1) and by Proposition 10, we have

𝐺
𝛼

󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨
(𝑥) ≤ 𝑐

2
𝑥
𝛼−2

∫

1

0

𝑡(1 − 𝑡)
𝛼−1 󵄨

󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡, (34)

which implies that 𝐼
2−𝛼

(𝐺
𝛼
|𝑓|) is bounded on (0, 1). Now,

using Fubini’s theorem, we have

𝐼
2−𝛼

(𝐺
𝛼
𝑓) (𝑥)

=

1

Γ (2 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
𝑓 (𝑡) 𝑑𝑡

=

1

Γ (2 − 𝛼)

∫

1

0

(∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
(𝑡, 𝑠) 𝑑𝑡)𝑓 (𝑠) 𝑑𝑠.

(35)

On the other hand, we have

1

Γ (2 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
(𝑡, 𝑠) 𝑑𝑡

=

1

Γ (2 − 𝛼) Γ (𝛼)

[(1 − 𝑠)
𝛼−1

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝑡
𝛼−1

𝑑𝑡

−∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

((𝑡 − 𝑠)
+
)

𝛼−1

𝑑𝑡]

= 𝑥(1 − 𝑠)
𝛼−1

−

1

Γ (2 − 𝛼) Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

× ((𝑡 − 𝑠)
+
)

𝛼−1

𝑑𝑡.

(36)

Now, suppose that 𝑠 ≤ 𝑥; then we have

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

((𝑡 − 𝑠)
+
)

𝛼−1

𝑑𝑡

= ∫

𝑥

𝑠

(𝑥 − 𝑡)
1−𝛼

(𝑡 − 𝑠)
𝛼−1

𝑑𝑡.

(37)

By considering the substitution 𝑡 = 𝑠 + 𝜃(𝑥 − 𝑠), we obtain

∫

𝑥

𝑠

(𝑥 − 𝑡)
1−𝛼

(𝑡 − 𝑠)
𝛼−1

𝑑𝑡 = Γ (𝛼) Γ (2 − 𝛼) (𝑥 − 𝑠) . (38)

Moreover if 𝑥 ≤ 𝑠 and 𝑡 ∈ (0, 𝑥), we have ∫

𝑥

0
(𝑥 −

𝑡)
1−𝛼

((𝑡 − 𝑠)
+
)

𝛼−1

𝑑𝑡 = 0.
So, it follows that

1

Γ (2 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
(𝑡, 𝑠) 𝑑𝑡

= 𝑥(1 − 𝑠)
𝛼−1

− (𝑥 − 𝑠)
+
.

(39)
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This implies that

𝐼
2−𝛼

(𝐺
𝛼
𝑓) (𝑥)

= ∫

1

0

[𝑥(1 − 𝑠)
𝛼−1

− (𝑥 − 𝑠)
+
] 𝑓 (𝑠) 𝑑𝑠

= 𝑥∫

𝑥

0

((1 − 𝑠)
𝛼−1

− 1)𝑓 (𝑠) 𝑑𝑠

+ ∫

𝑥

0

𝑠𝑓 (𝑠) 𝑑𝑠 + 𝑥∫

1

𝑥

(1 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝐷
𝛼
(𝐺
𝛼
𝑓) (𝑥) =

𝑑
2

𝑑𝑥
2
(𝐼
2−𝛼

(𝐺
𝛼
𝑓)) (𝑥)

= −𝑓 (𝑥) , for 𝑥 ∈ (0, 1) .

(40)

Moreover, using part (i) of Proposition 10 and the domi-
nated convergence theorem, we conclude that lim

𝑥→0
+𝑥
2−𝛼

𝐺
𝛼
𝑓(𝑥) = 0 and 𝐺

𝛼
𝑓(1) = 0.

Finally, we prove the uniqueness. Let 𝑢, V ∈ 𝐶
2−𝛼

([0, 1])

be two solutions of (33) and put 𝑤 = V − 𝑢. Then 𝑤 ∈

𝐶
2−𝛼

([0, 1]) ⊂ 𝐿
1
((0, 1)) ∩ 𝐶((0, 1)) and 𝐷

𝛼
𝑤 = 0. Hence,

it follows that 𝑤(𝑥) = 𝑐
1
𝑥
𝛼−1

+ 𝑐
2
𝑥
𝛼−2. Using the fact that

lim
𝑥→0

+𝑥
2−𝛼

𝑤(𝑥) = 𝑤(1) = 0, we conclude that 𝑤 = 0 and
so 𝑢 = V.

In the sequel, we assume that 𝛽 ≤ 2 and 𝛾 ≤ 𝛼 and we put

𝑏 (𝑡) = 𝑡
−𝛽

𝐿
3
(𝑡) (1 − 𝑡)

−𝛾
𝐿
4
(1 − 𝑡) , (41)

where 𝐿
3
, 𝐿
4
∈ K satisfy

∫

𝜂

0

𝐿
3
(𝑡)

𝑡
𝛽−1

𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
𝛼−1−𝛾

𝐿
4
(𝑡) 𝑑𝑡 < ∞. (42)

So, we aim to give some estimates on the potential function
𝐺
𝛼
𝑏(𝑥).
We define the Karamata functions 𝜓

𝛽
, 𝜙
𝛾
by

𝜓
𝛽
(𝑥) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 2,

𝐿
3
(𝑥) , if 1 < 𝛽 < 2,

∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 1,

1, if 𝛽 < 1,

(43)

𝜙
𝛾
(𝑥) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼,

𝐿
4
(𝑥) , if 𝛼 − 1 < 𝛾 < 𝛼,

∫

𝜂

𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼 − 1,

1, if 𝛾 < 𝛼 − 1.

(44)

Then, we have the following.

Proposition 13. For 𝑥 ∈ (0, 1),

𝐺
𝛼
𝑏 (𝑥) ≈ 𝑥

min(𝛼−1,𝛼−𝛽)
(1 − 𝑥)

min(1,𝛼−𝛾)
𝜓
𝛽
(𝑥) 𝜙
𝛾
(1 − 𝑥) .

(45)

Proof. Using Proposition 10, we have

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈ ∫

1

0

(1 − 𝑡)
𝛼−2−𝛾

𝑡
−𝛽min (𝑥, 𝑡)

× (1 − max (𝑥, 𝑡)) 𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ (1 − 𝑥)∫

𝑥

0

(1 − 𝑡)
𝛼−2−𝛾

𝑡
1−𝛽

× 𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

+ 𝑥∫

1

𝑥

(1 − 𝑡)
𝛼−1−𝛾

𝑡
−𝛽

× 𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

= (1 − 𝑥) 𝐼 (𝑥) + 𝑥𝐽 (𝑥) .

(46)

For 0 < 𝑥 ≤ 1/2, we have 𝐼(𝑥) ≈ ∫

𝑥

0
𝑡
1−𝛽

𝐿
3
(𝑡)𝑑𝑡. So, using

Lemma 5 and hypothesis (42), we deduce that

𝐼 (𝑥) ≈

{
{

{
{

{

𝑥
2−𝛽

𝐿
3
(𝑥) , if 𝛽 < 2,

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 2.

(47)

Now, we have

𝐽 (𝑥) ≈ ∫

1/2

𝑥

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡

+ ∫

1

1/2

(1 − 𝑡)
𝛼−1−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

1/2

𝑥

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡,

(48)

which implies by Lemma 5 that

𝐽 (𝑥) ≈

{
{
{
{

{
{
{
{

{

𝑥
1−𝛽

𝐿
3
(𝑥) , if 1 < 𝛽 ≤ 2,

∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 1,

1, if 𝛽 < 1.

(49)

Hence, it follows by Lemma 6 and hypothesis (42) that, for
0 < 𝑥 ≤ 1/2, we get

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2,

𝑥
2−𝛽

𝐿
3
(𝑥) if 1 < 𝛽 < 2,

𝑥∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 1,

𝑥 if 𝛽 < 1.

(50)

That is

𝐺
𝛼
𝑏 (𝑥) ≈ 𝑥

min(𝛼−1,𝛼−𝛽)
𝜓
𝛽
(𝑥) . (51)
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Now, for 1/2 ≤ 𝑥 < 1, we use again Lemma 5 and hypothesis
(42) to deduce that

𝐼 (𝑥) ≈ ∫

1/2

0

𝑡
1−𝛽

𝐿
3
(𝑡) 𝑑𝑡

+ ∫

𝑥

1/2

(1 − 𝑡)
𝛼−2−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

𝑥

1/2

(1 − 𝑡)
𝛼−2−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈

{
{
{
{

{
{
{
{

{

(1 − 𝑥)
𝛼−1−𝛾

𝐿
4
(1 − 𝑥) , if 𝛼 − 1 < 𝛾 ≤ 𝛼,

∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼 − 1,

1, if 𝛾 < 𝛼 − 1,

𝐽 (𝑥) ≈ ∫

1−𝑥

0

𝑡
𝛼−1−𝛾

𝐿
4
(𝑡) 𝑑𝑡

≈

{
{

{
{

{

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) , if 𝛾 < 𝛼,

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼.

(52)

Hence, it follows from Lemma 3 that, for 𝑥 ∈ [1/2, 1), we get

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼,

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) , if 𝛼 − 1 < 𝛾 < 𝛼,

(1 − 𝑥) ∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼 − 1,

1 − 𝑥, if 𝛾 < 𝛼 − 1.

(53)

That is

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈ (1 − 𝑥)

min(1,𝛼−𝛾)
𝜙
𝛾
(1 − 𝑥) . (54)

This together with (51) implies that, for 𝑥 ∈ (0, 1), we have

𝐺
𝛼
𝑏 (𝑥) ≈ 𝑥

min(𝛼−1,𝛼−𝛽)
(1 − 𝑥)

min(1,𝛼−𝛾)
𝜓
𝛽
(𝑥) 𝜙
𝛾
(1 − 𝑥) .

(55)

3. Proof of Theorem 1

In order to proveTheorem 1, we need the following Lemma.

Lemma 14. Assume that the function 𝑎 satisfies (𝐻
0
) and put

𝜔(𝑡) = 𝑎(𝑡)𝑡
(𝛼−2)𝜎

(𝜃(𝑡))
𝜎 for 𝑡 ∈ (0, 1). Then one has, for 𝑥 ∈

(0, 1),

𝐺
𝛼
𝜔 (𝑥) ≈ 𝑥

𝛼−2
𝜃 (𝑥) . (56)

Proof. Put 𝑟 = min(𝛼−1, (𝛼−𝜆)/(1−𝜎)) and 𝑠 = min(1, (𝛼−

𝜇)/(1 − 𝜎)). Then for 𝑡 ∈ (0, 1), we have

𝜔 (𝑡) = 𝑡
−𝜆+𝑟𝜎

𝐿
1
(𝑡) (𝐿̃

1
(𝑡))

𝜎/(1−𝜎)

× (1 − 𝑡)
−𝜇+𝑠𝜎

𝐿
2
(1 − 𝑡) (𝐿̃

2
(1 − 𝑡))

𝜎/(1−𝜎)

.

(57)

Let 𝛽 = 𝜆 − 𝑟𝜎, 𝛾 = 𝜇 − 𝑠𝜎, 𝐿
3
(𝑡) = 𝐿

1
(𝑡)(𝐿̃
1
(𝑡))

𝜎/(1−𝜎),
and 𝐿

4
(𝑡) = 𝐿

2
(𝑡)(𝐿̃
2
(𝑡))

𝜎/(1−𝜎). Then, using Proposition 13,
we obtain by a simple computation that

𝑥
2−𝛼

𝐺
𝛼
(𝜔) (𝑥) ≈ 𝜃 (𝑥) . (58)

Proof of Theorem 1. From Lemma 14, there exists𝑀 > 1 such
that, for each 𝑥 ∈ (0, 1),

1

𝑀

𝜃 (𝑥) ≤ 𝑥
2−𝛼

𝐺
𝛼
𝜔 (𝑥) ≤ 𝑀𝜃 (𝑥) , (59)

where 𝜔(𝑡) = 𝑎(𝑡)𝑡
(𝛼−2)𝜎

𝜃
𝜎
(𝑡).

Put 𝑐
0
= 𝑀
1/(1−|𝜎|) and let

Λ = {V ∈ 𝐶 ([0, 1]) :

1

𝑐
0

𝜃 ≤ V ≤ 𝑐
0
𝜃} . (60)

In order to use a fixed point theorem, we denote 𝑎(𝑡) =

𝑎(𝑡)𝑡
(𝛼−2)𝜎 and we define the operator 𝑇 on Λ by

𝑇V (𝑥) = 𝑥
2−𝛼

𝐺
𝛼
(𝑎V𝜎) (𝑥) . (61)

For this choice of 𝑐
0
, we can easily prove that, for V ∈ Λ, we

have 𝑇V ≤ 𝑐
0
𝜃 and 𝑇V ≥ (1/𝑐

0
)𝜃.

Now, we have

𝑇V (𝑥) =

𝑥
2−𝛼

Γ (𝛼)

∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝑎 (𝑡) V𝜎 (𝑡) 𝑑𝑡

=

𝑥
2−𝛼

Γ (𝛼)

∫

1

0

[𝑥
𝛼−1

(1 − 𝑡)
𝛼−1

−((𝑥 − 𝑡)
+
)

𝛼−1

] 𝑎 (𝑡) V𝜎 (𝑡) 𝑑𝑡.

(62)

Since the function (𝑥, 𝑡) → 𝑥
𝛼−1

(1 − 𝑡)
𝛼−1

− ((𝑥 −

𝑡)
+
)
𝛼−1 is continuous on [0, 1] × [0, 1] and by Proposition 10,

Corollary 11, and Lemma 14, the function 𝑡 → 𝑡(1 −

𝑡)
𝛼−1

𝑎(𝑡)𝜃
𝜎
(𝑡) is integrable on (0, 1), we deduce that the

operator 𝑇 is compact from Λ to itself. It follows by the
Schauder fixed point theorem that there exists V ∈ Λ such
that 𝑇V = V. Put 𝑢(𝑥) = 𝑥

𝛼−2V(𝑥). Then 𝑢 ∈ 𝐶
2−𝛼

([0, 1]) and
𝑢 satisfies the equation

𝑢 (𝑥) = 𝐺
𝛼
(𝑎𝑢
𝜎
) (𝑥) . (63)

Since the function 𝑡 → 𝑡(1−𝑡)
𝛼−1

𝑎(𝑡)𝑢
𝜎
(𝑡) is continuous and

integrable on (0, 1), then by Proposition 12, the function 𝑢 is
a positive continuous solution of problem (1).

Finally, let us prove that 𝑢 is the unique positive contin-
uous solution satisfying (9). To this aim, we assume that (1)
has two positive solutions 𝑢, V ∈ 𝐶

2−𝛼
([0, 1]) satisfying (9)

and consider the nonempty set 𝐽 = {𝑚 ≥ 1 : 1/𝑚 ≤ 𝑢/V ≤ 𝑚}

and put 𝑐 = inf 𝐽. Then 𝑐 ≥ 1 and we have (1/𝑐)V ≤ 𝑢 ≤ 𝑐V. It
follows that 𝑢𝜎 ≤ 𝑐

|𝜎|V𝜎 and consequently

− 𝐷
𝛼
(𝑐
|𝜎|V − 𝑢) = 𝑎 (𝑐

|𝜎|V𝜎 − 𝑢
𝜎
) ≥ 0,

lim
𝑡→0
+

𝑥
2−𝛼

(𝑐
|𝜎|V − 𝑢) (𝑡) = 0,

(𝑐
|𝜎|V − 𝑢) (1) = 0,

(64)
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which implies by Proposition 12 that 𝑐|𝜎|V−𝑢 = 𝐺
𝛼
(𝑎(𝑐
|𝜎|V𝜎 −

𝑢
𝜎
)) ≥ 0. By symmetry, we also obtain that V ≤ 𝑐

|𝜎|
𝑢. Hence,

𝑐
|𝜎|

∈ 𝐽 and 𝑐 ≤ 𝑐
|𝜎|. Since |𝜎| < 1, then 𝑐 = 1 and

consequently 𝑢 = V.

Example 15. Let 𝜎 ∈ (−1, 1) and 𝑎 be a positive continuous
function on (0, 1) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆

(1 − 𝑡)
−𝜇 log(

2

1 − 𝑡

) , (65)

where 𝜆 < 𝛼 + (2 − 𝛼)(1 − 𝜎) and 𝜇 < 𝛼. Then, using
Theorem 1, problem (1) has a unique positive continuous
solution 𝑢 satisfying the following estimates:

𝑢 (𝑥) ≈ 𝑥
min(𝛼−1,(𝛼−𝜆)/(1−𝜎))

(𝐿̃
1
(𝑥))

1/(1−𝜎)

× (1 − 𝑥)
min(1,(𝛼−𝜇)/(1−𝜎))

(𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

,

(66)

where

𝐿̃
1
(𝑥) =

{

{

{

1, if 𝜆 ̸=𝛼 − (𝛼 − 1) (1 − 𝜎) ,

log(

2

𝑥

) , if 𝜆 = 𝛼 − (𝛼 − 1) (1 − 𝜎) ,

𝐿̃
2
(𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1, if 𝜇 < 𝛼 + 𝜎 − 1,

(log(

2

𝑥

))

2

, if 𝜇 = 𝛼 + 𝜎 − 1,

log(

2

𝑥

) , if 𝛼 + 𝜎 − 1 < 𝜇 < 𝛼.

(67)
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We establish the existence and uniqueness of a positive solution to the following fourth-order value problem: 𝑢(4)(𝑥) = 𝑎(𝑥)𝑢
𝜎
(𝑥),

𝑥 ∈ (0, 1) with the boundary conditions 𝑢(0) = 𝑢(1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0, where 𝜎 ∈ (−1, 1) and 𝑎 is a nonnegative continuous

function on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1. We also give the global behavior of such a solution.

1. Introduction

The purpose of this paper is to study the existence and
uniqueness with a precise global behavior of a positive
solution 𝑢 ∈ 𝐶

4
((0, 1)) ∩ 𝐶([0, 1]) for the following fourth-

order two-point boundary value problem:

𝑢
(4)

(𝑥) = 𝑎 (𝑥) 𝑢
𝜎
(𝑥) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0,

(1)

where−1 < 𝜎 < 1 and 𝑎 is a nonnegative continuous function
on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1 and satisfies
some hypotheses related to the class of Karamata regularly
varying functions.

There have been extensive studies on fourth-order
boundary value problems with diverse boundary conditions
via many methods; see, for example, [1–9] and the references
therein.

A naturel motivation for studying higher order boundary
value problems lies in their applications. For example, it
is well known that the deformation of an elastic beam in
equilibrium state, whose both ends clamped, can be described
by fourth-order boundary value problem

𝑢
(4)

(𝑥) = 𝑔 (𝑥, 𝑢 (𝑥)) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0.

(2)

Our aim in this paper is to give a contribution to the
study of these problems by exploiting the properties of the
Karamata class of functions.

To state our result, we need some notations.We denote by
𝐶([0, 1]) the set of all continuous functions𝑓on [0, 1], andwe
will useK to denote the set of Karamata functions 𝐿 defined
on (0, 𝜂] by

𝐿 (𝑡) := 𝑐 exp(∫

𝜂

𝑡

𝑧 (𝑠)

𝑠

𝑑𝑠) , (3)

for some 𝜂 > 1, where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) such that
𝑧(0) = 0. It is clear that a function 𝐿 is inK if and only if 𝐿 is
a positive function in 𝐶

1
((0, 𝜂]) such that

lim
𝑡→0
+

𝑡𝐿
󸀠
(𝑡)

𝐿 (𝑡)

= 0. (4)

For two nonnegative functions𝑓 and 𝑔 defined on a set 𝑆,
the notation 𝑓(𝑥) ≈ 𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0

such that (1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥), for all 𝑥 ∈ 𝑆. We denote
by 𝑥
+
= max(𝑥, 0), 𝑥 ∧ 𝑡 = min(𝑥, 𝑡), 𝑥 ∨ 𝑡 = max(𝑥, 𝑡), for

𝑥, 𝑡 ∈ R, and 𝐵
+
((0, 1)) the set of all measurable functions

on (0, 1).
Throughout this paper, we assume that 𝑎 is nonnegative

on (0, 1) and satisfies the following condition:
(𝐻
0
) 𝑎 ∈ 𝐶((0, 1)) such that for 𝑡 ∈ (0, 1)

𝑎 (𝑡) ≈ 𝑡
−𝜆
𝐿
1
(𝑡) (1 − 𝑡)

−𝜇
𝐿
2
(1 − 𝑡) , (5)
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where 𝜆 ≤ 3 + 𝜎, 𝜇 ≤ 3 + 𝜎, 𝐿
1
, 𝐿
2
∈ K satisfying

∫

𝜂

0

𝑡
2+𝜎−𝜆

𝐿
1
(𝑡) 𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
2+𝜎−𝜇

𝐿
2
(𝑡) 𝑑𝑡 < ∞. (6)

In the sequel, we introduce the function 𝜃
𝜆,𝜇

defined on
(0, 1) by

𝜃
𝜆,𝜇

(𝑥) = 𝑥
min(2,(4−𝜆)/(1−𝜎))

(𝐿̃
1
(𝑥))

1/(1−𝜎)

× (1 − 𝑥)
min(2,(4−𝜆)/(1−𝜎))

(𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

,

(7)

where

𝐿̃
1
(𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1 if 𝜆 < 2 (1 + 𝜎) ,

∫

𝜂

𝑥

𝐿
1
(𝑠)

𝑠

𝑑𝑠 if 𝜆 = 2 (1 + 𝜎) ,

𝐿
1
(𝑥) if 2 (1 + 𝜎) < 𝜆 < 3 + 𝜎,

∫

𝑥

0

𝐿
1
(𝑠)

𝑠

𝑑𝑠 if 𝜆 = 3 + 𝜎,

𝐿̃
2
(𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1 if 𝜇 < 2 (1 + 𝜎) ,

∫

𝜂

𝑥

𝐿
2
(𝑠)

𝑠

𝑑𝑠 if 𝜇 = 2 (1 + 𝜎) ,

𝐿
2
(𝑥) if 2 (1 + 𝜎) < 𝜇 < 3 + 𝜎,

∫

𝑥

0

𝐿
2
(𝑠)

𝑠

𝑑𝑠 if 𝜇 = 3 + 𝜎.

(8)

Our main result is the following.

Theorem 1. Let 𝜎 ∈ (−1, 1) and assume that 𝑎 satisfies
(𝐻
0
). Then, problem (1) has a unique positive solution 𝑢 ∈

𝐶
4
((0, 1)) ∩ 𝐶([0, 1]) satisfying for 𝑥 ∈ (0, 1)

𝑢 (𝑥) ≈ 𝜃
𝜆,𝜇

(𝑥) . (9)

This paper is organized as follows. Some preliminary
lemmas are stated and proved in the next section, involving
some already known results on Karamata functions. In
Section 3, we give the proof of Theorem 1.

2. Technical Lemmas

To let the paper be self-contained, we begin this section by
recapitulating some properties of Karamata regular variation
theory. The following is due to [10, 11].

Lemma 2. The following assertions hold.

(i) Let 𝐿 ∈ K and 𝜀 > 0; then, one has

lim
𝑡→0
+

𝑡
𝜀
𝐿 (𝑡) = 0. (10)

(ii) Let 𝐿
1
, 𝐿
2
∈ K and let 𝑝 ∈ R. Then, one has 𝐿

1
+𝐿
2
∈

K, 𝐿
1
𝐿
2
∈ K, and 𝐿

𝑝

1
∈ K.

Example 3. Let 𝑚 be a positive integer. Let 𝑐 > 0, let
(𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚
) ∈ R𝑚, and let 𝑑 be a sufficiently large positive

real number such that the function

𝐿 (𝑡) = 𝑐

𝑚

∏

𝑘=1

(log
𝑘
(

𝑑

𝑡

))

𝜇𝑘

(11)

is defined and positive on (0, 𝜂], for some 𝜂 > 1, where
log
𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ ∘ log𝑥 (𝑘 times). Then, 𝐿 ∈ K.

Applying Karamata’s theorem (see [10, 11]), we get the
following.

Lemma 4. Let 𝜇 ∈ R and let 𝐿 be a function inK defined on
(0, 𝜂]. One has the following:

(i) if 𝜇 < −1, then ∫

𝜂

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 diverges and

∫

𝜂

𝑡
𝑠
𝜇
𝐿(𝑠)𝑑𝑠∼

𝑡→0
+ − (𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1));

(ii) if 𝜇 > −1, then ∫

𝜂

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 converges and

∫

𝑡

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠∼

𝑡→0
+(𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1)).

Lemma 5 (see [12] or [13]). Let 𝐿 ∈ K be defined on (0, 𝜂].
Then, one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝜂

𝑡
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (12)

If further ∫𝜂
0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝑡

0
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (13)

Remark 6. Let 𝐿 ∈ K be defined on (0, 𝜂]; then, using (4) and
(12), we deduce that

𝑡 󳨀→ ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (14)

If further ∫𝜂
0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges, we have by (12) that

𝑡 󳨀→ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (15)

Lemma 7. Given that 𝑓 ∈ 𝐶([0, 1]), then the unique
continuous solution of

𝑢
(4)

(𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0

(16)

is given by

𝑢 (𝑥) = 𝐺𝑓 (𝑥) := ∫

1

0

𝐺 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡, (17)

where
𝐺 (𝑥, 𝑡)

=

1

6

(𝑥 ∧ 𝑡)
2
(1 − 𝑥 ∨ 𝑡)

2
[3 (𝑥 ∨ 𝑡) − (𝑥 ∧ 𝑡) (1 + 2 (𝑥 ∨ 𝑡))]

(18)

is Green’s function for the boundary value problem (16).
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Remark 8. For 𝑥, 𝑡 ∈ (0, 1), we have 𝐺(1 − 𝑥, 1 − 𝑡) = 𝐺(𝑥, 𝑡).

In the following, we give some estimates on the Green
function 𝐺(𝑥, 𝑡) that will be used later.

Proposition 9. On (0, 1) × (0, 1), one has the following:

(i) (1/3)(𝑥 ∧ 𝑡)
2
(1 − 𝑥 ∨ 𝑡)

2
(𝑥 ∨ 𝑡)(1 − 𝑥 ∧ 𝑡) ≤ 𝐺(𝑥, 𝑡) ≤

(1/2)(𝑥 ∧ 𝑡)
2
(1 − 𝑥 ∨ 𝑡)

2
(𝑥 ∨ 𝑡)(1 − 𝑥 ∧ 𝑡);

(ii) (1/3)𝑥2(1−𝑥)2𝑡2(1−𝑡)2 ≤ 𝐺(𝑥, 𝑡) ≤ (1/2)𝑥(1−𝑥)𝑡
2
(1−

𝑡)
2.

Proof. (i) It follows from the fact that for 𝑥, 𝑡 ∈ (0, 1) × (0, 1)

we have

2 (𝑥 ∨ 𝑡) (1 − 𝑥 ∧ 𝑡) ≤ 3 (𝑥 ∨ 𝑡) − (𝑥 ∧ 𝑡) (1 + 2𝑥 ∨ 𝑡)

≤ 3 (𝑥 ∨ 𝑡) (1 − 𝑥 ∧ 𝑡) .

(19)

(ii) Since for 𝑥, 𝑡 ∈ (0, 1) we have 𝑥
2
(1 − 𝑥)

2
𝑡
2
(1 − 𝑡)

2
≤

(𝑥∧ 𝑡)
2
(1−𝑥∨ 𝑡)

2
(𝑥∨ 𝑡)(1−𝑥∧ 𝑡), the result follows from (i).

As a consequence of the assertion (ii) of Proposition 9, we
obtain the following.

Corollary 10. Let 𝑓 ∈ 𝐵
+
((0, 1)) and put 𝐺𝑓(𝑥) :=

∫

1

0
𝐺(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡, for 𝑥 ∈ (0, 1].
Then,

𝐺𝑓 (𝑥) < ∞

for 𝑥 ∈ (0, 1) iff ∫

1

0

𝑡
2
(1 − 𝑡)

2
𝑓 (𝑡) 𝑑𝑡 < ∞.

(20)

Proposition 11. Let 𝑓 be a measurable function such that the
function 𝑡 → 𝑡

2
(1 − 𝑡)

2
𝑓(𝑡) is continuous and integrable on

(0, 1). Then, 𝐺𝑓 is the unique solution in 𝐶
4
((0, 1)) ∩ 𝐶([0, 1])

of the problem

𝑢
(4)

(𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0.

(21)

Proof. FromCorollary 10, the function𝐺𝑓 is defined on (0, 1)

and, by Proposition 9, we have

𝐺 (𝑓) (𝑥) ≤

1

2

𝑥 (1 − 𝑥)∫

1

0

𝑡
2
(1 − 𝑡)

2 󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡. (22)

Now, since 𝑡 → 𝑡
2
𝑓(𝑡) is integrable near 0 and 𝑡 → (1 −

𝑡)
2
𝑓(𝑡) is integrable near 1, then, for 𝑥 ∈ (0, 1), we have

𝐺𝑓 (𝑥) =

1

2

𝑥(1 − 𝑥)
2
∫

𝑥

0

𝑡
2
𝑓 (𝑡) 𝑑𝑡

+

1

2

𝑥
2
∫

1

𝑥

𝑡(1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡

−

1

6

(1 + 2𝑥) (1 − 𝑥)
2
∫

𝑥

0

𝑡
3
𝑓 (𝑡) 𝑑𝑡

−

1

6

𝑥
3
∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡.

(23)

This gives

(𝐺𝑓)
󸀠

(𝑥) =

1

2

(1 − 3𝑥) (1 − 𝑥) ∫

𝑥

0

𝑡
2
𝑓 (𝑡) 𝑑𝑡

+ 𝑥∫

1

𝑥

𝑡(1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡+𝑥 (1 − 𝑥)∫

𝑥

0

𝑡
3
𝑓 (𝑡) 𝑑𝑡

−

1

2

𝑥
2
∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡,

(𝐺𝑓)
󸀠󸀠

(𝑥) = (3𝑥 − 2) ∫

𝑥

0

𝑡
2
𝑓 (𝑡) 𝑑𝑡

+ ∫

1

𝑥

𝑡(1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡 + (1 − 2𝑥) ∫

𝑥

0

𝑡
3
𝑓 (𝑡) 𝑑𝑡

− 𝑥∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡,

(𝐺𝑓)
󸀠󸀠󸀠

(𝑥) = ∫

𝑥

0

(3𝑡
2
− 2𝑡
3
) 𝑓 (𝑡) 𝑑𝑡

− ∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡,

(𝐺𝑓)
(4)

(𝑥) = 𝑓 (𝑥) .

(24)

Moreover, we have 𝐺𝑓(0) = 𝐺𝑓(1) = (𝐺𝑓)
󸀠
(0) =

(𝐺𝑓)
󸀠
(1) = 0.

Finally, we prove the uniqueness. Let 𝑢, V ∈ 𝐶
4
((0, 1)) ∩

𝐶([0, 1]) be two solutions of (21) and put 𝑤 = V − 𝑢. Then,
𝑤 ∈ 𝐶

4
((0, 1)) ∩ 𝐶([0, 1]) and 𝑤

(4)
= 0. Hence, it follows that

𝑤(𝑥) = 𝑎𝑥
3
+ 𝑏𝑥
2
+ 𝑐𝑥 + 𝑑. Using the fact that 𝑤(0) = 𝑤(1) =

𝑤
󸀠
(0) = 𝑤

󸀠
(1) = 0, we conclude that 𝑤 = 0 and so 𝑢 = V.

In the sequel, we assume that 𝛽 ≤ 3 and 𝛾 ≤ 3 and we put

𝑏 (𝑡) = 𝑡
−𝛽

𝐿
3
(𝑡) (1 − 𝑡)

−𝛾
𝐿
4
(1 − 𝑡) , (25)

where 𝐿
3
, 𝐿
4
∈ K satisfy

∫

𝜂

0

𝑡
2−𝛽

𝐿
3
(𝑡) 𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
2−𝛾

𝐿
4
(𝑡) 𝑑𝑡 < ∞. (26)

So, we aim to give some estimates on the potential
function 𝐺𝑏(𝑥).
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We define the Karamata functions 𝜓
𝛽
, 𝜙
𝛾
by

𝜓
𝛽
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 3,

𝐿
3
(𝑥) if 2 < 𝛽 ≤ 3,

∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2,

1 if 𝛽 < 2,

𝜙
𝛾
(𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 3,

𝐿
4
(𝑥) if 2 < 𝛾 < 3,

∫

𝜂

𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 2,

1 if 𝛾 < 2.

(27)

Then, we have the following.

Proposition 12. For 𝑥 ∈ (0, 1),

𝐺𝑏 (𝑥) ≈ 𝑥
min(2,4−𝛽)

(1 − 𝑥)
min(2,4−𝛾)

𝜓
𝛽
(𝑥) 𝜙
𝛾
(1 − 𝑥) . (28)

Proof. Using Proposition 9, we have

𝐺𝑏 (𝑥) ≈ ∫

1

0

(1 − 𝑡)
−𝛾
𝑡
−𝛽

(𝑥 ∧ 𝑡)
2

× (1 − 𝑥 ∨ 𝑡)
2
(𝑥 ∨ 𝑡) (1 − 𝑥 ∧ 𝑡) 𝐿

3
(𝑡) 𝐿
4
(1−𝑡) 𝑑𝑡

≈ 𝑥(1 − 𝑥)
2
∫

𝑥

0

(1 − 𝑡)
1−𝛾

𝑡
2−𝛽

𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

+ 𝑥
2
(1 − 𝑥) ∫

1

𝑥

(1 − 𝑡)
2−𝛾

𝑡
1−𝛽

𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

= 𝑥(1 − 𝑥)
2
𝐼 (𝑥) + 𝑥

2
(1 − 𝑥) 𝐽 (𝑥) .

(29)

For 0 < 𝑥 ≤ 1/2, we have 𝐼(𝑥) ≈ ∫

𝑥

0
𝑡
2−𝛽

𝐿
3
(𝑡)𝑑𝑡. So, using

Lemma 4 and hypothesis (26), we deduce that

𝐼 (𝑥) ≈

{
{

{
{

{

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 3,

𝑥
3−𝛽

𝐿
3
(𝑥) if 𝛽 < 3.

(30)

Now, we have

𝐽 (𝑥) ≈ ∫

1/2

𝑥

𝑡
1−𝛽

𝐿
3
(𝑡) 𝑑𝑡 + ∫

1

1/2

(1 − 𝑡)
2−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

1/2

𝑥

𝑡
1−𝛽

𝐿
3
(𝑡) 𝑑𝑡.

(31)

This implies by Lemma 4 that

𝐽 (𝑥) ≈

{
{
{
{

{
{
{
{

{

𝑥
2−𝛽

𝐿
3
(𝑥) if 2 < 𝛽 ≤ 3,

∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2,

1 if 𝛽 < 2.

(32)

Hence, it follows by Lemma 5 and hypothesis (26) that,
for 0 < 𝑥 ≤ 1/2, we get

𝐺𝑏 (𝑥) ≈

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑥∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 3,

𝑥
4−𝛽

𝐿
3
(𝑥) if 2 < 𝛽 < 3,

𝑥
2
∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2

𝑥
2 if 𝛽 < 2,

(33)

That is, for 0 < 𝑥 ≤ 1/2,

𝐺𝑏 (𝑥) ≈ 𝑥
min(2,4−𝛽)

𝜓
𝛽
(𝑥) . (34)

Now, since𝐺(1−𝑥, 1− 𝑡) = 𝐺(𝑥, 𝑡), we use similar arguments
as above applied to 𝐿

4
instead of 𝐿

3
to obtain

𝐺𝑏 (𝑥) ≈ (1 − 𝑥)
min(2,4−𝛾)

𝜙
𝛾
(1 − 𝑥) for 1

2

≤ 𝑥 ≤ 1. (35)

This togetherwith (34) implies that, for𝑥 ∈ (0, 1), we have

𝐺𝑏 (𝑥) ≈ 𝑥
min(2,4−𝛽)

(1 − 𝑥)
min(2,4−𝛾)

𝜓
𝛽
(𝑥) 𝜙
𝛾
(1 − 𝑥) . (36)

3. Proof of Theorem 1

In order to proveTheorem 1, we need the following lemma.

Lemma 13. Assume that the function 𝑎 satisfies (𝐻
0
) and put

𝜔(𝑡) = 𝑎(𝑡)(𝜃
𝜆,𝜇

(𝑡))
𝜎 for 𝑡 ∈ (0, 1).Then, one has, for𝑥 ∈ (0, 1),

𝐺𝜔 (𝑥) ≈ 𝜃
𝜆,𝜇

(𝑥) . (37)

Proof. Put 𝑟 = min(2, (4 − 𝜆)/(1 − 𝜎)) and 𝑠 = min(2, (4 −

𝜇)/(1 − 𝜎)). Then, for 𝑡 ∈ (0, 1), we have

𝜔 (𝑡) = 𝑡
−𝜆+𝑟𝜎

𝐿
1
(𝑡) (𝐿̃

1
(𝑡))

𝜎/(1−𝜎)

(1 − 𝑡)
−𝜇+𝑠𝜎

× 𝐿
2
(1 − 𝑡) (𝐿̃

2
(1 − 𝑡))

𝜎/(1−𝜎)

.

(38)

Let 𝛽 = 𝜆 − 𝑟𝜎, 𝛾 = 𝜇 − 𝑠𝜎, 𝐿
3
(𝑡) = 𝐿

1
(𝑡)(𝐿̃
1
(𝑡))

𝜎/(1−𝜎),
and 𝐿

4
(𝑡) = 𝐿

2
(𝑡)(𝐿̃
2
(𝑡))

𝜎/(1−𝜎). Then, using Proposition 12,
we obtain by a simple computation that

𝐺 (𝜔) (𝑥) ≈ 𝜃
𝜆,𝜇

(𝑥) . (39)

Proof of Theorem 1. From Lemma 13, there exists𝑀 > 1 such
that for each 𝑥 ∈ (0, 1)

1

𝑀

𝜃
𝜆,𝜇

(𝑥) ≤ 𝐺𝜔 (𝑥) ≤ 𝑀𝜃
𝜆,𝜇

(𝑥) , (40)

where 𝜔(𝑡) = 𝑎(𝑡)(𝜃
𝜆,𝜇

(𝑡))
𝜎.
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Put 𝑐
0
= 𝑀
1/(1−|𝜎|) and let

Λ = {𝑢 ∈ 𝐶 ([0, 1]) :

1

𝑐
0

𝜃
𝜆,𝜇

≤ 𝑢 ≤ 𝑐
0
𝜃
𝜆,𝜇

} . (41)

In order to use a fixed point theorem, we define the
operator 𝑇 on Λ by

𝑇𝑢 (𝑥) = 𝐺 (𝑎𝑢
𝜎
) (𝑥) = ∫

1

0

𝐺 (𝑥, 𝑡) 𝑎 (𝑡) 𝑢
𝜎
(𝑡) 𝑑𝑡. (42)

For this choice of 𝑐
0
, we can easily prove that, for 𝑢 ∈ Λ,

we have 𝑇𝑢 ≤ 𝑐
0
𝜃
𝜆,𝜇

and 𝑇𝑢 ≥ (1/𝑐
0
)𝜃
𝜆,𝜇

.
Now, since the function (𝑥, 𝑡) → 𝐺(𝑥, 𝑡) is continuous

on [0, 1] × [0, 1] and, by Proposition 9, Corollary 10, and
Lemma 13, the function 𝑡 → 𝑡

2
(1 − 𝑡)

2
𝑎(𝑡)𝜃
𝜎

𝜆,𝜇
(𝑡) is

integrable on (0, 1), we deduce that the operator𝑇 is compact
from Λ to itself. It follows by the Schauder fixed point
theorem that there exists 𝑢 ∈ Λ such that 𝑇𝑢 = 𝑢. Then,
𝑢 ∈ 𝐶([0, 1]) and 𝑢 satisfies the equation

𝑢 (𝑥) = 𝐺 (𝑎𝑢
𝜎
) (𝑥) . (43)

Since the function 𝑡 → 𝑡
2
(1 − 𝑡)

2
𝑎(𝑡)𝑢
𝜎
(𝑡) is continuous

and integrable on (0, 1), then by Proposition 11, the function
𝑢 is a positive solution in𝐶

4
((0, 1)) ∩𝐶([0, 1]) of problem (1).

Finally, let us prove that 𝑢 is the unique positive continu-
ous solution satisfying (9). To this aim, we assume that (1) has
two positive solutions 𝑢, V ∈ 𝐶

4
((0, 1)) ∩ 𝐶([0, 1]) satisfying

(9) and consider the nonempty set 𝐽 = {𝑚 ≥ 1 : 1/𝑚 ≤ 𝑢/V ≤

𝑚} and put 𝑐 = inf 𝐽.Then, 𝑐 ≥ 1 andwe have (1/𝑐)V ≤ 𝑢 ≤ 𝑐V.
It follows that 𝑢𝜎 ≤ 𝑐

|𝜎|V𝜎 and consequently

(𝑐
|𝜎|V − 𝑢)

(4)

= 𝑎 (𝑐
|𝜎|V𝜎 − 𝑢

𝜎
) := 𝑓 ≥ 0,

(𝑐
|𝜎|V − 𝑢) (0) = (𝑐

|𝜎|V − 𝑢) (1)

= (𝑐
|𝜎|V − 𝑢)

󸀠

(0)

= (𝑐
|𝜎|V − 𝑢)

󸀠

(1) = 0.

(44)

Since the function 𝑡 → 𝑡
2
(1 − 𝑡)

2
𝑓(𝑡) is continuous and

integrable on (0, 1), it follows by Proposition 11 that 𝑐|𝜎|V −

𝑢 = 𝐺(𝑎(𝑐
|𝜎|V𝜎 − 𝑢

𝜎
)) ≥ 0. By symmetry, we obtain also that

V ≤ 𝑐
|𝜎|

𝑢. Hence, 𝑐|𝜎| ∈ 𝐽 and 𝑐 ≤ 𝑐
|𝜎|. Since |𝜎| < 1, then

𝑐 = 1 and consequently 𝑢 = V.

Example 14. Let 𝜎 ∈ (−1, 1) and let 𝑎 be a positive continuous
function on (0, 1) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆
(1 − 𝑡)

−𝜇 log( 2

1 − 𝑡

) , (45)

where𝜆 < 3+𝜎 and𝜇 < 3+𝜎.Then, usingTheorem 1, problem
(1) has a unique positive continuous solution 𝑢 satisfying the
following estimates:

𝑢 (𝑥) ≈ 𝑥
min(2,(4−𝜆)/(1−𝜎))

(𝐿̃
1
(𝑥))

1/(1−𝜎)

× (1 − 𝑥)
min(2,(4−𝜇)/(1−𝜎))

(𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

,

(46)

where

𝐿̃
1
(𝑥) =

{

{

{

1 if 𝜆 ̸=2 (1 + 𝜎) ,

log( 2

𝑥

) if 𝜆 = 2 (1 + 𝜎) ,

𝐿̃
2
(𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

1 if 𝜇 < 2 (1 + 𝜎) ,

(log( 2

𝑥

))

2

if 𝜇 = 2 (1 + 𝜎) ,

log( 2

𝑥

) if 2 (1 + 𝜎) < 𝜇 < 3 + 𝜎.

(47)
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This paper is concerned with the existence of multiple periodic solutions for discrete Nicholson’s blowflies type system. By using
the Leggett-Williams fixed point theorem, we obtain the existence of three nonnegative periodic solutions for discrete Nicholson’s
blowflies type system. In order to show that, we first establish the existence of three nonnegative periodic solutions for the n-
dimensional functional difference system 𝑦(𝑘 + 1) = 𝐴(𝑘)𝑦(𝑘) + 𝑓(𝑘, 𝑦(𝑘 − 𝜏)), 𝑘 ∈ Z, where 𝐴(𝑘) is not assumed to be diagonal
as in some earlier results. In addition, a concrete example is also given to illustrate our results.

1. Introduction and Preliminaries

In 1954 Nicholson [1] and later in 1980 Gurney et al. [2]
proposed the following delay differential equation model:

𝑥
󸀠
(𝑡) = −𝛿𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) 𝑒

−𝛾𝑥(𝑡−𝜏)
, (1)

where 𝑥(𝑡) is the size of the population at time 𝑡, 𝑝 is the
maximum per capita daily egg production, 1/𝛾 is the size at
which the population reproduces at its maximum rate, 𝛿 is
the per capita daily adult death rate, and 𝜏 is the generation
time.

Now, Nicholson’s blowflies model and its various anal-
ogous equations have attracted more and more attention.
There is large literature on this topic. Recently, the study
on Nicholson’s blowflies type systems has attracted much
attention (cf. [3–8] and references therein). In particular,
several authors have made contribution on the existence of
periodic solutions for Nicholson’s blowflies type systems (see,
e.g., [6, 7]). In addition, discrete Nicholson’s blowflies type
models have been studied by several authors (see, e.g., [9–12]
and references therein).

Stimulated by the above works, in this paper, we consider
the following discrete Nicholson’s blowflies type system:

𝑥
1
(𝑘 + 1) = 𝑎

11
(𝑘) 𝑥
1
(𝑘)

+ 𝑎
12

(𝑘) 𝑥
2
(𝑘) + 𝑏 (𝑘)

× [𝑥
1
(𝑘 − 𝜏) + 𝑥

2
(𝑘 − 𝜏)]

𝑚

× 𝑒
−𝑐(𝑘)[𝑥1(𝑘−𝜏)+𝑥2(𝑘−𝜏)]

,

𝑥
2
(𝑘 + 1) = 𝑎

21
(𝑘) 𝑥
1
(𝑘)

+ 𝑎
22

(𝑘) 𝑥
2
(𝑘) + 𝑏 (𝑘)

× [𝑥
1
(𝑘 − 𝜏) + 𝑥

2
(𝑘 − 𝜏)]

𝑚

× 𝑒
−𝑐(𝑘)[𝑥1(𝑘−𝜏)+𝑥2(𝑘−𝜏)]

,

(2)

where 𝑚 > 1 is a constant, 𝜏 is a nonnegative integer, and 𝑎
𝑖𝑗
,

𝑖, 𝑗 = 1, 2, 𝑏, and 𝑐 are all 𝑁-periodic functions from Z to R.
In fact, there are seldom results concerning the existence

of multiple periodic solutions for Nicholson’s blowflies type
equations. It seems that the only results on this topic are
due to Padhi et al. [13–15], where they established several
existence theorems about multiple periodic solutions of
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Nicholson’s blowflies type equations. In addition, recently,
several authors have investigated the existence of almost
periodic solutions for Nicholson’s blowflies type equations
(see, e.g., [11, 16, 17] and references therein). However, to
the best our knowledge, there are few results concerning
the existence of multiple periodic solutions for Nicholson’s
blowflies type systems. That is the main motivation of this
paper.

Next, let us recall the Leggett-Williams fixed point theo-
rem, which will be used in the proof of our main results.

Let 𝑋 be a Banach space. A closed convex set 𝐾 in 𝑋 is
called a cone if the following conditions are satisfied: (i) if 𝑥 ∈

𝐾, then 𝜆𝑥 ∈ 𝐾 for any 𝜆 ≥ 0; (ii) if 𝑥 ∈ 𝐾 and −𝑥 ∈ 𝐾, then
𝑥 = 0.

A nonnegative continuous functional 𝜓 is said to be
concave on 𝐾 if 𝜓 is continuous and

𝜓 (𝜇𝑥 + (1 − 𝜇) 𝑦) ≥ 𝜇𝜓 (𝑥) + (1 − 𝜇)𝜓 (𝑦) ,

𝑥, 𝑦 ∈ 𝐾, 𝜇 ∈ [0, 1] .

(3)

Letting 𝑐
1
, 𝑐
2
, and 𝑐

3
be three positive constants and letting

𝜙 be a nonnegative continuous functional on 𝐾, we denote

𝐾
𝑐1

= {𝑦 ∈ 𝐾 :
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
< 𝑐
1
} ,

𝐾 (𝜙, 𝑐
2
, 𝑐
3
) = {𝑦 ∈ 𝐾 : 𝑐

2
≤ 𝜙 (𝑦) ,

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
< 𝑐
3
} .

(4)

In addition, we call that 𝜙 is increasing on 𝐾 if 𝜙(𝑥) ≥ 𝜙(𝑦)

for all 𝑥, 𝑦 ∈ 𝐾 with 𝑥 − 𝑦 ∈ 𝐾.

Lemma 1 (see [18]). Let 𝐾 be a cone in a Banach space
𝑋, let 𝑐

4
be a positive constant, let Φ : 𝐾

𝑐4
→ 𝐾

𝑐4
be

a completely continuous mapping, and let 𝜓 be a concave
nonnegative continuous functional on 𝐾 with 𝜓(𝑢) ≤ ‖𝑢‖ for
all 𝑢 ∈ 𝐾

𝑐4
. Suppose that there exist three constants 𝑐

1
, 𝑐
2
, and

𝑐
3
with 0 < 𝑐

1
< 𝑐
2
< 𝑐
3
≤ 𝑐
4
such that

(i) {𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
) : 𝜓(𝑢) > 𝑐

2
} ̸=Ø, and 𝜓(Φ𝑢) > 𝑐

2
for

all 𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
);

(ii) ‖Φ𝑢‖ < 𝑐
1
for all 𝑢 ∈ 𝐾

𝑐1
;

(iii) 𝜓(Φ𝑢) > 𝑐
2
for all 𝑢 ∈ 𝐾(𝜓, 𝑐

2
, 𝑐
4
) with ‖Φ𝑢‖ > 𝑐

3
.

Then Φ has at least three fixed points 𝑢
1
, 𝑢
2
, and 𝑢

3
in 𝐾
𝑐4
.

Furthermore, ‖𝑢
1
‖ ≤ 𝑐
1
< ‖𝑢
2
‖, and 𝜓(𝑢

2
) < 𝑐
2
< 𝜓(𝑢

3
).

Throughout the rest of this paper, we denote by Z the
set of all integers, by R the set of all real numbers, and by
𝑙
∞

𝑁
(Z,R𝑛) the space of all 𝑁-periodic functions 𝑥 : Z →

R𝑛, where 𝑁 is a fixed positive integer. It is easy to see that
𝑙
∞

𝑁
(Z,R𝑛) is a Banach space under the norm

‖𝑥‖ = max
1≤𝑘≤𝑁

max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑘)

󵄨
󵄨
󵄨
󵄨
, (5)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇. In addition, we denote

R
𝑛

+
:= {(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) : 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
≥ 0} . (6)

2. Main Results

To study the existence of multiple periodic solutions for
system (2), we first consider the following more general 𝑛-
dimensional functional difference system:

𝑦 (𝑘 + 1) = 𝐴 (𝑘) 𝑦 (𝑘) + 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏)) , 𝑘 ∈ Z, (7)

where, for every 𝑘 ∈ Z, 𝐴(𝑘) is 𝑁-periodic and nonsingular
𝑛 × 𝑛 matrix, and 𝑓 = (𝑓

1
, . . . , 𝑓

𝑛
)
𝑇

: Z × R𝑛 → R𝑛 is 𝑁-
periodic in the first argument and continuous in the second
argument.

To note that the existence of periodic solutions for system
(7) and its variants had been of great interest formany authors
(see, e.g., [19–25] and references therein) is needed. However,
in some earlier works (see, e.g., [21]) on the existence of
periodic solutions for system (7), the matrix 𝐴(𝑘) is assumed
to be diagonal. In this paper, we will remove this restrictive
condition by utilizing an idea in [22], where the authors
studied the existence of periodic solutions for a class of
nonlinear neutral systems of differential equations.

Let Φ(0) = 𝐼,

Φ (𝑘) =

𝑘−1

∏

𝑖=0

𝐴 (𝑖) = 𝐴 (𝑘 − 1) ⋅ ⋅ ⋅ 𝐴 (0) ,

𝑘 ≥ 1,

Φ (𝑘) =

−1

∏

𝑖=𝑘

[𝐴 (𝑖)]
−1

= [𝐴 (𝑘)]
−1

⋅ ⋅ ⋅ [𝐴 (−1)]
−1

,

𝑘 ≤ −1,

𝐺 (𝑘, 𝑠) = Φ (𝑘) [Φ
−1

(𝑁) − 𝐼]

−1

Φ
−1

(𝑠 + 1) ,

𝑘 ∈ Z, 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑁 − 1.

(8)

We first present some basic results aboutΦ(𝑘) and𝐺(𝑘, 𝑠).

Lemma 2. For all 𝑘, 𝑠 ∈ Z with 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑁 − 1, the
following assertions hold:

(i) Φ(𝑘 + 1) = 𝐴(𝑘)Φ(𝑘),
(ii) Φ(𝑘 + 𝑁) = Φ(𝑘)Φ(𝑁),
(iii) 𝐺(𝑘 + 1, 𝑠) = 𝐴(𝑘)𝐺(𝑘, 𝑠),
(iv) 𝐺(𝑘 + 𝑁, 𝑠 + 𝑁) = 𝐺(𝑘, 𝑠).

Proof. One can show (i) and (ii) by some direct calculations
and noting that 𝐴(𝑘 + 𝑁) = 𝐴(𝑘). So we omit the details. In
addition, the assertion (iii) follows from the assertion (i) and
the assertion (iv) follows from the assertion (ii).

By using Lemma 2, we can get the following result.

Lemma 3. A function 𝑦 : Z → R𝑛 is a 𝑁-periodic solution
of system (7) if and only if 𝑦 is a𝑁-periodic function satisfying

𝑦 (𝑘) =

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) , 𝑘 ∈ Z. (9)
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Proof. Sufficiency. Assume that 𝑦 : Z → R𝑛 is a 𝑁-periodic
function satisfying (9); that is,

𝑦 (𝑘) =

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) , 𝑘 ∈ Z. (10)

Then, we have

𝑦 (𝑘 + 1)

=

𝑘+𝑁

∑

𝑠=𝑘+1

𝐺 (𝑘 + 1, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘+1

𝐺 (𝑘 + 1, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘 + 𝑁, 𝑦 (𝑘 + 𝑁 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘+1

𝐴 (𝑘) 𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘

𝐴 (𝑘) 𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

− 𝐴 (𝑘) 𝐺 (𝑘, 𝑘) 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

= 𝐴 (𝑘) 𝑦 (𝑘) − 𝐴 (𝑘) 𝐺 (𝑘, 𝑘) 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

= 𝐴 (𝑘) 𝑦 (𝑘) + 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏)) ,

(11)

where

𝐺 (𝑘 + 1, 𝑘 + 𝑁) − 𝐴 (𝑘) 𝐺 (𝑘, 𝑘)

= Φ (𝑘 + 1) [Φ
−1

(𝑁) − 𝐼]

−1

Φ
−1

(𝑘 + 𝑁 + 1)

− 𝐴 (𝑘)Φ (𝑘) [Φ
−1

(𝑁) − 𝐼]

−1

Φ
−1

(𝑘 + 1)

= Φ (𝑘 + 1) [Φ
−1

(𝑁) − 𝐼]

−1

Φ
−1

(𝑁)Φ
−1

(𝑘 + 1)

− Φ (𝑘 + 1) [Φ
−1

(𝑁) − 𝐼]

−1

Φ
−1

(𝑘 + 1)

= Φ (𝑘 + 1)Φ
−1

(𝑘 + 1) = 𝐼.

(12)

Thus, we conclude that 𝑦 is a 𝑁-periodic solution of system
(7).
Necessity. Let𝑦 : Z → R𝑛 be a𝑁-periodic solution of system
(7). Then, we have

𝑦 (𝑠 + 1) = 𝐴 (𝑠) 𝑦 (𝑠) + 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) , 𝑠 ∈ Z, (13)

which yields

Φ
−1

(𝑠 + 1) 𝑦 (𝑠 + 1) − Φ
−1

(𝑠) 𝑦 (𝑠)

= Φ
−1

(𝑠 + 1) [𝐴 (𝑠) 𝑦 (𝑠) + 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))]

− Φ
−1

(𝑠) 𝑦 (𝑠) = Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) ,

𝑠 ∈ Z.

(14)

For all 𝑙 ≥ 𝑘, we have

Φ
−1

(𝑙 + 1) 𝑦 (𝑙 + 1) − Φ
−1

(𝑘) 𝑦 (𝑘)

=

𝑙

∑

𝑠=𝑘

[Φ
−1

(𝑠 + 1) 𝑦 (𝑠 + 1) − Φ
−1

(𝑠) 𝑦 (𝑠)]

=

𝑙

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) ,

(15)

which yields

Φ
−1

(𝑙 + 1) 𝑦 (𝑙 + 1)

= Φ
−1

(𝑘) 𝑦 (𝑘) +

𝑙

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) .

(16)

Letting 𝑙 = 𝑘 + 𝑁 − 1 and noting that 𝑦 is 𝑁-periodic, we get

Φ
−1

(𝑘 + 𝑁) 𝑦 (𝑘)

= Φ
−1

(𝑘 + 𝑁) 𝑦 (𝑘 + 𝑁)

= Φ
−1

(𝑘) 𝑦 (𝑘) +

𝑘+𝑁−1

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) .

(17)

Noting that

Φ
−1

(𝑘 + 𝑁) − Φ
−1

(𝑘) = [Φ
−1

(𝑁) − 𝐼]Φ
−1

(𝑘) , (18)

we conclude

𝑦 (𝑘) = Φ (𝑘) [Φ
−1

(𝑁) − 𝐼]

−1

×

𝑘+𝑁−1

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) .

(19)

That is, (9) holds. This completes the proof.

Let

𝐺 (𝑘, 𝑠) = [𝐺
𝑖𝑗
(𝑘, 𝑠)] ,

𝑝 = min
1≤𝑖≤𝑛

min
1≤𝑘≤𝑁

min
𝑘≤𝑠≤𝑘+𝑁−1

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) ,

𝑞 = max
1≤𝑖≤𝑛

max
1≤𝑘≤𝑁

max
𝑘≤𝑠≤𝑘+𝑁−1

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) .

(20)
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Now, we introduce a set

𝐾 = {𝑥 ∈ 𝑙
∞

𝑁
(Z,R

𝑛
) : 𝑥
𝑖
(𝑘) ≥ 0,

𝑘 = 1, 2, . . . , 𝑁, 𝑖 = 1, 2, . . . , 𝑛} .

(21)

It is not difficult to verify that𝐾 is a cone in 𝑙
∞

𝑁
(Z,R𝑛). Finally,

we define an operator Φ on 𝐾 by

(Φ𝑥) (𝑘) =

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠 − 𝜏)) ,

𝑥 ∈ 𝐾, 𝑘 ∈ Z.

(22)

Theorem4. Assume that𝑓
1
= 𝑓
2
= ⋅ ⋅ ⋅ = 𝑓

𝑛
and the following

assumptions hold.

(H0) 𝑞 > 𝑝 > 0, 𝑓
1
(𝑠, 𝑥) ≥ 0 for all 𝑠 ∈ Z and 𝑥 ∈ R𝑛

+
, and

∑
𝑛

𝑗=1
𝐺
𝑖𝑗
(𝑘, 𝑠) ≥ 0 for all 𝑘 ∈ Z, 𝑘 ≤ 𝑠 ≤ 𝑘 +𝑁− 1, and

𝑖 = 1, 2, . . . , 𝑛.

(H1) There exist two constants 𝑐
4
> 𝑐
1
> 0 such that

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥) < 𝑐

1
𝑓𝑜𝑟 𝑥 ∈ R

𝑛

+
𝑤𝑖𝑡ℎ ‖𝑥‖ ≤ 𝑐

1
,

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥) ≤ 𝑐

4
𝑓𝑜𝑟 𝑥 ∈ R

𝑛

+
𝑤𝑖𝑡ℎ ‖𝑥‖ ≤ 𝑐

4
.

(23)

(H2) There exists a constant 𝑐
2
∈ (𝑐
1
, 𝑐
4
) such that 𝑞𝑐

2
≤ 𝑝𝑐
4
,

and

𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥) > 𝑐

2
𝑓𝑜𝑟 𝑥 ∈ R

𝑛

+
𝑤𝑖𝑡ℎ ‖𝑥‖ <

𝑞

𝑝

𝑐
2
,

𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑛𝑐
2
.

(24)

Then system (7) has at least three nonnegative 𝑁-periodic
solutions.

Proof. Firstly, by (H0) and noting that 𝐺(𝑘 + 𝑁, 𝑠 + 𝑁) =

𝐺(𝑘, 𝑠), Φ is an operator from 𝐾 to 𝐾. Secondly, noting that
𝑓 is continuous for the second argument, by similar proof to
[21, Lemma 2.5], one can show thatΦ : 𝐾 → 𝐾 is completely
continuous.

Let

𝜓 (𝑥) = min
1≤𝑘≤𝑁

∑
𝑛

𝑖=1
𝑥
𝑖
(𝑘)

𝑛

, 𝑥 ∈ 𝐾. (25)

It is easy to see that 𝜓 is a concave nonnegative continuous
functional on 𝐾 and 𝜓(𝑥) ≤ ‖𝑥‖.

Now,we show thatΦmaps𝐾
𝑐4
into𝐾

𝑐4
. For every𝑥 ∈ 𝐾

𝑐4
,

we have 𝑥(𝑠 − 𝜏) ∈ R𝑛
+
and ‖𝑥(𝑠 − 𝜏)‖ ≤ 𝑐

4
for all 𝑠 ∈ Z. Then,

by (H1), we have

‖Φ𝑥‖

= max
1≤𝑘≤𝑁

max
1≤𝑖≤𝑛

𝑘+𝑁−1

∑

𝑠=𝑘

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥 (𝑠 − 𝜏))

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) ≤ 𝑐

4
.

(26)

Similarly, for every 𝑥 ∈ 𝐾
𝑐1
, it follows from (H1) that

‖Φ𝑥‖ ≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) < 𝑐

1
. (27)

That is, condition (ii) of Lemma 1 holds.
Let 𝑐
3

= (𝑞/𝑝)𝑐
2
. Next, let us verify condition (i) of

Lemma 1. It is easy to see that the set

{𝑥 ∈ 𝐾 (𝜓, 𝑐
2
, 𝑐
3
) : 𝜓 (𝑥) > 𝑐

2
} ̸= 0. (28)

In addition, for every 𝑥 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
), we have 𝑥(𝑠 − 𝜏) ∈ R𝑛

+
,

‖𝑥(𝑠−𝜏)‖ < 𝑐
3
= (𝑞/𝑝)𝑐

2
, and∑

𝑛

𝑖=1
𝑥
𝑖
(𝑠−𝜏) ≥ 𝑛𝑐

2
for all 𝑠 ∈ Z.

Then, by (H2), we get

𝜓 (Φ𝑥)

=

1

𝑛

⋅ min
1≤𝑘≤𝑁

𝑛

∑

𝑖=1

𝑘+𝑁−1

∑

𝑠=𝑘

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥 (𝑠 − 𝜏))

≥ 𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) > 𝑐

2

(29)

which means that condition (i) of Lemma 1 holds.
It remains to verify that condition (iii) of Lemma 1 holds.

Let 𝑥 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
4
)with ‖Φ𝑥‖ > 𝑐

3
; we have 𝑐

2
≤ ‖𝑥‖ < 𝑐

4
and

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) ≥ ‖Φ𝑥‖ > 𝑐

3
, (30)

which yields

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) >

𝑐
3

𝑞

=

𝑐
2

𝑝

. (31)

Then, we have

𝜓 (Φ𝑥) ≥ 𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) > 𝑐

2
. (32)

Then, by Lemma 1, we know thatΦ has at least three fixed
points in 𝐾

𝑐4
. Then, it follows from Lemma 3 that system (7)

has at least three nonnegative 𝑁-periodic solutions.
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Now, we applyTheorem 4 to Nicholson’s blowflies system
(2). Let 𝑛 = 2,

𝐴 (𝑘) = (

𝑎
11

(𝑘) 𝑎
12

(𝑘)

𝑎
21

(𝑘) 𝑎
22

(𝑘)
) ,

𝑓
1
(𝑘, 𝑥)

= 𝑓
2
(𝑘, 𝑥) = 𝑏 (𝑘) [𝑥

1
+ 𝑥
2
]
𝑚

𝑒
−𝑐(𝑘)[𝑥1+𝑥2]

,

(33)

and let Φ(𝑘), 𝐺(𝑘, 𝑠), 𝑝, 𝑞, and 𝐾 be as inTheorem 4.

Corollary 5. Assume that 𝑞 > 𝑝 > 0, and ∑
2

𝑗=1
𝐺
𝑖𝑗
(𝑘, 𝑠) (𝑖 =

1, 2), 𝑏(𝑘), and 𝑐(𝑘) are all nonnegative for 𝑘 ∈ Z and 𝑘 ≤ 𝑠 ≤

𝑘+𝑁−1.Then the system (2) has at least three nonnegative𝑁-
periodic solutions provided that 𝑐+ := max

1≤𝑠≤𝑁
𝑐(𝑠) ≥ 𝑐

−
:=

min
1≤𝑠≤𝑁

𝑐(𝑠) > 0, and

𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) > 𝑒
𝑚−1

⋅ [

2𝑐
+
𝑞

𝑝 (𝑚 − 1)

]

𝑚−1

. (34)

Proof. We only need to verify that all the assumptions of
Theorem 4 are satisfied. Firstly, it is easy to see that (H0)
holds. Let

𝑐
2
=

𝑝 (𝑚 − 1)

2𝑐
+
𝑞

. (35)

Secondly, let us check (H1). In fact, one can choose sufficiently
small 𝑐

1
∈ (0, 𝑐

2
) such that, for all 𝑥 ∈ R𝑛

+
with ‖𝑥‖ ≤ 𝑐

1
, there

holds

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥)

= 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) [𝑥
1
+ 𝑥
2
]
𝑚

𝑒
−𝑐(𝑠)[𝑥1+𝑥2]

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ 2
𝑚

⋅ ‖𝑥‖
𝑚

= (2
𝑚
𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠)) ⋅ ‖𝑥‖
𝑚

< ‖𝑥‖ ≤ 𝑐
1
.

(36)

In addition, for all 𝑥 ∈ R𝑛
+
, we have

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥)

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) [𝑥
1
+ 𝑥
2
]
𝑚

𝑒
−𝑐
−
[𝑥1+𝑥2]

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ (

𝑚

𝑐
−
)

𝑚

𝑒
−𝑚

.

(37)

So, letting

𝑐
4
= max{

𝑞𝑐
2

𝑝

, 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ (

𝑚

𝑐
−
)

𝑚

𝑒
−𝑚

} , (38)

we conclude that (H1) holds.

It remains to verify (H2). For all 𝑥 ∈ R𝑛
+
with ‖𝑥‖ <

(𝑞/𝑝)𝑐
2
and ∑

2

𝑖=1
𝑥
𝑖
≥ 2𝑐
2
, by using (34), we have

𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥)

= 𝑝 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) [𝑥
1
+ 𝑥
2
]
𝑚

𝑒
−𝑐(𝑠)[𝑥1+𝑥2]

≥ 𝑝 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ 2
𝑚
𝑐
𝑚

2
⋅ 𝑒
−(2𝑐
+
𝑞/𝑝)𝑐2

= (𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠)) ⋅ 𝑐
𝑚−1

2
⋅ 𝑒
−(2𝑐
+
𝑞/𝑝)𝑐2

⋅ 𝑐
2

= (𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ 𝑒
−(𝑚−1)

⋅ [

𝑝 (𝑚 − 1)

2𝑐
+
𝑞

]

𝑚−1

) ⋅ 𝑐
2

> 𝑐
2
.

(39)

This completes the proof.

Next, we give a concrete example forNicholson’s blowflies
type system (2).

Example 6. Let 𝑚 = 𝑁 = 2, 𝜏 = 1, 𝑏(𝑘) = 100 + sin2(𝜋𝑘/2),
𝑐(𝑘) = 1 + cos2(𝜋𝑘/2), and

𝐴 (0) = (

0

1

3

1

2

0

) , 𝐴 (1) = (

0

1

2

1

3

0

) . (40)

By a direct calculation, we can get

𝐺 (1, 1) = (

0

3

8

2

3

0

) , 𝐺 (1, 2) = (

9

8

0

0

4

3

) ,

𝐺 (2, 2) = (

0

2

3

3

8

0

) , 𝐺 (2, 3) = (

4

3

0

0

9

8

) .

(41)

Then, we have 𝑝 = 3/8 and 𝑞 = 4/3. In addition, we have
𝑐
+
= 2 > 𝑐

−
= 1 > 0 and

𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) =

3

8

⋅ 4 ⋅ 201

=

603

2

>

128

9

𝑒 = 𝑒
𝑚−1

⋅ [

2𝑐
+
𝑞

𝑝 (𝑚 − 1)

]

𝑚−1

.

(42)

So, by Corollary 5, we know that system (2) has at least three
nonnegative 2-periodic solutions.
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We give some sufficient conditions to guarantee convergence of solutions to a nonlinear vector differential equation of third order.
We prove a new result on the convergence of solutions. An example is given to illustrate the theoretical analysis made in this paper.
Our result improves and generalizes some earlier results in the literature.

1. Introduction

This paper is concerned with the following nonlinear vector
differential equation of third order:

𝑋 + 𝐹 (𝑋) + 𝐺 (𝑋) + 𝐻 (𝑋) = 𝑃 (𝑡, 𝑋,𝑋,𝑋) , (1)

where 𝑋 ∈ R𝑛 and 𝐹, 𝐺,𝐻 : R𝑛 → R𝑛 and 𝑃 : R ×R𝑛 ×
R𝑛 ×R𝑛 → R𝑛 are continuous functions in their respective
arguments.

It should be noted that, in 2005, Afuwape and Omeike
[1] considered the following nonlinear vector differential
equation of third order:

𝑋 + 𝐴𝑋 + 𝐺(𝑋) + 𝐻 (𝑋) = 𝑃 (𝑡, 𝑋,𝑋,𝑋) , (2)

where 𝐴 is real symmetric 𝑛 × 𝑛-matrix. The author estab-
lished a new result on the convergence of solutions of (2)
under different conditions on the function 𝑃. For some
related papers on the convergence of solutions to certain
vector differential equations of third order, the readers can
referee to the papers of Afuwape [2], Afuwape and Omeike
[3], and Olutimo [4]. Further, it is worth mentioning that
in a sequence of results Afuwape [2, 5, 6], Afuwape and
Omeike [3], Afuwape and Ukpera [7], Ezeilo [8], Ezeilo
and Tejumola [9, 10], Meng [11], Olutimo [4], Reissig et al.
[12], Tiryaki [13], Tunç [14–16], Tunç and Ateş [17], C. Tunç
and E. Tunç [18], and Tunç and Karakas [19] investigated

the qualitative behaviors of solutions, stability, boundedness,
uniform boundedness and existence of periodic solutions,
and so on, except convergence of solutions, for some kind of
vector differential equations of third order.

The Lyapunov direct method was used with the aid
of suitable differentiable auxiliary functions throughout the
mentioned papers. However, to the best of our knowledge,
till now, the convergence of the solutions to (1) has not been
discussed in the literature. Thus, it is worthwhile to study the
topic for (1). It should be noted that the result to be established
here is different from that in Afuwape [2], Afuwape and
Omeike [1, 3], Olutimo [4], and the above mentioned papers.
This paper is an extension and generalization of the result of
Afuwape and Omeike [3]. It may be useful for the researchers
working on the qualitative behaviors of solutions (see, also,
Tunç and Gözen [20]).

It should be noted that throughout the paper 𝑅𝑛 will
denote the real Euclidean space of 𝑛-vectors and ‖𝑋‖ will
denote the norm of the vector𝑋 in 𝑅𝑛.

Definition 1. Any two solutions 𝑋
1
(𝑡), 𝑋

2
(𝑡) of (1) in 𝑅𝑛 will

be said to converge to each other if

󵄩
󵄩
󵄩
󵄩
𝑋
2
(𝑡) − 𝑋

1
(𝑡)
󵄩
󵄩
󵄩
󵄩
󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
2
(𝑡) − 𝑋

1
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
2
(𝑡) − 𝑋

1
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󳨀→ 0

(3)

as 𝑡 → ∞.
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2. Main Result

Themain result of this paper is the following theorem.

Theorem 2. We assume that there are positive constants 𝛿
𝑔
,

𝛿
ℎ
, 𝛿
𝑓
, Δ
𝑔
, Δ
ℎ
, Δ
𝑓
, and Δ

1
such that the following conditions

hold:

(i) the Jacobian matrices 𝐽
𝑔
(𝑌) = 𝜕𝑔

𝑖
/𝜕𝑦
𝑗
, 𝐽
ℎ
(𝑋) =

𝜕ℎ
𝑖
/𝜕𝑥
𝑗
, and 𝐽

𝑓
(𝑍) = 𝜕𝑓

𝑖
/𝜕𝑧
𝑗
exist and are symmetric

and their eigenvalues satisfy

0 < 𝛿
𝑔
≤ 𝜆
𝑖
(𝐽
𝑔
(𝑌)) ≤ Δ

𝑔
,

0 < 𝛿
ℎ
≤ 𝜆
𝑖
(𝐽
ℎ
(𝑋)) ≤ Δ

ℎ
,

0 < 𝛿
𝑓
≤ 𝜆
𝑖
(𝐽
𝑓
(𝑍)) ≤ Δ

𝑓
, (𝑖 = 1, 2, . . . , 𝑛) ,

(4)

for all𝑋, 𝑌, 𝑍 in 𝑅𝑛;
(ii) 𝑃(𝑡, 𝑋, 𝑌, 𝑍) satisfies
󵄩
󵄩
󵄩
󵄩
𝑃 (𝑡, 𝑋

2
, 𝑌
2
, 𝑍
2
) − 𝑃 (𝑡, 𝑋

1
, 𝑌
1
, 𝑍
1
)
󵄩
󵄩
󵄩
󵄩

≤ Δ
1
{
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

}

1/2
(5)

for any𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, (𝑖 = 1, 2), in 𝑅𝑛.

If

Δ
1
< 𝜀,

Δ
ℎ
≤ min {3−1𝛽 (1 − 𝛽) 𝛿2

𝑔
;

6
−1
𝛼 (1 − 𝛽) 𝛿

𝑔
𝛿
𝑓
(1 + 𝛼)

−2
} = 𝑘𝛿

𝑔
𝛿
𝑓
,

(6)

then any two solutions𝑋
1
(𝑡),𝑋
2
(𝑡) of (1) necessarily converge,

where 𝛼, 𝜀, 𝑘, 𝛽 are some positive constants with 0 < 𝛽 < 1 and
𝑘(< 1),

𝑘 = min {3−1𝛽 (1 − 𝛽) 𝛿
𝑔
𝛿
−1

𝑓
; 6
−1
𝛼 (1 − 𝛽) (1 + 𝛼)

−2
} . (7)

Remark 3. Thementioned theorem itself still holds valid with
(5) replaced by the much weaker condition
󵄩
󵄩
󵄩
󵄩
𝑃 (𝑡, 𝑋

2
, 𝑌
2
, 𝑍
2
) − 𝑃 (𝑡, 𝑋

1
, 𝑌
1
, 𝑍
1
)
󵄩
󵄩
󵄩
󵄩

≤ 𝜙 (𝑡) {
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

}

1/2

(8)

for arbitrary 𝑡 any 𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, (𝑖 = 1, 2), in 𝑅𝑛, where it is

assumed that ∫𝑡
0
𝜙
V
(𝑠)𝑑𝑠 ≤ Δ

1
𝑡 for 1 ≤ V ≤ 2.

The following lemma is needed in our later analysis.

Lemma 4. Let 𝐴 be a real symmetric 𝑛 × 𝑛-matrix and

𝑎 ≥ 𝜆
𝑖
(𝐴) ≥ 𝑎 > 0, (𝑖 = 1, 2, . . . , 𝑛) , (9)

where 𝑎 and 𝑎 are constants.
Then

𝑎 ⟨𝑋,𝑋⟩ ≥ ⟨𝐴𝑋,𝑋⟩ ≥ 𝑎 ⟨𝑋,𝑋⟩ ,

𝑎
2
⟨𝑋,𝑋⟩ ≥ ⟨𝐴𝑋,𝐴𝑋⟩ ≥ 𝑎

2
⟨𝑋,𝑋⟩ .

(10)

Proof (see Afuwape [5]). Our main tool in the proof of our
result is the continuous function 𝑉 = 𝑉(𝑋, 𝑌, 𝑍) defined for
any triple vectors𝑋, 𝑌, 𝑍 in 𝑅𝑛, by

2𝑉 = ⟨𝛽 (1 − 𝛽) 𝛿
2

𝑔
𝑋,𝑋⟩ + ⟨𝛽𝛿

𝑔
𝑌, 𝑌⟩

+ ⟨𝛼𝛿
𝑔
𝑌, 𝑌⟩ + ⟨𝛼𝑍, 𝑍⟩

+ ⟨𝑍 + 𝑌 + (1 − 𝛽) 𝛿
𝑔
𝑋,𝑍 + 𝑌 + (1 − 𝛽) 𝛿

𝑔
𝑋⟩ .

(11)

This function can be rearranged as

2𝑉 = 𝛽 (1 − 𝛽) 𝛿
2

𝑔
‖𝑋‖
2
+ 𝛽𝛿
𝑔‖
𝑌‖
2
+ 𝛼𝛿
𝑔‖
𝑌‖
2

+ 𝛼‖𝑍‖
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑍 + 𝑌 + (1 − 𝛽) 𝛿

𝑔
𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

(12)

where 0 < 𝛽 < 1 and 𝛼 > 0
The following result is immediate from the estimate (11).

Lemma 5. Assume that all the conditions on the vectors
𝐹(𝑍), 𝐻(𝑋), and 𝐺(𝑌) in the theorem hold. Then, there exist
positive constants 𝛿

1
and 𝛿
2
such that

2𝑉 (𝑋, 𝑌, 𝑍) ≥ 𝛿
1
(‖𝑋‖
2
+ ‖𝑌‖

2
+ ‖𝑍‖

2
) ,

2𝑉 (𝑋, 𝑌, 𝑍) ≤ 𝛿
2
(‖𝑋‖
2
+ ‖𝑌‖

2
+ ‖𝑍‖

2
)

(13)

for arbitrary 𝑋,𝑌, 𝑍 in 𝑅𝑛.

Proof. Let

𝛿
1
= min {𝛽 (1 − 𝛽) 𝛿2

𝑔
, 𝛿
𝑔
(𝛽 + 𝛼) , 𝛼} ,

𝛿
2
= max {𝛿

𝑔
(1 − 𝛽) (1 + 𝛿

𝑔
) , 𝛿
𝑔
(𝛽 + 𝛼) + 1

+ 𝛿
𝑔
(1 − 𝛽) , 1 + 𝛼 + 𝛿

𝑔
(1 − 𝛽)} .

(14)

Then the proof can be easily completed by using Lemma 4.
Therefore, we omit the details of the proof.

Proof of the Theorem. Let 𝑋 in 𝑅𝑛 be any solution of (1). For
such a solution, let 𝑋 and 𝑋 be denoted, respectively, by 𝑌
and 𝑍. Then, we can rewrite (1) in the following equivalent
system form:

𝑋 = 𝑌, ̇𝑌 = 𝑍,

̇
𝑍 = −𝐹 (𝑍) − 𝐺 (𝑌) − 𝐻 (𝑋) + 𝑃 (𝑡, 𝑋, 𝑌, 𝑍) .

(15)

Let 𝑋
1
(𝑡), 𝑋
2
(𝑡) in 𝑅𝑛 be any solution of (1), define𝑊 =

𝑊(𝑡) by

𝑊(𝑡) = 𝑉 (𝑋
2
(𝑡) − 𝑋

1
(𝑡) , 𝑌
2
(𝑡) − 𝑌

1
(𝑡) , 𝑍

2
(𝑡) − 𝑍

1
(𝑡)) ,

(16)

where 𝑉 is the function defined in (11) with𝑋, 𝑌, 𝑍 replaced
by𝑋
2
− 𝑋
1
, 𝑌
2
− 𝑌
1
and 𝑍

2
− 𝑍
1
, respectively.
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By Lemma 5, it follows that there exist 𝛿
3
> 0 and 𝛿

4
> 0

such that

𝛿
3
(
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

)

≤ 𝑊 ≤ 𝛿
4
(
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

) .

(17)

When we differentiate the function𝑊(𝑡) with respect to
𝑡 along the system (15), it follows, after simplification, that

𝑊(𝑡) = −𝑊
1
−𝑊
2
−𝑊
3
−𝑊
4
−𝑊
5
+𝑊
6
, (18)

where

𝑊
1
=

1

2

𝛿
𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋
1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+

1

2

𝛽𝛿
𝑔
⟨𝑌
2
− 𝑌
1
, 𝑌
2
− 𝑌
1
⟩

+

1

2

𝛼 ⟨𝑍
2
− 𝑍
1
, 𝐹 (𝑍

2
) − 𝐹 (𝑍

1
)⟩ ,

𝑊
2
=

1

6

𝛿
𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋
1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+ ⟨𝑌
2
− 𝑌
1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+

1

2

𝛽𝛿
𝑔
⟨𝑌
2
− 𝑌
1
, 𝑌
2
− 𝑌
1
⟩

+ ⟨𝑍
2
− 𝑍
1
, 𝐹 (𝑍

2
) − 𝐹 (𝑍

1
)⟩ ,

𝑊
3
=

1

6

𝛿
𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋
1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+

1

4

𝛼 ⟨𝐹 (𝑍
2
) − 𝐹 (𝑍

1
) , 𝑍
2
− 𝑍
1
⟩

+ ⟨(1 + 𝛼) (𝑍
2
− 𝑍
1
) ,𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩ ,

𝑊
4
=

1

6

𝛿
𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋
1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+ ⟨𝛿
𝑔
(1 − 𝛽) (𝑋

2
− 𝑋
1
) , 𝐺 (𝑌

2
) − 𝐺 (𝑌

1
)

−𝛿
𝑔
(𝑌
2
− 𝑌
1
)⟩

+

1

2

⟨𝑌
2
− 𝑌
1
, 𝐺 (𝑌
2
) − 𝐺 (𝑌

1
) − 𝛿
𝑔
(𝑌
2
− 𝑌
1
)⟩

+ ⟨𝐹 (𝑍
2
) − 𝐹 (𝑍

1
) − (𝑍

2
− 𝑍
1
) , 𝑌
2
− 𝑌
1
⟩

+ ⟨𝐹 (𝑍
2
) − 𝐹 (𝑍

1
) − (𝑍

2
− 𝑍
1
) ,

(1 − 𝛽) 𝛿
𝑔
(𝑋
2
− 𝑋
1
)⟩ ,

𝑊
5
=

1

4

𝛼 ⟨𝐹 (𝑍
2
) − 𝐹 (𝑍

1
) , 𝑍
2
− 𝑍
1
⟩

+ ⟨(1 + 𝛼) (𝑍
2
− 𝑍
1
) , 𝐺 (𝑌

2
) − 𝐺 (𝑌

1
) − 𝛿
𝑔
(𝑌
2
− 𝑌
1
)⟩

+

1

2

⟨𝑌
2
− 𝑌
1
, 𝐺 (𝑌
2
) − 𝐺 (𝑌

1
) − 𝛿
𝑔
(𝑌
2
− 𝑌
1
)⟩ ,

𝑊
6
= ⟨𝛿
𝑔
(1 − 𝛽) (𝑋

2
− 𝑋
1
) + 𝑌
2
− 𝑌
1
+ (1 + 𝛼) (𝑍

2
− 𝑍
1
) ,

𝑃 (𝑡, 𝑋
2
, 𝑌
2
, 𝑍
2
) − 𝑃 (𝑡, 𝑋

1
, 𝑌
1
, 𝑍
1
) ⟩

+ ⟨𝑍
2
− 𝑍
1
, 𝑍
2
− 𝑍
1
⟩ .

(19)

Note that the existence of the following estimates is clear
(see Afuwape and Omeike [1]):

𝐻(𝑋
2
) − 𝐻 (𝑋

1
) = ∫

1

0

𝐽
ℎ
(𝜉) (𝑋

2
− 𝑋
1
) 𝑑𝑠,

𝐺 (𝑌
2
) − 𝐺 (𝑌

1
) = ∫

1

0

𝐽
𝑔
(𝜏) (𝑌

2
− 𝑌
1
) 𝑑𝑡,

𝐹 (𝑍
2
) − 𝐹 (𝑍

1
) = ∫

1

0

𝐽
𝑓
(𝜂) (𝑍

2
− 𝑍
1
) 𝑑𝜇,

(20)

where 𝜉 = 𝑠𝑋
2
+ (1 − 𝑠)𝑋

1
, 0 ≤ 𝑠 ≤ 1, 𝜏 = 𝑡𝑌

2
+ (1 − 𝑡)𝑌

1
,

0 ≤ 𝑡 ≤ 1, 𝜂 = 𝜇𝑍
2
+ (1 − 𝜇)𝑍

1
, 0 ≤ 𝜇 ≤ 1.

Subject to the assumptions, it can be easily obtained that

𝑊
𝑗
≥ 0, (𝑗 = 3, 4, 5) . (21)

In view of the assumptions of the theorem, it is also clear
that

⟨𝑌
2
− 𝑌
1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
(𝑌
2
− 𝑌
1
) + 2
−1
𝑘
−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))

󵄩
󵄩
󵄩
󵄩
󵄩

2

− ⟨𝑘
2

1
(𝑌
2
− 𝑌
1
) , 𝑌
2
− 𝑌
1
⟩

− ⟨4
−1
𝑘
−2

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)) ,𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩ ,

⟨𝑍
2
− 𝑍
1
, 𝐹 (𝑍

2
) − 𝐹 (𝑍

1
)⟩ ≥ 𝛿

𝑓
⟨𝑍
2
− 𝑍
1
, 𝑍
2
− 𝑍
1
⟩ .

(22)

Hence,

𝑊
2
≥

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
(𝑌
2
− 𝑌
1
) + 2
−1
𝑘
−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ⟨𝑌
2
− 𝑌
1
, (2
−1
𝛽𝛿
𝑔
− 𝑘
2

1
) (𝑌
2
− 𝑌
1
)⟩

+ ⟨𝐻 (𝑋
2
) − 𝐻 (𝑋

1
) , (6
−1
𝛿
𝑔
(1 − 𝛽)) (𝑋

2
− 𝑋
1
)

−4
−1
𝑘
−2

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))⟩

+ 𝛿
𝑓
⟨𝑍
2
− 𝑍
1
, 𝑍
2
− 𝑍
1
⟩ .

(23)

Using the estimate 0 < 𝛿
ℎ
≤ 𝜆
𝑖
(𝐽
ℎ
(𝑋)) ≤ Δ

ℎ
, it follows that

𝑊
2
≥

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
(𝑌
2
− 𝑌
1
) + 2
−1
𝑘
−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ⟨𝑌
2
− 𝑌
1
, (2
−1
𝛽𝛿
𝑔
− 𝑘
2

1
) (𝑌
2
− 𝑌
1
)⟩

+ ⟨𝐻 (𝑋
2
) − 𝐻 (𝑋

1
) , (6
−1
𝛿
𝑔
(1 − 𝛽)) (𝑋

2
− 𝑋
1
)

−4
−1
𝑘
−2

1
𝛿
ℎ
(𝑋
2
− 𝑋
1
)⟩ + 𝛿

𝑓
⟨𝑍
2
− 𝑍
1
, 𝑍
2
− 𝑍
1
⟩
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≥

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
(𝑌
2
− 𝑌
1
) + 2
−1
𝑘
−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ⟨𝑌
2
− 𝑌
1
, (2
−1
𝛽𝛿
𝑔
− 𝑘
2

1
) (𝑌
2
− 𝑌
1
)⟩

+ ⟨𝛿
ℎ
(𝑋
2
− 𝑋
1
) , 6
−1
𝛿
𝑔
(1 − 𝛽) (𝑋

2
− 𝑋
1
)⟩

− ⟨Δ
ℎ
(𝑋
2
− 𝑋
1
) , −4
−1
𝑘
−2

1
𝛿
ℎ
(𝑋
2
− 𝑋
1
)⟩

+ 𝛿
𝑓
⟨𝑍
2
− 𝑍
1
, 𝑍
2
− 𝑍
1
⟩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
(𝑌
2
− 𝑌
1
) + 2
−1
𝑘
−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (

1

2

𝛽𝛿
𝑔
− 𝑘
2

1
)
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+ (

1

6

𝛿
ℎ
𝛿
𝑔
(1 − 𝛽) −

1

4𝑘
2

1

Δ
ℎ
𝛿
ℎ
)
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+ 𝛿
𝑓

󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

.

(24)

Then

𝑊
2
≥ 0 ∀𝑋, 𝑌, 𝑍 in 𝑅𝑛 (25)

if 𝑘2
1
≤ (1/2)𝛽𝛿

𝑔
with Δ

ℎ
≤ 3
−1
𝛽𝛿
2

𝑔
(1 − 𝛽).

Further, since

⟨2
−1
(1 − 𝛽) 𝛿

𝑔
(𝑋
2
− 𝑋
1
) ,𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

≥

1

2

(1 − 𝛽) 𝛿
𝑔
𝛿
ℎ

󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

,

⟨𝐹 (𝑍
2
) − 𝐹 (𝑍

1
) , 𝑍
2
− 𝑍
1
⟩ ≥ 𝛿
𝑓

󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

,

(26)

then

𝑊
1
≥

1

2

(1 − 𝛽) 𝛿
𝑔
𝛿
ℎ

󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+

1

2

𝛽𝛿
𝑔

󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+

1

2

𝛼𝛿
𝑓

󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

≥ 2𝛿
5
(
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

) ,

(27)

where 𝛿
5
= (1/4)min{(1 − 𝛽)𝛿

𝑔
𝛿
ℎ
, 𝛽𝛿
𝑔
, 𝛼𝛿
𝑓
}.

Moreover, it is obvious that
󵄨
󵄨
󵄨
󵄨
𝑊
6

󵄨
󵄨
󵄨
󵄨
≤ {(1 − 𝛽) 𝛿

𝑔

󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

+ (𝛼 + 1)
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩
} ‖𝜃‖ ,

(28)

where 𝜃 = 𝑃(𝑡, 𝑋
2
, 𝑌
2
, 𝑍
2
) − 𝑃(𝑡, 𝑋

1
, 𝑌
1
, 𝑍
1
).

Hence,
󵄨
󵄨
󵄨
󵄨
𝑊
6

󵄨
󵄨
󵄨
󵄨
≤ 𝛿
6
{
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

}

1/2

‖𝜃‖ .

(29)

Using the assumption (5), we get
󵄨
󵄨
󵄨
󵄨
𝑊
6

󵄨
󵄨
󵄨
󵄨
≤ 𝛿
6
Δ
1
{
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

} ,

(30)

so that

𝑊(𝑡) ≤ − (2𝛿
5
− 𝛿
6
Δ
1
)

× {
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

} .

(31)

There exists a constant 𝛿
7
> 0 such that

𝑊(𝑡) ≤ −𝛿
7
{
󵄩
󵄩
󵄩
󵄩
𝑋
2
− 𝑋
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑌
2
− 𝑌
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑍
2
− 𝑍
1

󵄩
󵄩
󵄩
󵄩

2

} ,

(32)

provided that Δ
1
< 𝜀, where 𝜀 is a sufficiently small positive

constant.
In view of (17), the last estimate implies that

𝑊(𝑡) ≤ −𝛿
8
𝑊(𝑡) (33)

for some positive constant 𝛿
8
.

The conclusion of the theorem is immediate if, provided
that Δ

1
< 𝜀, on integrating𝑊(𝑡) in (33) between 𝑡

0
and 𝑡, we

have

𝑊(𝑡) ≤ 𝑊(𝑡
0
) exp [−𝛿

8
(𝑡 − 𝑡
0
)] , 𝑡 ≥ 𝑡

0
, (34)

which implies that

𝑊(𝑡) 󳨀→ 0 as 𝑡 󳨀→ ∞. (35)

By (17), this shows that

󵄩
󵄩
󵄩
󵄩
𝑋
2
(𝑡) − 𝑋

1
(𝑡)
󵄩
󵄩
󵄩
󵄩
󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝑌
2
(𝑡) − 𝑌

1
(𝑡)
󵄩
󵄩
󵄩
󵄩
󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝑋
2
(𝑡) − 𝑋

1
(𝑡)
󵄩
󵄩
󵄩
󵄩
󳨀→ 0, as 𝑡 󳨀→ ∞.

(36)

This completes the proof of the theorem.

Example 6. Let us consider (1),

𝑋 + 𝐹 (𝑋) + 𝐺 (𝑋) + 𝐻 (𝑋) = 𝑃 (𝑡, 𝑋,𝑋,𝑋) , 𝑋 ∈ 𝑅
2

(37)

with

𝐹 = (

̈𝑥
1
+ arctan ̈𝑥

1

̈𝑥
2
+ arctan ̈𝑥

2

) , 𝐺 = (
tan−1 ̇𝑥

1
+ 0.00004 ̇𝑥

1

̇𝑥
2

) ,

𝐻 = (
0.001tan−1𝑥

1
+ 0.0001𝑥

1

0.0001𝑥
2

) , 𝑋 = (

𝑥
1

𝑥
2

) ,

𝑃 (𝑡) = (
𝑒
−𝑡

sin 𝑡) ,

(38)

where 𝑒−𝑡, sin 𝑡 are bounded continuous functions on [0,∞).
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Then, it can be easily seen that

𝐽
𝑓
(𝑋) = (

1 +

1

1 + ̈𝑥
2

1

0

0 1 +

1

1 + ̈𝑥
2

2

),

𝜆
1
(𝐽
𝑓
) = 1 +

1

1 + ̈𝑥
2

1

, 𝜆
2
(𝐽
𝑓
) = 1 +

1

1 + ̈𝑥
2

2

,

𝐽
𝑔
(𝑋) = (

1

1 + ̇𝑥
2

1

+ 0.00004 0

0 1

) ,

𝜆
1
(𝐽
𝑔
) = 1, 𝜆

2
(𝐽
𝑔
) =

1

1 + ̇𝑥
2

1

+ 0.00004,

𝐽
ℎ
(𝑋) = (

0.001

1 + 𝑥
2

1

+ 0.0001 0

0 0.0001

) ,

𝜆
1
(𝐽
ℎ
) =

0.001

1 + 𝑥
2

1

+ 0.0001, 𝜆
2
(𝐽
ℎ
) = 0.00001.

(39)

Thus, 𝛿
𝑓
= 1, Δ

𝑓
= 2, 𝛿

𝑔
= 1, Δ

𝑔
= 1.00004, 𝛿

ℎ
= 0.0001,

and Δ
ℎ
= 0.0011.

Let us choose

𝛼 = 3,

𝛽 =

1

2

in (Δ
ℎ
≤ min {3−1𝛽 (1 − 𝛽) 𝛿2

𝑔
;

6
−1
𝛼 (1 − 𝛽) 𝛿

𝑔
𝛿
𝑓
(𝛼 + 1)

−2
}

= 𝑘𝛿
𝑔
𝛿
𝑓
) .

(40)

Then,

𝑘 =

1

64

< 1. (41)

Since 0.0011 < 1/64, then all the conditions of Theorem 2
hold. Therefore, all solutions of the equation considered
converge (see, also, [1]).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. U. Afuwape and M. O. Omeike, “Convergence of solutions
of certain system of third order non-linear ordinary differential
equations,” Annals of Differential Equations, vol. 21, no. 4, pp.
533–540, 2005.

[2] A. U. Afuwape, “Convergence of solutions of some third order
systems of non-linear ordinary differential equations,” Analele
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The release of transgenic mosquitoes to interact with wild ones is a promising method for controlling malaria. How to effectively
release transgenic mosquitoes to prevent malaria is always a concern for researchers. This paper investigates two methods of
releasing transgenic mosquitoes and proposes two epidemic models involving malaria patients, anopheles, wild mosquitoes, and
transgenic mosquitoes based on system of continuous differential equations. A basic reproduction number R

0
is defined for the

models and it serves as a threshold parameter that predicts whether malaria will spread. By theoretical analysis of the dynamic
behaviors of the models and numerical simulations, it is verified that malaria can be effectively controlled by the opportune release
of transgenic mosquitoes; that is, when R

0
≤ 1, malaria will disappear; when R

0
> 1, malaria will become an endemic disease in

the target field.

1. Introduction

Malaria is an infectious mosquito-borne disease. No vaccine
and no specific drugs are available for malaria because
plasmodium which causes malaria have become increasingly
resistant to drugs. An effective way to prevent malaria is to
control mosquitoes. Therefore, scientists hope to use genetic
engineering technology to release transgenic mosquitoes
which cannot transmit malaria to cut off malaria transmis-
sion chains [1–4].

But function laws of transgenic mosquitoes released to
prevent malaria transmission can only be acquired from a
large number of experimental data in consideration of the
influence on other species, ecological environment, possible
risks, and involvement [4–6]. Therefore, it has a practical
significance to establish dynamic models which can reflect
the change laws of many factors and study the dynamic
behaviors of the models to recognize the role of transgenic
mosquitoes in malaria transmission in terms of all statuses of
releasing transgenic mosquitoes.

Many researchers have made a lot of theoretical
researches on the role of transgenic mosquitoes in decreasing

anopheles and preventing malaria transmission. Some
wonderful mathematical models are presented. For example,
the possibilities of replacing wild mosquitoes with transgenic
ones released in different ways were considered, malaria
transmission model was established, and the existence and
stability of the disease-free equilibrium points were discussed
with the aid of Floquet theory in [7]. The epidemic dynamic
models of malaria for sawtooth animals were established
and behaviors of each infection stage were discussed with
numerical simulations in [8]. The detailed analysis and
discussion on how to prevent malaria by mathematical
models were presented in [9]. Li has long been engaged in
the research in this field. He mainly investigated the impact
of the environment, wild mosquitoes, genetically modified
mosquitoes, and so forth and formulated the stage-structured
discrete-time and continuous-time mathematical models
for interacting wild and transgenic mosquito populations
[10–14].

However, at present, many existing models are gener-
ally limited to discuss the role of population characters of
two classes of mosquitoes, technology development, and
the environmental factors that prevent malaria and do not
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consider othermore factors, such as infected patients. For the
analysis of the infected population controlled by transgenic
mosquitoes in malaria transmission, these works are not
enough. In order to better investigate the actual role of
transgenic mosquitoes in malaria transmission and make the
models more realistic, according to the current international
research results which have been obtained, we establish a
population dynamic model and an epidemic dynamic model
involving patients, anopheles, wild mosquitoes, and trans-
genic mosquitoes released in two different ways based on
systems of differential equations. With the aid of qualitative
theory, we study behaviors of these models with numerical
simulations and provide the conditions under which equi-
libriums of these models are asymptotically stable. Based on
the researches onmodeling dynamical behaviors, the impacts
of various parameters changes in the models on malaria
transmission and the two methods of releasing transgenic
mosquitoes on controlling the amount of malaria patients in
practice are investigated with numerical simulations.

This paper is organized as follows. In Section 2, we firstly
assume that transgenic mosquitoes are released at a fixed
proportion and interact with wild mosquitoes. Secondly,
we assume that transgenic mosquitoes are released at a
changeable proportion. Then the existence of all possible
equilibriums is investigated and their stabilities are studied.
In Section 3, numerical simulations are supplemented to
demonstrate the results in Section 2. In Section 4, the brief
discussions of our findings and prospects are presented.

2. The Models and Stability Analyses

In 1927, Kermack and Mckendrick established an epidemic
model, namely, KM model [15]. In this paper, based on
KM assumptions and the epidemic model in [16, 17], we
will formulate and discuss two dynamic models with male
transgenic mosquitoes which do not suck blood [18] released
in two different ways.

2.1. The Dynamic Model with Transgenic Mosquitoes Released
at a Fixed Proportion. For simplicity, we first consider the
model with transgenic mosquitoes released into the field of
mosquitoes at a fixed proportion. We assume that the popu-
lation size in the target field is large and KM assumptions of
epidemic model are met. The proportion at which transgenic
mosquitoes are released is a constant 𝑎 (0 ≤ 𝑎 < 1). Then, we
can establish a system of differential equations:

𝑑𝑥

𝑑𝑡

= 𝛽𝑦 (1 − 𝑥) − 𝛾𝑥,

𝑑𝑦

𝑑𝑡

= 𝛼𝑥 (1 − 𝑎 − 𝑦) − 𝜇𝑦 − 𝑐𝑎𝑦,

(1)

where 𝛽, 𝛾, 𝛼, 𝜇, 𝑐 are positive constants. The descriptions of
these parameters in system (1) are shown in Table 1.

Table 1: Descriptions of the parameters in system (1).

Parameter Description

𝑎
Proportion at which transgenic mosquitoes are
released

𝛽 Incidence rate of malaria due to biting

𝛼
Efficiency of infection in mosquitoes by biting
patient

𝜇 Death rate of anopheles
𝛾 Recovery rate of patients

𝑐

Decrement rate of anopheles due to transgenic
mosquitoes bred by transgenic mosquitoes and
anopheles

𝑥(𝑡) Proportion of patients at 𝑡 time
𝑦(𝑡) Proportion of anopheles at 𝑡 time

Let R1
0 = 𝛼𝛽(1 − 𝑎)/𝛾(𝜇 + 𝑐𝑎). System (1) has a unique

equilibrium (0, 0) for R1
0 ≤ 1 and the endemic equilibrium

(𝑥
0
, 𝑦
0
) exists if and only if R1

0 > 1; here

𝑥
0
=

𝛾 (𝑐𝑎 + 𝜇) (R1
0 − 1)

𝛼𝛽 (1 − 𝑎) + 𝛼𝛾

, 𝑦
0
=

𝛾 (𝑐𝑎 + 𝜇) (R1
0 − 1)

𝛽 (𝑎𝑐 + 𝛼 + 𝜇)

.

(2)

For system (1), we can obtain the following conclusion.

Theorem 1. (i) The equilibrium (0, 0) is locally asymptotically
stable if R1

0 < 1. (ii)The endemic equilibrium (𝑥
0
, 𝑦
0
) is locally

asymptotically stable and (0, 0) is unstable if R1
0 > 1; here

(𝑥
0
, 𝑦
0
) is the same as that in (2).

Proof. (i) The linearization form of system (1) about (0, 0) is

𝑑𝑥

𝑑𝑡

= −𝛾𝑥 + 𝛽𝑦,

𝑑𝑦

𝑑𝑡

= 𝛼 (1 − 𝑎) 𝑥 − (𝜇 + 𝑐𝑎) 𝑦.

(3)

The corresponding characteristic equation of (3) is

𝜆
2
+ (𝛾 + 𝜇 + 𝑐𝑎) 𝜆 + 𝛾 (𝑎𝑐 + 𝜇) (1 − R1

0) = 0. (4)

Solving (4), we can get two characteristic roots:

𝜆
1,2
=

− (𝑎𝑐 + 𝛾 + 𝜇)±√(𝑎𝑐 + 𝛾 + 𝜇)
2

− 4𝛾 (𝑎𝑐 + 𝜇) (1 − R1
0)

2

.

(5)

From (5), it is easy to see when R1
0 < 1, the real parts of

(5) are all negative. Therefore, the equilibrium (0, 0) is locally
asymptotically stable. It implies that malaria will eventually
disappear. When R1

0 > 1, (0, 0) is saddle point; it is unstable.
(ii) Linearizing system (1) about (𝑥

0
, 𝑦
0
) yields

𝑑𝑥

𝑑𝑡

= (−𝛽𝑦
0
− 𝛾) (𝑥 − 𝑥

0
) + 𝛽 (1 − 𝑥

0
) (𝑦 − 𝑦

0
) ,

𝑑𝑦

𝑑𝑡

= 𝛼 (1 − 𝑎 − 𝑦
0
) (𝑥 − 𝑥

0
) − (𝛼𝑥

0
+ 𝜇 + 𝑐𝑎) (𝑦 − 𝑦

0
) .

(6)



Abstract and Applied Analysis 3

The corresponding characteristic equation of (6) is

(𝜆 + 𝛽𝑦
0
+ 𝛾) (𝜆 + 𝛼𝑥

0
+ 𝜇 + 𝑐𝑎)

− 𝛼𝛽 (1 − 𝑥
0
) (1 − 𝑎 − 𝑦

0
) = 0.

(7)

Solving (7), we can get two characteristic roots

𝜆
1,2

=

− (𝛽𝑦
0
+ 𝛾 + 𝛼𝑥

0
+ 𝜇 + 𝑐𝑎) ± √Δ

2

, (8)

where

Δ = (𝛽𝑦
0
+ 𝛾 + 𝛼𝑥

0
+ 𝜇 + 𝑐𝑎)

2

− 4𝐾,

𝐾 = (𝛽𝑦
0
+ 𝛾) (𝛼𝑥

0
+ 𝜇 + 𝑐𝑎) − 𝛼𝛽 (1 − 𝑥

0
) (1 − 𝑎 − 𝑦

0
) .

(9)

From (2) and (9), it follows that

𝐾 = (𝑎𝑐𝛾 + 𝛾𝜇) (R1
0 − 1) . (10)

Therefore, if R1
0 > 1, the real parts of (8) are all negative,

which indicates that the endemic equilibrium (𝑥
0
, 𝑦
0
) is

locally asymptotically stable. It implies that malaria will be
popular in the target field, but it will not be massively
diffusive. Hence, Theorem 1 is completed.

Remark 2. When 𝑎 = 0, system (1) becomes themodel in [16].
From above results, when R1

0 < 1, we can see that malaria
are prevented effectively by releasing transgenic mosquitoes.
FromR1

0 = 𝛼𝛽(1−𝑎)/𝛾(𝜇+𝑐𝑎), as long aswe increase the value
of 𝑎 or 𝑐, that is, increase transgenic mosquitoes or decrease
anopheles, malaria can be prevented in the target field.

2.2. The DynamicModel with Transgenic Mosquitoes Released
at aChangeable Proportion. Releasing transgenicmosquitoes
at a fixed proportion is more difficult than being carried
out in reality and also does not accord with the actual
situation. Therefore, in this section we introduce a change-
able proportion 𝑧(𝑡), which is the proportion of transgenic
mosquitoes to mosquito population at time 𝑡. At time 𝑡,
the proportion of anopheles is 𝑦(𝑡) and the proportion of
susceptiblemosquitoes is 1−𝑦(𝑡)−𝑧(𝑡). 𝑥(𝑡) is the proportion
of infected persons; then 1 − 𝑥(𝑡) is the proportion of
susceptible persons. Similarly, we can establish the following
model:

𝑑𝑥

𝑑𝑡

= 𝛽𝑦 (1 − 𝑥) − 𝛾𝑥,

𝑑𝑦

𝑑𝑡

= 𝛼𝑥 (1 − 𝑦 − 𝑧) − 𝜇𝑦 − 𝑐𝑧𝑦,

𝑑𝑧

𝑑𝑡

= 𝛿
1
𝑧𝑦 + 𝛿

2
𝑧 (1 − 𝑦 − 𝑧) − 𝜔𝑧,

(11)

where 𝛽, 𝛾, 𝛼, 𝜇, 𝑐, 𝛿
1
, 𝛿
2
, 𝜔 are constants. The description of

these parameters in system (11) is shown in Table 2.
Assume that 𝛿

1
= 𝛿
2
= 𝛿, system (11) has four fixed points

which are malaria-free equilibriums 𝐸
0
(0, 0, 0), 𝐸

1
(0, 0, 𝑧

1
),

and endemic equilibriums 𝐸
2
(𝑥
2
, 𝑦
2
, 𝑧
2
) and 𝐸

3
(𝑥
3
, 𝑦
3
, 0),

respectively; here

𝑥
2
=

𝛾𝑐𝜔 + 𝛼𝛽𝜔 − 𝛾𝜇𝛿 − 𝛾𝑐𝛿

𝛼𝛽𝜔 + 𝛼𝛿𝛾

,

𝑦
2
=

𝛾𝑐𝜔 + 𝛼𝛽𝜔 − 𝛾𝜇𝛿 − 𝛾𝑐𝛿

𝛼𝛽𝜔 + 𝜇𝛿𝛽 + 𝑐𝛿𝛽 − 𝑐𝛽𝜔

,

(12)

𝑧
1
= 𝑧
2
= 1 −

𝜔

𝛿

, 𝑥
3
=

𝛼𝛽 − 𝛾𝜇

𝛼 (𝛽 + 𝛾)

, 𝑦
3
=

𝛼𝛽 − 𝛾𝜇

𝛽 (𝛼 + 𝜇)

.

(13)

Remark 3. When 𝛿
1

̸= 𝛿
2
, we can still obtain (13), but 𝑧

1
=

𝑧
2
= 1−𝜔/𝛿

2
and the expressions of (12) are very complicated.

For system (11), since the equilibrium 𝐸
0
(0, 0, 0) and

endemic equilibrium 𝐸
3
(𝑥
3
, 𝑦
3
, 0) are not meaningful for

reality, we just consider the stability of the equilibrium
𝐸
1
(0, 0, 𝑧

1
) and 𝐸

2
(𝑥
2
, 𝑦
2
, 𝑧
2
). Taking R2

0 = 𝛼𝛽𝜔/𝛾(𝑐𝛿 + 𝛿𝜇 −

𝜔), for system (11), we can obtain the following conclusion.

Theorem 4. Assuming that 𝛿
1
= 𝛿
2
= 𝛿 and 𝜔 < 𝛿 which

implies the birth rate of the transgenic mosquitoes is larger than
the death rate, one has

(i) the equilibrium 𝐸
1
(0, 0, 𝑧

1
) is locally asymptotically

stable if R2
0 < 1,

(ii) the endemic equilibrium 𝐸
2
(𝑥
2
, 𝑦
2
, 𝑧
2
) is locally

asymptotically stable if R2
0 > 1; here 𝑧

1
, 𝑥
2
, 𝑦
2
, 𝑧
2
are

the same as those in (12) and (13).

Proof. Thematrix corresponding to the linearization form of
system (11) on (0, 0, 𝑧

1
) is

𝐴 = (

−𝛾 𝛽 0

𝛼 (1 − 𝑧
1
) −𝜇 − 𝑐𝑧

1
0

0 𝛿𝑧
1
− 𝛿𝑧
1
𝛿 − 2𝛿𝑧

1
− 𝜔

) . (14)

Its characteristic equation is

|𝜆𝐸 − 𝐴| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜆 + 𝛾 −𝛽 0

𝛼 (𝑧
1
− 1) 𝜆 + 𝜇 + 𝑐𝑧

1
0

0 𝛿𝑧
1
− 𝛿𝑧
1

𝜆 − 𝛿 + 2𝛿𝑧
1
+ 𝜔

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0.

(15)

Solving the above equation, we can get its characteristic roots

𝜆
1
= −𝜔 + (1 − 2𝑧

1
) 𝛿
2
,

𝜆
2,3

= ( − 𝛾 − 𝜇 − 𝑐𝑧
1

±√(𝛾 + 𝜇 + 𝑐𝑧
1
)
2

− 4 (−𝛼𝛽 + 𝛾𝜇 + (𝛼𝛽 + 𝑐𝛾) 𝑧
1
))

× (2)
−1
.

(16)

From (13) and 𝜔 < 𝛿, we have

𝜆
1
= −𝜔 + (1 − 2𝑧

1
) 𝛿 = 𝜔 − 𝛿 < 0. (17)
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Table 2: Description of the parameters in system (11).

Parameter Description
𝛽 Incidence rate of malaria due to biting
𝛼 Efficiency of infection in mosquitoes by biting patients
𝜇 Death rate of anopheles
𝛾 Recovery rate of patients
𝑐 Decrement rate of anopheles due to transgenic mosquitoes bred by transgenic mosquitoes and anopheles
𝜔 Death rate of transgenic mosquitoes
𝛿
1

Birth rate of transgenic mosquitoes bred by transgenic mosquitoes and wild anopheles
𝛿
2

Birth rate of transgenic mosquitoes bred by transgenic mosquitoes and wild susceptible mosquitoes
𝑥(𝑡) Proportion of patients at 𝑡 time
𝑦(𝑡) Proportion of anopheles at 𝑡 time
𝑧(𝑡) Proportion of transgenic mosquitoes released at time 𝑡

If Re𝜆
2,3

< 0, system (11) is locally asymptotically stable on
(0, 0, 𝑧

1
). In fact, from (13) and 𝜆

2,3
in (16), we have

−𝛼𝛽 + 𝛾𝜇 + (𝛼𝛽 + 𝑐𝛾) 𝑧
1
= 𝛼𝛽

𝜔

𝛿

(1 − R2
0) > 0. (18)

That is to say, Re𝜆
2,3

< 0. Therefore, system (11) is locally
asymptotically stable on (0, 0, 𝑧

1
). It implies that malaria and

anopheles will eventually disappear.
Now we consider behaviors of the local asymptotical

stability of system (11) on (𝑥
2
, 𝑦
2
, 𝑧
2
) which is a positive root

under the condition R2
0 > 1.

The matrix corresponding to the linearization form of
system (11) on (𝑥

2
, 𝑦
2
, 𝑧
2
) is

𝐴 = (

−𝛽𝑦
2
− 𝛾 𝛽 (1 − 𝑥

2
) 0

𝛼 (1 − 𝑦
2
− 𝑧
2
) −𝛼𝑥

2
− 𝜇 − 𝑐𝑧

2
−𝛼𝑥
2
− 𝑐𝑦
2

0 0 𝛿 − 𝜔 − 2𝛿𝑧
2

) .

(19)

The characteristic equation of this matrix is

|𝜆𝐸 − 𝐴|

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜆 + 𝛽𝑦
2
+ 𝛾 −𝛽 (1 − 𝑥

2
) 0

𝛼 (𝑦
2
+ 𝑧
2
− 1) 𝜆 + 𝛼𝑥

2
+ 𝜇 + 𝑐𝑧

2
𝛼𝑥
2
+ 𝑐𝑦
2

0 0 𝜆 − 𝛿 + 𝜔 + 2𝛿𝑧
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0.

(20)

Solving the characteristic equation, we can get its character-
istic roots:

𝜆
1
= 𝛿 − 𝜔 − 2𝛿𝑧

2
= 𝜔 − 𝛿,

𝜆
2,3

=

−𝛾 − 𝜇 − 𝛼𝑥
2
− 𝛽𝑦
2
− 𝑐𝑧
2
± √Δ

2

,

(21)

where

Δ = (𝛾 + 𝜇 + 𝛼𝑥
2
+ 𝛽𝑦
2
+ 𝑐𝑧
2
)
2

− 4 ((𝛽𝑦
2
+ 𝛾) (𝛼𝑥

2
+ 𝜇 + 𝑐𝑧

2
)

−𝛼𝛽 (1 − 𝑥
2
) (1 − 𝑦

2
− 𝑧
2
)) .

(22)

From (13) and (21), we have

𝜆
1
= 𝛿 − 𝜔 − 2𝛿𝑧

2
= 𝜔 − 𝛿 < 0. (23)

Re𝜆
2,3

< 0 is equivalent to

(𝛽𝑦
2
+ 𝛾) (𝛼𝑥

2
+ 𝜇 + 𝑐𝑧

2
) − 𝛼𝛽 (1 − 𝑥

2
) (1 − 𝑦

2
− 𝑧
2
) > 0.

(24)

By the condition 𝜔 < 𝛿 and the above inequality, we have

(𝛽𝑦
2
+ 𝛾) (𝛼𝑥

2
+ 𝜇 + 𝑐𝑧

2
) − 𝛼𝛽 (1 − 𝑥

2
) (1 − 𝑦

2
− 𝑧
2
)

= 𝛼𝛽

𝜔

𝛿

− 𝛾 (𝜇 + 𝑐 −

𝑐𝜔

𝛿

)

= 𝛾 (𝜇 + 𝑐 −

𝑐𝜔

𝛿

) (R2
0 − 1) > 0.

(25)

Therefore, system (11) is locally asymptotically stable about
(𝑥
2
, 𝑦
2
, 𝑧
2
). The proof of Theorem 4 is completed.

Remark 5. When 𝛿
1

̸= 𝛿
2
, taking R2

0 = 𝛼𝛽𝜔/(𝑐𝛾𝛿
2
+ 𝛾𝛿
2
𝜇 −

𝑐𝛾𝜔), for system (11), the conclusions of Theorem 4 are still
valid, but the proofs are more complicated. So we will verify
them with numerical simulations in the following section.

Remark 6. From the above discussion, we can see that
releasing transgenic mosquitoes into wild mosquitoes in the
target field can prevent malaria. When R2

0 > 1, we can
make the proportions of patients and anopheles steady and
malaria will not be massively popular. Most importantly,
when R2

0 < 1, there will be only transgenic mosquitoes;
patients and anopheles will disappear. That is to say, we can
eventually eradicate malaria. It is easy to see when we are
unable to change the traditional infection rate and death rate;
as long as we increase the amount of transgenic mosquitoes
and the birth rate 𝛿 of transgenic mosquitoes bred by wild
mosquitoes, then malaria can be eliminated.

3. Numerical Simulations

Heremainly for system (11), especially for 𝛿
1

̸= 𝛿
2
, we verify its

results with numerical simulations. Assume that the amounts
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Figure 1: Parameters: 𝛽 = 0.2, 𝛼 = 0.1, 𝛾 = 0.02, 𝜇 = 0.05, 𝜔 =

0.05, 𝑐 = 0.1, and 𝛿
1
= 𝛿
2
= 𝛿 = 0.5.

of persons and mosquitoes in an isolated target field are
constants. According to the discussions in [8, 11, 19–21] and
empirical data, we let the parameters in system (11) take the
following ranges as in Table 3.

At the beginning, we assume that there is no patients;
the proportion of anopheles and the proportion of transgenic
mosquitoes are 0.3 and 0.2, respectively. That is to say, the
initial values of system (11) are (0, 0.3, 0.2).We take parameter
values as 𝛽 = 0.2, 𝛼 = 0.1, 𝛾 = 0.02, 𝜇 = 0.05, 𝜔 = 0.05, 𝑐 =

0.1, and 𝛿
1
= 𝛿
2
= 𝛿 = 0.5. According to these parameter

values, we have

R2
0 =

𝛼𝛽𝜔

𝑐𝛾𝛿 + 𝛾𝛿𝜇 − 𝑐𝛾𝜔

≈ 0.714286 < 1. (26)

The corresponding result of numerical simulation is shown
in Figure 1.

From Theorem 4 and the above parameter values, it is
easy to know that system (11) should be stable on (0, 0, 0.9).
From Figure 1, we can see that the simulation result is
consistent with the result of Theorem 4. From the curve
for anopheles, we can see that releasing the transgenic
mosquitoes can effectively reduce anopheles. It follows that
releasing the transgenic mosquitoes suppresses the outbreak
of malaria in a relatively short time. As to why the patient and
anopheles do not disappear immediately after a sharp drop in
a short time, that is, it takes a long time that their amounts
reach to zero, we think that the male transgenic mosquitoes
cannot compete with some excellent wild male mosquitoes
and they cannot capture the “heart” of all female anopheles in
a short time or mating is a probability event. There is always
mating between wildmale mosquitoes and female anopheles.
But after transgenic mosquitoes released control the rest of
anopheles to a very small amount, the anopheles will die
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Figure 2: Parameters: 𝛽 = 0.2, 𝛼 = 0.1, 𝛾 = 0.02, 𝜇 = 0.05, 𝜔 =

0.05, 𝑐 = 0.01, and 𝛿
1
= 𝛿
2
= 𝛿 = 0.5.

themselves one month later due to their limited lifetime. It
can be considered that anopheles have been eliminated.

Take 𝑐 = 0.01 and keep other parameter values
unchanged. That is, we assume that the decrement rate
of anopheles due to transgenic male mosquito bred by
transgenic mosquito and anopheles is decreased. According
to the values, we have

R2
0 =

𝛼𝛽𝜔

𝑐𝛾𝛿 + 𝛾𝛿𝜇 − 𝑐𝛾𝜔

≈ 1.69492 > 1. (27)

The corresponding result of numerical simulation is shown
in Figure 2.

From Theorem 4 and the above parameter values, it
is easy to know that system (11) should be stable about
(0.205, 0.026, 0.9) which is an endemic equilibrium. From
Figure 2, we can see that the simulation result is also consis-
tent with result of Theorem 4 and parameter 𝑐 has a distinct
impact on the reduction of anopheles. When we decrease 𝑐,
the reduction speed of anopheles becomes significantly slow.

When 𝛿
1

̸= 𝛿
2
, take 𝛿

2
= 0.25 and keep other parameter

values in the first numerical simulation unchanged. We have

R2
0 =

𝛼𝛽𝜔

𝑐𝛾𝛿
2
+ 𝛾𝛿
2
𝜇 − 𝑐𝛾𝜔

≈ 1.53846 > 1. (28)

The corresponding result of numerical simulation is shown
in Figure 3.

Take 𝛿
1

= 0.1 and 𝛿
2

= 0.5 and keep other values
unchanged; we have

R2
0 =

𝛼𝛽𝜔

𝑐𝛾𝛿
2
+ 𝛾𝛿
2
𝜇 − 𝑐𝛾𝜔

≈ 0.714286 < 1. (29)

The corresponding result of numerical simulation is shown
in Figure 4.
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Table 3: Ranges of the parameters in system (11).

Parameter Description Range (per day)
𝛽 Incidence rate of malaria due to biting 0.1–0.5
𝛼 Efficiency of infection in mosquitoes by biting patients 0.01–0.2
𝜇 Death rate of anopheles 0.05–0.5
𝛾 Recovery rate of patients 0.01–0.1

𝑐
Decrement rate of anopheles due to transgenic mosquitoes bred by transgenic
mosquitoes and anopheles 0.01–0.2

𝜔 Death rate of transgenic mosquitoes 0.05–0.5

𝛿
1

Birth rate of transgenic mosquitoes bred by transgenic mosquitoes and wild
anopheles 0.1–0.5

𝛿
2

Birth rate of transgenic mosquitoes bred by transgenic mosquitoes and wild
susceptible mosquitoes 0.1–0.5
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Figure 3: Parameters: 𝛽 = 0.2, 𝛼 = 0.1, 𝛾 = 0.02, 𝜇 = 0.05, 𝜔 =

0.05, 𝑐 = 0.1, 𝛿
1
= 0.5, and 𝛿

2
= 0.25.

From Figure 3, we can see that 𝑥(𝑡) → 𝑥
2
, 𝑦(𝑡) →

𝑦
2
, and 𝑧(𝑡) → 𝑧

2
as 𝑡 → ∞. From Figure 4 we can see

that 𝑥(𝑡) → 0, 𝑦(𝑡) → 0, 𝑧(𝑡) → 𝑧
1
as 𝑡 → ∞. That is to

say, when 𝛿
1

̸= 𝛿
2
, the results of Theorem 4 remain valid.

Take 𝛼 = 0.14, 𝛿
1
= 0.1, and 𝛿

2
= 0.5 and keep other

values unchanged; we have

R2
0 =

𝛼𝛽𝜔

𝑐𝛾𝛿
2
+ 𝛾𝛿
2
𝜇 − 𝑐𝛾𝜔

= 1. (30)

The corresponding result of numerical simulation is shown
in Figure 5.

Set 𝛼 = 0.14 and 𝛿
1
= 𝛿
2
= 𝛿 = 0.5 and keep other values

unchanged; we have

R2
0 =

𝛼𝛽𝜔

𝑐𝛾𝛿 + 𝛾𝛿𝜇 − 𝑐𝛾𝜔

= 1. (31)

The corresponding result of numerical simulation is shown
in Figure 6.
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Figure 4: Parameters: 𝛽 = 0.2, 𝛼 = 0.1, 𝛾 = 0.02, 𝜇 = 0.05, 𝜔 =

0.05, 𝑐 = 0.1, 𝛿
1
= 0.1, and 𝛿

2
= 0.5.

For the above two numerical simulations, we increase the
value of 𝛼; that is to say, we assume that the efficiency of
patient infecting mosquito by biting is greater. From Figures
5 and 6, we can see that anopheles will become more and
the decreasing speed of patients will become relatively slow.
Butmalaria and anopheles will still disappear eventually.That
is to say, for 𝛿

1
̸= 𝛿
2
and 𝛿

1
= 𝛿
2
, when R2

0 = 1, 𝑥(𝑡) →

0, 𝑦(𝑡) → 0, and 𝑧(𝑡) → 𝑧
1
as 𝑡 → ∞.

4. Conclusion and Prospect

In this paper we firstly establish system (1) with transgenic
mosquitoes released at a fixed proportion and then establish
system (11) with transgenic mosquitoes released at a change-
able proportion. For these models, we obtain a disease-
free equilibrium and an endemic equilibrium. We prove
theoretically and verify our conclusions of Theorems 1 and
4 with numerical simulations. For 𝛿

1
̸= 𝛿
2
and R2

0 = 1, we
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do not theoretically prove the conclusions of Theorem 4, but
we verify them with simulations. From Figures 3, 4, 5, and 6,
we can see our results are also valid. We also have a unified
conclusion for system (1) and system (11). That is, if R1

0 < 1 or
R2
0 < 1, it implies that malaria will be eliminated; if R1

0 > 1 or
R2
0 > 1, malaria will become an epidemic disease in the target

field.
The models in this paper are simpler and more ideal. For

example, we do not take the incubation period ofmalaria into
account and only consider the one-time delivery of transgenic

mosquitoes. The factors involved in our models are incom-
plete and we only considered the local asymptotic stabilities
of systems. In order to make up for these deficiencies and
establish more realistic models, we think that we can choose
different birth function according to the actual situation and
take more factors into account, such as susceptible, wild
mosquito population, recovered patients, latency period, and
environmental factor.

Although our dynamic models have many disadvantages,
they are continuous differential equations compared with the
existing models which were discrete-differential equations
that only considered the competition between two classes of
mosquito populations. In addition, our epidemic models for
transgenic mosquitoes released at changeable proportion are
considered by few researchers. Two models in this paper are
consistent with the actual situation and they are relatively
complete, various, and comprehensive for the research and
applications of transgenic mosquito in malaria transmission.
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As generalizations of Yoshizawa’s theorem, it is proved that a dissipative affine-periodic system admits affine-periodic solutions.
This result reveals some oscillation mechanism in nonlinear systems.

1. Introduction

Consider the system

𝑥
󸀠
= 𝑓 (𝑡, 𝑥) ,

󸀠
=

d
d𝑡
, (1)

where 𝑓 : R1 × R𝑛 → R𝑛 is continuous and ensures the
uniqueness of solutions with respect to initial values. Fix 𝑇 >

0.The system (1) is said to be𝑇-periodic if𝑓(𝑡+𝑇, 𝑥) = 𝑓(𝑡, 𝑥)
for all (𝑡, 𝑥) ∈ R1 × R𝑛. For this 𝑇-periodic system, a major
problem is to seek the existence of 𝑇-periodic solutions.
Actually, some physical systems also admit the certain affine-
periodic invariance. For example, let 𝑄 ∈ GL(𝑛), and

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑄𝑓 (𝑡, 𝑄
−1
𝑥) , ∀ (𝑡, 𝑥) . (2)

This affine-periodic invariance exhibits two characters: peri-
odicity in time and symmetry in space. Obviously, when
𝑄 = 𝑖𝑑, the invariance is just the usual periodicity; when
𝑄 = −𝑖𝑑, the invariance implies the usual antisymmetry in
space. When 𝑄 ∈ SO(𝑛), the invariance shows the rotating
symmetry in space. Hence, the invariance also reflects some
properties of solutions in geometry. Now, (2) is said to possess
the affine-periodic structure. For this affine-periodic system,
we are concerned with the existence of affine-periodic solu-
tions 𝑥(𝑡) with

𝑥 (𝑡 + 𝑇) = 𝑄𝑥 (𝑡) , ∀𝑡. (3)

In the qualitative theory, it is a basic result that the dissi-
pative periodic systems admit the existence of periodic solu-
tions. The related topics had ever captured the main field in

periodic solutions theory from the 1960s to the 1990s. For
some litratures, see, for example, [1–12].

In the present paper, wewill see whether (1) admits affine-
periodic solutions or not if (1) is affine-dissipative. Here, (1)
is said to be affine-dissipative if 𝑄−𝑚𝑥(𝑡 + 𝑚𝑇) are ultimately
bounded. Our main result is the following.

Theorem 1. Let 𝑄 ∈ 𝐺𝐿(𝑛). If the system (1) is 𝑄-affine-peri-
odic, that is,

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑄𝑓 (𝑡, 𝑄
−1
𝑥) , (4)

and affine-dissipative, then it admits a 𝑄-affine-periodic solu-
tion 𝑥

∗
(𝑡); that is,

𝑥
∗
(𝑡 + 𝑇) = 𝑄𝑥

∗
(𝑡) , ∀𝑡. (5)

The paper is organized as follows. In Section 2, we use
the asymptotic fixed-point theorem, for example, Horn’s
fixed-point theorem to prove Theorem 1. Section 3 deals
with the case of functional differential equations, where an
anagolous version is given and the proof is sketched. Finally,
in Section 4, we illustrate some applications.

2. Proof of Theorem 1

In order to prove Theorem 1, we first recall some prelimi-
naries.

Lemma 2 (Horn’s fixed-point theorem [13]). Let 𝑋 be a
Banach space, and let 𝑆

0
⊂ 𝑆
1
⊂ 𝑆
2
⊂ 𝑋 be convex sets, where
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𝑆
0
is compact, 𝑆

1
relatively open with respect to 𝑆

2
, and 𝑆

2

closed. Assume that 𝑃 : 𝑆
0
→ 𝑋 is continuous and satisfies

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
2
, 𝑗 = 0, 1, . . . , 𝑁 − 1,

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
0
, 𝑗 = 𝑁, . . . , 2𝑁 − 1.

(6)

Then, 𝑃 has a fixed point in 𝑆
0
.

The following is a usual definition.

Definition 3. The system (1) is said to be dissipative or ulti-
mately bounded, if there is 𝐵

0
> 0 and for any 𝐵 > 0, there

are𝑀 = 𝑀(𝐵) > 0 and 𝐿 = 𝐿(𝐵) > 0 such that for |𝑥
0
| ≤ 𝐵,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀, ∀𝑡 ∈ [0, 𝐿] ,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
≤ 𝐵
0
, ∀𝑡 ∈ [𝐿,∞) ,

(7)

where 𝑥(𝑡, 𝑥
0
) denotes the solution of (1) with the initial value

𝑥(0) = 𝑥
0
.

For the affine-periodic system (1), we have the following.

Definition 4. The system (1) is said to be𝑄-affine-dissipative,
if there is 𝐵

0
> 0 and for any 𝐵 > 0, there are𝑀 = 𝑀(𝐵) > 0

and 𝐿 = 𝐿(𝐵) > 0 such that
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀, ∀𝑡 ∈ [0, 𝐿] ,

󵄨
󵄨
󵄨
󵄨
𝑄
−𝑚
𝑥 (𝑡 + 𝑚𝑇, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
≤ 𝐵
0
, ∀𝑡 ∈ [𝐿,∞) , 𝑚 ∈ Z

1

+
,

(8)

whenever |𝑥
0
| ≤ 𝐵.

Proof of Theorem 1. Define the map 𝑃 : R𝑛 → R𝑛 by

𝑃 (𝑥
0
) = 𝑄

−1
𝑥 (𝑇, 𝑥

0
) , ∀𝑥

0
∈ R
𝑛
, (9)

and set
𝑆
0
= {𝑦 ∈ R

𝑛
:
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝐵
0
} ,

𝑆
1
= {𝑦 ∈ R

𝑛
:
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
< 𝐵
1
} ,

𝑆
2
= {𝑦 ∈ R

𝑛
:
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝐵
2
} ,

(10)

where
𝐵
1
= 𝐵
0
+ 1,

𝐵
2
= sup {󵄨󵄨󵄨

󵄨
𝑄
−𝑚
𝑥 (𝑚𝑇, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
: 𝑚 ∈ {0, . . . , 𝑁} ,

󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
≤ 𝐵
0
+ 1} + 𝐵

0
+ 2,

𝑁 = [𝐿 (𝐵
1
)] + 1.

(11)

By uniqueness and the affine periodicity of 𝑓(𝑡, 𝑥), 𝑄−𝑚𝑥(𝑡 +
𝑚𝑇, 𝑥

0
) is still the solution of (1) for each𝑚 ∈ Z1

+
. Therefore,

𝑃
𝑖
(𝑥
0
) = 𝑄

−𝑖
𝑥 (𝑖𝑇, 𝑥

0
) , 𝑖 = 0, 1, . . . . (12)

It follows from (8) that

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
2
, 𝑗 = 0, . . . , 𝑁 − 1,

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
0
, 𝑗 = 𝑁, . . . , 2𝑁 − 1.

(13)

Thus, Horn’s fixed-point theorem implies that 𝑃 has a fixed
point 𝑥

0
in 𝑆
0
; that is, 𝑄−1𝑥(𝑇, 𝑥

0
) = 𝑥

0
. Also, uniqueness

yields

𝑄
−1
𝑥 (𝑡 + 𝑇, 𝑥

0
) = 𝑥 (𝑡, 𝑥

0
) ,

⇐⇒ 𝑥 (𝑡 + 𝑇, 𝑥
0
) = 𝑄𝑥 (𝑡, 𝑥

0
) , ∀𝑡.

(14)

This completes the proof of Theorem 1.

3. A Version to Functional
Differential Equations

Consider the functional differential equation (FDE)

𝑥
󸀠
= 𝐹 (𝑡, 𝑥

𝑡
) , (15)

where 𝐹 : R1 × C → R𝑛 is continuous, takes any bounded
set in C to a bounded set in R𝑛, and ensures the uniqueness
of solutions with respect to initial values, where C =

C([−𝑟, 0],R𝑛), 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), and 𝑠 ∈ [−𝑟, 0]. Moreover, 𝐹

is 𝑄-affine-periodic; that is,

𝐹 (𝑡 + 𝑇, 𝜑) = 𝑄𝐹 (𝑡, 𝑄
−1
𝜑) , ∀ (𝑡, 𝜑) ∈ R

1
× C. (16)

Definition 5. Thesystem (15) is said to be𝑄-affine-dissipative;
if there is 𝐵

0
> 0 and for any 𝐵 > 0, there are𝑀 = 𝑀(𝐵) > 0

and 𝐿 = 𝐿(𝐵) > 0 such that
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝜑)

󵄨
󵄨
󵄨
󵄨
≤ 𝑀, ∀𝑡 ∈ [0, 𝐿] ,

󵄨
󵄨
󵄨
󵄨
𝑄
−𝑚
𝑥 (𝑡 + 𝑚𝑇, 𝜑)

󵄨
󵄨
󵄨
󵄨
≤ 𝐵
0
, ∀𝑡 ∈ [𝐿,∞) ,

(17)

whenever ‖𝜑‖ = max
[−𝑟,0]

|𝜑(𝑠)| ≤ 𝐵; here, 𝑥(𝑡, 𝜑) denotes the
solution of (15) at initial value 𝑥

0
= 𝜑.

We are in position to state another main result.

Theorem 6. If the system (15) is 𝑄-affine-periodic-dissipative,
then it admits a 𝑄-affine-periodic solution 𝑥(𝑡); that is,

𝑥 (𝑡 + 𝑇) = 𝑄𝑥 (𝑡) , ∀𝑡. (18)

Proof. Define the map 𝑃 : C → C by

𝑃 (𝜑) = 𝑄
−1
𝑥
𝑇
(⋅, 𝜑) , ∀𝜑 ∈ C, (19)

and set

𝑆
0
= {𝜑 ∈ C :

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤ 𝐵
0
,

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑠
1
) − 𝜑 (𝑠

2
)
󵄨
󵄨
󵄨
󵄨
≤ ℎ

󵄨
󵄨
󵄨
󵄨
𝑠
1
− 𝑠
2

󵄨
󵄨
󵄨
󵄨
, ∀𝑠
1
, 𝑠
2
∈ [−𝑟, 0]} ,

𝑆
1
= {𝜑 ∈ C :

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
< 𝐵
1
,

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑠
1
) − 𝜑 (𝑠

2
)
󵄨
󵄨
󵄨
󵄨
< ℎ
1

󵄨
󵄨
󵄨
󵄨
𝑠
1
− 𝑠
2

󵄨
󵄨
󵄨
󵄨
, ∀𝑠
1
, 𝑠
2
∈ [−𝑟, 0]} ,

𝑆
2
= {𝜑 ∈ C :

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤ 𝐵
2
,

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑠
1
) − 𝜑 (𝑠

2
)
󵄨
󵄨
󵄨
󵄨
≤ ℎ
2

󵄨
󵄨
󵄨
󵄨
𝑠
1
− 𝑠
2

󵄨
󵄨
󵄨
󵄨
, ∀𝑠
1
, 𝑠
2
∈ [−𝑟, 0]} ,

(20)
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where

ℎ = sup {󵄨󵄨󵄨
󵄨
𝐹 (𝑡, 𝜑)

󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ R

1
,
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤ 𝐵
0
} ,

ℎ
1
= sup {󵄨󵄨󵄨

󵄨
𝐹 (𝑡, 𝜑)

󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ R

1
,
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤ 𝐵
0
+ 1} ,

𝐵
1
= 𝐵
0
+ 1,

(21)

𝐵
2
= sup {󵄩󵄩󵄩

󵄩
𝑄
−𝑚
𝑥
𝑚𝑇

(⋅, 𝜑)
󵄩
󵄩
󵄩
󵄩
: 𝑚 ∈ {0, 1, . . . , 𝑁} ,

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤ 𝐵
0
+ 1} + 𝐵

0
+ 2,

ℎ
2
= sup {󵄨󵄨󵄨

󵄨
𝐹 (𝑡, 𝜑)

󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ R

1
,
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤ 𝐵
2
} ,

(22)

where𝑁 = [𝐿(𝐵
1
) + 𝑟] + 2. Then, (17) and the constructions

imply that

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
2
, 𝑗 = 0, . . . , 𝑁 − 1,

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
0
, 𝑗 = 𝑁, . . . , 2𝑁 − 1.

(23)

Hence, 𝑃 has a fixed point 𝜑
∗
∈ 𝑆
0
via Horn’s theorem. The

uniqueness implies that 𝑥(𝑡, 𝜑
∗
) is the desired affine-periodic

solution of (15). The proof is complete.

4. Some Applications

First, we observe a simple example to show the meanings of
affine-periodic solutions.

Example 7. Consider the equation

𝑥
󸀠
+ 2𝑥 = 𝑒

−𝑡
. (24)

Put 𝑓(𝑡, 𝑥) = −2𝑥 + 𝑒−𝑡. The general solution of (24) is

𝑥 (𝑡) = 𝑒
−2𝑡
𝑐 + 𝑒
−𝑡

(𝑐 is any constant) . (25)

Obviously, for given 𝜏 > 0,

𝑓 (𝑡 + 𝜏, 𝑥) = 𝑒
−𝜏
𝑓 (𝑡, 𝑒

𝜏
𝑥) , (26)

and any solution 𝑥(𝑡) satisfies
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑒
−𝜏
)

−𝑚

𝑥 (𝑡 + 𝑚𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑚𝜏
𝑒
−2(𝑡+𝑚𝜏)

𝑐 + 𝑒
𝑚𝜏
𝑒
−(𝑡+𝑚𝜏)󵄨󵄨

󵄨
󵄨
󵄨

≤ 𝑒
−(2𝑡+𝑚𝜏)

|𝑐| + 1

≤ 𝑒
−2𝑡

|𝑐| + 1,

(27)

which implies that (24) is 𝑒
−𝜏-periodic-dissipative. By

Theorem 1, (24) has an 𝑒
−𝜏-affine-periodic solution. This

solution is just 𝑥(𝑡) = 𝑒
−𝑡 and different from the usual

periodic solutions!

As usual, Lyapunov’s method is flexible in studying the
existence of affine-periodic solutions. The following results
illustrate applications in this aspect.

Theorem8. Assume that there exists a Lyapunov’s function𝑉 :
R1
+
×R𝑛 → R1

+
such that

(i) 𝑉(𝑡, 𝑥) is of C1;
(ii) 𝑉󸀠(𝑡, 𝑥) ≤ −𝑊(𝑡, 𝑥), |𝑥| ≥ 𝑀 > 0, where 𝑊(𝑡, 𝑥) is

continuous in R1
+
× {|𝑥| ≤ 𝑀}, and𝑊(𝑡, 𝑥) ≥ 𝛼 > 0,

|𝑥| ≥ 𝑀;
(iii) Uniformly in 𝑡,

lim inf
|𝑥|→∞

𝑉 (𝑡, 𝑥) > sup {𝑉 (𝑡, 𝑥) : 𝑡 ∈ R
1

+
, |𝑥| ≤ 𝑀} .

(28)

Then, the system (1) has a 𝑄-affine-periodic solution.

Proof. Let 𝑥(𝑡, 𝑥
0
) denote the solution of (1) with the initial

value 𝑥(0) = 𝑥
0
. Put

𝐾 = sup {𝑉 (𝑡, 𝑥) : 𝑡 ∈ R
1

+
, |𝑥| ≤ 𝑀} ,

𝐺 = {𝑥 ∈ R
𝑛
: 𝑉 (𝑡, 𝑥) ≤ 𝐾} .

(29)

By assumption (iii), 𝐺 is bounded and closed. In the follow-
ing, we will prove that for each 𝐵 > 0, there are𝑀 = 𝑀(𝐵) >

0 and𝑁 = 𝑁(𝐵) > 0 such that
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀, ∀𝑡 ∈ [0,𝑁] ,

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, ∀𝑡 ≥ 𝑁,

(30)

whenever |𝑥
0
| ≤ 𝐵.

In fact, given that 𝑥
0
∈ R𝑛, |𝑥

0
| > 𝑀 implies on the

maximal interval [0, 𝐿) that |𝑥(𝑡, 𝑥
0
)| > 𝑀; we have

0 ≤ 𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑉 (0, 𝑥

0
) − ∫

𝑡

0

𝑊(𝑠, 𝑥 (𝑠, 𝑥
0
)) d𝑠

≤ 𝑉 (0, 𝑥
0
) − 𝛼𝑡.

(31)

This shows that there is 𝑡
1
∈ (0,∞) such that

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
> 𝑀, ∀𝑡 ∈ [0, 𝑡

1
) ,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
1
, 𝑥
0
)
󵄨
󵄨
󵄨
󵄨
= 𝑀.

(32)

Note that

𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑉 (𝑡

1
, 𝑥 (𝑡
1
, 𝑥
0
)) , if 󵄨󵄨󵄨

󵄨
𝑥 (𝑡
1
, 𝑥
0
)
󵄨
󵄨
󵄨
󵄨
≥ 𝑀,

(33)

which together with the construction of 𝐺 yields

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, 𝑡 ∈ [𝑡

1
,∞) . (34)

If |𝑥
0
| < 𝑀, and there is a 𝑡 ∈ (0,∞) such that
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
< 𝑀, 𝑡 ∈ (0, 𝑡) ,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
= 𝑀, (35)

then we also have

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, ∀𝑡 ∈ [𝑡,∞) . (36)

Of course, in case of |𝑥
0
| = 𝑀, we have

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, ∀𝑡 ∈ [0,∞) . (37)

Taking these cases into account, we choose

𝑁 = 𝑡
1
. (38)

Now, the existence of affine-periodic solutions is an
immediate consequence. The proof is complete.
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Theorem 9. Assume that

⟨𝑥, 𝑓 (𝑡, 𝑥)⟩ ≤ −𝑎 (𝑡) |𝑥|
2
, (39)

where 𝑎 ∈ Loc(R1
+
) satisfies

∫

∞

0

𝑎 (𝑠) d𝑠 = ∞, ∫

∞

0

𝑎
−
(𝑠) d𝑠 < ∞. (40)

Then, (1) has an affine-periodic solution.

Proof. Let

𝑉 (𝑡, 𝑥) =

1

2

|𝑥|
2
. (41)

Then,
𝑉
󸀠
(𝑡, 𝑥) = ⟨𝑥, 𝑓 (𝑡, 𝑥)⟩ ≤ −2𝑎 (𝑡) 𝑉 (𝑡, 𝑥)

󳨐⇒ 𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑒

−∫
𝑡

0
2𝑎(𝑠)d𝑠

𝑉 (0, 𝑥
0
) , ∀𝑡 ≥ 0.

(42)

By assumption, ∫∞
0
𝑎(𝑠)d𝑠 = ∞, there is 𝑡

1
∈ (0,∞) such that

𝑒
−∫
𝑡1

0
2𝑎(𝑠)d𝑠 1

2

|𝑥|
2
≤ 1. (43)

Thus,

𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑒

−∫
∞

𝑡1

2𝑎
−
(𝑠)d𝑠

, ∀𝑡 ≥ 𝑡
1
,

󳨐⇒
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡, 𝑥

0
)
󵄨
󵄨
󵄨
󵄨
≤ √2𝑒

−∫
∞

𝑡1

𝑎
−
(𝑠)d𝑠

, ∀𝑡 ≥ 𝑡
1
.

(44)

ByTheorem 1, (1) has an affine-periodic solution.This finishes
the proof.

Example 10. Consider the system

𝑥
󸀠
= ± |𝑥|

2𝛽
𝑥 + (𝑒

√−12𝜋Θ𝑡
) ≡ 𝑓 (𝑡, 𝑥) , (∗)

±

where 𝛽 ≥ 0; 𝑥 ∈ C𝑛; Θ = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
)
𝑇, 𝜃
𝑖
> 0, 𝑖 =

1, 2, . . . , 𝑛. Let

𝑄 = 𝑒
√−12𝜋Θ𝑇

, 𝑇 > 0. (45)

Then

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑄𝑓 (𝑡, 𝑄
−1
𝑥) . (46)

In the following, we only consider the case (∗)
−
. Otherwise,

set 𝑡 → −𝑡 for (∗)
+
. Take 𝑉(𝑡, 𝑥) = (1/2)|𝑥|

2. Notice that for
|𝑥| ≥ √2 = 𝑀, 𝛼 = √2,

𝑉
󸀠
(𝑡, 𝑥) = ⟨𝑥, 𝑓 (𝑡, 𝑥)⟩ = 𝑥

𝑇
𝑓 (𝑡, 𝑥)

= −|𝑥|
2𝛽+2

+ 𝑥
𝑇
𝑒
−√−12𝜋Θ𝑡

≤ −|𝑥|
2𝛽+2

+ |𝑥|

≤ − |𝑥| = −𝑊 (𝑡, 𝑥) ≤ −𝛼.

(47)

Hence, byTheorem 8, (∗)
−
has a𝑄-affine𝑇-periodic solution.

Now, if leting 𝑝/𝑞 be a reduced fraction and 𝜃
𝑖
𝑇 = 𝑝/𝑞, 𝑖 =

1, 2, . . . , 𝑛, then the 𝑄-affine 𝑇-periodic solutions are just 𝑞-
subharmonic ones; if Θ𝑇 ∈ Q𝑛 (the set of rational vectors),
then there is a 𝐾 such that these affine 𝑇-periodic solutions
are 𝐾-periodic ones; if Θ𝑇 ∈ R𝑛 \ Q𝑛, then these solutions
are quasiperiodic ones with frequency Θ𝑇.
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